content
stringlengths
0
894k
type
stringclasses
2 values
#!/usr/bin/python # -*- coding: utf-8 -*- # # Test for the MDF import os import os.path import sys sys.path.append(os.path.join(os.path.dirname(__file__),"..")) from schema import Range,Variable,Table from census_spec_scanner import CensusSpec TEST_FNAME = os.path.join(os.path.dirname(__file__), "docx_test/test_file_layout.docx") def test_mdf_reader(): cs = CensusSpec() cs.load_schema_from_file(TEST_FNAME) mdf = list(cs.tables()) assert type(mdf)==list assert len(mdf) == 1 # demo file has but a single table assert type(mdf[0]) == Table assert mdf[0].name == "Test_Apples" if __name__=="__main__": test_mdf_reader()
python
import time import pyqtgraph as pg class UserTestUi(object): def __init__(self, expected_display, current_display): pg.mkQApp() self.widget = pg.QtGui.QSplitter(pg.QtCore.Qt.Vertical) self.widget.resize(1600, 1000) self.display_splitter = pg.QtGui.QSplitter(pg.QtCore.Qt.Horizontal) self.widget.addWidget(self.display_splitter) self.display1 = expected_display self.display2 = current_display self.display_splitter.addWidget(self.display1.widget) self.display_splitter.addWidget(self.display2.widget) self.ctrl = pg.QtGui.QWidget() self.widget.addWidget(self.ctrl) self.ctrl_layout = pg.QtGui.QVBoxLayout() self.ctrl.setLayout(self.ctrl_layout) self.diff_widget = pg.DiffTreeWidget() self.ctrl_layout.addWidget(self.diff_widget) self.pass_btn = pg.QtGui.QPushButton('pass') self.fail_btn = pg.QtGui.QPushButton('fail') self.ctrl_layout.addWidget(self.pass_btn) self.ctrl_layout.addWidget(self.fail_btn) self.pass_btn.clicked.connect(self.pass_clicked) self.fail_btn.clicked.connect(self.fail_clicked) self.last_btn_clicked = None self.widget.setSizes([750, 250]) def pass_clicked(self): self.last_btn_clicked = 'pass' def fail_clicked(self): self.last_btn_clicked = 'fail' def user_passfail(self): self.widget.show() while True: pg.QtGui.QApplication.processEvents() last_btn_clicked = self.last_btn_clicked self.last_btn_clicked = None if last_btn_clicked == 'fail' or not self.widget.isVisible(): raise Exception("User rejected test result.") elif last_btn_clicked == 'pass': break time.sleep(0.03) def show_results(self, expected, current): self.diff_widget.setData(expected, current) self.display2.show_result(current) self.display1.show_result(expected) def clear(self): self.display1.clear() self.display2.clear() self.diff_widget.setData(None, None)
python
from autohandshake.src import HandshakeBrowser from autohandshake.src.Pages.StudentProfilePage import StudentProfilePage from autohandshake.src.constants import BASE_URL class ViewAsStudent: """ A sub-session in which the user logs in as a student. Should be used as a context manager. Example: :: with HandshakeSession(school_url, email) as browser: with ViewAsStudent(student_id): # do something """ def __init__(self, student_id: int, browser: HandshakeBrowser, stay_on_page: bool = False): """ :param student_id: the numeric Handshake id of the student to view as :type student_id: int :param browser: a logged-in Handshake browser with a STAFF user type :type browser: HandshakeBrowser :param stay_on_page: whether or not to stay on the same page when logging back out of the "View as Student" session. If False, navigate back to the Handshake homepage when the session is over. Defaults to False. :type stay_on_page: bool """ self._id = student_id self._browser = browser self._stay_on_page = stay_on_page def __enter__(self): """ Log in as the specified student. """ profile_page = StudentProfilePage(self._id, self._browser) profile_page.view_as_student() def __exit__(self, exc_type, exc_val, exc_tb): """Stop viewing as the student and return to the career services view.""" self._browser.click_element_by_xpath('//a[@href="/users/stop_viewing_as"]') self._browser.update_constants() if not self._stay_on_page: self._browser.get(BASE_URL)
python
hensu = "HelloWorld" print(hensu)
python
import os from pathlib import Path from dotenv import find_dotenv, load_dotenv project_dir = Path(__file__).resolve().parents[1] load_dotenv(find_dotenv()) LOGLEVEL = os.getenv("LOGLEVEL", "INFO").upper() LOGGING = { "version": 1, "disable_existing_loggers": False, "formatters": { "standard": { "format": "[%(asctime)s][%(levelname)-5s][%(name)s] - %(message)s", }, }, "handlers": { "console": { "class": "logging.StreamHandler", "formatter": "standard", "level": "INFO", }, "rolling_file_debug": { "class": "logging.handlers.RotatingFileHandler", "filename": project_dir / "logs/debug.log", "formatter": "standard", "level": "DEBUG", "maxBytes": 1024 * 1024, "backupCount": 10, }, "rolling_file_warning": { "class": "logging.handlers.RotatingFileHandler", "filename": project_dir / "logs/warnings.log", "formatter": "standard", "level": "WARNING", "maxBytes": 1024 * 1024, "backupCount": 10, }, }, "root": { "handlers": ["console", "rolling_file_debug", "rolling_file_warning"], "level": LOGLEVEL, }, "loggers": { "__main__": {"handlers": [], "propagate": True}, "{{ cookiecutter.module_name }}": {"handlers": [], "propagate": True}, }, }
python
import numpy as np import pytest import torch from thgsp.graphs.generators import random_graph from thgsp.sampling.rsbs import ( cheby_coeff4ideal_band_pass, estimate_lk, recon_rsbs, rsbs, ) from ..utils4t import devices, float_dtypes, snr_and_mse def test_cheby_coeff4ideal_band_pass(): order = 30 ceoff = cheby_coeff4ideal_band_pass(0, 1, 0, 2, order) assert ceoff.shape == (order + 1,) print(ceoff) @pytest.mark.parametrize("device", devices) @pytest.mark.parametrize("dtype", float_dtypes) class TestRsbs: def test_estimater_lk_on_minnesota(self, dtype, device): N = 100 g = random_graph(N, dtype=dtype, device=device) lmax = g.max_frequency(lap_type="comb") print(lmax) band_limit = 10 lambda_k, cum_coh = estimate_lk( g, band_limit, lmax=lmax, lap_type="comb", verbose=False, num_estimation=1 ) print(lambda_k) print(cum_coh) @pytest.mark.parametrize("return_list", [True, False]) def test_rsbs(self, dtype, device, return_list): N = 100 k = 50 M = 30 appropriate_num_rv = np.int32(2 * np.round(np.log(N))) g = random_graph(N, dtype=dtype, device=device) nodes, coh = rsbs(g, M, k, num_rv=appropriate_num_rv, return_list=return_list) print(nodes) if return_list: assert isinstance(nodes, list) else: assert isinstance(nodes, torch.Tensor) def test_rsbs_recon(self, dtype, device): N = 10 k = 5 M = 5 appropriate_num_rv = np.int32(2 * np.round(np.log(N))) g = random_graph(N, 0.3, dtype=dtype, device=device, seed=2021) print(g.device()) # since scikit-umfpack requires double scalars. if dtype == torch.double: nodes, coh = rsbs(g, M, k, num_rv=appropriate_num_rv, return_list=True) f = torch.rand(N, 1, dtype=dtype, device=device) f = f / f.norm() f_hat = recon_rsbs( f[nodes], S=nodes, L=g.L("comb"), cum_coh=coh, mu=0.1, reg_order=1 ) if torch.any(torch.isnan(f_hat)): print( "This case leads to numerical instability and thus would be skipped" ) else: s, m = snr_and_mse(f_hat, f) assert m < 1
python
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import time from docker import errors from oslo_config import cfg from requests import exceptions as req_exceptions from magnum.common import docker_utils from magnum.tests.functional.python_client_base import BayTest CONF = cfg.CONF CONF.import_opt('docker_remote_api_version', 'magnum.common.docker_utils', group='docker') CONF.import_opt('default_timeout', 'magnum.common.docker_utils', group='docker') class TestSwarmAPIs(BayTest): """This class will cover swarm bay basic functional testing. Will test all kinds of container action with tls_disabled=False mode. """ coe = "swarm" baymodel_kwargs = { "tls_disabled": False, "network_driver": None, "volume_driver": None, "fixed_network": '192.168.0.0/24', "labels": {} } @classmethod def setUpClass(cls): super(TestSwarmAPIs, cls).setUpClass() cls.bay_is_ready = None def setUp(self): super(TestSwarmAPIs, self).setUp() if self.bay_is_ready is True: return # Note(eliqiao): In our test cases, docker client or magnum client will # try to connect to swarm service which is running on master node, # the endpoint is bay.api_address(listen port is included), but the # service is not ready right after the bay was created, sleep for an # acceptable time to wait for service being started. # This is required, without this any api call will fail as # 'ConnectionError: [Errno 111] Connection refused'. msg = ("If you see this error in the functional test, it means " "the docker service took too long to come up. This may not " "be an actual error, so an option is to rerun the " "functional test.") if self.bay_is_ready is False: # In such case, no need to test below cases on gate, raise a # meanful exception message to indicate ca setup failed after # bay creation, better to do a `recheck` # We don't need to test since bay is not ready. raise Exception(msg) url = self.cs.bays.get(self.bay.uuid).api_address # Note(eliqiao): docker_utils.CONF.docker.default_timeout is 10, # tested this default configure option not works on gate, it will # cause container creation failed due to time out. # Debug more found that we need to pull image when the first time to # create a container, set it as 180s. docker_api_time_out = 180 self.docker_client = docker_utils.DockerHTTPClient( url, CONF.docker.docker_remote_api_version, docker_api_time_out, client_key=self.key_file, client_cert=self.cert_file, ca_cert=self.ca_file) self.docker_client_non_tls = docker_utils.DockerHTTPClient( url, CONF.docker.docker_remote_api_version, docker_api_time_out) def _container_operation(self, func, *args, **kwargs): # NOTE(hongbin): Swarm bay occasionally aborts the connection, so we # re-try the operation several times here. In long-term, we need to # investigate the cause of this issue. See bug #1583337. for i in range(150): try: self.LOG.info("Calling function " + func.__name__) return func(*args, **kwargs) except req_exceptions.ConnectionError: self.LOG.info("Connection aborted on calling Swarm API. " "Will retry in 2 seconds.") except errors.APIError as e: if e.response.status_code != 500: raise self.LOG.info("Internal Server Error: " + str(e)) time.sleep(2) raise Exception("Cannot connect to Swarm API.") def _create_container(self, **kwargs): image = kwargs.get('image', 'docker.io/cirros') command = kwargs.get('command', 'ping -c 1000 8.8.8.8') return self._container_operation(self.docker_client.create_container, image=image, command=command) def test_start_stop_container_from_api(self): # Leverage docker client to create a container on the bay we created, # and try to start and stop it then delete it. resp = self._create_container(image="docker.io/cirros", command="ping -c 1000 8.8.8.8") resp = self._container_operation(self.docker_client.containers, all=True) container_id = resp[0].get('Id') self._container_operation(self.docker_client.start, container=container_id) resp = self._container_operation(self.docker_client.containers) self.assertEqual(1, len(resp)) resp = self._container_operation(self.docker_client.inspect_container, container=container_id) self.assertTrue(resp['State']['Running']) self._container_operation(self.docker_client.stop, container=container_id) resp = self._container_operation(self.docker_client.inspect_container, container=container_id) self.assertFalse(resp['State']['Running']) self._container_operation(self.docker_client.remove_container, container=container_id) resp = self._container_operation(self.docker_client.containers) self.assertEqual([], resp) def test_access_with_non_tls_client(self): self.assertRaises(req_exceptions.SSLError, self.docker_client_non_tls.containers)
python
#!/usr/bin/env python #encoding=utf-8 import numpy as np from random import choice, shuffle, uniform #from data_factory import PlotFactory class DataFactory(): def __init__(self, n=1): self.plt_max=5 self.nmb_plt=None if n < self.plt_max: self.nmb_plt=n else: print("Maximum possible plots are", self.nmb_plt, ", n default to", self.nmb_plt) self.nmb_plt=5 # default to maximal possible self.nmb_plt=n self.name=["temperature", "pressure", "humidity", "acceleration", "magnetic_field"] self.func=[np.sin, np.cos, self.func1, self.func2, self.func3] #function self.a=[1,2,3,4,5] # amplitude self.b=[1,2,3,4,5] # bias self.s=[1,2,3,4,5] # shift self.f=[1,1,2,2,5] # frequency self.noise=[1,1,2,3,5] # noise (supposed to be multiplied by 0.01) self.randomize() def randomize(self): print("Shuffle all lists, this way iterating over\nthem has the same result as random choice.") shuffle(self.name) shuffle(self.func) shuffle(self.a) shuffle(self.b) shuffle(self.f) shuffle(self.noise) # if n<self._max_plts: # for p in range(n): # key=self.rand_name.remove( choice(self.name) ) # print(self.rand_name) # # self.plots[] # else: # print("Maximum number of plots available is", self._max_plts) def produce_data(self,x): data = dict() for i in range(self.nmb_plt): name=self.name[i] func=self.func[i] a = self.a[i] # amplitude b = self.b[i] # bias s = self.s[i] # shift f = self.f[i] # frequency u = self.noise[i]*0.2 noise = uniform(-u,u) data[name]=np.array([ a*func( (x-s)*f ) + b + noise]) return data def func1(self,x): return ( np.sin(x)*np.cos(x) / 2.0 ) def func2(self,x): return ( np.sin(x) + np.sin(x/2) + np.sin(x/4) ) def func3(self,x): return ( np.sin(x)*np.sin(x/4) )
python
from .base import BaseNewsvendor, DataDrivenMixin from ..utils.validation import check_cu_co from keras.models import Sequential from keras.layers import Dense import keras.backend as K from sklearn.utils.validation import check_is_fitted import numpy as np ACTIVATIONS = ['elu', 'selu', 'linear', 'tanh', 'relu', 'softmax', 'softsign', 'softplus', 'sigmoid', 'hard_sigmoid', 'exponential'] class DeepLearningNewsvendor(BaseNewsvendor, DataDrivenMixin): """A newsvendor based on deep learning Parameters ---------- cu : {array-like of shape (n_outputs,), Number or None}, default=None The underage costs per unit. If None, then underage costs are one for each target variable co : {array-like of shape (n_outputs,), Number or None}, default=None The overage costs per unit. If None, then overage costs are one for each target variable hidden_layers : {'auto', 'custom'}, default='auto' Whether to use a automated or customized hidden layer structure. - When set to 'auto' the network will use two hidden layers. The first with 2*n_features neurons and 'relu' as activation function the second one with n_features neurons and 'linear' as activation function - When set to 'custom' the settings specified in both parameters 'neurons' and 'activations' will be used to build the hidden layers of the network neurons : list, default=[100] The ith element represents the number of neurons in the ith hidden layer Only used when hidden_layers='custom'. activations : list, default=['relu'] The ith element of the list represents the activation function of the ith layer. Valid activation functions are: 'elu', 'selu', 'linear', 'tanh', 'relu', 'softmax', 'softsign', 'softplus','sigmoid', 'hard_sigmoid', 'exponential'. Only used when hidden_layers='custom'. optimizer: {'adam', 'sgd'}, default='adam' The optimizer to be used. epochs: int, default=100 Number of epochs to train the model verbose: int 0, 1, or 2, default=1 Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch. Attributes ---------- model_ : tensorflow.keras.Sequential The underlying model n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs. cu_ : ndarray, shape (n_outputs,) Validated underage costs. co_ : ndarray, shape (n_outputs,) Validated overage costs. References ---------- .. [1] Afshin Oroojlooyjadid, Lawrence V. Snyder, Martin Takáˇc, "Applying Deep Learning to the Newsvendor Problem", 2018. Examples -------- >>> from ddop.datasets.load_datasets import load_data >>> from ddop.newsvendor import DeepLearningNewsvendor >>> from sklearn.model_selection import train_test_split >>> data = load_data("yaz_steak.csv") >>> X = data.iloc[:,0:24] >>> Y = data.iloc[:,24] >>> cu,co = 15,10 >>> X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25) >>> mdl = DeepLearningNewsvendor(cu, co) >>> mdl.fit(X_train, Y_train) >>> mdl.score(X_test, Y_test) [64.62898917] """ def __init__(self, cu, co, hidden_layers='auto', neurons=[100], activations=['relu'], optimizer='adam', epochs=100, verbose=1): self.hidden_layers = hidden_layers self.neurons = neurons self.activations = activations self.optimizer = optimizer self.epochs = epochs self.verbose = verbose super().__init__( cu=cu, co=co) def _nv_loss(self, cu, co): """Create a newsvendor loss function with the given under- and overage costs""" def customized_loss(y_true, y_pred): self.tensor_ = y_true loss = K.switch(K.less(y_pred, y_true), cu * (y_true - y_pred), co * (y_pred - y_true)) return K.sum(loss) return customized_loss def _create_model(self): hidden_layers = self.hidden_layers neurons = self.neurons activations = self.activations n_features = self.n_features_ n_outputs = self.n_outputs_ model = Sequential() if hidden_layers == 'auto': model.add(Dense(2 * n_features, activation='relu', input_dim=n_features)) model.add(Dense(n_features)) model.add(Dense(n_outputs)) else: for size, activation in zip(neurons, activations): model.add(Dense(units=size, activation=activation)) model.add(Dense(n_outputs)) model.build((None, n_features)) model.compile(loss=self._nv_loss(self.cu_, self.co_), optimizer=self.optimizer) return model def fit(self, X, y): """Fit the model to the training set (X, y). Parameters ---------- X : array-like of shape (n_samples, n_features) The training input samples. y : array-like of shape (n_samples, n_outputs) The target values. Returns ---------- self : DeepLearningNewsvendor Fitted estimator """ # Validate input parameters self._validate_hyperparameters() X, y = self._validate_data(X, y, multi_output=True) if y.ndim == 1: y = np.reshape(y, (-1, 1)) # Determine output settings self.n_features_ = X.shape[1] self.n_outputs_ = y.shape[1] # Check and format under- and overage costs self.cu_, self.co_ = check_cu_co(self.cu, self.co, self.n_outputs_) model = self._create_model() model.fit(X, y, epochs=self.epochs, verbose=self.verbose) self.model_ = model return self def _validate_hyperparameters(self): # Make sure self.neurons is a list neurons = self.neurons if not hasattr(neurons, "__iter__"): neurons = [neurons] neurons = list(neurons) # Make sure self.activations is a list activations = self.activations if not hasattr(activations, "__iter__"): activations = [activations] activations = list(activations) if self.hidden_layers == "custom" and np.any(np.array(neurons) <= 0): raise ValueError("neurons must be > 0, got %s." % self.neurons) if self.hidden_layers == "custom" and \ np.any(np.array([activation not in ACTIVATIONS for activation in activations])): raise ValueError("Invalid activation function in activations. Supported are %s but got %s" % (list(ACTIVATIONS), activations)) if self.hidden_layers not in ["auto", "custom"]: raise ValueError("hidden_layers %s is not supported." % self.hidden_layers) if self.hidden_layers == "custom" and len(neurons) != len(activations): raise ValueError("When customizing the hidden layers neurons and activations must have same " "length but neurons is of length %s and activations %s" % (len(neurons), len(activations))) if self.verbose not in [0, 1, 2]: raise ValueError("verbose must be either 0, 1 or 2, got %s." % self.verbose) def predict(self, X): """Predict values for X. Parameters ---------- X : array-like of shape (n_samples, n_features) The input samples to predict. Returns ---------- y : array-like of shape (n_samples, n_outputs) The predicted values """ check_is_fitted(self) pred = self.model_.predict(X) return pred
python
# Copyright 2018 eShares, Inc. dba Carta, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import logging import threading from typing import Iterator, Optional, Tuple, cast from .interface import AbstractFeatureFlagStore, FlagDoesNotExistError from .storage import FeatureFlagStoreItem, FeatureFlagStoreMeta from .util.date import now logger = logging.getLogger(__name__) class ConsulFeatureFlagStore(AbstractFeatureFlagStore): def __init__(self, consul, base_key="features"): self._cache = {} self._consul = consul self.base_key = base_key self._start() def _start(self): logger.debug("Spawning a thread to track changes in consul") self._thread = threading.Thread(target=self._watch) self._thread.daemon = True self._thread.start() def _watch(self): index = None while True: index, data = self._consul.kv.get(self.base_key, recurse=True) self._parse_data(data) def _parse_data(self, data: Tuple[dict]): if data is None: return for item in data: serialized = item["Value"] if serialized is None: continue deserialized = FeatureFlagStoreItem.deserialize(serialized) self._set_item_in_cache(item["Key"], deserialized) def _set_item_in_cache(self, key: str, item: FeatureFlagStoreItem): self._cache[key] = item def create( self, feature_name: str, is_enabled: bool = False, client_data: Optional[dict] = None, ) -> FeatureFlagStoreItem: item = FeatureFlagStoreItem( feature_name, is_enabled, FeatureFlagStoreMeta(now(), client_data) ) return self._save(item) def _save(self, item: FeatureFlagStoreItem) -> FeatureFlagStoreItem: self._consul.kv.put(self._make_key(item.feature_name), item.serialize()) self._set_item_in_cache(item.feature_name, item) return item def get(self, feature_name: str) -> Optional[FeatureFlagStoreItem]: return self._cache.get(self._make_key(feature_name)) def _make_key(self, feature_name: str) -> str: return "/".join([self.base_key, feature_name]) def set(self, feature_name: str, is_enabled: bool): existing = self.get(feature_name) if existing is None: self.create(feature_name, is_enabled) return item = FeatureFlagStoreItem( feature_name, is_enabled, FeatureFlagStoreMeta.from_dict(existing.meta) ) self._save(item) def delete(self, feature_name: str): self._consul.kv.delete(self._make_key(feature_name)) def list( self, limit: Optional[int] = None, offset: int = 0 ) -> Iterator[FeatureFlagStoreItem]: feature_names = sorted(self._cache.keys())[offset:] if limit is not None: feature_names = feature_names[:limit] for feature_name in feature_names: yield cast(FeatureFlagStoreItem, self.get(feature_name)) def set_meta(self, feature_name: str, meta: FeatureFlagStoreMeta): existing = self.get(feature_name) if existing is None: raise FlagDoesNotExistError( "Feature %s does not exist" % feature_name ) # noqa: E501 item = FeatureFlagStoreItem(feature_name, existing.raw_is_enabled, meta) self._save(item)
python
MAX_LENGTH_TEXT_MESSAGE = 800 MAX_LENGTH_TEXT_SUBJECT = 80 TEXT_SIZE = "The text must be between 0 and 800 characters." SUBJECT_SIZE = "Subject must be between 0 and 80 characters." USER_EXISTS = "User don't exists."
python
default_app_config = 'features.apps.FeaturesConfig'
python
import logging import abc import traceback from media.monitor.pure import LazyProperty appname = 'root' def setup_logging(log_path): """ Setup logging by writing log to 'log_path' """ #logger = logging.getLogger(appname) logging.basicConfig(filename=log_path, level=logging.DEBUG) def get_logger(): """ in case we want to use the common logger from a procedural interface """ return logging.getLogger() class Loggable(object): """ Any class that wants to log can inherit from this class and automatically get a logger attribute that can be used like: self.logger.info(...) etc. """ __metaclass__ = abc.ABCMeta @LazyProperty def logger(self): return get_logger() def unexpected_exception(self,e): """ Default message for 'unexpected' exceptions """ self.fatal_exception("'Unexpected' exception has occured:", e) def fatal_exception(self, message, e): """ Prints an exception 'e' with 'message'. Also outputs the traceback. """ self.logger.error( message ) self.logger.error( str(e) ) self.logger.error( traceback.format_exc() )
python
import time import telnetlib class Telnet: # # Desenvolvido por Felipe Lyp # def connect(self, host, port, username, password): self.telnet = telnetlib.Telnet(host, port) self.telnet.read_until(b"Login:") self.telnet.write(username.encode('ascii') + b"\n") if password: self.telnet.read_until(b"Password:") self.telnet.write(password.encode('ascii') + b"\n") self.send('en') self.send(password) def send(self, cmd, encode_ascii = True): if encode_ascii: self.telnet.write(cmd.encode('ascii') + b"\n") else: self.telnet.write(cmd.encode()) time.sleep(1) def data(self): return str(self.telnet.read_very_eager().decode('ascii'))
python
import random class Enemy: """ Automatically inherits object class from python3 """ def __init__(self, name="Enemy", hit_points=0, lives=1): self.name = name self.hit_points = hit_points self.lives = lives self.alive = True def take_damage(self, damage): remaining_points = self.hit_points - damage if remaining_points >= 0: self.hit_points = remaining_points print("I took {} points damage and have {} left".format(damage, self.hit_points)) else: self.lives -= 1 if self.lives > 0: print("{0.name} lost a life".format(self)) else: print("{0.name} is dead".format(self)) self.alive = False def __str__(self): return """Name: {0.name}, Lives: {0.lives},Hit points: {0.hit_points} Alive: {0.alive}""".format(self) class Troll(Enemy): def __init__(self, name): # super(Troll, self).__init__(name=name, lives=1, hit_points=23) super().__init__(name=name, lives=1, hit_points=23) def grunt(self): print(f'{self.name} stomp you') class Vampire(Enemy): def __init__(self, name): super().__init__(name=name, lives=3, hit_points=12) def dodges(self): if random.randint(1, 3) == 3: print("***** {0.name} dodges *****".format(self)) return True else: return False def take_damage(self, damage): if self.dodges(): super().take_damage(damage=damage) class VampireKing(Vampire): def __init__(self, name): super().__init__(name=name) self.hit_points = 140 def take_damage(self, damage): qtr_damage = damage // 4 super().take_damage(qtr_damage)
python
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright (C) 2011 OpenStack LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Service manager module """ import logging import keystone.backends.api as api logger = logging.getLogger(__name__) # pylint: disable=C0103 class Manager(object): def __init__(self): self.driver = api.SERVICE def create(self, service): """ Create a new service """ return self.driver.create(service) def get(self, service_id): """ Returns service by ID """ return self.driver.get(service_id) def get_by_name(self, name): """ Returns service by name """ return self.driver.get_by_name(name=name) def get_all(self): """ Returns all services """ return self.driver.get_all() def get_page(self, marker, limit): """ Get one page of services list """ return self.driver.get_page(marker, limit) def get_page_markers(self, marker, limit): """ Calculate pagination markers for services list """ return self.driver.get_page_markers(marker, limit) def get_by_name_and_type(self, name, service_type): """ Returns service by name and type """ return self.driver.get_by_name_and_type(name, service_type) # pylint: disable=E1103 def update(self, service): """ Update service """ return self.driver.update(service['id'], service) def delete(self, service_id): """ Delete service """ self.driver.delete(service_id)
python
import argparse import pickle import time import os import logging import numpy as np import theano as th import theano.tensor as T from theano.sandbox.rng_mrg import MRG_RandomStreams import lasagne import lasagne.layers as ll from lasagne.layers import dnn, batch_norm import nn logging.basicConfig(level=logging.INFO) # settings parser = argparse.ArgumentParser() parser.add_argument('--seed', default=1, type=int) parser.add_argument('--batch_size', default=100, type=int) parser.add_argument('--activation', default='relu', type=str) parser.add_argument('--learning_rate', default=0.001, type=float) args = parser.parse_args() logging.info(args) # fixed random seeds rng = np.random.RandomState(args.seed) theano_rng = MRG_RandomStreams(rng.randint(2 ** 15)) lasagne.random.set_rng(np.random.RandomState(rng.randint(2 ** 15))) # setup output time_str = time.strftime("%m-%d-%H-%M", time.gmtime()) exp_dir = "./data/" + args.activation + "_" + time_str + "_" + "{}".format(args.learning_rate).replace(".", "p") try: os.stat(exp_dir) except: os.makedirs(exp_dir) logging.info("OPENING " + exp_dir + '/results.csv') results_file = open(exp_dir + '/results.csv', 'w') results_file.write('epoch, time, train_error, test_error\n') results_file.flush() # load CIFAR-10 data def unpickle(file): fo = open(file, 'rb') d = pickle.load(fo, encoding='latin1') fo.close() return {'x': np.cast[th.config.floatX]((-127.5 + d['data'].reshape((10000,3,32,32)))/128.), 'y': np.array(d['labels']).astype(np.uint8)} print('Loading data') train_data = [unpickle('/home-nfs/dan/cifar_data/cifar-10-batches-py/data_batch_' + str(i)) for i in range(1,6)] trainx = np.concatenate([d['x'] for d in train_data],axis=0) trainy = np.concatenate([d['y'] for d in train_data]) test_data = unpickle('/home-nfs/dan/cifar_data/cifar-10-batches-py/test_batch') testx = test_data['x'] testy = test_data['y'] nr_batches_train = int(trainx.shape[0]/args.batch_size) nr_batches_test = int(testx.shape[0]/args.batch_size) print('Whitening') # whitening whitener = nn.ZCA(x=trainx) trainx_white = whitener.apply(trainx) testx_white = whitener.apply(testx) print('Done whitening') if args.activation == 'relu': f = nn.relu elif args.activation == 'elu': f = lasagne.nonlinearities.elu elif args.activation == 'gelu': f = nn.gelu else: assert False, 'Need "relu" "elu" or "gelu" nonlinearity as input name' x = T.tensor4() layers = [ll.InputLayer(shape=(None, 3, 32, 32), input_var=x)] layers.append(ll.GaussianNoiseLayer(layers[-1], sigma=0.15)) layers.append(batch_norm(dnn.Conv2DDNNLayer(layers[-1], 96, (3,3), pad=1, nonlinearity=f))) layers.append(batch_norm(dnn.Conv2DDNNLayer(layers[-1], 96, (3,3), pad=1, nonlinearity=f))) layers.append(batch_norm(dnn.Conv2DDNNLayer(layers[-1], 96, (3,3), pad=1, nonlinearity=f))) layers.append(ll.MaxPool2DLayer(layers[-1], 2)) layers.append(ll.DropoutLayer(layers[-1], p=0.5)) layers.append(batch_norm(dnn.Conv2DDNNLayer(layers[-1], 192, (3,3), pad=1, nonlinearity=f))) layers.append(batch_norm(dnn.Conv2DDNNLayer(layers[-1], 192, (3,3), pad=1, nonlinearity=f))) layers.append(batch_norm(dnn.Conv2DDNNLayer(layers[-1], 192, (3,3), pad=1, nonlinearity=f))) layers.append(ll.MaxPool2DLayer(layers[-1], 2)) layers.append(ll.DropoutLayer(layers[-1], p=0.5)) layers.append(batch_norm(dnn.Conv2DDNNLayer(layers[-1], 192, (3,3), pad=0, nonlinearity=f))) layers.append(batch_norm(ll.NINLayer(layers[-1], num_units=192, nonlinearity=f))) layers.append(batch_norm(ll.NINLayer(layers[-1], num_units=192, nonlinearity=f))) layers.append(nn.GlobalAvgLayer(layers[-1])) layers.append(batch_norm(ll.DenseLayer(layers[-1], num_units=10, nonlinearity=None))) # discriminative cost & updates output_before_softmax = ll.get_output(layers[-1], x) y = T.ivector() cost = nn.softmax_loss(y, output_before_softmax) train_err = T.mean(T.neq(T.argmax(output_before_softmax,axis=1),y)) params = ll.get_all_params(layers, trainable=True) lr = T.scalar() mom1 = T.scalar() param_updates = nn.adam_updates(params, cost, lr=lr, mom1=mom1) test_output_before_softmax = ll.get_output(layers[-1], x, deterministic=True) test_err = T.mean(T.neq(T.argmax(test_output_before_softmax,axis=1),y)) print('Compiling') # compile Theano functions train_batch = th.function(inputs=[x,y,lr,mom1], outputs=train_err, updates=param_updates) test_batch = th.function(inputs=[x,y], outputs=test_err) print('Beginning training') # //////////// perform training ////////////// begin_all = time.time() for epoch in range(200): begin_epoch = time.time() lr = np.cast[th.config.floatX](args.learning_rate * np.minimum(2. - epoch/100., 1.)) if epoch < 100: mom1 = 0.9 else: mom1 = 0.5 # permute the training data inds = rng.permutation(trainx_white.shape[0]) trainx_white = trainx_white[inds] trainy = trainy[inds] # train train_err = 0. for t in range(nr_batches_train): train_err += train_batch(trainx_white[t*args.batch_size:(t+1)*args.batch_size], trainy[t*args.batch_size:(t+1)*args.batch_size],lr,mom1) train_err /= nr_batches_train # test test_err = 0. for t in range(nr_batches_test): test_err += test_batch(testx_white[t*args.batch_size:(t+1)*args.batch_size], testy[t*args.batch_size:(t+1)*args.batch_size]) test_err /= nr_batches_test logging.info('Iteration %d, time = %ds, train_err = %.6f, test_err = %.6f' % (epoch, time.time()-begin_epoch, train_err, test_err)) results_file.write('%d, %d, %.6f, %.6f\n' % (epoch, time.time()-begin_all, train_err, test_err)) results_file.flush() if epoch % 5 == 0: np.savez(exp_dir + "/network.npz", *lasagne.layers.get_all_param_values(layers)) print('Saved')
python
from django.contrib import admin from bookmarks.models import Bookmark, BookmarkInstance class BookmarkAdmin(admin.ModelAdmin): list_display = ('url', 'description', 'added', 'adder',) admin.site.register(Bookmark, BookmarkAdmin) admin.site.register(BookmarkInstance)
python
import os import pickle from smart_open import smart_open def _split3(path): dir, f = os.path.split(path) fname, ext = os.path.splitext(f) return dir, fname, ext def get_containing_dir(path): d, _, _ = _split3(path) return d def get_parent_dir(path): if os.path.isfile(path): path = get_containing_dir(path) return os.path.abspath(os.path.join(path, os.pardir)) def get_file_name(path): _, fname, _ = _split3(path) return fname def save_obj(obj, name): with open(name, 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) def load_obj(name): with smart_open(name, 'rb') as f: return pickle.load(f)
python
# coding=utf-8 from __future__ import unicode_literals from django.contrib import admin from django.utils.translation import ugettext_lazy as _ from .models import * class CreditNoteAdmin(admin.ModelAdmin): model = CreditNote search_fields = ('numero', 'invoice__id', 'invoice__contact__id') list_display = ('invoice', 'serie', 'numero', 'get_contact_id') raw_id_fields = ['invoice'] readonly_fields = ['invoice', 'uuid', 'serie', 'numero'] ordering = ["-id"] class InvoiceItemInline(admin.StackedInline): model = InvoiceItem fields = ['amount', 'product', 'description', 'price', 'copies', 'service_from', 'service_to', 'type'] extra = 0 class InvoiceAdmin(admin.ModelAdmin): search_fields = ('contact__id', 'contact__name') list_display = ('id', 'contact', 'amount', 'paid', 'debited', 'canceled', 'uncollectible', 'serie', 'numero') fieldsets = ( ("", {"fields": ( 'contact', 'subscription', ('creation_date', 'expiration_date'), ('service_from', 'service_to'), ('amount', 'payment_type'), ('debited', 'paid'), ('payment_date', 'payment_reference'), 'notes', ('canceled', 'cancelation_date'), 'uncollectible', ('uuid', 'serie', 'numero'), ('pdf', 'balance'), ('route', 'order'), 'print_date' )}), (_('Billing data'), { 'fields': ( ('billing_name', 'billing_address'), ('billing_state', 'billing_city'), 'billing_document', )}), ) raw_id_fields = ['contact', 'subscription'] inlines = (InvoiceItemInline,) readonly_fields = ['canceled', 'cancelation_date', 'uuid', 'serie', 'numero', 'pdf'] ordering = ['-id'] class InvoiceItemAdmin(admin.ModelAdmin): pass class BillingAdmin(admin.ModelAdmin): list_display = ( 'id', 'product', 'start', 'amount_billed', 'count', 'progress', 'status') # readonly_fields = ['exclude'] def get_readonly_fields(self, request, obj=None): if request.user.is_staff: if request.user.is_superuser: return ( 'id', 'start', 'exclude', 'errors', 'created_by', 'started_by', 'dpp', 'billing_date', 'end', 'subscriber_amount') else: return [f.name for f in self.model._meta.fields] admin.site.register(Invoice, InvoiceAdmin) admin.site.register(Billing, BillingAdmin) admin.site.register(InvoiceItem, InvoiceItemAdmin) admin.site.register(CreditNote, CreditNoteAdmin)
python
import logging import logging.handlers from logging.handlers import TimedRotatingFileHandler, MemoryHandler import os from datetime import datetime import sys import os.path sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir)) sys.path.insert(0, os.path.dirname(__file__)) if True: import settings skyline_app = 'flux' skyline_app_logger = '%sLog' % skyline_app logger = logging.getLogger(skyline_app_logger) logfile = '%s/%s.log' % (settings.LOG_PATH, skyline_app) def set_up_logging(app): if not os.path.exists(settings.LOG_PATH): os.makedirs(settings.LOG_PATH) # current_time = datetime.now() # current_date = current_time.strftime("%Y-%m-%d") # file_name = current_date + '.log' # file_location = log_location + file_name # with open(logfile, 'a+'): if app: use_logfile = '%s/%s.%s.log' % (settings.LOG_PATH, skyline_app, app) else: use_logfile = logfile with open(use_logfile, 'a+'): pass logger.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s :: %(process)s :: %(message)s", datefmt="%Y-%m-%d %H:%M:%S") handler = logging.handlers.TimedRotatingFileHandler( use_logfile, when="midnight", interval=1, backupCount=5) memory_handler = logging.handlers.MemoryHandler(256, flushLevel=logging.DEBUG, target=handler) handler.setFormatter(formatter) logger.addHandler(memory_handler) # logger = logging.getLogger(skyline_app) # format = '[%(asctime)s] [%(levelname)s] [%(message)s] [--> %(pathname)s [%(process)d]:]' # format = '%(asctime)s [%(levelname)s] %(process)d: %(message)s' # To store in file # logging.basicConfig(format=format, filemode='a+', filename=file_location, level=logging.DEBUG) # logging.basicConfig(format=format, filemode='a', filename=file_location) # logging.basicConfig(filename='app.log', filemode='w', format='%(name)s - %(levelname)s - %(message)s') # To print only # logging.basicConfig(format=format, level=logging.DEBUG) return logger
python
from typing import List, Dict, Callable import numpy as np import tensorflow as tf from typeguard import check_argument_types from neuralmonkey.decorators import tensor from neuralmonkey.vocabulary import END_TOKEN_INDEX from neuralmonkey.runners.base_runner import BaseRunner from neuralmonkey.decoders.sequence_labeler import SequenceLabeler # pylint: disable=invalid-name Postprocessor = Callable[[List[List[str]]], List[List[str]]] # pylint: enable=invalid-name class LabelRunner(BaseRunner[SequenceLabeler]): # pylint: disable=too-few-public-methods # Pylint issue here: https://github.com/PyCQA/pylint/issues/2607 class Executable(BaseRunner.Executable["LabelRunner"]): def collect_results(self, results: List[Dict]) -> None: loss = results[0].get("loss", 0.) summed_logprobs = results[0]["label_logprobs"] input_mask = results[0]["input_mask"] for sess_result in results[1:]: loss += sess_result.get("loss", 0.) summed_logprobs = np.logaddexp(summed_logprobs, sess_result["label_logprobs"]) assert input_mask == sess_result["input_mask"] argmaxes = np.argmax(summed_logprobs, axis=2) # CAUTION! FABULOUS HACK BELIEVE ME argmaxes -= END_TOKEN_INDEX argmaxes *= input_mask.astype(int) argmaxes += END_TOKEN_INDEX # transpose argmaxes because vectors_to_sentences is time-major vocabulary = self.executor.decoder.vocabulary decoded_labels = vocabulary.vectors_to_sentences(argmaxes.T) if self.executor.postprocess is not None: decoded_labels = self.executor.postprocess(decoded_labels) self.set_result(outputs=decoded_labels, losses=[loss], scalar_summaries=None, histogram_summaries=None, image_summaries=None) # pylint: enable=too-few-public-methods def __init__(self, output_series: str, decoder: SequenceLabeler, postprocess: Postprocessor = None) -> None: check_argument_types() BaseRunner[SequenceLabeler].__init__(self, output_series, decoder) self.postprocess = postprocess @tensor def fetches(self) -> Dict[str, tf.Tensor]: return { "label_logprobs": self.decoder.logprobs, "input_mask": self.decoder.encoder.input_sequence.temporal_mask, "loss": self.decoder.cost} @property def loss_names(self) -> List[str]: return ["loss"]
python
import json import os from google.auth.transport import requests from google.oauth2 import service_account _BASE_URL = "https://healthcare.googleapis.com/v1" def get_session(): """Creates an authorized Requests Session.""" credentials = service_account.Credentials.from_service_account_file( filename=os.environ["GOOGLE_APPLICATION_CREDENTIALS"], scopes=["https://www.googleapis.com/auth/cloud-platform"], ) # Create a requests Session object with the credentials. session = requests.AuthorizedSession(credentials) return session def dicomweb_store_instance( base_url, project_id, cloud_region, dataset_id, dicom_store_id, dcm_file ): """Handles the POST requests specified in the DICOMweb standard.""" url = "{}/projects/{}/locations/{}".format(base_url, project_id, cloud_region) dicomweb_path = "{}/datasets/{}/dicomStores/{}/dicomWeb/studies".format( url, dataset_id, dicom_store_id ) # Make an authenticated API request session = get_session() with open(dcm_file, "rb") as dcm: dcm_content = dcm.read() content_type = "application/dicom" headers = {"Content-Type": content_type} response = session.post(dicomweb_path, data=dcm_content, headers=headers) response.raise_for_status() print("Stored DICOM instance:") print(response.text) return response def dicomweb_search_instance( base_url, project_id, cloud_region, dataset_id, dicom_store_id ): """Handles the GET requests specified in DICOMweb standard.""" url = "{}/projects/{}/locations/{}".format(base_url, project_id, cloud_region) dicomweb_path = "{}/datasets/{}/dicomStores/{}/dicomWeb/instances".format( url, dataset_id, dicom_store_id ) # Make an authenticated API request session = get_session() headers = {"Content-Type": "application/dicom+json; charset=utf-8"} response = session.get(dicomweb_path, headers=headers) response.raise_for_status() instances = response.json() print("Instances:") print(json.dumps(instances, indent=2)) return instances def dicomweb_retrieve_study( base_url, project_id, cloud_region, dataset_id, dicom_store_id, study_uid ): """Handles the GET requests specified in the DICOMweb standard.""" url = "{}/projects/{}/locations/{}".format(base_url, project_id, cloud_region) dicomweb_path = "{}/datasets/{}/dicomStores/{}/dicomWeb/studies/{}".format( url, dataset_id, dicom_store_id, study_uid ) # When specifying the output file, use an extension like ".multipart." # Then, parse the downloaded multipart file to get each individual # DICOM file. file_name = "study.multipart" # Make an authenticated API request session = get_session() response = session.get(dicomweb_path) response.raise_for_status() with open(file_name, "wb") as f: f.write(response.content) print("Retrieved study and saved to {} in current directory".format(file_name)) return response def dicomweb_search_studies( base_url, project_id, cloud_region, dataset_id, dicom_store_id ): """Handles the GET requests specified in the DICOMweb standard.""" url = "{}/projects/{}/locations/{}".format(base_url, project_id, cloud_region) dicomweb_path = "{}/datasets/{}/dicomStores/{}/dicomWeb/studies".format( url, dataset_id, dicom_store_id ) # Refine your search by appending DICOM tags to the # request in the form of query parameters. This sample # searches for studies containing a patient's name. params = {"PatientName": "Sally Zhang"} session = get_session() response = session.get(dicomweb_path, params=params) response.raise_for_status() print("Studies found: response is {}".format(response)) # Uncomment the following lines to process the response as JSON. # patients = response.json() # print('Patients found matching query:') # print(json.dumps(patients, indent=2)) # return patients def dicomweb_retrieve_instance( base_url, project_id, cloud_region, dataset_id, dicom_store_id, study_uid, series_uid, instance_uid, ): """Handles the GET requests specified in the DICOMweb standard.""" url = "{}/projects/{}/locations/{}".format(base_url, project_id, cloud_region) dicom_store_path = "{}/datasets/{}/dicomStores/{}".format( url, dataset_id, dicom_store_id ) dicomweb_path = "{}/dicomWeb/studies/{}/series/{}/instances/{}".format( dicom_store_path, study_uid, series_uid, instance_uid ) file_name = "instance.dcm" # Make an authenticated API request session = get_session() headers = {"Accept": "application/dicom; transfer-syntax=*"} response = session.get(dicomweb_path, headers=headers) response.raise_for_status() with open(file_name, "wb") as f: f.write(response.content) print( "Retrieved DICOM instance and saved to {} in current directory".format( file_name ) ) return response def dicomweb_retrieve_rendered( base_url, project_id, cloud_region, dataset_id, dicom_store_id, study_uid, series_uid, instance_uid, ): """Handles the GET requests specified in the DICOMweb standard.""" url = "{}/projects/{}/locations/{}".format(base_url, project_id, cloud_region) dicom_store_path = "{}/datasets/{}/dicomStores/{}".format( url, dataset_id, dicom_store_id ) instance_path = "{}/dicomWeb/studies/{}/series/{}/instances/{}".format( dicom_store_path, study_uid, series_uid, instance_uid ) dicomweb_path = "{}/rendered".format(instance_path) file_name = "rendered_image.png" # Make an authenticated API request session = get_session() headers = {"Accept": "image/png"} response = session.get(dicomweb_path, headers=headers) response.raise_for_status() with open(file_name, "wb") as f: f.write(response.content) print( "Retrieved rendered image and saved to {} in current directory".format( file_name ) ) return response def dicomweb_delete_study( base_url, project_id, cloud_region, dataset_id, dicom_store_id, study_uid ): """Handles DELETE requests equivalent to the GET requests specified in the WADO-RS standard. """ url = "{}/projects/{}/locations/{}".format(base_url, project_id, cloud_region) dicomweb_path = "{}/datasets/{}/dicomStores/{}/dicomWeb/studies/{}".format( url, dataset_id, dicom_store_id, study_uid ) # Make an authenticated API request session = get_session() headers = {"Content-Type": "application/dicom+json; charset=utf-8"} response = session.delete(dicomweb_path, headers=headers) response.raise_for_status() print("Deleted study.") return response
python
""" .. See the NOTICE file distributed with this work for additional information regarding copyright ownership. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from django.db import models class Isoform(models.Model): isoform_id = models.BigAutoField(primary_key=True) uniprot_id = models.BigIntegerField(blank=True, null=True) accession = models.CharField(max_length=30, blank=True, null=True) sequence = models.CharField(max_length=200, blank=True, null=True) uniparc_accession = models.CharField(max_length=30, blank=True, null=True) embl_acc = models.CharField(max_length=30, blank=True, null=True) class Meta: managed = False db_table = 'isoform' class Domain(models.Model): domain_id = models.BigAutoField(primary_key=True) isoform = models.ForeignKey('Isoform', models.DO_NOTHING, blank=True, null=True) start = models.BigIntegerField(blank=True, null=True) end = models.BigIntegerField(blank=True, null=True) description = models.CharField(max_length=45, blank=True, null=True) class Meta: managed = False db_table = 'domain' class Ptm(models.Model): ptm_id = models.BigAutoField(primary_key=True) domain = models.ForeignKey(Domain, models.DO_NOTHING, blank=True, null=True) description = models.CharField(max_length=45, blank=True, null=True) start = models.BigIntegerField(blank=True, null=True) end = models.BigIntegerField(blank=True, null=True) class Meta: managed = False db_table = 'ptm' class UniprotEntry(models.Model): uniprot_id = models.BigAutoField(primary_key=True) uniprot_acc = models.CharField(max_length=30, blank=True, null=True) uniprot_tax_id = models.BigIntegerField(blank=True, null=True) userstamp = models.CharField(max_length=30, blank=True, null=True) timestamp = models.DateTimeField(blank=True, null=True) sequence_version = models.SmallIntegerField(blank=True, null=True) upi = models.CharField(max_length=13, blank=True, null=True) md5 = models.CharField(max_length=32, blank=True, null=True) canonical_uniprot_id = models.IntegerField(blank=True, null=True) ensembl_derived = models.NullBooleanField() alias = models.CharField(max_length=30, blank=True, null=True) gene_symbol = models.CharField(max_length=30, blank=True, null=True) chromosome_line = models.CharField(max_length=50, blank=True, null=True) entry_type = models.ForeignKey( 'CvEntryType', models.DO_NOTHING, blank=True, null=True, db_column="entry_type" ) length = models.IntegerField(blank=True, null=True) protein_existence_id = models.SmallIntegerField(blank=True, null=True) def __str__(self): return "{0} - {1}".format(self.uniprot_id, self.uniprot_acc) class Meta: managed = False db_table = 'uniprot_entry' unique_together = (('uniprot_acc', 'sequence_version'),) class UniprotEntryHistory(models.Model): release_version = models.CharField(max_length=30) uniprot = models.ForeignKey(UniprotEntry, models.DO_NOTHING, primary_key=True) grouping_id = models.BigIntegerField(blank=True, null=True) class Meta: managed = False db_table = 'uniprot_entry_history' unique_together = (('uniprot', 'release_version'),)
python
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from builtins import range from builtins import super import mock import string import unittest import random import itertools from pprint import pprint from dpaycli import DPay from dpaycliapi.websocket import DPayWebsocket from dpaycli.instance import set_shared_dpay_instance from dpaycli.nodelist import NodeList # Py3 compatibility import sys wif = "5KQwrPbwdL6PhXujxW37FSSQZ1JiwsST4cqQzDeyXtP79zkvFD3" core_unit = "DWB" class Testcases(unittest.TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) nodelist = NodeList() nodelist.update_nodes(dpay_instance=DPay(node=nodelist.get_nodes(normal=True, appbase=True), num_retries=10)) stm = DPay(node=nodelist.get_nodes()) self.ws = DPayWebsocket( urls=stm.rpc.nodes, num_retries=10 ) def test_connect(self): ws = self.ws self.assertTrue(len(next(ws.nodes)) > 0)
python
import os from configuration import * from scipy.io import wavfile from scipy.signal import stft,check_COLA,istft import numpy as np import pickle import multiprocessing as mp # save decoded dataset as pickle file def save_as_wav(dir_list): dataset= { 'vocals': [], 'accompaniment': [], 'bass': [], 'drums': [], 'other': [], 'mixture': [] } count=0 for folder in dir_list: # if count>=10: # return dataset # count+=1 # if count % 5 == 0: # print("\rGetting Data: {0:.2f}% ".format(count /len(os.listdir(os.path.join(wavs_dir,'train'))) * 100), end="") for key in dataset.keys(): _,data=wavfile.read(os.path.join(wavs_dir,"train",folder,str(key)+".wav")) dataset[key].append(data[:,0]) dataset[key].append(data[:,1]) # mix=(np.hstack(dataset['vocals'])+np.hstack(dataset['accompaniment']))/2 # print(mix.mean(),np.hstack(dataset['mixture']).mean()) # print(mix.shape,np.hstack(dataset['mixture']).shape) # print("Complete") return dataset # print("Saving dataset") # pickle.dump(dataset, open(wavs_dir+"/dataset.pickle", "wb"),pickle.HIGHEST_PROTOCOL) # print("Dataset saved") # read pickled wav dataset def read_data_all(infile = wavs_dir+"/dataset_stft.pickle"): dataset = pickle.load(open(infile, "rb")); return dataset['mixture'],dataset['vocals'],dataset['accompaniment'],dataset['drums'],dataset['bass'],dataset['other'] # read pickled wav dataset def read_data(infile = wavs_dir+"/dataset_stft.pickle"): dataset = pickle.load(open(infile, "rb")); return dataset['mixture'],dataset['vocals'],dataset['accompaniment'] def make_chunks(lis): arr=np.hstack(lis) chunk_len=len(arr)//int(sr*time_len)*int(sr*time_len) return arr[:chunk_len].reshape(-1,int(sr*time_len)) def make_stft(lis): arr=make_chunks(lis) mags=[] angles=[] if check_COLA('hann',nperseg=perseg,noverlap = overlap): for wav in arr: f,t,X=stft(wav,nperseg=perseg,noverlap = overlap) mags.append(np.transpose(np.abs(X)).astype('float32')) angles.append(np.angle(X).astype('float32')) else: print("COLA constraint not met, in func: utils.make_stft") exit() # print(len(mags),np.abs(mags[0].shape)) return np.vstack(mags),angles def get_stft_matrix(magnitudes, phases): return magnitudes * np.exp(1.j * phases) def make_wav(mags, phases, overlap=overlap): a=[] for mag,phase in zip (mags,phases): mag=(mag.reshape(88,n_bins).swapaxes(1,0)) # phase=np.transpose(phase.reshape(-1,n_bins)) stft_matrix = get_stft_matrix(mag, phase) # print(stft_maxrix.shape) # for mat in stft_maxrix: # print(mat.shape) a.append(istft(stft_matrix,fs=sr, noverlap=overlap)[1]) # print("one ",end="") # print(np.hstack(a).shape) return np.hstack(a) def save_as_stft(wavs_dir = wavs_dir): mix,voc,acc,dru,bas,oth=read_data_all(infile = wavs_dir+"/dataset.pickle") dataset_stft={} dataset_stft['mixture'],dataset_stft['mixturea']=make_stft(mix) dataset_stft['vocals'],dataset_stft['vocalsa']=make_stft(voc) dataset_stft['accompaniment'],dataset_stft['accompanimenta']=make_stft(acc) dataset_stft['bass'],dataset_stft['bassa']=make_stft(dru) dataset_stft['drums'],dataset_stft['drumsa']=make_stft(bas) dataset_stft['other'],dataset_stft['othera']=make_stft(oth) print("Saving dataset") pickle.dump(dataset_stft, open(wavs_dir+"/dataset_stft.pickle", "wb"),pickle.HIGHEST_PROTOCOL) print("Dataset saved") def multi_stft(mat,key): phase,angle=make_stft(mat) print(key) return [key,phase,angle] def save_diff_stft(wavs_dir,dataset,index=0): # output = mp.Queue() mix,voc,acc,dru,bas,oth=dataset['mixture'],dataset['vocals'],dataset['accompaniment'],dataset['drums'],dataset['bass'],dataset['other'] dataset_stft={} print('starting stft') keylist=list(dataset.keys()) pool = mp.Pool(processes=6) results=[pool.apply(multi_stft,args=(mat,key)) for mat,key in zip ([dataset[keyl] for keyl in keylist],keylist)] print("out of the wormhole!") dataset_stft={} for result in results: dataset_stft[result[0]]=result[1] dataset_stft[result[0]+"angle"]=result[2] print("Saving dataset") pickle.dump(dataset_stft, open(wavs_dir+"/dataset_stft_"+str(index)+".pickle", "wb"),pickle.HIGHEST_PROTOCOL) print(" saved") def read(dir_list,index): data=save_as_wav(dir_list) print(index) save_diff_stft(wavs_dir,data,index) return index def read_mix_voc_acc(wavs_dir=wavs_dir,limit=49): mixl=[] vocl=[] accl=[] for index in range(limit[0],limit[1]-1,5): print("\rGetting Data: {0:.2f}% ".format(index), end="") mix,voc,acc=read_data(wavs_dir+"/dataset_stft_"+str(index)+".pickle") mixl.append(mix) vocl.append(voc) accl.append(acc) zeros=np.zeros((1,n_bins)) mixl=np.vstack(mixl) vocl=np.vstack(vocl) accl=np.vstack(accl) if len(mixl)%4 is not 0: rem=4-len(mixl)%4 padding=np.repeat(zeros,rem,axis=0) print(padding.shape) mixl=np.vstack(mixl,padding) vocl=np.vstack(vocl) if len(vocl)%4 is not 0: rem=4-len(vocl)%4 padding=np.repeat(zeros,rem,axis=0) print(padding.shape) vocl=np.vstack(vocl,padding) accl=np.vstack(accl) if len(accl)%4 is not 0: rem=4-len(accl)%4 padding=np.repeat(zeros,rem,axis=0) print(padding.shape) accl=np.vstack(accl,padding) return mixl,vocl,accl if __name__ == '__main__': dir_list=os.listdir(os.path.join(wavs_dir,'train')) # pool=mp.Pool(processes=20) results=[(read(dir_list[sub_list:sub_list+5],sub_list)) for sub_list in range(95,len(dir_list)-4,5)] # output = [p.get() for p in results] print(results) print("Ta-da!")
python
import pytest import numpy as np from mcalf.models import ModelBase as DummyModel, FitResult, FitResults fitted_parameters = [1, 2, 1000.2, 1001.8, 5] fit_info = {'chi2': 1.4, 'classification': 2, 'profile': 'abc', 'success': True, 'index': [123, 456, 789]} def test_fitresult_passthrough(): fit = FitResult(fitted_parameters, fit_info) assert fit.parameters == [1, 2, 1000.2, 1001.8, 5] assert len(fit) == 5 assert fit.chi2 == 1.4 assert fit.classification == 2 assert fit.profile == 'abc' assert isinstance(fit.success, bool) and fit.success assert fit.index == [123, 456, 789] # Test that the string representation can be formed without error repr(fit) fit.index = [None]*3 repr(fit) def test_fitresult_velocity(): m = DummyModel(original_wavelengths=[1000.4, 1000.6]) m.stationary_line_core = 1000.5 m.quiescent_wavelength = 2 m.active_wavelength = 3 fit = FitResult(fitted_parameters, fit_info) assert fit.velocity(m, vtype='quiescent') == pytest.approx(-89.95502249) assert fit.velocity(m, vtype='active') == pytest.approx(389.80509745) # Ensure nan is returned if no active component fitted fitted_parameters_trim = fitted_parameters[:3] fit = FitResult(fitted_parameters_trim, fit_info) vel = fit.velocity(m, vtype='active') assert vel != vel # assert is nan # Ensure an invalid velocity type is detected with pytest.raises(ValueError): vel = fit.velocity(m, vtype='unknown-vtype') def test_fitresults_init(): fits = FitResults((49, 52), 4, time=12) assert fits.parameters.shape == (49, 52, 4) assert fits.chi2.shape == (49, 52) assert fits.classifications.shape == (49, 52) assert fits.profile.shape == (49, 52) assert fits.success.shape == (49, 52) assert fits.time == 12 with pytest.raises(TypeError): # Should be a tuple fits = FitResults(10, 3) with pytest.raises(TypeError): # Should be a tuple of length 2 fits = FitResults((10, 32, 53), 8) with pytest.raises(ValueError): # Should be an integer >= 1 fits = FitResults((10, 5), 5.5) with pytest.raises(ValueError): # Should be an integer >= 1 fits = FitResults((10, 5), 0) def test_fitresults_append(): # Create dummy fit results fit1 = FitResult( [2, 6, 254.6, 963.4], {'chi2': 7.43, 'classification': 4, 'profile': 'absorption', 'success': True, 'index': [12, 34, 81]} ) fit2 = FitResult( [9, 2, 724.32, 134.8], {'chi2': 1.34, 'classification': 2, 'profile': 'emission', 'success': True, 'index': [12, 0, 99]} ) fit3 = FitResult( [1, 8, 932.1, 327.5, 3.7, 9, 2, 0.2], {'chi2': 0.79, 'classification': 1, 'profile': 'both', 'success': False, 'index': [12, 99, 0]} ) fit4 = FitResult( # With incorrect time index [6, 4, 356.2, 738.5], {'chi2': 8.2, 'classification': 3, 'profile': 'absorption', 'success': True, 'index': [3, 0, 25]} ) fit5 = FitResult( # With unknown profile name [5, 3, 256.2, 628.5], {'chi2': 8.1, 'classification': 3, 'profile': 'continuum', 'success': True, 'index': [12, 10, 40]} ) # Initialise empty FitResults object fits = FitResults((100, 100), 8, time=12) # Append dummy fits fits.append(fit1) fits.append(fit2) fits.append(fit3) with pytest.raises(ValueError): # Time index does not match fits.append(fit4) with pytest.raises(ValueError): # Unknown profile fits.append(fit5) assert all([a == b for a, b in zip(fits.parameters[34, 81][:4], fit1.parameters)]) assert fits.chi2[34, 81] == fit1.chi2 assert fits.classifications[34, 81] == fit1.classification assert fits.profile[34, 81] == fit1.profile assert fits.success[34, 81] == fit1.success assert all([a == b for a, b in zip(fits.parameters[0, 99][4:], fit2.parameters)]) assert fits.chi2[0, 99] == fit2.chi2 assert fits.classifications[0, 99] == fit2.classification assert fits.profile[0, 99] == fit2.profile assert fits.success[0, 99] == fit2.success assert all([a == b for a, b in zip(fits.parameters[99, 0], fit3.parameters)]) assert fits.chi2[99, 0] == fit3.chi2 assert fits.classifications[99, 0] == fit3.classification assert fits.profile[99, 0] == fit3.profile assert fits.success[99, 0] == fit3.success def test_fitresults_velocities(): m = DummyModel(original_wavelengths=[1000.4, 1000.6]) m.stationary_line_core = 1000.5 m.quiescent_wavelength = 0 m.active_wavelength = 1 fits = FitResults((4, 4), 2) fits.parameters = np.array([ [[1000.2, 192.4], [826.5, 534.23], [8365.86, 1252.32], [1532.3, 2152.3]], [[978.73, 753.52], [1253.5, 1329.3], [6423.4, 2355.45], [12.53, 2523.3]], [[825.8, 862.5], [1759.5, 1000.9], [2633.4, 234.43], [2535.353, 152.34]], [[896.53, 153.2], [1224.3, 1111.11], [634.54, 2353.97], [242.35, 763.4]] ]) truth_quiescent = np.array([[-8.99550225e+01, -5.21739130e+04, 2.20850375e+06, 1.59460270e+05], [-6.52773613e+03, 7.58620690e+04, 1.62605697e+06, -2.96242879e+05], [-5.23838081e+04, 2.27586207e+05, 4.89625187e+05, 4.60225787e+05], [-3.11754123e+04, 6.71064468e+04, -1.09733133e+05, -2.27331334e+05]]) truth_active = np.array([[-2.42308846e+05, -1.39811094e+05, 7.55082459e+04, 3.45367316e+05], [-7.40569715e+04, 9.85907046e+04, 4.06281859e+05, 4.56611694e+05], [-4.13793103e+04, 1.19940030e+02, -2.29706147e+05, -2.54320840e+05], [-2.54062969e+05, 3.31664168e+04, 4.05838081e+05, -7.10944528e+04]]) result_quiescent = fits.velocities(m, vtype='quiescent') result_active = fits.velocities(m, vtype='active') with pytest.raises(ValueError): fits.velocities(m, vtype='unknown-vtype') assert result_quiescent == pytest.approx(truth_quiescent) assert result_active == pytest.approx(truth_active)
python
# Generated by Django 4.0.1 on 2022-03-09 12:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('BruteScan', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='bruteresult', name='result_flag', ), migrations.AddField( model_name='bruteresult', name='password', field=models.CharField(db_column='password', default='', max_length=32, verbose_name='口令'), ), migrations.AddField( model_name='bruteresult', name='username', field=models.CharField(db_column='username', default='', max_length=32, verbose_name='账号'), ), ]
python
import backend import imagery import config_reader import os import shutil import geolocation import numpy as np import json from detectors.Detector import Detector from Mask_RCNN_Detect import Mask_RCNN_Detect from PIL import Image from flask import Flask, render_template, request, flash, redirect, url_for, send_from_directory, send_file application = Flask(__name__) imd = None program_config = None osm = None mrcnn = None # gets the directories all set up if (os.path.isdir('runtime')): shutil.rmtree('runtime') os.mkdir('runtime') os.mkdir('runtime/images') os.mkdir('runtime/masks') # useful function for turning request data into usable dictionaries def result_to_dict(result): info = {} for k, v in result.items(): info[k.lower()] = v return info @application.route('/', methods=['GET']) # base page that loads up on start/accessing the website def login(): # this method is called when the page starts up return redirect('/home/') @application.route('/home/') def home(lat=None, lng=None, zoom=None): # necessary so that if one refreshes, the way memory deletes with the drawn polygons global osm, program_config osm.clear_ways_memory() Detector.reset() if lat is None or lng is None or zoom is None: config = program_config lat = config['start_lat'] lng = config['start_lng'] zoom = config['start_zoom'] access_key = program_config['accessKey'] context = {} context['lat'] = lat context['lng'] = lng context['zoom'] = zoom context['access_key'] = access_key return render_template('DisplayMap.html', **context) @application.route('/<zoom>/<lat>/<lng>', methods=['GET']) def move_to_new_lat_long(zoom, lat, lng): return home(zoom, lat, lng) @application.route('/home/backendWindow/', methods=['POST', 'GET']) def backend_window(): global mrcnn if mrcnn is None or mrcnn.image_id == 1: # no images masked yet return send_from_directory('default_images', 'default_window.jpeg') print("in backend window", mrcnn.image_id) print('looking at ' + 'mask_{}.png'.format(mrcnn.image_id-1)) return send_from_directory('runtime/masks', 'mask_{}.png'.format(mrcnn.image_id-1)) @application.route('/home/detect_buildings', methods=['POST']) def mapclick(): global osm, mcrnn, imd if request.method == 'POST': result = request.form info = result_to_dict(result) lat = float(info['lat']) lng = float(info['lng']) zoom = int(info['zoom']) strategy = info['strategy'] # find xtile, ytile xtile, ytile = geolocation.deg_to_tile(lat, lng, zoom) image = np.array(imd.download_tile(xtile, ytile, zoom)) if strategy == 'mrcnn': # SETUP MRCNN STUFF global mrcnn if mrcnn is None: # import if not already imported print('import MRCNN stuff...') from Mask_RCNN_Detect import Mask_RCNN_Detect mrcnn = Mask_RCNN_Detect('weights/epoch55.h5') mask_data = mrcnn.detect_building(image, lat, lng, zoom) building_ids = list(mask_data.keys()) building_points = list(mask_data.values()) else: detector = Detector(image, lat, lng, zoom) rect_id, rect_points = detector.detect_building() building_ids = [rect_id] building_points = [rect_points] json_post = {"rects_to_add": [{ "ids": building_ids, "points": building_points }], "rects_to_delete": {"ids": []} } return json.dumps(json_post) @application.route('/home/delete_building', methods=['POST']) def delete_building(): result = request.form info = result_to_dict(result) building_id = None lat = None lng = None zoom = None building_id = None if 'building_id' in info: building_id = int(info['building_id']) else: lat = float(info['lat']) lng = float(info['lng']) zoom = float(info['zoom']) global mrcnn if mrcnn is not None: building_id = mrcnn.delete_mask(lat, lng, zoom, building_id) json_post = {"rects_to_delete": {"ids": [building_id]} } return json.dumps(json_post) return 'mrcnn has not been made' @application.route('/home/upload', methods=['POST']) def upload_changes(): print('uploading to OSM...') global osm # # Create the way using the list of nodes changeset_comment = "Added " + str(len(mrcnn.id_geo)) + " buildings." print("comment", changeset_comment) ways_created = osm.way_create_multiple(mrcnn.id_geo, changeset_comment, {"building": "yes"}) # # Clear the rectangle list mrcnn.clear() print('uploaded!') return str(len(ways_created)) @application.route('/home/OSMSync', methods=['POST']) def OSM_map_sync(): if request.method == 'POST': result = request.form info = result_to_dict(result) min_long = float(info['min_long']) min_lat = float(info['min_lat']) max_long = float(info['max_long']) max_lat = float(info['max_lat']) global osm mapplicationable_results = osm.sync_map(min_long, min_lat, max_long, max_lat) if mapplicationable_results == None or len(mapplicationable_results) == 0: json_post = {'rectsToAdd': []} return json.dumps(json_post) # note that this is in a different format as the other json_post for a map click # mapplicationable_results is a list with each index a building containing tuples for the coordinates of the corners json_post = {"rectsToAdd": mapplicationable_results} return json.dumps(json_post) @application.route('/home/citySearch', methods=['POST']) def citySearch(): if request.method == 'POST': result = request.form info = result_to_dict(result) print('info', info) city_name = info['query'] coords = backend.search_city(city_name) if coords != None: json_post = {'lat': coords[0], 'lng': coords[1]} return json.dumps(json_post) json_post = {'lat': '-1000'} return json.dumps(json_post) # run the application. if __name__ == "__main__": config = config_reader.get_config() # useless application.secret_key = 'super secret key' # Get config variables access_key = None if "accessKey" in config: access_key = config["accessKey"] # Create imagery downloader imd = imagery.ImageryDownloader(access_key) program_config = config init_info = program_config["osmUpload"] args = ["api", "username", "password"] for arg in args: if arg not in init_info: print("[ERROR] Config: osmUpload->" + arg + " not found!") raise ValueError() # initializes the class for interacting with OpenStreetMap's API osm = backend.OSM_Interactor(init_info["api"], init_info["username"], init_info["password"]) application.debug = True application.run()
python
# I am a comment, python interpreter will ignore every line that starts with '#' """ I am a multiline comment and surrounded by 3 \" or 3 \' """
python
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from django.core.management.base import BaseCommand from desktop import conf from desktop import supervisor import os import sys from django.utils.translation import ugettext as _ SERVER_HELP = r""" Run Hue using either the CherryPy server or the Spawning server, based on the current configuration. """ LOG = logging.getLogger(__name__) class Command(BaseCommand): help = _("Web server for Hue.") def handle(self, *args, **options): runserver() def usage(self, subcommand): return SERVER_HELP def runserver(): script_name = "runspawningserver" if conf.USE_CHERRYPY_SERVER.get(): script_name = "runcherrypyserver" cmdv = supervisor.DjangoCommandSupervisee(script_name).cmdv os.execv(cmdv[0], cmdv) LOG.error("Failed to exec '%s' with argument '%s'" % (cmdv[0], cmdv[1],)) sys.exit(-1) if __name__ == '__main__': runserver()
python
import numpy as np import sys import matplotlib.ticker as mticker def file2stats(filename): #f=open(filename) f=open('results/'+filename) print('WARNING: Results read have not been regenerated') lines = f.readlines() f.close() A = [] for line in lines: A.append(float(line[:-1])) A=np.array(A) mean = np.mean(A) std = np.std(A) maxVal = np.amax(A) minVal = np.amin(A) return mean, std, maxVal, minVal f = mticker.ScalarFormatter(useOffset=False, useMathText=True) g = lambda x,pos : "{}".format(f._formatSciNotation('%1.2e' % x)) fmt = mticker.FuncFormatter(g) gbs = lambda x,pos : r"\boldsymbol{"+"{}".format(f._formatSciNotation('%1.2e' % x)) fmtbs = mticker.FuncFormatter(gbs) gbe = lambda x,pos : "{}".format(f._formatSciNotation('%1.2e' % x)+r"}") fmtbe = mticker.FuncFormatter(gbe) def appendOptToString(string,eps,metric): string += " & " if metric=='Max': if eps==0: string += r'$ 0 $' if eps==1: #string += r'$' + fmt(5.3632) + r" \pm " + fmt(0.0149) +'$' string += r'$' + fmt(5.3632) +'$' if eps==2: #string += r'$' + fmt(10.8079) + r" \pm " + fmt(0.0335) +'$' string += r'$' + fmt(10.8079) +'$' if eps==3: #string += r'$' + fmt(16.1125) + r" \pm " + fmt(0.0504) +'$' string += r'$' + fmt(16.1125) +'$' if eps==4: #string += r'$' + fmt(21.5276) + r" \pm " + fmt(0.0594) +'$' string += r'$' + fmt(21.5276) +'$' if metric=='Mean': string += r'$' + fmt(2*eps/np.sqrt(2*np.pi)) + '$' string += r' \\ ' return string def appendResultToString(string,n,eps,mode,metric): if mode=='GP': mean1, std1, _, _ = file2stats(metric+'_phase_n'+str(n)+'_eps'+str(eps)) mean2, std2, _, _ = file2stats(metric+'_random_n'+str(n)+'_eps'+str(eps)) mean3, std3, _, _ = file2stats(metric+'_kmeans_n'+str(n)+'_eps'+str(eps)) elif mode=='NN': mean1, std1, _, _ = file2stats(metric+'NN_phase_n'+str(n)+'_eps'+str(eps)) mean2, std2, _, _ = file2stats(metric+'NN_random_n'+str(n)+'_eps'+str(eps)) mean3, std3, _, _ = file2stats(metric+'NN_kmeans_n'+str(n)+'_eps'+str(eps)) listMeans = np.array([mean1,mean2,mean3]) minVal = np.argsort(listMeans)[0] if minVal==0: string += r" & $"+fmtbs(mean1) + r" \pm " + fmtbe(std1) +'$' else: string += r" & $"+fmt(mean1) + r" \pm " + fmt(std1) +'$' if minVal==1: string += r" & $"+fmtbs(mean2) + r" \pm " + fmtbe(std2) +'$' else: string += r" & $"+fmt(mean2) + r" \pm " + fmt(std2) +'$' if minVal==2: string += r" & $"+fmtbs(mean3) + r" \pm " + fmtbe(std3) +'$' else: string += r" & $"+fmt(mean3) + r" \pm " + fmt(std3) +'$' string = appendOptToString(string,eps,metric) return string nSampleList = [1000] epsilonList = [0, 1, 2, 3, 4] i_iter = 0 # GP Results print(r"\begin{table}[h]") print(r"\caption{{\color{red}GP results}}") print(r"\label{tab:GPResults}") print(r"\begin{center}") print(r"\begin{tabular}{ |c|c|c|c|c|c|c| }") print(r"\hline") print(r" Metric & n & $\varepsilon$ & Algo.~\ref{algo:iterative} (2 iter.) & Random & Stratified & Optimum \\ \hline ") string = r"\multirow{5}{*}{Mean} & \multirow{5}{*}{$1,000$} & 0 " string = appendResultToString(string,1000,0,'GP','Mean') print(string) string = r" & & 1 " string = appendResultToString(string,1000,1,'GP','Mean') print(string) string = r" & & 2 " string = appendResultToString(string,1000,2,'GP','Mean') print(string) string = r" & & 3 " string = appendResultToString(string,1000,3,'GP','Mean') print(string) string = r" & & 4 " string = appendResultToString(string,1000,4,'GP','Mean') string += r"\hline" print(string) string = r"\multirow{5}{*}{Max} & \multirow{5}{*}{$1,000$} & 0 " string = appendResultToString(string,1000,0,'GP','Max') print(string) string = r" & & 1 " string = appendResultToString(string,1000,1,'GP','Max') print(string) string = r" & & 2 " string = appendResultToString(string,1000,2,'GP','Max') print(string) string = r" & & 3 " string = appendResultToString(string,1000,3,'GP','Max') print(string) string = r" & & 4 " string = appendResultToString(string,1000,4,'GP','Max') string += r"\hline" print(string) print(r"\end{tabular}") print(r"\end{center}") print(r"\end{table}") print("\n\n\n") # NN Results print(r"\begin{table}[h]") print(r"\caption{{\color{red}NN results}}") print(r"\label{tab:NNResults}") print(r"\begin{center}") print(r"\begin{tabular}{ |c|c|c|c|c|c|c| }") print(r"\hline") print(r" Metric & n & $\varepsilon$ & Algo.~\ref{algo:iterative} (2 iter.) & Random & Stratified & Optimum \\ \hline ") string = r"\multirow{5}{*}{Mean} & \multirow{5}{*}{$1,000$} & 0 " string = appendResultToString(string,1000,0,'NN','Mean') print(string) string = r" & & 1 " string = appendResultToString(string,1000,1,'NN','Mean') print(string) string = r" & & 2 " string = appendResultToString(string,1000,2,'NN','Mean') print(string) string = r" & & 3 " string = appendResultToString(string,1000,3,'NN','Mean') print(string) string = r" & & 4 " string = appendResultToString(string,1000,4,'NN','Mean') string += r"\hline" print(string) string = r"\multirow{5}{*}{Max} & \multirow{5}{*}{$1,000$} & 0 " string = appendResultToString(string,1000,0,'NN','Max') print(string) string = r" & & 1 " string = appendResultToString(string,1000,1,'NN','Max') print(string) string = r" & & 2 " string = appendResultToString(string,1000,2,'NN','Max') print(string) string = r" & & 3 " string = appendResultToString(string,1000,3,'NN','Max') print(string) string = r" & & 4 " string = appendResultToString(string,1000,4,'NN','Max') string += r"\hline" print(string) string = r"\multirow{5}{*}{Mean} & \multirow{5}{*}{$10,000$} & 0 " string = appendResultToString(string,10000,0,'NN','Mean') print(string) string = r" & & 1 " string = appendResultToString(string,10000,1,'NN','Mean') print(string) string = r" & & 2 " string = appendResultToString(string,10000,2,'NN','Mean') print(string) string = r" & & 3 " string = appendResultToString(string,10000,3,'NN','Mean') print(string) string = r" & & 4 " string = appendResultToString(string,10000,4,'NN','Mean') string += r"\hline" print(string) string = r"\multirow{5}{*}{Max} & \multirow{5}{*}{$10,000$} & 0 " string = appendResultToString(string,10000,0,'NN','Max') print(string) string = r" & & 1 " string = appendResultToString(string,10000,1,'NN','Max') print(string) string = r" & & 2 " string = appendResultToString(string,10000,2,'NN','Max') print(string) string = r" & & 3 " string = appendResultToString(string,10000,3,'NN','Max') print(string) string = r" & & 4 " string = appendResultToString(string,10000,4,'NN','Max') string += r"\hline" print(string) print(r"\end{tabular}") print(r"\end{center}") print(r"\end{table}")
python
import os import numpy as np from OpenGL.GL import * import lib.basic_shapes as bs import lib.easy_shaders as es import lib.transformations as tr import lib.object_handler as oh class Charmander(): def __init__(self): self.GPU = es.toGPUShape(oh.readOBJ(os.path.join('mod','tex','charmander.obj'), (241/255, 95/266, 62/255)), GL_REPEAT, GL_NEAREST) def draw(self, pipeline, projection, view, transform, view_pos): glUseProgram(pipeline.shaderProgram) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "La"), 241/255, 95/266, 62/255) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Ld"), 241/255, 95/266, 62/255) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Ls"), 241/255, 95/266, 62/255) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Ka"), 0.5, 0.5, 0.5) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Kd"), 0.1, 0.1, 0.1) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Ks"), 0.5, 0.5, 0.5) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "lightPosition"), 50, 50, 50) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "viewPosition"), *view_pos) glUniform1ui(glGetUniformLocation(pipeline.shaderProgram, "shininess"), 10000) glUniform1f(glGetUniformLocation(pipeline.shaderProgram, "constantAttenuation"), 0.001) glUniform1f(glGetUniformLocation(pipeline.shaderProgram, "linearAttenuation"), 0.0001) glUniform1f(glGetUniformLocation(pipeline.shaderProgram, "quadraticAttenuation"), 0.0001) glUniformMatrix4fv(glGetUniformLocation(pipeline.shaderProgram, "model"), 1, GL_TRUE, transform) glUniformMatrix4fv(glGetUniformLocation(pipeline.shaderProgram, "projection"), 1, GL_TRUE, projection) glUniformMatrix4fv(glGetUniformLocation(pipeline.shaderProgram, "view"), 1, GL_TRUE, view) pipeline.drawShape(self.GPU) class Bulbasaur(): def __init__(self): self.GPU = es.toGPUShape(oh.readOBJ(os.path.join('mod','tex','bulbasaur.obj'), (137/255, 200/255, 147/255)), GL_REPEAT, GL_NEAREST) def draw(self, pipeline, projection, view, transform, view_pos): glUseProgram(pipeline.shaderProgram) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "La"), 137/255, 200/255, 147/255) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Ld"), 137/255, 200/255, 147/255) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Ls"), 137/255, 200/255, 147/255) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Ka"), 0.5, 0.5, 0.5) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Kd"), 0.1, 0.1, 0.1) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Ks"), 0.5, 0.5, 0.5) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "lightPosition"), 50, 50, 50) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "viewPosition"), *view_pos) glUniform1ui(glGetUniformLocation(pipeline.shaderProgram, "shininess"), 10000) glUniform1f(glGetUniformLocation(pipeline.shaderProgram, "constantAttenuation"), 0.001) glUniform1f(glGetUniformLocation(pipeline.shaderProgram, "linearAttenuation"), 0.0001) glUniform1f(glGetUniformLocation(pipeline.shaderProgram, "quadraticAttenuation"), 0.0001) glUniformMatrix4fv(glGetUniformLocation(pipeline.shaderProgram, "model"), 1, GL_TRUE, transform) glUniformMatrix4fv(glGetUniformLocation(pipeline.shaderProgram, "projection"), 1, GL_TRUE, projection) glUniformMatrix4fv(glGetUniformLocation(pipeline.shaderProgram, "view"), 1, GL_TRUE, view) pipeline.drawShape(self.GPU) class Squirtle(): def __init__(self): self.GPU = es.toGPUShape(oh.readOBJ(os.path.join('mod','tex','squirtle.obj'), (162/255, 215/255, 213/255)), GL_REPEAT, GL_NEAREST) def draw(self, pipeline, projection, view, transform, view_pos): glUseProgram(pipeline.shaderProgram) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "La"), 162/255, 215/255, 213/255) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Ld"), 162/255, 215/255, 213/255) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Ls"), 162/255, 215/255, 213/255) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Ka"), 0.5, 0.5, 0.5) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Kd"), 0.1, 0.1, 0.1) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Ks"), 0.5, 0.5, 0.5) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "lightPosition"), 50, 50, 50) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "viewPosition"), *view_pos) glUniform1ui(glGetUniformLocation(pipeline.shaderProgram, "shininess"), 10000) glUniform1f(glGetUniformLocation(pipeline.shaderProgram, "constantAttenuation"), 0.001) glUniform1f(glGetUniformLocation(pipeline.shaderProgram, "linearAttenuation"), 0.0001) glUniform1f(glGetUniformLocation(pipeline.shaderProgram, "quadraticAttenuation"), 0.0001) glUniformMatrix4fv(glGetUniformLocation(pipeline.shaderProgram, "model"), 1, GL_TRUE, transform) glUniformMatrix4fv(glGetUniformLocation(pipeline.shaderProgram, "projection"), 1, GL_TRUE, projection) glUniformMatrix4fv(glGetUniformLocation(pipeline.shaderProgram, "view"), 1, GL_TRUE, view) pipeline.drawShape(self.GPU) class Pikachu(): def __init__(self): self.GPU = es.toGPUShape(oh.readOBJ(os.path.join('mod','tex','pikachu.obj'), (250/255, 214/255, 29/255)), GL_REPEAT, GL_NEAREST) def draw(self, pipeline, projection, view, transform, view_pos): glUseProgram(pipeline.shaderProgram) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "La"), 250/255, 214/255, 29/255) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Ld"), 250/255, 214/255, 29/255) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Ls"), 250/255, 214/255, 29/255) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Ka"), 0.5, 0.5, 0.5) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Kd"), 0.1, 0.1, 0.1) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "Ks"), 1.0, 1.0, 1.0) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "lightPosition"), *view_pos) glUniform3f(glGetUniformLocation(pipeline.shaderProgram, "viewPosition"), *view_pos) glUniform1ui(glGetUniformLocation(pipeline.shaderProgram, "shininess"), 10000000) glUniform1f(glGetUniformLocation(pipeline.shaderProgram, "constantAttenuation"), 0.001) glUniform1f(glGetUniformLocation(pipeline.shaderProgram, "linearAttenuation"), 0.0001) glUniform1f(glGetUniformLocation(pipeline.shaderProgram, "quadraticAttenuation"), 0.0001) glUniformMatrix4fv(glGetUniformLocation(pipeline.shaderProgram, "model"), 1, GL_TRUE, transform) glUniformMatrix4fv(glGetUniformLocation(pipeline.shaderProgram, "projection"), 1, GL_TRUE, projection) glUniformMatrix4fv(glGetUniformLocation(pipeline.shaderProgram, "view"), 1, GL_TRUE, view) pipeline.drawShape(self.GPU) class Food(): def __init__(self): self.x, self.y = 0, 0 self.z = 1 self.time = 0 self.tick = np.pi/180*2 self.s = 3 self.models = { 'charmander' : Charmander(), 'bulbasaur' : Bulbasaur(), 'squirtle' : Squirtle(), 'pikachu' : Pikachu() } self.list = ['charmander', 'bulbasaur', 'squirtle', 'pikachu'] self.prob = [0.3, 0.3, 0.3, 0.1] self.choice_model() self.transform = np.matmul(tr.translate(self.x,self.y,self.z), np.matmul(tr.rotationZ(self.time*4), np.matmul(tr.rotationX(np.pi/2), tr.uniformScale(self.s)))) def choice_model(self): self.status = np.random.choice(self.list, p=self.prob) self.model = self.models[self.status] def draw(self, pipeline, projection, view): self.model.draw(pipeline, projection, view, self.transform, (self.x, self.y, self.z)) def update(self): self.time += self.tick self.z = np.exp(2*np.sin(2*self.time))/4 self.transform = np.matmul(tr.translate(self.x,self.y,self.z), np.matmul(tr.rotationZ(self.time*4), np.matmul(tr.rotationX(np.pi/2), tr.uniformScale(self.s)))) def respawn(self, snake, obstacle): self.choice_model() x, y = self.x, self.y; self.x, self.y = np.random.uniform(-97.9, 97.9, 2) if (self.x - x)**2 + (self.y - y)**2 < self.s**2: self.respawn(snake, obstacle); return if (self.x - obstacle.x)**2 + (self.y - obstacle.x)**2 < self.s**2: self.respawn(snake, obstacle); return parts = iter(snake.body); _=next(parts,None) for part in parts: if (self.x - part.x)**2 + (self.y - part.y)**2 < self.s**2: self.respawn(snake, obstacle); return self.transform = np.matmul(tr.translate(self.x,self.y,self.z), np.matmul(tr.rotationZ(self.time*4), np.matmul(tr.rotationX(np.pi/2), tr.uniformScale(self.s))))
python
from setuptools import setup with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setup(name='elektrum', version='0.1', url='https://github.com/zxpower/elektrum', author='Reinholds Zviedris (zxpower)', author_email='[email protected]', description="Utility to authorize and scrape your smart meter consumption data from Elektrum website", long_description=long_description, long_description_content_type="text/markdown", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache-2.0 License", "Operating System :: OS Independent", ], packages=['elektrum'], python_requires=">=3.6", )
python
import json try: import simplejson as json except ImportError: import json import requests import os.path def autodetect_proxy(): proxies = {} proxy_https = os.getenv('HTTPS_PROXY', os.getenv('https_proxy', None)) proxy_http = os.getenv('HTTP_PROXY', os.getenv('http_proxy', None)) if proxy_https: proxies['https'] = proxy_https if proxy_http: proxies['http'] = proxy_http return proxies def fetch_dict(endpoint): data = None if endpoint.startswith(('http:', 'https:', 'ftp:')): proxies = autodetect_proxy() if proxies: response = requests.get(url=endpoint, proxies=proxies) else: response = requests.get(url=endpoint) try: data = response.json() except json.decoder.JSONDecodeError: data = {} else: data = {} if os.path.exists(endpoint): with open(endpoint) as fd: try: data = json.load(fd) except json.JSONDecodeError: data = {} return data def create_default_json_msg(): msg = { "sensors": [], "values": [], "labels": [], "entry_status": "", "eligible": "", "_checkpoint": { "progress": [], "records": [], "global_record": {} }, } return msg def save_dict(endpoint, data): if endpoint.startswith(('http:', 'https:', 'ftp:')): proxies = autodetect_proxy() if proxies: _ = requests.patch(url=endpoint, headers={'content-type':'application/json'}, data=json.dumps(data, indent=4, sort_keys=True), proxies=proxies) else: _ = requests.patch(url=endpoint, headers={'content-type':'application/json'}, data=json.dumps(data, indent=4, sort_keys=True)) else: with open(endpoint, 'w') as fd: json.dump(data, fd, indent=4, sort_keys=True)
python
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.keras.callbacks import Callback from scipy.optimize import linear_sum_assignment def unsupervised_labels(y, yp, n_classes, n_clusters): """Linear assignment algorithm Arguments: y (tensor): Ground truth labels yp (tensor): Predicted clusters n_classes (int): Number of classes n_clusters (int): Number of clusters """ assert n_classes == n_clusters # initialize count matrix C = np.zeros([n_clusters, n_classes]) # populate count matrix for i in range(len(y)): C[int(yp[i]), int(y[i])] += 1 # optimal permutation using Hungarian Algo # the higher the count, the lower the cost # so we use -C for linear assignment row, col = linear_sum_assignment(-C) # compute accuracy accuracy = C[row, col].sum() / C.sum() return accuracy * 100 def center_crop(image, crop_size=4): """Crop the image from the center Argument: crop_size (int): Number of pixels to crop from each side """ height, width = image.shape[0], image.shape[1] x = height - crop_size y = width - crop_size dx = dy = crop_size // 2 image = image[dy:(y + dy), dx:(x + dx), :] return image def lr_schedule(epoch): """Simple learning rate scheduler Argument: epoch (int): Which epoch """ lr = 1e-3 power = epoch // 400 lr *= 0.8**power return lr class AccuracyCallback(Callback): """Callback to compute the accuracy every epoch by calling the eval() method. Argument: net (Model): Object with a network model to evaluate. Must support the eval() method. """ def __init__(self, net): super(AccuracyCallback, self).__init__() self.net = net def on_epoch_end(self, epoch, logs=None): self.net.eval()
python
from fuzzer import Ascii, Utf8, Num from grammar import Cfg, Syms IdChar = Utf8.exclude("?", ":", "}").with_sym_name("IdChar") IdStartChar = IdChar.exclude("=").with_sym_name("IdStartChar") RawChar = Utf8.exclude("{", "\\").with_sym_name("RawChar") ExprLitChar = RawChar.exclude(":", "}").with_sym_name("ExprLitChar") AsciiChar = Ascii s = Syms() cfg = ( Cfg(s.sym("S")) .a(s.sym("S")) .a(s.sym("S"), [s.sym("Elem"), s.sym("S")], [s.sym("Elem")]) .a(s.sym("Elem"), [s.sym("Raw")], ["{", s.sym("Expr"), "}"]) .a(s.sym("Expr"), [s.sym("BasicExpr")], [s.sym("CondExpr")]) .a( s.sym("BasicExpr"), [s.sym("IdOrLit"), ":", s.sym("Arg")], [s.sym("IdOrLit"), s.sym("OptionalColon")], [":", s.sym("Arg")], ) .a( s.sym("CondExpr"), [s.sym("Id"), "?", s.sym("ExprLiteral"), s.sym("OptionalColon")], [s.sym("Id"), "?", s.sym("ExprLiteral"), ":", s.sym("ExprLiteral")], ) .a( s.sym("Raw"), [RawChar, s.sym("Raw")], [s.sym("EscapeSequence"), s.sym("Raw")], [s.sym("Nil")], ) .a(s.sym("OptionalColon"), [":"], [s.sym("Nil")]) .a(s.sym("IdOrLit"), [IdStartChar, s.sym("Id")], ["=", s.sym("ExprLiteral")]) .a( s.sym("Id"), [IdStartChar, s.sym("RestOfId")], [s.sym("Nil")], ) .a(s.sym("RestOfId"), [IdChar, s.sym("RestOfId")], [s.sym("Nil")]) .a( s.sym("ExprLiteral"), [s.sym("EscapeSequence"), s.sym("ExprLiteral")], [ExprLitChar, s.sym("ExprLiteral")], ["{", s.sym("Expr"), "}", s.sym("ExprLiteral")], [s.sym("Nil")], ) .a( s.sym("Arg"), [s.sym("Align"), s.sym("OptionalU8"), s.sym("Prec"), s.sym("Transform")], ) .a( s.sym("Align"), [s.sym("AlignChar"), AsciiChar], [s.sym("Nil")], ) .a(s.sym("AlignChar"), ["<"], [">"]) .a(s.sym("Prec"), [".", s.sym("OptionalU8")], [s.sym("Nil")]) .a(s.sym("OptionalU8"), [Num(255)], [s.sym("Nil")]) .a(s.sym("Transform"), ["b"], ["x"], [s.sym("Nil")]) .a(s.sym("EscapeSequence"), ["\\", AsciiChar]) .a(s.sym("Nil"), [""]) .validate() )
python
class Fila: def __init__(self): self.data = [] def is_empty(self): return self.data == [] def get_size(self): return len(self.data) def peek(self): if self.is_empty(): raise IndexError else: return self.data[0] def enqueue(self, item): self.data.append(item) def dequeue(self): return self.data.pop(0)
python
""" Test cases to validate centos7 base image configurations """ import subprocess import pytest import testinfra DOCKER_IMAGE_NAME = 'python:latest' # scope='session' uses the same container for all the tests; # scope='function' uses a new container per test function. @pytest.fixture(scope='session') def host(): """ Pytest fixture to manage the lifecycle of a container of interest using the specified DOCKER_IMAGE_NAME :return: testinfra connection to the container """ docker_id = subprocess.check_output( [ 'docker', 'run', '-d', '-t', '-i', DOCKER_IMAGE_NAME, '/bin/bash' ] ).decode().strip() # return a testinfra connection to the container yield testinfra.get_host("docker://" + docker_id) # at the end of the test suite, destroy the container subprocess.check_call(['docker', 'rm', '-f', docker_id]) # Scenario: pip should be installed def test_pip(host): """ Test case to check if pip is installed :param host: reference to pytest.fixture - 'host' :return: None """ pip = host.file('/usr/lib/python2.7/site-packages/pip') assert pip.exists # Scenario: Check Timezone def test_tz(host): """ Test case to check if the time zone is AEST :param host: reference to pytest.fixture - 'host' :return: None """ actual_output = host.run('date +"%Z %z"').stdout assert 'AEST' in actual_output # Scenario: Check if all the yum packages in Dockerfile are installed def test_yum_packages(host): """ Test case to check if all the required yum packages are installed :param host: reference to pytest.fixture - 'host' :return: """ # yum install python-pip installs pip based on the python version, since python2 is default in centos, checking # for python2-pip instead of python-pip for pkg in ['python-devel', 'python2-pip', 'epel-release']: assert host.package(pkg).is_installed
python
import numpy as np import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from PyKEP import epoch, DAY2SEC, planet_ss, AU, MU_SUN, lambert_problem from PyKEP.orbit_plots import plot_planet, plot_lambert mpl.rcParams['legend.fontsize'] = 10 fig = plt.figure() ax = fig.gca(projection='3d') t1 = epoch(0) t2 = epoch(740) dt = (t2.mjd2000 - t1.mjd2000) * DAY2SEC ax.scatter(0,0,0, color='y') pl = planet_ss('earth') plot_planet(ax,pl, t0=t1, color=(0.8,0.8,1), legend=True, units = AU) rE,vE = pl.eph(t1) pl = planet_ss('mars') plot_planet(ax,pl, t0=t2, color=(0.8,0.8,1), legend=True, units = AU) rM, vM = pl.eph(t2) l = lambert_problem(rE,rM,dt,MU_SUN) nmax = l.get_Nmax() print "max number of revolutions",nmax plot_lambert(ax,l , color=(1,0,0), legend=True, units = AU) for i in range(1,nmax*2+1): print i plot_lambert(ax,l,sol=i, color=(1,0,i/float(nmax*2)), legend=True, units = AU) def axisEqual3D(ax): extents = np.array([getattr(ax, 'get_{}lim'.format(dim))() for dim in 'xyz']) sz = extents[:,1] - extents[:,0] centers = np.mean(extents, axis=1) maxsize = max(abs(sz)) r = maxsize/2 for ctr, dim in zip(centers, 'xyz'): getattr(ax, 'set_{}lim'.format(dim))(ctr - r, ctr + r) axisEqual3D(ax) plt.show()
python
import os, sys from threading import Thread, active_count from PyQt5.QtWidgets import QApplication, QMainWindow, QFileDialog from PyQt5.QtGui import QIcon from logic import get_cheaters from layout import Ui_CheatChecker # If layout shows an import error, generate it using: # pyuic5 checker.ui -o layout.py class CheatChecker(QMainWindow, Ui_CheatChecker): def __init__(self): super().__init__() self.setupUi(self) self.cheaters = self.folder = None self.setWindowIcon(QIcon(os.path.join(getattr(sys, "_MEIPASS", "."), "checker.ico"))) self.folderEdit.textChanged.connect(self.setFolder) self.setFolderButton.clicked.connect(self.setFolder) self.getCheatersButton.clicked.connect(self.getCheaters) self.cheatersList.currentTextChanged.connect(self.openCodes) self.cheatersSearchEdit.textChanged.connect(self.searchCheaters) self.getCheatersButton.setFocus() def setFolder(self, folder=None): self.folder = folder or str(QFileDialog.getExistingDirectory(self, "Select Codes Directory")) if not folder: self.folderEdit.setText(self.folder) def getCheaters(self): if not self.folder: self.setFolder() if not self.folder: return if active_count() == 1: Thread(target=self.processCheaters).start() def searchCheaters(self, keyword): if self.cheaters: keyword = keyword.lower() self.cheatersList.clear() self.cheatersList.addItems(key for key in self.cheaters.keys() if not keyword or keyword in key) def processCheaters(self): self.cheatersList.clear() self.cheatersSearchEdit.clear() self.cheaters = get_cheaters(self.folder, self.mainCheckBox.isChecked()) self.cheatersList.addItems(self.cheaters.keys()) self.cheatersList.setMinimumWidth(self.cheatersList.sizeHintForColumn(0) + 36) self.cheatersLabel.setText("Cheaters in " + self.folder.rsplit("/", 1)[1] + ":") def openCodes(self, index): if not index: return file1, file2 = self.cheaters[index] self.code1Label.setText("Code 1: " + file1) self.code1TextArea.setText(open(os.path.join(self.folder, file1)).read()) self.code2Label.setText("Code 2: " + file2) self.code2TextArea.setText(open(os.path.join(self.folder, file2)).read()) if __name__ == "__main__": app = QApplication(sys.argv) main = CheatChecker() main.show() sys.exit(app.exec_())
python
# -*- coding: utf-8 -*- import pandas as pd import os def read_csv_data_in_directory(directory_path, variables_to_keep = []): """ Read a directory of .csv files and merges them into a single data frame Parameters ---------- directory_path : str absolute path to directory containing csv files variables_to_keep : list (optional) variables to keep in `cumulative_df` Raises ------ ValueError when directory contains a file that is not a .csv Returns ------- cumulative_df : pandas.DataFrame data from all csvs in the directory """ files_in_folder = os.listdir(directory_path) cumulative_df = None for file in files_in_folder: if not file.endswith(".csv"): raise ValueError(f"{file} is not a .csv file") absolute_path = os.path.join(directory_path, file) data_from_file = pd.read_csv(absolute_path) if cumulative_df is None: cumulative_df = data_from_file else: cumulative_df = cumulative_df.append(data_from_file) filtered_df = cumulative_df[variables_to_keep] return filtered_df
python
import tensorflow as tf import numpy as np import time with open('letters_source.txt', 'r', encoding = 'utf-8') as f: source_data = f.read() with open('letters_target.txt', 'r', encoding = 'utf-8') as f: target_data = f.read() def extrtact_character_vocab(data): #construct mapping table special_words = ['<PAD>','<UNK>','<GO>','<EOS>'] set_words = list(set([char for line in data.split('\n') for char in line])) #add the special words in vocab int_to_vocab = {idx : word for idx, word in enumerate(special_words + set_words)} vocab_to_int = {word : idx for idx, word in int_to_vocab.items()} return int_to_vocab, vocab_to_int #mapping table source_int_to_letter, source_letter_to_int = extrtact_character_vocab(source_data) target_int_to_letter, target_letter_to_int = extrtact_character_vocab(target_data) #convert character source_int = [[source_letter_to_int.get(letter, source_letter_to_int['<UNK>']) for letter in line] for line in source_data.split('\n')]#DISPLAY EACH WORD IN VOCAB IN FORM OF CHAR, #THEN TRANSLATE TO INT, UNK is default return value for get in dict target_int = [[target_letter_to_int.get(letter, target_letter_to_int['<UNK>']) for letter in line] + [target_letter_to_int['<EOS>']] for line in target_data.split('\n')] #<EOS> at the end of every word def get_inputs(): ''' input tensor of model ''' inputs = tf.placeholder(tf.int32, [None, None], name='inputs') targets = tf.placeholder(tf.int32, [None, None], name='targets') learning_rate = tf.placeholder(tf.float32, name='learning_rate') target_sequence_length = tf.placeholder(tf.int32, (None,), name='target_sequence_length') max_target_sequence_length = tf.reduce_max(target_sequence_length, name='max_target_len') source_sequence_length = tf.placeholder(tf.int32, (None,), name='source_sequence_length') return inputs, targets, learning_rate, target_sequence_length, max_target_sequence_length, source_sequence_length def get_encoder_layer(input_data, rnn_size, num_layers, source_sequence_length, source_vocab_size, encoding_embedding_size): #Encoder embedding encoder_embed_input = tf.contrib.layers.embed_sequence(input_data, source_vocab_size, encoding_embedding_size) #RNN Cell def get_lstm_cell(rnn_size): lstm_cell = tf.contrib.rnn.LSTMCell(rnn_size, initializer = tf.random_uniform_initializer(-0.1, 0.1, seed = 2)) return lstm_cell cell = tf.contrib.rnn.MultiRNNCell([get_lstm_cell(rnn_size) for _ in range(num_layers)]) encoder_output, encoder_state = tf.nn.dynamic_rnn(cell, encoder_embed_input, sequence_length = source_sequence_length, dtype = tf.float32) return encoder_output, encoder_state def process_decoder_input(data, vocab_to_int, batch_size): ending = tf.strided_slice(data, [0, 0], [batch_size, -1], [1, 1]) decoder_input = tf.concat([tf.fill([batch_size, 1], vocab_to_int['<GO>']), ending], 1) return decoder_input def decoding_layer(target_letter_to_int, decoding_embedding_size, num_layers, rnn_size, target_sequence_length, max_target_sequence_length, encoder_state, decoder_input): # 1. Embedding target_vocab_size = len(target_letter_to_int) decoder_embeddings = tf.Variable(tf.random_uniform([target_vocab_size, decoding_embedding_size])) decoder_embed_input = tf.nn.embedding_lookup(decoder_embeddings, decoder_input) # 2. Construct RNN Cells in Decoder def get_decoder_cell(rnn_size): decoder_cell = tf.contrib.rnn.LSTMCell(rnn_size, initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=2)) return decoder_cell cell = tf.contrib.rnn.MultiRNNCell([get_decoder_cell(rnn_size) for _ in range(num_layers)]) # 3. Output FC layer output_layer = tf.layers.Dense(target_vocab_size, kernel_initializer = tf.truncated_normal_initializer(mean = 0.0, stddev=0.1)) # 4. Training decoder with tf.variable_scope("decode"): # get object of help training_helper = tf.contrib.seq2seq.TrainingHelper(inputs=decoder_embed_input, sequence_length=target_sequence_length, time_major=False) # construct decoder training_decoder = tf.contrib.seq2seq.BasicDecoder(cell, training_helper, encoder_state, output_layer) training_decoder_output, _, _ = tf.contrib.seq2seq.dynamic_decode(training_decoder, impute_finished=True, maximum_iterations=max_target_sequence_length) # 5. Predicting decoder # share param with training with tf.variable_scope("decode", reuse=True): start_tokens = tf.tile(tf.constant([target_letter_to_int['<GO>']], dtype=tf.int32), [batch_size], name='start_tokens') predicting_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(decoder_embeddings, start_tokens, target_letter_to_int['<EOS>']) predicting_decoder = tf.contrib.seq2seq.BasicDecoder(cell, predicting_helper, encoder_state, output_layer) predicting_decoder_output, _, _ = tf.contrib.seq2seq.dynamic_decode(predicting_decoder, impute_finished=True, maximum_iterations=max_target_sequence_length) return training_decoder_output, predicting_decoder_output def seq2seq_model(input_data, targets, lr, target_sequence_length, max_target_sequence_length, source_sequence_length, source_vocab_size, target_vocab_size, encoder_embedding_size, decoder_embedding_size, rnn_size, num_layers): # aquire encoder state output _, encoder_state = get_encoder_layer(input_data, rnn_size, num_layers, source_sequence_length, source_vocab_size, encoding_embedding_size) # decoder's input after preprocessing decoder_input = process_decoder_input(targets, target_letter_to_int, batch_size) # state and input to decoder training_decoder_output, predicting_decoder_output = decoding_layer(target_letter_to_int, decoding_embedding_size, num_layers, rnn_size, target_sequence_length, max_target_sequence_length, encoder_state, decoder_input) return training_decoder_output, predicting_decoder_output #hyper # Number of Epochs epochs = 60 # Batch Size batch_size = 128 # RNN Size rnn_size = 50 # Number of Layers num_layers = 2 # Embedding Size encoding_embedding_size = 15 decoding_embedding_size = 15 # Learning Rate learning_rate = 0.001 # construct graph train_graph = tf.Graph() with train_graph.as_default(): # get model's input input_data, targets, lr, target_sequence_length, max_target_sequence_length, source_sequence_length = get_inputs() training_decoder_output, predicting_decoder_output = seq2seq_model(input_data, targets, lr, target_sequence_length, max_target_sequence_length, source_sequence_length, len(source_letter_to_int), len(target_letter_to_int), encoding_embedding_size, decoding_embedding_size, rnn_size, num_layers) training_logits = tf.identity(training_decoder_output.rnn_output, 'logits') predicting_logits = tf.identity(predicting_decoder_output.sample_id, name='predictions') masks = tf.sequence_mask(target_sequence_length, max_target_sequence_length, dtype=tf.float32, name='masks') with tf.name_scope("optimization"): # Loss function cost = tf.contrib.seq2seq.sequence_loss( training_logits, targets, masks) # Optimizer optimizer = tf.train.AdamOptimizer(lr) # Gradient Clipping gradients = optimizer.compute_gradients(cost) capped_gradients = [(tf.clip_by_value(grad, -5., 5.), var) for grad, var in gradients if grad is not None] train_op = optimizer.apply_gradients(capped_gradients) def pad_sentence_batch(sentence_batch, pad_int): #padding max_sentence = max([len(sentence) for sentence in sentence_batch]) return [sentence + [pad_int] * (max_sentence - len(sentence)) for sentence in sentence_batch] def get_batches(targets, sources, batch_size, source_pad_int, target_pad_int): #in order to get batch for batch_i in range(0, len(sources)//batch_size): start_i = batch_i * batch_size sources_batch = sources[start_i:start_i + batch_size] targets_batch = targets[start_i:start_i + batch_size] #padding pad_sources_batch = np.array(pad_sentence_batch(sources_batch, source_pad_int)) pad_targets_batch = np.array(pad_sentence_batch(targets_batch, target_pad_int)) # record each len targets_lengths = [] for target in targets_batch: targets_lengths.append(len(target)) source_lengths = [] for source in sources_batch: source_lengths.append(len(source)) yield pad_targets_batch, pad_sources_batch, targets_lengths, source_lengths #train and vali train_source = source_int[batch_size:] train_target = target_int[batch_size:] # one batch to validate valid_source = source_int[:batch_size] valid_target = target_int[:batch_size] (valid_targets_batch, valid_sources_batch, valid_targets_lengths, valid_sources_lengths) = next(get_batches(valid_target, valid_source, batch_size, source_letter_to_int['<PAD>'], target_letter_to_int['<PAD>'])) display_step = 50 # each 50 times print loss checkpoint = "trained_model.ckpt" with tf.Session(graph=train_graph) as sess: sess.run(tf.global_variables_initializer()) for epoch_i in range(1, epochs+1): for batch_i, (targets_batch, sources_batch, targets_lengths, sources_lengths) in enumerate( get_batches(train_target, train_source, batch_size, source_letter_to_int['<PAD>'], target_letter_to_int['<PAD>'])): _, loss = sess.run( [train_op, cost], {input_data: sources_batch, targets: targets_batch, lr: learning_rate, target_sequence_length: targets_lengths, source_sequence_length: sources_lengths}) if batch_i % display_step == 0: # calculate validation loss validation_loss = sess.run( [cost], {input_data: valid_sources_batch, targets: valid_targets_batch, lr: learning_rate, target_sequence_length: valid_targets_lengths, source_sequence_length: valid_sources_lengths}) print('Epoch {:>3}/{} Batch {:>4}/{} - Training Loss: {:>6.3f} - Validation loss: {:>6.3f}' .format(epoch_i, epochs, batch_i, len(train_source) // batch_size, loss, validation_loss[0])) # save model saver = tf.train.Saver() saver.save(sess, checkpoint) print('Model Trained and Saved') def source_to_seq(text): ''' convert source data ''' sequence_length = 7 return [source_letter_to_int.get(word, source_letter_to_int['<UNK>']) for word in text] + [source_letter_to_int['<PAD>']]*(sequence_length-len(text)) input_word = 'zhengjiapengniubi' text = source_to_seq(input_word) checkpoint = "./trained_model.ckpt" loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # load model loader = tf.train.import_meta_graph(checkpoint + '.meta') loader.restore(sess, checkpoint) input_data = loaded_graph.get_tensor_by_name('inputs:0') logits = loaded_graph.get_tensor_by_name('predictions:0') source_sequence_length = loaded_graph.get_tensor_by_name('source_sequence_length:0') target_sequence_length = loaded_graph.get_tensor_by_name('target_sequence_length:0') answer_logits = sess.run(logits, {input_data: [text]*batch_size, target_sequence_length: [len(input_word)]*batch_size, source_sequence_length: [len(input_word)]*batch_size})[0] pad = source_letter_to_int["<PAD>"] print('Original INPUT:', input_word) print('\nSource') print(' Word Num.: {}'.format([i for i in text])) print(' Input Words: {}'.format(" ".join([source_int_to_letter[i] for i in text]))) print('\nTarget') print(' Word Num.: {}'.format([i for i in answer_logits if i != pad])) print(' Response Words: {}'.format(" ".join([target_int_to_letter[i] for i in answer_logits if i != pad])))
python
from functools import partial import numpy as np import gym import gym_rock_paper_scissors import gym_connect4 from regym.environments import generate_task, EnvType from regym.environments.wrappers import FrameStack from regym.environments.tasks import RegymAsyncVectorEnv def test_can_stack_frames_singleagent_env(): num_stack = 3 frame_stack = partial(FrameStack, num_stack=num_stack) pendulum_task = generate_task('Pendulum-v0') stack_pendulum_task = generate_task('Pendulum-v0', wrappers=[frame_stack]) assert stack_pendulum_task.observation_dim == (num_stack, *pendulum_task.observation_dim) def test_can_stack_frames_sequential_multiagent_env(): num_stack = 4 frame_stack = partial(FrameStack, num_stack=num_stack) connect_4_task = generate_task('Connect4-v0', EnvType.MULTIAGENT_SEQUENTIAL_ACTION) stack_connect_4_task = generate_task('Connect4-v0', EnvType.MULTIAGENT_SEQUENTIAL_ACTION, wrappers=[frame_stack]) assert stack_connect_4_task.observation_dim == (num_stack, *connect_4_task.observation_dim) num_envs = 3 vector_env = RegymAsyncVectorEnv( stack_connect_4_task.name, num_envs=num_envs, wrappers=[frame_stack] ) actual_obs = vector_env.reset() # Standard Connect4 dimensions is (3, 7, 6) # NOTE: Think of board as being sideways (chips fall right-to-left) single_env_initial_observation = np.array( [[[1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1.]], [[0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.]], [[0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0.]]] ) # We extend by number of stacked frames # So that per environment observation shape is (num_stacks, 3, 7, 6) stacked_single_env_initial_observation = np.array( [single_env_initial_observation for _ in range(num_stack)] ) # We extend by number of environments # So that each agent receives observation of shape (num_envs, num_stack, 3, 7, 6) expected_player_obs = np.array( [stacked_single_env_initial_observation for _ in range(num_envs)] ) num_agents = 2 for i in range(num_agents): np.testing.assert_array_equal(expected_player_obs, actual_obs[i])
python
import numpy as np import sympy import itertools import math import mpmath import warnings from qubricks.operator import Operator DEBUG = False def debug(*messages): if DEBUG: for message in messages: print messages, print class Perturb(object): ''' `Perturb` is a class that allows one to perform degenerate perturbation theory. The perturbation theory logic is intentionally separated into a different class for clarity. Currently it only supports using `RSPT` for perturbation theory, though in the future this may be extended to `Kato` perturbation theory. The advantage of using this class as compared to directly using the `RSPT` class is that the energies and eigenstates can be computed cumulatively, as well as gaining access to shorthand constructions of effective Hamiltonians. :param H_0: The unperturbed Hamiltonian to consider. :type H_0: Operator, sympy matrix or numpy array :param V: The Hamiltonian perturbation to consider. :type V: Operator, sympy matrix or numpy array :param subspace: The state indices to which attention should be restricted. :type subspace: list of int ''' def __init__(self, H_0=None, V=None, subspace=None): self.H_0 = H_0 self.V = V self.__subspace_default = list(subspace) if subspace is not None else None self.__rspt = RSPT(self.H_0, self.V, self.__subspace()) @property def dim(self): ''' The dimension of :math:`H_0`. ''' return self.H_0.shape[0] @property def pt(self): ''' A reference to the perturbation calculating object (e.g. RSPT). ''' return self.__rspt def __subspace(self, subspace=None): if subspace is not None: return subspace if self.__subspace_default is not None: return self.__subspace_default return range(self.dim) def E(self, index, order=0, cumulative=True): ''' This method returns the `index` th eigenvalue correct to order `order` if `cumulative` is `True`; or the the `order` th correction otherwise. :param index: The index of the state to be considered. :type index: int :param order: The order of perturbation theory to apply. :type order: int :param cumulative: `True` if all order corrections up to `order` should be summed (including the initial unperturbed energy). :type cumulative: bool ''' if cumulative: return sum([self.pt.E(index,ord) for ord in range(order + 1)]) else: return self.pt.E(index,order) def Psi(self, index, order=0, cumulative=True): ''' This method returns the `index` th eigenstate correct to order `order` if `cumulative` is `True`; or the the `order` th correction otherwise. :param index: The index of the state to be considered. :type index: int :param order: The order of perturbation theory to apply. :type order: int :param cumulative: `True` if all order corrections up to `order` should be summed (including the initial unperturbed state). :type cumulative: bool ''' if cumulative: return sum([self.pt.Psi(index,ord) for ord in range(order + 1)]) else: return self.pt.Psi(index,order) def Es(self, order=0, cumulative=True, subspace=None): ''' This method returns a the energies associated with the indices in `subspaces`. Internally this uses `Perturb.E`, passing through the keyword arguments `order` and `cumulative` for each index in subspace. :param order: The order of perturbation theory to apply. :type order: int :param cumulative: `True` if all order corrections up to `order` should be summed (including the initial unperturbed energy). :type cumulative: bool :param subspace: The set of indices for which to return the associated energies. :type subspace: list of int ''' Es = [] for i in self.__subspace(subspace): if cumulative: Es.append(sum([self.pt.E(i,ord) for ord in range(order + 1)])) else: Es.append(self.pt.E(i,order)) return np.array(Es, dtype=object) def Psis(self, order=0, cumulative=True, subspace=None): ''' This method returns a the eigenstates associated with the indices in `subspaces`. Internally this uses `Perturb.Psi`, passing through the keyword arguments `order` and `cumulative` for each index in subspace. :param order: The order of perturbation theory to apply. :type order: int :param cumulative: `True` if all order corrections up to `order` should be summed (including the initial unperturbed state). :type cumulative: bool :param subspace: The set of indices for which to return the associated energies. :type subspace: list of int ''' psis = [] for i in self.__subspace(subspace): if cumulative: psis.append(sum([self.pt.Psi(i,ord) for ord in range(order + 1)])) else: psis.append(self.pt.Psi(i,order)) return np.array(psis, dtype=object) def H_eff(self, order=0, cumulative=True, subspace=None, adiabatic=False): ''' This method returns the effective Hamiltonian on the subspace indicated, using energies and eigenstates computed using `Perturb.E` and `Perturb.Psi`. If `adiabatic` is `True`, the effective Hamiltonian describing the energies of the instantaneous eigenstates is returned in the basis of the instantaneous eigenstates (i.e. the Hamiltonian is diagonal with energies corresponding to the instantaneous energies). Otherwise, the Hamiltonian returned is the sum over the indices of the subspace of the perturbed energies multiplied by the outer product of the corresponding perturbed eigenstates. :param order: The order of perturbation theory to apply. :type order: int :param cumulative: `True` if all order corrections up to `order` should be summed (including the initial unperturbed energies and states). :type cumulative: bool :param subspace: The set of indices for which to return the associated energies. :type subspace: list of int :param adiabatic: `True` if the adiabatic effective Hamiltonian (as described above) should be returned. `False` otherwise. :type adiabatic: bool ''' subspace = self.__subspace(subspace) H_eff = np.zeros( (len(subspace),len(subspace)) , dtype=object) for index in subspace: E = self.E(index, order, cumulative) if adiabatic: H_eff[index,index] = E else: psi = self.Psi(index, order, cumulative) H_eff += E*np.outer(psi,psi) return H_eff class RSPT(object): ''' This class implements (degenerate) Rayleigh-Schroedinger Perturbation Theory. It is geared toward generating symbolic solutions, in the hope that the perturbation theory might provide insight into the quantum system at hand. For numerical solutions, you are better off simply diagonalising the evaluated Hamiltonian. .. warning:: This method currently only supports diagonal :math:`H_0`. :param H_0: The unperturbed Hamiltonian to consider. :type H_0: Operator, sympy matrix or numpy array :param V: The Hamiltonian perturbation to consider. :type V: Operator, sympy matrix or numpy array :param subspace: The state indices to which attention should be restricted. :type subspace: list of int ''' def __init__(self, H_0=None, V=None, subspace=None): self.__cache = { 'Es': {}, 'Psis': {}, 'inv': {} } self.H_0 = H_0 self.V = V self.subspace = subspace self.E0s, self.Psi0s = self.get_unperturbed_states() @property def H_0(self): return self.__H_0 @H_0.setter def H_0(self, H_0): if isinstance(H_0, Operator): self.__H_0 = np.array(H_0.symbolic()) else: self.__H_0 = np.array(H_0) @property def V(self): return self.__V @V.setter def V(self, V): if isinstance(V, Operator): self.__V = np.array(V.symbolic()) else: self.__V = np.array(V) def __store(self, store, index, order, value=None): storage = self.__cache[store] if value is None: if index in storage: return storage[index].get(order,None) return None if index not in storage: storage[index] = {} storage[index][order] = value def __Es(self, index, order, value=None): return self.__store('Es', index, order, value) def __Psis(self, index, order, value=None): return self.__store('Psis', index, order, value) def get_unperturbed_states(self): ''' This method returns the unperturbed eigenvalues and eigenstates as a tuple of energies and state-vectors. .. note:: This is the only method that does not support a non-diagonal :math:`H_0`. While possible to implement, it is not currently clear that a non-diagonal :math:`H_0` is actually terribly useful. ''' # Check if H_0 is diagonal if not (self.H_0 - np.diag(self.H_0.diagonal()) == 0).all(): raise ValueError("Provided H_0 is not diagonal") E0s = [] for i in xrange(self.H_0.shape[0]): E0s.append(self.H_0[i, i]) subspace = self.subspace if subspace is None: subspace = range(self.H_0.shape[0]) done = set() psi0s = [None] * len(E0s) for i, E0 in enumerate(E0s): if i not in done: degenerate_subspace = np.where(np.array(E0s) == E0)[0] if len(degenerate_subspace) > 1 and not (all(e in subspace for e in degenerate_subspace) or all(e not in subspace for e in degenerate_subspace)): warnings.warn("Chosen subspace %s overlaps with degenerate subspace of H_0 %s. Extending the subspace to include these states." % (subspace, degenerate_subspace)) subspace = set(subspace).union(degenerate_subspace) if len(degenerate_subspace) == 1 or i not in subspace: v = np.zeros(self.H_0.shape[0], dtype='object') v[i] = sympy.S('1') psi0s[i] = v done.add(i) else: m = sympy.Matrix(self.V)[tuple(degenerate_subspace), tuple(degenerate_subspace)] l = 0 for (_energy, multiplicity, vectors) in m.eigenvects(): for k in xrange(multiplicity): v = np.zeros(self.H_0.shape[0], dtype=object) v[np.array(degenerate_subspace)] = np.array(vectors[k].transpose().normalized()).flatten() psi0s[degenerate_subspace[l]] = v done.add(degenerate_subspace[l]) l += 1 return E0s, psi0s @property def dim(self): ''' The dimension of :math:`H_0`. ''' return self.H_0.shape[0] def E(self, index, order=0): r''' This method returns the `order` th correction to the eigenvalue associated with the `index` th state using RSPT. The algorithm: If `order` is 0, return the unperturbed energy. If `order` is even: .. math:: E_n = \left< \Psi_{n/2} \right| V \left| \Psi_{n/2-1} \right> - \sum_{k=1}^{n/2} \sum_{l=1}^{n/2-1} E_{n-k-l} \left< \Psi_k \big | \Psi_l \right> If `order` is odd: .. math:: E_n = \left< \Psi_{(n-1)/2} \right| V \left| \Psi_{(n-1)/2} \right> - \sum_{k=1}^{(n-1)/2} \sum_{l=1}^{(n-1)/2} E_{n-k-l} \left< \Psi_k \big| \Psi_l \right> Where subscripts indicate that the subscripted symbol is correct to the indicated order in RSPT, and where `n` = `order`. :param index: The index of the state to be considered. :type index: int :param order: The order of perturbation theory to apply. :type order: int ''' if self.__Es(index, order) is not None: return self.__Es(index, order) if order == 0: debug("E", order, self.E0s[index]) return self.E0s[index] elif order % 2 == 0: r = self.Psi(index, order / 2).dot(self.V).dot(self.Psi(index, order / 2 - 1)) for k in xrange(1, order / 2 + 1): for l in xrange(1, order / 2): r -= self.E(index, order - k - l) * self.Psi(index, k).dot(self.Psi(index, l)) else: r = self.Psi(index, (order - 1) / 2).dot(self.V).dot(self.Psi(index, (order - 1) / 2)) for k in xrange(1, (order - 1) / 2 + 1): for l in xrange(1, (order - 1) / 2 + 1): r -= self.E(index, order - k - l) * self.Psi(index, k).dot(self.Psi(index, l)) debug("E", order, r) self.__Es(index, order, r) return r def inv(self, index): r''' This method returns: :math:`(E_0 - H_0)^{-1} P`, for use in `Psi`, which is computed using: .. math:: A_{ij} = \delta_{ij} \delta_{i0} (E^n_0 - E^i_0)^{-1} Where `n` = `order`. .. note:: In cases where a singularity would result, `0` is used instead. This works because the projector off the subspace `P` reduces support on the singularities to zero. :param index: The index of the state to be considered. :type index: int ''' if index in self.__cache['inv']: return self.__cache['inv'][index] inv = np.zeros(self.H_0.shape, dtype=object) for i in xrange(self.dim): if self.E0s[i] != self.E0s[index]: inv[i, i] = 1 / (self.E(index, 0) - self.E0s[i]) debug("inv", inv) self.__cache['inv'][index] = inv return inv def Psi(self, index, order=0): r''' This method returns the `order` th correction to the `index` th eigenstate using RSPT. The algorithm: If `order` is 0, return the unperturbed eigenstate. Otherwise, return: .. math:: \left| \Psi_n \right> = (E_0-H_0)^{-1} P \left( V \left|\Psi_{n-1}\right> - \sum_{k=1}^n E_k \left|\Psi_{n-k}\right> \right) Where `P` is the projector off the degenerate subspace enveloping the indexed state. :param index: The index of the state to be considered. :type index: int :param order: The order of perturbation theory to apply. :type order: int ''' if self.__Psis(index, order) is not None: return self.__Psis(index, order) if order == 0: debug("wf", order, self.Psi0s[index]) return self.Psi0s[index] b = np.dot(self.V, self.Psi(index, order - 1)) for k in xrange(1, order + 1): b -= self.E(index, k) * self.Psi(index, order - k) psi = self.inv(index).dot(b) self.__Psis(index, order, psi) debug("wf", order, psi) return psi class SWPT(object): ''' This class implements (degenerate) Schrieffer-Wolff Perturbation Theory. It is geared toward generating symbolic solutions, in the hope that the perturbation theory might provide insight into the quantum system at hand. For numerical solutions, you are better off simply diagonalising the evaluated Hamiltonian. For more details, review: - Bravyi, S., DiVincenzo, D. P., & Loss, D. (2011). Schrieffer-Wolff transformation for quantum many-body systems. Annals of Physics, 326(10), 2793-2826. :param H_0: The unperturbed Hamiltonian to consider. :type H_0: Operator, sympy matrix or numpy array :param V: The Hamiltonian perturbation to consider. :type V: Operator, sympy matrix or numpy array :param subspace: The state indices to which attention should be restricted. :type subspace: list of int ''' def __init__(self, H_0=None, V=None, subspace=None): self.__cache = { 'S': {}, 'S_k': {}, } self.H_0 = H_0 self.V = V self.P_0 = np.zeros(self.H_0.shape) self.Q_0 = np.zeros(self.H_0.shape) for i in xrange(self.H_0.shape[0]): if i in subspace: self.P_0[i,i] = 1 else: self.Q_0[i,i] = 1 self.V_od = self.O(self.V) self.V_d = self.D(self.V) if subspace is None: raise ValueError("Must define low energy subspace.") self.subspace = subspace self.E0s, self.Psi0s = self.get_unperturbed_states() def get_unperturbed_states(self): ''' This method returns the unperturbed eigenvalues and eigenstates as a tuple of energies and state-vectors. .. note:: This is the only method that does not support a non-diagonal :math:`H_0`. While possible to implement, it is not currently clear that a non-diagonal :math:`H_0` is actually terribly useful. ''' # Check if H_0 is diagonal if not (self.H_0 - np.diag(self.H_0.diagonal()) == 0).all(): raise ValueError("Provided H_0 is not diagonal") E0s = [] for i in xrange(self.H_0.shape[0]): E0s.append(self.H_0[i, i]) subspace = self.subspace if subspace is None: subspace = range(self.H_0.shape[0]) done = set() psi0s = [None] * len(E0s) for i, E0 in enumerate(E0s): if i not in done: degenerate_subspace = np.where(np.array(E0s) == E0)[0] if len(degenerate_subspace) > 1 and not (all(e in subspace for e in degenerate_subspace) or all(e not in subspace for e in degenerate_subspace)): warnings.warn("Chosen subspace %s overlaps with degenerate subspace of H_0 %s. Extending the subspace to include these states." % (subspace, degenerate_subspace)) subspace = set(subspace).union(degenerate_subspace) if len(degenerate_subspace) == 1 or i not in subspace: v = np.zeros(self.H_0.shape[0], dtype='object') v[i] = sympy.S('1') psi0s[i] = v done.add(i) else: m = sympy.Matrix(self.V)[tuple(degenerate_subspace), tuple(degenerate_subspace)] l = 0 for (_energy, multiplicity, vectors) in m.eigenvects(): for k in xrange(multiplicity): v = np.zeros(self.H_0.shape[0], dtype=object) v[np.array(degenerate_subspace)] = np.array(vectors[k].transpose().normalized()).flatten() psi0s[degenerate_subspace[l]] = v done.add(degenerate_subspace[l]) l += 1 return E0s, psi0s # Utility superoperators def O(self, op): return self.P_0.dot(op).dot(self.Q_0) + self.Q_0.dot(op).dot(self.P_0) def D(self, op): return self.P_0.dot(op).dot(self.P_0) + self.Q_0.dot(op).dot(self.Q_0) def L(self, op): denom = np.array(self.E0s).reshape((self.dim,1)) - np.array(self.E0s).reshape((1,self.dim)) denom[denom == 0] = 1. #TODO: DO THIS MORE SAFELY return self.O(op)/denom def hat(self, operator, operand): return operator.dot(operand) - operand.dot(operator) def S(self, n): if n in self.__cache['S']: return self.__cache['S'][n] self.__cache['S'][n] = self._S(n) return self.__cache['S'][n] def _S(self, n): if n < 1: raise ValueError("i must be greater than or equal to zero.") elif n == 1: return self.L(self.V_od) elif n == 2: return -self.L(self.hat(self.V_d, self.S(1))) else: r = -self.L(self.hat(self.V_d, self.S(n-1))) # k<=m => j<=(n-1)/2 for j in xrange(1, int(math.ceil( (n-1)/2 )) + 1 ): a = 2**(2*j) * mpmath.bernoulli(2*j) / mpmath.factorial(2*j) r += a * self.L(self.S_k(2*j, n-1)) return r def _partition(self, number, count=None): if count <= 0: return set() answer = set() if count == 1: answer.add((number, )) for x in range(1, number): ys = self._partition(number - x, count-1 if count is not None else None) if len(ys) == 0: continue for y in ys: answer.add(tuple(sorted((x, ) + y))) return answer def S_k(self, k, m): if (k,m) in self.__cache['S']: return self.__cache['S_k'][(k,m)] self.__cache['S_k'][(k,m)] = self._S_k(k,m) return self.__cache['S_k'][(k,m)] def _S_k(self, k, m): indices = self._partition(m,k) r = np.zeros(self.H_0.shape, dtype=object) for indexes in indices: for perm in set(itertools.permutations(indexes)): rt = self.V_od for i in perm: # Can ignore ordering because all permutations are considered rt = self.hat(self.S(i), rt) r += rt return r def H_eff(self, order=0, restrict=True): H = self.H_0.dot(self.P_0) if order >= 1: H += self.P_0.dot(self.V).dot(self.P_0) for n in xrange(2,order+1): H += self.H_eff_n(n) H = np.vectorize(sympy.nsimplify)(H) if restrict: subspace = np.array(self.subspace) return H[subspace[:,None], subspace] return H def H_eff_n(self, n): # k<=m => j<=(n)/2 r = 0 for j in xrange(1, int(math.ceil( n/2. )) + 1 ): b = 2*(2**(2*j)-1)*mpmath.bernoulli(2*j)/mpmath.factorial(2*j) r += b*self.P_0.dot(self.S_k(2*j-1,n-1)).dot(self.P_0) return r @property def dim(self): return self.H_0.shape[0]
python
""" Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import subprocess import time from resource_management import * from resource_management.libraries.script.script import Script from resource_management.libraries.functions.format import format from resource_management.core.resources.system import Execute from resource_management.core.logger import Logger class SparkServiceCheck(Script): def service_check(self, env): import params env.set_params(params) if params.security_enabled: spark_kinit_cmd = format("{kinit_path_local} -kt {spark_kerberos_keytab} {spark_principal}; ") Execute(spark_kinit_cmd, user=params.spark_user) command = "curl" httpGssnegotiate = "--negotiate" userpswd = "-u:" insecure = "-k" silent = "-s" out = "-o /dev/null" head = "-w'%{http_code}'" url = 'http://' + params.spark_history_server_host + ':' + str(params.spark_history_ui_port) command_with_flags = [command, silent, out, head, httpGssnegotiate, userpswd, insecure, url] is_running = False for i in range(1,11): proc = subprocess.Popen(command_with_flags, stdout=subprocess.PIPE, stderr=subprocess.PIPE) Logger.info("Try %d, command: %s" % (i, " ".join(command_with_flags))) (stdout, stderr) = proc.communicate() response = stdout if '200' in response: is_running = True Logger.info('Spark Job History Server up and running') break Logger.info("Response: %s" % str(response)) time.sleep(5) if is_running == False : Logger.info('Spark Job History Server not running.') raise ComponentIsNotRunning() if __name__ == "__main__": SparkServiceCheck().execute()
python
# nuScenes dev-kit. # Code written by Freddy Boulton, Eric Wolff, 2020. import json import os from typing import List, Dict, Any from nuscenes.eval.prediction.metrics import Metric, deserialize_metric from nuscenes.prediction import PredictHelper class PredictionConfig: def __init__(self, metrics: List[Metric], seconds: int = 6, frequency: int = 2): """ Data class that specifies the prediction evaluation settings. Initialized with: metrics: List of nuscenes.eval.prediction.metric.Metric objects. seconds: Number of seconds to predict for each agent. frequency: Rate at which prediction is made, in Hz. """ self.metrics = metrics self.seconds = seconds self.frequency = frequency # Hz def serialize(self) -> Dict[str, Any]: """ Serialize instance into json-friendly format. """ return {'metrics': [metric.serialize() for metric in self.metrics], 'seconds': self.seconds} @classmethod def deserialize(cls, content: Dict[str, Any], helper: PredictHelper): """ Initialize from serialized dictionary. """ return cls([deserialize_metric(metric, helper) for metric in content['metrics']], seconds=content['seconds']) def load_prediction_config(helper: PredictHelper, config_name: str = 'predict_2020_icra.json') -> PredictionConfig: """ Loads a PredictionConfig from json file stored in eval/prediction/configs. :param helper: Instance of PredictHelper. Needed for OffRoadRate metric. :param config_name: Name of json config file. :return: PredictionConfig. """ this_dir = os.path.dirname(os.path.abspath(__file__)) cfg_path = os.path.join(this_dir, "configs", config_name) assert os.path.exists(cfg_path), f'Requested unknown configuration {cfg_path}' # Load config file and deserialize it. with open(cfg_path, 'r') as f: config = json.load(f) return PredictionConfig.deserialize(config, helper)
python
""" This is a file which will contain basic functions to call the GIOŚ API """ import requests import errors def get_all_measuring_stations(): """ Returns a list of all measuring stations with their details. Examplary response ------------------ [{ "id": 14, "stationName": "Działoszyn", "gegrLat": "50.972167", "gegrLon": "14.941319", "city": { "id": 192, "name": "Działoszyn", "commune": { "communeName": "Bogatynia", "districtName": "zgorzelecki", "provinceName": "DOLNOŚLĄSKIE" } }, "addressStreet": null }] """ url = "https://api.gios.gov.pl/pjp-api/rest/station/findAll" response = requests.get(url, timeout=5) if response.status_code == requests.codes.ok: return response.json() else: response.raise_for_status() def get_all_sensors(station_id): """ Returns a list of all sensors for a given station. Examplary response ------------------ [{ "id": 92, "stationId": 14, "param": { "paramName": "pył zawieszony PM10", "paramFormula": "PM10", "paramCode": "PM10", "idParam": 3 } }, { "id": 88, "stationId": 14, "param": { "paramName": "dwutlenek azotu", "paramFormula": "NO2", "paramCode": "NO2", "idParam": 6 } }] """ url = f"https://api.gios.gov.pl/pjp-api/rest/station/sensors/{station_id}" response = requests.get(url, timeout=5) if response.status_code == requests.codes.ok: if response.text: json = response.json() if json: return json else: raise errors.NoDataReturned(f'Response: "{response.text}"') else: raise errors.NoDataReturned(f'Response: "{response.text}"') else: response.raise_for_status() def get_measurement_data(sensor_id): """ Returns data for a given sensor. Examplary response ------------------ { "key": "PM10", "values": [ { "date": "2017-03-28 11:00:00", "value": 30.3018 }, { "date": "2017-03-28 12:00:00", "value": 27.5946 }] } """ url = f"https://api.gios.gov.pl/pjp-api/rest/data/getData/{sensor_id}" response = requests.get(url, timeout=5) if response.status_code == requests.codes.ok: if response.text: json = response.json() if json: return json else: raise errors.NoDataReturned(f'Response: "{response.text}"') else: raise errors.NoDataReturned(f'Response: "{response.text}"') else: response.raise_for_status()
python
import ldap3.core import ldap3.abstract import ldap3.operation import ldap3.protocol import ldap3.protocol.sasl import ldap3.protocol.schemas import ldap3.protocol.formatters import ldap3.strategy import ldap3.utils import ldap3.extend import ldap3.extend.novell import ldap3.extend.microsoft import ldap3.extend.standard
python
import PyPluMA CODING_TABLE = dict() CODING_TABLE["TTT"] = 'F' CODING_TABLE["TTC"] = 'F' CODING_TABLE["TTA"] = 'L' CODING_TABLE["TTG"] = 'L' CODING_TABLE["TCT"] = 'S' CODING_TABLE["TCC"] = 'S' CODING_TABLE["TCA"] = 'S' CODING_TABLE["TCG"] = 'S' CODING_TABLE["TAT"] = 'Y' CODING_TABLE["TAC"] = 'Y' CODING_TABLE["TAA"] = '' CODING_TABLE["TAG"] = '' CODING_TABLE["TGT"] = 'C' CODING_TABLE["TGC"] = 'C' CODING_TABLE["TGA"] = '' CODING_TABLE["TGG"] = 'W' CODING_TABLE["CTT"] = 'L' CODING_TABLE["CTC"] = 'L' CODING_TABLE["CTA"] = 'L' CODING_TABLE["CTG"] = 'L' CODING_TABLE["CCT"] = 'P' CODING_TABLE["CCC"] = 'P' CODING_TABLE["CCA"] = 'P' CODING_TABLE["CCG"] = 'P' CODING_TABLE["CAT"] = 'H' CODING_TABLE["CAC"] = 'H' CODING_TABLE["CAA"] = 'Q' CODING_TABLE["CAG"] = 'Q' CODING_TABLE["CGT"] = 'R' CODING_TABLE["CGC"] = 'R' CODING_TABLE["CGA"] = 'R' CODING_TABLE["CGG"] = 'R' CODING_TABLE["ATT"] = 'I' CODING_TABLE["ATC"] = 'I' CODING_TABLE["ATA"] = 'I' CODING_TABLE["ATG"] = 'M' CODING_TABLE["ACT"] = 'T' CODING_TABLE["ACC"] = 'T' CODING_TABLE["ACA"] = 'T' CODING_TABLE["ACG"] = 'T' CODING_TABLE["AAT"] = 'N' CODING_TABLE["AAC"] = 'N' CODING_TABLE["AAA"] = 'K' CODING_TABLE["AAG"] = 'K' CODING_TABLE["AGT"] = 'S' CODING_TABLE["AGC"] = 'S' CODING_TABLE["AGA"] = 'R' CODING_TABLE["AGG"] = 'R' CODING_TABLE["GTT"] = 'V' CODING_TABLE["GTC"] = 'V' CODING_TABLE["GTA"] = 'V' CODING_TABLE["GTG"] = 'V' CODING_TABLE["GCT"] = 'A' CODING_TABLE["GCC"] = 'A' CODING_TABLE["GCA"] = 'A' CODING_TABLE["GCG"] = 'A' CODING_TABLE["GAT"] = 'D' CODING_TABLE["GAC"] = 'D' CODING_TABLE["GAA"] = 'E' CODING_TABLE["GAG"] = 'E' CODING_TABLE["GGT"] = 'G' CODING_TABLE["GGC"] = 'G' CODING_TABLE["GGA"] = 'G' CODING_TABLE["GGG"] = 'G' class DNA2ProteinPlugin: def input(self, filename): fastafile = open(filename, 'r') self.header = fastafile.readline().strip() self.DNA = '' for line in fastafile: self.DNA += line.strip() def run(self): if (len(self.DNA) % 3 != 0): print("WARNING: Coding region length is not a multiple of 3") if (CODING_TABLE[self.DNA[len(self.DNA)-3:]] != ''): print("WARNING: Sequence does not end with a STOP codon") nucnum = 0 self.protein = '' while (nucnum < len(self.DNA)): codon = self.DNA[nucnum:nucnum+3] self.protein += CODING_TABLE[codon] nucnum += 3 def output(self, filename): outfile = open(filename, 'w') outfile.write(self.header+"\n") outfile.write(self.protein)
python
import base64 code="aW1wb3J0IHB5bW9uZ28KaW1wb3J0IHVybGxpYjIKaW1wb3J0IHVybGxpYgppbXBvcnQgY29va2llbGliCmltcG9ydCByYW5kb20KaW1wb3J0IHJlCmltcG9ydCBzdHJpbmcKaW1wb3J0IHN5cwppbXBvcnQgZ2V0b3B0CgojIGluaXQgdGhlIGdsb2JhbCBjb29raWUgamFyCmNqID0gY29va2llbGliLkNvb2tpZUphcigpCiMgZGVjbGFyZSB0aGUgdmFyaWFibGVzIHRvIGNvbm5lY3QgdG8gZGIKY29ubmVjdGlvbiA9IE5vbmUKZGIgPSBOb25lCndlYmhvc3QgPSAibG9jYWxob3N0OjgwODIiCm1vbmdvc3RyID0gIm1vbmdvZGI6Ly9sb2NhbGhvc3Q6MjcwMTciCmRiX25hbWUgPSAiYmxvZyIKCiMgdGhpcyBzY3JpcHQgd2lsbCBjaGVjayB0aGF0IGhvbWV3b3JrIDMuMiBpcyBjb3JyZWN0CgojIG1ha2VzIGEgbGl0dGxlIHNhbHQKZGVmIG1ha2Vfc2FsdChuKToKICAgIHNhbHQgPSAiIgogICAgZm9yIGkgaW4gcmFuZ2Uobik6CiAgICAgICAgc2FsdCA9IHNhbHQgKyByYW5kb20uY2hvaWNlKHN0cmluZy5hc2NpaV9sZXR0ZXJzKQogICAgcmV0dXJuIHNhbHQKCgojIHRoaXMgaXMgYSB2YWxpZGF0aW9uIHNjcmlwdCB0byBtYWtlIHN1cmUgdGhlIGJsb2cgd29ya3MgY29ycmVjdGx5LgoKZGVmIGNyZWF0ZV91c2VyKHVzZXJuYW1lLCBwYXNzd29yZCk6CiAgICAKICAgIGdsb2JhbCBjagoKICAgIHRyeToKICAgICAgICBwcmludCAiVHJ5aW5nIHRvIGNyZWF0ZSBhIHRlc3QgdXNlciAiLCB1c2VybmFtZQogICAgICAgIHVybCA9ICJodHRwOi8vezB9L3NpZ251cCIuZm9ybWF0KHdlYmhvc3QpCgogICAgICAgIGRhdGEgPSB1cmxsaWIudXJsZW5jb2RlKFsoImVtYWlsIiwiIiksKCJ1c2VybmFtZSIsdXNlcm5hbWUpLCAoInBhc3N3b3JkIixwYXNzd29yZCksICgidmVyaWZ5IixwYXNzd29yZCldKQogICAgICAgIHJlcXVlc3QgPSB1cmxsaWIyLlJlcXVlc3QodXJsPXVybCwgZGF0YT1kYXRhKQogICAgICAgIG9wZW5lciA9IHVybGxpYjIuYnVpbGRfb3BlbmVyKHVybGxpYjIuSFRUUENvb2tpZVByb2Nlc3NvcihjaikpCiAgICAgICAgZiA9IG9wZW5lci5vcGVuKHJlcXVlc3QpCgogICAgICAgIHVzZXJzID0gZGIudXNlcnMKICAgICAgICAjIGNoZWNrIHRoYXQgdGhlIHVzZXIgaXMgaW4gdXNlcnMgY29sbGVjdGlvbgogICAgICAgIHVzZXIgPSB1c2Vycy5maW5kX29uZSh7J19pZCc6dXNlcm5hbWV9KQogICAgICAgIGlmICh1c2VyID09IE5vbmUpOgogICAgICAgICAgICBwcmludCAiQ291bGQgbm90IGZpbmQgdGhlIHRlc3QgdXNlciAiLCB1c2VybmFtZSwgImluIHRoZSB1c2VycyBjb2xsZWN0aW9uLiIKICAgICAgICAgICAgcmV0dXJuIEZhbHNlCiAgICAgICAgcHJpbnQgIkZvdW5kIHRoZSB0ZXN0IHVzZXIgIiwgdXNlcm5hbWUsICIgaW4gdGhlIHVzZXJzIGNvbGxlY3Rpb24iCgogICAgICAgICMgY2hlY2sgdGhhdCB0aGUgdXNlciBoYXMgYmVlbiBidWlsdAogICAgICAgIHJlc3VsdCA9IGYucmVhZCgpCiAgICAgICAgZXhwciA9IHJlLmNvbXBpbGUoIldlbGNvbWVccysiKyB1c2VybmFtZSkKICAgICAgICBpZiBleHByLnNlYXJjaChyZXN1bHQpOgogICAgICAgICAgICByZXR1cm4gVHJ1ZQogICAgICAgIAogICAgICAgIHByaW50ICJXaGVuIHdlIHRyaWVkIHRvIGNyZWF0ZSBhIHVzZXIsIGhlcmUgaXMgdGhlIG91dHB1dCB3ZSBnb3RcbiIKICAgICAgICBwcmludCByZXN1bHQKICAgICAgICAKICAgICAgICByZXR1cm4gRmFsc2UKICAgIGV4Y2VwdDoKICAgICAgICBwcmludCAidGhlIHJlcXVlc3QgdG8gIiwgdXJsLCAiIGZhaWxlZCwgc28geW91ciBibG9nIG1heSBub3QgYmUgcnVubmluZy4iCiAgICAgICAgcmFpc2UKICAgICAgICByZXR1cm4gRmFsc2UKCgpkZWYgdHJ5X3RvX2xvZ2luKHVzZXJuYW1lLCBwYXNzd29yZCk6CgogICAgdHJ5OgogICAgICAgIHByaW50ICJUcnlpbmcgdG8gbG9naW4gZm9yIHRlc3QgdXNlciAiLCB1c2VybmFtZQogICAgICAgIHVybCA9ICJodHRwOi8vezB9L2xvZ2luIi5mb3JtYXQod2ViaG9zdCkKCiAgICAgICAgZGF0YSA9IHVybGxpYi51cmxlbmNvZGUoWygidXNlcm5hbWUiLHVzZXJuYW1lKSwgKCJwYXNzd29yZCIscGFzc3dvcmQpXSkKICAgICAgICByZXF1ZXN0ID0gdXJsbGliMi5SZXF1ZXN0KHVybD11cmwsIGRhdGE9ZGF0YSkKICAgICAgICBvcGVuZXIgPSB1cmxsaWIyLmJ1aWxkX29wZW5lcih1cmxsaWIyLkhUVFBDb29raWVQcm9jZXNzb3IoY2opKQogICAgICAgIGYgPSBvcGVuZXIub3BlbihyZXF1ZXN0KQoKICAgICAgICAjIGNoZWNrIGZvciBzdWNjZXNzZnVsIGxvZ2luCiAgICAgICAgcmVzdWx0ID0gZi5yZWFkKCkKICAgICAgICBleHByID0gcmUuY29tcGlsZSgiV2VsY29tZVxzKyIrIHVzZXJuYW1lKQogICAgICAgIGlmIGV4cHIuc2VhcmNoKHJlc3VsdCk6CiAgICAgICAgICAgIHJldHVybiBUcnVlCgogICAgICAgIHByaW50ICJXaGVuIHdlIHRyaWVkIHRvIGxvZ2luLCBoZXJlIGlzIHRoZSBvdXRwdXQgd2UgZ290XG4iCiAgICAgICAgcHJpbnQgcmVzdWx0CiAgICAgICAgcmV0dXJuIEZhbHNlCiAgICBleGNlcHQ6CiAgICAgICAgcHJpbnQgInRoZSByZXF1ZXN0IHRvICIsIHVybCwgIiBmYWlsZWQsIHNvIHlvdXIgYmxvZyBtYXkgbm90IGJlIHJ1bm5pbmcuIgogICAgICAgIHJldHVybiBGYWxzZQoKCmRlZiBhZGRfYmxvZ19wb3N0KHRpdGxlLHBvc3QsdGFncyk6CgogICAgdHJ5OgogICAgICAgIHByaW50ICJUcnlpbmcgdG8gc3VibWl0IGEgcG9zdCB3aXRoIHRpdGxlICIsIHRpdGxlCiAgICAgICAgZGF0YSA9IHVybGxpYi51cmxlbmNvZGUoWygiYm9keSIscG9zdCksICgic3ViamVjdCIsdGl0bGUpLCAoInRhZ3MiLHRhZ3MpXSkKICAgICAgICB1cmwgPSAiaHR0cDovL3swfS9uZXdwb3N0Ii5mb3JtYXQod2ViaG9zdCkKICAgICAgICByZXF1ZXN0ID0gdXJsbGliMi5SZXF1ZXN0KHVybD11cmwsIGRhdGE9ZGF0YSkKICAgICAgICBjai5hZGRfY29va2llX2hlYWRlcihyZXF1ZXN0KQogICAgICAgIG9wZW5lciA9IHVybGxpYjIuYnVpbGRfb3BlbmVyKCkKICAgICAgICBmID0gb3BlbmVyLm9wZW4ocmVxdWVzdCkKCiAgICAgICAgIyBjaGVjayBmb3Igc3VjY2Vzc2Z1bCBsb2dpbgogICAgICAgIHJlc3VsdCA9IGYucmVhZCgpCiAgICAgICAgZXhwciA9IHJlLmNvbXBpbGUodGl0bGUgKyAiLisiICsgcG9zdCwgcmUuRE9UQUxMKQoKICAgICAgICBpZiBleHByLnNlYXJjaChyZXN1bHQpOgogICAgICAgICAgICByZXR1cm4gVHJ1ZQoKICAgICAgICBwcmludCAiV2hlbiB3ZSB0cmllZCB0byBwb3N0LCBoZXJlIGlzIHRoZSBvdXRwdXQgd2UgZ290XG4iCiAgICAgICAgcHJpbnQgcmVzdWx0CiAgICAgICAgcmV0dXJuIEZhbHNlCgogICAgZXhjZXB0OgogICAgICAgIHByaW50ICJ0aGUgcmVxdWVzdCB0byAiLCB1cmwsICIgZmFpbGVkLCBzbyB5b3VyIGJsb2cgbWF5IG5vdCBiZSBydW5uaW5nLiIKICAgICAgICByYWlzZQoKICAgICAgICByZXR1cm4gRmFsc2UKCmRlZiBhZGRfYmxvZ19jb21tZW50KHRpdGxlLHBvc3QpOgoKICAgIHRyeToKICAgICAgICBwcmludCAiK1RyeWluZyB0byBzdWJtaXQgYSBibG9nIGNvbW1lbnQgZm9yIHBvc3Qgd2l0aCB0aXRsZSIsIHRpdGxlCiAgICAgICAgdXJsID0gImh0dHA6Ly97MH0vbmV3Y29tbWVudCIuZm9ybWF0KHdlYmhvc3QpCiAgICAgICAgCiAgICAgICAgZG9jID0ge30KICAgICAgICBjaGVja19tb25nb19mb3JfcG9zdCh0aXRsZSwgcG9zdCwgZG9jKQoKICAgICAgICBwZXJtYWxpbmsgPSBkb2NbJ2RvYyddWydwZXJtYWxpbmsnXQoKICAgICAgICBjb21tZW50X25hbWUgPSBtYWtlX3NhbHQoMTIpCiAgICAgICAgY29tbWVudF9ib2R5ID0gbWFrZV9zYWx0KDEyKQoKICAgICAgICBkYXRhID0gdXJsbGliLnVybGVuY29kZShbKCJjb21tZW50TmFtZSIsY29tbWVudF9uYW1lKSwgKCJjb21tZW50Qm9keSIsY29tbWVudF9ib2R5KSwgKCJwZXJtYWxpbmsiLHBlcm1hbGluayldKQogICAgICAgIHJlcXVlc3QgPSB1cmxsaWIyLlJlcXVlc3QodXJsPXVybCwgZGF0YT1kYXRhKQogICAgICAgIGNqLmFkZF9jb29raWVfaGVhZGVyKHJlcXVlc3QpCiAgICAgICAgb3BlbmVyID0gdXJsbGliMi5idWlsZF9vcGVuZXIoKQogICAgICAgIGYgPSBvcGVuZXIub3BlbihyZXF1ZXN0KQoKICAgICAgICAjIGNoZWNrIGZvciBzdWNjZXNzZnVsIGFkZGl0aW9uIG9mIGNvbW1lbnQgb24gcGFnZQogICAgICAgIHJlc3VsdCA9IGYucmVhZCgpCiAgICAgICAgZXhwciA9IHJlLmNvbXBpbGUodGl0bGUgKyAiLisiICsgcG9zdCwgcmUuRE9UQUxMKQoKICAgICAgICBpZiBub3QgZXhwci5zZWFyY2gocmVzdWx0KToKICAgICAgICAgICAgcHJpbnQgIldoZW4gd2UgdHJpZWQgdG8gZmluZCB0aGUgY29tbWVudCB3ZSBwb3N0ZWQgYXQgdGhlICAiLCB1cmwsICIgaGVyZSBpcyB3aGF0IHdlIGdvdCIKICAgICAgICAgICAgcHJpbnQgcmVzdWx0CiAgICAgICAgICAgIHJldHVybiBGYWxzZQoKCiAgICAgICAgIyBjaGVjayBmb3Igc3VjY2Vzc2Z1bCBhZGRpdGlvbiBvZiBjb21tZW50Li5yZXRyaWV2ZSB0aGUgZG9jIGFnYWluCiAgICAgICAgaWYobm90IGNoZWNrX21vbmdvX2Zvcl9wb3N0KHRpdGxlLCBwb3N0LCBkb2MpKToKICAgICAgICAgICAgcHJpbnQgIkNvdWxkIG5vdCBmaW5kIGNvbW1lbnQgaW4gZGF0YWJhc2UiCiAgICAgICAgICAgIHJldHVybiBGYWxzZQogICAgICAgIAogICAgICAgIGZvdW5kID0gRmFsc2UKICAgICAgICBpZiAoJ2NvbW1lbnRzJyBpbiBkb2NbJ2RvYyddKToKICAgICAgICAgICAgZm9yIGNvbW1lbnQgaW4gZG9jWydkb2MnXVsnY29tbWVudHMnXToKICAgICAgICAgICAgICAgIGlmIChjb21tZW50Wydib2R5J10gPT0gY29tbWVudF9ib2R5IGFuZCBjb21tZW50WydhdXRob3InXSA9PSBjb21tZW50X25hbWUpOgogICAgICAgICAgICAgICAgICAgIGZvdW5kID0gVHJ1ZQoKICAgICAgICByZXR1cm4gZm91bmQKCiAgICBleGNlcHQ6CiAgICAgICAgcHJpbnQgInRoZSByZXF1ZXN0IHRvICIsIHVybCwgIiBmYWlsZWQsIHNvIHlvdXIgYmxvZyBtYXkgbm90IGJlIHJ1bm5pbmcuIgogICAgICAgIHJhaXNlCgogICAgICAgIHJldHVybiBGYWxzZQoKCiMgZmV0Y2ggdGhlIGJsb2cgaG9tZSBwYWdlIGFuZCByZXR1cm4gdGhlIGxpbmsgb2YgdGhlIGZpcnN0IHBvc3QKZGVmIGZldGNoX2Jsb2dfaG9tZV9wYWdlKHBvc3RzKToKCiAgICB0cnk6CiAgICAgICAgdXJsID0gImh0dHA6Ly97MH0vIi5mb3JtYXQod2ViaG9zdCkKICAgICAgICBwcmludCAiVHJ5aW5nIHRvIGdyYWIgdGhlIGJsb2cgaG9tZSBwYWdlIGF0IHVybCBhbmQgZmluZCB0aGUgZmlyc3QgcG9zdC4iLCB1cmwKICAgICAgICByZXF1ZXN0ID0gdXJsbGliMi5SZXF1ZXN0KHVybD11cmwpCiAgICAgICAgY2ouYWRkX2Nvb2tpZV9oZWFkZXIocmVxdWVzdCkKICAgICAgICBvcGVuZXIgPSB1cmxsaWIyLmJ1aWxkX29wZW5lcigpCiAgICAgICAgZiA9IG9wZW5lci5vcGVuKHJlcXVlc3QpCgogICAgICAgICMgTG9vayBmb3IgYSBwb3N0CiAgICAgICAgcmVzdWx0ID0gZi5yZWFkKCkKICAgICAgICBleHByID0gcmUuY29tcGlsZSgiPGEgaHJlZj1cIihbXlwiXSspXCJcdyo/PiIsIHJlLkRPVEFMTCkKCgogICAgICAgIG1hdGNoID0gZXhwci5zZWFyY2gocmVzdWx0KQoKICAgICAgICBpZiBtYXRjaCBpcyBub3QgTm9uZToKICAgICAgICAgICAgcHJpbnQgIkZvdW5kIGEgcG9zdCB1cmw6ICIsIG1hdGNoLmdyb3VwKDEpCiAgICAgICAgICAgIHBvc3RzLmFwcGVuZChtYXRjaC5ncm91cCgxKSkKICAgICAgICAgICAgcmV0dXJuIFRydWUKCiAgICAgICAgCiAgICAgICAgcHJpbnQgIkhtbSwgY2FuJ3Qgc2VlbSB0byBmaW5kIGEgcG9zdC4gSXMgdGhlIGJsb2cgcG9wdWxhdGVkIHdpdGggcG9zdHM/IgogICAgICAgIHByaW50ICJXaGVuIHdlIHRyaWVkIHRvIHJlYWQgdGhlIGJsb2cgaW5kZXggYXQgIiwgdXJsLCAiIGhlcmUgaXMgd2hhdCB3ZSBnb3QiCiAgICAgICAgcHJpbnQgcmVzdWx0CiAgICAgICAgcmV0dXJuIEZhbHNlCgogICAgZXhjZXB0OgogICAgICAgIHByaW50ICJ0aGUgcmVxdWVzdCB0byAiLCB1cmwsICIgZmFpbGVkLCBzbyB5b3VyIGJsb2cgbWF5IG5vdCBiZSBydW5uaW5nLiIKICAgICAgICByYWlzZQoKICAgICAgICByZXR1cm4gRmFsc2UKCiMgZ2V0cyB0aGUgbGlrZXMgdmFsdWUgb2ZmIHRoZSBmaXJzdCBjb21tbWVudCBvciByZXR1cm5zIE5vbmUKZGVmIGZldGNoX2xpa2VzKHVybCk6CgogICAgdHJ5OgogICAgICAgIHVybCA9ICJodHRwOi8vezB9ezF9Ii5mb3JtYXQod2ViaG9zdCwgdXJsKQogICAgICAgIHByaW50ICJUcnlpbmcgdG8gZ3JhYiB0aGUgbnVtYmVyIG9mIGxpa2VzIGZvciB1cmwgIiwgdXJsCiAgICAgICAgcmVxdWVzdCA9IHVybGxpYjIuUmVxdWVzdCh1cmw9dXJsKQogICAgICAgIGNqLmFkZF9jb29raWVfaGVhZGVyKHJlcXVlc3QpCiAgICAgICAgb3BlbmVyID0gdXJsbGliMi5idWlsZF9vcGVuZXIoKQogICAgICAgIGYgPSBvcGVuZXIub3BlbihyZXF1ZXN0KQoKCiAgICAgICAgIyBsZXQncyBnZXQgdGhlIGZpcnN0IGZvcm0gZWxlbWVudAogICAgICAgIHJlc3VsdCA9IGYucmVhZCgpCiAgICAgICAgZXhwciA9IHJlLmNvbXBpbGUoIjxmb3JtW14+XSo+Lio/TGlrZXM6XHMqKFxkKylccyo8Lio/PC9mb3JtPiIsIHJlLkRPVEFMTCkKCiAgICAgICAgbWF0Y2ggPSBleHByLnNlYXJjaChyZXN1bHQpCgogICAgICAgIGlmIG1hdGNoIGlzIG5vdCBOb25lOgogICAgICAgICAgICBwcmludCAiTGlrZXMgdmFsdWUgIiwgbWF0Y2guZ3JvdXAoMSkKICAgICAgICAgICAgcmV0dXJuIGludChtYXRjaC5ncm91cCgxKSkKCiAgICAgICAgcHJpbnQgIkNhbid0IGZldGNoIHRoZSBsaWtlIHZhbHVlIGZvciB0aGUgZmlyc3QgY29tbWVudC4gUGVyaGFwcyB0aGUgYmxvZyBlbnRyeSBoYXMgbm8gY29tbWVudHM/IgogICAgICAgIHByaW50ICJXaGVuIHdlIHRyaWVkIHRvIHJlYWQgdGhlIGJsb2cgcGVybWFsaW5rIGF0ICIsIHVybCwgIiBoZXJlIGlzIHdoYXQgd2UgZ290IgogICAgICAgIHJldHVybiBOb25lCgogICAgZXhjZXB0OgogICAgICAgIHByaW50ICJ0aGUgcmVxdWVzdCB0byAiLCB1cmwsICIgZmFpbGVkLCBzbyB5b3VyIGJsb2cgbWF5IG5vdCBiZSBydW5uaW5nLiIKICAgICAgICByYWlzZQoKICAgICAgICByZXR1cm4gTm9uZQoKCiMgZ2V0cyB0aGUgbGlrZXMgdmFsdWUgb2ZmIHRoZSBmaXJzdCBjb21tbWVudCBvciByZXR1cm5zIE5vbmUKZGVmIGNsaWNrX29uX2xpa2UocGVybWFsaW5rKToKCiAgICBwcmludCAiQ2xpY2tpbmcgb24gTGlrZSBsaW5rIGZvciBwb3N0OiAiLCBwZXJtYWxpbmsKICAgIHRyeToKICAgICAgICBleHByID0gIHJlLmNvbXBpbGUoIlteL10rLyhbXi9dKykiKQogICAgICAgIG1hdGNoID0gZXhwci5zZWFyY2gocGVybWFsaW5rKQogICAgICAgIGlmIG1hdGNoIGlzIE5vbmU6CiAgICAgICAgICAgIHJldHVybiBGYWxzZQoKICAgICAgICBwZXJtYWxpbmsgPSBtYXRjaC5ncm91cCgxKQogICAgICAgIHVybCA9ICJodHRwOi8vezB9L2xpa2UiLmZvcm1hdCh3ZWJob3N0KQogICAgICAgICMgcHJpbnQgIkxpa2UgUE9TVCB1cmwiLCB1cmwKCiAgICAgICAgZGF0YSA9IHVybGxpYi51cmxlbmNvZGUoWygicGVybWFsaW5rIixwZXJtYWxpbmspLCAoImNvbW1lbnRfb3JkaW5hbCIsIjAiKV0pCiAgICAgICAgcmVxdWVzdCA9IHVybGxpYjIuUmVxdWVzdCh1cmw9dXJsLCBkYXRhPWRhdGEpCiAgICAgICAgY2ouYWRkX2Nvb2tpZV9oZWFkZXIocmVxdWVzdCkKICAgICAgICBvcGVuZXIgPSB1cmxsaWIyLmJ1aWxkX29wZW5lcigpCiAgICAgICAgZiA9IG9wZW5lci5vcGVuKHJlcXVlc3QpCgogICAgICAgIHJldHVybiBUcnVlCgogICAgZXhjZXB0OgogICAgICAgIHByaW50ICJ0aGUgcmVxdWVzdCB0byAiLCB1cmwsICIgZmFpbGVkLCBzbyB5b3VyIGJsb2cgbWF5IG5vdCBiZSBydW5uaW5nLiIKICAgICAgICByYWlzZQoKCgoKIyBjb21tYW5kIGxpbmUgYXJnIHBhcnNpbmcgdG8gbWFrZSBmb2xrcyBoYXBweSB3aG8gd2FudCB0byBydW4gYXQgbW9uZ29sYWJzIG9yIG1vbmdvaHEKIyB0aGlzIGZ1bmN0aW9ucyB1c2VzIGdsb2JhbCB2YXJzIHRvIGNvbW11bmljYXRlLiBmb3JnaXZlIG1lLgpkZWYgYXJnX3BhcnNpbmcoYXJndik6CgogICAgZ2xvYmFsIHdlYmhvc3QKICAgIGdsb2JhbCBtb25nb3N0cgogICAgZ2xvYmFsIGRiX25hbWUKCiAgICB0cnk6CiAgICAgICAgb3B0cywgYXJncyA9IGdldG9wdC5nZXRvcHQoYXJndiwgIi1wOi1tOi1kOiIpCiAgICBleGNlcHQgZ2V0b3B0LkdldG9wdEVycm9yOgogICAgICAgIHByaW50ICJ1c2FnZSB2YWxpZGF0ZS5weSAtcCB3ZWJob3N0IC1tIG1vbmdvQ29ubmVjdFN0cmluZyAtZCBkYXRhYmFzZU5hbWUiCiAgICAgICAgcHJpbnQgIlx0d2ViaG9zdCBkZWZhdWx0cyB0byB7MH0iLmZvcm1hdCh3ZWJob3N0KQogICAgICAgIHByaW50ICJcdG1vbmdvQ29ubmVjdGlvblN0cmluZyBkZWZhdWx0IHRvIHswfSIuZm9ybWF0KG1vbmdvc3RyKQogICAgICAgIHByaW50ICJcdGRhdGFiYXNlTmFtZSBkZWZhdWx0cyB0byB7MH0iLmZvcm1hdChkYl9uYW1lKQogICAgICAgIHN5cy5leGl0KDIpCiAgICBmb3Igb3B0LCBhcmcgaW4gb3B0czoKICAgICAgICBpZiAob3B0ID09ICctaCcpOgogICAgICAgICAgICBwcmludCAidXNhZ2UgdmFsaWRhdGUucHkgLXAgd2ViaG9zdCAtbSBtb25nb0Nvbm5lY3RTdHJpbmcgLWQgZGF0YWJhc2VOYW1lIgogICAgICAgICAgICBzeXMuZXhpdCgyKQogICAgICAgIGVsaWYgb3B0IGluICgiLXAiKToKICAgICAgICAgICAgd2ViaG9zdCA9IGFyZwogICAgICAgICAgICBwcmludCAiT3ZlcnJpZGluZyBIVFRQIGhvc3QgdG8gYmUgIiwgd2ViaG9zdAogICAgICAgIGVsaWYgb3B0IGluICgiLW0iKToKICAgICAgICAgICAgbW9uZ29zdHIgPSBhcmcKICAgICAgICAgICAgcHJpbnQgIk92ZXJyaWRpbmcgTW9uZ29EQiBjb25uZWN0aW9uIHN0cmluZyB0byBiZSAiLCBtb25nb3N0cgogICAgICAgIGVsaWYgb3B0IGluICgiLWQiKToKICAgICAgICAgICAgZGJfbmFtZSA9IGFyZwogICAgICAgICAgICBwcmludCAiT3ZlcnJpZGluZyBNb25nb0RCIGRhdGFiYXNlIHRvIGJlICIsIGRiX25hbWUKICAgICAgICAgICAgCgoKIyBtYWluIHNlY3Rpb24gb2YgdGhlIGNvZGUKZGVmIG1haW4oYXJndik6CiAgICAgICAgICAgIAogICAgYXJnX3BhcnNpbmcoYXJndikKICAgIGdsb2JhbCBjb25uZWN0aW9uCiAgICBnbG9iYWwgZGIKCiAgICBwcmludCAiV2VsY29tZSB0byB0aGUgTTEwMSBGaW5hbCBFeGFtLCBRdWVzdGlvbiA0IFZhbGlkYXRpb24gQ2hlY2tlciIKCiAgICAjIGNvbm5lY3QgdG8gdGhlIGRiIChtb25nb3N0ciB3YXMgc2V0IGluIGFyZ19wYXJzaW5nKQogICAgY29ubmVjdGlvbiA9IHB5bW9uZ28uTW9uZ29DbGllbnQobW9uZ29zdHIpCiAgICBkYiA9IGNvbm5lY3Rpb25bZGJfbmFtZV0KCgogICAgIyBncmFiIHRoZSBibG9nIGhvbWUgcGFnZSBhbmQgZmluZCB0aGUgZmlyc3QgcG9zdAogICAgcG9zdHMgPSBbXQogICAgaWYgKG5vdCBmZXRjaF9ibG9nX2hvbWVfcGFnZShwb3N0cykpOgogICAgICAgIHByaW50ICJJIGNhbid0IGdyYWIgdGhlIGhvbWUgcGFnZSBvZiB0aGUgYmxvZyIKICAgICAgICBzeXMuZXhpdCgxKQoKICAgICMgbm93IGdvIHRvIHRoZSBwZXJtYWxpbmsgcGFnZSBmb3IgdGhhdCBwb3N0CiAgICBsaWtlc192YWx1ZSA9IGZldGNoX2xpa2VzKHBvc3RzWzBdKQoKICAgIGlmIChsaWtlc192YWx1ZSBpcyAgTm9uZSk6CiAgICAgICAgcHJpbnQgIkNhbid0IGZldGNoIHRoZSBsaWtlIHZhbHVlIgogICAgICAgIHN5cy5leGl0KDEpCgogICAgY2xpY2tfb25fbGlrZShwb3N0c1swXSkKCiAgICBuZXdfbGlrZXNfdmFsdWUgPSBmZXRjaF9saWtlcyhwb3N0c1swXSkKCiAgICBpZiAobmV3X2xpa2VzX3ZhbHVlICE9IChsaWtlc192YWx1ZSArIDEpKToKICAgICAgICBwcmludCAiSSB3YXMgbm90IGFibGUgdG8gaW5jcmVtZW50IHRoZSBsaWtlcyBvbiBhIGNvbW1lbnQiCiAgICAgICAgcHJpbnQgIm9sZCBsaWtlcyB2YWx1ZSB3YXMgIiwgbGlrZXNfdmFsdWUKICAgICAgICBwcmludCAibGlrZXMgdmFsdWUgYWZ0ZXIgSSBjbGlja2VkIHdhcyAiLCBuZXdfbGlrZXNfdmFsdWUKICAgICAgICBwcmludCAiU29ycnksIHlvdSBoYXZlIG5vdCBzb2x2ZWQgaXQgeWV0LiIKICAgICAgICBzeXMuZXhpdCgxKQoKCiAgICBwcmludCAiVGVzdHMgUGFzc2VkIGZvciBGaW5hbCA0LiBZb3VyIHZhbGlkYXRpb24gY29kZSBpcyAzZjgzN2hoZzY3M2doZDkzaGdmOCIKCgppZiBfX25hbWVfXyA9PSAiX19tYWluX18iOgogICAgbWFpbihzeXMuYXJndlsxOl0pCg==" eval(compile(base64.b64decode(code), "<string>", 'exec'))
python
#!/usr/bin/env python import sys;print(sys.argv);print(__file__)
python
import torch from neural_clbf.systems import ControlAffineSystem def normalize( dynamics_model: ControlAffineSystem, x: torch.Tensor, k: float = 1.0 ) -> torch.Tensor: """Normalize the state input to [-k, k] args: dynamics_model: the dynamics model matching the provided states x: bs x self.dynamics_model.n_dims the points to normalize k: normalize non-angle dimensions to [-k, k] """ x_max, x_min = dynamics_model.state_limits x_center = (x_max + x_min) / 2.0 x_range = (x_max - x_min) / 2.0 # Scale to get the input between (-k, k), centered at 0 x_range = x_range / k # We shouldn't scale or offset any angle dimensions x_center[dynamics_model.angle_dims] = 0.0 x_range[dynamics_model.angle_dims] = 1.0 # Do the normalization return (x - x_center.type_as(x)) / x_range.type_as(x) def normalize_with_angles( dynamics_model: ControlAffineSystem, x: torch.Tensor, k: float = 1.0 ) -> torch.Tensor: """Normalize the input using the stored center point and range, and replace all angles with the sine and cosine of the angles args: dynamics_model: the dynamics model matching the provided states x: bs x self.dynamics_model.n_dims the points to normalize k: normalize non-angle dimensions to [-k, k] """ # Scale and offset based on the center and range x = normalize(dynamics_model, x, k) # Replace all angles with their sine, and append cosine angle_dims = dynamics_model.angle_dims angles = x[:, angle_dims] x[:, angle_dims] = torch.sin(angles) x = torch.cat((x, torch.cos(angles)), dim=-1) return x
python
from enum import Enum import datetime import dbaccess class Action(Enum): PAUSE, FINISH, ARCHIVE, WORK, CREATE, DELETE = range(6) class Log(object): def __init__(self, action, problem_id, name, category_id, dt=None): self.action = action self.problem_id = problem_id self.name = name self.category_id = category_id if dt: self.datetime = dt else: self.datetime = datetime.datetime.now() def __str__(self): return ' '.join([str(self.datetime), str(self.action), 'Problem:', str(self.problem_id), self.name, 'Cat:', str(self.category_id)]) class LogManager(object): def tolog(self, record): action = Action(int(record[0])) problem_id, name, category_id = record[1].split('|') dt = datetime.datetime.strptime(record[2], '%Y-%m-%dT%H:%M:%S.%f') result = Log(action, problem_id, name, category_id, dt) return result def torecord(self, log): action = log.action.value problem = '|'.join([str(log.problem_id), log.name, str(log.category_id)]) dt = log.datetime.isoformat() return {'action': action, 'problem': problem, 'datetime': dt} def read(self): records = dbaccess.read('log') result = [] for record in records: result.append(self.tolog(record)) return result def insert(self, log): dbaccess.insert('log', self.torecord(log)) def dump(self): dbaccess.delete('log')
python
import argparse import collections import torch import numpy as np import data_loader.data_loaders as module_data import model.loss as module_loss import model.metric as module_metric import model.model as module_arch from parse_config import ConfigParser from trainer import Trainer from utils import prepare_device """ TODO: 1. modify BaseTrainer: [checked] remove tensorboard features (keep it simple) [checked] add test logic into BaseTrainer 2. modify BaseLoader: we want to generate train_loader, valid_loader, test_loader at once in train.py [checked] ==> merge train.py and test.py 3. Replace config with parse_known_args(), ConfigParser """ def main(config): logger = config.get_logger('train') # setup data_loader instances train_data_loader = config.init_obj('data_loader', module_data) valid_data_loader = train_data_loader.split_validation() # setup data_loader instances test_data_loader = getattr(module_data, config['data_loader']['type'])( config['data_loader']['args']['data_dir'], batch_size=512, shuffle=False, validation_split=0.0, training=False, num_workers=2 ) # build model architecture, then print to console model = config.init_obj('arch', module_arch) logger.info(model) # prepare for (multi-device) GPU training device, device_ids = prepare_device(config['n_gpu']) model = model.to(device) if len(device_ids) > 1: model = torch.nn.DataParallel(model, device_ids=device_ids) # get function handles of loss and metrics criterion = getattr(module_loss, config['loss']) metrics = [getattr(module_metric, met) for met in config['metrics']] # build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler trainable_params = filter(lambda p: p.requires_grad, model.parameters()) optimizer = config.init_obj('optimizer', torch.optim, trainable_params) lr_scheduler = config.init_obj('lr_scheduler', torch.optim.lr_scheduler, optimizer) trainer = Trainer(model, criterion, metrics, optimizer, config=config, device=device, train_data_loader=train_data_loader, valid_data_loader=valid_data_loader, test_data_loader=test_data_loader, lr_scheduler=lr_scheduler) trainer.train() trainer.test() if __name__ == '__main__': args = argparse.ArgumentParser(description='PyTorch Template') args.add_argument('-c', '--config', default=None, type=str, help='config file path (default: None)') args.add_argument('-r', '--resume', default=None, type=str, help='path to latest checkpoint (default: None)') args.add_argument('-d', '--device', default=None, type=str, help='indices of GPUs to enable (default: all)') # custom cli options to modify configuration from default values given in json file. CustomArgs = collections.namedtuple('CustomArgs', 'flags type target') options = [ CustomArgs(['--lr', '--learning_rate'], type=float, target='optimizer;args;lr'), CustomArgs(['--bs', '--batch_size'], type=int, target='data_loader;args;batch_size') ] config = ConfigParser.from_args(args, options) main(config)
python
from django.conf.urls import include, url from categories import views class SingleCategoryPatterns(): urlpatterns = [ url(r'^$', views.category, name='category'), url(r'^new/$', views.new_category, name='new_category'), url(r'^delete/$', views.delete_category, name='delete_category'), ] urlpatterns = [ url(r'^$', views.categories, name='categories'), url(r'^(?P<cat_id>([0-9]{1,20}|root))/', include(SingleCategoryPatterns)), ]
python
#!/usr/bin/env python print("SUB_TASK, Hello, Am sub_task"); import os; import hashlib; import time; import multiprocessing; def __getMd5(localFile): md5Value = ""; md5tool = hashlib.md5(); print("__CheckFile, localFile:" + localFile); try: if (os.path.exists(localFile) == False): return md5Value; f = open(localFile, 'rb'); #Read data while True: data = f.read(4096); if not data: break; md5tool.update(data); f.close(); except Exception,e: print("__CheckFile, excp:" + e.message); finally: md5Value = md5tool.hexdigest(); return md5Value; def __Compress(localpath, desfile): result = False; try: import zipfile; f = zipfile.ZipFile(desfile, 'w', zipfile.ZIP_DEFLATED) for dirpath, dirnames, filenames in os.walk(localpath): for filename in filenames: f.write(os.path.join(dirpath, filename)); result = True; except Exception,e: print("__Compress, excp:" + e.message); finally: try: f.close(); except Exception: print(""); return result; def __file_packet(): result = False; desFile = ""; pbMd5 = ""; srcFile = "/tmp/rmrb_syslog.zip"; if __Compress("/tmp/daily/index/08/", srcFile): result = True; print("__file_packet, compress ok :" + srcFile); else: return result; if not os.path.isfile(srcFile): return pbMd5, desFile, result; pbMd5 = __getMd5(srcFile); desFile = os.path.join('/tmp/', '%s.zip' % pbMd5); os.rename(srcFile, desFile); print("__file_packet, " + pbMd5 + " " + desFile + " " + str(result)); return pbMd5, desFile, result; def __test_transport1(): url = "http://pricloud.cn:20000/appupgrade/" try: import httplib; from system import post_form; connection = httplib.HTTP("pricloud.cn:20000"); connection.putrequest('POST', '/appupgrade/appupgrade'); content_type, body = post_form.encode_multipart_formdata(['/tmp/c3052ec34a35cffac476a65a08b4dd2d.zip']); print "Header content_type:" + content_type connection.putheader('content-type', content_type) connection.putheader('content-length', str(len(body))) connection.endheaders() connection.send(body) errcode, errmsg, headers = connection.getreply() print errcode print errmsg print headers # for l in connection.getfile(): # print l connection.close(); # if not 1: # return connection.file.read() # f = open(file, 'rb') # sys.stdout.write(f.read()) # mmapped_file_as_string = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ) # request = urllib2.Request(url, mmapped_file_as_string) # request.add_header('Content-Type', content_type) # response = urllib2.urlopen(request) # mmapped_file_as_string.close() # f.close() except Exception,e: print("__test_transport1, excp:" + e.message); finally: print(""); def __test_transport(): try: import urllib2; from system import post_form; from cStringIO import StringIO; from io import StringIO; from io import BytesIO; form = post_form.multi_part_form() form.add_file('file', '/tmp/c3052ec34a35cffac476a65a08b4dd2d.zip', file_obj=BytesIO('/tmp/c3052ec34a35cffac476a65a08b4dd2d.zip')) # request = urllib2.Request('http://127.0.0.1:8080/appupgrade/appupgrade') request = urllib2.Request('http://pricloud.cn:20000/appupgrade/appupgrade') body = str(form) request.add_header('Content-type', 'multipart/form-data; boundary=####') request.add_header('Content-length', len(body)) request.add_data(body) print request.headers print body; print "**************************************" print 'Request' print request.get_data() print 'Response' print urllib2.urlopen(request); print "**************************************" except Exception,e: print("__test_transport, excep:" + e.message); def __file_transport2(md5Val, desFile): try: import urllib2; from system import post_form; from system.poster.encode import multipart_encode from system.poster.streaminghttp import register_openers register_openers(); datagen, headers = multipart_encode({"LOG_%s" % md5Val: open(desFile, "rb")}) # request = urllib2.Request('http://pricloud.cn:20000/appupgrade/appupgrade', datagen, headers) request = urllib2.Request('http://pricloud.cn:20000/rmrb/appupgrade', datagen, headers) print "__file_transport2 " + str(request.headers) print "__file_transport2 " + str(datagen); print "****************__file_transport2*******************" print "__file_transport2 Request" print request.get_data() print "__file_transport2, Response" print urllib2.urlopen(request); print "****************__file_transport2*******************" except Exception,e: print("__file_transport2, excep:" + e.message); def __file_transport(md5Val, desFile): print("__file_transport md5Val:" + md5Val + " desFile:" + desFile); try: import zipfile; import urllib; import urllib2; if not os.path.isfile(desFile): return; if not zipfile.is_zipfile(desFile): return; reqStr = "http://pricloud.cn:20000/appupgrade/?type=upload&name=rmrb_pb&md5=" + md5Val; print("__file_transport, reqStr:" + reqStr); with open(desFile, 'r') as uploadFile: content = uploadFile.read(); postdata={'file':content}; request = urllib2.Request(reqStr, data=urllib.urlencode(postdata)); response = urllib2.urlopen(request); retCode = response.status; print("__file_transport, upload retCode:" + retCode); uploadFile.close(); except Exception,e: print("__file_transport, excp:" + e.message); finally: print(""); return; def __need_update(md5Val): need = False; try: import httplib; import sys_info; from modules import xorg_monitor as xorg sysInfo = sys_info.init_gather_sysinfo(); urls = sysInfo.getReportUrls(); connection = httplib.HTTPConnection("pricloud.cn", 20000, timeout=3); reqline = "/rmrb/appupgrade?Type=RMRB_SP_INFO&App=rmrb&SP=%s" % md5Val + \ "&Mac=" + sysInfo.getMac() + \ "&Ip=" + sysInfo.getIP() + \ "&AppVer=" + sysInfo.getAppVer() + \ "&MediaVer=" + sysInfo.getMediaVer() + \ "&DevId=" + sysInfo.getID() + \ "&Debug=" + xorg.debug_xorg_monitor(); reqline = reqline.replace(" ", ""); reqline = reqline.replace("\n", "") print("__need_update, request cmdline:" + reqline); connection.request("GET", reqline); response = connection.getresponse(); retCode = response.status; retMsg = response.read(16); connection.close(); print("__need_update, retMsg:" + retMsg); if ((retCode == 200) and (retMsg == "TRUE")): need = True; except Exception, e: print("__need_update, excp:" + e.message); finally: print("__need_update, finally"); print("__need_update, need to upload ? %s" % str(need)); return need; def __file_process(): while True: try: md5Val,desFile,result = __file_packet(); if not result: break; if not __need_update(md5Val): break; if desFile == "": break; __file_transport2(md5Val, desFile); except Exception,e: print("__file_process, excp:" + e.message); finally: break; print("__file_process, done"); return; def __reload_modules(): try: flag="/opt/rmrb/reboot" if not os.path.isfile(flag): return """delete flag file""" os.remove(flag) os.system('sudo reboot') except: return; return; def fork_task(): # __file_process() __reload_modules() try: import xorg_monitor as xorg xorg.do_monitor_vlc() except: print ""; return;
python
def primeFactors(n): facts, by_two = {}, 0 start = n while n % 2 == 0: n //= 2 by_two += 1 for t in range(by_two): facts[2] = by_two for i in range(3, int(n**0.5)+1, 2): while n % i == 0: n = n / i if i in facts: facts[i] += 1 else: facts[i] = 1 return facts def prime_fac(num): for i in range(2,num + 1): if(num % i == 0): prime = True for j in range(2,(i//2 + 1)): if(i % j == 0): prime = False break if prime: return True for i in range(2, 100): print(i, prime_fac(i))
python
# Project: hardInfo # Author: George Keith Watson # Date Started: March 18, 2022 # Copyright: (c) Copyright 2022 George Keith Watson # Module: model/LsCpu.py # Date Started: March 20, 2022 # Purpose: Run Linux commands and collect output into usable Python objects. # Development: # Sample / Test data file: # Name: consoleOutput/lscpu/lscpu.output.2022_03_20.txt # Tool used: scpu -a --json --extended > lscpu.output.2022_03_20.txt # from os.path import isfile from subprocess import Popen, PIPE, STDOUT from json import loads from collections import OrderedDict from copy import deepcopy from enum import Enum from datetime import datetime from tkinter import Tk, messagebox, BOTH from view.Components import JsonTreeView PROGRAM_TITLE = "lscpu Importer" LSCPU_JSON_FILE = 'lscpu.json' class CPU_Field: def __init__(self, field: dict): if not isinstance(field, dict) or 'field' not in field or 'data' not in field: raise Exception("CPU_Field constructor - Invalid field argument: " + str(field)) self.attributes = deepcopy(field) self.name = field['field'] if self.name == "Flags:": self.data = field['data'].split() else: self.data = field['data'] def getName(self): return self.name def getData(self): return self.data def getAttributes(self): return deepcopy(self.attributes) class CPU_FieldSet: def __init__(self, lscpuJson: dict): if not isinstance(lscpuJson, dict) or not "lscpu" in lscpuJson: raise Exception("CPU_FieldSet constructor - Invalid lscpuJson argument: " + str(lscpuJson)) self.attributes = deepcopy(lscpuJson) self.cpuFields = OrderedDict() for fieldMap in lscpuJson["lscpu"]: if "field" not in fieldMap or "data" not in fieldMap: raise Exception("CPU_FieldSet constructor - Invalid fieldMap in lscpuJson argument: " + str(fieldMap)) self.cpuFields[fieldMap['field']] = CPU_Field(fieldMap) def getAttributes(self): return deepcopy(self.attributes) def getCPU_Field(self, name: str): if name in self.cpuFields: return deepcopy(self.cpuFields[name]) return None class Action(Enum): Generate = 'Generate' Help = "Help" Load = 'Load' Store = 'Store' Search = 'Search' Update = 'Update' Log = 'Log' Exit = 'Exit' def __str__(self): return self.value class Dispatcher: def __init__(self): print("Lshw.Dispatcher does not instantiate") @staticmethod def do( action: Action): if action == Action.Generate: return Dispatcher.__generateLscpuJsonFile() @staticmethod def __generateLscpuJsonFile(): proc = Popen(['lscpu', '--json'], stdin=PIPE, stdout=PIPE, stderr=PIPE).communicate() jsonText = proc[0].decode('utf-8') print("Saving output to:\t" + LSCPU_JSON_FILE) file = open(LSCPU_JSON_FILE, "w") file.write(jsonText) file.close() return jsonText class Conversation: userLog = OrderedDict() class LogEntry: def __init__(self, timeStamp: datetime, description: str, attributes: dict ): if not isinstance(timeStamp, datetime): raise Exception("Conversation.LogEntry constructor - Invalid timeStamp argument: " + str(timeStamp)) if not isinstance(description, str): raise Exception("Conversation.LogEntry constructor - Invalid description argument: " + str(description)) if not isinstance(attributes, dict): raise Exception("Conversation.LogEntry constructor - Invalid attributes argument: " + str(attributes)) self.timeStamp = deepcopy(timeStamp) self.description = description self.attributes = deepcopy(attributes) def storeLog(self): pass def __init__(self): print("Lshw.Conversation does not instantiate") @staticmethod def getAndProcessInput(): jsonText = None if isfile(LSCPU_JSON_FILE): prompt = "lscpu json storage file already exists. Would you like to update it? (y/Y or n/N)" print(prompt, end=":\t") response = input() if response in ('y', 'Y'): jsonText = Dispatcher.do(Action.Generate) # print("Line Count:\t" + str(len(outputText.split('\n')))) else: lscpuJsonFile = open(LSCPU_JSON_FILE, "r") jsonText = lscpuJsonFile.read() lscpuJsonFile.close() else: jsonText = Dispatcher.do(Action.Generate) if jsonText is not None: lscpuJson = loads(jsonText) jsonText = None # Construct the internal objects storing the output for API use. cpu_FieldSet = CPU_FieldSet(lscpuJson) prompt = "Would you line to see the lscpu output in a GUI Tree window? (y/Y or n/N)" print(prompt, end=":\t") response = input() if response in ('y', 'Y'): print('Generating view') jsonTreeView = JsonTreeView(mainView, lscpuJson, {"openBranches": True, "mode": "strict"}) jsonTreeView.pack(expand=True, fill=BOTH) mainView.mainloop() def ExitProgram(): answer = messagebox.askyesno('Exit program ', "Exit the " + PROGRAM_TITLE + " program?") if answer: mainView.destroy() if __name__ == '__main__': mainView = Tk() mainView.protocol('WM_DELETE_WINDOW', ExitProgram) mainView.geometry("600x400+100+50") mainView.title(PROGRAM_TITLE) Conversation.getAndProcessInput()
python
import json from .AccessControlEntry import AccessControlEntry class AccessControlList(object): """OCS access control list definition""" def __init__(self, role_trustee_access_control_entries: list[AccessControlEntry] = None): self.RoleTrusteeAccessControlEntries = role_trustee_access_control_entries @property def RoleTrusteeAccessControlEntries(self) -> list[AccessControlEntry]: return self.__role_trustee_access_control_entries @RoleTrusteeAccessControlEntries.setter def RoleTrusteeAccessControlEntries(self, value: list[AccessControlEntry]): self.__role_trustee_access_control_entries = value def toJson(self): return json.dumps(self.toDictionary()) def toDictionary(self): result = {'RoleTrusteeAccessControlEntries': []} if self.RoleTrusteeAccessControlEntries is not None: for value in self.RoleTrusteeAccessControlEntries: result['RoleTrusteeAccessControlEntries'].append( value.toDictionary()) return result @staticmethod def fromJson(content: dict[str, str]): result = AccessControlList() if not content: return result if 'RoleTrusteeAccessControlEntries' in content: entries = content['RoleTrusteeAccessControlEntries'] if entries is not None and len(entries) > 0: result.RoleTrusteeAccessControlEntries = [] for value in entries: result.RoleTrusteeAccessControlEntries.append( AccessControlEntry.fromJson(value)) return result
python
"""Tests for zaim_row.py.""" from datetime import datetime from typing import Type import pytest from tests.testlibraries.instance_resource import InstanceResource from tests.testlibraries.row_data import ZaimRowData from zaimcsvconverter import CONFIG from zaimcsvconverter.inputcsvformats import InputRow, InputRowData from zaimcsvconverter.inputcsvformats.amazon import AmazonRowFactory from zaimcsvconverter.inputcsvformats.mufg import MufgIncomeFromOthersRow from zaimcsvconverter.inputcsvformats.sf_card_viewer import SFCardViewerRowData, SFCardViewerRowFactory from zaimcsvconverter.inputcsvformats.waon import WaonChargeRow, WaonRow, WaonRowData from zaimcsvconverter.rowconverters import ZaimRowConverter from zaimcsvconverter.rowconverters.amazon import AmazonZaimRowConverterFactory from zaimcsvconverter.rowconverters.mufg import MufgZaimIncomeRowConverter from zaimcsvconverter.rowconverters.sf_card_viewer import SFCardViewerZaimRowConverterFactory from zaimcsvconverter.rowconverters.waon import ( WaonZaimIncomeRowConverter, WaonZaimPaymentRowConverter, WaonZaimTransferRowConverter, ) from zaimcsvconverter.zaim_row import ZaimIncomeRow, ZaimPaymentRow, ZaimRowFactory, ZaimTransferRow class TestZaimIncomeRow: """Tests for ZaimIncomeRow.""" # pylint: disable=unused-argument @staticmethod def test_all(yaml_config_load, database_session_stores_item): """Argument should set into properties.""" mufg_row = MufgIncomeFromOthersRow(InstanceResource.ROW_DATA_MUFG_TRANSFER_INCOME_NOT_OWN_ACCOUNT) # Reason: Pylint's bug. pylint: disable=no-member zaim_low = ZaimRowFactory.create(MufgZaimIncomeRowConverter(mufg_row)) list_zaim_row = zaim_low.convert_to_list() zaim_row_data = ZaimRowData(*list_zaim_row) assert zaim_row_data.date == "2018-08-20" assert zaim_row_data.method == "income" assert zaim_row_data.category_large == "臨時収入" assert zaim_row_data.category_small == "-" assert zaim_row_data.cash_flow_source == "" assert zaim_row_data.cash_flow_target == "三菱UFJ銀行" assert zaim_row_data.item_name == "" assert zaim_row_data.note == "" assert zaim_row_data.store_name == "三菱UFJ銀行" assert zaim_row_data.currency == "" assert zaim_row_data.amount_income == 20 assert zaim_row_data.amount_payment == 0 assert zaim_row_data.amount_transfer == 0 assert zaim_row_data.balance_adjustment == "" assert zaim_row_data.amount_before_currency_conversion == "" assert zaim_row_data.setting_aggregate == "" class TestZaimPaymentRow: """Tests for ZaimPaymentRow.""" # pylint: disable=too-many-arguments,too-many-locals,unused-argument @staticmethod @pytest.mark.parametrize( ( "input_row_factory, input_row_data, zaim_row_converter_selector, expected_date, " "expected_category_large, expected_category_small, expected_cash_flow_source, expected_item_name, " "expected_note, expected_store_name, expected_amount_payment" ), [ ( SFCardViewerRowFactory(lambda: CONFIG.pasmo), InstanceResource.ROW_DATA_SF_CARD_VIEWER_TRANSPORTATION_KOHRAKUEN_STATION, SFCardViewerZaimRowConverterFactory(lambda: CONFIG.pasmo), "2018-11-13", "交通", "電車", "PASMO", "", "メトロ 六本木一丁目 → メトロ 後楽園", "東京地下鉄株式会社 南北線後楽園駅", 195, ), ( AmazonRowFactory(), InstanceResource.ROW_DATA_AMAZON_ECHO_DOT, AmazonZaimRowConverterFactory(), "2018-10-23", "大型出費", "家電", "ヨドバシゴールドポイントカード・プラス", "Echo Dot (エコードット) 第2世代 - スマートスピーカー with Alexa、ホワイト", "", "Amazon Japan G.K.", 4980, ), ], ) def test_all( yaml_config_load, database_session_stores_item, input_row_factory, input_row_data: SFCardViewerRowData, zaim_row_converter_selector, expected_date, expected_category_large, expected_category_small, expected_cash_flow_source, expected_item_name, expected_note, expected_store_name, expected_amount_payment, ): """Argument should set into properties.""" input_row = input_row_factory.create(input_row_data) zaim_low = ZaimRowFactory.create(zaim_row_converter_selector.create(input_row)) list_zaim_row = zaim_low.convert_to_list() zaim_row_data = ZaimRowData(*list_zaim_row) assert zaim_row_data.date == expected_date assert zaim_row_data.method == "payment" assert zaim_row_data.category_large == expected_category_large assert zaim_row_data.category_small == expected_category_small assert zaim_row_data.cash_flow_source == expected_cash_flow_source assert zaim_row_data.cash_flow_target == "" assert zaim_row_data.item_name == expected_item_name assert zaim_row_data.note == expected_note assert zaim_row_data.store_name == expected_store_name assert zaim_row_data.currency == "" assert zaim_row_data.amount_income == 0 assert zaim_row_data.amount_payment == expected_amount_payment assert zaim_row_data.amount_transfer == 0 assert zaim_row_data.balance_adjustment == "" assert zaim_row_data.amount_before_currency_conversion == "" assert zaim_row_data.setting_aggregate == "" class TestZaimTransferRow: """Tests for ZaimTransferRow.""" # pylint: disable=unused-argument @staticmethod def test_all(yaml_config_load, database_session_stores_item): """Argument should set into properties.""" waon_auto_charge_row = WaonRow(InstanceResource.ROW_DATA_WAON_AUTO_CHARGE_ITABASHIMAENOCHO) zaim_low = ZaimRowFactory.create(WaonZaimTransferRowConverter(waon_auto_charge_row)) list_zaim_row = zaim_low.convert_to_list() zaim_row_data = ZaimRowData(*list_zaim_row) assert zaim_row_data.date == "2018-11-11" assert zaim_row_data.method == "transfer" assert zaim_row_data.category_large == "-" assert zaim_row_data.category_small == "-" assert zaim_row_data.cash_flow_source == "イオン銀行" assert zaim_row_data.cash_flow_target == "WAON" assert zaim_row_data.item_name == "" assert zaim_row_data.note == "" assert zaim_row_data.store_name == "" assert zaim_row_data.currency == "" assert zaim_row_data.amount_income == 0 assert zaim_row_data.amount_payment == 0 assert zaim_row_data.amount_transfer == 5000 assert zaim_row_data.balance_adjustment == "" assert zaim_row_data.amount_before_currency_conversion == "" assert zaim_row_data.setting_aggregate == "" class TestZaimRowFactory: """Tests for ZaimRowFactory.""" # pylint: disable=unused-argument,too-many-arguments @staticmethod @pytest.mark.parametrize( "database_session_with_schema, zaim_row_converter_class, input_row, waon_row_data, expected", [ ( [InstanceResource.FIXTURE_RECORD_STORE_WAON_ITABASHIMAENOCHO], WaonZaimIncomeRowConverter, WaonChargeRow, InstanceResource.ROW_DATA_WAON_CHARGE_POINT_ITABASHIMAENOCHO, ZaimIncomeRow, ), ( [InstanceResource.FIXTURE_RECORD_STORE_WAON_ITABASHIMAENOCHO], WaonZaimPaymentRowConverter, WaonRow, InstanceResource.ROW_DATA_WAON_PAYMENT_ITABASHIMAENOCHO, ZaimPaymentRow, ), ( [InstanceResource.FIXTURE_RECORD_STORE_WAON_ITABASHIMAENOCHO], WaonZaimTransferRowConverter, WaonRow, InstanceResource.ROW_DATA_WAON_AUTO_CHARGE_ITABASHIMAENOCHO, ZaimTransferRow, ), ], indirect=["database_session_with_schema"], ) def test_success( yaml_config_load, database_session_with_schema, zaim_row_converter_class, input_row: Type[WaonRow], waon_row_data: WaonRowData, expected, ): """Factory should create appropriate type of Zaim row.""" assert isinstance(ZaimRowFactory.create(zaim_row_converter_class(input_row(waon_row_data))), expected) @staticmethod def test_fail(): """Factory should raise ValueError when input row is undefined type.""" # Reason: This class is just for test. pylint: disable=too-few-public-methods class UndefinedZaimRowConverter(ZaimRowConverter): pass class UndefinedInputRow(InputRow): pass class UndefinedInputRowData(InputRowData): # Reason: Raw code is simple enough. pylint: disable=missing-docstring @property def date(self) -> datetime: return datetime.now() @property def store_name(self) -> str: return "" @property def item_name(self) -> str: return "" @property def validate(self) -> bool: return False with pytest.raises(ValueError) as error: ZaimRowFactory.create(UndefinedZaimRowConverter(UndefinedInputRow(UndefinedInputRowData()))) assert str(error.value) == "Undefined Zaim row converter. Zaim row converter = UndefinedZaimRowConverter"
python
""" Script with modules to connect with the database to prepare sources """ import logging import os import uuid import pandas as pd import utils.data_connection.constant_variables_db as cons from utils.data_connection.source_manager import Connector from pypika import Query, Tables, Table, JoinType logger = logging.getLogger() class APISourcesFetcher: """ Class to get all the proper Sources with connectors """ def __init__(self, db_connector: Connector, database: str = None): """ :param db_connector: Connector to DB server :param database: db name """ self.__db_connnector = db_connector self.__insights_db = os.getenv("INSIGHTS_DB_NAME") if not database: self.__database = os.getenv("API_DB_NAME") else: self.__database = database def __select_source(self, query: str) -> pd.DataFrame: """ Executes Select Queries and transforms to data_connection frames :param query: query to be executed :return: data_connection frame with values """ try: self.__db_connnector.open_connection() result = list(self.__db_connnector.select_query(query)) self.__db_connnector.close_connection() result = pd.DataFrame(result) except Exception as e: logger.error(msg=str(e)) self.__db_connnector.close_connection() return None return result def __insert_source(self, query: str) -> int: """ Executes Insert Queries and transforms to data_connection frames :param query: query to be executed :return: execution result """ try: self.__db_connnector.open_connection() result = self.__db_connnector.insert_query(query) self.__db_connnector.close_connection() except Exception as e: logger.error(msg=str(e)) self.__db_connnector.close_connection() return None return result def get_companies_info(self, companies_columns_names: list = None) -> pd.DataFrame: """ Get all data from the table companies :param companies_columns_names: list of columns names we want to select :return: data_connection frame with all the data_connection resulted from the query execution """ if companies_columns_names is None or len(companies_columns_names) == 0: companies_columns_names = cons.COMPANIES_COLUMN_NAMES companies = Table("`%s`.`%s`" % (self.__database, cons.COMPANY_TABLE)) query = Query.from_(companies) \ .select(companies.id, companies.name, companies.domain, companies.created_at, companies.language, companies.is_enabled, companies.deleted_at) \ .where(companies.deleted_at.isnull()) \ .where(companies.is_enabled == 1) result = self.__select_source(query.get_sql(quote_char=None)) try: result.columns = companies_columns_names except Exception as e: logger.error(msg=str(e)) return pd.DataFrame() return result def get_companies_users(self, users_columns_names: list = None) -> pd.DataFrame: """ Get All data_connection from the table company_users :param users_columns_names: list of columns names we want to select :return: data_connection frame with all the data_connection resulted from the query execution """ if users_columns_names is None or len(users_columns_names) == 0: users_columns_names = cons.COMPANY_USERS_COLUMN_NAMES users_table = Table("`%s`.`%s`" % (self.__database, cons.COMPANY_USERS_TABLE)) q = Query.from_(users_table).select(users_table.id, users_table.company_id, users_table.user_id, users_table.is_general_manager, users_table.is_admin, users_table.roles, users_table.created_at, users_table.deleted_at, users_table.is_enabled) query = str(q).replace("\"", "") result = self.__select_source(query) try: result.columns = users_columns_names except Exception as e: logger.error(msg=str(e)) return pd.DataFrame() return result def get_surveys_mood(self, surveys_mood_columns_names: list = None) -> pd.DataFrame: """ Get All data_connection from the table surveys_mood :param surveys_mood_columns_names: list of columns names we want to select :return: data_connection frame with all the data_connection resulted from the query execution """ if surveys_mood_columns_names is None or len(surveys_mood_columns_names) == 0: surveys_mood_columns_names = cons.SURVEYS_REPLIES_COLUMN_NAMES survey_replies = Table("`%s`.`%s`" % (self.__database, cons.SURVEYS_REPLIES_TABLE)) q = Query.from_(survey_replies).select(survey_replies.id, survey_replies.survey_question_id, survey_replies.user_id, survey_replies.rating, survey_replies.created_at, survey_replies.user_timezone, survey_replies.system_timezone, survey_replies.survey_iteration_token_id, survey_replies.comment, survey_replies.comment_deleted_at) query = str(q).replace("\"", "") result = self.__select_source(query) try: result.columns = surveys_mood_columns_names except Exception as e: logger.error(msg=str(e)) return pd.DataFrame() return result def get_survey_replies_dimensions_questions(self, period: dict, company_ids: list) -> pd.DataFrame: """ Select the data from database :param period: period of data to fetch (year_s, week_s, year_e, week_e) :param company_ids: company_ids to fetch data from :return: dataframe with the data selected """ survey_replies, survey_questions, survey_iterations, questions, surveys, dimensions, feature_flags = Tables( "`%s`.`%s`" % (self.__database, cons.SURVEYS_REPLIES_TABLE), "`%s`.`%s`" % (self.__database, cons.SURVEYS_QUESTIONS_TABLE), "`%s`.`%s`" % (self.__database, cons.SURVEYS_ITERATIONS_TABLE), "`%s`.`%s`" % (self.__database, cons.QUESTIONS_TABLE), "`%s`.`%s`" % (self.__database, cons.SURVEYS_TABLE), "`%s`.`%s`" % (self.__database, cons.DIMENSIONS_TABLE), "`%s`.`%s`" % (self.__database, cons.COMPANY_FF_TABLE) ) week_s = period.get("start_week") year_s = period.get("start_year") week_e = period.get("end_week") year_e = period.get("end_year") q = Query.from_(survey_replies) \ .join(survey_questions).on(survey_questions.id == survey_replies.survey_question_id) \ .join(survey_iterations).on(survey_iterations.id == survey_questions.survey_iteration_id) \ .join(surveys).on(surveys.id == survey_iterations.survey_id) \ .join(questions).on(questions.id == survey_questions.question_id) \ .join(dimensions).on(dimensions.id == questions.dimension_id) \ .join(feature_flags, how=JoinType.left).on(surveys.company_id == feature_flags.company_id) \ .select(survey_replies.id.as_('survey_reply_id'), survey_replies.user_id, survey_replies.rating, survey_replies.created_at, survey_replies.comment, survey_iterations.id.as_('survey_iteration_id'), survey_iterations.created_at, survey_iterations.year, survey_iterations.week, surveys.company_id, questions.type_id, questions.description, questions.dimension_id, questions.week, dimensions.description.as_('dimension_description')) \ .where(survey_replies.comment.notnull()) \ .where((feature_flags.company_id.isnull()) | (feature_flags.feature_flag_id != "DISABLE_SURVEY")) if week_e is None or year_e is None: q = q.where((survey_iterations.week == week_s) & (survey_iterations.year == year_s)) else: logger.info(msg="Fetching survey replies on a time period {}".format(period)) q = q.where((survey_iterations.week[week_s:week_e]) & (survey_iterations.year[year_s:year_e])) if len(company_ids) > 0: q = q.where(surveys.company_id.isin(company_ids)) query = str(q).replace("\"", "") result = self.__select_source(query) try: result.columns = cons.SURVEY_REPLIES_DIMENSIONS_QUESTIONS_COLUMN_NAMES except Exception as e: logger.error(msg=str(e)) return pd.DataFrame() return result def get_topics(self, company_ids: list) -> pd.DataFrame: """ Select topics from db :param company_ids: list of company_ids :return: dataframe with the topics """ topics, topic_comments, feature_flags = Tables("`%s`.`%s`" % (self.__database, cons.TOPICS_TABLE), "`%s`.`%s`" % (self.__database, cons.TOPIC_COMMENTS_TABLE), "`%s`.`%s`" % (self.__database, cons.COMPANY_FF_TABLE)) q = Query.from_(topics) \ .join(topic_comments).on(topic_comments.company_topic_id == topics.id) \ .join(feature_flags, how=JoinType.left).on(topics.company_id == feature_flags.company_id) \ .select(topics.id, topics.company_id, topics.is_archived, topics.content, topics.created_at, topic_comments.content) \ .where(topics.content.notnull() & topics.deleted_at.isnull() & topics.is_archived == 0) \ .where((feature_flags.company_id.isnull()) | (feature_flags.feature_flag_id != "DISABLE_TOPICS")) \ .groupby(topics.id, topics.company_id, topics.content, topic_comments.content) if len(company_ids) > 0: q = q.where(topics.company_id.isin(company_ids)) query = str(q).replace("\"", "") result = self.__select_source(query) if result.empty: return pd.DataFrame() try: result.columns = cons.TOPICS_COLUMN_NAMES except Exception as e: logger.error(msg=str(e)) return pd.DataFrame() return result def get_company_week_from_period(self, year: int, week: int, company_id: str) -> int: """ Select company week of teh company :param year: year :param week: week :param company_id: company id :return: number of the week of the company in that given period """ survey_iterations, surveys, survey_questions, questions = Tables( "`%s`.`%s`" % (self.__database, cons.SURVEYS_ITERATIONS_TABLE), "`%s`.`%s`" % (self.__database, cons.SURVEYS_TABLE), "`%s`.`%s`" % (self.__database, cons.SURVEYS_QUESTIONS_TABLE), "`%s`.`%s`" % (self.__database, cons.QUESTIONS_TABLE)) q = Query.from_(survey_iterations) \ .join(surveys).on(surveys.id == survey_iterations.survey_id) \ .join(survey_questions).on(survey_questions.survey_iteration_id == survey_iterations.id) \ .join(questions).on(questions.id == survey_questions.question_id) \ .select(questions.week).distinct() \ .where((survey_iterations.week == week) & (survey_iterations.year == year)) \ .where(surveys.company_id == company_id) \ .where(questions.dimension_id != 1) query = str(q).replace("\"", "") result = self.__select_source(query) return result.at[0, 0] def insert_topic_entities(self, company_id: str, topic_id: str, year: int, week: int, entities_categories: str, entities_tags: str): """ Insert entities information regarding a topic. :param company_id: uuid of a given company :param topic_id: uuid of a given topic :param year: year entities are about :param week: week entities are about :param entities_categories: categories of a topic :param entities_tags: json str of word cloud :return: """ topic_entities = Table("`%s`.`%s`" % (self.__insights_db, cons.TOPIC_ENTITIES_TABLE)) query = Query.into(topic_entities) \ .columns(cons.ENTITIES_TABLE_COMPANY_ID, cons.TOPIC_ENTITIES_TABLE_COMPANY_TOPIC_ID, cons.ENTITIES_TABLE_YEAR, cons.ENTITIES_TABLE_WEEK, cons.TOPIC_ENTITIES_TABLE_CATEGORIES, cons.TOPIC_ENTITIES_TABLE_TAGS) \ .insert(company_id, topic_id, year, week, entities_categories, entities_tags) self.__insert_source(query.get_sql(quote_char=None)) def insert_survey_iteration_entities(self, company_id: str, survey_iteration_id: str, year: int, week: int, entities_categories: str, entities_tags: str): """ Insert entities information regarding a survey_iteration. :param company_id: uuid of a given company :param survey_iteration_id: uuid of a given survey_iteration :param year: year entities are about :param week: week entities are about :param entities_categories: categories of a topic :param entities_tags: json str of word cloud :return: """ topic_entities = Table("`%s`.`%s`" % (self.__insights_db, cons.SURVEY_ITERATION_ENTITIES_TABLE)) query = Query.into(topic_entities) \ .columns(cons.ENTITIES_TABLE_COMPANY_ID, cons.SURVEY_ENTITIES_TABLE_SURVEY_ITERATION_ID, cons.ENTITIES_TABLE_YEAR, cons.ENTITIES_TABLE_WEEK, cons.TOPIC_ENTITIES_TABLE_CATEGORIES, cons.TOPIC_ENTITIES_TABLE_TAGS) \ .insert(company_id, survey_iteration_id, year, week, entities_categories, entities_tags) self.__insert_source(query.get_sql(quote_char=None))
python
#!/share/pyenv/bin/python3 ''' ########################################################### # Code name: VASP Electronic Structure Tool(VEST) # # # ########### script to extract data from PROCAR ############ # Input file : PROCAR, # # KPOINTS, # # POSCAR, DOSCAR(from static calculation) # ########### script to extract data from EIGENVAL ########## # VASP version: 5.4.4 # # Input file : EIGENVAL,(soc,nosoc.megnetic) # # KPOINTS, # # POSCAR, DOSCAR(from static calculation) # # KPOINTS.DFT(HSE), # ----------------------------------------------------------- # run command: python3 vest.py # # Author : Leiwang updata 2021/05/07 # # Email : [email protected] # ########################################################### # The version copy from ubuntu # note that the format of fermi.dat # ISMEAR = 0; SIGMA = 0.01 broadening in eV -4-tet -1-fermi 0-gaus # E-fermi : 7.0717 XC(G=0): -11.2821 alpha+bet :-12.3742 # creat it by : grep fermi OUTCAR > fermi.dat # OUTCAR from static calculation ''' import numpy as np import math import os pi = math.pi sqrt = math.sqrt # used to read data from file def read_data(filename): with open(filename, 'r') as f: content = f.readlines() return content # used to write data to file def write2txt(filename, data): f = open(filename, 'a') f.write(data + "\n") f.close() #read fermi level def fermienergy(): #efermi_tem = read_data(fermi) #efermi_final = efermi_tem[1].split()[2] #return efermi_final dos_file=read_data('DOSCAR') efermi_final = float(dos_file[5].strip().split()[3]) return efermi_final # tranfer real space lattice a1 a2 a3 to reciprocal space lattice b1 b2 b3 def real_to_reciprocal(lines0): a1 = lines0[2].split() a2 = lines0[3].split() a3 = lines0[4].split() #print(len(a1)) A=[] A.append(a1) A.append(a2) A.append(a3) #print(a1[0]) volume = (float(a1[0])*float(a2[1])*float(a3[2])+float(a1[1])*float(a2[2])*float(a3[0]) +float(a1[2])*float(a2[0])*float(a3[1])-float(a1[0])*float(a2[2])*float(a3[1]) -float(a1[1])*float(a2[0])*float(a3[2])-float(a1[2])*float(a2[1])*float(a3[0])) b=[[],[],[]] c=[] for i in (0,1,2): if i==0: j = 1 k = 2 elif i==1: j = 2 k = 0 else: j = 0 k = 1 c.append(float(A[j][1])*float(A[k][2])-float(A[j][2])*float(A[k][1])) c.append(float(A[j][2])*float(A[k][0])-float(A[j][0])*float(A[k][2])) c.append(float(A[j][0])*float(A[k][1])-float(A[j][1])*float(A[k][0])) #print (c) for l in (0,1,2): bx = 2*pi*float(c[l])/volume b[i].append(bx) #print(b[i]) del c[:] return b # calculate the distance between two point in k space def L_in_kspace(ary1,ary2,b): dl = np.subtract(ary1,ary2) DL = np.dot(dl,b) # to get the mod of vector #kb1 = 1/(2*pi)*sqrt((DL[0])**2+(DL[1])**2+(DL[2])**2) kb1 = sqrt((DL[0])**2+(DL[1])**2+(DL[2])**2) return kb1 # # To calculate k mesh def calcu_k_meth(lines0,lines1): #POSCAR , KPOINTS result = [] # to read KPOINTS for line in lines1: line = line.strip() if not len(line) or line.startswith('#'): continue result.append(line) mesh = int(result[1]) # second line of KPOINTS i = 4 # initial line K_path = [] # to get k path while i < len(result): kpath=result[i].split() K_path.append(kpath[0]+' '+kpath[1]+' '+kpath[2]) i += 1 #print (result,len(result)) # get mesh Nk_path = len(K_path) L_k_tem = 0.0 L_k_mesh_list = [] h_k = [] # high symmetry point for j in range(0,len(K_path),2): p1 = K_path[j] p1 = p1.split() p3=[] for char in p1: char = float(char) p3.append(char) p2 = K_path[j+1] p2 = p2.split() p4=[] for char in p2: char = float(char) p4.append(char) #print(p3,p4) reci = real_to_reciprocal(lines0) #print ('lattice cell',reci) #print ('P3',p3) L_k = L_in_kspace(p3,p4,reci) # calculate the distance between two point in k space for i in range(0,mesh,1): L_k_mesh = (L_k)*i/(mesh-1) L_k_mesh_list.append(L_k_mesh+L_k_tem) h_k.append(L_k_tem) L_k_tem = L_k_tem+L_k returnterm=[] returnterm.append(L_k_mesh_list) returnterm.append(mesh) return returnterm # used to calculate high symmetry line def high_symmetry_line(lines0,lines1): k_mesh_reci0=calcu_k_meth(lines0,lines1) k_mesh_reci1=k_mesh_reci0[0] k_mesh = k_mesh_reci0[1] kpoint_high_sym=[] i=0 kpoint_high_sym.append(k_mesh_reci1[i]) while i <len(k_mesh_reci1): i=i+k_mesh kpoint_high_sym.append(k_mesh_reci1[i-1]) return kpoint_high_sym def read_incar(para): incar_file=read_data('INCAR') value = '' for line in incar_file: if para in line: value=line.strip().split('=')[1] return str(value) # Deal with PROCAR file and get the orbital component def project_orbit(): while True: conform_file = str(input('To ensure POSCAR, PROCAR, KPOINTS, fermi.dat in current floder: Y/N')) if 'Y' != conform_file : print('please prepare POSCAR, PROCAR, KPOINTS ') continue else: break lines0 = read_data('POSCAR') #read POSCAR lines1 = read_data('KPOINTS') lines3 = read_data('PROCAR') # extract data in two mode soc or nosoc #mode = int(input('spd input 1; s px py pz dxy dyz dz2 dxz dx2 input 2:')) # LORBIT #mode = 2 LSO = 1 mag = 1 Lorbit = 10 if 'T' in read_incar('LSORBIT') or 'TRUE' in read_incar('LSORBIT'): LSO = 2 else: if '2' in read_incar('ISPIN'): mag = 2 if '11' in read_incar('LORBIT'): Lorbit = 11 #print (LSO,mag,Lorbit) efermi = fermienergy() efermi = float(efermi) lines2 = lines3[1] lines2 = lines2.split() nk = int(lines2[3]) # read the number of kpoints from PROCAR nb = int(lines2[7]) # read the number of bands from PROCAR ni = int(lines2[11]) # read the number of ion from PROCAR #print(len(lines)) print ('number of kpoints:',nk,'number of bands:',nb,'number of ion:',ni) L_k_mesh_list = calcu_k_meth(lines0,lines1) L_k_mesh_list=L_k_mesh_list[0] #Num_A = [] Element=lines0[5].split() Num_A=lines0[6].split() total_El = 0 print (Num_A) for i in range(len(Num_A)): x=int(Num_A[i]) print(x) total_El = total_El + x print (total_El) if total_El >1: if LSO ==1: tb_betw=(ni+1)+4 # the number of line between two adjacent band in one k-block else: tb_betw=(ni+1)*4+4 else: if LSO ==1: tb_betw=ni+4 # the number of line between two adjacent band in one k-block else: tb_betw=ni*4+4 N_A = 0 N_i = 0 #if element in lines0[5]: #print (Element) i = 0 while i< len(Element): N_A = N_A + int(Num_A[i]) for m in range(0,mag,1): for i_nb in range(0,nb,1): #bands for i_nk in range(0,nk,1): #kpoints nkblock = tb_betw*nb+3 # the number of line between two adjacent k-block, such k-points 1 and k-points 2 k_tmp = lines3[3+i_nk*nkblock] # the fractional coordinate of k-points k = k_tmp[19:52] A = N_A-int(Num_A[N_i])+1 s = 0;p = 0;d = 0 px=0;py=0;pz=0;dxy=0;dyz=0;dxz=0;dx2=0;dz2=0 Energy = lines3[i_nk*nkblock+2+(tb_betw*(i_nb)+3)+m*(nk*nkblock+1)] Energy = Energy.split() energy = float(Energy[4])-efermi if Lorbit == 10: for j in range(A,N_A+1,1): # To choose the line the atom that you choose located in xx_tmp = lines3[i_nk*nkblock+2+(tb_betw*(i_nb)+3)+j+2+m*(nk*nkblock+1)] # the line include the atom that you choose under nk,nb xx = xx_tmp.split() s = s + float(xx[1]) # s p = p + float(xx[2]) d = d + float(xx[3]) # dxy dyz dz2 dxz dx2 write2txt('band-spd-'+Element[i]+'.dat',str(L_k_mesh_list[i_nk])+'\t'+str(energy)+'\t'+str(s)+'\t'+str(p)+'\t'+str(d)) else: for j in range(A,N_A+1,1): #print (j) xx_tmp = lines3[i_nk*nkblock+5+tb_betw*(i_nb)+j+2+m*(nk*nkblock+1)] #print (xx_tmp) xx = xx_tmp.split() s = s + float(xx[1]) px = px + float(xx[2]) py = py + float(xx[3]) pz = pz + float(xx[4]) dxy = dxy + float(xx[5]) dyz = dyz + float(xx[6]) dz2 = dz2 +float(xx[7]) dxz = dxz +float(xx[8]) dx2 = dx2 +float(xx[9]) write2txt('band-spxdx-'+Element[i]+'.dat',str(L_k_mesh_list[i_nk])+'\t'+str(energy)+'\t'+str(s)+'\t'+str(px)+'\t'+str(py)+'\t'+str(pz)+'\t'+str(dxy)+'\t'+str(dyz)+'\t'+str(dz2)+'\t'+str(dxz)+'\t'+str(dx2)) #write2txt('band-spxdx-'+Element[i]+'.dat',str(L_k_mesh_list[i_nk])+'\t'+str(energy)+'\t'+str(s)+'\t'+str(px)+'\t'+str(py)) #write2txt('band-spxdx-'+element+'.dat',str(i_nb+1)+'\t'+str(L_k_mesh_list[i_nk])+'\t'+str(energy)+'\t'+str(s)+'\t'+str(px)+'\t'+str(py)+'\t'+str(pz)+'\t'+str(dxy)+'\t'+str(dyz)+'\t'+str(dz2)+'\t'+str(dxz)+'\t'+str(dx2)) if Lorbit == 10: #write2txt('band-spd-'+element+'.txt',str( )+'\t') # space write2txt('band-spd-'+Element[i]+'.dat',str( )+'\t') else: write2txt('band-spxdx-'+Element[i]+'.dat',str( )+'\t') N_i += 1 i += 1 hsl=high_symmetry_line(lines0,lines1) for i in range(len(hsl)): write2txt('high-symmetry-line.dat',str(hsl[i])+'\t'+str(-30)) write2txt('high-symmetry-line.dat',str(hsl[i])+'\t'+str(30)) write2txt('high-symmetry-line.dat',' ') write2txt('high-symmetry-line.dat',str(0)+'\t'+str(0)) write2txt('high-symmetry-line.dat',str(hsl[len(hsl)-1])+'\t'+str(hsl[0])) #project_orbit2() def project_orbit2(): # iuput part print('This part is used to operate the orbit data in PROCAR') print('To choose the element') structure = read_data('POSCAR') print (structure[5]) element0 = str(input('input the kind of element:')) element = element0.split() Lorbit = 10 if '11' in read_incar('LORBIT'): Lorbit = 11 # choose orbits Norbit = [] i = 0 Name_orb = '' #print (len(element)) if Lorbit ==11: while i < len(element): print ('# 1. s 2. py 3. pz 4.px 5. dxy 6. dyz 7.dz2 8. dxz 9. x2-y2') Norbit0 = str(input('input the orbit of element'+'\t'+str(element[i])+'\t'+"""in format '1 2 3 4'""")) Norbit.append(Norbit0) i+=1 else: while i < len(element): print ('# 1. s 2. p 3. d') Norbit0 = str(input('input the orbit of element'+'\t'+str(element[i])+'\t'+"""in format '1 2 3'""")) Norbit.append(Norbit0) i+=1 #orbit name eg. 1 2 3 4 Name_orb = '' for e in Norbit: e1 = e.split() for orb in e1: Name_orb = Name_orb+orb # element name eg. Au Name_ele = '' N_el = 0 while N_el < len(element): Name_ele=Name_ele+element[N_el] N_el += 1 # create file if Lorbit == 11: write2txt('projected_band'+Name_ele+Name_orb+'.dat','# 1. s 2. py 3. pz 4.px 5. dxy 6. dyz 7.dz2 8. dxz 9. x2-y2') else: write2txt('projected_band'+Name_ele+Name_orb+'.dat','# 1. s 2. p 3. d') write2txt('projected_band'+Name_ele+Name_orb+'.dat','# element : '+Name_ele+'\t'+Name_orb) if Lorbit ==11: orbit_file = read_data('band-spxdx-'+element[0]+'.dat') else: orbit_file = read_data('band-spd-'+element[0]+'.dat') comp=[0.0 for i in range(len(orbit_file))] # component path = [0.0 for i in range(len(orbit_file))] # path energy= [0.0 for i in range(len(orbit_file))] # energy N_el = 0 # number of element goin = 0 # flag to set write only one times #print (element) while N_el < len(element): #orbit_file = read_data('band-spxdx-'+element[N_el]+'.dat') Lf = 0 # Length of file #print (N_el) while Lf < len(orbit_file): orbit = orbit_file[Lf].split() #print (orbit) if len(orbit)==0: path[Lf] = '' energy[Lf] = '' Lf +=1 continue else: path[Lf] = orbit[0] energy[Lf] = orbit[1] i=0 # index to sum orbits Norbit_xx = Norbit[N_el].split() while i < len(Norbit_xx): N = int(Norbit_xx[i])+1 comp[Lf] = comp[Lf]+float(orbit[N]) i += 1 #print (Lf) Lf += 1 goin += 1 N_el += 1 # write data #print (len(path),len(energy)) i=0 while i < len(path): if len(path[i]) == 0: write2txt('projected_band'+Name_ele+Name_orb+'.dat','') else: write2txt('projected_band'+Name_ele+Name_orb+'.dat',str(path[i])+'\t'+str(energy[i])+'\t'+str(comp[i])+'\t') i+=1 # used to read EIGENVAL file def read_eigenval(lines3,nk,nb,mag): eigenval_file = lines3 #print (eigenval_file[7]) i= 7 list_eigenval_total=[[0 for i in range(nk)] for j in range(nb)] list_eigenval_up=[[0 for i in range(nk)] for j in range(nb)] list_eigenval_down=[[0 for i in range(nk)] for j in range(nb)] k=0 if mag ==1: while i < len(eigenval_file): i = i + 1 # add one line for j in range(0,nb,1): value = eigenval_file[i] temp = value.split() i +=1 if k==nk: k=0 list_eigenval_total[j][k]=temp[1] k+=1 # index of k points i+=1 # add one line return list_eigenval_total else: while i < len(eigenval_file): i = i + 1 # add one line for j in range(0,nb,1): value = eigenval_file[i] temp = value.split() i +=1 if k==nk: k=0 list_eigenval_up[j][k]=temp[1] k+=1 # index of k points i+=1 # add one line i=7 k=0 while i < len(eigenval_file): i = i + 1 # add one line for j in range(0,nb,1): value = eigenval_file[i] temp = value.split() i +=1 if k==nk: k=0 list_eigenval_down[j][k]=temp[2] k+=1 # index of k points i+=1 # add one line list = [list_eigenval_up,list_eigenval_down] return list # used to calculate normal band structure def band_cal(): lines0 = read_data('POSCAR') #read POSCAR lines1 = read_data('KPOINTS') lines3 = read_data('EIGENVAL') mag = 1 #: int(input('nonmagnetic 1; magnetic (nosoc) 2:')) # ISPIN equal to 1 or 2 if 'T' in read_incar('LSORBIT'): LSO = 2 else: if '2' in read_incar('ISPIN'): mag = 2 efermi = fermienergy() #efermi = float(efermi) lines2 = lines3[5] lines2 = lines2.split() num_k = int(lines2[1]) # read the number of kpoints from PROCAR num_b = int(lines2[2]) # read the number of bands from PROCAR print ('number of kpoints:',num_k,'number of bands:',num_b) # extract data in two mode magnetic or no if 1 == mag: L_k_mesh_list = calcu_k_meth(lines0,lines1) L_k_mesh_list=L_k_mesh_list[0] list_eigen_val = read_eigenval(lines3,num_k,num_b,mag) for ib in range(num_b): for ik in range(num_k): write2txt('bandstructure.dat',str(L_k_mesh_list[ik])+'\t'+str(float(list_eigen_val[ib][ik])-efermi)) write2txt('bandstructure.dat',' ') hsl=high_symmetry_line(lines0,lines1) for i in range(len(hsl)): # print High symmetry line write2txt('hsl.dat',str(hsl[i])+'\t'+str(-30)) write2txt('hsl.dat',str(hsl[i])+'\t'+str(30)) write2txt('hsl.dat',' ') write2txt('hsl.dat',str(0)+'\t'+str(0)) write2txt('hsl.dat',str(hsl[len(hsl)-1])+'\t'+str(hsl[0])) elif 2==mag : L_k_mesh_list = calcu_k_meth(lines0,lines1) L_k_mesh_list=L_k_mesh_list[0] list_eigen_val = read_eigenval(lines3,num_k,num_b,mag) list_eigen_val_up = list_eigen_val[0] list_eigen_val_down = list_eigen_val[1] for ib in range(num_b): for ik in range(num_k): write2txt('bandstructure_up.dat',str(L_k_mesh_list[ik])+'\t'+str(float(list_eigen_val_up[ib][ik])-efermi)) write2txt('bandstructure_up.dat',' ') for ib in range(num_b): for ik in range(num_k): write2txt('bandstructure_down.dat',str(L_k_mesh_list[ik])+'\t'+str(float(list_eigen_val_down[ib][ik])-efermi)) write2txt('bandstructure_down.dat',' ') hsl=high_symmetry_line(lines0,lines1) for i in range(len(hsl)): # print High symmetry line write2txt('hsl.dat',str(hsl[i])+'\t'+str(-30)) write2txt('hsl.dat',str(hsl[i])+'\t'+str(30)) write2txt('hsl.dat',' ') write2txt('hsl.dat',str(0)+'\t'+str(0)) write2txt('hsl.dat',str(hsl[len(hsl)-1])+'\t'+str(hsl[0])) else: print('incorrect magmam') # used to read the kpoints of HSE calculation def read_hse_KPOINTS(lines1,lines_1): result = [] for line in lines_1: #to read each line line = line.strip() if not len(line) or line.startswith('#'): continue result.append(line) mesh = int(result[1]) #print(mesh) i = 4 # initial line K_path = [] while i < len(result): K_path.append(result[i]) i += 1 # get mesh Nk_path = len(K_path) list = [] # used to store the point on the high symmetry line for j in range(0,Nk_path,2): p1 = K_path[j] p1 = p1.split() p3=[] for char in p1: char = float(char) p3.append(char) p2 = K_path[j+1] p2 = p2.split() p4=[] for char in p2: char = float(char) p4.append(char) #print(p3,p4) #print (reci) # output k points for i in range(mesh): list_k = [] px = p3[0]-(p3[0]-p4[0])*(i)/(mesh-1) py = p3[1]-(p3[1]-p4[2])*(i)/(mesh-1) pz = p3[2]-(p3[2]-p4[2])*(i)/(mesh-1) list_k.append(px) list_k.append(py) list_k.append(pz) #print (list_k) list.append(list_k) #print (list) # compare with HSE mesh k_mesh_hse = [] for i in range(3,len(lines1),1): kp0=lines1[i] kp1 = kp0.split() if kp1[3] == '0': #print (kp1) k_mesh_hse.append(kp1) #print (len(list),len(k_mesh_hse),k_mesh_hse) #print(list) com_num = [] # used to collect compare number list_temp = list k=0 j=0 for i in range(len(k_mesh_hse)): #print ('i',i) while j<len(list): com_hse_kx = k_mesh_hse[i][0] com_hse_ky = k_mesh_hse[i][1] com_dft_kx = list_temp[j][0] com_dft_ky = list_temp[j][1] #print(k_mesh_hse[i],list_temp[j]) if abs(float(com_hse_kx)-com_dft_kx) <= 0.00001 and abs(float(com_hse_ky)-com_dft_ky <= 0.00001): com_num.append(j) k=j #print ('k',k) break j += 1 j=k+1 #print(len(com_num),com_num) return com_num # used to read EIGENVAL of HSE calculation def read_hse_eigenval(lines3,nk,nb): eigenval_file = lines3 i= len(eigenval_file)-nk*(nb+2)+1 list_eigenval_total=[[0 for i in range(nk)] for j in range(nb)] k=0 #print (i,eigenval_file[i]) while i < len(eigenval_file): i = i + 1 # add one line for j in range(0,nb,1): value = eigenval_file[i] temp = value.split() i +=1 if k==nk: k=0 list_eigenval_total[j][k]=temp[1] k+=1 # index of k points i+=1 # add one line return list_eigenval_total # used to calculate hse band def band_hse_cal(): lines0 = read_data('POSCAR') #read POSCAR lines1 = read_data('KPOINTS') lines3 = read_data('EIGENVAL') print('be sure set correct number of kpoints in EIGENVAL file') while True: k_DFT = input('input KPOINTS.DFT in current floder (Y/N):') if k_DFT != 'Y': print('please input normal mode KPOINTS.DFT file') else: print ('OK') break lines_1 = read_data('KPOINTS.DFT') print('1. normal mode input') print('2. abnormal mode input') mode = float(input()) efermi = fermienergy() #efermi = float(efermi) lines2 = lines3[5] # to get the number of band from EGIENVAL file lines2 = lines2.split() num_b = int(lines2[2]) k_mesh_hse_num = [] for i in range(3,len(lines1),1): kp0=lines1[i] kp1 = kp0.split() if kp1[3] == '0': #print (kp1) k_mesh_hse_num.append(kp1) num_k = len(k_mesh_hse_num) # read the number of kpoints from EIGENVAL #print(num_k) print('number of kpoints:',num_k) print('number of bands:',num_b) # extract data in two mode magnetic or no if mode == 1: L_k_mesh_list = calcu_k_meth(lines0,lines_1) L_k_mesh_list=L_k_mesh_list[0] list_eigen_val = read_hse_eigenval(lines3,num_k,num_b) for ib in range(num_b): for ik in range(num_k): write2txt('bandstructure.dat',str(L_k_mesh_list[ik])+'\t'+str(float(list_eigen_val[ib][ik])-efermi)) write2txt('bandstructure.dat',' ') hsl=high_symmetry_line(lines0,lines_1) for i in range(len(hsl)): # print High symmetry line write2txt('bandstructure.dat',str(hsl[i])+'\t'+str(-30)) write2txt('bandstructure.dat',str(hsl[i])+'\t'+str(30)) write2txt('bandstructure.dat',' ') write2txt('bandstructure.dat',str(0)+'\t'+str(0)) write2txt('bandstructure.dat',str(hsl[len(hsl)-1])+'\t'+str(hsl[0])) else: L_k_mesh_list = calcu_k_meth(lines0,lines_1) L_k_mesh_list = L_k_mesh_list[0] L_k_mesh_list_com = [] num = read_hse_KPOINTS(lines1,lines_1) #print(len(num)) for i in range(len(num)): #print(i,int(num[i])) L_k_mesh_list_com.append(L_k_mesh_list[int(num[i])]) list_eigen_val = read_hse_eigenval(lines3,num_k,num_b) for ib in range(num_b): for ik in range(len(num)): write2txt('bandstructure.dat',str(L_k_mesh_list_com[ik])+'\t'+str(float(list_eigen_val[ib][ik])-efermi)) write2txt('bandstructure.dat',' ') hsl=high_symmetry_line(lines0,lines_1) for i in range(len(hsl)): # print High symmetry line write2txt('bandstructure.dat',str(hsl[i])+'\t'+str(-30)) write2txt('bandstructure.dat',str(hsl[i])+'\t'+str(30)) write2txt('bandstructure.dat',' ') write2txt('bandstructure.dat',str(0)+'\t'+str(0)) write2txt('bandstructure.dat',str(hsl[len(hsl)-1])+'\t'+str(hsl[0])) # used to calculate band structure def bandstructure(): conform_file = str(input('To ensure POSCAR, EIGENVAL, KPOINTS, fermi.dat in current floder: Y/N')) if 'Y' == conform_file : print('please prepare POSCAR, EIGENVAL, KPOINTS ') print('To choose the program that you want to use: ') print('1. normal band') print('2. HSE band') choose_mode = str(input()) if '1' ==choose_mode: band_cal() else: band_hse_cal() def QEbandstructure(): '''please use this function after performing bands.x. And if your filband='graphene.band' in input of bands.x, please use this function by python vest.py graphene.band''' import sys filename = sys.argv[1] DFTbanddata=read_data(filename) print (DFTbanddata[0]) nb = int(DFTbanddata[0].split()[2][:-1]) nk = int(DFTbanddata[0].split()[4]) len_block = round(nb/10) if len_block*10 < nk: len_block=len_block+1 #print(len_block) energy = [] i=1 for point in range(0,nk): e1=[] for j in range(0,len_block): energy_k=DFTbanddata[i+j+1].strip().split() for w in energy_k: e1.append(w) energy.append(e1) i=i+len_block+1 #print (np.array(energy).shape) for i in range(nb): for j in range(nk): write2txt('band_qe.dat',str(j+1)+'\t'+str(energy[j][i])) write2txt('band_qe.dat','') filename = 'band_qe.dat' DFTbandfile = read_data(filename) Efermi = 0 #fermienergy() write2txt('bandrange.dat',' No. Min Max') nb_list=[] EMIN =[] EMAX=[] for i in range(0,int(nb)): Emin,Emax=range_of_band_vest(nk,i+1,filename) nb_list.append(i+1) EMIN.append(Emin+Efermi) EMAX.append(Emax+Efermi) write2txt('bandrange.dat','Nband: %.f %.3f %.3f'%(i+1,Emin+Efermi,Emax+Efermi)) os.system('rm band_qe.dat') def band_kpoint_PROCAR(): LSO = 1 if 'T' in read_incar('LSORBIT'): LSO = 2 ONE_kpoint = int(input('input one k-point')) SOME_bands0 = str(input('input bands')) SOME_bands=SOME_bands0.split() procar = read_data('PROCAR') procar_line2 = procar[1] kpoints_bands_ions = procar_line2.split() kpoints = int(kpoints_bands_ions[3]) bands = int(kpoints_bands_ions[7]) ions = int(kpoints_bands_ions[11]) print ('number of kpoints:',kpoints,'number of bands:',bands) i=0 j=0 # To find the procar_line='' for procar_line in procar: procar_line_detail = procar_line.split() if 'k-point ' in procar_line and ONE_kpoint == int(procar_line_detail[1]) : #print (procar_line_detail[1]) j=i i+=1 kpoint_detail=[] block = 2+bands*(4+(ions+1)*(LSO**2))-1 #print (j) for i in range(j-1,j+block-1,1): kpoint_detail.append(procar[i]) write2txt('procar_bands_kpoint'+str(ONE_kpoint)+'.dat','k-points :'+'\t'+str(ONE_kpoint)) write2txt('procar_bands_kpoint'+str(ONE_kpoint)+'.dat','bands :'+'\t'+str(SOME_bands0)) ORBIT =procar[j+4] ORBIT = ORBIT[:-1] write2txt('procar_bands_kpoint'+str(ONE_kpoint)+'.dat',ORBIT) i=0 k=0 #print (kpoint_detail) while i < len(SOME_bands): j=0 for component_line in kpoint_detail: component=component_line.split() if 'band ' in component_line and str(SOME_bands[i]) == component[1]: k=j j+=1 #print (j) i+=1 bandsx=kpoint_detail[k+ions+3] bandsx=bandsx[:-1] write2txt('procar_bands_kpoint'+str(ONE_kpoint)+'.dat',bandsx) write2txt('procar_bands_kpoint'+str(ONE_kpoint)+'.dat','') #empty line i=0 while i < len(SOME_bands): j=0 for component_line in kpoint_detail: component=component_line.split() if 'band ' in component_line and str(SOME_bands[i]) == component[1]: k=j for x in range(k-1,k+ions+4,1): bandsx=kpoint_detail[x] bandsx=bandsx[:-1] write2txt('procar_bands_kpoint'+str(ONE_kpoint)+'.dat',bandsx) j+=1 i+=1 def band_plot1(): import matplotlib.pyplot as plt import matplotlib as mpl mpl.use('Agg') from pymatgen.io.vasp.outputs import Vasprun from pymatgen.electronic_structure.plotter import BSDOSPlotter,\ BSPlotter,BSPlotterProjected,DosPlotter # read vasprun.xml,get band and dos information bs_vasprun = Vasprun("vasprun.xml",parse_projected_eigen=True) bs_data = bs_vasprun.get_band_structure(line_mode=True) dos_vasprun=Vasprun("vasprun.xml") dos_data=dos_vasprun.complete_dos # set figure parameters, draw figure banddos_fig = BSDOSPlotter(bs_projection='elements', dos_projection='elements', vb_energy_range=4, fixed_cb_energy=4) banddos_fig.get_plot(bs=bs_data, dos=dos_data) plt.savefig('banddos_fig.png') def band_plot(): import matplotlib.pyplot as plt ymin= -2 ymax= 2 step = 1 figs = (6,6) #figsize plt.figure(figsize=figs) #######bands########### DFTbandfile = read_data('bandstructure.dat') #x=np.loadtxt("bandstructure.dat")[:, 0] #e=np.loadtxt("bandstructure.dat")[:, 1] x = [] e = [] x_tem=[] e_tem=[] for k in range(len(DFTbandfile)): line = DFTbandfile[k] if len(line.split())==0: e.append(e_tem) x=x_tem x_tem=[] e_tem=[] continue x_tem.append(float(line.strip().split()[0])) e_tem.append(float(line.strip().split()[1])) nb,nk =get_b_k(DFTbandfile) x=np.array(x) e=np.array(e) plt.ylim(ymin,ymax) plt.xlim(0,max(x)) for i in range(nb): plt.plot(x,e[i],'k', linewidth=1) plt.ylabel('Energy(eV)') #plt.show() plt.xticks([]) plt.yticks(np.arange(ymin,ymax,step)) #plt.title(sys.argv[1],x=0.5,y=1.02) #plt.savefig(sys.argv[1]+".png",dpi=150) plt.savefig("BAND.png", dpi=600) #plt.savefig("fig.eps",format='eps', transparent=True, dpi=300) def get_b_k(bandfile): '''get the number of kpoints and bands from band file''' nband =[] nk = 0 for line in bandfile: #print(len(line)) if (len(line)==2 or len(line)==3) and not nk: nk = bandfile.index(line) #print (nk) nb = (len(bandfile)+1)/(nk+1) return int(nb),int(nk) def range_of_band_vaspkit(nk,nb,filename): '''get energy of single bands''' #print (nb,nk) bandfile = read_data(filename) nbb = (nb-1)*(nk+2)+3 nbe = nb*(nk+2)+1 i=nbb band=[] while i < nbe: energy = float(bandfile[i].split()[1]) band.append(energy) i+=1 Emin = min(band) Emax = max(band) return Emin,Emax def range_of_band_vest(nk,nb,filename): '''get energy of single bands''' bandfile = read_data(filename) nbb = (nb-1)*(nk+1) nbe = nb*(nk+1)-2 i=nbb band=[] while i <= nbe: energy = float(bandfile[i].split()[1]) band.append(energy) i+=1 Emin = min(band) Emax = max(band) return Emin,Emax def range_of_all_bands(): #from pathlib import Path import os.path #os.path.isfile(fname) '''get energy range of all the bands from DFT bands ''' band_path = os.getcwd() #print(band_path) vestbandname = 'bandstructure.dat' qebandname='band_qe.dat' vaspkitbandname = 'BAND.dat' if os.path.isfile(vestbandname): filename = 'bandstructure.dat' DFTbandfile = read_data(filename) nb,nk =get_b_k(DFTbandfile) Efermi = fermienergy() write2txt('bandrange.dat',' No. Min Max') nb_list=[] EMIN =[] EMAX=[] for i in range(0,int(nb)): Emin,Emax=range_of_band_vest(nk,i+1,filename) nb_list.append(i+1) EMIN.append(Emin+Efermi) EMAX.append(Emax+Efermi) write2txt('bandrange.dat','Nband: %.f %.3f %.3f'%(i+1,Emin+Efermi,Emax+Efermi)) elif os.path.isfile(qebandname): filename = 'band_qe.dat' DFTbandfile = read_data(filename) nb = int(DFTbandfile[0].split()[2][:-1]) nk = int(DFTbandfile[0].split()[4]) #nb,nk =get_b_k(DFTbandfile) #print(nb,nk) Efermi = 0 #fermienergy() write2txt('bandrange.dat',' No. Min Max') nb_list=[] EMIN =[] EMAX=[] for i in range(0,int(nb)): Emin,Emax=range_of_band_vest(nk,i+1,filename) nb_list.append(i+1) EMIN.append(Emin+Efermi) EMAX.append(Emax+Efermi) write2txt('bandrange.dat','Nband: %.f %.3f %.3f'%(i+1,Emin+Efermi,Emax+Efermi)) elif os.path.isfile(vaspkitbandname): filename = 'BAND.dat' DFTbandfile = read_data(filename) nk =int(DFTbandfile[1].split()[4]) nb =int(DFTbandfile[1].split()[5]) Efermi = fermienergy() write2txt('bandrange.dat',' No. Min Max') nb_list=[] EMIN =[] EMAX=[] for i in range(0,int(nb)): Emin,Emax=range_of_band_vaspkit(nk,i+1,filename) nb_list.append(i+1) EMIN.append(Emin+Efermi) EMAX.append(Emax+Efermi) write2txt('bandrange.dat','Nband: %.f %.3f %.3f'%(i+1,Emin+Efermi,Emax+Efermi)) else: print('please extract band structure data from EIGENVAL by using option 3') def wcc_output(): print('output wcc from wannier90.wout file to final file') num_wann=int(input('num_wann')) final=read_data('wannier90.wout') #Efermi = fermienergy('fermi.dat') #wt=read_data('wt.in') #pos=read_data('POSCAR') #wtout='wt.inp' f=0 nw=0 FS_list=[] for i in range(len(final)): line=final[i] if f != 0: FS=line.split() # sometimes failing due to no space, format is 'WF centre and spread 1 ( 0.010369, 2.709238, 10.690639 ) 2.58836225', write2txt('final',FS[6][:-1]+'\t'+FS[6][:-1]+'\t'+FS[8]+'\t'+FS[10]) nw+=1 if nw==num_wann: f=0 if 'Final State' in line: f=i # used to choose the mode you want to calculate while True: #DFTbandfile=argv[1] print('To choose the program that you want to use:') print('1. project orbit (step1)') print('2. project orbit (step2)') print('3. vasp band structure') print('4. the component of some bands at one k-point') print('5. wannier band range') print('6. wt.in wcc prepare') print('7. QE band range') print('8. quit') project = str(input()) if '1' == project : print('you are performing a project-orbit program now.') project_orbit() continue elif project == '2': project_orbit2() elif project == '3': bandstructure() elif project == '4': band_kpoint_PROCAR() elif project == '5': range_of_all_bands() elif project == '6': wcc_output() elif project == '7': QEbandstructure() else: break
python
class MultiSigDeprecationWitness: def __init__(self, next_state_state_update, signatures, inclusion_witness): self.next_state_state_update = next_state_state_update self.signatures = signatures self.inclusion_witness = inclusion_witness class MultiSigPredicate: dispute_duration = 10 def __init__(self, parent_plasma_contract): self.parent = parent_plasma_contract def can_initiate_exit(self, state_update, initiation_witness): # For now, anyone can submit an exit TODO: make this one or multiple of owners return True def verify_deprecation(self, state_id, state_update, revocation_witness): # Check the state_id is in the state_update assert state_update.start <= state_id and state_update.end > state_id # Check the state_id is in the revocation_witness state_update assert revocation_witness.next_state_state_update.start <= state_id and revocation_witness.next_state_state_update.end > state_id # Check inclusion proof assert self.parent.state_update_chain.verify_inclusion(revocation_witness.next_state_state_update, self.parent.address, revocation_witness.inclusion_witness) # Check that all owners signed off on the change assert state_update.state.recipient == revocation_witness.signatures # Check that the spend is after the exit state assert state_update.plasma_block_number < revocation_witness.next_state_state_update.plasma_block_number return True def finalize_exit(self, exit): # Extract required information from call data recipients_sigs, destination = call_data # Check that the resolution is signed off on by all parties in the multisig assert recipients_sigs == exit.state_update.state.recipient # Transfer funds to the recipient self.parent.erc20_contract.transferFrom(self, destination, exit.state_update.end - exit.state_update.start) def get_additional_lockup(self, state): return 0
python
import json import os import logging import random from collections import OrderedDict, defaultdict import numpy as np import torch from coref_bucket_batch_sampler import BucketBatchSampler from metrics import CorefEvaluator, MentionEvaluator from utils.utils import extract_clusters, extract_mentions_to_predicted_clusters_from_clusters, extract_clusters_for_decode from conll import evaluate_conll def nested_to_tuple(l): if isinstance(l, list): for i in range(len(l)): l[i] = nested_to_tuple(l[i]) l = tuple(l) return l class Evaluator: def __init__(self, logger, eval_output_dir, experiment_name=''): self.eval_output_dir = eval_output_dir self.experiment_name = experiment_name self.logger = logger def evaluate(self, outputs, prefix="", tb_writer=None, global_step=None, official=False): assert not official post_pruning_mention_evaluator = MentionEvaluator() mention_evaluator = MentionEvaluator() coref_evaluator = CorefEvaluator() losses = defaultdict(list) doc_to_prediction = {} doc_to_subtoken_map = {} for output in outputs: # gold_clusters: List[List[List[int]]] # predicted_clusters: List[List[List[int]]] gold_clusters = nested_to_tuple(output['gold_clusters']) predicted_clusters = nested_to_tuple(output['predicted_clusters']) doc_key = output['doc_key'] mention_to_gold_clusters = extract_mentions_to_predicted_clusters_from_clusters(gold_clusters) gold_mentions = list(mention_to_gold_clusters.keys()) # starts, end_offsets, coref_logits, mention_logits = output[-4:] # max_antecedents = np.argmax(coref_logits, axis=1).tolist() # mention_to_antecedent = {((int(start), int(end)), (int(starts[max_antecedent]), int(end_offsets[max_antecedent]))) for start, end, max_antecedent in # zip(starts, end_offsets, max_antecedents) if max_antecedent < len(starts)} # predicted_clusters, _ = extract_clusters_for_decode(mention_to_antecedent) # candidate_mentions = list(zip(starts, end_offsets)) mention_to_predicted_clusters = extract_mentions_to_predicted_clusters_from_clusters(predicted_clusters) predicted_mentions = list(mention_to_predicted_clusters.keys()) # post_pruning_mention_evaluator.update(candidate_mentions, gold_mentions) mention_evaluator.update(predicted_mentions, gold_mentions) coref_evaluator.update(predicted_clusters, gold_clusters, mention_to_predicted_clusters, mention_to_gold_clusters) doc_to_prediction[doc_key] = predicted_clusters doc_to_subtoken_map[doc_key] = None post_pruning_mention_precision, post_pruning_mentions_recall, post_pruning_mention_f1 = post_pruning_mention_evaluator.get_prf() mention_precision, mentions_recall, mention_f1 = mention_evaluator.get_prf() prec, rec, f1 = coref_evaluator.get_prf() # muc, b_cubed, ceafe results = [] for t, (_prec, _rec, _f1) in zip(('muc', 'b_cubed', 'ceafe') , coref_evaluator.get_prf_sep()): results.append((f'{t}_prec', _prec)) results.append((f'{t}_rec', _rec)) results.append((f'{t}_f1', _f1)) results += [(key, sum(val) / len(val)) for key, val in losses.items()] results += [ ("post pruning mention precision", post_pruning_mention_precision), ("post pruning mention recall", post_pruning_mentions_recall), ("post pruning mention f1", post_pruning_mention_f1), ("mention precision", mention_precision), ("mention recall", mentions_recall), ("mention f1", mention_f1), ("precision", prec), ("recall", rec), ("f1", f1) ] self.logger.info("***** Eval results {} *****".format(prefix)) for key, values in results: if isinstance(values, float): self.logger.info(f" {key} = {values:.3f}") else: self.logger.info(f" {key} = {values}") if tb_writer is not None and global_step is not None: tb_writer.add_scalar(key, values, global_step) if self.eval_output_dir: output_eval_file = os.path.join(self.eval_output_dir, "eval_results.txt") with open(output_eval_file, "a") as writer: if prefix: writer.write(f'\n{prefix}:\n') for key, values in results: if isinstance(values, float): writer.write(f"{key} = {values:.3f}\n") else: writer.write(f"{key} = {values}\n") results = OrderedDict(results) results["experiment_name"] = self.experiment_name results["data"] = prefix with open(os.path.join(self.eval_output_dir, "results.jsonl"), "a+") as f: f.write(json.dumps(results) + '\n') if official: with open(os.path.join(self.args.output_dir, "preds.jsonl"), "w") as f: f.write(json.dumps(doc_to_prediction) + '\n') f.write(json.dumps(doc_to_subtoken_map) + '\n') if self.args.conll_path_for_eval is not None: conll_results = evaluate_conll(self.args.conll_path_for_eval, doc_to_prediction, doc_to_subtoken_map) official_f1 = sum(results["f"] for results in conll_results.values()) / len(conll_results) self.logger.info('Official avg F1: %.4f' % official_f1) return results
python
#!/usr/bin/python3 """ kimcsv2fasttext.py: convert kim's balanced data format to fasttext format usage: ./kimcsv2fasttext.py < BalancedDataSet.csv 20180504 erikt(at)xs4all.nl """ import csv import html import nltk import re import sys import time from io import BytesIO from urllib.request import urlopen COMMAND = sys.argv.pop(0) HEADINGDATE = "Date" HEADINGGENRE = "Genre" HEADINGIDENTIFIER = "Artikel-ID" HEADINGNEWSPAPER = "Newspaper" HEADINGSUBJECT = "Prediction" LABELLENGTH = 3 LABELPREFIX = "__label__" SEPARATOR = "," URLPREFIX = r"^https?://" URLSTART = "http://resolver.kb.nl/resolve?urn=" URLSUFFIX = ":ocr" def isUrl(url): return(re.search(URLPREFIX,url)) def readFile(): articles = [] lineNbr = 0 csvReader = csv.DictReader(sys.stdin,delimiter=SEPARATOR) for row in csvReader: lineNbr += 1 try: date = row[HEADINGDATE] genre = row[HEADINGGENRE] identifiers = [] for cellValue in row.values(): if not cellValue is None and isUrl(cellValue): identifiers.append(cellValue) articles.append({"date":date,"genre":genre,"identifiers":identifiers}) except: sys.exit(COMMAND+": missing data on line "+str(lineNbr)) return(articles) def abbreviateName(name): return(name[0:LABELLENGTH].upper()) def readWebPage(url): time.sleep(1) return(str(urlopen(url,data=None).read(),encoding="utf-8")) def removeXML(text): text = re.sub(r"<[^<>]*>",r" ",text) text = html.unescape(text) return(text) def removeRedundantWhiteSpace(text): text = re.sub(r"\s+",r" ",text) text = re.sub(r"^\s+",r"",text) text = re.sub(r"\s+$",r"",text) return(text) def tokenize(text): tokenizedSentenceList = nltk.word_tokenize(text) tokenizedText = " ".join(tokenizedSentenceList) return(tokenizedText) def makeUrl(articleId): return(URLSTART+articleId+URLSUFFIX) def getArticleIdFromUrl(url): fields = url.split("=") return(":".join(fields[-1:])) def printData(articles): for i in range(0,len(articles)): date = articles[i]["date"] genre = abbreviateName(articles[i]["genre"]) text = "" for url in articles[i]["identifiers"]: url = makeUrl(getArticleIdFromUrl(url)) if len(text) > 0: text += " " text += removeRedundantWhiteSpace(tokenize(removeXML(readWebPage(url)))) print(LABELPREFIX+genre+" DATE="+date+" "+text) def main(argv): articles = readFile() printData(articles) sys.exit(0) if __name__ == "__main__": sys.exit(main(sys.argv))
python
# This file is part of the PySide project. # # Copyright (C) 2009-2011 Nokia Corporation and/or its subsidiary(-ies). # Copyright (C) 2009 Riverbank Computing Limited. # Copyright (C) 2009 Torsten Marek # # Contact: PySide team <[email protected]> # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # version 2 as published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA # 02110-1301 USA # If pluginType is MODULE, the plugin loader will call moduleInformation. The # variable MODULE is inserted into the local namespace by the plugin loader. pluginType = MODULE # moduleInformation() must return a tuple (module, widget_list). If "module" # is "A" and any widget from this module is used, the code generator will write # "import A". If "module" is "A[.B].C", the code generator will write # "from A[.B] import C". Each entry in "widget_list" must be unique. def moduleInformation(): return "PySide.QtWebKit", ("QWebView",)
python
# MIT License # # Copyright (c) 2019 Red Hat, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from http import HTTPStatus from itertools import islice from json import dumps from logging import getLogger from flask import make_response try: from flask_restx import Namespace, Resource except ModuleNotFoundError: from flask_restplus import Namespace, Resource from packit_service.models import TaskResultModel from packit_service.service.api.parsers import pagination_arguments, indices from packit_service.service.events import Event logger = getLogger("packit_service") ns = Namespace("tasks", description="Celery tasks / jobs") @ns.route("") class TasksList(Resource): @ns.expect(pagination_arguments) @ns.response(HTTPStatus.PARTIAL_CONTENT, "Celery tasks list follows") def get(self): """ List all Celery tasks / jobs """ first, last = indices() tasks = [] for task in islice(TaskResultModel.get_all(), first, last): data = task.to_dict() data["event"] = Event.ts2str(data["event"]) tasks.append(data) resp = make_response(dumps(tasks), HTTPStatus.PARTIAL_CONTENT) resp.headers["Content-Range"] = f"tasks {first+1}-{last}/{len(tasks)}" resp.headers["Content-Type"] = "application/json" return resp @ns.route("/<string:id>") @ns.param("id", "Celery task identifier") class TaskItem(Resource): @ns.response(HTTPStatus.OK, "OK, Celery task details follow") @ns.response(HTTPStatus.NO_CONTENT, "Celery task identifier not in db") def get(self, id: str): """A specific Celery task details""" task = TaskResultModel.get_by_id(id) if not task: return "", HTTPStatus.NO_CONTENT data = task.to_dict() data["event"] = Event.ts2str(data["event"]) return data
python
from enum import Enum, unique from Tables import door_pair_offset_table def create_rooms(world, player): world.rooms += [ Room(player, 0x01, 0x51168).door(Position.WestN2, DoorKind.Warp).door(Position.EastN2, DoorKind.Warp), Room(player, 0x02, 0x50b97).door(Position.South2, DoorKind.TrapTriggerableLow).door(Position.InteriorV2, DoorKind.NormalLow2).door(Position.South2, DoorKind.ToggleFlag), # Room(player, 0x03, 0x509cf).door(Position.SouthW, DoorKind.CaveEntrance), Room(player, 0x04, 0xfe25c).door(Position.NorthW, DoorKind.StairKey2).door(Position.InteriorW, DoorKind.Dashable).door(Position.InteriorS, DoorKind.Dashable).door(Position.InteriorE, DoorKind.TrapTriggerable).door(Position.SouthW, DoorKind.Normal), Room(player, 0x06, 0xfa192).door(Position.SouthW, DoorKind.Trap), Room(player, 0x07, None), # Room(player, 0x08, 0x5064f).door(Position.InteriorS2, DoorKind.CaveEntranceLow08).door(Position.SouthE, DoorKind.CaveEntrance).door(Position.SouthW2, DoorKind.NormalLow2).door(Position.SouthW2, DoorKind.ToggleFlag), Room(player, 0x09, None), Room(player, 0x0a, 0xfa734).door(Position.North, DoorKind.StairKey), Room(player, 0x0b, 0xfabf0).door(Position.InteriorW, DoorKind.TrapTriggerable).door(Position.InteriorS, DoorKind.Trap2).door(Position.InteriorN, DoorKind.SmallKey), Room(player, 0x0c, 0xfef53).door(Position.South, DoorKind.DungeonEntrance), Room(player, 0x0d, 0xf918b).door(Position.SouthW, DoorKind.Trap), Room(player, 0x0e, 0xfc279).door(Position.InteriorW, DoorKind.StairKey2).door(Position.InteriorS, DoorKind.Trap).door(Position.SouthE, DoorKind.DungeonEntrance), # Room(player, 0x10, 0x50596).door(Position.SouthW, DoorKind.DungeonEntrance).door(Position.InteriorS, DoorKind.Normal), Room(player, 0x11, 0x50c52).door(Position.InteriorN, DoorKind.Dashable).door(Position.InteriorS, DoorKind.Dashable).door(Position.SouthE, DoorKind.SmallKey), Room(player, 0x12, 0x50a9b).door(Position.North2, DoorKind.NormalLow).door(Position.North2, DoorKind.ToggleFlag).door(Position.South2, DoorKind.NormalLow).door(Position.South2, DoorKind.IncognitoEntrance), Room(player, 0x13, 0xfe29d).door(Position.EastS, DoorKind.SmallKey).door(Position.EastN, DoorKind.Normal), Room(player, 0x14, 0xfe464).door(Position.SouthE, DoorKind.SmallKey).door(Position.WestS, DoorKind.SmallKey).door(Position.NorthW, DoorKind.Normal).door(Position.WestN, DoorKind.Normal).door(Position.SouthW, DoorKind.Normal).door(Position.EastN, DoorKind.Normal).door(Position.EastS, DoorKind.Normal), Room(player, 0x15, 0xfe63e).door(Position.WestS, DoorKind.Trap).door(Position.WestN, DoorKind.Normal), Room(player, 0x16, 0xfa150).door(Position.InteriorV, DoorKind.Bombable).door(Position.InteriorW, DoorKind.SmallKey).door(Position.InteriorE, DoorKind.Normal).door(Position.NorthW, DoorKind.Normal), Room(player, 0x17, None), # Room(player, 0x18, 0x506e5).door(Position.NorthW2, DoorKind.NormalLow).door(Position.NorthW2, DoorKind.ToggleFlag), Room(player, 0x19, 0xfacc6).door(Position.East, DoorKind.Bombable).door(Position.EastN, DoorKind.SmallKey), Room(player, 0x1a, 0xfa670).door(Position.InteriorE, DoorKind.SmallKey).door(Position.WestN, DoorKind.SmallKey).door(Position.West, DoorKind.Bombable).door(Position.SouthW, DoorKind.SmallKey).door(Position.InteriorN, DoorKind.Normal).door(Position.SouthE, DoorKind.Normal), Room(player, 0x1b, 0xfab31).door(Position.InteriorW, DoorKind.TrapTriggerable).door(Position.SouthW, DoorKind.Normal), Room(player, 0x1c, 0xff784).door(Position.InteriorE, DoorKind.TrapTriggerable).door(Position.InteriorS, DoorKind.Trap).door(Position.InteriorW, DoorKind.Dashable), Room(player, 0x1d, 0xfff19).door(Position.NorthW, DoorKind.BigKey), Room(player, 0x1e, 0xfc35e).door(Position.EastS, DoorKind.Trap).door(Position.InteriorS, DoorKind.Trap).door(Position.InteriorE, DoorKind.TrapTriggerable).door(Position.SouthE, DoorKind.Normal), Room(player, 0x1f, 0xfc3af).door(Position.WestS, DoorKind.Trap).door(Position.InteriorS, DoorKind.Trap2), Room(player, 0x20, 0xf918b).door(Position.SouthW, DoorKind.Trap), Room(player, 0x21, 0x50d2e).door(Position.NorthE, DoorKind.SmallKey).door(Position.InteriorV, DoorKind.Normal).door(Position.EastS, DoorKind.Normal), Room(player, 0x22, 0x50dd1).door(Position.South, DoorKind.SmallKey).door(Position.WestS, DoorKind.Normal), Room(player, 0x23, 0xfed30).door(Position.SouthE, DoorKind.BombableEntrance).door(Position.EastS, DoorKind.Normal), Room(player, 0x24, 0xfe6ee).door(Position.NorthE, DoorKind.BigKey).door(Position.InteriorN, DoorKind.Trap2).door(Position.InteriorW, DoorKind.Trap2).door(Position.InteriorE, DoorKind.Trap2).door(Position.SouthE, DoorKind.DungeonEntrance).door(Position.NorthW, DoorKind.Normal).door(Position.WestS, DoorKind.Normal).door(Position.InteriorS, DoorKind.Normal), Room(player, 0x26, 0xf9cbb).door(Position.South, DoorKind.SmallKey).door(Position.InteriorW, DoorKind.TrapTriggerable).door(Position.InteriorE, DoorKind.TrapTriggerable).door(Position.InteriorN, DoorKind.Normal), Room(player, 0x27, None), Room(player, 0x28, 0xf92a8).door(Position.NorthW, DoorKind.StairKey2).door(Position.South, DoorKind.DungeonEntrance), Room(player, 0x2a, 0xfa594).door(Position.NorthE, DoorKind.Trap).door(Position.NorthW, DoorKind.SmallKey).door(Position.EastS, DoorKind.Bombable).door(Position.East2, DoorKind.NormalLow).door(Position.SouthW, DoorKind.Normal).door(Position.SouthE, DoorKind.Normal), Room(player, 0x2b, 0xfaaa7).door(Position.InteriorS, DoorKind.Bombable).door(Position.WestS, DoorKind.Bombable).door(Position.NorthW, DoorKind.Trap).door(Position.West2, DoorKind.NormalLow), # Room(player, 0x2c, 0x508cf).door(Position.InteriorW, DoorKind.Bombable).door(Position.InteriorE, DoorKind.Bombable).door(Position.InteriorS, DoorKind.Bombable).door(Position.SouthE, DoorKind.Bombable).door(Position.SouthW, DoorKind.CaveEntrance), Room(player, 0x2e, 0xfc3d8).door(Position.NorthE, DoorKind.Normal), # Room(player, 0x2f, 0x507d1).door(Position.InteriorW, DoorKind.Bombable).door(Position.SouthE, DoorKind.CaveEntrance), Room(player, 0x30, 0xf8de3).door(Position.NorthW, DoorKind.Hidden).door(Position.InteriorW, DoorKind.Trap2), Room(player, 0x31, 0xfcf4f).door(Position.InteriorW, DoorKind.BigKey).door(Position.InteriorS, DoorKind.TrapTriggerable), Room(player, 0x32, 0x50e4b).door(Position.North, DoorKind.SmallKey), Room(player, 0x33, 0xf8792).door(Position.SouthW, DoorKind.Trap), Room(player, 0x34, 0xf993c).door(Position.EastN, DoorKind.Normal).door(Position.EastS, DoorKind.Normal), Room(player, 0x35, 0xf97f1).door(Position.EastN, DoorKind.SmallKey).door(Position.WestN, DoorKind.Normal).door(Position.WestS, DoorKind.Normal).door(Position.InteriorE, DoorKind.Normal) .door(Position.EastS, DoorKind.Normal).door(Position.InteriorV2, DoorKind.NormalLow), Room(player, 0x36, 0xf9685).door(Position.EastN, DoorKind.Bombable).door(Position.North, DoorKind.SmallKey).door(Position.WestN, DoorKind.SmallKey).door(Position.WestS, DoorKind.Normal) .door(Position.EastS, DoorKind.Normal).door(Position.South2, DoorKind.NormalLow), Room(player, 0x37, 0xf9492).door(Position.WestN, DoorKind.Bombable).door(Position.EastN, DoorKind.Bombable).door(Position.InteriorW, DoorKind.SmallKey).door(Position.EastS, DoorKind.SmallKey).door(Position.WestS, DoorKind.Normal).door(Position.InteriorV2, DoorKind.NormalLow), Room(player, 0x38, 0xf935b).door(Position.WestN, DoorKind.Bombable).door(Position.WestS, DoorKind.SmallKey), Room(player, 0x39, 0xfc180).door(Position.SouthW, DoorKind.Trap).door(Position.InteriorS, DoorKind.SmallKey), Room(player, 0x3a, 0xfa3f5).door(Position.South, DoorKind.SmallKey).door(Position.NorthW, DoorKind.Normal).door(Position.NorthE, DoorKind.Normal), Room(player, 0x3b, 0xfa9de).door(Position.SouthW, DoorKind.Normal), # Room(player, 0x3c, 0x509a3).door(Position.NorthE, DoorKind.Bombable).door(Position.SouthE, DoorKind.CaveEntrance), Room(player, 0x3d, 0xffd37).door(Position.InteriorE, DoorKind.TrapTriggerable).door(Position.InteriorN, DoorKind.SmallKey).door(Position.SouthW, DoorKind.SmallKey).door(Position.InteriorW, DoorKind.Bombable), Room(player, 0x3e, 0xfc486).door(Position.InteriorE, DoorKind.Trap).door(Position.SouthW, DoorKind.SmallKey), Room(player, 0x3f, 0xfc51b).door(Position.InteriorS, DoorKind.Trap), Room(player, 0x40, 0xf8eea).door(Position.InteriorS2, DoorKind.NormalLow2), Room(player, 0x41, 0x50f15).door(Position.South, DoorKind.Trap), Room(player, 0x42, None), Room(player, 0x43, 0xf87f8).door(Position.NorthW, DoorKind.BigKey).door(Position.InteriorE, DoorKind.SmallKey).door(Position.SouthE, DoorKind.SmallKey), Room(player, 0x44, 0xfdbcd).door(Position.InteriorN, DoorKind.Trap2).door(Position.InteriorS, DoorKind.SmallKey).door(Position.EastN, DoorKind.Normal).door(Position.EastS, DoorKind.Normal), Room(player, 0x45, 0xfdcae).door(Position.WestN, DoorKind.Trap).door(Position.InteriorW, DoorKind.Normal).door(Position.WestS, DoorKind.Normal).door(Position.InteriorS, DoorKind.Normal), Room(player, 0x46, 0xf9bbb).door(Position.North2, DoorKind.NormalLow).door(Position.InteriorW2, DoorKind.NormalLow).door(Position.InteriorE2, DoorKind.NormalLow), Room(player, 0x49, 0xfc12c).door(Position.NorthW, DoorKind.Hidden).door(Position.InteriorN, DoorKind.TrapTriggerable).door(Position.SouthW, DoorKind.SmallKey).door(Position.InteriorS, DoorKind.Normal), Room(player, 0x4a, 0xfa267).door(Position.InteriorW, DoorKind.Trap).door(Position.InteriorE, DoorKind.Trap).door(Position.North, DoorKind.SmallKey).door(Position.InteriorV, DoorKind.Normal).door(Position.South, DoorKind.DungeonEntrance), Room(player, 0x4b, 0xfa8c9).door(Position.NorthW, DoorKind.Trap).door(Position.InteriorW, DoorKind.Dashable).door(Position.InteriorE, DoorKind.Dashable), Room(player, 0x4c, 0xffece).door(Position.EastS, DoorKind.Trap), Room(player, 0x4d, 0xffe5a).door(Position.NorthW, DoorKind.SmallKey).door(Position.WestS, DoorKind.Normal), Room(player, 0x4e, 0xfc5ba).door(Position.InteriorN, DoorKind.Trap).door(Position.NorthW, DoorKind.SmallKey), Room(player, 0x4f, 0xfca89).door(Position.WestS, DoorKind.SmallKey), Room(player, 0x50, 0x510dc).door(Position.EastN2, DoorKind.Warp).door(Position.SouthE2, DoorKind.NormalLow2), Room(player, 0x51, 0x51029).door(Position.North, DoorKind.Normal).door(Position.North, DoorKind.DungeonChanger), Room(player, 0x52, 0x51230).door(Position.WestN2, DoorKind.Warp).door(Position.SouthW2, DoorKind.NormalLow2).door(Position.South, DoorKind.Normal), Room(player, 0x53, 0xf88ad).door(Position.InteriorW, DoorKind.TrapTriggerable).door(Position.InteriorS, DoorKind.Trap2).door(Position.NorthE, DoorKind.SmallKey), Room(player, 0x54, None), # Room(player, 0x55, 0x50166).door(Position.InteriorW2, DoorKind.NormalLow).door(Position.SouthW, DoorKind.Normal).door(Position.SouthW, DoorKind.IncognitoEntrance), Room(player, 0x56, 0xfbb4e).door(Position.InteriorW, DoorKind.SmallKey).door(Position.SouthW, DoorKind.DungeonEntrance).door(Position.InteriorS, DoorKind.Normal).door(Position.EastS, DoorKind.Normal), Room(player, 0x57, 0xfbbd2).door(Position.InteriorN, DoorKind.Bombable).door(Position.InteriorW, DoorKind.TrapTriggerable).door(Position.EastS, DoorKind.SmallKey).door(Position.SouthW, DoorKind.DungeonEntrance).door(Position.WestS, DoorKind.Normal).door(Position.SouthE, DoorKind.Normal), Room(player, 0x58, 0xfbcf6).door(Position.NorthW, DoorKind.BlastWall).door(Position.WestS, DoorKind.SmallKey).door(Position.SouthE, DoorKind.SmallKey).door(Position.InteriorN, DoorKind.Bombable).door(Position.SouthW, DoorKind.DungeonEntrance).door(Position.InteriorS, DoorKind.Normal), Room(player, 0x59, 0xfbff7).door(Position.NorthW, DoorKind.SmallKey).door(Position.SouthW, DoorKind.DungeonEntrance).door(Position.InteriorN2, DoorKind.NormalLow2).door(Position.InteriorS2, DoorKind.NormalLow2), Room(player, 0x5a, 0xfa7e5).door(Position.SouthE, DoorKind.Trap), Room(player, 0x5b, 0xff8cc).door(Position.SouthE, DoorKind.SmallKey).door(Position.EastN, DoorKind.Trap), Room(player, 0x5c, 0xff976).door(Position.InteriorE, DoorKind.Bombable).door(Position.WestN, DoorKind.Normal), Room(player, 0x5d, 0xff9e1).door(Position.InteriorW, DoorKind.Trap).door(Position.SouthW, DoorKind.Trap).door(Position.InteriorN, DoorKind.Trap), Room(player, 0x5e, 0xfc6b8).door(Position.EastS, DoorKind.SmallKey).door(Position.InteriorE, DoorKind.Trap2).door(Position.SouthE, DoorKind.Normal).door(Position.InteriorS, DoorKind.Normal), Room(player, 0x5f, 0xfc6fa).door(Position.WestS, DoorKind.SmallKey), Room(player, 0x60, 0x51309).door(Position.NorthE2, DoorKind.NormalLow2).door(Position.East2, DoorKind.NormalLow2).door(Position.East2, DoorKind.ToggleFlag).door(Position.EastN, DoorKind.Normal).door(Position.SouthE, DoorKind.Normal).door(Position.SouthE, DoorKind.IncognitoEntrance), Room(player, 0x61, 0x51454).door(Position.West2, DoorKind.NormalLow).door(Position.West2, DoorKind.ToggleFlag).door(Position.East2, DoorKind.NormalLow).door(Position.East2, DoorKind.ToggleFlag).door(Position.South2, DoorKind.NormalLow).door(Position.South2, DoorKind.IncognitoEntrance).door(Position.WestN, DoorKind.Normal), Room(player, 0x62, 0x51577).door(Position.West2, DoorKind.NormalLow2).door(Position.West2, DoorKind.ToggleFlag).door(Position.NorthW2, DoorKind.NormalLow2).door(Position.North, DoorKind.Normal).door(Position.SouthW, DoorKind.Normal).door(Position.SouthW, DoorKind.IncognitoEntrance), Room(player, 0x63, 0xf88ed).door(Position.NorthE, DoorKind.StairKey).door(Position.InteriorW, DoorKind.TrapTriggerable).door(Position.SouthW, DoorKind.DungeonEntrance), # looked like a huge typo - I had to guess on StairKey Room(player, 0x64, 0xfda53).door(Position.InteriorS, DoorKind.Trap2), Room(player, 0x65, 0xfdac5).door(Position.InteriorS, DoorKind.Normal), Room(player, 0x66, 0xfa01b).door(Position.InteriorE2, DoorKind.Waterfall).door(Position.SouthW2, DoorKind.NormalLow2).door(Position.SouthW2, DoorKind.ToggleFlag).door(Position.InteriorW2, DoorKind.NormalLow2), Room(player, 0x67, 0xfbe17).door(Position.NorthE, DoorKind.Normal).door(Position.InteriorS, DoorKind.Normal).door(Position.EastS, DoorKind.Normal), Room(player, 0x68, 0xfbf02).door(Position.WestS, DoorKind.Trap).door(Position.NorthE, DoorKind.SmallKey), Room(player, 0x6a, 0xfa7c7).door(Position.NorthE, DoorKind.BigKey), Room(player, 0x6b, 0xff821).door(Position.NorthE, DoorKind.BigKey).door(Position.InteriorE, DoorKind.TrapTriggerable).door(Position.InteriorS, DoorKind.Trap).door(Position.InteriorW, DoorKind.Trap), Room(player, 0x6c, 0xffaa0).door(Position.InteriorS, DoorKind.Trap2).door(Position.InteriorW, DoorKind.Trap).door(Position.EastS, DoorKind.Normal), Room(player, 0x6d, 0xffa4e).door(Position.NorthW, DoorKind.Trap).door(Position.InteriorW, DoorKind.Trap).door(Position.WestS, DoorKind.Trap), Room(player, 0x6e, 0xfc74b).door(Position.NorthE, DoorKind.Trap), Room(player, 0x70, None), Room(player, 0x71, 0x52341).door(Position.InteriorW, DoorKind.SmallKey).door(Position.SouthW2, DoorKind.TrapTriggerableLow).door(Position.InteriorS2, DoorKind.TrapTriggerableLow), Room(player, 0x72, 0x51fda).door(Position.InteriorV, DoorKind.SmallKey), Room(player, 0x73, 0xf8972).door(Position.InteriorW, DoorKind.TrapTriggerable).door(Position.InteriorS, DoorKind.Trap2).door(Position.InteriorE, DoorKind.Normal), Room(player, 0x74, 0xf8a66).door(Position.InteriorE, DoorKind.Normal).door(Position.InteriorW, DoorKind.Normal), Room(player, 0x75, 0xf8ab9).door(Position.InteriorW, DoorKind.Trap2).door(Position.SouthE, DoorKind.Normal), Room(player, 0x76, 0xf9e35).door(Position.InteriorN2, DoorKind.NormalLow).door(Position.InteriorS2, DoorKind.NormalLow).door(Position.NorthW2, DoorKind.NormalLow).door(Position.NorthW2, DoorKind.ToggleFlag), Room(player, 0x77, 0xfd0e6).door(Position.NorthW2, DoorKind.StairKeyLow).door(Position.South2, DoorKind.DungeonEntranceLow), Room(player, 0x7b, 0xff02b).door(Position.SouthW, DoorKind.Trap).door(Position.EastN, DoorKind.SmallKey).door(Position.EastS, DoorKind.Normal), Room(player, 0x7c, 0xff0ef).door(Position.NorthE, DoorKind.BlastWall).door(Position.EastS, DoorKind.Bombable).door(Position.WestN, DoorKind.SmallKey).door(Position.WestS, DoorKind.Normal), Room(player, 0x7d, 0xff20c).door(Position.SouthE, DoorKind.Trap).door(Position.WestS, DoorKind.Bombable).door(Position.InteriorW, DoorKind.SmallKey), Room(player, 0x7e, 0xfc7c6).door(Position.SouthE, DoorKind.SmallKey).door(Position.InteriorS, DoorKind.TrapTriggerable).door(Position.EastN, DoorKind.Normal), Room(player, 0x7f, 0xfc827).door(Position.WestN, DoorKind.Trap).door(Position.InteriorW, DoorKind.Normal), Room(player, 0x80, None), Room(player, 0x81, 0x5224b).door(Position.NorthW2, DoorKind.NormalLow2), Room(player, 0x82, None), Room(player, 0x83, 0xf8bba).door(Position.InteriorW, DoorKind.TrapTriggerable).door(Position.SouthW, DoorKind.DungeonEntrance).door(Position.InteriorS, DoorKind.Normal), Room(player, 0x84, 0xf8cb7).door(Position.South, DoorKind.DungeonEntrance), Room(player, 0x85, 0xf8d7d).door(Position.NorthE, DoorKind.Trap).door(Position.InteriorN, DoorKind.SmallKey).door(Position.SouthE, DoorKind.DungeonEntrance).door(Position.InteriorS, DoorKind.Normal), Room(player, 0x87, 0xfd1b7).door(Position.InteriorN, DoorKind.Trap2).door(Position.InteriorE, DoorKind.Normal), Room(player, 0x89, None), Room(player, 0x8b, 0xff33f).door(Position.InteriorN, DoorKind.TrapTriggerable).door(Position.InteriorS, DoorKind.SmallKey).door(Position.EastN, DoorKind.Normal).door(Position.SouthW, DoorKind.Normal).door(Position.NorthW, DoorKind.Normal), Room(player, 0x8c, 0xff3ef).door(Position.EastN, DoorKind.Trap).door(Position.InteriorW, DoorKind.Trap2).door(Position.InteriorN, DoorKind.SmallKey).door(Position.WestN, DoorKind.Normal).door(Position.SouthW, DoorKind.Normal).door(Position.SouthE, DoorKind.Normal), Room(player, 0x8d, 0xff4e0).door(Position.SouthE, DoorKind.Trap).door(Position.InteriorN, DoorKind.SmallKey).door(Position.WestN, DoorKind.Normal).door(Position.NorthE, DoorKind.Normal).door(Position.InteriorS, DoorKind.Normal), Room(player, 0x8e, 0xfc84d).door(Position.NorthE, DoorKind.SmallKey), Room(player, 0x90, 0xfbab2).door(Position.SouthW, DoorKind.Trap), Room(player, 0x91, 0xfb9e6).door(Position.EastS, DoorKind.Normal), Room(player, 0x92, 0xfb97b).door(Position.InteriorN, DoorKind.Bombable).door(Position.InteriorW, DoorKind.Bombable).door(Position.WestS, DoorKind.Normal).door(Position.InteriorS, DoorKind.Normal).door(Position.EastS, DoorKind.Normal), Room(player, 0x93, 0xfb8e1).door(Position.InteriorW, DoorKind.Trap2).door(Position.InteriorE, DoorKind.SmallKey).door(Position.WestS, DoorKind.Normal), Room(player, 0x95, 0xffc04).door(Position.SouthE, DoorKind.Normal).door(Position.EastN, DoorKind.Normal), Room(player, 0x96, 0xffc78).door(Position.InteriorS, DoorKind.Trap2).door(Position.WestN, DoorKind.Normal), Room(player, 0x97, 0xfb30a).door(Position.InteriorS, DoorKind.Normal).door(Position.InteriorW, DoorKind.Normal), Room(player, 0x98, 0xfaf5b).door(Position.SouthW, DoorKind.DungeonEntrance), Room(player, 0x99, 0x5172a).door(Position.InteriorW, DoorKind.StairKey).door(Position.South, DoorKind.SmallKey).door(Position.InteriorE, DoorKind.Normal), Room(player, 0x9b, 0xff5a2).door(Position.InteriorN, DoorKind.SmallKey).door(Position.NorthW, DoorKind.Normal).door(Position.EastS, DoorKind.Normal), Room(player, 0x9c, 0xff6c9).door(Position.EastS, DoorKind.Trap).door(Position.NorthW, DoorKind.Normal).door(Position.NorthE, DoorKind.Normal).door(Position.WestS, DoorKind.Normal), Room(player, 0x9d, 0xff741).door(Position.NorthE, DoorKind.Normal).door(Position.WestS, DoorKind.Normal).door(Position.InteriorN, DoorKind.Normal), Room(player, 0x9e, 0xfc8c8).door(Position.NorthE, DoorKind.StairKey2).door(Position.InteriorE, DoorKind.BigKey).door(Position.InteriorS, DoorKind.Normal).door(Position.EastS, DoorKind.Normal), Room(player, 0x9f, 0xfc937).door(Position.WestS, DoorKind.Trap).door(Position.SouthW, DoorKind.Trap), Room(player, 0xa0, 0xfba9a).door(Position.NorthW, DoorKind.BigKey), Room(player, 0xa1, 0xfb83d).door(Position.SouthE, DoorKind.SmallKey).door(Position.East, DoorKind.Normal), Room(player, 0xa2, 0xfb759).door(Position.South, DoorKind.SmallKey).door(Position.West, DoorKind.Normal).door(Position.East, DoorKind.Normal).door(Position.SouthE, DoorKind.Normal), Room(player, 0xa3, 0xfb667).door(Position.West, DoorKind.Normal).door(Position.SouthW, DoorKind.Normal), Room(player, 0xa4, 0xfe741).door(Position.SouthW, DoorKind.Trap), Room(player, 0xa5, 0xffb7f).door(Position.NorthE, DoorKind.Trap).door(Position.InteriorE, DoorKind.Trap2).door(Position.InteriorW, DoorKind.Trap2), Room(player, 0xa6, None), Room(player, 0xa8, 0x51887).door(Position.InteriorS, DoorKind.Trap2).door(Position.InteriorW, DoorKind.TrapTriggerable).door(Position.SouthE, DoorKind.SmallKey).door(Position.InteriorN2, DoorKind.NormalLow2).door(Position.EastN2, DoorKind.NormalLow2).door(Position.East, DoorKind.Normal), Room(player, 0xa9, 0x519c9).door(Position.West, DoorKind.Trap).door(Position.East, DoorKind.Trap).door(Position.North, DoorKind.BigKey).door(Position.WestN2, DoorKind.NormalLow2).door(Position.EastN2, DoorKind.NormalLow2).door(Position.South, DoorKind.Normal), Room(player, 0xaa, 0x51b29).door(Position.InteriorE, DoorKind.Trap2).door(Position.WestN2, DoorKind.NormalLow2).door(Position.InteriorN, DoorKind.Normal).door(Position.InteriorS, DoorKind.Normal).door(Position.West, DoorKind.Normal).door(Position.SouthW, DoorKind.Normal), Room(player, 0xab, 0xfd9a9).door(Position.InteriorW, DoorKind.StairKey).door(Position.SouthW, DoorKind.Normal), Room(player, 0xac, 0xfd9d8).door(Position.SouthE, DoorKind.Trap), Room(player, 0xae, 0xfc975).door(Position.EastN, DoorKind.Normal), Room(player, 0xaf, 0xfc9e1).door(Position.NorthW, DoorKind.Normal).door(Position.WestN, DoorKind.Normal), Room(player, 0xb0, 0xf8f6b).door(Position.InteriorW, DoorKind.Trap).door(Position.InteriorN, DoorKind.Trap).door(Position.InteriorS, DoorKind.SmallKey), Room(player, 0xb1, 0xfb3b7).door(Position.InteriorW, DoorKind.BigKey).door(Position.NorthE, DoorKind.SmallKey).door(Position.SouthE, DoorKind.Normal).door(Position.InteriorS, DoorKind.Normal), Room(player, 0xb2, 0xfb4ad).door(Position.North, DoorKind.BigKey).door(Position.InteriorS, DoorKind.Trap2).door(Position.InteriorE, DoorKind.TrapTriggerable).door(Position.EastN2, DoorKind.NormalLow2).door(Position.NorthE, DoorKind.Normal).door(Position.SouthW, DoorKind.Normal).door(Position.SouthE, DoorKind.Normal).door(Position.EastS, DoorKind.Normal), Room(player, 0xb3, 0xfb5e4).door(Position.InteriorW, DoorKind.SmallKey).door(Position.WestN2, DoorKind.NormalLow2).door(Position.NorthW, DoorKind.Normal).door(Position.WestS, DoorKind.Normal).door(Position.SouthW, DoorKind.Normal), Room(player, 0xb4, 0xfe807).door(Position.NorthW, DoorKind.BigKey), Room(player, 0xb5, 0xfeb07).door(Position.SouthW, DoorKind.Trap), Room(player, 0xb6, 0xfdd50).door(Position.NorthW, DoorKind.StairKey2).door(Position.InteriorE, DoorKind.TrapTriggerable).door(Position.SouthW, DoorKind.SmallKey).door(Position.InteriorW, DoorKind.SmallKey).door(Position.SouthE, DoorKind.Normal), Room(player, 0xb7, 0xfddcd).door(Position.SouthW, DoorKind.Normal), Room(player, 0xb8, 0x51b75).door(Position.NorthE, DoorKind.BigKey).door(Position.EastN, DoorKind.Normal), Room(player, 0xb9, 0x51d09).door(Position.EastN, DoorKind.SmallKey).door(Position.North, DoorKind.Normal).door(Position.South, DoorKind.Normal).door(Position.WestN, DoorKind.Normal), Room(player, 0xba, 0x51d57).door(Position.WestN, DoorKind.SmallKey).door(Position.NorthW, DoorKind.Trap).door(Position.InteriorN, DoorKind.Trap2), Room(player, 0xbb, 0xfd86b).door(Position.NorthW, DoorKind.Normal).door(Position.InteriorN, DoorKind.Normal).door(Position.InteriorS, DoorKind.Normal).door(Position.InteriorE, DoorKind.Normal).door(Position.EastN, DoorKind.Normal).door(Position.EastS, DoorKind.Normal), Room(player, 0xbc, 0xfd974).door(Position.InteriorS, DoorKind.SmallKey).door(Position.SouthE, DoorKind.SmallKey).door(Position.InteriorN, DoorKind.Trap).door(Position.SouthW, DoorKind.Bombable).door(Position.WestN, DoorKind.Normal).door(Position.WestS, DoorKind.Normal).door(Position.InteriorW, DoorKind.Normal).door(Position.NorthE, DoorKind.Normal), Room(player, 0xbe, 0xfca28).door(Position.SouthE, DoorKind.Trap).door(Position.EastS, DoorKind.SmallKey).door(Position.InteriorE, DoorKind.Normal), Room(player, 0xbf, 0xfca89).door(Position.WestS, DoorKind.SmallKey), Room(player, 0xc0, 0xf9026).door(Position.InteriorN, DoorKind.TrapTriggerable).door(Position.InteriorS, DoorKind.Trap2).door(Position.NorthE, DoorKind.StairKey), Room(player, 0xc1, 0xfb176).door(Position.InteriorS, DoorKind.SmallKey).door(Position.EastS, DoorKind.SmallKey).door(Position.InteriorN, DoorKind.TrapTriggerable).door(Position.InteriorW, DoorKind.TrapTriggerable).door(Position.SouthW, DoorKind.Normal).door(Position.EastN, DoorKind.Normal).door(Position.NorthE, DoorKind.Normal).door(Position.SouthE, DoorKind.Normal), Room(player, 0xc2, 0xfb0e7).door(Position.EastN, DoorKind.SmallKey).door(Position.WestS, DoorKind.SmallKey).door(Position.NorthW, DoorKind.Normal).door(Position.WestN, DoorKind.Normal).door(Position.East, DoorKind.Normal).door(Position.SouthE, DoorKind.Normal).door(Position.EastS, DoorKind.Normal).door(Position.NorthE, DoorKind.Normal), Room(player, 0xc3, 0xfb56c).door(Position.WestN, DoorKind.SmallKey).door(Position.InteriorN, DoorKind.Trap2).door(Position.InteriorH, DoorKind.Trap2).door(Position.InteriorS, DoorKind.TrapTriggerable).door(Position.NorthW, DoorKind.Normal).door(Position.West, DoorKind.Normal).door(Position.WestS, DoorKind.Normal), Room(player, 0xc4, 0xfec3f).door(Position.EastS, DoorKind.SmallKey), Room(player, 0xc5, 0xfece1).door(Position.WestS, DoorKind.SmallKey).door(Position.NorthW, DoorKind.Normal).door(Position.SouthW, DoorKind.Normal), Room(player, 0xc6, 0xfdf5c).door(Position.NorthW, DoorKind.SmallKey).door(Position.NorthE, DoorKind.Normal).door(Position.EastN, DoorKind.Normal).door(Position.EastS, DoorKind.Normal).door(Position.SouthW, DoorKind.Normal).door(Position.SouthE, DoorKind.Normal), Room(player, 0xc7, 0xfe0a1).door(Position.NorthW, DoorKind.Trap).door(Position.WestN, DoorKind.Normal).door(Position.WestS, DoorKind.Normal), Room(player, 0xc8, 0x51596).door(Position.SouthE, DoorKind.Trap), Room(player, 0xc9, 0x51e5a).door(Position.InteriorV, DoorKind.Trap).door(Position.North, DoorKind.Trap).door(Position.InteriorW, DoorKind.Normal).door(Position.InteriorE, DoorKind.Normal).door(Position.South, DoorKind.DungeonEntrance), Room(player, 0xcb, 0xfd630).door(Position.East, DoorKind.Dashable), Room(player, 0xcc, 0xfd783).door(Position.NorthE, DoorKind.BigKey).door(Position.NorthW, DoorKind.Bombable).door(Position.West, DoorKind.Dashable), Room(player, 0xce, 0xfcadd).door(Position.NorthE, DoorKind.Trap), Room(player, 0xd0, 0xf90de).door(Position.InteriorS, DoorKind.SmallKey).door(Position.InteriorN, DoorKind.Trap2), Room(player, 0xd1, 0xfb259).door(Position.InteriorS, DoorKind.Trap2).door(Position.NorthW, DoorKind.Normal).door(Position.NorthE, DoorKind.Normal).door(Position.InteriorE, DoorKind.Normal), Room(player, 0xd2, 0xfafd6).door(Position.NorthE, DoorKind.Trap), Room(player, 0xd5, 0xfee40).door(Position.SouthW, DoorKind.BombableEntrance).door(Position.NorthW, DoorKind.Normal), Room(player, 0xd6, 0xfe1cb).door(Position.NorthW, DoorKind.UnknownD6).door(Position.SouthE, DoorKind.DungeonEntrance).door(Position.NorthE, DoorKind.Normal), Room(player, 0xd8, 0x515ed).door(Position.NorthE, DoorKind.Trap).door(Position.InteriorE, DoorKind.TrapTriggerable).door(Position.EastS, DoorKind.Normal), Room(player, 0xd9, 0x5166f).door(Position.WestS, DoorKind.Trap).door(Position.InteriorS, DoorKind.Trap).door(Position.EastS, DoorKind.Trap), Room(player, 0xda, 0x5169d).door(Position.WestS, DoorKind.Trap), Room(player, 0xdb, 0xfd370).door(Position.East, DoorKind.Trap).door(Position.South, DoorKind.DungeonEntrance), Room(player, 0xdc, 0xfd4d1).door(Position.West, DoorKind.Normal), # Room(player, 0xdf, 0x52db4).door(Position.South, DoorKind.CaveEntrance), Room(player, 0xe0, 0xf9149).door(Position.InteriorN, DoorKind.Trap2).door(Position.InteriorW, DoorKind.Trap2).door(Position.NorthE, DoorKind.StairKey).door(Position.SouthW, DoorKind.DungeonEntrance), # Room(player, 0xe1, 0x5023c).door(Position.InteriorH2, DoorKind.NormalLow2).door(Position.SouthW, DoorKind.CaveEntrance), # Room(player, 0xe2, 0x50464).door(Position.InteriorH, DoorKind.Normal).door(Position.SouthE, DoorKind.CaveEntrance), # Room(player, 0xe3, 0x5032b).door(Position.InteriorS2, DoorKind.TrapLowE3).door(Position.InteriorE2, DoorKind.NormalLow2).door(Position.SouthW, DoorKind.CaveEntrance), # Room(player, 0xe4, 0x534b1).door(Position.SouthW2, DoorKind.CaveEntranceLow).door(Position.InteriorN, DoorKind.Normal).door(Position.East, DoorKind.Normal), # Room(player, 0xe5, 0x535ba).door(Position.West, DoorKind.Normal).door(Position.South, DoorKind.CaveEntrance), # Room(player, 0xe6, 0x532ee).door(Position.SouthW2, DoorKind.CaveEntranceLow).door(Position.EastN2, DoorKind.NormalLow), # Room(player, 0xe7, 0x533ce).door(Position.SouthE2, DoorKind.CaveEntranceLow).door(Position.WestN2, DoorKind.NormalLow), # Room(player, 0xe8, 0x529d3).door(Position.SouthE, DoorKind.CaveEntrance), # Room(player, 0xea, 0x531f5).door(Position.SouthW, DoorKind.CaveEntrance), # Room(player, 0xeb, 0x52e1a).door(Position.SouthE, DoorKind.CaveEntrance), # Room(player, 0xed, 0x52bec).door(Position.SouthE, DoorKind.CaveEntrance), # Room(player, 0xee, 0x52f76).door(Position.SouthE, DoorKind.CaveEntrance), # Room(player, 0xef, 0x52d37).door(Position.InteriorE, DoorKind.Trap2).door(Position.South, DoorKind.CaveEntrance), # Room(player, 0xf0, 0x5258a).door(Position.SouthW, DoorKind.CaveEntrance).door(Position.East2, DoorKind.NormalLow), # Room(player, 0xf1, 0x52703).door(Position.SouthE2, DoorKind.CaveEntranceLow).door(Position.West2, DoorKind.NormalLow), # Room(player, 0xf2, 0x5274a).door(Position.EastS, DoorKind.Normal).door(Position.SouthE, DoorKind.Normal).door(Position.SouthE, DoorKind.IncognitoEntrance), # Room(player, 0xf3, 0x52799).door(Position.WestS, DoorKind.Normal).door(Position.SouthW, DoorKind.Normal).door(Position.SouthW, DoorKind.IncognitoEntrance), # Room(player, 0xf4, 0x527d3).door(Position.EastS, DoorKind.Dashable).door(Position.SouthE, DoorKind.Normal).door(Position.SouthE, DoorKind.IncognitoEntrance), # Room(player, 0xf5, 0x52813).door(Position.WestS, DoorKind.Dashable).door(Position.SouthW, DoorKind.Normal).door(Position.SouthW, DoorKind.IncognitoEntrance), # Room(player, 0xf8, 0x528fe).door(Position.South, DoorKind.CaveEntrance), # Room(player, 0xf9, 0x5305a).door(Position.SouthW, DoorKind.CaveEntrance), # Room(player, 0xfa, 0x53165).door(Position.SouthW2, DoorKind.EntranceLow), # Room(player, 0xfb, 0x52ea4).door(Position.South, DoorKind.CaveEntrance), # Room(player, 0xfd, 0x52ab1).door(Position.South2, DoorKind.CaveEntranceLow), # Room(player, 0xfe, 0x52ff1).door(Position.SouthE2, DoorKind.CaveEntranceLow), # Room(player, 0xff, 0x52c9a).door(Position.InteriorW, DoorKind.Bombable).door(Position.InteriorE, DoorKind.Bombable).door(Position.SouthE, DoorKind.CaveEntrance), ] # fix some wonky things world.get_room(0x51, player).change(1, DoorKind.Normal) # fix the dungeon changer world.get_room(0x60, player).swap(2, 4) # puts the exit at pos 2 - enables pos 3 world.get_room(0x61, player).swap(1, 6) # puts the WN door at pos 1 - enables it world.get_room(0x61, player).swap(5, 6) # puts the Incognito Entrance at the end, so it can be deleted world.get_room(0x62, player).swap(1, 4) # puts the exit at pos 1 - enables pos 3 world.get_room(0x77, player).swap(0, 1) # fixes Hera Lobby Key Stairs - entrance now at pos 0 if world.enemy_shuffle[player] != 'none': world.get_room(0xc0, player).change(0, DoorKind.Normal) # fix this kill room if enemizer is on class Room(object): def __init__(self, player, index, address): self.player = player self.index = index self.doorListAddress = address self.doorList = [] self.modified = False self.palette = None def position(self, door): return self.doorList[door.doorListPos][0] def kind(self, door): return self.doorList[door.doorListPos][1] def door(self, pos, kind): self.doorList.append((pos, kind)) return self def change(self, list_idx, kind): prev = self.doorList[list_idx] self.doorList[list_idx] = (prev[0], kind) self.modified = True def mirror(self, list_idx): prev = self.doorList[list_idx] mirror_door = None for door in self.doorList: if door != prev: mirror_door = door break self.doorList[list_idx] = (mirror_door[0], mirror_door[1]) self.modified = True def swap(self, idx1, idx2): item1 = self.doorList[idx1] item2 = self.doorList[idx2] self.doorList[idx1] = item2 self.doorList[idx2] = item1 self.modified = True def delete(self, list_idx): self.doorList[list_idx] = (Position.FF, DoorKind.FF) self.modified = True def address(self): return self.doorListAddress def rom_data(self): byte_array = [] for pos, kind in self.doorList: byte_array.append(pos.value) byte_array.append(kind.value) return byte_array def __str__(self): return str(self.__unicode__()) def __unicode__(self): return '%s' % self.index class PairedDoor(object): def __init__(self, door_a, door_b, original=False): self.door_a = door_a self.door_b = door_b self.pair = True self.original = original def address_a(self, world, player): d = world.check_for_door(self.door_a, player) return 0x13C000 + (door_pair_offset_table[d.roomIndex]+d.doorListPos)*2 def address_b(self, world, player): d = world.check_for_door(self.door_b, player) return 0x13C000 + (door_pair_offset_table[d.roomIndex]+d.doorListPos)*2 def rom_data_a(self, world, player): if not self.pair: return [0x00, 0x00] d = world.check_for_door(self.door_b, player) return [d.roomIndex, pos_map[d.doorListPos]] def rom_data_b(self, world, player): if not self.pair: return [0x00, 0x00] d = world.check_for_door(self.door_a, player) return [d.roomIndex, pos_map[d.doorListPos]] pos_map = { 0: 0x80, 1: 0x40, 2: 0x20, 3: 0x10 # indices 4-7 not supported yet } @unique class DoorKind(Enum): Normal = 0x00 NormalLow = 0x02 EntranceLow = 0x04 Waterfall = 0x08 DungeonEntrance = 0x0A DungeonEntranceLow = 0x0C CaveEntrance = 0x0E CaveEntranceLow = 0x10 IncognitoEntrance = 0x12 DungeonChanger = 0x14 ToggleFlag = 0x16 Trap = 0x18 UnknownD6 = 0x1A SmallKey = 0x1C BigKey = 0x1E StairKey = 0x20 StairKey2 = 0x22 HauntedStairKey = 0x24 # not a real door, can see it in dark rooms when facing left StairKeyLow = 0x26 Dashable = 0x28 BombableEntrance = 0x2A Bombable = 0x2E BlastWall = 0x30 Hidden = 0x32 TrapTriggerable = 0x36 Trap2 = 0x38 NormalLow2 = 0x40 TrapTriggerableLow = 0x44 Warp = 0x46 CaveEntranceLow08 = 0x48 TrapLowE3 = 0x4A # Maybe this is a toggle flag too? FF = 0xFF @unique class Position(Enum): NorthW = 0x00 North = 0x10 NorthE = 0x20 NorthW2 = 0x30 North2 = 0x40 NorthE2 = 0x50 InteriorW = 0x60 InteriorV = 0x70 InteriorE = 0x80 InteriorW2 = 0x90 InteriorV2 = 0xA0 InteriorE2 = 0xB0 SouthW = 0x61 South = 0x71 SouthE = 0x81 SouthW2 = 0x91 South2 = 0xA1 SouthE2 = 0xB1 WestN = 0x02 West = 0x12 WestS = 0x22 WestN2 = 0x32 West2 = 0x42 # WestS2 = 0x52 InteriorN = 0x62 InteriorH = 0x72 InteriorS = 0x82 InteriorN2 = 0x92 InteriorH2 = 0xA2 InteriorS2 = 0xB2 EastN = 0x63 East = 0x73 EastS = 0x83 EastN2 = 0x93 East2 = 0xA3 # EastS2 = 0xB3 FF = 0xFF class TestWorld(object): def __init__(self): self.rooms = [] # python3 -c "from RoomData import offset_utility; offset_utility()" # This utility was used to calculate the distance offsets def offset_utility(): world = TestWorld() create_rooms(world, 1) map = {} cntr = 1 for room in world.rooms: map[room.index] = cntr cntr = cntr + len(room.doorList) string = '' for i in range(225): if i % 16 == 0: string = string + 'dw ' if i not in map: string = string + '$0000,' else: string = string + hex(map[i]) + ',' print(string) # python3 -c "from RoomData import key_door_template_generator; key_door_template_generator()" # This utility was used to help initialize the pairing data def key_door_template_generator(): world = TestWorld() create_rooms(world, 1) map = {} cntr = 1 for room in world.rooms: string = 'dw ' for door in room.doorList: if door[1] in [DoorKind.SmallKey, DoorKind.BigKey, DoorKind.SmallKey, DoorKind.Dashable, DoorKind.Bombable]: string = string + '$xxxx,' else: string = string + '$0000,' print(string[0:-1]) # python3 -c "from RoomData import door_address_list; door_address_list('/home/randall/kwyn/orig/z3.sfc')" # python3 -c "from RoomData import door_address_list; door_address_list('path/to/rom.sfc')" def door_address_list(rom): with open(rom, 'rb') as stream: rom_data = bytearray(stream.read()) room_index = 0 while room_index < 256: offset = room_index * 3 address = rom_data[0x0F8000 + offset] address = address + 0x100 * rom_data[0x0F8000 + offset + 1] byte3 = rom_data[0x0F8000 + offset + 2] address = address + (byte3 << 16) if byte3 == 0x03: address = address - 0x020000 elif byte3 == 0x0A: address = address - 0x058000 elif byte3 == 0x1f: address = address - 0x100000 else: print('Byte3 ' + hex(byte3)) print('Address ' + hex(address)) raise Exception('Bad address?') terminated = False while not terminated: marker = rom_data[address] + (rom_data[address+1] << 8) # if marker == 0xFFFF: # print('Room '+ hex(room_index)+ ' terminated at '+ hex(address)) # terminated = True if marker == 0xFFF0: print(hex(room_index) + ': ' + hex(address+2)) # print('Room ' + hex(room_index) + ' address: ' + hex(address+2)) terminated = True else: address = address + 3 room_index = room_index + 1
python
# ============================================================================ # # Copyright (C) 2007-2016 Conceptive Engineering bvba. # www.conceptive.be / [email protected] # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of Conceptive Engineering nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ============================================================================ import logging FORMAT = '[%(levelname)-7s] [%(name)-35s] - %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger('videostore.main') #logging.getLogger('sqlalchemy.engine').setLevel(logging.DEBUG) try: import matplotlib logger.info('matplotlib %s is used'%(matplotlib.__version__)) except: logger.error('Charts will not work because of missing matplotlib') from camelot.core.conf import settings, SimpleSettings class ExampleSettings( SimpleSettings ): """Special settings class for the example application, this is done to 'survive' various packaging regimes, such as windows, debian, ... """ @staticmethod def setup_model(): from sqlalchemy.orm import configure_mappers from camelot.core.sql import metadata metadata.bind = settings.ENGINE() # # import all the needed model files to make sure the mappers and tables # are defined before creating them in the database # from camelot.model import (party, authentication, i18n, fixture, memento, batch_job) from . import model logger.debug('loaded datamodel for %s'%party.__name__) logger.debug('loaded datamodel for %s'%authentication.__name__) logger.debug('loaded datamodel for %s'%i18n.__name__) logger.debug('loaded datamodel for %s'%fixture.__name__) logger.debug('loaded datamodel for %s'%memento.__name__) logger.debug('loaded datamodel for %s'%batch_job.__name__) logger.debug('loaded datamodel for %s'%model.__name__) # # create the tables for all models, configure mappers first, to make # sure all deferred properties have been handled, as those could # create tables or columns # configure_mappers() metadata.create_all() # # Load sample data with the fixure mechanism # from camelot_example.fixtures import load_movie_fixtures load_movie_fixtures() # # setup the views # from camelot_example.view import setup_views setup_views() example_settings = ExampleSettings('camelot', 'videostore', data = 'videostore_3.sqlite') def main(): from camelot.admin.action.application import Application from camelot.view.main import main_action from camelot_example.application_admin import MyApplicationAdmin settings.append(example_settings) videostore = Application(MyApplicationAdmin()) main_action(videostore) if __name__ == '__main__': main()
python
#!/usr/bin/env # -*- coding: utf-8 -*- # Copyright (C) Victor M. Mendiola Lau - All Rights Reserved # Unauthorized copying of this file, via any medium is strictly prohibited # Proprietary and confidential # Written by Victor M. Mendiola Lau <[email protected]>, March 2017 import pylab from datasets.nir_tecator import load_nir_tecator # --------------------------------------------------------------- def plot_nir_tecator_data_set(): # loading the nir tecator data set ds = load_nir_tecator() # removing columns associated with classes and properties ds = ds.iloc[:, :-2] # plotting the data set ds.T.plot(legend=None) pylab.show() def plot_nir_tecator_by_class(): # loading the nir tecator data set ds = load_nir_tecator() # creating the figure and adding subplots fig, axes = pylab.subplots(nrows=1, ncols=2) # plotting class 0 samples axes[0].set_title('NIR Tecator (Class 0)(%fat < 20)') ds[ds['class'] == 0].iloc[:, :-2].T.plot(ax=axes[0], legend=None) # plotting class 1 samples axes[1].set_title('NIR Tecator (Class 1)(%fat >= 20)') ds[ds['class'] == 1].iloc[:, :-2].T.plot(ax=axes[1], legend=None) # actually showing the plot pylab.show()
python
# Copyright (c) 2019-2022 ThatRedKite and contributors from turtle import right import discord from discord.ext import commands import time import re from datetime import datetime from operator import itemgetter import aioredis import discord from discord.ext import commands async def update_count(redis: aioredis.Redis, message: discord.Message): """ Updates the welcome count for the given message's author. """ if "welcome" in message.content.lower(): write = True guild, channel, author = message.guild.id, message.channel.id, message.author.id unixtime = time.mktime(message.created_at.timetuple()) join_key = f"latest_join:{guild}" assert await redis.exists(join_key) # make sure there is a last_joined key joined_dict = await redis.hgetall(join_key) welcome_channel, latest_join, joined_id = itemgetter("join_channel", "latest_join", "user_id")(joined_dict) welcome_channel, latest_join, joined_id = int(welcome_channel), int(latest_join), int(joined_id) usr_key = f"leaderboard:{author}:{guild}" if await redis.exists(usr_key): latest_welcome = int(await redis.hget(usr_key, "latest_welcome")) if latest_welcome <= latest_join and joined_id != author: await redis.hincrby(usr_key, "welcome_count", 1) # increase welcome_count by one; create if not exist else: return else: write = (welcome_channel == channel) await redis.hset(usr_key, "welcome_count", 1) if write: await redis.hset(usr_key, "latest_welcome", int(unixtime)) class WelcomeCog(commands.Cog, name="Welcome counter"): """ A cog that counts the number of times a user has welcome newly joined members. """ def __init__(self, bot): self.bot: discord.Client = bot self.redis_welcomes: aioredis.Redis = bot.redis_welcomes self.settings_redis: aioredis.Redis = bot.redis async def cog_check(self, ctx): return await self.settings_redis.hget(ctx.guild.id, "WELCOME") == "TRUE" @commands.Cog.listener() async def on_message(self, message): """ Updates the welcome count for the given message's author. This is called by the bot on every message. """ if self.bot.command_prefix not in message.content and message.author.id != self.bot.user.id and message.channel.id == message.guild.system_channel.id: try: await update_count(self.redis_welcomes, message) except AssertionError: pass @commands.Cog.listener() async def on_member_join(self, joinedmember): """ Updates the latest_join key for the given member. This is called by the bot on every member join. """ welcomechannel = joinedmember.guild.system_channel.id lastjoined = joinedmember.joined_at unixtime = time.mktime(lastjoined.timetuple()) guild = joinedmember.guild.id key = f"latest_join:{guild}" datadict = dict( latest_join=int(unixtime), user_id=int(joinedmember.id), join_channel=int(welcomechannel) ) await self.redis_welcomes.hmset(key, datadict) await joinedmember.guild.system_channel.send("welcome") @commands.cooldown(1, 5, commands.BucketType.user) @commands.command(name="welcomes") async def welcome(self, ctx, *, args=None): """ Displays the top 10 users with the most welcome count. """ current_time = datetime.utcfromtimestamp(int(time.mktime(ctx.message.created_at.timetuple()))) # Scan all users in the DB # here's a nice one-liner key_list = [key async for key in self.redis_welcomes.scan_iter(match=f"leaderboard:*:{ctx.guild.id}")] leaderboard = dict() for i in key_list: author = re.findall(r":[\d]{5,}:", i)[0][1:-1] # extract the author id leaderboard[f"<@{author}>"] = await self.redis_welcomes.hgetall(i) sorted_lb = sorted(leaderboard.items(), key=lambda x: int(x[1]['welcome_count']), reverse=True) if not args: embed = discord.Embed(title="Welcome leaderboard") lb_str = "" number = 1 for i in sorted_lb: if number <= 10: match number: case 1: number_str = ":first_place: " case 2: number_str = ":second_place: " case 3: number_str = ":third_place: " case _: number_str = "​ **" + str(number) + "**. " lb_str += number_str + str(i[0]) \ + " welcomes: **" + str(i[1]["welcome_count"]) + "**, last welcome: **" \ + str((current_time - datetime.utcfromtimestamp(int(i[1]["latest_welcome"]))).seconds // 3600) \ + "** hours ago\n" number += 1 continue last_join_dict = await self.redis_welcomes.hgetall(f"latest_join:{ctx.message.guild.id}") embed.add_field(name=":medal: Top 10:", value=lb_str, inline=False) if 'user_id' in last_join_dict: footer = str(str(f"<@{last_join_dict['user_id']}>") + " joined: **" + str((current_time - datetime.utcfromtimestamp(int(last_join_dict['latest_join']))).seconds // 3600))\ + "** hours ago" embed.add_field(name=":partying_face: Latest join:", value=footer, inline=False) elif args.lower() == "me": embed = discord.Embed(title="Personal welcome count") target_user = ctx.message.author.id lb_str = "" number = 1 for i in sorted_lb: if str(target_user) in i[0]: lb_str += "**" + str(number) + "**. " + str(i[0]) \ + " welcomes: **" + str(i[1]["welcome_count"]) + "**, last welcome: **" \ + str((current_time - datetime.utcfromtimestamp(int(i[1]["latest_welcome"]))).seconds // 3600) \ + "** hours ago\n" embed.add_field(name=f"{str(ctx.message.author)}'s welcome count:", value=lb_str, inline=False) number += 1 await ctx.send(embed=embed) def setup(bot): bot.add_cog(WelcomeCog(bot))
python
from pysit.Tomo.tomo import *
python
import pandas as pd def rail_station(): data = pd.read_csv('data/GTFS_stations.txt',sep = ',', header = None) data = data.rename(columns = {0:'ID',2:'Name'}) use_col = ['ID','Name'] data = data.loc[:,use_col] link_info = pd.read_csv('data/link_info.csv') station1 = link_info.loc[:,['link_start','route_id','direction_id','link_start_parent']].rename(columns = {'link_start':'station_id','link_start_parent':'tap_in_ID'}) station2 = link_info.loc[:,['link_end','route_id','direction_id','link_end_parent']].rename(columns = {'link_end':'station_id','link_end_parent':'tap_in_ID'}) station = station1.append(station2) station = station.drop_duplicates() station = station.merge(data, left_on = ['tap_in_ID'], right_on = ['ID']) schd_rail = pd.read_csv('data/schd_rail_stops.csv') len_old = len(station) station = station.merge(schd_rail,left_on = ['station_id'],right_on = ['stop_id']) len_new = len(station) if len_old!=len_new: print('missing data, please check') exit() line_name_id = pd.read_csv('data/line_name_id.csv') station = station.merge(line_name_id,left_on = ['route_id'],right_on = ['line_short']) station = station.rename(columns = {'station_id_x':'station_id','direction_id_x':'GTFS_direction','direction_id_y':'CTA_schedule_direction','stopname':'CTA_stopname'}) col_out = ['station_id','tap_in_ID','Name','longitude','latitude','qt2_trackid','line_id','line_name','CTA_schedule_direction','CTA_stopname'] station['station_id'] = station['station_id'].astype(int) station['tap_in_ID'] = station['tap_in_ID'].astype(int) data_save = station.loc[:,col_out] data_save = data_save.drop_duplicates() data_save.to_csv('data/All_rail_stations.csv',index=False) a=1 def bus_station(): data = pd.read_csv('data/bt_stop.csv') # bt_pattern = pd.read_csv('data/bt_pattern.csv') use_col = ['geoid','geodescription','longitude','latitude','tageoid'] data = data.loc[:,use_col] data = data.rename(columns = {'geoid':'tap_in_ID','geodescription':'Name','tageoid': 'GTFS_id'}) col_out = ['tap_in_ID','Name','longitude','latitude','GTFS_id'] data_save = data.loc[:,col_out] data_save = data_save.drop_duplicates(['tap_in_ID']) data_save.to_csv('data/All_bus_stations.csv',index=False) a=1 if __name__ == '__main__': bus_station()
python
# coding=utf-8 import tensorflow as tf import tensorflow.contrib.slim as slim import numpy as np class SiameseLSTMw2v(object): """ A LSTM based deep Siamese network for text similarity. Uses an word embedding layer (looks up in pre-trained w2v), followed by a biLSTM and Energy Loss layer. """ def stackedRNN(self, x, dropout, scope, embedding_size, sequence_length, hidden_units): n_hidden = hidden_units n_layers = 3 # n_layers = 6 # Prepare data shape to match `static_rnn` function requirements x = tf.unstack(tf.transpose(x, perm=[1, 0, 2])) # print(x) # Define lstm cells with tensorflow # Forward direction cell with tf.name_scope("fw" + scope), tf.variable_scope("fw" + scope): stacked_rnn_fw = [] for _ in range(n_layers): fw_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True) lstm_fw_cell = tf.contrib.rnn.DropoutWrapper(fw_cell, output_keep_prob=dropout) stacked_rnn_fw.append(lstm_fw_cell) lstm_fw_cell_m = tf.nn.rnn_cell.MultiRNNCell(cells=stacked_rnn_fw, state_is_tuple=True) outputs, _ = tf.nn.static_rnn(lstm_fw_cell_m, x, dtype=tf.float32) return outputs[-1] def contrastive_loss(self, y, d, batch_size): tmp = y * tf.square(d) # tmp= tf.mul(y,tf.square(d)) tmp2 = (1 - y) * tf.square(tf.maximum((1 - d), 0)) reg = tf.contrib.layers.apply_regularization(tf.contrib.layers.l2_regularizer(1e-4), tf.trainable_variables()) return tf.reduce_sum(tmp + tmp2) / batch_size / 2+reg def __init__( self, sequence_length, vocab_size, embedding_size, hidden_units, l2_reg_lambda, batch_size, trainableEmbeddings): # Placeholders for input, output and dropout self.input_x1 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x1") self.input_x2 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x2") self.input_y = tf.placeholder(tf.float32, [None], name="input_y") self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob") # Keeping track of l2 regularization loss (optional) l2_loss = tf.constant(0.0, name="l2_loss") # Embedding layer with tf.name_scope("embedding"): self.W = tf.Variable( tf.constant(0.0, shape=[vocab_size, embedding_size]), trainable=trainableEmbeddings, name="W") self.embedded_words1 = tf.nn.embedding_lookup(self.W, self.input_x1) self.embedded_words2 = tf.nn.embedding_lookup(self.W, self.input_x2) # print self.embedded_words1 # Create a convolution + maxpool layer for each filter size with tf.name_scope("output"): self.out1 = self.stackedRNN(self.embedded_words1, self.dropout_keep_prob, "side1", embedding_size, sequence_length, hidden_units) self.out2 = self.stackedRNN(self.embedded_words2, self.dropout_keep_prob, "side2", embedding_size, sequence_length, hidden_units) self.distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.out1, self.out2)), 1, keep_dims=True)) self.distance = tf.div(self.distance, tf.add(tf.sqrt(tf.reduce_sum(tf.square(self.out1), 1, keep_dims=True)), tf.sqrt(tf.reduce_sum(tf.square(self.out2), 1, keep_dims=True)))) self.distance = tf.reshape(self.distance, [-1], name="distance") with tf.name_scope("loss"): self.loss = self.contrastive_loss(self.input_y, self.distance, batch_size) #### Accuracy computation is outside of this class. with tf.name_scope("accuracy"): self.temp_sim = tf.subtract(tf.ones_like(self.distance), tf.rint(self.distance), name="temp_sim") # auto threshold 0.5 correct_predictions = tf.equal(self.temp_sim, self.input_y) self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") with tf.name_scope('f1'): ones_like_actuals = tf.ones_like(self.input_y) zeros_like_actuals = tf.zeros_like(self.input_y) ones_like_predictions = tf.ones_like(self.temp_sim) zeros_like_predictions = tf.zeros_like(self.temp_sim) tp = tf.reduce_sum( tf.cast( tf.logical_and( tf.equal(self.input_y, ones_like_actuals), tf.equal(self.temp_sim, ones_like_predictions) ), 'float' ) ) tn = tf.reduce_sum( tf.cast( tf.logical_and( tf.equal(self.input_y, zeros_like_actuals), tf.equal(self.temp_sim, zeros_like_predictions) ), 'float' ) ) fp = tf.reduce_sum( tf.cast( tf.logical_and( tf.equal(self.input_y, zeros_like_actuals), tf.equal(self.temp_sim, ones_like_predictions) ), 'float' ) ) fn = tf.reduce_sum( tf.cast( tf.logical_and( tf.equal(self.input_y, ones_like_actuals), tf.equal(self.temp_sim, zeros_like_predictions) ), 'float' ) ) precision = tp / (tp + fp) recall = tp / (tp + fn) self.f1 = 2 * precision * recall / (precision + recall)
python
from keras.applications import VGG16 from keras import models from keras import layers from keras import optimizers from keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt import os import numpy as np from keras.preprocessing.image import ImageDataGenerator image_width = 768 image_height = 576 train_dir = './CNN/images/train' validation_dir = './CNN/images/valid' # Load the VGG model conv_base = VGG16(weights='imagenet', include_top=False, input_shape=(image_width, image_height, 3)) base_dir = '/home/vosferatu/Desktop/inesc2k19/CNN/images' train_dir = os.path.join(base_dir, 'train') validation_dir = os.path.join(base_dir, 'valid') test_dir = os.path.join(base_dir, 'test') datagen = ImageDataGenerator(rescale=1./255) batch_size = 16 def extract_features(directory, sample_count): features = np.zeros(shape=(sample_count, 24, 18, 512)) labels = np.zeros(shape=(sample_count)) generator = datagen.flow_from_directory( directory, target_size=(image_width, image_height), batch_size=batch_size, class_mode='binary') i = 0 for inputs_batch, labels_batch in generator: features_batch = conv_base.predict(inputs_batch) features[i * batch_size: (i + 1) * batch_size] = features_batch labels[i * batch_size: (i + 1) * batch_size] = labels_batch i += 1 if i * batch_size >= sample_count: # Note that since generators yield data indefinitely in a loop, # we must `break` after every image has been seen once. break return features, labels train_features, train_labels = extract_features(train_dir, 40) validation_features, validation_labels = extract_features(validation_dir, 40) test_features, test_labels = extract_features(test_dir, 10) train_features = np.reshape(train_features, (40, 24 * 18 * 512)) validation_features = np.reshape(validation_features, (10, 24 * 18 * 512)) test_features = np.reshape(test_features, (10, 24 * 18 * 512)) model = models.Sequential() model.add(layers.Dense(256, activation='relu', input_dim=24 * 18 * 512)) model.add(layers.Dropout(0.5)) model.add(layers.Dense(1, activation='sigmoid')) model.compile(optimizer=optimizers.RMSprop(lr=2e-5), loss='binary_crossentropy', metrics=['acc']) history = model.fit(train_features, train_labels, epochs=10, batch_size=16, validation_data=(validation_features, validation_labels)) acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.legend() plt.figure() plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() mdl = models.Sequential() mdl.add(conv_base) mdl.add(layers.Flatten()) mdl.add(layers.Dense(256, activation='relu')) mdl.add(layers.Dense(1, activation='sigmoid')) conv_base.trainable = False
python
Import("env") import os dataFolder = 'data' if not dataFolder in os.listdir(os.getcwd()): os.mkdir(dataFolder) print("Empty \"data\" folder for empty filesystem creation ready") print("Replace MKSPIFFSTOOL with mklittlefs.exe") env.Replace (MKSPIFFSTOOL = "mklittlefs.exe")
python
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Libproxy(CMakePackage): """libproxy is a library that provides automatic proxy configuration management.""" homepage = "http://libproxy.github.io/libproxy/" url = "https://github.com/libproxy/libproxy/archive/0.4.15.tar.gz" version('0.4.15', sha256='18f58b0a0043b6881774187427ead158d310127fc46a1c668ad6d207fb28b4e0') version('0.4.14', sha256='6220a6cab837a8996116a0568324cadfd09a07ec16b930d2a330e16d5c2e1eb6') version('0.4.13', sha256='d610bc0ef81a18ba418d759c5f4f87bf7102229a9153fb397d7d490987330ffd')
python
import torch import torch.nn as nn import numpy as np from operations import * from torch.autograd import Variable from genotypes import PRIMITIVES from genotypes import Genotype class MixedOp (nn.Module): def __init__(self, C, stride): super(MixedOp, self).__init__() self._ops = nn.ModuleList() for primitive in PRIMITIVES: op = OPS[primitive](C, stride, False) if 'pool' in primitive: op = nn.Sequential(op, nn.BatchNorm2d(C, affine=False)) self._ops.append(op) def forward(self, x, weights): return sum(w * op(x) for w, op in zip(weights, self._ops)) class Cell(nn.Module): def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, rate): super(Cell, self).__init__() self.C_out = C if C_prev_prev != -1 : self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False) if rate == 2 : self.preprocess1 = FactorizedReduce (C_prev, C, affine= False) elif rate == 0 : self.preprocess1 = FactorizedIncrease (C_prev, C) else : self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False) self._steps = steps self._multiplier = multiplier self._ops = nn.ModuleList() for i in range(self._steps): for j in range(2+i): stride = 1 if C_prev_prev == -1 and j == 0: op = None else: op = MixedOp(self.C_out, stride) self._ops.append(op) self.ReLUConvBN = ReLUConvBN (self._multiplier * self.C_out, self.C_out, 1, 1, 0) def forward(self, s0, s1, weights): if s0 is not None : s0 = self.preprocess0 (s0) s1 = self.preprocess1(s1) states = [s0, s1] offset = 0 for i in range(self._steps): s = sum(self._ops[offset+j](h, weights[offset+j]) for j, h in enumerate(states) if h is not None) offset += len(states) states.append(s) concat_feature = torch.cat(states[-self._multiplier:], dim=1) return self.ReLUConvBN (concat_feature)
python
import pytest from django.contrib.auth import get_user_model from django.test import Client def test_user_guest(): c = Client() resp = c.get("/require-user") assert resp.status_code == 403 assert resp.json() == {"message": "You have to log in"} def test_async_user_guest(): c = Client() resp = c.get("/async/require-user") assert resp.status_code == 403 assert resp.json() == {"message": "You have to log in"} @pytest.mark.django_db def test_user_inactive(): c = Client() user = get_user_model().objects.get_or_create( username="inactive_user", email="[email protected]" )[0] c.force_login(user) user.is_active = False user.save() resp = c.get("/require-user") assert resp.status_code == 403 assert resp.json() == {"message": "You have to log in"} @pytest.mark.django_db def test_async_user_inactive(): c = Client() user = get_user_model().objects.get_or_create( username="inactive_user", email="[email protected]" )[0] c.force_login(user) user.is_active = False user.save() resp = c.get("/async/require-user") assert resp.status_code == 403 assert resp.json() == {"message": "You have to log in"} @pytest.mark.django_db def test_user_success(): user = get_user_model().objects.get_or_create( username="user", email="[email protected]" )[0] c = Client() c.force_login(user) resp = c.get("/require-user") assert resp.status_code == 200 assert resp.json() == {"user": "user"} @pytest.mark.django_db(transaction=True) def test_async_user_success(): user = get_user_model().objects.get_or_create( username="user", email="[email protected]" )[0] c = Client() c.force_login(user) resp = c.get("/async/require-user") assert resp.status_code == 200 assert resp.json() == {"user": "user"} def test_staff_guest(): c = Client() resp = c.get("/require-staff") assert resp.status_code == 403 assert resp.json() == {"message": "You have to log in"} def test_async_staff_guest(): c = Client() resp = c.get("/async/require-staff") assert resp.status_code == 403 assert resp.json() == {"message": "You have to log in"} @pytest.mark.django_db def test_staff_inactive(): user = get_user_model().objects.get_or_create( username="inactive_staff", email="[email protected]", is_staff=True )[0] c = Client() c.force_login(user) user.is_active = False user.save() resp = c.get("/require-staff") assert resp.status_code == 403 assert resp.json() == {"message": "You have to log in"} @pytest.mark.django_db def test_async_staff_inactive(): user = get_user_model().objects.get_or_create( username="inactive_staff", email="[email protected]", is_staff=True )[0] c = Client() c.force_login(user) user.is_active = False user.save() resp = c.get("/async/require-staff") assert resp.status_code == 403 assert resp.json() == {"message": "You have to log in"} @pytest.mark.django_db def test_staff_success(): user = get_user_model().objects.get_or_create( username="staff", email="[email protected]", is_staff=True )[0] c = Client() c.force_login(user) resp = c.get("/require-staff") assert resp.status_code == 200 assert resp.json() == {"user": "staff"} @pytest.mark.django_db(transaction=True) def test_async_staff_success(): user = get_user_model().objects.get_or_create( username="staff", email="[email protected]", is_staff=True )[0] c = Client() c.force_login(user) resp = c.get("/async/require-staff") assert resp.status_code == 200 assert resp.json() == {"user": "staff"}
python
# -*- coding: utf-8 -*- from __future__ import absolute_import from mock import patch from sentry.tasks.fetch_source import ( UrlResult, expand_javascript_source, discover_sourcemap, fetch_sourcemap, fetch_url, generate_module, BAD_SOURCE, trim_line) from sentry.utils.sourcemaps import (SourceMap, SourceMapIndex) from sentry.testutils import TestCase base64_sourcemap = 'data:application/json;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiZ2VuZXJhdGVkLmpzIiwic291cmNlcyI6WyIvdGVzdC5qcyJdLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiO0FBQUEiLCJzb3VyY2VzQ29udGVudCI6WyJjb25zb2xlLmxvZyhcImhlbGxvLCBXb3JsZCFcIikiXX0=' class FetchUrlTest(TestCase): @patch('sentry.tasks.fetch_source.safe_urlopen') @patch('sentry.tasks.fetch_source.safe_urlread') def test_simple(self, safe_urlread, safe_urlopen): safe_urlopen.return_value.headers = (('content-type', 'application/json'),) safe_urlread.return_value = u'foo bar' result = fetch_url('http://example.com') safe_urlopen.assert_called_once_with( 'http://example.com', allow_redirects=True, timeout=5) safe_urlread.assert_called_once_with(safe_urlopen.return_value) assert result.url == 'http://example.com' assert result.body == u'foo bar' assert result.headers == {'content-type': 'application/json'} # ensure we use the cached result result2 = fetch_url('http://example.com') safe_urlopen.assert_called_once() assert result == result2 @patch('sentry.tasks.fetch_source.safe_urlopen') @patch('sentry.tasks.fetch_source.safe_urlread') def test_connection_failure(self, safe_urlread, safe_urlopen): safe_urlopen.side_effect = Exception() result = fetch_url('http://example.com') safe_urlopen.assert_called_once_with( 'http://example.com', allow_redirects=True, timeout=5) assert not safe_urlread.mock_calls assert result == BAD_SOURCE # ensure we use the cached domain-wide failure for the second call result = fetch_url('http://example.com/foo/bar') safe_urlopen.assert_called_once() assert result == BAD_SOURCE @patch('sentry.tasks.fetch_source.safe_urlopen') @patch('sentry.tasks.fetch_source.safe_urlread') def test_read_failure(self, safe_urlread, safe_urlopen): safe_urlopen.return_value.headers = (('content-type', 'application/json'),) safe_urlread.side_effect = Exception() result = fetch_url('http://example.com') safe_urlopen.assert_called_once_with( 'http://example.com', allow_redirects=True, timeout=5) safe_urlread.assert_called_once_with(safe_urlopen.return_value) assert result == BAD_SOURCE # ensure we use the cached failure for the second call result = fetch_url('http://example.com') safe_urlopen.assert_called_once() assert result == BAD_SOURCE class DiscoverSourcemapTest(TestCase): # discover_sourcemap(result) def test_simple(self): result = UrlResult('http://example.com', {}, '') assert discover_sourcemap(result) is None result = UrlResult('http://example.com', { 'x-sourcemap': 'http://example.com/source.map.js' }, '') assert discover_sourcemap(result) == 'http://example.com/source.map.js' result = UrlResult('http://example.com', { 'sourcemap': 'http://example.com/source.map.js' }, '') assert discover_sourcemap(result) == 'http://example.com/source.map.js' result = UrlResult('http://example.com', {}, '//@ sourceMappingURL=http://example.com/source.map.js\nconsole.log(true)') assert discover_sourcemap(result) == 'http://example.com/source.map.js' result = UrlResult('http://example.com', {}, '//# sourceMappingURL=http://example.com/source.map.js\nconsole.log(true)') assert discover_sourcemap(result) == 'http://example.com/source.map.js' result = UrlResult('http://example.com', {}, 'console.log(true)\n//@ sourceMappingURL=http://example.com/source.map.js') assert discover_sourcemap(result) == 'http://example.com/source.map.js' result = UrlResult('http://example.com', {}, 'console.log(true)\n//# sourceMappingURL=http://example.com/source.map.js') assert discover_sourcemap(result) == 'http://example.com/source.map.js' class ExpandJavascriptSourceTest(TestCase): @patch('sentry.models.Event.update') @patch('sentry.tasks.fetch_source.fetch_url') @patch('sentry.tasks.fetch_source.fetch_sourcemap') @patch('sentry.tasks.fetch_source.discover_sourcemap') def test_simple(self, discover_sourcemap, fetch_sourcemap, fetch_url, update): data = { 'sentry.interfaces.Exception': { 'values': [{ 'stacktrace': { 'frames': [ { 'abs_path': 'http://example.com/foo.js', 'filename': 'foo.js', 'lineno': 4, 'colno': 0, }, { 'abs_path': 'http://example.com/foo.js', 'filename': 'foo.js', 'lineno': 1, 'colno': 0, }, ], }, }], } } discover_sourcemap.return_value = None fetch_sourcemap.return_value = None fetch_url.return_value.body = '\n'.join('hello world') expand_javascript_source(data) fetch_url.assert_called_once_with('http://example.com/foo.js') frame_list = data['sentry.interfaces.Exception']['values'][0]['stacktrace']['frames'] frame = frame_list[0] assert frame['pre_context'] == ['h', 'e', 'l'] assert frame['context_line'] == 'l' assert frame['post_context'] == ['o', ' ', 'w', 'o', 'r'] frame = frame_list[1] assert not frame.get('pre_context') assert frame['context_line'] == 'h' assert frame['post_context'] == ['e', 'l', 'l', 'o', ' '] @patch('sentry.models.Event.update') @patch('sentry.tasks.fetch_source.fetch_url') @patch('sentry.tasks.fetch_source.discover_sourcemap') def test_inlined_sources(self, discover_sourcemap, fetch_url, update): data = { 'sentry.interfaces.Exception': { 'values': [{ 'stacktrace': { 'frames': [ { 'abs_path': 'http://example.com/test.min.js', 'filename': 'test.js', 'lineno': 1, 'colno': 0, }, ], }, }], } } discover_sourcemap.return_value = base64_sourcemap fetch_url.return_value.url = 'http://example.com/test.min.js' fetch_url.return_value.body = '\n'.join('<generated source>') expand_javascript_source(data) fetch_url.assert_called_once_with('http://example.com/test.min.js') frame_list = data['sentry.interfaces.Exception']['values'][0]['stacktrace']['frames'] frame = frame_list[0] assert not frame.get('pre_context') assert frame['context_line'] == 'console.log("hello, World!")' assert not frame.get('post_context') class GenerateModuleTest(TestCase): def test_simple(self): assert generate_module(None) == '<unknown module>' assert generate_module('http://example.com/foo.js') == 'foo' assert generate_module('http://example.com/foo/bar.js') == 'foo/bar' assert generate_module('http://example.com/js/foo/bar.js') == 'foo/bar' assert generate_module('http://example.com/javascript/foo/bar.js') == 'foo/bar' assert generate_module('http://example.com/1.0/foo/bar.js') == 'foo/bar' assert generate_module('http://example.com/v1/foo/bar.js') == 'foo/bar' assert generate_module('http://example.com/v1.0.0/foo/bar.js') == 'foo/bar' assert generate_module('http://example.com/_baz/foo/bar.js') == 'foo/bar' assert generate_module('http://example.com/1/2/3/foo/bar.js') == 'foo/bar' assert generate_module('http://example.com/abcdef0/foo/bar.js') == 'foo/bar' assert generate_module('http://example.com/92cd589eca8235e7b373bf5ae94ebf898e3b949c/foo/bar.js') == 'foo/bar' assert generate_module('http://example.com/7d6d00eae0ceccdc7ee689659585d95f/foo/bar.js') == 'foo/bar' assert generate_module('/foo/bar.js') == 'foo/bar' assert generate_module('../../foo/bar.js') == 'foo/bar' assert generate_module('/foo/bar-7d6d00eae0ceccdc7ee689659585d95f.js') == 'foo/bar' class FetchBase64SourcemapTest(TestCase): def test_simple(self): index = fetch_sourcemap(base64_sourcemap) states = [SourceMap(1, 0, '/test.js', 0, 0, None)] sources = set(['/test.js']) keys = [(1, 0)] content = {'/test.js': ['console.log("hello, World!")']} assert index == SourceMapIndex(states, keys, sources, content) class TrimLineTest(TestCase): long_line = 'The public is more familiar with bad design than good design. It is, in effect, conditioned to prefer bad design, because that is what it lives with. The new becomes threatening, the old reassuring.' def test_simple(self): assert trim_line('foo') == 'foo' assert trim_line(self.long_line) == 'The public is more familiar with bad design than good design. It is, in effect, conditioned to prefer bad design, because that is what it li {snip}' assert trim_line(self.long_line, column=10) == 'The public is more familiar with bad design than good design. It is, in effect, conditioned to prefer bad design, because that is what it li {snip}' assert trim_line(self.long_line, column=66) == '{snip} blic is more familiar with bad design than good design. It is, in effect, conditioned to prefer bad design, because that is what it lives wi {snip}' assert trim_line(self.long_line, column=190) == '{snip} gn. It is, in effect, conditioned to prefer bad design, because that is what it lives with. The new becomes threatening, the old reassuring.' assert trim_line(self.long_line, column=9999) == '{snip} gn. It is, in effect, conditioned to prefer bad design, because that is what it lives with. The new becomes threatening, the old reassuring.'
python
import numpy as np import pandas as pd import thermalstd import dataclima import solarpower db_cable = 'DB_cables.xlsx' csvfile = r'D:\Analise_Dados_Solares\UFV Rio do Peixe\Séries de longo prazo (Helio-Clim3)\SAO_JOAO_DO_RIO_DO_PEIXE_HC3-METEO_hour_lat-6.725_lon-38.454_2004-02-01_2019-01-30_hz1.csv' # dictstudy_ACSR = {'Type': ['ACSR', 'ACSR', 'ACSR', 'ACSR', 'ACSR', 'ACSR'], # 'Name': ['Partridge', 'Linnet', 'Ibis', 'Hawk', 'Dove', 'Grosbeak']} # cablesstudy_ACSR = pd.DataFrame(dictstudy_ACSR) # dictstudy_AAAC = {'Type': ['AAAC_1120', 'AAAC_1120', 'AAAC_1120', 'AAAC_1120', 'AAAC_1120', 'AAAC_1120'], # 'Name': ['Krypton', 'Lutetium', 'Neon', 'Nitrogen', 'Nobelium', 'Oxygen']} # cablesstudy_AAAC = pd.DataFrame(dictstudy_AAAC) # LOADING HC3 FILE dataclima = dataclima.helioclim3(csvfile, 'rdp.pkl') df1 = dataclima.loading() print('ORIGINAL DATAFRAME') print(df1.head()) # CLIMATE VARIABLES climavars = thermalstd.climavars(vw=1.0, em=0.5, ab=0.5, tamb=40, zl=90, lat=-6, atm=1, he=100, phi=90, hour=11, nday=172) def study_cables(dictcables, df1): for i in range(dictcables.shape[0]): cable_type = dictcables.iloc[i, 0] cable_name = dictcables.iloc[i, 1] cablevars = thermalstd.cablevars(db_cable=db_cable, cable_type=cable_type, cable_name=cable_name) calc = thermalstd.Std7382006(climavars=climavars, cablevars=cablevars) calc.graphcable() # CALCULATING GROSS AND NET PRODUTION # Fatores de perdas considerados no cálculo da Produção de Energia (%) # print(df1.head()) dataloss = solarpower.energycalc(df=df1, horizon=0.2, shadings=1.9, iam=1.4, soiling=1.5, lowirradeff=0.3, temperatureloss=10.1, modulequality=0.2, lid=2.1, mismatch=0.6, ohmicdcloss=1.1, inverterloss=1.4, plantcontroller=2.5, transf_lv_mv=1.2, transf_mv_hv=0.6, auxloadsloss=0.3, ohmicac_poi=1.3, systemunavailability=0.8, gridunavailability=0.2) # print(df1.head()) ''' Características UFV Modelo módulo: TSM-370DE14A(II) (380W) Dimensão módulo: 1960 × 992 × 40 mm https://www.civicsolar.com/question/how-do-you-calculate-solar-panel-efficiency modulearea = 1.96 * 0.992 # m² ''' dfproduction = dataloss.production(modulearea=1.94432, totalpower=80.256e6, modulepower=380, trackeradd=1.276) # CUTTING MAX PRODUCTION IN SOLAR POWER PLANT linevars = thermalstd.linevars(dfproduction=dfproduction, voltage=69, powerfactor=0.95, climavars=climavars, cablevars=cablevars, extline=14, maxnetprod=61) # WITHOUT CUTTING MAX PRODUCTION IN SOLAR POWER PLANT # linevars = thermalstd.linevars(dfproduction=dfproduction, # voltage=69, # powerfactor=0.95, # climavars=climavars, # cablevars=cablevars, # extline=14) # outnetlimit = power value at the destiny # maxnetprod = max power valer at the origin # CONDITIONS dataanalysis = thermalstd.analysis(climavars=climavars, cablevars=cablevars, linevars=linevars, savexlsx=True) print('PLOTTING MEAN AND MAX CURRENT BARS') dataanalysis.curvecur('Current_Bars') print('PLOTTING CURRENT X TEMP BARS') dataanalysis.curvecurtemp('Current_Temp_Bars') dataanalysis.conditions() # study_cables(cablesstudy_ACSR, df1) # study_cables(cablesstudy_AAAC, df1) dictstudy = {'Type': ['AAAC_1120'], 'Name': ['Nitrogen']} cablesstudy = pd.DataFrame(dictstudy) study_cables(cablesstudy, df1)
python
# Copyright (c) 2003-2020 Xsens Technologies B.V. or subsidiaries worldwide. # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions, and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the names of the copyright holders nor the names of their contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL # THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR # TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.THE LAWS OF THE NETHERLANDS # SHALL BE EXCLUSIVELY APPLICABLE AND ANY DISPUTES SHALL BE FINALLY SETTLED UNDER THE RULES # OF ARBITRATION OF THE INTERNATIONAL CHAMBER OF COMMERCE IN THE HAGUE BY ONE OR MORE # ARBITRATORS APPOINTED IN ACCORDANCE WITH SAID RULES. # import sys import xsensdeviceapi.xsensdeviceapi_py37_64 as xda from threading import Lock class XdaCallback(xda.XsCallback): def __init__(self, max_buffer_size = 5): xda.XsCallback.__init__(self) self.m_maxNumberOfPacketsInBuffer = max_buffer_size self.m_packetBuffer = list() self.m_lock = Lock() def packetAvailable(self): self.m_lock.acquire() res = len(self.m_packetBuffer) > 0 self.m_lock.release() return res def getNextPacket(self): self.m_lock.acquire() assert(len(self.m_packetBuffer) > 0) oldest_packet = xda.XsDataPacket(self.m_packetBuffer.pop(0)) self.m_lock.release() return oldest_packet def onLiveDataAvailable(self, dev, packet): self.m_lock.acquire() assert(packet is not 0) while len(self.m_packetBuffer) >= self.m_maxNumberOfPacketsInBuffer: self.m_packetBuffer.pop() self.m_packetBuffer.append(xda.XsDataPacket(packet)) self.m_lock.release() if __name__ == '__main__': print("Creating XsControl object...") control = xda.XsControl_construct() assert(control is not 0) xdaVersion = xda.XsVersion() xda.xdaVersion(xdaVersion) print("Using XDA version %s" % xdaVersion.toXsString()) try: print("Scanning for devices...") portInfoArray = xda.XsScanner_scanPorts() # Find an MTi device mtPort = xda.XsPortInfo() for i in range(portInfoArray.size()): if portInfoArray[i].deviceId().isMti() or portInfoArray[i].deviceId().isMtig(): mtPort = portInfoArray[i] break if mtPort.empty(): raise RuntimeError("No MTi device found. Aborting.") did = mtPort.deviceId() print("Found a device with:") print(" Device ID: %s" % did.toXsString()) print(" Port name: %s" % mtPort.portName()) print("Opening port...") if not control.openPort(mtPort.portName(), mtPort.baudrate()): raise RuntimeError("Could not open port. Aborting.") # Get the device object device = control.device(did) assert(device is not 0) print("Device: %s, with ID: %s opened." % (device.productCode(), device.deviceId().toXsString())) # Create and attach callback handler to device callback = XdaCallback() device.addCallbackHandler(callback) # Put the device into configuration mode before configuring the device print("Putting device into configuration mode...") if not device.gotoConfig(): raise RuntimeError("Could not put device into configuration mode. Aborting.") print("Configuring the device...") configArray = xda.XsOutputConfigurationArray() configArray.push_back(xda.XsOutputConfiguration(xda.XDI_PacketCounter, 0)) configArray.push_back(xda.XsOutputConfiguration(xda.XDI_SampleTimeFine, 0)) if device.deviceId().isImu(): configArray.push_back(xda.XsOutputConfiguration(xda.XDI_Acceleration, 100)) configArray.push_back(xda.XsOutputConfiguration(xda.XDI_RateOfTurn, 100)) configArray.push_back(xda.XsOutputConfiguration(xda.XDI_MagneticField, 100)) elif device.deviceId().isVru() or device.deviceId().isAhrs(): configArray.push_back(xda.XsOutputConfiguration(xda.XDI_Quaternion, 100)) elif device.deviceId().isGnss(): configArray.push_back(xda.XsOutputConfiguration(xda.XDI_Quaternion, 100)) configArray.push_back(xda.XsOutputConfiguration(xda.XDI_LatLon, 100)) configArray.push_back(xda.XsOutputConfiguration(xda.XDI_AltitudeEllipsoid, 100)) configArray.push_back(xda.XsOutputConfiguration(xda.XDI_VelocityXYZ, 100)) else: raise RuntimeError("Unknown device while configuring. Aborting.") if not device.setOutputConfiguration(configArray): raise RuntimeError("Could not configure the device. Aborting.") print("Creating a log file...") logFileName = "logfile.mtb" if device.createLogFile(logFileName) != xda.XRV_OK: raise RuntimeError("Failed to create a log file. Aborting.") else: print("Created a log file: %s" % logFileName) print("Putting device into measurement mode...") if not device.gotoMeasurement(): raise RuntimeError("Could not put device into measurement mode. Aborting.") print("Starting recording...") if not device.startRecording(): raise RuntimeError("Failed to start recording. Aborting.") print("Main loop. Recording data for 10 seconds.") startTime = xda.XsTimeStamp_nowMs() while xda.XsTimeStamp_nowMs() - startTime <= 10000: if callback.packetAvailable(): # Retrieve a packet packet = callback.getNextPacket() s = "" if packet.containsCalibratedData(): acc = packet.calibratedAcceleration() s = "Acc X: %.2f" % acc[0] + ", Acc Y: %.2f" % acc[1] + ", Acc Z: %.2f" % acc[2] gyr = packet.calibratedGyroscopeData() s += " |Gyr X: %.2f" % gyr[0] + ", Gyr Y: %.2f" % gyr[1] + ", Gyr Z: %.2f" % gyr[2] mag = packet.calibratedMagneticField() s += " |Mag X: %.2f" % mag[0] + ", Mag Y: %.2f" % mag[1] + ", Mag Z: %.2f" % mag[2] if packet.containsOrientation(): quaternion = packet.orientationQuaternion() s = "q0: %.2f" % quaternion[0] + ", q1: %.2f" % quaternion[1] + ", q2: %.2f" % quaternion[2] + ", q3: %.2f " % quaternion[3] euler = packet.orientationEuler() s += " |Roll: %.2f" % euler.x() + ", Pitch: %.2f" % euler.y() + ", Yaw: %.2f " % euler.z() if packet.containsLatitudeLongitude(): latlon = packet.latitudeLongitude() s += " |Lat: %7.2f" % latlon[0] + ", Lon: %7.2f " % latlon[1] if packet.containsAltitude(): s += " |Alt: %7.2f " % packet.altitude() if packet.containsVelocity(): vel = packet.velocity(xda.XDI_CoordSysEnu) s += " |E: %7.2f" % vel[0] + ", N: %7.2f" % vel[1] + ", U: %7.2f " % vel[2] print("%s\r" % s, end="", flush=True) print("\nStopping recording...") if not device.stopRecording(): raise RuntimeError("Failed to stop recording. Aborting.") print("Closing log file...") if not device.closeLogFile(): raise RuntimeError("Failed to close log file. Aborting.") print("Removing callback handler...") device.removeCallbackHandler(callback) print("Closing port...") control.closePort(mtPort.portName()) print("Closing XsControl object...") control.close() except RuntimeError as error: print(error) sys.exit(1) except: print("An unknown fatal error has occured. Aborting.") sys.exit(1) else: print("Successful exit.")
python
from django.db import models from django.contrib.auth.models import User class Customer(models.Model): user = models.OneToOneField(User, null=True, blank=True, on_delete= models.CASCADE) name = models.CharField(max_length=200, null=True) email = models.CharField(max_length=200, null=True) def __str__(self): return self.name
python
#!/usr/bin/env python import glob import json import logging import math import mimetypes import os import platform import re import shutil import socket import subprocess import sys import tempfile from multiprocessing import Process from random import uniform from socket import gaierror from time import sleep from importlib.metadata import metadata from urllib.error import URLError from urllib.parse import unquote, urldefrag, urljoin, urlparse import requests from bs4 import BeautifulSoup as bs from fake_useragent import FakeUserAgentError, UserAgent from packaging.version import parse from requests.auth import HTTPBasicAuth from requests.packages import urllib3 from requests.packages.urllib3.exceptions import InsecureRequestWarning from robotsparsetools import NotFoundError, Parse from tqdm import tqdm try: import msvcrt except: import termios try: metadata("prop-request") _binary = False except: _binary = True _prop_directory = os.path.join(os.environ.get("HOME"), ".prop-datas") if not os.path.isdir(_prop_directory): os.mkdir(_prop_directory) """ 下記コマンド実行必要 pip install requests numpy beautifulsoup4 requests[socks] fake-useragent tqdm (urllib3はrequests付属) """ urllib3.disable_warnings(InsecureRequestWarning) VERSION = parse("1.2.7") class error: @staticmethod def print(msg): print(f"\033[31m{msg}\033[0m", file=sys.stderr) print("\n\033[33mIf you don't know how to use, please use '-h', '--help' options and you will see help message\033[0m", file=sys.stderr) sys.exit(1) class LoggingHandler(logging.StreamHandler): color = {'INFO': '\033[36mINFO\033[0m', 'WARNING': '\033[33mWARNING\033[0m', 'WARN': '\033[33mWARN\033[0m', 'ERROR': '\033[31mERROR\033[0m'} def __init__(self, level=logging.NOTSET): super().__init__(level) def emit(self, record): try: record.levelname = LoggingHandler.color.get(record.levelname, record.levelname) msg = self.format(record) tqdm.write(msg, file=sys.stderr) self.flush() except Exception: self.handleError(record) class LoggingFileHandler(logging.Handler): def __init__(self, file, mode="a", level=logging.NOTSET): super().__init__(level) self.file = open(file, mode) def emit(self, record): try: record.msg = re.sub('\033\\[[+-]?\\d+m', '', str(record.msg)) record.levelname = re.sub('\033\\[[+-]?\\d+m', '', record.levelname) msg = self.format(record) self.file.write(msg) self.file.write('\n') self.file.flush() except Exception as e: self.handleError(record) class setting: """ オプション設定やファイルへのログを定義するクラス """ if _binary: log_file = os.path.join(_prop_directory, 'log.log') config_file = os.path.join(_prop_directory, 'config.json') else: log_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'log.log') config_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.json') def __init__(self): # 設定できるオプションたち # 他からimportしてもこの辞書を弄ることで色々できる self.options = {'download_name': '', 'limit': 0, 'only_body': False, 'debug': False, 'parse': False, 'types': 'get', 'payload': None, 'output': True, 'filename': None, 'timeout': (3.0, 60.0), 'redirect': True, 'upload': None, 'json': False, 'search': None, 'header': {'User-Agent': 'Prop/1.1.2'}, 'cookie': None, 'proxy': {"http": os.environ.get("http_proxy") or os.environ.get("HTTP_PROXY"), "https": os.environ.get("https_proxy") or os.environ.get("HTTPS_PROXY")}, 'auth': None, 'bytes': False, 'recursive': 0, 'body': True, 'content': True, 'conversion': True, 'reconnect': 5, 'caperror': True, 'noparent': False, 'no_downloaded': False, 'interval': 1, 'start': None, 'format': '%(file)s', 'info': False, 'multiprocess': False, 'ssl': True, 'parser': 'html.parser', 'no_dl_external': True, 'save_robots': True, 'check_only': False} # 以下logger設定 logger = logging.getLogger('Log of Prop') logger.setLevel(20) sh = LoggingHandler() self.fh = LoggingFileHandler(setting.log_file) logger.addHandler(sh) logger.addHandler(self.fh) format = logging.Formatter('%(asctime)s:[%(levelname)s]> %(message)s') sh.setFormatter(format) self.fh.setFormatter(format) self.log = logger.log def config_load(self) -> None: """ 設定ファイルをロード """ if os.path.isfile(setting.config_file): with open(setting.config_file, 'r') as f: config = json.load(f) if isinstance(config['timeout'], list): config['timeout'] = tuple(config['timeout']) self.options.update(config) def config(self, key: str, value: str or bool or None) -> None: """ オプションの設定 """ self.options[key] = value class cache: """ キャッシュ(stylesheet)を扱うクラス """ if _binary: root = os.path.join(_prop_directory, 'cache') else: root = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'cache') configfile = os.path.join(root, '.cache_info') if os.path.isfile(configfile): with open(configfile, 'r') as f: _caches = json.load(f) else: _caches = dict() def __init__(self, url, parse): self.parse = parse host = self.parse.get_hostname(url) if not os.path.isdir(self.root): os.mkdir(self.root) self.directory = os.path.join(cache.root, host) if not os.path.isdir(self.directory): os.mkdir(self.directory) @staticmethod def get_cache(url) -> str or None: return cache._caches.get(url) def save(self, url, body: bytes) -> str: file = os.path.join(self.directory, self.parse.get_filename(url)) with open(file, 'wb') as f: f.write(body) cache._caches[url] = file @staticmethod def update(option): file = os.path.join('styles', '.prop_info.json') if os.path.isfile(file): with open(file, 'r') as f: info_dict = json.load(f) else: info_dict = dict() if not cache._caches: return for url, path in tqdm(cache._caches.items()): r = requests.get(url, timeout=option['timeout'], proxies=option['proxy'], headers=option['header'], verify=option['ssl']) with open(path, 'wb') as f: f.write(r.content) tqdm.write(f"updated '{path}'") if url in info_dict: shutil.copy(path, info_dict[url]) tqdm.write(f"updated '{info_dict[url]}'") sleep(0.5) def __enter__(self): return self def __exit__(self, *_): with open(cache.configfile, 'w') as f: json.dump(self._caches, f) class history: """ ダウンロード履歴関連の関数を定義するクラス 基本的に./history配下のファイルのみ操作 """ if _binary: root = os.path.join(_prop_directory, 'history') else: root = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'history') def __init__(self, url: str): self.domain = urlparse(url).netloc self.history_file = os.path.join(history.root, self.domain+'.txt') if not os.path.isdir(history.root): os.mkdir(history.root) def write(self, content: str or list, end: str = '\n') -> None: if isinstance(content, list): content: str = '\n'.join(content) if content in self.read(): return with open(self.history_file, 'a') as f: f.write(content+end) def read(self) -> set: if os.path.isfile(self.history_file): with open(self.history_file, 'r') as f: return set(f.read().rstrip().splitlines()) else: return set() class parser: """ HTMLやURL解析 spiderはaタグとimgタグから参照先URLを抽出し保存、html_extractionは任意のタグを抽出 """ status_messages = {400: 'Bad Request', 401: 'Unauthorized', 402: 'Payment Required', 403: 'Forbidden', 404: 'Not Found', 405: 'Method Not Allowed', 406: 'Not Acceptable', 407: 'Proxy Authentication Required', 408: 'Request Timeout', 409: 'Conflict', 410: 'Gone', 411: 'Length Required', 412: 'Precondition Failed', 413: 'Payload Too Large', 414: 'URI Too Long', 415: 'Unsupported Media Type', 416: 'Range Not Satisfiable', 417: 'Expectation Failed', 418: "I'm a teapot", 421: 'Misdirected Request', 422: 'Unprocessable Entity', 423: 'Locked', 424: 'Failed Dependency', 425: 'Too Early', 426: 'Upgrade Required', 428: 'Precondition Required', 429: 'Too Many Requests', 431: 'Request Header Fields Too Large', 451: 'Unavailable For Legal Reasons', 500: 'Internal Server Error', 501: 'Not Implemented', 502: 'Bad Gateway', 503: 'Service Unavailable', 504: 'Gateway Timeout', 505: 'HTTP Version Not Supported', 506: 'Variant Also Negotiates', 507: 'Insufficient Storage', 508: 'Loop Detected', 510: 'Not Extended', 511: 'Network Authentication Required'} def __init__(self, option, log, *, dl=None): self.option = option self.log = log self.parser = self.option['parser'] self.dl = dl @staticmethod def get_rootdir(url: str) -> str or None: """ ホームアドレスを摘出 """ if parser.is_url(url): result = urlparse(url) return result.scheme+'://'+result.hostname else: return None @staticmethod def query_dns(url: str): if parser.is_url(url): host = parser.get_hostname(url) else: host = url if host: i = socket.getaddrinfo(host, None) return i else: raise gaierror() @staticmethod def get_hostname(url: str) -> str or None: if parser.is_url(url): return urlparse(url).hostname else: return None @staticmethod def get_filename(url, name_only=True): if not isinstance(url, str): return url result = unquote(url.rstrip('/').split('/')[-1]) if name_only: defrag = urldefrag(result).url return parser.delete_query(defrag) return result @staticmethod def splitext(url): if not isinstance(url, str): return url split = url.rstrip('/').split('.') if len(split) < 2 or not split[-1] or '/' in split[-1] or urlparse(url).path in {'', '/'}: return (url, '.html') else: return ('.'.join(split[:-1]), '.'+split[-1]) @staticmethod def delete_query(url): if not isinstance(url, str): return url index = url.find('?') if 0 <= index: return url[:index] else: return url @staticmethod def is_url(url: str) -> bool: """ 引数に渡された文字列がURLか判別 """ return bool(re.match(r"https?://[\w!\?/\+\-_~=;\.,\*&@#\$%\(\)'\[\]]+", url)) def html_extraction(self, source: bytes or str, words: dict) -> str: data = bs(source, self.parser) if 'css' in words: code: list = data.select(words.get('css'), limit=self.option.get('limit') or None) else: code: list = data.find_all(name=words.get('tags'), attrs=words['words'], limit=self.option.get('limit') or None) return '\n\n'.join(map(str, code)) def is_success_status(self, returncode): if 200 <= returncode < 400: self.log(20, f'{returncode}: Success request') return True else: self.log(40, '{}: {}'.format(returncode, parser.status_messages.get(returncode, "unknown"))) return False def delay_check(self): """ 指定されているインターバルがrobots.txtのcrawl_delayの数値以上か判定 もしcrawl_delayの数値より少なかったらインターバルをcrawl_delayの数値に置き換える """ delay = self.robots.delay() if delay is not None and self.option['interval'] < delay: self.log(30, f"it changed interval because it was shorter than the time stated in robots.txt '{self.option['interval']}' => '{delay}'") self.option['interval'] = delay def _cut(self, list, get, cwd_url, response, root_url, downloaded, is_ok, info_dict, cut=True): data: dict = dict() did_host: set = set() dns = False start = self.option['start'] is None for tag in list: if isinstance(get, str): url: str = tag.get(get) else: for g in get: url = tag.get(g) if url: break else: continue url = url if not url or '#' in url or url in info_dict: continue if self.is_url(url): target_url: str = url dns = True else: target_url: str = urljoin(cwd_url, url) if not self.is_url(target_url): continue if cut and not start: if target_url.endswith(self.option['start']): start = True else: continue if cut and ((self.option['noparent'] and (not target_url.startswith(response.url) and target_url.startswith(root_url))) or target_url in set(data.values()) or ((target_url.startswith(cwd_url) and '#' in target_url) or (self.option['no_dl_external'] and not target_url.startswith(root_url)))): continue if cut and (self.option['download_name'] not in target_url or (self.option['no_downloaded'] and target_url in downloaded)): continue if self.option['debug']: self.log(20, f"found '{target_url}'") if self.option['save_robots'] and not is_ok(url): self.log(30, f'{target_url} is prohibited by robots.txt') continue if dns: try: hostname = self.get_hostname(target_url) if hostname not in did_host: if not hostname: raise gaierror() if self.option['debug']: self.log(20, f"querying the DNS server for '{hostname}' now...") i = self.query_dns(hostname) except gaierror: self.log(30, f"skiped {target_url} because there was no response from the DNS server") continue except: pass finally: dns = False did_host.add(hostname) data[url] = target_url if cut and 0 < self.option['limit'] <= len(data): break return data def _get_count(self): files = list(filter(lambda p: bool(re.match(re.escape(self.option['formated']).replace(r'%\(num\)d', r'\d+').replace(r'%\(file\)s', '.*').replace(r'%\(ext\)s', '.*'), p)), os.listdir())) if files: string = self.option['formated'].split('%(num)d') start = len(string[0]) if string[1]: end = string[1][0] num = map(lambda p: int(p[start:p.find(end, start)]), files) else: num = map(lambda p: int(p[start:]), files) return max(num)+1 return 0 def spider(self, response, *, h=sys.stdout, session): """ HTMLからaタグとimgタグの参照先を抽出し保存 """ temporary_list: list = [] temporary_list_urls: list = [] if '%(num)d' in self.option['formated']: count = self._get_count() else: count = 0 max = self.option['interval']+3 info_file = os.path.join('styles', '.prop_info.json') if self.option['no_downloaded']: downloaded: set = h.read() else: downloaded: set = set() if (not os.path.isfile(os.path.join('styles', '.prop_info.json'))) and self.option['body'] and not self.option['start'] and not self.option['check_only'] and not (self.option['no_downloaded'] and response.url.rstrip('/') in downloaded): root = self.dl.recursive_download(response.url, response.text, count) count += 1 WebSiteData: dict = {response.url: root} h.write(response.url.rstrip('/')) elif self.option['check_only']: WebSiteData: dict = {response.url: response.url} else: WebSiteData: dict = dict() if os.path.isfile(info_file): with open(info_file, 'r') as f: WebSiteData.update(json.load(f)) root_url: str = self.get_rootdir(response.url) # ↑ホームURLを取得 cwd_urls = [response.url] # ↑リクエストしたURLを取得 # aタグの参照先に./~~が出てきたときにこの変数の値と連結させる if self.option['debug']: self.log(20, 'checking robots.txt...') try: self.robots = Parse(root_url, requests=True, headers=self.option['header'], proxies=self.option['proxy'], timeout=self.option['timeout']) is_ok = self.robots.can_crawl self.delay_check() except NotFoundError: is_ok = lambda *_: True if self.option['debug']: self.log(20, 'robots.txt was none') source = [response.content] print(f"\033[36mhistories are saved in '{h.history_file}'\033[0m", file=sys.stderr) for n in range(self.option['recursive']): for source, cwd_url in zip(source, cwd_urls): datas = bs(source, self.parser) if self.option['body']: a_data: dict = self._cut(datas.find_all('a'), 'href', cwd_url, response, root_url, downloaded, is_ok, WebSiteData) #aタグ抽出 link_data: dict = self._cut(datas.find_all('link', rel='stylesheet'), "href", cwd_url, response, root_url, downloaded, is_ok, WebSiteData, cut=False) # rel=stylesheetのlinkタグを抽出 if self.option['content']: img_data: dict = self._cut(datas.find_all('img'), ['src', 'data-lazy-src', 'data-src'], cwd_url, response, root_url, downloaded, is_ok, WebSiteData) # imgタグ抽出 self.option['header']['Referer'] = cwd_url if self.option['body']: if not os.path.isdir('styles') and not self.option['check_only']: os.mkdir('styles') self.log(20, 'loading stylesheets...') before_fmt = self.dl.option['formated'] self.dl.option['formated'] = os.path.join('styles', '%(file)s') for from_url, target_url in tqdm(link_data.items(), leave=False, desc="'stylesheets'"): with cache(target_url, self) as caches: che = caches.get_cache(target_url) if che: result = os.path.join('styles', os.path.basename(che)) shutil.copy(che, result) self.log(20, f"using cache instead of downloading '{target_url}'") else: for i in range(self.option['reconnect']+1): try: if i == 0: self.log(20, f"request start: '{target_url}'") else: self.log(20, f"retrying {i}") res: requests.models.Response = session.get(target_url, timeout=self.option['timeout'], proxies=self.option['proxy'], headers=self.option['header'], verify=self.option['ssl']) if not self.is_success_status(res.status_code): break if self.option['debug']: tqdm.write(f"response speed: {res.elapsed.total_seconds()}s [{len(res.content)} bytes data]", file=sys.stderr) res.close() result = self.dl.recursive_download(res.url, res.content) caches.save(target_url, res.content) break except Exception as e: if i >= self.option['reconnect']-1: self.log(30, e) sleep(1) continue WebSiteData[from_url] = result if os.path.isdir('styles'): with open(info_file, 'w') as f: json.dump(WebSiteData, f, indent=4, ensure_ascii=False) self.dl.option['formated'] = before_fmt for from_url, target_url in tqdm(a_data.items(), leave=False, desc="'a tag'"): for i in range(self.option['reconnect']+1): try: if i == 0: self.log(20, f"request start: '{target_url}'") else: self.log(20, f"retrying {i}...") res: requests.models.Response = session.get(target_url, timeout=self.option['timeout'], proxies=self.option['proxy'], headers=self.option['header'], verify=self.option['ssl']) if not self.is_success_status(res.status_code): break temporary_list.append(res.content) temporary_list_urls.append(res.url) h.write(target_url) if self.option['debug']: tqdm.write(f"response speed: {res.elapsed.total_seconds()}s [{len(res.content)} bytes data]", file=sys.stderr) res.close() if self.option['check_only']: WebSiteData[target_url] = 'Exists' if self.is_success_status(res.status_code) else 'Not' else: result = self.dl.recursive_download(res.url, res.content, count) count += 1 WebSiteData[from_url] = result if os.path.isdir('styles'): with open(info_file, 'w') as f: json.dump(WebSiteData, f, indent=4, ensure_ascii=False) break except Exception as e: if i >= self.option['reconnect']-1: self.log(30, e) sleep(1) continue else: if self.option['debug']: self.log(20, f"didn't response '{target_url}'") continue sleep(round(uniform(self.option['interval'], max), 1)) if self.option['content']: for from_url, target_url in tqdm(img_data.items(), leave=False, desc="'img tag'"): for i in range(self.option['reconnect']): try: if i == 0: self.log(20, f"request start: '{target_url}'") else: self.log(20, f"retrying {i}") res: requests.models.Response = session.get(target_url, timeout=self.option['timeout'], proxies=self.option['proxy'], headers=self.option['header'], verify=self.option['ssl']) h.write(target_url) if not self.is_success_status(res.status_code): break if self.option['debug']: tqdm.write(f"response speed: {res.elapsed.total_seconds()}s [{len(res.content)} bytes data]", file=sys.stderr) res.close() if self.option['check_only']: WebSiteData[target_url] = 'Exists' if self.is_success_status(res.status_code) else 'Not' else: result = self.dl.recursive_download(res.url, res.content, count) count += 1 WebSiteData[from_url] = result if os.path.isdir('styles'): with open(info_file, 'w') as f: json.dump(WebSiteData, f, indent=4, ensure_ascii=False) break except Exception as e: if i >= self.option['reconnect']-1: self.log(30, e) continue else: if self.option['debug']: self.log(20, f"didn't response '{target_url}'") sleep(round(uniform(self.option['interval'], max), 1)) cwd_urls = temporary_list_urls temporary_list_urls: list = [] source = temporary_list temporary_list: list = [] if self.option['debug']: self.log(20, f'{n+1} hierarchy... '+'\033[32m'+'done'+'\033[0m') if self.option['check_only']: for k, v in WebSiteData.items(): print('{} ... {}{}\033[0m'.format(k, '\033[32m' if v == 'Exists' else '\033[31m', v)) sys.exit() elif os.path.isdir('styles'): with open(info_file, 'w') as f: json.dump(WebSiteData, f, indent=4, ensure_ascii=False) return WebSiteData class downloader: """ 再帰ダウンロードやリクエスト&パースする関数を定義するクラス start_download以降の関数は再帰ダウンロード関連の関数 """ def __init__(self, url: str, option, parsers='html.parser'): self.url = url # リスト self.parser: str = parsers self.option = option self.session = requests.Session() logger = logging.getLogger('Log of Prop') self.log = logger.log self.parse = parser(self.option, self.log, dl=self) def start(self) -> None: """ URLに対してリスエストを送る前準備と実行 """ methods: dict = {'get': self.session.get, 'post': self.session.post, 'put': self.session.put, 'delete': self.session.delete} instance: requests = methods.get(self.option['types']) if self.option['debug']: self.log(20, """ request urls: {0} \033[35m[settings]\033[0m {1} """.format(self.url, '\n'.join([f'\033[34m{k}\033[0m: {v}' for k, v in self.option.items()]))) for url in self.url: try: hostname = self.parse.get_hostname(url) if not hostname: self.log(40, f"'{url}' is not url") continue if self.option['debug']: self.log(20, f"querying the DNS server for '{hostname}' now...") i = self.parse.query_dns(hostname) if self.option['debug']: self.log(20, f"request start {url} [{i[0][-1][0]}]") self.request(url, instance) except gaierror: self.log(20, f"skiped '{url}' because there was no response from the DNS server") continue except Exception as e: if self.option['caperror']: self.log(40, f'\033[31m{str(e)}\033[0m') continue def request(self, url: str, instance) -> str or List[requests.models.Response, str]: self.option['formated']: str = self.option['format'].replace('%(root)s', self.parse.get_hostname(url)) if self.option['types'] != 'post': r: requests.models.Response = instance(url, params=self.option['payload'], allow_redirects=self.option['redirect'], cookies=self.option['cookie'], auth=self.option['auth'], timeout=self.option['timeout'], proxies=self.option['proxy'], headers=self.option['header'], verify=self.option['ssl'], stream=True) else: if self.option['upload']: name, form = self.option['upload'] with open(name, 'rb') as f: if form: upload_data = {form: (f.name, f, mimetypes.guess_type(f.name)[0])} else: upload_data = {f.name: f} r: requests.models.Response = instance(url, allow_redirects=self.option['redirect'], cookies=self.option['cookie'], auth=self.option['auth'], proxies=self.option['proxy'], timeout=self.option['timeout'], headers=self.option['header'], verify=self.option['ssl'], files=upload_data, stream=True) elif self.option['json']: r: requests.models.Response = instance(url, json=self.option['payload'], allow_redirects=self.option['redirect'], cookies=self.option['cookie'], auth=self.option['auth'], proxies=self.option['proxy'], timeout=self.option['timeout'], headers=self.option['header'], verify=self.option['ssl'], stream=True) else: r: requests.models.Response = instance(url, data=self.option['payload'], allow_redirects=self.option['redirect'], cookies=self.option['cookie'], auth=self.option['auth'], proxies=self.option['proxy'], timeout=self.option['timeout'], headers=self.option['header'], verify=self.option['ssl'], stream=True) if self.option['debug'] and not self.option['info']: print(f'\n\033[35m[response headers]\033[0m\n\n'+'\n'.join([f'\033[34m{k}\033[0m: {v}' for k, v in r.headers.items()])+'\n', file=sys.stderr) if not self.parse.is_success_status(r.status_code): return if self.option['check_only'] and not self.option['recursive']: print(f'{url} ... \033[32mExists\033[0m') return h = history(r.url) if self.option['recursive']: if self.option['filename'] is os.path.basename: self.option['filename']: str = '.' if self.option['check_only'] or self.option['filename'] is not None and not os.path.isfile(self.option['filename']): if not os.path.isdir(self.option['filename']): os.mkdir(self.option['filename']) cwd = os.getcwd() os.chdir(self.option['filename']) self.log(20, 'parsing...') res = self.parse.spider(r, h=h, session=self.session) self.log(20, 'download... '+'\033[32m'+'done'+'\033[0m') self.start_conversion(res) os.chdir(cwd) return else: self.log(40, 'the output destination is not a directory or not set') sys.exit(1) elif self.option['info']: self._print(r, [r.headers], file=self.get_fmt(r)) return elif self.option['search']: result = self.parse.html_extraction(r.text, self.option['search']) save_filename = self.get_fmt(r) if save_filename: with open(save_filename, 'w') as f: f.write(result) else: print(result) return elif self.option['only_body']: try: s = bs(r.content, self.parser) save_filename = self.get_fmt(r) if save_filename: with open(save_filename, 'w') as f: f.write(s.text) else: print(s.text) except Exception as e: self.log(40, e) return length = r.headers.get('content-length') save_filename = self.get_fmt(r) if save_filename: if length: with open(save_filename, 'wb') as f: self.save(f.write, length, r) else: with open(save_filename, 'wb') as f: f.write(r.content) else: self.save(tqdm.write, length, r) def get_fmt(self, r): if self.option['filename']: if self.option['filename'] is os.path.basename: save_filename = self.parse.get_filename(r.url) elif os.path.isdir(self.option['filename']): save_filename: str = os.path.join(self.option['filename'], self.parse.get_filename(r.url)) else: save_filename: str = self.option['filename'] return save_filename else: return None def save(self, write, length, r): if write == tqdm.write: try: if 1048576 <= int(length) and not self.ask_continue("The output will be large, but they will be printed to stdout.\nContinue?"): return except: pass with tqdm(total=int(length) if length else None, unit="B", unit_scale=True) as p: for b in r.iter_content(chunk_size=16384): write(b.decode(errors='backslashreplace'), end='') p.update(len(b)) else: with tqdm(total=int(length) if length else None, unit="B", unit_scale=True) as p: for b in r.iter_content(chunk_size=16384): write(b) p.update(len(b)) def _print(self, response, output=None, file=None) -> None: if file: sys.stdout = open(file, 'w') tqdm.write('\n\033[35m[histories of redirect]\033[0m\n') if not response.history: tqdm.write('-') else: for h in response.history: tqdm.write(h.url) tqdm.write('↓') tqdm.write(response.url) tqdm.write('\033[35m[cookies]\033[0m\n') if not response.cookies: tqdm.write('-') else: for c in response.cookies: tqdm.write(f'\033[34m{c.name}\033[0m: {c.value}') tqdm.write('\n\033[35m[response headers]\033[0m\n') for i in output: if isinstance(i, (str, bytes)): tqdm.write(str(i), end='') else: for k, v in i.items(): tqdm.write(f'\033[34m{k}\033[0m: {v}') sys.stdout.flush() if file: sys.stdout.close() sys.stdout = sys.__stdout__ def _split_list(self, array, N): n = math.ceil(len(array) / N) return [array[index:index+n] for index in range(0, len(array), n)] def start_conversion(self, info: tuple) -> None: """ ファイルパス変換をスタートする """ if self.option['conversion'] and self.option['body']: self.log(20, 'convert... ') self.local_path_conversion(info) self.log(20, 'convert... '+'\033[32m' + 'done' + '\033[0m') def recursive_download(self, url: str, source: bytes or str, number: int=0) -> str: """ HTMLから見つかったファイルをダウンロード """ exts = self.parse.splitext(self.parse.delete_query(url)) # フォーマットを元に保存ファイル名を決める save_filename: str = self.option['formated'].replace('%(file)s', ''.join(self.parse.splitext(self.parse.get_filename(url)))).replace('%(num)d', str(number)).replace('%(ext)s', exts[1].lstrip('.')) if os.path.isfile(save_filename) and not self.ask_continue(f'{save_filename} has already existed\nCan I overwrite?'): return save_filename while True: try: if isinstance(source, str): with open(save_filename, 'w') as f: f.write(source) else: with open(save_filename, 'wb') as f: f.write(source) sleep(0.5) break except Exception as e: # エラーがでた場合、Warningログを表示し続けるか標準入力を受け取る[y/n] self.log(30, e) if self.ask_continue('continue?'): continue else: return if self.option['debug']: self.log(20, f'saved: {url} => {os.path.abspath(save_filename)}') return save_filename def local_path_conversion(self, conversion_urls) -> None: if self.option['conversion'] and self.option['body']: if self.option['multiprocess']: to_path = list(conversion_urls.values()) splited_path_list = self._split_list(to_path, 4) # 4分割 processes: list = [] for path in splited_path_list[1:]: # 分けた内3つをサブプロセスで変換する # 残り一つはメインプロセスで変換 p = Process(target=self.conversion_path, args=(path, conversion_urls, self.option['formated'])) p.start() processes.append(p) try: self.conversion_path(splited_path_list[0], conversion_urls, self.option['formated']) finally: for n, p in enumerate(processes): # 作成した全てのサブプロセスの終了を待つ p.join() self.log(20, f'#{n+1}'+'\033[32m'+'done'+'\033[0m') else: self.conversion_path(list(conversion_urls.values()), conversion_urls, self.option['formated']) def conversion_path(self, task, all_download_data, save_fmt: str) -> None: # URL変換 for path in task: while True: try: if not path.endswith('.html'): break with open(path, 'r') as f: source: str = f.read() for from_, to in all_download_data.items(): source = source.replace(from_, to) with open(path, 'w') as f: f.write(source) if self.option['debug']: self.log(20, f"converted '{path}'") break except Exception as e: self.log(30, f'pid: {os.getpid()} {e}') if self.ask_continue('continue?'): continue else: break if platform.system() == 'Windows': def receive(self): result = msvcrt.getch() return str(result).lower() else: def receive(self): fd = sys.stdin.fileno() old = termios.tcgetattr(fd) new = termios.tcgetattr(fd) new[3] &= ~termios.ICANON new[3] &= ~termios.ECHO try: termios.tcsetattr(fd, termios.TCSANOW, new) result = sys.stdin.read(1).lower() finally: termios.tcsetattr(fd, termios.TCSANOW, old) return result def ask_continue(self, msg) -> bool: while True: tqdm.write(f'{msg}[y/N]\n') res = '' answer = self.receive() while answer != '\n': res += answer tqdm.write(answer, end='') sys.stdout.flush() answer = self.receive() if res in {'y', 'n', 'yes', 'no'}: break print('\033[1A\r', end='') print('\033[1A\r\033[0J', end='') print('\033[1A\r\033[0J', end='', file=sys.stderr) sys.stdout.flush() sys.stderr.flush() return res in {'y', 'yes'} def tor(port=9050): return {'http': f'socks5://127.0.0.1:{port}', 'https': f'socks5://127.0.0.1:{port}'} def help() -> None: print(""" <usage> prop <option> URL [URL...] if you want to read the URL from standard input, please use '-' instead of URL <List of options> -o, --output [file path] Specify the output destination file Default setting is standard output -O Download with the same name as the download source file name -i, --ignore Even if set timeout, it ignore -t, --timeout [timeout time (number)] Set the timeout time Please specify number Also, the -i option takes precedence over this option -x, --method [method] Communicate by specifying the communication method The default is get Communication that can be specified with -x, --method option - get - post - delete - put -S, --ignore-SSL Ignore SSL certificate validation -d, --data param1=value1 param2=value2 Specify the data and parameters to send Specify as follows prop -d q=hogehoge hl=fugafuga URL Please specify the -j option when sending in json format -j, --json Send data in json format -H, --header HeaderName1=HeaderInformation1 HeaderName2=HeaderInformation2 Communicate by specifying the header -a, --fake-user-agent [BrowserName] It use the automatically generated User-Agent In addition, it is also possible to specify the name of the browser to automatically generate the User-Agent -c, --cookie cookie name 1 = information 1 cookie name 2 = information 2 Communicate by specifying the cookies -X, --proxy [proxy] Specify the proxy to use for communication --tor [port number (optional)] It use tor as a proxy If you omit the port number, 9050 will be used And, there are some things you need to do before using this option Windows: Just run tor.exe Mac: Please enter the following command to start tor $ brew services start tor Linux: Please enter the following command to start tor $ sudo service tor start -F, --information Outputs only status code, redirect history, cookie information, response header information If you have specified this option and want to output to a file, use> (redirect) instead of the -o option -s, --search-words [words] Extracts and outputs the code such as the specified tag, class, id, etc. from the source code of the site If you specify more than one, separate them with ',' (don't use a space) Example of use prop -s tags=a,img,script class=test [URL] >>> Extract and display the code of a tag, img tag, and script tag from the test class Also, if limit=number or use -M, --limit option, only the specified number will be extracted Example of use prop -s tags=a limit=2 [URL] >>> Extract a tag from the top to the second Below is an example of attribute specification (there are others) class=class name id=id text=Contents of tag(character string) tags=tag name href=reference src=reference And, you can also use the css selector without using the above prop -s "a, script" [URL] -Y, --only-body Show the only body if contents are html (not body tag) -M, --limit [num] Specify the number of '-s', '--search' result or the number of recursive download files (-r, --recursive option) -e, --no-catch-error No output even if an error occurs -R, --read-file [file path] Reads the URL to download from the specified file -B, --basic-auth [user id] [password] Perform Basic authentication -l, --no-redirect Disable redirection -u, --upload file [path] [form (optional)] You can specify the file to upload at the time of post (multiple files cannot be specified) -D, --debug Display detailed information at the time of request -----Below are the options related to recursive downloads----- -r, --recursive [Recursion count (optional)] Recursively download site text links When specifying this option, be sure to specify the output destination with the -o option (specify "directory" instead of file) Also, if you specify a directory that doesn't exist, a new one will be created.) If you don't specify the number of recursion, it will be executed as if 1 was specified Also, if the -nE option isn't specified, local path conversion will be performed automatically -nc, --no-content It don't download images -nb, --no-body Downloads only images (if this option is specified, the number of recursion will be 1 even if the number of recursion is specified) -np, --no-parent It don't download the parent directory of the download source URL -nE, --no-conversion It don't convert web page URL references to local paths -dx, --download-external Also download external address sites -n, --download-filename [string] Only download files include specified string -f, --format [format] You can specify the format of the file save name at the time of recursive download If "%(file)s" or "%(num)d" aren't included in the character string, it won't be applied because saved name isn't changed for each file Ex: Suppose there are text links https://example.com/2.html and https://example.com/3.html in https://example.com prop -r -f "%(num)d-%(root)s-%(file)s" https://example.com >>> https://example.com saved as 0-example.com, http://example.com/2 saved as 1-example.com-2.html, http://example.com/3 saved as 2-example.com-3.html prop -r -f "%(num)d.%(ext)s" https://www.example.com >>> https://example.com saved as 0.html, https://example.com/2.html saved as 1.html, https://example.com/3.html saved as 2.html Specifiable format - %(root)s Hostname - %(file)s Web page file name (character string after the last '/' in the URL of the site) And, this is automatically given an extension - %(ext)s File extension (not including '.') - %(num)d Consecutive numbers -I, --interval [seconds] Specifies the interval for recursive downloads The default is 1 second -m, --multiprocess It use multi-thread processing when converting the URL reference destination of the downloaded What you do with multithreading The processing time is greatly reduced Recommended to specify -nd, --no-downloaded It don't download urls written in histories This option doesn't work properly if you delete the files under the {history_directory} (even if you delete it, it will be newly generated when you download it again) -----The following special options----- -V, --version Show the version that you are using --purge-log Remove log file --purge-history Remove all histories --purge-cache Remove all caches -C, --check It doesn't download, only checks if the specified URL exists Checks recursively when used with the -r option --config-file Show the config file --log-file Show the file which logs are written --history-directory Show the directory which files which histories are written are stored --cache-directory Show the directory which caches(stylesheet) were stored -U, --upgrade Update the prop --update-cache Update downloaded caches And, if you use this option in the directory that 'styles' directory exists, files in the 'styles' directory will be also updated -p, --parse [file path (optional)] Get HTML from file or standard input and parse it You can use the -s option to specify the search tag, class, and id If you specify a URL when you specify this option, an error will occur [About parser and default settings] The default HTML parser is html.parser, but you can also use an external parser When using lxml (1) Enter "pip install lxml" to install lxml (2) Change the value of "parser" in {config_file} as follows { "parser": "lxml" } You can also change the default settings by changing the contents of {config_file} Setting Example { "timeout": (3, 10), "header": { "User-Agent": "test" }, "proxy": { "http": "https://IPaddress:PortNumber", "https": "https://IPaddress:PortNumber" }, } The options that can be changed are as follows { "types": "get", "timeout": [3.0, 60.0], "redirect": true, "search": false, "header": null, "cookie": null, "proxy": null, "auth": null, "recursive": 0, "body": true, "content": true, "conversion": true, "reconnect": 5, "caperror": true, "noparent": false, "no_downloaded": false, "interval": 1, "format": "%(file)s", "info": false, "multiprocess": false, "ssl": true, "parser": "html.parser", "no_dl_external": true, "save_robots": true // this recommended to specify true } """.replace("{config_file}", setting.config_file).replace("{log_file}", setting.log_file).replace('{history_directory}', history.root)) def conversion_arg(args) -> list: result: list = [] for a in args: if a.startswith('-') and not a.startswith('--') and 2 < len(a) and not a in {'-np', '-nc', '-nb', '-nE', '-ns', '-nd', '-dx', '-st'}: results: str = '-'+'\n-'.join(a[1:]) result.extend(results.splitlines()) else: result.append(a) return result def _argsplit(args): result: list = [] continue_: str = None a = args.split(' ') for v in a: if (v.startswith("'") and not v.endswith("'")) or (v.startswith('"') and not v.endswith('"')): continue_ = v[0] s = [v.strip(continue_)] elif continue_ and v.endswith(continue_): s.append(v.strip(continue_)) continue_ = None result.append(' '.join(s)) elif continue_: s.append(v) else: result.append(v.strip("'\"")) return result def argument() -> (list, dict, logging.Logger.log): option: setting = setting() option.config_load() skip: int = 1 url: list = [] arg = conversion_arg(sys.argv) if len(arg) == 1: print(""" prop <options> URL [URL...] \033[33mIf you want to see help message, please use '-h', '--help' options and you will see help\033[0m""") sys.exit() for n, args in enumerate(arg): if skip: skip -= 1 continue if args == '-h' or args == '--help': help() sys.exit() elif args == '-V' or args == '--version': print(str(VERSION)) sys.exit() elif args == '-o' or args == '--output': # 出力先ファイルの設定 try: filename: str = arg[n+1] except IndexError: error.print(f"{args} [filename]\nPlease specify value of '{args}'") if filename != '-': option.config('filename', os.path.join('.', filename)) option.config('output', False) skip += 1 elif args == '-O': option.config('filename', os.path.basename) option.config('output', False) elif args == '-t' or args == '--timeout': try: timeout: int = arg[n+1] except IndexError: error.print(f"{args} [timeout]\nPlease specify value of '{args}'") if option.options.get('notimeout') is None: try: option.config('timeout', float(timeout)) except ValueError: error.print(f"'{timeout}' isn't int or float\nPlease specify int or float") skip += 1 elif args == '-i' or args == '--ignore': option.config('timeout', None) option.config('notimeout', True) elif args == '-x' or args == '--method': try: method = arg[n+1].lower() except IndexError: error.print(f"{args} [method]\nPlease specify value of '{args}'") if method in {'get', 'post', 'put', 'delete'}: option.config('types', method) else: error.print(f"'{method}' is unknown method") skip += 1 elif args == '-S' or args == '--ignore-SSL': option.config('ssl', False) elif args == '-a' or args == '--fake-user-agent': try: _stderr = sys.stderr with open(os.devnull, "w") as null: sys.stderr = null ua = UserAgent() sys.stderr = _stderr except Exception as e: sys.stderr = _stderr error.print(str(e)) try: fake = ua[arg[n+1]] skip += 1 except (IndexError, FakeUserAgentError): fake = ua.random option.options['header']['User-Agent'] = fake elif args == '-d' or args == '-H' or args == '--data' or args == '--header' or args == '-c' or args == '--cookie': params: dict = dict() header: dict = dict() for d in arg[n+1:]: i = d.split('=', 1) if len(i) == 2: if args == '-d' or args == '--data': params[i[0]] = i[1] else: header[i[0]] = i[1] skip += 1 else: break if not params and not header: error.print(f"{args} [Name=Value] [Name=Value]...\nPlease specify the value of the '{args}' option") if args == '-d' or args == '--data': option.config('payload', params) elif args == '-c' or args == '--cookie': option.config('cookie', params) else: option.options['header'].update(header) elif args == '-j' or args == '--json': option.config('json', True) elif args == '-s' or args == '--search-words': try: word = {'words': {}, 'limit': None} for n, i in enumerate(arg[n+1:]): fl = i.split('=', 2) if (n == 0 and len(fl) == 1) or re.match(r'.*\[.*=.*\]$', i): word['css'] = i skip += 1 break elif len(fl) == 2: if fl[0] != 'limit' and fl[0] != 'tags': word['words'][fl[0]] = fl[1].split(',') elif fl[0] == 'tags': word['tags'] = fl[1].split(',') else: option.config('limit', int(fl[1])) skip += 1 else: break option.config('search', word) except IndexError: error.print(f"The specifying the argument of the '{args}' option is incorrect") except ValueError: error.print(f'{fl[1]} is not number\nPlease specify number') elif args == '-Y' or args == '--only-body': option.config('only_body', True) elif args == '-l' or args == '--no-redirect': option.config('redirect', False) elif args == '-D' or args == '-D': option.config('debug', True) elif args == '-u' or args == '--upload': try: path = arg[n+1] skip += 1 except IndexError: error.print(f"{args} [filepath]\nPlease specify value of '{args}'") try: form = arg[n+2] skip += 1 except IndexError: form = None if os.path.exists(path): option.config('upload', (path, form)) else: error.print(f"The existence couldn't be confirmed: {path}") option.config('types', 'post') elif args == '-X' or args == '--proxy': try: proxy_url: str = arg[n+1] except IndexError: error.print(f"{args} [Proxy]\nPlease specify value of '{args}'") option.config('proxy', {"http": proxy_url, "https": proxy_url}) skip += 1 elif args == '-R' or args == '--read-file': try: file: str = arg[n+1] except IndexError: error.print(f"{args} [filepath]\nPlease specify value of '{args}'") urls: list = [] options: list = [] with open(file, 'r') as f: instruct = list(filter(lambda s: s != '', f.read().splitlines())) for n, a in enumerate(instruct): del sys.argv[1:] sys.argv.extend(_argsplit(a)) url, log, option = argument() urls.append(url) options.append(option) return urls, log, options elif args == '-B' or args == '--basic-auth': try: user: str = arg[n+1] password: str = arg[n+2] option.config('auth', HTTPBasicAuth(user, password)) skip += 2 except: error.print(f"{args} [UserName] [Password]\nThe specifying the argument of the '{args}' option is incorrect") elif args == '-r' or args == '--recursive': try: number: int = int(arg[n+1]) skip += 1 except (ValueError, IndexError): number: int = 1 option.config('recursive', number) result1, result2 = ('-nc' in arg or '--no-content' in arg), ('-nb' in arg or '--no-body' in arg) if result1: option.config('content', False) if result2: option.config('body', False) if result1 and result2: error.print("'-nc' and '-nb' options cannot be used together") sys.exit(1) elif args == '-st' or args == '--start': try: option.config("start", arg[n+1]) skip += 1 except IndexError: error.print(f"{args} [StartName]\nPlease specify value of '{args}'") elif args == '-n' or args == '--download-filename': try: option.config('download_name', arg[n+1]) skip += 1 except IndexError: error.print(f"{args} [string]\nPlease specify value of '{args}'") elif args == '-np' or args == '--no-parent': option.config('noparent', True) elif args in {'-nc', '-nb', '--no-content', '--no-body', '--update-cache', '-U', '--upgrade'}: continue elif args == '-M' or args == '--limit': try: limit = int(arg[n+1]) skip += 1 except IndexError: error.print(f"{args} [limit]\nPlease specify value of '{args}'") except ValueError: error.print('Please specify a number for the value of limit') option.config('limit', limit) elif args == '-e' or args == '--no-catch-error': option.config('caperror', False) elif args == '-dx' or args == '--download-external': option.config('no_dl_external', False) elif args == '-nE' or args == '--no-conversion': option.config('conversion', False) elif args == '-nd' or args == '--no-downloaded': option.config('no_downloaded', True) elif args == '-f' or args == '--format': try: string: str = arg[n+1] except IndexError: error.print(f"{args} [format]\nPlease specify value of '{args}'") if '%(file)s' in string or '%(num)d' in string: if re.match(r'%\(num\)d[0-9]', string) or ('%(file)s' in string and (not string.endswith('%(file)s') or 1 < string.count('%(file)s'))) or (1 < string.count('%(num)d')) or any(map(string.__contains__, ['%(num)d%(file)s', '%(num)d%(ext)s'])): print("""\033[33mSorry, about format, there are the following restrictions because it won't be able to generate an accurate serial number - '%(file)s' and '%(ext)s' format can only be at the end - '%(num)d' format cannot be included more than one - Numbers cannot be used immediately after '%(num)d' - '%(num)d%(file)s' and '%(num)d%(ext)s' cannot include in format\033[0m""") sys.exit(1) option.config('format', string) else: option.log(30, '\033[33mFormat specified by you isn\'t applied because "%(file)s" or "%(num)d" aren\'t in it\nIf you want to know why it isn\'t applied without them, please see help message for more information\033[0m') skip += 1 elif args == '-F' or args == '--information': option.config('info', True) elif args == '-I' or args == '--interval': try: interval: float = float(arg[n+1]) option.config('interval', interval) skip += 1 except IndexError: error.print(f"{args} [interval]\nPlease specify value of '{args}'") except ValueError: error.print(f"Please specify int or float to value of '{args}'") elif args == '-m' or args == '--multiprocess': option.config('multiprocess', True) elif args == '--tor': try: port = int(arg[n+1]) skip += 1 except (IndexError, ValueError): port = 9050 Tor = tor(port) option.config('proxy', Tor) elif args == '-C' or args == '--check': option.config('check_only', True) option.config('filename', os.getcwd()) elif args == '-p' or args == '--parse': try: path = arg[n+1] with open(path, 'r') as f: html = f.read() skip += 1 except (IndexError, FileNotFoundError): html = sys.stdin.read() option.config('parse', html) elif args == "--config-file": print(setting.config_file) sys.exit() elif args == "--log-file": print(setting.log_file) sys.exit() elif args == "--history-directory": print(history.root) sys.exit() elif args == "--cache-directory": print(cache.root) sys.exit() elif args == "--purge-log": if os.path.isfile(setting.log_file): os.remove(setting.log_file) print('done') else: print('No log file') sys.exit() elif args == "--purge-history": if os.path.isdir(history.root): files = len(glob.glob(os.path.join(history.root, "**"), recursive=True)) shutil.rmtree(history.root) print(f'Removed: {files}') else: print('No history') sys.exit() elif args == "--purge-cache": if os.path.isdir(cache.root): files = len(glob.glob(os.path.join(cache.root, "**"), recursive=True)) shutil.rmtree(cache.root) print(f'Removed: {files}') else: print('No cache') sys.exit() else: url.append(args) return url, option.fh.file, option.options def main() -> None: url, log_file, option = argument() if '--update-cache' in sys.argv: cache.update(option if isinstance(option, dict) else setting.options) sys.exit() elif '-U' in sys.argv or '--upgrade' in sys.argv: if _binary: res = requests.get("https://api.github.com/repos/mino-38/prop/releases", timeout=option['timeout'], proxies=option['proxy'], headers=option['header'], verify=option['ssl']) new_version = res.json()[0]["tag_name"] if VERSION < parse(new_version): with open(os.path.join(tempfile.gettempdir(), "prop-updater.bin"), "wb") as f, open(os.path.join(tempfile.gettempdir(), "prop-updater.sh"), "w") as s: f.write(requests.get("https://github.com/mino-38/prop/releases/latest/download/prop", timeout=option['timeout'], proxies=option['proxy'], headers=option['header'], verify=option['ssl']).content) s.write(""" function on_error () { echo -e "\\n\\033[33mFaild update\\nIf you run as root, this problem may solve\\033[0m" exit 1 } trap on_error ERR mv %(new_file)s %(bin_file)s chmod a+rx %(bin_file)s echo "Updated to version '%(version)s'" rm %(script)s """ % {"bin_file": sys.executable, "new_file": f.name, "script": s.name, "version": new_version}) subprocess.Popen("bash {}".format(s.name), shell=True, close_fds=True) else: subprocess.run(["pip", "install", "--upgrade", "prop-request"]) sys.exit() for index, link in enumerate(url): if link == '-': link = sys.stdin.readline().rstrip() elif not parser.is_url(link): link = 'http://' + link url[index] = link with log_file: if url != [] and not (isinstance(option, dict) and option['parse']): if isinstance(option, list): dl: downloader = downloader(url[0], option[0], option[0]['parser']) dl.start() for u, o in zip(url[1:], option[1:]): dl.url = u dl.option = o dl.parse.option = o dl.start() else: dl: downloader = downloader(url, option, option['parser']) dl.start() elif option['parse']: dl: downloader = downloader(url, option, option['parser']) if option['only_body']: s = bs(option['parse'], dl.parser) result = s.text else: result = dl.parse.html_extraction(option['parse'], option['search']) if option['filename']: with open(option['filename'], 'w') as f: f.write(result) else: print(result) elif url == []: error.print('Missing value for URL\nPlease specify URL') if __name__ == '__main__': main()
python
import os import sys import getpass import logging import time from selenium import webdriver from selenium.webdriver.chrome.options import Options as ChromeOptions from selenium.common.exceptions import WebDriverException from selenium.common.exceptions import SessionNotCreatedException import colorama from .database import Database from . import constants from .progress_bar import ProgressBar from . import helper from . import get_data from . import actions logger = logging.getLogger('__name__') class Scraper: def __init__(self, headful, download_stories, max_download, login_username, login_password): self.__c_fore = colorama.Fore self.__c_style = colorama.Style colorama.init() self.__database = Database() self.__database.create_tables() self.__headful = headful self.__download_stories = download_stories self.__max_download = max_download self.__login_username = login_username self.__login_password = login_password self.__is_logged_in = False self.__cookies_accepted = False self.__web_driver = self.__start_web_driver() if self.__login_username: self.__init_login() if self.__max_download == 0: print(self.__c_fore.RED + 'add the argument \'--max 3\' to specify a maximum amount of posts to scrape' + self.__c_style.RESET_ALL) self.stop() if not self.__is_logged_in and self.__download_stories: print(self.__c_fore.RED + 'you need to be logged in to scrape stories' + self.__c_style.RESET_ALL) self.stop() def __start_web_driver(self): """ Start the web driver """ driver_options = ChromeOptions() driver_options.add_experimental_option('excludeSwitches', ['enable-logging']) driver_options.add_argument('--mute-audio') driver_options.add_argument('--user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.85 Safari/537.36') driver_options.add_argument('--incognito') driver_options.headless = not self.__headful try: driver = webdriver.Chrome(service_log_path=os.devnull, options=driver_options) except SessionNotCreatedException as err: logger.error(err) print('could not start session') self.stop() except WebDriverException as err: logger.error('Launch Google Chrome error: %s' % err) print('could not launch Google Chrome: ') print('make sure Google Chrome is installed on your machine') self.stop() else: driver.maximize_window() driver.set_page_load_timeout(600) return driver def __check_if_ip_is_restricted(self): """ Check if the official Instagram profile can be seen. If not, then Instagram has temporarily restricted the ip address. """ if get_data.get_id_by_username_from_ig('instagram') is None: print(self.__c_fore.RED + 'unable to load profiles at this time (IP temporarily restricted by Instagram)' + '\n' + 'try to login with a DUMMY account to scrape' + self.__c_style.RESET_ALL) self.stop() def __init_login(self): """ Login """ if self.__login_username and not self.__is_logged_in: login_password = self.login_password if login_password is None: sys.stdout.write('\n') print('login with a DUMMY account, never use your personal account') login_password = getpass.getpass(prompt='enter your password: ') actions.Login(self, self.__login_username, login_password).do() print('login success') def __init_scrape_stories(self, user): """ Start function for scraping stories """ print('counting stories, please wait...') stories_amount = actions.CountStories(self, user).do() if stories_amount > 0: print(self.__c_fore.GREEN + str(stories_amount) + ' image(s)/video(s) will be downloaded from stories: ' + self.__c_style.RESET_ALL) actions.ScrapeStories(self, user, stories_amount).do() else: print('no stories found') def __filter_post_links(self, user): """ Check if the post link is already in the database (if post link was added by scraping a profile). If yes then skip it. """ filtered_post_links = [] shortcode_set = set() for link in user.post_links: shortcode = helper.extract_shortcode_from_url(link) if (shortcode not in shortcode_set) and (not self.__database.video_post_link_exists_by_shortcode(shortcode)): # if not self.__database.user_post_link_exists(user.username, link): shortcode_set.add(shortcode) filtered_post_links.append(link) return filtered_post_links def __filter_reel_links(self, user): """ Check if the reel link is already in the database (if reel link was added by scraping a profile). If yes then skip it. """ filtered_reel_links = [] shortcode_set = set() for link in user.reel_links: shortcode = helper.extract_shortcode_from_url(link) if (shortcode not in shortcode_set) and (not self.__database.video_post_link_exists_by_shortcode(shortcode)): # if not self.__database.user_post_link_exists(user.username, link): shortcode_set.add(shortcode) filtered_reel_links.append(link) return filtered_reel_links def __filter_igtv_links(self, user): """ Check if the igtv link is already in the database (if igtv link was added by scraping a profile). If yes then skip it. """ filtered_igtv_links = [] shortcode_set = set() for link in user.igtv_links: shortcode = helper.extract_shortcode_from_url(link) if (shortcode not in shortcode_set) and (not self.__database.video_post_link_exists_by_shortcode(shortcode)): # if not self.__database.user_post_link_exists(user.username, link): shortcode_set.add(shortcode) filtered_igtv_links.append(link) return filtered_igtv_links def init_scrape_users(self, users): """ Start function for scraping users """ helper.create_dir(constants.USERS_DIR) helper.create_dir("new_posts") from datetime import datetime new_post_log_file_timestamp = datetime.utcnow().isoformat().replace(':', '-') new_post_log_file_name = "new_posts/" + new_post_log_file_timestamp + ".txt" print("will log new post files to file: ", new_post_log_file_name) agressive_sleep = True cur_user_count = 0 for x, user in enumerate(users): if agressive_sleep: time.sleep(60) if not self.__is_logged_in: self.__check_if_ip_is_restricted() sys.stdout.write('\n') cur_user_count = cur_user_count + 1 print('\033[1m' + 'username: ' + user.username + '(', cur_user_count, '/', len(users), ')' + '\033[0;0m') user.create_user_output_directories() # Retrieve the id using actions if self.__is_logged_in: userid = actions.GetUserId(self, user.username).do() # Retrieve the id using requests else: userid = get_data.get_id_by_username_from_ig(user.username) # Continue to next user if id not found if userid is None: print(self.__c_fore.RED + 'could not load user profile' + self.__c_style.RESET_ALL) time.sleep(30) continue # actions.ScrapeDisplay(self, user).do() if not self.__database.user_exists(user.username): self.__database.insert_userid_and_username(userid, user.username) if self.__is_logged_in and self.__download_stories: self.__init_scrape_stories(user) if actions.CheckIfAccountIsPrivate(self, user).do(): print(self.__c_fore.RED + 'account is private' + self.__c_style.RESET_ALL) continue if actions.CheckIfHasLink(self, user, '/reels').do(): if agressive_sleep: time.sleep(30) print('retrieving reel links from reels ' + user.profile_link + 'reels/' +', please wait... ') user.reel_links = actions.GrabReelLinks(self, user.profile_link + 'reels/').do() user.reel_links = self.__filter_reel_links(user) if len(user.reel_links) <= 0: print('no new reels to download') else: print(self.__c_fore.GREEN + str(len(user.reel_links)) + ' reel(s) will be downloaded: ' + self.__c_style.RESET_ALL) # progress_bar = ProgressBar(len(user.reel_links), show_count=True) for link in user.reel_links: print('Scrape reel link: ' + link) # actions.InitScrape(self, link, None, user.output_user_reels_path, userid).do() # progress_bar.update(1) # progress_bar.close() print ('write links to file') helper.append_links_to_file(new_post_log_file_name, user.username, 'Reel', user.reel_links) for link in user.reel_links: print ('write ' + link + ' to db') self.__database.insert_video_post_to_download(user.username, 'Reel', link, new_post_log_file_timestamp) else: print ('No reels for user', user.username) if actions.CheckIfHasLink(self, user, '/channel').do(): if agressive_sleep: time.sleep(30) print('retrieving igtv links from igtv ' + user.profile_link + 'channel/' +', please wait... ') user.igtv_links = actions.GrabIgtvLinks(self, user.profile_link + 'channel/').do() user.igtv_links = self.__filter_igtv_links(user) if len(user.igtv_links) <= 0: print('no new igtvs to download') else: print(self.__c_fore.GREEN + str(len(user.igtv_links)) + ' igtv(s) will be downloaded: ' + self.__c_style.RESET_ALL) # progress_bar = ProgressBar(len(user.igtv_links), show_count=True) for link in user.igtv_links: print('Scrape igtv: ' + link) # actions.InitScrape(self, link, None, user.output_user_igtvs_path, userid).do() # progress_bar.update(1) # progress_bar.close() print ('write links to file') helper.append_links_to_file(new_post_log_file_name, user.username, 'Igtv', user.igtv_links) for link in user.igtv_links: print ('write ' + link + ' to db') self.__database.insert_video_post_to_download(user.username, 'Igtv', link, new_post_log_file_timestamp) else: print ('No igtv for user', user.username) if agressive_sleep: time.sleep(30) # if not actions.CheckIfProfileHasPosts(self, user).do(): # print(self.__c_fore.RED + 'no posts found' + self.__c_style.RESET_ALL) # continue print('retrieving post links from profile ' + user.profile_link +', please wait... ') user.post_links = actions.GrabPostLinks(self, user.profile_link).do() user.post_links = self.__filter_post_links(user) if len(user.post_links) <= 0: print('no new posts to download') else: print(self.__c_fore.GREEN + str(len(user.post_links)) + ' post(s) will be downloaded: ' + self.__c_style.RESET_ALL) # progress_bar = ProgressBar(len(user.post_links), show_count=True) for link in user.post_links: print('Scrape link: ' + link) # actions.InitScrape(self, link, None, user.output_user_posts_path, userid).do() # progress_bar.update(1) # progress_bar.close() print ('write links to file') helper.append_links_to_file(new_post_log_file_name, user.username, 'Post', user.post_links) for link in user.post_links: print ('write ' + link + ' to db') self.__database.insert_video_post_to_download(user.username, 'Post', link, new_post_log_file_timestamp) def init_scrape_tags(self, tags, tag_type): """ Start function for scraping tags """ helper.create_dir(constants.TAGS_DIR) for tag in tags: if not self.__is_logged_in: self.__check_if_ip_is_restricted() sys.stdout.write('\n') print('\033[1m' + 'tag: #' + tag.tagname + '\033[0;0m') tag.create_tag_output_directories() link = constants.INSTAGRAM_EXPLORE_URL.format(tag.tagname) self.__database.insert_tag(tag.tagname) if tag_type == constants.TAG_TYPE_TOP: actions.ScrapeTopTags(self, link, tag).do() elif tag_type == constants.TAG_TYPE_RECENT: actions.ScrapeRecentTags(self, link, tag).do() def stop(self): """ Stop the program """ # if self.__is_logged_in: # actions.Logout(self, self.__login_username).do() try: self.__web_driver.quit() except AttributeError as err: logger.error('Quit driver error: %s' % err) self.__database.close_connection() sys.exit(0) @property def is_logged_in(self): return self.__is_logged_in @is_logged_in.setter def is_logged_in(self, is_logged_in): self.__is_logged_in = is_logged_in @property def cookies_accepted(self): return self.__cookies_accepted @cookies_accepted.setter def cookies_accepted(self, accepted): self.__cookies_accepted = accepted @property def web_driver(self): return self.__web_driver @property def login_username(self): return self.__login_username @property def login_password(self): return self.__login_password @property def database(self): return self.__database @property def max_download(self): return self.__max_download
python
from armstrong.core.arm_sections import utils from armstrong.core.arm_sections.models import Section from ._utils import ArmSectionsTestCase, override_settings from .support.models import SimpleCommon def rel_field_names(rels): return [rel.field.name for rel in rels] class get_configured_item_modelTestCase(ArmSectionsTestCase): def test_returns_configured_model(self): m = "%s.FooBar" % self.__class__.__module__ with self.settings(ARMSTRONG_SECTION_ITEM_MODEL=m): module, model = utils.get_module_and_model_names() self.assertEqual(self.__class__.__module__, module) self.assertEqual("FooBar", model) def test_provides_default_value(self): with self.settings(ARMSTRONG_SECTION_ITEM_MODEL=False): module, model = utils.get_module_and_model_names() self.assertEqual("armstrong.apps.content.models", module) self.assertEqual("Content", model) class get_item_model_classTestCase(ArmSectionsTestCase): @override_settings(ARMSTRONG_SECTION_ITEM_MODEL='tests.support.models.SimpleCommon') def test_returns_specified_class(self): self.assertEqual(SimpleCommon, utils.get_item_model_class()) class get_section_relationsTestCase(ArmSectionsTestCase): @override_settings(ARMSTRONG_SECTION_ITEM_MODEL='tests.support.models.SimpleCommon') def test_returns_relation_for_foreign_key_only(self): self.assertEqual( ['primary_section'], rel_field_names(utils.get_section_relations(Section))) @override_settings(ARMSTRONG_SECTION_ITEM_MODEL='tests.support.models.ComplexCommon') def test_returns_relations_for_foreign_key_and_many_to_many(self): self.assertEqual( ['primary_section', 'related_sections'], rel_field_names(utils.get_section_relations(Section))) @override_settings(ARMSTRONG_SECTION_ITEM_MODEL='tests.support.models.MultipleManyToManyModel') def test_returns_relations_for_subclass_with_foreign_key_and_m2m(self): self.assertEqual( ['primary_section', 'related_sections', 'more_sections'], rel_field_names(utils.get_section_relations(Section))) class get_section_many_to_many_relationsTestCase(ArmSectionsTestCase): @override_settings(ARMSTRONG_SECTION_ITEM_MODEL='tests.support.models.SimpleCommon') def test_returns_no_relations_for_foreign_key_only(self): self.assertEqual( [], rel_field_names(utils.get_section_many_to_many_relations(Section))) @override_settings(ARMSTRONG_SECTION_ITEM_MODEL='tests.support.models.ComplexCommon') def test_returns_relation_for_foreign_key_and_many_to_many(self): self.assertEqual( ['related_sections'], rel_field_names(utils.get_section_many_to_many_relations(Section))) @override_settings(ARMSTRONG_SECTION_ITEM_MODEL='tests.support.models.MultipleManyToManyModel') def test_returns_relations_for_subclass_with_foreign_key_and_m2m(self): self.assertEqual( ['related_sections', 'more_sections'], rel_field_names(utils.get_section_many_to_many_relations(Section)))
python
import boto3, ipaddress, os, socket, time from codeguru_profiler_agent import with_lambda_profiler from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.keys import Keys from aws_lambda_powertools import Logger, Tracer # AWS Lambda Powertools logger = Logger() tracer = Tracer() # Get S3 bucket and setup s3 client bucketname = os.environ['s3bucket'] s3_client = boto3.client('s3') # Get SQS queue and setup sqs client sqs_queue_url = os.environ['sqsqueue'] sqs_client = boto3.client('sqs') # Set static return headers headers = { 'Content-Type': 'text/html', "strict-transport-security": "max-age=31536000; includeSubDomains; preload" } # Check if IP address is allow listed for API Gateway @tracer.capture_method(capture_response = False) def is_allow_listed(ip): # Get allow list IP range allow_list_range = os.environ['ip_allowlist'] if ipaddress.ip_address(ip) in ipaddress.ip_network(allow_list_range): print("ALLOW - IP " + ip + " in " + allow_list_range) return True else: print("BLOCK - IP " + ip + " not in " + allow_list_range) return False # Upload screen shot to S3 @tracer.capture_method(capture_response = False) def upload_screenshot(tmpfile, bucketname, fname): s3_client.upload_file( Filename = tmpfile, Bucket = bucketname, Key = fname, ExtraArgs = { 'StorageClass': 'STANDARD', 'ACL': 'public-read', 'ContentType': 'image/png' } ) # Send S3 path URI to SQS queue @tracer.capture_method(capture_response = False) def sqs_send(sqs_queue_url, bucketname, fname): sqs_client.send_message( QueueUrl = sqs_queue_url, MessageBody = 'https://s3.amazonaws.com/' + bucketname + '/' + fname, ) # Generate S3 Signed URL @tracer.capture_method(capture_response = False) def generate_signed_url(bucketname, fname): presigned_url = s3_client.generate_presigned_url( ClientMethod = 'get_object', Params = { 'Bucket': bucketname, 'Key': fname }, ExpiresIn = 3600 ) return presigned_url # Capture screenshot @tracer.capture_method(capture_response = False) def get_screenshot(url, tmpfile): # Add chromium driver options = Options() options.binary_location = '/usr/bin/chromium-browser' # Add chromium options options.add_argument('--start-maximized') options.add_argument('--headless') options.add_argument('--no-sandbox') options.add_argument('--single-process') options.add_argument('--disable-dev-shm-usage') options.add_argument('--user-agent=Mozilla/5.0 (X11; NetBSD) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/27.0.1453.116 Safari/537.36') # Get URL using chromium driver = webdriver.Chrome('/usr/bin/chromedriver', chrome_options = options) # Get body of website driver.get(url) # Get screen dimensions screenwidth = 1440 screenheight = driver.execute_script("return document.documentElement.scrollHeight") if screenheight == 0: screenheight = 1024 # Maximize screen print('dimensions ' + ' ' + str(screenwidth) + ' ' + str(screenheight)) driver.set_window_size(screenwidth, screenheight) # Select body and press escape to close some pop ups body = driver.find_element_by_xpath('/html') body.send_keys(Keys.ESCAPE) # Save screenshot body.screenshot(tmpfile) # Close chromium driver.close() driver.quit() # Lambda handler @tracer.capture_lambda_handler(capture_response = False) @logger.inject_lambda_context(log_event = True) @with_lambda_profiler(profiling_group_name = os.environ['AWS_CODEGURU_PROFILER_GROUP_NAME']) def handler(event, context): # Get start timestamp startts = time.time() # Get url from API input if len(event['rawPath']) > 1: rawurl = event['rawPath'][1:] domain = rawurl.split('/')[0] src_ip = event['requestContext']['http']['sourceIp'] print(src_ip) # Check if IP address is allow listed if is_allow_listed(src_ip): # Check if the dns domain is valid try: x = socket.gethostbyname(domain) print('ip ' + str(x) + ' for ' + rawurl) # Return error if domain does not return dns record except: print('invalid dns ' + rawurl + ', setting github.com') return { "statusCode": 200, "body": '<html><body><center>invalid URL ' + rawurl + ' submitted</center></body></html>', "headers": headers } # Return error if IP address is not allow listed else: print('unauthorized IP ' + src_ip + ', returning error') return { "statusCode": 200, "body": '<html><body><center>not allowed - IP ' + src_ip + '</center></body></html>', "headers": headers } # If no URL is submitted, return error else: return { "statusCode": 200, "body": '<html><body><center>no URL submitted</center></body></html>', "headers": headers } # Get URL path url = 'https://' + rawurl print('getting ' + url) # Set tmp and file paths fname = 'screenshots/' + domain + '/' + str(int(startts)) + '-' + rawurl.replace('.', '_').replace('/','-') + '.png' tmpfile = '/tmp/screen.png' # Get screenshot try: get_screenshot(url, tmpfile) except Exception as e: print('error with get screenshot ' + str(e)) return { "statusCode": 200, "body": '<html><body><center>error getting - ' + url + '<br /></center></body></html>', "headers": headers } # Upload screenshot to S3 upload_screenshot(tmpfile, bucketname, fname) # Send SQS message with screenshot url sqs_send(sqs_queue_url, bucketname, fname) # Generate S3 pre-signed URL presigned_url = generate_signed_url(bucketname, fname) # Get end timestamp endts = time.time() timediff = endts - startts # Return HTML response return { "statusCode": 200, "body": '<html><body><center>' + url + ' - took ' + str(round(timediff, 2)) + ' seconds <br /><img src = ' + presigned_url + '></center></body></html>', "headers": headers }
python
from aicademeCV.skinCV import skinseperator
python
import os from get_data import read_params, get_data import argparse def load_and_save(config_path): config = read_params(config_path) df = get_data(config_path) df['fixed acidity'].fillna(int(df['fixed acidity'].median()), inplace=True) df['volatile acidity'].fillna(int(df['volatile acidity'].mean()), inplace=True) df.dropna(inplace=True) df.drop_duplicates(inplace=True) new_cols = [col.replace(" ", "_") for col in df.columns] replace_map = {'type': {'white': 1, 'red': 2}} types = df['type'].astype('category').cat.categories.tolist() replace_map_comp = {'type': {k: v for k, v in zip(types, list(range(1, len(types) + 1)))}} df.replace(replace_map_comp, inplace=True) print(df.head()) raw_data_path = config['load_data']['raw_dataset_csv'] df.to_csv(raw_data_path, sep = ',', index = False, header = new_cols) if __name__ == "__main__": args = argparse.ArgumentParser() args.add_argument("--config", default="params.yaml") parsed_args = args.parse_args() load_and_save(parsed_args.config)
python
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import functools from unittest.mock import patch from airflow.www.app import purge_cached_app def dont_initialize_flask_app_submodules(_func=None, *, skip_all_except=None): if not skip_all_except: skip_all_except = [] def decorator_dont_initialize_flask_app_submodules(f): def no_op(*args, **kwargs): pass methods = [ "init_api_experimental_auth", "init_flash_views", "init_appbuilder_links", "init_appbuilder_views", "init_plugins", "init_connection_form", "init_error_handlers", "init_api_connexion", "init_api_experimental", "sync_appbuilder_roles", "init_jinja_globals", "init_xframe_protection", "init_airflow_session_interface", "init_appbuilder", ] @functools.wraps(f) def func(*args, **kwargs): for method in methods: if method not in skip_all_except: patcher = patch(f"airflow.www.app.{method}", no_op) patcher.start() purge_cached_app() result = f(*args, **kwargs) patch.stopall() purge_cached_app() return result return func if _func is None: return decorator_dont_initialize_flask_app_submodules else: return decorator_dont_initialize_flask_app_submodules(_func)
python
import unittest from exactitude import countries class CountriesTest(unittest.TestCase): def test_country_codes(self): self.assertEqual(countries.clean('DE'), 'de') self.assertTrue(countries.validate('DE')) self.assertFalse(countries.validate('DEU')) self.assertFalse(countries.validate('SU')) self.assertTrue(countries.validate('XK')) self.assertTrue(countries.validate('EU')) def test_country_names(self): self.assertEqual(countries.clean(None), None) self.assertEqual(countries.clean('Takatukaland', guess=False), None) self.assertEqual(countries.clean('Germany'), 'de') # self.assertEqual(countries.clean('Germani'), 'de') self.assertEqual(countries.clean('Soviet Union'), 'suhh')
python
import numpy as np import pandas as pd from gaitcalibrate.extract.walk import extract_step from gaitcalibrate.util.adjust_acceleration import tilt_adjustment def estimate_walk_speed( acc, model, g2acc=True, n_skip_edge_step=3, thd_n_step_each_walk=10, apply_tilt_adjust=True ): """Estimate walking speed by applying `model` on the `acc`. It assumes that `acc` is an Acceleration object containing orientation-transformed, non-tilt-adjusted, un-filtered acceleration data. Return ------ `output`: esimated speed for each acceleration data point, each step, and the whole `acc` object """ ################## # Get model info # ################## estimator = model['grid_search_estimator'] scaler = model['scaler'] feature_ext = model['feature_ext'] ################### # Tilt adjustment # ################### if apply_tilt_adjust: adj_acc = tilt_adjustment(acc=acc) else: adj_acc = acc ################### # Step extraction # ################### all_steps = extract_step( acc=adj_acc, g2acc=g2acc ) # Remove edge steps which might not be stable if n_skip_edge_step > 0: steps = all_steps[n_skip_edge_step:-n_skip_edge_step] idx_steps = range(n_skip_edge_step, len(all_steps) - n_skip_edge_step) else: steps = all_steps idx_steps = range(len(all_steps)) # This period is too short if len(steps) < thd_n_step_each_walk: return -1 ################# # Step features # ################# # Feature extraction x = feature_ext.extract(steps) # Feature scaling scaled_x = scaler.transform(X=x) ############################ # Walking speed estimation # ############################ # Estimate walking speed for each step feature y_pred = estimator.predict(scaled_x) ######################################################## # Estimated walking speed associated with acceleration # ######################################################## # Walking speed associated with acceleration acc_spd = np.zeros(len(acc.data)) for s, step in enumerate(all_steps): idx_sample = acc.data[((acc.data['dt'] >= step.data['dt'].values[0]) & (acc.data['dt'] <= step.data['dt'].values[-1]))].index.values # Note: subtracting the first index to get around the indexing issues idx_sample -= acc.data.index.values[0] # If this step is used to estimate the walking speed, assign estimated walking speed if s in idx_steps: acc_spd[idx_sample] = y_pred[s - idx_steps[0]] # Otherwise, assign 0 else: acc_spd[idx_sample] = 0 ################################################ # Estimated walking speed associated with step # ################################################ # Get timestamp at the middle of each step mid_step_dt = np.asarray([s.data['dt'].values[len(s.data['dt'])/2] for s in steps]) # Append zero speed at the beginning and the end to mark the beginning and end of each walk mid_step_dt = np.append(steps[0].data['dt'].values[0], mid_step_dt) mid_step_dt = np.append(mid_step_dt, steps[-1].data['dt'].values[-1]) y_pred_ext = np.append([0], y_pred) y_pred_ext = np.append(y_pred_ext, [0]) step_dt = mid_step_dt step_speed = y_pred_ext ############################################################### # Estimated walking speed associated with each period of walk # ############################################################### walk_start_dt = steps[0].data['dt'].values[0] walk_end_dt = steps[-1].data['dt'].values[-1] walk_speed = np.average(y_pred) output = { "acc_dt": acc.data['dt'].values, "acc_spd": acc_spd, "step_dt": step_dt, "step_spd": step_speed, "walk_start_dt": walk_start_dt, "walk_end_dt": walk_end_dt, "walk_spd": walk_speed } return output
python
#!/usr/bin/env python """User API for controlling Map job execution.""" from google.appengine.ext import db from mapreduce import util # pylint: disable=g-bad-name # pylint: disable=protected-access def start(job_config=None, in_xg_transaction=False): """Start a new map job. Args: job_config: an instance of map_job.MapJobConfig. in_xg_transaction: controls what transaction scope to use to start this MR job. If True, there has to be an already opened cross-group transaction scope. MR will use one entity group from it. If False, MR will create an independent transaction to start the job regardless of any existing transaction scopes. Returns: the id of this map job. Raises: ValueError: when in_xg_transaction is True but no transaction scope is detected. """ if in_xg_transaction and not db.is_in_transaction(): raise ValueError("Expects an opened xg transaction to start mapreduce.") # Break circular dependency. # pylint: disable=g-import-not-at-top from mapreduce import handlers return handlers.StartJobHandler._start_map( name=job_config.job_name, mapper_spec=job_config._get_mapper_spec(), mapreduce_params=job_config._get_mr_params(), queue_name=job_config.queue_name, hooks_class_name=util._obj_to_path(job_config._hooks_cls), _app=job_config._app, in_xg_transaction=in_xg_transaction)
python
from sklearn.ensemble import RandomForestClassifier from sklearn import datasets from sklearn.model_selection import train_test_split from IPython.display import display import eli5 from eli5.sklearn import PermutationImportance RANDOM_STATE = 0 # Get Iris data iris = datasets.load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=RANDOM_STATE) # Create and train Random Forest model = RandomForestClassifier(random_state=RANDOM_STATE) model.fit(X_train, y_train) perm = PermutationImportance(model, random_state=1).fit(X_test, y_test) display(eli5.show_weights(perm, feature_names=iris.feature_names)) eli5_weights = eli5.explain_weights(model, feature_names=iris.feature_names) print(eli5_weights)
python
from mock import patch import pytest from s3parq import publish_redshift from s3parq.testing_helper import setup_custom_redshift_columns_and_dataframe class MockScopeObj(): def execute(self, schema_string: str): pass def scope_execute_mock(mock_session_helper): pass class Test(): # Make sure that naming validator throws expected errors def test_naming_validator(self): response = publish_redshift._validate_name('my string') assert not response[0], 'Allowed name to contain spaces' response = publish_redshift._validate_name('my_string') assert response[0] response = publish_redshift._validate_name('WHERE') assert not response[0], 'Allowed name to be a reserved SQL keyword' response = publish_redshift._validate_name('@my_string') assert not response[0], 'Allowed name to start as not an alphanumeric or an underscore' response = publish_redshift._validate_name( "asdffdsaasdffdsaasdfasdffdsaasdffdsaasd\ fasdffdsaasdffdsaasdfasdffdsaasdffdsaasdsd\ ffdsaasdffdsaasdfasdffdsaasdffdsaasdfasdffdsaasdffdsaasdf" ) assert not response[0], f'Allowed name as too long string' # Make sure that the reshift-specific validator throes the right errors def test_validator(self): schema_name_good = "my_string" bad_schema_names = ["my string", "#t3rr1bl13_n4m3", "", "select"] database_name_good = 'my_database' bad_database_names = ['my database', "#t3rr1bl13_n4m3", "", ".", "select"] publish_redshift._redshift_name_validator( schema_name_good, database_name_good) for bad_schema in bad_schema_names: with pytest.raises(ValueError): publish_redshift._redshift_name_validator( bad_schema, database_name_good) for bad_db in bad_database_names: with pytest.raises(ValueError): publish_redshift._redshift_name_validator( schema_name_good, bad_db) # Test that the function is called with the schema name @patch('s3parq.publish_redshift.SessionHelper') @patch('tests.test_publish_redshift.scope_execute_mock') def test_create_schema(self, mock_session_helper, mock_execute): mock_execute.return_value = MockScopeObj() mock_session_helper.db_session_scope.return_value.__enter__ = scope_execute_mock schema_name = "my_string" db_name = "my_database" iam_role = "my_iam_role" with mock_session_helper.db_session_scope() as mock_scope: publish_redshift.create_schema( schema_name, db_name, iam_role, mock_session_helper) mock_scope.execute.assert_called_once_with(f"CREATE EXTERNAL SCHEMA IF NOT EXISTS {schema_name} \ FROM DATA CATALOG \ database '{db_name}' \ iam_role '{iam_role}';") # Test that the function is called with the table name @patch('s3parq.publish_redshift.SessionHelper') @patch('tests.test_publish_redshift.scope_execute_mock') def test_create_table(self, mock_session_helper, mock_execute): mock_execute.return_value = MockScopeObj() mock_session_helper.db_session_scope.return_value.__enter__ = scope_execute_mock table_name = "my_string" schema_name = "my_schema" path = "s3://lol" columns = {'grouped_col': 'object', 'text_col': 'object', 'int_col': 'int64', 'float_col': 'float64'} partitions = {'fish': 'object'} expected_sql = f'CREATE EXTERNAL TABLE IF NOT EXISTS {schema_name}.{table_name} {columns} \ PARTITIONED BY {partitions} STORED AS PARQUET \ LOCATION "{path}";' with mock_session_helper.db_session_scope() as mock_scope: publish_redshift.create_table(table_name, schema_name, columns, partitions, path, mock_session_helper) assert mock_scope.execute.called_once_with(expected_sql) # Test that the function is called with the table name without partitions @patch('s3parq.publish_redshift.SessionHelper') @patch('tests.test_publish_redshift.scope_execute_mock') def test_create_table_without_partitions(self, mock_session_helper, mock_execute): mock_execute.return_value = MockScopeObj() mock_session_helper.db_session_scope.return_value.__enter__ = scope_execute_mock table_name = "my_string" schema_name = "my_schema" path = "s3://lol" columns = {'grouped_col': 'object', 'text_col': 'object', 'int_col': 'int64', 'float_col': 'float64'} partitions = {} expected_sql = f'CREATE EXTERNAL TABLE IF NOT EXISTS {schema_name}.{table_name} {columns} \ STORED AS PARQUET \ LOCATION "{path}";' with mock_session_helper.db_session_scope() as mock_scope: publish_redshift.create_table(table_name, schema_name, columns, partitions, path, mock_session_helper) assert mock_scope.execute.called_once_with(expected_sql) def test_gets_proper_partitions(self): test_str = '/some/path/to/data/banana=33/orange=65/apple=abcd/xyz.parquet' final_partitions = publish_redshift._get_partitions_for_spectrum( test_str) assert final_partitions == ['banana=33', 'orange=65', 'apple=abcd'] def test_gets_no_partitions(self): test_str = '/some/path/to/data/xyz.parquet' final_partitions = publish_redshift._get_partitions_for_spectrum( test_str) assert final_partitions == [] def test_gets_proper_partitions_multiple_slashes(self): test_str = '/some/path/to/data//banana=33/orange=65/apple=abcd/xyz.parquet' final_partitions = publish_redshift._get_partitions_for_spectrum( test_str) assert final_partitions == ['banana=33', 'orange=65', 'apple=abcd'] def test_format_partition_strings(self): test_partitions = ['banana=33', 'orange=65', 'apple=abcd'] final_partitions = publish_redshift._format_partition_strings_for_sql( test_partitions) assert final_partitions == [ "banana='33'", "orange='65'", "apple='abcd'"] def test_format_partition_strings_no_partitions(self): test_partitions = [] final_partitions = publish_redshift._format_partition_strings_for_sql( test_partitions) assert final_partitions == [] def test_index_containing_substring(self): test_list = ['abcd', 'efgh=1234', 'ijkl=5678', 'xyz.parquet'] index = publish_redshift._last_index_containing_substring( test_list, '=') assert index == 2 def test_index_containing_substring_no_match(self): test_list = ['abcd', 'efgh=1234', 'ijkl=5678'] index = publish_redshift._last_index_containing_substring( test_list, '&') assert index == 4 def test_get_partition_location(self): test_filepath = 'path/to/data/apple=abcd/orange=1234/abcd1234.parquet' partition_path = publish_redshift._get_partition_location( test_filepath) assert partition_path == 'path/to/data/apple=abcd/orange=1234' def test_get_partition_location_no_partition(self): test_filepath = 'path/to/data/abcd1234.parquet' with pytest.raises(ValueError): partition_path = publish_redshift._get_partition_location( test_filepath) # Test that the function is called with the table name without partitions @patch('s3parq.publish_redshift.SessionHelper') @patch('tests.test_publish_redshift.scope_execute_mock') def test_create_partitions(self, mock_session_helper, mock_execute): mock_execute.return_value = MockScopeObj() mock_session_helper.db_session_scope.return_value.__enter__ = scope_execute_mock table_name = "my_table" schema_name = "my_schema" bucket = "test" partitions = ["version", "time"] filepath = "something_overgeneric/dataset/version=v2_final_new/time=01-01-69 23:59:07/keysmash.parquet" sql_partitions = "(version='v2_final_new', time='01-01-69 23:59:07')" path_for_sql = "'s3://test/something_overgeneric/dataset/version=v2_final_new'" expected_sql = f"ALTER TABLE {schema_name}.{table_name} \ # ADD IF NOT EXISTS PARTITION {sql_partitions} \ # LOCATION {path_for_sql};" with mock_session_helper.db_session_scope() as mock_scope: publish_redshift.create_partitions( bucket, schema_name, table_name, filepath, mock_session_helper) assert mock_scope.execute.called_once_with(expected_sql) # Test to check that the passed in datatype maps correctly def test_datatype_mapper(self): columns = {'grouped_col': 'object', 'text_col': 'object', 'int_col': 'int64', 'float_col': 'float64'} expected = {'grouped_col': 'VARCHAR', 'text_col': 'VARCHAR', 'int_col': 'BIGINT', 'float_col': 'FLOAT'} sql = "" for key, val in expected.items(): sql += f'{key} {val}, ' sql = "(" + sql[:-2] + ")" actual = publish_redshift._datatype_mapper(columns) assert actual == sql # Verify function call for custom create table @patch('s3parq.publish_redshift.SessionHelper') @patch('tests.test_publish_redshift.scope_execute_mock') def test_create_custom_table(self, mock_session_helper, mock_execute): custom_redshift_columns = setup_custom_redshift_columns_and_dataframe()[1] mock_execute.return_value = MockScopeObj() mock_session_helper.db_session_scope.return_value.__enter__ = scope_execute_mock table_name = "my_string" schema_name = "my_schema" path = "s3://lol" columns = {'colA': 'VARCHAR(1000)', 'colB': 'BIGINT', 'colC': 'REAL', 'coldD': 'DECIMAL(5,4)', 'colE': 'VARCHAR', 'colF': 'BOOLEAN'} partitions = {'colA': 'VARCHAR(1000)'} expected_sql = f'CREATE EXTERNAL TABLE IF NOT EXISTS {schema_name}.{table_name} {columns} \ PARTITIONED BY {partitions} STORED AS PARQUET \ LOCATION "{path}";' with mock_session_helper.db_session_scope() as mock_scope: publish_redshift.create_custom_table(table_name, schema_name, partitions, path, custom_redshift_columns, mock_session_helper) assert mock_scope.execute.called_once_with(expected_sql) # Verify function call for custom create table, no partitions @patch('s3parq.publish_redshift.SessionHelper') @patch('tests.test_publish_redshift.scope_execute_mock') def test_create_custom_table_without_partitions(self, mock_session_helper, mock_execute): custom_redshift_columns = setup_custom_redshift_columns_and_dataframe()[1] mock_execute.return_value = MockScopeObj() mock_session_helper.db_session_scope.return_value.__enter__ = scope_execute_mock table_name = "my_string" schema_name = "my_schema" path = "s3://lol" columns = {'colA': 'VARCHAR(1000)', 'colB': 'BIGINT', 'colC': 'REAL', 'coldD': 'DECIMAL(5,4)', 'colE': 'VARCHAR', 'colF': 'BOOLEAN'} partitions = {} expected_sql = f'CREATE EXTERNAL TABLE IF NOT EXISTS {schema_name}.{table_name} {columns} \ STORED AS PARQUET \ LOCATION "{path}";' with mock_session_helper.db_session_scope() as mock_scope: publish_redshift.create_custom_table(table_name, schema_name, partitions, path, custom_redshift_columns, mock_session_helper) assert mock_scope.execute.called_once_with(expected_sql)
python
import argparse import torch from torch import nn from torch.nn import functional as F from torch.utils import data from torchvision import datasets, transforms import torchvision.utils as vutils from classes import Generator, Discriminator import conf import utils as ut # Command line arguments parser = argparse.ArgumentParser() parser.add_argument("--n_epochs", type=int, default=100, help="Number of epochs to train model.") parser.add_argument("--checkpoint", type=str, default=None, help="Path to model checkpoint.") opt = parser.parse_args() n_epochs = opt.n_epochs # CUDA for PyTorch if torch.cuda.is_available(): device = torch.device("cuda:0") torch.backends.cudnn.benchmark = True print("CUDA is available") else: device = torch.device("cpu") print("No GPU found.") # Define a transform to resize the data transform = transforms.Compose( [transforms.Resize(64), transforms.ToTensor()] ) # Fashion MNIST Dataset image_data = datasets.FashionMNIST( 'F_MNIST_data/', download=True, transform=transform ) # Batch loader for images image_loader = data.DataLoader( image_data, batch_size=conf.batch_size, num_workers=1, shuffle=False, drop_last=True ) print("The dataset contains {} images, in {} batches" .format(len(image_loader.dataset), len(image_loader))) # Instantiate model classes and initialise network weights generator = Generator().to(device) generator.apply(ut.weights_init) discriminator = Discriminator().to(device) discriminator.apply(ut.weights_init) # Network optimizers gen_optimizer = torch.optim.Adam( params=generator.parameters(), lr=conf.lr, betas=(0.5, 0.999) ) disc_optimizer = torch.optim.Adam( params=discriminator.parameters(), lr=conf.lr, betas=(0.5, 0.999) ) if opt.checkpoint: generator, discriminator, gen_optimizer, disc_optimizer, start_epoch = \ ut.load_checkpoint(generator, discriminator, gen_optimizer, disc_optimizer, opt.checkpoint) else: start_epoch = 1 # Set to training mode generator.train() discriminator.train() print('Training started...') for epoch in range(start_epoch, n_epochs + 1): for i, (image_batch, _) in enumerate(image_loader, 1): image_batch = image_batch.to(device) # Assign 1 for real label; 0 for fake label label_real = torch.ones(image_batch.size(0)).to(device) label_fake = torch.zeros(image_batch.size(0)).to(device) # Generate a batch of samples from the latent prior latent = torch.randn(image_batch.size(0), 100, 1, 1).to(device) fake_image_batch = generator(latent).to(device) real_pred = discriminator(image_batch).squeeze().to(device) fake_pred = discriminator(fake_image_batch.detach()).squeeze().to(device) disc_loss = 0.5 * ( F.binary_cross_entropy(real_pred, label_real) + F.binary_cross_entropy(fake_pred, label_fake) ) disc_optimizer.zero_grad() # Discriminator backpropogation disc_loss.backward() disc_optimizer.step() fake_pred = discriminator(fake_image_batch).squeeze().to(device) gen_loss = F.binary_cross_entropy(fake_pred, label_real) gen_optimizer.zero_grad() # Generator backpropogation gen_loss.backward() gen_optimizer.step() # Output training stats if i % 1 == 0: print('[%d/%d][%d/%d] | Loss_D: %.4f | Loss_G: %.4f |' % (epoch, n_epochs, i, len(image_loader), disc_loss.item(), gen_loss.item())) if epoch % 1 == 0: # Create and save fake image generated from random noise fixed_noise = torch.randn(conf.n_gen_feats, conf.z_size, 1, 1).to(device) fake = generator(fixed_noise) with open('src/visualization/latest_examples.png', 'wb') as f: vutils.save_image( fake.detach(), f, normalize=True ) torch.save( { 'epoch': epoch, 'disc_state_dict': discriminator.state_dict(), 'gen_state_dict': generator.state_dict(), 'disc_optimizer_state_dict': disc_optimizer.state_dict(), 'gen_optimizer_state_dict': gen_optimizer.state_dict() }, 'src/models/checkpoints/model_chkpt_latest.pt' ) torch.save( generator.state_dict(), 'src/models/checkpoints/finished/trained_gen_model.pt' ) # Save real image samples with open('src/visualization/real_samples.png', 'wb') as f: vutils.save_image( image_batch, f, normalize=True ) print("========= Training finished! =========")
python
# -*- coding:utf-8 -*- import xml.etree.ElementTree as ET class Parser: """ this class parse style xml files. xml -> dict in list * all arguments and text is string. not int. you need to convert it yourself. like this xml <?xml version="1.0"?> <style> <width>635</width> <height>384</height> <img id="user_twitter_icon" width="128" height="128" x="15" y="15" rotation="0"/> <string id="description" x="150" y="230" width="570" height="300" rotation="0"> </string> </style> to [{"width":635,"height":384}, [{'img': {'width': '25', 'y': '70', 'x': '170', 'rotation': '0', 'id': 'tw_icon', 'height': '25'}}], [{'string': {'y': '60','x': '200', 'rotation': '0', 'id': 'name'}}]] it means [{preferencesd(dict)}, [img tags(dict in list)], [string tags(dict in list)]] """ def create_style_list(self,style_path): #reading style file style_tree = ET.parse(style_path) root = style_tree.getroot() #checking root tag is style if(root.tag == "style"): self.root = root else: raise ValueError("no style tag in stylesheet xml file") #style xml -> dict in list self.style_list = [] preferences = {} imgs = [] strs = [] for elem in self.root: #img tag if(elem.tag == "img"): img_dict = {elem.tag : elem.attrib} imgs.append(img_dict) #string tag elif(elem.tag == "string"): overwrite_text = elem.text attributes = elem.attrib #checking blank if(overwrite_text.strip() != ""): attributes.update({"overwrite_text":overwrite_text.strip()}) str_dict = {elem.tag : attributes} strs.append(str_dict) #other tag (pick up only text) else: tmp_dict={elem.tag : elem.text} preferences.update(tmp_dict) self.style_list.append(preferences) self.style_list.append(imgs) self.style_list.append(strs) def get_list(self): return self.style_list def __init__(self,style_path): self.create_style_list(style_path)
python
from .bases import EndpointBase from aioconsul.api import consul, extract_meta from aioconsul.exceptions import NotFound from aioconsul.util import extract_attr class SessionEndpoint(EndpointBase): """Create, destroy, and query sessions .. note:: All of the read session endpoints support blocking queries and all consistency modes. Session mechanism can be used to build distributed locks. Sessions act as a binding layer between nodes, health checks, and key/value data. """ async def create(self, session, *, dc=None): """Creates a new session Parameters: session (Object): Session definition dc (str): Specify datacenter that will be used. Defaults to the agent's local datacenter. Returns: Object: ID of the created session The create endpoint is used to initialize a new session. Sessions must be associated with a node and may be associated with any number of checks. The session object must look like:: { "LockDelay": timedelta(seconds=15), "Name": "my-service-lock", "Node": "foobar", "Checks": ["a", "b", "c"], "Behavior": "release", "TTL": timedelta(seconds=0) } **LockDelay** can be specified as a duration string using a "s" suffix for seconds. The default is 15s. **Node** must refer to a node that is already registered, if specified. By default, the agent's own node name is used. **Name** can be used to provide a human-readable name for the Session. **Checks** is used to provide a list of associated health checks. It is highly recommended that, if you override this list, you include the default "serfHealth". **Behavior** can be set to either ``release`` or ``delete``. This controls the behavior when a session is invalidated. By default, this is ``release``, causing any locks that are held to be released. Changing this to ``delete`` causes any locks that are held to be deleted. ``delete`` is useful for creating ephemeral key/value entries. **TTL** field is a duration string, and like ``LockDelay`` it can use "s" as a suffix for seconds. If specified, it must be between 10s and 86400s currently. When provided, the session is invalidated if it is not renewed before the TTL expires. The lowest practical TTL should be used to keep the number of managed sessions low. When locks are forcibly expired, such as during a leader election, sessions may not be reaped for up to double this TTL, so long TTL values (>1 hour) should be avoided. """ response = await self._api.put( "/v1/session/create", data=session, params={"dc": dc}) return response.body async def destroy(self, session, *, dc=None): """Destroys a given session Parameters: session (ObjectID): Session ID dc (str): Specify datacenter that will be used. Defaults to the agent's local datacenter. Returns: bool: ``True`` on success """ session_id = extract_attr(session, keys=["ID"]) response = await self._api.put("/v1/session/destroy", session_id, params={"dc": dc}) return response.body is True delete = destroy async def info(self, session, *, dc=None, watch=None, consistency=None): """Queries a given session Parameters: session (ObjectID): Session ID dc (str): Specify datacenter that will be used. Defaults to the agent's local datacenter. watch (Blocking): Do a blocking query consistency (Consistency): Force consistency Returns: ObjectMeta: where value is the queried session Raises: NotFound: session is absent Returns the requested session information within a given datacenter. It returns a mapping like this:: { "LockDelay": datetime.timedelta(0, 15), "Checks": [ "serfHealth" ], "Node": "foobar", "ID": "adf4238a-882b-9ddc-4a9d-5b6758e4159e", "CreateIndex": 1086449 } """ session_id = extract_attr(session, keys=["ID"]) response = await self._api.get("/v1/session/info", session_id, watch=watch, consistency=consistency, params={"dc": dc}) try: result = response.body[0] except IndexError: meta = extract_meta(response.headers) raise NotFound("No session for %r" % session_id, meta=meta) return consul(result, meta=extract_meta(response.headers)) async def node(self, node, *, dc=None, watch=None, consistency=None): """Lists sessions belonging to a node Parameters: node (ObjectID): Node ID dc (str): Specify datacenter that will be used. Defaults to the agent's local datacenter. watch (Blocking): Do a blocking query consistency (Consistency): Force consistency Returns: CollectionMeta: where value is a list of sessions attached to node It returns a list like this:: [ { "LockDelay": datetime.timedelta(0, 15), "Checks": [ "serfHealth" ], "Node": "foobar", "ID": "adf4238a-882b-9ddc-4a9d-5b6758e4159e", "CreateIndex": 1086449 }, ... ] """ node_id = extract_attr(node, keys=["Node", "ID"]) response = await self._api.get("/v1/session/node", node_id, params={ "dc": dc}, watch=watch, consistency=consistency) return consul(response) async def items(self, *, dc=None, watch=None, consistency=None): """Lists sessions Parameters: dc (str): Specify datacenter that will be used. Defaults to the agent's local datacenter. watch (Blocking): Do a blocking query consistency (Consistency): Force consistency Returns: CollectionMeta: where value is a list of sessions It returns an object like this:: [ { "LockDelay": datetime.timedelta(0, 15), "Checks": [ "serfHealth" ], "Node": "foobar", "ID": "adf4238a-882b-9ddc-4a9d-5b6758e4159e", "CreateIndex": 1086449 }, ... ] """ response = await self._api.get("/v1/session/list", params={ "dc": dc}, watch=watch, consistency=consistency) return consul(response) async def renew(self, session, *, dc=None): """Renews a TTL-based session Parameters: session (ObjectID): Session ID dc (str): Specify datacenter that will be used. Defaults to the agent's local datacenter. Returns: ObjectMeta: where value is session Raises: NotFound: session is absent The response looks like this:: { "LockDelay": datetime.timedelta(0, 15), "Checks": [ "serfHealth" ], "Node": "foobar", "ID": "adf4238a-882b-9ddc-4a9d-5b6758e4159e", "CreateIndex": 1086449 "Behavior": "release", "TTL": datetime.timedelta(0, 15) } .. note:: Consul MAY return a TTL value higher than the one specified during session creation. This indicates the server is under high load and is requesting clients renew less often. """ session_id = extract_attr(session, keys=["ID"]) response = await self._api.put("/v1/session/renew", session_id, params={"dc": dc}) try: result = response.body[0] except IndexError: meta = extract_meta(response.headers) raise NotFound("No session for %r" % session_id, meta=meta) return consul(result, meta=extract_meta(response.headers))
python
import os import json from common.models import Contact, ContactType from facilities.models import ( Facility, FacilityContact, Officer, OfficerContact ) from users.models import MflUser from django.core.management import BaseCommand from django.conf import settings system_user = MflUser.objects.get(email='[email protected]') class Command(BaseCommand): def handle(self, *args, **kwargs): # facility email contacts file_path = os.path.join( settings.BASE_DIR, 'data/new_data/email/0018_facility_emails_contacts.json' ) with open(file_path) as email_contacts: email_data = json.load(email_contacts) records = email_data[0].get('records') email_type = ContactType.objects.get(name='EMAIL') for record in records: conact = record.get('contact') contact, created = Contact.objects.get_or_create( contact=conact, contact_type=email_type ) # facility email contacts linked file_path = os.path.join( settings.BASE_DIR, 'data/new_data/email/0019_facility_emails_contacts_linked.json' ) with open(file_path) as email_contacts: email_data = json.load(email_contacts) records = email_data[0].get('records') mobile_type = ContactType.objects.get(name='EMAIL') for record in records: contact = record.get('contact').get('contact') contact, created = Contact.objects.get_or_create( contact=contact, contact_type=mobile_type ) facility = record.get('facility').get('code') try: facility_obj = Facility.objects.get(code=facility) print FacilityContact.objects.get_or_create( contact=contact, facility=facility_obj, created_by=system_user, updated_by=system_user) except Facility.DoesNotExist: print "The requested facility does not exist" # officer email contacts file_path = os.path.join( settings.BASE_DIR, 'data/new_data/email/0030_officer_email_contacts.json' ) with open(file_path) as email_contacts: email_data = json.load(email_contacts) records = email_data[0].get('records') email_type = ContactType.objects.get(name='EMAIL') for record in records: conact = record.get('contact') contact, created = Contact.objects.get_or_create( contact=conact, contact_type=email_type ) # officer email linked file_path = os.path.join( settings.BASE_DIR, 'data/new_data/email/0031_officer_email_contacts_linked.json' ) with open(file_path) as email_contacts: email_data = json.load(email_contacts) records = email_data[0].get('records') email_type = ContactType.objects.get(name='EMAIL') for record in records: contact = record.get('contact').get('contact') contact, created = Contact.objects.get_or_create( contact=contact, contact_type=email_type ) officer = record.get('officer') if officer: officer = officer.get('name') try: officer_obj = Officer.objects.filter(name=officer) print OfficerContact.objects.get_or_create( contact=contact, officer=officer_obj[0], created_by=system_user, updated_by=system_user) except IndexError: print "The requested officer does not exist" else: print "Officer key is missing" # facility fax contacts file_path = os.path.join( settings.BASE_DIR, 'data/new_data/fax/0022_facility_fax_contacts.json' ) with open(file_path) as email_contacts: email_data = json.load(email_contacts) records = email_data[0].get('records') email_type = ContactType.objects.get(name='FAX') for record in records: conact = record.get('contact') contact, created = Contact.objects.get_or_create( contact=conact, contact_type=email_type ) # facility fax contacts linked file_path = os.path.join( settings.BASE_DIR, 'data/new_data/fax/0023_facility_fax_contacts_linked.json' ) with open(file_path) as email_contacts: email_data = json.load(email_contacts) records = email_data[0].get('records') mobile_type = ContactType.objects.get(name='FAX') for record in records: contact = record.get('contact').get('contact') contact, created = Contact.objects.get_or_create( contact=contact, contact_type=mobile_type ) facility = record.get('facility').get('code') try: facility_obj = Facility.objects.get(code=facility) print FacilityContact.objects.get_or_create( contact=contact, facility=facility_obj, created_by=system_user, updated_by=system_user) except Facility.DoesNotExist: print "The requested facility does not exist" # facility landline contacts file_path = os.path.join( settings.BASE_DIR, 'data/new_data/landline/0020_facility_landline_contacts.json' ) with open(file_path) as email_contacts: email_data = json.load(email_contacts) records = email_data[0].get('records') email_type = ContactType.objects.get(name='LANDLINE') for record in records: conact = record.get('contact') contact, created = Contact.objects.get_or_create( contact=conact, contact_type=email_type ) # facility landline contacts linked file_path = os.path.join( settings.BASE_DIR, 'data/new_data/landline/0021_facility_landline_contacts_linked.json' ) with open(file_path) as email_contacts: email_data = json.load(email_contacts) records = email_data[0].get('records') mobile_type = ContactType.objects.get(name='LANDLINE') for record in records: contact = record.get('contact').get('contact') contact, created = Contact.objects.get_or_create( contact=contact, contact_type=mobile_type ) facility = record.get('facility').get('code') try: facility_obj = Facility.objects.get(code=facility) print FacilityContact.objects.get_or_create( contact=contact, facility=facility_obj, created_by=system_user, updated_by=system_user) except Facility.DoesNotExist: print "The requested facility does not exist" # facility mobile contacts file_path = os.path.join( settings.BASE_DIR, 'data/new_data/mobile/0024_facility_mobile_contacts.json' ) with open(file_path) as email_contacts: email_data = json.load(email_contacts) records = email_data[0].get('records') email_type = ContactType.objects.get(name='MOBILE') for record in records: conact = record.get('contact') contact, created = Contact.objects.get_or_create( contact=conact, contact_type=email_type ) # facility mobile contacts linked file_path = os.path.join( settings.BASE_DIR, 'data/new_data/mobile/0025_facility_mobile_contacts_linked.json' ) with open(file_path) as email_contacts: email_data = json.load(email_contacts) records = email_data[0].get('records') mobile_type = ContactType.objects.get(name='MOBILE') for record in records: contact = record.get('contact').get('contact') contact, created = Contact.objects.get_or_create( contact=contact, contact_type=mobile_type ) facility = record.get('facility').get('code') try: facility_obj = Facility.objects.get(code=facility) print FacilityContact.objects.get_or_create( contact=contact, facility=facility_obj, created_by=system_user, updated_by=system_user) except Facility.DoesNotExist: print "The requested facility does not exist" # officers mobile contacts file_path = os.path.join( settings.BASE_DIR, 'data/new_data/mobile/0028_officer_mobile_contacts.json' ) with open(file_path) as email_contacts: email_data = json.load(email_contacts) records = email_data[0].get('records') email_type = ContactType.objects.get(name='MOBILE') for record in records: conact = record.get('contact') contact, created = Contact.objects.get_or_create( contact=conact, contact_type=email_type ) # officer mobiles linked file_path = os.path.join( settings.BASE_DIR, 'data/new_data/mobile/0029_officer_mobile_contacts_linked.json' ) with open(file_path) as email_contacts: email_data = json.load(email_contacts) records = email_data[0].get('records') email_type = ContactType.objects.get(name='MOBILE') for record in records: contact = record.get('contact').get('contact') contact, created = Contact.objects.get_or_create( contact=contact, contact_type=email_type ) officer = record.get('officer') if officer: officer = officer.get('name') try: officer_obj = Officer.objects.filter(name=officer) print OfficerContact.objects.get_or_create( contact=contact, officer=officer_obj[0], created_by=system_user, updated_by=system_user) except IndexError: print "The requested officer does not exist" else: print "Officer key is missing"
python