content
stringlengths
0
894k
type
stringclasses
2 values
# # wcsmod -- module wrapper for WCS calculations. # # This is open-source software licensed under a BSD license. # Please see the file LICENSE.txt for details. # """ We are fortunate to have several possible choices for a python WCS package compatible with Ginga: astlib, kapteyn, starlink and astropy. kapteyn and astropy wrap Mark Calabretta's "WCSLIB", astLib wraps Jessica Mink's "wcstools", and I'm not sure what starlink uses (their own?). Note that astlib requires pyfits (or astropy) in order to create a WCS object from a FITS header. To force the use of one, do: .. code-block:: python from ginga.util import wcsmod wcsmod.use('kapteyn') before you load any images. Otherwise Ginga will try to pick one for you. Note that you can register custom WCS types using: .. code-block:: python from ginga.util.wcsmod.common import register_wcs register_wcs('mywcs', MyWCSClass, list_of_coord_types) Look at the implemented WCS wrappers for details. """ import sys import os.path import glob from ginga.misc.ModuleManager import my_import from . import common # Module variables that get configured at module load time # or when use() is called wcs_configured = False WCS = None """Alias to the chosen WCS system.""" # Holds names of coordinate types coord_types = [] display_types = ['sexagesimal', 'degrees'] # try to load them in this order until we find one that works. # If none can be loaded, we default to the BareBones dummy WCS wcs_try_order = ('astropy', 'astropy_ape14', 'kapteyn', 'starlink', 'astlib', 'barebones') wcs_home = os.path.split(sys.modules[__name__].__file__)[0] def use(wcspkg, raise_err=True): """Choose WCS package.""" global coord_types, wcs_configured, WCS if wcspkg not in common.custom_wcs: # Try to dynamically load WCS modname = 'wcs_%s' % (wcspkg) path = os.path.join(wcs_home, '%s.py' % (modname)) try: my_import(modname, path) except ImportError as e: if raise_err: raise e return False if wcspkg in common.custom_wcs: bnch = common.custom_wcs[wcspkg] WCS = bnch.wrapper_class coord_types = bnch.coord_types wcs_configured = True return True return False # configure at least one WCS wrapper if not wcs_configured: # Try some preconfigured names for name in wcs_try_order: if use(name, raise_err=False): break if not wcs_configured: wcs_path = os.path.join(wcs_home, 'wcs_*.py') # look up WCS wrappers we have in this directory for path in glob.glob(wcs_path): dirname, filename = os.path.split(path) modname, ext = os.path.splitext(filename) modname = modname[4:] # strip off "wcs_" if use(name, raise_err=False): break def get_wcs_wrappers(): return list(common.custom_wcs.keys()) def get_wcs_class(name): """Get a WCS class corresponding to the registered name. Will raise a KeyError if a class of the given name does not exist. """ return common.custom_wcs[name] # END
python
#!/usr/bin/env python3 # # Configure logging # import logging import argparse parser = argparse.ArgumentParser() parser.add_argument("--debug", action="store_true", help="Show debugging output.") args = parser.parse_args() log_level = logging.DEBUG if args.debug else logging.INFO logging.basicConfig(level=log_level, format='[%(levelname)8s] %(name)-15s : %(message)s') # # The following demonstrates random access # operations on sequences. # # # Generate a sequence # import os print() print("Running: \"python3 ./write_from_files.py > /dev/null\"") os.system("python3 ./write_from_files.py > /dev/null") print() print() # # Read single items in linear mode # import itypes from itypes import Sequence seq = Sequence("out_write_from_files/data.gridseq").read() device = "numpy" # Access by linear index frame = seq.frames()[0] # NOTE that you can also access single ids as in read_linear_entry.py struct = frame.torch_struct("hwc", device) print('Read frame:') print(struct) print() # Access by scene and frame name frame = seq.data["Scene-001"]["0000000001"] # NOTE that you can also access single ids as in read_linear_entry.py struct = frame.torch_struct("hwc", device) print('Read frame:') print(struct) print()
python
from multiprocessing import Manager, Process def to_add(d, k, v): d[k] = v if __name__ == "__main__": process_dict = Manager().dict() p1 = Process(target=to_add, args=(process_dict, 'name', 'li')) p2 = Process(target=to_add, args=(process_dict, 'age', 13)) p1.start() p2.start() p1.join() p2.join() print(process_dict)
python
''' Create words from an existing wordlist ''' import random import re class WordBuilder(object): ''' uses an existing corpus to create new phonemically consistent words ''' def __init__(self, initial='>', terminal='<', chunk_size=2): #indicators for start and ends of words - set if necessary to avoid collision self.initial = initial self.terminal = terminal self.chunk_size = chunk_size self.links = { self.initial: [] } self.average_word_length = 0 self.shortest = None def ingest(self, corpus_file): ''' load and parse a pre-formatted and cleaned text file. Garbage in, garbage out ''' corpus = open(corpus_file) total_letters = 0 total_words = 0 shortest_word = 100 for word in corpus.readlines(): # clean word word = word.strip() word = re.sub(r'[\',\.\"]', '', word) total_letters += len(word) total_words += 1 shortest_word = len(word) if len(word) < shortest_word else shortest_word # iterate through n letter groups, where 1 <= n <= 3 n = self.chunk_size start = 0 # >: C, Cys: t, yst: i self.links[self.initial].append(word[0:n]) for position in range(n, len(word)): start = position - n if position - n >= 0 else 0 base = word[start:position] if not base in self.links: self.links[base] = [] self.links[base].append(word[position]) if not word[-n:] in self.links: self.links[word[-n:]] = [] self.links[word[-n:]].append(self.terminal) self.average_word_length = total_letters / total_words self.shortest = shortest_word def get_word(self, word=None): ''' creates a new word ''' word = word if not word == None else self.initial if not self.terminal in word: if len(word) > self.average_word_length and \ self.terminal in self.links[word[-self.chunk_size:]] \ and random.randint(0, 1): addon = self.terminal else: options = self.links[word[-self.chunk_size:]] addon = random.choice(options) word = word + addon return self.get_word(word) return word[1:-1]
python
# -*- coding: utf-8 -*- """ Created on Sun May 01 20:28:46 2016 @author: Anna Directory structure: assumes galaxy directory is the working directory, input_data/ should contain pars, phot and fake files This code generates a CMD plot in the same directory where the program, CMDscript.py, is Use optional -phot, -fake flags to specify their location, or change the default setting in parse_options() Assumes the default values of the column numbers for fake data to be 2,4,9 and 11; specify the values in the bash script or edit the default values Give any name for .png file after -fake=... The file gets saved as [filename].png Syntax: python CMDscript.py [path to working directory, ending in /] -phot=[path from working directory to phot file] -fake=... e.g. python CMDscript.py /work/04316/kmcquinn/wrangler/shield/galaxies/agc223254/ -phot=phot/a223254_tilted_ellipse.phot3 2 4 9 11 -fake=input_data/fake AGC223254 The output files (.png files) are stored in the same directory as this program's """ import matplotlib matplotlib.use("Agg") # Comment this line if not running on tacc import matplotlib.pyplot as plt plt.ion() import numpy as np import pylab as pl import sys from matplotlib.ticker import MultipleLocator, FormatStrFormatter, AutoMinorLocator import argparse #def parse_options(): # Creates argument parser parser = argparse.ArgumentParser(description='Process input parameters.') # Defines required arguments used on the command line parser.add_argument('galaxydir',action='store',help='path to galaxy directory (note: this is the whole path ending in the galaxy directory)') parser.add_argument('-phot',dest='phot',action='store',help="location of phot file from galaxy directory",default='input_data/phot') parser.add_argument('col1',action='store',help="column number for V",default='2', type=int) parser.add_argument('col2',action='store',help="column number for Verr",default='4', type = int) parser.add_argument('col3',action='store',help="column number for I",default='9',type = int) parser.add_argument('col4',action='store',help="column number for Ierr",default='11',type=int) parser.add_argument('-fake',dest='fake',action='store',help="location of fake file from galaxy directory",default='input_data/fake') parser.add_argument('gname',action = 'store', help="names the galaxy", type=str) # Parses through the arguments and saves them within the keyword args args = parser.parse_args() #plot_title = sys.argv[1] #redfilter = sys.argv[2] #bluefilter = sys.argv[3] #plot_title = "AGC238890" # Parses through command line arguments #args = parse_options() galdir = args.galaxydir #col_1 = args.col1 #col_2 = args.col2 #col_3 = args.col3 #col_4 = args.col4 # Defines the location of phot, and fake phot = galdir + args.phot fake = galdir + args.fake #print filtername(pars) gal_name = args.gname plot_title= gal_name redfilter = "F814W" bluefilter = "F606W" print(str(galdir)) #Real Data """Parsers the path to phot file""" dat = np.genfromtxt(phot) #dat = np.genfromtxt(args.phot+'') #remove all NaNs dat = dat[~np.isnan(dat).any(axis=1)] """Parsers the column numbers for fake""" #V = np.array(dat[:,2]) V= np.array(dat[:,args.col1]) #Verr = np.array(dat[:,4]) Verr = np.array(dat[:,args.col2]) #I = np.array(dat[:,9]) I = np.array(dat[:,args.col3]) #Ierr = np.array(dat[:,11]) Ierr = np.array(dat[:,args.col4]) VmI = V-I VmIerr = (((Verr)**2)+(((Ierr)**2)))**.5 print VmIerr #fake error stuff fdat = np.loadtxt(fake) #fdat = np.loadtxt(args.fake) fdat = np.asarray([d for d in fdat if not 99.999 in d]) fVerr = np.array(fdat[:,2]) fIerr = np.array(fdat[:,3]) fI = np.array(fdat[:,1]) fV = np.array(dat[:,0]) fVmIerr = (fVerr**2 + fIerr**2)**0.5 print fVmIerr #Here I am finding the max and min values of the data #We will use this to automate the figsize thing maxV = np.amax(V) + .3 print max(V) maxI = np.amax(I) + .3 minV = np.amin(V) + 1.3 minI = np.amin(I) + 1.3 meanVmI = np.mean(VmI) maxVmI = (meanVmI) + 5*np.std(VmI) minVmI = (meanVmI) - 4*np.std(VmI) Ierrup = np.around(maxI - .5) Verrup = np.around(maxV - .5) Ierrlow = np.around(minI + .5) Verrlow = np.around(minV + .5) errx = maxVmI -.3 print maxVmI print errx #maxVmI = np.amax(VmI) + .2 #minVmI = np.amin(VmI) - .2 #print minI #print min(I) #Making plain scatter plot fig = plt.figure() ax = fig.add_subplot(1, 2, 1) ax.scatter(VmI, I, color = 'black', s = 2) ax.set_ylim(maxI, minI) ax.set_xlim(minVmI, maxVmI) ax.set_xlabel(bluefilter + '-' + redfilter + ' (mag)') ax.set_ylabel(redfilter + ' (mag)') fig.text(.18, .85, 'Number of stars: '+str(len(V))) majorLocator = MultipleLocator(1) majorFormatter = FormatStrFormatter('%d') minorLocator = AutoMinorLocator(10) ax.yaxis.set_major_locator(majorLocator) ax.yaxis.set_major_formatter(majorFormatter) ax.yaxis.set_minor_locator(minorLocator) plt.suptitle(plot_title) #ax.set_title(plot_title) #adding error to the plot #c = 3 c = errx #location of the line errlist = [] ylist = [] Verrlist = [] VmIerrlist = [] #Ilist = range(18, 27) Ilist = range(int(Ierrlow), int(Ierrup)) for a in Ilist: Iw = np.where(I > a) Iwr = np.where(I[Iw] < a+1) fIw = np.where(fI > a) fIwr = np.where(fI[fIw] < a+1) Ierravg = ((np.mean(Ierr[Iwr]))**2 + (np.mean(abs(fIerr[fIwr]))**2))**.5 errlist.append(Ierravg) ylist.append(a+.5) VmIerravg = (np.mean(VmIerr[Iwr])**2 + np.mean(abs(fVmIerr[fIwr]))**2)**.5 VmIerrlist.append(VmIerravg) xlist = c*np.ones_like(ylist) plt.errorbar(xlist, ylist, xerr = VmIerrlist, yerr= errlist, fmt = '.', capsize=0) #adding in the contour script def multidigitize(VmI,I,binsVmI,binsV): dVmI = np.digitize(VmI.flat, binsVmI) dI = np.digitize(I.flat, binsV) return dVmI,dI def linlogspace(xmin,xmax,n): return np.logspace(np.log10(xmin),np.log10(xmax),n) #here's the contour actual values def adaptive_param_plot(VmI,I, bins=3, threshold=2, marker='.', marker_color=None, ncontours=5, fill=False, mesh=False, contourspacing=linlogspace, mesh_alpha=0.5, norm=None, axis=None, cmap=None, **kwargs): if axis is None: axis = pl.gca() axis.set_ylim(28, 18) ok = np.isfinite(VmI)*np.isfinite(I) if hasattr(bins, 'ndim') and bins.ndim == 2: nbinsVmI, nbinsI = bins.shape[0]-1, bins.shape[1]-1 else: try: nbinsVmI = nbinsI = len(bins)-1 except TypeError: nbinsVmI = nbinsI = bins H, bVmI, bI = np.histogram2d(VmI[ok], I[ok], bins = bins) dVmI, dI = multidigitize(VmI[ok], I[ok], bVmI, bI) plottable = np.ones([nbinsVmI+2, nbinsI+2], dtype = 'bool') plottable_hist = plottable[1:-1, 1:-1] assert H.shape == plottable_hist.shape plottable_hist[H > threshold] = False H[plottable_hist] = 0 toplot = plottable[dVmI, dI] cVmI = (bVmI[1:]+bVmI[:-1])/2 cI = (bI[1:]+bI[:-1])/2 levels = contourspacing(threshold-0.5, H.max(), ncontours) if cmap is None: cmap = plt.cm.get_cmap() cmap.set_under((0,0,0,0)) cmap.set_bad((0,0,0,0)) if fill: con = axis.contourf(cVmI, cI, H.T, levels= levels, norm = norm, cmap = cmap, **kwargs) else: con = axis.contour(cVmI, cI, H.T,levels=levels,norm=norm,cmap=cmap,**kwargs) if mesh: mesh = axis.pcolormesh(bVmI, bI, H.T, **kwargs) mesh.set_alpha(mesh_alpha) #Is there a way to add lines w the contour levels? if 'linestyle' in kwargs: kwargs.pop('linestyle') #if i wanted to plot the scatter from this script intstead, but I can't make it look as nice # axis.plot(VmI[ok][toplot], # I[ok][toplot], # linestyle='none', # marker=marker, # markerfacecolor=marker_color, # markeredgecolor=marker_color, # **kwargs) return cVmI, cI, H, VmI[ok][toplot], I[ok][toplot] adaptive_param_plot(VmI, I, bins = 100, fill = True, ncontours = 7, threshold = 2, axis = ax) #SECOND PLOT #Making plain scatter plot #fig = plt.figure() ax1 = fig.add_subplot(1, 2, 2) ax1.scatter(VmI, V, color = 'black', s = 2) ax1.set_ylim(maxV, minV) ax1.set_xlim(minVmI, maxVmI) #ax.set_ylim(29, 18) #ax.set_xlim(-.98, 3.48) ax1.set_xlabel(redfilter + '-' + bluefilter + ' (mag)') ax1.set_ylabel(bluefilter + ' (mag)') ax1.yaxis.set_label_coords(-0.12, 0.5) #fig.text(.6, .85, 'Number of stars: '+str(len(V))) majorLocator = MultipleLocator(1) majorFormatter = FormatStrFormatter('%d') minorLocator = AutoMinorLocator(10) ax1.yaxis.set_major_locator(majorLocator) ax1.yaxis.set_major_formatter(majorFormatter) ax1.yaxis.set_minor_locator(minorLocator) ax.get_shared_y_axes().join(ax, ax1) ax.set_yticklabels([]) ax1.autoscale() #ax.set_title(plot_title) #adding error to the plot #c = 3 c = errx #location of the line errlist = [] ylist = [] Verrlist = [] VmIerrlist = [] #Ilist = range(18, 28) Ilist = range(int(Verrlow), int(Verrup)) for a in Ilist: Iw = np.where(I > a) Iwr = np.where(I[Iw] < a+1) fIw = np.where(fI > a) fIwr = np.where(fI[fIw] < a+1) Ierravg = ((np.mean(Ierr[Iwr]))**2 + (np.mean(abs(fIerr[fIwr])))**2)**.5 errlist.append(Ierravg) ylist.append(a+.5) VmIerravg = (np.mean(VmIerr[Iwr])**2 + np.mean(fVmIerr[fIwr])**2)**.5 VmIerrlist.append(VmIerravg) xlist = c*np.ones_like(ylist) plt.errorbar(xlist, ylist, xerr = VmIerrlist, yerr= errlist, fmt = '.', capsize = 0) #adding in the contour script def multidigitize(VmI,V,binsVmI,binsV): dVmI = np.digitize(VmI.flat, binsVmI) dV = np.digitize(V.flat, binsV) return dVmI,dV def linlogspace(xmin,xmax,n): return np.logspace(np.log10(xmin),np.log10(xmax),n) #here's the contour actual values def adaptive_param_plot(VmI,V, bins=3, threshold=2, marker='.', marker_color=None, ncontours=5, fill=False, mesh=False, contourspacing=linlogspace, mesh_alpha=0.5, norm=None, axis=None, cmap=None, **kwargs): if axis is None: axis = pl.gca() axis.set_ylim(28, 18) ok = np.isfinite(VmI)*np.isfinite(V) if hasattr(bins, 'ndim') and bins.ndim == 2: nbinsVmI, nbinsV = bins.shape[0]-1, bins.shape[1]-1 else: try: nbinsVmI = nbinsV = len(bins)-1 except TypeError: nbinsVmI = nbinsV = bins H, bVmI, bV = np.histogram2d(VmI[ok], V[ok], bins = bins) dVmI, dV = multidigitize(VmI[ok], V[ok], bVmI, bV) plottable = np.ones([nbinsVmI+2, nbinsV+2], dtype = 'bool') plottable_hist = plottable[1:-1, 1:-1] assert H.shape == plottable_hist.shape plottable_hist[H > threshold] = False H[plottable_hist] = 0 toplot = plottable[dVmI, dV] cVmI = (bVmI[1:]+bVmI[:-1])/2 cV = (bV[1:]+bV[:-1])/2 levels = contourspacing(threshold-0.5, H.max(), ncontours) if cmap is None: cmap = plt.cm.get_cmap() cmap.set_under((0,0,0,0)) cmap.set_bad((0,0,0,0)) if fill: con = axis.contourf(cVmI, cV, H.T, levels= levels, norm = norm, cmap = cmap, **kwargs) else: con = axis.contour(cVmI, cV, H.T,levels=levels,norm=norm,cmap=cmap,**kwargs) if mesh: mesh = axis.pcolormesh(bVmI, bV, H.T, **kwargs) mesh.set_alpha(mesh_alpha) #Is there a way to add lines w the contour levels? if 'linestyle' in kwargs: kwargs.pop('linestyle') return cVmI, cV, H, VmI[ok][toplot], I[ok][toplot] adaptive_param_plot(VmI, V, bins = 100, fill = True, ncontours = 7, threshold = 2, axis = ax) #plt.savefig('CMD.png') plt.savefig(gal_name+'.png')
python
# -*- cpy-indent-level: 4; indent-tabs-mode: nil -*- # ex: set expandtab softtabstop=4 shiftwidth=4: # # Copyright (C) 2008,2009,2010,2011,2013,2014 Contributor # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains the logic for `aq show fqdn --all`.""" from sqlalchemy.orm import contains_eager from aquilon.worker.broker import BrokerCommand from aquilon.worker.formats.list import StringList from aquilon.aqdb.model import DnsDomain, DnsEnvironment, Fqdn class CommandShowFqdnAll(BrokerCommand): def render(self, session, dns_environment, **arguments): self.deprecated_command("The show_fqdn command is deprecated. Please " "use search_dns instead.", **arguments) dbdns_env = DnsEnvironment.get_unique_or_default(session, dns_environment) q = session.query(Fqdn) q = q.filter_by(dns_environment=dbdns_env) q = q.join(DnsDomain) q = q.options(contains_eager("dns_domain")) q = q.order_by(DnsDomain.name, Fqdn.name) return StringList(q.all())
python
"""Request handler base classes """ from decorator import decorator from pyramid.httpexceptions import HTTPForbidden from dd_app.django_codec import DjangoSessionCodec from dd_app.messaging.mixins import MsgMixin class DDHandler(object): """Base view handler object """ def __init__(self, request, *args, **kwargs): self.request = request @property def mongo(self): if not hasattr(self, '__mongo'): self.__mongo = self.settings['mongodb.connector'] return self.__mongo @property def redis(self): if not hasattr(self, '__redis'): self.__redis = self.settings['redis.connector'] return self.__redis @property def settings(self): return self.request.registry.settings @property def cookies(self): return self.request.cookies @property def debug_charge_accel(self): return int(self.settings.get('dd_app.debug_charge_accel', 1)) @property def powerup_types(self): return ('ad', 'teammember', 'upgrade') class DjangoSessionMixin(object): """Mixin implementing authentication agains django sessions""" def _get_redis_key(self, key): return "%s%s" % (self.settings['session.prefix'], key) @property def session_codec(self): if not hasattr(self, '_session_codec'): self._session_codec = DjangoSessionCodec(self.settings) return self._session_codec def get_session_cookie(self): if hasattr(self, '_token'): return self._token return self.cookies.get(self.settings['session.cookie_id'], None) def get_redis_session(self, key): self._raw_session = self.redis.get().get(self._get_redis_key(key)) result = self._raw_session return result def _get_session_data(self): key = self.get_session_cookie() if key is None: return {} # no session cookie session_data = self.get_redis_session(key) if session_data is None: return {} # no session data for key session_dec, auth_uid = self.session_codec.decode(session_data) return session_dec @property def session_data(self): if not hasattr(self, '_django_session'): self._django_session = self._get_session_data() return self._django_session @property def session_language(self): return self.session_data.get('django_language', 'en') @property def auth_uid(self): return self.session_data.get('_auth_user_id', None) def check_user(self): if self.auth_uid is not None: return self.mongo.get_user_by_auth_uid(self.auth_uid, {'_id': 1}) is not None return False def get_user_info(self): if self.auth_uid is not None: return self.mongo.get_user_by_auth_uid(self.auth_uid) @property def userdata(self): if not hasattr(self, '_userdata'): self._userdata = self.get_user_info() return self._userdata @property def game_query_base(self): oid = self.userdata['_id'] query_base = {'user.$id': oid} version = self.userdata.get('game_version', None) if version is not None: query_base.update({'version': version}) return query_base def _delete_session(self): del self._django_session del self._raw_session if hasattr(self, '_delkey'): self.redis.get().delete(self._get_redis_key(self._delkey)) del self._delkey def _delete_cookie(self): def del_cookie_callback(request, response): response.delete_cookie(self.settings['session.cookie_id']) self.request.add_response_callback(del_cookie_callback) def _logout(self): self._delkey = self.get_session_cookie() self._delete_cookie() self._delete_session() def get_game_version(self, auth_uid): if not hasattr(self, '_game_version'): data = self.mongo.get_game_version(auth_uid) if data is None: self._game_version = None else: self._game_version = data.get('game_version', None) return self._game_version class BaseHandler(DDHandler, DjangoSessionMixin, MsgMixin): def _get_uid(self): # For MsgMixin compatibility return self.auth_uid # decorator preserving the argspec, # see https://micheles.googlecode.com/hg/decorator/documentation.html @decorator def dd_protected(f, obj, token, *args, **kwargs): obj._token = token if obj.auth_uid is None: raise HTTPForbidden('unauthorized') return f(obj, token, *args, **kwargs)
python
"""Module with view functions that serve each uri.""" from datetime import datetime from learning_journal.models.mymodel import Journal from learning_journal.security import is_authenticated from pyramid.httpexceptions import HTTPFound, HTTPNotFound from pyramid.security import NO_PERMISSION_REQUIRED, forget, remember from pyramid.view import view_config @view_config(route_name='home', renderer='learning_journal:templates/index.jinja2', permission='view') def list_view(request): """Pass response to send to index.html page with all entries.""" entries = request.dbsession.query(Journal).all() entries = [entry.to_dict() for entry in entries] return { 'entries': entries } @view_config(route_name='detail', renderer='learning_journal:templates/detail.jinja2', permission='view') def detail_view(request): """Pass response to send to detail page for individual entries.""" target_id = int(request.matchdict['id']) entry = request.dbsession.query(Journal).get(target_id) if not entry: raise HTTPNotFound if request.method == 'GET': return { 'entry': entry.to_dict() } if request.method == "POST": return HTTPFound(request.route_url('edit', id=entry.id)) @view_config(route_name='create', renderer='learning_journal:templates/new.jinja2', permission='secret') def create_view(request): """Pass response to send to new page.""" if request.method == 'GET': return{ 'textarea': 'New Entry' } if request.method == 'POST': new_entry = Journal( title=request.POST['title'], text=request.POST['text'], created=datetime.now() ) request.dbsession.add(new_entry) return HTTPFound(request.route_url('home')) @view_config(route_name='edit', renderer='learning_journal:templates/edit.jinja2', permission='secret') def update_view(request): """Pass response to send to edit page.""" target_id = int(request.matchdict['id']) entry = request.dbsession.query(Journal).get(target_id) if not entry: raise HTTPNotFound if request.method == 'GET': return { 'entry': entry.to_dict() } if request.method == 'POST' and request.POST: entry.title = request.POST['title'] entry.text = request.POST['body'] entry.created = datetime.now() request.dbsession.add(entry) request.dbsession.flush() return HTTPFound(request.route_url('detail', id=entry.id)) @view_config(route_name='delete', permission='secret') def delete_view(request): """Delete a specific entry.""" target_id = int(request.matchdict['id']) entry = request.dbsession.query(Journal).get(target_id) if entry: request.dbsession.delete(entry) return HTTPFound(request.route_url('home')) raise HTTPNotFound @view_config( route_name='login', renderer="learning_journal:templates/login.jinja2", permission=NO_PERMISSION_REQUIRED ) def login(request): """Login view config to authenticate username/password.""" if request.authenticated_userid: return HTTPFound(request.route_url('home')) if request.method == "GET": return {} if request.method == "POST": username = request.POST['username'] password = request.POST['password'] if is_authenticated(username, password): headers = remember(request, username) return HTTPFound(request.route_url('home'), headers=headers) return { 'error': 'Invalid username/password combination.' } @view_config(route_name='logout', permission=NO_PERMISSION_REQUIRED) def logout(request): """Logout view config to redirect to home view.""" headers = forget(request) return HTTPFound(request.route_url('home'), headers=headers)
python
import os import torch import pickle import numpy as np from transformers import RobertaConfig, RobertaModel, RobertaTokenizer tokenizer = RobertaTokenizer.from_pretrained('roberta-base') roberta = RobertaModel.from_pretrained('roberta-base') path = '../wikidata5m_alias' if not os.path.exists('../wikidata5m_alias_emb'): os.makedirs('../wikidata5m_alias_emb') with open('../read_ent_vocab.bin', 'rb') as fin: ent_vocab = pickle.load(fin) with open('../read_rel_vocab.bin', 'rb') as fin: rel_vocab = pickle.load(fin) print(len(ent_vocab)) print(len(rel_vocab)) aliases = {} with open(os.path.join(path, 'wikidata5m_entity.txt'), 'r', encoding='utf-8') as fin: for line in fin: segs = line.strip().split('\t') entity = segs[0] alias = segs[1:] aliases[entity] = alias print(len(aliases)) miss = 0 entity_embeddings = [] for k, v in ent_vocab.items(): if k in aliases: alias = aliases[k][0] tokens = tokenizer.encode(' '+alias, add_special_tokens=False) embedding = roberta.embeddings.word_embeddings(torch.tensor(tokens).view(1,-1)).squeeze(0).mean(dim=0) else: miss += 1 embedding = torch.randn(768) / 10 entity_embeddings.append(embedding) assert len(ent_vocab) == len(entity_embeddings) entity_embeddings = torch.stack(entity_embeddings, dim=0) print(miss * 1.0 / len(ent_vocab)) print(entity_embeddings.shape) np.save('../wikidata5m_alias_emb/entities.npy', entity_embeddings.detach().numpy()) del entity_embeddings rel_aliases = {} with open(os.path.join(path, 'wikidata5m_relation.txt'), 'r', encoding='utf-8') as fin: for line in fin: segs = line.strip().split('\t') relation = segs[0] alias = segs[1:] rel_aliases[relation] = alias miss = 0 relation_embeddings = [] for k, v in rel_vocab.items(): if k in rel_aliases: alias = rel_aliases[k][0] tokens = tokenizer.encode(' '+alias, add_special_tokens=False) embedding = roberta.embeddings.word_embeddings(torch.tensor(tokens).view(1,-1)).squeeze(0).mean(dim=0) else: miss += 1 embedding = torch.randn(768) / 10 relation_embeddings.append(embedding) assert len(rel_vocab) == len(relation_embeddings) relation_embeddings = torch.stack(relation_embeddings, dim=0) print(relation_embeddings.shape) print(miss * 1.0 / len(ent_vocab)) np.save('../wikidata5m_alias_emb/relations.npy', relation_embeddings.detach().numpy())
python
from array import array import numpy as np import os import cv2 import argparse from tensorflow import lite as tflite from matplotlib import pyplot as plt import time import torch from torchvision import transforms from omegaconf import OmegaConf import torch.nn.functional as F import tensorflow as tf from torch.optim import Adam from torch.utils.data import DataLoader import torchvision import pytorch_lightning as pl from PIL import Image from aei_net import AEINet parser = argparse.ArgumentParser() parser.add_argument("-c", "--config", type=str, default="../config/train.yaml", help="path of configuration yaml file"), parser.add_argument("--model_path", type=str, default="../ONNX/", help="path of onnx extra data folder"), parser.add_argument("--checkpoint_path", type=str, default="../chkpt/30.ckpt", help="path of aei-net pre-trained file"), parser.add_argument("--images_folder", type=str, default="../data/faceshifter-datasets-preprocessed/train/", help="path of preprocessed source face image"), parser.add_argument("--gpu_num", type=int, default=0, help="number of gpu"), parser.add_argument("--num_images", type=int, default=50, help="number of images used to convert the model") args = parser.parse_args() def optizeADD_w_optim_MLE(argument): device = torch.device(f"cuda:{argument.gpu_num}" if torch.cuda.is_available() else 'cpu') #set experimental memory growth physical_devices = tf.config.list_physical_devices('GPU') tf.config.experimental.set_memory_growth( physical_devices[0], True ) #load model for converter converter = tf.lite.TFLiteConverter.from_saved_model(argument.model_path + "ADD_gen") converter.optimizations = [tf.lite.Optimize.DEFAULT] #load model for data preparation hp = OmegaConf.load(argument.config) model = AEINet.load_from_checkpoint(argument.checkpoint_path, hp=hp) model.eval() model.freeze() model.to(device) interpreter = tflite.Interpreter(args.model_path+ "MultiLevelEncoder_gen_Lite_optimized.tflite", num_threads=12) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() #setup for data preparation def representative_dataset_gen(): for i in range(argument.num_images): #choose a picture source_img_path = os.path.join(argument.images_folder, f"{i:08}.png") source_img = transforms.ToTensor()(Image.open(source_img_path)).unsqueeze(0).to(device) #prepare the image for the model z_id = model.Z(F.interpolate(source_img, size=112, mode='bilinear')) z_id = F.normalize(z_id) z_id = z_id.detach() #choose target image target_img_number = (i+argument.num_images) target_img_path = os.path.join(argument.images_folder, f"{target_img_number:08}.png") img = cv2.imread(target_img_path) img = cv2.resize(img, (256, 256)) img = img.astype(np.float32) img = img/255.0 img = np.transpose(img, (2, 0, 1)) img = np.expand_dims(img, axis=0) interpreter.set_tensor(input_details[0]['index'], img) interpreter.invoke() feature_map = [interpreter.get_tensor(output_details[1]['index']), interpreter.get_tensor(output_details[0]['index']), interpreter.get_tensor(output_details[3]['index']), interpreter.get_tensor(output_details[5]['index']), interpreter.get_tensor(output_details[6]['index']), interpreter.get_tensor(output_details[4]['index']), interpreter.get_tensor(output_details[7]['index']), interpreter.get_tensor(output_details[2]['index'])] #converting to cpu and numpy and prepraring with dictionary signature yield {"input.5": z_id.cpu().numpy(), "input.119": feature_map[5], "input.145": feature_map[6], "input.171": feature_map[7], "input.27": feature_map[1], "input.47": feature_map[2], "input.67": feature_map[3], "input.7": feature_map[0], "input.93": feature_map[4]} #converter setup converter.representative_dataset = representative_dataset_gen #converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] #converter.inference_input_type = tf.float32 #converter.inference_output_type = tf.float32 #convert the model tflite_quant_model = converter.convert() #save the model with open(args.model_path + "ADD_gen_Lite_optimized.tflite", 'wb') as f: f.write(tflite_quant_model) optizeADD_w_optim_MLE(args)
python
import os # Bot Setup os.environ["prefix"] = "g!" os.environ["token"] = "NzM5Mjc0NjkxMDg4MjIwMzEw.XyYFNQ.Mb6wJSHhpj9LP5bqO2Hb0w8NBQM" os.environ["botlog"] = "603894328212848651" os.environ["debugEnabled"] = "False" # Database Setup os.environ["db_type"] = "MySQL" # Either MySQL or Flat (or just leave empty for Flat SQLite) os.environ["db_user"] = "USERNAME" # Defaults to root if empty os.environ["db_pword"] = "PASSWORD" # Defaults to none if empty os.environ["db_host"] = "HOST" # Defaults to localhost if empty os.environ["db_port"] = "PORT" # Defaults to 3306 # Bot list API tokens os.environ["top.gg_token"] = "" os.environ["discord.bots.gg_token"] = "" os.environ["discordbotlist.com_token"] = "" os.environ["bots.ondiscord.xyz_token"] = "" os.environ["botsfordiscord.com_token"] = ""
python
### # Adapted from Avalanche LvisDataset # https://github.com/ContinualAI/avalanche/tree/detection/avalanche/benchmarks/datasets/lvis # # Released under the MIT license, see: # https://github.com/ContinualAI/avalanche/blob/master/LICENSE ### from pathlib import Path from typing import List, Sequence, Union from PIL import Image from torch.utils.data import Dataset from torchvision.datasets.folder import default_loader from devkit_tools.challenge_constants import DEFAULT_CHALLENGE_TRAIN_JSON, \ DEFAULT_CHALLENGE_TEST_JSON from ego_objects import EgoObjects, EgoObjectsAnnotation, \ EgoObjectsImage import torch class ChallengeDetectionDataset(Dataset): """ The sample dataset. For internal use by challenge organizers only. """ def __init__( self, root: Union[str, Path], *, train=True, transform=None, loader=default_loader, ego_api=None, img_ids: List[int] = None, bbox_format: str = 'ltwh', categories_id_mapping: List[int] = None ): """ Instantiates the sample dataset. :param root: The path to the images and annotation file. :param transform: The transformation to apply. :param loader: The image loader. Defaults to PIL Image open. :param ego_api: An EgoObjects object. If not provided, annotations will be loaded from the json file found in the root. Defaults to None. :param img_ids: A list of image ids to use. If not None, only those images (a subset of the original dataset) will be used. Defaults to None. :param bbox_format: The bounding box format. Defaults to "ltwh" (Left, Top, Width, Height). :param categories_id_mapping: If set, it must define a mapping from the to-be-used-id to the real category id so that: real_cat_id = categories_id_mapping[mapped_id]. """ self.root: Path = Path(root) self.train = train self.transform = transform self.loader = loader self.bbox_crop = True self.img_ids = img_ids self.bbox_format = bbox_format self.categories_id_mapping = categories_id_mapping self.ego_api = ego_api must_load_api = self.ego_api is None must_load_img_ids = self.img_ids is None # Load metadata if must_load_api: if self.train: ann_json_path = str(self.root / DEFAULT_CHALLENGE_TRAIN_JSON) else: ann_json_path = str(self.root / DEFAULT_CHALLENGE_TEST_JSON) self.ego_api = EgoObjects(ann_json_path) if must_load_img_ids: self.img_ids = list(sorted(self.ego_api.get_img_ids())) self.targets = EgoObjectsDetectionTargets( self.ego_api, self.img_ids, categories_id_mapping=categories_id_mapping) # Try loading an image if len(self.img_ids) > 0: img_id = self.img_ids[0] img_dict = self.ego_api.load_imgs(ids=[img_id])[0] assert self._load_img(img_dict) is not None def __getitem__(self, index): """ Loads an instance given its index. :param index: The index of the instance to retrieve. :return: a (sample, target) tuple where the target is a torchvision-style annotation for object detection https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html """ img_id = self.img_ids[index] img_dict: EgoObjectsImage = self.ego_api.load_imgs(ids=[img_id])[0] annotation_dicts = self.targets[index] # Transform from EgoObjects dictionary to torchvision-style target num_objs = len(annotation_dicts) boxes = [] labels = [] areas = [] for i in range(num_objs): xmin = annotation_dicts[i]['bbox'][0] ymin = annotation_dicts[i]['bbox'][1] if self.bbox_format == 'ltrb': # Left, Top, Right, Bottom xmax = annotation_dicts[i]['bbox'][2] ymax = annotation_dicts[i]['bbox'][3] boxw = xmax - xmin boxh = ymax - ymin else: # Left, Top, Width, Height boxw = annotation_dicts[i]['bbox'][2] boxh = annotation_dicts[i]['bbox'][3] xmax = boxw + xmin ymax = boxh + ymin boxes.append([xmin, ymin, xmax, ymax]) labels.append(annotation_dicts[i]['category_id']) areas.append(boxw * boxh) if len(boxes) > 0: boxes = torch.as_tensor(boxes, dtype=torch.float32) else: boxes = torch.empty((0, 4), dtype=torch.float32) labels = torch.as_tensor(labels, dtype=torch.int64) image_id = torch.tensor([img_id]) areas = torch.as_tensor(areas, dtype=torch.float32) iscrowd = torch.zeros((num_objs,), dtype=torch.int64) target = dict() target["boxes"] = boxes target["labels"] = labels target["image_id"] = image_id target["area"] = areas target["iscrowd"] = iscrowd img = self._load_img(img_dict) if self.transform is not None: img, target = self.transform(img, target) return img, target def __len__(self): return len(self.img_ids) def _load_img(self, img_dict): img_url = img_dict['url'] splitted_url = img_url.split('/') img_path = 'images/' + splitted_url[-1] img_path_alt = 'cltest/' + splitted_url[-1] final_path = self.root / img_path # <root>/images/<img_id>.jpg if not final_path.exists(): final_path = self.root / img_path_alt return Image.open(str(final_path)).convert("RGB") class EgoObjectsDetectionTargets(Sequence[List[EgoObjectsAnnotation]]): def __init__( self, ego_api: EgoObjects, img_ids: List[int] = None, categories_id_mapping: List[int] = None): super(EgoObjectsDetectionTargets, self).__init__() self.ego_api = ego_api if categories_id_mapping is not None: self.reversed_mapping = dict() for mapped_id, real_id in enumerate(categories_id_mapping): self.reversed_mapping[real_id] = mapped_id else: self.reversed_mapping = None if img_ids is None: img_ids = list(sorted(ego_api.get_img_ids())) self.img_ids = img_ids def __len__(self): return len(self.img_ids) def __getitem__(self, index): img_id = self.img_ids[index] annotation_ids = self.ego_api.get_ann_ids(img_ids=[img_id]) annotation_dicts: List[EgoObjectsAnnotation] = \ self.ego_api.load_anns(annotation_ids) if self.reversed_mapping is None: return annotation_dicts mapped_anns: List[EgoObjectsAnnotation] = [] for ann_dict in annotation_dicts: ann_dict: EgoObjectsAnnotation = dict(ann_dict) ann_dict['category_id'] = \ self.reversed_mapping[ann_dict['category_id']] mapped_anns.append(ann_dict) return mapped_anns __all__ = [ 'ChallengeDetectionDataset' ]
python
import os import cv2 import numpy as np from constants import DATA_DIR MYPY = False if MYPY: from typing import Tuple, Union Pair = Tuple[int, int] def scale(image, scale_percent): height, width = image.shape[:2] return cv2.resize(image, (int(width * scale_percent), int(height * scale_percent))) def show(image, scale_percent=None): if scale_percent is not None: image = scale(image, scale_percent) cv2.namedWindow("test") cv2.imshow("test", image) return cv2.waitKey() def get_drawn_contours(im, contours, draw_to_existing_image=False): if draw_to_existing_image: if len(im.shape) < 3 or im.shape[2] == 1: orig = im im = np.empty((im.shape[0], im.shape[1], 3)) im[:, :, 0] = orig im[:, :, 1] = orig im[:, :, 2] = orig else: im = im.copy() else: im = np.empty((im.shape[0], im.shape[1], 3)) im[:, :] = [0, 0, 0] cv2.drawContours(im, contours, -1, (0, 255, 0), 1) return im def get_center_for_contour(contour): x, y, w, h = cv2.boundingRect(contour) return x + w / 2, y + h / 2 def order_points(pts): # Handle the common case of pts being a contour if pts.shape == (4, 1, 2): pts = pts.reshape((4, 2)) # initialize a list of coordinates that will be ordered # such that the first entry in the list is the top-left, # the second entry is the top-right, the third is the # bottom-right, and the fourth is the bottom-left rect = np.zeros((4, 2), dtype="float32") # the top-left point will have the smallest sum, whereas # the bottom-right point will have the largest sum s = pts.sum(axis=1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] # now, compute the difference between the points, the # top-right point will have the smallest difference, # whereas the bottom-left will have the largest difference diff = np.diff(pts, axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] # return the ordered coordinates return rect def four_point_transform(image, pts, margin_percent=0): # obtain a consistent order of the points and unpack them # individually rect = order_points(pts) (tl, tr, br, bl) = rect # compute the width of the new image, which will be the # maximum distance between bottom-right and bottom-left # x-coordinates or the top-right and top-left x-coordinates width_a = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) width_b = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) max_width = max(int(width_a), int(width_b)) # compute the height of the new image, which will be the # maximum distance between the top-right and bottom-right # y-coordinates or the top-left and bottom-left y-coordinates height_a = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) height_b = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) max_height = max(int(height_a), int(height_b)) # now that we have the dimensions of the new image, construct # the set of destination points to obtain a "birds eye view", # (i.e. top-down view) of the image, again specifying points # in the top-left, top-right, bottom-right, and bottom-left # order margin_width = max_width * margin_percent / 100 margin_height = max_width * margin_percent / 100 dst = np.array([ [margin_width, margin_height], [margin_width + max_width, margin_height], [margin_width + max_width, margin_height + max_height], [margin_width, margin_height + max_height], ], dtype="float32") # compute the perspective transform matrix and then apply it perspective_transform = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, perspective_transform, (2 * margin_width + max_width, 2 * margin_height + max_height)) # return the warped image return warped def inflate_classifier(classifier_root_dir): vocab_path, unlabelled_dir, labelled_dir, features_dir, svm_data_dir = \ get_classifier_directories(classifier_root_dir) with open(vocab_path, "rb") as f: vocab = np.load(f) # FLANN parameters flann_index_kdtree = 0 index_params = dict(algorithm=flann_index_kdtree, trees=5) search_params = dict(checks=50) # or pass empty dictionary matcher = cv2.FlannBasedMatcher(index_params, search_params) detector = cv2.SIFT() extractor = cv2.DescriptorExtractor_create("SIFT") bow_de = cv2.BOWImgDescriptorExtractor(extractor, matcher) bow_de.setVocabulary(vocab) svm = cv2.SVM() svm.load(os.path.join(svm_data_dir, "svm_data.dat")) def classifier(image): keypoints = detector.detect(image) descriptor = bow_de.compute(image, keypoints) return svm.predict(descriptor) return classifier def get_classifier_directories(root_dir): vocab_path = os.path.join(root_dir, "vocab.npy") unlabelled_dir = os.path.join(root_dir, "unlabelled") labelled_dir = os.path.join(root_dir, "labelled") features_dir = os.path.join(root_dir, "features") svm_data_dir = os.path.join(root_dir, "svm_data") dirs = ( unlabelled_dir, labelled_dir, features_dir, svm_data_dir ) for directory in dirs: if not os.path.exists(directory): os.makedirs(directory) return (vocab_path,) + dirs def ls(path, limit=None, name_filter=None): i = 0 for name in os.listdir(path): if name == ".DS_Store": continue if name_filter is not None and name_filter not in name: continue i += 1 if limit is not None and i > limit: break yield os.path.join(path, name) def apply_offset_to_locations(locations, offset): x_offset, y_offset = offset return [(location[0] + x_offset, location[1] + y_offset) for location in locations] def apply_offset_to_single_location(location, offset): x_offset, y_offset = offset return location[0] + x_offset, location[1] + y_offset def _apply_sensitivity_to_255(orig_100): low = max(0, orig_100 - 10) high = min(100, orig_100 + 10) return int((255 * low) / 100.0), int((255 * high) / 100.0) def extract_color_2(im, hue_360, saturation_100, value_100): saturation_255 = _apply_sensitivity_to_255(saturation_100) value_255 = _apply_sensitivity_to_255(value_100) return extract_color(im, hue_360/2, saturation_255, value_255) def extract_color(im, hue, saturation, value): # type: (np.ndarray, Union[int, Pair], Pair, Pair) -> np.ndarray if isinstance(hue, int): sensitivity = 10 hue = (hue - sensitivity, hue + sensitivity) # Handle hue's near the boundary split_hue_pairs = None if hue[0] < 0: split_hue_pairs = ((hue[0] % 180, 180), (0, hue[1])) elif hue[1] > 180: split_hue_pairs = ((hue[0], 180), (0, hue[1] % 180)) if split_hue_pairs is not None: a_hue, b_hue = split_hue_pairs return extract_color(im, a_hue, saturation, value) + \ extract_color(im, b_hue, saturation, value) lower_bound = np.array([hue[0], saturation[0], value[0]]) upper_bound = np.array([hue[1], saturation[1], value[1]]) hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV) mono = cv2.inRange(hsv, lower_bound, upper_bound) return mono def _handle_points(a, b, most_horizontal, most_vertical): line = (a, b) most_horizontal.append(line) most_horizontal[:] = sorted(most_horizontal, key=aspect_ratio, reverse=True)[:2] most_vertical.append(line) most_vertical[:] = sorted(most_vertical, key=aspect_ratio)[:2] def get_corners_from_cornerless_rect(contour): most_horizontal = [] most_vertical = [] prev_point = None for (point,) in contour: if prev_point is None: prev_point = point continue _handle_points(prev_point, point, most_horizontal, most_vertical) prev_point = point # Make sure to consider the line between the first and last points. _handle_points(contour[0][0], prev_point, most_horizontal, most_vertical) top, bottom = sorted(most_horizontal, key=lambda (j, k): (j[1] + k[1]) / 2) left, right = sorted(most_vertical, key=lambda (j, k): (j[0] + k[0]) / 2) tl = find_intersection(left, top) tr = find_intersection(top, right) br = find_intersection(right, bottom) bl = find_intersection(bottom, left) points = np.array((tl, tr, br, bl)) return points def aspect_ratio(line): (x1, y1), (x2, y2) = line denominator = float(abs(y2 - y1)) if denominator == 0: return float("inf") return float(abs(x2 - x1)) / denominator def find_intersection(line_a, line_b): # Math'ed the shit out of this # https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection#Given_two_points_on_each_line (x1, y1), (x2, y2) = line_a (x3, y3), (x4, y4) = line_b intersect_x = ((x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4)) / \ ((x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4)) intersect_y = ((x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4)) / \ ((x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4)) return intersect_x, intersect_y def point_closest_to(points, x, y): def dist(point): x_offset = point[0][0] - x y_offset = point[0][1] - y sqrt = np.math.sqrt(x_offset ** 2 + y_offset ** 2) return sqrt return sorted(points, key=dist)[0] def contour_bounding_box_for_contour(contour): x, y, w, h = cv2.boundingRect(contour) contour = np.array([ [x, y], [x + w, y], [x + w, y + h], [x, y + h], ]).reshape((4, 1, 2)) return contour def get_dimens(im): h, w = im.shape[:2] return w, h def get_contours(im, close_and_open=True): im = im.copy() if close_and_open: structuring_element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 15)) structuring_element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) im = cv2.morphologyEx(im, cv2.MORPH_CLOSE, structuring_element1) im = cv2.morphologyEx(im, cv2.MORPH_OPEN, structuring_element2) return cv2.findContours(im, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0] def get_width(im): return get_dimens(im)[0] def get_height(im): return get_dimens(im)[1] def ls_debug(start_num=None, end_num=None, explicit_options=None): assert (start_num is None) == (end_num is None) and \ (start_num is None) != (explicit_options is None), \ "Should specify either start and end or explicit" if start_num is not None: explicit_options = range(start_num, end_num + 1) for path in ls(DATA_DIR + "module_specific_data/debug/"): name, _ = os.path.splitext(os.path.basename(path)) try: num = int(name) except ValueError: continue if num in explicit_options: yield path def get_subset(im, x_percents, y_percents, margin_percent=0): w, h = get_dimens(im) left, right, top, bottom = [ int((percent * full)/100.0) for percent, full in zip(x_percents + y_percents, (w, w, h, h)) ] if margin_percent != 0: half_w = (right - left) / 2.0 half_h = (bottom - top) / 2.0 pos_dist_to_center_pairs = ( (left, half_w), (right, -half_w), (top, half_h), (bottom, -half_h), ) left, right, top, bottom = [ int(pos + dist_to_center - (dist_to_center * (100 + margin_percent) / 100.0)) for pos, dist_to_center in pos_dist_to_center_pairs ] return im[top:bottom, left:right] def rotate_image_180(image): image = cv2.flip(image, 0) image = cv2.flip(image, 1) return image def rotate_image_clockwise(image): image = cv2.transpose(image) image = cv2.flip(image, 1) return image def rotate_image_counter_clockwise(image): image = cv2.transpose(image) image = cv2.flip(image, 0) return image def extract_threshold(im, threshold): return cv2.threshold(im, threshold, 255, 0)[1]
python
from django.contrib import admin # Register your models here. from .models import SiteConfiguration, SingleOrder, Order, UniqueFeature, Size, Color admin.site.register(Size) admin.site.register(Color) admin.site.register(SiteConfiguration) admin.site.register(UniqueFeature)
python
import pygame from pygame import draw from .player import Player, Enemy from .utils import Director, TileSet class lvl1(Director): def __init__(self) -> None: super().__init__(self) self.tile = TileSet("assets/tileset.png", 10, 28) self.tile.gen_map(self.alto, self.ancho, 52) self.plr = Player() self.enm = Enemy() def update(self): self.plr.update() self.enm.update() if pygame.sprite.collide_rect(self.plr, self.enm): if self.plr.pos in [1, 3]: if self.plr.rect.top <= self.enm.rect.bottom and self.enm.rect.bottom < self.plr.rect.bottom: self.plr.rect.top = self.enm.rect.bottom elif self.plr.rect.bottom >= self.enm.rect.top and self.enm.rect.top > self.plr.rect.top: self.plr.rect.bottom = self.enm.rect.top if self.plr.pos in [0, 2]: if self.plr.rect.left <= self.enm.rect.right and self.enm.rect.right < self.plr.rect.right: self.plr.rect.left = self.enm.rect.right elif self.plr.rect.right >= self.enm.rect.left and self.enm.rect.left > self.plr.rect.left: self.plr.rect.right = self.enm.rect.left def draw(self, screen): screen.fill((0, 0, 0)) self.tile.draw(self.screen,self.tile.tilemap) self.plr.draw(self.screen) self.enm.draw(self.screen)
python
from django.urls import path, include from .views import * from rest_framework.routers import DefaultRouter router = DefaultRouter() router.register('titles', TitleViewSet, basename='titles') router.register('categories', CategoryViewSet, basename='categories') router.register('genres', GenreViewSet, basename='genres') urlpatterns = [ path('', include(router.urls)), ]
python
# -*- coding: utf-8 -*- # Generated by Django 1.10.7 on 2017-06-09 10:07 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import django_prices.models class Migration(migrations.Migration): dependencies = [ ('order', '0016_order_language_code'), ] operations = [ migrations.AlterField( model_name='deliverygroup', name='shipping_price', field=django_prices.models.PriceField(currency='KES', decimal_places=4, default=0, editable=False, max_digits=12, verbose_name='shipping price'), ), migrations.AlterField( model_name='order', name='billing_address', field=models.ForeignKey(default=1, editable=False, on_delete=django.db.models.deletion.CASCADE, related_name='+', to='userprofile.Address', verbose_name='billing address'), ), migrations.AlterField( model_name='order', name='discount_amount', field=django_prices.models.PriceField(blank=True, currency='KES', decimal_places=2, max_digits=12, null=True, verbose_name='discount amount'), ), migrations.AlterField( model_name='order', name='token', field=models.CharField(max_length=36, null=True, verbose_name='token'), ), migrations.AlterField( model_name='order', name='total_net', field=django_prices.models.PriceField(blank=True, currency='KES', decimal_places=2, max_digits=12, null=True, verbose_name='total net'), ), migrations.AlterField( model_name='order', name='total_tax', field=django_prices.models.PriceField(blank=True, currency='KES', decimal_places=2, max_digits=12, null=True, verbose_name='total tax'), ), migrations.AlterField( model_name='ordernote', name='content', field=models.CharField(max_length=250, verbose_name='content'), ), ]
python
# -*- coding: utf-8 -*- ## # @file goldman_equation.py # @brief Contain a function that calculates the equilibrium potential using the Goldman equation # @author Gabriel H Riqueti # @email [email protected] # @date 22/04/2021 # from biomedical_signal_processing import FARADAYS_CONSTANT as F from biomedical_signal_processing import GAS_CONSTANT as R import numpy as np def goldman_equation(temperature, mono_cations_in, mono_cations_out, mono_cations_perm, mono_anions_in, mono_anions_out, mono_anions_perm,): """ Calculate the resting membrane potential for a specific ion Parameters ---------- temperature : float Temperature (Kelvin) mono_cations_in : positive float Concentration of monovalent cations inside the cell mono_cations_out : positive float Concentration of monovalent cations outside the cell mono_cations_perm : positive float Relative permeability of monovalent cations outside the cell mono_anions_in : positive float Concentration of monovalent anions inside the cell mono_anions_out : positive float Concentration of monovalent anions outside the cell mono_anions_perm : positive float Relative permeability of monovalent anions outside the cell Returns ------- e_r : float Resting membrane potential """ if (mono_cations_in <= 0).any() or (mono_cations_out <= 0).any() or (mono_anions_in <= 0).any() or (mono_anions_out <= 0).any(): raise ValueError('The ionic concentrations must have positive values') if temperature < 0: raise ValueError('temperature must have non-negative values') if (np.sum(mono_cations_in * mono_cations_perm) + np.sum(mono_anions_out * mono_anions_perm) == 0 and (np.sum(mono_cations_out * mono_cations_perm) + np.sum(mono_anions_in * mono_anions_perm)) == 0): return 0 * (R * temperature / F) * ( (np.sum(mono_cations_out * mono_cations_perm) + np.sum(mono_anions_in * mono_anions_perm)) * (np.sum(mono_cations_in * mono_cations_perm) + np.sum(mono_anions_out * mono_anions_perm)) ) return (R * temperature / F) * np.log( (np.sum(mono_cations_out * mono_cations_perm) + np.sum(mono_anions_in * mono_anions_perm)) / (np.sum(mono_cations_in * mono_cations_perm) + np.sum(mono_anions_out * mono_anions_perm)) )
python
# Copyright 2015 Abhijit Menon-Sen <[email protected]> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type import string import textwrap from ansible import constants as C from ansible.compat.tests import mock from ansible.compat.tests import unittest from ansible.module_utils.six import string_types from ansible.module_utils._text import to_text from units.mock.path import mock_unfrackpath_noop from ansible.inventory.manager import InventoryManager, split_host_pattern from units.mock.loader import DictDataLoader class TestInventory(unittest.TestCase): patterns = { 'a': ['a'], 'a, b': ['a', 'b'], 'a , b': ['a', 'b'], ' a,b ,c[1:2] ': ['a', 'b', 'c[1:2]'], '9a01:7f8:191:7701::9': ['9a01:7f8:191:7701::9'], '9a01:7f8:191:7701::9,9a01:7f8:191:7701::9': ['9a01:7f8:191:7701::9', '9a01:7f8:191:7701::9'], '9a01:7f8:191:7701::9,9a01:7f8:191:7701::9,foo': ['9a01:7f8:191:7701::9', '9a01:7f8:191:7701::9', 'foo'], 'foo[1:2]': ['foo[1:2]'], 'a::b': ['a::b'], 'a:b': ['a', 'b'], ' a : b ': ['a', 'b'], 'foo:bar:baz[1:2]': ['foo', 'bar', 'baz[1:2]'], } pattern_lists = [ [['a'], ['a']], [['a', 'b'], ['a', 'b']], [['a, b'], ['a', 'b']], [['9a01:7f8:191:7701::9', '9a01:7f8:191:7701::9,foo'], ['9a01:7f8:191:7701::9', '9a01:7f8:191:7701::9', 'foo']] ] # pattern_string: [ ('base_pattern', (a,b)), ['x','y','z'] ] # a,b are the bounds of the subscript; x..z are the results of the subscript # when applied to string.ascii_letters. subscripts = { 'a': [('a', None), list(string.ascii_letters)], 'a[0]': [('a', (0, None)), ['a']], 'a[1]': [('a', (1, None)), ['b']], 'a[2:3]': [('a', (2, 3)), ['c', 'd']], 'a[-1]': [('a', (-1, None)), ['Z']], 'a[-2]': [('a', (-2, None)), ['Y']], 'a[48:]': [('a', (48, -1)), ['W', 'X', 'Y', 'Z']], 'a[49:]': [('a', (49, -1)), ['X', 'Y', 'Z']], 'a[1:]': [('a', (1, -1)), list(string.ascii_letters[1:])], } ranges_to_expand = { 'a[1:2]': ['a1', 'a2'], 'a[1:10:2]': ['a1', 'a3', 'a5', 'a7', 'a9'], 'a[a:b]': ['aa', 'ab'], 'a[a:i:3]': ['aa', 'ad', 'ag'], 'a[a:b][c:d]': ['aac', 'aad', 'abc', 'abd'], 'a[0:1][2:3]': ['a02', 'a03', 'a12', 'a13'], 'a[a:b][2:3]': ['aa2', 'aa3', 'ab2', 'ab3'], } def setUp(self): fake_loader = DictDataLoader({}) self.i = InventoryManager(loader=fake_loader, sources=[None]) def test_split_patterns(self): for p in self.patterns: r = self.patterns[p] self.assertEqual(r, split_host_pattern(p)) for p, r in self.pattern_lists: self.assertEqual(r, split_host_pattern(p)) def test_ranges(self): for s in self.subscripts: r = self.subscripts[s] self.assertEqual(r[0], self.i._split_subscript(s)) self.assertEqual( r[1], self.i._apply_subscript( list(string.ascii_letters), r[0][1] ) ) class TestInventoryPlugins(unittest.TestCase): def test_empty_inventory(self): inventory = self._get_inventory('') self.assertIn('all', inventory.groups) self.assertIn('ungrouped', inventory.groups) self.assertFalse(inventory.groups['all'].get_hosts()) self.assertFalse(inventory.groups['ungrouped'].get_hosts()) def test_ini(self): self._test_default_groups(""" host1 host2 host3 [servers] host3 host4 host5 """) def test_ini_explicit_ungrouped(self): self._test_default_groups(""" [ungrouped] host1 host2 host3 [servers] host3 host4 host5 """) def test_ini_variables_stringify(self): values = ['string', 'no', 'No', 'false', 'FALSE', [], False, 0] inventory_content = "host1 " inventory_content += ' '.join(['var%s=%s' % (i, to_text(x)) for i, x in enumerate(values)]) inventory = self._get_inventory(inventory_content) variables = inventory.get_host('host1').vars for i in range(len(values)): if isinstance(values[i], string_types): self.assertIsInstance(variables['var%s' % i], string_types) else: self.assertIsInstance(variables['var%s' % i], type(values[i])) @mock.patch('ansible.inventory.manager.unfrackpath', mock_unfrackpath_noop) @mock.patch('os.path.exists', lambda x: True) @mock.patch('os.access', lambda x, y: True) def test_yaml_inventory(self, filename="test.yaml"): inventory_content = {filename: textwrap.dedent("""\ --- all: hosts: test1: test2: """)} C.INVENTORY_ENABLED = ['yaml'] fake_loader = DictDataLoader(inventory_content) im = InventoryManager(loader=fake_loader, sources=filename) self.assertTrue(im._inventory.hosts) self.assertIn('test1', im._inventory.hosts) self.assertIn('test2', im._inventory.hosts) self.assertIn(im._inventory.get_host('test1'), im._inventory.groups['all'].hosts) self.assertIn(im._inventory.get_host('test2'), im._inventory.groups['all'].hosts) self.assertEqual(len(im._inventory.groups['all'].hosts), 2) self.assertIn(im._inventory.get_host('test1'), im._inventory.groups['ungrouped'].hosts) self.assertIn(im._inventory.get_host('test2'), im._inventory.groups['ungrouped'].hosts) self.assertEqual(len(im._inventory.groups['ungrouped'].hosts), 2) def _get_inventory(self, inventory_content): fake_loader = DictDataLoader({__file__: inventory_content}) return InventoryManager(loader=fake_loader, sources=[__file__]) def _test_default_groups(self, inventory_content): inventory = self._get_inventory(inventory_content) self.assertIn('all', inventory.groups) self.assertIn('ungrouped', inventory.groups) all_hosts = set(host.name for host in inventory.groups['all'].get_hosts()) self.assertEqual(set(['host1', 'host2', 'host3', 'host4', 'host5']), all_hosts) ungrouped_hosts = set(host.name for host in inventory.groups['ungrouped'].get_hosts()) self.assertEqual(set(['host1', 'host2']), ungrouped_hosts) servers_hosts = set(host.name for host in inventory.groups['servers'].get_hosts()) self.assertEqual(set(['host3', 'host4', 'host5']), servers_hosts)
python
''' Given a binary string str of length N, the task is to find the maximum count of substrings str can be divided into such that all the substrings are balanced i.e. they have equal number of 0s and 1s. If it is not possible to split str satisfying the conditions then print -1. Example: Input: str = “0100110101” Output: 4 The required substrings are “01”, “0011”, “01” and “01”. Approach: Initialize count = 0 and traverse the string character by character and keep track of the number of 0s and 1s so far, whenever the count of 0s and 1s become equal increment the count. If the count of 0s and 1s in the original string is not equal then print -1 else print the value of count after the traversal of the complete string.''' s = str(input()) count_sub = 0 count_0 = 0 count_1 = 0 for i in range(len(s)): if (s[i]== '0'):count_0 += 1 else:count_1 += 1 if(count_0 == count_1):count_sub += 1 print(count_sub)
python
from Cocoa import * gNumDaysInMonth = ( 0, 31, 28, 31, 30, 21, 30, 31, 31, 30, 31, 30, 31 ) def isLeap(year): return (((year % 4) == 0 and ((year % 100) != 0)) or (year % 400) == 0) class CalendarMatrix (NSMatrix): lastMonthButton = objc.IBOutlet() monthName = objc.IBOutlet() nextMonthButton = objc.IBOutlet() __slots__ = ('_selectedDay', '_startOffset') def initWithFrame_(self, frameRect): self._selectedDay = None self._startOffset = 0 cell = NSButtonCell.alloc().initTextCell_("") now = NSCalendarDate.date() cell.setShowsStateBy_(NSOnOffButton) self.initWithFrame_mode_prototype_numberOfRows_numberOfColumns_( frameRect, NSRadioModeMatrix, cell, 5, 7) count = 0 for i in range(6): for j in range(7): val = self.cellAtRow_column_(i, j) if val: val.setTag_(count) count += 1 self._selectedDay = NSCalendarDate.dateWithYear_month_day_hour_minute_second_timeZone_( now.yearOfCommonEra(), now.monthOfYear(), now.dayOfMonth(), 0, 0, 0, NSTimeZone.localTimeZone()) return self @objc.IBAction def choseDay_(self, sender): prevSelDate = self.selectedDay() selDay = self.selectedCell().tag() - self._startOffset + 1 selDate = NSCalendarDate.dateWithYear_month_day_hour_minute_second_timeZone_( prevSelDate.yearOfCommonEra(), prevSelDate.monthOfYear(), selDay, 0, 0, 0, NSTimeZone.localTimeZone()) self.setSelectedDay_(selDate) self.highlightTodayIfVisible() if self.delegate().respondsToSelector_('calendarMatrix:didChangeToDate:'): self.delegate().calendarMatrix_didChangeToDate_( self, selDate) @objc.IBAction def monthChanged_(self, sender): thisDate = self.selectedDay() currentYear = thisDate.yearOfCommonEra() currentMonth = thisDate.monthOfYear() if sender is self.nextMonthButton: if currentMonth == 12: currentMonth = 1 currentYear += 1 else: currentMonth += 1 else: if currentMonth == 1: currentMonth = 12 currentYear -= 1 else: currentMonth -= 1 self.setSelectedDay_(NSCalendarDate.dateWithYear_month_day_hour_minute_second_timeZone_(currentYear, currentMonth, 1, 0, 0, 0, NSTimeZone.localTimeZone())) self.refreshCalendar() self.choseDay_(self) def setSelectedDay_(self, newDay): self._selectedDay = newDay def selectedDay(self): return self._selectedDay def refreshCalendar(self): selDate = self.selectedDay() currentMonth = selDate.monthOfYear() currentYear = selDate.yearOfCommonEra() firstOfMonth = NSCalendarDate.dateWithYear_month_day_hour_minute_second_timeZone_( currentYear, currentMonth, 1, 0, 0, 0, NSTimeZone.localTimeZone()) self.monthName.setStringValue_( firstOfMonth.descriptionWithCalendarFormat_("%B %Y")) daysInMonth = gNumDaysInMonth[currentMonth] if (currentMonth == 2) and isLeap(currentYear): daysInMonth += 1 self._startOffset = firstOfMonth.dayOfWeek() dayLabel = 1 for i in range(42): cell = self.cellWithTag_(i) if cell is None: continue if i < self._startOffset or i >= (daysInMonth + self._startOffset): # blank out unused cells in the matrix cell.setBordered_(False) cell.setEnabled_(False) cell.setTitle_("") cell.setCellAttribute_to_(NSCellHighlighted, False) else: # Fill in valid days in the matrix cell.setBordered_(True) cell.setEnabled_(True) cell.setFont_(NSFont.systemFontOfSize_(12)) cell.setTitle_(str(dayLabel)) dayLabel += 1 cell.setCellAttribute_to_(NSCellHighlighted, False) self.selectCellWithTag_(selDate.dayOfMonth() + self._startOffset - 1) self.highlightTodayIfVisible() def highlightTodayIfVisible(self): now = NSCalendarDate.date() selDate = self.selectedDay() if (selDate.yearOfCommonEra() == now.yearOfCommonEra() and selDate.monthOfYear() == now.monthOfYear() and selDate.dayOfMonth() == now.dayOfMonth()): aCell = self.cellWithTag_( now.dayOfMonth() + self._startOffset - 1) aCell.setHighlightsBy_(NSMomentaryChangeButton) aCell.setCellAttribute_to_(NSCellHighlighted, True) def awakeFromNib(self): self.setTarget_(self) self.setAction_('choseDay:') self.setAutosizesCells_(True) self.refreshCalendar() self.choseDay_(self)
python
import warnings from collections import OrderedDict from ConfigSpace import ConfigurationSpace from ConfigSpace.hyperparameters import CategoricalHyperparameter from mindware.components.feature_engineering.transformations import _bal_balancer, _preprocessor, _rescaler, \ _image_preprocessor, _text_preprocessor, _bal_addons, _imb_balancer, _gen_addons, _res_addons, _sel_addons, \ EmptyTransformer from mindware.components.utils.class_loader import get_combined_fe_candidtates from mindware.components.utils.constants import CLS_TASKS from mindware.components.feature_engineering import TRANS_CANDIDATES builtin_stage = ['balancer', 'preprocessor', 'rescaler'] stage_list = ['balancer', 'preprocessor', 'rescaler'] thirdparty_candidates_dict = OrderedDict() def set_stage(udf_stage_list, stage_candidates_dict): ''' :param udf_stage_list: List, a list for stage_name like ['my_stage','selector'] :param stage_candidates_dict: Dictionary, <key, value>. Key is stage_name, and value is a list of operators in this stage. Each operator must be a Transformer. :return: ''' global stage_list stage_list = udf_stage_list print("Current Stage: %s" % ', '.join(stage_list)) for stage in udf_stage_list: if stage in builtin_stage: print("Built-in stage '%s' found!" % stage) else: print("User-defined stage '%s' found!" % stage) if stage not in stage_candidates_dict: raise ValueError("Expected stage name '%s' in stage_candidates_dict." % stage) if len(stage_candidates_dict[stage]) == 0: warnings.warn("Candidate list for stage '%s' is empty! EmptyTransformer will be used instead!" % stage) stage_candidates_dict[stage] = [EmptyTransformer] thirdparty_candidates_dict[stage] = {candidate.__name__: candidate for candidate in stage_candidates_dict[stage]} def get_task_hyperparameter_space(task_type, include_preprocessors=None, include_text=False, include_image=False, if_imbal=False, optimizer='smac'): """ Fetch the underlying hyperparameter space for feature engineering. Pipeline Space: 1. balancer: weight_balancer, data_balancer. 2. scaler: normalizer, scaler, quantile. 3. preprocessor :return: hyper space. """ if task_type in CLS_TASKS: trans_types = TRANS_CANDIDATES['classification'].copy() else: trans_types = TRANS_CANDIDATES['regression'].copy() _preprocessor_candidates, trans_types = get_combined_fe_candidtates(_preprocessor, _gen_addons, trans_types) _preprocessor_candidates, trans_types = get_combined_fe_candidtates(_preprocessor_candidates, _sel_addons, trans_types) _rescaler_candidates, trans_types = get_combined_fe_candidtates(_rescaler, _res_addons, trans_types) if not if_imbal: _balancer_candadates, trans_types = get_combined_fe_candidtates(_bal_balancer, _bal_addons, trans_types) else: _balancer_candadates, trans_types = get_combined_fe_candidtates(_imb_balancer, _bal_addons, trans_types) # TODO: Avoid transformations, which would take too long # feature_learning = ["kitchen_sinks", "kernel_pca", "nystroem_sampler"] # if task_type in CLS_TASKS: # classifier_set = ["adaboost", "decision_tree", "extra_trees", # "gradient_boosting", "k_nearest_neighbors", # "libsvm_svc", "random_forest", "gaussian_nb", # "decision_tree", "lightgbm"] # # if estimator_id in classifier_set: # for tran_id in [12, 13, 15]: # if tran_id in trans_types: # trans_types.remove(tran_id) preprocessor = dict() if include_preprocessors: for key in include_preprocessors: if key not in _preprocessor_candidates: raise ValueError( "Preprocessor %s not in built-in preprocessors! Only the following preprocessors are supported: %s." % ( key, ','.join(_preprocessor_candidates.keys()))) preprocessor[key] = _preprocessor_candidates[key] trans_types.append(_preprocessor_candidates[key].type) else: preprocessor = _preprocessor_candidates configs = dict() if include_image: image_preprocessor_dict = _get_configuration_space(_image_preprocessor, optimizer=optimizer) configs['image_preprocessor'] = image_preprocessor_dict if include_text: text_preprocessor_dict = _get_configuration_space(_text_preprocessor, optimizer=optimizer) configs['text_preprocessor'] = text_preprocessor_dict for stage in stage_list: if stage == 'preprocessor': stage_dict = _get_configuration_space(preprocessor, trans_types, optimizer=optimizer) elif stage == 'rescaler': stage_dict = _get_configuration_space(_rescaler_candidates, trans_types, optimizer=optimizer) elif stage == 'balancer': if task_type in CLS_TASKS: stage_dict = _get_configuration_space(_balancer_candadates, optimizer=optimizer) else: stage_dict = None else: # Third party stage trans_types.extend([candidate.type for _, candidate in thirdparty_candidates_dict[stage].items()]) stage_dict = _get_configuration_space(thirdparty_candidates_dict[stage], trans_types, optimizer=optimizer) configs[stage] = stage_dict cs = _build_hierachical_configspace(configs, optimizer=optimizer) return cs def _get_configuration_space(builtin_transformers, trans_type=None, optimizer='smac'): config_dict = dict() for tran_key in builtin_transformers: tran = builtin_transformers[tran_key] tran_id = tran.type if trans_type is None or tran_id in trans_type: try: sub_configuration_space = builtin_transformers[tran_key].get_hyperparameter_search_space( optimizer=optimizer) config_dict[tran_key] = sub_configuration_space except: if optimizer == 'smac': config_dict[tran_key] = ConfigurationSpace() elif optimizer == 'tpe': config_dict[tran_key] = {} return config_dict def _add_hierachical_configspace(cs, config, parent_name): config_cand = list(config.keys()) config_option = CategoricalHyperparameter(parent_name, config_cand, default_value=config_cand[0]) cs.add_hyperparameter(config_option) for config_item in config_cand: sub_configuration_space = config[config_item] parent_hyperparameter = {'parent': config_option, 'value': config_item} cs.add_configuration_space(config_item, sub_configuration_space, parent_hyperparameter=parent_hyperparameter) def _build_hierachical_configspace(configs, optimizer='smac'): if optimizer == 'smac': cs = ConfigurationSpace() for config_key in configs: if configs[config_key] is not None: _add_hierachical_configspace(cs, configs[config_key], config_key) return cs elif optimizer == 'tpe': from hyperopt import hp space = {} def dict2hi(dictionary): hi_list = list() for key in dictionary: hi_list.append((key, dictionary[key])) return hi_list for config_key in configs: if configs[config_key] is not None: space[config_key] = hp.choice(config_key, dict2hi(configs[config_key])) return space
python
# Copyright 2020 by Christophe Lambin # All rights reserved. import logging from prometheus_client import start_http_server from libpimon.version import version from libpimon.configuration import print_configuration from libpimon.cpu import CPUTempProbe, CPUFreqProbe from libpimon.gpio import GPIOProbe from libpimon.openvpn import OpenVPNProbe, OpenVPNStatusProbe from libpimon.mediacentre import TransmissionProbe, MonitorProbe from pimetrics.scheduler import Scheduler def initialise(config): scheduler = Scheduler() # Probes if config.monitor_cpu: try: scheduler.register( CPUFreqProbe(config.freq_filename), 5 ) scheduler.register( CPUTempProbe(config.temp_filename, 1000), 5 ) except FileNotFoundError as err: logging.warning(f'Could not add CPU monitor(s): {err}') if config.monitor_fan: try: scheduler.register( GPIOProbe(config.monitor_fan_pin), 5 ) except RuntimeError: logging.warning('Could not add Fan monitor. Possibly /dev/gpiomem isn\'t accessible?') if config.monitor_vpn: try: scheduler.register( OpenVPNProbe(config.monitor_vpn_client_status), 5 ) except FileNotFoundError as err: logging.warning(f'Could not add OpenVPN monitor: {err}') if config.monitor_vpn_proxies: scheduler.register( OpenVPNStatusProbe(config.monitor_vpn_proxies), 60 ) else: logging.warning('No VPN Proxies defined. VPN status monitoring is disabled') if config.monitor_mediaserver: if config.monitor_mediaserver_transmission: scheduler.register( TransmissionProbe(config.monitor_mediaserver_transmission), 5 ) if config.monitor_mediaserver_sonarr: scheduler.register( MonitorProbe( config.monitor_mediaserver_sonarr, MonitorProbe.App.sonarr, config.monitor_mediaserver_sonarr_apikey), 60 ) if config.monitor_mediaserver_radarr: scheduler.register( MonitorProbe( config.monitor_mediaserver_radarr, MonitorProbe.App.radarr, config.monitor_mediaserver_radarr_apikey), 60 ) return scheduler def pimon(config): logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.DEBUG if config.debug else logging.INFO) logging.info(f'Starting pimon v{version}') logging.info(f'Configuration: {print_configuration(config)}') start_http_server(config.port) scheduler = initialise(config) if config.once: scheduler.run(once=True) else: while True: scheduler.run(duration=config.interval) return 0
python
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ... import opcodes as OperandDef from ...serialize import BoolField, KeyField from ..utils import to_numpy from ..core import TensorOrder from .core import TensorHasInput class TensorFromDataFrame(TensorHasInput): """ represent tensor from DataFrame """ _op_type_ = OperandDef.TENSOR_FROM_DATAFRAME _input = KeyField('_input') _extract_multi_index = BoolField('extract_multi_index') def __init__(self, extract_multi_index=False, **kw): super().__init__(_extract_multi_index=extract_multi_index, **kw) @classmethod def execute(cls, ctx, op: 'TensorFromDataFrame'): df = ctx[op.inputs[0].key] if op._extract_multi_index: df = df.to_frame() ctx[op.outputs[0].key] = to_numpy(df).astype(op.dtype, order='F') @classmethod def tile(cls, op: 'TensorFromDataFrame'): output = op.outputs[0] out_chunks = [] for c in op.input.chunks: shape = (c.shape[0], output.shape[1]) if op._extract_multi_index else c.shape index = (c.index[0], 0) if op._extract_multi_index else c.index out_chunk = op.copy().reset_key().new_chunk( [c], shape=shape, index=index, order=output.order) out_chunks.append(out_chunk) new_op = op.copy() nsplits = (op.input.nsplits[0], (output.shape[1],)) if op._extract_multi_index else op.input.nsplits return new_op.new_tensors(op.inputs, output.shape, order=output.order, chunks=out_chunks, nsplits=nsplits) def __call__(self, a, order=None): from ...dataframe.core import INDEX_TYPE, IndexValue if self._extract_multi_index and isinstance(a, INDEX_TYPE) \ and isinstance(a.index_value.value, IndexValue.MultiIndex): order = a.order if order is None else order return self.new_tensor([a], (a.shape[0], len(a.index_value.value.names)), order=order) else: self._extract_multi_index = False return super().__call__(a, order=order) def from_dataframe(in_df, dtype=None): from ...dataframe.utils import build_empty_df if dtype is None: empty_pdf = build_empty_df(in_df.dtypes) dtype = to_numpy(empty_pdf).dtype op = TensorFromDataFrame(dtype=dtype, gpu=in_df.op.gpu) return op(in_df, order=TensorOrder.F_ORDER) # return tensor with F-order always def from_series(in_series, dtype=None): op = TensorFromDataFrame(dtype=dtype or in_series.dtype, gpu=in_series.op.gpu) return op(in_series, order=TensorOrder.F_ORDER) # return tensor with F-order always def from_index(in_index, dtype=None, extract_multi_index=False): op = TensorFromDataFrame(dtype=dtype or in_index.dtype, gpu=in_index.op.gpu, extract_multi_index=extract_multi_index) return op(in_index, order=TensorOrder.F_ORDER) # return tensor with F-order always
python
# reference: https://github.com/open-mmlab/mmclassification/tree/master/mmcls/models/backbones # modified from mmclassification timm_backbone.py try: import timm except ImportError: timm = None from mmcv.cnn.bricks.registry import NORM_LAYERS from openmixup.utils import get_root_logger from ..builder import BACKBONES from .base_backbone import BaseBackbone def print_timm_feature_info(feature_info): """Print feature_info of timm backbone to help development and debug. Args: feature_info (list[dict] | timm.models.features.FeatureInfo | None): feature_info of timm backbone. """ logger = get_root_logger() if feature_info is None: logger.warning('This backbone does not have feature_info') elif isinstance(feature_info, list): for feat_idx, each_info in enumerate(feature_info): logger.info(f'backbone feature_info[{feat_idx}]: {each_info}') else: try: logger.info(f'backbone out_indices: {feature_info.out_indices}') logger.info(f'backbone out_channels: {feature_info.channels()}') logger.info(f'backbone out_strides: {feature_info.reduction()}') except AttributeError: logger.warning('Unexpected format of backbone feature_info') @BACKBONES.register_module() class TIMMBackbone(BaseBackbone): """Wrapper to use backbones from timm library. More details can be found in `timm <https://github.com/rwightman/pytorch-image-models>`_. See especially the document for `feature extraction <https://rwightman.github.io/pytorch-image-models/feature_extraction/>`_. Args: model_name (str): Name of timm model to instantiate. in_channels (int): Number of input image channels. Defaults to 3. num_classes (int): Number of classes for classification head (used when features_only is False). Default to 1000. features_only (bool): Whether to extract feature pyramid (multi-scale feature maps from the deepest layer at each stride) by using timm supported `forward_features()`. Defaults to False. pretrained (bool): Whether to load pretrained weights. Defaults to False. checkpoint_path (str): Path of checkpoint to load at the last of ``timm.create_model``. Defaults to empty string, which means not loading. init_cfg (dict or list[dict], optional): Initialization config dict of OpenMMLab projects (removed!). Defaults to None. **kwargs: Other timm & model specific arguments. """ def __init__(self, model_name, num_classes=1000, in_channels=3, features_only=False, pretrained=False, checkpoint_path='', **kwargs): if timm is None: raise RuntimeError( 'Failed to import timm. Please run "pip install timm". ' '"pip install dataclasses" may also be needed for Python 3.6.') if not isinstance(pretrained, bool): raise TypeError('pretrained must be bool, not str for model path') super(TIMMBackbone, self).__init__() if 'norm_layer' in kwargs: kwargs['norm_layer'] = NORM_LAYERS.get(kwargs['norm_layer']) self.timm_model = timm.create_model( model_name=model_name, pretrained=pretrained, in_chans=in_channels, checkpoint_path=checkpoint_path, num_classes=0 if features_only else num_classes, **kwargs) self.features_only = features_only # reset classifier if hasattr(self.timm_model, 'reset_classifier'): self.timm_model.reset_classifier(0, '') # Hack to use pretrained weights from timm if pretrained or checkpoint_path: self._is_init = True feature_info = getattr(self.timm_model, 'feature_info', None) print_timm_feature_info(feature_info) def forward(self, x): if self.features_only: features = self.timm_model.forward_features(x) else: features = self.timm_model(x) if isinstance(features, (list, tuple)): features = list(features) else: features = [features] return features
python
import torch import os import pickle if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') class TrainUtil(): def __init__(self, checkpoint_path='checkpoints', version='mcts_nas_net_v1'): self.checkpoint_path = checkpoint_path self.version = version return def save_model_fixed(self, epoch, fixed_cnn, fixed_cnn_optmizer, save_best=False, **kwargs): filename = os.path.join(self.checkpoint_path, self.version) + '.pth' # Torch Save State Dict state = { 'epoch': epoch+1, 'shared_cnn': fixed_cnn.state_dict(), 'shared_cnn_optmizer': fixed_cnn_optmizer.state_dict(), } for key, value in kwargs.items(): state[key] = value torch.save(state, filename) filename = os.path.join(self.checkpoint_path, self.version) + '_best.pth' if save_best: torch.save(state, filename) return def load_model_fixed(self, fixed_cnn, fixed_cnn_optmizer, **kwargs): filename = os.path.join(self.checkpoint_path, self.version) + '.pth' # Load Torch State Dict checkpoints = torch.load(filename) fixed_cnn.load_state_dict(checkpoints['fixed_cnn']) fixed_cnn_optmizer.load_state_dict(checkpoints['fixed_cnn_optmizer']) print(filename + " Loaded!") return checkpoints def save_model(self, mcts, shared_cnn, shared_cnn_optmizer, shared_cnn_schduler, estimator, estimator_optmizer, epoch, **kwargs): mcts_filename = os.path.join(self.checkpoint_path, self.version) + '_mcts' + '.pkl' filename = os.path.join(self.checkpoint_path, self.version) + '.pth' # Torch Save State Dict state = { 'epoch': epoch+1, 'shared_cnn': shared_cnn.state_dict(), 'shared_cnn_optmizer': shared_cnn_optmizer.state_dict(), 'shared_cnn_schduler': shared_cnn_schduler.state_dict(), 'estimator': estimator.state_dict(), 'estimator_optmizer': estimator_optmizer.state_dict() } for key, value in kwargs.items(): state[key] = value torch.save(state, filename) print(filename + " saved!") # Save MCTS to pickle rolloutPolicy, searchPolicy = mcts.rollout, mcts.searchPolicy mcts.rollout, mcts.searchPolicy = None, None with open(mcts_filename, 'wb') as handle: pickle.dump(mcts, handle, protocol=pickle.HIGHEST_PROTOCOL) print(mcts_filename + " Saved!") mcts.rollout, mcts.searchPolicy = rolloutPolicy, searchPolicy return def load_model(self, shared_cnn, shared_cnn_optmizer, shared_cnn_schduler, estimator, estimator_optmizer, **kwargs): filename = os.path.join(self.checkpoint_path, self.version) + '.pth' mcts_filename = os.path.join(self.checkpoint_path, self.version) + '_mcts' + '.pkl' # Load Torch State Dict checkpoints = torch.load(filename) shared_cnn.load_state_dict(checkpoints['shared_cnn']) shared_cnn_optmizer.load_state_dict(checkpoints['shared_cnn_optmizer']) shared_cnn_schduler.load_state_dict(checkpoints['shared_cnn_schduler']) shared_cnn_schduler.optimizer = shared_cnn_optmizer estimator.load_state_dict(checkpoints['estimator']) estimator_optmizer.load_state_dict(checkpoints['estimator_optmizer']) print(filename + " Loaded!") # Load MCTS with open(mcts_filename, 'rb') as handle: mcts = pickle.load(handle) print(mcts_filename + " Loaded!") return checkpoints, mcts
python
from pymtl import * from lizard.util.rtl.interface import UseInterface from lizard.util.rtl.method import MethodSpec from lizard.core.rtl.messages import ExecuteMsg, WritebackMsg, PipelineMsgStatus from lizard.util.rtl.pipeline_stage import gen_stage, StageInterface, DropControllerInterface from lizard.core.rtl.kill_unit import PipelineKillDropController from lizard.core.rtl.controlflow import KillType from lizard.config.general import * def WritebackInterface(): return StageInterface(ExecuteMsg(), WritebackMsg()) class WritebackStage(Model): def __init__(s, interface): UseInterface(s, interface) s.require( MethodSpec( 'dataflow_write', args={ 'tag': PREG_IDX_NBITS, 'value': XLEN, }, rets=None, call=True, rdy=False, ),) s.connect(s.process_accepted, 1) s.is_store_DEBUG = Wire(1) s.connect(s.is_store_DEBUG, s.process_in_.hdr_is_store) @s.combinational def compute(): s.process_out.v = 0 s.process_out.hdr.v = s.process_in_.hdr s.dataflow_write_call.v = 0 s.dataflow_write_tag.v = 0 s.dataflow_write_value.v = 0 if s.process_in_.hdr_status == PipelineMsgStatus.PIPELINE_MSG_STATUS_VALID: s.process_out.rd_val_pair.v = s.process_in_.rd_val_pair s.process_out.areg_d.v = s.process_in_.areg_d # write the data if the destination is valid s.dataflow_write_call.v = s.process_in_.rd_val and s.process_call s.dataflow_write_tag.v = s.process_in_.rd s.dataflow_write_value.v = s.process_in_.result else: s.process_out.exception_info.v = s.process_in_.exception_info def line_trace(s): return s.process_in_.hdr_seq.hex()[2:] def WritebackDropController(): return PipelineKillDropController( DropControllerInterface(WritebackMsg(), WritebackMsg(), KillType(MAX_SPEC_DEPTH))) Writeback = gen_stage(WritebackStage, WritebackDropController)
python
# Copyright 2021 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import, division, print_function import os import sys from enum import IntEnum, unique import numpy as np from legate.core import LegateLibrary, legate_add_library, legion # Helper method for python 3 support def _itervalues(obj): return obj.values() if sys.version_info > (3,) else obj.viewvalues() # Load the Legate NumPy library first so we have a shard object that # we can use to initialize all these configuration enumerations class NumPyLib(LegateLibrary): def __init__(self, name): self.name = name self.runtime = None def get_name(self): return self.name def get_shared_library(self): from legate.numpy.install_info import libpath return os.path.join( libpath, "liblgnumpy" + self.get_library_extension() ) def get_c_header(self): from legate.numpy.install_info import header return header def get_registration_callback(self): return "legate_numpy_perform_registration" def initialize(self, shared_object): assert self.runtime is None self.shared_object = shared_object def set_runtime(self, runtime): assert self.runtime is None assert self.shared_object is not None self.runtime = runtime def destroy(self): if self.runtime is not None: self.runtime.destroy() NUMPY_LIB_NAME = "legate.numpy" numpy_lib = NumPyLib(NUMPY_LIB_NAME) legate_add_library(numpy_lib) legate_numpy = numpy_lib.shared_object # Match these to legate_core_type_code_t in legate_c.h numpy_field_type_offsets = { np.bool_: legion.LEGION_TYPE_BOOL, np.int8: legion.LEGION_TYPE_INT8, np.int16: legion.LEGION_TYPE_INT16, np.int: legion.LEGION_TYPE_INT32, np.int32: legion.LEGION_TYPE_INT32, np.int64: legion.LEGION_TYPE_INT64, np.uint8: legion.LEGION_TYPE_UINT8, np.uint16: legion.LEGION_TYPE_UINT16, np.uint32: legion.LEGION_TYPE_UINT32, np.uint64: legion.LEGION_TYPE_UINT64, np.float16: legion.LEGION_TYPE_FLOAT16, np.float: legion.LEGION_TYPE_FLOAT32, np.float32: legion.LEGION_TYPE_FLOAT32, np.float64: legion.LEGION_TYPE_FLOAT64, np.complex64: legion.LEGION_TYPE_COMPLEX64, np.complex128: legion.LEGION_TYPE_COMPLEX128, } # Match these to NumPyVariantCode in legate_numpy_c.h @unique class NumPyVariantCode(IntEnum): NORMAL = legate_numpy.NUMPY_NORMAL_VARIANT_OFFSET SCALAR = legate_numpy.NUMPY_SCALAR_VARIANT_OFFSET BROADCAST = legate_numpy.NUMPY_BROADCAST_VARIANT_OFFSET REDUCTION = legate_numpy.NUMPY_REDUCTION_VARIANT_OFFSET INPLACE = legate_numpy.NUMPY_INPLACE_VARIANT_OFFSET INPLACE_BROADCAST = legate_numpy.NUMPY_INPLACE_BROADCAST_VARIANT_OFFSET NUMPY_MAX_VARIANTS = len(NumPyVariantCode) NUMPY_MAX_TYPES = legion.MAX_TYPE_NUMBER NUMPY_TYPE_OFFSET = NUMPY_MAX_TYPES * NUMPY_MAX_VARIANTS # Match these to NumPyOpCode in legate_numpy_c.h @unique class NumPyOpCode(IntEnum): ABSOLUTE = legate_numpy.NUMPY_ABSOLUTE ADD = legate_numpy.NUMPY_ADD ALLCLOSE = legate_numpy.NUMPY_ALLCLOSE ARCCOS = legate_numpy.NUMPY_ARCCOS ARCSIN = legate_numpy.NUMPY_ARCSIN ARCTAN = legate_numpy.NUMPY_ARCTAN ARGMAX = legate_numpy.NUMPY_ARGMAX ARGMAX_RADIX = legate_numpy.NUMPY_ARGMAX_RADIX ARGMIN = legate_numpy.NUMPY_ARGMIN ARGMIN_RADIX = legate_numpy.NUMPY_ARGMIN_RADIX BINCOUNT = legate_numpy.NUMPY_BINCOUNT CEIL = legate_numpy.NUMPY_CEIL CLIP = legate_numpy.NUMPY_CLIP CONVERT = legate_numpy.NUMPY_CONVERT COPY = legate_numpy.NUMPY_COPY COS = legate_numpy.NUMPY_COS DIAG = legate_numpy.NUMPY_DIAG DIVIDE = legate_numpy.NUMPY_DIVIDE DOT = legate_numpy.NUMPY_DOT EQUAL = legate_numpy.NUMPY_EQUAL EXP = legate_numpy.NUMPY_EXP EYE = legate_numpy.NUMPY_EYE FILL = legate_numpy.NUMPY_FILL FLOOR = legate_numpy.NUMPY_FLOOR FLOOR_DIVIDE = legate_numpy.NUMPY_FLOOR_DIVIDE GETARG = legate_numpy.NUMPY_GETARG GREATER = legate_numpy.NUMPY_GREATER GREATER_EQUAL = legate_numpy.NUMPY_GREATER_EQUAL INVERT = legate_numpy.NUMPY_INVERT ISINF = legate_numpy.NUMPY_ISINF ISNAN = legate_numpy.NUMPY_ISNAN LESS = legate_numpy.NUMPY_LESS LESS_EQUAL = legate_numpy.NUMPY_LESS_EQUAL LOG = legate_numpy.NUMPY_LOG LOGICAL_NOT = legate_numpy.NUMPY_LOGICAL_NOT MAX = legate_numpy.NUMPY_MAX MAX_RADIX = legate_numpy.NUMPY_MAX_RADIX MAXIMUM = legate_numpy.NUMPY_MAXIMUM MIN = legate_numpy.NUMPY_MIN MIN_RADIX = legate_numpy.NUMPY_MIN_RADIX MINIMUM = legate_numpy.NUMPY_MINIMUM MOD = legate_numpy.NUMPY_MOD MULTIPLY = legate_numpy.NUMPY_MULTIPLY NEGATIVE = legate_numpy.NUMPY_NEGATIVE NORM = legate_numpy.NUMPY_NORM NOT_EQUAL = legate_numpy.NUMPY_NOT_EQUAL POWER = legate_numpy.NUMPY_POWER PROD = legate_numpy.NUMPY_PROD PROD_RADIX = legate_numpy.NUMPY_PROD_RADIX RAND_INTEGER = legate_numpy.NUMPY_RAND_INTEGER RAND_NORMAL = legate_numpy.NUMPY_RAND_NORMAL RAND_UNIFORM = legate_numpy.NUMPY_RAND_UNIFORM READ = legate_numpy.NUMPY_READ SIN = legate_numpy.NUMPY_SIN SORT = legate_numpy.NUMPY_SORT SQRT = legate_numpy.NUMPY_SQRT SUBTRACT = legate_numpy.NUMPY_SUBTRACT SUM = legate_numpy.NUMPY_SUM SUM_RADIX = legate_numpy.NUMPY_SUM_RADIX TAN = legate_numpy.NUMPY_TAN TANH = legate_numpy.NUMPY_TANH TILE = legate_numpy.NUMPY_TILE TRANSPOSE = legate_numpy.NUMPY_TRANSPOSE WHERE = legate_numpy.NUMPY_WHERE WRITE = legate_numpy.NUMPY_WRITE LOGICAL_AND = legate_numpy.NUMPY_LOGICAL_AND LOGICAL_OR = legate_numpy.NUMPY_LOGICAL_OR LOGICAL_XOR = legate_numpy.NUMPY_LOGICAL_XOR CONTAINS = legate_numpy.NUMPY_CONTAINS COUNT_NONZERO = legate_numpy.NUMPY_COUNT_NONZERO NONZERO = legate_numpy.NUMPY_NONZERO COUNT_NONZERO_REDUC = legate_numpy.NUMPY_COUNT_NONZERO_REDUC INCLUSIVE_SCAN = legate_numpy.NUMPY_INCLUSIVE_SCAN CONVERT_TO_RECT = legate_numpy.NUMPY_CONVERT_TO_RECT ARANGE = legate_numpy.NUMPY_ARANGE # Match these to NumPyRedopID in legate_numpy_c.h @unique class NumPyRedopCode(IntEnum): ARGMIN_REDOP = legate_numpy.NUMPY_ARGMIN_REDOP ARGMAX_REDOP = legate_numpy.NUMPY_ARGMAX_REDOP numpy_reduction_op_offsets = { NumPyOpCode.SUM: legion.LEGION_REDOP_KIND_SUM, NumPyOpCode.PROD: legion.LEGION_REDOP_KIND_PROD, NumPyOpCode.MIN: legion.LEGION_REDOP_KIND_MIN, NumPyOpCode.MAX: legion.LEGION_REDOP_KIND_MAX, # Dot uses sum reduction NumPyOpCode.DOT: legion.LEGION_REDOP_KIND_SUM, # Diag uses sum reduction NumPyOpCode.DIAG: legion.LEGION_REDOP_KIND_SUM, NumPyOpCode.EQUAL: legion.LEGION_REDOP_KIND_PROD, NumPyOpCode.NOT_EQUAL: legion.LEGION_REDOP_KIND_PROD, NumPyOpCode.GREATER: legion.LEGION_REDOP_KIND_PROD, NumPyOpCode.GREATER_EQUAL: legion.LEGION_REDOP_KIND_PROD, NumPyOpCode.LESS: legion.LEGION_REDOP_KIND_PROD, NumPyOpCode.LESS_EQUAL: legion.LEGION_REDOP_KIND_PROD, NumPyOpCode.ALLCLOSE: legion.LEGION_REDOP_KIND_PROD, # Norm uses sum reduction NumPyOpCode.NORM: legion.LEGION_REDOP_KIND_SUM, NumPyOpCode.ARGMIN: NumPyRedopCode.ARGMIN_REDOP, NumPyOpCode.ARGMAX: NumPyRedopCode.ARGMAX_REDOP, # bool sum is "or" NumPyOpCode.CONTAINS: legion.LEGION_REDOP_KIND_SUM, # nonzeros are counted with sum NumPyOpCode.COUNT_NONZERO: legion.LEGION_REDOP_KIND_SUM, } # Match these to NumPyTunable in legate_numpy_c.h @unique class NumPyTunable(IntEnum): NUM_PIECES = legate_numpy.NUMPY_TUNABLE_NUM_PIECES NUM_GPUS = legate_numpy.NUMPY_TUNABLE_NUM_GPUS TOTAL_NODES = legate_numpy.NUMPY_TUNABLE_TOTAL_NODES LOCAL_CPUS = legate_numpy.NUMPY_TUNABLE_LOCAL_CPUS LOCAL_GPUS = legate_numpy.NUMPY_TUNABLE_LOCAL_GPUS LOCAL_OMPS = legate_numpy.NUMPY_TUNABLE_LOCAL_OPENMPS RADIX = legate_numpy.NUMPY_TUNABLE_RADIX MIN_SHARD_VOLUME = legate_numpy.NUMPY_TUNABLE_MIN_SHARD_VOLUME MAX_EAGER_VOLUME = legate_numpy.NUMPY_TUNABLE_MAX_EAGER_VOLUME FIELD_REUSE_SIZE = legate_numpy.NUMPY_TUNABLE_FIELD_REUSE_SIZE FIELD_REUSE_FREQ = legate_numpy.NUMPY_TUNABLE_FIELD_REUSE_FREQUENCY # Match these to NumPyTag in legate_numpy_c.h @unique class NumPyMappingTag(IntEnum): SUBRANKABLE_TASK_TAG = legate_numpy.NUMPY_SUBRANKABLE_TAG CPU_ONLY_TASK_TAG = legate_numpy.NUMPY_CPU_ONLY_TAG GPU_ONLY_TASK_TAG = legate_numpy.NUMPY_GPU_ONLY_TAG NO_MEMOIZE_TAG = 0 # Turn this off for now since it doesn't help KEY_REGION_TAG = legate_numpy.NUMPY_KEY_REGION_TAG RADIX_GEN_TAG = legate_numpy.NUMPY_RADIX_GEN_TAG RADIX_DIM_TAG = legate_numpy.NUMPY_RADIX_DIM_TAG RADIX_GEN_SHIFT = 5 RADIX_DIM_SHIFT = 8 # Match these to NumPyProjectionCode in legate_numpy_c.h @unique class NumPyProjCode(IntEnum): # 2D reduction PROJ_2D_1D_X = legate_numpy.NUMPY_PROJ_2D_1D_X PROJ_2D_1D_Y = legate_numpy.NUMPY_PROJ_2D_1D_Y # 2D broadcast PROJ_2D_2D_X = legate_numpy.NUMPY_PROJ_2D_2D_X PROJ_2D_2D_Y = legate_numpy.NUMPY_PROJ_2D_2D_Y # 2D promotion PROJ_1D_2D_X = legate_numpy.NUMPY_PROJ_1D_2D_X PROJ_1D_2D_Y = legate_numpy.NUMPY_PROJ_1D_2D_Y # 2D transpose PROJ_2D_2D_YX = legate_numpy.NUMPY_PROJ_2D_2D_YX # 3D reduction PROJ_3D_2D_XY = legate_numpy.NUMPY_PROJ_3D_2D_XY PROJ_3D_2D_XZ = legate_numpy.NUMPY_PROJ_3D_2D_XZ PROJ_3D_2D_YZ = legate_numpy.NUMPY_PROJ_3D_2D_YZ PROJ_3D_1D_X = legate_numpy.NUMPY_PROJ_3D_1D_X PROJ_3D_1D_Y = legate_numpy.NUMPY_PROJ_3D_1D_Y PROJ_3D_1D_Z = legate_numpy.NUMPY_PROJ_3D_1D_Z # 3D broadcast PROJ_3D_3D_XY = legate_numpy.NUMPY_PROJ_3D_3D_XY PROJ_3D_3D_XZ = legate_numpy.NUMPY_PROJ_3D_3D_XZ PROJ_3D_3D_YZ = legate_numpy.NUMPY_PROJ_3D_3D_YZ PROJ_3D_3D_X = legate_numpy.NUMPY_PROJ_3D_3D_X PROJ_3D_3D_Y = legate_numpy.NUMPY_PROJ_3D_3D_Y PROJ_3D_3D_Z = legate_numpy.NUMPY_PROJ_3D_3D_Z PROJ_3D_2D_XB = legate_numpy.NUMPY_PROJ_3D_2D_XB PROJ_3D_2D_BY = legate_numpy.NUMPY_PROJ_3D_2D_BY # 3D promotion PROJ_2D_3D_XY = legate_numpy.NUMPY_PROJ_2D_3D_XY PROJ_2D_3D_XZ = legate_numpy.NUMPY_PROJ_2D_3D_XZ PROJ_2D_3D_YZ = legate_numpy.NUMPY_PROJ_2D_3D_YZ PROJ_1D_3D_X = legate_numpy.NUMPY_PROJ_1D_3D_X PROJ_1D_3D_Y = legate_numpy.NUMPY_PROJ_1D_3D_Y PROJ_1D_3D_Z = legate_numpy.NUMPY_PROJ_1D_3D_Z # Radix 2D PROJ_RADIX_2D_X_4_0 = legate_numpy.NUMPY_PROJ_RADIX_2D_X_4_0 PROJ_RADIX_2D_X_4_1 = legate_numpy.NUMPY_PROJ_RADIX_2D_X_4_1 PROJ_RADIX_2D_X_4_2 = legate_numpy.NUMPY_PROJ_RADIX_2D_X_4_2 PROJ_RADIX_2D_X_4_3 = legate_numpy.NUMPY_PROJ_RADIX_2D_X_4_3 PROJ_RADIX_2D_Y_4_0 = legate_numpy.NUMPY_PROJ_RADIX_2D_Y_4_0 PROJ_RADIX_2D_Y_4_1 = legate_numpy.NUMPY_PROJ_RADIX_2D_Y_4_1 PROJ_RADIX_2D_Y_4_2 = legate_numpy.NUMPY_PROJ_RADIX_2D_Y_4_2 PROJ_RADIX_2D_Y_4_3 = legate_numpy.NUMPY_PROJ_RADIX_2D_Y_4_3 # Radix 3D PROJ_RADIX_3D_X_4_0 = legate_numpy.NUMPY_PROJ_RADIX_3D_X_4_0 PROJ_RADIX_3D_X_4_1 = legate_numpy.NUMPY_PROJ_RADIX_3D_X_4_1 PROJ_RADIX_3D_X_4_2 = legate_numpy.NUMPY_PROJ_RADIX_3D_X_4_2 PROJ_RADIX_3D_X_4_3 = legate_numpy.NUMPY_PROJ_RADIX_3D_X_4_3 PROJ_RADIX_3D_Y_4_0 = legate_numpy.NUMPY_PROJ_RADIX_3D_Y_4_0 PROJ_RADIX_3D_Y_4_1 = legate_numpy.NUMPY_PROJ_RADIX_3D_Y_4_1 PROJ_RADIX_3D_Y_4_2 = legate_numpy.NUMPY_PROJ_RADIX_3D_Y_4_2 PROJ_RADIX_3D_Y_4_3 = legate_numpy.NUMPY_PROJ_RADIX_3D_Y_4_3 PROJ_RADIX_3D_Z_4_0 = legate_numpy.NUMPY_PROJ_RADIX_3D_Z_4_0 PROJ_RADIX_3D_Z_4_1 = legate_numpy.NUMPY_PROJ_RADIX_3D_Z_4_1 PROJ_RADIX_3D_Z_4_2 = legate_numpy.NUMPY_PROJ_RADIX_3D_Z_4_2 PROJ_RADIX_3D_Z_4_3 = legate_numpy.NUMPY_PROJ_RADIX_3D_Z_4_3 # Flattening PROJ_ND_1D_C_ORDER = legate_numpy.NUMPY_PROJ_ND_1D_C_ORDER # Must always be last PROJ_LAST = legate_numpy.NUMPY_PROJ_LAST
python
import numpy as np import hmm x = np.random.randint(0, 500, 1000) m = 3 l = np.array([10, 250, 450]) g = np.array([[.8, .1, .1], [.1, .8, .1], [.1, .1, .8]]) d = np.array([.3, .3, .3]) (success, lambda_, gamma_, delta_, aic, bic, nll, niter) = hmm.hmm_poisson_fit_em(x, m, l, g, d, 1000, 1e-6) print(success, aic, bic, nll, niter) print(lambda_) print("\n") print(gamma_) print("\n") print(delta_)
python
import torch from torch import nn from buglab.models.layers.multihead_attention import MultiheadAttention class RelationalMultiheadAttention(MultiheadAttention): """ A relational multihead implementation supporting two variations of using additional relationship information between tokens: * If no edge information is passed in in .forward(), this behaves like a standard multi-head self-attention. * If edges are present and edge_attention_bias_is_scalar=False, and use_edge_value_biases=True is set, this implements Eqs. (3) and (4) of Shaw, Peter, Jakob Uszkoreit, and Ashish Vaswani. "Self-attention with relative position representations." In ACL 2018. https://www.aclweb.org/anthology/N18-2074/ and Eq. (2) of Wang, Bailin, et al. "RAT-SQL: Relation-aware schema encoding and linking for text-to-SQL parsers." In ICML 2020. https://arxiv.org/pdf/1911.04942.pdf * If edges are present and edge_attention_bias_is_scalar=True, and use_edge_value_biases=False is set, this implements Sect. 3.1 of Hellendoorn, Vincent J., et al. "Global relational models of source code." In ICLR 2020. https://openreview.net/pdf?id=B1lnbRNtwr """ def __init__( self, *, num_heads: int, num_edge_types: int, input_state_dimension: int, key_query_dimension: int, value_dimension: int, output_dimension: int, dropout_rate: float, use_edge_value_biases: bool = False, edge_attention_bias_is_scalar: bool = False, ): super().__init__( num_heads=num_heads, input_state_dimension=input_state_dimension, key_query_dimension=key_query_dimension, value_dimension=value_dimension, output_dimension=output_dimension, dropout_rate=dropout_rate, ) self._use_edge_value_biases = use_edge_value_biases self._edge_attention_bias_is_scalar = edge_attention_bias_is_scalar if self._edge_attention_bias_is_scalar: edge_attention_bias_dim = num_heads else: edge_attention_bias_dim = num_heads * key_query_dimension self._edge_attention_biases = nn.Embedding(num_embeddings=num_edge_types, embedding_dim=edge_attention_bias_dim) self._reverse_edge_attention_biases = nn.Embedding( num_embeddings=num_edge_types, embedding_dim=edge_attention_bias_dim ) if self._use_edge_value_biases: self._edge_value_biases = nn.Embedding( num_embeddings=num_edge_types, embedding_dim=num_heads * value_dimension ) self._reverse_edge_value_biases = nn.Embedding( num_embeddings=num_edge_types, embedding_dim=num_heads * value_dimension ) def forward(self, input_seq_states, masked_elements, edges, edge_types): edge_sample_ids = edges[:, 0] edge_sources = edges[:, 1] edge_targets = edges[:, 2] queries, keys, values = self._compute_qkv(input_seq_states) raw_attention_scores = self._compute_attention_scores(keys, queries) attention_scores = self._add_edge_attention_scores( edge_sample_ids, edge_sources, edge_targets, edge_types, keys, queries, raw_attention_scores ) attention_probs = self._compute_attention_probs(masked_elements, attention_scores) multiheaded_weighted_value_sum = self._compute_weighted_sum(values, attention_probs) if self._use_edge_value_biases: multiheaded_weighted_value_sum = self._add_edge_value_biases( edge_sample_ids, edge_sources, edge_targets, edge_types, attention_probs, multiheaded_weighted_value_sum ) return self._compute_output(multiheaded_weighted_value_sum) def _add_edge_attention_scores( self, edge_sample_ids, edge_sources, edge_targets, edge_types, keys, queries, raw_attention_scores ): # We compute (sparse, per existing edge) additional bias scores e'_bijk: edge_bias_scores = self._compute_edge_bias_scores( edge_sample_ids, edge_sources, edge_targets, edge_types, keys, queries ) # We add the e'_bijk (where present) to e_bijk. This should be a simple +=, but # that doesn't accumulate if we have several entries to add to e_bij. Hence we use # index_put_, which in turn requires a contiguous Tensor memory layout, and so we need # to establish that first: attention_scores = raw_attention_scores.contiguous() edge_sample_indices = torch.cat([edge_sample_ids, edge_sample_ids]) edge_query_indices = torch.cat([edge_sources, edge_targets]) edge_key_indices = torch.cat([edge_targets, edge_sources]) attention_scores.index_put_( indices=(edge_sample_indices, edge_query_indices, edge_key_indices), values=edge_bias_scores, accumulate=True, ) return attention_scores def _compute_edge_bias_scores(self, edge_sample_ids, edge_sources, edge_targets, edge_types, keys, queries): # We will compute additional e'_bihj which will be added onto the standard attention scores: attention_biases = self._edge_attention_biases(edge_types) attention_biases_r = self._reverse_edge_attention_biases(edge_types) if self._edge_attention_bias_is_scalar: # Compute e'_bijk = \sum_d (bias_bijk * (in_bj * W_K^k))_d # This is the GREAT model. Note two things: # (1) This is defined on the _key_ representation, not the _query_ repr. # (2) Because bias_bijk is a scalar, this is essentially just scaling # (in_bj * W_K^k) and then summing. edge_attention_scores = torch.einsum( "eh,ehd->eh", attention_biases, # [num_edges, num_heads] keys[edge_sample_ids, edge_targets], # [num_edges, num_heads, key_dim] ) # [num_edges, num_head] r_edge_attention_scores = torch.einsum( "eh,ehd->eh", attention_biases_r, # [num_edges, num_heads] keys[edge_sample_ids, edge_sources], # [num_edges, num_heads, key_dim] ) # [num_edges, num_head] edge_bias_scores = torch.cat([edge_attention_scores, r_edge_attention_scores]) # [2 * num_edges, num_head] else: # Compute e'_bijk = (in_bj * W_Q^k) * bias_bijk^T # This is the Relative Position Representations / RAT-SQL variant. Note that this # is defined using the query representation, not the key repr. edge_attention_scores = torch.einsum( "ehd,ehd->eh", attention_biases.reshape((-1, self._num_heads, self._key_query_dim)), # [num_edges, num_heads, key_dim] queries[edge_sample_ids, edge_sources], # [num_edges, num_heads, key_dim] ) # [num_edges, num_head] r_edge_attention_scores = torch.einsum( "ehd,ehd->eh", attention_biases_r.reshape((-1, self._num_heads, self._key_query_dim)), # [num_edges, num_heads, key_dim] queries[edge_sample_ids, edge_targets], # [num_edges, num_heads, key_dim] ) # [num_edges, num_head] edge_bias_scores = torch.cat([edge_attention_scores, r_edge_attention_scores]) # [2 * num_edges, num_head] return edge_bias_scores def _add_edge_value_biases( self, edge_sample_ids, edge_sources, edge_targets, edge_types, attention_probs, multiheaded_weighted_value_sum ): edge_sample_indices = torch.cat([edge_sample_ids, edge_sample_ids]) edge_query_indices = torch.cat([edge_sources, edge_targets]) value_biases_shape = (edge_sample_ids.shape[0], self._num_heads, self._value_dim) value_bias_per_edge = attention_probs[edge_sample_ids, edge_sources, :, edge_targets].unsqueeze( -1 ) * self._edge_value_biases(edge_types).reshape( value_biases_shape ) # [num_edges, num_heads, value_dim] value_bias_per_r_edge = attention_probs[edge_sample_ids, edge_targets, :, edge_sources].unsqueeze( -1 ) * self._reverse_edge_value_biases(edge_types).reshape( value_biases_shape ) # [num_edges, num_heads, value_dim] biased_weighted_value_sum = multiheaded_weighted_value_sum.contiguous() biased_weighted_value_sum.index_put_( indices=(edge_sample_indices, edge_query_indices), values=torch.cat((value_bias_per_edge, value_bias_per_r_edge), dim=0), accumulate=True, ) return biased_weighted_value_sum
python
from django.shortcuts import render from datetime import datetime from notifications.models import Notification from users.models import Profile from django.core.urlresolvers import reverse from django.shortcuts import render from django.contrib.auth.decorators import login_required, permission_required from django.contrib.auth.models import User, Group from django.contrib import messages from django.core.urlresolvers import reverse from datetime import datetime from django.template import RequestContext from django.http import HttpResponseRedirect, HttpResponse from django.shortcuts import render_to_response def notifications_index(request): if request.user.is_superuser or Profile.objects.get(user_id=request.user.id).rol == 'SUP': notifications = Notification.objects.all() else: notifications = Notification.objects.filter(profile_id=Profile.objects.get(user_id=request.user.id)) return render(request, 'notifications/index.html', { 'notifications': notifications, }) def notifications_show(request, id): notification = Notification.objects.get(id=int(id)) notification.read_at = datetime.now() notification.save(update_fields=['read_at']) return render(request, 'notifications/show.html', { 'notification_obj': Notification, 'notification': notification, }) def notifications_delete(request, id): notification = Notification.objects.get(id=id) notification.delete() is_exist = Notification.objects.filter(id=id).exists() if is_exist: message = 'No se pudo eliminar' messages.add_message(request, messages.ERROR, message) else: message = 'Eliminado!' messages.add_message(request, messages.SUCCESS, message) return HttpResponseRedirect(reverse(notifications_index))
python
from aoc import AOC aoc = AOC(year=2015, day=18) data = aoc.load() ## Part 1 # Initialize the array of lights to all off lights = [x[:] for x in [[0] * len(data.lines())] * len(data.lines())] # For every line in the input in_y = 0 for line in data.lines(): line = line.strip() in_x = 0 for c in line: # Set lights which are initially 'on' to 1 if c == "#": lights[in_y][in_x] = 1 in_x += 1 in_y += 1 def count_neighbors(x, y): # Counts the number of neighbors of a light which are on global lights neighbors = 0 # Loops through all 8 neighbors for i in range(9): # Skipping the current light if i == 4: continue # Get the position of the neighbor and check if it is a valid position and on yy = y - 1 + int(i / 3) xx = x - 1 + i % 3 if ( yy in range(0, len(lights)) and xx in range(0, len(lights[yy])) and lights[yy][xx] == 1 ): neighbors += 1 return neighbors def step(): # Advance one step global lights # Create a copy of the array for the next step next_step = [row[:] for row in lights] # Loop through each light for y, _ in enumerate(lights): for x, _ in enumerate(lights[y]): # Check if the conditions to turn a light on/off are met if lights[y][x] == 1 and not count_neighbors(x, y) in [2, 3]: next_step[y][x] = 0 elif lights[y][x] == 0 and count_neighbors(x, y) == 3: next_step[y][x] = 1 lights = next_step # Step 100 times for _ in range(100): step() def total_lights(): # Count the number of lights that are on total_lights_on = 0 for y, _ in enumerate(lights): for x, _ in enumerate(lights[y]): if lights[y][x] == 1: total_lights_on += 1 return total_lights_on aoc.p1(total_lights()) ## Part 2 lines = data.lines() # Initialize the array of lights to all off lights = [x[:] for x in [[0] * len(lines)] * len(lines)] def is_vertical_end(yy, line): return yy in (0, len(line) - 1) def is_horizontal_end(xx, line): return xx in (0, len(line) - 1) def read_input(): # For every line in the input global lights y = 0 for line in lines: line = line.strip() x = 0 for c in line.strip(): # Set the corners to be on no matter what if is_vertical_end(y, lines) and is_horizontal_end(x, line): lights[y][x] = 1 # Set lights which are initially 'on' to 1 elif c == "#": lights[y][x] = 1 x += 1 y += 1 def count_neighbors(x, y): # Counts the number of neighbors of a light which are on global lights neighbors = 0 # Loops through all 8 neighbors for i in range(9): # Skipping the current light if i == 4: continue # Get the position of the neighbor and check if it is a valid position and on yy = y - 1 + int(i / 3) xx = x - 1 + i % 3 if ( yy in range(0, len(lights)) and xx in range(0, len(lights[yy])) and lights[yy][xx] == 1 ): neighbors += 1 return neighbors def step(): # Advance one step global lights # Create a copy of the array for the next step next_step = [row[:] for row in lights] # Loop through each light for y, _ in enumerate(lights): for x, _ in enumerate(lights[y]): # Skip the corners - they are always on if is_vertical_end(y, lights) and is_horizontal_end(x, lights[y]): continue # Check if the conditions to turn a light on/off are met if lights[y][x] == 1 and not count_neighbors(x, y) in [2, 3]: next_step[y][x] = 0 elif lights[y][x] == 0 and count_neighbors(x, y) == 3: next_step[y][x] = 1 lights = next_step read_input() # Step 100 times for _ in range(100): step() def total_lights(): # Count the number of lights that are on total_lights_on = 0 for y, _ in enumerate(lights): for x, _ in enumerate(lights[y]): if lights[y][x] == 1: total_lights_on += 1 return total_lights_on aoc.p2(total_lights())
python
from pyspark.mllib.regression import LabeledPoint from pyspark.mllib.tree import DecisionTree from pyspark.mllib.linalg import SparseVector from pyspark import SparkContext from operator import add import time import numpy from pyspark.mllib.linalg import Vectors import pyspark.mllib.clustering as cl import os sc = SparkContext("local", "Myapp") #####Read input files #Get the all the file names filenames = next(os.walk("/Users/panpan/Desktop/linkedin/followings/group8"))[2] #save the all files to variable <files> files=list() for filename in filenames: f=open("/Users/panpan/Desktop/linkedin/followings/group8/%s" %filename,"r") files.append(f.readline()) #initialize mutual_list mutual_list=numpy.zeros((len(filenames),len(filenames))) #pick two users each time, and calculate their common freinds for i in range(0,len(files)): if i+1>=len(files): continue for j in range(i,len(files)): file_1 =files[i].split(",") file_2 =files[j].split(",") file1 =sc.parallelize(file_1) file2 =sc.parallelize(file_2) #common friends of the two users file_12=file1.intersection(file2) mutual=len(file_12.collect()) #define a way to cauculate how much percent they are similar to each other mutual_proportion=1.0/2*mutual*(1.0/len(file_1)+1.0/len(file_2)) mutual_list[i][j]=mutual_list[j][i]=mutual_proportion ###Cluster the models model = cl.KMeans.train(sc.parallelize(mutual_list), 4, maxIterations=10, runs=30, initializationMode="random", seed=50, initializationSteps=5, epsilon=1e-4) for i in range(0,len(mutual_list)): print model.predict(mutual_list[i]) #further optimization on parameter needed
python
#!/usr/bin/env python3 from aws_cdk import core from lab08.lab08_stack import Lab08Stack app = core.App() Lab08Stack(app, "lab08",env={"region":"us-east-1","account":"111111111111"}) app.synth()
python
import h5py import numpy as np import glob from mne import create_info from mne.io import RawArray def extract_blackrock_info(mat_file, blackrock_type): """ Extracts basic recording info from a blacrock extracted mat file. Extracts the data, sampling rate, channel names, and digital to analog conversion factor from a blackrock extracted .mat file. hp5y was required instead of scipy.loadmat due to the large .mat file size. Args: mat_file: string of filename representing a .mat file extracted from a blackrock .ns2 or .ns5 file using OpenNSx blackrock_type: a string either 'ns2' or 'ns5' denoting which type of recording the .mat file contains Returns: a dictionary containing the data, sampling rate, channel names, and digital to analog conversion factor """ info = {} file_obj = h5py.File(mat_file) struct = file_obj[blackrock_type.upper()] if 'saline1' in mat_file: data = [file_obj[struct['Data'][0, 0]], file_obj[struct['Data'][1, 0]]] info['data'] = np.concatenate(data, axis=0).T else: info['data'] = np.array(struct['Data']).T info['srate'] = struct['MetaTags']['SamplingFreq'][0][0] # extract the digital to analog conversion factor as the ratio # between the analog range and digital range max_av = file_obj[struct['ElectrodesInfo'] ['MaxAnalogValue'][0][0]][0][0] max_dv = file_obj[struct['ElectrodesInfo'] ['MaxDigiValue'][0][0]][0][0] info['dac_factor'] = float(max_av) / max_dv # extract the channel names ch_name_datasets = [file_obj[ref[0]] for ref in np.array(struct['ElectrodesInfo']['Label'])] ch_names = [u''.join(unichr(c) for c in l if c) for l in ch_name_datasets] # replace 'elec1-84' with ref since this was only done in some files info['ch_names'] = [u'ref' if c == "elec1-84" else c for c in ch_names] return info def create_mne_raw(blackrock_info): """ Creates an MNE-Python raw object given a dictionary containing recording information extracted from the blacrock mat file. Args: blackrock_info: dictionary containing the data, channel names, sampling rate, and dac factor Returns: an MNE-Python raw object for the data """ # create the MNE info object ch_types = ['eeg'] * len(blackrock_info['ch_names']) + ['stim'] blackrock_info['ch_names'].append("STIM") mne_info = create_info(blackrock_info['ch_names'], blackrock_info['srate'], ch_types) # take the recorded data and add a row of 0's to represent # the stim channel without events yet num_samples = blackrock_info['data'].shape[-1] blackrock_info['data'] = np.vstack((blackrock_info['data'], np.zeros(num_samples))) # convert from digitized units to microvolts blackrock_info['data'] *= blackrock_info['dac_factor'] # create MNE Raw object raw = RawArray(blackrock_info['data'], mne_info, verbose=False) return raw def create_events_square_wave(events): """ Takes an MNE events array consisting of pairs of onset and offset events and interpolates new events between these onset and offset events to form a "square wave" for placement into an MNE stim channel. Args: events: An MNE events array consisting of onset and offset paired events. Returns: The new events array with samples between onset and offset events filled with events. """ filled_events = [] i = 0 while i < events.shape[0]: onset, offset = events[i, 0], events[i + 1, 0] for j in range(onset, offset + 1): filled_events.append([j, 0, 1]) i += 2 return np.array(filled_events) def load_power_data(exp, condition, typ='ns2'): """ Loads all tfr power for a given experiment and condition. Args: exp: The experiment to collect data for. 'main' or 'saline' condition: The condition to collect data for. 'Open', 'Closed', or 'Brain' typ: The type of recording file to collect. 'ns2' or 'ns5'. Returns: A tuple containing the power data across all dates in a single array, a list of channel names, a list of time labels, and a list of frequency labels. """ file = '../data/power/%s_%s_*_raw_power.npz' % (typ, condition) fnames = sorted(glob.glob(file)) if exp == 'saline': fnames = [f for f in fnames if 'saline' in f] else: fnames = [f for f in fnames if 'saline' not in f] tmp = np.load(fnames[0]) chs = tmp['chs'] times = tmp['times'] freqs = tmp['freqs'] power = [np.load(f)['data'] for f in fnames] power = np.concatenate(power, axis=0) return power, chs, times, freqs def baseline_normalize(power, baseline, times): """ Baseline normalizes raw tfr power data according to a slightly modified version of the normalization procedure suggested by Grandchamp and Delorme, 2011. First, we divide the power data in each trial by the median of the power across the entire trial (excluding the stimulation period and 0.5 seconds of buffer around the stimulation period). Then, we take the median across all trials and divide the median power by the median of the pre-stimulation baseline period. Finally, we log transform and multipy by 10 to get a decibel representation. Args: power: # trials x # chs x # freqs x # time points array containing TFR power baseline: tuple delimiting the time boundaries of baseline period times: a list of time labels for each sample Returns: The modified tfr power array now baseline normalized (# chs x # freqs x # time points) """ # first normalize by the median of the power across the entire trial # excluding the stimulation period and stimulation edge artifacts trial_mask = np.where(np.logical_or(times <= -.5, times >= 10.5))[0] trial_norm = np.median(power[:, :, :, trial_mask], axis=-1)[:, :, :, np.newaxis] power /= trial_norm # median across trials power = np.median(power, axis=0) # normalize by median of pre-stimulation baseline period bl_mask = np.where(np.logical_and(times >= baseline[0], times <= baseline[1]))[0] bl_norm = np.median(power[:, :, bl_mask], axis=-1)[:, :, np.newaxis] power /= bl_norm # log transform and scale power = 10 * np.log10(power) return power def reduce_band_power(power, freqs, band, axis): """ Averages frequency content within a given frequency band range. Args: power: array containing tfr power freqs: list of frequencies contained in the tfr power array band: tuple containing the frequency band limits axis: the axis containing the frequency data Returns: Returns a band power array where the frequency axis has been averaged within the range supplied by band. """ band_mask = np.where(np.logical_and(freqs >= band[0], freqs <= band[1]))[0] power = np.take(power, band_mask, axis=axis).mean(axis=axis) return power def reduce_toi_power(power, times, toi, axis): """ Averages across time withing a given period of interest. Args: power: array containing tfr power times: list of time labels for each sample toi: tuple containing the limits of the time period of interest axis: the axis containing the time data Returns: Returns a power array where the time axis has been averaged within the range supplied by toi. """ toi_mask = np.where(np.logical_and(times >= toi[0], times <= toi[1]))[0] power = np.take(power, toi_mask, axis=axis).mean(axis=axis) return power def reduce_array_power(power, chs, bad_chs, array, axis): """ Averages across channels withing a given array. Args: power: array containing tfr power chs: list of channel names bad_chs: bad channels not to be included in average array: which recording array to average over axis: the axis containing the ch info Returns: Returns a power array where the channel axis has been averaged within the selected chs supplied by array and bad_chs. """ arr_base = 'elec%s' % array ch_mask = [ix for ix in np.arange(len(chs)) if arr_base in chs[ix] and chs[ix] not in bad_chs] power = np.take(power, ch_mask, axis=axis).mean(axis=axis) return power
python
import tensorflow as tf from tf_stft import Spectrogram, Logmel from tensorflow_utils import do_mixup class ConvBlock(tf.keras.Model): """ Convolutional Block Class. """ def __init__(self, out_channels): """ Parameters ---------- out_channels : int Number of output channels """ super(ConvBlock, self).__init__() self.conv1 = tf.keras.layers.Conv2D(filters = out_channels, kernel_size=3, strides=1, padding = 'same', use_bias=False, kernel_initializer='glorot_uniform') self.bn1 = tf.keras.layers.BatchNormalization() self.conv2 = tf.keras.layers.Conv2D(filters = out_channels, kernel_size=3, strides=1, padding = 'same', use_bias=False, kernel_initializer='glorot_uniform') self.bn2 = tf.keras.layers.BatchNormalization() def call(self, inputs, pool_size=(2, 2), pool_type='avg'): # NOTE move pool_type to init. x = inputs x = tf.keras.activations.relu(self.bn1(self.conv1(x))) x = tf.keras.activations.relu(self.bn2(self.conv2(x))) if pool_type == 'max': x = tf.keras.layers.MaxPool2D(pool_size = pool_size)(x) elif pool_type == 'avg': x = tf.keras.layers.AveragePooling2D(pool_size = pool_size)(x) elif pool_type == 'avg+max': x1 = tf.keras.layers.AveragePooling2D(pool_size = pool_size)(x) x2 = tf.keras.layers.MaxPool2D(pool_size = pool_size)(x) x = x1 + x2 else: raise ValueError("pool_type should be one of the following:\ max, avg or avg+max. Here, we got {}.".format(pool_type)) # NOTE change to fstring return x class Cnn14(tf.keras.Model): """ CNN14 Backbone """ # NOTE: I did everything. only leave backbone in here # NOTE add name argument in init def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin, fmax, classes_num): # NOTE Add Docstring super(Cnn14, self).__init__() window = 'hann' center = True pad_mode = 'reflect' ref = 1.0 amin = 1e-10 top_db = None # Spectogram extractor self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size) # NOTE Missing parameters: win_length, window, center, pad_mode, freeze_parameters self.logmel_extractor = Logmel(sample_rate=sample_rate, win_length=window_size, n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db) # NOTE Missing parameter: freeze_parameters self.spec_augmenter = # NOTE Missing SpecAugmentation function self.bn0 = tf.keras.layers.BatchNormalization() self.conv_block1 = ConvBlock(out_channels=64) self.conv_block2 = ConvBlock(out_channels=128) self.conv_block3 = ConvBlock(out_channels=256) self.conv_block4 = ConvBlock(out_channels=512) self.conv_block5 = ConvBlock(out_channels=1024) self.conv_block6 = ConvBlock(out_channels=2048) # NOTE uuse_bias==True self.fc1 = tf.keras.layers.Dense(2048, use_bias=True) self.fc_audioset = tf.keras.layers.Dense(classes_num, use_bias=True) # NOTE Question: Need to initialize?. -> Do it in arguments. def call(self, inputs, mixup_lambda=None): # NOTE add training in call """ Parameters ---------- inputs : (batch_size, data_length) mixup_lambda : (batch_size * 2,), optional """ # NOTE add comment to say that second dimension is channels x = self.spectrogram_extractor(inputs) # (batch_size, 1, time_steps, freq_bins) x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) # NOTE investigate or ask qiuqiang. x = tf.transpose(x, perm=[0, 3, 2, 1]) x = self.bn0(x) x = tf.transpose(x, perm=[0, 3, 2, 1]) if self.training: x = self.spec_augmenter(x) # NOTE move mixup bool as an attribut # NOTE create lambda uniform in call # NOTE create a lambda attribut: update it every time a forward function is used # Mixup on spectrogram if self.training and mixup_lambda is not None: x = do_mixup(x, mixup_lambda) # NOTE add dropout_rates in init. x = self.conv_block1(x, pool_size=(2, 2), pool_type='avg') x = tf.keras.layers.Dropout(.2)(x) # NOTE add training attribute on dropout layers x = self.conv_block2(x, pool_size=(2, 2), pool_type='avg') x = tf.keras.layers.Dropout(.2)(x) x = self.conv_block3(x, pool_size=(2, 2), pool_type='avg') x = tf.keras.layers.Dropout(.2)(x) x = self.conv_block4(x, pool_size=(2, 2), pool_type='avg') x = tf.keras.layers.Dropout(.2)(x) x = self.conv_block5(x, pool_size=(2, 2), pool_type='avg') x = tf.keras.layers.Dropout(.2)(x) x = self.conv_block6(x, pool_size=(1, 1), pool_type='avg') x = tf.keras.layers.Dropout(.2)(x) x = tf.math.reduce_mean(x, axis=-1) # NOTE test if I need parenthesis (x1, _) = tf.math.reduce_max(x, axis=-1) x2 = tf.math.reduce_mean(x, axis=-1) x = x1 + x2 x = tf.keras.layers.Dropout(.5)(x) x = tf.keras.activations.relu(self.fc1(x)) embedding = tf.keras.layers.Dropout(.5)(x) clipwise_output = tf.math.sigmoid(self.fc_audioset(x)) output_dict = {'clipwise_output': clipwise_output, 'embedding': embedding} return output_dict
python
# -*- coding: utf-8 -*- def count_days(y, m, d): return (365 * y + (y // 4) - (y // 100) + (y // 400) + ((306 * (m + 1)) // 10) + d - 429) def main(): y = int(input()) m = int(input()) d = int(input()) if m == 1 or m == 2: m += 12 y -= 1 print(count_days(2014, 5, 17) - count_days(y, m, d)) if __name__ == '__main__': main()
python
import pytest from azure.ml import MLClient @pytest.fixture def environment_id() -> str: return "/subscriptions/5f08d643-1910-4a38-a7c7-84a39d4f42e0/resourceGroups/sdk_vnext_cli/providers/Microsoft.MachineLearningServices/Environments/AzureML-Minimal" @pytest.fixture def compute_id() -> str: return "testCompute" @pytest.fixture def experiment_name() -> str: return "mfe-test-sweep" @pytest.mark.e2etest @pytest.mark.skip(reason="TODO: need to be fixed") def test_sweep_job_submit( client: MLClient, experiment_name: str, randstr: str, environment_id: str, compute_id: str ) -> None: # TODO: need to create a workspace under a e2e-testing-only subscription and reousrce group job_resource = client.jobs.submit( file="./tests/test_configs/sweep_job_test.yaml", job_name=randstr, compute_id=compute_id, experiment_name=experiment_name, environment_id=environment_id, ) assert job_resource.name == randstr assert job_resource.properties["status"] == "Running" assert job_resource.properties["computeBinding"]["computeId"] == compute_id assert job_resource.properties["experimentName"] == experiment_name
python
#!/usr/bin/env python3 # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import parse_ddrescue import reiserfs_blocks def print_rangelist(rangelist): print(0, "*", 1) end = 0 for item in rangelist.items: if end != item.start: print(end, item.start - end, "-") print(item.start, item.size, "+") end = item.start + item.size def main(argv): if len(argv) < 2: print(f"Usage: {argv[0]} MAPFILE", file=sys.stderr) sys.exit(1) filenameMap = argv[1] rescueMap = parse_ddrescue.parseDdrescue(filenameMap) rangelist = reiserfs_blocks.RangeList() expandAmount = 512 * 1 mapSize = rescueMap.size() last = 0 for start, size, val in rescueMap: if val != parse_ddrescue.Status.FINISHED: continue end = min(mapSize, start+size+expandAmount) start = max(last, start-expandAmount) last = end rangelist.add(start, end-start) print_rangelist(rangelist) if __name__ == "__main__": main(sys.argv)
python
from rdflib.graph import ConjunctiveGraph from typing import ClassVar from rdflib import Namespace from test.testutils import MockHTTPResponse, ServedSimpleHTTPMock import unittest EG = Namespace("http://example.org/") class TestSPARQLConnector(unittest.TestCase): query_path: ClassVar[str] query_endpoint: ClassVar[str] update_path: ClassVar[str] update_endpoint: ClassVar[str] httpmock: ClassVar[ServedSimpleHTTPMock] @classmethod def setUpClass(cls) -> None: super().setUpClass() cls.httpmock = ServedSimpleHTTPMock() cls.query_path = "/db/sparql" cls.query_endpoint = f"{cls.httpmock.url}{cls.query_path}" cls.update_path = "/db/update" cls.update_endpoint = f"{cls.httpmock.url}{cls.update_path}" @classmethod def tearDownClass(cls) -> None: super().tearDownClass() cls.httpmock.stop() def setUp(self): self.httpmock.reset() def tearDown(self): pass def test_graph_update(self): graph = ConjunctiveGraph("SPARQLUpdateStore") graph.open((self.query_endpoint, self.update_endpoint)) update_statement = f"INSERT DATA {{ {EG['subj']} {EG['pred']} {EG['obj']}. }}" self.httpmock.do_post_responses.append( MockHTTPResponse( 200, "OK", b"Update succeeded", {"Content-Type": ["text/plain; charset=UTF-8"]}, ) ) # This test assumes that updates are performed using POST # at the moment this is the only supported way for SPARQLUpdateStore # to do updates. graph.update(update_statement) self.assertEqual(self.httpmock.call_count, 1) req = self.httpmock.do_post_requests.pop(0) self.assertEqual(req.parsed_path.path, self.update_path) self.assertIn("application/sparql-update", req.headers.get("content-type"))
python
# Copyright 2021 TUNiB Inc. import torch import torch.distributed as dist from transformers import GPT2Tokenizer from oslo.models.gpt_neo.modeling_gpt_neo import ( GPTNeoForCausalLM, GPTNeoForSequenceClassification, GPTNeoModel, ) class TestPPInference: def __init__(self, num_gpus): self.num_gpus = num_gpus self.tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-125M") @torch.no_grad() def test_gpt_neo_model(self, fp16): model_pp = GPTNeoModel.from_pretrained_with_parallel( "EleutherAI/gpt-neo-125M", pipeline_parallel_size=self.num_gpus, torch_dtype=torch.float16 if fp16 else torch.float32, ).eval() if fp16: model_1d = ( GPTNeoModel.from_pretrained_with_parallel("EleutherAI/gpt-neo-125M") .half() .eval() .cuda() ) else: model_1d = ( GPTNeoModel.from_pretrained_with_parallel("EleutherAI/gpt-neo-125M") .eval() .cuda() ) batch_encoding = self.tokenizer( text="Hello I am Kevin. Today,", return_tensors="pt" ).to("cuda") hidden_pp = [_.last_hidden_state for _ in model_pp(**batch_encoding)][0] hidden_1d = model_1d(**batch_encoding).last_hidden_state if dist.get_rank() == 0: print( f"\n{TestPPInference.__qualname__}:\n" f"--fp16:{fp16}\n" f"--test result: {torch.isclose(hidden_1d[0], hidden_pp[0], rtol=1e-2)}\n" ) del model_pp del model_1d @torch.no_grad() def test_gpt_neo_lm_head_model(self, fp16): model_pp = GPTNeoForCausalLM.from_pretrained_with_parallel( "EleutherAI/gpt-neo-125M", pipeline_parallel_size=self.num_gpus, torch_dtype=torch.float16 if fp16 else torch.float32, ).eval() if fp16: model_1d = ( GPTNeoForCausalLM.from_pretrained_with_parallel( "EleutherAI/gpt-neo-125M" ) .half() .eval() .cuda() ) else: model_1d = ( GPTNeoForCausalLM.from_pretrained_with_parallel( "EleutherAI/gpt-neo-125M" ) .eval() .cuda() ) batch_encoding = self.tokenizer( text="Hello I am Kevin. Today,", return_tensors="pt" ).to("cuda") output_pp = model_pp.generate( **batch_encoding, num_beams=4, no_repeat_ngram_size=3 ) output_1d = model_1d.generate( **batch_encoding, num_beams=4, no_repeat_ngram_size=3 ) if dist.get_rank() == 0: print( f"\n{TestPPInference.__qualname__}:\n" f"--fp16:{fp16}\n" f"--test result: \n1D:{self.tokenizer.decode(output_1d[0])}\n2D:{self.tokenizer.decode(output_pp[0])}\n" ) del model_pp del model_1d @torch.no_grad() def test_gpt_neo_for_classification(self, fp16): model_pp = GPTNeoForSequenceClassification.from_pretrained_with_parallel( "EleutherAI/gpt-neo-125M", pipeline_parallel_size=self.num_gpus, torch_dtype=torch.float16 if fp16 else torch.float32, ).eval() if fp16: model_1d = ( GPTNeoForSequenceClassification.from_pretrained( "EleutherAI/gpt-neo-125M" ) .half() .eval() .cuda() ) else: model_1d = ( GPTNeoForSequenceClassification.from_pretrained( "EleutherAI/gpt-neo-125M" ) .eval() .cuda() ) model_1d.config.pad_token_id = self.tokenizer.eos_token_id model_pp.config.pad_token_id = self.tokenizer.eos_token_id batch_encoding = self.tokenizer( text=["I love you !", "I hate you !"], return_tensors="pt" ).to("cuda") output_pp = torch.cat( [_.logits.argmax(-1) for _ in model_pp(**batch_encoding)], dim=0 ) output_1d = model_1d(**batch_encoding).logits.argmax(-1) if dist.get_rank() == 0: print( f"\n{TestPPInference.__qualname__}:\n" f"--fp16:{fp16}\n" f"--test result: \n1D:{output_1d}\n2D:{output_pp}\n" ) del model_1d del model_pp if __name__ == "__main__": test = TestPPInference(num_gpus=4) for fp16 in [False, True]: test.test_gpt_neo_model(fp16=fp16) for fp16 in [False, True]: test.test_gpt_neo_lm_head_model(fp16=fp16) for fp16 in [False, True]: test.test_gpt_neo_for_classification(fp16=fp16)
python
"""(c) All rights reserved. ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, Switzerland, VPSI, 2017""" import ldap3 from epflldap.utils import get_optional_env, EpflLdapException def _get_LDAP_connection(): """ Return a LDAP connection """ server = ldap3.Server('ldap://' + get_optional_env('EPFL_LDAP_SERVER_FOR_SEARCH')) connection = ldap3.Connection(server) connection.open() return connection, get_optional_env('EPFL_LDAP_BASE_DN_FOR_SEARCH') def LDAP_search(pattern_search, attribute): """ Do a LDAP search """ connection, ldap_base = _get_LDAP_connection() connection.search( search_base=ldap_base, search_filter=pattern_search, attributes=[attribute] ) return connection.response def get_attribute(response, attribute): return response[0]['attributes'][attribute][0] def is_unit_exist(unit_id): """ Return True if the unit 'unid_id' exists. Otherwise return False """ attribute = 'objectClass' response = LDAP_search( pattern_search="(uniqueidentifier={})".format(unit_id), attribute=attribute ) try: unit_exist = 'EPFLorganizationalUnit' in response[0]['attributes'][attribute] except Exception: return False return unit_exist def get_unit_name(unit_id): """ Return the unit name to the unit 'unit_id' """ attribute = 'cn' response = LDAP_search( pattern_search='(uniqueIdentifier={})'.format(unit_id), attribute=attribute ) try: unit_name = get_attribute(response, attribute) except Exception: raise EpflLdapException("The unit with id '{}' was not found".format(unit_id)) return unit_name def get_unit_id(unit_name): """ Return the unit id to the unit 'unit_name' """ unit_name = unit_name.lower() attribute = 'uniqueIdentifier' response = LDAP_search( pattern_search='(cn={})'.format(unit_name), attribute=attribute ) unit_id = "" try: for element in response: if 'dn' in element and element['dn'].startswith('ou={},'.format(unit_name)): unit_id = element['attributes'][attribute][0] except Exception: raise EpflLdapException("The unit named '{}' was not found".format(unit_name)) finally: if not unit_id: raise EpflLdapException("The unit named '{}' was not found".format(unit_name)) return unit_id def get_units(username): """ Return all units of user 'username' """ connection, ldap_base = _get_LDAP_connection() # Search the user dn connection.search( search_base=ldap_base, search_filter='(uid={}@*)'.format(username), ) # For each user dn give me the unit dn_list = [connection.response[index]['dn'] for index in range(len(connection.response))] units = [] # For each unit search unit information and give me the unit id for dn in dn_list: unit = dn.split(",ou=")[1] connection.search(search_base=ldap_base, search_filter='(ou={})'.format(unit), attributes=['uniqueidentifier']) units.append(get_attribute(connection.response, 'uniqueIdentifier')) return units def get_sciper(username): """ Return the sciper of user """ attribute = 'uniqueIdentifier' response = LDAP_search( pattern_search='(uid={})'.format(username), attribute=attribute ) try: sciper = get_attribute(response, attribute) except Exception: raise EpflLdapException("No sciper corresponds to username {}".format(username)) return sciper def get_username(sciper): """ Return username of user """ attribute = 'uid' response = LDAP_search( pattern_search='(uniqueIdentifier={})'.format(sciper), attribute=attribute ) try: username = get_attribute(response, attribute) except Exception: raise EpflLdapException("No username corresponds to sciper {}".format(sciper)) return username def get_email(sciper): """ Return email of user """ attribute = 'mail' response = LDAP_search( pattern_search='(uniqueIdentifier={})'.format(sciper), attribute=attribute ) try: email = get_attribute(response, attribute) except Exception: raise EpflLdapException("No email address corresponds to sciper {}".format(sciper)) return email
python
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2020 Kyoto University (Hirofumi Inaguma) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Conduct forced alignment with the pre-trained CTC model.""" import codecs import logging import os import shutil import sys from tqdm import tqdm from neural_sp.bin.args_asr import parse_args_eval from neural_sp.bin.eval_utils import average_checkpoints from neural_sp.bin.train_utils import ( load_checkpoint, set_logger ) from neural_sp.datasets.asr import build_dataloader from neural_sp.models.seq2seq.speech2text import Speech2Text from neural_sp.utils import mkdir_join logger = logging.getLogger(__name__) def main(): # Load configuration args, recog_params, dir_name = parse_args_eval(sys.argv[1:]) # Setting for logging if os.path.isfile(os.path.join(args.recog_dir, 'align.log')): os.remove(os.path.join(args.recog_dir, 'align.log')) set_logger(os.path.join(args.recog_dir, 'align.log'), stdout=args.recog_stdout) for i, s in enumerate(args.recog_sets): # Align all utterances args.min_n_frames = 0 args.max_n_frames = 1e5 # Load dataloader dataloader = build_dataloader(args=args, tsv_path=s, batch_size=recog_params['recog_batch_size']) if i == 0: # Load the ASR model model = Speech2Text(args, dir_name) epoch = int(args.recog_model[0].split('-')[-1]) if args.recog_n_average > 1: # Model averaging for Transformer model = average_checkpoints(model, args.recog_model[0], n_average=args.recog_n_average) else: load_checkpoint(args.recog_model[0], model) if not args.recog_unit: args.recog_unit = args.unit logger.info('recog unit: %s' % args.recog_unit) logger.info('epoch: %d' % epoch) logger.info('batch size: %d' % args.recog_batch_size) # GPU setting if args.recog_n_gpus >= 1: model.cudnn_setting(deterministic=True, benchmark=False) model.cuda() save_path = mkdir_join(args.recog_dir, 'ctc_forced_alignments') # Clean directory if save_path is not None and os.path.isdir(save_path): shutil.rmtree(save_path) os.mkdir(save_path) pbar = tqdm(total=len(dataloader)) while True: batch, is_new_epoch = dataloader.next() trigger_points = model.ctc_forced_align(batch['xs'], batch['ys']) # `[B, L]` for b in range(len(batch['xs'])): save_path_spk = mkdir_join(save_path, batch['speakers'][b]) save_path_utt = mkdir_join(save_path_spk, batch['utt_ids'][b] + '.txt') tokens = dataloader.idx2token[0](batch['ys'][b], return_list=True) with codecs.open(save_path_utt, 'w', encoding="utf-8") as f: for i, tok in enumerate(tokens): f.write('%s %d\n' % (tok, trigger_points[b, i])) # TODO: consider down sampling pbar.update(len(batch['xs'])) if is_new_epoch: break pbar.close() if __name__ == '__main__': main()
python
def my_reduce(value): number = 0 for v in value: number+=v return number
python
from playground.network.packet import PacketType, FIELD_NOT_SET from playground.network.packet.fieldtypes import UINT8, UINT16, UINT32, UINT64, \ STRING, BUFFER, \ ComplexFieldType, PacketFields from playground.network.packet.fieldtypes.attributes import Optional class VNICSocketControlPacket(PacketType): """ This packet type is only to provide a common base class for VNIC packets. """ DEFINITION_IDENTIFIER = "vsockets.VNICSocketControlPacket" DEFINITION_VERSION = "1.0" class VNICSocketOpenPacket(VNICSocketControlPacket): DEFINITION_IDENTIFIER = "vsockets.VNICSocketOpenPacket" DEFINITION_VERSION = "1.0" class SocketConnectData(PacketFields): FIELDS = [ ("destination", STRING), ("destinationPort", UINT16) ] class SocketListenData(PacketFields): FIELDS = [ ("sourcePort", UINT16) ] FIELDS = [ ("ConnectionId", UINT32), ("callbackAddress", STRING), ("callbackPort", UINT16), ("connectData", ComplexFieldType(SocketConnectData, {Optional:True})), ("listenData", ComplexFieldType(SocketListenData, {Optional:True})) ] def isConnectType(self): return self.connectData != FIELD_NOT_SET and self.listenData == FIELD_NOT_SET def isListenType(self): return self.connectData == FIELD_NOT_SET and self.listenData != FIELD_NOT_SET class VNICSocketClosePacket(VNICSocketControlPacket): DEFINITION_IDENTIFIER = "vsockets.VNICSocketClosePacket" DEFINITION_VERSION = "1.0" FIELDS = [("ConnectionId", UINT32)] class VNICSocketOpenResponsePacket(VNICSocketControlPacket): DEFINITION_IDENTIFIER = "vsockets.VNICSocketOpenResponsePacket" DEFINITION_VERSION = "1.0" FIELDS = [ ("ConnectionId", UINT32), ("port", UINT16), ("errorCode", UINT8({Optional:True})), ("errorMessage", STRING({Optional:True})) ] def isFailure(self): return (self.errorCode != FIELD_NOT_SET or self.errorMessage != FIELD_NOT_SET) class VNICConnectionSpawnedPacket(VNICSocketControlPacket): DEFINITION_IDENTIFIER = "vsockets.VNICConnectionSpawnedPacket" DEFINITION_VERSION = "1.0" FIELDS = [ ("ConnectionId", UINT32), ("spawnTcpPort", UINT16), ("source", STRING), ("sourcePort", UINT16), ("destination", STRING), ("destinationPort", UINT16) ] class VNICStartDumpPacket(VNICSocketControlPacket): DEFINITION_IDENTIFIER = "vsockets.VNICStartDumpPacket" DEFINITION_VERSION = "1.0" class VNICPromiscuousLevelPacket(VNICSocketControlPacket): """ This packet is both a getter/setter packet that can be sent by a client to either set or get the promiscuity level. It is also sent back by the server as an acknowledgement with the current level Client sends VNICPromiscuousLevelPacket with no fields set Server responds with VNICPromiscuousLevelPacket with get set to current level Client sends VNICPromiscuousLevelPacket with set field set Server responds with VNICPromiscuousLevelPacket with get set to new level """ DEFINITION_IDENTIFIER = "vsockets.VNICPromiscuousLevelPacket" DEFINITION_VERSION = "1.0" FIELDS = [ ("set",UINT8({Optional:True})), ("get",UINT8({Optional:True}))] def basicUnitTest(): v1 = VNICSocketOpenPacket(callbackAddress="1.1.1.1", callbackPort=80) connectData = v1.SocketConnectData(destination="2.2.2.2",destinationPort=1000) v1.connectData = connectData assert v1.isConnectType() v1a = VNICSocketOpenPacket.Deserialize(v1.__serialize__()) assert v1 == v1a v2 = VNICSocketOpenResponsePacket() v2.port = 666 v2.errorCode = 1 v2.errorMessage = "test failure" v2a = VNICSocketOpenResponsePacket.Deserialize(v2.__serialize__()) assert v2 == v2a assert v2a.isFailure() v3 = VNICConnectionSpawnedPacket() v3.spawnTcpPort=555 v3.source="0.0.0.0" v3.sourcePort=999 v3.destination="1.2.3.4" v3.destinationPort=123 v3a = VNICConnectionSpawnedPacket.Deserialize(v3.__serialize__()) assert v3 == v3a if __name__ == "__main__": basicUnitTest() print("Basic unit test completed successfully.")
python
"""Base class for patching time and I/O modules.""" import sys import inspect class BasePatcher(object): """Base class for patching time and I/O modules.""" # These modules will not be patched by default, unless explicitly specified # in `modules_to_patch`. # This is done to prevent time-travel from interfering with the timing of # the actual test environment. UNPATCHED_MODULES = ['pytest', '_pytest', 'unittest', 'mock', 'threading'] def __init__(self, clock, event_pool, modules_to_patch=None, patcher_module=None): """Create the patch.""" self.clock = clock self.event_pool = event_pool if modules_to_patch is None: self.modules_to_patch = [] elif isinstance(modules_to_patch, (list, tuple)): self.modules_to_patch = modules_to_patch else: self.modules_to_patch = [modules_to_patch] self.patcher_module = patcher_module if patcher_module else None self._undo_set = set() @classmethod def get_events_namespace(cls): """Return the namespace of the patcher's events.""" return None @classmethod def get_events_types(cls): """Return Enum of the patcher's events types.""" return None def get_patched_module(self): """Return the actual module obect to be patched.""" raise NotImplementedError() def get_patch_actions(self): """Return list of the patches to do. The list structure is tuples containing: (real_object_name, the_real_object, fake_object) """ raise NotImplementedError() def start(self): """Start the patcher. The logic to the patchers start is based on the work done by: spulec/freezegun under https://github.com/spulec/freezegun Copyright (C) 2017 spulec/freezegun Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Modifications: Modifications to the file was to leave the inner change of the loaded modules and removing any other related logic to a specific module. """ patch_actions = self.get_patch_actions() real_id_to_fake = {id(real): fake for _, real, fake in patch_actions} patched_module = self.get_patched_module() # Change modules for later imports. for obj_name, real_obj, fake_obj in patch_actions: self._save_for_undo(patched_module, obj_name, real_obj) setattr(patched_module, obj_name, fake_obj) if self.modules_to_patch: # If only a given list of modules is required to be patched modules = [sys.modules[name] for name in self.modules_to_patch] else: # not given a specific module to patch on. # Create the list of all modules to search for the patched objects. # Patch on all loaded modules. modules = [ module for mod_name, module in sys.modules.items() if (inspect.ismodule(module) and hasattr(module, '__name__') # Don't patch inside the original module, this (the patcher) # module, or the unpatched modules. and module.__name__ not in ([patched_module, self.patcher_module, __name__] + self.UNPATCHED_MODULES ) ) ] # Search in all modules for the object to patch. for module in modules: for attr in dir(module): try: # Get any attribute loaded on the module. attribute_value = getattr(module, attr) except (ValueError, AttributeError, ImportError): # For some libraries, this happen. # e.g. attr=dbm_gnu, module=pkg_resources._vendor.six.moves continue # If the attribute is on this module - avoid recursion. # Do stuff only if the attribute is the object to patch. if id(attribute_value) not in real_id_to_fake.keys(): continue # Find the relative mock object for the original class. fake_obj = real_id_to_fake.get(id(attribute_value)) # Change the class to the mocked one in the given module. setattr(module, attr, fake_obj) # Save the original class for later - when stopping the patch. self._save_for_undo(module, attr, attribute_value) def stop(self): """Stop the patching.""" for module, attribute, original_value in self._undo_set: setattr(module, attribute, original_value) self._undo_set.clear() def _save_for_undo(self, module, attribute, original_value): self._undo_set.add((module, attribute, original_value))
python
#!/usr/bin/env python """ Pox-based OpenFlow manager """ import pox.openflow.libopenflow_01 as of from pox.core import core from pox.lib.recoco import * from pox.lib.revent import * from pox.lib.addresses import IPAddr, EthAddr from pox.lib.util import dpid_to_str from pox.lib.util import str_to_dpid from debussy.util import Config from debussy.db import DebussyDb from debussy.profiling import PerfCounter from debussy.messaging import MsgQueueReceiver, RpcReceiver from debussy.of import OfManager log = core.getLogger() class PoxManager(OfManager): "Pox-based OpenFlow manager" def __init__(self, log, dbname, dbuser): super(PoxManager, self).__init__() self.db = DebussyDb(dbname, dbuser, None, reconnect=True) self.log = log self.datapaths = {} self.flowstats = [] self.perfcounter = PerfCounter("sw_delay") self.dpid_cache = {} core.openflow.addListeners(self, priority=0) self.log.info("debussy: starting pox manager") def startup(): self.log.info("registering handlers") core.openflow_discovery.addListeners(self) core.call_when_ready(startup, ("openflow", "openflow_discovery")) def update_switch_cache(self): self.db.cursor.execute("SELECT * FROM switches;") result = self.db.cursor.fetchall() for sw in result: self.dpid_cache[sw[1]] = { 'sid' : sw[0], 'dpid' : sw[1], 'ip' : sw[2], 'mac': sw[3], 'name': sw[4] } def _handle_ConnectionDown(self, event): dpid = "%0.16x" % event.dpid self.update_switch_cache() del self.datapaths[event.dpid] self.db.cursor.execute("DELETE FROM switches WHERE dpid='{0}';" .format(dpid)) self.log.info("debussy: dpid {0} removed".format(event.dpid)) def _handle_ConnectionUp(self, event): dpid = "%0.16x" % event.dpid self.update_switch_cache() self.datapaths[event.dpid] = event.connection self.db.cursor.execute("SELECT COUNT(*) FROM switches WHERE dpid='{0}';" .format(dpid)) count = self.db.cursor.fetchall()[0][0] if count > 0: # switch already in db pass elif dpid in self.dpid_cache: sw = self.dpid_cache[dpid] self.db.cursor.execute("INSERT INTO switches (sid, dpid, ip, mac, name) " "VALUES ({0}, '{1}', '{2}', '{3}', '{4}');".format( sw['sid'], sw['dpid'], sw['ip'], sw['mac'], sw['name'])) else: sid = len(self.dpid_cache) + 1 name = "s{0}".format(sid) self.db.cursor.execute("INSERT INTO switches (sid, dpid, name) VALUES " "({0}, '{1}', '{2}')".format(sid, dpid, name)) self.log.info("debussy: dpid {0} online".format(event.dpid)) self.log.info("debussy: online dpids: {0}".format(self.datapaths)) def _handle_LinkEvent(self, event): dpid1 = "%0.16x" % event.link.dpid1 dpid2 = "%0.16x" % event.link.dpid2 port1 = event.link.port1 port2 = event.link.port2 sid1 = self.dpid_cache[dpid1]['sid'] sid2 = self.dpid_cache[dpid2]['sid'] if event.removed: self.db.cursor.execute("UPDATE tp SET isactive=0 WHERE " " (sid={0} AND nid={1}) OR " " (sid={1} AND nid={0});" .format(sid1, sid2)) self.log.info("Link down {0}".format(event.link)) elif event.added: # does the forward link exist in Postgres? self.db.cursor.execute("SELECT COUNT(*) FROM tp WHERE " "sid={0} AND nid={1};" .format(sid1, sid2)) count = self.db.cursor.fetchall()[0][0] if count == 0: self.db.cursor.execute("INSERT INTO tp (sid, nid, ishost, isactive) " "VALUES ({0}, {1}, 0, 1);" .format(sid1, sid2)) self.db.cursor.execute("INSERT INTO ports (sid, nid, port) VALUES " "({0}, {1}, {2});" .format(sid1, sid2, port1)) # does the reverse link already exist in Postgres? self.db.cursor.execute("SELECT COUNT(*) FROM tp WHERE " "sid={0} AND nid={1};" .format(sid2, sid1)) count = self.db.cursor.fetchall()[0][0] if count == 0: self.db.cursor.execute("INSERT INTO tp (sid, nid, ishost, isactive) " "VALUES ({0}, {1}, 0, 1);" .format(sid2, sid1)) self.db.cursor.execute("INSERT INTO ports (sid, nid, port) VALUES " "({0}, {1}, {2});" .format(sid2, sid1, port2)) self.log.info("Link up {0}".format(event.link)) def _handle_BarrierIn(self, event): self.perfcounter.stop() self.log.debug("received barrier") def _handle_FlowStatsReceived(self, event): self.log.info("debussy: flow stat received dpid={0}, len={1}".format( event.connection.dpid, len(event.stats))) for stat in event.stats: self.log.info(" flow: nw_src={0}, nw_dst={1}".format( stat.match.nw_src, stat.match.nw_dst)) def requestStats(self): "Send all switches a flow statistics request" self.flowstats = [] for connection in core.openflow._connections.values(): connection.send(of.ofp_stats_request(body=of.ofp_flow_stats_request())) self.log.debug("debussy: sent {0} flow stats requests".format( len(core.openflow._connections))) return True def sendBarrier(self, dpid): """Send a barrier message dpid: datapath id of the switch to receive the barrier""" dpid = int(dpid) if dpid in self.datapaths: dp = self.datapaths[dpid] msg = of.ofp_barrier_request() dp.send(msg) self.perfcounter.start() self.log.debug("dpid {0} sent barrier".format(dpid)) else: self.log.debug("dpid {0} not in datapath list".format(dpid)) return True def registerReceiver(self, receiver): """Register a new message receiver receiver: a debussy.messaging.MessageReceiver object""" self.log.info("registering receiver") self.receiver.append(receiver) receiver.start() core.addListener(pox.core.GoingDownEvent, receiver.stop) def isRunning(self): "returns: true if the controller is running, false otherwise" return core.running def mk_msg(self, flow): """Create a Pox flowmod message from debussy.flow.OfMessage flow: a debussy.flow.OfMessage object""" msg = of.ofp_flow_mod() msg.command = int(flow.command) msg.priority = int(flow.priority) msg.match = of.ofp_match() if flow.match.dl_type is not None: msg.match.dl_type = int(flow.match.dl_type) if flow.match.nw_src is not None: msg.match.nw_src = IPAddr(flow.match.nw_src) if flow.match.nw_dst is not None: msg.match.nw_dst = IPAddr(flow.match.nw_dst) if flow.match.dl_src is not None: msg.match.dl_src = EthAddr(flow.match.dl_src) if flow.match.dl_dst is not None: msg.match.dl_dst = EthAddr(flow.match.dl_dst) for outport in flow.actions: msg.actions.append(of.ofp_action_output(port=int(outport))) return msg def send(self, dpid, msg): """Send a message to a switch dpid: datapath id of the switch msg: OpenFlow message""" self.log.debug("debussy: flow mod dpid={0}".format(dpid)) if dpid in self.datapaths: dp = self.datapaths[dpid] dp.send(msg) else: self.log.debug("dpid {0} not in datapath list".format(dpid)) def sendFlowmod(self, flow): """Send a flow modification message flow: the flow modification message to send""" dpid = int(flow.switch.dpid) self.send(dpid, self.mk_msg(flow)) def launch(): "Start the OpenFlow manager and message receivers" ctrl = PoxManager(log, Config.DbName, Config.DbUser) mq = MsgQueueReceiver(Config.QueueId, ctrl) ctrl.registerReceiver(mq) rpc = RpcReceiver(Config.RpcHost, Config.RpcPort, ctrl) ctrl.registerReceiver(rpc) core.register("debussycontroller", ctrl)
python
import cv2 as cv # noqa import numpy as np # noqa
python
r""" Module of trace monoids (free partially commutative monoids). EXAMPLES: We first create a trace monoid:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: M.<a,b,c> = TraceMonoid(I=(('a','c'), ('c','a'))); M Trace monoid on 3 generators ([a], [b], [c]) with independence relation {{a, c}} Different elements can be equal because of the partially commutative multiplication:: sage: c * a * b == a * c * b True We check that it is a monoid:: sage: M in Monoids() True REFERENCES: - :wikipedia:`Trace_monoid` - https://ncatlab.org/nlab/show/trace+monoid AUTHORS: - Pavlo Tokariev (2019-05-31): initial version """ # **************************************************************************** # Copyright (C) 2019 Pavlo Tokariev <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # https://www.gnu.org/licenses/ # **************************************************************************** from collections import OrderedDict from itertools import repeat, chain, product from sage.misc.cachefunc import cached_method from sage.misc.misc_c import prod from sage.graphs.digraph import DiGraph from sage.graphs.graph import Graph from sage.monoids.free_monoid import FreeMonoid from sage.monoids.monoid import Monoid_class from sage.rings.integer_ring import ZZ from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.power_series_ring import PowerSeriesRing from sage.rings.infinity import infinity from sage.combinat.words.alphabet import Alphabet from sage.structure.element import MonoidElement from sage.structure.element_wrapper import ElementWrapper from sage.structure.unique_representation import UniqueRepresentation class TraceMonoidElement(ElementWrapper, MonoidElement): r""" Element of a trace monoid, also known as a trace. Elements of trace monoid is actually a equivalence classes of related free monoid over some equivalence relation that in the case is presented as independence relation. .. RUBRIC:: Representative We transform each trace to its lexicographic form for the representative in the ambient free monoid. This is also used for comparisons. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: x = b * a * d * a * c * b sage: x^3 [b*a^2*d*b^2*c*a^2*d*b^2*c*a^2*d*b*c] sage: x^0 1 sage: x.lex_normal_form() b*a^2*d*b*c sage: x.foata_normal_form() (b, a*d, a, b*c) """ def _repr_(self): """ Textual representation of ``self``. TESTS:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: a * b [a*b] sage: b * a [b*a] sage: d * a [a*d] """ if self == self.parent().one(): return "1" return "[{}]".format(self.value) def _richcmp_(self, other, op): r""" Compare two traces by their lexicographic normal forms. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: a^2 > a True sage: a*b < b*a True sage: a * c * b == a * b * c True """ return self.value._richcmp_(other.value, op) def lex_normal_form(self): r""" Return the lexicographic normal form of ``self``. OUTPUT: A free monoid element. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: (a*b).lex_normal_form() a*b sage: (b*a).lex_normal_form() b*a sage: (d*a).lex_normal_form() a*d """ return self.value def foata_normal_form(self): r""" Return the Foata normal form of ``self``. OUTPUT: Tuple of free monoid elements. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: x = b * a * d * a * c * b sage: x.foata_normal_form() (b, a*d, a, b*c) """ return self.parent()._compute_foata_normal_form(self.value) def _mul_(self, other): r""" Concatenate one equivalence class with another. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: a * b * c == a * c * b True """ return self.parent(self.value * other.value) def _flat_elements(self): r""" Return flatten list of generator numbers representing the trace. OUTPUT: A list of generator indexes. TESTS:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: x = b * a^3 * d * a * c * b^2 sage: x._flat_elements() [b, a, a, a, a, d, b, b, c] """ return [g for g, times in self.value for _ in range(times)] @cached_method def dependence_graph(self): r""" Return dependence graph of the trace. It is a directed graph where all dependent (non-commutative) generators are connected by edges which direction depend on the generator position in the trace. OUTPUT: Directed graph of generator indexes. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: x = b * a * d * a * c * b sage: x.dependence_graph() Digraph on 6 vertices """ elements = self._flat_elements() independence = self.parent()._independence graph = {} for i, e in enumerate(elements): edges = [] for v in graph: if (e, elements[v]) not in independence: edges.append((v, i)) graph[i] = [] for v1, v2 in edges: graph[v1].append(v2) return DiGraph(graph) @cached_method def hasse_diagram(self, algorithm="naive"): r""" Return Hasse diagram of the trace. Hasse diagram is a dependence graph without transitive edges. INPUT: - ``algorithm`` -- string (default: ``'naive'``); defines algorithm that will be used to compute Hasse diagram; there are two variants: ``'naive'`` and ``'min'``. OUTPUT: Directed graph of generator indexes. .. SEEALSO:: :meth:`~sage.monoids.trace_monoid.TraceMonoidElement.naive_hasse_digram`, :meth:`~sage.monoids.trace_monoid.TraceMonoidElement.min_hasse_diagram`. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: x = b * a * d * a * c * b sage: x.hasse_diagram() Digraph on 6 vertices TESTS:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: x = b * a * d * a * c * b sage: x.hasse_diagram(algorithm='naive') == x.hasse_diagram(algorithm='min') True sage: y = b * a^3 * d * a * c * b^2 sage: y.hasse_diagram(algorithm='naive') == y.hasse_diagram(algorithm='min') True """ if algorithm == "naive": return self.naive_hasse_diagram() elif algorithm == "min": return self.min_hasse_diagram() else: raise ValueError("`alg` option must be `naive` " "or `min`, got `{}`.".format(algorithm)) def min_hasse_diagram(self): r""" Return Hasse diagram of the trace. OUTPUT: Directed graph of generator indexes. .. SEEALSO:: :meth:`~sage.monoids.trace_monoid.TraceMonoidElement.hasse_digram`, :meth:`~sage.monoids.trace_monoid.TraceMonoidElement.naive_hasse_diagram`. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: x = b * a * d * a * c * b sage: x.min_hasse_diagram() Digraph on 6 vertices """ elements = self._flat_elements() elements.reverse() independence = self.parent()._independence reachable = dict() min = set() graph = DiGraph({}) for i, x in enumerate(elements): reachable[i] = set() front = min.copy() while front: used = set() for j in list(front): y = elements[j] if (x, y) not in independence: graph.add_edge(i, j) reachable[i].add(j) reachable[i].update(reachable[j]) if j in min: min.remove(j) used.add(j) forbidden = set(chain.from_iterable(reachable[v] for v in used)) front = set(dest for _, dest in graph.outgoing_edges(front, labels=False)) front = front - forbidden min.add(i) length = len(elements) graph.relabel(length - 1 - i for i in range(length)) return graph def naive_hasse_diagram(self): r""" Return Hasse diagram of ``self``. ALGORITHM: In loop check for every two pair of edges if they have common vertex, remove their transitive edge. OUTPUT: Directed graph of generator indexes. .. SEEALSO:: :meth:`~sage.monoids.trace_monoid.TraceMonoidElement.hasse_digram`, :meth:`~sage.monoids.trace_monoid.TraceMonoidElement.min_hasse_diagram`. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: x = b * a * d * a * c * b sage: x.naive_hasse_diagram() Digraph on 6 vertices """ d = self.dependence_graph() h = d.copy() for e1 in d.edges(): for e2 in d.edges(): if e1[1] == e2[0]: h.delete_edge((e1[0], e2[1])) return h def alphabet(self): r""" Return alphabet of ``self``. OUTPUT: A set of free monoid generators. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: x = b*a*d*a*c*b sage: x.alphabet() {b, a, d, c} """ return Alphabet([g for g, _ in self.value]) def projection(self, letters): r""" Return a trace that formed from ``self`` by erasing ``letters``. INPUT: - ``letters`` -- set of generators; defines set of letters that will be used to filter the trace OUTPUT: A trace EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: F.<a,b,c,d> = FreeMonoid() sage: I = ((a,d), (d,a), (b,c), (c,b)) sage: M.<ac,bc,cc,dc> = TraceMonoid(F, I=I) sage: x = M(b*a*d*a*c*b) sage: x.projection({a,b}) [b*a^2*b] sage: x.projection({b,d,c}) [b*d*b*c] """ P = self.parent() base = P._free_monoid return P(base.prod(x for x in self._flat_elements() if x in letters)) def multiplicative_order(self): r""" Return the multiplicative order of ``self``, which is `\infty` for any element not the identity. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: a.multiplicative_order() +Infinity sage: M.one().multiplicative_order() 1 """ if self.value.is_one(): return ZZ.one() return infinity class TraceMonoid(UniqueRepresentation, Monoid_class): r""" Return a free partially commuting monoid (trace monoid) on `n` generators over independence relation `I`. We construct a trace monoid by specifing: - a free monoid and independence relation - or generator names and independence relation, FreeMonoid is constructed automatically then. INPUT: - ``M`` -- a free monoid - ``I`` -- commutation relation between generators (or their names if the ``names`` are given) - ``names`` -- names of generators EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: F = TraceMonoid(names=('a', 'b', 'c'), I={('a','c'), ('c','a')}); F Trace monoid on 3 generators ([a], [b], [c]) with independence relation {{a, c}} sage: x = F.gens() sage: x[0]*x[1]**5 * (x[0]*x[2]) [a*b^5*a*c] sage: from sage.monoids.trace_monoid import TraceMonoid sage: M.<a,b,c> = TraceMonoid(I=(('a','c'), ('c','a'))) sage: latex(M) \langle a, b, c \mid ac=ca \rangle TESTS:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: M.<a,b,c> = TraceMonoid(I=(('a','c'), ('c','a'))) sage: M.number_of_words(3) == len(M.words(3)) True """ Element = TraceMonoidElement @staticmethod def __classcall_private__(cls, M=None, I=frozenset(), names=None): """ Normalize input to ensure a unique representation. TESTS:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: M1.<a,b,c> = TraceMonoid(I=(('a','c'), ('c','a'))) sage: M2.<a,b,c> = TraceMonoid(I=[('a','c')]) sage: M3 = TraceMonoid(I=[{'a','c'}], names=('a', 'b', 'c')) sage: M1 is M2 and M2 is M3 True """ if not M: if names: M = FreeMonoid(names=names) else: raise ValueError("names must be provided") elif not names: names = [str(g) for g in M.gens()] names = tuple(names) rels = set() gen_from_str = {names[i]: gen for i, gen in enumerate(M.gens())} for (x, y) in I: try: if isinstance(x, str): x = gen_from_str[x] x = M(x) if isinstance(y, str): y = gen_from_str[y] y = M(y) if x == y: raise ValueError except (TypeError, ValueError): raise ValueError("invalid relation defined") rels.add((x, y)) rels.add((y, x)) I = frozenset(rels) return super(TraceMonoid, cls).__classcall__(cls, M, I, names) def __init__(self, M, I, names): r""" Initialize ``self``. TESTS:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: M.<a,b,c> = TraceMonoid(I=(('a','c'), ('c','a'))) sage: TestSuite(M).run() """ self._free_monoid = M self._independence = I Monoid_class.__init__(self, names=names) def ngens(self): """ Return the number of generators of ``self``. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: M.<a,b,c> = TraceMonoid(I=(('a','c'), ('c','a'))) sage: M.ngens() 3 """ return self._free_monoid.ngens() def one(self): """ Return the neutral element of ``self``. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: M.<a,b,c> = TraceMonoid(I=(('a','c'), ('c','a'))) sage: M.one() 1 """ return self.element_class(self, self._free_monoid.one()) def gen(self, i=0): """ Return the `i`-th generator of the monoid. INPUT: - ``i`` -- integer (default: 0) EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: M.<a,b,c> = TraceMonoid(I=(('a','c'), ('c','a'))) sage: M.gen(1) [b] sage: M.gen(4) Traceback (most recent call last): ... IndexError: argument i (= 4) must be between 0 and 2 """ return self.element_class(self, self._free_monoid.gen(i)) def cardinality(self): """ Return the cardinality of ``self``, which is infinite except for the trivial monoid. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: M.<a,b,c> = TraceMonoid(I=(('a','c'), ('c','a'))) sage: M.cardinality() +Infinity """ return self._free_monoid.cardinality() def _compute_dependence_stack(self, x): r""" Return generator stacks formed from trace subelements with respect to non-commutativity. OUTPUT: Used generators and list of stacks as tuple. ALGORITHM: Let `x` be a word of monoid; we scan `x` from right to left; when processing a letter `a` it is pushed on its stack and a marker is pushed on the stack of all the letters `b` ( `b \neq a` ) which do not commute with `a`. TESTS:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: F.<a,b,c,d> = FreeMonoid() sage: I = (('ac','dc'), ('dc','ac'), ('bc','cc'), ('cc','bc')) sage: M.<ac,bc,cc,dc> = TraceMonoid(F, I=I) sage: x = b*a*d*a*c*b sage: M._compute_dependence_stack(x) ({a, b, c, d}, OrderedDict([(a, [False, False, True, True, False]), (b, [True, False, False, False, True]), (c, [True, False, False, False]), (d, [False, False, True, False])])) """ independence = self._independence generators_set = set(e for e, _ in x) stacks = OrderedDict(sorted((g, []) for g in generators_set)) for generator, times in reversed(list(x)): stacks[generator].extend(repeat(True, times)) for other_gen in generators_set: if other_gen == generator: continue if (generator, other_gen) not in independence: stacks[other_gen].extend(repeat(False, times)) return generators_set, stacks @cached_method def _compute_lex_normal_form(self, x): r""" Return lexicographic normal form of the free monoid element in free monoid terms. OUTPUT: Trace monoid element. ALGORITHM: Take among the letters being on the top of some stack that letter `a` being minimal with respect to the given lexicographic ordering. We pop a marker from each stack corresponding to a letter `b` ( `b \neq a` ) which does not commute with `a`. We repeat this loop until all stacks are empty. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: F.<a,b,c,d> = FreeMonoid() sage: I = ((a,d), (d,a), (b,c), (c,b)) sage: M.<ac,bc,cc,dc> = TraceMonoid(F, I=I) sage: M._compute_lex_normal_form(c*a*c*b*a^2) c*a*b*c*a^2 """ if not x._element_list: return x generators_set, stacks = self._compute_dependence_stack(x) independence = self._independence elements = [] while any(stacks.values()): for generator, g_stack in stacks.items(): if g_stack and g_stack[-1]: g_stack.pop() elements.append(generator) for other_gen in generators_set: if (other_gen != generator and (generator, other_gen) not in independence): stacks[other_gen].pop() break return prod(elements) @cached_method def _compute_foata_normal_form(self, x): r""" Return Foata normal form of the monoid element. OUTPUT: tuple of steps ALGORITHM: Within a loop we form the set using letters being on the top of stacks; arranging the letters in the lexicographic order yields a step of the Foata normal form; This loop is repeated until all stacks are empty. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: F.<a,b,c,d> = FreeMonoid() sage: I = ((a,d), (d,a), (b,c), (c,b)) sage: M.<ac,bc,cc,dc> = TraceMonoid(F, I=I) sage: x = b*a*d*a*c*b sage: M._compute_foata_normal_form(x) (b, a*d, a, b*c) sage: y = b*a*a*d*b*a*b*c^2*a sage: M._compute_foata_normal_form(y) (b, a*d, a, b, a, b*c, c, a) """ if not x._element_list: return tuple() generators_set, stacks = self._compute_dependence_stack(x) independence = self._independence steps = [] while any(stacks.values()): step = [] for generator, g_stack in stacks.items(): if g_stack and g_stack[-1]: g_stack.pop() step.append(generator) for g in step: for other_gen in generators_set: if other_gen != g and (g, other_gen) not in independence: stacks[other_gen].pop() steps.append(step) return tuple(prod(step) for step in steps) def _element_constructor_(self, x): """ Return ``x`` coerced into this trace monoid. One can create a free monoid element from the integer 1, free monoid elements of the same generators as internal one, and coerce everything that can coerce free monoid. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: F.<a,b,c,d> = FreeMonoid() sage: I = ((a,d), (d,a), (b,c), (c,b)) sage: M.<ac,bc,cc,dc> = TraceMonoid(F, I=I) sage: x = b*a*d*a*c*b sage: M(x) [b*a^2*d*b*c] """ x = self._compute_lex_normal_form(self._free_monoid(x)) return self.element_class(self, x) @cached_method def independence(self): r""" Return independence relation over the monoid. OUTPUT: set of commuting generator pairs. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: F.<a,b,c> = FreeMonoid() sage: I = frozenset(((a,c), (c,a))) sage: M.<ac,bc,cc> = TraceMonoid(F, I=I) sage: M.independence() == frozenset([frozenset([a,c])]) True """ return frozenset(map(frozenset, self._independence)) @cached_method def dependence(self): r""" Return dependence relation over the monoid. OUTPUT: Set of non-commuting generator pairs. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: M.<a,b,c> = TraceMonoid(I=(('a','c'), ('c','a'))) sage: sorted(M.dependence()) [(a, a), (a, b), (b, a), (b, b), (b, c), (c, b), (c, c)] """ return frozenset(pair for pair in product(self._free_monoid.gens(), repeat=2) if pair not in self._independence) @cached_method def dependence_graph(self): r""" Return graph of dependence relation. OUTPUT: dependence graph with generators as vertices TESTS:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: F.<a,b,c> = FreeMonoid() sage: M.<ai,bi,ci> = TraceMonoid(F, I=((a,c), (c,a))) sage: M.dependence_graph() == Graph({a:[a,b], b:[b], c:[c,b]}) True """ return Graph(set(frozenset((e1, e2)) if e1 != e2 else (e1, e2) for e1, e2 in self.dependence()), loops=True, format="list_of_edges", immutable=True) @cached_method def independence_graph(self): r""" Return the digraph of independence relations. OUTPUT: Independence graph with generators as vertices. TESTS:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: F.<a,b,c> = FreeMonoid() sage: M.<ai,bi,ci> = TraceMonoid(F, I=((a,c), (c,a))) sage: M.independence_graph() == Graph({a:[c], b:[], c:[]}) True """ verts = list(self._free_monoid.gens()) edges = list(map(list, self.independence())) return Graph([verts, edges], immutable=True) @cached_method def dependence_polynomial(self, t=None): r""" Return dependence polynomial. The polynomial is defined as follows: `\sum{i}{(-1)^i c_i t^i}`, where `c_i` equals to number of full subgraphs of size `i` in the independence graph. OUTPUT: A rational function in ``t`` with coefficients in the integer ring. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: M.dependence_polynomial() 1/(2*t^2 - 4*t + 1) """ if t is None: R = PolynomialRing(ZZ, 't') t = R.gen() clique_seq = self.independence_graph().clique_polynomial().coefficients() return ~sum((-1)**i * coeff * (t**i) for i, coeff in enumerate(clique_seq)) @cached_method def number_of_words(self, length): r""" Return number of unique words of defined length. INPUT: - ``length`` -- integer; defines size of words what number should be computed OUTPUT: words number as integer EXAMPLES: Get number of words of size 3 :: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: M.number_of_words(3) 48 """ psr = PowerSeriesRing(ZZ, default_prec=length + 1) return psr(self.dependence_polynomial()).coefficients()[length] @cached_method def words(self, length): r""" Return all lexicographic forms of defined length. INPUT: - ``length`` -- integer; defines size of words OUTPUT: set of traces of size ``length`` EXAMPLES: All words of size 2:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: sorted(M.words(2)) [[a^2], [a*b], [a*c], [a*d], [b*a], [b^2], [b*c], [b*d], [c*a], [c^2], [c*d], [d*b], [d*c], [d^2]] Get number of words of size 3:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I) sage: len(M.words(3)) 48 TESTS:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: M.<a,b,c> = TraceMonoid(I=(('a','b'), ('b','a'), ('b', 'c'), ('c', 'b'))) sage: for i in range(10): ....: assert len(M.words(i)) == M.number_of_words(i) sage: True True """ if length < 0: raise ValueError("Bad length of words. Expected zero or positive number.") if length == 0: return frozenset([self.one()]) if length == 1: return frozenset(self.gens()) return frozenset([word * suffix for word in self.words(length - 1) for suffix in self.gens() if not ((list(word.value)[-1][0], suffix.value) in self._independence and list(word.value)[-1][0] > suffix.value)]) def _sorted_independence(self): r""" Return independence relation over the monoid. OUTPUT: sorted list of sorted commuting generator pairs. EXAMPLES:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: F.<a,b,c> = FreeMonoid() sage: I = frozenset(((a,c), (c,a))) sage: M.<ac,bc,cc> = TraceMonoid(F, I=I) sage: M._sorted_independence() [[a, c]] """ return sorted(sorted(x_y) for x_y in sorted(self.independence())) def _repr_(self): r""" Textual representation of trace monoids. TESTS:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I); M Trace monoid on 4 generators ([a], [b], [c], [d]) with independence relation {{a, d}, {b, c}} """ return ("Trace monoid on {!s} generators {!s} " "with independence relation {{{}}}").format(self.ngens(), self.gens(), ", ".join("{{{}, {}}}".format(x, y) for (x, y) in self._sorted_independence())) def _latex_(self): r""" LaTeX representation of trace monoids. TESTS:: sage: from sage.monoids.trace_monoid import TraceMonoid sage: I = (('a','d'), ('d','a'), ('b','c'), ('c','b')) sage: M.<a,b,c,d> = TraceMonoid(I=I); latex(M) \langle a, b, c, d \mid ad=da,bc=cb \rangle """ return "\\langle {} \\mid {} \\rangle".format( repr(self._free_monoid.gens())[1:-1], ",".join( "{0!r}{1!r}={1!r}{0!r}".format(v1, v2) for v1, v2 in self._sorted_independence() ) )
python
from .handler import get_db_handle __all__ = ["get_db_handle"]
python
#!/usr/bin/env python3 import os # Third Party from flask import Blueprint from flask import request, jsonify from flask import render_template # main from . import routes main = Blueprint('main', __name__) # Routes main.add_url_rule("/", 'root', view_func=routes.root) main.add_url_rule("/api/", 'api', view_func=routes.api) main.add_url_rule("/form/", 'form', view_func=routes.form) if __name__ == "__main__": main.debug = True main.port = int(os.getenv("PORT", 5000)) main.run()
python
"""scrapli.driver.core.cisco_iosxr""" from scrapli.driver.core.cisco_iosxr.driver import IOSXRDriver __all__ = ("IOSXRDriver",)
python
import pandas as pd import os import json from settings import * from src.utils.sampu import interp_multi, sel_pos_frame, normalize import seaborn as sns sns.set(style="darkgrid") """Given some keyframe numbers (normalized kf), encodes them and interpolates their latent datapoints. Saves the z interpolants and the decoded animations in a df. """ check_model = '42' check_epoch = '-200' method = 'lerp' # slerp, lerp, bspline nsteps = 100 # per segment fr = 0.06 frames = [0, 465, 354, 289, 252, 0] # Has to be 2 or 4 or higher. Add 0 for standInit x_dataset = 'df14_KF.csv' # 'df14_KF.csv': radians, normalized in [0,1] latent = False # latent=True for interp the latent space directly without encoding keyframes before # Load keyframes dataset df = pd.read_csv(os.path.join(ROOT_PATH, 'data/processed/keyframes/', x_dataset), index_col=0) # Postures in radians pos_list = [] id_anim_list = [] for frame in frames: if frame == 0: pos_list.append(standInit_norm) # List of lists id_anim_list.append('standInit_0') else: pos, id_anim = sel_pos_frame(df, frame) pos_list.append(pos) # List of lists id_anim_list.append(id_anim + '_f' + str(frame)) # Get the radians frames (dec, denorm) and the latent interpolants df_dec_interp, df_z_interp = interp_multi(pos_list, latent, nsteps, check_model, check_epoch, method, joints_names) # Add 'time' column based on frequency fr end = df_dec_interp.shape[0] * fr + 0.02 df_dec_interp['time'] = list(np.arange(0.02, end, fr)) # Save path df_path = os.path.join(ROOT_PATH, DATA_SAMP, 'interp_multi_pos') # Prepare the overview json_file = os.path.join(df_path, '-overview.json') with open(json_file, 'r') as fd: files_dict = json.load(fd) file_id = len(files_dict) files_dict[file_id] = { 'file_id': file_id, 'interp_method': method, 'interp_steps': nsteps, 'frequency': fr, 'model': check_model + check_epoch, 'animations': id_anim_list, 'frames': frames } with open(json_file, 'w') as fd: fd.write(json.dumps(files_dict)) # Save df_dec_interp.to_csv(os.path.join(df_path, str(file_id) + '_dec_' + method + '.csv')) df_z_interp.to_csv(os.path.join(df_path, str(file_id) + '_z_' + method + '.csv'))
python
#!/usr/bin/env python3 # # Copyright (c) 2019 Roberto Riggio # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """UE Map handler.""" # import lightedge.managers.apimanager.apimanager as apimanager import empower_core.apimanager.apimanager as apimanager # pylint: disable=W0223 class MatchMapHandler(apimanager.APIHandler): """All the accounts defined in the controller.""" URLS = [r"/upf/v1/matchmap/([-0-9.]*)", r"/upf/v1/matchmap/(\bchecked\b)", r"/upf/v1/matchmap"] @apimanager.validate(min_args=0, max_args=1) def get(self, match_index=0): """List entries in the Match Map. Args: [0]: the Match Index Example URLs: GET /upf/v1/matchmap [ { "ip_proto_num": "1", "dst_ip": "31.13.0.0", "dst_port": "0", "netmask": "16", "new_dst_ip": null, "new_dst_port": 0 }, { "ip_proto_num": "1", "dst_ip": "2.2.2.2", "dst_port": "0", "netmask": "32", "new_dst_ip": "192.168.0.1", "new_dst_port": 0 }, { "ip_proto_num": "0", "dst_ip": "31.13.0.0", "dst_port": "0", "netmask": "16", "new_dst_ip": "127.0.0.1", "new_dst_port": 0 }, { "ip_proto_num": "6", "dst_ip": "18.185.97.149", "dst_port": "0", "netmask": "32", "new_dst_ip": "10.104.0.26", "new_dst_port": 0 } ] GET /upf/v1/matchmap/2 { "ip_proto_num": "1", "dst_ip": "2.2.2.2", "dst_port": "0", "netmask": "32", "new_dst_ip": "192.168.0.1", "new_dst_port": 0 } """ # self.service.upf_request_validator.get_matchmap(match_index) # if match_index: # return self.service.matches[int(match_index) - 1] # return self.service.matches if match_index == '': match_index = 0 if match_index == 'checked': return self.service.rest__get_matchmap_checked() return self.service.rest__get_matchmap(int(match_index) - 1) @apimanager.validate(returncode=201, min_args=0, max_args=1) def post(self, match_index=1, **request_data): """Insert entry in the Match Map. Args: [0]: the Match Index Request: version: protocol version (1.0) params: the list of parameters to be set Example URLs: POST /upf/v1/matchmap POST /upf/v1/matchmap/5 { "ip_proto_num": 6, "dst_ip": "ec2-18-185-97-149.eu-central-1.compute.amazonaws.com", "netmask": 32, "dst_port": 0, "new_dst_ip": "nginx-service", "new_dst_port": 0 } ... """ # if match_index: # match_index = int (match_index) # if match_index <= 0: # message = "Invalid match index '%i': must be greater than 0"\ # % match_index # raise ValueError(message) # matches_length = len(self.service.matches) # if matches_length == 0: # if match_index != 1: # message =\ # "Match list is void: inserting match index has to be 1"\ # % match_index # raise ValueError(message) # elif match_index > matches_length: # message = "Invalid match index '%i': acceptable range is [1, %i]"\ # % (match_index, matches_length ) # raise ValueError(message) # return self.service.matches[int(match_index) - 1] # self.service.upf_request_validator.post_matchmap(match_index, # request_data) if match_index == '': match_index = 1 self.service.rest__add_matchmap(int(match_index) - 1, request_data) self.set_header("Location", "/upf/v1/matchmap/%s" % match_index) self.set_status(201) @apimanager.validate(returncode=204, min_args=0, max_args=1) def delete(self, match_index=0): """Delete entries in the Match Map. Args: [0]: the Match Index Example URLs: DELETE /upf/v1/matchmap DELETE /upf/v1/matchmap/5 """ if match_index == '': match_index = 0 # no match in url -> match_index < 0 -> remove all self.service.rest__del_matchmap(int(match_index) - 1)
python
import pytest from aiosnow.exceptions import SchemaError from aiosnow.models import ModelSchema, Pluck, fields from aiosnow.query.fields import IntegerQueryable, StringQueryable def test_model_schema_field_registration(): class TestSchema(ModelSchema): test1 = fields.String() test2 = fields.Integer() assert isinstance(TestSchema.test1, StringQueryable) assert isinstance(TestSchema.test2, IntegerQueryable) assert isinstance(TestSchema.fields["test1"], fields.String) assert isinstance(TestSchema.fields["test2"], fields.Integer) def test_model_schema_primary_key(): with pytest.raises(SchemaError): type( "TestSchema", (ModelSchema,), dict( test1=fields.String(is_primary=True), test2=fields.Integer(is_primary=True), ), ) def test_model_schema_dumps_loads(): class MainDocument(ModelSchema): test1 = fields.String() test2 = fields.Integer() dict_obj = dict(test1="test", test2=123) json_obj = MainDocument().dumps(dict_obj) assert isinstance(json_obj, str) loaded = MainDocument().loads(json_obj) assert loaded == dict_obj def test_model_schema_loads(): class MainDocument(ModelSchema): test1 = fields.String() test2 = fields.Integer() json_obj = """{"test1": "test", "test2": 123}""" dict_obj = dict(test1="test", test2=123) assert MainDocument().loads(json_obj) == dict_obj def test_model_schema_nested(): class RelatedDocument(ModelSchema): test2 = fields.String() test3 = fields.Integer(pluck=Pluck.VALUE) class MainDocument(ModelSchema): test1 = fields.String(pluck=Pluck.DISPLAY_VALUE) related = RelatedDocument json_obj = """ { "test1": {"value": "test", "display_value": "test2"}, "related": { "test2": {"value": "test1", "display_value": "test2"}, "test3": {"value": 123, "display_value": "test2"} } } """ dict_obj = dict(test1="test2", related=dict(test2="test1", test3=123)) query = MainDocument.related.test2.equals("test123") assert str(query) == "related.test2=test123" main = MainDocument() assert main.loads(json_obj) == dict_obj related = main.nested_fields["related"].schema assert isinstance(related, RelatedDocument) assert set(related.fields.keys()) == {"test2", "test3"}
python
#!/usr/bin/env python2 # XXX: Refactor to a comand line tool and remove pylint disable """Merge columns of multiple experiments by gene id.""" from __future__ import absolute_import import argparse import csv import os import sys from itertools import chain import utils parser = argparse.ArgumentParser( description="Merge columns of multiple experiments by gene id." ) parser.add_argument("files", nargs="*", help="expression files") parser.add_argument("--experiments", nargs="+", help="experiment ids") parser.add_argument("--genes", nargs="+", help="filter genes") parser.add_argument( "--intersection", action="store_true", help="merge by intersection of gene ids" ) parser.add_argument("--out", help="output file") args = parser.parse_args() # if args.experiments and len(args.experiments) != len(args.files): # raise ValueError("Number of experiments must match the number of files") genes = set() expressions = [] headers = [] op = set.intersection if args.intersection else set.union offset = 0 for f in args.files: if not os.path.isfile(f): exit(1) base, ext = os.path.splitext(f) delimiter = ";" if ext == ".csv" else "\t" with utils.gzopen(f) as csvfile: reader = csv.reader(csvfile, delimiter=delimiter) header = reader.next()[1:] headers.append( args.experiments[offset : offset + len(header)] if args.experiments else header ) offset += len(headers[-1]) expressions.append(dict((r[0], r[1:]) for r in reader)) genes = ( set(expressions[-1].keys()) if args.intersection and not genes else op(genes, expressions[-1].keys()) ) if args.genes: genes = genes.intersection(args.genes) genes = sorted(genes) he = zip(headers, expressions) rows = [ dict(chain.from_iterable([zip(h, e[g]) for h, e in he if g in e]), **{"Gene": g}) for g in genes ] fhandler = open(args.out, "wb") if args.out else sys.stdout writer = csv.DictWriter( fhandler, ["Gene"] + [h for subheader in headers for h in subheader], delimiter="\t" ) writer.writeheader() writer.writerows(rows)
python
from torchvision import models from PIL import Image import matplotlib.pyplot as plt import torch import numpy as np import cv2 import torchvision.transforms as T def decode_segmap(image, source, nc=21): label_colors = np.array([(0, 0, 0), # 1=aeroplane, 2=bicycle, 3=bird, 4=boat, 5=bottle (128, 0, 0), (0, 128, 0), (128, 128, 0), (0, 0, 128), (128, 0, 128), # 6=bus, 7=car, 8=cat, 9=chair, 10=cow (0, 128, 128), (128, 128, 128), (64, 0, 0), (192, 0, 0), (64, 128, 0), # 11=dining table, 12=dog, 13=horse, 14=motorbike, 15=person (192, 128, 0), (64, 0, 128), (192, 0, 128), (64, 128, 128), (192, 128, 128), # 16=potted plant, 17=sheep, 18=sofa, 19=train, 20=tv/monitor (0, 64, 0), (128, 64, 0), (0, 192, 0), (128, 192, 0), (0, 64, 128)]) r = np.zeros_like(image).astype(np.uint8) g = np.zeros_like(image).astype(np.uint8) b = np.zeros_like(image).astype(np.uint8) for l in range(0, nc): if l != 15: continue idx = (image == l) r[idx] = label_colors[l, 0] g[idx] = label_colors[l, 1] b[idx] = label_colors[l, 2] rgb = np.stack([r, g, b], axis=2) # Load the foreground input image foreground = cv2.imread(source) # Change the color of foreground image to RGB # and resize image to match shape of R-band in RGB output map foreground = cv2.cvtColor(foreground, cv2.COLOR_BGR2RGB) foreground = cv2.resize(foreground,(r.shape[1],r.shape[0])) # Create a background array to hold white pixels # with the same size as RGB output map background = 255 * np.ones_like(rgb).astype(np.uint8) # Convert uint8 to float foreground = foreground.astype(float) background = background.astype(float) # Create a binary mask of the RGB output map using the threshold value 0 th, alpha = cv2.threshold(np.array(rgb),0,255, cv2.THRESH_BINARY) # Apply a slight blur to the mask to soften edges alpha = cv2.GaussianBlur(alpha, (7,7),0) # Normalize the alpha mask to keep intensity between 0 and 1 alpha = alpha.astype(float)/255 # Multiply the foreground with the alpha matte foreground = cv2.multiply(alpha, foreground) # Multiply the background with ( 1 - alpha ) background = cv2.multiply(1.0 - alpha, background) # Add the masked foreground and background outImage = cv2.add(foreground, background) # Return a normalized output image for display return outImage / 255 def segment(net, path, show_orig=True, dev='cuda'): img = Image.open(path) if show_orig: plt.imshow(img); plt.axis('off'); plt.show() # Comment the Resize and CenterCrop for better inference results trf = T.Compose([T.Resize(450), #T.CenterCrop(224), T.ToTensor(), T.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225])]) inp = trf(img).unsqueeze(0).to(dev) out = net.to(dev)(inp)['out'] om = torch.argmax(out.squeeze(), dim=0).detach().cpu().numpy() rgb = decode_segmap(om, path) plt.saveimg(rgb.png") return rgb
python
# -*- coding: utf-8 -*- from django.db.models.query import QuerySet class PublisherQuerySet(QuerySet): """Added publisher specific filters to queryset. """ def drafts(self): return self.filter(publisher_is_draft=True) def public(self): return self.filter(publisher_is_draft=False)
python
# # Copyright (c) 2019 Jonathan Weyn <[email protected]> # # See the file LICENSE for your rights. # """ Upload settings to a theta-e website loaded dynamically from the theta-e.conf. """ import os import string template_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'template.txt') def main(config, stid, forecast_date): """ Read the template settings file and copy a settings.php file to the web directory """ # Get the file directory and attempt to create it if it doesn't exist try: file_dir = config['Web']['Settings']['web_directory'] except KeyError: raise KeyError("settings error: no 'web_directory' specified in config Web Settings") required_options = ['page_url', 'page_path', 'json_directory', 'plot_directory'] for opt in required_options: if opt not in config['Web']['Settings'].keys(): raise KeyError("settings error: required option '%s' not specified in config Web Settings" % opt) if not(os.path.isdir(file_dir)): os.makedirs(file_dir) # Compile substitution parameters params = {k: v + '/' for k, v in config['Web']['Settings'].items()} params.pop('web_directory') params['stid'] = stid = config['current_stid'] for k in ['timezone', 'latitude', 'longitude', 'long_name']: try: params[k] = config['Stations'][stid][k] except KeyError: raise KeyError("settings error: required station option '%s' not found for station %s" % (k, stid)) params['models'] = str(list(config['Models'].keys())) params['default_model'] = config['Models'].keys()[0] params['bufr_models'] = str([m for m in config['Models'].keys() if 'bufr_name' in config['Models'][m].keys()]) params['colors'] = str([config['Models'][m]['color'] for m in config['Models'].keys()]) # Replace the template with parameters with open(template_file, 'r') as f: src = string.Template(f.read()) result = src.substitute(**params) if config['debug'] > 50: print('settings: uploading settings: %s' % params) # Write out to the file out_file = os.path.join(file_dir, 'settings.php') if config['debug'] > 9: print('settings: writing to %s' % out_file) with open(out_file, 'w') as f: f.write(result) return
python
# Generated by Django 3.2.5 on 2021-09-01 16:27 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('api', '0008_alter_workspacerole_role'), ] operations = [ migrations.AlterModelOptions( name='upload', options={}, ), ]
python
# Copyright 2015-2017 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest from trappy.stats.Topology import Topology from trappy.stats.Trigger import Trigger from trappy.stats.Aggregator import MultiTriggerAggregator import collections import trappy from trappy.base import Base import pandas as pd from pandas.util.testing import assert_series_equal class TestTopology(unittest.TestCase): def test_add_to_level(self): """Test level creation""" level_groups = [[1, 2], [0, 3, 4, 5]] level = "test_level" topology = Topology() topology.add_to_level(level, level_groups) check_groups = topology.get_level(level) self.assertTrue(topology.has_level(level)) self.assertEqual(level_groups, check_groups) def test_flatten(self): """Test Topology: flatten""" level_groups = [[1, 2], [0, 3, 4, 5]] level = "test_level" topology = Topology() topology.add_to_level(level, level_groups) flattened = [0, 1, 2, 3, 4, 5] self.assertEqual(flattened, topology.flatten()) def test_cpu_topology_construction(self): """Test CPU Topology Construction""" cluster_0 = [0, 3, 4, 5] cluster_1 = [1, 2] clusters = [cluster_0, cluster_1] topology = Topology(clusters=clusters) # Check cluster level creation cluster_groups = [[0, 3, 4, 5], [1, 2]] self.assertTrue(topology.has_level("cluster")) self.assertEqual(cluster_groups, topology.get_level("cluster")) # Check cpu level creation cpu_groups = [[0], [1], [2], [3], [4], [5]] self.assertTrue(topology.has_level("cpu")) self.assertEqual(cpu_groups, topology.get_level("cpu")) # Check "all" level all_groups = [[0, 1, 2, 3, 4, 5]] self.assertEqual(all_groups, topology.get_level("all")) def test_level_span(self): """TestTopology: level_span""" level_groups = [[1, 2], [0, 3, 4, 5]] level = "test_level" topology = Topology() topology.add_to_level(level, level_groups) self.assertEqual(topology.level_span(level), 2) def test_group_index(self): """TestTopology: get_index""" level_groups = [[1, 2], [0, 3, 4, 5]] level = "test_level" topology = Topology() topology.add_to_level(level, level_groups) self.assertEqual(topology.get_index(level, [1, 2]), 0) self.assertEqual(topology.get_index(level, [0, 3, 4, 5]), 1) class BaseTestStats(unittest.TestCase): def setUp(self): trace = trappy.BareTrace() data = { "identifier": [ 0, 0, 0, 1, 1, 1, ], "result": [ "fire", "blank", "fire", "blank", "fire", "blank", ], } index = pd.Series([0.1, 0.2, 0.3, 0.4, 0.5, 0.6], name="Time") data_frame = pd.DataFrame(data, index=index) trace.add_parsed_event("aim_and_fire", data_frame) self._trace = trace self.topology = Topology(clusters=[[0], [1]]) class TestTrigger(BaseTestStats): def test_trigger_generation(self): """TestTrigger: generate""" filters = { "result": "fire" } event_class = self._trace.aim_and_fire value = 1 pivot = "identifier" trigger = Trigger(self._trace, event_class, filters, value, pivot) expected = pd.Series([1, 1], index=pd.Index([0.1, 0.3], name="Time")) assert_series_equal(expected, trigger.generate(0)) expected = pd.Series([1], index=pd.Index([0.5], name="Time")) assert_series_equal(expected, trigger.generate(1)) def test_trigger_with_func(self): """Trigger works with a function or lambda as filter""" def my_filter(val): return val.startswith("fi") trigger = Trigger(self._trace, self._trace.aim_and_fire, filters={"result": my_filter}, value=1, pivot="identifier") expected = pd.Series([1], index=pd.Index([0.5], name="Time")) assert_series_equal(expected, trigger.generate(1)) my_filters = {"result": lambda x: x.startswith("bl")} trigger = Trigger(self._trace, self._trace.aim_and_fire, filters=my_filters, value=1, pivot="identifier") expected = pd.Series([1, 1], index=pd.Index([0.4, 0.6], name="Time")) assert_series_equal(expected, trigger.generate(1)) def test_trigger_with_callable_class(self): """Trigger works with a callable class as filter""" class my_filter(object): def __init__(self, val_out): self.prev_val = 0 self.val_out = val_out def __call__(self, val): ret = self.prev_val == self.val_out self.prev_val = val return ret trigger = Trigger(self._trace, self._trace.aim_and_fire, filters={"identifier": my_filter(1)}, value=1, pivot="result") expected = pd.Series([1], index=pd.Index([0.6], name="Time")) assert_series_equal(expected, trigger.generate("blank")) def test_filter_prev_values(self): """Trigger works with a filter that depends on previous values of the same pivot""" # We generate an example in which we want a trigger whenever the # identifier is no longer 1 for blank class my_filter(object): def __init__(self, val_out): self.prev_val = 0 self.val_out = val_out def __call__(self, val): ret = self.prev_val == self.val_out self.prev_val = val return ret trace = trappy.BareTrace() data = collections.OrderedDict([ (0.1, ["blank", 1]), (0.2, ["fire", 1]), (0.3, ["blank", 0]), # value is no longer 1, trigger (0.4, ["blank", 1]), (0.5, ["fire", 0]), # This should NOT trigger (0.6, ["blank", 0]), # value is no longer 1 for blank, trigger ]) data_frame = pd.DataFrame.from_dict(data, orient="index", ) data_frame.columns = ["result", "identifier"] trace.add_parsed_event("aim_and_fire", data_frame) trigger = Trigger(trace, trace.aim_and_fire, filters={"identifier": my_filter(1)}, value=-1, pivot="result") expected = pd.Series([-1, -1], index=[0.3, 0.6]) assert_series_equal(expected, trigger.generate("blank")) class TestAggregator(BaseTestStats): def test_scalar_aggfunc_single_trigger(self): """TestAggregator: 1 trigger scalar aggfunc""" def aggfunc(series): return series.sum() filters = { "result": "fire" } event_class = self._trace.aim_and_fire value = 1 pivot = "identifier" trigger = Trigger(self._trace, event_class, filters, value, pivot) aggregator = MultiTriggerAggregator([trigger], self.topology, aggfunc=aggfunc) # There are three "fire" in total # The all level in topology looks like # [[0, 1]] result = aggregator.aggregate(level="all") self.assertEqual(result, [3.0]) # There are two "fire" on the first node group and a # a single "fire" on the second node group at the cluster # level which looks like # [[0], [1]] result = aggregator.aggregate(level="cluster") self.assertEqual(result, [2.0, 1.0]) def test_vector_aggfunc_single_trigger(self): """TestAggregator: 1 trigger vector aggfunc""" def aggfunc(series): return series.cumsum() filters = { "result": "fire" } event_class = self._trace.aim_and_fire value = 1 pivot = "identifier" trigger = Trigger(self._trace, event_class, filters, value, pivot) aggregator = MultiTriggerAggregator([trigger], self.topology, aggfunc=aggfunc) # There are three "fire" in total # The all level in topology looks like # [[0, 1]] result = aggregator.aggregate(level="all") expected_result = pd.Series([1.0, 1.0, 2.0, 2.0, 3.0, 3.0], index=pd.Index([0.1, 0.2, 0.3, 0.4, 0.5, 0.6]) ) assert_series_equal(result[0], expected_result) def test_vector_aggfunc_multiple_trigger(self): """TestAggregator: multi trigger vector aggfunc""" def aggfunc(series): return series.cumsum() filters = { "result": "fire" } event_class = self._trace.aim_and_fire value = 1 pivot = "identifier" trigger_fire = Trigger(self._trace, event_class, filters, value, pivot) filters = { "result": "blank" } value = -1 trigger_blank = Trigger(self._trace, event_class, filters, value, pivot) aggregator = MultiTriggerAggregator([trigger_fire, trigger_blank], self.topology, aggfunc=aggfunc) # There are three "fire" in total # The all level in topology looks like # [[0, 1]] result = aggregator.aggregate(level="all") expected_result = pd.Series([1.0, 0.0, 1.0, 0.0, 1.0, 0.0], index=pd.Index([0.1, 0.2, 0.3, 0.4, 0.5, 0.6]) ) assert_series_equal(result[0], expected_result) def test_default_aggfunc_multiple_trigger(self): """MultiTriggerAggregator with the default aggfunc""" trigger_fire = Trigger(self._trace, self._trace.aim_and_fire, filters={"result": "fire"}, pivot="identifier", value=1) trigger_blank = Trigger(self._trace, self._trace.aim_and_fire, filters={"result": "blank"}, pivot="identifier", value=2) aggregator = MultiTriggerAggregator([trigger_fire, trigger_blank], self.topology) results = aggregator.aggregate(level="cpu") expected_results = [ pd.Series([1., 2., 1., 0., 0., 0.], index=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6]), pd.Series([0., 0., 0., 2., 1., 2.], index=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6]), ] self.assertEquals(len(results), len(expected_results)) for result, expected in zip(results, expected_results): assert_series_equal(result, expected)
python
import os f = open("test.txt" "w") list1 = ["Shoes", "Socks", "Gloves"] quantity = [10, 5, 32] f.write("{:<10} {:10} {:10}\n".format("S/N", "Items", "Quantity")) for item in list1: f.write("{:<10} {:10} {:10}\n".format("S/N", "Items", "Quantity") + "\n") f.close()
python
import os import subprocess import sys try: import pty except ImportError: PTY = False else: PTY = True from mklibpy.common.string import AnyString from mklibpy.terminal.colored_text import get_text, remove_switch from mklibpy.util.path import CD __author__ = 'Michael' TIMEOUT = 0.5 print("""`mklsgit` has been merged into `mklibpy-bin` (v0.8). Please uninstall this package and install `mklibpy-bin` instead.""", file=sys.stderr) def system_call(*args, **kwargs): out = subprocess.check_output(*args, **kwargs) return out.decode().splitlines(False) if PTY: def system_call_pty(*args, **kwargs): """ Opens a pty for stdout, so that colored output is retained. """ master, slave = pty.openpty() p = subprocess.Popen(*args, **kwargs, stdout=slave) code = p.wait(timeout=TIMEOUT) if code != 0: raise subprocess.CalledProcessError(code, args[0]) # echo an empty line so that we can properly break subprocess.call(['echo', ''], stdout=slave) def __gen(): with os.fdopen(master) as f: for line in f: line = line.strip() if not line: break yield line return __gen() def is_git_repo(abspath): path = os.path.join(abspath, ".git") return os.path.exists(path) and os.path.isdir(path) def get_git_branch(abspath): with CD(abspath): for line in system_call(['git', 'branch']): if not line.startswith("*"): continue return line.lstrip("*").strip() class LsGit(object): def __init__(self, stdout=None): self.stdout = stdout if stdout is None: self.stdout = sys.stdout @property def is_tty(self): return self.stdout.isatty() @property def is_gnu(self): try: system_call(['ls', '--version'], stderr=subprocess.DEVNULL) except subprocess.CalledProcessError: return False else: return True def print(self, *args, **kwargs): print(*args, **kwargs, file=self.stdout) def __call__(self, *args): LsGitProcess(self, args).run() class LsGitProcess(object): def __init__(self, parent, args): self.__parent = parent self.__args = args self.__cmd = ['ls'] + list(self.__args) self.__flags = None self.__options = None self.__dirs = None self.__cur_dir = None self.__parse_args() def __parse_args(self): self.__flags = AnyString([ arg for arg in self.__args if arg.startswith('-') and not arg.startswith('--') ]) self.__options = AnyString([ arg for arg in self.__args if arg.startswith('--') ]) self.__dirs = [ arg for arg in self.__args if not arg.startswith('-') ] @property def _l(self): return 'l' in self.__flags @property def __color(self): if self.__parent.is_gnu: if not self.__options.startswith('--color'): return False if self.__options == '--color' or self.__options == '--color=always': return True elif self.__options == '--color=auto': return self.__parent.is_tty else: return False else: if not self.__parent.is_tty: return False return 'G' in self.__flags def color(self, text, color=None, mode=None): if not self.__color: return text return get_text(text, color=color, mode=mode) def __process_line(self, line): if line.endswith(':') and line[:-1] in self.__dirs: self.__cur_dir = line[:-1] return line sp = line.split() if len(sp) < 9: return line dir = sp[8] if self.__color: dir = remove_switch(dir) abspath = os.path.abspath(os.path.join(self.__cur_dir, dir)) if not is_git_repo(abspath): return line branch = get_git_branch(abspath) return line + self.color(" ({})".format(branch), color='red', mode='bold') def __native_call(self): return subprocess.check_call(self.__cmd, stdout=self.__parent.stdout) def __system_call(self): return system_call(self.__cmd) if PTY: def __system_call_pty(self): return system_call_pty(self.__cmd) def run(self): if not self._l: self.__native_call() return if self.__dirs: self.__cur_dir = self.__dirs[0] else: self.__cur_dir = os.getcwd() if not PTY: # See Issue #3 lines = self.__system_call() workaround_flag = True elif not self.__color: lines = self.__system_call() workaround_flag = False else: # This is a workaround for a bug on Mac. See Issue #1 on GitHub try: lines = self.__system_call_pty() workaround_flag = False except subprocess.TimeoutExpired: lines = self.__system_call() workaround_flag = True if not workaround_flag: for line in lines: self.__parent.print(self.__process_line(line)) else: new_lines = [] modified_flag = False for line in lines: if modified_flag: self.__parent.print(self.__process_line(line)) continue new_line = self.__process_line(line) if new_line == line: new_lines.append(line) continue modified_flag = True for line0 in new_lines: self.__parent.print(line0) self.__parent.print(new_line) if not modified_flag: self.__native_call() def main(args=None): if args is None: import sys args = sys.argv[1:] instance = LsGit() try: instance(*args) except subprocess.CalledProcessError as e: exit(e.returncode) if __name__ == '__main__': main()
python
#coding: utf-8 ''' # * By : # * # * ██████╗ ██████╗ ██████╗ ██╗████████╗ ████████╗██╗ ██╗██████╗ ███╗ ██╗███████╗██████╗ # * ██╔═══██╗██╔══██╗██╔══██╗██║╚══██╔══╝ ╚══██╔══╝██║ ██║██╔══██╗████╗ ██║██╔════╝██╔══██╗ # * ██║ ██║██████╔╝██████╔╝██║ ██║ ██║ ██║ ██║██████╔╝██╔██╗ ██║█████╗ ██████╔╝ # * ██║ ██║██╔══██╗██╔══██╗██║ ██║ ██║ ██║ ██║██╔══██╗██║╚██╗██║██╔══╝ ██╔══██╗ # * ╚██████╔╝██║ ██║██████╔╝██║ ██║ ██║ ╚██████╔╝██║ ██║██║ ╚████║███████╗██║ ██║ # * ╚═════╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═══╝╚══════╝╚═╝ ╚═╝ # * # * AUTHOR : MOHAMED GUEYE [Orbit Turner] - Email: [email protected] - Country: Senegal # */ This program allows you to hit an url X times. ''' import urllib.request as urllib2 print("\n===============================> WELCOME <===============================\n") print("\t\t!! URL HITTER V1.0.1 !!") print("\n==========================================================================\n") # RECUPERATION & CONTROLE DES VALEURS SAISIES correct = False while not(correct): try: url = str(input("\n-> VEUILLEZ DONNER L'URL A ATTACKER: ")) iteration = int(input("\n-> VEUILLEZ DONNER LE NOMBRE DE HIT A FAIRE: ")) # assert hd >= 0 and md >= 0 and ha >= 0 and ma >= 0 except ValueError: print("\n!! VOUS AVEZ SAISI UNE VALEUR INCORRECTE !!") continue else: correct = True print("") print("\n--> FETCHING THE URL... ") try: for _ in range(iteration): urllib2.urlopen(url) except: print("\n===============================> STATE <===============================\n") print("\t\t!! AN ERROR OCURRED DURING EXECUTION !!") print("\t\t!! PLEASE TRY AGAIN LATER OR USE ANOTHER URL !!") print("\n==========================================================================\n") else: print("\n===============================> STATE <===============================\n") print("\t\tSUCESSFULLY DONE !") print("\n==========================================================================\n") finally: print("PROGRAM ENDED")
python
from mySecrets import connectStr import json import pyodbc DATABASE_USERACCOUNTS = "[dbo].[UserAccounts]" DATABASE_PROBLEMS = "[dbo].[Problems]" DATABASE_SUBMISSIONS = "[dbo].[Submissions]" def executeCommandCommit(cmd: str) -> None: cnxn = pyodbc.connect(connectStr) cursor = cnxn.cursor() cursor.execute(cmd) cursor.commit() cnxn.close() def executeCommandFetchAll(cmd: str) -> list: cnxn = pyodbc.connect(connectStr) cursor = cnxn.cursor() cursor.execute(cmd) arr = cursor.fetchall() cnxn.close() return arr def ACCOUNT_getUniqueIDNumber() -> int: return executeCommandFetchAll(f"SELECT MAX(AccountID) FROM {DATABASE_USERACCOUNTS}")[0][0] + 1 def ACCOUNT_createAccount(firstName: str, lastName: str) -> None: id = ACCOUNT_getUniqueIDNumber() executeCommandCommit(f"INSERT INTO {DATABASE_USERACCOUNTS} VALUES ({id}, '{firstName}', '{lastName}')") def PROBLEMS_getProblemsListString() -> list: arr = executeCommandFetchAll(f"SELECT ProblemID, ProblemName, Difficulty FROM {DATABASE_PROBLEMS}") for i in range(len(arr)): arr[i][0] = str(arr[i][0]) arr[i][2] = str(arr[i][2]) return arr def PROBLEMS_getProblemString(problemID: int) -> list: arr = executeCommandFetchAll(f"SELECT ProblemID, ProblemName, ProblemDescription, ProblemInput, ProblemOutput, ProblemExampleInput, ProblemExampleOutput, TimeLimit, MemoryLimit, Difficulty FROM {DATABASE_PROBLEMS} WHERE ProblemID={str(problemID)}") for i in range(len(arr)): arr[i][0] = str(arr[i][0]) arr[i][7] = str(arr[i][7]) arr[i][8] = str(arr[i][8]) arr[i][9] = str(arr[i][9]) for k in range(len(arr[i])): arr[i][k] = arr[i][k].replace("\\n", "\n") return arr def PROBLEMS_getProblemNameString(problemID: int) -> list: arr = executeCommandFetchAll(f"SELECT ProblemID, ProblemName FROM {DATABASE_PROBLEMS} WHERE ProblemID={str(problemID)}") for i in range(len(arr)): arr[i][0] = str(arr[i][0]) return arr def PROBLEMS_getProblemTest(problemID: int) -> list: arr = executeCommandFetchAll(f"SELECT ProblemID, ProblemRunInput, ProblemRunOutput, ProblemRunCheckFunction, TimeLimit, MemoryLimit, Difficulty FROM {DATABASE_PROBLEMS} WHERE ProblemID={str(problemID)}") for i in range(len(arr)): for k in range(1, 3): arr[i][k] = arr[i][k].replace("\\n", "\n") return arr def SUBMISSIONS_getUniqueIDNumber() -> int: return executeCommandFetchAll(f"SELECT MAX(submissionId) FROM {DATABASE_SUBMISSIONS}")[0][0] + 1 def SUBMISSIONS_createSubmission(submissionUserId: int, submissionProblemId: int, submissionCompiler: str, submissionCode: str, submissionOutput: str, submissionStatus: int) -> str: submissionId = SUBMISSIONS_getUniqueIDNumber() submissionCode = json.dumps(submissionCode) submissionCode = submissionCode.replace("'", "''") submissionOutput = json.dumps(submissionOutput) submissionOutput = submissionOutput.replace("'", "''") executeCommandCommit(f"INSERT INTO {DATABASE_SUBMISSIONS} (SubmissionID, SubmissionUserID, SubmissionProblemID, SubmissionCompiler, SubmissionCode, SubmissionOutput, SubmissionStatus) VALUES ({str(submissionId)}, {str(submissionUserId)}, {str(submissionProblemId)}, '{submissionCompiler}', '{submissionCode}', '{submissionOutput}', {str(submissionStatus)})") return str(submissionId) def SUBMISSIONS_getSubmissionString(submissionId: int): arr = executeCommandFetchAll(f"SELECT SubmissionID, SubmissionUserID, SubmissionProblemID, SubmissionCode, SubmissionStatus, SubmissionCompiler FROM {DATABASE_SUBMISSIONS} WHERE SubmissionID={str(submissionId)}") for i in range(len(arr)): arr[i][0] = str(arr[i][0]) arr[i][1] = str(arr[i][1]) arr[i][2] = str(arr[i][2]) arr[i][3] = json.loads(arr[i][3]) return arr # if __name__ == "__main__": # # print(ACCOUNT_getUniqueIDNumber()) # # print(PROBLEMS_getProblemsListString()) # # print(PROBLEMS_getProblemString(1)) # # print("'" == "\'") # SUBMISSIONS_createSubmission(2, 3, "python3", """Some cool code""", "out", 1500) # print(SUBMISSIONS_getSubmissionString(3)) # # ACCOUNT_createAccount("Danny", "Kaja") # # a = executeCommandFetchAll(f"SELECT TOP (1000) * FROM {DATABASE_USERACCOUNTS}") # # print(a)
python
import csv import os import sqlite3 import pytest import shutil from tempfile import gettempdir from openpyxl import Workbook TMP_DIR = gettempdir() ws_summary_B5_rand = [ 'Cookfield, Rebuild', 'Smithson Glenn Park Editing', 'Brinkles Bypass Havensmere', 'Folicles On Fire Ltd Extradition', 'Puddlestein Havelock Underpass', ] ws_summary_B8_rand = [ 'Aerobics, Maritime and Commerce', 'TSAD', 'Special Transport Needs for the Northern Populace', 'Parenting, Levels and Financial Irregularity', 'HR', ] ws_finance_C6_rand = [ 'Green', 'Amber/Green', 'Amber', 'Amber/Red', 'Red', ] ws_finance_C11_rand = [ '02-2-2011', '02-2-2011', '02-2-2011', '02-2-2011', '02-2-2011', '02-2-2011', ] ws_finance_B19_rand = [ '2012', '2013', '2011', '2018', '2002', '2007', ] ws_finance_C18_rand = [ 'Real', 'Nominal', ] ws_finance_C36_rand = [ '2.00', '4.20', '1.13', '12.09', '222.07', ] ws_finance_C44_rand = [ '12.00', '41.20', '13.13', '122.09', '22.07', ] ws_finance_C77_rand = [ '29.00', '49.23', '23.43', '1.89', '290.37', ] ws_resources_C7_rand = [ '9.00', '19.00', '29.5', '12.00', '20.5', ] ws_resources_G17_rand = [ '9.90', '19.22', '29.93', '1202.89', '20.37', ] ws_resources_I30_rand = [ 'Green', 'Amber/Green', 'Amber', 'Amber/Red', 'Red', ] ws_resources_J30_rand = [ 'Green', 'Amber/Green', 'Amber', 'Amber/Red', 'Red', ] ws_resources_J38_rand = [ 'Green', 'Amber/Green', 'Amber', 'Amber/Red', 'Red', ] ws_approval_C10_rand = [ '02-2-2011', '02-2-2011', '02-2-2011', '02-2-2011', '02-2-2011', ] ws_approval_F19_rand = [ 'A load of absolute\n horseradish.', 'When people speak of these kind of things, they are often surprised.', 'It is very bad here. Completely unacceptable when you think about it.', 'Never worry too much about it - it wont last forever', 'There is a forester on this project who is disrupting everything.' ] ws_approval_B39_rand = [ '02-2-2011', '02-2-2011', '02-2-2011', '02-2-2011', '02-2-2011', ] ws_assurance_C4_rand = [ '02-2-2011', '02-2-2011', '02-2-2011', '02-2-2011', '02-2-2011', '02-2-2011', ] ws_assurance_D10_rand = [ '02-2-2011', '02-2-2011', '02-2-2011', '02-2-2011', '02-2-2011', ] ws_resources_E17_rand = [ 'Green', 'Amber/Green', 'Amber', 'Amber/Red', 'Red', ] dm_data = [ ('Project/Programme Name', 'Summary', 'A5', 'GMPP Sheet', 'A15', None), ('SRO Name', 'Summary', 'B5', 'GMPP Sheet', 'B15', None), ('SRO Age', 'Summary', 'C5', 'GMPP Sheet', 'C15', None), ('Top 37', 'Summary', 'I5', 'GMPP Sheet', 'C29', None), ('DfT Business Plan', 'Summary', 'I6', 'GMPP Sheet', 'C30', None), ('DFT ID Number', 'Summary', 'B6', 'GMPP Sheet', 'C31', None), ('Working Contact Name', 'Summary', 'H8', 'GMPP Sheet', 'C32', None), ('Working Contact Telephone', 'Summary', 'H9', 'GMPP Sheet', 'C33', None), ('Working Contact Email', 'Summary', 'H10', 'GMPP Sheet', 'C34', None), ('DfT Group', 'Summary', 'B8', 'GMPP Sheet', 'C35', None), ('DfT Division', 'Summary', 'B9', 'GMPP Sheet', 'C36', None), ('Agency or delivery partner (GMPP - Delivery Organisation primary)', 'Summary', 'B10', 'GMPP Sheet', 'C37', None), ] return_data = [ (1, 1, 1, "P1 Q1 DM1"), (1, 1, 2, "P1 Q1 DM2"), (1, 1, 3, "P1 Q1 DM3"), (1, 1, 4, "P1 Q1 DM4"), (1, 1, 5, "P1 Q1 DM5"), (1, 1, 6, "P1 Q1 DM6"), (1, 1, 7, "P1 Q1 DM7"), (1, 1, 8, "P1 Q1 DM8"), (1, 1, 9, "P1 Q1 DM9"), (1, 1, 10, "P1 Q1 DM10"), (1, 1, 11, "P1 Q1 DM11"), (1, 1, 12, "P1 Q1 DM12"), (2, 1, 1, "P2 Q1 DM1"), (2, 1, 2, "P2 Q1 DM2"), (2, 1, 3, "P2 Q1 DM3"), (2, 1, 4, "P2 Q1 DM4"), (2, 1, 5, "P2 Q1 DM5"), (2, 1, 6, "P2 Q1 DM6"), (2, 1, 7, "P2 Q1 DM7"), (2, 1, 8, "P2 Q1 DM8"), (2, 1, 9, "P2 Q1 DM9"), (2, 1, 10, "P2 Q1 DM10"), (2, 1, 11, "P2 Q1 DM11"), (2, 1, 12, "P2 Q1 DM12"), (1, 2, 1, "P1 Q2 DM1"), (1, 2, 2, "P1 Q2 DM2"), (1, 2, 3, "P1 Q2 DM3"), (1, 2, 4, "P1 Q2 DM4"), (1, 2, 5, "P1 Q2 DM5"), (1, 2, 6, "P1 Q2 DM6"), (1, 2, 7, "P1 Q2 DM7"), (1, 2, 8, "P1 Q2 DM8"), (1, 2, 9, "P1 Q2 DM9"), (1, 2, 10, "P1 Q2 DM10"), (1, 2, 11, "P1 Q2 DM11"), (1, 2, 12, "P1 Q2 DM12"), (2, 2, 1, "P2 Q2 DM1"), (2, 2, 2, "P2 Q2 DM2"), (2, 2, 3, "P2 Q2 DM3"), (2, 2, 4, "P2 Q2 DM4"), (2, 2, 5, "P2 Q2 DM5"), (2, 2, 6, "P2 Q2 DM6"), (2, 2, 7, "P2 Q2 DM7"), (2, 2, 8, "P2 Q2 DM8"), (2, 2, 9, "P2 Q2 DM9"), (2, 2, 10, "P2 Q2 DM10"), (2, 2, 11, "P2 Q2 DM11"), (2, 2, 12, "P2 Q2 DM12"), ] @pytest.fixture def sqlite3_db_file(): db_file = os.path.join(TMP_DIR, "test.db") conn = sqlite3.connect(db_file) c = conn.cursor() c.execute("DROP TABLE IF EXISTS projects") c.execute("DROP TABLE IF EXISTS datamap_items") c.execute("DROP TABLE IF EXISTS returns") c.execute("DROP TABLE IF EXISTS portfolios") c.execute("DROP TABLE IF EXISTS series") c.execute("DROP TABLE IF EXISTS series_items") c.execute("DROP TABLE IF EXISTS retained_source_files") c.execute("""CREATE TABLE projects (id integer PRIMARY KEY, name text, portfolio id)""") c.execute("""CREATE TABLE datamap_items (id integer PRIMARY KEY, key text, bicc_sheet text, bicc_cellref text, gmpp_sheet text, gmpp_cellref text, bicc_ver_form text )""" ) c.execute("""CREATE TABLE returns (id integer PRIMARY KEY, project_id integer, series_item_id integer, datamap_item_id integer, value text, FOREIGN KEY (project_id) REFERENCES projects(id), FOREIGN KEY (series_item_id) REFERENCES series_items(id), FOREIGN KEY (datamap_item_id) REFERENCES datamap_items(id) )""") c.execute("""CREATE TABLE portfolios (id integer PRIMARY KEY, name text)""" ) c.execute("""CREATE TABLE series (id integer PRIMARY KEY, name text)""" ) c.execute("""CREATE TABLE series_items (id integer PRIMARY KEY, name text, start_date text, end_date text, series_id integer, FOREIGN KEY (series_id) REFERENCES series(id) )""") c.execute("""CREATE TABLE retained_source_files (id integer PRIMARY KEY, project_id integer, portfolio_id integer, series_item_id integer, uuid text, FOREIGN KEY (project_id) REFERENCES projects(id), FOREIGN KEY (portfolio_id) REFERENCES portfolios(id), FOREIGN KEY (series_item_id) REFERENCES series_items(id) )""") c.execute("INSERT INTO portfolios (name) VALUES('Tier 1 Projects')") c.execute("INSERT INTO series (name) VALUES('Financial Quarters')") c.execute("""INSERT INTO series_items (name, start_date, end_date, series_id) VALUES('Q1 2013/14', '2013-04-01', '2013-06-30', 1 )""") c.execute("""INSERT INTO series_items (name, start_date, end_date, series_id) VALUES('Q2 2013/14', '2013-04-01', '2013-06-30', 1 )""") c.execute("""INSERT INTO series_items (name, start_date, end_date, series_id) VALUES('Q3 2013/14', '2013-04-01', '2013-06-30', 1 )""") c.execute("""INSERT INTO series_items (name, start_date, end_date, series_id) VALUES('Q5 2013/14', '2013-04-01', '2013-06-30', 1 )""") c.execute("INSERT INTO projects (name, portfolio) VALUES('Project 1', 1)") c.execute("INSERT INTO projects (name, portfolio) VALUES('Project 2', 1)") c.execute("INSERT INTO projects (name, portfolio) VALUES('Project 3', 1)") # c.execute("""INSERT INTO retained_source_files (portfolio_id, project_id, series_item_id) # VALUES(1, 1, 1)""") c.executemany( ("INSERT INTO datamap_items (key, bicc_sheet, " "bicc_cellref, gmpp_sheet, gmpp_cellref, bicc_ver_form) VALUES" "(?, ?, ?, ?, ?, ?)"), dm_data) c.executemany( ("INSERT INTO returns (project_id, series_item_id, datamap_item_id, value)" " VALUES (?, ?, ?, ?)"), return_data) conn.commit() c.close() conn.close() return db_file # os.unlink(os.path.join(TMP_DIR, 'test.db') @pytest.fixture def test_blank_xls(): wb = Workbook() wb.create_sheet('Summary') wb.create_sheet('Finance & Benefits') wb.create_sheet('Approval & Project milestones') wb.create_sheet('Resources') wb.create_sheet('Assurance planning') wb.create_sheet('GMPP info') wb.save(os.path.join(TMP_DIR, 'test.xlsx')) return(os.path.join(TMP_DIR, 'test.xlsx')) @pytest.fixture def bicc_return(): wb = Workbook() wb.create_sheet('Summary') wb.create_sheet('Finance & Benefits') wb.create_sheet('Approval & Project milestones') wb.create_sheet('Resources') wb.create_sheet('Assurance planning') wb.create_sheet('GMPP info') # Summary fixture ws_summary = wb['Summary'] ws_summary['A5'].value = 'Project/Programme Name' ws_summary['B5'].value = ws_summary_B5_rand[0] ws_summary['A8'].value = 'DfT Group' ws_summary['B8'].value = ws_summary_B8_rand[0] # Finance & Benefits fixture ws_finance = wb['Finance & Benefits'] ws_finance['A6'].value = 'SRO Finance Confidence' ws_finance['C6'].value = ws_finance_C6_rand[0] ws_finance['B11'].value = 'Date of Business Case' ws_finance['C11'].value = ws_finance_C11_rand[0] ws_finance['A19'].value = 'Index Year' ws_finance['B19'].value = ws_finance_B19_rand[0] ws_finance['A18'].value = 'Real or Nominal' ws_finance['C18'].value = ws_finance_C18_rand[0] ws_finance['A36'].value = '2019/2020' ws_finance['C36'].value = ws_finance_C36_rand[0] ws_finance['A44'].value = 'Total' ws_finance['C44'].value = ws_finance_C44_rand[0] ws_finance['A77'].value = 'Total WLC (RDEL)' ws_finance['C77'].value = ws_finance_C77_rand[0] # Resources fixture ws_resources = wb['Resources'] ws_resources['A7'].value = 'SCS(PB2)' ws_resources['C7'].value = ws_resources_C7_rand[0] ws_resources['A17'].value = 'Total' ws_resources['G17'].value = ws_resources_G17_rand[0] ws_resources['A30'].value = 'Change Implementation' ws_resources['I30'].value = ws_resources_I30_rand[0] ws_resources['J30'].value = ws_resources_I30_rand[1] ws_resources['G38'].value = 'Overall Assessment' ws_resources['J38'].value = ws_resources_J38_rand[0] # Approval and Project Milestones fixture ws_approvals = wb['Approval & Project milestones'] ws_approvals['A10'].value = 'SOBC - HMT Approval' ws_approvals['C10'].value = ws_approval_C10_rand[0] ws_approvals['A19'].value = 'FBC - HMT Approval' ws_approvals['F19'].value = ws_approval_F19_rand[0] ws_approvals['A39'].value = 'Completion of Construction' ws_approvals['B39'].value = ws_approval_B39_rand[0] # Assurance fixture ws_assurance = wb['Assurance planning'] ws_assurance['B4'].value = 'Date Created' ws_assurance['C4'].value = ws_assurance_C4_rand[0] ws_assurance['A10'].value = 'Gate 0 (Programme)' ws_assurance['D10'].value = ws_assurance_D10_rand[0] ws_assurance['A17'].value = 'Review Point 4 MPRG' ws_assurance['E17'].value = 'Amber/Green' wb.save(os.path.join(TMP_DIR, 'test-bicc-return.xlsx')) yield os.path.join(TMP_DIR, 'test-bicc-return.xlsx') os.unlink(os.path.join(TMP_DIR, 'test-bicc-return.xlsx')) @pytest.fixture def mock_datamap_source_file(): data = [ [ 'Project/Programme Name', 'Summary', 'B5', 'red', 'white', '', 'Yes/No' ], ['SRO Sign-Off', 'Summary', 'B49', 'red', 'white', '', 'Yes/No'], ['GMPP - FD Sign-Off', 'Summary'], ['GMPP - Person completing this return'], ['GMPP - Single Point of Contact Email Address'], ['GMPP - Single Point of Contact (SPOC)'], ['GMPP - Email Address'], [ 'Reporting period (GMPP - Snapshot Date)', 'Summary', 'G3', 'red', 'white', '', 'Yes/No' ], ['Quarter Joined', 'Summary', 'I3', 'red', 'white', '', 'Yes/No'], ['GMPP - Sub-portfolio'], [ 'Index Year', 'Finance & Benefits', 'B19', 'red', 'white', '', 'Yes/No' ], [ 'Real or Nominal - Baseline', 'Finance & Benefits', 'C18', 'red', 'white', '', 'Yes/No' ], ['GMPP/quarter formally joined'], [ 'GMPP (GMPP – formally joined GMPP)', 'Summary', 'G5', 'red', 'white', '', 'Yes/No' ], ['IUK top 40', 'Summary', 'G6', 'red', 'white', '', 'Yes/No'], ['Top 37', 'Summary', 'I5', 'red', 'white', '', 'Yes/No'], ['DfT Business Plan', 'Summary', 'I6', 'red', 'white', '', 'Yes/No'], [ 'GMPP - IPA ID Number', 'Summary', 'C6', 'red', 'white', '', 'Yes/No' ], ['DFT ID Number', 'Summary', 'B6', 'red', 'white', '', 'Yes/No'], [ 'Working Contact Name', 'Summary', 'H8', 'red', 'white', '', 'Yes/No' ], ['Working Contact Telephone', 'Summary', 'H9', 'red', '', ''], [ 'Working Contact Email', 'Summary', 'H10', 'red', 'white', '', 'Yes/No' ], ['DfT Group', 'Summary', 'B8', 'red', 'yellow', '', 'DfT Group'], [ 'Significant Steel Requirement', 'Finance & Benefits', 'D15', 'blue', 'yello', '', 'Yes/No' ], [ 'SRO Finance confidence', 'Finance & Benefits', 'C6', 'green', 'red', '', 'RAG_Short' ], [ 'BICC approval point', 'Finance & Benefits', 'E9', 'orange', 'red', '', 'Business Cases' ], [ 'Assurance MM2 Latest Approved Baseline', 'Assurance planning', 'C10', 'red', 'white', '', 'Yes/No' ], [ 'Approval MM11 Notes', 'Approval & Project milestones', 'F19', 'red', 'yellow', '', 'Yes/No' ], [ 'SCS PB2 No public sector', 'Resources', 'C7', 'red', 'white', '', 'Yes/No' ], [ 'Project MM31 Original Baseline', 'Approval & Project milestones', 'B39', 'red', 'white', 'd/mm/yy', 'Yes/No' ], [ 'Change Implementation - Now', 'Resources', 'I30', 'black', 'yellow', 'd/mm/yy', 'Capability RAG' ] ] with open(os.path.join(TMP_DIR, 'mock_datamap.csv'), 'w') as f: datamap_writer = csv.writer(f, delimiter=',') f.write('cell_key,template_sheet,cell_reference,bg_colour,fg_colour' ',number_format,verification_list\n') for item in data: datamap_writer.writerow(item) yield os.path.join(TMP_DIR, 'mock_datamap.csv') os.unlink(os.path.join(TMP_DIR, 'mock_datamap.csv')) def mock_blank_xlsx_file(source_dir: str, empty: bool=False, mix: bool=False) -> None: wb = Workbook() wb.create_sheet('Test') # Test sheet fixtures ws_summary = wb['Test'] ws_summary['A5'].value = 'Project/Programme Name' ws_summary['B5'].value = ws_summary_B5_rand[0] ws_summary['A8'].value = 'DfT Group' ws_summary['B8'].value = ws_summary_B8_rand[0] try: os.mkdir(source_dir) wb.save(os.path.join(os.path.abspath(source_dir), 'test-blank.xlsx')) if mix: # we want to throw another file type in there with open(source_dir + '/' + 'baws.txt', 'w') as f: f.write("Some random bollocks") if empty: # we want the dir but no files in it for test_file in os.path.abspath(source_dir): os.unlink(os.path.abspath(source_dir).join(test_file)) except: shutil.rmtree(source_dir) os.mkdir(source_dir) wb.save(os.path.join(os.path.abspath(source_dir), 'test-blank.xlsx')) if mix: with open(source_dir + '/' + 'baws.txt', 'w') as f: f.write("Some random bollocks") if empty: for test_file in os.listdir(os.path.abspath(source_dir)): os.unlink(os.path.join(os.path.abspath(source_dir), test_file))
python
from . import * class TestDefaults(BrokerTestCase): def test_basic_submit(self): f = self.queue.submit_ex(name=self.id() + '.0', pattern=None) self.assertTrue(f.id) self.assertEqual(self.broker.fetch(f.id)['status'], 'pending') self.assertEqual(self.broker.fetch(f.id)['priority'], 1000) def test_manual_child_submit_by_id(self): cf = self.queue.submit_ex(name=self.id() + '.0', pattern=None) pf = self.queue.submit_ex(name=self.id() + '.1', pattern=None, dependencies=[cf.id]) self.assertTrue(pf.id > cf.id) def test_manual_child_submit_by_future(self): cf = self.queue.submit_ex(name=self.id() + '.0', pattern=None) pf = self.queue.submit_ex(name=self.id() + '.1', pattern=None, dependencies=[cf]) self.assertIs(cf, list(pf.iter())[1]) self.assertTrue(pf.id > cf.id) def test_auto_child_submit(self): f = self.queue.submit_ex(name=self.id() + '.0', pattern=None, dependencies=[{ 'name': self.id() + '.1', 'pattern': None, }]) self.assertTrue(f.id > list(f.iter())[1].id, 1)
python
from django.db import models class Job(models.Model): """Class describing a computational job""" # currently, available types of job are: TYPES = ( ("fibonacci", "fibonacci"), ("power", "power") ) STATUSES = ( ("pending", "pending"), ("started", "started"), ("finished", "finished"), ("failed", "failed"), ) type = models.CharField(choices=TYPES, max_length=20) status = models.CharField(choices=STATUSES, max_length=20) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) argument = models.PositiveIntegerField() result = models.IntergerField(null=True) def save(self, *args, **kwargs): """Save model and if job is in pending state, schedule it""" if self.status == "pending": from .tasks import TASK_MAPPING task = TASK_MAPPING[self.type] task.delay(job_id=self.id, n=self.argument)
python
from pathlib import Path from math import inf def get_image_layers(raw_data, width, height): digits = map(int, raw_data.strip()) layers = list() curr_layer = list() layer_size = width * height for digit in digits: curr_layer.append(digit) if len(curr_layer) == layer_size: layers.append(curr_layer) curr_layer = list() return layers def layer_digit_count(layer, digit): return len(list(filter(lambda d: d == digit, layer))) def fewest_zeros(layers): index = -1 fewest = inf for l, layer in enumerate(layers): zeros = layer_digit_count(layer, 0) if zeros < fewest: fewest = zeros index = l return index def get_layer_data(layers, index): layer = layers[index] ones = layer_digit_count(layer, 1) twos = layer_digit_count(layer, 2) return ones * twos def display_image(layers, width, height): layer_size = width * height pixels = [list() for ls in range(layer_size)] for layer in layers: for d, digit in enumerate(layer): if digit != 2: pixels[d].append(digit) image = list() pixel_row = list() for pixel in pixels: pixel_row.append(" " if pixel[0] == 0 else "@") if len(pixel_row) == width: print("".join(pixel_row)) pixel_row = list() if __name__ == "__main__": dsn_data = Path("../etc/aoc8.txt").read_text() image_width = 25 image_height = 6 image_layers = get_image_layers(dsn_data, image_width, image_height) layer_index = fewest_zeros(image_layers) result1 = get_layer_data(image_layers, layer_index) print("Part 1:", result1) print("Part 2:") display_image(image_layers, image_width, image_height)
python
import matplotlib.pyplot as plt VIEW_BORDER = 0.1 plt.ion() class plotter(): def __init__(self, pos_bounds, plot_vor, plot_traj, plot_graph): self.p_bounds = pos_bounds self.plot_vor_bool = plot_vor self.plot_traj_bool = plot_traj self.plot_graph_bool = plot_graph if self.plot_vor_bool: self.fig_vor = plt.figure(figsize=(16, 16), dpi=100) self.ax_vor = self.fig_vor.add_subplot(1,1,1) self.ax_vor.axis('equal') self.ax_vor.set_xlim([self.p_bounds[0][0] - VIEW_BORDER, self.p_bounds[0][1] + VIEW_BORDER]) self.ax_vor.set_ylim([self.p_bounds[1][0] - VIEW_BORDER, self.p_bounds[1][1] + VIEW_BORDER]) self.fig_opt = plt.figure(figsize=(8,4), dpi=100) #freq selection if self.plot_graph_bool: #self.fig_graph = plt.figure(figsize=(4, 4), dpi=100) self.ax_graph = self.fig_opt.add_subplot(1,2,1) self.ax_graph.set_xlim([self.p_bounds[0][0] - VIEW_BORDER, self.p_bounds[0][1] + VIEW_BORDER]) self.ax_graph.set_ylim([self.p_bounds[1][0] - VIEW_BORDER, self.p_bounds[1][1] + VIEW_BORDER]) self.ax_graph.tick_params( axis='both', which='both', top=False, bottom=False, left=False, right=False, labeltop=False, labelbottom=False, labelleft=False, labelright=False ) #trajectories if self.plot_traj_bool: #self.fig_traj = plt.figure(figsize=(4, 4), dpi=100) self.ax_traj = self.fig_opt.add_subplot(1,2,2) self.ax_traj.set_xlim([self.p_bounds[0][0] - VIEW_BORDER, self.p_bounds[0][1] + VIEW_BORDER]) self.ax_traj.set_ylim([self.p_bounds[1][0] - VIEW_BORDER, self.p_bounds[1][1] + VIEW_BORDER]) self.ax_traj.tick_params( axis='both', which='both', top=False, bottom=False, left=False, right=False, labeltop=False, labelbottom=False, labelleft=False, labelright=False ) def plot_vor(self, drones, centroids, vor): self.fig_vor.clf() ax = self.fig_vor.gca() # Plot drone points ax.scatter([d.pos[0] for d in drones], [d.pos[1] for d in drones], marker='x', color='b') #print("initial",vor.filtered_points) # Plot ridge points #for region in vor.filtered_regions: # vertices = vor.vertices[region, :] # ax.plot(vertices[:, 0], vertices[:, 1], 'go') # Plot ridges for region in vor.filtered_regions: vertices = vor.vertices[region + [region[0]], :] ax.plot(vertices[:, 0], vertices[:, 1], linewidth=1, linestyle='-', color='k') # Plot Centroids for region in vor.filtered_regions: ax.scatter(centroids[:, 0], centroids[:, 1], marker='.', color='r') plt.show() plt.pause(0.01) def plot_traj(self, q, gt): if not self.plot_traj_bool: return #self.fig_traj.clf() #ax = self.fig_traj.gca() self.ax_traj.cla() ax = self.ax_traj # Plot drone points for k in range(len(q)): #print(q[k, :, 0], q[k, :, 1]) ax.plot(q[k, :, 0], q[k, :, 1], marker='.', ms=2, color='blue', linewidth=0.25) ax.scatter(gt[k][0], gt[k][1], marker='.',s=64, color='blue') #ax.plot(q[k, :, 0], q[k, :, 1], marker='.', ms=2, color='C%d' % (k % 8), linewidth=0.25) #ax.scatter(gt[k][0], gt[k][1], marker='.',s=64, color='C%d' % (k % 8)) ax.set_xlim([self.p_bounds[0][0] - VIEW_BORDER, self.p_bounds[0][1] + VIEW_BORDER]) ax.set_ylim([self.p_bounds[1][0] - VIEW_BORDER, self.p_bounds[1][1] + VIEW_BORDER]) #for k in range(len(gt)): # ax.scatter(gt[k]) #ax.set_aspect('equal', 'box') ax.set_xticklabels([]) ax.set_yticklabels([]) #self.ax_traj.set_xlim([self.p_bounds[0][0] - VIEW_BORDER, self.p_bounds[0][1] + VIEW_BORDER]) #self.ax_traj.set_ylim([self.p_bounds[1][0] - VIEW_BORDER, self.p_bounds[1][1] + VIEW_BORDER]) plt.show() plt.pause(0.01) #print(self.p_bounds[0][0] - VIEW_BORDER, self.p_bounds[0][1] + VIEW_BORDER, self.p_bounds[1][0] - VIEW_BORDER, self.p_bounds[1][1] + VIEW_BORDER) #print(self.ax_traj.get_ylim(), self.ax_traj.get_xlim()) #plot gt positions, graph edges, freq assignments def plot_graph(self, g, gt, freqs): if not self.plot_graph_bool: return #self.fig_graph.clf() #ax = self.fig_graph.gca() self.ax_graph.cla() ax = self.ax_graph ax.set_xlim([self.p_bounds[0][0] - VIEW_BORDER, self.p_bounds[0][1] + VIEW_BORDER]) ax.set_ylim([self.p_bounds[1][0] - VIEW_BORDER, self.p_bounds[1][1] + VIEW_BORDER]) ax.set_xticklabels([]) ax.set_yticklabels([]) #plot gt and target positions #unique_freqs = list(set(freqs)) for k in range(len(gt)): size = 64 if freqs[k] == 0.0: color = 'red' elif freqs[k] >= 5.0: color = 'gold' elif freqs[k] >= 2.4: color = 'green' else: color = 'blue' #size = 128 ax.scatter(gt[k][0], gt[k][1], marker='x', s=5, c=color) ax.scatter(g.nodes(data='p')[k][0], g.nodes(data='p')[k][1], marker='.', s=size, c=color) #''' #plot graph edges for u, v in g.edges: u_pos = g.nodes(data='p')[u] v_pos = g.nodes(data='p')[v] x_pos = [u_pos[0], v_pos[0]] y_pos = [u_pos[1], v_pos[1]] ax.plot(x_pos, y_pos, c='black', linewidth=0.25) #print(g.nodes(data='p')[u], g.nodes(data='p')[v]) #''' #TODO plot freq assignments plt.show() plt.pause(0.01)
python
# -*- coding: utf-8 -*- import json with open('data.txt', 'w') as outfile: data = {"total": 10} json.dump(data, outfile) if __name__ == "__main__": print("ok")
python
from util import traceguard from gui.toolbox import GetTextFromUser from common import profile, pref import wx def change_password(protocol, cb): val = GetTextFromUser(_('Enter a new password for {username}:'.format(username=protocol.username)), _('Change Password'), default_value = protocol.password, password = True) if val: cb(val) def remove_contact(contact, do_remove): action_allowed = getattr(do_remove, 'action_allowed', lambda c: True) if not action_allowed(contact): return yes_default = pref('prompts.defaults.contacts.del_contact', type=bool, default=True) more_flags = wx.NO_DEFAULT * (not yes_default) if wx.YES == wx.MessageBox(_('Are you sure you want to delete contact {name}?').format(name=contact.name), _('Delete Contact'), style = wx.YES_NO | more_flags): do_remove() def remove_group(group, do_remove): try: s = u'group "%s"' % group.name except: s = u'this group' yes_default = pref('prompts.defaults.contacts.del_group', type=bool, default=True) more_flags = wx.NO_DEFAULT * (not yes_default) line1 = _('WARNING!') line2 = _('All your contacts in this group will be deleted locally AND on the server.') line3 = _('Are you sure you want to remove {groupname}?').format(groupname=s) msg = u'\n\n'.join((line1, line2, line3)) if wx.YES == wx.MessageBox(msg, _('Delete Group'), style = wx.YES_NO | wx.ICON_ERROR | more_flags): do_remove() def add_group(): group = GetTextFromUser(_('Please enter a group name:'),_('Add Group')) if group is None or not group.strip(): return protos = [acct.connection for acct in profile.account_manager.connected_accounts] for proto in protos: with traceguard: proto.add_group(group) def block_buddy(buddy, do_block): yes_default = pref('prompts.defaults.contacts.block', type=bool, default=True) more_flags = wx.NO_DEFAULT * (not yes_default) if wx.YES == wx.MessageBox(_('Are you sure you want to block %s?') % buddy.name, _('Block Buddy'), style = wx.YES_NO | more_flags): do_block()
python
"""Module for dilation based pixel consensus votin For now hardcode 3x3 voting kernel and see """ from abc import ABCMeta, abstractmethod, abstractproperty import numpy as np from scipy.ndimage.measurements import center_of_mass from ..box_and_mask import get_xywh_bbox_from_binary_mask from .. import cfg class PCV_base(metaclass=ABCMeta): def __init__(self): # store the necessary modules pass @abstractproperty def num_bins(self): pass @abstractproperty def num_votes(self): pass @abstractproperty def vote_mask(self): pass @abstractproperty def query_mask(self): """ Flipped from inside out """ diam = len(self.vote_mask) radius = (diam - 1) // 2 center = (radius, radius) mask_shape = self.vote_mask.shape offset_grid = np.indices(mask_shape).transpose(1, 2, 0)[..., ::-1] offsets = center - offset_grid allegiance = self.discrete_vote_inx_from_offset( offsets.reshape(-1, 2) ).reshape(mask_shape) return allegiance @abstractmethod def centroid_from_ins_mask(self, ins_mask): mode = self.centroid_mode assert mode in ('bbox', 'cmass') if mode == 'bbox': bbox = get_xywh_bbox_from_binary_mask(ins_mask) x, y, w, h = bbox return [x + w // 2, y + h // 2] else: y, x = center_of_mass(ins_mask) x, y = int(x), int(y) return [x, y] @abstractmethod def discrete_vote_inx_from_offset(self, offset): pass @staticmethod def _discretize_offset(vote_mask, offset): """ Args: offset: [N, 2] array of offset towards each pixel's own center, Each row is filled with (x, y) pair, not (y, x)! """ shape = offset.shape assert len(shape) == 2 and shape[1] == 2 offset = offset[:, ::-1] # swap to (y, x) for indexing diam = len(vote_mask) radius = (diam - 1) // 2 center = (radius, radius) coord = offset + center del offset ret = -1 * np.ones(len(coord), dtype=np.int32) valid_inds = np.where( (coord[:, 0] >= 0) & (coord[:, 0] < diam) & (coord[:, 1] >= 0) & (coord[:, 1] < diam) )[0] _y_inds, _x_inds = coord[valid_inds].T vals = vote_mask[_y_inds, _x_inds] ret[valid_inds] = vals return ret @abstractmethod def mask_from_sem_vote_tsr(self, dset_meta, sem_pred, vote_pred): pass
python
# coding: utf-8 """ Command Line Interface """ import sys import click from chipheures_sos import __version__ from chipheures_sos.app import App @click.group() @click.version_option(__version__) @click.option("--debug/--no-debug", default=False) @click.pass_context def cli(ctx, debug): """ Tool for database maintenance of the Chip'heures web application. \f :param ctx: :param debug: debug flag """ ctx.ensure_object(App) ctx.obj.debug = debug @cli.command(name="list") @click.argument("database", metavar="DB") @click.pass_context def list_tables(ctx, database): """ List the database tables and show record counts. \b DB path to the SQlite database to read. \f :param ctx: :param database: path to the database """ #: :type app: chipheures_sos.app.App app = ctx.obj app.list_tables(database) @cli.command(name="backup") @click.argument("database", metavar="DB") @click.pass_context def backup_database(ctx, database): """ Backup the database \b DB path to the SQlite database to read. \f :param ctx: :param database: path to the database """ #: :type app: chipheures_sos.app.App app = ctx.obj app.backup_database(database) @cli.command(name="list_orders") @click.argument("database", metavar="DB") @click.option( "--closed/--not-closed", default=None, help=u"Display only closed/not closed orders", show_default=True, ) @click.pass_context def list_orders(ctx, database, closed): """ List the orders and show the close date. \b DB path to the SQlite database to read. \f :param ctx: :param database: path to the database """ #: :type app: chipheures_sos.app.App app = ctx.obj app.list_orders(database, closed) @cli.command(name="close_orders") @click.argument("database", metavar="DB") @click.option( "-d", "--date", "max_date", type=click.DateTime(["%Y-%m-%d"]), default=None, help=u"Close orders which are older than this date, if missing the date is detected by examining the tracked times", ) @click.option( "--dry-run/--run", default=True, help=u"Dry run", show_default=True, ) @click.option( "--period", "period_days", type=click.IntRange(1, 3650), default=365 // 2, help=u"Period (in days) from which we can consider an order is old", show_default=True, metavar="PERIOD", ) @click.pass_context def close_orders(ctx, database, max_date, dry_run, period_days): """ Close the "old" orders. \b DB path to the SQlite database to read. \f :param ctx: :param database: path to the database :param max_date: maximum date use to close an order (UTC time). :param dry_run: If ``True``, only show action, don't run it (database is preserved). :param period_days: Period (in days) from which we can consider an order is old """ #: :type app: chipheures_sos.app.App app = ctx.obj app.dry_run = dry_run app.close_orders(database, max_date, period_days) if __name__ == "__main__": cli(sys.argv[1:])
python
from unittest import TestCase from osbot_k8s.utils.Docker_Desktop_Cluster import DEFAULT_DOCKER_DESKTOP_NAME from osbot_utils.utils.Misc import list_set from osbot_utils.utils.Dev import pprint from osbot_k8s.kubectl.Kubectl import Kubectl class test_Kubectl(TestCase): def setUp(self) -> None: self.kubectl = Kubectl() def test_kubectl_exec(self): assert self.kubectl.kubectl_exec().startswith('kubectl controls the Kubernetes cluster manager.\n') def test_kubectl_exec_raw(self): result = self.kubectl.kubectl_exec_raw() assert result.get('stdout').startswith('kubectl controls the Kubernetes cluster manager.\n') del result['stdout'] assert result == { 'cwd' : '.' , 'error' : None , 'kwargs' : {'cwd': '.', 'stderr': -1, 'stdout': -1, 'timeout': None}, 'runParams' : ['kubectl'] , 'status' : 'ok' , 'stderr' : '' } # config methods def test_clusters(self): clusters = self.kubectl.clusters() assert DEFAULT_DOCKER_DESKTOP_NAME in clusters assert list_set(clusters.get(DEFAULT_DOCKER_DESKTOP_NAME)) == ['certificate-authority-data', 'server'] def test_config(self): result = self.kubectl.config() assert list_set(result) == ['apiVersion', 'clusters', 'contexts', 'current-context', 'kind', 'preferences', 'users'] pprint(result) def test_context_set_current(self): assert self.kubectl.context_set_current('aaa') == 'error: no context exists with the name: "aaa"\n' assert self.kubectl.context_set_current(DEFAULT_DOCKER_DESKTOP_NAME) == f'Switched to context "{DEFAULT_DOCKER_DESKTOP_NAME}".\n' assert self.kubectl.context_current() == DEFAULT_DOCKER_DESKTOP_NAME def test_contexts(self): contexts = self.kubectl.contexts() assert DEFAULT_DOCKER_DESKTOP_NAME in contexts assert list_set(contexts.get(DEFAULT_DOCKER_DESKTOP_NAME)) == ['client-certificate-data', 'client-key-data'] def test_contexts(self): contexts = self.kubectl.contexts() assert DEFAULT_DOCKER_DESKTOP_NAME in contexts assert list_set(contexts.get(DEFAULT_DOCKER_DESKTOP_NAME)) == ['cluster', 'user'] def test_users(self): users = self.kubectl.users() assert DEFAULT_DOCKER_DESKTOP_NAME in users assert list_set(users.get(DEFAULT_DOCKER_DESKTOP_NAME)) == ['client-certificate-data', 'client-key-data'] # kubectl functions def test_deployments(self): result = self.kubectl.deployments() pprint(result)
python
import queue from pynput.keyboard import Events, Key, Controller, Listener from random import choice from json import load thread_comms = queue.Queue() kb = Controller() class KeyboardEvents(Events): _Listener = Listener class Press(Events.Event): # key press event def __init__(self, key): self.key = str(key).strip("'") # converting the key pressed to string and removing the '' def __init__(self): # returning the key pressed super(Events, self).__init__(on_press=self.Press) def replace_letter(mode, exception, window_name): with KeyboardEvents() as events, open("replace letters.json", "r", encoding="utf8") as replace_json: replace_dict = load(replace_json)[mode] # load a json object with the parameter mode, which is received from # the dropdown selected value for event in events: try: message = thread_comms.get_nowait() # this will receive the messages sent from the GUI if message == "Stop": break # break out of the loop if "Stop" is received from the GUI except queue.Empty: # get_nowait() will get exception when Queue is empty message = None if event.key in exception: # continue if the user-written key is in the exception input box continue if event.key in replace_dict: kb.press(Key.backspace) # deleted the user-written key kb.press(choice(replace_dict[event.key])) # replaces the key with another if event.key == "Key.esc": window_name["__STATUS__"].update("Status: Stopped") break # stop listening if ESC is pressed and update the GUI status to "Stopped"
python
import scipy import numpy as np import matplotlib.pyplot as plt from astropy.io import fits class DataLoader(): def __init__(self, dataset_name, img_res=(101, 101), norm=False): self.dataset_name = dataset_name self.img_res = img_res self.data = np.loadtxt("network/networkFrame.csv", delimiter=',', dtype=str) self.norm = norm def load_data(self, batch_size=1, is_testing=False): batch_images = np.random.choice(self.data.shape[0], size=batch_size) imgs_A = [] imgs_B = [] for img_path in batch_images: img_A, img_B = self.imread(self.data[img_path]) # If training => do random flip if not is_testing and np.random.random() < 0.5: img_A = np.fliplr(img_A) img_B = np.fliplr(img_B) if not is_testing and np.random.random() > 0.5: img_A = np.flipud(img_A) img_B = np.flipud(img_B) imgs_A.append(img_A) imgs_B.append(img_B) imgs_A = np.asarray(imgs_A) imgs_B = np.asarray(imgs_B) return imgs_A, imgs_B def load_batch(self, batch_size=1, is_testing=False): self.n_batches = int(len(self.data) / batch_size) for i in range(self.n_batches - 1): batch = self.data[i * batch_size:(i + 1) * batch_size] imgs_A, imgs_B = [], [] for img in batch: # Need to load in 5 channels here for the data img_A, img_B = self.imread(img) if not is_testing and np.random.random() > 0.5: img_A = np.fliplr(img_A) img_B = np.fliplr(img_B) if not is_testing and np.random.random() < 0.5: img_A = np.flipud(img_A) img_B = np.flipud(img_B) imgs_A.append(img_A) imgs_B.append(img_B) imgs_A = np.asarray(imgs_A) imgs_B = np.asarray(imgs_B) yield imgs_A, imgs_B def imread(self, path): sim_img = [] source_img = [] for element in path[1:]: if "sci" in element: if "sim" in element: img = fits.getdata(element, ext=0) center = (int(img.shape[0] / 2), int(img.shape[1] / 2)) img = img[center[0] - 32:center[0] + 32, center[1] - 32:center[1] + 32] sim_img.append(img) elif "source" in element: img = fits.getdata(element, ext=0) center = (int(img.shape[0] / 2), int(img.shape[1] / 2)) img = img[center[0] - 32:center[0] + 32, center[1] - 32:center[1] + 32] source_img.append(img) sim_img = np.asarray(sim_img).T source_img = np.asarray(source_img).T if self.norm: sim_img = 2 * (sim_img - np.min(sim_img)) / (np.max(sim_img) - np.min(sim_img)) - 1. source_img = 2 * (source_img - np.min(source_img)) / (np.max(source_img) - np.min(source_img)) - 1. return sim_img, source_img def load_redshifts(self, path): sim_img = [] sim_redshift = [] for element in path[1:]: if "sci" in element: if "sim" in element: img = fits.getdata(element, ext=0) center = (int(img.shape[0] / 2), int(img.shape[1] / 2)) img = img[center[0] - 32:center[0] + 32, center[1] - 32:center[1] + 32] sim_img.append(img) sim_img = np.asarray(sim_img).T if self.norm: sim_img = 2 * (sim_img - np.min(sim_img)) / (np.max(sim_img) - np.min(sim_img)) - 1. return sim_img, sim_redshift
python
from django.db.models.signals import post_save from django.dispatch import receiver from .models import Profile from .models import StudentUser from rest_framework.authtoken.models import Token @receiver(post_save, sender=StudentUser) def post_save_create_profile(sender,instance,created,**kwargs): if created: Profile.objects.create(user=instance)
python
import json class Operators(): @staticmethod def initFactory(): import planout.ops.core as core import planout.ops.random as random Operators.operators = { "literal": core.Literal, "get": core.Get, "seq": core.Seq, "set": core.Set, "index": core.Index, "array": core.Array, "equals": core.Equals, "cond": core.Cond, "and": core.And, "or": core.Or, ">": core.GreaterThan, "<": core.LessThan, ">=": core.GreaterThanOrEqualTo, "<=": core.LessThanOrEqualTo, "%": core.Mod, "/": core.Divide, "not": core.Not, "negative": core.Negative, "min": core.Min, "max": core.Max, "length": core.Length, "product": core.Product, "sum": core.Sum, "randomFloat": random.RandomFloat, "randomInteger": random.RandomInteger, "bernoulliTrial": random.BernoulliTrial, "bernoulliFilter": random.BernoulliFilter, "uniformChoice": random.UniformChoice, "weightedChoice": random.WeightedChoice, "sample": random.Sample } @staticmethod def enable_overrides(): import core Operators.operators['set'] = core.SetOverride @staticmethod def isOperator(op): return \ type(op) is dict and "op" in op and op["op"] in Operators.operators @staticmethod def operatorInstance(params): return Operators.operators[params['op']](**params) @staticmethod def validateOperator(params): if type(params) is dict and 'op' in params: if params['op'] in Operators.operators: return Operators.operatorInstance(params)._validate() else: # this should probably throw an exception print 'invalid operator %s' % params['op'] return False else: return True # literals are always valid @staticmethod def prettyParamFormat(params): ps = [p+'='+Operators.pretty(params[p]) for p in params if p != 'op'] return ', '.join(ps) @staticmethod def pretty(params): if Operators.isOperator(params): try: # if an op is invalid, we may not be able to pretty print it my_pretty = Operators.operatorInstance(params).pretty() except: my_pretty = params return my_pretty elif type(params) is list: return '[%s]' % ', '.join([Operators.pretty(p) for p in params]) else: return json.dumps(params)
python
import nltk from models import * import torch from tokenization import * import time from torchtext.data.metrics import bleu_score from nltk.translate.bleu_score import sentence_bleu from nltk.translate.bleu_score import corpus_bleu from nltk.translate.meteor_score import meteor_score import sys device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def splt_dataset(ids,captions): """ video_path="YouTubeClips" video_time_path = open("video_id.txt", "w+") file_names = [] # List which will store all of the full filepaths. for root, directories, files in os.walk(video_path): for filename in files: file = os.path.basename(filename).split('.', 1)[0] file_names.append(file) # Add it to the list. video_time_path.write(file + "\n") video_time_path.close() """ fl = 'video_id.txt' fileObj = open(fl, "r") # opens the file in read mode file_names = fileObj.read().splitlines() a=int(len(file_names)*0.70) b=int(len(file_names) * 0.20) train_captions=[] train_id=[] test_captions=[] test_id=[] val_captions=[] val_id=[] for i,cap in enumerate(file_names): for j,idd in enumerate(ids): if (idd == cap): if i <= a: train_captions.append(captions[j]) #TRAIN train_id.append(idd) elif i>a and i<=(a+b): #print(i) test_captions.append(captions[j]) #TEST test_id.append(idd) else: #print(i) val_captions.append(captions[j]) #VALIDATION val_id.append(idd) return train_captions,train_id,test_captions,test_id,val_captions,val_id file_path="video_captioning_normalized.json" with open(file_path) as f: annotations = json.load(f) captions = [] ids=[] for annotation in tqdm(annotations): caption=annotation ['caption'] id=annotation ['id'] captions.append(caption) ids.append(id) train_captions,train_id,test_captions,test_id,val_captions,val_id=splt_dataset(ids,captions) import csv with open('results/validation.csv', mode='w') as new_file: new_writer = csv.writer(new_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) new_writer.writerow(['id','caption']) for z,cap in zip(val_id,val_captions): new_writer.writerow((z,cap)) i=0 #print(test_id) """ while test_id[i]==test_id[i+1]: #print(i) test_id.pop(i+1) if i==len(test_id)-1: break if test_id[i]!=test_id[i+1]: i=i+1 """ tst_caption=[] ref_captions = [] referance_caption=[] for z in test_captions: tst_caption.append(z) #print(tst_caption) tst_caption = tst_caption[0].split() for i, k in enumerate(tst_caption): if k == 'eos': continue elif k == 'bos': continue else: ref_captions.append(k) referance_caption.append(ref_captions) ref_captions=[] tst_caption=[] #string = ' '.join(ref_captions) #ref_captions.append(string) #print(referance_caption) batch_size=64 hidden_size = 256 def generate_caption(encoder,decoder, video_frames,prediction, max_len=20): voc = Voc() voc.load_vocabulary() encoder_hidden = torch.zeros(6, 1, hidden_size).to(device) input_length = video_frames.size(1) with torch.no_grad(): #for i in range(batch_size-1): #for n, index in enumerate(test_id): #batch_index = n % batch_size for ei in range(input_length): encoder_output, encoder_hidden = encoder.forward( (video_frames[0,ei,:].unsqueeze(0)).unsqueeze(0), encoder_hidden) decoder_hidden = encoder_hidden input_token=torch.ones(1,1).type(torch.LongTensor).to(device) captions=[] caption = "" for seq in range(max_len): #input_token = torch.ones(1,1).type(torch.LongTensor).to(device) #input_token = input_token.unsqueeze(0) with torch.no_grad(): decoder_output, decoder_hidden = decoder(input_token, decoder_hidden) decoder_output = decoder_output.argmax(dim=1) caption += voc.index2word[str(int(decoder_output))] + " " input_token = decoder_output.unsqueeze(0) captions.append(caption) captions = captions[0].split() generated_captions=[] for i,k in enumerate(captions): if k=='eos': continue elif k =='pad': continue else: generated_captions.append(k) string = ' '.join(generated_captions[:]) #print(f'predicted caption: {string}') #print(generated_captions) prediction.write(string + "\n") #generated_caption.write(caption + "\n") return generated_captions def test(): print_test_loss_total = 0 # Reset every print_every plot_test_loss_total = 0 # Reset every plot_every criterion = nn.NLLLoss() video_frames = torch.zeros(1, 8, 4032).to(device) #target_tensor = torch.zeros(batch_size, train_tokens.shape[1]).to(device) trgs = [] pred_trgs = [] reference=[] print_bleu_1_total = 0 print_bleu_2_total = 0 print_bleu_3_total = 0 print_bleu_4_total = 0 #for iters in tqdm(range(1, n_iters + 1)): import csv #with open('results/nasnet_epoch_blue_scores.csv', mode='w') as new_file: # new_writer = csv.writer(new_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) # new_writer.writerow(['Iteration', 'BLEU-1', 'BLEU-2','BLEU-3','BLEU-4']) for iters in tqdm(range(1, n_iters + 1)): encoder = torch.load('model_nasnet_6_layer/%s_epoch_encoder.pth' % (iters)) decoder = torch.load('model_nasnet_6_layer/%s_epoch_decoder.pth' % (iters)) prediction = open("predict_nasnet_6_layer/prediction_%s.txt"% (iters), "w+") #encoder = torch.load('model_incep_3_layer/15_epoch_encoder.pth') #decoder = torch.load('model_incep_3_layer/15_epoch_decoder.pth') #encoder = torch.load('best_encoder.pth' ) #decoder = torch.load('best_decoder.pth' ) encoder.train() decoder.train() encoder.eval() decoder.eval() #import csv # with open('results/nasnet_blue_scores.csv', mode='w') as new_file: # new_writer = csv.writer(new_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) # new_writer.writerow(['Iteration', 'BLEU-1', 'BLEU-2','BLEU-3','BLEU-4']) count=0 for n, index in enumerate(test_id): if n==0: reference.append(referance_caption[n]) elif index == test_id[n-1]: reference.append(referance_caption[n]) else: reference=[] reference.append(referance_caption[n]) if n==len(test_id)-1: #print(index) #print(reference) video_frames[0] = torch.load('nasnet_feature_new/' + index + '.pt') # encoder input pred_test = generate_caption(encoder=encoder, decoder=decoder, video_frames=video_frames,prediction=prediction) count += 1 weights = (1, 0, 0, 0) bleu_1 = sentence_bleu(reference, pred_test, weights) weights = (0.5, 0.5, 0, 0) bleu_2 = sentence_bleu(reference, pred_test, weights) weights = (0.3, 0.3, 0.3, 0) bleu_3 = sentence_bleu(reference, pred_test, weights) weights = (0.25, 0.25, 0.25, 0.25) bleu_4 = sentence_bleu(reference, pred_test, weights) #print(f"iteration:{count}") #print(f"BLEU-1: {bleu_1}") #print(f"BLEU-2: {bleu_2}") #print(f"BLEU-3: {bleu_3}") #print(f"BLEU-4: {bleu_4}") print_bleu_1_total += bleu_1 print_bleu_2_total += bleu_2 print_bleu_3_total += bleu_3 print_bleu_4_total += bleu_4 print_bleu_1_avg = print_bleu_1_total / count print_bleu_2_avg = print_bleu_2_total / count print_bleu_3_avg = print_bleu_3_total / count print_bleu_4_avg = print_bleu_4_total / count #print(f"iteration:{count}") print(f"BLEU-1: {print_bleu_1_avg}") print(f"BLEU-2: {print_bleu_2_avg}") print(f"BLEU-3: {print_bleu_3_avg}") print(f"BLEU-4: {print_bleu_4_avg}") print_bleu_1_total=0 print_bleu_2_total = 0 print_bleu_3_total = 0 print_bleu_4_total = 0 #new_writer.writerow((iters, print_bleu_1_avg, print_bleu_2_avg, print_bleu_3_avg, print_bleu_4_avg)) elif index != test_id[n+1]: #print(index) #print(reference) video_frames[0] = torch.load('nasnet_feature_new/' + index + '.pt') # encoder input pred_test = generate_caption(encoder=encoder, decoder=decoder, video_frames=video_frames,prediction=prediction) count += 1 weights = (1, 0, 0, 0) bleu_1 = sentence_bleu(reference, pred_test, weights) weights = (0.5, 0.5, 0, 0) bleu_2 = sentence_bleu(reference, pred_test, weights) weights = (0.3, 0.3, 0.3, 0) bleu_3 = sentence_bleu(reference, pred_test, weights) weights = (0.25, 0.25, 0.25, 0.25) bleu_4 = sentence_bleu(reference, pred_test, weights) #print(f"iteration:{count}") #print(f"BLEU-1: {bleu_1}") #print(f"BLEU-2: {bleu_2}") #print(f"BLEU-3: {bleu_3}") #print(f"BLEU-4: {bleu_4}") #new_writer.writerow((count, bleu_1, bleu_2, bleu_3, bleu_4)) print_bleu_1_total += bleu_1 print_bleu_2_total += bleu_2 print_bleu_3_total += bleu_3 print_bleu_4_total += bleu_4 else: continue def samplevid(id): video_frames = torch.zeros(1, 8, 2048).to(device) # target_tensor = torch.zeros(batch_size, train_tokens.shape[1]).to(device) for iters in tqdm(range(1, n_iters + 1)): encoder = torch.load('model_incep_3_layer/%s_epoch_encoder.pth' % (iters)) decoder = torch.load('model_incep_3_layer/%s_epoch_decoder.pth' % (iters)) encoder.train() decoder.train() trgs = [] pred_trgs = [] encoder.eval() decoder.eval() print(f'id:{id}') video_frames[0] = torch.load('features/' + id + '.pt') generate_caption(encoder=encoder, decoder=decoder, video_frames=video_frames) n_iters=50 """ for iters in tqdm(range(1, n_iters + 1)): encoder=torch.load('model/%s_epoch_encoder.pth'% (iters)) decoder=torch.load('model/%s_epoch_decoder.pth'% (iters)) """ #bleu_1,bleu_2,bleu_3,bleu_4=test() test() #print(f"BLEU-1: {bleu_1}") #print(f"BLEU-2: {bleu_2}") #print(f"BLEU-3: {bleu_3}") #print(f"BLEU-4: {bleu_4}") """ ########################## Sample Video ############################### #id='BnJUWwSx1kE_11_22' #id='N6SglZopfmk_97_111' #id='YmXCfQm0_CA_109_120' #id='8yS2wqwActs_2_14' #id='SzEbtbNSg04_71_93' #id='QHkvBU8diwU_1_18' #id='QMJY29QMewQ_42_52' samplevid(id) import cv2 video = cv2.VideoCapture('YouTubeClips/' + id + '.avi') video.set(cv2.CAP_PROP_FRAME_WIDTH, 640) video.set(cv2.CAP_PROP_FRAME_HEIGHT, 480) while True: ret, view = video.read() cv2.imshow(id,view) if cv2.waitKey(25) & 0xFF == ord('t'): break video.release() cv2.destroyAllWindows() """
python
from django.conf import settings from ngw.core.models import Config, Contact def banner(request): """ This context processor just add a "banner" key that's allways available """ if hasattr(request, 'user') and request.user.is_authenticated: return {'banner': Config.objects.get(pk='banner').text} else: return () def contactcount(request): """ This context processor just add a "contactcount" key """ if hasattr(request, 'user') and request.user.is_authenticated: return {'contactcount': Contact.objects.count()} else: return () def extra_header_links(request): """ This context processor just add a "extra_header_links" key """ return {'extra_header_links': settings.EXTRA_BANNER_LINKS} def has_permission(request): """ Hard code has_permission for admin header """ return { 'has_permission': hasattr(request, 'user') and request.user.is_authenticated }
python
import sys import os import logging import click import wfepy import wfepy.utils @click.command() @click.option('-d', '--debug', is_flag=True) @click.argument('example_name') def run_wf(debug, example_name): logging.basicConfig(level=logging.DEBUG if debug else logging.INFO) example_module = __import__(example_name) wf = wfepy.Workflow() wf.load_tasks(example_module) wfepy.utils.render_graph(wf, os.path.join(os.path.dirname(__file__), example_name + '.gv')) runner = wf.create_runner() runner.run() if __name__ == '__main__': # pylint: disable=unexpected-keyword-arg,no-value-for-parameter run_wf()
python
from abc import ABCMeta, abstractmethod, abstractproperty from pathlib import Path from PIL import Image, ImageFont, ImageDraw, ImageEnhance, ImageFilter import string import cv2 import numpy as np from numpy.random import uniform, choice from random import randint, choice as rand_choice import arabic_reshaper from bidi.algorithm import get_display # from googletrans import Translator from unidecode import unidecode from utils import use_seed from utils.constant import (BACKGROUND_COLOR, BASELINE_COLOR, CAPTION_COLOR, CONTEXT_BACKGROUND_COLOR, DRAWING_COLOR, FLOATING_WORD_COLOR, GLYPH_COLOR, IMAGE_COLOR, PARAGRAPH_COLOR, TABLE_WORD_COLOR, TITLE_COLOR, TEXT_BORDER_COLOR) from utils.constant import (BACKGROUND_LABEL, BASELINE_LABEL, CAPTION_LABEL, CONTEXT_BACKGROUND_LABEL, DRAWING_LABEL, FLOATING_WORD_LABEL, GLYPH_LABEL, IMAGE_LABEL, PARAGRAPH_LABEL, TABLE_WORD_LABEL, TITLE_LABEL, TEXT_BORDER_LABEL) from utils.constant import SEG_GROUND_TRUTH_FMT from utils.image import paste_with_blured_borders, resize from utils.path import SYNTHETIC_RESRC_PATH from synthetic.resource import (ResourceDatabase, BACKGROUND_RESRC_NAME, CONTEXT_BACKGROUND_RESRC_NAME, DRAWING_RESRC_NAME, DRAWING_BACKGROUND_RESRC_NAME, GLYPH_FONT_RESRC_NAME, FONT_RESRC_NAME, IMAGE_RESRC_NAME, NOISE_PATTERN_RESRC_NAME, TEXT_RESRC_NAME) DATABASE = ResourceDatabase() TRANSLATOR = None # Translator(service_urls=['translate.google.com']) BLURED_BORDER_WIDTH_RANGE = (1, 7) GAUSSIAN_NOISE_STD_RANGE = (2, 10) NOISE_PATTERN_SIZE_RANGE = { 'border_hole': (100, 600), 'center_hole': (100, 400), 'corner_hole': (100, 400), 'phantom_character': (30, 100), } NOISE_PATTERN_OPACITY_RANGE = (0.2, 0.6) POS_ELEMENT_OPACITY_RANGE = { 'drawing': (200, 255), 'glyph': (150, 255), 'image': (150, 255), 'table': (200, 255), 'text': (200, 255), } NEG_ELEMENT_OPACITY_RANGE = { 'drawing': (0, 10), 'glyph': (0, 10), 'image': (0, 25), 'table': (0, 10), 'text': (0, 10), } NEG_ELEMENT_BLUR_RADIUS_RANGE = (1, 2.5) BACKGROUND_BLUR_RADIUS_RANGE = (0, 0.2) BACKGROUND_COLOR_BLEND_FREQ = 0.1 CONTEXT_BACKGROUND_UNIFORM_FREQ = 0.5 DRAWING_CONTRAST_FACTOR_RANGE = (1, 4) DRAWING_WITH_BACKGROUND_FREQ = 0.3 DRAWING_WITH_COLOR_FREQ = 0.3 GLYPH_COLORED_FREQ = 0.5 LINE_WIDTH_RANGE = (1, 4) TABLE_LAYOUT_RANGE = { 'col_size_range': (50, 200), } TEXT_BASELINE_HEIGHT = 5 TEXT_BBOX_FREQ = 0.3 TEXT_BBOX_BORDER_WIDTH_RANGE = (1, 6) TEXT_BBOX_PADDING_RANGE = (0, 20) TEXT_COLORED_FREQ = 0.5 TEXT_FONT_TYPE_RATIO = { 'arabic': 0, 'chinese': 0, 'handwritten': 0.5, 'normal': 0.5, } TEXT_JUSTIFIED_PARAGRAPH_FREQ = 0.7 TEXT_ROTATION_ANGLE_RANGE = (-60, 60) TEXT_TIGHT_PARAGRAPH_FREQ = 0.5 TEXT_TITLE_UPPERCASE_RATIO = 0.5 TEXT_TITLE_UNILINE_RATIO = 0.25 TEXT_UNDERLINED_FREQ = 0.1 TEXT_UNDERLINED_PADDING_RANGE = (0, 4) @use_seed() def get_random_noise_pattern(width, height): pattern_path = choice(DATABASE[NOISE_PATTERN_RESRC_NAME]) pattern_type = Path(pattern_path).parent.name img = Image.open(pattern_path).convert('L') size_min, size_max = NOISE_PATTERN_SIZE_RANGE[pattern_type] size_max = min(min(width, height), size_max) size = (randint(size_min, size_max), randint(size_min, size_max)) if pattern_type in ['border_hole', 'corner_hole']: img = resize(img, size, keep_aspect_ratio=True, resample=Image.ANTIALIAS) rotation = choice([None, Image.ROTATE_90, Image.ROTATE_180, Image.ROTATE_270]) if rotation is not None: img = img.transpose(rotation) if pattern_type == 'border_hole': if rotation is None: position = ((randint(0, width - img.size[0]), 0)) elif rotation == Image.ROTATE_90: position = (0, randint(0, height - img.size[1])) elif rotation == Image.ROTATE_180: position = ((randint(0, width - img.size[0]), height - img.size[1])) else: position = (width - img.size[0], randint(0, height - img.size[1])) else: if rotation is None: position = (0, 0) elif rotation == Image.ROTATE_90: position = (0, height - img.size[1]) elif rotation == Image.ROTATE_180: position = (width - img.size[0], height - img.size[1]) else: position = (width - img.size[0], 0) else: img = resize(img, size, keep_aspect_ratio=False, resample=Image.ANTIALIAS) rotation = randint(0, 360) img = img.rotate(rotation, fillcolor=255) pad = max(img.width, img.height) position = (randint(0, max(0, width - pad)), randint(0, max(0, height - pad))) alpha = uniform(*NOISE_PATTERN_OPACITY_RANGE) arr = np.array(img.convert('RGBA')) arr[:, :, 3] = (255 - arr[:, :, 2]) * alpha hue_color = randint(0, 360) value_ratio = uniform(0.95, 1) return Image.fromarray(arr), hue_color, value_ratio, position class AbstractElement: """Abstract class that defines the characteristics of a document's element.""" __metaclass__ = ABCMeta label = NotImplemented color = NotImplemented content_width = NotImplemented content_height = NotImplemented name = NotImplemented pos_x = NotImplemented pos_y = NotImplemented def __init__(self, width, height, seed=None, **kwargs): self.width, self.height = width, height self.parameters = kwargs self.generate_content(seed=seed) @property def size(self): return (self.width, self.height) @property def content_size(self): return (self.content_width, self.content_height) @property def position(self): return (self.pos_x, self.pos_y) @use_seed() @abstractmethod def generate_content(self): pass @abstractmethod def to_image(self): pass def to_image_as_array(self): return np.array(self.to_image(), dtype=np.float32) / 255 @abstractmethod def to_label_as_array(self): pass def to_label_as_img(self): arr = self.to_label_as_array() res = np.zeros(arr.shape + (3,), dtype=np.uint8) res[arr == self.label] = self.color return Image.fromarray(res) class BackgroundElement(AbstractElement): label = BACKGROUND_LABEL color = BACKGROUND_COLOR name = 'background' @use_seed() def generate_content(self): self.img_path = self.parameters.get('image_path') or choice(DATABASE[BACKGROUND_RESRC_NAME]) self.img = Image.open(self.img_path).resize(self.size, resample=Image.ANTIALIAS).convert('RGB') self.blur_radius = uniform(*BACKGROUND_BLUR_RADIUS_RANGE) self.content_width, self.content_height = self.size self.pos_x, self.pos_y = (0, 0) color_blend = choice([True, False], p=[BACKGROUND_COLOR_BLEND_FREQ, 1 - BACKGROUND_COLOR_BLEND_FREQ]) if color_blend: new_img = cv2.cvtColor(np.array(self.img), cv2.COLOR_RGB2HSV) new_img[:, :, 0] = randint(0, 360) self.img = Image.fromarray(cv2.cvtColor(new_img, cv2.COLOR_HSV2RGB)) def to_image(self, flip=False): if flip: return self.img.transpose(Image.FLIP_LEFT_RIGHT).filter(ImageFilter.GaussianBlur(self.blur_radius)) else: return self.img.filter(ImageFilter.GaussianBlur(self.blur_radius)) def to_label_as_array(self): return np.full(self.size, self.label, dtype=np.uint8).transpose() @property def inherent_left_margin(self): img_path = Path(self.img_path) if isinstance(self.img_path, str) else self.img_path try: return int(int(img_path.parent.name) * self.width / 596) # XXX: margins were calibrated on 596x842 images except ValueError: return 0 class ContextBackgroundElement(AbstractElement): label = CONTEXT_BACKGROUND_LABEL color = CONTEXT_BACKGROUND_COLOR name = 'context_background' @use_seed() def generate_content(self): uniform_bg = choice([True, False], p=[CONTEXT_BACKGROUND_UNIFORM_FREQ, 1 - CONTEXT_BACKGROUND_UNIFORM_FREQ]) if uniform_bg: color = randint(0, 255) std = randint(*GAUSSIAN_NOISE_STD_RANGE) img = Image.new(mode='L', color=color, size=self.size) img = Image.fromarray(cv2.randn(np.array(img), mean=color, stddev=std)) else: color = None img_path = self.parameters.get('image_path') or choice(DATABASE[CONTEXT_BACKGROUND_RESRC_NAME]) img = Image.open(img_path) transpose_idx = choice([None, Image.ROTATE_90, Image.ROTATE_180, Image.ROTATE_270]) if transpose_idx is not None: img = img.transpose(transpose_idx) self.intensity = img.convert('L').resize((1, 1)).getpixel((0, 0)) self.img = img.resize(self.size, resample=Image.ANTIALIAS).convert('RGB') self.blur_radius = uniform(*BACKGROUND_BLUR_RADIUS_RANGE) self.content_width, self.content_height = self.size self.pos_x, self.pos_y = (0, 0) def to_image(self): return self.img.filter(ImageFilter.GaussianBlur(self.blur_radius)) def to_label_as_array(self): return np.full(self.size, self.label, dtype=np.uint8).transpose() class DrawingElement(AbstractElement): label = DRAWING_LABEL color = DRAWING_COLOR name = 'drawing' @use_seed() def generate_content(self): self.img_path = self.parameters.get('image_path') or choice(DATABASE[DRAWING_RESRC_NAME]) img = Image.open(self.img_path).convert('L') self.contrast_factor = uniform(*DRAWING_CONTRAST_FACTOR_RANGE) self.as_negative = self.parameters.get('as_negative', False) self.blur_radius = uniform(*NEG_ELEMENT_BLUR_RADIUS_RANGE) if self.as_negative else None self.opacity = randint(*NEG_ELEMENT_OPACITY_RANGE[self.name] if self.as_negative else POS_ELEMENT_OPACITY_RANGE[self.name]) self.colored = choice([True, False], p=[DRAWING_WITH_COLOR_FREQ, 1 - DRAWING_WITH_COLOR_FREQ]) if self.colored: self.color_channels = choice(range(3), randint(1, 2), replace=False) self.other_channel_intensity = [randint(0, 100) for _ in range(3)] self.hue_color = randint(0, 360) else: self.color_channels, self.color_intensity = None, None self.with_background = choice([True, False], p=[DRAWING_WITH_BACKGROUND_FREQ, 1 - DRAWING_WITH_BACKGROUND_FREQ]) if self.with_background: self.color, self.label = IMAGE_COLOR, IMAGE_LABEL blured_border_width = randint(*BLURED_BORDER_WIDTH_RANGE) max_size = [s - 2 * blured_border_width for s in self.size] img = resize(img, max_size) bg = Image.open(choice(DATABASE[DRAWING_BACKGROUND_RESRC_NAME])).resize(img.size) new_img = cv2.cvtColor(np.array(bg), cv2.COLOR_RGB2HSV) new_img[:, :, 0] = randint(0, 360) background = Image.fromarray(cv2.cvtColor(new_img, cv2.COLOR_HSV2RGB)) if not self.colored: background = background.convert('L').convert('RGB') self.background = background self.blured_border_width = blured_border_width else: img = resize(img, self.size) self.background, self.blured_border_width = None, 0 self.img = img self.content_width, self.content_height = self.img.size self.pos_x = randint(0, self.width - self.content_width) self.pos_y = randint(0, self.height - self.content_height) label_path = Path(self.img_path).parent / SEG_GROUND_TRUTH_FMT.format(Path(self.img_path).stem, 'png') self.mask_label = np.array(resize(Image.open(label_path), self.img.size, False, resample=Image.NEAREST)) def scaled_size(self, img): size = [s - 2 * self.blured_border_width for s in self.size] ratio = img.size[0] / img.size[1] return map(min, zip(*[size, (int(size[1] * ratio), int(size[0] / ratio))])) def to_image(self, canvas=None): if canvas is None: canvas = Image.new('RGB', self.size, (255, 255, 255)) if self.with_background: paste_with_blured_borders(canvas, self.background, self.position, border_width=self.blured_border_width) canvas_arr = np.array(canvas.convert('RGB')) enhanced_img = ImageEnhance.Contrast(self.img).enhance(self.contrast_factor) img_arr = np.array(enhanced_img, dtype=np.uint8) img_arr[self.mask_label == 0] = 255 if self.colored: img_arr_channels = [] for i in range(3): if i in self.color_channels: img_arr_channels.append(img_arr) else: other_arr = img_arr.copy() other_arr[img_arr != 255] = self.other_channel_intensity[i] img_arr_channels.append(other_arr) img_arr_channels_hsv = cv2.cvtColor(np.dstack(img_arr_channels), cv2.COLOR_RGB2HSV) img_arr_channels_hsv[:, :, 0] = self.hue_color img_arr_channels = cv2.cvtColor(img_arr_channels_hsv, cv2.COLOR_HSV2RGB) else: img_arr_channels = np.dstack([img_arr for i in range(3)]) x, y = self.position img_arr_rgb = np.full(canvas_arr.shape, 255, dtype=np.uint8) img_arr_rgb[y:y+self.content_height, x:x+self.content_width] = img_arr_channels result = Image.fromarray(cv2.multiply(canvas_arr, img_arr_rgb, scale=1/255)).convert('RGBA') result.putalpha(self.opacity) if self.as_negative: result = result.filter(ImageFilter.GaussianBlur(self.blur_radius)) return result def to_label_as_array(self): label = np.full(self.size, BACKGROUND_LABEL, dtype=np.uint8) if self.as_negative: return label.transpose() else: x, y = self.position if self.with_background: label[x:x+self.content_width, y:y+self.content_height] = self.label else: mask = (self.mask_label == 255).transpose() label[x:x+self.content_width, y:y+self.content_height][mask] = self.label return label.transpose() class GlyphElement(AbstractElement): label = GLYPH_LABEL color = GLYPH_COLOR font_size_range = (200, 800) name = 'glyph' @use_seed() def generate_content(self): self.font_path = choice(DATABASE[GLYPH_FONT_RESRC_NAME]) self.letter = self.parameters.get('letter') or rand_choice(string.ascii_uppercase) # To avoid oversized letters rescaled_height = (self.height * 2) // 3 min_fs, max_fs = self.font_size_range actual_max_fs = min(rescaled_height, max_fs) tmp_font = ImageFont.truetype(self.font_path, size=actual_max_fs) while tmp_font.getsize(self.letter)[0] > self.width and actual_max_fs > self.font_size_range[0]: actual_max_fs -= 1 tmp_font = ImageFont.truetype(self.font_path, size=actual_max_fs) if min_fs < actual_max_fs: self.font_size = randint(min_fs, actual_max_fs) else: self.font_size = actual_max_fs self.font = ImageFont.truetype(self.font_path, size=self.font_size) self.as_negative = self.parameters.get('as_negative', False) self.blur_radius = uniform(*NEG_ELEMENT_BLUR_RADIUS_RANGE) if self.as_negative else None self.opacity = randint(*NEG_ELEMENT_OPACITY_RANGE[self.name] if self.as_negative else POS_ELEMENT_OPACITY_RANGE[self.name]) self.colored = choice([True, False], p=[GLYPH_COLORED_FREQ, 1 - GLYPH_COLORED_FREQ]) self.colors = (0, 0, 0) if not self.colored else tuple([randint(0, 150) for _ in range(3)]) self.content_width, self.content_height = self.font.getsize(self.letter) self.pos_x = randint(0, max(0, self.width - self.content_width)) self.pos_y = randint(0, max(0, self.height - self.content_height)) def to_image(self): canvas = Image.new('RGBA', self.size) image_draw = ImageDraw.Draw(canvas) colors_alpha = self.colors + (self.opacity,) image_draw.text(self.position, self.letter, font=self.font, fill=colors_alpha) if self.as_negative: canvas = canvas.filter(ImageFilter.GaussianBlur(self.blur_radius)) return canvas def to_label_as_array(self): if self.as_negative: return np.full(self.size, BACKGROUND_LABEL, dtype=np.uint8).transpose() else: padding = self.font_size # XXX we want to avoid borders when computing closings size = tuple(map(lambda s: s + 2 * padding, self.size)) position = tuple(map(lambda s: s + padding, self.position)) canvas = Image.new('L', size, color=0) image_draw = ImageDraw.Draw(canvas) image_draw.text(position, self.letter, font=self.font, fill=255) nb_iter = self.font_size // 2 label = (np.asarray(canvas, dtype=np.uint8) > 0).astype(np.uint8) label = cv2.morphologyEx(label, cv2.MORPH_CLOSE, kernel=np.ones((3, 3), dtype=np.uint8), iterations=nb_iter) label = label[padding:-padding, padding:-padding] label[label == 0] = BACKGROUND_LABEL label[label == 1] = self.label return label class ImageElement(AbstractElement): label = IMAGE_LABEL color = IMAGE_COLOR name = 'image' @use_seed() def generate_content(self): self.blured_border_width = randint(*BLURED_BORDER_WIDTH_RANGE) self.as_negative = self.parameters.get('as_negative', False) self.blur_radius = uniform(*NEG_ELEMENT_BLUR_RADIUS_RANGE) if self.as_negative else None self.opacity = randint(*NEG_ELEMENT_OPACITY_RANGE[self.name] if self.as_negative else POS_ELEMENT_OPACITY_RANGE[self.name]) img = Image.open(self.parameters.get('image_path') or choice(DATABASE[IMAGE_RESRC_NAME])) img.putalpha(self.opacity) max_size = [s - 2 * self.blured_border_width for s in self.size] self.img = resize(img, max_size) self.content_width, self.content_height = self.img.size self.pos_x = randint(0, self.width - self.content_width) self.pos_y = randint(0, self.height - self.content_height) def to_image(self, canvas_color=(255, 255, 255)): canvas = Image.new('RGBA', self.size, canvas_color + (0,)) paste_with_blured_borders(canvas, self.img, self.position, border_width=self.blured_border_width) if self.as_negative: canvas = canvas.filter(ImageFilter.GaussianBlur(self.blur_radius)) return canvas def to_label_as_array(self): label = np.full(self.size, BACKGROUND_LABEL, dtype=np.uint8) if self.as_negative: return label.transpose() else: x, y = self.position label[x:x+self.content_width, y:y+self.content_height] = self.label return label.transpose() class AbstractTextElement(AbstractElement): """Abstract class that defines a text element such as titles, captions and paragraphs.""" __metaclass__ = ABCMeta border_label = TEXT_BORDER_LABEL border_color = TEXT_BORDER_COLOR name = 'text' @abstractproperty def text_type(self): pass @abstractproperty def n_max_lines(self): pass @abstractproperty def n_min_characters(self): pass @abstractproperty def font_size_range(self): pass @abstractproperty def line_spacing_range(self): pass @staticmethod def get_random_font(): font_type = choice(list(TEXT_FONT_TYPE_RATIO.keys()), p=list(TEXT_FONT_TYPE_RATIO.values())) return choice(DATABASE[FONT_RESRC_NAME][font_type]) @use_seed() def generate_content(self): min_fs, max_fs = self.font_size_range min_spacing, max_spacing = self.line_spacing_range if self.text_type == 'paragraph': tight = choice([True, False], p=[TEXT_TIGHT_PARAGRAPH_FREQ, 1 - TEXT_TIGHT_PARAGRAPH_FREQ]) if tight: max_fs, max_spacing = max(min_fs, 30), max(min_spacing, 4) else: min_fs, min_spacing = min(30, max_fs), min(2, max_fs) self.justified = tight and choice([True, False], p=[TEXT_JUSTIFIED_PARAGRAPH_FREQ, 1 - TEXT_JUSTIFIED_PARAGRAPH_FREQ]) else: self.justified = False self.font_path = self.parameters.get('font_path') or self.get_random_font() self.font_type = Path(self.font_path).relative_to(SYNTHETIC_RESRC_PATH / FONT_RESRC_NAME).parts[0] # To avoid oversized letters rescaled_height = (self.height * 2) // 3 actual_max_fs = min(rescaled_height, max_fs) tmp_font = ImageFont.truetype(self.font_path, size=actual_max_fs) while tmp_font.getsize('bucolic')[0] > self.width and actual_max_fs > self.font_size_range[0]: actual_max_fs -= 1 tmp_font = ImageFont.truetype(self.font_path, size=actual_max_fs) if min_fs < actual_max_fs: self.font_size = randint(min_fs, actual_max_fs) else: self.font_size = actual_max_fs self.spacing = randint(min_spacing, max_spacing) if 'text' in self.parameters: text = self.parameters['text'] else: n_char = 0 while (n_char <= self.n_min_characters): self.text_path = choice(DATABASE[TEXT_RESRC_NAME]) with open(self.text_path) as f: text = f.read().rstrip('\n') n_char = len(text) self.baseline_as_label = self.parameters.get('baseline_as_label', False) if self.baseline_as_label: self.label, self.color = BASELINE_LABEL, BASELINE_COLOR self.font = ImageFont.truetype(self.font_path, size=self.font_size) self.as_negative = self.parameters.get('as_negative', False) self.blur_radius = uniform(*NEG_ELEMENT_BLUR_RADIUS_RANGE) if self.as_negative else None self.opacity = randint(*NEG_ELEMENT_OPACITY_RANGE[self.name] if self.as_negative else POS_ELEMENT_OPACITY_RANGE[self.name]) self.transpose = self.parameters.get('transpose', False) if self.text_type == 'title': self.uppercase = (choice([True, False], p=[TEXT_TITLE_UPPERCASE_RATIO, 1 - TEXT_TITLE_UPPERCASE_RATIO]) or self.font_type == 'chinese') self.uniline = choice([True, False], p=[TEXT_TITLE_UNILINE_RATIO, 1 - TEXT_TITLE_UNILINE_RATIO]) n_spaces = randint(2, 5) text = text.replace(' ', ' ' * n_spaces) elif self.text_type == 'word': self.uppercase = self.font_type == 'chinese' self.uniline = True else: self.uppercase = self.font_type == 'chinese' self.uniline = False dark_mode = self.parameters.get('dark_mode', True) color_range = (0, 75) if dark_mode else (175, 255) colored = choice([True, False], p=[TEXT_COLORED_FREQ, 1 - TEXT_COLORED_FREQ]) colors = tuple([randint(*color_range)] * 3) if not colored else tuple([randint(*color_range) for _ in range(3)]) self.colors_alpha = colors + (self.opacity,) self.underlined = (choice([True, False], p=[TEXT_UNDERLINED_FREQ, 1 - TEXT_UNDERLINED_FREQ]) and self.font_type in ['normal', 'handwritten'] and not self.text_type == 'word') if self.underlined: self.underline_params = { 'width': randint(*LINE_WIDTH_RANGE), 'fill': tuple([randint(*color_range)] * 3) + (self.opacity,), } strikethrough = choice([True, False]) line_height = self.font.font.getsize('a')[0][1] self.underline_padding = randint(*TEXT_UNDERLINED_PADDING_RANGE) if not strikethrough else -line_height // 2 else: self.underlined_params, self.underline_padding = None, 0 self.with_bbox = self.text_type == 'paragraph' and choice([True, False], p=[TEXT_BBOX_FREQ, 1 - TEXT_BBOX_FREQ]) if self.with_bbox: filled = choice([True, False]) alpha = randint(0, min(self.opacity, 100)) self.bbox_params = { 'width': randint(*TEXT_BBOX_BORDER_WIDTH_RANGE), 'outline': self.colors_alpha, 'fill': tuple([randint(150, 255) for _ in range(3)]) + (alpha,) if filled else None } self.padding = randint(*TEXT_BBOX_PADDING_RANGE) + self.bbox_params['width'] + 1 else: self.bbox_params, self.padding = None, 0 self.with_border_label = self.parameters.get('with_border_label', False) if self.with_border_label: label_height = self.font.font.getsize('A')[0][1] self.padding += label_height // 2 + 1 self.background_label = self.parameters.get('background_label', BACKGROUND_LABEL) self.text, content_width, content_height = self.format_text(text) self.is_empty_text = len(self.text) == 0 self.rotated_text = self.text_type == 'word' and len(self.text) > 2 if self.rotated_text: hypo = np.sqrt((content_width**2 + content_height**2) / 4) shift = np.arctan(content_height / content_width) actual_max_rot = np.arcsin((self.height / 2) / hypo) if hypo > self.height / 2 else np.inf actual_max_rot = (actual_max_rot - shift) * 180 / np.pi min_rot, max_rot = TEXT_ROTATION_ANGLE_RANGE min_rot, max_rot = max(min_rot, -actual_max_rot), min(max_rot, actual_max_rot) self.rotation_angle = uniform(min_rot, max_rot) shift = -shift if self.rotation_angle < 0 else shift new_content_height = 2 * abs(round(float(np.sin((self.rotation_angle * np.pi / 180) + shift) * hypo))) self.rot_padding = (new_content_height - content_height) // 2 self.content_width, self.content_height = content_width, new_content_height self.pos_x = randint(0, max(0, self.width - self.content_width)) self.pos_y = randint(self.rot_padding, max(self.rot_padding, self.height - self.content_height)) else: self.content_width, self.content_height = content_width, content_height self.pos_x = randint(0, max(0, self.width - self.content_width)) self.pos_y = randint(0, max(0, self.height - self.content_height)) def format_text(self, text): if self.font_type in ['normal', 'handwritten']: text = unidecode(text) elif self.font_type == 'arabic': text = TRANSLATOR.translate(text, src='en', dest='ar').text text = get_display(arabic_reshaper.reshape(text)) elif self.font_type == 'chinese': text = TRANSLATOR.translate(text, src='en', dest='zh-CN').text else: raise NotImplementedError width, height = self.width - 2 * self.padding, self.height - 2 * self.padding text = (text.upper() if self.uppercase else text).strip() if self.text_type == 'word': word_as_number = choice([True, False]) if word_as_number: n_letter = randint(1, 5) result_text = str(randint(0, 10**n_letter - 1)) else: words = text.split(' ') result_text = rand_choice(words) iteration = 1 while (not str.isalnum(result_text) or len(result_text) < 1) and iteration < 40: result_text = rand_choice(words) iteration += 1 if not str.isalnum(result_text) or len(result_text) < 1: result_text = words[0][:randint(4, 10)] line_width = self.font.getsize(result_text)[0] while line_width > width and len(result_text) > 2: result_text = result_text[:-1] line_width = self.font.getsize(result_text)[0] else: max_lines = 1 if self.uniline else self.n_max_lines result_text, lines = '', '' text_height, cur_idx, n_lines = 0, 0, -1 while text_height <= height: result_text = lines n_lines += 1 line = text[cur_idx:].lstrip() cur_idx += len(text[cur_idx:]) - len(line) # adjust cur_idx if stripped if len(line) == 0 or n_lines == max_lines: break line_width = self.font.getsize(line)[0] avg_char_width = line_width / len(line) if line_width > width: index = int(width / avg_char_width) + 10 # take larger slice in case of small characters cut = max(line[:index].rfind(' '), line.find(' ')) # in case no space found in slice (small width) line = line[:cut].strip() line_width = self.font.getsize(line)[0] while line_width > width: if ' ' in line: # remove word by word line = line[:line.rfind(' ')].strip() else: # remove character by character line = line[:-1] line_width = self.font.getsize(line)[0] cur_idx += len(line) + 1 if self.justified: w_space = self.font.getsize(' ')[0] n_spaces = line.count(' ') n_spaces_to_add = (width - line_width) // w_space if n_spaces > 0 and n_spaces_to_add > 0: q, r = n_spaces_to_add // n_spaces + 1, n_spaces_to_add % n_spaces if q < 5: if q > 1: line = line.replace(' ', q * ' ') pos = 0 while r > 0: space_idx = line[pos:].find(' ') + pos line = line[:space_idx] + ' ' + line[space_idx:] pos = space_idx + q + 1 r -= 1 lines = '{}\n{}'.format(lines, line) if lines else line text_height = self.font.getsize_multiline(lines, spacing=self.spacing)[1] if '\n' in result_text and self.justified: # we dont want to justify the last line result_text, last_line = result_text.rsplit('\n', 1) last_line = ' '.join(last_line.split()) result_text = '{}\n{}'.format(result_text, last_line) content_width, content_height = self.font.getsize_multiline(result_text, spacing=self.spacing) content_width += 2 * self.padding content_height += 2 * self.padding return result_text, content_width, content_height def to_image(self): canvas = Image.new('RGBA', self.size) image_draw = ImageDraw.Draw(canvas) if self.is_empty_text: return canvas if self.with_bbox: x, y = self.pos_x, self.pos_y p = self.bbox_params['width'] // 2 + 1 image_draw.rectangle([(x+p, y+p), (x+self.content_width-p, y+self.content_height-p)], **self.bbox_params) if self.underlined: x, y = self.pos_x + self.padding, self.pos_y + self.padding + self.underline_padding line_height = self.font.getsize('A')[1] ascent, descent = self.font.getmetrics() lines = self.text.split('\n') for k in range(len(lines)): image_draw.line((x, y + ascent, x + self.content_width - 2 * self.padding, y + ascent), **self.underline_params) y += line_height + self.spacing image_draw.text((self.pos_x + self.padding, self.pos_y + self.padding), self.text, self.colors_alpha, font=self.font, spacing=self.spacing) if self.rotated_text: x, y = self.pos_x, self.pos_y img = canvas.crop((x, y - self.rot_padding, x + self.content_width, y + self.content_height - self.rot_padding)) img = img.rotate(self.rotation_angle, resample=Image.BICUBIC, fillcolor=(0, 0, 0, 0)) canvas.paste(img, (self.pos_x, self.pos_y - self.rot_padding)) if self.as_negative: canvas = canvas.filter(ImageFilter.GaussianBlur(self.blur_radius)) if self.transpose: canvas = canvas.transpose(Image.ROTATE_90) return canvas def to_label_as_array(self): label = np.full(self.size, self.background_label, dtype=np.uint8) if not self.as_negative and len(self.text) > 0: x, y = self.pos_x + self.padding, self.pos_y + self.padding line_height = self.font.getsize('A')[1] if self.baseline_as_label: label_height = TEXT_BASELINE_HEIGHT // 2 else: if self.text.isdigit(): char = '1' elif self.uppercase: char = 'A' else: char = 'a' label_height = self.font.font.getsize(char)[0][1] ascent, descent = self.font.getmetrics() offset_y = max(0, ascent - label_height) if self.baseline_as_label: ascent += label_height + 1 lines = self.text.split('\n') if self.with_border_label: border = label_height // 2 if not self.baseline_as_label else TEXT_BASELINE_HEIGHT // 2 + 1 for line in lines: if len(line) == 0: continue line_width = self.font.getsize(line)[0] x_min, x_max = max(0, x - border), min(x + line_width + border, label.shape[0]) y_min, y_max = max(0, y + offset_y - border), min(y + ascent + border, label.shape[1]) label[x_min:x_max, y_min:y_max] = self.border_label y += line_height + self.spacing x, y = self.pos_x + self.padding, self.pos_y + self.padding for line in lines: line_width = self.font.getsize(line)[0] y_min, y_max = y + offset_y, min(y + ascent, label.shape[1]) label[x:x+line_width, y_min:y_max] = self.label y += line_height + self.spacing label = label.transpose() if self.rotated_text: center = (self.pos_x + self.content_width / 2, self.pos_y + self.content_height / 2 - self.rot_padding) R = cv2.getRotationMatrix2D(center, self.rotation_angle, 1) label = cv2.warpAffine(label, R, self.size, flags=cv2.INTER_NEAREST, borderValue=self.background_label) if self.transpose: return np.rot90(label) else: return label def to_label_as_img(self): arr = self.to_label_as_array() res = np.full(arr.shape + (3,), self.background_label, dtype=np.uint8) res[arr == self.label] = self.color if self.with_border_label: res[arr == self.border_label] = self.border_color return Image.fromarray(res) class CaptionElement(AbstractTextElement): label = CAPTION_LABEL color = CAPTION_COLOR text_type = 'caption' n_max_lines = 3 n_min_characters = 50 font_size_range = (20, 60) line_spacing_range = (1, 8) class ParagraphElement(AbstractTextElement): label = PARAGRAPH_LABEL color = PARAGRAPH_COLOR text_type = 'paragraph' n_max_lines = 1000 n_min_characters = 400 font_size_range = (20, 60) line_spacing_range = (1, 10) class TitleElement(AbstractTextElement): label = TITLE_LABEL color = TITLE_COLOR text_type = 'title' n_max_lines = 20 n_min_characters = 50 font_size_range = (50, 150) line_spacing_range = (5, 50) class WordElement(AbstractTextElement): label = FLOATING_WORD_LABEL color = FLOATING_WORD_COLOR text_type = 'word' n_max_lines = 1 n_min_characters = 100 font_size_range = (20, 60) line_spacing_range = (1, 1) class TableElement(AbstractElement): label = TABLE_WORD_LABEL color = TABLE_WORD_COLOR border_label = TEXT_BORDER_LABEL border_color = TEXT_BORDER_COLOR font_size_range = (20, 50) name = 'table' @use_seed() def generate_content(self): min_fs, max_fs = self.font_size_range self.font_path = self.parameters.get('font_path') or AbstractTextElement.get_random_font() rescaled_height = (self.height * 2) // 3 # to avoid oversized letters actual_max_fs = min(rescaled_height, max_fs) if min_fs < actual_max_fs: self.font_size = randint(min_fs, actual_max_fs) else: self.font_size = actual_max_fs self.baseline_as_label = self.parameters.get('baseline_as_label', False) if self.baseline_as_label: self.label, self.color = BASELINE_LABEL, BASELINE_COLOR self.font = ImageFont.truetype(self.font_path, size=self.font_size) self.as_negative = self.parameters.get('as_negative', False) self.blur_radius = uniform(*NEG_ELEMENT_BLUR_RADIUS_RANGE) if self.as_negative else None self.opacity = randint(*NEG_ELEMENT_OPACITY_RANGE[self.name] if self.as_negative else POS_ELEMENT_OPACITY_RANGE[self.name]) self.colored = choice([True, False], p=[TEXT_COLORED_FREQ, 1 - TEXT_COLORED_FREQ]) self.colors = tuple([randint(0, 100)] * 3) if not self.colored else tuple([randint(0, 100) for _ in range(3)]) self.colors_alpha = self.colors + (self.opacity,) self.padding = 0 self.with_border_label = self.parameters.get('with_border_label', False) if self.with_border_label: label_height = self.font.font.getsize('A')[0][1] border_label_size = label_height // 2 + 1 self.padding += border_label_size self.line_params = { 'width': randint(*LINE_WIDTH_RANGE), 'fill': tuple([randint(0, 100)] * 3) + (self.opacity,), } self.column_params = { 'width': randint(*LINE_WIDTH_RANGE), 'fill': tuple([randint(0, 100)] * 3) + (self.opacity,), } if 'text' in self.parameters: text = self.parameters['text'] else: n_char = 0 while (n_char <= ParagraphElement.n_min_characters): self.text_path = choice(DATABASE[TEXT_RESRC_NAME]) with open(self.text_path) as f: text = f.read().rstrip('\n') n_char = len(text) dictionary = text.split(' ') self.table, self.content_width, self.content_height = self._generate_table(dictionary) self.pos_x = randint(0, max(0, self.width - self.content_width)) self.pos_y = randint(0, max(0, self.height - self.content_height)) def _generate_table(self, dictionary): width, height = randint(min(200, self.width), self.width), randint(min(200, self.height), self.height) line_size_min = round(self.font_size * 1.3) line_size_max = round(self.font_size * 2.5) lines = np.cumsum(np.random.randint(line_size_min, line_size_max, 40)) lines = lines[lines < height - line_size_min].tolist() columns = np.cumsum(np.random.randint(*TABLE_LAYOUT_RANGE['col_size_range'], 20)) columns = columns[columns < width - TABLE_LAYOUT_RANGE['col_size_range'][0]].tolist() words, word_positions = [], [] for i, c in enumerate([0] + columns): for j, l in enumerate([0] + lines): word_as_number = choice([True, False]) if word_as_number: n_letter = randint(2, 9) word = f'{randint(0, 10**n_letter - 1):,}' else: word = rand_choice(dictionary) uppercase = choice([True, False]) if uppercase: word = word.upper() cell_width = columns[i] - c if i < len(columns) else width - c cell_height = lines[j] - l if j < len(lines) else height - l while self.font.getsize(word)[0] + 2 * self.padding > cell_width and len(word) > 0: word = word[:-1].strip() if len(word) > 0: w, h = self.font.getsize(word) p_c, p_l = (cell_width - w) // 2, (cell_height - h) // 2 words.append(word) word_positions.append((c + p_c, l + p_l)) return ({'lines': lines, 'columns': columns, 'words': words, 'word_positions': word_positions}, width, height) def to_image(self): canvas = Image.new('RGBA', self.size) draw = ImageDraw.Draw(canvas) pos_x_width, pos_y_height = self.pos_x + self.content_width, self.pos_y + self.content_height for l in self.table['lines']: draw.line([self.pos_x, self.pos_y + l, pos_x_width, self.pos_y + l], **self.line_params) for c in self.table['columns']: draw.line([self.pos_x + c, self.pos_y, self.pos_x + c, pos_y_height], **self.column_params) for word, pos in zip(self.table['words'], self.table['word_positions']): pos = pos[0] + self.pos_x, pos[1] + self.pos_y draw.text(pos, word, font=self.font, fill=self.colors_alpha) if self.as_negative: canvas = canvas.filter(ImageFilter.GaussianBlur(self.blur_radius)) return canvas def to_label_as_array(self): label = np.full(self.size, BACKGROUND_LABEL, dtype=np.uint8) if self.as_negative: return label.transpose() else: ascent, descent = self.font.getmetrics() if self.baseline_as_label: label_height = TEXT_BASELINE_HEIGHT // 2 offset_y = ascent - label_height ascent += label_height + 1 if self.with_border_label: for word, pos in zip(self.table['words'], self.table['word_positions']): if len(word) == 0: continue x, y = self.pos_x + pos[0], self.pos_y + pos[1] w = self.font.getsize(word)[0] if not self.baseline_as_label: if word.replace(',', '').isdigit(): char = '1' elif word.isupper(): char = 'A' else: char = 'a' label_height = self.font.font.getsize(char)[0][1] offset_y = ascent - label_height else: label_height = TEXT_BASELINE_HEIGHT border = label_height // 2 + 1 x_min, x_max = max(0, x-border), min(x + w + border, label.shape[0]) y_min, y_max = max(0, y + offset_y - border), min(y + ascent + border, label.shape[1]) label[x_min:x_max, y_min:y_max] = self.border_label for word, pos in zip(self.table['words'], self.table['word_positions']): if len(word) == 0: continue x, y = self.pos_x + pos[0], self.pos_y + pos[1] w = self.font.getsize(word)[0] if not self.baseline_as_label: if word.replace(',', '').isdigit(): char = '1' elif word.isupper(): char = 'A' else: char = 'a' label_height = self.font.font.getsize(char)[0][1] offset_y = ascent - label_height label[x:x+w, y+offset_y:y+ascent] = self.label return label.transpose() def to_label_as_img(self): arr = self.to_label_as_array() res = np.zeros(arr.shape + (3,), dtype=np.uint8) res[arr == self.label] = self.color if self.with_border_label: res[arr == self.border_label] = self.border_color return Image.fromarray(res)
python
# Copyright 2019 Atalaya Tech, Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # List of APIs for accessing remote or local yatai service via Python import io import os import logging import tarfile import click import requests import shutil from bentoml.exceptions import BentoMLException from bentoml.utils import ( status_pb_to_error_code_and_message, resolve_bento_bundle_uri, is_s3_url, is_gcs_url, ) from bentoml.utils.lazy_loader import LazyLoader from bentoml.yatai.client.label_utils import generate_gprc_labels_selector from bentoml.yatai.proto.repository_pb2 import ( AddBentoRequest, GetBentoRequest, BentoUri, UpdateBentoRequest, UploadStatus, ListBentoRequest, DangerouslyDeleteBentoRequest, ContainerizeBentoRequest, ) from bentoml.yatai.proto import status_pb2 from bentoml.utils.tempdir import TempDirectory from bentoml.saved_bundle import ( save_to_dir, load_bento_service_metadata, safe_retrieve, load_from_dir, ) from bentoml.yatai.status import Status logger = logging.getLogger(__name__) yatai_proto = LazyLoader('yatai_proto', globals(), 'bentoml.yatai.proto') class BentoRepositoryAPIClient: def __init__(self, yatai_service): # YataiService stub for accessing remote YataiService RPCs self.yatai_service = yatai_service def push(self, bento, with_labels=True): """ Push a local BentoService to a remote yatai server. Args: bento: a BentoService identifier in the format of NAME:VERSION Returns: BentoService saved path Example: >>> svc = MyBentoService() >>> svc.save() >>> >>> remote_yatai_client = get_yatai_client('http://remote.yatai.service:50050') >>> bento = f'{svc.name}:{svc.version}' >>> remote_saved_path= remote_yatai_client.repository.push(bento) """ from bentoml.yatai.client import get_yatai_client local_yc = get_yatai_client() local_bento_pb = local_yc.repository.get(bento) if local_bento_pb.uri.s3_presigned_url: bento_bundle_path = local_bento_pb.uri.s3_presigned_url elif local_bento_pb.uri.gcs_presigned_url: bento_bundle_path = local_bento_pb.uri.gcs_presigned_url else: bento_bundle_path = local_bento_pb.uri.uri labels = ( dict(local_bento_pb.bento_service_metadata.labels) if with_labels is True and local_bento_pb.bento_service_metadata.labels else None ) return self.upload_from_dir(bento_bundle_path, labels=labels) def pull(self, bento): """ Pull a BentoService from a remote yatai service. The BentoService will be saved and registered with local yatai service. Args: bento: a BentoService identifier in the form of NAME:VERSION Returns: BentoService saved path Example: >>> client = get_yatai_client('127.0.0.1:50051') >>> saved_path = client.repository.pull('MyService:') """ bento_pb = self.get(bento) with TempDirectory() as tmpdir: # Create a non-exist directory for safe_retrieve target_bundle_path = os.path.join(tmpdir, 'bundle') self.download_to_directory(bento_pb, target_bundle_path) from bentoml.yatai.client import get_yatai_client labels = ( dict(bento_pb.bento_service_metadata.labels) if bento_pb.bento_service_metadata.labels else None ) local_yc = get_yatai_client() return local_yc.repository.upload_from_dir( target_bundle_path, labels=labels ) def upload(self, bento_service, version=None, labels=None): """Save and upload given bento_service to yatai_service, which manages all your saved BentoService bundles and model serving deployments. Args: bento_service (bentoml.service.BentoService): a Bento Service instance version (str): optional, labels (dict): optional Return: URI to where the BentoService is being saved to """ with TempDirectory() as tmpdir: save_to_dir(bento_service, tmpdir, version, silent=True) return self.upload_from_dir(tmpdir, labels) def upload_from_dir(self, saved_bento_path, labels=None): from bentoml.yatai.db.stores.label import _validate_labels bento_service_metadata = load_bento_service_metadata(saved_bento_path) if labels: _validate_labels(labels) bento_service_metadata.labels.update(labels) get_bento_response = self.yatai_service.GetBento( GetBentoRequest( bento_name=bento_service_metadata.name, bento_version=bento_service_metadata.version, ) ) if get_bento_response.status.status_code == status_pb2.Status.OK: raise BentoMLException( "BentoService bundle {}:{} already registered in repository. Reset " "BentoService version with BentoService#set_version or bypass BentoML's" " model registry feature with BentoService#save_to_dir".format( bento_service_metadata.name, bento_service_metadata.version ) ) elif get_bento_response.status.status_code != status_pb2.Status.NOT_FOUND: raise BentoMLException( 'Failed accessing YataiService. {error_code}:' '{error_message}'.format( error_code=Status.Name(get_bento_response.status.status_code), error_message=get_bento_response.status.error_message, ) ) request = AddBentoRequest( bento_name=bento_service_metadata.name, bento_version=bento_service_metadata.version, ) response = self.yatai_service.AddBento(request) if response.status.status_code != status_pb2.Status.OK: raise BentoMLException( "Error adding BentoService bundle to repository: {}:{}".format( Status.Name(response.status.status_code), response.status.error_message, ) ) if response.uri.type == BentoUri.LOCAL: if os.path.exists(response.uri.uri): # due to copytree dst must not already exist shutil.rmtree(response.uri.uri) shutil.copytree(saved_bento_path, response.uri.uri) self._update_bento_upload_progress(bento_service_metadata) logger.info( "BentoService bundle '%s:%s' saved to: %s", bento_service_metadata.name, bento_service_metadata.version, response.uri.uri, ) # Return URI to saved bento in repository storage return response.uri.uri elif response.uri.type == BentoUri.S3 or response.uri.type == BentoUri.GCS: uri_type = 'S3' if response.uri.type == BentoUri.S3 else 'GCS' self._update_bento_upload_progress( bento_service_metadata, UploadStatus.UPLOADING, 0 ) fileobj = io.BytesIO() with tarfile.open(mode="w:gz", fileobj=fileobj) as tar: tar.add(saved_bento_path, arcname=bento_service_metadata.name) fileobj.seek(0, 0) if response.uri.type == BentoUri.S3: http_response = requests.put( response.uri.s3_presigned_url, data=fileobj ) elif response.uri.type == BentoUri.GCS: http_response = requests.put( response.uri.gcs_presigned_url, data=fileobj ) if http_response.status_code != 200: self._update_bento_upload_progress( bento_service_metadata, UploadStatus.ERROR ) raise BentoMLException( f"Error saving BentoService bundle to {uri_type}." f"{http_response.status_code}: {http_response.text}" ) self._update_bento_upload_progress(bento_service_metadata) logger.info( "Successfully saved BentoService bundle '%s:%s' to {uri_type}: %s", bento_service_metadata.name, bento_service_metadata.version, response.uri.uri, ) return response.uri.uri else: raise BentoMLException( f"Error saving Bento to target repository, URI type {response.uri.type}" f" at {response.uri.uri} not supported" ) def _update_bento_upload_progress( self, bento_service_metadata, status=UploadStatus.DONE, percentage=None ): upload_status = UploadStatus(status=status, percentage=percentage) upload_status.updated_at.GetCurrentTime() update_bento_req = UpdateBentoRequest( bento_name=bento_service_metadata.name, bento_version=bento_service_metadata.version, upload_status=upload_status, service_metadata=bento_service_metadata, ) self.yatai_service.UpdateBento(update_bento_req) def download_to_directory(self, bento_pb, target_dir): if bento_pb.uri.s3_presigned_url: bento_service_bundle_path = bento_pb.uri.s3_presigned_url elif bento_pb.uri.gcs_presigned_url: bento_service_bundle_path = bento_pb.uri.gcs_presigned_url else: bento_service_bundle_path = bento_pb.uri.uri safe_retrieve(bento_service_bundle_path, target_dir) def get(self, bento): """ Get a BentoService info Args: bento: a BentoService identifier in the format of NAME:VERSION Returns: bentoml.yatai.proto.repository_pb2.Bento Example: >>> yatai_client = get_yatai_client() >>> bento_info = yatai_client.repository.get('my_service:version') """ if ':' not in bento: raise BentoMLException( 'BentoService name or version is missing. Please provide in the ' 'format of name:version' ) name, version = bento.split(':') result = self.yatai_service.GetBento( GetBentoRequest(bento_name=name, bento_version=version) ) if result.status.status_code != yatai_proto.status_pb2.Status.OK: error_code, error_message = status_pb_to_error_code_and_message( result.status ) raise BentoMLException( f'BentoService {name}:{version} not found - ' f'{error_code}:{error_message}' ) return result.bento def list( self, bento_name=None, offset=None, limit=None, labels=None, order_by=None, ascending_order=None, ): """ List BentoServices that satisfy the specified criteria. Args: bento_name: optional. BentoService name limit: optional. maximum number of returned results labels: optional. offset: optional. offset of results order_by: optional. order by results ascending_order: optional. direction of results order Returns: [bentoml.yatai.proto.repository_pb2.Bento] Example: >>> yatai_client = get_yatai_client() >>> bentos_info_list = yatai_client.repository.list( >>> labels='key=value,key2=value' >>> ) """ list_bento_request = ListBentoRequest( bento_name=bento_name, offset=offset, limit=limit, order_by=order_by, ascending_order=ascending_order, ) if labels is not None: generate_gprc_labels_selector(list_bento_request.label_selectors, labels) result = self.yatai_service.ListBento(list_bento_request) if result.status.status_code != yatai_proto.status_pb2.Status.OK: error_code, error_message = status_pb_to_error_code_and_message( result.status ) raise BentoMLException(f'{error_code}:{error_message}') return result.bentos def _delete_bento_bundle(self, bento_tag, require_confirm): bento_pb = self.get(bento_tag) if require_confirm and not click.confirm(f'Permanently delete {bento_tag}?'): return result = self.yatai_service.DangerouslyDeleteBento( DangerouslyDeleteBentoRequest( bento_name=bento_pb.name, bento_version=bento_pb.version ) ) if result.status.status_code != yatai_proto.status_pb2.Status.OK: error_code, error_message = status_pb_to_error_code_and_message( result.status ) # Rather than raise Exception, continue to delete the next bentos logger.error( f'Failed to delete {bento_pb.name}:{bento_pb.version} - ' f'{error_code}:{error_message}' ) else: logger.info(f'Deleted {bento_pb.name}:{bento_pb.version}') def delete( self, bento_tag=None, labels=None, bento_name=None, bento_version=None, prune=False, # pylint: disable=redefined-builtin require_confirm=False, ): """ Delete bentos that matches the specified criteria Args: bento_tag: string labels: string bento_name: string bento_version: string prune: boolean, Set True to delete all BentoService require_confirm: boolean Example: >>> >>> yatai_client = get_yatai_client() >>> # Delete all bento services >>> yatai_client.repository.delete(prune=True) >>> # Delete bento service with name is `IrisClassifier` and version `0.1.0` >>> yatai_client.repository.delete( >>> bento_name='IrisClassifier', bento_version='0.1.0' >>> ) >>> # or use bento tag >>> yatai_client.repository.delete('IrisClassifier:v0.1.0') >>> # Delete all bento services with name 'MyService` >>> yatai_client.repository.delete(bento_name='MyService') >>> # Delete all bento services with labels match `ci=failed` and `cohort=20` >>> yatai_client.repository.delete(labels='ci=failed, cohort=20') """ delete_list_limit = 50 if ( bento_tag is not None and bento_name is not None and bento_version is not None ): raise BentoMLException('Too much arguments') if bento_tag is not None: logger.info(f'Deleting saved Bento bundle {bento_tag}') return self._delete_bento_bundle(bento_tag, require_confirm) elif bento_name is not None and bento_tag is not None: logger.info(f'Deleting saved Bento bundle {bento_name}:{bento_version}') return self._delete_bento_bundle( f'{bento_name}:{bento_version}', require_confirm ) else: # list of bentos if prune is True: logger.info('Deleting all BentoML saved bundles.') # ignore other fields bento_name = None labels = None else: log_message = 'Deleting saved Bento bundles' if bento_name is not None: log_message += f' with name: {bento_name},' if labels is not None: log_message += f' with labels match to {labels}' logger.info(log_message) offset = 0 while offset >= 0: bento_list = self.list( bento_name=bento_name, labels=labels, offset=offset, limit=delete_list_limit, ) offset += delete_list_limit # Stop the loop, when no more bentos if len(bento_list) == 0: break else: for bento in bento_list: self._delete_bento_bundle( f'{bento.name}:{bento.version}', require_confirm ) def containerize(self, bento, tag=None, build_args=None, push=False): """ Create a container image from a BentoService. Args: bento: string tag: string build_args: dict push: boolean Returns: Image tag: String """ if ':' not in bento: raise BentoMLException( 'BentoService name or version is missing. Please provide in the ' 'format of name:version' ) name, version = bento.split(':') containerize_request = ContainerizeBentoRequest( bento_name=name, bento_version=version, tag=tag, build_args=build_args, push=push, ) result = self.yatai_service.ContainerizeBento(containerize_request) if result.status.status_code != yatai_proto.status_pb2.Status.OK: error_code, error_message = status_pb_to_error_code_and_message( result.status ) raise BentoMLException( f'Failed to containerize {bento} - {error_code}:{error_message}' ) return result.tag def load(self, bento): """ Load bento service from bento tag or from a bento bundle path. Args: bento: string, Returns: BentoService instance Example: >>> yatai_client = get_yatai_client() >>> # Load BentoService bases on bento tag. >>> bento = yatai_client.repository.load('Service_name:version') >>> # Load BentoService from bento bundle path >>> bento = yatai_client.repository.load('/path/to/bento/bundle') >>> # Load BentoService from s3 storage >>> bento = yatai_client.repository.load('s3://bucket/path/bundle.tar.gz') """ if os.path.isdir(bento) or is_s3_url(bento) or is_gcs_url(bento): saved_bundle_path = bento else: bento_pb = self.get(bento) saved_bundle_path = resolve_bento_bundle_uri(bento_pb) svc = load_from_dir(saved_bundle_path) return svc
python
# -*- coding: utf-8 -*- """ string normalizer exceptions module. """ from pyrin.core.exceptions import CoreException class StringNormalizerManagerException(CoreException): """ string normalizer manager exception. """ pass class InvalidStringNormalizerTypeError(StringNormalizerManagerException): """ invalid string normalizer type error. """ pass class DuplicatedStringNormalizerError(StringNormalizerManagerException): """ duplicated string normalizer error. """ pass class StringNormalizerDoesNotExistError(StringNormalizerManagerException): """ string normalizer does not exist error. """ pass
python
# https://www.blog.pythonlibrary.org/2010/03/08/a-simple-step-by-step-reportlab-tutorial/ # from reportlab.pdfgen import canvas # # c = canvas.Canvas("hello.pdf") # c.drawString(100,750,"Welcome to Reportlab!") # c.save() import time from reportlab.lib.enums import TA_JUSTIFY from reportlab.lib.pagesizes import letter from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from reportlab.lib.units import inch doc = SimpleDocTemplate("form_letter.pdf",pagesize=letter, rightMargin=72,leftMargin=72, topMargin=72,bottomMargin=18) Story=[] logo = "logo_iit.jpeg" magName = "Pythonista" issueNum = 12 subPrice = "99.00" limitedDate = "03/05/2010" freeGift = "tin foil hat" formatted_time = time.ctime() full_name = "Mike Driscoll" address_parts = ["411 State St.", "Marshalltown, IA 50158"] im = Image(logo, 2*inch, 2*inch) Story.append(im) styles=getSampleStyleSheet() styles.add(ParagraphStyle(name='Justify', alignment=TA_JUSTIFY)) ptext = '<font size=12>%s</font>' % formatted_time Story.append(Paragraph(ptext, styles["Normal"])) Story.append(Spacer(1, 12)) # Create return address ptext = '<font size=12>%s</font>' % full_name Story.append(Paragraph(ptext, styles["Normal"])) for part in address_parts: ptext = '<font size=12>%s</font>' % part.strip() Story.append(Paragraph(ptext, styles["Normal"])) Story.append(Spacer(1, 12)) ptext = '<font size=12>Dear %s:</font>' % full_name.split()[0].strip() Story.append(Paragraph(ptext, styles["Normal"])) Story.append(Spacer(1, 12)) ptext = '<font size=12>We would like to welcome you to our subscriber base for %s Magazine! \ You will receive %s issues at the excellent introductory price of $%s. Please respond by\ %s to start receiving your subscription and get the following free gift: %s.</font>' % (magName, issueNum, subPrice, limitedDate, freeGift) Story.append(Paragraph(ptext, styles["Justify"])) Story.append(Spacer(1, 12)) ptext = '<font size=12>Thank you very much and we look forward to serving you.</font>' Story.append(Paragraph(ptext, styles["Justify"])) Story.append(Spacer(1, 12)) ptext = '<font size=12>Sincerely,</font>' Story.append(Paragraph(ptext, styles["Normal"])) Story.append(Spacer(1, 48)) ptext = '<font size=12>Ima Sucker</font>' Story.append(Paragraph(ptext, styles["Normal"])) Story.append(Spacer(1, 12)) doc.build(Story)
python
import logging import time import config logging.basicConfig(level=logging.DEBUG, stream=open(config.LOGGING.format(int(time.time())), "w", encoding="utf-8"), format='[%(asctime)s-%(filename)s] [%(levelname)s] %(message)s', datefmt='%Y %H:%M:%S', ) global_logger = logging.getLogger(__name__)
python
from hlt import * from networking import * def getValueMap(valueMap, gameMap): for y in range(gameMap.height): for x in range(gameMap.width): valueMap[y][x] = gameMap.getSite(Location(x,y)).production return valueMap myID, gameMap = getInit() valueMap = [ [0 for x in range(gameMap.width)] for y in range(gameMap.height)] valueMap = getValueMap(valueMap, gameMap) sendInit("NadjaBot") def move(location, gameMap, x, y): this_square = gameMap.getSite(location) #gameMap.getSite(location # #return Move(location,STILL) return Move(location, worthMovingCheck(sexiestNeighbour(location, gameMap, this_square.owner, this_square.strength, x, y, gameMap.width, gameMap.height), this_square.strength, this_square.production)) #our sexiest neighbour will be the highest production one we can beat def sexiestNeighbour(location, gameMap, ownerID, myStrength, x, y,w,h): global valueMap dirs = [256,256,256,256] dirsIOwn = [] #Find neighbours we can beat for d in CARDINALS: neighbour_site = gameMap.getSite(location, d) if ownerID == neighbour_site.owner: dirsIOwn.append((d,neighbour_site.strength)) if (strongerThanYou(myStrength, neighbour_site.strength) and ownerID != neighbour_site.owner): dirs[d-1] = neighbour_site.strength if min(dirs) == 256: if len(dirsIOwn) == 4: #all the squares in the map are friends! friendlyChoices = [] for i in dirsIOwn: friendlyChoices.append(i[0]) #we could go here viablePals = [] for d in friendlyChoices: #it's the actual direction by now :lenny-face: palStrength = gameMap.getSite(location, d).strength if myStrength + palStrength <= 255: viablePals.append(d) if len(viablePals)== 0: return travelOnMyWaywordSon(location, gameMap, ownerID, myStrength, x, y, w, h) return getMostValuable(viablePals,x,y,w,h) else: return STILL beatableDirections = [] index = 0 for d in dirs: if d != 256: beatableDirections.append(index+1) index+=1 if len(beatableDirections) == 1: return beatableDirections[0] #There's a more complex trade-off to consider here..... return getMostValuable(beatableDirections, x, y,w,h) #this function tries to determine which way a block surrounded by friendlies should move def travelOnMyWaywordSon(location, gameMap, ownerID, myStrength, x, y, w, h): for y1 in range(gameMap.height): for x1 in range(gameMap.width): location1 = Location(x1, y1) site1 = gameMap.getSite(location1) if site1.owner != ownerID: return directionTowardsCoords(x1,y1,x,y,w,h) return STILL def directionTowardsCoords(targetX,targetY,x,y,w,h): diffX = abs(targetX - x) diffY = abs(targetY - y) halfwayW = w/2 halfwayH = h/2 if x > halfwayW: if targetX > halfwayW: return EAST else: return WEST else: if targetX < halfwayW: return WEST else: return EAST if y > halfwayH: if targetY > halfwayH: return SOUTH else: return NORTH else: if targetY < halfwayH: return NORTH else: return SOUTH return STILL def getMostValuable(directionList, x, y,w,h): global valueMap mostValuable = 0 chosenValuableDirection = STILL for d in directionList: if d == EAST: val = valueMap[y][(x+1)%w] if val > mostValuable: mostValuable = val chosenValuableDirection = d if d == WEST: val = valueMap[y][x-1%w] if val > mostValuable: mostValuable = val chosenValuableDirection = d if d == NORTH: val = valueMap[(y-1)%h][x] if val > mostValuable: mostValuable = val chosenValuableDirection = d if d == SOUTH: val = valueMap[(y+1)%h][x] if val > mostValuable: mostValuable = val chosenValuableDirection = d return chosenValuableDirection def worthMovingCheck(direction, siteStrength, siteProduction): if siteStrength >= siteProduction * 3: return direction else: return STILL def strongerThanYou(a,b): return a > b while True: moves = [] gameMap = getFrame() for y in range(gameMap.height): for x in range(gameMap.width): location = Location(x, y) moves.append(move(location, gameMap, x, y)) sendFrame(moves)
python
#!/usr/bin/env python3 import hmac import json import flask import flask_compress import flask_httpauth class Config: pass config = Config() with open("config.json") as f: config_data = json.load(f) if config_data["cloud_service"]["type"] != "azure storage datalake": raise NotImplementedError("unsupported cloud storage type") config.storage_account_name = config_data["cloud_service"]["account_name"] config.storage_account_key = config_data["cloud_service"]["account_key"] config.storage_container = config_data["cloud_service"]["container_name"] config.auth = dict() for u in config_data["auth"]: config.auth[u] = config_data["auth"][u] app = flask.Flask(__name__) app.config["COMPRESS_REGISTER"] = False compress = flask_compress.Compress() compress.init_app(app) auth = flask_httpauth.HTTPBasicAuth() @auth.verify_password def verify_password(username, password): if username in config.auth and hmac.compare_digest(password, config.auth[username]): return username import webdav_options # noqa import webdav_get # noqa import webdav_propfind # noqa import webdav_mkcol # noqa import webdav_delete # noqa import webdav_put # noqa
python
# -*- coding: utf-8 -*- '''Chemical Engineering Design Library (ChEDL). Utilities for process modeling. Copyright (C) 2016, Caleb Bell <[email protected]> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' from __future__ import division from math import pi from scipy.constants import inch __all__ = ['nearest_pipe', 'gauge_from_t', 't_from_gauge', 'wire_schedules'] # Schedules 5, 10, 20, 30, 40, 60, 80, 100, 120, 140, 160 from # ASME B36.10M - Welded and Seamless Wrought Steel Pipe # All schedule lists stored in mm, other than NPS. # i = inner diameter, o = outer diameter, and t = wall thickness in variable names NPS5 = [0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 30] S5i = [18, 23.4, 30.1, 38.9, 45, 57, 68.78, 84.68, 97.38, 110.08, 135.76, 162.76, 213.56, 266.2, 315.88, 347.68, 398.02, 448.62, 498.44, 549.44, 598.92, 749.3] S5o = [21.3, 26.7, 33.4, 42.2, 48.3, 60.3, 73, 88.9, 101.6, 114.3, 141.3, 168.3, 219.1, 273, 323.8, 355.6, 406.4, 457, 508, 559, 610, 762] S5t = [1.65, 1.65, 1.65, 1.65, 1.65, 1.65, 2.11, 2.11, 2.11, 2.11, 2.77, 2.77, 2.77, 3.4, 3.96, 3.96, 4.19, 4.19, 4.78, 4.78, 5.54, 6.35] NPS10 = [0.125, 0.25, 0.375, 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36] S10i = [7.82, 10.4, 13.8, 17.08, 22.48, 27.86, 36.66, 42.76, 54.76, 66.9, 82.8, 95.5, 108.2, 134.5, 161.5, 211.58, 264.62, 314.66, 342.9, 393.7, 444.3, 495.3, 546.3, 597.3, 644.16, 695.16, 746.16, 797.16, 848.16, 898.16] S10o = [10.3, 13.7, 17.1, 21.3, 26.7, 33.4, 42.2, 48.3, 60.3, 73, 88.9, 101.6, 114.3, 141.3, 168.3, 219.1, 273, 323.8, 355.6, 406.4, 457, 508, 559, 610, 660, 711, 762, 813, 864, 914] S10t = [1.24, 1.65, 1.65, 2.11, 2.11, 2.77, 2.77, 2.77, 2.77, 3.05, 3.05, 3.05, 3.05, 3.4, 3.4, 3.76, 4.19, 4.57, 6.35, 6.35, 6.35, 6.35, 6.35, 6.35, 7.92, 7.92, 7.92, 7.92, 7.92, 7.92] NPS20 = [8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36] S20i = [206.4, 260.3, 311.1, 339.76, 390.56, 441.16, 488.94, 539.94, 590.94, 634.6, 685.6, 736.6, 787.6, 838.6, 888.6] S20o = [219.1, 273, 323.8, 355.6, 406.4, 457, 508, 559, 610, 660, 711, 762, 813, 864, 914] S20t = [6.35, 6.35, 6.35, 7.92, 7.92, 7.92, 9.53, 9.53, 9.53, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7] NPS30 = [0.125, 0.25, 0.375, 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 3.5, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 30, 32, 34, 36] S30i = [7.4, 10, 13.4, 16.48, 21.88, 27.6, 36.26, 41.94, 53.94, 63.44, 79.34, 92.04, 104.74, 205.02, 257.4, 307.04, 336.54, 387.34, 434.74, 482.6, 533.6, 581.46, 679.24, 730.24, 781.24, 832.24, 882.24] S30o = [10.3, 13.7, 17.1, 21.3, 26.7, 33.4, 42.2, 48.3, 60.3, 73, 88.9, 101.6, 114.3, 219.1, 273, 323.8, 355.6, 406.4, 457, 508, 559, 610, 711, 762, 813, 864, 914] S30t = [1.45, 1.85, 1.85, 2.41, 2.41, 2.9, 2.97, 3.18, 3.18, 4.78, 4.78, 4.78, 4.78, 7.04, 7.8, 8.38, 9.53, 9.53, 11.13, 12.7, 12.7, 14.27, 15.88, 15.88, 15.88, 15.88, 15.88] NPS40 = [0.125, 0.25, 0.375, 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 24, 32, 34, 36] S40i = [6.84, 9.22, 12.48, 15.76, 20.96, 26.64, 35.08, 40.94, 52.48, 62.68, 77.92, 90.12, 102.26, 128.2, 154.08, 202.74, 254.46, 303.18, 333.34, 381, 428.46, 477.82, 575.04, 778.04, 829.04, 875.9] S40o = [10.3, 13.7, 17.1, 21.3, 26.7, 33.4, 42.2, 48.3, 60.3, 73, 88.9, 101.6, 114.3, 141.3, 168.3, 219.1, 273, 323.8, 355.6, 406.4, 457, 508, 610, 813, 864, 914] S40t = [1.73, 2.24, 2.31, 2.77, 2.87, 3.38, 3.56, 3.68, 3.91, 5.16, 5.49, 5.74, 6.02, 6.55, 7.11, 8.18, 9.27, 10.31, 11.13, 12.7, 14.27, 15.09, 17.48, 17.48, 17.48, 19.05] NPS60 = [8, 10, 12, 14, 16, 18, 20, 22, 24] S60i = [198.48, 247.6, 295.26, 325.42, 373.08, 418.9, 466.76, 514.54, 560.78] S60o = [219.1, 273, 323.8, 355.6, 406.4, 457, 508, 559, 610] S60t = [10.31, 12.7, 14.27, 15.09, 16.66, 19.05, 20.62, 22.23, 24.61] NPS80 = [0.125, 0.25, 0.375, 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24] S80i = [5.48, 7.66, 10.7, 13.84, 18.88, 24.3, 32.5, 38.14, 49.22, 58.98, 73.66, 85.44, 97.18, 122.24, 146.36, 193.7, 242.82, 288.84, 317.5, 363.52, 409.34, 455.62, 501.84, 548.08] S80o = [10.3, 13.7, 17.1, 21.3, 26.7, 33.4, 42.2, 48.3, 60.3, 73, 88.9, 101.6, 114.3, 141.3, 168.3, 219.1, 273, 323.8, 355.6, 406.4, 457, 508, 559, 610] S80t = [2.41, 3.02, 3.2, 3.73, 3.91, 4.55, 4.85, 5.08, 5.54, 7.01, 7.62, 8.08, 8.56, 9.53, 10.97, 12.7, 15.09, 17.48, 19.05, 21.44, 23.83, 26.19, 28.58, 30.96] NPS100 = [8, 10, 12, 14, 16, 18, 20, 22, 24] S100i = [188.92, 236.48, 280.92, 307.94, 354.02, 398.28, 442.92, 489.14, 532.22] S100o = [219.1, 273, 323.8, 355.6, 406.4, 457, 508, 559, 610] S100t = [15.09, 18.26, 21.44, 23.83, 26.19, 29.36, 32.54, 34.93, 38.89] NPS120 = [4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24] S120i = [92.04, 115.9, 139.76, 182.58, 230.12, 273, 300.02, 344.48, 387.14, 431.8, 476.44, 517.96] S120o = [114.3, 141.3, 168.3, 219.1, 273, 323.8, 355.6, 406.4, 457, 508, 559, 610] S120t = [11.13, 12.7, 14.27, 18.26, 21.44, 25.4, 27.79, 30.96, 34.93, 38.1, 41.28, 46.02] NPS140 = [8, 10, 12, 14, 16, 18, 20, 22, 24] S140i = [177.86, 222.2, 266.64, 292.1, 333.34, 377.66, 419.1, 463.74, 505.26] S140o = [219.1, 273, 323.8, 355.6, 406.4, 457, 508, 559, 610] S140t = [20.62, 25.4, 28.58, 31.75, 36.53, 39.67, 44.45, 47.63, 52.37] NPS160 = [0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24] S160i = [11.74, 15.58, 20.7, 29.5, 34.02, 42.82, 53.94, 66.64, 87.32, 109.54, 131.78, 173.08, 215.84, 257.16, 284.18, 325.42, 366.52, 407.98, 451.04, 490.92] S160o = [21.3, 26.7, 33.4, 42.2, 48.3, 60.3, 73, 88.9, 114.3, 141.3, 168.3, 219.1, 273, 323.8, 355.6, 406.4, 457, 508, 559, 610] S160t = [4.78, 5.56, 6.35, 6.35, 7.14, 8.74, 9.53, 11.13, 13.49, 15.88, 18.26, 23.01, 28.58, 33.32, 35.71, 40.49, 45.24, 50.01, 53.98, 59.54] # Schedules designated STD, XS, and XXS NPSSTD = [0.125, 0.25, 0.375, 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48] STDi = [6.84, 9.22, 12.48, 15.76, 20.96, 26.64, 35.08, 40.94, 52.48, 62.68, 77.92, 90.12, 102.26, 128.2, 154.08, 202.74, 254.46, 304.74, 336.54, 387.34, 437.94, 488.94, 539.94, 590.94, 640.94, 691.94, 742.94, 793.94, 844.94, 894.94, 945.94, 996.94, 1047.94, 1098.94, 1148.94, 1199.94] STDo = [10.3, 13.7, 17.1, 21.3, 26.7, 33.4, 42.2, 48.3, 60.3, 73, 88.9, 101.6, 114.3, 141.3, 168.3, 219.1, 273, 323.8, 355.6, 406.4, 457, 508, 559, 610, 660, 711, 762, 813, 864, 914, 965, 1016, 1067, 1118, 1168, 1219] STDt = [1.73, 2.24, 2.31, 2.77, 2.87, 3.38, 3.56, 3.68, 3.91, 5.16, 5.49, 5.74, 6.02, 6.55, 7.11, 8.18, 9.27, 9.53, 9.53, 9.53, 9.53, 9.53, 9.53, 9.53, 9.53, 9.53, 9.53, 9.53, 9.53, 9.53, 9.53, 9.53, 9.53, 9.53, 9.53, 9.53] NPSXS = [0.125, 0.25, 0.375, 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48] XSi = [5.48, 7.66, 10.7, 13.84, 18.88, 24.3, 32.5, 38.14, 49.22, 58.98, 73.66, 85.44, 97.18, 122.24, 146.36, 193.7, 247.6, 298.4, 330.2, 381, 431.6, 482.6, 533.6, 584.6, 634.6, 685.6, 736.6, 787.6, 838.6, 888.6, 939.6, 990.6, 1041.6, 1092.6, 1142.6, 1193.6] XSo = [10.3, 13.7, 17.1, 21.3, 26.7, 33.4, 42.2, 48.3, 60.3, 73, 88.9, 101.6, 114.3, 141.3, 168.3, 219.1, 273, 323.8, 355.6, 406.4, 457, 508, 559, 610, 660, 711, 762, 813, 864, 914, 965, 1016, 1067, 1118, 1168, 1219] XSt = [2.41, 3.02, 3.2, 3.73, 3.91, 4.55, 4.85, 5.08, 5.54, 7.01, 7.62, 8.08, 8.56, 9.53, 10.97, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7] NPSXXS = [0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12] XXSi = [6.36, 11.06, 15.22, 22.8, 28, 38.16, 44.96, 58.42, 80.06, 103.2, 124.4, 174.64, 222.2, 273] XXSo = [21.3, 26.7, 33.4, 42.2, 48.3, 60.3, 73, 88.9, 114.3, 141.3, 168.3, 219.1, 273, 323.8] XXSt = [7.47, 7.82, 9.09, 9.7, 10.15, 11.07, 14.02, 15.24, 17.12, 19.05, 21.95, 22.23, 25.4, 25.4] NPSS5 = [0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 30] SS5DN = [15, 20, 25, 32, 40, 50, 65, 80, 90, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 750] SS5i = [18, 23.4, 30.1, 38.9, 45, 57, 68.78, 84.68, 97.38, 110.08, 135.76, 162.76, 213.56, 266.3, 315.98, 347.68, 398.02, 448.62, 498.44, 549.44, 598.92, 749.3] SS5o = [21.3, 26.7, 33.4, 42.2, 48.3, 60.3, 73, 88.9, 101.6, 114.3, 141.3, 168.3, 219.1, 273.1, 323.9, 355.6, 406.4, 457, 508, 559, 610, 762] SS5t = [1.65, 1.65, 1.65, 1.65, 1.65, 1.65, 2.11, 2.11, 2.11, 2.11, 2.77, 2.77, 2.77, 3.4, 3.96, 3.96, 4.19, 4.19, 4.78, 4.78, 5.54, 6.35] # Schedules 10, 40 and 80 from ASME B36.19M - Stainless Steel Pipe NPSS10 = [0.125, 0.25, 0.375, 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 30] SS10DN = [6, 8, 10, 15, 20, 25, 32, 40, 50, 65, 80, 90, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 750] SS10i = [7.82, 10.4, 13.8, 17.08, 22.48, 27.86, 36.66, 42.76, 54.76, 66.9, 82.8, 95.5, 108.2, 134.5, 161.5, 211.58, 264.72, 314.76, 346.04, 396.84, 447.44, 496.92, 547.92, 597.3, 746.16] SS10o = [10.3, 13.7, 17.1, 21.3, 26.7, 33.4, 42.2, 48.3, 60.3, 73, 88.9, 101.6, 114.3, 141.3, 168.3, 219.1, 273.1, 323.9, 355.6, 406.4, 457, 508, 559, 610, 762] SS10t = [1.24, 1.65, 1.65, 2.11, 2.11, 2.77, 2.77, 2.77, 2.77, 3.05, 3.05, 3.05, 3.05, 3.4, 3.4, 3.76, 4.19, 4.57, 4.78, 4.78, 4.78, 5.54, 5.54, 6.35, 7.92] NPSS40 = [0.125, 0.25, 0.375, 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 24] SS40DN = [6, 8, 10, 15, 20, 25, 32, 40, 50, 65, 80, 90, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600] SS40i = [6.84, 9.22, 12.48, 15.76, 20.96, 26.64, 35.08, 40.94, 52.48, 62.68, 77.92, 90.12, 102.26, 128.2, 154.08, 202.74, 254.56, 304.84, 336.54, 387.34, 437.94, 488.94, 590.94] SS40o = [10.3, 13.7, 17.1, 21.3, 26.7, 33.4, 42.2, 48.3, 60.3, 73, 88.9, 101.6, 114.3, 141.3, 168.3, 219.1, 273.1, 323.9, 355.6, 406.4, 457, 508, 610] SS40t = [1.73, 2.24, 2.31, 2.77, 2.87, 3.38, 3.56, 3.68, 3.91, 5.16, 5.49, 5.74, 6.02, 6.55, 7.11, 8.18, 9.27, 9.53, 9.53, 9.53, 9.53, 9.53, 9.53] NPSS80 = [0.125, 0.25, 0.375, 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 24] SS80DN = [6, 8, 10, 15, 20, 25, 32, 40, 50, 65, 80, 90, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600] SS80i = [5.48, 7.66, 10.7, 13.84, 18.88, 24.3, 32.5, 38.14, 49.22, 58.98, 73.66, 85.44, 97.18, 122.24, 146.36, 193.7, 247.7, 298.5, 330.2, 381, 431.6, 482.6, 584.6] SS80o = [10.3, 13.7, 17.1, 21.3, 26.7, 33.4, 42.2, 48.3, 60.3, 73, 88.9, 101.6, 114.3, 141.3, 168.3, 219.1, 273.1, 323.9, 355.6, 406.4, 457, 508, 610] SS80t = [2.41, 3.02, 3.2, 3.73, 3.91, 4.55, 4.85, 5.08, 5.54, 7.01, 7.62, 8.08, 8.56, 9.53, 10.97, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7, 12.7] schedule_lookup = { '40': (NPS40, S40i, S40o, S40t), '5': (NPS5, S5i, S5o, S5t), '10': (NPS10, S10i, S10o, S10t), '20': (NPS20, S20i, S20o, S20t), '30': (NPS30, S30i, S30o, S30t), '60': (NPS60, S60i, S60o, S60t), '80': (NPS80, S80i, S80o, S80t), '100': (NPS100, S100i, S100o, S100t), '120': (NPS120, S120i, S120o, S120t), '140': (NPS140, S140i, S140o, S140t), '160': (NPS160, S160i, S160o, S160t), 'STD': (NPSSTD, STDi, STDo, STDt), 'XS': (NPSXS, XSi, XSo, XSt), 'XXS': (NPSXXS, XXSi, XXSo, XXSt), '5S': (NPSS5, SS5i, SS5o, SS5t), '10S': (NPSS10, SS10i, SS10o, SS10t), '40S': (NPSS40, SS40i, SS40o, SS40t), '80S': (NPSS80, SS80i, SS80o, SS80t)} def nearest_pipe(Do=None, Di=None, NPS=None, schedule='40'): r'''Searches for and finds the nearest standard pipe size to a given specification. Acceptable inputs are: - Nominal pipe size - Nominal pipe size and schedule - Outer diameter `Do` - Outer diameter `Do` and schedule - Inner diameter `Di` - Inner diameter `Di` and schedule Acceptable schedules are: '5', '10', '20', '30', '40', '60', '80', '100', '120', '140', '160', 'STD', 'XS', 'XXS', '5S', '10S', '40S', '80S'. Parameters ---------- Do : float Pipe outer diameter, [m] Di : float Pipe inner diameter, [m] NPS : float Nominal pipe size, [-] schedule : str String representing schedule size Returns ------- NPS : float Nominal pipe size, [-] Di : float Pipe inner diameter, [m] Do : float Pipe outer diameter, [m] t : float Pipe wall thickness, [m] Notes ----- Internal units within this function are mm. The imperial schedules are not quite identical to these value, but all rounding differences happen in the sub-0.1 mm level. Examples -------- >>> nearest_pipe(Di=0.021) (1, 0.02664, 0.0334, 0.0033799999999999998) >>> nearest_pipe(Do=.273, schedule='5S') (10, 0.26630000000000004, 0.2731, 0.0034) References ---------- .. [1] American National Standards Institute, and American Society of Mechanical Engineers. B36.10M-2004: Welded and Seamless Wrought Steel Pipe. New York: American Society of Mechanical Engineers, 2004. .. [2] American National Standards Institute, and American Society of Mechanical Engineers. B36-19M-2004: Stainless Steel Pipe. New York, N.Y.: American Society of Mechanical Engineers, 2004. ''' if Di: Di *= 1E3 if Do: Do *= 1E3 if NPS: NPS = float(NPS) def Di_lookup(Di, NPSes, Dis, Dos, ts): for i in range(len(Dis)): # Go up ascending list; once larger than specified, return if Dis[-1] < Di: return None if Dis[i] >= Di: _nps, _di, _do, _t = NPSes[i], Dis[i], Dos[i], ts[i] return (_nps, _di, _do, _t) raise Exception('Di lookup failed') def Do_lookup(Do, NPSes, Dis, Dos, ts): for i in range(len(Dos)): # Go up ascending list; once larger than specified, return if Dos[-1] < Do: return None if Dos[i] >= Do: _nps, _di, _do, _t = NPSes[i], Dis[i], Dos[i], ts[i] return (_nps, _di, _do, _t) raise Exception('Do lookup failed') def NPS_lookup(NPS, NPSes, Dis, Dos, ts): for i in range(len(NPSes)): # Go up ascending list; once larger than specified, return if NPSes[i] == NPS: _nps, _di, _do, _t = NPSes[i], Dis[i], Dos[i], ts[i] return (_nps, _di, _do, _t) raise Exception('NPS not in list') # If accidentally given an numerical schedule, convert it to a string schedule_type = type(schedule) if schedule_type in (int, float): schedule = str(int(schedule)) if schedule not in schedule_lookup: raise ValueError('Schedule not recognized') else: NPSes, Dis, Dos, ts = schedule_lookup[schedule] # Handle the three cases of different inputs if Di: nums = Di_lookup(Di, NPSes, Dis, Dos, ts) elif Do: nums = Do_lookup(Do, NPSes, Dis, Dos, ts) elif NPS: nums = NPS_lookup(NPS, NPSes, Dis, Dos, ts) if nums is None: raise ValueError('Pipe input is larger than max of selected schedule') _nps, _di, _do, _t = nums return _nps, _di/1E3, _do/1E3, _t/1E3 ### Wire gauge schedules # Stub's Steel Wire Gage SSWG_integers = list(range(1, 81)) SSWG_inch = [0.227, 0.219, 0.212, 0.207, 0.204, 0.201, 0.199, 0.197, 0.194, 0.191, 0.188, 0.185, 0.182, 0.18, 0.178, 0.175, 0.172, 0.168, 0.164, 0.161, 0.157, 0.155, 0.153, 0.151, 0.148, 0.146, 0.143, 0.139, 0.134, 0.127, 0.12, 0.115, 0.112, 0.11, 0.108, 0.106, 0.103, 0.101, 0.099, 0.097, 0.095, 0.092, 0.088, 0.085, 0.081, 0.079, 0.077, 0.075, 0.072, 0.069, 0.066, 0.063, 0.058, 0.055, 0.05, 0.045, 0.042, 0.041, 0.04, 0.039, 0.038, 0.037, 0.036, 0.035, 0.033, 0.032, 0.031, 0.03, 0.029, 0.027, 0.026, 0.024, 0.023, 0.022, 0.02, 0.018, 0.016, 0.015, 0.014, 0.013] SSWG_SI = [round(i*inch, 7) for i in SSWG_inch] # 7 decimals for equal conversion # British Standard Wire Gage (Imperial Wire Gage) BSWG_integers = [0.143, .167, 0.2, 0.25, 0.33, 0.5] + list(range(51)) BSWG_inch = [0.5, 0.464, 0.432, 0.4, 0.372, 0.348, 0.324, 0.3, 0.276, 0.252, 0.232, 0.212, 0.192, 0.176, 0.16, 0.144, 0.128, 0.116, 0.104, 0.092, 0.08, 0.072, 0.064, 0.056, 0.048, 0.04, 0.036, 0.032, 0.028, 0.024, 0.022, 0.02, 0.018, 0.0164, 0.0149, 0.0136, 0.0124, 0.0116, 0.0108, 0.01, 0.0092, 0.0084, 0.0076, 0.0068, 0.006, 0.0052, 0.0048, 0.0044, 0.004, 0.0036, 0.0032, 0.0028, 0.0024, 0.002, 0.0016, 0.0012, 0.001] BSWG_SI = [round(i*inch,8) for i in BSWG_inch] # 8 decimals for equal conversion # Music Wire Gauge MWG_integers = [.167, 0.2, 0.25, 0.33, 0.5] + list(range(46)) MWG_inch = [0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.011, 0.012, 0.013, 0.014, 0.016, 0.018, 0.02, 0.022, 0.024, 0.026, 0.029, 0.031, 0.033, 0.035, 0.037, 0.039, 0.041, 0.043, 0.045, 0.047, 0.049, 0.051, 0.055, 0.059, 0.063, 0.067, 0.071, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.106, 0.112, 0.118, 0.124, 0.13, 0.138, 0.146, 0.154, 0.162, 0.17, 0.18] MWG_SI = [round(i*inch,7) for i in MWG_inch] # 7 decimals for equal conversion # Scale gets bigger instead of smaller; reverse for convenience MWG_integers.reverse() MWG_inch.reverse() MWG_SI.reverse() # Steel Wire Gage -Also Washburn & Moen gage, American Steel gage; # Wire Co.gage; Roebling Wire Gages. SWG_integers = [0.143, .167, 0.2, 0.25, 0.33, 0.5] + list(range(51)) SWG_inch = [0.49, 0.4615, 0.4305, 0.3938, 0.3625, 0.331, 0.3065, 0.283, 0.2625, 0.2437, 0.2253, 0.207, 0.192, 0.177, 0.162, 0.1483, 0.135, 0.1205, 0.1055, 0.0915, 0.08, 0.072, 0.0625, 0.054, 0.0475, 0.041, 0.0348, 0.0318, 0.0286, 0.0258, 0.023, 0.0204, 0.0181, 0.0173, 0.0162, 0.015, 0.014, 0.0132, 0.0128, 0.0118, 0.0104, 0.0095, 0.009, 0.0085, 0.008, 0.0075, 0.007, 0.0066, 0.0062, 0.006, 0.0058, 0.0055, 0.0052, 0.005, 0.0048, 0.0046, 0.0044] SWG_SI = [round(i*inch,8) for i in SWG_inch] # 8 decimals for equal conversion # American Wire or Brown & Sharpe Gage AWG_integers = [.167, 0.2, 0.25, 0.33, 0.5] + list(range(51)) AWG_inch = [0.58, 0.5165, 0.46, 0.4096, 0.3648, 0.3249, 0.2893, 0.2576, 0.2294, 0.2043, 0.1819, 0.162, 0.1443, 0.1285, 0.1144, 0.1019, 0.0907, 0.0808, 0.072, 0.0641, 0.0571, 0.0508, 0.0453, 0.0403, 0.0359, 0.032, 0.0285, 0.0253, 0.0226, 0.0201, 0.0179, 0.0159, 0.0142, 0.0126, 0.0113, 0.01, 0.00893, 0.00795, 0.00708, 0.0063, 0.00561, 0.005, 0.00445, 0.00396, 0.00353, 0.00314, 0.0028, 0.00249, 0.00222, 0.00198, 0.00176, 0.00157, 0.0014, 0.00124, 0.00111, 0.00099] AWG_SI = [round(i*inch,9) for i in AWG_inch] # 9 decimals for equal conversion # Birmingham or Stub's Iron Wire Gage BWG_integers = [0.2, 0.25, 0.33, 0.5] + list(range(37)) BWG_inch = [0.5, 0.454, 0.425, 0.38, 0.34, 0.3, 0.284, 0.259, 0.238, 0.22, 0.203, 0.18, 0.165, 0.148, 0.134, 0.12, 0.109, 0.095, 0.083, 0.072, 0.065, 0.058, 0.049, 0.042, 0.035, 0.032, 0.028, 0.025, 0.022, 0.02, 0.018, 0.016, 0.014, 0.013, 0.012, 0.01, 0.009, 0.008, 0.007, 0.005, 0.004] BWG_SI = [round(i*inch,6) for i in BWG_inch] wire_schedules = {'BWG': (BWG_integers, BWG_inch, BWG_SI, True), 'AWG': (AWG_integers, AWG_inch, AWG_SI, True), 'SWG': (SWG_integers, SWG_inch, SWG_SI, True), 'MWG': (MWG_integers, MWG_inch, MWG_SI, False), 'BSWG': (BSWG_integers, BSWG_inch, BSWG_SI, True), 'SSWG': (SSWG_integers, SSWG_inch, SSWG_SI, True)} def gauge_from_t(t, SI=True, schedule='BWG'): r'''Looks up the gauge of a given wire thickness of given schedule. Values are all non-linear, and tabulated internally. Parameters ---------- t : float Thickness, [m] SI : bool, optional If False, requires that the thickness is given in inches not meters schedule : str Gauge schedule, one of 'BWG', 'AWG', 'SWG', 'MWG', 'BSWG', or 'SSWG' Returns ------- gauge : float-like Wire Gauge, [-] Notes ----- An internal variable, tol, is used in the selection of the wire gauge. If the next smaller wire gauge is within 10% of the difference between it and the previous wire gauge, the smaller wire gauge is selected. Accordingly, this function can return a gauge with a thickness smaller than desired in some circumstances. * Birmingham Wire Gauge (BWG) ranges from 0.2 (0.5 inch) to 36 (0.004 inch). * American Wire Gauge (AWG) ranges from 0.167 (0.58 inch) to 51 (0.00099 inch). These are used for electrical wires. * Steel Wire Gauge (SWG) ranges from 0.143 (0.49 inch) to 51 (0.0044 inch). Also called Washburn & Moen wire gauge, American Steel gauge, Wire Co. gauge, and Roebling wire gauge. * Music Wire Gauge (MWG) ranges from 0.167 (0.004 inch) to 46 (0.18 inch). Also called Piano Wire Gauge. * British Standard Wire Gage (BSWG) ranges from 0.143 (0.5 inch) to 51 (0.001 inch). Also called Imperial Wire Gage (IWG). * Stub's Steel Wire Gage (SSWG) ranges from 1 (0.227 inch) to 80 (0.013 inch) Examples -------- >>> gauge_from_t(.5, SI=False, schedule='BWG') 0.2 References ---------- .. [1] Oberg, Erik, Franklin D. Jones, and Henry H. Ryffel. Machinery's Handbook. Industrial Press, Incorporated, 2012. ''' tol = 0.1 # Handle units if SI: t_inch = round(t/inch, 9) # all schedules are in inches else: t_inch = t # Get the schedule try: sch_integers, sch_inch, sch_SI, decreasing = wire_schedules[schedule] except: raise ValueError('Wire gauge schedule not found') # Check if outside limits sch_max, sch_min = sch_inch[0], sch_inch[-1] if t_inch > sch_max: raise ValueError('Input thickness is above the largest in the selected schedule') # If given thickness is exactly in the index, be happy if t_inch in sch_inch: gauge = sch_integers[sch_inch.index(t_inch)] else: for i in range(len(sch_inch)): if sch_inch[i] >= t_inch: larger = sch_inch[i] else: break if larger == sch_min: gauge = sch_min # If t is under the lowest schedule, be happy else: smaller = sch_inch[i] if (t_inch - smaller) <= tol*(larger - smaller): gauge = sch_integers[i] else: gauge = sch_integers[i-1] return gauge def t_from_gauge(gauge, SI=True, schedule='BWG'): r'''Looks up the thickness of a given wire gauge of given schedule. Values are all non-linear, and tabulated internally. Parameters ---------- gauge : float-like Wire Gauge, [] SI : bool, optional If False, will return a thickness in inches not meters schedule : str Gauge schedule, one of 'BWG', 'AWG', 'SWG', 'MWG', 'BSWG', or 'SSWG' Returns ------- t : float Thickness, [m] Notes ----- * Birmingham Wire Gauge (BWG) ranges from 0.2 (0.5 inch) to 36 (0.004 inch). * American Wire Gauge (AWG) ranges from 0.167 (0.58 inch) to 51 (0.00099 inch). These are used for electrical wires. * Steel Wire Gauge (SWG) ranges from 0.143 (0.49 inch) to 51 (0.0044 inch). Also called Washburn & Moen wire gauge, American Steel gauge, Wire Co. gauge, and Roebling wire gauge. * Music Wire Gauge (MWG) ranges from 0.167 (0.004 inch) to 46 (0.18 inch). Also called Piano Wire Gauge. * British Standard Wire Gage (BSWG) ranges from 0.143 (0.5 inch) to 51 (0.001 inch). Also called Imperial Wire Gage (IWG). * Stub's Steel Wire Gage (SSWG) ranges from 1 (0.227 inch) to 80 (0.013 inch) Examples -------- >>> t_from_gauge(.2, False, 'BWG') 0.5 References ---------- .. [1] Oberg, Erik, Franklin D. Jones, and Henry H. Ryffel. Machinery's Handbook. Industrial Press, Incorporated, 2012. ''' try: sch_integers, sch_inch, sch_SI, decreasing = wire_schedules[schedule] except: raise ValueError("Wire gauge schedule not found; supported gauges are \ 'BWG', 'AWG', 'SWG', 'MWG', 'BSWG', and 'SSWG'.") try: i = sch_integers.index(gauge) except: raise ValueError('Input gauge not found in selected schedule') if SI: return sch_SI[i] # returns thickness in m else: return sch_inch[i] # returns thickness in inch
python
# Copyright 2009-2013 Nokia Siemens Networks Oyj # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from django import forms from django.db.models import Q from django.shortcuts import render from rfdoc.rfdocapp.models import Keyword def search(request): search_performed = False kws = [] if request.method == 'POST': form = SearchForm(request.POST) if form.is_valid(): term = form.cleaned_data['search_term'] version = form.cleaned_data['search_version'] query = Q(name__icontains = term) if form.cleaned_data['include_doc']: query = query | Q(doc__icontains = term) # SQLite LIKEs are case-insensitive by default. # Thus using just name__contains wouldn't work expectedly. # To circumvent this, an additional query using regular expressions # is applied for the case-sensitive searches. if not form.cleaned_data['case_insensitive']: query = Q(name__regex = r'.*%s.*' % re.escape(term)) if form.cleaned_data['include_doc']: query = query | Q(doc__regex = r'.*%s.*' % re.escape(term)) kws = Keyword.objects.filter(query) if version: version = re.escape(version).replace('\?','.').replace('\*','.*') kws = kws.filter(library__version__regex=r'^%s$' % version) search_performed = True else: form = SearchForm() return render(request, 'search.html', { 'form': form, 'kws': kws, 'search_performed': search_performed } ) class SearchForm(forms.Form): search_term = forms.CharField(error_messages={'required': 'Search term is required!'}) search_version = forms.CharField(required=False) include_doc = forms.BooleanField(required=False, initial=True) case_insensitive = forms.BooleanField(required=False, initial=True)
python
from connection import Connection import viewer.page def general_information(url: str) -> dict: con = Connection() soup = con.get(url).soup return { 'Imslp Link': url, 'Genre Categories': viewer.page.genre_categories(soup), 'Work Title': viewer.page.work_title(soup), 'Name Translations': viewer.page.name_translations(soup), 'Name Aliases': viewer.page.name_aliases(soup), 'Composer': viewer.page.composer(soup), 'Catalogue Number': viewer.page.catalogue_number(soup), 'Catalogue': viewer.page.catalogue(soup), # Opus or B 'Catalogic Number': viewer.page.catalogic_number(soup), # the number only after opus or B 'I-Catalogue Number': viewer.page.i_catalogue_number(soup), 'Key': viewer.page.key(soup), 'Movements/Sections': viewer.page.movements_or_sections(soup, filtered_word), # if is list, list[0] is amount of sections, others are details. 'Year/Date of Composition': viewer.page.year_or_date_of_composition(soup), 'First Publication': viewer.page.first_publication(soup), 'Composer Time Period': viewer.page.composer_time_period(soup), 'Piece Style': viewer.page.piece_style(soup), 'Instrumentation': viewer.page.instrumentation(soup) }
python
import fileinput import re lists = [['fileListGetter.py', 'fileListGetter', ['directory', '_nsns'], [], 'def fileListGetter(directory, _nsns): """ Function to get list of files and language types Inputs: directory: Stirng containing path to search for files in. Outputs: List of Lists. Lists are of format, [filename, language type] """'], ['fileListGetter.py', 'getLanguageType', ['file_extention'], [], 'def getLanguageType(file_extention): """ Function to assign language type based on file extention. Input: file_extention: String that lists file type. Output: languageType: string listsing identified language type. """'], ['fileListGetter.py', 'printFileLists', ['fileLists'], [], 'def printFileLists(fileLists): """ Function to print out the contents of fileLists Main use is debugging """']] comments = "" comment = "" # for each #2 list item in input functions = [] newitem ="" for i in lists: newitem = i[1] functions.append(newitem) combined = "(" + "|".join(functions) + ")" comments = comments + "# Functions\n" for function in functions: comments = comments + "\n##"+ (function) + "\n" with open("readme.md") as openfile: # search for function name, for each instance for line in openfile: comment = "" # if comma-nated match = re.search(combined + ", " + "\\b"+re.escape(function)+"\\b",line) if match==None: match = re.search("\\b"+re.escape(function)+"\\b" + ", " + combined,line) if match==None: # if new line match = re.search("^" + "\\b"+re.escape(function)+"\\b" + "[,\" :-]*[*]*[,\" :-]*(.*)",line) if match: comment = match.group(1) + "\n" else: # if not new line or comma-nated match = re.search("\\b"+re.escape(function)+"\\b" + "[,\" :-]*[*]*[,\" :-]*(.*)",line) if match: comment = match.group(1) + "\n" comments = comments + comment comments = comments + "\n" output = str("externaldocresults.md") text_file = open(output, "w") text_file.write(comments) text_file.close()
python
# Generated by Django 3.1.7 on 2021-07-07 17:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('messenger', '0023_auto_20210615_0956'), ] operations = [ migrations.AlterModelOptions( name='message', options={'ordering': ('-date_sent', '-date_created')}, ), migrations.AddField( model_name='messagelog', name='sid', field=models.CharField(blank=True, max_length=255), ), ]
python
import sys import numpy as np import cv2 as cv2 import time import yolov2tiny def open_video_with_opencv(in_video_path, out_video_path): # # This function takes input and output video path and open them. # # Your code from here. You may clear the comments. # #raise NotImplementedError('open_video_with_opencv is not implemented yet') # Open an object of input video using cv2.VideoCapture. cap = cv2.VideoCapture(in_video_path) # Open an object of output video using cv2.VideoWriter. fourcc = cv2.VideoWriter_fourcc(*'mp4v') videoWidth = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) videoHeight = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) videoFPS = int(cap.get(cv2.CAP_PROP_FPS)) out = cv2.VideoWriter(out_video_path, fourcc, videoFPS, (videoWidth, videoHeight)) # Return the video objects and anything you want for further process. return cap, out, videoWidth, videoHeight def resize_input(im): imsz = cv2.resize(im, (yolov2tiny.in_width, yolov2tiny.in_height)) imsz = imsz / 255. imsz = imsz[:, :, ::-1] return np.asarray(imsz, dtype=np.float32) def video_object_detection(in_video_path, out_video_path, proc="cpu", onnx_path="./y2t_weights.onnx"): # # This function runs the inference for each frame and creates the output video. # # Your code from here. You may clear the comments. # #raise NotImplementedError('video_object_detection is not implemented yet') # Open video using open_video_with_opencv. cap, out, video_width, video_height = open_video_with_opencv(in_video_path, out_video_path) # Check if video is opened. Otherwise, exit. if cap.isOpened() == False: exit() # Create an instance of the YOLO_V2_TINY class. Pass the dimension of # the input, a path to weight file, and which device you will use as arguments. input_dim = [1, yolov2tiny.in_height, yolov2tiny.in_width, 3] y2t = yolov2tiny.YOLO2_TINY(input_dim, onnx_path, proc) # Start the main loop. For each frame of the video, the loop must do the followings: # 1. Do the inference. # 2. Run postprocessing using the inference result, accumulate them through the video writer object. # The coordinates from postprocessing are calculated according to resized input; you must adjust # them to fit into the original video. # 3. Measure the end-to-end time and the time spent only for inferencing. # 4. Save the intermediate values for the first layer. # Note that your input must be adjusted to fit into the algorithm, # including resizing the frame and changing the dimension. is_first_frame = True elapse_end_2_end = 0. elapse_inference = 0. elapse_end_2_end_start = time.time() while (cap.isOpened()): ret, frame = cap.read() if ret == True: frame = resize_input(frame) expanded_frame = np.expand_dims(frame, 0) elapse_inference_start = time.time() nodes, out_tensors = y2t.inference(expanded_frame) elapse_inference += (time.time() - elapse_inference_start) frame = yolov2tiny.postprocessing(out_tensors[-1], frame) frame = np.uint8(frame * 255) frame = frame[:, :, ::-1] frame = cv2.resize(frame, (video_width, video_height)) if is_first_frame: for i, out_tensor in enumerate(out_tensors): np.save("intermediate/layer_" + str(i) + ".npy", out_tensor) is_first_frame = False out.write(frame) else: break elapse_end_2_end += (time.time() - elapse_end_2_end_start) # Check the inference peformance; end-to-end elapsed time and inferencing time. # Check how many frames are processed per second respectivly. print("end-to-end elpased time: ", elapse_end_2_end) print("inferencing elapsed time: ", elapse_inference) print("how may FPS processed: ", cap.get(cv2.CAP_PROP_FRAME_COUNT) / elapse_end_2_end) # Release the opened videos. cap.release() out.release() cv2.destroyAllWindows() def main(): if len(sys.argv) < 3: print( "Usage: python3 __init__.py [in_video.mp4] [out_video.mp4] ([cpu|gpu])") sys.exit() in_video_path = sys.argv[1] out_video_path = sys.argv[2] if len(sys.argv) == 4: proc = sys.argv[3] else: proc = "cpu" video_object_detection(in_video_path, out_video_path, proc) if __name__ == "__main__": main()
python
""" Server receiver of the message """ import socket from ..constants import * class UDPMessageReceiver: def __init__(self, port=PORT): self.__port = port def receive_message(self): # Create the server socket # UDP socket s = socket.socket(family=socket.AF_INET, type=socket.SOCK_DGRAM) # Bind the socket to our local address s.bind((SERVER_HOST, self.__port)) # Receive the file infos # Receive using client socket, not server socket received = str(s.recvfrom(BUFFER_SIZE)[0].decode()) return received
python
#!/usr/bin/env python # 参考 https://github.com/schedutron/CPAP/blob/master/Chap2/sleep_serv.py from socket import * HOST = '' PORT = 1145 BUFSIZ = 1024 ADDR = (HOST, PORT) with socket(AF_INET, SOCK_STREAM) as s: s.bind(ADDR) s.listen(5) clnt, addr = s.accept() print(f'连接到 {addr}。') with clnt: while True: msg = clnt.recv(BUFSIZ) if not msg: break sec = msg.decode() msg = f"sleep({sec})" tup = addr + (sec, ) print(f"%s:%s 请求睡眠 %s 秒。" % tup) clnt.send(msg.encode()) print(f"{addr} 断开。")
python
from .CDx import * __version__ = '0.0.30'
python
$ make -C doc/sphinx html
python
# Create by Packetsss # Personal use is allowed # Commercial use is prohibited from player import Player from genotype import Genotype class Population: def __init__(self, size): self.players = [Player(box2d[i]) for i in range(size)] self.generation = 1 self.fitness_sum = 0 self.best_player_no = 0 self.found_winner = False self.balls_sunk = 0 def update(self): for i in range(len(self.players)): self.players[i].update() def calculate_fitness(self): for i in range(len(self.players)): self.players[i].calculate_fitness(self.balls_sunk) self.fitness_sum = 0 for i in range(len(self.players)): self.fitness_sum += self.players[i].fitness self.set_best_player() def set_fitness_sum(self): self.fitness_sum = 0 for i in range(len(self.players)): self.fitness_sum += self.players[i].fitness def set_best_player(self): max = 0 max_index = 0 for i in range(len(self.players)): if self.players[i].fitness > max: max = self.players[i].fitness max_index = i self.best_player_no = max_index if self.players[max_index].won: self.found_winner = True for i in range(len(self.players)): self.players[i].reset() self.balls_sunk = self.players[max_index].balls_sunk() reset_worlds() for i in range(len(self.players)): self.players[i] = self.players[max_index].clone(box2d[i]) self.increase_shots() self.generation += 1 def select_player(self): rand = random(self.fitness_sum) running_sum = 0 for i in range(len(self.players)): running_sum += self.players[i].fitness if running_sum > rand: return self.players[i] def mutate(self): for i in range(1, len(self.players)): self.players[i].DNA.mutate() def increase_shots(self): for i in range(1, len(self.players)): self.players[i].dna.increase_shot_length() def natural_selection(self): reset_worlds() new_players = [Player(box2d[i]) for i in range(len(self.players))] new_players[0] = self.players[self.best_player_no].clone(box2d[0]) for i in range(1, len(self.players)): new_players[i] = self.select_player().clone(box2d[i]) new_players[i].DNA.mutate() self.players = new_players.clone() self.generation += 1 def done(self): for i in range(1, len(self.players)): if not self.players[i].game_over or not self.players[i].balls_stopped(): return False return True
python