content
stringlengths 0
894k
| type
stringclasses 2
values |
---|---|
# -*- coding: utf-8 -*-
import nnabla as nn
import numpy as np
import common.rawdata as rdat
from tex_util import Texture
""" from nnc_proj.($$project_name_of_nnc) import network """
from nnc_proj.model import network
nn.clear_parameters()
nn.parameter.load_parameters('./nnc_proj/model.nnp')
ratios = rdat.ratios
mvec = rdat.max_vector
def estimate_sscurve(stress_roots, tex_info, num=1):
'''
return:(array_like, [rootNum, 50]) strain, stress
'''
x = nn.Variable((num, 1, 128, 128))
x2 = nn.Variable((num, 1))
y1, y2 = network(x, x2, test=True)
# RD, TD なので2つ [num, xx, '2']
rootsNum = len(stress_roots)
strain = np.empty((num, rootsNum, 50, 2))
stress = np.empty((num, rootsNum, 50, 2))
y_norm = np.array([np.linspace(0.5, 1, 50) for j in range(2)]).T
for cnt in range(num):
tex = Texture(volume=1000, tex_info=tex_info)
img = tex.pole_figure()
x.d[cnt, 0] = img / 255.0
for i, root in enumerate(stress_roots):
x2.d = ratios[root]
y1.forward()
y2.forward()
curve = y1.d[:]
max_vec = y2.d[:] * mvec
for cnt in range(num):
strain[cnt, i] = curve[cnt] * max_vec[cnt, 0, :]
stress[cnt, i] = y_norm * max_vec[cnt, 1, :]
ave_stress = np.average(stress, axis=0)
ave_strain = np.average(strain, axis=0)
std = np.std(stress, axis=0)
# 配列の先頭に0を追加
ave_stress = np.insert(ave_stress, 0, 0, axis=1)
ave_strain = np.insert(ave_strain, 0, 0, axis=1)
std = np.insert(std, 0, 0, axis=1)
return ave_strain, ave_stress, std
if __name__ == "__main__":
# texture = '0_00514_04109_00406_02209_01611'
# texture = '0_00611_02907_00507_01507_01311'
texture = '0_01813_00808_01012_00213_00405'
roots = ['1_0', '4_1', '2_1', '4_3', '1_1', '3_4', '1_2', '1_4', '0_1']
import time
start = time.time()
strain, stress, std = estimate_sscurve(roots, texture, 50)
elapsed = time.time() - start
print('elapsed time: {} [sec]'.format(elapsed))
np.save(strain, 'estimate_result/2dcnn_strain_{}.npy'.format(texture))
np.save(stress, 'estimate_result/2dcnn_stress_{}.npy'.format(texture))
# np.save(std, 'estimate_result/2dcnn_strain_{}.npy'.format(texture))
|
python
|
# Copyright 2021 Sean Robertson
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
import pytest
import pydrobert.torch.training as training
import numpy as np
@pytest.mark.parametrize(
"opt_class",
[
torch.optim.Adam,
torch.optim.Adagrad,
torch.optim.LBFGS,
torch.optim.SGD,
],
)
def test_controller_stores_and_retrieves(temp_dir, device, opt_class):
torch.manual_seed(50)
model = torch.nn.Linear(2, 2).to(device)
optimizer = opt_class(model.parameters(), lr=20)
p = training.TrainingStateParams(seed=5, log10_learning_rate=-1)
state_csv_path = os.path.join(temp_dir, "a.csv")
state_dir = os.path.join(temp_dir, "states")
controller = training.TrainingStateController(
p,
state_csv_path=state_csv_path,
state_dir=state_dir,
)
controller.add_entry("cool_guy_entry", int)
controller.load_model_and_optimizer_for_epoch(model, optimizer, 0)
assert optimizer.param_groups[0]["lr"] == 10 ** p.log10_learning_rate
inp = torch.randn(5, 2, device=device)
def closure():
optimizer.zero_grad()
loss = model(inp).sum()
loss.backward()
return loss
model_2 = torch.nn.Linear(2, 2).to(device)
optimizer_2 = opt_class(model_2.parameters(), lr=20)
controller.load_model_and_optimizer_for_epoch(model_2, optimizer_2, 0)
assert optimizer_2.param_groups[0]["lr"] == 10 ** p.log10_learning_rate
for parameter_1, parameter_2 in zip(model.parameters(), model_2.parameters()):
assert parameter_1.device == device
assert parameter_2.device == device
assert torch.allclose(parameter_1, parameter_2)
optimizer.step(closure)
for parameter_1, parameter_2 in zip(model.parameters(), model_2.parameters()):
assert not torch.allclose(parameter_1, parameter_2)
def closure():
optimizer_2.zero_grad()
loss = model_2(inp).sum()
loss.backward()
return loss
optimizer_2.step(closure)
for parameter_1, parameter_2 in zip(model.parameters(), model_2.parameters()):
assert torch.allclose(parameter_1, parameter_2)
epoch_info = {
"epoch": 10,
"es_resume_cd": 3,
"es_patience_cd": 4,
"rlr_resume_cd": 10,
"rlr_patience_cd": 5,
"lr": 1e-7,
"train_met": 10,
"val_met": 4,
"cool_guy_entry": 30,
}
controller.save_model_and_optimizer_with_info(model, optimizer, epoch_info)
controller.save_info_to_hist(epoch_info)
assert controller[10] == epoch_info
torch.manual_seed(4)
model_2 = torch.nn.Linear(2, 2).to(device)
optimizer_2 = opt_class(model_2.parameters(), lr=20)
controller.load_model_and_optimizer_for_epoch(model_2, optimizer_2, 10)
for parameter_1, parameter_2 in zip(model.parameters(), model_2.parameters()):
assert parameter_1.device == device
assert parameter_2.device == device
assert torch.allclose(parameter_1, parameter_2)
optimizer_2.step(closure)
for parameter_1, parameter_2 in zip(model.parameters(), model_2.parameters()):
assert not torch.allclose(parameter_1, parameter_2)
controller = training.TrainingStateController(
p,
state_csv_path=state_csv_path,
state_dir=state_dir,
)
assert "cool_guy_entry" not in controller[10]
assert controller[10]["es_resume_cd"] == epoch_info["es_resume_cd"]
controller.add_entry("cool_guy_entry", int)
assert controller[10] == epoch_info
model_3 = torch.nn.Linear(2, 2).to(device)
optimizer_3 = opt_class(model_3.parameters(), lr=20)
controller.load_model_and_optimizer_for_epoch(model_3, optimizer_3, 10)
model_3.to(device)
for parameter_1, parameter_3 in zip(model.parameters(), model_3.parameters()):
assert parameter_3.device == device
assert torch.allclose(parameter_1, parameter_3)
def closure():
optimizer_3.zero_grad()
loss = model_3(inp).sum()
loss.backward()
return loss
optimizer_3.step(closure)
for parameter_1, parameter_2, parameter_3 in zip(
model.parameters(), model_2.parameters(), model_3.parameters()
):
assert not torch.allclose(parameter_1, parameter_2)
assert torch.allclose(parameter_2, parameter_3)
torch.manual_seed(300)
model_2 = torch.nn.Linear(2, 2).to(device)
optimizer_2 = opt_class(model_2.parameters(), lr=20)
epoch_info["epoch"] = 3
epoch_info["val_met"] = 2
controller.save_model_and_optimizer_with_info(model_2, optimizer_2, epoch_info)
controller.save_info_to_hist(epoch_info)
# by default, load_model_and_optimizer_for_epoch loads last
controller.load_model_and_optimizer_for_epoch(model_3, optimizer_3)
for parameter_1, parameter_2, parameter_3 in zip(
model.parameters(), model_2.parameters(), model_3.parameters()
):
assert torch.allclose(parameter_1, parameter_3)
assert not torch.allclose(parameter_2, parameter_3)
# by default, load_model_for_epoch loads best
controller.load_model_for_epoch(model_3)
for parameter_1, parameter_2, parameter_3 in zip(
model.parameters(), model_2.parameters(), model_3.parameters()
):
assert not torch.allclose(parameter_1, parameter_3)
assert torch.allclose(parameter_2, parameter_3)
@pytest.mark.cpu
def test_controller_stops_at_num_epochs():
num_epochs = 10
model = torch.nn.Linear(2, 2)
optimizer = torch.optim.Adam(model.parameters())
params = training.TrainingStateParams(
num_epochs=num_epochs, early_stopping_threshold=0.0
)
controller = training.TrainingStateController(params)
for _ in range(9):
assert controller.update_for_epoch(model, optimizer, 0.1, 0.1)
assert controller.continue_training()
assert not controller.update_for_epoch(model, optimizer, 0.1, 0.1)
assert not controller.continue_training()
@pytest.mark.cpu
def test_controller_scheduling():
model = torch.nn.Linear(2, 2)
optimizer = torch.optim.Adam(model.parameters())
p = training.TrainingStateParams(
early_stopping_threshold=0.1,
early_stopping_patience=10,
early_stopping_burnin=1,
reduce_lr_threshold=0.2,
reduce_lr_factor=0.5,
reduce_lr_patience=5,
reduce_lr_cooldown=2,
reduce_lr_burnin=4,
)
controller = training.TrainingStateController(p)
controller.load_model_and_optimizer_for_epoch(model, optimizer)
init_lr = optimizer.param_groups[0]["lr"]
for _ in range(8):
assert controller.update_for_epoch(model, optimizer, 1, 1)
assert controller.continue_training()
assert np.isclose(optimizer.param_groups[0]["lr"], init_lr)
assert controller.update_for_epoch(model, optimizer, 1, 1)
assert np.isclose(optimizer.param_groups[0]["lr"], init_lr / 2)
for _ in range(6):
assert controller.update_for_epoch(model, optimizer, 0.89, 0.89)
assert controller.continue_training()
assert np.isclose(optimizer.param_groups[0]["lr"], init_lr / 2)
assert controller.update_for_epoch(model, optimizer, 0.68, 0.68)
assert controller.continue_training()
assert np.isclose(optimizer.param_groups[0]["lr"], init_lr / 2)
for _ in range(9):
assert controller.update_for_epoch(model, optimizer, 0.68, 0.68)
assert controller.continue_training()
assert not controller.update_for_epoch(model, optimizer, 0.68, 0.68)
assert not controller.continue_training()
p.early_stopping_threshold = 0.0
p.reduce_lr_threshold = 0.0
controller = training.TrainingStateController(p)
controller.load_model_and_optimizer_for_epoch(model, optimizer)
init_lr = optimizer.param_groups[0]["lr"]
for _ in range(20):
assert controller.update_for_epoch(model, optimizer, 0.0, 0.0)
assert controller.continue_training()
assert np.isclose(optimizer.param_groups[0]["lr"], init_lr)
@pytest.mark.cpu
def test_controller_slippery_slope():
model = torch.nn.Linear(2, 2)
optimizer = torch.optim.Adam(model.parameters())
p = training.TrainingStateParams(
early_stopping_threshold=1.0,
early_stopping_patience=5,
early_stopping_burnin=0,
reduce_lr_threshold=1.0,
reduce_lr_patience=2,
reduce_lr_factor=0.5,
reduce_lr_burnin=0,
reduce_lr_cooldown=0,
)
controller = training.TrainingStateController(p)
controller.load_model_and_optimizer_for_epoch(model, optimizer)
init_lr = optimizer.param_groups[0]["lr"]
for step in range(6):
dev = 3.5 - 0.75 * step
controller.update_for_epoch(model, optimizer, 1., dev)
assert controller.continue_training(), step
assert np.isclose(optimizer.param_groups[0]["lr"], init_lr), step
@pytest.mark.cpu
def test_controller_best(temp_dir):
torch.manual_seed(10)
model_1 = torch.nn.Linear(100, 100)
optimizer_1 = torch.optim.Adam(model_1.parameters(), lr=1)
model_2 = torch.nn.Linear(100, 100)
optimizer_2 = torch.optim.Adam(model_2.parameters(), lr=2)
model_3 = torch.nn.Linear(100, 100)
optimizer_3 = torch.optim.Adam(model_1.parameters(), lr=3)
training.TrainingStateController.SCIENTIFIC_PRECISION = 5
controller = training.TrainingStateController(
training.TrainingStateParams(), state_dir=temp_dir
)
assert controller.get_best_epoch() == 0
controller.update_for_epoch(model_1, optimizer_1, 0.5, 0.5)
assert controller.get_best_epoch() == 1
controller.update_for_epoch(model_2, optimizer_2, 1, 1)
assert controller.get_best_epoch() == 1
controller.update_for_epoch(model_2, optimizer_2, 1, 1)
with pytest.raises(IOError):
# neither best nor last
controller.load_model_and_optimizer_for_epoch(model_3, optimizer_3, 2)
controller.load_model_and_optimizer_for_epoch(model_3, optimizer_3, 1)
for parameter_1, parameter_3 in zip(model_1.parameters(), model_3.parameters()):
assert torch.allclose(parameter_1, parameter_3)
assert optimizer_3.param_groups[0]["lr"] == 1
controller.load_model_and_optimizer_for_epoch(model_3, optimizer_3, 3)
for parameter_3, parameter_2 in zip(model_3.parameters(), model_2.parameters()):
assert torch.allclose(parameter_3, parameter_2)
assert optimizer_3.param_groups[0]["lr"] == 2
controller.update_for_epoch(model_1, optimizer_1, 0.6, 0.6)
assert controller.get_best_epoch() == 1
# round-on-even dictates .400005 will round to .40000
controller.update_for_epoch(model_1, optimizer_1, 0.400005, 0.400005)
assert controller.get_best_epoch() == 5
controller.load_model_and_optimizer_for_epoch(model_3, optimizer_3, 5)
for parameter_1, parameter_3 in zip(model_1.parameters(), model_3.parameters()):
assert torch.allclose(parameter_1, parameter_3)
with pytest.raises(IOError):
# no longer the best
controller.load_model_and_optimizer_for_epoch(model_3, optimizer_3, 1)
# this block ensures that negligible differences in the loss aren't being
# considered "better." This is necessary to remain consistent
# with the truncated floats saved to history
controller.update_for_epoch(model_1, optimizer_1, 0.4, 0.4)
# last
controller.load_model_and_optimizer_for_epoch(model_3, optimizer_3, 6)
# best (because ~ equal and older)
controller.load_model_and_optimizer_for_epoch(model_3, optimizer_3, 5)
# ensure we're keeping track of the last when the model name is not
# unique
controller = training.TrainingStateController(
training.TrainingStateParams(
saved_model_fmt="model.pt",
),
state_dir=temp_dir,
warn=False,
)
model_1.reset_parameters()
model_2.reset_parameters()
controller.update_for_epoch(model_1, optimizer_1, 0.6, 0.6)
controller.update_for_epoch(model_2, optimizer_2, 0.4, 0.4)
controller.load_model_and_optimizer_for_epoch(model_3, optimizer_3, 2)
for parameter_2, parameter_3 in zip(model_2.parameters(), model_3.parameters()):
assert torch.allclose(parameter_2, parameter_3)
controller.update_for_epoch(model_1, optimizer_1, 0.5, 0.5)
controller.load_model_and_optimizer_for_epoch(model_3, optimizer_3, 3)
for parameter_1, parameter_3 in zip(model_1.parameters(), model_3.parameters()):
assert torch.allclose(parameter_1, parameter_3)
@pytest.mark.cpu
def test_pydrobert_param_optuna_hooks():
poptuna = pytest.importorskip("pydrobert.param.optuna")
optuna = pytest.importorskip("optuna")
assert issubclass(training.TrainingStateParams, poptuna.TunableParameterized)
global_dict = {"training": training.TrainingStateParams()}
assert "training.log10_learning_rate" in poptuna.get_param_dict_tunable(global_dict)
def objective(trial):
param_dict = poptuna.suggest_param_dict(trial, global_dict)
return param_dict["training"].log10_learning_rate
sampler = optuna.samplers.RandomSampler(seed=5)
study = optuna.create_study(sampler=sampler)
study.optimize(objective, n_trials=50)
assert study.best_params["training.log10_learning_rate"] < -5
|
python
|
"""
def main():
print('main')
TestCase1:
a = [1, 2, 3, 4]
b = [5, 6, 7]
# c = [1, 8, 0, 1]
TEst case2:
a = [1, 2, 3, 4]
b = [5, 6, 7,9]
#c =[6,9,1,3]
Test case3:
a = [2, 3, 4]
b = [5, 6, 7,9]
#c = [5,9,1,3]
"""
a = [2, 3, 4]
b = [5, 6, 7, 9]
sum = new_sum = 0
new_list = []
i = max(len(a)-1, len(b) -1)
while(i>=0):
if len(b) < len(a):
if i >=1:
sum = a[i] + b[i-1] + int(new_sum)
else:
sum = a[i]
elif len(b) > len(a):
if i>= 1:
sum = a[i-1] + b[i] + int(new_sum)
else:
sum = b[i]
elif len(a) == len(b):
if i>= 1:
sum = a[i] + b[i] + int(new_sum)
else:
sum = a[i] + b[i]
if sum >= 10:
str_sum = str(sum)
new_sum = str_sum[0]
new_list.append(int(str_sum[len(str_sum)-1]))
else:
new_list.append(sum)
i -= 1
print(new_list[::-1])
|
python
|
#!/bin/env python
import os
import json
import subprocess
import sys
import shutil
class Debug:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
def info(self, msg):
print('[' + self.OKGREEN + 'info' + self.ENDC + '] ' + msg)
def error(self, msg):
print('[' + self.FAIL + 'error' + self.ENDC + '] ' + msg)
class Docker:
def __init__(self, version, git_rev, distro, work_path):
self.version = version
self.git_rev = git_rev
self.distro = distro
self.dbg = Debug()
self.work_path = work_path
self.dbg.info('poller ' + self.dbg.OKBLUE + version + self.dbg.ENDC + '@' + self.dbg.OKBLUE
+ git_rev + self.dbg.ENDC + ' on ' + self.dbg.OKBLUE + distro + self.dbg.ENDC)
self.dbg.info('working dir : ' + self.dbg.OKBLUE + self.work_path + self.dbg.ENDC)
def __launch(self, args_array):
process = subprocess.Popen(args_array, stdout=subprocess.PIPE, universal_newlines=True)
return_code = None
while True:
output = process.stdout.readline()
print(output.strip())
# Do something else
return_code = process.poll()
if return_code is not None:
# Process has finished, read rest of the output
for output in process.stdout.readlines():
print(output.strip())
break
return return_code
def build(self, name, deps):
self.dbg.info('starting build phase for ' + self.dbg.OKBLUE + name + self.dbg.ENDC)
os.chdir(self.work_path + '/' + name + '/build/' + self.distro)
for dep in deps:
src = self.work_path + '/packages/' + dep + '-' + self.version + '-r0.apk'
dest = self.work_path + '/' + name + '/build/' + self.distro + '/' + dep + '-' + self.version + '-r0.apk'
self.dbg.info('copy ' + self.dbg.OKBLUE + src + self.dbg.ENDC + ' to ' + self.dbg.OKBLUE + dest + self.dbg.ENDC)
shutil.copyfile(src, dest)
return_code = self.__launch(['docker', 'build', '-t', name + '-' + self.version + ':' + self.distro, '.'])
os.chdir(self.work_path)
if return_code == 0:
self.dbg.info('build done')
return True
else:
self.dbg.error('build fail with error code: ' + self.dbg.WARNING + str(return_code) + self.dbg.ENDC)
return False
def test(self, name):
self.dbg.info('starting test phase for ' + self.dbg.OKBLUE + name + self.dbg.ENDC)
os.chdir(self.work_path + '/' + name + '/test/' + self.distro)
return_code = self.__launch(['docker', 'build', '-t', name + '-' + self.version + '-test:' + self.distro, '.'])
os.chdir(self.work_path)
if return_code == 0:
self.dbg.info('build done')
return True
else:
self.dbg.error('build fail with error code: ' + self.dbg.WARNING + str(return_code) + self.dbg.ENDC)
return False
def package(self, name, deps):
self.dbg.info('starting package phase for ' + self.dbg.OKBLUE + name + self.dbg.ENDC)
wdir = self.work_path + '/' + name + '/package/' + self.distro
print(wdir)
sys.path.append(wdir)
import generate
generate.generate_recipe(self.version, self.git_rev, wdir)
del sys.modules["generate"]
sys.path.remove(wdir)
self.dbg.info('generate recipe ' + self.dbg.OKBLUE + "done" + self.dbg.ENDC)
os.chdir(wdir)
for dep in deps:
src = self.work_path + '/packages/' + dep + '-' + self.version + '-r0.apk'
dest = self.work_path + '/' + name + '/package/' + self.distro + '/' + dep + '-' + self.version + '-r0.apk'
self.dbg.info('copy ' + self.dbg.OKBLUE + src + self.dbg.ENDC + ' to ' + self.dbg.OKBLUE + dest + self.dbg.ENDC)
shutil.copyfile(src, dest)
return_code = self.__launch(['docker', 'build', '-t', name + '-' + self.version + '-package:' + self.distro, '.'])
return_code = return_code + self.__launch(['./get_files.sh', self.version])
os.chdir(self.work_path)
if return_code == 0:
self.dbg.info('build done')
return True
else:
self.dbg.error('build fail with error code: ' + self.dbg.WARNING + str(return_code) + self.dbg.ENDC)
return False
if __name__ == '__main__':
config = None
with open('config.json', 'r') as f:
config = json.load(f)
dock = Docker(config['version'], config['git_tag'], config['distribution'], os.path.dirname(os.path.realpath(__file__)))
for proj in config['build']:
if proj['build'] == True:
dock.build(proj['name'], proj['pkg_deps'])
if proj['test'] == True:
dock.test(proj['name'])
if proj['package'] == True:
dock.package(proj['name'], proj['pkg_deps'])
|
python
|
''' Class to construct circular parts of the eyepiece
'''
from kivy.uix.widget import Widget
from kivy.lang import Builder
from kivy.properties import NumericProperty
Builder.load_string('''
<Ring>:
canvas:
Color:
rgba: self.color
rgba: self.grey, self.grey, self.grey, 1 - app.transparency
Line:
circle: self.x, self.y, self.radius, self.start_angle, self.end_angle, self.nsegs
width: self.thickness
''')
class Ring(Widget):
thickness = NumericProperty(0)
def __init__(self, pos=[0, 0], radius=1, thickness=1, grey=.4,
start_angle=0, end_angle=360, nsegs=240):
self.selected = False
self.pos = pos
self.radius = radius
self.thickness = thickness
self.grey = grey
self.color = [grey, grey, grey, 1]
self.start_angle = start_angle
self.end_angle = end_angle
self.nsegs = nsegs
super().__init__()
def relocate(self, origin=None, radius=None, thickness=None):
self.pos = origin
self.radius = radius
if thickness:
self.thickness = thickness
|
python
|
import mock
import pytest
@pytest.fixture
def contentful():
with mock.patch(
'contentful_proxy.handlers.items.DetailProxyHandler.contentful',
new_callable=mock.PropertyMock
) as mock_types:
yield mock_types
def test_get_item_by_id(app, contentful):
contentful.return_value.content_type.return_value = mock.MagicMock(content='{}')
item_type, item_id = 'content_types', '124'
response = app.get('/contentful/{}/{}'.format(item_type, item_id))
assert response.status_code == 200
contentful.return_value.content_type.assert_called_once_with(item_id)
def test_get_item(app, contentful):
contentful.return_value.content_types.return_value = mock.MagicMock(content='{}')
item_type = 'content_types'
response = app.get('/contentful/{}'.format(item_type))
assert response.status_code == 200
contentful.return_value.content_types.assert_called_once_with({})
def test_get_item_root_path(app, contentful):
contentful.return_value.root_endpoint.return_value = mock.MagicMock(content='{}')
response = app.get('/contentful/')
assert response.status_code == 200
contentful.return_value.root_endpoint.assert_called_once_with({})
def test_get_item_unexpected_type(app, contentful):
app.get('/contentful/unexpected-type', status=404)
|
python
|
# Practice python script for remote jobs
import time
import os
print('starting')
time.sleep(30)
if os.path.exists('62979.pdf'):
os.remove('62979.pdf')
else:
print('The file does not exist')
print('done')
|
python
|
from django.db import models
from django.utils.translation import gettext_lazy as _
from itertools import chain
from operator import attrgetter
# A model which represents a projects to be displayed on the projects page of the website.
class Project(models.Model):
# Define the possible statuses of a project, each with a function to get their full text.
class Status(models.TextChoices):
FUTURE = 'F', _('Future') # The project has not been started yet, but is planned to be completed.
IN_PROGRESS = 'I', _('In Progress') # The project has been started and is actively being worked on.
PAUSED = 'P', _('Paused') # The project has been started, but it is not actively being worked on.
COMPLETED = 'C', _('Completed') # The project has been completed.
# Explicitly define an integer primary key for a project entry.
id = models.IntegerField(primary_key=True, auto_created=True)
# Fields which contain a project's title, status, description, and extended details.
title = models.CharField(max_length=200, null=False, unique=True)
_status = models.CharField(max_length=1, choices=Status.choices, default=Status.FUTURE)
description = models.TextField(max_length=3000, default='')
details = models.TextField(default='')
# Fields which contain the start and end dates of a project.
start_date = models.DateField(null=True)
completion_date = models.DateField(null=True)
# A property which acts as shortcut for accessing the full display string of a project's status.
@property
def status(self):
return self.get__status_display()
# A property which returns a string containing a small message describing the project's status.
@property
def status_tooltip(self):
# Return the appropriate string based on the project's status.
if self._status == self.Status.FUTURE:
return 'This project has not yet been started.'
elif self._status in [self.Status.IN_PROGRESS, self.Status.PAUSED]:
return f'This project was started on {self.start_date.strftime("%B %d, %Y")}.'
elif self._status == self.Status.COMPLETED:
return f'This project was completed on {self.completion_date.strftime("%B %d, %Y")}.'
# A property which returns a list containing each paragraph in a project's details field.
@property
def details_as_list(self):
# Define an empty list to store each paragraph and an empty string to store the current paragraph.
details_list = []
par = ''
# Iterate through all of the characters in the project's details field.
for c in self.details:
# If a newline character is encountered, add the current paragraph string to the list, empty the current
# paragraph string and continue to the next loop iteration.
if c == '\n':
details_list.append(par)
par = ''
continue
# Otherwise, simply append the current character to the current paragraph string.
par += c
# Add the last paragraph to the the list of paragraphs.
details_list.append(par)
# Return the list of paragraphs in the project's details field.
return details_list
# Define a property which returns a list of all of the project's related content items, sorted by their display
# priority.
@property
def content(self):
return sorted(
chain(
self.projects_githubcontent_related.all(),
),
key=attrgetter('display_priority'),
reverse=True
)
# Define the string representation of a project object.
def __str__(self):
return f'{self.title}'
# Define the different types of content models.
class ContentTypes(models.TextChoices):
GITHUB = 'github', _('Github Repository Preview')
# Define the possible display priorities for the content.
class DisplayPriority(models.IntegerChoices):
LOW = -1, _('Low') # The content should be displayed near the bottom of the project card.
MEDIUM = 0, _('Medium') # The content should be displayed somewhere in the middle of the project card.
HIGH = 1, _('High') # The content should be displayed near the top of the project card.
# The base model for content to be displayed in blocks within a project card.
class AbstractContent(models.Model):
# Explicitly define an integer primary key for a project entry.
id = models.IntegerField(primary_key=True, auto_created=True)
# A field which contains a content item's content type. The available content types are specified by the
# ContentTypes class.
content_type = models.CharField(max_length=20, choices=ContentTypes.choices)
# A field which indicates whether a content entry should be displayed at the start, in the middle (default), or at
# the end of a project card.
display_priority = models.IntegerField(choices=DisplayPriority.choices, default=0)
# A field which represents a Many-To-One relationship from content entries to a single project entry.
project = models.ForeignKey(
Project,
on_delete=models.CASCADE,
# Set the field name from which a QueryList of a project's related content entries can be accessed.
related_name='%(app_label)s_%(class)s_related',
)
# Specify that this model class is abstract.
class Meta:
abstract = True
ordering = ['-display_priority']
# A model, which inherits from the AbstractContent model, that represents a block representing a project's github
# repository.
class GithubContent(AbstractContent):
# Set the content's content type.
content_type = ContentTypes.GITHUB
# A field which contains the URL of the github repository of the project.
repository_url = models.CharField(max_length=200, null=False)
# A property which returns the path of the template to render the content with.
@property
def template(self):
return 'projects/content/github.html'
# Define the string representation of a github content object.
def __str__(self):
return f'GitHub content for project: "{self.project.title}"'
|
python
|
import asyncio
import asyncpg
from aiohttp import web
loop = asyncio.get_event_loop()
loop.create_server(["127.0.0.1", "localhost"], port=1234)
async def handle(request):
"""Handle incoming requests."""
pool = request.app["pool"]
power = int(request.match_info.get("power", 10))
# Take a connection from the pool.
async with pool.acquire() as connection:
# Open a transaction.
async with connection.transaction():
# Run the query passing the request argument.
result = await connection.fetchval("select 2 ^ $1", power)
return web.Response(text="2 ^ {} is {}".format(power, result))
async def init_app():
"""Initialize the application server."""
app = web.Application()
# Create a database connection pool
dsn = "postgres://troc-pgdata:z!7ru$7aNuy=za@localhost:5432/navigator"
app["pool"] = await asyncpg.create_pool(
dsn=dsn, database="navigator", max_size=50, min_size=5, loop=loop
)
# Configure service routes
app.router.add_route("GET", "/{power:\d+}", handle)
app.router.add_route("GET", "/", handle)
return app
# loop = asyncio.get_event_loop()
app = loop.run_until_complete(init_app())
web.run_app(app)
|
python
|
"""Utilities for converting notebooks to and from different formats."""
from .exporters import *
from . import filters
from . import transformers
from . import post_processors
from . import writers
|
python
|
import unittest
import suite_all_tests_chrome
import suite_all_tests_firefox
if __name__ == '__main__':
runner = unittest.TextTestRunner(verbosity=2)
suite = unittest.TestSuite()
suite_chrome = suite_all_tests_chrome.suite()
suite_firefox= suite_all_tests_firefox.suite()
suite.addTests(suite_chrome)
suite.addTests(suite_firefox)
runner.run(suite)
|
python
|
# -*- coding: utf-8 -*-
''' pyrad_proc.py - Process and pipeline management for Python Radiance scripts
2016 - Georg Mischler
Use as:
from pyradlib.pyrad_proc import PIPE, Error, ProcMixin
For a single-file installation, include the contents of this file
at the same place (minus the __future__ import below).
'''
from __future__ import division, print_function, unicode_literals
import sys
import subprocess
PIPE = subprocess.PIPE
class Error(Exception): pass
class ProcMixin():
'''Process and pipeline management for Python Radiance scripts
'''
def raise_on_error(self, actstr, e):
try: self._strtypes
except AttributeError: self.__configure_subprocess()
if hasattr(e, 'strerror'): eb = e.strerror
elif isinstance(e, self._strtypes): eb = e
else: eb = e
if isinstance(eb, type(b'')):
estr = eb.decode(encoding='utf-8', errors='ignore')
else: estr = eb
raise Error('Unable to %s - %s' % (actstr, estr)) #
def __configure_subprocess(self):
'''Prevent subprocess module failure in frozen scripts on Windows.
Prevent console windows from popping up when not console based.
Make sure we use the version-specific string types.
'''
# On Windows, sys.stdxxx may not be available when:
# - built as *.exe with "pyinstaller --noconsole"
# - invoked via CreateProcess() and stream not redirected
try:
sys.__stdin__.fileno()
self._stdin = sys.stdin
except: self._stdin = PIPE
try:
sys.__stdout__.fileno()
self._stdout = sys.stdout
except: self._stdout = PIPE
try:
sys.__stderr__.fileno()
self._stderr = sys.stderr
# keep subprocesses from opening their own console.
except: self._stderr = PIPE
if hasattr(subprocess, 'STARTUPINFO'):
si = subprocess.STARTUPINFO()
si.dwFlags |= subprocess.STARTF_USESHOWWINDOW
self._pipeargs = {'startupinfo':si}
else: self._pipeargs = {}
# type names vary between Py2.7 and 3.x
self._strtypes = (type(b''), type(u''))
def qjoin(self, sl):
'''Join a list with quotes around each element containing whitespace.
We only use this to display command lines on sys.stderr, the actual
Popen() calls are made with the original list.
'''
def _q(s):
if ' ' in s or '\t' in s or ';' in s:
return "'" + s + "'"
return s
return ' '.join([_q(s) for s in sl])
def __parse_args(self, _in, out):
try: self._strtypes
except AttributeError: self.__configure_subprocess()
instr = ''
if _in == PIPE:
stdin = _in
elif isinstance(_in, self._strtypes):
if not getattr(self, 'donothing', None):
stdin = open(_in, 'rb')
else: stdin = None
instr = ' < "%s"' % _in
elif hasattr(_in, 'read'):
stdin = _in
instr = ' < "%s"' % _in.name
else: stdin = self._stdin
outstr = ''
if out == PIPE:
stdout = out
elif isinstance(out, self._strtypes):
if not getattr(self, 'donothing', None):
stdout = open(out, 'wb')
else: stdout = None
outstr = ' > "%s"' % out
elif hasattr(out, 'write'):
stdout = out
outstr = ' > "%s"' % out.name
else: stdout = self._stdout
return stdin, stdout, instr, outstr
def call_one(self, cmdl, actstr, _in=None, out=None,
universal_newlines=False):
'''Create a single subprocess, possibly with an incoming and outgoing
pipe at each end.
- cmdl
A list of strings, leading with the name of the executable (without
the *.exe suffix), followed by individual arguments.
- actstr
A text string of the form "do something".
Used in verbose mode as "### do someting\\n### [command line]"
Used in error messages as "Scriptname: Unable to do something".
- _in / out
What to do with the input and output pipes of the process:
* a filename as string
Open file and use for reading/writing.
* a file like object
Use for reading/writing
* PIPE
Pipe will be available in returned object for reading/writing.
* None (default)
System stdin/stdout will be used if available
If _in or out is a PIPE, the caller should call p.wait() on the
returned Popen instance after writing to and closing it.
'''
stdin, stdout, instr, outstr = self.__parse_args(_in, out)
if getattr(self, 'verbose', None):
sys.stderr.write('### %s \n' % actstr)
sys.stderr.write(self.qjoin(cmdl) + instr + outstr + '\n')
if not getattr(self, 'donothing', None):
try: p = subprocess.Popen(cmdl,
stdin=stdin, stdout=stdout, stderr=self._stderr,
universal_newlines=universal_newlines, **self._pipeargs)
except Exception as e:
self.raise_on_error(actstr, e)
if stdin != PIPE and stdout != PIPE:
# caller needs to wait after reading or writing (else deadlock)
res = p.wait()
if res != 0:
self.raise_on_error(actstr,
'Nonzero exit (%d) from command [%s].'
% (res, self.qjoin(cmdl)+instr+outstr+'\n'))
return p
def call_two(self, cmdl_1, cmdl_2, actstr_1, actstr_2, _in=None, out=None,
universal_newlines=False):
'''Create two processes, chained via a pipe, possibly with an incoming
and outgoing pipe at each end.
Returns a tuple of two Popen instances.
Arguments are equivalent to call_one(), with _in and out applying
to the ends of the chain.
If _in or out is PIPE, the caller should call p.wait() on both
returned popen instances after writing to and closing the first on .
'''
stdin, stdout, instr, outstr = self.__parse_args(_in, out)
if getattr(self, 'verbose', None):
sys.stderr.write('### %s \n' % actstr_1)
sys.stderr.write('### %s \n' % actstr_2)
sys.stderr.write(self.qjoin(cmdl_1) + instr + ' | ')
if not getattr(self, 'donothing', None):
try: p1 = subprocess.Popen(cmdl_1,
stdin=stdin, stdout=PIPE, stderr=self._stderr,
**self._pipeargs)
except Exception as e:
self.raise_on_error(actstr_1, e)
if getattr(self, 'verbose', None):
sys.stderr.write(self.qjoin(cmdl_2) + outstr + '\n')
if not getattr(self, 'donothing', None):
try:
p2 = subprocess.Popen(cmdl_2,
stdin=p1.stdout, stdout=stdout, stderr=self._stderr,
universal_newlines=universal_newlines, **self._pipeargs)
p1.stdout.close()
except Exception as e:
self.raise_on_error(actstr_2, e)
if stdin != PIPE and stdout != PIPE:
# caller needs to wait after reading or writing (else deadlock)
res = p1.wait()
if res != 0:
self.raise_on_error(actstr_1,
'Nonzero exit (%d) from command [%s].'
% (res, self.qjoin(cmdl_1)))
res = p2.wait()
if res != 0:
self.raise_on_error(actstr_2,
'Nonzero exit (%d) from command [%s].'
% (res, self.qjoin(cmdl_2)))
return p1, p2
def call_many(self, cmdlines, actstr, _in=None, out=None,
universal_newlines=False):
'''Create a series of N processes, chained via pipes, possibly with an
incoming and outgoing pipe at each end.
Returns a tuple of N subprocess.Popen instances.
Depending on the values of _in and out, the first and last may be
available to write to or read from respectively.
Most arguments are equivalent to call_one(), with
- cmdlines
a list of N command argument lists
- _in / out
applying to the ends of the chain.
If _in or out is PIPE, the caller should call p.wait() on all
returned Popen instances after writing to and closing the first one.
'''
if len(cmdlines) == 1:
# other than direct call_one(), this returns a one-item tuple!
return (self.call_one(cmdlines[0], actstr, _in=_in, out=out,
universal_newlines=universal_newlines),)
stdin, stdout, instr, outstr = self.__parse_args(_in, out)
procs = []
if getattr(self, 'verbose', None):
sys.stderr.write('### %s \n' % actstr)
sys.stderr.write(self.qjoin(cmdlines[0]) + instr + ' | ')
if not getattr(self, 'donothing', None):
try:
prevproc = subprocess.Popen(cmdlines[0], stdin=stdin,
stdout=PIPE, stderr=self._stderr, **self._pipeargs)
procs.append(prevproc)
except Exception as e:
self.raise_on_error(actstr, e)
for cmdl in cmdlines[1:-1]:
if getattr(self, 'verbose', None):
sys.stderr.write(self.qjoin(cmdl) + ' | ')
if not getattr(self, 'donothing', None):
try:
nextproc = subprocess.Popen(cmdl, stdin=prevproc.stdout,
stdout=PIPE, stderr=self._stderr, **self._pipeargs)
procs.append(nextproc)
prevproc.stdout.close()
prevproc = nextproc
except Exception as e:
self.raise_on_error(actstr, e)
if getattr(self, 'verbose', None):
sys.stderr.write(self.qjoin(cmdlines[-1]) + outstr + '\n')
if not getattr(self, 'donothing', None):
try:
lastproc = subprocess.Popen(cmdlines[-1], stdin=prevproc.stdout,
stdout=stdout, stderr=self._stderr,
universal_newlines=universal_newlines, **self._pipeargs)
prevproc.stdout.close()
procs.append(lastproc)
prevproc.stdout.close()
except Exception as e:
self.raise_on_error(actstr, e)
if stdin != PIPE and stdout!= PIPE:
# caller needs to wait after reading or writing (else deadlock)
for proc, cmdl in zip(procs, cmdlines):
res = proc.wait()
if res != 0:
self.raise_on_error(actstr,
'Nonzero exit (%d) from command [%s].'
% (res, self.qjoin(cmdl)))
return procs
### end of proc_mixin.py
|
python
|
import requests
import pandas as pd
import json
rply = []
regions = [172]
for region in regions:
url = "https://api.bilibili.com/x/web-interface/ranking/region?rid=" + str(region) + "&day=7&original=0&jsonp=jsonp"
response = requests.get(url=url)
text = response.text
ob = json.loads(text)
videos = ob["data"]
bvid = []
aid = []
for video in videos:
bvid.append(video["bvid"])
aid.append(video["aid"])
for v in range(1, 11):
for i in range(1, 101):
url = "https://api.bilibili.com/x/v2/reply?jsonp=jsonp&pn=" + str(i) + "&type=1&oid=" + aid[v] + "&sort=2"
response = requests.get(url=url)
text = response.text
ob = json.loads(text)
replies = ob["data"]["replies"]
if replies is None:
break
for reply in replies:
reply_line = [reply["content"]["message"], reply["like"]]
rply.append(reply_line)
if i % 5 == 0:
print("Scanned " + str((v-1) * 100 + i) + " pages")
data_rply = pd.DataFrame(data=rply, columns=["content", "num_like"])
data_rply.to_csv("./saved/replies_172.csv", encoding="utf_8_sig")
|
python
|
# Agent.py
from Tools import *
from agTools import *
import commonVar as common
class Agent(SuperAgent):
def __init__(self, number, myWorldState,
xPos, yPos, lX=0, rX=0, bY=0, tY=0, agType=""):
# 0 definitions to be replaced (useful only if the
# dimensions are omitted and we do not use space)
# the environment
self.agOperatingSets = []
self.number = number
self.lX = lX
self.rX = rX
self.bY = bY
self.tY = tY
self.myWorldState = myWorldState
self.agType = agType
# the agent
self.xPos = xPos
self.yPos = yPos
print("agent", self.agType, "#", self.number,
"has been created at", self.xPos, ",", self.yPos)
# ",**d" in the parameter lists of the methods is a place holder
# in case we use, calling the method, a dictionary as last par
# check the clock
def checkClock(self, **d):
print("I'm %s agent # %d: " % (self.agType, self.number), end=' ')
print("clock is at ", common.cycle)
# check the superClock
def checkSuperClock(self, **d):
print("I'm %s agent # %d: " % (self.agType, self.number), end=' ')
print("clock is at ", common.cycles)
# the action, also jumping
def randomMovement(self, **k):
if random.random() <= self.myWorldState.getGeneralMovingProb():
print("agent %s # %d moving" % (self.agType, self.number))
self.jump = k["jump"]
dx = randomMove(self.jump)
self.xPos += dx
dy = randomMove(self.jump)
self.yPos += dy
#self.xPos = (self.xPos + self.worldXSize) % self.worldXSize
#self.yPos = (self.yPos + self.worldYSize) % self.worldYSize
if self.xPos < self.lX:
self.xPos = self.lX
if self.xPos > self.rX:
self.xPos = self.rX
if self.yPos < self.bY:
self.yPos = self.bY
if self.yPos > self.tY:
self.yPos = self.tY
# report
def reportPosition(self, **d):
print(self.agType, "agent # ", self.number, " is at X = ",
self.xPos, " Y = ", self.yPos)
# returns -1, 0, 1 with equal probability
def randomMove(jump):
return random.randint(-1, 1) * jump
|
python
|
# -*- coding: iso-8859-15 -*-
#
# Copyright 2017 Mycroft AI Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
FRACTION_STRING_EN = {
2: 'half',
3: 'third',
4: 'forth',
5: 'fifth',
6: 'sixth',
7: 'seventh',
8: 'eigth',
9: 'ninth',
10: 'tenth',
11: 'eleventh',
12: 'twelveth',
13: 'thirteenth',
14: 'fourteenth',
15: 'fifteenth',
16: 'sixteenth',
17: 'seventeenth',
18: 'eighteenth',
19: 'nineteenth',
20: 'twentyith'
}
FRACTION_STRING_PT = {
2: 'meio',
3: u'terço',
4: 'quarto',
5: 'quinto',
6: 'sexto',
7: u'sétimo',
8: 'oitavo',
9: 'nono',
10: u'décimo',
11: 'onze avos',
12: 'doze avos',
13: 'treze avos',
14: 'catorze avos',
15: 'quinze avos',
16: 'dezasseis avos',
17: 'dezassete avos',
18: 'dezoito avos',
19: 'dezanove avos',
20: u'vigésimo',
30: u'trigésimo',
100: u'centésimo',
1000: u'milésimo'
}
def nice_number(number, lang="en-us", speech=True, denominators=None):
"""Format a float to human readable functions
This function formats a float to human understandable functions. Like
4.5 becomes 4 and a half for speech and 4 1/2 for text
Args:
number (str): the float to format
lang (str): the code for the language text is in
speech (bool): to return speech representation or text representation
denominators (iter of ints): denominators to use, default [1 .. 20]
Returns:
(str): The formatted string.
"""
result = convert_number(number, denominators)
if not result:
return str(round(number, 3))
if not speech:
whole, num, den = result
if num == 0:
return str(whole)
else:
return '{} {}/{}'.format(whole, num, den)
lang_lower = str(lang).lower()
if lang_lower.startswith("en"):
return nice_number_en(result)
elif lang_lower.startswith("pt"):
return nice_number_pt(result)
# TODO: Normalization for other languages
return str(number)
def nice_number_en(result):
""" English conversion for nice_number """
whole, num, den = result
if num == 0:
return str(whole)
den_str = FRACTION_STRING_EN[den]
if whole == 0:
if num == 1:
return_string = 'a {}'.format(den_str)
else:
return_string = '{} {}'.format(num, den_str)
elif num == 1:
return_string = '{} and a {}'.format(whole, den_str)
else:
return_string = '{} and {} {}'.format(whole, num, den_str)
if num > 1:
return_string += 's'
return return_string
def nice_number_pt(result):
""" Portuguese conversion for nice_number """
whole, num, den = result
if num == 0:
return str(whole)
# denominador
den_str = FRACTION_STRING_PT[den]
# fracções
if whole == 0:
if num == 1:
# um décimo
return_string = 'um {}'.format(den_str)
else:
# três meio
return_string = '{} {}'.format(num, den_str)
# inteiros >10
elif num == 1:
# trinta e um
return_string = '{} e {}'.format(whole, den_str)
# inteiros >10 com fracções
else:
# vinte e 3 décimo
return_string = '{} e {} {}'.format(whole, num, den_str)
# plural
if num > 1:
return_string += 's'
return return_string
def convert_number(number, denominators):
""" Convert floats to mixed fractions """
int_number = int(number)
if int_number == number:
return int_number, 0, 1
frac_number = abs(number - int_number)
if not denominators:
denominators = range(1, 21)
for denominator in denominators:
numerator = abs(frac_number) * denominator
if (abs(numerator - round(numerator)) < 0.01):
break
else:
return None
return int_number, int(round(numerator)), denominator
|
python
|
#!/usr/bin/env python
import Pyro.naming
import Pyro.core
import connvalidator
class testobject(Pyro.core.ObjBase):
def __init__(self):
Pyro.core.ObjBase.__init__(self)
def method(self,arg):
caller = self.getLocalStorage().caller # TCPConnection of the caller
login = caller.authenticated # set by the conn.validator
return "You are '%s' and you were allowed to connect." % login
Pyro.core.initServer()
ns = Pyro.naming.NameServerLocator().getNS()
daemon = Pyro.core.Daemon()
daemon.useNameServer(ns)
daemon.setNewConnectionValidator( connvalidator.UserLoginConnValidator() )
daemon.connect(testobject(),'authentication')
print "---\nfor reference: the following users and passwords are recognised:"
print "user: root password: change_me"
print "user: irmen password: secret"
print "user: guest password: guest"
print "(this table is printed for sake of example; the passwords"
print " are not stored in plain text but as md5 hashes)"
print
# enter the service loop.
print 'Server started.'
daemon.requestLoop()
|
python
|
from ThirdParty.CookiesPool.cookiespool.scheduler import Scheduler
def main():
s = Scheduler()
s.run()
if __name__ == '__main__':
main()
|
python
|
from typing import List, Sequence, Optional, Union
import pandas as pd
import pyexlatex as pl
from datacode.sem.constants import STANDARD_SCALE_MESSAGE, ROBUST_SCALE_MESSAGE
def summary_latex_table(fit_df: pd.DataFrame, structural_dfs: Sequence[pd.DataFrame],
latent_dfs: Sequence[pd.DataFrame], scale: bool, robust_scale: bool,
equations: Optional[Sequence[pl.Equation]] = None,
space_equations: bool = False,
begin_below_text: Optional[str] = None,
end_below_text: Optional[str] = None, replace_below_text: Optional[str] = None,
caption: str = 'Structural Equation Model (SEM)', label: Optional[str] = None) -> pl.Table:
below_text = _below_text(
scale,
robust_scale,
equations=equations,
space_equations=space_equations,
begin_below_text=begin_below_text,
end_below_text=end_below_text,
replace_below_text=replace_below_text
)
panels = _summary_panels(fit_df, structural_dfs, latent_dfs)
table = pl.Table.from_panel_list(
panels,
caption=caption,
below_text=below_text,
label=label,
)
return table
def _below_text(scale: bool, robust_scale: bool, equations: Optional[Sequence[pl.Equation]] = None,
space_equations: bool = False,
begin_below_text: Optional[str] = None,
end_below_text: Optional[str] = None, replace_below_text: Optional[str] = None) -> Union[str, List[str]]:
if replace_below_text:
return replace_below_text
below_text = []
if begin_below_text:
below_text.append(begin_below_text)
if equations:
below_text.append('The model is represented by the following equations:')
for eq in equations:
below_text.append(eq)
if space_equations:
below_text.append('')
if scale:
below_text.append(STANDARD_SCALE_MESSAGE)
if robust_scale:
below_text.append(ROBUST_SCALE_MESSAGE)
if end_below_text:
below_text.append(end_below_text)
return below_text
def _summary_panels(fit_df: pd.DataFrame, structural_dfs: Sequence[pd.DataFrame],
latent_dfs: Sequence[pd.DataFrame]) -> List[pl.Panel]:
fit_panel = pl.Panel.from_df_list([fit_df], name='Goodness of Fit', include_index=True, include_columns=False)
structural_dts = _coefficient_data_tables(structural_dfs)
structural_panel = pl.Panel.from_data_tables(structural_dts, name='Structural Equations', )
latent_dts = _coefficient_data_tables(latent_dfs)
latent_panel = pl.Panel.from_data_tables(latent_dts, name='Latent Equations')
return [fit_panel, structural_panel, latent_panel]
def _coefficient_data_tables(coef_dfs: Sequence[pd.DataFrame]) -> List[pl.DataTable]:
dts = []
for coef_df in coef_dfs:
fmt_coef_df = coef_df.applymap(lambda x: f'{x:.3f}' if not pd.isnull(x) else x).fillna('')
dt = pl.DataTable.from_df(fmt_coef_df, include_index=True, extra_header=coef_df.index.name)
dts.append(dt)
return dts
|
python
|
from devito.ir.ietxdsl.operations import * # noqa
from devito.ir.ietxdsl.cgeneration import * # noqa
|
python
|
def find_ocurrences(collection, item):
result = []
for i, word in enumerate(collection):
if word == item:
result.append(i + 1)
return result
words_count, lookup_count = map(int, raw_input().split())
collection_items = []
for i in enumerate(xrange(words_count)):
current_item = raw_input()
collection_items.append(current_item)
for j in enumerate(xrange(lookup_count)):
current_item = raw_input()
ocurrences = map(str, find_ocurrences(collection_items, current_item))
if ocurrences:
print(' '.join(ocurrences))
else:
print('-1')
|
python
|
# coding=utf-8
# *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. ***
# *** Do not edit by hand unless you're certain you know what you are doing! ***
import warnings
import pulumi
import pulumi.runtime
from typing import Any, Mapping, Optional, Sequence, Union, overload
from .. import _utilities
from . import outputs
from ._inputs import *
__all__ = ['DataSourceArgs', 'DataSource']
@pulumi.input_type
class DataSourceArgs:
def __init__(__self__, *,
api_id: pulumi.Input[str],
type: pulumi.Input[str],
description: Optional[pulumi.Input[str]] = None,
dynamodb_config: Optional[pulumi.Input['DataSourceDynamodbConfigArgs']] = None,
elasticsearch_config: Optional[pulumi.Input['DataSourceElasticsearchConfigArgs']] = None,
http_config: Optional[pulumi.Input['DataSourceHttpConfigArgs']] = None,
lambda_config: Optional[pulumi.Input['DataSourceLambdaConfigArgs']] = None,
name: Optional[pulumi.Input[str]] = None,
service_role_arn: Optional[pulumi.Input[str]] = None):
"""
The set of arguments for constructing a DataSource resource.
:param pulumi.Input[str] api_id: The API ID for the GraphQL API for the DataSource.
:param pulumi.Input[str] type: The type of the DataSource. Valid values: `AWS_LAMBDA`, `AMAZON_DYNAMODB`, `AMAZON_ELASTICSEARCH`, `HTTP`, `NONE`.
:param pulumi.Input[str] description: A description of the DataSource.
:param pulumi.Input['DataSourceDynamodbConfigArgs'] dynamodb_config: DynamoDB settings. See below
:param pulumi.Input['DataSourceElasticsearchConfigArgs'] elasticsearch_config: Amazon Elasticsearch settings. See below
:param pulumi.Input['DataSourceHttpConfigArgs'] http_config: HTTP settings. See below
:param pulumi.Input['DataSourceLambdaConfigArgs'] lambda_config: AWS Lambda settings. See below
:param pulumi.Input[str] name: A user-supplied name for the DataSource.
:param pulumi.Input[str] service_role_arn: The IAM service role ARN for the data source.
"""
pulumi.set(__self__, "api_id", api_id)
pulumi.set(__self__, "type", type)
if description is not None:
pulumi.set(__self__, "description", description)
if dynamodb_config is not None:
pulumi.set(__self__, "dynamodb_config", dynamodb_config)
if elasticsearch_config is not None:
pulumi.set(__self__, "elasticsearch_config", elasticsearch_config)
if http_config is not None:
pulumi.set(__self__, "http_config", http_config)
if lambda_config is not None:
pulumi.set(__self__, "lambda_config", lambda_config)
if name is not None:
pulumi.set(__self__, "name", name)
if service_role_arn is not None:
pulumi.set(__self__, "service_role_arn", service_role_arn)
@property
@pulumi.getter(name="apiId")
def api_id(self) -> pulumi.Input[str]:
"""
The API ID for the GraphQL API for the DataSource.
"""
return pulumi.get(self, "api_id")
@api_id.setter
def api_id(self, value: pulumi.Input[str]):
pulumi.set(self, "api_id", value)
@property
@pulumi.getter
def type(self) -> pulumi.Input[str]:
"""
The type of the DataSource. Valid values: `AWS_LAMBDA`, `AMAZON_DYNAMODB`, `AMAZON_ELASTICSEARCH`, `HTTP`, `NONE`.
"""
return pulumi.get(self, "type")
@type.setter
def type(self, value: pulumi.Input[str]):
pulumi.set(self, "type", value)
@property
@pulumi.getter
def description(self) -> Optional[pulumi.Input[str]]:
"""
A description of the DataSource.
"""
return pulumi.get(self, "description")
@description.setter
def description(self, value: Optional[pulumi.Input[str]]):
pulumi.set(self, "description", value)
@property
@pulumi.getter(name="dynamodbConfig")
def dynamodb_config(self) -> Optional[pulumi.Input['DataSourceDynamodbConfigArgs']]:
"""
DynamoDB settings. See below
"""
return pulumi.get(self, "dynamodb_config")
@dynamodb_config.setter
def dynamodb_config(self, value: Optional[pulumi.Input['DataSourceDynamodbConfigArgs']]):
pulumi.set(self, "dynamodb_config", value)
@property
@pulumi.getter(name="elasticsearchConfig")
def elasticsearch_config(self) -> Optional[pulumi.Input['DataSourceElasticsearchConfigArgs']]:
"""
Amazon Elasticsearch settings. See below
"""
return pulumi.get(self, "elasticsearch_config")
@elasticsearch_config.setter
def elasticsearch_config(self, value: Optional[pulumi.Input['DataSourceElasticsearchConfigArgs']]):
pulumi.set(self, "elasticsearch_config", value)
@property
@pulumi.getter(name="httpConfig")
def http_config(self) -> Optional[pulumi.Input['DataSourceHttpConfigArgs']]:
"""
HTTP settings. See below
"""
return pulumi.get(self, "http_config")
@http_config.setter
def http_config(self, value: Optional[pulumi.Input['DataSourceHttpConfigArgs']]):
pulumi.set(self, "http_config", value)
@property
@pulumi.getter(name="lambdaConfig")
def lambda_config(self) -> Optional[pulumi.Input['DataSourceLambdaConfigArgs']]:
"""
AWS Lambda settings. See below
"""
return pulumi.get(self, "lambda_config")
@lambda_config.setter
def lambda_config(self, value: Optional[pulumi.Input['DataSourceLambdaConfigArgs']]):
pulumi.set(self, "lambda_config", value)
@property
@pulumi.getter
def name(self) -> Optional[pulumi.Input[str]]:
"""
A user-supplied name for the DataSource.
"""
return pulumi.get(self, "name")
@name.setter
def name(self, value: Optional[pulumi.Input[str]]):
pulumi.set(self, "name", value)
@property
@pulumi.getter(name="serviceRoleArn")
def service_role_arn(self) -> Optional[pulumi.Input[str]]:
"""
The IAM service role ARN for the data source.
"""
return pulumi.get(self, "service_role_arn")
@service_role_arn.setter
def service_role_arn(self, value: Optional[pulumi.Input[str]]):
pulumi.set(self, "service_role_arn", value)
@pulumi.input_type
class _DataSourceState:
def __init__(__self__, *,
api_id: Optional[pulumi.Input[str]] = None,
arn: Optional[pulumi.Input[str]] = None,
description: Optional[pulumi.Input[str]] = None,
dynamodb_config: Optional[pulumi.Input['DataSourceDynamodbConfigArgs']] = None,
elasticsearch_config: Optional[pulumi.Input['DataSourceElasticsearchConfigArgs']] = None,
http_config: Optional[pulumi.Input['DataSourceHttpConfigArgs']] = None,
lambda_config: Optional[pulumi.Input['DataSourceLambdaConfigArgs']] = None,
name: Optional[pulumi.Input[str]] = None,
service_role_arn: Optional[pulumi.Input[str]] = None,
type: Optional[pulumi.Input[str]] = None):
"""
Input properties used for looking up and filtering DataSource resources.
:param pulumi.Input[str] api_id: The API ID for the GraphQL API for the DataSource.
:param pulumi.Input[str] arn: The ARN
:param pulumi.Input[str] description: A description of the DataSource.
:param pulumi.Input['DataSourceDynamodbConfigArgs'] dynamodb_config: DynamoDB settings. See below
:param pulumi.Input['DataSourceElasticsearchConfigArgs'] elasticsearch_config: Amazon Elasticsearch settings. See below
:param pulumi.Input['DataSourceHttpConfigArgs'] http_config: HTTP settings. See below
:param pulumi.Input['DataSourceLambdaConfigArgs'] lambda_config: AWS Lambda settings. See below
:param pulumi.Input[str] name: A user-supplied name for the DataSource.
:param pulumi.Input[str] service_role_arn: The IAM service role ARN for the data source.
:param pulumi.Input[str] type: The type of the DataSource. Valid values: `AWS_LAMBDA`, `AMAZON_DYNAMODB`, `AMAZON_ELASTICSEARCH`, `HTTP`, `NONE`.
"""
if api_id is not None:
pulumi.set(__self__, "api_id", api_id)
if arn is not None:
pulumi.set(__self__, "arn", arn)
if description is not None:
pulumi.set(__self__, "description", description)
if dynamodb_config is not None:
pulumi.set(__self__, "dynamodb_config", dynamodb_config)
if elasticsearch_config is not None:
pulumi.set(__self__, "elasticsearch_config", elasticsearch_config)
if http_config is not None:
pulumi.set(__self__, "http_config", http_config)
if lambda_config is not None:
pulumi.set(__self__, "lambda_config", lambda_config)
if name is not None:
pulumi.set(__self__, "name", name)
if service_role_arn is not None:
pulumi.set(__self__, "service_role_arn", service_role_arn)
if type is not None:
pulumi.set(__self__, "type", type)
@property
@pulumi.getter(name="apiId")
def api_id(self) -> Optional[pulumi.Input[str]]:
"""
The API ID for the GraphQL API for the DataSource.
"""
return pulumi.get(self, "api_id")
@api_id.setter
def api_id(self, value: Optional[pulumi.Input[str]]):
pulumi.set(self, "api_id", value)
@property
@pulumi.getter
def arn(self) -> Optional[pulumi.Input[str]]:
"""
The ARN
"""
return pulumi.get(self, "arn")
@arn.setter
def arn(self, value: Optional[pulumi.Input[str]]):
pulumi.set(self, "arn", value)
@property
@pulumi.getter
def description(self) -> Optional[pulumi.Input[str]]:
"""
A description of the DataSource.
"""
return pulumi.get(self, "description")
@description.setter
def description(self, value: Optional[pulumi.Input[str]]):
pulumi.set(self, "description", value)
@property
@pulumi.getter(name="dynamodbConfig")
def dynamodb_config(self) -> Optional[pulumi.Input['DataSourceDynamodbConfigArgs']]:
"""
DynamoDB settings. See below
"""
return pulumi.get(self, "dynamodb_config")
@dynamodb_config.setter
def dynamodb_config(self, value: Optional[pulumi.Input['DataSourceDynamodbConfigArgs']]):
pulumi.set(self, "dynamodb_config", value)
@property
@pulumi.getter(name="elasticsearchConfig")
def elasticsearch_config(self) -> Optional[pulumi.Input['DataSourceElasticsearchConfigArgs']]:
"""
Amazon Elasticsearch settings. See below
"""
return pulumi.get(self, "elasticsearch_config")
@elasticsearch_config.setter
def elasticsearch_config(self, value: Optional[pulumi.Input['DataSourceElasticsearchConfigArgs']]):
pulumi.set(self, "elasticsearch_config", value)
@property
@pulumi.getter(name="httpConfig")
def http_config(self) -> Optional[pulumi.Input['DataSourceHttpConfigArgs']]:
"""
HTTP settings. See below
"""
return pulumi.get(self, "http_config")
@http_config.setter
def http_config(self, value: Optional[pulumi.Input['DataSourceHttpConfigArgs']]):
pulumi.set(self, "http_config", value)
@property
@pulumi.getter(name="lambdaConfig")
def lambda_config(self) -> Optional[pulumi.Input['DataSourceLambdaConfigArgs']]:
"""
AWS Lambda settings. See below
"""
return pulumi.get(self, "lambda_config")
@lambda_config.setter
def lambda_config(self, value: Optional[pulumi.Input['DataSourceLambdaConfigArgs']]):
pulumi.set(self, "lambda_config", value)
@property
@pulumi.getter
def name(self) -> Optional[pulumi.Input[str]]:
"""
A user-supplied name for the DataSource.
"""
return pulumi.get(self, "name")
@name.setter
def name(self, value: Optional[pulumi.Input[str]]):
pulumi.set(self, "name", value)
@property
@pulumi.getter(name="serviceRoleArn")
def service_role_arn(self) -> Optional[pulumi.Input[str]]:
"""
The IAM service role ARN for the data source.
"""
return pulumi.get(self, "service_role_arn")
@service_role_arn.setter
def service_role_arn(self, value: Optional[pulumi.Input[str]]):
pulumi.set(self, "service_role_arn", value)
@property
@pulumi.getter
def type(self) -> Optional[pulumi.Input[str]]:
"""
The type of the DataSource. Valid values: `AWS_LAMBDA`, `AMAZON_DYNAMODB`, `AMAZON_ELASTICSEARCH`, `HTTP`, `NONE`.
"""
return pulumi.get(self, "type")
@type.setter
def type(self, value: Optional[pulumi.Input[str]]):
pulumi.set(self, "type", value)
class DataSource(pulumi.CustomResource):
@overload
def __init__(__self__,
resource_name: str,
opts: Optional[pulumi.ResourceOptions] = None,
api_id: Optional[pulumi.Input[str]] = None,
description: Optional[pulumi.Input[str]] = None,
dynamodb_config: Optional[pulumi.Input[pulumi.InputType['DataSourceDynamodbConfigArgs']]] = None,
elasticsearch_config: Optional[pulumi.Input[pulumi.InputType['DataSourceElasticsearchConfigArgs']]] = None,
http_config: Optional[pulumi.Input[pulumi.InputType['DataSourceHttpConfigArgs']]] = None,
lambda_config: Optional[pulumi.Input[pulumi.InputType['DataSourceLambdaConfigArgs']]] = None,
name: Optional[pulumi.Input[str]] = None,
service_role_arn: Optional[pulumi.Input[str]] = None,
type: Optional[pulumi.Input[str]] = None,
__props__=None):
"""
Provides an AppSync DataSource.
## Example Usage
```python
import pulumi
import pulumi_aws as aws
example_table = aws.dynamodb.Table("exampleTable",
read_capacity=1,
write_capacity=1,
hash_key="UserId",
attributes=[aws.dynamodb.TableAttributeArgs(
name="UserId",
type="S",
)])
example_role = aws.iam.Role("exampleRole", assume_role_policy=\"\"\"{
"Version": "2012-10-17",
"Statement": [
{
"Action": "sts:AssumeRole",
"Principal": {
"Service": "appsync.amazonaws.com"
},
"Effect": "Allow"
}
]
}
\"\"\")
example_role_policy = aws.iam.RolePolicy("exampleRolePolicy",
role=example_role.id,
policy=example_table.arn.apply(lambda arn: f\"\"\"{{
"Version": "2012-10-17",
"Statement": [
{{
"Action": [
"dynamodb:*"
],
"Effect": "Allow",
"Resource": [
"{arn}"
]
}}
]
}}
\"\"\"))
example_graph_ql_api = aws.appsync.GraphQLApi("exampleGraphQLApi", authentication_type="API_KEY")
example_data_source = aws.appsync.DataSource("exampleDataSource",
api_id=example_graph_ql_api.id,
name="tf_appsync_example",
service_role_arn=example_role.arn,
type="AMAZON_DYNAMODB",
dynamodb_config=aws.appsync.DataSourceDynamodbConfigArgs(
table_name=example_table.name,
))
```
## Import
`aws_appsync_datasource` can be imported with their `api_id`, a hyphen, and `name`, e.g.,
```sh
$ pulumi import aws:appsync/dataSource:DataSource example abcdef123456-example
```
:param str resource_name: The name of the resource.
:param pulumi.ResourceOptions opts: Options for the resource.
:param pulumi.Input[str] api_id: The API ID for the GraphQL API for the DataSource.
:param pulumi.Input[str] description: A description of the DataSource.
:param pulumi.Input[pulumi.InputType['DataSourceDynamodbConfigArgs']] dynamodb_config: DynamoDB settings. See below
:param pulumi.Input[pulumi.InputType['DataSourceElasticsearchConfigArgs']] elasticsearch_config: Amazon Elasticsearch settings. See below
:param pulumi.Input[pulumi.InputType['DataSourceHttpConfigArgs']] http_config: HTTP settings. See below
:param pulumi.Input[pulumi.InputType['DataSourceLambdaConfigArgs']] lambda_config: AWS Lambda settings. See below
:param pulumi.Input[str] name: A user-supplied name for the DataSource.
:param pulumi.Input[str] service_role_arn: The IAM service role ARN for the data source.
:param pulumi.Input[str] type: The type of the DataSource. Valid values: `AWS_LAMBDA`, `AMAZON_DYNAMODB`, `AMAZON_ELASTICSEARCH`, `HTTP`, `NONE`.
"""
...
@overload
def __init__(__self__,
resource_name: str,
args: DataSourceArgs,
opts: Optional[pulumi.ResourceOptions] = None):
"""
Provides an AppSync DataSource.
## Example Usage
```python
import pulumi
import pulumi_aws as aws
example_table = aws.dynamodb.Table("exampleTable",
read_capacity=1,
write_capacity=1,
hash_key="UserId",
attributes=[aws.dynamodb.TableAttributeArgs(
name="UserId",
type="S",
)])
example_role = aws.iam.Role("exampleRole", assume_role_policy=\"\"\"{
"Version": "2012-10-17",
"Statement": [
{
"Action": "sts:AssumeRole",
"Principal": {
"Service": "appsync.amazonaws.com"
},
"Effect": "Allow"
}
]
}
\"\"\")
example_role_policy = aws.iam.RolePolicy("exampleRolePolicy",
role=example_role.id,
policy=example_table.arn.apply(lambda arn: f\"\"\"{{
"Version": "2012-10-17",
"Statement": [
{{
"Action": [
"dynamodb:*"
],
"Effect": "Allow",
"Resource": [
"{arn}"
]
}}
]
}}
\"\"\"))
example_graph_ql_api = aws.appsync.GraphQLApi("exampleGraphQLApi", authentication_type="API_KEY")
example_data_source = aws.appsync.DataSource("exampleDataSource",
api_id=example_graph_ql_api.id,
name="tf_appsync_example",
service_role_arn=example_role.arn,
type="AMAZON_DYNAMODB",
dynamodb_config=aws.appsync.DataSourceDynamodbConfigArgs(
table_name=example_table.name,
))
```
## Import
`aws_appsync_datasource` can be imported with their `api_id`, a hyphen, and `name`, e.g.,
```sh
$ pulumi import aws:appsync/dataSource:DataSource example abcdef123456-example
```
:param str resource_name: The name of the resource.
:param DataSourceArgs args: The arguments to use to populate this resource's properties.
:param pulumi.ResourceOptions opts: Options for the resource.
"""
...
def __init__(__self__, resource_name: str, *args, **kwargs):
resource_args, opts = _utilities.get_resource_args_opts(DataSourceArgs, pulumi.ResourceOptions, *args, **kwargs)
if resource_args is not None:
__self__._internal_init(resource_name, opts, **resource_args.__dict__)
else:
__self__._internal_init(resource_name, *args, **kwargs)
def _internal_init(__self__,
resource_name: str,
opts: Optional[pulumi.ResourceOptions] = None,
api_id: Optional[pulumi.Input[str]] = None,
description: Optional[pulumi.Input[str]] = None,
dynamodb_config: Optional[pulumi.Input[pulumi.InputType['DataSourceDynamodbConfigArgs']]] = None,
elasticsearch_config: Optional[pulumi.Input[pulumi.InputType['DataSourceElasticsearchConfigArgs']]] = None,
http_config: Optional[pulumi.Input[pulumi.InputType['DataSourceHttpConfigArgs']]] = None,
lambda_config: Optional[pulumi.Input[pulumi.InputType['DataSourceLambdaConfigArgs']]] = None,
name: Optional[pulumi.Input[str]] = None,
service_role_arn: Optional[pulumi.Input[str]] = None,
type: Optional[pulumi.Input[str]] = None,
__props__=None):
if opts is None:
opts = pulumi.ResourceOptions()
if not isinstance(opts, pulumi.ResourceOptions):
raise TypeError('Expected resource options to be a ResourceOptions instance')
if opts.version is None:
opts.version = _utilities.get_version()
if opts.id is None:
if __props__ is not None:
raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource')
__props__ = DataSourceArgs.__new__(DataSourceArgs)
if api_id is None and not opts.urn:
raise TypeError("Missing required property 'api_id'")
__props__.__dict__["api_id"] = api_id
__props__.__dict__["description"] = description
__props__.__dict__["dynamodb_config"] = dynamodb_config
__props__.__dict__["elasticsearch_config"] = elasticsearch_config
__props__.__dict__["http_config"] = http_config
__props__.__dict__["lambda_config"] = lambda_config
__props__.__dict__["name"] = name
__props__.__dict__["service_role_arn"] = service_role_arn
if type is None and not opts.urn:
raise TypeError("Missing required property 'type'")
__props__.__dict__["type"] = type
__props__.__dict__["arn"] = None
super(DataSource, __self__).__init__(
'aws:appsync/dataSource:DataSource',
resource_name,
__props__,
opts)
@staticmethod
def get(resource_name: str,
id: pulumi.Input[str],
opts: Optional[pulumi.ResourceOptions] = None,
api_id: Optional[pulumi.Input[str]] = None,
arn: Optional[pulumi.Input[str]] = None,
description: Optional[pulumi.Input[str]] = None,
dynamodb_config: Optional[pulumi.Input[pulumi.InputType['DataSourceDynamodbConfigArgs']]] = None,
elasticsearch_config: Optional[pulumi.Input[pulumi.InputType['DataSourceElasticsearchConfigArgs']]] = None,
http_config: Optional[pulumi.Input[pulumi.InputType['DataSourceHttpConfigArgs']]] = None,
lambda_config: Optional[pulumi.Input[pulumi.InputType['DataSourceLambdaConfigArgs']]] = None,
name: Optional[pulumi.Input[str]] = None,
service_role_arn: Optional[pulumi.Input[str]] = None,
type: Optional[pulumi.Input[str]] = None) -> 'DataSource':
"""
Get an existing DataSource resource's state with the given name, id, and optional extra
properties used to qualify the lookup.
:param str resource_name: The unique name of the resulting resource.
:param pulumi.Input[str] id: The unique provider ID of the resource to lookup.
:param pulumi.ResourceOptions opts: Options for the resource.
:param pulumi.Input[str] api_id: The API ID for the GraphQL API for the DataSource.
:param pulumi.Input[str] arn: The ARN
:param pulumi.Input[str] description: A description of the DataSource.
:param pulumi.Input[pulumi.InputType['DataSourceDynamodbConfigArgs']] dynamodb_config: DynamoDB settings. See below
:param pulumi.Input[pulumi.InputType['DataSourceElasticsearchConfigArgs']] elasticsearch_config: Amazon Elasticsearch settings. See below
:param pulumi.Input[pulumi.InputType['DataSourceHttpConfigArgs']] http_config: HTTP settings. See below
:param pulumi.Input[pulumi.InputType['DataSourceLambdaConfigArgs']] lambda_config: AWS Lambda settings. See below
:param pulumi.Input[str] name: A user-supplied name for the DataSource.
:param pulumi.Input[str] service_role_arn: The IAM service role ARN for the data source.
:param pulumi.Input[str] type: The type of the DataSource. Valid values: `AWS_LAMBDA`, `AMAZON_DYNAMODB`, `AMAZON_ELASTICSEARCH`, `HTTP`, `NONE`.
"""
opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id))
__props__ = _DataSourceState.__new__(_DataSourceState)
__props__.__dict__["api_id"] = api_id
__props__.__dict__["arn"] = arn
__props__.__dict__["description"] = description
__props__.__dict__["dynamodb_config"] = dynamodb_config
__props__.__dict__["elasticsearch_config"] = elasticsearch_config
__props__.__dict__["http_config"] = http_config
__props__.__dict__["lambda_config"] = lambda_config
__props__.__dict__["name"] = name
__props__.__dict__["service_role_arn"] = service_role_arn
__props__.__dict__["type"] = type
return DataSource(resource_name, opts=opts, __props__=__props__)
@property
@pulumi.getter(name="apiId")
def api_id(self) -> pulumi.Output[str]:
"""
The API ID for the GraphQL API for the DataSource.
"""
return pulumi.get(self, "api_id")
@property
@pulumi.getter
def arn(self) -> pulumi.Output[str]:
"""
The ARN
"""
return pulumi.get(self, "arn")
@property
@pulumi.getter
def description(self) -> pulumi.Output[Optional[str]]:
"""
A description of the DataSource.
"""
return pulumi.get(self, "description")
@property
@pulumi.getter(name="dynamodbConfig")
def dynamodb_config(self) -> pulumi.Output[Optional['outputs.DataSourceDynamodbConfig']]:
"""
DynamoDB settings. See below
"""
return pulumi.get(self, "dynamodb_config")
@property
@pulumi.getter(name="elasticsearchConfig")
def elasticsearch_config(self) -> pulumi.Output[Optional['outputs.DataSourceElasticsearchConfig']]:
"""
Amazon Elasticsearch settings. See below
"""
return pulumi.get(self, "elasticsearch_config")
@property
@pulumi.getter(name="httpConfig")
def http_config(self) -> pulumi.Output[Optional['outputs.DataSourceHttpConfig']]:
"""
HTTP settings. See below
"""
return pulumi.get(self, "http_config")
@property
@pulumi.getter(name="lambdaConfig")
def lambda_config(self) -> pulumi.Output[Optional['outputs.DataSourceLambdaConfig']]:
"""
AWS Lambda settings. See below
"""
return pulumi.get(self, "lambda_config")
@property
@pulumi.getter
def name(self) -> pulumi.Output[str]:
"""
A user-supplied name for the DataSource.
"""
return pulumi.get(self, "name")
@property
@pulumi.getter(name="serviceRoleArn")
def service_role_arn(self) -> pulumi.Output[Optional[str]]:
"""
The IAM service role ARN for the data source.
"""
return pulumi.get(self, "service_role_arn")
@property
@pulumi.getter
def type(self) -> pulumi.Output[str]:
"""
The type of the DataSource. Valid values: `AWS_LAMBDA`, `AMAZON_DYNAMODB`, `AMAZON_ELASTICSEARCH`, `HTTP`, `NONE`.
"""
return pulumi.get(self, "type")
|
python
|
ll = eval(open("day_17_2.out", "r").readline())
def lookup(sl, i, j):
for (l, v) in sl:
if l == (i, j):
return v
for sl in ll:
for j in range(-3, 4):
for i in range(-3, 4):
print(lookup(sl, i, j), end='')
print()
print()
|
python
|
import sqlite3
from string import Template
# import threading #MultiThreading
# 1: successful
# 2: in_progress
# 3: failed
class SQL_Lite_Logger:
def __init__(self, filename):
self.connection = sqlite3.connect(filename)
self.connection.row_factory = lambda c, r: dict([(col[0], r[idx]) for idx, col in enumerate(c.description)]) # return every roy as a dictionaty
# self.cursor = self.connection.cursor()
self.locations_table = "locations"
try:
sql = '''CREATE TABLE locations (date text, latitude real, longitude real, speed real, altitude real, status int, PRIMARY KEY(date)) '''
cursor = self.connection.cursor()
cursor.execute(sql)
except sqlite3.OperationalError:
print("Table already exists so table will not be created")
self.connection.commit()
self.mark_as_failed()
#{ 'date': 'string'
# 'latitude': 'double number'
# 'longitude': 'double number'
# 'altitude': 'double number'
# 'speed' : 'double number'}
def backup(self, data):
if (data is not None):
# data["message_id"]=message_id
sql = ''' INSERT INTO locations (date, latitude, longitude, speed, altitude, status)
VALUES(:date, :latitude, :longitude, :speed, :altitude, :status) '''
cursor = self.connection.cursor()
cursor.execute(sql,data)
self.connection.commit()
else:
self.debug("Param data is null")
def mark_as_successful(self, dates):
task = []
for date in dates:
task.append( (1,date) )
sql = ''' UPDATE locations SET status = ? WHERE date = ?'''
cursor = self.connection.cursor()
cursor.executemany(sql, task)
self.connection.commit()
def mark_as_failed(self):
sql = ''' UPDATE locations SET status = ? WHERE status = ?'''
cursor = self.connection.cursor()
cursor.execute(sql, (3, 2))
self.connection.commit()
def close(self):
print("Close BackUp Data Base")
try:
self.connection.close()
except RuntimeError:
print("Error while closing data base connection")
def fetch_in_progress(self):
return self.fetch(2)
def fetch_successful(self):
return self.fetch(1)
def fetch_failed(self):
return self.fetch(3)
def fetch(self, status):
result = []
cursor = self.connection.cursor()
cursor.execute('''SELECT * FROM locations WHERE status=?''', (status,))
data = cursor.fetchall()
return data
def clear(self):
sql = "DROP TABLE locations"
try:
cursor = self.connection.cursor()
cursor.execute(sql)
self.connection.commit()
except RuntimeError:
print("Error during deletion of data base")
def close_logger(self):
try:
self.connection.close()
except RuntimeError:
print("Failed to close the database")
|
python
|
# Link: https://leetcode.com/problems/validate-stack-sequences/
# Time: O(N)
# Space: O(N)
# def validate_stack_sequences(pushed, popped):
# stack, i = [], 0
# while stack or popped:
# if i < len(pushed):
# stack.append(pushed[i])
# elif stack[-1] != popped[0]:
# return False
# while stack and popped and stack[-1] == popped[0]:
# stack.pop()
# popped.pop(0)
# i += 1
# return (not stack) and (not popped)
def validate_stack_sequences(pushed, popped):
stack, i = [], 0
for element in pushed:
stack.append(element)
while stack and stack[-1] == popped[i]:
i += 1
stack.pop()
return not stack
def main():
pushed = [1, 2, 3, 4, 5]
popped = [4, 5, 3, 2, 1]
print(validate_stack_sequences(pushed, popped))
if __name__ == "__main__":
main()
|
python
|
# A singular message for an error. An error is made up of multiple error messages
# A error message defines the formatting of an error.
class _ErrorMessage:
def __init__(self, message:str = None,
content:str = None,
object = None,
tokens:[] = None,
source = None):
# Grab message, tokens and source from object if empty
if object is not None:
if message is None:
message = "`{}`".format(object)
if tokens is None:
tokens = object.tokens
if source is None:
source = object.source
# Put quoted message if content
if content is not None:
message = "`{}`".format(content)
self.message = message
self.tokens = tokens
self.source = source
# Return a 3-tuple of the line number, start and end position of the line
# at position in source
def _getLine(self, source:str, position:int):
number = source[:position].count("\n") + 1
start = position - len(source[:position].rpartition("\n")[2])
end = position + len(source[position:].partition("\n")[0]) + 1
return number, start, end
def format(self):
if self.source is None or self.tokens is None:
return self.message, None
# Read in entire source (could be optimised)
self.source.seek(0)
source = self.source.read()
lines = {}
for token in self.tokens:
number, start, end = self._getLine(source, token.start)
line = lines.setdefault(number, (set(), start, end))
line[0].update(set(range(token.start, token.end)))
appendix = []
for number, (highlights, start, end) in sorted(lines.items(), key=lambda a: a[0]):
number_str = str(number)
appendix.append("{}| {}{}| {}".format(
number_str,
source[start:end],
" " * len(number_str),
"".join(("^" if i in highlights else " ") for i in range(start, end))
))
return self.message, "\n".join(appendix)
# Generic CompilerError
class CompilerError(Exception):
# Create a new CompilerError
#
# A compiler error takes a single error message and a list of tokens.
# When displayed, the error will contain the specified message along with
# nicely formatted source code extracts, highlighting the specified tokens
def __init__(self, **kwargs):
Exception.__init__(self, "")
self.messages = []
self.notes = []
self.add(**kwargs)
def add(self, **kwargs):
self.messages.append(_ErrorMessage(**kwargs))
return self
def addNote(self, **kwargs):
self.notes.append(_ErrorMessage(**kwargs))
return self
def _format(self, list):
content = []
appendix = []
for message in list:
message = message.format()
if message[0]: content.append(message[0])
if message[1]: appendix.append(message[1])
return " ".join(content) + "\n" + "\n".join(appendix)
def format(self):
self.args = (self._format(self.messages) + self._format(self.notes),)
class SyntaxError(CompilerError):
pass
class SemanticError(CompilerError):
pass
class TypeError(SemanticError):
pass
class DependencyError(TypeError):
pass
class ValueError(SemanticError):
pass
class AmbiguityError(SemanticError):
pass
class MissingReferenceError(SemanticError):
pass
class ImportError(SemanticError):
pass
class ExecutionError(Exception):
pass
class InternalError(Exception):
pass
from . import lekvar
|
python
|
from pyqum import create_app
app = create_app()
app.run(host='127.0.0.1', port=5777, debug=True)
|
python
|
import smart_imports
smart_imports.all()
class SettingAdmin(django_admin.ModelAdmin):
list_display = ('key', 'value', 'updated_at')
def save_model(self, request, obj, form, change):
from . import settings
settings[obj.key] = obj.value
def delete_model(self, request, obj):
from . import settings
del settings[obj.key]
django_admin.site.register(models.Setting, SettingAdmin)
|
python
|
from __future__ import division
import pandas as pd
import numpy as np
from sklearn.neighbors import NearestNeighbors
import sys
import pickle
__author__ = 'sladesal'
__time__ = '20171110'
"""
Parameters
----------
data : 原始数据
tag_index : 因变量所在的列数,以0开始
max_amount : 少类别类想要达到的数据量
std_rate : 多类:少类想要达到的比例
#如果max_amount和std_rate同时定义优先考虑max_amount的定义
kneighbor : 生成数据依赖kneighbor个附近的同类点,建议不超过5个
kdistinctvalue : 认为每列不同元素大于kdistinctvalue及为连续变量,否则为class变量
method : 生成方法
"""
# smote unbalance dataset
def smote(data, tag_index=None, max_amount=0, std_rate=5, kneighbor=5, kdistinctvalue=10, method='mean'):
try:
data = pd.DataFrame(data)
except:
raise ValueError
case_state = data.iloc[:, tag_index].groupby(data.iloc[:, tag_index]).count()
case_rate = max(case_state) / min(case_state)
location = []
if case_rate < 5:
print('不需要smote过程')
return data
else:
# 拆分不同大小的数据集合
less_data = np.array(
data[data.iloc[:, tag_index] == np.array(case_state[case_state == min(case_state)].index)[0]])
more_data = np.array(
data[data.iloc[:, tag_index] == np.array(case_state[case_state == max(case_state)].index)[0]])
# 找出每个少量数据中每条数据k个邻居
neighbors = NearestNeighbors(n_neighbors=kneighbor).fit(less_data)
for i in range(len(less_data)):
point = less_data[i, :]
location_set = neighbors.kneighbors([less_data[i]], return_distance=False)[0]
location.append(location_set)
# 确定需要将少量数据补充到上限额度
# 判断有没有设定生成数据个数,如果没有按照std_rate(预期正负样本比)比例生成
if max_amount > 0:
amount = max_amount
else:
amount = int(max(case_state) / std_rate)
# 初始化,判断连续还是分类变量采取不同的生成逻辑
times = 0
continue_index = [] # 连续变量
class_index = [] # 分类变量
for i in range(less_data.shape[1]):
if len(pd.DataFrame(less_data[:, i]).drop_duplicates()) > kdistinctvalue:
continue_index.append(i)
else:
class_index.append(i)
case_update = list()
location_transform = np.array(location)
while times < amount:
# 连续变量取附近k个点的重心,认为少数样本的附近也是少数样本
new_case = []
pool = np.random.permutation(len(location))[1]
neighbor_group = location_transform[pool]
if method == 'mean':
new_case1 = less_data[list(neighbor_group), :][:, continue_index].mean(axis=0)
# 连续样本的附近点向量上的点也是异常点
if method == 'random':
away_index = np.random.permutation(len(neighbor_group) - 1)[1]
neighbor_group_removeorigin = neighbor_group[1:][away_index]
new_case1 = less_data[pool][continue_index] + np.random.rand() * (
less_data[pool][continue_index] - less_data[neighbor_group_removeorigin][continue_index])
# 分类变量取mode
new_case2 = np.array(pd.DataFrame(less_data[neighbor_group, :][:, class_index]).mode().iloc[0, :])
new_case = list(new_case1) + list(new_case2)
if times == 0:
case_update = new_case
else:
case_update = np.c_[case_update, new_case]
print('已经生成了%s条新数据,完成百分之%.2f' % (times, times * 100 / amount))
times = times + 1
less_origin_data = np.hstack((less_data[:, continue_index], less_data[:, class_index]))
more_origin_data = np.hstack((more_data[:, continue_index], more_data[:, class_index]))
data_res = np.vstack((more_origin_data, less_origin_data, np.array(case_update.T)))
label_columns = [0] * more_origin_data.shape[0] + [1] * (
less_origin_data.shape[0] + np.array(case_update.T).shape[0])
data_res = pd.DataFrame(data_res)
return data_res
if __name__ == '__main__':
data = pd.read_table('/Users/slade/Documents/GitHub/machine_learning/data/data_all.txt')
smote(data,tag_index=1)
|
python
|
from django.contrib.auth.models import User
from django.shortcuts import render
from ..date_checker import update_all
from ..forms import UserForm, UserProfileForm
from ..models import UserProfile
from random import randint
def register(request):
"""Registration Page View
Displays registration form for user to fill up.
If it's a POST request, uses the user input to make a new User.
Returns: {% url 'register' %}
"""
registered = False
# If it's a HTTP POST, we're interested in processing form data.
update_all()
x = randint(0, 9)
y = randint(0, 9)
math_equation = str(x) + '+' + str(y) + '='
context_dict = {
'math': math_equation
}
if request.method == 'POST':
# Attempt to grab information from the raw form information.
user_form = UserForm(data=request.POST)
userprofile_form = UserProfileForm(data=request.POST)
eq = request.POST.get('eq', '')
form_ans = request.POST.get('answer')
ans = int(eq[0]) + int(eq[2])
if user_form.is_valid() and userprofile_form.is_valid() and int(form_ans) == int(ans):
user = User.objects.create_user(
first_name=user_form.cleaned_data['first_name'],
last_name=user_form.cleaned_data['last_name'],
username=user_form.cleaned_data['username'],
email=user_form.cleaned_data['email'],
password=user_form.cleaned_data['password'],
)
user.save()
profile = UserProfile.objects.get(user=user)
profile.bio = userprofile_form.cleaned_data['bio']
profile.phone = userprofile_form.cleaned_data['phone']
profile.city = userprofile_form.cleaned_data['city']
profile.country = userprofile_form.cleaned_data['country']
profile.credit_card = userprofile_form.cleaned_data['credit_card']
profile.save()
registered = True
else:
print(user_form.errors)
print(userprofile_form.errors)
else:
user_form = UserForm()
userprofile_form = UserProfileForm()
# Render the template depending on the context.
return render(request, 'registration.html',
{'user_form': user_form,
'userprofile_form': userprofile_form,
'registered': registered, 'math': math_equation,} )
|
python
|
import numpy as np
import pickle
import tensorflow as tf
import os
import sys
sys.path.append("../../..")
sys.path.append("../..")
sys.path.append("..")
import utils
import random
import math
from mimic3models.multitask import utils as mt_utils
from waveform.WaveformLoader import WaveformDataset
from mimic3models.preprocessing import Discretizer, Normalizer
from text_utils import avg_emb
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import StepLR
from models.multi_modality_model_hy import Text_CNN, Text_RNN,LSTMModel, ChannelWiseLSTM, \
Waveform_Pretrained, Text_Only_DS, Text_AVG, LSTMAttentionModel
from models.loss import masked_weighted_cross_entropy_loss, masked_mse_loss
from readmit_dataloaders import MultiModal_Dataset, custom_collate_fn
import functools
import json
from tqdm import tqdm
from sklearn import metrics
from utils import BootStrap, BootStrapDecomp, BootStrapLos, BootStrapIhm, BootStrapPheno, BootStrapReadmit
#======================================Hyperparameters======================================#
# decomp_weight = 5.0
# los_weight = 3.0
# ihm_weight = 3.0
# pheno_weight = 2.0
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# class frequency for each task
readmit_class_weight = torch.FloatTensor([1.0599 ,17.5807])
readmit_class_weight = readmit_class_weight.to(device)
version = 1
experiment = "readmit_dev"
while os.path.exists(os.path.join('runs', experiment+"_v{}".format(version))):
version += 1
experiment = experiment + "_v{}".format(version)
print("Starting run {}".format(experiment))
writer = SummaryWriter(os.path.join('runs', experiment))
conf = utils.get_config()
args = utils.get_args()
vectors, w2i_lookup = utils.get_embedding_dict(conf)
if conf.padding_type == 'Zero':
vectors[utils.lookup(w2i_lookup, '<pad>')] = 0
train_val_ts_root_dir = '/home/yong/mutiltasking-for-mimic3/data/multitask_2/train'
test_ts_root_dir = '/home/yong/mutiltasking-for-mimic3/data/multitask_2/test'
train_val_text_root_dir = '/home/yong/mutiltasking-for-mimic3/data/root_2/train_text_ds'
test_text_root_dir = '/home/yong/mutiltasking-for-mimic3/data/root_2/test_text_ds'
train_listfile = 'listfile.csv'
val_listfile = '4k_val_listfile.csv'
test_listfile ='listfile.csv'
ihm_pos = 48
los_pos = 24
use_ts = False
use_text = True
decay = 0.1
max_text_length = 500
max_num_notes = 1
regression = False
discharge_summary_only = False
bin_type = 'coarse'
train_val_starttime_path = conf.starttime_path_train_val
test_starttime_path = conf.starttime_path_test
epochs = 50
learning_rate = 3e-4
batch_size = 8
bootstrap_decomp = BootStrapDecomp(k=1000, experiment_name = experiment)
bootstrap_los = BootStrapLos(experiment_name = experiment)
bootstrap_ihm = BootStrapIhm(experiment_name = experiment)
bootstrap_pheno = BootStrapPheno(experiment_name = experiment)
bootstrap_readmit = BootStrapReadmit(experiment_name = experiment)
# prepare discretizer and normalizer
conf = utils.get_config()
discretizer = Discretizer(timestep=conf.timestep,
store_masks=True,
impute_strategy='previous',
start_time='zero')
cont_channels = [2, 3, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58]
normalizer = Normalizer(fields=cont_channels)
normalizer_state = conf.normalizer_state
if normalizer_state is None:
normalizer_state = 'mult_ts{}.input_str:previous.start_time:zero.n5e4.normalizer'.format(
conf.timestep)
normalizer.load_params(normalizer_state)
# Model
text_model = Text_CNN(in_channels=1, out_channels=128, kernel_heights =[2,3,4], embedding_length =200, name ='cnn')
#text_model = Text_RNN(embedding_length =200, hidden_size =32, name = 'rnn')
#text_model = Text_AVG()
#text_model = LSTMAttentionModel(hidden_size =128,embedding_length =200, name = 'lstm attn')
model = Text_Only_DS(text_model= text_model)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
scheduler = StepLR(optimizer, step_size=10, gamma=0.3)
early_stopper = utils.EarlyStopping(experiment_name = experiment)
embedding_layer = nn.Embedding(vectors.shape[0], vectors.shape[1])
embedding_layer.weight.data.copy_(torch.from_numpy(vectors))
embedding_layer.weight.requires_grad = False
train_mm_dataset = MultiModal_Dataset(train_val_ts_root_dir, train_val_text_root_dir, train_listfile, discretizer, train_val_starttime_path,\
regression, bin_type, normalizer, ihm_pos, los_pos, use_text, use_ts, decay, w2i_lookup, max_text_length, max_num_notes, discharge_summary_only, True)
#train_mm_dataset = subsampling(train_mm_dataset)
#print(len(train_mm_dataset))
# val_mm_dataset = MultiModal_Dataset(train_val_ts_root_dir, train_val_text_root_dir, wf_root_dir, val_listfile, discretizer, train_val_starttime_path,\
# regression, bin_type, normalizer, ihm_pos, los_pos, use_wf, use_text, use_ts, wf_dim, decay, w2i_lookup, max_text_length, max_num_notes)
test_mm_dataset = MultiModal_Dataset(test_ts_root_dir, test_text_root_dir,test_listfile, discretizer, test_starttime_path,\
regression, bin_type, normalizer, ihm_pos, los_pos, use_text, use_ts, decay, w2i_lookup, max_text_length, max_num_notes, discharge_summary_only, True)
collate_fn_train = functools.partial(custom_collate_fn)
collate_fn_val = functools.partial(custom_collate_fn)
collate_fn_test = functools.partial(custom_collate_fn)
train_data_loader = torch.utils.data.DataLoader(dataset=train_mm_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=5,
collate_fn = collate_fn_train)
# val_data_loader = torch.utils.data.DataLoader(dataset=val_mm_dataset,
# batch_size=batch_size,
# shuffle=True,
# num_workers=5,
# collate_fn = collate_fn_val)
test_data_loader = torch.utils.data.DataLoader(dataset=test_mm_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=5,
collate_fn = collate_fn_test)
def text_embedding(embedding_layer,data, device):
texts = torch.from_numpy(data['texts']).to(torch.int64)
texts = embedding_layer(texts) # [batch_size, num_docs, seq_len, emb_dim]
texts = texts.to(device)
if text_model.name == 'avg':
texts = avg_emb(texts, texts_weight_mat)
return texts
def retrieve_data(data, device):
"""
retrieve data from data loaders and reorganize its shape and obejects into desired forms
"""
ihm_mask = torch.from_numpy(np.array(data['ihm mask']))
ihm_mask = ihm_mask.to(device)
ihm_label = torch.from_numpy(np.array(data['ihm label'])).long()
ihm_label = ihm_label.reshape(-1,1).squeeze(1)
ihm_label = ihm_label.to(device)
decomp_mask = torch.from_numpy(data['decomp mask'])
decomp_mask = decomp_mask.to(device)
decomp_label = torch.from_numpy(data['decomp label']).long()
# the num valid data is used in case the last batch is smaller than batch size
num_valid_data = decomp_label.shape[0]
decomp_label = decomp_label.reshape(-1,1).squeeze(1) # (b*t,)
decomp_label = decomp_label.to(device)
los_mask = torch.from_numpy(np.array(data['los mask']))
los_mask = los_mask.to(device)
los_label = torch.from_numpy(np.array(data['los label']))
los_label = los_label.reshape(-1,1).squeeze(1)
los_label = los_label.to(device)
pheno_label = torch.from_numpy(np.array(data['pheno label'])).float()
pheno_label = pheno_label.to(device)
readmit_mask = torch.from_numpy(np.array(data['readmit mask']))
readmit_mask = readmit_mask.to(device)
readmit_label = torch.from_numpy(np.array(data['readmit label']))
readmit_label = readmit_label.reshape(-1,1).squeeze(1).long()
readmit_label = readmit_label.to(device)
return decomp_label, decomp_mask, los_label, los_mask, ihm_label, ihm_mask, pheno_label, readmit_label, readmit_mask, num_valid_data
def train(epochs, train_data_loader, test_data_loader, early_stopper, model, optimizer, scheduler, device):
criterion = nn.BCEWithLogitsLoss()
aucroc_readmit = utils.AUCROCREADMIT()
aucpr_readmit = utils.AUCPRREADMIT()
cfm_readmit = utils.ConfusionMatrixReadmit()
model.to(device)
train_b = 0
for epoch in range(epochs):
print('Epoch {}/{}'.format(epoch+1, epochs))
print('-' * 50)
model.train()
running_loss =0.0
epoch_metrics = utils.EpochWriter("Train", regression, experiment)
tk0 = tqdm(train_data_loader, total=int(len(train_data_loader)))
for i, data in enumerate(tk0):
if data is None:
continue
decomp_label, decomp_mask, los_label, los_mask, ihm_label, ihm_mask,\
pheno_label, readmit_label, readmit_mask, num_valid_data = retrieve_data(data, device)
if use_text:
texts = text_embedding(embedding_layer, data, device)
else:
texts = None
readmit_logits = model(texts = texts)
loss = masked_weighted_cross_entropy_loss(None, readmit_logits, readmit_label, readmit_mask )
train_b+=1
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
m = nn.Softmax(dim=1)
sig = nn.Sigmoid()
readmit_pred = (sig(readmit_logits)[:,1]).cpu().detach().numpy()
readmit_label = readmit_label.cpu().detach().numpy()
if readmit_label is None:
print('bad')
readmit_mask = readmit_mask.cpu().detach().numpy()
aucpr_readmit.add(readmit_pred, readmit_label, readmit_mask)
aucroc_readmit.add(readmit_pred, readmit_label, readmit_mask)
cfm_readmit.add(readmit_pred, readmit_label, readmit_mask)
interval = 50
if i %interval == interval-1:
writer.add_scalar('training loss',
running_loss/(interval-1),
train_b)
print('readmission aucpr is {}'.format(aucpr_readmit.get()))
print('readmission aucroc is {}'.format(aucroc_readmit.get()))
print('readmission cfm is {}'.format(cfm_readmit.get()))
#scheduler.step()
#evaluate(epoch, val_data_loader, model, 'val', early_stopper, device, train_b)
evaluate(epoch, test_data_loader, model, 'test', early_stopper, device, train_b)
# if early_stopper.early_stop:
# evaluate(epoch, test_data_loader, model, 'test', early_stopper, device, train_b)
# bootstrap_pheno.get()
# print("Early stopping")
# break
def evaluate(epoch, data_loader, model, split, early_stopper, device, train_step=None):
aucroc_readmit = utils.AUCROCREADMIT()
aucpr_readmit = utils.AUCPRREADMIT()
cfm_readmit = utils.ConfusionMatrixReadmit()
if split == 'val':
epoch_metrics = utils.EpochWriter("Val", regression, experiment)
else:
epoch_metrics = utils.EpochWriter("Test", regression, experiment)
model.to(device)
model.eval()
running_loss = 0.0
tk = tqdm(data_loader, total=int(len(data_loader)))
criterion = nn.BCEWithLogitsLoss()
for i, data in enumerate(tk):
if data is None:
continue
decomp_label, decomp_mask, los_label, los_mask, ihm_label, ihm_mask,\
pheno_label, readmit_label, readmit_mask, num_valid_data = retrieve_data(data, device)
if use_ts:
ts = torch.from_numpy(data['time series'])
ts = ts.permute(1,0,2).float().to(device)
else:
ts = None
if use_text:
texts = text_embedding(embedding_layer, data, device)
else:
texts = None
readmit_logits = model(texts = texts)
loss = masked_weighted_cross_entropy_loss(None, readmit_logits, readmit_label, readmit_mask)
running_loss += loss.item()
sigmoid = nn.Sigmoid()
readmit_pred = (sigmoid(readmit_logits)[:,1]).cpu().detach().numpy()
readmit_label = readmit_label.cpu().detach().numpy()
readmit_mask = readmit_mask.cpu().detach().numpy()
aucpr_readmit.add(readmit_pred, readmit_label, readmit_mask)
aucroc_readmit.add(readmit_pred, readmit_label, readmit_mask)
cfm_readmit.add(readmit_pred, readmit_label, readmit_mask)
print('readmission aucpr is {}'.format(aucpr_readmit.get()))
print('readmission aucroc is {}'.format(aucroc_readmit.get()))
print('readmission cfm is {}'.format(cfm_readmit.get()))
if train_step is not None:
xpoint = train_step
else:
xpoint = epoch+1
writer.add_scalar('{} readmit loss'.format(split),
running_loss/ (i),
xpoint)
if split == 'val':
early_stopper(running_loss_pheno/(i), model)
train(epochs, train_data_loader, test_data_loader, early_stopper, model, optimizer, scheduler, device)
#bootstrap_pheno.get()
evaluate(0, test_data_loader, model, 'test', early_stopper, device, None)
#bootstrap_los.get()
|
python
|
import math
def get_client_ip(request) -> str:
"""Get real client IP address."""
x_forwarded_for = request.META.get('HTTP_X_FORWARDED_FOR')
if x_forwarded_for:
ip = x_forwarded_for.split(',')[0]
else:
ip = request.META.get('REMOTE_ADDR')
return ip
def get_pretty_file_size(size_in_bytes: int) -> str:
exponent = math.floor(math.log(size_in_bytes, 1024))
unit = {
0: 'B',
1: 'KB',
2: 'MB',
3: 'GB',
}[exponent]
size = size_in_bytes / (1024 ** exponent)
return '{size} {unit}'.format(size=size, unit=unit)
|
python
|
"""
mmic
A short description of the project.
"""
# Add imports here
from . import components
# Handle versioneer
from ._version import get_versions
versions = get_versions()
__version__ = versions["version"]
__git_revision__ = versions["full-revisionid"]
del get_versions, versions
|
python
|
#!/usr/bin/env python
from __tools__ import MyParser
from __tools__ import XmlParser
#import matplotlib.pyplot as plt
import lxml.etree as lxml
import subprocess as sp
import numpy as np
parser=MyParser(description="Tool to create histogramm for iexcitoncl from jobfile")
parser.add_argument("--format",type=str,default="Hist_{}",help="Title of histogramm and filename")
parser.add_argument("--printing",action='store_const', const=1, default=0,help="Print histogramms to txt file")
parser.add_argument("--bins",type=int,default=50,help="Number of bins")
parser.add_argument("--jobfiles",type=str, nargs="+",required=True,help="Name of jobfile")
parser.add_argument("--min",type=int, default=-14,help="Minimum log10(J2) to still count")
args=parser.parse_args()
if type(args.jobfiles)==str:
args.jobfiles=[args.jobfiles]
for i,jobfile in enumerate(args.jobfiles):
job=[]
toosmall=0
print "Reading in {}".format(jobfile)
root=XmlParser(jobfile)
for entry in root.iter('job'):
status=entry.find("status").text
if status=="COMPLETE":
coupling=entry.find("output")[0][0].get("jABstatic")
j2=float(coupling)**2
#if j2>10**args.min:
job.append(j2)
#else:
#toosmall+=1
job=np.array(job)
if i==0:
total=job
else:
total+=job
print "Read in {} jobs".format(len(job))
print "{} Jobs have a coupling below 10^{} eV**2".format(toosmall,args.min)
value,bins=np.histogram(np.log10(job),args.bins,density=True)
if args.printing:
bins=0.5*(bins[1:]+bins[:-1])
result=np.array([bins,value])
np.savetxt(args.format.format(jobfile)+".txt",result.T,header="Number of Integrals; J2 [eV**2]")
else:
print "Currently not implemented"
total=total/float(len(args.jobfiles))
value,bins=np.histogram(np.log10(total),args.bins,density=True)
bins=0.5*(bins[1:]+bins[:-1])
result=np.array([bins,value])
np.savetxt("Total_hist.txt",result.T,header="Number of Integrals; J2 [eV**2]")
|
python
|
#!/usr/bin/env python3
import sys
import os
import logging
import numpy as np
import PIL.Image as Image
import vboard as vb
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
kl = vb.detect_key_lines()
for filename in sys.argv[1:]:
name = os.path.basename(filename)
try:
mid = int(name[4:name.index('.')])
except ValueError:
logging.exception('')
continue
basedir = os.path.dirname(os.path.realpath(filename))
todir = os.path.join(basedir, f'cells{mid}')
try:
os.mkdir(todir)
except FileExistsError:
logging.exception('')
continue
img = np.asarray(Image.open(filename).convert('L'))
cells, sh = vb.partition_board(kl, img)
for i, x in enumerate(map(Image.fromarray, cells)):
x.save(os.path.join(todir, f'c{i:0>3}.png'))
logging.info('Made %s', os.path.basename(todir))
|
python
|
import argparse
import os
import json
from bs4 import BeautifulSoup
from tqdm import tqdm
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Script to process podcasts trascripts to json file')
parser.add_argument('--input_file', type=str, required=True)
parser.add_argument('--output_file', type=str, required=True)
parser.add_argument('--doc_file', type=str)
parser.add_argument('--meta_file', type=str)
args = parser.parse_args()
if args.doc_file:
out_docs = set()
with open(args.doc_file) as f:
for line in f:
line = line.strip()
out_docs.add(line)
meta_dict = {}
with open(args.meta_file) as f:
flag = False
for line in f:
if not flag:
flag = True
continue
temp = line.strip().split("\t")
meta_dict[temp[6]] = temp[8]
doc_lines=[]
flag = False
temp = []
with open(args.input_file) as f:
for line in tqdm(f):
line = line.strip()
if args.doc_file and "<DOCNO>" in line:
docno = line.replace("<DOCNO>","").replace("</DOCNO>","")
if docno not in out_docs:
flag = False
temp = []
continue
if flag and "</DOC>" in line:
flag = False
soup = BeautifulSoup("\n".join(temp), features="lxml")
docno = soup.find("docno").text.strip()
body = soup.find("text").text.strip()
doc_dict = {}
doc_dict["docno"] = docno
# body, title = text.split("\n")
# doc_dict["title"] = title
doc_dict["body"] = body
doc_dict["title"] = meta_dict[docno.split("_")[0]]
doc_lines.append(json.dumps(doc_dict))
temp = []
elif "<DOC>" in line:
flag = True
temp = [line]
elif flag:
temp.append(line)
with open(args.output_file, "w") as f:
for line in doc_lines:
f.write(line+"\n")
|
python
|
#!/usr/bin/env python
# encoding: utf-8
"""
File: thin_mrbayes_runs.py
Author: Brant Faircloth
Created by Brant Faircloth on 29 March 2012 09:03 PDT (-0700)
Copyright (c) 2012 Brant C. Faircloth. All rights reserved.
Description:
"""
import os
import sys
import glob
import shutil
import argparse
from phyluce.helpers import FullPaths, is_dir
import pdb
def get_args():
"""Get arguments from CLI"""
parser = argparse.ArgumentParser(
description="""Thin a folder of mrbayes output""")
parser.add_argument(
"input",
action=FullPaths,
type=is_dir,
help="""Input directory"""
)
parser.add_argument(
"output",
action=FullPaths,
help="""Output directory"""
)
parser.add_argument(
"--thin",
type=int,
default=100,
help="""Thinning factor""",
)
return parser.parse_args()
def thin_p_files(input, output, thin = 100):
for line in open(input, 'rU'):
if not line.split('\t')[0].isdigit():
output.write(line)
else:
if int(line.split('\t')[0]) == 1:
output.write(line)
elif int(line.split('\t')[0]) % thin == 0:
output.write(line)
def thin_t_files(input, output, thin = 100):
for line in open(input, 'rU'):
if not line.startswith(' tree rep.'):
output.write(line)
else:
#pdb.set_trace()
if int(line.split('=')[0].strip().split('.')[1]) == 1:
output.write(line)
elif int(line.split('=')[0].strip().split('.')[1]) % thin == 0:
output.write(line)
def main():
args = get_args()
files = [f for f in glob.glob(os.path.join(args.input, '*')) if os.path.splitext(f)[1] in ['.t', '.p']]
# check if outputdir
try:
assert os.path.exists(args.output)
except:
inp = raw_input('Output directory does not exist. Create [Y/n]: ')
if inp == 'Y':
os.makedirs(args.output)
else:
print "Exiting"
sys.exit()
nexus = glob.glob(os.path.join(args.input, '*.nex'))
assert len(nexus) == 1, "There is more than one nexus file"
output_name = os.path.basename(nexus[0])
output_file = os.path.join(args.output, output_name)
shutil.copyfile(nexus[0], output_file)
for input in files:
output_name = os.path.basename(input)
output_file = os.path.join(args.output, output_name)
output = open(output_file, 'w')
if os.path.splitext(input)[1] == '.p':
thin_p_files(input, output, args.thin)
elif os.path.splitext(input)[1] == '.t':
thin_t_files(input, output, args. thin)
output.close()
if __name__ == '__main__':
main()
|
python
|
# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other
# Spack Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: (Apache-2.0 OR MIT)
from spack import *
class Panda(CMakePackage):
"""PANDA: Parallel AdjaceNcy Decomposition Algorithm"""
homepage = "http://comopt.ifi.uni-heidelberg.de/software/PANDA/index.html"
url = "http://comopt.ifi.uni-heidelberg.de/software/PANDA/downloads/panda-2016-03-07.tar"
version('2016-03-07', 'b06dc312ee56e13eefea9c915b70fcef')
# Note: Panda can also be built without MPI support
depends_on('[email protected]:', type='build')
depends_on('mpi')
|
python
|
import argparse
import json
import pickle
from bz2 import BZ2File
from pprint import pprint
# with open("wiki_data/properties.pkl", "rb") as props:
# properties_mapper = pickle.load(props)
properties_mapper = {}
properties_mapper.update(
{
"Q6581097": "male",
"Q6581072": "female",
}
)
def parse_person(data):
item_id = data["id"]
# Try to get the label
labels = data["labels"]
if "en" in labels:
label = labels["en"]["value"]
else:
# If there's no english label, bail out
return None
# Try to get the description
descriptions = data["descriptions"]
if "en" in descriptions:
description = descriptions["en"]["value"]
else:
description = ""
claims = data["claims"]
print(f"{label.ljust(20)} ({str(item_id).ljust(12)}):", description)
# Try to get the gender
gender_id = claims["P21"][0]['mainsnak']['datavalue']['value']['id']
# Try to get date of birth
dob = claims["P569"][0]['mainsnak']['datavalue']['value']['time']
# Try to get date of death
if "P570" in claims:
dod = claims["P570"][0]['mainsnak']['datavalue']['value']['time']
else:
dod = None
print(" -", properties_mapper.get(gender_id, gender_id))
print(" - ", dob, "::", dod)
def parse(line):
data = json.loads(line.strip().rstrip(b","))
ty = data["type"]
if ty == "item":
categories = set()
claims = data["claims"]
if "P31" not in claims: # If this isn't an instance of anything, ignore it
return
for cat in claims["P31"]: # Find all the things this is an instance of
snak = cat["mainsnak"]
categories.add(snak['datavalue']['value']['id'])
if "Q5" in categories: # A human!
parse_person(data)
def main():
parser = argparse.ArgumentParser(
description="Extract data from uncompressed JSON file"
)
parser.add_argument(
"data_file_name",
type=str,
help="JSON file with one entry per line",
)
args = parser.parse_args()
with BZ2File(args.data_file_name) as f:
for line_num, line in enumerate(f):
try:
parse(line)
except Exception as e:
print("Error parsing line", f"{line_num} - {type(e).__name__}: {e}")
if line_num >= 200:
break
if __name__ == "__main__":
main()
|
python
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------
import abc
import copy
import pandas as pd
from skbio.util._decorator import stable, experimental
from skbio.metadata import IntervalMetadata
class MetadataMixin(metaclass=abc.ABCMeta):
@property
@stable(as_of="0.4.0")
def metadata(self):
"""``dict`` containing metadata which applies to the entire object.
Notes
-----
This property can be set and deleted. When setting new metadata a
shallow copy of the dictionary is made.
Examples
--------
.. note:: scikit-bio objects with metadata share a common interface for
accessing and manipulating their metadata. The following examples
use scikit-bio's ``Sequence`` class to demonstrate metadata
behavior. These examples apply to all other scikit-bio objects
storing metadata.
Create a sequence with metadata:
>>> from pprint import pprint
>>> from skbio import Sequence
>>> seq = Sequence('ACGT', metadata={'id': 'seq-id',
... 'description': 'seq description'})
Retrieve metadata:
>>> pprint(seq.metadata) # using pprint to display dict in sorted order
{'description': 'seq description', 'id': 'seq-id'}
Update metadata:
>>> seq.metadata['id'] = 'new-id'
>>> seq.metadata['pubmed'] = 12345
>>> pprint(seq.metadata)
{'description': 'seq description', 'id': 'new-id', 'pubmed': 12345}
Set metadata:
>>> seq.metadata = {'abc': 123}
>>> seq.metadata
{'abc': 123}
Delete metadata:
>>> seq.has_metadata()
True
>>> del seq.metadata
>>> seq.metadata
{}
>>> seq.has_metadata()
False
"""
if self._metadata is None:
# Not using setter to avoid copy.
self._metadata = {}
return self._metadata
@metadata.setter
def metadata(self, metadata):
if not isinstance(metadata, dict):
raise TypeError("metadata must be a dict, not type %r" %
type(metadata).__name__)
# Shallow copy.
self._metadata = metadata.copy()
@metadata.deleter
def metadata(self):
self._metadata = None
@abc.abstractmethod
def __init__(self, metadata=None):
raise NotImplementedError
def _init_(self, metadata=None):
if metadata is None:
# Could use deleter but this is less overhead and needs to be fast.
self._metadata = None
else:
# Use setter for validation and copy.
self.metadata = metadata
@abc.abstractmethod
def __eq__(self, other):
raise NotImplementedError
def _eq_(self, other):
# We're not simply comparing self.metadata to other.metadata in order
# to avoid creating "empty" metadata representations on the objects if
# they don't have metadata.
if self.has_metadata() and other.has_metadata():
return self.metadata == other.metadata
elif not (self.has_metadata() or other.has_metadata()):
# Both don't have metadata.
return True
else:
# One has metadata while the other does not.
return False
@abc.abstractmethod
def __ne__(self, other):
raise NotImplementedError
def _ne_(self, other):
return not (self == other)
@abc.abstractmethod
def __copy__(self):
raise NotImplementedError
def _copy_(self):
if self.has_metadata():
return self.metadata.copy()
else:
return None
@abc.abstractmethod
def __deepcopy__(self, memo):
raise NotImplementedError
def _deepcopy_(self, memo):
if self.has_metadata():
return copy.deepcopy(self.metadata, memo)
else:
return None
@stable(as_of="0.4.0")
def has_metadata(self):
"""Determine if the object has metadata.
An object has metadata if its ``metadata`` dictionary is not empty
(i.e., has at least one key-value pair).
Returns
-------
bool
Indicates whether the object has metadata.
Examples
--------
.. note:: scikit-bio objects with metadata share a common interface for
accessing and manipulating their metadata. The following examples
use scikit-bio's ``Sequence`` class to demonstrate metadata
behavior. These examples apply to all other scikit-bio objects
storing metadata.
>>> from skbio import Sequence
>>> seq = Sequence('ACGT')
>>> seq.has_metadata()
False
>>> seq = Sequence('ACGT', metadata={})
>>> seq.has_metadata()
False
>>> seq = Sequence('ACGT', metadata={'id': 'seq-id'})
>>> seq.has_metadata()
True
"""
return self._metadata is not None and bool(self.metadata)
class PositionalMetadataMixin(metaclass=abc.ABCMeta):
@abc.abstractmethod
def _positional_metadata_axis_len_(self):
"""Return length of axis that positional metadata applies to.
Returns
-------
int
Positional metadata axis length.
"""
raise NotImplementedError
@property
@stable(as_of="0.4.0")
def positional_metadata(self):
"""``pd.DataFrame`` containing metadata along an axis.
Notes
-----
This property can be set and deleted. When setting new positional
metadata, a shallow copy is made and the ``pd.DataFrame`` index is set
to ``pd.RangeIndex(start=0, stop=axis_len, step=1)``.
Examples
--------
.. note:: scikit-bio objects with positional metadata share a common
interface for accessing and manipulating their positional metadata.
The following examples use scikit-bio's ``DNA`` class to demonstrate
positional metadata behavior. These examples apply to all other
scikit-bio objects storing positional metadata.
Create a DNA sequence with positional metadata:
>>> from skbio import DNA
>>> seq = DNA(
... 'ACGT',
... positional_metadata={'quality': [3, 3, 20, 11],
... 'exons': [True, True, False, True]})
>>> seq
DNA
-----------------------------
Positional metadata:
'exons': <dtype: bool>
'quality': <dtype: int64>
Stats:
length: 4
has gaps: False
has degenerates: False
has definites: True
GC-content: 50.00%
-----------------------------
0 ACGT
Retrieve positional metadata:
>>> seq.positional_metadata
exons quality
0 True 3
1 True 3
2 False 20
3 True 11
Update positional metadata:
>>> seq.positional_metadata['gaps'] = seq.gaps()
>>> seq.positional_metadata
exons quality gaps
0 True 3 False
1 True 3 False
2 False 20 False
3 True 11 False
Set positional metadata:
>>> seq.positional_metadata = {'degenerates': seq.degenerates()}
>>> seq.positional_metadata # doctest: +NORMALIZE_WHITESPACE
degenerates
0 False
1 False
2 False
3 False
Delete positional metadata:
>>> seq.has_positional_metadata()
True
>>> del seq.positional_metadata
>>> seq.positional_metadata
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3]
>>> seq.has_positional_metadata()
False
"""
if self._positional_metadata is None:
# Not using setter to avoid copy.
self._positional_metadata = pd.DataFrame(
index=self._get_positional_metadata_index())
return self._positional_metadata
@positional_metadata.setter
def positional_metadata(self, positional_metadata):
try:
# Pass copy=True to copy underlying data buffer.
positional_metadata = pd.DataFrame(positional_metadata, copy=True)
# Different versions of pandas will raise different error types. We
# don't really care what the type of the error is, just its message, so
# a blanket Exception will do.
except Exception as e:
raise TypeError(
"Invalid positional metadata. Must be consumable by "
"`pd.DataFrame` constructor. Original pandas error message: "
"\"%s\"" % e)
num_rows = len(positional_metadata.index)
axis_len = self._positional_metadata_axis_len_()
if num_rows != axis_len:
raise ValueError(
"Number of positional metadata values (%d) must match the "
"positional metadata axis length (%d)."
% (num_rows, axis_len))
positional_metadata.index = self._get_positional_metadata_index()
self._positional_metadata = positional_metadata
@positional_metadata.deleter
def positional_metadata(self):
self._positional_metadata = None
def _get_positional_metadata_index(self):
"""Create a memory-efficient integer index for positional metadata."""
return pd.RangeIndex(start=0,
stop=self._positional_metadata_axis_len_(),
step=1)
@abc.abstractmethod
def __init__(self, positional_metadata=None):
raise NotImplementedError
def _init_(self, positional_metadata=None):
if positional_metadata is None:
# Could use deleter but this is less overhead and needs to be fast.
self._positional_metadata = None
else:
# Use setter for validation and copy.
self.positional_metadata = positional_metadata
@abc.abstractmethod
def __eq__(self, other):
raise NotImplementedError
def _eq_(self, other):
# We're not simply comparing self.positional_metadata to
# other.positional_metadata in order to avoid creating "empty"
# positional metadata representations on the objects if they don't have
# positional metadata.
if self.has_positional_metadata() and other.has_positional_metadata():
return self.positional_metadata.equals(other.positional_metadata)
elif not (self.has_positional_metadata() or
other.has_positional_metadata()):
# Both don't have positional metadata.
return (self._positional_metadata_axis_len_() ==
other._positional_metadata_axis_len_())
else:
# One has positional metadata while the other does not.
return False
@abc.abstractmethod
def __ne__(self, other):
raise NotImplementedError
def _ne_(self, other):
return not (self == other)
@abc.abstractmethod
def __copy__(self):
raise NotImplementedError
def _copy_(self):
if self.has_positional_metadata():
# deep=True makes a shallow copy of the underlying data buffer.
return self.positional_metadata.copy(deep=True)
else:
return None
@abc.abstractmethod
def __deepcopy__(self, memo):
raise NotImplementedError
def _deepcopy_(self, memo):
if self.has_positional_metadata():
# `copy.deepcopy` no longer recursively copies contents of the
# DataFrame, so we must handle the deep copy ourselves.
# Reference: https://github.com/pandas-dev/pandas/issues/17406
df = self.positional_metadata
data_cp = copy.deepcopy(df.values.tolist(), memo)
return pd.DataFrame(data_cp,
index=df.index.copy(deep=True),
columns=df.columns.copy(deep=True),
copy=False)
else:
return None
@stable(as_of="0.4.0")
def has_positional_metadata(self):
"""Determine if the object has positional metadata.
An object has positional metadata if its ``positional_metadata``
``pd.DataFrame`` has at least one column.
Returns
-------
bool
Indicates whether the object has positional metadata.
Examples
--------
.. note:: scikit-bio objects with positional metadata share a common
interface for accessing and manipulating their positional metadata.
The following examples use scikit-bio's ``DNA`` class to demonstrate
positional metadata behavior. These examples apply to all other
scikit-bio objects storing positional metadata.
>>> import pandas as pd
>>> from skbio import DNA
>>> seq = DNA('ACGT')
>>> seq.has_positional_metadata()
False
>>> seq = DNA('ACGT', positional_metadata=pd.DataFrame(index=range(4)))
>>> seq.has_positional_metadata()
False
>>> seq = DNA('ACGT', positional_metadata={'quality': range(4)})
>>> seq.has_positional_metadata()
True
"""
return (self._positional_metadata is not None and
len(self.positional_metadata.columns) > 0)
class IntervalMetadataMixin(metaclass=abc.ABCMeta):
@abc.abstractmethod
def _interval_metadata_axis_len_(self):
'''Return length of axis that interval metadata applies to.
Returns
-------
int
Interval metadata axis length.
'''
raise NotImplementedError
@abc.abstractmethod
def __init__(self, interval_metadata=None):
raise NotImplementedError
def _init_(self, interval_metadata=None):
if interval_metadata is None:
# Could use deleter but this is less overhead and needs to be fast.
self._interval_metadata = None
else:
# Use setter for validation and copy.
self.interval_metadata = interval_metadata
@property
@experimental(as_of="0.5.1")
def interval_metadata(self):
'''``IntervalMetadata`` object containing info about interval features.
Notes
-----
This property can be set and deleted. When setting new
interval metadata, a shallow copy of the ``IntervalMetadata``
object is made.
'''
if self._interval_metadata is None:
# Not using setter to avoid copy.
self._interval_metadata = IntervalMetadata(
self._interval_metadata_axis_len_())
return self._interval_metadata
@interval_metadata.setter
def interval_metadata(self, interval_metadata):
if isinstance(interval_metadata, IntervalMetadata):
upper_bound = interval_metadata.upper_bound
lower_bound = interval_metadata.lower_bound
axis_len = self._interval_metadata_axis_len_()
if lower_bound != 0:
raise ValueError(
'The lower bound for the interval features (%d) '
'must be zero.' % lower_bound)
if upper_bound is not None and upper_bound != axis_len:
raise ValueError(
'The upper bound for the interval features (%d) '
'must match the interval metadata axis length (%d)'
% (upper_bound, axis_len))
# copy all the data to the mixin
self._interval_metadata = IntervalMetadata(
axis_len, copy_from=interval_metadata)
else:
raise TypeError('You must provide `IntervalMetadata` object, '
'not type %s.' % type(interval_metadata).__name__)
@interval_metadata.deleter
def interval_metadata(self):
self._interval_metadata = None
@experimental(as_of="0.5.1")
def has_interval_metadata(self):
"""Determine if the object has interval metadata.
An object has interval metadata if its ``interval_metadata``
has at least one ```Interval`` objects.
Returns
-------
bool
Indicates whether the object has interval metadata.
"""
return (self._interval_metadata is not None and
self.interval_metadata.num_interval_features > 0)
@abc.abstractmethod
def __eq__(self, other):
raise NotImplementedError
def _eq_(self, other):
# We're not simply comparing self.interval_metadata to
# other.interval_metadata in order to avoid creating "empty"
# interval metadata representations on the objects if they don't have
# interval metadata.
if self.has_interval_metadata() and other.has_interval_metadata():
return self.interval_metadata == other.interval_metadata
elif not (self.has_interval_metadata() or
other.has_interval_metadata()):
# Both don't have interval metadata.
return (self._interval_metadata_axis_len_() ==
other._interval_metadata_axis_len_())
else:
# One has interval metadata while the other does not.
return False
@abc.abstractmethod
def __ne__(self, other):
raise NotImplementedError
def _ne_(self, other):
return not (self == other)
@abc.abstractmethod
def __copy__(self):
raise NotImplementedError
def _copy_(self):
if self.has_interval_metadata():
return copy.copy(self.interval_metadata)
else:
return None
@abc.abstractmethod
def __deepcopy__(self, memo):
raise NotImplementedError
def _deepcopy_(self, memo):
if self.has_interval_metadata():
return copy.deepcopy(self.interval_metadata, memo)
else:
return None
|
python
|
from rest_framework.test import APITestCase
from rest_framework import status
from rest_framework.reverse import reverse as api_reverse
from survivor.models import Survivor, FlagAsInfected, Reports
class ReportsAPITestCase(APITestCase):
def setUp(self):
Survivor.objects.create(
name='New Name', age=20, gender='M', latitude='11', longitude='22',
items='Fiji Water:13;Campbell Soup:17;First Aid Pouch:18;AK47:652'
)
Survivor.objects.create(
name='New Name', age=20, gender='M', latitude='11', longitude='22',
items='Fiji Water:13;Campbell Soup:17;First Aid Pouch:18;AK47:652'
)
def test_report_get(self):
url = api_reverse("api-survivor:reports-retrieve-update")
response = self.client.get(url, format='json')
self.assertEqual(response.status_code, status.HTTP_200_OK)
Survivor.objects.create(
name='New Name FHEUHF', age=20, gender='M', latitude='11', longitude='22',
items='Fiji Water:27;Campbell Soup:40;First Aid Pouch:18;AK47:652'
)
response = self.client.get(url, format='json')
self.assertEqual(response.status_code, status.HTTP_200_OK)
Survivor.objects.create(
name='New Name FHEUHFddwdw', age=20, gender='M', latitude='11', longitude='22',
items='Fiji Water:0;Campbell Soup:0;First Aid Pouch:0;AK47:300', infected=True
)
response = self.client.get(url, format='json')
self.assertEqual(response.status_code, status.HTTP_200_OK)
|
python
|
import pathlib
from setuptools import setup
current_location = pathlib.Path(__file__).parent
README = (current_location / "README.md").read_text()
setup(
name="wiktionary-parser-ru",
version="0.0.1",
packages=["wiktionaryparserru", "tests"],
url="https://github.com/ShatteredMind/wiktionaryparserru",
license="MIT",
author="internethero",
author_email="[email protected]",
description="Basic parser for russian wiktionary",
long_description_content_type='text/markdown',
install_requires=["beautifulsoup4", "requests"],
classifiers=[
"Development Status :: 2 - Pre-Alpha",
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License"
],
)
|
python
|
def convert(s):
s_split = s.split(' ')
return s_split
def niceprint(s):
for i, elm in enumerate(s):
print('Element #', i + 1, ' = ', elm, sep='')
return None
c1 = 10
c2 = 's'
|
python
|
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
"""
LightGBM/Python training script
"""
import os
import sys
import argparse
import logging
import traceback
import json
from distutils.util import strtobool
import lightgbm
from collections import namedtuple
# Add the right path to PYTHONPATH
# so that you can import from common.*
COMMON_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", ".."))
if COMMON_ROOT not in sys.path:
print(f"Adding {COMMON_ROOT} to PYTHONPATH")
sys.path.append(str(COMMON_ROOT))
# useful imports from common
from common.components import RunnableScript
from common.io import get_all_files
from common.lightgbm_utils import LightGBMCallbackHandler
from common.distributed import MultiNodeScript
class LightGBMPythonMpiTrainingScript(MultiNodeScript):
def __init__(self):
super().__init__(
task = "train",
framework = "lightgbm",
framework_version = lightgbm.__version__
)
@classmethod
def get_arg_parser(cls, parser=None):
"""Adds component/module arguments to a given argument parser.
Args:
parser (argparse.ArgumentParser): an argument parser instance
Returns:
ArgumentParser: the argument parser instance
Notes:
if parser is None, creates a new parser instance
"""
# add generic arguments
parser = RunnableScript.get_arg_parser(parser)
group_i = parser.add_argument_group("Input Data")
group_i.add_argument("--train",
required=True, type=str, help="Training data location (file or dir path)")
group_i.add_argument("--test",
required=True, type=str, help="Testing data location (file path)")
group_i.add_argument("--construct",
required=False, default=True, type=strtobool, help="use lazy initialization during data loading phase")
group_i.add_argument("--header", required=False, default=False, type=strtobool)
group_i.add_argument("--label_column", required=False, default="0", type=str)
group_i.add_argument("--group_column", required=False, default=None, type=str)
group_o = parser.add_argument_group("Outputs")
group_o.add_argument("--export_model",
required=False, type=str, help="Export the model in this location (file path)")
# learner params
group_lgbm = parser.add_argument_group("LightGBM learning parameters")
group_lgbm.add_argument("--objective", required=True, type=str)
group_lgbm.add_argument("--metric", required=True, type=str)
group_lgbm.add_argument("--boosting_type", required=True, type=str)
group_lgbm.add_argument("--tree_learner", required=True, type=str)
group_lgbm.add_argument("--label_gain", required=False, type=str, default=None)
group_lgbm.add_argument("--num_trees", required=True, type=int)
group_lgbm.add_argument("--num_leaves", required=True, type=int)
group_lgbm.add_argument("--min_data_in_leaf", required=True, type=int)
group_lgbm.add_argument("--learning_rate", required=True, type=float)
group_lgbm.add_argument("--max_bin", required=True, type=int)
group_lgbm.add_argument("--feature_fraction", required=True, type=float)
group_lgbm.add_argument("--device_type", required=False, type=str, default="cpu")
group_lgbm.add_argument("--custom_params", required=False, type=str, default=None)
return parser
def load_lgbm_params_from_cli(self, args, mpi_config):
"""Gets the right LightGBM parameters from argparse + mpi config
Args:
args (argparse.Namespace)
mpi_config (namedtuple): as returned from detect_mpi_config()
Returns:
lgbm_params (dict)
"""
# copy all parameters from argparse
cli_params = dict(vars(args))
# removing arguments that are purely CLI
for key in ['verbose', 'custom_properties', 'export_model', 'test', 'train', 'custom_params', 'construct', 'disable_perf_metrics']:
del cli_params[key]
# doing some fixes and hardcoded values
lgbm_params = cli_params
lgbm_params['feature_pre_filter'] = False
lgbm_params['verbose'] = 2
lgbm_params['header'] = bool(args.header) # strtobool returns 0 or 1, lightgbm needs actual bool
lgbm_params['is_provide_training_metric'] = True
# add mpi parameters if relevant
if mpi_config.mpi_available:
lgbm_params['num_machines'] = mpi_config.world_size
lgbm_params['machines'] = ":"
# process custom params
if args.custom_params:
custom_params = json.loads(args.custom_params)
lgbm_params.update(custom_params)
return lgbm_params
def assign_train_data(self, args, mpi_config):
""" Identifies which training file to load on this node.
Checks for consistency between number of files and mpi config.
Args:
args (argparse.Namespace)
mpi_config (namedtuple): as returned from detect_mpi_config()
Returns:
str: path to the data file for this node
"""
train_file_paths = get_all_files(args.train)
if mpi_config.mpi_available:
# depending on mode, we'll require different number of training files
if args.tree_learner == "data" or args.tree_learner == "voting":
if len(train_file_paths) == mpi_config.world_size:
train_data = train_file_paths[mpi_config.world_rank]
else:
raise Exception(f"To use MPI with tree_learner={args.tree_learner} and node count {mpi_config.world_rank}, you need to partition the input data into {mpi_config.world_rank} files (currently found {len(train_file_paths)})")
elif args.tree_learner == "feature":
if len(train_file_paths) == 1:
train_data = train_file_paths[0]
else:
raise Exception(f"To use MPI with tree_learner=parallel you need to provide only 1 input file, but {len(train_file_paths)} were found")
elif args.tree_learner == "serial":
if len(train_file_paths) == 1:
train_data = train_file_paths[0]
else:
raise Exception(f"To use single node training, you need to provide only 1 input file, but {len(train_file_paths)} were found")
else:
NotImplementedError(f"tree_learner mode {args.tree_learner} does not exist or is not implemented.")
else:
# if not using mpi, let's just use serial mode with one unique input file
if args.tree_learner != "serial":
logging.getLogger().warning(f"Using tree_learner={args.tree_learner} on single node does not make sense, switching back to tree_learner=serial")
args.tree_learner = "serial"
if len(train_file_paths) == 1:
train_data = train_file_paths[0]
else:
raise Exception(f"To use single node training, you need to provide only 1 input file, but {len(train_file_paths)} were found")
return train_data
def run(self, args, logger, metrics_logger, unknown_args):
"""Run script with arguments (the core of the component)
Args:
args (argparse.namespace): command line arguments provided to script
logger (logging.getLogger() for this script)
metrics_logger (common.metrics.MetricLogger)
unknown_args (list[str]): list of arguments not recognized during argparse
"""
# get mpi config as a namedtuple
mpi_config = self.mpi_config()
# figure out the lgbm params from cli args + mpi config
lgbm_params = self.load_lgbm_params_from_cli(args, mpi_config)
# create a handler for the metrics callbacks
callbacks_handler = LightGBMCallbackHandler(
metrics_logger=metrics_logger,
metrics_prefix=f"node_{mpi_config.world_rank}/"
)
# make sure the output argument exists
if args.export_model and mpi_config.main_node:
os.makedirs(args.export_model, exist_ok=True)
args.export_model = os.path.join(args.export_model, "model.txt")
# log params only once by doing it only on main node (node 0)
if mpi_config.main_node:
# log lgbm parameters
logger.info(f"LGBM Params: {lgbm_params}")
metrics_logger.log_parameters(**lgbm_params)
# register logger for lightgbm logs
lightgbm.register_logger(logger)
logger.info(f"Loading data for training")
with metrics_logger.log_time_block("time_data_loading", step=mpi_config.world_rank):
# obtain the path to the train data for this node
train_data_path = self.assign_train_data(args, mpi_config)
test_data_paths = get_all_files(args.test)
logger.info(f"Running with 1 train file and {len(test_data_paths)} test files.")
# construct datasets
if args.construct:
train_data = lightgbm.Dataset(train_data_path, params=lgbm_params).construct()
val_datasets = [
train_data.create_valid(test_data_path).construct() for test_data_path in test_data_paths
]
# capture data shape in metrics
metrics_logger.log_metric(key="train_data.length", value=train_data.num_data(), step=mpi_config.world_rank)
metrics_logger.log_metric(key="train_data.width", value=train_data.num_feature(), step=mpi_config.world_rank)
else:
train_data = lightgbm.Dataset(train_data_path, params=lgbm_params)
val_datasets = [
train_data.create_valid(test_data_path) for test_data_path in test_data_paths
]
# can't count rows if dataset is not constructed
# mlflow can only log float.
# metrics_logger.log_metric(key="train_data.length", value="n/a")
# metrics_logger.log_metric(key="train_data.width", value="n/a")
logger.info(f"Training LightGBM with parameters: {lgbm_params}")
with metrics_logger.log_time_block("time_training", step=mpi_config.world_rank):
booster = lightgbm.train(
lgbm_params,
train_data,
valid_sets = val_datasets,
callbacks=[callbacks_handler.callback]
)
if args.export_model and mpi_config.main_node:
logger.info(f"Writing model in {args.export_model}")
booster.save_model(args.export_model)
def get_arg_parser(parser=None):
""" To ensure compatibility with shrike unit tests """
return LightGBMPythonMpiTrainingScript.get_arg_parser(parser)
def main(cli_args=None):
""" To ensure compatibility with shrike unit tests """
LightGBMPythonMpiTrainingScript.main(cli_args)
if __name__ == "__main__":
main()
|
python
|
"""
Lark parser and AST definition for Domain Relational Calculus.
"""
from typing import Dict, NamedTuple, Set, Tuple
from lark import Lark, Token, Tree
from relcal import config
from relcal.helpers.primitives import Singleton
####################
# Type definitions #
####################
Fields = Tuple[Token, ...]
class Table(NamedTuple):
name: Token
fields: Fields
class Query(NamedTuple):
tuple_vars: Fields
predicate: object
class DRCParsedObject(NamedTuple):
table_defs: Dict[Token, Fields]
query: Query
########################
# Language definitions #
########################
class DRCQueryLanguage(metaclass=Singleton):
"""
A collection of methods for domain relational calculus query language.
The actual Lark parser is stored within 'parser' class attribute.
"""
parser = Lark(r'''
start: table_defs query
table_defs: (table ";")*
table: TABLE_NAME "(" fields? ")"
fields: FIELD_NAME ("," FIELD_NAME)* ","?
query: "{" fields ":" iff_test "}"
?iff_test: implies_test (_IFF_OP implies_test)?
?implies_test: or_test (_IMPLIES_OP or_test)?
?or_test: and_test (_OR_OP and_test)*
?and_test: not_test (_AND_OP not_test)*
?not_test: _NOT_OP atom_test -> not
| atom_test
?atom_test: "(" iff_test ")"
| table
| FIELD_NAME COMP_OP FIELD_NAME -> compare_op
| _FOR_ALL_OP "[" FIELD_NAME "]" "(" iff_test ")" -> for_all
| _THERE_EXISTS_OP "[" FIELD_NAME "]" "(" iff_test ")" -> there_exists
TABLE_NAME: /[A-Z][A-Za-z0-9_]*/
FIELD_NAME: /[a-z][A-Za-z0-9_]*/
QUERY_IDENTIFIER: /\$[A-Za-z0-9_]+/
_IFF_OP.10: "<=>" | "⇔" | "↔" | "IFF"
_IMPLIES_OP.10: "=>" | "⇒" | "→" | "IMPLIES"
_OR_OP.10: "∨" | "|" | "OR"
_AND_OP.10: "∧" | "&" | "AND"
_NOT_OP.10: "~" | "¬" | "NOT"
_FOR_ALL_OP.10: "∀" | "ALL"
_THERE_EXISTS_OP.10: "∃" | "EXISTS"
COMP_OP: "==" | "!=" | ">=" | ">" | "<=" | "<"
%import common.WS
%ignore WS
''', parser="lalr", debug=config.DEBUG_MODE)
def parse(self, text: str) -> Tree:
"""
Use the parser to parse the given domain relational calculus query
into parsed tree.
"""
return self.parser.parse(text)
def transform(self, node: Tree) -> DRCParsedObject:
"""
Transforms the entire parsed tree into the abstract syntax tree.
The given parsed tree node must be of type 'start'.
"""
assert node.data == 'start' and len(node.children) == 2
table_defs_node: Tree = node.children[0]
query_node: Tree = node.children[1]
table_defs = self.transform_table_defs(table_defs_node)
query = self.transform_query(query_node)
return DRCParsedObject(table_defs, query)
def transform_table_defs(self, node: Tree) -> Dict[Token, Fields]:
"""
Transforms the node with type 'table_defs' into
a dictionary which maps table name string to field names.
"""
assert node.data == 'table_defs'
table_defs = {}
for table_node in node.children:
name, fields = self.transform_single_table_def(table_node)
# Check that all table names are unique
if name in table_defs:
raise SyntaxError(
f"duplicated table name {str(name)!r} "
f"at line {name.line} column {name.column}",
)
table_defs[name] = fields
return table_defs
def transform_single_table_def(self, node: Tree) -> Table:
"""
Transforms the node with type 'table' into
a tuple of table name strings and field names.
"""
assert node.data == 'table' and len(node.children) == 2
table_name: Token = node.children[0]
fields_node: Tree = node.children[1]
# Check that all field names are unique
collected = set()
for field_name in fields_node.children:
if field_name in collected:
raise SyntaxError(
f"duplicated field name {str(field_name)!r} "
f"at line {field_name.line} column {field_name.column}",
)
collected.add(field_name)
return Table(table_name, tuple(fields_node.children))
def transform_query(self, node: Tree) -> Query:
"""
Transforms the node with type 'query' into the Query tuple object.
"""
assert node.data == 'query' and len(node.children) == 2
tuple_vars_node: Tree = node.children[0]
predicate_node: Tree = node.children[1]
tuple_vars = tuple(tuple_vars_node.children)
self.validate_scope(predicate_node, set(tuple_vars))
return Query(tuple(tuple_vars_node.children), predicate_node)
def validate_scope(self, node: Tree, scope: Set[str]):
"""
Recursively checks that
1. There is not variable shadowing of variables from within
the given scope under the tree node.
2. There is no free variable not in scope.
"""
visitor = getattr(self, f"validate_scope_{node.data}", None)
if visitor:
return visitor(node, scope)
for child_node in node.children:
if isinstance(child_node, Tree):
self.validate_scope(child_node, scope)
elif isinstance(child_node, Token) and child_node.type == 'FIELD_NAME':
self.validate_free_variable(child_node, scope)
def validate_scope_there_exists(self, node: Tree, scope: Set[str]):
assert node.data == 'there_exists'
return self.validate_scope_quantifier(node, scope)
def validate_scope_for_all(self, node: Tree, scope: Set[str]):
assert node.data == 'for_all'
return self.validate_scope_quantifier(node, scope)
def validate_scope_quantifier(self, node: Tree, scope: Set[str]):
assert len(node.children) == 2
variable: Token = node.children[0]
expr_node: Tree = node.children[1]
# Check that new variable is not overshadowed
if variable in scope:
raise SyntaxError(
f"variable name {str(variable)!r} overshadowed "
f"at line {variable.line} column {variable.column}",
)
# Recursively check sub-expression node
self.validate_scope(expr_node, scope | {variable})
def validate_free_variable(self, variable: Token, scope: Set[str]):
if variable not in scope:
raise SyntaxError(
f"variable name {str(variable)!r} is a free variable "
f"at line {variable.line} column {variable.column}",
)
|
python
|
import logging
import logging.config
import os
import signal
import sys
import click
import gevent
import gevent.pool
from eth_keys.datatypes import PrivateKey
from eth_utils import to_checksum_address
from gevent.queue import Queue
from marshmallow.exceptions import ValidationError
from toml.decoder import TomlDecodeError
from web3 import HTTPProvider, Web3
import bridge.node_status
import bridge.version
from bridge.config import load_config
from bridge.confirmation_sender import (
ConfirmationSender,
ConfirmationWatcher,
make_sanity_check_transfer,
)
from bridge.confirmation_task_planner import ConfirmationTaskPlanner
from bridge.constants import (
APPLICATION_CLEANUP_TIMEOUT,
COMPLETION_EVENT_NAME,
CONFIRMATION_EVENT_NAME,
HOME_CHAIN_STEP_DURATION,
TRANSFER_EVENT_NAME,
)
from bridge.contract_abis import HOME_BRIDGE_ABI, MINIMAL_ERC20_TOKEN_ABI
from bridge.contract_validation import (
get_validator_proxy_contract,
validate_contract_existence,
)
from bridge.event_fetcher import EventFetcher
from bridge.events import ChainRole
from bridge.service import Service, start_services
from bridge.transfer_recorder import TransferRecorder
from bridge.utils import get_validator_private_key
from bridge.validator_balance_watcher import ValidatorBalanceWatcher
from bridge.validator_status_watcher import ValidatorStatusWatcher
from bridge.webservice import InternalState, Webservice
logger = logging.getLogger(__name__)
class SetupError(Exception):
pass
def configure_logging(config):
"""configure the logging subsystem via the 'logging' key in the TOML config"""
try:
logging.config.dictConfig(config["logging"])
except (ValueError, TypeError, AttributeError, ImportError) as err:
click.echo(
f"Error configuring logging: {err}\n"
"Please check your configuration file and the LOGLEVEL environment variable"
)
raise click.Abort()
logger.debug(
"Initialized logging system with the following config: %r", config["logging"]
)
def make_w3(config, chain: ChainRole):
chaincfg = config[chain.configuration_key]
return Web3(
HTTPProvider(
chaincfg["rpc_url"], request_kwargs={"timeout": chaincfg["rpc_timeout"]}
)
)
def make_w3_home(config):
return make_w3(config, ChainRole.home)
def make_w3_foreign(config):
return make_w3(config, ChainRole.foreign)
def get_max_pending_transactions(config):
return min(
(config["home_chain"]["max_reorg_depth"] + 1)
* config["home_chain"]["max_pending_transactions_per_block"],
512,
)
def make_validator_address(config):
private_key_bytes = get_validator_private_key(config)
return PrivateKey(private_key_bytes).public_key.to_canonical_address()
def sanity_check_home_bridge_contracts(home_bridge_contract):
validate_contract_existence(home_bridge_contract)
validator_proxy_contract = get_validator_proxy_contract(home_bridge_contract)
try:
validate_contract_existence(validator_proxy_contract)
except ValueError as error:
raise SetupError(
"Serious bridge setup error. The validator proxy contract at the address the home "
"bridge property points to does not exist or is not intact!"
) from error
balance = home_bridge_contract.web3.eth.getBalance(home_bridge_contract.address)
if balance == 0:
raise SetupError("Serious bridge setup error. The bridge has no funds.")
def make_transfer_event_fetcher(config, transfer_event_queue):
w3_foreign = make_w3_foreign(config)
token_contract = w3_foreign.eth.contract(
address=config["foreign_chain"]["token_contract_address"],
abi=MINIMAL_ERC20_TOKEN_ABI,
)
return EventFetcher(
web3=w3_foreign,
contract=token_contract,
filter_definition={
TRANSFER_EVENT_NAME: {
"to": config["foreign_chain"]["bridge_contract_address"]
}
},
event_queue=transfer_event_queue,
max_reorg_depth=config["foreign_chain"]["max_reorg_depth"],
start_block_number=config["foreign_chain"]["event_fetch_start_block_number"],
chain_role=ChainRole.foreign,
)
def make_home_bridge_event_fetcher(config, home_bridge_event_queue):
w3_home = make_w3_home(config)
home_bridge_contract = w3_home.eth.contract(
address=config["home_chain"]["bridge_contract_address"], abi=HOME_BRIDGE_ABI
)
validator_address = make_validator_address(config)
return EventFetcher(
web3=w3_home,
contract=home_bridge_contract,
filter_definition={
CONFIRMATION_EVENT_NAME: {"validator": validator_address},
COMPLETION_EVENT_NAME: {},
},
event_queue=home_bridge_event_queue,
max_reorg_depth=config["home_chain"]["max_reorg_depth"],
start_block_number=config["home_chain"]["event_fetch_start_block_number"],
chain_role=ChainRole.home,
)
def make_recorder(config):
minimum_balance = config["home_chain"]["minimum_validator_balance"]
return TransferRecorder(minimum_balance)
def make_confirmation_task_planner(
config,
recorder,
control_queue,
transfer_event_queue,
home_bridge_event_queue,
confirmation_task_queue,
):
return ConfirmationTaskPlanner(
sync_persistence_time=HOME_CHAIN_STEP_DURATION,
recorder=recorder,
control_queue=control_queue,
transfer_event_queue=transfer_event_queue,
home_bridge_event_queue=home_bridge_event_queue,
confirmation_task_queue=confirmation_task_queue,
)
def make_confirmation_sender(
*, config, pending_transaction_queue, confirmation_task_queue
):
w3_home = make_w3_home(config)
home_bridge_contract = w3_home.eth.contract(
address=config["home_chain"]["bridge_contract_address"], abi=HOME_BRIDGE_ABI
)
sanity_check_home_bridge_contracts(home_bridge_contract)
return ConfirmationSender(
transfer_event_queue=confirmation_task_queue,
home_bridge_contract=home_bridge_contract,
private_key=get_validator_private_key(config),
gas_price=config["home_chain"]["gas_price"],
max_reorg_depth=config["home_chain"]["max_reorg_depth"],
pending_transaction_queue=pending_transaction_queue,
sanity_check_transfer=make_sanity_check_transfer(
foreign_bridge_contract_address=to_checksum_address(
config["foreign_chain"]["bridge_contract_address"]
)
),
)
def make_confirmation_watcher(*, config, pending_transaction_queue):
w3_home = make_w3_home(config)
max_reorg_depth = config["home_chain"]["max_reorg_depth"]
return ConfirmationWatcher(
w3=w3_home,
pending_transaction_queue=pending_transaction_queue,
max_reorg_depth=max_reorg_depth,
)
def make_validator_status_watcher(config, control_queue):
w3_home = make_w3_home(config)
home_bridge_contract = w3_home.eth.contract(
address=config["home_chain"]["bridge_contract_address"], abi=HOME_BRIDGE_ABI
)
sanity_check_home_bridge_contracts(home_bridge_contract)
validator_proxy_contract = get_validator_proxy_contract(home_bridge_contract)
validator_address = make_validator_address(config)
return ValidatorStatusWatcher(
validator_proxy_contract,
validator_address,
poll_interval=HOME_CHAIN_STEP_DURATION,
control_queue=control_queue,
stop_validating_callback=shutdown,
)
def make_validator_balance_watcher(config, control_queue):
w3 = make_w3_home(config)
validator_address = make_validator_address(config)
poll_interval = config["home_chain"]["balance_warn_poll_interval"]
return ValidatorBalanceWatcher(
w3=w3,
validator_address=validator_address,
poll_interval=poll_interval,
control_queue=control_queue,
)
public_config_keys = ()
def make_webservice(*, config, recorder):
d = config["webservice"]
if d and d["enabled"]:
ws = Webservice(host=d["host"], port=d["port"])
else:
return None
def encode_address(v):
if isinstance(v, bytes):
return to_checksum_address(v)
else:
return v
public_config = {k: encode_address(config[k]) for k in public_config_keys}
ws.enable_internal_state(InternalState(recorder=recorder, config=public_config))
return ws
def make_main_services(config, recorder):
control_queue = Queue()
transfer_event_queue = Queue()
home_bridge_event_queue = Queue()
confirmation_task_queue = Queue()
transfer_event_fetcher = make_transfer_event_fetcher(config, transfer_event_queue)
home_bridge_event_fetcher = make_home_bridge_event_fetcher(
config, home_bridge_event_queue
)
confirmation_task_planner = make_confirmation_task_planner(
config,
recorder=recorder,
control_queue=control_queue,
transfer_event_queue=transfer_event_queue,
home_bridge_event_queue=home_bridge_event_queue,
confirmation_task_queue=confirmation_task_queue,
)
validator_status_watcher = make_validator_status_watcher(config, control_queue)
max_pending_transactions = get_max_pending_transactions(config)
logger.info("maximum number of pending transactions: %s", max_pending_transactions)
pending_transaction_queue = Queue(max_pending_transactions)
sender = make_confirmation_sender(
config=config,
pending_transaction_queue=pending_transaction_queue,
confirmation_task_queue=confirmation_task_queue,
)
watcher = make_confirmation_watcher(
config=config, pending_transaction_queue=pending_transaction_queue
)
validator_balance_watcher = make_validator_balance_watcher(config, control_queue)
return (
[
Service(
"fetch-foreign-bridge-events",
transfer_event_fetcher.fetch_events,
config["foreign_chain"]["event_poll_interval"],
),
Service(
"fetch-home-bridge-events",
home_bridge_event_fetcher.fetch_events,
config["home_chain"]["event_poll_interval"],
),
Service("validator-status-watcher", validator_status_watcher.run),
Service("validator_balance_watcher", validator_balance_watcher.run),
Service("log-internal-state", log_internal_state, recorder),
]
+ sender.services
+ watcher.services
+ confirmation_task_planner.services
)
def reload_logging_config(config_path):
logger.info(f"Trying to reload the logging configuration from {config_path}")
try:
config = load_config(config_path)
configure_logging(config)
logger.info("Logging has been reconfigured")
except Exception as err:
# this function is being called as signal handler. make sure
# we don't die as this would raise the error in the main
# greenlet.
logger.critical(
f"Error while trying to reload the logging configuration from {config_path}: {err}"
)
def install_signal_handler(signum, name, f, *args, **kwargs):
def handler():
gevent.getcurrent().name = name
logger.info(f"Received {signal.Signals(signum).name} signal.")
f(*args, **kwargs)
gevent.signal_handler(signum, handler)
def log_internal_state(recorder):
while True:
gevent.sleep(60.0)
recorder.log_current_state()
main_pool = gevent.pool.Pool()
def shutdown_raw(timeout=APPLICATION_CLEANUP_TIMEOUT, exitcode=0):
"""gracefully shut down the application"""
logger.info("Stopping with exitcode %s", exitcode)
timeout = gevent.Timeout(timeout)
timeout.start()
try:
main_pool.kill()
main_pool.join()
except gevent.Timeout as handled_timeout:
if handled_timeout is not timeout:
logger.error("Catched wrong timeout exception, exciting anyway")
else:
logger.error("Bridge didn't clean up in time, doing a hard exit")
sys.stderr.flush()
sys.stdout.flush()
os._exit(os.EX_SOFTWARE)
os._exit(exitcode)
def shutdown(timeout=APPLICATION_CLEANUP_TIMEOUT, exitcode=0):
"""call shutdown_raw in a new greenlet. we need to call that one,
if the calling greenlet is running inside the main_pool"""
gevent.spawn(shutdown_raw, timeout=timeout, exitcode=exitcode)
def handle_greenlet_exception(gr):
logger.exception(
f"Application Error: {gr.name} unexpectedly died. Shutting down.",
exc_info=gr.exception,
)
shutdown_raw(exitcode=os.EX_SOFTWARE)
def start_services_in_main_pool(services):
return start_services(
services,
start=main_pool.start,
link_exception_callback=handle_greenlet_exception,
)
def wait_for_node_fully_synced(config, chain):
w3 = make_w3(config, chain)
start_block = config[chain.configuration_key]["event_fetch_start_block_number"]
def is_synced(node_status):
syncmsg = "still syncing" if node_status.is_syncing else "fully synced"
start_block_reached = node_status.latest_synced_block >= start_block
start_block_msg = "reached" if start_block_reached else "not reached"
logger.info(
f"{chain.name} node {syncmsg}, start block {start_block} {start_block_msg}: {node_status}"
)
return not node_status.is_syncing and start_block_reached
bridge.node_status.wait_for_node_status(w3, is_synced)
logger.info(f"{chain.name} node is fully synced")
def wait_until_home_node_is_ready(config):
wait_for_node_fully_synced(config, ChainRole.home)
w3_home = make_w3_home(config)
home_bridge_contract = w3_home.eth.contract(
address=config["home_chain"]["bridge_contract_address"], abi=HOME_BRIDGE_ABI
)
sanity_check_home_bridge_contracts(home_bridge_contract)
logger.info("home node has passed the sanity checks")
def wait_until_foreign_node_is_ready(config):
wait_for_node_fully_synced(config, ChainRole.foreign)
w3_foreign = make_w3_foreign(config)
token_contract = w3_foreign.eth.contract(
address=config["foreign_chain"]["token_contract_address"],
abi=MINIMAL_ERC20_TOKEN_ABI,
)
validate_contract_existence(token_contract)
logger.info("foreign node has passed the sanity checks")
def start_system(config):
recorder = make_recorder(config)
install_signal_handler(
signal.SIGUSR1, "report-internal-state", recorder.log_current_state
)
webservice = make_webservice(config=config, recorder=recorder)
if webservice is not None:
start_services_in_main_pool(webservice.services)
wait_node_ready_services = [
Service("home_wait_ready", wait_until_home_node_is_ready, config),
Service("foreign_wait_ready", wait_until_foreign_node_is_ready, config),
]
gevent.joinall(
start_services_in_main_pool(wait_node_ready_services), raise_error=True
)
main_services = make_main_services(config, recorder)
start_services_in_main_pool(main_services)
@click.command()
@click.version_option(version=bridge.version.version)
@click.option(
"-c",
"--config",
"config_path",
type=click.Path(exists=True),
required=True,
envvar="BRIDGE_CONFIG",
help="Path to a config file",
)
@click.pass_context
def main(ctx, config_path: str) -> None:
"""The Trustlines Bridge Validation Server
Configuration can be made using a TOML file.
See config.py for valid configuration options and defaults.
"""
try:
logger.info(f"Loading configuration file from {config_path}")
config = load_config(config_path)
except TomlDecodeError as decode_error:
raise click.UsageError(f"Invalid config file: {decode_error}") from decode_error
except ValidationError as validation_error:
raise click.UsageError(
f"Invalid config file: {validation_error}"
) from validation_error
configure_logging(config)
validator_address = make_validator_address(config)
logger.info(
f"Starting Trustlines Bridge Validation Server for address {to_checksum_address(validator_address)}"
)
install_signal_handler(
signal.SIGHUP, "reload-logging-config", reload_logging_config, config_path
)
for signum in [signal.SIGINT, signal.SIGTERM]:
install_signal_handler(signum, "terminator", shutdown_raw, exitcode=0)
try:
start_services_in_main_pool([Service("start_system", start_system, config)])
except Exception as exception:
logger.exception("Application error", exc_info=exception)
os._exit(os.EX_SOFTWARE)
finally:
gevent.hub.get_hub().join()
|
python
|
# -*- coding: utf-8 -*-
"""
Test cases related to direct loading of external libxml2 documents
"""
from __future__ import absolute_import
import sys
import unittest
from .common_imports import HelperTestCase, etree
DOC_NAME = b"libxml2:xmlDoc"
DESTRUCTOR_NAME = b"destructor:xmlFreeDoc"
class ExternalDocumentTestCase(HelperTestCase):
def setUp(self):
try:
import ctypes
from ctypes import pythonapi
from ctypes.util import find_library
except ImportError:
raise unittest.SkipTest("ctypes support missing")
def wrap(func, restype, *argtypes):
func.restype = restype
func.argtypes = list(argtypes)
return func
self.get_capsule_name = wrap(
pythonapi.PyCapsule_GetName, ctypes.c_char_p, ctypes.py_object
)
self.capsule_is_valid = wrap(
pythonapi.PyCapsule_IsValid,
ctypes.c_int,
ctypes.py_object,
ctypes.c_char_p,
)
self.new_capsule = wrap(
pythonapi.PyCapsule_New,
ctypes.py_object,
ctypes.c_void_p,
ctypes.c_char_p,
ctypes.c_void_p,
)
self.set_capsule_name = wrap(
pythonapi.PyCapsule_SetName,
ctypes.c_int,
ctypes.py_object,
ctypes.c_char_p,
)
self.set_capsule_context = wrap(
pythonapi.PyCapsule_SetContext,
ctypes.c_int,
ctypes.py_object,
ctypes.c_char_p,
)
self.get_capsule_context = wrap(
pythonapi.PyCapsule_GetContext, ctypes.c_char_p, ctypes.py_object
)
self.get_capsule_pointer = wrap(
pythonapi.PyCapsule_GetPointer,
ctypes.c_void_p,
ctypes.py_object,
ctypes.c_char_p,
)
self.set_capsule_pointer = wrap(
pythonapi.PyCapsule_SetPointer,
ctypes.c_int,
ctypes.py_object,
ctypes.c_void_p,
)
self.set_capsule_destructor = wrap(
pythonapi.PyCapsule_SetDestructor,
ctypes.c_int,
ctypes.py_object,
ctypes.c_void_p,
)
self.PyCapsule_Destructor = ctypes.CFUNCTYPE(None, ctypes.py_object)
libxml2 = ctypes.CDLL(find_library("xml2"))
self.create_doc = wrap(
libxml2.xmlReadMemory,
ctypes.c_void_p,
ctypes.c_char_p,
ctypes.c_int,
ctypes.c_char_p,
ctypes.c_char_p,
ctypes.c_int,
)
self.free_doc = wrap(libxml2.xmlFreeDoc, None, ctypes.c_void_p)
def as_capsule(self, text, capsule_name=DOC_NAME):
if not isinstance(text, bytes):
text = text.encode("utf-8")
doc = self.create_doc(text, len(text), b"base.xml", b"utf-8", 0)
ans = self.new_capsule(doc, capsule_name, None)
self.set_capsule_context(ans, DESTRUCTOR_NAME)
return ans
def test_external_document_adoption(self):
xml = '<r a="1">t</r>'
self.assertRaises(TypeError, etree.adopt_external_document, None)
capsule = self.as_capsule(xml)
self.assertTrue(self.capsule_is_valid(capsule, DOC_NAME))
self.assertEqual(DOC_NAME, self.get_capsule_name(capsule))
# Create an lxml tree from the capsule (this is a move not a copy)
root = etree.adopt_external_document(capsule).getroot()
self.assertIsNone(self.get_capsule_name(capsule))
self.assertEqual(root.text, "t")
root.text = "new text"
# Now reset the capsule so we can copy it
self.assertEqual(0, self.set_capsule_name(capsule, DOC_NAME))
self.assertEqual(0, self.set_capsule_context(capsule, b"invalid"))
# Create an lxml tree from the capsule (this is a copy not a move)
root2 = etree.adopt_external_document(capsule).getroot()
self.assertEqual(self.get_capsule_context(capsule), b"invalid")
# Check that the modification to the tree using the transferred
# document was successful
self.assertEqual(root.text, root2.text)
# Check that further modifications do not show up in the copy (they are
# disjoint)
root.text = "other text"
self.assertNotEqual(root.text, root2.text)
# delete root and ensure root2 survives
del root
self.assertEqual(root2.text, "new text")
def test_suite():
suite = unittest.TestSuite()
if sys.platform != "win32":
suite.addTests([unittest.makeSuite(ExternalDocumentTestCase)])
return suite
if __name__ == "__main__":
print("to test use test.py %s" % __file__)
|
python
|
import math
from tkinter import Tk, Canvas, W, E, NW
from tkinter.filedialog import askopenfilename
from tkinter import messagebox
from scipy.interpolate import interp1d
import time
import numpy as np
# Definición recursiva, requiere numpy
# def B(t,P):
# if len(P)==1:
# return np.array(P[0])
# else:
# return (1-t)*B(t,P[:-1])+t*B(t,P[1:])
def getCubic(L, disp):
K = np.array([[3*L**2, 2*L], [L**3, L**2]])
F = np.array([[np.arctan2(disp, L)], [disp]])
return np.linalg.solve(K, F)[:, 0]
def graficarBola():
my_canvas.delete("all")
graphAcel()
ponerTextos()
global width, height, mult, u, L, m, k, multu
up = u*mult*multu
Lp = L*mult
xi, yi = Lp, 0
centrox, centroy = width/2, height-100
r = m*2
my_canvas.create_line(centrox, centroy, centrox,
centroy-Lp+r, fill='gray', width=1, dash=[3, 3])
my_canvas.create_oval(yi-r+centrox, centroy-(xi-r), yi +
r+centrox, centroy-(xi+r), fill="")
theta = np.arctan2(up, Lp)
Lp = Lp*np.cos(theta)
up = up*np.cos(theta)
a, b = getCubic(Lp, up)
x, y = 0, 0
for i in range(51):
equis = Lp/50*i
xi, yi = equis, a*equis**3+b*equis**2
my_canvas.create_line(y+centrox, centroy-x, yi+centrox,
centroy-xi, fill='red', width=max(1, int(k/100)))
x, y = xi, yi
my_canvas.create_oval(y-r+centrox, centroy-(x-r), y +
r+centrox, centroy-(x+r), fill="blue")
def editPoint(event):
global editando
editando = not editando
if not editando:
drawBezier()
def drawBezier():
global editando, u, v, L, z, f, m, k, dt, t, height, width, T, U, V
U = []
T = []
c = 2*z*m*np.sqrt(k/m)
while not editando:
a = -m*f(t)*9.81
k1u = v
k1v = -1/m*(c*v+k*u+a)
ui0 = u + k1u*dt*0.5
vi0 = v + k1v*dt*0.5
k2u = vi0
k2v = -1/m*(c*vi0+k*ui0+a)
ui1 = u + k2u*dt*0.5
vi1 = v + k2v*dt*0.5
k3u = vi1
k3v = -1/m*(c*vi1+k*ui1+a)
ui2 = u + k3u*dt
vi2 = v + k3v*dt
k4u = vi2
k4v = -1/m*(c*vi2+k*ui2+a)
phiu = (k1u+2*k2u+2*k3u+k4u)/6
phiv = (k1v+2*k2v+2*k3v+k4v)/6
u = u + phiu*dt
v = v + phiv*dt
t += dt
U += [u]
V += [v]
T += [t]
x0 = 100
y0 = height-90
b = 300
h = 100
# time.sleep(dt/10)
graficarBola()
createGraph(width-b-x0, y0-130, b, h, T, U, title='u [m]', alert=True)
createGraph(width-b-x0, y0-2*130, b, h, T,
V, title='v [m/s]', alert=True)
my_canvas.update()
def movePoint(event):
global editando, u, L, width, height
centrox, centroy = width/2, height-100
if editando:
my_canvas.delete("all")
x = centrox-event.x
y = centroy-event.y
P[0] = x
P[1] = y
u, L = -x/mult/multu, y/mult
graficarBola()
def ponerTextos():
global z, k, m, dt, height, multu, strt
my_canvas.create_text(100, height-90, fill="black",
font='20', text=f"omega={format(np.sqrt(k/m),'.2f')}", anchor=W)
my_canvas.create_text(200, height-90, fill="black",
font='20', text=f"T={format(2*np.pi/np.sqrt(k/m),'.2f')}", anchor=W)
my_canvas.create_text(100, height-110, fill="black",
font='20', text=f"multu={format(multu,'.2f')}", anchor=W)
my_canvas.create_text(100, height-130, fill="black",
font='20', text=f"z={format(z,'.2f')}", anchor=W)
my_canvas.create_text(100, height-150, fill="black",
font='20', text=f"k={format(k,'.2f')}", anchor=W)
my_canvas.create_text(100, height-170, fill="black",
font='20', text=f"m={format(m,'.2f')}", anchor=W)
my_canvas.create_text(100, height-190, fill="black",
font='20', text=f"dt={format(dt,'.2f')}", anchor=W)
my_canvas.create_text(100, 50, fill="black",
font='20', text=strt, anchor=NW)
def createGraph(x0, y0, b, h, X, Y, maxs=None, color='red', title='', alert=False):
XC = []
YC = []
np = 70
if alert:
if len(X) > np+1:
for i in range(0, len(X), int(len(X)/np)):
XC += [X[i]]
YC += [Y[i]]
XC += [X[-1]]
YC += [Y[-1]]
else:
XC = X
YC = Y
else:
XC = X
YC = Y
X = XC
Y = YC
xf = x0+b
yf = y0-h
ym = y0-h/2
xmax = max(X)
xmin = min(X)
if maxs:
ymax, ymin = maxs
else:
ymax = max(Y)
ymin = min(Y)
ymax = max(abs(ymax), abs(ymin))
if ymax == 0:
ymax = 1
dx = xmax-xmin
if dx == 0:
dx = 1
def z(x): return (x)/ymax
X = [(i-xmin)/dx*b for i in X]
Y = [z(i) for i in Y]
my_canvas.create_line(x0, y0, x0, yf, fill='gray', width=1)
my_canvas.create_line(x0, ym, xf, ym, fill='gray', width=1)
my_canvas.create_text(x0-20, yf-20, fill="black",
font='20', text=f"{format(t,'.2f')}", anchor=W)
my_canvas.create_text(x0-5, ym, fill="black",
font='20', text=title, anchor=E)
for i in range(len(X)-1):
my_canvas.create_line(x0+X[i], ym-Y[i]*h/2, x0 +
X[i+1], ym-Y[i+1]*h/2, fill=color, width=2)
def graphAcel():
global f, dt, height, t, data, width
n = 20
x0 = 100
y0 = height-90
b = 300
h = 100
dx = b/n
maxs = None
X = []
Y = []
for i in range(n+1):
X += [i*dx]
Y += [f(t+i*dt)]
try:
eq = data[:, 0]
ey = data[:, 1]
if t < np.max(eq):
maxs = [np.max(ey), np.min(ey)]
except:
pass
createGraph(width-b-x0, y0, b, h, X, Y, maxs, color='blue', title='a [g]')
def importarArchivo():
global ARCHIVO
ARCHIVO = askopenfilename()
parseArchivo()
def parseArchivo():
global f, u, v, editando, data
data = np.loadtxt(ARCHIVO, skiprows=1, delimiter=',')
f = interp1d(data[:, 0], data[:, 1], kind='linear',
fill_value=(0, 0), bounds_error=False)
u = 0
v = 0
graficarBola()
drawBezier()
def kpup(e):
global editando, actual, f, u, v, t, U, T
if e.char.lower() == 'a':
u, v, t = 0, 0, 0
def f(x): return 0
importarArchivo()
if e.char.lower() == 'r':
u, v, t = 0, 0, 0
def f(x): return 0
U, T = [], []
if e.char.lower() == 't':
u, v, t = 0, 0, 0
U, T = [], []
else:
actual = e.char.lower()
def wheel(event):
global z, k, m, dt, height, actual, multu, editando
editando = True
delta = event.delta
if actual == 'z':
z += 0.05*np.sign(delta)
z = max(z, 0)
elif actual == 'k':
k += 10*np.sign(delta)
k = max(k, 0)
elif actual == 'm':
m += np.sign(delta)
m = max(m, 0)
elif actual == 'd':
dt += 0.01*np.sign(delta)
dt = max(dt, 0)
elif actual == 'u':
multu += 5*np.sign(delta)
multu = max(multu, 1)
graficarBola()
editando = False
drawBezier()
my_window = Tk()
ARCHIVO = ''
def f(t): return 0
actual = 'z'
mult = 500
t = 0
u = 0
v = 0
acel = 0
L = 1
z = 0.05
m = 20
k = 1500
dt = 0.01
multu = 100
data = None
U = []
V = []
T = []
ACEL = []
P = [u*mult/multu, L*mult]
strt = "Controles:\nClick: Mover la masa\nA: Seleccionar archivo de aceleración\n\nPara cambiar las propiedades, use una de las siguientes letras\ny cambielas usando la rueda del mouse:\n\nK: Rigidez\nM: Masa\nZ: Amortiguamiento\nd: Paso en el tiempo\nu: Multiplicador de desplazamientos (solo para graficar)\n\nR: Reiniciar todo\nT: Reiniciar tiempo"
width = my_window.winfo_screenwidth()
height = my_window.winfo_screenheight()
my_canvas = Canvas(my_window, width=width, height=height,
background='white')
my_canvas.grid(row=0, column=0)
my_canvas.bind('<Button-1>', editPoint)
my_canvas.bind('<Motion>', movePoint)
my_canvas.bind('<MouseWheel>', wheel)
my_window.bind('<KeyRelease>', kpup)
editando = False
my_window.title('Amortiguada')
my_window.state('zoomed')
drawBezier()
my_window.mainloop()
|
python
|
from gensim.models.keyedvectors import KeyedVectors
import numpy as np
import pandas as pd
__author__ = "Sreejith Sreekumar"
__email__ = "[email protected]"
__version__ = "0.0.1"
model = KeyedVectors.load_word2vec_format('/media/sree/venus/pre-trained-models/GoogleNews-vectors-negative300.bin', binary=True)
def tovector(words):
vector_array = []
for w in words:
try:
vector_array.append(model[w])
except:
continue
vector_array = np.array(vector_array)
v = vector_array.sum(axis=0)
return v / np.sqrt((v ** 2).sum())
def get_vectorizer_model():
"""
"""
return model
|
python
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Filename: results_to_latex.py
import os, argparse, json, math
import logging
TEMPLATE_CE_RESULTS = r"""\begin{table}[tb]
\scriptsize
\centering
\caption{Chaos Engineering Experiment Results on %s}\label{tab:ce-experiment-results-%s}
\begin{tabularx}{\columnwidth}{lrrrXXXX}
\toprule
\textbf{System Call}& \textbf{Error Code}& \textbf{E. R.}& \textbf{Inj.}& \textbf{H\textsubscript{C}}& \textbf{H\textsubscript{L}}& \textbf{H\textsubscript{P}}& \textbf{H\textsubscript{R}} \\
\midrule
""" + "%s" + r"""
\bottomrule
\multicolumn{8}{p{8.5cm}}{
H\textsubscript{C}: Marked if the injected errors crash the client.\newline
H\textsubscript{L}: Marked if the injected errors can be found in the client's log.\newline
H\textsubscript{P}: Marked if the injected errors have side effects on the number of connected peers.\newline
H\textsubscript{R}: Marked if the client can recover to its steady state after the error injection stops.}
\end{tabularx}
\end{table}
"""
def get_args():
parser = argparse.ArgumentParser(
description="Chaos engineering experiments .json to a table in latex")
parser.add_argument("-f", "--file", required=True, help="the experiment result file (.json)")
parser.add_argument("-t", "--template", default="ce", choices=['ce', 'benchmark'], help="the template to be used")
parser.add_argument("-c", "--client", default="XXX", choices=['geth', 'openethereum'], help="the client's name")
args = parser.parse_args()
return args
def round_number(x, sig = 3):
return round(x, sig - int(math.floor(math.log10(abs(x)))) - 1)
def main(args):
with open(args.file, 'rt') as file:
data = json.load(file)
body = ""
for experiment in data["experiments"]:
if experiment["result"]["injection_count"] == 0: continue
body += "%s& %s& %s& %d& %s& %s& %s& %s\\\\\n"%(
experiment["syscall_name"],
experiment["error_code"][1:], # remove the "-" before the error code
round_number(experiment["failure_rate"]),
experiment["result"]["injection_count"],
"X" if experiment["result"]["client_crashed"] else "",
"?",
"?",
"?"
)
body = body[:-1] # remove the very last line break
latex = TEMPLATE_CE_RESULTS%(args.client, args.client, body)
latex = latex.replace("_", "\\_")
print(latex)
if __name__ == "__main__":
logger_format = '%(asctime)-15s %(levelname)-8s %(message)s'
logging.basicConfig(level=logging.INFO, format=logger_format)
args = get_args()
main(args)
|
python
|
import yfinance as yf
import pandas as pd
import numpy as np
import quandl
API_KEY = '8ohVvwCgmzgRpFeza8FD'
quandl.ApiConfig.api_key = API_KEY
# Download APPL Stock price
df = yf.download('AAPL', start='1999-12-31', end='2010-12-31', progress=False)
df.rename(columns = {'Adj Close': 'adj_close'},inplace=True)
df = df.loc[:,['adj_close']]
#
'''
Calculate the simple return:
Percent Change/Simple Return = (CurrentValue-PrevValue)/CurrentValue
'''
df['simple_rtn'] = df.adj_close.pct_change()
'''
Calculate the log return:
Log Return = ln(CurrentValue/PrevValue)
'''
df['log_rtn'] = np.log(df.adj_close/df.adj_close.shift(1))
# print(df.head(5))
# Download Consumer Price Index from Quandl
df_cpi = quandl.get(dataset='RATEINF/CPI_USA', start_date='1999-12-31', end_date='2010-12-31')
df_cpi.rename(columns= {'Value' : 'cpi'}, inplace=True)
df_dates = pd.DataFrame(index=pd.date_range(start='1999-12-31', end='2010-12-31'))
print(df_dates.asfreq('M').head(20))
# print('Reached here successfully')
|
python
|
#!/usr/bin/env python
#############################################################################
##
## This file is part of Taurus, a Tango User Interface Library
##
## http://www.tango-controls.org/static/taurus/latest/doc/html/index.html
##
## Copyright 2011 CELLS / ALBA Synchrotron, Bellaterra, Spain
##
## Taurus is free software: you can redistribute it and/or modify
## it under the terms of the GNU Lesser General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Taurus is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU Lesser General Public License for more details.
##
## You should have received a copy of the GNU Lesser General Public License
## along with Taurus. If not, see <http://www.gnu.org/licenses/>.
##
#############################################################################
__doc__ = """ABBA, Archiving Best Browser for Alba"""
import re,sys,os,time,traceback,threading
import PyTango
import fandango as fn
from fandango.log import tracer
#############################################################################
import taurus
QT_API=os.getenv('QT_API')
USE_PYQTGRAPH=os.getenv('USE_PYQTGRAPH')
USE_QWT=str(QT_API).lower() in ('pyqt','pyqt4') and not USE_PYQTGRAPH
if USE_QWT:
print('Loading taurus pyqwt')
try:
from fandango.qt import Qwt5
from taurus.qt.qtgui.qwt5 import TaurusTrend,TaurusPlot
except:
USE_QWT=False
if not USE_QWT:
print('Loading taurus pyqtgraph')
#from taurus.qt.qtgui.plot import TaurusTrend,TaurusPlot
from taurus.qt.qtgui.tpg import TaurusTrend,TaurusPlot
print('QT_API: %s' % QT_API)
print('USE_PYQTGRAPH: %s' % USE_PYQTGRAPH)
print('TaurusTrend: %s' % TaurusTrend)
print('TaurusPlot: %s' % TaurusPlot)
from taurus.qt.qtgui.panel import TaurusDevicePanel
from taurus.qt.qtgui.panel import TaurusValue
from taurus.qt.qtcore.util.emitter import SingletonWorker
try:
# taurus 4
from taurus.core.tango.util import tangoFormatter
from taurus.qt.qtgui.display import TaurusLabel
TaurusLabel.FORMAT=tangoFormatter
except:
try:
# Tau / Taurus < 3.4
from taurus.qt.qtgui.display import TaurusValueLabel as TaurusLabel
except:
# Taurus > 3.4
from taurus.qt.qtgui.display import TaurusLabel
#############################################################################
from fandango.qt import Qt,getColorsForValue
from fandango.qt import QGridTable, QDictToolBar
try:
from PyTangoArchiving.widget.tree import TaurusModelChooser
except:
traceback.print_exc()
TaurusModelChooser = None
#############################################################################
def get_distinct_domains(l):
return sorted(set(str(s).upper().split('/')[0] for s in l))
def launch(script,args=[]):
import os
f = '%s %s &'%(script,' '.join(args))
print 'launch(%s)'%f
os.system(f)
###############################################################################
class MyScrollArea(Qt.QScrollArea):
def setChildrenPanel(self,child):
self._childrenPanel = child
def childrenPanel(self):
return getattr(self,'_childrenPanel',None)
def resizeEvent(self,event):
Qt.QScrollArea.resizeEvent(self,event)
if self.childrenPanel():
w,h = self.width()-15,self.childrenPanel().height()
#print 'AttributesPanel.ScrollArea.resize(%s,%s)'%(w,h)
self.childrenPanel().resize(w,h)
PARENT_KLASS = QGridTable #Qt.QFrame #Qt.QWidget
class AttributesPanel(PARENT_KLASS):
_domains = ['ALL EPS']+['LI','LT']+['LT%02d'%i for i in range(1,3)]+['SR%02d'%i for i in range(1,17)]
_fes = [f for f in get_distinct_domains(fn.get_database().get_device_exported('fe*')) if fn.matchCl('fe[0-9]',f)]
LABELS = 'Label/Value Device Attribute Alias Archiving Check'.split()
SIZES = [500, 150, 90, 90, 120, 40]
STRETCH = [8, 4, 4, 4, 2, 1]
def __init__(self,parent=None,devices=None):
#print '~'*80
tracer('In AttributesPanel()')
PARENT_KLASS.__init__(self,parent)
self.setSizePolicy(Qt.QSizePolicy(Qt.QSizePolicy.Ignored,Qt.QSizePolicy.Ignored))
self.worker = SingletonWorker(parent=self,cursor=True,sleep=50.,start=True)
#self.worker.log.setLogLevel(self.worker.log.Debug)
self.filters=('','','') #server/device/attribute
self.devices=devices or []
self.setValues(None)
self.models = []
self.current_item = None
#self.connect(self, Qt.SIGNAL('customContextMenuRequested(const QPoint&)'), self.onContextMenu)
self.popMenu = Qt.QMenu(self)
self.actions = {
'TestDevice': self.popMenu.addAction(Qt.QIcon(),
"Test Device",self.onTestDevice),
'ShowDeviceInfo': self.popMenu.addAction(Qt.QIcon(),
"Show Device Info",self.onShowInfo),
#'ShowDevicePanel': self.popMenu.addAction(Qt.QIcon(),"Show Info",self.onShowPanel),
'ShowArchivingInfo': self.popMenu.addAction(Qt.QIcon(),
"Show Archiving Info",self.onShowArchivingModes),
'AddToTrend': self.popMenu.addAction(Qt.QIcon(),
"Add attribute to Trend", self.addAttributeToTrend),
'AddSelected': self.popMenu.addAction(Qt.QIcon(),
"Add selected attributes to Trend", self.addSelectedToTrend),
'CheckAll': self.popMenu.addAction(Qt.QIcon(),
"Select all attributes", self.checkAll),
'UncheckAll': self.popMenu.addAction(Qt.QIcon(),
"Deselect all attributes", self.uncheckAll),
#'Test Device': self.popMenu.addAction(Qt.QIcon(),"Test Device",self.onTestDevice)
}
#if hasattr(self,'setFrameStyle'):
#self.setFrameStyle(self.Box)
try:
import PyTangoArchiving
self.reader = PyTangoArchiving.Reader('*')
except:
traceback.print_exc()
def __del__(self):
print 'AttributesPanel.__del__'
QGridTable.__del__(self)
def setItem(self,x,y,item,spanx=1,spany=1,align=None,model=None):
align = align or Qt.Qt.AlignLeft
try:
if model:
item._model = model
except: pass
self.layout().addWidget(item,x,y,spany,spanx,Qt.Qt.AlignCenter)
if item not in self._widgets: self._widgets.append(item)
def mousePressEvent(self, event):
point = event.pos()
widget = Qt.QApplication.instance().widgetAt(self.mapToGlobal(point))
if hasattr(widget,'_model'):
print('onMouseEvent(%s)'%(getattr(widget,'text',lambda:widget)()))
self.current_item = widget
if event.button()==Qt.Qt.RightButton:
self.onContextMenu(point)
getattr(super(type(self),self),'mousePressEvent',lambda e:None)(event)
def onContextMenu(self, point):
print('onContextMenu()')
try:
self.actions['TestDevice'].setEnabled('/' in self.current_item._model)
self.actions['ShowDeviceInfo'].setEnabled('/' in self.current_item._model)
self.actions['ShowArchivingInfo'].setEnabled('/' in self.current_item._model)
self.actions['AddToTrend'].setEnabled(hasattr(self,'trend'))
self.actions['AddSelected'].setEnabled(hasattr(self,'trend'))
self.popMenu.exec_(self.mapToGlobal(point))
except:
traceback.print_exc()
def getCurrentModel(self):
return '/'.join(str(self.current_item._model).split('/')[-4:])
def getCurrentDevice(self):
return str(self.current_item._model.rsplit('/',1)[0])
def onTestDevice(self,device=None):
from PyTangoArchiving.widget.panel import showTestDevice
showTestDevice(device or self.getCurrentDevice())
def onShowInfo(self,device=None):
from PyTangoArchiving.widget.panel import showDeviceInfo
showDeviceInfo(device=device or self.getCurrentDevice(),parent=self)
def onShowArchivingModes(self,model=None):
try:
from PyTangoArchiving.widget.panel import showArchivingModes
model = model or self.getCurrentModel()
showArchivingModes(model,parent=self)
except:
Qt.QMessageBox.warning(self,"ups!",traceback.format_exc())
def addAttributeToTrend(self,model=None):
try:
model = model or self.getCurrentModel()
self.trend.addModels([model])
except:
Qt.QMessageBox.warning(self,"ups!",traceback.format_exc())
def addSelectedToTrend(self):
try:
y = self.columnCount()-1
models = []
for x in range(self.rowCount()):
item = self.itemAt(x,y).widget()
m = getattr(item,'_model','')
if m and item.isChecked():
models.append(m)
if len(models) > 20:
Qt.QMessageBox.warning(self,"warning",
"To avoid performance issues, dynamic scale will be disabled")
self.trend.setXDynScale(False)
self.trend.addModels(models)
except:
Qt.QMessageBox.warning(self,"ups!",traceback.format_exc())
def checkAll(self):
y = self.columnCount()-1
for x in range(self.rowCount()):
self.itemAt(x,y).widget().setChecked(True)
def uncheckAll(self):
y = self.columnCount()-1
for x in range(self.rowCount()):
self.itemAt(x,y).widget().setChecked(False)
def setValues(self,values,filters=None):
""" filters will be a tuple containing several regular expressions to match """
#print('In AttributesPanel.setValues([%s])'%len(values or []))
if values is None:
self.generateTable([])
elif True: #filters is None:
self.generateTable(values)
#print 'In AttributesPanel.setValues(...): done'
return
def generateTable(self,values):
#thermocouples = thermocouples if thermocouples is not None else self.thermocouples
self.setRowCount(len(values))
self.setColumnCount(5)
#self.vheaders = []
self.offset = 0
self.widgetbuffer = []
for i,tc in enumerate(sorted(values)):
#print 'setTableRow(%s,%s)'%(i,tc)
model,device,attribute,alias,archived,label = tc
model,device,attribute,alias = map(str.upper,(model,device,attribute,alias))
#self.vheaders.append(model)
def ITEM(m,model='',size=0):
q = fn.qt.Draggable(Qt.QLabel)(m)
if size is not 0:
q.setMinimumWidth(size) #(.7*950/5.)
q._model = model or m
q._archived = archived
q.setDragEventCallback(lambda s=q:s._model)
return q
###################################################################
qf = Qt.QFrame()
qf.setLayout(Qt.QGridLayout())
qf.setMinimumWidth(self.SIZES[0])
qf.setSizePolicy(Qt.QSizePolicy.Expanding,Qt.QSizePolicy.Fixed)
#Order changed, it is not clear if it has to be done before or after adding TaurusValue selfect
self.setCellWidget(i+self.offset,0,qf)
#print('Adding item: %s, %s, %s, %s, %s' % (model,device,attribute,alias,archived))
ok = fn.check_attribute(model,brief=False,timeout=500)# is not None
print(ok)
ok = ok if not isinstance(ok,Exception) else None
if False:
tv = TaurusValue() #TaurusValueLabel()
qf.layout().addWidget(tv,0,0)
tv.setParent(qf)
elif ok:
import PyTangoArchiving.widget.panel as ptawp
tv = ptawp.TaurusSingleValue()
tv.setModel(model)
self.setItem(i+self.offset,0,tv)
else:
tv = ITEM(label+'(-)',model)
self.setItem(i+self.offset,0,tv)
devlabel = ITEM(device,model,self.SIZES[1])
self.setItem(i+self.offset,1,devlabel)
self.setItem(i+self.offset,2,ITEM(attribute,model,self.SIZES[2]))
self.setItem(i+self.offset,3,ITEM(alias,model,self.SIZES[3]))
from PyTangoArchiving.widget.panel import showArchivingModes,show_history
if archived:
active = self.reader.is_attribute_archived(model,active=True)
txt = '/'.join(a.upper() if a in active else a for a in archived)
else:
txt = '...'
q = Qt.QPushButton(txt)
q.setFixedWidth(self.SIZES[-2])
q.setToolTip("""%s<br><br><pre>
'HDB' : Archived and updated, push to export values
'hdb' : Archiving stopped, push to export values
'...' : Not archived
</pre>"""%txt)
cb = (lambda a=self.reader.get_attribute_alias(model),o=q:
setattr(q,'w',show_history(a))) #showArchivingModes(a,parent=self))))
try:
self.connect(q, Qt.SIGNAL("pressed ()"), cb)
except:
self.q.pressed.connect(cb)
self.setItem(i+self.offset,4,q)
qc = Qt.QCheckBox()
qc.setFixedWidth(self.SIZES[-1])
self.setItem(i+self.offset,5,qc,1,1,Qt.Qt.AlignCenter,model)
if isinstance(tv,TaurusValue): #ok:
#print('Setting Model %s'%model)
#ADDING WIDGETS IN BACKGROUND DIDN'T WORKED, I JUST CAN SET MODELS FROM THE WORKER
try:
if self.worker:
self.worker.put([(lambda w=tv,m=model:w.setModel(m))])
#print 'worker,put,%s'%str(model)
else:
tv.setModel(model)
except:
print traceback.format_exc()
self.models.append(tv)
#self.widgetbuffer.extend([qf,self.itemAt(i+self.offset,1),self.itemAt(i+self.offset,2),self.itemAt(i+self.offset,3),self.itemAt(i+self.offset,4)])
fn.threads.Event().wait(.02)
if len(values):
def setup(o=self):
[o.setRowHeight(i,20) for i in range(o.rowCount())]
#o.setColumnWidth(0,350)
o.update()
o.repaint()
#print o.rowCount()
o.show()
setup(self)
if self.worker:
print( '%s.next()' % (self.worker) )
self.worker.next()
#threading.Event().wait(10.)
tracer('Out of generateTable()')
def clear(self):
try:
#print('In AttributesPanel.clear()')
for m in self.models:
m.setModel(None)
self.models = []
self.setValues(None)
#QGridTable.clear(self)
def deleteItems(layout):
if layout is not None:
while layout.count():
item = layout.takeAt(0)
widget = item.widget()
if widget is not None:
widget.deleteLater()
else:
deleteItems(item.layout())
deleteItems(self.layout())
#l = self.layout()
#l.deleteLater()
#self.setLayout(Qt.QGridLayout())
except:
traceback.print_exc()
class ArchivingBrowser(Qt.QWidget):
_persistent_ = None #It prevents the instances to be destroyed if not called explicitly
MAX_DEVICES = 500
MAX_ATTRIBUTES = 1500
LABELS = AttributesPanel.LABELS
SIZES = AttributesPanel.SIZES
STRETCH = AttributesPanel.STRETCH
def __init__(self,parent=None,domains=None,regexp='*pnv-*',USE_SCROLL=True,USE_TREND=False):
print('%s: ArchivingBrowser()' % fn.time2str())
Qt.QWidget.__init__(self,parent)
self.setupUi(USE_SCROLL=USE_SCROLL, USE_TREND=USE_TREND, SHOW_OPTIONS=False)
self.load_all_devices()
try:
import PyTangoArchiving
self.reader = PyTangoArchiving.Reader('*')
self.archattrs = sorted(set(self.reader.get_attributes()))
self.archdevs = list(set(a.rsplit('/',1)[0] for a in self.archattrs))
except:
traceback.print_exc()
self.extras = []
#self.domains = domains if domains else ['MAX','ANY','LI/LT','BO/BT']+['SR%02d'%i for i in range(1,17)]+['FE%02d'%i for i in (1,2,4,9,11,13,22,24,29,34)]
#self.combo.addItems((['Choose...']+self.domains) if len(self.domains)>1 else self.domains)
self.connectSignals()
print('%s: ArchivingBrowser(): done' % fn.time2str())
def load_all_devices(self,filters='*'):
import fandango as fn #needed by subprocess
self.tango = fn.get_database()
self.alias_devs = fn.defaultdict_fromkey(
lambda k,s=self: str(s.tango.get_device_alias(k)))
self.archattrs = []
self.archdevs = []
#print('In load_all_devices(%s)...'%str(filters))
devs = fn.tango.get_all_devices()
if filters!='*':
devs = [d for d in devs if fn.matchCl(
filters.replace(' ','*'),d,extend=True)]
self.all_devices = devs
self.all_domains = sorted(set(a.split('/')[0] for a in devs))
self.all_families = sorted(set(a.split('/')[1] for a in devs))
members = []
for a in devs:
try:
members.append(a.split('/')[2])
except:
# Wrong names in DB? yes, they are
pass #print '%s is an invalid name!'%a
members = sorted(set(members))
self.all_members = sorted(set(e for m in members
for e in re.split('[-_0-9]',m)
if not fn.matchCl('^[0-9]+([ABCDE][0-9]+)?$',e)))
#print 'Loading alias list ...'
self.all_alias = self.tango.get_device_alias_list('*')
#self.alias_devs = dict((str(self.tango.get_device_alias(a)).lower(),a) for a in self.all_alias)
tracer('Loading (%s) finished.'%(filters))
def load_attributes(self,servfilter,devfilter,attrfilter,warn=True,
exclude = ('dserver','tango*admin','sys*database','tmp','archiving')):
servfilter = servfilter.replace(' ','*').strip()
attrfilter = (attrfilter or 'state').replace(' ','*')
devfilter = (devfilter or attrfilter).replace(' ','*')
#Solve fqdn issues
devfilter = devfilter.replace('tango://','')
if ':' in devfilter:
tracer('ArchivingBrowser ignores tango host filters')
devfilter = fn.clsub(fn.tango.rehost,'',devfilter)
tracer('In load_attributes(%s,%s,%s)'%(servfilter,devfilter,attrfilter))
archive = self.dbcheck.isChecked()
all_devs = self.all_devices if not archive else self.archdevs
all_devs = [d for d in all_devs if not
any(d.startswith(e) for e in exclude)
or any(d.startswith(e)
and fn.matchCl(e,devfilter) for e in exclude)]
if servfilter.strip('.*'):
sdevs = map(str.lower,fn.Astor(servfilter).get_all_devices())
all_devs = [d for d in all_devs if d in sdevs]
#print('In load_attributes(%s,%s,%s): Searching through %d %s names'
#%(servfilter,devfilter,attrfilter,len(all_devs),
#'server' if servfilter else 'device'))
if devfilter.strip().strip('.*'):
devs = [d for d in all_devs if
(fn.searchCl(devfilter,d,extend=True))]
print('\tFound %d devs, Checking alias ...'%(len(devs)))
alias,alias_devs = [],[]
if '&' in devfilter:
alias = self.all_alias
else:
for df in devfilter.split('|'):
alias.extend(self.tango.get_device_alias_list('*%s*'%df.strip()))
if alias:
print('\t%d alias found'%len(alias))
alias_devs.extend(self.alias_devs[a] for a in alias if fn.searchCl(devfilter,a,extend=True))
print('\t%d alias_devs found'%len(alias_devs))
#if not self.alias_devs:
#self.alias_devs = dict((str(self.tango.get_device_alias(a)).lower(),a) for a in self.all_alias)
#devs.extend(d for d,a in self.alias_devs.items() if fn.searchCl(devfilter,a) and (not servfilter or d in all_devs))
devs.extend(d for d in alias_devs if not servfilter.strip('.*') or d in all_devs)
else:
devs = all_devs
devs = sorted(set(devs))
self.matching_devs = devs
print('In load_attributes(%s,%s,%s): %d devices found'%(servfilter,devfilter,attrfilter,len(devs)))
if not len(devs) and not archive:
#Devices do not actually exist, but may exist in archiving ...
#Option disabled, was mostly useless
self.dbcheck.setChecked(True)
return self.load_attributes(servfilter,devfilter,attrfilter,warn=False)
if len(devs)>self.MAX_DEVICES and warn:
Qt.QMessageBox.warning(self, "Warning" , "Your search (%s,%s) matches too many devices!!! (%d); please refine your search\n\n%s\n..."%(devfilter,attrfilter,len(devs),'\n'.join(devs[:30])))
return {}
elif warn and len(devs)>15:
r = Qt.QMessageBox.warning(self, "Message" , "Your search (%s,%s) matches %d devices."%(devfilter,attrfilter,len(devs)),Qt.QMessageBox.Ok|Qt.QMessageBox.Cancel)
if r==Qt.QMessageBox.Cancel:
return {}
self.matching_attributes = {} #{attribute: (device,alias,attribute,label)}
failed_devs = []
for d in sorted(devs):
try:
dp = taurus.Device(d)
if not archive:
dp.ping()
tcs = [t for t in dp.get_attribute_list()]
else:
tcs = [a.split('/')[-1] for a in self.archattrs if a.startswith(d+'/')]
matches = [t for t in tcs if fn.searchCl(attrfilter,t,extend=True)]
for t in sorted(tcs):
if not self.dbcheck.isChecked() or not matches:
label = dp.get_attribute_config(t).label
else:
label = t
if t in matches or fn.searchCl(attrfilter,label,extend=True):
if self.archivecheck.isChecked() \
and not self.reader.is_attribute_archived(d+'/'+t):
continue
if d in self.alias_devs:
alias = self.alias_devs[d]
else:
try: alias = str(self.tango.get_alias(d))
except: alias = ''
self.matching_attributes['%s/%s'%(d,t)] = (d,alias,t,label)
if warn and len(self.matching_attributes)>self.MAX_ATTRIBUTES:
Qt.QMessageBox.warning(self, "Warning" ,
"Your search (%s,%s) matches too many attributes!!! (%d); please refine your search\n\n%s\n..."%(
devfilter,attrfilter,len(self.matching_attributes),'\n'.join(sorted(self.matching_attributes.keys())[:30])))
return {}
except:
print('load_attributes(%s,%s,%s => %s) failed!'%(servfilter,devfilter,attrfilter,d))
failed_devs.append(d)
if attrfilter in ('state','','*','**'):
self.matching_attributes[d+'/state'] = (d,d,'state',None) #A None label means device-not-readable
if warn and len(self.matching_attributes)>30:
r = Qt.QMessageBox.warning(self, "Message" , "(%s) matches %d attributes."%(attrfilter,len(self.matching_attributes)),Qt.QMessageBox.Ok|Qt.QMessageBox.Cancel)
if r==Qt.QMessageBox.Cancel:
return {}
if not len(self.matching_attributes):
Qt.QMessageBox.warning(self, "Warning", "No matching attribute has been found in %s." % ('Archiving DB' if archive else 'Tango DB (try DB Cache option)'))
if failed_devs:
print('\t%d failed devs!!!: %s'%(len(failed_devs),failed_devs))
if warn:
Qt.QMessageBox.warning(self, "Warning" ,
"%d devices were not running:\n"%len(failed_devs) +'\n'.join(failed_devs[:10]+(['...'] if len(failed_devs)>10 else []) ))
tracer('\t%d attributes found'%len(self.matching_attributes))
return self.matching_attributes
def setupUi(self,USE_SCROLL=False, SHOW_OPTIONS=False, USE_TREND=False):
self.setWindowTitle('Tango Finder : Search Attributes and Archiving')
self.setLayout(Qt.QVBoxLayout())
self.setMinimumWidth(950)#550)
#self.setMinimumHeight(700)
self.layout().setAlignment(Qt.Qt.AlignTop)
self.browser = Qt.QFrame()
self.browser.setLayout(Qt.QVBoxLayout())
self.chooser = Qt.QTabWidget()
self.chooser.setTabPosition(self.chooser.West if SHOW_OPTIONS else self.chooser.North)
#self.combo = Qt.QComboBox() # Combo used for domains, currently disabled
self.searchbar = Qt.QFrame()
self.searchbar.setLayout(Qt.QGridLayout())
#self.label = Qt.QLabel('Type a part of device name and a part of attribute name, use "*" or " " as wildcards:')
#self.layout().addWidget(self.label)
self.ServerFilter = Qt.QLineEdit()
self.ServerFilter.setMaximumWidth(250)
self.DeviceFilter = fn.qt.Dropable(Qt.QLineEdit)()
self.DeviceFilter.setSupportedMimeTypes(fn.qt.TAURUS_DEV_MIME_TYPE)
self.AttributeFilter = fn.qt.Dropable(Qt.QLineEdit)()
self.AttributeFilter.setSupportedMimeTypes([fn.qt.TAURUS_ATTR_MIME_TYPE,fn.qt.TEXT_MIME_TYPE])
self.update = Qt.QPushButton('Update')
self.archivecheck = Qt.QCheckBox("Only archived")
self.archivecheck.setChecked(False)
self.dbcheck = Qt.QCheckBox("DB cache")
self.dbcheck.setChecked(True)
self.searchbar.layout().addWidget(Qt.QLabel(
'Enter Device and Attribute filters using wildcards '
'(e.g. li/ct/plc[0-9]+ / ^stat*$ & !status ) and push Update'),0,0,3,13)
[self.searchbar.layout().addWidget(o,x,y,h,w) for o,x,y,h,w in (
(Qt.QLabel("Device or Alias:"),4,0,1,1),(self.DeviceFilter,4,1,1,4),
(Qt.QLabel("Attribute:"),4,5,1,1),(self.AttributeFilter,4,6,1,4),
(self.update,4,10,1,1),(self.archivecheck,4,11,1,1),
(self.dbcheck,4,12,1,1),
)]
if SHOW_OPTIONS:
self.options = Qt.QWidget() #self.searchbar
self.options.setLayout(Qt.QGridLayout())
separator = lambda x:Qt.QLabel(' '*x)
row = 1
[self.options.layout().addWidget(o,x,y,h,w) for o,x,y,h,w in (
#separator(120),Qt.QLabel("Options: "),separator(5),
(Qt.QLabel("Server: "),row,0,1,1),(self.ServerFilter,row,1,1,4),(Qt.QLabel(''),row,2,1,11)
)]
#self.panel = generate_table(load_all_thermocouples('SR14')[-1])
self.optiontab = Qt.QTabWidget()
self.optiontab.addTab(self.searchbar,'Filters')
self.optiontab.addTab(self.options,'Options')
self.optiontab.setMaximumHeight(100)
self.optiontab.setTabPosition(self.optiontab.North)
self.browser.layout().addWidget(self.optiontab)
else:
self.browser.layout().addWidget(self.searchbar)
self.toppan = Qt.QWidget(self)
self.toppan.setLayout(Qt.QVBoxLayout())
if USE_SCROLL:
print '*'*30 + ' USE_SCROLL=True '+'*'*30
## TO USE SCROLL, HEADER HAS BEEN SET AS A SEPARATE WIDGET
#self.header = QGridTable(self.toppan)
#self.header.setHorizontalHeaderLabels(self.LABELS)
#self.header.setColumnWidth(0,350)
self.headers = []
self.header = Qt.QWidget(self.toppan)
self.header.setLayout(Qt.QHBoxLayout())
for l,s in zip(self.LABELS,self.SIZES):
ql = Qt.QLabel(l)
self.headers.append(ql)
#if s is not None:
#ql.setFixedWidth(s)
#else:
#ql.setSizePolicy(Qt.QSizePolicy.MinimumExpanding,Qt.QSizePolicy.Fixed)
self.header.layout().addWidget(ql)
self.toppan.layout().addWidget(self.header)
self._scroll = MyScrollArea(self.toppan)#Qt.QScrollArea(self)
self._background = AttributesPanel(self._scroll) #At least a panel should be kept (never deleted) in background to not crash the worker!
self.panel = None
self._scroll.setChildrenPanel(self.panel)
self._scroll.setWidget(self.panel)
self._scroll.setMaximumHeight(700)
self.toppan.layout().addWidget(self._scroll)
self.attrpanel = self._background
else:
self.panel = AttributesPanel(self.toppan)
self.toppan.layout().addWidget(self.panel)
self.attrpanel = self.panel
self.toppan.layout().addWidget(Qt.QLabel('If drag&drop fails, PLEASE USE RIGHT-CLICK ON THE NAME OF THE ATTRIBUTE OR CHECKBOX!!'))
self.browser.layout().addWidget(self.toppan)
self.chooser.addTab(self.browser,'Search ...')
if USE_TREND:
self.split = Qt.QSplitter(Qt.Qt.Vertical)
self.split.setHandleWidth(25)
self.split.addWidget(self.chooser)
if "qwt" in str(TaurusPlot.__bases__).lower():
from PyTangoArchiving.widget.trend import ArchivingTrend,ArchivingTrendWidget
self.trend = ArchivingTrendWidget() #TaurusArchivingTrend()
self.trend.setUseArchiving(True)
self.trend.showLegend(True)
else: #PyQtGraph
try:
from taurus_tangoarchiving.widget.tpgarchivingwidget import \
ArchivingWidget
except:
from PyTangoArchiving.widget.tpgarchivingwidget import \
ArchivingWidget
self.trend = ArchivingWidget()
self.attrpanel.trend = self.trend
if TaurusModelChooser is not None:
self.treemodel = TaurusModelChooser(parent=self.chooser)
self.chooser.addTab(self.treemodel,'Tree')
try:
self.treemodel.updateModels.connect(self.trend.addModels)
except:
traceback.print_exc()
#self.treemodel.connect(self.treemodel,Qt.SIGNAL('updateModels'),self.trend.addModels)
else:
tracer('TaurusModelChooser not available!')
self.split.addWidget(self.trend)
self.layout().addWidget(self.split)
else:
self.layout().addWidget(self.chooser)
type(self)._persistent_ = self
def connectSignals(self):
#self.combo.connect(self.combo, Qt.SIGNAL("currentIndexChanged (const QString&)"), self.comboIndexChanged)
#self.connect(self.combo, Qt.SIGNAL("currentIndexChanged (const QString&)"), self.comboIndexChanged)
try:
self.connect(self.update, Qt.SIGNAL("pressed ()"), self.updateSearch)
except:
self.update.pressed.connect(self.updateSearch)
#if len(self.domains)==1: self.emit(Qt.SIGNAL("currentIndexChanged (const QString&)"),Qt.QString(self.domains[0]))
def open_new_trend(self):
from taurus.qt.qtgui.plot import TaurusTrend
tt = TaurusTrend()
tt.show()
self.extras.append(tt)
tt.setUseArchiving(True)
tt.showLegend(True)
return tt
def resizeEvent(self,evt):
try:
Qt.QWidget.resizeEvent(self,evt)
self.adjustColumns()
#type(self)._persistent_ = None
except:
traceback.print_exc()
def adjustColumns(self):
try:
if not getattr(self,'panel',None):
return
w = int(max((self.panel.width()+20,self.width()*0.9)))
self.header.setMaximumWidth(w)
for j in range(self.panel.columnCount()):
m = 0
for i in range(self.panel.rowCount()):
try:
w = self.panel.layout().itemAtPosition(i,j).geometry().width()
if w > m: m = w
except:
m = self.SIZES[j]
#print(j,self.LABELS[j],self.SIZES[j],m)
self.headers[j].setFixedWidth(max((m,self.SIZES[j])))
except:
traceback.print_exc()
def closeEvent(self,evt):
Qt.QWidget.closeEvent(self,evt)
type(self)._persistent_ = None
#def __del__(self):
#print 'In ValvesChooser.del()'
##try: Qt.QWidget.__del__(self)
##except: pass
#type(self)._persistent_ = None
def comboIndexChanged(self,text=None):
#print 'In comboIndexChanged(...)'
pass
def splitFilters(self,filters):
if filters.count(',')>1: filters.replace(',',' ')
if ',' in filters: filters = filters.split(',')
elif ';' in filters: filters = filters.split(';')
elif filters.count('/') in (1,3): filters = filters.rsplit('/',1)
elif ' ' in filters: filters = filters.rsplit(' ',1)
else: filters = [filters,'^state$'] #'*']
return filters
def setModel(self,model):
model = str(model).strip()
if model: self.updateSearch(model)
def updateSearch(self,*filters):
#Text argument applies only to device/attribute filter; not servers
try:
#print('In updateSearch(%s[%d])'%(filters,len(filters)))
if len(filters)>2:
filters = [' '.join(filters[:-1]),filters[-1]]
if len(filters)==1:
filters = ['']+self.splitFilters(filters[0])
elif len(filters)==2:
filters = ['']+list(filters)
elif len(filters)==3:
filters = list(filters)
else:
filters = (self.ServerFilter,self.DeviceFilter,self.AttributeFilter)
filters = [str(f.text()).strip() for f in filters]
#Texts are rewritten to show format as it is really used
self.ServerFilter.setText(filters[0])
self.DeviceFilter.setText(filters[1])
self.AttributeFilter.setText(filters[2])
if not any(filters):
Qt.QMessageBox.warning(self, "Warning" , "you must type a text to search")
return
if not any (f.strip('.*') for f in filters): #Empty or too wide filters not allowed
Qt.QMessageBox.warning(self, "Warning" , "you must reduce your filtering!")
return
wildcard = '*' if not '.*' in str(filters) else '.*'
for i,f in enumerate(filters):
if not (f.startswith('*') or f.startswith('.')):
filters[i] = '^state$' if (i==2 and not f) else f #'%s%s%s'%(wildcard,f,wildcard)
if self.panel and filters==self.panel.filters:
return
else:
old = self.panel
if self.panel:
if hasattr(self,'_scroll'): self._scroll.setWidget(None)
self.panel.setParent(None)
self.panel = None
if not self.panel:
self.panel = AttributesPanel(
self._scroll,devices=self.all_devices)
self.attrpanel = self.panel
if hasattr(self,'trend'):
self.attrpanel.trend = self.trend
else:
self.panel.clear()
if old:
old.clear()
old.deleteLater() #Must be done after creating the new one!!
table = [] #model,device,attribute,alias,archived,label
#ATTRIBUTES ARE FILTERED HERE!! <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
for k,v in self.load_attributes(*filters).items():
#load_attributes = (d,alias,t,label)
try:
archived = self.reader.is_attribute_archived(k)
except Exception,e:
print('Archiving not available!:\n %s'
%traceback.format_exc())
archived = []
#print(k,v,archived)
#model,device,attribute,alias,archived,label
table.append((k,v[0],v[2],v[1],archived,v[3]))
self.panel.setValues(sorted(table))
if hasattr(self,'_scroll'):
self._scroll.setWidget(self.panel)
#self.panel.setParent(self._scroll) #IT DOESNT WORK
self._scroll.setChildrenPanel(self.panel)
#print('labels/columns: %d,%d' % (len(self.SIZES),self.panel.columnCount()))
for j in range(self.panel.columnCount()):
#print(j)
l, s = self.LABELS[j], self.SIZES[j]
#print('Resizing %s cells to %s' % (l,s))
self.panel.layout().setColumnStretch(j,self.STRETCH[j])
#for i in range(self.panel.rowCount()):
#try:
#w = self.panel.itemAt(i,j).widget()
#if s is not None:
#w.setFixedWidth(s)
#else:
#p = Qt.QSizePolicy(Qt.QSizePolicy.Expanding,Qt.QSizePolicy.Fixed)
#w.setSizePolicy(p)
#except:
#traceback.print_exc()
self.adjustColumns()
except Exception,e:
#traceback.print_exc()
Qt.QMessageBox.warning(self, "Warning" , "There's something wrong in your search (%s), please simplify the string"%traceback.format_exc())
return
ModelSearchWidget = ArchivingBrowser
def main(args=None):
"""
--range=YYYY/MM/DD_HH:mm,XXh
"""
import sys
opts = dict(a.split('=',1) for a in args if a.startswith('-'))
print(opts)
args = [a for a in args if not a.startswith('-')]
print(args)
#from taurus.qt.qtgui.container import TaurusMainWindow
tmw = Qt.QMainWindow() #TaurusMainWindow()
tmw.setWindowTitle('Tango Attribute Search (%s)'%(fn.get_tango_host()))
table = ArchivingBrowser(domains=args,USE_SCROLL=True,USE_TREND=True)
tmw.setCentralWidget(table)
use_toolbar = True
if use_toolbar:
toolbar = QDictToolBar(tmw)
toolbar.set_toolbar([
##('PDFs','icon-all.gif',[
#('Pdf Q1','icon-all.gif',lambda:launch('%s %s'%('kpdf','TC_Q1.pdf'))),
#('Pdf Q2','icon-all.gif',lambda:launch('%s %s'%('kpdf','TC_Q2.pdf'))),
#('Pdf Q3','icon-all.gif',lambda:launch('%s %s'%('kpdf','TC_Q3.pdf'))),
#('Pdf Q4','icon-all.gif',lambda:launch('%s %s'%('kpdf','TC_Q4.pdf'))),
## ]),
#('Archiving Viewer','Mambo-icon.ico', lambda:launch('mambo')),
('Show New Trend','qwtplot.png',table.open_new_trend),
])
toolbar.add_to_main_window(tmw,where=Qt.Qt.BottomToolBarArea)
tmw.show()
if args:
table.updateSearch(*args)
if '--range' in opts:
tracer('Setting trend range to %s' % opts['--range'])
table.trend.applyNewDates(opts['--range'].replace('_',' ').split(','))
return tmw
if __name__ == "__main__":
import sys
if 'qapp' not in locals() and 'qapp' not in globals():
qapp = Qt.QApplication([])
import taurus
taurus.setLogLevel('WARNING')
t = main(args = sys.argv[1:])
sys.exit(qapp.exec_())
|
python
|
TEST = 'noe'
|
python
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
routines for getting network interface addresses
"""
# by Benjamin C. Wiley Sittler, BSD/OSX support by Greg Hazel
__all__ = [
'getifaddrs',
'getaddrs',
'getnetaddrs',
'getbroadaddrs',
'getdstaddrs',
'main',
'IFF_UP',
'IFF_BROADCAST',
'IFF_DEBUG',
'IFF_LOOPBACK',
'IFF_POINTOPOINT',
'IFF_NOTRAILERS',
'IFF_RUNNING',
'IFF_NOARP',
'IFF_PROMISC',
'IFF_ALLMULTI',
'IFF_MASTER',
'IFF_SLAVE',
'IFF_MULTICAST',
'IFF_PORTSEL',
'IFF_AUTOMEDIA',
'IFF_DYNAMIC',
'IFF_LOWER_UP',
'IFF_DORMANT',
'ARPHRD_NETROM',
'ARPHRD_ETHER',
'ARPHRD_EETHER',
'ARPHRD_AX25',
'ARPHRD_PRONET',
'ARPHRD_CHAOS',
'ARPHRD_IEEE802',
'ARPHRD_ARCNET',
'ARPHRD_APPLETLK',
'ARPHRD_DLCI',
'ARPHRD_ATM',
'ARPHRD_METRICOM',
'ARPHRD_IEEE1394',
'ARPHRD_EUI64',
'ARPHRD_INFINIBAND',
'ARPHRD_SLIP',
'ARPHRD_SLIP6',
'ARPHRD_RSRVD',
'ARPHRD_ADAPT',
'ARPHRD_X25',
'ARPHRD_HWX25',
'ARPHRD_PPP',
'ARPHRD_CISCO',
'ARPHRD_HDLC',
'ARPHRD_DDCMP',
'ARPHRD_RAWHDLC',
'ARPHRD_TUNNEL',
'ARPHRD_TUNNEL6',
'ARPHRD_FRAD',
'ARPHRD_SKIP',
'ARPHRD_LOOPBACK',
'ARPHRD_LOCALTLK',
'ARPHRD_FDDI',
'ARPHRD_BIF',
'ARPHRD_SIT',
'ARPHRD_IPDDP',
'ARPHRD_IPGRE',
'ARPHRD_PIMREG',
'ARPHRD_HIPPI',
'ARPHRD_ASH',
'ARPHRD_ECONET',
'ARPHRD_IRDA',
'ARPHRD_FCPP',
'ARPHRD_FCAL',
'ARPHRD_FCPL',
'ARPHRD_FCFABRIC',
'ARPHRD_IEEE802_TR',
'ARPHRD_IEEE80211',
'ARPHRD_IEEE80211_PRISM',
'ARPHRD_IEEE80211_RADIOTAP',
'ARPHRD_VOID',
'ARPHRD_NONE',
'ETH_P_LOOP',
'ETH_P_PUP',
'ETH_P_PUPAT',
'ETH_P_IP',
'ETH_P_X25',
'ETH_P_ARP',
'ETH_P_BPQ',
'ETH_P_IEEEPUP',
'ETH_P_IEEEPUPAT',
'ETH_P_DEC',
'ETH_P_DNA_DL',
'ETH_P_DNA_RC',
'ETH_P_DNA_RT',
'ETH_P_LAT',
'ETH_P_DIAG',
'ETH_P_CUST',
'ETH_P_SCA',
'ETH_P_RARP',
'ETH_P_ATALK',
'ETH_P_AARP',
'ETH_P_8021Q',
'ETH_P_IPX',
'ETH_P_IPV6',
'ETH_P_SLOW',
'ETH_P_WCCP',
'ETH_P_PPP_DISC',
'ETH_P_PPP_SES',
'ETH_P_MPLS_UC',
'ETH_P_MPLS_MC',
'ETH_P_ATMMPOA',
'ETH_P_ATMFATE',
'ETH_P_AOE',
'ETH_P_TIPC',
'ETH_P_802_3',
'ETH_P_AX25',
'ETH_P_ALL',
'ETH_P_802_2',
'ETH_P_SNAP',
'ETH_P_DDCMP',
'ETH_P_WAN_PPP',
'ETH_P_PPP_MP',
'ETH_P_LOCALTALK',
'ETH_P_PPPTALK',
'ETH_P_TR_802_2',
'ETH_P_MOBITEX',
'ETH_P_CONTROL',
'ETH_P_IRDA',
'ETH_P_ECONET',
'ETH_P_HDLC',
'ETH_P_ARCNET',
]
import sys
import os
import socket
import struct
from ctypes import *
from BTL.obsoletepythonsupport import set
_libc = None
BSD = sys.platform.startswith('darwin') or sys.platform.startswith('freebsd')
def libc():
global _libc
if _libc is None:
uname = os.uname()
assert sizeof(c_ushort) == 2
assert sizeof(c_uint) == 4
if sys.platform.startswith('darwin'):
_libc = CDLL('libc.dylib')
elif sys.platform.startswith('freebsd'):
_libc = CDLL('libc.so.6')
else:
assert uname[0] == 'Linux' and [ int(x) for x in uname[2].split('.')[:2] ] >= [ 2, 2 ]
_libc = CDLL('libc.so.6')
return _libc
def errno():
return cast(addressof(libc().errno), POINTER(POINTER(c_int)))[0][0]
uint16_t = c_ushort
uint32_t = c_uint
uint8_t = c_ubyte
if BSD:
sa_family_t = c_uint8
def SOCKADDR_COMMON(prefix):
"""
Common data: address family and length.
"""
return [ (prefix + 'len', c_uint8),
(prefix + 'family', sa_family_t) ]
else:
sa_family_t = c_ushort
def SOCKADDR_COMMON(prefix):
"""
Common data: address family and length.
"""
return [ (prefix + 'family', sa_family_t) ]
SOCKADDR_COMMON_SIZE = sum([ sizeof(t) for n, t in SOCKADDR_COMMON('') ])
class sockaddr(Structure):
"""
Structure describing a generic socket address.
"""
pass
sockaddr._fields_ = SOCKADDR_COMMON('sa_') + [ # Common data: address family and length.
('sa_data', ARRAY(c_ubyte, 14)), # Address data.
]
class sockaddr_storage(Structure):
"""
Structure large enough to hold any socket address (with the historical exception of AF_UNIX). We reserve 128 bytes.
"""
pass
_SS_SIZE = 128
__ss_aligntype = c_ulong
sockaddr_storage._fields_ = SOCKADDR_COMMON('ss_') + [ # Address family, etc.
('__ss_align', __ss_aligntype), # Force desired alignment.
('__ss_padding', ARRAY(c_byte, _SS_SIZE - 2 * sizeof(__ss_aligntype))),
]
class sockaddr_ll(Structure):
pass
sockaddr_ll._fields_ = SOCKADDR_COMMON('sll_') + [
('sll_protocol', c_ushort),
('sll_ifindex', c_int),
('sll_hatype', c_ushort),
('sll_pkttype', c_ubyte),
('sll_halen', c_ubyte),
('sll_addr', ARRAY(c_ubyte, 8)),
]
in_port_t = uint16_t
in_addr_t = uint32_t
class in_addr(Structure):
"""
Internet address.
"""
pass
in_addr._fields_ = [
('s_addr', in_addr_t)
]
class in6_u(Union):
pass
in6_u._fields_ = [
('u6_addr8', ARRAY(uint8_t, 16)),
('u6_addr16', ARRAY(uint16_t, 8)),
('u6_addr32', ARRAY(uint32_t, 4)),
]
class in6_addr(Structure):
"""
IPv6 address
"""
pass
in6_addr._fields_ = [
('in6_u', in6_u),
]
class sockaddr_in(Structure):
"""
Structure describing an Internet socket address.
"""
pass
sockaddr_in._fields_ = SOCKADDR_COMMON('sin_') + [
('sin_port', in_port_t), # Port number.
('sin_addr', in_addr), # Internet address.
('sin_zero', ARRAY(c_ubyte, sizeof(sockaddr) - SOCKADDR_COMMON_SIZE - sizeof(in_port_t) - sizeof(in_addr))), # Pad to size of `struct sockaddr'.
]
class sockaddr_in6(Structure):
"""
Structure describing an IPv6 socket address.
"""
pass
sockaddr_in6._fields_ = SOCKADDR_COMMON('sin6_') + [
('sin6_port', in_port_t), # Transport layer port #
('sin6_flowinfo', uint32_t), # IPv6 flow information
('sin6_addr', in6_addr), # IPv6 address
('sin6_scope_id', uint32_t), # IPv6 scope-id
]
class net_device_stats(Structure):
"""
Network device statistics.
"""
pass
net_device_stats._fields_ = [
('rx_packets', c_ulong),
('tx_packets', c_ulong),
('rx_bytes', c_ulong),
('tx_bytes', c_ulong),
('rx_errors', c_ulong),
('tx_errors', c_ulong),
('rx_dropped', c_ulong),
('tx_dropped', c_ulong),
('multicast', c_ulong),
('collisions', c_ulong),
('rx_length_errors', c_ulong),
('rx_over_errors', c_ulong),
('rx_crc_errors', c_ulong),
('rx_frame_errors', c_ulong),
('rx_fifo_errors', c_ulong),
('rx_missed_errors', c_ulong),
('tx_aborted_errors', c_ulong),
('tx_carrier_errors', c_ulong),
('tx_fifo_errors', c_ulong),
('tx_heartbeat_errors', c_ulong),
('tx_window_errors', c_ulong),
('rx_compressed', c_ulong),
('tx_compressed', c_ulong),
]
class ifa_ifu(Union):
"""
At most one of the following two is valid. If the IFF_BROADCAST
bit is set in `ifa_flags', then `ifa_broadaddr' is valid. If the
IFF_POINTOPOINT bit is set, then `ifa_dstaddr' is valid.
It is never the case that both these bits are set at once.
"""
pass
ifa_ifu._fields_=[
('ifu_broadaddr', POINTER(sockaddr)), # Broadcast address of this interface.
('ifu_dstaddr', POINTER(sockaddr)), # Point-to-point destination address.
]
class ifaddrs(Structure):
"""
The `getifaddrs' function generates a linked list of these structures.
Each element of the list describes one network interface.
"""
pass
ifaddrs._fields_=[
('ifa_next', POINTER(ifaddrs)), # Pointer to the next structure.
('ifa_name', c_char_p), # Name of this network interface.
('ifa_flags', c_uint), # Flags as from SIOCGIFFLAGS ioctl.
('ifa_addr', POINTER(sockaddr)), # Network address of this interface.
('ifa_netmask', POINTER(sockaddr)), # Netmask of this interface.
('ifa_ifu', ifa_ifu),
('ifa_data', c_void_p), # Address-specific data (may be unused).
]
class NamedLong(long):
def __new__(self, name, value):
self._long = long.__new__(self, value)
self._long._name = name
return self._long
def __repr__(self):
return self._name
pass
class OrSet(set):
def __repr__(self):
return ' | '.join([ repr(x) for x in self ])
IFF_UP = NamedLong(name = 'IFF_UP', value = 0x1)
IFF_BROADCAST = NamedLong(name = 'IFF_BROADCAST', value = 0x2)
IFF_DEBUG = NamedLong(name = 'IFF_DEBUG', value = 0x4)
IFF_LOOPBACK = NamedLong(name = 'IFF_LOOPBACK', value = 0x8)
IFF_POINTOPOINT = NamedLong(name = 'IFF_POINTOPOINT', value = 0x10)
IFF_NOTRAILERS = NamedLong(name = 'IFF_NOTRAILERS', value = 0x20)
IFF_RUNNING = NamedLong(name = 'IFF_RUNNING', value = 0x40)
IFF_NOARP = NamedLong(name = 'IFF_NOARP', value = 0x80)
IFF_PROMISC = NamedLong(name = 'IFF_PROMISC', value = 0x100)
IFF_ALLMULTI = NamedLong(name = 'IFF_ALLMULTI', value = 0x200)
IFF_MASTER = NamedLong(name = 'IFF_MASTER', value = 0x400)
IFF_SLAVE = NamedLong(name = 'IFF_SLAVE', value = 0x800)
IFF_MULTICAST = NamedLong(name = 'IFF_MULTICAST', value = 0x1000)
IFF_PORTSEL = NamedLong(name = 'IFF_PORTSEL', value = 0x2000)
IFF_AUTOMEDIA = NamedLong(name = 'IFF_AUTOMEDIA', value = 0x4000)
IFF_DYNAMIC = NamedLong(name = 'IFF_DYNAMIC', value = 0x8000L)
IFF_LOWER_UP = NamedLong(name = 'IFF_LOWER_UP', value = 0x10000)
IFF_DORMANT = NamedLong(name = 'IFF_DORMANT', value = 0x20000)
ARPHRD_NETROM = NamedLong(name = 'ARPHRD_NETROM', value = 0)
ARPHRD_ETHER = NamedLong(name = 'ARPHRD_ETHER', value = 1)
ARPHRD_EETHER = NamedLong(name = 'ARPHRD_EETHER', value = 2)
ARPHRD_AX25 = NamedLong(name = 'ARPHRD_AX25', value = 3)
ARPHRD_PRONET = NamedLong(name = 'ARPHRD_PRONET', value = 4)
ARPHRD_CHAOS = NamedLong(name = 'ARPHRD_CHAOS', value = 5)
ARPHRD_IEEE802 = NamedLong(name = 'ARPHRD_IEEE802', value = 6)
ARPHRD_ARCNET = NamedLong(name = 'ARPHRD_ARCNET', value = 7)
ARPHRD_APPLETLK = NamedLong(name = 'ARPHRD_APPLETLK', value = 8)
ARPHRD_DLCI = NamedLong(name = 'ARPHRD_DLCI', value = 15)
ARPHRD_ATM = NamedLong(name = 'ARPHRD_ATM', value = 19)
ARPHRD_METRICOM = NamedLong(name = 'ARPHRD_METRICOM', value = 23)
ARPHRD_IEEE1394 = NamedLong(name = 'ARPHRD_IEEE1394', value = 24)
ARPHRD_EUI64 = NamedLong(name = 'ARPHRD_EUI64', value = 27)
ARPHRD_INFINIBAND = NamedLong(name = 'ARPHRD_INFINIBAND', value = 32)
ARPHRD_SLIP = NamedLong(name = 'ARPHRD_SLIP', value = 256)
ARPHRD_SLIP6 = NamedLong(name = 'ARPHRD_SLIP6', value = 258)
ARPHRD_RSRVD = NamedLong(name = 'ARPHRD_RSRVD', value = 260)
ARPHRD_ADAPT = NamedLong(name = 'ARPHRD_ADAPT', value = 264)
ARPHRD_X25 = NamedLong(name = 'ARPHRD_X25', value = 271)
ARPHRD_HWX25 = NamedLong(name = 'ARPHRD_HWX25', value = 272)
ARPHRD_PPP = NamedLong(name = 'ARPHRD_PPP', value = 512)
ARPHRD_CISCO = NamedLong(name = 'ARPHRD_CISCO', value = 513)
ARPHRD_HDLC = NamedLong(name = 'ARPHRD_HDLC', value = ARPHRD_CISCO)
ARPHRD_DDCMP = NamedLong(name = 'ARPHRD_DDCMP', value = 517)
ARPHRD_RAWHDLC = NamedLong(name = 'ARPHRD_RAWHDLC', value = 518)
ARPHRD_TUNNEL = NamedLong(name = 'ARPHRD_TUNNEL', value = 768)
ARPHRD_TUNNEL6 = NamedLong(name = 'ARPHRD_TUNNEL6', value = 769)
ARPHRD_FRAD = NamedLong(name = 'ARPHRD_FRAD', value = 770)
ARPHRD_SKIP = NamedLong(name = 'ARPHRD_SKIP', value = 771)
ARPHRD_LOOPBACK = NamedLong(name = 'ARPHRD_LOOPBACK', value = 772)
ARPHRD_LOCALTLK = NamedLong(name = 'ARPHRD_LOCALTLK', value = 773)
ARPHRD_FDDI = NamedLong(name = 'ARPHRD_FDDI', value = 774)
ARPHRD_BIF = NamedLong(name = 'ARPHRD_BIF', value = 775)
ARPHRD_SIT = NamedLong(name = 'ARPHRD_SIT', value = 776)
ARPHRD_IPDDP = NamedLong(name = 'ARPHRD_IPDDP', value = 777)
ARPHRD_IPGRE = NamedLong(name = 'ARPHRD_IPGRE', value = 778)
ARPHRD_PIMREG = NamedLong(name = 'ARPHRD_PIMREG', value = 779)
ARPHRD_HIPPI = NamedLong(name = 'ARPHRD_HIPPI', value = 780)
ARPHRD_ASH = NamedLong(name = 'ARPHRD_ASH', value = 781)
ARPHRD_ECONET = NamedLong(name = 'ARPHRD_ECONET', value = 782)
ARPHRD_IRDA = NamedLong(name = 'ARPHRD_IRDA', value = 783)
ARPHRD_FCPP = NamedLong(name = 'ARPHRD_FCPP', value = 784)
ARPHRD_FCAL = NamedLong(name = 'ARPHRD_FCAL', value = 785)
ARPHRD_FCPL = NamedLong(name = 'ARPHRD_FCPL', value = 786)
ARPHRD_FCFABRIC = NamedLong(name = 'ARPHRD_FCFABRIC', value = 787)
ARPHRD_IEEE802_TR = NamedLong(name = 'ARPHRD_IEEE802_TR', value = 800)
ARPHRD_IEEE80211 = NamedLong(name = 'ARPHRD_IEEE80211', value = 801)
ARPHRD_IEEE80211_PRISM = NamedLong(name = 'ARPHRD_IEEE80211_PRISM', value = 802)
ARPHRD_IEEE80211_RADIOTAP = NamedLong(name = 'ARPHRD_IEEE80211_RADIOTAP', value = 803)
ARPHRD_VOID = NamedLong(name = 'ARPHRD_VOID', value = 0xFFFF)
ARPHRD_NONE = NamedLong(name = 'ARPHRD_NONE', value = 0xFFFE)
ETH_P_LOOP = NamedLong(name = 'ETH_P_LOOP', value = 0x0060)
ETH_P_PUP = NamedLong(name = 'ETH_P_PUP', value = 0x0200)
ETH_P_PUPAT = NamedLong(name = 'ETH_P_PUPAT', value = 0x0201)
ETH_P_IP = NamedLong(name = 'ETH_P_IP', value = 0x0800)
ETH_P_X25 = NamedLong(name = 'ETH_P_X25', value = 0x0805)
ETH_P_ARP = NamedLong(name = 'ETH_P_ARP', value = 0x0806)
ETH_P_BPQ = NamedLong(name = 'ETH_P_BPQ', value = 0x08FF)
ETH_P_IEEEPUP = NamedLong(name = 'ETH_P_IEEEPUP', value = 0x0a00)
ETH_P_IEEEPUPAT = NamedLong(name = 'ETH_P_IEEEPUPAT', value = 0x0a01)
ETH_P_DEC = NamedLong(name = 'ETH_P_DEC', value = 0x6000)
ETH_P_DNA_DL = NamedLong(name = 'ETH_P_DNA_DL', value = 0x6001)
ETH_P_DNA_RC = NamedLong(name = 'ETH_P_DNA_RC', value = 0x6002)
ETH_P_DNA_RT = NamedLong(name = 'ETH_P_DNA_RT', value = 0x6003)
ETH_P_LAT = NamedLong(name = 'ETH_P_LAT', value = 0x6004)
ETH_P_DIAG = NamedLong(name = 'ETH_P_DIAG', value = 0x6005)
ETH_P_CUST = NamedLong(name = 'ETH_P_CUST', value = 0x6006)
ETH_P_SCA = NamedLong(name = 'ETH_P_SCA', value = 0x6007)
ETH_P_RARP = NamedLong(name = 'ETH_P_RARP', value = 0x8035)
ETH_P_ATALK = NamedLong(name = 'ETH_P_ATALK', value = 0x809B)
ETH_P_AARP = NamedLong(name = 'ETH_P_AARP', value = 0x80F3)
ETH_P_8021Q = NamedLong(name = 'ETH_P_8021Q', value = 0x8100)
ETH_P_IPX = NamedLong(name = 'ETH_P_IPX', value = 0x8137)
ETH_P_IPV6 = NamedLong(name = 'ETH_P_IPV6', value = 0x86DD)
ETH_P_SLOW = NamedLong(name = 'ETH_P_SLOW', value = 0x8809)
ETH_P_WCCP = NamedLong(name = 'ETH_P_WCCP', value = 0x883E)
ETH_P_PPP_DISC = NamedLong(name = 'ETH_P_PPP_DISC', value = 0x8863)
ETH_P_PPP_SES = NamedLong(name = 'ETH_P_PPP_SES', value = 0x8864)
ETH_P_MPLS_UC = NamedLong(name = 'ETH_P_MPLS_UC', value = 0x8847)
ETH_P_MPLS_MC = NamedLong(name = 'ETH_P_MPLS_MC', value = 0x8848)
ETH_P_ATMMPOA = NamedLong(name = 'ETH_P_ATMMPOA', value = 0x884c)
ETH_P_ATMFATE = NamedLong(name = 'ETH_P_ATMFATE', value = 0x8884)
ETH_P_AOE = NamedLong(name = 'ETH_P_AOE', value = 0x88A2)
ETH_P_TIPC = NamedLong(name = 'ETH_P_TIPC', value = 0x88CA)
ETH_P_802_3 = NamedLong(name = 'ETH_P_802_3', value = 0x0001)
ETH_P_AX25 = NamedLong(name = 'ETH_P_AX25', value = 0x0002)
ETH_P_ALL = NamedLong(name = 'ETH_P_ALL', value = 0x0003)
ETH_P_802_2 = NamedLong(name = 'ETH_P_802_2', value = 0x0004)
ETH_P_SNAP = NamedLong(name = 'ETH_P_SNAP', value = 0x0005)
ETH_P_DDCMP = NamedLong(name = 'ETH_P_DDCMP', value = 0x0006)
ETH_P_WAN_PPP = NamedLong(name = 'ETH_P_WAN_PPP', value = 0x0007)
ETH_P_PPP_MP = NamedLong(name = 'ETH_P_PPP_MP', value = 0x0008)
ETH_P_LOCALTALK = NamedLong(name = 'ETH_P_LOCALTALK', value = 0x0009)
ETH_P_PPPTALK = NamedLong(name = 'ETH_P_PPPTALK', value = 0x0010)
ETH_P_TR_802_2 = NamedLong(name = 'ETH_P_TR_802_2', value = 0x0011)
ETH_P_MOBITEX = NamedLong(name = 'ETH_P_MOBITEX', value = 0x0015)
ETH_P_CONTROL = NamedLong(name = 'ETH_P_CONTROL', value = 0x0016)
ETH_P_IRDA = NamedLong(name = 'ETH_P_IRDA', value = 0x0017)
ETH_P_ECONET = NamedLong(name = 'ETH_P_ECONET', value = 0x0018)
ETH_P_HDLC = NamedLong(name = 'ETH_P_HDLC', value = 0x0019)
ETH_P_ARCNET = NamedLong(name = 'ETH_P_ARCNET', value = 0x001A)
def NamedLongs(x, names):
s = OrSet()
for k in names:
if x & k:
s |= OrSet([k])
x ^= k
k = 1L
while x:
if x & k:
s |= OrSet([k])
x ^= k
k+=k
return s
def _getifaddrs(ifap):
"""
Create a linked list of `struct ifaddrs' structures, one for each
network interface on the host machine. If successful, store the
list in *IFAP and return 0. On errors, return -1 and set `errno'.
The storage returned in *IFAP is allocated dynamically and can
only be properly freed by passing it to `freeifaddrs'.
"""
__getifaddrs = libc().getifaddrs
return CFUNCTYPE(c_int, POINTER(POINTER(ifaddrs)))(__getifaddrs)(ifap)
def _freeifaddrs(ifa):
"""
Reclaim the storage allocated by a previous `getifaddrs' call.
"""
__freeifaddrs = libc().freeifaddrs
return CFUNCTYPE(None, POINTER(ifaddrs))(__freeifaddrs)(ifa)
def hardware_type(hatype):
this = sys.modules[__name__]
return ([ x for x in [ NamedLong(n, getattr(this, n)) for n in dir(this) if n[:len('ARPHRD_')] == 'ARPHRD_' ] if x == hatype ] + [ hatype ])[0]
def eth_protocol_type(protocol):
this = sys.modules[__name__]
return ([ x for x in [ NamedLong(n, getattr(this, n)) for n in dir(this) if n[:len('ETH_P_')] == 'ETH_P_' ] if x == protocol ] + [ protocol ])[0]
def packet_type(pkttype):
return ([ x for x in [ NamedLong(n, getattr(socket, n)) for n in dir(socket) if n[:len('PACKET_')] == 'PACKET_' ] if x == pkttype ] + [ pkttype ])[0]
def addrfamily(family):
return ([ x for x in [ NamedLong(n, getattr(socket, n)) for n in dir(socket) if n[:len('AF_')] == 'AF_' ] if x == family ] + [ family ])[0]
def sockaddr2addr(ifname, addr):
"""
Convert a sockaddr pointer (addr) to a descriptive dict or None
for a void pointer.
"""
if addr:
sa = addr[0]
else:
return None
d = { 'family': addrfamily(sa.sa_family) }
if hasattr(socket, 'AF_INET6') and sa.sa_family == socket.AF_INET6:
sin6 = cast(addr, POINTER(sockaddr_in6))[0]
d['port'] = sin6.sin6_port or None
d['addr'] = ':'.join([ '%04.4x' % socket.ntohs(x) for x in sin6.sin6_addr.in6_u.u6_addr16 ])
d['flowinfo'] = sin6.sin6_flowinfo or None
d['scope_id'] = sin6.sin6_scope_id
elif hasattr(socket, 'AF_INET') and sa.sa_family == socket.AF_INET:
sin = cast(addr, POINTER(sockaddr_in))[0]
d['port'] = sin.sin_port or None
d['addr'] = '.'.join([ str(ord(x)) for x in struct.pack('I', sin.sin_addr.s_addr) ])
elif hasattr(socket, 'AF_PACKET') and sa.sa_family == socket.AF_PACKET:
sll = cast(addr, POINTER(sockaddr_ll))[0]
#d['ifindex'] = sll.sll_ifindex
hwaddr = None
if sll.sll_hatype == ARPHRD_ETHER and sll.sll_halen == 6:
hwaddr = ':'.join([ chr(x).encode('hex') for x in sll.sll_addr[:sll.sll_halen] ])
elif sll.sll_hatype == ARPHRD_SIT and sll.sll_halen == 4:
try:
hwaddr = socket.inet_ntop(socket.AF_INET,
''.join([ chr(x) for x in sll.sll_addr[:sll.sll_halen] ]))
except:
pass
d['addr'] = (ifname,
eth_protocol_type(sll.sll_protocol),
packet_type(sll.sll_pkttype),
hardware_type(sll.sll_hatype),
) + ((hwaddr is not None) and (hwaddr,) or ())
else:
pass
try:
if 'addr' in d:
d['addr'] = socket.inet_ntop(sa.sa_family,
socket.inet_pton(sa.sa_family,
d['addr']))
except:
pass
return dict([ (k, v) for k, v in d.items() if v is not None ])
def flagset(flagbits):
if isinstance(flagbits, set):
return flagbits
return NamedLongs(flagbits,
(IFF_UP,
IFF_BROADCAST,
IFF_DEBUG,
IFF_LOOPBACK,
IFF_POINTOPOINT,
IFF_NOTRAILERS,
IFF_RUNNING,
IFF_NOARP,
IFF_PROMISC,
IFF_ALLMULTI,
IFF_MASTER,
IFF_SLAVE,
IFF_MULTICAST,
IFF_PORTSEL,
IFF_AUTOMEDIA,
IFF_DYNAMIC,
IFF_LOWER_UP,
IFF_DORMANT,
))
def getifaddrs(name = None):
"""
Create a list of ifaddrs, one for each network interface on the
host machine. If successful, return the list. On errors, raises
an exception. If the optional name is not None, only entries for
that interface name are returned.
"""
ifa = POINTER(ifaddrs)()
ret = _getifaddrs(byref(ifa))
ifa0 = ifa
if ret == -1:
raise IOError(os.strerror(errno()))
try:
iflist = []
while ifa:
d = {
'name': ifa[0].ifa_name,
'flags': flagset(ifa[0].ifa_flags),
}
d['addr'] = sockaddr2addr(d['name'], ifa[0].ifa_addr)
d['netmask'] = sockaddr2addr(d['name'], ifa[0].ifa_netmask)
if ifa[0].ifa_flags & IFF_BROADCAST:
d['broadaddr'] = sockaddr2addr(d['name'], ifa[0].ifa_ifu.ifu_broadaddr)
elif ifa[0].ifa_flags & IFF_POINTOPOINT:
d['dstaddr'] = sockaddr2addr(d['name'], ifa[0].ifa_ifu.ifu_dstaddr)
#d['data'] = ifa[0].ifa_data or None
if ifa[0].ifa_data:
if (d.get('addr') is not None and
hasattr(socket, 'AF_PACKET') and
d['addr'].get('family') == socket.AF_PACKET):
nds = cast(ifa[0].ifa_data, POINTER(net_device_stats))[0]
d['data'] = {
'rx_packets': nds.rx_packets,
'tx_packets': nds.tx_packets,
'rx_bytes': nds.rx_bytes,
'tx_bytes': nds.tx_bytes,
'rx_errors': nds.rx_errors,
'tx_errors': nds.tx_errors,
'rx_dropped': nds.rx_dropped,
'tx_dropped': nds.tx_dropped,
'multicast': nds.multicast,
'collisions': nds.collisions,
'rx_length_errors': nds.rx_length_errors,
'rx_over_errors': nds.rx_over_errors,
'rx_crc_errors': nds.rx_crc_errors,
'rx_frame_errors': nds.rx_frame_errors,
'rx_fifo_errors': nds.rx_fifo_errors,
'rx_missed_errors': nds.rx_missed_errors,
'tx_aborted_errors': nds.tx_aborted_errors,
'tx_carrier_errors': nds.tx_carrier_errors,
'tx_fifo_errors': nds.tx_fifo_errors,
'tx_heartbeat_errors': nds.tx_heartbeat_errors,
'tx_window_errors': nds.tx_window_errors,
'rx_compressed': nds.rx_compressed,
'tx_compressed': nds.tx_compressed,
}
iflist.append(dict([ (k, v) for k, v in d.items() if v is not None ]))
ifa = ifa[0].ifa_next
return [ iface for iface in iflist if name is None or iface.get('name') == name ]
finally:
_freeifaddrs(ifa0)
def getaddrs(family = None, flags = OrSet([IFF_UP, IFF_RUNNING]), name = None):
flags = flagset(flags)
for a in getifaddrs(name = name):
if family is not None and a.get('addr', {}).get('family') != family:
continue
if flags:
for flag in flags:
if flag not in flagset(a.get('flags', 0)):
continue
if 'addr' in a and 'addr' in a['addr']:
yield a['addr']['addr']
def getnetaddrs(family = None, flags = OrSet([IFF_UP, IFF_RUNNING]), name = None):
flags = flagset(flags)
for a in getifaddrs(name = name):
if family is not None and a.get('addr', {}).get('family') != family:
continue
if 'netmask' in a and a.get('netmask', {}).get('family') != a.get('addr', {}).get('family') != family:
continue
if flags:
for flag in flags:
if flag not in flagset(a.get('flags', 0)):
continue
if 'addr' in a and 'addr' in a['addr']:
yield str(a['addr']['addr']) + (('netmask' in a and 'addr' in a['netmask'] and a['netmask'].get('family') == a['addr']['family']) and '/' + str(a['netmask']['addr']) or '')
def getbroadaddrs(family = None, flags = OrSet([IFF_UP, IFF_RUNNING, IFF_BROADCAST]), name = None):
flags = flagset(flags)
for a in getifaddrs(name = name):
if family is not None and a.get('broadaddr', {}).get('family') != family:
continue
if flags:
for flag in flags:
if flag not in flagset(a.get('flags', 0)):
continue
if 'broadaddr' in a and 'addr' in a['broadaddr']:
yield str(a['broadaddr']['addr']) + (('netmask' in a and 'addr' in a['netmask'] and a['netmask'].get('family') == a['broadaddr']['family']) and '/' + str(a['netmask']['addr']) or '')
def getdstaddrs(family = None, flags = OrSet([IFF_UP, IFF_RUNNING, IFF_POINTOPOINT]), name = None):
flags = flagset(flags)
for a in getifaddrs(name = None):
if family is not None and a.get('dstaddr', {}).get('family') != family:
continue
if flags:
for flag in flags:
if flag not in flagset(a.get('flags', 0)):
continue
if 'dstaddr' in a and 'addr' in a['dstaddr']:
yield a['dstaddr']['addr']
def main():
'''
Print a list of network interfaces.
'''
print 'live interface addresses:'
for a in getaddrs():
print '\t' 'addr', a
for a in getdstaddrs():
print '\t' 'dstaddr', a
for a in getnetaddrs():
print '\t' 'netaddr', a
for a in getbroadaddrs():
print '\t' 'broadaddr', a
print 'all interface details:'
for a in getifaddrs():
print '\t' + a['name'] + ':'
i = a.items()
i.sort()
for k, v in i:
if k not in ('name', 'data'):
print '\t\t' + k, `v`
if 'data' in a:
print '\t\t' 'data' + ':'
i = a['data'].items()
i.sort()
for k, v in i:
print '\t\t\t' + k, `v`
if __name__ == '__main__':
main()
|
python
|
from .main import *
from .database import *
from .headless import *
from .bdi import *
from .spq import *
from .oci import *
from .stai import *
from .starter import *
from .two_of_four_ocd_practice import *
from .two_of_four_ocd_test import *
from .extra import *
from .teacher_practice import *
from .teacher_test import *
from .teacher_starter import *
|
python
|
# Do not edit this file directly.
# It was auto-generated by: code/programs/reflexivity/reflexive_refresh
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_file")
def imgui():
http_archive(
name = "imgui",
build_file = "//bazel/deps/imgui:build.BUILD",
sha256 = "1514c3b9037137331f57abec14c6ba238f9c6a4d2c0c1f0bab3debe5afdf3854",
strip_prefix = "imgui-ec945f44b5eff1d82129233be5643abbff2845da",
urls = [
"https://github.com/Unilang/imgui/archive/ec945f44b5eff1d82129233be5643abbff2845da.tar.gz",
],
patch_cmds = [
"find . -type f -name '*.h' -exec sed -i 's/typedef unsigned short ImDrawIdx;/typedef unsigned int ImDrawIdx;/g' {} \\;",
"sed -i '1s/^/#include <cfloat>\\n/' imgui_internal.h",
"sed -i '1s/^/#include <float.h>\\n/' imgui_internal.h",
"sed -i '1s/^/#include <cfloat>\\n/' imgui.h",
"sed -i '1s/^/#include <float.h>\\n/' imgui.h",
],
)
|
python
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Perform a functional test of the status command."""
import os
import orion.core.cli
def test_no_experiments(clean_db, monkeypatch, capsys):
"""Test status with no experiments."""
monkeypatch.chdir(os.path.dirname(os.path.abspath(__file__)))
orion.core.cli.main(['status'])
captured = capsys.readouterr().out
assert captured == ""
def test_experiment_without_trials_wout_ac(clean_db, one_experiment, capsys):
"""Test status with only one experiment and no trials."""
orion.core.cli.main(['status'])
captured = capsys.readouterr().out
expected = """\
test_single_exp
===============
empty
"""
assert captured == expected
def test_experiment_wout_success_wout_ac(clean_db, single_without_success, capsys):
"""Test status with only one experiment and no successful trial."""
orion.core.cli.main(['status'])
captured = capsys.readouterr().out
expected = """\
test_single_exp
===============
status quantity
----------- ----------
broken 1
interrupted 1
new 1
reserved 1
suspended 1
"""
assert captured == expected
def test_experiment_w_trials_wout_ac(clean_db, single_with_trials, capsys):
"""Test status with only one experiment and all trials."""
orion.core.cli.main(['status'])
captured = capsys.readouterr().out
expected = """\
test_single_exp
===============
status quantity min obj
----------- ---------- ---------
broken 1
completed 1 0
interrupted 1
new 1
reserved 1
suspended 1
"""
assert captured == expected
def test_two_unrelated_w_trials_wout_ac(clean_db, unrelated_with_trials, capsys):
"""Test two unrelated experiments, with all types of trials."""
orion.core.cli.main(['status'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
status quantity
----------- ----------
broken 1
completed 1
interrupted 1
new 1
reserved 1
suspended 1
test_single_exp
===============
status quantity min obj
----------- ---------- ---------
broken 1
completed 1 0
interrupted 1
new 1
reserved 1
suspended 1
"""
assert captured == expected
def test_two_related_w_trials_wout_ac(clean_db, family_with_trials, capsys):
"""Test two related experiments, with all types of trials."""
orion.core.cli.main(['status'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
status quantity
----------- ----------
broken 1
completed 1
interrupted 1
new 1
reserved 1
suspended 1
test_double_exp_child
=====================
status quantity
----------- ----------
broken 1
completed 1
interrupted 1
new 1
reserved 1
suspended 1
"""
assert captured == expected
def test_three_unrelated_wout_ac(clean_db, three_experiments_with_trials, capsys):
"""Test three unrelated experiments with all types of trials."""
orion.core.cli.main(['status'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
status quantity
----------- ----------
broken 1
completed 1
interrupted 1
new 1
reserved 1
suspended 1
test_double_exp_child
=====================
status quantity
----------- ----------
broken 1
completed 1
interrupted 1
new 1
reserved 1
suspended 1
test_single_exp
===============
status quantity min obj
----------- ---------- ---------
broken 1
completed 1 0
interrupted 1
new 1
reserved 1
suspended 1
"""
assert captured == expected
def test_three_related_wout_ac(clean_db, three_family_with_trials, capsys):
"""Test three related experiments with all types of trials."""
orion.core.cli.main(['status'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
status quantity
----------- ----------
broken 1
completed 1
interrupted 1
new 1
reserved 1
suspended 1
test_double_exp_child
=====================
status quantity
----------- ----------
broken 1
completed 1
interrupted 1
new 1
reserved 1
suspended 1
test_double_exp_child2
======================
status quantity
----------- ----------
broken 1
completed 1
interrupted 1
new 1
reserved 1
suspended 1
"""
assert captured == expected
def test_three_related_branch_wout_ac(clean_db, three_family_branch_with_trials, capsys):
"""Test three related experiments with all types of trials."""
orion.core.cli.main(['status'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
status quantity
----------- ----------
broken 1
completed 1
interrupted 1
new 1
reserved 1
suspended 1
test_double_exp_child
=====================
status quantity
----------- ----------
broken 1
completed 1
interrupted 1
new 1
reserved 1
suspended 1
test_double_exp_grand_child
===========================
status quantity
----------- ----------
broken 1
completed 1
interrupted 1
new 1
reserved 1
suspended 1
"""
assert captured == expected
def test_one_wout_trials_w_a_wout_c(clean_db, one_experiment, capsys):
"""Test experiments, without trials, with --all."""
orion.core.cli.main(['status', '--all'])
captured = capsys.readouterr().out
expected = """\
test_single_exp
===============
id status best objective
---- -------- ----------------
"""
assert captured == expected
def test_one_w_trials_w_a_wout_c(clean_db, single_with_trials, capsys):
"""Test experiment, with all trials, with --all."""
orion.core.cli.main(['status', '--all'])
captured = capsys.readouterr().out
expected = """\
test_single_exp
===============
id status min obj
-------------------------------- ----------- ---------
ec6ee7892275400a9acbf4f4d5cd530d broken
c4c44cb46d075546824e2a32f800fece completed 0
2b5059fa8fdcdc01f769c31e63d93f24 interrupted
7e8eade99d5fb1aa59a1985e614732bc new
507496236ff94d0f3ad332949dfea484 reserved
caf6afc856536f6d061676e63d14c948 suspended
"""
assert captured == expected
def test_one_wout_success_w_a_wout_c(clean_db, single_without_success, capsys):
"""Test experiment, without success, with --all."""
orion.core.cli.main(['status', '--all'])
captured = capsys.readouterr().out
expected = """\
test_single_exp
===============
id status
-------------------------------- -----------
ec6ee7892275400a9acbf4f4d5cd530d broken
2b5059fa8fdcdc01f769c31e63d93f24 interrupted
7e8eade99d5fb1aa59a1985e614732bc new
507496236ff94d0f3ad332949dfea484 reserved
caf6afc856536f6d061676e63d14c948 suspended
"""
assert captured == expected
def test_two_unrelated_w_a_wout_c(clean_db, unrelated_with_trials, capsys):
"""Test two unrelated experiments with --all."""
orion.core.cli.main(['status', '--all'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
id status
-------------------------------- -----------
a8f8122af9e5162e1e2328fdd5dd75db broken
ab82b1fa316de5accb4306656caa07d0 completed
c187684f7c7d9832ba953f246900462d interrupted
1497d4f27622520439c4bc132c6046b1 new
bd0999e1a3b00bf8658303b14867b30e reserved
b9f1506db880645a25ad9b5d2cfa0f37 suspended
test_single_exp
===============
id status min obj
-------------------------------- ----------- ---------
ec6ee7892275400a9acbf4f4d5cd530d broken
c4c44cb46d075546824e2a32f800fece completed 0
2b5059fa8fdcdc01f769c31e63d93f24 interrupted
7e8eade99d5fb1aa59a1985e614732bc new
507496236ff94d0f3ad332949dfea484 reserved
caf6afc856536f6d061676e63d14c948 suspended
"""
assert captured == expected
def test_two_related_w_a_wout_c(clean_db, family_with_trials, capsys):
"""Test two related experiments with --all."""
orion.core.cli.main(['status', '--all'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
id status
-------------------------------- -----------
a8f8122af9e5162e1e2328fdd5dd75db broken
ab82b1fa316de5accb4306656caa07d0 completed
c187684f7c7d9832ba953f246900462d interrupted
1497d4f27622520439c4bc132c6046b1 new
bd0999e1a3b00bf8658303b14867b30e reserved
b9f1506db880645a25ad9b5d2cfa0f37 suspended
test_double_exp_child
=====================
id status
-------------------------------- -----------
45c359f1c753a10f2cfeca4073a3a7ef broken
e79761fe3fc24dcbb7850939ede84b68 completed
69928939792d67f6fe30e9b8459be1ec interrupted
5f4a9c92b8f7c26654b5b37ecd3d5d32 new
58c4019fb2f92da88a0e63fafb36b3da reserved
82f340cb9d90cbf024169926b60aeef2 suspended
"""
assert captured == expected
def test_three_unrelated_w_a_wout_c(clean_db, three_experiments_with_trials, capsys):
"""Test three unrelated experiments with --all."""
orion.core.cli.main(['status', '--all'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
id status
-------------------------------- -----------
a8f8122af9e5162e1e2328fdd5dd75db broken
ab82b1fa316de5accb4306656caa07d0 completed
c187684f7c7d9832ba953f246900462d interrupted
1497d4f27622520439c4bc132c6046b1 new
bd0999e1a3b00bf8658303b14867b30e reserved
b9f1506db880645a25ad9b5d2cfa0f37 suspended
test_double_exp_child
=====================
id status
-------------------------------- -----------
45c359f1c753a10f2cfeca4073a3a7ef broken
e79761fe3fc24dcbb7850939ede84b68 completed
69928939792d67f6fe30e9b8459be1ec interrupted
5f4a9c92b8f7c26654b5b37ecd3d5d32 new
58c4019fb2f92da88a0e63fafb36b3da reserved
82f340cb9d90cbf024169926b60aeef2 suspended
test_single_exp
===============
id status min obj
-------------------------------- ----------- ---------
ec6ee7892275400a9acbf4f4d5cd530d broken
c4c44cb46d075546824e2a32f800fece completed 0
2b5059fa8fdcdc01f769c31e63d93f24 interrupted
7e8eade99d5fb1aa59a1985e614732bc new
507496236ff94d0f3ad332949dfea484 reserved
caf6afc856536f6d061676e63d14c948 suspended
"""
assert captured == expected
def test_three_related_w_a_wout_c(clean_db, three_family_with_trials, capsys):
"""Test three related experiments with --all."""
orion.core.cli.main(['status', '--all'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
id status
-------------------------------- -----------
a8f8122af9e5162e1e2328fdd5dd75db broken
ab82b1fa316de5accb4306656caa07d0 completed
c187684f7c7d9832ba953f246900462d interrupted
1497d4f27622520439c4bc132c6046b1 new
bd0999e1a3b00bf8658303b14867b30e reserved
b9f1506db880645a25ad9b5d2cfa0f37 suspended
test_double_exp_child
=====================
id status
-------------------------------- -----------
45c359f1c753a10f2cfeca4073a3a7ef broken
e79761fe3fc24dcbb7850939ede84b68 completed
69928939792d67f6fe30e9b8459be1ec interrupted
5f4a9c92b8f7c26654b5b37ecd3d5d32 new
58c4019fb2f92da88a0e63fafb36b3da reserved
82f340cb9d90cbf024169926b60aeef2 suspended
test_double_exp_child2
======================
id status
-------------------------------- -----------
d0f4aa931345bfd864201b7dd93ae667 broken
5005c35be98025a24731d7dfdf4423de completed
c9fa9f0682a370396c8c4265c4e775dd interrupted
3d8163138be100e37f1656b7b591179e new
790d3c4c965e0d91ada9cbdaebe220cf reserved
6efdb99952d5f80f55adbba9c61dc288 suspended
"""
assert captured == expected
def test_three_related_branch_w_a_wout_c(clean_db, three_family_branch_with_trials, capsys):
"""Test three related experiments in a branch with --all."""
orion.core.cli.main(['status', '--all'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
id status
-------------------------------- -----------
a8f8122af9e5162e1e2328fdd5dd75db broken
ab82b1fa316de5accb4306656caa07d0 completed
c187684f7c7d9832ba953f246900462d interrupted
1497d4f27622520439c4bc132c6046b1 new
bd0999e1a3b00bf8658303b14867b30e reserved
b9f1506db880645a25ad9b5d2cfa0f37 suspended
test_double_exp_child
=====================
id status
-------------------------------- -----------
45c359f1c753a10f2cfeca4073a3a7ef broken
e79761fe3fc24dcbb7850939ede84b68 completed
69928939792d67f6fe30e9b8459be1ec interrupted
5f4a9c92b8f7c26654b5b37ecd3d5d32 new
58c4019fb2f92da88a0e63fafb36b3da reserved
82f340cb9d90cbf024169926b60aeef2 suspended
test_double_exp_grand_child
===========================
id status
-------------------------------- -----------
994602c021c470989d6f392b06cb37dd broken
24c228352de31010d8d3bf253604a82d completed
a3c8a1f4c80c094754c7217a83aae5e2 interrupted
d667f5d719ddaa4e1da2fbe568e11e46 new
a40748e487605df3ed04a5ac7154d4f6 reserved
229622a6d7132c311b7d4c57a08ecf08 suspended
"""
assert captured == expected
def test_two_unrelated_w_c_wout_a(clean_db, unrelated_with_trials, capsys):
"""Test two unrelated experiments with --collapse."""
orion.core.cli.main(['status', '--collapse'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
status quantity
----------- ----------
broken 1
completed 1
interrupted 1
new 1
reserved 1
suspended 1
test_single_exp
===============
status quantity min obj
----------- ---------- ---------
broken 1
completed 1 0
interrupted 1
new 1
reserved 1
suspended 1
"""
assert captured == expected
def test_two_related_w_c_wout_a(clean_db, family_with_trials, capsys):
"""Test two related experiments with --collapse."""
orion.core.cli.main(['status', '--collapse'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
status quantity
----------- ----------
broken 1
completed 1
interrupted 1
new 2
reserved 1
suspended 1
"""
assert captured == expected
def test_three_unrelated_w_c_wout_a(clean_db, three_experiments_with_trials, capsys):
"""Test three unrelated experiments with --collapse."""
orion.core.cli.main(['status', '--collapse'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
status quantity
----------- ----------
broken 1
completed 1
interrupted 1
new 2
reserved 1
suspended 1
test_single_exp
===============
status quantity min obj
----------- ---------- ---------
broken 1
completed 1 0
interrupted 1
new 1
reserved 1
suspended 1
"""
assert captured == expected
def test_three_related_w_c_wout_a(clean_db, three_family_with_trials, capsys):
"""Test three related experiments with --collapse."""
orion.core.cli.main(['status', '--collapse'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
status quantity
----------- ----------
broken 1
completed 1
interrupted 1
new 3
reserved 1
suspended 1
"""
assert captured == expected
def test_three_related_branch_w_c_wout_a(clean_db, three_family_branch_with_trials, capsys):
"""Test three related experiments with --collapse."""
orion.core.cli.main(['status', '--collapse'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
status quantity
----------- ----------
broken 1
completed 1
interrupted 1
new 3
reserved 1
suspended 1
"""
assert captured == expected
def test_two_unrelated_w_ac(clean_db, unrelated_with_trials, capsys):
"""Test two unrelated experiments with --collapse and --all."""
orion.core.cli.main(['status', '--collapse', '--all'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
id status
-------------------------------- -----------
a8f8122af9e5162e1e2328fdd5dd75db broken
ab82b1fa316de5accb4306656caa07d0 completed
c187684f7c7d9832ba953f246900462d interrupted
1497d4f27622520439c4bc132c6046b1 new
bd0999e1a3b00bf8658303b14867b30e reserved
b9f1506db880645a25ad9b5d2cfa0f37 suspended
test_single_exp
===============
id status min obj
-------------------------------- ----------- ---------
ec6ee7892275400a9acbf4f4d5cd530d broken
c4c44cb46d075546824e2a32f800fece completed 0
2b5059fa8fdcdc01f769c31e63d93f24 interrupted
7e8eade99d5fb1aa59a1985e614732bc new
507496236ff94d0f3ad332949dfea484 reserved
caf6afc856536f6d061676e63d14c948 suspended
"""
assert captured == expected
def test_two_related_w_ac(clean_db, family_with_trials, capsys):
"""Test two related experiments with --collapse and --all."""
orion.core.cli.main(['status', '--collapse', '--all'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
id status
-------------------------------- -----------
a8f8122af9e5162e1e2328fdd5dd75db broken
ab82b1fa316de5accb4306656caa07d0 completed
c187684f7c7d9832ba953f246900462d interrupted
1497d4f27622520439c4bc132c6046b1 new
ad6ea2decff2f298594b948fdaea03b2 new
bd0999e1a3b00bf8658303b14867b30e reserved
b9f1506db880645a25ad9b5d2cfa0f37 suspended
"""
assert captured == expected
def test_three_unrelated_w_ac(clean_db, three_experiments_with_trials, capsys):
"""Test three unrelated experiments with --collapse and --all."""
orion.core.cli.main(['status', '--collapse', '--all'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
id status
-------------------------------- -----------
a8f8122af9e5162e1e2328fdd5dd75db broken
ab82b1fa316de5accb4306656caa07d0 completed
c187684f7c7d9832ba953f246900462d interrupted
1497d4f27622520439c4bc132c6046b1 new
ad6ea2decff2f298594b948fdaea03b2 new
bd0999e1a3b00bf8658303b14867b30e reserved
b9f1506db880645a25ad9b5d2cfa0f37 suspended
test_single_exp
===============
id status min obj
-------------------------------- ----------- ---------
ec6ee7892275400a9acbf4f4d5cd530d broken
c4c44cb46d075546824e2a32f800fece completed 0
2b5059fa8fdcdc01f769c31e63d93f24 interrupted
7e8eade99d5fb1aa59a1985e614732bc new
507496236ff94d0f3ad332949dfea484 reserved
caf6afc856536f6d061676e63d14c948 suspended
"""
assert captured == expected
def test_three_related_w_ac(clean_db, three_family_with_trials, capsys):
"""Test three related experiments with --collapse and --all."""
orion.core.cli.main(['status', '--collapse', '--all'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
id status
-------------------------------- -----------
a8f8122af9e5162e1e2328fdd5dd75db broken
ab82b1fa316de5accb4306656caa07d0 completed
c187684f7c7d9832ba953f246900462d interrupted
1497d4f27622520439c4bc132c6046b1 new
ad6ea2decff2f298594b948fdaea03b2 new
f357f8c185ccab3037c65dcf721b9e71 new
bd0999e1a3b00bf8658303b14867b30e reserved
b9f1506db880645a25ad9b5d2cfa0f37 suspended
"""
assert captured == expected
def test_three_related_branch_w_ac(clean_db, three_family_branch_with_trials, capsys):
"""Test three related experiments in a branch with --collapse and --all."""
orion.core.cli.main(['status', '--collapse', '--all'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
id status
-------------------------------- -----------
a8f8122af9e5162e1e2328fdd5dd75db broken
ab82b1fa316de5accb4306656caa07d0 completed
c187684f7c7d9832ba953f246900462d interrupted
1497d4f27622520439c4bc132c6046b1 new
ad6ea2decff2f298594b948fdaea03b2 new
8f763d441db41d0f56e4e6aa40cc2321 new
bd0999e1a3b00bf8658303b14867b30e reserved
b9f1506db880645a25ad9b5d2cfa0f37 suspended
"""
assert captured == expected
def test_experiment_wout_child_w_name(clean_db, unrelated_with_trials, capsys):
"""Test status with the name argument and no child."""
orion.core.cli.main(['status', '--name', 'test_single_exp'])
captured = capsys.readouterr().out
expected = """test_single_exp
===============
status quantity min obj
----------- ---------- ---------
broken 1
completed 1 0
interrupted 1
new 1
reserved 1
suspended 1
"""
assert captured == expected
def test_experiment_w_child_w_name(clean_db, three_experiments_with_trials, capsys):
"""Test status with the name argument and one child."""
orion.core.cli.main(['status', '--name', 'test_double_exp'])
captured = capsys.readouterr().out
expected = """\
test_double_exp
===============
status quantity
----------- ----------
broken 1
completed 1
interrupted 1
new 1
reserved 1
suspended 1
"""
assert captured == expected
|
python
|
import json
import sqlite3
with open('../data_retrieval/authors/author_info.json') as data_file:
data = json.load(data_file)
connection = sqlite3.connect('scholarDB.db')
with connection:
cursor = connection.cursor()
for row in data:
name = row['name']
website = row['website']
email = row['email']
photo = row['photo']
affiliations = ''
for a in row['university']:
affiliations += a
if a != row['university'][-1]:
affiliations += '|'
citation_count = row['citation count']
publication_count = row['publication count']
publication_years = row['publication years']
total_downloads = row['total downloads']
cursor.execute('insert into authors values(?,?,?,?,?,?,?,?,?)', [name, website, email, photo, affiliations, citation_count, publication_count, publication_years, total_downloads])
|
python
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""
Custom Jupyterhub Authenticator to use Facebook OAuth with business manager check.
"""
import json
import os
import urllib
from tornado.web import HTTPError
from .authenticator import FBAuthenticator
class FBBusinessAuthenticator(FBAuthenticator):
scope = ["business_management", "email"]
BUSINESS_ID = os.environ.get("BUSINESS_ID")
PAGE_THRESHOLD = 100
async def authorize(self, access_token, user_id):
proof = self._get_app_secret_proof(access_token)
# check if the user has business management permission
if not await self._check_permission(access_token, "business_management", proof):
self.log.warning(
"User %s doesn't have business management permission", user_id
)
raise HTTPError(
403, "Your access token doesn't have the required permission"
)
self.log.info("User %s passed business management permission check", user_id)
# check if the user is in the business
if not await self._check_in_business(access_token, proof):
self.log.warning(
"User %s is not in the business %s", user_id, self.BUSINESS_ID
)
raise HTTPError(403, "Your are not in the business yet")
self.log.info("User %s passed business check", user_id)
return {
"name": user_id,
"auth_state": {
"access_token": access_token,
"fb_user": {"username": user_id},
},
}
async def _check_permission(self, access_token, permission, proof):
"""
Return true if the user has the given permission, false if not.
Throw a HTTP 500 error otherwise.
"""
try:
url = f"{FBAuthenticator.FB_GRAPH_EP}/me/permissions/?permission={permission}&access_token={access_token}&appsecret_proof={proof}"
with urllib.request.urlopen(url) as response:
body = response.read()
permission = json.loads(body).get("data")
return permission and permission[0]["status"] == "granted"
except Exception:
raise HTTPError(500, "Failed to check permission")
async def _check_in_business(self, access_token, proof):
"""
Return true if the user is in the given business, false if not.
Throw a HTTP 500 error otherwise.
"""
try:
url = f"{FBAuthenticator.FB_GRAPH_EP}/me/business_users?access_token={access_token}&appsecret_proof={proof}"
with urllib.request.urlopen(url) as response:
body = response.read()
body_json = json.loads(body)
return await self._check_in_page(body_json, 1)
except Exception:
raise HTTPError(500, "Authorization failed")
async def _check_in_page(self, body_json, current_page):
"""
Return false if the current page is larger thatn the threshold.
Return true if the user is in the given page.
Then recursively check the next page if it exists, return false if not.
Throw a HTTP 500 error otherwise.
"""
if current_page > self.PAGE_THRESHOLD:
return False
if self._has_business(body_json["data"]):
return True
paging = body_json.get("paging", {})
if "next" not in paging:
return False
try:
next_page_url = paging["next"]
with urllib.request.urlopen(next_page_url) as response:
body = response.read()
return await self._check_in_page(json.loads(body), current_page + 1)
except Exception:
raise HTTPError(500, "Authorization failed")
def _has_business(self, data):
"""
Given the data of one page of business users, check if the user is in the business.
Return true if the user is in the business, false otherwise.
"""
return any(
"business" in entry
and "id" in entry["business"]
and entry["business"]["id"] == self.BUSINESS_ID
for entry in data
)
|
python
|
import numpy as np
import pandas as pd
from sklearn import *
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from matplotlib import pyplot
import time
import os
showPlot=True
#prepare data
data_file_name = "../FinalCost.csv"
data_csv = pd.read_csv(data_file_name, delimiter = ';',header=None, usecols=[3,4,5,6,7,8,9,10,11,12,16,17])
#Lire ligne par ligne
data = data_csv[1:]
#Renommer les colonne
data.columns = ['ConsommationHier','MSemaineDernier','MSemaine7','ConsoMmJrAnP','ConsoMmJrMP','ConsoMMJrSmDer',
'MoyenneMoisPrec','MoyenneMMSAnPrec','MoyenneMMmAnPrec','ConsommationMaxMDer', 'PoidTot', 'SumRetrait']
# print (data.head(10))
# pd.options.display.float_format = '{:,.0f}'.format
#supprimer les lignes dont la valeur est null ( au moins une valeur null)
data = data.dropna ()
#Output Y avec son type
y=data['SumRetrait'].astype(float)
cols=['ConsommationHier','MSemaineDernier','MSemaine7','ConsoMmJrAnP','ConsoMmJrMP','ConsoMMJrSmDer',
'MoyenneMoisPrec','MoyenneMMSAnPrec','MoyenneMMmAnPrec','ConsommationMaxMDer', 'PoidTot']
x=data[cols].astype(float)
print(data.head())
x_train ,x_test ,y_train ,y_test = train_test_split( x,y, test_size=0.2 , random_state=1116)
print(type(y_test))
#print(y_test)
print(x.shape)
#Design the Regression Model
regressor =LinearRegression()
##training
regressor.fit(x_train,y_train)
#Make prediction
y_pred =regressor.predict(x_test)
# print (y_pred)
# print("---- test----")
#print(y_test)
YArray = y_test.as_matrix()
testData = pd.DataFrame(YArray)
preddData = pd.DataFrame(y_pred)
meanError = np.abs((YArray - y_pred)/YArray)*100
meanError2 = np.abs((YArray - y_pred))
print("Mean: ", meanError.mean()," - ", meanError2.mean())
dataF = pd.concat([testData,preddData], axis=1)
dataF.columns =['Real demand','predicted Demand']
dataF.to_csv('Predictions.csv')
print(">>> Test values saved into amina.csv file ")
#vendredi;2018-03-16;116700;179,10370,;753,685,127100,119800,145500,760,721,768,4000;GAB_02
Xnew = [[179,10370,753,685,127100,119800,145500,760,721,768,4000]]
# make a prediction
ynew = regressor.predict(Xnew)
# show the inputs and predicted outputs
print("X= 116700 , Predicted=%s" % ynew[0])
if showPlot:
pyplot.plot(y_pred,'r-', label='forecast')
pyplot.plot(YArray,'b-',label='actual')
pyplot.legend()
pyplot.show()
|
python
|
import numpy as np
class ZeroNoisePrng:
"""
A dummy PRNG returning zeros always.
"""
def laplace(self, *args, size=1, **kwargs):
return np.zeros(shape=size)
def exponential(self, *args, size=1, **kwargs):
return np.zeros(shape=size)
def binomial(self, *args, size=1, **kwargs):
return np.zeros(shape=size)
|
python
|
'''
@author: Sana Dev Team
Created on May 24, 2011
'''
from __future__ import with_statement
import sys, traceback
from django.conf import settings
from django.core import urlresolvers
from piston.utils import decorator
from sana import api
from sana.api.fields import REQUEST, DISPATCHABLE
CRUD = {'GET':'read', 'POST':'create','PUT':'update', 'DELETE':'delete'}
class DispatchConf(object):
''' configures and manages the dispatchables <--> dispatcher mappings '''
def __init__(self, dispatchables={}):
self.dispatchables = dispatchables
self.handlers = {}
for dispatchable, dispatcher in dispatchables.items():
self.handlers[dispatchable] = '{0}.handlers'.format(dispatcher)
self.ctx = None
self.dispatcher = None
def reload(self, dispatcher):
self.dispatcher = dispatcher
mod = __import__('{0}'.format(dispatcher), fromlist=['contexts'])
self.ctx = getattr(mod, 'paths')
def get_context(self, dispatcher, dispatchable, method='GET', format='all'):
if not self.dispatcher or self.dispatcher != dispatcher:
self.reload(dispatcher)
p = self.ctx.get(dispatchable,{})
m = p.get(method, {})
return m.get(format,None)
def get_dispatcher(self, dispatchable):
return self.dispatchables.get(dispatchable, None)
dispatchconf = DispatchConf(dispatchables=settings.DISPATCHABLES)
def dispatch(operation='POST'):
''' Adds form attr to a request and is intended to handle all CRUD requests.
Note: Only 'POST' requests will be validated via django's
Form.is_valid(). All other requests will treat the request data as the
initial parameter for the Form.__init__ method in essence parsing any
query strings.
'''
@decorator
def wrap(f, handler, request, *a, **kwa):
# gets the dispatchable form we will validate
klass = handler.__class__
if hasattr(klass, 'v_form'):
v_form = getattr(klass, 'v_form')
else:
return api.ERROR(u'No valid dispatchable form')
form = v_form(data=getattr(request, REQUEST.CONTENT))
if operation == 'POST':
if not form.is_valid():
errs = dict((key, [unicode(v) for v in values]) for key,values in form.errors.items())
return api.FAIL(errs)
# set attributes
setattr(request, 'dispatch_form', form)
setattr(request, DISPATCHABLE.DATA, form.dispatch_data)
return f(handler, request, *a, **kwa)
return wrap
def dispatcher(klass):
''' Decorator indicating a class method will dispatch a dispatchable object.
klass => A class that extends piston.handler.BaseHandler
Looks first the 'dispatchable'. If not set, an attempt will be made to
look up the dispatchable based on the klass 'model' attribute
'''
def wrap(klass):
''' Verifies that a dispatchable attribute is set and sets the callback
to use for dispatching requests upstreams.
The callback may be a NoneType if not set in settings.py
'''
if not hasattr(klass, 'dispatchable'):
if hasattr(klass, 'model'):
setattr(klass,'dispatchable', klass.model.__name__.lower())
else:
setattr(klass,'dispatchable', None)
# get the crud handler callback which will dipatch upstream
callback = mdispatch_handler(klass.dispatchable)
setattr(klass, '_mdispatcher', callback)
wrap(klass)
return klass
def dispatch_reverse(namespace, dispatchable, method='read',
dconf='dispatch_urls', format=None, suffix=None):
''' Looks up a middleware handler CRUD method
namespace => the namespace of the handler
dispatchable => the type of dispatchable that will be sent
method => the CRUD method name
dconf => a module name containing the name/url mappings formatted as
per the standard django urls.py
format => use if multiple formats are supported; i.e json, xml
suffix => an additional flag; implementation dependent
'''
if method not in CRUD.values():
raise Exception
urlconf = '.'.join((namespace,dconf))
parts = [dispatchable,method,]
name = '-'.join(parts)
if format:
name+= '-' + format
if suffix:
name+= '-' + suffix
resolver = urlresolvers.get_resolver(urlconf)
try:
return resolver.reverse(name)
except Exception as e:
tb = sys.exc_info()[2]
for item in traceback.format_tb(tb):
print 'dispatch_reverse:::' , item
return ''
def mdispatch_handler(dispatchable):
''' Gets the middleware handler which will send the dispatchables upstream
or None if not available.
'''
try:
module = dispatchconf.get_dispatcher(dispatchable)
uconf = '{0}.{1}'.format(module, 'urls')
match = urlresolvers.reverse(dispatchable, urlconf=uconf)
resource, _, _ = urlresolvers.get_resolver(uconf).resolve(match)
return resource.handler
except Exception as e:
return None
|
python
|
"""You are given an integer n, the number of teams in a tournament that has strange rules:
If the current number of teams is even, each team gets paired with another team. A total of n / 2 matches are played, and n / 2 teams advance to the next round.
If the current number of teams is odd, one team randomly advances in the tournament, and the rest gets paired. A total of (n - 1) / 2 matches are played, and (n - 1) / 2 + 1 teams advance to the next round.
Return the number of matches played in the tournament until a winner is decided.
Example 1:
Input: n = 7
Output: 6
Explanation: Details of the tournament:
- 1st Round: Teams = 7, Matches = 3, and 4 teams advance.
- 2nd Round: Teams = 4, Matches = 2, and 2 teams advance.
- 3rd Round: Teams = 2, Matches = 1, and 1 team is declared the winner.
Total number of matches = 3 + 2 + 1 = 6."""
n = 14
# number of matchs played until winnner is decided
matches = []
while n != 1:
if n % 2 == 0:
matches.append(n // 2)
n = n // 2
else:
matches.append((n - 1) // 2)
n = ((n - 1) // 2) + 1
print(matches)
print(sum(matches))
|
python
|
from django.contrib import admin
from publicmarkup.legislation.models import Resource, Legislation, Title, Section
class LegislationAdmin(admin.ModelAdmin):
prepopulated_fields = {"slug": ("name",)}
class SectionInline(admin.TabularInline):
model = Section
extra = 5
class TitleAdmin(admin.ModelAdmin):
inlines = [SectionInline,]
list_filter = ('legislation',)
admin.site.register(Resource)
admin.site.register(Legislation, LegislationAdmin)
admin.site.register(Title, TitleAdmin)
|
python
|
from pyscenario import *
from util.arg import *
from util.scene import RoadSideGen
class Scenario(PyScenario):
def get_description(self):
return 'Test random boxes at the border of roads'
def get_map(self):
return arg_get('-map', 'shapes-1')
def init(self):
gen = RoadSideGen(self.get_all_road_curves(), self.coord)
gen.place_scene_boxes(self)
|
python
|
def two(x, y, *args):
print(x, y, args)
if __name__ == '__main__':
two('a', 'b', 'c')
|
python
|
#!/usr/bin/env python3
from _common import StreamContext
import sys
from argparse import ArgumentParser
import itertools
from shelltools.ressample import ReservoirSampler
from typing import Sequence
def _has_dupes(items: Sequence):
if len(items) <= 1:
return False
if len(items) == 2:
return items[0] == items[1]
# would len(set(items)) < len(items) be faster?
for i in range(len(items)):
for j in range(i + 1, len(items)):
if items[i] == items[j]:
return True
return False
class Generator(object):
avoid_dupes = False
# noinspection PyMethodMayBeStatic
def _uniques(self, iterator):
for combo in iterator:
if not _has_dupes(combo):
yield combo
def generate(self, input_args):
iterables = []
for input_arg in input_args:
with StreamContext(input_arg, 'r') as ifile:
iterables.append([line.rstrip("\r\n") for line in ifile])
all_combos = itertools.product(*iterables)
if self.avoid_dupes:
return self._uniques(all_combos)
else:
return all_combos
def render(selection, delimiter, ofile=sys.stdout):
print(*selection, sep=delimiter, file=ofile)
def main():
parser = ArgumentParser(description="Print combinations of items from multiple streams.", epilog="Note that all input content is stored in memory.")
parser.add_argument("input", nargs='+', metavar="FILE", help="multiple files from which product will be printed")
parser.add_argument("-k", "--sample", type=int, metavar="K", help="sample size")
parser.add_argument("-d", "--delimiter", default=' ', metavar="STR", help="set delimiter between items on each line")
parser.add_argument("-u", "--unique", action='store_true', help="only print combinations with unique items")
args = parser.parse_args()
if len(args.input) == 1:
print("streamproduct: n > 1 arguments required", file=sys.stderr)
return 1
# TODO remove this restriction by caching stdin if present more than once
if len(list(filter(lambda x: x == '-' or x == '/dev/stdin', args.input))) > 1:
print("streamproduct: at most one argument may specify standard input", file=sys.stderr)
return 1
g = Generator()
g.avoid_dupes = args.unique or False
if args.sample is not None:
sampler = ReservoirSampler()
combos = sampler.collect(g.generate(args.input), args.sample)
else:
combos = g.generate(args.input)
for selection in combos:
render(selection, args.delimiter)
return 0
|
python
|
import sys
import argparse
import matplotlib.pyplot as plt
import pandas as pd
import tensorflow as tf
from sklearn.utils import shuffle
def main(_):
# read data
df = pd.read_csv('../../data/boston/boston_train.csv', header=0)
print(df.describe())
f, ax1 = plt.subplots()
for i in range(1, 8):
number = 420 + i
ax1.locator_params(nbins=3)
ax1 = plt.subplot(number)
plt.title(list(df)[i])
ax1.scatter(df[df.columns[i]], df['MEDV'])
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
plt.show()
x_ph = tf.placeholder(tf.float32, name='X')
y_ph = tf.placeholder(tf.float32, name='Y')
with tf.name_scope('Model'):
w = tf.get_variable('W', shape=[2], initializer=tf.truncated_normal_initializer())
b = tf.get_variable('b', shape=[2], initializer=tf.truncated_normal_initializer())
y_model = tf.multiply(x_ph, w) + b
with tf.name_scope('CostFunction'):
cost = tf.reduce_mean(tf.pow(y_ph - y_model, 2))
train_op = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate).minimize(cost)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
def print_params(w_op, b_op):
b_val = sess.run(b_op)
w_val = sess.run(w_op)
print('w: {} b: {}'.format(w_val, b_val))
def plot_params(w_op, b_op, x_data, y_data):
b_val = sess.run(b_op)
w_val = sess.run(w_op)
plt.scatter(x_data[:, 0], y_data, marker='o')
plt.scatter(x_data[:, 1], y_data, marker='x')
plt.plot(x_data, w_val * x_data + b_val)
plt.show()
# x=[INDUS, AGE] y=[MEDV]
x_values = df[['INDUS', 'AGE']].values.astype(float)
y_values = df['MEDV'].values.astype(float)
print_params(w, b)
plot_params(w, b, x_values, y_values)
for a in range(1, FLAGS.train_steps + 1):
cost_sum = 0.0
for i, j in zip(x_values, y_values):
_, cost_val = sess.run([train_op, cost], feed_dict={x_ph: i, y_ph: j})
cost_sum += cost_val
x_values, y_values = shuffle(x_values, y_values)
if a % 5 == 0:
print('@{:-3d}: {:.3f}'.format(a, cost_sum / x_values.shape[0]))
print_params(w, b)
plot_params(w, b, x_values, y_values)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--learning_rate', type=float, default=0.005,
help='The initial learning rate')
parser.add_argument('--train_steps', type=int, default=100,
help='The number of training steps')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
|
python
|
# Copyright 2021 Michal Krassowski
from collections import defaultdict
from time import time
from jedi.api.classes import Completion
from .logger import log
class LabelResolver:
def __init__(self, format_label, time_to_live=60 * 30):
self.format_label = format_label
self._cache = {}
self._time_to_live = time_to_live
self._cache_ttl = defaultdict(set)
self._clear_every = 2
# see https://github.com/davidhalter/jedi/blob/master/jedi/inference/helpers.py#L194-L202
self._cached_modules = {'pandas', 'numpy', 'tensorflow', 'matplotlib'}
def clear_outdated(self):
now = self.time_key()
to_clear = [
timestamp
for timestamp in self._cache_ttl
if timestamp < now
]
for time_key in to_clear:
for key in self._cache_ttl[time_key]:
del self._cache[key]
del self._cache_ttl[time_key]
def time_key(self):
return int(time() / self._time_to_live)
def get_or_create(self, completion: Completion):
if not completion.full_name:
use_cache = False
else:
module_parts = completion.full_name.split('.')
use_cache = module_parts and module_parts[0] in self._cached_modules
if use_cache:
key = self._create_completion_id(completion)
if key not in self._cache:
if self.time_key() % self._clear_every == 0:
self.clear_outdated()
self._cache[key] = self.resolve_label(completion)
self._cache_ttl[self.time_key()].add(key)
return self._cache[key]
return self.resolve_label(completion)
def _create_completion_id(self, completion: Completion):
return (
completion.full_name, completion.module_path,
completion.line, completion.column,
self.time_key()
)
def resolve_label(self, completion):
try:
sig = completion.get_signatures()
return self.format_label(completion, sig)
except Exception as e: # pylint: disable=broad-except
log.warning(
'Something went wrong when resolving label for {completion}: {e}',
completion=completion, e=e
)
|
python
|
import pandas as pd
import numpy as np
#seri olusturma
#s = pd.Series(data, index=index) ile seri olusturulur
# s = pd.Series(np.random.randn(5)) #index --> 0,1,2,3,4
# s = pd.Series(np.random.randn(5),index=['a','b','c','d','e'])
# print(s)
# print('-'*50)
# print(s.index)
# print('*'*50)
# data = {'a':23,'b':24,'c':25}
# s = pd.Series(data)
# s = pd.Series(data,index=['b','c','a'])
# s = pd.Series(data,index=['e','c','a','d'])
# print(s)
# print('*'*50)
#serilerin ndarrray ile benzerligi
# s = pd.Series(np.random.randn(5))
# print(s)
# print('-'*50)
# print(s[2])
# print('-'*50)
# print(s[:2])
# print('-'*50)
# print(s[2:])
# print('-'*50)
# print(s[s > s.median()])
# print('-'*50)
# print(s[[3,2]])
# print('-'*50)
# print(s.dtype)
# print('-'*50)
# print(s.array)
# print('-'*50)
# print(s.to_numpy)
# print('*'*50)
#serilerin dict yapısı ile benzerligi
# s = pd.Series(np.random.randn(5),index=['a','b','c','d','e'])
# print(s)
# print('-'*50)
# print(s['c'])
# print('-'*50)
# s['f'] = 2
# print(s)
# print('-'*50)
# print('a' in s)
#serilerde matematikler islemler
# s = pd.Series(np.random.randn(5),index=['a','b','c','d','e'])
# print(s)
# print('-'*50)
# print(s + s)
# print('-'*50)
# print(s * 3)
# print('-'*50)
# print(s[2:] + s[:-1]) # NaN degerlerini s.dropna metodu ile silebiliriz
#Name degeri
# s = pd.Series(np.random.randn(5),index=['a','b','c','d','e'],name='Tutorial')
# print(s)
# print('-'*50)
# print(s.name)
# print('-'*50)
# s = s.rename('Yeni Tutorial')
# print(s.name)
|
python
|
import numpy as np
def fieldFromCurrentLoop(current, radius, R, Z):
"""
Checks inputs to fieldFromCurrentLoop() for TypeErrors etc.
"""
if type(current) != type(0.):
raise TypeError("Current should be a float, "+str(type(current))+" detected.")
if type(radius) != type(0.):
raise TypeError("Radius should be a float, "+str(type(radius))+" detected.")
if R.ndim != 2:
raise IndexError("R should be a 2D gridded array, "+str(R.ndim)+" dimensions detected.")
if Z.ndim != 2:
raise IndexError("Z should be a 2D gridded array, "+str(Z.ndim)+" dimensions detected.")
def makeCurrentLayer(numLoops, separation, startLoopPosition, current, radius, R, Z):
"""
Checks inputs to makeCurrentLayer() for TypeErrors etc.
"""
if type(numLoops) != type(0):
raise TypeError("numLoops should be an int, "+str(type(numLoops))+" detected.")
if type(separation) != type (0.):
raise TypeError("separation should be a float, "+str(type(separation))+" detected.")
if type(startLoopPosition) != type (0.):
raise TypeError("startLoopPosition should be a float, "+str(type(startLoopPosition))+" detected.")
if type(current) != type(0.):
raise TypeError("current should be a double, "+str(type(current))+" detected.")
if type(radius) != type(0.):
raise TypeError("radius should be a double, "+str(type(radius))+" detected.")
if R.ndim != 2:
raise IndexError("R should be a 2D gridded array, "+str(R.ndim)+" dimensions detected.")
if Z.ndim != 2:
raise IndexError("Z should be a 2D gridded array, "+str(Z.ndim)+" dimensions detected.")
def makeCoil(numLayers, numLoopsPerLayer, layerSeparation, loopSeparation, startPosition, current, minRadius, R, Z):
"""
Checks inputs to makeCoil() for TypeErrors etc.
"""
if type(numLayers) != type(0):
raise TypeError("numLayers should be an int, "+str(type(numLayers))+" detected.")
if type(numLoopsPerLayer) != type(0):
raise TypeError("numLoopsPerLayer should be an int, "+str(type(numLoops))+" detected.")
if type(layerSeparation) != type (0.):
raise TypeError("layerSeparation should be a float, "+str(type(separation))+" detected.")
if type(loopSeparation) != type (0.):
raise TypeError("loopSeparation should be a float, "+str(type(separation))+" detected.")
if type(startPosition) != type (0.):
raise TypeError("startPosition should be a float, "+str(type(startPosition))+" detected.")
if type(current) != type(0.):
raise TypeError("current should be a double, "+str(type(current))+" detected.")
if type(minRadius) != type(0.):
raise TypeError("minRadius should be a double, "+str(type(radius))+" detected.")
if R.ndim != 2:
raise IndexError("R should be a 2D gridded array, "+str(R.ndim)+" dimensions detected.")
if Z.ndim != 2:
raise IndexError("Z should be a 2D gridded array, "+str(Z.ndim)+" dimensions detected.")
def makeMagnet(numCoils, numLayers, numLoopsPerLayer, layerSeparation, loopSeparation, startPosition, current, minRadius, R, Z):
"""
Checks inputs to makeMagnet() for TypeErrors etc.
"""
if type(numCoils) != type(0):
raise TypeError("numLayers should be an int, "+str(type(numCoils))+" detected.")
if type(numLayers[0]) != type(0):
raise TypeError("numLayers should be a list of ints, "+str(type(numLayers[0]))+" detected.")
if len(numLayers) != numCoils:
raise IndexError("numLayers should be a list of length numCoils ("+str(numCoils)+"), but numLayers has length "+str(len(numLayers))+".")
if type(numLoopsPerLayer[0]) != type(0):
raise TypeError("numLoopsPerLayer should be a list of ints, "+str(type(numLoopsPerLayer[0]))+" detected.")
if len(numLoopsPerLayer) != numCoils:
raise IndexError("numLoopsPerLayer should be a list of length numCoils ("+str(numCoils)+"), but numLoopsPerLayer has length "+str(len(numLoopsPerLayer))+".")
if type(layerSeparation[0]) != type (0.):
raise TypeError("layerSeparation should be a list of floats, "+str(type(layerSeparation[0]))+" detected.")
if len(layerSeparation) != numCoils:
raise IndexError("layerSeparation should be a list of length numCoils ("+str(numCoils)+"), but layerSeparation has length "+str(len(layerSeparation))+".")
if type(loopSeparation[0]) != type (0.):
raise TypeError("loopSeparation should be a list of floats, "+str(type(loopSeparation[0]))+" detected.")
if len(loopSeparation) != numCoils:
raise IndexError("loopSeparation should be a list of length numCoils ("+str(numCoils)+"), but loopSeparation has length "+str(len(loopSeparation))+".")
if type(startPosition[0]) != type (0.):
raise TypeError("startPosition should be a list of floats, "+str(type(startPosition[0]))+" detected.")
if len(startPosition) != numCoils:
raise IndexError("startPosition should be a list of length numCoils ("+str(numCoils)+"), but startPosition has length "+str(len(startPosition))+".")
if type(current[0]) != type(0.):
raise TypeError("current should be a list of floats, "+str(type(current[0]))+" detected.")
if len(current) != numCoils:
raise IndexError("current should be a list of length numCoils ("+str(numCoils)+"), but current has length "+str(len(current))+".")
if type(minRadius[0]) != type(0.):
raise TypeError("minRadius should be a list of floats, "+str(type(radius[0]))+" detected.")
if len(minRadius) != numCoils:
raise IndexError("minRadius should be a list of length numCoils ("+str(numCoils)+"), but minRadius has length "+str(len(minRadius))+".")
if R.ndim != 2:
raise IndexError("R should be a 2D gridded array, "+str(R.ndim)+" dimensions detected.")
if Z.ndim != 2:
raise IndexError("Z should be a 2D gridded array, "+str(Z.ndim)+" dimensions detected.")
def calcFieldOnAxis(numLayers, numLoopsPerLayer, layerSeparation, loopSeparation, startPosition, current, minRadius, z):
"""
Checks inputs to calcFieldOnAxis() for TypeErrors etc.
"""
if type(numLayers) != type(0):
raise TypeError("numLayers should be an int, "+str(type(numLayers))+" detected.")
if type(numLoopsPerLayer) != type(0):
raise TypeError("numLoopsPerLayer should be an int, "+str(type(numLoops))+" detected.")
if type(layerSeparation) != type (0.):
raise TypeError("layerSeparation should be a float, "+str(type(separation))+" detected.")
if type(loopSeparation) != type (0.):
raise TypeError("loopSeparation should be a float, "+str(type(separation))+" detected.")
if type(startPosition) != type (0.):
raise TypeError("startPosition should be a float, "+str(type(startPosition))+" detected.")
if type(current) != type(0.):
raise TypeError("current should be a double, "+str(type(current))+" detected.")
if type(minRadius) != type(0.):
raise TypeError("minRadius should be a double, "+str(type(radius))+" detected.")
if z.ndim != 1:
raise IndexError("z should be a 1D array (i.e. not gridded with r), "+str(z.ndim)+" dimensions detected.")
def calcMagnetFieldOnAxis(numCoils, numLayers, numLoopsPerLayer, layerSeparation, loopSeparation, startPosition, current, minRadius, z):
"""
Checks inputs to calcMagnetFieldOnAxis() for TypeErrors etc.
"""
if type(numCoils) != type(0):
raise TypeError("numLayers should be an int, "+str(type(numCoils))+" detected.")
if type(numLayers[0]) != type(0):
raise TypeError("numLayers should be an int, "+str(type(numLayers[0]))+" detected.")
if len(numLayers) != numCoils:
raise IndexError("numLayers should be a list of length numCoils ("+str(numCoils)+"), but numLayers has length "+str(len(numLayers))+".")
if type(numLoopsPerLayer[0]) != type(0):
raise TypeError("numLoopsPerLayer should be an int, "+str(type(numLoops[0]))+" detected.")
if len(numLoopsPerLayer) != numCoils:
raise IndexError("numLoopsPerLayer should be a list of length numCoils ("+str(numCoils)+"), but numLoopsPerLayer has length "+str(len(numLoopsPerLayer))+".")
if type(layerSeparation[0]) != type (0.):
raise TypeError("layerSeparation should be a float, "+str(type(layerSeparation[0]))+" detected.")
if len(layerSeparation) != numCoils:
raise IndexError("layerSeparation should be a list of length numCoils ("+str(numCoils)+"), but layerSeparation has length "+str(len(layerSeparation))+".")
if type(loopSeparation[0]) != type (0.):
raise TypeError("loopSeparation should be a float, "+str(type(loopSeparation[0]))+" detected.")
if len(loopSeparation) != numCoils:
raise IndexError("loopSeparation should be a list of length numCoils ("+str(numCoils)+"), but loopSeparation has length "+str(len(loopSeparation))+".")
if type(startPosition[0]) != type (0.):
raise TypeError("startPosition should be a float, "+str(type(startPosition[0]))+" detected.")
if len(startPosition) != numCoils:
raise IndexError("startPosition should be a list of length numCoils ("+str(numCoils)+"), but startPosition has length "+str(len(startPosition))+".")
if type(current[0]) != type(0.):
raise TypeError("current should be a float, "+str(type(current[0]))+" detected.")
if len(current) != numCoils:
raise IndexError("current should be a list of length numCoils ("+str(numCoils)+"), but current has length "+str(len(current))+".")
if type(minRadius[0]) != type(0.):
raise TypeError("minRadius should be a float, "+str(type(minRadius[0]))+" detected.")
if len(minRadius) != numCoils:
raise IndexError("minRadius should be a list of length numCoils ("+str(numCoils)+"), but minRadius has length "+str(len(minRadius))+".")
if z.ndim != 1:
raise IndexError("z should be a 1D array (i.e. not gridded with r), "+str(z.ndim)+" dimensions detected.")
def printField(R, Z, Br, Bz, saveName, description):
"""
Checks inputs to printField() for TypeErrors etc.
"""
if R.ndim != 2:
raise IndexError("R should be a 2D gridded array, "+str(R.ndim)+" dimensions detected.")
if Z.ndim != 2:
raise IndexError("Z should be a 2D gridded array, "+str(Z.ndim)+" dimensions detected.")
if Br.ndim != 2:
raise IndexError("Br should be a 2D gridded array, "+str(Br.ndim)+" dimensions detected.")
if Bz.ndim != 2:
raise IndexError("Bz should be a 2D gridded array, "+str(Bz.ndim)+" dimensions detected.")
if type(saveName) != type("I am a string"):
raise TypeError("saveName should be a string, "+str(type(saveName))+" detected.")
if description != None:
if type(description) != type("I am a string"):
raise TypeError("description should be a string, "+str(type(description))+"detected.")
def readOriginalFiles(fileList, sensorList=None, surveyedOffsets=None, surveyedAngles=None):
if type(fileList[0]) != type("I am a string"):
raise TypeError("fileList should be a python-like list of strings, "+str(type(fileList[0]))+" detected.")
def readFile(fileName):
if type(fileName) != type("I am a string"):
raise TypeError("fileName should be a string, "+str(type(fileName))+" detected.")
def setSensorPosition(sensorNumber, xPosition, yPosition, phiRotation):
if type(sensorNumber) != type(0):
raise TypeException("sensorNumber must be an integer between 0 and 6, type "+str(type(sensorNumber))+" detected with value "+str(sensorNumber)+".")
if type(xPosition) != type(0.):
raise TypeException("xPosition should be a float, "+str(type(xPosition))+" detected.")
if type(yPosition) != type(0.):
raise TypeException("yPosition should be a float, "+str(type(yPosition))+" detected.")
if type(phiRotation) != type(0.):
raise TypeException("phiRotation should be a float, "+str(type(phiRotation))+" detected.")
def getSensorPosition(sensorNumber):
if type(sensorNumber) != type(0):
raise TypeError("sensorNumber should be an integer between 0 and 6, type "+string(type(sensorNumber))+" detected.")
def rotateMapperCoordinates(rotationAngle, sensorNumber, x_local, B_local):
if type(rotationAngle) != type(0.0):
raise TypeError("rotationAngle should be a float, "+str(type(rotationAngle))+" detected.")
if type(sensorNumber) != type(0):
raise TypeError("x_local should be an int between 0 and 6, "+str(type(x_local))+" detected.")
if type(x_local) != type(0.0):
raise TypeError("x_local should be a float, "+str(type(x_local))+" detected.")
if type(B_local[0]) != type(0.0):
raise TypeError("B_local should be a list of floats, "+str(type(B_local[0]))+" detected.")
if type(B_local[1]) != type(0.0):
raise TypeError("B_local should be a list of floats, "+str(type(B_local[1]))+" detected.")
if type(B_local[2]) != type(0.0):
raise TypeError("B_local should be a list of floats, "+str(type(B_local[2]))+" detected.")
if len(B_local) != 3:
raise TypeError("B_local should be a list of length 3, length "+str(len(B_local))+" detected.")
def rotateToSurveyCoordinates(x_mapper, B_mapper, offsets, angles):
test = np.array([0.0, 0.0, 0.0])
if type(x_mapper.dtype) != type(test.dtype):
raise TypeError("x_mapper should have type numpy.float64, "+str(type(x_mapper.dtype))+" detected")
if x_mapper.size != 3:
raise TypeError("x_mapper should have three components, "+str(x_mapper.size)+" components detected")
if type(B_mapper.dtype) != type(test.dtype):
raise TypeError("B_mapper should have type numpy.float64, "+str(type(B_mapper.dtype))+" detected")
if B_mapper.size != 3:
raise TypeError("B_mapper should have three components, "+str(B_mapper.size)+" components detected")
if type(offsets.dtype) != type(test.dtype):
raise TypeError("offsets should have type numpy.float64, "+str(type(offsets.dtype))+" detected")
if offsets.size != 3:
raise TypeError("offsets should have three components, "+str(offsets.size)+" components detected")
if type(angles.dtype) != type(test.dtype):
raise TypeError("angles should have type numpy.float64, "+str(type(angles.dtype))+" detected")
if angles.size != 3:
raise TypeError("angles should have three components, "+str(angles.size)+" components detected")
def plotVariables(data, xAxisVariable, yAxisVariable, zAxisVariable, cutVariable, HallProbeList, xRange, yRange, zRange, cutRange):
polarVariables = ['r', 'phi', 'z', 'Br', 'Bphi', 'Bz', 'B', 'probe', 't', 'date']
cartesianVariables = ['x', 'y', 'z', 'Bx', 'By', 'Bz', 'B', 'probe', 't', 'date']
# 1. Make sure axis variables are strings:
if type(xAxisVariable) != type('string'):
raise TypeError('x-axis variable should be a string, e.g. \'x\' or \'r\'. Type '+str(type(xAxisVariable))+' detected.')
if type(yAxisVariable) != type('string') and yAxisVariable != None:
raise TypeError('y-axis variable should be a string, e.g. \'x\' or \'r\'. Type '+str(type(yAxisVariable))+' detected.')
if type(zAxisVariable) != type('string') and zAxisVariable != None:
raise TypeError('z-axis variable should be a string, e.g. \'x\' or \'r\'. Type '+str(type(zAxisVariable))+' detected.')
if type(cutVariable) != type('string') and cutVariable != None:
raise TypeError('cut-variable should be a string, e.g. \'x\' or \'r\'. Type '+str(type(cutVariable))+' detected.')
# 2. Make sure they're the *right strings for the data type*:
if data[0].identifier() == 'Polar Data':
if xAxisVariable not in polarVariables:
raise TypeError("x-axis variable must be a valid Polar co-ordinate or field component: "+xAxisVariable+" was requested.")
if yAxisVariable not in polarVariables and yAxisVariable != None:
raise TypeError("y-axis variable must be a valid Polar co-ordinate or field component: "+yAxisVariable+" was requested.")
if zAxisVariable not in polarVariables and zAxisVariable != None:
raise TypeError("z-axis variable must be a valid Polar co-ordinate or field component: "+zAxisVariable+" was requested.")
if cutVariable not in polarVariables and cutVariable != None:
raise TypeError("cut-variable must be a valid Polar co-ordinate or field component: "+cutVariable+" was requested.")
if data[0].identifier() == 'Cartesian Data':
if xAxisVariable not in cartesianVariables:
raise TypeError("x-axis variable must be a valid Cartesian co-ordinate or field component: "+xAxisVariable+" was requested.")
if yAxisVariable not in cartesianVariables and yAxisVariable != None:
raise TypeError("y-axis variable must be a valid Cartesian co-ordinate or field component: "+yAxisVariable+" was requested.")
if zAxisVariable not in cartesianVariables and zAxisVariable != None:
raise TypeError("z-axis variable must be a valid Cartesian co-ordinate or field component: "+zAxisVariable+" was requested.")
if cutVariable not in cartesianVariables and cutVariable != None:
raise TypeError("cut-variable must be a valid Cartesian co-ordinate or field component: "+cutVariable+" was requested.")
# 3. Make sure we don't have a spurious number of hall probes being requested, that they're in the correct range and are all ints:
if HallProbeList != None:
if len(HallProbeList) > 7:
raise TypeError("Too many entries in list of Hall probes. Maximum considered = 7, "+str(len(HallProbeList))+" requested.")
for probe in range(0, len(HallProbeList)):
if type(HallProbeList[probe]) != type(0):
raise TypeError("Hall probe identifiers should be ints, probe "+str(probe)+" in list is of type "+str(type(HallProbeList[probe]))+".")
if probe > 6 or probe < 0:
raise TypeError("Hall probe "+str(probe)+" in list is out of range. Valid probe ID's are 0..6, but "+str(HallProbeList[probe])+" was given.")
# 4. Make sure xRange, yRange, zRange are all sensible:
if xRange != None:
if len(xRange) != 2:
raise TypeError("xRange is specified as [min, max], list of length "+str(len(xRange))+" detected.")
for x in range(0, len(xRange)):
if xAxisVariable != 'probe' and xAxisVariable != 't' and xAxisVariable != 'date':
# should be using floats:
if type(xRange[x]) != type(0.0):
raise TypeError("xRange should be a list of floats, xRange["+str(x)+"] is of type "+str(type(xRange[x]))+".")
else:
# should be using ints:
if type(xRange[x]) != type(0):
raise TypeError("xRange should be a list of ints, xRange["+str(x)+"] is of type "+str(type(xRange[x]))+".")
# Finally, check that min < max:
if xRange[0] > xRange[1]:
raise TypeError("xRange should be specified as [min, max], but xRange[0] > xRange[1]: ("+str(xRange[0])+", "+str(xRange[1])+") given.")
if yRange != None:
if len(yRange) != 2:
raise TypeError("yRange is specified as [min, max], list of length "+str(len(yRange))+" detected.")
for y in range(0, len(yRange)):
if yAxisVariable != 'probe' and xAxisVariable != 't' and xAxisVariable != 'date':
# should be using floats:
if type(xRange[y]) != type(0.0):
raise TypeError("yRange should be a list of floats, yRange["+str(y)+"] is of type "+str(type(yRange[y]))+".")
else:
# should be using ints:
if type(yRange[y]) != type(0):
raise TypeError("yRange should be a list of ints, yRange["+str(y)+"] is of type "+str(type(yRange[y]))+".")
# Finally, check that min < max:
if yRange[0] > yRange[1]:
raise TypeError("yRange should be specified as [min, max], but yRange[0] > yRange[1]: ("+str(yRange[0])+", "+str(yRange[1])+") given.")
if zRange != None:
if len(zRange) != 2:
raise TypeError("zRange is specified as [min, max], list of length "+str(len(zRange))+" detected.")
for z in range(0, len(zRange)):
if zAxisVariable != 'probe' and zAxisVariable != 't' and zAxisVariable != 'date':
# should be using floats:
if type(zRange[z]) != type(0.0):
raise TypeError("zRange should be a list of floats, zRange["+str(z)+"] is of type "+str(type(zRange[z]))+".")
else:
# should be using ints:
if type(zRange[z]) != type(0):
raise TypeError("zRange should be a list of ints, zRange["+str(z)+"] is of type "+str(type(zRange[z]))+".")
# Finally, check that min < max:
if zRange[0] > zRange[1]:
raise TypeError("zRange should be specified as [min, max], but zRange[0] > zRange[1]: ("+str(zRange[0])+", "+str(zRange[1])+") given.")
if cutRange != None:
if len(cutRange) != 2:
raise TypeError("cutRange is specified as [min, max], list of length "+str(len(cutRange))+" detected.")
for z in range(0, len(cutRange)):
if cutVariable != 'probe' and cutVariable != 't' and cutVariable != 'date':
# should be using floats:
if type(cutRange[z]) != type(0.0):
raise TypeError("cutRange should be a list of floats, cutRange["+str(z)+"] is of type "+str(type(cutRange[z]))+".")
else:
# should be using ints:
if type(cutRange[z]) != type(0):
raise TypeError("cutRange should be a list of ints, cutRange["+str(z)+"] is of type "+str(type(cutRange[z]))+".")
# Finally, check that min < max:
if cutRange[0] > cutRange[1]:
raise TypeError("cutRange should be specified as [min, max], but cutRange[0] > cutRange[1]: ("+str(cutRange[0])+", "+str(cutRange[1])+") given.")
|
python
|
n = int(input('number: '))
count = 0
for i in range(1, n+1):
if n % i == 0:
count += 1
print(i, end=' ')
print()
print('count:', count)
|
python
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Copyright © 2014, 2015, 2017 Kevin Thibedeau
# (kevin 'period' thibedeau 'at' gmail 'punto' com)
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
from __future__ import print_function, division, unicode_literals, absolute_import
from opbasm.color import *
class Optimizer(object):
name = ''
requires = []
removes_code = False
def __init__(self):
self.priority = 10
def apply(self, asm, assembled_code):
return []
def summary(self, printf):
pass
def register(self, asm):
# Register this optimizer
asm.optimizers[self.name] = self
# Register any other required optimizers recursively
for opt_class in self.requires:
opt = opt_class()
if opt.name not in asm.optimizers:
opt.register(asm)
class StaticAnalyzer(Optimizer):
'''Analyzes code for reachability by statically tracing execution paths'''
name = 'static'
def __init__(self):
self.priority = 50
self.dead_instructions = None
self.entry_points = None
def apply(self, asm, assembled_code):
self.keep_instructions(asm, assembled_code)
self.dead_instructions = None
self.entry_points = None
# Run static analysis
asm._print(_(' Static analysis: searching for dead code... '), end='')
self.entry_points = set((asm.default_jump & 0xFFF, 0))
self.entry_points |= set(asm.config.entry_point)
self.find_dead_code(assembled_code, self.entry_points)
asm._print(success(_('COMPLETE')))
if not asm.config.quiet:
# Summarize analysis
asm._print(_(' Entry points:'), ', '.join(['0x{:03X}'.format(e) for e in \
sorted(self.entry_points)]))
self.dead_instructions = len([s for s in assembled_code if s.is_removable()])
asm._print(_(' {} dead instructions found').format(self.dead_instructions))
return assembled_code
def keep_instructions(self, asm, assembled_code):
'''Mark instructions we want to automatically keep'''
# Find continuous blocks of labeled load&return instructions
if asm.config.target_arch.has_string_table_support: # PB6 load&return depends on string/table
cur_label = None
prev_jump = None
for s in assembled_code:
if s.label is not None:
cur_label = s.xlabel
prev_jump = None
unconditional_jump = s.command == 'jump' and s.arg2 is None
# Mark l&r for preservation if its associated label is referenced by other code
# Mark two or more consecutive unconditional jumps for preservation as part of a jump table
if s.command == 'load&return' or (unconditional_jump and prev_jump):
if cur_label is not None and asm.labels[cur_label].in_use:
if 'keep' not in s.tags:
s.tags['keep_auto'] = (True,)
# Mark this as the (possible) end of a jump table and flag it for preservation
if unconditional_jump: # and s.arg1 in self.labels:
s.tags['jump_table_end'] = (True,)
s.tags['keep'] = (True,) # For jump table instructions we need to tag with 'keep'
del s.tags['keep_auto']
# Mark previous jump as part of a jump table and flag it for preservation
if 'jump_table_end' in prev_jump.tags: del prev_jump.tags['jump_table_end']
prev_jump.tags['jump_table'] = (True,)
prev_jump.tags['keep'] = (True,) # For jump table instructions we need to tag with 'keep'
elif s.is_instruction() and not unconditional_jump: cur_label = None
# Remember previous jump instruction to identify jump tables
if unconditional_jump:
prev_jump = s
elif s.is_instruction():
prev_jump = None
# Apply keep_auto to INST directives
for s in assembled_code:
if s.command == 'inst' and 'keep' not in s.tags:
s.tags['keep_auto'] = (True,)
def find_dead_code(self, assembled_code, entry_points):
'''Perform dead code analysis'''
itable = self.build_instruction_table(assembled_code)
self.analyze_code_reachability(assembled_code, itable, entry_points)
self.analyze_recursive_keeps(assembled_code, itable)
def build_instruction_table(self, slist):
'''Build index of all instruction statements by address'''
itable = {}
for s in slist:
if s.is_instruction():
itable[s.address] = s
return itable
def analyze_code_reachability(self, slist, itable, entry_points):
'''Scan assembled statements for reachability'''
addresses = set(entry_points)
addresses.add(0)
self.find_reachability(addresses, itable)
def analyze_recursive_keeps(self, slist, itable):
'''Scan assembled statements for reachability'''
for s in slist:
if s.is_instruction() and 'keep' in s.tags:
self.find_reachability((s.address,), itable, follow_keeps=True)
def find_reachability(self, addresses, itable, follow_keeps=False):
'''Recursive function that follows graph of executable statements to determine
reachability'''
for a in addresses:
while a in itable:
s = itable[a]
if s.reachable: break # Skip statements already visited
if follow_keeps and 'keep_auto' in s.tags: break
if s.is_instruction():
if not follow_keeps:
s.reachable = True
elif 'keep' not in s.tags:
s.tags['keep_auto'] = (True,)
# Stop on unconditional return, returni, load&return, and jump@ instructions
if s.command in ('returni', 'load&return', 'jump@') or \
(s.command == 'return' and s.arg1 is None):
break
# Follow branch address for jump and call
if s.command in ('jump', 'call'):
if not follow_keeps or (s.immediate in itable and 'keep' not in itable[s.immediate].tags):
self.find_reachability((s.immediate,), itable, follow_keeps)
# Stop on unconditional jump
# Only 1 argument -> unconditional
if s.command == 'jump' and s.arg2 is None and 'jump_table' not in s.tags:
break
# Continue with next instruction if it exists
a += 1
def summary(self, printf):
printf(_(' Static analysis:\n Dead instructions {}: {}').format( \
_('found'), self.dead_instructions))
printf(_(' Analyzed entry points:'), ', '.join(['0x{:03X}'.format(e) for e in \
sorted(self.entry_points)]))
class DeadCodeRemover(Optimizer):
'''Removes instructions marked as dead'''
name = 'dead_code'
requires = [StaticAnalyzer]
removes_code = True
def __init__(self):
self.priority = 60
self.removed = 0
def apply(self, asm, assembled_code):
self.removed = 0
self.remove_dead_code(asm, assembled_code)
if self.removed > 0:
# Reinitialize registers to default names
asm._init_registers()
asm._print(_(' Dead code removal: '), end='')
# Reassemble code with dead code removed
assembled_code = asm._raw_assemble(assembled_code)
asm._print(success(_('COMPLETE')))
return assembled_code
def remove_dead_code(self, asm, assembled_code):
'''Mark unreachable code for removal'''
for s in assembled_code:
if s.is_removable():
# Convert the old instruction into a comment
s.comment_out()
self.removed += 1
# Track any removed labels
if s.label is not None:
if s.xlabel in asm.labels:
del asm.labels[s.xlabel]
asm.removed_labels.add(s.xlabel)
s.label = None
s.xlabel = None
def summary(self, printf):
printf(_(' Dead code removal: {}'.format(_('Applied') if self.removed > 0 else _('None'))))
_all_optimizers = set([StaticAnalyzer, DeadCodeRemover])
|
python
|
import unittest
from sqlalchemy.orm import sessionmaker
from nesta.core.orms.nomis_orm import Base
from nesta.core.orms.orm_utils import get_mysql_engine
class TestNomis(unittest.TestCase):
'''Check that the WiktionaryNgram ORM works as expected'''
engine = get_mysql_engine("MYSQLDBCONF", "mysqldb")
Session = sessionmaker(engine)
def setUp(self):
'''Create the temporary table'''
Base.metadata.create_all(self.engine)
def tearDown(self):
'''Drop the temporary table'''
Base.metadata.drop_all(self.engine)
def test_build(self):
pass
if __name__ == "__main__":
unittest.main()
|
python
|
from django.apps import AppConfig
class DeptConfig(AppConfig):
name = 'dept'
|
python
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Copyright (c) 2015 Amir Mofasser <[email protected]> (@amimof)
# GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt)
DOCUMENTATION = """
module: ibmim_installer
version_added: "1.9.4"
short_description: Install/Uninstall IBM Installation Manager
description:
- Install/Uninstall IBM Installation Manager
options:
src:
required: false
description: Path to installation files for Installation Manager
dest:
required: false
default: "/opt/IBM/InstallationManager"
description: Path to desired installation directory of Installation Manager
accessRights:
required: false
default: "admin"
description: admin (root) or nonAdmin installation?
logdir:
required: false
default: "/tmp/"
description: Path and file name of installation log file
state:
required: false
choices: [ present, absent ]
default: "present"
description: Whether Installation Manager should be installed or removed
author: "Amir Mofasser (@amofasser)"
"""
EXAMPLES = """
- name: Install
ibmim:
state: present
src: /some/dir/install/
logdir: /tmp/im_install.log
- name: Uninstall
ibmim:
state: absent
dest: /opt/IBM/InstallationManager
"""
import os
import subprocess
import platform
import datetime
import socket
class InstallationManagerInstaller():
module = None
module_facts = dict(
im_version = None,
im_internal_version = None,
im_arch = None,
im_header = None
)
def __init__(self):
# Read arguments
self.module = AnsibleModule(
argument_spec = dict(
state = dict(default='present', choices=['present', 'absent']),
src = dict(required=False),
dest = dict(default="/opt/IBM/InstallationManager/"),
accessRights = dict(default="admin", choices=['admin', 'nonAdmin']),
logdir = dict(default="/tmp/")
),
supports_check_mode=True
)
def getItem(self, str):
return self.module_facts[str]
def isProvisioned(self, dest):
"""
Checks if Installation Manager is already installed at dest
:param dest: Installation directory of Installation Manager
:return: True if already provisioned. False if not provisioned
"""
# If destination dir does not exists then its safe to assume that IM is not installed
if not os.path.exists(dest):
print ("Path does not exist: '%s'" % (dest))
return False
else:
resultDict = self.getVersion(dest)
print ("ResultDict is: '%s'" % (resultDict))
if "installed" in resultDict["im_header"]:
return True
print ("installed not found in ReturnDict")
return False
def getVersion(self, dest):
"""
Runs imcl with the version parameter and stores the output in a dict
:param dest: Installation directory of Installation Manager
:return: dict
"""
imclCmd = "{0}/eclipse/tools/imcl version".format(dest)
print ("imclCmd is: '%s'" % (imclCmd))
child = subprocess.Popen(
[ imclCmd ],
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE
)
stdout_value, stderr_value = child.communicate()
stdout_value = repr(stdout_value)
stderr_value = repr(stderr_value)
try:
self.module_facts["im_version"] = re.search("Version: ([0-9].*)", stdout_value).group(1)
self.module_facts["im_internal_version"] = re.search("Internal Version: ([0-9].*)", stdout_value).group(1)
self.module_facts["im_arch"] = re.search("Architecture: ([0-9].*-bit)", stdout_value).group(1)
self.module_facts["im_header"] = re.search("Installation Manager.*", stdout_value).group(0)
except AttributeError:
self.module_facts["im_header"] = "**AttributeError**"
##### pass
return self.module_facts
def main(self):
state = self.module.params['state']
src = self.module.params['src']
dest = self.module.params['dest']
logdir = self.module.params['logdir']
accessRights = self.module.params['accessRights']
##
## If we have a nonAdmin Installation we might need to expand "~" for the
## users home directory
dest = os.path.expanduser(dest)
if state == 'present':
if self.module.check_mode:
self.module.exit_json(changed=False, msg="IBM IM where to be installed at {0}".format(dest))
# Check if IM is already installed
if not self.isProvisioned(dest):
# Check if paths are valid
if not os.path.exists(src+"/install"):
self.module.fail_json(msg=src+"/install not found")
if not os.path.exists(logdir):
if not os.listdir(logdir):
os.makedirs(logdir)
logfile = "{0}_ibmim_{1}.xml".format(platform.node(), datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
installCmd = "{0}/tools/imcl install com.ibm.cic.agent -repositories {0}/repository.config -accessRights {1} -acceptLicense -log {2}/{3} -installationDirectory {4} -properties com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts=true".format(src, accessRights, logdir, logfile, dest)
print ("installCmd is: '%s'" % (installCmd))
child = subprocess.Popen(
[ installCmd ],
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE
)
stdout_value, stderr_value = child.communicate()
stdout_value = repr(stdout_value)
stderr_value = repr(stderr_value)
if child.returncode != 0:
self.module.fail_json(
msg="IBM IM installation failed",
stderr=stderr_value,
stdout=stdout_value,
module_facts=self.module_facts
)
# Module finished. Get version of IM after installation so that we can print it to the user
self.getVersion(dest)
self.module.exit_json(
msg="IBM IM installed successfully",
changed=True,
stdout=stdout_value,
stderr=stderr_value,
module_facts=self.module_facts
)
else:
self.module.exit_json(
changed=False,
msg="IBM IM is already installed",
module_facts=self.module_facts
)
if state == 'absent':
if self.module.check_mode:
self.module.exit_json(
changed=False,
msg="IBM IM where to be uninstalled from {0}".format(dest),
module_facts=self.module_facts
)
# Check if IM is already installed
if self.isProvisioned(dest):
if (accessRights == 'admin'):
uninstall_dir = "/var/ibm/InstallationManager/uninstall/uninstallc"
else:
uninstall_dir = os.path.expanduser("~/var/ibm/InstallationManager/uninstall/uninstallc")
if not os.path.exists(uninstall_dir):
self.module.fail_json(msg=uninstall_dir + " does not exist")
child = subprocess.Popen(
[uninstall_dir],
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE
)
stdout_value, stderr_value = child.communicate()
stdout_value = repr(stdout_value)
stderr_value = repr(stderr_value)
if child.returncode != 0:
self.module.fail_json(
msg="IBM IM uninstall failed",
stderr=stderr_value,
stdout=stdout_value,
module_facts=self.module_facts
)
# Module finished
self.module.exit_json(
changed=True,
msg="IBM IM uninstalled successfully",
stdout=stdout_value,
module_facts=self.module_facts
)
else:
self.module.exit_json(
changed=False,
msg="IBM IM is not installed",
module_facts=self.module_facts
)
# import module snippets
from ansible.module_utils.basic import *
if __name__ == '__main__':
imi = InstallationManagerInstaller()
imi.main()
|
python
|
"""
This file defines and implements the basic goal descriptors for PDDL2.2.
The implementation of comparison goals is implemented in DomainInequality.
"""
from typing import Union, List
from enum import Enum
from pddl.domain_formula import DomainFormula, TypedParameter
from pddl.domain_time_spec import TIME_SPEC
class GoalType(Enum):
EMPTY = "empty"
SIMPLE = "conjunction"
CONJUNCTION = "inequality"
DISJUNCTION = "timed"
NEGATIVE = "negative"
IMPLICATION = "implication"
EXISTENTIAL = "existential"
UNIVERSAL = "universal"
COMPARISON = "comparison"
TIMED = "timed"
class GoalDescriptor:
"""
This superclass describes a goal for action or goal spec.
"""
def __init__(self, goal_type : GoalType = GoalType.EMPTY) -> None:
self.goal_type = goal_type
def __repr__(self) -> str:
return "()"
class GoalSimple(GoalDescriptor):
def __init__(self, atomic_formula : DomainFormula) -> None:
super().__init__(goal_type=GoalType.SIMPLE)
self.atomic_formula = atomic_formula
def __repr__(self) -> str:
return self.atomic_formula.print_pddl(include_types=False)
class GoalConjunction(GoalDescriptor):
def __init__(self, goals : List[GoalDescriptor]) -> None:
super().__init__(goal_type=GoalType.CONJUNCTION)
self.goals = goals
def __repr__(self) -> str:
return "(and " + " ".join([repr(g) for g in self.goals]) + ")"
class GoalDisjunction(GoalDescriptor):
def __init__(self, goals : List[GoalDescriptor]) -> None:
super().__init__(goal_type=GoalType.DISJUNCTION)
self.goals = goals
def __repr__(self) -> str:
return "(or " + " ".join([repr(g) for g in self.goals]) + ")"
class GoalNegative(GoalDescriptor):
def __init__(self, goal : GoalDescriptor) -> None:
super().__init__(goal_type=GoalType.NEGATIVE)
self.goal = goal
def __repr__(self) -> str:
return "(not " + repr(self.goal) + ")"
class GoalImplication(GoalDescriptor):
def __init__(self, antecedent : GoalDescriptor, consequent : GoalDescriptor) -> None:
super().__init__(goal_type=GoalType.IMPLICATION)
self.antecedent = antecedent
self.consequent = consequent
def __repr__(self) -> str:
return "(imples " + repr(self.antecedent) + " " + repr(self.consequent) + ")"
class GoalQuantified(GoalDescriptor):
def __init__(self,
typed_parameters : List[TypedParameter],
goal : GoalDescriptor,
quantification : GoalType
) -> None:
super().__init__(goal_type=quantification)
assert(quantification==GoalType.EXISTENTIAL or self.goal_type==GoalType.UNIVERSAL)
self.typed_parameters = typed_parameters
self.goal = goal
def __repr__(self) -> str:
return ("(forall (" if self.goal_type==GoalType.UNIVERSAL else "(exists (") \
+ ' '.join([p.label + " - " + p.type for p in self.typed_parameters]) \
+ ") " + repr(self.goal) + ")"
class TimedGoal(GoalDescriptor):
"""
This class describes a simple add or delete effect with time specifier for durative action.
"""
def __init__(self, time_spec : TIME_SPEC, goal : GoalDescriptor) -> None:
super().__init__(goal_type=GoalType.TIMED)
self.time_spec = time_spec
self.goal = goal
def __repr__(self) -> str:
return "(" + self.time_spec.value + " " + str(self.goal) + ")"
|
python
|
# pylint # {{{
# vim: tw=100 foldmethod=indent
# pylint: disable=bad-continuation, invalid-name, superfluous-parens
# pylint: disable=bad-whitespace, mixed-indentation
# pylint: disable=redefined-outer-name
# pylint: disable=missing-docstring, trailing-whitespace, trailing-newlines, too-few-public-methods
# }}}
import os
import sys
import logging
import configargparse
logger = logging.getLogger(__name__)
def parseOptions():
'''Parse the commandline options'''
logger.info("reading config")
path_of_executable = os.path.realpath(sys.argv[0])
folder_of_executable = os.path.split(path_of_executable)[0]
full_name_of_executable = os.path.split(path_of_executable)[1]
name_of_executable = full_name_of_executable.rstrip('.py')
config_in_home = ''
try:
config_in_home = os.environ['HOME']+'/.config/%s.conf' % name_of_executable
except KeyError:
pass
config_files = [config_in_home,
folder_of_executable +'/%s.conf' % name_of_executable,
'/etc/mqtt-to-influx/mqtt-to-influx.conf']
parser = configargparse.ArgumentParser(
default_config_files = config_files,
description=name_of_executable, ignore_unknown_config_file_keys=True)
parser.add('-c', '--my-config', is_config_file=True, help='config file path')
parser.add_argument('--verbose', '-v', action="count", default=0, help='Verbosity')
parser.add_argument('--debug', '-d', action="count", default=0, help='Debug level')
parser.add_argument('--influx_db_name', default="")
parser.add_argument('--influx_db_user', default="")
parser.add_argument('--influx_db_password', default="")
parser.add_argument('--influx_db_host', default="")
parser.add_argument('--influx_db_port', default=8086)
parser.add_argument('--mqtt_user', default="")
parser.add_argument('--mqtt_password', default="")
parser.add_argument('--mqtt_host', default="")
parser.add_argument('--mqtt_port', default=1883)
parser.add_argument('--quiet', '-q' , default=False, action="store_true")
# parser.add_argument(dest='access_token' )
return parser
# reparse args on import
args = parseOptions().parse_args()
|
python
|
import mock
import unittest
import mongomock
from core.seen_manager import canonize, SeenManager
from core.metadata import DocumentMetadata
from tests.test_base import BaseTestClass
class TestSeenManager(BaseTestClass):
def test_canonize(self):
input_url = ["http://www.google.com",
"http://www.google.com/",
"https://www.google.com",
"https://www.google.it/",
"https://www.google.it?test=10&q=1",
"https://www.google.it/test/test/",
"https://www.google.it/test/test",
]
output = ["www.google.com",
"www.google.com",
"www.google.com",
"www.google.it",
"www.google.it%3Ftest%3D10%26q%3D1",
"www.google.it/test/test",
"www.google.it/test/test",
]
for i, u in enumerate(input_url):
self.assertEqual(canonize(u), output[i])
@mock.patch('pymongo.MongoClient')
def test_add_and_delete(self, mc):
mc.return_value = mongomock.MongoClient()
sm = SeenManager("test", "host", 0, "db")
dmeta = DocumentMetadata("http://www.google.com")
dmeta.alternatives = [
"http://www.google.com",
"http://www.google2.com/",
"https://www.google3.com",
]
dmeta.dhash = 2413242
other_urls = [
"www.prova.com",
"www.other.com",
]
# adding urls
sm.add(dmeta)
# tring removing not present urls
for o in other_urls:
sm.delete(o)
# checking presence
for i in dmeta.alternatives:
self.assertTrue(canonize(i) in sm.store)
self.assertEqual(len(dmeta.alternatives), len(sm.store))
# checking not precence
for u in other_urls:
self.assertFalse(canonize(u) in sm.store)
# checking correctness
for i in dmeta.alternatives:
data = sm.store.get(canonize(i))
self.assertEqual(data["count"], 1)
self.assertEqual(data["page_hash"], dmeta.dhash)
# deleting alternatives
sm.delete(dmeta.alternatives[0])
# checking empty db
for i in dmeta.alternatives:
self.assertFalse(canonize(i) in sm.store)
self.assertEqual(0, len(sm.store))
@mock.patch('pymongo.MongoClient')
def test_update(self, mc):
mc.return_value = mongomock.MongoClient()
sm = SeenManager("test", "host", 0, "db")
dmeta = DocumentMetadata("http://www.google.com?q=test")
dmeta.alternatives = [
"http://www.google.com?q=test",
"http://www.google2.com/",
"https://www.google3.com",
]
dmeta.dhash = 2413242
dmeta2 = DocumentMetadata("http://www.google2.com")
dmeta2.alternatives = [
"http://www.google2.com",
"https://www.google3.com",
]
dmeta2.dhash = 12121212
# adding urls
sm.add(dmeta)
sm.add(dmeta2)
output_alternatives = dmeta.alternatives + dmeta2.alternatives
output_alternatives = list(set(canonize(i) for i in output_alternatives))
# checking presence and checking not double anonization
for i in output_alternatives:
self.assertTrue(i in sm.store)
for i, v in enumerate(sm.store.get(i)['alternatives']):
self.assertEqual(v, output_alternatives[i])
@mock.patch('pymongo.MongoClient')
def test_is_new(self, mc):
mc.return_value = mongomock.MongoClient()
sm = SeenManager("test", "host", 0, "db")
dmeta = DocumentMetadata("http://www.google.com")
dmeta.alternatives = ["http://www.google.com",
"http://www.google2.com/",
"https://www.google3.com",
]
dmeta.dhash = 2413242
other_urls = [
"www.test.com",
"www.other.com",
]
# adding urls
sm.add(dmeta)
for u in dmeta.alternatives:
self.assertFalse(sm.is_new(canonize(u)))
for u in other_urls:
self.assertTrue(sm.is_new(canonize(u)))
@mock.patch('pymongo.MongoClient')
def test_incr_n(self, mc):
mc.return_value = mongomock.MongoClient()
sm = SeenManager("test", "host", 0, "db")
dmeta = DocumentMetadata("http://www.google.com")
dmeta.alternatives = ["http://www.google.com",
"http://www.google2.com/",
"https://www.google3.com",
]
dmeta.dhash = 2413242
# adding urls
sm.add(dmeta)
# increase counters
sm.incr_n(dmeta.alternatives[0])
for i in dmeta.alternatives:
data = sm.store.get(canonize(i))
self.assertEqual(data["count"], 2)
@mock.patch('pymongo.MongoClient')
def test_is_changed(self, mc):
mc.return_value = mongomock.MongoClient()
sm = SeenManager("test", "host", 0, "db")
dmeta = DocumentMetadata("http://www.google.com")
dmeta.alternatives = ["http://www.google.com",
"http://www.google2.com/",
"https://www.google3.com",
]
dmeta.dhash = 2413242
# adding urls
sm.add(dmeta)
for u in dmeta.alternatives:
self.assertFalse(sm.is_changed(u, dmeta.dhash))
for u in dmeta.alternatives:
self.assertFalse(sm.is_changed(u, dmeta.dhash+2))
for u in dmeta.alternatives:
self.assertTrue(sm.is_changed(u, dmeta.dhash+3))
if __name__ == "__main__":
unittest.main()
|
python
|
""" Python generator utilities for DMT """
import shutil
from pathlib import Path
from setuptools import setup, find_packages
here = Path(__file__).parent.resolve()
# Remove build and dist folders
shutil.rmtree(Path("build"), ignore_errors=True)
shutil.rmtree(Path("dist"), ignore_errors=True)
# Get the long description from the README file
long_description = (here / 'README.md').read_text(encoding='utf-8')
with open('requirements.txt',encoding='utf8') as f:
required = f.read().splitlines()
setup(
name='dmtgen',
version='0.2.1',
author="SINTEF Ocean",
description="Python generator utilities for DMT",
long_description=long_description,
long_description_content_type="text/markdown",
package_dir={"": "src"},
packages= find_packages(where="src"),
package_data={'dmt': ['data/system/SIMOS/*.json']},
install_requires=required,
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
python_requires='>=3.8',
)
|
python
|
#!/usr/bin/env python
# coding: utf-8
# <!--BOOK_INFORMATION-->
# <img align="left" style="padding-right:10px;" src="images/book_cover.jpg" width="120">
#
# *This notebook contains an excerpt from the [Python Programming and Numerical Methods - A Guide for Engineers and Scientists](https://www.elsevier.com/books/python-programming-and-numerical-methods/kong/978-0-12-819549-9), the content is also available at [Berkeley Python Numerical Methods](https://pythonnumericalmethods.berkeley.edu/notebooks/Index.html).*
#
# *The copyright of the book belongs to Elsevier. We also have this interactive book online for a better learning experience. The code is released under the [MIT license](https://opensource.org/licenses/MIT). If you find this content useful, please consider supporting the work on [Elsevier](https://www.elsevier.com/books/python-programming-and-numerical-methods/kong/978-0-12-819549-9) or [Amazon](https://www.amazon.com/Python-Programming-Numerical-Methods-Scientists/dp/0128195495/ref=sr_1_1?dchild=1&keywords=Python+Programming+and+Numerical+Methods+-+A+Guide+for+Engineers+and+Scientists&qid=1604761352&sr=8-1)!*
# <!--NAVIGATION-->
# < [14.2 Linear Transformations](chapter14.02-Linear-Transformations.ipynb) | [Contents](Index.ipynb) | [14.4 Solutions to Systems of Linear Equations](chapter14.04-Solutions-to-Systems-of-Linear-Equations.ipynb) >
# # Systems of Linear Equations
# A $\textbf{linear equation}$ is an equality of the form
# $$
# \sum_{i = 1}^{n} (a_i x_i) = y,
# $$
# where $a_i$ are scalars, $x_i$ are unknown variables in $\mathbb{R}$, and $y$ is a scalar.
#
# **TRY IT!** Determine which of the following equations is linear and which is not. For the ones that are not linear, can you manipulate them so that they are?
#
# 1. $3x_1 + 4x_2 - 3 = -5x_3$
# 2. $\frac{-x_1 + x_2}{x_3} = 2$
# 3. $x_1x_2 + x_3 = 5$
#
# Equation 1 can be rearranged to be $3x_1 + 4x_2 + 5x_3= 3$, which
# clearly has the form of a linear equation. Equation 2 is not linear
# but can be rearranged to be $-x_1 + x_2 - 2x_3 = 0$, which is
# linear. Equation 3 is not linear.
#
# A $\textbf{system of linear equations}$ is a set of linear equations that share the same variables. Consider the following system of linear equations:
#
# \begin{eqnarray*}
# \begin{array}{rcrcccccrcc}
# a_{1,1} x_1 &+& a_{1,2} x_2 &+& {\ldots}& +& a_{1,n-1} x_{n-1} &+&a_{1,n} x_n &=& y_1,\\
# a_{2,1} x_1 &+& a_{2,2} x_2 &+&{\ldots}& +& a_{2,n-1} x_{n-1} &+& a_{2,n} x_n &=& y_2, \\
# &&&&{\ldots} &&{\ldots}&&&& \\
# a_{m-1,1}x_1 &+& a_{m-1,2}x_2&+ &{\ldots}& +& a_{m-1,n-1} x_{n-1} &+& a_{m-1,n} x_n &=& y_{m-1},\\
# a_{m,1} x_1 &+& a_{m,2}x_2 &+ &{\ldots}& +& a_{m,n-1} x_{n-1} &+& a_{m,n} x_n &=& y_{m}.
# \end{array}
# \end{eqnarray*}
#
# where $a_{i,j}$ and $y_i$ are real numbers. The $\textbf{matrix form}$ of a system of linear equations is $\textbf{$Ax = y$}$ where $A$ is a ${m} \times {n}$ matrix, $A(i,j) = a_{i,j}, y$ is a vector in ${\mathbb{R}}^m$, and $x$ is an unknown vector in ${\mathbb{R}}^n$. The matrix form is showing as below:
#
# $$\begin{bmatrix}
# a_{1,1} & a_{1,2} & ... & a_{1,n}\\
# a_{2,1} & a_{2,2} & ... & a_{2,n}\\
# ... & ... & ... & ... \\
# a_{m,1} & a_{m,2} & ... & a_{m,n}
# \end{bmatrix}\left[\begin{array}{c} x_1 \\x_2 \\ ... \\x_n \end{array}\right] =
# \left[\begin{array}{c} y_1 \\y_2 \\ ... \\y_m \end{array}\right]$$
#
# If you carry out the matrix multiplication, you will see that you arrive back at the original system of equations.
#
# **TRY IT!** Put the following system of equations into matrix form.
# \begin{eqnarray*}
# 4x + 3y - 5z &=& 2 \\
# -2x - 4y + 5z &=& 5 \\
# 7x + 8y &=& -3 \\
# x + 2z &=& 1 \\
# 9 + y - 6z &=& 6 \\
# \end{eqnarray*}
#
# $$\begin{bmatrix}
# 4 & 3 & -5\\
# -2 & -4 & 5\\
# 7 & 8 & 0\\
# 1 & 0 & 2\\
# 9 & 1 & -6
# \end{bmatrix}\left[\begin{array}{c} x \\y \\z \end{array}\right] =
# \left[\begin{array}{c} 2 \\5 \\-3 \\1 \\6 \end{array}\right]$$
# <!--NAVIGATION-->
# < [14.2 Linear Transformations](chapter14.02-Linear-Transformations.ipynb) | [Contents](Index.ipynb) | [14.4 Solutions to Systems of Linear Equations](chapter14.04-Solutions-to-Systems-of-Linear-Equations.ipynb) >
|
python
|
import markdown
from django.template.loader import render_to_string
from modules.polygon import models
CONTEST_TAG_RE = r'(?i)\[polygon_contest\s+id:(?P<contest_id>\d+)\]'
class ContestExtension(markdown.Extension):
"""Contest plugin markdown extension for SIStema wiki."""
def extendMarkdown(self, md):
md.inlinePatterns.add(
'sistema-polygon-contest',
ContestPattern(CONTEST_TAG_RE, md),
'>link')
class ContestPattern(markdown.inlinepatterns.Pattern):
"""
SIStema wiki polygon tag preprocessor. Searches text for
[polygon_contest id:xxxx] tag and replaces it with the list of problems.
"""
def handleMatch(self, m):
contest_id_str = m.group('contest_id')
contest_id = int(contest_id_str)
contest = models.Contest.objects.filter(polygon_id=contest_id).first()
if contest is None:
return 'Контест с ID {} не существует'.format(contest_id)
html = render_to_string(
"polygon/wiki/problem_list.html",
context={
'problems': contest.get_problems(),
})
return self.markdown.htmlStash.store(html)
def makeExtension(*args, **kwargs):
"""Return an instance of the extension."""
return ContestExtension(*args, **kwargs)
|
python
|
########
# PART 1
def get_numbers():
numbers = None
with open("event2019/day16/input.txt", "r") as file:
for line in file:
numbers = list(map(int, line[:-1]))
#numbers = [int(x) for x in line[:-1]]
return numbers
def fft(inp):
''' TODO: optimize with part 2 '''
pattern = [0, 1, 0, -1]
out = inp[:]
for offset in range(len(inp)):
out[offset] = abs(sum([digit * pattern[(1 + inner_offset) // (offset + 1) % 4] for inner_offset, digit in enumerate(inp)])) % 10
return out
def repeat_fft(inp, count):
for _ in range(count):
inp = fft(inp)
return inp
def get_answer(inp):
return ''.join([str(x) for x in inp])[:8]
inp = [int(x) for x in "12345678"]
inp = fft(inp)
assert get_answer(inp) == "48226158"
inp = fft(inp)
assert get_answer(inp) == "34040438"
inp = fft(inp)
assert get_answer(inp) == "03415518"
inp = fft(inp)
assert get_answer(inp) == "01029498"
assert get_answer(repeat_fft(list(map(int, "80871224585914546619083218645595")), 100)) == "24176176"
assert get_answer(repeat_fft(list(map(int, "19617804207202209144916044189917")), 100)) == "73745418"
assert get_answer(repeat_fft(list(map(int, "69317163492948606335995924319873")), 100)) == "52432133"
numbers = get_numbers()
answer = get_answer(repeat_fft(numbers, 100)[:8])
print("Part 1 =", answer)
assert answer == "42945143" # check with accepted answer
########
# PART 2
def repeat_fft_p2(inp, count):
offset = int(get_answer(inp)[:7])
inp = inp * 10000
inp_len = len(inp)
for _ in range(count):
acc = 0
for j in range(inp_len - 1, offset - 1, -1):
acc += inp[j]
inp[j] = acc % 10
return inp[offset : offset + 8]
assert get_answer(repeat_fft_p2(list(map(int, "03036732577212944063491565474664")), 100)) == "84462026"
assert get_answer(repeat_fft_p2(list(map(int, "02935109699940807407585447034323")), 100)) == "78725270"
assert get_answer(repeat_fft_p2(list(map(int, "03081770884921959731165446850517")), 100)) == "53553731"
answer = get_answer(repeat_fft_p2(numbers, 100))
print("Part 2 =", answer)
assert get_answer(answer) == "99974970" # check with accepted answer
|
python
|
import streamlit as st
def app():
st.write("# About")
col1, col2, col3 = st.columns([5,2,5])
with col1:
st.image("davide.jpg")
st.write("### Davide Torlo")
st.write("Ricercatore PostDoc all'Università SISSA di Trieste")
st.write("Ideatore principale di concept, metriche e grafici")
st.write("[Website](https://davidetorlo.it/), [Twitter](https://twitter.com/accdavlo)")
with col3:
st.image("fede_new.jpeg")
st.write("### Federico Bianchi")
st.write("Ricercatore PostDoc all'Università Bocconi di Milano")
st.write("Support alla realizzazione della webapp e deploy")
st.write("[Website](https://federicobianchi.io/), [Twitter](https://twitter.com/federicobianchy)")
|
python
|
keywords = {
".5" : "FOR[ITERATION]",
"wrap" : "KEYWORD",
"as" : "KEYWORD[ASSIGNMENT]",
"let" : "KEYWORD[RELOP]",
"pp" : "INCRE[RELOP]",
".2" : "IF[CONDITIONAL]",
"vomit" : "KEYWORD[PRINT]",
"|" : "PARANTHESIS",
"--" : "OPEN CONDITION",
"---" : "CLOSE CONDITION",
".3" : "ELSE-IF",
"eq" : "EQ_OPERATOR",
"neq" : "NOT_EQ_OPERATOR",
"let" : "REL_OPERATORS",
"lete" : "REL_OPERATORS",
"get" : "REL_OPERATORS",
"gete" : "REL_OPERATORS",
"goto" : "JUMP_STATEMENTS",
"continue" : "JUMP_STATEMENTS",
"break" : "JUMP_STATEMENTS",
"return" : "JUMP_STATEMENTS",
"$$" : "OR OPERATOR",
"&&" : "AND OPERATOR",
".4" : "ELSE[SELECTION]",
".6" : "WHILE",
".7" : "DO[CONDITION]",
":" : "SEPERATOR",
"True" : "BOOL TRUE",
"False" : "BOOL FALSE",
"exit()" : "EXIT LOOP"
}
'''
FOR[ITERATION] = ".5"
KEYWORD = "wrap"
KEYWORD[ASSIGNMENT] = "as"
KEYWORD[RELOP] = "let"
INCRE[RELOP] = "pp"
IF[CONDITIONAL] = ".2"
KEYWORD[PRINT] = "vomit"
PARANTHESIS = "|"
OPEN_CONDITION = "--"
CLOSE_CONDITION = "---"
ELSE_IF = ".3"
EQ_OPERATOR = "eq"
NOT_EQ_OPERATOR = "neq"
REL_OPERATORS = "let"
REL_OPERATORS = "lete"
REL_OPERATORS = "get"
REL_OPERATORS = "gete"
JUMP_STATEMENTS = "goto"
JUMP_STATEMENTS = "continue"
JUMP_STATEMENTS = "break"
JUMP_STATEMENTS = "return"
OR_OPERATOR = "$$"
AND_OPERATOR = "&&"
ELSE[SELECTION] = ".4"
WHILE = ".6"
DO[CONDITION] = ".7"
SEPERATOR = ":"
'''
DIGITS = "0123456789"
|
python
|
"""
JAX DSP utility functions
"""
from functools import partial
import jax
import jax.numpy as jnp
import librosa
from jax.numpy import ndarray
def rolling_window(a: ndarray, window: int, hop_length: int):
"""return a stack of overlap subsequence of an array.
``return jnp.stack( [a[0:10], a[5:15], a[10:20],...], axis=0)``
Source: https://github.com/google/jax/issues/3171
Args:
a (ndarray): input array of shape `[L, ...]`
window (int): length of each subarray (window).
hop_length (int): distance between neighbouring windows.
"""
idx = (
jnp.arange(window)[:, None]
+ jnp.arange((len(a) - window) // hop_length + 1)[None, :] * hop_length
)
return a[idx]
@partial(jax.jit, static_argnums=[1, 2, 3, 4])
def batched_stft(
y: ndarray,
n_fft: int,
hop_length: int,
win_length: int,
window: str,
):
"""Batched version of ``stft`` function.
TN => FTN
"""
assert len(y.shape) >= 2
if window == "hann":
fft_window = jnp.hanning(win_length + 1)[:-1]
else:
raise RuntimeError(f"'{window}' window function is not supported!")
pad_len = (n_fft - win_length) // 2
if pad_len > 0:
fft_window = jnp.pad(fft_window, (pad_len, pad_len), mode="constant")
win_length = n_fft
# center padding
p = n_fft // 2
y = jnp.pad(y, [(p, p), (0, 0)], mode="constant")
# jax does not support ``np.lib.stride_tricks.as_strided`` function
# see https://github.com/google/jax/issues/3171 for comments.
y_frames = rolling_window(y, n_fft, hop_length)
fft_window = jnp.reshape(fft_window, (-1,) + (1,) * (len(y.shape)))
y_frames = y_frames * fft_window
stft_matrix = jnp.fft.fft(y_frames, axis=0)
d = int(1 + n_fft // 2)
return stft_matrix[:d]
class MelFilter:
"""Convert waveform to mel spectrogram."""
def __init__(
self,
sample_rate: int,
n_fft: int,
window_length: int,
hop_length: int,
n_mels: int,
fmin=0.0,
fmax=8000,
mel_min=1e-5,
):
self.melfb = librosa.filters.mel(
sr=sample_rate,
n_fft=n_fft,
n_mels=n_mels,
fmin=fmin,
fmax=fmax,
)
self.n_fft = n_fft
self.window_length = window_length
self.hop_length = hop_length
self.mel_min = mel_min
def __call__(self, y: ndarray) -> ndarray:
hop_length = self.hop_length
window_length = self.window_length
assert len(y.shape) == 2
spec = batched_stft(y.T, self.n_fft, hop_length, window_length, "hann")
mag = jnp.sqrt(jnp.square(spec.real) + jnp.square(spec.imag) + 1e-9)
mel = jnp.einsum("ms,sfn->nfm", self.melfb, mag)
cond = jnp.log(jnp.clip(mel, a_min=self.mel_min, a_max=None))
return cond
|
python
|
# -*- encoding: utf-8 -*-
'''
Created on 2012-3-23
@author: Neil
'''
from django.shortcuts import render_to_response
from grnglow.glow.views import people
from grnglow.glow.models.photo import Photo
def base(request):
return render_to_response('base.html')
def index(request):
if request.user.is_authenticated():
# 默认情况下,people.home(request,user_id)的user_id参数应该为字符串
return people.home(request, str(request.user.id)) # 如果已登录,跳转到我的个人页
# return render_to_response('index.html', {'request':request})
else:
photos = Photo.objects.all().order_by('-score')[0:12] # 按得分倒序,最大的排在前面
p_len = len(photos)
p_items = []
for i in range(0, p_len, 6):
p_items.extend([photos[i:i + 6]]) # 在末端添加列表元素
return render_to_response('index.html', {'request': request, 'p_items': p_items})
|
python
|
# -*- coding: utf-8 -*-
"""
Created on Fri May 24 15:17:13 2019
@author: DaniJ
"""
'''
It is like the four_layer_model_2try_withFixSpeciesOption_Scaling.py, but with two surfaces. There is not Poisson-Boltzman interaction between the two surfaces.
'''
import numpy as np
from scipy import linalg
def four_layer_two_surface_speciation ( T, X_guess, A, Z, log_k, idx_Aq, pos_psi_S1_vec, pos_psi_S2_vec, temp, sS1, aS1, sS2, aS2, e, CapacitancesS1, CapacitancesS2, idx_fix_species = None, zel=1, tolerance = 1e-6, max_iterations = 100,scalingRC = True):
"""
-The implementation of these algorithm is based on Westall (1980), but slightly modified in order to allow a 4th electrostatic layer and 2 surface which its diffuse layers does not interact
Arguments:
- T A vector needed for creating the residual function for the Newthon-Raphson. The vector has the same size of X_guess and contains values like the total number of moles or mol/L of an aquoeus component
- X_guess A vector containing the initial guesses of the primary aqueous species, primary sorption species, electrostatic species
- A A matrix containing the stoichiometric values of the mass balance parameters
- Z The vector of charge of the different ion. The order is determine by the rows of "A" for aqueous species. That means that it is link to idx_Aq somehow.
- log_k A vector of log(Konstant equilibrium). Primary species of aquoues and sorption have a log_k=0
- idx_Aq An index vector with the different aqueous species position. It must coincide with the rows of "A".
- pos_psi_S1_vec Is a vector that contains the position of the boltzmann factor of each plane for surface 1 such as [pos_boltz0, pos_boltzalpha, pos_boltzbeta, pos_boltzgamma](gamma == diffusive of S1)
- pos_psi_S2_vec It is like pos_psi_S2_vec but for the surface 2
- temp Temperature of the chemical system in Kelvins.
- sS1 is the specific surface area for the surface 1
- aS1 concentration of suspended solid for the surface 1
- sS2 is the specific surface area for the surface 2
- aS2 concentration of suspended solid for the surface 2
- e relative permittivity
- CapacitancesS1 [C1, C2, C3] for surface 1
- CapacitancesS2 [C1, C2, C3] for surface 2
- scalingRC If true a scaling stp will be done if false not scaling step is done (based on Marinoni et al. 2017) [Default = true]
- idx_fix_species Index of the primary species that have a fixed value, it must coincide with X_guess.
Outputs: the outputs right now are:
- C the vector of species concentrations (aqueous and surface species, not electrostatic). The order of the species will depend on the given matrix A, so it is user dependent.
- The vector X of primary unknowns. The value of the primary species of aqueous and surface species should be equivalent to the C vector. Here we can find the values
of the boltzman factors, which are related to psi values.
Preconditions:
1) The order of the rows of matrix "A" must agree with the order of the unknowns in the vector X_guess.
Namely, if the first row correspond to the species "H+", the first unknow in X_guess must be "H+"
This also implies that number of rows of A equals the length of the vector of unknows.
2) Since the order of the species is not known, the positions in the "X_guess" of the electrostatic species
is needed to update vector "T", and also the Jacobian matrix.
3) It is also assumed that T has the same order than X_guess. Namely, if the first components is "H+" in "T",
it should also be in "H+" in "X_guess".
4) log_k is the vector of the logarithm (equilibrium constant). For each species a logK is given, if the species
is a primary species, the value would be zero. The K must be coherent with matrix A.
5) The vectors, and matrix are suppossed to be in a numpy 'format', due to the fact that we are using its libraries, it should be like that.
6) The plane gamma is place at the "same lcation" that the diffusion plane. SO, basically is the same.
"""
counter_iterations = 0
abs_err = tolerance + 1
if idx_fix_species != None:
X_guess [idx_fix_species] = T [idx_fix_species]
while abs_err>tolerance and counter_iterations < max_iterations:
# Calculate Y
[Y, T] = func_NR_FLM (X_guess, A, log_k, temp, idx_Aq, sS1, aS1, sS2, aS2, e, CapacitancesS1, CapacitancesS2, T, Z, zel, pos_psi_S1_vec, pos_psi_S2_vec, idx_fix_species)
# Calculate Z
J = Jacobian_NR_FLM (X_guess, A, log_k, temp, idx_Aq, sS1, aS1, sS2, aS2, e, CapacitancesS1, CapacitancesS2, T, Z, zel, pos_psi_S1_vec, pos_psi_S2_vec, idx_fix_species)
# Calculating the diff, Delta_X
# Scaling technique is the RC technique from "Thermodynamic Equilibrium Solutions Through a Modified Newton Raphson Method"-Marianna Marinoni, Jer^ome Carrayrou, Yann Lucas, and Philippe Ackerer (2016)
if scalingRC == True:
D1 = diagonal_row(J)
D2 = diagonal_col(J)
J_new = np.matmul(D1,np.matmul(J, D2))
Y_new = np.matmul(D1, Y)
delta_X_new = linalg.solve(J_new,-Y_new)
delta_X = np.matmul(D2, delta_X_new)
else:
# Calculating the diff, Delta_X
delta_X = linalg.solve(J,-Y)
#print(delta_X))
# Relaxation factor borrow from Craig M.Bethke to avoid negative values
max_1 = 1
max_2 =np.amax(-2*np.multiply(delta_X, 1/X_guess))
Max_f = np.amax([max_1, max_2])
Del_mul = 1/Max_f
X_guess=X_guess + Del_mul*delta_X
log_C = log_k + np.matmul(A,np.log10(X_guess))
# transf
C = 10**(log_C)
u = np.matmul(A.transpose(),C)
# Vector_error
d = u-T
#print(d)
if idx_fix_species != None:
d[idx_fix_species] =0
abs_err = max(abs(d))
counter_iterations += 1
if counter_iterations >= max_iterations:
raise ValueError('Max number of iterations surpassed.')
# Speciation - mass action law
log_C = log_k + np.matmul(A,np.log10(X_guess))
# transf
C = 10**(log_C)
return X_guess, C
def func_NR_FLM (X, A, log_k, temp, idx_Aq, sS1, aS1, sS2, aS2, e, CapacitancesS1, CapacitancesS2, T, Z, zel, pos_psi_S1_vec, pos_psi_S2_vec, idx_fix_species=None):
"""
This function is supossed to be linked to the four_layer_two_surface_speciation function.
It just gave the evaluated vector of Y, and T for the Newton-raphson procedure.
The formulation of Westall (1980) is followed.
FLM = four layer model
"""
# Speciation - mass action law
log_C = log_k + np.matmul(A,np.log10(X))
# transf
C = 10**(log_C)
# Update T - "Electrostatic parameters"
psi_S1_v = [Boltzman_factor_2_psi(X[pos_psi_S1_vec[0]], temp), Boltzman_factor_2_psi(X[pos_psi_S1_vec[1]], temp), Boltzman_factor_2_psi(X[pos_psi_S1_vec[2]], temp), Boltzman_factor_2_psi(X[pos_psi_S1_vec[3]], temp)]
psi_S2_v = [Boltzman_factor_2_psi(X[pos_psi_S2_vec[0]], temp), Boltzman_factor_2_psi(X[pos_psi_S2_vec[1]], temp), Boltzman_factor_2_psi(X[pos_psi_S2_vec[2]], temp), Boltzman_factor_2_psi(X[pos_psi_S2_vec[3]], temp)]
C_aq = C[idx_Aq]
I = Calculate_ionic_strength(Z, C_aq)
T = Update_T_FLM(T, sS1, sS2, e, I, temp, aS1, aS2, Z,CapacitancesS1, CapacitancesS2, psi_S1_v, psi_S2_v, zel, pos_psi_S1_vec, pos_psi_S2_vec, C_aq)
# Calculation of Y
Y= np.matmul(A.transpose(),C)-T
# fix?
if idx_fix_species != None:
Y[idx_fix_species]=0
return Y,T
def Boltzman_factor_2_psi (x,temp):
'''
Transforms the equation from Xb = exp(-psi*F/RT) to psi = -ln(Xb)RT/F
from Boltzman factor to electrostatic potential
The units of "temp" (short for temperature) should be Kelvin
'''
R = 8.314472 # J/(K*mol)
F = 96485.3328959 # C/mol
D = R*temp
psi = - np.log(x)*(D/F)
return psi
def Calculate_ionic_strength(Z,C):
'''
It is supossed to be numpy format vector
Z is the vector of charge
'''
# Multiplication must be pointwise for the vector
# multiply function of numpy. Multiplies pointwise according to the documentation and own experience.
I = np.matmul(np.multiply(Z,Z),C)
I = I/2
return I
def Update_T_FLM(T, sS1, sS2, e, I, temp, aS1, aS2, Z,CapacitancesS1, CapacitancesS2, psi_S1_v, psi_S2_v, zel, pos_psi_S1_vec, pos_psi_S2_vec, C_aq):
"""
This equation is linked to func_NR_FLM. It updates the values of T for the electrostatic parameters.
- All the arguments of the function have been stated in four_layer_two_surface_speciation function.
"""
# constant
F = 96485.3328959 # C/mol
R = 8.314472 # J/(K*mol)
eo = 8.854187871e-12 # Farrads = F/m - permittivity in vaccuum
#e = 1.602176620898e-19 # C
kb = 1.38064852e-23 # J/K other units --> kb=8,6173303e-5 eV/K
Na = 6.022140857e23 # 1/mol
########## S1 #####################
sigma_S1_0 = CapacitancesS1[0]*(psi_S1_v[0]-psi_S1_v[1])
sigma_S1_alpha = -sigma_S1_0 + CapacitancesS1[1]*(psi_S1_v[1]-psi_S1_v[2])
sigma_S1_beta = -sigma_S1_0-sigma_S1_alpha+CapacitancesS1[2]*(psi_S1_v[2]-psi_S1_v[3])
sigma_S1_gamma = -sigma_S1_0 - sigma_S1_alpha - sigma_S1_beta
# Now the diffusive layer surface potential (sigma_d) is calculated. Using the formula given by Bethke in his book Geochemical Modeling Reactions
sigma_S1_d = np.sqrt(8*1000*R*temp*eo*e*I)*np.sinh((zel*psi_S1_v[3]*F)/(2*R*temp))
# T
T_S1_0 = ((sS1*aS1)/F)*sigma_S1_0; # units mol/L or mol/kg
T_S1_alpha = ((sS1*aS1)/F)*sigma_S1_alpha; # units mol/L or mol/kg
T_S1_beta = ((sS1*aS1)/F)*sigma_S1_beta; # units mol/L or mol/kg
#!! Important!!
#T_gammad = ((s*a)/F)*(-sigma_gamma+sigma_d) # This part should be equal to C[2]*(psi_beta-psi_dorgamma)+sigma_d
T_S1_gammad = ((sS1*aS1)/F)*(sigma_S1_gamma+sigma_S1_d)
########## S2 #####################
sigma_S2_0 = CapacitancesS2[0]*(psi_S2_v[0]-psi_S2_v[1])
sigma_S2_alpha = -sigma_S2_0 + CapacitancesS2[1]*(psi_S2_v[1]-psi_S2_v[2])
sigma_S2_beta = -sigma_S2_0-sigma_S2_alpha+CapacitancesS2[2]*(psi_S2_v[2]-psi_S2_v[3])
sigma_S2_gamma = -sigma_S2_0 - sigma_S2_alpha - sigma_S2_beta
# Now the diffusive layer surface potential (sigma_d) is calculated. Using the formula given by Bethke in his book Geochemical Modeling Reactions
sigma_S2_d = np.sqrt(8*1000*R*temp*eo*e*I)*np.sinh((zel*psi_S2_v[3]*F)/(2*R*temp))
# T
T_S2_0 = ((sS2*aS2)/F)*sigma_S2_0; # units mol/L or mol/kg
T_S2_alpha = ((sS2*aS2)/F)*sigma_S2_alpha; # units mol/L or mol/kg
T_S2_beta = ((sS2*aS2)/F)*sigma_S2_beta; # units mol/L or mol/kg
#!! Important!!
#T_gammad = ((s*a)/F)*(-sigma_gamma+sigma_d) # This part should be equal to C[2]*(psi_beta-psi_dorgamma)+sigma_d
T_S2_gammad = ((sS2*aS2)/F)*(sigma_S2_gamma+sigma_S2_d)
# Now the values must be put in T
T[pos_psi_S1_vec[0]] = T_S1_0
T[pos_psi_S1_vec[1]] = T_S1_alpha
T[pos_psi_S1_vec[2]] = T_S1_beta
T[pos_psi_S1_vec[3]] = T_S1_gammad
T[pos_psi_S2_vec[0]] = T_S2_0
T[pos_psi_S2_vec[1]] = T_S2_alpha
T[pos_psi_S2_vec[2]] = T_S2_beta
T[pos_psi_S2_vec[3]] = T_S2_gammad
return T
def Jacobian_NR_FLM (X, A, log_k, temp, idx_Aq, sS1, aS1, sS2, aS2, e, CapacitancesS1, CapacitancesS2, T, Z, zel, pos_psi_S1_vec, pos_psi_S2_vec, idx_fix_species=None):
'''
This function should give the Jacobian. Here The jacobian is calculated as Westall (1980), except the electrostatic terms that are slightly different.
The reason is because there seems to be some typos in Westall paper.
Also, if idx_fix_species is given then the rows of the unknown will be 1 for the unknown and 0 for the other points.
'''
# constant
F = 96485.3328959 # C/mol [Faraday constant]
R = 8.314472 # J/(K*mol) [universal constant gas]
eo = 8.854187871e-12 # Farrads = F/m - permittivity in vaccuum
# Speciation - mass action law
#log_C = log_k + A*np.log10(X)
log_C = log_k + np.matmul(A,np.log10(X))
# transf
C = 10**(log_C)
C_aq = C[idx_Aq]
I = Calculate_ionic_strength(Z, C_aq)
# instantiate Jacobian
length_X = X.size
Z = np.zeros((length_X,length_X))
# First part is the common of the Jacbian derivation
for i in range(0, length_X):
for j in range(0, length_X):
Z[i,j]= np.matmul(np.multiply(A[:,i], A[:,j]), (C/X[j]))
# Now the electrostatic part must be modified, one question hang on the air:
# Should we check that the electrostatic part is as we expected?
############S1#######################
sa_F2S1 = (sS1*aS1)/(F*F)
C1_sa_F2_RTS1 = sa_F2S1*CapacitancesS1[0]*R*temp
# Assigning in Jacobian (plane 0)
Z[pos_psi_S1_vec[0],pos_psi_S1_vec[0]]=Z[pos_psi_S1_vec[0],pos_psi_S1_vec[0]] + C1_sa_F2_RTS1/X[pos_psi_S1_vec[0]]
Z[pos_psi_S1_vec[0],pos_psi_S1_vec[1]]=Z[pos_psi_S1_vec[0],pos_psi_S1_vec[1]] - C1_sa_F2_RTS1/X[pos_psi_S1_vec[1]]
#### plane alpha
C1C2_sa_F2_RTS1 = sa_F2S1*R*temp*(CapacitancesS1[0]+CapacitancesS1[1])
C2_sa_F2_RTS1 = sa_F2S1*CapacitancesS1[1]*R*temp
# Assigning in Jacobian (plane alpha)
Z[pos_psi_S1_vec[1],pos_psi_S1_vec[0]]=Z[pos_psi_S1_vec[1],pos_psi_S1_vec[0]] - C1_sa_F2_RTS1/X[pos_psi_S1_vec[0]]
Z[pos_psi_S1_vec[1],pos_psi_S1_vec[1]]=Z[pos_psi_S1_vec[1],pos_psi_S1_vec[1]] + C1C2_sa_F2_RTS1/X[pos_psi_S1_vec[1]]
Z[pos_psi_S1_vec[1],pos_psi_S1_vec[2]]= Z[pos_psi_S1_vec[1],pos_psi_S1_vec[2]] - C2_sa_F2_RTS1/X[pos_psi_S1_vec[2]]
#### plane beta
C3C2_sa_F2_RTS1 = sa_F2S1*R*temp*(CapacitancesS1[1]+CapacitancesS1[2])
C3_sa_F2_RTS1 = sa_F2S1*CapacitancesS1[2]*R*temp
# Assigning in Jacobian (plane beta)
Z[pos_psi_S1_vec[2],pos_psi_S1_vec[1]] = Z[pos_psi_S1_vec[2],pos_psi_S1_vec[1]] - C2_sa_F2_RTS1/X[pos_psi_S1_vec[1]]
Z[pos_psi_S1_vec[2], pos_psi_S1_vec[2]] = Z[pos_psi_S1_vec[2],pos_psi_S1_vec[2]] + C3C2_sa_F2_RTS1/X[pos_psi_S1_vec[2]]
Z[pos_psi_S1_vec[2], pos_psi_S1_vec[3]] = Z[pos_psi_S1_vec[2],pos_psi_S1_vec[3]] - C3_sa_F2_RTS1/X[pos_psi_S1_vec[3]]
#### plane gamma [diffusive plane]
Z[pos_psi_S1_vec[3],pos_psi_S1_vec[2]] = Z[pos_psi_S1_vec[3],pos_psi_S1_vec[2]] - C3_sa_F2_RTS1/X[pos_psi_S1_vec[2]]
# d_d plane
psi_d = Boltzman_factor_2_psi(X[pos_psi_S1_vec[3]], temp)
DY_Dpsid = -np.sqrt(8*1000*R*temp*e*eo*I)*np.cosh((zel*F*psi_d)/(2*R*temp))*((zel*F)/(2*R*temp)) - CapacitancesS1[2]
Dpsid_DpsidB = (-R*temp)/(F*X[pos_psi_S1_vec[3]])
Z[pos_psi_S1_vec[3], pos_psi_S1_vec[3]] = Z[pos_psi_S1_vec[3], pos_psi_S1_vec[3]] + (DY_Dpsid*Dpsid_DpsidB*((sS1*aS1)/F))
#(Problably S1 and S2 can be enclosed in a for loop, reducing lines of code. If I have time and will, I will look at it.)
############S1#######################
sa_F2S2 = (sS2*aS2)/(F*F)
C1_sa_F2_RTS2 = sa_F2S2*CapacitancesS2[0]*R*temp
# Assigning in Jacobian (plane 0)
Z[pos_psi_S2_vec[0],pos_psi_S2_vec[0]]=Z[pos_psi_S2_vec[0],pos_psi_S2_vec[0]] + C1_sa_F2_RTS2/X[pos_psi_S2_vec[0]]
Z[pos_psi_S2_vec[0],pos_psi_S2_vec[1]]=Z[pos_psi_S2_vec[0],pos_psi_S2_vec[1]] - C1_sa_F2_RTS2/X[pos_psi_S2_vec[1]]
#### plane alpha
C1C2_sa_F2_RTS2 = sa_F2S2*R*temp*(CapacitancesS2[0]+CapacitancesS2[1])
C2_sa_F2_RTS2 = sa_F2S2*CapacitancesS2[1]*R*temp
# Assigning in Jacobian (plane alpha)
Z[pos_psi_S2_vec[1],pos_psi_S2_vec[0]]=Z[pos_psi_S2_vec[1],pos_psi_S2_vec[0]] - C1_sa_F2_RTS2/X[pos_psi_S2_vec[0]]
Z[pos_psi_S2_vec[1],pos_psi_S2_vec[1]]=Z[pos_psi_S2_vec[1],pos_psi_S2_vec[1]] + C1C2_sa_F2_RTS2/X[pos_psi_S2_vec[1]]
Z[pos_psi_S2_vec[1],pos_psi_S2_vec[2]]= Z[pos_psi_S2_vec[1],pos_psi_S2_vec[2]] - C2_sa_F2_RTS2/X[pos_psi_S2_vec[2]]
#### plane beta
C3C2_sa_F2_RTS2 = sa_F2S2*R*temp*(CapacitancesS2[1]+CapacitancesS2[2])
C3_sa_F2_RTS2 = sa_F2S2*CapacitancesS2[2]*R*temp
# Assigning in Jacobian (plane beta)
Z[pos_psi_S2_vec[2],pos_psi_S2_vec[1]] = Z[pos_psi_S2_vec[2],pos_psi_S2_vec[1]] - C2_sa_F2_RTS2/X[pos_psi_S2_vec[1]]
Z[pos_psi_S2_vec[2], pos_psi_S2_vec[2]] = Z[pos_psi_S2_vec[2],pos_psi_S2_vec[2]] + C3C2_sa_F2_RTS2/X[pos_psi_S2_vec[2]]
Z[pos_psi_S2_vec[2], pos_psi_S2_vec[3]] = Z[pos_psi_S2_vec[2],pos_psi_S2_vec[3]] - C3_sa_F2_RTS2/X[pos_psi_S2_vec[3]]
#### plane gamma [diffusive plane]
Z[pos_psi_S2_vec[3],pos_psi_S2_vec[2]] = Z[pos_psi_S2_vec[3],pos_psi_S2_vec[2]] - C3_sa_F2_RTS2/X[pos_psi_S2_vec[2]]
# d_d plane
psi_dS2 = Boltzman_factor_2_psi(X[pos_psi_S2_vec[3]], temp)
DY_Dpsid = -np.sqrt(8*1000*R*temp*e*eo*I)*np.cosh((zel*F*psi_dS2)/(2*R*temp))*((zel*F)/(2*R*temp)) - CapacitancesS2[2]
Dpsid_DpsidB = (-R*temp)/(F*X[pos_psi_S2_vec[3]])
Z[pos_psi_S2_vec[3], pos_psi_S2_vec[3]] = Z[pos_psi_S2_vec[3], pos_psi_S2_vec[3]] + (DY_Dpsid*Dpsid_DpsidB*((sS2*aS2)/F))
# finally just return Z
if idx_fix_species != None:
for d in idx_fix_species:
v=np.zeros(length_X)
v[d]=1
Z[d,:] = v
return Z
def diagonal_row(J):
num_rows = J.shape[0]
D = np.zeros((num_rows,num_rows))
for i in range(0,num_rows):
D[i,i]=np.sqrt(linalg.norm(J[i,:], np.inf))
return D
def diagonal_col(J):
num_cols = J.shape[1]
D = np.zeros((num_cols,num_cols))
for i in range(0,num_cols):
D[i,i]=np.sqrt(linalg.norm(J[:,i], np.inf))
return D
|
python
|
# Step 1 - Gather Data
import pandas as pd
import datetime
import re
import json
import os
import unittest
import time
import sys
# Own Imports
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from deployment.Control_Enactor import Enactor
from deployment.Data_Retreiver import Data_Retreiver
class Controller:
def __init__(self, data_ret, enact, allocation, reset_time=4):
self.data_ret = data_ret
self.enact = enact
self.allocation = allocation
self.reset_time = reset_time
self.latest = "Initilised"
def stop(self):
self.enact.stop()
self.data_ret.stop()
def sort_plan_for_dev_socket(self, dev, limit, forecast, date_time):
# print("Sorting Plan for Device: ", dev, " With Limit: ", str(limit), " and Estiamte: ", str(forecast))
# get latest session value, add to it and then update the plan
AC_Session = self.data_ret.retreive_AC_Session(dev, date_time)
if AC_Session is None:
AC_Session = self.data_ret.retreive_AC_Energy(dev, date_time)
# print("AC Session:",AC_Session)
change = False
# if 1 then make it generous
if limit >= 1:
change = self.enact.enact_socket_plan(dev, 1200000) # 1,200,000 is equivalent to 20kW
return 1200000, change
elif limit <= 0.0:
change = self.enact.enact_socket_plan(dev, 0)
return 0, change
else:
p_available = forecast * limit * 1.1 / 0.017
# print("Power Availalbe", p_available)
change = self.enact.enact_socket_plan(dev, AC_Session + p_available)
return AC_Session + p_available, change
def sort_plan_for_dev_light(self, dev, limit, forecast, date_time):
# print("Sorting Plan for Device: ", dev, " With Limit: ", str(limit), " and Estiamte: ", str(forecast))
# get latest session value, add to it and then update the plan
# Nightlight and Brightlight
BL_Session, NL_Session = self.data_ret.retreive_Light_Session(dev, date_time)
if NL_Session is None:
_, NL_Session = self.data_ret.retreive_Light_Energy(dev, date_time)
if BL_Session is None:
BL_Session, _ = self.data_ret.retreive_Light_Energy(dev, date_time)
# print("Light Sessions: ", BL_Session, NL_Session)
change = False
# if 1 then make it generous
if limit >= 1:
change = self.enact.enact_light_plan(dev, 4320, 4320)
return 4320, 4320, change
elif limit <= 0.0:
change = self.enact.enact_light_plan(dev, 0, 0)
return 0, 0, change
else:
avg_p_cons = self.data_ret.retreive_average_P_lights(dev, date_time)
if avg_p_cons is None:
# print(" avg_p_cons Not found")
avg_p_cons = 5.0
avg_p_cons = avg_p_cons / 60 / 3 # to get minutely values for dimmed
# print("Average P Cons", avg_p_cons)
# Divided by three as the NL is half as bright than the BL
minutes_available = forecast * limit / avg_p_cons * 1.1 # add 10%
# print("Mins Availalbe: ", minutes_available)
change = self.enact.enact_light_plan(dev, BL_Session + minutes_available / 2,
NL_Session + minutes_available)
return BL_Session + minutes_available / 2, NL_Session + minutes_available, change
def sort_lights(self, dev, remaining_energy, date_time):
# Gather How much Energy It would consume
df_dev_sums = self.data_ret.get_total_energy_for_group(self.allocation[dev], date_time)
if df_dev_sums is None:
self.latest = "---- Mini Fault: Group Energy Returned None, Considering No Values so 0"
total_energy_used_f = 0.0
else:
# display(df_dev_sums)
total_energy_used_f = df_dev_sums.sum(axis=1)[0]
dev_info = {}
if total_energy_used_f * 1.2 > remaining_energy:
# Constrain devs and calculate
const_rate = 1.0 # All available
if total_energy_used_f != 0.0:
const_rate = remaining_energy / total_energy_used_f / 1.2
# print("Constraint Rate: " + str(const_rate))
for d in self.allocation[dev]:
# print("-----------------" + d + "------------------")
dev_info[d] = self.sort_plan_for_dev_light(d, const_rate, df_dev_sums[d.lower()].values[0], date_time)
return 0, {"state": "Constrained", "energy_est_used_total":
total_energy_used_f * 1.2, "constraining_factor": const_rate, "device_const": dev_info}
else:
for d in self.allocation[dev]:
# print("-----------------" + d + "------------------")
dev_info[d] = self.sort_plan_for_dev_light(d, 1.0, df_dev_sums[d.lower()].values[0], date_time)
return remaining_energy - total_energy_used_f * 1.2, {"state": "Unconstrained", "energy_est_used_total":
total_energy_used_f, "constraining_factor": 1.0, "device_const": dev_info}
def sort_sockets(self, dev, remaining_energy, date_time):
# Gather How much Energy It would consume
df_dev_sums = self.data_ret.get_total_energy_for_group(self.allocation[dev], date_time)
if df_dev_sums is None:
self.latest = "---- Mini Fault: Group Energy Returned None, Considering No Values so 0"
total_energy_used_f = 0.0
else:
# display(df_dev_sums)
total_energy_used_f = df_dev_sums.sum(axis=1)[0]
dev_info = {}
if total_energy_used_f * 1.2 > remaining_energy:
# Constrain devs and calculate
const_rate = 1.0 # All available
if total_energy_used_f != 0.0:
const_rate = remaining_energy / total_energy_used_f / 1.2
# print("Constraint Rate: " + str(const_rate))
for d in self.allocation[dev]:
# print("-----------------" + d + "------------------")
dev_info[d] = self.sort_plan_for_dev_socket(d, const_rate, df_dev_sums[d.lower()].values[0], date_time)
return 0, {"state": "Constrained", "energy_est_used_total":
total_energy_used_f * 1.2, "constraining_factor": const_rate, "device_const": dev_info}
else:
for d in self.allocation[dev]:
# print("-----------------" + d + "------------------")
dev_info[d] = self.sort_plan_for_dev_socket(d, 1.0, df_dev_sums[d.lower()].values[0], date_time)
return remaining_energy - total_energy_used_f * 1.2, {"state": "Unconstrained", "energy_est_used_total":
total_energy_used_f, "constraining_factor": 1.0, "device_const": dev_info}
def sort_device(self, dev, remaining_energy, date_time):
if "ights" in dev:
return self.sort_lights(dev, remaining_energy, date_time)
else:
return self.sort_sockets(dev, remaining_energy, date_time)
def revert_to_standard(self, latest_ts):
self.latest = "Checking Time for revert \n"
if latest_ts.hour >= self.reset_time - 1 and latest_ts.hour <= self.reset_time + 1:
self.latest = "Within 1 hour range on reset, don't panic yet\n"
else:
self.latest = "Reverting to standard setup as no data is available\n"
decision_summary = {}
for a in self.allocation:
dev_info = {}
for dev in self.allocation[a]:
if "ights" in a:
dev_info[dev] = (4329, 4320, self.enact.enact_light_plan(dev, 4320, 4320))
else:
dev_info[dev] = (1200000, self.enact.enact_socket_plan(dev, 1200000))
decision = {"state": "Unconstrained", "energy_est_used_total":
0, "constraining_factor": 1.0, "device_const": dev_info, "timestamp": latest_ts}
decision_summary[a] = decision
self.latest += "Decisions: "+str(decision_summary)+"\n"
self.data_ret.save_decision(decision_summary)
def do_step(self, latest_ts = datetime.datetime.now()):
df_priority = self.data_ret.retreive_latest_priority(latest_ts)
df_system = self.data_ret.retreive_latest_raw_system_snapshot(latest_ts)
if df_system is None or df_system.isnull().values.any():
self.latest = "---- Mini Fault: Historic Returned None, Waiting..."
self.revert_to_standard(latest_ts)
return None
# When Deciding
# latest_ts = datetime.datetime.now()
self.latest ="Latest Data From: " + str(latest_ts)+"\n"
df_system_for = self.data_ret.retreive_latest_forecast(latest_ts)
if df_system_for is None or df_system_for.isnull().values.any():
self.latest = "---- Mini Fault: Forecast Returned None, Waiting..."
self.revert_to_standard(latest_ts)
return None
system_load = df_system_for["system_load"][0]
if system_load < 0:
system_load = 0
gen_energy = df_system_for["generated_energy"][0]
battery_soc = df_system[df_system['parameter'] == "VenusGX/Dc/Battery/Soc"]["value"].values[0]
self.latest +="-------Energy State--------\n"
remaining_energy = gen_energy - system_load * 1.2 + (
battery_soc - 40.0) * 21.1 * 1000 / 100 * 0.9 # system load + 20%; remaining battery SOC, with 90% gettable at a 21kw battery
self.latest +="Generated energy: " + str(gen_energy)+"\n"
self.latest +="System Load: " + str(system_load)+"\n"
self.latest +="Battery SoC: " + str(battery_soc)+"\n"
self.latest +="Remaining Energy: " + str(remaining_energy)+"\n"
# display(df_priority)
# Get Value pair from Priority:
if df_priority is None:
self.latest +="Priority Returned None, Considering Standard..."+"\n"
prior_values = {0: 'nursery1_lights', 4: 'nursery1_sockets', 1: 'nursery2_lights', 5: 'nursery2_sockets',
3: 'playground_lights', 6: 'playground_sockets'}
else:
prior_values = {}
for label, content in df_priority.items():
if label not in ['id', 'timestamp']:
prior_values[content[0]] = label
self.latest +=str(prior_values)+"\n"
#remaining_energy = 0 # Overwrite for testing
decision_summary = {}
for key in sorted(prior_values.keys()):
self.latest +="------------------------------------------------\n"
self.latest +="For Device: " + prior_values[key] + " with energy avialable: " + str(remaining_energy)+"\n"
remaining_energy, decision = self.sort_device(prior_values[key], remaining_energy, latest_ts)
decision['timestamp'] = str(latest_ts)
decision_summary[prior_values[key]] = decision
self.latest +="Decisions: "+str(decision)+"\n"
self.latest +="Remaining: "+str(remaining_energy)+"\n"
self.latest +="Decision Summary: \n"
self.latest +=str(decision_summary)+"\n"
self.data_ret.save_decision(decision_summary)
def getLatest(self):
return "Controller : "+self.latest
|
python
|
# Generated by Django 2.2.6 on 2020-01-18 06:25
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('blog', '0002_auto_20200116_2309'),
]
operations = [
migrations.AddField(
model_name='enroll',
name='outofmid',
field=models.IntegerField(null=True),
),
migrations.AddField(
model_name='enroll',
name='sub1mark',
field=models.IntegerField(null=True),
),
migrations.AddField(
model_name='enroll',
name='sub2mark',
field=models.IntegerField(null=True),
),
migrations.AddField(
model_name='enroll',
name='sub3mark',
field=models.IntegerField(null=True),
),
migrations.AddField(
model_name='enroll',
name='sub4mark',
field=models.IntegerField(null=True),
),
migrations.AddField(
model_name='enroll',
name='sub5mark',
field=models.IntegerField(null=True),
),
migrations.AddField(
model_name='enroll',
name='subject1',
field=models.TextField(max_length=15, null=True),
),
migrations.AddField(
model_name='enroll',
name='subject2',
field=models.TextField(max_length=15, null=True),
),
migrations.AddField(
model_name='enroll',
name='subject3',
field=models.TextField(max_length=15, null=True),
),
migrations.AddField(
model_name='enroll',
name='subject4',
field=models.TextField(max_length=15, null=True),
),
migrations.AddField(
model_name='enroll',
name='subject5',
field=models.TextField(max_length=15, null=True),
),
]
|
python
|
# Copyright (c) 2016, Dennis Meuwissen
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from typing import Dict, Optional, Tuple
import wx
from renderlib.surface import Surface
from turrican2.graphics import Graphics
from turrican2.level import Level
from turrican2.world import World
from ui.camera import Camera
class EditMode:
def __init__(self, frame):
self._frame = frame
self._mouse_position: Tuple[int, int] = (0, 0)
self._world: Optional[World] = None
self._level: Optional[Level] = None
def mouse_left_down(self, event: wx.MouseEvent):
pass
def mouse_left_up(self, event: wx.MouseEvent):
pass
def mouse_move(self, event: wx.MouseEvent):
pass
def paint(self, surface: Surface, camera: Camera, graphics: Graphics):
pass
def key_char(self, key_code: int):
pass
def level_changed(self):
pass
def undo_restore_item(self, item: Dict):
pass
def undo_store_item(self) -> Dict:
pass
def set_mouse_position(self, position: Tuple[int, int]):
self._mouse_position = position
def set_level(self, world: World, level: Level):
self._world = world
self._level = level
self.level_changed()
@staticmethod
def get_selection_rectangle(start: Tuple[int, int], end: Tuple[int, int]):
x1, y1 = start
x2, y2 = end
if x2 < x1:
x1, x2 = x2, x1
if y2 < y1:
y1, y2 = y2, y1
width = x2 - x1 + 1
height = y2 - y1 + 1
return x1, y1, width, height
|
python
|
# Simple XML to CSV
# e.g. for https://ghr.nlm.nih.gov/download/ghr-summaries.xml
# Silas S. Brown 2017 - public domain - no warranty
# Bugs: may not correctly handle descriptions that mix
# tags with inline text on the same level.
# FOR EXPLORATORY USE ONLY.
# Where to find history:
# on GitHub at https://github.com/ssb22/bits-and-bobs
# and on GitLab at https://gitlab.com/ssb22/bits-and-bobs
# and on BitBucket https://bitbucket.org/ssb22/bits-and-bobs
# and at https://gitlab.developers.cam.ac.uk/ssb22/bits-and-bobs
# and in China: https://gitee.com/ssb22/bits-and-bobs
max_chars_per_cell = 80
# set max_chars_per_cell = None for unlimited,
# but note many spreadsheet programs will have problems
import sys, csv
from xml.parsers import expat
items = {}
cursorStack = [(0,0,0,0,0)] # x,y,curDir,maxX,maxY
def inc(x,y,curDir,xToSet,yToSet):
if curDir: return x,yToSet
else: return xToSet,y
def turn(curDir):
if curDir==1: return 0
else: return 1
def StartElementHandler(name,attrs):
x,y,curDir,maxX,maxY = cursorStack[-1]
items[(y,x)] = name
childDir = turn(curDir)
cursorStack.append(inc(x,y,childDir,x+1,y+1) + (childDir,x,y))
def EndElementHandler(name):
_,_,_,cMaxX,cMaxY = cursorStack.pop()
x,y,curDir,maxX,maxY = cursorStack.pop()
cursorStack.append(inc(x,y,curDir,cMaxX+1,cMaxY+1) + (curDir,max(maxX,cMaxX),max(maxY,cMaxY)))
def CharacterDataHandler(data):
x,y,curDir,maxX,maxY = cursorStack.pop()
while data:
data = items.get((y,x),"") + data.replace("\n"," ").replace("\r","")
if max_chars_per_cell: data, dataRest = data[:max_chars_per_cell],data[max_chars_per_cell:]
else: dataRest = ""
if dataRest and len(data.split())>1 and data[-1].split() and dataRest[0].split(): data,dataRest = data.rsplit(None,1)[0],data.rsplit(None,1)[1]+dataRest # word wrap on spaces
items[(y,x)] = data
data = dataRest
if data: y += 1
cursorStack.append((x,y,curDir,max(x,maxX),max(y,maxY)))
parser = expat.ParserCreate()
parser.StartElementHandler = StartElementHandler
parser.EndElementHandler = EndElementHandler
parser.CharacterDataHandler = CharacterDataHandler
parser.Parse(sys.stdin.read(),1)
curX=curY=0 ; curRow = [""]
o = csv.writer(sys.stdout)
for y,x in sorted(items.keys()):
while y > curY:
o.writerow(curRow)
curRow = [""]
curY += 1 ; curX = 0
while x > curX:
curRow.append("")
curX += 1
curRow[-1] = ' '.join(items[(y,x)].split()).encode('utf-8')
o.writerow(curRow)
|
python
|
def seat_spec_to_id(seat_spec):
row = 0
for pos in range(7):
if seat_spec[pos] == 'B':
row = row + pow(2,6-pos)
# print("adding row", pow(2,6-pos))
# print("row", row)
col = 0
for pos in range(3):
if seat_spec[7+pos] == 'R':
col = col + pow(2,2-pos)
# print("adding col", pow(2,2-pos))
# print("col", col)
return row * 8 + col
|
python
|
import argparse
import math
import sys
def main() -> int:
parser = argparse.ArgumentParser(
description="Utility for generating the pitch register table C source.",
)
parser.add_argument(
'c',
metavar='C_FILE',
type=str,
help='The C file we should generate.',
)
parser.add_argument(
'table_size',
metavar='SIZE',
type=int,
help='The table jump size (64, 128, 256 or 512).',
)
args = parser.parse_args()
if args.table_size == 64:
TABLE_JUMP_SIZE = 64
INDEX_SHIFT = 6
FRAC_MASK = 0x3F
elif args.table_size == 128:
TABLE_JUMP_SIZE = 128
INDEX_SHIFT = 7
FRAC_MASK = 0x7F
elif args.table_size == 256:
TABLE_JUMP_SIZE = 256
INDEX_SHIFT = 8
FRAC_MASK = 0xFF
elif args.table_size == 512:
TABLE_JUMP_SIZE = 512
INDEX_SHIFT = 9
FRAC_MASK = 0x1FF
else:
print("Invalid table size selection!", file=sys.stderr)
return 1
IMPORTANT_FREQUENCIES = {8000, 11025, 16000, 22050, 32000, 44100, 48000, 88200, 96000}
# Actual cents calculation.
def cents(x: int) -> int:
return int(1200 * math.log2(x / 44100))
# Start with frequency "0", since this is invalid in a log2.
table = [0]
for i in range(TABLE_JUMP_SIZE, 96000 + (2 * TABLE_JUMP_SIZE), TABLE_JUMP_SIZE):
table.append(cents(i))
# Define the approx function.
def centsapprox(x: int) -> int:
index = x >> INDEX_SHIFT
low = table[index]
high = table[index + 1]
return low + (((high - low) * (x & FRAC_MASK)) >> INDEX_SHIFT)
# Now, calculate error
totalerror = 0
worsterror = 0
for i in range(8000, 96001):
error = cents(i) - centsapprox(i)
totalerror += abs(error)
worsterror = max(abs(error), worsterror)
if i in IMPORTANT_FREQUENCIES and error != 0:
print(f"Frequency {i} has error {error}!")
print(f"Total memory is {len(table) * 2} bytes")
print(f"Total error is {totalerror} cents")
print(f"Worst error is {worsterror} cents")
# Now, calculate cent translation table.
fns = [round(((2 ** (i / 1200)) - 1) * 2**10) for i in range(1200)]
# Now, generate a header file for this
print(f"Generating {args.c} with LUT step size {args.table_size}.")
with open(args.c, "w") as fp:
def p(s: str) -> None:
print(s, file=fp)
# Solely for alignment reasons.
def p_(s: str) -> None:
p(s)
p_("#include <stdint.h>")
p_("")
p(f"int16_t centtable[{len(table)}] = {{")
for chunk in [table[x:(x + 16)] for x in range(0, len(table), 16)]:
p_(" " + ", ".join([str(x) for x in chunk]) + ", ")
p_("};")
p_("")
p(f"uint16_t fnstable[{len(fns)}] = {{")
for chunk in [fns[x:(x + 16)] for x in range(0, len(fns), 16)]:
p_(" " + ", ".join([str(x) for x in chunk]) + ", ")
p_("};")
p_("")
p_("uint32_t pitch_reg(unsigned int samplerate)")
p_("{")
p_(" // Calculate cents difference from 44100.")
p(f" unsigned int index = samplerate >> {INDEX_SHIFT};")
p_(" int low = centtable[index];")
p_(" int high = centtable[index + 1];")
p(f" int cents = low + (((high - low) * (samplerate & {FRAC_MASK})) >> {INDEX_SHIFT});")
p_("")
p_(" // Calcualte octaves from cents.")
p_(" int octave = 0;")
p_(" while (cents < 0)")
p_(" {")
p_(" cents += 1200;")
p_(" octave -= 1;")
p_(" }")
p_(" while (cents >= 1200)")
p_(" {")
p_(" cents -= 1200;")
p_(" octave += 1;")
p_(" }")
p_("")
p_(" // Finally, generate the register contents.")
p_(" return ((octave & 0xF) << 11) | fnstable[cents];")
p_("}")
return 0
if __name__ == "__main__":
sys.exit(main())
|
python
|
from llvmlite import ir as lir
import llvmlite.binding as ll
import numba
import hpat
from hpat.utils import debug_prints
from numba import types
from numba.typing.templates import (infer_global, AbstractTemplate, infer,
signature, AttributeTemplate, infer_getattr, bound_function)
from numba.extending import (typeof_impl, type_callable, models, register_model,
make_attribute_wrapper, lower_builtin, box, lower_getattr)
from numba import cgutils, utils
from numba.targets.arrayobj import _empty_nd_impl
from numba.targets.imputils import impl_ret_new_ref, impl_ret_borrowed
class MultinomialNB(object):
def __init__(self, nclasses=-1):
self.n_classes = nclasses
return
class MultinomialNBType(types.Type):
def __init__(self):
super(MultinomialNBType, self).__init__(
name='MultinomialNBType()')
mnb_type = MultinomialNBType()
class MultinomialNBPayloadType(types.Type):
def __init__(self):
super(MultinomialNBPayloadType, self).__init__(
name='MultinomialNBPayloadType()')
@typeof_impl.register(MultinomialNB)
def typeof_mnb_val(val, c):
return mnb_type
# @type_callable(MultinomialNB)
# def type_mnb_call(context):
# def typer(nclasses = None):
# return mnb_type
# return typer
# dummy function providing pysignature for MultinomialNB()
def MultinomialNB_dummy(n_classes=-1):
return 1
@infer_global(MultinomialNB)
class MultinomialNBConstructorInfer(AbstractTemplate):
def generic(self, args, kws):
sig = signature(mnb_type, types.intp)
pysig = utils.pysignature(MultinomialNB_dummy)
sig.pysig = pysig
return sig
@register_model(MultinomialNBType)
class MultinomialNBDataModel(models.StructModel):
def __init__(self, dmm, fe_type):
dtype = MultinomialNBPayloadType()
members = [
('meminfo', types.MemInfoPointer(dtype)),
]
models.StructModel.__init__(self, dmm, fe_type, members)
@register_model(MultinomialNBPayloadType)
class MultinomialNBPayloadDataModel(models.StructModel):
def __init__(self, dmm, fe_type):
members = [
('model', types.Opaque('daal_model')),
('n_classes', types.intp),
]
models.StructModel.__init__(self, dmm, fe_type, members)
@infer_getattr
class MultinomialNBAttribute(AttributeTemplate):
key = MultinomialNBType
@bound_function("mnb.train")
def resolve_train(self, dict, args, kws):
assert not kws
assert len(args) == 2
return signature(types.none, *args)
@bound_function("mnb.predict")
def resolve_predict(self, dict, args, kws):
assert not kws
assert len(args) == 1
return signature(types.Array(types.int32, 1, 'C'), *args)
try:
import daal_wrapper
ll.add_symbol('mnb_train', daal_wrapper.mnb_train)
ll.add_symbol('mnb_predict', daal_wrapper.mnb_predict)
ll.add_symbol('dtor_mnb', daal_wrapper.dtor_mnb)
except ImportError:
if debug_prints(): # pragma: no cover
print("daal import error")
@lower_builtin(MultinomialNB, types.intp)
def impl_mnb_constructor(context, builder, sig, args):
dtype = MultinomialNBPayloadType()
alloc_type = context.get_data_type(dtype)
alloc_size = context.get_abi_sizeof(alloc_type)
llvoidptr = context.get_value_type(types.voidptr)
llsize = context.get_value_type(types.uintp)
dtor_ftype = lir.FunctionType(lir.VoidType(),
[llvoidptr, llsize, llvoidptr])
dtor_fn = builder.module.get_or_insert_function(dtor_ftype, name="dtor_mnb")
meminfo = context.nrt.meminfo_alloc_dtor(
builder,
context.get_constant(types.uintp, alloc_size),
dtor_fn,
)
data_pointer = context.nrt.meminfo_data(builder, meminfo)
data_pointer = builder.bitcast(data_pointer,
alloc_type.as_pointer())
mnb_payload = cgutils.create_struct_proxy(dtype)(context, builder)
mnb_payload.n_classes = args[0]
builder.store(mnb_payload._getvalue(),
data_pointer)
mnb_struct = cgutils.create_struct_proxy(mnb_type)(context, builder)
mnb_struct.meminfo = meminfo
return mnb_struct._getvalue()
@lower_builtin("mnb.train", mnb_type, types.Array, types.Array)
def mnb_train_impl(context, builder, sig, args):
X = context.make_array(sig.args[1])(context, builder, args[1])
y = context.make_array(sig.args[2])(context, builder, args[2])
zero = context.get_constant(types.intp, 0)
one = context.get_constant(types.intp, 1)
# num_features = builder.load(builder.gep(X.shape, [one]))
# num_samples = builder.load(builder.gep(X.shape, [zero]))
num_features = builder.extract_value(X.shape, 1)
num_samples = builder.extract_value(X.shape, 0)
# num_features, num_samples, X, y
arg_typs = [lir.IntType(64), lir.IntType(64),
lir.IntType(32).as_pointer(), lir.IntType(32).as_pointer(),
lir.IntType(64).as_pointer()]
fnty = lir.FunctionType(lir.IntType(8).as_pointer(), arg_typs)
fn = builder.module.get_or_insert_function(fnty, name="mnb_train")
dtype = MultinomialNBPayloadType()
inst_struct = context.make_helper(builder, mnb_type, args[0])
data_pointer = context.nrt.meminfo_data(builder, inst_struct.meminfo)
data_pointer = builder.bitcast(data_pointer,
context.get_data_type(dtype).as_pointer())
mnb_struct = cgutils.create_struct_proxy(dtype)(context, builder, builder.load(data_pointer))
call_args = [num_features, num_samples, X.data, y.data,
mnb_struct._get_ptr_by_name('n_classes')]
model = builder.call(fn, call_args)
mnb_struct.model = model
builder.store(mnb_struct._getvalue(), data_pointer)
return context.get_dummy_value()
@lower_builtin("mnb.predict", mnb_type, types.Array)
def mnb_predict_impl(context, builder, sig, args):
dtype = MultinomialNBPayloadType()
inst_struct = context.make_helper(builder, mnb_type, args[0])
data_pointer = context.nrt.meminfo_data(builder, inst_struct.meminfo)
data_pointer = builder.bitcast(data_pointer,
context.get_data_type(dtype).as_pointer())
mnb_struct = cgutils.create_struct_proxy(dtype)(context, builder, builder.load(data_pointer))
p = context.make_array(sig.args[1])(context, builder, args[1])
num_features = builder.extract_value(p.shape, 1)
num_samples = builder.extract_value(p.shape, 0)
ret_arr = _empty_nd_impl(context, builder, sig.return_type, [num_samples])
call_args = [mnb_struct.model, num_features, num_samples, p.data, ret_arr.data, mnb_struct.n_classes]
# model, num_features, num_samples, p, ret
arg_typs = [lir.IntType(8).as_pointer(), lir.IntType(64), lir.IntType(64),
lir.IntType(32).as_pointer(), lir.IntType(32).as_pointer(),
lir.IntType(64)]
fnty = lir.FunctionType(lir.VoidType(), arg_typs)
fn = builder.module.get_or_insert_function(fnty, name="mnb_predict")
builder.call(fn, call_args)
return impl_ret_new_ref(context, builder, sig.return_type, ret_arr._getvalue())
|
python
|
from py.webSocketParser import SurveyTypes
neo = [
{"sigma_tp": 7.2258e-06, "diameter": 16.84, "epoch_mjd": 56800.0, "ad": 1.782556743092633, "producer": "Otto Matic", "rms": 0.49521, "H_sigma": "", "closeness": 3366.5887401966647, "spec_B": "S", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "433 Eros (1898 DQ)", "M2": "", "sigma_per": 1.5563e-07, "equinox": "J2000", "DT": "", "diameter_sigma": 0.06, "saved": -49024112093511.164, "albedo": 0.25, "moid_ld": 57.95363972, "pha": "N", "neo": "Y", "sigma_ad": 2.8762e-10, "PC": "", "profit": 1.0778633100953429e-42, "spkid": 2000433.0, "sigma_w": 7.721e-06, "sigma_i": 2.5015e-06, "per": 643.0120278650012, "id": "a0000433", "A1": "", "data_arc": 18507.0, "A3": "", "score": 1.3376292522104002e-53, "per_y": 1.7604709866256, "sigma_n": 1.355e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 436", "sigma_a": 2.3525e-10, "sigma_om": 5.6736e-06, "A2": "", "sigma_e": 1.0576e-08, "condition_code": 0.0, "rot_per": 5.27, "prov_des": "1898 DQ", "G": 0.46, "last_obs": "2014-03-16", "H": 11.16, "price": 6.688146261052001e-42, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 5043.0, "moid": 0.148916, "extent": "34.4x11.2x11.2", "dv": 6.112479, "e": 0.2226333844057514, "GM": 0.0004463, "tp_cal": 20131021.652388, "pdes": 433.0, "class": "AMO", "UB": 0.531, "a": 1.457965049726682, "t_jup": 4.583, "om": 304.3352604155472, "ma": 119.4458843601074, "name": "Eros", "i": 10.82897927365984, "tp": 2456587.152387993, "prefix": "", "BV": 0.921, "spec": "S", "q": 1.133373356360731, "w": 178.7833320468003, "n": 0.5598651104479512, "sigma_ma": 4.0456e-06, "first_obs": "1963-07-15", "n_del_obs_used": 1.0, "sigma_q": 1.5477e-08, "n_dop_obs_used": 3.0},
{"sigma_tp": 8.0161e-06, "diameter": "", "sigma_q": 9.4916e-08, "epoch_mjd": 56800.0, "ad": 4.080921984113118, "producer": "Otto Matic", "rms": 0.4505, "H_sigma": "", "closeness": 2749.4040311878002, "spec_B": "S", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "719 Albert (1911 MT)", "M2": "", "sigma_per": 5.4956e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -30228733726401.28, "albedo": "", "moid_ld": 72.2533022, "pha": "N", "neo": "Y", "sigma_ad": 9.5983e-09, "PC": "", "profit": 4.3222880172840865e-43, "est_diameter": 2.854166808844959, "sigma_w": 2.0359e-05, "sigma_i": 6.2953e-06, "per": 1557.735319192702, "id": "a0000719", "A1": "", "data_arc": 37161.0, "A3": "", "score": 8.247949175007173e-54, "per_y": 4.26484686979521, "sigma_n": 8.1533e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 55", "sigma_a": 6.1853e-09, "sigma_om": 1.8824e-05, "A2": "", "sigma_e": 3.5608e-08, "condition_code": 0.0, "rot_per": 5.801, "prov_des": "1911 MT", "G": "", "last_obs": "2013-07-01", "H": 15.4, "price": 4.123974587503586e-42, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 1027.0, "moid": 0.18566, "extent": "", "dv": 7.675843, "e": 0.551772789828196, "GM": "", "tp_cal": 20140617.1343186, "pdes": 719.0, "class": "AMO", "UB": "", "a": 2.629845046171313, "t_jup": 3.14, "om": 184.0620457491692, "ma": 354.1913400828157, "name": "Albert", "i": 11.55289382592962, "tp": 2456825.6343186395, "prefix": "", "BV": "", "spec": "S", "q": 1.178768108229506, "w": 155.7926293702832, "n": 0.2311047297730723, "sigma_ma": 1.8393e-06, "first_obs": "1911-10-04", "n_del_obs_used": "", "spkid": 2000719.0, "n_dop_obs_used": ""},
{"sigma_tp": 0.00013568, "diameter": 4.2, "epoch_mjd": 56800.0, "ad": 3.884599924618222, "producer": "Otto Matic", "rms": 0.66516, "H_sigma": "", "closeness": 2864.4211311526274, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "887 Alinda (1918 DB)", "M2": "", "sigma_per": 1.4733e-05, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -71087047503560.31, "albedo": 0.31, "moid_ld": 35.253470371, "pha": "N", "neo": "Y", "sigma_ad": 2.6776e-08, "PC": "", "profit": 0.0, "spkid": 2000887.0, "sigma_w": 3.4331e-05, "sigma_i": 7.8973e-06, "per": 1424.912072423786, "id": "a0000887", "A1": "", "data_arc": 35068.0, "A3": "", "score": 0.0, "per_y": 3.9011966390795, "sigma_n": 2.6122e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 120", "sigma_a": 1.7081e-08, "sigma_om": 3.0581e-05, "A2": "", "sigma_e": 4.6576e-08, "condition_code": 0.0, "rot_per": 73.97, "prov_des": "1918 DB", "G": -0.12, "last_obs": "2014-02-07", "H": 13.4, "price": 0.0, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 797.0, "moid": 0.0905863, "extent": "", "dv": 7.072969, "e": 0.5675444737747382, "GM": "", "tp_cal": 20130426.6885367, "pdes": 887.0, "class": "AMO", "UB": 0.436, "a": 2.478143357083758, "t_jup": 3.221, "om": 110.5521995501332, "ma": 98.86373308335283, "name": "Alinda", "i": 9.359401304390579, "tp": 2456409.1885366794, "prefix": "", "BV": 0.832, "spec": "?", "q": 1.071686789549293, "w": 350.3263757908009, "n": 0.2526471681776387, "sigma_ma": 3.5292e-05, "first_obs": "1918-02-03", "n_del_obs_used": "", "sigma_q": 1.1691e-07, "n_dop_obs_used": ""},
{"sigma_tp": 8.3308e-06, "diameter": 31.66, "epoch_mjd": 56800.0, "ad": 4.083872793212254, "producer": "Otto Matic", "rms": 0.54064, "H_sigma": "", "closeness": 2655.4921657925574, "spec_B": "S", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1036 Ganymed (1924 TD)", "M2": "", "sigma_per": 2.0585e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.8, "saved": -4.12586137889941e+16, "albedo": 0.2926, "moid_ld": 132.40108238, "pha": "N", "neo": "Y", "sigma_ad": 3.5318e-09, "PC": "", "profit": 4.2197237382191106e-40, "spkid": 2001036.0, "sigma_w": 7.9739e-06, "sigma_i": 3.7349e-06, "per": 1586.797934971396, "id": "a0001036", "A1": "", "data_arc": 32653.0, "A3": "", "score": 1.1257466245291704e-50, "per_y": 4.34441597528103, "sigma_n": 2.9431e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 404", "sigma_a": 2.3026e-09, "sigma_om": 7.3237e-06, "A2": "", "sigma_e": 2.3795e-08, "condition_code": 0.0, "rot_per": 10.297, "prov_des": "1924 TD", "G": 0.3, "last_obs": "2014-03-18", "H": 9.45, "price": 5.6287331226458523e-39, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 3748.0, "moid": 0.340214, "extent": "", "dv": 10.364704, "e": 0.5338753662265963, "GM": "", "tp_cal": 20160105.0635606, "pdes": 1036.0, "class": "AMO", "UB": 0.417, "a": 2.662454123152631, "t_jup": 3.035, "om": 215.5572796704076, "ma": 225.6773637606015, "name": "Ganymed", "i": 26.6942677397209, "tp": 2457392.5635605683, "prefix": "", "BV": 0.842, "spec": "S", "q": 1.241035453093009, "w": 132.5056183410383, "n": 0.226871986700997, "sigma_ma": 1.8314e-06, "first_obs": "1924-10-23", "n_del_obs_used": 0.0, "sigma_q": 6.3339e-08, "n_dop_obs_used": 1.0},
{"sigma_tp": 3.2371e-05, "diameter": 1.0, "epoch_mjd": 56800.0, "ad": 2.754962707814954, "producer": "Otto Matic", "rms": 0.86043, "H_sigma": "", "closeness": 3004.7584038999453, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1221 Amor (1932 EA1)", "M2": "", "sigma_per": 9.0596e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -959494756283.8827, "albedo": "", "moid_ld": 41.80931144, "pha": "N", "neo": "Y", "sigma_ad": 1.7132e-09, "PC": "", "profit": 0.0, "spkid": 2001221.0, "sigma_w": 2.7731e-05, "sigma_i": 7.6214e-06, "per": 971.2130608245207, "id": "a0001221", "A1": "", "data_arc": 29457.0, "A3": "", "score": 0.0, "per_y": 2.65903644305139, "sigma_n": 3.4577e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 52", "sigma_a": 1.1936e-09, "sigma_om": 2.1107e-05, "A2": "", "sigma_e": 3.8376e-08, "condition_code": 0.0, "rot_per": "", "prov_des": "1932 EA1", "G": "", "last_obs": "2012-11-04", "H": 17.7, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 355.0, "moid": 0.107432, "extent": "", "dv": 6.68729, "e": 0.435395783919931, "GM": "", "tp_cal": 20141023.4438782, "pdes": 1221.0, "class": "AMO", "UB": "", "a": 1.919305280590563, "t_jup": 3.781, "om": 171.3527963362595, "ma": 303.1228858173574, "name": "Amor", "i": 11.87790597428965, "tp": 2456953.9438782115, "prefix": "", "BV": "", "spec": "?", "q": 1.083647853366172, "w": 26.61870030557262, "n": 0.3706704682228785, "sigma_ma": 1.1959e-05, "first_obs": "1932-03-12", "n_del_obs_used": "", "sigma_q": 7.4205e-08, "n_dop_obs_used": ""},
{"sigma_tp": 1.1305e-05, "diameter": 1.0, "epoch_mjd": 56800.0, "ad": 1.969322582824341, "producer": "Otto Matic", "rms": 1.0147, "H_sigma": "", "closeness": 2702.3862052648196, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1566 Icarus (1949 MA)", "M2": "", "sigma_per": 1.8269e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -959494756283.8827, "albedo": 0.51, "moid_ld": 13.405583322, "pha": "Y", "neo": "Y", "sigma_ad": 5.8675e-10, "PC": "", "profit": 0.0, "spkid": 2001566.0, "sigma_w": 8.3591e-06, "sigma_i": 1.6181e-05, "per": 408.7696195295184, "id": "a0001566", "A1": "", "data_arc": 23295.0, "A3": "", "score": 0.0, "per_y": 1.11915022458458, "sigma_n": 3.9359e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 72", "sigma_a": 3.2116e-10, "sigma_om": 4.2726e-06, "A2": "", "sigma_e": 6.6816e-08, "condition_code": 0.0, "rot_per": 2.273, "prov_des": "1949 MA", "G": "", "last_obs": "2013-04-07", "H": 16.9, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 781.0, "moid": 0.0344466, "extent": "", "dv": 15.297526, "e": 0.8269643453219718, "GM": "", "tp_cal": 20140321.5953891, "pdes": 1566.0, "class": "APO", "UB": 0.52, "a": 1.077920643534661, "t_jup": 5.299, "om": 88.02750521705663, "ma": 54.95922114657761, "name": "Icarus", "i": 22.83005491004241, "tp": 2456738.0953891175, "prefix": "", "BV": 0.774, "spec": "?", "q": 0.1865187042449815, "w": 31.35427654883476, "n": 0.8806916727675341, "sigma_ma": 9.9797e-06, "first_obs": "1949-06-27", "n_del_obs_used": 0.0, "sigma_q": 7.2023e-08, "n_dop_obs_used": 11.0},
{"sigma_tp": 8.8097e-06, "diameter": 5.8, "epoch_mjd": 56800.0, "ad": 3.267716888516634, "producer": "Otto Matic", "rms": 0.71869, "H_sigma": "", "closeness": 2661.290267857679, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1580 Betulia (1950 KA)", "M2": "", "sigma_per": 2.6389e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -126774314047223.97, "albedo": 0.08, "moid_ld": 52.87769541, "pha": "N", "neo": "Y", "sigma_ad": 4.8338e-10, "PC": "", "profit": 6935449444257.683, "spkid": 2001580.0, "sigma_w": 9.9233e-06, "sigma_i": 1.5451e-05, "per": 1189.295272654534, "id": "a0001580", "A1": "", "data_arc": 23207.0, "A3": "", "score": 133.08451339288396, "per_y": 3.2561129983697, "sigma_n": 6.7166e-11, "epoch_cal": 20140523.0, "orbit_id": "JPL 122", "sigma_a": 3.2497e-10, "sigma_om": 2.9196e-06, "A2": "", "sigma_e": 2.7594e-08, "condition_code": 0.0, "rot_per": 6.1324, "prov_des": "1950 KA", "G": 0.0, "last_obs": "2013-12-04", "H": 14.5, "price": 151930944581743.22, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 583.0, "moid": 0.135873, "extent": "", "dv": 17.058825, "e": 0.4874769531436197, "GM": "", "tp_cal": 20150523.7348533, "pdes": 1580.0, "class": "AMO", "UB": 0.249, "a": 2.196818499682077, "t_jup": 3.066, "om": 62.31502797235856, "ma": 249.2919611905358, "name": "Betulia", "i": 52.09237910482555, "tp": 2457166.234853336, "prefix": "", "BV": 0.656, "spec": "C", "q": 1.12592011084752, "w": 159.4699395726068, "n": 0.3027002698803905, "sigma_ma": 2.6523e-06, "first_obs": "1950-05-22", "n_del_obs_used": 5.0, "sigma_q": 6.0693e-08, "n_dop_obs_used": 7.0},
{"sigma_tp": 5.9379e-06, "diameter": 2.56, "epoch_mjd": 56800.0, "ad": 1.663398838384962, "producer": "Otto Matic", "rms": 0.58719, "H_sigma": "", "closeness": 3004.4422343303113, "spec_B": "S", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1620 Geographos (1951 RA)", "M2": "", "sigma_per": 2.9011e-07, "equinox": "J2000", "DT": "", "diameter_sigma": 0.15, "saved": -21812316802891.992, "albedo": 0.3258, "moid_ld": 11.605516404, "pha": "Y", "neo": "Y", "sigma_ad": 6.3368e-10, "PC": "", "profit": 3.8772383577919024e-43, "spkid": 2001620.0, "sigma_w": 3.961e-06, "sigma_i": 2.7656e-06, "per": 507.6941988198932, "id": "a0001620", "A1": "", "data_arc": 22475.0, "A3": "", "score": 5.9515189093839e-54, "per_y": 1.38999096186145, "sigma_n": 4.0519e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 320", "sigma_a": 4.7447e-10, "sigma_om": 2.7491e-06, "A2": "", "sigma_e": 1.1503e-08, "condition_code": 0.0, "rot_per": 5.22204, "prov_des": "1951 RA", "G": "", "last_obs": "2013-03-13", "H": 15.6, "price": 2.97575945469195e-42, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 2944.0, "moid": 0.0298212, "extent": "5.0x2.0x2.1", "dv": 6.747213, "e": 0.3355512079390568, "GM": "", "tp_cal": 20131211.8020142, "pdes": 1620.0, "class": "APO", "UB": 0.471, "a": 1.245477394275147, "t_jup": 5.075, "om": 337.2229969850436, "ma": 115.012688780213, "name": "Geographos", "i": 13.33732476576611, "tp": 2456638.30201421, "prefix": "", "BV": 0.862, "spec": "S", "q": 0.8275559501653327, "w": 276.8685371846608, "n": 0.7090882677737896, "sigma_ma": 4.2751e-06, "first_obs": "1951-08-31", "n_del_obs_used": 3.0, "sigma_q": 1.4565e-08, "n_dop_obs_used": 4.0},
{"sigma_tp": 4.0049e-06, "diameter": 9.12, "epoch_mjd": 56800.0, "ad": 2.602284477290688, "producer": "Otto Matic", "rms": 0.47065, "H_sigma": "", "closeness": 3201.6763916916652, "spec_B": "S", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1627 Ivar (1929 SH)", "M2": "", "sigma_per": 1.197e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -986203219159661.8, "albedo": 0.15, "moid_ld": 43.24962961, "pha": "N", "neo": "Y", "sigma_ad": 2.2355e-10, "PC": "", "profit": 1.9949809703021908e-41, "spkid": 2001627.0, "sigma_w": 1.3803e-05, "sigma_i": 2.2725e-06, "per": 928.8822662848656, "id": "a0001627", "A1": "", "data_arc": 30834.0, "A3": "", "score": 2.6908682651013965e-52, "per_y": 2.54314104390107, "sigma_n": 4.9941e-11, "epoch_cal": 20140523.0, "orbit_id": "JPL 491", "sigma_a": 1.6005e-10, "sigma_om": 1.3507e-05, "A2": "", "sigma_e": 1.1512e-08, "condition_code": 0.0, "rot_per": 4.795, "prov_des": "1929 SH", "G": 0.6, "last_obs": "2014-02-25", "H": 13.2, "price": 1.3454341325506982e-40, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 4117.0, "moid": 0.111133, "extent": "", "dv": 6.318098, "e": 0.3967326156179282, "GM": "", "tp_cal": 20130706.81644, "pdes": 1627.0, "class": "AMO", "UB": 0.459, "a": 1.863122868466426, "t_jup": 3.879, "om": 133.1553822740281, "ma": 124.0911639635574, "name": "Ivar", "i": 8.449242877350956, "tp": 2456480.3164399765, "prefix": "", "BV": 0.872, "spec": "S", "q": 1.123961259642163, "w": 167.654137252253, "n": 0.3875625717776345, "sigma_ma": 1.557e-06, "first_obs": "1929-09-25", "n_del_obs_used": 3.0, "sigma_q": 2.1441e-08, "n_dop_obs_used": 1.0},
{"sigma_tp": 3.7305e-06, "diameter": 3.4, "epoch_mjd": 56800.0, "ad": 1.963126411956533, "producer": "Otto Matic", "rms": 0.43634, "H_sigma": "", "closeness": 3031.9994909547036, "spec_B": "S", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1685 Toro (1948 OA)", "M2": "", "sigma_per": 2.4938e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -51099735475830.234, "albedo": 0.31, "moid_ld": 19.731853008, "pha": "N", "neo": "Y", "sigma_ad": 5.5895e-10, "PC": "", "profit": 9.272059022279661e-43, "spkid": 2001685.0, "sigma_w": 2.0858e-05, "sigma_i": 4.0052e-06, "per": 583.9225548775903, "id": "a0001685", "A1": "", "data_arc": 23787.0, "A3": "", "score": 1.3942629052068279e-53, "per_y": 1.5986928264958, "sigma_n": 2.6331e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 226", "sigma_a": 3.8928e-10, "sigma_om": 2.1223e-05, "A2": "", "sigma_e": 1.8438e-08, "condition_code": 0.0, "rot_per": 10.1995, "prov_des": "1948 OA", "G": "", "last_obs": "2013-09-01", "H": 14.23, "price": 6.971314526034139e-42, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1552.0, "moid": 0.0507024, "extent": "", "dv": 6.670415, "e": 0.4358543341900309, "GM": "", "tp_cal": 20140429.8778742, "pdes": 1685.0, "class": "APO", "UB": 0.47, "a": 1.367218362762361, "t_jup": 4.716, "om": 274.3053638952323, "ma": 14.25525562120221, "name": "Toro", "i": 9.381321367174955, "tp": 2456777.3778742147, "prefix": "", "BV": 0.88, "spec": "S", "q": 0.7713103135681878, "w": 127.1249066963575, "n": 0.6165201138282251, "sigma_ma": 2.2967e-06, "first_obs": "1948-07-17", "n_del_obs_used": 5.0, "sigma_q": 2.5082e-08, "n_dop_obs_used": 2.0},
{"sigma_tp": 1.5553e-06, "diameter": 1.5, "epoch_mjd": 54265.0, "ad": 2.293203513177272, "producer": "Otto Matic", "rms": 0.5188, "H_sigma": "", "closeness": 2807.1662677876416, "spec_B": "Q", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1862 Apollo (1932 HA)", "M2": "", "sigma_per": 6.565e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2634349950187.6323, "albedo": 0.25, "moid_ld": 10.100829516, "pha": "Y", "neo": "Y", "sigma_ad": 1.5415e-09, "PC": "", "profit": 88346297.4720797, "spkid": 2001862.0, "sigma_w": 2.6683e-05, "sigma_i": 4.4189e-06, "per": 651.1066147169662, "id": "a0001862", "A1": "", "data_arc": 30406.0, "A3": "", "score": 140.35992345747502, "per_y": 1.78263275760976, "sigma_n": 5.5748e-10, "epoch_cal": 20070614.0, "orbit_id": "JPL 173", "sigma_a": 9.8823e-10, "sigma_om": 2.6106e-05, "A2": -3.578849094114743e-15, "sigma_e": 1.4658e-08, "condition_code": 0.0, "rot_per": 3.065, "prov_des": "1932 HA", "G": 0.09, "last_obs": "2014-03-13", "H": 16.25, "price": 805034046.4611495, "IR": "", "spec_T": "Q", "epoch": 2454265.5, "n_obs_used": 1091.0, "moid": 0.0259548, "extent": "", "dv": 7.484784, "e": 0.5598163850114585, "GM": "", "tp_cal": 20070701.0225883, "pdes": 1862.0, "class": "APO", "UB": 0.481, "a": 1.470175294485335, "t_jup": 4.415, "om": 35.76184003355831, "ma": 350.5881284974949, "name": "Apollo", "i": 6.352807482698028, "tp": 2454282.5225883117, "prefix": "", "BV": 0.819, "spec": "Q", "q": 0.6471470757933985, "w": 285.8057016394411, "n": 0.5529048420994629, "sigma_ma": 8.5122e-07, "first_obs": "1930-12-13", "n_del_obs_used": 8.0, "sigma_q": 2.182e-08, "n_dop_obs_used": 9.0},
{"sigma_tp": 1.2758e-05, "diameter": 2.1, "epoch_mjd": 56800.0, "ad": 3.62915063422626, "producer": "Otto Matic", "rms": 0.63286, "H_sigma": "", "closeness": 2704.0106728700525, "spec_B": "Sq", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1863 Antinous (1948 EA)", "M2": "", "sigma_per": 2.0379e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -12040368670915.525, "albedo": 0.24, "moid_ld": 70.90249313, "pha": "N", "neo": "Y", "sigma_ad": 3.977e-09, "PC": "", "profit": 1.5568348255999533e-43, "spkid": 2001863.0, "sigma_w": 2.2326e-05, "sigma_i": 1.2266e-05, "per": 1239.780327233979, "id": "a0001863", "A1": "", "data_arc": 23978.0, "A3": "", "score": 3.2852301967027364e-54, "per_y": 3.39433354478844, "sigma_n": 4.7731e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 74", "sigma_a": 2.4751e-09, "sigma_om": 2.0936e-05, "A2": "", "sigma_e": 4.9558e-08, "condition_code": 0.0, "rot_per": 7.4568, "prov_des": "1948 EA", "G": "", "last_obs": "2013-10-28", "H": 15.54, "price": 1.642615098351368e-42, "IR": "", "spec_T": "SU", "epoch": 2456800.5, "n_obs_used": 487.0, "moid": 0.182189, "extent": "", "dv": 8.348086, "e": 0.6068454924640654, "GM": "", "tp_cal": 20121218.2193022, "pdes": 1863.0, "class": "APO", "UB": 0.359, "a": 2.258556066060235, "t_jup": 3.298, "om": 346.5167106238067, "ma": 151.2211858008014, "name": "Antinous", "i": 18.39865584688683, "tp": 2456279.7193021756, "prefix": "", "BV": 0.763, "spec": "Sq", "q": 0.8879614978942093, "w": 268.0174001881898, "n": 0.290374021987573, "sigma_ma": 3.7765e-06, "first_obs": "1948-03-05", "n_del_obs_used": "", "sigma_q": 1.118e-07, "n_dop_obs_used": ""},
{"sigma_tp": 2.7779e-05, "diameter": 3.7, "epoch_mjd": 56800.0, "ad": 2.358654311524437, "producer": "Otto Matic", "rms": 0.53134, "H_sigma": "", "closeness": 2689.047406482306, "spec_B": "Sr", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1864 Daedalus (1971 FA)", "M2": "", "sigma_per": 3.7885e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -65854745091014.38, "albedo": "", "moid_ld": 104.53612121, "pha": "N", "neo": "Y", "sigma_ad": 9.2362e-09, "PC": "", "profit": 6.880326023331381e-43, "spkid": 2001864.0, "sigma_w": 1.4907e-05, "sigma_i": 7.9381e-06, "per": 644.9900651520976, "id": "a0001864", "A1": "", "data_arc": 15419.0, "A3": "", "score": 1.7968552548707884e-53, "per_y": 1.76588655756906, "sigma_n": 3.2785e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 258", "sigma_a": 5.7209e-09, "sigma_om": 1.5138e-05, "A2": "", "sigma_e": 6.3035e-08, "condition_code": 0.0, "rot_per": 8.572, "prov_des": "1971 FA", "G": "", "last_obs": "2013-06-10", "H": 14.85, "price": 8.984276274353942e-42, "IR": "", "spec_T": "SQ", "epoch": 2456800.5, "n_obs_used": 1238.0, "moid": 0.268613, "extent": "", "dv": 10.274431, "e": 0.6144622540167056, "GM": "", "tp_cal": 20140111.6602988, "pdes": 1864.0, "class": "APO", "UB": 0.5, "a": 1.460953519140022, "t_jup": 4.336, "om": 6.679898466569094, "ma": 73.30700889805775, "name": "Daedalus", "i": 22.1964080089274, "tp": 2456669.1602987633, "prefix": "", "BV": 0.83, "spec": "Sr", "q": 0.5632527267556057, "w": 325.5670223777115, "n": 0.558148131964028, "sigma_ma": 1.583e-05, "first_obs": "1971-03-24", "n_del_obs_used": "", "sigma_q": 9.174e-08, "n_dop_obs_used": ""},
{"sigma_tp": 2.1071e-05, "diameter": 1.2, "epoch_mjd": 56800.0, "ad": 1.584111497148744, "producer": "Otto Matic", "rms": 0.56134, "H_sigma": "", "closeness": 2711.449875681804, "spec_B": "S", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1865 Cerberus (1971 UA)", "M2": "", "sigma_per": 8.7837e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2246599402153.3345, "albedo": 0.22, "moid_ld": 60.78212728, "pha": "N", "neo": "Y", "sigma_ad": 2.263e-09, "PC": "", "profit": 2.634438744093549e-44, "spkid": 2001865.0, "sigma_w": 1.7568e-05, "sigma_i": 7.7163e-06, "per": 409.9124275346329, "id": "a0001865", "A1": "", "data_arc": 14539.0, "A3": "", "score": 6.129875585684405e-55, "per_y": 1.12227906238093, "sigma_n": 1.8819e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 115", "sigma_a": 1.5427e-09, "sigma_om": 1.5745e-05, "A2": "", "sigma_e": 6.1618e-08, "condition_code": 0.0, "rot_per": 6.8039, "prov_des": "1971 UA", "G": "", "last_obs": "2011-08-16", "H": 16.84, "price": 3.0649377928422025e-43, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 724.0, "moid": 0.156184, "extent": "", "dv": 9.230397, "e": 0.4668666690479537, "GM": "", "tp_cal": 20141016.3560641, "pdes": 1865.0, "class": "APO", "UB": 0.442, "a": 1.079928756017673, "t_jup": 5.592, "om": 212.9464066116064, "ma": 231.464782415826, "name": "Cerberus", "i": 16.09663156709423, "tp": 2456946.856064066, "prefix": "", "BV": 0.79, "spec": "S", "q": 0.5757460148866017, "w": 325.2309070659308, "n": 0.878236364203874, "sigma_ma": 1.8359e-05, "first_obs": "1971-10-26", "n_del_obs_used": "", "sigma_q": 6.6333e-08, "n_dop_obs_used": ""},
{"sigma_tp": 1.4946e-05, "diameter": 8.48, "epoch_mjd": 56800.0, "ad": 2.913249921140928, "producer": "Otto Matic", "rms": 0.49191, "H_sigma": "", "closeness": 2670.815984944182, "spec_B": "S", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1866 Sisyphus (1972 XA)", "M2": "", "sigma_per": 1.2824e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -792810617349646.1, "albedo": 0.15, "moid_ld": 40.28882425, "pha": "N", "neo": "Y", "sigma_ad": 2.6163e-09, "PC": "", "profit": 6.200256535018969e-42, "spkid": 2001866.0, "sigma_w": 6.9621e-06, "sigma_i": 5.9025e-06, "per": 951.9322421711929, "id": "a0001866", "A1": "", "data_arc": 21366.0, "A3": "", "score": 2.163194044610222e-52, "per_y": 2.60624843852483, "sigma_n": 5.0945e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 324", "sigma_a": 1.7008e-09, "sigma_om": 6.8214e-06, "A2": "", "sigma_e": 3.8066e-08, "condition_code": 0.0, "rot_per": 2.4, "prov_des": "1972 XA", "G": "", "last_obs": "2013-07-26", "H": 12.4, "price": 1.081597022305111e-40, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 2352.0, "moid": 0.103525, "extent": "", "dv": 13.632799, "e": 0.538293967010521, "GM": "", "tp_cal": 20140613.0414031, "pdes": 1866.0, "class": "APO", "UB": "", "a": 1.893818726210349, "t_jup": 3.513, "om": 63.56059474040325, "ma": 352.0426005349001, "name": "Sisyphus", "i": 41.18974204578505, "tp": 2456821.541403096, "prefix": "", "BV": "", "spec": "S", "q": 0.8743875312797682, "w": 293.0454937633123, "n": 0.3781781770295984, "sigma_ma": 5.6468e-06, "first_obs": "1955-01-26", "n_del_obs_used": 0.0, "sigma_q": 7.2281e-08, "n_dop_obs_used": 1.0},
{"sigma_tp": 0.00029275, "diameter": 0.5, "epoch_mjd": 56800.0, "ad": 3.996521863351667, "producer": "Otto Matic", "rms": 0.926, "H_sigma": "", "closeness": 2679.176770117069, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1915 Quetzalcoatl (1953 EA)", "M2": "", "sigma_per": 3.815e-05, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -119936844535.48534, "albedo": 0.21, "moid_ld": 42.42964842, "pha": "N", "neo": "Y", "sigma_ad": 6.8552e-08, "PC": "", "profit": 0.0, "spkid": 2001915.0, "sigma_w": 5.7488e-05, "sigma_i": 4.2452e-05, "per": 1482.731306020016, "id": "a0001915", "A1": "", "data_arc": 18842.0, "A3": "", "score": 0.0, "per_y": 4.05949707329231, "sigma_n": 6.247e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 9", "sigma_a": 4.365e-08, "sigma_om": 4.2149e-05, "A2": "", "sigma_e": 1.3838e-07, "condition_code": 0.0, "rot_per": 4.9, "prov_des": "1953 EA", "G": 0.1, "last_obs": "2004-10-09", "H": 18.97, "price": 0.0, "IR": "", "spec_T": "SMU", "epoch": 2456800.5, "n_obs_used": 42.0, "moid": 0.109026, "extent": "", "dv": 8.784061, "e": 0.5705056612314936, "GM": "", "tp_cal": 20130622.3091125, "pdes": 1915.0, "class": "AMO", "UB": 0.43, "a": 2.544735725573788, "t_jup": 3.121, "om": 162.9638882781119, "ma": 81.26133104559435, "name": "Quetzalcoatl", "i": 20.39797150790466, "tp": 2456465.809112472, "prefix": "", "BV": 0.784, "spec": "?", "q": 1.09294958779591, "w": 347.8221676985404, "n": 0.2427951703308409, "sigma_ma": 7.3158e-05, "first_obs": "1953-03-09", "n_del_obs_used": 0.0, "sigma_q": 3.6313e-07, "n_dop_obs_used": 1.0},
{"sigma_tp": 2.1445e-05, "diameter": 3.5, "epoch_mjd": 56800.0, "ad": 3.294361665812216, "producer": "Otto Matic", "rms": 0.52644, "H_sigma": "", "closeness": 2752.4565006839516, "spec_B": "S", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1916 Boreas (1953 RA)", "M2": "", "sigma_per": 1.6819e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -55742447550534.85, "albedo": "", "moid_ld": 97.24618877, "pha": "N", "neo": "Y", "sigma_ad": 2.9536e-09, "PC": "", "profit": 7.967284370278084e-43, "spkid": 2001916.0, "sigma_w": 1.893e-05, "sigma_i": 7.172e-06, "per": 1250.642750608396, "id": "a0001916", "A1": "", "data_arc": 22108.0, "A3": "", "score": 1.5209399058808964e-53, "per_y": 3.42407323917425, "sigma_n": 3.8712e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 125", "sigma_a": 2.0367e-09, "sigma_om": 1.7241e-05, "A2": "", "sigma_e": 5.6325e-08, "condition_code": 0.0, "rot_per": 3.49, "prov_des": "1953 RA", "G": "", "last_obs": "2014-03-13", "H": 14.93, "price": 7.604699529404483e-42, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 960.0, "moid": 0.249881, "extent": "", "dv": 7.687364, "e": 0.4501559658924485, "GM": "", "tp_cal": 20150412.3636993, "pdes": 1916.0, "class": "AMO", "UB": 0.407, "a": 2.271729209337021, "t_jup": 3.441, "om": 340.640617637782, "ma": 266.6312648543847, "name": "Boreas", "i": 12.88873063845706, "tp": 2457124.863699287, "prefix": "", "BV": 0.852, "spec": "S", "q": 1.249096752861826, "w": 335.8948791467316, "n": 0.287851986368507, "sigma_ma": 6.1544e-06, "first_obs": "1953-09-01", "n_del_obs_used": "", "sigma_q": 1.2824e-07, "n_dop_obs_used": ""},
{"sigma_tp": 1.4214e-05, "diameter": 5.7, "epoch_mjd": 56800.0, "ad": 3.234740238330902, "producer": "Otto Matic", "rms": 0.63209, "H_sigma": "", "closeness": 2678.8182556470606, "spec_B": "Sl", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1917 Cuyo (1968 AA)", "M2": "", "sigma_per": 2.3749e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -240772270302651.9, "albedo": "", "moid_ld": 29.24262297, "pha": "N", "neo": "Y", "sigma_ad": 4.4456e-09, "PC": "", "profit": 2.8406563981069695e-42, "spkid": 2001917.0, "sigma_w": 1.262e-05, "sigma_i": 5.8507e-06, "per": 1152.032937018586, "id": "a0001917", "A1": "", "data_arc": 21858.0, "A3": "", "score": 6.569502600345211e-53, "per_y": 3.15409428341844, "sigma_n": 6.442e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 214", "sigma_a": 2.9558e-09, "sigma_om": 1.1597e-05, "A2": "", "sigma_e": 3.4741e-08, "condition_code": 0.0, "rot_per": 2.689, "prov_des": "1968 AA", "G": "", "last_obs": "2014-03-10", "H": 13.9, "price": 3.2847513001726053e-41, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 1127.0, "moid": 0.075141, "extent": "", "dv": 9.063841, "e": 0.5040482369893997, "GM": "", "tp_cal": 20150112.0971132, "pdes": 1917.0, "class": "AMO", "UB": "", "a": 2.150689159282396, "t_jup": 3.434, "om": 188.3404467960919, "ma": 286.8467436750993, "name": "Cuyo", "i": 23.93085888339325, "tp": 2457034.5971131567, "prefix": "", "BV": "", "spec": "Sl", "q": 1.06663808023389, "w": 194.4123964161035, "n": 0.3124910655173325, "sigma_ma": 4.3464e-06, "first_obs": "1954-05-06", "n_del_obs_used": 0.0, "sigma_q": 7.4842e-08, "n_dop_obs_used": 2.0},
{"sigma_tp": 1.8588e-05, "diameter": 2.3, "epoch_mjd": 56800.0, "ad": 1.796295383429596, "producer": "Otto Matic", "rms": 0.53165, "H_sigma": "", "closeness": 4165.407972106283, "spec_B": "L", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1943 Anteros (1973 EC)", "M2": "", "sigma_per": 4.5086e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -9221481573164.766, "albedo": 0.17, "moid_ld": 24.326705364, "pha": "N", "neo": "Y", "sigma_ad": 8.6413e-10, "PC": "", "profit": 1248945273325.7112, "spkid": 2001943.0, "sigma_w": 2.3202e-05, "sigma_i": 2.6348e-06, "per": 624.8168727528473, "id": "a0001943", "A1": "", "data_arc": 14983.0, "A3": "", "score": 208.29039860531415, "per_y": 1.7106553668798, "sigma_n": 4.1576e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 267", "sigma_a": 6.8808e-10, "sigma_om": 2.1571e-05, "A2": "", "sigma_e": 2.5953e-08, "condition_code": 0.0, "rot_per": 2.8695, "prov_des": "1973 EC", "G": "", "last_obs": "2014-03-18", "H": 15.75, "price": 5574298014866.439, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1977.0, "moid": 0.0625092, "extent": "", "dv": 5.439883, "e": 0.2558608993246567, "GM": "", "tp_cal": 20140521.4877609, "pdes": 1943.0, "class": "AMO", "UB": 0.444, "a": 1.430329891149218, "t_jup": 4.64, "om": 246.3532073878645, "ma": 0.8713050148684982, "name": "Anteros", "i": 8.705880098500712, "tp": 2456798.987760904, "prefix": "", "BV": 0.841, "spec": "L", "q": 1.064364398868841, "w": 338.348021257599, "n": 0.5761688195357069, "sigma_ma": 1.071e-05, "first_obs": "1973-03-10", "n_del_obs_used": "", "sigma_q": 3.7288e-08, "n_dop_obs_used": ""},
{"sigma_tp": 2.1469e-05, "diameter": 4.3, "epoch_mjd": 56800.0, "ad": 2.333282907404033, "producer": "Otto Matic", "rms": 0.53066, "H_sigma": "", "closeness": 2681.7832985557047, "spec_B": "Sl", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1980 Tezcatlipoca (1950 LA)", "M2": "", "sigma_per": 2.3318e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -103368274691553.88, "albedo": 0.25, "moid_ld": 95.18786864, "pha": "N", "neo": "Y", "sigma_ad": 4.443e-09, "PC": "", "profit": 1.164349145116469e-42, "spkid": 2001980.0, "sigma_w": 1.281e-05, "sigma_i": 6.8925e-06, "per": 816.3760190446, "id": "a0001980", "A1": "", "data_arc": 23280.0, "A3": "", "score": 2.820416771938715e-53, "per_y": 2.23511572633703, "sigma_n": 1.2595e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 180", "sigma_a": 3.2551e-09, "sigma_om": 9.4514e-06, "A2": "", "sigma_e": 3.312e-08, "condition_code": 0.0, "rot_per": 7.24612, "prov_des": "1950 LA", "G": "", "last_obs": "2014-03-15", "H": 13.92, "price": 1.4102083859693575e-41, "IR": "", "spec_T": "SU", "epoch": 2456800.5, "n_obs_used": 1258.0, "moid": 0.244592, "extent": "", "dv": 9.504056, "e": 0.364916838697486, "GM": "", "tp_cal": 20130526.2916117, "pdes": 1980.0, "class": "AMO", "UB": 0.455, "a": 1.709468915066387, "t_jup": 3.996, "om": 246.6194416077453, "ma": 159.5037295995942, "name": "Tezcatlipoca", "i": 26.86059737685123, "tp": 2456438.7916116854, "prefix": "", "BV": 0.955, "spec": "Sl", "q": 1.08565492272874, "w": 115.4081498146771, "n": 0.4409732667322906, "sigma_ma": 9.8042e-06, "first_obs": "1950-06-19", "n_del_obs_used": "", "sigma_q": 5.5948e-08, "n_dop_obs_used": ""},
{"sigma_tp": 1.3752e-05, "diameter": 3.4, "epoch_mjd": 56800.0, "ad": 2.930695484480957, "producer": "Otto Matic", "rms": 0.6135, "H_sigma": "", "closeness": 2677.1302743152646, "spec_B": "V", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1981 Midas (1973 EA)", "M2": "", "sigma_per": 1.6461e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -51099735475830.234, "albedo": "", "moid_ld": 1.3253417852, "pha": "Y", "neo": "Y", "sigma_ad": 3.7209e-09, "PC": "", "profit": 3.865952591089027e-43, "spkid": 2001981.0, "sigma_w": 8.9521e-06, "sigma_i": 1.2891e-05, "per": 864.3710836563475, "id": "a0001981", "A1": "", "data_arc": 14909.0, "A3": "", "score": 1.3942629052068279e-53, "per_y": 2.36651905176276, "sigma_n": 7.9317e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 109", "sigma_a": 2.2546e-09, "sigma_om": 7.3736e-06, "A2": "", "sigma_e": 4.6276e-08, "condition_code": 0.0, "rot_per": 5.22, "prov_des": "1973 EA", "G": "", "last_obs": "2013-12-30", "H": 15.2, "price": 6.971314526034139e-42, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 543.0, "moid": 0.00340556, "extent": "", "dv": 14.125795, "e": 0.6503250555816328, "GM": "", "tp_cal": 20130815.6965349, "pdes": 1981.0, "class": "APO", "UB": "", "a": 1.775829237136606, "t_jup": 3.612, "om": 356.9298261814894, "ma": 116.7429699540997, "name": "Midas", "i": 39.82947939447306, "tp": 2456520.1965348655, "prefix": "", "BV": "", "spec": "V", "q": 0.6209629897922541, "w": 267.799833148366, "n": 0.4164877872558808, "sigma_ma": 5.867e-06, "first_obs": "1973-03-06", "n_del_obs_used": 0.0, "sigma_q": 8.2059e-08, "n_dop_obs_used": 1.0},
{"sigma_tp": 6.14e-05, "diameter": "", "sigma_q": 1.781e-07, "epoch_mjd": 56800.0, "ad": 4.047498897342378, "producer": "Otto Matic", "rms": 0.67202, "H_sigma": "", "closeness": 2736.0420717375837, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "2059 Baboquivari (1963 UA)", "M2": "", "sigma_per": 6.6339e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -12837506008340.916, "albedo": "", "moid_ld": 98.0124645, "pha": "N", "neo": "Y", "sigma_ad": 1.1383e-08, "PC": "", "profit": 0.0, "est_diameter": 2.373992548280959, "sigma_w": 5.3344e-05, "sigma_i": 9.6885e-06, "per": 1572.568403770004, "id": "a0002059", "A1": "", "data_arc": 18064.0, "A3": "", "score": 0.0, "per_y": 4.30545764208078, "sigma_n": 9.6572e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 65", "sigma_a": 7.4429e-09, "sigma_om": 5.1471e-05, "A2": "", "sigma_e": 6.6702e-08, "condition_code": 0.0, "rot_per": "", "prov_des": "1963 UA", "G": "", "last_obs": "2013-04-10", "H": 15.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 270.0, "moid": 0.25185, "extent": "", "dv": 7.781188, "e": 0.5293703280598167, "GM": "", "tp_cal": 20150720.7099785, "pdes": 2059.0, "class": "AMO", "UB": "", "a": 2.646513289215633, "t_jup": 3.154, "om": 201.00457530386, "ma": 263.0022529376774, "name": "Baboquivari", "i": 11.03153323365697, "tp": 2457224.2099785195, "prefix": "", "BV": "", "spec": "?", "q": 1.245527681088889, "w": 191.2606178529743, "n": 0.2289248589358354, "sigma_ma": 1.3669e-05, "first_obs": "1963-10-26", "n_del_obs_used": "", "spkid": 2002059.0, "n_dop_obs_used": ""},
{"sigma_tp": 5.232e-05, "diameter": 2.6, "epoch_mjd": 56800.0, "ad": 3.480575179043782, "producer": "Otto Matic", "rms": 0.70329, "H_sigma": "", "closeness": 3206.8204933045013, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "2061 Anza (1960 UA)", "M2": "", "sigma_per": 1.4834e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -16864079836445.525, "albedo": "", "moid_ld": 20.381883659, "pha": "N", "neo": "Y", "sigma_ad": 2.7654e-09, "PC": "", "profit": 0.0, "spkid": 2002061.0, "sigma_w": 8.4376e-05, "sigma_i": 9.9124e-06, "per": 1244.675689844331, "id": "a0002061", "A1": "", "data_arc": 19139.0, "A3": "", "score": 0.0, "per_y": 3.40773631716449, "sigma_n": 3.447e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 46", "sigma_a": 1.7992e-09, "sigma_om": 8.3151e-05, "A2": "", "sigma_e": 6.6954e-08, "condition_code": 0.0, "rot_per": 11.5, "prov_des": "1960 UA", "G": "", "last_obs": "2013-03-17", "H": 16.56, "price": 0.0, "IR": "", "spec_T": "TCG", "epoch": 2456800.5, "n_obs_used": 287.0, "moid": 0.0523727, "extent": "", "dv": 6.29847, "e": 0.5370187489736542, "GM": "", "tp_cal": 20150414.9945889, "pdes": 2061.0, "class": "AMO", "UB": 0.35, "a": 2.264497541990258, "t_jup": 3.408, "om": 207.6285013003905, "ma": 265.4227113357372, "name": "Anza", "i": 3.773535274420972, "tp": 2457127.494588922, "prefix": "", "BV": 0.825, "spec": "?", "q": 1.048419904936735, "w": 156.4793741354324, "n": 0.2892319685660644, "sigma_ma": 1.5035e-05, "first_obs": "1960-10-22", "n_del_obs_used": "", "sigma_q": 1.5186e-07, "n_dop_obs_used": ""},
{"sigma_tp": 2.8221e-06, "diameter": 1.1, "epoch_mjd": 56800.0, "ad": 1.143709095099703, "producer": "Otto Matic", "rms": 0.4848, "H_sigma": "", "closeness": 2730.1434420866367, "spec_B": "Sr", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "2062 Aten (1976 AA)", "M2": "", "sigma_per": 2.8466e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1730453590431.7644, "albedo": 0.26, "moid_ld": 43.97932336, "pha": "N", "neo": "Y", "sigma_ad": 6.2493e-10, "PC": "", "profit": 2.1825097832890351e-44, "spkid": 2002062.0, "sigma_w": 4.2608e-06, "sigma_i": 8.006e-06, "per": 347.3152402711389, "id": "a0002062", "A1": "", "data_arc": 21276.0, "A3": "", "score": 4.721565048927052e-55, "per_y": 0.950897303959313, "sigma_n": 8.4954e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 105", "sigma_a": 5.2836e-10, "sigma_om": 5.8833e-06, "A2": "", "sigma_e": 4.5933e-09, "condition_code": 0.0, "rot_per": 40.77, "prov_des": "1976 AA", "G": "", "last_obs": "2014-03-18", "H": 16.8, "price": 2.360782524463526e-43, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 580.0, "moid": 0.113008, "extent": "", "dv": 8.641129, "e": 0.1827654566640698, "GM": "", "tp_cal": 20140524.5033379, "pdes": 2062.0, "class": "ATE", "UB": 0.46, "a": 0.9669787772847854, "t_jup": 6.183, "om": 108.5731489539708, "ma": 358.4417566752453, "name": "Aten", "i": 18.93444464984253, "tp": 2456802.00333793, "prefix": "", "BV": 0.93, "spec": "Sr", "q": 0.7902484594698678, "w": 147.9660890154477, "n": 1.036522323981402, "sigma_ma": 2.9247e-06, "first_obs": "1955-12-17", "n_del_obs_used": 4.0, "sigma_q": 4.3397e-09, "n_dop_obs_used": 2.0},
{"sigma_tp": 8.1424e-06, "diameter": "", "sigma_q": 4.3674e-08, "epoch_mjd": 56800.0, "ad": 1.454392711671016, "producer": "Otto Matic", "rms": 0.6473, "H_sigma": "", "closeness": 2905.636058768883, "spec_B": "Sq", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "2063 Bacchus (1977 HB)", "M2": "", "sigma_per": 3.6959e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2514316555993.005, "albedo": "", "moid_ld": 26.212584267, "pha": "N", "neo": "Y", "sigma_ad": 8.7678e-10, "PC": "", "profit": 4.1220684115278194e-44, "est_diameter": 1.2458889999152165, "sigma_w": 1.1819e-05, "sigma_i": 4.2697e-06, "per": 408.7093092855887, "id": "a0002063", "A1": "", "data_arc": 13278.0, "A3": "", "score": 6.860345309667135e-55, "per_y": 1.11898510413577, "sigma_n": 7.9651e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 71", "sigma_a": 6.4976e-10, "sigma_om": 1.306e-05, "A2": "", "sigma_e": 4.0158e-08, "condition_code": 0.0, "rot_per": 14.904, "prov_des": "1977 HB", "G": "", "last_obs": "2013-08-31", "H": 17.2, "price": 3.4301726548335676e-43, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 418.0, "moid": 0.0673551, "extent": "1.1x1.1x2.6", "dv": 7.075013, "e": 0.3493904147222468, "GM": "", "tp_cal": 20131219.2494295, "pdes": 2063.0, "class": "APO", "UB": "", "a": 1.077814615994869, "t_jup": 5.669, "om": 33.11603318350261, "ma": 136.307649737411, "name": "Bacchus", "i": 9.432757640589209, "tp": 2456645.749429515, "prefix": "", "BV": "", "spec": "Sq", "q": 0.7012365203187227, "w": 55.29190261651052, "n": 0.880821629997293, "sigma_ma": 7.2744e-06, "first_obs": "1977-04-24", "n_del_obs_used": 6.0, "spkid": 2002063.0, "n_dop_obs_used": 5.0},
{"sigma_tp": 9.38e-06, "diameter": 2.3, "epoch_mjd": 56800.0, "ad": 1.195215910801252, "producer": "Otto Matic", "rms": 0.57916, "H_sigma": "", "closeness": 2712.0600273313617, "spec_B": "Xc", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "2100 Ra-Shalom (1978 RA)", "M2": "", "sigma_per": 2.8955e-07, "equinox": "J2000", "DT": "", "diameter_sigma": 0.2, "saved": 22840447217428.883, "albedo": 0.13, "moid_ld": 58.20115184, "pha": "N", "neo": "Y", "sigma_ad": 8.3227e-10, "PC": "", "profit": 130813606537.08763, "spkid": 2002100.0, "sigma_w": 8.637e-06, "sigma_i": 5.0003e-06, "per": 277.2158171897399, "id": "a0002100", "A1": "", "data_arc": 13902.0, "A3": "", "score": 135.6230013665681, "per_y": 0.758975543298398, "sigma_n": 1.3564e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 149", "sigma_a": 5.7938e-10, "sigma_om": 7.3111e-06, "A2": "", "sigma_e": 2.3278e-08, "condition_code": 0.0, "rot_per": 19.797, "prov_des": "1978 RA", "G": 0.12, "last_obs": "2013-10-25", "H": 16.05, "price": 1755387853952.4092, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 1302.0, "moid": 0.149552, "extent": "", "dv": 10.648899, "e": 0.4364813093074482, "GM": "", "tp_cal": 20140927.3054864, "pdes": 2100.0, "class": "ATE", "UB": 0.31, "a": 0.8320441784080613, "t_jup": 6.946, "om": 170.8380793862339, "ma": 194.6776329041308, "name": "Ra-Shalom", "i": 15.75730430550872, "tp": 2456927.8054863727, "prefix": "", "BV": 0.712, "spec": "Xc", "q": 0.4688724460148707, "w": 356.0461848680059, "n": 1.298627198294384, "sigma_ma": 1.2093e-05, "first_obs": "1975-10-03", "n_del_obs_used": 4.0, "sigma_q": 1.9363e-08, "n_dop_obs_used": 2.0},
{"sigma_tp": 3.2754e-05, "diameter": 0.6, "epoch_mjd": 56800.0, "ad": 3.306214341949271, "producer": "Otto Matic", "rms": 0.8953, "H_sigma": "", "closeness": 2693.5581584884876, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "2101 Adonis (1936 CA)", "M2": "", "sigma_per": 1.4438e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -207250867357.3186, "albedo": "", "moid_ld": 4.602129835, "pha": "Y", "neo": "Y", "sigma_ad": 3.3948e-09, "PC": "", "profit": 0.0, "spkid": 2002101.0, "sigma_w": 0.00044025, "sigma_i": 1.1034e-05, "per": 937.3799689186585, "id": "a0002101", "A1": "", "data_arc": 28154.0, "A3": "", "score": 0.0, "per_y": 2.56640648574581, "sigma_n": 5.9151e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 32", "sigma_a": 1.9247e-09, "sigma_om": 0.00043982, "A2": "", "sigma_e": 6.2565e-08, "condition_code": 0.0, "rot_per": "", "prov_des": "1936 CA", "G": "", "last_obs": "2013-03-13", "H": 18.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 109.0, "moid": 0.0118255, "extent": "", "dv": 9.089507, "e": 0.7638142387709158, "GM": "", "tp_cal": 20150614.4270464, "pdes": 2101.0, "class": "APO", "UB": "", "a": 1.874468563227583, "t_jup": 3.55, "om": 349.8593930696671, "ma": 211.2089639885393, "name": "Adonis", "i": 1.331046493533175, "tp": 2457187.9270464214, "prefix": "", "BV": "", "spec": "?", "q": 0.4427227845058943, "w": 43.23657848856253, "n": 0.384049171026439, "sigma_ma": 1.2465e-05, "first_obs": "1936-02-12", "n_del_obs_used": 0.0, "sigma_q": 1.1696e-07, "n_dop_obs_used": 5.0},
{"sigma_tp": 2.9481e-05, "diameter": "", "sigma_q": 7.693e-08, "epoch_mjd": 56800.0, "ad": 1.675858193965092, "producer": "Otto Matic", "rms": 0.62053, "H_sigma": "", "closeness": 2688.1206995256193, "spec_B": "Q", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "2102 Tantalus (1975 YA)", "M2": "", "sigma_per": 7.9052e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -9095733844654.941, "albedo": "", "moid_ld": 16.708469112, "pha": "Y", "neo": "Y", "sigma_ad": 1.6503e-09, "PC": "", "profit": 93189597.62018724, "est_diameter": 2.2671452828784515, "sigma_w": 1.9318e-05, "sigma_i": 1.3931e-05, "per": 535.1843358877069, "id": "a0002102", "A1": "", "data_arc": 13932.0, "A3": "", "score": 134.41159412792064, "per_y": 1.46525485527093, "sigma_n": 9.9359e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 69", "sigma_a": 1.2703e-09, "sigma_om": 7.0913e-06, "A2": "", "sigma_e": 5.9697e-08, "condition_code": 0.0, "rot_per": 2.391, "prov_des": "1975 YA", "G": "", "last_obs": "2014-02-18", "H": 15.9, "price": 2779575819.8240356, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 537.0, "moid": 0.0429336, "extent": "", "dv": 23.460923, "e": 0.2990741948562198, "GM": "", "tp_cal": 20140321.2682079, "pdes": 2102.0, "class": "APO", "UB": "", "a": 1.290040400002384, "t_jup": 4.45, "om": 94.37315266686964, "ma": 42.19750773012625, "name": "Tantalus", "i": 64.00769256801954, "tp": 2456737.7682079147, "prefix": "", "BV": "", "spec": "Q", "q": 0.9042226060396751, "w": 61.54433367425329, "n": 0.6726654273295766, "sigma_ma": 1.9876e-05, "first_obs": "1975-12-28", "n_del_obs_used": "", "spkid": 2002102.0, "n_dop_obs_used": ""},
{"sigma_tp": 0.0009828, "diameter": "", "sigma_q": 1.3249e-06, "epoch_mjd": 56800.0, "ad": 2.40435939628835, "producer": "Otto Matic", "rms": 0.8016, "H_sigma": "", "closeness": 2695.0174907896794, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "2135 Aristaeus (1977 HA)", "M2": "", "sigma_per": 4.4641e-05, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -667545172981.2219, "albedo": "", "moid_ld": 3.98432246, "pha": "Y", "neo": "Y", "sigma_ad": 9.6828e-08, "PC": "", "profit": 0.0, "est_diameter": 0.8860930932517321, "sigma_w": 0.0001104, "sigma_i": 3.9832e-05, "per": 738.9900561570819, "id": "a0002135", "A1": "", "data_arc": 12851.0, "A3": "", "score": 0.0, "per_y": 2.02324450693246, "sigma_n": 2.9428e-08, "epoch_cal": 20140523.0, "orbit_id": "JPL 12", "sigma_a": 6.4421e-08, "sigma_om": 0.00022295, "A2": "", "sigma_e": 8.3178e-07, "condition_code": 1.0, "rot_per": "", "prov_des": "1977 HA", "G": "", "last_obs": "2012-06-23", "H": 17.94, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 40.0, "moid": 0.010238, "extent": "", "dv": 9.057841, "e": 0.5030471578821998, "GM": "", "tp_cal": 20130716.7313553, "pdes": 2135.0, "class": "APO", "UB": "", "a": 1.599656659925497, "t_jup": 4.135, "om": 191.2315248173385, "ma": 151.1477876713597, "name": "Aristaeus", "i": 23.05829075176519, "tp": 2456490.2313552797, "prefix": "", "BV": "", "spec": "?", "q": 0.794953923562643, "w": 290.85417427, "n": 0.4871513452726046, "sigma_ma": 0.00048772, "first_obs": "1977-04-17", "n_del_obs_used": "", "spkid": 2002135.0, "n_dop_obs_used": ""},
{"sigma_tp": 5.5285e-06, "diameter": 1.8, "epoch_mjd": 56800.0, "ad": 3.719780351887338, "producer": "Otto Matic", "rms": 0.53742, "H_sigma": "", "closeness": 2737.2641592055957, "spec_B": "Sq", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "2201 Oljato (1947 XC)", "M2": "", "sigma_per": 2.3682e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 0.1, "saved": -7582272982267.504, "albedo": 0.4328, "moid_ld": 1.2204215532, "pha": "Y", "neo": "Y", "sigma_ad": 5.0234e-09, "PC": "", "profit": 1.0424137603123392e-43, "spkid": 2002201.0, "sigma_w": 0.00011862, "sigma_i": 8.9059e-06, "per": 1169.085311631516, "id": "a0002201", "A1": "", "data_arc": 29869.0, "A3": "", "score": 2.0688330101684872e-54, "per_y": 3.20078114067492, "sigma_n": 6.2378e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 131", "sigma_a": 2.933e-09, "sigma_om": 0.00011862, "A2": "", "sigma_e": 3.5789e-08, "condition_code": 0.0, "rot_per": 26.0, "prov_des": "1947 XC", "G": "", "last_obs": "2013-09-12", "H": 15.25, "price": 1.0344165050842436e-42, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 583.0, "moid": 0.00313596, "extent": "", "dv": 7.947989, "e": 0.7127163540491576, "GM": "", "tp_cal": 20150525.7624956, "pdes": 2201.0, "class": "APO", "UB": "", "a": 2.171860123302457, "t_jup": 3.301, "om": 74.99975650786388, "ma": 246.7537748433917, "name": "Oljato", "i": 2.523518263325149, "tp": 2457168.262495634, "prefix": "", "BV": "", "spec": "Sq", "q": 0.6239398947175762, "w": 98.20427605958818, "n": 0.307933045106522, "sigma_ma": 1.7025e-06, "first_obs": "1931-12-03", "n_del_obs_used": 0.0, "sigma_q": 7.7911e-08, "n_dop_obs_used": 5.0},
{"sigma_tp": 0.00011493, "diameter": "", "sigma_q": 1.845e-07, "epoch_mjd": 56800.0, "ad": 3.46312976263753, "producer": "Otto Matic", "rms": 0.68302, "H_sigma": "", "closeness": 2917.4976575358132, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "2202 Pele (1972 RA)", "M2": "", "sigma_per": 6.3552e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2130495689559.3572, "albedo": "", "moid_ld": 56.81804166, "pha": "N", "neo": "Y", "sigma_ad": 1.1583e-08, "PC": "", "profit": 0.0, "est_diameter": 1.3046059395138065, "sigma_w": 6.6625e-05, "sigma_i": 1.3341e-05, "per": 1266.772223772302, "id": "a0002202", "A1": "", "data_arc": 14857.0, "A3": "", "score": 0.0, "per_y": 3.46823332997208, "sigma_n": 1.4257e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 24", "sigma_a": 7.6632e-09, "sigma_om": 5.9507e-05, "A2": "", "sigma_e": 8.0586e-08, "condition_code": 0.0, "rot_per": "", "prov_des": "1972 RA", "G": "", "last_obs": "2013-05-12", "H": 17.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 124.0, "moid": 0.145998, "extent": "", "dv": 6.89964, "e": 0.5114786878744549, "GM": "", "tp_cal": 20140608.358712, "pdes": 2202.0, "class": "AMO", "UB": "", "a": 2.291219711147645, "t_jup": 3.398, "om": 169.9890375838711, "ma": 355.3510692601531, "name": "Pele", "i": 8.736934410891903, "tp": 2456816.858712032, "prefix": "", "BV": "", "spec": "?", "q": 1.11930965965776, "w": 217.9689284987963, "n": 0.284186843731039, "sigma_ma": 3.2642e-05, "first_obs": "1972-09-07", "n_del_obs_used": "", "spkid": 2002202.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.1952e-05, "diameter": 5.7, "epoch_mjd": 56800.0, "ad": 3.967544140141066, "producer": "Otto Matic", "rms": 0.457, "H_sigma": "", "closeness": 2678.5174882693054, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "2212 Hephaistos (1978 SB)", "M2": "", "sigma_per": 3.5236e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -177691712400481.1, "albedo": "", "moid_ld": 45.22894823, "pha": "N", "neo": "Y", "sigma_ad": 8.0417e-09, "PC": "", "profit": 0.0, "spkid": 2002212.0, "sigma_w": 1.9152e-05, "sigma_i": 4.8525e-06, "per": 1158.972526852255, "id": "a0002212", "A1": "", "data_arc": 12911.0, "A3": "", "score": 0.0, "per_y": 3.17309384490693, "sigma_n": 9.4438e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 332", "sigma_a": 4.3767e-09, "sigma_om": 1.936e-05, "A2": "", "sigma_e": 2.379e-08, "condition_code": 0.0, "rot_per": 20.0, "prov_des": "1978 SB", "G": "", "last_obs": "2014-02-01", "H": 13.87, "price": 0.0, "IR": "", "spec_T": "SG", "epoch": 2456800.5, "n_obs_used": 2022.0, "moid": 0.116219, "extent": "", "dv": 10.300432, "e": 0.8374066796477865, "GM": "", "tp_cal": 20130820.3208851, "pdes": 2212.0, "class": "APO", "UB": 0.397, "a": 2.15931735967217, "t_jup": 3.1, "om": 27.557427453467, "ma": 85.63143566372727, "name": "Hephaistos", "i": 11.55430389105726, "tp": 2456524.8208850855, "prefix": "", "BV": 0.766, "spec": "?", "q": 0.3510905792032729, "w": 209.3535280291529, "n": 0.310619960058719, "sigma_ma": 3.8453e-06, "first_obs": "1978-09-27", "n_del_obs_used": "", "sigma_q": 5.14e-08, "n_dop_obs_used": ""},
{"sigma_tp": 3.3094e-05, "diameter": "", "sigma_q": 1.8749e-07, "epoch_mjd": 56800.0, "ad": 3.98466247275693, "producer": "Otto Matic", "rms": 0.61491, "H_sigma": "", "closeness": 2668.8009956184374, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "2329 Orthos (1976 WA)", "M2": "", "sigma_per": 6.2695e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -77353623066129.77, "albedo": "", "moid_ld": 39.60622007, "pha": "N", "neo": "Y", "sigma_ad": 1.2226e-08, "PC": "", "profit": 0.0, "est_diameter": 4.3199562784405625, "sigma_w": 2.2763e-05, "sigma_i": 1.3372e-05, "per": 1362.230612418703, "id": "a0002329", "A1": "", "data_arc": 13535.0, "A3": "", "score": 0.0, "per_y": 3.72958415446599, "sigma_n": 1.2163e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 93", "sigma_a": 7.3789e-09, "sigma_om": 2.1864e-05, "A2": "", "sigma_e": 7.7555e-08, "condition_code": 0.0, "rot_per": "", "prov_des": "1976 WA", "G": "", "last_obs": "2013-06-21", "H": 14.5, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 405.0, "moid": 0.101771, "extent": "", "dv": 9.814315, "e": 0.6568762287917721, "GM": "", "tp_cal": 20131204.9864141, "pdes": 2329.0, "class": "APO", "UB": "", "a": 2.404924642839874, "t_jup": 3.097, "om": 169.4500767679825, "ma": 44.66563176404878, "name": "Orthos", "i": 24.42117908011309, "tp": 2456631.486414133, "prefix": "", "BV": "", "spec": "?", "q": 0.8251868129228181, "w": 145.8216493450594, "n": 0.2642724342839451, "sigma_ma": 8.9041e-06, "first_obs": "1976-05-31", "n_del_obs_used": "", "spkid": 2002329.0, "n_dop_obs_used": ""},
{"sigma_tp": 3.3467e-05, "diameter": 0.3, "epoch_mjd": 56800.0, "ad": 1.223916090580232, "producer": "Otto Matic", "rms": 0.72329, "H_sigma": "", "closeness": 2717.3925309433157, "spec_B": "Sq", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "2340 Hathor (1976 UA)", "M2": "", "sigma_per": 2.1571e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -35103115658.64585, "albedo": "", "moid_ld": 2.6202193428, "pha": "Y", "neo": "Y", "sigma_ad": 6.2124e-10, "PC": "", "profit": 3.964218360084752e-46, "spkid": 2002340.0, "sigma_w": 2.9419e-05, "sigma_i": 8.9834e-06, "per": 283.316660214844, "id": "a0002340", "A1": "", "data_arc": 12884.0, "A3": "", "score": 9.577930602631883e-57, "per_y": 0.775678741176849, "sigma_n": 9.6746e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 47", "sigma_a": 4.2851e-10, "sigma_om": 2.8863e-05, "A2": "", "sigma_e": 1.6198e-07, "condition_code": 0.0, "rot_per": "", "prov_des": "1976 UA", "G": "", "last_obs": "2012-02-03", "H": 20.0, "price": 4.7889653013159414e-45, "IR": "", "spec_T": "CSU", "epoch": 2456800.5, "n_obs_used": 182.0, "moid": 0.00673284, "extent": "", "dv": 9.605539, "e": 0.4497813874600241, "GM": "", "tp_cal": 20140808.3317926, "pdes": 2340.0, "class": "ATE", "UB": 0.5, "a": 0.8442073413044002, "t_jup": 6.879, "om": 211.4584174248647, "ma": 261.7373517685214, "name": "Hathor", "i": 5.853722125016997, "tp": 2456877.8317925576, "prefix": "", "BV": 0.77, "spec": "Sq", "q": 0.464498592028569, "w": 40.02668200967265, "n": 1.27066300911145, "sigma_ma": 4.2498e-05, "first_obs": "1976-10-25", "n_del_obs_used": "", "sigma_q": 1.3662e-07, "n_dop_obs_used": ""},
{"sigma_tp": 0.00025493, "diameter": 2.3, "epoch_mjd": 56800.0, "ad": 2.975435411394086, "producer": "Otto Matic", "rms": 0.68372, "H_sigma": "", "closeness": 2977.0006273314966, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "2368 Beltrovata (1977 RA)", "M2": "", "sigma_per": 1.6621e-05, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -11674172699706.0, "albedo": 0.27, "moid_ld": 89.90722091, "pha": "N", "neo": "Y", "sigma_ad": 2.9561e-08, "PC": "", "profit": 0.0, "spkid": 2002368.0, "sigma_w": 8.3035e-05, "sigma_i": 8.0019e-06, "per": 1115.289764481098, "id": "a0002368", "A1": "", "data_arc": 13006.0, "A3": "", "score": 0.0, "per_y": 3.05349695956495, "sigma_n": 4.8103e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 133", "sigma_a": 2.091e-08, "sigma_om": 7.0732e-05, "A2": "", "sigma_e": 9.0159e-08, "condition_code": 0.0, "rot_per": 5.9, "prov_des": "1977 RA", "G": "", "last_obs": "2013-04-14", "H": 15.21, "price": 0.0, "IR": "", "spec_T": "SQ", "epoch": 2456800.5, "n_obs_used": 606.0, "moid": 0.231023, "extent": "", "dv": 6.740067, "e": 0.413701333311725, "GM": "", "tp_cal": 20140413.0175728, "pdes": 2368.0, "class": "AMO", "UB": 0.52, "a": 2.104712884739138, "t_jup": 3.625, "om": 287.5321125425987, "ma": 12.9057705466637, "name": "Beltrovata", "i": 5.236445193567253, "tp": 2456760.517572796, "prefix": "", "BV": 0.83, "spec": "?", "q": 1.23399035808419, "w": 42.63664976995612, "n": 0.3227860700106885, "sigma_ma": 8.248e-05, "first_obs": "1977-09-04", "n_del_obs_used": "", "sigma_q": 1.8622e-07, "n_dop_obs_used": ""},
{"sigma_tp": 0.00094989, "diameter": 0.9, "epoch_mjd": 56800.0, "ad": 3.95355103343211, "producer": "Otto Matic", "rms": 0.88775, "H_sigma": "", "closeness": 2738.3068491820554, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "2608 Seneca (1978 DA)", "M2": "", "sigma_per": 0.00010978, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -699471677330.9506, "albedo": 0.21, "moid_ld": 51.70356952, "pha": "N", "neo": "Y", "sigma_ad": 1.9842e-07, "PC": "", "profit": 0.0, "spkid": 2002608.0, "sigma_w": 0.00011282, "sigma_i": 5.1217e-05, "per": 1458.272460749241, "id": "a0002608", "A1": "", "data_arc": 11871.0, "A3": "", "score": 0.0, "per_y": 3.99253240451538, "sigma_n": 1.8585e-08, "epoch_cal": 20140523.0, "orbit_id": "JPL 13", "sigma_a": 1.2631e-07, "sigma_om": 2.8729e-05, "A2": "", "sigma_e": 2.2794e-07, "condition_code": 1.0, "rot_per": 8.0, "prov_des": "1978 DA", "G": "", "last_obs": "2010-08-19", "H": 17.52, "price": 0.0, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 52.0, "moid": 0.132856, "extent": "", "dv": 7.800748, "e": 0.5709433260183939, "GM": "", "tp_cal": 20131004.8561589, "pdes": 2608.0, "class": "AMO", "UB": 0.454, "a": 2.516673242091114, "t_jup": 3.172, "om": 167.3690592004009, "ma": 56.81502257568884, "name": "Seneca", "i": 14.67792202040298, "tp": 2456570.356158947, "prefix": "", "BV": 0.826, "spec": "?", "q": 1.079795450750119, "w": 37.32487909637873, "n": 0.2468674474007668, "sigma_ma": 0.00023784, "first_obs": "1978-02-17", "n_del_obs_used": "", "sigma_q": 5.5996e-07, "n_dop_obs_used": ""},
{"sigma_tp": 3.7727e-05, "diameter": 1.6, "epoch_mjd": 56800.0, "ad": 3.117853349516291, "producer": "Otto Matic", "rms": 0.58392, "H_sigma": "", "closeness": 2919.892986280445, "spec_B": "S", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3102 Krok (1981 QA)", "M2": "", "sigma_per": 2.7872e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -5325272656956.053, "albedo": "", "moid_ld": 72.58604255, "pha": "N", "neo": "Y", "sigma_ad": 5.021e-09, "PC": "", "profit": 8.999440914800002e-44, "spkid": 2003102.0, "sigma_w": 3.4164e-05, "sigma_i": 6.5873e-06, "per": 1153.833185371787, "id": "a0003102", "A1": "", "data_arc": 11845.0, "A3": "", "score": 1.453007546236304e-54, "per_y": 3.15902309478929, "sigma_n": 7.5367e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 107", "sigma_a": 3.4671e-09, "sigma_om": 3.0594e-05, "A2": "", "sigma_e": 4.6053e-08, "condition_code": 0.0, "rot_per": 149.4, "prov_des": "1981 QA", "G": "", "last_obs": "2014-01-25", "H": 16.1, "price": 7.26503773118152e-43, "IR": "", "spec_T": "QRS", "epoch": 2456800.5, "n_obs_used": 653.0, "moid": 0.186515, "extent": "", "dv": 6.897227, "e": 0.4481913580332363, "GM": "", "tp_cal": 20130317.4150899, "pdes": 3102.0, "class": "AMO", "UB": 0.521, "a": 2.152929122398985, "t_jup": 3.555, "om": 172.1483162027876, "ma": 134.6560053985881, "name": "Krok", "i": 8.424081181855678, "tp": 2456368.915089893, "prefix": "", "BV": 0.834, "spec": "S", "q": 1.188004895281681, "w": 154.6210432715043, "n": 0.312003506714882, "sigma_ma": 1.206e-05, "first_obs": "1981-08-21", "n_del_obs_used": "", "sigma_q": 9.8556e-08, "n_dop_obs_used": ""},
{"sigma_tp": 6.5215e-06, "diameter": 1.5, "epoch_mjd": 56800.0, "ad": 1.902041488835895, "producer": "Otto Matic", "rms": 0.48819, "H_sigma": "", "closeness": 2750.397229595498, "spec_B": "Xe", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3103 Eger (1982 BB)", "M2": "", "sigma_per": 5.806e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": 6335217935504.669, "albedo": 0.64, "moid_ld": 30.644296559, "pha": "N", "neo": "Y", "sigma_ad": 1.211e-09, "PC": "", "profit": 44758744975.88252, "spkid": 2003103.0, "sigma_w": 6.158e-06, "sigma_i": 4.688e-06, "per": 607.9546490936235, "id": "a0003103", "A1": "", "data_arc": 11744.0, "A3": "", "score": 137.5398614797749, "per_y": 1.6644891145616, "sigma_n": 5.6551e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 276", "sigma_a": 8.9419e-10, "sigma_om": 5.1731e-06, "A2": "", "sigma_e": 1.7355e-08, "condition_code": 0.0, "rot_per": 5.7059, "prov_des": "1982 BB", "G": "", "last_obs": "2014-03-18", "H": 15.38, "price": 442747794263.0632, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 1956.0, "moid": 0.0787427, "extent": "", "dv": 7.960845, "e": 0.3542686170562105, "GM": "", "tp_cal": 20150125.6611716, "pdes": 3103.0, "class": "APO", "UB": 0.235, "a": 1.40447874585648, "t_jup": 4.612, "om": 129.799606721941, "ma": 213.3475779933951, "name": "Eger", "i": 20.93209764495433, "tp": 2457048.161171555, "prefix": "", "BV": 0.732, "spec": "Xe", "q": 0.9069160028770636, "w": 254.0001635625274, "n": 0.5921494317655278, "sigma_ma": 3.8251e-06, "first_obs": "1982-01-21", "n_del_obs_used": 1.0, "sigma_q": 2.3982e-08, "n_dop_obs_used": 3.0},
{"sigma_tp": 2.5978e-05, "diameter": 4.9, "epoch_mjd": 56800.0, "ad": 2.515751904114957, "producer": "Otto Matic", "rms": 0.51404, "H_sigma": "", "closeness": 2722.205498678746, "spec_B": "S", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3122 Florence (1981 ET3)", "M2": "", "sigma_per": 3.4842e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -152957276078667.62, "albedo": "", "moid_ld": 16.964426221, "pha": "Y", "neo": "Y", "sigma_ad": 6.8046e-09, "PC": "", "profit": 2.0332966996459112e-42, "spkid": 2003122.0, "sigma_w": 1.4187e-05, "sigma_i": 7.0228e-06, "per": 858.7800688609434, "id": "a0003122", "A1": "", "data_arc": 12790.0, "A3": "", "score": 4.1734591017371804e-53, "per_y": 2.35121168750429, "sigma_n": 1.7008e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 272", "sigma_a": 4.7825e-09, "sigma_om": 1.2065e-05, "A2": "", "sigma_e": 6.5179e-08, "condition_code": 0.0, "rot_per": 2.3581, "prov_des": "1981 ET3", "G": "", "last_obs": "2014-03-15", "H": 14.1, "price": 2.08672955086859e-41, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 1570.0, "moid": 0.0435913, "extent": "", "dv": 8.174695, "e": 0.422805243365908, "GM": "", "tp_cal": 20150519.0110482, "pdes": 3122.0, "class": "AMO", "UB": "", "a": 1.768163222510681, "t_jup": 3.921, "om": 336.1239586363676, "ma": 208.6644228478143, "name": "Florence", "i": 22.16304538670118, "tp": 2457161.511048244, "prefix": "", "BV": "", "spec": "S", "q": 1.020574540906404, "w": 27.71334954585178, "n": 0.4191992956677392, "sigma_ma": 1.0621e-05, "first_obs": "1979-03-09", "n_del_obs_used": "", "sigma_q": 1.152e-07, "n_dop_obs_used": ""},
{"sigma_tp": 9.7282e-05, "diameter": 2.2, "epoch_mjd": 56800.0, "ad": 2.02138551368521, "producer": "Otto Matic", "rms": 0.52606, "H_sigma": "", "closeness": 2677.1699955082217, "spec_B": "Sq", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3199 Nefertiti (1982 RA)", "M2": "", "sigma_per": 4.9419e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -13843628723454.115, "albedo": 0.42, "moid_ld": 83.7688425, "pha": "N", "neo": "Y", "sigma_ad": 9.2289e-09, "PC": "", "profit": 1.2781504986466123e-43, "spkid": 2003199.0, "sigma_w": 2.9157e-05, "sigma_i": 1.5884e-05, "per": 721.6064943709981, "id": "a0003199", "A1": "", "data_arc": 11236.0, "A3": "", "score": 3.7772520391416415e-54, "per_y": 1.97565090861327, "sigma_n": 3.4166e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 193", "sigma_a": 7.1885e-09, "sigma_om": 7.0446e-06, "A2": "", "sigma_e": 9.5603e-08, "condition_code": 0.0, "rot_per": 3.021, "prov_des": "1982 RA", "G": "", "last_obs": "2013-06-18", "H": 14.84, "price": 1.8886260195708207e-42, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1329.0, "moid": 0.21525, "extent": "", "dv": 11.575111, "e": 0.2838505696764539, "GM": "", "tp_cal": 20140625.5389948, "pdes": 3199.0, "class": "AMO", "UB": 0.418, "a": 1.574471018223424, "t_jup": 4.19, "om": 340.0249939588787, "ma": 343.2678360883656, "name": "Nefertiti", "i": 32.96648854739345, "tp": 2456834.038994843, "prefix": "", "BV": 0.895, "spec": "Sq", "q": 1.127556522761639, "w": 53.38656667947994, "n": 0.4988868625881767, "sigma_ma": 4.8424e-05, "first_obs": "1982-09-13", "n_del_obs_used": 0.0, "sigma_q": 1.4766e-07, "n_dop_obs_used": 1.0},
{"sigma_tp": 8.9609e-06, "diameter": 5.1, "epoch_mjd": 56800.0, "ad": 2.402236222637321, "producer": "Otto Matic", "rms": 0.51581, "H_sigma": "", "closeness": 2696.9921194519075, "spec_B": "B", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3200 Phaethon (1983 TB)", "M2": "", "sigma_per": 1.1518e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 0.2, "saved": -60838566559768.86, "albedo": 0.1066, "moid_ld": 7.740513466, "pha": "Y", "neo": "Y", "sigma_ad": 3.5238e-09, "PC": "", "profit": 5298313704531.782, "spkid": 2003200.0, "sigma_w": 9.1063e-06, "sigma_i": 6.6093e-06, "per": 523.4541560641479, "id": "a0003200", "A1": "", "data_arc": 11049.0, "A3": "", "score": 134.8696059725954, "per_y": 1.4331393732078, "sigma_n": 1.5132e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 371", "sigma_a": 1.8646e-09, "sigma_om": 9.5135e-06, "A2": "", "sigma_e": 2.0587e-08, "condition_code": 0.0, "rot_per": 3.604, "prov_des": "1983 TB", "G": "", "last_obs": "2014-01-10", "H": 14.6, "price": 103006105247784.12, "IR": "", "spec_T": "F", "epoch": 2456800.5, "n_obs_used": 2602.0, "moid": 0.0198898, "extent": "", "dv": 15.342291, "e": 0.8898567855068311, "GM": "", "tp_cal": 20131007.875849, "pdes": 3200.0, "class": "APO", "UB": "", "a": 1.271120775425889, "t_jup": 4.511, "om": 265.2630422610986, "ma": 156.2022068778405, "name": "Phaethon", "i": 22.24120293544042, "tp": 2456573.375848954, "prefix": "", "BV": "", "spec": "B", "q": 0.1400053282144568, "w": 322.148301733701, "n": 0.6877393097933163, "sigma_ma": 6.4466e-06, "first_obs": "1983-10-11", "n_del_obs_used": 1.0, "sigma_q": 2.6236e-08, "n_dop_obs_used": 0.0},
{"sigma_tp": 0.00058535, "diameter": "", "sigma_q": 3.5684e-07, "epoch_mjd": 56800.0, "ad": 2.933840029482318, "producer": "Otto Matic", "rms": 0.60654, "H_sigma": "", "closeness": 2667.423586231192, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3271 Ul (1982 RB)", "M2": "", "sigma_per": 4.4212e-05, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -4880683659572.708, "albedo": "", "moid_ld": 107.94953128, "pha": "N", "neo": "Y", "sigma_ad": 7.7644e-08, "PC": "", "profit": 0.0, "est_diameter": 1.7198055709247886, "sigma_w": 0.00012376, "sigma_i": 2.3244e-05, "per": 1113.723694757736, "id": "a0003271", "A1": "", "data_arc": 11457.0, "A3": "", "score": 0.0, "per_y": 3.04920929434014, "sigma_n": 1.2832e-08, "epoch_cal": 20140523.0, "orbit_id": "JPL 29", "sigma_a": 5.5649e-08, "sigma_om": 3.2916e-05, "A2": "", "sigma_e": 1.6528e-07, "condition_code": 0.0, "rot_per": "", "prov_des": "1982 RB", "G": "", "last_obs": "2014-01-26", "H": 16.5, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 108.0, "moid": 0.277384, "extent": "", "dv": 9.795807, "e": 0.3952447854600853, "GM": "", "tp_cal": 20130127.7974909, "pdes": 3271.0, "class": "AMO", "UB": "", "a": 2.102742156828687, "t_jup": 3.533, "om": 158.8594252972065, "ma": 155.2206387379652, "name": "Ul", "i": 25.04842419539185, "tp": 2456320.297490895, "prefix": "", "BV": "", "spec": "?", "q": 1.271644284175055, "w": 158.9908710538385, "n": 0.3232399577152837, "sigma_ma": 0.00019533, "first_obs": "1982-09-14", "n_del_obs_used": "", "spkid": 2003271.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.7572e-05, "diameter": 2.8, "epoch_mjd": 56800.0, "ad": 2.960189988973275, "producer": "Otto Matic", "rms": 0.5521, "H_sigma": "", "closeness": 3216.2304072349452, "spec_B": "K", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3288 Seleucus (1982 DV)", "M2": "", "sigma_per": 1.2229e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -28173511189937.207, "albedo": 0.22, "moid_ld": 40.02691284, "pha": "N", "neo": "Y", "sigma_ad": 2.279e-09, "PC": "", "profit": 5015262227911.214, "spkid": 2003288.0, "sigma_w": 4.1267e-05, "sigma_i": 3.7994e-06, "per": 1058.966528663735, "id": "a0003288", "A1": "", "data_arc": 11639.0, "A3": "", "score": 160.83152036174727, "per_y": 2.89929234404856, "sigma_n": 3.9259e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 208", "sigma_a": 1.5654e-09, "sigma_om": 4.0948e-05, "A2": "", "sigma_e": 2.8576e-08, "condition_code": 0.0, "rot_per": 75.0, "prov_des": "1982 DV", "G": "", "last_obs": "2014-01-10", "H": 15.2, "price": 33521354818967.523, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1124.0, "moid": 0.102852, "extent": "", "dv": 6.29014, "e": 0.4558960952358181, "GM": "", "tp_cal": 20140226.2580732, "pdes": 3288.0, "class": "AMO", "UB": 0.5, "a": 2.033242618522031, "t_jup": 3.666, "om": 218.6683093753745, "ma": 29.14831848999674, "name": "Seleucus", "i": 5.928006775142775, "tp": 2456714.758073201, "prefix": "", "BV": 0.91, "spec": "K", "q": 1.106295248070787, "w": 349.2806702934602, "n": 0.3399540875520104, "sigma_ma": 6.0005e-06, "first_obs": "1982-02-28", "n_del_obs_used": "", "sigma_q": 5.8049e-08, "n_dop_obs_used": ""},
{"sigma_tp": 2.7356e-05, "diameter": "", "sigma_q": 8.9638e-08, "epoch_mjd": 56800.0, "ad": 2.57230227961652, "producer": "Otto Matic", "rms": 0.53131, "H_sigma": "", "closeness": 3244.2533694597273, "spec_B": "A", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3352 McAuliffe (1981 CW)", "M2": "", "sigma_per": 3.3922e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -17394820641301.941, "albedo": "", "moid_ld": 78.65281368, "pha": "N", "neo": "Y", "sigma_ad": 6.1851e-09, "PC": "", "profit": 0.0, "est_diameter": 2.373992548280959, "sigma_w": 7.243e-05, "sigma_i": 3.1893e-06, "per": 940.531899953609, "id": "a0003352", "A1": "", "data_arc": 11956.0, "A3": "", "score": 0.0, "per_y": 2.57503600261084, "sigma_n": 1.3805e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 163", "sigma_a": 4.5172e-09, "sigma_om": 7.1754e-05, "A2": "", "sigma_e": 4.8687e-08, "condition_code": 0.0, "rot_per": 2.206, "prov_des": "1981 CW", "G": "", "last_obs": "2013-11-01", "H": 15.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 941.0, "moid": 0.202104, "extent": "", "dv": 6.253643, "e": 0.3692159002373136, "GM": "", "tp_cal": 20140730.301624, "pdes": 3352.0, "class": "AMO", "UB": "", "a": 1.878668133470176, "t_jup": 3.883, "om": 107.3834377185038, "ma": 333.8567244359446, "name": "McAuliffe", "i": 4.773271311159045, "tp": 2456868.8016239926, "prefix": "", "BV": "", "spec": "A", "q": 1.185033987323831, "w": 15.91113522206104, "n": 0.3827621370606959, "sigma_ma": 1.0418e-05, "first_obs": "1981-02-06", "n_del_obs_used": "", "spkid": 2003352.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.3494e-05, "diameter": 1.8, "epoch_mjd": 56800.0, "ad": 4.308466036678311, "producer": "Otto Matic", "rms": 0.5993, "H_sigma": "", "closeness": 2670.379620575729, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3360 Syrinx (1981 VA)", "M2": "", "sigma_per": 9.4831e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -5595773418647.6045, "albedo": 0.17, "moid_ld": 43.40374093, "pha": "N", "neo": "Y", "sigma_ad": 1.9225e-08, "PC": "", "profit": 0.0, "spkid": 2003360.0, "sigma_w": 2.0557e-05, "sigma_i": 1.7694e-05, "per": 1416.846640876381, "id": "a0003360", "A1": "", "data_arc": 11749.0, "A3": "", "score": 0.0, "per_y": 3.87911469096887, "sigma_n": 1.7006e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 70", "sigma_a": 1.1016e-08, "sigma_om": 1.8362e-05, "A2": "", "sigma_e": 7.8313e-08, "condition_code": 0.0, "rot_per": "", "prov_des": "1981 VA", "G": "", "last_obs": "2014-01-04", "H": 15.9, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 333.0, "moid": 0.111529, "extent": "", "dv": 9.99876, "e": 0.7451779955434839, "GM": "", "tp_cal": 20120819.447905, "pdes": 3360.0, "class": "APO", "UB": "", "a": 2.468783154314622, "t_jup": 2.964, "om": 243.4719809806904, "ma": 163.0090000721765, "name": "Syrinx", "i": 21.2605027436522, "tp": 2456158.947905042, "prefix": "", "BV": "", "spec": "?", "q": 0.6291002719509325, "w": 62.56231430723963, "n": 0.2540853678965031, "sigma_ma": 3.9736e-06, "first_obs": "1981-11-04", "n_del_obs_used": "", "sigma_q": 1.9151e-07, "n_dop_obs_used": ""},
{"sigma_tp": 1.8061e-05, "diameter": 0.3, "epoch_mjd": 56800.0, "ad": 1.600359177922691, "producer": "Otto Matic", "rms": 0.59388, "H_sigma": "", "closeness": 4021.2583973259325, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3361 Orpheus (1982 HR)", "M2": "", "sigma_per": 9.9256e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -25906358419.664825, "albedo": "", "moid_ld": 5.39545288, "pha": "Y", "neo": "Y", "sigma_ad": 2.1787e-09, "PC": "", "profit": 0.0, "spkid": 2003361.0, "sigma_w": 5.2487e-05, "sigma_i": 6.0819e-06, "per": 486.0483850551794, "id": "a0003361", "A1": "", "data_arc": 11532.0, "A3": "", "score": 0.0, "per_y": 1.33072795360761, "sigma_n": 1.5125e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 88", "sigma_a": 1.647e-09, "sigma_om": 5.1116e-05, "A2": "", "sigma_e": 6.048e-08, "condition_code": 0.0, "rot_per": 3.58, "prov_des": "1982 HR", "G": "", "last_obs": "2013-11-19", "H": 19.03, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 629.0, "moid": 0.013864, "extent": "", "dv": 5.542151, "e": 0.322807797983623, "GM": "", "tp_cal": 20140120.0306415, "pdes": 3361.0, "class": "APO", "UB": 0.503, "a": 1.209819884916119, "t_jup": 5.213, "om": 189.4132723051594, "ma": 91.07934608511789, "name": "Orpheus", "i": 2.684058928852344, "tp": 2456677.530641454, "prefix": "", "BV": 1.022, "spec": "?", "q": 0.819280591909546, "w": 301.7452203284406, "n": 0.7406670016178131, "sigma_ma": 1.3344e-05, "first_obs": "1982-04-24", "n_del_obs_used": "", "sigma_q": 7.4039e-08, "n_dop_obs_used": ""},
{"sigma_tp": 9.322e-05, "diameter": 0.7, "epoch_mjd": 56800.0, "ad": 1.453061651587865, "producer": "Otto Matic", "rms": 0.72412, "H_sigma": "", "closeness": 2703.388768782437, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3362 Khufu (1984 QA)", "M2": "", "sigma_per": 5.132e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -329106701405.3717, "albedo": 0.21, "moid_ld": 5.132451794, "pha": "Y", "neo": "Y", "sigma_ad": 1.3828e-08, "PC": "", "profit": 0.0, "spkid": 2003362.0, "sigma_w": 3.9003e-05, "sigma_i": 9.5081e-06, "per": 359.5110178915057, "id": "a0003362", "A1": "", "data_arc": 7393.0, "A3": "", "score": 0.0, "per_y": 0.984287523316922, "sigma_n": 1.4294e-08, "epoch_cal": 20140523.0, "orbit_id": "JPL 21", "sigma_a": 9.4166e-09, "sigma_om": 4.3986e-05, "A2": "", "sigma_e": 3.8967e-07, "condition_code": 0.0, "rot_per": "", "prov_des": "1984 QA", "G": "", "last_obs": "2004-11-27", "H": 18.3, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 264.0, "moid": 0.0131882, "extent": "", "dv": 11.447727, "e": 0.4685030607482228, "GM": "", "tp_cal": 20131219.2631499, "pdes": 3362.0, "class": "ATE", "UB": "", "a": 0.9894849322598689, "t_jup": 6.018, "om": 152.4540328267928, "ma": 154.9473125371937, "name": "Khufu", "i": 9.917141877749682, "tp": 2456645.7631498617, "prefix": "", "BV": "", "spec": "?", "q": 0.5259082129318724, "w": 55.03962658627788, "n": 1.001360131078491, "sigma_ma": 9.5511e-05, "first_obs": "1984-08-31", "n_del_obs_used": "", "sigma_q": 3.9048e-07, "n_dop_obs_used": ""},
{"sigma_tp": 0.00010935, "diameter": 0.9, "epoch_mjd": 56800.0, "ad": 3.111821456265206, "producer": "Otto Matic", "rms": 0.779, "H_sigma": "", "closeness": 3029.5058542311162, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3551 Verenia (1983 RD)", "M2": "", "sigma_per": 8.2496e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -947784122783.438, "albedo": 0.37, "moid_ld": 29.352252159, "pha": "N", "neo": "Y", "sigma_ad": 1.547e-08, "PC": "", "profit": 1.730804960974549e-44, "spkid": 2003551.0, "sigma_w": 3.2093e-05, "sigma_i": 8.0283e-06, "per": 1106.258875031197, "id": "a0003551", "A1": "", "data_arc": 10874.0, "A3": "", "score": 2.586041262710609e-55, "per_y": 3.02877173177604, "sigma_n": 2.4267e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 49", "sigma_a": 1.0407e-08, "sigma_om": 2.4557e-05, "A2": "", "sigma_e": 5.5493e-08, "condition_code": 0.0, "rot_per": 4.93, "prov_des": "1983 RD", "G": "", "last_obs": "2013-06-15", "H": 16.75, "price": 1.2930206313553045e-43, "IR": "", "spec_T": "V", "epoch": 2456800.5, "n_obs_used": 306.0, "moid": 0.0754227, "extent": "", "dv": 6.622384, "e": 0.4865371837233798, "GM": "", "tp_cal": 20140102.1396459, "pdes": 3551.0, "class": "AMO", "UB": 0.481, "a": 2.093335767404702, "t_jup": 3.579, "om": 173.858677363672, "ma": 45.83893393723168, "name": "Verenia", "i": 9.502532004717423, "tp": 2456659.639645861, "prefix": "", "BV": 0.839, "spec": "V", "q": 1.074850078544198, "w": 193.238627582516, "n": 0.3254211180812879, "sigma_ma": 3.5925e-05, "first_obs": "1983-09-07", "n_del_obs_used": "", "sigma_q": 1.1854e-07, "n_dop_obs_used": ""},
{"sigma_tp": 3.4067e-05, "diameter": 19.0, "epoch_mjd": 56800.0, "ad": 7.232358664187585, "producer": "Otto Matic", "rms": 0.57745, "H_sigma": "", "closeness": 2640.664320909876, "spec_B": "D", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3552 Don Quixote (1983 SA)", "M2": "", "sigma_per": 1.2876e-05, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -4541007293290226.0, "albedo": 0.03, "moid_ld": 117.63285922, "pha": "N", "neo": "Y", "sigma_ad": 1.9596e-08, "PC": "", "profit": 92801009.91028012, "spkid": 2003552.0, "sigma_w": 1.8373e-05, "sigma_i": 1.1403e-05, "per": 3168.035957356559, "id": "a0003552", "A1": "", "data_arc": 10393.0, "A3": "", "score": 132.03606579282928, "per_y": 8.67360973951146, "sigma_n": 4.6184e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 120", "sigma_a": 1.1438e-08, "sigma_om": 1.7583e-05, "A2": "", "sigma_e": 3.8275e-08, "condition_code": 0.0, "rot_per": 7.7, "prov_des": "1983 SA", "G": "", "last_obs": "2012-02-23", "H": 12.9, "price": 1424873667.7255492, "IR": "", "spec_T": "D", "epoch": 2456800.5, "n_obs_used": 618.0, "moid": 0.302266, "extent": "", "dv": 11.863753, "e": 0.7132424967104461, "GM": "", "tp_cal": 20180509.7110332, "pdes": 3552.0, "class": "AMO", "UB": "", "a": 4.22144482061019, "t_jup": 2.315, "om": 350.2665054623306, "ma": 195.4892498147684, "name": "Don Quixote", "i": 30.98226677446192, "tp": 2458248.211033218, "prefix": "", "BV": "", "spec": "D", "q": 1.210530977032797, "w": 317.0334959218323, "n": 0.1136350738583118, "sigma_ma": 3.3987e-06, "first_obs": "1983-09-10", "n_del_obs_used": "", "sigma_q": 1.6218e-07, "n_dop_obs_used": ""},
{"sigma_tp": 3.8615e-05, "diameter": "", "sigma_q": 6.6127e-08, "epoch_mjd": 56800.0, "ad": 2.17108333528891, "producer": "Otto Matic", "rms": 0.59634, "H_sigma": "", "closeness": 2674.5844246201123, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3553 Mera (1985 JA)", "M2": "", "sigma_per": 3.0104e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -5603774619119.08, "albedo": "", "moid_ld": 114.66037876, "pha": "N", "neo": "Y", "sigma_ad": 5.6565e-09, "PC": "", "profit": 0.0, "est_diameter": 1.800857510412324, "sigma_w": 1.7291e-05, "sigma_i": 1.2897e-05, "per": 770.3058697031177, "id": "a0003553", "A1": "", "data_arc": 10354.0, "A3": "", "score": 0.0, "per_y": 2.10898253169916, "sigma_n": 1.8264e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 127", "sigma_a": 4.2846e-09, "sigma_om": 6.257e-06, "A2": "", "sigma_e": 3.9949e-08, "condition_code": 0.0, "rot_per": 3.1944, "prov_des": "1985 JA", "G": "", "last_obs": "2013-09-15", "H": 16.4, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 686.0, "moid": 0.294628, "extent": "", "dv": 12.604994, "e": 0.3201804796877325, "GM": "", "tp_cal": 20140829.8769544, "pdes": 3553.0, "class": "AMO", "UB": "", "a": 1.644535250060996, "t_jup": 4.017, "om": 232.5497901970674, "ma": 313.7901695928693, "name": "Mera", "i": 36.770483588183, "tp": 2456899.376954446, "prefix": "", "BV": "", "spec": "?", "q": 1.117987164833081, "w": 288.8649553798116, "n": 0.4673468217745076, "sigma_ma": 1.7957e-05, "first_obs": "1985-05-11", "n_del_obs_used": "", "spkid": 2003553.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.7712e-05, "diameter": 2.48, "epoch_mjd": 56800.0, "ad": 1.246741151947902, "producer": "Otto Matic", "rms": 0.46152, "H_sigma": "", "closeness": 2705.28728508051, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3554 Amun (1986 EB)", "M2": "", "sigma_per": 8.9954e-07, "equinox": "J2000", "DT": "", "diameter_sigma": 0.2, "saved": -14635165841640.014, "albedo": 0.1284, "moid_ld": 97.51354856, "pha": "N", "neo": "Y", "sigma_ad": 2.1305e-09, "PC": "", "profit": 0.0, "spkid": 2003554.0, "sigma_w": 1.2905e-05, "sigma_i": 7.5424e-06, "per": 350.9283975119445, "id": "a0003554", "A1": "", "data_arc": 10226.0, "A3": "", "score": 0.0, "per_y": 0.960789589355084, "sigma_n": 2.6296e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 236", "sigma_a": 1.6639e-09, "sigma_om": 5.2962e-06, "A2": "", "sigma_e": 6.1589e-08, "condition_code": 0.0, "rot_per": 2.53001, "prov_des": "1986 EB", "G": "", "last_obs": "2014-03-03", "H": 15.82, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 1587.0, "moid": 0.250568, "extent": "", "dv": 10.397497, "e": 0.2804508236653305, "GM": "", "tp_cal": 20140730.9524762, "pdes": 3554.0, "class": "ATE", "UB": 0.235, "a": 0.9736735912895638, "t_jup": 6.106, "om": 358.6310040645274, "ma": 289.2650819997908, "name": "Amun", "i": 23.36111665375732, "tp": 2456869.4524761722, "prefix": "", "BV": 0.707, "spec": "?", "q": 0.7006060306312253, "w": 359.3731416781001, "n": 1.025850294682256, "sigma_ma": 1.8192e-05, "first_obs": "1986-03-04", "n_del_obs_used": "", "sigma_q": 6.0432e-08, "n_dop_obs_used": ""},
{"sigma_tp": 1.9502e-05, "diameter": 1.5, "epoch_mjd": 56800.0, "ad": 3.389465956193759, "producer": "Otto Matic", "rms": 0.61475, "H_sigma": "", "closeness": 2843.4876400173102, "spec_B": "Cb", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3671 Dionysus (1984 KD)", "M2": "", "sigma_per": 9.9016e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2205720370226.2925, "albedo": 0.16, "moid_ld": 7.191005426, "pha": "Y", "neo": "Y", "sigma_ad": 1.8804e-09, "PC": "", "profit": 304096293000.8015, "spkid": 2003671.0, "sigma_w": 1.5194e-05, "sigma_i": 5.8553e-06, "per": 1189.851803721137, "id": "a0003671", "A1": "", "data_arc": 10559.0, "A3": "", "score": 142.19438200086552, "per_y": 3.25763669738847, "sigma_n": 2.5178e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 67", "sigma_a": 1.2191e-09, "sigma_om": 1.1456e-05, "A2": "", "sigma_e": 2.0833e-08, "condition_code": 0.0, "rot_per": 2.7053, "prov_des": "1984 KD", "G": "", "last_obs": "2013-04-24", "H": 16.4, "price": 2624406119042.373, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 456.0, "moid": 0.0184778, "extent": "", "dv": 7.18053, "e": 0.5424164389575241, "GM": "", "tp_cal": 20131027.0859178, "pdes": 3671.0, "class": "APO", "UB": "", "a": 2.197503780810715, "t_jup": 3.429, "om": 82.16186367336434, "ma": 62.9062118039464, "name": "Dionysus", "i": 13.55018719511839, "tp": 2456592.585917833, "prefix": "", "BV": "", "spec": "Cb", "q": 1.005541605427671, "w": 204.1923517642733, "n": 0.3025586874551417, "sigma_ma": 5.9363e-06, "first_obs": "1984-05-27", "n_del_obs_used": "", "sigma_q": 4.5624e-08, "n_dop_obs_used": ""},
{"sigma_tp": 2.1683e-05, "diameter": 4.3, "epoch_mjd": 56800.0, "ad": 2.278427126133001, "producer": "Otto Matic", "rms": 0.52108, "H_sigma": "", "closeness": 2696.1927628297553, "spec_B": "Xc", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3691 Bede (1982 FT)", "M2": "", "sigma_per": 3.0432e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": 149254165933764.97, "albedo": "", "moid_ld": 136.76445642, "pha": "N", "neo": "Y", "sigma_ad": 5.3555e-09, "PC": "", "profit": 1044906979753.3982, "spkid": 2003691.0, "sigma_w": 1.4717e-05, "sigma_i": 6.7103e-06, "per": 863.1156760603955, "id": "a0003691", "A1": "", "data_arc": 14106.0, "A3": "", "score": 134.82963814148778, "per_y": 2.36308193308801, "sigma_n": 1.4706e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 216", "sigma_a": 4.1701e-09, "sigma_om": 1.2763e-05, "A2": "", "sigma_e": 5.2029e-08, "condition_code": 0.0, "rot_per": 226.8, "prov_des": "1982 FT", "G": "", "last_obs": "2014-01-21", "H": 14.6, "price": 11470832752872.049, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 1126.0, "moid": 0.351426, "extent": "", "dv": 8.66071, "e": 0.2842653270534753, "GM": "", "tp_cal": 20150609.1453268, "pdes": 3691.0, "class": "AMO", "UB": "", "a": 1.774109351188712, "t_jup": 3.983, "om": 348.7796708240432, "ma": 200.6096407806614, "name": "Bede", "i": 20.35969692769975, "tp": 2457182.6453268197, "prefix": "", "BV": "", "spec": "Xc", "q": 1.269791576244424, "w": 234.9074556968094, "n": 0.4170935715629494, "sigma_ma": 8.7762e-06, "first_obs": "1975-06-09", "n_del_obs_used": "", "sigma_q": 9.2029e-08, "n_dop_obs_used": ""},
{"sigma_tp": 7.4116e-06, "diameter": "", "sigma_q": 5.3937e-08, "epoch_mjd": 56800.0, "ad": 1.839886517743089, "producer": "Otto Matic", "rms": 0.53307, "H_sigma": "", "closeness": 2683.0274244045495, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3752 Camillo (1985 PA)", "M2": "", "sigma_per": 1.88e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -25614191956629.15, "albedo": "", "moid_ld": 30.400870724, "pha": "N", "neo": "Y", "sigma_ad": 3.7572e-09, "PC": "", "profit": 0.0, "est_diameter": 2.988679546440889, "sigma_w": 9.585e-06, "sigma_i": 8.9149e-06, "per": 613.7384534802848, "id": "a0003752", "A1": "", "data_arc": 13776.0, "A3": "", "score": 0.0, "per_y": 1.68032430795424, "sigma_n": 1.7967e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 128", "sigma_a": 2.8862e-09, "sigma_om": 2.2092e-06, "A2": "", "sigma_e": 3.8752e-08, "condition_code": 0.0, "rot_per": 37.846, "prov_des": "1985 PA", "G": "", "last_obs": "2013-10-16", "H": 15.3, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 891.0, "moid": 0.0781172, "extent": "", "dv": 19.475907, "e": 0.301770518738532, "GM": "", "tp_cal": 20140902.1708955, "pdes": 3752.0, "class": "APO", "UB": "", "a": 1.413372396485068, "t_jup": 4.244, "om": 147.9788394213013, "ma": 300.0697118302256, "name": "Camillo", "i": 55.5591535245144, "tp": 2456902.6708954945, "prefix": "", "BV": "", "spec": "?", "q": 0.986858275227047, "w": 312.222524505582, "n": 0.5865690799697698, "sigma_ma": 4.3953e-06, "first_obs": "1976-01-28", "n_del_obs_used": 2.0, "spkid": 2003752.0, "n_dop_obs_used": 4.0},
{"sigma_tp": 3.5322e-05, "diameter": "", "sigma_q": 4.6305e-07, "epoch_mjd": 56800.0, "ad": 1.5113663839349, "producer": "Otto Matic", "rms": 0.56734, "H_sigma": "", "closeness": 2702.6242317496212, "spec_B": "Q", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3753 Cruithne (1986 TO)", "M2": "", "sigma_per": 1.1783e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -13766950273359.414, "albedo": "", "moid_ld": 27.640332246, "pha": "N", "neo": "Y", "sigma_ad": 3.2617e-09, "PC": "", "profit": 233659013.4421446, "est_diameter": 2.6030310669964694, "sigma_w": 8.8562e-05, "sigma_i": 1.1975e-05, "per": 364.0048285213624, "id": "a0003753", "A1": "", "data_arc": 14604.0, "A3": "", "score": 135.139625703977, "per_y": 0.996590906287098, "sigma_n": 3.2015e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 106", "sigma_a": 2.1532e-09, "sigma_om": 8.9063e-05, "A2": "", "sigma_e": 4.6417e-07, "condition_code": 0.0, "rot_per": 27.4, "prov_des": "1986 TO", "G": "", "last_obs": "2013-10-11", "H": 15.6, "price": 4207058247.9759674, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 568.0, "moid": 0.0710238, "extent": "", "dv": 14.238587, "e": 0.5148301713604823, "GM": "", "tp_cal": 20131221.6715352, "pdes": 3753.0, "class": "ATE", "UB": "", "a": 0.9977134153444596, "t_jup": 5.922, "om": 126.2460417347044, "ma": 150.6525272165704, "name": "Cruithne", "i": 19.80737828585882, "tp": 2456648.1715351786, "prefix": "", "BV": "", "spec": "Q", "q": 0.4840604467540194, "w": 43.80989871157639, "n": 0.9889978697875231, "sigma_ma": 3.5004e-05, "first_obs": "1973-10-17", "n_del_obs_used": "", "spkid": 2003753.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.7986e-05, "diameter": 0.5, "epoch_mjd": 56800.0, "ad": 2.652643307724272, "producer": "Otto Matic", "rms": 0.82165, "H_sigma": "", "closeness": 3948.5921249246544, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3757 (1982 XB)", "M2": "", "sigma_per": 1.1655e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -119936844535.48534, "albedo": 0.18, "moid_ld": 14.413222286, "pha": "Y", "neo": "Y", "sigma_ad": 2.2701e-09, "PC": "", "profit": 0.0, "spkid": 2003757.0, "sigma_w": 5.2171e-05, "sigma_i": 7.3426e-06, "per": 907.9095522194922, "id": "a0003757", "A1": "", "data_arc": 11114.0, "A3": "", "score": 0.0, "per_y": 2.48572088218889, "sigma_n": 5.0901e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 38", "sigma_a": 1.5704e-09, "sigma_om": 4.8782e-05, "A2": "", "sigma_e": 3.5155e-08, "condition_code": 0.0, "rot_per": 9.0046, "prov_des": "1982 XB", "G": "", "last_obs": "2013-05-19", "H": 18.95, "price": 0.0, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 151.0, "moid": 0.0370358, "extent": "", "dv": 5.574413, "e": 0.4456042512710039, "GM": "", "tp_cal": 20150424.2322916, "pdes": 3757.0, "class": "AMO", "UB": 0.522, "a": 1.834971988628295, "t_jup": 3.896, "om": 74.98473458351668, "ma": 226.6787625514726, "name": "", "i": 3.868165623778088, "tp": 2457136.7322916477, "prefix": "", "BV": 0.859, "spec": "?", "q": 1.017300669532319, "w": 17.15507955315837, "n": 0.3965152686409538, "sigma_ma": 6.9843e-06, "first_obs": "1982-12-14", "n_del_obs_used": 0.0, "sigma_q": 6.4751e-08, "n_dop_obs_used": 2.0},
{"sigma_tp": 1.2272e-05, "diameter": "", "sigma_q": 1.2583e-07, "epoch_mjd": 56800.0, "ad": 2.561903119660677, "producer": "Otto Matic", "rms": 0.57181, "H_sigma": "", "closeness": 2686.320059291383, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3838 Epona (1986 WA)", "M2": "", "sigma_per": 2.968e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -19430351620791.81, "albedo": "", "moid_ld": 62.14500062, "pha": "N", "neo": "Y", "sigma_ad": 7.5184e-09, "PC": "", "profit": 0.0, "est_diameter": 2.7257081417153968, "sigma_w": 1.1668e-05, "sigma_i": 1.3355e-05, "per": 674.2407851133665, "id": "a0003838", "A1": "", "data_arc": 9948.0, "A3": "", "score": 0.0, "per_y": 1.8459706642392, "sigma_n": 2.3504e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 84", "sigma_a": 4.4161e-09, "sigma_om": 8.6637e-06, "A2": "", "sigma_e": 8.3576e-08, "condition_code": 0.0, "rot_per": 2.3812, "prov_des": "1986 WA", "G": "", "last_obs": "2014-02-25", "H": 15.5, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 550.0, "moid": 0.159686, "extent": "", "dv": 12.594139, "e": 0.7024915851879969, "GM": "", "tp_cal": 20140528.4745048, "pdes": 3838.0, "class": "APO", "UB": "", "a": 1.504796347864345, "t_jup": 4.126, "om": 235.5480282133073, "ma": 357.0769763875164, "name": "Epona", "i": 29.21792261567522, "tp": 2456805.9745048205, "prefix": "", "BV": "", "spec": "?", "q": 0.4476895760680129, "w": 49.65543408061102, "n": 0.53393388229914, "sigma_ma": 6.5463e-06, "first_obs": "1986-12-01", "n_del_obs_used": "", "spkid": 2003838.0, "n_dop_obs_used": ""},
{"sigma_tp": 2.5421e-06, "diameter": 1.0, "epoch_mjd": 56800.0, "ad": 2.811676890760779, "producer": "Otto Matic", "rms": 0.47815, "H_sigma": "", "closeness": 3759.316221157503, "spec_B": "V", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3908 Nyx (1980 PA)", "M2": "", "sigma_per": 1.1512e-07, "equinox": "J2000", "DT": "", "diameter_sigma": 0.15, "saved": -1300115394764.661, "albedo": 0.23, "moid_ld": 21.984252217, "pha": "N", "neo": "Y", "sigma_ad": 2.2078e-10, "PC": "", "profit": 3.414160902019194e-44, "spkid": 2003908.0, "sigma_w": 3.7881e-05, "sigma_i": 1.2508e-06, "per": 977.4033517005807, "id": "a0003908", "A1": "", "data_arc": 12022.0, "A3": "", "score": 3.5473817046784754e-55, "per_y": 2.67598453579899, "sigma_n": 4.3382e-11, "epoch_cal": 20140523.0, "orbit_id": "JPL 141", "sigma_a": 1.5135e-10, "sigma_om": 3.8458e-05, "A2": "", "sigma_e": 3.8809e-09, "condition_code": 0.0, "rot_per": 4.42601, "prov_des": "1980 PA", "G": "", "last_obs": "2013-07-06", "H": 17.3, "price": 1.7736908523392375e-43, "IR": "", "spec_T": "V", "epoch": 2456800.5, "n_obs_used": 1514.0, "moid": 0.0564901, "extent": "", "dv": 5.714629, "e": 0.4587531718444312, "GM": "", "tp_cal": 20150714.0467576, "pdes": 3908.0, "class": "AMO", "UB": "", "a": 1.927452118034284, "t_jup": 3.78, "om": 261.4639481466168, "ma": 206.3921445703422, "name": "Nyx", "i": 2.182360613995685, "tp": 2457217.5467576236, "prefix": "", "BV": "", "spec": "V", "q": 1.04322734530779, "w": 126.3211013083159, "n": 0.3683228621772549, "sigma_ma": 9.2481e-07, "first_obs": "1980-08-06", "n_del_obs_used": 15.0, "sigma_q": 7.4783e-09, "n_dop_obs_used": 1.0},
{"sigma_tp": 1.5059e-05, "diameter": 0.7, "epoch_mjd": 56800.0, "ad": 2.033697983734403, "producer": "Otto Matic", "rms": 0.53761, "H_sigma": "", "closeness": 3599.036605542673, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3988 (1986 LA)", "M2": "", "sigma_per": 1.378e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -329106701405.3717, "albedo": "", "moid_ld": 69.09791184, "pha": "N", "neo": "Y", "sigma_ad": 2.6645e-09, "PC": "", "profit": 0.0, "spkid": 2003988.0, "sigma_w": 2.584e-05, "sigma_i": 6.1841e-06, "per": 701.1897838071199, "id": "a0003988", "A1": "", "data_arc": 10098.0, "A3": "", "score": 0.0, "per_y": 1.91975300152531, "sigma_n": 1.009e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 107", "sigma_a": 2.0237e-09, "sigma_om": 1.9873e-05, "A2": "", "sigma_e": 3.2107e-08, "condition_code": 0.0, "rot_per": 10.4, "prov_des": "1986 LA", "G": "", "last_obs": "2014-01-26", "H": 17.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 466.0, "moid": 0.177552, "extent": "", "dv": 5.863577, "e": 0.3166237636593228, "GM": "", "tp_cal": 20130705.3889141, "pdes": 3988.0, "class": "AMO", "UB": "", "a": 1.544631078268024, "t_jup": 4.384, "om": 229.8621418615683, "ma": 165.1193351822117, "name": "", "i": 10.76565754486461, "tp": 2456478.888914059, "prefix": "", "BV": "", "spec": "?", "q": 1.055564172801644, "w": 86.83690462822564, "n": 0.5134130706317125, "sigma_ma": 7.7954e-06, "first_obs": "1986-06-04", "n_del_obs_used": "", "sigma_q": 4.9353e-08, "n_dop_obs_used": ""},
{"sigma_tp": 1.1906e-05, "diameter": 4.0, "epoch_mjd": 56800.0, "ad": 4.286784404849381, "producer": "Otto Matic", "rms": 0.64408, "H_sigma": "", "closeness": 3028.4777396746035, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4015 Wilson-Harrington (1979 VA)", "M2": "", "sigma_per": 2.5939e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 0.5, "saved": -61407664402168.49, "albedo": 0.05, "moid_ld": 18.396688572, "pha": "Y", "neo": "Y", "sigma_ad": 4.7302e-09, "PC": "", "profit": 0.0, "spkid": 2004015.0, "sigma_w": 9.2454e-05, "sigma_i": 6.2383e-06, "per": 1567.16946349009, "id": "a0004015", "A1": "", "data_arc": 23262.0, "A3": "", "score": 0.0, "per_y": 4.29067614918574, "sigma_n": 3.8021e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 152", "sigma_a": 2.9136e-09, "sigma_om": 9.2316e-05, "A2": "", "sigma_e": 3.4879e-08, "condition_code": 0.0, "rot_per": 3.5736, "prov_des": "1979 VA", "G": "", "last_obs": "2013-07-28", "H": 15.99, "price": 0.0, "IR": "", "spec_T": "CF", "epoch": 2456800.5, "n_obs_used": 872.0, "moid": 0.0472716, "extent": "", "dv": 6.608172, "e": 0.6235037128080544, "GM": "", "tp_cal": 20140205.2775188, "pdes": 4015.0, "class": "APO", "UB": 0.279, "a": 2.640452480046902, "t_jup": 3.083, "om": 270.4063591069282, "ma": 24.51559587850516, "name": "Wilson-Harrington", "i": 2.784739740388639, "tp": 2456693.7775187776, "prefix": "", "BV": 0.666, "spec": "?", "q": 0.9941205552444237, "w": 91.448058532829, "n": 0.2297135111338114, "sigma_ma": 2.7685e-06, "first_obs": "1949-11-19", "n_del_obs_used": "", "sigma_q": 9.2269e-08, "n_dop_obs_used": ""},
{"sigma_tp": 1.2837e-05, "diameter": 0.42, "epoch_mjd": 56800.0, "ad": 1.530019154207472, "producer": "Otto Matic", "rms": 0.51879, "H_sigma": "", "closeness": 2739.186018433021, "spec_B": "O", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4034 Vishnu (1986 PA)", "M2": "", "sigma_per": 1.2076e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -62094002599.05123, "albedo": 0.52, "moid_ld": 7.341225046, "pha": "Y", "neo": "Y", "sigma_ad": 3.0922e-09, "PC": "", "profit": 23249363533.8043, "spkid": 2004034.0, "sigma_w": 3.2072e-05, "sigma_i": 5.6888e-06, "per": 398.3548995373755, "id": "a0004034", "A1": "", "data_arc": 9810.0, "A3": "", "score": 136.97930092165106, "per_y": 1.09063627525633, "sigma_n": 2.7396e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 65", "sigma_a": 2.1413e-09, "sigma_om": 3.556e-05, "A2": "", "sigma_e": 6.0155e-08, "condition_code": 0.0, "rot_per": "", "prov_des": "1986 PA", "G": "", "last_obs": "2013-06-11", "H": 18.4, "price": 242455317281.26715, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 469.0, "moid": 0.0188638, "extent": "", "dv": 8.358482, "e": 0.4440504856528823, "GM": "", "tp_cal": 20140309.9367189, "pdes": 4034.0, "class": "APO", "UB": "", "a": 1.059533007612072, "t_jup": 5.704, "om": 157.9689822216917, "ma": 66.93222856762783, "name": "Vishnu", "i": 11.16829750071288, "tp": 2456726.4367189254, "prefix": "", "BV": "", "spec": "O", "q": 0.5890468610166725, "w": 296.6010764969121, "n": 0.9037167621587723, "sigma_ma": 1.1628e-05, "first_obs": "1986-08-02", "n_del_obs_used": 0.0, "sigma_q": 6.347e-08, "n_dop_obs_used": 1.0},
{"sigma_tp": 2.4136e-05, "diameter": 2.49, "epoch_mjd": 56800.0, "ad": 2.414584685648315, "producer": "Otto Matic", "rms": 0.49436, "H_sigma": "", "closeness": 2682.550063351702, "spec_B": "V", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4055 Magellan (1985 DO2)", "M2": "", "sigma_per": 2.7305e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -20071505193110.137, "albedo": 0.31, "moid_ld": 92.9532545, "pha": "N", "neo": "Y", "sigma_ad": 4.8985e-09, "PC": "", "profit": 2.3475201635302632e-43, "spkid": 2004055.0, "sigma_w": 1.2797e-05, "sigma_i": 4.9749e-06, "per": 897.2778343050013, "id": "a0004055", "A1": "", "data_arc": 10648.0, "A3": "", "score": 5.476536205487079e-54, "per_y": 2.45661282492813, "sigma_n": 1.2209e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 267", "sigma_a": 3.6935e-09, "sigma_om": 1.0157e-05, "A2": "", "sigma_e": 5.587e-08, "condition_code": 0.0, "rot_per": 7.475, "prov_des": "1985 DO2", "G": "", "last_obs": "2014-03-18", "H": 14.5, "price": 2.7382681027435392e-42, "IR": "", "spec_T": "V", "epoch": 2456800.5, "n_obs_used": 1519.0, "moid": 0.23885, "extent": "", "dv": 9.155872, "e": 0.3262440040631601, "GM": "", "tp_cal": 20150808.828967, "pdes": 4055.0, "class": "AMO", "UB": "", "a": 1.820618738520853, "t_jup": 3.886, "om": 164.8545862395919, "ma": 182.3310305782544, "name": "Magellan", "i": 23.25087533255365, "tp": 2457243.328966961, "prefix": "", "BV": "", "spec": "V", "q": 1.22665279139339, "w": 154.3364498858319, "n": 0.4012135218729022, "sigma_ma": 9.3293e-06, "first_obs": "1985-01-21", "n_del_obs_used": "", "sigma_q": 1.0313e-07, "n_dop_obs_used": ""},
{"sigma_tp": 1.1585e-07, "diameter": 5.4, "epoch_mjd": 56800.0, "ad": 4.129286094725432, "producer": "Otto Matic", "rms": 0.50404, "H_sigma": "", "closeness": 3034.2680330008047, "spec_B": "Sk", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4179 Toutatis (1989 AC)", "M2": "", "sigma_per": 1.2469e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -204721370521222.62, "albedo": "", "moid_ld": 2.3506179336, "pha": "Y", "neo": "Y", "sigma_ad": 2.3302e-10, "PC": "", "profit": 3.7565347018154875e-42, "spkid": 2004179.0, "sigma_w": 2.5815e-05, "sigma_i": 1.4119e-07, "per": 1473.051493999899, "id": "a0004179", "A1": "", "data_arc": 28969.0, "A3": "", "score": 5.585849127454916e-53, "per_y": 4.03299519233374, "sigma_n": 2.0687e-11, "epoch_cal": 20140523.0, "orbit_id": "JPL 485", "sigma_a": 1.4298e-10, "sigma_om": 2.5957e-05, "A2": "", "sigma_e": 5.9453e-10, "condition_code": 0.0, "rot_per": 176.0, "prov_des": "1989 AC", "G": 0.1, "last_obs": "2013-06-04", "H": 15.3, "price": 2.792924563727458e-41, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 5200.0, "moid": 0.00604008, "extent": "1.70x2.03x4.26", "dv": 6.601019, "e": 0.6297787053483673, "GM": "", "tp_cal": 20121115.5816073, "pdes": 4179.0, "class": "APO", "UB": "", "a": 2.533648329785235, "t_jup": 3.138, "om": 124.3576253197404, "ma": 135.2502761734105, "name": "Toutatis", "i": 0.4471166154201842, "tp": 2456247.0816072747, "prefix": "", "BV": "", "spec": "Sk", "q": 0.9380105648450363, "w": 278.7580753960656, "n": 0.2443906417843291, "sigma_ma": 2.7036e-08, "first_obs": "1934-02-10", "n_del_obs_used": 29.0, "sigma_q": 1.4611e-09, "n_dop_obs_used": 28.0},
{"sigma_tp": 2.2746e-05, "diameter": "", "sigma_q": 5.4974e-08, "epoch_mjd": 56800.0, "ad": 3.239436210290064, "producer": "Otto Matic", "rms": 0.53583, "H_sigma": "", "closeness": 2806.5558805191704, "spec_B": "Sq", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4183 Cuno (1959 LM)", "M2": "", "sigma_per": 3.7683e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -120342756532326.64, "albedo": "", "moid_ld": 11.224713559, "pha": "Y", "neo": "Y", "sigma_ad": 7.9845e-09, "PC": "", "profit": 1.8202038255934713e-42, "est_diameter": 4.5235495454868335, "sigma_w": 3.9916e-05, "sigma_i": 4.5302e-06, "per": 1019.238067356506, "id": "a0004183", "A1": "", "data_arc": 19928.0, "A3": "", "score": 3.2835677089311507e-53, "per_y": 2.79052174498701, "sigma_n": 1.3059e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 240", "sigma_a": 4.8854e-09, "sigma_om": 3.9704e-05, "A2": "", "sigma_e": 2.8074e-08, "condition_code": 0.0, "rot_per": 3.5595, "prov_des": "1959 LM", "G": "", "last_obs": "2013-12-26", "H": 14.4, "price": 1.6417838544655752e-41, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 1389.0, "moid": 0.0288427, "extent": "", "dv": 7.407214, "e": 0.6343734293894596, "GM": "", "tp_cal": 20150119.8590949, "pdes": 4183.0, "class": "APO", "UB": "", "a": 1.982066125181804, "t_jup": 3.573, "om": 294.9338009032543, "ma": 274.5741540226903, "name": "Cuno", "i": 6.707460243656044, "tp": 2457042.359094878, "prefix": "", "BV": "", "spec": "Sq", "q": 0.7246960400735452, "w": 236.2753435985191, "n": 0.353205018071681, "sigma_ma": 7.7622e-06, "first_obs": "1959-06-05", "n_del_obs_used": 1.0, "spkid": 2004183.0, "n_dop_obs_used": 0.0},
{"sigma_tp": 1.8735e-05, "diameter": 1.8, "epoch_mjd": 56800.0, "ad": 4.068347594961488, "producer": "Otto Matic", "rms": 0.62926, "H_sigma": "", "closeness": 2682.3411556130386, "spec_B": "Sq", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4197 (1982 TA)", "M2": "", "sigma_per": 1.1615e-05, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -7582272982267.504, "albedo": 0.37, "moid_ld": 38.143057621, "pha": "N", "neo": "Y", "sigma_ad": 2.4791e-08, "PC": "", "profit": 8.770469372846647e-44, "spkid": 2004197.0, "sigma_w": 2.4053e-05, "sigma_i": 8.1891e-06, "per": 1270.728466165445, "id": "a0004197", "A1": "", "data_arc": 21642.0, "A3": "", "score": 2.0688330101684872e-54, "per_y": 3.47906493132223, "sigma_n": 2.5895e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 85", "sigma_a": 1.3991e-08, "sigma_om": 1.8154e-05, "A2": "", "sigma_e": 6.9363e-08, "condition_code": 0.0, "rot_per": 3.538, "prov_des": "1982 TA", "G": "", "last_obs": "2013-12-04", "H": 14.6, "price": 1.0344165050842436e-42, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 629.0, "moid": 0.0980113, "extent": "", "dv": 9.257034, "e": 0.7719378976723559, "GM": "", "tp_cal": 20140522.6133631, "pdes": 4197.0, "class": "APO", "UB": "", "a": 2.295987686874202, "t_jup": 3.091, "om": 7.21261524082808, "ma": 0.1095350358099619, "name": "", "i": 12.57585190020458, "tp": 2456800.1133630886, "prefix": "", "BV": "", "spec": "Sq", "q": 0.5236277787869151, "w": 122.3623186064774, "n": 0.28330206616551, "sigma_ma": 5.3085e-06, "first_obs": "1954-09-03", "n_del_obs_used": 4.0, "sigma_q": 1.6236e-07, "n_dop_obs_used": 2.0},
{"sigma_tp": 2.2875e-05, "diameter": "", "sigma_q": 6.1555e-08, "epoch_mjd": 56800.0, "ad": 2.418614389961295, "producer": "Otto Matic", "rms": 0.58098, "H_sigma": "", "closeness": 2676.7798801419085, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4257 Ubasti (1987 QA)", "M2": "", "sigma_per": 3.0376e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -12837506008340.916, "albedo": "", "moid_ld": 66.12893391, "pha": "N", "neo": "Y", "sigma_ad": 6.3432e-09, "PC": "", "profit": 0.0, "est_diameter": 2.373992548280959, "sigma_w": 1.0962e-05, "sigma_i": 1.0897e-05, "per": 772.1496719469599, "id": "a0004257", "A1": "", "data_arc": 9113.0, "A3": "", "score": 0.0, "per_y": 2.11403058712378, "sigma_n": 1.8341e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 127", "sigma_a": 4.3199e-09, "sigma_om": 7.3055e-06, "A2": "", "sigma_e": 3.7417e-08, "condition_code": 0.0, "rot_per": "", "prov_des": "1987 QA", "G": "", "last_obs": "2012-08-04", "H": 15.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 629.0, "moid": 0.169923, "extent": "", "dv": 13.567242, "e": 0.4683556416324601, "GM": "", "tp_cal": 20150524.4923918, "pdes": 4257.0, "class": "APO", "UB": "", "a": 1.647158441310836, "t_jup": 3.913, "om": 169.221063787036, "ma": 189.1299396595577, "name": "Ubasti", "i": 40.71333823271666, "tp": 2457166.9923917707, "prefix": "", "BV": "", "spec": "?", "q": 0.8757024926603763, "w": 278.9342932657183, "n": 0.4662308527468091, "sigma_ma": 1.023e-05, "first_obs": "1987-08-23", "n_del_obs_used": "", "spkid": 2004257.0, "n_dop_obs_used": ""},
{"sigma_tp": 7.3696e-05, "diameter": "", "sigma_q": 1.1555e-07, "epoch_mjd": 56800.0, "ad": 3.082050704875745, "producer": "Otto Matic", "rms": 0.601, "H_sigma": "", "closeness": 2704.34053138598, "spec_B": "O", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4341 Poseidon (1987 KF)", "M2": "", "sigma_per": 7.0038e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -9766519883103.5, "albedo": "", "moid_ld": 75.72703362, "pha": "N", "neo": "Y", "sigma_ad": 1.5852e-08, "PC": "", "profit": 3496721870350.8105, "est_diameter": 2.2671452828784515, "sigma_w": 5.3858e-05, "sigma_i": 9.3885e-06, "per": 907.8462504149264, "id": "a0004341", "A1": "", "data_arc": 9543.0, "A3": "", "score": 135.237026569299, "per_y": 2.48554757129343, "sigma_n": 3.0592e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 73", "sigma_a": 9.4371e-09, "sigma_om": 4.8136e-05, "A2": "", "sigma_e": 6.2543e-08, "condition_code": 0.0, "rot_per": 6.262, "prov_des": "1987 KF", "G": "", "last_obs": "2013-07-14", "H": 15.9, "price": 38134837148150.67, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 380.0, "moid": 0.194586, "extent": "", "dv": 8.629933, "e": 0.6796953802768203, "GM": "", "tp_cal": 20140718.8423348, "pdes": 4341.0, "class": "APO", "UB": "", "a": 1.834886694971924, "t_jup": 3.688, "om": 108.1224375145605, "ma": 337.4595747619312, "name": "Poseidon", "i": 11.85501141083373, "tp": 2456857.34233482, "prefix": "", "BV": "", "spec": "O", "q": 0.5877226850681042, "w": 15.63517367045921, "n": 0.3965429166397547, "sigma_ma": 2.907e-05, "first_obs": "1987-05-29", "n_del_obs_used": "", "spkid": 2004341.0, "n_dop_obs_used": ""},
{"sigma_tp": 6.8851e-05, "diameter": "", "sigma_q": 3.2312e-07, "epoch_mjd": 56800.0, "ad": 4.038297923401815, "producer": "Otto Matic", "rms": 0.72427, "H_sigma": "", "closeness": 2659.5635671920495, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4401 Aditi (1985 TB)", "M2": "", "sigma_per": 1.5486e-05, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -19430351620791.81, "albedo": "", "moid_ld": 128.10231056, "pha": "N", "neo": "Y", "sigma_ad": 2.7537e-08, "PC": "", "profit": 0.0, "est_diameter": 2.7257081417153968, "sigma_w": 3.6861e-05, "sigma_i": 3.0508e-05, "per": 1514.013884251606, "id": "a0004401", "A1": "", "data_arc": 9336.0, "A3": "", "score": 0.0, "per_y": 4.14514410472719, "sigma_n": 2.4321e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 56", "sigma_a": 1.7595e-08, "sigma_om": 2.0829e-05, "A2": "", "sigma_e": 1.2751e-07, "condition_code": 0.0, "rot_per": "", "prov_des": "1985 TB", "G": "", "last_obs": "2011-05-07", "H": 15.5, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 240.0, "moid": 0.329168, "extent": "", "dv": 10.10286, "e": 0.5649870024018798, "GM": "", "tp_cal": 20141219.062645, "pdes": 4401.0, "class": "AMO", "UB": "", "a": 2.580403490382985, "t_jup": 3.055, "om": 22.91791793184919, "ma": 310.0516124848489, "name": "Aditi", "i": 26.64866623850013, "tp": 2457010.562644983, "prefix": "", "BV": "", "spec": "?", "q": 1.122509057364154, "w": 68.16174738169038, "n": 0.237778532776106, "sigma_ma": 1.6156e-05, "first_obs": "1985-10-14", "n_del_obs_used": "", "spkid": 2004401.0, "n_dop_obs_used": ""},
{"sigma_tp": 9.7644e-06, "diameter": "", "sigma_q": 2.6518e-08, "epoch_mjd": 56800.0, "ad": 2.288356419264377, "producer": "Otto Matic", "rms": 0.52649, "H_sigma": "", "closeness": 2763.1510451696504, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4450 Pan (1987 SY)", "M2": "", "sigma_per": 2.344e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2130495689559.3572, "albedo": "", "moid_ld": 11.0641031, "pha": "Y", "neo": "Y", "sigma_ad": 5.6524e-09, "PC": "", "profit": 0.0, "est_diameter": 1.3046059395138065, "sigma_w": 1.8377e-05, "sigma_i": 5.3481e-06, "per": 632.6388999657592, "id": "a0004450", "A1": "", "data_arc": 9556.0, "A3": "", "score": 0.0, "per_y": 1.73207091024164, "sigma_n": 2.1084e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 131", "sigma_a": 3.5624e-09, "sigma_om": 1.8635e-05, "A2": "", "sigma_e": 1.8408e-08, "condition_code": 0.0, "rot_per": 60.0, "prov_des": "1987 SY", "G": "", "last_obs": "2013-11-23", "H": 17.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 750.0, "moid": 0.02843, "extent": "", "dv": 7.844384, "e": 0.5866654238319337, "GM": "", "tp_cal": 20150317.9308831, "pdes": 4450.0, "class": "APO", "UB": "", "a": 1.442242570420297, "t_jup": 4.457, "om": 311.85764174298, "ma": 189.8948769728276, "name": "Pan", "i": 5.519841354369471, "tp": 2457099.4308830844, "prefix": "", "BV": "", "spec": "?", "q": 0.5961287215762159, "w": 291.7815469271759, "n": 0.569044995525069, "sigma_ma": 4.9324e-06, "first_obs": "1987-09-25", "n_del_obs_used": 1.0, "spkid": 2004450.0, "n_dop_obs_used": 0.0},
{"sigma_tp": 1.3931e-05, "diameter": "", "sigma_q": 4.7032e-08, "epoch_mjd": 56800.0, "ad": 3.65719646375116, "producer": "Otto Matic", "rms": 0.55642, "H_sigma": "", "closeness": 2820.299705438828, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4486 Mithra (1987 SB)", "M2": "", "sigma_per": 2.9513e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -16923128801753.783, "albedo": "", "moid_ld": 18.057020996, "pha": "Y", "neo": "Y", "sigma_ad": 6.0401e-09, "PC": "", "profit": 0.0, "est_diameter": 2.6030310669964694, "sigma_w": 9.2442e-05, "sigma_i": 3.1236e-06, "per": 1191.324298025731, "id": "a0004486", "A1": "", "data_arc": 9832.0, "A3": "", "score": 0.0, "per_y": 3.26166816707935, "sigma_n": 7.4861e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 162", "sigma_a": 3.6323e-09, "sigma_om": 9.4191e-05, "A2": "", "sigma_e": 2.1124e-08, "condition_code": 0.0, "rot_per": 67.5, "prov_des": "1987 SB", "G": "", "last_obs": "2013-12-30", "H": 15.6, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 675.0, "moid": 0.0463988, "extent": "2.35 x 1.65 x 1.44", "dv": 7.310432, "e": 0.6628787212441365, "GM": "", "tp_cal": 20130731.5853541, "pdes": 4486.0, "class": "APO", "UB": "", "a": 2.199316412573317, "t_jup": 3.338, "om": 82.24823403372439, "ma": 89.26979220822963, "name": "Mithra", "i": 3.039725362408793, "tp": 2456505.0853540627, "prefix": "", "BV": "", "spec": "?", "q": 0.7414363613954751, "w": 168.8983072835435, "n": 0.3021847204800523, "sigma_ma": 4.4287e-06, "first_obs": "1987-01-29", "n_del_obs_used": 8.0, "spkid": 2004486.0, "n_dop_obs_used": 9.0},
{"sigma_tp": 3.1958e-05, "diameter": "", "sigma_q": 1.2273e-07, "epoch_mjd": 56800.0, "ad": 2.243647976973597, "producer": "Otto Matic", "rms": 0.5592, "H_sigma": "", "closeness": 2771.495850337958, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4487 Pocahontas (1987 UA)", "M2": "", "sigma_per": 2.5725e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1407604543100.2966, "albedo": "", "moid_ld": 85.00173306, "pha": "N", "neo": "Y", "sigma_ad": 4.6279e-09, "PC": "", "profit": 0.0, "est_diameter": 1.1362642725569714, "sigma_w": 2.9171e-05, "sigma_i": 7.7808e-06, "per": 831.4511579071113, "id": "a0004487", "A1": "", "data_arc": 9203.0, "A3": "", "score": 0.0, "per_y": 2.27638920713788, "sigma_n": 1.3396e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 90", "sigma_a": 3.5693e-09, "sigma_om": 2.2259e-05, "A2": "", "sigma_e": 7.0225e-08, "condition_code": 0.0, "rot_per": "", "prov_des": "1987 UA", "G": "", "last_obs": "2012-12-04", "H": 17.4, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 401.0, "moid": 0.218418, "extent": "", "dv": 7.638979, "e": 0.2965696190781424, "GM": "", "tp_cal": 20150130.5879606, "pdes": 4487.0, "class": "AMO", "UB": "", "a": 1.730449290157535, "t_jup": 4.064, "om": 198.1578101112583, "ma": 250.6349880375303, "name": "Pocahontas", "i": 16.4025828403057, "tp": 2457053.087960641, "prefix": "", "BV": "", "spec": "?", "q": 1.217250603341473, "w": 173.8570922731448, "n": 0.4329779285005443, "sigma_ma": 1.3762e-05, "first_obs": "1987-09-24", "n_del_obs_used": "", "spkid": 2004487.0, "n_dop_obs_used": ""},
{"sigma_tp": 6.0758e-05, "diameter": "", "sigma_q": 1.3444e-07, "epoch_mjd": 56800.0, "ad": 4.123995953252794, "producer": "Otto Matic", "rms": 0.64684, "H_sigma": "", "closeness": 2793.491654176917, "spec_B": "Sq", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4503 Cleobulus (1989 WM)", "M2": "", "sigma_per": 1.5444e-05, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -22930839526376.375, "albedo": "", "moid_ld": 120.89916303, "pha": "N", "neo": "Y", "sigma_ad": 2.6091e-08, "PC": "", "profit": 3.4719365458126714e-43, "est_diameter": 2.6030310669964694, "sigma_w": 0.00016056, "sigma_i": 6.6748e-06, "per": 1627.346356308648, "id": "a0004503", "A1": "", "data_arc": 11857.0, "A3": "", "score": 6.256709284140895e-54, "per_y": 4.45543150255619, "sigma_n": 2.0994e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 83", "sigma_a": 1.713e-08, "sigma_om": 0.00015964, "A2": "", "sigma_e": 4.9254e-08, "condition_code": 0.0, "rot_per": 3.13, "prov_des": "1989 WM", "G": "", "last_obs": "2013-06-17", "H": 15.6, "price": 3.1283546420704474e-42, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 515.0, "moid": 0.310659, "extent": "", "dv": 7.365069, "e": 0.5231073637100556, "GM": "", "tp_cal": 20120503.2994058, "pdes": 4503.0, "class": "AMO", "UB": "", "a": 2.707619995485659, "t_jup": 3.15, "om": 46.03419369280739, "ma": 165.8480463442763, "name": "Cleobulus", "i": 2.513511542744299, "tp": 2456050.7994057797, "prefix": "", "BV": "", "spec": "Sq", "q": 1.291244037718523, "w": 76.30052292474747, "n": 0.2212190408049318, "sigma_ma": 1.4983e-05, "first_obs": "1980-12-30", "n_del_obs_used": "", "spkid": 2004503.0, "n_dop_obs_used": ""},
{"sigma_tp": 2.7245e-05, "diameter": 1.3, "epoch_mjd": 56800.0, "ad": 1.302288967204283, "producer": "Otto Matic", "rms": 0.53723, "H_sigma": "", "closeness": 2836.969521434019, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4544 Xanthus (1989 FB)", "M2": "", "sigma_per": 1.3191e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2108009979555.6907, "albedo": "", "moid_ld": 67.5638037, "pha": "N", "neo": "Y", "sigma_ad": 2.9486e-09, "PC": "", "profit": 0.0, "spkid": 2004544.0, "sigma_w": 2.1902e-05, "sigma_i": 6.534e-06, "per": 388.3950615897605, "id": "a0004544", "A1": "", "data_arc": 7629.0, "A3": "", "score": 0.0, "per_y": 1.06336772509175, "sigma_n": 3.148e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 146", "sigma_a": 2.3588e-09, "sigma_om": 1.571e-05, "A2": "", "sigma_e": 6.6042e-08, "condition_code": 0.0, "rot_per": 37.65, "prov_des": "1989 FB", "G": "", "last_obs": "2010-02-17", "H": 17.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 805.0, "moid": 0.17361, "extent": "", "dv": 7.396063, "e": 0.2500398162622586, "GM": "", "tp_cal": 20140305.091205, "pdes": 4544.0, "class": "APO", "UB": "", "a": 1.041797989361854, "t_jup": 5.835, "om": 24.01820046703296, "ma": 73.13987487400591, "name": "Xanthus", "i": 14.14445137314187, "tp": 2456721.5912049823, "prefix": "", "BV": "", "spec": "?", "q": 0.7813070115194257, "w": 333.7315399785318, "n": 0.9268912908585007, "sigma_ma": 2.5358e-05, "first_obs": "1989-03-30", "n_del_obs_used": 0.0, "sigma_q": 6.8639e-08, "n_dop_obs_used": 1.0},
{"sigma_tp": 1.3072e-05, "diameter": "", "sigma_q": 8.7364e-08, "epoch_mjd": 56800.0, "ad": 1.38742496141308, "producer": "Otto Matic", "rms": 0.59044, "H_sigma": "", "closeness": 2919.027781300578, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4581 Asclepius (1989 FC)", "M2": "", "sigma_per": 4.8724e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -14739429014.464666, "albedo": "", "moid_ld": 1.3520583057, "pha": "Y", "neo": "Y", "sigma_ad": 1.1935e-08, "PC": "", "profit": 0.0, "est_diameter": 0.24858753701650987, "sigma_w": 6.6759e-05, "sigma_i": 6.1708e-06, "per": 377.5992079238816, "id": "a0004581", "A1": "", "data_arc": 8910.0, "A3": "", "score": 0.0, "per_y": 1.03381028863486, "sigma_n": 1.2302e-08, "epoch_cal": 20140523.0, "orbit_id": "JPL 39", "sigma_a": 8.7951e-09, "sigma_om": 6.8501e-05, "A2": "", "sigma_e": 8.0573e-08, "condition_code": 0.0, "rot_per": "", "prov_des": "1989 FC", "G": "", "last_obs": "2013-08-22", "H": 20.7, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 148.0, "moid": 0.00347421, "extent": "", "dv": 7.035612, "e": 0.3570246561168803, "GM": "", "tp_cal": 20141117.5396101, "pdes": 4581.0, "class": "APO", "UB": "", "a": 1.022402176083661, "t_jup": 5.914, "om": 180.2987585164562, "ma": 189.781794294914, "name": "Asclepius", "i": 4.918979273531161, "tp": 2456979.0396101344, "prefix": "", "BV": "", "spec": "?", "q": 0.6573793907542417, "w": 255.3014281825177, "n": 0.9533918303996299, "sigma_ma": 1.0315e-05, "first_obs": "1989-03-31", "n_del_obs_used": 2.0, "spkid": 2004581.0, "n_dop_obs_used": 2.0},
{"sigma_tp": 0.00011777, "diameter": "", "sigma_q": 2.0588e-07, "epoch_mjd": 56800.0, "ad": 3.401991231736026, "producer": "Otto Matic", "rms": 0.73201, "H_sigma": "", "closeness": 2661.414679053512, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4596 (1981 QB)", "M2": "", "sigma_per": 9.5802e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -9738244177229.83, "albedo": "", "moid_ld": 116.30228699, "pha": "N", "neo": "Y", "sigma_ad": 1.7743e-08, "PC": "", "profit": 0.0, "est_diameter": 2.1651069365823927, "sigma_w": 3.561e-05, "sigma_i": 2.6673e-05, "per": 1224.598277039499, "id": "a0004596", "A1": "", "data_arc": 11134.0, "A3": "", "score": 0.0, "per_y": 3.35276735671321, "sigma_n": 2.2998e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 45", "sigma_a": 1.1683e-08, "sigma_om": 1.8046e-05, "A2": "", "sigma_e": 9.3209e-08, "condition_code": 0.0, "rot_per": "", "prov_des": "1981 QB", "G": "", "last_obs": "2012-02-21", "H": 16.0, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 188.0, "moid": 0.298847, "extent": "", "dv": 12.39941, "e": 0.5186920230009533, "GM": "", "tp_cal": 20150523.1414367, "pdes": 4596.0, "class": "AMO", "UB": "", "a": 2.240079739810348, "t_jup": 3.218, "om": 154.2955478770652, "ma": 252.6579273569545, "name": "", "i": 37.08991102232791, "tp": 2457165.6414367016, "prefix": "", "BV": "", "spec": "?", "q": 1.078168247884669, "w": 248.3978143856197, "n": 0.293973955990131, "sigma_ma": 3.3865e-05, "first_obs": "1981-08-28", "n_del_obs_used": "", "spkid": 2004596.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.4455e-05, "diameter": 0.33, "epoch_mjd": 56800.0, "ad": 2.024586686402934, "producer": "Otto Matic", "rms": 0.485, "H_sigma": "", "closeness": 5021.877309534447, "spec_B": "Xe", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4660 Nereus (1982 DB)", "M2": "", "sigma_per": 1.9314e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": 67457400577.25371, "albedo": 0.55, "moid_ld": 1.2438223453, "pha": "Y", "neo": "Y", "sigma_ad": 3.9295e-09, "PC": "", "profit": 1389356136.6762912, "spkid": 2004660.0, "sigma_w": 3.2073e-05, "sigma_i": 2.6259e-06, "per": 663.3874196887897, "id": "a0004660", "A1": "", "data_arc": 11571.0, "A3": "", "score": 251.10329423374895, "per_y": 1.81625576916849, "sigma_n": 1.5799e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 95", "sigma_a": 2.8892e-09, "sigma_om": 3.0922e-05, "A2": "", "sigma_e": 3.1229e-09, "condition_code": 0.0, "rot_per": 15.1, "prov_des": "1982 DB", "G": "", "last_obs": "2013-06-05", "H": 18.2, "price": 4714378513.313096, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 541.0, "moid": 0.00319609, "extent": "", "dv": 4.986114, "e": 0.360057199032999, "GM": "", "tp_cal": 20141002.287357, "pdes": 4660.0, "class": "APO", "UB": "", "a": 1.488604073301046, "t_jup": 4.493, "om": 314.4590750941519, "ma": 288.21170990216, "name": "Nereus", "i": 1.432003160920649, "tp": 2456932.7873570328, "prefix": "", "BV": "", "spec": "Xe", "q": 0.9526214601991583, "w": 158.0156751858964, "n": 0.5426693200918465, "sigma_ma": 7.6367e-06, "first_obs": "1981-09-30", "n_del_obs_used": 16.0, "sigma_q": 4.2082e-09, "n_dop_obs_used": 16.0},
{"sigma_tp": 4.1543e-05, "diameter": 0.6, "epoch_mjd": 56800.0, "ad": 3.386467251111453, "producer": "Otto Matic", "rms": 0.66588, "H_sigma": "", "closeness": 3072.112853497994, "spec_B": "V", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4688 (1980 WF)", "M2": "", "sigma_per": 3.2177e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -280824925269.1668, "albedo": 0.18, "moid_ld": 44.09529602, "pha": "N", "neo": "Y", "sigma_ad": 5.9541e-09, "PC": "", "profit": 5.275382806958544e-45, "spkid": 2004688.0, "sigma_w": 5.3449e-05, "sigma_i": 9.9615e-06, "per": 1220.07217670944, "id": "a0004688", "A1": "", "data_arc": 11050.0, "A3": "", "score": 7.662344482105506e-56, "per_y": 3.34037556936192, "sigma_n": 7.7818e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 38", "sigma_a": 3.9288e-09, "sigma_om": 4.4421e-05, "A2": "", "sigma_e": 7.367e-08, "condition_code": 0.0, "rot_per": "", "prov_des": "1980 WF", "G": "", "last_obs": "2011-03-02", "H": 19.4, "price": 3.831172241052753e-44, "IR": "", "spec_T": "QU", "epoch": 2456800.5, "n_obs_used": 198.0, "moid": 0.113306, "extent": "", "dv": 6.5283, "e": 0.5154984010034415, "GM": "", "tp_cal": 20140509.9028801, "pdes": 4688.0, "class": "AMO", "UB": 0.463, "a": 2.234556795882599, "t_jup": 3.445, "om": 241.3463819639208, "ma": 3.864495289472451, "name": "", "i": 6.378460205832736, "tp": 2456787.4028800563, "prefix": "", "BV": 0.93, "spec": "V", "q": 1.082646340653746, "w": 213.5541801184779, "n": 0.2950645108315867, "sigma_ma": 1.2266e-05, "first_obs": "1980-11-29", "n_del_obs_used": "", "sigma_q": 1.6295e-07, "n_dop_obs_used": ""},
{"sigma_tp": 6.8161e-06, "diameter": 1.4, "epoch_mjd": 56800.0, "ad": 1.577099909449551, "producer": "Otto Matic", "rms": 0.5657, "H_sigma": "", "closeness": 2732.554854379092, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4769 Castalia (1989 PB)", "M2": "", "sigma_per": 1.3093e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2632853611242.9736, "albedo": "", "moid_ld": 7.822900755, "pha": "Y", "neo": "Y", "sigma_ad": 3.4374e-10, "PC": "", "profit": 0.0, "spkid": 2004769.0, "sigma_w": 1.21e-05, "sigma_i": 9.8025e-06, "per": 400.4856858363358, "id": "a0004769", "A1": "", "data_arc": 8804.0, "A3": "", "score": 0.0, "per_y": 1.09647005020215, "sigma_n": 2.9389e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 63", "sigma_a": 2.3176e-10, "sigma_om": 1.1101e-05, "A2": "", "sigma_e": 5.7715e-08, "condition_code": 0.0, "rot_per": 4.095, "prov_des": "1989 PB", "G": "", "last_obs": "2013-09-08", "H": 16.9, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 233.0, "moid": 0.0201015, "extent": "", "dv": 8.501865, "e": 0.483201511187133, "GM": "", "tp_cal": 20131209.5103781, "pdes": 4769.0, "class": "APO", "UB": "", "a": 1.063307917066012, "t_jup": 5.676, "om": 325.5990051541273, "ma": 147.8611245446622, "name": "Castalia", "i": 8.886066462095247, "tp": 2456636.010378134, "prefix": "", "BV": "", "spec": "?", "q": 0.5495159246824721, "w": 121.3526604388668, "n": 0.8989085321444402, "sigma_ma": 6.1204e-06, "first_obs": "1989-08-01", "n_del_obs_used": 8.0, "sigma_q": 6.1318e-08, "n_dop_obs_used": 7.0},
{"sigma_tp": 5.8844e-05, "diameter": "", "sigma_q": 1.1699e-07, "epoch_mjd": 56800.0, "ad": 1.600683778751717, "producer": "Otto Matic", "rms": 0.55413, "H_sigma": "", "closeness": 2873.827682072551, "spec_B": "Sq", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4947 Ninkasi (1988 TJ1)", "M2": "", "sigma_per": 1.5658e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -832568460948.2089, "albedo": "", "moid_ld": 58.00734518, "pha": "N", "neo": "Y", "sigma_ad": 2.8527e-09, "PC": "", "profit": 1.3370860149816545e-44, "est_diameter": 0.8619445964685667, "sigma_w": 3.8126e-05, "sigma_i": 8.0309e-06, "per": 585.7098666064156, "id": "a0004947", "A1": "", "data_arc": 12692.0, "A3": "", "score": 2.27167383614791e-55, "per_y": 1.60358621931941, "sigma_n": 1.6431e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 77", "sigma_a": 2.4416e-09, "sigma_om": 2.0286e-05, "A2": "", "sigma_e": 8.4763e-08, "condition_code": 0.0, "rot_per": "", "prov_des": "1988 TJ1", "G": "", "last_obs": "2012-11-17", "H": 18.0, "price": 1.1358369180739549e-43, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 364.0, "moid": 0.149054, "extent": "", "dv": 7.143361, "e": 0.1683764690207953, "GM": "", "tp_cal": 20140712.3677874, "pdes": 4947.0, "class": "AMO", "UB": "", "a": 1.37000686096771, "t_jup": 4.772, "om": 215.470052571405, "ma": 329.0420043922053, "name": "Ninkasi", "i": 15.65111006780734, "tp": 2456850.8677874384, "prefix": "", "BV": "", "spec": "Sq", "q": 1.139329943183703, "w": 192.875862909294, "n": 0.6146387836794155, "sigma_ma": 3.6112e-05, "first_obs": "1978-02-17", "n_del_obs_used": "", "spkid": 2004947.0, "n_dop_obs_used": ""},
{"sigma_tp": 0.00018711, "diameter": "", "sigma_q": 3.2577e-07, "epoch_mjd": 56800.0, "ad": 2.687102372579313, "producer": "Otto Matic", "rms": 0.77012, "H_sigma": "", "closeness": 2683.422571635557, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4953 (1990 MU)", "M2": "", "sigma_per": 2.7362e-05, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -134425190271087.11, "albedo": "", "moid_ld": 10.21882586, "pha": "Y", "neo": "Y", "sigma_ad": 6.5017e-08, "PC": "", "profit": 0.0, "est_diameter": 5.193729792671286, "sigma_w": 4.1891e-05, "sigma_i": 1.6078e-05, "per": 753.8872024761812, "id": "a0004953", "A1": "", "data_arc": 14300.0, "A3": "", "score": 0.0, "per_y": 2.06403067070823, "sigma_n": 1.7331e-08, "epoch_cal": 20140523.0, "orbit_id": "JPL 51", "sigma_a": 3.9224e-08, "sigma_om": 4.1245e-05, "A2": "", "sigma_e": 2.0032e-07, "condition_code": 0.0, "rot_per": 14.218, "prov_des": "1990 MU", "G": "", "last_obs": "2013-09-14", "H": 14.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 167.0, "moid": 0.026258, "extent": "", "dv": 10.757302, "e": 0.6575968633979253, "GM": "", "tp_cal": 20141125.9227983, "pdes": 4953.0, "class": "APO", "UB": "", "a": 1.621083166790623, "t_jup": 3.976, "om": 77.75130363362912, "ma": 270.7396873782967, "name": "", "i": 24.39075410682673, "tp": 2456987.4227982624, "prefix": "", "BV": "", "spec": "?", "q": 0.5550639610019336, "w": 77.72545455919585, "n": 0.4775250180896579, "sigma_ma": 8.6131e-05, "first_obs": "1974-07-21", "n_del_obs_used": 0.0, "spkid": 2004953.0, "n_dop_obs_used": 2.0},
{"sigma_tp": 1.1663e-05, "diameter": 10.8, "epoch_mjd": 56800.0, "ad": 2.899238500555046, "producer": "Otto Matic", "rms": 0.52537, "H_sigma": "", "closeness": 2756.2992017084325, "spec_B": "S", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4954 Eric (1990 SQ)", "M2": "", "sigma_per": 2.1735e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1637770964169781.0, "albedo": "", "moid_ld": 75.66359891, "pha": "N", "neo": "Y", "sigma_ad": 4.0626e-09, "PC": "", "profit": 2.335475262098195e-41, "spkid": 2004954.0, "sigma_w": 1.3144e-05, "sigma_i": 5.2684e-06, "per": 1034.041624778299, "id": "a0004954", "A1": "", "data_arc": 14166.0, "A3": "", "score": 4.468679301963933e-52, "per_y": 2.83105167632662, "sigma_n": 7.3178e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 317", "sigma_a": 2.8043e-09, "sigma_om": 1.0934e-05, "A2": "", "sigma_e": 2.4426e-08, "condition_code": 0.0, "rot_per": 12.056, "prov_des": "1990 SQ", "G": "", "last_obs": "2014-03-20", "H": 12.6, "price": 2.2343396509819664e-40, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 1979.0, "moid": 0.194423, "extent": "", "dv": 7.715881, "e": 0.4487414310995518, "GM": "", "tp_cal": 20130724.5698447, "pdes": 4954.0, "class": "AMO", "UB": "", "a": 2.00121183692152, "t_jup": 3.658, "om": 358.5304957723608, "ma": 105.2905930342904, "name": "Eric", "i": 17.44770330590259, "tp": 2456498.069844736, "prefix": "", "BV": "", "spec": "S", "q": 1.103185173287994, "w": 52.43874694413644, "n": 0.3481484607325986, "sigma_ma": 4.1648e-06, "first_obs": "1975-06-07", "n_del_obs_used": "", "sigma_q": 4.8667e-08, "n_dop_obs_used": ""},
{"sigma_tp": 0.00022166, "diameter": "", "sigma_q": 3.0859e-07, "epoch_mjd": 56800.0, "ad": 1.908063332423788, "producer": "Otto Matic", "rms": 0.62925, "H_sigma": "", "closeness": 2676.3957587032146, "spec_B": "S", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4957 Brucemurray (1990 XJ)", "M2": "", "sigma_per": 1.1192e-05, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -60314253233517.125, "albedo": "", "moid_ld": 165.29917916, "pha": "N", "neo": "Y", "sigma_ad": 1.99e-08, "PC": "", "profit": 5.0367016480682266e-43, "est_diameter": 3.5931831251543818, "sigma_w": 7.1318e-05, "sigma_i": 1.5143e-05, "per": 715.4129244458022, "id": "a0004957", "A1": "", "data_arc": 13688.0, "A3": "", "score": 1.6456822164670434e-53, "per_y": 1.95869383831842, "sigma_n": 7.8723e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 63", "sigma_a": 1.6327e-08, "sigma_om": 2.0976e-05, "A2": "", "sigma_e": 1.9542e-07, "condition_code": 0.0, "rot_per": 2.892, "prov_des": "1990 XJ", "G": "", "last_obs": "2013-09-01", "H": 14.9, "price": 8.228411082335217e-42, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 363.0, "moid": 0.424748, "extent": "", "dv": 12.79397, "e": 0.2188601618573049, "GM": "", "tp_cal": 20140307.7953174, "pdes": 4957.0, "class": "AMO", "UB": "", "a": 1.565448926902551, "t_jup": 4.201, "om": 254.928505238888, "ma": 38.34664539443845, "name": "Brucemurray", "i": 35.01066842137887, "tp": 2456724.2953174324, "prefix": "", "BV": "", "spec": "S", "q": 1.222834521381315, "w": 97.4456419230985, "n": 0.50320589368563, "sigma_ma": 0.0001121, "first_obs": "1976-03-11", "n_del_obs_used": "", "spkid": 2004957.0, "n_dop_obs_used": ""},
{"sigma_tp": 2.1018e-05, "diameter": "", "sigma_q": 8.8284e-08, "epoch_mjd": 56800.0, "ad": 2.453710323954743, "producer": "Otto Matic", "rms": 0.57136, "H_sigma": "", "closeness": 3107.5949276337196, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5011 Ptah (6743 P-L)", "M2": "", "sigma_per": 4.7741e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -6433994122993.867, "albedo": "", "moid_ld": 9.776884408, "pha": "Y", "neo": "Y", "sigma_ad": 1.022e-08, "PC": "", "profit": 0.0, "est_diameter": 1.8857293101246126, "sigma_w": 2.7721e-05, "sigma_i": 8.8101e-06, "per": 764.1660367230381, "id": "a0005011", "A1": "", "data_arc": 19010.0, "A3": "", "score": 0.0, "per_y": 2.09217258514179, "sigma_n": 2.9432e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 125", "sigma_a": 6.813e-09, "sigma_om": 2.6767e-05, "A2": "", "sigma_e": 5.4917e-08, "condition_code": 0.0, "rot_per": "", "prov_des": "6743 P-L", "G": "", "last_obs": "2012-10-11", "H": 16.3, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 547.0, "moid": 0.0251224, "extent": "", "dv": 6.494305, "e": 0.5000201292893894, "GM": "", "tp_cal": 20150601.3115677, "pdes": 5011.0, "class": "APO", "UB": "", "a": 1.635784931177656, "t_jup": 4.144, "om": 10.79045034432003, "ma": 183.661144428732, "name": "Ptah", "i": 7.40681837087901, "tp": 2457174.8115677284, "prefix": "", "BV": "", "spec": "?", "q": 0.8178595384005695, "w": 105.7304979279747, "n": 0.4711018060208259, "sigma_ma": 9.0122e-06, "first_obs": "1960-09-24", "n_del_obs_used": "", "spkid": 2005011.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.9663e-05, "diameter": "", "sigma_q": 1.2433e-07, "epoch_mjd": 56800.0, "ad": 2.332088506221365, "producer": "Otto Matic", "rms": 0.60597, "H_sigma": "", "closeness": 2684.122868195637, "spec_B": "S", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5131 (1990 BG)", "M2": "", "sigma_per": 3.9287e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -91289316422620.06, "albedo": "", "moid_ld": 107.06572621, "pha": "N", "neo": "Y", "sigma_ad": 9.2308e-09, "PC": "", "profit": 7.397958876851357e-43, "est_diameter": 4.1255262178474945, "sigma_w": 1.1696e-05, "sigma_i": 1.1376e-05, "per": 661.6942373091199, "id": "a0005131", "A1": "", "data_arc": 12510.0, "A3": "", "score": 2.4908408300851315e-53, "per_y": 1.81162008845755, "sigma_n": 3.2302e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 116", "sigma_a": 5.8821e-09, "sigma_om": 9.7337e-06, "A2": "", "sigma_e": 8.3698e-08, "condition_code": 0.0, "rot_per": "", "prov_des": "1990 BG", "G": "", "last_obs": "2013-03-07", "H": 14.6, "price": 1.2454204150425657e-41, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 726.0, "moid": 0.275113, "extent": "", "dv": 13.221834, "e": 0.5692991692381544, "GM": "", "tp_cal": 20131207.2513358, "pdes": 5131.0, "class": "APO", "UB": "", "a": 1.486070057217657, "t_jup": 4.208, "om": 110.3966035127285, "ma": 90.72093383590561, "name": "", "i": 36.42590350698376, "tp": 2456633.751335771, "prefix": "", "BV": "", "spec": "S", "q": 0.6400516082139481, "w": 135.8289042624935, "n": 0.544057934468335, "sigma_ma": 1.0969e-05, "first_obs": "1978-12-06", "n_del_obs_used": "", "spkid": 2005131.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.3599e-05, "diameter": "", "sigma_q": 6.0922e-08, "epoch_mjd": 56800.0, "ad": 3.249406579841065, "producer": "Otto Matic", "rms": 0.47569, "H_sigma": "", "closeness": 2686.9292891197747, "spec_B": "O", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5143 Heracles (1991 VL)", "M2": "", "sigma_per": 5.2752e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -177721446169149.16, "albedo": "", "moid_ld": 22.801703802, "pha": "N", "neo": "Y", "sigma_ad": 1.2602e-08, "PC": "", "profit": 56603752873023.64, "est_diameter": 5.963199670531792, "sigma_w": 3.5945e-05, "sigma_i": 3.6653e-06, "per": 906.8176598046665, "id": "a0005143", "A1": "", "data_arc": 21966.0, "A3": "", "score": 134.36646445598873, "per_y": 2.4827314436815, "sigma_n": 2.3094e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 312", "sigma_a": 7.1106e-09, "sigma_om": 3.6876e-05, "A2": "", "sigma_e": 3.296e-08, "condition_code": 0.0, "rot_per": 2.7063, "prov_des": "1991 VL", "G": "", "last_obs": "2014-01-20", "H": 13.8, "price": 693939959014416.8, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 1746.0, "moid": 0.0585906, "extent": "", "dv": 9.638693, "e": 0.7722420111678567, "GM": "", "tp_cal": 20140718.8445038, "pdes": 5143.0, "class": "APO", "UB": "", "a": 1.833500480952823, "t_jup": 3.583, "om": 309.5669202030215, "ma": 337.4331464190186, "name": "Heracles", "i": 9.035561353117672, "tp": 2456857.3445037594, "prefix": "", "BV": "", "spec": "O", "q": 0.4175943820645825, "w": 227.7059888019971, "n": 0.3969927097334496, "sigma_ma": 5.3224e-06, "first_obs": "1953-11-30", "n_del_obs_used": "", "spkid": 2005143.0, "n_dop_obs_used": ""},
{"sigma_tp": 0.0001301, "diameter": "", "sigma_q": 1.7226e-07, "epoch_mjd": 56800.0, "ad": 2.29340997097765, "producer": "Otto Matic", "rms": 0.77098, "H_sigma": "", "closeness": 3308.4851641278283, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5189 (1990 UQ)", "M2": "", "sigma_per": 5.0201e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -929995099012.0911, "albedo": "", "moid_ld": 17.399985285, "pha": "Y", "neo": "Y", "sigma_ad": 1.0875e-08, "PC": "", "profit": 0.0, "est_diameter": 0.9896448099650541, "sigma_w": 0.00012802, "sigma_i": 1.3428e-05, "per": 705.8026407806851, "id": "a0005189", "A1": "", "data_arc": 8183.0, "A3": "", "score": 0.0, "per_y": 1.93238231562131, "sigma_n": 3.6278e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 48", "sigma_a": 7.3563e-09, "sigma_om": 0.00012516, "A2": "", "sigma_e": 1.1113e-07, "condition_code": 0.0, "rot_per": "", "prov_des": "1990 UQ", "G": "", "last_obs": "2013-03-16", "H": 17.7, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 148.0, "moid": 0.0447105, "extent": "", "dv": 6.185266, "e": 0.4782859920119142, "GM": "", "tp_cal": 20130928.9367883, "pdes": 5189.0, "class": "APO", "UB": "", "a": 1.551398026748783, "t_jup": 4.311, "om": 135.3444277050222, "ma": 120.4058348680882, "name": "", "i": 3.582522220912391, "tp": 2456564.4367882907, "prefix": "", "BV": "", "spec": "?", "q": 0.8093860825199148, "w": 159.6007533005084, "n": 0.5100575985403025, "sigma_ma": 6.7104e-05, "first_obs": "1990-10-20", "n_del_obs_used": 0.0, "spkid": 2005189.0, "n_dop_obs_used": 1.0},
{"sigma_tp": 0.00027867, "diameter": "", "sigma_q": 4.0656e-07, "epoch_mjd": 56800.0, "ad": 4.789382478677918, "producer": "Otto Matic", "rms": 0.77334, "H_sigma": "", "closeness": 2667.2094605212337, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5324 Lyapunov (1987 SL)", "M2": "", "sigma_per": 5.8436e-05, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -19430351620791.81, "albedo": "", "moid_ld": 78.52711177, "pha": "N", "neo": "Y", "sigma_ad": 9.9879e-08, "PC": "", "profit": 0.0, "est_diameter": 2.7257081417153968, "sigma_w": 4.9803e-05, "sigma_i": 2.449e-05, "per": 1868.07082307688, "id": "a0005324", "A1": "", "data_arc": 8984.0, "A3": "", "score": 0.0, "per_y": 5.11449917337955, "sigma_n": 6.0283e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 34", "sigma_a": 6.1905e-08, "sigma_om": 4.2384e-05, "A2": "", "sigma_e": 1.3151e-07, "condition_code": 0.0, "rot_per": "", "prov_des": "1987 SL", "G": "", "last_obs": "2012-04-24", "H": 15.5, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 175.0, "moid": 0.201781, "extent": "", "dv": 9.026871, "e": 0.6134279671549048, "GM": "", "tp_cal": 20130112.1721356, "pdes": 5324.0, "class": "AMO", "UB": "", "a": 2.968451381888121, "t_jup": 2.877, "om": 352.874404749065, "ma": 95.55206845972013, "name": "Lyapunov", "i": 19.49614567209117, "tp": 2456304.672135627, "prefix": "", "BV": "", "spec": "?", "q": 1.147520285098323, "w": 320.4816032742793, "n": 0.1927121796201751, "sigma_ma": 5.6624e-05, "first_obs": "1987-09-19", "n_del_obs_used": "", "spkid": 2005324.0, "n_dop_obs_used": ""},
{"sigma_tp": 3.0584e-05, "diameter": 3.6, "epoch_mjd": 56800.0, "ad": 3.151664054108918, "producer": "Otto Matic", "rms": 0.57749, "H_sigma": "", "closeness": 2668.55527391991, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5332 Davidaguilar (1990 DA)", "M2": "", "sigma_per": 3.9284e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -44766187349180.836, "albedo": "", "moid_ld": 118.62135102, "pha": "N", "neo": "Y", "sigma_ad": 7.1005e-09, "PC": "", "profit": 0.0, "spkid": 2005332.0, "sigma_w": 1.5995e-05, "sigma_i": 7.6429e-06, "per": 1162.470866757064, "id": "a0005332", "A1": "", "data_arc": 14507.0, "A3": "", "score": 0.0, "per_y": 3.18267177756896, "sigma_n": 1.0465e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 148", "sigma_a": 4.8746e-09, "sigma_om": 1.2138e-05, "A2": "", "sigma_e": 4.3245e-08, "condition_code": 0.0, "rot_per": 5.803, "prov_des": "1990 DA", "G": "", "last_obs": "2013-07-07", "H": 14.6, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 822.0, "moid": 0.304806, "extent": "", "dv": 9.659853, "e": 0.4566352581973399, "GM": "", "tp_cal": 20150604.972142, "pdes": 5332.0, "class": "AMO", "UB": "", "a": 2.163660419705385, "t_jup": 3.441, "om": 142.9300713710435, "ma": 242.9476290397266, "name": "Davidaguilar", "i": 25.47356744869388, "tp": 2457178.472142017, "prefix": "", "BV": "", "spec": "?", "q": 1.175656785301852, "w": 305.8171621724085, "n": 0.3096851803299719, "sigma_ma": 9.2127e-06, "first_obs": "1973-10-18", "n_del_obs_used": "", "sigma_q": 9.4045e-08, "n_dop_obs_used": ""},
{"sigma_tp": 0.00087496, "diameter": 3.6, "epoch_mjd": 56800.0, "ad": 5.445107860255433, "producer": "Otto Matic", "rms": 0.63852, "H_sigma": "", "closeness": 2658.2594496892593, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5370 Taranis (1986 RA)", "M2": "", "sigma_per": 0.00016826, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -44766187349180.836, "albedo": "", "moid_ld": 87.92634561, "pha": "N", "neo": "Y", "sigma_ad": 2.7493e-07, "PC": "", "profit": 0.0, "spkid": 2005370.0, "sigma_w": 8.5452e-05, "sigma_i": 2.127e-05, "per": 2221.555754418534, "id": "a0005370", "A1": "", "data_arc": 9625.0, "A3": "", "score": 0.0, "per_y": 6.08228817089263, "sigma_n": 1.2273e-08, "epoch_cal": 20140523.0, "orbit_id": "JPL 29", "sigma_a": 1.6824e-07, "sigma_om": 3.0034e-05, "A2": "", "sigma_e": 1.3397e-07, "condition_code": 0.0, "rot_per": "", "prov_des": "1986 RA", "G": "", "last_obs": "2013-01-08", "H": 15.2, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 224.0, "moid": 0.225933, "extent": "", "dv": 9.265999, "e": 0.6341827682514155, "GM": "", "tp_cal": 20170317.4368941, "pdes": 5370.0, "class": "AMO", "UB": "", "a": 3.332006655584631, "t_jup": 2.731, "om": 177.8404343252098, "ma": 193.1811924419003, "name": "Taranis", "i": 19.09340922783127, "tp": 2457829.9368940997, "prefix": "", "BV": "", "spec": "?", "q": 1.218905450913829, "w": 161.1802710448592, "n": 0.1620486000785633, "sigma_ma": 0.00012916, "first_obs": "1986-09-02", "n_del_obs_used": "", "sigma_q": 4.8298e-07, "n_dop_obs_used": ""},
{"sigma_tp": 6.4824e-05, "diameter": "", "sigma_q": 3.255e-07, "epoch_mjd": 56800.0, "ad": 1.228134583832368, "producer": "Otto Matic", "rms": 0.60402, "H_sigma": "", "closeness": 2703.798202758985, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5381 Sekhmet (1991 JY)", "M2": "", "sigma_per": 6.9491e-07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -4880683659572.708, "albedo": "", "moid_ld": 43.78201417, "pha": "N", "neo": "Y", "sigma_ad": 1.6891e-09, "PC": "", "profit": 0.0, "est_diameter": 1.7198055709247886, "sigma_w": 3.091e-05, "sigma_i": 3.7939e-05, "per": 336.8531862651834, "id": "a0005381", "A1": "", "data_arc": 8323.0, "A3": "", "score": 0.0, "per_y": 0.922253761164089, "sigma_n": 2.2047e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 45", "sigma_a": 1.303e-09, "sigma_om": 5.1816e-06, "A2": "", "sigma_e": 3.4315e-07, "condition_code": 0.0, "rot_per": 3.0, "prov_des": "1991 JY", "G": "", "last_obs": "2014-02-25", "H": 16.5, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 201.0, "moid": 0.112501, "extent": "", "dv": 19.280169, "e": 0.2962371752639953, "GM": "", "tp_cal": 20140220.3490339, "pdes": 5381.0, "class": "ATE", "UB": "", "a": 0.9474613190153592, "t_jup": 6.027, "om": 58.54959660375416, "ma": 97.94874779826777, "name": "Sekhmet", "i": 48.96935701954526, "tp": 2456708.849033926, "prefix": "", "BV": "", "spec": "?", "q": 0.66678805419835, "w": 37.43586083841667, "n": 1.068714842781967, "sigma_ma": 6.9233e-05, "first_obs": "1991-05-14", "n_del_obs_used": "", "spkid": 2005381.0, "n_dop_obs_used": ""},
{"sigma_tp": 2.4867e-05, "diameter": "", "sigma_q": 1.2549e-07, "epoch_mjd": 56800.0, "ad": 3.984378907819161, "producer": "Otto Matic", "rms": 0.54716, "H_sigma": "", "closeness": 2661.3170291427796, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5496 (1973 NA)", "M2": "", "sigma_per": 2.7155e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -9738244177229.83, "albedo": "", "moid_ld": 34.959413519, "pha": "N", "neo": "Y", "sigma_ad": 5.1959e-09, "PC": "", "profit": 0.0, "est_diameter": 2.1651069365823927, "sigma_w": 1.7402e-05, "sigma_i": 4.5145e-05, "per": 1388.229889806887, "id": "a0005496", "A1": "", "data_arc": 14791.0, "A3": "", "score": 0.0, "per_y": 3.8007662965281, "sigma_n": 5.0726e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 48", "sigma_a": 3.176e-09, "sigma_om": 1.2997e-05, "A2": "", "sigma_e": 5.1387e-08, "condition_code": 0.0, "rot_per": 2.855, "prov_des": "1973 NA", "G": "", "last_obs": "2014-01-03", "H": 16.0, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 198.0, "moid": 0.0898307, "extent": "", "dv": 22.109916, "e": 0.6360076233763868, "GM": "", "tp_cal": 20150218.0431395, "pdes": 5496.0, "class": "APO", "UB": "", "a": 2.435428081683515, "t_jup": 2.532, "om": 101.0769473177152, "ma": 289.7122681688845, "name": "", "i": 68.00509961302338, "tp": 2457071.543139485, "prefix": "", "BV": "", "spec": "?", "q": 0.8864772555478699, "w": 118.0244711502636, "n": 0.2593230434262431, "sigma_ma": 6.3675e-06, "first_obs": "1973-07-06", "n_del_obs_used": "", "spkid": 2005496.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.5615e-05, "diameter": 3.57, "epoch_mjd": 56800.0, "ad": 3.704352125451456, "producer": "Otto Matic", "rms": 0.44512, "H_sigma": "", "closeness": 2705.385841171962, "spec_B": "Sq", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5587 (1990 SB)", "M2": "", "sigma_per": 3.822e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -59154331280207.98, "albedo": 0.32, "moid_ld": 118.33219771, "pha": "N", "neo": "Y", "sigma_ad": 6.9653e-09, "PC": "", "profit": 7.7641511772335e-43, "spkid": 2005587.0, "sigma_w": 1.2637e-05, "sigma_i": 4.9814e-06, "per": 1355.117139203147, "id": "a0005587", "A1": "", "data_arc": 21965.0, "A3": "", "score": 1.6140335956400542e-53, "per_y": 3.71010852622354, "sigma_n": 7.4928e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 173", "sigma_a": 4.5062e-09, "sigma_om": 1.0044e-05, "A2": "", "sigma_e": 1.7476e-08, "condition_code": 0.0, "rot_per": 5.0522, "prov_des": "1990 SB", "G": "", "last_obs": "2014-01-26", "H": 13.8, "price": 8.070167978200271e-42, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 2479.0, "moid": 0.304063, "extent": "", "dv": 8.228166, "e": 0.5457051548158471, "GM": "", "tp_cal": 20120801.5636661, "pdes": 5587.0, "class": "AMO", "UB": "", "a": 2.396545106878929, "t_jup": 3.252, "om": 190.2073271047331, "ma": 175.1856524742886, "name": "", "i": 18.07394947613755, "tp": 2456141.0636660825, "prefix": "", "BV": "", "spec": "Sq", "q": 1.088738088306402, "w": 86.52840962395447, "n": 0.2656596906535266, "sigma_ma": 4.6002e-06, "first_obs": "1953-12-07", "n_del_obs_used": "", "sigma_q": 4.2352e-08, "n_dop_obs_used": ""},
{"sigma_tp": 0.00071289, "diameter": "", "sigma_q": 1.8328e-06, "epoch_mjd": 56800.0, "ad": 1.261007941576714, "producer": "Otto Matic", "rms": 0.6514, "H_sigma": "", "closeness": 2753.318942104593, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5590 (1990 VA)", "M2": "", "sigma_per": 1.6738e-05, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -58678723805.22642, "albedo": "", "moid_ld": 47.02496778, "pha": "N", "neo": "Y", "sigma_ad": 3.9373e-08, "PC": "", "profit": 0.0, "est_diameter": 0.39398469514814133, "sigma_w": 0.00010688, "sigma_i": 6.7319e-05, "per": 357.3765421100609, "id": "a0005590", "A1": "", "data_arc": 2218.0, "A3": "", "score": 0.0, "per_y": 0.978443647118579, "sigma_n": 4.7179e-08, "epoch_cal": 20140523.0, "orbit_id": "JPL 14", "sigma_a": 3.0772e-08, "sigma_om": 5.9846e-05, "A2": "", "sigma_e": 1.8406e-06, "condition_code": 2.0, "rot_per": "", "prov_des": "1990 VA", "G": "", "last_obs": "1996-12-05", "H": 19.7, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 67.0, "moid": 0.120834, "extent": "", "dv": 8.161887, "e": 0.2794777698040228, "GM": "", "tp_cal": 20131216.7134811, "pdes": 5590.0, "class": "ATE", "UB": "", "a": 0.9855645571472977, "t_jup": 6.09, "om": 216.316226432676, "ma": 158.4411401633603, "name": "", "i": 14.18613038821791, "tp": 2456643.2134811124, "prefix": "", "BV": "", "spec": "?", "q": 0.7101211727178816, "w": 34.46882977807365, "n": 1.007340878823354, "sigma_ma": 0.00072413, "first_obs": "1990-11-09", "n_del_obs_used": "", "spkid": 2005590.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.5801e-05, "diameter": 0.55, "epoch_mjd": 56800.0, "ad": 1.302543697258483, "producer": "Otto Matic", "rms": 0.62565, "H_sigma": "", "closeness": 2725.694842665818, "spec_B": "V", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5604 (1992 FE)", "M2": "", "sigma_per": 1.0135e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -216306698803.97055, "albedo": 0.48, "moid_ld": 13.293735864, "pha": "Y", "neo": "Y", "sigma_ad": 2.7e-09, "PC": "", "profit": 2.6519927944827807e-45, "spkid": 2005604.0, "sigma_w": 5.5951e-05, "sigma_i": 3.5867e-06, "per": 325.9709808047139, "id": "a0005604", "A1": "", "data_arc": 9865.0, "A3": "", "score": 5.901956311158815e-56, "per_y": 0.892459906378409, "sigma_n": 3.4339e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 88", "sigma_a": 1.9214e-09, "sigma_om": 5.7477e-05, "A2": "", "sigma_e": 5.0206e-08, "condition_code": 0.0, "rot_per": 5.3375, "prov_des": "1992 FE", "G": "", "last_obs": "2012-04-20", "H": 17.1, "price": 2.9509781555794074e-44, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 334.0, "moid": 0.0341592, "extent": "", "dv": 8.87475, "e": 0.405201571689496, "GM": "", "tp_cal": 20140413.0805232, "pdes": 5604.0, "class": "ATE", "UB": "", "a": 0.9269443783018364, "t_jup": 6.382, "om": 311.9267344188103, "ma": 44.08678218871429, "name": "", "i": 4.794009181149709, "tp": 2456760.5805232483, "prefix": "", "BV": "", "spec": "V", "q": 0.5513450593451895, "w": 82.48886390477325, "n": 1.10439278708577, "sigma_ma": 1.7585e-05, "first_obs": "1985-04-17", "n_del_obs_used": 3.0, "sigma_q": 4.5939e-08, "n_dop_obs_used": 0.0},
{"sigma_tp": 2.2922e-05, "diameter": "", "sigma_q": 1.1202e-07, "epoch_mjd": 56800.0, "ad": 3.073624790009145, "producer": "Otto Matic", "rms": 0.61631, "H_sigma": "", "closeness": 2877.68677082621, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5620 Jasonwheeler (1990 OA)", "M2": "", "sigma_per": 3.3714e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2446136341551.075, "albedo": "", "moid_ld": 93.00423577, "pha": "N", "neo": "Y", "sigma_ad": 5.9548e-09, "PC": "", "profit": 0.0, "est_diameter": 1.366090123221672, "sigma_w": 3.6412e-05, "sigma_i": 4.9836e-06, "per": 1160.12467704952, "id": "a0005620", "A1": "", "data_arc": 21415.0, "A3": "", "score": 0.0, "per_y": 3.1762482602314, "sigma_n": 9.0178e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 84", "sigma_a": 4.1862e-09, "sigma_om": 3.4186e-05, "A2": "", "sigma_e": 5.1363e-08, "condition_code": 0.0, "rot_per": 5.307, "prov_des": "1990 OA", "G": "", "last_obs": "2014-01-01", "H": 17.0, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 379.0, "moid": 0.238981, "extent": "", "dv": 7.034379, "e": 0.4224817121428311, "GM": "", "tp_cal": 20151115.315913, "pdes": 5620.0, "class": "AMO", "UB": "", "a": 2.160748193647443, "t_jup": 3.565, "om": 128.7099042067584, "ma": 192.0234604642812, "name": "Jasonwheeler", "i": 7.867562303442806, "tp": 2457341.815913002, "prefix": "", "BV": "", "spec": "?", "q": 1.247871597285742, "w": 153.6352765183522, "n": 0.3103114752420988, "sigma_ma": 6.877e-06, "first_obs": "1955-05-16", "n_del_obs_used": "", "spkid": 2005620.0, "n_dop_obs_used": ""},
{"sigma_tp": 2.2622e-05, "diameter": "", "sigma_q": 5.5136e-08, "epoch_mjd": 56800.0, "ad": 3.191533780271348, "producer": "Otto Matic", "rms": 0.49893, "H_sigma": "", "closeness": 3007.61012209421, "spec_B": "S", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5626 (1991 FE)", "M2": "", "sigma_per": 7.0807e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -158642649735193.22, "albedo": "", "moid_ld": 82.83989371, "pha": "N", "neo": "Y", "sigma_ad": 1.2687e-08, "PC": "", "profit": 2.858585494597897e-42, "est_diameter": 4.959973445799733, "sigma_w": 5.6834e-05, "sigma_i": 4.9673e-06, "per": 1187.511850557557, "id": "a0005626", "A1": "", "data_arc": 15892.0, "A3": "", "score": 4.3285852588047265e-53, "per_y": 3.25123025477771, "sigma_n": 1.8076e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 318", "sigma_a": 8.7238e-09, "sigma_om": 5.6209e-05, "A2": "", "sigma_e": 2.4651e-08, "condition_code": 0.0, "rot_per": 2.4606, "prov_des": "1991 FE", "G": "", "last_obs": "2014-03-13", "H": 14.2, "price": 2.1642926294023634e-41, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 1761.0, "moid": 0.212863, "extent": "", "dv": 6.663027, "e": 0.4542523085880152, "GM": "", "tp_cal": 20130323.9124084, "pdes": 5626.0, "class": "AMO", "UB": "", "a": 2.194621773280952, "t_jup": 3.525, "om": 173.2781499550364, "ma": 128.8673733243591, "name": "", "i": 3.854516063030082, "tp": 2456375.4124084087, "prefix": "", "BV": "", "spec": "S", "q": 1.197709766290556, "w": 231.4192105790812, "n": 0.3031548694280177, "sigma_ma": 7.2483e-06, "first_obs": "1970-09-08", "n_del_obs_used": "", "spkid": 2005626.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.1041e-05, "diameter": "", "sigma_q": 9.0341e-08, "epoch_mjd": 56800.0, "ad": 1.879912244115241, "producer": "Otto Matic", "rms": 0.52467, "H_sigma": "", "closeness": 2971.7242245760444, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5645 (1990 SP)", "M2": "", "sigma_per": 1.6619e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2130495689559.3572, "albedo": "", "moid_ld": 21.248059328, "pha": "N", "neo": "Y", "sigma_ad": 3.6153e-09, "PC": "", "profit": 0.0, "est_diameter": 1.3046059395138065, "sigma_w": 3.0955e-05, "sigma_i": 1.0418e-05, "per": 576.1100808274012, "id": "a0005645", "A1": "", "data_arc": 14175.0, "A3": "", "score": 0.0, "per_y": 1.57730343826804, "sigma_n": 1.8026e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 100", "sigma_a": 2.6058e-09, "sigma_om": 2.7332e-05, "A2": "", "sigma_e": 6.7151e-08, "condition_code": 0.0, "rot_per": 30.39, "prov_des": "1990 SP", "G": "", "last_obs": "2013-06-04", "H": 17.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 511.0, "moid": 0.0545984, "extent": "", "dv": 6.822595, "e": 0.3873931460191973, "GM": "", "tp_cal": 20140811.828501, "pdes": 5645.0, "class": "APO", "UB": "", "a": 1.354996058261649, "t_jup": 4.755, "om": 45.77959763476093, "ma": 309.4918395910036, "name": "", "i": 13.5081863628036, "tp": 2456881.3285010434, "prefix": "", "BV": "", "spec": "?", "q": 0.8300798724080573, "w": 48.16648127158814, "n": 0.6248805774809096, "sigma_ma": 6.9482e-06, "first_obs": "1974-08-13", "n_del_obs_used": "", "spkid": 2005645.0, "n_dop_obs_used": ""},
{"sigma_tp": 2.4745e-05, "diameter": 4.3, "epoch_mjd": 56800.0, "ad": 3.078360982236292, "producer": "Otto Matic", "rms": 0.5943, "H_sigma": "", "closeness": 2921.51996523945, "spec_B": "U", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5646 (1990 TR)", "M2": "", "sigma_per": 2.4635e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -76286549587862.66, "albedo": "", "moid_ld": 80.82010141, "pha": "N", "neo": "Y", "sigma_ad": 4.4149e-09, "PC": "", "profit": 0.0, "spkid": 2005646.0, "sigma_w": 3.1347e-05, "sigma_i": 4.6881e-06, "per": 1145.171002851079, "id": "a0005646", "A1": "", "data_arc": 8712.0, "A3": "", "score": 0.0, "per_y": 3.13530733155668, "sigma_n": 6.7627e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 196", "sigma_a": 3.0722e-09, "sigma_om": 3.0716e-05, "A2": "", "sigma_e": 7.1486e-08, "condition_code": 0.0, "rot_per": 3.1999, "prov_des": "1990 TR", "G": "", "last_obs": "2014-03-10", "H": 15.2, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 1053.0, "moid": 0.207673, "extent": "", "dv": 6.892221, "e": 0.4370490831724716, "GM": "", "tp_cal": 20151009.3551025, "pdes": 5646.0, "class": "AMO", "UB": "", "a": 2.142140458724216, "t_jup": 3.572, "om": 14.14049648856514, "ma": 201.4491491287634, "name": "", "i": 7.914407251417691, "tp": 2457304.8551024864, "prefix": "", "BV": "", "spec": "U", "q": 1.20591993521214, "w": 335.6749209269547, "n": 0.3143635309519055, "sigma_ma": 7.6272e-06, "first_obs": "1990-05-03", "n_del_obs_used": "", "sigma_q": 1.5272e-07, "n_dop_obs_used": ""},
{"sigma_tp": 2.4446e-05, "diameter": "", "sigma_q": 7.3639e-08, "epoch_mjd": 56800.0, "ad": 2.339858915074283, "producer": "Otto Matic", "rms": 0.54265, "H_sigma": "", "closeness": 3093.923667345367, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5653 Camarillo (1992 WD5)", "M2": "", "sigma_per": 2.7742e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -8481656108468.962, "albedo": "", "moid_ld": 110.1312183, "pha": "N", "neo": "Y", "sigma_ad": 4.9308e-09, "PC": "", "profit": 0.0, "est_diameter": 2.067661072379766, "sigma_w": 3.6336e-05, "sigma_i": 3.1223e-06, "per": 877.6487291353571, "id": "a0005653", "A1": "", "data_arc": 14417.0, "A3": "", "score": 0.0, "per_y": 2.40287126388873, "sigma_n": 1.2966e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 175", "sigma_a": 3.7805e-09, "sigma_om": 3.509e-05, "A2": "", "sigma_e": 4.114e-08, "condition_code": 0.0, "rot_per": 4.834, "prov_des": "1992 WD5", "G": "", "last_obs": "2013-09-12", "H": 16.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 1160.0, "moid": 0.28299, "extent": "", "dv": 6.502376, "e": 0.3042919210624689, "GM": "", "tp_cal": 20141002.5725079, "pdes": 5653.0, "class": "AMO", "UB": "", "a": 1.793968725320515, "t_jup": 4.011, "om": 9.987836454996641, "ma": 305.6204956800106, "name": "Camarillo", "i": 6.874206598695571, "tp": 2456933.0725079374, "prefix": "", "BV": "", "spec": "?", "q": 1.248078535566747, "w": 122.4841524447149, "n": 0.4101868869048158, "sigma_ma": 9.9062e-06, "first_obs": "1974-03-24", "n_del_obs_used": "", "spkid": 2005653.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.7642e-05, "diameter": "", "sigma_q": 1.6267e-07, "epoch_mjd": 56800.0, "ad": 3.14685998070431, "producer": "Otto Matic", "rms": 0.7625, "H_sigma": "", "closeness": 2680.1956493057555, "spec_B": "Q", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5660 (1974 MA)", "M2": "", "sigma_per": 3.3067e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -18148374967227.027, "albedo": "", "moid_ld": 62.49058358, "pha": "N", "neo": "Y", "sigma_ad": 7.9593e-09, "PC": "", "profit": 296104461.48970455, "est_diameter": 2.854166808844959, "sigma_w": 1.7724e-05, "sigma_i": 2.9762e-05, "per": 871.5797630322917, "id": "a0005660", "A1": "", "data_arc": 14128.0, "A3": "", "score": 134.02087443105756, "per_y": 2.38625534026637, "sigma_n": 1.5671e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 42", "sigma_a": 4.5165e-09, "sigma_om": 1.2049e-05, "A2": "", "sigma_e": 9.1065e-08, "condition_code": 0.0, "rot_per": 17.5, "prov_des": "1974 MA", "G": "", "last_obs": "2013-03-01", "H": 15.4, "price": 5545982884.893634, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 162.0, "moid": 0.160574, "extent": "", "dv": 14.688766, "e": 0.7622666076825728, "GM": "", "tp_cal": 20150407.1181733, "pdes": 5660.0, "class": "APO", "UB": "", "a": 1.785688934344908, "t_jup": 3.511, "om": 302.2928250168957, "ma": 228.1904430963025, "name": "", "i": 38.06898946056496, "tp": 2457119.618173254, "prefix": "", "BV": "", "spec": "Q", "q": 0.4245178879855066, "w": 126.9209606150989, "n": 0.41304309171605, "sigma_ma": 6.8512e-06, "first_obs": "1974-06-26", "n_del_obs_used": 1.0, "spkid": 2005660.0, "n_dop_obs_used": 1.0}
]
mainBelt = [
{"sigma_tp": 7.5185e-05, "diameter": 952.4, "epoch_mjd": 56800.0, "ad": 2.976760160691082, "producer": "Davide Farnocchia", "rms": 0.56149, "H_sigma": "", "closeness": 2640.1240630785724, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "1 Ceres", "M2": "", "sigma_per": 1.9824e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -6778017204000.001, "albedo": 0.09, "moid_ld": 619.9672685, "pha": "N", "neo": "N", "sigma_ad": 2.34e-09, "PC": "", "profit": 522932899172.22095, "spkid": 2000001.0, "sigma_w": 1.974e-05, "sigma_i": 2.3428e-06, "per": 1681.19549365305, "id": "a0000001", "A1": "", "data_arc": 77150.0, "A3": "", "score": 132.02620315392863, "per_y": 4.60286240562094, "sigma_n": 2.525e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 32", "sigma_a": 2.1752e-09, "sigma_om": 1.192e-05, "A2": "", "sigma_e": 1.9592e-08, "condition_code": 0.0, "rot_per": 9.07417, "prov_des": "", "G": 0.12, "last_obs": "2013-04-19", "H": 3.34, "price": 8123022111651.299, "IR": "", "spec_T": "G", "epoch": 2456800.5, "n_obs_used": 6652.0, "moid": 1.59305, "extent": "974.6 x 909.4", "spec_B": "C", "e": 0.07579779827230555, "GM": 62.873006000000004, "tp_cal": 20130916.1097745, "pdes": 1.0, "class": "MBA", "UB": 0.426, "a": 2.767025704525198, "t_jup": 3.31, "om": 80.32831021110563, "ma": 53.29569434422478, "name": "Ceres", "i": 10.59387843173385, "tp": 2456551.609774548, "prefix": "", "BV": 0.713, "spec": "C", "q": 2.557291248359312, "w": 72.39491611545941, "n": 0.2141333362830757, "sigma_ma": 1.6116e-05, "first_obs": "1802-01-26", "n_del_obs_used": "", "sigma_q": 5.4081e-08, "n_dop_obs_used": ""},
{"sigma_tp": 2.2678e-05, "diameter": 545.0, "epoch_mjd": 56800.0, "ad": 3.413011029797054, "producer": "Davide Farnocchia", "rms": 0.54256, "H_sigma": "", "closeness": 2641.8572538725934, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "2 Pallas", "M2": "", "sigma_per": 2.0392e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 18.0, "saved": -1050220927058.8237, "albedo": 0.1587, "moid_ld": 478.756934, "pha": "N", "neo": "N", "sigma_ad": 2.7528e-09, "PC": "", "profit": 114545492490.80374, "spkid": 2000002.0, "sigma_w": 5.5409e-06, "sigma_i": 2.1349e-06, "per": 1685.478186167235, "id": "a0000002", "A1": "", "data_arc": 68635.0, "A3": "", "score": 132.1128626936297, "per_y": 4.61458777869195, "sigma_n": 2.5841e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 26", "sigma_a": 2.2356e-09, "sigma_om": 3.7365e-06, "A2": "", "sigma_e": 1.9287e-08, "condition_code": 0.0, "rot_per": 7.8132, "prov_des": "", "G": 0.11, "last_obs": "2013-02-20", "H": 4.13, "price": 1778134717223.647, "IR": "", "spec_T": "B", "epoch": 2456800.5, "n_obs_used": 7829.0, "moid": 1.2302, "extent": "582x556x500", "spec_B": "B", "e": 0.23136806339302, "GM": 13.80133411764706, "tp_cal": 20131207.7784506, "pdes": 2.0, "class": "MBA", "UB": 0.284, "a": 2.771722875768389, "t_jup": 3.043, "om": 173.0969085484765, "ma": 35.50313393617061, "name": "Pallas", "i": 34.84103374517942, "tp": 2456634.2784505836, "prefix": "", "BV": 0.635, "spec": "B", "q": 2.130434721739725, "w": 309.9258687541497, "n": 0.2135892371402547, "sigma_ma": 4.8612e-06, "first_obs": "1825-03-23", "n_del_obs_used": "", "sigma_q": 5.357e-08, "n_dop_obs_used": ""},
{"sigma_tp": 2.8773e-05, "diameter": 233.92, "epoch_mjd": 56800.0, "ad": 3.351262498036946, "producer": "Davide Farnocchia", "rms": 0.51434, "H_sigma": "", "closeness": 2644.471883508787, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "3 Juno", "M2": "", "sigma_per": 1.9388e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 11.2, "saved": -198520833333.33334, "albedo": 0.2383, "moid_ld": 404.3826553, "pha": "N", "neo": "N", "sigma_ad": 2.7184e-09, "PC": "", "profit": 1.7464053909153423e-45, "spkid": 2000003.0, "sigma_w": 1.2473e-05, "sigma_i": 2.4284e-06, "per": 1593.421952407211, "id": "a0000003", "A1": "", "data_arc": 69075.0, "A3": "", "score": 5.416666666666668e-56, "per_y": 4.36255154663165, "sigma_n": 2.749e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 102", "sigma_a": 2.1657e-09, "sigma_om": 1.141e-05, "A2": "", "sigma_e": 2.0268e-08, "condition_code": 0.0, "rot_per": 7.21, "prov_des": "", "G": 0.32, "last_obs": "2013-06-01", "H": 5.33, "price": 2.7083333333333337e-44, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 6611.0, "moid": 1.03909, "extent": "", "spec_B": "Sk", "e": 0.2552210116711428, "GM": 1.8072708333333334, "tp_cal": 20140715.4582113, "pdes": 3.0, "class": "MBA", "UB": 0.433, "a": 2.669858508483084, "t_jup": 3.299, "om": 169.8776356197903, "ma": 347.9222474357103, "name": "Juno", "i": 12.98137744068201, "tp": 2456853.95821131, "prefix": "", "BV": 0.824, "spec": "Sk", "q": 1.988454518929223, "w": 248.3798174614966, "n": 0.2259288567326071, "sigma_ma": 6.4935e-06, "first_obs": "1824-04-18", "n_del_obs_used": "", "sigma_q": 5.409e-08, "n_dop_obs_used": ""},
{"sigma_tp": 2.0414e-05, "diameter": 530.0, "epoch_mjd": 56800.0, "ad": 2.570714240508377, "producer": "Davide Farnocchia", "rms": 0.55596, "H_sigma": "", "closeness": 2649.795769290954, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "4 Vesta", "M2": "", "sigma_per": 1.0255e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1939090416666.6665, "albedo": 0.4228, "moid_ld": 443.5642909, "pha": "N", "neo": "N", "sigma_ad": 1.326e-09, "PC": "", "profit": 1.7092692599870206e-44, "spkid": 2000004.0, "sigma_w": 7.5955e-06, "sigma_i": 1.4093e-06, "per": 1325.468286251413, "id": "a0000004", "A1": "", "data_arc": 67680.0, "A3": "", "score": 5.2908333333333334e-55, "per_y": 3.62893439083207, "sigma_n": 2.1014e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 33", "sigma_a": 1.218e-09, "sigma_om": 2.7663e-06, "A2": "", "sigma_e": 1.0284e-08, "condition_code": 0.0, "rot_per": 5.342, "prov_des": "", "G": 0.32, "last_obs": "2013-03-30", "H": 3.2, "price": 2.6454166666666668e-43, "IR": "", "spec_T": "V", "epoch": 2456800.5, "n_obs_used": 7107.0, "moid": 1.13977, "extent": "", "spec_B": "V", "e": 0.08861219186782818, "GM": 17.652865416666664, "tp_cal": 20140923.2242775, "pdes": 4.0, "class": "MBA", "UB": 0.492, "a": 2.361460086256774, "t_jup": 3.535, "om": 103.851288922141, "ma": 326.5320246855175, "name": "Vesta", "i": 7.1404941023471, "tp": 2456923.7242774568, "prefix": "", "BV": 0.782, "spec": "V", "q": 2.15220593200517, "w": 151.2172211176876, "n": 0.2716021226114161, "sigma_ma": 5.5582e-06, "first_obs": "1827-12-11", "n_del_obs_used": "", "sigma_q": 2.3877e-08, "n_dop_obs_used": ""},
{"sigma_tp": 4.3922e-05, "diameter": 119.07, "epoch_mjd": 56800.0, "ad": 3.065953354202444, "producer": "Otto Matic", "rms": 0.61655, "H_sigma": "", "closeness": 2645.5545914168465, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "5 Astraea", "M2": "", "sigma_per": 3.7306e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 6.5, "saved": -21147050000.0, "albedo": 0.2268, "moid_ld": 426.413569, "pha": "N", "neo": "N", "sigma_ad": 5.0546e-09, "PC": "", "profit": 1.8610864179051863e-46, "spkid": 2000005.0, "sigma_w": 3.3362e-05, "sigma_i": 2.9258e-06, "per": 1508.58110030237, "id": "a0000005", "A1": "", "data_arc": 61238.0, "A3": "", "score": 5.770000000000001e-57, "per_y": 4.13026995291546, "sigma_n": 5.9013e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 83", "sigma_a": 4.2439e-09, "sigma_om": 3.2287e-05, "A2": "", "sigma_e": 2.5156e-08, "condition_code": 0.0, "rot_per": 16.8, "prov_des": "", "G": "", "last_obs": "2013-08-14", "H": 6.85, "price": 2.8850000000000007e-45, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 2068.0, "moid": 1.0957, "extent": "", "spec_B": "S", "e": 0.1910190813796263, "GM": 0.19251605000000002, "tp_cal": 20160131.1054911, "pdes": 5.0, "class": "MBA", "UB": 0.411, "a": 2.574226897062785, "t_jup": 3.396, "om": 141.5937864187382, "ma": 212.498498925576, "name": "Astraea", "i": 5.368305543995842, "tp": 2457418.605491075, "prefix": "", "BV": 0.826, "spec": "S", "q": 2.082500439923126, "w": 358.8902033337477, "n": 0.2386348337042298, "sigma_ma": 1.0345e-05, "first_obs": "1845-12-15", "n_del_obs_used": "", "sigma_q": 6.5041e-08, "n_dop_obs_used": ""},
{"sigma_tp": 2.6459e-05, "diameter": 185.18, "epoch_mjd": 56800.0, "ad": 2.914494133655611, "producer": "Davide Farnocchia", "rms": 0.53367, "H_sigma": "", "closeness": 2649.2956240343397, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "6 Hebe", "M2": "", "sigma_per": 1.5911e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.9, "saved": -103792800000.00002, "albedo": 0.2679, "moid_ld": 380.12140833, "pha": "N", "neo": "N", "sigma_ad": 2.2404e-09, "PC": "", "profit": 9.147399990378481e-46, "spkid": 2000006.0, "sigma_w": 1.2497e-05, "sigma_i": 2.1043e-06, "per": 1379.855268295543, "id": "a0000006", "A1": "", "data_arc": 60166.0, "A3": "", "score": 2.8320000000000007e-56, "per_y": 3.77783783243133, "sigma_n": 3.0083e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 82", "sigma_a": 1.8646e-09, "sigma_om": 1.0768e-05, "A2": "", "sigma_e": 1.9014e-08, "condition_code": 0.0, "rot_per": 7.2745, "prov_des": "", "G": 0.24, "last_obs": "2013-06-01", "H": 5.71, "price": 1.4160000000000004e-44, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 5455.0, "moid": 0.976749, "extent": "", "spec_B": "S", "e": 0.2015442774339414, "GM": 0.9448968000000001, "tp_cal": 20140819.0074098, "pdes": 6.0, "class": "MBA", "UB": 0.399, "a": 2.425623581579452, "t_jup": 3.439, "om": 138.7033385619727, "ma": 337.0391371786558, "name": "Hebe", "i": 14.7480273715582, "tp": 2456888.5074098017, "prefix": "", "BV": 0.822, "spec": "S", "q": 1.936753029503292, "w": 239.3939093155834, "n": 0.2608969275775478, "sigma_ma": 6.895e-06, "first_obs": "1848-09-08", "n_del_obs_used": "", "sigma_q": 4.5972e-08, "n_dop_obs_used": ""},
{"sigma_tp": 2.1683e-05, "diameter": 199.83, "epoch_mjd": 56800.0, "ad": 2.935875438205941, "producer": "Davide Farnocchia", "rms": 0.49835, "H_sigma": "", "closeness": 2650.7387573865117, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "7 Iris", "M2": "", "sigma_per": 1.3148e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 10.0, "saved": -102148785714.28572, "albedo": 0.2766, "moid_ld": 329.89512813, "pha": "N", "neo": "N", "sigma_ad": 1.9117e-09, "PC": "", "profit": 9.007414663920036e-46, "spkid": 2000007.0, "sigma_w": 2.6685e-05, "sigma_i": 2.4613e-06, "per": 1346.173399825904, "id": "a0000007", "A1": "", "data_arc": 60168.0, "A3": "", "score": 2.787142857142858e-56, "per_y": 3.68562190232965, "sigma_n": 2.612e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 105", "sigma_a": 1.5536e-09, "sigma_om": 2.6111e-05, "A2": "", "sigma_e": 1.8229e-08, "condition_code": 0.0, "rot_per": 7.139, "prov_des": "", "G": "", "last_obs": "2013-05-18", "H": 5.51, "price": 1.393571428571429e-44, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 4780.0, "moid": 0.847689, "extent": "", "spec_B": "S", "e": 0.2304649305092262, "GM": 0.9299302142857144, "tp_cal": 20140314.0270749, "pdes": 7.0, "class": "MBA", "UB": 0.484, "a": 2.385988714843692, "t_jup": 3.493, "om": 259.6357275189561, "ma": 18.71248757916454, "name": "Iris", "i": 5.524376908795847, "tp": 2456730.5270749344, "prefix": "", "BV": 0.855, "spec": "S", "q": 1.836101991481443, "w": 145.4366658189432, "n": 0.2674246869285619, "sigma_ma": 5.8088e-06, "first_obs": "1848-08-23", "n_del_obs_used": 2.0, "sigma_q": 4.3501e-08, "n_dop_obs_used": 0.0},
{"sigma_tp": 4.2162e-05, "diameter": 135.89, "epoch_mjd": 56800.0, "ad": 2.544860761082036, "producer": "Otto Matic", "rms": 0.64239, "H_sigma": "", "closeness": 2654.751744060926, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "8 Flora", "M2": "", "sigma_per": 1.5344e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.3, "saved": -56212955555.555565, "albedo": 0.2426, "moid_ld": 340.13419083, "pha": "N", "neo": "N", "sigma_ad": 2.1823e-09, "PC": "", "profit": 0.0, "spkid": 2000008.0, "sigma_w": 3.0022e-05, "sigma_i": 3.7436e-06, "per": 1192.89998177262, "id": "a0000008", "A1": "", "data_arc": 60593.0, "A3": "", "score": 0.0, "per_y": 3.26598215406604, "sigma_n": 3.8819e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 93", "sigma_a": 1.8876e-09, "sigma_om": 2.7531e-05, "A2": "", "sigma_e": 2.69e-08, "condition_code": 0.0, "rot_per": 12.865, "prov_des": "", "G": 0.28, "last_obs": "2013-09-26", "H": 6.49, "price": 0.0, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 2190.0, "moid": 0.873999, "extent": "", "spec_B": "", "e": 0.1560952639171101, "GM": 0.5117449555555557, "tp_cal": 20140414.659332, "pdes": 8.0, "class": "MBA", "UB": 0.489, "a": 2.201255242980131, "t_jup": 3.642, "om": 110.9221417525925, "ma": 11.57066031645646, "name": "Flora", "i": 5.888090222011535, "tp": 2456762.1593319983, "prefix": "", "BV": 0.885, "spec": "?", "q": 1.857649724878225, "w": 285.4005339078322, "n": 0.3017855692017438, "sigma_ma": 1.273e-05, "first_obs": "1847-11-03", "n_del_obs_used": "", "sigma_q": 5.902e-08, "n_dop_obs_used": ""},
{"sigma_tp": 3.9688e-05, "diameter": 190.0, "epoch_mjd": 56800.0, "ad": 2.678276495301595, "producer": "Otto Matic", "rms": 0.47279, "H_sigma": "", "closeness": 2649.3990709090185, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "9 Metis", "M2": "", "sigma_per": 2.4511e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -63926762500.00001, "albedo": 0.118, "moid_ld": 431.2743023, "pha": "N", "neo": "N", "sigma_ad": 3.2508e-09, "PC": "", "profit": 0.0, "spkid": 2000009.0, "sigma_w": 2.7681e-05, "sigma_i": 2.0013e-06, "per": 1346.304684530272, "id": "a0000009", "A1": "", "data_arc": 70028.0, "A3": "", "score": 0.0, "per_y": 3.68598134026084, "sigma_n": 4.8683e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 91", "sigma_a": 2.8962e-09, "sigma_om": 2.5704e-05, "A2": "", "sigma_e": 1.8181e-08, "condition_code": 0.0, "rot_per": 5.079, "prov_des": "", "G": 0.17, "last_obs": "2014-01-07", "H": 6.28, "price": 0.0, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 2309.0, "moid": 1.10819, "extent": "", "spec_B": "", "e": 0.1224287698080578, "GM": 0.5819690125, "tp_cal": 20121015.7236055, "pdes": 9.0, "class": "MBA", "UB": 0.496, "a": 2.386143840343291, "t_jup": 3.518, "om": 68.94557473694258, "ma": 156.2346951786719, "name": "Metis", "i": 5.574912419883788, "tp": 2456216.223605541, "prefix": "", "BV": 0.858, "spec": "?", "q": 2.094011185384987, "w": 5.849915599890955, "n": 0.2673986090493361, "sigma_ma": 1.0679e-05, "first_obs": "1822-04-16", "n_del_obs_used": "", "sigma_q": 4.3498e-08, "n_dop_obs_used": ""},
{"sigma_tp": 6.4467e-05, "diameter": 407.12, "epoch_mjd": 56800.0, "ad": 3.500942862994997, "producer": "Davide Farnocchia", "rms": 0.61205, "H_sigma": "", "closeness": 2633.3754236881277, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "10 Hygiea", "M2": "", "sigma_per": 6.5021e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 6.8, "saved": -625982237000.0, "albedo": 0.0717, "moid_ld": 686.8033243, "pha": "N", "neo": "N", "sigma_ad": 7.4752e-09, "PC": "", "profit": 48171897211.07635, "spkid": 2000010.0, "sigma_w": 3.1142e-05, "sigma_i": 2.2357e-06, "per": 2030.149364485946, "id": "a0000010", "A1": "", "data_arc": 59732.0, "A3": "", "score": 131.6887711844064, "per_y": 5.55824603555358, "sigma_n": 5.6794e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 85", "sigma_a": 6.6997e-09, "sigma_om": 2.9482e-05, "A2": "", "sigma_e": 1.6575e-08, "condition_code": 0.0, "rot_per": 27.623, "prov_des": "", "G": "", "last_obs": "2012-12-09", "H": 5.43, "price": 750199859282.0249, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 2840.0, "moid": 1.76479, "extent": "", "spec_B": "C", "e": 0.1157459348256398, "GM": 5.806622166666667, "tp_cal": 20161219.411196, "pdes": 10.0, "class": "MBA", "UB": 0.351, "a": 3.137759909062181, "t_jup": 3.197, "om": 283.4166768848367, "ma": 193.0625142642495, "name": "Hygiea", "i": 3.841913233247883, "tp": 2457741.9111960423, "prefix": "", "BV": 0.696, "spec": "C", "q": 2.774576955129365, "w": 312.6399357133005, "n": 0.1773268540224653, "sigma_ma": 1.1181e-05, "first_obs": "1849-05-26", "n_del_obs_used": "", "sigma_q": 5.2218e-08, "n_dop_obs_used": ""},
{"sigma_tp": 4.437e-05, "diameter": 153.33, "epoch_mjd": 56800.0, "ad": 2.697908017770875, "producer": "Otto Matic", "rms": 0.55192, "H_sigma": "", "closeness": 2647.4956236576386, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "11 Parthenope", "M2": "", "sigma_per": 1.8784e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 3.1, "saved": -41324911111.111115, "albedo": 0.1803, "moid_ld": 465.4006196, "pha": "N", "neo": "N", "sigma_ad": 2.4066e-09, "PC": "", "profit": 3.6395458831439734e-46, "spkid": 2000011.0, "sigma_w": 2.7089e-05, "sigma_i": 3.2888e-06, "per": 1403.853710404926, "id": "a0000011", "A1": "", "data_arc": 59674.0, "A3": "", "score": 1.1275555555555557e-56, "per_y": 3.84354198605045, "sigma_n": 3.4312e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 75", "sigma_a": 2.1887e-09, "sigma_om": 2.4168e-05, "A2": "", "sigma_e": 2.8514e-08, "condition_code": 0.0, "rot_per": 13.7204, "prov_des": "", "G": "", "last_obs": "2014-02-03", "H": 6.55, "price": 5.637777777777779e-45, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 4798.0, "moid": 1.19588, "extent": "", "spec_B": "Sk", "e": 0.09954123416365254, "GM": 0.3762089111111111, "tp_cal": 20120703.0857577, "pdes": 11.0, "class": "MBA", "UB": 0.417, "a": 2.453666978503988, "t_jup": 3.483, "om": 125.5654005272214, "ma": 176.6630848875212, "name": "Parthenope", "i": 4.629529114434138, "tp": 2456111.5857577473, "prefix": "", "BV": 0.837, "spec": "Sk", "q": 2.209425939237101, "w": 195.8938567015174, "n": 0.2564369758271765, "sigma_ma": 1.1328e-05, "first_obs": "1850-09-17", "n_del_obs_used": "", "sigma_q": 7.0214e-08, "n_dop_obs_used": ""},
{"sigma_tp": 2.5375e-05, "diameter": 112.77, "epoch_mjd": 56800.0, "ad": 2.850398094305837, "producer": "Otto Matic", "rms": 0.62721, "H_sigma": "", "closeness": 2651.9471910871857, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "12 Victoria", "M2": "", "sigma_per": 1.75e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 3.1, "saved": -15945660000.000002, "albedo": 0.1765, "moid_ld": 319.77476228, "pha": "N", "neo": "N", "sigma_ad": 2.5537e-09, "PC": "", "profit": 623305338.2181193, "spkid": 2000012.0, "sigma_w": 2.1941e-05, "sigma_i": 2.6881e-06, "per": 1302.231450784802, "id": "a0000012", "A1": "", "data_arc": 59442.0, "A3": "", "score": 132.6166375543593, "per_y": 3.56531540255935, "sigma_n": 3.7151e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 87", "sigma_a": 2.0909e-09, "sigma_om": 2.1058e-05, "A2": "", "sigma_e": 2.726e-08, "condition_code": 0.0, "rot_per": 8.6599, "prov_des": "", "G": 0.22, "last_obs": "2013-06-17", "H": 7.24, "price": 9639000000.000002, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 2291.0, "moid": 0.821684, "extent": "", "spec_B": "L", "e": 0.2213655992552831, "GM": 0.18377442000000002, "tp_cal": 20140607.0654695, "pdes": 12.0, "class": "MBA", "UB": 0.515, "a": 2.333779579221686, "t_jup": 3.522, "om": 235.4905669433678, "ma": 355.8351727479684, "name": "Victoria", "i": 8.36863074093776, "tp": 2456815.5654695407, "prefix": "", "BV": 0.874, "spec": "L", "q": 1.817161064137536, "w": 69.55139176512584, "n": 0.2764485528152791, "sigma_ma": 7.0121e-06, "first_obs": "1850-09-18", "n_del_obs_used": "", "sigma_q": 6.4012e-08, "n_dop_obs_used": ""},
{"sigma_tp": 0.00011924, "diameter": 207.64, "epoch_mjd": 56800.0, "ad": 2.792824767515388, "producer": "Otto Matic", "rms": 0.67466, "H_sigma": "", "closeness": 2644.4041285957055, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "13 Egeria", "M2": "", "sigma_per": 3.3605e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 8.3, "saved": -85597465725.0, "albedo": 0.0825, "moid_ld": 560.1051391, "pha": "N", "neo": "N", "sigma_ad": 4.1413e-09, "PC": "", "profit": 6614662596.069349, "spkid": 2000013.0, "sigma_w": 3.2688e-05, "sigma_i": 4.8334e-06, "per": 1510.83326705635, "id": "a0000013", "A1": "", "data_arc": 59576.0, "A3": "", "score": 132.24020642978527, "per_y": 4.13643604943559, "sigma_n": 5.3e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 62", "sigma_a": 3.821e-09, "sigma_om": 1.5212e-05, "A2": "", "sigma_e": 3.6997e-08, "condition_code": 0.0, "rot_per": 7.045, "prov_des": "", "G": "", "last_obs": "2014-01-01", "H": 6.74, "price": 102583113299.73561, "IR": "", "spec_T": "G", "epoch": 2456800.5, "n_obs_used": 1755.0, "moid": 1.43923, "extent": "", "spec_B": "Ch", "e": 0.0838394282015711, "GM": 0.7940035875, "tp_cal": 20130107.9468895, "pdes": 13.0, "class": "MBA", "UB": 0.452, "a": 2.576788309085192, "t_jup": 3.364, "om": 43.25688300855172, "ma": 119.1522080596221, "name": "Egeria", "i": 16.53882686341094, "tp": 2456300.446889501, "prefix": "", "BV": 0.745, "spec": "Ch", "q": 2.360751850654996, "w": 80.06739864490045, "n": 0.2382791058747405, "sigma_ma": 2.8442e-05, "first_obs": "1850-11-21", "n_del_obs_used": "", "sigma_q": 9.4976e-08, "n_dop_obs_used": ""},
{"sigma_tp": 5.6853e-05, "diameter": 152.0, "epoch_mjd": 56800.0, "ad": 3.016158750563059, "producer": "Otto Matic", "rms": 0.64579, "H_sigma": "", "closeness": 2644.931087227556, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "14 Irene", "M2": "", "sigma_per": 2.7924e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -28157671428.571434, "albedo": 0.159, "moid_ld": 460.0689906, "pha": "N", "neo": "N", "sigma_ad": 3.6948e-09, "PC": "", "profit": 2.4774854798269425e-46, "spkid": 2000014.0, "sigma_w": 2.5755e-05, "sigma_i": 4.3004e-06, "per": 1519.663451235961, "id": "a0000014", "A1": "", "data_arc": 59244.0, "A3": "", "score": 7.682857142857145e-57, "per_y": 4.16061177614226, "sigma_n": 4.3529e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 58", "sigma_a": 3.1689e-09, "sigma_om": 2.2383e-05, "A2": "", "sigma_e": 3.2925e-08, "condition_code": 0.0, "rot_per": 15.028, "prov_des": "", "G": "", "last_obs": "2013-08-02", "H": 6.3, "price": 3.8414285714285724e-45, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 2161.0, "moid": 1.18218, "extent": "", "spec_B": "S", "e": 0.1659722159636385, "GM": 0.2563385285714286, "tp_cal": 20130403.5141639, "pdes": 14.0, "class": "MBA", "UB": 0.388, "a": 2.586818715976264, "t_jup": 3.385, "om": 86.1637537832246, "ma": 98.18943850577949, "name": "Irene", "i": 9.118453727812293, "tp": 2456386.014163904, "prefix": "", "BV": 0.833, "spec": "S", "q": 2.15747868138947, "w": 97.99625139640405, "n": 0.236894556954178, "sigma_ma": 1.3486e-05, "first_obs": "1851-05-20", "n_del_obs_used": "", "sigma_q": 8.6041e-08, "n_dop_obs_used": ""},
{"sigma_tp": 3.084e-05, "diameter": 255.33, "epoch_mjd": 56800.0, "ad": 3.139555597878256, "producer": "Davide Farnocchia", "rms": 0.64363, "H_sigma": "", "closeness": 2643.922092182534, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "15 Eunomia", "M2": "", "sigma_per": 2.8643e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 15.0, "saved": -216798846153.84613, "albedo": 0.2094, "moid_ld": 463.0578162, "pha": "N", "neo": "N", "sigma_ad": 3.8184e-09, "PC": "", "profit": 1.9068021813336416e-45, "spkid": 2000015.0, "sigma_w": 1.6323e-05, "sigma_i": 2.5894e-06, "per": 1570.032078220086, "id": "a0000015", "A1": "", "data_arc": 59109.0, "A3": "", "score": 5.9153846153846165e-56, "per_y": 4.29851356117751, "sigma_n": 4.1831e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 70", "sigma_a": 3.2153e-09, "sigma_om": 1.4853e-05, "A2": "", "sigma_e": 2.8248e-08, "condition_code": 0.0, "rot_per": 6.083, "prov_des": "", "G": 0.23, "last_obs": "2013-07-03", "H": 5.28, "price": 2.9576923076923083e-44, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 2075.0, "moid": 1.18986, "extent": "", "spec_B": "S", "e": 0.1875760914039876, "GM": 1.973668076923077, "tp_cal": 20151203.710707, "pdes": 15.0, "class": "MBA", "UB": 0.451, "a": 2.6436668947811, "t_jup": 3.339, "om": 293.1872566657152, "ma": 231.66131359516, "name": "Eunomia", "i": 11.73898150888719, "tp": 2457360.210707034, "prefix": "", "BV": 0.839, "spec": "S", "q": 2.147778191683944, "w": 97.57551870177932, "n": 0.2292946781113701, "sigma_ma": 6.9583e-06, "first_obs": "1851-09-02", "n_del_obs_used": "", "sigma_q": 7.4524e-08, "n_dop_obs_used": ""},
{"sigma_tp": 8.6841e-05, "diameter": 253.16, "epoch_mjd": 56800.0, "ad": 3.322028462500179, "producer": "Davide Farnocchia", "rms": 0.6037, "H_sigma": "", "closeness": 2637.4744688381556, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "16 Psyche", "M2": "", "sigma_per": 5.2994e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 4.0, "saved": 395975200000.00006, "albedo": 0.1203, "moid_ld": 593.717752, "pha": "N", "neo": "N", "sigma_ad": 6.4295e-09, "PC": "", "profit": 1779733979.9521499, "spkid": 2000016.0, "sigma_w": 7.5312e-05, "sigma_i": 4.4689e-06, "per": 1825.428233153435, "id": "a0000016", "A1": "", "data_arc": 58859.0, "A3": "", "score": 131.89372344190778, "per_y": 4.99775012499229, "sigma_n": 5.7254e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 83", "sigma_a": 5.6574e-09, "sigma_om": 7.366e-05, "A2": "", "sigma_e": 3.3101e-08, "condition_code": 0.0, "rot_per": 4.196, "prov_des": "", "G": 0.2, "last_obs": "2013-05-11", "H": 5.9, "price": 27673419946.666664, "IR": "", "spec_T": "M", "epoch": 2456800.5, "n_obs_used": 2493.0, "moid": 1.5256, "extent": "", "spec_B": "X", "e": 0.1364730064253092, "GM": 1.8426377333333332, "tp_cal": 20150416.4447483, "pdes": 16.0, "class": "MBA", "UB": 0.299, "a": 2.92310371097099, "t_jup": 3.263, "om": 150.2752759195264, "ma": 295.2260980551026, "name": "Psyche", "i": 3.098693002819392, "tp": 2457128.9447482824, "prefix": "", "BV": 0.729, "spec": "X", "q": 2.524178959441801, "w": 227.1150031514539, "n": 0.1972139980425845, "sigma_ma": 1.705e-05, "first_obs": "1852-03-17", "n_del_obs_used": "", "sigma_q": 9.6767e-08, "n_dop_obs_used": ""},
{"sigma_tp": 3.9124e-05, "diameter": 90.04, "epoch_mjd": 56800.0, "ad": 2.800631104316537, "producer": "Otto Matic", "rms": 0.69281, "H_sigma": "", "closeness": 2647.3188354002177, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "17 Thetis", "M2": "", "sigma_per": 2.4411e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 3.7, "saved": -9565650000.0, "albedo": 0.1715, "moid_ld": 440.4197973, "pha": "N", "neo": "N", "sigma_ad": 3.2105e-09, "PC": "", "profit": 8.424046506540054e-47, "spkid": 2000017.0, "sigma_w": 3.0351e-05, "sigma_i": 3.1134e-06, "per": 1419.599019240884, "id": "a0000017", "A1": "", "data_arc": 59089.0, "A3": "", "score": 2.6100000000000005e-57, "per_y": 3.88665029224061, "sigma_n": 4.3606e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 78", "sigma_a": 2.8338e-09, "sigma_om": 2.8998e-05, "A2": "", "sigma_e": 2.9177e-08, "condition_code": 0.0, "rot_per": 12.27048, "prov_des": "", "G": "", "last_obs": "2014-02-02", "H": 7.76, "price": 1.3050000000000003e-45, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 2511.0, "moid": 1.13169, "extent": "", "spec_B": "Sl", "e": 0.1329508389452957, "GM": 0.08708265, "tp_cal": 20160115.2846334, "pdes": 17.0, "class": "MBA", "UB": 0.438, "a": 2.47197937284176, "t_jup": 3.465, "om": 125.5706101111733, "ma": 207.2649916688588, "name": "Thetis", "i": 5.589980620374916, "tp": 2457402.7846334185, "prefix": "", "BV": 0.829, "spec": "Sl", "q": 2.143327641366982, "w": 135.6412194327208, "n": 0.2535927364844943, "sigma_ma": 9.8109e-06, "first_obs": "1852-04-23", "n_del_obs_used": "", "sigma_q": 7.1746e-08, "n_dop_obs_used": ""},
{"sigma_tp": 3.0098e-05, "diameter": 140.57, "epoch_mjd": 56800.0, "ad": 2.797619332073602, "producer": "Otto Matic", "rms": 0.53172, "H_sigma": "", "closeness": 2652.920733369692, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "18 Melpomene", "M2": "", "sigma_per": 1.8949e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.8, "saved": -25749242857.142857, "albedo": 0.2225, "moid_ld": 315.07670204, "pha": "N", "neo": "N", "sigma_ad": 2.782e-09, "PC": "", "profit": 2.2724208067343382e-46, "spkid": 2000018.0, "sigma_w": 2.0273e-05, "sigma_i": 3.5022e-06, "per": 1270.388405933538, "id": "a0000018", "A1": "", "data_arc": 57478.0, "A3": "", "score": 7.025714285714286e-57, "per_y": 3.47813389714863, "sigma_n": 4.2269e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 77", "sigma_a": 2.2828e-09, "sigma_om": 1.8746e-05, "A2": "", "sigma_e": 2.8976e-08, "condition_code": 0.0, "rot_per": 11.57, "prov_des": "", "G": 0.25, "last_obs": "2014-02-08", "H": 6.51, "price": 3.512857142857143e-45, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 4371.0, "moid": 0.809612, "extent": "", "spec_B": "S", "e": 0.218699287546159, "GM": 0.23441295714285715, "tp_cal": 20130405.0027485, "pdes": 18.0, "class": "MBA", "UB": 0.425, "a": 2.295578048385164, "t_jup": 3.543, "om": 150.4696460139086, "ma": 117.0342942784632, "name": "Melpomene", "i": 10.13261797263372, "tp": 2456387.5027484777, "prefix": "", "BV": 0.854, "spec": "S", "q": 1.793536764696727, "w": 227.9850154549946, "n": 0.2833779010565325, "sigma_ma": 8.6064e-06, "first_obs": "1856-09-26", "n_del_obs_used": "", "sigma_q": 6.668e-08, "n_dop_obs_used": ""},
{"sigma_tp": 4.2109e-05, "diameter": 200.0, "epoch_mjd": 56800.0, "ad": 2.829776558994364, "producer": "Otto Matic", "rms": 0.59976, "H_sigma": "", "closeness": 2648.3200619108534, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "19 Fortuna", "M2": "", "sigma_per": 2.7623e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -61659030533.33333, "albedo": 0.037, "moid_ld": 412.5941423, "pha": "N", "neo": "N", "sigma_ad": 3.7375e-09, "PC": "", "profit": 4771842771.594473, "spkid": 2000019.0, "sigma_w": 0.00011343, "sigma_i": 2.9119e-06, "per": 1394.306395429224, "id": "a0000019", "A1": "", "data_arc": 58946.0, "A3": "", "score": 132.43600309554267, "per_y": 3.81740286222922, "sigma_n": 5.1152e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 98", "sigma_a": 3.226e-09, "sigma_om": 0.00011299, "A2": "", "sigma_e": 2.6517e-08, "condition_code": 0.0, "rot_per": 7.4432, "prov_des": "", "G": 0.1, "last_obs": "2014-02-03", "H": 7.13, "price": 73894422709.58998, "IR": "", "spec_T": "G", "epoch": 2456800.5, "n_obs_used": 2214.0, "moid": 1.06019, "extent": "", "spec_B": "Ch", "e": 0.1585433347769211, "GM": 0.5719502444444444, "tp_cal": 20130531.6376793, "pdes": 19.0, "class": "MBA", "UB": 0.324, "a": 2.442529747529246, "t_jup": 3.483, "om": 211.1799584985178, "ma": 92.01021804355987, "name": "Fortuna", "i": 1.573056486860464, "tp": 2456444.1376792695, "prefix": "", "BV": 0.719, "spec": "Ch", "q": 2.055282936064128, "w": 182.3774000141106, "n": 0.2581928915912184, "sigma_ma": 1.0947e-05, "first_obs": "1852-09-14", "n_del_obs_used": "", "sigma_q": 6.4895e-08, "n_dop_obs_used": ""},
{"sigma_tp": 3.4832e-05, "diameter": 145.5, "epoch_mjd": 56800.0, "ad": 2.75373181852227, "producer": "Otto Matic", "rms": 0.65217, "H_sigma": "", "closeness": 2648.9930436506907, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "20 Massalia", "M2": "", "sigma_per": 2.8426e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 9.3, "saved": -39206337500.0, "albedo": 0.2096, "moid_ld": 420.9029218, "pha": "N", "neo": "N", "sigma_ad": 3.8204e-09, "PC": "", "profit": 3.4549129694993132e-46, "spkid": 2000020.0, "sigma_w": 0.00019353, "sigma_i": 2.5826e-06, "per": 1365.986901340442, "id": "a0000020", "A1": "", "data_arc": 58466.0, "A3": "", "score": 1.0697500000000003e-56, "per_y": 3.73986831304707, "sigma_n": 5.4844e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 80", "sigma_a": 3.3426e-09, "sigma_om": 0.00019336, "A2": "", "sigma_e": 2.2084e-08, "condition_code": 0.0, "rot_per": 8.098, "prov_des": "", "G": 0.25, "last_obs": "2014-01-22", "H": 6.5, "price": 5.348750000000001e-45, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1940.0, "moid": 1.08154, "extent": "", "spec_B": "S", "e": 0.1429386102071166, "GM": 0.35692208750000004, "tp_cal": 20140510.9600033, "pdes": 20.0, "class": "MBA", "UB": 0.463, "a": 2.409343593723949, "t_jup": 3.507, "om": 206.1766714929232, "ma": 3.173089582549155, "name": "Massalia", "i": 0.708083015889505, "tp": 2456788.460003315, "prefix": "", "BV": 0.854, "spec": "S", "q": 2.064955368925628, "w": 256.7372522301462, "n": 0.2635457189572844, "sigma_ma": 9.1812e-06, "first_obs": "1853-12-26", "n_del_obs_used": "", "sigma_q": 5.3314e-08, "n_dop_obs_used": ""},
{"sigma_tp": 5.4382e-05, "diameter": 95.76, "epoch_mjd": 56800.0, "ad": 2.834862999276336, "producer": "Otto Matic", "rms": 0.45743, "H_sigma": "", "closeness": 2648.5977687182212, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "21 Lutetia", "M2": "", "sigma_per": 3.0049e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 4.1, "saved": 24378000000.000004, "albedo": 0.2212, "moid_ld": 398.5645638, "pha": "N", "neo": "N", "sigma_ad": 4.0939e-09, "PC": "", "profit": 110030458.53465796, "spkid": 2000021.0, "sigma_w": 4.8571e-05, "sigma_i": 4.9218e-06, "per": 1387.214688106165, "id": "a0000021", "A1": "", "data_arc": 53973.0, "A3": "", "score": 132.43329583431105, "per_y": 3.79798682575268, "sigma_n": 5.6215e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 79", "sigma_a": 3.5153e-09, "sigma_om": 4.663e-05, "A2": "", "sigma_e": 3.4175e-08, "condition_code": 0.0, "rot_per": 8.1655, "prov_des": "", "G": 0.11, "last_obs": "2014-01-13", "H": 7.35, "price": 1703699200.0, "IR": "", "spec_T": "M", "epoch": 2456800.5, "n_obs_used": 3688.0, "moid": 1.02414, "extent": "", "spec_B": "Xk", "e": 0.1645779807199469, "GM": 0.113441, "tp_cal": 20150908.6997715, "pdes": 21.0, "class": "MBA", "UB": 0.189, "a": 2.434240597202269, "t_jup": 3.485, "om": 80.88427406704784, "ma": 237.068834969426, "name": "Lutetia", "i": 3.063852038115295, "tp": 2457274.199771546, "prefix": "", "BV": 0.686, "spec": "Xk", "q": 2.033618195128202, "w": 250.2061151078202, "n": 0.259512823131562, "sigma_ma": 1.4049e-05, "first_obs": "1866-04-06", "n_del_obs_used": "", "sigma_q": 8.4622e-08, "n_dop_obs_used": ""},
{"sigma_tp": 9.8005e-05, "diameter": 181.0, "epoch_mjd": 56800.0, "ad": 3.201085849683535, "producer": "Otto Matic", "rms": 0.56693, "H_sigma": "", "closeness": 2637.3836708817803, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "22 Kalliope", "M2": "", "sigma_per": 6.6571e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 4.6, "saved": 112808000000.00002, "albedo": 0.1419, "moid_ld": 635.1915989, "pha": "N", "neo": "N", "sigma_ad": 7.8333e-09, "PC": "", "profit": 507004779.9546865, "spkid": 2000022.0, "sigma_w": 2.1168e-05, "sigma_i": 4.4347e-06, "per": 1813.614354574549, "id": "a0000022", "A1": "", "data_arc": 58106.0, "A3": "", "score": 131.8849511131557, "per_y": 4.96540548822601, "sigma_n": 7.2862e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 72", "sigma_a": 7.1222e-09, "sigma_om": 1.3024e-05, "A2": "", "sigma_e": 4.0604e-08, "condition_code": 0.0, "rot_per": 4.148, "prov_des": "", "G": 0.21, "last_obs": "2013-05-16", "H": 6.45, "price": 7883784533.333333, "IR": "", "spec_T": "M", "epoch": 2456800.5, "n_obs_used": 2144.0, "moid": 1.63217, "extent": "", "spec_B": "X", "e": 0.09984877771692412, "GM": 0.5249426666666667, "tp_cal": 20160802.6921717, "pdes": 22.0, "class": "MBA", "UB": 0.234, "a": 2.910478162578294, "t_jup": 3.234, "om": 66.08522927470734, "ma": 200.6666880021023, "name": "Kalliope", "i": 13.71679016498993, "tp": 2457603.19217167, "prefix": "", "BV": 0.715, "spec": "X", "q": 2.619870475473052, "w": 354.8715444376073, "n": 0.1984986494465917, "sigma_ma": 1.9126e-05, "first_obs": "1854-04-14", "n_del_obs_used": "", "sigma_q": 1.1706e-07, "n_dop_obs_used": ""},
{"sigma_tp": 3.9798e-05, "diameter": 107.53, "epoch_mjd": 56800.0, "ad": 3.242559891907459, "producer": "Otto Matic", "rms": 0.57115, "H_sigma": "", "closeness": 2645.105021925229, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "23 Thalia", "M2": "", "sigma_per": 4.4815e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.2, "saved": -15173100000.000002, "albedo": 0.2536, "moid_ld": 406.371314, "pha": "N", "neo": "N", "sigma_ad": 6.2373e-09, "PC": "", "profit": 1.3351106493172944e-46, "spkid": 2000023.0, "sigma_w": 2.5763e-05, "sigma_i": 4.4217e-06, "per": 1553.20462287326, "id": "a0000023", "A1": "", "data_arc": 57307.0, "A3": "", "score": 4.140000000000001e-57, "per_y": 4.25244249931077, "sigma_n": 6.6876e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 68", "sigma_a": 5.0489e-09, "sigma_om": 2.4135e-05, "A2": "", "sigma_e": 3.5921e-08, "condition_code": 0.0, "rot_per": 12.312, "prov_des": "", "G": "", "last_obs": "2013-09-14", "H": 6.95, "price": 2.0700000000000004e-45, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1546.0, "moid": 1.0442, "extent": "", "spec_B": "S", "e": 0.2353817313094361, "GM": 0.1381311, "tp_cal": 20150509.6859773, "pdes": 23.0, "class": "MBA", "UB": 0.442, "a": 2.624743275481762, "t_jup": 3.342, "om": 66.88356190151879, "ma": 278.4866243836798, "name": "Thalia", "i": 10.11495243409105, "tp": 2457152.1859773146, "prefix": "", "BV": 0.859, "spec": "S", "q": 2.006926659056065, "w": 60.81867536770141, "n": 0.2317788620368893, "sigma_ma": 9.179e-06, "first_obs": "1856-10-20", "n_del_obs_used": "", "sigma_q": 9.5606e-08, "n_dop_obs_used": ""},
{"sigma_tp": 8.458e-05, "diameter": 198.0, "epoch_mjd": 56800.0, "ad": 3.529134674224262, "producer": "Otto Matic", "rms": 0.67286, "H_sigma": "", "closeness": 2633.5228252347724, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "24 Themis", "M2": "", "sigma_per": 7.4321e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -31203449700.000008, "albedo": 0.067, "moid_ld": 682.2617104, "pha": "N", "neo": "N", "sigma_ad": 8.626e-09, "PC": "", "profit": 3392561153.9426537, "spkid": 2000024.0, "sigma_w": 0.00027152, "sigma_i": 3.4104e-06, "per": 2027.142478886508, "id": "a0000024", "A1": "", "data_arc": 58703.0, "A3": "", "score": 131.69614126173863, "per_y": 5.55001363144835, "sigma_n": 6.511e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 84", "sigma_a": 7.6618e-09, "sigma_om": 0.00027125, "A2": "", "sigma_e": 3.136e-08, "condition_code": 0.0, "rot_per": 8.374, "prov_des": "", "G": 0.19, "last_obs": "2014-01-16", "H": 7.08, "price": 52830729020.127495, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 2098.0, "moid": 1.75312, "extent": "", "spec_B": "B", "e": 0.1258425715337519, "GM": 0.41005585, "tp_cal": 20131031.1174399, "pdes": 24.0, "class": "MBA", "UB": 0.336, "a": 3.134660887282375, "t_jup": 3.2, "om": 35.9222010005526, "ma": 36.20748043680496, "name": "Themis", "i": 0.7523227392325276, "tp": 2456596.61743987, "prefix": "", "BV": 0.684, "spec": "B", "q": 2.740187100340489, "w": 106.6127781341189, "n": 0.1775898851459839, "sigma_ma": 1.5097e-05, "first_obs": "1853-04-27", "n_del_obs_used": "", "sigma_q": 9.8769e-08, "n_dop_obs_used": ""},
{"sigma_tp": 2.6656e-05, "diameter": 75.13, "epoch_mjd": 56800.0, "ad": 3.012817394870821, "producer": "Otto Matic", "rms": 0.56429, "H_sigma": "", "closeness": 2650.8282907302796, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "25 Phocaea", "M2": "", "sigma_per": 2.0936e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 3.6, "saved": -4390670000000000.5, "albedo": 0.231, "moid_ld": 358.19401385, "pha": "N", "neo": "N", "sigma_ad": 3.0976e-09, "PC": "", "profit": 3.8717955273387063e-41, "spkid": 2000025.0, "sigma_w": 1.2485e-05, "sigma_i": 3.6801e-06, "per": 1357.530035690676, "id": "a0000025", "A1": "", "data_arc": 56098.0, "A3": "", "score": 1.1980000000000002e-51, "per_y": 3.71671467677119, "sigma_n": 4.0898e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 71", "sigma_a": 2.4669e-09, "sigma_om": 9.1516e-06, "A2": "", "sigma_e": 3.1491e-08, "condition_code": 0.0, "rot_per": 9.9341, "prov_des": "", "G": "", "last_obs": "2013-10-13", "H": 7.83, "price": 5.990000000000001e-40, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 2185.0, "moid": 0.920405, "extent": "", "spec_B": "S", "e": 0.2556602029430555, "GM": 0.03997127, "tp_cal": 20131023.9277242, "pdes": 25.0, "class": "MBA", "UB": 0.513, "a": 2.399389092534179, "t_jup": 3.389, "om": 214.2257524933354, "ma": 55.97372971964609, "name": "Phocaea", "i": 21.59191438261021, "tp": 2456589.4277241556, "prefix": "", "BV": 0.932, "spec": "S", "q": 1.785960790197537, "w": 90.04558006052638, "n": 0.2651875026962783, "sigma_ma": 7.107e-06, "first_obs": "1860-03-11", "n_del_obs_used": "", "sigma_q": 7.5783e-08, "n_dop_obs_used": ""},
{"sigma_tp": 0.00014982, "diameter": 94.8, "epoch_mjd": 56800.0, "ad": 2.894934510511193, "producer": "Otto Matic", "rms": 0.64372, "H_sigma": "", "closeness": 2642.6454494226214, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "26 Proserpina", "M2": "", "sigma_per": 5.7313e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 1.7, "saved": -5482840000000000.0, "albedo": 0.1966, "moid_ld": 546.1845282, "pha": "N", "neo": "N", "sigma_ad": 6.999e-09, "PC": "", "profit": 4.819971743779319e-41, "spkid": 2000026.0, "sigma_w": 9.9952e-05, "sigma_i": 4.1611e-06, "per": 1580.388159702112, "id": "a0000026", "A1": "", "data_arc": 55674.0, "A3": "", "score": 1.4960000000000004e-51, "per_y": 4.32686696701468, "sigma_n": 8.2609e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 90", "sigma_a": 6.4196e-09, "sigma_om": 9.398e-05, "A2": "", "sigma_e": 3.9917e-08, "condition_code": 0.0, "rot_per": 13.11, "prov_des": "", "G": "", "last_obs": "2013-07-07", "H": 7.4, "price": 7.480000000000003e-40, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1348.0, "moid": 1.40346, "extent": "", "spec_B": "S", "e": 0.09025607827631883, "GM": 0.04991404, "tp_cal": 20130924.8588124, "pdes": 26.0, "class": "MBA", "UB": 0.525, "a": 2.655279404713843, "t_jup": 3.38, "om": 45.79373631590866, "ma": 54.70227487425747, "name": "Proserpina", "i": 3.563452179001906, "tp": 2456560.3588124444, "prefix": "", "BV": 0.891, "spec": "S", "q": 2.415624298916493, "w": 194.3303855407759, "n": 0.2277921394120395, "sigma_ma": 3.4164e-05, "first_obs": "1861-01-31", "n_del_obs_used": "", "sigma_q": 1.0689e-07, "n_dop_obs_used": ""},
{"sigma_tp": 3.9886e-05, "diameter": 96.0, "epoch_mjd": 56800.0, "ad": 2.75162111872263, "producer": "Otto Matic", "rms": 0.66595, "H_sigma": "", "closeness": 2650.929803569506, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "27 Euterpe", "M2": "", "sigma_per": 2.1145e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -22708340000.0, "albedo": 0.162, "moid_ld": 373.11595916, "pha": "N", "neo": "N", "sigma_ad": 2.9531e-09, "PC": "", "profit": 2.002551232482998e-46, "spkid": 2000027.0, "sigma_w": 0.00010736, "sigma_i": 3.1296e-06, "per": 1313.467787885337, "id": "a0000027", "A1": "", "data_arc": 58292.0, "A3": "", "score": 6.196000000000002e-57, "per_y": 3.59607881693453, "sigma_n": 4.4124e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 77", "sigma_a": 2.5191e-09, "sigma_om": 0.00010697, "A2": "", "sigma_e": 2.9914e-08, "condition_code": 0.0, "rot_per": 10.4082, "prov_des": "", "G": "", "last_obs": "2013-06-16", "H": 7.0, "price": 3.098000000000001e-45, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 2084.0, "moid": 0.958748, "extent": "", "spec_B": "S", "e": 0.1723068454832589, "GM": 0.20672954000000002, "tp_cal": 20151221.2478194, "pdes": 27.0, "class": "MBA", "UB": 0.502, "a": 2.347185064494213, "t_jup": 3.54, "om": 94.80029960454286, "ma": 201.785830676121, "name": "Euterpe", "i": 1.58372474704768, "tp": 2457377.747819428, "prefix": "", "BV": 0.878, "spec": "S", "q": 1.942749010265795, "w": 356.5120503687621, "n": 0.2740836153885391, "sigma_ma": 1.0806e-05, "first_obs": "1853-11-10", "n_del_obs_used": "", "sigma_q": 7.0387e-08, "n_dop_obs_used": ""},
{"sigma_tp": 4.9961e-05, "diameter": 120.9, "epoch_mjd": 56800.0, "ad": 3.195798299852921, "producer": "Otto Matic", "rms": 0.64338, "H_sigma": "", "closeness": 2640.6001863981105, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "28 Bellona", "M2": "", "sigma_per": 4.9909e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 3.4, "saved": -19241250000.0, "albedo": 0.1763, "moid_ld": 533.7661135, "pha": "N", "neo": "N", "sigma_ad": 6.2954e-09, "PC": "", "profit": 1.690191649989442e-46, "spkid": 2000028.0, "sigma_w": 1.9854e-05, "sigma_i": 4.228e-06, "per": 1689.047249080486, "id": "a0000028", "A1": "", "data_arc": 57353.0, "A3": "", "score": 5.250000000000001e-57, "per_y": 4.62435934039832, "sigma_n": 6.2979e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 75", "sigma_a": 5.4677e-09, "sigma_om": 1.7266e-05, "A2": "", "sigma_e": 3.5503e-08, "condition_code": 0.0, "rot_per": 15.706, "prov_des": "", "G": "", "last_obs": "2013-10-09", "H": 7.09, "price": 2.6250000000000006e-45, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1841.0, "moid": 1.37155, "extent": "", "spec_B": "S", "e": 0.151375843681179, "GM": 0.17516625, "tp_cal": 20151024.4479429, "pdes": 28.0, "class": "MBA", "UB": 0.469, "a": 2.775634313844308, "t_jup": 3.299, "om": 144.3228048794678, "ma": 249.285951274424, "name": "Bellona", "i": 9.43315568910227, "tp": 2457319.9479428735, "prefix": "", "BV": 0.845, "spec": "S", "q": 2.355470327835696, "w": 344.5645138260573, "n": 0.2131379096682958, "sigma_ma": 1.0555e-05, "first_obs": "1856-09-29", "n_del_obs_used": "", "sigma_q": 9.9223e-08, "n_dop_obs_used": ""},
{"sigma_tp": 0.00010966, "diameter": 212.22, "epoch_mjd": 56800.0, "ad": 2.739540053244823, "producer": "Davide Farnocchia", "rms": 0.66549, "H_sigma": "", "closeness": 2644.8502650626488, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "29 Amphitrite", "M2": "", "sigma_per": 3.3963e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 6.8, "saved": -93395476923.07693, "albedo": 0.1793, "moid_ld": 540.1446098, "pha": "N", "neo": "N", "sigma_ad": 4.1581e-09, "PC": "", "profit": 8.217258589627944e-46, "spkid": 2000029.0, "sigma_w": 4.3442e-05, "sigma_i": 3.2474e-06, "per": 1491.748648100185, "id": "a0000029", "A1": "", "data_arc": 57626.0, "A3": "", "score": 2.548307692307693e-56, "per_y": 4.08418521040434, "sigma_n": 5.4944e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 139", "sigma_a": 3.8781e-09, "sigma_om": 3.3744e-05, "A2": "", "sigma_e": 3.2337e-08, "condition_code": 0.0, "rot_per": 5.3921, "prov_des": "", "G": 0.2, "last_obs": "2013-05-03", "H": 5.85, "price": 1.2741538461538465e-44, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1852.0, "moid": 1.38794, "extent": "", "spec_B": "S", "e": 0.07220913666102272, "GM": 0.8502428615384616, "tp_cal": 20160129.2048429, "pdes": 29.0, "class": "MBA", "UB": 0.449, "a": 2.555042630746509, "t_jup": 3.426, "om": 356.4271217145698, "ma": 211.2928141524472, "name": "Amphitrite", "i": 6.08918552365133, "tp": 2457416.704842919, "prefix": "", "BV": 0.838, "spec": "S", "q": 2.370545208248195, "w": 61.90623993865081, "n": 0.2413275188541164, "sigma_ma": 2.6411e-05, "first_obs": "1855-07-25", "n_del_obs_used": "", "sigma_q": 8.2666e-08, "n_dop_obs_used": ""},
{"sigma_tp": 5.152e-05, "diameter": 100.15, "epoch_mjd": 56800.0, "ad": 2.665912723193082, "producer": "Otto Matic", "rms": 0.57517, "H_sigma": "", "closeness": 2649.96718534916, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "30 Urania", "M2": "", "sigma_per": 2.5726e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.4, "saved": -16507160000.000002, "albedo": 0.1714, "moid_ld": 417.2213736, "pha": "N", "neo": "N", "sigma_ad": 3.4399e-09, "PC": "", "profit": 1.4551671321474453e-46, "spkid": 2000030.0, "sigma_w": 9.4253e-05, "sigma_i": 3.3457e-06, "per": 1329.163711824681, "id": "a0000030", "A1": "", "data_arc": 55981.0, "A3": "", "score": 4.504000000000001e-57, "per_y": 3.63905191464663, "sigma_n": 5.2422e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 82", "sigma_a": 3.0527e-09, "sigma_om": 9.2833e-05, "A2": "", "sigma_e": 3.2412e-08, "condition_code": 0.0, "rot_per": 13.686, "prov_des": "", "G": "", "last_obs": "2013-05-31", "H": 7.57, "price": 2.2520000000000006e-45, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 2421.0, "moid": 1.07208, "extent": "", "spec_B": "Sl", "e": 0.1268321461975403, "GM": 0.15027596000000001, "tp_cal": 20150519.3009464, "pdes": 30.0, "class": "MBA", "UB": 0.459, "a": 2.365847240149406, "t_jup": 3.536, "om": 307.6340829918393, "ma": 262.1427236225448, "name": "Urania", "i": 2.098068400227526, "tp": 2457161.800946386, "prefix": "", "BV": 0.873, "spec": "Sl", "q": 2.065781757105729, "w": 86.70679825709206, "n": 0.2708469970984917, "sigma_ma": 1.3957e-05, "first_obs": "1860-02-22", "n_del_obs_used": "", "sigma_q": 7.5942e-08, "n_dop_obs_used": ""},
{"sigma_tp": 6.681e-05, "diameter": 255.9, "epoch_mjd": 56800.0, "ad": 3.855465845938796, "producer": "Otto Matic", "rms": 0.63654, "H_sigma": "", "closeness": 2634.4883228948706, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "31 Euphrosyne", "M2": "", "sigma_per": 7.2775e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 11.5, "saved": -120458646400.00002, "albedo": 0.0543, "moid_ld": 608.9498658, "pha": "N", "neo": "N", "sigma_ad": 9.1396e-09, "PC": "", "profit": 9207014747.765032, "spkid": 2000031.0, "sigma_w": 1.5204e-05, "sigma_i": 5.2046e-06, "per": 2046.644839412511, "id": "a0000031", "A1": "", "data_arc": 55756.0, "A3": "", "score": 131.74441614474355, "per_y": 5.6034081845654, "sigma_n": 6.2546e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 65", "sigma_a": 7.4785e-09, "sigma_om": 8.788e-06, "A2": "", "sigma_e": 3.5121e-08, "condition_code": 0.0, "rot_per": 5.53, "prov_des": "", "G": "", "last_obs": "2013-06-21", "H": 6.74, "price": 143323883195.26123, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 1311.0, "moid": 1.56474, "extent": "", "spec_B": "Cb", "e": 0.2221208543341311, "GM": 1.110887675, "tp_cal": 20120509.577943, "pdes": 31.0, "class": "MBA", "UB": 0.317, "a": 3.154733701062187, "t_jup": 3.01, "om": 31.15120904833842, "ma": 130.7661863731359, "name": "Euphrosyne", "i": 26.30938318905859, "tp": 2456057.077943027, "prefix": "", "BV": 0.687, "spec": "Cb", "q": 2.454001556185579, "w": 61.39669277061925, "n": 0.1758976413823407, "sigma_ma": 1.2075e-05, "first_obs": "1860-10-25", "n_del_obs_used": "", "sigma_q": 1.115e-07, "n_dop_obs_used": ""},
{"sigma_tp": 0.00014663, "diameter": 80.76, "epoch_mjd": 56800.0, "ad": 2.795384012320423, "producer": "Otto Matic", "rms": 0.68764, "H_sigma": "", "closeness": 2644.1282646546433, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "32 Pomona", "M2": "", "sigma_per": 5.9487e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 1.6, "saved": -6.848111638758519e+17, "albedo": 0.2564, "moid_ld": 536.3657691, "pha": "N", "neo": "N", "sigma_ad": 7.2914e-09, "PC": "", "profit": 6.023561795663059e-39, "spkid": 2000032.0, "sigma_w": 7.0843e-05, "sigma_i": 6.3952e-06, "per": 1520.404879998193, "id": "a0000032", "A1": "", "data_arc": 54816.0, "A3": "", "score": 1.8685161360869085e-49, "per_y": 4.16264169746254, "sigma_n": 9.2641e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 79", "sigma_a": 6.7496e-09, "sigma_om": 6.1709e-05, "A2": "", "sigma_e": 5.9687e-08, "condition_code": 0.0, "rot_per": 9.448, "prov_des": "", "G": "", "last_obs": "2014-02-05", "H": 7.56, "price": 9.342580680434543e-38, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1386.0, "moid": 1.37823, "extent": "", "spec_B": "S", "e": 0.08027483246858085, "GM": "", "tp_cal": 20141011.6241382, "pdes": 32.0, "class": "MBA", "UB": 0.429, "a": 2.587660036411822, "t_jup": 3.41, "om": 220.4611161643659, "ma": 326.466373246833, "name": "Pomona", "i": 5.523642416462097, "tp": 2456942.124138221, "prefix": "", "BV": 0.857, "spec": "S", "q": 2.379936060503221, "w": 338.8008623543291, "n": 0.2367790348057998, "sigma_ma": 3.47e-05, "first_obs": "1864-01-07", "n_del_obs_used": "", "sigma_q": 1.5432e-07, "n_dop_obs_used": ""},
{"sigma_tp": 5.4521e-05, "diameter": "", "sigma_q": 1.8807e-07, "epoch_mjd": 56800.0, "ad": 3.833812730391414, "producer": "Otto Matic", "rms": 0.6406, "H_sigma": "", "closeness": 2642.2507702151142, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "33 Polyhymnia", "M2": "", "sigma_per": 4.7705e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -45446000000.0, "albedo": "", "moid_ld": 347.93121178, "pha": "N", "neo": "N", "sigma_ad": 6.8732e-09, "PC": "", "profit": 3.99456706697278e-46, "est_diameter": 66.9082007702406, "sigma_w": 0.00017682, "sigma_i": 7.1373e-06, "per": 1773.976108838661, "id": "a0000033", "A1": "", "data_arc": 57493.0, "A3": "", "score": 1.2400000000000004e-56, "per_y": 4.85688188593747, "sigma_n": 5.4573e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 11", "sigma_a": 5.1416e-09, "sigma_om": 0.00017679, "A2": "", "sigma_e": 6.5544e-08, "condition_code": 0.0, "rot_per": 18.608, "prov_des": "", "G": 0.33, "last_obs": "2013-06-23", "H": 8.55, "price": 6.200000000000001e-45, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1513.0, "moid": 0.894034, "extent": "", "spec_B": "Sq", "e": 0.3367945571723523, "GM": 0.41372600000000004, "tp_cal": 20140910.0077525, "pdes": 33.0, "class": "MBA", "UB": 0.438, "a": 2.867914676807831, "t_jup": 3.212, "om": 8.579413031117696, "ma": 337.6756909434807, "name": "Polyhymnia", "i": 1.868721824185494, "tp": 2456910.507752535, "prefix": "", "BV": 0.848, "spec": "Sq", "q": 1.902016623224248, "w": 338.098807033505, "n": 0.202933961853452, "sigma_ma": 1.1038e-05, "first_obs": "1856-01-25", "n_del_obs_used": "", "spkid": 2000033.0, "n_dop_obs_used": ""},
{"sigma_tp": 9.1765e-05, "diameter": 113.54, "epoch_mjd": 56800.0, "ad": 2.968679765276407, "producer": "Otto Matic", "rms": 0.59608, "H_sigma": "", "closeness": 2642.0320526235373, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "34 Circe", "M2": "", "sigma_per": 6.2077e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 3.3, "saved": -26221473900.000004, "albedo": 0.0541, "moid_ld": 551.8936521, "pha": "N", "neo": "N", "sigma_ad": 7.634e-09, "PC": "", "profit": 2024483048.9587862, "spkid": 2000034.0, "sigma_w": 4.883e-05, "sigma_i": 2.8618e-06, "per": 1609.345596320967, "id": "a0000034", "A1": "", "data_arc": 54700.0, "A3": "", "score": 132.12160263117687, "per_y": 4.40614810765494, "sigma_n": 8.6285e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 46", "sigma_a": 6.9113e-09, "sigma_om": 4.4236e-05, "A2": "", "sigma_e": 2.7698e-08, "condition_code": 0.0, "rot_per": 12.15, "prov_des": "", "G": "", "last_obs": "2014-02-01", "H": 8.51, "price": 31424767137.517494, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 1748.0, "moid": 1.41813, "extent": "", "spec_B": "Ch", "e": 0.1045772466808447, "GM": 0.24323085, "tp_cal": 20130510.5141278, "pdes": 34.0, "class": "MBA", "UB": 0.357, "a": 2.687616256986121, "t_jup": 3.359, "om": 184.4369502860023, "ma": 84.4411009629823, "name": "Circe", "i": 5.497764257723134, "tp": 2456423.0141278245, "prefix": "", "BV": 0.707, "spec": "Ch", "q": 2.406552748695835, "w": 330.3464051339697, "n": 0.2236934073221907, "sigma_ma": 2.0553e-05, "first_obs": "1864-04-28", "n_del_obs_used": "", "sigma_q": 7.4829e-08, "n_dop_obs_used": ""},
{"sigma_tp": 7.2867e-05, "diameter": 103.11, "epoch_mjd": 56800.0, "ad": 3.669702241870159, "producer": "Otto Matic", "rms": 0.60964, "H_sigma": "", "closeness": 2637.483131939614, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "35 Leukothea", "M2": "", "sigma_per": 7.8713e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.7, "saved": -7.122781945823436e+17, "albedo": 0.0662, "moid_ld": 511.0074519, "pha": "N", "neo": "N", "sigma_ad": 1.0194e-08, "PC": "", "profit": 5.489822503333336e+16, "spkid": 2000035.0, "sigma_w": 3.4409e-05, "sigma_i": 5.2671e-06, "per": 1889.077382971337, "id": "a0000035", "A1": "", "data_arc": 56219.0, "A3": "", "score": 131.8941565969807, "per_y": 5.17201199992153, "sigma_n": 7.9406e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 21", "sigma_a": 8.3076e-09, "sigma_om": 3.2286e-05, "A2": "", "sigma_e": 3.8179e-08, "condition_code": 0.0, "rot_per": 31.9, "prov_des": "", "G": "", "last_obs": "2014-02-11", "H": 8.5, "price": 8.53620070604861e+17, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 1772.0, "moid": 1.31307, "extent": "", "spec_B": "C", "e": 0.2270528810715553, "GM": "", "tp_cal": 20160322.233989, "pdes": 35.0, "class": "MBA", "UB": 0.335, "a": 2.990663481972755, "t_jup": 3.202, "om": 353.7827204225474, "ma": 232.4646019226285, "name": "Leukothea", "i": 7.934735335211617, "tp": 2457469.7339889896, "prefix": "", "BV": 0.703, "spec": "C", "q": 2.311624722075352, "w": 213.5531331533975, "n": 0.1905692182041556, "sigma_ma": 1.3586e-05, "first_obs": "1860-03-11", "n_del_obs_used": "", "sigma_q": 1.158e-07, "n_dop_obs_used": ""},
{"sigma_tp": 4.8991e-05, "diameter": 105.61, "epoch_mjd": 56800.0, "ad": 3.580358742839502, "producer": "Otto Matic", "rms": 0.52265, "H_sigma": "", "closeness": 2643.774740264322, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "36 Atalante", "M2": "", "sigma_per": 8.2958e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 4.0, "saved": -31077302400.000004, "albedo": 0.0654, "moid_ld": 376.07365116, "pha": "N", "neo": "N", "sigma_ad": 1.1891e-08, "PC": "", "profit": 2400969956.154873, "spkid": 2000036.0, "sigma_w": 2.1133e-05, "sigma_i": 8.7209e-06, "per": 1665.193518396406, "id": "a0000036", "A1": "", "data_arc": 53806.0, "A3": "", "score": 132.2087370132161, "per_y": 4.55905138506887, "sigma_n": 1.077e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 66", "sigma_a": 9.1316e-09, "sigma_om": 1.7215e-05, "A2": "", "sigma_e": 7.2432e-08, "condition_code": 0.0, "rot_per": 9.93, "prov_des": "", "G": "", "last_obs": "2013-06-03", "H": 8.46, "price": 37244168459.27999, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 940.0, "moid": 0.966348, "extent": "", "spec_B": "", "e": 0.3022139819855106, "GM": 0.2882736, "tp_cal": 20150706.244588, "pdes": 36.0, "class": "MBA", "UB": 0.363, "a": 2.749439640772756, "t_jup": 3.207, "om": 358.4191802607596, "ma": 271.5249668887098, "name": "Atalante", "i": 18.42437935297339, "tp": 2457209.7445879914, "prefix": "", "BV": 0.713, "spec": "C", "q": 1.91852053870601, "w": 46.96954090729154, "n": 0.2161910889172104, "sigma_ma": 1.0338e-05, "first_obs": "1866-02-08", "n_del_obs_used": "", "sigma_q": 1.9912e-07, "n_dop_obs_used": ""},
{"sigma_tp": 6.2861e-05, "diameter": 108.35, "epoch_mjd": 56800.0, "ad": 3.10199511518626, "producer": "Otto Matic", "rms": 0.61569, "H_sigma": "", "closeness": 2643.7440726658037, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "37 Fides", "M2": "", "sigma_per": 3.8613e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 1.9, "saved": -1.653745394755008e+18, "albedo": 0.1826, "moid_ld": 466.8989241, "pha": "N", "neo": "N", "sigma_ad": 5.0875e-09, "PC": "", "profit": 1.4544141082303844e-38, "spkid": 2000037.0, "sigma_w": 8.7425e-05, "sigma_i": 4.9474e-06, "per": 1569.569440440192, "id": "a0000037", "A1": "", "data_arc": 57698.0, "A3": "", "score": 4.512265742851318e-49, "per_y": 4.29724692796767, "sigma_n": 5.6426e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 90", "sigma_a": 4.335e-09, "sigma_om": 8.6159e-05, "A2": "", "sigma_e": 3.6874e-08, "condition_code": 0.0, "rot_per": 7.3335, "prov_des": "", "G": 0.24, "last_obs": "2013-09-26", "H": 7.29, "price": 2.256132871425659e-37, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1708.0, "moid": 1.19973, "extent": "", "spec_B": "S", "e": 0.1735989291541365, "GM": "", "tp_cal": 20150330.568341, "pdes": 37.0, "class": "MBA", "UB": 0.414, "a": 2.643147533733694, "t_jup": 3.37, "om": 7.298490454089948, "ma": 288.5379799809252, "name": "Fides", "i": 3.072589104964019, "tp": 2457112.068341039, "prefix": "", "BV": 0.843, "spec": "S", "q": 2.184299952281128, "w": 62.89546823435317, "n": 0.2293622637677226, "sigma_ma": 1.4385e-05, "first_obs": "1855-10-07", "n_del_obs_used": "", "sigma_q": 9.7592e-08, "n_dop_obs_used": ""},
{"sigma_tp": 8.0952e-05, "diameter": 115.93, "epoch_mjd": 56800.0, "ad": 3.163938820341463, "producer": "Otto Matic", "rms": 0.58061, "H_sigma": "", "closeness": 2641.4198341900965, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "38 Leda", "M2": "", "sigma_per": 7.282e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.1, "saved": -41076712200.0, "albedo": 0.0618, "moid_ld": 517.8724107, "pha": "N", "neo": "N", "sigma_ad": 9.2773e-09, "PC": "", "profit": 3170677515.366, "spkid": 2000038.0, "sigma_w": 4.7694e-05, "sigma_i": 5.1624e-06, "per": 1655.643731963045, "id": "a0000038", "A1": "", "data_arc": 57721.0, "A3": "", "score": 132.09099170950483, "per_y": 4.53290549476535, "sigma_n": 9.5636e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 79", "sigma_a": 8.0311e-09, "sigma_om": 4.4567e-05, "A2": "", "sigma_e": 4.5896e-08, "condition_code": 0.0, "rot_per": 12.838, "prov_des": "", "G": "", "last_obs": "2014-02-10", "H": 8.32, "price": 49227824514.46499, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 1422.0, "moid": 1.33071, "extent": "", "spec_B": "Cgh", "e": 0.1551785131136265, "GM": 0.38102830000000004, "tp_cal": 20140923.897267, "pdes": 38.0, "class": "MBA", "UB": 0.419, "a": 2.738917651622083, "t_jup": 3.323, "om": 295.7619143929259, "ma": 333.0600157203053, "name": "Leda", "i": 6.974852638642974, "tp": 2456924.3972669775, "prefix": "", "BV": 0.726, "spec": "Cgh", "q": 2.313896482902702, "w": 169.8501107535607, "n": 0.2174380834777536, "sigma_ma": 1.7571e-05, "first_obs": "1856-01-29", "n_del_obs_used": "", "sigma_q": 1.2644e-07, "n_dop_obs_used": ""},
{"sigma_tp": 7.2913e-05, "diameter": 149.52, "epoch_mjd": 56800.0, "ad": 3.084536316541491, "producer": "Otto Matic", "rms": 0.5404, "H_sigma": "", "closeness": 2640.36155534102, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "39 Laetitia", "M2": "", "sigma_per": 3.1284e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 8.6, "saved": -32208020000.000004, "albedo": 0.2869, "moid_ld": 565.8259381, "pha": "N", "neo": "N", "sigma_ad": 3.8226e-09, "PC": "", "profit": 2.8289641748314696e-46, "spkid": 2000039.0, "sigma_w": 2.4445e-05, "sigma_i": 3.3245e-06, "per": 1682.905713677068, "id": "a0000039", "A1": "", "data_arc": 57407.0, "A3": "", "score": 8.788000000000003e-57, "per_y": 4.60754473285987, "sigma_n": 3.9765e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 78", "sigma_a": 3.4314e-09, "sigma_om": 1.9386e-05, "A2": "", "sigma_e": 3.0304e-08, "condition_code": 0.0, "rot_per": 5.138, "prov_des": "", "G": "", "last_obs": "2013-05-02", "H": 6.0, "price": 4.394000000000001e-45, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 5044.0, "moid": 1.45393, "extent": "", "spec_B": "S", "e": 0.1139926254585484, "GM": 0.29321162, "tp_cal": 20150613.3697099, "pdes": 39.0, "class": "MBA", "UB": 0.494, "a": 2.76890191734601, "t_jup": 3.305, "om": 157.118189148888, "ma": 277.3494424425006, "name": "Laetitia", "i": 10.3799409416295, "tp": 2457186.869709867, "prefix": "", "BV": 0.898, "spec": "S", "q": 2.45326751815053, "w": 208.3269284182401, "n": 0.2139157274672373, "sigma_ma": 1.555e-05, "first_obs": "1856-02-28", "n_del_obs_used": "", "sigma_q": 8.38e-08, "n_dop_obs_used": ""},
{"sigma_tp": 0.00011052, "diameter": 107.62, "epoch_mjd": 56800.0, "ad": 2.373693298788139, "producer": "Otto Matic", "rms": 0.54771, "H_sigma": "", "closeness": 2652.152699239894, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "40 Harmonia", "M2": "", "sigma_per": 1.7619e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 6.2, "saved": -1.620544137109092e+18, "albedo": 0.2418, "moid_ld": 451.9586878, "pha": "N", "neo": "N", "sigma_ad": 2.2357e-09, "PC": "", "profit": 1.4297477080675906e-38, "spkid": 2000040.0, "sigma_w": 5.3826e-05, "sigma_i": 2.873e-06, "per": 1247.098881501274, "id": "a0000040", "A1": "", "data_arc": 54339.0, "A3": "", "score": 4.421675681061643e-49, "per_y": 3.41437065434983, "sigma_n": 4.0783e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 90", "sigma_a": 2.1356e-09, "sigma_om": 4.3573e-05, "A2": "", "sigma_e": 2.9042e-08, "condition_code": 0.0, "rot_per": 8.91, "prov_des": "", "G": "", "last_obs": "2013-07-07", "H": 7.0, "price": 2.2108378405308217e-37, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 4413.0, "moid": 1.16134, "extent": "", "spec_B": "S", "e": 0.04686246485385375, "GM": "", "tp_cal": 20141115.900421, "pdes": 40.0, "class": "MBA", "UB": 0.432, "a": 2.267435674197676, "t_jup": 3.61, "om": 94.24034597457604, "ma": 308.934160306665, "name": "Harmonia", "i": 4.257639510590712, "tp": 2456977.4004210127, "prefix": "", "BV": 0.854, "spec": "S", "q": 2.161178049607213, "w": 268.6601589092828, "n": 0.2886699726381176, "sigma_ma": 3.1892e-05, "first_obs": "1864-09-27", "n_del_obs_used": "", "sigma_q": 6.6006e-08, "n_dop_obs_used": ""},
{"sigma_tp": 2.886e-05, "diameter": 174.0, "epoch_mjd": 56800.0, "ad": 3.52028392236128, "producer": "Otto Matic", "rms": 0.5144, "H_sigma": "", "closeness": 2642.9390060868213, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "41 Daphne", "M2": "", "sigma_per": 5.7107e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 11.7, "saved": -45393004200.0, "albedo": 0.0828, "moid_ld": 399.8916335, "pha": "N", "neo": "N", "sigma_ad": 7.9992e-09, "PC": "", "profit": 3505863717.2097044, "spkid": 2000041.0, "sigma_w": 1.1466e-05, "sigma_i": 2.1841e-06, "per": 1675.445224181172, "id": "a0000041", "A1": "", "data_arc": 53795.0, "A3": "", "score": 132.16695030434107, "per_y": 4.58711902582114, "sigma_n": 7.3237e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 98", "sigma_a": 6.2732e-09, "sigma_om": 9.9615e-06, "A2": "", "sigma_e": 2.2066e-08, "condition_code": 0.0, "rot_per": 5.988, "prov_des": "", "G": 0.1, "last_obs": "2013-10-25", "H": 7.12, "price": 54400625689.36499, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 1497.0, "moid": 1.02755, "extent": "", "spec_B": "Ch", "e": 0.2751359425472085, "GM": 0.4210663, "tp_cal": 20130108.577633, "pdes": 41.0, "class": "MBA", "UB": 0.363, "a": 2.760712646315318, "t_jup": 3.232, "om": 178.0862159365383, "ma": 107.3100149945648, "name": "Daphne", "i": 15.79354511052748, "tp": 2456301.077632974, "prefix": "", "BV": 0.726, "spec": "Ch", "q": 2.001141370269355, "w": 46.01328392490242, "n": 0.2148682599730708, "sigma_ma": 6.4951e-06, "first_obs": "1866-07-13", "n_del_obs_used": "", "sigma_q": 6.1005e-08, "n_dop_obs_used": ""},
{"sigma_tp": 3.647e-05, "diameter": 100.2, "epoch_mjd": 56800.0, "ad": 2.985204833675116, "producer": "Otto Matic", "rms": 0.63287, "H_sigma": "", "closeness": 2649.188255001033, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "42 Isis", "M2": "", "sigma_per": 3e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 3.4, "saved": -13355600000.000002, "albedo": 0.1712, "moid_ld": 350.65306676, "pha": "N", "neo": "N", "sigma_ad": 4.2823e-09, "PC": "", "profit": 521518476.74880916, "spkid": 2000042.0, "sigma_w": 2.6588e-05, "sigma_i": 4.047e-06, "per": 1394.215323591035, "id": "a0000042", "A1": "", "data_arc": 57577.0, "A3": "", "score": 132.4755594167183, "per_y": 3.81715352112535, "sigma_n": 5.5561e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 74", "sigma_a": 3.5037e-09, "sigma_om": 2.5101e-05, "A2": "", "sigma_e": 3.5033e-08, "condition_code": 0.0, "rot_per": 13.597, "prov_des": "", "G": "", "last_obs": "2014-02-09", "H": 7.53, "price": 8073333333.333334, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1832.0, "moid": 0.901028, "extent": "", "spec_B": "L", "e": 0.2222306948017839, "GM": 0.15392386666666666, "tp_cal": 20130502.9086329, "pdes": 42.0, "class": "MBA", "UB": 0.462, "a": 2.442423387312527, "t_jup": 3.452, "om": 84.35872393608147, "ma": 99.43434834457507, "name": "Isis", "i": 8.526137854694156, "tp": 2456415.4086329076, "prefix": "", "BV": 0.874, "spec": "L", "q": 1.899641940949938, "w": 236.604863401375, "n": 0.2582097570644681, "sigma_ma": 9.5276e-06, "first_obs": "1856-06-20", "n_del_obs_used": "", "sigma_q": 8.5106e-08, "n_dop_obs_used": ""},
{"sigma_tp": 5.6748e-05, "diameter": 65.88, "epoch_mjd": 56800.0, "ad": 2.574548859212562, "producer": "Otto Matic", "rms": 0.64075, "H_sigma": "", "closeness": 2654.834290213808, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "43 Ariadne", "M2": "", "sigma_per": 2.6535e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.5, "saved": -9309100000.0, "albedo": 0.274, "moid_ld": 317.09805102, "pha": "N", "neo": "N", "sigma_ad": 3.8133e-09, "PC": "", "profit": 8.221387793540942e-47, "spkid": 2000043.0, "sigma_w": 8.908e-05, "sigma_i": 6.084e-06, "per": 1194.325293418095, "id": "a0000043", "A1": "", "data_arc": 54613.0, "A3": "", "score": 2.5400000000000007e-57, "per_y": 3.26988444467651, "sigma_n": 6.6969e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 85", "sigma_a": 3.263e-09, "sigma_om": 8.7758e-05, "A2": "", "sigma_e": 5.024e-08, "condition_code": 0.0, "rot_per": 5.762, "prov_des": "", "G": 0.11, "last_obs": "2014-02-11", "H": 7.93, "price": 1.2700000000000004e-45, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1481.0, "moid": 0.814806, "extent": "", "spec_B": "Sk", "e": 0.1686514515740649, "GM": 0.0847471, "tp_cal": 20141018.2690712, "pdes": 43.0, "class": "MBA", "UB": 0.49, "a": 2.203008309915574, "t_jup": 3.642, "om": 264.871920042432, "ma": 315.3079333474063, "name": "Ariadne", "i": 3.470538324284148, "tp": 2456948.769071162, "prefix": "", "BV": 0.863, "spec": "Sk", "q": 1.831467760618585, "w": 16.36195532787024, "n": 0.3014254173330779, "sigma_ma": 1.7075e-05, "first_obs": "1864-08-03", "n_del_obs_used": "", "sigma_q": 1.1085e-07, "n_dop_obs_used": ""},
{"sigma_tp": 4.9913e-05, "diameter": 70.64, "epoch_mjd": 56800.0, "ad": 2.783324636655874, "producer": "Otto Matic", "rms": 0.64171, "H_sigma": "", "closeness": 2648.6982115015608, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "44 Nysa", "M2": "", "sigma_per": 2.9849e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 4.0, "saved": 6.617183327355739e+17, "albedo": 0.5458, "moid_ld": 420.1323652, "pha": "N", "neo": "N", "sigma_ad": 4.0199e-09, "PC": "", "profit": 3284567001811505.5, "spkid": 2000044.0, "sigma_w": 6.1791e-05, "sigma_i": 4.185e-06, "per": 1377.80439433353, "id": "a0000044", "A1": "", "data_arc": 54766.0, "A3": "", "score": 132.45491057507806, "per_y": 3.77222284554012, "sigma_n": 5.6606e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 96", "sigma_a": 3.4998e-09, "sigma_om": 6.0544e-05, "A2": "", "sigma_e": 3.6319e-08, "condition_code": 0.0, "rot_per": 6.422, "prov_des": "", "G": 0.46, "last_obs": "2014-02-10", "H": 7.03, "price": 5.085593609284949e+16, "IR": "", "spec_T": "E", "epoch": 2456800.5, "n_obs_used": 2083.0, "moid": 1.07956, "extent": "", "spec_B": "Xc", "e": 0.1486060636919853, "GM": "", "tp_cal": 20140906.1628004, "pdes": 44.0, "class": "MBA", "UB": 0.245, "a": 2.423219522026014, "t_jup": 3.494, "om": 131.5605857207327, "ma": 332.2612234965031, "name": "Nysa", "i": 3.706428148003618, "tp": 2456906.6628004443, "prefix": "", "BV": 0.703, "spec": "Xc", "q": 2.063114407396154, "w": 343.4982606449655, "n": 0.2612852749494523, "sigma_ma": 1.3031e-05, "first_obs": "1864-03-02", "n_del_obs_used": "", "sigma_q": 8.7791e-08, "n_dop_obs_used": ""},
{"sigma_tp": 0.0001218, "diameter": 214.63, "epoch_mjd": 56800.0, "ad": 2.94663435847872, "producer": "Otto Matic", "rms": 0.56738, "H_sigma": "", "closeness": 2641.1656656167943, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "45 Eugenia", "M2": "", "sigma_per": 5.5814e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 4.2, "saved": -41939970600.0, "albedo": 0.0398, "moid_ld": 581.2448535, "pha": "N", "neo": "N", "sigma_ad": 6.6903e-09, "PC": "", "profit": 3237000211.033915, "spkid": 2000045.0, "sigma_w": 4.9044e-05, "sigma_i": 4.4147e-06, "per": 1638.829509664291, "id": "a0000045", "A1": "", "data_arc": 53937.0, "A3": "", "score": 132.0782832808397, "per_y": 4.48687066300969, "sigma_n": 7.4813e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 72", "sigma_a": 6.1765e-09, "sigma_om": 4.1596e-05, "A2": "", "sigma_e": 4.1145e-08, "condition_code": 0.0, "rot_per": 5.699, "prov_des": "", "G": 0.07, "last_obs": "2014-01-20", "H": 7.46, "price": 50262384749.44499, "IR": "", "spec_T": "FC", "epoch": 2456800.5, "n_obs_used": 2086.0, "moid": 1.49355, "extent": "", "spec_B": "C", "e": 0.08318511353951505, "GM": 0.3890359, "tp_cal": 20140511.8001576, "pdes": 45.0, "class": "MBA", "UB": 0.274, "a": 2.720342369597406, "t_jup": 3.344, "om": 147.6817669973928, "ma": 2.460257899465591, "name": "Eugenia", "i": 6.603357783585562, "tp": 2456789.300157647, "prefix": "", "BV": 0.676, "spec": "C", "q": 2.494050380716093, "w": 88.68923715226389, "n": 0.2196689758617691, "sigma_ma": 2.6756e-05, "first_obs": "1866-05-19", "n_del_obs_used": "", "sigma_q": 1.1234e-07, "n_dop_obs_used": ""},
{"sigma_tp": 6.3173e-05, "diameter": 124.14, "epoch_mjd": 56800.0, "ad": 2.959597770131887, "producer": "Otto Matic", "rms": 0.62555, "H_sigma": "", "closeness": 2646.4472526935965, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "46 Hestia", "M2": "", "sigma_per": 3.7536e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 3.6, "saved": 91496218000.0, "albedo": 0.0519, "moid_ld": 422.6736453, "pha": "N", "neo": "N", "sigma_ad": 5.052e-09, "PC": "", "profit": 453773223.82908726, "spkid": 2000046.0, "sigma_w": 0.00011686, "sigma_i": 3.8592e-06, "per": 1465.96682560733, "id": "a0000046", "A1": "", "data_arc": 54477.0, "A3": "", "score": 132.33642640043982, "per_y": 4.01359842739858, "sigma_n": 6.2878e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 127", "sigma_a": 4.311e-09, "sigma_om": 0.00011594, "A2": "", "sigma_e": 3.6447e-08, "condition_code": 0.0, "rot_per": 21.04, "prov_des": "", "G": 0.06, "last_obs": "2013-05-31", "H": 8.36, "price": 7031882880.0, "IR": "", "spec_T": "P", "epoch": 2456800.5, "n_obs_used": 2068.0, "moid": 1.08609, "extent": "", "spec_B": "Xc", "e": 0.1718774958817292, "GM": 0.42573740000000004, "tp_cal": 20140706.996978, "pdes": 46.0, "class": "MBA", "UB": 0.226, "a": 2.525518051616022, "t_jup": 3.432, "om": 181.1279448982478, "ma": 348.9500145527803, "name": "Hestia", "i": 2.344481911486589, "tp": 2456845.4969780254, "prefix": "", "BV": 0.692, "spec": "Xc", "q": 2.091438333100156, "w": 176.5452389715381, "n": 0.2455717235285028, "sigma_ma": 1.551e-05, "first_obs": "1864-04-05", "n_del_obs_used": "", "sigma_q": 9.2114e-08, "n_dop_obs_used": ""},
{"sigma_tp": 0.00012664, "diameter": 126.96, "epoch_mjd": 56800.0, "ad": 3.26224511557982, "producer": "Otto Matic", "rms": 0.64915, "H_sigma": "", "closeness": 2638.291664417389, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "47 Aglaja", "M2": "", "sigma_per": 6.9936e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 7.7, "saved": -20438386500.000004, "albedo": 0.0801, "moid_ld": 578.0925765, "pha": "N", "neo": "N", "sigma_ad": 8.523e-09, "PC": "", "profit": 2226165258.818683, "spkid": 2000047.0, "sigma_w": 5.7314e-05, "sigma_i": 6.2023e-06, "per": 1784.586992586588, "id": "a0000047", "A1": "", "data_arc": 56101.0, "A3": "", "score": 131.93458322086946, "per_y": 4.8859329023589, "sigma_n": 7.9055e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 80", "sigma_a": 7.5226e-09, "sigma_om": 5.1841e-05, "A2": "", "sigma_e": 4.415e-08, "condition_code": 0.0, "rot_per": 13.178, "prov_des": "", "G": 0.16, "last_obs": "2013-09-30", "H": 7.84, "price": 34604342441.987495, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 1305.0, "moid": 1.48545, "extent": "", "spec_B": "B", "e": 0.1329838657327027, "GM": 0.26858825000000003, "tp_cal": 20130915.1262645, "pdes": 47.0, "class": "MBA", "UB": 0.3, "a": 2.879339427724436, "t_jup": 3.276, "om": 3.127572300939654, "ma": 50.40636581250682, "name": "Aglaja", "i": 4.983074291243555, "tp": 2456550.6262645205, "prefix": "", "BV": 0.665, "spec": "B", "q": 2.496433739869053, "w": 313.9022638785052, "n": 0.2017273472772624, "sigma_ma": 2.5603e-05, "first_obs": "1860-02-24", "n_del_obs_used": "", "sigma_q": 1.2678e-07, "n_dop_obs_used": ""},
{"sigma_tp": 0.00015261, "diameter": 221.8, "epoch_mjd": 56800.0, "ad": 3.338229045303409, "producer": "Otto Matic", "rms": 0.61706, "H_sigma": "", "closeness": 2633.560057766412, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "48 Doris", "M2": "", "sigma_per": 7.3218e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 7.5, "saved": -48270532200.00001, "albedo": 0.0624, "moid_ld": 740.629427, "pha": "N", "neo": "N", "sigma_ad": 8.1374e-09, "PC": "", "profit": 3714875615.9322877, "spkid": 2000048.0, "sigma_w": 4.296e-05, "sigma_i": 3.5891e-06, "per": 2002.431635117292, "id": "a0000048", "A1": "", "data_arc": 56220.0, "A3": "", "score": 131.6980028883206, "per_y": 5.4823590283841, "sigma_n": 6.5736e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 138", "sigma_a": 7.579e-09, "sigma_om": 3.3817e-05, "A2": "", "sigma_e": 3.2803e-08, "condition_code": 0.0, "rot_per": 11.89, "prov_des": "", "G": "", "last_obs": "2014-01-30", "H": 6.9, "price": 57849159805.96499, "IR": "", "spec_T": "CG", "epoch": 2456800.5, "n_obs_used": 1725.0, "moid": 1.9031, "extent": "", "spec_B": "Ch", "e": 0.07368433689181061, "GM": 0.4477583, "tp_cal": 20121013.0331982, "pdes": 48.0, "class": "MBA", "UB": 0.442, "a": 3.10913452921106, "t_jup": 3.205, "om": 183.581584681625, "ma": 105.5257242934831, "name": "Doris", "i": 6.5478226056527, "tp": 2456213.5331982113, "prefix": "", "BV": 0.716, "spec": "Ch", "q": 2.880040013118712, "w": 253.5418348482931, "n": 0.1797814185945545, "sigma_ma": 2.7539e-05, "first_obs": "1860-02-27", "n_del_obs_used": "", "sigma_q": 1.0291e-07, "n_dop_obs_used": ""},
{"sigma_tp": 5.7205e-05, "diameter": 149.8, "epoch_mjd": 56800.0, "ad": 3.798183337868826, "producer": "Otto Matic", "rms": 0.70958, "H_sigma": "", "closeness": 2635.631692581334, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "49 Pales", "M2": "", "sigma_per": 6.3984e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 3.8, "saved": -40875285240.0, "albedo": 0.0597, "moid_ld": 544.0557683, "pha": "N", "neo": "N", "sigma_ad": 8.1503e-09, "PC": "", "profit": 3148215701.2054706, "spkid": 2000049.0, "sigma_w": 9.904e-05, "sigma_i": 4.5725e-06, "per": 1987.840426482561, "id": "a0000049", "A1": "", "data_arc": 54622.0, "A3": "", "score": 131.8015846290667, "per_y": 5.44241047633829, "sigma_n": 5.8292e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 50", "sigma_a": 6.6392e-09, "sigma_om": 9.854e-05, "A2": "", "sigma_e": 4.9544e-08, "condition_code": 0.0, "rot_per": 10.42, "prov_des": "", "G": "", "last_obs": "2013-06-08", "H": 7.7, "price": 48986427126.30299, "IR": "", "spec_T": "CG", "epoch": 2456800.5, "n_obs_used": 1446.0, "moid": 1.39799, "extent": "", "spec_B": "Ch", "e": 0.2275914730611845, "GM": 0.37915986, "tp_cal": 20150825.9776241, "pdes": 49.0, "class": "MBA", "UB": 0.411, "a": 3.094012479898938, "t_jup": 3.181, "om": 285.9977153828911, "ma": 276.6975666264731, "name": "Pales", "i": 3.173954218812457, "tp": 2457260.477624123, "prefix": "", "BV": 0.749, "spec": "Ch", "q": 2.38984162192905, "w": 110.1914190288871, "n": 0.1811010558010493, "sigma_ma": 1.0195e-05, "first_obs": "1863-11-20", "n_del_obs_used": "", "sigma_q": 1.5286e-07, "n_dop_obs_used": ""},
{"sigma_tp": 3.5644e-05, "diameter": 99.82, "epoch_mjd": 56800.0, "ad": 3.406613114663048, "producer": "Otto Matic", "rms": 0.61586, "H_sigma": "", "closeness": 2645.4851848402277, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "50 Virginia", "M2": "", "sigma_per": 4.0798e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 5.2, "saved": -20142696000.0, "albedo": 0.0357, "moid_ld": 348.50095666, "pha": "N", "neo": "N", "sigma_ad": 5.8762e-09, "PC": "", "profit": 1557191036.313696, "spkid": 2000050.0, "sigma_w": 8.6333e-05, "sigma_i": 5.1838e-06, "per": 1576.780379570221, "id": "a0000050", "A1": "", "data_arc": 57090.0, "A3": "", "score": 132.2942592420114, "per_y": 4.31698940334078, "sigma_n": 5.9074e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 79", "sigma_a": 4.5732e-09, "sigma_om": 8.6036e-05, "A2": "", "sigma_e": 4.3369e-08, "condition_code": 0.0, "rot_per": 14.315, "prov_des": "", "G": "", "last_obs": "2014-02-08", "H": 9.24, "price": 24139738816.199997, "IR": "", "spec_T": "X", "epoch": 2456800.5, "n_obs_used": 1861.0, "moid": 0.895498, "extent": "", "spec_B": "Ch", "e": 0.284914688495417, "GM": 0.186844, "tp_cal": 20130209.2774543, "pdes": 50.0, "class": "MBA", "UB": 0.347, "a": 2.651236805964179, "t_jup": 3.329, "om": 173.5365061559717, "ma": 106.7872981206007, "name": "Virginia", "i": 2.835477184172205, "tp": 2456332.777454267, "prefix": "", "BV": 0.703, "spec": "Ch", "q": 1.895860497265311, "w": 200.328746260005, "n": 0.2283133432305419, "sigma_ma": 8.2775e-06, "first_obs": "1857-10-19", "n_del_obs_used": "", "sigma_q": 1.1515e-07, "n_dop_obs_used": ""},
{"sigma_tp": 8.3804e-05, "diameter": 147.86, "epoch_mjd": 56800.0, "ad": 2.524718632397538, "producer": "Otto Matic", "rms": 0.58571, "H_sigma": "", "closeness": 2649.5648544861583, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "51 Nemausa", "M2": "", "sigma_per": 1.5282e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.4, "saved": -2.100387351138045e+18, "albedo": 0.0928, "moid_ld": 471.3121119, "pha": "N", "neo": "N", "sigma_ad": 1.9353e-09, "PC": "", "profit": 1.6262709777923293e+17, "spkid": 2000051.0, "sigma_w": 2.7637e-05, "sigma_i": 2.1029e-06, "per": 1329.122477520659, "id": "a0000051", "A1": "", "data_arc": 54932.0, "A3": "", "score": 132.49824272430791, "per_y": 3.6389390212749, "sigma_n": 3.1143e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 88", "sigma_a": 1.8134e-09, "sigma_om": 1.6341e-05, "A2": "", "sigma_e": 1.8788e-08, "condition_code": 0.0, "rot_per": 7.783, "prov_des": "", "G": 0.08, "last_obs": "2014-02-04", "H": 7.35, "price": 2.51718052386446e+18, "IR": "", "spec_T": "CU", "epoch": 2456800.5, "n_obs_used": 4433.0, "moid": 1.21107, "extent": "", "spec_B": "Ch", "e": 0.06717407899334435, "GM": "", "tp_cal": 20140914.5681577, "pdes": 51.0, "class": "MBA", "UB": 0.482, "a": 2.365798309849394, "t_jup": 3.525, "om": 176.0269198729055, "ma": 328.9685958484057, "name": "Nemausa", "i": 9.97849745153889, "tp": 2456915.068157686, "prefix": "", "BV": 0.789, "spec": "Ch", "q": 2.20687798730125, "w": 2.041389736232772, "n": 0.2708553997759054, "sigma_ma": 2.2692e-05, "first_obs": "1863-09-12", "n_del_obs_used": "", "sigma_q": 4.4432e-08, "n_dop_obs_used": ""},
{"sigma_tp": 7.4719e-05, "diameter": 302.5, "epoch_mjd": 56800.0, "ad": 3.427957530195926, "producer": "Davide Farnocchia", "rms": 0.59821, "H_sigma": "", "closeness": 2634.0463553604773, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "52 Europa", "M2": "", "sigma_per": 6.7529e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 5.4, "saved": -184353627200.0, "albedo": 0.0578, "moid_ld": 692.2789462, "pha": "N", "neo": "N", "sigma_ad": 7.7602e-09, "PC": "", "profit": 14190381246.372295, "spkid": 2000052.0, "sigma_w": 2.815e-05, "sigma_i": 2.9996e-06, "per": 1988.668751216057, "id": "a0000052", "A1": "", "data_arc": 55793.0, "A3": "", "score": 131.72231776802388, "per_y": 5.44467830586189, "sigma_n": 6.1471e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 89", "sigma_a": 7.0062e-09, "sigma_om": 2.4173e-05, "A2": "", "sigma_e": 2.883e-08, "condition_code": 0.0, "rot_per": 5.6304, "prov_des": "", "G": 0.18, "last_obs": "2013-04-11", "H": 6.31, "price": 220936085736.83997, "IR": "", "spec_T": "CF", "epoch": 2456800.5, "n_obs_used": 2209.0, "moid": 1.77886, "extent": "", "spec_B": "C", "e": 0.1076250034658675, "GM": 1.7100674666666669, "tp_cal": 20150928.6050425, "pdes": 52.0, "class": "MBA", "UB": 0.338, "a": 3.094871928197279, "t_jup": 3.202, "om": 128.7276197268891, "ma": 270.6448395677443, "name": "Europa", "i": 7.48308831617066, "tp": 2457294.105042532, "prefix": "", "BV": 0.679, "spec": "C", "q": 2.76178632619863, "w": 344.235153509664, "n": 0.1810256231862961, "sigma_ma": 1.3518e-05, "first_obs": "1860-07-09", "n_del_obs_used": "", "sigma_q": 8.9425e-08, "n_dop_obs_used": ""},
{"sigma_tp": 3.6516e-05, "diameter": 115.38, "epoch_mjd": 56800.0, "ad": 3.15783062292066, "producer": "Otto Matic", "rms": 0.60895, "H_sigma": "", "closeness": 2644.788954348855, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "53 Kalypso", "M2": "", "sigma_per": 4.5891e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.4, "saved": -41267900000.0, "albedo": 0.0397, "moid_ld": 427.1062916, "pha": "N", "neo": "N", "sigma_ad": 6.2458e-09, "PC": "", "profit": 0.0, "spkid": 2000053.0, "sigma_w": 5.059e-05, "sigma_i": 5.6976e-06, "per": 1546.804175509114, "id": "a0000053", "A1": "", "data_arc": 54084.0, "A3": "", "score": 0.0, "per_y": 4.23491902945685, "sigma_n": 6.9049e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 131", "sigma_a": 5.1772e-09, "sigma_om": 4.9721e-05, "A2": "", "sigma_e": 4.6134e-08, "condition_code": 0.0, "rot_per": 9.036, "prov_des": "", "G": "", "last_obs": "2014-01-29", "H": 8.81, "price": 0.0, "IR": "", "spec_T": "XC", "epoch": 2456800.5, "n_obs_used": 1529.0, "moid": 1.09748, "extent": "", "spec_B": "", "e": 0.206417308437887, "GM": 0.3756899, "tp_cal": 20140501.4640022, "pdes": 53.0, "class": "MBA", "UB": 0.318, "a": 2.617527617379374, "t_jup": 3.37, "om": 143.5631614944031, "ma": 5.012243523322454, "name": "Kalypso", "i": 5.170497699523168, "tp": 2456778.964002193, "prefix": "", "BV": 0.705, "spec": "?", "q": 2.077224611838088, "w": 313.5413331965969, "n": 0.2327379287565666, "sigma_ma": 8.5035e-06, "first_obs": "1866-01-01", "n_del_obs_used": 1.0, "sigma_q": 1.2193e-07, "n_dop_obs_used": 0.0},
{"sigma_tp": 6.5526e-05, "diameter": 165.75, "epoch_mjd": 56800.0, "ad": 3.248092699610886, "producer": "Otto Matic", "rms": 0.57765, "H_sigma": "", "closeness": 2642.6072943424433, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "54 Alexandra", "M2": "", "sigma_per": 6.5248e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 3.4, "saved": -43966229900.0, "albedo": 0.0555, "moid_ld": 451.0324632, "pha": "N", "neo": "N", "sigma_ad": 8.6677e-09, "PC": "", "profit": 3395242660.152594, "spkid": 2000054.0, "sigma_w": 2.7466e-05, "sigma_i": 6.2621e-06, "per": 1630.047044326247, "id": "a0000054", "A1": "", "data_arc": 54644.0, "A3": "", "score": 132.1503647171222, "per_y": 4.46282558337097, "sigma_n": 8.8404e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 140", "sigma_a": 7.2334e-09, "sigma_om": 2.473e-05, "A2": "", "sigma_e": 5.3335e-08, "condition_code": 0.0, "rot_per": 7.024, "prov_des": "", "G": "", "last_obs": "2013-06-03", "H": 7.66, "price": 52690727523.21749, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 1255.0, "moid": 1.15896, "extent": "", "spec_B": "C", "e": 0.1982863371939725, "GM": 0.4078315166666667, "tp_cal": 20140819.9244733, "pdes": 54.0, "class": "MBA", "UB": 0.357, "a": 2.710614816169019, "t_jup": 3.305, "om": 313.3371687524419, "ma": 340.3608058398817, "name": "Alexandra", "i": 11.80156419831149, "tp": 2456889.4244733155, "prefix": "", "BV": 0.727, "spec": "C", "q": 2.173136932727151, "w": 345.2985105330862, "n": 0.2208525215594621, "sigma_ma": 1.4436e-05, "first_obs": "1863-10-24", "n_del_obs_used": "", "sigma_q": 1.4519e-07, "n_dop_obs_used": ""},
{"sigma_tp": 9.2197e-05, "diameter": 66.7, "epoch_mjd": 56800.0, "ad": 3.153478337291851, "producer": "Otto Matic", "rms": 0.60759, "H_sigma": "", "closeness": 2640.823758281384, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "55 Pandora", "M2": "", "sigma_per": 8.2667e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.9, "saved": 5.570129395545266e+17, "albedo": 0.3013, "moid_ld": 531.7346461, "pha": "N", "neo": "N", "sigma_ad": 1.0376e-08, "PC": "", "profit": 2506706826913013.0, "spkid": 2000055.0, "sigma_w": 4.2013e-05, "sigma_i": 4.7671e-06, "per": 1674.993396363967, "id": "a0000055", "A1": "", "data_arc": 54299.0, "A3": "", "score": 132.06118791406922, "per_y": 4.58588198867616, "sigma_n": 1.0607e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 41", "sigma_a": 9.0818e-09, "sigma_om": 3.815e-05, "A2": "", "sigma_e": 4.1593e-08, "condition_code": 0.0, "rot_per": 4.804, "prov_des": "", "G": "", "last_obs": "2012-07-20", "H": 7.7, "price": 3.892782424762882e+16, "IR": "", "spec_T": "M", "epoch": 2456800.5, "n_obs_used": 1506.0, "moid": 1.36633, "extent": "", "spec_B": "X", "e": 0.1424750831844309, "GM": "", "tp_cal": 20140912.2634457, "pdes": 55.0, "class": "MBA", "UB": 0.242, "a": 2.760216291546712, "t_jup": 3.316, "om": 10.43308656782886, "ma": 335.8716419076416, "name": "Pandora", "i": 7.185378550439124, "tp": 2456912.7634457494, "prefix": "", "BV": 0.704, "spec": "X", "q": 2.366954245801573, "w": 3.903806096318213, "n": 0.2149262204743486, "sigma_ma": 1.9753e-05, "first_obs": "1863-11-20", "n_del_obs_used": "", "sigma_q": 1.1361e-07, "n_dop_obs_used": ""},
{"sigma_tp": 6.5605e-05, "diameter": 113.24, "epoch_mjd": 56800.0, "ad": 3.215187326413439, "producer": "Otto Matic", "rms": 0.6201, "H_sigma": "", "closeness": 2645.6816075495726, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "56 Melete", "M2": "", "sigma_per": 4.1023e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 1.7, "saved": 66179100000.00001, "albedo": 0.0653, "moid_ld": 384.33573026, "pha": "N", "neo": "N", "sigma_ad": 5.7418e-09, "PC": "", "profit": 298371457.74979496, "spkid": 2000056.0, "sigma_w": 3.5087e-05, "sigma_i": 6.4606e-06, "per": 1531.416316553661, "id": "a0000056", "A1": "", "data_arc": 54273.0, "A3": "", "score": 132.29333046195862, "per_y": 4.19278936770338, "sigma_n": 6.2971e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 79", "sigma_a": 4.6434e-09, "sigma_om": 3.2137e-05, "A2": "", "sigma_e": 3.6704e-08, "condition_code": 0.0, "rot_per": 18.147, "prov_des": "", "G": "", "last_obs": "2014-01-16", "H": 8.31, "price": 4625042240.0, "IR": "", "spec_T": "P", "epoch": 2456800.5, "n_obs_used": 1503.0, "moid": 0.987578, "extent": "", "spec_B": "Xk", "e": 0.2365444120391639, "GM": 0.30795895, "tp_cal": 20160613.4307449, "pdes": 56.0, "class": "MBA", "UB": 0.312, "a": 2.600138980136855, "t_jup": 3.361, "om": 193.1505084150041, "ma": 183.121207967637, "name": "Melete", "i": 8.063256112308858, "tp": 2457552.9307449185, "prefix": "", "BV": 0.697, "spec": "Xk", "q": 1.985090633860271, "w": 104.4737451674237, "n": 0.2350765080067537, "sigma_ma": 1.5284e-05, "first_obs": "1865-06-13", "n_del_obs_used": "", "sigma_q": 9.5281e-08, "n_dop_obs_used": ""},
{"sigma_tp": 0.00018428, "diameter": 112.59, "epoch_mjd": 56800.0, "ad": 3.512929015987718, "producer": "Otto Matic", "rms": 0.56587, "H_sigma": "", "closeness": 2633.1324624144704, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "57 Mnemosyne", "M2": "", "sigma_per": 8.3408e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.8, "saved": -96939250000.00002, "albedo": 0.2149, "moid_ld": 703.7205442, "pha": "N", "neo": "N", "sigma_ad": 9.5591e-09, "PC": "", "profit": 8.491264759425426e-46, "spkid": 2000057.0, "sigma_w": 4.063e-05, "sigma_i": 8.5551e-06, "per": 2043.490408236481, "id": "a0000057", "A1": "", "data_arc": 56277.0, "A3": "", "score": 2.645000000000001e-56, "per_y": 5.59477182268715, "sigma_n": 7.1906e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 5", "sigma_a": 8.5756e-09, "sigma_om": 2.7287e-05, "A2": "", "sigma_e": 7.1321e-08, "condition_code": 0.0, "rot_per": 12.463, "prov_des": "", "G": "", "last_obs": "2014-01-20", "H": 7.03, "price": 1.3225000000000003e-44, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1527.0, "moid": 1.80826, "extent": "", "spec_B": "S", "e": 0.1146878221143187, "GM": 0.88250425, "tp_cal": 20170205.2664632, "pdes": 57.0, "class": "MBA", "UB": 0.41, "a": 3.151491338018263, "t_jup": 3.143, "om": 199.2267251737428, "ma": 185.72175268572, "name": "Mnemosyne", "i": 15.21589925224233, "tp": 2457789.7664631973, "prefix": "", "BV": 0.817, "spec": "S", "q": 2.790053660048808, "w": 211.0931552922216, "n": 0.1761691655360779, "sigma_ma": 3.2024e-05, "first_obs": "1859-12-22", "n_del_obs_used": "", "sigma_q": 2.2632e-07, "n_dop_obs_used": ""},
{"sigma_tp": 0.00026037, "diameter": 93.43, "epoch_mjd": 56800.0, "ad": 2.82040106196184, "producer": "Otto Matic", "rms": 0.59607, "H_sigma": "", "closeness": 2641.414990489556, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "58 Concordia", "M2": "", "sigma_per": 6.6673e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 3.0, "saved": -5.299151490793766e+17, "albedo": 0.0578, "moid_ld": 615.66694, "pha": "N", "neo": "N", "sigma_ad": 7.735e-09, "PC": "", "profit": 4.090363802756491e+16, "spkid": 2000058.0, "sigma_w": 8.5728e-05, "sigma_i": 5.2576e-06, "per": 1620.739034006536, "id": "a0000058", "A1": "", "data_arc": 54789.0, "A3": "", "score": 132.09074952447781, "per_y": 4.43734163999052, "sigma_n": 9.1375e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 86", "sigma_a": 7.4056e-09, "sigma_om": 6.3629e-05, "A2": "", "sigma_e": 5.5945e-08, "condition_code": 0.0, "rot_per": 9.895, "prov_des": "", "G": "", "last_obs": "2014-02-11", "H": 8.86, "price": 6.350695703059726e+17, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 1725.0, "moid": 1.582, "extent": "", "spec_B": "Ch", "e": 0.04448231960099501, "GM": "", "tp_cal": 20150821.9839308, "pdes": 58.0, "class": "MBA", "UB": 0.37, "a": 2.700286073812401, "t_jup": 3.361, "om": 161.1568413802014, "ma": 258.716442528014, "name": "Concordia", "i": 5.060837432521453, "tp": 2457256.4839308276, "prefix": "", "BV": 0.69, "spec": "Ch", "q": 2.580171085662962, "w": 30.80089041150191, "n": 0.2221208920414934, "sigma_ma": 5.7745e-05, "first_obs": "1864-02-09", "n_del_obs_used": "", "sigma_q": 1.5201e-07, "n_dop_obs_used": ""},
{"sigma_tp": 9.3469e-05, "diameter": 164.8, "epoch_mjd": 56800.0, "ad": 3.035774602334993, "producer": "Otto Matic", "rms": 0.6525, "H_sigma": "", "closeness": 2641.599039706322, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "59 Elpis", "M2": "", "sigma_per": 7.5809e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 6.0, "saved": -17654026600.0, "albedo": 0.0438, "moid_ld": 543.0633848, "pha": "N", "neo": "N", "sigma_ad": 9.3999e-09, "PC": "", "profit": 1925301116.377423, "spkid": 2000059.0, "sigma_w": 3.5132e-05, "sigma_i": 2.8939e-06, "per": 1632.21140480935, "id": "a0000059", "A1": "", "data_arc": 55087.0, "A3": "", "score": 132.0999519853161, "per_y": 4.46875127942327, "sigma_n": 1.0244e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 77", "sigma_a": 8.4005e-09, "sigma_om": 2.9719e-05, "A2": "", "sigma_e": 3.0006e-08, "condition_code": 0.0, "rot_per": 13.69, "prov_des": "", "G": "", "last_obs": "2014-02-05", "H": 7.93, "price": 29890127674.528328, "IR": "", "spec_T": "CP", "epoch": 2456800.5, "n_obs_used": 1341.0, "moid": 1.39544, "extent": "", "spec_B": "B", "e": 0.1189676623622663, "GM": 0.23199796666666667, "tp_cal": 20121118.8246805, "pdes": 59.0, "class": "MBA", "UB": 0.285, "a": 2.713013704011903, "t_jup": 3.336, "om": 170.0389550796659, "ma": 121.3464839473857, "name": "Elpis", "i": 8.63913781499302, "tp": 2456250.3246804653, "prefix": "", "BV": 0.662, "spec": "B", "q": 2.390252805688813, "w": 211.7117814018868, "n": 0.2205596645993598, "sigma_ma": 2.0843e-05, "first_obs": "1863-04-11", "n_del_obs_used": "", "sigma_q": 8.0619e-08, "n_dop_obs_used": ""},
{"sigma_tp": 5.15e-05, "diameter": 60.2, "epoch_mjd": 56800.0, "ad": 2.832051307818086, "producer": "Otto Matic", "rms": 0.64512, "H_sigma": "", "closeness": 2649.89515701066, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "60 Echo", "M2": "", "sigma_per": 3.6085e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 1.8, "saved": -2308950000000000.0, "albedo": 0.2535, "moid_ld": 378.74452487, "pha": "N", "neo": "N", "sigma_ad": 5.0405e-09, "PC": "", "profit": 2.0353693940328887e-41, "spkid": 2000060.0, "sigma_w": 9.1936e-05, "sigma_i": 5.358e-06, "per": 1351.653704340865, "id": "a0000060", "A1": "", "data_arc": 55905.0, "A3": "", "score": 6.300000000000002e-52, "per_y": 3.70062615835966, "sigma_n": 7.1105e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 86", "sigma_a": 4.2581e-09, "sigma_om": 9.1051e-05, "A2": "", "sigma_e": 4.8444e-08, "condition_code": 0.0, "rot_per": 25.208, "prov_des": "", "G": 0.27, "last_obs": "2014-01-28", "H": 8.21, "price": 3.150000000000001e-40, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1472.0, "moid": 0.973211, "extent": "", "spec_B": "S", "e": 0.183740324906379, "GM": 0.021019950000000003, "tp_cal": 20130620.8296789, "pdes": 60.0, "class": "MBA", "UB": 0.452, "a": 2.39245994094361, "t_jup": 3.505, "om": 191.6148752570703, "ma": 89.53574070829636, "name": "Echo", "i": 3.601236706261286, "tp": 2456464.3296788908, "prefix": "", "BV": 0.854, "spec": "S", "q": 1.952868574069135, "w": 270.8767466840865, "n": 0.2663404086740948, "sigma_ma": 1.3751e-05, "first_obs": "1861-01-05", "n_del_obs_used": "", "sigma_q": 1.1624e-07, "n_dop_obs_used": ""},
{"sigma_tp": 0.00014098, "diameter": 82.04, "epoch_mjd": 56800.0, "ad": 3.4823883203655, "producer": "Otto Matic", "rms": 0.68221, "H_sigma": "", "closeness": 2636.705316000555, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "61 Danae", "M2": "", "sigma_per": 9.2116e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 4.3, "saved": -21183700000.0, "albedo": 0.2224, "moid_ld": 574.8780323, "pha": "N", "neo": "N", "sigma_ad": 1.1364e-08, "PC": "", "profit": 1.858075821536792e-46, "spkid": 2000061.0, "sigma_w": 3.1894e-05, "sigma_i": 8.9032e-06, "per": 1881.82449126349, "id": "a0000061", "A1": "", "data_arc": 53979.0, "A3": "", "score": 5.780000000000001e-57, "per_y": 5.15215466465021, "sigma_n": 9.3644e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 8", "sigma_a": 9.7347e-09, "sigma_om": 2.2e-05, "A2": "", "sigma_e": 7.6907e-08, "condition_code": 0.0, "rot_per": 11.45, "prov_des": "", "G": "", "last_obs": "2013-06-11", "H": 7.68, "price": 2.8900000000000007e-45, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1030.0, "moid": 1.47719, "extent": "", "spec_B": "S", "e": 0.1674099876044838, "GM": 0.1928497, "tp_cal": 20150607.2309002, "pdes": 61.0, "class": "MBA", "UB": 0.402, "a": 2.983003706787993, "t_jup": 3.162, "om": 333.7319152524549, "ma": 287.2604194929092, "name": "Danae", "i": 18.21119406860938, "tp": 2457180.730900229, "prefix": "", "BV": 0.852, "spec": "S", "q": 2.483619093210485, "w": 12.91533328608653, "n": 0.1913037064143478, "sigma_ma": 2.6858e-05, "first_obs": "1865-08-27", "n_del_obs_used": "", "sigma_q": 2.2938e-07, "n_dop_obs_used": ""},
{"sigma_tp": 0.00011021, "diameter": 95.39, "epoch_mjd": 56800.0, "ad": 3.665021249903715, "producer": "Otto Matic", "rms": 0.62693, "H_sigma": "", "closeness": 2634.151977282854, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "62 Erato", "M2": "", "sigma_per": 1.1655e-05, "equinox": "J2000", "DT": "", "diameter_sigma": 2.0, "saved": -5.6396978237278995e+17, "albedo": 0.0608, "moid_ld": 622.7576174, "pha": "N", "neo": "N", "sigma_ad": 1.4089e-08, "PC": "", "profit": 4.3412582941085464e+16, "spkid": 2000062.0, "sigma_w": 0.00016092, "sigma_i": 5.8245e-06, "per": 2021.346293007236, "id": "a0000062", "A1": "", "data_arc": 39200.0, "A3": "", "score": 131.72759886414272, "per_y": 5.53414453937642, "sigma_n": 1.027e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 84", "sigma_a": 1.2027e-08, "sigma_om": 0.00016004, "A2": "", "sigma_e": 5.4171e-08, "condition_code": 0.0, "rot_per": 9.2213, "prov_des": "", "G": "", "last_obs": "2013-06-13", "H": 8.76, "price": 6.758818802958801e+17, "IR": "", "spec_T": "BU", "epoch": 2456800.5, "n_obs_used": 1599.0, "moid": 1.60022, "extent": "", "spec_B": "Ch", "e": 0.1714262904367405, "GM": "", "tp_cal": 20150803.9312421, "pdes": 62.0, "class": "MBA", "UB": 0.378, "a": 3.128682768881081, "t_jup": 3.19, "om": 125.5683203458891, "ma": 282.0048302867847, "name": "Erato", "i": 2.229928215850119, "tp": 2457238.431242145, "prefix": "", "BV": 0.708, "spec": "Ch", "q": 2.592344287858448, "w": 274.0345196245294, "n": 0.1780991219789529, "sigma_ma": 1.9404e-05, "first_obs": "1906-02-15", "n_del_obs_used": "", "sigma_q": 1.6679e-07, "n_dop_obs_used": ""},
{"sigma_tp": 6.4196e-05, "diameter": 103.14, "epoch_mjd": 56800.0, "ad": 2.701064676127115, "producer": "Otto Matic", "rms": 0.60837, "H_sigma": "", "closeness": 2649.2109619585804, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "63 Ausonia", "M2": "", "sigma_per": 3.4397e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.4, "saved": -11214900000.0, "albedo": 0.1586, "moid_ld": 420.4748348, "pha": "N", "neo": "N", "sigma_ad": 4.5746e-09, "PC": "", "profit": 4.9417636787145265e-47, "spkid": 2000063.0, "sigma_w": 4.3601e-05, "sigma_i": 3.908e-06, "per": 1353.975983236273, "id": "a0000063", "A1": "", "data_arc": 55662.0, "A3": "", "score": 1.5300000000000003e-57, "per_y": 3.70698421146139, "sigma_n": 6.7547e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 80", "sigma_a": 4.0566e-09, "sigma_om": 4.0827e-05, "A2": "", "sigma_e": 3.7066e-08, "condition_code": 0.0, "rot_per": 9.298, "prov_des": "", "G": 0.25, "last_obs": "2013-07-24", "H": 7.55, "price": 7.650000000000001e-46, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1810.0, "moid": 1.08044, "extent": "", "spec_B": "Sa", "e": 0.1276992562034974, "GM": 0.1020969, "tp_cal": 20140306.0610686, "pdes": 63.0, "class": "MBA", "UB": 0.5, "a": 2.395199483610991, "t_jup": 3.511, "om": 337.7683348915977, "ma": 20.72268315994011, "name": "Ausonia", "i": 5.779925721591884, "tp": 2456722.561068592, "prefix": "", "BV": 0.916, "spec": "Sa", "q": 2.089334291094866, "w": 296.1248551716139, "n": 0.2658835935475961, "sigma_ma": 1.7082e-05, "first_obs": "1861-03-01", "n_del_obs_used": "", "sigma_q": 8.9646e-08, "n_dop_obs_used": ""},
{"sigma_tp": 0.00010722, "diameter": "", "sigma_q": 9.8367e-08, "epoch_mjd": 56800.0, "ad": 3.022917374233383, "producer": "Otto Matic", "rms": 0.62625, "H_sigma": "", "closeness": 2642.3420122715147, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "64 Angelina", "M2": "", "sigma_per": 5.5368e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": 1.7709783275906634e+18, "albedo": 0.157, "moid_ld": 528.0842315, "pha": "N", "neo": "N", "sigma_ad": 6.9535e-09, "PC": "", "profit": 7974456947725130.0, "est_diameter": 98.07880251812584, "sigma_w": 0.00026774, "sigma_i": 4.0908e-06, "per": 1604.686695252422, "id": "a0000064", "A1": "", "data_arc": 55851.0, "A3": "", "score": 132.13710061357574, "per_y": 4.39339273169725, "sigma_n": 7.7407e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 86", "sigma_a": 6.1703e-09, "sigma_om": 0.00026649, "A2": "", "sigma_e": 3.6528e-08, "condition_code": 0.0, "rot_per": 8.752, "prov_des": "", "G": 0.48, "last_obs": "2014-02-05", "H": 7.67, "price": 1.2376792025324272e+17, "IR": "", "spec_T": "E", "epoch": 2456800.5, "n_obs_used": 1566.0, "moid": 1.35695, "extent": "", "spec_B": "Xe", "e": 0.1269337703875628, "GM": "", "tp_cal": 20140616.156267, "pdes": 64.0, "class": "MBA", "UB": 0.254, "a": 2.68242682371101, "t_jup": 3.364, "om": 309.1552494514642, "ma": 354.5807140171315, "name": "Angelina", "i": 1.310345027274158, "tp": 2456824.6562669845, "prefix": "", "BV": 0.734, "spec": "Xe", "q": 2.341936273188637, "w": 178.8935019570468, "n": 0.2243428583692288, "sigma_ma": 2.4049e-05, "first_obs": "1861-03-08", "n_del_obs_used": "", "spkid": 2000064.0, "n_dop_obs_used": ""},
{"sigma_tp": 0.000149, "diameter": 237.26, "epoch_mjd": 56800.0, "ad": 3.806310317668416, "producer": "Davide Farnocchia", "rms": 0.6127, "H_sigma": "", "closeness": 2628.7664533754523, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "65 Cybele", "M2": "", "sigma_per": 1.0143e-05, "equinox": "J2000", "DT": "", "diameter_sigma": 4.2, "saved": 205468850909.09094, "albedo": 0.0706, "moid_ld": 792.4902212, "pha": "N", "neo": "N", "sigma_ad": 1.1105e-08, "PC": "", "profit": 1012209657.0690978, "spkid": 2000065.0, "sigma_w": 7.0888e-05, "sigma_i": 5.5379e-06, "per": 2317.84904246615, "id": "a0000065", "A1": "", "data_arc": 55632.0, "A3": "", "score": 131.45832266877264, "per_y": 6.34592482536934, "sigma_n": 6.797e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 68", "sigma_a": 1e-08, "sigma_om": 6.7235e-05, "A2": "", "sigma_e": 4.1201e-08, "condition_code": 0.0, "rot_per": 6.0814, "prov_des": "", "G": 0.01, "last_obs": "2013-07-05", "H": 6.62, "price": 15791176145.454546, "IR": "", "spec_T": "P", "epoch": 2456800.5, "n_obs_used": 1932.0, "moid": 2.03636, "extent": "", "spec_B": "Xc", "e": 0.1104858906781503, "GM": 0.9560589090909091, "tp_cal": 20140917.173692, "pdes": 65.0, "class": "OMB", "UB": 0.271, "a": 3.427607995400988, "t_jup": 3.128, "om": 155.6438989814507, "ma": 341.8010024106806, "name": "Cybele", "i": 3.562433339935033, "tp": 2456917.6736920453, "prefix": "", "BV": 0.69, "spec": "Xc", "q": 3.048905673133561, "w": 102.3933702533868, "n": 0.1553164133661467, "sigma_ma": 2.3095e-05, "first_obs": "1861-03-12", "n_del_obs_used": "", "sigma_q": 1.3914e-07, "n_dop_obs_used": ""},
{"sigma_tp": 7.0961e-05, "diameter": 71.82, "epoch_mjd": 56800.0, "ad": 3.097937441897504, "producer": "Otto Matic", "rms": 0.61699, "H_sigma": "", "closeness": 2643.6297516209, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "66 Maja", "M2": "", "sigma_per": 7.1603e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 5.3, "saved": -2.4070410176585053e+17, "albedo": 0.0618, "moid_ld": 469.261186, "pha": "N", "neo": "N", "sigma_ad": 9.4039e-09, "PC": "", "profit": 1.8595295532020188e+16, "spkid": 2000066.0, "sigma_w": 8.6405e-05, "sigma_i": 5.282e-06, "per": 1572.560383791508, "id": "a0000066", "A1": "", "data_arc": 55651.0, "A3": "", "score": 132.20148758104503, "per_y": 4.30543568457634, "sigma_n": 1.0424e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 18", "sigma_a": 8.0336e-09, "sigma_om": 8.5144e-05, "A2": "", "sigma_e": 3.9998e-08, "condition_code": 0.0, "rot_per": 9.73509, "prov_des": "", "G": "", "last_obs": "2013-08-22", "H": 9.36, "price": 2.8846854207677344e+17, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 1513.0, "moid": 1.2058, "extent": "", "spec_B": "Ch", "e": 0.1705771466916216, "GM": "", "tp_cal": 20141013.9433153, "pdes": 66.0, "class": "MBA", "UB": 0.36, "a": 2.646504291197843, "t_jup": 3.37, "om": 7.538006899088831, "ma": 327.0476287907302, "name": "Maja", "i": 3.046675492154799, "tp": 2456944.4433153216, "prefix": "", "BV": 0.697, "spec": "Ch", "q": 2.195071140498182, "w": 43.95012974848815, "n": 0.2289260264410484, "sigma_ma": 1.6193e-05, "first_obs": "1861-04-10", "n_del_obs_used": "", "sigma_q": 1.0518e-07, "n_dop_obs_used": ""},
{"sigma_tp": 6.1427e-05, "diameter": 58.11, "epoch_mjd": 56800.0, "ad": 2.86971355025062, "producer": "Otto Matic", "rms": 0.59372, "H_sigma": "", "closeness": 2649.105426244801, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "67 Asia", "M2": "", "sigma_per": 4.7107e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 1.4, "saved": -7549899999.999999, "albedo": 0.2551, "moid_ld": 378.53554058, "pha": "N", "neo": "N", "sigma_ad": 6.5392e-09, "PC": "", "profit": 6.653351398458389e-47, "spkid": 2000067.0, "sigma_w": 5.3387e-05, "sigma_i": 5.8841e-06, "per": 1378.183249412584, "id": "a0000067", "A1": "", "data_arc": 54741.0, "A3": "", "score": 2.0600000000000004e-57, "per_y": 3.77326009421652, "sigma_n": 8.9284e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 93", "sigma_a": 5.5228e-09, "sigma_om": 5.0889e-05, "A2": "", "sigma_e": 4.5225e-08, "condition_code": 0.0, "rot_per": 15.89, "prov_des": "", "G": "", "last_obs": "2014-01-16", "H": 8.28, "price": 1.0300000000000002e-45, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1485.0, "moid": 0.972674, "extent": "", "spec_B": "S", "e": 0.1840394927666452, "GM": 0.0687319, "tp_cal": 20120817.9761146, "pdes": 67.0, "class": "MBA", "UB": 0.434, "a": 2.42366371035919, "t_jup": 3.481, "om": 202.5418534192471, "ma": 167.9664869358393, "name": "Asia", "i": 6.023490493077636, "tp": 2456157.4761145622, "prefix": "", "BV": 0.861, "spec": "S", "q": 1.977613870467759, "w": 106.7651946631749, "n": 0.2612134490485508, "sigma_ma": 1.6192e-05, "first_obs": "1864-03-02", "n_del_obs_used": "", "sigma_q": 1.0956e-07, "n_dop_obs_used": ""},
{"sigma_tp": 6.266e-05, "diameter": 122.57, "epoch_mjd": 56800.0, "ad": 3.301141703515994, "producer": "Otto Matic", "rms": 0.64572, "H_sigma": "", "closeness": 2640.964258978762, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "68 Leto", "M2": "", "sigma_per": 4.7342e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 5.3, "saved": -26113125000.000004, "albedo": 0.2283, "moid_ld": 492.0626563, "pha": "N", "neo": "N", "sigma_ad": 6.1522e-09, "PC": "", "profit": 0.0, "spkid": 2000068.0, "sigma_w": 3.8893e-05, "sigma_i": 4.6349e-06, "per": 1693.510326206879, "id": "a0000068", "A1": "", "data_arc": 54846.0, "A3": "", "score": 0.0, "per_y": 4.63657857962184, "sigma_n": 5.9426e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 77", "sigma_a": 5.182e-09, "sigma_om": 3.6592e-05, "A2": "", "sigma_e": 4.1572e-08, "condition_code": 0.0, "rot_per": 14.848, "prov_des": "", "G": 0.05, "last_obs": "2014-01-28", "H": 6.78, "price": 0.0, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1501.0, "moid": 1.26439, "extent": "", "spec_B": "", "e": 0.1872382650244435, "GM": 0.23772562500000002, "tp_cal": 20151215.2053559, "pdes": 68.0, "class": "MBA", "UB": 0.488, "a": 2.780521653290907, "t_jup": 3.294, "om": 44.13752855769496, "ma": 238.5753325756432, "name": "Leto", "i": 7.972708013289206, "tp": 2457371.7053559427, "prefix": "", "BV": 0.845, "spec": "?", "q": 2.259901603065821, "w": 304.9803578419448, "n": 0.2125762060195566, "sigma_ma": 1.3213e-05, "first_obs": "1863-11-30", "n_del_obs_used": "", "sigma_q": 1.1604e-07, "n_dop_obs_used": ""},
{"sigma_tp": 7.7922e-05, "diameter": 138.13, "epoch_mjd": 56800.0, "ad": 3.481958251318105, "producer": "Otto Matic", "rms": 0.52504, "H_sigma": "", "closeness": 2636.8790812862617, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "69 Hesperia", "M2": "", "sigma_per": 7.2009e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 4.7, "saved": 79873800000.0, "albedo": 0.1402, "moid_ld": 584.2414625, "pha": "N", "neo": "N", "sigma_ad": 8.9157e-09, "PC": "", "profit": 358916482.3419566, "spkid": 2000069.0, "sigma_w": 3.0599e-05, "sigma_i": 4.196e-06, "per": 1874.849703237111, "id": "a0000069", "A1": "", "data_arc": 55767.0, "A3": "", "score": 131.8551183049531, "per_y": 5.13305873576211, "sigma_n": 7.3749e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 94", "sigma_a": 7.6192e-09, "sigma_om": 2.7186e-05, "A2": "", "sigma_e": 3.1255e-08, "condition_code": 0.0, "rot_per": 5.655, "prov_des": "", "G": 0.19, "last_obs": "2014-01-04", "H": 7.05, "price": 5582120320.0, "IR": "", "spec_T": "M", "epoch": 2456800.5, "n_obs_used": 2055.0, "moid": 1.50125, "extent": "", "spec_B": "X", "e": 0.1701589857472635, "GM": 0.3716861, "tp_cal": 20150113.1106618, "pdes": 69.0, "class": "MBA", "UB": 0.23, "a": 2.975628349419994, "t_jup": 3.222, "om": 185.0391996770798, "ma": 314.855134200077, "name": "Hesperia", "i": 8.585952789752094, "tp": 2457035.610661799, "prefix": "", "BV": 0.674, "spec": "X", "q": 2.469298447521884, "w": 289.8351383561739, "n": 0.1920153916222857, "sigma_ma": 1.491e-05, "first_obs": "1861-04-29", "n_del_obs_used": "", "sigma_q": 9.2088e-08, "n_dop_obs_used": ""},
{"sigma_tp": 7.4416e-05, "diameter": 122.17, "epoch_mjd": 56800.0, "ad": 3.091967520421166, "producer": "Otto Matic", "rms": 0.60388, "H_sigma": "", "closeness": 2644.4879319220036, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "70 Panopaea", "M2": "", "sigma_per": 6.6772e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.3, "saved": -31149240600.000004, "albedo": 0.0675, "moid_ld": 450.619943, "pha": "N", "neo": "N", "sigma_ad": 8.9094e-09, "PC": "", "profit": 2407176948.2640686, "spkid": 2000070.0, "sigma_w": 3.2838e-05, "sigma_i": 3.9975e-06, "per": 1544.85231410906, "id": "a0000070", "A1": "", "data_arc": 53617.0, "A3": "", "score": 132.2443965961002, "per_y": 4.22957512418634, "sigma_n": 1.0072e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 15", "sigma_a": 7.536e-09, "sigma_om": 3.0166e-05, "A2": "", "sigma_e": 5.0508e-08, "condition_code": 0.0, "rot_per": 15.797, "prov_des": "", "G": 0.14, "last_obs": "2013-07-07", "H": 8.11, "price": 37330381812.19499, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 1177.0, "moid": 1.1579, "extent": "", "spec_B": "Ch", "e": 0.1822497457816057, "GM": 0.2889409, "tp_cal": 20140406.1404995, "pdes": 70.0, "class": "MBA", "UB": 0.39, "a": 2.615325172581883, "t_jup": 3.355, "om": 47.74028848179041, "ma": 10.9197623762442, "name": "Panopaea", "i": 11.59001785919056, "tp": 2456753.64049951, "prefix": "", "BV": 0.74, "spec": "Ch", "q": 2.138682824742601, "w": 255.4822163077572, "n": 0.2330319841658246, "sigma_ma": 1.7359e-05, "first_obs": "1866-09-19", "n_del_obs_used": "", "sigma_q": 1.3262e-07, "n_dop_obs_used": ""},
{"sigma_tp": 8.8844e-05, "diameter": 83.42, "epoch_mjd": 56800.0, "ad": 3.237325815125597, "producer": "Otto Matic", "rms": 0.54928, "H_sigma": "", "closeness": 2641.3062192679367, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "71 Niobe", "M2": "", "sigma_per": 7.4719e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 1.7, "saved": 1.0896783914788852e+18, "albedo": 0.3052, "moid_ld": 546.9667599, "pha": "N", "neo": "N", "sigma_ad": 9.6502e-09, "PC": "", "profit": 4904739363789324.0, "spkid": 2000071.0, "sigma_w": 2.1459e-05, "sigma_i": 5.4036e-06, "per": 1671.045693896434, "id": "a0000071", "A1": "", "data_arc": 54808.0, "A3": "", "score": 132.08531096339684, "per_y": 4.57507376836806, "sigma_n": 9.6329e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 56", "sigma_a": 8.2151e-09, "sigma_om": 1.3243e-05, "A2": "", "sigma_e": 4.8114e-08, "condition_code": 0.0, "rot_per": 35.864, "prov_des": "", "G": 0.4, "last_obs": "2014-02-04", "H": 7.3, "price": 7.615408170563062e+16, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1413.0, "moid": 1.40547, "extent": "", "spec_B": "Xe", "e": 0.1746986724002298, "GM": "", "tp_cal": 20151216.5498939, "pdes": 71.0, "class": "MBA", "UB": 0.439, "a": 2.755877648615076, "t_jup": 3.205, "om": 316.04536005, "ma": 236.6533060408413, "name": "Niobe", "i": 23.26464305279258, "tp": 2457373.0498938803, "prefix": "", "BV": 0.803, "spec": "Xe", "q": 2.274429482104555, "w": 266.8264037844046, "n": 0.2154339652798935, "sigma_ma": 1.9e-05, "first_obs": "1864-01-14", "n_del_obs_used": "", "sigma_q": 1.3338e-07, "n_dop_obs_used": ""},
{"sigma_tp": 7.981e-05, "diameter": 85.9, "epoch_mjd": 56800.0, "ad": 2.539877097343767, "producer": "Otto Matic", "rms": 0.62519, "H_sigma": "", "closeness": 2652.5964177154133, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "72 Feronia", "M2": "", "sigma_per": 3.8341e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 3.6, "saved": -24335600000.000004, "albedo": 0.0636, "moid_ld": 383.87767717, "pha": "N", "neo": "N", "sigma_ad": 5.2093e-09, "PC": "", "profit": 0.0, "spkid": 2000072.0, "sigma_w": 5.5991e-05, "sigma_i": 4.9828e-06, "per": 1246.245475174654, "id": "a0000072", "A1": "", "data_arc": 54283.0, "A3": "", "score": 0.0, "per_y": 3.41203415516675, "sigma_n": 8.8871e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 84", "sigma_a": 4.6484e-09, "sigma_om": 5.2002e-05, "A2": "", "sigma_e": 4.7946e-08, "condition_code": 0.0, "rot_per": 8.097, "prov_des": "", "G": "", "last_obs": "2014-02-05", "H": 8.94, "price": 0.0, "IR": "", "spec_T": "TDG", "epoch": 2456800.5, "n_obs_used": 1584.0, "moid": 0.986401, "extent": "", "spec_B": "", "e": 0.1206652968595116, "GM": 0.2215436, "tp_cal": 20151105.2612491, "pdes": 72.0, "class": "MBA", "UB": 0.375, "a": 2.266401131953825, "t_jup": 3.6, "om": 207.9867462262517, "ma": 206.5358121712123, "name": "Feronia", "i": 5.415578006793834, "tp": 2457331.7612491194, "prefix": "", "BV": 0.785, "spec": "?", "q": 1.992925166563883, "w": 103.0663872335809, "n": 0.2888676486063454, "sigma_ma": 2.2887e-05, "first_obs": "1865-06-23", "n_del_obs_used": "", "sigma_q": 1.0834e-07, "n_dop_obs_used": ""},
{"sigma_tp": 0.0003052, "diameter": 44.44, "epoch_mjd": 56800.0, "ad": 2.78135774432771, "producer": "Otto Matic", "rms": 0.61642, "H_sigma": "", "closeness": 2642.217516638056, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "73 Klytia", "M2": "", "sigma_per": 8.9989e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 3.4, "saved": -8.421021117286195e+16, "albedo": 0.2247, "moid_ld": 606.4786363, "pha": "N", "neo": "N", "sigma_ad": 1.0507e-08, "PC": "", "profit": 0.0, "spkid": 2000073.0, "sigma_w": 0.00014918, "sigma_i": 6.7613e-06, "per": 1588.149580955076, "id": "a0000073", "A1": "", "data_arc": 54540.0, "A3": "", "score": 0.0, "per_y": 4.34811658030137, "sigma_n": 1.2844e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 6", "sigma_a": 1.0063e-08, "sigma_om": 0.0001328, "A2": "", "sigma_e": 5.861e-08, "condition_code": 0.0, "rot_per": 8.297, "prov_des": "", "G": "", "last_obs": "2014-01-29", "H": 8.9, "price": 0.0, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1469.0, "moid": 1.55839, "extent": "", "spec_B": "", "e": 0.04406659505328326, "GM": "", "tp_cal": 20130131.9950644, "pdes": 73.0, "class": "MBA", "UB": "", "a": 2.663965840402896, "t_jup": 3.382, "om": 7.038493585678914, "ma": 107.9002751924131, "name": "Klytia", "i": 2.371053279714718, "tp": 2456324.4950643564, "prefix": "", "BV": "", "spec": "?", "q": 2.546573936478082, "w": 53.21498860252883, "n": 0.2266788999708103, "sigma_ma": 6.922e-05, "first_obs": "1864-10-02", "n_del_obs_used": "", "sigma_q": 1.5635e-07, "n_dop_obs_used": ""},
{"sigma_tp": 5.0631e-05, "diameter": 118.71, "epoch_mjd": 56800.0, "ad": 3.444966416934472, "producer": "Otto Matic", "rms": 0.59621, "H_sigma": "", "closeness": 2641.885092667738, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "74 Galatea", "M2": "", "sigma_per": 6.3003e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.8, "saved": -44098116600.0, "albedo": 0.0431, "moid_ld": 431.9125411, "pha": "N", "neo": "N", "sigma_ad": 8.5557e-09, "PC": "", "profit": 3404496788.4253836, "spkid": 2000074.0, "sigma_w": 6.8485e-05, "sigma_i": 4.0462e-06, "per": 1691.2134553379, "id": "a0000074", "A1": "", "data_arc": 54793.0, "A3": "", "score": 132.1142546333869, "per_y": 4.63029008990527, "sigma_n": 7.9299e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 64", "sigma_a": 6.8993e-09, "sigma_om": 6.7601e-05, "A2": "", "sigma_e": 3.6283e-08, "condition_code": 0.0, "rot_per": 17.268, "prov_des": "", "G": "", "last_obs": "2014-02-05", "H": 8.66, "price": 52848785336.89499, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 1639.0, "moid": 1.10983, "extent": "", "spec_B": "C", "e": 0.2400855882033645, "GM": 0.4090549, "tp_cal": 20151011.5171634, "pdes": 74.0, "class": "MBA", "UB": 0.32, "a": 2.778006977667999, "t_jup": 3.288, "om": 197.2858351771852, "ma": 252.1802695941518, "name": "Galatea", "i": 4.077545758467029, "tp": 2457307.0171633703, "prefix": "", "BV": 0.686, "spec": "C", "q": 2.111047538401527, "w": 174.1863899028223, "n": 0.2128649100228883, "sigma_ma": 1.0591e-05, "first_obs": "1864-01-30", "n_del_obs_used": "", "sigma_q": 1.0047e-07, "n_dop_obs_used": ""},
{"sigma_tp": 4.069e-05, "diameter": 55.91, "epoch_mjd": 56800.0, "ad": 3.488540937214128, "producer": "Otto Matic", "rms": 0.60075, "H_sigma": "", "closeness": 2645.4998729681865, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "75 Eurydike", "M2": "", "sigma_per": 5.7674e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 1.9, "saved": 3.280622499488681e+17, "albedo": 0.1473, "moid_ld": 329.32110238, "pha": "N", "neo": "N", "sigma_ad": 8.4085e-09, "PC": "", "profit": 1478981853324523.2, "spkid": 2000075.0, "sigma_w": 4.9384e-05, "sigma_i": 6.0523e-06, "per": 1595.191257410594, "id": "a0000075", "A1": "", "data_arc": 54790.0, "A3": "", "score": 132.29499364840933, "per_y": 4.36739563972784, "sigma_n": 8.1594e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 43", "sigma_a": 6.44e-09, "sigma_om": 4.8929e-05, "A2": "", "sigma_e": 5.3329e-08, "condition_code": 0.0, "rot_per": 5.357, "prov_des": "", "G": 0.23, "last_obs": "2014-02-05", "H": 8.96, "price": 2.2927204561001172e+16, "IR": "", "spec_T": "M", "epoch": 2456800.5, "n_obs_used": 1765.0, "moid": 0.846214, "extent": "", "spec_B": "Xk", "e": 0.305672531938069, "GM": "", "tp_cal": 20150531.9375393, "pdes": 75.0, "class": "MBA", "UB": 0.266, "a": 2.671834515838307, "t_jup": 3.307, "om": 359.4288208439754, "ma": 275.6104238041972, "name": "Eurydike", "i": 5.001223377731115, "tp": 2457174.4375393447, "prefix": "", "BV": 0.71, "spec": "Xk", "q": 1.855128094462487, "w": 339.4631316300542, "n": 0.2256782679365813, "sigma_ma": 8.9809e-06, "first_obs": "1864-02-02", "n_del_obs_used": "", "sigma_q": 1.4256e-07, "n_dop_obs_used": ""},
{"sigma_tp": 9.2145e-05, "diameter": 183.66, "epoch_mjd": 56800.0, "ad": 3.982631005120563, "producer": "Otto Matic", "rms": 0.64819, "H_sigma": "", "closeness": 2629.4984840896504, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "76 Freia", "M2": "", "sigma_per": 9.8587e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 4.0, "saved": 73535520000.0, "albedo": 0.0362, "moid_ld": 727.1174446, "pha": "N", "neo": "N", "sigma_ad": 1.1346e-08, "PC": "", "profit": 329510253.9757026, "spkid": 2000076.0, "sigma_w": 0.00013387, "sigma_i": 4.3289e-06, "per": 2306.964940304269, "id": "a0000076", "A1": "", "data_arc": 54715.0, "A3": "", "score": 131.48520252153853, "per_y": 6.3161257776982, "sigma_n": 6.6687e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 21", "sigma_a": 9.7346e-09, "sigma_om": 0.00013303, "A2": "", "sigma_e": 4.0245e-08, "condition_code": 0.0, "rot_per": 9.969, "prov_des": "", "G": "", "last_obs": "2014-02-11", "H": 7.9, "price": 5139158528.0, "IR": "", "spec_T": "P", "epoch": 2456800.5, "n_obs_used": 1741.0, "moid": 1.86838, "extent": "", "spec_B": "X", "e": 0.1655789404515392, "GM": 0.34219144, "tp_cal": 20140512.6968761, "pdes": 76.0, "class": "OMB", "UB": 0.298, "a": 3.416869391598403, "t_jup": 3.12, "om": 204.4896259701073, "ma": 1.607794091859639, "name": "Freia", "i": 2.116717751217552, "tp": 2456790.1968761077, "prefix": "", "BV": 0.704, "spec": "X", "q": 2.851107778076244, "w": 253.4021564395023, "n": 0.156049185538346, "sigma_ma": 1.4382e-05, "first_obs": "1864-04-23", "n_del_obs_used": "", "sigma_q": 1.3648e-07, "n_dop_obs_used": ""},
{"sigma_tp": 6.9898e-05, "diameter": 69.25, "epoch_mjd": 56800.0, "ad": 3.019024751470916, "producer": "Otto Matic", "rms": 0.58689, "H_sigma": "", "closeness": 2642.6557804636795, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "77 Frigga", "M2": "", "sigma_per": 6.6652e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.1, "saved": 24951600000.000004, "albedo": 0.144, "moid_ld": 519.0905128, "pha": "N", "neo": "N", "sigma_ad": 8.4186e-09, "PC": "", "profit": 112366754.84127595, "spkid": 2000077.0, "sigma_w": 0.00010692, "sigma_i": 4.2707e-06, "per": 1593.478593114719, "id": "a0000077", "A1": "", "data_arc": 48933.0, "A3": "", "score": 132.136276595664, "per_y": 4.36270662043729, "sigma_n": 9.4498e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 45", "sigma_a": 7.4452e-09, "sigma_om": 0.00010566, "A2": "", "sigma_e": 4.2524e-08, "condition_code": 0.0, "rot_per": 9.012, "prov_des": "", "G": 0.16, "last_obs": "2013-07-08", "H": 8.52, "price": 1743786240.0, "IR": "", "spec_T": "MU", "epoch": 2456800.5, "n_obs_used": 1621.0, "moid": 1.33384, "extent": "", "spec_B": "Xe", "e": 0.1307540081192622, "GM": 0.11611020000000001, "tp_cal": 20151115.3053232, "pdes": 77.0, "class": "MBA", "UB": 0.249, "a": 2.669921777675003, "t_jup": 3.368, "om": 1.28417428402528, "ma": 237.7078542529389, "name": "Frigga", "i": 2.429038277352622, "tp": 2457341.8053232054, "prefix": "", "BV": 0.746, "spec": "Xe", "q": 2.320818803879091, "w": 60.77114858612942, "n": 0.2259208260189552, "sigma_ma": 1.5655e-05, "first_obs": "1879-07-18", "n_del_obs_used": "", "sigma_q": 1.1324e-07, "n_dop_obs_used": ""},
{"sigma_tp": 6.7018e-05, "diameter": 120.6, "epoch_mjd": 56800.0, "ad": 3.162169912580606, "producer": "Otto Matic", "rms": 0.65374, "H_sigma": "", "closeness": 2644.7749873937187, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "78 Diana", "M2": "", "sigma_per": 4.3194e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.7, "saved": -9136151400.0, "albedo": 0.0706, "moid_ld": 425.9348899, "pha": "N", "neo": "N", "sigma_ad": 5.8823e-09, "PC": "", "profit": 706107752.8473717, "spkid": 2000078.0, "sigma_w": 3.6837e-05, "sigma_i": 8.477e-06, "per": 1547.983745035489, "id": "a0000078", "A1": "", "data_arc": 54956.0, "A3": "", "score": 132.25874936968594, "per_y": 4.23814851481311, "sigma_n": 6.4892e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 62", "sigma_a": 4.8717e-09, "sigma_om": 3.263e-05, "A2": "", "sigma_e": 6.5046e-08, "condition_code": 0.0, "rot_per": 7.2991, "prov_des": "", "G": 0.08, "last_obs": "2013-09-26", "H": 8.09, "price": 10949095820.204998, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 1281.0, "moid": 1.09447, "extent": "", "spec_B": "Ch", "e": 0.2074613070541259, "GM": 0.0847471, "tp_cal": 20150729.6755293, "pdes": 78.0, "class": "MBA", "UB": 0.38, "a": 2.618858173017098, "t_jup": 3.359, "om": 333.4185357362481, "ma": 259.3767272718118, "name": "Diana", "i": 8.704670420926844, "tp": 2457233.1755293207, "prefix": "", "BV": 0.713, "spec": "Ch", "q": 2.075546433453591, "w": 153.0244353070001, "n": 0.2325605815658915, "sigma_ma": 1.5594e-05, "first_obs": "1863-04-10", "n_del_obs_used": "", "sigma_q": 1.7134e-07, "n_dop_obs_used": ""},
{"sigma_tp": 6.9755e-05, "diameter": 66.47, "epoch_mjd": 56800.0, "ad": 2.91239742449861, "producer": "Otto Matic", "rms": 0.64097, "H_sigma": "", "closeness": 2648.6970548062054, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "79 Eurynome", "M2": "", "sigma_per": 3.392e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 1.6, "saved": -3.818202319723296e+17, "albedo": 0.2618, "moid_ld": 383.28847379, "pha": "N", "neo": "N", "sigma_ad": 4.7191e-09, "PC": "", "profit": 3.364273119883699e-39, "spkid": 2000079.0, "sigma_w": 7.858e-05, "sigma_i": 4.9374e-06, "per": 1395.576361588335, "id": "a0000079", "A1": "", "data_arc": 54914.0, "A3": "", "score": 1.041801451493396e-49, "per_y": 3.82087984007758, "sigma_n": 6.2697e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 83", "sigma_a": 3.9601e-09, "sigma_om": 7.7011e-05, "A2": "", "sigma_e": 4.0988e-08, "condition_code": 0.0, "rot_per": 5.978, "prov_des": "", "G": 0.25, "last_obs": "2014-02-09", "H": 7.96, "price": 5.20900725746698e-38, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1485.0, "moid": 0.984887, "extent": "", "spec_B": "S", "e": 0.1916457994079859, "GM": "", "tp_cal": 20130123.4166032, "pdes": 79.0, "class": "MBA", "UB": 0.421, "a": 2.444012663784407, "t_jup": 3.47, "om": 206.6335808322613, "ma": 125.0021336262621, "name": "Eurynome", "i": 4.617843656000357, "tp": 2456315.916603231, "prefix": "", "BV": 0.874, "spec": "S", "q": 1.975627903070203, "w": 200.877953827677, "n": 0.2579579376009755, "sigma_ma": 1.8129e-05, "first_obs": "1863-10-05", "n_del_obs_used": "", "sigma_q": 9.9647e-08, "n_dop_obs_used": ""},
{"sigma_tp": 4.936e-05, "diameter": 78.39, "epoch_mjd": 56800.0, "ad": 2.755593869475948, "producer": "Otto Matic", "rms": 0.67504, "H_sigma": "", "closeness": 2652.6470620678647, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "80 Sappho", "M2": "", "sigma_per": 2.53e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 1.7, "saved": -6.262732962772111e+17, "albedo": 0.1848, "moid_ld": 327.7706491, "pha": "N", "neo": "N", "sigma_ad": 3.6575e-09, "PC": "", "profit": 5.526413597410604e-39, "spkid": 2000080.0, "sigma_w": 2.8523e-05, "sigma_i": 5.4636e-06, "per": 1270.740811741975, "id": "a0000080", "A1": "", "data_arc": 53982.0, "A3": "", "score": 1.708794805667698e-49, "per_y": 3.47909873166865, "sigma_n": 5.6404e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 10", "sigma_a": 3.0475e-09, "sigma_om": 2.4343e-05, "A2": "", "sigma_e": 3.2201e-08, "condition_code": 0.0, "rot_per": 14.03, "prov_des": "", "G": "", "last_obs": "2013-07-26", "H": 7.98, "price": 8.54397402833849e-38, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1418.0, "moid": 0.84223, "extent": "", "spec_B": "S", "e": 0.2001702089522829, "GM": "", "tp_cal": 20141122.9912798, "pdes": 80.0, "class": "MBA", "UB": 0.523, "a": 2.296002557738464, "t_jup": 3.553, "om": 218.7795171354827, "ma": 307.8753966759812, "name": "Sappho", "i": 8.664275034521511, "tp": 2456984.4912798326, "prefix": "", "BV": 0.901, "spec": "S", "q": 1.836411246000979, "w": 139.1368858118054, "n": 0.283299313812468, "sigma_ma": 1.3947e-05, "first_obs": "1865-10-08", "n_del_obs_used": "", "sigma_q": 7.3573e-08, "n_dop_obs_used": ""},
{"sigma_tp": 6.0744e-05, "diameter": 119.08, "epoch_mjd": 56800.0, "ad": 3.446970550215466, "producer": "Otto Matic", "rms": 0.57782, "H_sigma": "", "closeness": 2639.7466402824216, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "81 Terpsichore", "M2": "", "sigma_per": 9.461e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.1, "saved": -44789849600.0, "albedo": 0.0505, "moid_ld": 499.1533337, "pha": "N", "neo": "N", "sigma_ad": 1.2337e-08, "PC": "", "profit": 3430255205.970217, "spkid": 2000081.0, "sigma_w": 3.2777e-05, "sigma_i": 7.5398e-06, "per": 1762.285417727336, "id": "a0000081", "A1": "", "data_arc": 54403.0, "A3": "", "score": 132.0073320141211, "per_y": 4.82487451807621, "sigma_n": 1.0967e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 21", "sigma_a": 1.0219e-08, "sigma_om": 2.9397e-05, "A2": "", "sigma_e": 6.0989e-08, "condition_code": 0.0, "rot_per": 10.943, "prov_des": "", "G": "", "last_obs": "2013-11-01", "H": 8.48, "price": 53291775760.84499, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 1227.0, "moid": 1.28261, "extent": "", "spec_B": "Cb", "e": 0.2072179726984221, "GM": 0.4130587, "tp_cal": 20140831.5957585, "pdes": 81.0, "class": "MBA", "UB": 0.346, "a": 2.855300888629631, "t_jup": 3.258, "om": 1.013780239280229, "ma": 339.4502793474267, "name": "Terpsichore", "i": 7.801401851719642, "tp": 2456901.0957584567, "prefix": "", "BV": 0.701, "spec": "Cb", "q": 2.263631227043796, "w": 51.66477192484579, "n": 0.2042801900184025, "sigma_ma": 1.2397e-05, "first_obs": "1864-11-19", "n_del_obs_used": "", "sigma_q": 1.7213e-07, "n_dop_obs_used": ""},
{"sigma_tp": 4.5391e-05, "diameter": 60.96, "epoch_mjd": 56800.0, "ad": 3.370063686087481, "producer": "Otto Matic", "rms": 0.6363, "H_sigma": "", "closeness": 2641.763390105545, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "82 Alkmene", "M2": "", "sigma_per": 4.3638e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 1.5, "saved": -2.945213454835874e+17, "albedo": 0.2075, "moid_ld": 457.9986062, "pha": "N", "neo": "N", "sigma_ad": 5.8362e-09, "PC": "", "profit": 2.5882767612822997e-39, "spkid": 2000082.0, "sigma_w": 0.00010793, "sigma_i": 3.6203e-06, "per": 1679.898575688013, "id": "a0000082", "A1": "", "data_arc": 54250.0, "A3": "", "score": 8.036053082771826e-50, "per_y": 4.59931163774952, "sigma_n": 5.5667e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 74", "sigma_a": 4.7894e-09, "sigma_om": 0.00010753, "A2": "", "sigma_e": 4.7759e-08, "condition_code": 0.0, "rot_per": 12.999, "prov_des": "", "G": 0.28, "last_obs": "2013-06-17", "H": 8.4, "price": 4.018026541385913e-38, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1630.0, "moid": 1.17686, "extent": "", "spec_B": "Sq", "e": 0.2185640217994787, "GM": "", "tp_cal": 20120623.2459378, "pdes": 82.0, "class": "MBA", "UB": 0.38, "a": 2.765602484398676, "t_jup": 3.303, "om": 25.51486523373586, "ma": 149.7420535016879, "name": "Alkmene", "i": 2.82858068007067, "tp": 2456101.7459377833, "prefix": "", "BV": 0.814, "spec": "Sq", "q": 2.161141282709872, "w": 111.2443505438743, "n": 0.2142986518412636, "sigma_ma": 9.8703e-06, "first_obs": "1864-12-05", "n_del_obs_used": "", "sigma_q": 1.3194e-07, "n_dop_obs_used": ""},
{"sigma_tp": 0.00015436, "diameter": 81.37, "epoch_mjd": 56800.0, "ad": 2.630864066676303, "producer": "Otto Matic", "rms": 0.66057, "H_sigma": "", "closeness": 2647.9199418262797, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "83 Beatrix", "M2": "", "sigma_per": 5.4369e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 2.0, "saved": 1.0113016837232312e+18, "albedo": 0.0917, "moid_ld": 479.5235989, "pha": "N", "neo": "N", "sigma_ad": 6.8825e-09, "PC": "", "profit": 4563356749217442.0, "spkid": 2000083.0, "sigma_w": 8.1406e-05, "sigma_i": 5.4208e-06, "per": 1385.525775052508, "id": "a0000083", "A1": "", "data_arc": 54112.0, "A3": "", "score": 132.41599709131398, "per_y": 3.79336283381932, "sigma_n": 1.0196e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 72", "sigma_a": 6.3629e-09, "sigma_om": 7.0539e-05, "A2": "", "sigma_e": 4.8369e-08, "condition_code": 0.0, "rot_per": 10.16, "prov_des": "", "G": "", "last_obs": "2013-07-08", "H": 8.66, "price": 7.067658829756017e+16, "IR": "", "spec_T": "X", "epoch": 2456800.5, "n_obs_used": 1162.0, "moid": 1.23217, "extent": "", "spec_B": "X", "e": 0.08165215749598562, "GM": "", "tp_cal": 20130209.5041819, "pdes": 83.0, "class": "MBA", "UB": 0.266, "a": 2.432264428489403, "t_jup": 3.497, "om": 27.74940612961296, "ma": 121.4690462894001, "name": "Beatrix", "i": 4.963818980982993, "tp": 2456333.0041819303, "prefix": "", "BV": 0.704, "spec": "X", "q": 2.233664790302503, "w": 168.9962727474622, "n": 0.2598291612340137, "sigma_ma": 4.0123e-05, "first_obs": "1865-05-13", "n_del_obs_used": "", "sigma_q": 1.1738e-07, "n_dop_obs_used": ""},
{"sigma_tp": 4.9646e-05, "diameter": 79.16, "epoch_mjd": 56800.0, "ad": 2.921087918505279, "producer": "Otto Matic", "rms": 0.56697, "H_sigma": "", "closeness": 2651.452150320042, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "84 Klio", "M2": "", "sigma_per": 2.891e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 1.6, "saved": -3935019540000000.0, "albedo": 0.0527, "moid_ld": 309.33916873, "pha": "N", "neo": "N", "sigma_ad": 4.2458e-09, "PC": "", "profit": 304894542233158.0, "spkid": 2000084.0, "sigma_w": 3.5332e-05, "sigma_i": 7.846e-06, "per": 1325.995544276279, "id": "a0000084", "A1": "", "data_arc": 54019.0, "A3": "", "score": 132.59260751600212, "per_y": 3.63037794463047, "sigma_n": 5.9193e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 51", "sigma_a": 3.4333e-09, "sigma_om": 3.3652e-05, "A2": "", "sigma_e": 6.7108e-08, "condition_code": 0.0, "rot_per": 23.562, "prov_des": "", "G": "", "last_obs": "2013-07-24", "H": 9.32, "price": 4715870404450499.0, "IR": "", "spec_T": "G", "epoch": 2456800.5, "n_obs_used": 1179.0, "moid": 0.794869, "extent": "", "spec_B": "Ch", "e": 0.2366558889417819, "GM": 0.03650131, "tp_cal": 20140807.2376473, "pdes": 84.0, "class": "MBA", "UB": 0.445, "a": 2.362086288211414, "t_jup": 3.495, "om": 327.5975274306474, "ma": 339.3019266457546, "name": "Klio", "i": 9.330951540043328, "tp": 2456876.737647341, "prefix": "", "BV": 0.733, "spec": "Ch", "q": 1.803084657917547, "w": 14.6473052461581, "n": 0.2714941249644139, "sigma_ma": 1.3457e-05, "first_obs": "1865-08-30", "n_del_obs_used": "", "sigma_q": 1.5862e-07, "n_dop_obs_used": ""},
{"sigma_tp": 5.4566e-05, "diameter": 154.79, "epoch_mjd": 56800.0, "ad": 3.166541449733864, "producer": "Otto Matic", "rms": 0.61984, "H_sigma": "", "closeness": 2643.7495037533595, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "85 Io", "M2": "", "sigma_per": 4.3236e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 3.8, "saved": -11541975780.000004, "albedo": 0.0666, "moid_ld": 450.6899936, "pha": "N", "neo": "N", "sigma_ad": 5.7771e-09, "PC": "", "profit": 1259761842.9612365, "spkid": 2000085.0, "sigma_w": 2.3314e-05, "sigma_i": 3.8974e-06, "per": 1579.908823728113, "id": "a0000085", "A1": "", "data_arc": 54193.0, "A3": "", "score": 132.207475187668, "per_y": 4.32555461664097, "sigma_n": 6.2357e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 73", "sigma_a": 4.8434e-09, "sigma_om": 2.0931e-05, "A2": "", "sigma_e": 3.4671e-08, "condition_code": 0.0, "rot_per": 6.875, "prov_des": "", "G": "", "last_obs": "2014-02-05", "H": 7.61, "price": 19541781458.5435, "IR": "", "spec_T": "FC", "epoch": 2456800.5, "n_obs_used": 1542.0, "moid": 1.15808, "extent": "", "spec_B": "B", "e": 0.1927866748557099, "GM": 0.15167729000000002, "tp_cal": 20120506.8352519, "pdes": 85.0, "class": "MBA", "UB": 0.294, "a": 2.654742475318914, "t_jup": 3.331, "om": 203.1711854004163, "ma": 170.0220324525123, "name": "Io", "i": 11.95068560903782, "tp": 2456054.3352519446, "prefix": "", "BV": 0.668, "spec": "B", "q": 2.142943500903964, "w": 123.00514818311, "n": 0.2278612503413377, "sigma_ma": 1.2623e-05, "first_obs": "1865-09-21", "n_del_obs_used": "", "sigma_q": 9.2199e-08, "n_dop_obs_used": ""},
{"sigma_tp": 5.3082e-05, "diameter": 120.56, "epoch_mjd": 56800.0, "ad": 3.762619902341656, "producer": "Otto Matic", "rms": 0.61019, "H_sigma": "", "closeness": 2634.999448213811, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "86 Semele", "M2": "", "sigma_per": 1.0527e-05, "equinox": "J2000", "DT": "", "diameter_sigma": 3.3, "saved": -1.1385628431649007e+18, "albedo": 0.0466, "moid_ld": 572.3484273, "pha": "N", "neo": "N", "sigma_ad": 1.3169e-08, "PC": "", "profit": 8.767110860564429e+16, "spkid": 2000086.0, "sigma_w": 8.1593e-05, "sigma_i": 4.5998e-06, "per": 2005.233031134667, "id": "a0000086", "A1": "", "data_arc": 51907.0, "A3": "", "score": 131.76997241069054, "per_y": 5.49002883267534, "sigma_n": 9.4251e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 64", "sigma_a": 1.0892e-08, "sigma_om": 8.1141e-05, "A2": "", "sigma_e": 6.2632e-08, "condition_code": 0.0, "rot_per": 16.634, "prov_des": "", "G": "", "last_obs": "2014-02-09", "H": 8.54, "price": 1.3644950834699973e+18, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 1334.0, "moid": 1.47069, "extent": "", "spec_B": "", "e": 0.209055024896301, "GM": "", "tp_cal": 20131214.3812523, "pdes": 86.0, "class": "MBA", "UB": 0.321, "a": 3.11203363359279, "t_jup": 3.179, "om": 86.41623980650967, "ma": 28.65639467563267, "name": "Semele", "i": 4.822496601344512, "tp": 2456640.8812523424, "prefix": "", "BV": 0.703, "spec": "C", "q": 2.461447364843923, "w": 308.5410307881571, "n": 0.1795302562896109, "sigma_ma": 9.5608e-06, "first_obs": "1871-12-29", "n_del_obs_used": "", "sigma_q": 1.9448e-07, "n_dop_obs_used": ""},
{"sigma_tp": 0.0001954, "diameter": 260.94, "epoch_mjd": 56800.0, "ad": 3.799158367119227, "producer": "Davide Farnocchia", "rms": 0.47536, "H_sigma": "", "closeness": 2627.8481000564884, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "87 Sylvia", "M2": "", "sigma_per": 1.5638e-05, "equinox": "J2000", "DT": "", "diameter_sigma": 13.3, "saved": 210798000000.00003, "albedo": 0.0435, "moid_ld": 848.157098, "pha": "N", "neo": "N", "sigma_ad": 1.6691e-08, "PC": "", "profit": 943986068.6478623, "spkid": 2000087.0, "sigma_w": 3.4293e-05, "sigma_i": 4.057e-06, "per": 2373.043665360301, "id": "a0000087", "A1": "", "data_arc": 43267.0, "A3": "", "score": 131.41240500282444, "per_y": 6.49703946710555, "sigma_n": 9.9972e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 73", "sigma_a": 1.5297e-08, "sigma_om": 2.0448e-05, "A2": "", "sigma_e": 3.3066e-08, "condition_code": 0.0, "rot_per": 5.184, "prov_des": "", "G": "", "last_obs": "2013-04-19", "H": 6.94, "price": 14731987200.0, "IR": "", "spec_T": "P", "epoch": 2456800.5, "n_obs_used": 2348.0, "moid": 2.1794, "extent": "", "spec_B": "X", "e": 0.09114515584754355, "GM": 0.980931, "tp_cal": 20110225.269359, "pdes": 87.0, "class": "OMB", "UB": 0.251, "a": 3.481808398047868, "t_jup": 3.094, "om": 73.0837816598019, "ma": 179.4248613978393, "name": "Sylvia", "i": 10.87680355415997, "tp": 2455617.7693590326, "prefix": "", "BV": 0.71, "spec": "X", "q": 3.164458428976509, "w": 263.6854942164023, "n": 0.1517039088892369, "sigma_ma": 3.013e-05, "first_obs": "1894-11-02", "n_del_obs_used": "", "sigma_q": 1.1626e-07, "n_dop_obs_used": ""},
{"sigma_tp": 4.339e-05, "diameter": 232.0, "epoch_mjd": 56800.0, "ad": 3.22295491415939, "producer": "Davide Farnocchia", "rms": 0.61604, "H_sigma": "", "closeness": 2640.915156274207, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "88 Thisbe", "M2": "", "sigma_per": 3.9831e-06, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -69338178300.00002, "albedo": 0.0671, "moid_ld": 506.0844514, "pha": "N", "neo": "N", "sigma_ad": 5.0876e-09, "PC": "", "profit": 7559879347.332149, "spkid": 2000088.0, "sigma_w": 2.7566e-05, "sigma_i": 3.5484e-06, "per": 1682.151348168547, "id": "a0000088", "A1": "", "data_arc": 53677.0, "A3": "", "score": 132.06575781371038, "per_y": 4.60547939265858, "sigma_n": 5.0675e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 137", "sigma_a": 4.3696e-09, "sigma_om": 2.5822e-05, "A2": "", "sigma_e": 2.9562e-08, "condition_code": 0.0, "rot_per": 6.042, "prov_des": "", "G": 0.14, "last_obs": "2013-07-03", "H": 7.04, "price": 117396843737.97249, "IR": "", "spec_T": "CF", "epoch": 2456800.5, "n_obs_used": 2009.0, "moid": 1.30042, "extent": "", "spec_B": "B", "e": 0.1643310238242714, "GM": 0.91119815, "tp_cal": 20140130.0348091, "pdes": 88.0, "class": "MBA", "UB": 0.305, "a": 2.768074412011734, "t_jup": 3.313, "om": 276.6827172058395, "ma": 24.17586786947076, "name": "Thisbe", "i": 5.214565609729301, "tp": 2456687.534809084, "prefix": "", "BV": 0.681, "spec": "B", "q": 2.313193909864077, "w": 35.97034868919064, "n": 0.2140116585775426, "sigma_ma": 9.3008e-06, "first_obs": "1866-07-17", "n_del_obs_used": "", "sigma_q": 8.2553e-08, "n_dop_obs_used": ""},
{"sigma_tp": 5.5736e-05, "diameter": 151.46, "epoch_mjd": 56800.0, "ad": 3.016815351001238, "producer": "Otto Matic", "rms": 0.63807, "H_sigma": "", "closeness": 2645.9823763594354, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "89 Julia", "M2": "", "sigma_per": 3.6761e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 3.1, "saved": -38185939626.666664, "albedo": 0.1764, "moid_ld": 430.1612761, "pha": "N", "neo": "N", "sigma_ad": 4.9681e-09, "PC": "", "profit": 2931399510.548001, "spkid": 2000089.0, "sigma_w": 2.5367e-05, "sigma_i": 4.8503e-06, "per": 1488.194951163148, "id": "a0000089", "A1": "", "data_arc": 53862.0, "A3": "", "score": 132.31911881797177, "per_y": 4.07445571844804, "sigma_n": 5.9755e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 81", "sigma_a": 4.2009e-09, "sigma_om": 2.1415e-05, "A2": "", "sigma_e": 5.3536e-08, "condition_code": 0.0, "rot_per": 11.387, "prov_des": "", "G": 0.15, "last_obs": "2014-01-25", "H": 6.6, "price": 45434323847.371994, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1553.0, "moid": 1.10533, "extent": "", "spec_B": "K", "e": 0.1826088626241708, "GM": 0.35215645333333334, "tp_cal": 20130906.5937537, "pdes": 89.0, "class": "MBA", "UB": 0.442, "a": 2.550983208689154, "t_jup": 3.362, "om": 311.6061840267564, "ma": 62.50945052697634, "name": "Julia", "i": 16.13915268783903, "tp": 2456542.093753683, "prefix": "", "BV": 0.859, "spec": "K", "q": 2.085151066377069, "w": 44.96194959872112, "n": 0.2419037907087577, "sigma_ma": 1.3509e-05, "first_obs": "1866-08-07", "n_del_obs_used": "", "sigma_q": 1.367e-07, "n_dop_obs_used": ""},
{"sigma_tp": 9.1534e-05, "diameter": 120.07, "epoch_mjd": 56800.0, "ad": 3.670114460218753, "producer": "Otto Matic", "rms": 0.50672, "H_sigma": "", "closeness": 2633.607857654501, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "90 Antiope", "M2": "", "sigma_per": 1.0002e-05, "equinox": "J2000", "DT": "", "diameter_sigma": 4.0, "saved": -5970870600000000.0, "albedo": 0.0603, "moid_ld": 632.3973583, "pha": "N", "neo": "N", "sigma_ad": 1.1959e-08, "PC": "", "profit": 459523505942262.9, "spkid": 2000090.0, "sigma_w": 0.00011151, "sigma_i": 4.2674e-06, "per": 2046.404824150711, "id": "a0000090", "A1": "", "data_arc": 53821.0, "A3": "", "score": 131.70039288272505, "per_y": 5.60275105859195, "sigma_n": 8.5981e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 70", "sigma_a": 1.0278e-08, "sigma_om": 0.00011024, "A2": "", "sigma_e": 4.0403e-08, "condition_code": 0.0, "rot_per": 16.509, "prov_des": "", "G": "", "last_obs": "2014-02-08", "H": 8.27, "price": 7155708291944999.0, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 2735.0, "moid": 1.62499, "extent": "", "spec_B": "C", "e": 0.1634583999334092, "GM": 0.0553859, "tp_cal": 20170123.2736674, "pdes": 90.0, "class": "MBA", "UB": 0.317, "a": 3.154487053794801, "t_jup": 3.185, "om": 70.04471974283555, "ma": 188.2556236523734, "name": "Antiope", "i": 2.207139960216967, "tp": 2457776.7736674403, "prefix": "", "BV": 0.688, "spec": "C", "q": 2.638859647370849, "w": 244.4056053208425, "n": 0.1759182717668805, "sigma_ma": 1.625e-05, "first_obs": "1866-10-01", "n_del_obs_used": "", "sigma_q": 1.273e-07, "n_dop_obs_used": ""},
{"sigma_tp": 8.056e-05, "diameter": 109.81, "epoch_mjd": 56800.0, "ad": 2.866051536835558, "producer": "Otto Matic", "rms": 0.62035, "H_sigma": "", "closeness": 2644.2769891868893, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "91 Aegina", "M2": "", "sigma_per": 4.8467e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 3.3, "saved": -8.603456422246179e+17, "albedo": 0.0426, "moid_ld": 517.090179, "pha": "N", "neo": "N", "sigma_ad": 6.0853e-09, "PC": "", "profit": 6.64812033913748e+16, "spkid": 2000091.0, "sigma_w": 0.00016013, "sigma_i": 3.6388e-06, "per": 1521.782660596264, "id": "a0000091", "A1": "", "data_arc": 53782.0, "A3": "", "score": 132.23384945934447, "per_y": 4.16641385515746, "sigma_n": 7.5343e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 87", "sigma_a": 5.4976e-09, "sigma_om": 0.00015862, "A2": "", "sigma_e": 5.6849e-08, "condition_code": 0.0, "rot_per": 6.025, "prov_des": "", "G": "", "last_obs": "2014-02-09", "H": 8.84, "price": 1.0310694802204293e+18, "IR": "", "spec_T": "CP", "epoch": 2456800.5, "n_obs_used": 1452.0, "moid": 1.3287, "extent": "", "spec_B": "Ch", "e": 0.1069156452909654, "GM": "", "tp_cal": 20130314.845787, "pdes": 91.0, "class": "MBA", "UB": 0.317, "a": 2.589223080393071, "t_jup": 3.411, "om": 10.66908212937258, "ma": 102.7055444445451, "name": "Aegina", "i": 2.106921430495852, "tp": 2456366.345786992, "prefix": "", "BV": 0.724, "spec": "Ch", "q": 2.312394623950585, "w": 72.69702578347858, "n": 0.2365646615127977, "sigma_ma": 1.9105e-05, "first_obs": "1866-11-10", "n_del_obs_used": "", "sigma_q": 1.4776e-07, "n_dop_obs_used": ""},
{"sigma_tp": 0.00018105, "diameter": 126.42, "epoch_mjd": 56800.0, "ad": 3.516735412538281, "producer": "Otto Matic", "rms": 0.60954, "H_sigma": "", "closeness": 2632.4653203978833, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "92 Undina", "M2": "", "sigma_per": 9.7713e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 3.4, "saved": 63435465666.66667, "albedo": 0.2509, "moid_ld": 724.1130522, "pha": "N", "neo": "N", "sigma_ad": 1.103e-08, "PC": "", "profit": 312944462.512073, "spkid": 2000092.0, "sigma_w": 4.853e-05, "sigma_i": 7.0263e-06, "per": 2076.972082188739, "id": "a0000092", "A1": "", "data_arc": 52173.0, "A3": "", "score": 131.63301660357416, "per_y": 5.68643965007184, "sigma_n": 8.1544e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 72", "sigma_a": 9.992e-09, "sigma_om": 3.7809e-05, "A2": "", "sigma_e": 5.5124e-08, "condition_code": 0.0, "rot_per": 15.941, "prov_des": "", "G": "", "last_obs": "2014-01-11", "H": 6.61, "price": 4875291840.0, "IR": "", "spec_T": "X", "epoch": 2456800.5, "n_obs_used": 1375.0, "moid": 1.86066, "extent": "", "spec_B": "Xc", "e": 0.1038707014704546, "GM": 0.29516903333333333, "tp_cal": 20160627.2946603, "pdes": 92.0, "class": "MBA", "UB": 0.275, "a": 3.185821861069122, "t_jup": 3.166, "om": 101.5915740587129, "ma": 227.1787261560509, "name": "Undina", "i": 9.930885894228242, "tp": 2457566.7946602628, "prefix": "", "BV": 0.725, "spec": "Xc", "q": 2.854908309599963, "w": 239.8595213127263, "n": 0.1733292436076596, "sigma_ma": 3.1294e-05, "first_obs": "1871-03-09", "n_del_obs_used": "", "sigma_q": 1.8064e-07, "n_dop_obs_used": ""},
{"sigma_tp": 8.8709e-05, "diameter": 141.55, "epoch_mjd": 56800.0, "ad": 3.143074397119257, "producer": "Otto Matic", "rms": 0.62119, "H_sigma": "", "closeness": 2640.938904823194, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "93 Minerva", "M2": "", "sigma_per": 7.333e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 4.0, "saved": -25178370000.000004, "albedo": 0.0733, "moid_ld": 532.306726, "pha": "N", "neo": "N", "sigma_ad": 9.2039e-09, "PC": "", "profit": 1943143744.2973032, "spkid": 2000093.0, "sigma_w": 3.5849e-05, "sigma_i": 5.5546e-06, "per": 1669.451232285792, "id": "a0000093", "A1": "", "data_arc": 52512.0, "A3": "", "score": 132.06694524115971, "per_y": 4.57070837039231, "sigma_n": 9.4719e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 83", "sigma_a": 8.0649e-09, "sigma_om": 2.9332e-05, "A2": "", "sigma_e": 4.5122e-08, "condition_code": 0.0, "rot_per": 5.982, "prov_des": "", "G": "", "last_obs": "2013-12-04", "H": 7.8, "price": 30174673520.249996, "IR": "", "spec_T": "CU", "epoch": 2456800.5, "n_obs_used": 1304.0, "moid": 1.3678, "extent": "", "spec_B": "C", "e": 0.1412245900228756, "GM": 0.233555, "tp_cal": 20130404.1104454, "pdes": 93.0, "class": "MBA", "UB": 0.315, "a": 2.754124319259765, "t_jup": 3.314, "om": 4.075600021572905, "ma": 89.25102859299776, "name": "Minerva", "i": 8.560672673668172, "tp": 2456386.6104453686, "prefix": "", "BV": 0.685, "spec": "C", "q": 2.365174241400273, "w": 274.8410963310466, "n": 0.215639722226023, "sigma_ma": 1.9123e-05, "first_obs": "1870-02-25", "n_del_obs_used": "", "sigma_q": 1.2543e-07, "n_dop_obs_used": ""},
{"sigma_tp": 0.00016859, "diameter": 204.89, "epoch_mjd": 56800.0, "ad": 3.439608748095183, "producer": "Otto Matic", "rms": 0.56094, "H_sigma": "", "closeness": 2632.8281624090323, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "94 Aurora", "M2": "", "sigma_per": 1.3022e-05, "equinox": "J2000", "DT": "", "diameter_sigma": 3.6, "saved": -50719020775.200005, "albedo": 0.0395, "moid_ld": 738.5434758, "pha": "N", "neo": "N", "sigma_ad": 1.457e-08, "PC": "", "profit": 3902225278.9237947, "spkid": 2000094.0, "sigma_w": 4.6867e-05, "sigma_i": 4.5381e-06, "per": 2049.493786871208, "id": "a0000094", "A1": "", "data_arc": 51680.0, "A3": "", "score": 131.66140812045163, "per_y": 5.61120817760769, "sigma_n": 1.1161e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 65", "sigma_a": 1.3376e-08, "sigma_om": 3.3799e-05, "A2": "", "sigma_e": 3.4947e-08, "condition_code": 0.0, "rot_per": 7.22, "prov_des": "", "G": "", "last_obs": "2014-01-23", "H": 7.57, "price": 60783517485.77993, "IR": "", "spec_T": "CP", "epoch": 2456800.5, "n_obs_used": 1366.0, "moid": 1.89774, "extent": "", "spec_B": "C", "e": 0.08929018895322222, "GM": 0.4704705228, "tp_cal": 20140703.2309463, "pdes": 94.0, "class": "MBA", "UB": 0.301, "a": 3.157660633481471, "t_jup": 3.185, "om": 2.659640089540996, "ma": 352.7576551988819, "name": "Aurora", "i": 7.966113455363737, "tp": 2456841.7309463117, "prefix": "", "BV": 0.663, "spec": "C", "q": 2.875712518867759, "w": 60.59191999327774, "n": 0.1756531306931074, "sigma_ma": 2.962e-05, "first_obs": "1872-07-26", "n_del_obs_used": "", "sigma_q": 1.1268e-07, "n_dop_obs_used": ""},
{"sigma_tp": 0.00012623, "diameter": 136.04, "epoch_mjd": 56800.0, "ad": 3.5324115105407, "producer": "Otto Matic", "rms": 0.62888, "H_sigma": "", "closeness": 2635.014915045428, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "95 Arethusa", "M2": "", "sigma_per": 9.0623e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 10.1, "saved": -1.6358638618223055e+18, "albedo": 0.0698, "moid_ld": 627.497708, "pha": "N", "neo": "N", "sigma_ad": 1.0886e-08, "PC": "", "profit": 1.2596479938285603e+17, "spkid": 2000095.0, "sigma_w": 4.0198e-05, "sigma_i": 7.3177e-06, "per": 1960.452859280162, "id": "a0000095", "A1": "", "data_arc": 51626.0, "A3": "", "score": 131.7707457522714, "per_y": 5.36742740391557, "sigma_n": 8.4885e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 6", "sigma_a": 9.4471e-09, "sigma_om": 3.21e-05, "A2": "", "sigma_e": 5.9509e-08, "condition_code": 0.0, "rot_per": 8.705, "prov_des": "", "G": "", "last_obs": "2014-01-28", "H": 7.9, "price": 1.9604786947710838e+18, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 1132.0, "moid": 1.6124, "extent": "", "spec_B": "Ch", "e": 0.1523010916484309, "GM": "", "tp_cal": 20121108.9452318, "pdes": 95.0, "class": "MBA", "UB": 0.374, "a": 3.065528216663744, "t_jup": 3.176, "om": 243.0588977419622, "ma": 102.8434402814191, "name": "Arethusa", "i": 12.99455855510813, "tp": 2456240.4452317837, "prefix": "", "BV": 0.711, "spec": "Ch", "q": 2.598644922786788, "w": 154.4767365176065, "n": 0.1836310413157216, "sigma_ma": 2.3219e-05, "first_obs": "1872-09-23", "n_del_obs_used": "", "sigma_q": 1.8389e-07, "n_dop_obs_used": ""},
{"sigma_tp": 0.00013483, "diameter": 170.02, "epoch_mjd": 56800.0, "ad": 3.476458063337933, "producer": "Otto Matic", "rms": 0.59755, "H_sigma": "", "closeness": 2635.0931016978166, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "96 Aegle", "M2": "", "sigma_per": 1.4596e-05, "equinox": "J2000", "DT": "", "diameter_sigma": 3.4, "saved": -31031633333.333332, "albedo": 0.0523, "moid_ld": 641.3249181, "pha": "N", "neo": "N", "sigma_ad": 1.7365e-08, "PC": "", "profit": 3981.1759114911238, "spkid": 2000096.0, "sigma_w": 2.6855e-05, "sigma_i": 8.5516e-06, "per": 1948.077222524646, "id": "a0000096", "A1": "", "data_arc": 53203.0, "A3": "", "score": 1.2392e-07, "per_y": 5.33354475708322, "sigma_n": 1.3846e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 68", "sigma_a": 1.5248e-08, "sigma_om": 1.3864e-05, "A2": "", "sigma_e": 6.123e-08, "condition_code": 0.0, "rot_per": 13.82, "prov_des": "", "G": "", "last_obs": "2013-10-20", "H": 7.67, "price": 61959.99999999999, "IR": "", "spec_T": "T", "epoch": 2456800.5, "n_obs_used": 968.0, "moid": 1.64793, "extent": "", "spec_B": "T", "e": 0.1388464362141536, "GM": 0.3445492333333333, "tp_cal": 20120611.1131274, "pdes": 96.0, "class": "MBA", "UB": 0.337, "a": 3.05261355068613, "t_jup": 3.163, "om": 321.6318997483958, "ma": 131.3701896376288, "name": "Aegle", "i": 15.96816212213656, "tp": 2456089.613127356, "prefix": "", "BV": 0.775, "spec": "T", "q": 2.628769038034328, "w": 208.6548727104452, "n": 0.1847976023935291, "sigma_ma": 2.5101e-05, "first_obs": "1868-02-20", "n_del_obs_used": "", "sigma_q": 1.8809e-07, "n_dop_obs_used": ""},
{"sigma_tp": 5.241e-05, "diameter": 82.83, "epoch_mjd": 56800.0, "ad": 3.35121472036248, "producer": "Otto Matic", "rms": 0.59028, "H_sigma": "", "closeness": 2644.434312033116, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "97 Klotho", "M2": "", "sigma_per": 6.1727e-06, "equinox": "J2000", "DT": "", "diameter_sigma": 4.5, "saved": 19072200000.0, "albedo": 0.2285, "moid_ld": 406.4296895, "pha": "N", "neo": "N", "sigma_ad": 8.6489e-09, "PC": "", "profit": 85947335.44120668, "spkid": 2000097.0, "sigma_w": 2.5803e-05, "sigma_i": 5.2041e-06, "per": 1594.50019628521, "id": "a0000097", "A1": "", "data_arc": 52203.0, "A3": "", "score": 132.2243813898158, "per_y": 4.36550361748175, "sigma_n": 8.7403e-10, "epoch_cal": 20140523.0, "orbit_id": "JPL 61", "sigma_a": 6.8936e-09, "sigma_om": 2.4056e-05, "A2": "", "sigma_e": 4.034e-08, "condition_code": 0.0, "rot_per": 35.15, "prov_des": "", "G": "", "last_obs": "2013-06-26", "H": 7.63, "price": 1332894080.0, "IR": "", "spec_T": "M", "epoch": 2456800.5, "n_obs_used": 1480.0, "moid": 1.04435, "extent": "", "spec_B": "", "e": 0.2546371846173578, "GM": 0.08875090000000001, "tp_cal": 20150719.7407798, "pdes": 97.0, "class": "MBA", "UB": 0.226, "a": 2.671062807200745, "t_jup": 3.305, "om": 159.7073016059405, "ma": 264.5552449076654, "name": "Klotho", "i": 11.7827265798571, "tp": 2457223.240779803, "prefix": "", "BV": 0.716, "spec": "M", "q": 1.990910894039011, "w": 268.5387307495883, "n": 0.2257760775688273, "sigma_ma": 1.1679e-05, "first_obs": "1870-07-23", "n_del_obs_used": "", "sigma_q": 1.0689e-07, "n_dop_obs_used": ""},
{"sigma_tp": 7.0365e-05, "diameter": 104.45, "epoch_mjd": 56800.0, "ad": 3.18794424845341, "producer": "Otto Matic", "rms": 0.58986, "H_sigma": "", "closeness": 2642.909138211439, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "98 Ianthe", "M2": "", "sigma_per": 1.0669e-05, "equinox": "J2000", "DT": "", "diameter_sigma": 1.8, "saved": -8251311540.000001, "albedo": 0.0471, "moid_ld": 468.8408824, "pha": "N", "neo": "N", "sigma_ad": 1.4084e-08, "PC": "", "profit": 637271036.4080985, "spkid": 2000098.0, "sigma_w": 2.6135e-05, "sigma_i": 3.6381e-06, "per": 1610.003807446567, "id": "a0000098", "A1": "", "data_arc": 52068.0, "A3": "", "score": 132.16523425373063, "per_y": 4.40795019150326, "sigma_n": 1.4818e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 49", "sigma_a": 1.1877e-08, "sigma_om": 2.041e-05, "A2": "", "sigma_e": 3.7044e-08, "condition_code": 0.0, "rot_per": 16.479, "prov_des": "", "G": "", "last_obs": "2013-05-08", "H": 8.84, "price": 9888671579.350498, "IR": "", "spec_T": "CG", "epoch": 2456800.5, "n_obs_used": 1120.0, "moid": 1.20472, "extent": "", "spec_B": "Ch", "e": 0.1858371912318199, "GM": 0.07653931, "tp_cal": 20130515.1909597, "pdes": 98.0, "class": "MBA", "UB": 0.375, "a": 2.688349017913537, "t_jup": 3.296, "om": 354.010698505987, "ma": 83.36083050597034, "name": "Ianthe", "i": 15.57610487068637, "tp": 2456427.690959704, "prefix": "", "BV": 0.749, "spec": "Ch", "q": 2.188753787373664, "w": 158.526712595362, "n": 0.2236019556816779, "sigma_ma": 1.5873e-05, "first_obs": "1870-10-17", "n_del_obs_used": "", "sigma_q": 9.9106e-08, "n_dop_obs_used": ""},
{"sigma_tp": 8.4931e-05, "diameter": 69.04, "epoch_mjd": 56800.0, "ad": 3.18699337371394, "producer": "Otto Matic", "rms": 0.54113, "H_sigma": "", "closeness": 2643.5911893587463, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "99 Dike", "M2": "", "sigma_per": 1.0177e-05, "equinox": "J2000", "DT": "", "diameter_sigma": 2.7, "saved": 6.177178204785926e+17, "albedo": 0.0627, "moid_ld": 441.1553286, "pha": "N", "neo": "N", "sigma_ad": 1.3614e-08, "PC": "", "profit": 2782808155518598.0, "spkid": 2000099.0, "sigma_w": 2.8906e-05, "sigma_i": 7.9676e-06, "per": 1588.329064023693, "id": "a0000099", "A1": "", "data_arc": 36180.0, "A3": "", "score": 132.19955946793732, "per_y": 4.34860797816206, "sigma_n": 1.4523e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 64", "sigma_a": 1.138e-08, "sigma_om": 2.4538e-05, "A2": "", "sigma_e": 6.8448e-08, "condition_code": 0.0, "rot_per": 18.127, "prov_des": "", "G": "", "last_obs": "2014-02-09", "H": 9.43, "price": 4.3170291105715064e+16, "IR": "", "spec_T": "C", "epoch": 2456800.5, "n_obs_used": 1211.0, "moid": 1.13358, "extent": "", "spec_B": "Xk", "e": 0.1962440476921367, "GM": "", "tp_cal": 20160511.5593073, "pdes": 99.0, "class": "MBA", "UB": 0.322, "a": 2.664166546836719, "t_jup": 3.316, "om": 41.62439631517791, "ma": 196.9095192505101, "name": "Dike", "i": 13.8505418939861, "tp": 2457520.0593073335, "prefix": "", "BV": 0.703, "spec": "Xk", "q": 2.141339719959499, "w": 195.4694858370652, "n": 0.2266532849861834, "sigma_ma": 1.8786e-05, "first_obs": "1915-01-20", "n_del_obs_used": "", "sigma_q": 1.8289e-07, "n_dop_obs_used": ""},
{"sigma_tp": 0.00012826, "diameter": 88.66, "epoch_mjd": 56800.0, "ad": 3.6079848066153, "producer": "Otto Matic", "rms": 0.61319, "H_sigma": "", "closeness": 2634.8069298526457, "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "100 Hekate", "M2": "", "sigma_per": 1.1329e-05, "equinox": "J2000", "DT": "", "diameter_sigma": 2.0, "saved": -9.060769486310257e+17, "albedo": 0.1922, "moid_ld": 604.7429381, "pha": "N", "neo": "N", "sigma_ad": 1.3745e-08, "PC": "", "profit": 7.941707701454595e-39, "spkid": 2000100.0, "sigma_w": 5.4225e-05, "sigma_i": 6.752e-06, "per": 1982.548969704353, "id": "a0000100", "A1": "", "data_arc": 52236.0, "A3": "", "score": 2.472242697492567e-49, "per_y": 5.427923257233, "sigma_n": 1.0377e-09, "epoch_cal": 20140523.0, "orbit_id": "JPL 4", "sigma_a": 1.1766e-08, "sigma_om": 5.051e-05, "A2": "", "sigma_e": 5.8069e-08, "condition_code": 0.0, "rot_per": 27.066, "prov_des": "", "G": "", "last_obs": "2014-01-21", "H": 7.67, "price": 1.2361213487462834e-37, "IR": "", "spec_T": "S", "epoch": 2456800.5, "n_obs_used": 1476.0, "moid": 1.55393, "extent": "", "spec_B": "S", "e": 0.1681923799822946, "GM": "", "tp_cal": 20150810.4900324, "pdes": 100.0, "class": "MBA", "UB": 0.363, "a": 3.088519381259774, "t_jup": 3.194, "om": 127.2055991424626, "ma": 279.287536338317, "name": "Hekate", "i": 6.429906179913159, "tp": 2457244.99003243, "prefix": "", "BV": 0.838, "spec": "S", "q": 2.569053955904249, "w": 184.9085245961292, "n": 0.1815844175862576, "sigma_ma": 2.3144e-05, "first_obs": "1871-01-15", "n_del_obs_used": "", "sigma_q": 1.8125e-07, "n_dop_obs_used": ""}
]
kuiperBelt = [
{"sigma_tp": 8.4093, "diameter": "", "sigma_q": 0.0016037, "epoch_mjd": 56800.0, "ad": 47.01145347987892, "producer": "Otto Matic", "rms": 0.68653, "H_sigma": "", "closeness": 2601.2248897256723, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "15760 (1992 QB1)", "M2": "", "sigma_per": 27.523, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.8555841741645757e+18, "albedo": "", "moid_ld": 15537.962503, "pha": "N", "neo": "N", "sigma_ad": 0.0080997, "PC": "", "profit": 0.0, "est_diameter": 124.58889999152157, "sigma_w": 0.032734, "sigma_i": 0.00026903, "per": 106496.8598544264, "id": "a0015760", "A1": "", "data_arc": 7707.0, "A3": "", "score": 0.0, "per_y": 291.572511579538, "sigma_n": 8.7362e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 2", "sigma_a": 0.0075758, "sigma_om": 0.00099998, "A2": "", "sigma_e": 0.00012449, "condition_code": 3.0, "rot_per": "", "prov_des": "1992 QB1", "G": "", "last_obs": "2013-10-06", "H": 7.2, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 79.0, "moid": 39.9259, "extent": "", "dv": 12.330092, "e": 0.06916506979227915, "GM": "", "tp_cal": 19951114.7288061, "pdes": 15760.0, "class": "TNO", "UB": "", "a": 43.97024819470809, "t_jup": 5.914, "om": 359.4857233616412, "ma": 22.86581626107548, "name": "", "i": 2.190413655114311, "tp": 2450036.2288060756, "prefix": "", "BV": "", "spec": "?", "q": 40.92904290953727, "w": 4.911339213746866, "n": 0.003380381360465411, "sigma_ma": 0.031831, "first_obs": "1992-08-30", "n_del_obs_used": "", "spkid": 2015760.0, "n_dop_obs_used": ""},
{"sigma_tp": 42.389, "diameter": "", "sigma_q": 0.0086977, "epoch_mjd": 56800.0, "ad": 46.66641225595418, "producer": "Otto Matic", "rms": 0.74145, "H_sigma": "", "closeness": 2601.2233029334834, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "15807 (1994 GV9)", "M2": "", "sigma_per": 46.277, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.4076045431002944e+18, "albedo": "", "moid_ld": 15599.87945, "pha": "N", "neo": "N", "sigma_ad": 0.013566, "PC": "", "profit": 0.0, "est_diameter": 113.62642725569708, "sigma_w": 0.17198, "sigma_i": 0.00075231, "per": 106125.2486939409, "id": "a0015807", "A1": "", "data_arc": 2921.0, "A3": "", "score": 0.0, "per_y": 290.555095671296, "sigma_n": 1.4792e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.012753, "sigma_om": 0.0044382, "A2": "", "sigma_e": 0.00027299, "condition_code": 4.0, "rot_per": "", "prov_des": "1994 GV9", "G": "", "last_obs": "2002-04-14", "H": 7.4, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 47.0, "moid": 40.085, "extent": "", "dv": 12.335539, "e": 0.06379403453632763, "GM": "", "tp_cal": 19580512.3951024, "pdes": 15807.0, "class": "TNO", "UB": "", "a": 43.86790181267985, "t_jup": 5.914, "om": 176.8567680926398, "ma": 69.42040517029831, "name": "", "i": 0.5622065478579845, "tp": 2436335.895102411, "prefix": "", "BV": "", "spec": "?", "q": 41.06939136940552, "w": 306.622017380806, "n": 0.003392218199066078, "sigma_ma": 0.16431, "first_obs": "1994-04-15", "n_del_obs_used": "", "spkid": 2015807.0, "n_dop_obs_used": ""},
{"sigma_tp": 9.2845, "diameter": "", "sigma_q": 0.0066006, "epoch_mjd": 56800.0, "ad": 51.05681741725063, "producer": "Otto Matic", "rms": 0.48887, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "15809 (1994 JS)", "M2": "", "sigma_per": 55.07, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -8.099918700771318e+17, "albedo": "", "moid_ld": 12478.113378, "pha": "N", "neo": "N", "sigma_ad": 0.018815, "PC": "", "profit": -0.0, "est_diameter": 94.51034563112196, "sigma_w": 0.059404, "sigma_i": 0.00048979, "per": 99623.85186846525, "id": "a0015809", "A1": "", "data_arc": 2589.0, "A3": "", "score": 0.0, "per_y": 272.755241255209, "sigma_n": 1.9975e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.015499, "sigma_om": 0.00026553, "A2": "", "sigma_e": 0.00020627, "condition_code": 3.0, "rot_per": "", "prov_des": "1994 JS", "G": "", "last_obs": "2001-06-12", "H": 7.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 52.0, "moid": 32.0634, "extent": "", "dv": 12.495012, "e": 0.2139770362066082, "GM": "", "tp_cal": 20230620.9924491, "pdes": 15809.0, "class": "TNO", "UB": "", "a": 42.05748205649024, "t_jup": 5.512, "om": 56.34574440670398, "ma": 348.0173546867384, "name": "", "i": 14.05265826255955, "tp": 2460116.492449113, "prefix": "", "BV": "", "spec": "?", "q": 33.05814669572985, "w": 237.3299146660842, "n": 0.003613592460521532, "sigma_ma": 0.03918, "first_obs": "1994-05-11", "n_del_obs_used": "", "spkid": 2015809.0, "n_dop_obs_used": ""},
{"sigma_tp": 0.37561, "diameter": "", "sigma_q": 0.00068506, "epoch_mjd": 56800.0, "ad": 133.4840976351447, "producer": "Otto Matic", "rms": 0.51023, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "15874 (1996 TL66)", "M2": "", "sigma_per": 103.19, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.230902858036994e+19, "albedo": "", "moid_ld": 13258.905149, "pha": "N", "neo": "N", "sigma_ad": 0.032498, "PC": "", "profit": -0.0, "est_diameter": 285.4166808844959, "sigma_w": 0.0022306, "sigma_i": 0.0001224, "per": 282572.1609180764, "id": "a0015874", "A1": "", "data_arc": 5883.0, "A3": "", "score": 0.0, "per_y": 773.640413191174, "sigma_n": 4.6526e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 12", "sigma_a": 0.020517, "sigma_om": 4.0011e-05, "A2": "", "sigma_e": 9.3185e-05, "condition_code": 2.0, "rot_per": 12.0, "prov_des": "1996 TL66", "G": "", "last_obs": "2012-11-17", "H": 5.4, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 224.0, "moid": 34.0697, "extent": "", "dv": 12.198465, "e": 0.5839527879835306, "GM": "", "tp_cal": 20010810.3462098, "pdes": 15874.0, "class": "TNO", "UB": "", "a": 84.27277545631787, "t_jup": 6.032, "om": 217.7696002920575, "ma": 5.947915601442711, "name": "", "i": 23.97421088952825, "tp": 2452131.846209839, "prefix": "", "BV": "", "spec": "?", "q": 35.061453277491, "w": 184.951817084957, "n": 0.001274010853830613, "sigma_ma": 0.0023145, "first_obs": "1996-10-09", "n_del_obs_used": "", "spkid": 2015874.0, "n_dop_obs_used": ""},
{"sigma_tp": 19.408, "diameter": "", "sigma_q": 0.0099165, "epoch_mjd": 56800.0, "ad": 57.50370873989554, "producer": "Otto Matic", "rms": 0.33671, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "15883 (1997 CR29)", "M2": "", "sigma_per": 123.02, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.1304956895593636e+18, "albedo": "", "moid_ld": 14091.612198, "pha": "N", "neo": "N", "sigma_ad": 0.039652, "PC": "", "profit": -0.0, "est_diameter": 130.4605939513808, "sigma_w": 0.094501, "sigma_i": 0.00041869, "per": 118933.158885264, "id": "a0015883", "A1": "", "data_arc": 5883.0, "A3": "", "score": 0.0, "per_y": 325.621242670127, "sigma_n": 3.1308e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 2", "sigma_a": 0.032636, "sigma_om": 0.00032621, "A2": "", "sigma_e": 0.00035684, "condition_code": 4.0, "rot_per": "", "prov_des": "1997 CR29", "G": "", "last_obs": "2013-03-14", "H": 7.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 32.0, "moid": 36.2094, "extent": "", "dv": 12.879273, "e": 0.2149530743064772, "GM": "", "tp_cal": 19560414.8490419, "pdes": 15883.0, "class": "TNO", "UB": "", "a": 47.32998331867258, "t_jup": 5.676, "om": 127.1170261787061, "ma": 64.23754667351568, "name": "", "i": 19.11390290492508, "tp": 2435578.3490418866, "prefix": "", "BV": "", "spec": "?", "q": 37.15625789744963, "w": 302.2779449510146, "n": 0.003026910269383288, "sigma_ma": 0.12515, "first_obs": "1997-02-03", "n_del_obs_used": "", "spkid": 2015883.0, "n_dop_obs_used": ""},
{"sigma_tp": 74.228, "diameter": "", "sigma_q": 0.01504, "epoch_mjd": 56800.0, "ad": 46.14276060861091, "producer": "Otto Matic", "rms": 0.37686, "H_sigma": "", "closeness": 2601.1992464590016, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "16684 (1994 JQ1)", "M2": "", "sigma_per": 38.995, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.8085402992270065e+18, "albedo": "", "moid_ld": 15925.964993, "pha": "N", "neo": "N", "sigma_ad": 0.011237, "PC": "", "profit": 0.0, "est_diameter": 143.04719672357845, "sigma_w": 0.2952, "sigma_i": 0.00082416, "per": 106751.2033589436, "id": "a0016684", "A1": "", "data_arc": 2569.0, "A3": "", "score": 0.0, "per_y": 292.268866143583, "sigma_n": 1.2319e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.010725, "sigma_om": 0.0019006, "A2": "", "sigma_e": 0.00031278, "condition_code": 3.0, "rot_per": "", "prov_des": "1994 JQ1", "G": "", "last_obs": "2001-05-23", "H": 6.9, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 50.0, "moid": 40.9229, "extent": "", "dv": 12.423223, "e": 0.04774116033327186, "GM": "", "tp_cal": 20440227.7455126, "pdes": 16684.0, "class": "TNO", "UB": "", "a": 44.0402289759558, "t_jup": 5.918, "om": 25.61330837694472, "ma": 323.3335432165841, "name": "", "i": 3.741727559458978, "tp": 2467673.2455126066, "prefix": "", "BV": "", "spec": "?", "q": 41.93769734330069, "w": 250.0337953373847, "n": 0.003372327324400499, "sigma_ma": 0.25969, "first_obs": "1994-05-11", "n_del_obs_used": "", "spkid": 2016684.0, "n_dop_obs_used": ""},
{"sigma_tp": 120.94, "diameter": "", "sigma_q": 0.023841, "epoch_mjd": 56800.0, "ad": 44.46164119236299, "producer": "Otto Matic", "rms": 0.79996, "H_sigma": "", "closeness": 2601.1911284042353, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "19255 (1994 VK8)", "M2": "", "sigma_per": 34.044, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.446136341551079e+18, "albedo": "", "moid_ld": 15797.18864, "pha": "N", "neo": "N", "sigma_ad": 0.0097894, "PC": "", "profit": 0.0, "est_diameter": 136.60901232216727, "sigma_w": 0.3991, "sigma_i": 0.001448, "per": 103079.8559958508, "id": "a0019255", "A1": "", "data_arc": 2211.0, "A3": "", "score": 0.0, "per_y": 282.217264875704, "sigma_n": 1.1534e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.009473, "sigma_om": 0.0086874, "A2": "", "sigma_e": 0.00046232, "condition_code": 4.0, "rot_per": 9.0, "prov_des": "1994 VK8", "G": "", "last_obs": "2000-11-27", "H": 7.0, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 67.0, "moid": 40.592, "extent": "", "dv": 12.455222, "e": 0.03340027324954879, "GM": "", "tp_cal": 20840517.1822729, "pdes": 19255.0, "class": "TNO", "UB": "", "a": 43.02460754394077, "t_jup": 5.867, "om": 72.39170861510645, "ma": 270.725664783619, "name": "", "i": 1.486980186675684, "tp": 2482362.682272861, "prefix": "", "BV": "", "spec": "?", "q": 41.58757389551855, "w": 106.9536252680687, "n": 0.00349243794068252, "sigma_ma": 0.43742, "first_obs": "1994-11-08", "n_del_obs_used": "", "spkid": 2019255.0, "n_dop_obs_used": ""},
{"sigma_tp": 10.152, "diameter": "", "sigma_q": 0.01013, "epoch_mjd": 56800.0, "ad": 48.36817517251279, "producer": "Otto Matic", "rms": 0.6021, "H_sigma": "", "closeness": 2601.017392559055, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "19308 (1996 TO66)", "M2": "", "sigma_per": 29.155, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -7.735362306612992e+19, "albedo": "", "moid_ld": 14502.692469, "pha": "N", "neo": "N", "sigma_ad": 0.0090396, "PC": "", "profit": 0.0, "est_diameter": 431.99562784405657, "sigma_w": 0.063721, "sigma_i": 0.00041176, "per": 103998.5118145759, "id": "a0019308", "A1": "", "data_arc": 7322.0, "A3": "", "score": 0.0, "per_y": 284.732407432104, "sigma_n": 9.7042e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 6", "sigma_a": 0.0080887, "sigma_om": 0.00012314, "A2": "", "sigma_e": 7.5532e-05, "condition_code": 3.0, "rot_per": 7.92, "prov_des": "1996 TO66", "G": "", "last_obs": "2003-10-18", "H": 4.5, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 123.0, "moid": 37.2657, "extent": "", "dv": 14.299021, "e": 0.1175678617071076, "GM": "", "tp_cal": 19071025.6798936, "pdes": 19308.0, "class": "TNO", "UB": "", "a": 43.27985514779337, "t_jup": 5.203, "om": 355.262439699197, "ma": 134.7468823716712, "name": "", "i": 27.46749720220224, "tp": 2417874.17989359, "prefix": "", "BV": "", "spec": "?", "q": 38.19153512307395, "w": 239.5791793350517, "n": 0.003461587995046137, "sigma_ma": 0.07148, "first_obs": "1983-10-01", "n_del_obs_used": "", "spkid": 2019308.0, "n_dop_obs_used": ""},
{"sigma_tp": 15.112, "diameter": "", "sigma_q": 0.0041965, "epoch_mjd": 56800.0, "ad": 50.98997365864199, "producer": "Otto Matic", "rms": 0.41533, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "19521 Chaos (1998 WH24)", "M2": "", "sigma_per": 31.544, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -5.110703193944128e+19, "albedo": "", "moid_ld": 15575.789827, "pha": "N", "neo": "N", "sigma_ad": 0.0094126, "PC": "", "profit": -0.0, "est_diameter": 376.2524628723905, "sigma_w": 0.06235, "sigma_i": 0.00035159, "per": 113920.4305219786, "id": "a0019521", "A1": "", "data_arc": 5902.0, "A3": "", "score": 0.0, "per_y": 311.897140375027, "sigma_n": 8.7502e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 9", "sigma_a": 0.0084897, "sigma_om": 0.0002916, "A2": "", "sigma_e": 0.00010227, "condition_code": 3.0, "rot_per": "", "prov_des": "1998 WH24", "G": "", "last_obs": "2007-12-14", "H": 4.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 110.0, "moid": 40.0231, "extent": "", "dv": 12.58236, "e": 0.1087049686499738, "GM": "", "tp_cal": 20340801.1572789, "pdes": 19521.0, "class": "TNO", "UB": "", "a": 45.99057017010617, "t_jup": 5.894, "om": 49.97207061636171, "ma": 336.6937624074765, "name": "Chaos", "i": 12.03070007516245, "tp": 2464175.657278855, "prefix": "", "BV": "", "spec": "?", "q": 40.99116668157036, "w": 57.05685829113234, "n": 0.003160100417023488, "sigma_ma": 0.05347, "first_obs": "1991-10-17", "n_del_obs_used": "", "spkid": 2019521.0, "n_dop_obs_used": ""},
{"sigma_tp": 9.2243, "diameter": 900.0, "epoch_mjd": 56800.0, "ad": 45.44612101532979, "producer": "Otto Matic", "rms": 0.42804, "H_sigma": "", "closeness": 2601.06860022318, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "20000 Varuna (2000 WR106)", "M2": "", "sigma_per": 6.6862, "equinox": "J2000", "DT": "", "diameter_sigma": 140.0, "saved": -6.994716773309505e+20, "albedo": 0.07, "moid_ld": 15571.703542, "pha": "N", "neo": "N", "sigma_ad": 0.0019528, "PC": "", "profit": 0.0, "spkid": 2020000.0, "sigma_w": 0.036371, "sigma_i": 0.00012244, "per": 103737.0286666754, "id": "a0020000", "A1": "", "data_arc": 21613.0, "A3": "", "score": 0.0, "per_y": 284.016505589803, "sigma_n": 2.2367e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 31", "sigma_a": 0.0018566, "sigma_om": 8.2024e-05, "A2": "", "sigma_e": 1.104e-05, "condition_code": 2.0, "rot_per": 6.3436, "prov_des": "2000 WR106", "G": "", "last_obs": "2014-01-26", "H": 3.6, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 297.0, "moid": 40.0126, "extent": "", "dv": 13.243426, "e": 0.0518163132497883, "GM": "", "tp_cal": 19350430.3631333, "pdes": 20000.0, "class": "TNO", "UB": "", "a": 43.20727910647751, "t_jup": 5.62, "om": 97.26076344110842, "ma": 100.2144499957108, "name": "Varuna", "i": 17.14231939274807, "tp": 2427922.8631332773, "prefix": "", "BV": "", "spec": "?", "q": 40.96843719762524, "w": 273.5120837668267, "n": 0.003470313393655614, "sigma_ma": 0.038465, "first_obs": "1954-11-24", "n_del_obs_used": "", "sigma_q": 0.0013157, "n_dop_obs_used": ""},
{"sigma_tp": 5.1315, "diameter": "", "sigma_q": 0.012934, "epoch_mjd": 56800.0, "ad": 66.71745852335494, "producer": "Otto Matic", "rms": 0.48695, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "20161 (1996 TR66)", "M2": "", "sigma_per": 122.53, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.225972306097123e+18, "albedo": "", "moid_ld": 10833.364207, "pha": "N", "neo": "N", "sigma_ad": 0.045181, "PC": "", "profit": -0.0, "est_diameter": 108.51239560529478, "sigma_w": 0.06006, "sigma_i": 0.00053377, "per": 120627.2037657677, "id": "a0020161", "A1": "", "data_arc": 4398.0, "A3": "", "score": 0.0, "per_y": 330.259284779651, "sigma_n": 3.0315e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.032355, "sigma_om": 0.0011801, "A2": "", "sigma_e": 0.00019069, "condition_code": 4.0, "rot_per": "", "prov_des": "1996 TR66", "G": "", "last_obs": "2008-10-23", "H": 7.5, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 24.0, "moid": 27.8371, "extent": "", "dv": 11.764966, "e": 0.3963949572412815, "GM": "", "tp_cal": 19661231.5200361, "pdes": 20161.0, "class": "TNO", "UB": "", "a": 47.7783582484156, "t_jup": 5.542, "om": 343.1439747733084, "ma": 51.65843684058719, "name": "", "i": 12.44247489030384, "tp": 2439491.020036137, "prefix": "", "BV": "", "spec": "?", "q": 28.83925797347627, "w": 309.3617577120334, "n": 0.002984401434845851, "sigma_ma": 0.067779, "first_obs": "1996-10-08", "n_del_obs_used": "", "spkid": 2020161.0, "n_dop_obs_used": ""},
{"sigma_tp": 10.517, "diameter": "", "sigma_q": 0.0034273, "epoch_mjd": 56800.0, "ad": 46.476331255046, "producer": "Otto Matic", "rms": 0.64871, "H_sigma": "", "closeness": 2601.017436590363, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "24835 (1995 SM55)", "M2": "", "sigma_per": 21.679, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -5.110703193944128e+19, "albedo": "", "moid_ld": 14210.270131, "pha": "N", "neo": "N", "sigma_ad": 0.0067712, "PC": "", "profit": 0.0, "est_diameter": 376.2524628723905, "sigma_w": 0.050428, "sigma_i": 0.00021274, "per": 99201.69185642678, "id": "a0024835", "A1": "", "data_arc": 11017.0, "A3": "", "score": 0.0, "per_y": 271.599430133954, "sigma_n": 7.9307e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 11", "sigma_a": 0.0061101, "sigma_om": 9.1723e-05, "A2": "", "sigma_e": 5.2504e-05, "condition_code": 3.0, "rot_per": 8.08, "prov_des": "1995 SM55", "G": "", "last_obs": "2012-11-14", "H": 4.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 125.0, "moid": 36.5143, "extent": "", "dv": 14.297089, "e": 0.1081998074241247, "GM": "", "tp_cal": 20390629.032312, "pdes": 24835.0, "class": "TNO", "UB": "", "a": 41.93858448962787, "t_jup": 5.151, "om": 21.05611074371368, "ma": 326.7294824255462, "name": "", "i": 27.05685917752706, "tp": 2465968.532312013, "prefix": "", "BV": "", "spec": "?", "q": 37.40083772420975, "w": 71.15364435757381, "n": 0.003628970365959312, "sigma_ma": 0.045411, "first_obs": "1982-09-16", "n_del_obs_used": "", "spkid": 2024835.0, "n_dop_obs_used": ""},
{"sigma_tp": 93.126, "diameter": "", "sigma_q": 0.015683, "epoch_mjd": 56800.0, "ad": 45.42705123733482, "producer": "Otto Matic", "rms": 0.15216, "H_sigma": "", "closeness": 2601.2034170141624, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "24978 (1998 HJ151)", "M2": "", "sigma_per": 62.926, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.225972306097123e+18, "albedo": "", "moid_ld": 15601.008043, "pha": "N", "neo": "N", "sigma_ad": 0.018341, "PC": "", "profit": 0.0, "est_diameter": 108.51239560529478, "sigma_w": 0.37278, "sigma_i": 0.00098317, "per": 103906.9927925304, "id": "a0024978", "A1": "", "data_arc": 3301.0, "A3": "", "score": 0.0, "per_y": 284.481842005559, "sigma_n": 2.0982e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.017463, "sigma_om": 0.0020652, "A2": "", "sigma_e": 0.00023855, "condition_code": 3.0, "rot_per": "", "prov_des": "1998 HJ151", "G": "", "last_obs": "2007-05-12", "H": 7.5, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 30.0, "moid": 40.0879, "extent": "", "dv": 12.407288, "e": 0.0502281321088015, "GM": "", "tp_cal": 19580418.4729909, "pdes": 24978.0, "class": "TNO", "UB": "", "a": 43.25446048195239, "t_jup": 5.874, "om": 50.42262179837437, "ma": 70.98530642707279, "name": "", "i": 2.392614033061952, "tp": 2436311.972990852, "prefix": "", "BV": "", "spec": "?", "q": 41.08186972656995, "w": 124.3353228534751, "n": 0.003464636886554948, "sigma_ma": 0.36242, "first_obs": "1998-04-28", "n_del_obs_used": "", "spkid": 2024978.0, "n_dop_obs_used": ""},
{"sigma_tp": 0.5913, "diameter": "", "sigma_q": 0.0013972, "epoch_mjd": 56800.0, "ad": 148.7833177025787, "producer": "Otto Matic", "rms": 0.63408, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "26181 (1996 GQ21)", "M2": "", "sigma_per": 230.6, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.940902725672017e+19, "albedo": "", "moid_ld": 14477.941257, "pha": "N", "neo": "N", "sigma_ad": 0.069272, "PC": "", "profit": -0.0, "est_diameter": 312.9531674054072, "sigma_w": 0.0030737, "sigma_i": 0.00017929, "per": 330187.9494792922, "id": "a0026181", "A1": "", "data_arc": 10306.0, "A3": "", "score": 0.0, "per_y": 904.005337383415, "sigma_n": 7.6144e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 9", "sigma_a": 0.043529, "sigma_om": 0.00027299, "A2": "", "sigma_e": 0.00017536, "condition_code": 3.0, "rot_per": "", "prov_des": "1996 GQ21", "G": "", "last_obs": "2008-06-07", "H": 5.2, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 61.0, "moid": 37.2021, "extent": "", "dv": 11.024562, "e": 0.5913988645450704, "GM": "", "tp_cal": 19890915.588445, "pdes": 26181.0, "class": "TNO", "UB": "", "a": 93.49216027316383, "t_jup": 6.707, "om": 194.1569601456591, "ma": 9.829396151300946, "name": "", "i": 13.34673229286124, "tp": 2447785.088444951, "prefix": "", "BV": "", "spec": "?", "q": 38.201002843749, "w": 356.2859062421383, "n": 0.001090288123984299, "sigma_ma": 0.0074277, "first_obs": "1980-03-20", "n_del_obs_used": "", "spkid": 2026181.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.5352, "diameter": "", "sigma_q": 0.0016483, "epoch_mjd": 56800.0, "ad": 65.28900553333119, "producer": "Otto Matic", "rms": 0.57834, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "26308 (1998 SM165)", "M2": "", "sigma_per": 36.983, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.2837506008340937e+19, "albedo": "", "moid_ld": 11310.486627, "pha": "N", "neo": "N", "sigma_ad": 0.013388, "PC": "", "profit": -0.0, "est_diameter": 237.39925482809605, "sigma_w": 0.011431, "sigma_i": 0.0001785, "per": 120236.8124805521, "id": "a0026308", "A1": "", "data_arc": 9952.0, "A3": "", "score": 0.0, "per_y": 329.190451692134, "sigma_n": 9.2095e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 11", "sigma_a": 0.0097762, "sigma_om": 0.00021187, "A2": "", "sigma_e": 9.5332e-05, "condition_code": 3.0, "rot_per": "", "prov_des": "1998 SM165", "G": "", "last_obs": "2010-01-10", "H": 5.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 83.0, "moid": 29.0631, "extent": "", "dv": 11.921078, "e": 0.3694537466978671, "GM": "", "tp_cal": 19741113.6516568, "pdes": 26308.0, "class": "TNO", "UB": "", "a": 47.67521772149012, "t_jup": 5.579, "om": 183.1662353449914, "ma": 43.22075158470094, "name": "", "i": 13.50695817967686, "tp": 2442365.1516567827, "prefix": "", "BV": "", "spec": "?", "q": 30.06142990964904, "w": 131.216420481152, "n": 0.00299409134834, "sigma_ma": 0.017872, "first_obs": "1982-10-12", "n_del_obs_used": "", "spkid": 2026308.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.0371, "diameter": "", "sigma_q": 0.001254, "epoch_mjd": 56800.0, "ad": 79.47325270249485, "producer": "Otto Matic", "rms": 0.51472, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "26375 (1999 DE9)", "M2": "", "sigma_per": 56.076, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -3.3766081149503795e+19, "albedo": "", "moid_ld": 12176.895798, "pha": "N", "neo": "N", "sigma_ad": 0.019476, "PC": "", "profit": -0.0, "est_diameter": 327.70219579315415, "sigma_w": 0.0068795, "sigma_i": 0.00020653, "per": 152546.0759867896, "id": "a0026375", "A1": "", "data_arc": 6619.0, "A3": "", "score": 0.0, "per_y": 417.648394214345, "sigma_n": 8.6751e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 16", "sigma_a": 0.013693, "sigma_om": 0.00046634, "A2": "", "sigma_e": 0.0001204, "condition_code": 3.0, "rot_per": 24.0, "prov_des": "1999 DE9", "G": "", "last_obs": "2008-03-14", "H": 5.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 71.0, "moid": 31.2894, "extent": "", "dv": 11.320006, "e": 0.4223918192754572, "GM": "", "tp_cal": 19860429.9041245, "pdes": 26375.0, "class": "TNO", "UB": "", "a": 55.87296807076492, "t_jup": 5.981, "om": 322.8982048444406, "ma": 24.18963904061698, "name": "", "i": 7.605802966903322, "tp": 2446550.404124492, "prefix": "", "BV": "", "spec": "?", "q": 32.27268343903499, "w": 159.8306952530769, "n": 0.002359942710235141, "sigma_ma": 0.011153, "first_obs": "1990-01-29", "n_del_obs_used": "", "spkid": 2026375.0, "n_dop_obs_used": ""},
{"sigma_tp": 0.016919, "diameter": "", "sigma_q": 6.3791e-05, "epoch_mjd": 56800.0, "ad": 183.250349357376, "producer": "Otto Matic", "rms": 0.42533, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "29981 (1999 TD10)", "M2": "", "sigma_per": 106.97, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.336042070578882e+17, "albedo": "", "moid_ld": 4409.996606, "pha": "N", "neo": "N", "sigma_ad": 0.036994, "PC": "", "profit": -0.0, "est_diameter": 62.44236612741562, "sigma_w": 0.00055168, "sigma_i": 4.2809e-05, "per": 353235.1474119747, "id": "a0029981", "A1": "", "data_arc": 4408.0, "A3": "", "score": 0.0, "per_y": 967.105126384599, "sigma_n": 3.0862e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 12", "sigma_a": 0.019743, "sigma_om": 0.00018357, "A2": "", "sigma_e": 2.4836e-05, "condition_code": 2.0, "rot_per": 15.382, "prov_des": "1999 TD10", "G": "", "last_obs": "2009-09-30", "H": 8.7, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 216.0, "moid": 11.3318, "extent": "", "dv": 9.898047, "e": 0.8738485594617095, "GM": "", "tp_cal": 19991030.2865257, "pdes": 29981.0, "class": "TNO", "UB": "", "a": 97.79357485004944, "t_jup": 4.246, "om": 184.6981267331667, "ma": 5.420572852905123, "name": "", "i": 5.958673924211825, "tp": 2451481.7865256853, "prefix": "", "BV": "", "spec": "?", "q": 12.33680034272288, "w": 172.8307990918612, "n": 0.001019151131017366, "sigma_ma": 0.0016576, "first_obs": "1997-09-05", "n_del_obs_used": "", "spkid": 2029981.0, "n_dop_obs_used": ""},
{"sigma_tp": 68.794, "diameter": "", "sigma_q": 0.032429, "epoch_mjd": 56800.0, "ad": 45.22304443706668, "producer": "Otto Matic", "rms": 0.40801, "H_sigma": "", "closeness": 2601.1959761176413, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "33001 (1997 CU29)", "M2": "", "sigma_per": 69.889, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -4.880683659572713e+18, "albedo": "", "moid_ld": 16023.841248, "pha": "N", "neo": "N", "sigma_ad": 0.019965, "PC": "", "profit": 0.0, "est_diameter": 171.98055709247893, "sigma_w": 0.32163, "sigma_i": 0.00026353, "per": 105536.9443694187, "id": "a0033001", "A1": "", "data_arc": 5880.0, "A3": "", "score": 0.0, "per_y": 288.94440621333, "sigma_n": 2.2589e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 2", "sigma_a": 0.019295, "sigma_om": 0.014257, "A2": "", "sigma_e": 0.00032172, "condition_code": 3.0, "rot_per": "", "prov_des": "1997 CU29", "G": "", "last_obs": "2013-03-14", "H": 6.5, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 40.0, "moid": 41.1744, "extent": "", "dv": 12.435954, "e": 0.0347189509089071, "GM": "", "tp_cal": 21051119.5915891, "pdes": 33001.0, "class": "TNO", "UB": "", "a": 43.70563078731893, "t_jup": 5.91, "om": 350.3612235287334, "ma": 246.008325862137, "name": "", "i": 1.451586388114886, "tp": 2490218.091589068, "prefix": "", "BV": "", "spec": "?", "q": 42.18821713757119, "w": 260.3204799466366, "n": 0.003411127753896925, "sigma_ma": 0.30339, "first_obs": "1997-02-06", "n_del_obs_used": "", "spkid": 2033001.0, "n_dop_obs_used": ""},
{"sigma_tp": 3.4348, "diameter": "", "sigma_q": 0.0039116, "epoch_mjd": 56800.0, "ad": 78.78525462224484, "producer": "Otto Matic", "rms": 0.63065, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "38084 (1999 HB12)", "M2": "", "sigma_per": 147.73, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.4076045431002944e+18, "albedo": "", "moid_ld": 12290.494521, "pha": "N", "neo": "N", "sigma_ad": 0.051135, "PC": "", "profit": -0.0, "est_diameter": 113.62642725569708, "sigma_w": 0.022867, "sigma_i": 0.00044297, "per": 151744.542252159, "id": "a0038084", "A1": "", "data_arc": 4020.0, "A3": "", "score": 0.0, "per_y": 415.453914448074, "sigma_n": 2.3097e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 7", "sigma_a": 0.036136, "sigma_om": 0.0010087, "A2": "", "sigma_e": 0.00031659, "condition_code": 3.0, "rot_per": "", "prov_des": "1999 HB12", "G": "", "last_obs": "2010-04-20", "H": 7.4, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 38.0, "moid": 31.5813, "extent": "", "dv": 11.678803, "e": 0.4150393190742747, "GM": "", "tp_cal": 20181215.4661545, "pdes": 38084.0, "class": "TNO", "UB": "", "a": 55.67707805729844, "t_jup": 5.89, "om": 166.3810012528376, "ma": 356.0440895816835, "name": "", "i": 13.14273731219338, "tp": 2458467.9661544943, "prefix": "", "BV": "", "spec": "?", "q": 32.56890149235205, "w": 66.29075628068738, "n": 0.002372408224091354, "sigma_ma": 0.011596, "first_obs": "1999-04-18", "n_del_obs_used": "", "spkid": 2038084.0, "n_dop_obs_used": ""},
{"sigma_tp": 4.7646, "diameter": "", "sigma_q": 0.0046999, "epoch_mjd": 56800.0, "ad": 63.48577402065349, "producer": "Otto Matic", "rms": 0.41374, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "40314 (1999 KR16)", "M2": "", "sigma_per": 50.433, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.2837506008340937e+19, "albedo": "", "moid_ld": 12853.623511, "pha": "N", "neo": "N", "sigma_ad": 0.017179, "PC": "", "profit": -0.0, "est_diameter": 237.39925482809605, "sigma_w": 0.031384, "sigma_i": 0.00029863, "per": 124250.708636936, "id": "a0040314", "A1": "", "data_arc": 3607.0, "A3": "", "score": 0.0, "per_y": 340.179900443357, "sigma_n": 1.176e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 8", "sigma_a": 0.013186, "sigma_om": 9.6022e-05, "A2": "", "sigma_e": 0.00013574, "condition_code": 3.0, "rot_per": 11.7, "prov_des": "1999 KR16", "G": "", "last_obs": "2009-03-31", "H": 5.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 39.0, "moid": 33.0283, "extent": "", "dv": 13.302335, "e": 0.3027951124215422, "GM": "", "tp_cal": 20300206.7136558, "pdes": 40314.0, "class": "TNO", "UB": "", "a": 48.73043613331545, "t_jup": 5.402, "om": 205.6204770302441, "ma": 343.3728359479449, "name": "", "i": 24.81199029283215, "tp": 2462539.2136558066, "prefix": "", "BV": "", "spec": "?", "q": 33.97509824597741, "w": 58.52867522686178, "n": 0.00289736778123278, "sigma_ma": 0.019658, "first_obs": "1999-05-16", "n_del_obs_used": "", "spkid": 2040314.0, "n_dop_obs_used": ""},
{"sigma_tp": 5.0434, "diameter": "", "sigma_q": 0.0070642, "epoch_mjd": 56800.0, "ad": 66.05133976037786, "producer": "Otto Matic", "rms": 0.27332, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "42301 (2001 UR163)", "M2": "", "sigma_per": 50.079, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.1707944629903535e+20, "albedo": "", "moid_ld": 14020.160586, "pha": "N", "neo": "N", "sigma_ad": 0.016313, "PC": "", "profit": -0.0, "est_diameter": 495.997344579973, "sigma_w": 0.042959, "sigma_i": 8.7192e-05, "per": 135177.4532672577, "id": "a0042301", "A1": "", "data_arc": 7758.0, "A3": "", "score": 0.0, "per_y": 370.095696830274, "sigma_n": 9.8661e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 7", "sigma_a": 0.012731, "sigma_om": 0.027416, "A2": "", "sigma_e": 8.1028e-05, "condition_code": 3.0, "rot_per": "", "prov_des": "2001 UR163", "G": "", "last_obs": "2003-10-23", "H": 4.2, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 41.0, "moid": 36.0258, "extent": "", "dv": 11.574166, "e": 0.2813794131848698, "GM": "", "tp_cal": 19361123.9000666, "pdes": 42301.0, "class": "TNO", "UB": "", "a": 51.54705864690552, "t_jup": 6.141, "om": 302.3487575050599, "ma": 75.37851712510738, "name": "", "i": 0.7523523306749625, "tp": 2428496.4000665713, "prefix": "", "BV": "", "spec": "?", "q": 37.04277753343317, "w": 342.7548430224888, "n": 0.0026631660184354, "sigma_ma": 0.041327, "first_obs": "1982-07-27", "n_del_obs_used": "", "spkid": 2042301.0, "n_dop_obs_used": ""},
{"sigma_tp": 1397.0, "diameter": "", "sigma_q": 0.28855, "epoch_mjd": 56800.0, "ad": 43.77518696069991, "producer": "Otto Matic", "rms": 0.17951, "H_sigma": "", "closeness": 2601.1761501576257, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "45802 (2000 PV29)", "M2": "", "sigma_per": 207.29, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -6.144416685964643e+17, "albedo": "", "moid_ld": 16263.258632, "pha": "N", "neo": "N", "sigma_ad": 0.058157, "PC": "", "profit": 0.0, "est_diameter": 86.19445964685667, "sigma_w": 5.5405, "sigma_i": 0.0025198, "per": 104019.1657969504, "id": "a0045802", "A1": "", "data_arc": 1052.0, "A3": "", "score": 0.0, "per_y": 284.788954954005, "sigma_n": 6.8969e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.057506, "sigma_om": 0.13021, "A2": "", "sigma_e": 0.0055372, "condition_code": 4.0, "rot_per": "", "prov_des": "2000 PV29", "G": "", "last_obs": "2002-06-07", "H": 8.0, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 18.0, "moid": 41.7896, "extent": "", "dv": 12.517999, "e": 0.01131096603180337, "GM": "", "tp_cal": 19301026.4303009, "pdes": 45802.0, "class": "TNO", "UB": "", "a": 43.28558517709505, "t_jup": 5.887, "om": 173.3430133902609, "ma": 105.642503547175, "name": "", "i": 1.178447835076832, "tp": 2426275.930300893, "prefix": "", "BV": "", "spec": "?", "q": 42.7959833934902, "w": 42.66447592893981, "n": 0.003460900664236574, "sigma_ma": 5.0451, "first_obs": "1999-07-21", "n_del_obs_used": "", "spkid": 2045802.0, "n_dop_obs_used": ""},
{"sigma_tp": 11.507, "diameter": "", "sigma_q": 0.0068016, "epoch_mjd": 56800.0, "ad": 64.96206415996463, "producer": "Otto Matic", "rms": 0.76331, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "48639 (1995 TL8)", "M2": "", "sigma_per": 96.078, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.230902858036994e+19, "albedo": "", "moid_ld": 15235.577413, "pha": "N", "neo": "N", "sigma_ad": 0.029896, "PC": "", "profit": -0.0, "est_diameter": 285.4166808844959, "sigma_w": 0.082393, "sigma_i": 0.00019655, "per": 139180.1329547481, "id": "a0048639", "A1": "", "data_arc": 4723.0, "A3": "", "score": 0.0, "per_y": 381.054436563308, "sigma_n": 1.7855e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 7", "sigma_a": 0.024188, "sigma_om": 0.063162, "A2": "", "sigma_e": 0.00023322, "condition_code": 4.0, "rot_per": "", "prov_des": "1995 TL8", "G": "", "last_obs": "2008-08-29", "H": 5.4, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 48.0, "moid": 39.1489, "extent": "", "dv": 11.682437, "e": 0.2359681211960596, "GM": "", "tp_cal": 19710907.6799615, "pdes": 48639.0, "class": "TNO", "UB": "", "a": 52.55965995069528, "t_jup": 6.276, "om": 261.0590263061775, "ma": 40.34624119579782, "name": "", "i": 0.2424540967817774, "tp": 2441202.179961513, "prefix": "", "BV": "", "spec": "?", "q": 40.15725574142594, "w": 84.42562033748058, "n": 0.002586576060514668, "sigma_ma": 0.056971, "first_obs": "1995-09-24", "n_del_obs_used": "", "spkid": 2048639.0, "n_dop_obs_used": ""},
{"sigma_tp": 61.141, "diameter": "", "sigma_q": 0.027188, "epoch_mjd": 56800.0, "ad": 47.49121096822527, "producer": "Otto Matic", "rms": 0.26206, "H_sigma": "", "closeness": 2601.038497332646, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "49673 (1999 RA215)", "M2": "", "sigma_per": 108.32, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.6161462537960707e+18, "albedo": "", "moid_ld": 14656.258951, "pha": "N", "neo": "N", "sigma_ad": 0.033259, "PC": "", "profit": 0.0, "est_diameter": 118.98147579246931, "sigma_w": 0.29971, "sigma_i": 0.00055879, "per": 103109.5414806573, "id": "a0049673", "A1": "", "data_arc": 5192.0, "A3": "", "score": 0.0, "per_y": 282.298539303648, "sigma_n": 3.6677e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 2", "sigma_a": 0.030137, "sigma_om": 0.00025262, "A2": "", "sigma_e": 0.0001756, "condition_code": 4.0, "rot_per": "", "prov_des": "1999 RA215", "G": "", "last_obs": "2013-10-06", "H": 7.3, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 26.0, "moid": 37.6603, "extent": "", "dv": 13.687822, "e": 0.1036032172931441, "GM": "", "tp_cal": 20590728.9015011, "pdes": 49673.0, "class": "TNO", "UB": "", "a": 43.03286745095673, "t_jup": 5.403, "om": 132.3606540070467, "ma": 302.3812340246679, "name": "", "i": 22.57150245173111, "tp": 2473303.401501105, "prefix": "", "BV": "", "spec": "?", "q": 38.57452393368819, "w": 271.1603869674216, "n": 0.003491432459405648, "sigma_ma": 0.27389, "first_obs": "1999-07-20", "n_del_obs_used": "", "spkid": 2049673.0, "n_dop_obs_used": ""},
{"sigma_tp": 11.05, "diameter": "", "sigma_q": 0.0020212, "epoch_mjd": 56800.0, "ad": 44.73724786383344, "producer": "Otto Matic", "rms": 0.39003, "H_sigma": "", "closeness": 2601.152473399186, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "50000 Quaoar (2002 LM60)", "M2": "", "sigma_per": 5.6745, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.407604543100297e+21, "albedo": "", "moid_ld": 15837.234233, "pha": "N", "neo": "N", "sigma_ad": 0.0016308, "PC": "", "profit": 0.0, "est_diameter": 1136.2642725569715, "sigma_w": 0.044395, "sigma_i": 4.7414e-05, "per": 103779.5280476694, "id": "a0050000", "A1": "", "data_arc": 21087.0, "A3": "", "score": 0.0, "per_y": 284.13286255351, "sigma_n": 1.8967e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 23", "sigma_a": 0.0015754, "sigma_om": 0.00075309, "A2": "", "sigma_e": 1.201e-05, "condition_code": 2.0, "rot_per": 17.6788, "prov_des": "2002 LM60", "G": "", "last_obs": "2012-02-17", "H": 2.4, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 399.0, "moid": 40.6949, "extent": "", "dv": 12.629037, "e": 0.03512727966255041, "GM": "", "tp_cal": 20771209.0120815, "pdes": 50000.0, "class": "TNO", "UB": "", "a": 43.21907918262738, "t_jup": 5.825, "om": 188.8739375370991, "ma": 279.4835001996222, "name": "Quaoar", "i": 7.990085857081865, "tp": 2480011.512081482, "prefix": "", "BV": "", "spec": "?", "q": 41.70091050142131, "w": 161.2577469856246, "n": 0.003468892244669295, "sigma_ma": 0.042724, "first_obs": "1954-05-25", "n_del_obs_used": "", "spkid": 2050000.0, "n_dop_obs_used": ""},
{"sigma_tp": 142.61, "diameter": "", "sigma_q": 0.0365, "epoch_mjd": 56800.0, "ad": 46.80765198386783, "producer": "Otto Matic", "rms": 0.17096, "H_sigma": "", "closeness": 2601.219584554685, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "52747 (1998 HM151)", "M2": "", "sigma_per": 110.31, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -7.054734269976178e+17, "albedo": "", "moid_ld": 15861.751943, "pha": "N", "neo": "N", "sigma_ad": 0.031972, "PC": "", "profit": 0.0, "est_diameter": 90.25667938004489, "sigma_w": 0.57934, "sigma_i": 0.0014351, "per": 107661.4046385904, "id": "a0052747", "A1": "", "data_arc": 2220.0, "A3": "", "score": 0.0, "per_y": 294.760861433512, "sigma_n": 3.426e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.030253, "sigma_om": 0.0077351, "A2": "", "sigma_e": 0.00062511, "condition_code": 3.0, "rot_per": "", "prov_des": "1998 HM151", "G": "", "last_obs": "2004-05-27", "H": 7.9, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 22.0, "moid": 40.7579, "extent": "", "dv": 12.348456, "e": 0.05683968493480514, "GM": "", "tp_cal": 20540707.3539733, "pdes": 52747.0, "class": "TNO", "UB": "", "a": 44.29021038016312, "t_jup": 5.943, "om": 63.92015125620335, "ma": 310.9951830174122, "name": "", "i": 0.5438752747687726, "tp": 2471455.8539733402, "prefix": "", "BV": "", "spec": "?", "q": 41.77276877645841, "w": 249.4568672757021, "n": 0.00334381667421568, "sigma_ma": 0.52315, "first_obs": "1998-04-29", "n_del_obs_used": "", "spkid": 2052747.0, "n_dop_obs_used": ""},
{"sigma_tp": 69.659, "diameter": "", "sigma_q": 0.07917, "epoch_mjd": 56800.0, "ad": 46.74941128243326, "producer": "Otto Matic", "rms": 0.27094, "H_sigma": "", "closeness": 2601.2216811860417, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "53311 Deucalion (1999 HU11)", "M2": "", "sigma_per": 62.662, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -4.250897761581432e+18, "albedo": "", "moid_ld": 15726.3597, "pha": "N", "neo": "N", "sigma_ad": 0.018265, "PC": "", "profit": 0.0, "est_diameter": 164.24015696315365, "sigma_w": 0.4059, "sigma_i": 0.0014451, "per": 106925.451818337, "id": "a0053311", "A1": "", "data_arc": 1510.0, "A3": "", "score": 0.0, "per_y": 292.74593242529, "sigma_n": 1.9731e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.017225, "sigma_om": 0.10818, "A2": "", "sigma_e": 0.001768, "condition_code": 3.0, "rot_per": "", "prov_des": "1999 HU11", "G": "", "last_obs": "2003-05-31", "H": 6.6, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 34.0, "moid": 40.41, "extent": "", "dv": 12.341146, "e": 0.06036251862702677, "GM": "", "tp_cal": 20641230.9121859, "pdes": 53311.0, "class": "TNO", "UB": "", "a": 44.08814010416467, "t_jup": 5.929, "om": 51.53367203733909, "ma": 297.7644118048971, "name": "Deucalion", "i": 0.3647096409145718, "tp": 2475285.4121859483, "prefix": "", "BV": "", "spec": "?", "q": 41.42686892589606, "w": 240.3392804899219, "n": 0.003366831693277563, "sigma_ma": 0.26943, "first_obs": "1999-04-12", "n_del_obs_used": "", "spkid": 2053311.0, "n_dop_obs_used": ""},
{"sigma_tp": 7.3025, "diameter": "", "sigma_q": 0.042798, "epoch_mjd": 56800.0, "ad": 215.2459369411177, "producer": "Otto Matic", "rms": 0.31595, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "54520 (2000 PJ30)", "M2": "", "sigma_per": 6226.6, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -6.144416685964643e+17, "albedo": "", "moid_ld": 10712.877175, "pha": "N", "neo": "N", "sigma_ad": 1.8178, "PC": "", "profit": -0.0, "est_diameter": 86.19445964685667, "sigma_w": 0.085655, "sigma_i": 0.0029728, "per": 491534.362802193, "id": "a0054520", "A1": "", "data_arc": 1115.0, "A3": "", "score": 0.0, "per_y": 1345.74774210046, "sigma_n": 9.2778e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 1.0294, "sigma_om": 0.0067873, "A2": "", "sigma_e": 0.0022833, "condition_code": 4.0, "rot_per": "", "prov_des": "2000 PJ30", "G": "", "last_obs": "2002-08-09", "H": 8.0, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 24.0, "moid": 27.5275, "extent": "", "dv": 10.135296, "e": 0.7658941069781314, "GM": "", "tp_cal": 19720923.9728628, "pdes": 54520.0, "class": "TNO", "UB": "", "a": 121.890625315838, "t_jup": 6.236, "om": 293.343582689851, "ma": 11.14422547830443, "name": "", "i": 5.720993045186063, "tp": 2441584.4728627712, "prefix": "", "BV": "", "spec": "?", "q": 28.53531369055823, "w": 303.350199188667, "n": 0.0007324004733823135, "sigma_ma": 0.14647, "first_obs": "1999-07-21", "n_del_obs_used": "", "spkid": 2054520.0, "n_dop_obs_used": ""},
{"sigma_tp": 11.003, "diameter": "", "sigma_q": 0.0078493, "epoch_mjd": 56800.0, "ad": 53.58731691445082, "producer": "Otto Matic", "rms": 0.27264, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "55565 (2002 AW197)", "M2": "", "sigma_per": 27.786, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -3.0795032010918704e+20, "albedo": "", "moid_ld": 15724.180348, "pha": "N", "neo": "N", "sigma_ad": 0.0083113, "PC": "", "profit": -0.0, "est_diameter": 684.6669297430097, "sigma_w": 0.053663, "sigma_i": 0.00039192, "per": 119435.3723150247, "id": "a0055565", "A1": "", "data_arc": 5846.0, "A3": "", "score": 0.0, "per_y": 326.996228104106, "sigma_n": 7.0124e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 12", "sigma_a": 0.0073614, "sigma_om": 0.00032548, "A2": "", "sigma_e": 7.4769e-05, "condition_code": 3.0, "rot_per": 8.86, "prov_des": "2002 AW197", "G": "", "last_obs": "2013-12-31", "H": 3.5, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 115.0, "moid": 40.4044, "extent": "", "dv": 13.748076, "e": 0.12903044253844, "GM": "", "tp_cal": 20760616.9240718, "pdes": 55565.0, "class": "TNO", "UB": "", "a": 47.46312844671267, "t_jup": 5.568, "om": 297.4062263247815, "ma": 291.6656991337059, "name": "", "i": 24.329865348495, "tp": 2479471.424071813, "prefix": "", "BV": "", "spec": "?", "q": 41.33893997897451, "w": 293.4842649442517, "n": 0.003014182423699891, "sigma_ma": 0.049023, "first_obs": "1997-12-29", "n_del_obs_used": "", "spkid": 2055565.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.9825, "diameter": "", "sigma_q": 0.00047248, "epoch_mjd": 56800.0, "ad": 48.53570254222783, "producer": "Otto Matic", "rms": 0.38808, "H_sigma": "", "closeness": 2601.0236649733747, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "55636 (2002 TX300)", "M2": "", "sigma_per": 5.5456, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -4.059575846245386e+20, "albedo": "", "moid_ld": 14406.333977, "pha": "N", "neo": "N", "sigma_ad": 0.0017254, "PC": "", "profit": 0.0, "est_diameter": 750.7223600835082, "sigma_w": 0.0087425, "sigma_i": 5.1574e-05, "per": 103997.3960097579, "id": "a0055636", "A1": "", "data_arc": 21649.0, "A3": "", "score": 0.0, "per_y": 284.729352525005, "sigma_n": 1.8459e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 19", "sigma_a": 0.0015386, "sigma_om": 0.00016136, "A2": "", "sigma_e": 2.0474e-05, "condition_code": 2.0, "rot_per": 8.12, "prov_des": "2002 TX300", "G": "", "last_obs": "2013-12-04", "H": 3.3, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 341.0, "moid": 37.0181, "extent": "", "dv": 14.062129, "e": 0.121446676306559, "GM": "", "tp_cal": 19590130.8731126, "pdes": 55636.0, "class": "TNO", "UB": "", "a": 43.27954557953506, "t_jup": 5.271, "om": 324.7010266544524, "ma": 69.92872858830346, "name": "", "i": 25.87872268053009, "tp": 2436599.3731126203, "prefix": "", "BV": "", "spec": "?", "q": 38.0233886168423, "w": 340.8133046523062, "n": 0.003461625134981475, "sigma_ma": 0.010581, "first_obs": "1954-08-27", "n_del_obs_used": "", "spkid": 2055636.0, "n_dop_obs_used": ""},
{"sigma_tp": 8.8843, "diameter": "", "sigma_q": 0.0061437, "epoch_mjd": 56800.0, "ad": 48.98182253946501, "producer": "Otto Matic", "rms": 0.60983, "H_sigma": "", "closeness": 2601.072364590307, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "55637 (2002 UX25)", "M2": "", "sigma_per": 26.625, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.0346075880798188e+20, "albedo": "", "moid_ld": 13877.763283, "pha": "N", "neo": "N", "sigma_ad": 0.0085056, "PC": "", "profit": 0.0, "est_diameter": 596.3199670531795, "sigma_w": 0.051147, "sigma_i": 0.00018602, "per": 102218.6269385253, "id": "a0055637", "A1": "", "data_arc": 8090.0, "A3": "", "score": 0.0, "per_y": 279.859348223204, "sigma_n": 9.1734e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 18", "sigma_a": 0.0074294, "sigma_om": 6.1722e-05, "A2": "", "sigma_e": 2.9255e-05, "condition_code": 3.0, "rot_per": 14.382, "prov_des": "2002 UX25", "G": "", "last_obs": "2013-12-05", "H": 3.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 74.0, "moid": 35.6599, "extent": "", "dv": 13.202333, "e": 0.1448463305257681, "GM": "", "tp_cal": 20651011.4703411, "pdes": 55637.0, "class": "TNO", "UB": "", "a": 42.78462640219166, "t_jup": 5.473, "om": 204.635740685933, "ma": 293.8964968991357, "name": "", "i": 19.43798858241984, "tp": 2475569.9703411027, "prefix": "", "BV": "", "spec": "?", "q": 36.5874302649183, "w": 276.8322383706406, "n": 0.003521862998771304, "sigma_ma": 0.048496, "first_obs": "1991-10-12", "n_del_obs_used": "", "spkid": 2055637.0, "n_dop_obs_used": ""},
{"sigma_tp": 13.702, "diameter": "", "sigma_q": 0.0045204, "epoch_mjd": 56800.0, "ad": 51.06539540670275, "producer": "Otto Matic", "rms": 0.46503, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "58534 Logos (1997 CQ29)", "M2": "", "sigma_per": 41.614, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -3.7023771749632307e+18, "albedo": "", "moid_ld": 15114.506626, "pha": "N", "neo": "N", "sigma_ad": 0.012661, "PC": "", "profit": -0.0, "est_diameter": 156.84813222680864, "sigma_w": 0.059267, "sigma_i": 0.0001761, "per": 111893.089537864, "id": "a0058534", "A1": "", "data_arc": 5582.0, "A3": "", "score": 0.0, "per_y": 306.346583265884, "sigma_n": 1.1966e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 10", "sigma_a": 0.011267, "sigma_om": 0.0020409, "A2": "", "sigma_e": 0.00013891, "condition_code": 3.0, "rot_per": "", "prov_des": "1997 CQ29", "G": "", "last_obs": "2012-05-18", "H": 6.7, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 61.0, "moid": 38.8378, "extent": "", "dv": 12.145132, "e": 0.1237166262006431, "GM": "", "tp_cal": 19661206.1689163, "pdes": 58534.0, "class": "TNO", "UB": "", "a": 45.44330324572849, "t_jup": 5.972, "om": 132.5056848284834, "ma": 55.77233782620771, "name": "Logos", "i": 2.895327422666182, "tp": 2439465.6689163228, "prefix": "", "BV": "", "spec": "?", "q": 39.82121108475422, "w": 337.7801746771265, "n": 0.003217356867049219, "sigma_ma": 0.064127, "first_obs": "1997-02-04", "n_del_obs_used": "", "spkid": 2058534.0, "n_dop_obs_used": ""},
{"sigma_tp": 5.0879, "diameter": "", "sigma_q": 0.0028446, "epoch_mjd": 56800.0, "ad": 50.56740867804789, "producer": "Otto Matic", "rms": 0.6229, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "59358 (1999 CL158)", "M2": "", "sigma_per": 33.506, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.446136341551079e+18, "albedo": "", "moid_ld": 12420.594052, "pha": "N", "neo": "N", "sigma_ad": 0.011471, "PC": "", "profit": -0.0, "est_diameter": 136.60901232216727, "sigma_w": 0.030846, "sigma_i": 0.00042601, "per": 98468.04979617776, "id": "a0059358", "A1": "", "data_arc": 3595.0, "A3": "", "score": 0.0, "per_y": 269.590827641828, "sigma_n": 1.244e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 9", "sigma_a": 0.0094668, "sigma_om": 0.00033014, "A2": "", "sigma_e": 0.00012385, "condition_code": 3.0, "rot_per": "", "prov_des": "1999 CL158", "G": "", "last_obs": "2008-12-15", "H": 7.0, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 27.0, "moid": 31.9156, "extent": "", "dv": 12.223396, "e": 0.2117306474473787, "GM": "", "tp_cal": 19820920.8362254, "pdes": 59358.0, "class": "TNO", "UB": "", "a": 41.73155872930403, "t_jup": 5.576, "om": 120.03168090818, "ma": 42.28964590530371, "name": "", "i": 10.01351912306935, "tp": 2445233.336225372, "prefix": "", "BV": "", "spec": "?", "q": 32.89570878056018, "w": 329.3258096259921, "n": 0.003656008225461719, "sigma_ma": 0.03194, "first_obs": "1999-02-11", "n_del_obs_used": "", "spkid": 2059358.0, "n_dop_obs_used": ""},
{"sigma_tp": 57.492, "diameter": "", "sigma_q": 0.030824, "epoch_mjd": 56800.0, "ad": 48.28739480947046, "producer": "Otto Matic", "rms": 0.40072, "H_sigma": "", "closeness": 2601.246526202742, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "60454 (2000 CH105)", "M2": "", "sigma_per": 79.242, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -6.433994122993879e+18, "albedo": "", "moid_ld": 15446.54647, "pha": "N", "neo": "N", "sigma_ad": 0.02353, "PC": "", "profit": 0.0, "est_diameter": 188.57293101246137, "sigma_w": 0.26496, "sigma_i": 0.0012587, "per": 108412.6452285701, "id": "a0060454", "A1": "", "data_arc": 2217.0, "A3": "", "score": 0.0, "per_y": 296.817646074114, "sigma_n": 2.4271e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 8", "sigma_a": 0.021682, "sigma_om": 0.027096, "A2": "", "sigma_e": 0.00053032, "condition_code": 4.0, "rot_per": "", "prov_des": "2000 CH105", "G": "", "last_obs": "2006-03-02", "H": 6.3, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 23.0, "moid": 39.691, "extent": "", "dv": 12.25943, "e": 0.0852074474674709, "GM": "", "tp_cal": 20640413.7612907, "pdes": 60454.0, "class": "TNO", "UB": "", "a": 44.49600389506899, "t_jup": 5.943, "om": 319.9800438419929, "ma": 299.4853427771058, "name": "", "i": 1.160141869352092, "tp": 2475024.2612906503, "prefix": "", "BV": "", "spec": "?", "q": 40.70461298066752, "w": 288.7951992147671, "n": 0.003320645845703696, "sigma_ma": 0.23484, "first_obs": "2000-02-05", "n_del_obs_used": "", "spkid": 2060454.0, "n_dop_obs_used": ""},
{"sigma_tp": 6.54, "diameter": "", "sigma_q": 0.0104, "epoch_mjd": 56800.0, "ad": 84.30809294401548, "producer": "Otto Matic", "rms": 0.52062, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "60458 (2000 CM114)", "M2": "", "sigma_per": 198.18, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -4.250897761581432e+18, "albedo": "", "moid_ld": 13461.351383, "pha": "N", "neo": "N", "sigma_ad": 0.065741, "PC": "", "profit": -0.0, "est_diameter": 164.24015696315365, "sigma_w": 0.043749, "sigma_i": 0.00069947, "per": 169431.243978405, "id": "a0060458", "A1": "", "data_arc": 2904.0, "A3": "", "score": 0.0, "per_y": 463.877464691047, "sigma_n": 2.4852e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.046727, "sigma_om": 0.00031421, "A2": "", "sigma_e": 0.00042187, "condition_code": 4.0, "rot_per": "", "prov_des": "2000 CM114", "G": "", "last_obs": "2008-01-18", "H": 6.6, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 36.0, "moid": 34.5899, "extent": "", "dv": 12.266362, "e": 0.4069301955293786, "GM": "", "tp_cal": 20410228.313768, "pdes": 60458.0, "class": "TNO", "UB": "", "a": 59.92343700626406, "t_jup": 5.925, "om": 312.2934118368959, "ma": 339.2234721658997, "name": "", "i": 19.66225057811879, "tp": 2466578.81376801, "prefix": "", "BV": "", "spec": "?", "q": 35.53878106851263, "w": 250.9155083431424, "n": 0.00212475569172994, "sigma_ma": 0.037301, "first_obs": "2000-02-05", "n_del_obs_used": "", "spkid": 2060458.0, "n_dop_obs_used": ""},
{"sigma_tp": 0.33301, "diameter": "", "sigma_q": 0.00073304, "epoch_mjd": 56800.0, "ad": 76.6620623209714, "producer": "Otto Matic", "rms": 0.30564, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "60608 (2000 EE173)", "M2": "", "sigma_per": 70.644, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.68213516330422e+17, "albedo": "", "moid_ld": 8402.802972, "pha": "N", "neo": "N", "sigma_ad": 0.028279, "PC": "", "profit": -0.0, "est_diameter": 65.38518417986339, "sigma_w": 0.003844, "sigma_i": 0.00017336, "per": 127674.0529333508, "id": "a0060608", "A1": "", "data_arc": 4459.0, "A3": "", "score": 0.0, "per_y": 349.55250631992, "sigma_n": 1.5602e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 8", "sigma_a": 0.018304, "sigma_om": 0.0010992, "A2": "", "sigma_e": 0.00015316, "condition_code": 3.0, "rot_per": "", "prov_des": "2000 EE173", "G": "", "last_obs": "2012-05-18", "H": 8.6, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 28.0, "moid": 21.5916, "extent": "", "dv": 10.981474, "e": 0.544937872136486, "GM": "", "tp_cal": 20070328.8224915, "pdes": 60608.0, "class": "TNO", "UB": "", "a": 49.62145320119303, "t_jup": 5.256, "om": 293.9654925549916, "ma": 7.365505217853465, "name": "", "i": 5.949142013713177, "tp": 2454188.3224914856, "prefix": "", "BV": "", "spec": "?", "q": 22.58084408141468, "w": 235.4827434313733, "n": 0.002819680206971494, "sigma_ma": 0.0033329, "first_obs": "2000-03-03", "n_del_obs_used": "", "spkid": 2060608.0, "n_dop_obs_used": ""},
{"sigma_tp": 7.9514, "diameter": "", "sigma_q": 0.016965, "epoch_mjd": 56800.0, "ad": 53.44409753137366, "producer": "Otto Matic", "rms": 0.44959, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "60620 (2000 FD8)", "M2": "", "sigma_per": 50.813, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -4.250897761581432e+18, "albedo": "", "moid_ld": 12923.246024, "pha": "N", "neo": "N", "sigma_ad": 0.017096, "PC": "", "profit": -0.0, "est_diameter": 164.24015696315365, "sigma_w": 0.069225, "sigma_i": 0.00080781, "per": 105895.3601489685, "id": "a0060620", "A1": "", "data_arc": 2277.0, "A3": "", "score": 0.0, "per_y": 289.925695137491, "sigma_n": 1.6313e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 9", "sigma_a": 0.014013, "sigma_om": 0.00013054, "A2": "", "sigma_e": 0.00043317, "condition_code": 3.0, "rot_per": "", "prov_des": "2000 FD8", "G": "", "last_obs": "2006-06-21", "H": 6.6, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 37.0, "moid": 33.2072, "extent": "", "dv": 12.966334, "e": 0.2200587519652371, "GM": "", "tp_cal": 20451021.8661066, "pdes": 60620.0, "class": "TNO", "UB": "", "a": 43.80452781088401, "t_jup": 5.455, "om": 184.8058948068222, "ma": 320.9902474237575, "name": "", "i": 19.49469501963032, "tp": 2468275.3661066205, "prefix": "", "BV": "", "spec": "?", "q": 34.16495809039436, "w": 80.6144234040502, "n": 0.003399582375408793, "sigma_ma": 0.044723, "first_obs": "2000-03-27", "n_del_obs_used": "", "spkid": 2060620.0, "n_dop_obs_used": ""},
{"sigma_tp": 3.2516, "diameter": "", "sigma_q": 0.0037072, "epoch_mjd": 56800.0, "ad": 78.12877884368417, "producer": "Otto Matic", "rms": 0.69531, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "60621 (2000 FE8)", "M2": "", "sigma_per": 101.36, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.8085402992270065e+18, "albedo": "", "moid_ld": 12470.680231, "pha": "N", "neo": "N", "sigma_ad": 0.034883, "PC": "", "profit": -0.0, "est_diameter": 143.04719672357845, "sigma_w": 0.022812, "sigma_i": 0.00059183, "per": 151346.1425253777, "id": "a0060621", "A1": "", "data_arc": 2485.0, "A3": "", "score": 0.0, "per_y": 414.363155442513, "sigma_n": 1.593e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 8", "sigma_a": 0.024815, "sigma_om": 0.00052573, "A2": "", "sigma_e": 0.00023773, "condition_code": 3.0, "rot_per": "", "prov_des": "2000 FE8", "G": "", "last_obs": "2007-01-15", "H": 6.9, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 40.0, "moid": 32.0443, "extent": "", "dv": 11.296515, "e": 0.4057100509077051, "GM": "", "tp_cal": 19820417.8909351, "pdes": 60621.0, "class": "TNO", "UB": "", "a": 55.57958328122808, "t_jup": 6.037, "om": 3.880695798918095, "ma": 27.88521195822185, "name": "", "i": 5.862151508355697, "tp": 2445077.3909350573, "prefix": "", "BV": "", "spec": "?", "q": 33.030387718772, "w": 143.2939265431713, "n": 0.002378653291012258, "sigma_ma": 0.024007, "first_obs": "2000-03-27", "n_del_obs_used": "", "spkid": 2060621.0, "n_dop_obs_used": ""},
{"sigma_tp": 0.00022172, "diameter": 14.6, "epoch_mjd": 56800.0, "ad": 107.2676071649904, "producer": "Otto Matic", "rms": 0.50048, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "65407 (2002 RP120)", "M2": "", "sigma_per": 18.109, "equinox": "J2000", "DT": "", "diameter_sigma": 2.8, "saved": -2986078172842297.5, "albedo": 0.098, "moid_ld": 581.1319942, "pha": "N", "neo": "N", "sigma_ad": 0.0087213, "PC": "", "profit": -0.0, "spkid": 2065407.0, "sigma_w": 7.5921e-05, "sigma_i": 3.3537e-05, "per": 148484.5428473195, "id": "a0065407", "A1": "", "data_arc": 1225.0, "A3": "", "score": 0.0, "per_y": 406.528522511484, "sigma_n": 2.9568e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 4", "sigma_a": 0.0044617, "sigma_om": 1.096e-05, "A2": "", "sigma_e": 3.6705e-06, "condition_code": 2.0, "rot_per": 200.0, "prov_des": "2002 RP120", "G": "", "last_obs": "2004-06-22", "H": 12.3, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 542.0, "moid": 1.49326, "extent": "", "dv": 34.236398, "e": 0.9546997014454409, "GM": "", "tp_cal": 20021006.338246, "pdes": 65407.0, "class": "TNO", "UB": "", "a": 54.87677062909933, "t_jup": -0.847, "om": 39.1182360536767, "ma": 10.29600928236649, "name": "", "i": 119.1587506320946, "tp": 2452553.838245989, "prefix": "", "BV": "", "spec": "?", "q": 2.485934093208259, "w": 358.0111878811095, "n": 0.002424494786438296, "sigma_ma": 0.0012558, "first_obs": "2001-02-13", "n_del_obs_used": "", "sigma_q": 1.1261e-06, "n_dop_obs_used": ""},
{"sigma_tp": 0.055486, "diameter": "", "sigma_q": 0.00013712, "epoch_mjd": 56800.0, "ad": 186.0188955572883, "producer": "Otto Matic", "rms": 0.55943, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "65489 Ceto (2003 FX128)", "M2": "", "sigma_per": 80.348, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -5.603774619119063e+18, "albedo": "", "moid_ld": 6550.89861, "pha": "N", "neo": "N", "sigma_ad": 0.026519, "PC": "", "profit": -0.0, "est_diameter": 180.08575104123221, "sigma_w": 0.00094171, "sigma_i": 5.3557e-05, "per": 375733.2356252678, "id": "a0065489", "A1": "", "data_arc": 9239.0, "A3": "", "score": 0.0, "per_y": 1028.70153490833, "sigma_n": 2.0489e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 5", "sigma_a": 0.014528, "sigma_om": 0.00010225, "A2": "", "sigma_e": 2.3575e-05, "condition_code": 2.0, "rot_per": 4.43, "prov_des": "2003 FX128", "G": "", "last_obs": "2012-05-18", "H": 6.4, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 80.0, "moid": 16.833, "extent": "", "dv": 11.38358, "e": 0.825448581713209, "GM": "", "tp_cal": 19890808.2777765, "pdes": 65489.0, "class": "TNO", "UB": "", "a": 101.9031143472182, "t_jup": 4.674, "om": 171.9047573902444, "ma": 8.674611909241667, "name": "Ceto", "i": 22.27841488063448, "tp": 2447746.77777652, "prefix": "", "BV": "", "spec": "?", "q": 17.78733313714797, "w": 319.7784489535487, "n": 0.000958126579888293, "sigma_ma": 0.0019075, "first_obs": "1987-01-31", "n_del_obs_used": "", "spkid": 2065489.0, "n_dop_obs_used": ""},
{"sigma_tp": 51.533, "diameter": "", "sigma_q": 0.018456, "epoch_mjd": 56800.0, "ad": 47.70313017323634, "producer": "Otto Matic", "rms": 0.26232, "H_sigma": "", "closeness": 2601.2238419720074, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "66452 (1999 OF4)", "M2": "", "sigma_per": 49.948, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.8085402992270065e+18, "albedo": "", "moid_ld": 15915.651988, "pha": "N", "neo": "N", "sigma_ad": 0.014502, "PC": "", "profit": 0.0, "est_diameter": 143.04719672357845, "sigma_w": 0.20345, "sigma_i": 0.00050897, "per": 109535.9571450535, "id": "a0066452", "A1": "", "data_arc": 2981.0, "A3": "", "score": 0.0, "per_y": 299.893106488853, "sigma_n": 1.4987e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.01362, "sigma_om": 0.0014902, "A2": "", "sigma_e": 0.00027089, "condition_code": 3.0, "rot_per": "", "prov_des": "1999 OF4", "G": "", "last_obs": "2007-09-18", "H": 6.9, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 65.0, "moid": 40.8964, "extent": "", "dv": 12.333684, "e": 0.06473457468970457, "GM": "", "tp_cal": 19250401.1010662, "pdes": 66452.0, "class": "TNO", "UB": "", "a": 44.8028375401808, "t_jup": 5.966, "om": 134.4223840270948, "ma": 107.0078166264677, "name": "", "i": 2.66341478848978, "tp": 2424241.6010661596, "prefix": "", "BV": "", "spec": "?", "q": 41.90254490712527, "w": 85.16070544903924, "n": 0.003286591995752303, "sigma_ma": 0.21604, "first_obs": "1999-07-21", "n_del_obs_used": "", "spkid": 2066452.0, "n_dop_obs_used": ""},
{"sigma_tp": 19.949, "diameter": "", "sigma_q": 0.0031857, "epoch_mjd": 56800.0, "ad": 47.30688208021355, "producer": "Otto Matic", "rms": 0.59611, "H_sigma": "", "closeness": 2601.2412966384177, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "66652 Borasisi (1999 RZ253)", "M2": "", "sigma_per": 60.119, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.118100031910736e+19, "albedo": "", "moid_ld": 15142.020945, "pha": "N", "neo": "N", "sigma_ad": 0.018021, "PC": "", "profit": 0.0, "est_diameter": 226.71452828784518, "sigma_w": 0.081715, "sigma_i": 9.7214e-05, "per": 105213.0548247297, "id": "a0066652", "A1": "", "data_arc": 4790.0, "A3": "", "score": 0.0, "per_y": 288.057644968459, "sigma_n": 1.9551e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 9", "sigma_a": 0.016615, "sigma_om": 0.021321, "A2": "", "sigma_e": 0.00029617, "condition_code": 3.0, "rot_per": "", "prov_des": "1999 RZ253", "G": "", "last_obs": "2012-10-19", "H": 5.9, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 51.0, "moid": 38.9085, "extent": "", "dv": 12.275924, "e": 0.08461812178024095, "GM": "", "tp_cal": 19690130.0551858, "pdes": 66652.0, "class": "TNO", "UB": "", "a": 43.61616418741582, "t_jup": 5.889, "om": 84.58841626412521, "ma": 56.62434327219439, "name": "Borasisi", "i": 0.5629392238502916, "tp": 2440251.555185801, "prefix": "", "BV": "", "spec": "?", "q": 39.92544629461808, "w": 196.6924191899876, "n": 0.003421628623935592, "sigma_ma": 0.099422, "first_obs": "1999-09-08", "n_del_obs_used": "", "spkid": 2066652.0, "n_dop_obs_used": ""},
{"sigma_tp": 598.77, "diameter": "", "sigma_q": 0.037581, "epoch_mjd": 56800.0, "ad": 43.58207889935281, "producer": "Otto Matic", "rms": 0.16281, "H_sigma": "", "closeness": 2601.1805792105906, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "69987 (1998 WA25)", "M2": "", "sigma_per": 98.893, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.8555841741645757e+18, "albedo": "", "moid_ld": 15868.523501, "pha": "N", "neo": "N", "sigma_ad": 0.028212, "PC": "", "profit": 0.0, "est_diameter": 124.58889999152157, "sigma_w": 2.2517, "sigma_i": 0.00015338, "per": 101845.7973723076, "id": "a0069987", "A1": "", "data_arc": 1798.0, "A3": "", "score": 0.0, "per_y": 278.838596501869, "sigma_n": 3.4323e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.027629, "sigma_om": 0.084017, "A2": "", "sigma_e": 0.00076479, "condition_code": 4.0, "rot_per": "", "prov_des": "1998 WA25", "G": "", "last_obs": "2003-10-22", "H": 7.2, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 15.0, "moid": 40.7753, "extent": "", "dv": 12.498897, "e": 0.02112322003650125, "GM": "", "tp_cal": 19631215.5546461, "pdes": 69987.0, "class": "TNO", "UB": "", "a": 42.68052870034129, "t_jup": 5.848, "om": 136.2836819235782, "ma": 65.11530665486042, "name": "", "i": 1.04692303535503, "tp": 2438379.054646093, "prefix": "", "BV": "", "spec": "?", "q": 41.77897850132977, "w": 226.4662847846635, "n": 0.003534755574488595, "sigma_ma": 2.156, "first_obs": "1998-11-19", "n_del_obs_used": "", "spkid": 2069987.0, "n_dop_obs_used": ""},
{"sigma_tp": 5.2453, "diameter": "", "sigma_q": 0.01371, "epoch_mjd": 56800.0, "ad": 78.97235757765797, "producer": "Otto Matic", "rms": 0.4803, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "69988 (1998 WA31)", "M2": "", "sigma_per": 155.16, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.4076045431002944e+18, "albedo": "", "moid_ld": 11925.141725, "pha": "N", "neo": "N", "sigma_ad": 0.054373, "PC": "", "profit": -0.0, "est_diameter": 113.62642725569708, "sigma_w": 0.054568, "sigma_i": 0.00064251, "per": 150242.8181287905, "id": "a0069988", "A1": "", "data_arc": 3714.0, "A3": "", "score": 0.0, "per_y": 411.342417874854, "sigma_n": 2.4746e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.038081, "sigma_om": 0.001402, "A2": "", "sigma_e": 0.00024489, "condition_code": 3.0, "rot_per": "", "prov_des": "1998 WA31", "G": "", "last_obs": "2008-12-22", "H": 7.4, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 24.0, "moid": 30.6425, "extent": "", "dv": 11.405442, "e": 0.4278357134044741, "GM": "", "tp_cal": 19670119.4856608, "pdes": 69988.0, "class": "TNO", "UB": "", "a": 55.30913454276855, "t_jup": 5.908, "om": 20.75840193406191, "ma": 41.43016777540445, "name": "", "i": 9.463162149469797, "tp": 2439509.985660763, "prefix": "", "BV": "", "spec": "?", "q": 31.64591150787912, "w": 310.0502880866555, "n": 0.002396121188910357, "sigma_ma": 0.055258, "first_obs": "1998-10-22", "n_del_obs_used": "", "spkid": 2069988.0, "n_dop_obs_used": ""},
{"sigma_tp": 51.547, "diameter": "", "sigma_q": 0.0017977, "epoch_mjd": 56800.0, "ad": 44.83665821620912, "producer": "Otto Matic", "rms": 0.4154, "H_sigma": "", "closeness": 2601.1814293632033, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "79360 Sila-Nunam (1997 CS29)", "M2": "", "sigma_per": 14.483, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.5614191956629225e+19, "albedo": "", "moid_ld": 16515.907796, "pha": "N", "neo": "N", "sigma_ad": 0.0040426, "PC": "", "profit": 0.0, "est_diameter": 298.8679546440892, "sigma_w": 0.17955, "sigma_i": 0.00011726, "per": 107088.4264143454, "id": "a0079360", "A1": "", "data_arc": 6203.0, "A3": "", "score": 0.0, "per_y": 293.192132551254, "sigma_n": 4.5465e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 15", "sigma_a": 0.0039791, "sigma_om": 0.00039878, "A2": "", "sigma_e": 5.3567e-05, "condition_code": 3.0, "rot_per": "", "prov_des": "1997 CS29", "G": "", "last_obs": "2014-01-28", "H": 5.3, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 244.0, "moid": 42.4388, "extent": "", "dv": 12.495283, "e": 0.01594569891863701, "GM": "", "tp_cal": 20321108.9102914, "pdes": 79360.0, "class": "TNO", "UB": "", "a": 44.13292783652987, "t_jup": 5.937, "om": 304.3208723676082, "ma": 337.325582360164, "name": "Sila-Nunam", "i": 2.237322239147826, "tp": 2463545.410291421, "prefix": "", "BV": "", "spec": "?", "q": 43.42919745685063, "w": 214.9062430937826, "n": 0.003361707815250659, "sigma_ma": 0.17601, "first_obs": "1997-02-03", "n_del_obs_used": "", "spkid": 2079360.0, "n_dop_obs_used": ""},
{"sigma_tp": 11.229, "diameter": "", "sigma_q": 0.010305, "epoch_mjd": 56800.0, "ad": 69.50719442629843, "producer": "Otto Matic", "rms": 0.3217, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "79978 (1999 CC158)", "M2": "", "sigma_per": 88.49, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.2837506008340937e+19, "albedo": "", "moid_ld": 14869.640862, "pha": "N", "neo": "N", "sigma_ad": 0.028037, "PC": "", "profit": -0.0, "est_diameter": 237.39925482809605, "sigma_w": 0.060543, "sigma_i": 0.00050054, "per": 146250.7583093556, "id": "a0079978", "A1": "", "data_arc": 3189.0, "A3": "", "score": 0.0, "per_y": 400.412753755936, "sigma_n": 1.4894e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 8", "sigma_a": 0.021913, "sigma_om": 0.0008416, "A2": "", "sigma_e": 0.00022055, "condition_code": 3.0, "rot_per": "", "prov_des": "1999 CC158", "G": "", "last_obs": "2007-11-09", "H": 5.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 25.0, "moid": 38.2086, "extent": "", "dv": 12.554943, "e": 0.2794695638034679, "GM": "", "tp_cal": 19690326.0176281, "pdes": 79978.0, "class": "TNO", "UB": "", "a": 54.32500810701195, "t_jup": 5.973, "om": 337.0195151676622, "ma": 40.60036147874384, "name": "", "i": 18.70602859652439, "tp": 2440306.517628055, "prefix": "", "BV": "", "spec": "?", "q": 39.14282178772546, "w": 102.3791437955623, "n": 0.002461525698475445, "sigma_ma": 0.049166, "first_obs": "1999-02-15", "n_del_obs_used": "", "spkid": 2079978.0, "n_dop_obs_used": ""},
{"sigma_tp": 52.719, "diameter": "", "sigma_q": 0.0043004, "epoch_mjd": 56800.0, "ad": 53.55790125250949, "producer": "Otto Matic", "rms": 0.25852, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "79983 (1999 DF9)", "M2": "", "sigma_per": 96.958, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -8.481656108469005e+18, "albedo": "", "moid_ld": 15091.662347, "pha": "N", "neo": "N", "sigma_ad": 0.029734, "PC": "", "profit": -0.0, "est_diameter": 206.76610723797694, "sigma_w": 0.22195, "sigma_i": 0.0013188, "per": 116427.7044877461, "id": "a0079983", "A1": "", "data_arc": 1857.0, "A3": "", "score": 0.0, "per_y": 318.761682375759, "sigma_n": 2.575e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 6", "sigma_a": 0.025906, "sigma_om": 0.00035876, "A2": "", "sigma_e": 0.00038539, "condition_code": 4.0, "rot_per": 6.65, "prov_des": "1999 DF9", "G": "", "last_obs": "2004-03-22", "H": 6.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 18.0, "moid": 38.7791, "extent": "", "dv": 12.311222, "e": 0.1477613906422293, "GM": "", "tp_cal": 19990511.3263124, "pdes": 79983.0, "class": "TNO", "UB": "", "a": 46.66292287680211, "t_jup": 5.949, "om": 334.8136035111918, "ma": 16.97742419856509, "name": "", "i": 9.798854342831483, "tp": 2451309.826312351, "prefix": "", "BV": "", "spec": "?", "q": 39.76794450109474, "w": 177.0373264392906, "n": 0.003092047563626832, "sigma_ma": 0.16412, "first_obs": "1999-02-20", "n_del_obs_used": "", "spkid": 2079983.0, "n_dop_obs_used": ""},
{"sigma_tp": 28.388, "diameter": "", "sigma_q": 0.010428, "epoch_mjd": 56800.0, "ad": 45.23804708808857, "producer": "Otto Matic", "rms": 0.36621, "H_sigma": "", "closeness": 2601.2058817295865, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "80806 (2000 CM105)", "M2": "", "sigma_per": 29.728, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -3.7023771749632307e+18, "albedo": "", "moid_ld": 15013.867264, "pha": "N", "neo": "N", "sigma_ad": 0.0088897, "PC": "", "profit": 0.0, "est_diameter": 156.84813222680864, "sigma_w": 0.12056, "sigma_i": 3.9871e-05, "per": 100854.7170589488, "id": "a0080806", "A1": "", "data_arc": 2893.0, "A3": "", "score": 0.0, "per_y": 276.125166485828, "sigma_n": 1.0522e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 7", "sigma_a": 0.0083326, "sigma_om": 0.0083753, "A2": "", "sigma_e": 0.00025465, "condition_code": 3.0, "rot_per": "", "prov_des": "2000 CM105", "G": "", "last_obs": "2008-01-08", "H": 6.7, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 45.0, "moid": 38.5792, "extent": "", "dv": 12.398024, "e": 0.06685481750233191, "GM": "", "tp_cal": 19450223.0202661, "pdes": 80806.0, "class": "TNO", "UB": "", "a": 42.40318958674965, "t_jup": 5.807, "om": 45.65781784626781, "ma": 90.27592332531674, "name": "", "i": 3.756120030659622, "tp": 2431509.520266083, "prefix": "", "BV": "", "spec": "?", "q": 39.56833208541072, "w": 10.01762233076046, "n": 0.003569490951916338, "sigma_ma": 0.12779, "first_obs": "2000-02-06", "n_del_obs_used": "", "spkid": 2080806.0, "n_dop_obs_used": ""},
{"sigma_tp": 7.1182, "diameter": "", "sigma_q": 0.004699, "epoch_mjd": 56800.0, "ad": 75.49461854190203, "producer": "Otto Matic", "rms": 0.5229, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "82075 (2000 YW134)", "M2": "", "sigma_per": 69.501, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -5.110703193944128e+19, "albedo": "", "moid_ld": 15655.491843, "pha": "N", "neo": "N", "sigma_ad": 0.021491, "PC": "", "profit": -0.0, "est_diameter": 376.2524628723905, "sigma_w": 0.033003, "sigma_i": 0.00043689, "per": 162759.8852583661, "id": "a0082075", "A1": "", "data_arc": 3226.0, "A3": "", "score": 0.0, "per_y": 445.612279968148, "sigma_n": 9.4449e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 12", "sigma_a": 0.016608, "sigma_om": 0.00017475, "A2": "", "sigma_e": 0.00016109, "condition_code": 3.0, "rot_per": "", "prov_des": "2000 YW134", "G": "", "last_obs": "2009-10-26", "H": 4.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 77.0, "moid": 40.2279, "extent": "", "dv": 12.58014, "e": 0.2940469385165587, "GM": "", "tp_cal": 19790520.5219682, "pdes": 82075.0, "class": "TNO", "UB": "", "a": 58.33993829346399, "t_jup": 6.113, "om": 126.940965251471, "ma": 28.28173590898894, "name": "", "i": 19.76854471414104, "tp": 2444014.021968182, "prefix": "", "BV": "", "spec": "?", "q": 41.18525804502595, "w": 316.8981879666553, "n": 0.002211847221620571, "sigma_ma": 0.024934, "first_obs": "2000-12-26", "n_del_obs_used": "", "spkid": 2082075.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.2656, "diameter": "", "sigma_q": 0.0017535, "epoch_mjd": 56800.0, "ad": 139.2535658024307, "producer": "Otto Matic", "rms": 0.73845, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "82155 (2001 FZ173)", "M2": "", "sigma_per": 292.49, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -8.481656108469005e+18, "albedo": "", "moid_ld": 12218.459154, "pha": "N", "neo": "N", "sigma_ad": 0.093499, "PC": "", "profit": -0.0, "est_diameter": 206.76610723797694, "sigma_w": 0.0087208, "sigma_i": 0.00038448, "per": 290412.8999808452, "id": "a0082155", "A1": "", "data_arc": 3273.0, "A3": "", "score": 0.0, "per_y": 795.107186805873, "sigma_n": 1.2485e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.057625, "sigma_om": 0.00015692, "A2": "", "sigma_e": 0.000234, "condition_code": 3.0, "rot_per": "", "prov_des": "2001 FZ173", "G": "", "last_obs": "2010-03-10", "H": 6.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 43.0, "moid": 31.3962, "extent": "", "dv": 10.941146, "e": 0.6225372409085255, "GM": "", "tp_cal": 20101029.8828283, "pdes": 82155.0, "class": "TNO", "UB": "", "a": 85.8245729536888, "t_jup": 6.262, "om": 2.37582445222788, "ma": 1.612883524899134, "name": "", "i": 12.70851864652962, "tp": 2455499.382828341, "prefix": "", "BV": "", "spec": "?", "q": 32.39558010494692, "w": 199.0969329172977, "n": 0.001239614356055618, "sigma_ma": 0.0015555, "first_obs": "2001-03-24", "n_del_obs_used": "", "spkid": 2082155.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.7966, "diameter": "", "sigma_q": 0.0011935, "epoch_mjd": 56800.0, "ad": 407.275013142242, "producer": "Otto Matic", "rms": 0.60726, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "82158 (2001 FP185)", "M2": "", "sigma_per": 2388.8, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -9.73824417722983e+18, "albedo": "", "moid_ld": 12935.427045, "pha": "N", "neo": "N", "sigma_ad": 0.5414, "PC": "", "profit": -0.0, "est_diameter": 216.51069365823926, "sigma_w": 0.01197, "sigma_i": 0.00053952, "per": 1198016.486221434, "id": "a0082158", "A1": "", "data_arc": 2461.0, "A3": "", "score": 0.0, "per_y": 3279.99037979859, "sigma_n": 5.9918e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 9", "sigma_a": 0.29345, "sigma_om": 0.00010782, "A2": "", "sigma_e": 0.00020084, "condition_code": 2.0, "rot_per": "", "prov_des": "2001 FP185", "G": "", "last_obs": "2007-12-21", "H": 6.0, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 50.0, "moid": 33.2385, "extent": "", "dv": 12.40373, "e": 0.8449227571457028, "GM": "", "tp_cal": 20031201.8508322, "pdes": 82158.0, "class": "TNO", "UB": "", "a": 220.7545066940044, "t_jup": 6.01, "om": 179.3288940229748, "ma": 1.149444699849347, "name": "", "i": 30.77926236418173, "tp": 2452975.3508321685, "prefix": "", "BV": "", "spec": "?", "q": 34.2340002457667, "w": 6.76596794506134, "n": 0.000300496699453149, "sigma_ma": 0.0023369, "first_obs": "2001-03-26", "n_del_obs_used": "", "spkid": 2082158.0, "n_dop_obs_used": ""},
{"sigma_tp": 4.4091, "diameter": "", "sigma_q": 0.0041196, "epoch_mjd": 56800.0, "ad": 72.08942225321073, "producer": "Otto Matic", "rms": 0.48987, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "84522 (2002 TC302)", "M2": "", "sigma_per": 53.069, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.0346075880798188e+20, "albedo": "", "moid_ld": 14883.456397, "pha": "N", "neo": "N", "sigma_ad": 0.016857, "PC": "", "profit": -0.0, "est_diameter": 596.3199670531795, "sigma_w": 0.022305, "sigma_i": 0.0002324, "per": 151297.4821907994, "id": "a0084522", "A1": "", "data_arc": 4816.0, "A3": "", "score": 0.0, "per_y": 414.229930707185, "sigma_n": 8.346e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 13", "sigma_a": 0.012994, "sigma_om": 7.9839e-05, "A2": "", "sigma_e": 0.00011898, "condition_code": 3.0, "rot_per": 5.41, "prov_des": "2002 TC302", "G": "", "last_obs": "2013-10-12", "H": 3.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 104.0, "moid": 38.2441, "extent": "", "dv": 14.800338, "e": 0.2973267180764416, "GM": "", "tp_cal": 20581201.7084285, "pdes": 84522.0, "class": "TNO", "UB": "", "a": 55.56766946116579, "t_jup": 5.202, "om": 23.86705600421772, "ma": 321.3018343103269, "name": "", "i": 35.05268047394325, "tp": 2473064.208428472, "prefix": "", "BV": "", "spec": "?", "q": 39.04591666912086, "w": 86.51796641759123, "n": 0.002379418314086737, "sigma_ma": 0.024022, "first_obs": "2000-08-05", "n_del_obs_used": "", "spkid": 2084522.0, "n_dop_obs_used": ""},
{"sigma_tp": 81.579, "diameter": "", "sigma_q": 0.020416, "epoch_mjd": 56800.0, "ad": 47.62857541415102, "producer": "Otto Matic", "rms": 0.091715, "H_sigma": "", "closeness": 2601.241558978915, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "85627 (1998 HP151)", "M2": "", "sigma_per": 126.87, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.4076045431002944e+18, "albedo": "", "moid_ld": 15238.223769, "pha": "N", "neo": "N", "sigma_ad": 0.037918, "PC": "", "profit": 0.0, "est_diameter": 113.62642725569708, "sigma_w": 0.3424, "sigma_i": 0.00081358, "per": 106241.0774346487, "id": "a0085627", "A1": "", "data_arc": 3302.0, "A3": "", "score": 0.0, "per_y": 290.872217480215, "sigma_n": 4.0465e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.03495, "sigma_om": 0.0017817, "A2": "", "sigma_e": 0.00038788, "condition_code": 3.0, "rot_per": "", "prov_des": "1998 HP151", "G": "", "last_obs": "2007-05-13", "H": 7.4, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 37.0, "moid": 39.1557, "extent": "", "dv": 12.275088, "e": 0.08493794540936936, "GM": "", "tp_cal": 20530815.7451531, "pdes": 85627.0, "class": "TNO", "UB": "", "a": 43.89981529881857, "t_jup": 5.905, "om": 55.94692770106702, "ma": 311.4433740725133, "name": "", "i": 1.513435746395979, "tp": 2471130.2451531314, "prefix": "", "BV": "", "spec": "?", "q": 40.17105518348612, "w": 251.6883401703506, "n": 0.003388519852139529, "sigma_ma": 0.33392, "first_obs": "1998-04-28", "n_del_obs_used": "", "spkid": 2085627.0, "n_dop_obs_used": ""},
{"sigma_tp": 142.81, "diameter": "", "sigma_q": 0.025526, "epoch_mjd": 56800.0, "ad": 44.80724735769768, "producer": "Otto Matic", "rms": 0.14941, "H_sigma": "", "closeness": 2601.1935526793745, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "85633 (1998 KR65)", "M2": "", "sigma_per": 60.184, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -3.7023771749632307e+18, "albedo": "", "moid_ld": 15926.509831, "pha": "N", "neo": "N", "sigma_ad": 0.01724, "PC": "", "profit": 0.0, "est_diameter": 156.84813222680864, "sigma_w": 0.52273, "sigma_i": 0.0007359, "per": 104281.5080970165, "id": "a0085633", "A1": "", "data_arc": 3289.0, "A3": "", "score": 0.0, "per_y": 285.507209026739, "sigma_n": 1.9924e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.016682, "sigma_om": 0.014961, "A2": "", "sigma_e": 0.00029014, "condition_code": 3.0, "rot_per": "", "prov_des": "1998 KR65", "G": "", "last_obs": "2007-05-22", "H": 6.7, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 55.0, "moid": 40.9243, "extent": "", "dv": 12.445526, "e": 0.03341718790419443, "GM": "", "tp_cal": 21031007.4443874, "pdes": 85633.0, "class": "TNO", "UB": "", "a": 43.35833377086394, "t_jup": 5.889, "om": 101.938244255875, "ma": 247.308496070684, "name": "", "i": 1.189947902780438, "tp": 2489443.9443874164, "prefix": "", "BV": "", "spec": "?", "q": 41.9094201840302, "w": 336.9143230363366, "n": 0.003452194032954338, "sigma_ma": 0.54041, "first_obs": "1998-05-20", "n_del_obs_used": "", "spkid": 2085633.0, "n_dop_obs_used": ""},
{"sigma_tp": 8.2247, "diameter": "", "sigma_q": 0.0074944, "epoch_mjd": 56800.0, "ad": 51.06309038158234, "producer": "Otto Matic", "rms": 0.36466, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "86047 (1999 OY3)", "M2": "", "sigma_per": 33.313, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -3.2246357156774267e+18, "albedo": "", "moid_ld": 13763.230552, "pha": "N", "neo": "N", "sigma_ad": 0.010751, "PC": "", "profit": -0.0, "est_diameter": 149.7888034079121, "sigma_w": 0.050841, "sigma_i": 0.00078481, "per": 105481.8366238672, "id": "a0086047", "A1": "", "data_arc": 2572.0, "A3": "", "score": 0.0, "per_y": 288.793529428795, "sigma_n": 1.0778e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 6", "sigma_a": 0.0091987, "sigma_om": 0.00011456, "A2": "", "sigma_e": 0.00025816, "condition_code": 3.0, "rot_per": "", "prov_des": "1999 OY3", "G": "", "last_obs": "2006-08-02", "H": 6.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 37.0, "moid": 35.3656, "extent": "", "dv": 13.69622, "e": 0.1687481175166537, "GM": "", "tp_cal": 19651213.905111, "pdes": 86047.0, "class": "TNO", "UB": "", "a": 43.69041508283306, "t_jup": 5.326, "om": 301.8740566521627, "ma": 60.38152504635495, "name": "", "i": 24.27786793971069, "tp": 2439108.4051110013, "prefix": "", "BV": "", "spec": "?", "q": 36.31773978408376, "w": 303.9441574831402, "n": 0.003412909857492407, "sigma_ma": 0.039552, "first_obs": "1999-07-18", "n_del_obs_used": "", "spkid": 2086047.0, "n_dop_obs_used": ""},
{"sigma_tp": 4.2664, "diameter": "", "sigma_q": 0.0026932, "epoch_mjd": 56800.0, "ad": 55.85665715078633, "producer": "Otto Matic", "rms": 0.37285, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "86177 (1999 RY215)", "M2": "", "sigma_per": 30.225, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.1304956895593636e+18, "albedo": "", "moid_ld": 13055.057903, "pha": "N", "neo": "N", "sigma_ad": 0.010147, "PC": "", "profit": -0.0, "est_diameter": 130.4605939513808, "sigma_w": 0.024647, "sigma_i": 0.00021454, "per": 110916.1297364609, "id": "a0086177", "A1": "", "data_arc": 4789.0, "A3": "", "score": 0.0, "per_y": 303.671813104616, "sigma_n": 8.8446e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 9", "sigma_a": 0.0082074, "sigma_om": 7.7342e-05, "A2": "", "sigma_e": 8.7537e-05, "condition_code": 3.0, "rot_per": "", "prov_des": "1999 RY215", "G": "", "last_obs": "2012-10-18", "H": 7.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 37.0, "moid": 33.5459, "extent": "", "dv": 13.210527, "e": 0.2363575563246795, "GM": "", "tp_cal": 20270819.1939345, "pdes": 86177.0, "class": "TNO", "UB": "", "a": 45.17840075069499, "t_jup": 5.416, "om": 326.6596812951196, "ma": 344.3031863756523, "name": "", "i": 22.21312889315361, "tp": 2461636.6939344644, "prefix": "", "BV": "", "spec": "?", "q": 34.50014435060366, "w": 51.52690519568126, "n": 0.003245695651798956, "sigma_ma": 0.017844, "first_obs": "1999-09-08", "n_del_obs_used": "", "spkid": 2086177.0, "n_dop_obs_used": ""},
{"sigma_tp": 0.27708, "diameter": "", "sigma_q": 0.00067549, "epoch_mjd": 56800.0, "ad": 1103.35372010961, "producer": "Otto Matic", "rms": 0.42936, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "87269 (2000 OO67)", "M2": "", "sigma_per": 39736.0, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.1707944629903557e+17, "albedo": "", "moid_ld": 7706.34434, "pha": "N", "neo": "N", "sigma_ad": 6.0052, "PC": "", "profit": -0.0, "est_diameter": 49.59973445799733, "sigma_w": 0.0040075, "sigma_i": 0.00028579, "per": 4867280.621554003, "id": "a0087269", "A1": "", "data_arc": 2187.0, "A3": "", "score": 0.0, "per_y": 13325.8880809145, "sigma_n": 6.0384e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 7", "sigma_a": 3.0592, "sigma_om": 0.00026276, "A2": "", "sigma_e": 0.00020015, "condition_code": 2.0, "rot_per": "", "prov_des": "2000 OO67", "G": "", "last_obs": "2006-07-25", "H": 9.2, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 34.0, "moid": 19.802, "extent": "", "dv": 10.632079, "e": 0.9630112603123476, "GM": "", "tp_cal": 20050427.3180441, "pdes": 87269.0, "class": "TNO", "UB": "", "a": 562.072028019874, "t_jup": 5.27, "om": 142.3903575251659, "ma": 0.2450167962046666, "name": "", "i": 20.07230568628126, "tp": 2453487.818044105, "prefix": "", "BV": "", "spec": "?", "q": 20.79033593013797, "w": 212.5007033547969, "n": 7.396327189474044e-05, "sigma_ma": 0.0019974, "first_obs": "2000-07-29", "n_del_obs_used": "", "spkid": 2087269.0, "n_dop_obs_used": ""},
{"sigma_tp": 275.34, "diameter": "", "sigma_q": 0.059911, "epoch_mjd": 56800.0, "ad": 44.06695934884238, "producer": "Otto Matic", "rms": 0.20653, "H_sigma": "", "closeness": 2601.187058603095, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "88267 (2001 KE76)", "M2": "", "sigma_per": 73.665, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.8555841741645757e+18, "albedo": "", "moid_ld": 15854.863634, "pha": "N", "neo": "N", "sigma_ad": 0.021088, "PC": "", "profit": 0.0, "est_diameter": 124.58889999152157, "sigma_w": 0.88733, "sigma_i": 0.0009778, "per": 102622.9891067753, "id": "a0088267", "A1": "", "data_arc": 1526.0, "A3": "", "score": 0.0, "per_y": 280.966431503834, "sigma_n": 2.5181e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.020528, "sigma_om": 0.14613, "A2": "", "sigma_e": 0.0016725, "condition_code": 3.0, "rot_per": "", "prov_des": "2001 KE76", "G": "", "last_obs": "2005-07-26", "H": 7.2, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 31.0, "moid": 40.7402, "extent": "", "dv": 12.471779, "e": 0.0272644587674231, "GM": "", "tp_cal": 19310825.7978285, "pdes": 88267.0, "class": "TNO", "UB": "", "a": 42.89738535461132, "t_jup": 5.861, "om": 113.2688146843555, "ma": 106.0155514514085, "name": "", "i": 0.4959210359804472, "tp": 2426579.2978284815, "prefix": "", "BV": "", "spec": "?", "q": 41.72781136038027, "w": 32.34853787252491, "n": 0.003507985911669692, "sigma_ma": 1.0397, "first_obs": "2001-05-22", "n_del_obs_used": "", "spkid": 2088267.0, "n_dop_obs_used": ""},
{"sigma_tp": 666.88, "diameter": "", "sigma_q": 0.075186, "epoch_mjd": 56800.0, "ad": 42.9721261415049, "producer": "Otto Matic", "rms": 0.23126, "H_sigma": "", "closeness": 2601.1721439239745, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "88268 (2001 KK76)", "M2": "", "sigma_per": 44.076, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -6.433994122993879e+18, "albedo": "", "moid_ld": 15861.557358, "pha": "N", "neo": "N", "sigma_ad": 0.012534, "PC": "", "profit": 0.0, "est_diameter": 188.57293101246137, "sigma_w": 2.5946, "sigma_i": 0.0014034, "per": 100740.5932377693, "id": "a0088268", "A1": "", "data_arc": 1100.0, "A3": "", "score": 0.0, "per_y": 275.812712492182, "sigma_n": 1.5635e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 6", "sigma_a": 0.012359, "sigma_om": 0.012699, "A2": "", "sigma_e": 0.001645, "condition_code": 4.0, "rot_per": "", "prov_des": "2001 KK76", "G": "", "last_obs": "2004-05-28", "H": 6.3, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 41.0, "moid": 40.7574, "extent": "", "dv": 12.535697, "e": 0.01418252666220412, "GM": "", "tp_cal": 20580725.1939552, "pdes": 88268.0, "class": "TNO", "UB": "", "a": 42.37119553117455, "t_jup": 5.826, "om": 86.96536003643396, "ma": 302.3438989469913, "name": "", "i": 1.887630925763647, "tp": 2472934.693955158, "prefix": "", "BV": "", "spec": "?", "q": 41.77026492084421, "w": 237.0678936751842, "n": 0.003573534644076627, "sigma_ma": 2.4003, "first_obs": "2001-05-24", "n_del_obs_used": "", "spkid": 2088268.0, "n_dop_obs_used": ""},
{"sigma_tp": 125.5, "diameter": "", "sigma_q": 0.013443, "epoch_mjd": 56800.0, "ad": 45.20573360235747, "producer": "Otto Matic", "rms": 0.29215, "H_sigma": "", "closeness": 2601.1896948360213, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "88611 Teharonhiawako (2001 QT297)", "M2": "", "sigma_per": 36.379, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.2837506008340937e+19, "albedo": "", "moid_ld": 16184.724126, "pha": "N", "neo": "N", "sigma_ad": 0.010322, "PC": "", "profit": 0.0, "est_diameter": 237.39925482809605, "sigma_w": 0.44961, "sigma_i": 0.00042044, "per": 106220.6838692396, "id": "a0088611", "A1": "", "data_arc": 4463.0, "A3": "", "score": 0.0, "per_y": 290.816382941108, "sigma_n": 1.1608e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 13", "sigma_a": 0.010022, "sigma_om": 0.00394, "A2": "", "sigma_e": 9.7803e-05, "condition_code": 3.0, "rot_per": "", "prov_des": "2001 QT297", "G": "", "last_obs": "2012-10-20", "H": 5.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 63.0, "moid": 41.5878, "extent": "", "dv": 12.461013, "e": 0.02987949299397506, "GM": "", "tp_cal": 18850728.2546269, "pdes": 88611.0, "class": "TNO", "UB": "", "a": 43.89419724334868, "t_jup": 5.919, "om": 304.8356745822136, "ma": 159.4596053924083, "name": "Teharonhiawako", "i": 2.586880408680475, "tp": 2409750.7546269423, "prefix": "", "BV": "", "spec": "?", "q": 42.58266088433988, "w": 233.5655352718072, "n": 0.003389170422242519, "sigma_ma": 0.47385, "first_obs": "2000-08-01", "n_del_obs_used": "", "spkid": 2088611.0, "n_dop_obs_used": ""},
{"sigma_tp": 5.4679, "diameter": "", "sigma_q": 0.011738, "epoch_mjd": 56800.0, "ad": 988.3987898600774, "producer": "Otto Matic", "rms": 0.64543, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "90377 Sedna (2003 VB12)", "M2": "", "sigma_per": 22022.0, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -4.880683659572715e+21, "albedo": "", "moid_ld": 29250.990125, "pha": "N", "neo": "N", "sigma_ad": 3.2353, "PC": "", "profit": -0.0, "est_diameter": 1719.8055709247894, "sigma_w": 0.017603, "sigma_i": 7.2568e-05, "per": 4485305.536487179, "id": "a0090377", "A1": "", "data_arc": 8057.0, "A3": "", "score": 0.0, "per_y": 12280.0972935994, "sigma_n": 3.9407e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 20", "sigma_a": 1.7422, "sigma_om": 0.0034955, "A2": "", "sigma_e": 0.00046932, "condition_code": 2.0, "rot_per": 10.273, "prov_des": "2003 VB12", "G": "", "last_obs": "2012-10-16", "H": 1.5, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 88.0, "moid": 75.1625, "extent": "", "dv": 10.038595, "e": 0.8569625049608591, "GM": "", "tp_cal": 20760116.729927, "pdes": 90377.0, "class": "TNO", "UB": "", "a": 532.2664228381449, "t_jup": 10.21, "om": 144.5297633472564, "ma": 358.1925996550794, "name": "Sedna", "i": 11.92861314743835, "tp": 2479319.2299270025, "prefix": "", "BV": "", "spec": "?", "q": 76.13405581621241, "w": 311.1880134397745, "n": 8.026209074754502e-05, "sigma_ma": 0.0089727, "first_obs": "1990-09-25", "n_del_obs_used": "", "spkid": 2090377.0, "n_dop_obs_used": ""},
{"sigma_tp": 0.92162, "diameter": "", "sigma_q": 0.00039979, "epoch_mjd": 56800.0, "ad": 45.31337969417259, "producer": "Otto Matic", "rms": 0.60847, "H_sigma": "", "closeness": 2601.0370248999575, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "90568 (2004 GV9)", "M2": "", "sigma_per": 9.5532, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.5434076903015652e+20, "albedo": "", "moid_ld": 14692.140425, "pha": "N", "neo": "N", "sigma_ad": 0.0029028, "PC": "", "profit": 0.0, "est_diameter": 543.8502736768587, "sigma_w": 0.0038458, "sigma_i": 0.00011626, "per": 99418.43441489131, "id": "a0090568", "A1": "", "data_arc": 20565.0, "A3": "", "score": 0.0, "per_y": 272.192838918251, "sigma_n": 3.4795e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 6", "sigma_a": 0.0026905, "sigma_om": 0.00029504, "A2": "", "sigma_e": 4.9622e-05, "condition_code": 2.0, "rot_per": 5.86, "prov_des": "2004 GV9", "G": "", "last_obs": "2011-04-11", "H": 4.0, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 62.0, "moid": 37.7525, "extent": "", "dv": 13.717826, "e": 0.07889900661276437, "GM": "", "tp_cal": 19880605.9207228, "pdes": 90568.0, "class": "TNO", "UB": "", "a": 41.99964910194448, "t_jup": 5.375, "om": 250.5615868657415, "ma": 34.33516691211045, "name": "", "i": 22.00965311898384, "tp": 2447318.4207228445, "prefix": "", "BV": "", "spec": "?", "q": 38.68591850971638, "w": 291.3024700862027, "n": 0.003621058831983354, "sigma_ma": 0.0051014, "first_obs": "1954-12-21", "n_del_obs_used": "", "spkid": 2090568.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.835, "diameter": "", "sigma_q": 0.0020536, "epoch_mjd": 56800.0, "ad": 171.1322868120491, "producer": "Otto Matic", "rms": 0.16262, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "91554 (1999 RZ215)", "M2": "", "sigma_per": 604.6, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -7.054734269976178e+17, "albedo": "", "moid_ld": 11665.059414, "pha": "N", "neo": "N", "sigma_ad": 0.1859, "PC": "", "profit": -0.0, "est_diameter": 90.25667938004489, "sigma_w": 0.01376, "sigma_i": 0.0005313, "per": 371035.6023903228, "id": "a0091554", "A1": "", "data_arc": 2468.0, "A3": "", "score": 0.0, "per_y": 1015.84011605838, "sigma_n": 1.581e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.10977, "sigma_om": 0.00033149, "A2": "", "sigma_e": 0.00031419, "condition_code": 2.0, "rot_per": "", "prov_des": "1999 RZ215", "G": "", "last_obs": "2006-06-11", "H": 7.9, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 23.0, "moid": 29.9742, "extent": "", "dv": 12.106672, "e": 0.6935077264328587, "GM": "", "tp_cal": 19981011.1468568, "pdes": 91554.0, "class": "TNO", "UB": "", "a": 101.0519669564872, "t_jup": 5.781, "om": 341.6716185685217, "ma": 5.53323486567898, "name": "", "i": 25.54037100970416, "tp": 2451097.6468567937, "prefix": "", "BV": "", "spec": "?", "q": 30.97164710092541, "w": 335.6588755157423, "n": 0.0009702572952050203, "sigma_ma": 0.0097288, "first_obs": "1999-09-08", "n_del_obs_used": "", "spkid": 2091554.0, "n_dop_obs_used": ""},
{"sigma_tp": 3.1126, "diameter": "", "sigma_q": 0.0040263, "epoch_mjd": 56800.0, "ad": 72.96325527875172, "producer": "Otto Matic", "rms": 0.33257, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "95625 (2002 GX32)", "M2": "", "sigma_per": 194.28, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.4076045431002944e+18, "albedo": "", "moid_ld": 12478.619299, "pha": "N", "neo": "N", "sigma_ad": 0.067023, "PC": "", "profit": -0.0, "est_diameter": 113.62642725569708, "sigma_w": 0.01883, "sigma_i": 0.00028648, "per": 140999.2144393588, "id": "a0095625", "A1": "", "data_arc": 4365.0, "A3": "", "score": 0.0, "per_y": 386.034810237806, "sigma_n": 3.518e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.048701, "sigma_om": 0.00037773, "A2": "", "sigma_e": 0.00049726, "condition_code": 3.0, "rot_per": "", "prov_des": "2002 GX32", "G": "", "last_obs": "2006-04-25", "H": 7.4, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 25.0, "moid": 32.0647, "extent": "", "dv": 11.871876, "e": 0.3762331810277538, "GM": "", "tp_cal": 19961106.6241248, "pdes": 95625.0, "class": "TNO", "UB": "", "a": 53.01663721278953, "t_jup": 5.839, "om": 28.15760824345855, "ma": 16.35679549178568, "name": "", "i": 13.93732146642978, "tp": 2450394.1241247584, "prefix": "", "BV": "", "spec": "?", "q": 33.07001914682734, "w": 185.5138634711198, "n": 0.002553205714169631, "sigma_ma": 0.028922, "first_obs": "1994-05-13", "n_del_obs_used": "", "spkid": 2095625.0, "n_dop_obs_used": ""},
{"sigma_tp": 49.193, "diameter": "", "sigma_q": 0.024746, "epoch_mjd": 56800.0, "ad": 48.64872039012952, "producer": "Otto Matic", "rms": 0.29306, "H_sigma": "", "closeness": 2601.2450023452943, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "118378 (1999 HT11)", "M2": "", "sigma_per": 86.452, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.4076045431002944e+18, "albedo": "", "moid_ld": 14717.981313, "pha": "N", "neo": "N", "sigma_ad": 0.026534, "PC": "", "profit": 0.0, "est_diameter": 113.62642725569708, "sigma_w": 0.24368, "sigma_i": 0.00053828, "per": 105669.3923000105, "id": "a0118378", "A1": "", "data_arc": 2215.0, "A3": "", "score": 0.0, "per_y": 289.307028884355, "sigma_n": 2.7873e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.023858, "sigma_om": 0.010125, "A2": "", "sigma_e": 0.00047955, "condition_code": 4.0, "rot_per": "", "prov_des": "1999 HT11", "G": "", "last_obs": "2005-05-10", "H": 7.4, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 25.0, "moid": 37.8189, "extent": "", "dv": 12.2642, "e": 0.1121692916737141, "GM": "", "tp_cal": 20460414.6277019, "pdes": 118378.0, "class": "TNO", "UB": "", "a": 43.74218992948241, "t_jup": 5.859, "om": 87.86439860059073, "ma": 320.311440414259, "name": "", "i": 5.058201089806809, "tp": 2468450.127701911, "prefix": "", "BV": "", "spec": "?", "q": 38.8356594688353, "w": 187.9784878745263, "n": 0.003406852184574967, "sigma_ma": 0.19576, "first_obs": "1999-04-17", "n_del_obs_used": "", "spkid": 2118378.0, "n_dop_obs_used": ""},
{"sigma_tp": 18.841, "diameter": "", "sigma_q": 0.02838, "epoch_mjd": 56800.0, "ad": 56.01724941359647, "producer": "Otto Matic", "rms": 0.27886, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "118379 (1999 HC12)", "M2": "", "sigma_per": 140.71, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.0677772409050847e+18, "albedo": "", "moid_ld": 13098.333607, "pha": "N", "neo": "N", "sigma_ad": 0.047164, "PC": "", "profit": -0.0, "est_diameter": 103.62853329448156, "sigma_w": 0.13729, "sigma_i": 0.0012573, "per": 111414.4814088722, "id": "a0118379", "A1": "", "data_arc": 2188.0, "A3": "", "score": 0.0, "per_y": 305.036225623196, "sigma_n": 4.0808e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.038152, "sigma_om": 0.001343, "A2": "", "sigma_e": 0.00082045, "condition_code": 4.0, "rot_per": "", "prov_des": "1999 HC12", "G": "", "last_obs": "2005-04-14", "H": 7.6, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 15.0, "moid": 33.6571, "extent": "", "dv": 12.484163, "e": 0.2362120404633042, "GM": "", "tp_cal": 19620331.8168793, "pdes": 118379.0, "class": "TNO", "UB": "", "a": 45.31362547852428, "t_jup": 5.645, "om": 57.02421201485879, "ma": 61.53837308000035, "name": "", "i": 15.35649049357674, "tp": 2437755.316879295, "prefix": "", "BV": "", "spec": "?", "q": 34.61000154345209, "w": 95.11798333538844, "n": 0.003231177809631957, "sigma_ma": 0.13316, "first_obs": "1999-04-18", "n_del_obs_used": "", "spkid": 2118379.0, "n_dop_obs_used": ""},
{"sigma_tp": 13.133, "diameter": "", "sigma_q": 0.015146, "epoch_mjd": 56800.0, "ad": 53.47565049818262, "producer": "Otto Matic", "rms": 0.18537, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "118698 (2000 OY51)", "M2": "", "sigma_per": 90.075, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -4.661016709607916e+17, "albedo": "", "moid_ld": 12631.212856, "pha": "N", "neo": "N", "sigma_ad": 0.030688, "PC": "", "profit": -0.0, "est_diameter": 78.61028149035887, "sigma_w": 0.089721, "sigma_i": 0.00086464, "per": 104639.5834598503, "id": "a0118698", "A1": "", "data_arc": 2146.0, "A3": "", "score": 0.0, "per_y": 286.487565940726, "sigma_n": 2.9615e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.024939, "sigma_om": 0.00065381, "A2": "", "sigma_e": 0.00042664, "condition_code": 3.0, "rot_per": "", "prov_des": "2000 OY51", "G": "", "last_obs": "2006-06-13", "H": 8.2, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 36.0, "moid": 32.4568, "extent": "", "dv": 12.213606, "e": 0.2305266561313728, "GM": "", "tp_cal": 20421122.1241676, "pdes": 118698.0, "class": "TNO", "UB": "", "a": 43.45753115686547, "t_jup": 5.636, "om": 285.0859466255434, "ma": 324.1852100666136, "name": "", "i": 11.23373577159336, "tp": 2467210.6241675876, "prefix": "", "BV": "", "spec": "?", "q": 33.43941181554833, "w": 82.93995000420341, "n": 0.00344038066759058, "sigma_ma": 0.07498, "first_obs": "2000-07-28", "n_del_obs_used": "", "spkid": 2118698.0, "n_dop_obs_used": ""},
{"sigma_tp": 5.4199, "diameter": "", "sigma_q": 0.0060851, "epoch_mjd": 56800.0, "ad": 156.3545539227932, "producer": "Otto Matic", "rms": 0.22007, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "118702 (2000 OM67)", "M2": "", "sigma_per": 714.44, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -3.2246357156774267e+18, "albedo": "", "moid_ld": 14871.625629, "pha": "N", "neo": "N", "sigma_ad": 0.21084, "PC": "", "profit": -0.0, "est_diameter": 149.7888034079121, "sigma_w": 0.029905, "sigma_i": 0.00082419, "per": 353214.5919493774, "id": "a0118702", "A1": "", "data_arc": 2916.0, "A3": "", "score": 0.0, "per_y": 967.048848595147, "sigma_n": 2.0615e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 7", "sigma_a": 0.13186, "sigma_om": 0.00055783, "A2": "", "sigma_e": 0.00050147, "condition_code": 3.0, "rot_per": "", "prov_des": "2000 OM67", "G": "", "last_obs": "2008-07-25", "H": 6.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 21.0, "moid": 38.2137, "extent": "", "dv": 12.028691, "e": 0.5988843866313919, "GM": "", "tp_cal": 19890102.9747338, "pdes": 118702.0, "class": "TNO", "UB": "", "a": 97.78978094357947, "t_jup": 6.426, "om": 327.1628221136521, "ma": 9.449125749309442, "name": "", "i": 23.39432786003944, "tp": 2447529.4747338314, "prefix": "", "BV": "", "spec": "?", "q": 39.22500796436571, "w": 348.7468307303431, "n": 0.001019210440919709, "sigma_ma": 0.021515, "first_obs": "2000-07-31", "n_del_obs_used": "", "spkid": 2118702.0, "n_dop_obs_used": ""},
{"sigma_tp": 70.339, "diameter": "", "sigma_q": 0.041391, "epoch_mjd": 56800.0, "ad": 46.9039132162827, "producer": "Otto Matic", "rms": 0.16608, "H_sigma": "", "closeness": 2601.1959784303504, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "119066 (2001 KJ76)", "M2": "", "sigma_per": 83.803, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -3.2246357156774267e+18, "albedo": "", "moid_ld": 15259.316783, "pha": "N", "neo": "N", "sigma_ad": 0.024954, "PC": "", "profit": 0.0, "est_diameter": 149.7888034079121, "sigma_w": 0.33507, "sigma_i": 0.0015075, "per": 105010.697100784, "id": "a0119066", "A1": "", "data_arc": 1476.0, "A3": "", "score": 0.0, "per_y": 287.503619714672, "sigma_n": 2.7359e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 7", "sigma_a": 0.023175, "sigma_om": 0.0037818, "A2": "", "sigma_e": 0.00104, "condition_code": 3.0, "rot_per": "", "prov_des": "2001 KJ76", "G": "", "last_obs": "2005-06-07", "H": 6.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 27.0, "moid": 39.2099, "extent": "", "dv": 12.435945, "e": 0.07676021671189517, "GM": "", "tp_cal": 20570618.6771642, "pdes": 119066.0, "class": "TNO", "UB": "", "a": 43.56022119716985, "t_jup": 5.849, "om": 47.67533788917935, "ma": 306.0648873354168, "name": "", "i": 6.736378022264893, "tp": 2472533.1771642147, "prefix": "", "BV": "", "spec": "?", "q": 40.216529178057, "w": 272.6632781369418, "n": 0.003428222171065963, "sigma_ma": 0.27593, "first_obs": "2001-05-23", "n_del_obs_used": "", "spkid": 2119066.0, "n_dop_obs_used": ""},
{"sigma_tp": 32.227, "diameter": "", "sigma_q": 0.026936, "epoch_mjd": 56800.0, "ad": 51.55946272590206, "producer": "Otto Matic", "rms": 0.16333, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "119067 (2001 KP76)", "M2": "", "sigma_per": 95.391, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -4.250897761581432e+18, "albedo": "", "moid_ld": 13341.292438, "pha": "N", "neo": "N", "sigma_ad": 0.031374, "PC": "", "profit": -0.0, "est_diameter": 164.24015696315365, "sigma_w": 0.1314, "sigma_i": 0.0014251, "per": 104509.5938120522, "id": "a0119067", "A1": "", "data_arc": 2176.0, "A3": "", "score": 0.0, "per_y": 286.131673681183, "sigma_n": 3.1441e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.026422, "sigma_om": 0.0048813, "A2": "", "sigma_e": 0.0006706, "condition_code": 3.0, "rot_per": "", "prov_des": "2001 KP76", "G": "", "last_obs": "2007-05-08", "H": 6.6, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 24.0, "moid": 34.2814, "extent": "", "dv": 12.122102, "e": 0.1874169057257212, "GM": "", "tp_cal": 20680312.8083087, "pdes": 119067.0, "class": "TNO", "UB": "", "a": 43.42153331090577, "t_jup": 5.75, "om": 42.81069808005448, "ma": 292.302760607399, "name": "", "i": 7.206324169745333, "tp": 2476453.308308661, "prefix": "", "BV": "", "spec": "?", "q": 35.28360389590949, "w": 304.6996952587665, "n": 0.003444659833310768, "sigma_ma": 0.16774, "first_obs": "2001-05-23", "n_del_obs_used": "", "spkid": 2119067.0, "n_dop_obs_used": ""},
{"sigma_tp": 22.808, "diameter": "", "sigma_q": 0.0033927, "epoch_mjd": 56800.0, "ad": 74.47551104184608, "producer": "Otto Matic", "rms": 0.22674, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "119068 (2001 KC77)", "M2": "", "sigma_per": 160.95, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -3.7023771749632307e+18, "albedo": "", "moid_ld": 13377.134995, "pha": "N", "neo": "N", "sigma_ad": 0.05374, "PC": "", "profit": -0.0, "est_diameter": 156.84813222680864, "sigma_w": 0.12467, "sigma_i": 0.0013587, "per": 148701.8586625209, "id": "a0119068", "A1": "", "data_arc": 1449.0, "A3": "", "score": 0.0, "per_y": 407.123500787189, "sigma_n": 2.6204e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 6", "sigma_a": 0.039637, "sigma_om": 0.00055325, "A2": "", "sigma_e": 0.00042141, "condition_code": 3.0, "rot_per": "", "prov_des": "2001 KC77", "G": "", "last_obs": "2005-05-11", "H": 6.7, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 21.0, "moid": 34.3735, "extent": "", "dv": 11.823478, "e": 0.3558183639721655, "GM": "", "tp_cal": 20000818.3565735, "pdes": 119068.0, "class": "TNO", "UB": "", "a": 54.93030115306436, "t_jup": 6.014, "om": 57.84706594647442, "ma": 12.16683940471627, "name": "", "i": 12.91288458751413, "tp": 2451774.8565735286, "prefix": "", "BV": "", "spec": "?", "q": 35.38509126428264, "w": 179.6238634859158, "n": 0.002420951582165631, "sigma_ma": 0.053628, "first_obs": "2001-05-23", "n_del_obs_used": "", "spkid": 2119068.0, "n_dop_obs_used": ""},
{"sigma_tp": 49.711, "diameter": "", "sigma_q": 0.0018851, "epoch_mjd": 56800.0, "ad": 51.13106509617547, "producer": "Otto Matic", "rms": 0.27321, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "119070 (2001 KP77)", "M2": "", "sigma_per": 55.951, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.446136341551079e+18, "albedo": "", "moid_ld": 13613.205517, "pha": "N", "neo": "N", "sigma_ad": 0.018161, "PC": "", "profit": -0.0, "est_diameter": 136.60901232216727, "sigma_w": 0.24639, "sigma_i": 0.00084521, "per": 105014.4631188979, "id": "a0119070", "A1": "", "data_arc": 1449.0, "A3": "", "score": 0.0, "per_y": 287.51393051033, "sigma_n": 1.8265e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 6", "sigma_a": 0.015473, "sigma_om": 0.01234, "A2": "", "sigma_e": 0.00026465, "condition_code": 4.0, "rot_per": "", "prov_des": "2001 KP77", "G": "", "last_obs": "2005-05-11", "H": 7.0, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 29.0, "moid": 34.9801, "extent": "", "dv": 12.038041, "e": 0.1737737147697277, "GM": "", "tp_cal": 20010525.7010359, "pdes": 119070.0, "class": "TNO", "UB": "", "a": 43.56126266314153, "t_jup": 5.809, "om": 21.96022930917924, "ma": 16.2673557178856, "name": "", "i": 3.313927605557125, "tp": 2452055.201035895, "prefix": "", "BV": "", "spec": "?", "q": 35.99146023010758, "w": 217.4593695584236, "n": 0.003428099228507278, "sigma_ma": 0.16567, "first_obs": "2001-05-23", "n_del_obs_used": "", "spkid": 2119070.0, "n_dop_obs_used": ""},
{"sigma_tp": 4.5374, "diameter": "", "sigma_q": 0.0030547, "epoch_mjd": 56800.0, "ad": 73.43159387366941, "producer": "Otto Matic", "rms": 0.37199, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "119878 (2002 CY224)", "M2": "", "sigma_per": 72.698, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -8.481656108469005e+18, "albedo": "", "moid_ld": 13347.635909, "pha": "N", "neo": "N", "sigma_ad": 0.024316, "PC": "", "profit": -0.0, "est_diameter": 206.76610723797694, "sigma_w": 0.0265, "sigma_i": 0.00042585, "per": 146361.0892576665, "id": "a0119878", "A1": "", "data_arc": 2627.0, "A3": "", "score": 0.0, "per_y": 400.714823429614, "sigma_n": 1.2217e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.017998, "sigma_om": 0.00011586, "A2": "", "sigma_e": 0.00018814, "condition_code": 3.0, "rot_per": "", "prov_des": "2002 CY224", "G": "", "last_obs": "2009-04-18", "H": 6.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 61.0, "moid": 34.2977, "extent": "", "dv": 12.073058, "e": 0.3510294548543026, "GM": "", "tp_cal": 19910224.0826339, "pdes": 119878.0, "class": "TNO", "UB": "", "a": 54.35232637588083, "t_jup": 5.922, "om": 316.9990668630284, "ma": 20.87993651380529, "name": "", "i": 15.70087593596765, "tp": 2448311.5826339126, "prefix": "", "BV": "", "spec": "?", "q": 35.27305887809225, "w": 151.8731353366857, "n": 0.002459670133816956, "sigma_ma": 0.017584, "first_obs": "2002-02-07", "n_del_obs_used": "", "spkid": 2119878.0, "n_dop_obs_used": ""},
{"sigma_tp": 20.477, "diameter": "", "sigma_q": 0.019412, "epoch_mjd": 56800.0, "ad": 51.00565773344275, "producer": "Otto Matic", "rms": 0.47836, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "119956 (2002 PA149)", "M2": "", "sigma_per": 69.057, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -8.481656108469005e+18, "albedo": "", "moid_ld": 13612.466094, "pha": "N", "neo": "N", "sigma_ad": 0.022409, "PC": "", "profit": -0.0, "est_diameter": 206.76610723797694, "sigma_w": 0.098694, "sigma_i": 0.00047305, "per": 104790.3381039741, "id": "a0119956", "A1": "", "data_arc": 2221.0, "A3": "", "score": 0.0, "per_y": 286.900309661805, "sigma_n": 2.264e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.019111, "sigma_om": 0.013444, "A2": "", "sigma_e": 0.00048139, "condition_code": 4.0, "rot_per": "", "prov_des": "2002 PA149", "G": "", "last_obs": "2008-09-08", "H": 6.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 22.0, "moid": 34.9782, "extent": "", "dv": 12.059024, "e": 0.1725637824990225, "GM": "", "tp_cal": 19471012.3404269, "pdes": 119956.0, "class": "TNO", "UB": "", "a": 43.4992607606702, "t_jup": 5.801, "om": 105.6528558858929, "ma": 83.58287228368904, "name": "", "i": 4.050496546673481, "tp": 2432470.840426919, "prefix": "", "BV": "", "spec": "?", "q": 35.99286378789764, "w": 152.4346312670976, "n": 0.003435431228810467, "sigma_ma": 0.12442, "first_obs": "2002-08-10", "n_del_obs_used": "", "spkid": 2119956.0, "n_dop_obs_used": ""},
{"sigma_tp": 4.0173, "diameter": "", "sigma_q": 0.0055507, "epoch_mjd": 56800.0, "ad": 60.97389779601757, "producer": "Otto Matic", "rms": 0.58228, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "119979 (2002 WC19)", "M2": "", "sigma_per": 33.567, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -4.4512364009975824e+19, "albedo": "", "moid_ld": 13390.288941, "pha": "N", "neo": "N", "sigma_ad": 0.01117, "PC": "", "profit": -0.0, "est_diameter": 359.31831251543844, "sigma_w": 0.028696, "sigma_i": 0.00018176, "per": 122159.3863147229, "id": "a0119979", "A1": "", "data_arc": 3978.0, "A3": "", "score": 0.0, "per_y": 334.454171977339, "sigma_n": 8.0977e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 2", "sigma_a": 0.0088263, "sigma_om": 0.00099723, "A2": "", "sigma_e": 6.1028e-05, "condition_code": 3.0, "rot_per": "", "prov_des": "2002 WC19", "G": "", "last_obs": "2012-11-06", "H": 4.9, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 102.0, "moid": 34.4073, "extent": "", "dv": 11.914008, "e": 0.2654889232904796, "GM": "", "tp_cal": 20560419.1657689, "pdes": 119979.0, "class": "TNO", "UB": "", "a": 48.18208731331713, "t_jup": 5.901, "om": 109.7773095583318, "ma": 314.8902475441878, "name": "", "i": 9.167425238275174, "tp": 2472107.6657689195, "prefix": "", "BV": "", "spec": "?", "q": 35.39027683061668, "w": 43.54515038017276, "n": 0.002946969617811612, "sigma_ma": 0.024229, "first_obs": "2001-12-16", "n_del_obs_used": "", "spkid": 2119979.0, "n_dop_obs_used": ""},
{"sigma_tp": 2.1489, "diameter": "", "sigma_q": 0.0015243, "epoch_mjd": 56800.0, "ad": 62.18877135614874, "producer": "Otto Matic", "rms": 0.43965, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "120132 (2003 FY128)", "M2": "", "sigma_per": 37.881, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -4.4512364009975824e+19, "albedo": "", "moid_ld": 14015.762965, "pha": "N", "neo": "N", "sigma_ad": 0.01231, "PC": "", "profit": -0.0, "est_diameter": 359.31831251543844, "sigma_w": 0.010727, "sigma_i": 0.00025207, "per": 127577.5525161462, "id": "a0120132", "A1": "", "data_arc": 8159.0, "A3": "", "score": 0.0, "per_y": 349.288302576718, "sigma_n": 8.3787e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 8", "sigma_a": 0.0098176, "sigma_om": 0.00053051, "A2": "", "sigma_e": 0.0001184, "condition_code": 3.0, "rot_per": 8.54, "prov_des": "2003 FY128", "G": "", "last_obs": "2012-04-10", "H": 4.9, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 68.0, "moid": 36.0145, "extent": "", "dv": 12.084595, "e": 0.2538957116389894, "GM": "", "tp_cal": 19880105.2352425, "pdes": 120132.0, "class": "TNO", "UB": "", "a": 49.59644632236655, "t_jup": 5.952, "om": 341.6930736656513, "ma": 27.18750473185545, "name": "", "i": 11.76022339789129, "tp": 2447165.735242469, "prefix": "", "BV": "", "spec": "?", "q": 37.00412128858435, "w": 174.4883689623336, "n": 0.002821813029799568, "sigma_ma": 0.013686, "first_obs": "1989-12-08", "n_del_obs_used": "", "spkid": 2120132.0, "n_dop_obs_used": ""},
{"sigma_tp": 10.258, "diameter": "", "sigma_q": 0.0031446, "epoch_mjd": 56800.0, "ad": 47.55223155252093, "producer": "Otto Matic", "rms": 0.43344, "H_sigma": "", "closeness": 2601.0172937341185, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "120178 (2003 OP32)", "M2": "", "sigma_per": 20.972, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.6821351633042175e+20, "albedo": "", "moid_ld": 14651.627828, "pha": "N", "neo": "N", "sigma_ad": 0.006442, "PC": "", "profit": 0.0, "est_diameter": 653.8518417986337, "sigma_w": 0.046616, "sigma_i": 0.00015302, "per": 103203.4690933657, "id": "a0120178", "A1": "", "data_arc": 8457.0, "A3": "", "score": 0.0, "per_y": 282.555699092035, "sigma_n": 7.0884e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 11", "sigma_a": 0.0058333, "sigma_om": 0.00030872, "A2": "", "sigma_e": 5.8147e-05, "condition_code": 3.0, "rot_per": 9.71, "prov_des": "2003 OP32", "G": "", "last_obs": "2013-09-15", "H": 3.6, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 101.0, "moid": 37.6484, "extent": "", "dv": 14.303406, "e": 0.1043506465956923, "GM": "", "tp_cal": 19591022.0262432, "pdes": 120178.0, "class": "TNO", "UB": "", "a": 43.05899733848756, "t_jup": 5.211, "om": 182.9711028724838, "ma": 69.54524509208494, "name": "", "i": 27.18685084189755, "tp": 2436863.5262431903, "prefix": "", "BV": "", "spec": "?", "q": 38.56576312445419, "w": 67.46608898272638, "n": 0.00348825483447961, "sigma_ma": 0.049843, "first_obs": "1990-07-21", "n_del_obs_used": "", "spkid": 2120178.0, "n_dop_obs_used": ""},
{"sigma_tp": 10.806, "diameter": "", "sigma_q": 0.0066123, "epoch_mjd": 56800.0, "ad": 46.422129881126, "producer": "Otto Matic", "rms": 0.73356, "H_sigma": "", "closeness": 2601.0301206269164, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "120347 Salacia (2004 SB60)", "M2": "", "sigma_per": 22.201, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.1707944629903535e+20, "albedo": "", "moid_ld": 14221.906314, "pha": "N", "neo": "N", "sigma_ad": 0.0069201, "PC": "", "profit": 0.0, "est_diameter": 495.997344579973, "sigma_w": 0.060193, "sigma_i": 9.0445e-05, "per": 99285.08320601792, "id": "a0120347", "A1": "", "data_arc": 10330.0, "A3": "", "score": 0.0, "per_y": 271.827743206072, "sigma_n": 8.1077e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 10", "sigma_a": 0.0062553, "sigma_om": 0.00048559, "A2": "", "sigma_e": 2.8036e-05, "condition_code": 3.0, "rot_per": 6.09, "prov_des": "2004 SB60", "G": "", "last_obs": "2010-11-05", "H": 4.2, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 100.0, "moid": 36.5442, "extent": "", "dv": 13.876584, "e": 0.1062875140885041, "GM": "", "tp_cal": 19240520.2576634, "pdes": 120347.0, "class": "TNO", "UB": "", "a": 41.96208425923912, "t_jup": 5.285, "om": 280.2293374564792, "ma": 119.2012622543675, "name": "Salacia", "i": 23.94400982452931, "tp": 2423925.7576633687, "prefix": "", "BV": "", "spec": "?", "q": 37.50203863735224, "w": 308.4613916525031, "n": 0.003625922327657167, "sigma_ma": 0.06577, "first_obs": "1982-07-25", "n_del_obs_used": "", "spkid": 2120347.0, "n_dop_obs_used": ""},
{"sigma_tp": 78.845, "diameter": "", "sigma_q": 0.0092176, "epoch_mjd": 56800.0, "ad": 46.83908321241415, "producer": "Otto Matic", "rms": 0.33316, "H_sigma": "", "closeness": 2601.2122776512033, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "123509 (2000 WK183)", "M2": "", "sigma_per": 80.198, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -4.250897761581432e+18, "albedo": "", "moid_ld": 16117.319882, "pha": "N", "neo": "N", "sigma_ad": 0.023004, "PC": "", "profit": 0.0, "est_diameter": 164.24015696315365, "sigma_w": 0.29253, "sigma_i": 0.00032285, "per": 108860.667577334, "id": "a0123509", "A1": "", "data_arc": 2826.0, "A3": "", "score": 0.0, "per_y": 298.04426441433, "sigma_n": 2.4363e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.021914, "sigma_om": 0.020777, "A2": "", "sigma_e": 0.0003666, "condition_code": 3.0, "rot_per": "", "prov_des": "2000 WK183", "G": "", "last_obs": "2008-08-22", "H": 6.6, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 50.0, "moid": 41.4146, "extent": "", "dv": 12.374489, "e": 0.04976802817044095, "GM": "", "tp_cal": 20391102.7082917, "pdes": 123509.0, "class": "TNO", "UB": "", "a": 44.61850804700763, "t_jup": 5.963, "om": 185.6580088020559, "ma": 329.2625898822547, "name": "", "i": 1.96896933183441, "tp": 2466095.2082917113, "prefix": "", "BV": "", "spec": "?", "q": 42.39793288160111, "w": 290.0993744837526, "n": 0.003306979536426763, "sigma_ma": 0.27848, "first_obs": "2000-11-26", "n_del_obs_used": "", "spkid": 2123509.0, "n_dop_obs_used": ""},
{"sigma_tp": 4.8069, "diameter": "", "sigma_q": 0.0011578, "epoch_mjd": 56800.0, "ad": 48.87111644485481, "producer": "Otto Matic", "rms": 0.35693, "H_sigma": "", "closeness": 2601.187886778549, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "126154 (2001 YH140)", "M2": "", "sigma_per": 25.52, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.230902858036994e+19, "albedo": "", "moid_ld": 13784.167898, "pha": "N", "neo": "N", "sigma_ad": 0.0081764, "PC": "", "profit": 0.0, "est_diameter": 285.4166808844959, "sigma_w": 0.023177, "sigma_i": 0.00031483, "per": 101690.0022329507, "id": "a0126154", "A1": "", "data_arc": 4069.0, "A3": "", "score": 0.0, "per_y": 278.412052656949, "sigma_n": 8.8843e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 10", "sigma_a": 0.0071334, "sigma_om": 0.00012489, "A2": "", "sigma_e": 0.00011774, "condition_code": 3.0, "rot_per": 13.25, "prov_des": "2001 YH140", "G": "", "last_obs": "2013-02-07", "H": 5.4, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 121.0, "moid": 35.4194, "extent": "", "dv": 12.468381, "e": 0.1462139958929989, "GM": "", "tp_cal": 20000908.8174688, "pdes": 126154.0, "class": "TNO", "UB": "", "a": 42.63699153907122, "t_jup": 5.68, "om": 108.8174602189293, "ma": 17.71566202844156, "name": "", "i": 11.05981585931036, "tp": 2451796.3174688043, "prefix": "", "BV": "", "spec": "?", "q": 36.40286663328763, "w": 356.0321950994755, "n": 0.003540171030533704, "sigma_ma": 0.017111, "first_obs": "2001-12-18", "n_del_obs_used": "", "spkid": 2126154.0, "n_dop_obs_used": ""},
{"sigma_tp": 10.762, "diameter": "", "sigma_q": 0.0051468, "epoch_mjd": 56800.0, "ad": 106.0008125346724, "producer": "Otto Matic", "rms": 0.40513, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "126619 (2002 CX154)", "M2": "", "sigma_per": 407.11, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.1304956895593636e+18, "albedo": "", "moid_ld": 14398.12249, "pha": "N", "neo": "N", "sigma_ad": 0.12895, "PC": "", "profit": -0.0, "est_diameter": 130.4605939513808, "sigma_w": 0.0571, "sigma_i": 0.00092544, "per": 223108.7282035105, "id": "a0126619", "A1": "", "data_arc": 2279.0, "A3": "", "score": 0.0, "per_y": 610.838407128023, "sigma_n": 2.9443e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.087577, "sigma_om": 0.00023184, "A2": "", "sigma_e": 0.00061148, "condition_code": 4.0, "rot_per": "", "prov_des": "2002 CX154", "G": "", "last_obs": "2008-05-04", "H": 7.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 26.0, "moid": 36.997, "extent": "", "dv": 11.631615, "e": 0.472415696333896, "GM": "", "tp_cal": 19940628.732394, "pdes": 126619.0, "class": "TNO", "UB": "", "a": 71.99109110192131, "t_jup": 6.377, "om": 346.9315041584006, "ma": 11.72780804782079, "name": "", "i": 15.95319421469139, "tp": 2449532.2323939884, "prefix": "", "BV": "", "spec": "?", "q": 37.98136966917022, "w": 161.3473739211509, "n": 0.001613563050171766, "sigma_ma": 0.021937, "first_obs": "2002-02-06", "n_del_obs_used": "", "spkid": 2126619.0, "n_dop_obs_used": ""},
{"sigma_tp": 12.157, "diameter": "", "sigma_q": 0.0045974, "epoch_mjd": 56800.0, "ad": 56.48455730032889, "producer": "Otto Matic", "rms": 0.36657, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "126719 (2002 CC249)", "M2": "", "sigma_per": 75.152, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -3.7023771749632307e+18, "albedo": "", "moid_ld": 14406.372894, "pha": "N", "neo": "N", "sigma_ad": 0.023854, "PC": "", "profit": -0.0, "est_diameter": 156.84813222680864, "sigma_w": 0.065427, "sigma_i": 0.00010851, "per": 118637.4074355588, "id": "a0126719", "A1": "", "data_arc": 4052.0, "A3": "", "score": 0.0, "per_y": 324.811519330756, "sigma_n": 1.9222e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 2", "sigma_a": 0.019955, "sigma_om": 0.032089, "A2": "", "sigma_e": 0.00024929, "condition_code": 3.0, "rot_per": "", "prov_des": "2002 CC249", "G": "", "last_obs": "2013-03-14", "H": 6.7, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 30.0, "moid": 37.0182, "extent": "", "dv": 11.879635, "e": 0.1954027452248205, "GM": "", "tp_cal": 20200327.4876047, "pdes": 126719.0, "class": "TNO", "UB": "", "a": 47.25148702055706, "t_jup": 6.02, "om": 248.1153404820635, "ma": 353.5199566957883, "name": "", "i": 0.8378656391155687, "tp": 2458935.9876046716, "prefix": "", "BV": "", "spec": "?", "q": 38.01841674078523, "w": 306.9718798931753, "n": 0.0030344560605435, "sigma_ma": 0.040359, "first_obs": "2002-02-08", "n_del_obs_used": "", "spkid": 2126719.0, "n_dop_obs_used": ""},
{"sigma_tp": 0.17749, "diameter": "", "sigma_q": 0.00052635, "epoch_mjd": 56800.0, "ad": 113.991635304405, "producer": "Otto Matic", "rms": 0.53915, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "127546 (2002 XU93)", "M2": "", "sigma_per": 135.0, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -6.144416685964643e+17, "albedo": "", "moid_ld": 7828.971807, "pha": "N", "neo": "N", "sigma_ad": 0.050653, "PC": "", "profit": -0.0, "est_diameter": 86.19445964685667, "sigma_w": 0.0023364, "sigma_i": 0.00023756, "per": 202533.3397023695, "id": "a0127546", "A1": "", "data_arc": 2957.0, "A3": "", "score": 0.0, "per_y": 554.506063524626, "sigma_n": 1.1848e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 6", "sigma_a": 0.029992, "sigma_om": 6.4692e-05, "A2": "", "sigma_e": 0.00013055, "condition_code": 3.0, "rot_per": "", "prov_des": "2002 XU93", "G": "", "last_obs": "2011-01-08", "H": 8.0, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 45.0, "moid": 20.1171, "extent": "", "dv": 23.351296, "e": 0.6889141948870271, "GM": "", "tp_cal": 20080926.5027826, "pdes": 127546.0, "class": "TNO", "UB": "", "a": 67.49403590158703, "t_jup": 1.172, "om": 90.2743730499857, "ma": 3.669613108374853, "name": "", "i": 77.8908136637722, "tp": 2454736.0027826256, "prefix": "", "BV": "", "spec": "?", "q": 20.9964364987691, "w": 28.09323676468153, "n": 0.001777485131727121, "sigma_ma": 0.0023081, "first_obs": "2002-12-04", "n_del_obs_used": "", "spkid": 2127546.0, "n_dop_obs_used": ""},
{"sigma_tp": 213.37, "diameter": "", "sigma_q": 0.010129, "epoch_mjd": 56800.0, "ad": 45.30564908524685, "producer": "Otto Matic", "rms": 0.26292, "H_sigma": "", "closeness": 2601.190445007487, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "129772 (1999 HR11)", "M2": "", "sigma_per": 126.29, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.8555841741645757e+18, "albedo": "", "moid_ld": 16019.79388, "pha": "N", "neo": "N", "sigma_ad": 0.036105, "PC": "", "profit": 0.0, "est_diameter": 124.58889999152157, "sigma_w": 0.7839, "sigma_i": 0.00037447, "per": 105648.1751684448, "id": "a0129772", "A1": "", "data_arc": 2568.0, "A3": "", "score": 0.0, "per_y": 289.248939543997, "sigma_n": 4.0733e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.034854, "sigma_om": 0.016557, "A2": "", "sigma_e": 0.00056928, "condition_code": 4.0, "rot_per": "", "prov_des": "1999 HR11", "G": "", "last_obs": "2006-04-28", "H": 7.2, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 17.0, "moid": 41.164, "extent": "", "dv": 12.457977, "e": 0.03588125612562792, "GM": "", "tp_cal": 20120708.7425771, "pdes": 129772.0, "class": "TNO", "UB": "", "a": 43.73633446626661, "t_jup": 5.904, "om": 83.27500374936305, "ma": 2.328224522940378, "name": "", "i": 3.304622695500917, "tp": 2456117.242577136, "prefix": "", "BV": "", "spec": "?", "q": 42.16701984728638, "w": 124.7628892253861, "n": 0.003407536376525371, "sigma_ma": 0.72597, "first_obs": "1999-04-17", "n_del_obs_used": "", "spkid": 2129772.0, "n_dop_obs_used": ""},
{"sigma_tp": 10.02, "diameter": "", "sigma_q": 0.0039778, "epoch_mjd": 56800.0, "ad": 60.63041791464247, "producer": "Otto Matic", "rms": 0.16618, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "130391 (2000 JG81)", "M2": "", "sigma_per": 129.12, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -6.144416685964643e+17, "albedo": "", "moid_ld": 12885.652202, "pha": "N", "neo": "N", "sigma_ad": 0.043823, "PC": "", "profit": -0.0, "est_diameter": 86.19445964685667, "sigma_w": 0.056708, "sigma_i": 0.00060924, "per": 119092.5599138913, "id": "a0130391", "A1": "", "data_arc": 2937.0, "A3": "", "score": 0.0, "per_y": 326.057658901824, "sigma_n": 3.2774e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.034241, "sigma_om": 0.0001807, "A2": "", "sigma_e": 0.00045185, "condition_code": 3.0, "rot_per": "", "prov_des": "2000 JG81", "G": "", "last_obs": "2007-05-02", "H": 8.0, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 22.0, "moid": 33.1106, "extent": "", "dv": 13.208918, "e": 0.2798716696921967, "GM": "", "tp_cal": 19960507.823595, "pdes": 130391.0, "class": "TNO", "UB": "", "a": 47.37226344671244, "t_jup": 5.424, "om": 45.97016745468072, "ma": 19.9181502817794, "name": "", "i": 23.46281238091737, "tp": 2450211.3235949813, "prefix": "", "BV": "", "spec": "?", "q": 34.1141089787824, "w": 169.1166601417463, "n": 0.003022858860875058, "sigma_ma": 0.036559, "first_obs": "1999-04-17", "n_del_obs_used": "", "spkid": 2130391.0, "n_dop_obs_used": ""},
{"sigma_tp": 6.255, "diameter": "", "sigma_q": 0.0051896, "epoch_mjd": 56800.0, "ad": 71.03721830510578, "producer": "Otto Matic", "rms": 0.10759, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "131696 (2001 XT254)", "M2": "", "sigma_per": 179.93, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.4076045431002944e+18, "albedo": "", "moid_ld": 13585.302028, "pha": "N", "neo": "N", "sigma_ad": 0.059675, "PC": "", "profit": -0.0, "est_diameter": 113.62642725569708, "sigma_w": 0.051386, "sigma_i": 0.00020028, "per": 142793.7795851455, "id": "a0131696", "A1": "", "data_arc": 4113.0, "A3": "", "score": 0.0, "per_y": 390.948061834758, "sigma_n": 3.1768e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 2", "sigma_a": 0.044914, "sigma_om": 0.039477, "A2": "", "sigma_e": 0.00047021, "condition_code": 3.0, "rot_per": "", "prov_des": "2001 XT254", "G": "", "last_obs": "2013-03-14", "H": 7.4, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 28.0, "moid": 34.9084, "extent": "", "dv": 11.421282, "e": 0.3286544266119253, "GM": "", "tp_cal": 20151105.8946061, "pdes": 131696.0, "class": "TNO", "UB": "", "a": 53.46553391332237, "t_jup": 6.152, "om": 359.6620776992843, "ma": 358.659030815168, "name": "", "i": 0.5160075127109974, "tp": 2457332.394606137, "prefix": "", "BV": "", "spec": "?", "q": 35.89384952153895, "w": 132.8491885976717, "n": 0.002521118224098398, "sigma_ma": 0.016888, "first_obs": "2001-12-09", "n_del_obs_used": "", "spkid": 2131696.0, "n_dop_obs_used": ""},
{"sigma_tp": 6.1601, "diameter": "", "sigma_q": 0.0026632, "epoch_mjd": 56800.0, "ad": 85.93902080453384, "producer": "Otto Matic", "rms": 0.22129, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "134210 (2005 PQ21)", "M2": "", "sigma_per": 137.76, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -3.2246357156774267e+18, "albedo": "", "moid_ld": 14250.938396, "pha": "N", "neo": "N", "sigma_ad": 0.044497, "PC": "", "profit": -0.0, "est_diameter": 149.7888034079121, "sigma_w": 0.0311, "sigma_i": 0.00062429, "per": 177380.923149789, "id": "a0134210", "A1": "", "data_arc": 2974.0, "A3": "", "score": 0.0, "per_y": 485.642500067869, "sigma_n": 1.5762e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.03199, "sigma_om": 0.0017454, "A2": "", "sigma_e": 0.00027362, "condition_code": 3.0, "rot_per": "", "prov_des": "2005 PQ21", "G": "", "last_obs": "2009-10-12", "H": 6.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 25.0, "moid": 36.6188, "extent": "", "dv": 11.295202, "e": 0.3909710089482208, "GM": "", "tp_cal": 20071004.468792, "pdes": 134210.0, "class": "TNO", "UB": "", "a": 61.78347374005762, "t_jup": 6.387, "om": 316.4066022242682, "ma": 4.916601060630107, "name": "", "i": 6.494349968039367, "tp": 2454377.9687919617, "prefix": "", "BV": "", "spec": "?", "q": 37.62792667558138, "w": 22.3002364260786, "n": 0.002029530535794982, "sigma_ma": 0.012221, "first_obs": "2001-08-21", "n_del_obs_used": "", "spkid": 2134210.0, "n_dop_obs_used": ""},
{"sigma_tp": 47.947, "diameter": "", "sigma_q": 0.006893, "epoch_mjd": 56800.0, "ad": 49.97920758754657, "producer": "Otto Matic", "rms": 0.20229, "H_sigma": "", "closeness": 2601.2070175589656, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "134568 (1999 RH215)", "M2": "", "sigma_per": 165.04, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -5.351563214993807e+17, "albedo": "", "moid_ld": 14064.99297, "pha": "N", "neo": "N", "sigma_ad": 0.052368, "PC": "", "profit": 0.0, "est_diameter": 82.31506991887196, "sigma_w": 0.225, "sigma_i": 0.00025681, "per": 105008.8115896135, "id": "a0134568", "A1": "", "data_arc": 2516.0, "A3": "", "score": 0.0, "per_y": 287.49845746643, "sigma_n": 5.3882e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.045642, "sigma_om": 0.0040437, "A2": "", "sigma_e": 0.00076865, "condition_code": 4.0, "rot_per": "", "prov_des": "1999 RH215", "G": "", "last_obs": "2006-07-28", "H": 8.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 23.0, "moid": 36.141, "extent": "", "dv": 12.393791, "e": 0.1473726369611401, "GM": "", "tp_cal": 19960705.1400949, "pdes": 134568.0, "class": "TNO", "UB": "", "a": 43.55969976756496, "t_jup": 5.752, "om": 276.8868009335826, "ma": 22.38964073812176, "name": "", "i": 10.20670550540053, "tp": 2450269.6400949205, "prefix": "", "BV": "", "spec": "?", "q": 37.14019194758335, "w": 58.23390723204027, "n": 0.003428283727340152, "sigma_ma": 0.15967, "first_obs": "1999-09-07", "n_del_obs_used": "", "spkid": 2134568.0, "n_dop_obs_used": ""},
{"sigma_tp": 161.98, "diameter": "", "sigma_q": 0.0097075, "epoch_mjd": 56800.0, "ad": 43.54774852078597, "producer": "Otto Matic", "rms": 0.461, "H_sigma": "", "closeness": 2601.1794552211522, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "134860 (2000 OJ67)", "M2": "", "sigma_per": 42.589, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -8.481656108469005e+18, "albedo": "", "moid_ld": 15903.899054, "pha": "N", "neo": "N", "sigma_ad": 0.012127, "PC": "", "profit": 0.0, "est_diameter": 206.76610723797694, "sigma_w": 0.60086, "sigma_i": 0.00024015, "per": 101961.3272620773, "id": "a0134860", "A1": "", "data_arc": 4466.0, "A3": "", "score": 0.0, "per_y": 279.154900101512, "sigma_n": 1.4748e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 10", "sigma_a": 0.011894, "sigma_om": 0.016281, "A2": "", "sigma_e": 0.00011565, "condition_code": 3.0, "rot_per": "", "prov_des": "2000 OJ67", "G": "", "last_obs": "2012-10-20", "H": 6.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 61.0, "moid": 40.8662, "extent": "", "dv": 12.5037, "e": 0.01954798523779781, "GM": "", "tp_cal": 19380105.7637971, "pdes": 134860.0, "class": "TNO", "UB": "", "a": 42.7127993496343, "t_jup": 5.85, "om": 96.75338894344453, "ma": 98.49464794846214, "name": "", "i": 1.114301923782416, "tp": 2428904.2637971216, "prefix": "", "BV": "", "spec": "?", "q": 41.87785017848263, "w": 140.8843161988282, "n": 0.003530750429274723, "sigma_ma": 0.61303, "first_obs": "2000-07-29", "n_del_obs_used": "", "spkid": 2134860.0, "n_dop_obs_used": ""},
{"sigma_tp": 37.016, "diameter": "", "sigma_q": 0.029003, "epoch_mjd": 56800.0, "ad": 48.37874367876532, "producer": "Otto Matic", "rms": 0.35219, "H_sigma": "", "closeness": 2601.261915277479, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "135024 (2001 KO76)", "M2": "", "sigma_per": 69.361, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -3.2246357156774267e+18, "albedo": "", "moid_ld": 14724.558286, "pha": "N", "neo": "N", "sigma_ad": 0.021266, "PC": "", "profit": 0.0, "est_diameter": 149.7888034079121, "sigma_w": 0.16104, "sigma_i": 0.0010559, "per": 105196.1054672608, "id": "a0135024", "A1": "", "data_arc": 3683.0, "A3": "", "score": 0.0, "per_y": 288.011240156772, "sigma_n": 2.2564e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.01917, "sigma_om": 0.0021099, "A2": "", "sigma_e": 0.00035515, "condition_code": 4.0, "rot_per": "", "prov_des": "2001 KO76", "G": "", "last_obs": "2006-06-22", "H": 6.8, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 24.0, "moid": 37.8358, "extent": "", "dv": 12.21285, "e": 0.1093121326028403, "GM": "", "tp_cal": 20900715.4425175, "pdes": 135024.0, "class": "TNO", "UB": "", "a": 43.61147981429861, "t_jup": 5.871, "om": 44.22370670314419, "ma": 264.8208176356304, "name": "", "i": 2.149599215163453, "tp": 2484612.942517472, "prefix": "", "BV": "", "spec": "?", "q": 38.84421594983191, "w": 298.5947396621001, "n": 0.003422179921974766, "sigma_ma": 0.16766, "first_obs": "1996-05-22", "n_del_obs_used": "", "spkid": 2135024.0, "n_dop_obs_used": ""},
{"sigma_tp": 23.513, "diameter": "", "sigma_q": 0.017725, "epoch_mjd": 56800.0, "ad": 74.47106843247194, "producer": "Otto Matic", "rms": 0.29503, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "135571 (2002 GG32)", "M2": "", "sigma_per": 142.69, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.8555841741645757e+18, "albedo": "", "moid_ld": 13567.127789, "pha": "N", "neo": "N", "sigma_ad": 0.047337, "PC": "", "profit": -0.0, "est_diameter": 124.58889999152157, "sigma_w": 0.14149, "sigma_i": 0.0010288, "per": 149652.9536775281, "id": "a0135571", "A1": "", "data_arc": 1536.0, "A3": "", "score": 0.0, "per_y": 409.727457022664, "sigma_n": 2.2936e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.035065, "sigma_om": 0.0010427, "A2": "", "sigma_e": 0.0005205, "condition_code": 4.0, "rot_per": "", "prov_des": "2002 GG32", "G": "", "last_obs": "2006-06-22", "H": 7.2, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 21.0, "moid": 34.8617, "extent": "", "dv": 11.977376, "e": 0.3499872724406166, "GM": "", "tp_cal": 20230822.6543238, "pdes": 135571.0, "class": "TNO", "UB": "", "a": 55.16427447337121, "t_jup": 5.995, "om": 35.76196111315876, "ma": 351.872425323647, "name": "", "i": 14.6836015695129, "tp": 2460179.1543237525, "prefix": "", "BV": "", "spec": "?", "q": 35.85748051427049, "w": 230.8436880224839, "n": 0.002405565618007964, "sigma_ma": 0.05686, "first_obs": "2002-04-08", "n_del_obs_used": "", "spkid": 2135571.0, "n_dop_obs_used": ""},
{"sigma_tp": 41.367, "diameter": "", "sigma_q": 0.031592, "epoch_mjd": 56800.0, "ad": 48.85587045888597, "producer": "Otto Matic", "rms": 0.11658, "H_sigma": "", "closeness": 2601.2499631210703, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "135742 (2002 PB171)", "M2": "", "sigma_per": 111.19, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.6161462537960707e+18, "albedo": "", "moid_ld": 14458.132504, "pha": "N", "neo": "N", "sigma_ad": 0.034549, "PC": "", "profit": 0.0, "est_diameter": 118.98147579246931, "sigma_w": 0.22496, "sigma_i": 0.0019431, "per": 104826.9953703031, "id": "a0135742", "A1": "", "data_arc": 1416.0, "A3": "", "score": 0.0, "per_y": 287.000671787277, "sigma_n": 3.6428e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.030768, "sigma_om": 0.0025946, "A2": "", "sigma_e": 0.0010606, "condition_code": 3.0, "rot_per": "", "prov_des": "2002 PB171", "G": "", "last_obs": "2006-06-21", "H": 7.3, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 37.0, "moid": 37.1512, "extent": "", "dv": 12.24878, "e": 0.1228806935321663, "GM": "", "tp_cal": 19610830.9776441, "pdes": 135742.0, "class": "TNO", "UB": "", "a": 43.50940464138137, "t_jup": 5.833, "om": 336.8104929945598, "ma": 66.13647585365881, "name": "", "i": 5.462443130609889, "tp": 2437542.477644112, "prefix": "", "BV": "", "spec": "?", "q": 38.16293882387678, "w": 288.1272431495725, "n": 0.003434229882563113, "sigma_ma": 0.18494, "first_obs": "2002-08-05", "n_del_obs_used": "", "spkid": 2135742.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.9938, "diameter": "", "sigma_q": 0.0017253, "epoch_mjd": 56800.0, "ad": 51.47365465453971, "producer": "Otto Matic", "rms": 0.38108, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "136108 Haumea (2003 EL61)", "M2": "", "sigma_per": 3.7418, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -3.3766081149503803e+22, "albedo": "", "moid_ld": 13209.869729, "pha": "N", "neo": "N", "sigma_ad": 0.0012395, "PC": "", "profit": -0.0, "est_diameter": 3277.0219579315417, "sigma_w": 0.001442, "sigma_i": 3.0297e-05, "per": 103588.6165223641, "id": "a0136108", "A1": "", "data_arc": 21498.0, "A3": "", "score": 0.0, "per_y": 283.61017528368, "sigma_n": 1.2553e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 58", "sigma_a": 0.0010395, "sigma_om": 0.00022786, "A2": "", "sigma_e": 2.0546e-05, "condition_code": 2.0, "rot_per": 3.9154, "prov_des": "2003 EL61", "G": "", "last_obs": "2014-01-29", "H": 0.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 1082.0, "moid": 33.9437, "extent": "", "dv": 14.18423, "e": 0.1924566516127846, "GM": "", "tp_cal": 21340109.8617273, "pdes": 136108.0, "class": "TNO", "UB": "", "a": 43.16605939924286, "t_jup": 5.103, "om": 121.7879937466978, "ma": 208.1444124852364, "name": "Haumea", "i": 28.19134719398587, "tp": 2500496.3617273476, "prefix": "", "BV": "", "spec": "?", "q": 34.85846414394602, "w": 240.4148654040147, "n": 0.003475285336224934, "sigma_ma": 0.0023466, "first_obs": "1955-03-22", "n_del_obs_used": "", "spkid": 2136108.0, "n_dop_obs_used": ""},
{"sigma_tp": 19.246, "diameter": "", "sigma_q": 0.0094812, "epoch_mjd": 56800.0, "ad": 91.71057496712967, "producer": "Otto Matic", "rms": 0.19976, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "136120 (2003 LG7)", "M2": "", "sigma_per": 331.03, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -7.054734269976178e+17, "albedo": "", "moid_ld": 12215.579296, "pha": "N", "neo": "N", "sigma_ad": 0.11337, "PC": "", "profit": -0.0, "est_diameter": 90.25667938004489, "sigma_w": 0.13012, "sigma_i": 0.0014009, "per": 178532.6408873016, "id": "a0136120", "A1": "", "data_arc": 1117.0, "A3": "", "score": 0.0, "per_y": 488.795731382071, "sigma_n": 3.7389e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.076702, "sigma_om": 0.00026511, "A2": "", "sigma_e": 0.00065022, "condition_code": 3.0, "rot_per": "", "prov_des": "2003 LG7", "G": "", "last_obs": "2006-06-22", "H": 7.9, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 17.0, "moid": 31.3888, "extent": "", "dv": 12.122052, "e": 0.4779960769867941, "GM": "", "tp_cal": 19960704.6525029, "pdes": 136120.0, "class": "TNO", "UB": "", "a": 62.05062137519402, "t_jup": 5.78, "om": 238.3603229634551, "ma": 13.17005723586621, "name": "", "i": 20.11979292162379, "tp": 2450269.1525028995, "prefix": "", "BV": "", "spec": "?", "q": 32.39066778325837, "w": 341.9315070385501, "n": 0.002016437992575539, "sigma_ma": 0.040788, "first_obs": "2003-06-01", "n_del_obs_used": "", "spkid": 2136120.0, "n_dop_obs_used": ""},
{"sigma_tp": 8.2839, "diameter": "", "sigma_q": 0.0040999, "epoch_mjd": 56800.0, "ad": 97.66034301331197, "producer": "Otto Matic", "rms": 0.3718, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "136199 Eris (2003 UB313)", "M2": "", "sigma_per": 13.933, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.034607588079818e+23, "albedo": "", "moid_ld": 14426.648651, "pha": "N", "neo": "N", "sigma_ad": 0.004445, "PC": "", "profit": -0.0, "est_diameter": 5963.199670531795, "sigma_w": 0.0050827, "sigma_i": 0.00041263, "per": 204075.957355923, "id": "a0136199", "A1": "", "data_arc": 21655.0, "A3": "", "score": 0.0, "per_y": 558.729520481651, "sigma_n": 1.2044e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 46", "sigma_a": 0.0030876, "sigma_om": 0.00022427, "A2": "", "sigma_e": 3.5432e-05, "condition_code": 3.0, "rot_per": 25.9, "prov_des": "2003 UB313", "G": "", "last_obs": "2013-12-17", "H": -1.2, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 609.0, "moid": 37.0703, "extent": "", "dv": 15.99154, "e": 0.4396468397072271, "GM": "", "tp_cal": 22560826.916333, "pdes": 136199.0, "class": "TNO", "UB": "", "a": 67.83631951928753, "t_jup": 4.743, "om": 35.97898356094448, "ma": 203.9082668404692, "name": "Eris", "i": 43.9909932491987, "tp": 2545285.4163329904, "prefix": "", "BV": "", "spec": "?", "q": 38.01229602526308, "w": 150.8941599190216, "n": 0.00176404905636255, "sigma_ma": 0.011508, "first_obs": "1954-09-03", "n_del_obs_used": "", "spkid": 2136199.0, "n_dop_obs_used": ""},
{"sigma_tp": 0.74513, "diameter": "", "sigma_q": 0.0021123, "epoch_mjd": 56800.0, "ad": 52.84145061969584, "producer": "Otto Matic", "rms": 0.4319, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "136472 Makemake (2005 FY9)", "M2": "", "sigma_per": 5.4078, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -6.7372189241786e+22, "albedo": "", "moid_ld": 14630.651565, "pha": "N", "neo": "N", "sigma_ad": 0.00169, "PC": "", "profit": -0.0, "est_diameter": 4125.526217847494, "sigma_w": 0.006913, "sigma_i": 1.0888e-05, "per": 112722.7738467713, "id": "a0136472", "A1": "", "data_arc": 21559.0, "A3": "", "score": 0.0, "per_y": 308.618135104097, "sigma_n": 1.5321e-07, "epoch_cal": 20140523.0, "orbit_id": "JPL 59", "sigma_a": 0.0014606, "sigma_om": 0.0002769, "A2": "", "sigma_e": 1.9474e-05, "condition_code": 1.0, "rot_per": 22.48, "prov_des": "2005 FY9", "G": "", "last_obs": "2014-02-07", "H": -0.4, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 964.0, "moid": 37.5945, "extent": "", "dv": 14.361987, "e": 0.1570867078004991, "GM": "", "tp_cal": 18801204.8628484, "pdes": 136472.0, "class": "TNO", "UB": "", "a": 45.66766713632197, "t_jup": 5.231, "om": 79.33085016293613, "ma": 155.6793607511984, "name": "Makemake", "i": 29.00969671928532, "tp": 2408054.3628484244, "prefix": "", "BV": "", "spec": "?", "q": 38.49388365294811, "w": 297.2558865819977, "n": 0.003193675844859555, "sigma_ma": 0.0083887, "first_obs": "1955-01-29", "n_del_obs_used": "", "spkid": 2136472.0, "n_dop_obs_used": ""},
{"sigma_tp": 26.89, "diameter": "", "sigma_q": 0.016433, "epoch_mjd": 56800.0, "ad": 49.53596334246939, "producer": "Otto Matic", "rms": 0.30011, "H_sigma": "", "closeness": 2601.26820844047, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "137294 (1999 RE215)", "M2": "", "sigma_per": 44.913, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -3.7023771749632307e+18, "albedo": "", "moid_ld": 15230.518203, "pha": "N", "neo": "N", "sigma_ad": 0.013522, "PC": "", "profit": 0.0, "est_diameter": 156.84813222680864, "sigma_w": 0.13157, "sigma_i": 0.00082619, "per": 109685.6812772649, "id": "a0137294", "A1": "", "data_arc": 2850.0, "A3": "", "score": 0.0, "per_y": 300.30302882208, "sigma_n": 1.3439e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 1", "sigma_a": 0.012241, "sigma_om": 0.003769, "A2": "", "sigma_e": 0.00036189, "condition_code": 3.0, "rot_per": "", "prov_des": "1999 RE215", "G": "", "last_obs": "2007-06-27", "H": 6.7, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 27.0, "moid": 39.1359, "extent": "", "dv": 12.194585, "e": 0.1046370523516791, "GM": "", "tp_cal": 19530329.2076341, "pdes": 137294.0, "class": "TNO", "UB": "", "a": 44.84365542239553, "t_jup": 5.954, "om": 149.2854499742114, "ma": 73.30514938760786, "name": "", "i": 1.350732937950164, "tp": 2434465.7076341347, "prefix": "", "BV": "", "spec": "?", "q": 40.15134750232167, "w": 112.5831767051867, "n": 0.003282105702475305, "sigma_ma": 0.11372, "first_obs": "1999-09-07", "n_del_obs_used": "", "spkid": 2137294.0, "n_dop_obs_used": ""},
{"sigma_tp": 1.5459, "diameter": "", "sigma_q": 0.0013637, "epoch_mjd": 56800.0, "ad": 61.54003595971932, "producer": "Otto Matic", "rms": 0.63875, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "137295 (1999 RB216)", "M2": "", "sigma_per": 42.356, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.6161462537960707e+18, "albedo": "", "moid_ld": 12706.945338, "pha": "N", "neo": "N", "sigma_ad": 0.014491, "PC": "", "profit": -0.0, "est_diameter": 118.98147579246931, "sigma_w": 0.008985, "sigma_i": 0.00011487, "per": 119920.1584043674, "id": "a0137295", "A1": "", "data_arc": 4053.0, "A3": "", "score": 0.0, "per_y": 328.323500080404, "sigma_n": 1.0603e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 14", "sigma_a": 0.011206, "sigma_om": 0.00013829, "A2": "", "sigma_e": 0.00013894, "condition_code": 3.0, "rot_per": "", "prov_des": "1999 RB216", "G": "", "last_obs": "2010-10-13", "H": 7.3, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 87.0, "moid": 32.6514, "extent": "", "dv": 12.07207, "e": 0.2930894485240695, "GM": "", "tp_cal": 20140718.4392828, "pdes": 137295.0, "class": "TNO", "UB": "", "a": 47.59147639009894, "t_jup": 5.751, "om": 175.7553425484363, "ma": 359.8305694216822, "name": "", "i": 12.69875842879368, "tp": 2456856.939282751, "prefix": "", "BV": "", "spec": "?", "q": 33.64291682047857, "w": 209.1118718292492, "n": 0.003001997368833438, "sigma_ma": 0.0046806, "first_obs": "1999-09-08", "n_del_obs_used": "", "spkid": 2137295.0, "n_dop_obs_used": ""},
{"sigma_tp": 48.329, "diameter": "", "sigma_q": 0.011405, "epoch_mjd": 56800.0, "ad": 52.82325846250544, "producer": "Otto Matic", "rms": 0.26192, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "138537 (2000 OK67)", "M2": "", "sigma_per": 54.671, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -1.118100031910736e+19, "albedo": "", "moid_ld": 15180.276356, "pha": "N", "neo": "N", "sigma_ad": 0.016668, "PC": "", "profit": -0.0, "est_diameter": 226.71452828784518, "sigma_w": 0.2076, "sigma_i": 0.00066326, "per": 115506.9993857952, "id": "a0138537", "A1": "", "data_arc": 2249.0, "A3": "", "score": 0.0, "per_y": 316.240929187667, "sigma_n": 1.4752e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 9", "sigma_a": 0.014646, "sigma_om": 0.0045743, "A2": "", "sigma_e": 0.00020721, "condition_code": 3.0, "rot_per": "", "prov_des": "2000 OK67", "G": "", "last_obs": "2006-09-25", "H": 5.9, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 38.0, "moid": 39.0068, "extent": "", "dv": 12.131022, "e": 0.1380253533971713, "GM": "", "tp_cal": 20230720.2689284, "pdes": 138537.0, "class": "TNO", "UB": "", "a": 46.41659195449409, "t_jup": 6.007, "om": 4.354318904116862, "ma": 349.5738195900083, "name": "", "i": 4.894287678832714, "tp": 2460145.7689283695, "prefix": "", "BV": "", "spec": "?", "q": 40.00992544648274, "w": 0.07947902289201168, "n": 0.003116694242896869, "sigma_ma": 0.15367, "first_obs": "2000-07-29", "n_del_obs_used": "", "spkid": 2138537.0, "n_dop_obs_used": ""},
{"sigma_tp": 7.3651, "diameter": "", "sigma_q": 0.0069829, "epoch_mjd": 56800.0, "ad": 56.55774746638873, "producer": "Otto Matic", "rms": 0.62523, "H_sigma": "", "closeness": -1, "spec_B": "", "K2": "", "K1": "", "M1": "", "two_body": "", "full_name": "138628 (2000 QM251)", "M2": "", "sigma_per": 60.339, "equinox": "J2000", "DT": "", "diameter_sigma": "", "saved": -2.1304956895593636e+18, "albedo": "", "moid_ld": 12393.935907, "pha": "N", "neo": "N", "sigma_ad": 0.020842, "PC": "", "profit": -0.0, "est_diameter": 130.4605939513808, "sigma_w": 0.050873, "sigma_i": 0.00049098, "per": 109159.1049910758, "id": "a0138628", "A1": "", "data_arc": 2937.0, "A3": "", "score": 0.0, "per_y": 298.861341522453, "sigma_n": 1.823e-06, "epoch_cal": 20140523.0, "orbit_id": "JPL 10", "sigma_a": 0.016472, "sigma_om": 0.0002433, "A2": "", "sigma_e": 0.00020859, "condition_code": 4.0, "rot_per": "", "prov_des": "2000 QM251", "G": "", "last_obs": "2008-09-09", "H": 7.1, "price": 0.0, "IR": "", "spec_T": "", "epoch": 2456800.5, "n_obs_used": 30.0, "moid": 31.8471, "extent": "", "dv": 12.444162, "e": 0.2652734980145274, "GM": "", "tp_cal": 19780719.5201888, "pdes": 138628.0, "class": "TNO", "UB": "", "a": 44.70001747064124, "t_jup": 5.557, "om": 355.6462318189672, "ma": 43.17489349531562, "name": "", "i": 15.72949867664295, "tp": 2443709.0201887954, "prefix": "", "BV": "", "spec": "?", "q": 32.84228747489374, "w": 313.8483950701307, "n": 0.003297938362809328, "sigma_ma": 0.045359, "first_obs": "2000-08-25", "n_del_obs_used": "", "spkid": 2138628.0, "n_dop_obs_used": ""}
]
def getAsteroidSurvey(survey):
if survey == SurveyTypes.neo:
return neo
elif survey == SurveyTypes.main_belt:
return mainBelt
elif survey == SurveyTypes.kuiper_belt:
return kuiperBelt
|
python
|
#
# This script should be sourced after slicerqt.py
#
def tcl(cmd):
global _tpycl
try:
_tpycl
except NameError:
# no tcl yet, so first bring in the adapters, then the actual code
import tpycl
_tpycl = tpycl.tpycl()
packages = ['freesurfer', 'mrml', 'mrmlLogic', 'teem', 'vtk', 'vtkITK']
for p in packages:
_tpycl.py_package(p)
import os
tcl_dir = os.path.dirname(os.path.realpath(__file__)) + '/tcl/'
tcl_dir = tcl_dir.replace('\\','/')
_tpycl.tcl_eval("""
set dir \"%s\"
source $dir/Slicer3Adapters.tcl
::Slicer3Adapters::Initialize
""" % tcl_dir)
return _tpycl.tcl_eval(cmd)
class _sliceWidget(object):
""" an empty class that can be instanced as a place to store
references to sliceWidget components
"""
def __init__(self):
pass
if __name__ == "__main__":
# Initialize global slicer.sliceWidgets dict
# -- it gets populated in qSlicerLayoutManagerPrivate::createSliceView
# and then used by the scripted code that needs to access the slice views
slicer.sliceWidgets = {}
|
python
|
import os
import shutil
import sys
from pathlib import Path
from subprocess import Popen
from cmd.Tasks.Task import Task
from cmd.Tasks.Tasks import Tasks
from cmd.Tasks.Build.manifest_config import manifest_config
import json
class Build(Task):
NAME = Tasks.BUILD
def __build_app(self):
print('****')
print('**** BUILD APP : ' + self.package.name())
print('****')
if not self.package.config().has_builder():
raise KeyError('No builder found into `hotballoon-shed` configuration')
production_builder: Path = Path(os.path.dirname(
os.path.realpath(__file__)) + '/../../../build/' + self.package.config().builder() + '/production.js')
production_builder.resolve()
if not production_builder.is_file():
raise FileNotFoundError('No builder file found for this builder : ' + self.package.config().builder())
if not self.package.config().has_build_output():
raise KeyError('No path for build found into `hotballoon-shed` configuration')
verbose: str = '-v' if self.options.debug else ''
inspect: str = '1' if self.options.inspect else '0'
if self.package.config().has_application():
manifest_config.update(self.package.config().application())
html_template: Path = self.__resolve_html_template()
child: Popen = self.exec([
'node',
production_builder.as_posix(),
verbose,
','.join([v.as_posix() for v in self.package.config().build_entries()]),
html_template.as_posix(),
self.package.config().build_output(),
json.dumps(manifest_config),
inspect
])
code = child.returncode
if code != 0:
sys.stderr.write("BUILD APP FAIL" + "\n")
raise ChildProcessError(code)
def __resolve_html_template(self) -> Path:
if self.package.config().has_build_html_template_name():
return self.__tempate_path_for(self.package.config().build_html_template_name())
elif self.package.config().has_build_html_template():
return self.package.config().build_html_template()
else:
return self.__tempate_path_for('minimal')
def __tempate_path_for(self, name: str) -> Path:
template_html: Path = Path(os.path.dirname(
os.path.realpath(__file__)) + '/../../../build/html/' + name + '/index.html')
template_html.resolve()
if not template_html.is_file():
raise FileNotFoundError('No html template found for : ' + name)
return template_html
def __build_bundle(self):
print('****')
print('**** BUILD LIB BUNDLE : ' + self.package.name())
print('****')
lib_builder: Path = Path(os.path.dirname(
os.path.realpath(__file__)) + '/../../../build/' + self.package.config().builder() + '/lib.js')
lib_builder.resolve()
if not lib_builder.is_file():
raise FileNotFoundError('No builder file found for this builder : ' + self.package.config().builder())
if not self.package.config().has_build_output():
raise KeyError('No path for build found into `hotballoon-shed` configuration')
verbose: str = '-v' if self.options.debug else ''
html_template: Path = self.__resolve_html_template()
child2: Popen = self.exec([
'node',
lib_builder.as_posix(),
verbose,
','.join([v.as_posix() for v in self.package.config().build_entries()]),
html_template.as_posix(),
self.package.config().build_output()
])
code = child2.returncode
if code != 0:
sys.stderr.write("BUILD LIB BUNDLE FAIL" + "\n")
raise ChildProcessError(code)
def process(self):
self.__build_app()
if self.options.bundle:
self.__build_bundle()
else:
if self.options.debug:
print('No bundle build required')
|
python
|
from django.apps import AppConfig
class Sql3Config(AppConfig):
name = 'SQL3'
|
python
|
# Testing environment setting
|
python
|
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 3 07:06:58 2019
@author: astar
"""
import random
import math
import matplotlib.pyplot as plt
from time import clock
class Ant:
def __init__(self, map_):
self.map = map_
self.path = []
self.path_length = math.inf
def run(self):
self.path = []
pheromone_map = [self.map.pheromones[row][:] for row in range(len(self.map.pheromones))]
current_node = random.choice(range(len(self.map.nodes)))
self.path.append(current_node)
for row in range(len(pheromone_map)):
pheromone_map[row][current_node] = 0
for i in range(len(self.map.nodes) - 1):
current_node = random.choices(range(len(self.map.nodes)), weights = pheromone_map[self.path[-1]])[0]
self.path.append(current_node)
for row in range(len(pheromone_map)):
pheromone_map[row][current_node] = 0
self.path_length = distance([self.map.nodes[i] for i in self.path])
def get_path_length(self):
return self.path_length
def get_path(self):
return self.path
class TSPMap:
def __init__(self, num_of_ants = 1, size = 10, auto_generate = True, source = "", evaporating_rate = 0):
self.ants = [Ant(self) for i in range(num_of_ants)]
if auto_generate:
self.nodes = TSPMap.generate_nodes(size)
else:
self.nodes = self.read_nodes(source)
self.pheromones = [[1 for i in range(len(self.nodes))] for j in range(len(self.nodes))]
for i in range(len(self.pheromones)):
self.pheromones[i][i] = 0
self.evaporating_rate = evaporating_rate
self.optimal_path = []
self.optimal_length = math.inf
self.optimal_history = []
def generate_nodes(size):
nodes = [(random.uniform(0, size), random.uniform(0, size)) for i in range(size)]
return nodes
def read_nodes(self, source):
with open(source, 'r') as file:
lines = file.readlines()
path = [(float(line.split()[0]), float(line.split()[1])) for line in lines]
return path
def run(self, trials):
for trial in range(trials):
for ant in self.ants:
ant.run()
optimal_ant = min(self.ants, key = Ant.get_path_length)
self.update_pheromones(optimal_ant)
self.optimal_path = optimal_ant.get_path()
self.optimal_length = optimal_ant.get_path_length()
self.optimal_history.append(self.optimal_length)
def update_pheromones(self, optimal_ant):
self.pheromones = [[self.pheromones[i][j] * (1 - self.evaporating_rate)
for j in range(len(self.pheromones))] for i in range(len(self.pheromones))]
path = optimal_ant.get_path()
for i in range(len(path) - 1):
self.pheromones[path[i]][path[i + 1]] += 1 / optimal_ant.get_path_length()
self.pheromones[path[i + 1]][path[i]] += 1 / optimal_ant.get_path_length()
if len(path) > 0 and path[0] != path[-1]:
self.pheromones[path[0]][path[-1]] += 1 / optimal_ant.get_path_length()
self.pheromones[path[-1]][path[0]] += 1 / optimal_ant.get_path_length()
def get_optimal_history(self):
return self.optimal_history
def get_optimal_path(self):
return [self.nodes[i] for i in self.optimal_path]
def get_optimal_distance(self):
return self.optimal_distance
def distance(path):
dist = 0
for i in range(len(path) - 1):
dist += math.sqrt(math.pow(path[i][0] - path[i + 1][0], 2) + math.pow(path[i][1] - path[i + 1][1], 2))
dist += math.sqrt(math.pow(path[0][0] - path[-1][0], 2) + math.pow(path[0][1] - path[-1][1], 2))
return dist
if __name__ == "__main__":
NUM_OF_ANTS = 20
SIZE = 10
NUM_OF_TRIALS = 200
EVAPORATING_RATE = 0.1
SOURCE = f'{SIZE}.txt'
start = clock()
# map_ = TSPMap(num_of_ants=NUM_OF_ANTS, size=SIZE, evaporating_rate=EVAPORATING_RATE)
map_ = TSPMap(num_of_ants=NUM_OF_ANTS, evaporating_rate=EVAPORATING_RATE, auto_generate=False, source=SOURCE)
map_.run(NUM_OF_TRIALS)
end = clock()
history = map_.get_optimal_history()
path = map_.get_optimal_path()
path.append(path[0])
X = [path[i][0] for i in range(len(path))]
Y = [path[i][1] for i in range(len(path))]
plt.figure(1, figsize=(6, 10))
plt.subplot(211)
plt.title('Learning curve\n'
f'Number of ants: {NUM_OF_ANTS}\n'
f'Number of trials: {NUM_OF_TRIALS}\n'
f'Evaporating rate: {EVAPORATING_RATE}\n'
f'Found solution: {history[-1]}\n'
f'Working time: {end - start}')
plt.xlabel('trials')
plt.ylabel('optimal path length')
plt.plot(history)
plt.subplot(212)
plt.title('Optimal path')
plt.plot(X, Y)
|
python
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.