content
stringlengths
0
894k
type
stringclasses
2 values
# Generated by Django 2.1.3 on 2018-12-01 22:19 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Eprint_users', '0011_auto_20181130_0119'), ] operations = [ migrations.AlterField( model_name='profile', name='image', field=models.ImageField(default='default.png', upload_to='media/profilepics'), ), ]
python
#!/usr/bin/env python """ Loop over a list of blog post src filenames and generate a blog index markdown file. """ import sys import os.path from datetime import datetime from utils import parse_metadata POST_TEMPLATE = """ --- ## [{title}]({htmlname}) ### {subtitle} {description} _{datestr}_ | [Read more...]({htmlname}) """ def post_index(filenames): for file in sorted(filenames,reverse=True): path,name = os.path.split(file) htmlname = file[4:-3] + '.html' with open(file,'r') as f: md = parse_metadata(f.read()) #DATESTR md['datestr'] = str(datetime.strptime(name[:10],'%Y-%m-%d').date()) if 'subtitle' not in md: md['subtitle'] = '' print(POST_TEMPLATE.format(htmlname=htmlname,**md)) if __name__=='__main__': post_index(sys.argv[1:])
python
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.http import HttpResponse from django.shortcuts import render def home(request): """return HttpResponse('<h1>Hello, Welcome to this test</h1>')""" """Le chemin des templates est renseigne dans "DIRS" de "TEMPLATES" dans settings.py DONC PAS BESOIN DE RENSEIGNER LE CHEMIN ABSOLU""" return render(request, "index.html") def us(request): return render(request, "us.html") def algos(request): return render(request, "algos_explanation.html") def breastCancer(request): return render(request, "breastCancer.html") def handler404(request, exception): return render(request, "errors/404.html") def handler500(request): return render(request, "errors/500.html")
python
#!/usr/bin/env python # Copyright (c) 2013. Mark E. Madsen <[email protected]> # # This work is licensed under the terms of the Apache Software License, Version 2.0. See the file LICENSE for details. """ Description here """ import logging as log import networkx as nx import madsenlab.axelrod.utils.configuration import numpy as np import math as m import pprint as pp import matplotlib.pyplot as plt from numpy.random import RandomState ################################################################################### class BaseGraphPopulation(object): """ Base class for all Axelrod model populations that use a graph (NetworkX) representation to store the relations between agents. Methods here need to be independent of the trait representation, but can assume that the agents are nodes in a Graph. Thus, most of the "agent selection" and "neighbor" methods are concentrated here. """ def __init__(self,simconfig,graph_factory,trait_factory): self.simconfig = simconfig self.interactions = 0 self.innovations = 0 self.losses = 0 self.time_step_last_interaction = 0 self.prng = RandomState() # allow the library to choose a seed via OS specific mechanism self.graph_factory = graph_factory self.trait_factory = trait_factory # initialize the graph structure via the factory object self.agentgraph = self.graph_factory.get_graph() def get_agent_by_id(self, agent_id): return (agent_id, self.agentgraph.node[agent_id]['traits']) def get_random_agent(self): """ Returns a random agent chosen from the population, in the form of a tuple of two elements (node_id, array_of_traits). This allows operations on the agent and its traits without additional calls. To modify the traits, change one or more elements in the array, and then call set_agent_traits(agent_id, new_list) """ rand_agent_id = self.prng.randint(0, self.simconfig.popsize) return self.get_agent_by_id(rand_agent_id) def get_random_neighbor_for_agent(self, agent_id): """ Returns a random agent chosen from among the neighbors of agent_id. The format is the same as get_random_agent -- a two element tuple with the neighbor's ID and their trait list. """ neighbor_list = self.agentgraph.neighbors(agent_id) num_neighbors = len(neighbor_list) rand_neighbor_id = neighbor_list[self.prng.randint(0,num_neighbors)] return self.get_agent_by_id(rand_neighbor_id) def get_all_neighbors_for_agent(self, agent_id): return self.agentgraph.neighbors(agent_id) def get_coordination_number(self): return self.graph_factory.get_lattice_coordination_number() def update_interactions(self, timestep): self.interactions += 1 self.time_step_last_interaction = timestep def update_innovations(self): self.innovations += 1 def update_loss_events(self): self.losses += 1 def get_time_last_interaction(self): return self.time_step_last_interaction def get_interactions(self): return self.interactions def get_innovations(self): return self.innovations def get_losses(self): return self.losses def initialize_population(self): self.trait_factory.initialize_population(self.agentgraph) ### Abstract methods - derived classes need to override def draw_network_colored_by_culture(self): raise NotImplementedError def get_traits_packed(self,agent_traits): raise NotImplementedError def set_agent_traits(self, agent_id, trait_list): raise NotImplementedError ################################################################################### class TreeTraitStructurePopulation(BaseGraphPopulation): """ Base class for all Axelrod models which feature a non-fixed number of features/traits per individual where traits are encoded as paths in a tree. """ def __init__(self, simconfig,graph_factory,trait_factory): super(TreeTraitStructurePopulation, self).__init__(simconfig,graph_factory,trait_factory) def set_agent_traits(self, agent_id, trait_set): self.agentgraph.node[agent_id]['traits'] = trait_set def get_traits_packed(self,agent_traits): hashable_set = frozenset(agent_traits) return hash(hashable_set) def draw_network_colored_by_culture(self): nodes, traits = zip(*nx.get_node_attributes(self.agentgraph, 'traits').items()) nodes, pos = zip(*nx.get_node_attributes(self.agentgraph, 'pos').items()) color_tupled_compressed = [self.get_traits_packed(t) for t in traits] nx.draw(self.agentgraph, pos=pos, nodelist=nodes, node_color=color_tupled_compressed) plt.show() # EXPLICIT OVERRIDE OF BASE CLASS METHOD! def initialize_population(self): """ For semantically structured traits, since the traits are not just random integers, we need to have a copy of the trait "universe" -- i.e., all possible traits and their relations. So we initialize the trait universe first, and then allow the trait factory to initialize our starting population on the chosen population structure. """ self.trait_universe = self.trait_factory.initialize_traits() self.trait_factory.initialize_population(self.agentgraph) def __repr__(self): rep = 'TreeTraitStructurePopulation: [' for nodename in self.agentgraph.nodes(): rep += "node %s: " % nodename rep += pp.pformat(self.agentgraph.node[nodename]['traits']) rep += ",\n" rep += ' ]' return rep ################################################################################### class ExtensibleTraitStructurePopulation(BaseGraphPopulation): """ Base class for all Axelrod models which feature a non-fixed number of features/traits per individual. """ def __init__(self, simconfig,graph_factory,trait_factory): super(ExtensibleTraitStructurePopulation, self).__init__(simconfig,graph_factory, trait_factory) def set_agent_traits(self, agent_id, trait_set): self.agentgraph.node[agent_id]['traits'] = trait_set def get_traits_packed(self,agent_traits): hashable_set = frozenset(agent_traits) return hash(hashable_set) def draw_network_colored_by_culture(self): nodes, traits = zip(*nx.get_node_attributes(self.agentgraph, 'traits').items()) nodes, pos = zip(*nx.get_node_attributes(self.agentgraph, 'pos').items()) color_tupled_compressed = [self.get_traits_packed(t) for t in traits] nx.draw(self.agentgraph, pos=pos, nodelist=nodes, node_color=color_tupled_compressed) plt.show() ################################################################################### class FixedTraitStructurePopulation(BaseGraphPopulation): """ Base class for all Axelrod models with a fixed number of features and number of traits per feature. Specifies no specific graph, lattice, or network model, but defines operations usable on any specific model as long as the graph is represented by the NetworkX library and API. Agents are given by nodes, and edges define "neighbors". Important operations on a model include choosing a random agent, finding a random neighbor, updating an agent's traits, and updating statistics such as the time the last interaction occurred (which is used to know when (or if) we've reached a fully absorbing state and can stop. Subclasses should ONLY implement an __init__ method, in which self.model is assigned an instance of a """ def __init__(self, simconfig,graph_factory, trait_factory): super(FixedTraitStructurePopulation, self).__init__(simconfig, graph_factory, trait_factory) def draw_network_colored_by_culture(self): nodes, colors = zip(*nx.get_node_attributes(self.agentgraph, 'traits').items()) nodes, pos = zip(*nx.get_node_attributes(self.agentgraph, 'pos').items()) color_tupled_compressed = [int(''.join(str(i) for i in t)) for t in colors] nx.draw(self.agentgraph, pos=pos, nodelist=nodes, node_color=color_tupled_compressed) plt.show() def get_traits_packed(self,agent_traits): return ''.join(str(i) for i in agent_traits) def set_agent_traits(self, agent_id, trait_list): """ Stores a modified version of the trait list for an agent. """ #old_traits = self.model.node[agent_id]['traits'] self.agentgraph.node[agent_id]['traits'] = trait_list #new_traits = self.model.node[agent_id]['traits'] #log.debug("setting agent %s: target traits: %s old: %s new: %s", agent_id, trait_list, old_traits, new_traits)
python
#!/usr/bin/env python3 # coding:utf-8 class Solution: def maxInWindows(self, num, size): if num == []: return [] if len(num) < size: return [max(num)] res = [] queue = num[:size] res.append(max(queue)) for i in range(size, len(num)): queue.pop(0) queue.append(num[i]) res.append(max(queue)) return res if __name__ == "__main__": nums = [2, 3, 4, 2, 6, 2, 5, 1] size = 3 s = Solution() ans = s.maxInWindows(nums, size) print(ans)
python
__all__=["greeters"] # *** # *** Use __init__.py to expose different parts of the submodules in the desired namespace # *** # *** Define what can be seen in the main "skeleton." namespace (as this is skeleton/__init__.py) like this: # from .greeters.fancy import * # now you can do: from skeleton import FancyHelloWorld from valkka.skeleton.greeters.fancy import * # relative imports are evil, so use this instead # *** Be aware that that in "skeleton.greeters" a list __all__ has been defined. It declares what is exposed to the API user when calling "fro skeleton.greeters.fancy import *" # *** We could declare the API exposure here as well, by being more explicit: # from skeleton.greeters.fancy import FancyHelloWorld # *** If you want to keep FancyHelloWorld under the "greeters.fancy." namespace, don't add ".. import *" statements to this file # *** The idea is, that the submodules have "internal hierarchies" that the API user is not supposed to worry with # *** and he/she access them simply with "from skeleton import ClassName" from valkka.skeleton.greeters.cool.cool1 import * from valkka.skeleton.greeters.cool.cool2 import * from valkka.skeleton.version import * __version__=str(VERSION_MAJOR)+"."+str(VERSION_MINOR)+"."+str(VERSION_PATCH)
python
import iota_client # client will connect to testnet by default client = iota_client.Client() print(client.get_info())
python
from django.apps import AppConfig class SiteAdocaoConfig(AppConfig): name = 'site_adocao'
python
# Copyright 2019 Quantapix Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import os import shutil as sh import filecmp as fc import pathlib as pth import collections as co from hashlib import blake2b from .log import Logger from .base import config from .counter import counters from .resource import Resource, resource, Names log = Logger(__name__) def calc_digest(path, *, base=None, **_): p = base / path if base else pth.Path(path) if p.exists(): d, s = blake2b(digest_size=20), 0 with open(p, 'rb') as f: for b in iter(lambda: f.read(65536), b''): s += len(b) d.update(b) assert s == p.stat().st_size return d.hexdigest(), s log.warning("Cant't digest nonexistent file {}", p) return None, None class Entry(co.namedtuple('Entry', 'path digest size')): __slots__ = () def __new__(cls, path, digest=None, size=None, **kw): if not digest: digest, size = calc_digest(path, **kw) return super().__new__(cls, path, digest, size) def __bool__(self): return bool(self.path and self.digest is not None and self.size is not None) __hash__ = None def __eq__(self, other): if isinstance(other, type(self)): d = self.digest return (d and d == other.digest and self.size == other.size) return NotImplemented def __repr__(self): s = "{}({!r}".format(type(self).__name__, str(self.path)) d = self.digest if d: s += ", {!r}, {}".format(d, self.size) s += ")" return s def relative_to(self, path, base, **_): try: (base / self.path).relative_to(base / path) except ValueError: return False return True def check(self, **kw): d = self.digest if d: d2, s = calc_digest(self.path, **kw) if d2 == d and s == self.size: return True m = 'Mismatched digest for {}' else: m = 'No digest for {}' log.info(m, self.path) return False def prune_dir(path, cntr=None, **_): with os.scandir(path) as es: for e in es: p = pth.Path(e.path) j = None if p.name.startswith('.'): if e.is_dir(follow_symlinks=False): sh.rmtree(str(p)) elif p.suffix != '.qnr': p.unlink() log.info('Deleted {}', p) j = '-' elif e.is_dir(follow_symlinks=False): prune_dir(p, cntr) continue if cntr: cntr.incr(j) try: path.rmdir() log.info('Deleted {}', path) j = '-' except: j = None if cntr: cntr.incr(j) class Roster(Resource): _res_path = '.roster.qnr' @classmethod def globals(cls): return globals() def __init__(self, entries=None, **kw): super().__init__(None, **kw) self._expels = [] self._symlinks = [] if entries: self.add_entry(entries) def __repr__(self): return '{}({!r})'.format(type(self).__name__, tuple(self.entries)) def __str__(self): s = '{}:'.format(str(self.base)) for e in self.entries: s += '\n{} {} {}'.format(str(e.path), str(e.digest), e.size) return s @property def entries(self): es = [e for e in self.values() if isinstance(e, Entry)] return sorted(es, key=lambda x: x.path) def adjust_kw(self, kw): def _adjust(key, default): v = kw.get(key) v = pth.Path(v) if v else default kw[key] = v _adjust('base', self.base) def entry_adder(self, entry, cntr, modify=False, expel=True, **kw): if isinstance(entry, Entry): assert entry p, d, s = entry k = d, s if p in self: ok = self[p] if k != ok: if modify: log.info('Modifying digest for {}', p) del self[ok] self[p] = k self[k] = entry cntr.incr(modify) return else: log.warning('Digest mismatch for {}', p) cntr.incr() else: try: o = self[k] except KeyError: self[p] = k self[k] = entry yield p else: log.info('Duplicates: {} and {}', o.path, p) if expel: self._expels.append((o, entry)) cntr.incr() else: for e in entry: yield from self.entry_adder(e, cntr, modify, expel, **kw) add_args = ((('scanned', '.'), ('added', '+')), 'Adding:') def add_entry(self, entry, **kw): with counters(self.add_args, kw) as cs: for _ in self.entry_adder(entry, **kw): cs.incr('+') return cs def path_adder(self, path, **kw): self.adjust_kw(kw) p = str(pth.Path(path).relative_to(kw['base'])) yield from self.entry_adder(Entry(p, **kw), **kw) def walker(self, paths=(), **kw): for e in self.entries: if paths: for p in paths: if e.relative_to(p, **kw): break else: continue yield e def scanner(self, root, cntr, **kw): def _paths(path): with os.scandir(path) as es: for e in es: p = pth.Path(e.path) if not p.name.startswith('.'): if e.is_dir(follow_symlinks=False): yield from _paths(p) continue elif e.is_file(follow_symlinks=False): yield p continue elif e.is_symlink(): log.info('Symlink {}', p) self._symlinks.append(p) else: log.info('Ignoring dir entry {}', p) cntr.incr() if root.exists(): for p in _paths(root): yield from self.path_adder(p, **kw, cntr=cntr) scan_args = ((('scanned', '.'), ('added', '+')), 'Scanning:') def scan(self, paths=(), **kw): self.adjust_kw(kw) b = kw['base'] with counters(self.scan_args, kw) as cs: for p in paths or ('', ): for _ in self.scanner(b / p, **kw): cs.incr('+') return cs rescan_args = ((('scanned', '.'), ('added', '+'), ('removed', '-'), ('modified', 'm')), 'Rescanning:') def rescanner(self, paths, cntr, **kw): self.adjust_kw(kw) b = kw['base'] es = [e for e in self.walker(paths, **kw) if not (b / e.path).exists()] for p, d, s in es: del self[p] del self[(d, s)] cntr.incr('-') self._expels = [] for p in paths or ('', ): for p in self.scanner(b / p, **kw, cntr=cntr, modify='m'): yield p def rescan(self, paths=(), **kw): with counters(self.rescan_args, kw) as cs: for _ in self.rescanner(paths, **kw): cs.incr('+') return cs check_args = ((('passed', '.'), ('failed', 'F')), 'Checking:') def check(self, paths=(), **kw): self.adjust_kw(kw) with counters(self.check_args, kw) as cs: for e in self.walker(paths, **kw): cs.incr('.' if e.check(**kw) else 'F') return cs def check_ok(self, paths=(), **kw): return not self.check(paths, **kw)['F'] def rename_path(self, src, dst, cntr, cntr_key=None, **_): if dst.exists(): log.warning("Can't move/rename, destination exists {}", dst) cntr.incr('F') else: dst.parent.mkdir(parents=True, exist_ok=True) src.rename(dst) log.info('Moved/renamed {} to/as {}', src, dst) cntr.incr(cntr_key) expel_args = ((('scanned', '.'), ('expelled', 'e'), ('failed', 'F')), 'Expelling:') def expel(self, ebase=None, **kw): with counters(self.expel_args, kw) as cs: self.adjust_kw(kw) b = kw['base'] for o, d in self._expels: op = b / o.path dp = b / d.path if fc.cmp(op, dp, shallow=False): e = (ebase or (b.parent / 'expel')) / d.path self.rename_path(dp, e, **kw, cntr_key='e') else: log.error('Duplicates compare failed {}, {}', op, dp) cs.incr('F') self._expels = [] return cs def absorb_paths(self, paths=(), abase=None, **kw): self.adjust_kw(kw) b = kw['base'] ab = abase or (b.parent / 'absorb') for p in paths or ('', ): p = ab / p if p.exists(): yield b, ab, p absorb_args = ((('scanned', '.'), ('absorbed', 'a'), ('failed', 'F')), 'Absorbing:') def absorb(self, paths=(), abase=None, **kw): with counters(self.absorb_args, kw) as cs: kw['expel'] = False for b, ab, path in self.absorb_paths(paths, abase, **kw): for p in [p for p in self.scanner(path, **kw, base=ab)]: self.rename_path(ab / p, b / p, **kw, cntr_key='a') prune_dir(path) return cs prune_args = ((('scanned', '.'), ('deleted', '-')), 'Pruning:') def prune(self, paths=(), abase=None, **kw): with counters(self.prune_args, kw) as cs: for _, ab, p in self.absorb_paths(paths, abase, **kw): prune_dir(p, **kw) return cs def namer(self, path, names, base, cntr, **_): p = str(path) if p not in names: if (base / path).exists(): names[p] = np = p.lower().replace(' ', '-') cntr.incr('.' if p == np else 'n') path = path.parent if path.name: self.namer(path, names, base, cntr) else: cntr.incr('F') names_args = ((('scanned', '.'), ('renamed', 'r'), ('normalized', 'n'), ('failed', 'F')), 'Naming:') def names(self, paths=(), **kw): with counters(self.names_args, kw) as cs: self.adjust_kw(kw) with resource(Names.create(kw['base'])) as ns: ns.clear() for e in self.walker(paths, **kw): self.namer(pth.Path(e.path), ns, **kw) return cs rename_args = ((('scanned', '.'), ('added', '+'), ('removed', '-'), ('modified', 'm'), ('normalized', 'n'), ('renamed', 'r'), ('failed', 'F')), 'Renaming:') def rename(self, paths=(), **kw): with counters(self.rename_args, kw) as cs: self.adjust_kw(kw) b = kw['base'] with resource(Names.create(b)) as ns: if ns: for e in self.walker(paths, **kw): p = e.path try: d = b / ns.pop(p) except KeyError: cs.incr() continue self.rename_path(b / p, d, **kw, cntr_key='r') ps = paths or ('', ) for o in sorted(ns.keys(), reverse=True): d = b / ns.pop(o) o = b / o if o.exists() and o.is_dir(): for p in ps: try: o.relative_to(b / p) break except ValueError: continue else: cs.incr() continue self.rename_path(o, d, **kw, cntr_key='r') else: cs.incr() for p in self.rescanner(paths, **kw): self.namer(pth.Path(p), ns, **kw) return cs if __name__ == '__main__': from .args import BArgs a = BArgs() a.add_argument('paths', nargs='*', help='Paths to follow') a.add_argument('-u', '--prune', action=a.st, help='Prune absorb dir') a.add_argument('-a', '--absorb', help='Path to absorb uniques from') a.add_argument('-x', '--rename', action=a.st, help='Rename files') a.add_argument('-R', '--rescan', action=a.st, help='Rescan base') a.add_argument('-s', '--scan', action=a.st, help='Scan base') a.add_argument('-e', '--expel', help='Path to expel duplicates to') a.add_argument('-c', '--check', action=a.st, help='Check all digests') a.add_argument('-n', '--names', action=a.st, help='Names of files') a = a.parse_args() r = Roster.create(a.base) if a.prune: abase = None if a.absorb is None or a.absorb == config.DEFAULT else a.absorb r.prune(a.paths, abase=abase) elif a.absorb: abase = None if a.absorb == config.DEFAULT else a.absorb r.absorb(a.paths, abase=abase) elif a.rename: r.rename(a.paths) else: if a.rescan: r.rescan(a.paths) elif a.scan: r.scan(a.paths) if a.expel: ebase = None if a.expel == config.DEFAULT else a.expel r.expel(ebase=ebase) if a.check: r.check_ok(a.paths) if a.names: r.names(a.paths) r.save()
python
import aita if __name__ == "__main__": # Development, Testing, Production app = aita.create_app('Development') app.run()
python
import json from logging import root import os import warnings from skimage.color import rgb2lab, gray2rgb, rgba2rgb from skimage.util import img_as_float import numpy as np import numpy.typing as npt import torch from torch.utils.data import DataLoader import torch.optim as optim import torch.nn as nn from torchvision.models import vgg16_bn from torchvision.transforms import Resize from sklearn.metrics import f1_score, precision_recall_fscore_support, cohen_kappa_score, confusion_matrix from sklearn import svm from sklearn.cluster import MiniBatchKMeans from sklearn.model_selection import train_test_split from scipy.spatial.distance import cdist import joblib from termcolor import colored import math from math import floor from collections import OrderedDict from skimage.color import lab2rgb from ..models.lcn import LCNCreator, MarkerBasedNorm2d, MarkerBasedNorm3d, LIDSConvNet from ._dataset import LIDSDataset from PIL import Image import nibabel as nib import re ift = None try: import pyift.pyift as ift except: warnings.warn("PyIFT is not installed.", ImportWarning) def load_image(path: str, lab: bool=True) -> np.ndarray: if path.endswith('.mimg'): image = load_mimage(path) elif path.endswith('.nii.gz') or path.endswith('.nii.gz'): image = np.asanyarray(nib.load(path).dataobj) else: image = np.asarray(Image.open(path)) if lab: if image.ndim == 3 and image.shape[-1] == 4: image = rgba2rgb(image) elif image.ndim == 2 or image.shape[-1] == 1: image = gray2rgb(image) elif image.ndim == 3 and image.shape[-1] > 4: image = gray2rgb(image) elif image.ndim == 4 and image.shape[-1] == 4: image = rgba2rgb(image) image = rgb2lab(image) if image.dtype != float: image = img_as_float(image) return image def image_to_rgb(image): warnings.warn("'image_to_rgb' will be remove due to its misleading name. " + "Use 'from_lab_to_rgb' instead", DeprecationWarning, stacklevel=2 ) return from_lab_to_rgb(image) def from_lab_to_rgb(image): image = lab2rgb(image) return image def load_markers(markers_dir): markers = [] lines = None with open(markers_dir, 'r') as f: lines = f.readlines() label_infos = [int(info) for info in lines[0].split(" ")] is_2d = len(label_infos) == 3 if is_2d: image_shape = (label_infos[2], label_infos[1]) else: image_shape = (label_infos[2], label_infos[1], label_infos[3]) markers = np.zeros(image_shape, dtype=np.int) for line in lines[1:]: split_line = line.split(" ") if is_2d: y, x, label = int(split_line[0]), int(split_line[1]), int(split_line[3]) markers[x][y] = label else: x, y, z, label = int(split_line[0]), int(split_line[1]), int(split_line[3]), int(split_line[4]) markers[x][y][z] = label return markers def load_images_and_markers(path): dirs = os.listdir(path) images_names = [filename for filename in dirs if not filename.endswith('.txt')] makers_names = [filename for filename in dirs if filename.endswith('.txt')] images_names.sort() makers_names.sort() images = [] images_markers = [] for image_name, marker_name in zip(images_names, makers_names): if image_name.endswith('.npy'): image = np.load(os.path.join(path, image_name)) else: image = load_image(os.path.join(path, image_name)) markers = load_markers(os.path.join(path, marker_name)) images.append(image) images_markers.append(markers) return np.array(images), np.array(images_markers) def _convert_arch_from_lids_format(arch): stdev_factor = arch['stdev_factor'] n_layers = arch['nlayers'] n_arch = { "type": "sequential", "layers": {} } for i in range(1, n_layers + 1): layer_name = f"layer{i}" layer_params = arch[layer_name] kernel_size = layer_params['conv']['kernel_size'] is3d = kernel_size[2] > 0 end = 3 if is3d else 2 dilation_rate = layer_params['conv']['dilation_rate'][:end] kernel_size = kernel_size[:end] m_norm_layer = { "operation": "m_norm3d" if is3d else "m_norm2d", "params": { "kernel_size": kernel_size, "dilation": dilation_rate, "default_std": stdev_factor } } conv_layer = { "operation": "conv3d" if is3d else "conv2d", "params": { "kernel_size": kernel_size, "dilation": dilation_rate, "number_of_kernels_per_marker": layer_params['conv']['nkernels_per_image'], "padding": [k_size // 2 for k_size in kernel_size], "out_channels": layer_params['conv']['noutput_channels'], "stride": 1 } } relu_layer = None if layer_params['relu']: relu_layer = { "operation": "relu", "params": { "inplace": True } } pool_type_mapping = { "max_pool2d": "max_pool2d", "avg_pool2d": "avg_pool2d", "max_pool3d": "max_pool3d", "avg_pool3d": "avg_pool3d", "no_pool": None } pool_type = layer_params['pooling']['type'] if is3d and pool_type != "no_pool": pool_type += "3d" elif pool_type != "no_pool": pool_type += "2d" assert pool_type in pool_type_mapping, f"{pool_type} is not a supported pooling operation" if pool_type == "no_pool": pool_layer = None else: pool_kernel_size = layer_params['pooling']['size'][:end] pool_layer = { "operation": pool_type_mapping[pool_type], "params": { "kernel_size": pool_kernel_size, "stride": layer_params['pooling']['stride'], "padding": [k_size // 2 for k_size in pool_kernel_size] } } n_arch['layers'][f'm-norm{i}'] = m_norm_layer n_arch['layers'][f'conv{i}'] = conv_layer if relu_layer: n_arch['layers'][f'activation{i}'] = relu_layer if pool_layer: n_arch['layers'][f'pool{i}'] = pool_layer return { "features": n_arch } def load_architecture(architecture_dir): path = architecture_dir with open(path) as json_file: architecture = json.load(json_file) if 'nlayers' in architecture: architecture = _convert_arch_from_lids_format(architecture) return architecture def configure_dataset(dataset_dir, split_dir, transform=None): dataset = LIDSDataset(dataset_dir, split_dir, transform) return dataset def build_model(architecture, images=None, markers=None, input_shape=None, batch_size=32, train_set=None, remove_border=0, relabel_markers=True, default_std=1e-6, device='cpu', verbose=False): creator = LCNCreator(architecture, images=images, markers=markers, input_shape=input_shape, batch_size=batch_size, relabel_markers=relabel_markers, remove_border=remove_border, default_std=default_std, device=device) if verbose: print("Building model...") creator.build_model(verbose=verbose) model = creator.get_LIDSConvNet() if verbose: print("Model ready.") return model def get_torchvision_model(model_name, number_classes, pretrained=True, device='cpu'): model = None if model_name == "vgg16_bn": if pretrained: model = vgg16_bn(pretrained=pretrained) model.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, number_classes), ) for m in model.classifier.modules(): if isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) else: model = vgg16_bn(num_classes=number_classes, init_weights=True) model.to(device) return model def train_mlp(model, train_set, epochs=30, batch_size=64, lr=1e-3, weight_decay=1e-3, criterion=nn.CrossEntropyLoss(), device='cpu'): dataloader = DataLoader(train_set, batch_size=batch_size, shuffle=True, drop_last=False) model.to(device) model.feature_extractor.eval() model.classifier.train() #optimizer optimizer = optim.Adam(model.classifier.parameters(), lr=lr, weight_decay=weight_decay) #training print(f"Training classifier for {epochs} epochs") for epoch in range(0, epochs): print('-' * 40) print('Epoch {}/{}'.format(epoch, epochs - 1)) running_loss = 0.0 running_corrects = 0.0 for i, data in enumerate(dataloader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) preds = torch.max(outputs, 1)[1] loss.backward() #clip_grad_norm_(self.mlp.parameters(), 1) optimizer.step() #print(outputs) running_loss += loss.item()*inputs.size(0)/len(train_set) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss epoch_acc = running_corrects.double()/len(train_set) print('Loss: {:.6f} Acc: {:.6f}'.format(epoch_loss, epoch_acc)) def train_model(model, train_set, epochs=30, batch_size=64, lr=1e-3, weight_decay=1e-3, step=0, loss_function=nn.CrossEntropyLoss, device='cpu', ignore_label=-100, only_classifier=False, wandb=None): #torch.manual_seed(42) #np.random.seed(42) #if device != 'cpu': # torch.backends.cudnn.deterministic = True dataloader = DataLoader(train_set, batch_size=batch_size, shuffle=True, drop_last=False) model.to(device) model.eval() criterion = loss_function(ignore_index=ignore_label) parameters = [] if not only_classifier: model.feature_extractor.train() parameters.append({ "params": model.feature_extractor.parameters(), "lr": lr, "weight_decay": weight_decay }) model.classifier.train() parameters.append({ "params": model.classifier.parameters(), "lr": lr, "weight_decay": weight_decay }) #optimizer optimizer = optim.Adam(parameters) if step > 0: scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=step, gamma=0.1) #training print(f"Training classifier for {epochs} epochs") for epoch in range(0, epochs): print('-' * 40) print('Epoch {}/{}'.format(epoch, epochs - 1)) running_loss = 0.0 running_corrects = 0.0 n = 0 for i, data in enumerate(dataloader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) preds = torch.max(outputs, 1)[1] loss.backward() if epoch < 3: nn.utils.clip_grad_norm_(model.parameters(), .1) else: nn.utils.clip_grad_norm_(model.parameters(), 1) optimizer.step() #print(outputs) mask = labels != ignore_label running_loss += loss.item()*(mask.sum()) running_corrects += torch.sum(preds[mask] == labels[mask].data) n += (mask).sum() if step > 0: scheduler.step() epoch_loss = running_loss/n epoch_acc = (running_corrects.double())/n if wandb: wandb.log({"loss": epoch_loss, "train-acc": epoch_acc}, step=epoch) print('Loss: {:.6f} Acc: {:.6f}'.format(epoch_loss, epoch_acc)) #if epoch_acc >= 0.9900000: # break def save_model(model, outputs_dir, model_filename): if not os.path.exists(outputs_dir): os.makedirs(outputs_dir) dir_to_save = os.path.join(outputs_dir, model_filename) print("Saving model...") torch.save(model.state_dict(), dir_to_save) def load_model(model_path, architecture, input_shape, remove_border=0, default_std=1e-6): state_dict = torch.load(model_path, map_location=torch.device('cpu')) creator = LCNCreator(architecture, input_shape=input_shape, remove_border=remove_border, default_std=default_std, relabel_markers=False) print("Loading model...") creator.load_model(state_dict) model = creator.get_LIDSConvNet() return model def load_torchvision_model_weights(model, weigths_path): state_dict = torch.load(weigths_path, map_location=torch.device('cpu')) model.load_state_dict(state_dict) return model def load_weights_from_lids_model(model, lids_model_dir): print("Loading LIDS model...") for name, layer in model.named_children(): print(name) if isinstance(layer, MarkerBasedNorm2d): conv_name = name.replace('m-norm', 'conv') with open(os.path.join(lids_model_dir, f"{conv_name}-mean.txt")) as f: lines = f.readlines()[0] mean = np.array([float(line) for line in lines.split(' ') if len(line) > 0]) with open(os.path.join(lids_model_dir, f"{conv_name}-stdev.txt")) as f: lines = f.readlines()[0] std = np.array([float(line) for line in lines.split(' ') if len(line) > 0]) layer.mean_by_channel = torch.from_numpy(mean).float() layer.std_by_channel = torch.from_numpy(std).float() if isinstance(layer, nn.Conv2d): if os.path.exists(os.path.join(lids_model_dir, f"{name}-kernels.npy")): weights = np.load(os.path.join(lids_model_dir, f"{name}-kernels.npy")) in_channels = layer.in_channels out_channels = layer.out_channels kernel_size = layer.kernel_size weights = weights.transpose() weights = weights.reshape(out_channels, kernel_size[1], kernel_size[0], in_channels) weights = weights.transpose(0, 3, 2, 1) layer.weight = nn.Parameter(torch.from_numpy(weights).float()) if isinstance(layer, nn.Conv3d): if os.path.exists(os.path.join(lids_model_dir, f"{name}-kernels.npy")): weights = np.load(os.path.join(lids_model_dir, f"{name}-kernels.npy")) in_channels = layer.in_channels out_channels = layer.out_channels kernel_size = layer.kernel_size weights = weights.transpose() weights = weights.reshape(out_channels, kernel_size[0], kernel_size[1], kernel_size[2], in_channels) weights = weights.transpose(0, 4, 1, 2, 3) layer.weight = nn.Parameter(torch.from_numpy(weights).float()) if isinstance(layer, MarkerBasedNorm3d): conv_name = name.replace('m-norm', 'conv') with open(os.path.join(lids_model_dir, f"{conv_name}-mean.txt")) as f: lines = f.readlines()[0] mean = np.array([float(line) for line in lines.split(' ') if len(line) > 0]) with open(os.path.join(lids_model_dir, f"{conv_name}-stdev.txt")) as f: lines = f.readlines()[0] std = np.array([float(line) for line in lines.split(' ') if len(line) > 0]) layer.mean_by_channel = nn.Parameter(torch.from_numpy(mean.reshape(1, -1, 1, 1, 1)).float()) layer.std_by_channel = nn.Parameter(torch.from_numpy(std.reshape(1, -1, 1, 1, 1)).float()) '''for name, layer in model.classifier.named_children(): print(name) if isinstance(layer, SpecialLinearLayer): if os.path.exists(os.path.join(lids_model_dir, f"{name}-weights.npy")): weights = np.load(os.path.join(lids_model_dir, f"split{split}-{name}-weights.npy")) weights = weights.transpose() with open(os.path.join(lids_model_dir, f"{name}-mean.txt")) as f: lines = f.readlines() mean = np.array([float(line) for line in lines]) with open(os.path.join(lids_model_dir, f"{name}-stdev.txt")) as f: lines = f.readlines() std = np.array([float(line) for line in lines]) layer.mean = torch.from_numpy(mean.reshape(1, -1)).float() layer.std = torch.from_numpy(std.reshape(1, -1)).float() layer._linear.weight = nn.Parameter(torch.from_numpy(weights).float())''' print("Finish loading...") return model def save_lids_model(model, architecture, split, outputs_dir, model_name): if not isinstance(model, LIDSConvNet): pass print("Saving model in LIDS format...") if model_name.endswith('.pt'): model_name = model_name.replace('.pt', '') if not os.path.exists(os.path.join(outputs_dir, model_name)): os.makedirs(os.path.join(outputs_dir, model_name)) if isinstance(split, str): split_basename = os.path.basename(split) split = re.findall(r'\d+', split_basename) if len(split) == 0: split = 1 else: split = int(split[0]) layer_specs = get_arch_in_lids_format(architecture, split) conv_count = 1 for _, layer in model.feature_extractor.named_children(): if isinstance(layer, SpecialConvLayer): weights = layer.conv.weight.detach().cpu() num_kernels = weights.size(0) weights = weights.reshape(num_kernels, -1) weights = weights.transpose(0, 1) mean = layer.mean_by_channel.detach().cpu() std = layer.std_by_channel.detach().cpu() mean = mean.reshape(1, -1) std = std.reshape(1, -1) np.save(os.path.join(outputs_dir, model_name, f"conv{conv_count}-kernels.npy"), weights.float()) np.savetxt(os.path.join(outputs_dir, model_name, f"conv{conv_count}-mean.txt"), mean.float()) np.savetxt(os.path.join(outputs_dir, model_name, f"conv{conv_count}-stdev.txt"), std.float()) conv_count += 1 for i, layer_spec in enumerate(layer_specs, 1): with open(os.path.join(outputs_dir, model_name, f"convlayerseeds-layer{i}.json"), 'w') as f: json.dump(layer_spec, f, indent=4) '''for name, layer in model.classifier.named_children(): if isinstance(layer, SpecialLinearLayer): weights = layer._linear.weight.detach().cpu() weights.transpose(0, 1) mean = layer.mean.detach().cpu() std = layer.std.detach().cpu() mean = mean.reshape(-1) std = std.reshape(-1) np.save(os.path.join(outputs_dir, model_name, f"{name}-weights.npy"), weights.float()) np.savetxt(os.path.join(outputs_dir, model_name, f"{name}-mean.txt"), mean.float()) np.savetxt(os.path.join(outputs_dir, model_name, f"{name}-std.txt"), std.float())''' def _calulate_metrics(true_labels, pred_labels): average = 'binary' if np.unique(true_labels).shape[0] == 2 else 'weighted' acc = 1.0*(true_labels == pred_labels).sum()/true_labels.shape[0] precision, recall, f_score, support = precision_recall_fscore_support(true_labels, pred_labels, zero_division=0) precision_w, recall_w, f_score_w, _ = precision_recall_fscore_support(true_labels, pred_labels, average=average, zero_division=0) cm = confusion_matrix(true_labels, pred_labels) cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("#" * 50) print(colored("Acc", "yellow"),f': {colored(f"{acc:.6f}", "blue", attrs=["bold"])}') print("-" * 50) print(colored("F1-score", "yellow"), f': {colored(f"{f1_score(true_labels, pred_labels, average=average):.6f}", "blue", attrs=["bold"])}') print("-" * 50) print("Accuracy", *cm.diagonal()) print("-" * 50) print("Precision:", *precision) print("Recall:", *recall) print("F-score:", *f_score) print("-" * 50) print("W-Precision:", precision_w) print("W-Recall:", recall_w) print("W-F-score:", f_score_w) print("-" * 50) print("Kappa {}".format(cohen_kappa_score(true_labels, pred_labels))) print("-" * 50) print("Suport", *support) print("#" * 50) def validate_model(model, val_set, criterion=nn.CrossEntropyLoss(), batch_size=32, device='cpu'): dataloader = DataLoader(val_set, batch_size=batch_size, shuffle=True, drop_last=False) model.eval() model.to(device) running_loss = 0.0 running_corrects = 0.0 true_labels = torch.Tensor([]).long() pred_labels = torch.Tensor([]).long() print("Validating...") for i, data in enumerate(dataloader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) with torch.set_grad_enabled(False): outputs = model(inputs) loss = criterion(outputs, labels) preds = torch.max(outputs, 1)[1] running_loss += loss.item()*inputs.size(0)/len(val_set) running_corrects += torch.sum(preds == labels.data) true_labels = torch.cat((true_labels, labels.cpu())) pred_labels = torch.cat((pred_labels, preds.cpu())) print('Val - loss: {:.6f}'.format(running_loss)) print("Calculating metrics...") _calulate_metrics(true_labels, pred_labels) def train_svm(model, train_set, batch_size=32, max_iter=10000, device='cpu', C=100, degree=3): print("Preparing to train SVM") clf = svm.SVC(max_iter=max_iter, C=C, degree=degree, gamma='auto', coef0=0, decision_function_shape='ovo', kernel='linear') dataloader = DataLoader(train_set, batch_size=batch_size, shuffle=False, drop_last=False) model.eval() model.to(device) features = torch.Tensor([]) y = torch.Tensor([]).long() for inputs, labels in dataloader: inputs, labels = inputs.to(device), labels.to(device) outputs = model(inputs).detach() features = torch.cat((features, outputs.cpu())) y = torch.cat((y, labels.cpu())) print("Fitting SVM...") clf.fit(features.flatten(start_dim=1), y) print("Done") return clf def save_svm(clf, outputs_dir, svm_filename): if not os.path.exists(outputs_dir): os.makedirs(outputs_dir) dir_to_save = os.path.join(outputs_dir, svm_filename) print("Saving SVM...") joblib.dump(clf, dir_to_save, compress=9) def load_svm(svm_path): print("Loading SVM...") clf = joblib.load(svm_path) return clf def validate_svm(model, clf, val_set, batch_size=32, device='cpu'): dataloader = DataLoader(val_set, batch_size=batch_size, shuffle=False, drop_last=False) model.eval() model.to(device) true_labels = torch.Tensor([]).long() pred_labels = torch.Tensor([]).long() for i, data in enumerate(dataloader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) if hasattr(model, "features"): outputs = model.features(inputs).detach() else: outputs = model(inputs).detach() preds = clf.predict(outputs.cpu().flatten(start_dim=1)) true_labels = torch.cat((true_labels, labels.cpu())) pred_labels = torch.cat((pred_labels, torch.from_numpy(preds))) print("Calculating metrics...") _calulate_metrics(true_labels, pred_labels) def _images_close_to_center(images, centers): _images = [] for center in centers: _center = np.expand_dims(center, 0) dist = cdist(images, _center) _images.append(images[np.argmin(dist)]) return np.array(_images) def _find_elems_in_array(a, elems): indices = [] for elem in elems: _elem = np.expand_dims(elem, 0) mask = np.all(a == _elem, axis=1) indice = np.where(mask)[0][0:1].item() indices.append(indice) return indices def select_images_to_put_markers(dataset, class_proportion=0.05): dataloader = DataLoader(dataset, batch_size=64, shuffle=False, drop_last=False) all_images = None all_labels = None input_shape = dataset[0][0].shape for images, labels in dataloader: if all_images is None: all_images = images all_labels = labels else: all_images = torch.cat((all_images, images)) all_labels = torch.cat((all_labels, labels)) all_images = all_images.flatten(1).numpy() all_labels = all_labels.numpy() possible_labels = np.unique(all_labels) images_names = [] roots = None for label in possible_labels: images_of_label = all_images[all_labels == label] n_clusters = max(1, math.floor(images_of_label.shape[0]*class_proportion)) kmeans = MiniBatchKMeans(n_clusters=n_clusters, random_state=42) kmeans.fit(images_of_label) roots_of_label = _images_close_to_center(images_of_label, kmeans.cluster_centers_) if roots is None: roots = roots_of_label else: roots = np.concatenate((roots, roots_of_label)) indices = _find_elems_in_array(all_images, roots_of_label) for indice in indices: images_names.append(dataset.images_names[indice]) return roots.reshape(-1, *input_shape), images_names def _label_of_image(image_name): if not isinstance(image_name, str): raise TypeError("Parameter image_name must be a string.") i = image_name.index("_") label = int(image_name[0:i]) - 1 return label def split_dataset(dataset_dir, train_size, val_size=0, test_size=None, stratify=True): if os.path.exists(os.path.join(dataset_dir, 'files.txt')): with open(os.path.join(dataset_dir, 'files.txt'), 'r') as f: filenames = f.read().split('\n') filenames = [filename for filename in filenames if len(filename) > 0] else: filenames = os.listdir(dataset_dir) filenames.sort() labels = np.array([_label_of_image(filename) for filename in filenames]) if train_size > 1: train_size = int(train_size) train_split, test_split, _, test_labels = train_test_split(filenames, labels, train_size=train_size, test_size=test_size, stratify=labels) val_size = 0 if val_size is None else val_size val_split = [] if val_size > 0: test_size = len(test_split) - val_size test_size = int(test_size) if test_size > 0 else test_size val_split, test_split = train_test_split(test_split, test_size=test_size, stratify=test_labels) return train_split, val_split, test_split def compute_grad_cam(model, image, target_layers, class_label=0, device="cpu"): model = model.to(device) image = image.to(device) model.eval() gradients = [] features = [] if image.dim() == 3: x = image.unsqueeze(0) else: x = image for name, module in model._modules.items(): if name == "features" or name == "feature_extractor": for layer_name, layer in module.named_children(): x = layer(x) if layer_name in target_layers: x.register_hook(lambda grad : gradients.append(grad)) features.append(x) elif name == "classifier": x = x.flatten(1) x = module(x) else: x = module(x) y = x one_hot = torch.zeros_like(y, device=device) one_hot[0][class_label] = 1 one_hot = torch.sum(one_hot * y) model.zero_grad() one_hot.backward() weights = torch.mean(gradients[-1], axis=(2,3))[0, :] target = features[-1][0].detach() cam = torch.zeros_like(target[0]) for i, w in enumerate(weights): cam += w * target[i, :, ] cam[cam < 0] = 0.0 print(cam.shape) print(image.shape) resize = Resize(image.shape[1:]) cam = resize(cam.unsqueeze(0)) cam = cam - cam.min() cam = cam/cam.max() return cam.cpu().numpy() def load_mimage(path): assert ift is not None, "PyIFT is not available" mimge = ift.ReadMImage(path) return mimge.AsNumPy().squeeze() def save_mimage(path, image): assert ift is not None, "PyIFT is not available" mimage = ift.CreateMImageFromNumPy(np.ascontiguousarray(image)) ift.WriteMImage(mimage, path) def save_opf_dataset(path, opf_dataset): assert ift is not None, "PyIFT is not available" ift.WriteDataSet(opf_dataset, path) def load_opf_dataset(path): assert ift is not None, "PyIFT is not available" opf_dataset = ift.ReadDataSet(path) return opf_dataset def save_intermediate_outputs(model, dataset, outputs_dir, batch_size=16, layers=None, only_features=True, format="mimg", remove_border=0, device='cpu'): if only_features: if hasattr(model, "features"): _model = model.features else: _model = model.feature_extractor else: _model = model last_layer = None for layer_name in layers: layer_dir = os.path.join(outputs_dir, 'intermediate-outputs', layer_name) if not os.path.exists(layer_dir): os.makedirs(layer_dir) last_layer = layer_name _model.eval() _model.to(device) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, drop_last=False) outputs = {} outputs_count = {} outputs_names = dataset.images_names print("Saving intermediate outputs...") for inputs, _ in dataloader: inputs = inputs.to(device) for layer_name, layer in _model.named_children(): _outputs = layer(inputs) if layer_name == last_layer and remove_border > 0: b = remove_border _outputs = _outputs[:,:, b:-b, b:-b] inputs = _outputs if layer_name not in outputs_count: outputs_count[layer_name] = 0 if layers is None or len(layers) == 0 or layer_name in layers: if format == 'zip': if layer_name not in outputs: outputs[layer_name] = _outputs.detach().cpu() else: outputs[layer_name] = torch.cat((outputs[layer_name],_outputs.detach().cpu())) elif format in ["mimg", "npy"]: layer_dir = os.path.join(outputs_dir, 'intermediate-outputs', layer_name) _outputs = _outputs.detach().cpu() for _output in _outputs: _output_dir = os.path.join(layer_dir, f"{outputs_names[outputs_count[layer_name]].split('.')[0]}.{format}") if format == "npy": np.save(_output_dir, _output) else: save_mimgage(_output_dir, _output.permute(1, 2, 0).numpy()) outputs_count[layer_name] += 1 del _outputs torch.cuda.empty_cache() if format == 'zip': for layer_name in outputs: _outputs = outputs[layer_name] _outputs = _outputs.permute(0, 2, 3, 1).numpy().reshape(_outputs.shape[0], -1) labels = np.array([int(image_name[0:image_name.index("_")]) - 1 for image_name in outputs_names]).astype(np.int32) opf_dataset = ift.CreateDataSetFromNumPy(_outputs, labels + 1) opf_dataset.SetNClasses = labels.max() + 1 ift.SetStatus(opf_dataset, ift.IFT_TRAIN) ift.AddStatus(opf_dataset, ift.IFT_SUPERVISED) # opf_dataset.SetLabels(labels + 1) _output_dir = os.path.join(layer_dir, "dataset.zip") save_opf_dataset(_output_dir, opf_dataset) def get_arch_in_lids_format(architecture, split): layer_names = list(architecture['features']['layers'].keys()) layers = architecture['features']['layers'] operations = [layers[layer_name]['operation'] for layer_name in layer_names] conv_layers_count = 1 lids_layer_specs = [] for i in range(len(layer_names)): layer_spec = {} if operations[i] == 'conv2d': params = layers[layer_names[i]]['params'] kernel_size = params['kernel_size'] dilation = params['kernel_size'] number_of_kernels_per_markers = params['number_of_kernels_per_marker'] out_channels = params['out_channels'] layer_spec['layer'] = conv_layers_count layer_spec['split'] = split if isinstance(kernel_size, int): layer_spec['kernelsize'] = [kernel_size, kernel_size, 0] else: layer_spec['kernelsize'] = [*kernel_size, 0] if isinstance(dilation, int): layer_spec['dilationrate'] = [dilation, dilation, 0] else: layer_spec['dilationrate'] = [*dilation, 0] layer_spec['nkernelspermarker'] = number_of_kernels_per_markers layer_spec['finalnkernels'] = out_channels layer_spec['nkernelsperimage'] = 10000 if i + 1 < len(layer_names) and operations[i+1] == 'relu': layer_spec['relu'] = 1 else: layer_spec['relu'] = 0 conv_layers_count += 1 j = i + 1 if layer_spec['relu'] == 0 else i + 2 pool_spec = {} if j < len(layer_names) and 'pool' in operations[j]: if operations[j] == 'max_pool2d': pool_spec['pool_type'] = 2 elif operations[j] == 'avg_pool2d': pool_spec['pool_type'] = 1 pool_params = layers[layer_names[j]]['params'] kernel_size = pool_params['kernel_size'] stride = pool_params['stride'] if isinstance(kernel_size, int): kernel_size = [kernel_size, kernel_size] pool_spec['poolxsize'] = kernel_size[0] pool_spec['poolysize'] = kernel_size[1] pool_spec['poolzsize'] = 0 pool_spec['stride'] = stride else: pool_spec['pool_type'] = 0 layer_spec['pooling'] = pool_spec lids_layer_specs.append(layer_spec) return lids_layer_specs def create_arch(layers_dir): layers_info_files = [f for f in os.listdir(layers_dir) if f.endswith('.json')] layers_info_files.sort() arch = OrderedDict([('features', {'type': 'sequential', 'layers': OrderedDict()})]) layers = arch['features']['layers'] for i, layer_info_file in enumerate(layers_info_files, 1): with open(os.path.join(layers_dir, layer_info_file), 'r') as f: layer_info = json.load(f) # print(layer_info) conv_spec = { 'operation': 'conv2d', 'params': { 'kernel_size': layer_info['kernelsize'][:-1], 'number_of_kernels_per_marker': layer_info['nkernelspermarker'], 'dilation': layer_info['dilationrate'][:-1], 'out_channels': layer_info['finalnkernels'], 'padding': [floor((layer_info['kernelsize'][0] + (layer_info['kernelsize'][0] - 1) * (layer_info['dilationrate'][0] -1))/2), floor((layer_info['kernelsize'][1] + (layer_info['kernelsize'][1] - 1) * (layer_info['dilationrate'][1] -1))/2)], 'stride': 1 } } if layer_info['relu'] == 1: relu_spec = { 'operation': 'relu', 'params': { 'inplace': True } } else: relu_spec = None if layer_info['pooling']['pooltype'] != 0: pool_spec = { 'params': { 'kernel_size': [layer_info['pooling']['poolxsize'], layer_info['pooling']['poolysize']], 'stride': layer_info['pooling']['poolstride'], 'padding': [floor(layer_info['pooling']['poolxsize']/2), floor(layer_info['pooling']['poolysize']/2)] } } if layer_info['pooling']['pooltype'] == 2: pool_spec['operation'] = 'max_pool2d' elif layer_info['pooling']['pooltype'] == 1: pool_spec['operation'] = 'avg_pool2d' layers[f'conv{i}'] = conv_spec if relu_spec is not None: layers[f'relu{i}'] = relu_spec if pool_spec is not None: layers[f'pool{i}'] = pool_spec return arch def save_arch(arch, output_path): dirname = os.path.dirname(output_path) if not os.path.exists(dirname) and dirname != '': os.makedirs(os.path.dirname(output_path)) with open(output_path, 'w') as f: json.dump(arch, f, indent=4)
python
from functools import partial from PyQt5.QtCore import pyqtSignal, QTimer, Qt from PyQt5.QtWidgets import QInputDialog, QLabel, QVBoxLayout, QLineEdit, QWidget, QPushButton from electrum.i18n import _ from electrum.plugin import hook from electrum.wallet import Standard_Wallet from electrum.gui.qt.util import WindowModalDialog from .ledger import LedgerPlugin, Ledger_Client, AtomicBoolean, AbstractTracker from ..hw_wallet.qt import QtHandlerBase, QtPluginBase from ..hw_wallet.plugin import only_hook_if_libraries_available class Plugin(LedgerPlugin, QtPluginBase): icon_unpaired = "ledger_unpaired.png" icon_paired = "ledger.png" def create_handler(self, window): return Ledger_Handler(window) @only_hook_if_libraries_available @hook def receive_menu(self, menu, addrs, wallet): if type(wallet) is not Standard_Wallet: return keystore = wallet.get_keystore() if type(keystore) == self.keystore_class and len(addrs) == 1: def show_address(): keystore.thread.add(partial(self.show_address, wallet, addrs[0])) menu.addAction(_("Show on Ledger"), show_address) class Ledger_UI(WindowModalDialog): def __init__(self, parse_data: AbstractTracker, atomic_b: AtomicBoolean, parent=None, title='Ledger UI'): super().__init__(parent, title) # self.setWindowModality(Qt.NonModal) # Thread interrupter. If we cancel, set true self.parse_data = parse_data self.atomic_b = atomic_b self.label = QLabel('') self.label.setText(_("Generating Information...")) layout = QVBoxLayout(self) layout.addWidget(self.label) self.cancel = QPushButton(_('Cancel')) def end(): self.finished() self.close() self.atomic_b.set_true() self.cancel.clicked.connect(end) layout.addWidget(self.cancel) self.setLayout(layout) self.setWindowFlags(self.windowFlags() | Qt.CustomizeWindowHint) self.setWindowFlags(self.windowFlags() & ~Qt.WindowCloseButtonHint) self.timer = QTimer() self.timer.timeout.connect(self.update_text) def begin(self): self.timer.start(500) def finished(self): self.timer.stop() def update_text(self): self.label.setText(self.parse_data.parsed_string()) class Ledger_Handler(QtHandlerBase): setup_signal = pyqtSignal() auth_signal = pyqtSignal(object, object) ui_start_signal = pyqtSignal(object, object, object) ui_stop_signal = pyqtSignal() def __init__(self, win): super(Ledger_Handler, self).__init__(win, 'Ledger') self.setup_signal.connect(self.setup_dialog) self.auth_signal.connect(self.auth_dialog) self.ui_start_signal.connect(self.ui_dialog) self.ui_stop_signal.connect(self.stop_ui_dialog) def word_dialog(self, msg): response = QInputDialog.getText(self.top_level_window(), "Ledger Wallet Authentication", msg, QLineEdit.Password) if not response[1]: self.word = None else: self.word = str(response[0]) self.done.set() def message_dialog(self, msg): self.clear_dialog() self.dialog = dialog = WindowModalDialog(self.top_level_window(), _("Ledger Status")) l = QLabel(msg) vbox = QVBoxLayout(dialog) vbox.addWidget(l) dialog.show() def ui_dialog(self, title, stopped_boolean, parse_data): self.clear_dialog() self.dialog = Ledger_UI(parse_data, stopped_boolean, self.top_level_window(), title) self.dialog.show() self.dialog.begin() def stop_ui_dialog(self): if isinstance(self.dialog, Ledger_UI): self.dialog.finished() def auth_dialog(self, data, client: 'Ledger_Client'): try: from .auth2fa import LedgerAuthDialog except ImportError as e: self.message_dialog(repr(e)) return dialog = LedgerAuthDialog(self, data, client=client) dialog.exec_() self.word = dialog.pin self.done.set() def get_auth(self, data, *, client: 'Ledger_Client'): self.done.clear() self.auth_signal.emit(data, client) self.done.wait() return self.word def get_setup(self): self.done.clear() self.setup_signal.emit() self.done.wait() return def get_ui(self, title, atomic_b, data): self.ui_start_signal.emit(title, atomic_b, data) def finished_ui(self): self.ui_stop_signal.emit() def setup_dialog(self): self.show_error(_('Initialization of Ledger HW devices is currently disabled.'))
python
from data.scrapers import * import pandas as pd from wordcloud import WordCloud import matplotlib.pyplot as plt def model_run(model, freq='1111111', existing=None): scraper = model(freq) dfs = scraper.run() for df in dfs: existing.append(df) return existing def generate_wordcloud(text, year=None): wordcloud = WordCloud().generate(text) plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") if year: plt.savefig("../assets/img/jellyfish_{}.png".format(str(year)), format="png") plt.show() def count_frequency(wordtxt): my_list = wordtxt.split() freq = {} for word in my_list: if word not in freq: freq[word] = 0 else: pass freq[word] += 1 freq = {k: v for k, v in sorted(freq.items(), key=lambda item: item[1])} return freq if __name__ == "__main__": dfs = list() model_run(SmithsonianScraper, freq='1111111', existing=dfs) model_run(FastCompanyScraper, freq='1111111', existing=dfs) model_run(WorldEconomicForumScraper, freq='1111111', existing=dfs) model_run(NewScientistScraper, freq='1111111', existing=dfs) model_run(TimeScraper, freq='1111111', existing=dfs) model_run(JStorScraper, freq='1111111', existing=dfs) model_run(QuartzScraper, freq='1111111', existing=dfs) model_run(MarineScienceScraper, freq='1111111', existing=dfs) model_run(BBCEarthScraper, freq='1111111', existing=dfs) model_run(BBCNewsScraper, freq='1111111', existing=dfs) model_run(TheGuardianScraper, freq='1111111', existing=dfs) dfs = pd.DataFrame(dfs).sort_values(by="date") grouped_df = dfs.groupby(dfs['date'].dt.year)['words'].agg(['sum', 'count']).reset_index() for index, row in grouped_df.iterrows(): row['freq'] = count_frequency(row['sum']) print(grouped_df) # for index, row in grouped_df.iterrows(): # generate_wordcloud(row['sum'], row['date'])
python
import numpy as np from ..pakbase import Package class ModflowFlwob(Package): """ Head-dependent flow boundary Observation package class. Minimal working example that will be refactored in a future version. Parameters ---------- nqfb : int Number of cell groups for the head-dependent flow boundary observations nqcfb : int Greater than or equal to the total number of cells in all cell groups nqtfb : int Total number of head-dependent flow boundary observations for all cell groups iufbobsv : int unit number where output is saved tomultfb : float Time-offset multiplier for head-dependent flow boundary observations. The product of tomultfb and toffset must produce a time value in units consistent with other model input. tomultfb can be dimensionless or can be used to convert the units of toffset to the time unit used in the simulation. nqobfb : int list of length nqfb The number of times at which flows are observed for the group of cells nqclfb : int list of length nqfb Is a flag, and the absolute value of nqclfb is the number of cells in the group. If nqclfb is less than zero, factor = 1.0 for all cells in the group. obsnam : string list of length nqtfb Observation name irefsp : int of length nqtfb Stress period to which the observation time is referenced. The reference point is the beginning of the specified stress period. toffset : float list of length nqtfb Is the time from the beginning of the stress period irefsp to the time of the observation. toffset must be in units such that the product of toffset and tomultfb are consistent with other model input. For steady state observations, specify irefsp as the steady state stress period and toffset less than or equal to perlen of the stress period. If perlen is zero, set toffset to zero. If the observation falls within a time step, linearly interpolation is used between values at the beginning and end of the time step. flwobs : float list of length nqtfb Observed flow value from the head-dependent flow boundary into the aquifer (+) or the flow from the aquifer into the boundary (-) layer : int list of length(nqfb, nqclfb) layer index for the cell included in the cell group row : int list of length(nqfb, nqclfb) row index for the cell included in the cell group column : int list of length(nqfb, nqclfb) column index of the cell included in the cell group factor : float list of length(nqfb, nqclfb) Is the portion of the simulated gain or loss in the cell that is included in the total gain or loss for this cell group (fn of eq. 5). flowtype : string String that corresponds to the head-dependent flow boundary condition type (CHD, GHB, DRN, RIV) extension : list of string Filename extension. If extension is None, extension is set to ['chob','obc','gbob','obg','drob','obd', 'rvob','obr'] (default is None). no_print : boolean When True or 1, a list of flow observations will not be written to the Listing File (default is False) options : list of strings Package options (default is None). unitnumber : list of int File unit number. If unitnumber is None, unitnumber is set to [40, 140, 41, 141, 42, 142, 43, 143] (default is None). filenames : str or list of str Filenames to use for the package and the output files. If filenames=None the package name will be created using the model name and package extension and the flwob output name will be created using the model name and .out extension (for example, modflowtest.out), if iufbobsv is a number greater than zero. If a single string is passed the package will be set to the string and flwob output name will be created using the model name and .out extension, if iufbobsv is a number greater than zero. To define the names for all package files (input and output) the length of the list of strings should be 2. Default is None. Attributes ---------- Methods ------- See Also -------- Notes ----- This represents a minimal working example that will be refactored in a future version. """ def __init__(self, model, nqfb=0, nqcfb=0, nqtfb=0, iufbobsv=0, tomultfb=1.0, nqobfb=None, nqclfb=None, obsnam=None, irefsp=None, toffset=None, flwobs=None, layer=None, row=None, column=None, factor=None, flowtype=None, extension=None, no_print=False, options=None, filenames=None, unitnumber=None): """ Package constructor """ if nqobfb is None: nqobfb = [] if nqclfb is None: nqclfb = [] if obsnam is None: obsnam = [] if irefsp is None: irefsp = [] if toffset is None: toffset = [] if flwobs is None: flwobs = [] if layer is None: layer = [] if row is None: row = [] if column is None: column = [] if factor is None: factor = [] if extension is None: extension = ['chob', 'obc', 'gbob', 'obg', 'drob', 'obd', 'rvob', 'obr'] if unitnumber is None: unitnumber = [40, 140, 41, 141, 42, 142, 43, 143] if flowtype.upper().strip() == 'CHD': name = ['CHOB', 'DATA'] extension = extension[0:2] unitnumber = unitnumber[0:2] iufbobsv = unitnumber[1] self.url = 'chob.htm' self.heading = '# CHOB for MODFLOW, generated by Flopy.' elif flowtype.upper().strip() == 'GHB': name = ['GBOB', 'DATA'] extension = extension[2:4] unitnumber = unitnumber[2:4] iufbobsv = unitnumber[1] self.url = 'gbob.htm' self.heading = '# GBOB for MODFLOW, generated by Flopy.' elif flowtype.upper().strip() == 'DRN': name = ['DROB', 'DATA'] extension = extension[4:6] unitnumber = unitnumber[4:6] iufbobsv = unitnumber[1] self.url = 'drob.htm' self.heading = '# DROB for MODFLOW, generated by Flopy.' elif flowtype.upper().strip() == 'RIV': name = ['RVOB', 'DATA'] extension = extension[6:8] unitnumber = unitnumber[6:8] iufbobsv = unitnumber[1] self.url = 'rvob.htm' self.heading = '# RVOB for MODFLOW, generated by Flopy.' else: msg = 'ModflowFlwob: flowtype must be CHD, GHB, DRN, or RIV' raise KeyError(msg) # set filenames if filenames is None: filenames = [None, None] elif isinstance(filenames, str): filenames = [filenames, None] elif isinstance(filenames, list): if len(filenames) < 2: filenames.append(None) # call base package constructor Package.__init__(self, model, extension=extension, name=name, unit_number=unitnumber, allowDuplicates=True, filenames=filenames) self.nqfb = nqfb self.nqcfb = nqcfb self.nqtfb = nqtfb self.iufbobsv = iufbobsv self.tomultfb = tomultfb self.nqobfb = nqobfb self.nqclfb = nqclfb self.obsnam = obsnam self.irefsp = irefsp self.toffset = toffset self.flwobs = flwobs self.layer = layer self.row = row self.column = column self.factor = factor # -create empty arrays of the correct size self.layer = np.zeros((self.nqfb, max(self.nqclfb)), dtype='int32') self.row = np.zeros((self.nqfb, max(self.nqclfb)), dtype='int32') self.column = np.zeros((self.nqfb, max(self.nqclfb)), dtype='int32') self.factor = np.zeros((self.nqfb, max(self.nqclfb)), dtype='float32') self.nqobfb = np.zeros((self.nqfb), dtype='int32') self.nqclfb = np.zeros((self.nqfb), dtype='int32') self.irefsp = np.zeros((self.nqtfb), dtype='int32') self.toffset = np.zeros((self.nqtfb), dtype='float32') self.flwobs = np.zeros((self.nqtfb), dtype='float32') # -assign values to arrays self.nqobfb[:] = nqobfb self.nqclfb[:] = nqclfb self.obsnam[:] = obsnam self.irefsp[:] = irefsp self.toffset[:] = toffset self.flwobs[:] = flwobs for i in range(self.nqfb): self.layer[i, :len(layer[i])] = layer[i] self.row[i, :len(row[i])] = row[i] self.column[i, :len(column[i])] = column[i] self.factor[i, :len(factor[i])] = factor[i] # add more checks here self.no_print = no_print self.np = 0 if options is None: options = [] if self.no_print: options.append('NOPRINT') self.options = options # add checks for input compliance (obsnam length, etc.) self.parent.add_package(self) def write_file(self): """ Write the package file Returns ------- None """ # open file for writing f_fbob = open(self.fn_path, 'w') # write header f_fbob.write('{}\n'.format(self.heading)) # write sections 1 and 2 : NOTE- what about NOPRINT? line = '{:10d}'.format(self.nqfb) line += '{:10d}'.format(self.nqcfb) line += '{:10d}'.format(self.nqtfb) line += '{:10d}'.format(self.iufbobsv) if self.no_print or 'NOPRINT' in self.options: line += '{: >10}'.format('NOPRINT') line += '\n' f_fbob.write(line) f_fbob.write('{:10e}\n'.format(self.tomultfb)) # write sections 3-5 looping through observations groups c = 0 for i in range(self.nqfb): # while (i < self.nqfb): # write section 3 f_fbob.write('{:10d}{:10d}\n'.format(self.nqobfb[i], self.nqclfb[i])) # Loop through observation times for the groups for j in range(self.nqobfb[i]): # write section 4 line = '{}{:10d}{:10.4g} {:10.4g}\n'.format(self.obsnam[c], self.irefsp[c], self.toffset[c], self.flwobs[c]) f_fbob.write(line) c += 1 # index variable # write section 5 - NOTE- need to adjust factor for multiple # observations in the same cell for j in range(abs(self.nqclfb[i])): # set factor to 1.0 for all cells in group if self.nqclfb[i] < 0: self.factor[i, :] = 1.0 line = '{:10d}'.format(self.layer[i, j]) line += '{:10d}'.format(self.row[i, j]) line += '{:10d}'.format(self.column[i, j]) line += ' '.format(self.factor[i, j]) # note is 10f good enough here? line += '{:10f}\n'.format(self.factor[i, j]) f_fbob.write(line) f_fbob.close() # # swm: BEGIN hack for writing standard file sfname = self.fn_path sfname += '_ins' # write header f_ins = open(sfname, 'w') f_ins.write('jif @\n') f_ins.write('StandardFile 0 1 {}\n'.format(self.nqtfb)) for i in range(0, self.nqtfb): f_ins.write('{}\n'.format(self.obsnam[i])) f_ins.close() # swm: END hack for writing standard file return
python
# globals.py # Logic to get a list of the DBS instances available on DAS. # Currently hardcoding. There's probably a better way! instances = ['prod/global', 'prod/phys01', 'prod/phys02', 'prod/phys03', 'prod/caf']
python
from hashlib import sha1 from multiprocessing.dummy import Lock m_lock = Lock() z_lock = Lock() print(f"是否相等:{m_lock==z_lock}\n{m_lock}\n{z_lock}") # 地址不一样 m_code = hash(m_lock) z_code = hash(z_lock) print(f"是否相等:{m_code==z_code}\n{m_code}\n{z_code}") # 值一样 # Java可以使用:identityhashcode m_code = sha1(str(m_lock).encode("utf-8")).hexdigest() z_code = sha1(str(z_code).encode("utf-8")).hexdigest() print(f"是否相等:{m_code==z_code}\n{m_code}\n{z_code}") # 不相等 m_code = id(m_lock) z_code = id(z_lock) print(f"是否相等:{m_code==z_code}\n{m_code}\n{z_code}") # 不相等
python
import codecs import csv import json import os import random import sys directory = str(os.getcwd()) final_data = {"url": "http://10.10.0.112"} def getNumberRecords(): ''' Counts the number of username-password for admin.csv file Arguments: None Returns: number of username-password records in admin.csv file ''' fileDirectory = directory + "/config/admin.csv" readFile=csv.reader(codecs.open(fileDirectory, encoding='utf-8'),delimiter=",") number = 0 for x in readFile: number += 1 return number def checkFilesExist(botNumber): ''' Checks if the csv files to be generated already exist Arguments: botNumber (int): Number of admin bot concurrently running Returns: True, if the files already exist. Else, False ''' fileNumber = botNumber + 20 number = 0 while (number <= fileNumber): outputFileDirectory = directory + "/config/admin/adminLogin" + str(number) + ".csv" if os.path.exists(outputFileDirectory): number += 1 continue else: return False return True def genAdminFiles(botNumbers): ''' Generate csv files for different usernames-passwords according to the number of bots Arguments: botNumber (int): Number of admin bot concurrently running Returns: None ''' fileNumber = botNumbers + 20 recordsPerFile = (int)(getNumberRecords()/fileNumber) print(recordsPerFile) adminFileDirectory = directory + "/config/admin.csv" readFile=csv.reader(codecs.open(adminFileDirectory, encoding='utf-8'),delimiter=",") number = 0 for row in readFile: outputFileDirectory = directory + "/config/admin/adminLogin" + str(number) + ".csv" writeFile = open(outputFileDirectory,mode = 'a', newline = '') writer = csv.writer(writeFile, delimiter = ',') writer.writerow(row) if (number >= fileNumber): number = 0 number += 1 def getCredentials(botNumbers): ''' Obtain credentials for the bot to login Arguments: botNumber (int): Number of admin bot concurrently running Returns: None ''' trackNumber = 0 newRecords = [] credentials = [] number = ((random.randint(1,2000)%23) * (random.randint(1,2000)%17) * (random.randint(1000,2000)%13)) % (botNumbers + 20) fileDirectory = directory + "/config/admin/adminLogin" + str(number) + ".csv" print("Reading from " + str(fileDirectory)) readFile=csv.reader(codecs.open(fileDirectory, encoding='utf-8'),delimiter=",") for rows in readFile: if (trackNumber == 0): credentials.append(rows[0]) credentials.append(rows[1]) trackNumber += 1 else: newRecords.append(rows) credentials.append(number) writeFile = open(fileDirectory,mode = 'w', newline = '') for record in newRecords: writeFile.write(record[0] + ',' + record[1]) writeFile.write('\n') return credentials def writeBack(username, password, fileNumber): ''' Writes back the credentials to the csv file after all admin actions have been completed Arguments: username (str): Username that the bot is logging in with password (str): Password that the bot is logging in with fileNumber (int): file number for the csv file that the bot is going to open to read the credentials Returns: None ''' fileDirectory = directory + "/config/admin/adminLogin" + str(fileNumber) + ".csv" writeFile = open(fileDirectory,mode = 'a', newline = '') writer = csv.writer(writeFile, delimiter = ',') writeBack = [] writeBack.append(username) writeBack.append(password) writer.writerow(writeBack) def getUrl(): ''' Obtain the url that the bot is logging into Arguments: None Returns: None ''' return "https://10.10.0.112"
python
# Copyright 2020 Yuhao Zhang and Arun Kumar. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import glob SEED = 2018 INPUT_SHAPE = (112, 112, 3) NUM_CLASSES = 1000 TOP_5 = 'top_k_categorical_accuracy' TOP_1 = 'categorical_accuracy' MODEL_ARCH_TABLE = 'model_arch_library' MODEL_SELECTION_TABLE = 'mst_table' MODEL_SELECTION_SUMMARY_TABLE = 'mst_table_summary' class spark_imagenet_cat: valid_list = [ "hdfs://master:9000/imagenet_parquet/valid/valid_{}.parquet".format(i) for i in range(8)] train_list = [ "hdfs://master:9000/imagenet_parquet/train/train_{}.parquet".format(i) for i in range(8)] class spark_imagenet_cat_nfs: valid_list = [ "/mnt/nfs/hdd/imagenet/valid/valid_{}.parquet".format(i) for i in range(8) ] train_list = [ "/mnt/nfs/hdd/imagenet/train/train_{}.parquet".format(i) for i in range(8) ] param_grid = { "learning_rate": [1e-4, 1e-6], "lambda_value": [1e-4, 1e-6], "batch_size": [32, 256], "model": ["vgg16", "resnet50"] } param_grid_hetro = { "learning_rate": [1e-4, 1e-4], "lambda_value": [1e-4, 1e-4], "batch_size": [4, 128], "model": ["nasnetmobile", "mobilenetv2"], 'p': 0.8, 'hetro': True, 'fast': 38, 'slow': 10, 'total': 48 } param_grid_scalability = { "learning_rate": [1e-3, 1e-4, 1e-5, 1e-6], "lambda_value": [1e-4, 1e-6], "batch_size": [32], "model": ["resnet50"] } param_grid_model_size = { 's': { "learning_rate": [1e-4, 1e-6], "lambda_value": [1e-3, 1e-4, 1e-5, 1e-6], "batch_size": [32], "model": ["mobilenetv2"] }, 'm': { "learning_rate": [1e-4, 1e-6], "lambda_value": [1e-3, 1e-4, 1e-5, 1e-6], "batch_size": [32], "model": ["resnet50"] }, 'l': { "learning_rate": [1e-4, 1e-6], "lambda_value": [1e-3, 1e-4, 1e-5, 1e-6], "batch_size": [32], "model": ["resnet152"] }, 'x': { "learning_rate": [1e-4, 1e-6], "lambda_value": [1e-3, 1e-4, 1e-5, 1e-6], "batch_size": [32], "model": ["vgg16"] }, } param_grid_best_model = { "learning_rate": [1e-4], "lambda_value": [1e-4], "batch_size": [32], "model": ["resnet50"] } param_grid_hyperopt = { "learning_rate": [0.00001, 0.1], "lambda_value": [1e-4, 1e-6], "batch_size": [16, 256], "model": ["resnet18", "resnet34"] }
python
def ejercicio01MCM(): #Definir variables y otros print("--> EJERCICIO 01 <--") notaFinal=round(0.0) #Datos de entrada n1=float(input("Ingrese la 1ra nota: ")) n2=float(input("Ingrese la 2da nota: ")) n3=float(input("Ingrese la 2da nota: ")) n4=float(input("Ingrese la 4ta nota: ")) #Proceso notaFinal=(n1*0.2+n2*0.15+n3*0.15+n4*0.5) #Datos de salida print("La nota final del curso es:",notaFinal) ejercicio01MCM() print("") def ejercicio02MCM(): #Definir variables y otros print("--> EJERCICIO 02 <--") puntos=0 salariomin=0 bono=0 #Datos de entrada puntos=int(input("Ingrese los puntos: ")) salariomin=int(input("Ingrese el salario minimo: ")) #Proceso if puntos>=50 and puntos<=100: bono=(salariomin*0.10) else: bono=("Nada, sera para la proxima") if puntos>=101 and puntos<=150: bono=(salariomin*0.40) elif puntos>=151: bono=(salariomin*0.70) #Datos de salida print("El bono que recibira es:",bono) ejercicio02MCM() print("") def ejercicio03MCM(): #Definir variables y otros print("--> EJERCICIO 03 <--") edad=0 sexo=0 vacuna="" #Datos de entrada edad=int(input("Ingrese la edad: ")) sexo=input("Ingrese sexo: ") #Proceso if sexo=="mujer" or sexo=="hombre" and edad>70: vacuna=("Tipo C") if sexo=="mujer" and edad>=16 and edad<=69: vacuna=("Tipo B") elif sexo=="hombre" and edad>=16 and edad<=69: vacuna=("Tipo A") if sexo=="mujer" or sexo=="hombre" and edad<16: vacuna=("Tipo A") #Datos de salida print("Recibira la vacuna :", vacuna) ejercicio03MCM() print("") def ejercicio04MCM(): #Definir variables y otros print("--> EJERCICIO 04 <--") operador=0 resultado=0 #Datos de entrada operador=input("Ingrese el operador aritmetico: ") n1=int(input("Ingrese el 1er numero: ")) n2=int(input("Ingrese el 2do numero: ")) #Proceso if operador=="suma" or operador=="+": resultado=n1+n2 if operador=="resta" or operador=="-": resultado=n1-n2 elif operador=="division" or operador=="/": resultado=n1/n2 if operador=="multiplicacion" or operador=="*": resultado=n1*n2 elif operador=="potencia" or operador=="^": resultado=n1**n2 #Datos de salida print("Los resultados son:", resultado) ejercicio04MCM() print("")
python
from __future__ import absolute_import from django.test import RequestFactory from exam import fixture from mock import patch from sentry.middleware.stats import RequestTimingMiddleware, add_request_metric_tags from sentry.testutils import TestCase from sentry.testutils.helpers.faux import Mock class RequestTimingMiddlewareTest(TestCase): middleware = fixture(RequestTimingMiddleware) factory = fixture(RequestFactory) @patch('sentry.utils.metrics.incr') def test_records_default_api_metrics(self, incr): request = self.factory.get('/') request._view_path = '/' response = Mock(status_code=200) self.middleware.process_response(request, response) incr.assert_called_with( 'view.response', instance=request._view_path, tags={ 'method': 'GET', 'status_code': 200, }, skip_internal=False, ) @patch('sentry.utils.metrics.incr') def test_records_endpoint_specific_metrics(self, incr): request = self.factory.get('/') request._view_path = '/' request._metric_tags = {'a': 'b'} response = Mock(status_code=200) self.middleware.process_response(request, response) incr.assert_called_with( 'view.response', instance=request._view_path, tags={ 'method': 'GET', 'status_code': 200, 'a': 'b', }, skip_internal=False, ) @patch('sentry.utils.metrics.incr') def test_add_request_metric_tags(self, incr): request = self.factory.get('/') request._view_path = '/' add_request_metric_tags(request, foo='bar') response = Mock(status_code=200) self.middleware.process_response(request, response) incr.assert_called_with( 'view.response', instance=request._view_path, tags={ 'method': 'GET', 'status_code': 200, 'foo': 'bar', }, skip_internal=False, )
python
from django.conf.urls import url from django.urls import path from rest.quiklash import views from rest.push_the_buttons.views import PushTheButtonView urlpatterns = [ path('api/qa/game/start', views.QuicklashMainGame.as_view()), path('api/qa/question/new', views.QuiklashQuestionListView.as_view()), path('api/qa/question/answer', views.QuiklashQuestionAnswer.as_view()), # path('api/qa/voting', PushTheButtonView.as_view()), # path('api/qa/vote', views.PlayerView.as_view()), ]
python
# coding: utf-8 from __future__ import annotations from datetime import date, datetime # noqa: F401 import re # noqa: F401 from typing import Any, Dict, List, Optional # noqa: F401 from pydantic import AnyUrl, BaseModel, EmailStr, validator # noqa: F401 from acapy_wrapper.models.indy_proof_requested_proof_predicate import ( IndyProofRequestedProofPredicate, ) from acapy_wrapper.models.indy_proof_requested_proof_revealed_attr import ( IndyProofRequestedProofRevealedAttr, ) from acapy_wrapper.models.indy_proof_requested_proof_revealed_attr_group import ( IndyProofRequestedProofRevealedAttrGroup, ) class IndyProofRequestedProof(BaseModel): """NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech). Do not edit the class manually. IndyProofRequestedProof - a model defined in OpenAPI predicates: The predicates of this IndyProofRequestedProof [Optional]. revealed_attr_groups: The revealed_attr_groups of this IndyProofRequestedProof [Optional]. revealed_attrs: The revealed_attrs of this IndyProofRequestedProof [Optional]. self_attested_attrs: The self_attested_attrs of this IndyProofRequestedProof [Optional]. unrevealed_attrs: The unrevealed_attrs of this IndyProofRequestedProof [Optional]. """ predicates: Optional[Dict[str, IndyProofRequestedProofPredicate]] = None revealed_attr_groups: Optional[ Dict[str, IndyProofRequestedProofRevealedAttrGroup] ] = None revealed_attrs: Optional[Dict[str, IndyProofRequestedProofRevealedAttr]] = None self_attested_attrs: Optional[Dict[str, Any]] = None unrevealed_attrs: Optional[Dict[str, Any]] = None IndyProofRequestedProof.update_forward_refs()
python
# Basic training configuration file from pathlib import Path from torchvision.transforms import RandomVerticalFlip, RandomHorizontalFlip, CenterCrop from torchvision.transforms import RandomApply, RandomAffine from torchvision.transforms import ToTensor, Normalize from common.dataset import get_test_data_loader SEED = 12345 DEBUG = True OUTPUT_PATH = "output" dataset_path = Path("/home/fast_storage/imaterialist-challenge-furniture-2018/") SAMPLE_SUBMISSION_PATH = dataset_path / "sample_submission_randomlabel.csv" TEST_TRANSFORMS = [ RandomApply( [RandomAffine(degrees=45, translate=(0.1, 0.1), scale=(0.7, 1.2), resample=2), ], p=0.5 ), CenterCrop(size=350), RandomHorizontalFlip(p=0.5), RandomVerticalFlip(p=0.5), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ] N_CLASSES = 128 BATCH_SIZE = 32 NUM_WORKERS = 8 TEST_LOADER = get_test_data_loader( dataset_path=dataset_path / "test_400x400", test_data_transform=TEST_TRANSFORMS, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS, pin_memory=True) MODEL = (Path(OUTPUT_PATH) / "training_FurnitureSqueezeNet350_20180414_1610" / "model_FurnitureSqueezeNet350_47_val_loss=0.8795085.pth").as_posix() N_TTA = 10
python
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright 2021 Red Hat # GNU General Public License v3.0+ # (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) """ The module file for nxos_bgp_global """ from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = """ module: nxos_bgp_global short_description: BGP Global resource module. description: - This module manages global BGP configuration on devices running Cisco NX-OS. version_added: 1.4.0 notes: - Tested against NX-OS 9.3.6. - Unsupported for Cisco MDS - This module works with connection C(network_cli) and C(httpapi). author: Nilashish Chakraborty (@NilashishC) options: running_config: description: - This option is used only with state I(parsed). - The value of this option should be the output received from the NX-OS device by executing the command B(show running-config | section '^router bgp'). - The state I(parsed) reads the configuration from C(running_config) option and transforms it into Ansible structured data as per the resource module's argspec and the value is then returned in the I(parsed) key within the result. type: str config: description: A list of BGP process configuration. type: dict suboptions: as_number: description: Autonomous System Number of the router. type: str affinity_group: description: Configure an affinity group. type: dict suboptions: group_id: description: Affinity Group ID. type: int bestpath: &bestpath description: Define the default bestpath selection algorithm. type: dict suboptions: always_compare_med: description: Compare MED on paths from different AS. type: bool as_path: description: AS-Path. type: dict suboptions: ignore: description: Ignore AS-Path during bestpath selection. type: bool multipath_relax: description: Relax AS-Path restriction when choosing multipaths. type: bool compare_neighborid: description: When more paths are available than max path config, use neighborid as tie-breaker. type: bool compare_routerid: description: Compare router-id for identical EBGP paths. type: bool cost_community_ignore: description: Ignore cost communities in bestpath selection. type: bool igp_metric_ignore: description: Ignore IGP metric for next-hop during bestpath selection. type: bool med: description: MED type: dict suboptions: confed: description: Compare MED only from paths originated from within a confederation. type: bool missing_as_worst: description: Treat missing MED as highest MED. type: bool non_deterministic: description: Not always pick the best-MED path among paths from same AS. type: bool cluster_id: &cluster_id description: Configure Route Reflector Cluster-ID. type: str confederation: &confederation description: AS confederation parameters. type: dict suboptions: identifier: description: Set routing domain confederation AS. type: str peers: description: Peer ASs in BGP confederation. type: list elements: str disable_policy_batching: description: Disable batching evaluation of outbound policy for a peer. type: dict suboptions: set: description: Set policy batching. type: bool ipv4: description: IPv4 address-family settings. type: dict suboptions: prefix_list: description: Name of prefix-list to apply. type: str ipv6: description: IPv6 address-family settings. type: dict suboptions: prefix_list: description: Name of prefix-list to apply. type: str nexthop: description: Batching based on nexthop. type: bool dynamic_med_interval: description: Sets the interval for dampening of med changes. type: int enforce_first_as: description: Enforce neighbor AS is the first AS in AS-PATH attribute (EBGP). type: bool enhanced_error: description: Enable BGP Enhanced error handling. type: bool fabric_soo: description: Fabric site of origin. type: str fast_external_fallover: description: Immediately reset the session if the link to a directly connected BGP peer goes down. type: bool flush_routes: description: Flush routes in RIB upon controlled restart. type: bool graceful_restart: &graceful_restart description: Configure Graceful Restart functionality. type: dict suboptions: set: description: Enable graceful-restart. type: bool restart_time: description: Maximum time for restart advertised to peers. type: int stalepath_time: description: Maximum time to keep a restarting peer's stale routes. type: int helper: description: Configure Graceful Restart Helper mode functionality. type: bool graceful_shutdown: description: Graceful-shutdown for BGP protocol. type: dict suboptions: activate: description: Send graceful-shutdown community on all routes. type: dict suboptions: set: description: Activiate graceful-shutdown. type: bool route_map: description: Apply route-map to modify attributes for outbound. type: str aware: description: Lower preference of routes carrying graceful-shutdown community. type: bool isolate: description: Isolate this router from BGP perspective. type: dict suboptions: set: description: Withdraw remote BGP routes to isolate this router. type: bool include_local: description: Withdraw both local and remote BGP routes. type: bool log_neighbor_changes: &log_nbr description: Log a message for neighbor up/down event. type: bool maxas_limit: &maxas_limit description: Allow AS-PATH attribute from EBGP neighbor imposing a limit on number of ASes. type: int neighbors: &nbr description: Configure BGP neighbors. type: list elements: dict suboptions: neighbor_address: description: IP address/Prefix of the neighbor or interface. type: str required: True bfd: description: Bidirectional Fast Detection for the neighbor. type: dict suboptions: set: description: Set BFD for this neighbor. type: bool singlehop: description: Single-hop session. type: bool multihop: description: Multihop session. type: dict suboptions: set: description: Set BFD multihop. type: bool interval: description: Configure BFD session interval parameters. type: dict suboptions: tx_interval: description: TX interval in milliseconds. type: int min_rx_interval: description: Minimum RX interval. type: int multiplier: description: Detect Multiplier. type: int neighbor_affinity_group: description: Configure an affinity group. type: dict suboptions: group_id: description: Affinity Group ID. type: int bmp_activate_server: description: Specify server ID for activating BMP monitoring for the peer. type: int capability: description: Capability. type: dict suboptions: suppress_4_byte_as: description: Suppress 4-byte AS Capability. type: bool description: description: Neighbor specific descripion. type: str disable_connected_check: description: Disable check for directly connected peer. type: bool dont_capability_negotiate: description: Don't negotiate capability with this neighbor. type: bool dscp: description: Set dscp value for tcp transport. type: str dynamic_capability: description: Dynamic Capability type: bool ebgp_multihop: description: Specify multihop TTL for remote peer. type: int graceful_shutdown: description: Graceful-shutdown for this neighbor. type: dict suboptions: activate: description: Send graceful-shutdown community. type: dict suboptions: set: description: Set activate. type: bool route_map: description: Apply route-map to modify attributes for outbound. type: str inherit: description: Inherit a template. type: dict suboptions: peer: description: Peer template to inherit. type: str peer_session: description: Peer-session template to inherit. type: str local_as: description: Specify the local-as number for the eBGP neighbor. type: str log_neighbor_changes: description: Log message for neighbor up/down event. type: dict suboptions: set: description: - Set log-neighbor-changes. type: bool disable: description: - Disable logging of neighbor up/down event. type: bool low_memory: description: Behaviour in low memory situations. type: dict suboptions: exempt: description: Do not shutdown this peer when under memory pressure. type: bool password: description: Configure a password for neighbor. type: dict suboptions: encryption: description: - 0 specifies an UNENCRYPTED neighbor password. - 3 specifies an 3DES ENCRYPTED neighbor password will follow. - 7 specifies a Cisco type 7 ENCRYPTED neighbor password will follow. type: int key: description: Authentication password. type: str path_attribute: description: BGP path attribute optional filtering. type: list elements: dict suboptions: action: description: Action. type: str choices: ["discard", "treat-as-withdraw"] type: description: Path attribute type type: int range: description: Path attribute range. type: dict suboptions: start: description: Path attribute range start value. type: int end: description: Path attribute range end value. type: int peer_type: description: Neighbor facing type: str choices: ["fabric-border-leaf", "fabric-external"] remote_as: description: Specify Autonomous System Number of the neighbor. type: str remove_private_as: description: Remove private AS number from outbound updates. type: dict suboptions: set: description: Remove private AS. type: bool replace_as: description: Replace. type: bool all: description: All. type: bool shutdown: description: Administratively shutdown this neighbor. type: bool timers: description: Configure keepalive and hold timers. type: dict suboptions: keepalive: description: Keepalive interval (seconds). type: int holdtime: description: Holdtime (seconds). type: int transport: description: BGP transport connection. type: dict suboptions: connection_mode: description: Specify type of connection. type: dict suboptions: passive: description: Allow passive connection setup only. type: bool ttl_security: description: Enable TTL Security Mechanism. type: dict suboptions: hops: description: Specify hop count for remote peer. type: int update_source: description: Specify source of BGP session and updates. type: str neighbor_down: &nbr_down description: Handle BGP neighbor down event, due to various reasons. type: dict suboptions: fib_accelerate: description: Accelerate the hardware updates for IP/IPv6 adjacencies for neighbor. type: bool nexthop: description: Nexthop resolution options. type: dict suboptions: suppress_default_resolution: description: Prohibit use of default route for nexthop address resolution. type: bool rd: description: Secondary Route Distinguisher for vxlan multisite border gateway. type: dict suboptions: dual: description: Generate Secondary RD for all VRFs and L2VNIs. type: bool id: description: Specify 2 byte value for ID. type: int reconnect_interval: &reconn_intv description: Configure connection reconnect interval. type: int router_id: &rtr_id description: Specify the IP address to use as router-id. type: str shutdown: &shtdwn description: Administratively shutdown BGP protocol. type: bool suppress_fib_pending: &suppr description: Advertise only routes that are programmed in hardware to peers. type: bool timers: &timers description: Configure bgp related timers. type: dict suboptions: bestpath_limit: description: Configure timeout for first bestpath after restart. type: dict suboptions: timeout: description: Bestpath timeout (seconds). type: int always: description: Configure update-delay-always option. type: bool bgp: description: Configure different bgp keepalive and holdtimes. type: dict suboptions: keepalive: description: Keepalive interval (seconds). type: int holdtime: description: Holdtime (seconds). type: int prefix_peer_timeout: description: Prefix Peer timeout (seconds). type: int prefix_peer_wait: description: Configure wait timer for a prefix peer. type: int vrfs: description: Virtual Router Context configurations. type: list elements: dict suboptions: vrf: description: VRF name. type: str allocate_index: description: Configure allocate-index. type: int bestpath: *bestpath cluster_id: *cluster_id confederation: *confederation graceful_restart: *graceful_restart local_as: description: Specify the local-as for this vrf. type: str log_neighbor_changes: *log_nbr maxas_limit: *maxas_limit neighbors: *nbr neighbor_down: *nbr_down reconnect_interval: *reconn_intv router_id: *rtr_id timers: *timers state: description: - The state the configuration should be left in. - State I(purged) removes all the BGP configurations from the target device. Use caution with this state. - State I(deleted) only removes BGP attributes that this modules manages and does not negate the BGP process completely. Thereby, preserving address-family related configurations under BGP context. - Running states I(deleted) and I(replaced) will result in an error if there are address-family configuration lines present under a neighbor, or a vrf context that is to be removed. Please use the M(cisco.nxos.nxos_bgp_af) or M(cisco.nxos.nxos_bgp_neighbor_af) modules for prior cleanup. - States I(merged) and I(replaced) will result in a failure if BGP is already configured with a different ASN than what is provided in the task. In such cases, please use state I(purged) to remove the existing BGP process and proceed further. - Refer to examples for more details. type: str choices: - merged - replaced - deleted - purged - parsed - gathered - rendered default: merged """ EXAMPLES = """ # Using merged # Before state: # ------------- # Nexus9000v# show running-config | section "^router bgp" # Nexus9000v# - name: Merge the provided configuration with the existing running configuration cisco.nxos.nxos_bgp_global: config: as_number: 65563 router_id: 192.168.1.1 bestpath: as_path: multipath_relax: True compare_neighborid: True cost_community_ignore: True confederation: identifier: 42 peers: - 65020 - 65030 - 65040 log_neighbor_changes: True maxas_limit: 20 neighbors: - neighbor_address: 192.168.1.100 neighbor_affinity_group: group_id: 160 bmp_activate_server: 1 remote_as: 65563 description: NBR-1 low_memory: exempt: True - neighbor_address: 192.168.1.101 remote_as: 65563 password: encryption: 7 key: 12090404011C03162E neighbor_down: fib_accelerate: True vrfs: - vrf: site-1 allocate_index: 5000 local_as: 200 log_neighbor_changes: True neighbors: - neighbor_address: 198.51.100.1 description: site-1-nbr-1 password: encryption: 3 key: 13D4D3549493D2877B1DC116EE27A6BE remote_as: 65562 - neighbor_address: 198.51.100.2 remote_as: 65562 description: site-1-nbr-2 - vrf: site-2 local_as: 300 log_neighbor_changes: True neighbors: - neighbor_address: 203.0.113.2 description: site-2-nbr-1 password: encryption: 3 key: AF92F4C16A0A0EC5BDF56CF58BC030F6 remote_as: 65568 neighbor_down: fib_accelerate: True # Task output # ------------- # before: {} # # commands: # - router bgp 65563 # - bestpath as-path multipath-relax # - bestpath compare-neighborid # - bestpath cost-community ignore # - confederation identifier 42 # - log-neighbor-changes # - maxas-limit 20 # - neighbor-down fib-accelerate # - router-id 192.168.1.1 # - confederation peers 65020 65030 65040 # - neighbor 192.168.1.100 # - remote-as 65563 # - affinity-group 160 # - bmp-activate-server 1 # - description NBR-1 # - low-memory exempt # - neighbor 192.168.1.101 # - remote-as 65563 # - password 7 12090404011C03162E # - vrf site-1 # - allocate-index 5000 # - local-as 200 # - log-neighbor-changes # - neighbor 198.51.100.1 # - remote-as 65562 # - description site-1-nbr-1 # - password 3 13D4D3549493D2877B1DC116EE27A6BE # - neighbor 198.51.100.2 # - remote-as 65562 # - description site-1-nbr-2 # - vrf site-2 # - local-as 300 # - log-neighbor-changes # - neighbor-down fib-accelerate # - neighbor 203.0.113.2 # - remote-as 65568 # - description site-2-nbr-1 # - password 3 AF92F4C16A0A0EC5BDF56CF58BC030F6 # # after: # as_number: '65563' # bestpath: # as_path: # multipath_relax: true # compare_neighborid: true # cost_community_ignore: true # confederation: # identifier: '42' # peers: # - '65020' # - '65030' # - '65040' # log_neighbor_changes: true # maxas_limit: 20 # neighbor_down: # fib_accelerate: true # neighbors: # - bmp_activate_server: 1 # description: NBR-1 # low_memory: # exempt: true # neighbor_address: 192.168.1.100 # neighbor_affinity_group: # group_id: 160 # remote_as: '65563' # - neighbor_address: 192.168.1.101 # password: # encryption: 7 # key: 12090404011C03162E # remote_as: '65563' # router_id: 192.168.1.1 # vrfs: # - allocate_index: 5000 # local_as: '200' # log_neighbor_changes: true # neighbors: # - description: site-1-nbr-1 # neighbor_address: 198.51.100.1 # password: # encryption: 3 # key: 13D4D3549493D2877B1DC116EE27A6BE # remote_as: '65562' # - description: site-1-nbr-2 # neighbor_address: 198.51.100.2 # remote_as: '65562' # vrf: site-1 # - local_as: '300' # log_neighbor_changes: true # neighbor_down: # fib_accelerate: true # neighbors: # - description: site-2-nbr-1 # neighbor_address: 203.0.113.2 # password: # encryption: 3 # key: AF92F4C16A0A0EC5BDF56CF58BC030F6 # remote_as: '65568' # vrf: site-2 # After state: # ------------- # Nexus9000v# show running-config | section "^router bgp" # router bgp 65563 # router-id 192.168.1.1 # confederation identifier 42 # confederation peers 65020 65030 65040 # bestpath as-path multipath-relax # bestpath cost-community ignore # bestpath compare-neighborid # neighbor-down fib-accelerate # maxas-limit 20 # log-neighbor-changes # neighbor 192.168.1.100 # low-memory exempt # bmp-activate-server 1 # remote-as 65563 # description NBR-1 # affinity-group 160 # neighbor 192.168.1.101 # remote-as 65563 # password 7 12090404011C03162E # vrf site-1 # local-as 200 # log-neighbor-changes # allocate-index 5000 # neighbor 198.51.100.1 # remote-as 65562 # description site-1-nbr-1 # password 3 13D4D3549493D2877B1DC116EE27A6BE # neighbor 198.51.100.2 # remote-as 65562 # description site-1-nbr-2 # vrf site-2 # local-as 300 # neighbor-down fib-accelerate # log-neighbor-changes # neighbor 203.0.113.2 # remote-as 65568 # description site-2-nbr-1 # password 3 AF92F4C16A0A0EC5BDF56CF58BC030F6 # Using replaced # Before state: # ------------- # Nexus9000v# show running-config | section "^router bgp" # router bgp 65563 # router-id 192.168.1.1 # confederation identifier 42 # confederation peers 65020 65030 65040 # bestpath as-path multipath-relax # bestpath cost-community ignore # bestpath compare-neighborid # neighbor-down fib-accelerate # maxas-limit 20 # log-neighbor-changes # neighbor 192.168.1.100 # low-memory exempt # bmp-activate-server 1 # remote-as 65563 # description NBR-1 # affinity-group 160 # neighbor 192.168.1.101 # remote-as 65563 # password 7 12090404011C03162E # vrf site-1 # local-as 200 # log-neighbor-changes # allocate-index 5000 # neighbor 198.51.100.1 # remote-as 65562 # description site-1-nbr-1 # password 3 13D4D3549493D2877B1DC116EE27A6BE # neighbor 198.51.100.2 # remote-as 65562 # description site-1-nbr-2 # vrf site-2 # local-as 300 # neighbor-down fib-accelerate # log-neighbor-changes # neighbor 203.0.113.2 # remote-as 65568 # description site-2-nbr-1 # password 3 AF92F4C16A0A0EC5BDF56CF58BC030F6 - name: Replace BGP configuration with provided configuration cisco.nxos.nxos_bgp_global: config: as_number: 65563 router_id: 192.168.1.1 bestpath: compare_neighborid: True cost_community_ignore: True confederation: identifier: 42 peers: - 65020 - 65030 - 65050 maxas_limit: 40 neighbors: - neighbor_address: 192.168.1.100 neighbor_affinity_group: group_id: 160 bmp_activate_server: 1 remote_as: 65563 description: NBR-1 low_memory: exempt: True neighbor_down: fib_accelerate: True vrfs: - vrf: site-2 local_as: 300 log_neighbor_changes: True neighbors: - neighbor_address: 203.0.113.2 password: encryption: 7 key: 12090404011C03162E neighbor_down: fib_accelerate: True state: replaced # Task output # ------------- # before: # as_number: '65563' # bestpath: # as_path: # multipath_relax: true # compare_neighborid: true # cost_community_ignore: true # confederation: # identifier: '42' # peers: # - '65020' # - '65030' # - '65040' # log_neighbor_changes: true # maxas_limit: 20 # neighbor_down: # fib_accelerate: true # neighbors: # - bmp_activate_server: 1 # description: NBR-1 # low_memory: # exempt: true # neighbor_address: 192.168.1.100 # neighbor_affinity_group: # group_id: 160 # remote_as: '65563' # - neighbor_address: 192.168.1.101 # password: # encryption: 7 # key: 12090404011C03162E # remote_as: '65563' # router_id: 192.168.1.1 # vrfs: # - allocate_index: 5000 # local_as: '200' # log_neighbor_changes: true # neighbors: # - description: site-1-nbr-1 # neighbor_address: 198.51.100.1 # password: # encryption: 3 # key: 13D4D3549493D2877B1DC116EE27A6BE # remote_as: '65562' # - description: site-1-nbr-2 # neighbor_address: 198.51.100.2 # remote_as: '65562' # vrf: site-1 # - local_as: '300' # log_neighbor_changes: true # neighbor_down: # fib_accelerate: true # neighbors: # - description: site-2-nbr-1 # neighbor_address: 203.0.113.2 # password: # encryption: 3 # key: AF92F4C16A0A0EC5BDF56CF58BC030F6 # remote_as: '65568' # vrf: site-2 # # commands: # - router bgp 65563 # - no bestpath as-path multipath-relax # - no log-neighbor-changes # - maxas-limit 40 # - no confederation peers 65020 65030 65040 # - confederation peers 65020 65030 65050 # - no neighbor 192.168.1.101 # - vrf site-2 # - neighbor 203.0.113.2 # - no remote-as 65568 # - no description site-2-nbr-1 # - password 7 12090404011C03162E # - no vrf site-1 # after: # as_number: '65563' # bestpath: # compare_neighborid: true # cost_community_ignore: true # confederation: # identifier: '42' # peers: # - '65020' # - '65030' # - '65050' # maxas_limit: 40 # neighbor_down: # fib_accelerate: true # neighbors: # - bmp_activate_server: 1 # description: NBR-1 # low_memory: # exempt: true # neighbor_address: 192.168.1.100 # neighbor_affinity_group: # group_id: 160 # remote_as: '65563' # router_id: 192.168.1.1 # vrfs: # - local_as: '300' # log_neighbor_changes: true # neighbor_down: # fib_accelerate: true # neighbors: # - neighbor_address: 203.0.113.2 # password: # encryption: 7 # key: 12090404011C03162E # vrf: site-2 # # After state: # ------------- # Nexus9000v# show running-config | section "^router bgp" # router bgp 65563 # router-id 192.168.1.1 # confederation identifier 42 # confederation peers 65020 65030 65050 # bestpath cost-community ignore # bestpath compare-neighborid # neighbor-down fib-accelerate # maxas-limit 40 # neighbor 192.168.1.100 # low-memory exempt # bmp-activate-server 1 # remote-as 65563 # description NBR-1 # affinity-group 160 # vrf site-2 # local-as 300 # neighbor-down fib-accelerate # log-neighbor-changes # neighbor 203.0.113.2 # password 7 12090404011C03162E # Using deleted # Before state: # ------------- # Nexus9000v# show running-config | section "^router bgp" # router bgp 65563 # router-id 192.168.1.1 # confederation identifier 42 # confederation peers 65020 65030 65040 # bestpath as-path multipath-relax # bestpath cost-community ignore # bestpath compare-neighborid # neighbor-down fib-accelerate # maxas-limit 20 # log-neighbor-changes # address-family ipv4 unicast # default-metric 400 # suppress-inactive # default-information originate # address-family ipv6 multicast # wait-igp-convergence # redistribute eigrp eigrp-1 route-map site-1-rmap # neighbor 192.168.1.100 # low-memory exempt # bmp-activate-server 1 # remote-as 65563 # description NBR-1 # affinity-group 160 # neighbor 192.168.1.101 # remote-as 65563 # password 7 12090404011C03162E # vrf site-1 # local-as 200 # log-neighbor-changes # allocate-index 5000 # address-family ipv4 multicast # maximum-paths 40 # dampen-igp-metric 1200 # neighbor 198.51.100.1 # remote-as 65562 # description site-1-nbr-1 # password 3 13D4D3549493D2877B1DC116EE27A6BE # neighbor 198.51.100.2 # remote-as 65562 # description site-1-nbr-2 # vrf site-2 # local-as 300 # neighbor-down fib-accelerate # log-neighbor-changes # neighbor 203.0.113.2 # remote-as 65568 # description site-1-nbr-1 # password 3 AF92F4C16A0A0EC5BDF56CF58BC030F6 - name: Delete BGP configurations handled by this module cisco.nxos.nxos_bgp_global: state: deleted # Task output # ------------- # before: # as_number: '65563' # bestpath: # as_path: # multipath_relax: true # compare_neighborid: true # cost_community_ignore: true # confederation: # identifier: '42' # peers: # - '65020' # - '65030' # - '65040' # log_neighbor_changes: true # maxas_limit: 20 # neighbor_down: # fib_accelerate: true # neighbors: # - bmp_activate_server: 1 # description: NBR-1 # low_memory: # exempt: true # neighbor_address: 192.168.1.100 # neighbor_affinity_group: # group_id: 160 # remote_as: '65563' # - neighbor_address: 192.168.1.101 # password: # encryption: 7 # key: 12090404011C03162E # remote_as: '65563' # router_id: 192.168.1.1 # vrfs: # - allocate_index: 5000 # local_as: '200' # log_neighbor_changes: true # neighbors: # - description: site-1-nbr-1 # neighbor_address: 198.51.100.1 # password: # encryption: 3 # key: 13D4D3549493D2877B1DC116EE27A6BE # remote_as: '65562' # - description: site-1-nbr-2 # neighbor_address: 198.51.100.2 # remote_as: '65562' # vrf: site-1 # - local_as: '300' # log_neighbor_changes: true # neighbor_down: # fib_accelerate: true # neighbors: # - description: site-1-nbr-1 # neighbor_address: 203.0.113.2 # password: # encryption: 3 # key: AF92F4C16A0A0EC5BDF56CF58BC030F6 # remote_as: '65568' # vrf: site-2 # # commands: # - router bgp 65563 # - no bestpath as-path multipath-relax # - no bestpath compare-neighborid # - no bestpath cost-community ignore # - no confederation identifier 42 # - no log-neighbor-changes # - no maxas-limit 20 # - no neighbor-down fib-accelerate # - no router-id 192.168.1.1 # - no confederation peers 65020 65030 65040 # - no neighbor 192.168.1.100 # - no neighbor 192.168.1.101 # - no vrf site-1 # - no vrf site-2 # # after: # as_number: '65563' # # After state: # ------------- # Nexus9000v# show running-config | section "^router bgp" # router bgp 65563 # address-family ipv4 unicast # default-metric 400 # suppress-inactive # default-information originate # address-family ipv6 multicast # wait-igp-convergence # redistribute eigrp eigrp-1 route-map site-1-rmap # # Using purged # Before state: # ------------- # Nexus9000v# show running-config | section "^router bgp" # router bgp 65563 # router-id 192.168.1.1 # confederation identifier 42 # confederation peers 65020 65030 65040 # bestpath as-path multipath-relax # bestpath cost-community ignore # bestpath compare-neighborid # neighbor-down fib-accelerate # maxas-limit 20 # log-neighbor-changes # address-family ipv4 unicast # default-metric 400 # suppress-inactive # default-information originate # address-family ipv6 multicast # wait-igp-convergence # redistribute eigrp eigrp-1 route-map site-1-rmap # neighbor 192.168.1.100 # low-memory exempt # bmp-activate-server 1 # remote-as 65563 # description NBR-1 # affinity-group 160 # neighbor 192.168.1.101 # remote-as 65563 # password 7 12090404011C03162E # vrf site-1 # local-as 200 # log-neighbor-changes # allocate-index 5000 # address-family ipv4 multicast # maximum-paths 40 # dampen-igp-metric 1200 # neighbor 198.51.100.1 # remote-as 65562 # description site-1-nbr-1 # password 3 13D4D3549493D2877B1DC116EE27A6BE # neighbor 198.51.100.2 # remote-as 65562 # description site-1-nbr-2 # vrf site-2 # local-as 300 # neighbor-down fib-accelerate # log-neighbor-changes # neighbor 203.0.113.2 # remote-as 65568 # description site-1-nbr-1 # password 3 AF92F4C16A0A0EC5BDF56CF58BC030F6 - name: Purge all BGP configurations from the device cisco.nxos.nxos_bgp_global: state: purged # Task output # ------------- # before: # as_number: '65563' # bestpath: # as_path: # multipath_relax: true # compare_neighborid: true # cost_community_ignore: true # confederation: # identifier: '42' # peers: # - '65020' # - '65030' # - '65040' # log_neighbor_changes: true # maxas_limit: 20 # neighbor_down: # fib_accelerate: true # neighbors: # - bmp_activate_server: 1 # description: NBR-1 # low_memory: # exempt: true # neighbor_address: 192.168.1.100 # neighbor_affinity_group: # group_id: 160 # remote_as: '65563' # - neighbor_address: 192.168.1.101 # password: # encryption: 7 # key: 12090404011C03162E # remote_as: '65563' # router_id: 192.168.1.1 # vrfs: # - allocate_index: 5000 # local_as: '200' # log_neighbor_changes: true # neighbors: # - description: site-1-nbr-1 # neighbor_address: 198.51.100.1 # password: # encryption: 3 # key: 13D4D3549493D2877B1DC116EE27A6BE # remote_as: '65562' # - description: site-1-nbr-2 # neighbor_address: 198.51.100.2 # remote_as: '65562' # vrf: site-1 # - local_as: '300' # log_neighbor_changes: true # neighbor_down: # fib_accelerate: true # neighbors: # - description: site-1-nbr-1 # neighbor_address: 203.0.113.2 # password: # encryption: 3 # key: AF92F4C16A0A0EC5BDF56CF58BC030F6 # remote_as: '65568' # vrf: site-2 # # commands: # - no router bgp 65563 # # after: {} # # After state: # ------------- # Nexus9000v# show running-config | section "^router bgp" # Nexus9000v# # Using rendered - name: Render platform specific configuration lines (without connecting to the device) cisco.nxos.nxos_bgp_global: config: as_number: 65563 router_id: 192.168.1.1 bestpath: as_path: multipath_relax: True compare_neighborid: True cost_community_ignore: True confederation: identifier: 42 peers: - 65020 - 65030 - 65040 log_neighbor_changes: True maxas_limit: 20 neighbors: - neighbor_address: 192.168.1.100 neighbor_affinity_group: group_id: 160 bmp_activate_server: 1 remote_as: 65563 description: NBR-1 low_memory: exempt: True - neighbor_address: 192.168.1.101 remote_as: 65563 password: encryption: 7 key: 12090404011C03162E neighbor_down: fib_accelerate: True vrfs: - vrf: site-1 allocate_index: 5000 local_as: 200 log_neighbor_changes: True neighbors: - neighbor_address: 198.51.100.1 description: site-1-nbr-1 password: encryption: 3 key: 13D4D3549493D2877B1DC116EE27A6BE remote_as: 65562 - neighbor_address: 198.51.100.2 remote_as: 65562 description: site-1-nbr-2 - vrf: site-2 local_as: 300 log_neighbor_changes: True neighbors: - neighbor_address: 203.0.113.2 description: site-1-nbr-1 password: encryption: 3 key: AF92F4C16A0A0EC5BDF56CF58BC030F6 remote_as: 65568 neighbor_down: fib_accelerate: True # Task Output (redacted) # ----------------------- # rendered: # - router bgp 65563 # - bestpath as-path multipath-relax # - bestpath compare-neighborid # - bestpath cost-community ignore # - confederation identifier 42 # - log-neighbor-changes # - maxas-limit 20 # - neighbor-down fib-accelerate # - router-id 192.168.1.1 # - confederation peers 65020 65030 65040 # - neighbor 192.168.1.100 # - remote-as 65563 # - affinity-group 160 # - bmp-activate-server 1 # - description NBR-1 # - low-memory exempt # - neighbor 192.168.1.101 # - remote-as 65563 # - password 7 12090404011C03162E # - vrf site-1 # - allocate-index 5000 # - local-as 200 # - log-neighbor-changes # - neighbor 198.51.100.1 # - remote-as 65562 # - description site-1-nbr-1 # - password 3 13D4D3549493D2877B1DC116EE27A6BE # - neighbor 198.51.100.2 # - remote-as 65562 # - description site-1-nbr-2 # - vrf site-2 # - local-as 300 # - log-neighbor-changes # - neighbor-down fib-accelerate # - neighbor 203.0.113.2 # - remote-as 65568 # - description site-1-nbr-1 # - password 3 AF92F4C16A0A0EC5BDF56CF58BC030F6 # Using parsed # parsed.cfg # ------------ # router bgp 65563 # router-id 192.168.1.1 # confederation identifier 42 # confederation peers 65020 65030 65040 # bestpath as-path multipath-relax # bestpath cost-community ignore # bestpath compare-neighborid # neighbor-down fib-accelerate # maxas-limit 20 # log-neighbor-changes # neighbor 192.168.1.100 # low-memory exempt # bmp-activate-server 1 # remote-as 65563 # description NBR-1 # affinity-group 160 # neighbor 192.168.1.101 # remote-as 65563 # password 7 12090404011C03162E # vrf site-1 # local-as 200 # log-neighbor-changes # allocate-index 5000 # neighbor 198.51.100.1 # remote-as 65562 # description site-1-nbr-1 # password 3 13D4D3549493D2877B1DC116EE27A6BE # neighbor 198.51.100.2 # remote-as 65562 # description site-1-nbr-2 # vrf site-2 # local-as 300 # neighbor-down fib-accelerate # log-neighbor-changes # neighbor 203.0.113.2 # remote-as 65568 # description site-1-nbr-1 # password 3 AF92F4C16A0A0EC5BDF56CF58BC030F6 - name: Parse externally provided BGP config cisco.nxos.nxos_bgp_global: running_config: "{{ lookup('file', 'parsed.cfg') }}" state: parsed # Task output (redacted) # ----------------------- # parsed: # as_number: '65563' # bestpath: # as_path: # multipath_relax: true # compare_neighborid: true # cost_community_ignore: true # confederation: # identifier: '42' # peers: # - '65020' # - '65030' # - '65040' # log_neighbor_changes: true # maxas_limit: 20 # neighbor_down: # fib_accelerate: true # neighbors: # - bmp_activate_server: 1 # description: NBR-1 # low_memory: # exempt: true # neighbor_address: 192.168.1.100 # neighbor_affinity_group: # group_id: 160 # remote_as: '65563' # - neighbor_address: 192.168.1.101 # password: # encryption: 7 # key: 12090404011C03162E # remote_as: '65563' # router_id: 192.168.1.1 # vrfs: # - allocate_index: 5000 # local_as: '200' # log_neighbor_changes: true # neighbors: # - description: site-1-nbr-1 # neighbor_address: 198.51.100.1 # password: # encryption: 3 # key: 13D4D3549493D2877B1DC116EE27A6BE # remote_as: '65562' # - description: site-1-nbr-2 # neighbor_address: 198.51.100.2 # remote_as: '65562' # vrf: site-1 # - local_as: '300' # log_neighbor_changes: true # neighbor_down: # fib_accelerate: true # neighbors: # - description: site-1-nbr-1 # neighbor_address: 203.0.113.2 # password: # encryption: 3 # key: AF92F4C16A0A0EC5BDF56CF58BC030F6 # remote_as: '65568' # vrf: site-2 # Using gathered # existing config # # Nexus9000v# show running-config | section "^router bgp" # router bgp 65563 # router-id 192.168.1.1 # confederation identifier 42 # confederation peers 65020 65030 65050 # bestpath cost-community ignore # bestpath compare-neighborid # neighbor-down fib-accelerate # maxas-limit 40 # neighbor 192.168.1.100 # low-memory exempt # bmp-activate-server 1 # remote-as 65563 # description NBR-1 # affinity-group 160 # vrf site-1 # vrf site-2 # local-as 300 # neighbor-down fib-accelerate # log-neighbor-changes # neighbor 203.0.113.2 # password 7 12090404011C03162E - name: Gather BGP facts using gathered cisco.nxos.nxos_bgp_global: state: gathered # Task output (redacted) # ----------------------- # gathered: # as_number: '65563' # bestpath: # compare_neighborid: true # cost_community_ignore: true # confederation: # identifier: '42' # peers: # - '65020' # - '65030' # - '65050' # maxas_limit: 40 # neighbor_down: # fib_accelerate: true # neighbors: # - bmp_activate_server: 1 # description: NBR-1 # low_memory: # exempt: true # neighbor_address: 192.168.1.100 # neighbor_affinity_group: # group_id: 160 # remote_as: '65563' # router_id: 192.168.1.1 # vrfs: # - vrf: site-1 # - local_as: '300' # log_neighbor_changes: true # neighbor_down: # fib_accelerate: true # neighbors: # - neighbor_address: 203.0.113.2 # password: # encryption: 7 # key: 12090404011C03162E # vrf: site-2 # Remove a neighbor having AF configurations with state replaced (will fail) # Before state: # ------------- # Nexus9000v# show running-config | section "^router bgp" # router bgp 65536 # log-neighbor-changes # maxas-limit 20 # router-id 198.51.100.2 # neighbor 203.0.113.2 # address-family ipv4 unicast # next-hop-self # remote-as 65538 # affinity-group 160 # description NBR-1 # low-memory exempt # neighbor 192.0.2.1 # remote-as 65537 # password 7 12090404011C03162E - name: Remove a neighbor having AF configurations (should fail) cisco.nxos.nxos_bgp_global: config: as_number: 65536 router_id: 198.51.100.2 maxas_limit: 20 log_neighbor_changes: True neighbors: - neighbor_address: 192.0.2.1 remote_as: 65537 password: encryption: 7 key: 12090404011C03162E state: replaced # Task output (redacted) # ----------------------- # fatal: [Nexus9000v]: FAILED! => changed=false # msg: Neighbor 203.0.113.2 has address-family configurations. # Please use the nxos_bgp_neighbor_af module to remove those first. # Remove a VRF having AF configurations with state replaced (will fail) # Before state: # ------------- # Nexus9000v# show running-config | section "^router bgp" # router bgp 65536 # log-neighbor-changes # maxas-limit 20 # router-id 198.51.100.2 # neighbor 192.0.2.1 # remote-as 65537 # password 7 12090404011C03162E # vrf site-1 # address-family ipv4 unicast # default-information originate # neighbor 203.0.113.2 # remote-as 65538 # affinity-group 160 # description NBR-1 # low-memory exempt # vrf site-2 # neighbor-down fib-accelerate - name: Remove a VRF having AF configurations (should fail) cisco.nxos.nxos_bgp_global: config: as_number: 65536 router_id: 198.51.100.2 maxas_limit: 20 log_neighbor_changes: True neighbors: - neighbor_address: 192.0.2.1 remote_as: 65537 password: encryption: 7 key: 12090404011C03162E vrfs: - vrf: site-2 neighbor_down: fib_accelerate: True state: replaced # Task output (redacted) # ----------------------- # fatal: [Nexus9000v]: FAILED! => changed=false # msg: VRF site-1 has address-family configurations. # Please use the nxos_bgp_af module to remove those first. """ RETURN = """ before: description: The configuration prior to the model invocation. returned: always type: dict sample: > The configuration returned will always be in the same format of the parameters above. after: description: The resulting configuration model invocation. returned: when changed type: dict sample: > The configuration returned will always be in the same format of the parameters above. commands: description: The set of commands pushed to the remote device. returned: always type: list sample: - router bgp 65563 - maxas-limit 20 - router-id 192.168.1.1 - confederation peers 65020 65030 65040 - neighbor 192.168.1.100 - remote-as 65563 - affinity-group 160 - bmp-activate-server 1 - description NBR-1 - low-memory exempt - vrf site-1 - log-neighbor-changes - neighbor 198.51.100.1 - remote-as 65562 - description site-1-nbr-1 - password 3 13D4D3549493D2877B1DC116EE27A6BE """ from ansible.module_utils.basic import AnsibleModule from ansible_collections.cisco.nxos.plugins.module_utils.network.nxos.argspec.bgp_global.bgp_global import ( Bgp_globalArgs, ) from ansible_collections.cisco.nxos.plugins.module_utils.network.nxos.config.bgp_global.bgp_global import ( Bgp_global, ) def main(): """ Main entry point for module execution :returns: the result form module invocation """ module = AnsibleModule( argument_spec=Bgp_globalArgs.argument_spec, mutually_exclusive=[["config", "running_config"]], required_if=[ ["state", "merged", ["config"]], ["state", "replaced", ["config"]], ["state", "rendered", ["config"]], ["state", "parsed", ["running_config"]], ], supports_check_mode=True, ) result = Bgp_global(module).execute_module() module.exit_json(**result) if __name__ == "__main__": main()
python
print("merhaba") print("merhaba") print("merhaba") print("merhaba")
python
r""" Base class for polyhedra, part 6 Define methods related to plotting including affine hull projection. """ # **************************************************************************** # Copyright (C) 2008-2012 Marshall Hampton <[email protected]> # Copyright (C) 2011-2015 Volker Braun <[email protected]> # Copyright (C) 2012-2018 Frederic Chapoton # Copyright (C) 2013 Andrey Novoseltsev # Copyright (C) 2014-2017 Moritz Firsching # Copyright (C) 2014-2019 Thierry Monteil # Copyright (C) 2015 Nathann Cohen # Copyright (C) 2015-2017 Jeroen Demeyer # Copyright (C) 2015-2017 Vincent Delecroix # Copyright (C) 2015-2018 Dima Pasechnik # Copyright (C) 2015-2020 Jean-Philippe Labbe <labbe at math.huji.ac.il> # Copyright (C) 2015-2021 Matthias Koeppe # Copyright (C) 2016-2019 Daniel Krenn # Copyright (C) 2017 Marcelo Forets # Copyright (C) 2017-2018 Mark Bell # Copyright (C) 2019 Julian Ritter # Copyright (C) 2019-2020 Laith Rastanawi # Copyright (C) 2019-2020 Sophia Elia # Copyright (C) 2019-2021 Jonathan Kliem <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # https://www.gnu.org/licenses/ # **************************************************************************** from sage.misc.cachefunc import cached_method from sage.modules.vector_space_morphism import linear_transformation from sage.matrix.constructor import matrix from sage.modules.free_module_element import vector from sage.rings.qqbar import AA from sage.geometry.convex_set import AffineHullProjectionData from .base5 import Polyhedron_base5 class Polyhedron_base6(Polyhedron_base5): r""" Methods related to plotting including affine hull projection. TESTS:: sage: from sage.geometry.polyhedron.base6 import Polyhedron_base6 sage: P = polytopes.cube() sage: Polyhedron_base6.plot(P) Graphics3d Object sage: Polyhedron_base6.tikz(P) \begin{tikzpicture}% [x={(1.000000cm, 0.000000cm)}, y={(-0.000000cm, 1.000000cm)}, z={(0.000000cm, -0.000000cm)}, scale=1.000000, back/.style={loosely dotted, thin}, edge/.style={color=blue!95!black, thick}, facet/.style={fill=blue!95!black,fill opacity=0.800000}, vertex/.style={inner sep=1pt,circle,draw=green!25!black,fill=green!75!black,thick}] % % %% This TikZ-picture was produced with Sagemath version ... %% with the command: ._tikz_3d_in_3d and parameters: %% view = [0, 0, 1] %% angle = 0 %% scale = 1 %% edge_color = blue!95!black %% facet_color = blue!95!black %% opacity = 0.8 %% vertex_color = green %% axis = False <BLANKLINE> %% Coordinate of the vertices: %% \coordinate (1.00000, -1.00000, -1.00000) at (1.00000, -1.00000, -1.00000); \coordinate (1.00000, 1.00000, -1.00000) at (1.00000, 1.00000, -1.00000); \coordinate (1.00000, 1.00000, 1.00000) at (1.00000, 1.00000, 1.00000); \coordinate (1.00000, -1.00000, 1.00000) at (1.00000, -1.00000, 1.00000); \coordinate (-1.00000, -1.00000, 1.00000) at (-1.00000, -1.00000, 1.00000); \coordinate (-1.00000, -1.00000, -1.00000) at (-1.00000, -1.00000, -1.00000); \coordinate (-1.00000, 1.00000, -1.00000) at (-1.00000, 1.00000, -1.00000); \coordinate (-1.00000, 1.00000, 1.00000) at (-1.00000, 1.00000, 1.00000); %% %% %% Drawing edges in the back %% \draw[edge,back] (1.00000, -1.00000, -1.00000) -- (1.00000, 1.00000, -1.00000); \draw[edge,back] (1.00000, -1.00000, -1.00000) -- (1.00000, -1.00000, 1.00000); \draw[edge,back] (1.00000, -1.00000, -1.00000) -- (-1.00000, -1.00000, -1.00000); \draw[edge,back] (1.00000, 1.00000, -1.00000) -- (1.00000, 1.00000, 1.00000); \draw[edge,back] (1.00000, 1.00000, -1.00000) -- (-1.00000, 1.00000, -1.00000); \draw[edge,back] (-1.00000, -1.00000, 1.00000) -- (-1.00000, -1.00000, -1.00000); \draw[edge,back] (-1.00000, -1.00000, -1.00000) -- (-1.00000, 1.00000, -1.00000); \draw[edge,back] (-1.00000, 1.00000, -1.00000) -- (-1.00000, 1.00000, 1.00000); %% %% %% Drawing vertices in the back %% \node[vertex] at (1.00000, -1.00000, -1.00000) {}; \node[vertex] at (1.00000, 1.00000, -1.00000) {}; \node[vertex] at (-1.00000, 1.00000, -1.00000) {}; \node[vertex] at (-1.00000, -1.00000, -1.00000) {}; %% %% %% Drawing the facets %% \fill[facet] (-1.00000, 1.00000, 1.00000) -- (1.00000, 1.00000, 1.00000) -- (1.00000, -1.00000, 1.00000) -- (-1.00000, -1.00000, 1.00000) -- cycle {}; %% %% %% Drawing edges in the front %% \draw[edge] (1.00000, 1.00000, 1.00000) -- (1.00000, -1.00000, 1.00000); \draw[edge] (1.00000, 1.00000, 1.00000) -- (-1.00000, 1.00000, 1.00000); \draw[edge] (1.00000, -1.00000, 1.00000) -- (-1.00000, -1.00000, 1.00000); \draw[edge] (-1.00000, -1.00000, 1.00000) -- (-1.00000, 1.00000, 1.00000); %% %% %% Drawing the vertices in the front %% \node[vertex] at (1.00000, 1.00000, 1.00000) {}; \node[vertex] at (1.00000, -1.00000, 1.00000) {}; \node[vertex] at (-1.00000, -1.00000, 1.00000) {}; \node[vertex] at (-1.00000, 1.00000, 1.00000) {}; %% %% \end{tikzpicture} sage: Q = polytopes.hypercube(4) sage: Polyhedron_base6.show(Q) sage: Polyhedron_base6.schlegel_projection(Q) The projection of a polyhedron into 3 dimensions sage: R = polytopes.simplex(5) sage: Polyhedron_base6.affine_hull(R) A 5-dimensional polyhedron in ZZ^6 defined as the convex hull of 1 vertex and 5 lines sage: Polyhedron_base6.affine_hull_projection(R) A 5-dimensional polyhedron in ZZ^5 defined as the convex hull of 6 vertices """ def plot(self, point=None, line=None, polygon=None, # None means unspecified by the user wireframe='blue', fill='green', position=None, orthonormal=True, # whether to use orthonormal projections **kwds): r""" Return a graphical representation. INPUT: - ``point``, ``line``, ``polygon`` -- Parameters to pass to point (0d), line (1d), and polygon (2d) plot commands. Allowed values are: * A Python dictionary to be passed as keywords to the plot commands. * A string or triple of numbers: The color. This is equivalent to passing the dictionary ``{'color':...}``. * ``False``: Switches off the drawing of the corresponding graphics object - ``wireframe``, ``fill`` -- Similar to ``point``, ``line``, and ``polygon``, but ``fill`` is used for the graphics objects in the dimension of the polytope (or of dimension 2 for higher dimensional polytopes) and ``wireframe`` is used for all lower-dimensional graphics objects (default: 'green' for ``fill`` and 'blue' for ``wireframe``) - ``position`` -- positive number; the position to take the projection point in Schlegel diagrams. - ``orthonormal`` -- Boolean (default: True); whether to use orthonormal projections. - ``**kwds`` -- optional keyword parameters that are passed to all graphics objects. OUTPUT: A (multipart) graphics object. EXAMPLES:: sage: square = polytopes.hypercube(2) sage: point = Polyhedron([[1,1]]) sage: line = Polyhedron([[1,1],[2,1]]) sage: cube = polytopes.hypercube(3) sage: hypercube = polytopes.hypercube(4) By default, the wireframe is rendered in blue and the fill in green:: sage: square.plot() # optional - sage.plot Graphics object consisting of 6 graphics primitives sage: point.plot() # optional - sage.plot Graphics object consisting of 1 graphics primitive sage: line.plot() # optional - sage.plot Graphics object consisting of 2 graphics primitives sage: cube.plot() # optional - sage.plot Graphics3d Object sage: hypercube.plot() # optional - sage.plot Graphics3d Object Draw the lines in red and nothing else:: sage: square.plot(point=False, line='red', polygon=False) # optional - sage.plot Graphics object consisting of 4 graphics primitives sage: point.plot(point=False, line='red', polygon=False) # optional - sage.plot Graphics object consisting of 0 graphics primitives sage: line.plot(point=False, line='red', polygon=False) # optional - sage.plot Graphics object consisting of 1 graphics primitive sage: cube.plot(point=False, line='red', polygon=False) # optional - sage.plot Graphics3d Object sage: hypercube.plot(point=False, line='red', polygon=False) # optional - sage.plot Graphics3d Object Draw points in red, no lines, and a blue polygon:: sage: square.plot(point={'color':'red'}, line=False, polygon=(0,0,1)) # optional - sage.plot Graphics object consisting of 2 graphics primitives sage: point.plot(point={'color':'red'}, line=False, polygon=(0,0,1)) # optional - sage.plot Graphics object consisting of 1 graphics primitive sage: line.plot(point={'color':'red'}, line=False, polygon=(0,0,1)) # optional - sage.plot Graphics object consisting of 1 graphics primitive sage: cube.plot(point={'color':'red'}, line=False, polygon=(0,0,1)) # optional - sage.plot Graphics3d Object sage: hypercube.plot(point={'color':'red'}, line=False, polygon=(0,0,1)) # optional - sage.plot Graphics3d Object If we instead use the ``fill`` and ``wireframe`` options, the coloring depends on the dimension of the object:: sage: square.plot(fill='green', wireframe='red') # optional - sage.plot Graphics object consisting of 6 graphics primitives sage: point.plot(fill='green', wireframe='red') # optional - sage.plot Graphics object consisting of 1 graphics primitive sage: line.plot(fill='green', wireframe='red') # optional - sage.plot Graphics object consisting of 2 graphics primitives sage: cube.plot(fill='green', wireframe='red') # optional - sage.plot Graphics3d Object sage: hypercube.plot(fill='green', wireframe='red') # optional - sage.plot Graphics3d Object It is possible to draw polyhedra up to dimension 4, no matter what the ambient dimension is:: sage: hcube = polytopes.hypercube(5) sage: facet = hcube.facets()[0].as_polyhedron();facet A 4-dimensional polyhedron in ZZ^5 defined as the convex hull of 16 vertices sage: facet.plot() # optional - sage.plot Graphics3d Object TESTS:: sage: for p in square.plot(): # optional - sage.plot ....: print("{} {}".format(p.options()['rgbcolor'], p)) blue Point set defined by 4 point(s) blue Line defined by 2 points blue Line defined by 2 points blue Line defined by 2 points blue Line defined by 2 points green Polygon defined by 4 points sage: for p in line.plot(): # optional - sage.plot ....: print("{} {}".format(p.options()['rgbcolor'], p)) blue Point set defined by 2 point(s) green Line defined by 2 points sage: for p in point.plot(): # optional - sage.plot ....: print("{} {}".format(p.options()['rgbcolor'], p)) green Point set defined by 1 point(s) Draw the lines in red and nothing else:: sage: for p in square.plot(point=False, line='red', polygon=False): # optional - sage.plot ....: print("{} {}".format(p.options()['rgbcolor'], p)) red Line defined by 2 points red Line defined by 2 points red Line defined by 2 points red Line defined by 2 points Draw vertices in red, no lines, and a blue polygon:: sage: for p in square.plot(point={'color':'red'}, line=False, polygon=(0,0,1)): # optional - sage.plot ....: print("{} {}".format(p.options()['rgbcolor'], p)) red Point set defined by 4 point(s) (0, 0, 1) Polygon defined by 4 points sage: for p in line.plot(point={'color':'red'}, line=False, polygon=(0,0,1)): # optional - sage.plot ....: print("{} {}".format(p.options()['rgbcolor'], p)) red Point set defined by 2 point(s) sage: for p in point.plot(point={'color':'red'}, line=False, polygon=(0,0,1)): # optional - sage.plot ....: print("{} {}".format(p.options()['rgbcolor'], p)) red Point set defined by 1 point(s) Draw in red without wireframe:: sage: for p in square.plot(wireframe=False, fill="red"): # optional - sage.plot ....: print("{} {}".format(p.options()['rgbcolor'], p)) red Polygon defined by 4 points sage: for p in line.plot(wireframe=False, fill="red"): # optional - sage.plot ....: print("{} {}".format(p.options()['rgbcolor'], p)) red Line defined by 2 points sage: for p in point.plot(wireframe=False, fill="red"): # optional - sage.plot ....: print("{} {}".format(p.options()['rgbcolor'], p)) red Point set defined by 1 point(s) We try to draw the polytope in 2 or 3 dimensions:: sage: type(Polyhedron(ieqs=[(1,)]).plot()) # optional - sage.plot <class 'sage.plot.graphics.Graphics'> sage: type(polytopes.hypercube(1).plot()) # optional - sage.plot <class 'sage.plot.graphics.Graphics'> sage: type(polytopes.hypercube(2).plot()) # optional - sage.plot <class 'sage.plot.graphics.Graphics'> sage: type(polytopes.hypercube(3).plot()) # optional - sage.plot <class 'sage.plot.plot3d.base.Graphics3dGroup'> In 4d a projection to 3d is used:: sage: type(polytopes.hypercube(4).plot()) # optional - sage.plot <class 'sage.plot.plot3d.base.Graphics3dGroup'> sage: type(polytopes.hypercube(5).plot()) # optional - sage.plot Traceback (most recent call last): ... NotImplementedError: plotting of 5-dimensional polyhedra not implemented If the polyhedron is not full-dimensional, the :meth:`affine_hull_projection` is used if necessary:: sage: type(Polyhedron([(0,), (1,)]).plot()) # optional - sage.plot <class 'sage.plot.graphics.Graphics'> sage: type(Polyhedron([(0,0), (1,1)]).plot()) # optional - sage.plot <class 'sage.plot.graphics.Graphics'> sage: type(Polyhedron([(0,0,0), (1,1,1)]).plot()) # optional - sage.plot <class 'sage.plot.plot3d.base.Graphics3dGroup'> sage: type(Polyhedron([(0,0,0,0), (1,1,1,1)]).plot()) # optional - sage.plot <class 'sage.plot.graphics.Graphics'> sage: type(Polyhedron([(0,0,0,0,0), (1,1,1,1,1)]).plot()) # optional - sage.plot <class 'sage.plot.graphics.Graphics'> sage: type(Polyhedron([(0,0,0,0), (1,1,1,1), (1,0,0,0)]).plot()) # optional - sage.plot <class 'sage.plot.graphics.Graphics'> TESTS: Check that :trac:`30015` is fixed:: sage: fcube = polytopes.hypercube(4) sage: tfcube = fcube.face_truncation(fcube.faces(0)[0]) sage: sp = tfcube.schlegel_projection() sage: for face in tfcube.faces(2): ....: vertices = face.ambient_Vrepresentation() ....: indices = [sp.coord_index_of(vector(x)) for x in vertices] ....: projected_vertices = [sp.transformed_coords[i] for i in indices] ....: assert Polyhedron(projected_vertices).dim() == 2 """ def merge_options(*opts): merged = dict() for i in range(len(opts)): opt = opts[i] if opt is None: continue elif opt is False: return False elif isinstance(opt, (str, list, tuple)): merged['color'] = opt else: merged.update(opt) return merged d = min(self.dim(), 2) opts = [wireframe] * d + [fill] + [False] * (2-d) # The point/line/polygon options take precedence over wireframe/fill opts = [merge_options(opt1, opt2, kwds) for opt1, opt2 in zip(opts, [point, line, polygon])] def project(polyhedron, ortho): if polyhedron.ambient_dim() <= 3: return polyhedron.projection() elif polyhedron.dim() <= 3: if ortho: return polyhedron.affine_hull_projection(orthonormal=True, extend=True).projection() else: return polyhedron.affine_hull_projection().projection() elif polyhedron.dimension() == 4: # For 4d-polyhedron, we can use schlegel projections: return polyhedron.schlegel_projection(position=position) else: return polyhedron.projection() projection = project(self, orthonormal) try: plot_method = projection.plot except AttributeError: raise NotImplementedError('plotting of {0}-dimensional polyhedra not implemented' .format(self.ambient_dim())) return plot_method(*opts) def show(self, **kwds): r""" Display graphics immediately This method attempts to display the graphics immediately, without waiting for the currently running code (if any) to return to the command line. Be careful, calling it from within a loop will potentially launch a large number of external viewer programs. INPUT: - ``kwds`` -- optional keyword arguments. See :meth:`plot` for the description of available options. OUTPUT: This method does not return anything. Use :meth:`plot` if you want to generate a graphics object that can be saved or further transformed. EXAMPLES:: sage: square = polytopes.hypercube(2) sage: square.show(point='red') # optional - sage.plot """ self.plot(**kwds).show() def tikz(self, view=[0, 0, 1], angle=0, scale=1, edge_color='blue!95!black', facet_color='blue!95!black', opacity=0.8, vertex_color='green', axis=False): r""" Return a string ``tikz_pic`` consisting of a tikz picture of ``self`` according to a projection ``view`` and an angle ``angle`` obtained via the threejs viewer. INPUT: - ``view`` - list (default: [0,0,1]) representing the rotation axis (see note below). - ``angle`` - integer (default: 0) angle of rotation in degree from 0 to 360 (see note below). - ``scale`` - integer (default: 1) specifying the scaling of the tikz picture. - ``edge_color`` - string (default: 'blue!95!black') representing colors which tikz recognize. - ``facet_color`` - string (default: 'blue!95!black') representing colors which tikz recognize. - ``vertex_color`` - string (default: 'green') representing colors which tikz recognize. - ``opacity`` - real number (default: 0.8) between 0 and 1 giving the opacity of the front facets. - ``axis`` - Boolean (default: False) draw the axes at the origin or not. OUTPUT: - LatexExpr -- containing the TikZ picture. .. NOTE:: This is a wrapper of a method of the projection object `self.projection()`. See :meth:`~sage.geometry.polyhedron.plot.Projection.tikz` for more detail. The inputs ``view`` and ``angle`` can be obtained by visualizing it using ``.show(aspect_ratio=1)``. This will open an interactive view in your default browser, where you can rotate the polytope. Once the desired view angle is found, click on the information icon in the lower right-hand corner and select *Get Viewpoint*. This will copy a string of the form '[x,y,z],angle' to your local clipboard. Go back to Sage and type ``Img = P.tikz([x,y,z],angle)``. The inputs ``view`` and ``angle`` can also be obtained from the viewer Jmol:: 1) Right click on the image 2) Select ``Console`` 3) Select the tab ``State`` 4) Scroll to the line ``moveto`` It reads something like:: moveto 0.0 {x y z angle} Scale The ``view`` is then [x,y,z] and ``angle`` is angle. The following number is the scale. Jmol performs a rotation of ``angle`` degrees along the vector [x,y,z] and show the result from the z-axis. EXAMPLES:: sage: co = polytopes.cuboctahedron() sage: Img = co.tikz([0,0,1], 0) sage: print('\n'.join(Img.splitlines()[:9])) \begin{tikzpicture}% [x={(1.000000cm, 0.000000cm)}, y={(0.000000cm, 1.000000cm)}, z={(0.000000cm, 0.000000cm)}, scale=1.000000, back/.style={loosely dotted, thin}, edge/.style={color=blue!95!black, thick}, facet/.style={fill=blue!95!black,fill opacity=0.800000}, vertex/.style={inner sep=1pt,circle,draw=green!25!black,fill=green!75!black,thick}] sage: print('\n'.join(Img.splitlines()[12:21])) %% with the command: ._tikz_3d_in_3d and parameters: %% view = [0, 0, 1] %% angle = 0 %% scale = 1 %% edge_color = blue!95!black %% facet_color = blue!95!black %% opacity = 0.8 %% vertex_color = green %% axis = False sage: print('\n'.join(Img.splitlines()[22:26])) %% Coordinate of the vertices: %% \coordinate (-1.00000, -1.00000, 0.00000) at (-1.00000, -1.00000, 0.00000); \coordinate (-1.00000, 0.00000, -1.00000) at (-1.00000, 0.00000, -1.00000); """ return self.projection().tikz(view, angle, scale, edge_color, facet_color, opacity, vertex_color, axis) def _rich_repr_(self, display_manager, **kwds): r""" Rich Output Magic Method See :mod:`sage.repl.rich_output` for details. EXAMPLES:: sage: from sage.repl.rich_output import get_display_manager sage: dm = get_display_manager() sage: polytopes.hypercube(2)._rich_repr_(dm) OutputPlainText container The ``supplemental_plot`` preference lets us control whether this object is shown as text or picture+text:: sage: dm.preferences.supplemental_plot 'never' sage: del dm.preferences.supplemental_plot sage: polytopes.hypercube(3) A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices (use the .plot() method to plot) sage: dm.preferences.supplemental_plot = 'never' """ prefs = display_manager.preferences is_small = (self.ambient_dim() <= 2) can_plot = (prefs.supplemental_plot != 'never') plot_graph = can_plot and (prefs.supplemental_plot == 'always' or is_small) # Under certain circumstances we display the plot as graphics if plot_graph: plot_kwds = dict(kwds) plot_kwds.setdefault('title', repr(self)) output = self.plot(**plot_kwds)._rich_repr_(display_manager) if output is not None: return output # create text for non-graphical output if can_plot: text = '{0} (use the .plot() method to plot)'.format(repr(self)) else: text = repr(self) # latex() produces huge tikz environment, override tp = display_manager.types if (prefs.text == 'latex' and tp.OutputLatex in display_manager.supported_output()): return tp.OutputLatex(r'\text{{{0}}}'.format(text)) return tp.OutputPlainText(text) @cached_method def gale_transform(self): r""" Return the Gale transform of a polytope as described in the reference below. OUTPUT: A list of vectors, the Gale transform. The dimension is the dimension of the affine dependencies of the vertices of the polytope. EXAMPLES: This is from the reference, for a triangular prism:: sage: p = Polyhedron(vertices = [[0,0],[0,1],[1,0]]) sage: p2 = p.prism() sage: p2.gale_transform() ((-1, 0), (0, -1), (1, 1), (-1, -1), (1, 0), (0, 1)) REFERENCES: Lectures in Geometric Combinatorics, R.R.Thomas, 2006, AMS Press. .. SEEALSO:: :func`~sage.geometry.polyhedron.library.gale_transform_to_polyhedron`. TESTS:: sage: P = Polyhedron(rays=[[1,0,0]]) sage: P.gale_transform() Traceback (most recent call last): ... ValueError: not a polytope Check that :trac:`29073` is fixed:: sage: P = polytopes.icosahedron(exact=False) sage: sum(P.gale_transform()).norm() < 1e-15 True """ if not self.is_compact(): raise ValueError('not a polytope') A = matrix(self.n_vertices(), [[1]+x for x in self.vertex_generator()]) A = A.transpose() A_ker = A.right_kernel_matrix(basis='computed') return tuple(A_ker.columns()) def _test_gale_transform(self, tester=None, **options): r""" Run tests on the method :meth:`.gale_transform` and its inverse :meth:`~sage.geometry.polyhedron.library.gale_transform_to_polytope`. TESTS:: sage: polytopes.cross_polytope(3)._test_gale_transform() """ if tester is None: tester = self._tester(**options) if not self.is_compact(): with tester.assertRaises(ValueError): self.gale_transform() return # Check :trac:`29073`. if not self.base_ring().is_exact() and self.ambient_dim() > 0: g = self.gale_transform() tester.assertTrue(sum(g).norm() < 1e-10 or sum(g).norm()/matrix(g).norm() < 1e-13) return # Prevent very long doctests. if self.n_vertices() + self.n_rays() > 50 or self.n_facets() > 50: return if not self.is_empty(): # ``gale_transform_to_polytope`` needs at least one vertex to work. from sage.geometry.polyhedron.library import gale_transform_to_polytope g = self.gale_transform() P = gale_transform_to_polytope(g, base_ring=self.base_ring(), backend=self.backend()) try: import sage.graphs.graph except ImportError: pass else: tester.assertTrue(self.is_combinatorially_isomorphic(P)) def projection(self, projection=None): r""" Return a projection object. INPUT: - ``proj`` -- a projection function OUTPUT: The identity projection. This is useful for plotting polyhedra. .. SEEALSO:: :meth:`~sage.geometry.polyhedron.base.Polyhedron_base.schlegel_projection` for a more interesting projection. EXAMPLES:: sage: p = polytopes.hypercube(3) sage: proj = p.projection() sage: proj The projection of a polyhedron into 3 dimensions """ from .plot import Projection if projection is not None: self.projection = Projection(self, projection) else: self.projection = Projection(self) return self.projection def render_solid(self, **kwds): r""" Return a solid rendering of a 2- or 3-d polytope. EXAMPLES:: sage: p = polytopes.hypercube(3) sage: p_solid = p.render_solid(opacity = .7) sage: type(p_solid) <class 'sage.plot.plot3d.index_face_set.IndexFaceSet'> """ proj = self.projection() if self.ambient_dim() == 3: return proj.render_solid_3d(**kwds) if self.ambient_dim() == 2: return proj.render_fill_2d(**kwds) raise ValueError("render_solid is only defined for 2 and 3 dimensional polyhedra") def render_wireframe(self, **kwds): r""" For polytopes in 2 or 3 dimensions, return the edges as a list of lines. EXAMPLES:: sage: p = Polyhedron([[1,2,],[1,1],[0,0]]) sage: p_wireframe = p.render_wireframe() sage: p_wireframe._objects [Line defined by 2 points, Line defined by 2 points, Line defined by 2 points] """ proj = self.projection() if self.ambient_dim() == 3: return proj.render_wireframe_3d(**kwds) if self.ambient_dim() == 2: return proj.render_outline_2d(**kwds) raise ValueError("render_wireframe is only defined for 2 and 3 dimensional polyhedra") def schlegel_projection(self, facet=None, position=None): r""" Return the Schlegel projection. * The facet is orthonormally transformed into its affine hull. * The position specifies a point coming out of the barycenter of the facet from which the other vertices will be projected into the facet. INPUT: - ``facet`` -- a PolyhedronFace. The facet into which the Schlegel diagram is created. The default is the first facet. - ``position`` -- a positive number. Determines a relative distance from the barycenter of ``facet``. A value close to 0 will place the projection point close to the facet and a large value further away. Default is `1`. If the given value is too large, an error is returned. OUTPUT: A :class:`~sage.geometry.polyhedron.plot.Projection` object. EXAMPLES:: sage: p = polytopes.hypercube(3) sage: sch_proj = p.schlegel_projection() sage: schlegel_edge_indices = sch_proj.lines sage: schlegel_edges = [sch_proj.coordinates_of(x) for x in schlegel_edge_indices] sage: len([x for x in schlegel_edges if x[0][0] > 0]) 8 The Schlegel projection preserves the convexity of facets, see :trac:`30015`:: sage: fcube = polytopes.hypercube(4) sage: tfcube = fcube.face_truncation(fcube.faces(0)[0]) sage: tfcube.facets()[-1] A 3-dimensional face of a Polyhedron in QQ^4 defined as the convex hull of 8 vertices sage: sp = tfcube.schlegel_projection(tfcube.facets()[-1]) sage: sp.plot() # optional - sage.plot Graphics3d Object The same truncated cube but see inside the tetrahedral facet:: sage: tfcube.facets()[4] A 3-dimensional face of a Polyhedron in QQ^4 defined as the convex hull of 4 vertices sage: sp = tfcube.schlegel_projection(tfcube.facets()[4]) sage: sp.plot() # optional - sage.plot Graphics3d Object A different values of ``position`` changes the projection:: sage: sp = tfcube.schlegel_projection(tfcube.facets()[4],1/2) sage: sp.plot() # optional - sage.plot Graphics3d Object sage: sp = tfcube.schlegel_projection(tfcube.facets()[4],4) sage: sp.plot() # optional - sage.plot Graphics3d Object A value which is too large give a projection point that sees more than one facet resulting in a error:: sage: sp = tfcube.schlegel_projection(tfcube.facets()[4],5) Traceback (most recent call last): ... ValueError: the chosen position is too large """ proj = self.projection() return proj.schlegel(facet, position) def affine_hull(self, *args, **kwds): r""" Return the affine hull of ``self`` as a polyhedron. EXAMPLES:: sage: half_plane_in_space = Polyhedron(ieqs=[(0,1,0,0)], eqns=[(0,0,0,1)]) sage: half_plane_in_space.affine_hull().Hrepresentation() (An equation (0, 0, 1) x + 0 == 0,) sage: polytopes.cube().affine_hull().is_universe() True """ if args or kwds: raise TypeError("the method 'affine_hull' does not take any parameters; perhaps you meant 'affine_hull_projection'") if not self.inequalities(): return self self_as_face = self.faces(self.dimension())[0] return self_as_face.affine_tangent_cone() @cached_method def _affine_hull_projection(self, *, as_convex_set=True, as_affine_map=True, as_section_map=True, orthogonal=False, orthonormal=False, extend=False, minimal=False): r""" Return ``self`` projected into its affine hull. INPUT: See :meth:`affine_hull_projection`. OUTPUT: An instance of :class:`~sage.geometry.convex_set.AffineHullProjectionData`. See :meth:`affine_hull_projection` for details. TESTS: Check that :trac:`23355` is fixed:: sage: P = Polyhedron([[7]]); P A 0-dimensional polyhedron in ZZ^1 defined as the convex hull of 1 vertex sage: P.affine_hull_projection() A 0-dimensional polyhedron in ZZ^0 defined as the convex hull of 1 vertex sage: P.affine_hull_projection(orthonormal='True') A 0-dimensional polyhedron in QQ^0 defined as the convex hull of 1 vertex sage: P.affine_hull_projection(orthogonal='True') A 0-dimensional polyhedron in QQ^0 defined as the convex hull of 1 vertex Check that :trac:`24047` is fixed:: sage: P1 = Polyhedron(vertices=([[-1, 1], [0, -1], [0, 0], [-1, -1]])) sage: P2 = Polyhedron(vertices=[[1, 1], [1, -1], [0, -1], [0, 0]]) sage: P = P1.intersection(P2) sage: A, b = P.affine_hull_projection(as_affine_map=True, orthonormal=True, extend=True) # optional - sage.rings.number_field sage: Polyhedron([(2,3,4)]).affine_hull_projection() A 0-dimensional polyhedron in ZZ^0 defined as the convex hull of 1 vertex Check that backend is preserved:: sage: polytopes.simplex(backend='field').affine_hull_projection().backend() 'field' sage: P = Polyhedron(vertices=[[0,0], [1,0]], backend='field') sage: P.affine_hull_projection(orthogonal=True, orthonormal=True, extend=True).backend() # optional - sage.rings.number_field 'field' Check that :trac:`29116` is fixed:: sage: V =[ ....: [1, 0, -1, 0, 0], ....: [1, 0, 0, -1, 0], ....: [1, 0, 0, 0, -1], ....: [1, 0, 0, +1, 0], ....: [1, 0, 0, 0, +1], ....: [1, +1, 0, 0, 0] ....: ] sage: P = Polyhedron(V) sage: P.affine_hull_projection() A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 6 vertices sage: P.affine_hull_projection(orthonormal=True) Traceback (most recent call last): ... ValueError: the base ring needs to be extended; try with "extend=True" sage: P.affine_hull_projection(orthonormal=True, extend=True) # optional - sage.rings.number_field A 4-dimensional polyhedron in AA^4 defined as the convex hull of 6 vertices """ result = AffineHullProjectionData() if self.is_empty(): raise ValueError('affine hull projection of an empty polyhedron is undefined') # handle trivial full-dimensional case if self.ambient_dim() == self.dim(): if as_convex_set: result.image = self if as_affine_map: identity = linear_transformation(matrix(self.base_ring(), self.dim(), self.dim(), self.base_ring().one())) result.projection_linear_map = result.section_linear_map = identity result.projection_translation = result.section_translation = self.ambient_space().zero() elif orthogonal or orthonormal: # see TODO if not self.is_compact(): raise NotImplementedError('"orthogonal=True" and "orthonormal=True" work only for compact polyhedra') affine_basis = self.an_affine_basis() v0 = affine_basis[0].vector() # We implicitly translate the first vertex of the affine basis to zero. vi = tuple(v.vector() - v0 for v in affine_basis[1:]) M = matrix(self.base_ring(), self.dim(), self.ambient_dim(), vi) # Switch base_ring to AA if necessary, # since gram_schmidt needs to be able to take square roots. # Pick orthonormal basis and transform all vertices accordingly # if the orthonormal transform makes it necessary, change base ring. try: A, G = M.gram_schmidt(orthonormal=orthonormal) except TypeError: if not extend: raise ValueError('the base ring needs to be extended; try with "extend=True"') M = matrix(AA, M) A = M.gram_schmidt(orthonormal=orthonormal)[0] if minimal: from sage.rings.qqbar import number_field_elements_from_algebraics new_ring = number_field_elements_from_algebraics(A.list(), embedded=True, minimal=True)[0] A = A.change_ring(new_ring) L = linear_transformation(A, side='right') ambient_translation = -vector(A.base_ring(), affine_basis[0]) image_translation = A * ambient_translation # Note the order. We compute ``A*self`` and then translate the image. # ``A*self`` uses the incidence matrix and we avoid recomputation. # Also, if the new base ring is ``AA``, we want to avoid computing the incidence matrix in that ring. # ``convert=True`` takes care of the case, where there might be no coercion (``AA`` and quadratic field). if as_convex_set: result.image = self.linear_transformation(A, new_base_ring=A.base_ring()) + image_translation if as_affine_map: result.projection_linear_map = L result.projection_translation = image_translation if as_section_map: L_dagger = linear_transformation(A.transpose() * (A * A.transpose()).inverse(), side='right') result.section_linear_map = L_dagger result.section_translation = v0.change_ring(A.base_ring()) else: # translate one vertex to the origin v0 = self.vertices()[0].vector() gens = [] for v in self.vertices()[1:]: gens.append(v.vector() - v0) for r in self.rays(): gens.append(r.vector()) for l in self.lines(): gens.append(l.vector()) # Pick subset of coordinates to coordinatize the affine span M = matrix(gens) pivots = M.pivots() A = matrix(self.base_ring(), len(pivots), self.ambient_dim(), [[1 if j == i else 0 for j in range(self.ambient_dim())] for i in pivots]) if as_affine_map: image_translation = vector(self.base_ring(), self.dim()) L = linear_transformation(A, side='right') result.projection_linear_map = L result.projection_translation = image_translation if as_convex_set: result.image = A*self if as_section_map: if self.dim(): B = M.transpose()/(A*M.transpose()) else: B = matrix(self.ambient_dim(), 0) L_section = linear_transformation(B, side='right') result.section_linear_map = L_section result.section_translation = v0 - L_section(L(v0) + image_translation) return result def affine_hull_projection(self, as_polyhedron=None, as_affine_map=False, orthogonal=False, orthonormal=False, extend=False, minimal=False, return_all_data=False, *, as_convex_set=None): r""" Return the polyhedron projected into its affine hull. Each polyhedron is contained in some smallest affine subspace (possibly the entire ambient space) -- its affine hull. We provide an affine linear map that projects the ambient space of the polyhedron to the standard Euclidean space of dimension of the polyhedron, which restricts to a bijection from the affine hull. The projection map is not unique; some parameters control the choice of the map. Other parameters control the output of the function. INPUT: - ``as_polyhedron`` (or ``as_convex_set``) -- (boolean or the default ``None``) and - ``as_affine_map`` -- (boolean, default ``False``) control the output The default ``as_polyhedron=None`` translates to ``as_polyhedron=not as_affine_map``, therefore to ``as_polyhedron=True`` if nothing is specified. If exactly one of either ``as_polyhedron`` or ``as_affine_map`` is set, then either a polyhedron or the affine transformation is returned. The affine transformation sends the embedded polytope to a fulldimensional one. It is given as a pair ``(A, b)``, where A is a linear transformation and `b` is a vector, and the affine transformation sends ``v`` to ``A(v)+b``. If both ``as_polyhedron`` and ``as_affine_map`` are set, then both are returned, encapsulated in an instance of :class:`~sage.geometry.convex_set.AffineHullProjectionData`. - ``return_all_data`` -- (boolean, default ``False``) If set, then ``as_polyhedron`` and ``as_affine_map`` will set (possibly overridden) and additional (internal) data concerning the transformation is returned. Everything is encapsulated in an instance of :class:`~sage.geometry.convex_set.AffineHullProjectionData` in this case. - ``orthogonal`` -- boolean (default: ``False``); if ``True``, provide an orthogonal transformation. - ``orthonormal`` -- boolean (default: ``False``); if ``True``, provide an orthonormal transformation. If the base ring does not provide the necessary square roots, the extend parameter needs to be set to ``True``. - ``extend`` -- boolean (default: ``False``); if ``True``, allow base ring to be extended if necessary. This becomes relevant when requiring an orthonormal transformation. - ``minimal`` -- boolean (default: ``False``); if ``True``, when doing an extension, it computes the minimal base ring of the extension, otherwise the base ring is ``AA``. OUTPUT: A full-dimensional polyhedron or an affine transformation, depending on the parameters ``as_polyhedron`` and ``as_affine_map``, or an instance of :class:`~sage.geometry.convex_set.AffineHullProjectionData` containing all data (parameter ``return_all_data``). If the output is an instance of :class:`~sage.geometry.convex_set.AffineHullProjectionData`, the following fields may be set: - ``image`` -- the projection of the original polyhedron - ``projection_map`` -- the affine map as a pair whose first component is a linear transformation and its second component a shift; see above. - ``section_map`` -- an affine map as a pair whose first component is a linear transformation and its second component a shift. It maps the codomain of ``affine_map`` to the affine hull of ``self``. It is a right inverse of ``projection_map``. Note that all of these data are compatible. .. TODO:: - make the parameters ``orthogonal`` and ``orthonormal`` work with unbounded polyhedra. EXAMPLES:: sage: triangle = Polyhedron([(1,0,0), (0,1,0), (0,0,1)]); triangle A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 3 vertices sage: triangle.affine_hull_projection() A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices sage: half3d = Polyhedron(vertices=[(3,2,1)], rays=[(1,0,0)]) sage: half3d.affine_hull_projection().Vrepresentation() (A ray in the direction (1), A vertex at (3)) The resulting affine hulls depend on the parameter ``orthogonal`` and ``orthonormal``:: sage: L = Polyhedron([[1,0],[0,1]]); L A 1-dimensional polyhedron in ZZ^2 defined as the convex hull of 2 vertices sage: A = L.affine_hull_projection(); A A 1-dimensional polyhedron in ZZ^1 defined as the convex hull of 2 vertices sage: A.vertices() (A vertex at (0), A vertex at (1)) sage: A = L.affine_hull_projection(orthogonal=True); A A 1-dimensional polyhedron in QQ^1 defined as the convex hull of 2 vertices sage: A.vertices() (A vertex at (0), A vertex at (2)) sage: A = L.affine_hull_projection(orthonormal=True) # optional - sage.rings.number_field Traceback (most recent call last): ... ValueError: the base ring needs to be extended; try with "extend=True" sage: A = L.affine_hull_projection(orthonormal=True, extend=True); A # optional - sage.rings.number_field A 1-dimensional polyhedron in AA^1 defined as the convex hull of 2 vertices sage: A.vertices() # optional - sage.rings.number_field (A vertex at (1.414213562373095?), A vertex at (0.?e-18)) More generally:: sage: S = polytopes.simplex(); S A 3-dimensional polyhedron in ZZ^4 defined as the convex hull of 4 vertices sage: S.vertices() (A vertex at (0, 0, 0, 1), A vertex at (0, 0, 1, 0), A vertex at (0, 1, 0, 0), A vertex at (1, 0, 0, 0)) sage: A = S.affine_hull_projection(); A A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 4 vertices sage: A.vertices() (A vertex at (0, 0, 0), A vertex at (0, 0, 1), A vertex at (0, 1, 0), A vertex at (1, 0, 0)) sage: A = S.affine_hull_projection(orthogonal=True); A A 3-dimensional polyhedron in QQ^3 defined as the convex hull of 4 vertices sage: A.vertices() (A vertex at (0, 0, 0), A vertex at (2, 0, 0), A vertex at (1, 3/2, 0), A vertex at (1, 1/2, 4/3)) sage: A = S.affine_hull_projection(orthonormal=True, extend=True); A A 3-dimensional polyhedron in AA^3 defined as the convex hull of 4 vertices sage: A.vertices() (A vertex at (0.7071067811865475?, 0.4082482904638630?, 1.154700538379252?), A vertex at (0.7071067811865475?, 1.224744871391589?, 0.?e-18), A vertex at (1.414213562373095?, 0.?e-18, 0.?e-18), A vertex at (0.?e-18, 0.?e-18, 0.?e-18)) With the parameter ``minimal`` one can get a minimal base ring:: sage: s = polytopes.simplex(3) sage: s_AA = s.affine_hull_projection(orthonormal=True, extend=True) sage: s_AA.base_ring() Algebraic Real Field sage: s_full = s.affine_hull_projection(orthonormal=True, extend=True, minimal=True) sage: s_full.base_ring() Number Field in a with defining polynomial y^4 - 4*y^2 + 1 with a = 0.5176380902050415? More examples with the ``orthonormal`` parameter:: sage: P = polytopes.permutahedron(3); P # optional - sage.combinat # optional - sage.rings.number_field A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices sage: set([F.as_polyhedron().affine_hull_projection(orthonormal=True, extend=True).volume() for F in P.affine_hull_projection().faces(1)]) == {1, sqrt(AA(2))} # optional - sage.combinat # optional - sage.rings.number_field True sage: set([F.as_polyhedron().affine_hull_projection(orthonormal=True, extend=True).volume() for F in P.affine_hull_projection(orthonormal=True, extend=True).faces(1)]) == {sqrt(AA(2))} # optional - sage.combinat # optional - sage.rings.number_field True sage: D = polytopes.dodecahedron() # optional - sage.rings.number_field sage: F = D.faces(2)[0].as_polyhedron() # optional - sage.rings.number_field sage: F.affine_hull_projection(orthogonal=True) # optional - sage.rings.number_field A 2-dimensional polyhedron in (Number Field in sqrt5 with defining polynomial x^2 - 5 with sqrt5 = 2.236067977499790?)^2 defined as the convex hull of 5 vertices sage: F.affine_hull_projection(orthonormal=True, extend=True) # optional - sage.rings.number_field A 2-dimensional polyhedron in AA^2 defined as the convex hull of 5 vertices sage: K.<sqrt2> = QuadraticField(2) # optional - sage.rings.number_field sage: P = Polyhedron([2*[K.zero()],2*[sqrt2]]); P # optional - sage.rings.number_field A 1-dimensional polyhedron in (Number Field in sqrt2 with defining polynomial x^2 - 2 with sqrt2 = 1.414213562373095?)^2 defined as the convex hull of 2 vertices sage: P.vertices() # optional - sage.rings.number_field (A vertex at (0, 0), A vertex at (sqrt2, sqrt2)) sage: A = P.affine_hull_projection(orthonormal=True); A # optional - sage.rings.number_field A 1-dimensional polyhedron in (Number Field in sqrt2 with defining polynomial x^2 - 2 with sqrt2 = 1.414213562373095?)^1 defined as the convex hull of 2 vertices sage: A.vertices() # optional - sage.rings.number_field (A vertex at (0), A vertex at (2)) sage: K.<sqrt3> = QuadraticField(3) # optional - sage.rings.number_field sage: P = Polyhedron([2*[K.zero()],2*[sqrt3]]); P # optional - sage.rings.number_field A 1-dimensional polyhedron in (Number Field in sqrt3 with defining polynomial x^2 - 3 with sqrt3 = 1.732050807568878?)^2 defined as the convex hull of 2 vertices sage: P.vertices() # optional - sage.rings.number_field (A vertex at (0, 0), A vertex at (sqrt3, sqrt3)) sage: A = P.affine_hull_projection(orthonormal=True) # optional - sage.rings.number_field Traceback (most recent call last): ... ValueError: the base ring needs to be extended; try with "extend=True" sage: A = P.affine_hull_projection(orthonormal=True, extend=True); A # optional - sage.rings.number_field A 1-dimensional polyhedron in AA^1 defined as the convex hull of 2 vertices sage: A.vertices() # optional - sage.rings.number_field (A vertex at (0), A vertex at (2.449489742783178?)) sage: sqrt(6).n() # optional - sage.rings.number_field 2.44948974278318 The affine hull is combinatorially equivalent to the input:: sage: P.is_combinatorially_isomorphic(P.affine_hull_projection()) # optional - sage.rings.number_field True sage: P.is_combinatorially_isomorphic(P.affine_hull_projection(orthogonal=True)) # optional - sage.rings.number_field True sage: P.is_combinatorially_isomorphic(P.affine_hull_projection(orthonormal=True, extend=True)) # optional - sage.rings.number_field True The ``orthonormal=True`` parameter preserves volumes; it provides an isometric copy of the polyhedron:: sage: Pentagon = polytopes.dodecahedron().faces(2)[0].as_polyhedron() # optional - sage.rings.number_field sage: P = Pentagon.affine_hull_projection(orthonormal=True, extend=True) # optional - sage.rings.number_field sage: _, c= P.is_inscribed(certificate=True) # optional - sage.rings.number_field sage: c # optional - sage.rings.number_field (0.4721359549995794?, 0.6498393924658126?) sage: circumradius = (c-vector(P.vertices()[0])).norm() # optional - sage.rings.number_field sage: p = polytopes.regular_polygon(5) # optional - sage.rings.number_field sage: p.volume() # optional - sage.rings.number_field 2.377641290737884? sage: P.volume() # optional - sage.rings.number_field 1.53406271079097? sage: p.volume()*circumradius^2 # optional - sage.rings.number_field 1.534062710790965? sage: P.volume() == p.volume()*circumradius^2 # optional - sage.rings.number_field True One can also use ``orthogonal`` parameter to calculate volumes; in this case we don't need to switch base rings. One has to divide by the square root of the determinant of the linear part of the affine transformation times its transpose:: sage: Pentagon = polytopes.dodecahedron().faces(2)[0].as_polyhedron() # optional - sage.rings.number_field sage: Pnormal = Pentagon.affine_hull_projection(orthonormal=True, extend=True) # optional - sage.rings.number_field sage: Pgonal = Pentagon.affine_hull_projection(orthogonal=True) # optional - sage.rings.number_field sage: A, b = Pentagon.affine_hull_projection(orthogonal=True, as_affine_map=True) # optional - sage.rings.number_field sage: Adet = (A.matrix().transpose()*A.matrix()).det() # optional - sage.rings.number_field sage: Pnormal.volume() # optional - sage.rings.number_field 1.53406271079097? sage: Pgonal.volume()/Adet.sqrt(extend=True) # optional - sage.rings.number_field -80*(55*sqrt(5) - 123)/sqrt(-6368*sqrt(5) + 14240) sage: Pgonal.volume()/AA(Adet).sqrt().n(digits=20) # optional - sage.rings.number_field 1.5340627107909646813 sage: AA(Pgonal.volume()^2) == (Pnormal.volume()^2)*AA(Adet) # optional - sage.rings.number_field True Another example with ``as_affine_map=True``:: sage: P = polytopes.permutahedron(4) # optional - sage.combinat # optional - sage.rings.number_field sage: A, b = P.affine_hull_projection(orthonormal=True, as_affine_map=True, extend=True) # optional - sage.combinat # optional - sage.rings.number_field sage: Q = P.affine_hull_projection(orthonormal=True, extend=True) # optional - sage.combinat # optional - sage.rings.number_field sage: Q.center() # optional - sage.combinat # optional - sage.rings.number_field (0.7071067811865475?, 1.224744871391589?, 1.732050807568878?) sage: A(P.center()) + b == Q.center() # optional - sage.combinat # optional - sage.rings.number_field True For unbounded, non full-dimensional polyhedra, the ``orthogonal=True`` and ``orthonormal=True`` is not implemented:: sage: P = Polyhedron(ieqs=[[0, 1, 0], [0, 0, 1], [0, 0, -1]]); P A 1-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 ray sage: P.is_compact() False sage: P.is_full_dimensional() False sage: P.affine_hull_projection(orthogonal=True) Traceback (most recent call last): ... NotImplementedError: "orthogonal=True" and "orthonormal=True" work only for compact polyhedra sage: P.affine_hull_projection(orthonormal=True) Traceback (most recent call last): ... NotImplementedError: "orthogonal=True" and "orthonormal=True" work only for compact polyhedra Setting ``as_affine_map`` to ``True`` without ``orthogonal`` or ``orthonormal`` set to ``True``:: sage: S = polytopes.simplex() sage: S.affine_hull_projection(as_affine_map=True) (Vector space morphism represented by the matrix: [1 0 0] [0 1 0] [0 0 1] [0 0 0] Domain: Vector space of dimension 4 over Rational Field Codomain: Vector space of dimension 3 over Rational Field, (0, 0, 0)) If the polyhedron is full-dimensional, it is returned:: sage: polytopes.cube().affine_hull_projection() A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices sage: polytopes.cube().affine_hull_projection(as_affine_map=True) (Vector space morphism represented by the matrix: [1 0 0] [0 1 0] [0 0 1] Domain: Vector space of dimension 3 over Rational Field Codomain: Vector space of dimension 3 over Rational Field, (0, 0, 0)) Return polyhedron and affine map:: sage: S = polytopes.simplex(2) sage: data = S.affine_hull_projection(orthogonal=True, ....: as_polyhedron=True, ....: as_affine_map=True); data AffineHullProjectionData(image=A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices, projection_linear_map=Vector space morphism represented by the matrix: [ -1 -1/2] [ 1 -1/2] [ 0 1] Domain: Vector space of dimension 3 over Rational Field Codomain: Vector space of dimension 2 over Rational Field, projection_translation=(1, 1/2), section_linear_map=None, section_translation=None) Return all data:: sage: data = S.affine_hull_projection(orthogonal=True, return_all_data=True); data AffineHullProjectionData(image=A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices, projection_linear_map=Vector space morphism represented by the matrix: [ -1 -1/2] [ 1 -1/2] [ 0 1] Domain: Vector space of dimension 3 over Rational Field Codomain: Vector space of dimension 2 over Rational Field, projection_translation=(1, 1/2), section_linear_map=Vector space morphism represented by the matrix: [-1/2 1/2 0] [-1/3 -1/3 2/3] Domain: Vector space of dimension 2 over Rational Field Codomain: Vector space of dimension 3 over Rational Field, section_translation=(1, 0, 0)) The section map is a right inverse of the projection map:: sage: data.image.linear_transformation(data.section_linear_map.matrix().transpose()) + data.section_translation == S True Same without ``orthogonal=True``:: sage: data = S.affine_hull_projection(return_all_data=True); data AffineHullProjectionData(image=A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices, projection_linear_map=Vector space morphism represented by the matrix: [1 0] [0 1] [0 0] Domain: Vector space of dimension 3 over Rational Field Codomain: Vector space of dimension 2 over Rational Field, projection_translation=(0, 0), section_linear_map=Vector space morphism represented by the matrix: [ 1 0 -1] [ 0 1 -1] Domain: Vector space of dimension 2 over Rational Field Codomain: Vector space of dimension 3 over Rational Field, section_translation=(0, 0, 1)) sage: data.image.linear_transformation(data.section_linear_map.matrix().transpose()) + data.section_translation == S True :: sage: P0 = Polyhedron( ....: ieqs=[(0, -1, 0, 1, 1, 1), (0, 1, 1, 0, -1, -1), (0, -1, 1, 1, 0, 0), ....: (0, 1, 0, 0, 0, 0), (0, 0, 1, 1, -1, -1), (0, 0, 0, 0, 0, 1), ....: (0, 0, 0, 0, 1, 0), (0, 0, 0, 1, 0, -1), (0, 0, 1, 0, 0, 0)]) sage: P = P0.intersection(Polyhedron(eqns=[(-1, 1, 1, 1, 1, 1)])) sage: P.dim() 4 sage: P.affine_hull_projection(orthogonal=True, as_affine_map=True)[0] Vector space morphism represented by the matrix: [ 0 0 0 1/3] [ -2/3 -1/6 0 -1/12] [ 1/3 -1/6 1/2 -1/12] [ 0 1/2 0 -1/12] [ 1/3 -1/6 -1/2 -1/12] Domain: Vector space of dimension 5 over Rational Field Codomain: Vector space of dimension 4 over Rational Field """ if as_polyhedron is not None: as_convex_set = as_polyhedron return super().affine_hull_projection( as_convex_set=as_convex_set, as_affine_map=as_affine_map, orthogonal=orthogonal, orthonormal=orthonormal, extend=extend, minimal=minimal, return_all_data=return_all_data) def _test_affine_hull_projection(self, tester=None, verbose=False, **options): r""" Run tests on the method :meth:`.affine_hull_projection`. TESTS:: sage: D = polytopes.dodecahedron() # optional - sage.rings.number_field sage: D.facets()[0].as_polyhedron()._test_affine_hull_projection() # optional - sage.rings.number_field """ if tester is None: tester = self._tester(**options) if self.is_empty(): # Undefined, nothing to test return if self.n_vertices() > 30 or self.n_facets() > 30 or self.dim() > 6: # Avoid very long doctests. return data_sets = [None]*4 data_sets[0] = self.affine_hull_projection(return_all_data=True) if self.is_compact(): data_sets[1] = self.affine_hull_projection(return_all_data=True, orthogonal=True, extend=True) data_sets[2] = self.affine_hull_projection(return_all_data=True, orthonormal=True, extend=True) data_sets[3] = self.affine_hull_projection(return_all_data=True, orthonormal=True, extend=True, minimal=True) else: data_sets = data_sets[:1] for i, data in enumerate(data_sets): if verbose: print("Running test number {}".format(i)) M = data.projection_linear_map.matrix().transpose() tester.assertEqual(self.linear_transformation(M, new_base_ring=M.base_ring()) + data.projection_translation, data.image) M = data.section_linear_map.matrix().transpose() if M.base_ring() is AA: self_extend = self.change_ring(AA) else: self_extend = self tester.assertEqual(data.image.linear_transformation(M) + data.section_translation, self_extend) if i == 0: tester.assertEqual(data.image.base_ring(), self.base_ring()) else: # Test whether the map is orthogonal. M = data.projection_linear_map.matrix() tester.assertTrue((M.transpose() * M).is_diagonal()) if i > 1: # Test whether the map is orthonormal. tester.assertTrue((M.transpose() * M).is_one()) if i == 3: # Test that the extension is indeed minimal. if self.base_ring() is not AA: tester.assertIsNot(data.image.base_ring(), AA) def affine_hull_manifold(self, name=None, latex_name=None, start_index=0, ambient_space=None, ambient_chart=None, names=None, **kwds): r""" Return the affine hull of ``self`` as a manifold. If ``self`` is full-dimensional, it is just the ambient Euclidean space. Otherwise, it is a Riemannian submanifold of the ambient Euclidean space. INPUT: - ``ambient_space`` -- a :class:`~sage.manifolds.differentiable.examples.euclidean.EuclideanSpace` of the ambient dimension (default: the manifold of ``ambient_chart``, if provided; otherwise, a new instance of ``EuclideanSpace``). - ``ambient_chart`` -- a chart on ``ambient_space``. - ``names`` -- names for the coordinates on the affine hull. - optional arguments accepted by :meth:`affine_hull_projection`. The default chart is determined by the optional arguments of :meth:`affine_hull_projection`. EXAMPLES:: sage: triangle = Polyhedron([(1,0,0), (0,1,0), (0,0,1)]); triangle A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 3 vertices sage: A = triangle.affine_hull_manifold(name='A'); A 2-dimensional Riemannian submanifold A embedded in the Euclidean space E^3 sage: A.embedding().display() A → E^3 (x0, x1) ↦ (x, y, z) = (t0 + x0, t0 + x1, t0 - x0 - x1 + 1) sage: A.embedding().inverse().display() E^3 → A (x, y, z) ↦ (x0, x1) = (x, y) sage: A.adapted_chart() [Chart (E^3, (x0_E3, x1_E3, t0_E3))] sage: A.normal().display() n = 1/3*sqrt(3) e_x + 1/3*sqrt(3) e_y + 1/3*sqrt(3) e_z sage: A.induced_metric() # Need to call this before volume_form Riemannian metric gamma on the 2-dimensional Riemannian submanifold A embedded in the Euclidean space E^3 sage: A.volume_form() 2-form eps_gamma on the 2-dimensional Riemannian submanifold A embedded in the Euclidean space E^3 Orthogonal version:: sage: A = triangle.affine_hull_manifold(name='A', orthogonal=True); A 2-dimensional Riemannian submanifold A embedded in the Euclidean space E^3 sage: A.embedding().display() A → E^3 (x0, x1) ↦ (x, y, z) = (t0 - 1/2*x0 - 1/3*x1 + 1, t0 + 1/2*x0 - 1/3*x1, t0 + 2/3*x1) sage: A.embedding().inverse().display() E^3 → A (x, y, z) ↦ (x0, x1) = (-x + y + 1, -1/2*x - 1/2*y + z + 1/2) Arrangement of affine hull of facets:: sage: D = polytopes.dodecahedron() # optional - sage.rings.number_field sage: E3 = EuclideanSpace(3) # optional - sage.rings.number_field sage: submanifolds = [ # optional - sage.rings.number_field ....: F.as_polyhedron().affine_hull_manifold(name=f'F{i}', orthogonal=True, ambient_space=E3) ....: for i, F in enumerate(D.facets())] sage: sum(FM.plot({}, srange(-2, 2, 0.1), srange(-2, 2, 0.1), opacity=0.2) # not tested # optional - sage.plot # optional - sage.rings.number_field ....: for FM in submanifolds) + D.plot() Graphics3d Object Full-dimensional case:: sage: cube = polytopes.cube(); cube A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices sage: cube.affine_hull_manifold() Euclidean space E^3 """ if ambient_space is None: if ambient_chart is not None: ambient_space = ambient_chart.manifold() else: from sage.manifolds.differentiable.examples.euclidean import EuclideanSpace ambient_space = EuclideanSpace(self.ambient_dim(), start_index=start_index) if ambient_space.dimension() != self.ambient_dim(): raise ValueError('ambient_space and ambient_chart must match the ambient dimension') if self.is_full_dimensional(): return ambient_space if ambient_chart is None: ambient_chart = ambient_space.default_chart() CE = ambient_chart from sage.manifolds.manifold import Manifold if name is None: name, latex_name = self._affine_hull_name_latex_name() H = Manifold(self.dim(), name, ambient=ambient_space, structure="Riemannian", latex_name=latex_name, start_index=start_index) if names is None: names = tuple(f'x{i}' for i in range(self.dim())) CH = H.chart(names=names) data = self.affine_hull_projection(return_all_data=True, **kwds) projection_matrix = data.projection_linear_map.matrix().transpose() projection_translation_vector = data.projection_translation section_matrix = data.section_linear_map.matrix().transpose() section_translation_vector = data.section_translation from sage.symbolic.ring import SR # We use the slacks of the (linear independent) equations as the foliation parameters foliation_parameters = vector(SR.var(f't{i}') for i in range(self.ambient_dim() - self.dim())) normal_matrix = matrix(equation.A() for equation in self.equation_generator()).transpose() slack_matrix = normal_matrix.pseudoinverse() phi = H.diff_map(ambient_space, {(CH, CE): (section_matrix * vector(CH._xx) + section_translation_vector + normal_matrix * foliation_parameters).list()}) phi_inv = ambient_space.diff_map(H, {(CE, CH): (projection_matrix * vector(CE._xx) + projection_translation_vector).list()}) foliation_scalar_fields = {parameter: ambient_space.scalar_field({CE: slack_matrix.row(i) * (vector(CE._xx) - section_translation_vector)}) for i, parameter in enumerate(foliation_parameters)} H.set_embedding(phi, inverse=phi_inv, var=list(foliation_parameters), t_inverse=foliation_scalar_fields) return H def _affine_hull_name_latex_name(self, name=None, latex_name=None): r""" Return the default name of the affine hull. EXAMPLES:: sage: polytopes.cube()._affine_hull_name_latex_name('C', r'\square') ('aff_C', '\\mathop{\\mathrm{aff}}(\\square)') sage: Polyhedron(vertices=[[0, 1], [1, 0]])._affine_hull_name_latex_name() ('aff_P', '\\mathop{\\mathrm{aff}}(P)') """ if name is None: name = 'P' if latex_name is None: latex_name = name operator = 'aff' aff_name = f'{operator}_{name}' aff_latex_name = r'\mathop{\mathrm{' + operator + '}}(' + latex_name + ')' return aff_name, aff_latex_name
python
import discord from discord.ext import commands import traceback import datetime import asyncio import random from datetime import datetime from storage import * pat_gifs = [ "https://cdn.discordapp.com/attachments/670153232039018516/674299983117156362/1edd1db645f55aa7f2923838b5afabfc863fc109_hq.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674299989152890881/7MPC.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674299989559738378/2e27d5d124bc2a62ddeb5dc9e7a73dd8.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674299990386016257/48f70b7f0f0858254d0e50d68ef4bc4f443b74a7_hq.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674299995922628628/anime-head-pat-gif.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674299997248028712/a.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674300008031322114/e3e2588fbae9422f2bd4813c324b1298.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674300013492437014/giphy_1.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674300014427766801/FlimsyDeafeningGrassspider-small.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674300013509214228/giphy.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674300026150977563/tenor_1.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674300032303759360/tenor.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674300033440415754/unnamed.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674300032366804992/giphy_2.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674300037924126743/tumblr_n9g05o77tU1ttu8odo1_500.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674300047004925952/c0c1c5d15f8ad65a9f0aaf6c91a3811e.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674300051438305368/giphy_3.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674300056601362454/tenor_2.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674300062024597514/B7g8Vh.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674300069696241684/source_1.gif", "https://cdn.discordapp.com/attachments/670153232039018516/674300074557177892/source.gif" ] @bot.command(aliases=["pet"]) async def pat(ctx, user: discord.Member): embed = discord.Embed(description="**{.message.author.display_name}** pats **{.display_name}**. <a:pat:691589024774750228>".format(ctx, user), color=0xFFFFFF, timestamp=datetime.utcnow()) embed.set_image(url=random.choice(pat_gifs)) embed.set_footer(text="© MommyBot by Shiki.", icon_url=bot.user.avatar_url) await ctx.send(embed=embed) @pat.error async def pat_error(ctx, error): if isinstance(error, commands.MissingRequiredArgument): embed = discord.Embed(description="**babi** pats **{.message.author.display_name}**. <a:pat:691589024774750228>".format(ctx), color=0xFFFFFF, timestamp=datetime.utcnow()) embed.set_image(url=random.choice(pat_gifs)) embed.set_footer(text="© MommyBot by Shiki.", icon_url=bot.user.avatar_url) await ctx.send(embed=embed) elif isinstance(error, commands.BadArgument): embed = discord.Embed(description="**babi** pats **{.message.author.display_name}**. <a:pat:691589024774750228>".format(ctx), color=0xFFFFFF, timestamp=datetime.utcnow()) embed.set_image(url=random.choice(pat_gifs)) embed.set_footer(text="© MommyBot by Shiki.", icon_url=bot.user.avatar_url) await ctx.send(f"**{ctx.message.author.display_name}** member not found, I patted you instead", embed=embed) else: print('Ignoring exception in command av:', file=sys.stderr) traceback.print_exception(type(error), error, error.__traceback__, file=sys.stderr) embed = discord.Embed(description="{}".format(error), color=0x000000) embed.set_footer(text="© MommyBot by Shiki.", icon_url=bot.user.avatar_url) await ctx.send("An error has occured. Detailed information below:", embed=embed)
python
import Tkinter as tk import warnings VAR_TYPES = { int: tk.IntVar, float: tk.DoubleVar, str: tk.StringVar } class ParameterController(tk.Frame): def __init__(self,parent, key, value): tk.Frame.__init__(self, parent) self.value_type = type(value) self._var = VAR_TYPES[self.value_type]() self._var.set(value) self._label = tk.Label(self,text=key,justify=tk.LEFT,width=20) self._label.pack(side=tk.LEFT,padx=5,anchor="e",fill=tk.BOTH) validator = self.register(self.validator) self._entry = tk.Entry(self,textvariable=self._var, validate='all', validatecommand=(validator, '%P', '%s')) self._entry.pack(side=tk.RIGHT,expand=1) def set_bg(self,colour): try: self._entry.config(bg=colour) except: pass def validator(self,value,last_value): if not value.strip() and not self.value_type == str: self.set_bg('red') self.bell() return True else: try: self.value_type(value) except Exception as error: return False else: self.set_bg('white') return True def get(self): return self._var.get() def set(self,value): if self.validator(value): self._var.set(self.value_type(value)) class DictController(tk.Frame): def __init__(self, parent, dict_): tk.Frame.__init__(self, parent) self._dict = {} self.update(dict_) def update(self,new_dict): self._dict.update(new_dict) for key,val in sorted(self._dict.items()): controller = ParameterController(self,key,val) controller.pack() self._dict[key] = controller def __getitem__(self,key): return self._dict[key].get() def __setitem__(self,key,value): self._dict[key].set(value) def as_dict(self): output = {} for key,val in self._dict.items(): try: output[key] = val.get() except ValueError: raise ValueError("Invalid value for key '%s'"%key) return output if __name__ == "__main__": test_dict = { "Test1":"node name", "Test2":90, "Test3":123. } root = tk.Tk() c = DictController(root,test_dict) c.pack() def print_vals(): for key in test_dict: try: print c.as_dict() except ValueError as error: warnings.warn(repr(error)) root.after(1000,print_vals) root.after(4000,print_vals) root.mainloop()
python
import factory import factory.fuzzy from user.models import User from company.tests.factories import CompanyFactory class UserFactory(factory.django.DjangoModelFactory): sso_id = factory.Iterator(range(99999999)) name = factory.fuzzy.FuzzyText(length=12) company_email = factory.LazyAttribute( lambda supplier: '%[email protected]' % supplier.name) company = factory.SubFactory(CompanyFactory) is_company_owner = True class Meta: model = User
python
class Solution: def combine(self, n: int, k: int) -> List[List[int]]: # Using dfs to record all possible def dfs(nums, path=None, res=[]): if path is None: path = [] if len(path) == k: res += [path] return res for idx, num in enumerate(nums): dfs(nums[idx+1:], path+[num], res) return res res = dfs(range(1, n+1)) return res
python
from typing import Optional import requests from libgravatar import Gravatar from bs4 import BeautifulSoup def get_gravatar_image(email) -> Optional[str]: """Only will return a url if the user exists and is correct on gravatar, otherwise None""" g = Gravatar(email) profile_url = g.get_profile() res = requests.get(profile_url) if res.status_code == 200: return g.get_image() return None def get_github_repositories(github_username): """Only will return a url if the user exists and will return the number of repositories, even if there are none will return 0""" url = f'https://github.com/{github_username}' response = requests.get(url) if response.status_code == 200: soup = BeautifulSoup(response.content, 'html.parser') css_selector = 'div.UnderlineNav > nav > a:nth-child(2) > span' try: repositories_info = soup.select_one(css_selector) return int(repositories_info.text) except AttributeError: pass
python
patterns = ['you cannot perform this operation as root'] def match(command): if command.script_parts and command.script_parts[0] != 'sudo': return False for pattern in patterns: if pattern in command.output.lower(): return True return False def get_new_command(command): return ' '.join(command.script_parts[1:])
python
import json import os from py2neo import Graph class GraphInstanceFactory: def __init__(self, config_file_path): """ init the graph factory by a config path. the config json file format example: [ { "server_name": "LocalHostServer", "server_id": 1, "host": "localhost", "user": "neo4j", "password": "123456", "http_port": 7474, "https_port": 7473, "bolt_port": 7687 }, ... ] :param config_file_path: the config file path """ if not os.path.exists(config_file_path): raise IOError("Neo4j config file not exist") if not os.path.isfile(config_file_path): raise IOError("Neo4j config path is not file") if not config_file_path.endswith(".json"): raise IOError("Neo4j config file is not json") self.config_file_path = config_file_path with open(self.config_file_path, 'r') as f: self.configs = json.load(f) ## todo add more json format check,raise exception when same name or same id config def create_py2neo_graph_by_server_name(self, server_name): """ :param server_name: the server name in config file, can be used to find a unique neo4j graph instance location :return: the Graph object in py2neo, None if create fail """ for config in self.configs: if config["server_name"] == server_name: return self.__create_py2neo_graph_by_config(config) return None def create_py2neo_graph_by_server_id(self, server_id): """ :param server_id: the server id in config file, can be used to find a unique neo4j graph instance location :return: the Graph object in py2neo, None if create fail """ for config in self.configs: if config["server_id"] == server_id: return self.__create_py2neo_graph_by_config(config) return None def get_configs(self): """ get the config server list :return: a list of config """ return self.configs def get_config_file_path(self): """ get the config file path :return: a string for config file path """ return self.config_file_path def __create_py2neo_graph_by_config(self, config): try: return Graph(host=config['host'], port=config['bolt_port'], scheme="bolt", user=config['user'], password=config['password']) except BaseException: return Graph('bolt' + ':' + '//' + config['host'] + ':' + str(config['bolt_port']), auth=(config['user'], config['password']))
python
from datetime import datetime class mentions_self: nom = 'я'; gen = ['меня', 'себя']; dat = ['мне', 'себе'] acc = ['меня', 'себя']; ins = ['мной', 'собой']; abl = ['мне','себе'] class mentions_unknown: all = 'всех' him = 'его'; her = 'её'; it = 'это' they = 'их'; them = 'их'; us = 'нас' name_cases = ['nom', 'gen', 'dat', 'acc', 'ins', 'abl'] everyone = ['@everyone', '@all', '@все'] def getDate(time = datetime.now()) -> str: return f'{"%02d" % time.day}.{"%02d" % time.month}.{time.year}' def getTime(time = datetime.now()) -> str: return f'{"%02d" % time.hour}:{"%02d" % time.minute}:{"%02d" % time.second}.{time.microsecond}' def getDateTime(time = datetime.now()) -> str: return getDate(time) + ' ' + getTime(time) def ischecktype(checklist, checktype) -> bool: for i in checklist: if isinstance(checktype, list) and type(i) in checktype: return True elif isinstance(checktype, type) and isinstance(i, checktype): return True return False
python
from flask import ( Blueprint, render_template, ) from sqlalchemy import desc, func, or_, text from .. import db from ..models import ( Video, Vote, GamePeriod, Reward, ) game = Blueprint( 'game', __name__, template_folder='templates' ) @game.route('/') def index(): q = """ SELECT *, rewards/videos AS rpv FROM top_creators_30_days ORDER BY rewards DESC LIMIT :limit; """ rs = db.session.execute(q, { "limit": 10, }) leaderboard = [dict(zip(rs.keys(), item)) for item in rs.fetchall()] return render_template( 'index.html', leaderboard=leaderboard ) @game.route('/periods') def list_periods(): periods = \ (db.session.query(GamePeriod) .order_by(desc(GamePeriod.end)) .limit(1000) .all()) return render_template( 'periods.html', periods=periods, ) @game.route('/rewards') def list_rewards(): rewards = \ (db.session.query(Reward) .filter_by(creator_payable=True) .order_by(desc(Reward.period_id)) .limit(1000) .all()) return render_template( 'rewards.html', rewards=rewards, ) @game.route('/period/<int:period_id>') def period_rewards(period_id): period = db.session.query(GamePeriod).filter_by(id=period_id).one() rewards_summary = \ (db.session.query( Reward.video_id, func.count(Reward.id), func.sum(Reward.creator_reward).label('creator_rewards'), func.sum(Reward.voter_reward)) .filter_by(period_id=period_id) .group_by(Reward.video_id) .order_by(text("creator_rewards desc")) .all()) rewards = \ (db.session.query(Reward, Vote) .filter_by(period_id=period_id) .from_self() .join(Vote, Vote.id == Reward.vote_id) .order_by(desc(Reward.creator_reward)) .all()) return render_template( 'period_rewards.html', period=period, rewards=rewards, rewards_summary=rewards_summary, ) @game.route('/payment/<string:txid>') def explain_payment(txid): rewards = \ (db.session.query(Reward) .filter(or_(Reward.creator_txid == txid, Reward.voter_txid == txid)) .order_by(desc(Reward.period_id)) .all()) return render_template( 'payment.html', txid=txid, rewards=rewards, ) @game.route('/votes/<string:video_id>') def video_votes(video_id: str): video = db.session.query(Video).filter_by(id=video_id).one() votes = \ (db.session.query(Vote) .filter_by(video_id=video_id) .order_by(desc(Vote.token_amount)) .all()) rewards = \ (db.session.query(Reward, Vote) .filter_by(video_id=video_id) .join(Vote) .order_by(desc(Reward.creator_reward)) .all()) period = None summary = None if rewards: period_id = rewards[0][0].period_id period = db.session.query(GamePeriod).filter_by(id=period_id).one() summary = \ (db.session.query( func.count(Reward.id).label('rewards_count'), func.sum(Reward.creator_reward).label('creator_rewards'), func.sum(Reward.voter_reward).label('voter_rewards')) .filter_by(video_id=video_id, creator_payable=True) .one()) return render_template( 'video_votes.html', video=video, votes=votes, rewards=rewards, period=period, summary=summary, ) @game.route('/voter/<string:eth_address>') def voter_activity(eth_address: str): votes = \ (db.session.query(Vote) .filter_by(eth_address=eth_address) .order_by(desc(Vote.created_at)) .limit(100) .all()) return render_template( 'voter.html', eth_address=eth_address, votes=votes, )
python
import torch import torch.nn.utils.rnn as rnn import numpy as np import pandas from torch.utils.data import Dataset from sklearn.preprocessing import LabelEncoder from parsers.spacy_wrapper import spacy_whitespace_parser as spacy_ws from common.symbols import SPACY_POS_TAGS import json import transformers from transformers import BertForTokenClassification, BertConfig, BertTokenizer class OpenIE_CONLL_Dataset(Dataset): def __init__(self, file_path, emb, sep='\t', sent_maxlen=300, label_map=None): ''' data is a list of triples (according to data keys) label is a list of int ''' self.file_path = file_path self.sep = sep self.emb = emb self.sent_maxlen = sent_maxlen self.label_map = label_map if label_map is None: self.label_map = LabelEncoder() self.classes = set() self.data = [] self.labels = [] self.data_keys = ["word_inputs", "predicate_inputs", "postags_inputs"] self.build() def __getitem__(self, i): x = [] for key in self.data_keys: datum = self.data[key][i] x.append(datum) return x, self.labels[i] def __len__(self): return len(self.labels) def collate(self, data): x = [[],[],[]] y = [] for i in data: for j in range(len(i[0])): x[j].append(torch.LongTensor(i[0][j])) y.append(torch.LongTensor(i[1])) return x, y def build(self): """ Load a supervised OIE dataset from file """ df = pandas.read_csv(self.file_path, sep = self.sep, header = 0, keep_default_na = False) self.label_map.fit(df.label.values) # Split according to sentences and encode sents = self.get_sents_from_df(df) self.data = self.encode_inputs(sents) self.labels = self.encode_outputs(sents) def get_sents_from_df(self, df): """ Split a data frame by rows accroding to the sentences """ return [df[df.run_id == run_id] for run_id in sorted(set(df.run_id.values))] def encode_inputs(self, sents): """ Given a dataframe which is already split to sentences, encode inputs for rnn classification. Should return a dictionary of sequences of sample of length maxlen. """ word_inputs = [] pred_inputs = [] pos_inputs = [] # Preproc to get all preds per run_id # Sanity check - make sure that all sents agree on run_id assert(all([len(set(sent.run_id.values)) == 1 for sent in sents])) run_id_to_pred = dict([(int(sent.run_id.values[0]), self.get_head_pred_word(sent)) for sent in sents]) # Construct a mapping from running word index to pos word_id_to_pos = {} for sent in sents: indices = sent.index.values words = sent.word.values for index, word in zip(indices, spacy_ws(" ".join(words))): word_id_to_pos[index] = word.tag_ fixed_size_sents = sents # removed for sent in fixed_size_sents: assert(len(set(sent.run_id.values)) == 1) word_indices = sent.index.values sent_words = sent.word.values sent_str = " ".join(sent_words) pos_tags_encodings = [(SPACY_POS_TAGS.index(word_id_to_pos[word_ind]) \ if word_id_to_pos[word_ind] in SPACY_POS_TAGS \ else 0) for word_ind in word_indices] for hh in pos_tags_encodings: if hh > 55: print(pos_tags_encodings) word_encodings = [self.emb.get_word_index(w) for w in sent_words] # Same pred word encodings for all words in the sentence pred_word = run_id_to_pred[int(sent.run_id.values[0])] pred_word_encodings = [self.emb.get_word_index(pred_word) for _ in sent_words] word_inputs.append(word_encodings) pred_inputs.append(pred_word_encodings) pos_inputs.append(pos_tags_encodings) # Pad / truncate to desired maximum length # NOTE: removed pad in reimplementation ret = {} for name, sequence in zip(["word_inputs", "predicate_inputs", "postags_inputs"], [word_inputs, pred_inputs, pos_inputs]): ret[name] = [] for samples in truncate_sequences(sequence, maxlen = self.sent_maxlen): ret[name].append(samples) return {k: np.array(v) for k, v in ret.items()} def encode_outputs(self, sents): """ Given a dataframe split to sentences, encode outputs for rnn classification. Should return a list sequence of sample of length maxlen. """ output_encodings = [] # Encode outputs for sent in sents: output_encodings.append(list(self.transform_labels(sent.label.values))) return truncate_sequences(output_encodings, maxlen=self.sent_maxlen) def transform_labels(self, labels): """ Encode a list of textual labels """ # Fallback: return self.label_map.transform(labels) def num_of_classes(self): if self.label_map is not None: return len(self.label_map.classes_) else: print("encoder not instantiated for num of classes") return 0 def get_head_pred_word(self, full_sent): """ Get the head predicate word from a full sentence conll. """ assert(len(set(full_sent.head_pred_id.values)) == 1) # Sanity check pred_ind = full_sent.head_pred_id.values[0] return full_sent.word.values[pred_ind] \ if pred_ind != -1 \ else full_sent.pred.values[0].split(" ")[0] class OIE_BERT_Dataset(Dataset): def __init__(self, file_path, sep='\t', sent_maxlen=300, label_map=None, bert_model='bert-base-uncased'): ''' data is a list of triples (according to data keys) label is a list of int ''' self.file_path = file_path self.sep = sep self.sent_maxlen = sent_maxlen self.label_map = label_map self.bert_model = bert_model self.tokenizer = BertTokenizer.from_pretrained(self.bert_model) if label_map is None: self.label_map = LabelEncoder() self.classes = set() self.data = [] self.labels = [] self.data_keys = ["word_inputs", "predicate_inputs", "postags_inputs"] self.build() def __getitem__(self, i): x = {} for key in self.data.keys(): x[key] = self.data[key][i] return x, self.labels[i] def __len__(self): return len(self.labels) def collate(self, data): x = {} y = [] batch_max_len = 0 for i in data: for key in self.data.keys(): x[key] = x.get(key, []) if key == 'word_inputs': x[key].append(i[0][key]) batch_max_len = max(batch_max_len, len(i[0][key])) else: x[key].append(torch.LongTensor(i[0][key])) y.append(torch.LongTensor(i[1])) x['predicate_inputs'] = torch.LongTensor(x['predicate_inputs']) bert_in = self.tokenizer.batch_encode_plus(x['word_inputs'], return_tensors='pt', pad_to_max_length=True, max_length=batch_max_len, return_lengths=True, add_special_tokens = False) x['bert_inputs'] = bert_in return x, y def build(self): """ Load a supervised OIE dataset from file """ df = pandas.read_csv(self.file_path, sep = self.sep, header = 0, keep_default_na = False) self.label_map.fit(df.label.values) # Split according to sentences and encode sents = self.get_sents_from_df(df) data, labels = self.encode_data(sents) self.data = data self.labels = labels def get_sents_from_df(self, df): """ Split a data frame by rows accroding to the sentences """ return [df[df.run_id == run_id] for run_id in sorted(set(df.run_id.values))] def encode_data(self, sents): """ Given a dataframe which is already split to sentences, Should return a tuple of (sequences of sample of length maxlen, sequencecs of labels). """ word_inputs = [] pred_inputs = [] pos_inputs = [] output_encodings = [] # Preproc to get all preds per run_id # Sanity check - make sure that all sents agree on run_id assert(all([len(set(sent.run_id.values)) == 1 for sent in sents])) run_id_to_pred = dict([(int(sent.run_id.values[0]), self.get_head_pred_id(sent)) for sent in sents]) # Construct a mapping from running word index to pos word_id_to_pos = {} for sent in sents: indices = sent.index.values words = sent.word.values for index, word in zip(indices, spacy_ws(" ".join(words))): word_id_to_pos[index] = word.tag_ for sent in sents: assert(len(set(sent.run_id.values)) == 1) word_indices = sent.index.values sent_words = sent.word.values pos_tags_encodings = [(SPACY_POS_TAGS.index(word_id_to_pos[word_ind]) \ if word_id_to_pos[word_ind] in SPACY_POS_TAGS \ else 0) for word_ind in word_indices] # Same pred word encodings for all words in the sentence word_encodings = sent_words.tolist() pred_id = run_id_to_pred[int(sent.run_id.values[0])] pred_word_encodings = [pred_id] if pred_id != -1: word_inputs.append(word_encodings) pred_inputs.append(pred_word_encodings) pos_inputs.append(pos_tags_encodings) output_encodings.append(list(self.transform_labels(sent.label.values))) x = {} for name, sequence in zip(self.data_keys, [word_inputs, pred_inputs, pos_inputs]): x[name] = [] for samples in truncate_sequences(sequence, maxlen = self.sent_maxlen): x[name].append(samples) y = truncate_sequences(output_encodings, maxlen=self.sent_maxlen) return x, y def transform_labels(self, labels): """ Encode a list of textual labels """ # Fallback: return self.label_map.transform(labels) def num_of_classes(self): if self.label_map is not None: return len(self.label_map.classes_) else: print("encoder not instantiated for num of classes") return 0 def get_head_pred_word(self, full_sent): """ Get the head predicate word from a full sentence conll. """ assert(len(set(full_sent.head_pred_id.values)) == 1) # Sanity check pred_ind = full_sent.head_pred_id.values[0] return full_sent.word.values[pred_ind] \ if pred_ind != -1 \ else full_sent.pred.values[0].split(" ")[0] def get_head_pred_id(self, full_sent): # only get the id assert(len(set(full_sent.head_pred_id.values)) == 1) # Sanity check pred_ind = full_sent.head_pred_id.values[0] if pred_ind == -1: pred_word = full_sent.pred.values[0].split(" ")[0] words = full_sent.word.values.tolist() if pred_word in words: pred_ind = words.index(pred_word) # might not capture the second or later occurrence else: pred_ind = -1 # will be filtered out return pred_ind def truncate_sequences(sequences, maxlen=None): ret = [] if maxlen is not None: for seq in sequences: truc_seq = seq[:maxlen] ret.append(truc_seq) return ret
python
# coding=utf-8 from selenium.webdriver.common.by import By from view_models import certification_services, sidebar, ss_system_parameters import re import time def test_ca_cs_details_view_cert(case, profile_class=None): ''' :param case: MainController object :param profile_class: string The fully qualified name of the Java class :return: ''' self = case def view_cert(): '''Open "Certification services"''' self.wait_until_visible(self.by_css(sidebar.CERTIFICATION_SERVICES_CSS)).click() self.wait_jquery() view_cert_data(self, profile_class=profile_class) return view_cert def view_cert_data(self, profile_class=None): '''Get approved CA row''' service_row = self.wait_until_visible(type=By.XPATH, element=certification_services.LAST_ADDED_CERT_XPATH) '''Double click on approved CA row''' self.double_click(service_row) '''Click on "Edit button"''' self.by_id(certification_services.DETAILS_BTN_ID).click() self.log('UC TRUST_04 1.CS administrator selects to view the settings of a certification service.') self.wait_until_visible(type=By.XPATH, element=certification_services.CA_SETTINGS_TAB_XPATH).click() self.wait_jquery() self.log( 'UC TRUST_04: 2.System displays the following settings. Usage restrictions for the certificates issued by the certification service.') auth_checkbox = self.wait_until_visible(certification_services.EDIT_CA_AUTH_ONLY_CHECKBOX_XPATH, By.XPATH).is_enabled() self.is_true(auth_checkbox, msg='Authentication chechkbox not found') '''Click on authentication checkbox''' self.wait_until_visible(certification_services.EDIT_CA_AUTH_ONLY_CHECKBOX_XPATH, By.XPATH).click() self.log( 'UC TRUST_04: 2.System displays the following settings. The fully qualified name of the Java class that describes the certificate profile for certificates issued by the certification service.') '''Get profile info''' profile_info_area = self.wait_until_visible(type=By.XPATH, element=certification_services.EDIT_CERTIFICATE_PROFILE_INFO_AREA_XPATH) profile_info = profile_info_area.get_attribute("value") '''Verify profile info''' self.is_equal(profile_info, profile_class, msg='The name of the Java class that describes the certificate profile is wrong') self.log( 'UC TRUST_04: 2. The following user action options are displayed:edit the settings of the certification service') '''Verify "Save" button''' save_button_id = self.wait_until_visible(type=By.ID, element=certification_services.SAVE_CA_SETTINGS_BTN_ID).is_enabled() self.is_true(save_button_id, msg='"Save" button not found')
python
#!/usr/bin/env python # -*- coding:utf-8 -*- # @Author: Niccolò Bonacchi # @Date: Thursday, January 31st 2019, 1:15:46 pm from pathlib import Path import argparse import ibllib.io.params as params import oneibl.params from alf.one_iblrig import create from poop_count import main as poop IBLRIG_DATA = Path().cwd().parent.parent.parent.parent / 'iblrig_data' / 'Subjects' # noqa def main(): pfile = Path(params.getfile('one_params')) if not pfile.exists(): oneibl.params.setup_alyx_params() create(IBLRIG_DATA, dry=False) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Create session in Alyx') parser.add_argument( '--patch', help='Ask for a poop count before registering', required=False, default=True, type=bool) args = parser.parse_args() if args.patch: poop() main() else: main() print('done')
python
""" Flask-Limiter extension for rate limiting """ from ._version import get_versions __version__ = get_versions()['version'] del get_versions from .errors import ConfigurationError, RateLimitExceeded from .extension import Limiter, HEADERS
python
from foldrm import Classifier import numpy as np def acute(): attrs = ['a1', 'a2', 'a3', 'a4', 'a5', 'a6'] nums = ['a1'] model = Classifier(attrs=attrs, numeric=nums, label='label') data = model.load_data('data/acute/acute.csv') print('\n% acute dataset', np.shape(data)) return model, data def exercise(): attrs = ["age","gender","height_cm","weight_kg","body fat_%","diastolic","systolic","gripForce","sit and bend forward_cm","sit-ups counts","broad jump_cm"] nums = ["age","height_cm","weight_kg","body fat_%","diastolic","systolic","gripForce","sit and bend forward_cm","sit-ups counts","broad jump_cm"] model = Classifier(attrs=attrs, numeric=nums, label='class') data = model.load_data('data/exercise/exercise.csv') print('\n% exercise dataset', np.shape(data)) return model, data def data_science(): attrs = ["HOURS_DATASCIENCE","HOURS_BACKEND","HOURS_FRONTEND","NUM_COURSES_BEGINNER_DATASCIENCE","NUM_COURSES_BEGINNER_BACKEND","NUM_COURSES_BEGINNER_FRONTEND","NUM_COURSES_ADVANCED_DATASCIENCE","NUM_COURSES_ADVANCED_BACKEND","NUM_COURSES_ADVANCED_FRONTEND","AVG_SCORE_DATASCIENCE","AVG_SCORE_BACKEND","AVG_SCORE_FRONTEND"] nums = ["HOURS_DATASCIENCE","HOURS_BACKEND","HOURS_FRONTEND","NUM_COURSES_BEGINNER_DATASCIENCE","NUM_COURSES_BEGINNER_BACKEND","NUM_COURSES_BEGINNER_FRONTEND","NUM_COURSES_ADVANCED_DATASCIENCE","NUM_COURSES_ADVANCED_BACKEND","NUM_COURSES_ADVANCED_FRONTEND","AVG_SCORE_DATASCIENCE","AVG_SCORE_BACKEND","AVG_SCORE_FRONTEND"] model = Classifier(attrs=attrs, numeric=nums, label='PROFILE') data = model.load_data('data/data_science/data_science.csv') print('\n% data_science dataset', np.shape(data)) return model, data def air(): attrs = ["year","month","day","hour","PM2.5","PM10","SO2","NO2","CO","O3","TEMP","PRES","DEWP","RAIN","wd","WSPM"] nums = ["year","month","day","hour","PM2.5","PM10","SO2","NO2","CO","O3","TEMP","PRES","DEWP","RAIN","WSPM"] model = Classifier(attrs=attrs, numeric=nums, label='station') data = model.load_data('data/air/air3.csv') print('\n% air dataset', np.shape(data)) return model, data def adult(): attrs = ['age','workclass','fnlwgt','education','education_num','marital_status','occupation','relationship', 'race','sex','capital_gain','capital_loss','hours_per_week','native_country'] nums = ['age','fnlwgt','education_num','capital_gain','capital_loss','hours_per_week'] model = Classifier(attrs=attrs, numeric=nums, label='label') data = model.load_data('data/adult/adult.csv') print('\n% adult dataset', np.shape(data)) return model, data def autism(): attrs = ['a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'a10', 'age', 'gender', 'ethnicity', 'jaundice', 'pdd', 'used_app_before', 'relation'] nums = ['age'] model = Classifier(attrs=attrs, numeric=nums, label='label') data = model.load_data('data/autism/autism.csv') print('\n% autism dataset', np.shape(data)) return model, data def breastw(): attrs = ['clump_thickness', 'cell_size_uniformity', 'cell_shape_uniformity', 'marginal_adhesion', 'single_epi_cell_size', 'bare_nuclei', 'bland_chromatin', 'normal_nucleoli', 'mitoses'] nums = attrs model = Classifier(attrs=attrs, numeric=nums, label='label') data = model.load_data('data/breastw/breastw.csv') print('\n% breastw dataset', np.shape(data)) return model, data def cars(): attrs = ['buying', 'maint', 'doors', 'persons', 'lugboot', 'safety'] model = Classifier(attrs=attrs, numeric=[], label='label') data = model.load_data('data/cars/cars.csv') print('\n% cars dataset', np.shape(data)) return model, data def credit(): attrs = ['a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'a10', 'a11', 'a12', 'a13', 'a14', 'a15'] nums = ['a2', 'a3', 'a8', 'a11', 'a14', 'a15'] model = Classifier(attrs=attrs, numeric=nums, label='label') data = model.load_data('data/credit/credit.csv') print('\n% credit dataset', np.shape(data)) return model, data def heart(): attrs = ['age', 'sex', 'chest_pain', 'blood_pressure', 'serum_cholestoral', 'fasting_blood_sugar', 'resting_electrocardiographic_results', 'maximum_heart_rate_achieved', 'exercise_induced_angina', 'oldpeak', 'slope', 'major_vessels', 'thal'] nums = ['age', 'blood_pressure', 'serum_cholestoral', 'maximum_heart_rate_achieved', 'oldpeak'] model = Classifier(attrs=attrs, numeric=nums, label='label') data = model.load_data('data/heart/heart.csv') print('\n% heart dataset', np.shape(data)) return model, data def kidney(): attrs = ['age', 'bp', 'sg', 'al', 'su', 'rbc', 'pc', 'pcc', 'ba', 'bgr', 'bu', 'sc', 'sod', 'pot', 'hemo', 'pcv', 'wbcc', 'rbcc', 'htn', 'dm', 'cad', 'appet', 'pe', 'ane'] nums = ['age', 'bp', 'sg', 'bgr', 'bu', 'sc', 'sod', 'pot', 'hemo', 'pcv', 'wbcc', 'rbcc'] model = Classifier(attrs=attrs, numeric=nums, label='label') data = model.load_data('data/kidney/kidney.csv') print('\n% kidney dataset', np.shape(data)) return model, data def krkp(): attrs = ['a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'a10', 'a11', 'a12', 'a13', 'a14', 'a15', 'a16', 'a17', 'a18', 'a19', 'a20', 'a21', 'a22', 'a23', 'a24', 'a25', 'a26', 'a27', 'a28', 'a29', 'a30', 'a31', 'a32', 'a33', 'a34', 'a35', 'a36'] model = Classifier(attrs=attrs, numeric=[], label='label') data = model.load_data('data/krkp/krkp.csv') print('\n% krkp dataset', np.shape(data)) return model, data def mushroom(): attrs = ['cap_shape', 'cap_surface', 'cap_color', 'bruises', 'odor', 'gill_attachment', 'gill_spacing', 'gill_size', 'gill_color', 'stalk_shape', 'stalk_root', 'stalk_surface_above_ring', 'stalk_surface_below_ring', 'stalk_color_above_ring', 'stalk_color_below_ring', 'veil_type', 'veil_color', 'ring_number', 'ring_type', 'spore_print_color', 'population', 'habitat'] model = Classifier(attrs=attrs, numeric=[], label='label') data = model.load_data('data/mushroom/mushroom.csv') print('\n% mushroom dataset', np.shape(data)) return model, data def sonar(): attrs = ['a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9', 'a10', 'a11', 'a12', 'a13', 'a14', 'a15', 'a16', 'a17', 'a18', 'a19', 'a20', 'a21', 'a22', 'a23', 'a24', 'a25', 'a26', 'a27', 'a28', 'a29', 'a30', 'a31', 'a32', 'a33', 'a34', 'a35', 'a36', 'a37', 'a38', 'a39', 'a40', 'a41', 'a42', 'a43', 'a44', 'a45', 'a46', 'a47', 'a48', 'a49', 'a50', 'a51', 'a52', 'a53', 'a54', 'a55', 'a56', 'a57', 'a58', 'a59', 'a60'] nums = attrs model = Classifier(attrs=attrs, numeric=nums, label='label') data = model.load_data('data/sonar/sonar.csv') print('\n% sonar dataset', np.shape(data)) return model, data def voting(): attrs = ['handicapped_infants', 'water_project_cost_sharing', 'budget_resolution', 'physician_fee_freeze', 'el_salvador_aid', 'religious_groups_in_schools', 'anti_satellite_test_ban', 'aid_to_nicaraguan_contras', 'mx_missile', 'immigration', 'synfuels_corporation_cutback', 'education_spending', 'superfund_right_to_sue', 'crime', 'duty_free_exports', 'export_administration_act_south_africa'] model = Classifier(attrs=attrs, numeric=[], label='label') data = model.load_data('data/voting/voting.csv') print('\n% voting dataset', np.shape(data)) return model, data def ecoli(): attrs = ['sn','mcg','gvh','lip','chg','aac','alm1','alm2'] nums = ['mcg','gvh','lip','chg','aac','alm1','alm2'] model = Classifier(attrs=attrs, numeric=nums, label='label') data = model.load_data('data/ecoli/ecoli.csv') print('\n% ecoli dataset', np.shape(data)) return model, data def ionosphere(): attrs = ['c1','c2','c3','c4','c5','c6','c7','c8','c9','c10','c11','c12','c13','c14','c15','c16','c17','c18','c19', 'c20','c21','c22','c23','c24','c25','c26','c27','c28','c29','c30','c31','c32','c33','c34'] model = Classifier(attrs=attrs, numeric=attrs, label='label') data = model.load_data('data/ionosphere/ionosphere.csv') print('\n% ionosphere dataset', np.shape(data)) return model, data def wine(): attrs = ['alcohol','malic_acid','ash','alcalinity_of_ash','magnesium','tot_phenols','flavanoids', 'nonflavanoid_phenols','proanthocyanins','color_intensity','hue','OD_of_diluted','proline'] model = Classifier(attrs=attrs, numeric=attrs, label='label') data = model.load_data('data/wine/wine.csv') print('\n% wine dataset', np.shape(data)) return model, data def credit_card(): attrs = ['LIMIT_BAL','SEX','EDUCATION','MARRIAGE','AGE','PAY_0','PAY_2','PAY_3','PAY_4','PAY_5','PAY_6', 'BILL_AMT1','BILL_AMT2','BILL_AMT3','BILL_AMT4','BILL_AMT5','BILL_AMT6','PAY_AMT1','PAY_AMT2','PAY_AMT3','PAY_AMT4', 'PAY_AMT5','PAY_AMT6'] nums = ['LIMIT_BAL','AGE','BILL_AMT1','BILL_AMT2','BILL_AMT3','BILL_AMT4','BILL_AMT5','BILL_AMT6','PAY_AMT1', 'PAY_AMT2','PAY_AMT3','PAY_AMT4','PAY_AMT5','PAY_AMT6'] model = Classifier(attrs=attrs, numeric=nums, label='DEFAULT_PAYMENT') data = model.load_data('data/credit_card/credit_card.csv') print('\n% credit card dataset', np.shape(data)) return model, data def rain(): attrs = ['Month','Day','Location','MinTemp','MaxTemp','Rainfall','Evaporation','Sunshine','WindGustDir','WindGustSpeed','WindDir9am','WindDir3pm','WindSpeed9am','WindSpeed3pm','Humidity9am','Humidity3pm','Pressure9am','Pressure3pm','Cloud9am','Cloud3pm','Temp9am','Temp3pm','RainToday'] nums = ['Month','Day','MinTemp','MaxTemp','Rainfall','WindDir9am','WindDir3pm','WindSpeed9am','WindSpeed3pm','Humidity9am','Humidity3pm','Pressure9am','Pressure3pm','Temp9am','Temp3pm'] model = Classifier(attrs=attrs, numeric=nums, label='RainTomorrow') data = model.load_data('data/rain/rain.csv') print('\n% rain dataset', np.shape(data)) return model, data def heloc(): attrs = ['ExternalRiskEstimate','MSinceOldestTradeOpen','MSinceMostRecentTradeOpen','AverageMInFile','NumSatisfactoryTrades','NumTrades60Ever2DerogPubRec','NumTrades90Ever2DerogPubRec','PercentTradesNeverDelq','MSinceMostRecentDelq','MaxDelq2PublicRecLast12M','MaxDelqEver','NumTotalTrades','NumTradesOpeninLast12M','PercentInstallTrades','MSinceMostRecentInqexcl7days','NumInqLast6M','NumInqLast6Mexcl7days','NetFractionRevolvingBurden','NetFractionInstallBurden','NumRevolvingTradesWBalance','NumInstallTradesWBalance','NumBank2NatlTradesWHighUtilization','PercentTradesWBalance'] nums = attrs model = Classifier(attrs=attrs, numeric=nums, label='RiskPerformance') data = model.load_data('data/heloc/heloc_dataset_v1.csv') print('\n% rain dataset', np.shape(data)) return model, data def avila(): attrs = ['f1','f2','f3','f4','f5','f6','f7','f8','f9','f10'] nums = ['f1','f2','f3','f4','f5','f6','f7','f8','f9','f10'] model = Classifier(attrs=attrs, numeric=nums, label='class') data_train = model.load_data('data/avila/train.csv') data_test = model.load_data('data/avila/test.csv') print('\n% avila dataset train', np.shape(data_train), 'test', np.shape(data_test)) return model, data_train, data_test def titanic(): attrs = ['Sex', 'Age', 'Number_of_Siblings_Spouses', 'Number_Of_Parents_Children', 'Fare', 'Class', 'Embarked'] nums = ['Age', 'Number_of_Siblings_Spouses', 'Number_Of_Parents_Children', 'Fare'] model = Classifier(attrs=attrs, numeric=nums, label='Survived') data_train = model.load_data('data/titanic/train.csv') data_test = model.load_data('data/titanic/test.csv') print('\n% titanic dataset train', np.shape(data_train), 'test', np.shape(data_test)) return model, data_train, data_test def anneal(): attrs = ['family', 'product_type', 'steel', 'carbon', 'hardness', 'temper_rolling', 'condition', 'formability', 'strength', 'non_ageing', 'surface_finish', 'surface_quality', 'enamelability', 'bc', 'bf', 'bt', 'bw_me', 'bl', 'm', 'chrom', 'phos', 'cbond', 'marvi', 'exptl', 'ferro', 'corr', 'blue_bright_varn_clean', 'lustre', 'jurofm', 's', 'p', 'shape', 'thick', 'width', 'len', 'oil', 'bore', 'packing'] nums = ['thick', 'width', 'len'] model = Classifier(attrs=attrs, numeric=nums, label='classes') data_train = model.load_data('data/anneal/anneal_train.csv') data_test = model.load_data('data/anneal/anneal_test.csv') print('\n% anneal dataset train', np.shape(data_train), 'test', np.shape(data_test)) return model, data_train, data_test def weight_lifting(): attrs = ['new_window','num_window','roll_belt','pitch_belt','yaw_belt','total_accel_belt','kurtosis_roll_belt','kurtosis_picth_belt','kurtosis_yaw_belt','skewness_roll_belt','skewness_roll_belt','skewness_yaw_belt','max_roll_belt','max_picth_belt','max_yaw_belt','min_roll_belt','min_pitch_belt','min_yaw_belt','amplitude_roll_belt','amplitude_pitch_belt','amplitude_yaw_belt','var_total_accel_belt','avg_roll_belt','stddev_roll_belt','var_roll_belt','avg_pitch_belt','stddev_pitch_belt','var_pitch_belt','avg_yaw_belt','stddev_yaw_belt','var_yaw_belt','gyros_belt_x','gyros_belt_y','gyros_belt_z','accel_belt_x','accel_belt_y','accel_belt_z','magnet_belt_x','magnet_belt_y','magnet_belt_z','roll_arm','pitch_arm','yaw_arm','total_accel_arm','var_accel_arm','avg_roll_arm','stddev_roll_arm','var_roll_arm','avg_pitch_arm','stddev_pitch_arm','var_pitch_arm','avg_yaw_arm','stddev_yaw_arm','var_yaw_arm','gyros_arm_x','gyros_arm_y','gyros_arm_z','accel_arm_x','accel_arm_y','accel_arm_z','magnet_arm_x','magnet_arm_y','magnet_arm_z','kurtosis_roll_arm','kurtosis_picth_arm','kurtosis_yaw_arm','skewness_roll_arm','skewness_pitch_arm','skewness_yaw_arm','max_roll_arm','max_picth_arm','max_yaw_arm','min_roll_arm','min_pitch_arm','min_yaw_arm','amplitude_roll_arm','amplitude_pitch_arm','amplitude_yaw_arm','roll_dumbbell','pitch_dumbbell','yaw_dumbbell','kurtosis_roll_dumbbell','kurtosis_picth_dumbbell','kurtosis_yaw_dumbbell','skewness_roll_dumbbell','skewness_pitch_dumbbell','skewness_yaw_dumbbell','max_roll_dumbbell','max_picth_dumbbell','max_yaw_dumbbell','min_roll_dumbbell','min_pitch_dumbbell','min_yaw_dumbbell','amplitude_roll_dumbbell','amplitude_pitch_dumbbell','amplitude_yaw_dumbbell','total_accel_dumbbell','var_accel_dumbbell','avg_roll_dumbbell','stddev_roll_dumbbell','var_roll_dumbbell','avg_pitch_dumbbell','stddev_pitch_dumbbell','var_pitch_dumbbell','avg_yaw_dumbbell','stddev_yaw_dumbbell','var_yaw_dumbbell','gyros_dumbbell_x','gyros_dumbbell_y','gyros_dumbbell_z','accel_dumbbell_x','accel_dumbbell_y','accel_dumbbell_z','magnet_dumbbell_x','magnet_dumbbell_y','magnet_dumbbell_z','roll_forearm','pitch_forearm','yaw_forearm','kurtosis_roll_forearm','kurtosis_picth_forearm','kurtosis_yaw_forearm','skewness_roll_forearm','skewness_pitch_forearm','skewness_yaw_forearm','max_roll_forearm','max_picth_forearm','max_yaw_forearm','min_roll_forearm','min_pitch_forearm','min_yaw_forearm','amplitude_roll_forearm','amplitude_pitch_forearm','amplitude_yaw_forearm','total_accel_forearm','var_accel_forearm','avg_roll_forearm','stddev_roll_forearm','var_roll_forearm','avg_pitch_forearm','stddev_pitch_forearm','var_pitch_forearm','avg_yaw_forearm','stddev_yaw_forearm','var_yaw_forearm','gyros_forearm_x','gyros_forearm_y','gyros_forearm_z','accel_forearm_x','accel_forearm_y','accel_forearm_z','magnet_forearm_x','magnet_forearm_y','magnet_forearm_z'] nums = ['num_window','roll_belt','pitch_belt','yaw_belt','total_accel_belt','kurtosis_roll_belt','kurtosis_picth_belt','kurtosis_yaw_belt','skewness_roll_belt','skewness_roll_belt','skewness_yaw_belt','max_roll_belt','max_picth_belt','max_yaw_belt','min_roll_belt','min_pitch_belt','min_yaw_belt','amplitude_roll_belt','amplitude_pitch_belt','amplitude_yaw_belt','var_total_accel_belt','avg_roll_belt','stddev_roll_belt','var_roll_belt','avg_pitch_belt','stddev_pitch_belt','var_pitch_belt','avg_yaw_belt','stddev_yaw_belt','var_yaw_belt','gyros_belt_x','gyros_belt_y','gyros_belt_z','accel_belt_x','accel_belt_y','accel_belt_z','magnet_belt_x','magnet_belt_y','magnet_belt_z','roll_arm','pitch_arm','yaw_arm','total_accel_arm','var_accel_arm','avg_roll_arm','stddev_roll_arm','var_roll_arm','avg_pitch_arm','stddev_pitch_arm','var_pitch_arm','avg_yaw_arm','stddev_yaw_arm','var_yaw_arm','gyros_arm_x','gyros_arm_y','gyros_arm_z','accel_arm_x','accel_arm_y','accel_arm_z','magnet_arm_x','magnet_arm_y','magnet_arm_z','kurtosis_roll_arm','kurtosis_picth_arm','kurtosis_yaw_arm','skewness_roll_arm','skewness_pitch_arm','skewness_yaw_arm','max_roll_arm','max_picth_arm','max_yaw_arm','min_roll_arm','min_pitch_arm','min_yaw_arm','amplitude_roll_arm','amplitude_pitch_arm','amplitude_yaw_arm','roll_dumbbell','pitch_dumbbell','yaw_dumbbell','kurtosis_roll_dumbbell','kurtosis_picth_dumbbell','kurtosis_yaw_dumbbell','skewness_roll_dumbbell','skewness_pitch_dumbbell','skewness_yaw_dumbbell','max_roll_dumbbell','max_picth_dumbbell','max_yaw_dumbbell','min_roll_dumbbell','min_pitch_dumbbell','min_yaw_dumbbell','amplitude_roll_dumbbell','amplitude_pitch_dumbbell','amplitude_yaw_dumbbell','total_accel_dumbbell','var_accel_dumbbell','avg_roll_dumbbell','stddev_roll_dumbbell','var_roll_dumbbell','avg_pitch_dumbbell','stddev_pitch_dumbbell','var_pitch_dumbbell','avg_yaw_dumbbell','stddev_yaw_dumbbell','var_yaw_dumbbell','gyros_dumbbell_x','gyros_dumbbell_y','gyros_dumbbell_z','accel_dumbbell_x','accel_dumbbell_y','accel_dumbbell_z','magnet_dumbbell_x','magnet_dumbbell_y','magnet_dumbbell_z','roll_forearm','pitch_forearm','yaw_forearm','kurtosis_roll_forearm','kurtosis_picth_forearm','kurtosis_yaw_forearm','skewness_roll_forearm','skewness_pitch_forearm','skewness_yaw_forearm','max_roll_forearm','max_picth_forearm','max_yaw_forearm','min_roll_forearm','min_pitch_forearm','min_yaw_forearm','amplitude_roll_forearm','amplitude_pitch_forearm','amplitude_yaw_forearm','total_accel_forearm','var_accel_forearm','avg_roll_forearm','stddev_roll_forearm','var_roll_forearm','avg_pitch_forearm','stddev_pitch_forearm','var_pitch_forearm','avg_yaw_forearm','stddev_yaw_forearm','var_yaw_forearm','gyros_forearm_x','gyros_forearm_y','gyros_forearm_z','accel_forearm_x','accel_forearm_y','accel_forearm_z','magnet_forearm_x','magnet_forearm_y','magnet_forearm_z'] model = Classifier(attrs=attrs, numeric=nums, label='classe') data = model.load_data('data/weight_lifting/weight_lifting.csv') print('\n% weight lifting dataset', np.shape(data)) return model, data def yeast(): attrs = ['sequence','mcg','gvh','alm','mit','erl','pox','vac','nuc'] nums = ['mcg','gvh','alm','mit','erl','pox','vac','nuc'] model = Classifier(attrs=attrs, numeric=nums, label='class') data = model.load_data('data/yeast/yeast.csv') print('\n% yeast dataset', np.shape(data)) return model, data def drug(): attrs = ['Age','Gender','Education','Country','Ethnicity','Nscore','Escore','Oscore','Ascore','Cscore','Impulsive','SS'] nums = attrs output = ['Alcohol','Amphet','Amyl','Benzos','Caff','Cannabis','Choc','Code','Crack','Ecstasy','Heroin','Ketamine','Legalh','LSD','Meth','Mushrooms','Nicotine','Semer','VSA'] model = Classifier(attrs=attrs, numeric=nums, label=output[17]) data = model.load_data('data/drug/drug.csv') print('\n% drug consumption dataset', np.shape(data)) return model, data def dry_bean(): attrs = ['Area','Perimeter','MajorAxisLength','MinorAxisLength','AspectRation','Eccentricity','ConvexArea','EquivDiameter','Extent','Solidity','roundness','Compactness','ShapeFactor1','ShapeFactor2','ShapeFactor3','ShapeFactor4'] nums = attrs model = Classifier(attrs=attrs, numeric=nums, label='Class') data = model.load_data('data/dry_bean/dry_bean.csv') print('\n% dry bean dataset', np.shape(data)) return model, data def eeg(): attrs = ['AF3','F7','F3','FC5','T7','P7','O1','O2','P8','T8','FC6','F4','F8','AF4'] nums = attrs model = Classifier(attrs=attrs, numeric=nums, label='eyeDetection') data = model.load_data('data/eeg/eeg.csv') print('\n% eeg dataset', np.shape(data)) return model, data def nursery(): attrs = ['parents','has_nurs','form','children','housing','finance','social','health'] nums = [] model = Classifier(attrs=attrs, numeric=nums, label='class') data = model.load_data('data/nursery/nursery.csv') print('\n% nursery dataset', np.shape(data)) return model, data def intention(): attrs = ['Administrative','Administrative_Duration','Informational','Informational_Duration','ProductRelated','ProductRelated_Duration','BounceRates','ExitRates','PageValues','SpecialDay','Month','OperatingSystems','Browser','Region','TrafficType','VisitorType','Weekend'] nums = ['Administrative','Administrative_Duration','Informational','Informational_Duration','ProductRelated','ProductRelated_Duration','BounceRates','ExitRates','PageValues','SpecialDay'] model = Classifier(attrs=attrs, numeric=nums, label='Revenue') data = model.load_data('data/intention/intention.csv') print('\n% online shoppers intention dataset', np.shape(data)) return model, data def page_blocks(): attrs = ['height','lenght','area','eccen','p_black','p_and','mean_tr','blackpix','blackand','wb_trans'] nums = attrs model = Classifier(attrs=attrs, numeric=nums, label='class') data = model.load_data('data/page_blocks/page_blocks.csv') print('\n% page blocks dataset', np.shape(data)) return model, data def parkison(): attrs = ['gender','PPE','DFA','RPDE','numPulses','numPeriodsPulses','meanPeriodPulses','stdDevPeriodPulses','locPctJitter','locAbsJitter','rapJitter','ppq5Jitter','ddpJitter','locShimmer','locDbShimmer','apq3Shimmer','apq5Shimmer','apq11Shimmer','ddaShimmer','meanAutoCorrHarmonicity','meanNoiseToHarmHarmonicity','meanHarmToNoiseHarmonicity','minIntensity','maxIntensity','meanIntensity','f1','f2','f3','f4','b1','b2','b3','b4','GQ_prc5_95','GQ_std_cycle_open','GQ_std_cycle_closed','GNE_mean','GNE_std','GNE_SNR_TKEO','GNE_SNR_SEO','GNE_NSR_TKEO','GNE_NSR_SEO','VFER_mean','VFER_std','VFER_entropy','VFER_SNR_TKEO','VFER_SNR_SEO','VFER_NSR_TKEO','VFER_NSR_SEO','IMF_SNR_SEO','IMF_SNR_TKEO','IMF_SNR_entropy','IMF_NSR_SEO','IMF_NSR_TKEO','IMF_NSR_entropy','mean_Log_energy','mean_MFCC_0th_coef','mean_MFCC_1st_coef','mean_MFCC_2nd_coef','mean_MFCC_3rd_coef','mean_MFCC_4th_coef','mean_MFCC_5th_coef','mean_MFCC_6th_coef','mean_MFCC_7th_coef','mean_MFCC_8th_coef','mean_MFCC_9th_coef','mean_MFCC_10th_coef','mean_MFCC_11th_coef','mean_MFCC_12th_coef','mean_delta_log_energy','mean_0th_delta','mean_1st_delta','mean_2nd_delta','mean_3rd_delta','mean_4th_delta','mean_5th_delta','mean_6th_delta','mean_7th_delta','mean_8th_delta','mean_9th_delta','mean_10th_delta','mean_11th_delta','mean_12th_delta','mean_delta_delta_log_energy','mean_delta_delta_0th','mean_1st_delta_delta','mean_2nd_delta_delta','mean_3rd_delta_delta','mean_4th_delta_delta','mean_5th_delta_delta','mean_6th_delta_delta','mean_7th_delta_delta','mean_8th_delta_delta','mean_9th_delta_delta','mean_10th_delta_delta','mean_11th_delta_delta','mean_12th_delta_delta','std_Log_energy','std_MFCC_0th_coef','std_MFCC_1st_coef','std_MFCC_2nd_coef','std_MFCC_3rd_coef','std_MFCC_4th_coef','std_MFCC_5th_coef','std_MFCC_6th_coef','std_MFCC_7th_coef','std_MFCC_8th_coef','std_MFCC_9th_coef','std_MFCC_10th_coef','std_MFCC_11th_coef','std_MFCC_12th_coef','std_delta_log_energy','std_0th_delta','std_1st_delta','std_2nd_delta','std_3rd_delta','std_4th_delta','std_5th_delta','std_6th_delta','std_7th_delta','std_8th_delta','std_9th_delta','std_10th_delta','std_11th_delta','std_12th_delta','std_delta_delta_log_energy','std_delta_delta_0th','std_1st_delta_delta','std_2nd_delta_delta','std_3rd_delta_delta','std_4th_delta_delta','std_5th_delta_delta','std_6th_delta_delta','std_7th_delta_delta','std_8th_delta_delta','std_9th_delta_delta','std_10th_delta_delta','std_11th_delta_delta','std_12th_delta_delta','Ea','Ed_1_coef','Ed_2_coef','Ed_3_coef','Ed_4_coef','Ed_5_coef','Ed_6_coef','Ed_7_coef','Ed_8_coef','Ed_9_coef','Ed_10_coef','det_entropy_shannon_1_coef','det_entropy_shannon_2_coef','det_entropy_shannon_3_coef','det_entropy_shannon_4_coef','det_entropy_shannon_5_coef','det_entropy_shannon_6_coef','det_entropy_shannon_7_coef','det_entropy_shannon_8_coef','det_entropy_shannon_9_coef','det_entropy_shannon_10_coef','det_entropy_log_1_coef','det_entropy_log_2_coef','det_entropy_log_3_coef','det_entropy_log_4_coef','det_entropy_log_5_coef','det_entropy_log_6_coef','det_entropy_log_7_coef','det_entropy_log_8_coef','det_entropy_log_9_coef','det_entropy_log_10_coef','det_TKEO_mean_1_coef','det_TKEO_mean_2_coef','det_TKEO_mean_3_coef','det_TKEO_mean_4_coef','det_TKEO_mean_5_coef','det_TKEO_mean_6_coef','det_TKEO_mean_7_coef','det_TKEO_mean_8_coef','det_TKEO_mean_9_coef','det_TKEO_mean_10_coef','det_TKEO_std_1_coef','det_TKEO_std_2_coef','det_TKEO_std_3_coef','det_TKEO_std_4_coef','det_TKEO_std_5_coef','det_TKEO_std_6_coef','det_TKEO_std_7_coef','det_TKEO_std_8_coef','det_TKEO_std_9_coef','det_TKEO_std_10_coef','app_entropy_shannon_1_coef','app_entropy_shannon_2_coef','app_entropy_shannon_3_coef','app_entropy_shannon_4_coef','app_entropy_shannon_5_coef','app_entropy_shannon_6_coef','app_entropy_shannon_7_coef','app_entropy_shannon_8_coef','app_entropy_shannon_9_coef','app_entropy_shannon_10_coef','app_entropy_log_1_coef','app_entropy_log_2_coef','app_entropy_log_3_coef','app_entropy_log_4_coef','app_entropy_log_5_coef','app_entropy_log_6_coef','app_entropy_log_7_coef','app_entropy_log_8_coef','app_entropy_log_9_coef','app_entropy_log_10_coef','app_det_TKEO_mean_1_coef','app_det_TKEO_mean_2_coef','app_det_TKEO_mean_3_coef','app_det_TKEO_mean_4_coef','app_det_TKEO_mean_5_coef','app_det_TKEO_mean_6_coef','app_det_TKEO_mean_7_coef','app_det_TKEO_mean_8_coef','app_det_TKEO_mean_9_coef','app_det_TKEO_mean_10_coef','app_TKEO_std_1_coef','app_TKEO_std_2_coef','app_TKEO_std_3_coef','app_TKEO_std_4_coef','app_TKEO_std_5_coef','app_TKEO_std_6_coef','app_TKEO_std_7_coef','app_TKEO_std_8_coef','app_TKEO_std_9_coef','app_TKEO_std_10_coef','Ea2','Ed2_1_coef','Ed2_2_coef','Ed2_3_coef','Ed2_4_coef','Ed2_5_coef','Ed2_6_coef','Ed2_7_coef','Ed2_8_coef','Ed2_9_coef','Ed2_10_coef','det_LT_entropy_shannon_1_coef','det_LT_entropy_shannon_2_coef','det_LT_entropy_shannon_3_coef','det_LT_entropy_shannon_4_coef','det_LT_entropy_shannon_5_coef','det_LT_entropy_shannon_6_coef','det_LT_entropy_shannon_7_coef','det_LT_entropy_shannon_8_coef','det_LT_entropy_shannon_9_coef','det_LT_entropy_shannon_10_coef','det_LT_entropy_log_1_coef','det_LT_entropy_log_2_coef','det_LT_entropy_log_3_coef','det_LT_entropy_log_4_coef','det_LT_entropy_log_5_coef','det_LT_entropy_log_6_coef','det_LT_entropy_log_7_coef','det_LT_entropy_log_8_coef','det_LT_entropy_log_9_coef','det_LT_entropy_log_10_coef','det_LT_TKEO_mean_1_coef','det_LT_TKEO_mean_2_coef','det_LT_TKEO_mean_3_coef','det_LT_TKEO_mean_4_coef','det_LT_TKEO_mean_5_coef','det_LT_TKEO_mean_6_coef','det_LT_TKEO_mean_7_coef','det_LT_TKEO_mean_8_coef','det_LT_TKEO_mean_9_coef','det_LT_TKEO_mean_10_coef','det_LT_TKEO_std_1_coef','det_LT_TKEO_std_2_coef','det_LT_TKEO_std_3_coef','det_LT_TKEO_std_4_coef','det_LT_TKEO_std_5_coef','det_LT_TKEO_std_6_coef','det_LT_TKEO_std_7_coef','det_LT_TKEO_std_8_coef','det_LT_TKEO_std_9_coef','det_LT_TKEO_std_10_coef','app_LT_entropy_shannon_1_coef','app_LT_entropy_shannon_2_coef','app_LT_entropy_shannon_3_coef','app_LT_entropy_shannon_4_coef','app_LT_entropy_shannon_5_coef','app_LT_entropy_shannon_6_coef','app_LT_entropy_shannon_7_coef','app_LT_entropy_shannon_8_coef','app_LT_entropy_shannon_9_coef','app_LT_entropy_shannon_10_coef','app_LT_entropy_log_1_coef','app_LT_entropy_log_2_coef','app_LT_entropy_log_3_coef','app_LT_entropy_log_4_coef','app_LT_entropy_log_5_coef','app_LT_entropy_log_6_coef','app_LT_entropy_log_7_coef','app_LT_entropy_log_8_coef','app_LT_entropy_log_9_coef','app_LT_entropy_log_10_coef','app_LT_TKEO_mean_1_coef','app_LT_TKEO_mean_2_coef','app_LT_TKEO_mean_3_coef','app_LT_TKEO_mean_4_coef','app_LT_TKEO_mean_5_coef','app_LT_TKEO_mean_6_coef','app_LT_TKEO_mean_7_coef','app_LT_TKEO_mean_8_coef','app_LT_TKEO_mean_9_coef','app_LT_TKEO_mean_10_coef','app_LT_TKEO_std_1_coef','app_LT_TKEO_std_2_coef','app_LT_TKEO_std_3_coef','app_LT_TKEO_std_4_coef','app_LT_TKEO_std_5_coef','app_LT_TKEO_std_6_coef','app_LT_TKEO_std_7_coef','app_LT_TKEO_std_8_coef','app_LT_TKEO_std_9_coef','app_LT_TKEO_std_10_coef','tqwt_energy_dec_1','tqwt_energy_dec_2','tqwt_energy_dec_3','tqwt_energy_dec_4','tqwt_energy_dec_5','tqwt_energy_dec_6','tqwt_energy_dec_7','tqwt_energy_dec_8','tqwt_energy_dec_9','tqwt_energy_dec_10','tqwt_energy_dec_11','tqwt_energy_dec_12','tqwt_energy_dec_13','tqwt_energy_dec_14','tqwt_energy_dec_15','tqwt_energy_dec_16','tqwt_energy_dec_17','tqwt_energy_dec_18','tqwt_energy_dec_19','tqwt_energy_dec_20','tqwt_energy_dec_21','tqwt_energy_dec_22','tqwt_energy_dec_23','tqwt_energy_dec_24','tqwt_energy_dec_25','tqwt_energy_dec_26','tqwt_energy_dec_27','tqwt_energy_dec_28','tqwt_energy_dec_29','tqwt_energy_dec_30','tqwt_energy_dec_31','tqwt_energy_dec_32','tqwt_energy_dec_33','tqwt_energy_dec_34','tqwt_energy_dec_35','tqwt_energy_dec_36','tqwt_entropy_shannon_dec_1','tqwt_entropy_shannon_dec_2','tqwt_entropy_shannon_dec_3','tqwt_entropy_shannon_dec_4','tqwt_entropy_shannon_dec_5','tqwt_entropy_shannon_dec_6','tqwt_entropy_shannon_dec_7','tqwt_entropy_shannon_dec_8','tqwt_entropy_shannon_dec_9','tqwt_entropy_shannon_dec_10','tqwt_entropy_shannon_dec_11','tqwt_entropy_shannon_dec_12','tqwt_entropy_shannon_dec_13','tqwt_entropy_shannon_dec_14','tqwt_entropy_shannon_dec_15','tqwt_entropy_shannon_dec_16','tqwt_entropy_shannon_dec_17','tqwt_entropy_shannon_dec_18','tqwt_entropy_shannon_dec_19','tqwt_entropy_shannon_dec_20','tqwt_entropy_shannon_dec_21','tqwt_entropy_shannon_dec_22','tqwt_entropy_shannon_dec_23','tqwt_entropy_shannon_dec_24','tqwt_entropy_shannon_dec_25','tqwt_entropy_shannon_dec_26','tqwt_entropy_shannon_dec_27','tqwt_entropy_shannon_dec_28','tqwt_entropy_shannon_dec_29','tqwt_entropy_shannon_dec_30','tqwt_entropy_shannon_dec_31','tqwt_entropy_shannon_dec_32','tqwt_entropy_shannon_dec_33','tqwt_entropy_shannon_dec_34','tqwt_entropy_shannon_dec_35','tqwt_entropy_shannon_dec_36','tqwt_entropy_log_dec_1','tqwt_entropy_log_dec_2','tqwt_entropy_log_dec_3','tqwt_entropy_log_dec_4','tqwt_entropy_log_dec_5','tqwt_entropy_log_dec_6','tqwt_entropy_log_dec_7','tqwt_entropy_log_dec_8','tqwt_entropy_log_dec_9','tqwt_entropy_log_dec_10','tqwt_entropy_log_dec_11','tqwt_entropy_log_dec_12','tqwt_entropy_log_dec_13','tqwt_entropy_log_dec_14','tqwt_entropy_log_dec_15','tqwt_entropy_log_dec_16','tqwt_entropy_log_dec_17','tqwt_entropy_log_dec_18','tqwt_entropy_log_dec_19','tqwt_entropy_log_dec_20','tqwt_entropy_log_dec_21','tqwt_entropy_log_dec_22','tqwt_entropy_log_dec_23','tqwt_entropy_log_dec_24','tqwt_entropy_log_dec_25','tqwt_entropy_log_dec_26','tqwt_entropy_log_dec_27','tqwt_entropy_log_dec_28','tqwt_entropy_log_dec_29','tqwt_entropy_log_dec_30','tqwt_entropy_log_dec_31','tqwt_entropy_log_dec_32','tqwt_entropy_log_dec_33','tqwt_entropy_log_dec_34','tqwt_entropy_log_dec_35','tqwt_entropy_log_dec_36','tqwt_TKEO_mean_dec_1','tqwt_TKEO_mean_dec_2','tqwt_TKEO_mean_dec_3','tqwt_TKEO_mean_dec_4','tqwt_TKEO_mean_dec_5','tqwt_TKEO_mean_dec_6','tqwt_TKEO_mean_dec_7','tqwt_TKEO_mean_dec_8','tqwt_TKEO_mean_dec_9','tqwt_TKEO_mean_dec_10','tqwt_TKEO_mean_dec_11','tqwt_TKEO_mean_dec_12','tqwt_TKEO_mean_dec_13','tqwt_TKEO_mean_dec_14','tqwt_TKEO_mean_dec_15','tqwt_TKEO_mean_dec_16','tqwt_TKEO_mean_dec_17','tqwt_TKEO_mean_dec_18','tqwt_TKEO_mean_dec_19','tqwt_TKEO_mean_dec_20','tqwt_TKEO_mean_dec_21','tqwt_TKEO_mean_dec_22','tqwt_TKEO_mean_dec_23','tqwt_TKEO_mean_dec_24','tqwt_TKEO_mean_dec_25','tqwt_TKEO_mean_dec_26','tqwt_TKEO_mean_dec_27','tqwt_TKEO_mean_dec_28','tqwt_TKEO_mean_dec_29','tqwt_TKEO_mean_dec_30','tqwt_TKEO_mean_dec_31','tqwt_TKEO_mean_dec_32','tqwt_TKEO_mean_dec_33','tqwt_TKEO_mean_dec_34','tqwt_TKEO_mean_dec_35','tqwt_TKEO_mean_dec_36','tqwt_TKEO_std_dec_1','tqwt_TKEO_std_dec_2','tqwt_TKEO_std_dec_3','tqwt_TKEO_std_dec_4','tqwt_TKEO_std_dec_5','tqwt_TKEO_std_dec_6','tqwt_TKEO_std_dec_7','tqwt_TKEO_std_dec_8','tqwt_TKEO_std_dec_9','tqwt_TKEO_std_dec_10','tqwt_TKEO_std_dec_11','tqwt_TKEO_std_dec_12','tqwt_TKEO_std_dec_13','tqwt_TKEO_std_dec_14','tqwt_TKEO_std_dec_15','tqwt_TKEO_std_dec_16','tqwt_TKEO_std_dec_17','tqwt_TKEO_std_dec_18','tqwt_TKEO_std_dec_19','tqwt_TKEO_std_dec_20','tqwt_TKEO_std_dec_21','tqwt_TKEO_std_dec_22','tqwt_TKEO_std_dec_23','tqwt_TKEO_std_dec_24','tqwt_TKEO_std_dec_25','tqwt_TKEO_std_dec_26','tqwt_TKEO_std_dec_27','tqwt_TKEO_std_dec_28','tqwt_TKEO_std_dec_29','tqwt_TKEO_std_dec_30','tqwt_TKEO_std_dec_31','tqwt_TKEO_std_dec_32','tqwt_TKEO_std_dec_33','tqwt_TKEO_std_dec_34','tqwt_TKEO_std_dec_35','tqwt_TKEO_std_dec_36','tqwt_medianValue_dec_1','tqwt_medianValue_dec_2','tqwt_medianValue_dec_3','tqwt_medianValue_dec_4','tqwt_medianValue_dec_5','tqwt_medianValue_dec_6','tqwt_medianValue_dec_7','tqwt_medianValue_dec_8','tqwt_medianValue_dec_9','tqwt_medianValue_dec_10','tqwt_medianValue_dec_11','tqwt_medianValue_dec_12','tqwt_medianValue_dec_13','tqwt_medianValue_dec_14','tqwt_medianValue_dec_15','tqwt_medianValue_dec_16','tqwt_medianValue_dec_17','tqwt_medianValue_dec_18','tqwt_medianValue_dec_19','tqwt_medianValue_dec_20','tqwt_medianValue_dec_21','tqwt_medianValue_dec_22','tqwt_medianValue_dec_23','tqwt_medianValue_dec_24','tqwt_medianValue_dec_25','tqwt_medianValue_dec_26','tqwt_medianValue_dec_27','tqwt_medianValue_dec_28','tqwt_medianValue_dec_29','tqwt_medianValue_dec_30','tqwt_medianValue_dec_31','tqwt_medianValue_dec_32','tqwt_medianValue_dec_33','tqwt_medianValue_dec_34','tqwt_medianValue_dec_35','tqwt_medianValue_dec_36','tqwt_meanValue_dec_1','tqwt_meanValue_dec_2','tqwt_meanValue_dec_3','tqwt_meanValue_dec_4','tqwt_meanValue_dec_5','tqwt_meanValue_dec_6','tqwt_meanValue_dec_7','tqwt_meanValue_dec_8','tqwt_meanValue_dec_9','tqwt_meanValue_dec_10','tqwt_meanValue_dec_11','tqwt_meanValue_dec_12','tqwt_meanValue_dec_13','tqwt_meanValue_dec_14','tqwt_meanValue_dec_15','tqwt_meanValue_dec_16','tqwt_meanValue_dec_17','tqwt_meanValue_dec_18','tqwt_meanValue_dec_19','tqwt_meanValue_dec_20','tqwt_meanValue_dec_21','tqwt_meanValue_dec_22','tqwt_meanValue_dec_23','tqwt_meanValue_dec_24','tqwt_meanValue_dec_25','tqwt_meanValue_dec_26','tqwt_meanValue_dec_27','tqwt_meanValue_dec_28','tqwt_meanValue_dec_29','tqwt_meanValue_dec_30','tqwt_meanValue_dec_31','tqwt_meanValue_dec_32','tqwt_meanValue_dec_33','tqwt_meanValue_dec_34','tqwt_meanValue_dec_35','tqwt_meanValue_dec_36','tqwt_stdValue_dec_1','tqwt_stdValue_dec_2','tqwt_stdValue_dec_3','tqwt_stdValue_dec_4','tqwt_stdValue_dec_5','tqwt_stdValue_dec_6','tqwt_stdValue_dec_7','tqwt_stdValue_dec_8','tqwt_stdValue_dec_9','tqwt_stdValue_dec_10','tqwt_stdValue_dec_11','tqwt_stdValue_dec_12','tqwt_stdValue_dec_13','tqwt_stdValue_dec_14','tqwt_stdValue_dec_15','tqwt_stdValue_dec_16','tqwt_stdValue_dec_17','tqwt_stdValue_dec_18','tqwt_stdValue_dec_19','tqwt_stdValue_dec_20','tqwt_stdValue_dec_21','tqwt_stdValue_dec_22','tqwt_stdValue_dec_23','tqwt_stdValue_dec_24','tqwt_stdValue_dec_25','tqwt_stdValue_dec_26','tqwt_stdValue_dec_27','tqwt_stdValue_dec_28','tqwt_stdValue_dec_29','tqwt_stdValue_dec_30','tqwt_stdValue_dec_31','tqwt_stdValue_dec_32','tqwt_stdValue_dec_33','tqwt_stdValue_dec_34','tqwt_stdValue_dec_35','tqwt_stdValue_dec_36','tqwt_minValue_dec_1','tqwt_minValue_dec_2','tqwt_minValue_dec_3','tqwt_minValue_dec_4','tqwt_minValue_dec_5','tqwt_minValue_dec_6','tqwt_minValue_dec_7','tqwt_minValue_dec_8','tqwt_minValue_dec_9','tqwt_minValue_dec_10','tqwt_minValue_dec_11','tqwt_minValue_dec_12','tqwt_minValue_dec_13','tqwt_minValue_dec_14','tqwt_minValue_dec_15','tqwt_minValue_dec_16','tqwt_minValue_dec_17','tqwt_minValue_dec_18','tqwt_minValue_dec_19','tqwt_minValue_dec_20','tqwt_minValue_dec_21','tqwt_minValue_dec_22','tqwt_minValue_dec_23','tqwt_minValue_dec_24','tqwt_minValue_dec_25','tqwt_minValue_dec_26','tqwt_minValue_dec_27','tqwt_minValue_dec_28','tqwt_minValue_dec_29','tqwt_minValue_dec_30','tqwt_minValue_dec_31','tqwt_minValue_dec_32','tqwt_minValue_dec_33','tqwt_minValue_dec_34','tqwt_minValue_dec_35','tqwt_minValue_dec_36','tqwt_maxValue_dec_1','tqwt_maxValue_dec_2','tqwt_maxValue_dec_3','tqwt_maxValue_dec_4','tqwt_maxValue_dec_5','tqwt_maxValue_dec_6','tqwt_maxValue_dec_7','tqwt_maxValue_dec_8','tqwt_maxValue_dec_9','tqwt_maxValue_dec_10','tqwt_maxValue_dec_11','tqwt_maxValue_dec_12','tqwt_maxValue_dec_13','tqwt_maxValue_dec_14','tqwt_maxValue_dec_15','tqwt_maxValue_dec_16','tqwt_maxValue_dec_17','tqwt_maxValue_dec_18','tqwt_maxValue_dec_19','tqwt_maxValue_dec_20','tqwt_maxValue_dec_21','tqwt_maxValue_dec_22','tqwt_maxValue_dec_23','tqwt_maxValue_dec_24','tqwt_maxValue_dec_25','tqwt_maxValue_dec_26','tqwt_maxValue_dec_27','tqwt_maxValue_dec_28','tqwt_maxValue_dec_29','tqwt_maxValue_dec_30','tqwt_maxValue_dec_31','tqwt_maxValue_dec_32','tqwt_maxValue_dec_33','tqwt_maxValue_dec_34','tqwt_maxValue_dec_35','tqwt_maxValue_dec_36','tqwt_skewnessValue_dec_1','tqwt_skewnessValue_dec_2','tqwt_skewnessValue_dec_3','tqwt_skewnessValue_dec_4','tqwt_skewnessValue_dec_5','tqwt_skewnessValue_dec_6','tqwt_skewnessValue_dec_7','tqwt_skewnessValue_dec_8','tqwt_skewnessValue_dec_9','tqwt_skewnessValue_dec_10','tqwt_skewnessValue_dec_11','tqwt_skewnessValue_dec_12','tqwt_skewnessValue_dec_13','tqwt_skewnessValue_dec_14','tqwt_skewnessValue_dec_15','tqwt_skewnessValue_dec_16','tqwt_skewnessValue_dec_17','tqwt_skewnessValue_dec_18','tqwt_skewnessValue_dec_19','tqwt_skewnessValue_dec_20','tqwt_skewnessValue_dec_21','tqwt_skewnessValue_dec_22','tqwt_skewnessValue_dec_23','tqwt_skewnessValue_dec_24','tqwt_skewnessValue_dec_25','tqwt_skewnessValue_dec_26','tqwt_skewnessValue_dec_27','tqwt_skewnessValue_dec_28','tqwt_skewnessValue_dec_29','tqwt_skewnessValue_dec_30','tqwt_skewnessValue_dec_31','tqwt_skewnessValue_dec_32','tqwt_skewnessValue_dec_33','tqwt_skewnessValue_dec_34','tqwt_skewnessValue_dec_35','tqwt_skewnessValue_dec_36','tqwt_kurtosisValue_dec_1','tqwt_kurtosisValue_dec_2','tqwt_kurtosisValue_dec_3','tqwt_kurtosisValue_dec_4','tqwt_kurtosisValue_dec_5','tqwt_kurtosisValue_dec_6','tqwt_kurtosisValue_dec_7','tqwt_kurtosisValue_dec_8','tqwt_kurtosisValue_dec_9','tqwt_kurtosisValue_dec_10','tqwt_kurtosisValue_dec_11','tqwt_kurtosisValue_dec_12','tqwt_kurtosisValue_dec_13','tqwt_kurtosisValue_dec_14','tqwt_kurtosisValue_dec_15','tqwt_kurtosisValue_dec_16','tqwt_kurtosisValue_dec_17','tqwt_kurtosisValue_dec_18','tqwt_kurtosisValue_dec_19','tqwt_kurtosisValue_dec_20','tqwt_kurtosisValue_dec_21','tqwt_kurtosisValue_dec_22','tqwt_kurtosisValue_dec_23','tqwt_kurtosisValue_dec_24','tqwt_kurtosisValue_dec_25','tqwt_kurtosisValue_dec_26','tqwt_kurtosisValue_dec_27','tqwt_kurtosisValue_dec_28','tqwt_kurtosisValue_dec_29','tqwt_kurtosisValue_dec_30','tqwt_kurtosisValue_dec_31','tqwt_kurtosisValue_dec_32','tqwt_kurtosisValue_dec_33','tqwt_kurtosisValue_dec_34','tqwt_kurtosisValue_dec_35','tqwt_kurtosisValue_dec_36'] nums = attrs[1:] model = Classifier(attrs=attrs, numeric=nums, label='class') data = model.load_data('data/parkison_disease/parkison_disease.csv') print('\n% parkison disease dataset', np.shape(data)) return model, data def pendigits(): attrs = ['a1','a2','a3','a4','a5','a6','a7','a8','a9','a10','a11','a12','a13','a14','a15','a16'] nums = attrs model = Classifier(attrs=attrs, numeric=nums, label='class') data_train = model.load_data('data/pendigits/train.csv') data_test = model.load_data('data/pendigits/test.csv') print('\n% pendigits train dataset', np.shape(data_train), 'test', np.shape(data_test)) return model, data_train, data_test def wall_robot(): attrs = ['US1','US2','US3','US4','US5','US6','US7','US8','US9','US10','US11','US12','US13','US14','US15','US16','US17','US18','US19','US20','US21','US22','US23','US24'] nums = attrs model = Classifier(attrs=attrs, numeric=nums, label='Class') data = model.load_data('data/wall_following_robot/wall_following_robot.csv') print('\n% wall_following_robot dataset', np.shape(data)) return model, data def glass(): attrs = ['RI','Na','Mg','Al','Si','K','Ca','Ba','Fe'] nums = attrs model = Classifier(attrs=attrs, numeric=nums, label='Type') data = model.load_data('data/glass/glass.csv') print('\n% glass dataset', np.shape(data)) return model, data def flags(): attrs = ['name','landmass','zone','area','population','language','bars','stripes','colours','red','green','blue','gold','white','black','orange','mainhue','circles','crosses','saltires','quarters','sunstars','crescent','triangle','icon','animate','text','topleft','botright'] nums = ['area','population','stripes','colours','sunstars'] model = Classifier(attrs=attrs, numeric=nums, label='religion') data = model.load_data('data/flags/flags.csv') print('\n% flags dataset', np.shape(data)) return model, data
python
import tensorflow as tf # 本节主要讲 placeholder input1 = tf.placeholder(tf.float32) input2 = tf.placeholder(tf.float32) # 原教程中为 mul, 我使用的版本为 multiply output = tf.multiply(input1, input2) with tf.Session() as sess: print(sess.run(output, feed_dict={input1: [7.], input2: [2.]}))
python
'''Statistical tests for NDVars Common Attributes ----------------- The following attributes are always present. For ANOVA, they are lists with the corresponding items for different effects. t/f/... : NDVar Map of the statistical parameter. p_uncorrected : NDVar Map of uncorrected p values. p : NDVar | None Map of corrected p values (None if no correct was applied). clusters : Dataset | None Table of all the clusters found (None if no clusters were found, or if no clustering was performed). n_samples : None | int The actual number of permutations. If ``samples = -1``, i.e. a complete set or permutations is performed, then ``n_samples`` indicates the actual number of permutations that constitute the complete set. ''' from datetime import datetime, timedelta from functools import reduce, partial from itertools import chain, repeat from math import ceil from multiprocessing import Process, Event, SimpleQueue from multiprocessing.sharedctypes import RawArray import logging import operator import os import re import socket from time import time as current_time from typing import Union import numpy as np import scipy.stats from scipy import ndimage from tqdm import trange from .. import fmtxt, _info, _text from ..fmtxt import FMText from .._celltable import Celltable from .._config import CONFIG from .._data_obj import ( CategorialArg, CellArg, IndexArg, ModelArg, NDVarArg, VarArg, Dataset, Var, Factor, Interaction, NestedEffect, NDVar, Categorial, UTS, ascategorial, asmodel, asndvar, asvar, assub, cellname, combine, dataobj_repr) from .._exceptions import OldVersionError, WrongDimension, ZeroVariance from .._utils import LazyProperty, user_activity from .._utils.numpy_utils import FULL_AXIS_SLICE from . import opt, stats, vector from .connectivity import Connectivity, find_peaks from .connectivity_opt import merge_labels, tfce_increment from .glm import _nd_anova from .permutation import ( _resample_params, permute_order, permute_sign_flip, random_seeds, rand_rotation_matrices) from .t_contrast import TContrastRel from .test import star, star_factor __test__ = False def check_for_vector_dim(y: NDVar) -> None: for dim in y.dims: if dim._connectivity_type == 'vector': raise WrongDimension(f"{dim}: mass-univariate methods are not suitable for vectors. Consider using vector norm as test statistic, or using a testnd.Vector test function.") def check_variance(x): if x.ndim != 2: x = x.reshape((len(x), -1)) if opt.has_zero_variance(x): raise ZeroVariance("y contains data column with zero variance") class NDTest: """Baseclass for testnd test results Attributes ---------- p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). """ _state_common = ('y', 'match', 'sub', 'samples', 'tfce', 'pmin', '_cdist', 'tstart', 'tstop', '_dims') _state_specific = () _statistic = None _statistic_tail = 0 @property def _attributes(self): return self._state_common + self._state_specific def __init__(self, y, match, sub, samples, tfce, pmin, cdist, tstart, tstop): self.y = y.name self.match = dataobj_repr(match) if match else match self.sub = sub self.samples = samples self.tfce = tfce self.pmin = pmin self._cdist = cdist self.tstart = tstart self.tstop = tstop self._dims = y.dims[1:] def __getstate__(self): return {name: getattr(self, name, None) for name in self._attributes} def __setstate__(self, state): # backwards compatibility: if 'Y' in state: state['y'] = state.pop('Y') if 'X' in state: state['x'] = state.pop('X') for k, v in state.items(): setattr(self, k, v) # backwards compatibility: if 'tstart' not in state: cdist = self._first_cdist self.tstart = cdist.tstart self.tstop = cdist.tstop if '_dims' not in state: # 0.17 if 't' in state: self._dims = state['t'].dims elif 'r' in state: self._dims = state['r'].dims elif 'f' in state: self._dims = state['f'][0].dims else: raise RuntimeError("Error recovering old test results dims") self._expand_state() def __repr__(self): args = self._repr_test_args() if self.sub is not None: if isinstance(self.sub, np.ndarray): sub_repr = '<array>' else: sub_repr = repr(self.sub) args.append(f'sub={sub_repr}') if self._cdist: args += self._repr_cdist() else: args.append('samples=0') return f"<{self.__class__.__name__} {', '.join(args)}>" def _repr_test_args(self): """List of strings describing parameters unique to the test Will be joined with ``", ".join(repr_args)`` """ raise NotImplementedError() def _repr_cdist(self): """List of results (override for MultiEffectResult)""" return (self._cdist._repr_test_args(self.pmin) + self._cdist._repr_clusters()) def _expand_state(self): "Override to create secondary results" cdist = self._cdist if cdist is None: self.tfce_map = None self.p = None self._kind = None else: self.tfce_map = cdist.tfce_map self.p = cdist.probability_map self._kind = cdist.kind def _desc_samples(self): if self.samples == -1: return f"a complete set of {self.n_samples} permutations" elif self.samples is None: return "no permutations" else: return f"{self.n_samples} random permutations" def _desc_timewindow(self): tstart = self._time_dim.tmin if self.tstart is None else self.tstart tstop = self._time_dim.tstop if self.tstop is None else self.tstop return f"{_text.ms(tstart)} - {_text.ms(tstop)} ms" def _asfmtext(self): p = self.p.min() max_stat = self._max_statistic() return FMText((fmtxt.eq(self._statistic, max_stat, 'max', stars=p), ', ', fmtxt.peq(p))) def _default_plot_obj(self): raise NotImplementedError def _iter_cdists(self): yield (None, self._cdist) @property def _first_cdist(self): return self._cdist def _plot_model(self): "Determine x for plotting categories" return None def _plot_sub(self): if isinstance(self.sub, str) and self.sub == "<unsaved array>": raise RuntimeError("The sub parameter was not saved for previous " "versions of Eelbrain. Please recompute this " "result with the current version.") return self.sub def _assert_has_cdist(self): if self._cdist is None: raise RuntimeError("This method only applies to results of tests " "with threshold-based clustering and tests with " "a permutation distribution (samples > 0)") def masked_parameter_map(self, pmin=0.05, **sub): """Create a copy of the parameter map masked by significance Parameters ---------- pmin : scalar Threshold p-value for masking (default 0.05). For threshold-based cluster tests, ``pmin=1`` includes all clusters regardless of their p-value. Returns ------- masked_map : NDVar NDVar with data from the original parameter map wherever p <= pmin and 0 everywhere else. """ self._assert_has_cdist() return self._cdist.masked_parameter_map(pmin, **sub) def cluster(self, cluster_id): """Retrieve a specific cluster as NDVar Parameters ---------- cluster_id : int Cluster id. Returns ------- cluster : NDVar NDVar of the cluster, 0 outside the cluster. Notes ----- Clusters only have stable ids for thresholded cluster distributions. """ self._assert_has_cdist() return self._cdist.cluster(cluster_id) @LazyProperty def clusters(self): if self._cdist is None: return None else: return self.find_clusters(None, True) def find_clusters(self, pmin=None, maps=False, **sub): """Find significant regions or clusters Parameters ---------- pmin : None | scalar, 1 >= p >= 0 Threshold p-value. For threshold-based tests, all clusters with a p-value smaller than ``pmin`` are included (default 1); for other tests, find contiguous regions with ``p ≤ pmin`` (default 0.05). maps : bool Include in the output a map of every cluster (can be memory intensive if there are large statistical maps and/or many clusters; default ``False``). Returns ------- ds : Dataset Dataset with information about the clusters. """ self._assert_has_cdist() return self._cdist.clusters(pmin, maps, **sub) def find_peaks(self): """Find peaks in a threshold-free cluster distribution Returns ------- ds : Dataset Dataset with information about the peaks. """ self._assert_has_cdist() return self._cdist.find_peaks() def compute_probability_map(self, **sub): """Compute a probability map Returns ------- probability : NDVar Map of p-values. """ self._assert_has_cdist() return self._cdist.compute_probability_map(**sub) def info_list(self, computation=True): "List with information about the test" out = fmtxt.List("Mass-univariate statistics:") out.add_item(self._name()) dimnames = [dim.name for dim in self._dims] dimlist = out.add_sublist(f"Over {_text.enumeration(dimnames)}") if 'time' in dimnames: dimlist.add_item(f"Time interval: {self._desc_timewindow()}.") cdist = self._first_cdist if cdist is None: out.add_item("No inferential statistics") return out # inference l = out.add_sublist("Inference:") if cdist.kind == 'raw': l.add_item("Based on maximum statistic") elif cdist.kind == 'tfce': l.add_item("Based on maximum statistic with threshold-" "free cluster enhancement (Smith & Nichols, 2009)") elif cdist.kind == 'cluster': l.add_item("Based on maximum cluster mass statistic") sl = l.add_sublist("Cluster criteria:") for dim in dimnames: if dim == 'time': sl.add_item(f"Minimum cluster duration {_text.ms(cdist.criteria.get('mintime', 0))} ms") elif dim == 'source': sl.add_item(f"At least {cdist.criteria.get('minsource', 0)} contiguous sources.") elif dim == 'sensor': sl.add_item(f"At least {cdist.criteria.get('minsensor', 0)} contiguous sensors.") else: value = cdist.criteria.get(f'min{dim}', 0) sl.add_item(f"Minimum number of contiguous elements in {dim}: {value}") # n samples l.add_item(f"In {self._desc_samples()}") # computation if computation: out.add_item(cdist.info_list()) return out @property def _statistic_map(self): return getattr(self, self._statistic) def _max_statistic(self): tail = getattr(self, 'tail', self._statistic_tail) return self._max_statistic_from_map(self._statistic_map, self.p, tail) @staticmethod def _max_statistic_from_map(stat_map: NDVar, p_map: NDVar, tail: int): if tail == 0: func = stat_map.extrema elif tail == 1: func = stat_map.max else: func = stat_map.min if p_map: mask = p_map <= .05 if p_map.min() <= .05 else None else: mask = None return func() if mask is None else func(mask) @property def n_samples(self): if self.samples == -1: return self._first_cdist.samples else: return self.samples @property def _time_dim(self): for dim in self._first_cdist.dims: if isinstance(dim, UTS): return dim return None class t_contrast_rel(NDTest): """Mass-univariate contrast based on t-values Parameters ---------- y : NDVar Dependent variable. x : categorial Model containing the cells which are compared with the contrast. contrast : str Contrast specification: see Notes. match : Factor Match cases for a repeated measures test. sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. tail : 0 | 1 | -1 Which tail of the t-distribution to consider: 0: both (two-tailed); 1: upper tail (one-tailed); -1: lower tail (one-tailed). samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold for forming clusters: use a t-value equivalent to an uncorrected p-value for a related samples t-test (with df = len(match.cells) - 1). tmin : scalar Threshold for forming clusters as t-value. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Notes ----- A contrast specifies the steps to calculate a map based on *t*-values. Contrast definitions can contain: - Comparisons using ``>`` or ``<`` and data cells to compute *t*-maps. For example, ``"cell1 > cell0"`` will compute a *t*-map of the comparison if ``cell1`` and ``cell0``, being positive where ``cell1`` is greater than ``cell0`` and negative where ``cell0`` is greater than ``cell1``. If the data is defined based on an interaction, cells are specified with ``|``, e.g. ``"a1 | b1 > a0 | b0"``. Cells can contain ``*`` to average multiple cells. Thus, if the second factor in the model has cells ``b1`` and ``b0``, ``"a1 | * > a0 | *"`` would compare ``a1`` to ``a0`` while averaging ``b1`` and ``b0`` within ``a1`` and ``a0``. - Unary numpy functions ``abs`` and ``negative``, e.g. ``"abs(cell1 > cell0)"``. - Binary numpy functions ``subtract`` and ``add``, e.g. ``"add(a>b, a>c)"``. - Numpy functions for multiple arrays ``min``, ``max`` and ``sum``, e.g. ``min(a>d, b>d, c>d)``. Cases with zero variance are set to t=0. Examples -------- To find cluster where both of two pairwise comparisons are reliable, i.e. an intersection of two effects, one could use ``"min(a > c, b > c)"``. To find a specific kind of interaction, where a is greater than b, and this difference is greater than the difference between c and d, one could use ``"(a > b) - abs(c > d)"``. """ _state_specific = ('x', 'contrast', 't', 'tail') _statistic = 't' @user_activity def __init__( self, y: NDVarArg, x: CategorialArg, contrast: str, match: CategorialArg = None, sub: CategorialArg = None, ds: Dataset = None, tail: int = 0, samples: int = 10000, pmin: float = None, tmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, **criteria): if match is None: raise TypeError("The `match` parameter needs to be specified for repeated measures test t_contrast_rel") ct = Celltable(y, x, match, sub, ds=ds, coercion=asndvar, dtype=np.float64) check_for_vector_dim(ct.y) check_variance(ct.y.x) # setup contrast t_contrast = TContrastRel(contrast, ct.cells, ct.data_indexes) # original data tmap = t_contrast.map(ct.y.x) n_threshold_params = sum((pmin is not None, tmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: threshold = cdist = None elif n_threshold_params > 1: raise ValueError("Only one of pmin, tmin and tfce can be specified") else: if pmin is not None: df = len(ct.match.cells) - 1 threshold = stats.ttest_t(pmin, df, tail) elif tmin is not None: threshold = abs(tmin) else: threshold = None cdist = NDPermutationDistribution( ct.y, samples, threshold, tfce, tail, 't', "t-contrast", tstart, tstop, criteria, parc, force_permutation) cdist.add_original(tmap) if cdist.do_permutation: iterator = permute_order(len(ct.y), samples, unit=ct.match) run_permutation(t_contrast, cdist, iterator) # NDVar map of t-values info = _info.for_stat_map('t', threshold, tail=tail, old=ct.y.info) t = NDVar(tmap, ct.y.dims[1:], info, 't') # store attributes NDTest.__init__(self, ct.y, ct.match, sub, samples, tfce, pmin, cdist, tstart, tstop) self.x = ('%'.join(ct.x.base_names) if isinstance(ct.x, Interaction) else ct.x.name) self.contrast = contrast self.tail = tail self.tmin = tmin self.t = t self._expand_state() def _name(self): if self.y: return "T-Contrast: %s ~ %s" % (self.y, self.contrast) else: return "T-Contrast: %s" % self.contrast def _plot_model(self): return self.x def _repr_test_args(self): args = [repr(self.y), repr(self.x), repr(self.contrast)] if self.tail: args.append("tail=%r" % self.tail) if self.match: args.append('match=%r' % self.match) return args class corr(NDTest): """Mass-univariate correlation Parameters ---------- y : NDVar Dependent variable. x : continuous The continuous predictor variable. norm : None | categorial Categories in which to normalize (z-score) x. sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold for forming clusters: use an r-value equivalent to an uncorrected p-value. rmin : None | scalar Threshold for forming clusters. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). match : None | categorial When permuting data, only shuffle the cases within the categories of match. parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). p_uncorrected : NDVar Map of p-values uncorrected for multiple comparison. r : NDVar Map of correlation values (with threshold contours). tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). """ _state_specific = ('x', 'norm', 'n', 'df', 'r') _statistic = 'r' @user_activity def __init__( self, y: NDVarArg, x: VarArg, norm: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, samples: int = 10000, pmin: float = None, rmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, match: CategorialArg = None, parc: str = None, **criteria): sub = assub(sub, ds) y = asndvar(y, sub=sub, ds=ds, dtype=np.float64) check_for_vector_dim(y) if not y.has_case: raise ValueError("Dependent variable needs case dimension") x = asvar(x, sub=sub, ds=ds) if norm is not None: norm = ascategorial(norm, sub, ds) if match is not None: match = ascategorial(match, sub, ds) name = "%s corr %s" % (y.name, x.name) # Normalize by z-scoring the data for each subject # normalization is done before the permutation b/c we are interested in # the variance associated with each subject for the z-scoring. y = y.copy() if norm is not None: for cell in norm.cells: idx = (norm == cell) y.x[idx] = scipy.stats.zscore(y.x[idx], None) # subtract the mean from y and x so that this can be omitted during # permutation y -= y.summary('case') x = x - x.mean() n = len(y) df = n - 2 rmap = stats.corr(y.x, x.x) n_threshold_params = sum((pmin is not None, rmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: threshold = cdist = None elif n_threshold_params > 1: raise ValueError("Only one of pmin, rmin and tfce can be specified") else: if pmin is not None: threshold = stats.rtest_r(pmin, df) elif rmin is not None: threshold = abs(rmin) else: threshold = None cdist = NDPermutationDistribution( y, samples, threshold, tfce, 0, 'r', name, tstart, tstop, criteria, parc) cdist.add_original(rmap) if cdist.do_permutation: iterator = permute_order(n, samples, unit=match) run_permutation(stats.corr, cdist, iterator, x.x) # compile results info = _info.for_stat_map('r', threshold) r = NDVar(rmap, y.dims[1:], info, name) # store attributes NDTest.__init__(self, y, match, sub, samples, tfce, pmin, cdist, tstart, tstop) self.x = x.name self.norm = None if norm is None else norm.name self.rmin = rmin self.n = n self.df = df self.r = r self._expand_state() def _expand_state(self): NDTest._expand_state(self) r = self.r # uncorrected probability pmap = stats.rtest_p(r.x, self.df) info = _info.for_p_map() p_uncorrected = NDVar(pmap, r.dims, info, 'p_uncorrected') self.p_uncorrected = p_uncorrected self.r_p = [[r, self.p]] if self.samples else None def _name(self): if self.y and self.x: return "Correlation: %s ~ %s" % (self.y, self.x) else: return "Correlation" def _repr_test_args(self): args = [repr(self.y), repr(self.x)] if self.norm: args.append('norm=%r' % self.norm) return args def _default_plot_obj(self): if self.samples: return self.masked_parameter_map() else: return self.r class NDDifferenceTest(NDTest): difference = None def _get_mask(self, p=0.05): self._assert_has_cdist() if not 1 >= p > 0: raise ValueError(f"p={p}: needs to be between 1 and 0") if p == 1: if self._cdist.kind != 'cluster': raise ValueError(f"p=1 is only a valid mask for threshold-based cluster tests") mask = self._cdist.cluster_map == 0 else: mask = self.p > p return self._cdist.uncrop(mask, self.difference, True) def masked_difference(self, p=0.05): """Difference map masked by significance Parameters ---------- p : scalar Threshold p-value for masking (default 0.05). For threshold-based cluster tests, ``pmin=1`` includes all clusters regardless of their p-value. """ mask = self._get_mask(p) return self.difference.mask(mask) class NDMaskedC1Mixin: def masked_c1(self, p=0.05): """``c1`` map masked by significance of the ``c1``-``c0`` difference Parameters ---------- p : scalar Threshold p-value for masking (default 0.05). For threshold-based cluster tests, ``pmin=1`` includes all clusters regardless of their p-value. """ mask = self._get_mask(p) return self.c1_mean.mask(mask) class ttest_1samp(NDDifferenceTest): """Mass-univariate one sample t-test Parameters ---------- y : NDVar Dependent variable. popmean : scalar Value to compare y against (default is 0). match : None | categorial Combine data for these categories before testing. sub : index Perform test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables tail : 0 | 1 | -1 Which tail of the t-distribution to consider: 0: both (two-tailed); 1: upper tail (one-tailed); -1: lower tail (one-tailed). samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold for forming clusters: use a t-value equivalent to an uncorrected p-value. tmin : scalar Threshold for forming clusters as t-value. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. difference : NDVar The difference value entering the test (``y`` if popmean is 0). n : int Number of cases. p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). p_uncorrected : NDVar Map of p-values uncorrected for multiple comparison. t : NDVar Map of t-values. tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). Notes ----- Data points with zero variance are set to t=0. """ _state_specific = ('popmean', 'tail', 'n', 'df', 't', 'difference') _statistic = 't' @user_activity def __init__( self, y: NDVarArg, popmean: float = 0, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, tail: int = 0, samples: int = 10000, pmin: float = None, tmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, **criteria): ct = Celltable(y, match=match, sub=sub, ds=ds, coercion=asndvar, dtype=np.float64) check_for_vector_dim(ct.y) n = len(ct.y) df = n - 1 y = ct.y.summary() tmap = stats.t_1samp(ct.y.x) if popmean: raise NotImplementedError("popmean != 0") diff = y - popmean if np.any(diff < 0): diff.info['cmap'] = 'xpolar' else: diff = y n_threshold_params = sum((pmin is not None, tmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: threshold = cdist = None elif n_threshold_params > 1: raise ValueError("Only one of pmin, tmin and tfce can be specified") else: if pmin is not None: threshold = stats.ttest_t(pmin, df, tail) elif tmin is not None: threshold = abs(tmin) else: threshold = None if popmean: y_perm = ct.y - popmean else: y_perm = ct.y n_samples, samples = _resample_params(len(y_perm), samples) cdist = NDPermutationDistribution( y_perm, n_samples, threshold, tfce, tail, 't', '1-Sample t-Test', tstart, tstop, criteria, parc, force_permutation) cdist.add_original(tmap) if cdist.do_permutation: iterator = permute_sign_flip(n, samples) run_permutation(opt.t_1samp_perm, cdist, iterator) # NDVar map of t-values info = _info.for_stat_map('t', threshold, tail=tail, old=ct.y.info) t = NDVar(tmap, ct.y.dims[1:], info, 't') # store attributes NDDifferenceTest.__init__(self, ct.y, ct.match, sub, samples, tfce, pmin, cdist, tstart, tstop) self.popmean = popmean self.n = n self.df = df self.tail = tail self.t = t self.tmin = tmin self.difference = diff self._expand_state() def __setstate__(self, state): if 'diff' in state: state['difference'] = state.pop('diff') NDTest.__setstate__(self, state) def _expand_state(self): NDTest._expand_state(self) t = self.t pmap = stats.ttest_p(t.x, self.df, self.tail) info = _info.for_p_map(t.info) p_uncorr = NDVar(pmap, t.dims, info, 'p') self.p_uncorrected = p_uncorr def _name(self): if self.y: return "One-Sample T-Test: %s" % self.y else: return "One-Sample T-Test" def _repr_test_args(self): args = [repr(self.y)] if self.popmean: args.append(repr(self.popmean)) if self.match: args.append('match=%r' % self.match) if self.tail: args.append("tail=%i" % self.tail) return args def _default_plot_obj(self): if self.samples: return self.masked_difference() else: return self.difference def _independent_measures_args(y, x, c1, c0, match, ds, sub): "Interpret parameters for independent measures tests (2 different argspecs)" if isinstance(x, str): x = ds.eval(x) if isinstance(x, NDVar): assert c1 is None assert c0 is None assert match is None y1 = asndvar(y, sub, ds) y0 = asndvar(x, sub, ds) y = combine((y1, y0)) c1_name = y1.name c0_name = y0.name x_name = y0.name else: ct = Celltable(y, x, match, sub, cat=(c1, c0), ds=ds, coercion=asndvar, dtype=np.float64) c1, c0 = ct.cat c1_name = c1 c0_name = c0 x_name = ct.x.name match = ct.match y = ct.y y1 = ct.data[c1] y0 = ct.data[c0] return y, y1, y0, c1, c0, match, x_name, c1_name, c0_name class ttest_ind(NDDifferenceTest): """Mass-univariate independent samples t-test Parameters ---------- y : NDVar Dependent variable. x : categorial | NDVar Model containing the cells which should be compared, or NDVar to which ``y`` should be compared. In the latter case, the next three parameters are ignored. c1 : str | tuple | None Test condition (cell of ``x``). ``c1`` and ``c0`` can be omitted if ``x`` only contains two cells, in which case cells will be used in alphabetical order. c0 : str | tuple | None Control condition (cell of ``x``). match : categorial Combine cases with the same cell on ``x % match``. sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. tail : 0 | 1 | -1 Which tail of the t-distribution to consider: 0: both (two-tailed); 1: upper tail (one-tailed); -1: lower tail (one-tailed). samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold p value for forming clusters. None for threshold-free cluster enhancement. tmin : scalar Threshold for forming clusters as t-value. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- c1_mean : NDVar Mean in the c1 condition. c0_mean : NDVar Mean in the c0 condition. clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. difference : NDVar Difference between the mean in condition c1 and condition c0. p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). p_uncorrected : NDVar Map of p-values uncorrected for multiple comparison. t : NDVar Map of t-values. tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). Notes ----- Cases with zero variance are set to t=0. """ _state_specific = ('x', 'c1', 'c0', 'tail', 't', 'n1', 'n0', 'df', 'c1_mean', 'c0_mean') _statistic = 't' @user_activity def __init__( self, y: NDVarArg, x: Union[CategorialArg, NDVarArg], c1: CellArg = None, c0: CellArg = None, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, tail: int = 0, samples: int = 10000, pmin: float = None, tmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, **criteria): y, y1, y0, c1, c0, match, x_name, c1_name, c0_name = _independent_measures_args(y, x, c1, c0, match, ds, sub) check_for_vector_dim(y) n1 = len(y1) n = len(y) n0 = n - n1 df = n - 2 groups = np.arange(n) < n1 groups.dtype = np.int8 tmap = stats.t_ind(y.x, groups) n_threshold_params = sum((pmin is not None, tmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: threshold = cdist = None elif n_threshold_params > 1: raise ValueError("Only one of pmin, tmin and tfce can be specified") else: if pmin is not None: threshold = stats.ttest_t(pmin, df, tail) elif tmin is not None: threshold = abs(tmin) else: threshold = None cdist = NDPermutationDistribution(y, samples, threshold, tfce, tail, 't', 'Independent Samples t-Test', tstart, tstop, criteria, parc, force_permutation) cdist.add_original(tmap) if cdist.do_permutation: iterator = permute_order(n, samples) run_permutation(stats.t_ind, cdist, iterator, groups) # store attributes NDDifferenceTest.__init__(self, y, match, sub, samples, tfce, pmin, cdist, tstart, tstop) self.x = x_name self.c0 = c0 self.c1 = c1 self.n1 = n1 self.n0 = n0 self.df = df self.tail = tail info = _info.for_stat_map('t', threshold, tail=tail, old=y.info) self.t = NDVar(tmap, y.dims[1:], info, 't') self.tmin = tmin self.c1_mean = y1.mean('case', name=cellname(c1_name)) self.c0_mean = y0.mean('case', name=cellname(c0_name)) self._expand_state() def _expand_state(self): NDTest._expand_state(self) # difference diff = self.c1_mean - self.c0_mean if np.any(diff.x < 0): diff.info['cmap'] = 'xpolar' diff.name = 'difference' self.difference = diff # uncorrected p pmap = stats.ttest_p(self.t.x, self.df, self.tail) info = _info.for_p_map(self.t.info) p_uncorr = NDVar(pmap, self.t.dims, info, 'p') self.p_uncorrected = p_uncorr # composites if self.samples: diff_p = self.masked_difference() else: diff_p = self.difference self.all = [self.c1_mean, self.c0_mean, diff_p] def _name(self): if self.tail == 0: comp = "%s == %s" % (self.c1, self.c0) elif self.tail > 0: comp = "%s > %s" % (self.c1, self.c0) else: comp = "%s < %s" % (self.c1, self.c0) if self.y: return "Independent-Samples T-Test: %s ~ %s" % (self.y, comp) else: return "Independent-Samples T-Test: %s" % comp def _plot_model(self): return self.x def _plot_sub(self): return "(%s).isin(%s)" % (self.x, (self.c1, self.c0)) def _repr_test_args(self): if self.c1 is None: args = [f'{self.y!r} (n={self.n1})', f'{self.x!r} (n={self.n0})'] else: args = [f'{self.y!r}', f'{self.x!r}', f'{self.c1!r} (n={self.n1})', f'{self.c0!r} (n={self.n0})'] if self.match: args.append(f'match{self.match!r}') if self.tail: args.append(f'tail={self.tail}') return args def _default_plot_obj(self): if self.samples: diff = self.masked_difference() else: diff = self.difference return [self.c1_mean, self.c0_mean, diff] def _related_measures_args(y, x, c1, c0, match, ds, sub): "Interpret parameters for related measures tests (2 different argspecs)" if isinstance(x, str): if ds is None: raise TypeError(f"x={x!r} specified as str without specifying ds") x = ds.eval(x) if isinstance(x, NDVar): assert c1 is None assert c0 is None assert match is None y1 = asndvar(y, sub, ds) n = len(y1) y0 = asndvar(x, sub, ds, n) c1_name = y1.name c0_name = y0.name x_name = y0.name elif match is None: raise TypeError("The `match` argument needs to be specified for related measures tests") else: ct = Celltable(y, x, match, sub, cat=(c1, c0), ds=ds, coercion=asndvar, dtype=np.float64) c1, c0 = ct.cat c1_name = c1 c0_name = c0 if not ct.all_within: raise ValueError(f"conditions {c1!r} and {c0!r} do not have the same values on {dataobj_repr(ct.match)}") n = len(ct.y) // 2 y1 = ct.y[:n] y0 = ct.y[n:] x_name = ct.x.name match = ct.match return y1, y0, c1, c0, match, n, x_name, c1, c1_name, c0, c0_name class ttest_rel(NDMaskedC1Mixin, NDDifferenceTest): """Mass-univariate related samples t-test Parameters ---------- y : NDVar Dependent variable. x : categorial | NDVar Model containing the cells which should be compared, or NDVar to which ``y`` should be compared. In the latter case, the next three parameters are ignored. c1 : str | tuple | None Test condition (cell of ``x``). ``c1`` and ``c0`` can be omitted if ``x`` only contains two cells, in which case cells will be used in alphabetical order. c0 : str | tuple | None Control condition (cell of ``x``). match : categorial Units within which measurements are related (e.g. 'subject' in a within-subject comparison). sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. tail : 0 | 1 | -1 Which tail of the t-distribution to consider: 0: both (two-tailed, default); 1: upper tail (one-tailed); -1: lower tail (one-tailed). samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold for forming clusters: use a t-value equivalent to an uncorrected p-value. tmin : scalar Threshold for forming clusters as t-value. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- c1_mean : NDVar Mean in the c1 condition. c0_mean : NDVar Mean in the c0 condition. clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. difference : NDVar Difference between the mean in condition c1 and condition c0. p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). p_uncorrected : NDVar Map of p-values uncorrected for multiple comparison. t : NDVar Map of t-values. tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). n : int Number of cases. Notes ----- In the permutation cluster test, permutations are done within the categories of ``match``. Cases with zero variance are set to t=0. """ _state_specific = ('x', 'c1', 'c0', 'tail', 't', 'n', 'df', 'c1_mean', 'c0_mean') _statistic = 't' @user_activity def __init__( self, y: NDVarArg, x: Union[CategorialArg, NDVarArg], c1: CellArg = None, c0: CellArg = None, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, tail: int = 0, samples: int = 10000, pmin: float = None, tmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, **criteria): y1, y0, c1, c0, match, n, x_name, c1, c1_name, c0, c0_name = _related_measures_args(y, x, c1, c0, match, ds, sub) check_for_vector_dim(y1) if n <= 2: raise ValueError("Not enough observations for t-test (n=%i)" % n) df = n - 1 diff = y1 - y0 tmap = stats.t_1samp(diff.x) n_threshold_params = sum((pmin is not None, tmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: threshold = cdist = None elif n_threshold_params > 1: raise ValueError("Only one of pmin, tmin and tfce can be specified") else: if pmin is not None: threshold = stats.ttest_t(pmin, df, tail) elif tmin is not None: threshold = abs(tmin) else: threshold = None n_samples, samples = _resample_params(len(diff), samples) cdist = NDPermutationDistribution( diff, n_samples, threshold, tfce, tail, 't', 'Related Samples t-Test', tstart, tstop, criteria, parc, force_permutation) cdist.add_original(tmap) if cdist.do_permutation: iterator = permute_sign_flip(n, samples) run_permutation(opt.t_1samp_perm, cdist, iterator) # NDVar map of t-values info = _info.for_stat_map('t', threshold, tail=tail, old=y1.info) t = NDVar(tmap, y1.dims[1:], info, 't') # store attributes NDDifferenceTest.__init__(self, y1, match, sub, samples, tfce, pmin, cdist, tstart, tstop) self.x = x_name self.c0 = c0 self.c1 = c1 self.n = n self.df = df self.tail = tail self.t = t self.tmin = tmin self.c1_mean = y1.mean('case', name=cellname(c1_name)) self.c0_mean = y0.mean('case', name=cellname(c0_name)) self._expand_state() def _expand_state(self): NDTest._expand_state(self) cdist = self._cdist t = self.t # difference diff = self.c1_mean - self.c0_mean if np.any(diff.x < 0): diff.info['cmap'] = 'xpolar' diff.name = 'difference' self.difference = diff # uncorrected p pmap = stats.ttest_p(t.x, self.df, self.tail) info = _info.for_p_map() self.p_uncorrected = NDVar(pmap, t.dims, info, 'p') # composites if self.samples: diff_p = self.masked_difference() else: diff_p = self.difference self.all = [self.c1_mean, self.c0_mean, diff_p] def _name(self): if self.tail == 0: comp = "%s == %s" % (self.c1, self.c0) elif self.tail > 0: comp = "%s > %s" % (self.c1, self.c0) else: comp = "%s < %s" % (self.c1, self.c0) if self.y: return "Related-Samples T-Test: %s ~ %s" % (self.y, comp) else: return "Related-Samples T-Test: %s" % comp def _plot_model(self): return self.x def _plot_sub(self): return "(%s).isin(%s)" % (self.x, (self.c1, self.c0)) def _repr_test_args(self): args = [repr(self.y), repr(self.x)] if self.c1 is not None: args.extend((repr(self.c1), repr(self.c0), repr(self.match))) args[-1] += " (n=%i)" % self.n if self.tail: args.append("tail=%i" % self.tail) return args def _default_plot_obj(self): if self.samples: diff = self.masked_difference() else: diff = self.difference return [self.c1_mean, self.c0_mean, diff] class MultiEffectNDTest(NDTest): def _repr_test_args(self): args = [repr(self.y), repr(self.x)] if self.match is not None: args.append('match=%r' % self.match) return args def _repr_cdist(self): args = self._cdist[0]._repr_test_args(self.pmin) for cdist in self._cdist: effect_args = cdist._repr_clusters() args.append("%r: %s" % (cdist.name, ', '.join(effect_args))) return args def _asfmtext(self): table = fmtxt.Table('llll') table.cells('Effect', fmtxt.symbol(self._statistic, 'max'), fmtxt.symbol('p'), 'sig') table.midrule() for i, effect in enumerate(self.effects): table.cell(effect) table.cell(fmtxt.stat(self._max_statistic(i))) pmin = self.p[i].min() table.cell(fmtxt.p(pmin)) table.cell(star(pmin)) return table def _expand_state(self): self.effects = tuple(e.name for e in self._effects) # clusters cdists = self._cdist if cdists is None: self._kind = None else: self.tfce_maps = [cdist.tfce_map for cdist in cdists] self.p = [cdist.probability_map for cdist in cdists] self._kind = cdists[0].kind def _effect_index(self, effect: Union[int, str]): if isinstance(effect, str): return self.effects.index(effect) else: return effect def _iter_cdists(self): for cdist in self._cdist: yield cdist.name.capitalize(), cdist @property def _first_cdist(self): if self._cdist is None: return None else: return self._cdist[0] def _max_statistic(self, effect: Union[str, int]): i = self._effect_index(effect) stat_map = self._statistic_map[i] tail = getattr(self, 'tail', self._statistic_tail) return self._max_statistic_from_map(stat_map, self.p[i], tail) def cluster(self, cluster_id, effect=0): """Retrieve a specific cluster as NDVar Parameters ---------- cluster_id : int Cluster id. effect : int | str Index or name of the effect from which to retrieve a cluster (default is the first effect). Returns ------- cluster : NDVar NDVar of the cluster, 0 outside the cluster. Notes ----- Clusters only have stable ids for thresholded cluster distributions. """ self._assert_has_cdist() i = self._effect_index(effect) return self._cdist[i].cluster(cluster_id) def compute_probability_map(self, effect=0, **sub): """Compute a probability map Parameters ---------- effect : int | str Index or name of the effect from which to use the parameter map (default is the first effect). Returns ------- probability : NDVar Map of p-values. """ self._assert_has_cdist() i = self._effect_index(effect) return self._cdist[i].compute_probability_map(**sub) def masked_parameter_map(self, effect=0, pmin=0.05, **sub): """Create a copy of the parameter map masked by significance Parameters ---------- effect : int | str Index or name of the effect from which to use the parameter map. pmin : scalar Threshold p-value for masking (default 0.05). For threshold-based cluster tests, ``pmin=1`` includes all clusters regardless of their p-value. Returns ------- masked_map : NDVar NDVar with data from the original parameter map wherever p <= pmin and 0 everywhere else. """ self._assert_has_cdist() i = self._effect_index(effect) return self._cdist[i].masked_parameter_map(pmin, **sub) def find_clusters(self, pmin=None, maps=False, effect=None, **sub): """Find significant regions or clusters Parameters ---------- pmin : None | scalar, 1 >= p >= 0 Threshold p-value. For threshold-based tests, all clusters with a p-value smaller than ``pmin`` are included (default 1); for other tests, find contiguous regions with ``p ≤ pmin`` (default 0.05). maps : bool Include in the output a map of every cluster (can be memory intensive if there are large statistical maps and/or many clusters; default ``False``). effect : int | str Index or name of the effect from which to find clusters (default is all effects). Returns ------- ds : Dataset Dataset with information about the clusters. """ self._assert_has_cdist() if effect is not None: i = self._effect_index(effect) return self._cdist[i].clusters(pmin, maps, **sub) dss = [] info = {} for cdist in self._cdist: ds = cdist.clusters(pmin, maps, **sub) ds[:, 'effect'] = cdist.name if 'clusters' in ds.info: info['%s clusters' % cdist.name] = ds.info.pop('clusters') dss.append(ds) out = combine(dss) out.info.update(info) return out def find_peaks(self): """Find peaks in a TFCE distribution Returns ------- ds : Dataset Dataset with information about the peaks. """ self._assert_has_cdist() dss = [] for cdist in self._cdist: ds = cdist.find_peaks() ds[:, 'effect'] = cdist.name dss.append(ds) return combine(dss) class anova(MultiEffectNDTest): """Mass-univariate ANOVA Parameters ---------- y : NDVar Dependent variable. x : Model Independent variables. sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold for forming clusters: use an f-value equivalent to an uncorrected p-value. fmin : scalar Threshold for forming clusters as f-value. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). replacement : bool whether random samples should be drawn with replacement or without tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). match : categorial | False When permuting data, only shuffle the cases within the categories of match. By default, ``match`` is determined automatically based on the random efects structure of ``x``. parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- effects : tuple of str Names of the tested effects, in the same order as in other attributes. clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. f : list of NDVar Maps of F values. p : list of NDVar | None Maps of p-values corrected for multiple comparison (or None if no correction was performed). p_uncorrected : list of NDVar Maps of p-values uncorrected for multiple comparison. tfce_maps : list of NDVar | None Maps of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). Examples -------- For information on model specification see the univariate :func:`~eelbrain.test.anova` examples. """ _state_specific = ('x', 'pmin', '_effects', '_dfs_denom', 'f') _statistic = 'f' _statistic_tail = 1 @user_activity def __init__( self, y: NDVarArg, x: ModelArg, sub: IndexArg = None, ds: Dataset = None, samples: int = 10000, pmin: float = None, fmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, match: Union[CategorialArg, bool] = None, parc: str = None, force_permutation: bool = False, **criteria): x_arg = x sub_arg = sub sub = assub(sub, ds) y = asndvar(y, sub, ds, dtype=np.float64) check_for_vector_dim(y) x = asmodel(x, sub, ds) if match is None: random_effects = [e for e in x.effects if e.random] if not random_effects: match = None elif len(random_effects) > 1: raise NotImplementedError( "Automatic match parameter for model with more than one " "random effect. Set match manually.") else: match = random_effects[0] elif match is not False: match = ascategorial(match, sub, ds) lm = _nd_anova(x) effects = lm.effects dfs_denom = lm.dfs_denom fmaps = lm.map(y.x) n_threshold_params = sum((pmin is not None, fmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: cdists = None thresholds = tuple(repeat(None, len(effects))) elif n_threshold_params > 1: raise ValueError("Only one of pmin, fmin and tfce can be specified") else: if pmin is not None: thresholds = tuple(stats.ftest_f(pmin, e.df, df_den) for e, df_den in zip(effects, dfs_denom)) elif fmin is not None: thresholds = tuple(repeat(abs(fmin), len(effects))) else: thresholds = tuple(repeat(None, len(effects))) cdists = [ NDPermutationDistribution( y, samples, thresh, tfce, 1, 'f', e.name, tstart, tstop, criteria, parc, force_permutation) for e, thresh in zip(effects, thresholds)] # Find clusters in the actual data do_permutation = 0 for cdist, fmap in zip(cdists, fmaps): cdist.add_original(fmap) do_permutation += cdist.do_permutation if do_permutation: iterator = permute_order(len(y), samples, unit=match) run_permutation_me(lm, cdists, iterator) # create ndvars dims = y.dims[1:] f = [] for e, fmap, df_den, f_threshold in zip(effects, fmaps, dfs_denom, thresholds): info = _info.for_stat_map('f', f_threshold, tail=1, old=y.info) f.append(NDVar(fmap, dims, info, e.name)) # store attributes MultiEffectNDTest.__init__(self, y, match, sub_arg, samples, tfce, pmin, cdists, tstart, tstop) self.x = x_arg if isinstance(x_arg, str) else x.name self._effects = effects self._dfs_denom = dfs_denom self.f = f self._expand_state() def _expand_state(self): # backwards compatibility if hasattr(self, 'effects'): self._effects = self.effects MultiEffectNDTest._expand_state(self) # backwards compatibility if hasattr(self, 'df_den'): df_den_temp = {e.name: df for e, df in self.df_den.items()} del self.df_den self._dfs_denom = tuple(df_den_temp[e] for e in self.effects) # f-maps with clusters pmin = self.pmin or 0.05 if self.samples: f_and_clusters = [] for e, fmap, df_den, cdist in zip(self._effects, self.f, self._dfs_denom, self._cdist): # create f-map with cluster threshold f0 = stats.ftest_f(pmin, e.df, df_den) info = _info.for_stat_map('f', f0) f_ = NDVar(fmap.x, fmap.dims, info, e.name) # add overlay with cluster if cdist.probability_map is not None: f_and_clusters.append([f_, cdist.probability_map]) else: f_and_clusters.append([f_]) self.f_probability = f_and_clusters # uncorrected probability p_uncorr = [] for e, f, df_den in zip(self._effects, self.f, self._dfs_denom): info = _info.for_p_map() pmap = stats.ftest_p(f.x, e.df, df_den) p_ = NDVar(pmap, f.dims, info, e.name) p_uncorr.append(p_) self.p_uncorrected = p_uncorr def _name(self): if self.y: return "ANOVA: %s ~ %s" % (self.y, self.x) else: return "ANOVA: %s" % self.x def _plot_model(self): return '%'.join(e.name for e in self._effects if isinstance(e, Factor) or (isinstance(e, NestedEffect) and isinstance(e.effect, Factor))) def _plot_sub(self): return super(anova, self)._plot_sub() def _default_plot_obj(self): if self.samples: return [self.masked_parameter_map(e) for e in self.effects] else: return self._statistic_map def table(self): """Table with effects and smallest p-value""" table = fmtxt.Table('rlr' + ('' if self.p is None else 'rl')) table.cells('#', 'Effect', 'f_max') if self.p is not None: table.cells('p', 'sig') table.midrule() for i in range(len(self.effects)): table.cell(i) table.cell(self.effects[i]) table.cell(fmtxt.stat(self.f[i].max())) if self.p is not None: pmin = self.p[i].min() table.cell(fmtxt.p(pmin)) table.cell(star(pmin)) return table class Vector(NDDifferenceTest): """Test a vector field for vectors with non-random direction Parameters ---------- y : NDVar Dependent variable (needs to include one vector dimension). match : None | categorial Combine data for these categories before testing. sub : index Perform test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables samples : int Number of samples for permutation test (default 10000). tmin : scalar Threshold value for forming clusters. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. norm : bool Use the vector norm as univariate test statistic (instead of Hotelling’s T-Square statistic). mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- n : int Number of cases. difference : NDVar The vector field averaged across cases. t2 : NDVar | None Hotelling T-Square map; ``None`` if the test used ``norm=True``. p : NDVar | None Map of p-values corrected for multiple comparison (or ``None`` if no correction was performed). tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. Notes ----- Vector tests are based on the Hotelling T-Square statistic. Computation of the T-Square statistic relies on [1]_. References ---------- .. [1] Kopp, J. (2008). Efficient numerical diagonalization of hermitian 3 x 3 matrices. International Journal of Modern Physics C, 19(3), 523-548. `10.1142/S0129183108012303 <https://doi.org/10.1142/S0129183108012303>`_ """ _state_specific = ('difference', 'n', '_v_dim', 't2') @user_activity def __init__( self, y: NDVarArg, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, samples: int = 10000, tmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, norm: bool = False, **criteria): use_norm = bool(norm) ct = Celltable(y, match=match, sub=sub, ds=ds, coercion=asndvar, dtype=np.float64) n = len(ct.y) cdist = NDPermutationDistribution(ct.y, samples, tmin, tfce, 1, 'norm', 'Vector test', tstart, tstop, criteria, parc, force_permutation) v_dim = ct.y.dimnames[cdist._vector_ax + 1] v_mean = ct.y.mean('case') v_mean_norm = v_mean.norm(v_dim) if not use_norm: t2_map = self._vector_t2_map(ct.y) cdist.add_original(t2_map.x if v_mean.ndim > 1 else t2_map) if v_mean.ndim == 1: self.t2 = t2_map else: self.t2 = NDVar(t2_map, v_mean_norm.dims, _info.for_stat_map('t2'), 't2') else: cdist.add_original(v_mean_norm.x if v_mean.ndim > 1 else v_mean_norm) self.t2 = None if cdist.do_permutation: iterator = random_seeds(samples) vector_perm = partial(self._vector_perm, use_norm=use_norm) run_permutation(vector_perm, cdist, iterator) # store attributes NDTest.__init__(self, ct.y, ct.match, sub, samples, tfce, None, cdist, tstart, tstop) self.difference = v_mean self._v_dim = v_dim self.n = n self._expand_state() def __setstate__(self, state): if 'diff' in state: state['difference'] = state.pop('diff') NDTest.__setstate__(self, state) @property def _statistic(self): return 'norm' if self.t2 is None else 't2' def _name(self): if self.y: return f"Vector test: {self.y}" else: return "Vector test" def _repr_test_args(self): args = [] if self.y: args.append(repr(self.y)) if self.match: args.append(f'match={self.match!r}') return args @staticmethod def _vector_perm(y, out, seed, use_norm): n_cases, n_dims, n_tests = y.shape assert n_dims == 3 rotation = rand_rotation_matrices(n_cases, seed) if use_norm: return vector.mean_norm_rotated(y, rotation, out) else: return vector.t2_stat_rotated(y, rotation, out) @staticmethod def _vector_t2_map(y): dimnames = y.get_dimnames(first=('case', 'space')) x = y.get_data(dimnames) t2_map = stats.t2_1samp(x) if y.ndim == 2: return np.float64(t2_map) else: dims = y.get_dims(dimnames[2:]) return NDVar(t2_map, dims) class VectorDifferenceIndependent(Vector): """Test difference between two vector fields for non-random direction Parameters ---------- y : NDVar Dependent variable. x : categorial | NDVar Model containing the cells which should be compared, or NDVar to which ``y`` should be compared. In the latter case, the next three parameters are ignored. c1 : str | tuple | None Test condition (cell of ``x``). ``c1`` and ``c0`` can be omitted if ``x`` only contains two cells, in which case cells will be used in alphabetical order. c0 : str | tuple | None Control condition (cell of ``x``). match : categorial Combine cases with the same cell on ``x % match``. sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. samples : int Number of samples for permutation test (default 10000). tmin : scalar Threshold value for forming clusters. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. norm : bool Use the vector norm as univariate test statistic (instead of Hotelling’s T-Square statistic). mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- n : int Total number of cases. n1 : int Number of cases in ``c1``. n0 : int Number of cases in ``c0``. c1_mean : NDVar Mean in the c1 condition. c0_mean : NDVar Mean in the c0 condition. difference : NDVar Difference between the mean in condition c1 and condition c0. t2 : NDVar | None Hotelling T-Square map; ``None`` if the test used ``norm=True``. p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. """ _state_specific = ('difference', 'c1_mean', 'c0_mean' 'n', '_v_dim', 't2') _statistic = 'norm' @user_activity def __init__( self, y: NDVarArg, x: Union[CategorialArg, NDVarArg], c1: str = None, c0: str = None, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, samples: int = 10000, tmin: float = None, tfce: bool = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, norm: bool = False, **criteria): use_norm = bool(norm) y, y1, y0, c1, c0, match, x_name, c1_name, c0_name = _independent_measures_args(y, x, c1, c0, match, ds, sub) self.n1 = len(y1) self.n0 = len(y0) self.n = len(y) cdist = NDPermutationDistribution(y, samples, tmin, tfce, 1, 'norm', 'Vector test (independent)', tstart, tstop, criteria, parc, force_permutation) self._v_dim = v_dim = y.dimnames[cdist._vector_ax + 1] self.c1_mean = y1.mean('case', name=cellname(c1_name)) self.c0_mean = y0.mean('case', name=cellname(c0_name)) self.difference = self.c1_mean - self.c0_mean self.difference.name = 'difference' v_mean_norm = self.difference.norm(v_dim) if not use_norm: raise NotImplementedError("t2 statistic not implemented for VectorDifferenceIndependent") else: cdist.add_original(v_mean_norm.x if self.difference.ndim > 1 else v_mean_norm) self.t2 = None if cdist.do_permutation: iterator = random_seeds(samples) vector_perm = partial(self._vector_perm, use_norm=use_norm) run_permutation(vector_perm, cdist, iterator, self.n1) NDTest.__init__(self, y, match, sub, samples, tfce, None, cdist, tstart, tstop) self._expand_state() def _name(self): if self.y: return f"Vector test (independent): {self.y}" else: return "Vector test (independent)" @staticmethod def _vector_perm(y, n1, out, seed, use_norm): assert use_norm n_cases, n_dims, n_tests = y.shape assert n_dims == 3 # randomize directions rotation = rand_rotation_matrices(n_cases, seed) # randomize groups cases = np.arange(n_cases) np.random.shuffle(cases) # group 1 mean_1 = np.zeros((n_dims, n_tests)) for case in cases[:n1]: mean_1 += np.tensordot(rotation[case], y[case], ((1,), (0,))) mean_1 /= n1 # group 0 mean_0 = np.zeros((n_dims, n_tests)) for case in cases[n1:]: mean_0 += np.tensordot(rotation[case], y[case], ((1,), (0,))) mean_0 /= (n_cases - n1) # difference mean_1 -= mean_0 norm = scipy.linalg.norm(mean_1, 2, axis=0) if out is not None: out[:] = norm return norm class VectorDifferenceRelated(NDMaskedC1Mixin, Vector): """Test difference between two vector fields for non-random direction Parameters ---------- y : NDVar Dependent variable. x : categorial | NDVar Model containing the cells which should be compared, or NDVar to which ``y`` should be compared. In the latter case, the next three parameters are ignored. c1 : str | tuple | None Test condition (cell of ``x``). ``c1`` and ``c0`` can be omitted if ``x`` only contains two cells, in which case cells will be used in alphabetical order. c0 : str | tuple | None Control condition (cell of ``x``). match : categorial Units within which measurements are related (e.g. 'subject' in a within-subject comparison). sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. samples : int Number of samples for permutation test (default 10000). tmin : scalar Threshold value for forming clusters. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. norm : bool Use the vector norm as univariate test statistic (instead of Hotelling’s T-Square statistic). mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- n : int Number of cases. c1_mean : NDVar Mean in the ``c1`` condition. c0_mean : NDVar Mean in the ``c0`` condition. difference : NDVar Difference between the mean in condition ``c1`` and condition ``c0``. t2 : NDVar | None Hotelling T-Square map; ``None`` if the test used ``norm=True``. p : NDVar | None Map of p-values corrected for multiple comparison (or ``None`` if no correction was performed). tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. See Also -------- Vector : One-sample vector test, notes on vector test implementation """ _state_specific = ('difference', 'c1_mean', 'c0_mean' 'n', '_v_dim', 't2') @user_activity def __init__( self, y: NDVarArg, x: Union[CategorialArg, NDVarArg], c1: str = None, c0: str = None, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, samples: int = 10000, tmin: float = None, tfce: bool = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, norm: bool = False, **criteria): use_norm = bool(norm) y1, y0, c1, c0, match, n, x_name, c1, c1_name, c0, c0_name = _related_measures_args(y, x, c1, c0, match, ds, sub) difference = y1 - y0 difference.name = 'difference' n_samples, samples = _resample_params(n, samples) cdist = NDPermutationDistribution(difference, n_samples, tmin, tfce, 1, 'norm', 'Vector test (related)', tstart, tstop, criteria, parc, force_permutation) v_dim = difference.dimnames[cdist._vector_ax + 1] v_mean = difference.mean('case') v_mean_norm = v_mean.norm(v_dim) if not use_norm: t2_map = self._vector_t2_map(difference) cdist.add_original(t2_map.x if v_mean.ndim > 1 else t2_map) if v_mean.ndim == 1: self.t2 = t2_map else: self.t2 = NDVar(t2_map, v_mean_norm.dims, _info.for_stat_map('t2'), 't2') else: cdist.add_original(v_mean_norm.x if v_mean.ndim > 1 else v_mean_norm) self.t2 = None if cdist.do_permutation: iterator = random_seeds(n_samples) vector_perm = partial(self._vector_perm, use_norm=use_norm) run_permutation(vector_perm, cdist, iterator) # store attributes NDTest.__init__(self, difference, match, sub, samples, tfce, None, cdist, tstart, tstop) self.difference = v_mean self.c1_mean = y1.mean('case', name=cellname(c1_name)) self.c0_mean = y0.mean('case', name=cellname(c0_name)) self._v_dim = v_dim self.n = n self._expand_state() def _name(self): if self.y: return f"Vector test (related): {self.y}" else: return "Vector test (related)" def flatten(array, connectivity): """Reshape SPM buffer array to 2-dimensional map for connectivity processing Parameters ---------- array : ndarray N-dimensional array (with non-adjacent dimension at first position). connectivity : Connectivity N-dimensional connectivity. Returns ------- flat_array : ndarray The input array reshaped if necessary, making sure that input and output arrays share the same underlying data buffer. """ if array.ndim == 2 or not connectivity.custom: return array else: out = array.reshape((array.shape[0], -1)) assert out.base is array return out def flatten_1d(array): if array.ndim == 1: return array else: out = array.ravel() assert out.base is array return out def label_clusters(stat_map, threshold, tail, connectivity, criteria): """Label clusters Parameters ---------- stat_map : array Statistical parameter map (non-adjacent dimension on the first axis). Returns ------- cmap : np.ndarray of uint32 Array with clusters labelled as integers. cluster_ids : np.ndarray of uint32 Identifiers of the clusters that survive the minimum duration criterion. """ cmap = np.empty(stat_map.shape, np.uint32) bin_buff = np.empty(stat_map.shape, np.bool8) cmap_flat = flatten(cmap, connectivity) if tail == 0: int_buff = np.empty(stat_map.shape, np.uint32) int_buff_flat = flatten(int_buff, connectivity) else: int_buff = int_buff_flat = None cids = _label_clusters(stat_map, threshold, tail, connectivity, criteria, cmap, cmap_flat, bin_buff, int_buff, int_buff_flat) return cmap, cids def _label_clusters(stat_map, threshold, tail, conn, criteria, cmap, cmap_flat, bin_buff, int_buff, int_buff_flat): """Find clusters on a statistical parameter map Parameters ---------- stat_map : array Statistical parameter map (non-adjacent dimension on the first axis). cmap : array of int Buffer for the cluster id map (will be modified). Returns ------- cluster_ids : np.ndarray of uint32 Identifiers of the clusters that survive the minimum duration criterion. """ # compute clusters if tail >= 0: bin_map_above = np.greater(stat_map, threshold, bin_buff) cids = _label_clusters_binary(bin_map_above, cmap, cmap_flat, conn, criteria) if tail <= 0: bin_map_below = np.less(stat_map, -threshold, bin_buff) if tail < 0: cids = _label_clusters_binary(bin_map_below, cmap, cmap_flat, conn, criteria) else: cids_l = _label_clusters_binary(bin_map_below, int_buff, int_buff_flat, conn, criteria) x = cmap.max() int_buff[bin_map_below] += x cids_l += x cmap += int_buff cids = np.concatenate((cids, cids_l)) return cids def label_clusters_binary(bin_map, connectivity, criteria=None): """Label clusters in a boolean map Parameters ---------- bin_map : numpy.ndarray Binary map. connectivity : Connectivity Connectivity corresponding to ``bin_map``. criteria : dict Cluster criteria. Returns ------- cmap : numpy.ndarray of uint32 Array with clusters labelled as integers. cluster_ids : numpy.ndarray of uint32 Sorted identifiers of the clusters that survive the selection criteria. """ cmap = np.empty(bin_map.shape, np.uint32) cmap_flat = flatten(cmap, connectivity) cids = _label_clusters_binary(bin_map, cmap, cmap_flat, connectivity, criteria) return cmap, cids def _label_clusters_binary(bin_map, cmap, cmap_flat, connectivity, criteria): """Label clusters in a binary array Parameters ---------- bin_map : np.ndarray Binary map of where the parameter map exceeds the threshold for a cluster (non-adjacent dimension on the first axis). cmap : np.ndarray Array in which to label the clusters. cmap_flat : np.ndarray Flat copy of cmap (ndim=2, only used when all_adjacent==False) connectivity : Connectivity Connectivity. criteria : None | list Cluster size criteria, list of (axes, v) tuples. Collapse over axes and apply v minimum length). Returns ------- cluster_ids : np.ndarray of uint32 Sorted identifiers of the clusters that survive the selection criteria. """ # find clusters n = ndimage.label(bin_map, connectivity.struct, cmap) if n <= 1: # in older versions, n is 1 even when no cluster is found if n == 0 or cmap.max() == 0: return np.array((), np.uint32) else: cids = np.array((1,), np.uint32) elif connectivity.custom: cids = merge_labels(cmap_flat, n, *connectivity.custom[0]) else: cids = np.arange(1, n + 1, 1, np.uint32) # apply minimum cluster size criteria if criteria and cids.size: for axes, v in criteria: cids = np.setdiff1d(cids, [i for i in cids if np.count_nonzero(np.equal(cmap, i).any(axes)) < v], True) if cids.size == 0: break return cids def tfce(stat_map, tail, connectivity, dh=0.1): tfce_im = np.empty(stat_map.shape, np.float64) tfce_im_1d = flatten_1d(tfce_im) bin_buff = np.empty(stat_map.shape, np.bool8) int_buff = np.empty(stat_map.shape, np.uint32) int_buff_flat = flatten(int_buff, connectivity) int_buff_1d = flatten_1d(int_buff) return _tfce(stat_map, tail, connectivity, tfce_im, tfce_im_1d, bin_buff, int_buff, int_buff_flat, int_buff_1d, dh) def _tfce(stat_map, tail, conn, out, out_1d, bin_buff, int_buff, int_buff_flat, int_buff_1d, dh=0.1, e=0.5, h=2.0): "Threshold-free cluster enhancement" out.fill(0) # determine slices if tail == 0: hs = chain(np.arange(-dh, stat_map.min(), -dh), np.arange(dh, stat_map.max(), dh)) elif tail < 0: hs = np.arange(-dh, stat_map.min(), -dh) else: hs = np.arange(dh, stat_map.max(), dh) # label clusters in slices at different heights # fill each cluster with total section value # each point's value is the vertical sum for h_ in hs: if h_ > 0: np.greater_equal(stat_map, h_, bin_buff) h_factor = h_ ** h else: np.less_equal(stat_map, h_, bin_buff) h_factor = (-h_) ** h c_ids = _label_clusters_binary(bin_buff, int_buff, int_buff_flat, conn, None) tfce_increment(c_ids, int_buff_1d, out_1d, e, h_factor) return out class StatMapProcessor: def __init__(self, tail, max_axes, parc): """Reduce a statistical map to the relevant maximum statistic""" self.tail = tail self.max_axes = max_axes self.parc = parc def max_stat(self, stat_map): if self.tail == 0: v = np.abs(stat_map, stat_map).max(self.max_axes) elif self.tail > 0: v = stat_map.max(self.max_axes) else: v = -stat_map.min(self.max_axes) if self.parc is None: return v else: return [v[idx].max() for idx in self.parc] class TFCEProcessor(StatMapProcessor): def __init__(self, tail, max_axes, parc, shape, connectivity, dh): StatMapProcessor.__init__(self, tail, max_axes, parc) self.shape = shape self.connectivity = connectivity self.dh = dh # Pre-allocate memory buffers used for cluster processing self._bin_buff = np.empty(shape, np.bool8) self._int_buff = np.empty(shape, np.uint32) self._tfce_im = np.empty(shape, np.float64) self._tfce_im_1d = flatten_1d(self._tfce_im) self._int_buff_flat = flatten(self._int_buff, connectivity) self._int_buff_1d = flatten_1d(self._int_buff) def max_stat(self, stat_map): v = _tfce( stat_map, self.tail, self.connectivity, self._tfce_im, self._tfce_im_1d, self._bin_buff, self._int_buff, self._int_buff_flat, self._int_buff_1d, self.dh, ).max(self.max_axes) if self.parc is None: return v else: return [v[idx].max() for idx in self.parc] class ClusterProcessor(StatMapProcessor): def __init__(self, tail, max_axes, parc, shape, connectivity, threshold, criteria): StatMapProcessor.__init__(self, tail, max_axes, parc) self.shape = shape self.connectivity = connectivity self.threshold = threshold self.criteria = criteria # Pre-allocate memory buffers used for cluster processing self._bin_buff = np.empty(shape, np.bool8) self._cmap = np.empty(shape, np.uint32) self._cmap_flat = flatten(self._cmap, connectivity) if tail == 0: self._int_buff = np.empty(shape, np.uint32) self._int_buff_flat = flatten(self._int_buff, connectivity) else: self._int_buff = self._int_buff_flat = None def max_stat(self, stat_map, threshold=None): if threshold is None: threshold = self.threshold cmap = self._cmap cids = _label_clusters(stat_map, threshold, self.tail, self.connectivity, self.criteria, cmap, self._cmap_flat, self._bin_buff, self._int_buff, self._int_buff_flat) if self.parc is not None: v = [] for idx in self.parc: clusters_v = ndimage.sum(stat_map[idx], cmap[idx], cids) if len(clusters_v): if self.tail <= 0: np.abs(clusters_v, clusters_v) v.append(clusters_v.max()) else: v.append(0) return v elif len(cids): clusters_v = ndimage.sum(stat_map, cmap, cids) if self.tail <= 0: np.abs(clusters_v, clusters_v) return clusters_v.max() else: return 0 def get_map_processor(kind, *args): if kind == 'tfce': return TFCEProcessor(*args) elif kind == 'cluster': return ClusterProcessor(*args) elif kind == 'raw': return StatMapProcessor(*args) else: raise ValueError("kind=%s" % repr(kind)) class NDPermutationDistribution: """Accumulate information on a cluster statistic. Parameters ---------- y : NDVar Dependent variable. samples : int Number of permutations. threshold : scalar > 0 Threshold-based clustering. tfce : bool | scalar Threshold-free cluster enhancement. tail : 1 | 0 | -1 Which tail(s) of the distribution to consider. 0 is two-tailed, whereas 1 only considers positive values and -1 only considers negative values. meas : str Label for the parameter measurement (e.g., 't' for t-values). name : None | str Name for the comparison. tstart, tstop : None | scalar Restrict the time window for finding clusters (None: use the whole epoch). criteria : dict Dictionary with threshold criteria for cluster size: 'mintime' (seconds) and 'minsource' (n_sources). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation : bool Conduct permutations regardless of whether there are any clusters. Notes ----- Use of the NDPermutationDistribution proceeds in 3 steps: - initialize the NDPermutationDistribution object: ``cdist = NDPermutationDistribution(...)`` - use a copy of y cropped to the time window of interest: ``y = cdist.Y_perm`` - add the actual statistical map with ``cdist.add_original(pmap)`` - if any clusters are found (``if cdist.n_clusters``): - proceed to add statistical maps from permuted data with ``cdist.add_perm(pmap)``. Permutation data shape: case, [vector, ][non-adjacent, ] ... internal shape: [non-adjacent, ] ... """ tfce_warning = None def __init__(self, y, samples, threshold, tfce=False, tail=0, meas='?', name=None, tstart=None, tstop=None, criteria={}, parc=None, force_permutation=False): assert y.has_case assert parc is None or isinstance(parc, str) if tfce and threshold: raise RuntimeError(f"threshold={threshold!r}, tfce={tfce!r}: mutually exclusive parameters") elif tfce: if tfce is not True: tfce = abs(tfce) kind = 'tfce' elif threshold: threshold = float(threshold) kind = 'cluster' assert threshold > 0 else: kind = 'raw' # vector: will be removed for stat_map vector = [d._connectivity_type == 'vector' for d in y.dims[1:]] has_vector_ax = any(vector) if has_vector_ax: vector_ax = vector.index(True) else: vector_ax = None # prepare temporal cropping if (tstart is None) and (tstop is None): y_perm = y self._crop_for_permutation = False self._crop_idx = None else: t_ax = y.get_axis('time') - 1 y_perm = y.sub(time=(tstart, tstop)) # for stat-maps if vector_ax is not None and vector_ax < t_ax: t_ax -= 1 t_slice = y.time._array_index(slice(tstart, tstop)) self._crop_for_permutation = True self._crop_idx = FULL_AXIS_SLICE * t_ax + (t_slice,) dims = list(y_perm.dims[1:]) if has_vector_ax: del dims[vector_ax] # custom connectivity: move non-adjacent connectivity to first axis custom = [d._connectivity_type == 'custom' for d in dims] n_custom = sum(custom) if n_custom > 1: raise NotImplementedError("More than one axis with custom connectivity") nad_ax = None if n_custom == 0 else custom.index(True) if nad_ax: swapped_dims = list(dims) swapped_dims[0], swapped_dims[nad_ax] = dims[nad_ax], dims[0] else: swapped_dims = dims connectivity = Connectivity(swapped_dims, parc) assert connectivity.vector is None # cluster map properties ndim = len(dims) # prepare cluster minimum size criteria if criteria: criteria_ = [] for k, v in criteria.items(): m = re.match('min(\w+)', k) if m: dimname = m.group(1) if not y.has_dim(dimname): raise TypeError( "%r is an invalid keyword argument for this testnd " "function (no dimension named %r)" % (k, dimname)) ax = y.get_axis(dimname) - 1 if dimname == 'time': v = int(ceil(v / y.time.tstep)) else: raise TypeError("%r is an invalid keyword argument for this testnd function" % (k,)) if nad_ax: if ax == 0: ax = nad_ax elif ax == nad_ax: ax = 0 axes = tuple(i for i in range(ndim) if i != ax) criteria_.append((axes, v)) if kind != 'cluster': # here so that invalid keywords raise explicitly err = ("Can not use cluster size criteria when doing " "threshold free cluster evaluation") raise ValueError(err) else: criteria_ = None # prepare distribution samples = int(samples) if parc: for parc_ax, parc_dim in enumerate(swapped_dims): if parc_dim.name == parc: break else: raise ValueError("parc=%r (no dimension named %r)" % (parc, parc)) if parc_dim._connectivity_type == 'none': parc_indexes = np.arange(len(parc_dim)) elif kind == 'tfce': raise NotImplementedError( f"TFCE for parc={parc!r} ({parc_dim.__class__.__name__} dimension)") elif parc_dim._connectivity_type == 'custom': if not hasattr(parc_dim, 'parc'): raise NotImplementedError(f"parc={parc!r}: dimension has no parcellation") parc_indexes = tuple(np.flatnonzero(parc_dim.parc == cell) for cell in parc_dim.parc.cells) parc_dim = Categorial(parc, parc_dim.parc.cells) else: raise NotImplementedError(f"parc={parc!r}") dist_shape = (samples, len(parc_dim)) dist_dims = ('case', parc_dim) max_axes = tuple(chain(range(parc_ax), range(parc_ax + 1, ndim))) else: dist_shape = (samples,) dist_dims = None max_axes = None parc_indexes = None # arguments for the map processor shape = tuple(map(len, swapped_dims)) if kind == 'raw': map_args = (kind, tail, max_axes, parc_indexes) elif kind == 'tfce': dh = 0.1 if tfce is True else tfce map_args = (kind, tail, max_axes, parc_indexes, shape, connectivity, dh) else: map_args = (kind, tail, max_axes, parc_indexes, shape, connectivity, threshold, criteria_) self.kind = kind self.y_perm = y_perm self.dims = tuple(dims) # external stat map dims (cropped time) self.shape = shape # internal stat map shape self._connectivity = connectivity self.samples = samples self.dist_shape = dist_shape self._dist_dims = dist_dims self._max_axes = max_axes self.dist = None self.threshold = threshold self.tfce = tfce self.tail = tail self._nad_ax = nad_ax self._vector_ax = vector_ax self.tstart = tstart self.tstop = tstop self.parc = parc self.meas = meas self.name = name self._criteria = criteria_ self.criteria = criteria self.map_args = map_args self.has_original = False self.do_permutation = False self.dt_perm = None self._finalized = False self._init_time = current_time() self._host = socket.gethostname() self.force_permutation = force_permutation from .. import __version__ self._version = __version__ def _crop(self, im): "Crop an original stat_map" if self._crop_for_permutation: return im[self._crop_idx] else: return im def uncrop( self, ndvar: NDVar, # NDVar to uncrop to: NDVar, # NDVar that has the target time dimensions default: float = 0, # value to fill in uncropped area ): if self.tstart is None and self.tstop is None: return ndvar target_time = to.get_dim('time') t_ax = ndvar.get_axis('time') dims = list(ndvar.dims) dims[t_ax] = target_time shape = list(ndvar.shape) shape[t_ax] = len(target_time) t_slice = target_time._array_index(slice(self.tstart, self.tstop)) x = np.empty(shape, ndvar.x.dtype) x.fill(default) x[FULL_AXIS_SLICE * t_ax + (t_slice,)] = ndvar.x return NDVar(x, dims, ndvar.info, ndvar.name) def add_original(self, stat_map): """Add the original statistical parameter map. Parameters ---------- stat_map : array Parameter map of the statistic of interest (uncropped). """ if self.has_original: raise RuntimeError("Original pmap already added") logger = logging.getLogger(__name__) logger.debug("Adding original parameter map...") # crop/reshape stat_map stat_map = self._crop(stat_map) if self._nad_ax: stat_map = stat_map.swapaxes(0, self._nad_ax) # process map if self.kind == 'tfce': dh = 0.1 if self.tfce is True else self.tfce self.tfce_warning = max(stat_map.max(), -stat_map.min()) < dh cmap = tfce(stat_map, self.tail, self._connectivity, dh) cids = None n_clusters = cmap.max() > 0 elif self.kind == 'cluster': cmap, cids = label_clusters(stat_map, self.threshold, self.tail, self._connectivity, self._criteria) n_clusters = len(cids) # clean original cluster map idx = np.in1d(cmap, cids, invert=True).reshape(self.shape) cmap[idx] = 0 else: cmap = stat_map cids = None n_clusters = True self._t0 = current_time() self._original_cluster_map = cmap self._cids = cids self.n_clusters = n_clusters self.has_original = True self.dt_original = self._t0 - self._init_time self._original_param_map = stat_map if self.force_permutation or (self.samples and n_clusters): self._create_dist() self.do_permutation = True else: self.dist_array = None self.finalize() def _create_dist(self): "Create the distribution container" if CONFIG['n_workers']: n = reduce(operator.mul, self.dist_shape) dist_array = RawArray('d', n) dist = np.frombuffer(dist_array, np.float64, n) dist.shape = self.dist_shape else: dist_array = None dist = np.zeros(self.dist_shape) self.dist_array = dist_array self.dist = dist def _aggregate_dist(self, **sub): """Aggregate permutation distribution to one value per permutation Parameters ---------- [dimname] : index Limit the data for the distribution. Returns ------- dist : array, shape = (samples,) Maximum value for each permutation in the given region. """ dist = self.dist if sub: if self._dist_dims is None: raise TypeError("NDPermutationDistribution does not have parcellation") dist_ = NDVar(dist, self._dist_dims) dist_sub = dist_.sub(**sub) dist = dist_sub.x if dist.ndim > 1: axes = tuple(range(1, dist.ndim)) dist = dist.max(axes) return dist def __repr__(self): items = [] if self.has_original: dt = timedelta(seconds=round(self.dt_original)) items.append("%i clusters (%s)" % (self.n_clusters, dt)) if self.samples > 0 and self.n_clusters > 0: if self.dt_perm is not None: dt = timedelta(seconds=round(self.dt_perm)) items.append("%i permutations (%s)" % (self.samples, dt)) else: items.append("no data") return "<NDPermutationDistribution: %s>" % ', '.join(items) def __getstate__(self): if not self._finalized: raise RuntimeError("Cannot pickle cluster distribution before all " "permutations have been added.") state = { name: getattr(self, name) for name in ( 'name', 'meas', '_version', '_host', '_init_time', # settings ... 'kind', 'threshold', 'tfce', 'tail', 'criteria', 'samples', 'tstart', 'tstop', 'parc', # data properties ... 'dims', 'shape', '_nad_ax', '_vector_ax', '_criteria', '_connectivity', # results ... 'dt_original', 'dt_perm', 'n_clusters', '_dist_dims', 'dist', '_original_param_map', '_original_cluster_map', '_cids', )} state['version'] = 3 return state def __setstate__(self, state): # backwards compatibility version = state.pop('version', 0) if version == 0: if '_connectivity_src' in state: del state['_connectivity_src'] del state['_connectivity_dst'] if '_connectivity' in state: del state['_connectivity'] if 'N' in state: state['samples'] = state.pop('N') if '_version' not in state: state['_version'] = '< 0.11' if '_host' not in state: state['_host'] = 'unknown' if '_init_time' not in state: state['_init_time'] = None if 'parc' not in state: if state['_dist_dims'] is None: state['parc'] = None else: raise OldVersionError("This pickled file is from a previous version of Eelbrain and is not compatible anymore. Please recompute this test.") elif isinstance(state['parc'], tuple): if len(state['parc']) == 0: state['parc'] = None elif len(state['parc']) == 1: state['parc'] = state['parc'][0] else: raise OldVersionError("This pickled file is from a previous version of Eelbrain and is not compatible anymore. Please recompute this test.") nad_ax = state['_nad_ax'] state['dims'] = dims = state['dims'][1:] state['_connectivity'] = Connectivity( (dims[nad_ax],) + dims[:nad_ax] + dims[nad_ax + 1:], state['parc']) if version < 2: state['_vector_ax'] = None if version < 3: state['tfce'] = ['kind'] == 'tfce' for k, v in state.items(): setattr(self, k, v) self.has_original = True self.finalize() def _repr_test_args(self, pmin): "Argument representation for TestResult repr" args = ['samples=%r' % self.samples] if pmin is not None: args.append(f"pmin={pmin!r}") elif self.kind == 'tfce': arg = f"tfce={self.tfce!r}" if self.tfce_warning: arg = f"{arg} [WARNING: The TFCE step is larger than the largest value in the data]" args.append(arg) if self.tstart is not None: args.append(f"tstart={self.tstart!r}") if self.tstop is not None: args.append(f"tstop={self.tstop!r}") for k, v in self.criteria.items(): args.append(f"{k}={v!r}") return args def _repr_clusters(self): info = [] if self.kind == 'cluster': if self.n_clusters == 0: info.append("no clusters") else: info.append("%i clusters" % self.n_clusters) if self.n_clusters and self.samples: info.append(f"{fmtxt.peq(self.probability_map.min())}") return info def _package_ndvar(self, x, info=None, external_shape=False): "Generate NDVar from map with internal shape" if not self.dims: if isinstance(x, np.ndarray): return x.item() return x if not external_shape and self._nad_ax: x = x.swapaxes(0, self._nad_ax) if info is None: info = {} return NDVar(x, self.dims, info, self.name) def finalize(self): "Package results and delete temporary data" if self.dt_perm is None: self.dt_perm = current_time() - self._t0 # original parameter map param_contours = {} if self.kind == 'cluster': if self.tail >= 0: param_contours[self.threshold] = (0.7, 0.7, 0) if self.tail <= 0: param_contours[-self.threshold] = (0.7, 0, 0.7) info = _info.for_stat_map(self.meas, contours=param_contours) self.parameter_map = self._package_ndvar(self._original_param_map, info) # TFCE map if self.kind == 'tfce': self.tfce_map = self._package_ndvar(self._original_cluster_map) else: self.tfce_map = None # cluster map if self.kind == 'cluster': self.cluster_map = self._package_ndvar(self._original_cluster_map) else: self.cluster_map = None self._finalized = True def data_for_permutation(self, raw=True): """Retrieve data flattened for permutation Parameters ---------- raw : bool Return a RawArray and a shape tuple instead of a numpy array. """ # get data in the right shape x = self.y_perm.x if self._vector_ax: x = np.moveaxis(x, self._vector_ax + 1, 1) if self._nad_ax is not None: dst = 1 src = 1 + self._nad_ax if self._vector_ax is not None: dst += 1 if self._vector_ax > self._nad_ax: src += 1 if dst != src: x = x.swapaxes(dst, src) # flat y shape ndims = 1 + (self._vector_ax is not None) n_flat = 1 if x.ndim == ndims else reduce(operator.mul, x.shape[ndims:]) y_flat_shape = x.shape[:ndims] + (n_flat,) if not raw: return x.reshape(y_flat_shape) n = reduce(operator.mul, y_flat_shape) ra = RawArray('d', n) ra[:] = x.ravel() # OPT: don't copy data return ra, y_flat_shape, x.shape[ndims:] def _cluster_properties(self, cluster_map, cids): """Create a Dataset with cluster properties Parameters ---------- cluster_map : NDVar NDVar in which clusters are marked by bearing the same number. cids : array_like of int Numbers specifying the clusters (must occur in cluster_map) which should be analyzed. Returns ------- cluster_properties : Dataset Cluster properties. Which properties are included depends on the dimensions. """ ndim = cluster_map.ndim n_clusters = len(cids) # setup compression compression = [] for ax, dim in enumerate(cluster_map.dims): extents = np.empty((n_clusters, len(dim)), dtype=np.bool_) axes = tuple(i for i in range(ndim) if i != ax) compression.append((ax, dim, axes, extents)) # find extents for all clusters c_mask = np.empty(cluster_map.shape, np.bool_) for i, cid in enumerate(cids): np.equal(cluster_map, cid, c_mask) for ax, dim, axes, extents in compression: np.any(c_mask, axes, extents[i]) # prepare Dataset ds = Dataset() ds['id'] = Var(cids) for ax, dim, axes, extents in compression: properties = dim._cluster_properties(extents) if properties is not None: ds.update(properties) return ds def cluster(self, cluster_id): """Retrieve a specific cluster as NDVar Parameters ---------- cluster_id : int Cluster id. Returns ------- cluster : NDVar NDVar of the cluster, 0 outside the cluster. Notes ----- Clusters only have stable ids for thresholded cluster distributions. """ if self.kind != 'cluster': raise RuntimeError( f'Only cluster-based tests have clusters with stable ids, this ' f'is a {self.kind} distribution. Use the .find_clusters() ' f'method instead with maps=True.') elif cluster_id not in self._cids: raise ValueError(f'No cluster with id {cluster_id!r}') out = self.parameter_map * (self.cluster_map == cluster_id) properties = self._cluster_properties(self.cluster_map, (cluster_id,)) for k in properties: out.info[k] = properties[0, k] return out def clusters(self, pmin=None, maps=True, **sub): """Find significant clusters Parameters ---------- pmin : None | scalar, 1 >= p >= 0 Threshold p-value for clusters (for thresholded cluster tests the default is 1, for others 0.05). maps : bool Include in the output a map of every cluster (can be memory intensive if there are large statistical maps and/or many clusters; default True). [dimname] : index Limit the data for the distribution. Returns ------- ds : Dataset Dataset with information about the clusters. """ if pmin is None: if self.samples > 0 and self.kind != 'cluster': pmin = 0.05 elif self.samples == 0: msg = ("Can not determine p values in distribution without " "permutations.") if self.kind == 'cluster': msg += " Find clusters with pmin=None." raise RuntimeError(msg) if sub: param_map = self.parameter_map.sub(**sub) else: param_map = self.parameter_map if self.kind == 'cluster': if sub: cluster_map = self.cluster_map.sub(**sub) cids = np.setdiff1d(cluster_map.x, [0]) else: cluster_map = self.cluster_map cids = np.array(self._cids) if len(cids): # measure original clusters cluster_v = ndimage.sum(param_map.x, cluster_map.x, cids) # p-values if self.samples: # p-values: "the proportion of random partitions that # resulted in a larger test statistic than the observed # one" (179) dist = self._aggregate_dist(**sub) n_larger = np.sum(dist > np.abs(cluster_v[:, None]), 1) cluster_p = n_larger / self.samples # select clusters if pmin is not None: idx = cluster_p <= pmin cids = cids[idx] cluster_p = cluster_p[idx] cluster_v = cluster_v[idx] # p-value corrected across parc if sub: dist = self._aggregate_dist() n_larger = np.sum(dist > np.abs(cluster_v[:, None]), 1) cluster_p_corr = n_larger / self.samples else: cluster_v = cluster_p = cluster_p_corr = [] ds = self._cluster_properties(cluster_map, cids) ds['v'] = Var(cluster_v) if self.samples: ds['p'] = Var(cluster_p) if sub: ds['p_parc'] = Var(cluster_p_corr) threshold = self.threshold else: p_map = self.compute_probability_map(**sub) bin_map = np.less_equal(p_map.x, pmin) # threshold for maps if maps: values = np.abs(param_map.x)[bin_map] if len(values): threshold = values.min() / 2 else: threshold = 1. # find clusters (reshape to internal shape for labelling) if self._nad_ax: bin_map = bin_map.swapaxes(0, self._nad_ax) if sub: raise NotImplementedError("sub") # need to subset connectivity! c_map, cids = label_clusters_binary(bin_map, self._connectivity) if self._nad_ax: c_map = c_map.swapaxes(0, self._nad_ax) # Dataset with cluster info cluster_map = NDVar(c_map, p_map.dims, {}, "clusters") ds = self._cluster_properties(cluster_map, cids) ds.info['clusters'] = cluster_map min_pos = ndimage.minimum_position(p_map.x, c_map, cids) ds['p'] = Var([p_map.x[pos] for pos in min_pos]) if 'p' in ds: ds['sig'] = star_factor(ds['p']) # expand clusters if maps: shape = (ds.n_cases,) + param_map.shape c_maps = np.empty(shape, dtype=param_map.x.dtype) c_mask = np.empty(param_map.shape, dtype=np.bool_) for i, cid in enumerate(cids): np.equal(cluster_map.x, cid, c_mask) np.multiply(param_map.x, c_mask, c_maps[i]) # package ndvar dims = ('case',) + param_map.dims param_contours = {} if self.tail >= 0: param_contours[threshold] = (0.7, 0.7, 0) if self.tail <= 0: param_contours[-threshold] = (0.7, 0, 0.7) info = _info.for_stat_map(self.meas, contours=param_contours) info['summary_func'] = np.sum ds['cluster'] = NDVar(c_maps, dims, info) else: ds.info['clusters'] = self.cluster_map return ds def find_peaks(self): """Find peaks in a TFCE distribution Returns ------- ds : Dataset Dataset with information about the peaks. """ if self.kind == 'cluster': raise RuntimeError("Not a threshold-free distribution") param_map = self._original_param_map probability_map = self.probability_map.x if self._nad_ax: probability_map = probability_map.swapaxes(0, self._nad_ax) peaks = find_peaks(self._original_cluster_map, self._connectivity) peak_map, peak_ids = label_clusters_binary(peaks, self._connectivity) ds = Dataset() ds['id'] = Var(peak_ids) v = ds.add_empty_var('v') if self.samples: p = ds.add_empty_var('p') bin_buff = np.empty(peak_map.shape, np.bool8) for i, id_ in enumerate(peak_ids): idx = np.equal(peak_map, id_, bin_buff) v[i] = param_map[idx][0] if self.samples: p[i] = probability_map[idx][0] return ds def compute_probability_map(self, **sub): """Compute a probability map Parameters ---------- [dimname] : index Limit the data for the distribution. Returns ------- probability : NDVar Map of p-values. """ if not self.samples: raise RuntimeError("Can't compute probability without permutations") if self.kind == 'cluster': cpmap = np.ones(self.shape) if self.n_clusters: cids = self._cids dist = self._aggregate_dist(**sub) cluster_map = self._original_cluster_map param_map = self._original_param_map # measure clusters cluster_v = ndimage.sum(param_map, cluster_map, cids) # p-values: "the proportion of random partitions that resulted # in a larger test statistic than the observed one" (179) n_larger = np.sum(dist >= np.abs(cluster_v[:, None]), 1) cluster_p = n_larger / self.samples c_mask = np.empty(self.shape, dtype=np.bool8) for i, cid in enumerate(cids): np.equal(cluster_map, cid, c_mask) cpmap[c_mask] = cluster_p[i] # revert to original shape if self._nad_ax: cpmap = cpmap.swapaxes(0, self._nad_ax) dims = self.dims else: if self.kind == 'tfce': stat_map = self.tfce_map else: if self.tail == 0: stat_map = self.parameter_map.abs() elif self.tail < 0: stat_map = -self.parameter_map else: stat_map = self.parameter_map if sub: stat_map = stat_map.sub(**sub) dims = stat_map.dims if isinstance(stat_map, NDVar) else None cpmap = np.zeros(stat_map.shape) if dims else 0. if self.dist is None: # flat stat-map cpmap += 1 else: dist = self._aggregate_dist(**sub) idx = np.empty(stat_map.shape, dtype=np.bool8) actual = stat_map.x if self.dims else stat_map for v in dist: cpmap += np.greater_equal(v, actual, idx) cpmap /= self.samples if dims: return NDVar(cpmap, dims, _info.for_cluster_pmap(), self.name) else: return cpmap def masked_parameter_map(self, pmin=0.05, name=None, **sub): """Parameter map masked by significance Parameters ---------- pmin : scalar Threshold p-value for masking (default 0.05). For threshold-based cluster tests, ``pmin=1`` includes all clusters regardless of their p-value. Returns ------- masked_map : NDVar NDVar with data from the original parameter map, masked with p <= pmin. """ if not 1 >= pmin > 0: raise ValueError(f"pmin={pmin}: needs to be between 1 and 0") if name is None: name = self.parameter_map.name if sub: param_map = self.parameter_map.sub(**sub) else: param_map = self.parameter_map if pmin == 1: if self.kind != 'cluster': raise ValueError(f"pmin=1 is only a valid mask for threshold-based cluster tests") mask = self.cluster_map == 0 else: probability_map = self.compute_probability_map(**sub) mask = probability_map > pmin return param_map.mask(mask, name) @LazyProperty def probability_map(self): if self.samples: return self.compute_probability_map() else: return None @LazyProperty def _default_plot_obj(self): if self.samples: return [[self.parameter_map, self.probability_map]] else: return [[self.parameter_map]] def info_list(self, title="Computation Info"): "List with information on computation" l = fmtxt.List(title) l.add_item("Eelbrain version: %s" % self._version) l.add_item("Host Computer: %s" % self._host) if self._init_time is not None: l.add_item("Created: %s" % datetime.fromtimestamp(self._init_time) .strftime('%y-%m-%d %H:%M')) l.add_item("Original time: %s" % timedelta(seconds=round(self.dt_original))) l.add_item("Permutation time: %s" % timedelta(seconds=round(self.dt_perm))) return l class _MergedTemporalClusterDist: """Merge permutation distributions from multiple tests""" def __init__(self, cdists): if isinstance(cdists[0], list): self.effects = [d.name for d in cdists[0]] self.samples = cdists[0][0].samples dist = {} for i, effect in enumerate(self.effects): if any(d[i].n_clusters for d in cdists): dist[effect] = np.column_stack([d[i].dist for d in cdists if d[i].dist is not None]) if len(dist): dist = {c: d.max(1) for c, d in dist.items()} else: self.samples = cdists[0].samples if any(d.n_clusters for d in cdists): dist = np.column_stack([d.dist for d in cdists if d.dist is not None]) dist = dist.max(1) else: dist = None self.dist = dist def correct_cluster_p(self, res): clusters = res.find_clusters() keys = list(clusters.keys()) if not clusters.n_cases: return clusters if isinstance(res, MultiEffectNDTest): keys.insert(-1, 'p_parc') cluster_p_corr = [] for cl in clusters.itercases(): n_larger = np.sum(self.dist[cl['effect']] > np.abs(cl['v'])) cluster_p_corr.append(float(n_larger) / self.samples) else: keys.append('p_parc') vs = np.array(clusters['v']) n_larger = np.sum(self.dist > np.abs(vs[:, None]), 1) cluster_p_corr = n_larger / self.samples clusters['p_parc'] = Var(cluster_p_corr) clusters = clusters[keys] return clusters def distribution_worker(dist_array, dist_shape, in_queue, kill_beacon): "Worker that accumulates values and places them into the distribution" n = reduce(operator.mul, dist_shape) dist = np.frombuffer(dist_array, np.float64, n) dist.shape = dist_shape samples = dist_shape[0] for i in trange(samples, desc="Permutation test", unit=' permutations', disable=CONFIG['tqdm']): dist[i] = in_queue.get() if kill_beacon.is_set(): return def permutation_worker(in_queue, out_queue, y, y_flat_shape, stat_map_shape, test_func, args, map_args, kill_beacon): "Worker for 1 sample t-test" if CONFIG['nice']: os.nice(CONFIG['nice']) n = reduce(operator.mul, y_flat_shape) y = np.frombuffer(y, np.float64, n).reshape(y_flat_shape) stat_map = np.empty(stat_map_shape) stat_map_flat = stat_map.ravel() map_processor = get_map_processor(*map_args) while not kill_beacon.is_set(): perm = in_queue.get() if perm is None: break test_func(y, *args, stat_map_flat, perm) max_v = map_processor.max_stat(stat_map) out_queue.put(max_v) def run_permutation(test_func, dist, iterator, *args): if CONFIG['n_workers']: workers, out_queue, kill_beacon = setup_workers(test_func, dist, args) try: for perm in iterator: out_queue.put(perm) for _ in range(len(workers) - 1): out_queue.put(None) logger = logging.getLogger(__name__) for w in workers: w.join() logger.debug("worker joined") except KeyboardInterrupt: kill_beacon.set() raise else: y = dist.data_for_permutation(False) map_processor = get_map_processor(*dist.map_args) stat_map = np.empty(dist.shape) stat_map_flat = stat_map.ravel() for i, perm in enumerate(iterator): test_func(y, *args, stat_map_flat, perm) dist.dist[i] = map_processor.max_stat(stat_map) dist.finalize() def setup_workers(test_func, dist, func_args): "Initialize workers for permutation tests" logger = logging.getLogger(__name__) logger.debug("Setting up %i worker processes..." % CONFIG['n_workers']) permutation_queue = SimpleQueue() dist_queue = SimpleQueue() kill_beacon = Event() # permutation workers y, y_flat_shape, stat_map_shape = dist.data_for_permutation() args = (permutation_queue, dist_queue, y, y_flat_shape, stat_map_shape, test_func, func_args, dist.map_args, kill_beacon) workers = [] for _ in range(CONFIG['n_workers']): w = Process(target=permutation_worker, args=args) w.start() workers.append(w) # distribution worker args = (dist.dist_array, dist.dist_shape, dist_queue, kill_beacon) w = Process(target=distribution_worker, args=args) w.start() workers.append(w) return workers, permutation_queue, kill_beacon def run_permutation_me(test, dists, iterator): dist = dists[0] if dist.kind == 'cluster': thresholds = tuple(d.threshold for d in dists) else: thresholds = None if CONFIG['n_workers']: workers, out_queue, kill_beacon = setup_workers_me(test, dists, thresholds) try: for perm in iterator: out_queue.put(perm) for _ in range(len(workers) - 1): out_queue.put(None) logger = logging.getLogger(__name__) for w in workers: w.join() logger.debug("worker joined") except KeyboardInterrupt: kill_beacon.set() raise else: y = dist.data_for_permutation(False) map_processor = get_map_processor(*dist.map_args) stat_maps = test.preallocate(dist.shape) if thresholds: stat_maps_iter = tuple(zip(stat_maps, thresholds, dists)) else: stat_maps_iter = tuple(zip(stat_maps, dists)) for i, perm in enumerate(iterator): test.map(y, perm) if thresholds: for m, t, d in stat_maps_iter: if d.do_permutation: d.dist[i] = map_processor.max_stat(m, t) else: for m, d in stat_maps_iter: if d.do_permutation: d.dist[i] = map_processor.max_stat(m) for d in dists: if d.do_permutation: d.finalize() def setup_workers_me(test_func, dists, thresholds): "Initialize workers for permutation tests" logger = logging.getLogger(__name__) logger.debug("Setting up %i worker processes..." % CONFIG['n_workers']) permutation_queue = SimpleQueue() dist_queue = SimpleQueue() kill_beacon = Event() # permutation workers dist = dists[0] y, y_flat_shape, stat_map_shape = dist.data_for_permutation() args = (permutation_queue, dist_queue, y, y_flat_shape, stat_map_shape, test_func, dist.map_args, thresholds, kill_beacon) workers = [] for _ in range(CONFIG['n_workers']): w = Process(target=permutation_worker_me, args=args) w.start() workers.append(w) # distribution worker args = ([d.dist_array for d in dists], dist.dist_shape, dist_queue, kill_beacon) w = Process(target=distribution_worker_me, args=args) w.start() workers.append(w) return workers, permutation_queue, kill_beacon def permutation_worker_me(in_queue, out_queue, y, y_flat_shape, stat_map_shape, test, map_args, thresholds, kill_beacon): if CONFIG['nice']: os.nice(CONFIG['nice']) n = reduce(operator.mul, y_flat_shape) y = np.frombuffer(y, np.float64, n).reshape(y_flat_shape) iterator = test.preallocate(stat_map_shape) if thresholds: iterator = tuple(zip(iterator, thresholds)) else: iterator = tuple(iterator) map_processor = get_map_processor(*map_args) while not kill_beacon.is_set(): perm = in_queue.get() if perm is None: break test.map(y, perm) if thresholds: max_v = [map_processor.max_stat(m, t) for m, t in iterator] else: max_v = [map_processor.max_stat(m) for m in iterator] out_queue.put(max_v) def distribution_worker_me(dist_arrays, dist_shape, in_queue, kill_beacon): "Worker that accumulates values and places them into the distribution" n = reduce(operator.mul, dist_shape) dists = [d if d is None else np.frombuffer(d, np.float64, n).reshape(dist_shape) for d in dist_arrays] samples = dist_shape[0] for i in trange(samples, desc="Permutation test", unit=' permutations', disable=CONFIG['tqdm']): for dist, v in zip(dists, in_queue.get()): if dist is not None: dist[i] = v if kill_beacon.is_set(): return # Backwards compatibility for pickling _ClusterDist = NDPermutationDistribution
python
class SelectionSort: @staticmethod def sort(a): for i, v in enumerate(a): minimum = i j = i+1 while j < len(a): if a[j] < a[minimum]: minimum = j j += 1 tmp = a[i] a[i] = a[minimum] a[minimum] = tmp original = [ 325432, 989, 547510, 3, -93, 189019, 5042, 123, 597, 42, 7506, 184, 184, 2409, 45, 824, 4, -2650, 9, 662, 3928, -170, 45358, 395, 842, 7697, 110, 14, 99, 221 ] selection = SelectionSort() selection.sort(original) sorted_ = [ -2650, -170, -93, 3, 4, 9, 14, 42, 45, 99, 110, 123, 184, 184, 221, 395, 597, 662, 824, 842, 989, 2409, 3928, 5042, 7506, 7697, 45358, 189019, 325432, 547510 ] for i, v in enumerate(original): assert original[i] == sorted_[i]
python
# -*- coding: utf-8 -*- # @Time : 2019/1/18 15:40
python
# 정수를 저장하는 큐를 구현한 다음, 입력으로 주어지는 명령을 처리하는 프로그램을 작성하시오. # 명령은 총 여섯 가지이다. # push X: 정수 X를 큐에 넣는 연산이다. # pop: 큐에서 가장 앞에 있는 정수를 빼고, 그 수를 출력한다. 만약 큐에 들어있는 정수가 없는 경우에는 -1을 출력한다. # size: 큐에 들어있는 정수의 개수를 출력한다. # empty: 큐가 비어있으면 1, 아니면 0을 출력한다. # front: 큐의 가장 앞에 있는 정수를 출력한다. 만약 큐에 들어있는 정수가 없는 경우에는 -1을 출력한다. # back: 큐의 가장 뒤에 있는 정수를 출력한다. 만약 큐에 들어있는 정수가 없는 경우에는 -1을 출력한다. import sys from collections import deque t=int(input()) q=deque() for _ in range(t): ql=len(q) s = sys.stdin.readline().rstrip().split() if(len(s)==2): q.append(s[1]) elif s[0]=='front': if(ql!=0): print(q[0]) else: print(-1) elif s[0]=='back': if(ql!=0): print(q[ql-1]) else: print(-1) elif s[0]=='size': print(ql) elif s[0]=='empty': if(ql!=0): print(0) else: print(1) else: if(ql!=0): print(q.popleft()) else: print(-1)
python
from clickhouse_orm import migrations from ..test_migrations import * operations = [migrations.AlterIndexes(ModelWithIndex2, reindex=True)]
python
from functools import partial import pytest from stp_core.loop.eventually import eventuallyAll from plenum.test import waits from plenum.test.helper import checkReqNack whitelist = ['discarding message'] class TestVerifier: @staticmethod def verify(operation): assert operation['amount'] <= 100, 'amount too high' @pytest.fixture(scope="module") def restrictiveVerifier(nodeSet): for n in nodeSet: n.opVerifiers = [TestVerifier()] @pytest.fixture(scope="module") def request1(wallet1): op = {"type": "buy", "amount": 999} req = wallet1.signOp(op) return req @pytest.mark.skip(reason="old style plugin") def testRequestFullRoundTrip(restrictiveVerifier, client1, sent1, looper, nodeSet): update = {'reason': 'client request invalid: InvalidClientRequest() ' '[caused by amount too high\nassert 999 <= 100]'} coros2 = [partial(checkReqNack, client1, node, sent1.identifier, sent1.reqId, update) for node in nodeSet] timeout = waits.expectedReqAckQuorumTime() looper.run(eventuallyAll(*coros2, totalTimeout=timeout))
python
import torch from torch import autograd def steptaker(data, critic, step, num_step = 1): """Applies gradient descent (GD) to data using critic Inputs - data; data to apply GD to - critic; critic to compute gradients of - step; how large of a step to take - num_step; how finely to discretize flow. taken as 1 in TTC Outputs - data with gradient descent applied """ for j in range(num_step): gradients = grad_calc(data, critic) data = (data - (step/num_step)*gradients).detach() return data.detach() def rk4(data, critic, step, num_step = 1): """Assumes data is a batch of images, critic is a Kantorovich potential, and step is desired step size. Applies fourth order Runge-Kutta to the data num_step times with stepsize step/num_step. Unused in TTC""" h = step/num_step for j in range(num_step): data_0 = data.detach().clone() k = grad_calc(data_0, critic) data += (h/6)*k k = grad_calc(data_0 + (h/2)*k, critic) data += (h/3)*k k = grad_calc(data_0 + (h/2)*k, critic) data += (h/3)*k k = grad_calc(data_0 + k, critic) data += (h/6)*k data = data.detach() return data def grad_calc(data, critic): """Returns the gradients of critic at data""" data = data.detach().clone() data.requires_grad = True Dfake = critic(data) gradients = autograd.grad(outputs = Dfake, inputs = data, grad_outputs = torch.ones(Dfake.size()).cuda(), only_inputs=True)[0] return gradients.detach()
python
from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow import pickle import pprint import datefinder # What the program can access within Calendar # See more at https://developers.google.com/calendar/auth scopes = ["https://www.googleapis.com/auth/calendar"] flow = InstalledAppFlow.from_client_secrets_file("client_secret.json", scopes=scopes) # Use this to pull the users credentials into a pickle file #credentials = flow.run_console() #pickle.dump(credentials, open("token.pkl", "wb")) # Read the credentials from a saved pickle file credentials = pickle.load(open("token.pkl", "rb")) # Build the calendar resource service = build("calendar", "v3", credentials=credentials) # Store a list of Calendars on the account result = service.calendarList().list().execute() calendar_id = result["items"][0]["id"] result = service.events().list(calendarId=calendar_id).execute() def create_event(my_event): """ Create a Google Calendar Event Args: my_event: CalendarEvent object """ print("Created Event for " + str(my_event.date)) event = { "summary": my_event.summary, "location": my_event.location, "description": my_event.description, "start": { "dateTime": my_event.start_date_time.strftime('%Y-%m-%dT%H:%M:%S'), "timeZone": "Europe/London", }, "end": { "dateTime": my_event.end_date_time.strftime('%Y-%m-%dT%H:%M:%S'), "timeZone": "Europe/London", }, "reminders": { "useDefault": False, }, } return service.events().insert(calendarId=calendar_id, body=event, sendNotifications=True).execute()
python
# -*- coding: utf-8 -*- """binomial_mix. Chen Qiao: [email protected] """ import sys import warnings import numpy as np from scipy.special import gammaln, logsumexp from .model_base import ModelBase class MixtureBinomial(ModelBase): """Mixture of Binomial Models This class implements EM algorithm for parameter estimation of Mixture of Binomial models. Attributes: n_components (int): number of mixtures. tor (float): tolarance difference for earlier stop training. params (numpy float array): parameters of the model, [p_1, p_2, ..., p_K, pi_1, pi_2, ..., pi_K], None before parameter estimation. losses (list): list of negative loglikelihood losses of the training process, None before parameter estimation. model_scores (dict): scores for the model, including "BIC" and "ICL" scores Notes ----- Because M-step has analytical solution, parameter estimation is fast. Usage: em_mb = MixtureBinomial( n_components=2, tor=1e-6) params = em_mb.EM((ys, ns), max_iters=250, early_stop=True) Simulation experiment: import numpy as np from scipy.stats import bernoulli, binom from bbmix.models import MixtureBinomial n_samples = 2000 n_trials = 1000 pis = [0.6, 0.4] p1, p2 = 0.4, 0.8 gammars = bernoulli.rvs(pis[0], size=n_samples) n_pos_events = sum(gammars) n_neg_events = n_samples - n_pos_events ys_of_type1 = binom.rvs(n_trials, p1, size=n_pos_events) ys_of_type2 = binom.rvs(n_trials, p2, size=n_neg_events) ys = np.concatenate((ys_of_type1, ys_of_type2)) ns = np.ones(n_samples, dtype=np.int) * n_trials em_mb = MixtureBinomial( n_components=2, tor=1e-20) params = em_mb.fit((ys, ns), max_iters=250, early_stop=True) print(params) print(p1, p2, pis) print(em_mb.model_scores) """ def __init__(self, n_components=2, tor=1e-6 ): """Initialization method Args: n_components (int): number of mixtures. Defaults to 2. tor (float): tolerance shreshold for early-stop training. Defaults to 1e-6. """ super(MixtureBinomial, self).__init__() self.n_components = n_components self.tor = tor def E_step(self, y, n, params): """Expectation step Args: y (np.array): number of positive events n (np.array): number of total trials params (np.array): model parameters Returns: np.array: expectation of the latent variables """ E_gammas = [None] * self.n_components for k in range(self.n_components): p_k, pi_k = params[k], params[k + self.n_components] E_gammas[k] = y * np.log(p_k) + (n - y) * \ np.log(1 - p_k) + np.log(pi_k) # normalize as they havn't been E_gammas = E_gammas - logsumexp(E_gammas, axis=0) return np.exp(E_gammas) def M_step(self, y, n, E_gammas, params): """Maximization step Args: y (np.array): number of positive events n (np.array): number of total trials E_gammas (np.array): results of E step params (np.array): model parameters Returns: np.array: updated model parameters """ N_samples = len(n) for k in range(self.n_components): E_gammas[k][E_gammas[k] == 0] = 1e-20 params[k] = np.sum(y * E_gammas[k]) / np.sum(n * E_gammas[k]) params[k + self.n_components] = np.sum(E_gammas[k]) / N_samples return params def log_likelihood_binomial(self, y, n, p, pi=1.0): """log likelihood of data under binomial distribution Args: y (np.array): number of positive events n (np.array): number of total trials p (float): probability of positive event pi (float): weight of mixture component Returns: np.array: log likelihood of data """ return gammaln(n + 1) - (gammaln(y + 1) + gammaln(n - y + 1)) \ + y * np.log(p) + (n - y) * np.log(1 - p) + np.log(pi) def log_likelihood_mixture_bin(self, y, n, params): """log likelihood of dataset under mixture of binomial distribution Args: y (np.array): number of positive events n (np.array): number of total trials params (np.array): parameters of the model Returns: float: log likelihood of the dataset """ logLik_mat = np.zeros((len(n), self.n_components), dtype=np.float) for k in range(self.n_components): p_k, pi_k = params[k], params[k + self.n_components] logLik_mat[:, k] = self.log_likelihood_binomial(y, n, p_k, pi_k) return logsumexp(logLik_mat, axis=1).sum() def EM(self, y, n, params, max_iters=250, early_stop=False, n_tolerance=10, verbose=False): """EM algorithim Args: y (np.array): number of positive events n (np.array): total number of trials respectively params (list): init model params max_iters (int, optional): maximum number of iterations for EM. Defaults to 250. early_stop (bool, optional): whether early stop training. Defaults to False. n_tolerance (int): the max number of violations to trigger early stop. pseudocount (float) : add pseudocount if data is zero verbose (bool, optional): whether print training information. Defaults to False. Returns: np.array: trained parameters """ n_tol = n_tolerance losses = [sys.maxsize] for ith in range(max_iters): # E step E_gammas = self.E_step(y, n, params) # M step params = self.M_step(y, n, E_gammas, params) # record current NLL loss losses.append(-self.log_likelihood_mixture_bin(y, n, params)) if verbose: print("=" * 10, "Iteration {}".format(ith + 1), "=" * 10) print("Current params: {}".format(params)) print("Negative LogLikelihood Loss: {}".format(losses[-1])) print("=" * 25) improvement = losses[-2] - losses[-1] if early_stop: if improvement < self.tor: n_tol -= 1 else: n_tol = n_tolerance if n_tol == 0: if verbose: print("Improvement halts, early stop training.") break self.score_model(len(params), len(y), losses[-1], E_gammas) self.params = params self.losses = losses[1:] return params def _param_init(self, y, n): """Initialziation of model parameters Args: y (np.array): number of positive events n (np.array): number of total trials Returns: np.array: initialized model parameters """ return np.concatenate([np.random.uniform(0.49, 0.51, self.n_components), np.random.uniform(0.4, 0.6, self.n_components)]) def fit(self, data, max_iters=250, early_stop=False, pseudocount=0.1, n_tolerance=10, verbose=False): """Fit function Args: data (tuple of arrays): y, n: number of positive events and total number of trials respectively max_iters (int, optional): maximum number of iterations for EM. Defaults to 250. early_stop (bool, optional): whether early stop training. Defaults to False. pseudocount (float) : add pseudocount if data is zero n_tolerance (int): the max number of violations to trigger early stop. verbose (bool, optional): whether print training information. Defaults to False. Returns: np.array: trained parameters """ y, n = data self.nzero_prop = np.sum(y > 0)/np.shape(y)[0] y, n = self._preprocess(data, pseudocount) init_params = self._param_init(y, n) if verbose: print("=" * 25) print("Init params: {}".format(init_params)) print("=" * 25) params = self.EM(y, n, init_params, max_iters=max_iters, early_stop=early_stop, verbose=verbose, n_tolerance=n_tolerance) if self.n_components == 2 and np.abs(params[0] - params[1]) < 1e-4 and verbose: print("Colapsed to one component, please check proportion of non-zero counts.") return params def sample(self, n_trials): """Generate data from fitted parameters n_trails : Args: n_trails (array_like): total number of trials Returns: np.array: ys generated from the fitted distribution """ if hasattr(self, 'params') == False: raise Exception("Error: please fit the model or set params before sample()") mus = self.params[:self.n_components] pis = self.params[self.n_components: 2 * self.n_components] labels = np.random.choice(self.n_components, size=n_trials.shape, p=pis) ys_out = np.zeros(n_trials.shape, dtype=int) for i in range(self.n_components): _idx = np.where(labels == i) ys_out[_idx] = binom.rvs(n_trials[_idx].astype(np.int32), mus[i]) return ys_out if __name__ == "__main__": import numpy as np from scipy.stats import bernoulli, binom from bbmix.models import MixtureBinomial n_samples = 2000 n_trials = 1000 pis = [0.6, 0.4] p1, p2 = 0.4, 0.8 gammars = bernoulli.rvs(pis[0], size=n_samples) n_pos_events = sum(gammars) n_neg_events = n_samples - n_pos_events ys_of_type1 = binom.rvs(n_trials, p1, size=n_pos_events) ys_of_type2 = binom.rvs(n_trials, p2, size=n_neg_events) ys = np.concatenate((ys_of_type1, ys_of_type2)) ns = np.ones(n_samples, dtype=np.int) * n_trials em_mb = MixtureBinomial( n_components=2, tor=1e-20) params = em_mb.fit((ys, ns), max_iters=250, early_stop=True) print(params) print(p1, p2, pis) print(em_mb.model_scores)
python
from keras.layers import Conv2D, SeparableConv2D, MaxPooling2D, Flatten, Dense from keras.layers import Dropout, Input, BatchNormalization, Activation, add, GlobalAveragePooling2D from keras.losses import categorical_crossentropy from keras.optimizers import Adam from keras.utils import plot_model from keras import callbacks from keras import models from keras.applications import Xception from utils_datagen import TrainValTensorBoard from utils_basic import chk_n_mkdir from models.base_model import BaseModel class XCEPTION_APP(BaseModel): def __init__(self, output_directory, input_shape, n_classes, verbose=False): self.output_directory = output_directory + '/xception_kapp' chk_n_mkdir(self.output_directory) self.model = self.build_model(input_shape, n_classes) if verbose: self.model.summary() self.verbose = verbose self.model.save_weights(self.output_directory + '/model_init.hdf5') def build_model(self, input_shape, n_classes): # Load the VGG model xception_conv = Xception(weights='imagenet', include_top=False, input_shape=input_shape) # Freeze the layers except the last 4 layers for layer in xception_conv.layers: layer.trainable = False # Create the model model = models.Sequential() # Add the vgg convolutional base model model.add(xception_conv) # Add new layers model.add(Flatten()) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(n_classes, activation='softmax', name='predictions')) # define the model with input layer and output layer model.summary() plot_model(model, to_file=self.output_directory + '/model_graph.png', show_shapes=True, show_layer_names=True) model.compile(loss=categorical_crossentropy, optimizer=Adam(lr=0.01), metrics=['acc']) # model save file_path = self.output_directory + '/best_model.hdf5' model_checkpoint = callbacks.ModelCheckpoint(filepath=file_path, monitor='loss', save_best_only=True) # Tensorboard log log_dir = self.output_directory + '/tf_logs' chk_n_mkdir(log_dir) tb_cb = TrainValTensorBoard(log_dir=log_dir) self.callbacks = [model_checkpoint, tb_cb] return model
python
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import import json from ..models import PermissionModel as Model from ..models import GroupPermissionModel from .base_dao import BaseDao class PermissionDao(BaseDao): def add_permission(self, permission): # 如果存在相同app codename,则修改permission,否则新增permission new = Model.from_dict(permission) exiting = self.get_permission_by_app_and_codename( new.app, new.codename) if exiting: new.id = exiting.id self.session.merge(new) self.session.commit() else: self.session.add(new) self.session.commit() def get_permission_list(self): query = self.session.query(Model) return [_.to_dict() for _ in query.all()] def delete_permission_list(self): query = self.session.query(Model) query.delete() self.session.commit() def get_permission_by_app_and_codename(self, app, codename): query = self.session.query(Model) permission = query.filter( Model.app == app, Model.codename == codename).first() return permission def delete_permission_by_app_and_codename(self, app, codename): permission = self.get_permission_by_app_and_codename(app, codename) if permission: self.session.delete(permission) self.session.commit() def count(self): query = self.session.query(Model) return query.count() class GroupPermissionDao(BaseDao): def add_group_permission(self, group_id, codename, app='nebula', extra_settings=''): # 根据app codename查询permission,再增加用户组权限 permission = PermissionDao().get_permission_by_app_and_codename(app, codename) if permission: group_permission = GroupPermissionModel.from_dict(dict( group_id=group_id, permission_id=permission.id, extra_settings=extra_settings )) self.session.add(group_permission) self.session.commit() def update_group_permission(self, group_id, codename, app='nebula', extra_settings=''): # 根据app codename查询permission,再修改用户组权限 permission = PermissionDao().get_permission_by_app_and_codename(app, codename) if permission: group_permission = GroupPermissionModel.from_dict(dict( group_id=group_id, permission_id=permission.id, extra_settings=extra_settings )) query = self.session.query(GroupPermissionModel) existing = query.filter(GroupPermissionModel.group_id == group_id, GroupPermissionModel.permission_id == permission.id).first() if existing: group_permission.id = existing.id self.session.merge(group_permission) self.session.commit() else: self.session.add(group_permission) self.session.commit() def get_group_permission(self, group_id, codename, app='nebula'): # 根据app codename查询permission,再查询group_permission permission = PermissionDao().get_permission_by_app_and_codename(app, codename) if permission: query = self.session.query(GroupPermissionModel) group_permission = query.filter( GroupPermissionModel.group_id == group_id, GroupPermissionModel.permission_id == permission.id).first() return group_permission def add_group_strategy_block(self, be_blocked_id, blocked_id): # 保存策略查看黑名单,be_blocked_id为被禁止查看的用户组id,block_id为禁止其他用户组查看本组策略的用户组id group_permission = self.get_group_permission( be_blocked_id, 'view_strategy') if group_permission: extra_settings = json.loads(group_permission.extra_settings) be_blocked_settings = extra_settings.get('be_blocked', []) if blocked_id not in be_blocked_settings: be_blocked_settings.append(blocked_id) extra_settings['be_blocked'] = be_blocked_settings self.update_group_permission( be_blocked_id, 'view_strategy', extra_settings=json.dumps(extra_settings)) else: extra_settings = {'be_blocked': [blocked_id]} self.add_group_permission( be_blocked_id, 'view_strategy', extra_settings=json.dumps(extra_settings)) def delete_group_strategy_block(self, be_blocked_id, blocked_id): # 删除策略查看黑名单,be_blocked_id为被禁止查看的用户组id,block_id为禁止其他用户组查看本组策略的用户组id group_permission = self.get_group_permission( be_blocked_id, 'view_strategy') if group_permission: extra_settings = json.loads(group_permission.extra_settings) be_blocked_settings = extra_settings.get('be_blocked', []) if blocked_id in be_blocked_settings: be_blocked_settings.remove(blocked_id) extra_settings['be_blocked'] = be_blocked_settings self.update_group_permission( be_blocked_id, 'view_strategy', extra_settings=json.dumps(extra_settings)) def get_group_strategy_block(self, group_id): # 本组策略查看黑名单 view_strategy = self.get_group_extra_settings( group_id, 'view_strategy', app='nebula') return json.loads(view_strategy) if view_strategy else {} def get_group_extra_settings(self, group_id, codename, app='nebula'): permission = PermissionDao().get_permission_by_app_and_codename(app, codename) if permission: query = self.session.query(GroupPermissionModel) group_permission = query.filter( GroupPermissionModel.group_id == group_id, GroupPermissionModel.permission_id == permission.id).first() if group_permission: return group_permission.extra_settings
python
from itertools import permutations with open("input.txt") as f: data = [int(i) for i in f.read().split("\n")] preamble = 25 for d in range(preamble + 1, len(data)): numbers = data[d - (preamble + 1):d] target = data[d] sol = [nums for nums in permutations(numbers, 2) if sum(nums) == target] if not sol: print(f"Target is: {target}")
python
import collections import pathlib import time from multiprocessing import Process from typing import Any, Callable, Dict, List, Optional, Tuple, Union from omegaconf import OmegaConf from gdsfactory import components from gdsfactory.config import CONFIG, logger from gdsfactory.doe import get_settings_list from gdsfactory.placer import ( build_components, doe_exists, load_doe_component_names, save_doe, ) from gdsfactory.types import PathType from gdsfactory.write_doe import write_doe_metadata factory = { i: getattr(components, i) for i in dir(components) if not i.startswith("_") and callable(getattr(components, i)) } def separate_does_from_templates(dicts: Dict[str, Any]) -> Any: type_to_dict = {} does = {} for name, d in dicts.items(): if "type" in d.keys(): template_type = d.pop("type") if template_type not in type_to_dict: type_to_dict[template_type] = {} type_to_dict[template_type][name] = d else: does[name] = d return does, type_to_dict def update_dicts_recurse( target_dict: Dict[ str, Union[List[int], str, Dict[str, List[int]], Dict[str, str], bool] ], default_dict: Dict[str, Union[bool, Dict[str, Union[int, str]], int, str]], ) -> Dict[str, Any]: target_dict = target_dict.copy() default_dict = default_dict.copy() for k, v in default_dict.items(): if k not in target_dict: target_dict[k] = v else: if isinstance(target_dict[k], (dict, collections.OrderedDict)): target_dict[k] = update_dicts_recurse(target_dict[k], default_dict[k]) return target_dict def save_doe_use_template(doe, doe_root_path=None) -> None: """Write a "content.txt" pointing to the DOE used as a template""" doe_name = doe["name"] doe_template = doe["doe_template"] doe_root_path = doe_root_path or CONFIG["cache_doe_directory"] doe_dir = doe_root_path / doe_name doe_dir.mkdir(exist_ok=True) content_file = doe_dir / "content.txt" with open(content_file, "w") as fw: fw.write(f"TEMPLATE: {doe_template}") def write_doe( doe, component_factory=factory, doe_root_path: Optional[PathType] = None, doe_metadata_path: Optional[PathType] = None, overwrite: bool = False, precision: float = 1e-9, **kwargs, ) -> None: doe_name = doe["name"] list_settings = doe["list_settings"] # Otherwise generate each component using the component library component_type = doe["component"] components = build_components( component_type, list_settings, component_factory=component_factory ) component_names = [c.name for c in components] save_doe(doe_name, components, doe_root_path=doe_root_path, precision=precision) write_doe_metadata( doe_name=doe["name"], cell_names=component_names, list_settings=doe["list_settings"], doe_settings=kwargs, doe_metadata_path=doe_metadata_path, ) def load_does( filepath: PathType, defaults: Optional[Dict[str, bool]] = None ) -> Tuple[Any, Any]: """Load_does from file.""" does = {} defaults = defaults or {"do_permutation": True, "settings": {}} data = OmegaConf.load(filepath) data = OmegaConf.to_container(data) mask = data.pop("mask") for doe_name, doe in data.items(): for k in defaults: if k not in doe: doe[k] = defaults[k] does[doe_name] = doe return does, mask def generate_does( filepath: PathType, component_factory: Dict[str, Callable] = factory, doe_root_path: PathType = CONFIG["cache_doe_directory"], doe_metadata_path: PathType = CONFIG["doe_directory"], n_cores: int = 8, overwrite: bool = False, precision: float = 1e-9, cache: bool = False, ) -> None: """Generates a DOEs of components specified in a yaml file allows for each DOE to have its own x and y spacing (more flexible than method1) similar to write_doe """ doe_root_path = pathlib.Path(doe_root_path) doe_metadata_path = pathlib.Path(doe_metadata_path) doe_root_path.mkdir(parents=True, exist_ok=True) doe_metadata_path.mkdir(parents=True, exist_ok=True) dicts, mask_settings = load_does(filepath) does, templates_by_type = separate_does_from_templates(dicts) dict_templates = ( templates_by_type["template"] if "template" in templates_by_type else {} ) default_use_cached_does = ( mask_settings["cache"] if "cache" in mask_settings else cache ) list_args = [] for doe_name, doe in does.items(): doe["name"] = doe_name component = doe["component"] if component not in component_factory: raise ValueError(f"{component} not in {component_factory.keys()}") if "template" in doe: # The keyword template is used to enrich the dictionary from the template templates = doe["template"] if not isinstance(templates, list): templates = [templates] for template in templates: try: doe = update_dicts_recurse(doe, dict_templates[template]) except Exception: print(template, "does not exist") raise do_permutation = doe.pop("do_permutation") settings = doe["settings"] doe["list_settings"] = get_settings_list(do_permutation, **settings) list_args += [doe] does_running = [] start_times = {} finish_times = {} doe_name_to_process = {} while list_args: while len(does_running) < n_cores: if not list_args: break doe = list_args.pop() doe_name = doe["name"] # Only launch a build process if we do not use the cache # Or if the DOE is not built list_settings = doe["list_settings"] use_cached_does = ( default_use_cached_does if "cache" not in doe else doe["cache"] ) _doe_exists = False if "doe_template" in doe: # this DOE points to another existing component _doe_exists = True logger.info("Using template - {}".format(doe_name)) save_doe_use_template(doe) elif use_cached_does: _doe_exists = doe_exists(doe_name, list_settings) if _doe_exists: logger.info("Cached - {}".format(doe_name)) if overwrite: component_names = load_doe_component_names(doe_name) write_doe_metadata( doe_name=doe["name"], cell_names=component_names, list_settings=doe["list_settings"], doe_metadata_path=doe_metadata_path, ) if not _doe_exists: start_times[doe_name] = time.time() p = Process( target=write_doe, args=(doe, component_factory), kwargs={ "doe_root_path": doe_root_path, "doe_metadata_path": doe_metadata_path, "overwrite": overwrite, "precision": precision, }, ) doe_name_to_process[doe_name] = p does_running += [doe_name] try: p.start() except Exception: print("Issue starting process for {}".format(doe_name)) print(type(component_factory)) raise to_rm = [] for i, doe_name in enumerate(does_running): _p = doe_name_to_process[doe_name] if not _p.is_alive(): to_rm += [i] finish_times[doe_name] = time.time() dt = finish_times[doe_name] - start_times[doe_name] line = "Done - {} ({:.1f}s)".format(doe_name, dt) logger.info(line) for i in to_rm[::-1]: does_running.pop(i) time.sleep(0.001) while does_running: to_rm = [] for i, _doe_name in enumerate(does_running): _p = doe_name_to_process[_doe_name] if not _p.is_alive(): to_rm += [i] for i in to_rm[::-1]: does_running.pop(i) time.sleep(0.05) if __name__ == "__main__": filepath = CONFIG["samples_path"] / "mask" / "does.yml" generate_does(filepath, precision=2e-9)
python
#!/usr/bin/env python import os import sys import logging import requests import time from extensions import valid_tagging_extensions from readSettings import ReadSettings from autoprocess import plex from tvdb_mp4 import Tvdb_mp4 from mkvtomp4 import MkvtoMp4 from post_processor import PostProcessor from logging.config import fileConfig logpath = '/var/log/sickbeard_mp4_automator' if os.environ.get('sonarr_eventtype') == "Test": sys.exit(0) if os.name == 'nt': logpath = os.path.dirname(sys.argv[0]) elif not os.path.isdir(logpath): try: os.mkdir(logpath) except: logpath = os.path.dirname(sys.argv[0]) configPath = os.path.abspath(os.path.join(os.path.dirname(sys.argv[0]), 'logging.ini')).replace("\\", "\\\\") logPath = os.path.abspath(os.path.join(logpath, 'index.log')).replace("\\", "\\\\") fileConfig(configPath, defaults={'logfilename': logPath}) log = logging.getLogger("SonarrPostConversion") log.info("Sonarr extra script post processing started.") settings = ReadSettings(os.path.dirname(sys.argv[0]), "autoProcess.ini") inputfile = os.environ.get('sonarr_episodefile_path') original = os.environ.get('sonarr_episodefile_scenename') tvdb_id = int(os.environ.get('sonarr_series_tvdbid')) season = int(os.environ.get('sonarr_episodefile_seasonnumber')) try: episode = int(os.environ.get('sonarr_episodefile_episodenumbers')) except: episode = int(os.environ.get('sonarr_episodefile_episodenumbers').split(",")[0]) converter = MkvtoMp4(settings) log.debug("Input file: %s." % inputfile) log.debug("Original name: %s." % original) log.debug("TVDB ID: %s." % tvdb_id) log.debug("Season: %s episode: %s." % (season, episode)) if MkvtoMp4(settings).validSource(inputfile): log.info("Processing %s." % inputfile) output = converter.process(inputfile, original=original) if output: # Tag with metadata if settings.tagfile and output['output_extension'] in valid_tagging_extensions: log.info("Tagging %s with ID %s season %s episode %s." % (inputfile, tvdb_id, season, episode)) try: tagmp4 = Tvdb_mp4(tvdb_id, season, episode, original, language=settings.taglanguage) tagmp4.setHD(output['x'], output['y']) tagmp4.writeTags(output['output'], settings.artwork, settings.thumbnail) except: log.error("Unable to tag file") # Copy to additional locations output_files = converter.replicate(output['output']) # Update Sonarr to continue monitored status try: host = settings.Sonarr['host'] port = settings.Sonarr['port'] webroot = settings.Sonarr['web_root'] apikey = settings.Sonarr['apikey'] if apikey != '': try: ssl = int(settings.Sonarr['ssl']) except: ssl = 0 if ssl: protocol = "https://" else: protocol = "http://" seriesID = os.environ.get('sonarr_series_id') log.debug("Sonarr host: %s." % host) log.debug("Sonarr port: %s." % port) log.debug("Sonarr webroot: %s." % webroot) log.debug("Sonarr apikey: %s." % apikey) log.debug("Sonarr protocol: %s." % protocol) log.debug("Sonarr sonarr_series_id: %s." % seriesID) headers = {'X-Api-Key': apikey} # First trigger rescan payload = {'name': 'RescanSeries', 'seriesId': seriesID} url = protocol + host + ":" + port + webroot + "/api/command" r = requests.post(url, json=payload, headers=headers) rstate = r.json() log.info("Sonarr response: ID %d %s." % (rstate['id'], rstate['state'])) log.info(str(rstate)) # debug # Then wait for it to finish url = protocol + host + ":" + port + webroot + "/api/command/" + str(rstate['id']) log.info("Requesting episode information from Sonarr for series ID %s." % seriesID) r = requests.get(url, headers=headers) command = r.json() attempts = 0 while command['state'].lower() not in ['complete', 'completed'] and attempts < 6: log.info(str(command['state'])) time.sleep(10) r = requests.get(url, headers=headers) command = r.json() attempts += 1 log.info("Command completed") log.info(str(command)) # Then get episode information url = protocol + host + ":" + port + webroot + "/api/episode?seriesId=" + seriesID log.info("Requesting updated episode information from Sonarr for series ID %s." % seriesID) r = requests.get(url, headers=headers) payload = r.json() sonarrepinfo = None for ep in payload: if int(ep['episodeNumber']) == episode and int(ep['seasonNumber']) == season: sonarrepinfo = ep break sonarrepinfo['monitored'] = True # Then set that episode to monitored log.info("Sending PUT request with following payload:") # debug log.info(str(sonarrepinfo)) # debug url = protocol + host + ":" + port + webroot + "/api/episode/" + str(sonarrepinfo['id']) r = requests.put(url, json=sonarrepinfo, headers=headers) success = r.json() log.info("PUT request returned:") # debug log.info(str(success)) # debug log.info("Sonarr monitoring information updated for episode %s." % success['title']) else: log.error("Your Sonarr API Key can not be blank. Update autoProcess.ini.") except: log.exception("Sonarr monitor status update failed.") # Run any post process scripts if settings.postprocess: post_processor = PostProcessor(output_files, log) post_processor.setTV(tvdb_id, season, episode) post_processor.run_scripts() plex.refreshPlex(settings, 'show', log) sys.exit(0)
python
def do_print(): print "hello world" def add(a, b): return a + b def names_of_three_people(a, b, c): return a['name'] + " and " + b['name'] + " and " + c['name'] def divide(a, b): return a / b def float_divide(a, b): return float(a) / float(b) def func_return_struct(name, age, hobby1, hobby2): return { "name": name, "age": age, "hobby": [ hobby1, hobby2 ] } def first_param_and_other_params(first, **other): total = other total['first'] = first return total
python
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from marshmallow import fields, post_load, validate from typing import Optional from ..schema import PatchedSchemaMeta from ..fields import ArmVersionedStr from azure.ml.constants import AssetType class InputEntry: def __init__(self, *, mode: Optional[str] = None, data: str): self.data = data self.mode = mode INPUT_MODE_MOUNT = "Mount" INPUT_MODE_DOWNLOAD = "Download" INPUT_MODES = [INPUT_MODE_MOUNT, INPUT_MODE_DOWNLOAD] class InputEntrySchema(metaclass=PatchedSchemaMeta): mode = fields.Str(validate=validate.OneOf(INPUT_MODES)) data = ArmVersionedStr(asset_type=AssetType.DATA) @post_load def make(self, data, **kwargs): return InputEntry(**data)
python
from typing import Union, List, Dict from py_expression_eval import Parser # type: ignore import math from . import error def add(num1: Union[int, float], num2: Union[int, float], *args) -> Union[int, float]: """Adds given numbers""" sum: Union[int, float] = num1 + num2 for num in args: sum += num return sum def subtract( num1: Union[int, float], num2: Union[int, float], *args ) -> Union[int, float]: """Subtracts given numbers""" sub: Union[int, float] = num1 - num2 for num in args: sub -= num return sub def multiply(num1: Union[int, float], *args) -> Union[int, float]: """Multiplies given numbers""" product: Union[int, float] = num1 for num in args: product = product * num return product def divide( num1: Union[int, float], num2: Union[int, float], type: str ) -> Union[int, float]: """Divides given numbers""" if type.lower() == "int": int_quotient: Union[int, float] = num1 / num2 return int_quotient if type.lower() == "float": float_quotient: Union[int, float] = num1 // num2 return float_quotient raise error.UnknownDivisionTypeError(type) def floatDiv(num1: Union[int, float], num2: Union[int, float]) -> Union[int, float]: """Divides given numbers""" quotient: Union[int, float] = num1 / num2 return quotient def intDiv(num1: Union[int, float], num2: Union[int, float]) -> Union[int, float]: """Divides given numbers and returns rounded off integer as result""" quotient: Union[int, float] = num1 // num2 return quotient def expo(num1: Union[int, float], num2: Union[int, float]) -> Union[int, float]: """Raises given number to given power and returns result""" expo: Union[int, float] = num1 ** num2 return expo def mod(num1: Union[int, float], num2: Union[int, float]) -> Union[int, float]: """Returns remainder of a division""" remain: Union[int, float] = num1 % num2 return remain def evalExp(exp: str, vars_: Dict[str, int] = {}): """Evaluates given mathematical expression""" parser = Parser() solution: Union[int, float] = parser.parse(exp).evaluate(vars_) return solution def avg(listOfNos: Union[List[int], List[float]]) -> float: """Return average of given numbers""" avg: float = 0.0 for num in listOfNos: avg += num avg /= len(listOfNos) return avg def factorial(num: int) -> int: """Returns factorial of a number""" factorial: int = 1 for i in range(1, num): factorial *= i return factorial def ceil(num: int) -> int: """Returns the number rounded up""" ceil: int = math.ceil(num) return ceil def floor(num: int) -> int: """Returns the number rounded down""" floor: int = math.floor(num) return floor
python
# # This file is part of DroneBridge: https://github.com/seeul8er/DroneBridge # # Copyright 2017 Wolfgang Christl # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import ctypes import mmap import time from shmemctypes import ShmemRawArray class wifi_adapter_rx_status_t(ctypes.Structure): _fields_ = [ ('received_packet_cnt', ctypes.c_uint32), ('wrong_crc_cnt', ctypes.c_uint32), ('current_signal_dbm', ctypes.c_int8), ('type', ctypes.c_int8) ] class WBC_RX_Status(ctypes.Structure): _fields_ = [ ('last_update', ctypes.c_int32), ('received_block_cnt', ctypes.c_uint32), ('damaged_block_cnt', ctypes.c_uint32), ('lost_packet_cnt', ctypes.c_uint32), ('received_packet_cnt', ctypes.c_uint32), ('tx_restart_cnt', ctypes.c_uint32), ('kbitrate', ctypes.c_uint32), ('wifi_adapter_cnt', ctypes.c_uint32), ('adapter', wifi_adapter_rx_status_t * 8) ] def open_shm(): f = open("/wifibroadcast_rx_status_0", "r+b") return mmap.mmap(f.fileno(), 0) def read_wbc_status(mapped_structure): wbc_status = WBC_RX_Status.from_buffer(mapped_structure) print(str(wbc_status.kbitrate)+"kbit/s"+" "+str(wbc_status.damaged_block_cnt)+" damages blocks") def main(): print("DB_WBC_STATUSREADER: starting") shared_data = ShmemRawArray(WBC_RX_Status, 0, "/wifibroadcast_rx_status_0", False) #mymap = open_shm() while(True): for d in shared_data: print(str(d.received_block_cnt)) time.sleep(1) if __name__ == "__main__": main()
python
import errno import gc # from collections import namedtuple import math import os import os.path import time from functools import lru_cache from pathlib import Path import numpy as np import pandas as pd import artistools as at @lru_cache(maxsize=8) def get_modeldata(inputpath=Path(), dimensions=None, get_abundances=False, derived_cols=False): """ Read an artis model.txt file containing cell velocities, density, and abundances of radioactive nuclides. Arguments: - inputpath: either a path to model.txt file, or a folder containing model.txt - dimensions: number of dimensions in input file, or None for automatic - get_abundances: also read elemental abundances (abundances.txt) and merge with the output DataFrame Returns (dfmodel, t_model_init_days) - dfmodel: a pandas DataFrame with a row for each model grid cell - t_model_init_days: the time in days at which the snapshot is defined """ assert dimensions in [1, 3, None] inputpath = Path(inputpath) if os.path.isdir(inputpath): modelpath = inputpath filename = at.firstexisting(['model.txt.xz', 'model.txt.gz', 'model.txt'], path=inputpath) elif os.path.isfile(inputpath): # passed in a filename instead of the modelpath filename = inputpath modelpath = Path(inputpath).parent elif not inputpath.exists() and inputpath.parts[0] == 'codecomparison': modelpath = inputpath _, inputmodel, _ = modelpath.parts filename = Path(at.config['codecomparisonmodelartismodelpath'], inputmodel, 'model.txt') else: raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), inputpath) headerrows = 0 with at.misc.zopen(filename, 'rt') as fmodel: gridcellcount = int(fmodel.readline()) t_model_init_days = float(fmodel.readline()) headerrows += 2 t_model_init_seconds = t_model_init_days * 24 * 60 * 60 filepos = fmodel.tell() # if the next line is a single float then the model is 3D try: vmax_cmps = float(fmodel.readline()) # velocity max in cm/s xmax_tmodel = vmax_cmps * t_model_init_seconds # xmax = ymax = zmax headerrows += 1 if dimensions is None: print("Detected 3D model file") dimensions = 3 elif dimensions != 3: print(f" {dimensions} were specified but file appears to be 3D") assert False except ValueError: if dimensions is None: print("Detected 1D model file") dimensions = 1 elif dimensions != 1: print(f" {dimensions} were specified but file appears to be 1D") assert False fmodel.seek(filepos) # undo the readline() and go back columns = None filepos = fmodel.tell() line = fmodel.readline() if line.startswith('#'): headerrows += 1 columns = line.lstrip('#').split() else: fmodel.seek(filepos) # undo the readline() and go back ncols_file = len(fmodel.readline().split()) if dimensions > 1: # columns split over two lines ncols_file += len(fmodel.readline().split()) if columns is not None: assert ncols_file == len(columns) elif dimensions == 1: columns = ['inputcellid', 'velocity_outer', 'logrho', 'X_Fegroup', 'X_Ni56', 'X_Co56', 'X_Fe52', 'X_Cr48', 'X_Ni57', 'X_Co57'][:ncols_file] elif dimensions == 3: columns = ['inputcellid', 'inputpos_a', 'inputpos_b', 'inputpos_c', 'rho', 'X_Fegroup', 'X_Ni56', 'X_Co56', 'X_Fe52', 'X_Cr48', 'X_Ni57', 'X_Co57'][:ncols_file] # number of grid cell steps along an axis (same for xyz) ncoordgridx = int(round(gridcellcount ** (1. / 3.))) ncoordgridy = int(round(gridcellcount ** (1. / 3.))) ncoordgridz = int(round(gridcellcount ** (1. / 3.))) assert (ncoordgridx * ncoordgridy * ncoordgridz) == gridcellcount if dimensions == 1: dfmodel = pd.read_csv( filename, delim_whitespace=True, header=None, names=columns, skiprows=headerrows, nrows=gridcellcount) else: dfmodel = pd.read_csv( filename, delim_whitespace=True, header=None, skiprows=lambda x: x < headerrows or (x - headerrows - 1) % 2 == 0, names=columns[:5], nrows=gridcellcount) dfmodeloddlines = pd.read_csv( filename, delim_whitespace=True, header=None, skiprows=lambda x: x < headerrows or (x - headerrows - 1) % 2 == 1, names=columns[5:], nrows=gridcellcount) assert len(dfmodel) == len(dfmodeloddlines) dfmodel = dfmodel.merge(dfmodeloddlines, left_index=True, right_index=True) del dfmodeloddlines if len(dfmodel) > gridcellcount: dfmodel = dfmodel.iloc[:gridcellcount] assert len(dfmodel) == gridcellcount dfmodel.index.name = 'cellid' # dfmodel.drop('inputcellid', axis=1, inplace=True) if dimensions == 1: dfmodel['velocity_inner'] = np.concatenate([[0.], dfmodel['velocity_outer'].values[:-1]]) dfmodel.eval( 'cellmass_grams = 10 ** logrho * 4. / 3. * 3.14159265 * (velocity_outer ** 3 - velocity_inner ** 3)' '* (1e5 * @t_model_init_seconds) ** 3', inplace=True) vmax_cmps = dfmodel.velocity_outer.max() * 1e5 elif dimensions == 3: wid_init = at.misc.get_wid_init_at_tmodel(modelpath, gridcellcount, t_model_init_days, xmax_tmodel) dfmodel.eval('cellmass_grams = rho * @wid_init ** 3', inplace=True) dfmodel.rename(columns={ 'pos_x_min': 'pos_x_min', 'pos_y_min': 'pos_y_min', 'pos_z_min': 'pos_z_min' }, inplace=True) if 'pos_x_min' in dfmodel.columns: print("Cell positions in model.txt are defined in the header") else: cellid = dfmodel.index.values xindex = cellid % ncoordgridx yindex = (cellid // ncoordgridx) % ncoordgridy zindex = (cellid // (ncoordgridx * ncoordgridy)) % ncoordgridz dfmodel['pos_x_min'] = -xmax_tmodel + 2 * xindex * xmax_tmodel / ncoordgridx dfmodel['pos_y_min'] = -xmax_tmodel + 2 * yindex * xmax_tmodel / ncoordgridy dfmodel['pos_z_min'] = -xmax_tmodel + 2 * zindex * xmax_tmodel / ncoordgridz def vectormatch(vec1, vec2): xclose = np.isclose(vec1[0], vec2[0], atol=xmax_tmodel / ncoordgridx) yclose = np.isclose(vec1[1], vec2[1], atol=xmax_tmodel / ncoordgridy) zclose = np.isclose(vec1[2], vec2[2], atol=xmax_tmodel / ncoordgridz) return all([xclose, yclose, zclose]) posmatch_xyz = True posmatch_zyx = True # important cell numbers to check for coordinate column order indexlist = [0, ncoordgridx - 1, (ncoordgridx - 1) * (ncoordgridy - 1), (ncoordgridx - 1) * (ncoordgridy - 1) * (ncoordgridz - 1)] for index in indexlist: cell = dfmodel.iloc[index] if not vectormatch([cell.inputpos_a, cell.inputpos_b, cell.inputpos_c], [cell.pos_x_min, cell.pos_y_min, cell.pos_z_min]): posmatch_xyz = False if not vectormatch([cell.inputpos_a, cell.inputpos_b, cell.inputpos_c], [cell.pos_z_min, cell.pos_y_min, cell.pos_x_min]): posmatch_zyx = False assert posmatch_xyz != posmatch_zyx # one option must match if posmatch_xyz: print("Cell positions in model.txt are consistent with calculated values when x-y-z column order") if posmatch_zyx: print("Cell positions in model.txt are consistent with calculated values when z-y-x column order") if get_abundances: if dimensions == 3: print('Getting abundances') abundancedata = get_initialabundances(modelpath) dfmodel = dfmodel.merge(abundancedata, how='inner', on='inputcellid') if derived_cols: add_derived_cols_to_modeldata(dfmodel, derived_cols, dimensions, t_model_init_seconds, wid_init, modelpath) return dfmodel, t_model_init_days, vmax_cmps def add_derived_cols_to_modeldata(dfmodel, derived_cols, dimensions=None, t_model_init_seconds=None, wid_init=None, modelpath=None): """add columns to modeldata using e.g. derived_cols = ('velocity', 'Ye')""" if dimensions is None: dimensions = get_dfmodel_dimensions(dfmodel) if dimensions == 3 and 'velocity' in derived_cols: dfmodel['vel_x_min'] = dfmodel['pos_x_min'] / t_model_init_seconds dfmodel['vel_y_min'] = dfmodel['pos_y_min'] / t_model_init_seconds dfmodel['vel_z_min'] = dfmodel['pos_z_min'] / t_model_init_seconds dfmodel['vel_x_max'] = (dfmodel['pos_x_min'] + wid_init) / t_model_init_seconds dfmodel['vel_y_max'] = (dfmodel['pos_y_min'] + wid_init) / t_model_init_seconds dfmodel['vel_z_max'] = (dfmodel['pos_z_min'] + wid_init) / t_model_init_seconds dfmodel['vel_x_mid'] = (dfmodel['pos_x_min'] + (0.5 * wid_init)) / t_model_init_seconds dfmodel['vel_y_mid'] = (dfmodel['pos_y_min'] + (0.5 * wid_init)) / t_model_init_seconds dfmodel['vel_z_mid'] = (dfmodel['pos_z_min'] + (0.5 * wid_init)) / t_model_init_seconds dfmodel.eval('vel_mid_radial = sqrt(vel_x_mid ** 2 + vel_y_mid ** 2 + vel_z_mid ** 2)', inplace=True) if dimensions == 3 and 'pos_mid' in derived_cols or 'angle_bin' in derived_cols: dfmodel['pos_x_mid'] = (dfmodel['pos_x_min'] + (0.5 * wid_init)) dfmodel['pos_y_mid'] = (dfmodel['pos_y_min'] + (0.5 * wid_init)) dfmodel['pos_z_mid'] = (dfmodel['pos_z_min'] + (0.5 * wid_init)) if 'angle_bin' in derived_cols: get_cell_angle(dfmodel, modelpath) if 'Ye' in derived_cols and os.path.isfile(modelpath / 'Ye.txt'): dfmodel['Ye'] = at.inputmodel.opacityinputfile.get_Ye_from_file(modelpath) if 'Q' in derived_cols and os.path.isfile(modelpath / 'Q_energy.txt'): dfmodel['Q'] = at.inputmodel.energyinputfiles.get_Q_energy_from_file(modelpath) return dfmodel def get_cell_angle(dfmodel, modelpath): """get angle between cell midpoint and axis""" syn_dir = at.get_syn_dir(modelpath) cos_theta = np.zeros(len(dfmodel)) i = 0 for _, cell in dfmodel.iterrows(): mid_point = [cell['pos_x_mid'], cell['pos_y_mid'], cell['pos_z_mid']] cos_theta[i] = ( at.dot(mid_point, syn_dir)) / (at.vec_len(mid_point) * at.vec_len(syn_dir)) i += 1 dfmodel['cos_theta'] = cos_theta cos_bins = [-1, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1] # including end bin labels = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90] # to agree with escaping packet bin numbers dfmodel['cos_bin'] = pd.cut(dfmodel['cos_theta'], cos_bins, labels=labels) # dfmodel['cos_bin'] = np.searchsorted(cos_bins, dfmodel['cos_theta'].values) -1 return dfmodel def get_mean_cell_properties_of_angle_bin(dfmodeldata, vmax_cmps, modelpath=None): if 'cos_bin' not in dfmodeldata: get_cell_angle(dfmodeldata, modelpath) dfmodeldata['rho'][dfmodeldata['rho'] == 0] = None dfmodeldata['rho'] cell_velocities = np.unique(dfmodeldata['vel_x_min'].values) cell_velocities = cell_velocities[cell_velocities >= 0] velocity_bins = np.append(cell_velocities, vmax_cmps) mid_velocities = np.unique(dfmodeldata['vel_x_mid'].values) mid_velocities = mid_velocities[mid_velocities >= 0] mean_bin_properties = {} for bin_number in range(10): mean_bin_properties[bin_number] = pd.DataFrame({'velocity': mid_velocities, 'mean_rho': np.zeros_like(mid_velocities, dtype=float), 'mean_Ye': np.zeros_like(mid_velocities, dtype=float), 'mean_Q': np.zeros_like(mid_velocities, dtype=float)}) # cos_bin_number = 90 for bin_number in range(10): cos_bin_number = bin_number * 10 # get cells with bin number dfanglebin = dfmodeldata.query('cos_bin == @cos_bin_number', inplace=False) binned = pd.cut(dfanglebin['vel_mid_radial'], velocity_bins, labels=False, include_lowest=True) i = 0 for binindex, mean_rho in dfanglebin.groupby(binned)['rho'].mean().iteritems(): i += 1 mean_bin_properties[bin_number]['mean_rho'][binindex] += mean_rho i = 0 if 'Ye' in dfmodeldata.keys(): for binindex, mean_Ye in dfanglebin.groupby(binned)['Ye'].mean().iteritems(): i += 1 mean_bin_properties[bin_number]['mean_Ye'][binindex] += mean_Ye if 'Q' in dfmodeldata.keys(): for binindex, mean_Q in dfanglebin.groupby(binned)['Q'].mean().iteritems(): i += 1 mean_bin_properties[bin_number]['mean_Q'][binindex] += mean_Q return mean_bin_properties def get_2d_modeldata(modelpath): filepath = os.path.join(modelpath, 'model.txt') num_lines = sum(1 for line in open(filepath)) skiprowlist = [0, 1, 2] skiprowlistodds = skiprowlist + [i for i in range(3, num_lines) if i % 2 == 1] skiprowlistevens = skiprowlist + [i for i in range(3, num_lines) if i % 2 == 0] model1stlines = pd.read_csv(filepath, delim_whitespace=True, header=None, skiprows=skiprowlistevens) model2ndlines = pd.read_csv(filepath, delim_whitespace=True, header=None, skiprows=skiprowlistodds) model = pd.concat([model1stlines, model2ndlines], axis=1) column_names = ['inputcellid', 'cellpos_mid[r]', 'cellpos_mid[z]', 'rho_model', 'X_Fegroup', 'X_Ni56', 'X_Co56', 'X_Fe52', 'X_Cr48'] model.columns = column_names return model def get_3d_model_data_merged_model_and_abundances_minimal(args): """Get 3D data without generating all the extra columns in standard routine. Needed for large (eg. 200^3) models""" model = get_3d_modeldata_minimal(args.modelpath) abundances = get_initialabundances(args.modelpath[0]) with open(os.path.join(args.modelpath[0], 'model.txt'), 'r') as fmodelin: fmodelin.readline() # npts_model3d args.t_model = float(fmodelin.readline()) # days args.vmax = float(fmodelin.readline()) # v_max in [cm/s] print(model.keys()) merge_dfs = model.merge(abundances, how='inner', on='inputcellid') del model del abundances gc.collect() merge_dfs.info(verbose=False, memory_usage="deep") return merge_dfs def get_3d_modeldata_minimal(modelpath): """Read 3D model without generating all the extra columns in standard routine. Needed for large (eg. 200^3) models""" model = pd.read_csv(os.path.join(modelpath[0], 'model.txt'), delim_whitespace=True, header=None, skiprows=3, dtype=np.float64) columns = ['inputcellid', 'cellpos_in[z]', 'cellpos_in[y]', 'cellpos_in[x]', 'rho_model', 'X_Fegroup', 'X_Ni56', 'X_Co56', 'X_Fe52', 'X_Cr48'] model = pd.DataFrame(model.values.reshape(-1, 10)) model.columns = columns print('model.txt memory usage:') model.info(verbose=False, memory_usage="deep") return model def save_modeldata( dfmodel, t_model_init_days, filename=None, modelpath=None, vmax=None, dimensions=1, radioactives=True): """Save a pandas DataFrame and snapshot time into ARTIS model.txt""" timestart = time.perf_counter() assert dimensions in [1, 3, None] if dimensions == 1: standardcols = ['inputcellid', 'velocity_outer', 'logrho', 'X_Fegroup', 'X_Ni56', 'X_Co56', 'X_Fe52', 'X_Cr48'] elif dimensions == 3: dfmodel.rename(columns={'gridindex': 'inputcellid'}, inplace=True) griddimension = int(round(len(dfmodel) ** (1. / 3.))) print(f' grid size: {len(dfmodel)} ({griddimension}^3)') assert griddimension ** 3 == len(dfmodel) standardcols = [ 'inputcellid', 'pos_x_min', 'pos_y_min', 'pos_z_min', 'rho', 'X_Fegroup', 'X_Ni56', 'X_Co56', 'X_Fe52', 'X_Cr48'] # these two columns are optional, but position is important and they must appear before any other custom cols if 'X_Ni57' in dfmodel.columns: standardcols.append('X_Ni57') if 'X_Co57' in dfmodel.columns: standardcols.append('X_Co57') dfmodel['inputcellid'] = dfmodel['inputcellid'].astype(int) customcols = [col for col in dfmodel.columns if col not in standardcols and col.startswith('X_')] customcols.sort(key=lambda col: at.get_z_a_nucname(col)) # sort columns by atomic number, mass number # set missing radioabundance columns to zero for col in standardcols: if col not in dfmodel.columns and col.startswith('X_'): dfmodel[col] = 0.0 assert modelpath is not None or filename is not None if filename is None: filename = 'model.txt' if modelpath is not None: modelfilepath = Path(modelpath, filename) else: modelfilepath = Path(filename) with open(modelfilepath, 'w') as fmodel: fmodel.write(f'{len(dfmodel)}\n') fmodel.write(f'{t_model_init_days}\n') if dimensions == 3: fmodel.write(f'{vmax}\n') if customcols: fmodel.write(f'#{" ".join(standardcols)} {" ".join(customcols)}\n') abundcols = [*[col for col in standardcols if col.startswith('X_')], *customcols] # for cell in dfmodel.itertuples(): # if dimensions == 1: # fmodel.write(f'{cell.inputcellid:6d} {cell.velocity_outer:9.2f} {cell.logrho:10.8f} ') # elif dimensions == 3: # fmodel.write(f"{cell.inputcellid:6d} {cell.posx} {cell.posy} {cell.posz} {cell.rho}\n") # # fmodel.write(" ".join([f'{getattr(cell, col)}' for col in abundcols])) # # fmodel.write('\n') if dimensions == 1: for cell in dfmodel.itertuples(index=False): fmodel.write(f'{cell.inputcellid:6d} {cell.velocity_outer:9.2f} {cell.logrho:10.8f} ') fmodel.write(" ".join([f'{getattr(cell, col)}' for col in abundcols])) fmodel.write('\n') elif dimensions == 3: zeroabund = ' '.join(['0.0' for _ in abundcols]) for inputcellid, posxmin, posymin, poszmin, rho, *massfracs in dfmodel[ ['inputcellid', 'pos_x_min', 'pos_y_min', 'pos_z_min', 'rho', *abundcols] ].itertuples(index=False, name=None): fmodel.write(f"{inputcellid:6d} {posxmin} {posymin} {poszmin} {rho}\n") fmodel.write(" ".join([f'{abund}' for abund in massfracs]) if rho > 0. else zeroabund) fmodel.write('\n') print(f'Saved {filename} (took {time.perf_counter() - timestart:.1f} seconds)') def get_mgi_of_velocity_kms(modelpath, velocity, mgilist=None): """Return the modelgridindex of the cell whose outer velocity is closest to velocity. If mgilist is given, then chose from these cells only""" modeldata, _, _ = get_modeldata(modelpath) velocity = float(velocity) if not mgilist: mgilist = [mgi for mgi in modeldata.index] arr_vouter = modeldata['velocity_outer'].values else: arr_vouter = np.array([modeldata['velocity_outer'][mgi] for mgi in mgilist]) index_closestvouter = np.abs(arr_vouter - velocity).argmin() if velocity < arr_vouter[index_closestvouter] or index_closestvouter + 1 >= len(mgilist): return mgilist[index_closestvouter] elif velocity < arr_vouter[index_closestvouter + 1]: return mgilist[index_closestvouter + 1] elif np.isnan(velocity): return float('nan') else: print(f"Can't find cell with velocity of {velocity}. Velocity list: {arr_vouter}") assert(False) @lru_cache(maxsize=8) def get_initialabundances(modelpath): """Return a list of mass fractions.""" abundancefilepath = at.firstexisting( ['abundances.txt.xz', 'abundances.txt.gz', 'abundances.txt'], path=modelpath) abundancedata = pd.read_csv(abundancefilepath, delim_whitespace=True, header=None) abundancedata.index.name = 'modelgridindex' abundancedata.columns = [ 'inputcellid', *['X_' + at.get_elsymbol(x) for x in range(1, len(abundancedata.columns))]] if len(abundancedata) > 100000: print('abundancedata memory usage:') abundancedata.info(verbose=False, memory_usage="deep") return abundancedata def save_initialabundances(dfelabundances, abundancefilename): """Save a DataFrame (same format as get_initialabundances) to abundances.txt. columns must be: - inputcellid: integer index to match model.txt (starting from 1) - X_El: mass fraction of element with two-letter code 'El' (e.g., X_H, X_He, H_Li, ...) """ timestart = time.perf_counter() if Path(abundancefilename).is_dir(): abundancefilename = Path(abundancefilename) / 'abundances.txt' dfelabundances['inputcellid'] = dfelabundances['inputcellid'].astype(int) atomic_numbers = [at.get_atomic_number(colname[2:]) for colname in dfelabundances.columns if colname.startswith('X_')] elcolnames = [f'X_{at.get_elsymbol(Z)}' for Z in range(1, 1 + max(atomic_numbers))] # set missing elemental abundance columns to zero for col in elcolnames: if col not in dfelabundances.columns: dfelabundances[col] = 0.0 with open(abundancefilename, 'w') as fabund: for row in dfelabundances.itertuples(index=False): fabund.write(f' {row.inputcellid:6d} ') fabund.write(" ".join([f'{getattr(row, colname, 0.)}' for colname in elcolnames])) fabund.write("\n") print(f'Saved {abundancefilename} (took {time.perf_counter() - timestart:.1f} seconds)') def save_empty_abundance_file(ngrid, outputfilepath='.'): """Dummy abundance file with only zeros""" Z_atomic = np.arange(1, 31) abundancedata = {'cellid': range(1, ngrid + 1)} for atomic_number in Z_atomic: abundancedata[f'Z={atomic_number}'] = np.zeros(ngrid) # abundancedata['Z=28'] = np.ones(ngrid) abundancedata = pd.DataFrame(data=abundancedata) abundancedata = abundancedata.round(decimals=5) abundancedata.to_csv(Path(outputfilepath) / 'abundances.txt', header=False, sep='\t', index=False) def get_dfmodel_dimensions(dfmodel): if 'pos_x_min' in dfmodel.columns: return 3 return 1 def sphericalaverage(dfmodel, t_model_init_days, vmax, dfelabundances=None, dfgridcontributions=None): """Convert 3D Cartesian grid model to 1D spherical""" t_model_init_seconds = t_model_init_days * 24 * 60 * 60 xmax = vmax * t_model_init_seconds ngridpoints = len(dfmodel) ncoordgridx = round(ngridpoints ** (1. / 3.)) wid_init = 2 * xmax / ncoordgridx print(f'Spherically averaging 3D model with {ngridpoints} cells...') timestart = time.perf_counter() # dfmodel = dfmodel.query('rho > 0.').copy() dfmodel = dfmodel.copy() celldensity = {cellindex: rho for cellindex, rho in dfmodel[['inputcellid', 'rho']].itertuples(index=False)} dfmodel = add_derived_cols_to_modeldata( dfmodel, ['velocity'], dimensions=3, t_model_init_seconds=t_model_init_seconds, wid_init=wid_init) # print(dfmodel) # print(dfelabundances) km_to_cm = 1e5 velocity_bins = [vmax * n / ncoordgridx for n in range(ncoordgridx + 1)] # cm/s outcells = [] outcellabundances = [] outgridcontributions = [] # cellidmap_3d_to_1d = {} highest_active_radialcellid = -1 for radialcellid, (velocity_inner, velocity_outer) in enumerate(zip(velocity_bins[:-1], velocity_bins[1:]), 1): assert velocity_outer > velocity_inner matchedcells = dfmodel.query( 'vel_mid_radial > @velocity_inner and vel_mid_radial <= @velocity_outer') matchedcellrhosum = matchedcells.rho.sum() # cellidmap_3d_to_1d.update({cellid_3d: radialcellid for cellid_3d in matchedcells.inputcellid}) if len(matchedcells) == 0: rhomean = 0. else: shell_volume = (4 * math.pi / 3) * ( (velocity_outer * t_model_init_seconds) ** 3 - (velocity_inner * t_model_init_seconds) ** 3) rhomean = matchedcellrhosum * wid_init ** 3 / shell_volume # volumecorrection = len(matchedcells) * wid_init ** 3 / shell_volume # print(radialcellid, volumecorrection) if rhomean > 0. and dfgridcontributions is not None: dfcellcont = dfgridcontributions.query('cellindex in @matchedcells.inputcellid.values') for particleid, dfparticlecontribs in dfcellcont.groupby('particleid'): frac_of_cellmass_avg = sum([ (row.frac_of_cellmass * celldensity[row.cellindex]) for row in dfparticlecontribs.itertuples(index=False)]) / matchedcellrhosum frac_of_cellmass_includemissing_avg = sum([ (row.frac_of_cellmass_includemissing * celldensity[row.cellindex]) for row in dfparticlecontribs.itertuples(index=False)]) / matchedcellrhosum outgridcontributions.append({ 'particleid': particleid, 'cellindex': radialcellid, 'frac_of_cellmass': frac_of_cellmass_avg, 'frac_of_cellmass_includemissing': frac_of_cellmass_includemissing_avg, }) if rhomean > 0.: highest_active_radialcellid = radialcellid logrho = math.log10(max(1e-99, rhomean)) dictcell = { 'inputcellid': radialcellid, 'velocity_outer': velocity_outer / km_to_cm, 'logrho': logrho, } for column in matchedcells.columns: if column.startswith('X_'): if rhomean > 0.: massfrac = np.dot(matchedcells[column], matchedcells.rho) / matchedcellrhosum else: massfrac = 0. dictcell[column] = massfrac outcells.append(dictcell) if dfelabundances is not None: if rhomean > 0.: abund_matchedcells = dfelabundances.loc[matchedcells.index] else: abund_matchedcells = None dictcellabundances = {'inputcellid': radialcellid} for column in dfelabundances.columns: if column.startswith('X_'): if rhomean > 0.: massfrac = np.dot(abund_matchedcells[column], matchedcells.rho) / matchedcellrhosum else: massfrac = 0. dictcellabundances[column] = massfrac outcellabundances.append(dictcellabundances) dfmodel1d = pd.DataFrame(outcells[:highest_active_radialcellid]) dfabundances1d = ( pd.DataFrame(outcellabundances[:highest_active_radialcellid]) if outcellabundances else None) dfgridcontributions1d = pd.DataFrame(outgridcontributions) if outgridcontributions else None print(f' took {time.perf_counter() - timestart:.1f} seconds') return dfmodel1d, dfabundances1d, dfgridcontributions1d
python
#Codeacademy's Madlibs from datetime import datetime now = datetime.now() print(now) story = "%s wrote this story on a %s line train to test Python strings. Python is better than %s but worse than %s -------> written by %s on %02d/%02d/%02d at %02d:%02d" story_name = raw_input("Enter a name: ") story_line = raw_input("Enter a tube line: ") story_programme_one = raw_input("Enter a programme: ") story_programme_two = raw_input("Enter another programme: ") print story % (story_name, story_line, story_programme_one, story_programme_two, story_name, now.day, now.month, now.year, now.hour, now.minute)
python
import logging import os import json from pprint import pformat import pysftp from me4storage.common.exceptions import ApiError logger = logging.getLogger(__name__) def save_logs(host, port, username, password, output_file): cnopts = pysftp.CnOpts(knownhosts=os.path.expanduser(os.path.join('~','.ssh','known_hosts'))) cnopts.hostkeys = None logger.info(f"Downloading log bundle from {host} to " f"{output_file} ... This can take a few minutes.") with pysftp.Connection(host, port=int(port), username=username, password=password, cnopts=cnopts, ) as sftp: sftp.get(remotepath='/logs', localpath=output_file) return True
python
import builtins import traceback from os.path import relpath def dprint(*args, **kwargs): """Pre-pends the filename and linenumber to the print statement""" stack = traceback.extract_stack()[:-1] i = -1 last = stack[i] if last.name in ('clearln', 'finish'): return builtins.__dict__['oldprint'](*args, **kwargs) # Handle print wrappers in pytorch_classification/utils/progress/progress/helpers.py while last.name in ('writeln','write','update','write'): i = i - 1 last = stack[i] # Handle different versions of the traceback module if hasattr(last, 'filename'): out_str = "{}:{} ".format(relpath(last.filename), last.lineno) else: out_str = "{}:{} ".format(relpath(last[0]), last[1]) # Prepend the filename and linenumber return builtins.__dict__['oldprint'](out_str, *args, **kwargs) def enable(): if 'oldprint' not in builtins.__dict__: builtins.__dict__['oldprint'] = builtins.__dict__['print'] builtins.__dict__['print'] = dprint def disable(): if 'oldprint' in builtins.__dict__: builtins.__dict__['print'] = builtins.__dict__['oldprint']
python
import config_cosmos import azure.cosmos.cosmos_client as cosmos_client import json from dateutil import parser def post_speech(speech_details, category): speech_details = speech_details.copy() collection_link = "dbs/speakeasy/colls/" + category speech_details["id"] = speech_details["user_name"] + "_" + speech_details["speech_name"] client = cosmos_client.CosmosClient(url_connection=config_cosmos.COSMOSDB_HOST, auth={'masterKey': config_cosmos.COSMOSDB_KEY}) client.CreateItem(collection_link, speech_details) return True def get_speech_details(speech_name, user_name, category): collection_link = "dbs/speakeasy/colls/" + category client = cosmos_client.CosmosClient(url_connection=config_cosmos.COSMOSDB_HOST, auth={'masterKey': config_cosmos.COSMOSDB_KEY}) query = "SELECT * FROM %s WHERE %s.speech_name ='%s' AND %s.user_name='%s'" %(category, category, speech_name, category, user_name) data = list(client.QueryItems(collection_link, query, config_cosmos.OPTIONS)) return data[0] def get_all_speeches(user_name): categories = ["gaze", "speech", "gestures"] final = [] for category in categories: collection_link = "dbs/speakeasy/colls/" + category client = cosmos_client.CosmosClient(url_connection=config_cosmos.COSMOSDB_HOST, auth={'masterKey': config_cosmos.COSMOSDB_KEY}) query = "SELECT * FROM %s WHERE %s.user_name='%s'" %(category, category, user_name) data = list(client.QueryItems(collection_link, query, config_cosmos.OPTIONS)) for item in data: final.append({"speech_name": item["speech_name"], "timestamp": item["timestamp"], "category": category}) final = sorted(final, key=lambda x: parser.parse(" ".join(x["timestamp"].split(" ")[:-4])))[::-1] return final
python
#!/usr/bin/env python # Outputs the relative error in a particular stat for deg1 and deg2 FEM. # Output columns: # mesh_num medianEdgeLength deg1Error deg2Error import sys, os, re, numpy as np from numpy.linalg import norm resultDir, stat = sys.argv[1:] # Input data columns meshInfo = ["mesh_num", "corner_angle", "medianEdgeLength"] strains = ["strain"] displacements = ["u_x", "u_y"] # per sample numSamples = 3 columnNames = meshInfo columnNames += strains for s in range(numSamples): columnNames += map(lambda n: "%s[%i]" % (n, s), displacements) for s in range(numSamples): columnNames += map(lambda n: "mathematica %s[%i]" % (n, s), displacements) def read_table_sorted(path): data = map(lambda s: s.strip().split('\t'), file(path)) return sorted(data, key=lambda r: int(r[0])) def validateColumnCount(table, numColumns): for row in table: if (len(row) != numColumns): raise Exception("Invalid number of columns: %i (expected %i)" % (len(row), numColumns)) deg1Table = read_table_sorted(resultDir + "/deg_1.txt") deg2Table = read_table_sorted(resultDir + "/deg_2.txt") validateColumnCount(deg1Table, len(columnNames)) validateColumnCount(deg2Table, len(columnNames)) if (len(deg1Table) != len(deg2Table)): raise Exception("Data tables for deg1 and deg2 differ in length") groundTruth = np.array(map(float, deg2Table[-1])) for (d1, d2) in zip(deg1Table, deg2Table): msh_num, medianEdgeLength = [d1[0], d1[2]]; relErrors = [] if stat in columnNames: cidx = columnNames.index(stat) relErrors = [ abs(float(d1[cidx]) - groundTruth[cidx]) / abs(groundTruth[cidx]), abs(float(d2[cidx]) - groundTruth[cidx]) / abs(groundTruth[cidx])] elif (stat.replace("norm", "x") in columnNames): xidx = columnNames.index(stat.replace("norm", "x")) yidx = columnNames.index(stat.replace("norm", "y")) d1Vec = np.array(map(float, [d1[xidx], d1[yidx]])) d2Vec = np.array(map(float, [d2[xidx], d2[yidx]])) groundTruthVec = groundTruth[[xidx, yidx]] relErrors = [ norm(d1Vec - groundTruthVec), norm(d2Vec - groundTruthVec) ] else: raise Exception("Unknown stat %s" % stat) # mesh_num medianEdgeLength deg1Error deg2Error print "\t".join([msh_num, medianEdgeLength] + map(str, relErrors))
python
""" Here we implement some simple policies that one can use directly in simple tasks. More complicated policies can also be created by inheriting from the Policy class """ import logging import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Categorical, Normal, Bernoulli class Policy(nn.Module): def __init__(self, fn_approximator): super().__init__() self.fn_approximator = fn_approximator def forward(self, state): raise NotImplementedError('Must be implemented.') class RandomPolicy(Policy): """ A random policy that just takes one of output_dim actions randomly """ def __init__(self, output_dim=2): super().__init__(None) self.output_dim = output_dim self.p = nn.Parameter(torch.IntTensor([0]), requires_grad=False) def forward(self, state): batch_size = state.size()[0] probs = torch.ones(batch_size, self.output_dim) / self.output_dim stochastic_policy = Categorical(probs) actions = stochastic_policy.sample() log_probs = stochastic_policy.log_prob(actions) return actions, log_probs class CategoricalPolicy(Policy): """ Used to pick from a range of actions. ``` fn_approximator = MLP_factory(input_size=4, output_size=3) policy = policies.MultinomialPolicy(fn_approximator) the actions will be a number in [0, 1, 2] ``` """ def forward(self, state): policy_log_probs = self.fn_approximator(state) probs = F.softmax(policy_log_probs, dim=1) stochastic_policy = Categorical(probs) # sample discrete actions actions = stochastic_policy.sample() # get log probs log_probs = stochastic_policy.log_prob(actions) return actions, log_probs def log_prob(self, state, action): policy_log_probs = self.fn_approximator(state) probs = F.softmax(policy_log_probs, dim=1) stochastic_policy = Categorical(probs) return stochastic_policy.log_prob(action) class MultinomialPolicy(CategoricalPolicy): def __init__(self, fn_approximator): super().__init__(fn_approximator) logging.warning('Use `CategoricalPolicy` since `MultinomialPolicy` will soon be deprecated.') class GaussianPolicy(Policy): """ Used to take actions in continous spaces ``` fn_approximator = MLP_factory(input_size=4, output_size=2) policy = policies.GaussianPolicy(fn_approximator) ``` """ def forward(self, state): policy_mu, policy_sigma = self.fn_approximator(state) policy_sigma = F.softplus(policy_sigma) stochastic_policy = Normal(policy_mu, policy_sigma) actions = stochastic_policy.sample() log_probs = stochastic_policy.log_prob(actions) return actions, log_probs def log_prob(self, state, action): raise NotImplementedError('Not implemented yet') class BernoulliPolicy(Policy): """ Used to take binary actions. This can also be used when each action consists of a many binary actions, for example: ``` fn_approximator = MLP_factory(input_size=4, output_size=5) policy = policies.BernoulliPolicy(fn_approximator) ``` this will result in each action being composed of 5 binary actions. """ def forward(self, state): policy_p = self.fn_approximator(state) policy_p = F.sigmoid(policy_p) try: stochastic_policy = Bernoulli(policy_p) actions = stochastic_policy.sample() log_probs = stochastic_policy.log_prob(actions) except RuntimeError as e: logging.debug('Runtime error occured. policy_p was {}'.format(policy_p)) logging.debug('State was: {}'.format(state)) logging.debug('Function approximator return was: {}'.format(self.fn_approximator(state))) logging.debug('This has occured before when parameters of the network became NaNs.') logging.debug('Check learning rate, or change eps in adaptive gradient descent methods.') raise RuntimeError('BernoulliPolicy returned nan information. Logger level with DEBUG will have more ' 'information') return actions, log_probs def log_prob(self, state, action): policy_p = self.fn_approximator(state) policy_p = F.sigmoid(policy_p) stochastic_policy = Bernoulli(policy_p) return stochastic_policy.log_prob(action)
python
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('person', '__first__'), ] operations = [ migrations.CreateModel( name='Attendee', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('state', models.CharField(max_length=4, choices=[(b'yes', b'yes'), (b'no', b'no')])), ('event', models.ForeignKey(to='person.Person')), ], ), migrations.CreateModel( name='Event', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('from_dt', models.DateTimeField()), ('to_dt', models.DateTimeField()), ('title', models.CharField(max_length=128)), ('text', models.TextField()), ('price', models.IntegerField()), ], ), ]
python
class GPSlocation: """used to translate the location system""" _prop_ = 'GPSlocation' import math pi = 3.1415926535897932384626 a = 6378245.0 ee = 0.00669342162296594323 def gcj02_to_wgs84(self, lng, lat): """GCJ02 system to WGS1984 system""" dlat = self._transformlat(lng - 105.0, lat - 35.0) dlng = self._transformlng(lng - 105.0, lat - 35.0) radlat = lat / 180.0 * self.pi magic = math.sin(radlat) magic = 1 - self.ee * magic * magic sqrtmagic = math.sqrt(magic) dlat = (dlat * 180.0) / ((self.a * (1 - self.ee)) / (magic * sqrtmagic) * self.pi) dlng = (dlng * 180.0) / (self.a / sqrtmagic * math.cos(radlat) * self.pi) mglat = lat + dlat mglng = lng + dlng return [lng * 2 - mglng, lat * 2 - mglat] def wgs84_to_gcj02(self, lng, lat): """WGS1984 system to GCJ02 system""" dlat = self._transformlat(lng - 105.0, lat - 35.0) dlng = self._transformlng(lng - 105.0, lat - 35.0) radlat = lat / 180.0 * self.pi magic = math.sin(radlat) magic = 1 - self.ee * magic * magic sqrtmagic = math.sqrt(magic) dlat = (dlat * 180.0) / ((self.a * (1 - self.ee)) / (magic * sqrtmagic) * self.pi) dlng = (dlng * 180.0) / (self.a / sqrtmagic * math.cos(radlat) * self.pi) mglat = lat + dlat mglng = lng + dlng return [mglng, mglat] def _transformlat(self, lng, lat): ret = -100.0 + 2.0 * lng + 3.0 * lat + 0.2 * lat * lat + 0.1 * lng * lat + 0.2 * math.sqrt(math.fabs(lng)) ret += (20.0 * math.sin(6.0 * lng * self.pi) + 20.0 * math.sin(2.0 * lng * self.pi)) * 2.0 / 3.0 ret += (20.0 * math.sin(lat * self.pi) + 40.0 * math.sin(lat / 3.0 * self.pi)) * 2.0 / 3.0 ret += (160.0 * math.sin(lat / 12.0 * self.pi) + 320 * math.sin(lat * self.pi / 30.0)) * 2.0 / 3.0 return ret def _transformlng(self, lng, lat): ret = 300.0 + lng + 2.0 * lat + 0.1 * lng * lng + 0.1 * lng * lat + 0.1 * math.sqrt(math.fabs(lng)) ret += (20.0 * math.sin(6.0 * lng * self.pi) + 20.0 * math.sin(2.0 * lng * self.pi)) * 2.0 / 3.0 ret += (20.0 * math.sin(lng * self.pi) + 40.0 * math.sin(lng / 3.0 * self.pi)) * 2.0 / 3.0 ret += (150.0 * math.sin(lng / 12.0 * self.pi) + 300.0 * math.sin(lng / 30.0 * self.pi)) * 2.0 / 3.0 return ret
python
# -*- coding: utf-8 - import re import copy import urllib import urllib3 import string import dateutil.parser from iso8601 import parse_date from robot.libraries.BuiltIn import BuiltIn from datetime import datetime, timedelta import pytz TZ = pytz.timezone('Europe/Kiev') def get_library(): return BuiltIn().get_library_instance('Selenium2Library') def get_webdriver_instance(): return get_library()._current_browser() # return of variable is None def get_variable_is_none(variable): if variable is None: return True return False # run specified keyword if condition is not none type def run_keyword_if_condition_is_not_none(condition, name, *args): if get_variable_is_none(condition) == False: BuiltIn().run_keyword(name, *args) # run specified keyword if condition is none type def run_keyword_if_condition_is_none(condition, name, *args): if get_variable_is_none(condition) == True: BuiltIn().run_keyword(name, *args) # return value for *keys (nested) in `element` (dict). def get_from_dictionary_by_keys(element, *keys): if not isinstance(element, dict): raise AttributeError('keys_exists() expects dict as first argument.') if len(keys) == 0: raise AttributeError('keys_exists() expects at least two arguments, one given.') _element = element for key in keys: try: _element = _element[key] except KeyError: return None return _element # returns if element exists on page. optimization def get_is_element_exist(locator): jquery_locator = convert_locator_to_jquery(locator) if get_variable_is_none(jquery_locator) == False: jquery_locator = jquery_locator.replace('"', '\\"') length = get_webdriver_instance().execute_script('return $("' + jquery_locator + '").length;') return length > 0 try: get_library()._element_find(locator, None, True) except Exception: return False return True # click def js_click_element(locator): element = get_library()._element_find(locator, None, True) get_webdriver_instance().execute_script( 'var $el = jQuery(arguments[0]); if($el.length) $el.click();', element ) # convert locator to jquery locator def convert_locator_to_jquery(locator): locator_params = locator.split('=', 1) if locator_params[0] == 'id': return '#' + locator_params[1] if locator_params[0] == 'jquery': return locator_params[1] if locator_params[0] == 'css': return locator_params[1] return None # set scroll to element in view def set_element_scroll_into_view(locator): element = get_library()._element_find(locator, None, True) get_webdriver_instance().execute_script( 'var $el = jQuery(arguments[0]); if($el.length) $el.get(0).scrollIntoView();', element ) # return text/value by specified locator def get_value_by_locator(locator): element = get_library()._element_find(locator, None, True) text = get_webdriver_instance().execute_script( 'var $element = jQuery(arguments[0]);' 'if($element.is("input[type=checkbox]")) return $element.is(":checked") ? "1":"0";' 'if($element.is("input,textarea,select")) return $element.val();' 'return $element.text();', element ) return text # input text to hidden input def input_text_to_hidden_input(locator, text): element = get_library()._element_find(locator, None, True) get_webdriver_instance().execute_script( 'jQuery(arguments[0]).val("' + text.replace('"', '\\"') + '");', element ) # select option by label for hidden select def select_from_hidden_list_by_label(locator, label): element = get_library()._element_find(locator, None, True) get_webdriver_instance().execute_script( 'var $option = jQuery("option:contains(' + label.replace('"', '\\"') + ')", arguments[0]);' + 'if($option.length) jQuery(arguments[0]).val($option.attr("value"));', element ) # trigger change event for input by locator def trigger_input_change_event(locator): element = get_library()._element_find(locator, None, True) get_webdriver_instance().execute_script( 'var $el = jQuery(arguments[0]); if($el.length) $el.trigger("change");', element ) # convert all numners to string def convert_float_to_string(number): return repr(float(number)) def convert_esco__float_to_string(number): return '{0:.5f}'.format(float(number)) def convert_float_to_string_3f(number): return '{0:.3f}'.format(float(number)) # convert any variable to specified type def convert_to_specified_type(value, type): value = "%s" % (value) if type == 'integer': value = value.split() value = ''.join(value) print(value) value = int(value) if type == 'float': value = value.split() value = ''.join(value) print(value) value = float(value) return value # prepare isodate in needed format def isodate_format(isodate, format): iso_dt = parse_date(isodate) return iso_dt.strftime(format) def procuring_entity_name(tender_data): tender_data.data.procuringEntity['name'] = u"ТОВ \"ПабликБид\"" tender_data.data.procuringEntity['name_en'] = u"TOV \"publicbid\"" tender_data.data.procuringEntity.identifier['id'] = u"1234567890-publicbid" tender_data.data.procuringEntity.identifier['legalName'] = u"ТОВ \"ПабликБид\"" tender_data.data.procuringEntity.identifier['legalName_en'] = u"TOV \"publicbid\"" if 'address' in tender_data.data.procuringEntity: tender_data.data.procuringEntity.address['region'] = u"м. Київ" tender_data.data.procuringEntity.address['postalCode'] = u"123123" tender_data.data.procuringEntity.address['locality'] = u"Київ" tender_data.data.procuringEntity.address['streetAddress'] = u"address" if 'contactPoint' in tender_data.data.procuringEntity: tender_data.data.procuringEntity.contactPoint['name'] = u"Test ЗамовникОборони" tender_data.data.procuringEntity.contactPoint['name_en'] = u"Test" tender_data.data.procuringEntity.contactPoint['email'] = u"[email protected]" tender_data.data.procuringEntity.contactPoint['telephone'] = u"+3801111111111" tender_data.data.procuringEntity.contactPoint['url'] = u"https://public-bid.com.ua" if 'buyers' in tender_data.data: tender_data.data.buyers[0]['name'] = u"ТОВ \"ПабликБид\"" tender_data.data.buyers[0].identifier['id'] = u"1234567890-publicbid" tender_data.data.buyers[0].identifier['legalName'] = u"ТОВ \"ПабликБид\"" return tender_data # prepare data def prepare_procuring_entity_data(data): try: data['name'] = u"publicbid" data.identifier['id'] = u"publicbid" data.identifier['legalName'] = u"publicbid" data.identifier['scheme'] = u"UA-EDR" if 'name_en' in data: data['name_en'] = u"publicbid" if 'legalName_en' in data.identifier: data.identifier['legalName_en'] = u"publicbid" if 'address' in data: data.address['countryName'] = u"Україна" data.address['locality'] = u"Київ" data.address['postalCode'] = u"01111" data.address['region'] = u"місто Київ" data.address['streetAddress'] = u"вулиця Тестова, 220, 8" if 'contactPoint' in data: data.contactPoint['email'] = u"[email protected]" data.contactPoint['faxNumber'] = u"+3801111111111" data.contactPoint['telephone'] = u"+3801111111111" data.contactPoint['name'] = u"Test" if 'name_en' in data.contactPoint: data.contactPoint['name_en'] = u"Test" data.contactPoint['url'] = u"https://public-bid.com.ua" except Exception: raise Exception('data is not a dictionary') # prepare data def prepare_buyers_data(data): if type(data) is not list: raise Exception('data is not a list') # preventing console errors about changing buyer data in cases if len(data) != 1: return item = next(iter(data), None) item['name'] = u"publicbid" item.identifier['id'] = u"publicbid" item.identifier['legalName'] = u"publicbid" item.identifier['scheme'] = u"UA-EDR" # prepare dictionary from field path + value def generate_dictionary_from_field_path_and_value(path, value): data = dict() path_keys_list = path.split('.') if len(path_keys_list) > 1: key = path_keys_list.pop(0) value = generate_dictionary_from_field_path_and_value('.'.join(path_keys_list), value) indexRegex = re.compile(r'(\[(\d+)\]$)') matchObj = indexRegex.search(key) print matchObj if matchObj: key = indexRegex.sub('', key) value['list_index'] = matchObj.group(2) value = [value] data[key] = value else: data = dict() data[path] = value return data # Percentage conversion def multiply_hundred(number): return number * 100 # prepares data for filling form in easiest way def prepare_tender_data(data_original): # preventing change data in global view data = copy.deepcopy(data_original) # check if data is for multilot if 'lots' not in data: return data # moves features to its related items if 'features' in data: i = 0 l = len(data['features']) while i < l: if data['features'][i]['featureOf'] == 'lot': for lot in data['lots']: if lot['id'] == data['features'][i]['relatedItem']: if 'features' not in lot: lot['features'] = [] lot['features'].append(data['features'].pop(i)) l = l - 1 i = i - 1 break if data['features'][i]['featureOf'] == 'item': for item in data['items']: if item['id'] == data['features'][i]['relatedItem']: if 'features' not in item: item['features'] = [] item['features'].append(data['features'].pop(i)) l = l - 1 i = i - 1 break i = i + 1 if 'features' in data: if len(data['features']) == 0: del data['features'] # moves items to its related lots i = 0 l = len(data['items']) while i < l: for lot in data['lots']: if lot['id'] == data['items'][i]['relatedLot']: if 'items' not in lot: lot['items'] = [] lot['items'].append(data['items'].pop(i)) l = l - 1 i = i - 1 break i = i + 1 del data['items'] if 'milestones' not in data: return data # moves milestones to its related lots i = 0 l = len(data['milestones']) while i < l: for lot in data['lots']: if lot['id'] == data['milestones'][i]['relatedLot']: if 'milestones' not in lot: lot['milestones'] = [] lot['milestones'].append(data['milestones'].pop(i)) l = l - 1 i = i - 1 break i = i + 1 del data['milestones'] return data def split_agreementDuration(str, type): if type in 'year': year_temp = str.split('Y', 1) value = year_temp[0].split('P', 1) elif type in 'month': month_temp = str.split('M', 1) value = month_temp[0].split('Y', 1) else: day_temp = str.split('D', 1) value = day_temp[0].split('M', 1) return value[1] def convert_date_to_string_contr(date): date = dateutil.parser.parse(date) date = date.strftime("%d.%m.%Y %H:%M:%S") return date def get_value_minimalStepPercentage(value): value = value / 100 return value def set_value_minimalStepPercentage(value): value = value * 100 return value def convert_esco__float_to_string(number): return '{0:.5f}'.format(float(number)) def convert_string_to_float(number): return float(number) def download_file(url, file_name, output_dir): urllib.urlretrieve(url, ('{}/{}'.format(output_dir, file_name))) def parse_complaintPeriod_date(date_string): date_str = datetime.strptime(date_string, "%d.%m.%Y %H:%M") date = datetime(date_str.year, date_str.month, date_str.day, date_str.hour, date_str.minute, date_str.second, date_str.microsecond) date = TZ.localize(date).isoformat() return date def parse_deliveryPeriod_date1(date): date = dateutil.parser.parse(date) date = date.strftime("%d.%m.%Y") return date def parse_deliveryPeriod_date(date_string): # date_str = datetime.strptime(date_string, "%Y-%m-%dT%H:%M:%S+03:00") if '+03' in date_string: date_str = datetime.strptime(date_string, "%Y-%m-%dT%H:%M:%S+03:00") else: date_str = datetime.strptime(date_string, "%Y-%m-%dT%H:%M:%S+02:00") date = datetime(date_str.year, date_str.month, date_str.day) date = date.strftime("%d.%m.%Y") return date def split_joinvalue(str_value): str_value = str_value.split() str_value = ''.join(str_value) print(str_value) str_value.replace(" ", "") return str_value
python
import sys sys.path.append("C:\Program Files\Vicon\Nexus2.1\SDK\Python") import ViconNexus import numpy as np import smooth vicon = ViconNexus.ViconNexus() subject = vicon.GetSubjectNames()[0] print 'Gap filling for subject ', subject markers = vicon.GetMarkerNames(subject) frames = vicon.GetFrameCount() # Get data from nexus print 'Populating data matrix' rawData = np.zeros((frames,len(markers)*3)) for i in range(0,len(markers)): rawData[:,3*i-3], rawData[:,3*i-2], rawData[:,3*i-1], E = vicon.GetTrajectory(subject,markers[i]) rawData[np.asarray(E)==0,3*i-3] = np.nan; rawData[np.asarray(E)==0,3*i-2] = np.nan; rawData[np.asarray(E)==0,3*i-1] = np.nan; # Run low dimensional smoothing Y = smooth.smooth(rawData,tol =1e-2,sigR=1e-3,keepOriginal=True) print 'Writing new trajectories' #Create new smoothed trjectories for i in range(0,len(markers)): E = np.ones((len(E),1)).tolist(); vicon.SetTrajectory(subject,markers[i],Y[:,3*i-3].tolist(),Y[:,3*i-2].tolist(),Y[:,3*i-1].tolist(),E) print 'Done'
python
from jinja2 import DictLoader, Environment import argparse import json import importlib import random import string HEADER = """ #pragma once #include <rapidjson/rapidjson.h> #include <rapidjson/writer.h> #include <rapidjson/reader.h> #include <iostream> #include <string> #include <vector> #include <map> struct {{ schema["title"] }} { {{ schema["title"] }}() { {%- for property_name, property_dict in schema["properties"].items() %} PropertyMap["{{ property_dict["title"] }}"] = &{{ property_dict["title"] }}; {%- endfor %} } template<typename OutputStream> void Write(rapidjson::Writer<OutputStream>& writer) { writer.StartObject(); {%- for property_name, property_dict in schema["properties"].items() %} writer.Key("{{ property_dict["title"] }}"); {{ get_writer_code(property_dict) }} {%- endfor %} writer.EndObject(); } {%- for property_name, property_dict in schema["properties"].items() %} {{ get_property_type(property_dict) }} {{ property_dict["title"] }}; {%- endfor %} bool operator==(const {{ schema["title"] }}& rhs) const { bool equals = true; {%- for property_name, property_dict in schema["properties"].items() %} equals = equals && {{ property_dict["title"] }} == rhs.{{ property_dict["title"] }}; {%- endfor %} return equals; } std::map<std::string, void*> PropertyMap; }; struct {{ schema["title"] }}Handler { {{ schema["title"] }}Handler( {{ schema["title"] }}* ParseObject) { Object = ParseObject; } template<typename T> void WriteProperty(const T& Value) { T& Property = *reinterpret_cast<T*>(CurrentProperty); Property = Value; CurrentProperty = nullptr; CurrentPropertyName = ""; } template<typename T> void WriteArray(const T& Value) { std::vector<T>& PropertyArray = *reinterpret_cast<std::vector<T>*>(CurrentProperty); PropertyArray.push_back(Value); } template<typename T> bool WriteType(const T& Value) { if(!CurrentProperty) { std::cerr << "WriteType no CurrentProperty" << std::endl; return true; return false; } if(CurrentArray) { WriteArray(Value); return true; } else { WriteProperty(Value); return true; } return false; } bool Null() { std::cout << "Null()" << std::endl; return true; } bool Bool(bool b) { return WriteType(b); } bool Int(int i) { return WriteType(i); } bool Uint(unsigned u) { return WriteType(u); } bool Int64(int64_t i) { return WriteType(i); } bool Uint64(uint64_t u) { return WriteType(u); } bool Double(double d) { return WriteType(d); } bool RawNumber(const char* str, rapidjson::SizeType length, bool copy) { std::cout << "Number(" << str << ", " << length << ", " << "boolalpha" << copy << ")" << std::endl; return true; } bool String(const char* str, rapidjson::SizeType length, bool copy) { if(!CurrentProperty) { std::cerr << "String no CurrentProperty" << std::endl; return true; return false; } if(CurrentArray) { std::string str = std::string(str, length); WriteArray(str); return true; } else { std::string& PropertyString = *reinterpret_cast<std::string*>(CurrentProperty); PropertyString = std::string(str, length); CurrentProperty = nullptr; CurrentPropertyName = ""; } return true; } bool Key(const char* str, rapidjson::SizeType length, bool copy) { const auto it = Object->PropertyMap.find(str); if(it != Object->PropertyMap.end()) { CurrentProperty = it->second; CurrentPropertyName = str; return true; } else { std::cerr << "Key Property Not Found:" << str << std::endl; return true; return false; } } bool StartObject() { std::cout << "StartObject()" << std::endl; return true; } bool EndObject(rapidjson::SizeType memberCount) { std::cout << "EndObject(" << memberCount << ")" << std::endl; return true; } bool StartArray() { if(CurrentPropertyName.empty()) { std::cerr << "StartArray Property " << CurrentPropertyName << "not found!" << std::endl; return false; } const auto it = Object->PropertyMap.find(CurrentPropertyName); if(it != Object->PropertyMap.end()) { CurrentArray = it->second; return true; } else { std::cerr << "StartArray Property " << CurrentPropertyName << "not found!" << std::endl; return false; } } bool EndArray(rapidjson::SizeType elementCount) { CurrentProperty = nullptr; CurrentArray = nullptr; return true; } {{ schema["title"] }}* Object = nullptr; void* CurrentProperty = nullptr; void* CurrentArray= nullptr; std::string CurrentPropertyName; }; """ TEST = """ #include "Json{{ schema["title"] }}.h" int main(int argc, char** argv) { {{ schema["title"] }} WriteObject; {%- for property_name, property_dict in schema["properties"].items() %} WriteObject.{{ property_dict["title"] }} = {{ get_random_property(property_dict) }}; {%- endfor %} {{ schema["title"] }} ReadObject; rapidjson::StringBuffer StringBuf; rapidjson::Writer<rapidjson::StringBuffer> Writer(StringBuf); WriteObject.Write(Writer); {{ schema["title"] }}Handler Handler(&ReadObject); rapidjson::Reader Reader; rapidjson::StringStream StringStream(StringBuf.GetString()); Reader.Parse(StringStream, Handler); bool Equals = WriteObject == ReadObject; if(!Equals) { std::cerr << "Objects not equals." << std::endl; return 1; } else { std::cout << "Objects are equals." << std::endl; } return 0; } """ writer_function_map = { "integer" : "Int", "number" : "Double", "boolean" : "Bool" } def get_writer_code(prop : dict, title = None): type_name = prop["type"] if title == None: title = prop["title"] if type_name in writer_function_map: return "writer." + writer_function_map[type_name] + "(" + title + ");" elif type_name == "string": return "writer.String("+ prop["title"] + ".c_str());" elif type_name == "array": write_array = "writer.StartArray();\n" write_array += " for( auto it = " + title + ".begin(); it != " + title + ".end(); ++it)\n" write_array += " {\n" write_array += " " + get_writer_code(prop["items"], "(*it)") + "\n" write_array += " }\n" write_array += " writer.EndArray(" + title + ".size());" return write_array return None # types basic_type_map = { "integer" : "int32_t", "string" : "std::string", "number" : "double", "boolean" : "bool" } def get_property_type(prop : dict): type_name = prop["type"] if type_name in basic_type_map: return basic_type_map[type_name] if type_name == "array": return "std::vector<" + get_property_type(prop["items"]) + ">" return "void" # test methods def random_string(len=10): letters = string.ascii_lowercase s = ''.join(random.choice(letters) for i in range(len)) return "\"" + s + "\"" def random_int(): return random.randint(0,1024) def random_double(): return random.randint(0,1024) def random_bool(): return random.choice(["true", "false"]) random_function_map = { "integer" : random_int, "string" : random_string, "number" : random_double, "boolean" : random_bool } def get_random_property(prop): type_name = prop["type"] if type_name in random_function_map: return random_function_map[type_name]() if type_name == "array": array =[str(get_random_property(prop["items"])) for i in range(10)] return "{" +",".join(array) + "}" return "void" templates = Environment(loader=DictLoader(globals())) def generate_header(schema_class): print(schema_class.schema_json()) template = templates.get_template("HEADER") schema = json.loads(schema_class.schema_json()) rendered = template.render( { "schema" : schema, "get_property_type" : get_property_type, "get_writer_code" : get_writer_code, } ) header = open("Json"+schema["title"]+".h", "w+") header.write(rendered) header.close() def generate_test(schema_class): template = templates.get_template("TEST") schema = json.loads(schema_class.schema_json()) rendered = template.render( { "schema" : schema, "get_property_type" : get_property_type, "get_random_property" : get_random_property } ) test = open("Json"+schema["title"]+"Test.cpp", "w+") test.write(rendered) test.close() if __name__== "__main__": parser = argparse.ArgumentParser() parser.add_argument("--package", help="Package that needs to be loaded to access your type") parser.add_argument("--typename", help="Name of the type to generate code from.") args = parser.parse_args(); module = None if args.package != None: print("Loading %s" %(args.package)) module = importlib.import_module(args.package) if args.typename != None: generate_header(getattr(module,args.typename)) generate_test(getattr(module,args.typename))
python
def summary(p,c=10,x=5): print('-' * 30) print(f'Value Summary'.center(30)) print('-' * 30) print(f'{"analyzed price:"} \t{coins(p)}') print(f"{'Half-price: '} \t{half(p, True)}") print(f'{"double the price: "}\t{double(p, True)}') print(f'{c}% {"increase: ":} \t{increase(p, c, True)}') print(f'{x}% {"reduction: "} \t{reduction(p, x, True)}') print('-'*30) def increase(p = 0, por= 0, formato=False): #increase the desired% """ => Function that increases the price by the desired percentage : param p: original price : param por: desired percentage : param format: formatting if desired : return: returns the price to the variable """ p = ((p / 100) * por) + p return p if formato is False else coins(p) def reduction(p = 0, por= 0, formato=False): """ => Function that decreases the price by the desired percentage :param p: Original price :param por: porcentagem desejada :param formato: formatting if desired :return: returns the price to the variable """ p = p - ((p / 100) * por) return p if not formato else coins(p) #Reduction the desired % def double(p = 0, formato=False): """ => Function that doubles the price :param p: Original price :param formato: formatting if desired :return: returns the price to the variable """ p = p * 2 return p if not formato else coins(p) #dobra o preço def half(p = 0, formato=False): """ => Function that cuts the price in half :param p: Original price :param formato: formatting if desired :return: returns the price to the variable """ p = p / 2 # Half-Price return p if formato is False else coins(p) def coins(p = 0, moeda = 'R$'): """ => Formatting function :param p: Original price :param moeda: currency :return: returns the formatted price """ return f'{moeda}{p:>.2f}'.replace('.',',')
python
from ._sha512 import sha384
python
from app import app, api from flask import request from flask_restful import Resource import json import pprint import os import subprocess import traceback import logging class WelcomeController(Resource): def get(self): return {'welcome': "welcome, stranger!"} api.add_resource(WelcomeController, '/')
python
import os from dotenv import dotenv_values config = { **dotenv_values(os.path.join(os.getcwd(), ".env")), **os.environ } VERSION = "0.0.0-alfa" APP_HOST = config['APP_HOST'] APP_PORT = int(config['APP_PORT']) APP_DEBUG = bool(config['APP_DEBUG'])
python
# -*- coding: utf-8 -*- """ Views for the stats application. """ # standard library # django # models from .models import Stat # views from base.views import BaseCreateView from base.views import BaseDeleteView from base.views import BaseDetailView from base.views import BaseListView from base.views import BaseUpdateView # forms from .forms import StatForm class StatListView(BaseListView): """ View for displaying a list of stats. """ model = Stat template_name = 'stats/list.pug' permission_required = 'stats.view_stat' class StatCreateView(BaseCreateView): """ A view for creating a single stat """ model = Stat form_class = StatForm template_name = 'stats/create.pug' permission_required = 'stats.add_stat' class StatDetailView(BaseDetailView): """ A view for displaying a single stat """ model = Stat template_name = 'stats/detail.pug' permission_required = 'stats.view_stat' class StatUpdateView(BaseUpdateView): """ A view for editing a single stat """ model = Stat form_class = StatForm template_name = 'stats/update.pug' permission_required = 'stats.change_stat' class StatDeleteView(BaseDeleteView): """ A view for deleting a single stat """ model = Stat permission_required = 'stats.delete_stat' template_name = 'stats/delete.pug'
python
"""Session class and utility functions used in conjunction with the session.""" from .session import Session from .session_manager import SessionManager __all__ = ["Session", "SessionManager"]
python
''' 046 Faça um programa que mostre na tela uma contagem regressiva para o estouro de fogos de artifício, indo de 10 até 0 , com um pausa de 1 seg entre eles''' from time import sleep for c in range(10, -1, -1): print(c) sleep(1) print('Fogos !!!!!')
python
#!/usr/bin/python # -*- coding: utf-8 -*- # Author: Shun Arahata """ Imitation learning environment """ import pathlib # import cupy as xp import sys import numpy as xp current_dir = pathlib.Path(__file__).resolve().parent sys.path.append(str(current_dir) + '/../mpc') sys.path.append(str(current_dir) + '/../') from box_ddp import BoxDDP from pendulum import PendulumDx from chainer import functions as F from util import QuadCost, chainer_diag class IL_Env: """ Imitation learning Environmn class """ def __init__(self, env, lqr_iter=500, mpc_T=20): """ :param env: :param lqr_iter: :param mpc_T: """ self.env = env if self.env == 'pendulum': self.true_dx = PendulumDx() else: assert False self.lqr_iter = lqr_iter self.mpc_T = mpc_T self.train_data = None self.val_data = None self.test_data = None @staticmethod def sample_xinit(n_batch=1): """ random sampling x_init :param n_batch: :return: """ def uniform(shape, low, high): """ :param shape: :param low: :param high: :return: """ r = high - low return xp.random.rand(shape) * r + low th = uniform(n_batch, -(1 / 2) * xp.pi, (1 / 2) * xp.pi) # th = uniform(n_batch, -xp.pi, xp.pi) thdot = uniform(n_batch, -1., 1.) xinit = xp.stack((xp.cos(th), xp.sin(th), thdot), axis=1) return xinit def populate_data(self, n_train, n_val, n_test, seed=0): """ :param n_train: :param n_val: :param n_test: :param seed: :return: """ xp.random.seed(seed) n_data = n_train + n_val + n_test xinit = self.sample_xinit(n_batch=n_data) print(xinit.shape) # for (1,0,0) into the dataset ''' n_init_zero = int(n_train/4) xinit[n_init_zero][0] = 1.0 xinit[n_init_zero][1] = 0.0 xinit[n_init_zero][2] = 0.0 ''' true_q, true_p = self.true_dx.get_true_obj() # self.mpc defined later true_x_mpc, true_u_mpc = self.mpc(self.true_dx, xinit, true_q, true_p, update_dynamics=True) true_x_mpc = true_x_mpc.array true_u_mpc = true_u_mpc.array tau = xp.concatenate((true_x_mpc, true_u_mpc), axis=2) tau = xp.transpose(tau, (1, 0, 2)) self.train_data = tau[:n_train] self.val_data = tau[n_train:n_train + n_val] self.test_data = tau[-n_test:] def mpc(self, dx, xinit, q, p, u_init=None, eps_override=None, lqr_iter_override=None, update_dynamics=False): """ :param dx: :param xinit: :param q: :param p: :param u_init: :param eps_override: :param lqr_iter_override: :return: """ n_batch = xinit.shape[0] n_sc = self.true_dx.n_state + self.true_dx.n_ctrl Q = chainer_diag(q) Q = F.expand_dims(Q, axis=0) Q = F.expand_dims(Q, axis=0) Q = F.repeat(Q, self.mpc_T, axis=0) Q = F.repeat(Q, n_batch, axis=1) p = F.expand_dims(p, axis=0) p = F.expand_dims(p, axis=0) p = F.repeat(p, self.mpc_T, axis=0) p = F.repeat(p, n_batch, axis=1) if eps_override: eps = eps_override else: eps = self.true_dx.mpc_eps if lqr_iter_override: lqr_iter = lqr_iter_override else: lqr_iter = self.lqr_iter assert len(Q.shape) == 4 assert len(p.shape) == 3 solver = BoxDDP( T=self.mpc_T, u_lower=self.true_dx.lower, u_upper=self.true_dx.upper, n_batch=n_batch, n_state=self.true_dx.n_state, n_ctrl=self.true_dx.n_ctrl, u_init=u_init, eps=eps, max_iter=lqr_iter, verbose=False, exit_unconverged=False, detach_unconverged=True, line_search_decay=self.true_dx.linesearch_decay, max_line_search_iter=self.true_dx.max_linesearch_iter, update_dynamics=update_dynamics ) x_mpc, u_mpc, objs_mpc = solver((xinit, QuadCost(Q, p), dx)) ''' g = c.build_computational_graph(u_mpc) with open('graph.dot', 'w') as o: o.write(g.dump()) assert False ''' return x_mpc, u_mpc def mpc_Q(self, dx, xinit, Q, p, u_init=None, eps_override=None, lqr_iter_override=None, update_dynamics=False): """ :param dx: :param xinit: :param q: :param p: :param u_init: :param eps_override: :param lqr_iter_override: :return: """ n_batch = xinit.shape[0] n_sc = self.true_dx.n_state + self.true_dx.n_ctrl Q = F.expand_dims(Q, axis=0) Q = F.expand_dims(Q, axis=0) Q = F.repeat(Q, self.mpc_T, axis=0) Q = F.repeat(Q, n_batch, axis=1) p = F.expand_dims(p, axis=0) p = F.expand_dims(p, axis=0) p = F.repeat(p, self.mpc_T, axis=0) p = F.repeat(p, n_batch, axis=1) if eps_override: eps = eps_override else: eps = self.true_dx.mpc_eps if lqr_iter_override: lqr_iter = lqr_iter_override else: lqr_iter = self.lqr_iter assert len(Q.shape) == 4 assert len(p.shape) == 3 solver = BoxDDP( T=self.mpc_T, u_lower=self.true_dx.lower, u_upper=self.true_dx.upper, n_batch=n_batch, n_state=self.true_dx.n_state, n_ctrl=self.true_dx.n_ctrl, u_init=u_init, eps=eps, max_iter=lqr_iter, verbose=False, exit_unconverged=False, detach_unconverged=True, line_search_decay=self.true_dx.linesearch_decay, max_line_search_iter=self.true_dx.max_linesearch_iter, update_dynamics=update_dynamics ) x_mpc, u_mpc, objs_mpc = solver((xinit, QuadCost(Q, p), dx)) ''' g = c.build_computational_graph(u_mpc) with open('graph.dot', 'w') as o: o.write(g.dump()) assert False ''' return x_mpc, u_mpc
python
# -*- Python -*- # Copyright 2021 The Verible Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Bazel rule to wrap sh_test with a wrapper loading runfiles library prior to execution """ def sh_test_with_runfiles_lib(name, srcs, size, args, data, deps = []): """sh_test wrapper that loads bazel's runfiles library before calling the test. This is necessary because on Windows, runfiles are not symlinked like on Unix and are thus not available from the path returned by $(location Label). The runfiles library provide the rlocation function, which converts a runfile path (from $location) to the fullpath of the file. Args: name: sh_test's name srcs: sh_test's srcs, must be an array of a single file size: sh_test's size args: sh_test's args data: sh_test's data deps: sh_test's deps """ if len(srcs) > 1: fail("you must specify exactly one file in 'srcs'") # Add the runfiles library to dependencies if len(deps) == 0: deps = ["@bazel_tools//tools/bash/runfiles"] else: deps.append("@bazel_tools//tools/bash/runfiles") # Replace first arguments with location of the main script to run # and add script to run to sh_test's data args = ["$(location " + srcs[0] + ")"] + args data += srcs native.sh_test( name = name, srcs = ["//bazel:sh_test_with_runfiles_lib.sh"], size = size, args = args, data = data, deps = deps, )
python
# https://github.com/ArtemNikolaev/gb-hw/issues/23 def run(array): return [ array[i] for i in range(1, len(array)) if array[i] > array[i-1] ] test_input = [300, 2, 12, 44, 1, 1, 4, 10, 7, 1, 78, 123, 55] print(run(test_input))
python
import glob from hdf5_getters import * import os import numpy as np from collections import Counter from music_utils import * tags_list = [] data_path = "/mnt/snap/data/" count = 0 for root, dirs, files in os.walk(data_path): files = glob.glob(os.path.join(root, '*h5')) #if count > 1000: break for f in files: h5 = open_h5_file_read(f) tags = get_artist_mbtags(h5).tolist() tags_list += tags #count += 1 h5.close() print Counter(tags_list).most_common(100)
python
#!/usr/bin/env python3 import time from data_output import DataOutput from html_downloader import HtmlDownloader from html_parser import HtmlParser __author__ = 'Aollio Hou' __email__ = '[email protected]' class Spider: def __init__(self): self.downloader = HtmlDownloader() self.parser = HtmlParser() self.output = DataOutput() def crawl(self, root_url): content = self.downloader.download(root_url) urls = self.parser.parse_url(root_url, content) for url in urls: try: # http://service.library.mtime.com/Movie.api # ?Ajax_CallBack=true # &Ajax_CallBackType=Mtime.Library.Services # &Ajax_CallBackMethod=GetMovieOverviewRating # &Ajax_CrossDomain=1 # &Ajax_RequestUrl=http%3A%2F%2Fmovie.mtime.com%2F246526%2F&t=201710117174393728&Ajax_CallBackArgument0=246526 t = time.strftime('%Y%m%d%H%M%S3282', time.localtime()) rank_url = 'http://service.library.mtime.com/Movie.api' \ '?Ajax_CallBack=true' \ '&Ajax_CallBackType=Mtime.Library.Services' \ '&Ajax_CallBackMethod=GetMovieOverviewRating' \ '&Ajax_CrossDomain=1' \ '&Ajax_RequestUrl=%s' \ '&t=%s' \ '&Ajax_CallbackArgument0=%s' % (url[0].replace('://', '%3A%2F%2F')[:-1], t, url[1]) rank_content = self.downloader.download(rank_url) if rank_content is None: print('None') data = self.parser.parse_json(rank_url, rank_content) self.output.store_data(data) except Exception as e: raise e # print(e) # print('Crawl failed') self.output.output_end() print('Crawl finish') def main(): spider = Spider() spider.crawl('http://theater.mtime.com/China_Beijing/') if __name__ == '__main__': main()
python
from django import forms from .models import Project class ProjectForm(forms.ModelForm): class Meta: model = Project fields = ["title", "describe", "technology"]
python
#!/usr/bin/env python # encoding: utf-8 """Terminal UI for histdata_downloader project.""" import os import sys import logging import subprocess from datetime import date import time import npyscreen from histdata_downloader.logger import log_setup from histdata_downloader.histdata_downloader import load_available_pairs logger = logging.getLogger(__name__) class TestApp(npyscreen.NPSAppManaged): def onStart(self): logger.debug("On start") self.registerForm("MAIN", MainForm()) def onCleanExit(self): logger.debug("onCleanExit called") class MainForm(npyscreen.ActionFormV2): def create(self): logger.debug("main form method called.") self.type = self.add(npyscreen.TitleSelectOne, name='type', max_height=2, values=['M1', 'ticks'], scroll_exit=True) self.date_start = self.add(npyscreen.TitleDateCombo, name="Date start") self.date_start.value = date(2019, 1, 1) self.date_end = self.add(npyscreen.TitleDateCombo, name="Date end") self.instruments = self.add(npyscreen.TitleMultiSelect, name='instruments', max_height=5, values=load_available_pairs(), scroll_exit=True) self.select_all = self.add(SelectAllButton, name='select all', relx=20) self.unselect_all = self.add(UnselectAllButton, name='unselect all', relx=20) self.output_path = self.add(npyscreen.TitleFilenameCombo, name="Output path", label=True) self.verbosity = self.add(npyscreen.TitleSelectOne, name='verbosity', max_height=3, values=['DEBUG', 'INFO', 'WARNING'], scroll_exit=True, value=1) self.command = self.add(npyscreen.TitleFixedText, name="cmd", editable=False, value='histdata_downloader download') self.launch_button = self.add(LauchButton, name='Run', relx=50) self.log = self.add(Output, name='Output', editable=True, scroll_exit=True, values=['Waiting...']) def while_editing(self, *args): verb = self.selected_verbosity[0] cmd = "histdata_downloader -v {} download".format(verb) if self.type.value: cmd += " -t %s " % self.selected_type[0] if self.date_end.value: cmd += " -ds {} -de {}".format(self.date_start.value, self.date_end.value) if self.output_path.value: cmd += " -o {}".format(self.output_path.value) if self.instruments.value: sub_cmd = ' '.join(['-i %s' % i for i in self.selected_instruments]) cmd += ' ' + sub_cmd self.command.value = cmd self.command.update() def afterEditing(self): self.parentApp.setNextForm(None) def return_as_config(self): logger.debug('return_as_config method called.') config = {'type' : self.type.values[self.type.value[0]], 'date_start': self.date_start.value, 'date_end': self.date_end.value, 'instruments': self.selected_instruments, 'output_path': self.output_path.value} return config @property def selected_instruments(self): name_field = lambda idx : self.instruments.values[idx] return list(map(name_field, self.instruments.value)) @property def selected_type(self): name_field = lambda idx : self.type.values[idx] return list(map(name_field, self.type.value)) @property def selected_verbosity(self): name_field = lambda idx : self.verbosity.values[idx] return list(map(name_field, self.verbosity.value)) def perform(cmd, log): with subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) as proc: for line in iter(proc.stdout.readline, b''): log.values.append(line.decode('ascii')) log.display() for line in iter(proc.stderr.readline, b''): log.values.append(line.decode('ascii')) log.display() class LauchButton(npyscreen.ButtonPress): def whenPressed(self): self.parent.log.values = ['Executing %s.' % self.parent.command.value] self.parent.log.display() perform(self.parent.command.value, self.parent.log) class SelectAllButton(npyscreen.ButtonPress): def whenPressed(self): instr = self.parent.instruments instr.value = [x for x in range(len(instr.values))] instr.display() class UnselectAllButton(npyscreen.ButtonPress): def whenPressed(self): instr = self.parent.instruments instr.value = [] instr.display class Output(npyscreen.BoxTitle): _contained_widget = npyscreen.MultiLine if __name__ == "__main__": App = TestApp() App.run()
python
# Copyright (c) The PyAMF Project. # See LICENSE.txt for details. """ Jython example AMF server and client with Swing interface. @see: U{Jython<http://pyamf.org/wiki/JythonExample>} wiki page. @since: 0.5 """ import logging from wsgiref.simple_server import WSGIServer, WSGIRequestHandler from pyamf.remoting.gateway.wsgi import WSGIGateway from pyamf.remoting.client import RemotingService import java.lang as lang import javax.swing as swing import java.awt as awt class AppGUI(object): """ Swing graphical user interface. """ def __init__(self, title, host, port, service): # create window win = swing.JFrame(title, size=(800, 480)) win.setDefaultCloseOperation(swing.JFrame.EXIT_ON_CLOSE) win.contentPane.layout = awt.BorderLayout(10, 10) # add scrollable textfield status = swing.JTextPane(preferredSize=(780, 400)) status.setAutoscrolls(True) status.setEditable(False) status.setBorder(swing.BorderFactory.createEmptyBorder(20, 20, 20, 20)) paneScrollPane = swing.JScrollPane(status) paneScrollPane.setVerticalScrollBarPolicy( swing.JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED) win.contentPane.add(paneScrollPane, awt.BorderLayout.CENTER) # add server button self.started = "Start Server" self.stopped = "Stop Server" self.serverButton = swing.JButton(self.started, preferredSize=(150, 20), actionPerformed=self.controlServer) # add client button self.clientButton = swing.JButton("Invoke Method", preferredSize=(150, 20), actionPerformed=self.runClient) self.clientButton.enabled = False # position buttons buttonPane = swing.JPanel() buttonPane.setLayout(swing.BoxLayout(buttonPane, swing.BoxLayout.X_AXIS)) buttonPane.setBorder(swing.BorderFactory.createEmptyBorder(0, 10, 10, 10)) buttonPane.add(swing.Box.createHorizontalGlue()) buttonPane.add(self.serverButton) buttonPane.add(swing.Box.createRigidArea(awt.Dimension(10, 0))) buttonPane.add(self.clientButton) win.contentPane.add(buttonPane, awt.BorderLayout.SOUTH) # add handler that writes log messages to the status textfield txtHandler = TextFieldLogger(status) logger = logging.getLogger("") logger.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(message)s') txtHandler.setFormatter(formatter) logger.addHandler(txtHandler) # setup server self.service_name = service self.url = "http://%s:%d" % (host, port) self.server = ThreadedAmfServer(host, port, self.service_name) # center and display window on the screen win.pack() us = win.getSize() them = awt.Toolkit.getDefaultToolkit().getScreenSize() newX = (them.width - us.width) / 2 newY = (them.height - us.height) / 2 win.setLocation(newX, newY) win.show() def controlServer(self, event): """ Handler for server button clicks. """ if event.source.text == self.started: logging.info("Created AMF gateway at %s" % self.url) event.source.text = self.stopped self.clientButton.enabled = True self.server.start() else: logging.info("Terminated AMF gateway at %s\n" % self.url) event.source.text = self.started self.clientButton.enabled = False self.server.stop() def runClient(self, event): """ Invoke a method on the server using an AMF client. """ self.client = ThreadedAmfClient(self.url, self.service_name) self.client.invokeMethod("Hello World!") class ThreadedAmfClient(object): """ Threaded AMF client that doesn't block the Swing GUI. """ def __init__(self, url, serviceName): self.gateway = RemotingService(url, logger=logging) self.service = self.gateway.getService(serviceName) def invokeMethod(self, param): """ Invoke a method on the AMF server. """ class ClientThread(lang.Runnable): """ Create a thread for the client. """ def run(this): try: self.service(param) except lang.InterruptedException: return swing.SwingUtilities.invokeLater(ClientThread()) class ThreadedAmfServer(object): """ Threaded WSGI server that doesn't block the Swing GUI. """ def __init__(self, host, port, serviceName): services = {serviceName: self.echo} gw = WSGIGateway(services, logger=logging) self.httpd = WSGIServer((host, port), ServerRequestLogger) self.httpd.set_app(gw) def start(self): """ Start the server. """ class WSGIThread(lang.Runnable): """ Create a thread for the server. """ def run(this): try: self.httpd.serve_forever() except lang.InterruptedException: return self.thread = lang.Thread(WSGIThread()) self.thread.start() def stop(self): """ Stop the server. """ self.thread = None def echo(self, data): """ Just return data back to the client. """ return data class ServerRequestLogger(WSGIRequestHandler): """ Request handler that logs WSGI server messages. """ def log_message(self, format, *args): """ Log message with debug level. """ logging.debug("%s - %s" % (self.address_string(), format % args)) class TextFieldLogger(logging.Handler): """ Logging handler that displays PyAMF log messages in the status text field. """ def __init__(self, textfield, *args, **kwargs): self.status = textfield logging.Handler.__init__(self, *args, **kwargs) def emit(self, record): msg = '%s\n' % self.format(record) doc = self.status.getStyledDocument() doc.insertString(doc.getLength(), msg, doc.getStyle('regular')) self.status.setCaretPosition(self.status.getStyledDocument().getLength()) host = "localhost" port = 8000 service_name = "echo" title = "PyAMF server/client using Jython with Swing" if __name__ == "__main__": from optparse import OptionParser parser = OptionParser() parser.add_option("-p", "--port", default=port, dest="port", help="port number [default: %default]") parser.add_option("--host", default=host, dest="host", help="host address [default: %default]") (opt, args) = parser.parse_args() app = AppGUI(title, opt.host, int(opt.port), service_name)
python
from autodisc.systems.lenia.classifierstatistics import LeniaClassifierStatistics from autodisc.systems.lenia.isleniaanimalclassifier import IsLeniaAnimalClassifier from autodisc.systems.lenia.lenia import *
python
# MIT License # # Copyright (c) 2017 Anders Steen Christensen # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import print_function import os import numpy as np import qml import qml.data from qml.ml.kernels import laplacian_kernel from qml.ml.math import cho_solve from qml.ml.representations import get_slatm_mbtypes from qml.ml.kernels import get_local_kernels_gaussian from qml.ml.kernels import get_local_kernels_laplacian def get_energies(filename): """ Returns a dictionary with heats of formation for each xyz-file. """ f = open(filename, "r") lines = f.readlines() f.close() energies = dict() for line in lines: tokens = line.split() xyz_name = tokens[0] hof = float(tokens[1]) energies[xyz_name] = hof return energies def test_krr_gaussian_local_cmat(): test_dir = os.path.dirname(os.path.realpath(__file__)) # Parse file containing PBE0/def2-TZVP heats of formation and xyz filenames data = get_energies(test_dir + "/data/hof_qm7.txt") # Generate a list of qml.data.Compound() objects" mols = [] for xyz_file in sorted(data.keys())[:1000]: # Initialize the qml.data.Compound() objects mol = qml.data.Compound(xyz=test_dir + "/qm7/" + xyz_file) # Associate a property (heat of formation) with the object mol.properties = data[xyz_file] # This is a Molecular Coulomb matrix sorted by row norm mol.generate_atomic_coulomb_matrix(size=23, sorting="row-norm") mols.append(mol) # Shuffle molecules np.random.seed(666) np.random.shuffle(mols) # Make training and test sets n_test = 100 n_train = 200 training = mols[:n_train] test = mols[-n_test:] X = np.concatenate([mol.representation for mol in training]) Xs = np.concatenate([mol.representation for mol in test]) N = np.array([mol.natoms for mol in training]) Ns = np.array([mol.natoms for mol in test]) # List of properties Y = np.array([mol.properties for mol in training]) Ys = np.array([mol.properties for mol in test]) # Set hyper-parameters sigma = 724.0 llambda = 10**(-6.5) K = get_local_kernels_gaussian(X, X, N, N, [sigma])[0] assert np.allclose(K, K.T), "Error in local Gaussian kernel symmetry" # Test below will sometimes fail, since sorting occasionally differs due close row-norms # K_test = np.loadtxt(test_dir + "/data/K_local_gaussian.txt") # assert np.allclose(K, K_test), "Error in local Gaussian kernel (vs. reference)" # Solve alpha K[np.diag_indices_from(K)] += llambda alpha = cho_solve(K,Y) # Calculate prediction kernel Ks = get_local_kernels_gaussian(Xs, X, Ns, N, [sigma])[0] # Test below will sometimes fail, since sorting occasionally differs due close row-norms # Ks_test = np.loadtxt(test_dir + "/data/Ks_local_gaussian.txt") # assert np.allclose(Ks, Ks_test), "Error in local Gaussian kernel (vs. reference)" Yss = np.dot(Ks, alpha) mae = np.mean(np.abs(Ys - Yss)) print(mae) assert abs(19.0 - mae) < 1.0, "Error in local Gaussian kernel-ridge regression" def test_krr_laplacian_local_cmat(): test_dir = os.path.dirname(os.path.realpath(__file__)) # Parse file containing PBE0/def2-TZVP heats of formation and xyz filenames data = get_energies(test_dir + "/data/hof_qm7.txt") # Generate a list of qml.data.Compound() objects" mols = [] for xyz_file in sorted(data.keys())[:1000]: # Initialize the qml.data.Compound() objects mol = qml.data.Compound(xyz=test_dir + "/qm7/" + xyz_file) # Associate a property (heat of formation) with the object mol.properties = data[xyz_file] # This is a Molecular Coulomb matrix sorted by row norm mol.generate_atomic_coulomb_matrix(size=23, sorting="row-norm") mols.append(mol) # Shuffle molecules np.random.seed(666) np.random.shuffle(mols) # Make training and test sets n_test = 100 n_train = 200 training = mols[:n_train] test = mols[-n_test:] X = np.concatenate([mol.representation for mol in training]) Xs = np.concatenate([mol.representation for mol in test]) N = np.array([mol.natoms for mol in training]) Ns = np.array([mol.natoms for mol in test]) # List of properties Y = np.array([mol.properties for mol in training]) Ys = np.array([mol.properties for mol in test]) # Set hyper-parameters sigma = 10**(3.6) llambda = 10**(-12.0) K = get_local_kernels_laplacian(X, X, N, N, [sigma])[0] assert np.allclose(K, K.T), "Error in local Laplacian kernel symmetry" # Test below will sometimes fail, since sorting occasionally differs due close row-norms # K_test = np.loadtxt(test_dir + "/data/K_local_laplacian.txt") # assert np.allclose(K, K_test), "Error in local Laplacian kernel (vs. reference)" # Solve alpha K[np.diag_indices_from(K)] += llambda alpha = cho_solve(K,Y) # Calculate prediction kernel Ks = get_local_kernels_laplacian(Xs, X, Ns, N, [sigma])[0] # Test below will sometimes fail, since sorting occasionally differs due close row-norms # Ks_test = np.loadtxt(test_dir + "/data/Ks_local_laplacian.txt") # assert np.allclose(Ks, Ks_test), "Error in local Laplacian kernel (vs. reference)" Yss = np.dot(Ks, alpha) mae = np.mean(np.abs(Ys - Yss)) assert abs(8.7 - mae) < 1.0, "Error in local Laplacian kernel-ridge regression" if __name__ == "__main__": test_krr_gaussian_local_cmat() test_krr_laplacian_local_cmat()
python
import dash, os, itertools, flask from dash.dependencies import Input, Output, State import dash_core_components as dcc import dash_html_components as html from pandas_datareader import data as web from datetime import datetime as dt import plotly.graph_objs as go import pandas as pd from random import randint import plotly.plotly as py server = flask.Flask(__name__) server.secret_key = os.environ.get('secret_key', 'secret') app = dash.Dash(name = __name__, server = server) app.config.supress_callback_exceptions = True #Data variables cli = pd.read_pickle('Climate_full.p') models_list = ['GFDL-CM3', 'GISS-E2-R', 'NCAR-CCSM4', 'IPSL-CM5A-LR','MRI-CGCM3'] web = 'https://www.snap.uaf.edu/webshared/jschroder/db/CSV/' metrics = [ 'avg_fire_size','number_of_fires','total_area_burned'] #Function updating #1 plot => Alfresco plot def get_data( models , scenarios, metric, domain, cumsum ) : metric = str(metric) domain = str(domain) def _get_metric_cumsum(lnk , cumsum ): #Extract, average and cumsum the raw data to a dataframe _df = pd.read_csv(lnk, index_col=0) _df = _df.ix[2006:].mean(axis = 1) if 'cumsum' in cumsum : _df = _df.cumsum(axis=0) else : pass return pd.Series.to_frame(_df) #Build the models full name and the link towards the CSV <= todo build decent database but will do for now selection = [a[0]+ '_' + a[1] for a in itertools.product(models,scenarios)] if type(selection) is str : selection = [selection] rmt = [os.path.join(web, metric, "_".join(['alfresco', metric.replace('_',''), domain.title(), model, '1902_2100.csv' ])) for model in selection] #Extract dataframe and concat them together df_list = [_get_metric_cumsum(lnk , cumsum) for lnk in rmt] df = pd.concat(df_list,axis=1) df.columns=selection return df #Functions used to update #2 and #3 with climate data def get_cli_data(models, scenarios, dictionnary): date = pd.date_range('2006','2101',freq='A-DEC') def _get_climate_annual(_df) : _df = _df[(_df.index.month >= 3 ) & (_df.index.month <= 9 )] _df1 = _df.resample("A-DEC").mean()["Boreal"] _df2 = pd.DataFrame(['NaN'] * len(date),date) _df3 = pd.concat([_df1 , _df2],axis=1)["Boreal"] return pd.Series.to_frame(_df3) #Build the full models name and extract the dataframe selection = [a[0]+ '_' + a[1] for a in itertools.product(models,scenarios)] if type(selection) is str : selection = [selection] df_list = [_get_climate_annual(dictionnary[model]) for model in selection] df = pd.concat(df_list,axis=1) df.columns=selection return df app.css.append_css({'external_url': 'https://cdn.rawgit.com/plotly/dash-app-stylesheets/2d266c578d2a6e8850ebce48fdb52759b2aef506/stylesheet-oil-and-gas.css'}) # noqa: E501 app.layout = html.Div( [ html.Div( [ html.H1( 'ALFRESCO Post Processing Outputs', className='eight columns', ), html.Img( src="https://www.snap.uaf.edu/sites/all/themes/snap_bootstrap/logo.png", className='one columns', style={ 'height': '80', 'width': '225', 'float': 'right', 'position': 'relative', }, ), ], className='row' ), html.Div( [ html.Div( [ html.P('Scenarios Selection :'), dcc.Dropdown( id='rcp', options=[ {'label': 'RCP 45 ', 'value': 'rcp45'}, {'label': 'RCP 60 ', 'value': 'rcp60'}, {'label': 'RCP 85 ', 'value': 'rcp85'} ], multi=True, value=[] ), html.P('Models Selection :'), dcc.Dropdown( id='model', options=[{'label': a , 'value' : a} for a in models_list], multi=True, value=[] ), dcc.Checklist( id='cumsum', options=[ {'label': 'Cumulative Sum', 'value': 'cumsum'} ], values=[], ) ], className='six columns' ), html.Div( [ html.P('Metric Selection:'), dcc.Dropdown( id='metric', options=[{'label': a.replace('_',' ').title() , 'value' : a} for a in metrics], value=None ), html.P('Domains Selection :'), dcc.Dropdown( id='domains', options=[ {'label': 'Boreal', 'value': 'boreal'}, {'label': 'Tundra', 'value': 'tundra'} ], value=None ), ], className='six columns' ), ], className='row' ), html.Div( [ html.Div( [ dcc.Graph(id='ALF') ], className='eleven columns' ), ], ), html.Div( [ html.Div( [ dcc.Graph(id='climate_tas') ], className='eleven columns' ), ], ), html.Div( [ html.Div( [ dcc.Graph(id='climate_pr') ], className='eleven columns' ), ], ), ], className='ten columns offset-by-one' ) @app.callback( Output('ALF', 'figure'), [Input('model', 'value'), Input('rcp', 'value'), Input('metric', 'value'), Input('domains', 'value'), Input('cumsum', 'values')] ) def update_graph(models, rcp, met_value, domain, cumsum): if (len(models) > 0 and len(rcp) > 0 and domain is not None and met_value is not None): df = get_data(models, rcp, met_value, domain, cumsum) if str(met_value) in ['total_area_burned','avg_fire_size'] : label = 'Area (km\u00b2)' else : label = 'Number of fires' return { 'data': [{ 'x': df.index, 'y': df[col], 'name':col, } for col in df.columns], 'layout' : go.Layout( height=300, margin= {'t': 20,'b':30 }, xaxis = { 'ticks' : 'outside', 'ticklen' : 5, 'showgrid' : False, 'linewidth' : 1, 'zeroline' : False, 'zerolinewidth' : 0 }, yaxis = { 'title' : label, 'ticks' : 'outside', 'ticklen' : 5, 'showgrid' : False, 'linewidth' : 1, 'zeroline' : False, 'zerolinewidth' : 0 }, showlegend=False) } @app.callback( Output('climate_tas', 'figure'), [Input('model', 'value'), Input('rcp', 'value') ]) def update_tas(models, rcp): if (len(models) > 0 and len(rcp) > 0): df = get_cli_data(models, rcp, cli['tas']) return { 'data': [{ 'x': df.index, 'y': df[col], 'name':col, } for col in df.columns], 'layout' : go.Layout( height=200, margin= {'t': 20,'b':30 }, xaxis = { 'ticks' : 'outside', 'ticklen' : 5, 'showgrid' : False, 'linewidth' : 1, 'zeroline' : False, 'zerolinewidth' : 0 }, yaxis = { 'title' : "Temperature (\xb0C)", 'ticks' : 'outside', 'ticklen' : 5, 'showgrid' : False, 'linewidth' : 1, 'zeroline' : False, 'zerolinewidth' : 0 }, showlegend=False) } @app.callback( Output('climate_pr', 'figure'), [Input('model', 'value'), Input('rcp', 'value') ]) def update_pr(models, rcp): if (len(models) > 0 and len(rcp) > 0): df = get_cli_data(models, rcp, cli['pr']) return { 'data': [{ 'x': df.index, 'y': df[col], 'name':col } for col in df.columns], 'layout' : go.Layout( height=200, margin= {'t': 20,'b':30 }, xaxis = { 'ticks' : 'outside', 'ticklen' : 5, 'showgrid' : False, 'linewidth' : 1, 'zeroline' : False, 'zerolinewidth' : 0 }, yaxis = { 'title' : 'Precipitation (mm)', 'ticks' : 'outside', 'ticklen' : 5, 'showgrid' : False, 'linewidth' : 1, 'zeroline' : False }, showlegend=False) } # Run the Dash app if __name__ == '__main__': app.server.run()
python
import tanjun import typing from hikari import Embed from modules import package_fetcher component = tanjun.Component() @component.with_command @tanjun.with_argument("repo_n", default="main") @tanjun.with_argument("arch_n", default="aarch64") @tanjun.with_argument("pkg_n", default=None) @tanjun.with_parser @tanjun.as_message_command("pkg", "apt") async def pkg_msg(ctx: tanjun.abc.MessageContext, pkg_n: str, arch_n: str, repo_n: str) -> None: if repo_n not in ["main", "root", "x11"] or arch_n not in ["aarch64", "arm", "i686", "x86_64"]: await ctx.respond(embed=Embed( description="the Arch or Repo name are Wrong!", color="#ff0000" )) return await pkg(ctx, pkg_n, arch_n, repo_n) @component.with_slash_command @tanjun.with_str_slash_option("repo_name", "The repo name", choices=["main", "root", "x11"], default="main") @tanjun.with_str_slash_option("arch", "The arch name", choices=["aarch64", "arm", "i686", "x86_64"], default="aarch64") @tanjun.with_str_slash_option("package_name", "The package name", default=None) @tanjun.as_slash_command("pkg", "show package details") async def pkg_slash(ctx: tanjun.abc.SlashContext, package_name: typing.Optional[str], arch: typing.Optional[str], repo_name: typing.Optional[str]) -> None: await pkg(ctx, package_name, arch, repo_name) async def pkg(ctx: tanjun.abc.Context, pkg_n, arch_n, repo_n) -> None: if pkg_n: await ctx.respond(embed=Embed( description="Connecting to the repository...", color="#ffff00" )) r = package_fetcher.fetch(arch_n, repo_n) ct = lambda x, y: x[y-3] + "..." if len(x) > y else x if not r: await ctx.edit_last_response(embed=Embed( description="Failed to connect to the repository!", color="#ff0000" )) elif pkg_n in r and pkg_n != "_host": pkg_embed = Embed(color="#00ff00") pkg_embed.add_field(name="Package name:", value=r[pkg_n]["Package"]) pkg_embed.add_field(name="Description:", value=ct(r[pkg_n]["Description"], 500)) pkg_embed.add_field(name="Version:", value=ct(r[pkg_n]["Version"], 200)) if "Depends" in r[pkg_n]: pkg_embed.add_field(name="Dependencies:", value=ct(", ".join(f"`{x}`" for x in r[pkg_n]["Depends"].split(", ")), 2500)) pkg_embed.add_field(name="Size:", value=f"{int(r[pkg_n]['Size'])/1024/1024:.2f} MB") pkg_embed.add_field(name="Maintainer:", value=ct(r[pkg_n]["Maintainer"], 300)) pkg_embed.add_field(name="Installation:", value=f"```\napt install {r[pkg_n]['Package']}\n```") pkg_embed.add_field(name="Links:", value=f"[Homepage]({r[pkg_n]['Homepage']}) | [Download .deb]({r['_host']['url']}/{r[pkg_n]['Filename']})") pkg_embed.set_footer(text=f"Connected to {r['_host']['host_name']}") await ctx.edit_last_response(embed=pkg_embed) else: await ctx.edit_last_response(embed=Embed( description=f"Unable to locate package `{pkg_n}`", color="#ff0000" )) else: await ctx.respond(embed=Embed( description="Please enter the package name!", color="#ff0000" )) load_command = component.make_loader()
python
# Copyright 2020 The FastEstimator Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os import unittest import matplotlib import matplotlib.pyplot as plt import numpy as np import tensorflow as tf import torch import fastestimator as fe from fastestimator.test.unittest_util import check_img_similar, fig_to_rgb_array, img_to_rgb_array class TestShowImage(unittest.TestCase): @classmethod def setUpClass(cls): cls.color_img_ans = img_to_rgb_array( os.path.abspath(os.path.join(__file__, "..", "resources", "test_show_image_color.png"))) cls.hw_ratio_img_ans = img_to_rgb_array( os.path.abspath(os.path.join(__file__, "..", "resources", "test_show_image_height_width.png"))) cls.bb_img_ans = img_to_rgb_array( os.path.abspath(os.path.join(__file__, "..", "resources", "test_show_image_bounding_box.png"))) cls.mixed_img_ans = img_to_rgb_array( os.path.abspath(os.path.join(__file__, "..", "resources", "test_show_image_mixed.png"))) cls.text_img_ans = img_to_rgb_array( os.path.abspath(os.path.join(__file__, "..", "resources", "test_show_image_text.png"))) cls.title_img_ans = img_to_rgb_array( os.path.abspath(os.path.join(__file__, "..", "resources", "test_show_image_title.png"))) cls.float_img_ans = img_to_rgb_array( os.path.abspath(os.path.join(__file__, "..", "resources", "test_show_image_check_float.png"))) def setUp(self) -> None: self.old_backend = matplotlib.get_backend() matplotlib.use("Agg") def tearDown(self) -> None: matplotlib.use(self.old_backend) def test_show_image_color_np(self): img = np.zeros((90, 90, 3), dtype=np.uint8) img[:, 0:30, :] = np.array([255, 0, 0]) img[:, 30:60, :] = np.array([0, 255, 0]) img[:, 60:90, :] = np.array([0, 0, 255]) fig, axis = plt.subplots(1, 1, figsize=(6.4, 4.8)) fe.util.show_image(img, fig=fig, axis=axis) # Now we can save it to a numpy array. obj1 = fig_to_rgb_array(fig) obj2 = self.color_img_ans self.assertTrue(check_img_similar(obj1, obj2)) def test_show_image_color_torch(self): img = np.zeros((90, 90, 3), dtype=np.uint8) img[:, 0:30, :] = np.array([255, 0, 0]) img[:, 30:60, :] = np.array([0, 255, 0]) img[:, 60:90, :] = np.array([0, 0, 255]) img = torch.from_numpy(img.transpose((2, 0, 1))) fig, axis = plt.subplots(1, 1, figsize=(6.4, 4.8)) fe.util.show_image(img, fig=fig, axis=axis) obj1 = fig_to_rgb_array(fig) obj2 = self.color_img_ans self.assertTrue(check_img_similar(obj1, obj2)) def test_show_image_color_tf(self): img = np.zeros((90, 90, 3), dtype=np.uint8) img[:, 0:30, :] = np.array([255, 0, 0]) img[:, 30:60, :] = np.array([0, 255, 0]) img[:, 60:90, :] = np.array([0, 0, 255]) img = tf.convert_to_tensor(img) fig, axis = plt.subplots(1, 1, figsize=(6.4, 4.8)) fe.util.show_image(img, fig=fig, axis=axis) obj1 = fig_to_rgb_array(fig) obj2 = self.color_img_ans self.assertTrue(check_img_similar(obj1, obj2)) def test_show_image_check_float_0_to_1_np(self): img = np.zeros((256, 256, 3), dtype=np.float32) for x in range(256): img[x, :, :] = x / 255 fig, axis = plt.subplots(1, 1, figsize=(6.4, 4.8)) fe.util.show_image(img, fig=fig, axis=axis) obj1 = fig_to_rgb_array(fig) obj2 = self.float_img_ans self.assertTrue(check_img_similar(obj1, obj2)) def test_show_image_check_float_neg_1_to_1_np(self): img = np.zeros((256, 256, 3), dtype=np.float32) for x in range(256): img[x, :, :] = (x - 127.5) / 127.5 fig, axis = plt.subplots(1, 1, figsize=(6.4, 4.8)) fe.util.show_image(img, fig=fig, axis=axis) obj1 = fig_to_rgb_array(fig) obj2 = self.float_img_ans self.assertTrue(check_img_similar(obj1, obj2)) def test_show_image_color_arbitrary_range_np(self): img = np.zeros((256, 256, 3), dtype=np.float32) for x in range(256): img[x, :, :] = x * 0.2 fig, axis = plt.subplots(1, 1, figsize=(6.4, 4.8)) fe.util.show_image(img, fig=fig, axis=axis) obj1 = fig_to_rgb_array(fig) obj2 = self.float_img_ans self.assertTrue(check_img_similar(obj1, obj2)) def test_show_image_height_width_np(self): img = np.zeros((150, 100)) fig, axis = plt.subplots(1, 1, figsize=(6.4, 4.8)) fe.util.show_image(img, fig=fig, axis=axis) obj1 = fig_to_rgb_array(fig) obj2 = self.hw_ratio_img_ans self.assertTrue(check_img_similar(obj1, obj2)) def test_show_image_text_np(self): text = "apple" fig, axis = plt.subplots(1, 1, figsize=(6.4, 4.8)) fe.util.show_image(text, fig=fig, axis=axis) obj1 = fig_to_rgb_array(fig) obj2 = self.text_img_ans self.assertTrue(check_img_similar(obj1, obj2)) def test_show_image_bounding_box_np(self): bg_img = np.zeros((150, 150)) boxes = np.array([[0, 0, 10, 20, "apple"], [10, 20, 30, 50, "dog"], [40, 70, 200, 200, "cat"], [0, 0, 0, 0, "shouldn't shown"], [0, 0, -50, -30, "shouldn't shown2"]]) fig, axis = plt.subplots(1, 1, figsize=(6.4, 4.8)) fe.util.show_image(bg_img, fig=fig, axis=axis) fe.util.show_image(boxes, fig=fig, axis=axis) obj1 = fig_to_rgb_array(fig) obj2 = self.bb_img_ans self.assertTrue(check_img_similar(obj1, obj2)) def test_show_image_mixed_figure_layer_np(self): bg_img = np.ones((150, 150, 3), dtype=np.uint8) * 255 boxes = np.array([[0, 0, 10, 20], [10, 20, 30, 50], [40, 70, 200, 200]]) fig, axis = plt.subplots(1, 1, figsize=(6.4, 4.8)) fe.util.show_image(bg_img, fig=fig, axis=axis) fe.util.show_image(boxes, fig=fig, axis=axis) fe.util.show_image("apple", fig=fig, axis=axis) obj1 = fig_to_rgb_array(fig) obj2 = self.mixed_img_ans self.assertTrue(check_img_similar(obj1, obj2)) def test_show_image_title_np(self): img = np.ones((150, 150), dtype=np.uint8) * 255 fig, axis = plt.subplots(1, 1, figsize=(6.4, 4.8)) fe.util.show_image(img, fig=fig, axis=axis, title="test title") obj1 = fig_to_rgb_array(fig) obj2 = self.title_img_ans self.assertTrue(check_img_similar(obj1, obj2))
python
import data from base import nbprint from tokenizer.main import run_tokenizer def check_requirements(info): # Check if tokens file exists if not data.tokenized_document_exists(info): # Run Tokenizer nbprint('Tokens missing.') run_tokenizer(info) # Check if it was successfull return data.tokenized_document_exists(info) return True class VocabItem: def __init__(self, token, total = 0, document = 0): self.token = token self.total = total self.document = document def increase_total(self, count = 1): self.total += count def increase_document(self, count = 1): self.document += count class Vectorizer: def __init__(self, info): self.info = info def build_vocab(self): self.counts = [] def get_vocab(self): return [{'id': id, 'token': vi.token, 'total': vi.total, 'document': vi.document} for id, vi in enumerate(self.counts)]
python
#!/usr/bin/env python # -*- coding: utf-8 -*- ########################################################### # WARNING: Generated code! # # ************************** # # Manual changes may get lost if file is generated again. # # Only code inside the [MANUAL] tags will be kept. # ########################################################### from flexbe_core import Behavior, Autonomy, OperatableStateMachine, ConcurrencyContainer, PriorityContainer, Logger from robotender_flexbe_behaviors.multiple_cups_pour_behavior_using_containers_sm import multiplecupspourbehaviorusingcontainersSM # Additional imports can be added inside the following tags # [MANUAL_IMPORT] # [/MANUAL_IMPORT] ''' Created on Thu Nov 02 2017 @author: Davis Catherman, Shannon Enders ''' class multiplecuponloopSM(Behavior): ''' loooped ''' def __init__(self): super(multiplecuponloopSM, self).__init__() self.name = 'multiple cup on loop' # parameters of this behavior # references to used behaviors self.add_behavior(multiplecupspourbehaviorusingcontainersSM, 'multiple cups pour behavior using containers') _state_machine.userdata.joint_names = ["m1n6s200_joint_1", "m1n6s200_joint_2", "m1n6s200_joint_3", "m1n6s200_joint_4", "m1n6s200_joint_5", "m1n6s200_joint_6"] _state_machine.userdata.center_values = [4.825370393837993, 4.804768712277358, 1.7884682005958692, 2.781744729201632, 1.7624776125694588, 2.5668808924540394] _state_machine.userdata.prep_pour_to_left = [4.8484381625680415, 4.172889801498073, 1.372345285529353, 3.0126762157540004, 1.4690217615247554, 2.627620406383804] _state_machine.userdata.pour_to_left = [4.610045297589599, 4.293199701639057, 1.419019181003809, 3.012844793851002, 1.4674078859041673, 4.845438377916176] _state_machine.userdata.post_pour_to_left = [4.8484381625680415, 4.172889801498073, 1.372345285529353, 3.0126762157540004, 1.4690217615247554, 2.627620406383804] _state_machine.userdata.left_values = [4.501794723496712, 4.784133474886988, 1.6909002314255626, 2.766800400744653, 1.8037183931040444, 2.543646143523643] _state_machine.userdata.prep_pour_to_center = [4.4696588912549435, 4.2865780179046835, 1.371823705429861, 2.7555946178259263, 1.6906042210704002, 2.5960829864389763] _state_machine.userdata.pour_to_center = [4.700331784865464, 4.265325726089742, 1.4461706409493849, 2.7535296027166787, 1.4171899888090882, 0.5029200288136196] _state_machine.userdata.post_pour_to_center = [4.4696588912549435, 4.2865780179046835, 1.371823705429861, 2.7555946178259263, 1.6906042210704002, 2.5960829864389763] _state_machine.userdata.OPEN = [0,0] _state_machine.userdata.CLOSE = [5000,5000] _state_machine.userdata.pre_grab_left = [4.616985495390345, 4.361768642857545, 0.8309522662125534, 2.772490244413607, 1.7511775537481435, 2.6507113446153356] _state_machine.userdata.back_off_center = [4.8380550301100405, 4.49428940291265, 1.2147491327564424, 2.784340512316133, 1.7494544885228622, 2.530367888644617] # Additional initialization code can be added inside the following tags # [MANUAL_INIT] # [/MANUAL_INIT] # Behavior comments: def create(self): # x:947 y:100, x:618 y:382 _state_machine = OperatableStateMachine(outcomes=['finished', 'failed']) # Additional creation code can be added inside the following tags # [MANUAL_CREATE] # [/MANUAL_CREATE] with _state_machine: # x:212 y:48 OperatableStateMachine.add('multiple cups pour behavior using containers', self.use_behavior(multiplecupspourbehaviorusingcontainersSM, 'multiple cups pour behavior using containers'), transitions={'finished': 'finished', 'failed': 'failed'}, autonomy={'finished': Autonomy.Inherit, 'failed': Autonomy.Inherit}) return _state_machine # Private functions can be added inside the following tags # [MANUAL_FUNC] # [/MANUAL_FUNC]
python
import numpy as np a = input("enter the matrix with ; after each row : ") m =np.matrix(a) b = input("enter the matrix 2 with row matching with matrix 1 : ") n =np.matrix(b) print(m) print(n) m3 = np.dot(m,n) print(m3)
python
#//////////////#####/////////////// # # ANU u6325688 Yangyang Xu # Supervisor: Dr.Penny Kyburz # SPP used in this scrip is adopted some methods from : # https://github.com/yueruchen/sppnet-pytorch/blob/master/cnn_with_spp.py #//////////////#####/////////////// """ Policy Generator """ import torch.nn as nn from GAIL.SPP import SPP from commons.DataInfo import DataInfo from torch.distributions import Categorical import torch.nn.functional as F import torch from torch.distributions import Normal, Beta device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class Generator(nn.Module): def __init__(self, datainfo:DataInfo): super(Generator, self).__init__() self.inChannel = datainfo.generatorIn #state space size self.outChannel = datainfo.generatorOut #action space size self.maxAction = datainfo.maxAction self.criticScore = 0 self.hidden = torch.nn.Linear(self.inChannel, self.inChannel*2) self.out = torch.nn.Linear(self.inChannel*2, self.outChannel) def forward(self, input): mid = self.hidden(input) hOut = F.sigmoid(mid) out = self.out(hOut) # Critic's criticFC = nn.Linear(self.outChannel, 1).to(device) self.criticScore = criticFC(mid) # Generator's actionDistribution = self.softmax(out) action = (actionDistribution).argmax(1) for x in range(actionDistribution.shape[0]): if sum(actionDistribution[x]) == 0: actionDistribution[x]= actionDistribution[x] + 1e-8 tmp = Categorical(actionDistribution) actionDistribution = tmp.log_prob(action) entropy = tmp.entropy() return actionDistribution, action.detach(), entropy
python
#!/usr/bin/env python3 from __future__ import print_function import sys import os import time sys.path.append('..') import childmgt.ChildMgt def create_children(num_children=5): for child_num in range(0, num_children): child_pid = os.fork() if child_pid == 0: time.sleep(3) sys.exit(0) for child_num in range(0, num_children): child_pid = os.fork() if child_pid == 0: time.sleep(3) sys.exit(1) def main(): result = 0 create_children() yyy = childmgt.ChildMgt.ChildMgt() print("Checking Count Zombies=",yyy.countZombiedChild()) print("Sleeping wait for children to exit.") time.sleep(30) print("back from sleep") print("Count Zombies=",yyy.countZombiedChild()) print("Reaping Status.") child_status = yyy.reapZombieChildStatus() for key in child_status.keys(): if os.WIFEXITED(child_status[key]) is True: print("pid:", key, "status:",os.WEXITSTATUS(child_status[key])) else: print("pid:", key, "status:",child_status[key]) print("Child status: ",child_status) print("Sleeping for 120 seconds") time.sleep(120) return result if __name__ == "__main__": result = main() sys.exit(result)
python
#!/usr/bin/env python import rospy from week2.srv import roboCmd, roboCmdResponse import math as np class Unicycle: def __init__(self, x, y, theta, dt=0.05): self.x = x self.y = y self.theta = theta self.dt = dt self.x_points = [self.x] self.y_points = [self.y] def step(self, v, w, n=50): for i in range(n): self.theta += w*self.dt # angle = angle + angular_velociy * delta self.x += v*np.cos(self.theta)*self.dt # X = X + horizontal_velocity * delta self.y += v*np.sin(self.theta)*self.dt # Y = Y + vertical_velocity * delta self.x_points.append(self.x) self.y_points.append(self.y) return self.x_points, self.y_points def handle_return_traj(req): uni = Unicycle(req.x, req.y, req.theta) resp = uni.step(req.v, req.w) return roboCmdResponse(resp[0], resp[1]) def return_traj_server(): rospy.init_node('return_traj_server') s = rospy.Service('return_traj', roboCmd, handle_return_traj) rospy.loginfo('Available to return Trajectory') rospy.spin() if __name__ == "__main__": return_traj_server()
python
# vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4 """ Get Jc, RA, etc from measured parameter DB BB, 2015 """ import sqlite3 import numpy as np import matplotlib.pyplot as plt # display units unit_i = 1e-6 # uA unit_v = 1e-6 # uV unit_r = 1 # Ohm unit_i1 = 1e-3 # mA; control I unit_v1 = 1e-3 # mV; control V unit_h = 10 # mT def setplotparams(): plt.rcParams['font.size'] = 12 plt.rcParams['axes.labelsize'] = 14 plt.rcParams['legend.fontsize'] = 12 plt.rcParams['legend.frameon'] = False def plot_svjj(filenames, **kwargs): whichplot = kwargs('whichplot', 'hic') if whichplot == 'hic': # H vs Ic ix = 1; iy = 3 #for fn = in filenames: # data = np.loadtxt(filename, class LinFitSVJJ(): def __init__(self, filename='svjj.db'): self.conn = sqlite3.connect(filename) self.c = self.conn.cursor() setplotparams() def get_area(self, row): if row[0] == 'circle': return np.pi*row[1]**2/4 elif row[0] == 'ellipse': return np.pi*row[1]*row[2]/4 elif row[0] == 'rectangle': return row[1]*row[2] def select_chip(self, wafer, chip): self.c.execute(''' SELECT shape.shape, shape.dim1, shape.dim2, josephson.ic_p, josephson.ic_ap, josephson.r_p, josephson.r_ap FROM shape JOIN josephson ON shape.wafer=josephson.wafer AND shape.chip=josephson.chip AND shape.device=josephson.device''') self.chipdata = self.c.fetchall() self.areas = [] self.ic_p = [] self.ic_ap = [] self.r_p = [] for row in self.chipdata: self.areas += [self.get_area(row)] self.ic_p += [row[3]] self.ic_ap += [row[4]] self.r_p += [row[5]] def print_chip(self): print(self.chipdata) def plot_chip(self): fig = plt.figure(0, (12,6)) # plot Ic's ax1 = fig.add_subplot(121) ax1.plot(self.areas, self.ic_p, 's') ax1.plot(self.areas, self.ic_ap, 'o') # plot R's ax2 = fig.add_subplot(122) ax2.plot(self.areas, 1/np.array(self.r_p), 's') print(self.ic_p) plt.show() # main shell interface (run SVJJDBInteract class) def app(argv): """Execute in system shell """ if len(argv) < 2: print("Usage: python %s <command> <table>\n" " <command>: print, insert, delete, or edit\n" " <table>: barrier, shape, or josephson\n" % argv[0]) sys.exit(0) db = SVJJDBInteract() methodname = argv[1] print(argv[2:]) getattr(db, methodname)(*argv[2:]) db.close() print('Bye!') def test(argv): lf = LinFitSVJJ() lf.select_chip('B150323a', '56') lf.print_chip() lf.plot_chip() if __name__ == '__main__': import sys print(sys.version) test(sys.argv) print('Bye!')
python
# # PySNMP MIB module ZHONE-COM-IP-DHCP-SERVER-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ZHONE-COM-IP-DHCP-SERVER-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 21:40:42 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, SingleValueConstraint, ConstraintsUnion, ValueRangeConstraint, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "SingleValueConstraint", "ConstraintsUnion", "ValueRangeConstraint", "ValueSizeConstraint") InterfaceIndex, = mibBuilder.importSymbols("IF-MIB", "InterfaceIndex") SnmpAdminString, = mibBuilder.importSymbols("SNMP-FRAMEWORK-MIB", "SnmpAdminString") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") sysObjectID, = mibBuilder.importSymbols("SNMPv2-MIB", "sysObjectID") ModuleIdentity, Counter64, Counter32, IpAddress, ObjectIdentity, Integer32, Gauge32, MibScalar, MibTable, MibTableRow, MibTableColumn, TimeTicks, iso, Bits, MibIdentifier, Unsigned32, NotificationType = mibBuilder.importSymbols("SNMPv2-SMI", "ModuleIdentity", "Counter64", "Counter32", "IpAddress", "ObjectIdentity", "Integer32", "Gauge32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "TimeTicks", "iso", "Bits", "MibIdentifier", "Unsigned32", "NotificationType") TruthValue, TextualConvention, DisplayString, PhysAddress = mibBuilder.importSymbols("SNMPv2-TC", "TruthValue", "TextualConvention", "DisplayString", "PhysAddress") cardPostResults, cardMfgSerialNumber = mibBuilder.importSymbols("ZHONE-CARD-RESOURCES-MIB", "cardPostResults", "cardMfgSerialNumber") ZhoneRDIndex, rdEntry = mibBuilder.importSymbols("ZHONE-COM-IP-RD-MIB", "ZhoneRDIndex", "rdEntry") ipIfAddr, ipIfLgId, ipIfVpi, ipIfVci = mibBuilder.importSymbols("ZHONE-COM-IP-REC-MIB", "ipIfAddr", "ipIfLgId", "ipIfVpi", "ipIfVci") zhoneShelfNumber, pportNumber, zhoneSlotNumber, subPortNumber = mibBuilder.importSymbols("ZHONE-INTERFACE-TRANSLATION-MIB", "zhoneShelfNumber", "pportNumber", "zhoneSlotNumber", "subPortNumber") zhoneSysCardSwSpecificVers, = mibBuilder.importSymbols("ZHONE-SYSTEM-MIB", "zhoneSysCardSwSpecificVers") zhoneModules, zhoneIp = mibBuilder.importSymbols("Zhone", "zhoneModules", "zhoneIp") ZhoneShelfValue, ZhoneRowStatus, ZhoneFileName, ZhoneSlotValue, ZhoneAdminString = mibBuilder.importSymbols("Zhone-TC", "ZhoneShelfValue", "ZhoneRowStatus", "ZhoneFileName", "ZhoneSlotValue", "ZhoneAdminString") comIpDhcpServer = ModuleIdentity((1, 3, 6, 1, 4, 1, 5504, 6, 61)) comIpDhcpServer.setRevisions(('2003-09-10 10:47', '2003-04-18 10:10', '2000-12-03 14:00', '2000-11-28 15:00', '2000-12-05 12:11', '2000-10-02 12:05', '2000-09-15 16:50', '2000-09-11 15:41',)) if mibBuilder.loadTexts: comIpDhcpServer.setLastUpdated('200309101500Z') if mibBuilder.loadTexts: comIpDhcpServer.setOrganization('Zhone Technologies, Inc.') dhcpServer = ObjectIdentity((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11)) if mibBuilder.loadTexts: dhcpServer.setStatus('current') dhcpServerTraps = ObjectIdentity((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 0)) if mibBuilder.loadTexts: dhcpServerTraps.setStatus('current') dhcpTrapZhoneCpeDetected = NotificationType((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 0, 1)).setObjects(("ZHONE-INTERFACE-TRANSLATION-MIB", "zhoneShelfNumber"), ("ZHONE-INTERFACE-TRANSLATION-MIB", "zhoneSlotNumber"), ("ZHONE-INTERFACE-TRANSLATION-MIB", "pportNumber"), ("ZHONE-INTERFACE-TRANSLATION-MIB", "subPortNumber"), ("ZHONE-COM-IP-REC-MIB", "ipIfVpi"), ("ZHONE-COM-IP-REC-MIB", "ipIfVci"), ("ZHONE-COM-IP-REC-MIB", "ipIfLgId"), ("ZHONE-COM-IP-DHCP-SERVER-MIB", "dhcpTrapZhoneCpeSysObjectID"), ("ZHONE-CARD-RESOURCES-MIB", "cardMfgSerialNumber"), ("ZHONE-CARD-RESOURCES-MIB", "cardPostResults"), ("ZHONE-SYSTEM-MIB", "zhoneSysCardSwSpecificVers"), ("ZHONE-COM-IP-REC-MIB", "ipIfAddr")) if mibBuilder.loadTexts: dhcpTrapZhoneCpeDetected.setStatus('current') dhcpTrapZhoneCpeSysObjectID = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 0, 2), ObjectIdentifier()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: dhcpTrapZhoneCpeSysObjectID.setStatus('current') dhcpTrapZhoneIpAddressUpdate = NotificationType((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 0, 3)).setObjects(("ZHONE-COM-IP-DHCP-SERVER-MIB", "dhcpTrapZhoneIpInterfaceIndex"), ("ZHONE-COM-IP-REC-MIB", "ipIfAddr")) if mibBuilder.loadTexts: dhcpTrapZhoneIpAddressUpdate.setStatus('current') dhcpTrapZhoneIpInterfaceIndex = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 0, 4), InterfaceIndex()).setMaxAccess("accessiblefornotify") if mibBuilder.loadTexts: dhcpTrapZhoneIpInterfaceIndex.setStatus('current') dhcpServerDefaultLeaseTime = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpServerDefaultLeaseTime.setStatus('current') dhcpServerDefaultMinLeaseTime = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpServerDefaultMinLeaseTime.setStatus('current') dhcpServerDefaultMaxLeaseTime = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpServerDefaultMaxLeaseTime.setStatus('current') dhcpServerDefaultReserveStart = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 4), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpServerDefaultReserveStart.setStatus('current') dhcpServerDefaultReserveEnd = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpServerDefaultReserveEnd.setStatus('current') dhcpServerLeaseTable = MibTable((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 6), ) if mibBuilder.loadTexts: dhcpServerLeaseTable.setStatus('current') dhcpServerLeaseEntry = MibTableRow((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 6, 1), ).setIndexNames((0, "ZHONE-COM-IP-DHCP-SERVER-MIB", "dhcpLeaseDomain"), (0, "ZHONE-COM-IP-DHCP-SERVER-MIB", "dhcpLeaseIpAddress")) if mibBuilder.loadTexts: dhcpServerLeaseEntry.setStatus('current') dhcpLeaseDomain = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 6, 1, 1), ZhoneRDIndex()) if mibBuilder.loadTexts: dhcpLeaseDomain.setStatus('current') dhcpLeaseIpAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 6, 1, 2), IpAddress()) if mibBuilder.loadTexts: dhcpLeaseIpAddress.setStatus('current') dhcpLeaseStarts = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 6, 1, 3), Unsigned32()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpLeaseStarts.setStatus('current') dhcpLeaseEnds = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 6, 1, 4), Unsigned32()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpLeaseEnds.setStatus('current') dhcpLeaseHardwareAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 6, 1, 5), PhysAddress().subtype(subtypeSpec=ValueSizeConstraint(0, 16)).clone(hexValue="0000")).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpLeaseHardwareAddress.setStatus('current') dhcpLeaseFlags = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 6, 1, 6), Bits().clone(namedValues=NamedValues(("static", 0), ("bootp", 1), ("unused2", 2), ("unused3", 3), ("abandoned", 4), ("zhoneCPE", 5)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpLeaseFlags.setStatus('current') dhcpLeaseClientId = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 6, 1, 7), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 255))).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpLeaseClientId.setStatus('current') dhcpLeaseClientHostname = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 6, 1, 8), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(0, 127))).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpLeaseClientHostname.setStatus('current') dhcpLeaseHostname = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 6, 1, 9), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(0, 127))).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpLeaseHostname.setStatus('current') dhcpLeaseDDNSFwdName = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 6, 1, 10), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(0, 127))).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpLeaseDDNSFwdName.setStatus('current') dhcpLeaseDDNSRevName = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 6, 1, 11), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(0, 127))).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpLeaseDDNSRevName.setStatus('current') dhcpLeaseRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 6, 1, 12), ZhoneRowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpLeaseRowStatus.setStatus('current') dhcpServerNextGroupIndex = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 7), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))).setMaxAccess("readonly") if mibBuilder.loadTexts: dhcpServerNextGroupIndex.setStatus('current') dhcpServerGroupTable = MibTable((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 8), ) if mibBuilder.loadTexts: dhcpServerGroupTable.setStatus('current') dhcpServerGroupEntry = MibTableRow((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 8, 1), ).setIndexNames((0, "ZHONE-COM-IP-DHCP-SERVER-MIB", "dhcpGroupIndex")) if mibBuilder.loadTexts: dhcpServerGroupEntry.setStatus('current') dhcpGroupIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 8, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))) if mibBuilder.loadTexts: dhcpGroupIndex.setStatus('current') dhcpGroupName = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 8, 1, 2), ZhoneAdminString()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpGroupName.setStatus('current') dhcpGroupDomain = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 8, 1, 3), ZhoneRDIndex()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpGroupDomain.setStatus('current') dhcpGroupVendorMatchString = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 8, 1, 4), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 255))).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpGroupVendorMatchString.setStatus('current') dhcpGroupVendorMatchOffset = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 8, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpGroupVendorMatchOffset.setStatus('current') dhcpGroupVendorMatchLength = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 8, 1, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 255)).clone(-1)).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpGroupVendorMatchLength.setStatus('current') dhcpGroupClientMatchString = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 8, 1, 7), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 255))).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpGroupClientMatchString.setStatus('current') dhcpGroupClientMatchOffset = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 8, 1, 8), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpGroupClientMatchOffset.setStatus('current') dhcpGroupClientMatchLength = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 8, 1, 9), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 255)).clone(-1)).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpGroupClientMatchLength.setStatus('current') dhcpGroupRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 8, 1, 10), ZhoneRowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpGroupRowStatus.setStatus('current') dhcpServerGroupOptionTable = MibTable((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 9), ) if mibBuilder.loadTexts: dhcpServerGroupOptionTable.setStatus('current') dhcpServerGroupOptionEntry = MibTableRow((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 9, 1), ) dhcpServerGroupEntry.registerAugmentions(("ZHONE-COM-IP-DHCP-SERVER-MIB", "dhcpServerGroupOptionEntry")) dhcpServerGroupOptionEntry.setIndexNames(*dhcpServerGroupEntry.getIndexNames()) if mibBuilder.loadTexts: dhcpServerGroupOptionEntry.setStatus('current') dhcpGroupOptionDefaultLeaseTime = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 9, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 2147483647))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpGroupOptionDefaultLeaseTime.setStatus('current') dhcpGroupOptionMinLeaseTime = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 9, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 2147483647))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpGroupOptionMinLeaseTime.setStatus('current') dhcpGroupOptionMaxLeaseTime = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 9, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 2147483647))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpGroupOptionMaxLeaseTime.setStatus('current') dhcpGroupOptionBootFile = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 9, 1, 4), ZhoneFileName()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpGroupOptionBootFile.setStatus('current') dhcpGroupOptionBootServer = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 9, 1, 5), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpGroupOptionBootServer.setStatus('current') dhcpGroupOptionDefaultRouter = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 9, 1, 6), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpGroupOptionDefaultRouter.setStatus('current') dhcpGroupOptionPrimaryNameServer = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 9, 1, 7), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpGroupOptionPrimaryNameServer.setStatus('current') dhcpGroupOptionSecondaryNameServer = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 9, 1, 8), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpGroupOptionSecondaryNameServer.setStatus('current') dhcpGroupOptionDomainName = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 9, 1, 9), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(0, 127))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpGroupOptionDomainName.setStatus('current') dhcpServerNextSubnetIndex = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 10), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))).setMaxAccess("readonly") if mibBuilder.loadTexts: dhcpServerNextSubnetIndex.setStatus('current') dhcpServerSubnetTable = MibTable((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11), ) if mibBuilder.loadTexts: dhcpServerSubnetTable.setStatus('current') dhcpServerSubnetEntry = MibTableRow((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1), ).setIndexNames((0, "ZHONE-COM-IP-DHCP-SERVER-MIB", "dhcpSubnetIndex")) if mibBuilder.loadTexts: dhcpServerSubnetEntry.setStatus('current') dhcpSubnetIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))) if mibBuilder.loadTexts: dhcpSubnetIndex.setStatus('current') dhcpSubnetNetwork = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1, 2), IpAddress()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpSubnetNetwork.setStatus('current') dhcpSubnetNetmask = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1, 3), IpAddress()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpSubnetNetmask.setStatus('current') dhcpSubnetDomain = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1, 4), ZhoneRDIndex()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpSubnetDomain.setStatus('current') dhcpSubnetRange1Start = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1, 5), IpAddress()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpSubnetRange1Start.setStatus('current') dhcpSubnetRange1End = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1, 6), IpAddress()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpSubnetRange1End.setStatus('current') dhcpSubnetRange2Start = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1, 7), IpAddress().clone(hexValue="00000000")).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpSubnetRange2Start.setStatus('current') dhcpSubnetRange2End = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1, 8), IpAddress().clone(hexValue="00000000")).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpSubnetRange2End.setStatus('current') dhcpSubnetRange3Start = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1, 9), IpAddress().clone(hexValue="00000000")).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpSubnetRange3Start.setStatus('current') dhcpSubnetRange3End = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1, 10), IpAddress().clone(hexValue="00000000")).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpSubnetRange3End.setStatus('current') dhcpSubnetRange4Start = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1, 11), IpAddress().clone(hexValue="00000000")).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpSubnetRange4Start.setStatus('current') dhcpSubnetRange4End = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1, 12), IpAddress().clone(hexValue="00000000")).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpSubnetRange4End.setStatus('current') dhcpSubnetRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1, 13), ZhoneRowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpSubnetRowStatus.setStatus('current') dhcpSubnetGroup2 = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1, 14), Integer32().clone(0)).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpSubnetGroup2.setStatus('current') dhcpStickyAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1, 15), TruthValue().clone(1)).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpStickyAddr.setStatus('current') dhcpSubnetExternalServer = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1, 16), IpAddress().clone(hexValue="00000000")).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpSubnetExternalServer.setStatus('current') dhcpSubnetExternalServerAlt = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 11, 1, 17), IpAddress().clone(hexValue="00000000")).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpSubnetExternalServerAlt.setStatus('current') dhcpServerSubnetOptionTable = MibTable((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 12), ) if mibBuilder.loadTexts: dhcpServerSubnetOptionTable.setStatus('current') dhcpServerSubnetOptionEntry = MibTableRow((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 12, 1), ) dhcpServerSubnetEntry.registerAugmentions(("ZHONE-COM-IP-DHCP-SERVER-MIB", "dhcpServerSubnetOptionEntry")) dhcpServerSubnetOptionEntry.setIndexNames(*dhcpServerSubnetEntry.getIndexNames()) if mibBuilder.loadTexts: dhcpServerSubnetOptionEntry.setStatus('current') dhcpSubnetOptionDefaultLeaseTime = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 12, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 2147483647))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpSubnetOptionDefaultLeaseTime.setStatus('current') dhcpSubnetOptionMinLeaseTime = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 12, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 2147483647))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpSubnetOptionMinLeaseTime.setStatus('current') dhcpSubnetOptionMaxLeaseTime = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 12, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 2147483647))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpSubnetOptionMaxLeaseTime.setStatus('current') dhcpSubnetOptionBootFile = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 12, 1, 4), ZhoneFileName()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpSubnetOptionBootFile.setStatus('current') dhcpSubnetOptionBootServer = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 12, 1, 5), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpSubnetOptionBootServer.setStatus('current') dhcpSubnetOptionDefaultRouter = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 12, 1, 6), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpSubnetOptionDefaultRouter.setStatus('current') dhcpSubnetOptionPrimaryNameServer = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 12, 1, 7), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpSubnetOptionPrimaryNameServer.setStatus('current') dhcpSubnetOptionSecondaryNameServer = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 12, 1, 8), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpSubnetOptionSecondaryNameServer.setStatus('current') dhcpSubnetOptionDomainName = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 12, 1, 9), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(0, 127))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpSubnetOptionDomainName.setStatus('current') dhcpServerNextHostIndex = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 13), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))).setMaxAccess("readonly") if mibBuilder.loadTexts: dhcpServerNextHostIndex.setStatus('current') dhcpServerHostTable = MibTable((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 14), ) if mibBuilder.loadTexts: dhcpServerHostTable.setStatus('current') dhcpServerHostEntry = MibTableRow((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 14, 1), ).setIndexNames((0, "ZHONE-COM-IP-DHCP-SERVER-MIB", "dhcpHostIndex")) if mibBuilder.loadTexts: dhcpServerHostEntry.setStatus('current') dhcpHostIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 14, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))) if mibBuilder.loadTexts: dhcpHostIndex.setStatus('current') dhcpHostHostname = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 14, 1, 2), ZhoneAdminString()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpHostHostname.setStatus('current') dhcpHostDomain = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 14, 1, 3), ZhoneRDIndex()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpHostDomain.setStatus('current') dhcpHostHardwareAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 14, 1, 4), PhysAddress().subtype(subtypeSpec=ValueSizeConstraint(0, 16)).clone(hexValue="0000")).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpHostHardwareAddress.setStatus('current') dhcpHostClientId = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 14, 1, 5), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 127))).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpHostClientId.setStatus('current') dhcpHostIpAddress1 = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 14, 1, 6), IpAddress().clone(hexValue="00000000")).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpHostIpAddress1.setStatus('current') dhcpHostIpAddress2 = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 14, 1, 7), IpAddress().clone(hexValue="00000000")).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpHostIpAddress2.setStatus('current') dhcpHostIpAddress3 = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 14, 1, 8), IpAddress().clone(hexValue="00000000")).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpHostIpAddress3.setStatus('current') dhcpHostIpAddress4 = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 14, 1, 9), IpAddress().clone(hexValue="00000000")).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpHostIpAddress4.setStatus('current') dhcpHostRowStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 14, 1, 10), ZhoneRowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dhcpHostRowStatus.setStatus('current') dhcpServerHostOptionTable = MibTable((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 15), ) if mibBuilder.loadTexts: dhcpServerHostOptionTable.setStatus('current') dhcpServerHostOptionEntry = MibTableRow((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 15, 1), ) dhcpServerHostEntry.registerAugmentions(("ZHONE-COM-IP-DHCP-SERVER-MIB", "dhcpServerHostOptionEntry")) dhcpServerHostOptionEntry.setIndexNames(*dhcpServerHostEntry.getIndexNames()) if mibBuilder.loadTexts: dhcpServerHostOptionEntry.setStatus('current') dhcpHostOptionDefaultLeaseTime = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 15, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 2147483647))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpHostOptionDefaultLeaseTime.setStatus('current') dhcpHostOptionMinLeaseTime = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 15, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 2147483647))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpHostOptionMinLeaseTime.setStatus('current') dhcpHostOptionMaxLeaseTime = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 15, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(-1, 2147483647))).setUnits('seconds').setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpHostOptionMaxLeaseTime.setStatus('current') dhcpHostOptionBootFile = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 15, 1, 4), ZhoneFileName()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpHostOptionBootFile.setStatus('current') dhcpHostOptionBootServer = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 15, 1, 5), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpHostOptionBootServer.setStatus('current') dhcpHostOptionDefaultRouter = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 15, 1, 6), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpHostOptionDefaultRouter.setStatus('current') dhcpHostOptionPrimaryNameServer = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 15, 1, 7), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpHostOptionPrimaryNameServer.setStatus('current') dhcpHostOptionSecondaryNameServer = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 15, 1, 8), IpAddress()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpHostOptionSecondaryNameServer.setStatus('current') dhcpHostOptionDomainName = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 15, 1, 9), SnmpAdminString().subtype(subtypeSpec=ValueSizeConstraint(0, 127))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpHostOptionDomainName.setStatus('current') dhcpServerStatistics = ObjectIdentity((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16)) if mibBuilder.loadTexts: dhcpServerStatistics.setStatus('current') serverSystem = ObjectIdentity((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 1)) if mibBuilder.loadTexts: serverSystem.setStatus('current') serverSystemDescr = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 1, 1), ZhoneAdminString()).setMaxAccess("readonly") if mibBuilder.loadTexts: serverSystemDescr.setStatus('current') serverSystemObjectID = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 1, 2), ObjectIdentifier()).setMaxAccess("readonly") if mibBuilder.loadTexts: serverSystemObjectID.setStatus('current') serverUptime = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 1, 3), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: serverUptime.setStatus('current') serverActiveShelf = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 1, 4), ZhoneShelfValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: serverActiveShelf.setStatus('current') serverActiveSlot = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 1, 5), ZhoneSlotValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: serverActiveSlot.setStatus('current') serverStandbyShelf = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 1, 6), ZhoneShelfValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: serverStandbyShelf.setStatus('current') serverStandbySlot = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 1, 7), ZhoneSlotValue()).setMaxAccess("readonly") if mibBuilder.loadTexts: serverStandbySlot.setStatus('current') bootpCountersTable = MibTable((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 2), ) if mibBuilder.loadTexts: bootpCountersTable.setStatus('current') bootpCountersEntry = MibTableRow((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 2, 1), ) rdEntry.registerAugmentions(("ZHONE-COM-IP-DHCP-SERVER-MIB", "bootpCountersEntry")) bootpCountersEntry.setIndexNames(*rdEntry.getIndexNames()) if mibBuilder.loadTexts: bootpCountersEntry.setStatus('current') bootpCountRequests = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 2, 1, 1), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bootpCountRequests.setStatus('current') bootpCountInvalids = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 2, 1, 2), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bootpCountInvalids.setStatus('current') bootpCountReplies = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 2, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bootpCountReplies.setStatus('current') bootpCountDroppedUnknownClients = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 2, 1, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bootpCountDroppedUnknownClients.setStatus('current') bootpCountDroppedNotServingSubnet = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 2, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: bootpCountDroppedNotServingSubnet.setStatus('current') dhcpCountersTable = MibTable((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 3), ) if mibBuilder.loadTexts: dhcpCountersTable.setStatus('current') dhcpCountersEntry = MibTableRow((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 3, 1), ) rdEntry.registerAugmentions(("ZHONE-COM-IP-DHCP-SERVER-MIB", "dhcpCountersEntry")) dhcpCountersEntry.setIndexNames(*rdEntry.getIndexNames()) if mibBuilder.loadTexts: dhcpCountersEntry.setStatus('current') dhcpCountDiscovers = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 3, 1, 1), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dhcpCountDiscovers.setStatus('current') dhcpCountRequests = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 3, 1, 2), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dhcpCountRequests.setStatus('current') dhcpCountReleases = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 3, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dhcpCountReleases.setStatus('current') dhcpCountDeclines = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 3, 1, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dhcpCountDeclines.setStatus('current') dhcpCountInforms = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 3, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dhcpCountInforms.setStatus('current') dhcpCountInvalids = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 3, 1, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dhcpCountInvalids.setStatus('current') dhcpCountOffers = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 3, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dhcpCountOffers.setStatus('current') dhcpCountAcks = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 3, 1, 8), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dhcpCountAcks.setStatus('current') dhcpCountNacks = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 3, 1, 9), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dhcpCountNacks.setStatus('current') dhcpCountDroppedUnknownClient = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 3, 1, 10), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dhcpCountDroppedUnknownClient.setStatus('current') dhcpCountDroppedNotServingSubnet = MibTableColumn((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 16, 3, 1, 11), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dhcpCountDroppedNotServingSubnet.setStatus('current') dhcpServerConfigurationVersion = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 17), Unsigned32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpServerConfigurationVersion.setStatus('deprecated') dhcpServerRestart = MibScalar((1, 3, 6, 1, 4, 1, 5504, 4, 1, 11, 18), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("true", 1), ("false", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dhcpServerRestart.setStatus('current') mibBuilder.exportSymbols("ZHONE-COM-IP-DHCP-SERVER-MIB", dhcpGroupOptionMinLeaseTime=dhcpGroupOptionMinLeaseTime, dhcpSubnetRange3Start=dhcpSubnetRange3Start, dhcpSubnetExternalServer=dhcpSubnetExternalServer, dhcpGroupVendorMatchString=dhcpGroupVendorMatchString, dhcpSubnetOptionBootFile=dhcpSubnetOptionBootFile, dhcpSubnetRange1End=dhcpSubnetRange1End, dhcpServerGroupTable=dhcpServerGroupTable, serverActiveShelf=serverActiveShelf, dhcpServer=dhcpServer, bootpCountDroppedNotServingSubnet=bootpCountDroppedNotServingSubnet, dhcpGroupClientMatchString=dhcpGroupClientMatchString, dhcpGroupOptionSecondaryNameServer=dhcpGroupOptionSecondaryNameServer, dhcpSubnetRange1Start=dhcpSubnetRange1Start, dhcpHostOptionDefaultRouter=dhcpHostOptionDefaultRouter, serverSystemObjectID=serverSystemObjectID, dhcpSubnetNetmask=dhcpSubnetNetmask, dhcpGroupClientMatchOffset=dhcpGroupClientMatchOffset, dhcpGroupIndex=dhcpGroupIndex, dhcpServerDefaultReserveStart=dhcpServerDefaultReserveStart, dhcpGroupVendorMatchOffset=dhcpGroupVendorMatchOffset, dhcpCountersTable=dhcpCountersTable, dhcpServerNextGroupIndex=dhcpServerNextGroupIndex, dhcpHostOptionBootServer=dhcpHostOptionBootServer, dhcpHostOptionPrimaryNameServer=dhcpHostOptionPrimaryNameServer, dhcpTrapZhoneIpAddressUpdate=dhcpTrapZhoneIpAddressUpdate, dhcpServerTraps=dhcpServerTraps, dhcpLeaseIpAddress=dhcpLeaseIpAddress, dhcpSubnetRange4End=dhcpSubnetRange4End, dhcpSubnetRange2End=dhcpSubnetRange2End, dhcpHostDomain=dhcpHostDomain, dhcpLeaseHardwareAddress=dhcpLeaseHardwareAddress, dhcpLeaseRowStatus=dhcpLeaseRowStatus, bootpCountersEntry=bootpCountersEntry, dhcpHostOptionMinLeaseTime=dhcpHostOptionMinLeaseTime, PYSNMP_MODULE_ID=comIpDhcpServer, dhcpServerGroupOptionEntry=dhcpServerGroupOptionEntry, dhcpGroupRowStatus=dhcpGroupRowStatus, dhcpSubnetOptionSecondaryNameServer=dhcpSubnetOptionSecondaryNameServer, dhcpSubnetOptionDefaultLeaseTime=dhcpSubnetOptionDefaultLeaseTime, dhcpServerSubnetOptionEntry=dhcpServerSubnetOptionEntry, dhcpSubnetRange4Start=dhcpSubnetRange4Start, dhcpSubnetOptionBootServer=dhcpSubnetOptionBootServer, dhcpLeaseDDNSFwdName=dhcpLeaseDDNSFwdName, dhcpSubnetNetwork=dhcpSubnetNetwork, dhcpCountOffers=dhcpCountOffers, comIpDhcpServer=comIpDhcpServer, dhcpGroupVendorMatchLength=dhcpGroupVendorMatchLength, dhcpGroupOptionDefaultLeaseTime=dhcpGroupOptionDefaultLeaseTime, dhcpServerRestart=dhcpServerRestart, dhcpSubnetExternalServerAlt=dhcpSubnetExternalServerAlt, dhcpHostIpAddress4=dhcpHostIpAddress4, dhcpServerConfigurationVersion=dhcpServerConfigurationVersion, dhcpGroupName=dhcpGroupName, dhcpTrapZhoneCpeDetected=dhcpTrapZhoneCpeDetected, dhcpSubnetOptionMinLeaseTime=dhcpSubnetOptionMinLeaseTime, dhcpServerNextSubnetIndex=dhcpServerNextSubnetIndex, dhcpSubnetIndex=dhcpSubnetIndex, dhcpServerDefaultMinLeaseTime=dhcpServerDefaultMinLeaseTime, bootpCountDroppedUnknownClients=bootpCountDroppedUnknownClients, dhcpServerLeaseEntry=dhcpServerLeaseEntry, serverSystemDescr=serverSystemDescr, dhcpServerDefaultReserveEnd=dhcpServerDefaultReserveEnd, dhcpGroupOptionDomainName=dhcpGroupOptionDomainName, dhcpGroupOptionMaxLeaseTime=dhcpGroupOptionMaxLeaseTime, dhcpServerSubnetTable=dhcpServerSubnetTable, dhcpLeaseClientHostname=dhcpLeaseClientHostname, dhcpHostIpAddress2=dhcpHostIpAddress2, dhcpServerSubnetEntry=dhcpServerSubnetEntry, dhcpLeaseEnds=dhcpLeaseEnds, dhcpSubnetOptionMaxLeaseTime=dhcpSubnetOptionMaxLeaseTime, dhcpSubnetGroup2=dhcpSubnetGroup2, dhcpGroupClientMatchLength=dhcpGroupClientMatchLength, dhcpCountNacks=dhcpCountNacks, dhcpHostOptionDomainName=dhcpHostOptionDomainName, dhcpTrapZhoneCpeSysObjectID=dhcpTrapZhoneCpeSysObjectID, serverActiveSlot=serverActiveSlot, dhcpSubnetRowStatus=dhcpSubnetRowStatus, dhcpServerNextHostIndex=dhcpServerNextHostIndex, dhcpServerLeaseTable=dhcpServerLeaseTable, dhcpStickyAddr=dhcpStickyAddr, dhcpSubnetOptionPrimaryNameServer=dhcpSubnetOptionPrimaryNameServer, dhcpCountReleases=dhcpCountReleases, dhcpTrapZhoneIpInterfaceIndex=dhcpTrapZhoneIpInterfaceIndex, dhcpSubnetRange2Start=dhcpSubnetRange2Start, dhcpServerSubnetOptionTable=dhcpServerSubnetOptionTable, bootpCountInvalids=bootpCountInvalids, dhcpGroupOptionPrimaryNameServer=dhcpGroupOptionPrimaryNameServer, dhcpHostIndex=dhcpHostIndex, dhcpHostOptionBootFile=dhcpHostOptionBootFile, dhcpHostClientId=dhcpHostClientId, dhcpHostOptionMaxLeaseTime=dhcpHostOptionMaxLeaseTime, dhcpLeaseDDNSRevName=dhcpLeaseDDNSRevName, serverStandbySlot=serverStandbySlot, dhcpHostHostname=dhcpHostHostname, dhcpServerGroupEntry=dhcpServerGroupEntry, dhcpServerDefaultLeaseTime=dhcpServerDefaultLeaseTime, dhcpHostOptionSecondaryNameServer=dhcpHostOptionSecondaryNameServer, serverUptime=serverUptime, dhcpServerDefaultMaxLeaseTime=dhcpServerDefaultMaxLeaseTime, dhcpGroupOptionDefaultRouter=dhcpGroupOptionDefaultRouter, bootpCountReplies=bootpCountReplies, dhcpServerHostOptionTable=dhcpServerHostOptionTable, dhcpHostRowStatus=dhcpHostRowStatus, dhcpHostHardwareAddress=dhcpHostHardwareAddress, dhcpCountDroppedUnknownClient=dhcpCountDroppedUnknownClient, dhcpHostIpAddress1=dhcpHostIpAddress1, dhcpHostIpAddress3=dhcpHostIpAddress3, dhcpServerHostOptionEntry=dhcpServerHostOptionEntry, dhcpCountAcks=dhcpCountAcks, dhcpServerGroupOptionTable=dhcpServerGroupOptionTable, serverSystem=serverSystem, dhcpGroupOptionBootServer=dhcpGroupOptionBootServer, bootpCountRequests=bootpCountRequests, dhcpSubnetDomain=dhcpSubnetDomain, dhcpCountRequests=dhcpCountRequests, dhcpCountInvalids=dhcpCountInvalids, dhcpSubnetOptionDefaultRouter=dhcpSubnetOptionDefaultRouter, dhcpLeaseFlags=dhcpLeaseFlags, dhcpLeaseDomain=dhcpLeaseDomain, dhcpCountDeclines=dhcpCountDeclines, dhcpGroupOptionBootFile=dhcpGroupOptionBootFile, dhcpLeaseStarts=dhcpLeaseStarts, dhcpHostOptionDefaultLeaseTime=dhcpHostOptionDefaultLeaseTime, dhcpServerHostTable=dhcpServerHostTable, dhcpGroupDomain=dhcpGroupDomain, dhcpLeaseClientId=dhcpLeaseClientId, dhcpSubnetRange3End=dhcpSubnetRange3End, dhcpSubnetOptionDomainName=dhcpSubnetOptionDomainName, dhcpLeaseHostname=dhcpLeaseHostname, dhcpCountersEntry=dhcpCountersEntry, dhcpCountDroppedNotServingSubnet=dhcpCountDroppedNotServingSubnet, serverStandbyShelf=serverStandbyShelf, bootpCountersTable=bootpCountersTable, dhcpCountDiscovers=dhcpCountDiscovers, dhcpCountInforms=dhcpCountInforms, dhcpServerStatistics=dhcpServerStatistics, dhcpServerHostEntry=dhcpServerHostEntry)
python
"""Implementation classes that are used as application configuration containers parsed from files. """ __author__ = 'Paul Landes' from typing import Dict, Set import logging import re import collections from zensols.persist import persisted from . import Configurable, ConfigurableError logger = logging.getLogger(__name__) class StringConfig(Configurable): """A simple string based configuration. This takes a single comma delimited key/value pair string in the format: ``<section>.<name>=<value>[,<section>.<name>=<value>,...]`` A dot (``.``) is used to separate the section from the option instead of a colon (``:``), as used in more sophisticaed interpolation in the :class:`configparser.ExtendedInterpolation`. The dot is used for this reason to make other section interpolation easier. """ KEY_VAL_REGEX = re.compile(r'^(?:([^.]+?)\.)?([^=]+?)=(.+)$') def __init__(self, config_str: str, option_sep: str = ',', default_section: str = None): """Initialize with a string given as described in the class docs. :param config_str: the configuration :param option_sep: the string used to delimit the section :param default_section: used as the default section when non given on the get methds such as :meth:`get_option` """ super().__init__(default_section) self.config_str = config_str self.option_sep = option_sep @persisted('_parsed_config') def _get_parsed_config(self) -> Dict[str, str]: """Parse the configuration string given in the initializer (see class docs). """ conf = collections.defaultdict(lambda: {}) for kv in self.config_str.split(self.option_sep): m = self.KEY_VAL_REGEX.match(kv) if m is None: raise ConfigurableError(f'unexpected format: {kv}') sec, name, value = m.groups() sec = self.default_section if sec is None else sec if logger.isEnabledFor(logging.DEBUG): logger.debug(f'section={sec}, name={name}, value={value}') conf[sec][name] = value return conf @property @persisted('_sections') def sections(self) -> Set[str]: return set(self._get_parsed_config().keys()) def has_option(self, name: str, section: str = None) -> bool: section = self.default_section if section is None else section return self._get_parsed_config(section)[name] def get_options(self, section: str = None) -> Dict[str, str]: section = self.default_section if section is None else section opts = self._get_parsed_config()[section] if opts is None: raise ConfigurableError(f'no section: {section}') return opts def __str__(self) -> str: return self.__class__.__name__ + ': config=' + self.config_str def __repr__(self) -> str: return f'<{self.__str__()}>'
python