content
stringlengths
0
894k
type
stringclasses
2 values
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import cv2 from test_utils.label_to_str_voc import convert_label_to_str def render_boxs_info_for_display(image, net_out, select_index, net_score, image_size, label_out = None): valid_box = net_out[select_index] valid_score = net_score[select_index] for index, value in enumerate(select_index): if net_score[index] > 0.5 and value == True: # if value == True: valid_box = net_out[index] valid_score = net_score[index] print("current box info is " + str(valid_box)) print("current box scores is " + str(valid_score)) if label_out is not None : print("current label is %s"%(convert_label_to_str(label_out[index]))) ymin = int(valid_box[0] * image_size) xmin = int(valid_box[1] * image_size) ymax = int(valid_box[2] * image_size) xmax = int(valid_box[3] * image_size) cv2.rectangle(image, (xmin, ymin), (xmax, ymax), thickness=1,color=(0,0,255)) return image def render_rectangle_box(image, box, colour = (255, 255, 255), offset = 0, thickness = 1): """ :param image: ้œ€่ฆๆ˜พ็คบ็š„ๅ›พ็‰‡ :param box: boxไฟกๆฏ :param colour: ้ขœ่‰ฒไฟกๆฏ :param offset: boxๅ็งป :param thickness: ็บฟๆกๅฎฝๅบฆ :return: """ height,width, channel = image.shape y_start = int(height * box[0]) + offset x_start = int(width * box[1]) + offset y_end = int(height * box[2]) + offset x_end = int(width * box[3]) + offset image = cv2.rectangle(image,(x_start,y_start), (x_end,y_end), color=colour, thickness= thickness) return image
python
import unittest import numpy as np from sca.analysis import nicv class TestNicvUnit(unittest.TestCase): def test_calculate_mean_x_given_y_matrix(self): """ Tests whether the calculations of means work properly""" traces = np.array([[1, 2, 3], [4, 5, 6], [7, 0.4, 9], [2, 3, 12]]) plain = np.array([[1], [2], [1], [2]]) keys = plain resulting_matrix = np.zeros((9, 3)) resulting_matrix[4] = [3.5, 2.6, 7.5] calculated_matrix = nicv.NICV.calculate_mean_x_given_y_matrix(plain, traces, 0, keys) print(calculated_matrix) self.assertTrue(np.allclose(calculated_matrix, resulting_matrix)) def test_calculate_single_nicv(self): """ Tests whether the calculation of a single nicv value works properly""" mean_x_given_y = np.array([[-0.01, 0.01, 0, 0.014]]) y = np.array([[0.1, -0.01, 0.03, 0.1]]) resulting_nicv = 0.03898876404494381 calculated_nicv = nicv.NICV.calculate_single_nicv(mean_x_given_y, y) self.assertAlmostEqual(calculated_nicv, resulting_nicv) def test_get_points_of_interest_indices(self): """ Tests if the point of interest selection works properly""" traces = np.array([[1, 2, 3], [4, 5, 6], [7, 0.4, 9], [2, 3, 12]]) plain = np.array([[1], [2], [1], [2]]) keys = plain resulting_points_of_interest_indices = [1, 2] calculated_points_of_interest_indices = nicv.NICV.get_points_of_interest_indices(plain, traces, 2, 0, keys) print(calculated_points_of_interest_indices) self.assertTrue(np.allclose(resulting_points_of_interest_indices, calculated_points_of_interest_indices)) def test_get_points_of_interest(self): """ Tests if the point of interest selection works properly""" traces = np.array([[1, 2, 3], [4, 5, 6], [7, 0.4, 9], [2, 3, 12]]) plain = np.array([[1], [2], [1], [2]]) keys = plain resulting_points_of_interest = [[2, 3], [5, 6], [0.4, 9], [3, 12]] calculated_points_of_interest = nicv.NICV.get_points_of_interest(plain, traces, 2, 0, keys) self.assertTrue(np.allclose(resulting_points_of_interest, calculated_points_of_interest))
python
# coding: utf-8 # In[ ]: import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn import tree get_ipython().run_line_magic('matplotlib', 'inline') # In[ ]: def maybe_load_loan_data(threshold=1, path='../input/loan.csv', force='n'): def load_data(): data = pd.read_csv(path, low_memory=False) t = len(data) / threshold data = data.dropna(thresh=t, axis=1) # Drop any column with more than 50% missing values return data # conditionally load the data try: if df.empty or force=='y': data = load_data() else: return df except: data = load_data() return data df = maybe_load_loan_data(2) # In[ ]: df.columns # In[ ]: def show_stats(df): print ("Number of records {}".format(len(df))) print ("Dataset Shape {}".format(df.shape)) sns.distplot(df['loan_amnt'].astype(int)) show_stats(df) # In[ ]: # Understand data correlations numeric_features = df.select_dtypes(include=[np.number]) print(numeric_features.describe()) categoricals = df.select_dtypes(exclude=[np.number]) print(categoricals.describe()) corr = numeric_features.corr() print (corr['loan_amnt'].sort_values(ascending=False)[:10], '\n') print (corr['loan_amnt'].sort_values(ascending=False)[-10:]) ''' move this to model evaluation section from sklearn.metrics import confusion_matrix confmat = confusion_matrix(y_true=y_test, y_pred=y_pred) print(confmat)''' # In[ ]: def show_dictionary(path='../input/LCDataDictionary.xlsx'): data_dictionary = pd.read_excel(path) print(data_dictionary.shape[0]) print(data_dictionary.columns.tolist()) data_dictionary.rename(columns={'Name': 'name', 'Description': 'description'}) return data_dictionary dict = show_dictionary() dict.set_index('LoanStatNew', inplace=True) dict.loc[:] # In[ ]: dict[categoricals] # In[ ]: from pandas.tools.plotting import scatter_matrix attributes = ['annual_inc','loan_amnt', 'revol_util', 'dti','open_acc','revol_bal','revol_util','total_rec_int' ] # 'recoveries','acc_now_delinq','delinq_2yrs','emp_length','int_rate','funded_amnt' scatter_matrix(df[attributes], figsize=(12,8)) # In[ ]: def print_data_shape(df): print ("No rows: {}".format(df.shape[0])) print ("No cols: {}".format(df.shape[1])) print (df.head(1).values) print ("Columns: " + df.columns) # In[ ]: def proc_emp_length(): df.replace('n/a', np.nan, inplace=True) df.emp_length.fillna(value=0, inplace=True) df['emp_length'].replace(to_replace='[^0-9]+', value='', inplace=True, regex=True) df['emp_length'] = df['emp_length'].astype(int) #df.emp_length.head() # In[ ]: df.revol_bal.head() #df.revol_util = pd.Series(df.revol_util).str.replace('%', '').astype(float) # In[ ]: print (df.emp_title.value_counts().head()) print (df.emp_title.value_counts().tail()) df.emp_title.unique().shape # In[ ]: df.verification_status.value_counts() # In[ ]: def proc_desc_len(): df['desc_lenght'] = df['desc'].fillna(0).str.len() #df.desc_lenght # In[ ]: def proc_issue_d(): df['issue_month'], df['issue_year'] = zip(*df.issue_d.str.split('-')) df.drop(['issue_d'], 1, inplace=True) # In[ ]: def proc_zip_code(): df['zip_code'] = df['zip_code'].str.rstrip('x') # In[ ]: print (df.purpose.value_counts()) print ('') print (df.title.value_counts().head()) # In[ ]: #df = maybe_load_loan_data(threshold=2) df.plot(kind='barh', x='purpose', y='int_rate') # In[ ]: print_data_shape(df) # In[ ]: def proc_loan_status(df): #mapping_dict = {'loan_status':{'Fully Paid':0, 'Charged Off': 1, 'Default': 1, 'Current': 0}} mapping_dict = {'loan_status':{'Fully Paid':0, 'Charged Off': 1}} df = df.replace(mapping_dict) df = df[(df['loan_status'] == 1) | (df['loan_status'] == 0)] return df # In[ ]: def show_nulls(df): nulls = pd.DataFrame(df.isnull().sum().sort_values(ascending=False)[:25]) nulls.columns = ['Null Count'] nulls.index.name = 'Feature' return nulls
python
import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as torch_models class PerceptualLoss(nn.Module): def __init__(self, rank): super(PerceptualLoss, self).__init__() self.rank = rank self.vgg19 = torch_models.vgg19(pretrained=True) self.vgg19_relu_5_2 = nn.Sequential(*list(self.vgg19.features.children())[:-5]).eval() for p in self.vgg19_relu_5_2.parameters(): p.requires_grad = False self.register_buffer("mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) self.register_buffer("std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) def forward(self, input_, target): input_ = (input_ - self.mean) / self.std target = (target - self.mean) / self.std input_ = F.interpolate(input_, mode='bilinear', size=(224, 224), align_corners=False) target = F.interpolate(target, mode='bilinear', size=(224, 224), align_corners=False) input_vgg = self.vgg19_relu_5_2(input_) target_vgg = self.vgg19_relu_5_2(target) loss = F.l1_loss(input_vgg, target_vgg) return loss class Color2EmbedLoss(nn.Module): def __init__(self, rank, lambda_reconstruction=1, lambda_perceptual=0.1): super(Color2EmbedLoss, self).__init__() self.lambda_reconstruction = lambda_reconstruction self.lambda_perceptual = lambda_perceptual self.reconstruction_loss = nn.SmoothL1Loss() self.perceptual_loss = PerceptualLoss(rank) def forward(self, pab, gtab, prgb, gtrgb): l_rec = self.reconstruction_loss(pab, gtab) l_per = self.perceptual_loss(prgb, gtrgb) return self.lambda_reconstruction * l_rec + self.lambda_perceptual * l_per, l_per, l_rec if __name__ == '__main__': batch = 4 pab = torch.rand(batch, 2, 256, 256) gtab = torch.rand(batch, 2, 256, 256) prgb = torch.rand(batch, 3, 256, 256) gtrgb = torch.rand(batch, 3, 256, 256) loss = Color2EmbedLoss() print(loss(pab, gtab, prgb, gtrgb)) # print(mm(torch.rand(5, 3, 256, 256).to(0)).shape) # summary(loss.vgg19, (3, 224, 224))
python
""" Generates a powershell script to install Windows agent - dcos_install.ps1 """ import os import os.path import gen.build_deploy.util as util import gen.template import gen.util import pkgpanda import pkgpanda.util def generate(gen_out, output_dir): print("Generating Powershell configuration files for DC/OS") make_powershell(gen_out, output_dir) def make_powershell(gen_out, output_dir): """Build powershell deployment script and store this at Bootstrap serve""" output_dir = output_dir + '/windows/' pkgpanda.util.make_directory(output_dir) bootstrap_url = gen_out.arguments['bootstrap_url'] if gen_out.arguments['master_discovery'] == 'static': master_list = gen_out.arguments['master_list'] elif gen_out.arguments['master_discovery'] == 'master_http_loadbalancer': master_list = gen_out.arguments['exhibitor_address'] + ':2181' else: master_list = 'zk-1.zk:2181,zk-2.zk:2181,zk-3.zk:2181,zk-4.zk:2181,zk-5.zk:2181' powershell_template_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'powershell/dcos_install.ps1.in') with open(powershell_template_path, 'r') as f: powershell_template = f.read() powershell_script = gen.template.parse_str(powershell_template).render({ 'dcos_image_commit': util.dcos_image_commit, 'generation_date': util.template_generation_date, 'bootstrap_url': bootstrap_url, 'master_list': master_list, }) # Output the dcos install ps1 script install_script_filename = 'dcos_install.ps1' pkgpanda.util.write_string(install_script_filename, powershell_script) pkgpanda.util.write_string(output_dir + install_script_filename, powershell_script) f.close()
python
#!/usr/bin/python3 #Self Written Module to Decrypt Files #========================================================= #This Module is Written to Reverse_Attack of Ransomeware #========================================================= # Reverse_Attack # |____*****TAKES 1 ARGUMENTS, i.e. KEY ***** # |____Initiate Decryption Process from pathlib import Path #Used to Find the Home Path import threading #Using Threads to Boost Search Process BY Searching Diff. Drive on Diff. Thread from os.path import expanduser from Crypto import Random from Crypto.Cipher import AES import os import hashlib, base64 class Reverse: def __init__(self, key): self.decryption_key = key self.list_of_files = [] def start(self): home = self.get_home_dir() target1 = home + "Pictures" target2 = home + "Music" target3 = home + "Downloads" target4 = home + "Documents" target5 = home + "Desktop" t1 = threading.Thread(target=self.run_locate_class, args=[target1,]) t2 = threading.Thread(target=self.run_locate_class, args=[target2,]) t3 = threading.Thread(target=self.run_locate_class, args=[target3,]) t4 = threading.Thread(target=self.run_locate_class, args=[target4,]) t5 = threading.Thread(target=self.run_locate_class, args=[target5,]) t1.start() t1.join() t2.start() t2.join() t3.start() t3.join() t4.start() t4.join() t5.start() t5.join() for files in self.list_of_files: decrypt = Decryptor(self.decryption_key, files) decrypt.decrypt_file() #Starting Decryption of Each File One-BY-One def get_home_dir(self): return str(Path.home()) + '\\' def run_locate_class(self, drive_name): ''' Function to make Object of LocateTargetFiles Class ''' starting = LocateEncryptedFiles() list_of_files = starting.start(drive_name) self.list_of_files.extend(list_of_files) return True class LocateEncryptedFiles: def __init__(self, exclude = None): self.files_on_system = [] self.target_extension = ['enc',] self.exclude_dir = [] if exclude != None: self.exclude_dir.extend(exclude) def start(self, root_dir): self.locate_files(root_dir) return self.files_on_system def locate_files(self, root_dir): for root, _, files in os.walk(root_dir): for f in files: abs_file_path = os.path.join(root, f) self.filter(self.target_extension, abs_file_path) def filter(self, target_extension, abs_file_path): if self.is_excluded_dir(abs_file_path) == False: # Filtering Files On the basics of file extension if abs_file_path.split('.')[-1] in self.target_extension: self.files_on_system.append(abs_file_path) else: pass def is_excluded_dir(self, path): ''' @summary: Checks whether the specified path should be excluded from encryption @param path: The path to check @return: True if the path should be excluded from encryption, otherwise False ''' for dir_to_exclude in self.exclude_dir: lenght = len(dir_to_exclude) if path[:lenght] == dir_to_exclude: return True return False class Decryptor: def __init__(self, key, file_name): self.key = hashlib.sha256(key.encode('utf-8')).digest() self.file_name = file_name def pad(self, s): return s + b"\0" * (AES.block_size - len(s) % AES.block_size) def decrypt(self, ciphertext, key): iv = ciphertext[:AES.block_size] cipher = AES.new(key, AES.MODE_CBC, iv) plaintext = cipher.decrypt(ciphertext[AES.block_size:]) return plaintext.rstrip(b"\0") def decrypt_file(self): with open(self.file_name, 'rb') as fo: ciphertext = fo.read() dec = self.decrypt(ciphertext, self.key) with open(self.file_name[:-4], 'wb') as fo: fo.write(dec) os.remove(self.file_name) if __name__ == '__main__': key = input("Enter Key : ") warning = input("\n!!!Warning!!! \nIs This Key Correct [Wrong KEY Will Just Destroy The Data] y/n: ") if warning.lower() == 'y': print("\n[*] Reversing Attack ...") print("\n[*] Initiating Decryption Process ...") test = Reverse(key) test.start() print("\n[+] Completed Successfully : )") elif warning.lower() == 'n': print("\nPlease Try Later With Correct KEY !") else: print("\n[!] Invaid Argument : (")
python
#! /usr/bin/env python # -*- coding: utf-8 -*- # ****************************************************** # @author: Haifeng CHEN - [email protected] # @date (created): 2019-12-12 09:07 # @file: memory_monitor.py # @brief: A tool to monitor memory usage of given process # @internal: # revision: 14 # last modified: 2020-03-06 12:24:48 # ***************************************************** import os import sys import psutil import random import sqlite3 import logging import datetime import collections import numpy as np import pandas as pd from typing import Union, Tuple from qtpy import QtCore, QtWidgets, QtGui from utils.qapp import setHighDPI, setDarkStyle, loadQIcon from utils.qapp import checkQLineEditValidatorState from matplotlib.figure import Figure from matplotlib.backends.backend_qt5agg import ( FigureCanvas, NavigationToolbar2QT as NavigationToolbar) from parse_log import parse_memory_log __version__ = '1.2.3' __revision__ = 14 __app_tittle__ = 'MemoryUsageMonitor' class MemoryLogParserRunnable(QtCore.QObject): """ Runnable object for parsing memory log """ queue = QtCore.Signal() ev = QtCore.Signal(object) def __init__(self, fpath, p_name=None): super().__init__() self._fpath = fpath self._p_name = p_name self.queue.connect(self.run) @QtCore.Slot() def run(self): self.ev.emit({'progress_init': ('Parsing ...', 200, 0, 0)}) try: d = parse_memory_log(self._fpath, self._p_name) self.ev.emit({'progress_reset': 1}) self.ev.emit({'memory_log': d}) except Exception as e: error_msg = 'Failed to parse memory log {}. Error message is {}'.format(self._fpath, repr(e)) logging.error(error_msg) self.ev.emit({'progress_reset': 1}) self.ev.emit({'error': error_msg}) class TreeItemsSelector(QtWidgets.QDialog): """ A common item selector using tree widget """ def __init__(self, items: list, title='Items Selector', item_cat='Features', parent=None): super().__init__(parent) self.setWindowTitle(title) self.setMinimumSize(400, 200) self._items = {} self._init_ui(items, item_cat) def _init_ui(self, items, item_cat): """ Initialize the user interface """ tree = QtWidgets.QTreeWidget() tree.setColumnCount(1) # tree.setHeaderHidden(True) tree.setHeaderLabel(item_cat) # parent = QtWidgets.QTreeWidgetItem(tree) # parent.setText(0, '{}'.format(item_cat)) # parent.setFlags(parent.flags() | QtCore.Qt.ItemIsTristate | QtCore.Qt.ItemIsUserCheckable) for item in items: tree_item = QtWidgets.QTreeWidgetItem(tree) tree_item.setText(0, '{}'.format(item)) tree_item.setFlags(tree_item.flags() | QtCore.Qt.ItemIsUserCheckable | QtCore.Qt.ItemIsSelectable) tree_item.setCheckState(0, QtCore.Qt.Unchecked) tree.itemChanged.connect(self._on_item_toggled) btn_box = QtWidgets.QDialogButtonBox( QtWidgets.QDialogButtonBox.Ok | QtWidgets.QDialogButtonBox.Cancel ) btn_box.accepted.connect(self.accept) btn_box.rejected.connect(self.reject) vbox_layout = QtWidgets.QVBoxLayout() vbox_layout.addWidget(tree) vbox_layout.addWidget(btn_box) self.setLayout(vbox_layout) def _on_item_toggled(self, item, column): if item.checkState(column) == QtCore.Qt.Checked: checked = True elif item.checkState(column) == QtCore.Qt.Unchecked: checked = False self._items[item.text(column)] = checked @property def items(self) -> Tuple: items = [k for k, v in self._items.items() if v] return tuple(items) class MemoryUsageMonitor(QtWidgets.QMainWindow): def __init__(self, parent=None): super().__init__(parent) self._settings = QtCore.QSettings(QtCore.QSettings.NativeFormat, QtCore.QSettings.UserScope, 'HF_AIO', 'MemoryUsageMonitor') self._pid = None self._ct = '' self._dq = collections.deque(maxlen=self._settings.value('dq_maxlen', 120, type=int)) self._progress = QtWidgets.QProgressDialog(self) self._progress.setCancelButton(None) self._progress.setWindowTitle(__app_tittle__) self._progress.setWindowModality(QtCore.Qt.WindowModal) self._progress.setMinimumWidth(300) self._progress.reset() self._worker_thread = QtCore.QThread() self._worker_thread.start() self._log_parse_runnable = None # type: Union[None, QtCore.QObject] self._timer = QtCore.QTimer() self._timer.timeout.connect(self._on_timer) self._init_ui() self._setup_shortcuts() def _init_ui(self): self.setMinimumSize(800, 600) self.setWindowTitle("{0} ({1}.{2})".format( __app_tittle__, __version__, __revision__)) # self.setWindowIcon(loadQIcon('icons/app_icon.png')) # The main widget widget = QtWidgets.QWidget() size_policy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) size_policy.setHorizontalStretch(0) size_policy.setVerticalStretch(0) size_policy.setHeightForWidth(widget.sizePolicy().hasHeightForWidth()) widget.setSizePolicy(size_policy) # create widgets ... # the first row ctrl_layout = self._create_main_ctrls() # create matplotlib widgets and components canvas = self._setup_mpl_widget() main_layout = QtWidgets.QVBoxLayout() main_layout.addWidget(canvas) main_layout.addLayout(ctrl_layout) widget.setLayout(main_layout) self.setCentralWidget(widget) self.statusBar().showMessage('Launched ...', 1000) def _setup_plot_frame(self, monitor=True): self._mpl_ax.spines['bottom'].set_color('w') self._mpl_ax.spines['top'].set_color('w') self._mpl_ax.spines['right'].set_color('w') self._mpl_ax.spines['left'].set_color('w') # white text, ticks self._mpl_ax.set_title('Memory Usage Monitor', color='w', fontdict={'fontsize': 10}) self._mpl_ax.set_ylabel('Usage (MB)', color='w') self._mpl_ax.tick_params(axis='both', color='w') self._mpl_ax.tick_params(colors='w', labelsize=8) # dark background color = self.palette().color(QtGui.QPalette.Window).getRgbF() self._mpl_ax.figure.patch.set_facecolor(color) color = self.palette().color(QtGui.QPalette.Base).getRgbF() self._mpl_ax.set_facecolor(color) if monitor: x = np.linspace(0, 10 * np.pi, 100) self.line_rss = self._mpl_ax.plot(x, np.sin(x), '-', label='Mem Usage')[0] self.line_vms = self._mpl_ax.plot( x, np.sin(random.random() * np.pi + x), '--', label='VM Size')[0] self._mpl_ax.legend() self._mpl_ax.set_xlabel('Date', color='w') else: self._mpl_ax.grid(True) self._mpl_ax.set_xlabel('Elapsed Hours', color='w') def _setup_mpl_widget(self): canvas = FigureCanvas(Figure(figsize=(5, 3))) self._mpl_ax = canvas.figure.subplots() canvas.figure.set_tight_layout(True) self.addToolBar( QtCore.Qt.TopToolBarArea, NavigationToolbar(self._mpl_ax.figure.canvas, self) ) self._setup_plot_frame() return canvas def _create_main_ctrls(self): layout = QtWidgets.QHBoxLayout() label1 = QtWidgets.QLabel('Interval (second)') interval = QtWidgets.QLineEdit() interval.setValidator(QtGui.QIntValidator(0, 1000000000)) interval.setObjectName('interval') interval.setAlignment(QtCore.Qt.AlignCenter) interval.setToolTip('Data sampling interval') interval.setText(self._settings.value('interval', '10', type=str)) interval.textEdited[str].connect(self._update_settings) interval.textChanged.connect(self._check_validator_state) layout.addWidget(label1) layout.addWidget(interval) label2 = QtWidgets.QLabel('Process name') p_name = QtWidgets.QLineEdit() p_name.setObjectName('process_name') p_name.setAlignment(QtCore.Qt.AlignCenter) p_name.setToolTip('Name of the process including the extension.' ' It is case sensitive and duplicated name not well supported!') p_name.setText(self._settings.value('process_name', '', type=str)) p_name.textEdited[str].connect(self._update_settings) layout.addWidget(label2) layout.addWidget(p_name) label3 = QtWidgets.QLabel('Buffered data length*') dq_maxlen = QtWidgets.QLineEdit() dq_maxlen.setValidator(QtGui.QIntValidator(0, 9999)) dq_maxlen.setObjectName('dq_maxlen') dq_maxlen.setAlignment(QtCore.Qt.AlignCenter) dq_maxlen.setToolTip('Maximal length of the buffered data points, press entry to apply the change on the fly!') dq_maxlen.setText(self._settings.value('dq_maxlen', '120', type=str)) dq_maxlen.editingFinished.connect(self._on_buffer_size_changed) dq_maxlen.textEdited[str].connect(self._update_settings) dq_maxlen.textChanged.connect(self._check_validator_state) layout.addWidget(label3) layout.addWidget(dq_maxlen) self._start_btn = QtWidgets.QPushButton('Start') self._start_btn.clicked.connect(self._on_start) self._start_btn.setEnabled(True) self._stop_btn = QtWidgets.QPushButton('Stop') self._stop_btn.clicked.connect(self._on_stop) self._stop_btn.setEnabled(False) layout.addWidget(self._start_btn) layout.addWidget(self._stop_btn) return layout def _setup_shortcuts(self): shortcut_t = QtWidgets.QShortcut(QtGui.QKeySequence(QtCore.Qt.CTRL + QtCore.Qt.Key_T), self) shortcut_t.activated.connect(self._toggle_window_on_top) shortcut_s = QtWidgets.QShortcut(QtGui.QKeySequence(QtCore.Qt.CTRL + QtCore.Qt.Key_S), self) shortcut_s.activated.connect(self._toggle_start_stop) shortcut_o = QtWidgets.QShortcut(QtGui.QKeySequence(QtCore.Qt.CTRL + QtCore.Qt.Key_O), self) shortcut_o.activated.connect(self._open_memory_log) def _on_buffer_size_changed(self): try: val = self._settings.value('dq_maxlen', 120, type=int) self._dq = collections.deque(reversed(self._dq), maxlen=val) self._dq.reverse() msg = 'New buffer max length is {}, current size is {}'.format(val, len(self._dq)) self.statusBar().showMessage(msg, 1000) except Exception as e: self.statusBar().showMessage(repr(e), 1000) def _toggle_window_on_top(self): self.setWindowFlags(self.windowFlags() ^ QtCore.Qt.WindowStaysOnTopHint) self.show() if self.windowFlags() & QtCore.Qt.WindowStaysOnTopHint: msg = 'Stays On Top: ON' else: msg = 'Stays On Top: OFF' self.statusBar().showMessage(msg, 1000) def _toggle_start_stop(self): if self._timer.isActive(): self._on_stop() else: self._on_start() def _on_start(self): self._stop_btn.setEnabled(True) self._start_btn.setEnabled(False) interval = self._settings.value('interval', 10, type=int) p_name = self._settings.value('process_name', '', type=str) msg = 'Start monitor: [interval: {}, process name {}]'.format(interval, p_name) logging.debug(msg) self.statusBar().showMessage(msg, 1000) # start timer self._dq.clear() self._pid = None self._ct = '' self._timer.start(interval * 1000) self._mpl_ax.clear() self._setup_plot_frame() def _on_stop(self): self._stop_btn.setEnabled(False) self._start_btn.setEnabled(True) msg = 'Stop monitor: [pid: {}, create time: {}]'.format(self._pid, self._ct) logging.debug(msg) self.statusBar().showMessage(msg, 1000) # stop timer self._timer.stop() def _update_settings(self, q_str): w = self.sender() if isinstance(w, QtWidgets.QCheckBox): if w.checkState() == QtCore.Qt.Checked: self._settings.setValue(w.objectName(), '1') else: self._settings.setValue(w.objectName(), '0') elif isinstance(w, QtWidgets.QLineEdit): self._settings.setValue(w.objectName(), w.text()) elif isinstance(w, QtWidgets.QComboBox): self._settings.setValue(w.objectName(), '{}'.format(w.currentIndex())) def _check_validator_state(self): checkQLineEditValidatorState(self.sender(), self.palette().color(QtGui.QPalette.Base)) def closeEvent(self, event): super().closeEvent(event) def _update_process_id(self, p_name): # try to check whether this id is still valid if self._pid is not None: try: p = psutil.Process(self._pid) if p.name() != p_name: self._pid = None self._ct = '' except Exception: msg = 'Process [{}]-[{}] is Dead'.format(self._pid, self._ct) logging.info(msg) self.statusBar().showMessage(msg, 1000) self._pid, self._ct = None, '' self._dq.clear() self._mpl_ax.set_title( 'Memory Usage Monitor ({} Not Found)'.format(p_name), color='w', fontdict={'fontsize': 10}) self._mpl_ax.figure.canvas.draw_idle() # try to get a new pid if self._pid is None: for proc in psutil.process_iter(attrs=['pid', 'name']): if proc.info['name'] == p_name: self._pid = proc.info['pid'] self._ct = datetime.datetime.fromtimestamp( proc.create_time()).strftime('%Y-%m-%d %H:%M:%S') self._mpl_ax.set_title('Memory Usage Monitor ({} - {})'.format(p_name, self._ct), color='w', fontdict={'fontsize': 10}) msg = 'New process [{}]-[{}] found'.format(self._pid, self._ct) logging.info(msg) self.statusBar().showMessage(msg, 1000) break def _on_timer(self): p_name = self._settings.value('process_name', '', type=str) self._update_process_id(p_name) if self._pid is not None: process = psutil.Process(self._pid) memory_usage = process.memory_info() logging.info('[{}]-[{}]-[{}] - [{}, {}]'.format( self._pid, p_name, self._ct, memory_usage.rss, memory_usage.vms)) ts = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') self._dq.appendleft((ts, memory_usage.rss, memory_usage.vms)) x = np.arange(0, len(self._dq)) self.line_rss.set_xdata(x) rss = np.array([x[1] / 1024 / 1024 for x in self._dq]) self.line_rss.set_ydata(rss) self.line_vms.set_xdata(x) vms = np.array([x[2] / 1024 / 1024 for x in self._dq]) self.line_vms.set_ydata(vms) self._mpl_ax.set_ylim(0, max(np.max(vms), np.max(rss)) * 1.1) self._mpl_ax.set_xlim( 0, min(max(len(x) * 1.2, self._dq.maxlen // 4), self._dq.maxlen) ) ts = [x[0] for x in self._dq] labels = [] for pos in self._mpl_ax.get_xticks(): pos = int(pos) if pos < len(ts): labels.append(ts[pos][5:]) else: labels.append('') self._mpl_ax.set_xticklabels(labels) self._mpl_ax.figure.canvas.draw() @QtCore.Slot(object) def _on_assist_worker_thread_event(self, d): """ d is python dict """ if 'error' in d: error_msg = d['error'] QtWidgets.QMessageBox.critical(self, __app_tittle__, error_msg) elif 'warn' in d: warn_msg = d['warn'] QtWidgets.QMessageBox.warning(self, __app_tittle__, warn_msg) elif 'progress_init' in d: txt, duration, pos_min, pos_max = d['progress_init'] self._progress.setLabelText(txt) self._progress.setMinimumDuration(duration) self._progress.setRange(pos_min, pos_max) self._progress.setValue(pos_min) elif 'progress_update' in d: self._progress.setValue(d['progress_update']) elif 'progress_reset' in d: self._progress.reset() elif 'memory_log' in d: self._draw_memory_log(d['memory_log']) def _draw_memory_log(self, d: pd.DataFrame): if d.empty: p_name = self._settings.value('process_name', '', type=str) QtWidgets.QMessageBox.warning(self, __app_tittle__, 'Memory usage log of process `{}` is not found!'.format(p_name)) return g = d.groupby(['Process']) items = list(g.groups.keys()) if len(items) != 1: dlg = TreeItemsSelector(items, title='Select items to draw', item_cat='Process Information', parent=self) if dlg.exec() == QtWidgets.QDialog.Accepted: items = dlg.items else: return if not items: return n = len(items) self._progress.setRange(0, n) self._progress.setValue(0) self._mpl_ax.clear() self._setup_plot_frame(False) interval = self._settings.value('interval', 10, type=int) length_lim = self._settings.value('length_limit', 100, type=int) convert_to_hours = 60 * 60 / interval not_empty_plot = False for key, grp in g: if key not in items or len(grp['rss']) < length_lim: logging.warning('{} dropped, not selected or not enough length'.format(key)) else: not_empty_plot = True self._mpl_ax.plot(np.arange(len(grp['rss'])) / convert_to_hours, grp['rss'] / 1024 / 1024, label=key) self._progress.setValue(self._progress.value() + 1) if not_empty_plot: self._mpl_ax.legend() self._mpl_ax.figure.canvas.draw() self._progress.reset() def _open_memory_log(self): log_path, _filter = QtWidgets.QFileDialog.getOpenFileName( self, 'Select Memory Log file', directory=self._settings.value('prev_log_dir', '.', type=str), filter='Memory Log (*.log)') if not log_path: return self._settings.setValue('prev_log_dir', os.path.dirname(log_path)) # firstly stop monitor self._on_stop() p_name = self._settings.value('process_name', '', type=str) if self._log_parse_runnable is not None: self._log_parse_runnable.ev.disconnect(self._on_assist_worker_thread_event) # pass image to worker self._log_parse_runnable = MemoryLogParserRunnable(log_path, p_name) self._log_parse_runnable.moveToThread(self._worker_thread) self._log_parse_runnable.ev.connect(self._on_assist_worker_thread_event) self._log_parse_runnable.queue.emit() def center(self): frame_gm = self.frameGeometry() screen = QtWidgets.QApplication.desktop().screenNumber(QtWidgets.QApplication.desktop().cursor().pos()) center_pt = QtWidgets.QApplication.desktop().screenGeometry(screen).center() frame_gm.moveCenter(center_pt) self.move(frame_gm.topLeft()) if __name__ == "__main__": # enable logging logger = logging.getLogger() logger.setLevel(logging.DEBUG) formatter = logging.Formatter( fmt='%(asctime)s %(levelname)-8s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S' ) # file output to record memory usage fh = logging.FileHandler('memory.log') fh.setFormatter(formatter) fh.setLevel(logging.INFO) # we also need stream output for debugging ch = logging.StreamHandler() ch.setFormatter(formatter) ch.setLevel(logging.WARNING) # add the handlers to logger logger.addHandler(fh) logger.addHandler(ch) # logging end setHighDPI() # create Qt Application app = QtWidgets.QApplication(sys.argv) app.setWindowIcon(loadQIcon('icons/app_icon.png')) try: import qtmodern.styles qtmodern.styles.dark(app) except ModuleNotFoundError: setDarkStyle(app) # update default font for Windows 10 if sys.platform == "win32": font = QtGui.QFont("Segoe UI", 9) app.setFont(font) # create the MainForm form = MemoryUsageMonitor() form.center() try: import qtmodern.windows mw = qtmodern.windows.ModernWindow(form) mw.show() except ModuleNotFoundError: form.show() sys.exit(app.exec_())
python
##ๅบๅˆ—่งฃๅŒ… dict={"name":"jim","age":"1","sex":"male"} key,value=dict.popitem(); print(key,value) #ไฝฟ็”จ*ๅทๆ”ถ้›†ๅคšไฝ™็š„ๅ€ผ a,b,*rest=[1,2,3,4]; print(a,b,rest) ##้“พๅผ่ต‹ๅ€ผ x=y=somfunction() ##ๅขžๅผบ่ต‹ๅ€ผ x+=1 ###ไปฃ็ ๅ—
python
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import pydoc import subprocess import sys import signal from pkg_resources import get_distribution from termcolor import colored from projects import config from projects import gui from projects import paths from projects import projectfile __version__ = get_distribution('projects').version help_text = '''\ =============================================================================== _ _ (_) | | _ __ _ __ ___ _ ___ ___| |_ ___ | '_ \| '__/ _ \| |/ _ \/ __| __/ __| | |_) | | | (_) | | __/ (__| |_\__ \\ | .__/|_| \___/| |\___|\___|\__|___/ | | _/ | |_| |__/ =============================================================================== i n t u i t i v e p r o j e c t m a n a g e m e n t =============================================================================== <projects> is an easy to use project navigation tool and a Makefile-like scripting engine. It's main purpose is to provide a simpler scripting interface with a built in man page generator. You can define your commands with inline documentation in Projectfiles. You can have one Projectfile in every directory inside your project, <projects> will process them recursively. <projects> works on every UNIX system with Python 2.7+ or 3.x installed. <projects> is not a replacement for Makefile or CMake it is an optional wrapper for them. Features: - quick project navigation with minimal typing - Projectfile based recursive scripting system - command concatenation and recursive separation - automatic manual page generation Configuration When projects starts up for the first time, it creates it's configuration file (only if it isn't exist already) inside your home directory: ~/.prc By default it contains the following options in YAML format: โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ $ cat ~/.prc โ•‘ โ•‘ max-doc-width: 80 โ•‘ โ•‘ projects-path: ~/projects โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• projects-path [mandatory] It's value will tell projects where it can find your projects' repositories max-doc-width [optional] The maximum width of the generated manual pages. If not defined, it will be set to 80. <projects> will adapt to narrower terminals. Usage: p p p p <command> p (-h|--help) p (-v|--version) p (-i|--init) p (-w|--walk) p (-l|--list) <command> p (-md|--markdown) [<file_name>] p This command is the main trigger for projects. It behaves differently depending on your current working directory. OUTSIDE your projects directory, it opens the project selector screen, where you can select your project by typing the projects name or by using the arrows keys. INSIDE any of your projects (inside the repository root directory) this command will show the manual generated from the Projectfiles. p p This command behaves the same as the previous "p" command but it will always display the project selector screen. This could be handy if you want to switch projects quickly. This is the only prohibited command name that you cannot use for your commands. p <command> This is the command for executing commands defined in the Projectfiles. By convention all defined command should start with an alphanumeric character. The commands started with a dash reserved for <projects> itself. The <command> keyword can be anything except the already taken keywords: p, -h, --help, -v, --version, -i, --init, -w, --walk, -l, --list p (-h|--help) Brings up this help screen. p (-v|--version) Prints out the current <projects> version. p (-i|--init) Generates a template Projectfile into the current directory. p (-w|--walk) Lists out all directories in your project in the walk order <projects> will follow. It marks the directories that contain a Projectfile. p (-l|--list) <command> Lists out the processed command bodies for the given command. p (-md|--markdown) [<file_name>] Generates a Markdown file from your processed Projectfiles. You can optionally specify a name for the generated file. The default name is README.md. =============================================================================== _____ _ _ __ _ _ | __ \ (_) | | / _(_) | | |__) | __ ___ _ ___ ___| |_| |_ _| | ___ | ___/ '__/ _ \| |/ _ \/ __| __| _| | |/ _ \\ | | | | | (_) | | __/ (__| |_| | | | | __/ |_| |_| \___/| |\___|\___|\__|_| |_|_|\___| _/ | |__/ =============================================================================== Projectfiles are the files you create in order to define commands that will be executed with the "p <command>". Projectfiles provide a powerful and self explanatory way to interact with your project. You can create an example Projectfile with the "p (-i|--init)" command. The generated Projectfile will demonstrate all provided functionality except the recursive command concatenation since it will generate only one Projectfile. There are mandatory and optional features you can add to Projectfile. Mandatory: - <projects> version - at least one command definition header - command body Optional: - main description - variables - command alternatives - command dependency list - command description - recursive separator Feature order: There is a strict order where you can place each features. Between each feature arbitrary number of empty lines are allowed. The order is the following: 1. version 2. main description 3. variables 4. command header 5. command description 6. command body (pre, separator and post) version [mandatory] โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ from v{version} โ•‘ โ•‘ ... โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• This feature will define the earliest version that is compatible with the used Projectfile format. All <projects> versions greater or equal to the defined one will be compatible with the format, but earlier versions may have problems with future features. The first release version is v1.0.0. If there are more Projectfiles in your project and the defined versions are different, the smallest version will be used to maximize the functionality. main description [optional] โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ ... โ•‘ โ•‘ """ โ•‘ โ•‘ Description for the whole project. โ•‘ โ•‘ """ โ•‘ โ•‘ ... โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• After the version you can define a global description of the whole project. You can write long lines, <projects> will wrap them according to the defined "max-doc-width" key in the ~/.prc configuration file. Single line breaks won't break the lines in the generated manual. You have to use an empty line in order to add a line break. If you have multiple Projectfiles created, the main descriptions will be concatenated with empty lines according to the walk order. variables [optional] โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ ... โ•‘ โ•‘ variable = 42 โ•‘ โ•‘ other_variable = "This is a string with spaces" โ•‘ โ•‘ yet_another_variable = Quotes are optional. This is still valid. โ•‘ โ•‘ ... โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• You can define variables as well. Each variable will be used as a string. No other variable format is currently supported. You can omit the quotes if you want, <projects> will use the entire string you write after the "=" sign. To use the variables you need to escape them: $variable ${{variable}} Both escapement is interpreted equally. Defined variables go to the global variable pool. You cannot assign a variable the more than once. Hence you cannot redefine a variable in a later Projectfile (a Projectfile is thant is processed later according to the walk order). Redefining a variable will raise an error. Since every variables go to the global variable pool, you can use the variables in any Projectfile independently which Projectfile you defined them. It is possible to use a variable in the root level Projectfile that is defined in a later Projectfile. command header [mandatory] โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ ... โ•‘ โ•‘ my_command|alternative1|alt2: [dependency1, dependency2] โ•‘ โ•‘ ... โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• The command header feature allows you to define a command, it's alternatives and it's dependent other commands. The first keyword is the default keyword for the command. Alternatives are separated with the pipe "|" character. After the keyword definitions, a colon ":" closes the command header. After the colon, you can define a list of other commands, that are executed in the order you defined them before the current command execution. According to the given example you can invoke your command with the following syntax inside your project directory: p my_command p alternative1 p alt2 Both will execute the same command body after the dependent commands (dependency1 and dependency2) is executed first in the given order. A command cannot be redefined in the same Projectfile twice. If you redefine a command in another Projectfile, the commands' bodies will be appended to each other according to the path relationship of these files. command description [optional] โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ ... โ•‘ โ•‘ my_command: โ•‘ โ•‘ """ โ•‘ โ•‘ This is a command description. โ•‘ โ•‘ """ โ•‘ โ•‘ ... โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• The command description will be added to the generated manual. It behaves the same as the main description, except it requires an indentation in any way (space, tab, count doesn't matter). If a command is redefined in another Projectfile, the command descriptions will be appended according to the path relationship of these files. command body [mandatory] โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ ... โ•‘ โ•‘ my_command: โ•‘ โ•‘ command1 โ•‘ โ•‘ command2 โ•‘ โ•‘ ... โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• The command body defines what commands <projects> needs to execute if you invoke the given command with the "p <command>" syntax inside your project directory. Commands needs to be indented in any way (at least one space). <projects> will execute all given commands line by line. Template Projectfile The following Projectfile can be generated with the `p (-i|--init)` command: โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ from v1.0.0 โ•‘ โ•‘ โ•‘ โ•‘ """ โ•‘ โ•‘ This is a template Projectfile you have created with the 'p (-i|--init])' โ•‘ โ•‘ command. You can use the provided commands 'hello' and 'answer' or it's โ•‘ โ•‘ shorter alternatives 'h' and 'ans' or 'a'. ie.: p <command>. โ•‘ โ•‘ โ•‘ โ•‘ You can start a new paragraph in the descriptions by inserting an empty โ•‘ โ•‘ line like this. โ•‘ โ•‘ โ•‘ โ•‘ Descriptions are useful as they provide a searchable automatically โ•‘ โ•‘ generated manual for your project for free. You can invoke this manual โ•‘ โ•‘ with the "p" command if you are inside your project directory. โ•‘ โ•‘ """ โ•‘ โ•‘ โ•‘ โ•‘ magic = 42 # variables goes to the global variable space โ•‘ โ•‘ โ•‘ โ•‘ hello|h: [a] โ•‘ โ•‘ """ โ•‘ โ•‘ This command will great you. โ•‘ โ•‘ โ•‘ โ•‘ There is a shorter alternative "h" for the command. It is depending โ•‘ โ•‘ on the "a" command which is the alternative of the "answer" command. โ•‘ โ•‘ โ•‘ โ•‘ If you execute a command with dependencies, it's dependencies will be โ•‘ โ•‘ executed first in the defined order. โ•‘ โ•‘ """ โ•‘ โ•‘ echo "Hi! This is my very own Projectfile." โ•‘ โ•‘ โ•‘ โ•‘ answer|ans|a: โ•‘ โ•‘ """ โ•‘ โ•‘ This command will give you the answer for every question. โ•‘ โ•‘ โ•‘ โ•‘ You can use the long "answer" keyword as well as the shorter "ans" or โ•‘ โ•‘ "a" to execute this command. โ•‘ โ•‘ โ•‘ โ•‘ Inside the Projectfile, you can also refer to a command in another โ•‘ โ•‘ command's dependency list by any of it's alternatives. โ•‘ โ•‘ """ โ•‘ โ•‘ echo "The answer for everything is $magic!" โ•‘ โ•‘ # you can also use the ${{magic}} form โ•‘ โ•‘ โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• If you use the "p" command inside your project's root directory,projects will generate a manual page from the Projectfiles you created. The previously listed Projectfile will result the following manual page assuming that your project is called "example" (the project name is picked from it's containing directory's name): โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ ========================================================================= โ•‘ โ•‘ E X A M P L E โ•‘ โ•‘ ========================================================================= โ•‘ โ•‘ โ•‘ โ•‘ This is a template Projectfile you have created with the "p (-i|--init])" โ•‘ โ•‘ command. You can use the provided commands 'hello' and 'answer' or it's โ•‘ โ•‘ shorter alternatives 'h' and 'ans' or 'a'. ie.: p <command>. โ•‘ โ•‘ โ•‘ โ•‘ You can start a new paragraph in the descriptions by inserting an empty โ•‘ โ•‘ line like this. โ•‘ โ•‘ โ•‘ โ•‘ Descriptions are useful as they provide a searchable automatically โ•‘ โ•‘ generated manual for your project for free. You can invoke this manual โ•‘ โ•‘ with the "p" command if you are inside your project directory. โ•‘ โ•‘ โ•‘ โ•‘ โ•‘ โ•‘ answer|ans|a: โ•‘ โ•‘ โ•‘ โ•‘ This command will give you the answer for every question. โ•‘ โ•‘ โ•‘ โ•‘ You can use the long "answer" keyword as well as the shorter "ans" or โ•‘ โ•‘ "a" to execute this command. โ•‘ โ•‘ โ•‘ โ•‘ Inside the Projectfile, you can also refer to a command in another โ•‘ โ•‘ command's dependency list by any of it's alternatives. โ•‘ โ•‘ โ•‘ โ•‘ โ•‘ โ•‘ hello|h: [a] โ•‘ โ•‘ โ•‘ โ•‘ This command will great you. โ•‘ โ•‘ โ•‘ โ•‘ There is a shorter alternative "h" for the command. It is depending โ•‘ โ•‘ on the "a" command which is the alternative of the "answer" command. โ•‘ โ•‘ โ•‘ โ•‘ If you execute a command with dependencies, it's dependencies will be โ•‘ โ•‘ executed first in the defined order. โ•‘ โ•‘ โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• This manual is displayed in a pager, so you can exit with the "q" key. Advanced Projectfile examples Command concatenation If you have multiple Projectfiles in your project and there are command headers that are defined in more than one Projectfile, the command bodies will be appended according to the path relationship of these files. โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฆโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ $ cat ./Projectfile โ•‘ $ cat ./dir/Projectfile โ•‘ โ•‘ from v{version} โ•‘ from v{version} โ•‘ โ•‘ my_command: โ•‘ my_command: โ•‘ โ•‘ echo "This is the root." โ•‘ echo "This is a subdir." โ•‘ โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฉโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฃ โ•‘ $ p --walk โ•‘ โ•‘ [x] . โ•‘ โ•‘ [x] dir โ•‘ โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฃ โ•‘ $ p --list my_command โ•‘ โ•‘ cd /home/user/projects/example โ•‘ โ•‘ echo "This is the root." โ•‘ โ•‘ cd /home/user/projects/example/dir โ•‘ โ•‘ echo "This is the a subdir." โ•‘ โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฃ โ•‘ $ p my_command โ•‘ โ•‘ This is the root. โ•‘ โ•‘ This is a subdir. โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• What you can notice in this example: 1. You can use the "(-w|--walk)" and "(-l|--list)" commands to get information about the commands will be executed by <projects>. 2. The command listing shows that the command bodies were concatenated according to the walk order (you can check with the "(-w|--walk)" command). 3. The concatenated command list contains directory change commands (cd) so every command defined in a Projectfile gets executed in the same directory level as it's Projectfile's directory level. 4. Thus the directory change commands, you can notice that each command will execute in the same execution context regardless of the command's length (number of lines). This is different than the Makefile conventions, and provide a much more simpler script writing. More complex example There is another feature that can be used to execute post configuration eg. executing commands after all lower order command bodies were executed. This feature is called recursive separator ("==="). If you place this separator inside a command's body, and there are other lower level Projectfiles in your project, the command bodies will be appended in a special, recursive order. In a Projectfile , all commands before the separator are called the "pre" commands, and all the commands after the separator are called the "post" commands. The seprator in every command body is optional. If there is no separator, all the command lines in the command body will be handled as a "pre" command block. Similarly if the command body starts with a separator the whole body will be used as a post block. If there are no lower level Projectfiles, and you have a command with separated body, the sepration will be ignored. If you have lower level Projectfiles, the base level pre commands will be executed first then the execution will jump to the lower level Projectfile. After the lower level Projectfile's command script gets executed, the execution will be jump back after the base level separator, and the base post block will be executed. If the lower level Projectfile has separated command bodies, and there are yet another lower level Projectfile, the execution will jump down recursively until the last possible separation is executed. The following example will demonstrate this behavior: โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฆโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ $ cat ./Projectfile โ•‘ $ cat ./A/Projectfile โ•‘ โ•‘ from v{version} โ•‘ from v{version} โ•‘ โ•‘ my_command: โ•‘ my_command: โ•‘ โ•‘ echo "pre root" โ•‘ echo "pre A" โ•‘ โ•‘ === โ•‘ === โ•‘ โ•‘ echo "post root" โ•‘ echo "post A" โ•‘ โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฌโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฃ โ•‘ $ cat ./A/B/Projectfile โ•‘ $ cat ./C/Projectfile โ•‘ โ•‘ from v{version} โ•‘ from v{version} โ•‘ โ•‘ my_command: โ•‘ my_command: โ•‘ โ•‘ echo "listing inside A/B" โ•‘ echo "pre C" โ•‘ โ•‘ ls -1 โ•‘ === โ•‘ โ•‘ echo "done" โ•‘ echo "post C" โ•‘ โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฉโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฃ โ•‘ $ ls -1 A/B โ•‘ โ•‘ Projectfile โ•‘ โ•‘ file1 โ•‘ โ•‘ file2 โ•‘ โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฃ โ•‘ $ p --walk โ•‘ โ•‘ [x] . โ•‘ โ•‘ [x] A โ•‘ โ•‘ [x] A/B โ•‘ โ•‘ [x] C โ•‘ โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฃ โ•‘ $ p --list my_command โ•‘ โ•‘ cd /home/user/projects/example โ•‘ โ•‘ echo "pre root" โ•‘ โ•‘ cd /home/user/projects/example/A โ•‘ โ•‘ echo "pre A" โ•‘ โ•‘ cd /home/user/projects/example/A/B โ•‘ โ•‘ echo "listing inside A/B" โ•‘ โ•‘ ls -1 โ•‘ โ•‘ echo "done" โ•‘ โ•‘ cd /home/user/projects/example/A โ•‘ โ•‘ echo "post A" โ•‘ โ•‘ cd /home/user/projects/example/C โ•‘ โ•‘ echo "pre C" โ•‘ โ•‘ echo "post C" โ•‘ โ•‘ cd /home/user/projects/example โ•‘ โ•‘ echo "post root" โ•‘ โ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฃ โ•‘ $ p my_command โ•‘ โ•‘ pre root โ•‘ โ•‘ pre A โ•‘ โ•‘ listing inside A/B โ•‘ โ•‘ Projectfile โ•‘ โ•‘ file1 โ•‘ โ•‘ file2 โ•‘ โ•‘ done โ•‘ โ•‘ post A โ•‘ โ•‘ pre C โ•‘ โ•‘ post C โ•‘ โ•‘ post root โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ• What you can notice in this example: 1. The recursive separators works as described. The post commands are executed after the pre commands for that level and all the recursive lower level other commands executed. 2. Commands get executed in the same level where the Projectfile they are defined in is located. 3. Automatic directory changing command insertion is smart enough to insert only the absolute necessary directory changing commands. If there are no lower level commands, but the recursive separator exists, no directory changing will be inserted before the post commands. If there are no pre commands, no directory cahnging will be happen before the recursive separator content. Same goes to the post commands. If there are no post commands, no directory changing commands will be inserted after the recursive separator's content is executed. TIP: You can always create a template Projectfile with the "(-i|--init)" command. '''.format(version=__version__) return_path = '' def path_setting_callback(path): global return_path return_path = path def process_command(command_name, data): command = data['commands'][command_name] if 'alias' in command: command = data['commands'][command['alias']] if 'dependencies' in command: for dep in command['dependencies']: process_command(dep, data) echoed_commands = [] for line in command['script']: if '&&' in line: line = line.split('&&') line = [l.strip() for l in line] else: line = [line.strip()] for l in line: if l.startswith('echo'): echoed_commands.append('printf "\033[1;32m> " && {0} && printf "\033[0m"'.format(l)) elif l.startswith('cd'): p = l.split('cd') p = p[1].strip() echoed_commands.append('printf "\033[0;34m@ {0}\033[0m\n" && {1}'.format(p, l)) else: echoed_commands.append('printf "\033[1;33m$ {0}\033[0m\n" && {0}'.format(l)) concatenated_commands = ' && '.join(echoed_commands) execute_call(concatenated_commands) def execute_call(command): process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) while True: nextline = process.stdout.readline() if nextline == '' and process.poll() is not None: break sys.stdout.write(nextline) sys.stdout.flush() output, error = process.communicate() exit_code = process.returncode if exit_code != 0: sys.stderr.write('\r\033[1;31m[ERROR {}]\033[0;31m Error during execution!\033[0m\n'.format(exit_code)) def execute(args, data, conf): if args: for command_name in args: if command_name in data['commands']: try: process_command(command_name, data) except (KeyboardInterrupt): sigterm_handle(None, None) else: pass else: gui.show_project_details(data, conf['max-doc-width']) def sigterm_handle(signal, frame): sys.stderr.write('\r\r\033[1;31m[!]\033[0;31m User interrupt..\033[0m\n') sys.exit(1) def main(args): signal.signal(signal.SIGTSTP, sigterm_handle) try: conf = config.get() if not os.path.isdir(conf['projects-path']): os.mkdir(conf['projects-path']) print("Projects root was created: {}".format(conf['projects-path'])) print("You can put your projects here.") with open(os.path.join(os.path.expanduser('~'), '.p-path'), 'w+') as f: f.write(conf['projects-path']) return else: if not os.listdir(conf['projects-path']): print("Your projects directory is empty. Nothing to do..") with open(os.path.join(os.path.expanduser('~'), '.p-path'), 'w+') as f: f.write(conf['projects-path']) return args = args[2:] if len(args) == 1: if args[0] in ['-v', '--version']: print(__version__) return elif args[0] in ['-i', '--init']: if paths.inside_project(conf['projects-path']): if os.path.isfile('Projectfile'): print('You already have a Projectfile in this directory.. Nothing to do ;)') else: projectfile_content = projectfile.DEFAULT_PROJECTFILE.format(__version__) with open('Projectfile', 'w+') as f: f.write(projectfile_content) print('Projectfile created. Use the "p" command to invoke the manual.') else: print('You are not inside any of your projects. Use the "p" command to navigate into one.') return elif args[0] in ['-h', '--help']: pydoc.pager(help_text) return elif args[0] in ['-w', '--walk']: if paths.inside_project(conf['projects-path']): print(projectfile.get_walk_order(os.getcwd())) else: print('You are not inside any of your projects. Use the "p" command to navigate into one.') return elif args[0] in ['p']: handle_project_selection(conf) return elif args[0] in ['-l', '--list']: print('Command name missing after this option. Cannot list the command body..\np (-l|--list) <command>') return elif args[0] in ['-md', '--markdown']: project_root = paths.get_project_root(conf['projects-path'], os.getcwd()) data = projectfile.get_data_for_root(project_root['path']) data['name'] = project_root['name'] md_content = gui.generate_markdown(data) with open(os.path.join(project_root['path'], 'README.md'), 'w+') as f: f.write(md_content) print("README.md file was generated into your project's root.") return if len(args) == 2: if args[0] in ['-l', '--list']: command = args[1] project_root = paths.get_project_root(conf['projects-path'], os.getcwd()) data = projectfile.get_data_for_root(project_root['path']) if command in data['commands']: if 'alias' in data['commands'][command]: command = data['commands'][command]['alias'] for line in data['commands'][command]['script']: print(line) else: print('Invalid command: "{}"\nAvailable commands:'.format(command)) for c in data['commands']: print(c) return elif args[0] in ['-md', '--markdown']: name = args[1] project_root = paths.get_project_root(conf['projects-path'], os.getcwd()) data = projectfile.get_data_for_root(project_root['path']) data['name'] = project_root['name'] md_content = gui.generate_markdown(data) with open(os.path.join(project_root['path'], name), 'w+') as f: f.write(md_content) print("A markdown file named \"{}\" was generated into your project's root.".format(name)) return if paths.inside_project(conf['projects-path']): handle_inside_project(args, conf) else: handle_project_selection(conf) except projectfile.error.ProjectfileError as e: error = e.args[0] message = 'Projectfile error!\n{}'.format(error['error']) if 'path' in error: message = '{}\nPath: {}/Projectfile'.format(message, error['path']) if 'line' in error: message = '{}\nLine: {}'.format(message, error['line']) print(colored(message, 'red')) sys.exit(-1) except config.ConfigError as e: error = e.args[0] message = 'Config error!\n{}'.format(error) print(colored(message, 'red')) sys.exit(-1) def handle_project_selection(conf): gui.select_project( paths.list_dir_for_path(conf['projects-path']), path_setting_callback ) if return_path: with open(os.path.join(os.path.expanduser('~'), '.p-path'), 'w+') as f: f.write(os.path.join(os.path.expanduser(conf['projects-path']), return_path)) def handle_inside_project(args, conf): project_root = paths.get_project_root(conf['projects-path'], os.getcwd()) data = projectfile.get_data_for_root(project_root['path']) data['name'] = project_root['name'] execute(args, data, conf)
python
"""Frigate API client.""" from __future__ import annotations import asyncio import logging import socket from typing import Any, Dict, List, cast import aiohttp import async_timeout from yarl import URL TIMEOUT = 10 _LOGGER: logging.Logger = logging.getLogger(__name__) HEADERS = {"Content-type": "application/json; charset=UTF-8"} # ============================================================================== # Please do not add HomeAssistant specific imports/functionality to this module, # so that this library can be optionally moved to a different repo at a later # date. # ============================================================================== class FrigateApiClientError(Exception): """General FrigateApiClient error.""" class FrigateApiClient: """Frigate API client.""" def __init__(self, host: str, session: aiohttp.ClientSession) -> None: """Construct API Client.""" self._host = host self._session = session async def async_get_version(self) -> str: """Get data from the API.""" return cast( str, await self.api_wrapper( "get", str(URL(self._host) / "api/version"), decode_json=False ), ) async def async_get_stats(self) -> dict[str, Any]: """Get data from the API.""" return cast( Dict[str, Any], await self.api_wrapper("get", str(URL(self._host) / "api/stats")), ) async def async_get_events( self, camera: str | None = None, label: str | None = None, zone: str | None = None, after: int | None = None, before: int | None = None, limit: int | None = None, has_clip: bool | None = None, has_snapshot: bool | None = None, ) -> list[dict[str, Any]]: """Get data from the API.""" params = { "camera": camera, "label": label, "zone": zone, "after": after, "before": before, "limit": limit, "has_clip": int(has_clip) if has_clip is not None else None, "has_snapshot": int(has_snapshot) if has_snapshot is not None else None, } return cast( List[Dict[str, Any]], await self.api_wrapper( "get", str( URL(self._host) / "api/events" % {k: v for k, v in params.items() if v is not None} ), ), ) async def async_get_event_summary( self, has_clip: bool | None = None, has_snapshot: bool | None = None, ) -> list[dict[str, Any]]: """Get data from the API.""" params = { "has_clip": int(has_clip) if has_clip is not None else None, "has_snapshot": int(has_snapshot) if has_snapshot is not None else None, } return cast( List[Dict[str, Any]], await self.api_wrapper( "get", str( URL(self._host) / "api/events/summary" % {k: v for k, v in params.items() if v is not None} ), ), ) async def async_get_config(self) -> dict[str, Any]: """Get data from the API.""" return cast( Dict[str, Any], await self.api_wrapper("get", str(URL(self._host) / "api/config")), ) async def async_get_path(self, path: str) -> Any: """Get data from the API.""" return await self.api_wrapper("get", str(URL(self._host) / f"{path}/")) async def api_wrapper( self, method: str, url: str, data: dict | None = None, headers: dict | None = None, decode_json: bool = True, ) -> Any: """Get information from the API.""" if data is None: data = {} if headers is None: headers = {} try: async with async_timeout.timeout(TIMEOUT, loop=asyncio.get_event_loop()): if method == "get": response = await self._session.get( url, headers=headers, raise_for_status=True ) if decode_json: return await response.json() return await response.text() if method == "put": await self._session.put(url, headers=headers, json=data) elif method == "patch": await self._session.patch(url, headers=headers, json=data) elif method == "post": await self._session.post(url, headers=headers, json=data) except asyncio.TimeoutError as exc: _LOGGER.error( "Timeout error fetching information from %s: %s", url, exc, ) raise FrigateApiClientError from exc except (KeyError, TypeError) as exc: _LOGGER.error( "Error parsing information from %s: %s", url, exc, ) raise FrigateApiClientError from exc except (aiohttp.ClientError, socket.gaierror) as exc: _LOGGER.error( "Error fetching information from %s: %s", url, exc, ) raise FrigateApiClientError from exc
python
import jieba import jieba.posseg as pseg #่ฏๆ€งๆ ‡ๆณจ import jieba.analyse as anls #ๅ…ณ้”ฎ่ฏๆๅ– class Fenci: def __init__(self): pass #ๅ…จๆจกๅผๅ’Œ็ฒพ็กฎๆจกๅผ def cut(self,word,cut_all=True): return jieba.cut(word, cut_all=True) #ๆœ็ดขๅผ•ๆ“Žๆจกๅผ # def cut_for_search(self,word): # return jieba.cut_for_search(word) if __name__ == "__main__": seg_list = Fenci().cut("ไฝ ไธ€็‚นไนŸไธๅฅฝ็œ‹") print("ใ€cutใ€‘๏ผš" + "/ ".join(seg_list)) seg_list = Fenci().cut_for_search("ไฝ ไธ€็‚นไนŸไธๅฅฝ็œ‹") print("ใ€cut for searchใ€‘๏ผš" + "/ ".join(seg_list))
python
''' Unit tests for the environments.py module. ''' import boto3 import json import pytest from mock import patch from moto import ( mock_ec2, mock_s3 ) from deployer.exceptions import ( EnvironmentExistsException, InvalidCommandException) import deployer.environments as env import deployer.tests.MyBoto3 as MyBoto3 fake_boto3 = MyBoto3.MyBoto3() def mock_run_cmd(args, cwd=None): print("CWD: {}, Running command: {}".format(cwd, " ".join(args))) return 0 def mock_inst_is_running(instance_id): return True @pytest.fixture def mock_config(scope="function"): return { "terraform": "[email protected]:group/project.git?branch=made_up_branch", "aws_profile": "tests-random", "aws_region": "us-east-1", "availability_zones": [ 'us-east-1b', 'us-east-1c', 'us-east-1d', 'us-east-1e' ], "account_id": "123456789012", "environment": { "name": "myenvname", "version": "a", }, 'tags': { 'system_type' : 'mock_product' }, "env_name": "myenvname-a", "tf_state": "myenvname-a.tfstate", "tf_state_bucket": "123456789012-myproj-tfstate", "project_config": "123456789012-myproj-data", "project": 'myproj', "tfvars" : '/tmp/test_tmp_dir/vars.tf', "tf_root": '/tmp/test_tmp_dir/terraform', "tmpdir" : '/tmp/test_tmp_dir' } @mock_ec2 def mock_vpcs(scope="function"): ec2c = boto3.client('ec2', region_name='us-east-1', aws_access_key_id='', aws_secret_access_key='', aws_session_token='') vpc1 = ec2c.create_vpc(CidrBlock='10.1.0.0/16').get('Vpc').get('VpcId') vpc2 = ec2c.create_vpc(CidrBlock='10.2.0.0/16').get('Vpc').get('VpcId') vpc3 = ec2c.create_vpc(CidrBlock='10.3.0.0/16').get('Vpc').get('VpcId') ec2c.create_tags(Resources = [ vpc1 ], Tags=[ {'Key':'Name', 'Value' : 'myproj-myenvname-a'}, {'Key':'env', 'Value' : 'myenvname-a'} ]) ec2c.create_tags(Resources = [ vpc2 ], Tags=[ {'Key':'Name', 'Value' : 'myproj-myenvname-b'}, {'Key':'env', 'Value' : 'myenvname-b'} ]) ec2c.create_tags(Resources = [ vpc3 ], Tags=[ {'Key':'Name', 'Value' : 'myproj-myenvname-c'}, {'Key':'env', 'Value' : 'myenvname-c'} ]) return ec2c @mock_s3 @mock_ec2 def test_create_env_exists(mock_config): expected_arn = [ "arn:aws:ec2:us-east-1:419934374614:instance/i-c3bef428" ] expected_msg = "\n\nAn environment with the name {} already exists." expected_msg += "\nPlease tear it down before trying to rebuild." expected_msg += "\n\n{}".format(json.dumps(expected_arn, indent=4)) env_name = mock_config['env_name'] if 'tags' in mock_config and 'system_type' in mock_config['tags']: env_name = "-".join([mock_config['tags']['system_type'], env_name ]) s3client = boto3.client('s3') s3client.create_bucket(Bucket="123456789012-myproj-tfstate") with pytest.raises(EnvironmentExistsException) as e: ec2c = boto3.client('ec2') vpc1 = ec2c.create_vpc(CidrBlock='10.1.0.0/16').get('Vpc').get('VpcId') ec2c.create_tags(Resources = [ vpc1 ], Tags=[ {'Key':'Name', 'Value' : 'myproj-myenvname-a'}, {'Key':'env', 'Value' : 'myenvname-a'}, {'Key' : 'system_type', 'Value' : 'mock_product'} ]) with patch('deployer.aws.instance_is_running', mock_inst_is_running): with patch('deployer.utils.run_command', mock_run_cmd): with patch('deployer.aws.boto3', fake_boto3): env.create(mock_config) from termcolor import colored assert(e.value.args[0] == colored(expected_msg.format(env_name), 'red')) return @mock_s3 @mock_ec2 def test_create_env_does_not_exist(mock_config): mock_config['environment']['name'] = 'myotherenvname' mock_config['environment']['version'] = 'z' s3client = boto3.client('s3') s3client.create_bucket(Bucket="123456789012-myproj-tfstate") with patch('deployer.utils.run_command', mock_run_cmd): with patch('deployer.aws.boto3', fake_boto3): assert env.create(mock_config) return def test_precheck_valid_keys(mock_config): actions = [ 'create', 'destroy' ] for action in actions: with patch('deployer.utils.run_command', mock_run_cmd): env._precheck(mock_config, action) return def test_precheck_invalid_key(mock_config): with patch('deployer.utils.run_command', mock_run_cmd): with pytest.raises(InvalidCommandException): env._precheck(mock_config, 'invalid_command') return @mock_ec2 def test_list_deployed_environment_versions(mock_config): mock_vpcs() env_name = mock_config['environment']['name'] with patch('deployer.aws.boto3', fake_boto3): existing_env_versions = env.list_deployed_environment_versions(env_name) assert existing_env_versions == [ 'a', 'b', 'c' ] return @mock_ec2 def test_get_next_env_version(mock_config): mock_vpcs() env_name = mock_config['environment']['name'] expected = 'd' with patch('deployer.aws.boto3', fake_boto3): with patch('deployer.aws.instance_is_running', mock_inst_is_running): next_version = env.get_next_version(env_name) assert expected == next_version
python
#!/usr/bin/env python3 # coding: utf-8 # print ใฎๅ‡บๅŠ›ๆ™‚ใซๆ—ฅๆœฌ่ชžใงใ‚‚ใ‚จใƒฉใƒผใŒๅ‡บใชใ„ใ‚ˆใ†ใซใ™ใ‚‹ใŠใพใ˜ใชใ„ import sys import io sys.stdout = io.TextIOWrapper( sys.stdout.buffer, encoding='utf-8' ) # CGIใจใ—ใฆๅฎŸ่กŒใ—ใŸ้š›ใฎใƒ•ใ‚ฉใƒผใƒ ๆƒ…ๅ ฑใ‚’ๅ–ใ‚Šๅ‡บใ™ใƒฉใ‚คใƒ–ใƒฉใƒช import cgi form_data = cgi.FieldStorage( keep_blank_values = True ) # MySQLใƒ‡ใƒผใ‚ฟใƒ™ใƒผใ‚นๆŽฅ็ถš็”จใƒฉใ‚คใƒ–ใƒฉใƒช import MySQLdb con = None cur = None # ใƒˆใƒƒใƒ—็”ป้ขใฎHTMLใ‚’ๅ‡บๅŠ›ใ™ใ‚‹ใƒกใ‚ฝใƒƒใƒ‰ def print_html(): # html ้–‹ๅง‹ print( '<!DOCTYPE html>' ) print( '<html>' ) # head ๅ‡บๅŠ› print( '<head>' ) print( '<meta charset="UTF-8">' ) print( '</head>' ) # body ้–‹ๅง‹ print( '<body>' ) print( '<p>ใฒใจใ“ใจๆŽฒ็คบๆฟ</p>' ) # ๆ›ธใ่พผใฟใƒ•ใ‚ฉใƒผใƒ ใ‚’ๅ‡บๅŠ› print( '<form action="" method="POST">' ) print( '<input type="hidden" name="method_type" value="tweet">' ) print( '<input type="text" name="poster_name" value="" placeholder="ใชใพใˆ">' ) print( '<br>' ) print( '<textarea name="body_text" value="" placeholder="ๆœฌๆ–‡"></textarea>' ) print( '<input type="submit" value="ๆŠ•็จฟ">' ) print( '</form>' ) # ็ฝซ็ทšใ‚’ๅ‡บๅŠ› print( '<hr>' ) # ๆ›ธใ่พผใฟใฎไธ€่ฆงใ‚’ๅ–ๅพ—ใ™ใ‚‹SQLๆ–‡ใ‚’ไฝœๆˆ sql = "select * from posts" # SQLใ‚’ๅฎŸ่กŒ cur.execute( sql ) # ๅ–ๅพ—ใ—ใŸๆ›ธใ่พผใฟใฎไธ€่ฆงใฎๅ…จใƒฌใ‚ณใƒผใƒ‰ใ‚’ๅ–ใ‚Šๅ‡บใ— rows = cur.fetchall() # ๅ…จใƒฌใ‚ณใƒผใƒ‰ใ‹ใ‚‰1ใƒฌใ‚ณใƒผใƒ‰ใšใคๅ–ใ‚Šๅ‡บใ™ใƒซใƒผใƒ—ๅ‡ฆ็† for row in rows: print( '<div class="meta">' ) print( '<span class="id">' + row[ 'id' ] + '</span>' ) print( '<span class="name">' + row[ 'name' ] + '</span>' ) print( '<span class="date">' + row[ 'created_at' ] + '</span>' ) print( '</div>' ) print( '<div class="message"><span>' + row[ 'body' ] + '</span></div>' ) # body ้–‰ใ˜ print( '</body>' ) # html ้–‰ใ˜ print( '</html>' ) # ใƒ•ใ‚ฉใƒผใƒ ็ตŒ็”ฑใฎใ‚ขใ‚ฏใ‚ปใ‚นใ‚’ๅ‡ฆ็†ใ™ใ‚‹ใƒกใ‚ฝใƒƒใƒ‰ def proceed_methods(): # ใƒ•ใ‚ฉใƒผใƒ ใฎ็จฎ้กžใ‚’ๅ–ๅพ—๏ผˆไปŠใฎใจใ“ใ‚ๆ›ธใ่พผใฟใฎใฟ๏ผ‰ method = form_data[ 'method_type' ].value # tweet ๏ผˆๆ›ธใ่พผใฟ๏ผ‰ ใ ใฃใŸใ‚‰ if( method == 'tweet' ): # ๅๅ‰ใ‚’ๅ–ใ‚Šๅ‡บใ— poster_name = form_data[ 'poster_name' ].value # ๆŠ•็จฟๅ†…ๅฎนใ‚’ๅ–ใ‚Šๅ‡บใ— body_text = form_data[ 'body_text' ].value # ๆŠ•็จฟใ‚’ใƒ‡ใƒผใ‚ฟใƒ™ใƒผใ‚นใซๆ›ธใ่พผใ‚€SQLๆ–‡ใ‚’ไฝœๆˆ sql = 'insert into posts ( name, body ) values ( %s, %s )' # ๅ–ใ‚Šๅ‡บใ—ใŸๅๅ‰ใจๆŠ•็จฟๅ†…ๅฎนใ‚’ใ‚ปใƒƒใƒˆใ—ใฆSQLใ‚’ๅฎŸ่กŒ cur.execute( sql, ( poster_name, body_text ) ) con.commit() # ๅ‡ฆ็†ใซๆˆๅŠŸใ—ใŸใ‚‰ใƒˆใƒƒใƒ—็”ป้ขใซ่‡ชๅ‹•้ท็งปใ™ใ‚‹ใƒšใƒผใ‚ธใ‚’ๅ‡บๅŠ› print( '<!DOCTYPE html>' ) print( '<html>' ) print( ' <head>' ) print( ' <meta http-equiv="refresh" content="5; url=./">' ) print( ' </head>' ) print( ' <body>' ) print( ' ๅ‡ฆ็†ใŒๆˆๅŠŸใ—ใพใ—ใŸใ€‚5็ง’ๅพŒใซๅ…ƒใฎใƒšใƒผใ‚ธใซๆˆปใ‚Šใพใ™ใ€‚' ) print( ' </body>' ) print( '</html>' ) # ใƒกใ‚คใƒณๅ‡ฆ็†ใ‚’ๅฎŸ่กŒใ™ใ‚‹ใƒกใ‚ฝใƒƒใƒ‰ def main(): # CGIใจใ—ใฆๅฎŸ่กŒใ™ใ‚‹ใŸใ‚ใฎใŠใพใ˜ใชใ„ print( 'Content-Type: text/html; charset=utf-8' ) print( '' ) # ใ“ใ“ใงใƒ‡ใƒผใ‚ฟใƒ™ใƒผใ‚นใซๆŽฅ็ถšใ—ใฆใŠใ global con, cur try: con = MySQLdb.connect( host = 'xxx.xxx.xxx.xxx', user = 'yourname', passwd = 'yourpassword', db = 'yourdbname', use_unicode = True, charset = 'utf8' ) except MySQLdb.Error as e: print( 'ใƒ‡ใƒผใ‚ฟใƒ™ใƒผใ‚นๆŽฅ็ถšใซๅคฑๆ•—ใ—ใพใ—ใŸใ€‚' ) print( e ) # ใƒ‡ใƒผใ‚ฟใƒ™ใƒผใ‚นใซๆŽฅ็ถšใงใใชใ‹ใฃใŸๅ ดๅˆใฏใ€ใ“ใ“ใงๅ‡ฆ็†ใ‚’็ต‚ไบ† exit() cur = con.cursor( MySQLdb.cursors.DictCursor ) # ใƒ•ใ‚ฉใƒผใƒ ็ตŒ็”ฑใฎใ‚ขใ‚ฏใ‚ปใ‚นใ‹ใ‚’ๅˆคๅฎš if( 'method_type' in form_data ): # ใƒ•ใ‚ฉใƒผใƒ ็ตŒ็”ฑใฎใ‚ขใ‚ฏใ‚ปใ‚นใงใ‚ใ‚‹ๅ ดๅˆใฏใ€ใƒ•ใ‚ฉใƒผใƒ ใฎ็จฎ้กžใซๅพ“ใฃใฆๅ‡ฆ็†ใ‚’ๅฎŸ่กŒ proceed_methods() else: # ใƒ•ใ‚ฉใƒผใƒ ็ตŒ็”ฑใฎใ‚ขใ‚ฏใ‚ปใ‚นใงใชใ„ๅ ดๅˆใฏใ€้€šๅธธใฎใƒˆใƒƒใƒ—็”ป้ขใ‚’่กจ็คบ print_html() # ไธ€้€šใ‚Šใฎๅ‡ฆ็†ใŒๅฎŒไบ†ใ—ใŸใ‚‰ๆœ€ๅพŒใซใƒ‡ใƒผใ‚ฟใƒ™ใƒผใ‚นใ‚’ๅˆ‡ๆ–ญใ—ใฆใŠใ cur.close() con.close() # Pythonใ‚นใ‚ฏใƒชใƒ—ใƒˆใจใ—ใฆๅฎŸ่กŒใ•ใ‚ŒใŸๅ ดๅˆใฎใฟๅฎŸ่กŒ if __name__ == "__main__": # main() ใ‚’ๅฎŸ่กŒ main()
python
#!/usr/bin/env python3 # coding: utf-8 import os import sys import re import numpy as np #==============================================================================# def atomgroup_header(atomgroup): """ Return a string containing info about the AtomGroup containing the total number of atoms, the including residues and the number of residues. Useful for writing output file headers. """ unq_res, n_unq_res = np.unique( atomgroup.residues.resnames, return_counts=True) return "{} atom(s): {}".format( atomgroup.n_atoms, ", ".join( "{} {}".format(*i) for i in np.vstack([n_unq_res, unq_res]).T)) def fill_template(template, vars, s = "<", e = ">"): """ Search and replace tool for filling template files. Replaces text bounded by the delimiters `s` and `e` with values found in the lookup dictionary `vars`. """ exp = s + "\w*" + e matches = re.findall(exp, template) for m in matches: key = m[1:-1] template = template.replace(m, str(vars.get(key, m))) return template def save_path(prefix = ""): """Returns a formatted output location for a given file prefix.""" if prefix != "" and prefix[-1] != "/": prefix += "_" output = prefix if os.path.dirname(prefix) else os.path.join(os.getcwd(), prefix) if not os.path.exists(os.path.dirname(output)): os.makedirs(os.path.dirname(prefix)) return output #==============================================================================# def nearest_power_two(n): """ Select the closest i such that n<=2**i. """ current_exp = int(np.ceil(np.log2(n+1))) if n == 2**current_exp: n_fft = n if n < 2**current_exp: n_fft = 2**current_exp elif n > 2**current_exp: n_fft = 2**(current_exp+1) return n_fft def zero_pad(x, n): """ Pad an array to length `n` with zeros. If the original array length is greater than `n`, a copy of the original array is returned with it's length unchanged. """ nx = len(x) if n < nx: n = nx new = np.zeros((n, *x.shape[1:]), dtype = x.dtype) new[:nx] = x return new def bin_data(arr, nbins, after = 1, log = True): """ Averages array values in bins for easier plotting. """ # Determine indices to average between if log: bins = np.logspace(np.log10(after), np.log10(len(arr)-1), nbins+1).astype(int) else: bins = np.linspace(after, len(arr), nbins+1).astype(int) bins = np.unique(np.append(np.arange(after), bins)) avg = np.zeros(len(bins)-1, dtype = arr.dtype) for i in range(len(bins)-1): avg[i] = np.mean(arr[bins[i]:bins[i+1]]) return avg
python
from pydantic import BaseModel class ConsumerResponse(BaseModel): topic: str timestamp: str product_name: str product_id: int success: bool
python
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `te_python` module.""" import pytest import requests from te_python import te_python def test_te_python_initialization(): response = te_python.email_get_details('a53b7747d6bd3f59076d63469d92924e00f407ff472e5a539936453185ecca6c') assert isinstance(response, dict) def test_update_api_url(): # make a request to localhost (which should fail)... this makes sure that the base_api_url is being properly used with pytest.raises(requests.ConnectionError): te_python.email_get_details('a53b7747d6bd3f59076d63469d92924e00f407ff472e5a539936453185ecca6c')
python
from django.db import models class Person(models.Model): first_name = models.CharField(max_length=64) surname = models.CharField(max_length=64) class Meta: app_label = 'person' db_table = 'person' ordering = ('surname', 'first_name')
python
from util.Tile import Tile from util.Button import Button from util.Maze import Maze from algorithms.BFS import BFS from algorithms.DFS import DFS from algorithms.GFS import GFS from algorithms.AStar import AStar from math import floor import pygame class Grid: def __init__(self, width, height, tile_w, colorPalette, line_w = 1, menuOffset = 0, txtSize = 42, nSolutions = 4, fpsFast = 45, fpsSlow = 10): self.WIDTH = width self.HEIGHT = height self.colorPalette = colorPalette self.Y_OFFSET = menuOffset self.LINE_W = line_w self.nSolutions = nSolutions self.fpsFast = fpsFast self.fpsSlow = fpsSlow self.TILE_W = tile_w # should be divisible by width and height so it all works out self.RECT_OFF = floor(self.LINE_W / 2) # offset due to the line's width # array of tiles self.tiles = [] for h in range(0, self.HEIGHT, self.TILE_W): row = [] for w in range(0, self.WIDTH, self.TILE_W): # menu offset is included in the height row.append(Tile(w, h + self.Y_OFFSET, self.TILE_W, self.RECT_OFF)) self.tiles.append(row) # array of buttons pygame.font.init() bigFont = pygame.font.SysFont('Calibri', txtSize) self.algButtons = [ Button(110, 50, "Depth FS", bigFont, self.colorPalette), Button(315, 50, "Breadth FS", bigFont, self.colorPalette), Button(530, 50, "Greedy FS", bigFont, self.colorPalette), Button(740, 50, "A-Star", bigFont, self.colorPalette) ] smallFont = pygame.font.SysFont('Calibri', floor(txtSize / 2)) self.otherButtons = { "Maze" : Button(110, 150, "Generate Maze", smallFont, self.colorPalette), "Clear" : Button(280, 150, "Clear", smallFont, self.colorPalette), "Slow" : Button(725, 150, "Slow", smallFont, self.colorPalette), "Fast" : Button(800, 150, "Fast", smallFont, self.colorPalette) } self.otherButtons["Slow"].highlightTrue() self.FPS = self.fpsSlow # origin and target tile -> for dragging them self.originTile = self.tiles[0][0] self.originTile.updateState("origin") self.targetTile = self.tiles[-1][-1] self.targetTile.updateState("target") # maze generator self.mazeGen = None # for mouse dragging self.leftBeingClicked = False self.rightBeingClicked = False self.originDragged = False self.targetDragged = False # algorithm selected stores the selected button representing the choice of algorithm self.algorithmSelected = None self.updateAlgorithm(self.algButtons[0]) # algorithm is the algorithm object in itself self.algorithm = None self.solved = False def draw(self, screen): self.drawGrid(screen) self.drawTiles(screen) self.drawButtons(screen) def update(self, state): # DRAW STATE if state == "draw": (x, y) = pygame.mouse.get_pos() (xGrid, yGrid) = self.pixelsToGrid(x, y) if y > self.Y_OFFSET: clickedTile = self.tiles[yGrid][xGrid] if self.leftBeingClicked and clickedTile != self.originTile and clickedTile != self.targetTile: clickedTile.updateState("wall") elif self.rightBeingClicked and clickedTile != self.originTile and clickedTile != self.targetTile: clickedTile.updateState("tile") elif self.originDragged and clickedTile != self.targetTile: self.originTile.updateState("tile") self.originTile = clickedTile self.originTile.updateState("origin") elif self.targetDragged and clickedTile != self.originTile: self.targetTile.updateState("tile") self.targetTile = clickedTile self.targetTile.updateState("target") # SOLVE STATE elif state == "solve": if self.algorithm.stepSearch() == 1: self.solved = True self.updateTilesState(self.algorithm.seen, "seen") self.updateTilesState(self.algorithm.path, "path") self.updateTilesState([self.algorithm.getCurrent()], "current") def drawGrid(self, screen): # + 1 so that the last lines are included for w in range(0, self.WIDTH + 1, self.TILE_W): pygame.draw.line(screen, self.colorPalette["DARKBLUE"], (w, self.Y_OFFSET), (w, self.HEIGHT + self.Y_OFFSET), self.LINE_W) for h in range(self.Y_OFFSET, self.HEIGHT + self.Y_OFFSET + 1, self.TILE_W): pygame.draw.line(screen, self.colorPalette["DARKBLUE"], (0, h), (self.WIDTH, h), self.LINE_W) def drawTiles(self, screen): for row in self.tiles: for tile in row: state = tile.getState() color = self.colorPalette["GRAY"] # default is gray # with python 3.10 a switch case statement would work if state == "wall": color = self.colorPalette["DARKBLUE"] elif state == "seen": color = self.colorPalette["BLUE"] elif state == "path": color = self.colorPalette["MINT"] elif state == "current": color = self.colorPalette["ORANGE"] elif state == "origin": color = self.colorPalette["GREEN"] elif state == "target": color = self.colorPalette["RED"] pygame.draw.rect(screen, color, tile.getRect()) def drawButtons(self, screen): for button in self.algButtons: button.draw(screen) for key in self.otherButtons: self.otherButtons[key].draw(screen) def clickDown(self, x, y, left, state): # update tiles according to a click down and and x,y coord of the mouse # left argument is true if it was a left click, false if it was a right click if (y < self.Y_OFFSET): self.menuClick(x, y, state) elif state == "draw": if self.originTile.wasItClicked(x, y): self.originDragged = True elif self.targetTile.wasItClicked(x, y): self.targetDragged = True elif left: self.leftBeingClicked = True else: self.rightBeingClicked = True def menuClick(self, x, y, state): if state == "draw": for button in self.algButtons: if button.clicked(x, y): self.updateAlgorithm(button) return if state == "draw": if self.otherButtons["Maze"].clicked(x, y): # generate a maze self.mazeGen = Maze( len(self.tiles[0]), len(self.tiles), self.pixelsToGrid(*self.originTile.getPosition()), self.pixelsToGrid(*self.targetTile.getPosition()) ) newMap = self.mazeGen.createMaze(self.nSolutions) self.changeToNewMap(newMap) elif self.otherButtons["Clear"].clicked(x, y): self.changeToNewMap() # leave empty to clear it if self.otherButtons["Slow"].clicked(x, y): self.FPS = self.fpsSlow self.otherButtons["Slow"].highlightTrue() self.otherButtons["Fast"].highlightFalse() elif self.otherButtons["Fast"].clicked(x, y): self.FPS = self.fpsFast self.otherButtons["Fast"].highlightTrue() self.otherButtons["Slow"].highlightFalse() def changeToNewMap(self, newMap = None): if newMap == None: for h in range(len(self.tiles)): for w in range(len(self.tiles[0])): if self.tiles[h][w] != self.originTile and self.tiles[h][w] != self.targetTile: self.tiles[h][w].updateState("tile") else: for h in range(len(newMap)): for w in range(len(newMap[h])): if self.tiles[h][w] != self.originTile and self.tiles[h][w] != self.targetTile: if newMap[h][w]: self.tiles[h][w].updateState("wall") else: self.tiles[h][w].updateState("tile") def updateAlgorithm(self, newAlgorithm): for button in self.algButtons: button.highlightFalse() newAlgorithm.highlightTrue() self.algorithmSelected = newAlgorithm.text def clickUp(self): self.leftBeingClicked = False self.rightBeingClicked = False self.originDragged = False self.targetDragged = False def defineAlgorithm(self): # the map is not solved self.solved = False # if this is not the first time running an algorithm we have to clean all non wall / tile tiles self.removePathGrid() originPos = self.pixelsToGrid(*self.originTile.getPosition()) targetPos = self.pixelsToGrid(*self.targetTile.getPosition()) if self.algorithmSelected == "Breadth FS": self.algorithm = BFS(originPos, targetPos, self.getGrid()) elif self.algorithmSelected == "Depth FS": self.algorithm = DFS(originPos, targetPos, self.getGrid()) elif self.algorithmSelected == "Greedy FS": self.algorithm = GFS(originPos, targetPos, self.getGrid()) elif self.algorithmSelected == "A-Star": self.algorithm = AStar(originPos, targetPos, self.getGrid()) def removePathGrid(self): for row in self.tiles: for tile in row: tmp = tile.getState() if tmp != "wall" and tmp != "origin" and tmp != "target": tile.updateState("tile") def getGrid(self): grid = [] for row in self.tiles: boolRow = [] for tile in row: if tile.getState() == "wall": boolRow.append(True) else: boolRow.append(False) grid.append(boolRow) return grid def updateTilesState(self, coords, state): for coord in coords: (x, y) = coord if self.tiles[y][x] != self.originTile and self.tiles[y][x] != self.targetTile: self.tiles[y][x].updateState(state) def pixelsToGrid(self, x, y): return (floor(x / self.TILE_W), floor((y - self.Y_OFFSET) / self.TILE_W))
python
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import operator import os import time from google.api_core.exceptions import ResourceExhausted from google.cloud import bigquery_datatransfer_v1 from google.protobuf.timestamp_pb2 import Timestamp RETRY_DELAY = 10 class TimeoutError(Exception): """Raised when the BQ transfer jobs haven't all finished within the allotted time""" pass def main( source_project_id: str, source_bq_dataset: str, target_project_id: str, target_bq_dataset: str, service_account: str, timeout: int, ): client = bigquery_datatransfer_v1.DataTransferServiceClient() transfer_config_name = f"{source_project_id}-{source_bq_dataset}-copy" existing_config = find_existing_config( client, target_project_id, transfer_config_name ) if not existing_config: existing_config = create_transfer_config( client, source_project_id, source_bq_dataset, target_project_id, target_bq_dataset, transfer_config_name, service_account, ) trigger_config(client, existing_config) wait_for_completion(client, existing_config, timeout) def find_existing_config( client: bigquery_datatransfer_v1.DataTransferServiceClient, gcp_project: str, transfer_config_name: str, ) -> bigquery_datatransfer_v1.types.TransferConfig: all_transfer_configs = client.list_transfer_configs( request=bigquery_datatransfer_v1.types.ListTransferConfigsRequest( parent=f"projects/{gcp_project}" ) ) return next( ( config for config in all_transfer_configs if config.display_name == transfer_config_name ), None, ) def wait_for_completion( client: bigquery_datatransfer_v1.DataTransferServiceClient, running_config: bigquery_datatransfer_v1.types.TransferConfig, timeout: int, ) -> None: _start = int(time.time()) while True: latest_runs = [] latest_runs.append(latest_transfer_run(client, running_config)) logging.info(f"States: {[str(run.state) for run in latest_runs]}") # Mark as complete when all runs have succeeded if all([str(run.state) == "TransferState.SUCCEEDED" for run in latest_runs]): return # Stop the process when it's longer than the allotted time if int(time.time()) - _start > timeout: raise TimeoutError time.sleep(RETRY_DELAY) def latest_transfer_run( client: bigquery_datatransfer_v1.DataTransferServiceClient, config: bigquery_datatransfer_v1.types.TransferConfig, ) -> bigquery_datatransfer_v1.types.TransferRun: transfer_runs = client.list_transfer_runs(parent=config.name) return max(transfer_runs, key=operator.attrgetter("run_time")) def create_transfer_config( client: bigquery_datatransfer_v1.DataTransferServiceClient, source_project_id: str, source_dataset_id: str, target_project_id: str, target_dataset_id: str, display_name: str, service_account: str, ) -> bigquery_datatransfer_v1.types.TransferConfig: transfer_config = bigquery_datatransfer_v1.TransferConfig( destination_dataset_id=target_dataset_id, display_name=display_name, data_source_id="cross_region_copy", dataset_region="US", params={ "overwrite_destination_table": True, "source_project_id": source_project_id, "source_dataset_id": source_dataset_id, }, schedule_options=bigquery_datatransfer_v1.ScheduleOptions( disable_auto_scheduling=True ), ) request = bigquery_datatransfer_v1.types.CreateTransferConfigRequest( parent=client.common_project_path(target_project_id), transfer_config=transfer_config, service_account_name=service_account, ) return client.create_transfer_config(request=request) def trigger_config( client: bigquery_datatransfer_v1.DataTransferServiceClient, config: bigquery_datatransfer_v1.types.TransferConfig, ) -> None: now = time.time() seconds = int(now) nanos = int((now - seconds) * pow(10, 9)) try: client.start_manual_transfer_runs( request=bigquery_datatransfer_v1.types.StartManualTransferRunsRequest( parent=config.name, requested_run_time=Timestamp(seconds=seconds, nanos=nanos), ) ) except ResourceExhausted: logging.info( f"Transfer job is currently running for config ({config.display_name}) {config.name}." ) return if __name__ == "__main__": logging.getLogger().setLevel(logging.INFO) main( source_project_id=os.environ["SOURCE_PROJECT_ID"], source_bq_dataset=os.environ["SOURCE_BQ_DATASET"], target_project_id=os.environ["TARGET_PROJECT_ID"], target_bq_dataset=os.environ["TARGET_BQ_DATASET"], service_account=os.environ["SERVICE_ACCOUNT"], timeout=int(os.getenv("TIMEOUT", 1200)), )
python
from discord.ext import commands from discord_bot.bot import Bot class Admin(commands.Cog): """Admin commands that only bot owner can run""" def __init__(self, bot: Bot): self.bot = bot @commands.command(name="shutdown", hidden=True) @commands.is_owner() async def shutdow(self, ctx: commands.Context): """Closes all connections and shuts down the bot""" await ctx.send("Shutting down the bot...") await self.bot.close() @commands.group(name="extension", aliases=["ext"], hidden=True) @commands.is_owner() async def ext(self, ctx: commands.Context): """A command to load, reload, unload extensions.""" if ctx.invoked_subcommand is None: await ctx.reply("This command requires a subcommand to be passed") @ext.command(name="load", aliases=["l"]) async def load(self, ctx: commands.Context, arg: str): """A command to load extensions.""" try: self.bot.load_extension(f"discord_bot.cogs.{arg}") await ctx.reply(f"Successfully loaded extension {arg}") except Exception as e: await ctx.reply(f"Failed to load ext {arg}\n{e}") @ext.command(name="unload", aliases=["u"]) async def unload(self, ctx: commands.Context, arg: str): """A command to unload extensions""" try: self.bot.unload_extension(f"discord_bot.cogs.{arg}") await ctx.reply(f"Successfully unloaded extension {arg}") except Exception as e: await ctx.reply(f"Failed to unload ext {arg}\n{e}") @ext.command(name="reload", aliases=["r"]) async def reload(self, ctx: commands.Context, arg: str): """A command to reload extensions.""" try: self.bot.reload_extension(f"discord_bot.cogs.{arg}") await ctx.reply(f"Successfully reloaded extension {arg}") except Exception as e: await ctx.reply(f"Failed to reload ext {arg}\n{e}") def setup(bot: Bot): bot.add_cog(Admin(bot))
python
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ResourceMetadata(Model): """Represents a Resource metadata. :param kind: Possible values include: 'bearerAuthenticationConnection', 'sshKeyAuthenticationConnection', 'apiKeyAuthenticationConnection', 'basicAuthenticationConnection', 'firstPartyADConnection', 'amazonS3Connection', 'adlsGen2', 'd365Sales', 'd365Marketing', 'attachCds', 'ftp', 'facebookAds', 'amlWorkspace', 'mlStudioWebservice', 'adRoll', 'rollWorks', 'constantContact', 'campaignMonitor', 'http', 'dotDigital', 'mailchimp', 'linkedIn', 'googleAds', 'marketo', 'microsoftAds', 'omnisend', 'sendGrid', 'sendinblue', 'activeCampaign', 'autopilot', 'klaviyo', 'snapchat', 'powerBI', 'azureSql', 'synapse' :type kind: str or ~dynamics.customerinsights.api.models.enum :param resource_id: Gets the Id of the resource. :type resource_id: str :param operation_id: Gets the Id of the operation being performed on the resource. :type operation_id: str :param name: Gets the Name of the resource. :type name: str :param description: Gets the Description of the resource. :type description: str :param key_vault_metadata_id: MetadataId for Linked KeyVaultMetadata :type key_vault_metadata_id: str :param mapped_secrets: :type mapped_secrets: ~dynamics.customerinsights.api.models.MappedSecretMetadata :param version: Version number of this object. :type version: long :param updated_by: UPN of the user who last updated this record. :type updated_by: str :param updated_utc: Time this object was last updated. :type updated_utc: datetime :param created_by: Email address of the user who created this record. :type created_by: str :param created_utc: Time this object was initially created. :type created_utc: datetime :param instance_id: Customer Insights instance id associated with this object. :type instance_id: str """ _attribute_map = { 'kind': {'key': 'kind', 'type': 'str'}, 'resource_id': {'key': 'resourceId', 'type': 'str'}, 'operation_id': {'key': 'operationId', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'key_vault_metadata_id': {'key': 'keyVaultMetadataId', 'type': 'str'}, 'mapped_secrets': {'key': 'mappedSecrets', 'type': 'MappedSecretMetadata'}, 'version': {'key': 'version', 'type': 'long'}, 'updated_by': {'key': 'updatedBy', 'type': 'str'}, 'updated_utc': {'key': 'updatedUtc', 'type': 'iso-8601'}, 'created_by': {'key': 'createdBy', 'type': 'str'}, 'created_utc': {'key': 'createdUtc', 'type': 'iso-8601'}, 'instance_id': {'key': 'instanceId', 'type': 'str'}, } def __init__(self, *, kind=None, resource_id: str=None, operation_id: str=None, name: str=None, description: str=None, key_vault_metadata_id: str=None, mapped_secrets=None, version: int=None, updated_by: str=None, updated_utc=None, created_by: str=None, created_utc=None, instance_id: str=None, **kwargs) -> None: super(ResourceMetadata, self).__init__(**kwargs) self.kind = kind self.resource_id = resource_id self.operation_id = operation_id self.name = name self.description = description self.key_vault_metadata_id = key_vault_metadata_id self.mapped_secrets = mapped_secrets self.version = version self.updated_by = updated_by self.updated_utc = updated_utc self.created_by = created_by self.created_utc = created_utc self.instance_id = instance_id
python
from ctypes import CDLL, sizeof, create_string_buffer def test_hello_world(workspace): workspace.src('greeting.c', r""" #include <stdio.h> void greet(char *somebody) { printf("Hello, %s!\n", somebody); } """) workspace.src('hello.py', r""" import ctypes lib = ctypes.CDLL('./greeting.so') # leading ./ is required lib.greet(b'World') """) # -fPIC: Position Independent Code, -shared: shared object (so) workspace.run('gcc -fPIC -shared -o greeting.so greeting.c') r = workspace.run('python hello.py') assert r.out == 'Hello, World!' def test_mutable_buffer(workspace): workspace.src('mylib.c', r"""\ #include <ctype.h> void upper(char *chars, int len) { for (int i = 0; i <= len; i++) *(chars + i) = toupper(*(chars + i)); } """) workspace.run('gcc -fPIC -shared -o mylib.so mylib.c') chars = b'abc123' buffer = create_string_buffer(chars) assert sizeof(buffer) == 7 # len(chars) + 1 (NUL-terminated) assert buffer.raw == b'abc123\x00' # raw: memory block content assert buffer.value == b'abc123' # value: as NUL-terminated string lib = CDLL('./mylib.so') lib.upper(buffer, len(chars)) assert buffer.value == b'ABC123' # changed in-place assert chars == b'abc123' # unchanged
python
from gui import GUI program = GUI() program.run()
python
#!/usr/bin/env python3 # # RoarCanvasCommandsEdit.py # Copyright (c) 2018, 2019 Lucio Andrรฉs Illanes Albornoz <[email protected]> # from GuiFrame import GuiCommandDecorator, GuiCommandListDecorator, GuiSelectDecorator import wx class RoarCanvasCommandsEdit(): @GuiCommandDecorator("Hide assets window", "Hide assets window", ["toolHideAssetsWindow.png"], None, False) def canvasAssetsWindowHide(self, event): self.parentFrame.assetsWindow.Show(False) self.parentFrame.menuItemsById[self.canvasAssetsWindowHide.attrDict["id"]].Enable(False) self.parentFrame.menuItemsById[self.canvasAssetsWindowShow.attrDict["id"]].Enable(True) toolBar = self.parentFrame.toolBarItemsById[self.canvasAssetsWindowHide.attrDict["id"]][0] toolBar.EnableTool(self.canvasAssetsWindowHide.attrDict["id"], False) toolBar.EnableTool(self.canvasAssetsWindowShow.attrDict["id"], True) toolBar.Refresh() @GuiCommandDecorator("Show assets window", "Show assets window", ["toolShowAssetsWindow.png"], None, False) def canvasAssetsWindowShow(self, event): self.parentFrame.assetsWindow.Show(True) self.parentFrame.menuItemsById[self.canvasAssetsWindowHide.attrDict["id"]].Enable(True) self.parentFrame.menuItemsById[self.canvasAssetsWindowShow.attrDict["id"]].Enable(False) toolBar = self.parentFrame.toolBarItemsById[self.canvasAssetsWindowHide.attrDict["id"]][0] toolBar.EnableTool(self.canvasAssetsWindowHide.attrDict["id"], True) toolBar.EnableTool(self.canvasAssetsWindowShow.attrDict["id"], False) toolBar.Refresh() @GuiSelectDecorator(0, "Solid brush", "Solid brush", None, None, True) def canvasBrush(self, f, idx): def canvasBrush_(self, event): pass setattr(canvasBrush_, "attrDict", f.attrList[idx]) setattr(canvasBrush_, "isSelect", True) return canvasBrush_ @GuiCommandListDecorator(0, "Decrease brush width", "Decrease brush width", ["toolDecrBrushW.png"], None, None) @GuiCommandListDecorator(1, "Decrease brush height", "Decrease brush height", ["toolDecrBrushH.png"], None, None) @GuiCommandListDecorator(2, "Decrease brush size", "Decrease brush size", ["toolDecrBrushHW.png"], [wx.ACCEL_CTRL, ord("-")], None) @GuiCommandListDecorator(3, "Increase brush width", "Increase brush width", ["toolIncrBrushW.png"], None, None) @GuiCommandListDecorator(4, "Increase brush height", "Increase brush height", ["toolIncrBrushH.png"], None, None) @GuiCommandListDecorator(5, "Increase brush size", "Increase brush size", ["toolIncrBrushHW.png"], [wx.ACCEL_CTRL, ord("+")], None) def canvasBrushSize(self, f, dimension, incrFlag): def canvasBrushSize_(event): if (dimension < 2) and not incrFlag: if self.parentCanvas.brushSize[dimension] > 1: self.parentCanvas.brushSize[dimension] -= 1 self.update(brushSize=self.parentCanvas.brushSize) elif (dimension < 2) and incrFlag: self.parentCanvas.brushSize[dimension] += 1 self.update(brushSize=self.parentCanvas.brushSize) elif dimension == 2: [self.canvasBrushSize(f, dimension_, incrFlag)(None) for dimension_ in [0, 1]] viewRect = self.parentCanvas.GetViewStart() eventDc = self.parentCanvas.backend.getDeviceContext(self.parentCanvas.GetClientSize(), self.parentCanvas, viewRect) self.parentCanvas.applyTool(eventDc, True, None, None, None, self.parentCanvas.brushPos, *self.parentCanvas.lastMouseState, self.currentTool, viewRect, force=True) setattr(canvasBrushSize_, "attrDict", f.attrList[dimension + (0 if not incrFlag else 3)]) return canvasBrushSize_ @GuiCommandListDecorator(0, "Decrease canvas height", "Decrease canvas height", ["toolDecrCanvasH.png"], [wx.ACCEL_CTRL, wx.WXK_UP], None) @GuiCommandListDecorator(1, "Decrease canvas width", "Decrease canvas width", ["toolDecrCanvasW.png"], [wx.ACCEL_CTRL, wx.WXK_LEFT], None) @GuiCommandListDecorator(2, "Decrease canvas size", "Decrease canvas size", ["toolDecrCanvasHW.png"], None, None) @GuiCommandListDecorator(3, "Increase canvas height", "Increase canvas height", ["toolIncrCanvasH.png"], [wx.ACCEL_CTRL, wx.WXK_DOWN], None) @GuiCommandListDecorator(4, "Increase canvas width", "Increase canvas width", ["toolIncrCanvasW.png"], [wx.ACCEL_CTRL, wx.WXK_RIGHT], None) @GuiCommandListDecorator(5, "Increase canvas size", "Increase canvas size", ["toolIncrCanvasHW.png"], None, None) def canvasCanvasSize(self, f, dimension, incrFlag): def canvasCanvasSize_(event): if (dimension < 2) and not incrFlag: if dimension == 0: if self.parentCanvas.canvas.size[1] > 1: self.parentCanvas.resize([self.parentCanvas.canvas.size[0], self.parentCanvas.canvas.size[1] - 1]) elif dimension == 1: if self.parentCanvas.canvas.size[0] > 1: self.parentCanvas.resize([self.parentCanvas.canvas.size[0] - 1, self.parentCanvas.canvas.size[1]]) elif (dimension < 2) and incrFlag: if dimension == 0: self.parentCanvas.resize([self.parentCanvas.canvas.size[0], self.parentCanvas.canvas.size[1] + 1]) elif dimension == 1: self.parentCanvas.resize([self.parentCanvas.canvas.size[0] + 1, self.parentCanvas.canvas.size[1]]) elif dimension == 2: [self.canvasCanvasSize(f, dimension_, incrFlag)(None) for dimension_ in [0, 1]] setattr(canvasCanvasSize_, "attrDict", f.attrList[dimension + (0 if not incrFlag else 3)]) return canvasCanvasSize_ @GuiSelectDecorator(0, "Colour #00", "Colour #00 (Bright White)", None, [wx.ACCEL_CTRL, ord("0")], False) @GuiSelectDecorator(1, "Colour #01", "Colour #01 (Black)", None, [wx.ACCEL_CTRL, ord("1")], False) @GuiSelectDecorator(2, "Colour #02", "Colour #02 (Blue)", None, [wx.ACCEL_CTRL, ord("2")], False) @GuiSelectDecorator(3, "Colour #03", "Colour #03 (Green)", None, [wx.ACCEL_CTRL, ord("3")], False) @GuiSelectDecorator(4, "Colour #04", "Colour #04 (Red)", None, [wx.ACCEL_CTRL, ord("4")], False) @GuiSelectDecorator(5, "Colour #05", "Colour #05 (Light Red)", None, [wx.ACCEL_CTRL, ord("5")], False) @GuiSelectDecorator(6, "Colour #06", "Colour #06 (Pink)", None, [wx.ACCEL_CTRL, ord("6")], False) @GuiSelectDecorator(7, "Colour #07", "Colour #07 (Yellow)", None, [wx.ACCEL_CTRL, ord("7")], False) @GuiSelectDecorator(8, "Colour #08", "Colour #08 (Light Yellow)", None, [wx.ACCEL_CTRL, ord("8")], False) @GuiSelectDecorator(9, "Colour #09", "Colour #09 (Light Green)", None, [wx.ACCEL_CTRL, ord("9")], False) @GuiSelectDecorator(10, "Colour #10", "Colour #10 (Cyan)", None, [wx.ACCEL_CTRL | wx.ACCEL_SHIFT, ord("0")], False) @GuiSelectDecorator(11, "Colour #11", "Colour #11 (Light Cyan)", None, [wx.ACCEL_CTRL | wx.ACCEL_SHIFT, ord("1")], False) @GuiSelectDecorator(12, "Colour #12", "Colour #12 (Light Blue)", None, [wx.ACCEL_CTRL | wx.ACCEL_SHIFT, ord("2")], False) @GuiSelectDecorator(13, "Colour #13", "Colour #13 (Light Pink)", None, [wx.ACCEL_CTRL | wx.ACCEL_SHIFT, ord("3")], False) @GuiSelectDecorator(14, "Colour #14", "Colour #14 (Grey)", None, [wx.ACCEL_CTRL | wx.ACCEL_SHIFT, ord("4")], False) @GuiSelectDecorator(15, "Colour #15", "Colour #15 (Light Grey)", None, [wx.ACCEL_CTRL | wx.ACCEL_SHIFT, ord("5")], False) def canvasColour(self, f, idx): def canvasColour_(event): if event.GetEventType() == wx.wxEVT_TOOL: self.parentCanvas.brushColours[0] = idx elif event.GetEventType() == wx.wxEVT_TOOL_RCLICKED: self.parentCanvas.brushColours[1] = idx self.update(colours=self.parentCanvas.brushColours) viewRect = self.parentCanvas.GetViewStart() eventDc = self.parentCanvas.backend.getDeviceContext(self.parentCanvas.GetClientSize(), self.parentCanvas, viewRect) self.parentCanvas.applyTool(eventDc, True, None, None, None, self.parentCanvas.brushPos, *self.parentCanvas.lastMouseState, self.currentTool, viewRect, force=True) setattr(canvasColour_, "attrDict", f.attrList[idx]) setattr(canvasColour_, "isSelect", True) return canvasColour_ @GuiSelectDecorator(0, "Transparent colour", "Transparent colour", None, [wx.ACCEL_CTRL | wx.ACCEL_SHIFT, ord("6")], False) def canvasColourAlpha(self, f, idx): def canvasColourAlpha_(event): if event.GetEventType() == wx.wxEVT_TOOL: self.parentCanvas.brushColours[0] = -1 elif event.GetEventType() == wx.wxEVT_TOOL_RCLICKED: self.parentCanvas.brushColours[1] = -1 self.update(colours=self.parentCanvas.brushColours) viewRect = self.parentCanvas.GetViewStart() eventDc = self.parentCanvas.backend.getDeviceContext(self.parentCanvas.GetClientSize(), self.parentCanvas, viewRect) self.parentCanvas.applyTool(eventDc, True, None, None, None, self.parentCanvas.brushPos, *self.parentCanvas.lastMouseState, self.currentTool, viewRect, force=True) setattr(canvasColourAlpha_, "attrDict", f.attrList[idx]) setattr(canvasColourAlpha_, "isSelect", True) return canvasColourAlpha_ @GuiSelectDecorator(0, "Transparent colour", "Transparent colour", None, [wx.ACCEL_CTRL | wx.ACCEL_ALT | wx.ACCEL_SHIFT, ord("6")], False) def canvasColourAlphaBackground(self, f, idx): def canvasColourAlphaBackground_(event): self.parentCanvas.brushColours[1] = -1 self.update(colours=self.parentCanvas.brushColours) viewRect = self.parentCanvas.GetViewStart() eventDc = self.parentCanvas.backend.getDeviceContext(self.parentCanvas.GetClientSize(), self.parentCanvas, viewRect) self.parentCanvas.applyTool(eventDc, True, None, None, None, self.parentCanvas.brushPos, *self.parentCanvas.lastMouseState, self.currentTool, viewRect, force=True) setattr(canvasColourAlphaBackground_, "attrDict", f.attrList[idx]) setattr(canvasColourAlphaBackground_, "isSelect", True) return canvasColourAlphaBackground_ @GuiSelectDecorator(0, "Colour #00", "Colour #00 (Bright White)", None, [wx.ACCEL_CTRL | wx.ACCEL_ALT, ord("0")], False) @GuiSelectDecorator(1, "Colour #01", "Colour #01 (Black)", None, [wx.ACCEL_CTRL | wx.ACCEL_ALT, ord("1")], False) @GuiSelectDecorator(2, "Colour #02", "Colour #02 (Blue)", None, [wx.ACCEL_CTRL | wx.ACCEL_ALT, ord("2")], False) @GuiSelectDecorator(3, "Colour #03", "Colour #03 (Green)", None, [wx.ACCEL_CTRL | wx.ACCEL_ALT, ord("3")], False) @GuiSelectDecorator(4, "Colour #04", "Colour #04 (Red)", None, [wx.ACCEL_CTRL | wx.ACCEL_ALT, ord("4")], False) @GuiSelectDecorator(5, "Colour #05", "Colour #05 (Light Red)", None, [wx.ACCEL_CTRL | wx.ACCEL_ALT, ord("5")], False) @GuiSelectDecorator(6, "Colour #06", "Colour #06 (Pink)", None, [wx.ACCEL_CTRL | wx.ACCEL_ALT, ord("6")], False) @GuiSelectDecorator(7, "Colour #07", "Colour #07 (Yellow)", None, [wx.ACCEL_CTRL | wx.ACCEL_ALT, ord("7")], False) @GuiSelectDecorator(8, "Colour #08", "Colour #08 (Light Yellow)", None, [wx.ACCEL_CTRL | wx.ACCEL_ALT, ord("8")], False) @GuiSelectDecorator(9, "Colour #09", "Colour #09 (Light Green)", None, [wx.ACCEL_CTRL | wx.ACCEL_ALT, ord("9")], False) @GuiSelectDecorator(10, "Colour #10", "Colour #10 (Cyan)", None, [wx.ACCEL_CTRL | wx.ACCEL_ALT | wx.ACCEL_SHIFT, ord("0")], False) @GuiSelectDecorator(11, "Colour #11", "Colour #11 (Light Cyan)", None, [wx.ACCEL_CTRL | wx.ACCEL_ALT | wx.ACCEL_SHIFT, ord("1")], False) @GuiSelectDecorator(12, "Colour #12", "Colour #12 (Light Blue)", None, [wx.ACCEL_CTRL | wx.ACCEL_ALT | wx.ACCEL_SHIFT, ord("2")], False) @GuiSelectDecorator(13, "Colour #13", "Colour #13 (Light Pink)", None, [wx.ACCEL_CTRL | wx.ACCEL_ALT | wx.ACCEL_SHIFT, ord("3")], False) @GuiSelectDecorator(14, "Colour #14", "Colour #14 (Grey)", None, [wx.ACCEL_CTRL | wx.ACCEL_ALT | wx.ACCEL_SHIFT, ord("4")], False) @GuiSelectDecorator(15, "Colour #15", "Colour #15 (Light Grey)", None, [wx.ACCEL_CTRL | wx.ACCEL_ALT | wx.ACCEL_SHIFT, ord("5")], False) def canvasColourBackground(self, f, idx): def canvasColourBackground_(event): self.parentCanvas.brushColours[1] = idx self.update(colours=self.parentCanvas.brushColours) viewRect = self.parentCanvas.GetViewStart() eventDc = self.parentCanvas.backend.getDeviceContext(self.parentCanvas.GetClientSize(), self.parentCanvas, viewRect) self.parentCanvas.applyTool(eventDc, True, None, None, None, self.parentCanvas.brushPos, *self.parentCanvas.lastMouseState, self.currentTool, viewRect, force=True) setattr(canvasColourBackground_, "attrDict", f.attrList[idx]) setattr(canvasColourBackground_, "isSelect", True) return canvasColourBackground_ @GuiCommandDecorator("Flip colours", "Flip colours", ["toolColoursFlip.png"], [wx.ACCEL_CTRL, ord("I")], True) def canvasColoursFlip(self, event): self.parentCanvas.brushColours = [self.parentCanvas.brushColours[1], self.parentCanvas.brushColours[0]] self.update(colours=self.parentCanvas.brushColours) viewRect = self.parentCanvas.GetViewStart() eventDc = self.parentCanvas.backend.getDeviceContext(self.parentCanvas.GetClientSize(), self.parentCanvas, viewRect) self.parentCanvas.applyTool(eventDc, True, None, None, None, self.parentCanvas.brushPos, *self.parentCanvas.lastMouseState, self.currentTool, viewRect, force=True) @GuiCommandDecorator("Copy", "&Copy", ["", wx.ART_COPY], None, False) def canvasCopy(self, event): pass @GuiCommandDecorator("Cut", "Cu&t", ["", wx.ART_CUT], None, False) def canvasCut(self, event): pass @GuiCommandDecorator("Delete", "De&lete", ["", wx.ART_DELETE], None, False) def canvasDelete(self, event): pass @GuiCommandDecorator("Paste", "&Paste", ["", wx.ART_PASTE], None, False) def canvasPaste(self, event): pass @GuiCommandDecorator("Redo", "&Redo", ["", wx.ART_REDO], [wx.ACCEL_CTRL, ord("Y")], False) def canvasRedo(self, event): self.parentCanvas.undo(redo=True); self.update(size=self.parentCanvas.canvas.size, undoLevel=self.parentCanvas.canvas.patchesUndoLevel); @GuiCommandDecorator("Undo", "&Undo", ["", wx.ART_UNDO], [wx.ACCEL_CTRL, ord("Z")], False) def canvasUndo(self, event): self.parentCanvas.undo(); self.update(size=self.parentCanvas.canvas.size, undoLevel=self.parentCanvas.canvas.patchesUndoLevel); # vim:expandtab foldmethod=marker sw=4 ts=4 tw=0
python
#!/usr/bin/python3 """ Module installation file """ from setuptools import Extension from setuptools import setup extension = Extension( name='fipv', include_dirs=['include'], sources=['fipv/fipv.c'], extra_compile_args=['-O3'], ) setup(ext_modules=[extension])
python
import os import time import hashlib import gzip import shutil from subprocess import run from itertools import chain CACHE_DIRECTORY = "downloads_cache" def decompress_gzip_file(filepath): decompressed = filepath + ".decompressed" if not os.path.exists(decompressed): with gzip.open(filepath, 'rb') as f_in: with open(decompressed, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) return decompressed def download_if_modified(url): """Download a file only if is has been modified via curl, see https://superuser.com/a/1159510""" url_hash = hashlib.md5(url.encode()).hexdigest() curr_dir = os.path.dirname(os.path.realpath(__file__)) filename = f'{curr_dir}/{CACHE_DIRECTORY}/{url_hash}' print(f'Download {url} if it has been modified, destination is {filename}') # If file exists and was modified today do not check for update check_for_update = True if os.path.exists(filename): file_stat = os.stat(filename) file_age_seconds = (time.time() - file_stat.st_mtime) if file_age_seconds < 60 * 60 * 24: check_for_update = False print('File on disk is less than a day old, do not check for update.') if check_for_update: run(chain( ('curl', '-s', url), ('-o', filename), ('-z', filename) if os.path.exists(filename) else (), )) filepath = os.path.abspath(filename) # Auto decompress gzip files if url.endswith('.gz'): return decompress_gzip_file(filepath) return filepath
python
from MainWindow import Ui_MainWindow from PyQt6 import QtWidgets import sys class CalcWindow(Ui_MainWindow, QtWidgets.QMainWindow): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.setupUi(self) self.equalButton.clicked.connect(self.calculation) self.cButton.clicked.connect(self.pressC) self.plusorminusButton.clicked.connect(self.change_sign) self.arrowButton.clicked.connect(self.remove_it) self.percentButton.clicked.connect(self.percent) self.zeroButton.clicked.connect(self.zero) self.oneButton.clicked.connect(self.one) self.twoButton.clicked.connect(self.two) self.threeButton.clicked.connect(self.three) self.fourButton.clicked.connect(self.four) self.fiveButton.clicked.connect(self.five) self.sixButton.clicked.connect(self.six) self.sevenButton.clicked.connect(self.seven) self.eightButton.clicked.connect(self.eight) self.nineButton.clicked.connect(self.nine) self.plusButton.clicked.connect(self.plus) self.minusButton.clicked.connect(self.subtract) self.divideButton.clicked.connect(self.divide) self.multiplyButton.clicked.connect(self.multiply) self.periodButton.clicked.connect(self.dot_it) def pressC(self): # if self.pressed == 'c': self.outputLabel.setText("0") def pressButton(self): screen = self.outputLabel.text() print(screen) if screen == "0" or screen == "NaN" or screen == "Incomplete": self.outputLabel.setText("0") self.outputLabel.setText(f'{screen}') #Numbers and symbols def zero(self): text = self.outputLabel.text() self.outputLabel.setText(text + "0") def one(self): text = self.outputLabel.text() if text == "0": text = "" self.outputLabel.setText(text + "1") def two(self): text = self.outputLabel.text() if text == "0": text = "" self.outputLabel.setText(text + "2") def three(self): text = self.outputLabel.text() if text == "0": text = "" self.outputLabel.setText(text + "3") def four(self): text = self.outputLabel.text() if text == "0": text = "" self.outputLabel.setText(text + "4") def five(self): text = self.outputLabel.text() if text == "0": text = "" self.outputLabel.setText(text + "5") def six(self): text = self.outputLabel.text() if text == "0": text = "" self.outputLabel.setText(text + "6") def seven(self): text = self.outputLabel.text() if text == "0": text = "" self.outputLabel.setText(text + "7") def eight(self): text = self.outputLabel.text() if text == "0": text = "" self.outputLabel.setText(text + "8") def nine(self): text = self.outputLabel.text() if text == "0": text = "" self.outputLabel.setText(text + "9") def dot(self): text = self.outputLabel.text() self.outputLabel.setText(text + ".") def plus(self): text = self.outputLabel.text() self.outputLabel.setText(text + "+") def multiply(self): text = self.outputLabel.text() self.outputLabel.setText(text + "*") def divide(self): text = self.outputLabel.text() self.outputLabel.setText(text + "/") def subtract(self): text = self.outputLabel.text() self.outputLabel.setText(text + "-") def percent(self): text = self.outputLabel.text() self.outputLabel.setText(text + "%") # Remove a symbol def remove_it(self): screen = self.outputLabel.text() print(len(screen)) if len(screen) > 1: screen = screen[:-1] else: screen = "0" self.outputLabel.setText(f'{screen}') def calculation(self): screen = self.outputLabel.text() try: answer = eval(screen) self.outputLabel.setText(f"{answer}") except ZeroDivisionError: self.outputLabel.setText("NaN") except SyntaxError: self.outputLabel.setText("Incomplete") except NameError: self.pressC() # Change sign of the number def change_sign(self): screen = self.outputLabel.text() if "-" in screen: self.outputLabel.setText(f"{screen[1:]}") print(f"{screen[0]}") else: self.outputLabel.setText(f'-{screen}') # Add a decimal def check_symbol(self, s, arr): result = [] for i in arr: if i in s: result.append(i) return result def dot_it(self): screen = self.outputLabel.text() if screen[-1] == ".": pass elif "." in screen: symbolList = ["+", "-", "/", "*"] result = self.check_symbol(screen, symbolList) if result is not []: for symbol in result: num = screen.rindex(symbol) if "." not in screen[num-1:]: self.outputLabel.setText(f'{screen}.') else: self.outputLabel.setText(f'{screen}.') if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) ui = CalcWindow() ui.show() sys.exit(app.exec())
python
from tornado.web import HTTPError class APIError(HTTPError): def __init__( self, status_code: int, reason: str, message: str = None, details: dict = None, ): log_message = ': '.join(map(str, filter(None, [message, details]))) or None super().__init__( status_code=status_code, reason=reason, log_message=log_message, ) self.message = message self.details = details class InternalError(APIError): def __init__(self): super().__init__(500, 'Internal error') class NotFoundError(APIError): def __init__(self, message: str): super().__init__(404, 'Not found', message) class InvalidMethod(APIError): def __init__(self): super().__init__(405, 'Invalid method') class ValidationError(APIError): def __init__(self, message: str, details: dict = None): super().__init__(400, 'Invalid request', message, details)
python
#!/usr/bin/python # Report generator import api import fn import sys import dumper def main(argv): config = {} config["usagetext"] = ("repgen.py (-s SEARCHPREFIX|-a) [-c CONFIGFILE]\n"+ " This script generates a report for all servers if -a is used,\n"+ "or just the servers with SEARCHPREFIX in the server label if -s is used.\n\n"+ "Make sure you correctly configure config.conf.\n"+ "you can use -c to specify a different configuration file. Otherwise, ./config.conf is assumed.\n\n" "In config.conf: search_field will determine the metadata field that SEARCHPREFIX is applied to\n"+ " to create the list of servers that will be reported on.\n"+ "The output configuration value will determine the output format for the information.\n"+ " Text is mainly for debugging and may not produce as much meaningful information as html or pdf.\n"+ " HTML and PDF files are placed in the ./outfile folder. If it doesn't exist, the script will fail.") config["configfile"] = "config.conf" serverolist = [] config = fn.set_config_items(config,argv) serverolist = fn.build_server_list(config['host'], config['authtoken'], config['search_string'], config['search_field'], config['prox']) serverolist = fn.enrich_server_data(config['host'], config['authtoken'], serverolist, config['prox']) # Here we re-write the config if the logo file is on the local filesystem, because relative paths don't work well with PDF rendering. if fn.where_is_img(config['logo_url'])[0] == 'local' and config['output'] == 'pdf': try: config['logo_url'] = fn.where_is_img(config['logo_url'])[1] except: # Here we empty that field in case the data was bad... config['logo_url'] = '' fn.handle_output(config, serverolist) if __name__ == "__main__": print sys.argv[1:] main(sys.argv[1:])
python
import os import logging import json from codecs import open from collections import Counter import numpy as np import spacy from tqdm import tqdm """ The content of this file is mostly copied from https://github.com/HKUST-KnowComp/R-Net/blob/master/prepro.py """ nlp = spacy.blank("en") def word_tokenize(sent): doc = nlp(sent) return [token.text for token in doc] def convert_idx(text, tokens): current = 0 spans = [] for token in tokens: current = text.find(token, current) if current < 0: print("Token {} cannot be found".format(token)) raise Exception() spans.append((current, current + len(token))) current += len(token) return spans def _get_answer_span(answer, spans, texts): text = answer["text"] start = answer["answer_start"] end = start + len(text) texts.append(text) answer_span = [] # this loop finds the overlap of answer and context for idx, span in enumerate(spans): if not (end <= span[0] or start >= span[1]): answer_span.append(idx) return answer_span[0], answer_span[-1] def keep_unique_answers(y1, y2): if len(y1) > 0: a, b = zip(*list(set([(i, j) for i, j in zip(y1, y2)]))) return a, b return y1, y2 def process_file(filename, data_type, word_counter, char_counter, version="v2.0"): """ filename: json file to read data_type : 'train'/'test'/'dev' word_counter: Just a counter for word occurence char_counter: Just a counter for char """ print("Generating {} examples...\n".format(data_type)) examples = [] eval_examples = {} total = 0 with open(filename, "r") as fh: source = json.load(fh) for article in tqdm(source["data"]): for para in article["paragraphs"]: # tokenize the para and store the span of each token in spans # we store spans because we get position of answer start and the answer in the data context = para["context"].replace("''", '" ').replace("``", '" ') context_tokens = word_tokenize(context) spans = convert_idx(context, context_tokens) context_chars = [list(token) for token in context_tokens] for token in context_tokens: word_counter[token] += len(para["qas"]) for char in token: char_counter[char] += len(para["qas"]) for qa in para["qas"]: total += 1 ques = qa["question"].replace("''", '" ').replace("``", '" ') ques_tokens = word_tokenize(ques) ques_chars = [list(token) for token in ques_tokens] for token in ques_tokens: word_counter[token] += 1 for char in token: char_counter[char] += 1 if version == "v2.0": y1s, y2s = [], [] answer_texts = [] plausible_y1s, plausible_y2s = [], [] plausible_answer_texts = [] is_impossible = bool(qa["is_impossible"]) # if answering is impossible, some qas might have plausible answer and we record that. if is_impossible: for answer in qa["plausible_answers"]: y1, y2 = _get_answer_span( answer, spans, plausible_answer_texts ) plausible_y1s.append(y1) plausible_y2s.append(y2) plausible_y1s, plausible_y2s = keep_unique_answers( plausible_y1s, plausible_y2s ) else: for answer in qa["answers"]: y1, y2 = _get_answer_span(answer, spans, answer_texts) y1s.append(y1) y2s.append(y2) y1s, y2s = keep_unique_answers(y1s, y2s) example = { "context_tokens": context_tokens, "context_chars": context_chars, "ques_tokens": ques_tokens, "ques_chars": ques_chars, "y1s": y1s, "y2s": y2s, "plausible_y1s": plausible_y1s, "plausible_y2s": plausible_y2s, "id": total, "uuid": qa["id"], "is_impossible": is_impossible, } examples.append(example) eval_examples[str(total)] = { "context": context, "spans": spans, "answers": answer_texts, "plausible_answers": plausible_answer_texts, "uuid": qa["id"], "is_impossible": is_impossible, } elif version == "v1.1": # v1.1 case y1s, y2s = [], [] answer_texts = [] for answer in qa["answers"]: y1, y2 = _get_answer_span(answer, spans, answer_texts) y1s.append(y1) y2s.append(y2) y1s, y2s = keep_unique_answers(y1s, y2s) example = { "context_tokens": context_tokens, "context_chars": context_chars, "ques_tokens": ques_tokens, "ques_chars": ques_chars, "y1s": y1s, "y2s": y2s, "id": total, "uuid": qa["id"], } examples.append(example) # note eval files are now indexed by uuid here eval_examples[str(total)] = { "context": context, "spans": spans, "answers": answer_texts, "uuid": qa["id"], } print(f"{len(examples)} questions in total") return examples, eval_examples def get_embedding(counter, data_type, limit=-1, emb_file=None, vec_size=None): print("Generating {} embedding...".format(data_type)) embedding_dict = {} filtered_elements = [k for k, v in counter.items() if v > limit] # load from file if there is if emb_file is not None: assert vec_size is not None with open(emb_file, "r") as fh: for line in tqdm(fh): array = line.split() l = len(array) word = "".join(array[0 : l - vec_size]) vector = list(map(float, array[l - vec_size : l])) if word in counter and counter[word] > limit: embedding_dict[word] = vector print( "{} / {} tokens have corresponding {} embedding vector".format( len(embedding_dict), len(filtered_elements), data_type ) ) # random embedding initialization else: assert vec_size is not None for token in filtered_elements: embedding_dict[token] = [ np.random.normal(scale=0.1) for _ in range(vec_size) ] print( "{} tokens have corresponding embedding vector".format( len(filtered_elements) ) ) # NULL and OOV are index 0 and 1 and zero vectors NULL = "--NULL--" OOV = "--OOV--" token2idx_dict = {token: idx for idx, token in enumerate(embedding_dict.keys(), 2)} token2idx_dict[NULL] = 0 token2idx_dict[OOV] = 1 embedding_dict[NULL] = [0.0 for _ in range(vec_size)] embedding_dict[OOV] = [0.0 for _ in range(vec_size)] idx2emb_dict = {idx: embedding_dict[token] for token, idx in token2idx_dict.items()} emb_mat = [idx2emb_dict[idx] for idx in range(len(idx2emb_dict))] return emb_mat, token2idx_dict def convert_to_features(config, data, word2idx_dict, char2idx_dict): def _get_word(word): for each in (word, word.lower(), word.capitalize(), word.upper()): if each in word2idx_dict: return word2idx_dict[each] return 1 def _get_char(char): if char in char2idx_dict: return char2idx_dict[char] return 1 def filter_func(example): return ( len(example["context_tokens"]) > para_limit or len(example["ques_tokens"]) > ques_limit ) example = {} context, question = data context = context.replace("''", '" ').replace("``", '" ') question = question.replace("''", '" ').replace("``", '" ') example["context_tokens"] = word_tokenize(context) example["ques_tokens"] = word_tokenize(question) example["context_chars"] = [list(token) for token in example["context_tokens"]] example["ques_chars"] = [list(token) for token in example["ques_tokens"]] spans = convert_idx(context, example["context_tokens"]) para_limit = config.para_limit ques_limit = config.ques_limit ans_limit = config.ans_limit char_limit = config.char_limit if filter_func(example): print(" Warning: Context/Question length is over the limit") context_idxs = np.zeros([para_limit], dtype=np.int32) context_char_idxs = np.zeros([para_limit, char_limit], dtype=np.int32) ques_idxs = np.zeros([ques_limit], dtype=np.int32) ques_char_idxs = np.zeros([ques_limit, char_limit], dtype=np.int32) y1 = np.zeros([para_limit], dtype=np.float32) y2 = np.zeros([para_limit], dtype=np.float32) for i, token in enumerate(example["context_tokens"][:para_limit]): context_idxs[i] = _get_word(token) for i, token in enumerate(example["ques_tokens"][:ques_limit]): ques_idxs[i] = _get_word(token) for i, token in enumerate(example["context_chars"][:para_limit]): for j, char in enumerate(token[:char_limit]): context_char_idxs[i, j] = _get_char(char) for i, token in enumerate(example["ques_chars"][:ques_limit]): for j, char in enumerate(token[:char_limit]): ques_char_idxs[i, j] = _get_char(char) return context_idxs, context_char_idxs, ques_idxs, ques_char_idxs, spans def build_features( config, examples, data_type, out_file, word2idx_dict, char2idx_dict, is_test=False ): def _get_word(word): for each in (word, word.lower(), word.capitalize(), word.upper()): if each in word2idx_dict: return word2idx_dict[each] return word2idx_dict["--OOV--"] def _get_char(char): if char in char2idx_dict: return char2idx_dict[char] return char2idx_dict["--OOV--"] def filter_func(example, is_test=False): # in case of test filter nothing if is_test: return False if version == "v2.0": if example["is_impossible"]: return ( len(example["context_tokens"]) > para_limit or len(example["ques_tokens"]) > ques_limit ) return ( len(example["context_tokens"]) > para_limit or len(example["ques_tokens"]) > ques_limit or (example["y2s"][-1] - example["y1s"][-1]) > ans_limit ) para_limit = config.para_limit ques_limit = config.ques_limit ans_limit = config.ans_limit char_limit = config.char_limit version = config.version print(f"Processing {data_type} examples...") total = 0 meta = {} N = len(examples) context_idxs = [] context_char_idxs = [] ques_idxs = [] ques_char_idxs = [] y1s = [] y2s = [] ids = [] uuids = [] id_to_uuid = {} if version == "v2.0": impossibles = [] for n, example in tqdm(enumerate(examples)): # if filter returns true, then move to next example if filter_func(example, is_test): continue total += 1 context_idx = np.zeros([para_limit], dtype=np.int32) context_char_idx = np.zeros([para_limit, char_limit], dtype=np.int32) ques_idx = np.zeros([ques_limit], dtype=np.int32) ques_char_idx = np.zeros([ques_limit, char_limit], dtype=np.int32) for i, token in enumerate(example["context_tokens"][:para_limit]): context_idx[i] = _get_word(token) for i, token in enumerate(example["ques_tokens"][:ques_limit]): ques_idx[i] = _get_word(token) for i, token in enumerate(example["context_chars"][:para_limit]): for j, char in enumerate(token[:char_limit]): context_char_idx[i, j] = _get_char(char) for i, token in enumerate(example["ques_chars"][:ques_limit]): for j, char in enumerate(token[:char_limit]): ques_char_idx[i, j] = _get_char(char) if version == "v2.0": if not example["is_impossible"]: starts, ends = example["y1s"], example["y2s"] elif config.use_plausible is True and len(example["plausible_y1s"]) > 0: starts, ends = example["plausible_y1s"], example["plausible_y2s"] else: starts, ends = [-1], [-1] # append one example for each possible answer for start, end in zip(starts, ends): ques_char_idxs.append(ques_char_idx) context_idxs.append(context_idx) ques_idxs.append(ques_idx) context_char_idxs.append(context_char_idx) y1s.append(start) y2s.append(end) ids.append(example["id"]) impossibles.append(example["is_impossible"]) uuids.append(example["uuid"]) id_to_uuid[example["id"]] = example["uuid"] else: starts, ends = example["y1s"], example["y2s"] for start, end in zip(starts, ends): ques_char_idxs.append(ques_char_idx) context_idxs.append(context_idx) ques_idxs.append(ques_idx) context_char_idxs.append(context_char_idx) y1s.append(start) y2s.append(end) ids.append(example["id"]) uuids.append(example["uuid"]) id_to_uuid[example["id"]] = example["uuid"] if version == "v2.0": np.savez( out_file, context_idxs=np.array(context_idxs), context_char_idxs=np.array(context_char_idxs), ques_idxs=np.array(ques_idxs), ques_char_idxs=np.array(ques_char_idxs), y1s=np.array(y1s), y2s=np.array(y2s), ids=np.array(ids), impossibles=np.array(impossibles), uuids=np.array(uuids), ) else: np.savez( out_file, context_idxs=np.array(context_idxs), context_char_idxs=np.array(context_char_idxs), ques_idxs=np.array(ques_idxs), ques_char_idxs=np.array(ques_char_idxs), y1s=np.array(y1s), y2s=np.array(y2s), ids=np.array(ids), uuids=np.array(uuids), ) print("Built {} / {} instances of features in total".format(len(y1s), N)) print("Processed {} instances of features in total".format(total)) meta["total"] = len(y1s) meta["id_to_uuid"] = id_to_uuid return meta def save(filename, obj, message=None): if message is not None: print("Saving {}...".format(message)) with open(filename, "w") as fh: json.dump(obj, fh, indent=4, sort_keys=True) def preprocess(args, config): word_counter, char_counter = Counter(), Counter() # get embeddings word_emb_file = config.glove_word_file char_emb_file = config.glove_char_file if config.pretrained_char else None # handle train file train_examples, train_eval = process_file( config.raw_train_file, "train", word_counter, char_counter, config.version ) dev_examples, dev_eval = process_file( config.raw_dev_file, "dev", word_counter, char_counter, config.version ) if os.path.exists(config.raw_test_file): test_examples, test_eval = process_file( config.raw_test_file, "test", word_counter, char_counter ) # Note that we are getting embeddings for as much as data as possible (train/test/dev) while training. word_emb_mat, word2idx_dict = get_embedding( word_counter, "word", emb_file=word_emb_file, vec_size=config.word_emb_dim ) char_emb_mat, char2idx_dict = get_embedding( char_counter, "char", emb_file=char_emb_file, vec_size=config.char_emb_dim ) build_features( config, train_examples, "train", config.train_file, word2idx_dict, char2idx_dict ) dev_meta = build_features( config, dev_examples, "dev", config.dev_file, word2idx_dict, char2idx_dict, is_test=True, ) if os.path.exists(config.raw_test_file): test_meta = build_features( config, test_examples, "test", config.test_record_file, word2idx_dict, char2idx_dict, is_test=True, ) save(config.word_emb_file, word_emb_mat, message="word embedding") save(config.char_emb_file, char_emb_mat, message="char embedding") save(config.word2idx_file, word2idx_dict, message="word dictionary") save(config.char2idx_file, char2idx_dict, message="char dictionary") save(config.train_eval_file, train_eval, message="train eval") save(config.dev_eval_file, dev_eval, message="dev eval") save(config.dev_meta_file, dev_meta, message="dev meta") if os.path.exists(config.raw_test_file): save(config.test_eval_file, test_eval, message="test eval") save(config.test_meta_file, test_meta, message="test meta")
python
''' Clase principal, contiene la logica de ejecuciรณn del servidor y rutas para consumo de la API ''' from entities.profile import Profile from flask import Flask, jsonify, request from flask_restful import Resource, Api from flask_httpauth import HTTPBasicAuth from datetime import datetime import pandas as pd import numpy as np from sessionManager import SessionManager as sm from dbManager import Querys from formManager import FormManager from entities.user import User from csv1.csvcleaner import Csvcleaner from entities.opinionSheet import OpinionSheet from entities.dataSheet import Datasheet from entities.attribute import Attribute from recommendationManger import RecommendationManager from recommenderCore.contentBased import ContentBased from entities.requestResult import RequestResult from entities.history import History from entities.automobile import Automobile from dataExportManager import DataExportManager from clusteringModel.kmodesManager import KmodesManager from csv1.csvcleaner import Csvcleaner from comprehend.analyzer import Analyzer from sqlalchemy import create_engine import pymysql # VARIABLES app = Flask(__name__) api = Api(app) auth = HTTPBasicAuth() MyConnection = Querys(app) # Metodo de verificacion de password para autenticaciรณn basica @auth.verify_password def verify_password(username, password): userQ=MyConnection.getUserByUsername(username) if(userQ): user = User("0",userQ[2],"0","0") user.setPasswordHash(userQ[4]) if not user or not user.verify_password(password): print("usuario '{0}' no autorizado".format(username)) return False print("usuario '{0}' autorizado".format(username)) return userQ[1:3] print("usuario '{0}' no autorizado".format(username)) return False # Principal class home(Resource): def get(self): #lis=MyConnection.getCursorParams() #db_connection_str = 'mysql+pymysql://'+lis[1]+':'+lis[2]+'@'+lis[0]+'/'+lis[3] #db_connection = create_engine(db_connection_str) return jsonify({"message": "Bienvenido a recommendautos"}) # Bienvenida a usuario class wellcome(Resource): @auth.login_required def get(self): return jsonify({"message":"{}".format(auth.current_user()[0])}) # Registro de nuevos usaurios class addUser(Resource): def post(self): user1=User(request.json['personname'],request.json['username'],request.json['email'],request.json['password']) user1.hash_password() if(MyConnection.addNewUser(user1)): print("El usuario '{}' se agrego satisfactoriamente".format(user1.getUserName())) return jsonify({"message":"Usuario agregado satisfactoriamente", "user": user1.get_userBasic()}) print("Error al agregar al usuario '{}'".format(user1.getUserName())) return jsonify({"message":"Error al agregar nuevo usuario", "user": user1.get_userBasic()}) # Consultar si un nombre de usuario esta regisytrado class checkUser(Resource): def get(self,user_name): user=MyConnection.getUserByUsername(user_name) if(user): print("El nombre de usuario '{}' ya existe".format(user_name)) return jsonify({"message":"El usuario ya existe"}) print("El nombre de usuario '{}' no existe".format(user_name)) return jsonify({"message":"El usuario no existe"}) # Consultar si un correo electronico ya esta registrado class checkEmail(Resource): def get(self): pass # Realizar el inicio de sesiรณn class verifyUser(Resource): def post(self): fakeUser=User("person",request.json['username'],"email",request.json['password']) GUID=request.json['id'] user=MyConnection.getUserByUsername(fakeUser.getUserName()) if(user): fakeUser.setPasswordHash(user[4]) if(fakeUser.verify_password(request.json['password'])): sk=sm.generateSessionkey(user[0],GUID) if(MyConnection.addSk(user[0],sk,"ACTIVOS")): fakeUser.setId(sk) fakeUser.setPersonName(user[1]) fakeUser.setEmail(user[3]) print("El usuario {} accedio satisfactoriamente".format(fakeUser.getUserName())) return jsonify({"message":"El usuario accedio satisfactoriamente", "user": fakeUser.get_user()}) print("Error al agregar sk en db") print("el usuario no existe o contraseรฑa icorecta") return jsonify({"message":"Error de autenticaciรณn", "user": fakeUser.get_user()}) # Obtener o actualizar la informacion de un usuario class dataUser(Resource): @auth.login_required def post(self): fakeUser=User("0","0","0","0") fakeUser.setId(request.json['id']) user=MyConnection.getUserBySessionKey(fakeUser.getId()) # el id que maneja la app es el sessionkey (es cambiante) if(user): fakeUser.setPersonName(user[1]) fakeUser.setUserName(user[2]) fakeUser.setPassword("password")# El password nunca se envia como uan respuesta de servidor fakeUser.setEmail(user[4]) print("Datos del usuario {} encontrados correctamente".format(fakeUser.getUserName())) return jsonify({"message":"Autenticacion correcta, usuario encontrado", "user": fakeUser.get_user()}) print("Error al obtener los datos del usuario con sk: '{}'".format(fakeUser.getId())) return jsonify({"message":"Error: No se autentico correctamente o el usuario no existe", "user": fakeUser.get_user()}) def patch(self): fakeUser=User(request.json['personname'],request.json['username'],request.json['email'],request.json['password']) fakeUser.hash_password() sk=request.json['id'] # id en la app es el session key fakeUser.setId(sk) id=MyConnection.getIdBySessionKey(sk) if(id): if(MyConnection.updateUser(fakeUser, id[0])): user=MyConnection.getUserById(id[0]) if(user): fakeUser.setPersonName(user[1]) fakeUser.setUserName(user[2]) fakeUser.setPassword("password") #el password nunca se envia como una respuesta fakeUser.setEmail(user[3]) print("El usuario {},ha sido actualizado correctamente".format(fakeUser.getUserName())) return jsonify({"message":"Usuario actualizado correctamente", "user": fakeUser.get_user()}) print("El usuario {},ha sido actualizado correctamente, error al retornar nuevos datos".format(fakeUser.getUserName())) return jsonify({"message":"Usuario actualizado, error al retornar nuevo usuario", "user": fakeUser.get_user()}) print("Error al actualizar datos del usuario{}, id no encontrado".format(fakeUser.getUserName())) return jsonify({"message":"Error al actualizar datos de usuario", "user": fakeUser.get_user()}) # Obtener formulario class getForm(Resource): def get(self): formulario=FormManager.buildForm(MyConnection) return jsonify(formulario.getForm()) # Obtener recomendacion class getRecom(Resource): def post(self): #myString = json.dumps(request.json, sort_keys=True, indent=4) #print(myString) now = datetime.now() id=MyConnection.getIdBySessionKey(request.json['user']['id']) #obtengo id mediante su sessionKey #sk=request.json['user']['id'] if (id): idReq=MyConnection.addRequest("FormA",now,id[0])# genero una nueva solicitud if(idReq): result=RecommendationManager.getRecommendation(request.json['form'],idReq[0],MyConnection) if(result): return jsonify(result) else: return jsonify({"idRecommendation":"100"}) else: return jsonify({"idRecommendation":"100"}) # Obtener historial class getHistory(Resource): @auth.login_required def get(self): idUser=MyConnection.getIdByUsername(auth.current_user()[1]) hRequests=MyConnection.getHistoryRequestByIdUser(idUser) print(hRequests) print(len(hRequests)) if(hRequests): arrRequests=[] for hRequest in hRequests: data_Autos=MyConnection.getAutosByIdReq(hRequest[0]) dataProfile=MyConnection.getProfileById(hRequest[2]) userprofile=Profile(dataProfile[0],dataProfile[1],dataProfile[2]) arrAutos=[] for data_Auto in data_Autos: arrAutos.append(Automobile(data_Auto[1],data_Auto[2],data_Auto[3],data_Auto[4],data_Auto[5])) form=FormManager.buildFormResponse(MyConnection,hRequest[0]) arrRequests.append(RequestResult(hRequest[0],hRequest[1],userprofile,hRequest[3],arrAutos,form)) response=History(len(arrRequests),arrRequests) return jsonify(response.getHistory()) else: #response=History(0,RequestResult(0,0,0,0,0,0)) return jsonify({"requests":0}) # Obtener detalle de vehiculos class getCarDetails(Resource): def post(self): print(request.json['id']) attribs=MyConnection.getAttributesByIdAuto(request.json['id']) if(attribs): print(attribs) arrAttribs=[] for attrib in attribs: arrAttribs.append(Attribute(attrib[0],attrib[1],attrib[2])) opinions=MyConnection.getOpinions(request.json['id']) if(opinions): opinionsheet=OpinionSheet(request.json['id'],opinions[0],opinions[1],opinions[2]) else: urlA=MyConnection.getUrlAuto(request.json['id']) opinionsheet=OpinionSheet(request.json['id'],'','',urlA[0]) datasheet=Datasheet(request.json['id'],arrAttribs,opinionsheet) print(datasheet.getDataSheet()) return jsonify(datasheet.getDataSheet()) return jsonify({'message':'error'}) # exportarDatos class exportData(Resource): def get(self): msg='failed' msg=DataExportManager.exportAttributes(MyConnection) print('exportAttributes ok') msg=ContentBased.generateOverview() #genera overview print('generateOverview ok') msg=DataExportManager.exportAutos(MyConnection) print('exportAutos ok') msg=DataExportManager.exportAutosAttributes(MyConnection) print('exportAutosAttributes ok') msg=DataExportManager.exportTags(MyConnection) print('exportTags ok') msg=DataExportManager.exportTagsAttributes(MyConnection) print('exportTagsAttributes ok') msg=DataExportManager.exportResponsesAttributes(MyConnection) print('exportResponsesAttributes ok') Csvcleaner.generateScoreSheet() print('generateScoreSheet ok') msg=DataExportManager.exportScoresheet(MyConnection) print('exportScoresheet ok') msg=DataExportManager.exportForms(MyConnection)#solo pasa a numeric, no a bd-- print('exportForms ok') msg=Csvcleaner.generateScoreSheet() print('generateScoreSheet ok') msg=DataExportManager.exportScoresheet(MyConnection) print('exportScoresheet ok') print('Datos exportados con exito!! ') return jsonify('status: '+msg) # Entrenar modelo class trainModel(Resource): def get(self): msg='ok' k=6 #msg=KmodesManager.generateModel(k,MyConnection,'Cao') msg=KmodesManager.defineProfiles(MyConnection,k)##===aun no se ejecuta #ContentBased.generateOverview() #solo cuando hay cambios en los datos de coches return msg # Entrenar modelo class updateProfiles(Resource): def post(self): msg='Error' if(MyConnection.updateProfileByNcluster(request.json['nombrePerfil'],request.json['descripcionPerfil'],request.json['cluster'])): msg='perfiles actualizados!' return msg # ASOCIACION DE RECURSOS Y RUTAS api.add_resource(home,"/") api.add_resource(wellcome,"/wellcome") api.add_resource(addUser,"/signUp") api.add_resource(checkUser,"/signUp/user/<string:user_name>") api.add_resource(checkEmail,"/signUp/email/<string:user_email>") api.add_resource(verifyUser,"/logIn") api.add_resource(dataUser,"/user") api.add_resource(getForm,"/form") api.add_resource(getRecom,"/recom") api.add_resource(getHistory,"/history") api.add_resource(getCarDetails,"/details") api.add_resource(exportData,"/exportData") api.add_resource(trainModel,"/trainModel") api.add_resource(updateProfiles,"/setProfile") # CONFIGURACION DE EJCUCION if __name__ == "__main__": app.run(host= '0.0.0.0',debug=True)
python
from glitchtip.permissions import ScopedPermission class ReleasePermission(ScopedPermission): scope_map = { "GET": ["project:read", "project:write", "project:admin", "project:releases"], "POST": ["project:write", "project:admin", "project:releases"], "PUT": ["project:write", "project:admin", "project:releases"], "DELETE": ["project:admin", "project:releases"], } def get_user_scopes(self, obj, user): return obj.organization.get_user_scopes(user) class ReleaseFilePermission(ReleasePermission): def get_user_scopes(self, obj, user): return obj.release.organization.get_user_scopes(user)
python
# StandAlone Version """ Created on Thu Apr 2 19:28:15 2020 @author: Yao Tang """ import arcpy import os arcpy.env.overwriteOutput = True arcpy.env.addOutputsToMap = True ## Specify workspace(Usually the folder of the .mxd file) arcpy.env.workspace = "L:/Projects/3020/006-01/6-0 DRAWINGS AND FIGURES/6-2 GIS/GIS/shp" ## Specify the input folder of the photos PhotosFolder = r"L:\Projects\3020\006-01\8-0 DESIGN PHASE\DATA AND INFORMATION\Task 3 Data Collection\Geotag2ndRound\MissingInShp" ## Specify the name and the path of the output layer (GeoPhotosToPoint is the name of the layer) ## Create a geodatabase ## (A database file, only one database file is needed for the project) database_name = "Photos_YT_2.gdb" try: arcpy.CreateFileGDB_management(arcpy.env.workspace, database_name) except: print "File already created" print "program proceed" GridFolderList = os.listdir(PhotosFolder) print GridFolderList photoOption = "ALL_PHOTOS" fieldName3 = "FacilityID" fieldName4 = "Note" for grid in GridFolderList: PhotoFolderList = os.listdir(PhotosFolder +"/" + grid) print PhotoFolderList for folder in PhotoFolderList: inFolder = PhotosFolder +"/" + grid + "/" + folder outFeatures = database_name + "/" + grid + "_" + folder badPhotosList = outFeatures + "_NoGPS" arcpy.GeoTaggedPhotosToPoints_management(inFolder, outFeatures, badPhotosList, photoOption) inFeatures = outFeatures arcpy.AddXY_management(inFeatures) arcpy.AddField_management(inFeatures, fieldName3, "TEXT") arcpy.AddField_management(inFeatures, fieldName4, "TEXT")
python
# -*- coding: utf-8 -*- import os from setuptools import setup def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name="crudini", version="0.9.3", author="Pรกdraig Brady", author_email="[email protected]", description=("A utility for manipulating ini files"), license="GPLv2", keywords="ini config edit", url="http://github.com/pixelb/crudini", long_description=read('README'), classifiers=[ "Development Status :: 5 - Production/Stable", "Topic :: Utilities", "Topic :: System :: Systems Administration", "License :: OSI Approved :: GNU General Public License v2 (GPLv2)", "Programming Language :: Python :: 2", ], install_requires=['iniparse>=0.3.2'], scripts=["crudini"] )
python
def abc209d(): from collections import deque n, Q = map(int, input().split()) g = [list() for _ in range(n)] for _ in range(n - 1): a, b = map(int, input().split()) a, b = a - 1, b - 1 g[a].append(b) g[b].append(a) c = [-1] * n q = deque([0]) c[0] = 0 while len(q) > 0: node = q.popleft() for nxt in g[node]: if c[nxt] != -1: continue c[nxt] = 1 - c[node] q.append(nxt) ans = [] for _ in range(Q): a, b = map(int, input().split()) a, b = a - 1, b - 1 if c[a] == c[b]: ans.append("Town") else: ans.append("Road") for item in ans: print(item) abc209d()
python
from sim.agents.agents import * from sim.agents.multiagents import *
python
# -*- coding: utf-8 -*- # Copyright (c) 2016, French National Center for Scientific Research (CNRS) # Distributed under the (new) BSD License. See LICENSE for more info. from pyqtgraph.Qt import QtCore import pyqtgraph as pg from pyqtgraph.util.mutex import Mutex import numpy as np from ..core import (Node, register_node_type, ThreadPollInput) from ..core.stream.ringbuffer import RingBuffer import distutils.version try: import scipy.signal HAVE_SCIPY = True # scpy.signal.sosfilt was introduced in scipy 0.16 assert distutils.version.LooseVersion(scipy.__version__)>'0.16' except ImportError: HAVE_SCIPY = False try: import pyopencl mf = pyopencl.mem_flags HAVE_PYOPENCL = True except ImportError: HAVE_PYOPENCL = False class SosFiltfilt_Base: def __init__(self, coefficients, nb_channel, dtype, chunksize, overlapsize): self.coefficients = coefficients if self.coefficients.ndim==2: self.nb_section =self. coefficients.shape[0] if self.coefficients.ndim==3: self.nb_section = self.coefficients.shape[1] self.nb_channel = nb_channel self.dtype = np.dtype(dtype) self.chunksize = chunksize self.overlapsize = overlapsize shape = ((chunksize+overlapsize)*5, nb_channel) self.forward_buffer = RingBuffer(shape, dtype, double=True) self.backward_chunksize = self.chunksize+self.overlapsize def compute_one_chunk(self, pos, data): assert self.chunksize == data.shape[0], 'Chunksize is bad {} instead of{}'.format(data.shape[0], self.chunksize) forward_chunk_filtered = self.compute_forward(data) #~ forward_chunk_filtered = forward_chunk_filtered.astype(self.dtype) self.forward_buffer.new_chunk(forward_chunk_filtered, index=pos) start = pos-self.chunksize-self.overlapsize if start>0: backward_chunk = self.forward_buffer.get_data(start,pos) backward_filtered = self.compute_backward(backward_chunk) backward_filtered = backward_filtered[:self.chunksize] return pos-self.overlapsize, backward_filtered elif pos>self.overlapsize: backward_chunk = self.forward_buffer.get_data(0,pos) backward_filtered = self.compute_backward(backward_chunk) backward_filtered = backward_filtered[:-self.overlapsize] return pos-self.overlapsize, backward_filtered else: return None, None def compute_forward(self, chunk): raise NotImplementedError def compute_backward(self, chunk): raise NotImplementedError class SosFiltfilt_Scipy(SosFiltfilt_Base): """ Implementation with scipy. """ def __init__(self, coefficients, nb_channel, dtype, chunksize, overlapsize): SosFiltfilt_Base.__init__(self, coefficients, nb_channel, dtype, chunksize, overlapsize) self.zi = np.zeros((self.nb_section, 2, self.nb_channel), dtype= dtype) def compute_forward(self, chunk): forward_chunk_filtered, self.zi = scipy.signal.sosfilt(self.coefficients, chunk, zi=self.zi, axis=0) forward_chunk_filtered = forward_chunk_filtered.astype(self.dtype) return forward_chunk_filtered def compute_backward(self, chunk): backward_filtered = scipy.signal.sosfilt(self.coefficients, chunk[::-1, :], zi=None, axis=0) backward_filtered = backward_filtered[::-1, :] backward_filtered = backward_filtered.astype(self.dtype) return backward_filtered class SosFiltfilt_OpenCl_Base(SosFiltfilt_Base): def __init__(self, coefficients, nb_channel, dtype, chunksize, overlapsize): SosFiltfilt_Base.__init__(self, coefficients, nb_channel, dtype, chunksize, overlapsize) assert self.dtype == np.dtype('float32') assert self.chunksize is not None, 'chunksize for opencl must be fixed' self.coefficients = self.coefficients.astype(self.dtype) if self.coefficients.ndim==2: #(nb_section, 6) to (nb_channel, nb_section, 6) self.coefficients = np.tile(self.coefficients[None,:,:], (nb_channel, 1,1)) if not self.coefficients.flags['C_CONTIGUOUS']: self.coefficients = self.coefficients.copy() assert self.coefficients.shape[0]==self.nb_channel, 'wrong coefficients.shape' assert self.coefficients.shape[2]==6, 'wrong coefficients.shape' self.nb_section = self.coefficients.shape[1] self.ctx = pyopencl.create_some_context() #TODO : add arguments gpu_platform_index/gpu_device_index #self.devices = [pyopencl.get_platforms()[self.gpu_platform_index].get_devices()[self.gpu_device_index] ] #self.ctx = pyopencl.Context(self.devices) self.queue = pyopencl.CommandQueue(self.ctx) #host arrays self.zi1 = np.zeros((nb_channel, self.nb_section, 2), dtype= self.dtype) self.zi2 = np.zeros((nb_channel, self.nb_section, 2), dtype= self.dtype) self.output1 = np.zeros((self.chunksize, self.nb_channel), dtype= self.dtype) self.output2 = np.zeros((self.backward_chunksize, self.nb_channel), dtype= self.dtype) #GPU buffers self.coefficients_cl = pyopencl.Buffer(self.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=self.coefficients) self.zi1_cl = pyopencl.Buffer(self.ctx, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=self.zi1) self.zi2_cl = pyopencl.Buffer(self.ctx, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=self.zi2) self.input1_cl = pyopencl.Buffer(self.ctx, mf.READ_WRITE, size=self.output1.nbytes) self.output1_cl = pyopencl.Buffer(self.ctx, mf.READ_WRITE, size=self.output1.nbytes) self.input2_cl = pyopencl.Buffer(self.ctx, mf.READ_WRITE, size=self.output2.nbytes) self.output2_cl = pyopencl.Buffer(self.ctx, mf.READ_WRITE, size=self.output2.nbytes) #nb works kernel = self.kernel%dict(forward_chunksize=self.chunksize, backward_chunksize=self.backward_chunksize, nb_section=self.nb_section, nb_channel=self.nb_channel) prg = pyopencl.Program(self.ctx, kernel) self.opencl_prg = prg.build(options='-cl-mad-enable') class SosFilfilt_OpenCL_V1(SosFiltfilt_OpenCl_Base): def __init__(self, coefficients, nb_channel, dtype, chunksize, overlapsize): SosFiltfilt_OpenCl_Base.__init__(self, coefficients, nb_channel, dtype, chunksize, overlapsize) self.global_size = (self.nb_channel, ) self.local_size = (self.nb_channel, ) def compute_forward(self, chunk): if not chunk.flags['C_CONTIGUOUS']: chunk = chunk.copy() pyopencl.enqueue_copy(self.queue, self.input1_cl, chunk) kern_call = getattr(self.opencl_prg, 'forward_filter') event = kern_call(self.queue, self.global_size, self.local_size, self.input1_cl, self.output1_cl, self.coefficients_cl, self.zi1_cl) event.wait() pyopencl.enqueue_copy(self.queue, self.output1, self.output1_cl) forward_chunk_filtered = self.output1 return forward_chunk_filtered def compute_backward(self, chunk): if not chunk.flags['C_CONTIGUOUS']: chunk = chunk.copy() self.zi2[:]=0 pyopencl.enqueue_copy(self.queue, self.zi2_cl, self.zi2) if chunk.shape[0]==self.backward_chunksize: pyopencl.enqueue_copy(self.queue, self.input2_cl, chunk) else: #side effect at the begining chunk2 = np.zeros((self.backward_chunksize, self.nb_channel), dtype=self.dtype) chunk2[-chunk.shape[0]:, :] = chunk pyopencl.enqueue_copy(self.queue, self.input2_cl, chunk2) kern_call = getattr(self.opencl_prg, 'backward_filter') event = kern_call(self.queue, self.global_size, self.local_size, self.input2_cl, self.output2_cl, self.coefficients_cl, self.zi2_cl) event.wait() pyopencl.enqueue_copy(self.queue, self.output2, self.output2_cl) if chunk.shape[0]==self.backward_chunksize: forward_chunk_filtered = self.output2 else: #side effect at the begining forward_chunk_filtered = self.output2[-chunk.shape[0]:, :] return forward_chunk_filtered kernel = """ #define forward_chunksize %(forward_chunksize)d #define backward_chunksize %(backward_chunksize)d #define nb_section %(nb_section)d #define nb_channel %(nb_channel)d __kernel void sos_filter(__global float *input, __global float *output, __constant float *coefficients, __global float *zi, int chunksize, int direction) { int chan = get_global_id(0); //channel indice int offset_filt2; //offset channel within section int offset_zi = chan*nb_section*2; int idx; float w0, w1,w2; float res; for (int section=0; section<nb_section; section++){ offset_filt2 = chan*nb_section*6+section*6; w1 = zi[offset_zi+section*2+0]; w2 = zi[offset_zi+section*2+1]; for (int s=0; s<chunksize;s++){ if (direction==1) {idx = s*nb_channel+chan;} else if (direction==-1) {idx = (chunksize-s-1)*nb_channel+chan;} if (section==0) {w0 = input[idx];} else {w0 = output[idx];} w0 -= coefficients[offset_filt2+4] * w1; w0 -= coefficients[offset_filt2+5] * w2; res = coefficients[offset_filt2+0] * w0 + coefficients[offset_filt2+1] * w1 + coefficients[offset_filt2+2] * w2; w2 = w1; w1 =w0; output[idx] = res; } zi[offset_zi+section*2+0] = w1; zi[offset_zi+section*2+1] = w2; } } __kernel void forward_filter(__global float *input, __global float *output, __constant float *coefficients, __global float *zi){ sos_filter(input, output, coefficients, zi, forward_chunksize, 1); } __kernel void backward_filter(__global float *input, __global float *output, __constant float *coefficients, __global float *zi) { sos_filter(input, output, coefficients, zi, backward_chunksize, -1); } """ class SosFilfilt_OpenCL_V3(SosFiltfilt_OpenCl_Base): def __init__(self, coefficients, nb_channel, dtype, chunksize, overlapsize): SosFiltfilt_OpenCl_Base.__init__(self, coefficients, nb_channel, dtype, chunksize, overlapsize) self.global_size = (self.nb_channel, self.nb_section) self.local_size = (1, self.nb_section) def compute_forward(self, chunk): if not chunk.flags['C_CONTIGUOUS']: chunk = chunk.copy() pyopencl.enqueue_copy(self.queue, self.input1_cl, chunk) kern_call = getattr(self.opencl_prg, 'forward_filter') event = kern_call(self.queue, self.global_size, self.local_size, self.input1_cl, self.output1_cl, self.coefficients_cl, self.zi1_cl) event.wait() pyopencl.enqueue_copy(self.queue, self.output1, self.output1_cl) forward_chunk_filtered = self.output1 return forward_chunk_filtered def compute_backward(self, chunk): if not chunk.flags['C_CONTIGUOUS']: chunk = chunk.copy() self.zi2[:]=0 pyopencl.enqueue_copy(self.queue, self.zi2_cl, self.zi2) if chunk.shape[0]==self.backward_chunksize: pyopencl.enqueue_copy(self.queue, self.input2_cl, chunk) else: #side effect at the begining chunk2 = np.zeros((self.backward_chunksize, self.nb_channel), dtype=self.dtype) chunk2[-chunk.shape[0]:, :] = chunk pyopencl.enqueue_copy(self.queue, self.input2_cl, chunk2) kern_call = getattr(self.opencl_prg, 'backward_filter') event = kern_call(self.queue, self.global_size, self.local_size, self.input2_cl, self.output2_cl, self.coefficients_cl, self.zi2_cl) event.wait() pyopencl.enqueue_copy(self.queue, self.output2, self.output2_cl) if chunk.shape[0]==self.backward_chunksize: forward_chunk_filtered = self.output2 else: #side effect at the begining forward_chunk_filtered = self.output2[-chunk.shape[0]:, :] return forward_chunk_filtered kernel = """ #define forward_chunksize %(forward_chunksize)d #define backward_chunksize %(backward_chunksize)d #define nb_section %(nb_section)d #define nb_channel %(nb_channel)d __kernel void sos_filter(__global float *input, __global float *output, __constant float *coefficients, __global float *zi, int chunksize, int direction) { int chan = get_global_id(0); //channel indice int section = get_global_id(1); //section indice int offset_filt2; //offset channel within section int offset_zi = chan*nb_section*2; int idx; float w0, w1,w2; float res; int s2; w1 = zi[offset_zi+section*2+0]; w2 = zi[offset_zi+section*2+1]; for (int s=0; s<chunksize+(3*nb_section);s++){ barrier(CLK_GLOBAL_MEM_FENCE); s2 = s-section*3; if (s2>=0 && (s2<chunksize)){ offset_filt2 = chan*nb_section*6+section*6; if (direction==1) {idx = s2*nb_channel+chan;} else if (direction==-1) {idx = (chunksize-s2-1)*nb_channel+chan;} if (section==0) {w0 = input[idx];} else {w0 = output[idx];} w0 -= coefficients[offset_filt2+4] * w1; w0 -= coefficients[offset_filt2+5] * w2; res = coefficients[offset_filt2+0] * w0 + coefficients[offset_filt2+1] * w1 + coefficients[offset_filt2+2] * w2; w2 = w1; w1 =w0; output[idx] = res; } } zi[offset_zi+section*2+0] = w1; zi[offset_zi+section*2+1] = w2; } __kernel void forward_filter(__global float *input, __global float *output, __constant float *coefficients, __global float *zi){ sos_filter(input, output, coefficients, zi, forward_chunksize, 1); } __kernel void backward_filter(__global float *input, __global float *output, __constant float *coefficients, __global float *zi) { sos_filter(input, output, coefficients, zi, backward_chunksize, -1); } """ sosfiltfilt_engines = { 'scipy' : SosFiltfilt_Scipy, 'opencl' : SosFilfilt_OpenCL_V1, 'opencl3' : SosFilfilt_OpenCL_V3 } class SosFiltfiltThread(ThreadPollInput): def __init__(self, input_stream, output_stream, timeout = 200, parent = None): ThreadPollInput.__init__(self, input_stream, timeout = timeout, return_data=True, parent = parent) self.output_stream = output_stream self.mutex = Mutex() def process_data(self, pos, data): with self.mutex: pos2, chunk_filtered = self.filter_engine.compute_one_chunk(pos, data) if pos2 is not None: self.output_stream.send(chunk_filtered, index=pos2) def set_params(self, engine, coefficients, nb_channel, dtype, chunksize, overlapsize): assert engine in sosfiltfilt_engines EngineClass = sosfiltfilt_engines[engine] with self.mutex: self.filter_engine = EngineClass(coefficients, nb_channel, dtype, chunksize, overlapsize) class OverlapFiltfilt(Node, QtCore.QObject): """ Node for filtering with forward-backward method (filtfilt). This use sliding overlap technics. The chunksize and the overlapsize are important for the accuracy of filtering. You need to study them carfully, otherwise the result should be the same as a real filtfilt ona long term signal. You must check the residual between real offline filtfitl and this online OverlapFiltfilt. Note that the chunksize have a strong effect on low frequency. This uses Second Order (sos) coeeficient. It internally use scipy.signal.sosfilt which is available only on scipy >0.16 The chunksize need to be fixed. For overlapsize there are 2 cases: 1- overlapsize<chunksize/2 : natural case. each chunk partailly overlap. The overlap are on sides, the central part come from one chunk. 2 - overlapsize>chunksize/2: chunk are fully averlapping. There is no central part. In the 2 cases, for each arrival of new chunk at [-chunksize:], the computed chunk at [-(chunksize+overlapsize):-overlapsize] is released. The coefficients.shape must be (nb_section, 6). If pyopencl is avaible you can do SosFilter.configure(engine='opencl') In that cases the coefficients.shape can also be (nb_channel, nb_section, 6) this help for having different filter on each channels. The opencl engine prefer inernally (channel, sample) ordered. In case not a copy is done. So the input ordering do impact performences. """ _input_specs = {'signals' : dict(streamtype = 'signals')} _output_specs = {'signals' : dict(streamtype = 'signals')} def __init__(self, parent = None, **kargs): QtCore.QObject.__init__(self, parent) Node.__init__(self, **kargs) assert HAVE_SCIPY, "SosFilter need scipy>0.16" def _configure(self, chunksize=1024, overlapsize=512, coefficients = None, engine='scipy'): """ Set the coefficient of the filter. See http://scipy.github.io/devdocs/generated/scipy.signal.sosfilt.html for details. """ self.chunksize = chunksize self.overlapsize = overlapsize self.engine = engine self.set_coefficients(coefficients) def after_input_connect(self, inputname): self.nb_channel = self.input.params['shape'][1] for k in ['sample_rate', 'dtype', 'shape', ]: self.output.spec[k] = self.input.params[k] def _initialize(self): self.thread = SosFiltfiltThread(self.input, self.output) self.thread.set_params(self.engine, self.coefficients, self.nb_channel, self.output.params['dtype'], self.chunksize, self.overlapsize) def _start(self): self.thread.last_pos = None self.thread.start() def _stop(self): self.thread.stop() self.thread.wait() def set_coefficients(self, coefficients): self.coefficients = coefficients if self.initialized(): self.thread.set_params(self.engine, self.coefficients, self.nb_channel, self.output.params['dtype'], self.chunksize, self.overlapsize) register_node_type(OverlapFiltfilt)
python
""" Copyright 2018 The Johns Hopkins University Applied Physics Laboratory. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """ Trains a dense (per-pixel) classifier on EM data. """ from __future__ import print_function __author__ = 'mjp, Nov 2016' __license__ = 'Apache 2.0' import os import sys import time import json import numpy as np np.random.seed(9999) from keras import backend as K from intern.remote.boss import BossRemote from intern.resource.boss.resource import * from cnn_tools import * from data_tools import * K.set_image_dim_ordering('th') if __name__ == '__main__': with open('/jobs/train_job_params.json') as f: params = json.load(f) # ------------------------------------------------------------------------- rmt = BossRemote('/jobs/boss_config.cfg') img_chan = ChannelResource(params['img_channel'], params['collection'], params['experiment'], type='image', datatype='uint8') lbl_chan = ChannelResource(params['lbl_channel'], params['collection'], params['experiment'], type='annotation', datatype='uint64') # Get the image data from the BOSS x_train = rmt.get_cutout(img_chan, params['resolution'], params['x_rng'], params['y_rng'], params['z_rng']) y_train = rmt.get_cutout(lbl_chan, params['resolution'], params['x_rng'], params['y_rng'], params['z_rng']) # Data must be [slices, chan, row, col] (i.e., [Z, chan, Y, X]) x_train = x_train[:, np.newaxis, :, :].astype(np.float32) y_train = y_train[:, np.newaxis, :, :].astype(np.float32) # Pixel values must be in [0,1] x_train /= 255. y_train = (y_train > 0).astype('float32') tile_size = tuple(params['tile_size']) train_pct = params['train_pct'] # ------------------------------------------------------------------------- # Data must be [slices, chan, row, col] (i.e., [Z, chan, Y, X]) # split into train and valid train_slices = range(int(train_pct * x_train.shape[0])) x_train = x_train[train_slices, ...] y_train = y_train[train_slices, ...] valid_slices = range(int(train_pct * x_train.shape[0]), x_train.shape[0]) x_valid = x_train[valid_slices, ...] y_valid = y_train[valid_slices, ...] print('[info]: training data has shape: %s' % str(x_train.shape)) print('[info]: training labels has shape: %s' % str(y_train.shape)) print('[info]: validation data has shape: %s' % str(x_valid.shape)) print('[info]: validation labels has shape: %s' % str(y_valid.shape)) print('[info]: tile size: %s' % str(tile_size)) # train model tic = time.time() model = create_unet((1, tile_size[0], tile_size[1])) if params['do_synapse']: model.compile(optimizer=Adam(lr=1e-4), loss=pixelwise_crossentropy_loss_w, metrics=[f1_score]) else: model.compile(optimizer=Adam(lr=1e-4), loss=pixelwise_crossentropy_loss, metrics=[f1_score]) # if weights_file: # model.load_weights(weights_file) train_model(x_train, y_train, x_valid, y_valid, model, params['output_dir'], do_augment=params['do_augment'], n_epochs=params['n_epochs'], mb_size=params['mb_size'], n_mb_per_epoch=params['n_mb_per_epoch'], save_freq=params['save_freq']) print('[info]: total time to train model: %0.2f min' % ((time.time() - tic)/60.)) # ------------------------------------------------------------------------- # -------------------------------------------------------------------------
python
"Thread safe RLock defined for lru cache." # https://stackoverflow.com/questions/16567958/when-and-how-to-use-pythons-rlock def RLock(): """ Make the container thread safe if running in a threaded context. """ import threading return threading.RLock()
python
import logging _LOGGER = logging.getLogger(__name__) def decode(packet): """ https://github.com/telldus/telldus/blob/master/telldus-core/service/ProtocolEverflourish.cpp """ data = packet["data"] house = data & 0xFFFC00 house >>= 10 unit = data & 0x300 unit >>= 8 unit += 1 method = data & 0xF # _LOGGER.debug("Everflourish (data=%x, house=%d, " # "unit=%d, method=%d)", # data, house, unit, method) if house > 16383 or unit < 1 or unit > 4: # not everflourish return if method == 0: method = "turnoff" elif method == 15: method = "turnon" elif method == 10: method = "learn" else: # not everflourish return return dict( packet, _class="command", model="selflearning", house=house, unit=unit, method=method, ) def encode(method): """ https://github.com/telldus/telldus/blob/master/telldus-core/service/ProtocolEverflourish.cpp """ raise NotImplementedError()
python
# script to copy history from a FITS table to the FITS header # FITS images only, works in current directory # Argument: # 1) Name of input FITS # example: # Python scriptHi2Header.py myImage.fits import sys, Obit, Image, History, OSystem, OErr # Init Obit err=OErr.OErr() ObitSys=OSystem.OSystem ("Hi2Header", 1, 100, 1, ["None"], 1, ["./"], 1, 0, err) OErr.printErrMsg(err, "Error with Obit startup") # Files (FITS) inFile = sys.argv[1] inDisk = 0 # Set data inImage = Image.newPFImage("Input image", inFile, inDisk, 1, err) OErr.printErrMsg(err, "Error initializing") # For debugging #Obit.Bomb() # Make history inInfo = Image.PGetList(inImage) outInfo = Image.PGetList(inImage) inHistory = History.History("history", inInfo, err) outHistory = History.History("history", outInfo, err) OErr.printErrMsg(err, "Error initializing history") History.PCopy2Header(inHistory, outHistory, err) OErr.printErrMsg(err, "Error copying history to FITS header") # Say something print "Copied History table to FITS header for",inFile # Shutdown Obit OErr.printErr(err)
python
#!/bin/python3 import math import os import random import re import sys # # Complete the 'superDigit' function below. # # The function is expected to return an INTEGER. # The function accepts following parameters: # 1. STRING n # 2. INTEGER k # def superDigit(n, k): if((len(n) == 1)and(k>1)): n,k = str(int(n)*k),1 len_n = len(n) if(len_n==1): return (int(n)) else: suma = 0 isImp = len_n%2 for i in range(0,int((len_n/2))+isImp): pos_f = i pos_b = len_n-i-1 if(pos_f != pos_b): suma += (int(n[pos_f])+int(n[pos_b])) else: suma += int(n[pos_f]) return superDigit(str(suma),k) if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') first_multiple_input = input().rstrip().split() n = first_multiple_input[0] k = int(first_multiple_input[1]) result = superDigit(n, k) fptr.write(str(result) + '\n') fptr.close()
python
# # Copyright 2015-2020 Andrey Galkin <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function, absolute_import import unittest import subprocess import os import sys import stat import shutil import json import platform from collections import OrderedDict from futoin.cid.util import executil CIDTEST_BIN = os.environ.get('CIDTEST_BIN', None) if CIDTEST_BIN: CIDTEST_BIN_EXT = False else : CIDTEST_BIN_EXT = True CIDTEST_BIN = os.path.dirname( __file__ ) + '/../bin/cid' class cid_UTBase ( unittest.TestCase ) : IS_LINUX = platform.system() == 'Linux' IS_MACOS = platform.system() == 'Darwin' NO_COMPILE = os.environ.get('CIDTEST_NO_COMPILE', '0') == '1' ALLOW_SRC_BUILDS = not NO_COMPILE CIDTEST_BIN = CIDTEST_BIN TEST_DIR = 'invalid' TEST_RUN_DIR = os.environ.get('CIDTEST_RUN_DIR', os.path.realpath( os.path.join(os.path.dirname(__file__), '..', 'testrun') )) _create_test_dir = False __test__ = False _dev_null = open(os.devnull, 'w') _stdout_log = open(os.path.join(TEST_RUN_DIR, 'stdout.log'), 'a+') #_stderr_log = open(os.path.join(TEST_RUN_DIR, 'stderr.log'), 'a+') _stderr_log = _stdout_log @classmethod def setUpClass( cls ): print('Python: ' + sys.executable) try: os.makedirs( cls.TEST_RUN_DIR ) except: pass os.chdir( cls.TEST_RUN_DIR ) os.environ['HOME'] = cls.TEST_RUN_DIR cache_dir = os.path.join(os.environ['HOME'], '.cache', 'futoin-cid') for cleanup_dir in (cache_dir, cls.TEST_DIR): if os.path.exists( cleanup_dir ) : for ( path, dirs, files ) in os.walk( cleanup_dir ) : for id in dirs + files : try: os.chmod( os.path.join( path, id ), stat.S_IRWXU ) except: pass shutil.rmtree( cleanup_dir ) if cls._create_test_dir: os.mkdir(cls.TEST_DIR) os.chdir(cls.TEST_DIR) def _goToBase( self ): os.chdir( self.TEST_DIR ) def setUp( self ): self._goToBase() @classmethod def _call_cid( cls, args, stdin=None, stdout=None, returncode=0, ignore=False, retout=False, merge_stderr=False ) : cmd = [] if CIDTEST_BIN_EXT: cmd.append(sys.executable) if retout: (r, w) = os.pipe() stdout = w cmd.append( CIDTEST_BIN ) cmd += args if stdout is None: stdout = cls._stdout_log stderr = cls._stderr_log if merge_stderr: stderr=subprocess.STDOUT print( 'Test Call: ' + subprocess.list2cmdline(cmd), file=cls._stderr_log ) cls._stderr_log.flush() p = subprocess.Popen( cmd, bufsize=-1, stdin=subprocess.PIPE, stdout=stdout, stderr=stderr ) if stdin is not None: p.stdin.write( stdin ) p.wait() if retout: os.close(w) res = os.read(r, 32*1024) os.close(r) if ignore: return p.returncode == returncode if p.returncode != returncode: raise RuntimeError( "Failed" ) if retout: return executil.toString(res) return True @classmethod def _writeFile( cls, file_name, content ): with open(file_name, 'w') as content_file: content_file.write( content ) content_file.write( "\n" ) @classmethod def _writeJSON( cls, file_name, content ): cls._writeFile( file_name, json.dumps( content ) ) @classmethod def _readFile( cls, file_name ): with open(file_name, 'r') as content_file: content = content_file.read() return content @classmethod def _readJSON( cls, file_name ): content = cls._readFile(file_name) object_pairs_hook = lambda pairs: OrderedDict( pairs ) return json.loads( content, object_pairs_hook=object_pairs_hook ) @classmethod def _redirectAsyncStdIO( cls ): os.dup2(cls._dev_null.fileno(), 0) os.dup2(cls._stdout_log.fileno(), 1) os.dup2(cls._stderr_log.fileno(), 2) def _firstGet(self, url): import requests, time for i in range(15): try: res = requests.get(url, timeout=3) if res.ok: return res else: time.sleep(1) except: time.sleep(1) else: self.assertTrue(False) class cid_Tool_UTBase ( cid_UTBase ) : __test__ = False TOOL_NAME = 'invalid' TOOL_ENV = {} _env_backup = None @classmethod def setUpClass( cls ): cls._env_backup = {} cls.TEST_DIR = os.path.join(cls.TEST_RUN_DIR, 'tool_'+cls.TOOL_NAME) super(cid_Tool_UTBase, cls).setUpClass() os.mkdir( cls.TEST_DIR ) os.chdir( cls.TEST_DIR ) for k, v in cls.TOOL_ENV.items(): cls._env_backup[k] = os.environ.get(k, None) os.environ[k] = v @classmethod def tearDownClass( cls ): for k, v in cls._env_backup.items(): if v: os.environ[k] = v else: del os.environ[k]
python
import stringcase from importlib import import_module from .metadata import Metadata from .resource import Resource from .package import Package from . import helpers from . import errors class Pipeline(Metadata): """Pipeline representation API | Usage -------- | -------- Public | `from frictionless import Pipeline` For now, only the `package` type is supported where `steps` should conform to the `dataflows`s processors. The File class inherits from the Metadata class all the metadata's functionality ```python pipeline = Pipeline( { "type": "package", "steps": [ {"type": "load", "spec": {"loadSource": "data/table.csv"}}, {"type": "set_type", "spec": {"name": "id", "type": "string"}}, {"type": "dump_to_path", "spec": {"outPath": tmpdir}}, ], } ) pipeline.run() ``` Parameters: descriptor (str|dict): pipeline descriptor name? (str): pipeline name type? (str): pipeline type steps? (dict[]): pipeline steps """ def __init__(self, descriptor=None, *, name=None, type=None, source=None, steps=None): self.setinitial("name", name) self.setinitial("type", type) self.setinitial("source", source) self.setinitial("steps", steps) super().__init__(descriptor) @Metadata.property def name(self): """ Returns: str?: pipeline name """ return self.get("name") @Metadata.property def type(self): """ Returns: str?: pipeline type """ return self.get("type", "resource") @Metadata.property def source(self): """ Returns: dict[]?: pipeline source """ return self.get("source") @Metadata.property def steps(self): """ Returns: dict[]?: pipeline steps """ return self.get("steps") # Run def run(self): """Run the pipeline""" steps = import_module("frictionless.steps") transforms = import_module("frictionless.transform") # TODO: it will not work for nested steps like steps.resource_transform items = [] for step in self.steps: func = getattr(steps, stringcase.snakecase(step["type"])) items.append(func(**helpers.create_options(step["spec"]))) if self.type == "resource": source = Resource(self.source) return transforms.transform_resource(source, steps=items) else: source = Package(self.source) return transforms.transform_package(source, steps=items) # Metadata metadata_Error = errors.PipelineError metadata_profile = { # type: ignore "type": "object", "required": ["type", "source", "steps"], "properties": { "name": {"type": "string"}, "type": {"type": "string"}, "source": {"type": "object"}, "steps": { "type": "array", "items": {"type": "object", "required": ["type", "spec"]}, }, }, }
python
# Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import re from contextlib import contextmanager from dataclasses import dataclass from textwrap import dedent from typing import Any from pants.engine.internals.engine_testutil import ( assert_equal_with_printing, remove_locations_from_traceback, ) from pants.engine.internals.scheduler import ExecutionError from pants.engine.rules import Get, rule from pants.engine.unions import UnionRule, union from pants.testutil.rule_runner import QueryRule from pants.testutil.test_base import TestBase @dataclass(frozen=True) class A: pass @dataclass(frozen=True) class B: pass def fn_raises(x): raise Exception(f"An exception for {type(x).__name__}") @rule(desc="Nested raise") def nested_raise(b: B) -> A: fn_raises(b) return A() @rule def consumes_a_and_b(a: A, b: B) -> str: return str(f"{a} and {b}") @dataclass(frozen=True) class C: pass @rule def transitive_b_c(c: C) -> B: return B() @dataclass(frozen=True) class D: b: B @rule async def transitive_coroutine_rule(c: C) -> D: b = await Get(B, C, c) return D(b) @union class UnionBase: pass @union class UnionWithNonMemberErrorMsg: @staticmethod def non_member_error_message(subject): return f"specific error message for {type(subject).__name__} instance" class UnionWrapper: def __init__(self, inner): self.inner = inner class UnionA: @staticmethod def a() -> A: return A() @rule def select_union_a(union_a: UnionA) -> A: return union_a.a() class UnionB: @staticmethod def a() -> A: return A() @rule def select_union_b(union_b: UnionB) -> A: return union_b.a() # TODO: add MultiGet testing for unions! @rule async def a_union_test(union_wrapper: UnionWrapper) -> A: union_a = await Get(A, UnionBase, union_wrapper.inner) return union_a class UnionX: pass @rule async def error_msg_test_rule(union_wrapper: UnionWrapper) -> UnionX: # NB: We install a UnionRule to make UnionWrapper a member of this union, but then we pass the # inner value, which is _not_ registered. _ = await Get(A, UnionWithNonMemberErrorMsg, union_wrapper.inner) raise AssertionError("The statement above this one should have failed!") class TypeCheckFailWrapper: """This object wraps another object which will be used to demonstrate a type check failure when the engine processes an `await Get(...)` statement.""" def __init__(self, inner): self.inner = inner @rule async def a_typecheck_fail_test(wrapper: TypeCheckFailWrapper) -> A: # This `await` would use the `nested_raise` rule, but it won't get to the point of raising since # the type check will fail at the Get. _ = await Get(A, B, wrapper.inner) # noqa: F841 return A() @dataclass(frozen=True) class CollectionType: # NB: We pass an unhashable type when we want this to fail at the root, and a hashable type # when we'd like it to succeed. items: Any @rule async def c_unhashable(_: CollectionType) -> C: # This `await` would use the `nested_raise` rule, but it won't get to the point of raising since # the hashability check will fail. _result = await Get(A, B, list()) # noqa: F841 return C() @rule def boolean_and_int(i: int, b: bool) -> A: return A() @contextmanager def assert_execution_error(test_case, expected_msg): with test_case.assertRaises(ExecutionError) as cm: yield test_case.assertIn(expected_msg, remove_locations_from_traceback(str(cm.exception))) class SchedulerTest(TestBase): @classmethod def rules(cls): return ( *super().rules(), consumes_a_and_b, QueryRule(str, (A, B)), transitive_b_c, QueryRule(str, (A, C)), transitive_coroutine_rule, QueryRule(D, (C,)), UnionRule(UnionBase, UnionA), UnionRule(UnionWithNonMemberErrorMsg, UnionWrapper), select_union_a, UnionRule(union_base=UnionBase, union_member=UnionB), select_union_b, a_union_test, QueryRule(A, (UnionWrapper,)), error_msg_test_rule, QueryRule(UnionX, (UnionWrapper,)), boolean_and_int, QueryRule(A, (int, bool)), ) def test_use_params(self): # Confirm that we can pass in Params in order to provide multiple inputs to an execution. a, b = A(), B() result_str = self.request(str, [a, b]) self.assertEqual(result_str, consumes_a_and_b(a, b)) # And confirm that a superset of Params is also accepted. result_str = self.request(str, [a, b, self]) self.assertEqual(result_str, consumes_a_and_b(a, b)) # But not a subset. expected_msg = "No installed QueryRules can compute str given input Params(A), but" with self.assertRaisesRegex(Exception, re.escape(expected_msg)): self.request(str, [a]) def test_transitive_params(self): # Test that C can be provided and implicitly converted into a B with transitive_b_c() to satisfy # the selectors of consumes_a_and_b(). a, c = A(), C() result_str = self.request(str, [a, c]) self.assertEqual( remove_locations_from_traceback(result_str), remove_locations_from_traceback(consumes_a_and_b(a, transitive_b_c(c))), ) # Test that an inner Get in transitive_coroutine_rule() is able to resolve B from C due to # the existence of transitive_b_c(). self.request(D, [c]) def test_consumed_types(self): assert {A, B, C, str} == set( self.scheduler.scheduler.rule_graph_consumed_types([A, C], str) ) def test_strict_equals(self): # With the default implementation of `__eq__` for boolean and int, `1 == True`. But in the # engine that behavior would be surprising, and would cause both of these Params to intern # to the same value, triggering an error. Instead, the engine additionally includes the # type of a value in equality. assert A() == self.request(A, [1, True]) @contextmanager def _assert_execution_error(self, expected_msg): with assert_execution_error(self, expected_msg): yield def test_union_rules(self): self.request(A, [UnionWrapper(UnionA())]) self.request(A, [UnionWrapper(UnionB())]) # Fails due to no union relationship from A -> UnionBase. with self._assert_execution_error("Type A is not a member of the UnionBase @union"): self.request(A, [UnionWrapper(A())]) def test_union_rules_no_docstring(self): with self._assert_execution_error("specific error message for UnionA instance"): self.request(UnionX, [UnionWrapper(UnionA())]) class SchedulerWithNestedRaiseTest(TestBase): @classmethod def rules(cls): return ( *super().rules(), a_typecheck_fail_test, c_unhashable, nested_raise, QueryRule(A, (TypeCheckFailWrapper,)), QueryRule(A, (B,)), QueryRule(C, (CollectionType,)), ) def test_get_type_match_failure(self): """Test that Get(...)s are now type-checked during rule execution, to allow for union types.""" with self.assertRaises(ExecutionError) as cm: # `a_typecheck_fail_test` above expects `wrapper.inner` to be a `B`. self.request(A, [TypeCheckFailWrapper(A())]) expected_regex = "WithDeps.*did not declare a dependency on JustGet" self.assertRegex(str(cm.exception), expected_regex) def test_unhashable_root_params_failure(self): """Test that unhashable root params result in a structured error.""" # This will fail at the rust boundary, before even entering the engine. with self.assertRaisesRegex(TypeError, "unhashable type: 'list'"): self.request(C, [CollectionType([1, 2, 3])]) def test_unhashable_get_params_failure(self): """Test that unhashable Get(...) params result in a structured error.""" # This will fail inside of `c_unhashable_dataclass`. with self.assertRaisesRegex(ExecutionError, "unhashable type: 'list'"): self.request(C, [CollectionType(tuple())]) def test_trace_includes_rule_exception_traceback(self): # Execute a request that will trigger the nested raise, and then directly inspect its trace. request = self.scheduler.execution_request([A], [B()]) _, throws = self.scheduler.execute(request) with self.assertRaises(ExecutionError) as cm: self.scheduler._raise_on_error([t for _, t in throws]) trace = remove_locations_from_traceback(str(cm.exception)) assert_equal_with_printing( self, dedent( f"""\ 1 Exception encountered: Engine traceback: in select in {self.__module__}.{nested_raise.__name__} Traceback (most recent call last): File LOCATION-INFO, in nested_raise fn_raises(b) File LOCATION-INFO, in fn_raises raise Exception(f"An exception for {{type(x).__name__}}") Exception: An exception for B """ ), trace, )
python
# Copyright 2016 Pavle Jonoski # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from troup.node import Node import logging def configure_node_parser(): parser = ArgumentParser(prog='troup', description='Run single node') # Node parser.add_argument('--node', help='Node ID') parser.add_argument('--neighbours', default='', nargs='+', help='Neighbour nodes') # Async IO server props parser.add_argument('--host', default='', help='Async IO server hostname') parser.add_argument('--port', default=7000, help='Async IO server port') # Store parser.add_argument('--storage-root', default='.data', help='Root path of the storage directory') # System statistics parser.add_argument('--stats-update-interval', default=30000, help='Statistics update interval in milliseconds') parser.add_argument('--log-level', '-l', default='info', help='Logging level') parser.add_argument('--lock', action='store_true', help='Write node info in global lock file') parser.add_argument('--debug', action='store_true', help='Activate the debug command-line interactive interface') parser.add_argument('-v', '--version', action='store_true', help='Print version and exit') return parser def run_node(): import signal parser = configure_node_parser() args = parser.parse_args() if args.version: from troup.metadata import __version__ print(__version__) return logging.basicConfig(level=getattr(logging, args.log_level.upper())) config = { 'store': { 'path': args.storage_root }, 'server': { 'hostname': args.host, 'port': args.port }, 'stats': { 'update_interval': args.stats_update_interval }, 'neighbours': args.neighbours, 'lock': args.lock } node = Node(node_id=args.node, config=config) def handle_node_shutdown(signal, frame): node.stop() signal.signal(signal.SIGINT, handle_node_shutdown) if args.debug: from troup.debug import run_debug_cli run_debug_cli() node.start() return node
python
f = open('3_input.txt').read().splitlines() def life_support_rating(o2, co2): return o2 * co2 def filter(list, i=0, co2=False): # where `i` is the bit position if len(list) == 1: return list[0] count = 0 for item in list: count += int(item[i]) dom_num = 1 if count >= len(list) / 2 else 0 # prefers 1 in case of ties by default pref_num = dom_num if co2 == False else abs(dom_num - 1) # pref_num is opposite if co2 reading sought list = [x for x in list if int(x[i]) == pref_num] return filter(list, i + 1, co2) o2_rating = filter(f) # oxygen generator rating co2_rating = filter(f, co2 = True) # co2 scrubber rating answer = life_support_rating(int(o2_rating, 2), int(co2_rating, 2))
python
import pytest import numpy from thinc.layers import Embed from ...layers.uniqued import uniqued from numpy.testing import assert_allclose from hypothesis import given from hypothesis.strategies import integers, lists, composite ROWS = 10 # This test uses a newer hypothesis feature than the skanky flatmap-style # I used previously. This is much nicer, although it still takes some getting # used to. The key feature is this composite decorator. It injects a function, # 'draw'. @composite def lists_of_integers(draw, columns=2, lo=0, hi=ROWS - 1): # We call draw to get example values, which we can manipulate. # Here we get a list of integers, where each member of the list # should be between a min and max value. int_list = draw(lists(integers(min_value=lo, max_value=hi))) # Now we can use this int list to make an array, and it'll be the arrays # that our functions receive. # We trim the list, so we're of length divisible by columns. int_list = int_list[len(int_list) % columns :] # And make the array and reshape it. array = numpy.array(int_list, dtype="uint64") return array.reshape((-1, columns)) @pytest.fixture def model(nO=128): return Embed(nO, ROWS, column=0).initialize() def test_uniqued_calls_init(): calls = [] embed = Embed(5, 5, column=0) embed.init = lambda *args, **kwargs: calls.append(True) embed.initialize() assert calls == [True] uembed = uniqued(embed) uembed.initialize() assert calls == [True, True] @given(X=lists_of_integers(lo=0, hi=ROWS - 1)) def test_uniqued_doesnt_change_result(model, X): umodel = uniqued(model, column=model.attrs["column"]).initialize() Y, bp_Y = model(X, is_train=True) Yu, bp_Yu = umodel(X, is_train=True) assert_allclose(Y, Yu) dX = bp_Y(Y) dXu = bp_Yu(Yu) assert_allclose(dX, dXu) if X.size: pass # TODO: This test is a problem, because we exceed the embedding table. # Fix it with a better cap. # Check that different inputs do give different results # Z, bp_Z = model(X + 1, is_train=True) # with pytest.raises(AssertionError): # assert_allclose(Y, Z)
python
from datasets.SOT.dataset import SingleObjectTrackingDatasetSequence_MemoryMapped from ._common import _check_bounding_box_validity class SOTSequenceSequentialSampler: def __init__(self, sequence: SingleObjectTrackingDatasetSequence_MemoryMapped): assert len(sequence) > 0 self.sequence = sequence self.index = 0 def get_name(self): return self.sequence.get_name() def move_next(self): if self.index + 1 >= len(self.sequence): return False self.index += 1 return True def current(self): frame = self.sequence[self.index] assert any(v > 0 for v in frame.get_image_size()) image_path = frame.get_image_path() bounding_box = frame.get_bounding_box() bounding_box_validity_flag = frame.get_bounding_box_validity_flag() bounding_box = _check_bounding_box_validity(bounding_box, bounding_box_validity_flag, frame.get_image_size()) return image_path, bounding_box def reset(self): self.index = 0 def length(self): return len(self.sequence)
python
from django.db import models from django.urls import reverse class ImportantDate(models.Model): date = models.DateField() desc = models.CharField(max_length=100) def __str__(self): return "{} - {}".format(self.date, self.desc) def get_absolute_url(self): return reverse('formschapter:impdate_detail', args=[str(self.pk)]) class Meta: ordering = ('-date',)
python
from django.contrib import admin from purchasing.models import PurchasedOrder class PurchasedOrderAdmin(admin.ModelAdmin): readonly_fields = ['expiration_date'] admin.site.register(PurchasedOrder)
python
from typing import Dict, Optional from sqlalchemy import column, literal_column, select from panoramic.cli.husky.core.sql_alchemy_util import ( quote_identifier, safe_identifier, sort_columns, ) from panoramic.cli.husky.service.blending.blending_taxon_manager import ( BlendingTaxonManager, ) from panoramic.cli.husky.service.blending.dataframe_joins import blend_dataframes from panoramic.cli.husky.service.blending.dimension_phase_builder import ( DimensionPhaseBuilder, ) from panoramic.cli.husky.service.blending.features.override_mapping.manager import ( OverrideMappingManager, ) from panoramic.cli.husky.service.blending.metric_phase_builder import MetricPhaseBuilder from panoramic.cli.husky.service.blending.tel_planner import TelPlanner from panoramic.cli.husky.service.context import HuskyQueryContext from panoramic.cli.husky.service.filter_builder.enums import ( FilterClauseType, SimpleFilterOperator, ) from panoramic.cli.husky.service.filter_builder.filter_clauses import ( TaxonValueFilterClause, ) from panoramic.cli.husky.service.query_builder import QueryBuilder from panoramic.cli.husky.service.select_builder.exceptions import ( UnsupportedAggregationType, ) from panoramic.cli.husky.service.types.api_data_request_types import ( ApiDataRequest, BlendingDataRequest, ComparisonConfig, InternalDataRequest, ) from panoramic.cli.husky.service.types.api_scope_types import ComparisonScopeType from panoramic.cli.husky.service.types.types import ( BlendingQueryInfo, Dataframe, DataframeColumn, QueryInfo, ) from panoramic.cli.husky.service.utils.taxon_slug_expression import TaxonExpressionStr class ComparisonRequestBuilder: """ Helper class for building Husky comparison subrequests. """ @classmethod def _build_comparison_subrequest( cls, original_subrequest: ApiDataRequest, comparison: ComparisonConfig, taxon_manager: BlendingTaxonManager ) -> InternalDataRequest: subrequest: InternalDataRequest = original_subrequest.to_internal_model() # Reset all filters. Getting comparison can only be filtered by project filters or company id. subrequest.preaggregation_filters = None # Reset limit and order by. Does not make sense for comparison. subrequest.limit = None subrequest.order_by = [] # Get taxon slugs we need for comparison subrequest. subrequest.taxons = sorted(list(taxon_manager.get_comparison_subrequest_raw_taxons(subrequest, comparison))) if comparison.scope == ComparisonScopeType.company: # If company scope, we add a filter on the company id and remove project filters and accounts # Eventually, we could fetch list of all accounts under a company and filter on that, since that will # probably be faster. subrequest.scope.preaggregation_filters = TaxonValueFilterClause( { 'type': FilterClauseType.TAXON_VALUE.value, 'taxon': 'company_id', 'operator': SimpleFilterOperator.EQ.value, 'value': subrequest.scope.company_id, } ) return subrequest @classmethod def _build_comparison_blend_query( cls, ctx: HuskyQueryContext, config_arg: BlendingDataRequest, taxon_manager: BlendingTaxonManager, query_info: BlendingQueryInfo, ) -> Optional[Dataframe]: """ Builds comparison query for each subrequest and then blends them all into one comparison dataframe. """ dataframes = [] config = BlendingDataRequest(config_arg.to_native()) # Clone, coz we will be modifying subqueries assert config.comparison, 'Comparison must be defined when trying to build comparison query..' comparison: ComparisonConfig = config.comparison for _subrequest in config.data_subrequests: subrequest = cls._build_comparison_subrequest(_subrequest, comparison, taxon_manager) data_source = subrequest.properties.data_source # if no comparison taxons were found for this subrequest, skip creating comparison query for it as well if len(subrequest.taxons) == 0: continue bm_sub_query_info = QueryInfo.create(subrequest) query_info.comparison_subrequests_info.append(bm_sub_query_info) # Build comparison dataframe and add it to a list. # TODO pass down TelPlan for comparisons # ComparisonRequestBuilder might have added filters (typically for company id project id) # Me create new filter templates for this comparison subrequest. filter_templates = TelPlanner.get_preaggregation_filter_templates( ctx, [subrequest.preaggregation_filters, subrequest.scope.preaggregation_filters], taxon_manager.taxon_map, data_source, ) dataframes.append( QueryBuilder.build_query( ctx, subrequest, bm_sub_query_info, taxon_manager.used_taxons, dimension_templates=taxon_manager.plan.comparison_data_source_formula_templates[data_source], filter_templates=filter_templates, ) ) # if no comparison subrequests were created, there is no need to blend data frames if len(dataframes) == 0: return None # Blend all comparison dataframes into one # TODO pass down TelPlan for comparisons data_source_formula_templates = taxon_manager.plan.comparison_data_source_formula_templates dataframe = blend_dataframes(ctx, dataframes, data_source_formula_templates) # Prefix all comparison metric columns with 'comparison@' and create comparison taxon for it. query = dataframe.query final_columns = [] aliased_taxon_by_slug: Dict[TaxonExpressionStr, DataframeColumn] = dict() for slug, df_column in dataframe.slug_to_column.items(): # Alias metrics with comparison@ prefix, and select dimensions.. if df_column.taxon.is_dimension: new_taxon = df_column.taxon.copy(deep=True) new_slug = TaxonExpressionStr(f'{slug}') else: new_slug, new_taxon = BlendingTaxonManager.create_comparison_taxon(df_column.taxon) final_columns.append(query.c[safe_identifier(slug)].label(new_taxon.slug_safe_sql_identifier)) aliased_taxon_by_slug[new_slug] = DataframeColumn(new_slug, new_taxon, df_column.quantity_type) for pre_formulas in data_source_formula_templates.values(): # and also select the dim columns from dim templates. for pre_formula in pre_formulas: final_columns.append(literal_column(quote_identifier(pre_formula.label, ctx.dialect))) renamed_cols_query = select(sort_columns(final_columns)).select_from(dataframe.query) return Dataframe(renamed_cols_query, aliased_taxon_by_slug, dataframe.used_model_names) @classmethod def build_comparison_query( cls, ctx: HuskyQueryContext, config_arg: BlendingDataRequest, taxon_manager: BlendingTaxonManager, override_mapping_manager: OverrideMappingManager, query_info: BlendingQueryInfo, ) -> Optional[Dataframe]: comp_df = cls._build_comparison_blend_query(ctx, config_arg, taxon_manager, query_info) if comp_df is None or len(taxon_manager.plan.comparison_dimension_formulas) == 0: # There are no comparison dim formulas, means the rows are already grouped correctly return comp_df comp_df = DimensionPhaseBuilder.calculate_dataframe( taxon_manager.plan.comparison_dimension_formulas, override_mapping_manager.comparison_override_mapping_tel_data, override_mapping_manager.cte_map, comp_df, ) # After dimension join, there could have been a merge (coalesce). We need to group them by the merged column # once more, to keep single row per dimension.. otherwise we will get row fanout when left joining with # data dataframe group_by_cols = [] selectors = [] for dim_formula in taxon_manager.plan.comparison_dimension_formulas: group_by_cols.append(column(dim_formula.label)) for df_column in comp_df.slug_to_column.values(): taxon = df_column.taxon col = column(df_column.name) if taxon.is_dimension: group_by_cols.append(col) else: agg_type = taxon.tel_metadata_aggregation_type agg_fn = None if agg_type: agg_fn = MetricPhaseBuilder.AGGREGATION_FUNCTIONS_MAP.get(agg_type) if agg_fn is None: raise UnsupportedAggregationType(taxon) col = agg_fn(col).label(df_column.name) selectors.append(col) selectors.extend(group_by_cols) query = select(sort_columns(selectors)).select_from(comp_df.query).group_by(*group_by_cols) return Dataframe(query, comp_df.slug_to_column, comp_df.used_model_names)
python
import theano import theano.tensor as T import treeano from treeano.sandbox.nodes import bttf_mean fX = theano.config.floatX @treeano.register_node("bachelor_normalization") class BachelorNormalizationNode(treeano.NodeImpl): hyperparameter_names = ("bttf_alpha", "alpha", "epsilon", "normalization_axes", "update_averages", "deterministic") def compute_output(self, network, in_vw): alpha = network.find_hyperparameter(["bttf_alpha", "alpha"], 0.95) epsilon = network.find_hyperparameter(["epsilon"], 1e-4) normalization_axes = network.find_hyperparameter(["normalization_axes"], (1,)) # HACK: using "deterministic" to mean test time deterministic = network.find_hyperparameter(["deterministic"], False) update_averages = network.find_hyperparameter(["update_averages"], not deterministic) alpha = treeano.utils.as_fX(alpha) if update_averages: backprop_to_the_future_mean = bttf_mean.backprop_to_the_future_mean_with_updates else: backprop_to_the_future_mean = bttf_mean.backprop_to_the_future_mean_no_updates state_shape = tuple([in_vw.shape[axis] for axis in normalization_axes]) state_pattern = ["x"] * in_vw.ndim for idx, axis in enumerate(normalization_axes): state_pattern[axis] = idx def make_state(name, tags, default_inits=None): if default_inits is None: default_inits = [] return network.create_vw( name=name, is_shared=True, shape=state_shape, tags=tags, default_inits=default_inits, ).variable gamma = make_state("gamma", {"parameter", "weight"}) beta = make_state("beta", {"parameter", "bias"}) # mean of input mean = make_state("mean", {"state"}) # gradient of mean of input mean_grad = make_state("mean_grad", {"state"}) # mean of input^2 squared_mean = make_state("squared_mean", {"state"}, # initializing to 1, so that std = 1 default_inits=[treeano.inits.ConstantInit(1.)]) # gradient of mean of input^2 squared_mean_grad = make_state("squared_mean_grad", {"state"}) in_var = in_vw.variable mean_axes = tuple([axis for axis in range(in_var.ndim) if axis not in normalization_axes]) batch_mean = in_var.mean(axis=mean_axes) squared_batch_mean = T.sqr(in_var).mean(axis=mean_axes) # expectation of input (x) E_x = backprop_to_the_future_mean(batch_mean, mean, mean_grad, alpha) # TODO try mixing batch mean with E_x # expectation of input squared E_x_squared = backprop_to_the_future_mean(squared_batch_mean, squared_mean, squared_mean_grad, alpha) # HACK mixing batch and rolling means # E_x = 0.5 * E_x + 0.5 * batch_mean # E_x_squared = 0.5 * E_x_squared + 0.5 * squared_batch_mean if 1: mu = E_x sigma = T.sqrt(E_x_squared - T.sqr(E_x) + epsilon) mu = mu.dimshuffle(state_pattern) sigma = sigma.dimshuffle(state_pattern) gamma = gamma.dimshuffle(state_pattern) beta = beta.dimshuffle(state_pattern) else: # HACK mixing current value E_x = E_x.dimshuffle(state_pattern) E_x_squared = E_x_squared.dimshuffle(state_pattern) gamma = gamma.dimshuffle(state_pattern) beta = beta.dimshuffle(state_pattern) E_x = 0.1 * in_var + 0.9 * E_x E_x_squared = 0.1 * T.sqr(in_var) + 0.9 * E_x_squared mu = E_x sigma = T.sqrt(E_x_squared - T.sqr(E_x) + epsilon) if 0: # HACK don't backprop through sigma sigma = T.consider_constant(sigma) if 1: # HACK using batch mean mu = batch_mean mu = mu.dimshuffle(state_pattern) if 0: # HACK using batch variance sigma = T.sqrt(in_var.var(axis=mean_axes) + epsilon) sigma = sigma.dimshuffle(state_pattern) out_var = (in_var - mu) * (T.exp(gamma) / sigma) + beta network.create_vw( name="default", variable=out_var, shape=in_vw.shape, tags={"output"}, ) if 1: # HACK monitoring state network.create_vw( name="mu_mean", variable=mu.mean(), shape=(), tags={"monitor"}, ) network.create_vw( name="sigma_mean", variable=sigma.mean(), shape=(), tags={"monitor"}, ) network.create_vw( name="gamma_mean", variable=gamma.mean(), shape=(), tags={"monitor"}, ) network.create_vw( name="beta_mean", variable=beta.mean(), shape=(), tags={"monitor"}, ) @treeano.register_node("bachelor_normalization2") class BachelorNormalization2Node(treeano.NodeImpl): hyperparameter_names = ("bttf_alpha", "alpha", "epsilon", "normalization_axes", "update_averages", "deterministic") def compute_output(self, network, in_vw): alpha = network.find_hyperparameter(["bttf_alpha", "alpha"], 0.95) epsilon = network.find_hyperparameter(["epsilon"], 1e-4) normalization_axes = network.find_hyperparameter(["normalization_axes"], (1,)) # HACK: using "deterministic" to mean test time deterministic = network.find_hyperparameter(["deterministic"], False) update_averages = network.find_hyperparameter(["update_averages"], not deterministic) alpha = treeano.utils.as_fX(alpha) if update_averages: backprop_to_the_future_mean = bttf_mean.backprop_to_the_future_mean_with_updates else: backprop_to_the_future_mean = bttf_mean.backprop_to_the_future_mean_no_updates state_shape = tuple([in_vw.shape[axis] for axis in normalization_axes]) state_pattern = ["x"] * in_vw.ndim for idx, axis in enumerate(normalization_axes): state_pattern[axis] = idx def make_state(name, tags, default_inits=None): if default_inits is None: default_inits = [] return network.create_vw( name=name, is_shared=True, shape=state_shape, tags=tags, default_inits=default_inits, ).variable gamma = make_state("gamma", {"parameter", "weight"}) beta = make_state("beta", {"parameter", "bias"}) # mean of input mean = make_state("mean", {"state"}) # gradient of mean of input mean_grad = make_state("mean_grad", {"state"}) var_state_mean = make_state("var_state_mean", {"state"}, # initializing to 1, so that std = 1 default_inits=[treeano.inits.ConstantInit(1.)]) var_state_mean_grad = make_state("var_state_mean_grad", {"state"}) in_var = in_vw.variable mean_axes = tuple([axis for axis in range(in_var.ndim) if axis not in normalization_axes]) batch_mean = in_var.mean(axis=mean_axes) # expectation of input (x) E_x = backprop_to_the_future_mean(batch_mean, mean, mean_grad, alpha) # TODO try mixing batch mean with E_x if 1: batch_var_state = 1. / T.sqrt(in_var.var(axis=mean_axes) + epsilon) var_state = backprop_to_the_future_mean(batch_var_state, var_state_mean, var_state_mean_grad, alpha) inv_std = var_state # HACK mixing batch and rolling means # E_x = 0.5 * E_x + 0.5 * batch_mean # E_x_squared = 0.5 * E_x_squared + 0.5 * squared_batch_mean mu = E_x mu = mu.dimshuffle(state_pattern) inv_std = inv_std.dimshuffle(state_pattern) gamma = gamma.dimshuffle(state_pattern) beta = beta.dimshuffle(state_pattern) out_var = (in_var - mu) * (T.exp(gamma) * inv_std) + beta network.create_vw( name="default", variable=out_var, shape=in_vw.shape, tags={"output"}, ) if 1: # HACK monitoring state network.create_vw( name="mu_mean", variable=mu.mean(), shape=(), tags={"monitor"}, ) network.create_vw( name="var_state_effective_mean", variable=var_state.mean(), shape=(), tags={"monitor"}, ) network.create_vw( name="gamma_mean", variable=gamma.mean(), shape=(), tags={"monitor"}, ) network.create_vw( name="beta_mean", variable=beta.mean(), shape=(), tags={"monitor"}, )
python
print("My name is John")
python
# -*- coding: utf-8 -*- # Copyright 2013 Simonas Kazlauskas # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License version 2 as # published by the Free Software Foundation from os import path, makedirs from hashlib import sha1 from gi.repository import GObject, GLib from quodlibet.util.path import escape_filename, xdg_get_cache_home class CoverSourcePlugin(GObject.Object): """ Plugins that given a song should provide a cover art. The plugin should override following methods and properties: @staticmethod priority() @property cover_path(self) fetch_cover(self) Refer to default function implementation's documentation in order to understand their role. """ __gsignals__ = { 'fetch-success': (GObject.SignalFlags.RUN_LAST, None, (object,)), 'fetch-failure': (GObject.SignalFlags.RUN_LAST, None, (object,)), 'search-complete': (GObject.SignalFlags.RUN_LAST, None, (object,)) } def __init__(self, song, cancellable=None): self.song = song self.cancellable = cancellable super(CoverSourcePlugin, self).__init__() @staticmethod def priority(): """ Should return float in range [0.0, 1.0] suggesting priority of the cover source. Whether value returned by this method is respected or not is not guaranteed. As a rule of thumb, source's reliability and quality should be compared with other sources and given score between two sources that come close in quality and reliability. There's a table of value ranges sources should respect: * (0.9, 1.0] - user's preferred methods (set by configuration; example: preferring embed cover art); * (0.7, 0.9] - local covers; * (0.4, 0.7] - accurate (> 99%) source of high quality (>= 200x200) covers; * (0.2, 0.4] - accurate (> 99%) source of low quality (< 200x200) covers; * (0.0, 0.2] - not very accurate (<= 99%) source of covers, even if they're high quality; * 0.0 - reserved for the fallback cover source. """ return 0.0 @property def cover_directory(self): return cover_dir @property def cover_filename(self): """ Return the filename of the cover which hopefully should not change between songs in the same album and still be unique enough to uniquely identify most (or even better โ€“ all) of the albums. The string returned must not contain any characters illegal in most common filesystems. These include /, ?, <, >, \, :, *, |, โ€ and ^. Staying in the bounds of ASCII is highly encouraged. Perchance the song lacks data to generate the filename of cover for this provider, None shall be returned. """ key = sha1() # Should be fine as long as the same interpreter is used. key.update(repr(self.song.album_key)) return escape_filename(key.hexdigest()) @property def cover_path(self): """ Should return the path where cover is expected to be cached. The location should be based in common cache location available in variable `cover_dir` of this module. It doesn't necessarily mean the cover is actually at the returned location neither that it will be stored there at any later time. """ return path.join(self.cover_directory, self.cover_filename) @property def cover(self): """ Method to get cover file from cover provider for a specific song. Should always return a file-like object opened as read-only if any and None otherwise. """ cp = self.cover_path try: return open(cp, 'rb') if cp and path.isfile(cp) else None except IOError: print_w('Failed reading album art "%s"'.format(path)) def search(self): """ Start searching for cover art from a source. After search is completed the `search-complete` event must be emitted regardless of search outcome with a list of dictionaries containing `album`, `artist` and `cover` keys as an argument. If search was unsuccessful, empty list should be returned. By convention better quality and more accurate covers are expected to appear first in the list. """ self.emit('search-complete', []) def fetch_cover(self): """ Method to ask source fetch the cover from its source into location at `self.cover_path`. If this method succeeds in putting the image from its source into `self.cover_path`, `fetch-success` signal shall be emitted and `fetch-failure` otherwise. Return value of this function doesn't have any meaning whatsoever. """ self.fail('This source is incapable of fetching covers') def fail(self, message): """ Shorthand method for emitting `fetch-failure` signals. Most common use pattern would be: return self.fail("Failure message") """ self.emit('fetch-failure', message) cover_dir = path.join(xdg_get_cache_home(), 'quodlibet', 'covers') try: makedirs(cover_dir) except OSError: pass
python
# Edit by Tianyu Ma # coding: utf-8 """ ===== Third step: merge csv files ===== """
python
import json import string import csv fname = './data/obama_speech.txt' fhand = open(fname, 'r') text = fhand.read() lines = text.split('\n') line_count = len(lines) word_count = 0 for line in lines: words = line.split() for word in words: if word == " ": continue word_count += 1 print(f"File name: {fname}") print(f"Line Count: {line_count}") print(f"Word Count: {word_count}") fname = './data/michelle_obama_speech.txt' fhand = open(fname, 'r') text = fhand.read() lines = text.split('\n') line_count = len(lines) word_count = 0 for line in lines: words = line.split() for word in words: if word == " ": continue word_count += 1 print(f"File name: {fname}") print(f"Line Count: {line_count}") print(f"Word Count: {word_count}") fname = './data/donald_speech.txt' fhand = open(fname, 'r') text = fhand.read() lines = text.split('\n') line_count = len(lines) word_count = 0 for line in lines: words = line.split() for word in words: if word == " ": continue word_count += 1 print(f"File name: {fname}") print(f"Line Count: {line_count}") print(f"Word Count: {word_count}") fname = './data/melina_trump_speech.txt' fhand = open(fname, 'r') text = fhand.read() lines = text.split('\n') line_count = len(lines) word_count = 0 for line in lines: words = line.split() for word in words: if word == " ": continue word_count += 1 print(f"File name: {fname}") print(f"Line Count: {line_count}") print(f"Word Count: {word_count}") def most_spoken_languages(fname, n): fhand = open(fname, 'r') data = fhand.read() countries = json.loads(data) count_dic = {} output = [] for country in countries: languages = country["languages"] for language in languages: if language not in count_dic: count_dic[language] = 1 else: count_dic[language] += 1 for k, v in count_dic.items(): tup = (v, k) output.append(tup) output.sort(key=lambda x: x[0], reverse=True) required_output = [] count = 0 for item in output: if count == n: break required_output.append(item) count += 1 return required_output print(most_spoken_languages('./data/countries_data.json', 10)) print(most_spoken_languages('./data/countries_data.json', 3)) def most_populated_countries(fname, n): fhand = open(fname, 'r') data = fhand.read() countries = json.loads(data) output = [] for country in countries: new_dic = {} new_dic['country'] = country['name'] new_dic['population'] = country['population'] output.append(new_dic) output.sort(key=lambda x: x['population'], reverse=True) required_output = [] count = 0 for item in output: if count == n: break required_output.append(item) count += 1 return required_output print(most_populated_countries('./data/countries_data.json', 10)) print(most_populated_countries('./data/countries_data.json', 3)) fname = './data/email_exchanges_big.txt' fhand = open(fname, 'r') data = fhand.read() lst = data.split('\n') count = 0 for line in lst: if line.startswith('From'): count += 1 print(f"There are {count} incoming email addresses") def find_most_common_words(fname, n): fhand = open(fname, 'r') data = fhand.read() lines = data.split('\n') word_dic = {} output = [] for line in lines: words = line.split() for word in words: if word == ' ': continue if word in word_dic: word_dic[word] += 1 else: word_dic[word] = 1 for k, v in word_dic.items(): tup = (v, k) output.append(tup) output.sort(key=lambda x: x[0], reverse=True) required_output = [] count = 0 for item in output: if count == n: break required_output.append(item) count += 1 return required_output print( f"10 most frequent words in obama_speech.txt are: \n{find_most_common_words('./data/obama_speech.txt', 10)} ") print( f"10 most frequent words in michelle_obama_speech.txt are: \n{find_most_common_words('./data/michelle_obama_speech.txt', 10)} ") print( f"10 most frequent words in donald_speech.txt are: \n{find_most_common_words('./data/donald_speech.txt', 10)} ") print( f"10 most frequent words in melina_trump_speech.txt are: \n{find_most_common_words('./data/melina_trump_speech.txt', 10)} ") stop_words = ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn', "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't", 'won', "won't", 'wouldn', "wouldn't"] def clean_text(fname): fhand = open(fname, 'r') data = fhand.read() lines = data.split('\n') word_lst = [] for line in lines: words = line.split() for word in words: if word in stop_words or word in string.punctuation: continue else: word_lst.append(word) return word_lst def check_text_similarity(lst1, lst2): output = [] for word in lst1: if word in lst2: output.append(word) print(f"Total number of similar words are {len(output)}") print(f"Similar words are: \n{output}") michelle_lst = clean_text('./data/michelle_obama_speech.txt') melina_lst = clean_text('./data/melina_trump_speech.txt') check_text_similarity(michelle_lst, melina_lst) print( f"10 most frequent words in romeo_and_juliet.txt are: \n{find_most_common_words('./data/romeo_and_juliet.txt', 10)} ") fname = './data/hacker_news.csv' fhand = open(fname, 'r') lines = csv.reader(fhand, delimiter=',') python_count = 0 js_count = 0 java_count = 0 for line in lines: for item in line: words = item.split() if 'python' in words or 'Python' in words: python_count += 1 if 'javascript' in words or 'Javascript' in words or 'JavaScript' in words: js_count += 1 if 'java' in words or 'Java' in words: java_count += 1 print(f"Number of Lines having python are {python_count}") print(f"Number of Lines having javascript are {js_count}") print(f"Number of Lines having java are {java_count}")
python
# -*- coding: utf-8 -*- # Generated by Django 1.11.16 on 2018-10-23 21:38 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Words', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('color', models.CharField(blank=True, max_length=10)), ('words', models.TextField()), ('countwords', models.IntegerField()), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ], ), ]
python
# forๅพช็Žฏๆ˜ฏไธ€็ง้ๅކๅˆ—่กจ็š„ๆœ‰ๆ•ˆๆ–นๅผ, ไฝ†ๅœจforๅพช็Žฏไธญไธๅบ”ไฟฎๆ”นๅˆ—่กจ, ๅฆๅˆ™ๅฐ†ๅฏผ่‡ดPython้šพไปฅ่ทŸ่ธชๅ…ถไธญ็š„ๅ…ƒ็ด . # ่ฆๅœจ้ๅކๅˆ—่กจ็š„ๅŒๆ—ถๅฏนๅ…ถ่ฟ›่กŒไฟฎๆ”น, ๅฏไฝฟ็”จwhileๅพช็Žฏ. # ๅœจๅˆ—่กจไน‹้—ด็งปๅŠจๅ…ƒ็ด  unconfirmed_users = ['alice', 'brian', 'candace'] # ๅพ…้ชŒ่ฏ็”จๆˆทๅˆ—่กจ confirmed_users = [] # ๅทฒ้ชŒ่ฏ็”จๆˆทๅˆ—่กจ # ้ๅކๅˆ—่กจๅฏน็”จๆˆท่ฟ›่กŒ้ชŒ่ฏ while unconfirmed_users: # ๅฝ“ๅˆ—่กจไธไธบ็ฉบๆ—ถ่ฟ”ๅ›žTrue, ๅฝ“ๅˆ—่กจไธบ็ฉบๆ—ถ, ่ฟ”ๅ›žFalse current_user = unconfirmed_users.pop() # ๅ–ๅ‡บ้œ€่ฆ้ชŒ่ฏ็š„็”จๆˆท print('้ชŒ่ฏ็”จๆˆท: ' + current_user.title()) confirmed_users.append(current_user) # ๅฐ†ๅทฒ้ชŒ่ฏ็š„็งปๅˆฐๅทฒ้ชŒ่ฏ็”จๆˆทๅˆ—่กจ print('\nไปฅไธ‹็”จๆˆทๅทฒ็ป็ป่ฟ‡้ชŒ่ฏ: ') for user in confirmed_users: print('\t' + user) print('\nๆœชๅฎŒๆˆ้ชŒ่ฏ็š„็”จๆˆทไธบ: ') print(unconfirmed_users) # ไธบไป€ไนˆไธ่ƒฝ็”จforไปฃๆ›ฟwhile print('\n') print('้‡‡็”จforๅพช็Žฏ็š„ๆ–นๅผๆฅๅฎž็ŽฐไธŠ่ฟฐๆ“ไฝœ: ') unconfirmed_users = ['alice', 'brian', 'candace'] # ๅพ…้ชŒ่ฏ็”จๆˆทๅˆ—่กจ confirmed_users = [] # ๅทฒ้ชŒ่ฏ็”จๆˆทๅˆ—่กจ for unconfirmed_user in unconfirmed_users: # current_user = unconfirmed_users.pop() # forๅพช็Žฏไธญ, ไธ่ƒฝ้‡‡็”จpopๆฅๅˆ ้™คๅ…ƒ็ด , ไผšๅ‡บ็Žฐ้ๅކ้—ฎ้ข˜ print('้ชŒ่ฏ็”จๆˆท: ' + unconfirmed_user.title()) confirmed_users.append(unconfirmed_user) # ๅฐ†ๅทฒ้ชŒ่ฏ็š„็งปๅˆฐๅทฒ้ชŒ่ฏ็”จๆˆทๅˆ—่กจ # unconfirmed_users.remove(unconfirmed_user) # forๅพช็Žฏไธญ, ไธ่ƒฝ้‡‡็”จremoveๆฅๅˆ ้™คๅ…ƒ็ด , ไผšๅ‡บ็Žฐ้ๅކ้—ฎ้ข˜ print('\nไปฅไธ‹็”จๆˆทๅทฒ็ป็ป่ฟ‡้ชŒ่ฏ: ') for user in confirmed_users: print('\t' + user) print('\nๆœชๅฎŒๆˆ้ชŒ่ฏ็š„็”จๆˆทไธบ: ') print(unconfirmed_users) # ๅˆ ้™คๅŒ…ๅซ็‰นๅฎšๅ€ผ็š„ๆ‰€ๆœ‰ๅˆ—่กจๅ…ƒ็ด  # ้€š่ฟ‡whileๅพช็Žฏไธๆ–ญๅˆคๆ–ญๅˆ—่กจไธญๆ˜ฏๅฆๅญ˜ๅœจ็‰นๅฎšๅ…ƒ็ด , ๅญ˜ๅœจๅฐฑๅฐ†ๅฎƒๅˆ ้™ค print('\n') pets = ['dog', 'cat', 'dog', 'goldfish', 'cat', 'rabbit', 'cat'] print('ๅˆๅง‹ๅŒ–็š„ๆ•ฐๆฎไธบ: ') print(pets) cat_name = 'cat' while cat_name in pets: pets.remove(cat_name) print('ๅˆ ้™คๅ็งฐไธบ' + cat_name + '็š„ๅฎ ็‰ฉๅŽ, ๅฎ ็‰ฉๅˆ—่กจไธบ: ') print(pets) # ไฝฟ็”จ็”จๆˆท่พ“ๅ…ฅๆฅๅกซๅ……ๅญ—ๅ…ธ responses = {} polling_active = True while polling_active: name = input("\nWhat is your name? ") # ่Žทๅ–็”จๆˆท่พ“ๅ…ฅ็š„ๅง“ๅ response = input("Which mountain would you like to climb someday? ") # ่Žทๅ–็”จๆˆทๆƒณ่ฆ็ˆฌ็š„ๅฑฑ responses[name] = response # ๅฐ†็”จๆˆท็š„ๆ•ฐๆฎๅญ˜ๅ…ฅๅญ—ๅ…ธ repeat = input('Would you like to let another person respond? (yes/ no) ') if repeat == 'no': # ๅˆคๆ–ญ่ฐƒๆŸฅๆ˜ฏๅฆ็ป“ๆŸ polling_active = False print('\n---Poll Result---') # ๆ‰“ๅฐ่ฐƒๆŸฅ็ป“ๆžœ for name, response in responses.items(): print(name + ' would like to climb ' + response + '.')
python
from datetime import datetime from lib import d,t def main(): r = t.t() r = (r+(' '+(d.d()))) print(f'{r} :)') return(0x01) if(__name__==('__main__')): main()
python
#!/usr/bin/python # -*- coding: utf-8 -*- # # Script to help in managing Usenet hierarchies. It generates control # articles and handles PGP keys (generation and management). # # signcontrol.py -- v. 1.4.0 -- 2014/10/26 # # Written and maintained by Julien ร‰LIE. # # This script is distributed under the MIT License. Please see the LICENSE # section below for more information. # # Feel free to use it. I would be glad to know whether you find it useful for # your hierarchy. Any bug reports, bug fixes, and improvements are very much # welcome. # # Contact: # <http://www.trigofacile.com/maths/contact/index.htm> # Issue tracker: # <https://github.com/Julien-Elie/usenet-signcontrol/issues> # # Upstream web site: # <http://www.trigofacile.com/divers/usenet/clefs/signcontrol.htm> # Github repository: # <https://github.com/Julien-Elie/usenet-signcontrol> # Please also read: # <http://www.eyrie.org/~eagle/faqs/usenet-hier.html> # # History: # # v. 1.4.0: 2014/10/26 -- add the --no-tty flag to gpg when --passphrase is # also used. Otherwise, an error occurs when running signcontrol # from cron. Thanks to Matija Nalis for the bug report. # - Add the PGP2_COMPATIBILITY parameter to generate control # articles compatible with MIT PGP 2.6.2 (or equivalent). # - When managing PGP keys, their full uid is now expected, instead # of only a subpart. # - Listing secret keys now also shows their fingerprint. # - Improve documentation, along with the creation of a Git # repository on Github. # # v. 1.3.3: 2011/07/11 -- automatically generate an Injection-Date: header # field, and sign it. It will prevent control articles from being # maliciously reinjected into Usenet, and replayed by news servers # compliant with RFC 5537 (that is to say without cutoff on the # Date: header field when an Injection-Date: header field exists). # # v. 1.3.2: 2009/12/23 -- use local time instead of UTC (thanks to Adam # H. Kerman for the suggestion). # - Add flags to gpg when called: --emit-version, --no-comments, # --no-escape-from-lines and --no-throw-keyids. Otherwise, the # signature may not be valid (thanks to Robert Spier for the # bug report). # # v. 1.3.1: 2009/12/20 -- compliance with RFC 5322 (Internet Message Format): # use "-0000" instead of "+0000" to indicate a time zone at Universal # Time ("-0000" means that the time is generated on a system that # may be in a local time zone other than Universal Time); also remove # the Sender: header field. # - When a line in the body of a control article started with # "Sender", a bug in signcontrol prevented the article from being # properly signed. # # v. 1.3.0: 2009/07/28 -- remove the charset for a multipart/mixed block # in newgroup articles, change the default serial number from 0 to 1 # in checkgroups articles, allow the user to interactively modify # his message (thanks to Matija Nalis for the idea). # # v. 1.2.1: 2008/12/07 -- ask for confirmation when "(Moderated)" is misplaced # in a newsgroup description. # # v. 1.2.0: 2008/11/17 -- support for USEPRO: checkgroups scope, checkgroups # serial numbers and accurate Content-Type: header fields. # # v. 1.1.0: 2007/05/09 -- fix the newgroups line when creating a newsgroup, # use a separate config file, possibility to import signcontrol from # other scripts and use its functions. # # v. 1.0.0: 2007/05/01 -- initial release. # THERE IS NOTHING USEFUL TO PARAMETER IN THIS FILE. # The file "signcontrol.conf" contains all your parameters # and it will be parsed. CONFIGURATION_FILE = 'signcontrol.conf' import os import re import sys, traceback import time import shlex # Current time. TIME = time.localtime() def treat_exceptions(type, value, stacktrace): """ Pretty print stack traces of this script, in case an error occurs. Arguments: type (the type of the exception) value (the value of the exception) stacktrace (the traceback of the exception) No return value (the script exits with status 2) """ print "-----------------------------------------------------------" print "\n".join(traceback.format_exception(type, value, stacktrace)) print "-----------------------------------------------------------" raw_input('An error has just occurred.') sys.exit(2) sys.excepthook = treat_exceptions def print_error(error): """ Pretty print error messages. Argument: error (the error to print) No return value """ print print '--> ' + error + ' <--' print def pretty_time(localtime): """ Return the Date: header field. Argument: localtime (a time value, representing local time) Return value: a string suitable to be used in a Date: header field """ # As "%z" does not work on every platform with strftime(), we compute # the time zone offset. # You might want to use UTC with either "+0000" or "-0000", also changing # time.localtime() to time.gmtime() for the definition of TIME above. if localtime.tm_isdst > 0 and time.daylight: offsetMinutes = - int(time.altzone / 60) else: offsetMinutes = - int(time.timezone / 60) offset = "%+03d%02d" % (offsetMinutes / 60.0, offsetMinutes % 60) return time.strftime('%a, %d %b %Y %H:%M:%S ' + offset, localtime) def serial_time(localtime): """ Return a checkgroups serial number. Argument: localtime (a time value, representing local time) Return value: a string suitable to be used as a serial number """ # Note that there is only one serial per day. return time.strftime('%Y%m%d', localtime) def epoch_time(localtime): """ Return the number of seconds since epoch. Argument: localtime (a time value, representing local time) Return value: the number of seconds since epoch, as a string """ return str(int(time.mktime(localtime))) def read_configuration(file): """ Parse the configuration file. Argument: file (path to the signcontrol.conf configuration file) Return value: a dictionary {parameter: value} representing the contents of the configuration file """ TOKENS = ['PROGRAM_GPG', 'PGP2_COMPATIBILITY', 'ID', 'MAIL', 'HOST', 'ADMIN_GROUP', 'NAME', 'CHECKGROUPS_SCOPE', 'URL', 'NEWGROUP_MESSAGE_MODERATED', 'NEWGROUP_MESSAGE_UNMODERATED', 'RMGROUP_MESSAGE', 'PRIVATE_HIERARCHY', 'CHECKGROUPS_FILE', 'ENCODING'] if not os.path.isfile(file): print 'The configuration file is absent.' raw_input('Please install it before using this script.') sys.exit(2) config_file = shlex.shlex(open(file, 'r'), posix=True) config = dict() parameter = None while True: token = config_file.get_token() if not token: break if token[0] in '"\'': token = token[1:-1] if token in TOKENS: parameter = token elif token != '=' and parameter: if parameter == 'PGP2_COMPATIBILITY': if token == 'True' or token == 'true': config[parameter] = [('--pgp2', '-pgp2'), ('', '')] elif token == 'Only' or token == 'only': config[parameter] = [('--pgp2', '-pgp2')] else: config[parameter] = [('', '')] elif parameter == 'PRIVATE_HIERARCHY': if token == 'True' or token == 'true': config[parameter] = True else: config[parameter] = False else: config[parameter] = token parameter = None for token in TOKENS: if not config.has_key(token): print 'You must update the configuration file.' print 'The parameter ' + token + ' is missing.' raw_input('Please download the latest version of the configuration file and parameter it before using this script.') sys.exit(2) return config def read_checkgroups(path): """ Parse a checkgroups file. Argument: path (path of the checkgroups file) Return value: a dictionary {newsgroup: description} representing the contents of the checkgroups """ # Usually for the first use of the script. if not os.path.isfile(path): print 'No checkgroups file found.' print 'Creating an empty checkgroups file...' write_checkgroups(dict(), path) groups = dict() for line in file(path): line2 = line.strip() while line2.find('\t\t') != -1: line2 = line2.replace('\t\t', '\t') try: group, description = line2.split('\t') groups[group] = description except: print_error('The current checkgroups is badly formed.') print 'The offending line is:' print line print raw_input('Please correct it before using this script.') sys.exit(2) return groups def write_checkgroups(groups, path): """ Write the current checkgroups file. Arguments: groups (a dictionary representing a checkgroups) path (path of the checkgroups file) No return value """ keys = groups.keys() keys.sort() checkgroups_file = file(path, 'wb') for key in keys: if len(key) < 8: checkgroups_file.write(key + '\t\t\t' + groups[key] + '\n') elif len(key) < 16: checkgroups_file.write(key + '\t\t' + groups[key] + '\n') else: checkgroups_file.write(key + '\t' + groups[key] + '\n') checkgroups_file.close() print 'Checkgroups file written.' print def choice_menu(): """ Print the initial menu, and waits for the user to make a choice. Return value: the number representing the user's choice """ while True: print print 'What do you want to do?' print '-----------------------' print '1. Generate a newgroup control article (create or change a newsgroup)' print '2. Generate an rmgroup control article (remove a newsgroup)' print '3. Generate a checkgroups control article (list of newsgroups)' print '4. Manage my PGP keys (generate/import/export/remove/revoke)' print '5. Quit' print try: choice = int(raw_input('Your choice (1-5): ')) if int(choice) not in range(1,6): raise ValueError() print return choice except: print_error('Please enter a number between 1 and 5.') def manage_menu(): """ Print the menu related to the management of PGP keys, and waits for the user to make a choice. Return value: the number representing the user's choice """ while True: print print 'What do you want to do?' print '-----------------------' print '1. See the current installed keys' print '2. Generate a new pair of secret/public keys' print '3. Export a public key' print '4. Export a secret key' print '5. Import a secret key' print '6. Remove a pair of secret/public keys' print '7. Revoke a secret key' print '8. Quit' print try: choice = int(raw_input('Your choice (1-8): ')) if int(choice) not in range(1,9): raise ValueError() print return choice except: print_error('Please enter a number between 1 and 8.') def generate_signed_message(config, file_message, group, message_id, type, passphrase=None, flag=''): """ Generate signed control articles. Arguments: config (the dictionary of parameters from signcontrol.conf) file_message (the file name of the message to sign) group (the name of the newsgroup) message_id (the Message-ID of the message) type (the type of the control article) passphrase (if given, the passphrase of the private key) flag (if given, the additional flag(s) to pass to gpg) No return value """ signatureWritten = False if passphrase: os.system(config['PROGRAM_GPG'] + ' --emit-version --no-comments --no-escape-from-lines --no-throw-keyids --armor --detach-sign --local-user "='+ config['ID'] + '" --no-tty --passphrase "' + passphrase + '" --output ' + file_message + '.pgp ' + flag + ' ' + file_message + '.txt') else: os.system(config['PROGRAM_GPG'] + ' --emit-version --no-comments --no-escape-from-lines --no-throw-keyids --armor --detach-sign --local-user "='+ config['ID'] + '" --output ' + file_message + '.pgp ' + flag + ' ' + file_message + '.txt') if not os.path.isfile(file_message + '.pgp'): print_error('Signature generation failed.') print 'Please verify the availability of the secret key.' return result = file(file_message + '.sig', 'wb') for line in file(file_message + '.txt', 'rb'): if signatureWritten: result.write(line) continue if not line.startswith('X-Signed-Headers'): # From: is the last signed header field. if not line.startswith('From'): result.write(line) else: # Rewrite the From: line exactly as we already wrote it. result.write('From: ' + config['NAME'] + ' <' + config['MAIL'] + '>\n') result.write('Approved: ' + config['MAIL'] + '\n') if type == 'checkgroups' and not config['PRIVATE_HIERARCHY']: result.write('Newsgroups: ' + group + ',news.admin.hierarchies\n') result.write('Followup-To: ' + group + '\n') else: result.write('Newsgroups: ' + group + '\n') result.write('Path: not-for-mail\n') result.write('X-Info: ' + config['URL'] + '\n') result.write('\tftp://ftp.isc.org/pub/pgpcontrol/README.html\n') result.write('MIME-Version: 1.0\n') if type == 'newgroup': result.write('Content-Type: multipart/mixed; boundary="signcontrol"\n') elif type == 'checkgroups': result.write('Content-Type: application/news-checkgroups; charset=' + config['ENCODING'] + '\n') else: # if type == 'rmgroup': result.write('Content-Type: text/plain; charset=' + config['ENCODING'] + '\n') result.write('Content-Transfer-Encoding: 8bit\n') for line2 in file(file_message + '.pgp', 'r'): if line2.startswith('-'): continue if line2.startswith('Version:'): version = line2.replace('Version: ', '') version = version.replace(' ', '_') result.write('X-PGP-Sig: ' + version.rstrip() + ' Subject,Control,Message-ID,Date,Injection-Date,From\n') elif len(line2) > 2: result.write('\t' + line2.rstrip() + '\n') signatureWritten = True result.close() os.remove(file_message + '.pgp') print if flag: print 'Do not worry if the program complains about detached signatures or MD5.' print 'You can now post the file ' + file_message + '.sig using rnews' print 'or a similar tool.' print #print 'Or you can also try to send it with IHAVE. If it fails, it means that the article' #print 'has not been sent. You will then have to manually use rnews or a similar program.' #if raw_input('Do you want to try? (y/n) ') == 'y': # import nntplib # news_server = nntplib.NNTP(HOST, PORT, USER, PASSWORD) # news_server.ihave(message_id, file_message + '.sig') # news_server.quit() # print 'The control article has just been sent!' def sign_message(config, file_message, group, message_id, type, passphrase=None): """ Sign a control article. Arguments: config (the dictionary of parameters from signcontrol.conf) file_message (the file name of the message to sign) group (the name of the newsgroup) message_id (the Message-ID of the message) type (the type of the control article) passphrase (if given, the passphrase of the private key) No return value """ articles_to_generate = len(config['PGP2_COMPATIBILITY']) i = 1 for (flag, suffix) in config['PGP2_COMPATIBILITY']: if articles_to_generate > 1: print print 'Generation of control article ' + str(i) + '/' + str(articles_to_generate) i += 1 if suffix: additional_file = file(file_message + suffix + '.txt', 'wb') additional_message_id = message_id.replace('@', suffix + '@', 1) for line in file(file_message + '.txt', 'rb'): if line == 'Message-ID: ' + message_id + '\n': line = 'Message-ID: ' + additional_message_id + '\n' additional_file.write(line) additional_file.close() generate_signed_message(config, file_message + suffix, group, additional_message_id, type, passphrase, flag) os.remove(file_message + suffix + '.txt') else: generate_signed_message(config, file_message, group, message_id, type, passphrase, flag) def generate_newgroup(groups, config, group=None, moderated=None, description=None, message=None, passphrase=None): """ Create a new group. Arguments: groups (the dictionary representing the checkgroups) config (the dictionary of parameters from signcontrol.conf) group (if given, the name of the newsgroup) moderated (if given, whether the newsgroup is moderated) description (if given, the description of the newsgroup) message (if given, the text to write in the control article) passphrase (if given, the passphrase of the private key) No return value """ while not group: group = raw_input('Name of the newsgroup to create: ').lower() components = group.split('.') if len(components) < 2: group = None print_error('The group must have at least two components.') elif not components[0][0:1].isalpha(): group = None print_error('The first component must start with a letter.') elif components[0] in ['control', 'example', 'to']: group = None print_error('The first component must not be "control", "example" or "to".') elif re.search('[^a-z0-9+_.-]', group): group = None print_error('The group must not contain characters other than [a-z0-9+_.-].') for component in components: if component in ['all', 'ctl']: group = None print_error('Sequences "all" and "ctl" must not be used as components.') elif not component[0:1].isalnum(): group = None print_error('Each component must start with a letter or a digit.') elif component.isdigit(): group = None print_error('Each component must contain at least one non-digit character.') if groups.has_key(group): print print 'The newsgroup ' + group + ' already exists.' print 'These new settings (status and description) will override the current ones.' print if moderated is None: if raw_input('Is ' + group + ' a moderated newsgroup? (y/n) ' ) == 'y': moderated = True print print 'There is no need to add " (Moderated)" at the very end of the description.' print 'It will be automatically added, if not already present.' print else: moderated = False while not description: print print 'The description should start with a capital and end in a period.' description = raw_input("Description of " + group + ": ") if len(description) > 56: print_error('The description is too long. You should shorten it.') if raw_input('Do you want to continue despite this recommendation? (y/n) ') != 'y': description = None continue moderated_count = description.count('(Moderated)') if moderated_count > 0: if not moderated: if description.endswith(' (Moderated)'): description = None print_error('The description must not end with " (Moderated)".') continue else: print_error('The description must not contain "(Moderated)".') if raw_input('Do you want to continue despite this recommendation? (y/n) ') != 'y': description = None continue elif moderated_count > 1 or not description.endswith(' (Moderated)'): print_error('The description must not contain "(Moderated)".') if raw_input('Do you want to continue despite this recommendation? (y/n) ') != 'y': description = None continue if not message: print print 'The current message which will be sent is:' print if moderated: message = config['NEWGROUP_MESSAGE_MODERATED'].replace('$GROUP$', group) else: message = config['NEWGROUP_MESSAGE_UNMODERATED'].replace('$GROUP$', group) print message print if raw_input('Do you want to change it? (y/n) ') == 'y': print print 'Please enter the message you want to send.' print 'End it with a line containing only "." (a dot).' print message = '' buffer = raw_input('Message: ') + '\n' while buffer != '.\n': message += buffer.rstrip() + '\n' buffer = raw_input('Message: ') + '\n' print print print 'Here is the information about the newsgroup:' print 'Name: ' + group if moderated: print 'Status: moderated' if not description.endswith(' (Moderated)'): description += ' (Moderated)' else: print 'Status: unmoderated' print 'Description: ' + description print 'Message: ' print print message print if raw_input('Do you want to generate a control article for ' + group + '? (y/n) ') == 'y': print file_newgroup = group + '-' + epoch_time(TIME) result = file(file_newgroup + '.txt', 'wb') result.write('X-Signed-Headers: Subject,Control,Message-ID,Date,Injection-Date,From\n') if moderated: result.write('Subject: cmsg newgroup ' + group + ' moderated\n') result.write('Control: newgroup ' + group + ' moderated\n') else: result.write('Subject: cmsg newgroup ' + group + '\n') result.write('Control: newgroup ' + group + '\n') message_id = '<newgroup-' + group + '-' + epoch_time(TIME) + '@' + config['HOST'] + '>' result.write('Message-ID: ' + message_id + '\n') result.write('Date: ' + pretty_time(TIME) + '\n') result.write('Injection-Date: ' + pretty_time(TIME) + '\n') result.write('From: ' + config['NAME'] + ' <' + config['MAIL'] + '>\n\n') result.write('This is a MIME NetNews control message.\n') result.write('--signcontrol\n') result.write('Content-Type: text/plain; charset=' + config['ENCODING'] + '\n\n') result.write(message + '\n') result.write('\n\n--signcontrol\n') result.write('Content-Type: application/news-groupinfo; charset=' + config['ENCODING'] + '\n\n') result.write('For your newsgroups file:\n') if len(group) < 8: result.write(group + '\t\t\t' + description + '\n') elif len(group) < 16: result.write(group + '\t\t' + description + '\n') else: result.write(group + '\t' + description + '\n') result.write('\n--signcontrol--\n') result.close() sign_message(config, file_newgroup, group, message_id, 'newgroup', passphrase) os.remove(file_newgroup + '.txt') if raw_input('Do you want to update the current checkgroups file? (y/n) ') == 'y': groups[group] = description write_checkgroups(groups, config['CHECKGROUPS_FILE']) def generate_rmgroup(groups, config, group=None, message=None, passphrase=None): """ Remove a group. Arguments: groups (the dictionary representing the checkgroups) config (the dictionary of parameters from signcontrol.conf) group (if given, the name of the newsgroup) message (if given, the text to write in the control article) passphrase (if given, the passphrase of the private key) No return value """ while not group: group = raw_input('Name of the newsgroup to remove: ' ).lower() if not groups.has_key(group): print print 'The newsgroup ' + group + ' does not exist.' print 'Yet, you can send an rmgroup message for it if you want.' print if raw_input('Do you want to generate a control article to *remove* ' + group + '? (y/n) ') == 'y': print if not message: print 'The current message which will be sent is:' print message = config['RMGROUP_MESSAGE'].replace('$GROUP$', group) print message print if raw_input('Do you want to change it? (y/n) ') == 'y': print print 'Please enter the message you want to send.' print 'End it with a line containing only "." (a dot).' print message = '' buffer = raw_input('Message: ') + '\n' while buffer != '.\n': message += buffer.rstrip() + '\n' buffer = raw_input('Message: ') + '\n' print file_rmgroup = group + '-' + epoch_time(TIME) result = file(file_rmgroup + '.txt', 'wb') result.write('X-Signed-Headers: Subject,Control,Message-ID,Date,Injection-Date,From\n') result.write('Subject: cmsg rmgroup ' + group + '\n') result.write('Control: rmgroup ' + group + '\n') message_id = '<rmgroup-' + group + '-' + epoch_time(TIME) + '@' + config['HOST'] + '>' result.write('Message-ID: ' + message_id + '\n') result.write('Date: ' + pretty_time(TIME) + '\n') result.write('Injection-Date: ' + pretty_time(TIME) + '\n') result.write('From: ' + config['NAME'] + ' <' + config['MAIL'] + '>\n\n') result.write(message + '\n') result.close() sign_message(config, file_rmgroup, group, message_id, 'rmgroup', passphrase) os.remove(file_rmgroup + '.txt') if groups.has_key(group): if raw_input('Do you want to update the current checkgroups file? (y/n) ') == 'y': del groups[group] write_checkgroups(groups, config['CHECKGROUPS_FILE']) def generate_checkgroups(config, passphrase=None, serial=None): """ List the groups of the hierarchy. Arguments: config (the dictionary of parameters from signcontrol.conf) passphrase (if given, the passphrase of the private key) serial (if given, the serial value to use) No return value """ while serial not in range(0,100): try: print 'If it is your first checkgroups for today, leave it blank (default is 1).' print 'Otherwise, increment this revision number by one.' serial = int(raw_input('Revision to use (1-99): ')) print except: serial = 1 serial = '%02d' % serial file_checkgroups = 'checkgroups-' + epoch_time(TIME) result = file(file_checkgroups + '.txt', 'wb') result.write('X-Signed-Headers: Subject,Control,Message-ID,Date,Injection-Date,From\n') result.write('Subject: cmsg checkgroups ' + config['CHECKGROUPS_SCOPE'] + ' #' + serial_time(TIME) + serial + '\n') result.write('Control: checkgroups ' + config['CHECKGROUPS_SCOPE'] + ' #' + serial_time(TIME) + serial + '\n') message_id = '<checkgroups-' + epoch_time(TIME) + '@' + config['HOST'] + '>' result.write('Message-ID: ' + message_id + '\n') result.write('Date: ' + pretty_time(TIME) + '\n') result.write('Injection-Date: ' + pretty_time(TIME) + '\n') result.write('From: ' + config['NAME'] + ' <' + config['MAIL'] + '>\n\n') for line in file(config['CHECKGROUPS_FILE'], 'r'): result.write(line.rstrip() + '\n') result.close() sign_message(config, file_checkgroups, config['ADMIN_GROUP'], message_id, 'checkgroups', passphrase) os.remove(file_checkgroups + '.txt') def manage_keys(config): """ Useful wrappers around the gpg program to manage PGP keys (generate, import, export, remove, and revoke). Argument: config (the dictionary of parameters from signcontrol.conf) No return value """ choice = 0 while choice != 8: choice = manage_menu() if choice == 1: print 'You currently have the following secret keys installed:' print os.system(config['PROGRAM_GPG'] + ' --list-secret-keys --with-fingerprint') print 'Please note that the uid of your secret key and the value of' print 'the ID parameter set in signcontrol.conf should be the same.' elif choice == 2: print print '-----------------------------------------------------------------------' print 'Please put the e-mail address from which you will send control articles' print 'in the key ID (the real name field). And leave the other fields blank,' print 'for better compatibility with Usenet software.' print 'Choose a 2048-bit RSA key which never expires.' print 'You should also provide a passphrase, for security reasons.' print 'There is no need to edit the key after it has been generated.' print print 'Please note that the key generation may not finish if it is launched' print 'on a remote server, owing to a lack of enough entropy. Use your own' print 'computer instead and import the key on the remote one afterwards.' print '-----------------------------------------------------------------------' print os.system(config['PROGRAM_GPG'] + ' --gen-key --allow-freeform-uid') print print 'After having generated these keys, you should export your PUBLIC key' print 'and make it public (in the web site of your hierarchy, along with' print 'a current checkgroups, and also announce it in news.admin.hierarchies).' print 'You can also export your PRIVATE key for backup only.' elif choice == 3: print 'The key will be written to the file public-key.asc.' key_name = raw_input('Please enter the uid of the public key to export: ') os.system(config['PROGRAM_GPG'] + ' --armor --output public-key.asc --export "=' + key_name + '"') elif choice == 4: print 'The key will be written to the file private-key.asc.' key_name = raw_input('Please enter the uid of the secret key to export: ') os.system(config['PROGRAM_GPG'] + ' --armor --output private-key.asc --export-secret-keys "=' + key_name + '"') if os.path.isfile('private-key.asc'): os.chmod('private-key.asc', 0400) print print 'Be careful: it is a security risk to export your private key.' print 'Please make sure that nobody has access to it.' elif choice == 5: raw_input('Please put it in a file named secret-key.asc and press enter.') os.system(config['PROGRAM_GPG'] + ' --import secret-key.asc') print print 'Make sure that both the secret and public keys have properly been imported.' print 'Their uid should be put as the value of the ID parameter set in signcontrol.conf.' elif choice == 6: key_name = raw_input('Please enter the uid of the key to *remove*: ') os.system(config['PROGRAM_GPG'] + ' --delete-secret-and-public-key "=' + key_name + '"') elif choice == 7: key_name = raw_input('Please enter the uid of the secret key to revoke: ') os.system(config['PROGRAM_GPG'] + ' --gen-revoke "=' + key_name + "'") print if __name__ == "__main__": """ The main function. """ config = read_configuration(CONFIGURATION_FILE) if not os.path.isfile(config['PROGRAM_GPG']): print 'You must install GnuPG <http://www.gnupg.org/> and edit this script to put' print 'the path to the gpg binary.' raw_input('Please install it before using this script.') sys.exit(2) choice = 0 while choice != 5: groups = read_checkgroups(config['CHECKGROUPS_FILE']) # Update time whenever we come back to the main menu. TIME = time.localtime() choice = choice_menu() if choice == 1: generate_newgroup(groups, config) elif choice == 2: generate_rmgroup(groups, config) elif choice == 3: generate_checkgroups(config) elif choice == 4: manage_keys(config) # Embedded documentation. POD = """ =head1 NAME signcontrol.py - Generate PGP-signed control articles for Usenet hierarchies =head1 SYNOPSIS B<python signcontrol.py> =head1 DESCRIPTION B<signcontrol.py> is a Python script aimed at Usenet hierarchy administrators so as to help them in maintaining the canonical lists of newsgroups in the hierarchies they administer. This script is also useful to manage PGP keys: generation, import, export, removal, and revokal. It works on every platform on which Python and GnuPG are available (Windows, Linux, etc.). It enforces best practices regarding the syntax of Usenet control articles. Getting started is as simple as: =over 4 =item 1. Downloading and installing Python (L<http://www.python.org/>). However, make sure to use S<Python 2.x> because B<signcontrol.py> is not compatible yet with S<Python 3.x>. =item 2. Downloading and installing GnuPG (L<http://www.gnupg.org/>). =item 3. Downloading both the B<signcontrol.py> script and its F<signcontrol.conf> configuration file. =item 4. Editing the F<signcontrol.conf> configuration file so that the parameters it defines properly fit your installation. =item 5. Running C<python signcontrol.py>. =back =head1 SUPPORT The B<signcontrol.py> home page is: http://www.trigofacile.com/divers/usenet/clefs/signcontrol.htm It will always point to the current version of the script, and contains instructions written in French. For bug tracking, please use the issue tracker provided by Github: https://github.com/Julien-Elie/usenet-signcontrol =head1 SOURCE REPOSITORY B<signcontrol.py> is maintained using Git. You can access the current source by cloning the repository at: https://github.com/Julien-Elie/usenet-signcontrol.git or access it via the web at: https://github.com/Julien-Elie/usenet-signcontrol When contributing modifications, either patches or Git pull requests are welcome. =head1 CONFIGURATION FILE The following parameters can be modified in the F<signcontrol.conf> configuration file: =over 4 =item B<PROGRAM_GPG> The path to the GPG executable. It is usually C<C:\Progra~1\GNU\GnuPG\gpg.exe> or C</usr/bin/gpg>. =item B<PGP2_COMPATIBILITY> Whether compatibility with MIT S<PGP 2.6.2> (or equivalent) should be kept. Though this is now fairly obsolete, a few news servers still haven't been updated to be able to process newer and more secure signing algorithms. Such servers do not recognize recent signing algorithms; however, current news servers may refuse to process messages signed with the insecure MD5 algorithm. Possible values are C<True>, C<False> or C<Only> (default is C<False>). When set to C<True>, B<signcontrol> will generate two control articles: one in a format compatible with MIT S<PGP 2.6.2> (or equivalent) and another with a newer and more secure format. Sending these two control articles will then ensure a widest processing. When set to C<False>, B<signcontrol> will generate control articles in only a newer and more secure format. When set to C<Only>, B<signcontrol> will generate control articles in only a format compatible with MIT S<PGP 2.6.2> (or equivalent). =item B<ID> The ID of the PGP key used to sign control articles. Note that if you do not already have a PGP key, it can be generated by B<signcontrol.py>. As for Usenet hierarchy management is concerned, the ID is usually a mere e-mail. =item B<MAIL> The e-mail from which control articles are sent. It is usually the ID of the PGP key used to sign them. =item B<HOST> The host which appears in the second part of the Message-ID of control articles generated. It is usually the name of a news server. =item B<ADMIN_GROUP> An existing newsgroup of the hierarchy (where checkgroups control articles will be fed). If an administrative newsgroup exists, put it. Otherwise, any other newsgroup of the hierarchy will be fine. =item B<NAME> The name which appears in the From: header field. You should only use ASCII characters. Otherwise, you have to MIME-encode it (for instance: C<=?ISO-8859-15?Q?Julien_=C9LIE?=>). =item B<CHECKGROUPS_SCOPE> The scope of the hierarchy according to Section 5.2.3 of RFC 5537 (also known as USEPRO, available at L<https://tools.ietf.org/html/rfc5537#section-5.2.3>). For instance: C<fr> (for fr.*), C<de !de.alt> (for de.* excepting de.alt.*) or C<de.alt> (for de.alt.*). =item B<URL> The URL where the public PGP key can be found. If you do not have any, leave C<ftp://ftp.isc.org/pub/pgpcontrol/README>. If you want to add more URLs (like the home page of the hierarchy), use a multi-line text where each line, except for the first, begins with a tabulation. =item B<NEWGROUP_MESSAGE_MODERATED>, B<NEWGROUP_MESSAGE_UNMODERATED>, B<RMGROUP_MESSAGE> The message which will be written in the corresponding control article. All occurrences of C<$GROUP$> will be replaced by the name of the newsgroup. =item B<PRIVATE_HIERARCHY> Whether the hierarchy is public or private. If it is private (that is to say if it is intended to remain in a local server with private access and if it is not fed to other Usenet news servers), the value should be C<True>, so that checkgroups control articles are not crossposted to the news.admin.hierarchies newsgroup. Possible values are C<True> or C<False> (default is C<False>). =item B<CHECKGROUPS_FILE> The file which contains the current checkgroups. =item B<ENCODING> The encoding of control articles. The default value is C<ISO-8859-1>. =back =head1 USEFUL RESOURCES Here are some resources that can be useful to be aware of: =over 4 =item Usenet Hierarchy Administration FAQ L<http://www.eyrie.org/~eagle/faqs/usenet-hier.html> =item Usenet hierarchy information L<http://usenet.trigofacile.com/hierarchies/> =item Hosting service for hierarchy administrators L<http://www.news-admin.org/> =back =head1 LICENSE The B<signcontrol.py> package as a whole is covered by the following copyright statement and license: Copyright (c) 2007, 2008, 2009, 2011, 2014 Julien ร‰LIE Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =head1 HISTORY B<signcontrol.py> was written by Julien ร‰LIE. =head1 SEE ALSO gpg(1). =cut """
python
with open('p11_grid.txt', 'r') as file: lines = file.readlines() n = [] for line in lines: a = line.split(' ') b = [] for i in a: b.append(int(i)) n.append(b) N = 0 for i in range(20): for j in range(20): horizontal, vertical, diag1, diag2 = 0, 0, 0, 0 if j < 17: horizontal = n[i][j]*n[i][j+1]*n[i][j+2]*n[i][j+3] if horizontal > N: N = horizontal if i < 17: vertical = n[i][j]*n[i+1][j]*n[i+2][j]*n[i+3][j] if vertical > N: N = vertical if i < 17 and j < 17: diag1 = n[i][j]*n[i+1][j+1]*n[i+2][j+2]*n[i+3][j+3] if diag1 > N: N = diag1 if i > 3 and j < 17: diag2 = n[i-1][j]*n[i-2][j+1]*n[i-3][j+2]*n[i-4][j+3] if diag2 > N: N = diag2 print(N)
python
# -*- coding: utf-8 -*- # # COMMON # page_action_basket = "ะšะพั€ะทะธะฝะฐ" page_action_enter = "ะ’ะพะนั‚ะธ" page_action_add = "ะ”ะพะฑะฐะฒะธั‚ัŒ" page_action_cancel = "ะžั‚ะผะตะฝะฐ" page_action_yes = "ะ”ะฐ" page_action_save = "ะกะพั…ั€ะฐะฝะธั‚ัŒ" page_action_action = "ะ”ะตะนัั‚ะฒะธะต" page_action_modify = "ะธะทะผะตะฝะธั‚ัŒ" page_action_remove = "ัƒะดะฐะปะธั‚ัŒ" page_message_error = "ะžัˆะธะฑะบะฐ!" page_remove_question = "ะ’ั‹ ะดะตะนัั‚ะฒะธั‚ะตะปัŒะฝะพ ั…ะพั‚ะธั‚ะต ัƒะดะฐะปะธั‚ัŒ" admin_options_manage_category = "ะ ะตะดะฐะบั‚ะธั€ะพะฒะฐั‚ัŒ ะบะฐั‚ะตะณะพั€ะธะธ ะบะฝะธะณ" admin_options_manage_cover = "ะ ะตะดะฐะบั‚ะธั€ะพะฒะฐั‚ัŒ ะฟะตั€ะตะฟะปั‘ั‚" admin_options_manage_quality = "ะ ะตะดะฐะบั‚ะธั€ะพะฒะฐั‚ัŒ ะบะฐั‡ะตัั‚ะฒะพ" admin_options_manage_language = "ะ ะตะดะฐะบั‚ะธั€ะพะฒะฐั‚ัŒ ัะทั‹ะบ ะธะทะดะฐะฝะธั" admin_options_manage_books = "ะ ะตะดะฐะบั‚ะธั€ะพะฒะฐั‚ัŒ ะบะฝะธะณะธ" admin_options_statistics = "ะกั‚ะฐั‚ะธัั‚ะธั‡ะตัะบะธะต ะดะฐะฝะฝั‹ะต" # # CATEGORY PAGE # page_manage_category_title = "ะะฐะทะฒะฐะฝะธะต ั‚ะฒะพะตะณะพ ัะฐะนั‚ะฐ: ะ ะตะดะฐะบั‚ะธั€ะพะฒะฐะฝะธะต ะบะฐั‚ะตะณะพั€ะธะน ะบะฝะธะณ" page_manage_category_banner = "ะะฐะทะฒะฐะฝะธะต ัะฐะนั‚ะฐ" page_manage_category_sub_title = "ะ ะตะดะฐะบั‚ะธั€ะพะฒะฐะฝะธะต ะบะฐั‚ะตะณะพั€ะธะน ะบะฝะธะณ" page_manage_category_modal_title_add = "ะ”ะพะฑะฐะฒะธั‚ัŒ ะฝะพะฒัƒัŽ ะบะฐั‚ะตะณะพั€ะธัŽ" page_manage_category_modal_title_edit = "ะ˜ะทะผะตะฝะธั‚ัŒ ะบะฐั‚ะตะณะพั€ะธัŽ" page_manage_category_name = "ะšะฐั‚ะตะณะพั€ะธั" page_manage_category_desc = "ะžะฟะธัะฐะฝะธะต ะบะฐั‚ะตะณะพั€ะธะธ" page_manage_category_super_category = "ะ“ะปะฐะฒะฝะฐั ะบะฐั‚ะตะณะพั€ะธั" page_manage_category_it_is_main = "ัั‚ะพ ะณะปะฐะฒะฝะฐั ะบะฐั‚ะตะณะพั€ะธั" page_manage_category_remove_object_name = "ะบะฐั‚ะตะณะพั€ะธัŽ" page_manage_category_remove_success = "ะšะฐั‚ะตะณะพั€ะธั ัƒัะฟะตัˆะฝะพ ัƒะดะฐะปะตะฝะฐ." page_manage_category_remove_error = "ะะต ัƒะดะฐะปะพััŒ ัƒะดะฐะปะธั‚ัŒ ะบะฐั‚ะตะณะพั€ะธัŽ." page_manage_category_add_exists_alert = "ะšะฐั‚ะตะณะพั€ะธั ั ั‚ะฐะบะธะผ ะธะผะตะฝะตะผ ัƒะถะต ััƒั‰ะตัั‚ะฒัƒะตั‚!" page_manage_category_add_name_input = "ะะฐะทะฒะฐะฝะธะต ะบะฐั‚ะตะณะพั€ะธะธ" page_manage_category_add_desc_input = "ะšั€ะฐั‚ะบะพะต ะพะฟะธัะฐะฝะธะต ะบะฐั‚ะตะณะพั€ะธะธ" page_manage_category_add_name_chose_super_cat = "ะ’ั‹ะฑะตั€ะตั‚ะต ะณะปะฐะฒะฝัƒัŽ ะบะฐั‚ะตะณะพั€ะธัŽ" page_manage_category_add_note_1 = "ะ•ัะปะธ ะดะฐะฝะฝะฐั ะบะฐั‚ะตะณะพั€ะธั ัะฒะปัะตั‚ัั ะณะปะฐะฒะฝะพะน, ั‚ะพ ะพัั‚ะฐะฒัŒั‚ะต ัั‚ะพ ะฟะพะปะต ะฑะตะปั‹ะผ." # # COVER PAGE # page_manage_cover_title = "ะะฐะทะฒะฐะฝะธะต ั‚ะฒะพะตะณะพ ัะฐะนั‚ะฐ: ะ ะตะดะฐะบั‚ะธั€ะพะฒะฐะฝะธะต ั‚ะธะฟะพะฒ ะฟะตั€ะตะฟะปั‘ั‚ะฐ" page_manage_cover_banner = "ะะฐะทะฒะฐะฝะธะต ัะฐะนั‚ะฐ" page_manage_cover_sub_title = "ะ ะตะดะฐะบั‚ะธั€ะพะฒะฐะฝะธะต ั‚ะธะฟะพะฒ ะฟะตั€ะตะฟะปั‘ั‚ะฐ" page_manage_cover_modal_title_add = "ะ”ะพะฑะฐะฒะธั‚ัŒ ะฝะพะฒั‹ะน ะฟะตั€ะตะฟะปั‘ั‚" page_manage_cover_modal_title_edit = "ะ˜ะทะผะตะฝะธั‚ัŒ ะฟะตั€ะตะฟะปั‘ั‚" page_manage_cover_name = "ะŸะตั€ะตะฟะปั‘ั‚" page_manage_cover_remove_object_name = "ะฟะตั€ะตะฟะปั‘ั‚" page_manage_cover_remove_success = "ะŸะตั€ะตะฟะปั‘ั‚ ัƒัะฟะตัˆะฝะพ ัƒะดะฐะปั‘ะฝ." page_manage_cover_remove_error = "ะะต ัƒะดะฐะปะพััŒ ัƒะดะฐะปะธั‚ัŒ ะฟะตั€ะตะฟะปั‘ั‚." page_manage_cover_add_exists_alert = "ะŸะตั€ะตะฟะปั‘ั‚ ั ั‚ะฐะบะธะผ ะธะผะตะฝะตะผ ัƒะถะต ััƒั‰ะตัั‚ะฒัƒะตั‚!" page_manage_cover_add_name_input = "ะŸะตั€ะตะฟะปั‘ั‚" # # QUALITY PAGE # page_manage_quality_title = "ะะฐะทะฒะฐะฝะธะต ั‚ะฒะพะตะณะพ ัะฐะนั‚ะฐ: ะ ะตะดะฐะบั‚ะธั€ะพะฒะฐะฝะธะต ะบะฐั‡ะตัั‚ะฒะฐ" page_manage_quality_banner = "ะะฐะทะฒะฐะฝะธะต ัะฐะนั‚ะฐ" page_manage_quality_sub_title = "ะ ะตะดะฐะบั‚ะธั€ะพะฒะฐะฝะธะต ะบะฐั‡ะตัั‚ะฒะฐ" page_manage_quality_modal_title_add = "ะ”ะพะฑะฐะฒะธั‚ัŒ ะฝะพะฒะพะต ะบะฐั‡ะตัั‚ะฒะพ" page_manage_quality_modal_title_edit = "ะ˜ะทะผะตะฝะธั‚ัŒ ะบะฐั‡ะตัั‚ะฒะพ" page_manage_quality_name = "ะšะฐั‡ะตัั‚ะฒะพ" page_manage_quality_desc = "ะžะฟะธัะฐะฝะธะต ะบะฐั‡ะตัั‚ะฒะฐ" page_manage_quality_remove_object_name = "ะบะฐั‡ะตัั‚ะฒะพ" page_manage_quality_remove_success = "ะšะฐั‡ะตัั‚ะฒะพ ัƒัะฟะตัˆะฝะพ ัƒะดะฐะปะตะฝะพ." page_manage_quality_remove_error = "ะะต ัƒะดะฐะปะพััŒ ัƒะดะฐะปะธั‚ัŒ ะบะฐั‡ะตัั‚ะฒะพ." page_manage_quality_add_exists_alert = "ะšะฐั‡ะตัั‚ะฒะพ ั ั‚ะฐะบะธะผ ะธะผะตะฝะตะผ ัƒะถะต ััƒั‰ะตัั‚ะฒัƒะตั‚!" page_manage_quality_add_name_input = "ะšะฐั‡ะตัั‚ะฒะพ" page_manage_quality_add_desc_input = "ะšั€ะฐั‚ะบะพะต ะพะฟะธัะฐะฝะธะต ะบะฐั‡ะตัั‚ะฒะฐ" # # LANGUAGE PAGE # page_manage_language_title = "ะะฐะทะฒะฐะฝะธะต ั‚ะฒะพะตะณะพ ัะฐะนั‚ะฐ: ะ ะตะดะฐะบั‚ะธั€ะพะฒะฐะฝะธะต ัะทั‹ะบะฐ" page_manage_language_banner = "ะะฐะทะฒะฐะฝะธะต ัะฐะนั‚ะฐ" page_manage_language_sub_title = "ะ ะตะดะฐะบั‚ะธั€ะพะฒะฐะฝะธะต ัะทั‹ะบะฐ" page_manage_language_modal_title_add = "ะ”ะพะฑะฐะฒะธั‚ัŒ ะฝะพะฒั‹ะน ัะทั‹ะบ" page_manage_language_modal_title_edit = "ะ˜ะทะผะตะฝะธั‚ัŒ ัะทั‹ะบ" page_manage_language_name = "ะฏะทั‹ะบ" page_manage_language_remove_object_name = "ัะทั‹ะบ" page_manage_language_remove_success = "ะฏะทั‹ะบ ัƒัะฟะตัˆะฝะพ ัƒะดะฐะปั‘ะฝ." page_manage_language_remove_error = "ะะต ัƒะดะฐะปะพััŒ ัƒะดะฐะปะธั‚ัŒ ัะทั‹ะบ." page_manage_language_add_exists_alert = "ะฏะทั‹ะบ ั ั‚ะฐะบะธะผ ะธะผะตะฝะตะผ ัƒะถะต ััƒั‰ะตัั‚ะฒัƒะตั‚!" page_manage_language_add_name_input = "ะฏะทั‹ะบ" # # BOOKS PAGE # page_manage_book_title = "ะะฐะทะฒะฐะฝะธะต ั‚ะฒะพะตะณะพ ัะฐะนั‚ะฐ: ะ ะตะดะฐะบั‚ะธั€ะพะฒะฐะฝะธะต ะบะฝะธะณ" page_manage_book_banner = "ะะฐะทะฒะฐะฝะธะต ัะฐะนั‚ะฐ" page_manage_book_sub_title = "ะ ะตะดะฐะบั‚ะธั€ะพะฒะฐะฝะธะต ะบะฝะธะณ" page_manage_book_title_add = "ะ”ะพะฑะฐะฒะธั‚ัŒ ะฝะพะฒัƒัŽ ะบะฝะธะณัƒ" page_manage_book_title_edit = "ะ˜ะทะผะตะฝะธั‚ัŒ ะดะฐะฝะฝั‹ะต ะบะฝะธะณะธ" page_manage_book_add_name_input = "ะะฐะทะฒะฐะฝะธะต ะบะฝะธะณะธ" page_manage_book_add_author_input = "ะะฒั‚ะพั€" page_manage_book_add_desc_input = "ะžะฟะธัะฐะฝะธะต ะบะฝะธะณะธ" page_manage_book_add_name_chose_category = "ะšะฐั‚ะตะณะพั€ะธั" page_manage_book_add_name_chose_cover = "ะŸะตั€ะตะฟะปั‘ั‚" page_manage_book_add_name_chose_quality = "ะšะฐั‡ะตัั‚ะฒะพ" page_manage_book_add_name_chose_language = "ะฏะทั‹ะบ" page_manage_book_add_price_input = "ะฆะตะฝะฐ ะบะฝะธะณะธ ะฒ ั„ะพั€ะผะฐั‚ะต ####.##" page_manage_book_add_price_label = "ะฆะตะฝะฐ" page_manage_book_add_discount_input = "ะกะบะธะดะบะฐ ะฝะฐ ะบะฝะธะณัƒ ะฒ ั„ะพั€ะผะฐั‚ะต ####.##" page_manage_book_add_currency_input = "ะณั€ะฝ." page_manage_book_add_priory_check = "ะ’ั‹ะดะตะปะธั‚ัŒ ัั‚ัƒ ะบะฝะธะณัƒ" page_manage_book_add_upload_files = "ะ—ะฐะณั€ัƒะทะธั‚ัŒ ั„ะพั‚ะพะณั€ะฐั„ะธะธ ะบะฝะธะณ" page_manage_book_name = "ะกะฟะธัะพะบ ะบะฝะธะณ" page_manage_book_remove_object_name = "ะบะฝะธะณัƒ" page_manage_book_remove_success = "ะšะฝะธะณะฐ ัƒัะฟะตัˆะฝะพ ัƒะดะฐะปะตะฝะฐ." page_manage_book_remove_error = "ะะต ัƒะดะฐะปะพััŒ ัƒะดะฐะปะธั‚ัŒ ะบะฝะธะณัƒ." page_manage_book_reference_num_label = "ะะพะผะตั€ ััั‹ะปะบะธ"
python
#!/usr/bin/env python3 # -*-coding: utf-8 -*- """ .. invisible: _ _ _____ _ _____ _____ | | | | ___| | | ___/ ___| | | | | |__ | | | |__ \ `--. | | | | __|| | | __| `--. \ \ \_/ / |___| |___| |___/\__/ / \___/\____/\_____|____/\____/ Created on October 14, 2014 โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ """ import os from veles.config import root from veles.tests import timeout from veles.znicz.tests.functional import StandardTest import veles.znicz.tests.research.SpamKohonen.spam_kohonen as spam_kohonen # FIXME(v.markovtsev): remove this when Kohonen is ported to CUDA root.common.engine.backend = "ocl" class TestSpamKohonen(StandardTest): @classmethod def setUpClass(cls): root.spam_kohonen.loader.validation_ratio = 0.0 root.spam_kohonen.update({ "forward": {"shape": (8, 8), "weights_stddev": 0.05, "weights_filling": "uniform"}, "decision": {"epochs": 5}, "downloader": { "url": "https://s3-eu-west-1.amazonaws.com/veles.forge/" "SpamKohonen/spam.tar", "directory": root.common.dirs.datasets, "files": [os.path.join("spam", "spam.txt.xz")]}, "loader": {"minibatch_size": 80, "force_numpy": True, "ids": True, "classes": False, "file": os.path.join(root.common.dirs.datasets, "spam", "spam.txt.xz")}, "train": {"gradient_decay": lambda t: 0.001 / (1.0 + t * 0.0002), "radius_decay": lambda t: 1.0 / (1.0 + t * 0.0002)}, "exporter": {"file": "classified_fast4.txt"}}) @timeout(700) def test_spamkohonen(self): self.info("Will test spam kohonen workflow") workflow = spam_kohonen.SpamKohonenWorkflow(self.parent) workflow.initialize(device=self.device) workflow.run() self.assertIsNone(workflow.thread_pool.failure) diff = workflow.decision.weights_diff self.assertAlmostEqual(diff, 3.577783, places=6) self.assertEqual(5, workflow.loader.epoch_number) self.info("All Ok") if __name__ == "__main__": StandardTest.main()
python
from typing import List # ------------------------------- solution begin ------------------------------- class Solution: def canWinNim(self, n: int) -> bool: return n % 4 == 0 # ------------------------------- solution end - -------------------------------- if __name__ == '__main__': input = 4 print("Input: {}".format(input)) solution = Solution() print("Output: {}".format(solution.canWinNim(input)))
python
bat = int(input('bateria = ')) def batery (bat): if bat == 0: print('morri') elif bat > 0 and bat < 21: print('conecte o carreador') elif bat > 20 and bat < 80: print('carregando...') elif bat > 79 and bat < 100: print('estou de boa') elif bat == 100: print('pode tirar o carregador') elif bat > 100: print('estou ligadasso') return bat print(batery(bat)) batery(bat)
python
#coding:utf8 ''' Created on 2016ๅนด4ๆœˆ20ๆ—ฅ @author: wb-zhaohaibo ''' import MySQLdb print MySQLdb conn = MySQLdb.Connect( host="127.0.0.1", port=3306, user="root", passwd="admin", db="testsql", charset="utf8" ) cursor = conn.cursor() sql = "select * from student" cursor.execute(sql) print cursor.rowcount rs = cursor.fetchone() print rs rs = cursor.fetchmany(3) print rs rs = cursor.fetchall() print rs cursor.close() conn.close()
python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Script for updating pymoprhy2 dictionaries (Russian and Ukrainian). Please note that it is resource-heavy: it requires > 3GB free RAM and about 1GB on HDD for temporary files. Usage: update.py (ru|uk) (download|compile|package|cleanup) ... update.py (ru|uk) all update.py -h | --help """ from __future__ import print_function import os import time import shutil import subprocess from docopt import docopt from cookiecutter.main import cookiecutter from pymorphy2 import opencorpora_dict OUT_PATH = "compiled-dicts" RU_DICT_URL = "http://opencorpora.org/files/export/dict/dict.opcorpora.xml.bz2" RU_CORPORA_URL = "http://opencorpora.org/files/export/annot/annot.opcorpora.xml.bz2" RU_DICT_XML = "dict.opcorpora.xml" RU_CORPORA_XML = "annot.corpus.xml" UK_DICT_URL = "https://drive.google.com/uc?id=0B4mUAylazDVbUXFIRGJ2S01ibGM&export=download" UK_DICT_XML = "full-uk.xml" def _download_bz2(url, out_name): subprocess.check_call("curl --progress-bar '%s' | bunzip2 > '%s'" % (url, out_name), shell=True) class RussianBuilder(object): def download(self): print("Downloading OpenCorpora dictionary...") _download_bz2(RU_DICT_URL, RU_DICT_XML) print("Downloading OpenCorpora corpus...") _download_bz2(RU_CORPORA_URL, RU_CORPORA_XML) print("") def compile(self): print("Compiling the dictionary") subprocess.check_call(["./build-dict.py", RU_DICT_XML, OUT_PATH, "--lang", "ru", "--corpus", RU_CORPORA_XML, "--clear"]) print("") def package(self): print("Creating Python package") cookiecutter( template="cookiecutter-pymorphy2-dicts", no_input=True, overwrite_if_exists=True, extra_context={ 'lang': 'ru', 'lang_full': 'Russian', 'version': get_version(corpus=True, timestamp=False), } ) def cleanup(self): shutil.rmtree(OUT_PATH, ignore_errors=True) if os.path.exists(RU_DICT_XML): os.unlink(RU_DICT_XML) if os.path.exists(RU_CORPORA_XML): os.unlink(RU_CORPORA_XML) class UkrainianBuilder(object): def download(self): print("Downloading and converting LanguageTool dictionary...") subprocess.check_call(['lt_convert.py', UK_DICT_URL, UK_DICT_XML]) print("") def compile(self): print("Compiling the dictionary") subprocess.check_call(["./build-dict.py", UK_DICT_XML, OUT_PATH, "--lang", "uk", "--clear"]) print("") def package(self): print("Creating Python package") cookiecutter("cookiecutter-pymorphy2-dicts", no_input=True, extra_context={ 'lang': 'uk', 'lang_full': 'Ukrainian', 'version': get_version(corpus=False, timestamp=True), }) def cleanup(self): shutil.rmtree(OUT_PATH, ignore_errors=True) if os.path.exists(RU_DICT_XML): os.unlink(RU_DICT_XML) def get_version(corpus=False, timestamp=False): meta = dict(opencorpora_dict.load(OUT_PATH).meta) if corpus: tpl = "{format_version}.{source_revision}.{corpus_revision}" else: tpl = "{format_version}.{source_revision}.1" if timestamp: tpl += ".%s" % (int(time.time())) return tpl.format(**meta) if __name__ == '__main__': args = docopt(__doc__) if args['all']: args['download'] = args['compile'] = args['package'] = True if args['ru']: builder = RussianBuilder() elif args['uk']: builder = UkrainianBuilder() else: raise ValueError("Language is not known") if args['download']: builder.download() if args['compile']: builder.compile() if args['package']: builder.package() if args['cleanup']: builder.cleanup()
python
import Selenium_module as zm print("Zillow Downloader") url = input("URL: ") image_links, title = zm.get_links(url) zm.get_images(image_links, title) zm.cleanup_exit()
python
from flask_wtf import FlaskForm from datetime import datetime from wtforms import BooleanField, DateTimeField, HiddenField, SelectField, StringField, SubmitField, ValidationError from wtforms.ext.sqlalchemy.fields import QuerySelectField from wtforms.validators import Required, Optional from .. models import Element, EventFrame class EventFrameForm(FlaskForm): element = QuerySelectField("Element", validators = [Required()], get_label = "Name") eventFrameTemplate = QuerySelectField("Event Frame Template", validators = [Required()], get_label = "Name") sourceEventFrameTemplate = SelectField("Source Event Frame Template Filter", validators = [Optional()], coerce = int) activeSourceEventFramesOnly = BooleanField("Active Event Frames Sources Only") sourceEventFrame = SelectField("Source Event Frame", validators = [Optional()], coerce = int) startTimestamp = DateTimeField("Start Timestamp", default = datetime.utcnow, validators = [Required()]) startUtcTimestamp = HiddenField() endTimestamp = DateTimeField("End Timestamp", validators = [Optional()]) endUtcTimestamp = HiddenField() name = StringField("Name", default = lambda : int(datetime.utcnow().timestamp()), validators = [Required()]) eventFrameId = HiddenField() eventFrameTemplateId = HiddenField() parentEventFrameId = HiddenField() requestReferrer = HiddenField() submit = SubmitField("Save") def validate_endTimestamp(self, field): if self.startTimestamp.data is not None and self.endTimestamp.data is not None: if self.endTimestamp.data < self.startTimestamp.data: raise ValidationError("The End Timestamp must occur after the Start Timestamp.") if self.parentEventFrameId.data: parentEventFrame = EventFrame.query.get_or_404(self.parentEventFrameId.data) if parentEventFrame.EndTimestamp: endUtcTimestamp = datetime.strptime(self.endUtcTimestamp.data, "%Y-%m-%d %H:%M:%S") if endUtcTimestamp > parentEventFrame.EndTimestamp: raise ValidationError("This timestamp is outside of the parent event frame.") def validate_startTimestamp(self, field): if self.startTimestamp.data is not None: startUtcTimestamp = datetime.strptime(self.startUtcTimestamp.data, "%Y-%m-%d %H:%M:%S") if self.parentEventFrameId.data: parentEventFrame = EventFrame.query.get_or_404(self.parentEventFrameId.data) error = False if parentEventFrame.EndTimestamp: if startUtcTimestamp < parentEventFrame.StartTimestamp or startUtcTimestamp > parentEventFrame.EndTimestamp: error = True else: if startUtcTimestamp < parentEventFrame.StartTimestamp: error = True if error: raise ValidationError("This timestamp is outside of the parent event frame.") else: validationError = False eventFrame = EventFrame.query.filter_by(ElementId = self.element.data.ElementId, EventFrameTemplateId = self.eventFrameTemplateId.data, StartTimestamp = self.startUtcTimestamp.data).first() if eventFrame: if self.eventFrameId.data == "": # Trying to add a new eventFrame using a startTimestamp that already exists. validationError = True else: if int(self.eventFrameId.data) != eventFrame.EventFrameId: # Trying to change the startTimestamp of an eventFrame to a startTimestamp that already exists. validationError = True if validationError: raise ValidationError('The start timestamp "{}" already exists.'.format(field.data))
python
import numpy as np import os import cv2 import sys import time import dlib import glob import argparse import voronoi as v def checkDeepFake(regions): return True def initialize_predictor(): # Predictor ap = argparse.ArgumentParser() if len(sys.argv) > 1: predictor_path = sys.argv[1] print("[INFO] loading facial landmark predictor...") detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(predictor_path) return predictor,detector else: print("ERROR : Please give the model as argument.") return None,None def extract_features(fileDirectory,videos,labels,show_results = False,frame_rate = 50): predictor,detector = initialize_predictor() if predictor is None: return for filename in videos: currentfile = os.path.join(fileDirectory,filename) if currentfile: print('Opening the file with name ' + currentfile) cap = cv2.VideoCapture(currentfile) face_id = 0 while(cap.isOpened() and not(cv2.waitKey(1) & 0xFF == ord('q'))): prev_features = [] ret, frame = cap.read() features = [] if frame is None: break img = v.preprocessing(frame) regions = detector(img, 0) if regions: # loop over the face detections for (i, rect) in enumerate(regions): # determine the facial landmarks for the face region, then # convert the facial landmark (x, y)-coordinates to a NumPy # array vor_features = v.createVoronoi(img,predictor,rect,face_id + i,show_results=show_results) features.append(vor_features) if show_results and cv2.waitKey(1) & 0xFF == ord('q'): break face_id =+ 1 if show_results: cv2.imshow("Frame",img) if cv2.waitKey(1) & 0xFF == ord('q'): break if show_results: cap.release() cv2.destroyAllWindows() else: print("Could not find the directory") def pad_images(fileDirectory): max_w = 80 max_h = 100 # for filename in os.listdir(fileDirectory): # currentfile = os.path.join(fileDirectory,filename) # if currentfile: # img = cv2.imread(currentfile) # ht, wd, cc = img.shape # if ht > max_h: # max_h = ht # if wd > max_w: # max_w = wd print("Max_w #{} Max_h #{}",max_w, max_h) for filename in os.listdir(fileDirectory): currentfile = os.path.join(fileDirectory,filename) if currentfile: img = cv2.imread(currentfile) ht, wd, cc= img.shape result = np.full((max_h,max_w,cc), (0,0,0), dtype=np.uint8) # compute center offset xx = (max_w - wd) // 2 yy = (max_h - ht) // 2 # copy img image into center of result image result[yy:yy+ht, xx:xx+wd] = img cv2.imwrite("features/"+ filename, result)
python
r""" FSS-1000 few-shot semantic segmentation dataset """ import os import glob from torch.utils.data import Dataset import torch.nn.functional as F import torch import PIL.Image as Image import numpy as np class DatasetFSS(Dataset): def __init__(self, datapath, fold, transform, split, shot, use_original_imgsize): self.split = split self.benchmark = 'fss' self.shot = shot self.base_path = os.path.join(datapath, 'FSS-1000') # Given predefined test split, load randomly generated training/val splits: # (reference regarding trn/val/test splits: https://github.com/HKUSTCV/FSS-1000/issues/7)) with open('./data/splits/fss/%s.txt' % split, 'r') as f: self.categories = f.read().split('\n')[:-1] self.categories = sorted(self.categories) self.class_ids = self.build_class_ids() self.img_metadata = self.build_img_metadata() self.transform = transform def __len__(self): return len(self.img_metadata) def __getitem__(self, idx): query_name, support_names, class_sample = self.sample_episode(idx) query_img, query_mask, support_imgs, support_masks = self.load_frame(query_name, support_names) query_img, query_mask = self.transform(query_img, query_mask) query_mask = F.interpolate(query_mask.unsqueeze(0).unsqueeze(0).float(), query_img.size()[-2:], mode='nearest').squeeze() support_transformed = [self.transform(support_img, support_cmask) for support_img, support_cmask in zip(support_imgs, support_masks)] support_masks = [x[1] for x in support_transformed] support_imgs = torch.stack([x[0] for x in support_transformed]) support_masks_tmp = [] for smask in support_masks: smask = F.interpolate(smask.unsqueeze(0).unsqueeze(0).float(), support_imgs.size()[-2:], mode='nearest').squeeze() support_masks_tmp.append(smask) support_masks = torch.stack(support_masks_tmp) batch = {'query_img': query_img, 'query_mask': query_mask, 'query_name': query_name, 'support_imgs': support_imgs, 'support_masks': support_masks, 'support_names': support_names, 'class_id': torch.tensor(class_sample)} return batch def load_frame(self, query_name, support_names): query_img = Image.open(query_name).convert('RGB') support_imgs = [Image.open(name).convert('RGB') for name in support_names] query_id = query_name.split('/')[-1].split('.')[0] query_name = os.path.join(os.path.dirname(query_name), query_id) + '.png' support_ids = [name.split('/')[-1].split('.')[0] for name in support_names] support_names = [os.path.join(os.path.dirname(name), sid) + '.png' for name, sid in zip(support_names, support_ids)] query_mask = self.read_mask(query_name) support_masks = [self.read_mask(name) for name in support_names] return query_img, query_mask, support_imgs, support_masks def read_mask(self, img_name): mask = torch.tensor(np.array(Image.open(img_name).convert('L'))) mask[mask < 128] = 0 mask[mask >= 128] = 1 return mask def sample_episode(self, idx): query_name = self.img_metadata[idx] class_sample = self.categories.index(query_name.split('/')[-2]) if self.split == 'val': class_sample += 520 elif self.split == 'test': class_sample += 760 support_names = [] while True: # keep sampling support set if query == support support_name = np.random.choice(range(1, 11), 1, replace=False)[0] support_name = os.path.join(os.path.dirname(query_name), str(support_name)) + '.jpg' if query_name != support_name: support_names.append(support_name) if len(support_names) == self.shot: break return query_name, support_names, class_sample def build_class_ids(self): if self.split == 'trn': class_ids = range(0, 520) elif self.split == 'val': class_ids = range(520, 760) elif self.split == 'test': class_ids = range(760, 1000) return class_ids def build_img_metadata(self): img_metadata = [] for cat in self.categories: img_paths = sorted([path for path in glob.glob('%s/*' % os.path.join(self.base_path, cat))]) for img_path in img_paths: if os.path.basename(img_path).split('.')[1] == 'jpg': img_metadata.append(img_path) return img_metadata
python
# The Python print statement is often used to output variables. # To combine both text and a variable, Python uses the '+' character: x = "awesome" print("Python is " + x) # You can also use the '+' character to add a variable to another variable: x = "Python is " y = "awesome" z = x + y print(z) # For numbers, the '+' character works as a mathematical operators: x = 5 y = 10 print(x + y) # If you try to combine a string and a number, Python will give you an error: x = 5 y = "John" print(x + y)
python
from keras.applications.resnet50 import ResNet50 as RN50 from keras.preprocessing import image from keras.models import Model from keras.layers import Flatten from keras.layers import Dense, GlobalAveragePooling2D from keras import backend as K from keras.utils import plot_model from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import TensorBoard from keras import optimizers from keras import backend import matplotlib.pyplot as plt import os end='activation_37' #end='activation_'+str(idx) BOARD_PATH = 'boards/' EXPERIMENT_NAME = f'training_50epoch_LRFull' MODEL_FNAME = f'models/modelRN50_{EXPERIMENT_NAME}.h5' EPOCH_ARR=[50, 100, 200] train_data_dir='../datasets/MIT_split/train' val_data_dir='../datasets/MIT_split/test' test_data_dir='../datasets/MIT_split/test' img_width = 224 img_height=224 batch_size=32 validation_samples=807 def preprocess_input(x, dim_ordering='default'): if dim_ordering == 'default': dim_ordering = K.image_data_format() assert dim_ordering in {'channels_first', 'channels_last'} if dim_ordering == 'channels_first': # 'RGB'->'BGR' x = x[ ::-1, :, :] # Zero-center by mean pixel x[ 0, :, :] -= 103.939 x[ 1, :, :] -= 116.779 x[ 2, :, :] -= 123.68 else: # 'RGB'->'BGR' x = x[:, :, ::-1] # Zero-center by mean pixel x[:, :, 0] -= 103.939 x[:, :, 1] -= 116.779 x[:, :, 2] -= 123.68 return x LR_list = [0.1, 0.01, 0.0001] # LR_list = [0.1] LR_results_dict = {} d = {} for EPOCHS in EPOCH_ARR: for LR in LR_list: results_dir=f'learningRateDiffs/epochs_{EPOCHS}_LR_{LR}' results_txt_file = f"{results_dir}/results_{EPOCHS}_LR_{LR}" if not os.path.exists(results_dir): os.makedirs(results_dir) with open(f"{results_txt_file}.txt", "a") as fi: fi.write("Epochs\tLearning_Rate\tAccuracy\tValidation_accuracy\tLoss\tValidation_loss\n") # create the base pre-trained model base_model = RN50(weights='imagenet') plot_model(base_model, to_file=f'{results_dir}/RN50_base.png', show_shapes=True, show_layer_names=True) # base_model.summary() #cropping the model x = base_model.layers[-2].output intermediate = 'inter' x = Dense(8, activation='softmax',name=intermediate)(x) model = Model(base_model.input, x) plot_model(model, to_file=f'{results_dir}/modelRN50_{EXPERIMENT_NAME}.png', show_shapes=True, show_layer_names=True) #Freezing layers #for layer in base_model.layers: # layer.trainable = False #Unfreezeing layers #for idx in range(-2,end,-1): # base_model.layers[idx].trainable=True new_opt = optimizers.Adadelta(learning_rate= LR) model.compile(loss='categorical_crossentropy',optimizer=new_opt, metrics=['accuracy']) for layer in model.layers: print(layer.name, layer.trainable) #preprocessing_function=preprocess_input, datagen = ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, preprocessing_function=preprocess_input, rotation_range=0., width_shift_range=0., height_shift_range=0., shear_range=0., zoom_range=0., channel_shift_range=0., fill_mode='nearest', cval=0., horizontal_flip=False, vertical_flip=False, rescale=None) train_generator = datagen.flow_from_directory(train_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') test_generator = datagen.flow_from_directory(test_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') validation_generator = datagen.flow_from_directory(val_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') tbCallBack = TensorBoard(log_dir=BOARD_PATH+EXPERIMENT_NAME, histogram_freq=0, write_graph=True) history=model.fit_generator(train_generator, steps_per_epoch=(int(1881//batch_size)+1), epochs=EPOCHS, validation_data=validation_generator, validation_steps= (int(validation_samples//batch_size)+1), callbacks=[tbCallBack]) result = model.evaluate_generator(test_generator, validation_samples) print( result) #saving model model.save(f'{results_dir}/modelRN50_{EXPERIMENT_NAME}.h5') # list all data in history if True: # summarize history for accuracy print(history.history.keys()) accuracy = history.history['accuracy'] validation_accuracy = history.history['val_accuracy'] loss = history.history['loss'] validation_loss = history.history['val_loss'] LR_results_structured = [accuracy, validation_accuracy, loss, validation_loss] LR_results_dict[f'{LR}'] = LR_results_structured print(LR_results_dict) with open(f"{results_txt_file}.txt", "a") as fi: fi.write(f'{EPOCHS}\t{LR}\t{accuracy[-1]}\t{validation_accuracy[-1]}\t{loss[-1]}\t{validation_loss[-1]}\n') with open(f"{results_txt_file}_raw.txt", "a") as fi: fi.write(f'accuracy\tvalidation_accuracy\tloss\tvalidation_loss\n') for a, va, l, vl in zip(accuracy, validation_accuracy, loss, validation_loss): fi.write(f'{a}\t{va}\t{l}\t{vl}\n') plt.plot(accuracy) plt.plot(validation_accuracy) plt.title(f'Learning_rate = {LR} accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.savefig(f'{results_dir}/acc_{LR}.jpg') plt.close() # summarize history for loss plt.plot(loss) plt.plot(validation_loss) plt.title(f'Learning_rate = {LR} model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.savefig(f'{results_dir}/loss_{LR}.jpg') plt.close() backend.clear_session() for tmpLR in LR_list: plt.plot(LR_results_dict[f'{tmpLR}'][0]) plt.plot(LR_results_dict[f'{tmpLR}'][1]) plt.title(f'{EPOCHS} Epochs Accuracy Aggregate') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train_0.1', 'validation_0.1', 'train_0.01', 'validation_0.01', 'train_0.001', 'validation_0.001'], loc='upper left') plt.savefig(f'learningRateDiffs/graph_{EPOCHS}.jpg') plt.close()
python
import ctypes # Implements the Array ADT using array capabilities of the ctypes module. class Array : # Creates an array with size elements. def __init__( self, size ): assert size > 0, "Array size must be > 0" self._size = size # Create the array structure using the ctypes module. PyArrayType = ctypes.py_object * size self._elements = PyArrayType() # Initialize each element. self.clear(None) # Returns the size of the array. def __len__( self ): return self._size # Gets the contents of the index element. def __getitem__( self, index ): assert index >= 0 and index < len(self), "Array subscript out of range" return self._elements[ index ] # Puts the value in the array element at index position. def __setitem__( self, index, value ): assert index >= 0 and index < len(self), "Array subscript out of range" self._elements[ index ] = value # Clears the array by setting each element to the given value. def clear( self, value ): for i in range( len(self) ) : self._elements[i] = value # Returns the array's iterator for traversing the elements. def __iter__( self ): return _ArrayIterator( self. _elements ) # An iterator for the Array ADT. class _ArrayIterator : def __init__( self, the_array ): self._array_ref = the_array self._cur_index = 0 def __iter__( self ): return self def __next__( self ): if self._cur_index < len( self._array_ref ) : entry = self._array_ref[ self._cur_index ] self._cur_index += 1 return entry else: raise StopIteration # Implementation of the Array2D ADT using an array of arrays. class Array2D : # Creates a 2 -D array of size numRows x numCols. def __init__( self, num_rows, num_cols ): # Create a 1 -D array to store an array reference for each row. self.rows = Array( num_rows ) # Create the 1 -D arrays for each row of the 2 -D array. for i in range( num_rows ) : self.rows[i] = Array( num_cols ) # Returns the number of rows in the 2 -D array. def num_rows( self ): return len( self.rows ) # Returns the number of columns in the 2 -D array. def num_cols( self ): return len( self.rows[0] ) # Clears the array by setting every element to the given value. def clear( self, value ): for row in range( self.num_rows() ): row.clear( value ) # Gets the contents of the element at position [i, j] def __getitem__( self, index_tuple ): assert len(index_tuple) == 2, "Invalid number of array subscripts." row = index_tuple[0] col = index_tuple[1] assert row >= 0 and row < self.num_rows() \ and col >= 0 and col < self.num_cols(), \ "Array subscript out of range." array_1d = self.rows[row] return array_1d[col] # Sets the contents of the element at position [i,j] to value. def __setitem__( self, index_tuple, value ): assert len(index_tuple) == 2, "Invalid number of array subscripts." row = index_tuple[0] col = index_tuple[1] assert row >= 0 and row < self.num_rows() \ and col >= 0 and col < self.num_cols(), \ "Array subscript out of range." array_1d = self.rows[row] array_1d[col] = value class DynamicArray: """A dynamic array class akin to a simplified Python list.""" def __init__(self): """Create an empty array.""" self._n = 0 # count actual elements self._capacity = 1 # default array capacity self._A = self._make_array(self._capacity) # low-level array def __len__(self): """Return number of elements stored in the array.""" return self._n def __getitem__(self, k): """Return element at index k.""" if not 0 <= k < self. n: raise IndexError( 'invalid index' ) return self._A[k] # retrieve from array def append(self, obj): """Add object to end of the array.""" if self._n == self._capacity: # not enough room self._resize(2 * self._capacity) # so double capacity self._A[self._n] = obj self._n += 1 def _resize(self, c): # nonpublic utitity """Resize internal array to capacity c.""" B = self._make_array(c) # new (bigger) array for k in range(self._n): # for each existing value B[k] = self._A[k] self._A = B # use the bigger array self._capacity = c def _make_array(self, c): # nonpublic utitity """Return new array with capacity c.""" return (c * ctypes.py_object)( ) # see ctypes documentation def insert(self, k, value): """Insert value at index k, shifting subsequent values rightward.""" # (for simplicity, we assume 0 <= k <= n in this verion) if self. n == self._capacity: # not enough room self._resize(2 * self._capacity) # so double capacity for j in range(self._n, k, -1): # shift rightmost first self._A[j] = self._A[j - 1] self._A[k] = value # store newest element self._n += 1 def remove(self, value): """Remove first occurrence of value( or raise ValueError).""" # note: we do not consider shrinking the dynamic array in this version for k in range(self._n): if self._A[k] == value: # found a match! for j in range(k, self._n - 1): # shift others to fill gap self._A[j] = self._A[j + 1] self._A[self._n - 1] = None # help garbage collection self._n -= 1 # we have one less item return # exit immediately raise ValueError( "value not found" ) # only reached if no match
python
#!/usr/bin/env python3 # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """format manifest with more metadata.""" import argparse import functools import json import jsonlines from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer from paddlespeech.s2t.frontend.utility import load_cmvn from paddlespeech.s2t.io.utility import feat_type from paddlespeech.s2t.utils.utility import add_arguments from paddlespeech.s2t.utils.utility import print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('cmvn_path', str, 'examples/librispeech/data/mean_std.json', "Filepath of cmvn.") add_arg('unit_type', str, "char", "Unit type, e.g. char, word, spm") add_arg('vocab_path', str, 'examples/librispeech/data/vocab.txt', "Filepath of the vocabulary.") add_arg('manifest_paths', str, None, "Filepaths of manifests for building vocabulary. " "You can provide multiple manifest files.", nargs='+', required=True) # bpe add_arg('spm_model_prefix', str, None, "spm model prefix, spm_model_%(bpe_mode)_%(count_threshold), only need when `unit_type` is spm") add_arg('output_path', str, None, "filepath of formated manifest.", required=True) # yapf: disable args = parser.parse_args() def main(): print_arguments(args, globals()) fout = open(args.output_path, 'w', encoding='utf-8') # get feat dim filetype = args.cmvn_path.split(".")[-1] mean, istd = load_cmvn(args.cmvn_path, filetype=filetype) feat_dim = mean.shape[0] #(D) print(f"Feature dim: {feat_dim}") text_feature = TextFeaturizer(args.unit_type, args.vocab_path, args.spm_model_prefix) vocab_size = text_feature.vocab_size print(f"Vocab size: {vocab_size}") # josnline like this # { # "input": [{"name": "input1", "shape": (100, 83), "feat": "xxx.ark:123"}], # "output": [{"name":"target1", "shape": (40, 5002), "text": "a b c de"}], # "utt2spk": "111-2222", # "utt": "111-2222-333" # } count = 0 for manifest_path in args.manifest_paths: with jsonlines.open(str(manifest_path), 'r') as reader: manifest_jsons = list(reader) for line_json in manifest_jsons: output_json = { "input": [], "output": [], 'utt': line_json['utt'], 'utt2spk': line_json.get('utt2spk', 'global'), } # output line = line_json['text'] if isinstance(line, str): # only one target tokens = text_feature.tokenize(line) tokenids = text_feature.featurize(line) output_json['output'].append({ 'name': 'target1', 'shape': (len(tokenids), vocab_size), 'text': line, 'token': ' '.join(tokens), 'tokenid': ' '.join(map(str, tokenids)), }) else: # isinstance(line, list), multi target in one vocab for i, item in enumerate(line, 1): tokens = text_feature.tokenize(item) tokenids = text_feature.featurize(item) output_json['output'].append({ 'name': f'target{i}', 'shape': (len(tokenids), vocab_size), 'text': item, 'token': ' '.join(tokens), 'tokenid': ' '.join(map(str, tokenids)), }) # input line = line_json['feat'] if isinstance(line, str): # only one input feat_shape = line_json['feat_shape'] assert isinstance(feat_shape, (list, tuple)), type(feat_shape) filetype = feat_type(line) if filetype == 'sound': feat_shape.append(feat_dim) else: # kaldi raise NotImplementedError('no support kaldi feat now!') output_json['input'].append({ "name": "input1", "shape": feat_shape, "feat": line, "filetype": filetype, }) else: # isinstance(line, list), multi input raise NotImplementedError("not support multi input now!") fout.write(json.dumps(output_json) + '\n') count += 1 print(f"{args.manifest_paths} Examples number: {count}") fout.close() if __name__ == '__main__': main()
python
# Unit test set_out_sample_residuals ForecasterAutoreg # ============================================================================== import numpy as np import pandas as pd from skforecast.ForecasterAutoreg import ForecasterAutoreg from sklearn.linear_model import LinearRegression def test_predict_interval_output_when_forecaster_is_LinearRegression_steps_is_1_in_sample_residuals_is_True(): ''' Test output when regressor is LinearRegression and one step ahead is predicted using in sample residuals. ''' forecaster = ForecasterAutoreg(LinearRegression(), lags=3) forecaster.fit(y=pd.Series(np.arange(10))) forecaster.in_sample_residuals = np.full_like(forecaster.in_sample_residuals, fill_value=10) expected = pd.DataFrame( np.array([[10., 20., 20.]]), columns = ['pred', 'lower_bound', 'upper_bound'], index = pd.RangeIndex(start=10, stop=11, step=1) ) results = forecaster.predict_interval(steps=1, in_sample_residuals=True) pd.testing.assert_frame_equal(results, expected) def test_predict_interval_output_when_forecaster_is_LinearRegression_steps_is_2_in_sample_residuals_is_True(): ''' Test output when regressor is LinearRegression and two step ahead is predicted using in sample residuals. ''' forecaster = ForecasterAutoreg(LinearRegression(), lags=3) forecaster.fit(y=pd.Series(np.arange(10))) forecaster.in_sample_residuals = np.full_like(forecaster.in_sample_residuals, fill_value=10) expected = pd.DataFrame( np.array([[10. ,20., 20.], [11., 24.33333333, 24.33333333] ]), columns = ['pred', 'lower_bound', 'upper_bound'], index = pd.RangeIndex(start=10, stop=12, step=1) ) results = forecaster.predict_interval(steps=2, in_sample_residuals=True) pd.testing.assert_frame_equal(results, expected) def test_predict_interval_output_when_forecaster_is_LinearRegression_steps_is_1_in_sample_residuals_is_False(): ''' Test output when regressor is LinearRegression and one step ahead is predicted using out sample residuals. ''' forecaster = ForecasterAutoreg(LinearRegression(), lags=3) forecaster.fit(y=pd.Series(np.arange(10))) forecaster.out_sample_residuals = np.full_like(forecaster.in_sample_residuals, fill_value=10) expected = pd.DataFrame( np.array([[10., 20., 20.]]), columns = ['pred', 'lower_bound', 'upper_bound'], index = pd.RangeIndex(start=10, stop=11, step=1) ) results = forecaster.predict_interval(steps=1, in_sample_residuals=False) pd.testing.assert_frame_equal(results, expected) def test_predict_interval_output_when_forecaster_is_LinearRegression_steps_is_2_in_sample_residuals_is_False(): ''' Test output when regressor is LinearRegression and two step ahead is predicted using out sample residuals. ''' forecaster = ForecasterAutoreg(LinearRegression(), lags=3) forecaster.fit(y=pd.Series(np.arange(10))) forecaster.out_sample_residuals = np.full_like(forecaster.in_sample_residuals, fill_value=10) expected = pd.DataFrame( np.array([[10. ,20., 20.], [11., 24.33333333, 24.33333333] ]), columns = ['pred', 'lower_bound', 'upper_bound'], index = pd.RangeIndex(start=10, stop=12, step=1) ) results = forecaster.predict_interval(steps=2, in_sample_residuals=False) pd.testing.assert_frame_equal(results, expected)
python
import os import gzip import cPickle from config import config for fold in range(5): filename = os.path.join(config.data_dir, 'atis.fold' + str(fold) + '.pkl.gz') with gzip.open(filename, 'rb') as f: train_set, valid_set, test_set, dicts = cPickle.load(f) labels2idx_, tables2idx_, words2idx_ = dicts['labels2idx'], dicts['tables2idx'], dicts['words2idx'] idx2labels = {v: k for k, v in labels2idx_.items()} idx2tables = {v: k for k, v in tables2idx_.items()} idx2words = {v: k for k, v in words2idx_.items()} train_x, train_ne, train_label = train_set for sentence, ne, label in zip(train_x, train_ne, train_label): print(sentence, ne, label) print (' '.join([idx2labels[i] for i in label])); print ('\n') print (' '.join([idx2tables[i] for i in ne])); print ('\n') print (' '.join([idx2words[i] for i in sentence])); print ('\n') exit()
python
import unittest from bsim.connection import * class TestConnectionMethods(unittest.TestCase): def test_data(self): c = Connection(debug=False) c.delay_start = [0, 0, 3, 0, 1, 0, 0, 0, 0, 2, 0, 0] c.delay_num = [1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0] c.rev_delay_start = [0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 3] c.rev_delay_num = [0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1] c.rev_map2sid = [0, 3, 1, 2] gpu = c.to_gpu() cpu = c.from_gpu(gpu, only_struct=False) self.assertListEqual(c.delay_start, list(cast(cpu.delay_start, POINTER(c_int*cpu.n_len)).contents)) self.assertListEqual(c.delay_num, list(cast(cpu.delay_num, POINTER(c_int*cpu.n_len)).contents)) self.assertListEqual(c.rev_delay_start, list(cast(cpu.rev_delay_start, POINTER(c_int*cpu.r_n_len)).contents)) self.assertListEqual(c.rev_delay_num, list(cast(cpu.rev_delay_num, POINTER(c_int*cpu.r_n_len)).contents)) self.assertListEqual(c.rev_map2sid, list(cast(cpu.rev_map2sid, POINTER(c_int*cpu.s_len)).contents)) if __name__ == '__main__': print('Testing {}: '.format(__file__[:-3])) unittest.main() print('\n')
python
class History(object): def __init__(self, name, userID): self.name = name self.userID = userID self.history = [] def logMessage(self, lastMessage): if len(self.history) > 10: self.history.pop() self.history.append(lastMessage) def getLastMessages(self, num): historyWanted = int(num) if historyWanted > len(self.history): historyWanted = len(self.history) lastMessages = self.history[--historyWanted:] return lastMessages
python
import logging __title__ = 'django_nine.tests.base' __author__ = 'Artur Barseghyan' __copyright__ = '2015-2019 Artur Barseghyan' __license__ = 'GPL-2.0-only OR LGPL-2.1-or-later' __all__ = ( 'LOG_INFO', 'log_info', ) logger = logging.getLogger(__name__) LOG_INFO = True def log_info(func): """Logs some useful info.""" if not LOG_INFO: return func def inner(self, *args, **kwargs): result = func(self, *args, **kwargs) logger.info('\n\n%s' % func.__name__) logger.info('============================') if func.__doc__: logger.info('""" %s """' % func.__doc__.strip()) logger.info('----------------------------') if result is not None: logger.info(result) logger.info('\n++++++++++++++++++++++++++++') return result return inner
python
import os import datetime import MySQLdb con = MySQLdb.connect(host='DBSERVER', user='DBUSER', passwd='DBPASSWD', db='DB') cur = con.cursor() cur.execute("SHOW TABLES") data = "SET FOREIGN_KEY_CHECKS = 0; \n" tables = [] for table in cur.fetchall(): tables.append(table[0]) for table in tables: if table != "fos_user" and table != 'udala': # Begiratu ea udala_id eremua existitzen den cur.execute("SHOW columns from `" + str(table) + "` where field='udala_id' \n") badu = cur.rowcount if badu == 1: data += "-- BADU!! \n \n \n" data += "DELETE FROM `" + str(table) + "` WHERE udala_id=64; \n" cur.execute("SELECT * FROM `" + str(table) + "` WHERE udala_id=64;") else: data += "-- EZ DU !! \n \n" data += "DELETE FROM `" + str(table) + "`; \n" cur.execute("SELECT * FROM `" + str(table) + "`;") for row in cur.fetchall(): data += "INSERT INTO `" + str(table) + "` VALUES(" first = True for field in row: if not first: data += ', ' if (type(field) is long) or (type(field) is int) or (type(field) is float): data += str(field) first = False elif field is None: data += str('NULL') first = False else: data += '"' + str(field).replace("\"", "\'") + '"' first = False data += ");\n" data += "\n\n" data += "SET FOREIGN_KEY_CHECKS = 1; \n" FILE = open("export_zerbikat.sql","w") FILE.writelines(data) FILE.close()
python
from .data_parallel import CustomDetDataParallel from .sync_batchnorm import convert_model
python
import os from setuptools import setup setup(name='NNApp01', version='0.1.0', description='NN Programming Assignment ', author='Dzmitry Buhryk', author_email='[email protected]', license='MIT', install_requires=['flask', 'werkzeug'], tests_require=['requests', 'flask', 'werkzeug', 'urllib3'], packages=['app01', 'test'], include_package_data=True, package_data={ 'app01': ['static/index_t.html', 'resources/Keyword.txt'], 'test': ['resources/*'] }, package_dir={ 'app01': 'app01', 'test': 'test' }, zip_safe=False)
python
from multiprocessing import Process import envServer from distutils.dir_util import copy_tree from random import shuffle import sys sys.path.append("../pyutil") sys.path.append("..") import signal import parseNNArgs import traceback import threading import pickle import shutil import glob import os import random import time import json import math import numpy as np import scipy.ndimage from dqnQNN import DQN from replay_buffer import ReplayBuffer from environment import Environment import logDqn import outDir import tensorflow as tf from tensorflow.python.framework import ops # from tensorflow.python import debug as tf_debug def printT(s): sys.stdout.write(s + '\n') class dqnRunner(): def __init__(self, sess, params, out_dir=None, agentB_sess= None): self.params = params self.sess = sess self.agentB_sess = agentB_sess self.lock = threading.Lock() self.modelStoreIntv = 150 self.bufferStoreIntv = 150 self.annealSteps = params['annealSteps'] self.state_dim = params['pxRes'] if self.params['verbose']: printT("tensorflow version: {}".format(tf.__version__)) # create environment self.env = Environment(sess, params, self) self.numActions = self.env.numActions # load classifier for reward calculation if self.params['classNN'] is not None: with tf.device("/device:CPU:0"): self.rewardClassNet = ClassConvNetEval(self.sess, params) self.env.rewardClassNet = self.rewardClassNet # just gets or resets global_step self.global_step = None variables = tf.get_collection( ops.GraphKeys.GLOBAL_VARIABLES) for v in variables: if "global_step" in v.name: self.global_step = v if self.global_step is None: self.global_step = tf.Variable(0, name='global_step', trainable=False) self.resetGlStep = tf.assign(self.global_step, 0) # load actual dqn self.q = DQN(self.sess, self.params['out_dir'], self.global_step, self.params, self.numActions) self.evalMethods= ["agent","random"] self.evalMethod="agent" self.qAgentB=None if (not self.params['agentB'] is None) and self.params['interEval']: self.qAgentB = DQN(self.agentB_sess, self.params['out_dir'], self.global_step, self.params, self.numActions,agentB=True) self.evalMethod="agentA" self.evalMethods= ["agentA","random", "fixed","agentB"] self.sess.as_default() # replay buffer (size and type) if self.params['replaySz'] is None: self.replayBufferSize = 1000000 else: self.replayBufferSize = self.params['replaySz'] self.replay = ReplayBuffer(self.replayBufferSize) # variables for exploration decay self.action_step = tf.Variable(0, name='action_step', trainable=False, dtype=tf.int32) self.increment_ac_step_op = tf.assign(self.action_step, self.action_step+1) self.global_action_step = tf.Variable(0, name='global_action_step', trainable=False, dtype=tf.int32) self.increment_gac_step_op = tf.assign(self.global_action_step, self.global_action_step+1) self.episode_step = tf.Variable(0, name='episode_step', trainable=False, dtype=tf.int32) self.increment_ep_step_op = tf.assign(self.episode_step, self.episode_step+1) self.resetEpStep = tf.assign(self.episode_step, 0) self.resetAcStep = tf.assign(self.action_step, 0) self.resetGAcStep = tf.assign(self.global_action_step, 0) # save state self.saver = tf.train.Saver(max_to_keep=self.params['keepNewestModels'] ) fn = os.path.join(self.params['out_dir'], "mainLoopTime.txt") self.mainLoopTimeFile = open(fn, "a") fn_ = os.path.join(self.params['out_dir'], "learnLoopTime.txt") self.learnLoopTimeFile = open(fn_, "a") # main function, runs the learning process def run(self): # debugging variables, for tensorboard if self.params['evaluation']: # evaluation episodes, no exploration eval_reward = tf.Variable(0., name="evalReward") eval_reward_op = tf.summary.scalar("Eval-Reward", eval_reward) eval_disc_reward = tf.Variable(0., name="evalDiscReward") eval_disc_reward_op = tf.summary.scalar("Eval-Reward_discounted", eval_disc_reward) eval_stepCount = tf.Variable(0., name="evalStepCount") eval_stepCount_op = tf.summary.scalar("Eval-StepCount", eval_stepCount) eval_sum_vars = [eval_reward, eval_disc_reward, eval_stepCount] eval_sum_op = tf.summary.merge([eval_reward_op, eval_disc_reward_op, eval_stepCount_op]) # (discounted) reward per episode episode_reward = tf.Variable(0., name="episodeReward") episode_reward_op = tf.summary.scalar("Reward", episode_reward) episode_disc_reward = tf.Variable(0., name="episodeDiscReward") episode_disc_reward_op = tf.summary.scalar("Reward_discounted", episode_disc_reward) # average (max q) episode_ave_max_q = tf.Variable(0., name='epsideAvgMaxQ') episode_ave_max_q_op = tf.summary.scalar("Qmax_Value", episode_ave_max_q) # number of steps for episode stepCount = tf.Variable(0., name="stepCount") stepCount_op = tf.summary.scalar("StepCount", stepCount) # number of learning iterations(total number of mini batches so far) global_step_op = tf.summary.scalar("GlobalStep", self.global_step) # current exploration epsilon epsilonVar = tf.Variable(0., name="epsilon") epsilonVar_op = tf.summary.scalar("Epsilon", epsilonVar) summary_vars = [episode_reward, episode_disc_reward, episode_ave_max_q, stepCount, epsilonVar] summary_ops = tf.summary.merge([episode_reward_op, episode_disc_reward_op, episode_ave_max_q_op, stepCount_op, epsilonVar_op]) self.writer = tf.summary.FileWriter(os.path.join(self.params['out_dir'], "train"), self.sess.graph) self.action_vars = [] self.action_ops = [] for a in range(self.numActions): action = tf.Variable(0., name="qval_action_" + str(a)) action_op = tf.summary.scalar("Q-Value_Action_"+str(a), action) self.action_vars.append(action) self.action_ops.append(action_op) self.action_ops = tf.summary.merge(self.action_ops) # initialize all tensorflow variables # and finalize graph (cannot be modified anymore) self.sess.run(tf.initialize_all_variables()) self.sess.graph.finalize() # for debugging, variable values before and after if self.params['veryveryverbose']: variables = tf.get_collection( ops.GraphKeys.GLOBAL_VARIABLES, scope="DQN") for v in variables: if v.name.endswith("conv1_2/weights:0"): print(v.name, self.sess.run(v)) # do we want to use pretrained weights for the dqn # from the classifier or a pretrained agent? if self.params['resume']: pass elif self.params['useClassNN']: print("restoring dqn net from classNN: {}".format( self.params['classNN'])) if "ckpt" in self.params['classNN']: self.q.saver.restore( self.sess, self.params['classNN']) else: self.q.saver.restore( self.sess, tf.train.latest_checkpoint(self.params['classNN'])) elif self.params['dqnNN'] is not None: print("restoring dqn net from dqnNN: {}".format( self.params['dqnNN'])) if "ckpt" in self.params['dqnNN']: self.q.saver.restore( self.sess, self.params['dqnNN']) else: self.q.saver.restore( self.sess, tf.train.latest_checkpoint(self.params['dqnNN'])) # main network weights are set, now run target init op self.sess.run(self.q.target_nn_init_op) if (self.params['agentB'] is not None) and self.params['interEval']: print("restoring agentB net from {}".format( self.params['agentB'])) if "ckpt" in self.params['agentB']: self.qAgentB.saver.restore( self.agentB_sess, self.params['agentB']) else: self.qAgentB.saver.restore( self.agentB_sess, tf.train.latest_checkpoint(self.params['agentB'])) # for debugging, variable values before and after if self.params['veryveryverbose']: variables = tf.get_collection( ops.GraphKeys.GLOBAL_VARIABLES, scope="DQN") for v in variables: if v.name.endswith("conv1_2/weights:0"): print(v.name, self.sess.run(v)) print("initialize classifier network") if self.params['classNN'] is not None: print("restoring reward class net from classNN: {}".format( self.params['classNN'])) if "ckpt" in self.params['classNN']: self.rewardClassNet.saver.restore( self.sess, self.params['classNN']) else: self.rewardClassNet.saver.restore( self.sess, tf.train.latest_checkpoint(self.params['classNN'])) # load previously trained model if not self.params['resume'] and self.params['loadModel']: if "ckpt" in self.params['loadModel']: self.saver.restore( self.sess, self.params['loadModel']) else: self.saver.restore( self.sess, tf.train.latest_checkpoint(self.params['loadModel'])) printT("Model {} restored.".format(self.params['loadModel'])) # load previously filled replay buffer if not self.params['resume'] and self.params['loadReplay'] is not None: self.replay.load(self.params['loadReplay']) printT("Buffer {} restored.".format(self.params['loadReplay'])) # resume old run if self.params['resume']: self.saver.restore(sess, tf.train.latest_checkpoint( os.path.join(self.params['out_dir'], "models"))) printT("Model {} restored.".format(tf.train.latest_checkpoint( os.path.join(self.params['out_dir'], "models")))) # if not self.params['interEval'] : self.replay.load(os.path.join(self.params['out_dir'], "replayBuffer")) printT("Buffer {} restored.".format(self.params['out_dir'])) else: self.sess.run(self.resetGlStep) # start immediately for interactive test runs try: if os.environ['IS_INTERACTIVE'] == 'true' \ and \ not self.params['sleep']: self.params['startLearning'] = 1 except KeyError: pass # exploration variables self.startEpsilon = self.params['epsilonStart'] self.endEpsilon = self.params['epsilonStop'] self.epsilon = sess.run(epsilonVar) # evaluation/learning/exploration self.evalEp = False self.learning = True self.pauseLearning = False self.pauseExploring = False self.stopLearning = False self.stopExploring = False self.qValFileExpl = open(os.path.join(self.params['out_dir'], "qValExpl.txt"), "a") self.qValFileEval = open(os.path.join(self.params['out_dir'], "qValEval.txt"), "a") self.actionLogFile = open(os.path.join(self.params['out_dir'], "actionLog.txt"), "a") self.episodeLogFile = open(os.path.join(self.params['out_dir'], "episodeLog.txt"), "a") self.episodeEvalLogFile = open(os.path.join(self.params['out_dir'], "episodeEvalLog.txt"), "a") # remove stop/termination file if os.path.exists("stop"): os.remove(os.path.join(params['out_dir'], "stop")) # reset if self.params['onlyLearn']: sess.run(self.resetEpStep) sess.run(self.resetAcStep) if self.params['onlyLearn']: self.learn() exit() # multi-threaded # learning and exploration threads act independently? if self.params['async']: t = threading.Thread(target=self.learnWrap) t.daemon = True t.start() if self.params['evaluation']: # evaluate this often evalEpReward = 0 evalEpDiscReward = 0 evalEpStepCount = 0 evalIntv = 25 evalCnt = 40 evalOc = 0 # start exploration self.episode = sess.run(self.episode_step) if self.params['verbose']: printT("start Episode: {}".format(self.episode)) acs = sess.run(self.action_step) if self.params['verbose']: printT("start action step: {}".format(acs)) self.globActStep = acs gacs = sess.run(self.global_action_step) if self.params['verbose']: printT("start global action step: {}".format(gacs)) self.gac = gacs while self.episode<self.params['numEpisodes']: self.episode = sess.run(self.episode_step) sess.run(self.increment_ep_step_op) if self.params['verbose']: print ("STARTING NEW EPISODE:"+ str(self.episode)) # do we want to explore/gather samples? while self.stopExploring: time.sleep(1) # evaluation episode (no exploration?) if self.params['evaluation'] and self.episode % (evalIntv+evalCnt) < evalCnt: self.evalEp = True if self.episode % (evalIntv+evalCnt) == 0: if self.params['verbose']: printT("Start Eval Episodes!") evalOc += 1 elif self.params['onlyLearn'] or \ (self.params['limitExploring'] is not None \ and self.replay.size() >= self.params['limitExploring']): self.pauseExploring = True self.evalEp = False else: self.evalEp = False # reset simulation/episode state terminal = False ep_reward = 0 ep_disc_reward = 0 ep_ave_max_q = 0 self.inEpStep = 0 if self.params['interEval']: self.evalMethod = self.evalMethods[self.episode % (len(self.evalMethods))] # reset environment # set start state and allowed actions nextState, allowedActions, terminal = self.env.reset(self.episode, self.evalEp, globActStep=self.globActStep) allowedV=self.calcAllowedActionsVector(allowedActions) if nextState is None: # unable to get state # restart with new episode continue lastTime=time.time() # step forward until terminal while not terminal: if os.path.exists(os.path.join(params['out_dir'], "stop")): self.terminate() if self.params['async']: if not t.isAlive(): printT("alive {}".format(t.isAlive())) printT("Exception in user code:") printT('-'*60) traceback.print_exc(file=sys.stdout) printT('-'*60) sys.stdout.flush() t.join(timeout=None) os._exit(-1) # state <- nextstate state = nextState # choose action # random or according to dqn (depending on epsilon) self.inEpStep += 1 if not self.evalEp: sess.run(self.increment_ac_step_op) self.globActStep += 1 sess.run(self.increment_gac_step_op) self.gac += 1 epsStep=max(0,self.globActStep-(self.params['startLearning'] /4.0) ) tmp_step = min(epsStep, self.annealSteps) self.epsilon = (self.startEpsilon - self.endEpsilon) * \ (1 - tmp_step / self.annealSteps) + \ self.endEpsilon action = self.getActionID(state, allowedV) if self.evalMethod=="fixed": action=self.params['fixedAction'] # We choose a random action in these cases rnm=np.random.rand() if self.params['veryveryverbose']: printT("rnm:"+str(rnm)+ " self.epsilon:"+ str(self.epsilon)+" |self.params['randomEps']:"+str(self.params['randomEps'])+" e:"+str(self.episode)) if (self.evalMethod == "random") or (not self.pauseExploring) and (not self.evalEp) and (self.episode < self.params['randomEps'] or rnm < self.epsilon): if self.params['verbose']: printT("randomly selecting action") action = np.random.choice(allowedActions) if self.params['verbose']: printT("\nEpisode: {}, Step: {}, Time:{}, Next action (e-greedy {}): {}".format( self.episode, self.globActStep, time.ctime(), self.epsilon, action)) else: # We let the DQN choose the action if self.params['verbose']: printT("Greedyly selecting action:") if self.params['verbose']: printT("\nEpisode: {}, Step: {}, Time:{}, Next action: {}".format( self.episode, self.globActStep, time.ctime(), action)) # perform selected action and # get new state, reward, and termination-info nextState, reward, terminal, terminalP, allowedActions = self.env.act(action, self.episode, self.inEpStep , self.globActStep, self.evalEp) if self.params['veryveryverbose']: print('ACTIONLOG:',str(self.globActStep),str(self.episode), str(self.inEpStep), action, self.evalEp, terminal, terminalP, reward, self.epsilon, self.evalMethod) self.actionLogFile.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(time.time(), str(self.globActStep),str(self.episode), str(self.inEpStep), action, self.evalEp, terminal, terminalP, reward, self.epsilon, self.evalMethod)) self.actionLogFile.flush() allowedV=self.calcAllowedActionsVector(allowedActions) # accumulate episode reward ep_disc_reward += pow(self.params['gamma'], self.inEpStep-1) * reward ep_reward += reward if (self.evalMethod == "agent") and not self.evalEp and not self.pauseExploring: self.insertSamples(np.copy(state), action, reward, terminal, np.copy(nextState), np.copy(allowedV)) # do logging inside of one episode # we do not want to lose any data if self.params['storeModel'] and \ ((self.globActStep+1) % self.modelStoreIntv) == 0: logDqn.logModel(self) if self.params['storeBuffer'] and \ ((self.globActStep+1) % self.bufferStoreIntv) == 0: logDqn.logBuffer(self) # if training/exploration not decoupled, do one learning step if not self.params['async']: for i in range(8): self.learn() sys.stdout.flush() cTime=time.time() usedTime=cTime-lastTime # do we want to pause exploration thread? # (to simulate slower stm) if not self.pauseExploring and \ not self.evalEp and \ self.params['sleep'] and \ self.params['async'] and \ (self.replay.size() >= self.params['startLearning']) and \ (self.replay.size() >= self.params['miniBatchSize']): if self.params['sleepA'] is not None: sleepingTime=self.params['sleepA'] - usedTime if sleepingTime >0: time.sleep(sleepingTime) else: time.sleep(60) cTime=time.time() usedTime=cTime-lastTime lastTime=cTime self.mainLoopTimeFile.write(str(cTime)+" "+str(usedTime)+ "\n") self.mainLoopTimeFile.flush() # terminate episode after x steps # even if no good state has been reached if self.inEpStep == self.params['stepsTillTerm']: self.env.switchApproachArea() break # end episode # otherwise store episode summaries and print log if self.evalEp: evalEpReward += ep_reward evalEpDiscReward += ep_disc_reward evalEpStepCount += self.inEpStep if self.episode % (evalIntv+evalCnt) == (evalCnt-1): summary_str = self.sess.run(eval_sum_op, feed_dict={ eval_sum_vars[0]: evalEpReward/float(evalCnt), eval_sum_vars[1]: evalEpDiscReward/float(evalCnt), eval_sum_vars[2]: evalEpStepCount/float(evalCnt) }) self.writer.add_summary(summary_str, evalOc-1) evalEpReward = 0.0 evalEpDiscReward = 0.0 evalEpStepCount = 0.0 if self.params['veryveryverbose']: printT("step count-eval: {}".format(self.inEpStep)) if self.params['veryverbose']: printT('Time: {} | Reward: {} | Discounted Reward: {} | Eval-Episode {}'. format(time.ctime(), ep_reward, ep_disc_reward, self.episode)) self.episodeEvalLogFile.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(time.time(), self.episode, ep_reward, ep_disc_reward, self.inEpStep, self.epsilon)) self.episodeEvalLogFile.flush() else: if self.params['evaluation']: et = self.episode - (evalOc * evalCnt) else: et = self.episode summary_str = self.sess.run(summary_ops, feed_dict={ summary_vars[0]: ep_reward, summary_vars[1]: ep_disc_reward, summary_vars[2]: ep_ave_max_q / float(max(self.inEpStep,1)), summary_vars[3]: self.inEpStep, summary_vars[4]: self.epsilon }) self.writer.add_summary(summary_str, et) self.writer.flush() if self.params['veryveryverbose']: printT("step count: {}".format(self.inEpStep)) if self.params['veryveryverbose']: printT('Time: {} | Reward: {} | Discounted Reward: {} | Episode {} | Buffersize: {}'. format(time.ctime(), ep_reward, ep_disc_reward, self.episode, self.replay.size())) self.episodeLogFile.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(time.time(), self.episode, ep_reward, ep_disc_reward, self.inEpStep, self.epsilon, self.evalMethod)) self.episodeLogFile.flush() # log some stuff if self.params['storeModel'] and \ ((self.episode+1) % self.modelStoreIntv) == 0: logDqn.logModel(self) if self.params['storeBuffer'] and \ ((self.episode+1) % self.bufferStoreIntv) == 0: logDqn.logBuffer(self) statsIntv = 100 sys.stdout.flush() # stop learning after last episode self.learning = False sys.stdout.flush() def terminate(self): printT("terminating...........") sys.stdout.flush() self.logStuff() sys.stdout.flush() printT("EXIT NOW!") sys.stdout.flush() exit(0) def learnWrap(self): try: self.learn() except: printT("learn wrap failed") printT("Exception in user code:") printT('-'*60) traceback.print_exc(file=sys.stdout) printT('-'*60) sys.stdout.flush() os._exit(-1) def learn(self): y_batch = np.zeros((self.params['miniBatchSize'], 1)) tmp = np.zeros((self.params['miniBatchSize'], self.numActions)) lastTime=time.time() count=0 while self.learning: # Throtteling to allow the other thread a chance count+=1 cTime=time.time() loopTime=cTime-lastTime lastTime=cTime self.learnLoopTimeFile.write(str(cTime)+" "+str(loopTime)+ "\n") self.learnLoopTimeFile.flush() if self.stopLearning: time.sleep(5.0) continue if self.replay.size() < self.params['startLearning'] or \ self.replay.size() < self.params['miniBatchSize'] or \ self.evalEp: if self.params['async']: time.sleep(5.0) continue else: return s_batch, a_batch, r_batch, t_batch, ns_batch, allowed_batch = \ self.replay.sample_batch(self.params['miniBatchSize']) if self.params['doubleDQN']: qValsNewState = self.estimate_ddqn(ns_batch, allowed_batch, p=False, mem=tmp) else: qValsNewState = self.predict_target_nn(ns_batch) for i in range(self.params['miniBatchSize']): if t_batch[i]: y_batch[i] = r_batch[i] else: y_batch[i] = r_batch[i] + self.params['gamma'] * qValsNewState[i] gS, qs, delta = self.update(s_batch, a_batch, y_batch) if self.params['noHardResetDQN']: self.update_targets() elif (gS+1) % self.params['resetFreq'] == 0: self.update_targets() if not self.params['async']: return if self.params['onlyLearn']: if (gS+1) % 1000 == 0: logDqn.logModel(self) # Returns vector of length 'self.numActions' containing # Zeros for allowed actions # '-inf' for forbidden actions def calcAllowedActionsVector(self, allowedActions): allowedV=np.zeros(shape=(self.numActions)) allowedV[:]=float("-inf") # init all actions as fobidden for i in allowedActions: allowedV[i]=0 # mark actions as allowed return allowedV # get action id for max q def getActionID(self, state, allowedActionsV): if self.params['interEval'] and self.evalMethod == 'agentB': if self.params['verbose']: print("PREDICTING WITH AGENTB:") qs = self.qAgentB.run_predict(state) print(qs) else: if self.params['verbose']: print("PREDICTING WITH AGENT:") qs = self.q.run_predict(state) if self.evalEp: self.qValFileEval.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(time.time(), str(self.globActStep),str(self.episode), str(self.inEpStep), qs[0], allowedActionsV)) self.qValFileEval.flush() else: self.qValFileExpl.write("{}\t{}\t{}\t{}\t{}\t{}\n".format(time.time(), str(self.globActStep),str(self.episode), str(self.inEpStep), qs[0], allowedActionsV)) self.qValFileExpl.flush() var_dict = {} for a in range(self.numActions): var_dict[self.action_vars[a]] = qs[0][a] summary_str = self.sess.run(self.action_ops, feed_dict=var_dict) self.writer.add_summary(summary_str, self.gac) self.writer.flush() printT("Q-values:" + str(qs)) qs = qs + allowedActionsV return np.argmax(qs, axis=1)[0] # update dqn main network def update(self, states, actionIDs, targets): step, out, delta, loss = self.q.run_train(states, actionIDs, targets) # network diverged? if np.isnan(loss): printT("ABORT: NaN") sys.stdout.flush() os._exit(-1) return step, out, delta # update dqn target network def update_targets(self): self.q.run_update_target_nn() # estimate q values using double dqn # get values of target network for actions where main network is max def estimate_ddqn(self, states, allowedActionsV, p=False, mem=None): qs = self.q.run_predict(states) if p: if self.params['veryveryverbose']: print("allowedActionsV.shape"+ str(allowedActionsV.shape)) print("qs.shape"+ str(qs.shape)) qs+=allowedActionsV # add '-inf' to the q values of forbidden actions if p: if self.params['veryveryverbose']: print(states) print(qs.shape) print(states.shape) printT("qs: {}".format(qs)) maxA = np.argmax(qs, axis=1) qs = self.q.run_predict_target(states) mem.fill(0) mem[np.arange(maxA.size), maxA] = 1 mem = mem * qs mem = np.sum(mem, axis=1) return mem # predict dqns def predict_target_nn(self, states): qs = self.q.run_predict_target(states) return np.max(qs, axis=1) def predict_nn(self, states): qs = self.q.run_predict(states) return np.max(qs, axis=1) # insert samples into replay buffer def insertSamples(self, stateScaled, action, reward, terminal, newStateScaled, allowedActionsV): stateScaled.shape = (stateScaled.shape[1], stateScaled.shape[2], stateScaled.shape[3]) newStateScaled.shape = (newStateScaled.shape[1], newStateScaled.shape[2], newStateScaled.shape[3]) states=(stateScaled,np.rot90(stateScaled, 2),np.fliplr(stateScaled), np.flipud(stateScaled) ) newStates=(newStateScaled,np.rot90(newStateScaled, 2),np.fliplr(newStateScaled), np.flipud(newStateScaled) ) if(self.params['fullAugmentation']): self.lock.acquire() for i in range(4): for j in range(4): self.replay.add(states[i], action, reward, terminal, allowedActionsV, newStates[j]) self.lock.release() else: self.lock.acquire() self.replay.add(stateScaled, action, reward, terminal, allowedActionsV, newStateScaled) self.replay.add( np.ascontiguousarray(np.rot90(stateScaled, 2)), action, reward, terminal, allowedActionsV, np.ascontiguousarray(np.rot90(newStateScaled, 2))) self.replay.add( np.ascontiguousarray(np.fliplr(stateScaled)), action, reward, terminal, allowedActionsV, np.ascontiguousarray(np.fliplr(newStateScaled))) self.replay.add( np.ascontiguousarray(np.flipud(stateScaled)), action, reward, terminal, allowedActionsV, np.ascontiguousarray(np.flipud(newStateScaled))) self.lock.release() # if we want to stop if buffer is full # or limit exploration if self.pauseExploring == False and \ self.replay.size() == self.replayBufferSize: if self.params['termAtFull']: printT("Buffer FULL!") self.logStuff() self.pauseExploring = True # exit() elif self.pauseExploring == False and \ self.params['limitExploring'] is not None and \ self.replay.size() >= self.params['limitExploring']: if self.params['termAtFull']: printT("Buffer FULL!") self.logStuff() self.pauseExploring = True def logStuff(self): logDqn.logModel(self) logDqn.logBuffer(self) if __name__ == "__main__": np.set_printoptions(linewidth=np.inf) # load parameters from command line and config file params = parseNNArgs.parseArgs() if params['onlyLearn'] and \ not params['loadReplay'] and \ not params['loadModel']: print("invalid parameters! onlyLearn only avaiable in combination with loadReplay and loadModel") exit(-232) params['type'] = "agent" # resuming previous run? if params['resume']: out_dir = os.getcwd() print("resuming... {}".format(out_dir)) newRun = False else: out_dir = outDir.setOutDir(params) # copy all scripts to out_dir (for potential later reuse) copy_tree(os.getcwd(), out_dir) os.makedirs(os.path.join(out_dir, "models")) os.makedirs(os.path.join(out_dir, "imgs")) os.makedirs(os.path.join(out_dir, "imgsCollect")) print("new start... {}".format(out_dir)) config = json.dumps(params) with open(os.path.join(out_dir, "config"), 'w') as f: f.write(config) newRun = True params['out_dir'] = out_dir print("Results/Summaries/Logs will be written to: {}\n".format(out_dir)) #pipe log to file if not in interactive mode interactive=False try: if os.environ['IS_INTERACTIVE'] == 'true': interactive=True except KeyError: pass if not interactive: print("LogFile="+ os.path.join(out_dir, "log")) sys.stdout.flush() logFile = open(os.path.join(out_dir, "log"), 'a') sys.stdout = sys.stderr = logFile if params['startServer']: p = Process(target=envServer.main, args=(params,)) p.start() time.sleep(15) # add paths to load classifier later on (reward calculation) if params['classNN']: if "ckpt" not in params['classNN']: sys.path.insert(1, params['classNN']) else: sys.path.insert(1, os.path.dirname(params['classNN'])) try: from classifierEval import ClassConvNetEval except: print("Failed to import form 'classifierEval.'") print("Maybe the path to your classifier net is specified wrong?") print(str(os.path.dirname(params['classNN']))) exit(-1) # start tensorflow session and start learning if params['noGPU']: tfconfig = tf.ConfigProto( device_count = {'GPU': 0} ) else: tfconfig = None if params['agentB'] is not None: agentB_sess_ = tf.Session() else: agentB_sess_= None with tf.Session(config=tfconfig) as sess: rl = dqnRunner(sess, params, out_dir=out_dir, agentB_sess = agentB_sess_) rl.run()
python
#!/usr/bin/env python3 #-*- encoding: UTF-8 -*- def main(): try: nota1 = float(input("1ยช nota: ")) nota2 = float(input("2ยช nota: ")) except: print("Apenas valores numรฉricos devem ser informados!") if(nota1 < 0 or nota1 > 10 or nota2 < 0 or nota2 > 10): print("Notas invรกlidas!") else: print(f"1ยช Nota: {nota1}\n2ยช Nota: {nota2}\nMรฉdia aritmรฉtica simples: {(nota1 + nota2)/2}") if(__name__ == "__main__"): main()
python
from . import util ut = util.Util() reload(util) class ViewerMarlin(): def open_file(self, path): with open(path) as f: l = f.readlines() # print(type(l)) # print(len(l)) # print(l) return l def get_value_move(self, str_): ### Split Elements ### Remove n str_.replace("\n", "") ### Remove Comments if ";" in str_: str_rm_comment = str_.split(";") new_str = str_rm_comment[0] else: new_str = str_ ### Gcode (per Line) # print(new_str) ### Split Space elements = new_str.split() ### init xx = None yy = None zz = None ee = None for i in xrange(len(elements)): elm = elements[i] ### Get Value if ("X" in elm): tmp_x = elm.split("X") xx = float(tmp_x[1]) elif ("Y" in elm): tmp_y = elm.split("Y") yy = float(tmp_y[1]) elif ("Z" in elm): tmp_z = elm.split("Z") zz = float(tmp_z[1]) elif ("E" in elm): tmp_e = elm.split("E") ee = float(tmp_e[1]) return [xx, yy, zz, ee] def gcode_operate_move(self, gcode_line): none_list = [None, None, None, None] ### Move if ("G0" in gcode_line) or \ ("G1" in gcode_line) or \ ("G00" in gcode_line) or \ ("G01" in gcode_line) or \ ("G92 E0" in gcode_line): ### get position return self.get_value_move(gcode_line) ### Commment Out elif (";" in gcode_line[0]) or (gcode_line == "\n"): return none_list ### Setting G elif ("G4" in gcode_line) or \ ("G04" in gcode_line) or \ ("G21" in gcode_line) or \ ("G28" in gcode_line) or \ ("G90" in gcode_line) or \ ("G91" in gcode_line) or \ ("G92" in gcode_line): return none_list ### Setting M elif ("M82" in gcode_line) or \ ("M84" in gcode_line) or \ ("M104" in gcode_line) or \ ("M106" in gcode_line) or \ ("M107" in gcode_line) or \ ("M109" in gcode_line) or \ ("M140" in gcode_line) or \ ("M190" in gcode_line) or \ ("M204" in gcode_line) or \ ("M205" in gcode_line): return none_list ### Setting T elif ("T0" in gcode_line) or \ ("T1" in gcode_line): return none_list else: # return none_list return "bug!" def gcode_to_array(self, path): ### open gcode gcode = self.open_file(path) ### Get Vaules from gcode values = [] for i in xrange(len(gcode)): gcode_line = gcode[i] ### XYZE elements = self.gcode_operate_move(gcode_line) ## DEBUG ALL # print(i, gcode_line) ### DEBUG bug if (elements == "bug!"): print(i, gcode_line) ## DEBUG values.append(elements) ### Padding Previous Value(None) values_zip = ut.zip_matrix(values) # print(len(values_zip)) new_values = [] for j in xrange(len(values_zip)): list_ = values_zip[j] list_pad = ut.padding_previous_value(list_) new_values.append(list_pad) gcode_values = ut.zip_matrix(new_values) # print(len(values)) # print(len(gcode_values), len(gcode_values[0])) return gcode_values def segment_extrude(self, xyze): ### Segment Print / Travel ### https://docs.google.com/spreadsheets/d/1S4SQ-NT09Nh8sb3Lg6FSauKB1rZPMwLSDjvnrKerXFs/edit?usp=sharing array_seg = [] list_seg = [] for j in xrange(len(xyze)): xxx, yyy, zzz, eee = xyze[j] item = [xxx, yyy, zzz] # print(j) # print(j, xyze[j]) ### Index[0] if (j == 0): x1, y1, z1, e1 = xyze[j] x2, y2, z2, e2 = xyze[j + 1] bool_b = e1 < e2 if (bool_b == True): list_seg = [] list_seg.append(item) ### Index[0] - Index[Last - 1] elif (j > 0) and (j < (len(xyze) - 1)): x0, y0, z0, e0 = xyze[j - 1] x1, y1, z1, e1 = xyze[j] x2, y2, z2, e2 = xyze[j + 1] bool_a = e0 < e1 bool_b = e1 < e2 if (bool_a == False) and (bool_b == True): list_seg = [] list_seg.append(item) elif (bool_a == True) and (bool_b == True): list_seg.append(item) elif (bool_a == True) and (bool_b == False): list_seg.append(item) array_seg.append(list_seg) elif (bool_a == False) and (bool_b == False): pass else: print("Error!!") ### Index[Last] elif (j == (len(xyze) - 1)): x0, y0, z0, e0 = xyze[j - 1] x1, y1, z1, e1 = xyze[j] bool_a = e0 < e1 if (bool_a == True): list_seg.append(item) array_seg.append(list_seg) # print(array_out) return array_seg def remove_invalid_polylines(self, array_seg): ### Remove Invalid Polylines (Remove Same Element as the Previous One) layers = [] for k in xrange(len(array_seg)): tmp_layer = array_seg[k] tmp_removed = ut.remove_previous_elements(tmp_layer) if len(tmp_removed) != 1: layers.append(tmp_removed) return layers def draw_path(self, values_4): ### Remove Same Element as the Previous One xyze = ut.remove_previous_elements(values_4) ### print(len(values_4), len(xyze)) ### Segment Print / Travel array_seg = self.segment_extrude(xyze) ### Remove Invalid Polylines (Remove Same Element as the Previous One) layers = self.remove_invalid_polylines(array_seg) """ ### Draw All Path pts = [] for i in xrange(len(xyze)): x, y, z, e = values_4[i] pt = [x, y, z] pts.append(pt) """ return layers
python
#!/usr/bin/env python # -*- coding: utf-8 -*- # # This file is part of tofbot, a friendly IRC bot. # You may redistribute it under the Simplified BSD License. # If we meet some day, and you think this stuff is worth it, # you can buy us a beer in return. # # Copyright (c) 2011,2015 Etienne Millon <[email protected]> # Martin Kirchgessner <[email protected]> # Nicolas Dumazet <[email protected]> # Quentin Sabah <[email protected]> # Christophe-Marie Duquesne <[email protected]> """ ./bot.py [options] [legacy-arguments] Legacy-arguments: NICK CHANNEL [CHANNEL...] Don't prepend a # to chan names Tofbot will connect to freenode.net """ from datetime import datetime from irc import Bot import time import random import sys import os import plugins import types from toflib import * from toflib import _simple_dispatch, _simple_conf_dispatch, urls_in import re from optparse import OptionParser import json import atexit import socket import traceback import plugins.euler import plugins.lolrate import plugins.donnezmoi import plugins.jokes import plugins.twitter import plugins.dassin import plugins.eightball import plugins.sed import plugins.rick import plugins.expand import plugins.like import plugins.ponce import plugins.lag random.seed() class AutosaveEvent(CronEvent): def __init__(self, bot, filename): CronEvent.__init__(self, None) self.filename = filename self.bot = bot def fire(self): self.bot.save(self.filename) class Tofbot(Bot): # Those attributes are published and can be changed by irc users # value is a str to object converter. It could do sanitization: # if value is incorrect, raise ValueError _mutable_attributes = { "TGtime":int, "memoryDepth":int } def __init__(self, nick=None, name=None, channels=None, password=None, debug=True): Bot.__init__(self, nick, name, channels, password) self.joined = False self.autoTofadeThreshold = 98 self.riddleMaxDist = 2 self.debug = debug self.TGtime = 5 self.pings = {} self.memoryDepth = 20 self.lolRateDepth = 8 self.msgMemory = [] self.cron = Cron() self.plugins = self.load_plugins() self.startMsgs = [] self.msgHandled = False def run(self, host=None): if host == None and not hasattr(self,'host'): raise Exception("run: no host set or given") if self.nick == None: raise Exception("run: no nick set") if self.name == None: raise Exception("run: no name set") self.host = host or self.host Bot.run(self, self.host) def load_plugins(self): d = os.path.dirname(__file__) plugindir = os.path.join(d, 'plugins') plugin_instances = {} for m in dir(plugins): if type(getattr(plugins,m)) != types.ModuleType: continue plugin = getattr(plugins, m) for n in dir(plugin): c = getattr(plugin, n) if type(c) not in [types.ClassType, types.TypeType]: continue name = c.__name__ if name.startswith('Plugin'): instance = c(self) plugin_name = name[6:].lower() plugin_instances[plugin_name] = instance return plugin_instances # line-feed-safe def msg(self, chan, msg): self.msgHandled = True for m in msg.split("\n"): Bot.msg(self, chan, m) def log(self, msg): if self.debug: print(msg) def try_join(self, args): if (args[0] in ['End of /MOTD command.', "This server was created ... I don't know"] ): for chan in self.channels: self.write(('JOIN', chan)) self.joined = True def dispatch(self, origin, args): self.log("o=%s n=%s a=%s" % (origin.sender, origin.nick, args)) is_config = False senderNick = origin.nick commandType = args[1] # if command type is 'BOTCONFIG', bypass the try_join # because we are configuring the bot before any # connection. if commandType != 'BOTCONFIG': if not self.joined: self.try_join(args) return else: is_config = 1 args.remove('BOTCONFIG') commandType = args[1] if commandType == 'JOIN': for m in self.startMsgs: self.msg(self.channels[0], m) self.startMsgs = [] for p in self.plugins.values(): p.on_join(args[0], senderNick) elif commandType == 'KICK' and args[3] == self.nick: reason = args[0] chan = args[2] self.write(('JOIN', chan)) for p in self.plugins.values(): p.on_kick(chan, reason) elif commandType == 'PRIVMSG': msg_text = args[0] msg = msg_text.split(" ") cmd = msg[0] chan = args[2] self.pings[senderNick] = datetime.now() if is_config == False: self.cron.tick() if len(cmd) == 0: return urls = urls_in(msg_text) self.msgHandled = False # We only allow one plugin to answer, so we trigger them # in random order for p in self.plugins.values(): if not self.msgHandled: p.handle_msg(msg_text, chan, senderNick) for url in urls: p.on_url(url) if chan == self.channels[0] and cmd[0] != '!': self.msgMemory.append("<" + senderNick + "> " + msg_text) if len(self.msgMemory) > self.memoryDepth: del self.msgMemory[0] if len(cmd) == 0 or cmd[0] != '!': return cmd = cmd[1:] chan = None if len(self.channels) == 0: chan = 'config' else: chan = self.channels[0] if cmd in _simple_dispatch: act = self.find_cmd_action("cmd_" + cmd) act(chan, msg[1:], senderNick) elif is_config and (cmd in _simple_conf_dispatch): act = self.find_cmd_action("confcmd_" + cmd) act(chan, msg[1:], senderNick) elif cmd == 'context': self.send_context(senderNick) elif cmd == 'help': self.send_help(senderNick) elif commandType == 'PING': self.log('PING received in bot.py') elif commandType == 'ERROR': traceback.print_exc(file=sys.stdout) else: # Unknown command type self.log('Unknown command type : %s' % commandType) def find_cmd_action(self, cmd_name): targets = self.plugins.values() targets.insert(0, self) for t in targets: if (hasattr(t, cmd_name)): action = getattr(t, cmd_name) return action def nop(self, chan, args): pass return nop def safe_getattr(self, key): if key not in self._mutable_attributes: return None if not hasattr(self, key): return "(None)" else: return str(getattr(self, key)) def safe_setattr(self, key, value): try: converter = self._mutable_attributes.get(key) if converter is None: return False value = converter(value) setattr(self, key, value) return True except ValueError: pass @confcmd(1) def confcmd_chan(self, chan, args): new_chan = args[0] if self.channels.count(new_chan) == 0: self.channels.append(new_chan) @confcmd(1) def confcmd_server(self, chan, args): host = args[0].strip() self.host = host @confcmd(1) def confcmd_port(self, chan, args): port = int(args[0].strip()) self.port = port @confcmd(1) def confcmd_nick(self, chan, args): nick = args[0].strip() self.nick = nick self.user = nick @confcmd(1) def confcmd_name(self, chan, args): name = args[0].strip() self.name = name @confcmd(1) def confcmd_loadchanges(self, chan, args): filename = args[0].strip() if not os.path.exists(filename): return with open(filename) as f: changes = f.readlines() self.startMsgs += changes @cmd(1) def cmd_ping(self, chan, args): "Find when X was last online" who = args[0] if who in self.pings: self.msg(chan, "Last message from %s was on %s (btw my local time is %s)" % (who, self.pings[who].__str__(), datetime.now().__str__() )) else: self.msg(chan, "I havn't seen any message from " + who) @cmd(1) def cmd_get(self, chan, args): "Retrieve a configuration variable's value" key = args[0] value = self.safe_getattr(key) if value is None: self.msg(chan, "Ne touche pas ร  mes parties privรฉes !") else: self.msg(chan, "%s = %s" % (key, value)) @cmd(2) def cmd_set(self, chan, args): "Set a configuration variable's value" key = args[0] value = args[1] ok = self.safe_setattr(key, value) if not ok: self.msg(chan, "N'รฉcris pas sur mes parties privรฉes !") def send_context(self, to): "Gives you last messages from the channel" intro = "Last " + str(len(self.msgMemory)) + " messages sent on " + self.channels[0] + " :" self.msg(to, intro) for msg in self.msgMemory: self.msg(to, msg) def send_help(self, to): "Show this help message" maxlen = 1 + max(map(len, _simple_dispatch)) self.msg(to, "Commands should be entered in the channel or by private message") self.msg(to, '%*s - %s' % (maxlen, "!help", self.send_help.__doc__)) self.msg(to, '%*s - %s' % (maxlen, "!context", self.send_context.__doc__)) for cmd in _simple_dispatch: f = self.find_cmd_action("cmd_" + cmd) self.msg(to, '%*s - %s' % (maxlen, "!"+cmd, f.__doc__)) self.msg(to, "you can also !get or !set " + ", ".join(self._mutable_attributes.keys())) self.msg(to, "If random-tofades are boring you, enter 'TG " + self.nick + "' (but can be cancelled by GG " + self.nick + ")") def load(self, filename): try: with open(filename) as f: state = json.load(f) if state['version'] != 1: return False for name, plugin_state in state['plugins'].items(): try: plugin = self.plugins[name] plugin.load(plugin_state) except KeyError: pass except IOError as e: print "Can't load state. Error: ", e def save(self, filename): try: with open(filename, 'w') as f: state = { 'version': 1 , 'plugins': {} } for name, plugin in self.plugins.items(): plugin_state = plugin.save() state['plugins'][name] = plugin_state json.dump(state, indent=4, fp=f) except IOError as e: print "Can't save state. Error: ", e def __main(): class FakeOrigin: pass def bot_config(b, cmd): o = FakeOrigin o.sender = 'bot_config' o.nick = 'bot_config' b.dispatch(o, [cmd.strip(), 'BOTCONFIG','PRIVMSG','#bot_config']) # default timeout for urllib2, in seconds socket.setdefaulttimeout(15) # option parser parser = OptionParser(__doc__) parser.add_option("-x","--execute", dest="cmds",action="append",help="File to execute prior connection. Can be used several times.") parser.add_option("-s","--host", dest="host",help="IRC server hostname") parser.add_option("-p","--port", dest="port",help="IRC server port") parser.add_option("-k","--nick", dest="nick",help="Bot nickname",default='Tofbot') parser.add_option("-n","--name", dest="name",help="Bot name",default='Tofbot') parser.add_option("-c","--channel",dest="channel",action="append",help="Channel to join (without # prefix). Can be used several times.") parser.add_option("--password", dest="password") parser.add_option("-d","--debug", action="store_true", dest="debug", default=False) (options,args) = parser.parse_args(); # legacy arguments handled first # (new-style arguments prevail) if len(args) > 0: options.nick = options.nick or args[0] options.channel = options.channel or [] for chan in args[1:]: if options.channel.count(chan) == 0: options.channel.append(chan) # initialize Tofbot # using command-line arguments b = Tofbot(options.nick, options.name, options.channel, options.password, options.debug) # execute command files # these commands may override command-line arguments options.cmds = options.cmds or [] for filename in options.cmds: cmdsfile = open(filename,'r') for line in cmdsfile: bot_config(b, line) # Restore serialized data state_file = "state.json" b.load(state_file) # Perform auto-save periodically autosaveEvent = AutosaveEvent(b, state_file) b.cron.schedule(autosaveEvent) # ... and save at exit @atexit.register def save_atexit(): print("Exiting, saving state...") b.save(state_file) print("Done !") # default host when legacy-mode if options.host == None and len(options.cmds) == 0 and len(args) > 0: options.host = 'irc.freenode.net' b.run(options.host) if __name__ == "__main__": try: __main() except Exception, ex: import traceback dumpFile = open("_TOFDUMP.txt","w") traceback.print_exc(None, dumpFile) dumpFile.close() raise ex
python
# Copyright 2016 Peter Dymkar Brandt All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ PortfolioReport generates visualizations of past performance of a portfolio of financial instruments. Example: # See historical_data documentation for more info. data = historical_data.HistoricalData(historical_data_config, tor_scraper_config) daily = data.get_daily() if daily is None: return print portfolio_report.PortfolioReport({ 'subject_format': 'Portfolio Report -- {}', }, daily).get_report() """ import io import matplotlib.pyplot as plt import numpy as np import pandas as pd import PIL import plot_utils class PortfolioReport(object): """Contains all functionality for the portfolio_report module. """ _FILENAME = 'report.png' _STYLE_SHEET = 'ggplot' _TEXT_COLOR = (.3, .3, .3, 1.0) _BAR_ALPHA = .67 _TITLE_DOLLAR_FORMAT = '${:,.2f}' _REPORT_COLS = 2 def __init__(self, portfolio_report_config, daily): """PortfolioReport must be initialized with args similar to those shown in the example at the top of this file. Args: portfolio_report_config: Determines the behavior of this instance. daily: pandas.DataFrame of prices of the same type returned by historical_data.get_daily(). Rows represent dates in ascending order, and columns represent financial instruments. """ self._config = portfolio_report_config self._daily = daily def _get_percent_returns(self, cumulative=False): """Calculate percent returns for the entire time period, either cumulative from the beginning or separately for each day. """ if cumulative is True: return self._daily['adj_close'] / ( self._daily['adj_close'].ix[0, :]) - 1.0 else: return self._daily['adj_close'].pct_change() def _get_dollar_values(self, group=False): """Calculate the value of portfolio holdings using closing prices. Optionally aggregate the values into groups provided in config. """ dates = sorted(self._config['dates']) # Copy dataframe and zero data before earliest portfolio date. dollar_values = self._daily['close'].copy() dollar_values.ix[ dollar_values.index < pd.to_datetime(str(dates[0])), :] = 0.0 # Loop thru dates and calculate each date range using bitmask index. for i, item in enumerate(dates): index = dollar_values.index >= pd.to_datetime(str(item)) if i < (len(dates) - 1): index = index & ( dollar_values.index < pd.to_datetime(str(dates[i + 1]))) for key in list(dollar_values.columns.values): value = self._config['dates'][item]['symbols'].get(key) if value is None: dollar_values.ix[index, key] = 0.0 else: dollar_values.ix[index, key] *= value * self._config[ 'value_ratio'] if group is True: dollar_values = self._sum_symbol_groups(dollar_values) return dollar_values def _get_dollar_returns(self, group=False): """Calculate the dollar returns for portfolio holdings. Optionally aggregate the returns into groups provided in config. """ dollar_values = self._get_dollar_values() percent_returns = self._get_percent_returns() dollar_returns = dollar_values * percent_returns if group is True: dollar_returns = self._sum_symbol_groups(dollar_returns) return dollar_returns def _get_profit_and_loss(self): """Calculate the profit and loss of the portfolio over time. """ profit_and_loss = self._get_dollar_values().sum(1) dates = sorted(self._config['dates']) # Correct spike on first portfolio date. first_date = np.argmax( profit_and_loss.index >= pd.to_datetime(str(dates[0]))) profit_and_loss.ix[first_date:] -= profit_and_loss.ix[first_date] # Adjust for capital changes. for i, item in enumerate(dates): if i > 0: index = profit_and_loss.index >= pd.to_datetime(str(item)) profit_and_loss.ix[index] -= self._config[ 'dates'][item]['capital_change'] * self._config[ 'value_ratio'] return profit_and_loss def _sum_symbol_groups(self, data_frame): """Sum columns of dataframe using symbol_groups in config. """ sum_data_frame = pd.DataFrame() for key, value in sorted(self._config['symbol_groups'].iteritems()): sum_data_frame[key] = data_frame[value].sum(1) return sum_data_frame def plot_dollar_change_bars(self, group=False): """Plot the change in dollars for the most recent day as a bar plot. Args: group: Whether to aggregate based on symbol_groups in config. """ dollar_values = self._get_dollar_values(group).ix[-1, :] dollar_returns = self._get_dollar_returns(group).ix[-1, :] percent_returns = dollar_returns / dollar_values labels = plot_utils.get_percent_strings(percent_returns) bar_colors = plot_utils.get_conditional_colors( percent_returns, self._BAR_ALPHA) title = ('1-Day Change | ' + self._TITLE_DOLLAR_FORMAT + ( '\n')).format(np.sum(dollar_returns)) plot = dollar_returns.plot(kind='bar', color=bar_colors) plot.set_title(title, color=self._TEXT_COLOR) plot.set_xticklabels(dollar_returns.index, rotation=0) plot_utils.format_y_ticks_as_dollars(plot) plot_utils.add_bar_labels(plot, labels, self._TEXT_COLOR) return plot def plot_percent_return_lines(self): """Plot percent returns for each symbol for the entire time period as a line plot. """ percent_returns = self._get_percent_returns(True) title = 'Symbol Returns\n' plot = percent_returns.plot(kind='line', ax=plt.gca()) plot.set_title(title, color=self._TEXT_COLOR) plot_utils.format_x_ticks_as_dates(plot) plot_utils.format_y_ticks_as_percents(plot) plot_utils.format_legend(plot, self._TEXT_COLOR) return plot def plot_dollar_value_bars(self, group=False): """Plot the dollar value of portfolio holdings for the most recent day as a bar plot. Args: group: Whether to aggregate based on symbol_groups in config. """ dollar_values = self._get_dollar_values(group).ix[-1, :] percents = dollar_values / np.sum(dollar_values) labels = plot_utils.get_percent_strings(percents) title = 'Portfolio Weights\n' plot = dollar_values.plot(kind='bar', alpha=self._BAR_ALPHA) plot.set_title(title, color=self._TEXT_COLOR) plot.set_xticklabels(dollar_values.index, rotation=0) plot_utils.format_y_ticks_as_dollars(plot) plot_utils.add_bar_labels(plot, labels, self._TEXT_COLOR) return plot def plot_dollar_value_lines(self, group=False): """Plot the dollar value of portfolio holdings for the entire time period as a line plot. Args: group: Whether to aggregate based on symbol_groups in config. """ dollar_values = self._get_dollar_values(group) dollar_values['TOTAL'] = dollar_values.sum(1) title = ('Portfolio Value | ' + self._TITLE_DOLLAR_FORMAT + ( '\n')).format(dollar_values['TOTAL'].ix[-1]) plot = dollar_values.plot(kind='line', ax=plt.gca()) plot.set_title(title, color=self._TEXT_COLOR) plot_utils.format_x_ticks_as_dates(plot) plot_utils.format_y_ticks_as_dollars(plot) plot_utils.format_legend(plot, self._TEXT_COLOR) return plot def plot_profit_and_loss_lines(self): """Plot the profit and loss of the portfolio for the entire time period as a line plot. Args: group: Whether to aggregate based on symbol_groups in config. """ profit_and_loss = self._get_profit_and_loss() title = ('Cumulative P&L | ' + self._TITLE_DOLLAR_FORMAT + ( '\n')).format(profit_and_loss[-1]) plot = profit_and_loss.plot(kind='line', ax=plt.gca()) plot.set_title(title, color=self._TEXT_COLOR) plot_utils.format_x_ticks_as_dates(plot) plot_utils.format_y_ticks_as_dollars(plot) return plot def get_report(self): """Creates the entire report composed of individual plots. """ subject = self._config['subject_format'].format(str( self._daily['adj_close'].index[-1].date())) plain_body = '' plt.style.use(self._STYLE_SHEET) # Create list of plot images to include in the report image. plot_images = [] plot_images.append(plot_utils.get_plot_image( self.plot_dollar_change_bars, group=True)) plot_images.append(plot_utils.get_plot_image( self.plot_dollar_change_bars)) plot_images.append(plot_utils.get_plot_image( self.plot_dollar_value_bars, group=True)) plot_images.append(plot_utils.get_plot_image( self.plot_dollar_value_bars)) plot_images.append(plot_utils.get_plot_image( self.plot_dollar_value_lines, group=True)) plot_images.append(plot_utils.get_plot_image( self.plot_dollar_value_lines)) plot_images.append(plot_utils.get_plot_image( self.plot_profit_and_loss_lines)) plot_images.append(plot_utils.get_plot_image( self.plot_percent_return_lines)) plot_images = [PIL.Image.open(x) for x in plot_images] # Arrange plot images in a grid in the report image. plot_width = plot_images[0].size[0] plot_height = plot_images[0].size[1] report_image = PIL.Image.new('RGB', ( plot_width * self._REPORT_COLS, plot_height * int( np.ceil(len(plot_images) / self._REPORT_COLS))), 'white') for i, item in enumerate(plot_images): report_image.paste(item, ((i % self._REPORT_COLS) * plot_width, int( np.floor(i / self._REPORT_COLS)) * plot_height)) # Convert report image to bytes in PNG format. report_image_bytes = io.BytesIO() report_image.save(report_image_bytes, format='png') report_image_bytes.seek(0) return {'subject': subject, 'plain_body': plain_body, 'files': {self._FILENAME: report_image_bytes}}
python
from numpy import absolute, isnan, where from scipy.spatial.distance import correlation def compute_correlation_distance(x, y): correlation_distance = correlation(x, y) if isnan(correlation_distance): return 2 else: return where(absolute(correlation_distance) < 1e-8, 0, correlation_distance)
python
# This sample tests the case where a subclass of Dict uses # a dictionary literal as an argument to the constructor call. from collections import Counter, defaultdict from typing import Callable, Generic, Mapping, Optional, TypeVar c1 = Counter({0, 1}) reveal_type(c1, expected_text="Counter[int]") for i in range(256): c1 = Counter({0: c1[1]}) reveal_type(c1, expected_text="Counter[int]") reveal_type(c1, expected_text="Counter[int]") K = TypeVar("K") V = TypeVar("V") MyFuncType = Callable[[Callable[[K], V]], V] class MyFunc(Generic[K, V]): def __init__(self, g: MyFuncType[K, V]) -> None: self.g = g MyFuncMapping = Mapping[K, Optional[MyFunc[K, V]]] my_func_defaultdict: MyFuncMapping[str, int] = defaultdict( lambda: None, {"x": MyFunc(lambda f: f("a"))} )
python
# Sequรชncia dos termos numรฉricos de uma funรงรฃo arbitrรกria. # Printa a sequรชncia dos termos da funรงรฃo X^2 atรฉ um termo escolhido. n = int(input()) for i in range(0,n): print(i*i) i = i+1 # Printa a sequรชncia dos termos da funรงรฃo X^3 atรฉ um termo escolhido y = int(input()) for i in range (0,y): print (i*i*i) i = i+1 #Este cรณdigo pode se repetir de forma genรฉrica para todos os expoentes possรญveis da funรงรฃo print # Como escolher a quantidade de vezes que a funรงรฃo Print deveria exponenciar o argumento X^k ? # Sendo X a base e K o expoente de valor inteiro.
python
from bisect import bisect from contextlib import closing, contextmanager from itertools import accumulate, chain, islice, zip_longest from multiprocessing import Lock, RawValue, Process from os import cpu_count from re import sub from sys import argv, stdout output_file = open("bench_output-fasta_bg.txt", mode="wb", buffering=0) write = output_file.write def acquired_lock(): lock = Lock() lock.acquire() return lock def started_process(target, args): process = Process(target=target, args=args) process.start() return process @contextmanager def lock_pair(pre_lock=None, post_lock=None, locks=None): pre, post = locks if locks else (pre_lock, post_lock) if pre: pre.acquire() yield if post: post.release() def write_lines( sequence, n, width, lines_per_block=10000, newline=b'\n', table=None): i = 0 blocks = (n - width) // width // lines_per_block if blocks: for _ in range(blocks): output = bytearray() for i in range(i, i + width * lines_per_block, width): output += sequence[i:i + width] + newline else: i += width if table: write(output.translate(table)) else: write(output) output = bytearray() if i < n - width: for i in range(i, n - width, width): output += sequence[i:i + width] + newline else: i += width output += sequence[i:n] + newline if table: write(output.translate(table)) else: write(output) stdout.buffer.flush() def cumulative_probabilities(alphabet, factor=1.0): probabilities = tuple(accumulate(p * factor for _, p in alphabet)) table = bytearray.maketrans( bytes(chain(range(len(alphabet)), [255])), bytes(chain((ord(c) for c, _ in alphabet), [10])) ) return probabilities, table def copy_from_sequence(header, sequence, n, width, locks=None): sequence = bytearray(sequence, encoding='utf8') while len(sequence) < n: sequence.extend(sequence) with lock_pair(locks=locks): write(header) write_lines(sequence, n, width) def lcg(seed, im, ia, ic): local_seed = seed.value try: while True: local_seed = (local_seed * ia + ic) % im yield local_seed finally: seed.value = local_seed def lookup(probabilities, values): for value in values: yield bisect(probabilities, value) def lcg_lookup_slow(probabilities, seed, im, ia, ic): with closing(lcg(seed, im, ia, ic)) as prng: yield from lookup(probabilities, prng) def lcg_lookup_fast(probabilities, seed, im, ia, ic): local_seed = seed.value try: while True: local_seed = (local_seed * ia + ic) % im yield bisect(probabilities, local_seed) finally: seed.value = local_seed def lookup_and_write( header, probabilities, table, values, start, stop, width, locks=None): if isinstance(values, bytearray): output = values else: output = bytearray() output[:stop - start] = lookup(probabilities, values) with lock_pair(locks=locks): if start == 0: write(header) write_lines(output, len(output), width, newline=b'\xff', table=table) def random_selection(header, alphabet, n, width, seed, locks=None): im = 139968.0 ia = 3877.0 ic = 29573.0 probabilities, table = cumulative_probabilities(alphabet, im) if not locks: with closing(lcg_lookup_fast(probabilities, seed, im, ia, ic)) as prng: output = bytearray(islice(prng, n)) lookup_and_write(header, probabilities, table, output, 0, n, width) else: pre_seed, post_seed, pre_write, post_write = locks m = cpu_count() * 3 if n > width * 15 else 1 partitions = [n // (width * m) * width * i for i in range(1, m)] processes = [] pre = pre_write with lock_pair(locks=(pre_seed, post_seed)): with closing(lcg(seed, im, ia, ic)) as prng: for start, stop in zip([0] + partitions, partitions + [n]): values = list(islice(prng, stop - start)) post = acquired_lock() if stop < n else post_write processes.append(started_process( lookup_and_write, (header, probabilities, table, values, start, stop, width, (pre, post)) )) pre = post for p in processes: p.join() def fasta(n): alu = sub(r'\s+', '', """ GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGA TCACCTGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTGAAACCCCGTCTCTACT AAAAATACAAAAATTAGCCGGGCGTGGTGGCGCGCGCCTGTAATCCCAGCTACTCGGGAG GCTGAGGCAGGAGAATCGCTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCCGAGATCGCG CCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCCGTCTCAAAAA """) iub = list(zip_longest('acgtBDHKMNRSVWY', (.27, .12, .12, .27), fillvalue=.02)) homosapiens = list(zip('acgt', (0.3029549426680, 0.1979883004921, 0.1975473066391, 0.3015094502008))) seed = RawValue('f', 42) width = 60 tasks = [ (copy_from_sequence, [b'>ONE Homo sapiens alu\n', alu, n * 2, width]), (random_selection, [b'>TWO IUB ambiguity codes\n', iub, n * 3, width, seed]), (random_selection, [b'>THREE Homo sapiens frequency\n', homosapiens, n * 5, width, seed]), ] if cpu_count() < 2: for func, args in tasks: func(*args) else: written_1 = acquired_lock() seeded_2 = acquired_lock() written_2 = acquired_lock() locks_sets = [ (None, written_1), (None, seeded_2, written_1, written_2), (seeded_2, None, written_2, None), ] processes = [ started_process(target, args + [locks_sets[i]]) for i, (target, args) in enumerate(tasks) ] for p in processes: p.join() output_file.close() if __name__ == "__main__": if len(argv) > 1: fasta(int(argv[1])) else: fasta(1000000)
python
# ______ _ _ _ _ _ _ _ # | ___ \ | | | | (_) (_) | | (_) # | |_/ / __ ___ | |__ __ _| |__ _| |_ ___| |_ _ ___ # | __/ '__/ _ \| '_ \ / _` | '_ \| | | / __| __| |/ __| # | | | | | (_) | |_) | (_| | |_) | | | \__ \ |_| | (__ # \_| |_| \___/|_.__/ \__,_|_.__/|_|_|_|___/\__|_|\___| # ___ ___ _ _ # | \/ | | | (_) # | . . | ___ ___| |__ __ _ _ __ _ ___ ___ # | |\/| |/ _ \/ __| '_ \ / _` | '_ \| |/ __/ __| # | | | | __/ (__| | | | (_| | | | | | (__\__ \ # \_| |_/\___|\___|_| |_|\__,_|_| |_|_|\___|___/ # _ _ _ # | | | | | | # | | __ _| |__ ___ _ __ __ _| |_ ___ _ __ _ _ # | | / _` | '_ \ / _ \| '__/ _` | __/ _ \| '__| | | | # | |___| (_| | |_) | (_) | | | (_| | || (_) | | | |_| | # \_____/\__,_|_.__/ \___/|_| \__,_|\__\___/|_| \__, | # __/ | # |___/ # # MIT License # # Copyright (c) 2019 Probabilistic Mechanics Laboratory # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ============================================================================== """ Custom layers """ from tensorflow.python.keras.engine.base_layer import Layer from tensorflow.keras.constraints import MinMaxNorm from tensorflow.python.ops import gen_math_ops from tensorflow.python.keras import initializers from tensorflow.python.keras import regularizers from tensorflow.python.keras import constraints from tensorflow.python.framework import tensor_shape class DOrC(Layer): """ Discrete ordinal classifier layer """ def __init__(self, kernel_initializer = 'glorot_uniform', kernel_regularizer=None, kernel_constraint=None, **kwargs): if 'input_shape' not in kwargs and 'input_dim' in kwargs: kwargs['input_shape'] = (kwargs.pop('input_dim'),) super(DOrC, self).__init__(**kwargs) self.kernel_initializer = initializers.get(kernel_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) def build(self, input_shape, **kwargs): self.threshold1 = self.add_weight("threshold1", shape = [1], initializer = self.kernel_initializer, constraint = MinMaxNorm(min_value=0.0, max_value=0.3, rate=1.0), dtype = self.dtype, trainable = self.trainable, **kwargs) self.threshold2 = self.add_weight("threshold2", shape = [1], initializer = self.kernel_initializer, constraint = MinMaxNorm(min_value=0.2, max_value=0.5, rate=1.0), dtype = self.dtype, trainable = self.trainable, **kwargs) self.threshold3 = self.add_weight("threshold3", shape = [1], initializer = self.kernel_initializer, constraint = MinMaxNorm(min_value=0.4, max_value=0.8, rate=1.0), dtype = self.dtype, trainable = self.trainable, **kwargs) self.threshold4 = self.add_weight("threshold4", shape = [1], initializer = self.kernel_initializer, constraint = MinMaxNorm(min_value=0.8, max_value=2.0, rate=1.0), dtype = self.dtype, trainable = self.trainable, **kwargs) self.built = True def call(self, inputs): first_threshold = 1/(1 + gen_math_ops.exp(-5e1*(inputs-self.threshold1))) second_threshold = 1/(1 + gen_math_ops.exp(-5e1*(inputs*first_threshold-self.threshold2))) third_threshold = 1/(1 + gen_math_ops.exp(-5e1*(inputs*second_threshold-self.threshold3))) fourth_threshold = 1/(1 + gen_math_ops.exp(-5e1*(inputs*third_threshold-self.threshold4))) output = 1 + first_threshold +second_threshold + third_threshold + fourth_threshold return output def compute_output_shape(self, input_shape): aux_shape = tensor_shape.TensorShape((None,1)) return aux_shape[:-1].concatenate(1)
python
# -*- coding: utf-8 -*- """ drift - Logging setup code ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Set up logging based on config dict. """ from __future__ import absolute_import import os import logging from logging.handlers import SysLogHandler import logging.config import json import datetime import sys import time import uuid from socket import gethostname from collections import OrderedDict from functools import wraps from logstash_formatter import LogstashFormatterV1 import six from six.moves.urllib.parse import urlsplit from flask import g, request from drift.core.extensions.jwt import current_user from drift.utils import get_tier_name def get_stream_handler(): """returns a stream handler with standard formatting for use in local development""" stream_handler = logging.StreamHandler() stream_formatter = logging.Formatter( fmt="%(asctime)s %(levelname)-8s %(name)-15s %(message)s" ) stream_handler.setFormatter(stream_formatter) return stream_handler def get_caller(): """returns a nice string representing caller for logs Note: This is heavy""" import inspect curframe = inspect.currentframe() calframe = inspect.getouterframes(curframe, 2) caller = "{} ({}#{})".format(calframe[2][3], calframe[2][1], calframe[2][2]) return caller def get_clean_path_from_url(url): """extract the endpoint path from the passed in url and remove service information and any id's so that the endpoint path might be easily used in grouping. """ clean_path = None try: lst = urlsplit(url) path = lst.path lst = path.split("/") for i, l in enumerate(lst): try: int(l) except ValueError: pass else: lst[i] = "<int>" # assume that the service name is the first part so we skip it clean_path = "/" + "/".join(lst[2:]) except Exception: # Todo: should report these errors pass return clean_path def get_log_details(): details = OrderedDict() tenant_name = None tier_name = get_tier_name() remote_addr = None try: remote_addr = request.remote_addr except Exception: pass try: if hasattr(g, "conf"): tenant_name = ( g.conf.tenant_name["tenant_name"] if g.conf.tenant_name else "(none)" ) except RuntimeError as e: if "Working outside of application context" in repr(e): pass else: raise log_context = {} log_context["created"] = datetime.datetime.utcnow().isoformat() + "Z" log_context["tenant"] = tenant_name log_context["tier"] = tier_name log_context["remote_addr"] = remote_addr details["logger"] = log_context jwt_context = {} try: fields = set( [ "user_id", "player_id", "roles", "jti", "user_name", "player_name", "client_id", "identity_id", ] ) for k, v in current_user.items(): if k in fields: key = "{}".format(k) jwt_context[key] = v if k == "roles" and v: jwt_context[k] = ",".join(v) except Exception as e: pass if jwt_context: details["user"] = jwt_context # add Drift-Log-Context" request headers to the logs try: details["client"] = json.loads(request.headers.get("Drift-Log-Context")) except Exception: pass return details # Custom log record _logRecordFactory = logging.getLogRecordFactory() def drift_log_record_factory(*args, **kw): global _logRecordFactory logrec = _logRecordFactory(*args, **kw) log_details = get_log_details() for k, v in log_details.items(): setattr(logrec, k, v) logger_fields = ( "levelname", "levelno", "process", "thread", "name", "filename", "module", "funcName", "lineno", ) for f in logger_fields: log_details["logger"][f] = getattr(logrec, f, None) try: correlation_id = request.correlation_id except Exception: correlation_id = None log_details["logger"]["correlation_id"] = correlation_id log_details["logger"]["created"] = datetime.datetime.utcnow().isoformat() + "Z" for k, v in log_details.items(): setattr(logrec, k, v) return logrec class JSONFormatter(logging.Formatter): """ Format log message as JSON. """ source_host = gethostname() log_tag = None def __init__(self): super(JSONFormatter, self).__init__() def formatTime(self, record, datefmt=None): dt = datetime.datetime.fromtimestamp(record.created) return dt.isoformat() + "Z" def get_formatted_data(self, record): data = OrderedDict() # put the timestamp first for splunk timestamp indexing data["timestamp"] = self.formatTime(record) if hasattr(record, "logger") and "tier" in record.logger: data["tenant"] = "{}.{}".format( record.logger.get("tier", None), record.logger.get("tenant", None) ) field_names = "logger", "client", "user" data.update( {key: getattr(record, key) for key in field_names if hasattr(record, key)} ) return data def format(self, record): data = self.get_formatted_data(record) json_text = json.dumps(data, default=self._json_default) return json_text def json_format(self, data): json_text = json.dumps(data, default=self._json_default) return "drift.%s: @cee: %s" % (self.log_tag, json_text) @staticmethod def _json_default(obj): """ Coerce everything to strings. All objects representing time get output as ISO8601. """ if ( isinstance(obj, datetime.datetime) or isinstance(obj, datetime.date) or isinstance(obj, datetime.time) ): return obj.isoformat() else: return str(obj) class ServerLogFormatter(JSONFormatter): log_tag = "server" def format(self, record): data = self.get_formatted_data(record) data["message"] = super(JSONFormatter, self).format(record) data["level"] = record.levelname try: data["request"] = "{} {}".format(request.method, request.url) except Exception: pass return self.json_format(data) class EventLogFormatter(JSONFormatter): log_tag = "events" def format(self, record): data = self.get_formatted_data(record) data["event_name"] = super(JSONFormatter, self).format(record) data.update(getattr(record, "extra", {})) return self.json_format(data) class ClientLogFormatter(JSONFormatter): log_tag = "client" def format(self, record): data = self.get_formatted_data(record) data.update(getattr(record, "extra", {})) return self.json_format(data) def trim_logger(data): # remove unnecessary logger fields for k, v in data["logger"].copy().items(): if k not in ["name", "tier", "tenant", "correlation_id"]: del data["logger"][k] def format_request_body(key, value): if key == "password": return "*" else: # constrain the body to 64 characters per key and convert to string return str(value)[:64] class RequestLogFormatter(JSONFormatter): log_tag = "request" def format(self, record): data = self.get_formatted_data(record) trim_logger(data) try: data["method"] = request.method data["url"] = request.url data["remote_addr"] = request.remote_addr except Exception: pass data["endpoint"] = get_clean_path_from_url(request.url) request_body = None try: if request.json: request_body = { key: format_request_body(key, value) for key, value in request.json.items() } else: request_body = request.data except Exception: pass if request_body: data["request_body"] = request_body try: data.update(getattr(record, "extra", {})) except Exception: pass if data.get("log_level") == 1: data = { "timestamp": data["timestamp"], "tenant": data["tenant"], "method": data["method"], "endpoint": data["endpoint"], } return self.json_format(data) # Calling 'logsetup' more than once may result in multiple handlers emitting # multiple log events for a single log call. Flagging it is a simple fix. _setup_done = False class StreamFormatter(logging.Formatter): """ The stream formatter automatically grab the record's extra field and append its content to the log message """ def format(self, record): message = super(StreamFormatter, self).format(record) if hasattr(record, "extra"): message += " | {}".format(record.extra) return message def logsetup(app): global _setup_done if _setup_done: return _setup_done = True app.log_formatter = None output_format = app.config.get("LOG_FORMAT", "json").lower() log_level = app.config.get("LOG_LEVEL", "INFO").upper() if output_format == "json": logger = logging.getLogger() logger.setLevel(log_level) formatter = LogstashFormatterV1() app.log_formatter = formatter # make sure this is our only stream handler logger.handlers = [] handler = logging.StreamHandler() handler.setFormatter(formatter) logger.addHandler(handler) else: logging.basicConfig( level=log_level, format='%(asctime)s - %(name)-14s %(levelname)-5s: %(message)s' ) # if output_format == 'text': # logging.basicConfig(level=log_level) # else: # handler = logging.StreamHandler() # formatter = LogstashFormatterV1() # handler.setFormatter(formatter) # logging.basicConfig(handlers=[handler], level=log_level) # if 'logging' in app.config: # logging.config.dictConfig(app.config['logging']) @app.before_request def _setup_logging(): return setup_logging(app) def setup_logging(app): """Inject a tracking identifier into the request and set up context-info for all debug logs """ g.log_defaults = None request_id = request.headers.get("Request-ID", None) if not request_id: default_request_id = str(uuid.uuid4()) request_id = request.headers.get("X-Request-ID", default_request_id) request.request_id = request_id g.log_defaults = get_log_defaults() if app.log_formatter: app.log_formatter.defaults = g.log_defaults def get_log_defaults(): defaults = {} tenant_name = None tier_name = get_tier_name() remote_addr = None try: remote_addr = request.remote_addr except Exception: pass try: if hasattr(g, 'conf'): tenant_name = g.conf.tenant_name['tenant_name'] if g.conf.tenant_name else '(none)' except RuntimeError as e: if "Working outside of application context" in repr(e): pass else: raise defaults["tenant"] = tenant_name defaults["tier"] = tier_name defaults["remote_addr"] = remote_addr jwt_context = get_user_context() if jwt_context: defaults["user"] = jwt_context # add Client-Log-Context" request headers to the logs client = None try: client = request.headers.get("Client-Log-Context", None) defaults["client"] = json.loads(client) except Exception: defaults["client"] = client defaults["request"] = { "request_id": request.request_id, "url": request.url, "method": request.method, "remote_addr": request.remote_addr, "path": request.path, "user_agent": request.headers.get('User-Agent'), "endpoint": get_clean_path_from_url(request.url) } defaults["request"].update(request.view_args or {}) return defaults def get_user_context(): jwt_context = {} try: fields = set(["user_id", "player_id", "roles", "jti", "user_name", "player_name", "client_id", "identity_id"]) for k, v in current_user.items(): if k in fields: key = "{}".format(k) jwt_context[key] = v if k == "roles" and v: jwt_context[k] = ",".join(v) except Exception: pass return jwt_context def drift_init_extension(app, **kwargs): logsetup(app) def request_log_level(level): def wrapper(fn): @wraps(fn) def decorated(*args, **kwargs): g.request_log_level = int(level) return fn(*args, **kwargs) return decorated return wrapper
python
# -*- coding: utf-8 -*- ''' Created on 2017/09/14 @author: yuyang ''' import os import urllib import uuid from docx.shared import Pt from docx.shared import RGBColor from docx.shared import Inches JPEG_EXTENSION = '.jpg' PNG_EXTENSION = '.png' GIF_EXTENSION = '.gif' SPLIT_STRING = '///' def add_author(document, author): para = document.add_paragraph() run = para.add_run(author) font = run.font #font.name = 'Microsoft YaHei' font.size = Pt(12) font.color.rgb = RGBColor(0x43, 0x6E, 0xEE) def add_content(document, content, para = None, font_size = 16): if not para: para = document.add_paragraph() run = para.add_run(content) font = run.font font.bold = False font.size = Pt(font_size) font.color.rgb = RGBColor(0x08, 0x08, 0x08) def add_picture(document, story): filenames = analyze_pic(story) for filename in filenames: try: document.add_picture(filename, width=Inches(5)) except: print 'ๆ’ๅ…ฅๅ›พ็‰‡ๅ‡บ้”™๏ผš' + filename def add_time(document, time): para = document.add_paragraph() run = para.add_run(time) font = run.font font.italic = True #font.name = 'Microsoft YaHei' font.size = Pt(10) font.color.rgb = RGBColor(0x7A, 0x7A, 0x7A) def download_pic(url, extension): try: if not os.path.exists('.//pics'): os.mkdir('.//pics') filename = '.\\pics\\' + str(uuid.uuid4()) + extension urllib.urlretrieve(url, filename) except Exception: print 'ไธ‹่ฝฝๅ›พ็‰‡ๅ‡บ้”™๏ผš ' + url return filename def analyze_pic(story): filenames = [] picBox = None imgGroup = None try: picBox = story.find_element_by_class_name('picBox') except: None try: imgGroup = story.find_element_by_class_name('tl_imgGroup') except: None if picBox:# one picture img_url = picBox.find_element_by_tag_name('a').get_attribute('href') print 'ๅ›พ็‰‡๏ผš', img_url filename = download_pic(img_url, JPEG_EXTENSION) filenames.append(filename) elif imgGroup:# multi picture a_tags = imgGroup.find_elements_by_tag_name('a') for a_tag in a_tags: img_url = a_tag.get_attribute('href') print 'ๅ›พ็‰‡๏ผš', img_url filename = download_pic(img_url, JPEG_EXTENSION) filenames.append(filename) return filenames
python
""" Views for the app """ from __future__ import absolute_import from __future__ import division import os import uuid from auth import constants from auth.forms import \ CategoryForm, \ CountryForm, \ CurrencyForm, \ GatewayForm, \ LoginVoucherForm, \ MyUserForm, \ NetworkForm, \ NewVoucherForm, \ ProductForm, \ UserForm from auth.models import Auth, Category, Country, Currency, Gateway, Network, Product, User, Voucher, db # from auth.payu import get_transaction, set_transaction, capture from auth.resources import logos from auth.services import \ environment_dump, \ healthcheck as healthcheck_service from auth.utils import is_logged_in, has_role from flask import \ Blueprint, \ abort, \ current_app, \ flash, \ redirect, \ request, \ render_template, \ send_from_directory, \ session, \ url_for from flask_menu import register_menu from flask_potion.exceptions import ItemNotFound from flask_security import \ auth_token_required, \ current_user, \ login_required, \ roles_accepted from PIL import Image bp = Blueprint('auth', __name__) RESOURCE_MODELS = { 'categories': Category, 'countries': Country, 'currencies': Currency, 'gateways': Gateway, 'networks': Network, 'products': Product, 'users': User, 'vouchers': Voucher, } def generate_token(): """Generate token for the voucher session""" return uuid.uuid4().hex def resource_query(resource): """Generate a filtered query for a resource""" model = RESOURCE_MODELS[resource] query = model.query if current_user.has_role('network-admin') or current_user.has_role('gateway-admin'): if model == Network: query = query.filter_by(id=current_user.network_id) elif model in [ Gateway, User ]: query = query.filter_by(network_id=current_user.network_id) if current_user.has_role('network-admin'): if model == Voucher: query = query.join(Voucher.gateway).join(Gateway.network).filter(Network.id == current_user.network_id) if current_user.has_role('gateway-admin'): if model == Gateway: query = query.filter_by(id=current_user.gateway_id) elif model in [ User, Voucher ]: query = query.filter_by(gateway_id=current_user.gateway_id) return query def resource_instance(resource, id): """Return instances""" model = RESOURCE_MODELS[resource] return resource_query(resource).filter(model.id == id).first_or_404() def resource_instances(resource): """Return instances""" query = resource_query(resource) if resource == 'vouchers': return (query.filter(Voucher.status != 'archived') .order_by(Voucher.status, Voucher.created_at.desc()) .all()) else: return query.all() def resource_index(resource, form=None): """Handle a resource index request""" instances = resource_instances(resource) return render_template('%s/index.html' % resource, form=form, instances=instances) def resource_new(resource, form): """Handle a new resource request""" if form.validate_on_submit(): instance = RESOURCE_MODELS[resource]() form.populate_obj(instance) db.session.add(instance) db.session.commit() flash('Create %s successful' % instance) return redirect(url_for('.%s_index' % resource)) return render_template('%s/new.html' % resource, form=form) def resource_edit(resource, id, form_class): instance = resource_instance(resource, id) form = form_class(obj=instance) if form.validate_on_submit(): form.populate_obj(instance) db.session.commit() flash('Update %s successful' % instance) return redirect(url_for('.%s_index' % resource)) return render_template('%s/edit.html' % resource, form=form, instance=instance) def resource_delete(resource, id): instance = resource_instance(resource, id) if request.method == 'POST': db.session.delete(instance) db.session.commit() flash('Delete %s successful' % instance) return redirect(url_for('.%s_index' % resource)) return render_template('shared/delete.html', instance=instance, resource=resource) def resource_action(resource, id, action): instance = resource_instance(resource, id) if request.method == 'POST': if action in constants.ACTIONS[resource]: getattr(instance, action)() db.session.commit() flash('%s %s successful' % (instance, action)) return redirect(url_for('.%s_index' % resource)) else: abort(404) return render_template('shared/action.html', instance=instance, action=action, resource=resource) @bp.route('/network', methods=['GET', 'POST']) @login_required @roles_accepted('network-admin') @register_menu( bp, '.network', 'My Network', visible_when=has_role('network-admin'), order=997 ) def my_network(): form = NetworkForm(obj=current_user.network) if form.validate_on_submit(): form.populate_obj(current_user.network) db.session.commit() flash('Update successful') return redirect('/') return render_template('networks/current.html', form=form, instance=current_user.network) @bp.route('/gateway', methods=['GET', 'POST']) @login_required @roles_accepted('gateway-admin') @register_menu( bp, '.gateway', 'My Gateway', visible_when=has_role('gateway-admin'), order=998 ) def my_gateway(): gateway = current_user.gateway return _gateways_edit( gateway, 'My Gateway', url_for('.my_gateway'), url_for('.home') ) @bp.route('/user', methods=['GET', 'POST']) @login_required @register_menu( bp, '.account', 'My Account', visible_when=is_logged_in, order=999 ) def my_account(): form = MyUserForm(obj=current_user) if form.validate_on_submit(): if form.password.data == '': del form.password form.populate_obj(current_user) db.session.commit() flash('Update successful') return redirect('/') return render_template('users/current.html', form=form, instance=current_user) @bp.route('/networks') @login_required @roles_accepted('super-admin') @register_menu( bp, '.networks', 'Networks', visible_when=has_role('super-admin'), order=10 ) def networks_index(): return resource_index('networks') @bp.route('/networks/new', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin') def networks_new(): form = NetworkForm() return resource_new('networks', form) @bp.route('/networks/<id>', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin') def networks_edit(id): return resource_edit('networks', id, NetworkForm) @bp.route('/networks/<id>/delete', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin') def networks_delete(id): return resource_delete('networks', id) @bp.route('/gateways') @login_required @roles_accepted('super-admin', 'network-admin') @register_menu( bp, '.gateways', 'Gateways', visible_when=has_role('super-admin', 'network-admin'), order=20) def gateways_index(): return resource_index('gateways') def handle_logo(form): if request.files['logo']: filename = form.logo.data = logos.save(request.files['logo'], name='%s.' % form.id.data) im = Image.open(logos.path(filename)) im.thumbnail((300, 300), Image.ANTIALIAS) im.save(logos.path(filename)) else: del form.logo @bp.route('/gateways/new', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin', 'network-admin') def gateways_new(): form = GatewayForm() if form.validate_on_submit(): handle_logo(form) gateway = Gateway() form.populate_obj(gateway) db.session.add(gateway) db.session.commit() flash('Create %s successful' % gateway) return redirect(url_for('.gateways_index')) return render_template('gateways/new.html', form=form) def _gateways_edit(gateway, page_title, action_url, redirect_url): form = GatewayForm(obj=gateway) if form.validate_on_submit(): handle_logo(form) form.populate_obj(gateway) db.session.commit() flash('Update %s successful' % gateway) return redirect(redirect_url) return render_template('gateways/edit.html', action_url=action_url, form=form, instance=gateway, logos=logos, page_title=page_title) @bp.route('/gateways/<id>', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin', 'network-admin') def gateways_edit(id): gateway = Gateway.query.filter_by(id=id).first_or_404() return _gateways_edit( gateway, 'Edit Gateway', url_for('.gateways_edit', id=id), url_for('.gateways_index') ) @bp.route('/gateways/<id>/delete', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin', 'network-admin') def gateways_delete(id): return resource_delete('gateways', id) @bp.route('/users') @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') @register_menu( bp, '.users', 'Users', visible_when=has_role('super-admin', 'network-admin', 'gateway-admin'), order=40 ) def users_index(): form = UserForm() return resource_index('users', form=form) @bp.route('/users/new', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') def users_new(): form = UserForm() if current_user.has_role('gateway-admin'): del form.roles return resource_new('users', form) @bp.route('/users/<id>', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') def users_edit(id): instance = resource_instance('users', id) if (current_user.has_role('network-admin') and instance.network != current_user.network): abort(403) if (current_user.has_role('gateway-admin') and (instance.network != current_user.network or instance.gateway != current_user.gateway)): abort(403) form = UserForm(obj=instance) if current_user.has_role('network-admin'): del form.gateway if current_user == instance: del form.active del form.roles if form.validate_on_submit(): if form.password.data == '': del form.password form.populate_obj(instance) db.session.commit() flash('Update %s successful' % instance) return redirect(url_for('.users_index')) return render_template('users/edit.html', form=form, instance=instance) @bp.route('/users/<id>/delete', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') def users_delete(id): return resource_delete('users', id) @bp.route('/vouchers') @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') @register_menu( bp, '.vouchers', 'Vouchers', visible_when=has_role('super-admin', 'network-admin', 'gateway-admin'), order=5 ) def vouchers_index(): return resource_index('vouchers') @bp.route('/vouchers/<id>/<action>', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') def vouchers_action(id, action): return resource_action('vouchers', id, action) @bp.route('/categories') @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') @register_menu( bp, '.categories', 'Categories', visible_when=has_role('super-admin', 'network-admin', 'gateway-admin'), order=99 ) def categories_index(): return resource_index('categories') @bp.route('/categories/new', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') def categories_new(): form = CategoryForm() return resource_new('categories', form) @bp.route('/categories/<id>/delete', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') def categories_delete(id): return resource_delete('categories', id) @bp.route('/categories/<id>', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') def categories_edit(id): return resource_edit('categories', id, CategoryForm) @bp.route('/products') @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') @register_menu( bp, '.products', 'Products', visible_when=has_role('super-admin', 'network-admin', 'gateway-admin'), order=99 ) def products_index(): return resource_index('products') @bp.route('/products/new', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') def products_new(): form = ProductForm() return resource_new('products', form) @bp.route('/products/<id>/delete', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') def products_delete(id): return resource_delete('products', id) @bp.route('/products/<id>', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') def products_edit(id): return resource_edit('products', id, ProductForm) @bp.route('/countries') @login_required @roles_accepted('super-admin') @register_menu( bp, '.countries', 'Countries', visible_when=has_role('super-admin'), order=99 ) def countries_index(): return resource_index('countries') @bp.route('/countries/new', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin') def countries_new(): form = CountryForm() return resource_new('countries', form) @bp.route('/countries/<id>/delete', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin') def countries_delete(id): return resource_delete('countries', id) @bp.route('/countries/<id>', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin') def countries_edit(id): return resource_edit('countries', id, CountryForm) @bp.route('/currencies') @login_required @roles_accepted('super-admin') @register_menu( bp, '.currencies', 'Currencies', visible_when=has_role('super-admin'), order=99 ) def currencies_index(): return resource_index('currencies') @bp.route('/currencies/new', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') def currencies_new(): form = CurrencyForm() return resource_new('currencies', form) @bp.route('/currencies/<id>/delete', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') def currencies_delete(id): return resource_delete('currencies', id) @bp.route('/currencies/<id>', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') def currencies_edit(id): return resource_edit('currencies', id, CurrencyForm) @bp.route('/new-voucher', methods=['GET', 'POST']) @login_required @roles_accepted('super-admin', 'network-admin', 'gateway-admin') @register_menu( bp, '.new-voucher', 'New Voucher', visible_when=has_role('super-admin', 'network-admin', 'gateway-admin'), order=0 ) def vouchers_new(): form = NewVoucherForm() choices = [] defaults = {} if current_user.has_role('gateway-admin'): choices = [ [ current_user.gateway_id, '%s - %s' % (current_user.gateway.network.title, current_user.gateway.title) ] ] defaults[current_user.gateway_id] = { 'minutes': current_user.gateway.default_minutes, 'megabytes': current_user.gateway.default_megabytes, } else: if current_user.has_role('network-admin'): networks = [current_user.network] else: networks = Network.query.all() for network in networks: for gateway in network.gateways: choices.append([ gateway.id, '%s - %s' % (network.title, gateway.title) ]) defaults[gateway.id] = { 'minutes': gateway.default_minutes, 'megabytes': gateway.default_megabytes, } if choices == []: flash('Define a network and gateway first.') return redirect(request.referrer) form.gateway_id.choices = choices item = defaults[choices[0][0]] if request.method == 'GET': form.minutes.data = item['minutes'] form.megabytes.data = item['megabytes'] if form.validate_on_submit(): voucher = Voucher() form.populate_obj(voucher) db.session.add(voucher) db.session.commit() return redirect(url_for('.vouchers_new', code=voucher.code)) return render_template('vouchers/new.html', form=form, defaults=defaults) @bp.route('/wifidog/login/', methods=['GET', 'POST']) def wifidog_login(): form = LoginVoucherForm(request.form) if form.validate_on_submit(): voucher_code = form.voucher_code.data.upper() voucher = Voucher.query.filter_by(code=voucher_code, status='new').first() if voucher is None: flash( 'Voucher not found, did you type the code correctly?', 'error' ) return redirect(request.referrer) form.populate_obj(voucher) voucher.token = generate_token() db.session.commit() session['voucher_token'] = voucher.token url = ('http://%s:%s/wifidog/auth?token=%s' % (voucher.gw_address, voucher.gw_port, voucher.token)) return redirect(url) if request.method == 'GET': gateway_id = request.args.get('gw_id') else: gateway_id = form.gateway_id.data if gateway_id is None: abort(404) gateway = Gateway.query.filter_by(id=gateway_id).first_or_404() return render_template('wifidog/login.html', form=form, gateway=gateway) @bp.route('/wifidog/ping/') def wifidog_ping(): return ('Pong', 200) @bp.route('/wifidog/auth/') def wifidog_auth(): auth = Auth( user_agent=request.user_agent.string, stage=request.args.get('stage'), ip=request.args.get('ip'), mac=request.args.get('mac'), token=request.args.get('token'), incoming=int(request.args.get('incoming')), outgoing=int(request.args.get('outgoing')), gateway_id=request.args.get('gw_id') ) (auth.status, auth.messages) = auth.process_request() db.session.add(auth) db.session.commit() def generate_point(measurement): return { "measurement": 'auth_%s' % measurement, "tags": { "source": "auth", "network_id": auth.gateway.network_id, "gateway_id": auth.gateway_id, "user_agent": auth.user_agent, "stage": auth.stage, "ip": auth.ip, "mac": auth.mac, "token": auth.token, }, "time": auth.created_at, "fields": { "value": getattr(auth, measurement), } } # points = [generate_point(m) for m in [ 'incoming', 'outgoing' ]] # influx_db.connection.write_points(points) return ("Auth: %s\nMessages: %s\n" % (auth.status, auth.messages), 200) @bp.route('/wifidog/portal/') def wifidog_portal(): voucher_token = session.get('voucher_token') if voucher_token: voucher = Voucher.query.filter_by(token=voucher_token).first() else: voucher = None gateway_id = request.args.get('gw_id') if gateway_id is None: abort(404) gateway = Gateway.query.filter_by(id=gateway_id).first_or_404() logo_url = None if gateway.logo: logo_url = logos.url(gateway.logo) return render_template('wifidog/portal.html', gateway=gateway, logo_url=logo_url, voucher=voucher) @bp.route('/pay') def pay(): return_url = url_for('.pay_return', _external=True) cancel_url = url_for('.pay_cancel', _external=True) response = set_transaction('ZAR', 1000, 'Something', return_url, cancel_url) return redirect('%s?PayUReference=%s' % (capture, response.payUReference)) @bp.route('/pay/return') def pay_return(): response = get_transaction(request.args.get('PayUReference')) basketAmount = '{:.2f}'.format(int(response.basket.amountInCents) / 100) category = 'success' if response.successful else 'error' flash(response.displayMessage, category) return render_template('payu/transaction.html', response=response, basketAmount=basketAmount) @bp.route('/pay/cancel') def pay_cancel(): response = get_transaction(request.args.get('payUReference')) basketAmount = '{:.2f}'.format(int(response.basket.amountInCents) / 100) flash(response.displayMessage, 'warning') return render_template('payu/transaction.html', response=response, basketAmount=basketAmount) @bp.route('/favicon.ico') def favicon(): directory = os.path.join(current_app.root_path, 'static') return send_from_directory(directory, 'favicon.ico', mimetype='image/vnd.microsoft.icon') @bp.route('/auth-token') @login_required def auth_token(): return current_user.get_auth_token() @bp.route('/healthcheck') @auth_token_required def healthcheck(): return healthcheck_service.check() @bp.route('/environment') @auth_token_required def environment(): return environment_dump.dump_environment() @bp.route('/') def home(): return redirect(url_for('security.login'))
python
# Copyright (c) Naas Development Team. # Distributed under the terms of the Modified BSD License. import os c = get_config() c.NotebookApp.ResourceUseDisplay.track_cpu_percent = True c.NotebookApp.ResourceUseDisplay.mem_warning_threshold = 0.1 c.NotebookApp.ResourceUseDisplay.cpu_warning_threshold = 0.1 # We rely on environment variables to configure JupyterHub so that we # avoid having to rebuild the JupyterHub container every time we change a # configuration parameter. # Spawn single-user servers as Docker containers c.JupyterHub.spawner_class = 'kubespawner.KubeSpawner' c.JupyterHub.logo_file = "/srv/jupyterhub/naas_logo.svg" c.JupyterHub.service_tokens = { 'secret-token': os.environ.get('ADMIN_API_TOKEN', 'SHOULD_BE_CHANGED'), } c.KubeSpawner.image = os.environ['DOCKER_NOTEBOOK_IMAGE'] c.KubeSpawner.image_pull_policy = 'Always' # JupyterHub requires a single-user instance of the Notebook server, so we # default to using the `start-singleuser.sh` script included in the # jupyter/docker-stacks *-notebook images as the Docker run command when # spawning containers. Optionally, you can override the Docker run command # using the DOCKER_SPAWN_CMD environment variable. c.KubeSpawner.environment = { 'JUPYTERHUB_URL': os.environ.get('JUPYTERHUB_URL', ''), 'PUBLIC_DK_API': os.environ.get('PUBLIC_DK_API', ''), 'TC_API_SCREENSHOT': os.environ.get('TC_API_SCREENSHOT', ''), 'ALLOWED_IFRAME': os.environ.get('ALLOWED_IFRAME', ''), 'TZ': os.environ.get('TZ', 'Europe/Paris') } c.KubeSpawner.cpu_guarantee = os.environ.get('KUBE_CPU_GUAR', 0.3) c.KubeSpawner.cpu_limit = os.environ.get('KUBE_CPU_LIMIT', 1.0) c.KubeSpawner.mem_limit = os.environ.get('KUBE_MEM_LIMIT', '4G') c.KubeSpawner.mem_guarantee = os.environ.get('KUBE_MEM_GUAR', '500M') # Explicitly set notebook directory because we'll be mounting a host volume to # it. Most jupyter/docker-stacks *-notebook images run the Notebook server as # user `jovyan`, and set the notebook directory to `/home/jovyan/work`. # We follow the same convention. notebook_dir = os.environ.get('DOCKER_NOTEBOOK_DIR') or '/home/ftp' c.KubeSpawner.notebook_dir = notebook_dir # Mount the real user's Docker volume on the host to the notebook user's c.KubeSpawner.volumes = [ { 'name': 'nfs-root', 'nfs': { 'server': os.environ.get('VOLUME_SERVER', 'fs-b87bd009.efs.eu-west-3.amazonaws.com'), 'path': '/' } } ] c.KubeSpawner.volume_mounts = [ { 'name': 'nfs-root', 'mountPath': os.environ.get('DOCKER_NOTEBOOK_DIR'), 'subPath': os.environ.get('KUBE_NAMESPACE', 'prod') + '/ftpusers/{username}' } ] # This is used to set proper rights on NFS mount point. c.KubeSpawner.lifecycle_hooks = { "postStart": { "exec": { "command": ["/bin/sh", "-c", f"chown -R 21:21 {os.environ.get('DOCKER_NOTEBOOK_DIR')}"] } } } c.KubeSpawner.extra_pod_config = { "subdomain": "jupyter-single-user", "hostname": "jupyter-{username}", "affinity": { "nodeAffinity": { "requiredDuringSchedulingIgnoredDuringExecution": { "nodeSelectorTerms": [ { "matchExpressions": [ { "key": "jupyterNodeGroup", "operator": "In", "values": [ "true" ] } ] } ] } } }, "tolerations": [ { "key": "jupyter", "operator": "Equal", "value": "true", "effect": "NoSchedule" } ] } c.KubeSpawner.extra_labels = { "name": "jupyter-single-user" } # For debugging arguments passed to spawned containers c.KubeSpawner.debug = True c.KubeSpawner.start_timeout = 120 # User containers will access hub by container name on the Docker network c.JupyterHub.hub_ip = os.environ.get('HOST', '0.0.0.0') c.JupyterHub.hub_port = os.environ.get('PORT', 8081) c.KubeSpawner.hub_connect_ip = 'hub' # Authenticate users with local c.JupyterHub.authenticator_class = 'naasauthenticator.NaasAuthenticator' c.Authenticator.check_common_password = True c.Authenticator.minimum_password_length = 10 c.Authenticator.allowed_failed_logins = 10 # Persist hub data on volume mounted inside container data_dir = os.environ.get('DATA_VOLUME_CONTAINER', '/data') c.JupyterHub.cookie_secret_file = os.path.join(data_dir, 'jupyterhub_cookie_secret') c.JupyterHub.db_url = 'postgresql://postgres:{password}@{host}/{db}'.format( host=os.environ['POSTGRES_HOST'], password=os.environ['POSTGRES_PASSWORD'], db=os.environ['POSTGRES_DB'], ) c.JupyterHub.tornado_settings = { 'headers': { 'Content-Security-Policy': 'frame-ancestors self ' + os.environ.get('ALLOWED_IFRAME', '') } } # Whitlelist users and admins c.Authenticator.whitelist = whitelist = set() c.Authenticator.admin_users = admin = set() c.JupyterHub.admin_access = True
python
#FUNร‡ร•ES (FUNCTION) #EXEMPLO SEM O USO DE FUNร‡รƒO :( rappers_choice = ["L7NNON", "KB", "Trip Lee", "Travis Scott", ["Lecrae", "Projota", "Tupac"], "Don Omar"] rappers_country = {"BR":["Hungria", "Kamau", "Projota", "Mano Brown", "Luo", "L7NNON"], "US":["Tupac", "Drake", "Eminem", "KB", "Kanye West", "Lecrae", "Travis Scott", "Trip Lee"]} for rp in rappers_choice: if isinstance(rp, list): for rp_one in rp: if rp_one in rappers_country["BR"]: print(f"Rapper BR: {rp_one}") elif rp_one in rappers_country["US"]: print(f"Rapper US: {rp_one}") else: print(f"Rapper not found in lists: {rp_one}") else: if rp in rappers_country["BR"]: print(f"Rapper BR: {rp}") elif rp in rappers_country["US"]: print(f"Rapper US: {rp}") else: print(f"Rapper not found in lists: {rp}")
python
from __future__ import print_function import numpy as np import time, os, sys import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage import color, feature, filters, io, measure, morphology, segmentation, img_as_ubyte, transform import warnings import math import pandas as pd import argparse import subprocess import re import glob from skimage.segmentation import clear_border from ortools.graph import pywrapgraph import time def buildFeatureFrame(filename,timepoint): temp = np.asarray(np.load(filename,allow_pickle=True)).item() imfilename = temp['filename'] img = io.imread(imfilename); masks = clear_border(temp['masks']) image_props = measure.regionprops_table(masks, intensity_image=img, properties=('label','area','filled_area', 'centroid', 'eccentricity','mean_intensity')) im_df = pd.DataFrame(image_props) im_df['time'] = timepoint return(im_df) def generateCandidates(image1, image2, im1_select, dist_multiplier=2): delX = np.sqrt((image1['centroid-0'][im1_select]-image2['centroid-0'])**2+ (image1['centroid-1'][im1_select]-image2['centroid-1'])**2) max_dist = dist_multiplier*min(delX) candidates = np.array(delX[delX < max_dist].index) return(candidates) def generateLinks(filename_t0, filename_t1,timepoint, nnDist = 10,costMax=35, mN_Int = 10, mN_Ecc=4, mN_Area=25, mN_Disp=1): ip0 = buildFeatureFrame(filename_t0,timepoint) ip1 = buildFeatureFrame(filename_t1,timepoint+1) arr = pd.DataFrame() for i in np.array(ip0.index): candidates = generateCandidates(ip0, ip1, i, dist_multiplier=nnDist) canFRAME = pd.DataFrame(candidates) canFRAME["1"] = i arr = arr.append(canFRAME) arr = arr.rename(columns={0: "t1", "1": "t0"}) arr = arr.reset_index(drop=True) properties = pd.DataFrame() mInt_0 = float(np.median(ip0.loc[:,['mean_intensity']])) mInt_1 = float(np.median(ip1.loc[:,['mean_intensity']])) for link in np.array(arr.index): tmp_props_0 = (ip0.loc[arr.loc[link,["t0"]],:]) tmp_props_1 = (ip1.loc[arr.loc[link,["t1"]],:]) deltaInt = (np.abs((int(tmp_props_0["mean_intensity"])/mInt_0)-(int(tmp_props_1["mean_intensity"])/mInt_1))/ np.mean([(int(tmp_props_0["mean_intensity"])/mInt_0),(int(tmp_props_1["mean_intensity"])/mInt_1)])) deltaArea = (np.abs(int(tmp_props_0['area']) - int(tmp_props_1['area']))/ np.mean([int(tmp_props_0["area"]),int(tmp_props_1["area"])])) deltaEcc = np.absolute(float(tmp_props_0['eccentricity']) - float(tmp_props_1['eccentricity'])) deltaX = np.sqrt((int(tmp_props_0['centroid-0'])-int(tmp_props_1['centroid-0']))**2+ (int(tmp_props_0['centroid-1'])-int(tmp_props_1['centroid-1']))**2) properties = properties.append(pd.DataFrame([int(tmp_props_0['label']),int(tmp_props_1['label']), deltaInt ,deltaArea,deltaEcc,deltaX]).T) properties = properties.rename(columns={0: "label_t0", 1: "label_t1", 2: "deltaInt", 3: "deltaArea", 4: "deltaEcc", 5: "deltaX"}) properties = properties.reset_index(drop=True) properties["Cost"]=(properties.loc[:,"deltaInt"]*mN_Int)+(properties.loc[:,"deltaEcc"]*mN_Ecc)+(properties.loc[:,"deltaArea"]*mN_Area)+(properties.loc[:,"deltaX"]*mN_Disp) properties["TransitionCapacity"]=1 properties = properties.loc[properties["Cost"]<costMax] properties = properties.reset_index(drop=True) return(properties) def DivSimScore(daughterCell_1, daughterCell_2, FrameNext): daughterStats_1 = FrameNext[(FrameNext['label'] == daughterCell_1)] daughterStats_2 = FrameNext[(FrameNext['label'] == daughterCell_2)] deltaInt = (np.abs((int(daughterStats_1["mean_intensity"]))-(int(daughterStats_2["mean_intensity"])))/ np.mean([(int(daughterStats_1["mean_intensity"])),(int(daughterStats_2["mean_intensity"]))])) deltaArea = (np.abs(int(daughterStats_1['area']) - int(daughterStats_2['area']))/ np.mean([int(daughterStats_1["area"]),int(daughterStats_2["area"])])) deltaEcc = np.absolute(float(daughterStats_1['eccentricity']) - float(daughterStats_2['eccentricity'])) deltaX = np.sqrt((int(daughterStats_1['centroid-0'])-int(daughterStats_2['centroid-0']))**2+ (int(daughterStats_1['centroid-1'])-int(daughterStats_2['centroid-1']))**2) sims = pd.DataFrame([int(daughterCell_1),int(daughterCell_2), deltaInt ,deltaArea,deltaEcc,deltaX]).T sims = sims.rename(columns={0: "label_D1", 1: "label_D2", 2: "D2deltaInt", 3: "D2deltaArea", 4: "D2deltaEcc", 5: "D2deltaX"}) return(sims) def DivSetupScore(motherCell, daughterCell_1, daughterCell_2, FrameCurr, FrameNext): #determine similarities between mother and daughters simDF = DivSimScore(daughterCell_1, daughterCell_2, FrameNext) #determine relative area of mother compared to daughters MotherArea = int(FrameCurr[(FrameCurr['label'] == motherCell)]['area']) daughterArea_1 = int(FrameNext[(FrameNext['label'] == daughterCell_1)]['area']) daughterArea_2 = int(FrameNext[(FrameNext['label'] == daughterCell_2)]['area']) areaChange = MotherArea/(daughterArea_1 + daughterArea_2) simDF["MDDeltaArea"] = areaChange return(simDF) def DivisionCanditates(propMtx, filename_t0,filename_t1,timepoint,mS_Area = 10, mS_Ecc = 2, mS_Int = 2, mS_Disp = 1, MDAR_thresh = 0.75, SDis_thresh = 20.0): ip0 = buildFeatureFrame(filename_t0,timepoint) ip1 = buildFeatureFrame(filename_t1,timepoint+1) Mothers = np.unique(propMtx.loc[:,['label_t0']]) DivCandidacy = pd.DataFrame() for cell in Mothers: DaughtersPossible = (propMtx[(propMtx['label_t0'] == cell)].loc[:,'label_t1']) DaughtersPairs = np.array(np.meshgrid(DaughtersPossible, DaughtersPossible)).T.reshape(-1,2) Sisters = np.unique(np.sort(DaughtersPairs),axis=0) for pair in range(Sisters.shape[0]): if (Sisters[pair,0] != Sisters[pair,1]): tmpScoreSetup = (DivSetupScore(cell,Sisters[pair,0], Sisters[pair,1], ip0,ip1)) LogicMDAR = (tmpScoreSetup["MDDeltaArea"]>MDAR_thresh) ScoreSDis = (mS_Int*tmpScoreSetup["D2deltaInt"]) + (mS_Area*tmpScoreSetup["D2deltaArea"]) + (mS_Ecc*tmpScoreSetup["D2deltaEcc"]) + (mS_Disp*tmpScoreSetup["D2deltaX"]) LogicSDis = (ScoreSDis<SDis_thresh) tmpCandidacy = pd.DataFrame([cell,Sisters[pair,0],Sisters[pair,1],(LogicSDis&LogicMDAR).bool()]).T DivCandidacy = DivCandidacy.append(tmpCandidacy) DivCandidacy = DivCandidacy.rename(columns={0: "Mother", 1: "Daughter1", 2: "Daughter2",3: "Div"}) DivCandidacy = DivCandidacy.reset_index(drop=True) # select true values DivSelect = DivCandidacy[(DivCandidacy['Div'] == True)] DivConnects_1 = DivSelect[['Mother','Daughter1','Div']] DivConnects_2 = DivSelect[['Mother','Daughter2','Div']] DivConnects_1 = DivConnects_1.rename(columns={'Mother': "label_t0", 'Daughter1': "label_t1"}) DivConnects_2 = DivConnects_2.rename(columns={'Mother': "label_t0", 'Daughter2': "label_t1"}) DivConnects = pd.concat([DivConnects_1,DivConnects_2]) DivConnects = DivConnects.reset_index(drop=True) return(DivConnects) def UpdateConnectionsDiv(propMtx,DivCandidatesMtx): propMtx.loc[propMtx['label_t0'].isin(np.unique(DivCandidatesMtx['label_t0'])),['TransitionCapacity']] = 2 for div in range(DivCandidatesMtx.shape[0]): tmp_prop = propMtx.loc[(DivCandidatesMtx.loc[div,'label_t0'] ==propMtx['label_t0'])&(DivCandidatesMtx.loc[div,'label_t1'] ==propMtx['label_t1']),] old_score = float(tmp_prop.loc[:,'Cost']) new_score = (old_score/2) propMtx.loc[(DivCandidatesMtx.loc[div,'label_t0'] ==propMtx['label_t0'])&(DivCandidatesMtx.loc[div,'label_t1'] ==propMtx['label_t1']),'Cost'] = new_score return(propMtx) def SolveMinCostTable(filename_t0, filename_t1, DivisionTable,timepoint, OpeningCost = 30, ClosingCost = 30): #rename ip0 = buildFeatureFrame(filename_t0,timepoint) ip0 = ip0.rename(columns={"label" : "label_t0"}) ip1 = buildFeatureFrame(filename_t1,timepoint+1) ip1 = ip1.rename(columns={"label" : "label_t1"}) ip0["slabel_t0"] = np.array(range(ip0.label_t0.shape[0]))+1 i0max = np.max(np.asarray(ip0["slabel_t0"])) ip1["slabel_t1"] = np.array(range(i0max,i0max+ip1.label_t1.shape[0]))+1 i1max = np.max(np.asarray(ip1["slabel_t1"])) i0_translation = ip0[["label_t0","slabel_t0"]] i1_translation = ip1[["label_t1","slabel_t1"]] result_tmp = pd.merge(DivisionTable, i0_translation, on=['label_t0']) result = pd.merge(result_tmp, i1_translation, on=['label_t1']) result_shorthand = result[['slabel_t0','slabel_t1','Cost','TransitionCapacity']] transNodes0 = np.array(result_shorthand['slabel_t0']) ; transNodes1 = np.array(result_shorthand['slabel_t1']) ; transCosts = np.array(result_shorthand['Cost']) ; transCaps = np.repeat(1,transNodes0.size) ; sourceNodes0 = np.repeat([0],i1max) sourceNodes1 = np.array(range(i1max))+1 sourceCosts = np.concatenate((np.repeat(1,ip0.shape[0]),np.repeat(OpeningCost,ip1.shape[0])), axis=None) #Source capacities are dictates by which node could be splitting. Source capacity = 2 if there was a division candidate tmpUnique0 = result_shorthand[["slabel_t0","TransitionCapacity"]].drop_duplicates() HighCaps = tmpUnique0.loc[tmpUnique0["TransitionCapacity"]==2,] LowCaps = pd.DataFrame(i0_translation).copy(deep=True) LowCaps['Cap'] = 1 LowCaps.loc[LowCaps['slabel_t0'].isin(np.array(HighCaps['slabel_t0'])),'Cap'] = 2 sourceCaps = np.concatenate((np.array(LowCaps['Cap']),np.repeat(1,ip1.shape[0])), axis=None) sinkNodes0 = np.array(range(i1max))+1 sinkNodes1 = np.repeat([i1max+1],i1max) sinkCosts = np.concatenate((np.repeat(ClosingCost,ip0.shape[0]),np.repeat(1,ip1.shape[0])), axis=None) sinkCaps = np.repeat(1,i1max) # Define the directed graph for the flow. min_cost_flow = pywrapgraph.SimpleMinCostFlow() start_nodes = np.concatenate((sourceNodes0, transNodes0, sinkNodes0)).tolist() end_nodes = np.concatenate((sourceNodes1, transNodes1, sinkNodes1)).tolist() capacities = np.concatenate((sourceCaps, transCaps, sinkCaps)).tolist() costs = np.concatenate((sourceCosts, transCosts, sinkCosts)).tolist() source = 0 sink = i1max+1 supply_amount = np.max([i0max,i1max-i0max]) supplies = np.concatenate(([supply_amount],np.repeat(0,i1max),[-1*supply_amount])).tolist() min_cost_flow = pywrapgraph.SimpleMinCostFlow() # Add each arc. for i in range(len(start_nodes)): min_cost_flow.AddArcWithCapacityAndUnitCost(start_nodes[i], end_nodes[i],capacities[i], int(costs[i])) # Add node supplies. for i in range(len(supplies)): min_cost_flow.SetNodeSupply(i, supplies[i]) ArcFrame = pd.DataFrame() # Find the minimum cost flow between node 0 and node 4. if min_cost_flow.Solve() == min_cost_flow.OPTIMAL: print('Minimum cost:', min_cost_flow.OptimalCost()) for i in range(min_cost_flow.NumArcs()): cost = min_cost_flow.Flow(i) * min_cost_flow.UnitCost(i) ArcFrame = ArcFrame.append(pd.DataFrame([min_cost_flow.Tail(i), min_cost_flow.Head(i), min_cost_flow.Flow(i), min_cost_flow.Capacity(i), cost]).T) else: print('There was an issue with the min cost flow input.') ArcFrame = ArcFrame.rename(columns={0:'start',1:'end',2:"Flow",3:"Capacity",4:"Cost"}) #ArcFrame = ArcFrame.reset_index(drop=True) FinalFrame = ArcFrame.loc[ArcFrame["Flow"]!=0,] FinalFrame = FinalFrame.reset_index(drop=True) return(FinalFrame) def ReviewCostTable(minCostFlowtable, timepoint, OpeningCost=30,ClosingCost=30): sink = max(minCostFlowtable["end"]) Transitions = minCostFlowtable.loc[(minCostFlowtable["start"]!=0)&(minCostFlowtable["end"]!=sink),] trans_start_nodes = np.unique(Transitions["start"]) trans_end_nodes = np.unique(Transitions["end"]) #find nodes that either appear (no start) or disappear (no end) appearing = minCostFlowtable[(~minCostFlowtable.start.isin(trans_start_nodes))& (~minCostFlowtable.end.isin(trans_start_nodes))& (~minCostFlowtable.start.isin(trans_end_nodes))& (~minCostFlowtable.end.isin(trans_end_nodes))] appearing = appearing.loc[(appearing["Cost"] == OpeningCost)|(appearing["Cost"] == ClosingCost)] appearing = appearing.reset_index(drop=True) appearFrame = pd.DataFrame() for i in range(appearing.shape[0]): if(appearing.loc[i,"start"] == 0): appearFrame = appearFrame.append(pd.DataFrame([-1,appearing.loc[i,"end"]]).T) elif(appearing.loc[i,"end"] == sink): appearFrame = appearFrame.append(pd.DataFrame([appearing.loc[i,"end"],-1]).T) appearFrame = appearFrame.rename(columns={0:"slabel_t0",1:"slabel_t1"}) appearFrame = appearFrame.reset_index(drop=True) #Assemble transFrame = Transitions.loc[:,["start","end"]] transFrame = transFrame.rename(columns={"start":"slabel_t0","end":"slabel_t1"}) totalFrame = pd.concat([appearFrame,transFrame]) totalFrame = totalFrame.reset_index(drop=True) totalFrame["timepoint"] = timepoint return(totalFrame) def TranslationTable(filename_t0, filename_t1, DivisionTable,timepoint): #rename ip0 = buildFeatureFrame(filename_t0,timepoint) ip0 = ip0.rename(columns={"label" : "label_t0"}) ip1 = buildFeatureFrame(filename_t1,timepoint+1) ip1 = ip1.rename(columns={"label" : "label_t1"}) ip0["slabel_t0"] = np.array(range(ip0.label_t0.shape[0]))+1 i0max = np.max(np.asarray(ip0["slabel_t0"])) ip1["slabel_t1"] = np.array(range(i0max,i0max+ip1.label_t1.shape[0]))+1 i1max = np.max(np.asarray(ip1["slabel_t1"])) i0_translation = ip0[["label_t0","slabel_t0"]] i1_translation = ip1[["label_t1","slabel_t1"]] dvtabDF = DivisionTable result_tmp = pd.merge(dvtabDF, i0_translation, on=['label_t0']) translation_table = pd.merge(result_tmp, i1_translation, on=['label_t1']) #result_shorthand = result[['slabel_t0','slabel_t1','Cost','TransitionCapacity']] startLabels = translation_table.loc[:,["label_t0","slabel_t0"]] startLabels["timepoint"] = timepoint startLabels["frame"] = timepoint+1 endLabels = translation_table.loc[:,["label_t1","slabel_t1"]] endLabels["timepoint"] = timepoint+1 endLabels["frame"] = timepoint+2 startLabels = startLabels.rename(columns={"label_t0":"label","slabel_t0":"slabel"}) endLabels = endLabels.rename(columns={"label_t1":"label","slabel_t1":"slabel"}) allLabels = pd.concat([startLabels,endLabels]) allLabels = allLabels.reset_index(drop=True) allLabels = allLabels.astype( 'int64') allLabels["Master_ID"] = allLabels["timepoint"].astype('str')+"_"+allLabels["label"].astype('str') allLabels = allLabels.astype({"Master_ID":'str'}) allLabels["RajTLG_ID"] = allLabels["frame"]*int(10**(np.ceil(np.log10(max(allLabels['slabel'])))+2))+allLabels["label"] allLabels = allLabels.drop_duplicates() allLabels = allLabels.reset_index(drop=True) return(allLabels) def TranslateConnections(ConnectionTable, TranslationTable, timepoint, preference = "Master_ID"): subTranslationTable_0 = TranslationTable.loc[:,[preference,"slabel"]] subTranslationTable_0['slabel_t0'] = subTranslationTable_0['slabel'] subTranslationTable_1 = TranslationTable.loc[:,[preference,"slabel"]] subTranslationTable_1['slabel_t1'] = subTranslationTable_1['slabel'] merge_0 = pd.merge(ConnectionTable, subTranslationTable_0, on="slabel_t0") merge = pd.merge(merge_0, subTranslationTable_1, on="slabel_t1") pref = str(preference) result = merge.loc[:,[pref+"_x",pref+"_y"]] result = result.drop_duplicates() result = result.dropna(thresh=1) result = result.reset_index(drop=True) result = result.rename(columns = {(pref+"_x") : (pref+"_"+str(timepoint)), (pref+"_y") : (pref+"_"+str(timepoint+1))}) return(result) def RajTLG_wrap(filename_t0, filename_t1,timepoint,ConnectionTable,TranslationTable): frame0 = buildFeatureFrame(filename_t0,timepoint); frame1 = buildFeatureFrame(filename_t1,timepoint+1); frames = pd.concat([frame0,frame1]) frames["timepoint"] = frames["time"] InfoDF = pd.merge(frames,TranslationTable, on=['label','timepoint']) RajTLG_translation = TranslateConnections(ConnectionTable=ConnectionTable, TranslationTable=TranslationTable, timepoint=timepoint, preference="RajTLG_ID") RajTLGFrame = pd.DataFrame() if (timepoint == 0): for i in range(RajTLG_translation.shape[0]): tmpID = RajTLG_translation.loc[i,"RajTLG_ID"+"_"+str(timepoint)] tmpFrame = int(InfoDF.loc[InfoDF["RajTLG_ID"] == RajTLG_translation.loc[i,"RajTLG_ID"+"_"+str(timepoint)],"frame"]) tmpX = int(InfoDF.loc[InfoDF["RajTLG_ID"] == RajTLG_translation.loc[i,"RajTLG_ID"+"_"+str(timepoint)],"centroid-1"]) tmpY = int(InfoDF.loc[InfoDF["RajTLG_ID"] == RajTLG_translation.loc[i,"RajTLG_ID"+"_"+str(timepoint)],"centroid-0"]) tmpParent = "NaN" RajTLGFrame = RajTLGFrame.append(pd.DataFrame([tmpID,tmpFrame,tmpX,tmpY,tmpParent]).T) for i in range(RajTLG_translation.shape[0]): tmpID = RajTLG_translation.loc[i,"RajTLG_ID"+"_"+str(timepoint+1)] tmpFrame = int(InfoDF.loc[InfoDF["RajTLG_ID"] == RajTLG_translation.loc[i,"RajTLG_ID"+"_"+str(timepoint+1)],"frame"]) tmpX = int(InfoDF.loc[InfoDF["RajTLG_ID"] == RajTLG_translation.loc[i,"RajTLG_ID"+"_"+str(timepoint+1)],"centroid-1"]) tmpY = int(InfoDF.loc[InfoDF["RajTLG_ID"] == RajTLG_translation.loc[i,"RajTLG_ID"+"_"+str(timepoint+1)],"centroid-0"]) tmpParent = int(RajTLG_translation.loc[RajTLG_translation["RajTLG_ID"+"_"+str(timepoint+1)] == tmpID, "RajTLG_ID"+"_"+str(timepoint)]) RajTLGFrame = RajTLGFrame.append(pd.DataFrame([tmpID,tmpFrame,tmpX,tmpY,tmpParent]).T) RajTLGFrame = RajTLGFrame.reset_index(drop=True) RajTLGFrame = RajTLGFrame.rename(columns={0:"pointID", 1:"frameNumber", 2:"xCoord",3:"yCoord",4:"parentID"}) RajTLGFrame["annotation"] = "none" #RajTLGFrame.to_csv(outfilename,index=False) return(RajTLGFrame) def HCR_connect(sampleName, TLlast_mask, HCR_mask, timepoint, nnDist=3, costMax=35, mN_Int=10, mN_Ecc=4, mN_Area=25, mN_Disp=1, mS_Area = 10, mS_Ecc = 2, mS_Int = 2, mS_Disp = 1, MDAR_thresh = 0.75, SDis_thresh = 20.0, openingCost = 30, closingCost = 30): propies = generateLinks(filename_t0 = TLlast_mask, filename_t1 = HCR_mask, timepoint = timepoint, nnDist = nnDist, costMax = costMax, mN_Int = mN_Int, mN_Ecc = mN_Ecc, mN_Area = mN_Area, mN_Disp = mN_Disp) tmpdivs = DivisionCanditates(propMtx = propies, filename_t0 = TLlast_mask, filename_t1 = HCR_mask, MDAR_thresh = MDAR_thresh, SDis_thresh = SDis_thresh, mS_Disp = mS_Disp, mS_Area = mS_Area, mS_Ecc = mS_Ecc, mS_Int = mS_Int, timepoint = timepoint) finaldivs = UpdateConnectionsDiv(propies, tmpdivs) minCost_table = SolveMinCostTable(TLlast_mask, HCR_mask, DivisionTable=finaldivs, timepoint=timepoint, OpeningCost = openingCost, ClosingCost = closingCost) finTable = ReviewCostTable(minCostFlowtable = minCost_table, timepoint=timepoint) translation_table = TranslationTable(TLlast_mask, HCR_mask, DivisionTable=finaldivs, timepoint=timepoint) masterConnects_Raj = TranslateConnections(finTable, translation_table, timepoint=timepoint, preference="RajTLG_ID") masterConnects_Master = TranslateConnections(finTable, translation_table, timepoint=timepoint, preference="Master_ID") col_df = finTable[(finTable['slabel_t0']!=-1)&(finTable['slabel_t1']!=-1)] col_df.to_csv('results/'+sampleName+'/HCR/'+sampleName+'_HCR_connect.csv', index=False) translation_table.to_csv('results/'+sampleName+'/HCR/'+sampleName+'_HCR_translation.csv', index=False) masterConnects_Raj.to_csv('results/'+sampleName+'/HCR/'+sampleName+'_HCR_connections_RajLab.csv', index=False) masterConnects_Master.to_csv('results/'+sampleName+'/HCR/'+sampleName+'_HCR_connections_MasterID.csv', index=False)
python