content
stringlengths
0
894k
type
stringclasses
2 values
# coding: utf-8 # import models into model package from .error_enveloped import ErrorEnveloped from .health_check_enveloped import HealthCheckEnveloped from .inline_response200 import InlineResponse200 from .inline_response200_data import InlineResponse200Data from .inline_response201 import InlineResponse201 from .inline_response2001 import InlineResponse2001 from .inline_response2001_authors import InlineResponse2001Authors from .inline_response2001_badges import InlineResponse2001Badges from .inline_response2002 import InlineResponse2002 from .inline_response2002_data import InlineResponse2002Data from .inline_response2002_data_node_requirements import ( InlineResponse2002DataNodeRequirements, ) from .inline_response2002_data_service_build_details import ( InlineResponse2002DataServiceBuildDetails, ) from .inline_response2003 import InlineResponse2003 from .inline_response2003_data import InlineResponse2003Data from .inline_response_default import InlineResponseDefault from .inline_response_default_error import InlineResponseDefaultError from .running_service_enveloped import RunningServiceEnveloped from .running_services_enveloped import RunningServicesEnveloped from .service_extras_enveloped import ServiceExtrasEnveloped from .services_enveloped import ServicesEnveloped from .simcore_node import SimcoreNode
python
__author__ = 'Bohdan Mushkevych' from odm.document import BaseDocument from odm.fields import StringField, ObjectIdField, DateTimeField TIMEPERIOD = 'timeperiod' START_TIMEPERIOD = 'start_timeperiod' END_TIMEPERIOD = 'end_timeperiod' FLOW_NAME = 'flow_name' STATE = 'state' CREATED_AT = 'created_at' STARTED_AT = 'started_at' FINISHED_AT = 'finished_at' RUN_MODE = 'run_mode' RUN_MODE_NOMINAL = 'run_mode_nominal' RUN_MODE_RECOVERY = 'run_mode_recovery' # Flow can get into STATE_INVALID if: # a. related Job was marked for reprocessing via MX # b. have failed with an exception at the step level # NOTICE: FlowDriver changes STATE_INVALID -> STATE_IN_PROGRESS during re-posting STATE_INVALID = 'state_invalid' # given Flow was successfully executed # This is a final state STATE_PROCESSED = 'state_processed' # given Flow had no steps to process # This is a final state STATE_NOOP = 'state_noop' # FlowDriver triggers the flow execution. # Next valid states: STATE_NOOP, STATE_PROCESSED, STATE_INVALID STATE_IN_PROGRESS = 'state_in_progress' # Flow record created in the DB # Next valid states: STATE_IN_PROGRESS STATE_EMBRYO = 'state_embryo' class Flow(BaseDocument): """ class presents status for a Flow run """ db_id = ObjectIdField('_id', null=True) flow_name = StringField(FLOW_NAME) timeperiod = StringField(TIMEPERIOD) start_timeperiod = StringField(START_TIMEPERIOD) end_timeperiod = StringField(END_TIMEPERIOD) state = StringField(STATE, choices=[STATE_EMBRYO, STATE_IN_PROGRESS, STATE_PROCESSED, STATE_NOOP, STATE_INVALID]) # run_mode override rules: # - default value is read from ProcessEntry.arguments['run_mode'] # - if the ProcessEntry.arguments['run_mode'] is None then run_mode is assumed `run_mode_nominal` # - Flow.run_mode, if specified, overrides ProcessEntry.arguments['run_mode'] # - UOW.arguments['run_mode'] overrides Flow.run_mode run_mode = StringField(RUN_MODE, choices=[RUN_MODE_NOMINAL, RUN_MODE_RECOVERY]) created_at = DateTimeField(CREATED_AT) started_at = DateTimeField(STARTED_AT) finished_at = DateTimeField(FINISHED_AT) @BaseDocument.key.getter def key(self): return self.flow_name, self.timeperiod @key.setter def key(self, value): """ :param value: tuple (name of the flow, timeperiod as string in Synergy Data format) """ self.flow_name = value[0] self.timeperiod = value[1]
python
''' This module generates charts from cohort.pickle rather than from the cumulative csvs. ''' import os import pandas as pd import matplotlib.pyplot as plt from plot_practice_charts import * from ethnicities import high_level_ethnicities wave_column_headings = { "total": "All", "all_priority": "Priority groups", "1": "In care home", "2": "80+", "3": "70-79", "4": "CEV", "5": "65-69", "6": "At risk", "7": "60-64", "8": "55-59", "9": "50-54", "0": "Other", } group_names = { "vacc_group":"Vaccinated", "decline_group":"Declined", "decline_total_group":"Declined - all", "other_reason_group":"Other reason", "declined_accepted_group": "Declined then received", "patient_id":"total" } backend = os.getenv("OPENSAFELY_BACKEND", "expectations") out_path = f"output/{backend}/additional_figures" os.makedirs(out_path, exist_ok=True) def compute_uptake_percent(uptake):#, labels): uptake_pc = 100 * uptake / uptake.loc["total"] uptake_pc.drop("total", inplace=True) uptake_pc.fillna(0, inplace=True) if set(uptake_pc.columns) == {"True", "False"}: # This ensures that chart series are always same colour. uptake_pc = uptake_pc[["True", "False"]] else: # Sort DataFrame columns so that legend is in the same order as chart series. uptake_pc.sort_values( uptake_pc.last_valid_index(), axis=1, ascending=False, inplace=True ) #uptake_pc.rename(columns=labels, inplace=True) return uptake_pc def practice_variation(input_path="output/cohort.pickle", output_dir=out_path): ''' Calculates total patients per practice and of whom how many have had a vaccine to date, or declined Note: those declining only include those who have not later received a vaccine. ''' cohort = pd.read_pickle(input_path) # limit to priority groups (ages 50+ and clinical priority groups) cohort = cohort.loc[cohort["wave"]!=0] practice_figures = cohort[["practice", "vacc_group", "decline_group", "patient_id"]]\ .groupby("practice").agg({"vacc_group":"sum", "decline_group":"sum", "patient_id":"nunique"}) practice_figures = practice_figures.rename(columns={"patient_id":"patient_count"}) # remove tiny practices by setting a minimum no of people in the priority groups # and ensure that at least 10 patients have been vaccinated in each practice if backend=="expectations": practice_figures = practice_figures.loc[(practice_figures["patient_count"]>10)&(practice_figures["vacc_group"]>0)] else: practice_figures = practice_figures.loc[(practice_figures["patient_count"]>250)&(practice_figures["vacc_group"]>10)] # summarise data practice_count = len(practice_figures.index) counts = practice_figures.loc[practice_figures["decline_group"]>0]["decline_group"].count() d = {"practices with declines":counts, "total practices":practice_count} out = pd.Series(d, index=["practices with declines", "total practices"]) out.to_csv(f"{output_dir}/practice_decline_summary.csv") practice_figures = practice_figures.assign( decline_per_1000 = 1000*practice_figures["decline_group"]/practice_figures["patient_count"], decline_per_1000_vacc = 1000*practice_figures["decline_group"]/practice_figures["vacc_group"], vacc_per_1000 = 1000*practice_figures["vacc_group"]/practice_figures["patient_count"] ) plot_hist(df=practice_figures, output_dir=output_dir) plot_boxplot(df=practice_figures, backend=backend, output_dir=output_dir) plot_heatmap(df=practice_figures, backend=backend, output_dir=output_dir) def declined_vaccinated(input_path="output/cohort.pickle", output_dir=out_path): ''' Counts patients who went from "Declined" to "Vaccinated". Creates a chart. ''' cohort = pd.read_pickle(input_path) cohort["wave"] = cohort["wave"].astype(str) cohort = cohort[["wave", "vacc_group", "declined_accepted_group", "decline_total_group", "patient_id"]]\ .groupby("wave").agg({"vacc_group":"sum", "declined_accepted_group":"sum", "decline_total_group":"sum", "patient_id":"nunique"}) cohort = cohort.rename(columns=group_names, index=wave_column_headings) cohort = cohort.assign( per_1000 = 1000*cohort["Declined then received"]/cohort["total"], per_1000_vacc = 1000*cohort["Declined then received"]/cohort["Vaccinated"], converted = 1000*cohort["Declined then received"]/cohort["Declined - all"] ) fig, axs = plt.subplots(3, 1, sharex=True, tight_layout=True, figsize=(6,12)) for n, x in enumerate(["per_1000", "per_1000_vacc", "converted"]): cohort[x].plot(kind='bar', stacked=True, ax=axs[n]) if x=="per_1000_vacc": title = "Patients Declining and later Receiving COVID Vaccines\n per 1000 vaccinated patients" elif x=="converted": title = "Patients Declining and later Receiving COVID Vaccines\n per 1000 patients who declined" else: title = "Patients Declining and later Receiving COVID Vaccines\n per 1000 patients" axs[n].set_ylabel("Rate per 1000") axs[n].set_title(title) axs[1].set_xlabel("Priority group") fig.savefig(f"{output_dir}/all_declined_then_accepted_by_wave.png") def decl_acc_time_delay(input_path="output/cohort.pickle", output_dir=out_path): ''' Measures the time between recorded decline and vaccination for each pt in the declined-then-accepted group, and groups to number of weeks. ''' cohort = pd.read_pickle(input_path) # limit to priority groups (ages 50+ and clinical priority groups) cohort = cohort.loc[cohort["wave"]!=0] # filter to the declined-then-accepted group cohort = cohort.loc[cohort["declined_accepted_group"]==1] cohort = cohort[["wave", "declined_accepted_group", "patient_id", "vacc1_dat", "decl_first_dat", "high_level_ethnicity"]] cohort["wave"] = cohort["wave"].astype(str) # calculate no of days between recorded decline and vaccination. cohort["date_diff"] = cohort["vacc1_dat"] - cohort['decl_first_dat'] # bin the data bins = [ pd.Timedelta(days = 0), pd.Timedelta(days = 14), pd.Timedelta(days = 28), pd.Timedelta(weeks = 8), pd.Timedelta(weeks = 120) ] labels = ["0-<2 weeks", "2-<4 weeks", "1-<2 months", ">=2 months"] cohort["weeks_diff"] = pd.cut(cohort["date_diff"], bins=bins, labels=labels, retbins=False, include_lowest=True, right=False) # summarise for each group cohort_a = cohort.groupby(["wave","weeks_diff"])["patient_id"].count() cohort_a = cohort_a.rename(index=wave_column_headings) # low number suppression and rounding cohort_a = cohort_a.replace([1,2,3,4,5,6], 0) cohort_a = ((cohort_a // 7) * 7).astype(int) cohort_a.to_csv(f"{output_dir}/declined_accepted_weeks_by_wave.csv") # look at priority groups split by demographics cohort_b = cohort.copy() # group by wave and ethnicity cohort_b = cohort_b.groupby(["wave", "high_level_ethnicity","weeks_diff"])["patient_id"].count() # rename column headers and indices (2 levels) cohort_b = cohort_b.rename(index=high_level_ethnicities) cohort_b = cohort_b.rename(index=wave_column_headings) # low number suppression and rounding cohort_b = cohort_b.replace([1,2,3,4,5,6], 0) cohort_b = ((cohort_b // 7) * 7).astype(int) cohort_b.to_csv(f"{output_dir}/declined_accepted_weeks_by_wave_and_ethnicity.csv") def invert_df(df, group="all"): ''' "Inverts" df: calculates the difference between the total population ("total" row) and each other row in turn, so if `df` counts "patients vaccinated", the resulting df counts "patients NOT vaccinated". ''' for i in df.index.drop("total"): df.loc[i] = df.loc["total"] - df.loc[i] return df
python
# nxpy_svn -------------------------------------------------------------------- # Copyright Nicola Musatti 2010 - 2018 # Use, modification, and distribution are subject to the Boost Software # License, Version 1.0. (See accompanying file LICENSE.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) # See https://github.com/nmusatti/nxpy/tree/master/libs/svn. ------------------ r""" Subversion administration tool wrapper. """ from __future__ import absolute_import import os import nxpy.command.command import nxpy.command.option _config = nxpy.command.option.Config() class SvnAdmin(nxpy.command.command.Command): def __init__(self, debug=None): super(SvnAdmin, self).__init__("svnadmin", debug) def create(self, path, debug=None): op = nxpy.command.option.Parser(_config, "create", ( path, ), {}) self.run(op, debug) return "file:///" + path.replace(os.sep, "/").lstrip("/")
python
# -*- Python -*- # license # license. """ Files opening and reading/writing functions. """ import sys, os, bz2, lzma, json import logging; module_logger = logging.getLogger(__name__) # ====================================================================== def open_for_reading_binary(filename): """Opens binary file for reading. Handles compressed files transparently.""" return FileBinaryReader(filename) # ====================================================================== def open_for_reading_text(filename): """Opens text file for reading. Handles compressed files transparently.""" return FileTextReader(filename) # ====================================================================== def read_binary(filename): """Reads and returns entire binary file content as bytes. Handles compressed files transparently.""" with FileBinaryReader(filename) as f: return f.read() # ====================================================================== def read_or_get_binary(data, try_reading_from_file=True): """If data is a filename, reads it. Uncompresses data, if necessary.""" try: if try_reading_from_file and isinstance(data, str) and len(data) < 1024: data = read_binary(data) except Exception as err: raise RuntimeError('Unable to open file {!r}'.format(data)) # check if data is compressed try: data = lzma.decompress(data) except Exception as err: try: data = bz2.decompress(data) except Exception as err: pass # do not convert to str! return data # ====================================================================== def write_json(filename, data, indent=None, sort_keys=False, backup=True): if indent is None: s = json.dumps(data, separators=[',', ':'], indent=indent, sort_keys=sort_keys) else: s = json_dumps(data, indent=indent, indent_increment=indent) with open_for_writing_binary(filename, backup=backup) as fd: fd.write(s.encode('utf-8')) # ====================================================================== def read_json(filename): return json.loads(open_for_reading_text(filename).read()) # ====================================================================== def json_dumps(data, indent=2, indent_increment=2): """More compact dumper with wide lines.""" def simple(d): r = True if isinstance(d, dict): r = not any(isinstance(v, (list, tuple, set, dict)) for v in d.values()) elif isinstance(d, (tuple, list)): r = not any(isinstance(v, (list, tuple, set, dict)) for v in d) return r def end(symbol, indent): if indent > indent_increment: r = "{:{}s}{}".format("", indent - indent_increment, symbol) else: r = symbol return r r = [] if simple(data): if isinstance(data, set): r.append(json.dumps(sorted(data), sort_keys=True)) else: r.append(json.dumps(data, sort_keys=True)) else: if isinstance(data, dict): r.append("{") for no, k in enumerate(sorted(data), start=1): comma = "," if no < len(data) else "" r.append("{:{}s}{}: {}{}".format("", indent, json.dumps(k), json_dumps(data[k], indent + indent_increment, indent_increment), comma)) r.append(end("}", indent)) elif isinstance(data, (tuple, list)): r.append("[") for no, v in enumerate(data, start=1): comma = "," if no < len(data) else "" r.append("{:{}s}{}{}".format("", indent, json_dumps(v, indent + indent_increment, indent_increment), comma)) r.append(end("]", indent)) return "\n".join(r) # ---------------------------------------------------------------------- def open_for_writing_binary(filename, compressed=None, backup=True, makedirs=True): """Opens binary file for writing. If compressed is None, autodetects if data should be compressed by filename suffix.""" if filename == '-' or filename is None: f = sys.stdout.buffer else: if compressed is None: if filename[-4:] == '.bz2': compressed = 'bz2' elif filename[-3:] == '.xz': compressed = 'xz' elif compressed is True: compressed = 'xz' if backup: backup_file(filename, backup) if makedirs and '/' in filename: try: os.makedirs(os.path.dirname(filename)) except: pass if compressed == 'bz2': f = bz2.BZ2File(filename, mode='w') elif compressed == 'xz': f = lzma.open(filename, mode='wb', preset=9 | lzma.PRESET_EXTREME) else: f = open(filename, mode='wb') return f # ====================================================================== def write_binary(filename, data, compressed=None, backup=True, makedirs=True): """Writes data (bytes) into a binary file. If compressed is None, autodetects if data should be compressed by filename suffix.""" with open_for_writing_binary(filename, compressed=compressed, backup=backup, makedirs=makedirs) as f: f.write(data) # ====================================================================== def backup_file(filename, backup_dir=None): """Backup the file, if it exists. Backups versioning is supported.""" if isinstance(backup_dir, str): newname = os.path.join(backup_dir, os.path.basename(filename)) else: newname = filename version = 1 while os.access(newname, os.F_OK): newname = '{}.~{:02d}~'.format(filename, version) version += 1 if newname != filename: #module_logger.debug("Backing up file: {} --> {}".format(filename, newname)) try: os.rename(filename, newname) except Exception as err: module_logger.warning('Cannot create backup copy of {}: {}'.format(filename, err), exc_info=True) # ====================================================================== class FileBinaryReader: def __init__(self, filename): self.filename = filename self.name = filename self.open_xz() def read(self, size=-1): try: return self.f.read(size) except (IOError, EOFError, lzma.LZMAError): self.open() return self.read(size) def readline(self): try: return self.f.readline() except (IOError, EOFError, lzma.LZMAError): self.open() return self.readline() def open_plain(self): self.f = open(self.filename, mode='rb') self.open = self.open_fail def open_bz2(self): self.f = bz2.BZ2File(self.filename) self.open = self.open_plain def open_xz(self): self.f = lzma.LZMAFile(self.filename) self.open = self.open_bz2 def open_fail(self): raise IOError('Unable to open/read ' + repr(self.filename)) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): try: self.f.close() except: pass def __iter__(self): return self def __next__(self): s = self.readline() if not len(s): raise StopIteration() return s # ====================================================================== class FileTextReader (FileBinaryReader): def read(self, size=-1): s = super().read(size=size) if isinstance(s, bytes): s = s.decode('utf-8') return s def readline(self): s = super().readline() if isinstance(s, bytes): s = s.decode('utf-8') return s # ====================================================================== ### Local Variables: ### eval: (if (fboundp 'eu-rename-buffer) (eu-rename-buffer)) ### End:
python
# get largest continues sum def pair_sum(arr, target): seen = set() output = set() for num in arr: diff = target - num if diff not in seen: print('adding diff',diff) seen.add(num) else: print('adding output',diff, seen) output.add((diff, num)) return output #print(pair_sum([1,2,3,9],8)) #False #print(pair_sum([1,2,4,4],8)) #True print(pair_sum([3,1,2,2],4)) #True
python
#!/usr/bin/env python """Archive Now for python""" # import pyhesity wrapper module from pyhesity import * from datetime import datetime # command line arguments import argparse parser = argparse.ArgumentParser() parser.add_argument('-v', '--vip', type=str, required=True) # cluster to connect to parser.add_argument('-u', '--username', type=str, required=True) # username parser.add_argument('-d', '--domain', type=str, default='local') # (optional) domain - defaults to local parser.add_argument('-j', '--jobname', action='append', type=str) parser.add_argument('-l', '--joblist', type=str) parser.add_argument('-k', '--keepfor', type=int, required=True) # (optional) will use policy retention if omitted parser.add_argument('-t', '--target', type=str, required=True) # (optional) will use policy target if omitted parser.add_argument('-f', '--fromtoday', action='store_true') # (optional) keepfor x days from today instead of from snapshot date parser.add_argument('-c', '--commit', action='store_true') args = parser.parse_args() vip = args.vip username = args.username domain = args.domain jobnames = args.jobname joblist = args.joblist keepfor = args.keepfor target = args.target fromtoday = args.fromtoday commit = args.commit # authenticate apiauth(vip, username, domain) # gather server list def gatherList(param=None, filename=None, name='items', required=True): items = [] if param is not None: for item in param: items.append(item) if filename is not None: f = open(filename, 'r') items += [s.strip() for s in f.readlines() if s.strip() != ''] f.close() if required is True and len(items) == 0: print('no %s specified' % name) exit() return items jobnames = gatherList(jobnames, joblist, name='jobs', required=True) jobs = api('get', 'protectionJobs') # catch invalid job names notfoundjobs = [n for n in jobnames if n.lower() not in [j['name'].lower() for j in jobs]] if len(notfoundjobs) > 0: print('Jobs not found: %s' % ', '.join(notfoundjobs)) daysToKeep = None vault = [vault for vault in api('get', 'vaults') if vault['name'].lower() == target.lower()] if len(vault) > 0: vault = vault[0] target = { "vaultId": vault['id'], "vaultName": vault['name'], "vaultType": "kCloud" } else: print('No archive target named %s' % target) exit() if keepfor: daysToKeep = keepfor finishedStates = ['kCanceled', 'kSuccess', 'kFailure', 'kWarning'] for job in sorted(jobs, key=lambda job: job['name'].lower()): if job['name'].lower() in [j.lower() for j in jobnames]: print('\n%s' % job['name']) runs = api('get', 'protectionRuns?jobId=%s&runTypes=kRegular&runTypes=kFull&numRuns=10&excludeTasks=true' % job['id']) for run in runs: if run['backupRun']['snapshotsDeleted'] is False and run['backupRun']['status'] in ['kSuccess', 'kWarning']: # check for active copy tasks activeCopyTasks = [t for t in run['copyRun'] if t['status'] not in finishedStates] if activeCopyTasks is None or len(activeCopyTasks) == 0: # check for already completed archive tasks to this target copyTasks = [t for t in run['copyRun'] if t['target']['type'] == 'kArchival' and t['status'] == 'kSuccess' and t['target']['archivalTarget']['vaultName'].lower() == target['vaultName'].lower()] if copyTasks is None or len(copyTasks) == 0: thisrun = api('get', '/backupjobruns?allUnderHierarchy=true&exactMatchStartTimeUsecs=%s&excludeTasks=true&id=%s' % (run['backupRun']['stats']['startTimeUsecs'], run['jobId'])) jobUid = thisrun[0]['backupJobRuns']['protectionRuns'][0]['backupRun']['base']['jobUid'] currentExpiry = None # configure archive task archiveTask = { "jobRuns": [ { "copyRunTargets": [ { "archivalTarget": target, "type": "kArchival" } ], "runStartTimeUsecs": run['copyRun'][0]['runStartTimeUsecs'], "jobUid": { "clusterId": jobUid['clusterId'], "clusterIncarnationId": jobUid['clusterIncarnationId'], "id": jobUid['objectId'] } } ] } # if fromtoday is not set, calculate days to keep from snapshot date if fromtoday is False: daysToKeep = daysToKeep - dayDiff(dateToUsecs(datetime.now().strftime("%Y-%m-%d %H:%M:%S")), run['copyRun'][0]['runStartTimeUsecs']) archiveTask['jobRuns'][0]['copyRunTargets'][0]['daysToKeep'] = int(daysToKeep) # update run if((daysToKeep > 0 and currentExpiry is None) or (daysToKeep != 0 and currentExpiry is not None)): if commit: print(' archiving snapshot from %s...' % usecsToDate(run['copyRun'][0]['runStartTimeUsecs'])) result = api('put', 'protectionRuns', archiveTask) else: print(' would archive snapshot from %s' % usecsToDate(run['copyRun'][0]['runStartTimeUsecs'])) break else: print(' skipping archive snapshot from %s' % usecsToDate(run['copyRun'][0]['runStartTimeUsecs'])) break else: print(' already archived snapshot from %s' % usecsToDate(run['copyRun'][0]['runStartTimeUsecs'])) break else: # check if currently archiving to this target copyTasks = [t for t in run['copyRun'] if t['target']['type'] == 'kArchival' and t['target']['archivalTarget']['vaultName'].lower() == target['vaultName'].lower()] if copyTasks is not None and len(copyTasks) > 0: print(' already archiving snapshot from %s' % usecsToDate(run['copyRun'][0]['runStartTimeUsecs'])) break
python
# https://www.hackerrank.com/challenges/sherlock-and-anagrams/problem def anagramPairs(s): # Write your code here dic = {} res = 0 for k in range(1, len(s)): for i in range(len(s)-k+1): j = i+k strr = "".join(sorted(s[i:j])) dic[strr] = dic.get(strr,0)+1 for v in dic.values(): if v>1: res += (v*(v-1))//2 return res
python
""" /****************************************************************************** * * * Name: mylogger.py * * * * Description: A module to setup a custom logger with default options * * Can setup multiple logs with different levels of info * * in each, and an email log for errors, as well as handling* * all uncaught exceptions. * * * * Creation Date: 19 05 2021 * * * * Created By: Michael Walshe * * Amadeus Software Ltd * * [email protected] * * +44 (0) 1993 848010 * * * * Edit History: * * +------------------+------------+---------------------------------------+ * * | Programmer | Date | Description | * * +------------------+------------+---------------------------------------+ * * | Michael Walshe | 25NOV2021 | Original. | * * +------------------+------------+---------------------------------------+ * ******************************************************************************/ """ import logging import logging.handlers import sys # Get things for type hinting from typing import Optional, Type from types import TracebackType import autologging def setup_logger( file_name: Optional[str] = None, trace_log: bool = False, catch_errors: bool = True, **kwargs, ) -> logging.Logger: """Create instance of overall logger Args: file_name: Optional, the name/path to the output logs, without a file extension trace_log: Optional, twhether to output a detailed TRACE log catch_errors: Replace python standard sys.excepthook with a new exception handler that sends them to the log. **kwargs: Arguments for logging.handlers.SMTPHandler, see logging documentation for details """ # Format and extended format to use in logger output basic_format = "%(asctime)s:%(levelname)s:%(name)s:%(funcName)s:%(message)s" trace_format = ( "%(asctime)s:%(process)s:%(levelname)s:%(filename)s" ":%(lineno)s:%(name)s:%(funcName)s:%(message)s" ) # Setup basic logger and console output, note that level here is the minimum # that will be output logging.basicConfig( format=basic_format, handlers=[logging.StreamHandler(sys.stdout)], level=autologging.TRACE, ) # Create the logging object logger = logging.getLogger() # Create an email handler for warnings, this will only output when # a warning occurs if kwargs: email_hdlr = logging.handlers.SMTPHandler(**kwargs) formatter = logging.Formatter(trace_format) email_hdlr.setFormatter(formatter) email_hdlr.setLevel(logging.WARNING) logger.addHandler(email_hdlr) # If passed a filename, setup file logs if file_name: log_hdlr = logging.FileHandler(f"{file_name}.log") formatter = logging.Formatter(basic_format) log_hdlr.setFormatter(formatter) log_hdlr.setLevel(logging.DEBUG) logger.addHandler(log_hdlr) # If setting up a TRACE log then add that handler if trace_log: trace_hdlr = logging.FileHandler(f"{file_name}_trace.log") formatter = logging.Formatter(trace_format) trace_hdlr.setFormatter(formatter) trace_hdlr.setLevel(autologging.TRACE) logger.addHandler(trace_hdlr) if catch_errors: # Replaces excepthook with our own exception handler sys.excepthook = handle_exception return logger def handle_exception( exc_type: Type[BaseException], exc_value: BaseException, exc_traceback: TracebackType, ) -> None: """Sends uncaught exceptions to the log""" # Allow ending program using Ctrl + C if issubclass(exc_type, KeyboardInterrupt): sys.__excepthook__(exc_type, exc_value, exc_traceback) return logger = logging.getLogger() logger.error("Uncaught exception", exc_info=(exc_type, exc_value, exc_traceback))
python
#!/usr/bin/env python """Celery worker to be run as follows: (venv) $ celery worker -A pili.entrypoints.celery.celery --loglevel=info Environment variables (such as MAIL_SERVER, MAIL_USERNAME, etc.) should be set using export: (venv) $ export MAIL_SERVER=smtp.youserver.com 'export' keyword in bash sets a variable to current shell and all processes started from current shell. If environmental variables are not set properly celery may raise SMTPServerDisconnected('please run connect() first'), as email settings are effectively absent. """ import os from pili.app import celery, create_app # noqa app = create_app(config_name=os.getenv('PILI_CONFIG', 'development')) app.app_context().push()
python
import asyncio import http import aiohttp.client import urllib.robotparser import datetime import collections import logging import abc logger = logging.getLogger(__name__) import site_graph class RequestQueue: """A queue of pending HTTP requests, that maintains a minimum interval between outgoing requests It supports determining the rate by """ RequestContext = collections.namedtuple("RequestContext", ["time_enqueued", "times_retried"]) class ResponseHandler(metaclass = abc.ABCMeta): """An abstract base class for handles of HTTP responses""" @abc.abstractmethod def on_response(self, url_requested: site_graph.URL, url_served: site_graph.URL, status: int, text: str) -> None: """Abstract method representing an HTTP response. Note that the URL served could differ from the one requested, due to reedirects""" pass def __init__(self, handler: ResponseHandler): self.handler = handler self.seconds_interval = 0.5 self.queue = collections.OrderedDict() self.robots_file = None # TODO: separate this from the class to make it more reusable self.req_headers = { "Accept": "text/html,application/xhtml+xml;q=0.9" } def enqueue(self, url: site_graph.URL): if url in self.queue: return now = asyncio.get_running_loop().time() self.queue[url] = self.RequestContext(now, 0) async def load_robots_file(self, site_origin: site_graph.URL): """Load the configuration in the site's robots.txt. site_origin should give the site's top-level URL""" robots_url = site_origin.with_path("/robots.txt") async with aiohttp.client.ClientSession() as session: async with session.get(robots_url, headers = self.req_headers) as resp: if resp.status != http.HTTPStatus.OK.value: if resp.status != http.HTTPStatus.NOT_FOUND.value: logger.warning("Unexpected http status {} while trying to get robots.txt.".format(resp.status)) return content = await resp.text() rp = urllib.robotparser.RobotFileParser(str(robots_url)) rp.parse(content.splitlines()) crawl_delay = None try: crawl_delay = rp.crawl_delay("*") except Exception as ex: logger.warning("Failed to read crawl delay from robots.txt: {}.".format(ex)) if crawl_delay: self.seconds_interval = crawl_delay else: rate = None try: rate = rp.request_rate("*") except Exception as ex: logger.warning("Failed to read request rate from robots.txt: {}.".format(ex)) if rate is not None: self.seconds_interval = rate.seconds / rate.requests self.robots_file = rp async def run(self): # A session that will serve all the requests from this queue. Since we don't expect to make # more than 2 requests per second, this would likely suffice. async with aiohttp.client.ClientSession() as session: self.session = session loop = asyncio.get_running_loop() next_time_to_send = loop.time() while self.queue: now = loop.time() if now < next_time_to_send: await asyncio.sleep(next_time_to_send - now) now = loop.time() next_time_to_send = now + self.seconds_interval url, context = self.queue.popitem(last = False) await self._send_http_request(url, context) self.session = None return async def _send_http_request(self, url: site_graph.URL, request_context: RequestContext): async with self.session.get(url, headers = self.req_headers) as resp: if resp.status == http.HTTPStatus.OK.value: html = await resp.text() self.handler.on_response(url, resp.url, resp.status, html) elif resp.status == http.HTTPStatus.SERVICE_UNAVAILABLE.value: logger.warning("Request for {} failed temporarily with HTTP status {} and will be retried".format(url, resp.status)) # TODO: Give up after a certain number of retries. self.queue[url] = self.RequestContext(asyncio.get_running_loop().time(), request_context.times_retried + 1) self.handler else: if resp.status != http.HTTPStatus.NOT_ACCEPTABLE.value: # No HTML available for this URL logger.error("Request for the URL {} gave unexpected status {}".format(url, resp.status)) self.handler.on_response(url, resp.url, resp.status, None)
python
import numpy as np from scratch_ml.utils import covariance_matrix class PCA(): """A method for doing dimensionality reduction by transforming the feature space to a lower dimensionality, removing correlation between features and maximizing the variance along each feature axis.""" def transform(self, x, n_components): covariance = covariance_matrix(x) eigenvalues, eigenvectors = np.linalg.eig(covariance) # sort the eigenvalues and corresponding eigenvectors from largest # to smallest eigenvalue and select the first n components idx = eigenvalues.argsort()[::-1] eigenvalues = eigenvalues[idx][:n_components] eigenvectors = np.atleast_1d(eigenvectors[:, idx])[:, :n_components] x_transformed = x.dot(eigenvectors) return x_transformed
python
import logging import argparse from s3push.connector import resource from s3push.uploader import upload from s3push.eraser import erase parser = argparse.ArgumentParser( description='Upload directories and files to AWS S3') parser.add_argument( 'path', type=str, help='Path to a directory of file that needs to be uploaded') parser.add_argument( 'bucket', type=str, help='AWS S3 bucket name') parser.add_argument( '-k', '--aws_access_key_id', dest='AWS_ACCESS_KEY_ID', type=str, default=None, help='AWS IAM user API key') parser.add_argument( '-s', '--aws-secret-access-key', dest='AWS_SECRET_ACCESS_KEY', type=str, default=None, help='AWS IAM user secret API key') parser.add_argument( '-p', '--profile-name', dest='PROFILE_NAME', type=str, default=None, help='Preconfigured AWS CLI profile') parser.add_argument( '-e', '--erase', action='store_true', help='Erase bucket before uploading to it') parser.add_argument( '--progress', action='store_true', help='Show upload progress bar') parser.add_argument( '--log', type=str, default=logging.getLevelName(logging.WARNING), help='Show upload progress bar') def main(): params = parser.parse_args() logging.basicConfig( level=getattr(logging, params.log.upper()), format='%(asctime)s %(filename)20s %(levelname)8s %(message)s') # Connect and get the S3 resource from API. # Resource is a high level API to manipulate the service # in boto3. s3 = resource( 's3', params.AWS_ACCESS_KEY_ID, params.AWS_SECRET_ACCESS_KEY, params.PROFILE_NAME) # Get bucket from the API bucket = s3.Bucket(params.bucket) # Erase the bucket, if asked to if params.erase: erase(bucket) # Upload upload( params.path, bucket, show_progress=params.progress)
python
# parses vcontrold serial data import struct from scapy.packet import Packet, bind_layers from scapy.fields import * START_BYTE = 0x41 TYPES = { 0x00: "request", 0x01: "response", 0x03: "error" } COMMANDS = { 0x01: "readdata", 0x02: "writedata", 0x07: "functioncall" } class VS2Header(Packet): name = 'VS2 Header' fields_desc = [ XByteField("startbyte", START_BYTE), ByteField("length", None), XByteField("checksum", None) ] @staticmethod def compute_checksum(data): checksum = 0x00 for byte in data: checksum += byte checksum &= 0xFF return checksum def post_build(self, p, pay): # Switch payload and crc length = p[1:2] if self.length is not None else struct.pack('B', len(pay)) checksum = p[-1:] p = p[:1] + length + pay p += checksum if self.checksum is not None else struct.pack('B', self.compute_checksum(length+pay)) return p def post_dissect(self, s): self.raw_packet_cache = None # Reset packet to allow post_build return s def pre_dissect(self, s): # Switch payload and checksum start_byte = s[:1] length_byte = s[1:2] length = struct.unpack('B', s[1:2])[0] payload, checksum_byte, s = s[2:length+2], s[length+2:length+3], s[length+3:] checksum = struct.unpack('B', checksum_byte)[0] calc_checksum = self.compute_checksum(length_byte + payload) if checksum != calc_checksum: raise Scapy_Exception("Wrong checksum: %d != %d" % (checksum, calc_checksum)) return start_byte + length_byte + checksum_byte + payload + s class VS2Data(Packet): name = 'VS2 Data' fields_desc = [ ByteEnumField("type", 0, TYPES), ByteEnumField("command", 0, COMMANDS), XShortField("address", 0), FieldLenField('data_len', None, length_of='data', fmt='B'), XStrLenField('data', '', max_length=10, length_from=lambda pkt: pkt.data_len) ] def answers(self, other): if (other.__class__ == self.__class__) and \ (other.address == self.address) and \ (other.type == 0x00 and (self.type == 0x01 or self.type == 0x03)) and \ (other.data_len == self.data_len): return self.payload.answers(other.payload) return 0 bind_layers(VS2Header, VS2Data)
python
import os def exists_or_create_directory(temp_path: str) -> None: directory = os.path.dirname(temp_path) try: os.stat(directory) except Exception as exp: os.mkdir(directory) print(str(exp) + f" -> {directory} created...")
python
from collections import defaultdict raw_template = [] rules = [] with open("input") as file: raw_template = list(next(file).strip()) for line in file: line = line.strip() if not line: continue left, right = line.split("->") left = left.strip() right = right.strip() rules.append(((left[0], left[1]), right)) rules = dict(rules) template = defaultdict(int) for i, v in enumerate(raw_template): if i == 0: continue key = raw_template[i - 1], v if key in rules: template[key] += 1 def insertion(polymer): changes = defaultdict(int) for k, v in polymer.items(): if not v: continue if k in rules: left = k[0], rules[k] right = rules[k], k[1] changes[k] -= v changes[left] += v changes[right] += v for k, v in changes.items(): if not v: continue polymer[k] += v def summarise(polymer): summary = defaultdict(int) for k, v in polymer.items(): summary[k[1]] += v return max(summary.values()) - min(summary.values()) for i in range(40): insertion(template) if i == 9: print("part 1") print(summarise(template)) print("part 2") print(summarise(template))
python
# 쿼드압축 후 개수 세기 def quadtree(arr): l = len(arr) if l == 1: return [1,0] if arr[0][0] == 0 else [0,1] lu = quadtree([a[:l//2] for a in arr[:l//2]]) ru = quadtree([a[l//2:] for a in arr[:l//2]]) ld = quadtree([a[:l//2] for a in arr[l//2:]]) rd = quadtree([a[l//2:] for a in arr[l//2:]]) if lu == ru == ld == rd == [1,0] or \ lu == ru == ld == rd == [0,1]: return lu else: return list(map(sum,zip(lu,ru,ld,rd))) def solution(arr): return quadtree(arr) ''' 정확성 테스트 테스트 1 〉 통과 (1.44ms, 10.3MB) 테스트 2 〉 통과 (1.31ms, 10.3MB) 테스트 3 〉 통과 (1.36ms, 10.3MB) 테스트 4 〉 통과 (0.38ms, 10.3MB) 테스트 5 〉 통과 (265.86ms, 12.6MB) 테스트 6 〉 통과 (238.92ms, 12.6MB) 테스트 7 〉 통과 (233.99ms, 12.7MB) 테스트 8 〉 통과 (230.72ms, 12.8MB) 테스트 9 〉 통과 (209.33ms, 12.6MB) 테스트 10 〉 통과 (950.55ms, 20.7MB) 테스트 11 〉 통과 (0.37ms, 10.3MB) 테스트 12 〉 통과 (0.35ms, 10.2MB) 테스트 13 〉 통과 (206.64ms, 12.7MB) 테스트 14 〉 통과 (891.77ms, 20.7MB) 테스트 15 〉 통과 (894.10ms, 20.8MB) 테스트 16 〉 통과 (239.40ms, 12.6MB) 채점 결과 정확성: 100.0 합계: 100.0 / 100.0 '''
python
# -*- coding: utf-8 -*- """ Created on Thu Nov 11 16:31:58 2021 @author: snoone """ import os import glob import pandas as pd pd.options.mode.chained_assignment = None # default='warn' OUTDIR3= "D:/Python_CDM_conversion/monthly/cdm_out/cdm_head" OUTDIR2= "D:/Python_CDM_conversion/monthly/cdm_out/cdm_obs" OUTDIR = "D:/Python_CDM_conversion/monthly/cdm_out/cdm_lite" os.chdir("D:/Python_CDM_conversion/monthly/.csv/") extension = 'csv' #my_file = open("D:/Python_CDM_conversion/hourly/qff/ls1.txt", "r") #all_filenames = my_file.readlines() #print(all_filenames) ##use a list of file names to run 5000 parallel #with open("D:/Python_CDM_conversion/hourly/qff/ls1.txt", "r") as f: #all_filenames = f.read().splitlines() #print(all_filenames) all_filenames = [i for i in glob.glob('*.{}'.format(extension))] ##to start at begining of files for filename in all_filenames: ##to start at next file after last processe #for filename in all_filenames[all_filenames.index('SWM00002338.qff'):] : usecols = ["STATION","LATITUDE","LONGITUDE","ELEVATION","DATE","NAME", "PRCP", "TMIN", "TMAX", "TAVG", "SNOW", "AWND"] df=pd.read_csv(filename, sep=",",usecols=lambda c: c in set(usecols)) #add required columnns df["report_type"]="2" df["units"]="" df["minute"]= "00" df["day"]= "01" df["hour"]= "00" df["seconds"]="00" df[['year', 'month']] = df['DATE'].str.split('-', expand=True) df["observation_height_above_station_surface"]="" df["date_time_meaning"]="1" df["latitude"]=df["LATITUDE"] df["longitude"]=df["LONGITUDE"] df["observed_variable"]="" df["value_significance"]="13" df["observation_duration"]="14" df["observation_value"]="" df["platform_type"]="" df["station_type"]="1" df["observation_id"]="" df["data_policy_licence"]="0" df["primary_station_id"]=df["STATION"] df["station_name"]=df["NAME"] df["quality_flag"]="0" df["latitude"] = pd.to_numeric(df["latitude"],errors='coerce') df["longitude"] = pd.to_numeric(df["longitude"],errors='coerce') df["latitude"]= df["latitude"].round(3) df["longitude"]= df["longitude"].round(3) df["Timestamp2"] = df["year"].map(str) + "-" + df["month"].map(str)+ "-" + df["day"].map(str) df["offset"]="+00" df["date_time"] = df["Timestamp2"].map(str)+ " " + df["hour"].map(str)+":"+df["minute"].map(str)+":"+df["seconds"].map(str) df['date_time'] = df['date_time'].astype('str') df.date_time = df.date_time + '+00' ###extract precip try: dfprc = df[["observation_id","report_type","date_time","date_time_meaning", "latitude","longitude","observation_height_above_station_surface" ,"observed_variable","units","observation_value", "value_significance","observation_duration","platform_type", "station_type","primary_station_id","station_name","quality_flag" ,"data_policy_licence"]] ##change for each variable to convertto cdm compliant values dfprc["observation_value"]=df["PRCP"] #change for each variable if required dfprc["observation_height_above_station_surface"]="1" dfprc["units"]="710" dfprc["observed_variable"]="44" #set up matching values for merging with record_id_month to add information source_id for first configuration only due yto lack of information dfprc["record_number"]="1" dfprc['primary_station_id_2']=dfprc['primary_station_id'].astype(str)+'-'+dfprc['record_number'].astype(str) dfprc["report_id"]=dfprc["date_time"] ##merge with record_id_mnth.csv to add source id df2=pd.read_csv("D:/Python_CDM_conversion/monthly/config_files/record_id_mnth.csv") dfprc = dfprc.astype(str) df2 = df2.astype(str) dfprc= df2.merge(dfprc, on=['primary_station_id_2']) dfprc['observation_id']=dfprc['primary_station_id'].astype(str)+'-'+dfprc['record_number'].astype(str)+'-'+dfprc['date_time'].astype(str) dfprc['observation_id'] = dfprc['observation_id'].str.replace(r' ', '-') ##remove unwanted last twpo characters dfprc['observation_id'] = dfprc['observation_id'].str[:-12] dfprc["observation_id"]=dfprc["observation_id"]+'-'+dfprc['observed_variable'].astype(str)+'-'+dfprc['value_significance'].astype(str) #reorder columns and drop unwanted columns dfprc = dfprc[["observation_id","report_type","date_time","date_time_meaning", "latitude","longitude","observation_height_above_station_surface" ,"observed_variable","units","observation_value", "value_significance","observation_duration","platform_type", "station_type","primary_station_id","station_name","quality_flag" ,"data_policy_licence","source_id","primary_station_id_2"]] except: pass ###extract SNOW try: dfsnow = df[["observation_id","report_type","date_time","date_time_meaning", "latitude","longitude","observation_height_above_station_surface" ,"observed_variable","units","observation_value", "value_significance","observation_duration","platform_type", "station_type","primary_station_id","station_name","quality_flag" ,"data_policy_licence"]] ##change for each variable to convert to cdm compliant values dfsnow["observation_value"]=df["SNOW"] dfsnow = dfsnow.fillna("Null") dfsnow = dfsnow[dfsnow.observation_value != "Null"] #change for each variable if required dfsnow["observation_height_above_station_surface"]="0" dfsnow["units"]="710" dfsnow["observed_variable"]="45" #set up matching values for merging with record_id_month to add information source_id for first configuration only due yto lack of information dfsnow["record_number"]="1" dfsnow['primary_station_id_2']=dfsnow['primary_station_id'].astype(str)+'-'+dfsnow['record_number'].astype(str) dfsnow["report_id"]=dfsnow["date_time"] ##merge with record_id_mnth.csv to add source id df2=pd.read_csv("D:/Python_CDM_conversion/monthly/config_files/record_id_mnth.csv") dfsnow = dfsnow.astype(str) df2 = df2.astype(str) dfsnow= df2.merge(dfsnow, on=['primary_station_id_2']) dfsnow['observation_id']=dfsnow['primary_station_id'].astype(str)+'-'+dfsnow['record_number'].astype(str)+'-'+dfsnow['date_time'].astype(str) dfsnow['observation_id'] = dfsnow['observation_id'].str.replace(r' ', '-') ##remove unwanted last twpo characters dfsnow['observation_id'] = dfsnow['observation_id'].str[:-12] dfsnow["observation_id"]=dfsnow["observation_id"]+'-'+dfsnow['observed_variable'].astype(str)+'-'+dfsnow['value_significance'].astype(str) #reorder columns and drop unwanted columns dfsnow = dfsnow[["observation_id","report_type","date_time","date_time_meaning", "latitude","longitude","observation_height_above_station_surface" ,"observed_variable","units","observation_value", "value_significance","observation_duration","platform_type", "station_type","primary_station_id","station_name","quality_flag" ,"data_policy_licence","source_id","primary_station_id_2"]] except: pass ###extract tmax try: dftmax = df[["observation_id","report_type","date_time","date_time_meaning", "latitude","longitude","observation_height_above_station_surface" ,"observed_variable","units","observation_value", "value_significance","observation_duration","platform_type", "station_type","primary_station_id","station_name","quality_flag" ,"data_policy_licence"]] ##change for each variable to convert to cdm compliant values dftmax["observation_value"]=df["TMAX"] dftmax = dftmax.fillna("Null") dftmax = dftmax[dftmax.observation_value != "Null"] dftmax["observation_value"] = pd.to_numeric(dftmax["observation_value"],errors='coerce') dftmax["observation_value"]=dftmax["observation_value"]+273.15 dftmax["observation_value"] = pd.to_numeric(dftmax["observation_value"],errors='coerce') dftmax["observation_value"]=dftmax["observation_value"].round(2) #change for each variable if required dftmax["observation_height_above_station_surface"]="2" dftmax["units"]="5" dftmax["observed_variable"]="85" dftmax["value_significance"]="0" #set up matching values for merging with record_id_month to add information source_id for first configuration only due yto lack of information dftmax["record_number"]="1" dftmax['primary_station_id_2']=dftmax['primary_station_id'].astype(str)+'-'+dftmax['record_number'].astype(str) dftmax["report_id"]=dftmax["date_time"] ##merge with record_id_mnth.csv to add source id df2=pd.read_csv("D:/Python_CDM_conversion/monthly/config_files/record_id_mnth.csv") dftmax = dftmax.astype(str) df2 = df2.astype(str) dftmax= df2.merge(dftmax, on=['primary_station_id_2']) dftmax['observation_id']=dftmax['primary_station_id'].astype(str)+'-'+dftmax['record_number'].astype(str)+'-'+dftmax['date_time'].astype(str) dftmax['observation_id'] = dftmax['observation_id'].str.replace(r' ', '-') ##remove unwanted last twpo characters dftmax['observation_id'] = dftmax['observation_id'].str[:-12] dftmax["observation_id"]=dftmax["observation_id"]+'-'+dftmax['observed_variable'].astype(str)+'-'+dftmax['value_significance'].astype(str) #reorder columns and drop unwanted columns dftmax = dftmax[["observation_id","report_type","date_time","date_time_meaning", "latitude","longitude","observation_height_above_station_surface" ,"observed_variable","units","observation_value", "value_significance","observation_duration","platform_type", "station_type","primary_station_id","station_name","quality_flag" ,"data_policy_licence","source_id","primary_station_id_2"]] except: pass ###extract tmin try: dftmin = df[["observation_id","report_type","date_time","date_time_meaning", "latitude","longitude","observation_height_above_station_surface" ,"observed_variable","units","observation_value", "value_significance","observation_duration","platform_type", "station_type","primary_station_id","station_name","quality_flag" ,"data_policy_licence"]] ##change for each variable to convert to cdm compliant values dftmin["observation_value"]=df["TMIN"] dftmin = dftmin.fillna("Null") dftmin = dftmin[dftmin.observation_value != "Null"] dftmin["observation_value"] = pd.to_numeric(dftmin["observation_value"],errors='coerce') dftmin["observation_value"]=dftmin["observation_value"]+273.15 dftmin["observation_value"] = pd.to_numeric(dftmin["observation_value"],errors='coerce') dftmin["observation_value"]=dftmin["observation_value"].round(2) #change for each variable if required dftmin["observation_height_above_station_surface"]="2" dftmin["units"]="5" dftmin["observed_variable"]="85" dftmin["value_significance"]="1" #set up matching values for merging with record_id_month to add information source_id for first configuration only due yto lack of information dftmin["record_number"]="1" dftmin['primary_station_id_2']=dftmin['primary_station_id'].astype(str)+'-'+dftmin['record_number'].astype(str) dftmin["report_id"]=dftmin["date_time"] ##merge with record_id_mnth.csv to add source id df2=pd.read_csv("D:/Python_CDM_conversion/monthly/config_files/record_id_mnth.csv") dftmin = dftmin.astype(str) df2 = df2.astype(str) dftmin= df2.merge(dftmin, on=['primary_station_id_2']) dftmin['observation_id']=dftmin['primary_station_id'].astype(str)+'-'+dftmin['record_number'].astype(str)+'-'+dftmin['date_time'].astype(str) dftmin['observation_id'] = dftmin['observation_id'].str.replace(r' ', '-') ##remove unwanted last twpo characters dftmin['observation_id'] = dftmin['observation_id'].str[:-12] dftmin["observation_id"]=dftmin["observation_id"]+'-'+dftmin['observed_variable'].astype(str)+'-'+dftmin['value_significance'].astype(str) #reorder columns and drop unwanted columns dftmin = dftmin[["observation_id","report_type","date_time","date_time_meaning", "latitude","longitude","observation_height_above_station_surface" ,"observed_variable","units","observation_value", "value_significance","observation_duration","platform_type", "station_type","primary_station_id","station_name","quality_flag" ,"data_policy_licence","source_id","primary_station_id_2"]] except: pass ###extract tavg try: dftavg = df[["observation_id","report_type","date_time","date_time_meaning", "latitude","longitude","observation_height_above_station_surface" ,"observed_variable","units","observation_value", "value_significance","observation_duration","platform_type", "station_type","primary_station_id","station_name","quality_flag" ,"data_policy_licence"]] ##change for each variable to convert to cdm compliant values dftavg["observation_value"]=df["TAVG"] dftavg = dftavg.fillna("Null") dftavg = dftavg[dftavg.observation_value != "Null"] dftavg["observation_value"] = pd.to_numeric(dftavg["observation_value"],errors='coerce') dftavg["observation_value"]=dftavg["observation_value"]+273.15 dftavg["observation_value"] = pd.to_numeric(dftavg["observation_value"],errors='coerce') dftavg["observation_value"]=dftavg["observation_value"].round(2) #change for each variable if required dftavg["observation_height_above_station_surface"]="2" dftavg["units"]="5" dftavg["observed_variable"]="85" dftavg["value_significance"]="2" #set up matching values for merging with record_id_month to add information source_id for first configuration only due yto lack of information dftavg["record_number"]="1" dftavg['primary_station_id_2']=dftavg['primary_station_id'].astype(str)+'-'+dftavg['record_number'].astype(str) dftavg["report_id"]=dftavg["date_time"] ##merge with record_id_mnth.csv to add source id df2=pd.read_csv("D:/Python_CDM_conversion/monthly/config_files/record_id_mnth.csv") dftavg = dftavg.astype(str) df2 = df2.astype(str) dftavg= df2.merge(dftavg, on=['primary_station_id_2']) dftavg['observation_id']=dftavg['primary_station_id'].astype(str)+'-'+dftavg['record_number'].astype(str)+'-'+dftavg['date_time'].astype(str) dftavg['observation_id'] = dftavg['observation_id'].str.replace(r' ', '-') ##remove unwanted last twpo characters dftavg['observation_id'] = dftavg['observation_id'].str[:-12] dftavg["observation_id"]=dftavg["observation_id"]+'-'+dftavg['observed_variable'].astype(str)+'-'+dftavg['value_significance'].astype(str) #reorder columns and drop unwanted columns dftavg = dftavg[["observation_id","report_type","date_time","date_time_meaning", "latitude","longitude","observation_height_above_station_surface" ,"observed_variable","units","observation_value", "value_significance","observation_duration","platform_type", "station_type","primary_station_id","station_name","quality_flag" ,"data_policy_licence","source_id","primary_station_id_2"]] except: pass ###extract wind speed avge try: dftws = df[["observation_id","report_type","date_time","date_time_meaning", "latitude","longitude","observation_height_above_station_surface" ,"observed_variable","units","observation_value", "value_significance","observation_duration","platform_type", "station_type","primary_station_id","station_name","quality_flag" ,"data_policy_licence"]] ##change for each variable to convert to cdm compliant values dftws["observation_value"]=df["AWND"] dftws = dftws.fillna("Null") dftws = dftws[dftws.observation_value != "Null"] dftws["observation_value"] = pd.to_numeric(dftws["observation_value"],errors='coerce') dftws["observation_value"]=dftws["observation_value"] dftws["observation_value"] = pd.to_numeric(dftws["observation_value"],errors='coerce') dftws["observation_value"]=dftws["observation_value"].round(2) #change for each variable if required dftws["observation_height_above_station_surface"]="2" dftws["units"]="732" dftws["observed_variable"]="107" dftws["value_significance"]="2" #set up matching values for merging with record_id_month to add information source_id for first configuration only due yto lack of information dftws["record_number"]="1" dftws['primary_station_id_2']=dftws['primary_station_id'].astype(str)+'-'+dftws['record_number'].astype(str) dftws["report_id"]=dftws["date_time"] ##merge with record_id_mnth.csv to add source id df2=pd.read_csv("D:/Python_CDM_conversion/monthly/config_files/record_id_mnth.csv") dftws = dftws.astype(str) df2 = df2.astype(str) dftws= df2.merge(dftws, on=['primary_station_id_2']) dftws['observation_id']=dftws['primary_station_id'].astype(str)+'-'+dftws['record_number'].astype(str)+'-'+dftws['date_time'].astype(str) dftws['observation_id'] = dftws['observation_id'].str.replace(r' ', '-') ##remove unwanted last twpo characters dftws['observation_id'] = dftws['observation_id'].str[:-12] dftws["observation_id"]=dftws["observation_id"]+'-'+dftws['observed_variable'].astype(str)+'-'+dftws['value_significance'].astype(str) #reorder columns and drop unwanted columns dftws = dftws[["observation_id","report_type","date_time","date_time_meaning", "latitude","longitude","observation_height_above_station_surface" ,"observed_variable","units","observation_value", "value_significance","observation_duration","platform_type", "station_type","primary_station_id","station_name","quality_flag" ,"data_policy_licence","source_id","primary_station_id_2"]] except: pass merged_df=pd.concat([dftmax,dftavg,dftmin,dftws,dfprc], axis=0) merged_df.sort_values("date_time") merged_df["latitude"] = pd.to_numeric(merged_df["latitude"],errors='coerce') merged_df["longitude"] = pd.to_numeric(merged_df["longitude"],errors='coerce') merged_df["latitude"]= merged_df["latitude"].round(3) merged_df["longitude"]= merged_df["longitude"].round(3) merged_df = merged_df[merged_df.observation_value != "nan"] merged_df["observation_value"] = pd.to_numeric(merged_df["observation_value"],errors='coerce') merged_df.dropna(subset = ["observation_value"], inplace=True) merged_df.dropna(subset = ["observation_id"], inplace=True) df_lite_out = merged_df[["observation_id","report_type","date_time","date_time_meaning", "latitude","longitude","observation_height_above_station_surface" ,"observed_variable","units","observation_value", "value_significance","observation_duration","platform_type", "station_type","primary_station_id","station_name","quality_flag" ,"data_policy_licence","source_id"]] dfobs=merged_df[["observation_id","report_type","date_time","date_time_meaning", "latitude","longitude","observation_height_above_station_surface" ,"observed_variable","units","observation_value", "value_significance","observation_duration","platform_type", "station_type","primary_station_id","station_name","quality_flag" ,"data_policy_licence","source_id","primary_station_id_2"]] ##add region and sub region df2=pd.read_csv("D:/Python_CDM_conversion/monthly/config_files/record_id_mnth.csv") dfobs = dfobs.astype(str) df2 = df2.astype(str) dfobs= df2.merge(dfobs, on=['primary_station_id_2']) dfobs["numerical_precision"]="" dfobs.loc[dfobs['observed_variable'] == "85", 'numerical_precision'] = '0.01' dfobs.loc[dfobs['observed_variable'] == "44", 'numerical_precision'] = '0.1' dfobs.loc[dfobs['observed_variable'] == "45", 'numerical_precision'] = '0.1' dfobs.loc[dfobs['observed_variable'] == "55", 'numerical_precision'] = '0.1' dfobs.loc[dfobs['observed_variable'] == "106", 'numerical_precision'] = '0.1' dfobs.loc[dfobs['observed_variable'] == "107", 'numerical_precision'] = "0.1" dfobs.loc[dfobs['observed_variable'] == "53", 'numerical_precision'] = "1" dfobs["original_precision"]="" dfobs.loc[dfobs['observed_variable'] == "85", 'original_precision'] = '0.01' dfobs.loc[dfobs['observed_variable'] == "44", 'original_precision'] = '0.1' dfobs.loc[dfobs['observed_variable'] == "45", 'original_precision'] = '0.1' dfobs.loc[dfobs['observed_variable'] == "55", "original_precision"] = '0.1' dfobs.loc[dfobs['observed_variable'] == "106", 'original_precision'] = '1' dfobs.loc[dfobs['observed_variable'] == "107", 'original_precision'] = "0.1" dfobs.loc[dfobs['observed_variable'] == "53", 'original_precision'] = "1" ##add conversion flags dfobs["conversion_flag"]="" dfobs.loc[dfobs['observed_variable'] == "85", 'conversion_flag'] = '0' dfobs.loc[dfobs['observed_variable'] == "44", 'conversion_flag'] = '2' dfobs.loc[dfobs['observed_variable'] == "45", 'conversion_flag'] = '2' dfobs.loc[dfobs['observed_variable'] == "55", 'conversion_flag'] = '2' dfobs.loc[dfobs['observed_variable'] == "106", 'conversion_flag'] = '2' dfobs.loc[dfobs['observed_variable'] == "107", 'conversion_flag'] = "2" dfobs.loc[dfobs['observed_variable'] == "53", 'conversion_flag'] = "2" ##set conversion method for variables dfobs["conversion_method"]="" dfobs.loc[dfobs['observed_variable'] == "85", 'conversion_method'] = '1' #add all columns for obs table dfobs["date_time_meaning"]="1" dfobs["crs"]="" dfobs["z_coordinate"]="" dfobs["z_coordinate_type"]="" dfobs["secondary_variable"]="" dfobs["secondary_value"]="" dfobs["code_table"]="" dfobs["sensor_id"]="" dfobs["sensor_automation_status"]="" dfobs["exposure_of_sensor"]="" dfobs["processing_code"]="" dfobs["processing_level"]="0" dfobs["adjustment_id"]="" dfobs["traceability"]="" dfobs["advanced_qc"]="" dfobs["advanced_uncertainty"]="" dfobs["advanced_homogenisation"]="" dfobs["advanced_assimilation_feedback"]="" dfobs["source_record_id"]="" dfobs["location_method"]="" dfobs["location_precision"]="" dfobs["z_coordinate_method"]="" dfobs["bbox_min_longitude"]="" dfobs["bbox_max_longitude"]="" dfobs["bbox_min_latitude"]="" dfobs["bbox_max_latitude"]="" dfobs["spatial_representativeness"]="" dfobs["original_code_table"]="" dfobs["source_id"]=dfobs["source_id_x"] dfobs['date1'] = dfobs["date_time"].str[:-11] dfobs['date1'] = dfobs['date1'].str.strip() dfobs["observation_value"] = pd.to_numeric(dfobs["observation_value"],errors='coerce') dfobs["report_id"]=dfobs["station_id"].astype(str)+'-'+dfobs["record_id"].astype(str)+'-'+dfobs["date1"].astype(str) dfobs["original_value"]=dfobs["observation_value"] dfobs["original_units"]=dfobs["units"] dfobs["onversion_method"]="" dfobs.loc[dfobs['observed_variable'] == "85", 'original_units'] = '350' dfobs.loc[dfobs['observed_variable'] == "85", 'original_value'] = dfobs["observation_value"]-273.15 dfobs.loc[dfobs['observed_variable'] == "85", 'conversion_method'] ="1" dfobs=dfobs[["observation_id","report_id","data_policy_licence","date_time", "date_time_meaning","observation_duration","longitude","latitude", "crs","z_coordinate","z_coordinate_type","observation_height_above_station_surface", "observed_variable","secondary_variable","observation_value", "value_significance","secondary_value","units","code_table", "conversion_flag","location_method","location_precision", "z_coordinate_method","bbox_min_longitude","bbox_max_longitude", "bbox_min_latitude","bbox_max_latitude","spatial_representativeness", "quality_flag","numerical_precision","sensor_id","sensor_automation_status", "exposure_of_sensor","original_precision","original_units", "original_code_table","original_value","conversion_method", "processing_code","processing_level","adjustment_id","traceability", "advanced_qc","advanced_uncertainty","advanced_homogenisation", "advanced_assimilation_feedback","source_id"]] ##set up the header table from the obs table try: col_list=dfobs [["observation_id","latitude","longitude","report_id","source_id","date_time"]] hdf=col_list.copy() ##add required columns and set up values etc hdf[['primary_station_id', 'station_record_number', '1',"2,","3"]] = hdf['report_id'].str.split('-', expand=True) #hdf["observation_id"]=merged_df["observation_id"] hdf["report_id"]=dfobs["report_id"] hdf["application_area"]="" hdf["observing_programme"]="" hdf["report_type"]="3" hdf["station_type"]="1" hdf["platform_type"]="" hdf["primary_station_id_scheme"]="13" hdf["location_accuracy"]="0.1" hdf["location_method"]="" hdf["location_quality"]="3" hdf["crs"]="0" hdf["station_speed"]="" hdf["station_course"]="" hdf["station_heading"]="" hdf["height_of_station_above_local_ground"]="" hdf["height_of_station_above_sea_level_accuracy"]="" hdf["sea_level_datum"]="" hdf["report_meaning_of_timestamp"]="1" hdf["report_timestamp"]="" hdf["report_duration"]="13" hdf["report_time_accuracy"]="" hdf["report_time_quality"]="" hdf["report_time_reference"]="0" hdf["platform_subtype"]="" hdf["profile_id"]="" hdf["events_at_station"]="" hdf["report_quality"]="" hdf["duplicate_status"]="4" hdf["duplicates"]="" hdf["source_record_id"]="" hdf ["processing_codes"]="" hdf['record_timestamp'] = pd.to_datetime('now').strftime("%Y-%m-%d %H:%M:%S") hdf.record_timestamp = hdf.record_timestamp + '+00' hdf["history"]="" hdf["processing_level"]="0" hdf["report_timestamp"]=dfobs["date_time"] hdf['primary_station_id_2']=hdf['primary_station_id'].astype(str)+'-'+hdf['source_id'].astype(str) hdf["duplicates_report"]=hdf["report_id"]+'-'+hdf["station_record_number"].astype(str) df2=pd.read_csv("D:/Python_CDM_conversion/monthly/config_files/record_id_mnth_head.csv") hdf = hdf.astype(str) df2 = df2.astype(str) hdf= df2.merge(hdf, on=['primary_station_id_2']) hdf['height_of_station_above_sea_level'] = hdf['height_of_station_above_sea_level'].astype(str).apply(lambda x: x.replace('.0','')) hdf["source_id"]=hdf["source_id_x"] hdf["latitude"] = pd.to_numeric(hdf["latitude"],errors='coerce') hdf["longitude"] = pd.to_numeric(hdf["longitude"],errors='coerce') hdf["latitude"]= hdf["latitude"].round(3) hdf["longitude"]= hdf["longitude"].round(3) hdf = hdf[["report_id","region","sub_region","application_area", "observing_programme","report_type","station_name", "station_type","platform_type","platform_subtype","primary_station_id","station_record_number", "primary_station_id_scheme","longitude","latitude","location_accuracy","location_method", "location_quality","crs","station_speed","station_course", "station_heading","height_of_station_above_local_ground", "height_of_station_above_sea_level", "height_of_station_above_sea_level_accuracy", "sea_level_datum","report_meaning_of_timestamp","report_timestamp", "report_duration","report_time_accuracy","report_time_quality", "report_time_reference","profile_id","events_at_station","report_quality", "duplicate_status","duplicates","record_timestamp","history", "processing_level","processing_codes","source_id","source_record_id", "primary_station_id_2", "duplicates_report"]] hdf=hdf.drop_duplicates(subset=['duplicates_report']) hdf = hdf[["report_id","region","sub_region","application_area", "observing_programme","report_type","station_name", "station_type","platform_type","platform_subtype","primary_station_id", "station_record_number","primary_station_id_scheme", "longitude","latitude","location_accuracy","location_method", "location_quality","crs","station_speed","station_course", "station_heading","height_of_station_above_local_ground", "height_of_station_above_sea_level","height_of_station_above_sea_level_accuracy", "sea_level_datum","report_meaning_of_timestamp","report_timestamp", "report_duration","report_time_accuracy","report_time_quality", "report_time_reference","profile_id","events_at_station","report_quality", "duplicate_status","duplicates","record_timestamp","history", "processing_level","processing_codes","source_id","source_record_id"]] hdf.sort_values("report_timestamp") hdf['report_id'] = hdf['report_id'].str.strip() hdf['region'] = hdf['region'].astype(str).apply(lambda x: x.replace('.0','')) hdf['sub_region'] = hdf['sub_region'].astype(str).apply(lambda x: x.replace('.0','')) except: # Continue to next iteration. continue ##output merged cdmlite file try: station_id=df_lite_out.iloc[1]["primary_station_id"] cdm_type=("cdm_lite_202111_test_") print(station_id+"_lite") a = df_lite_out['observed_variable'].unique() print (a) outname = os.path.join(OUTDIR,cdm_type) df_lite_out.to_csv(outname+ station_id+ ".psv", index=False, sep="|") except: # Continue to next iteration. continue ##output of cdm observations files try: station_id=merged_df.iloc[1]["primary_station_id"] cdm_type=("cdm_obs_202111_test_") print(station_id+"_obs") a = dfobs['observed_variable'].unique() print (a) outname = os.path.join(OUTDIR2,cdm_type) dfobs.to_csv(outname+ station_id+ ".psv", index=False, sep="|") except: # Continue to next iteration. continue ##output of cdm header files try: ## table output ##header table output station_id=hdf.iloc[1]["primary_station_id"] cdm_type=("cdm_head_202111_test_") print(station_id+"_header") outname = os.path.join(OUTDIR3,cdm_type) #with open(filename, "w") as outfile: hdf.to_csv(outname+ station_id+ ".psv", index=False, sep="|") except: # Continue to next iteration. continue #dfobs.to_csv("D:/Python_CDM_conversion/monthly/dfobs.csv", index=False, sep=",") # qct.to_csv("D:/Python_CDM_conversion/daily/.csv/qcdy.csv", index=False, sep=",")
python
#EsmeeEllson #Help #Class Attributes #You can instantiate with AsciiTable(table_data) or AsciiTable(table_data, 'Table Title'). #These are available after instantiating AsciiTable. Name Description/Notes table_data = List of list of strings. Same object passed to __init__(). title = Table title string. Default is None for no title. inner_column_border = Default is True. Separates columns. inner_heading_row_border = Default is True. This is what makes the first row a “header row”. inner_row_border = Default is False. This adds lines between rows. justify_columns = Dictionary. Keys are column numbers (0 base), values are ‘left’, ‘right’, or ‘center’. outer_border = Default is True. Toggles the top, bottom, left, and right table borders. padding_left = Default is 1. Number of spaces to add to the left of the cell. padding_right = Default is 1. Number of spaces to add to the right of the cell. #Class Methods #These are regular methods available in either class. Name Description/Notes column_max_width = Takes one argument, column number (0 base). Returns The maximum size it will fit in the the therminal without breaking the table. Takes other columns into account. #Class Properties #These are read-only properties after you instantiate either class. They are “real-time”. You do not have to re-instantiate if you change any of the class attributes, including table_data. Name Description/Notes column_widths = Returns a list with the current column widths (one int per column) without padding. ok = Returns True if the table fits within the terminal width, False if the table breaks. padded_table_data = Returns the padding table data. With spaces and newlines. Does not include borders. table = Returns a large string, the whole table. This may be printed to the terminal. table_width = Returns the width of the table including padding and borders.
python
# -*- coding: utf-8 -*- """ Created on Thu Oct 21 18:32:33 2021 @author: User """ # Expresiones generadoras # El módulo itertools itertools.chain(s1,s2) itertools.count(n) itertools.cycle(s) itertools.dropwhile(predicate, s) itertools.groupby(s) itertools.ifilter(predicate, s) itertools.imap(function, s1, ... sN) itertools.repeat(s, n) itertools.tee(s, ncopies) itertools.izip(s1, ... , sN) #%%
python
"""Implementation of the Unet in torch. Author: zhangfan Email: [email protected] data: 2020/09/09 """ import torch import torch.nn as nn from network.blocks.residual_blocks import ResFourLayerConvBlock class UNet(nn.Module): """UNet network""" def __init__(self, net_args={"num_class": 1, "nb_filter": [8, 16, 32, 64, 128]}): super().__init__() # UNet parameter. num_class = net_args["num_class"] nb_filter = net_args["nb_filter"] self.pool = nn.MaxPool3d(kernel_size=3, stride=2, padding=1) self.up = nn.Upsample(scale_factor=2, mode='trilinear', align_corners=True) self.conv0_0 = ResFourLayerConvBlock(1, nb_filter[0], nb_filter[0]) self.conv1_0 = ResFourLayerConvBlock(nb_filter[0], nb_filter[1], nb_filter[1]) self.conv2_0 = ResFourLayerConvBlock(nb_filter[1], nb_filter[2], nb_filter[2]) self.conv3_0 = ResFourLayerConvBlock(nb_filter[2], nb_filter[3], nb_filter[3]) self.conv4_0 = ResFourLayerConvBlock(nb_filter[3], nb_filter[4], nb_filter[4]) self.conv3_1 = ResFourLayerConvBlock(nb_filter[3]+nb_filter[4], nb_filter[3], nb_filter[3]) self.conv2_2 = ResFourLayerConvBlock(nb_filter[2]+nb_filter[3], nb_filter[2], nb_filter[2]) self.conv1_3 = ResFourLayerConvBlock(nb_filter[1]+nb_filter[2], nb_filter[1], nb_filter[1]) self.conv0_4 = ResFourLayerConvBlock(nb_filter[0]+nb_filter[1], nb_filter[0], nb_filter[0]) self.final = nn.Conv3d(nb_filter[0], num_class, kernel_size=1, bias=False) self.initialize_weights() def initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv3d): nn.init.kaiming_normal_(m.weight, nonlinearity='relu') if m.bias is not None: m.bias.data.zero_() def forward(self, x): x0_0 = self.conv0_0(x) x1_0 = self.conv1_0(self.pool(x0_0)) x2_0 = self.conv2_0(self.pool(x1_0)) x3_0 = self.conv3_0(self.pool(x2_0)) x4_0 = self.conv4_0(self.pool(x3_0)) x3_1 = self.conv3_1(torch.cat([x3_0, self.up(x4_0)], 1)) x2_2 = self.conv2_2(torch.cat([x2_0, self.up(x3_1)], 1)) x1_3 = self.conv1_3(torch.cat([x1_0, self.up(x2_2)], 1)) x0_4 = self.conv0_4(torch.cat([x0_0, self.up(x1_3)], 1)) output = self.final(x0_4) return [output] if __name__ == '__main__': data = torch.randn([1, 1, 32, 32, 32]).float().cuda() model = UNet().cuda() with torch.no_grad(): outputs = model(data) for predict in outputs: print(predict.shape)
python
import re from textwrap import dedent import black import autopep8 from pkg_resources import resource_string def get_snippet(name, decorator=True): 'Get a Python snippet function (as a string) from the snippets directory.' out = resource_string('matflow_defdap', f'snippets/{name}').decode() if not decorator: # Remove the `@main_func` decorator and import. remove_lns = ['from matflow_defdap import main_func', '@main_func'] for i in remove_lns: out = ''.join(out.split(i)) return out def parse_python_func_return(func_str): """Get a list of the variable names in a Python function return statement. The return statement may return a tuple (with parenthesis or not) or a single variable. """ out = [] match = re.search(r'return \(*([\S\s][^\)]+)\)*', func_str) if match: match_clean = match.group(1).strip().strip(',') out = [i.strip() for i in match_clean.split(',')] return out def parse_python_func_imports(func_str): """Get a list of import statement lines from a (string) Python function.""" import_lines = func_str.split('def ')[0].strip() match = re.search(r'((?:import|from)[\S\s]*)', import_lines) out = [] if match: out = match.group(1).splitlines() return out def extract_snippet_main(snippet_str): """Extract only the snippet main function (plus imports), as annotated by the `@mainfunc` decorator.""" func_start_pat = r'((?:@main_func\n)?def\s(?:.*)\((?:[\s\S]*?)\):)' func_split_snip = re.split(func_start_pat, snippet_str) imports = func_split_snip[0] main_func_dec_str = '@main_func' main_func_str = None for idx in range(1, len(func_split_snip[1:]), 2): func_str = func_split_snip[idx] + func_split_snip[idx + 1] if main_func_dec_str in func_str: if main_func_str: msg = (f'`{main_func_dec_str}` should decorate only one function within ' f'the snippet.') raise ValueError(msg) else: main_func_str = func_str.lstrip(f'{main_func_dec_str}\n') imports = ''.join(imports.split('from matflow_defdap import main_func')) return imports + '\n' + main_func_str def get_snippet_signature(script_name): 'Get imports, inputs and outputs of a Python snippet function.' snippet_str = get_snippet(script_name) snippet_str = extract_snippet_main(snippet_str) def_line = re.search(r'def\s(.*)\(([\s\S]*?)\):', snippet_str).groups() func_name = def_line[0] func_ins = [i.strip() for i in def_line[1].split(',')] if script_name != func_name + '.py': msg = ('For simplicity, the snippet main function name should be the same as the ' 'snippet file name.') raise ValueError(msg) func_outs = parse_python_func_return(snippet_str) func_imports = parse_python_func_imports(snippet_str) out = { 'name': func_name, 'imports': func_imports, 'inputs': func_ins, 'outputs': func_outs, } return out def get_snippet_call(script_name): sig = get_snippet_signature(script_name) outs_fmt = ', '.join(sig['outputs']) ins_fmt = ', '.join(sig['inputs']) ret = f'{sig["name"]}({ins_fmt})' if outs_fmt: ret = f'{outs_fmt} = {ret}' return ret def get_wrapper_script(script_name, snippets, outputs): ind = ' ' sigs = [get_snippet_signature(i['name']) for i in snippets] all_ins = [j for i in sigs for j in i['inputs']] all_outs = [j for i in sigs for j in i['outputs']] for i in outputs: if i not in all_outs: raise ValueError(f'Cannot output "{i}". No functions return this name.') # Required inputs are those that are not output by any snippet req_ins = list(set(all_ins) - set(all_outs)) req_ins_fmt = ', '.join(req_ins) main_sig = [f'def main({req_ins_fmt}):'] main_body = [ind + get_snippet_call(i['name']) for i in snippets] main_outs = ['\n' + ind + f'return {", ".join([i for i in outputs])}'] main_func = main_sig + main_body + main_outs req_imports = [ 'import sys', 'import hickle', 'from pathlib import Path', ] out = req_imports out += main_func snippet_funcs = '\n'.join([get_snippet(i['name'], decorator=False) for i in snippets]) out = '\n'.join(out) + '\n' + snippet_funcs + '\n' out += dedent('''\ if __name__ == '__main__': inputs = hickle.load(sys.argv[1]) outputs = main(**inputs) hickle.dump(outputs, 'outputs.hdf5') ''') out = autopep8.fix_code(out) out = black.format_str(out, mode=black.FileMode()) return out
python
# -*- coding:utf-8 -*- from timeit import default_timer import numpy as np import matplotlib.pyplot as plt from scipy.misc import face # Importing global thresholding algorithms from .global_th import otsu_threshold, p_tile_threshold,\ two_peaks_threshold, min_err_threshold # Importing global entropy thresholding algorithms from .global_th.entropy import pun_threshold, kapur_threshold,\ johannsen_threshold # Importing local thresholding algorithms from .local_th import sauvola_threshold, niblack_threshold, wolf_threshold,\ nick_threshold, lmean_threshold, bradley_roth_threshold,\ bernsen_threshold, contrast_threshold, singh_threshold, feng_threshold __copyright__ = 'Copyright 2017' __author__ = u'BSc. Manuel Aguado Martínez' def apply_threshold(img, threshold=128, wp_val=255): """Obtain a binary image based on a given global threshold or a set of local thresholds. @param img: The input image. @type img: ndarray @param threshold: The global or local thresholds corresponding to each pixel of the image. @type threshold: Union[int, ndarray] @param wp_val: The value assigned to foreground pixels (white pixels). @type wp_val: int @return: A binary image. @rtype: ndarray """ return ((img >= threshold) * wp_val).astype(np.uint8) def test_thresholds(img=None): """Runs all the package thresholding algorithms on the input image with default parameters and plot the results. @param img: The input gray scale image @type img: ndarray """ # Loading image if needed if img is None: img = face(gray=True) # Plotting test image plt.figure('image') plt.imshow(img, cmap='gray') # Plotting test image histogram plt.figure('Histogram') plt.hist(img.ravel(), range=(0, 255), bins=255) # Applying Otsu method start = default_timer() th = otsu_threshold(img) stop = default_timer() print('========Otsu==========') print('Threshold: {0}'.format(th)) print('Execution time: {0}'.format(stop - start)) print('====================================') # Plotting results plt.figure('Otsu method') plt.imshow(apply_threshold(img, th), cmap='gray') # Applying p_tile method start = default_timer() th = p_tile_threshold(img, 0.5) stop = default_timer() print('========P-tile [p=0.5]==========') print('Threshold: {0}'.format(th)) print('Execution time: {0}'.format(stop - start)) print('====================================') # Plotting results plt.figure('p_tile method [pct=0.5]') plt.imshow(apply_threshold(img, th), cmap='gray') # Applying two peaks method start = default_timer() th = two_peaks_threshold(img) stop = default_timer() print('========Two peaks==========') print('Threshold: {0}'.format(th)) print('Execution time: {0}'.format(stop - start)) print('====================================') # Plotting results plt.figure('Tow peaks method') plt.imshow(apply_threshold(img, th), cmap='gray') # Applying minimum error method start = default_timer() th = min_err_threshold(img) stop = default_timer() print('========Minimum Error==========') print('Threshold: {0}'.format(th)) print('Execution time: {0}'.format(stop - start)) print('====================================') # Plotting results plt.figure('Minimum error method') plt.imshow(apply_threshold(img, th), cmap='gray') # Applying global entropy Pun method start = default_timer() th = pun_threshold(img) stop = default_timer() print('========Global entropy Pun==========') print('Threshold: {0}'.format(th)) print('Execution time: {0}'.format(stop - start)) print('====================================') # Plotting results plt.figure('Global entropy Pun method') plt.imshow(apply_threshold(img, th), cmap='gray') # Applying global entropy Kapur method start = default_timer() th = kapur_threshold(img) stop = default_timer() print('========Global entropy Kapur==========') print('Threshold: {0}'.format(th)) print('Execution time: {0}'.format(stop - start)) print('====================================') # Plotting results plt.figure('Global entropy Kapur method') plt.imshow(apply_threshold(img, th), cmap='gray') # Applying global entropy Johannsen method start = default_timer() th = johannsen_threshold(img) stop = default_timer() print('========Global entropy Johannsen==========') print('Threshold: {0}'.format(th)) print('Execution time: {0}'.format(stop - start)) print('====================================') # Plotting results plt.figure('Global entropy Johannsen method') plt.imshow(apply_threshold(img, th), cmap='gray') # Applying local Sauvola method start = default_timer() th = sauvola_threshold(img) stop = default_timer() print('========Local Sauvola==========') print('Execution time: {0}'.format(stop - start)) print('====================================') # Plotting results plt.figure('Local Sauvola method') plt.imshow(apply_threshold(img, th), cmap='gray') # Applying local Niblack method start = default_timer() th = niblack_threshold(img) stop = default_timer() print('========Local Niblack==========') print('Execution time: {0}'.format(stop - start)) print('====================================') # Plotting results plt.figure('Local Niblack method') plt.imshow(apply_threshold(img, th), cmap='gray') # Applying local Wolf method start = default_timer() th = wolf_threshold(img) stop = default_timer() print('========Local Wolf==========') print('Execution time: {0}'.format(stop - start)) print('====================================') # Plotting results plt.figure('Local Wolf method') plt.imshow(apply_threshold(img, th), cmap='gray') # Applying local NICK method start = default_timer() th = nick_threshold(img) stop = default_timer() print('========Local NICK==========') print('Execution time: {0}'.format(stop - start)) print('====================================') # Plotting results plt.figure('Local NICK method') plt.imshow(apply_threshold(img, th), cmap='gray') # Applying local mean method start = default_timer() th = lmean_threshold(img) stop = default_timer() print('========Local mean==========') print('Execution time: {0}'.format(stop - start)) print('====================================') # Plotting results plt.figure('Local mean method') plt.imshow(apply_threshold(img, th), cmap='gray') # Applying local Bradley-Roth method start = default_timer() th = bradley_roth_threshold(img) stop = default_timer() print('========Local Bradley-Roth==========') print('Execution time: {0}'.format(stop - start)) print('====================================') # Plotting results plt.figure('Local Bradley-Roth method') plt.imshow(apply_threshold(img, th), cmap='gray') # Applying local Bernsen method start = default_timer() th = bernsen_threshold(img) stop = default_timer() print('========Local Bernsen==========') print('Execution time: {0}'.format(stop - start)) print('====================================') # Plotting results plt.figure('Local Bernsen method') plt.imshow(apply_threshold(img, th), cmap='gray') # Applying local contrast method start = default_timer() th = contrast_threshold(img) stop = default_timer() print('========Local contrast==========') print('Execution time: {0}'.format(stop - start)) print('====================================') # Plotting results plt.figure('Local contrast method') plt.imshow(apply_threshold(img, th), cmap='gray') # Applying local Singh method start = default_timer() th = singh_threshold(img) stop = default_timer() print('========Local Singh==========') print('Execution time: {0}'.format(stop - start)) print('====================================') # Plotting results plt.figure('Local Singh method') plt.imshow(apply_threshold(img, th), cmap='gray') # Applying local Feng method start = default_timer() th = feng_threshold(img) stop = default_timer() print('========Local Feng==========') print('Execution time: {0}'.format(stop - start)) print('====================================') # Plotting results plt.figure('Local Feng method') plt.imshow(apply_threshold(img, th), cmap='gray') # Showing plots plt.show()
python
#!/usr/bin/python import paho.mqtt.publish as publish import paho.mqtt.client as mqtt import ssl auth = { 'username':"ciscohackhub.azure-devices.net/lora1", 'password':"SharedAccessSignature sr=ciscohackhub.azure-devices.net%2Fdevices%2Flora1&sig=xxxx&se=1463048772" } tls = { 'ca_certs':"/etc/ssl/certs/ca-certificates.crt", 'tls_version':ssl.PROTOCOL_TLSv1 } publish.single("devices/lora1/messages/events/", payload="hello world", hostname="ciscohackhub.azure-devices.net", client_id="lora1", auth=auth, tls=tls, port=8883, protocol=mqtt.MQTTv311)
python
def input1(type = int): return type(input()) def input2(type = int): [a, b] = list(map(type, input().split())) return a, b def input3(type = int): [a, b, c] = list(map(type, input().split())) return a, b, c def input_array(type = int): return list(map(type, input().split())) def input_string(): s = input() return list(s) def main(): t = input1(int) for ci in range(t): n, m = input2(int) if n == 1: print(0) continue if n == 2: print(m) continue pos_value_boshbe = n // 2 na = n - 1 if n % 2 == 0: pos_value_boshbe -= 1 na -= 1 half = m // pos_value_boshbe res = 0 if pos_value_boshbe > 0: res += (half * (na - 2)) if m % pos_value_boshbe == 0: res += (half * 2) else: rem = m // pos_value_boshbe + m % pos_value_boshbe res += (rem * 2) print(res) return main()
python
from sklearn.base import BaseEstimator, TransformerMixin import re class TextCleaner(BaseEstimator, TransformerMixin): ''' text cleaning : input can be str, list of sring, or pandas Series a minimal version, repacing only '\n' with ' ' ''' def __init__(self): print('') def fit(self, X, y=None): return self def transform(self, X, y=None): ''' text cleaning : input can be str, list of sring, or pandas Series ''' if isinstance(X, str): # e.g. "hello darkness my old friend" X_ = re.sub(r'\n', ' ', X.lower()) elif isinstance(X, list): # e.g. Xtrain['lyric'].tolist() X_ = [x.replace('\n', ' ') for x in X] else: # e.g. Xtrain['lyric'] X_ = [re.sub(r'\n', ' ', x.lower()) for x in X] return X_
python
import torch import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR from allenact.algorithms.onpolicy_sync.losses import PPO from allenact.algorithms.onpolicy_sync.losses.ppo import PPOConfig from allenact.utils.experiment_utils import ( Builder, PipelineStage, TrainingPipeline, LinearDecay, ) from projects.objectnav_baselines.experiments.objectnav_base import ObjectNavBaseConfig class ObjectNavMixInPPOConfig(ObjectNavBaseConfig): def training_pipeline(self, **kwargs): ppo_steps = int(300000000) lr = 3e-4 num_mini_batch = 1 update_repeats = 4 num_steps = 128 save_interval = 100000 log_interval = 10000 if torch.cuda.is_available() else 1 gamma = 0.99 use_gae = True gae_lambda = 0.95 max_grad_norm = 0.5 return TrainingPipeline( save_interval=save_interval, metric_accumulate_interval=log_interval, optimizer_builder=Builder(optim.Adam, dict(lr=lr)), num_mini_batch=num_mini_batch, update_repeats=update_repeats, max_grad_norm=max_grad_norm, num_steps=num_steps, named_losses={"ppo_loss": PPO(**PPOConfig)}, gamma=gamma, use_gae=use_gae, gae_lambda=gae_lambda, advance_scene_rollout_period=self.ADVANCE_SCENE_ROLLOUT_PERIOD, pipeline_stages=[ PipelineStage(loss_names=["ppo_loss"], max_stage_steps=ppo_steps) ], lr_scheduler_builder=Builder( LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)} ), )
python
import py.path import pytest from .conftest import TEST_PLAYBOOKS MODULES_PATH = py.path.local(__file__).realpath() / '..' / '..' / 'plugins' / 'modules' def find_all_modules(): for module in MODULES_PATH.listdir(sort=True): module = module.basename if module.endswith('.py') and not module.startswith('_'): yield module.replace('.py', '') ALL_MODULES = list(find_all_modules()) def _module_file_path(module): module_file_name = "{}.py".format(module) return MODULES_PATH / module_file_name def _module_is_tested(module): return module in TEST_PLAYBOOKS @pytest.mark.parametrize('module', ALL_MODULES) def test_module_is_tested(module): assert _module_is_tested(module)
python
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Qiming Sun <[email protected]> # # MOLDEN format: # http://www.cmbi.ru.nl/molden/molden_format.html import sys import re import numpy import pyscf from pyscf import lib from pyscf import gto from pyscf.lib import logger from pyscf import __config__ IGNORE_H = getattr(__config__, 'molden_ignore_h', True) def orbital_coeff(mol, fout, mo_coeff, spin='Alpha', symm=None, ene=None, occ=None, ignore_h=IGNORE_H): from pyscf.symm import label_orb_symm if ignore_h: mol, mo_coeff = remove_high_l(mol, mo_coeff) aoidx = order_ao_index(mol) nmo = mo_coeff.shape[1] if symm is None: symm = ['A']*nmo if mol.symmetry: try: symm = label_orb_symm(mol, mol.irrep_name, mol.symm_orb, mo_coeff, tol=1e-5) except ValueError as e: logger.warn(mol, str(e)) if ene is None: ene = numpy.arange(nmo) assert(spin == 'Alpha' or spin == 'Beta') if occ is None: occ = numpy.zeros(nmo) neleca, nelecb = mol.nelec if spin == 'Alpha': occ[:neleca] = 1 else: occ[:nelecb] = 1 fout.write('[MO]\n') for imo in range(nmo): fout.write(' Sym= %s\n' % symm[imo]) fout.write(' Ene= %15.10g\n' % ene[imo]) fout.write(' Spin= %s\n' % spin) fout.write(' Occup= %10.5f\n' % occ[imo]) for i,j in enumerate(aoidx): fout.write(' %3d %18.14g\n' % (i+1, mo_coeff[j,imo])) def from_mo(mol, filename, mo_coeff, spin='Alpha', symm=None, ene=None, occ=None, ignore_h=IGNORE_H): '''Dump the given MOs in Molden format''' with open(filename, 'w') as f: header(mol, f, ignore_h) orbital_coeff(mol, f, mo_coeff, spin, symm, ene, occ, ignore_h) def from_scf(mf, filename, ignore_h=IGNORE_H): '''Dump the given SCF object in Molden format''' dump_scf(mf, filename, ignore_h) def dump_scf(mf, filename, ignore_h=IGNORE_H): import pyscf.scf mol = mf.mol mo_coeff = mf.mo_coeff with open(filename, 'w') as f: header(mol, f, ignore_h) if isinstance(mf, pyscf.scf.uhf.UHF) or 'UHF' == mf.__class__.__name__: orbital_coeff(mol, f, mo_coeff[0], spin='Alpha', ene=mf.mo_energy[0], occ=mf.mo_occ[0], ignore_h=ignore_h) orbital_coeff(mol, f, mo_coeff[1], spin='Beta', ene=mf.mo_energy[1], occ=mf.mo_occ[1], ignore_h=ignore_h) else: orbital_coeff(mf.mol, f, mf.mo_coeff, ene=mf.mo_energy, occ=mf.mo_occ, ignore_h=ignore_h) def from_mcscf(mc, filename, ignore_h=IGNORE_H, cas_natorb=False): mol = mc.mol dm1 = mc.make_rdm1() if cas_natorb: mo_coeff, ci, mo_energy = mc.canonicalize(sort=True, cas_natorb=cas_natorb) else: mo_coeff, ci, mo_energy = mc.mo_coeff, mc.ci, mc.mo_energy mo_inv = numpy.dot(mc._scf.get_ovlp(), mo_coeff) occ = numpy.einsum('pi,pq,qi->i', mo_inv, dm1, mo_inv) with open(filename, 'w') as f: header(mol, f, ignore_h) orbital_coeff(mol, f, mo_coeff, ene=mo_energy, occ=occ, ignore_h=ignore_h) def from_chkfile(filename, chkfile, key='scf/mo_coeff', ignore_h=IGNORE_H): import pyscf.scf with open(filename, 'w') as f: if key == 'scf/mo_coeff': mol, mf = pyscf.scf.chkfile.load_scf(chkfile) header(mol, f, ignore_h) ene = mf['mo_energy'] occ = mf['mo_occ'] mo = mf['mo_coeff'] else: mol = pyscf.scf.chkfile.load_mol(chkfile) header(mol, f, ignore_h) dat = pyscf.scf.chkfile.load(chkfile, key.split('/')[0]) if 'mo_energy' in dat: ene = dat['mo_energy'] else: ene = None occ = dat['mo_occ'] mo = dat['mo_coeff'] if isinstance(ene, str) and ene == 'None': ene = None if isinstance(ene, str) and occ == 'None': occ = None if occ.ndim == 2: orbital_coeff(mol, f, mo[0], spin='Alpha', ene=ene[0], occ=occ[0], ignore_h=ignore_h) orbital_coeff(mol, f, mo[1], spin='Beta', ene=ene[1], occ=occ[1], ignore_h=ignore_h) else: orbital_coeff(mol, f, mo, ene=ene, occ=occ, ignore_h=ignore_h) _SEC_RE = re.compile(r'\[[^]]+\]') def _read_one_section(molden_fp): sec = [None] while True: line = molden_fp.readline() if not line: break line = line.strip() if line == '' or line[0] == '#': # comment or blank line continue mo = _SEC_RE.match(line) if mo: if sec[0] is None: sec[0] = line else: # Next section? rewind the fp pointer molden_fp.seek(last_pos) break else: sec.append(line) last_pos = molden_fp.tell() return sec def _parse_natoms(lines, envs): envs['natm'] = natm = int(lines[1]) return natm def _parse_atoms(lines, envs): if 'ANG' in lines[0].upper(): envs['unit'] = 1 unit = envs['unit'] envs['atoms'] = atoms = [] for line in lines[1:]: dat = line.split() symb, atmid, chg = dat[:3] coord = numpy.array([float(x) for x in dat[3:]])*unit atoms.append((gto.mole._std_symbol(symb)+atmid, coord)) if envs['natm'] is not None and envs['natm'] != len(atoms): sys.stderr.write('Number of atoms in section ATOMS does not equal to N_ATOMS\n') return atoms def _parse_charge(lines, envs): mulliken_charges = [float(_d2e(x)) for x in lines[1:]] return mulliken_charges def _parse_gto(lines, envs): mol = envs['mol'] atoms = envs['atoms'] basis = {} lines_iter = iter(lines) next(lines_iter) # skip section header # * Do not use iter() here. Python 2 and 3 are different in iter() def read_one_bas(lsym, nb, fac=1): fac = float(fac) bas = [lib.param.ANGULARMAP[lsym.lower()],] for i in range(int(nb)): dat = _d2e(next(lines_iter)).split() bas.append((float(dat[0]), float(dat[1])*fac)) return bas # * Be careful with the atom sequence in [GTO] session, it does not correspond # to the atom sequence in [Atoms] session. atom_seq = [] for line in lines_iter: dat = line.split() if dat[0].isdigit(): atom_seq.append(int(dat[0])-1) symb = atoms[int(dat[0])-1][0] basis[symb] = [] elif dat[0].upper() in 'SPDFGHIJ': basis[symb].append(read_one_bas(*dat)) mol.basis = envs['basis'] = basis mol.atom = [atoms[i] for i in atom_seq] return mol def _parse_mo(lines, envs): mol = envs['mol'] atoms = envs['atoms'] if not mol._built: try: mol.build(0, 0) except RuntimeError: mol.build(0, 0, spin=1) irrep_labels = [] mo_energy = [] spins = [] mo_occ = [] mo_coeff = [] norb_alpha = -1 for line in lines[1:]: line = line.upper() if 'SYM' in line: irrep_labels.append(line.split('=')[1].strip()) orb = [] mo_coeff.append(orb) elif 'ENE' in line: mo_energy.append(float(_d2e(line).split('=')[1].strip())) elif 'SPIN' in line: spins.append(line.split('=')[1].strip()) elif 'OCC' in line: mo_occ.append(float(_d2e(line.split('=')[1].strip()))) else: orb.append(float(_d2e(line.split()[1]))) mo_energy = numpy.array(mo_energy) mo_occ = numpy.array(mo_occ) if mol.cart: aoidx = numpy.argsort(order_ao_index(mol, cart=True)) mo_coeff = (numpy.array(mo_coeff).T)[aoidx] # AO are assumed to be normalized in molpro molden file s = mol.intor('int1e_ovlp') mo_coeff = numpy.einsum('i,ij->ij', numpy.sqrt(1/s.diagonal()), mo_coeff) else: aoidx = numpy.argsort(order_ao_index(mol)) mo_coeff = (numpy.array(mo_coeff).T)[aoidx] return mol, mo_energy, mo_coeff, mo_occ, irrep_labels, spins def _parse_core(lines, envs): mol = envs['mol'] atoms = envs['atoms'] line_id = 1 max_lines = len(lines) for line in lines[1:]: dat = line.split(':') if dat[0].strip().isdigit(): atm_id = int(dat[0].strip()) - 1 nelec_core = int(dat[1].strip()) mol.ecp[atoms[atm_id][0]] = [nelec_core, []] if mol.ecp: sys.stderr.write('\nECP were dectected in the molden file.\n' 'Note Molden format does not support ECP data. ' 'ECP information was lost when saving to molden format.\n\n') return mol.ecp _SEC_PARSER = {'GTO' : _parse_gto, 'N_ATOMS' : _parse_natoms, 'ATOMS' : _parse_atoms, 'CHARGE' : _parse_charge, 'MO' : _parse_mo, 'CORE' : _parse_core, 'MOLDEN FORMAT' : lambda *args: None, } def load(moldenfile, verbose=0): '''Extract mol and orbitals from molden file ''' with open(moldenfile, 'r') as f: mol = gto.Mole() mol.cart = True tokens = {'natm' : None, 'unit' : lib.param.BOHR, 'mol' : mol, 'atoms' : None, 'basis' : None, } mo_section_count = 0 while True: lines = _read_one_section(f) sec_title = lines[0] if sec_title is None: break sec_title = sec_title[1:sec_title.index(']')].upper() if sec_title == 'MO': res = _parse_mo(lines, tokens) if mo_section_count == 0: # Alpha orbitals mol, mo_energy, mo_coeff, mo_occ, irrep_labels, spins = res else: mo_energy = mo_energy , res[1] mo_coeff = mo_coeff , res[2] mo_occ = mo_occ , res[3] irrep_labels = irrep_labels, res[4] spins = spins , res[5] mo_section_count += 1 elif sec_title in _SEC_PARSER: _SEC_PARSER[sec_title.upper()](lines, tokens) elif sec_title in ('5D', '7F', '9G'): mol.cart = False else: sys.stderr.write('Unknown section %s\n' % sec_title) if mo_section_count == 0: if spins[-1][0] == 'B': # If including beta orbitals offset = spins.index(spins[-1]) mo_energy = mo_energy [:offset], mo_energy [offset:] mo_coeff = mo_coeff [:offset], mo_coeff [offset:] mo_occ = mo_occ [:offset], mo_occ [offset:] irrep_labels = irrep_labels[:offset], irrep_labels[offset:] spins = spins [:offset], spins [offset:] if isinstance(mo_occ, tuple): mol.spin = int(mo_occ[0].sum() - mo_occ[1].sum()) return mol, mo_energy, mo_coeff, mo_occ, irrep_labels, spins parse = read = load def _d2e(token): return token.replace('D', 'e').replace('d', 'e') def header(mol, fout, ignore_h=IGNORE_H): if ignore_h: mol = remove_high_l(mol)[0] fout.write('[Molden Format]\n') fout.write('made by pyscf v[%s]\n' % pyscf.__version__) fout.write('[Atoms] (AU)\n') for ia in range(mol.natm): symb = mol.atom_pure_symbol(ia) chg = mol.atom_charge(ia) fout.write('%s %d %d ' % (symb, ia+1, chg)) coord = mol.atom_coord(ia) fout.write('%18.14f %18.14f %18.14f\n' % tuple(coord)) fout.write('[GTO]\n') for ia, (sh0, sh1, p0, p1) in enumerate(mol.offset_nr_by_atom()): fout.write('%d 0\n' %(ia+1)) for ib in range(sh0, sh1): l = mol.bas_angular(ib) nprim = mol.bas_nprim(ib) nctr = mol.bas_nctr(ib) es = mol.bas_exp(ib) cs = mol.bas_ctr_coeff(ib) for ic in range(nctr): fout.write(' %s %2d 1.00\n' % (lib.param.ANGULAR[l], nprim)) for ip in range(nprim): fout.write(' %18.14g %18.14g\n' % (es[ip], cs[ip,ic])) fout.write('\n') fout.write('[5d]\n[9g]\n\n') if mol.has_ecp(): # See https://github.com/zorkzou/Molden2AIM fout.write('[core]\n') for ia in range(mol.natm): nelec_ecp_core = mol.atom_nelec_core(ia) if nelec_ecp_core != 0: fout.write('%s : %d\n' % (ia+1, nelec_ecp_core)) fout.write('\n') def order_ao_index(mol, cart=False): # reorder d,f,g fucntion to # 5D: D 0, D+1, D-1, D+2, D-2 # 6D: xx, yy, zz, xy, xz, yz # # 7F: F 0, F+1, F-1, F+2, F-2, F+3, F-3 # 10F: xxx, yyy, zzz, xyy, xxy, xxz, xzz, yzz, yyz, xyz # # 9G: G 0, G+1, G-1, G+2, G-2, G+3, G-3, G+4, G-4 # 15G: xxxx yyyy zzzz xxxy xxxz yyyx yyyz zzzx zzzy xxyy xxzz yyzz xxyz yyxz zzxy idx = [] off = 0 if cart: for ib in range(mol.nbas): l = mol.bas_angular(ib) for n in range(mol.bas_nctr(ib)): if l == 2: idx.extend([off+0,off+3,off+5,off+1,off+2,off+4]) elif l == 3: idx.extend([off+0,off+6,off+9,off+3,off+1, off+2,off+5,off+8,off+7,off+4]) elif l == 4: idx.extend([off+0 , off+10, off+14, off+1 , off+2 , off+6 , off+11, off+9 , off+13, off+3 , off+5 , off+12, off+4 , off+7 , off+8 ,]) elif l > 4: raise RuntimeError('l=5 is not supported') else: idx.extend(range(off,off+(l+1)*(l+2)//2)) off += (l+1)*(l+2)//2 else: # spherical orbitals for ib in range(mol.nbas): l = mol.bas_angular(ib) for n in range(mol.bas_nctr(ib)): if l == 2: idx.extend([off+2,off+3,off+1,off+4,off+0]) elif l == 3: idx.extend([off+3,off+4,off+2,off+5,off+1,off+6,off+0]) elif l == 4: idx.extend([off+4,off+5,off+3,off+6,off+2, off+7,off+1,off+8,off+0]) elif l == 5: idx.extend(off+odx for odx in [5, 6, 4, 7, 3, 8, 2, 9, 1, 10, 0]) elif l == 6: idx.extend(off+odx for odx in [6, 7, 5, 8, 4, 9, 3, 10, 2, 11, 1, 12, 0]) elif l == 7: idx.extend(off+odx for odx in [7, 8, 6, 9, 5, 10, 4, 11, 3, 12, 2, 13, 1, 14, 0]) elif l >= 8: raise RuntimeError('l>=8 is not supported') else: idx.extend(range(off,off+l*2+1)) off += l * 2 + 1 return idx def remove_high_l(mol, mo_coeff=None): '''Remove high angular momentum (l >= 5) functions before dumping molden file. If molden function raised error message ``RuntimeError l=5 is not supported``, you can use this function to format orbitals. Note the formated orbitals may have normalization problem. Some visualization tool will complain about the orbital normalization error. Examples: >>> mol1, orb1 = remove_high_l(mol, mf.mo_coeff) >>> molden.from_mo(mol1, outputfile, orb1) ''' pmol = mol.copy() pmol.basis = {} for symb, bas in mol._basis.items(): pmol.basis[symb] = [b for b in bas if b[0] <= 4] pmol.build(0, 0) if mo_coeff is None: return pmol, None else: k = 0 idx = [] for ib in range(mol.nbas): l = mol.bas_angular(ib) nc = mol.bas_nctr(ib) if l <= 4: idx.append(range(k, k+(l*2+1)*nc)) k += (l*2+1) * nc idx = numpy.hstack(idx) return pmol, mo_coeff[idx] if __name__ == '__main__': from pyscf import scf import tempfile mol = gto.Mole() mol.verbose = 5 mol.output = None#'out_gho' mol.atom = [['C', (0.,0.,0.)], ['H', ( 1, 1, 1)], ['H', (-1,-1, 1)], ['H', ( 1,-1,-1)], ['H', (-1, 1,-1)], ] mol.basis = { 'C': 'sto-3g', 'H': 'sto-3g'} mol.build(dump_input=False) m = scf.RHF(mol) m.scf() header(mol, mol.stdout) print(order_ao_index(mol)) orbital_coeff(mol, mol.stdout, m.mo_coeff) ftmp = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) from_mo(mol, ftmp.name, m.mo_coeff) print(parse(ftmp.name))
python
import os import sys import time import glob import numpy as np import pandas as pd import torch import utils import logging import argparse import torch.nn as nn import torch.utils import torch.nn.functional as F import torchvision.datasets as dset import torch.backends.cudnn as cudnn from copy import deepcopy from numpy import linalg as LA import matplotlib.pyplot as plt from utils import _data_transforms_focuspath from plcc_loss import PLCCLoss from torch.autograd import Variable from dartsfqa_search import Network from architect import Architect from analyze import Analyzer from dataset import FocusDataset from adas import Adas from adas.metrics import Metrics from adas.adaptive_stop import StopChecker def parse_config(): parser = argparse.ArgumentParser() parser.add_argument('--data', type=str, default='../data', help='location of the data corpus') parser.add_argument('--batch_size', type=int, default=50, help='batch size') parser.add_argument('--learning_rate', type=float, default=0.175, help='init learning rate') parser.add_argument('--learning_rate_min', type=float, default=0.001, help='min learning rate') parser.add_argument('--momentum', type=float, default=0.9, help='momentum') parser.add_argument('--weight_decay', type=float, default=3e-4, help='weight decay') parser.add_argument('--report_freq', type=float, default=50, help='report frequency') parser.add_argument('--gpu', type=int, default=0, help='gpu device id') parser.add_argument('--epochs', type=int, default=60, help='num of training epochs') parser.add_argument('--init_channels', type=int, default=8, help='num of init channels') parser.add_argument('--layers', type=int, default=3, help='total number of layers') parser.add_argument('--model_path', type=str, default='saved_models', help='path to save the model') parser.add_argument('--cutout', action='store_true', default=False, help='use cutout') parser.add_argument('--cutout_length', type=int, default=16, help='cutout length') parser.add_argument('--drop_path_prob', type=float, default=0.0, help='drop path probability') # Change to FOCUSPATH or DEEPFOCUS depending on the dataset. parser.add_argument('--save', type=str, default='BIOIMAGE_exp', help='experiment name, options: BIOIMAGE_exp, FOCUSPATH_exp, DEEPFOCUS_exp') parser.add_argument('--seed', type=int, default=0, help='random seed') parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping') parser.add_argument('--train_portion', type=float, default=0.50, help='portion of training data') parser.add_argument('--unrolled', action='store_true', default=False, help='use one-step unrolled validation loss') parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding') parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding') # BN parser.add_argument('--learnable_bn', action='store_true', default=False, help='learnable parameters in batch normalization') # Gumbel-softmax parser.add_argument('--gumbel', action='store_true', default=False, help='use or not Gumbel-softmax trick') parser.add_argument('--tau_max', type=float, default=10.0, help='initial tau') parser.add_argument('--tau_min', type=float, default=1.0, help='minimum tau') # Dataset parser.add_argument('--dataset', type=str, default='FocusPath', help='choose dataset, options: BioImage, DeepFocus, FocusPath') # Adas optimizer parser.add_argument('--adas', action='store_true', default=False, help='whether or not to use adas optimizer') parser.add_argument('--scheduler_beta', type=float, default=0.97, help='beta for lr scheduler') parser.add_argument('--step_size', type=int, default=None, help='step_size for dropping zeta') parser.add_argument('--gamma', type=float, default=0.5, help='zeta dropping rate in Adas') # Save file name parser.add_argument('--file_name', type=str, default='focuspath', help='metrics and weights data file name') # Hessian parser.add_argument('--compute_hessian', action='store_true', default=False, help='compute or not Hessian') parser.add_argument('--report_freq_hessian', type=int, default=2, help='frequency to report Hessian') # Local stopping criterion parser.add_argument('--adaptive_stop', action='store_true', default=False, help='local stopping criterion') parser.add_argument('--as_start_epoch', type=int, default=10, help='start epoch for local stopping criterion') parser.add_argument('--num_normal_cell_stop', type=int, default=2, help='param for local stopping criterion') parser.add_argument('--num_reduce_cell_stop', type=int, default=1, help='param for local stopping criterion') # Global stopping criterion parser.add_argument('--global_stop', action='store_true', default=False, help='global stopping criterion') parser.add_argument('--gs_factor', type=float, default=1.3, help='factor for global stopping criterion') parser.add_argument('--gs_start_epoch', type=int, default=20, help='start epoch for global stopping criterion') parser.add_argument('--gs_delta', type=int, default=2, help='delta for global stopping criterion') # Intermediate nodes in a cell parser.add_argument('--node', type=int, default=2, help='number of nodes in a cell') # Path Information parser.add_argument('--result_path', type=str, default='./search_results', metavar='PATH', help='Path for save loss plots.') parser.add_argument('--dataset_path', type=str, default='./data', metavar='PATH', help='Path at which the dataset is stored.') parser.add_argument('--csv_path', type=str, default='./data', metavar='PATH', help='Path at which the CSV is stored.') args = parser.parse_args() args.save = 'search-{}-{}-{}'.format(args.save, args.file_name, time.strftime("%Y%m%d-%H%M%S")) save_folder_parent = args.result_path if not os.path.exists(save_folder_parent): os.makedirs(save_folder_parent) save_folder = save_folder_parent + "%flr_%s" % (args.learning_rate, args.dataset) if not os.path.exists(save_folder): os.makedirs(save_folder) args.save = os.path.join(save_folder, args.save) utils.create_exp_dir(args.save, scripts_to_save=None) # utils.create_exp_dir(args.save, scripts_to_save=glob.glob(*.py)) log_format = '%(asctime)s %(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p') fh = logging.FileHandler(os.path.join(args.save, 'log.txt')) fh.setFormatter(logging.Formatter(log_format)) logging.getLogger().addHandler(fh) return args def main(args): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) torch.cuda.empty_cache() np.random.seed(args.seed) torch.cuda.set_device(args.gpu) cudnn.benchmark = True torch.manual_seed(args.seed) cudnn.enabled = True torch.cuda.manual_seed(args.seed) logging.info('gpu device = %d' % args.gpu) logging.info("args = %s", args) if args.dataset == 'cifar100': n_classes = 100 data_folder = 'cifar-100-python' elif args.dataset.lower() == 'focuspath': n_classes = 15 elif args.dataset.lower() == 'deepfocus': n_classes = 6 elif args.dataset.lower() == 'bioimage': n_classes = 11 else: n_classes = 10 data_folder = 'cifar-10-batches-py' # Want to use the PLCC loss, not Cross Entropy. # criterion = nn.CrossEntropyLoss() # criterion = criterion.cuda() criterion = PLCCLoss() criterion = criterion.cuda() model = Network(args.init_channels, n_classes, args.layers, criterion, args.dataset, args.batch_size, learnable_bn=args.learnable_bn, steps=args.node) model = model.cuda() num_param = sum([p.numel() for p in model.parameters()]) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) logging.info("num of params = %d", num_param) ################################################################################ # AdaS: optimizer and scheduler if args.adas: optimizer = Adas(params=list(model.parameters()), lr=args.learning_rate, beta=args.scheduler_beta, step_size=args.step_size, gamma=args.gamma, momentum=args.momentum, weight_decay=args.weight_decay) ################################################################################ # original DARTS: SGD optimizer with cosine_annealing lr scheduler # else: # optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate) # scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.decay_interval, gamma=args.decay_ratio) else: optimizer = torch.optim.SGD( model.parameters(), args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) # scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( # optimizer, float(args.epochs), eta_min=args.learning_rate_min) ################################################################################ if args.dataset == 'cifar100': train_transform, valid_transform = utils._data_transforms_cifar100(args) train_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=train_transform) elif args.dataset.lower() == 'focuspath': train_transform, valid_transform = utils._data_transforms_focuspath(args) train_csv = args.csv_path trainset = args.dataset_path elif args.dataset.lower() == 'bioimage': train_transform, valid_transform = utils._data_transforms_bioimage(args) train_csv = args.csv_path trainset = args.dataset_path elif args.dataset.lower() == 'deepfocus': train_transform, valid_transformm = utils._data_transforms_deepfocus(args) train_csv = args.csv_path trainset = args.dataset_path else: train_transform, valid_transform = utils._data_transforms_cifar10(args) train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform) if args.dataset == 'cifar100' or args.dataset == 'cifar10': num_train = len(train_data) indices = list(range(num_train)) split = int(np.floor(args.train_portion * num_train)) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]), pin_memory=True, num_workers=0) valid_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]), pin_memory=True, num_workers=0) elif args.dataset.lower() == 'focuspath': train_data = FocusDataset(csv_file=train_csv, root_dir=trainset, transform=train_transform, dataset=args.dataset) num_train = len(train_data) indices = list(range(num_train)) split = int(np.floor(args.train_portion * num_train)) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]), pin_memory=True, num_workers=0, drop_last=True) valid_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]), pin_memory=True, num_workers=0, drop_last=True) elif args.dataset.lower() == 'bioimage': train_data = FocusDataset(csv_file=train_csv, root_dir=trainset, transform=train_transform, dataset=args.dataset) num_train = len(train_data) indices = list(range(num_train)) split = int(np.floor(args.train_portion * num_train)) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]), pin_memory=True, num_workers=1, drop_last=True) valid_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]), pin_memory=True, num_workers=1, drop_last=True) elif args.dataset.lower() == 'deepfocus': train_data = FocusDataset(csv_file=train_csv, root_dir=trainset, transform=train_transform, dataset=args.dataset) num_train = len(train_data) indices = list(range(num_train)) split = int(np.floor(args.train_portion * num_train)) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]), pin_memory=True, num_workers=0, drop_last=True) valid_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]), pin_memory=True, num_workers=0, drop_last=True) architect = Architect(model, args) """Hessian""" analyser = Analyzer(model, args) """adaptive stopping based on knowledge gains""" stop_checker = StopChecker(args) """global stopping based on eigen values""" ev_tracker = utils.EVLocalAvg(args) if not args.adas: # adas has already called this metrics = Metrics(params=list(model.parameters())) performance_statistics = {} arch_statistics = {} genotype_statistics = {} save_folder = args.result_path + "%flr_%s" % (args.learning_rate, args.dataset) metrics_path = save_folder + 'metrics_stat_' + args.file_name + '.xlsx' weights_path = save_folder + 'weights_stat_' + args.file_name + '.xlsx' genotypes_path = save_folder + 'genotypes_stat_' + args.file_name + '.xlsx' edge_num = np.sum([2+i for i in range(args.node)]) normal_edge_stop_epoch = np.zeros(edge_num) reduce_edge_stop_epoch = np.zeros(edge_num) local_stop_epoch = None errors_dict = {'train_acc': [], 'train_loss': [], 'valid_acc': [], 'valid_loss': []} for epoch in range(args.epochs): if args.adas: lr = optimizer.lr_vector else: logging.info('epoch %d lr %e', epoch, args.learning_rate) genotype = model.genotype() logging.info('epoch: %d', epoch) logging.info('genotype = %s', genotype) # Training for DARTS-FQA train_obj = train(args, epoch, train_queue, valid_queue, model, architect, criterion, optimizer, args.learning_rate, analyser, ev_tracker) print('\n') logging.info('train_loss %f', train_obj) # Validation for DARTS-FQA valid_obj = infer(args, valid_queue, model, criterion) print('\n') logging.info('valid_loss %f', valid_obj) # update the errors dictionary errors_dict['train_loss'].append(train_obj) errors_dict['valid_loss'].append(valid_obj) losses = [train_obj, valid_obj] # update network io metrics (knowledge gain, condition mapping, etc) if args.adas: # AdaS: update learning rates optimizer.epoch_step(epoch) io_metrics = optimizer.KG lr_metrics = optimizer.velocity else: metrics() io_metrics = metrics.KG(epoch) lr_metrics = None # weights weights_normal = F.softmax(model.alphas_normal, dim=-1).detach().cpu().numpy() weights_reduce = F.softmax(model.alphas_reduce, dim=-1).detach().cpu().numpy() # write data to excel files loss_list = write_data(args, epoch, io_metrics, lr_metrics, weights_normal, weights_reduce, genotype, performance_statistics, arch_statistics, genotype_statistics, metrics_path, weights_path, genotypes_path, losses, loss_list) # save model parameters utils.save(model, os.path.join(args.save, 'weights.pt')) # adaptive stopping criterion (local, based on knowledge gain) if args.adaptive_stop and epoch >= args.as_start_epoch: # apply local stopping criterion stop_checker.local_stop(optimizer.metrics, epoch) # freeze some edges based on their knowledge gains iteration_p = 0 for p in model.parameters(): if ~optimizer.metrics.layers_index_todo[iteration_p]: p.requires_grad = False p.grad = None iteration_p += 1 for i in range(edge_num): if stop_checker.normal_edge_index_stop[i] & (normal_edge_stop_epoch[i] == 0): normal_edge_stop_epoch[i] = epoch if stop_checker.reduce_edge_index_stop[i] & (reduce_edge_stop_epoch[i] == 0): reduce_edge_stop_epoch[i] = epoch logging.info( 'Epoch: %d, normal edge stop epoch: %s', epoch, str(normal_edge_stop_epoch) ) logging.info( 'Epoch: %d, reduce edge stop epoch: %s', epoch, str(reduce_edge_stop_epoch) ) if min(normal_edge_stop_epoch) > 0 and min(reduce_edge_stop_epoch) > 0: if local_stop_epoch is None: logging.info( 'All edges are frozen at epoch: %d', epoch ) local_stop_epoch = epoch + 2 # if all edges are frozen, we should # stop searching the whole net after 2 epochs elif epoch == local_stop_epoch: logging.info( 'Based on the local criterion, decide to stop the search at epoch %d', epoch ) # FocusPath logging.info( 'Validation loss at stop epoch: %f' , valid_obj ) # logging.info( # 'Validation accuracy at stop epoch: %f', valid_acc # ) logging.info( 'Genotype at stop epoch: %s', genotype ) break else: logging.info( 'Waiting for the searching to stop in %d epochs', local_stop_epoch - epoch ) # global stop criterion (global, based on Hessian matrix) if args.global_stop: if ev_tracker.stop_search: # set the following to the values they had at stop_epoch errors_dict['valid_acc'] = errors_dict['valid_acc'][:ev_tracker.stop_epoch + 1] stop_genotype = ev_tracker.stop_genotype stop_valid_acc = errors_dict['valid_acc'][ev_tracker.stop_epoch] logging.info( 'Based on the global criterion, decide to stop the search at epoch %d (Current epoch: %d)', ev_tracker.stop_epoch, epoch ) logging.info( 'Validation accuracy at stop epoch: %f', stop_valid_acc ) logging.info( 'Genotype at stop epoch: %s', stop_genotype ) break def train(args, epoch, train_queue, valid_queue, model, architect, criterion, optimizer, lr, analyser, ev_tracker): objs = utils.AvgrageMeter() train_loss = 0 if args.adas: layers_todo = optimizer.metrics.layers_index_todo else: layers_todo = None for step, sample_batched in enumerate(train_queue, 0): input, target = sample_batched['image'], sample_batched['score'] # one mini-batch print('\rtrain mini batch {:03d}'.format(step), end=' ') model.train() if args.gumbel: model.set_tau(args.tau_max - epoch * 1.0 / args.epochs * (args.tau_max - args.tau_min)) input = Variable(input, requires_grad=False).cuda() target = Variable(target.float(), requires_grad=False).cuda(non_blocking=True) # get a random minibatch from the search queue with replacement sample_batched_search = next(iter(valid_queue)) input_search, target_search = sample_batched_search['image'], sample_batched_search['score'] input_search = Variable(input_search, requires_grad=False).cuda() target_search = Variable(target_search.float(), requires_grad=False).cuda(non_blocking=True) # logging.info('update arch...') architect.step(input, target, input_search, target_search, lr, layers_todo, optimizer, unrolled=args.unrolled) # logging.info('update weights...') optimizer.zero_grad() logits = model.forward(input, gumbel=args.gumbel) logits_avg = logits.view(args.batch_size, 1).mean(1) loss = criterion(logits_avg, target) loss.backward() # nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip) optimizer.step() train_loss += loss.item() print_train_loss = train_loss / (step + 1) if step % args.report_freq == 0: print('\n') logging.info('train %03d %f', step, print_train_loss) # logging.info('train %03d %e %f %f', step, objs.avg, top1.avg, top5.avg) if args.compute_hessian: if (epoch % args.report_freq_hessian == 0) or (epoch == (args.epochs - 1)): _data_loader = deepcopy(train_queue) sample_batched = next(iter(_data_loader)) input, target = sample_batched['image'], sample_batched['score'] input = Variable(input, requires_grad=False).cuda() target = Variable(target.float(), requires_grad=False).cuda(non_blocking=True) # get gradient information # param_grads = [p.grad for p in model.parameters() if p.grad is not None] # param_grads = torch.cat([x.view(-1) for x in param_grads]) # param_grads = param_grads.cpu().data.numpy() # grad_norm = np.linalg.norm(param_grads) # gradient_vector = torch.cat([x.view(-1) for x in gradient_vector]) # grad_norm = LA.norm(gradient_vector.cpu()) # logging.info('\nCurrent grad norm based on Train Dataset: %.4f', # grad_norm) # logging.info('Compute Hessian start') H = analyser.compute_Hw(input, target, input_search, target_search, lr, layers_todo, optimizer, unrolled=False) # g = analyser.compute_dw(input, target, input_search, target_search, # lr, layers_todo, optimizer, unrolled=False) # g = torch.cat([x.view(-1) for x in g]) del _data_loader hessian_file = "../save_data/hessian_{0}_epoch_{1}".format(args.file_name, epoch) np.save(hessian_file, H.cpu().data.numpy()) # early stopping ev = max(LA.eigvals(H.cpu().data.numpy())) ev_tracker.update(epoch, ev, model.genotype()) if args.global_stop and epoch != (args.epochs - 1): ev_tracker.early_stop(epoch, factor=args.gs_factor, es_start_epoch=args.gs_start_epoch, delta=args.gs_delta) return print_train_loss # return top1.avg, objs.avg def infer(args, valid_queue, model, criterion): objs = utils.AvgrageMeter() # top1 = utils.AvgrageMeter() # top5 = utils.AvgrageMeter() model.eval() valid_loss = 0 with torch.no_grad(): for step, sample_batched in enumerate(valid_queue): print('\rinfer mini batch {:03d}'.format(step), end=' ') input, target = sample_batched['image'], sample_batched['score'] input = Variable(input).cuda() target = Variable(target.float()).cuda(non_blocking=True) logits = model(input) logits_avg = logits.view(args.batch_size, 1).mean(1) loss = criterion(logits_avg, target) valid_loss += loss.item() print_valid_loss = valid_loss / (step + 1) if step % args.report_freq == 0: print('\n') logging.info('valid %03d %f', step, print_valid_loss) return print_valid_loss def write_data(args, epoch, net_metrics, lr_metrics, weights_normal, weights_reduce, genotype, perform_stat, arch_stat, genotype_stat, metrics_path, weights_path, genotypes_path, losses, loss_list): # io metrics perform_stat['S_epoch_{}'.format(epoch)] = net_metrics if args.adas: # lr metrics perform_stat['learning_rate_epoch_{}'.format(epoch)] = lr_metrics learning_rate_print = np.array(perform_stat['learning_rate_epoch_{}'.format(epoch)]) learning_rate_print = np.mean(learning_rate_print) loss_list[0, epoch] = losses[0] loss_list[1, epoch] = losses[1] result_path = args.result_path valid_summary_file = "%flr_valid_loss.txt" % args.learning_rate train_summary_file = "%flr_train_loss.txt" % args.learning_rate if not os.path.exists(result_path): os.makedirs(result_path) valid_result = os.path.join(result_path, valid_summary_file) train_result = os.path.join(result_path, train_summary_file) # genotype if epoch % 5 == 0 or epoch == args.epochs - 1: genotype_stat['epoch_{}'.format(epoch)] = [genotype] genotypes_df = pd.DataFrame(data=genotype_stat) genotypes_df.to_excel(metrics_path) valid_result_file = open(valid_result, 'a') format_out = '(E:%d) [loss = %.4f, lr = %.6e]' print_out = format_out % (epoch, losses[1], args.learning_rate) valid_result_file.write(print_out + '\n') valid_result_file.write(str(genotype) + '\n') print(str(genotype)) valid_result_file.close() train_result_file = open(train_result, 'a') format_out = '(E:%d) [loss = %.4f, lr = %.6e]' print_out = format_out % (epoch, losses[0], args.learning_rate) train_result_file.write(print_out + '\n') train_result_file.write(str(genotype) + '\n') print(str(genotype)) train_result_file.close() plt.ion() plt.figure() plt.plot(range(epoch), loss_list[0, 0:epoch], label='Train Loss') plt.plot(range(epoch), loss_list[1, 0:epoch], label='Validation Loss') plt.legend() plt.title('Architecture Search Loss') plt.xlabel('Epochs') plt.ylabel('Loss (PLCC)') loss_plot = "loss_%flr.png" % args.learning_rate loss_plot_file = os.path.join(result_path, loss_plot) plt.savefig(loss_plot_file) plt.show(block=False) plt.pause(3) print("Loss plot finished for epoch %d" % epoch) plt.ioff() plt.close('all') # write metrics data to xls file metrics_df = pd.DataFrame(data=perform_stat) metrics_df.to_excel(metrics_path) # weights # normal arch_stat['normal_none_epoch{}'.format(epoch)] = weights_normal[:, 0] arch_stat['normal_max_epoch{}'.format(epoch)] = weights_normal[:, 1] arch_stat['normal_avg_epoch{}'.format(epoch)] = weights_normal[:, 2] arch_stat['normal_skip_epoch{}'.format(epoch)] = weights_normal[:, 3] arch_stat['normal_sep_3_epoch{}'.format(epoch)] = weights_normal[:, 4] arch_stat['normal_sep_5_epoch{}'.format(epoch)] = weights_normal[:, 5] arch_stat['normal_dil_3_epoch{}'.format(epoch)] = weights_normal[:, 6] arch_stat['normal_dil_5_epoch{}'.format(epoch)] = weights_normal[:, 7] # reduce arch_stat['reduce_none_epoch{}'.format(epoch)] = weights_reduce[:, 0] arch_stat['reduce_max_epoch{}'.format(epoch)] = weights_reduce[:, 1] arch_stat['reduce_avg_epoch{}'.format(epoch)] = weights_reduce[:, 2] arch_stat['reduce_skip_epoch{}'.format(epoch)] = weights_reduce[:, 3] arch_stat['reduce_sep_3_epoch{}'.format(epoch)] = weights_reduce[:, 4] arch_stat['reduce_sep_5_epoch{}'.format(epoch)] = weights_reduce[:, 5] arch_stat['reduce_dil_3_epoch{}'.format(epoch)] = weights_reduce[:, 6] arch_stat['reduce_dil_5_epoch{}'.format(epoch)] = weights_reduce[:, 7] # write weights data to xls file weights_df = pd.DataFrame(data=arch_stat) weights_df.to_excel(weights_path) return loss_list if __name__ == '__main__': args = parse_config() main(args)
python
""" hhpy ~~~~~~ The hhpy package - a Python package developed by Henrik Hanssen centered around the idea of providing unified and convenient tools for Data Science """ from hhpy.main import * from hhpy.ds import * from hhpy.ipython import * from hhpy.modelling import * from hhpy.plotting import * from hhpy.regression import *
python
""" Copyright 2017 Nikolay Stanchev Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest from DataStructures.AbstractDataStructures import PriorityQueue from DataStructures.Errors import * class PriorityQueueTest(unittest.TestCase): def test_size(self): priority_queue = PriorityQueue() self.assertEqual(len(priority_queue), 0, "Priority queue is not initialised as empty") priority_queue = PriorityQueue(float, True) self.assertEqual(priority_queue.size, 0, "Priority queue is not initialised as empty") priority_queue = PriorityQueue(elements_type=int, reverse=False) self.assertEqual(len(priority_queue), 0, "Priority queue is not initialised as empty") self.assertTrue(priority_queue.size == 0, "Priority queue is not initialised as empty") self.assertEqual(priority_queue.size, 0, "Priority queue is not initialised as empty") priority_queue.enqueue(5, 10) priority_queue.enqueue(20, 3) self.assertEqual(priority_queue.size, 2, "Wrong size implementation") self.assertEqual(len(priority_queue), 2, "Wrong len implementation") priority_queue = PriorityQueue(reverse=False) priority_queue.enqueue(20, 3) priority_queue.peek() priority_queue.enqueue(2, 2) priority_queue.enqueue(10, 3) self.assertEqual(priority_queue.size, 2, "Wrong size implementation") priority_queue.dequeue() priority_queue.get_element(1024) self.assertEqual(len(priority_queue), 1, "Wrong len implementation") def test_type(self): with self.assertRaises(PriorityQueueTypeError): PriorityQueue(elements_type=5.4) priority_queue = PriorityQueue() self.assertEqual(priority_queue.type, None, "Wrong type at initialization") priority_queue.enqueue(5, 5) priority_queue.enqueue("word", 10) priority_queue = PriorityQueue(str, True) self.assertEqual(priority_queue.type, str, "Wrong type at initialization") with self.assertRaises(PriorityQueueTypeError): priority_queue.enqueue(2, 3) with self.assertRaises(PriorityQueueTypeError): priority_queue.enqueue("2", "3") with self.assertRaises(PriorityQueueTypeError): priority_queue.contains_priority(5.43) with self.assertRaises(PriorityQueueTypeError): priority_queue.get_element("7") def test_reverse(self): priority_queue = PriorityQueue() self.assertFalse(priority_queue.reversed, "Wrong reverse implementation") priority_queue.enqueue(1, 10) priority_queue.enqueue("word", 5) self.assertEqual(priority_queue.peek(), 1, "Wrong reverse implementation") self.assertEqual(priority_queue.dequeue(), 1, "Wrong reverse implementation") priority_queue = PriorityQueue(int, False) self.assertFalse(priority_queue.reversed, "Wrong reverse implementation") priority_queue.enqueue(1, 10) priority_queue.enqueue(2, 5) self.assertEqual(priority_queue.peek(), 1, "Wrong reverse implementation") self.assertEqual(priority_queue.dequeue(), 1, "Wrong reverse implementation") priority_queue = PriorityQueue(elements_type=str, reverse=True) self.assertTrue(priority_queue.reversed, "Wrong reverse implementation") priority_queue.enqueue("python", 1) priority_queue.enqueue("word", 2) self.assertEqual(priority_queue.peek(), "python", "Wrong reverse implementation") self.assertEqual(priority_queue.dequeue(), "python", "Wrong reverse implementation") priority_queue = PriorityQueue(reverse=True) self.assertTrue(priority_queue.reversed, "Wrong reverse implementation") priority_queue.enqueue(1, 10) priority_queue.enqueue("word", 5) self.assertEqual(priority_queue.peek(), "word", "Wrong reverse implementation") self.assertEqual(priority_queue.dequeue(), "word", "Wrong reverse implementation") def test_str(self): priority_queue = PriorityQueue() self.assertEqual(str(priority_queue), "{}", "Wrong str implementation") priority_queue = PriorityQueue(float, True) self.assertEqual(str(priority_queue), "{}", "Wrong str implementation") priority_queue.enqueue(1.2, 2) self.assertEqual(str(priority_queue), "{2: 1.2}", "Wrong str implementation") priority_queue.enqueue(2.5, 2) self.assertEqual(str(priority_queue), "{2: 2.5}", "Wrong str implementation") def test_contains(self): priority_queue = PriorityQueue() self.assertFalse(priority_queue.contains_priority(5), "Contains fails with empty queue") with self.assertRaises(PriorityQueueTypeError): priority_queue.contains_priority("7") self.assertFalse(priority_queue.contains_element("7"), "Contains_element fails") priority_queue = PriorityQueue(int, True) for i in range(10): priority_queue.enqueue(i**2, i) for j in range(10): self.assertTrue(priority_queue.contains_priority(j), "Wrong contains implementation") self.assertTrue(priority_queue.contains_element(j**2), "Contains_element fails") self.assertTrue(j ** 2 in priority_queue, "Contains_element fails") with self.assertRaises(PriorityQueueTypeError): priority_queue.contains_element("word") def test_enqueue(self): priority_queue = PriorityQueue(float, False) with self.assertRaises(PriorityQueueTypeError): priority_queue.enqueue(5, 5) with self.assertRaises(PriorityQueueTypeError): priority_queue.enqueue(5.25, "5") d = {5: 10.5, 1: 2.7, 3: 4.90, 11: 3.14} for key in d: priority_queue.enqueue(d[key], key) self.assertEqual(len(priority_queue), len(d)) for priority in d: self.assertFalse(priority_queue.get_element(priority) is None) self.assertEqual(d[priority], priority_queue.get_element(priority)) def test_dequeue(self): priority_queue = PriorityQueue(str, True) with self.assertRaises(EmptyPriorityQueueError): priority_queue.dequeue() priority_queue.enqueue("word", 2) priority_queue.enqueue("python", 10) priority_queue.enqueue("another_word", 1) self.assertEqual(priority_queue.dequeue(), "another_word", "Wrong dequeue implementation") self.assertEqual(len(priority_queue), 2) priority_queue = PriorityQueue(int, False) with self.assertRaises(EmptyPriorityQueueError): priority_queue.dequeue() priority_queue.enqueue(15, 2) priority_queue.enqueue(423, 10) priority_queue.enqueue(20, 1) self.assertEqual(priority_queue.dequeue(), 423, "Wrong dequeue implementation") self.assertEqual(priority_queue.dequeue(), 15, "Wrong deuque implementation") self.assertEqual(len(priority_queue), 1) def test_iterator(self): priority_queue = PriorityQueue() with self.assertRaises(StopIteration): iter(priority_queue).__next__() for p in range(0, 41, 2): priority_queue.enqueue(p*2, p) list2 = [p*2 for p in range(0, 41, 2)] for value in priority_queue: self.assertTrue(value in list2, "Wrong iterator implementation") self.assertEqual(value, max(list2)) list2.remove(value) self.assertEqual(len(priority_queue), 0) self.assertTrue(priority_queue.size == 0) def test_peek(self): priority_queue = PriorityQueue() self.assertTrue(priority_queue.peek() is None, "Wrong peek implementation") priority_queue = PriorityQueue(float, True) self.assertTrue(priority_queue.peek() is None, "Wrong peek implementation") priority_queue.enqueue(15.25, 2) priority_queue.enqueue(423.56, 10) priority_queue.enqueue(20.02, 1) priority_queue.enqueue(33.5, 5) self.assertEqual(priority_queue.peek(), 20.02, "Wrong dequeue implementation") self.assertEqual(priority_queue.dequeue(), 20.02, "Wrong dequeue implementation") self.assertEqual(priority_queue.peek(), 15.25, "Wrong deuque implementation") self.assertEqual(len(priority_queue), 3) def test_get_element(self): priority_queue = PriorityQueue() for k in range(10): self.assertTrue(priority_queue.get_element(k) is None, "Wrong get implementation") priority_queue.enqueue(k*3, k) for n in range(9, -1, -1): self.assertEqual(priority_queue.get_element(n), n*3, "Wrong peek implementation") self.assertEqual(len(priority_queue), 10) def test_replace_priority(self): priority_queue = PriorityQueue(int, True) with self.assertRaises(PriorityQueueTypeError): priority_queue.replace_priority("element", 10.5) with self.assertRaises(PriorityQueueElementError): priority_queue.replace_priority(10, 5) with self.assertRaises(PriorityQueueTypeError): priority_queue.replace_priority(5, 5.5) priority_queue.enqueue(0, 10) priority_queue.enqueue(1, 1) priority_queue.enqueue(2, 2) priority_queue.enqueue(3, 5) self.assertFalse(priority_queue.replace_priority(1, 0, comparison=1), "Wrong replace_priority implementation") self.assertEqual(priority_queue.get_element(0), None, "Wrong comparison replacement") self.assertEqual(priority_queue.get_element(1), 1, "Wrong comparison replacement") with self.assertRaises(ValueError): priority_queue.replace_priority(3, 5, "comparison") self.assertEqual(priority_queue.peek(), 1) self.assertEqual(priority_queue.get_element(0), None) self.assertEqual(priority_queue.get_element(10), 0) self.assertTrue(priority_queue.replace_priority(0, 0, comparison=-1), "Wrong replace_priority implementation") self.assertEqual(priority_queue.get_element(10), None, "Wrong replace_priority implementation") self.assertEqual(priority_queue.get_element(0), 0, "Wrong replace_priority implementation") self.assertEqual(priority_queue.peek(), 0, "Wrong replace_priority implementation") self.assertTrue(priority_queue.replace_priority(3, -1, comparison=-1), "Wrong replace_priority implementation") self.assertFalse(priority_queue.replace_priority(3, -5, comparison=1), "Wrong replace_priority implementation") self.assertEqual(priority_queue.get_element(5), None, "Wrong replace_priority implementation") self.assertEqual(priority_queue.get_element(-1), 3, "Wrong replace_priority implementation") self.assertEqual(priority_queue.peek(), 3, "Wrong replace_priority implementation") self.assertEqual(priority_queue.get_element(20), None) self.assertTrue(priority_queue.replace_priority(2, 20), "Wrong replace_priority implementation") self.assertEqual(priority_queue.get_element(20), 2) priority_queue = PriorityQueue() priority_queue.enqueue("str", 5) priority_queue.enqueue(5.5, 0) self.assertTrue(priority_queue.replace_priority("str", 10), "Wrong replace_priority implementation") self.assertEqual(priority_queue.get_element(5), None) self.assertEqual(priority_queue.get_element(10), "str") self.assertEqual(priority_queue.peek(), "str") self.assertTrue(priority_queue.replace_priority(5.5, 10, comparison=1), "Wrong replace_priority implementation") self.assertEqual(len(priority_queue), 1, "Wrong replace_priority implementation") self.assertEqual(priority_queue.get_element(10), 5.5, "Wrong replace_priority implementation") priority_queue = PriorityQueue(reverse=True) for i in range(1, 6): priority_queue.enqueue(i, i*10) self.assertEqual(len(priority_queue), 5) self.assertTrue(priority_queue.replace_priority(2, 10), "Wrong replace_priority implementation") self.assertEqual(len(priority_queue), 4, "Wrong replace_priority implementation") self.assertEqual(priority_queue.dequeue(), 2, "Wrong replace_priority implementation") def test_remove(self): priority_queue = PriorityQueue() with self.assertRaises(PriorityQueueElementError): priority_queue.remove_element(5) priority_queue.enqueue("word", 1) priority_queue.enqueue(1, 5) priority_queue.enqueue(3.14, 10) priority_queue.remove_element(3.14) self.assertFalse(priority_queue.contains_element(3.14), "Wrong remove implementation") self.assertEqual(priority_queue.peek(), 1, "Wrong remove implementation") with self.assertRaises(PriorityQueueElementError): priority_queue.remove_element(3.14) self.assertEqual(priority_queue.size, 2, "Wrong remove implementation") priority_queue = PriorityQueue(int, reverse=True) with self.assertRaises(PriorityQueueTypeError): priority_queue.remove_element(5.5) for i in range(10): priority_queue.enqueue(i, i**2) self.assertEqual(len(priority_queue), 10) self.assertTrue(priority_queue.contains_element(5)) priority_queue.remove_element(5) self.assertEqual(len(priority_queue), 9, "Wrong remove implementation") self.assertFalse(priority_queue.contains_element(5), "Wrong remove implementation") priority_queue.remove_element(0) self.assertEqual(priority_queue.dequeue(), 1, "Wrong remove implementation") if __name__ == "__main__": unittest.main()
python
import importlib from pathlib import Path from airflow.hooks.base import BaseHook from astro.databases.base import BaseDatabase from astro.utils.path import get_class_name, get_dict_with_module_names_to_dot_notations DEFAULT_CONN_TYPE_TO_MODULE_PATH = get_dict_with_module_names_to_dot_notations( Path(__file__) ) CUSTOM_CONN_TYPE_TO_MODULE_PATH = { "gcpbigquery": DEFAULT_CONN_TYPE_TO_MODULE_PATH["bigquery"], "google_cloud_platform": DEFAULT_CONN_TYPE_TO_MODULE_PATH["bigquery"], } CONN_TYPE_TO_MODULE_PATH = { **DEFAULT_CONN_TYPE_TO_MODULE_PATH, **CUSTOM_CONN_TYPE_TO_MODULE_PATH, } SUPPORTED_DATABASES = set(DEFAULT_CONN_TYPE_TO_MODULE_PATH.keys()) def create_database(conn_id: str) -> BaseDatabase: """ Given a conn_id, return the associated Database class. :param conn_id: Database connection ID in Airflow """ conn_type = BaseHook.get_connection(conn_id).conn_type module_path = CONN_TYPE_TO_MODULE_PATH[conn_type] module = importlib.import_module(module_path) class_name = get_class_name(module_ref=module, suffix="Database") database: BaseDatabase = getattr(module, class_name)(conn_id) return database
python
from PySide2 import QtWidgets import maya.cmds as cmds class MyWindow(QtWidgets.QDialog): def __init__(self, parent=None): super(MyWindow, self).__init__(parent) lay = QtWidgets.QHBoxLayout(self) self._line = QtWidgets.QLineEdit('', self) self._line.setPlaceholderText('Enter Object Name') lay.addWidget(self._line,100) btn = QtWidgets.QPushButton('<') btn.clicked.connect( self.onClicked ) lay.addWidget(btn,1) def onClicked(self): selection = cmds.ls(sl=True) if selection: self._line.setText(selection[0]) win = MyWindow() win.show()
python
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import os import tempfile from functools import partial, reduce import threading from absl.testing import parameterized import numpy as np from tensorflow.compiler.plugin.poplar.tests import test_utils as tu from tensorflow.python.client import session as sl from tensorflow.python.framework import test_util from tensorflow.python.framework import versions from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.ops import metrics from tensorflow.python.ops import nn, nn_ops from tensorflow.python.data.ops import dataset_ops from tensorflow.python.platform import googletest from tensorflow.python.framework import constant_op from tensorflow.python.framework import errors from tensorflow.python.framework import ops, dtypes from tensorflow.compiler.plugin.poplar.ops import gen_application_runtime from tensorflow.compiler.plugin.poplar.tests import test_utils as tu from tensorflow.python.ipu import ipu_compiler, scopes, loops, ipu_infeed_queue, ipu_outfeed_queue from tensorflow.python.ipu import dataset_benchmark from tensorflow.python.ipu import rand_ops from tensorflow.python.ipu import config from tensorflow.python.ipu.ops import application_compile_op from tensorflow.compat.v1 import disable_v2_behavior from tensorflow.python.training import momentum from tensorflow.python.keras.datasets import mnist from tensorflow.compat.v1 import train from tensorflow.python.ipu import embedded_runtime from tensorflow.python.ipu import pipelining_ops ops.disable_eager_execution() disable_v2_behavior() L1_SIZE = 320 L2_SIZE = 72 L3_SIZE = 10 NUM_PIXELS = 784 BATCH_SIZE = 16 NUM_ITERATIONS = 8 NUM_ENGINE_ITERATIONS = 4 NUM_ENGINES = 2 NUM_THREADS_PER_ENGINE = 4 NUM_SESSIONS = 4 NUM_TEST_ITERATIONS = NUM_ENGINES * NUM_SESSIONS * NUM_THREADS_PER_ENGINE \ * NUM_ENGINE_ITERATIONS * NUM_ITERATIONS NUM_OUTER_ITERATIONS = NUM_ENGINES * NUM_SESSIONS * NUM_THREADS_PER_ENGINE \ * NUM_ENGINE_ITERATIONS def dense_layer(hiddenSize, input_, scope_name): with variable_scope.variable_scope(scope_name, reuse=variable_scope.AUTO_REUSE, use_resource=True): w = variable_scope.get_variable( "weight", shape=[input_.shape[-1], hiddenSize], initializer=init_ops.glorot_uniform_initializer()) b = variable_scope.get_variable( "bias", shape=[hiddenSize], initializer=init_ops.glorot_uniform_initializer()) return nn.relu_layer(input_, w, b) def test_model(outqueue, inputs): relu1 = dense_layer(L1_SIZE, inputs, "d1") relu2 = dense_layer(L2_SIZE, relu1, "d2") relu3 = dense_layer(L3_SIZE, relu2, "d3") return outqueue.enqueue({'predictions': relu3}) def test_model_pipelined(infeed_queue, outfeed_queue): pipeline_depth = 2 def stage1(images): relu1 = dense_layer(L1_SIZE, images, "d1") return relu1 def stage2(relu1): relu2 = dense_layer(L2_SIZE, relu1, "d2") relu3 = dense_layer(L3_SIZE, relu2, "d3") return relu3 return pipelining_ops.pipeline( [stage1, stage2], gradient_accumulation_count=pipeline_depth, repeat_count=NUM_ITERATIONS / pipeline_depth, infeed_queue=infeed_queue, outfeed_queue=outfeed_queue, pipeline_schedule=pipelining_ops.PipelineSchedule.Interleaved) def loop_builder(iterations, builder_func, infeed): return loops.repeat(iterations, builder_func, [], infeed) def run_and_export_model(tmp_dir, poplar_exec_output_path, pipelined, freeze_variables=True, images=None): n_test = BATCH_SIZE * NUM_TEST_ITERATIONS if images is None: images = np.random.rand(n_test, NUM_PIXELS).astype(np.float32) test_dataset = dataset_ops.Dataset.from_tensor_slices((images,)) test_dataset = test_dataset.cache().repeat().batch(BATCH_SIZE, drop_remainder=True) infeed_test_queue = ipu_infeed_queue.IPUInfeedQueue(test_dataset) outfeed_test_queue = ipu_outfeed_queue.IPUOutfeedQueue() if pipelined: bound_test_loop = partial(test_model_pipelined, infeed_test_queue, outfeed_test_queue) else: bound_test_model = partial(test_model, outfeed_test_queue) bound_test_loop = partial(loop_builder, NUM_ITERATIONS, bound_test_model, infeed_test_queue) # Use the bound builder functions to place the model on the IPU: with scopes.ipu_scope("/device:IPU:0"): test_loop = ipu_compiler.compile(bound_test_loop) # Initialisers should go on the CPU: with ops.device("cpu"): saver = train.Saver() # Setup and acquire an IPU device: cfg = config.IPUConfig() cfg.auto_select_ipus = 2 if pipelined else 1 tu.add_hw_ci_connection_options(cfg) cfg.configure_ipu_system() # These allow us to retrieve the results of IPU feeds: dequeue_test_outfeed = outfeed_test_queue.dequeue() # Run the model: with sl.Session() as sess: sess.run(variables.global_variables_initializer()) model_save_path = f'{tmp_dir}/model' saver.save(sess, model_save_path) print(f" Testing...") output = np.empty( [NUM_OUTER_ITERATIONS, NUM_ITERATIONS, BATCH_SIZE, L3_SIZE], dtype='float32') sess.run(infeed_test_queue.initializer) for ei in range(NUM_OUTER_ITERATIONS): sess.run(test_loop) result = sess.run(dequeue_test_outfeed,) if pipelined: output[ei, :, :, :] = result[0] if versions.VERSION.startswith( '1') else result else: output[ei, :, :, :] = result['predictions'] d1_bias = train.load_variable(model_save_path, 'd1/bias') d1_weight = train.load_variable(model_save_path, 'd1/weight') d2_bias = train.load_variable(model_save_path, 'd2/bias') d2_weight = train.load_variable(model_save_path, 'd2/weight') d3_bias = train.load_variable(model_save_path, 'd3/bias') d3_weight = train.load_variable(model_save_path, 'd3/weight') model_ref = dict(d1_bias=d1_bias, d1_weight=d1_weight, d2_bias=d2_bias, d2_weight=d2_weight, d3_bias=d3_bias, d3_weight=d3_weight, images=images, output=output) # Use a new graph and session for the compilation. with ops.Graph().as_default(), sl.Session() as sess: compile_op = application_compile_op.experimental_application_compile_op( bound_test_loop, output_path=poplar_exec_output_path, freeze_variables=freeze_variables) # Load the weights into the new session. train.Saver().restore(sess, model_save_path) print(f" Compiling and exporting...") sess.run(compile_op) config.reset_ipu_configuration() return model_ref def _build_executable(tmp_dir_obj, pipelined=False, freeze_variables=True, poplar_exec_filepath=None, images=None): tmp_dir = tmp_dir_obj.name if poplar_exec_filepath is None: poplar_exec_filepath = os.path.join(tmp_dir, "application.poplar_exec") model_ref = run_and_export_model(tmp_dir, poplar_exec_filepath, pipelined, freeze_variables=freeze_variables, images=images) return (model_ref, poplar_exec_filepath) TESTCASES = [{ 'testcase_name': (f'_pipelined_{pipelined}_multiple_sessions_{multiple_sessions}_' + f'multiple_threads_{multiple_threads}_' + f'multiple_engines_{multiple_engines}'), 'pipelined': pipelined, 'multiple_sessions': multiple_sessions, 'multiple_threads': multiple_threads, 'multiple_engines': multiple_engines, } for pipelined in [False, True] for multiple_sessions in [False, True] for multiple_threads in [False, True] for multiple_engines in [False, True]] class ApplicationRuntimeTest(test_util.TensorFlowTestCase, parameterized.TestCase): reference_cache_initiazed = False initializer_lock = threading.Lock() @staticmethod def __init_reference_data(): with ApplicationRuntimeTest.initializer_lock: if not ApplicationRuntimeTest.reference_cache_initiazed: ApplicationRuntimeTest.tmp_dir_obj = tempfile.TemporaryDirectory() tmp_dir_obj = ApplicationRuntimeTest.tmp_dir_obj tmp_dir = tmp_dir_obj.name ApplicationRuntimeTest.non_pipelined_poplar_exec_filepath = \ os.path.join(tmp_dir, "non_pipelined_application.poplar_exec") ApplicationRuntimeTest.pipelined_poplar_exec_filepath = \ os.path.join(tmp_dir, "pipelined_application.poplar_exec") n_test = NUM_TEST_ITERATIONS * BATCH_SIZE ApplicationRuntimeTest.images = np.random.rand( n_test, NUM_PIXELS).astype(np.float32) images = ApplicationRuntimeTest.images ApplicationRuntimeTest.non_pipelined_model_ref, _ = _build_executable( tmp_dir_obj, pipelined=False, freeze_variables=True, poplar_exec_filepath=ApplicationRuntimeTest. non_pipelined_poplar_exec_filepath, images=images) ApplicationRuntimeTest.pipelined_model_ref, _ = _build_executable( tmp_dir_obj, pipelined=True, freeze_variables=True, poplar_exec_filepath=ApplicationRuntimeTest. pipelined_poplar_exec_filepath, images=images) ApplicationRuntimeTest.reference_cache_initiazed = True @parameterized.named_parameters(*TESTCASES) @tu.test_uses_ipus(num_ipus=2) @test_util.deprecated_graph_mode_only def test(self, pipelined, multiple_sessions, multiple_threads, multiple_engines): ApplicationRuntimeTest.__init_reference_data() if (multiple_sessions or multiple_engines or pipelined) and not multiple_threads: return if multiple_engines and not multiple_sessions: return if pipelined: poplar_exec_filepath = \ ApplicationRuntimeTest.pipelined_poplar_exec_filepath ref_output = ApplicationRuntimeTest.pipelined_model_ref['output'] else: poplar_exec_filepath = \ ApplicationRuntimeTest.non_pipelined_poplar_exec_filepath ref_output = ApplicationRuntimeTest.non_pipelined_model_ref['output'] images = ApplicationRuntimeTest.images num_engines = NUM_ENGINES if multiple_engines else 1 num_threads_per_engine = NUM_THREADS_PER_ENGINE if multiple_threads else 1 num_threads = num_engines * num_threads_per_engine images_ph = array_ops.placeholder(dtypes.float32, shape=[BATCH_SIZE, NUM_PIXELS], name='images') test_shape = (num_threads, NUM_ENGINE_ITERATIONS, NUM_ITERATIONS) n_test = reduce(lambda p, x: p * x, test_shape) images_local = images.reshape((-1, BATCH_SIZE, NUM_PIXELS)) images_local = images_local[0:n_test, :, :] images_local = images_local.reshape(*(test_shape + (BATCH_SIZE, NUM_PIXELS))) ref_output = ref_output.reshape((-1, BATCH_SIZE, L3_SIZE)) ref_output = ref_output[0:n_test, :, :] ref_output = ref_output.reshape(*(test_shape + (BATCH_SIZE, L3_SIZE))) output = np.empty(ref_output.shape, dtype='float32') engine_name_prefix = f'engine_pipelined_{pipelined}' def run_loops(sess, result, infeeds, t): for ei in range(NUM_ENGINE_ITERATIONS): for li in range(NUM_ITERATIONS): images_host = images_local[t, ei, li, :, :] results = sess.run( result, feed_dict={ infeeds: (images_host,), # pylint: disable=cell-var-from-loop }) output[t, ei, li, :, :] = results[0] def inference_thread(sess, res, infeeds_, t): if multiple_engines: engine_name = f'{engine_name_prefix}_{t % NUM_ENGINES}' else: engine_name = engine_name_prefix if multiple_sessions: with sl.Session() as session: run_app = gen_application_runtime.application_runtime( inputs=(), filename=poplar_exec_filepath, engine_name=engine_name) images_ph = array_ops.placeholder(dtypes.float32, shape=[BATCH_SIZE, NUM_PIXELS], name='images') infeeds = (images_ph,) result = gen_application_runtime.application_call( infeeds, anchor=run_app, outfeed_types=[dtypes.float32], engine_name=engine_name) session.graph.finalize() run_loops(session, result, infeeds, t) else: with sess.graph.as_default(): with sess.as_default(): if multiple_engines: run_app = gen_application_runtime.application_runtime( inputs=(), filename=poplar_exec_filepath, engine_name=engine_name) images_ph = array_ops.placeholder(dtypes.float32, shape=[BATCH_SIZE, NUM_PIXELS], name=f'images') infeeds = (images_ph,) result = gen_application_runtime.application_call( infeeds, anchor=run_app, outfeed_types=[dtypes.float32], engine_name=engine_name) run_loops(sess, result, infeeds, t) else: run_loops(sess, res, infeeds_, t) def run_across_threads(session=None, result=None, infeeds=None): thread_list = [] for t in range(num_threads): if multiple_threads: thread = threading.Thread(target=inference_thread, args=(session, result, infeeds, t)) thread_list.append(thread) thread.start() else: inference_thread(session, result, infeeds, t) for thread in thread_list: thread.join() if multiple_sessions: run_across_threads() elif multiple_engines: with sl.Session() as session: run_across_threads(session, None, None) else: with sl.Session() as session: run_app = gen_application_runtime.application_runtime( inputs=(), filename=poplar_exec_filepath, engine_name=engine_name_prefix) images_ph = array_ops.placeholder(dtypes.float32, shape=[BATCH_SIZE, NUM_PIXELS], name='images') infeeds = (images_ph,) result = gen_application_runtime.application_call( infeeds, anchor=run_app, outfeed_types=[dtypes.float32], engine_name=engine_name_prefix) session.graph.finalize() run_across_threads(session, result, infeeds) self.assertAllClose(ref_output, output) class EmbeddedRuntimeTest(test_util.TensorFlowTestCase, parameterized.TestCase): @tu.test_uses_ipus(num_ipus=1) @test_util.deprecated_graph_mode_only def test_embedded_runtime_wrapper(self): tmp_dir_obj = tempfile.TemporaryDirectory() model_ref, poplar_exec_filepath = _build_executable(tmp_dir_obj, pipelined=False, freeze_variables=False) input_descs = [ ('XLA_Args/d1/weight', [NUM_PIXELS, L1_SIZE], dtypes.float32, 0), ('XLA_Args/d1/bias', [L1_SIZE], dtypes.float32, 1), ('XLA_Args/d2/weight', [L1_SIZE, L2_SIZE], dtypes.float32, 2), ('XLA_Args/d2/bias', [L2_SIZE], dtypes.float32, 3), ('XLA_Args/d3/weight', [L2_SIZE, L3_SIZE], dtypes.float32, 4), ('XLA_Args/d3/bias', [L3_SIZE], dtypes.float32, 5), ] inputs = { 'XLA_Args/d1/weight': model_ref['d1_weight'], 'XLA_Args/d1/bias': model_ref['d1_bias'], 'XLA_Args/d2/weight': model_ref['d2_weight'], 'XLA_Args/d2/bias': model_ref['d2_bias'], 'XLA_Args/d3/weight': model_ref['d3_weight'], 'XLA_Args/d3/bias': model_ref['d3_bias'], } input_placeholders = [] input_list = [None] * len(input_descs) for name, shape, dtype, order in input_descs: input_ph = array_ops.placeholder(dtype, shape=shape, name=name) input_placeholders.append(input_ph) input_list[order] = inputs[name] input_tuple = tuple(input_list) input_placeholders = tuple(input_placeholders) n_test = NUM_TEST_ITERATIONS images = array_ops.placeholder(dtypes.float32, shape=[BATCH_SIZE, NUM_PIXELS], name='images') images_all = model_ref['images'].reshape((-1, BATCH_SIZE, NUM_PIXELS)) images_all = images_all[0:n_test, :, :] labels_all = np.ones([n_test, BATCH_SIZE, L3_SIZE], dtype='float32') labels_ref = model_ref['output'].reshape((-1, BATCH_SIZE, L3_SIZE)) labels_ref = labels_ref[0:n_test, :, :] with sl.Session() as session: engine_name = f'engine_{self.id()}' ctx = embedded_runtime.embedded_runtime_start(poplar_exec_filepath, inputs, engine_name) infeeds = (images,) result = embedded_runtime.embedded_runtime_call(infeeds, ctx) for j in range(n_test): images_host = images_all[j, :, :] results = session.run(result, feed_dict={ infeeds: (images_host,), input_placeholders: input_tuple, }) labels_all[j, :, :] = results[0] self.assertAllClose(labels_ref, labels_all) @tu.test_uses_ipus(num_ipus=1) @test_util.deprecated_graph_mode_only def test_embedded_runtime_input_error(self): tmp_dir_obj = tempfile.TemporaryDirectory() model_ref, poplar_exec_filepath = _build_executable(tmp_dir_obj, pipelined=False, freeze_variables=False) inputs = { 'XLA_Args/d1/bias': model_ref['d1_bias'], 'XLA_Args/d1/weight': model_ref['d1_weight'], 'XLA_Args/d2/bias': model_ref['d2_bias'], 'XLA_Args/d3/bias': model_ref['d3_bias'], 'XLA_Args/d3/weight': model_ref['d3_weight'], } with sl.Session(): engine_name = f'engine_{self.id()}' with self.assertRaisesRegex( Exception, "Failed to find input tensor with name 'XLA_Args/d2/weight' in " "input dictionary."): embedded_runtime.embedded_runtime_start(poplar_exec_filepath, inputs, engine_name) @tu.test_uses_ipus(num_ipus=1) @test_util.deprecated_graph_mode_only def test_embedded_runtime_no_list(self): tmp_dir_obj = tempfile.TemporaryDirectory() _, poplar_exec_filepath = _build_executable(tmp_dir_obj, freeze_variables=False) with sl.Session(): engine_name = f'engine_{self.id()}' with self.assertRaisesRegex(Exception, "Expected the inputs to be a list."): embedded_runtime.embedded_runtime_start(poplar_exec_filepath, 4, engine_name) @tu.test_uses_ipus(num_ipus=1) @test_util.deprecated_graph_mode_only def test_embedded_runtime_too_many_inputs(self): tmp_dir_obj = tempfile.TemporaryDirectory() mnist_ref, poplar_exec_filepath = _build_executable(tmp_dir_obj, freeze_variables=False) inputs = [ mnist_ref['d1_bias'], mnist_ref['d1_weight'], mnist_ref['d2_bias'], mnist_ref['d2_weight'], mnist_ref['d3_bias'], mnist_ref['d1_weight'], mnist_ref['d1_weight'] ] with sl.Session(): engine_name = f'engine_{self.id()}' with self.assertRaisesRegex( Exception, "Embedded application runtime expects 6 inputs, but 7 were " "provided."): embedded_runtime.embedded_runtime_start(poplar_exec_filepath, inputs, engine_name) @tu.test_uses_ipus(num_ipus=1) @test_util.deprecated_graph_mode_only def test_embedded_runtime_too_few_inputs(self): tmp_dir_obj = tempfile.TemporaryDirectory() mnist_ref, poplar_exec_filepath = _build_executable(tmp_dir_obj, freeze_variables=False) inputs = [ mnist_ref['d1_bias'], mnist_ref['d1_weight'], mnist_ref['d2_bias'] ] with sl.Session(): engine_name = f'engine_{self.id()}' with self.assertRaisesRegex( Exception, "Embedded application runtime expects 6 inputs, but 3 were " "provided."): embedded_runtime.embedded_runtime_start(poplar_exec_filepath, inputs, engine_name) @tu.test_uses_ipus(num_ipus=1) @test_util.deprecated_graph_mode_only def test_embedded_runtime_wrong_shape(self): tmp_dir_obj = tempfile.TemporaryDirectory() model_ref, poplar_exec_filepath = _build_executable(tmp_dir_obj, freeze_variables=False) inputs = [ model_ref['d1_weight'], model_ref['d1_bias'], model_ref['d2_bias'], model_ref['d1_weight'], model_ref['d3_bias'], model_ref['d3_weight'] ] with sl.Session(): engine_name = f'engine_{self.id()}' with self.assertRaisesRegex( Exception, "Mismatched input shape at position 0 \\('XLA_Args/d1/bias'\\). " "Expected \\[320\\], but input 0 has shape \\[784, 320\\]."): embedded_runtime.embedded_runtime_start(poplar_exec_filepath, inputs, engine_name) @tu.test_uses_ipus(num_ipus=1) @test_util.deprecated_graph_mode_only def test_embedded_runtime_wrong_type(self): tmp_dir_obj = tempfile.TemporaryDirectory() mnist_ref, poplar_exec_filepath = _build_executable(tmp_dir_obj, freeze_variables=False) inputs = [ np.ones((320), dtype=np.int32), mnist_ref['d1_weight'], mnist_ref['d2_bias'], mnist_ref['d2_weight'], mnist_ref['d3_bias'], mnist_ref['d3_weight'], ] with sl.Session(): engine_name = f'engine_{self.id()}' with self.assertRaisesRegex( Exception, "Mismatched input dtype at position 0 \\('XLA_Args/d1/bias'\\). " "Expected <dtype: 'float32'>, but input 0 has dtype int32."): embedded_runtime.embedded_runtime_start(poplar_exec_filepath, inputs, engine_name) @tu.test_uses_ipus(num_ipus=2) @test_util.deprecated_graph_mode_only def test_pipeline_flush(self): dataset = tu.create_single_increasing_dataset(5, shape=[2]) dataset = dataset.batch(batch_size=2, drop_remainder=True) infeed_queue = ipu_infeed_queue.IPUInfeedQueue(dataset) outfeed_queue = ipu_outfeed_queue.IPUOutfeedQueue() def stage1(x): return x @ constant_op.constant(1.0, shape=[2, 2]) def stage2(x): return math_ops.reduce_sum(x) def my_net(): return pipelining_ops.pipeline([stage1, stage2], 12, infeed_queue=infeed_queue, outfeed_queue=outfeed_queue) with tu.ipu_session() as sess: cfg = config.IPUConfig() cfg.auto_select_ipus = 2 tu.add_hw_ci_connection_options(cfg) cfg.configure_ipu_system() with tempfile.TemporaryDirectory() as tmp_dir: poplar_exec_filepath = os.path.join(tmp_dir, "application.poplar_exec") compile_op = application_compile_op.experimental_application_compile_op( my_net, output_path=poplar_exec_filepath) sess.run(compile_op) config.reset_ipu_configuration() ctx = embedded_runtime.embedded_runtime_start(poplar_exec_filepath, [], "pipeline_flush") input_data = array_ops.placeholder(np.float32, shape=[2, 2]) result = embedded_runtime.embedded_runtime_call([input_data], ctx) outputs1 = sess.run( result, feed_dict={input_data: np.full([2, 2], 1.0, dtype=np.float32)}) self.assertAllClose(outputs1[0], 8.) outputs2 = sess.run( result, feed_dict={input_data: np.full([2, 2], 2.0, dtype=np.float32)}) self.assertAllClose(outputs2[0], 16.) @tu.test_uses_ipus(num_ipus=1) @test_util.deprecated_graph_mode_only def test_io_overlap_flush(self): dataset = tu.create_single_increasing_dataset(5, shape=[2]) dataset = dataset.batch(batch_size=2, drop_remainder=True) infeed_queue = ipu_infeed_queue.IPUInfeedQueue(dataset) outfeed_queue = ipu_outfeed_queue.IPUOutfeedQueue() def body(x): x = x @ constant_op.constant(1.0, shape=[2, 2]) x = math_ops.reduce_sum(x) return outfeed_queue.enqueue(x) def my_net(): return loops.repeat(10, body, [], infeed_queue) with tu.ipu_session() as sess: cfg = config.IPUConfig() cfg.auto_select_ipus = 1 cfg.io_tiles.num_io_tiles = 32 cfg.io_tiles.place_ops_on_io_tiles = True tu.add_hw_ci_connection_options(cfg) cfg.configure_ipu_system() with tempfile.TemporaryDirectory() as tmp_dir: poplar_exec_filepath = os.path.join(tmp_dir, "application.poplar_exec") compile_op = application_compile_op.experimental_application_compile_op( my_net, output_path=poplar_exec_filepath) sess.run(compile_op) config.reset_ipu_configuration() ctx = embedded_runtime.embedded_runtime_start(poplar_exec_filepath, [], "io_overlap_flush") input_data = array_ops.placeholder(np.float32, shape=[2, 2]) result = embedded_runtime.embedded_runtime_call([input_data], ctx) outputs1 = sess.run( result, feed_dict={input_data: np.full([2, 2], 1.0, dtype=np.float32)}) self.assertAllClose(outputs1[0], 8.) outputs2 = sess.run( result, feed_dict={input_data: np.full([2, 2], 2.0, dtype=np.float32)}) self.assertAllClose(outputs2[0], 16.) @tu.test_uses_ipus(num_ipus=1) @test_util.deprecated_graph_mode_only def test_multiple_infeeds(self): a = np.array([2, 3], dtype='float32') b = np.array([4, 5], dtype='float32') c = np.array([6, 7], dtype='float32') ds = dataset_ops.Dataset.from_tensor_slices((a, b, c)) ds = ds.cache().repeat().batch(2, drop_remainder=True) infeed_queue = ipu_infeed_queue.IPUInfeedQueue(ds) outfeed_queue = ipu_outfeed_queue.IPUOutfeedQueue() def my_net(outq, a, b, c): return outq.enqueue({'result': a * b + c}) model = partial(my_net, outfeed_queue) model = partial(loop_builder, 1, model, infeed_queue) a_ph = array_ops.placeholder(dtypes.float32, shape=(2), name='a') b_ph = array_ops.placeholder(dtypes.float32, shape=(2), name='b') c_ph = array_ops.placeholder(dtypes.float32, shape=(2), name='c') with tu.ipu_session() as sess, tempfile.TemporaryDirectory() as tmp_dir: cfg = config.IPUConfig() cfg.auto_select_ipus = 1 tu.add_hw_ci_connection_options(cfg) cfg.configure_ipu_system() poplar_exec_filepath = os.path.join( tmp_dir, f'application_{self.id()}.poplar_exec') compile_op = application_compile_op.experimental_application_compile_op( model, output_path=poplar_exec_filepath) sess.run(compile_op) config.reset_ipu_configuration() ctx = embedded_runtime.embedded_runtime_start(poplar_exec_filepath, [], "multiple_infeeds") result = embedded_runtime.embedded_runtime_call([a_ph, b_ph, c_ph], ctx) outputs = sess.run(result, feed_dict={a_ph: a, b_ph: b, c_ph: c}) self.assertAllClose(outputs[0], [14, 22]) @tu.test_uses_ipus(num_ipus=1) @test_util.deprecated_graph_mode_only def test_embedded_runtime_exception(self): # The dataset for feeding the graphs. ds = dataset_ops.Dataset.from_tensors(constant_op.constant(1.0, shape=[1])) ds = ds.repeat() # The host side queues. infeed_queue = ipu_infeed_queue.IPUInfeedQueue(ds) outfeed_queue = ipu_outfeed_queue.IPUOutfeedQueue() def body(x): return outfeed_queue.enqueue(12.0 / x) # Wrap in a loop. def my_net(): r = loops.repeat(16, body, [], infeed_queue) return r def exception_executable(tmp_dir): poplar_exec_filepath = os.path.join(tmp_dir.name, "application.poplar_exec") cfg = config.IPUConfig() cfg.auto_select_ipus = 1 cfg.floating_point_behaviour.div0 = True tu.add_hw_ci_connection_options(cfg) cfg.configure_ipu_system() # Compile the application. compile_op = application_compile_op.experimental_application_compile_op( my_net, output_path=poplar_exec_filepath) with sl.Session() as sess: sess.run(compile_op) config.reset_ipu_configuration() return poplar_exec_filepath tmp_dir_obj = tempfile.TemporaryDirectory() poplar_exec_filepath = exception_executable(tmp_dir_obj) engine_name = f'engine_{self.id()}' ctx = embedded_runtime.embedded_runtime_start(poplar_exec_filepath, [], engine_name) result = embedded_runtime.embedded_runtime_call( [np.zeros((1), dtype=np.float32)], ctx) with sl.Session() as sess: with self.assertRaisesRegex( errors.InternalError, r"\[Poplar\]\[Execute engine\] application_runtime_error: \[Recovery " r"action: IPU_RESET\] Tiles in excepted state [\s\S]* IPU will be " r"reset the next time a program is executed."): sess.run(result) @tu.test_uses_ipus(num_ipus=1) @test_util.deprecated_graph_mode_only def test_reset_engine(self): # The dataset for feeding the graphs. ds = dataset_ops.Dataset.from_tensors(constant_op.constant(1.0, shape=[1])) ds = ds.repeat() # The host side queues. infeed_queue = ipu_infeed_queue.IPUInfeedQueue(ds) outfeed_queue = ipu_outfeed_queue.IPUOutfeedQueue() def body(x): return outfeed_queue.enqueue(12.0 / x) # Wrap in a loop. def my_net(): r = loops.repeat(16, body, [], infeed_queue) return r def exception_executable(tmp_dir): poplar_exec_filepath = os.path.join(tmp_dir.name, "application.poplar_exec") cfg = config.IPUConfig() cfg.auto_select_ipus = 1 cfg.floating_point_behaviour.div0 = True tu.add_hw_ci_connection_options(cfg) cfg.configure_ipu_system() # Compile the application. compile_op = application_compile_op.experimental_application_compile_op( my_net, output_path=poplar_exec_filepath) with sl.Session() as sess: sess.run(compile_op) config.reset_ipu_configuration() return poplar_exec_filepath tmp_dir_obj = tempfile.TemporaryDirectory() poplar_exec_filepath = exception_executable(tmp_dir_obj) engine_name = f'engine_{self.id()}' ctx = embedded_runtime.embedded_runtime_start(poplar_exec_filepath, [], engine_name) input_data = array_ops.placeholder(np.float32, shape=[1]) result = embedded_runtime.embedded_runtime_call([input_data], ctx) with sl.Session() as sess: # Second to last execution will fail, the last execution should pass. inputs = [1.0] * 3 + [0.0, 1.0] failures = [False] * 3 + [True, False] for val, should_fail in zip(inputs, failures): failed = False try: x = sess.run(result, {input_data: [val]}) self.assertEqual(x, [12.0]) except: # pylint: disable=bare-except failed = True self.assertEqual(failed, should_fail) if __name__ == "__main__": googletest.main()
python
"""AVMATH Avmath is a Python module for mathematical purposes. It contains functionalities for simple mathematical usage as sine or logarithm functions and submodules for more advanced applied math in the topics of ana- lysis and linear algebra. The module uses a mathematical syntax. The classes and functions are named in a mathematical manner and the class operations enable a mathematical workflow. Its issue is to calculate as accurate as possible and not firstly the aspect of time. Documentation: https://github.com/ballandt/avmath/wiki/documentation GitHub: https://www.github.com/ballandt/avmath PyPi: https://www.pypi.org/project/avmath """ __author__ = "Camillo Ballandt" __version__ = "3.1.1" __date__ = "2022/01/08" __all__ = ["Fraction", "sin", "cos", "tan", "arcsin", "arccos", "arctan", "sinh", "cosh", "tanh", "arsinh", "arcosh", "artanh", "ln", "log", "is_even", "fac", "sgn", "pi", "e", "phi", "gamma"] import time from typing import Union as _Union, Iterable as _Iterable _TAYLOR_DIFFERENCE = 1e-16 _MAX_CALCULATION_TIME = 5 REAL = _Union[int, float, 'Fraction'] e: float = 2.718_281_828_459_045_235_360 pi: float = 3.141_592_653_589_793_238_463 phi: float = 1.618_033_988_749_894_848_205 gamma: float = 0.577_215_664_901_532_860_607 two_digit_primes: list[int] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] class ArgumentError(Exception): """Raised if false argument is given.""" def __init__(self, got, want): self.got = got self.want = want def __str__(self): return f"False argument given. Expected {self.want}, got {self.got}." class DimensionError(Exception): """Raised if arguments have different amount of dimensions.""" def __init__(self, got=None, want=None, other=None): if other is None: self.got = got self.want = want else: self.other = other def __str__(self): try: return f"Wrong amount of dimensions." \ f"Expected {self.want}; got {self.got}" except AttributeError: return self.other class Fraction: """Mathematical fraction""" def __init__(self, numerator: REAL, denominator: REAL): """Initializes fraction. Denominator will be made positive. Insert Fraction(a, b) for a/b and Fraction(a, Fraction(b, c)) for a/(b/c) """ if numerator == 0 and type(denominator) == Fraction: self.a = 0 self.b = denominator.b elif (type(numerator) == Fraction or type(denominator) == Fraction)\ and numerator != 0: self.a = (numerator / denominator).a self.b = (numerator / denominator).b else: self.a = numerator * sgn(denominator) self.b = abs(denominator) if self.b == 0: raise ZeroDivisionError("Zero inserted as denominator.") def __repr__(self) -> str: """Returns string representation. Always reduced.""" if self.b == 1: ret_str = f"{self.a}" elif self.a / self.b == self.a // self.b: ret_str = f"{self.a // self.b}" elif self.int_args(): ret_str = f"{self.reduce().a}/{self.reduce().b}" else: ret_str = f"{self.a}/{self.b}" if not self.b == 1 else f"{self.a}" return ret_str def __neg__(self) -> 'Fraction': """Returns negative fraction.""" return Fraction(-self.a, self.b) def __eq__(self, other: REAL) -> bool: """Verifies the equality of two fractions.""" if type(other) == Fraction and self.int_args() and other.int_args(): return self.reduce().a == other.reduce().a \ and self.reduce().b == other.reduce().b else: return float(self) == float(other) def __lt__(self, other: REAL) -> bool: """Less than.""" return float(self) < float(other) def __gt__(self, other: REAL) -> bool: """Greater than.""" return float(other) < float(self) def __add__(self, other: REAL | complex) -> 'Fraction': """Adds either two fractions or fractions and numbers.""" if type(other) in (int, float): a = self.a + other * self.b return Fraction(a, self.b) elif type(other) == complex: return complex(self) + other elif type(other) == Fraction and self.int_args() and other.int_args(): reduced_self = self.reduce() reduced_other = other.reduce() factor = lcm(reduced_self.b, reduced_other.b) summand1 = Fraction(reduced_self.a*int(factor/reduced_self.b), reduced_self.b*int(factor/reduced_self.b)) summand2 = Fraction(reduced_other.a*int(factor/reduced_other.b), reduced_other.b*int(factor/reduced_other.b)) return Fraction(summand1.a + summand2.a, summand1.b) __radd__ = __add__ def __sub__(self, other: REAL) -> 'Fraction': """Subtracts either real from Fraction or Fraction from Fraction.""" return self + -other __rsub__ = __sub__ def __mul__(self, other: REAL) -> 'Fraction': """Multiplies REALS.""" if type(other) in (int, float): return Fraction(self.a * other, self.b) if type(other) == Fraction: if self.int_args() and other.int_args: return Fraction(self.a * other.a, self.b * other.b).reduce() else: return Fraction(self.a * other.a, self.b * other.b) __rmul__ = __mul__ def __truediv__(self, other: REAL) -> 'Fraction': if type(other) == Fraction: res = self * other ** -1 else: res = Fraction(self.a, self.b * other) if type(res) == Fraction and res.int_args(): res = res.reduce() return res __rtruediv__ = __truediv__ def __pow__(self, power: REAL) -> 'Fraction': if power == -1: return Fraction(self.b, self.a) else: return Fraction(self.a ** float(power), self.b ** float(power)) def __rpow__(self, other: REAL) -> float: return (other ** self.a) ** (1 / self.b) def __mod__(self, other: REAL) -> float: return float(self) % float(other) __rmod__ = __mod__ def __int__(self) -> int: return int(float(self)) def __float__(self) -> float: return self.a / self.b def __complex__(self): return float(self) + 0j def __abs__(self) -> 'Fraction': return Fraction(abs(self.a), self.b) def reduce(self) -> 'Fraction': if not self.int_args(): raise ArgumentError("float values", "integer values") divisor = gcd(self.a, self.b) return Fraction(int(self.a / divisor), int(self.b / divisor)) def int_args(self) -> bool: return type(self.a) == int and type(self.b) == int def _check_types(arg: _Iterable, *types): """Checks if the elements of the argument belong to the given types.""" for ele in arg: if not type(ele) in types: raise ArgumentError(type(ele), types) return True def is_even(x: int) -> bool: """Checks if x is an even number""" return x/2 == x // 2 def is_prime(x: int) -> bool: """Checks if integer is prime.""" int_root = int(x ** 0.5) for i in range(2, int_root): if x / i == x // i: return False return True def gcd(x: int, y: int) -> int: """Greatest common divisor.""" while x % y != 0: r = x % y x = y y = r return abs(y) def lcm(x: int, y: int) -> int: """Least common multiply.""" return int(abs(x * y) / gcd(x, y)) def sgn(x: REAL) -> int: """Returns signum of x.""" if x < 0: return -1 elif x == 0: return 0 elif x > 0: return 1 def fac(x: REAL, opt: str = None): """Returns faculty of x. fac(x) is x! fac(x, opt="double") is x!! """ if x < 0: raise ArgumentError("x < 0", "x >= 0") if int(x) != x: raise ArgumentError("real x", "natural x") x = int(x) res = 1 if opt == "double": if not is_even(x): for i in range(int(x / 2) + 1): res *= 2 * i + 1 else: for i in range(1, int(x / 2)+1): res *= 2*i else: for i in range(1, x + 1): res *= i return res def ln(x: REAL) -> float: """Natural logarithm.""" if x <= 0: raise ArgumentError(x, "x >= 0") summand = 0 while x > e: x /= e summand += 1 while x < 1/e: x *= e summand -= 1 res = 0 k = 0 while True: mem_res = res res += (x - 1) ** (2 * k + 1) / ((2 * k + 1) * (x + 1) ** (2 * k + 1)) if abs(mem_res - res) < _TAYLOR_DIFFERENCE: break k += 1 return 2 * res + summand def log(x: REAL, base: REAL) -> float: """Logarithm.""" return ln(x) / ln(base) def sin(x: REAL) -> float: """Sine.""" x %= 2 * pi res = 0 k = 0 while True: mem_res = res res += (-1) ** k * x ** (2 * k + 1) / fac(2 * k + 1) if abs(mem_res - res) < _TAYLOR_DIFFERENCE: return res k += 1 def cos(x: REAL) -> float: """Cosine.""" x %= 2 * pi res = 0 k = 0 while True: mem_res = res res += (-1) ** k * (x**(2 * k) / fac(2 * k)) if abs(mem_res - res) < _TAYLOR_DIFFERENCE: return res k += 1 def tan(x: REAL) -> float: """Tangent.""" return sin(x) / cos(x) def arcsin(x: REAL) -> float: """Arc sine.""" if abs(x) > 1: raise ArgumentError("x > 1", "x <= 1") if abs(x) == 1: return sgn(x) * pi / 2 res = x k = 1 start_time = time.time() while (time.time() - start_time) < _MAX_CALCULATION_TIME: mem_res = res res += fac(2 * k - 1, opt="double") /\ (fac(2 * k, opt="double") * (2 * k + 1)) * x ** (2 * k + 1) if abs(mem_res - res) < _TAYLOR_DIFFERENCE: break k += 1 return res def arccos(x: REAL) -> float: """Arc cosine.""" return pi/2 - arcsin(x) def arctan(x: REAL) -> float: """Arc tangent.""" res = 0 k = 0 if abs(x) <= 1: start_time = time.time() while (time.time() - start_time) < _MAX_CALCULATION_TIME: mem_res = res res += (-1)**k * x**(2*k + 1) / (2*k + 1) if abs(mem_res - res) < _TAYLOR_DIFFERENCE: break k += 1 else: if x >= 0: res = pi / 2 else: res = -pi / 2 start_time = time.time() while (time.time() - start_time) < _MAX_CALCULATION_TIME: mem_res = res res += (-1)**(k + 1) / ((2*k + 1) * x**(2*k + 1)) if abs(mem_res - res) < _TAYLOR_DIFFERENCE: break k += 1 return res def sinh(x: REAL) -> float: """Hyperbolic sine.""" if abs(x) > 710: raise ArgumentError(x, "argument |x| < 710") res = 0 k = 0 while True: mem_res = res res += x ** (2 * k + 1) / fac(2 * k + 1) if abs(mem_res - res) < _TAYLOR_DIFFERENCE: return res k += 1 def cosh(x: REAL) -> float: """Hyperbolic cosine.""" if abs(x) > 710: raise ArgumentError(x, "argument |x| < 710") res = 0 k = 0 while True: mem_res = res res += x**(2*k) / fac(2*k) if abs(mem_res - res) < _TAYLOR_DIFFERENCE: return res k += 1 def tanh(x: REAL) -> float: """Hyperbolic tangent.""" return sinh(x) / cosh(x) if abs(x) <= 20 else sgn(x) * 1.0 def arsinh(x: REAL) -> float: """Inverse hyperbolic sine.""" return sgn(x) * ln(abs(x) + (x**2 + 1)**0.5) def arcosh(x: REAL) -> float: """Inverse hyperbolic cosine.""" if x < 1: raise ArgumentError(x, "x >= 1") return ln(x + (x**2 - 1)**0.5) def artanh(x: REAL) -> float: """Inverse hyperbolic tangent.""" if abs(x) >= 1: raise ArgumentError(x, "|x| < 1") return 0.5 * ln((1 + x) / (1 - x)) scope = { "sin": sin, "arcsin": arcsin, "cos": cos, "arccos": arccos, "tan": tan, "arctan": arctan, "sinh": sinh, "arsinh": arsinh, "cosh": cosh, "arccosh": arcosh, "tanh": tanh, "artanh": artanh, "log": log, "ln": ln, "fac": fac, "sgn": sgn, "e": e, "pi": pi, }
python
""" This script deploys all the AWS instances required for a single distributed experiment and runs the docker container on the instances. The experiment is one of inner_product / quadratic / kld / dnn. The user could choose whether to run the coordinator on a strong EC2 instance, or on an ECS Fargate instance. """ import sys import time import boto3 import json import os import argparse from aws_experiments.aws_ec2_coordinator import run_coordinator_on_ec2_instance from aws_experiments.utils import read_credentials_file, num_completed_experiments def get_service_ips(ecs_client, cluster, tasks, region): tasks_detail = ecs_client.describe_tasks(cluster=cluster, tasks=tasks) enis = [] for task in tasks_detail.get("tasks", []): for attachment in task.get("attachments", []): for detail in attachment.get("details", []): if detail.get("name") == "networkInterfaceId": enis.append(detail.get("value")) ips = [] for eni in enis: eni_resource = session.resource("ec2", region).NetworkInterface(eni) ips.append(eni_resource.association_attribute.get("PublicIp")) return ips def run_task(ecs_client, automon_task, cluster_name, node_idx, host, node_type, error_bound, subnet_id, sg_id, command): task_name = "node-" + str(node_idx) + "_" + cluster_name if node_idx == -1: task_name = "coordinator_" + cluster_name response = ecs_client.list_task_definitions(familyPrefix=task_name) for task_definition in response["taskDefinitionArns"]: # De-register old task definitions print("Deregister existing task definition", task_name) _ = ecs_client.deregister_task_definition(taskDefinition=task_definition) # Register the new task definition automon_task["family"] = task_name automon_task["containerDefinitions"][0]["logConfiguration"]["options"]["awslogs-stream-prefix"] = task_name if task_name == "coordinator": automon_task["cpu"] = "4096" # 4 vCPU automon_task["memory"] = "16384" # 16 GB else: automon_task["cpu"] = "1024" # 1 vCPU automon_task["memory"] = "4096" # 4 GB _ = ecs_client.register_task_definition(**automon_task) # Could also override LS_LATENCY (lazy sync latency) and FS_LATENCY (full sync latency) according to the function and network latency response = ecs_client.run_task( taskDefinition=task_name, cluster=cluster_name, launchType='FARGATE', count=1, networkConfiguration={ 'awsvpcConfiguration': { 'subnets': [ subnet_id, ], 'securityGroups': [sg_id], 'assignPublicIp': 'ENABLED' } }, overrides={ 'containerOverrides': [ { 'name': automon_task["containerDefinitions"][0]["name"], 'command': command.split(), 'environment': [ { 'name': 'NODE_IDX', 'value': str(node_idx) }, { 'name': 'HOST', 'value': host }, { 'name': 'NODE_TYPE', 'value': node_type }, { 'name': 'ERROR_BOUND', 'value': str(error_bound) } ], } ] } ) if len(response['tasks']) == 0: # Something went wrong print("Error: node", node_idx, "run_task() failure reason:", response['failures'][0]['reason']) print("Stop coordinator and nodes manually") raise Exception def get_default_security_group(region): ec2_client = session.client('ec2', region_name=region) response = ec2_client.describe_security_groups() for sg in response['SecurityGroups']: if sg['Description'] == 'default VPC security group': sg_id = sg['GroupId'] # _ = ec2_client.describe_vpcs() response = ec2_client.describe_subnets() subnet_id = response['Subnets'][0]['SubnetId'] print('Found sg and subnet for region', region, ': sg_id:', sg_id, 'subnet_id:', subnet_id) return sg_id, subnet_id def create_log_group(automon_task, node_type, error_bound): log_group_name = node_type.replace("_", "-") + "_" + str(error_bound).replace(".", "-") automon_task["containerDefinitions"][0]["logConfiguration"]["options"]["awslogs-group"] = log_group_name logs_client = session.client('logs', region_name=automon_task["containerDefinitions"][0]["logConfiguration"]["options"]["awslogs-region"]) response = logs_client.describe_log_groups() for log_group in response["logGroups"]: if log_group["logGroupName"] == log_group_name: # Log group is already exist print("Found log group", log_group_name) return logs_client.create_log_group(logGroupName=log_group_name) def run_coordinator_on_ecs_fargate(coordinator_region, node_type, error_bound, automon_task, command): ecs_client = session.client('ecs', region_name=coordinator_region) if error_bound: cluster_name = node_type.replace("_", "-") + "_" + str(error_bound).replace(".", "-") + "_" + coordinator_region else: cluster_name = node_type.replace("_", "-") + "_" + str(error_bound).replace(".", "-") + "_" + coordinator_region print("Cluster:", cluster_name) _ = ecs_client.create_cluster(clusterName=cluster_name) # Use different cluster for every experiment sg_id, subnet_id = get_default_security_group(coordinator_region) run_task(ecs_client, automon_task, cluster_name, -1, '0.0.0.0', node_type, error_bound, subnet_id, sg_id, command) time.sleep(10) # Wait until the task obtains its public IP tasks = ecs_client.list_tasks(cluster=cluster_name) ips = get_service_ips(ecs_client, cluster_name, tasks['taskArns'], coordinator_region) coordinator_ip = ips[0] print("Coordinator public IP:", coordinator_ip) return coordinator_ip def run_nodes_on_ecs_fargate(nodes_region, node_type, error_bound, automon_task, coordinator_ip, command): ecs_client = session.client('ecs', region_name=nodes_region) cluster_name = node_type.replace("_", "-") + "_" + str(error_bound).replace(".", "-") + "_" + nodes_region print("Cluster:", cluster_name) _ = ecs_client.create_cluster(clusterName=cluster_name) # Use different cluster for every experiment sg_id, subnet_id = get_default_security_group(nodes_region) for node_idx in range(NUM_NODES): run_task(ecs_client, automon_task, cluster_name, node_idx, coordinator_ip, node_type, error_bound, subnet_id, sg_id, command) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--node_type", type=str, dest="node_type", help="node type. Could be one of: inner_product / quadratic / kld / dnn", default='inner_product') parser.add_argument("--coordinator_aws_instance_type", type=str, dest="coordinator_aws_instance_type", help="coordinator AWS instance type. Could be one of: ec2 / fargate. Use ECS Fargate coordinator for cases that do not require strong coordinator " "(e.g., inner_product), or use strong EC2 coordinator.", default='ec2') parser.add_argument("--centralized", dest="b_centralized", help="if --centralized is specified, a centralization (not AutoMon) experiment ie deployed", action='store_true') parser.add_argument("--block", dest="b_block", help="if --block is specified, the script first checks if the experiment output files are already exist in AWS S3. If not, if runs the experiment " "and waits until it finds the output files in S3.", action='store_true') args = parser.parse_args() if args.b_centralized: command = 'python /app/aws_experiments/start_distributed_centralization_object_remote.py' node_name = 'centralization_' + args.node_type # Centralized node simply sends all its data to the coordinator. It is not an adaptive algorithm, hence not impacted by error bound. # Therefore, we use a single dummy error_bound in the list of error_bounds. error_bounds = ['centralization'] # Used for cluster name and log group name else: command = 'python /app/aws_experiments/start_distributed_object_remote.py' node_name = args.node_type # These values were taken from the test_max_error_vs_communication_xxx experiments if args.node_type == "inner_product": error_bounds = [0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] if args.node_type == "quadratic": error_bounds = [0.015, 0.02, 0.03, 0.04, 0.05, 0.08, 0.1, 1.0] if args.node_type == "kld": # Use only 8 error bounds to have less than 100 ECS instances in the same region, as Amazon has 100 ECS instance limit for a single region (8 error # bounds x 12 nodes = 96 ECS instance, plus 8 EC2/ECS coordinator instances in a different region). The original list is: # [0.003, 0.004, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14] error_bounds = [0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.14] if args.node_type == "dnn": # Use only 6 error bounds to save time and money. The original list is: # [0.001, 0.002, 0.0027, 0.003, 0.005, 0.007, 0.01, 0.016, 0.025, 0.05] error_bounds = [0.002, 0.003, 0.005, 0.007, 0.016, 0.05] if args.node_type == "inner_product": NUM_NODES = 10 if args.node_type == "quadratic": NUM_NODES = 10 if args.node_type == "kld": NUM_NODES = 12 if args.node_type == "dnn": NUM_NODES = 9 if args.b_block: num_experiments = num_completed_experiments(node_name) if num_experiments >= len(error_bounds): print("Found existing remote AWS S3 test folder for " + node_name + ". Skipping.") sys.exit() username, access_key_id, secret_access_key = read_credentials_file() session = boto3.session.Session(aws_access_key_id=access_key_id, aws_secret_access_key=secret_access_key) account_id = session.client('sts').get_caller_identity().get('Account') with open(os.path.abspath(os.path.dirname(__file__)) + "/automon_aws_task.json", 'r') as f: automon_task = f.read() automon_task = automon_task.replace("<account_id>", account_id) automon_task = json.loads(automon_task) for error_bound in error_bounds: create_log_group(automon_task, args.node_type, error_bound) # Coordinator coordinator_region = "us-west-2" if args.coordinator_aws_instance_type == "fargate": coordinator_ip = run_coordinator_on_ecs_fargate(coordinator_region, args.node_type, error_bound, automon_task, command) # Using ECS Fargate coordinator is limited to 4 vCPU and 16GB of memory on an Intel Xeon CPU at 2.2–2.5 GHz. else: coordinator_ip = run_coordinator_on_ec2_instance(coordinator_region, args.node_type, error_bound, command) # Run the coordinator on EC2 c5.4xlarge instance (16 vCPU and 32GB of memory on an Intel Xeon CPU at 3.4–3.9 GHz). # Nodes nodes_region = "us-east-2" run_nodes_on_ecs_fargate(nodes_region, args.node_type, error_bound, automon_task, coordinator_ip, command) if args.b_block: # Wait for the experiment to finish by checking the result folders in S3, and then collect the result from S3. while True: num_experiments = num_completed_experiments(node_name) if num_experiments >= len(error_bounds): break print("AWS experiment", node_name, "is still running. Checking status again in 5 minutes.") sys.stdout.flush() time.sleep(5 * 60) # Wait one more minute to let all S3 writes to finish time.sleep(60)
python
from .models import Answer, Landscape def landscape_boundary(landscape_name): """ Return landscape boundary as GeoJSON :param landscape_name: :return: """ landscape_boundaries = Landscape.objects.raw("""SELECT id, landscape, ST_AsGeoJSON(geom) as geojson FROM bns_landscape WHERE landscape = '{}' LIMIT 1""".format(landscape_name)) landscape_geojson = '{"type" : "FeatureCollection", "features" :[' if len(landscape_boundaries): landscape_geojson += '{"type": "Feature", "properties": {"landscape": "%s"}, "geometry": %s }' % \ (landscape_name, landscape_boundaries[0].geojson) landscape_geojson += ']}' return landscape_geojson def landscape_villages(landscape_name): """ Return landscape villages as GeoJSON :param landscape_name: :return: """ landscape_villages = Answer.objects.raw("""SELECT row_number() OVER () as answer_id, dataset_name, village, ST_AsGeoJSON(ST_SetSRID(ST_MakePoint(avg(long), avg(lat)),4326)) as geojson FROM bns_answer a JOIN kobo_kobodata k ON a.dataset_uuid_id = k.dataset_uuid JOIN bns_answergps g ON a.answer_id = g.answer_id WHERE landscape = '{}' AND lat != 0 AND long != 0 GROUP BY dataset_name, village""".format(landscape_name)) village_geojson = '{"type" : "FeatureCollection", "features" :[' if len(landscape_villages): i = 0 for village in landscape_villages: if i > 0: village_geojson += ',' village_geojson += '{"type": "Feature", "properties": {"landscape": "%s", "survey": "%s", "village": "%s"}, "geometry": %s }' % \ (landscape_name, village.dataset_name, village.village, village.geojson) i += 1 village_geojson += ']}' return village_geojson def survey_villages(survey): """ Return survey villages as GeoJSON :param survey: :return: """ survey_villages = Answer.objects.raw("""SELECT row_number() OVER () as answer_id, dataset_name, village, ST_AsGeoJSON(ST_SetSRID(ST_MakePoint(avg(long), avg(lat)),4326)) as geojson FROM bns_answer a JOIN kobo_kobodata k ON a.dataset_uuid_id = k.dataset_uuid JOIN bns_answergps g ON a.answer_id = g.answer_id WHERE dataset_name = '{}' AND lat != 0 AND long != 0 GROUP BY dataset_name, village""".format(survey)) village_geojson = '{"type" : "FeatureCollection", "features" :[' if len(survey_villages): i = 0 for village in survey_villages: if i > 0: village_geojson += ',' village_geojson += '{"type": "Feature", "properties": {"survey": "%s", "village": "%s"}, "geometry": %s }' % \ (village.dataset_name, village.village, village.geojson) i += 1 village_geojson += ']}' return village_geojson
python
import random, string from datetime import datetime import pytz import json import types from unittest import TestCase from unittest.mock import patch from plaw.wrapper import Plaw, InvalidGrant, InvalidToken class TestPlaw(TestCase): # helper def generate_random_token(self, length=16): return ''.join(random.choice(string.ascii_uppercase + string.ascii_lowercase + string.digits) for _ in range(length)) def setUp(self): self.test_api = Plaw(client_id=self.generate_random_token(), client_secret=self.generate_random_token(), account_id=self.generate_random_token(length=5), refresh_token=self.generate_random_token(), access_token=self.generate_random_token()) @patch('plaw.wrapper.request') def test_refresh_access_token_successfully_saves_new_token(self, mock_request): mock_request.return_value.status_code = 200 mocked_response = { 'access_token': self.generate_random_token(), 'expires_in': 3600, 'token_type': 'bearer', 'scope': 'employee:all systemuserid:152663' } mock_request.return_value.json.return_value = mocked_response new_refresh_token = self.test_api._refresh_access_token() self.assertEqual(new_refresh_token, mocked_response['access_token']) @patch('plaw.wrapper.request') def test_refresh_access_token_raises_on_revoked_access(self, mock_request): mock_request.return_value.status_code = 400 with self.assertRaises(InvalidGrant): self.test_api._refresh_access_token() @patch('plaw.wrapper.request') def test_call_returns_decoded_json(self, mock_request): mock_request.return_value.status_code = 200 mocked_response = { '@attributes': { 'count': '1' }, 'Account': { 'accountID': '12345', 'name': 'Test Store for API Testing', 'link': { '@attributes': { 'href': '/API/Account/12345' } } } } mock_request.return_value.json.return_value = mocked_response decoded_response = self.test_api._call('/API/Account.json', params=None) self.assertEqual(decoded_response, mocked_response) @patch('plaw.wrapper.request') def test_call_raises_on_invalid_token(self, mock_request): mock_request.return_value.status_code = 401 with self.assertRaises(InvalidToken): self.test_api._call('/API/Account.json', params=None) @patch('plaw.wrapper.Plaw._call') @patch('plaw.wrapper.Plaw._refresh_access_token') def test_call_api_refreshes_access_token_if_necessary(self, mock_refresh, mock_call): new_access_token = self.generate_random_token() mock_refresh.return_value = new_access_token refreshed_call_response = { '@attributes': { 'count': '1' }, 'Account': { 'accountID': '12345', 'name': 'Test Store for API Testing', 'link': { '@attributes': { 'href': '/API/Account/12345T' } } } } mock_call.side_effect = [InvalidToken, refreshed_call_response] response_gen = self.test_api._call_api('/API/Account.json') decoded_response = next(response_gen) self.assertEqual(new_access_token, self.test_api.access_token) self.assertEqual(decoded_response, refreshed_call_response) @patch('plaw.wrapper.Plaw._call') def test_call_api_converts_datetimes_to_iso(self, mock_call): test_date = pytz.timezone('America/Boise').localize(datetime(2021, 1, 1, 10, 58), is_dst=None) # without query op next(self.test_api._call_api(f'API/Account/{self.test_api.account_id}/EmployeeHours.json', params={ 'checkIn': test_date })) mock_call.assert_called_with(f'API/Account/{self.test_api.account_id}/EmployeeHours.json', { 'checkIn': f'{test_date.isoformat()}' }) # with query op next(self.test_api._call_api(f'API/Account/{self.test_api.account_id}/EmployeeHours.json', params={ 'checkIn': ['>', test_date] })) mock_call.assert_called_with(f'API/Account/{self.test_api.account_id}/EmployeeHours.json', { 'checkIn': f'>,{test_date.isoformat()}' }) @patch('plaw.wrapper.Plaw._call') def test_call_api_handles_query_ops(self, mocked_call): # the default operator is = # so if the user intends equals they don't pass in a query op # if they intend another op they pass in a list, with the op first equals_params = { 'shopID': '1' } next(self.test_api._call_api(f'API/Account/{self.test_api.account_id}/Shop.json', equals_params)) mocked_call.assert_called_with(f'API/Account/{self.test_api.account_id}/Shop.json', { 'shopID': '1' }) less_than_params = { 'shopID': ['<', '3'] } next(self.test_api._call_api(f'API/Account/{self.test_api.account_id}/Shop.json', less_than_params)) mocked_call.assert_called_with(f'API/Account/{self.test_api.account_id}/Shop.json', { 'shopID': '<,3' }) @patch('plaw.wrapper.Plaw._call') def test_call_api_handles_pagination(self, mock_call): with open('pagination_test_file.json') as jf: mocked_responses = json.load(jf) mock_call.side_effect = mocked_responses test_date = pytz.timezone('America/Boise').localize(datetime(2021, 2, 1, 1), is_dst=None) shifts_since_february = self.test_api._call_api(f'API/Account/{self.test_api.account_id}/EmployeeHours.json', params={ 'checkIn': ['>', test_date] }) self.assertTrue(isinstance(shifts_since_february, types.GeneratorType)) first_page = next(shifts_since_february) self.assertEqual('0', first_page['@attributes']['offset']) self.assertEqual(first_page, mocked_responses[0]) second_page = next(shifts_since_february) self.assertEqual('100', second_page['@attributes']['offset']) self.assertEqual(second_page, mocked_responses[1]) third_page = next(shifts_since_february) self.assertEqual('200', third_page['@attributes']['offset']) self.assertEqual(third_page, mocked_responses[2]) with self.assertRaises(StopIteration): next(shifts_since_february) def test_call_api_handles_rate_limiting(self): # so # LS uses a leaky bucket algorithm to handle rate limiting # The current bucket use is given in the X-LS-API-Bucket-Level header # and the current drip rate is given in X-LS-API-Drip-Rate # LS will send a 429 response if we are being rate limited # tabling this for now pass @patch('plaw.wrapper.request') def test_get_tokens_saves_new_tokens(self, mocked_request): test_access_token = self.generate_random_token() test_refresh_token = self.generate_random_token() test_code = self.generate_random_token() mocked_request.return_value.json.return_value = { 'access_token': test_access_token, 'expires_in': 1800, 'token_type': 'bearer', 'scope': f'employee:all systemuserid:{self.generate_random_token(length=5)}', 'refresh_token': test_refresh_token } self.test_api.get_tokens(test_code) self.assertEqual(self.test_api.access_token, test_access_token) self.assertEqual(self.test_api.refresh_token, test_refresh_token) mocked_request.assert_called_with('POST', self.test_api.AUTH_URL, data={ 'client_id': self.test_api.client_id, 'client_secret': self.test_api.client_secret, 'code': test_code, 'grant_type': 'authorization_code' }) @patch('plaw.wrapper.Plaw.account') def test_fetch_account_id_saves_account_id(self, mocked_account): mocked_account.return_value = { "accountID": "67890", "name": "Test Account", "link": { "@attributes": { "href": "/API/Account/67890" } } } self.test_api.fetch_account_id() self.assertTrue(self.test_api.account_id, '67890') @patch('plaw.wrapper.Plaw._call') def test_account_returns_account_info(self, mocked_call): # mocked call is necessary because it tries to evaluate before _strip_attributes does mocked_call.return_value = { '@attributes': { 'count': '1' }, 'Account': { 'accountID': '12345', 'name': 'Test Account', 'link': { '@attributes': { 'href': '/API/Account/12345' } } } } account_info = self.test_api.account() self.assertTrue(isinstance(account_info, dict)) self.assertFalse(isinstance(account_info, types.GeneratorType)) @patch('plaw.wrapper.Plaw._call') def test_shop_returns_shop_info(self, mocked_call): with open('shop_test_file.json') as jf: test_shop_info = json.load(jf) mocked_call.return_value = test_shop_info shop_info = self.test_api.shop() self.assertTrue(isinstance(shop_info, types.GeneratorType)) self.assertEqual(next(shop_info), test_shop_info) @patch('plaw.wrapper.Plaw._call') def test_employee_returns_employee_info(self, mocked_call): with open('employee_test_file.json') as jf: test_employee_info = json.load(jf)[0] mocked_call.return_value = test_employee_info employee_info = self.test_api.employee() self.assertTrue(isinstance(employee_info, types.GeneratorType)) self.assertEqual(next(employee_info), test_employee_info) @patch('plaw.wrapper.Plaw._call') def test_employee_loads_contact_relation(self, mocked_call): with open('employee_test_file.json') as jf: test_employee_info = json.load(jf)[1] mocked_call.return_value = test_employee_info employee_info = self.test_api.employee(load_contact=True) self.assertTrue(isinstance(employee_info, types.GeneratorType)) self.assertEqual(next(employee_info), test_employee_info) mocked_call.assert_called_with(f'API/Account/{self.test_api.account_id}/Employee.json', { 'load_relations': json.dumps(['Contact']) }) @patch('plaw.wrapper.Plaw._call') def test_employee_hours_returns_employee_hours_info(self, mocked_call): with open('employee_hours_test_file.json') as jf: test_employee_hours_info = json.load(jf) mocked_call.return_value = test_employee_hours_info employee_hours_info = self.test_api.employee_hours() self.assertTrue(isinstance(employee_hours_info, types.GeneratorType)) self.assertEqual(next(employee_hours_info), test_employee_hours_info)
python
# encoding: utf-8 # Duke the dog # Este código va destinado al reconocimiento de un perro por su color de pelaje, # eliminando todo ruido causado por el ambiente. # Todo mediante la librería open cv en Python..subl # Programador Sergio Luis Beleño Díaz # Enero.2019 ''' Para empezar se importan las librerías de Open cv para visión Artificial y se utiliza la librería numpy para la optimización de datos al trabajar con las matrices que componen a la imagen obtenida pixel por pixel ''' import cv2 import numpy as np # Asignamos la camara ingresando cv2.VideoCapture(0) cap = cv2.VideoCapture('Duke the dog.mp4') # funtion def centroide(imagen_binarizada): # Obtenemos lo momentos de la imagen Moments = cv2.moments(imagen_binarizada) if (Moments["m00"] != 0): # Se calcula los centroides XY con el fin de ubicar el objeto centrox = int(Moments["m10"] / Moments["m00"]) centroy = int(Moments["m01"] / Moments["m00"]) else: centrox, centroy = 0,0 return(centrox, centroy) def captura(colorrgb_bajo = [175,100,60], colorrgb_alto = [195,115,75]): #(colorrgb_bajo = [165,40,11], colorrgb_alto = [195,115,100]): # Se toma una Captura de la imagen de la Camara [rec, camara] = cap.read() if rec == True: camara = cv2.resize(camara, (1040,680)) # Se combierten los colores de BGR a rgb (Rojo, Verde y Azul) rgb = cv2.cvtColor(camara, cv2.COLOR_BGR2RGB) # Colores: bajos = np.array(colorrgb_bajo, dtype=np.uint8) altos = np.array(colorrgb_alto, dtype=np.uint8) # Binarización de Color img_binarizada = cv2.inRange(rgb, bajos, altos) # Filtros # Centroides [x, y] = centroide(img_binarizada) try: x2 except NameError: i = None if (i == None): x2 = x y2 = y x = (x + x2)/2 y = (y + y2)/2 x2 = x y2 = y cv2.line(camara,(x-100 , y-50),(x+100, y-50),(75, 255, 50),15) cv2.line(camara,(x+100 , y-50),(x+100, y+150),(75, 255, 50),15) cv2.line(camara,(x-100 , y-50),(x-100, y+150),(75, 255, 50),15) cv2.line(camara,(x-100 , y+150),(x+100, y+150),(75, 255, 50),15) cv2.putText(camara,"Duke the dog",(x-100,y+200),cv2.FONT_HERSHEY_DUPLEX,1,(75, 255, 50),2) print(x,y) # Muestra las Capturas de la camara en ventanas de visualización #cv2.imshow('Mascara', img_binarizada) cv2.imshow('Camara', camara) return 1 else: return 0 ######################################################################### # Se crea un ciclo while para hacer captura por captura y # tomar la posición del objeto en sus ejes cartesianos (x,y) while (cap.isOpened()): # Captura(ValorHSVbajo,ValorHSValto) cond = captura() # Sí se pulsa una tecla y la tecla es la letra "q" # minuscula se rompe el bucle en el que se encuentre if cv2.waitKey(15) & 0xFF == ord('q') or cond == 0: break cap.release() cv2.destroyAllWindows()
python
from chemlib.chemistry import Combustion, Compound, Reaction from chemlib.utils import reduce_list # TODO: TEMP IMPLEMENTATIONS, NEED TO CONSIDER ADDITIONAL METHODS/CALCULATIONS # INTERFACE? def combustion_analysis(CO2, H2O) -> str: molesC = Compound("CO2").get_amounts(grams = CO2)["moles"] molesH = (Compound("H2O").get_amounts(grams = H2O)['moles'])*2 moles = reduce_list([molesC, molesH]) moles = ["" if x == 1 else x for x in moles] #Remove all 1's return (f"C{moles[0]}H{moles[1]}") class Calorimeter: def reaction_heat(self): raise NotImplementedError('Implemented in CoffeeCup and Bomb objects') class CoffeeCup(Calorimeter, Reaction): def __init__(self, reactants, products): pass @staticmethod def reaction_heat(mass: float, spec_heat: float, d_temp: float): return mass * spec_heat * d_temp class Bomb(Calorimeter, Combustion): def __init__(self, compound): Combustion.__init__(compound) @staticmethod def reaction_heat(spec_heat_calorimeter: float, d_temp: float): return spec_heat_calorimeter * d_temp
python
__all__ = [ 'assign','smart_assign','LCA','linkable', 'Assign','SmartAssign','Linkable', 'join_name', 'Component', 'Input','Output','UInt','SInt','IOGroup','Parameter','Wire','Reg', 'And','Or','Greater','Less','GreaterEqual','LessEqual','NotEqual','Equal', 'BitXnor','BitXor','BitAnd','BitOr', 'Add','Sub','Mul', 'SelfXnor','SelfXor','SelfAnd','SelfOr','Inverse','Not', 'Combine','BitXnorList','BitXorList','BitOrList','BitAndList','OrList','AndList', 'Cut','Case','when','When','EmptyWhen', 'Circuit','get_circuit','set_circuit', 'when'] from .Function import Assign,SmartAssign,LCA,Linkable from .BasicFunction import join_name from .Component import Component from .Variable import Input,Output,UInt,SInt,IOGroup,Parameter,Wire,Reg from .Variable import And,Or,Greater,Less,GreaterEqual,LessEqual,NotEqual,Equal from .Variable import BitXnor,BitXor,BitAnd,BitOr from .Variable import Add,Sub,Mul from .Variable import SelfXnor,SelfXor,SelfAnd,SelfOr,Inverse,Not from .Variable import Combine,BitXnorList,BitXorList,BitOrList,BitAndList,OrList,AndList from .Variable import Case,Cut,When,EmptyWhen #from .Value import Combine #from .Expression import from .Root import Root,get_circuit,set_circuit Circuit = Root when = When assign = Assign smart_assign = SmartAssign linkable = Linkable from .Exception import *
python
import numpy as np import torch import torch.nn as nn from .anchor_head_template import AnchorHeadTemplate class GradReverse(torch.autograd.Function): def __init__(self, lambd): self.lambd = lambd def forward(self, x): return x.view_as(x) def backward(self, grad_output): return (grad_output * self.lambd) def grad_reverse(x, lambd): return GradReverse(lambd)(x) class AnchorHeadSingleRangeGuidance(AnchorHeadTemplate): def __init__(self, model_cfg, input_channels, num_class, class_names, grid_size, point_cloud_range, predict_boxes_when_training=True, nusc=False, fpn_layers=[], **kwargs): super().__init__( model_cfg=model_cfg, num_class=num_class, class_names=class_names, grid_size=grid_size, point_cloud_range=point_cloud_range, predict_boxes_when_training=predict_boxes_when_training, nusc=nusc, fpn_layers=fpn_layers ) self.num_anchors_per_location = sum(self.num_anchors_per_location) if self.range_guidance: if self.range_guidance_dom_only: input_channels_dom = input_channels + 2 else: input_channels = input_channels + 2 + 256 input_channels_dom = input_channels - 256 else: input_channels_dom = input_channels self.conv_cls = nn.Conv2d( input_channels, self.num_anchors_per_location * self.num_class, kernel_size=1 ) self.conv_box = nn.Conv2d( input_channels, self.num_anchors_per_location * self.box_coder.code_size, kernel_size=1 ) self.rangeinv = self.model_cfg.get('RANGE_INV', False) self.keep_x = self.model_cfg.get('KEEP_X', False) self.keep_y = self.model_cfg.get('KEEP_Y', False) self.keep_xy = self.model_cfg.get('KEEP_XY', False) self.rm_thresh = self.model_cfg.get('RM_THRESH', 0) if self.rangeinv: self.conv_range = nn.Conv2d( input_channels, 1, kernel_size=1 ) #nn.Sequential( if self.model_cfg.get('USE_DIRECTION_CLASSIFIER', None) is not None: self.conv_dir_cls = nn.Conv2d( input_channels, self.num_anchors_per_location * self.model_cfg.NUM_DIR_BINS, kernel_size=1 ) else: self.conv_dir_cls = None # if self.model_cfg.get('USE_DOMAIN_CLASSIFIER', None) is not None: if self.range_da > 0: self.domain_pool = nn.AdaptiveAvgPool2d(1) self.domain_classifier_range = nn.ModuleDict() for n in range(0+self.remove_near_range, self.range_da-self.remove_far_range): self.domain_classifier_range[str(n)] = nn.Sequential(nn.Linear(input_channels, 1024), nn.ReLU(True), nn.Dropout(), nn.Linear(1024, 256), nn.ReLU(True), nn.Dropout(), nn.Linear(256, 1)) if self.keep_xy: self.domain_classifier_range2 = nn.ModuleDict() for n in range(0+self.remove_near_range2, self.range_da-self.remove_far_range2): self.domain_classifier_range2[str(n)] = nn.Sequential(nn.Linear(input_channels, 1024), nn.ReLU(True), nn.Dropout(), nn.Linear(1024, 256), nn.ReLU(True), nn.Dropout(), nn.Linear(256, 1)) elif self.interval_da > 0: self.domain_pool = nn.AdaptiveAvgPool2d(1) self.domain_classifier_interval = nn.ModuleDict() for n in range(self.interval_da): self.domain_classifier_interval[str(n)] = nn.Sequential(nn.Linear(input_channels, 1024), nn.ReLU(True), nn.Dropout(), nn.Linear(1024, 256), nn.ReLU(True), nn.Dropout(), nn.Linear(256, 1)) else: self.domain_pool = nn.AdaptiveAvgPool2d(1) self.domain_classifier = nn.Sequential(nn.Linear(input_channels_dom, 1024), nn.ReLU(True), nn.Dropout(), nn.Linear(1024, 256), nn.ReLU(True), nn.Dropout(), nn.Linear(256, 1)) self.init_weights() def init_weights(self): pi = 0.01 nn.init.constant_(self.conv_cls.bias, -np.log((1 - pi) / pi)) nn.init.normal_(self.conv_box.weight, mean=0, std=0.001) def forward(self, data_dict): t_mode = data_dict['t_mode'] l = data_dict['l'] # print("t_mode", t_mode) if 'pseudo' in t_mode: pseudo = True else: pseudo = False spatial_features_2d = data_dict['spatial_features_2d'] # print("spatial_features_2d", spatial_features_2d.shape) 126 # print('range ctx',self.range_guidance) if t_mode == 'tsne': if self.range_da > 0: mid_dim = int(spatial_features_2d.shape[-1]/2.) range_interval = int(spatial_features_2d.shape[-1]/(2*self.range_da)) start_dim = {} mid1_dim = {} mid2_dim = {} end_dim = {} interval_idx = {} interval_feat = {} if self.keep_xy: interval_feat2 = {} # for each range 0,1,2,3 (4) for n in range(0+self.remove_near_range, self.range_da-self.remove_far_range): # no0,1 start_dim[n] = mid_dim - range_interval*(n+1) # 2-1=1, 2-2=0 mid1_dim[n] = mid_dim - range_interval*n # 2-0=2 2-1=1 #int(spatial_features_2d.shape[-1]/2.) mid2_dim[n] = mid_dim + range_interval*n # 2+0=2 2+1=3 end_dim[n] = mid_dim + range_interval*(n+1) # 2+1=3 2+2=4 interval_idx[n] = torch.LongTensor([i for i in range(start_dim[n], mid1_dim[n])]+[i for i in range(mid2_dim[n], end_dim[n])]) feat1 = spatial_features_2d[:,:,:,interval_idx[n]] feat1 = self.domain_pool(feat1).view(feat1.size(0), -1) data_dict[f'spatial_features_2d_x_{n}'] = feat1 feat2 = spatial_features_2d[:,:,interval_idx[n],:] feat2 = self.domain_pool(feat2).view(feat2.size(0), -1) data_dict[f'spatial_features_2d_y_{n}'] = feat2 if self.range_guidance and not self.range_guidance_dom_only: total_range = spatial_features_2d.shape[-1] half_range = int(spatial_features_2d.shape[-1] * 0.5) # x_range = torch.zeros((total_range, total_range)).cuda() # y_range = torch.zeros((total_range, total_range)).cuda() # for i in range(-half_range, half_range): # for j in range(-half_range, half_range): # x_range[i+half_range,j+half_range] = abs(i+0.5) # y_range[i+half_range,j+half_range] = abs(j+0.5) x_range = torch.abs(torch.arange(-half_range, half_range, 1).float() + 0.5).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(spatial_features_2d.shape[0],1, total_range, 1).cuda() # print("x_range", x_range) y_range = torch.abs(torch.arange(-half_range, half_range, 1).float() + 0.5).unsqueeze(-1).unsqueeze(0).unsqueeze(0).repeat(spatial_features_2d.shape[0],1,1,total_range).cuda() # print('x_range',x_range[0,-1]) # print('y_range',y_range[0,-1]) # print("spatial_features_2d 0", spatial_features_2d.shape) # x_range = x_range.unsqueeze(0).unsqueeze(0).repeat((spatial_features_2d.shape[0],1,1,1)) # y_range = y_range.unsqueeze(0).unsqueeze(0).repeat((spatial_features_2d.shape[0],1,1,1)) # print('x_range',x_range.shape) # print('y_range',y_range.shape) spatial_features_2d = torch.cat((spatial_features_2d, x_range, y_range), dim=1) # print("spatial_features_2d", spatial_features_2d.shape) # print("t_mode", t_mode) if 'dom_img' in t_mode: if t_mode == 'dom_img_src': dom_src = True elif t_mode == 'dom_img_tgt': dom_src = False else: dom_src = None # if self.range_da > 0: mid_dim = int(spatial_features_2d.shape[-1]/2.) range_interval = int(spatial_features_2d.shape[-1]/(2*self.range_da)) start_dim = {} mid1_dim = {} mid2_dim = {} end_dim = {} interval_idx = {} interval_feat = {} if self.keep_xy: interval_feat2 = {} # for each range 0,1,2,3 (4) for n in range(0+self.remove_near_range, self.range_da-self.remove_far_range): # no0,1 start_dim[n] = mid_dim - range_interval*(n+1) # 2-1=1, 2-2=0 mid1_dim[n] = mid_dim - range_interval*n # 2-0=2 2-1=1 #int(spatial_features_2d.shape[-1]/2.) mid2_dim[n] = mid_dim + range_interval*n # 2+0=2 2+1=3 end_dim[n] = mid_dim + range_interval*(n+1) # 2+1=3 2+2=4 # print("range n", n) # print("start_dim[n]", start_dim[n]) # print("mid1_dim[n]", mid1_dim[n]) # print("mid2_dim[n]", mid2_dim[n]) # print("end_dim[n]", end_dim[n]) interval_idx[n] = torch.LongTensor([i for i in range(start_dim[n], mid1_dim[n])]+[i for i in range(mid2_dim[n], end_dim[n])]) if self.keep_x: interval_feat[n] = spatial_features_2d[:,:,:,interval_idx[n]] # self.forward_ret_dict[f'spatial_features_2d_x_{n}'] = interval_feat[n] elif self.keep_y: interval_feat[n] = spatial_features_2d[:,:,interval_idx[n],:] # self.forward_ret_dict[f'spatial_features_2d_y_{n}'] = interval_feat[n] elif self.keep_xy: interval_feat[n] = spatial_features_2d[:,:,:,interval_idx[n]] # self.forward_ret_dict[f'spatial_features_2d_x_{n}'] = interval_feat[n] x_pool = self.domain_pool(interval_feat[n]).view(interval_feat[n].size(0), -1) x_reverse = grad_reverse(x_pool, l*-1) # dom_img_preds = self.domain_classifier_range[str(n)](x_reverse).squeeze(-1) dom_head_context = self.domain_classifier_range[str(n)][:-2](x_reverse)#.squeeze(-1) if 'dom_img_det' in t_mode: data_dict['dom_head_context'] = dom_head_context dom_img_preds = self.domain_classifier_range[str(n)][-2:](dom_head_context)#.squeeze(-1) self.forward_ret_dict[f'dom_img_preds_range{n}'] = dom_img_preds if self.keep_xy: interval_feat2[n] = spatial_features_2d[:,:,interval_idx[n],:] self.forward_ret_dict[f'spatial_features_2d_y_{n}'] = interval_feat2[n] x_pool2 = self.domain_pool(interval_feat2[n]).view(interval_feat2[n].size(0), -1) x_reverse2 = grad_reverse(x_pool2, l*-1) # dom_img_preds2 = self.domain_classifier_range2[str(n)](x_reverse2).squeeze(-1) dom_head_context2 = self.domain_classifier_range2[str(n)][:-2](x_reverse2)#.squeeze(-1) if 'dom_img_det' in t_mode: data_dict['dom_head_context2'] = dom_head_context2 dom_img_preds2 = self.domain_classifier_range2[str(n)][-2:](dom_head_context2)#.squeeze(-1) self.forward_ret_dict[f'dom_img_preds_range{n}_2'] = dom_img_preds2 if self.training: targets_dict_dom = self.assign_targets( gt_boxes=data_dict['gt_boxes'], dom_src=dom_src, pseudo=pseudo ) self.forward_ret_dict.update(targets_dict_dom) elif self.interval_da > 0: # mid_dim = int(spatial_features_2d.shape[-1]/2.) range_interval = int(spatial_features_2d.shape[-1]/self.interval_da) start_dim = {} # mid1_dim = {} # mid2_dim = {} end_dim = {} interval_idx = {} interval_feat = {} # for each range 0,1,2,3 (4) for n in range(self.interval_da): # 0,1 start_dim[n] = range_interval*n # 2-1=1, 2-2=0 # mid1_dim[n] = mid_dim - range_interval*n # 2-0=2 2-1=1 #int(spatial_features_2d.shape[-1]/2.) # mid2_dim[n] = mid_dim + range_interval*n # 2+0=2 2+1=3 end_dim[n] = range_interval*(n+1) # 2+1=3 2+2=4 interval_idx[n] = torch.LongTensor([i for i in range(start_dim[n], end_dim[n])]) # print("spatial_features_2d", spatial_features_2d.shape) if self.keep_x: interval_feat[n] = spatial_features_2d[:,:,:,interval_idx[n]] elif self.keep_y: interval_feat[n] = spatial_features_2d[:,:,interval_idx[n],:] # print("interval_feat[n]", interval_feat[n].shape) x_pool = self.domain_pool(interval_feat[n]).view(interval_feat[n].size(0), -1) # print("x_pool[n]", x_pool.shape) x_reverse = grad_reverse(x_pool, l*-1) # dom_img_preds = self.domain_classifier_interval[str(n)](x_reverse).squeeze(-1) dom_head_context = self.domain_classifier_interval[str(n)][:-2](x_reverse)#.squeeze(-1) if 'dom_img_det' in t_mode: data_dict['dom_head_context'] = dom_head_context dom_img_preds = self.domain_classifier_interval[str(n)][-2:](dom_head_context)#.squeeze(-1) self.forward_ret_dict[f'dom_img_preds_interval{n}'] = dom_img_preds if self.training: targets_dict_dom = self.assign_targets( gt_boxes=data_dict['gt_boxes'], dom_src=dom_src, pseudo=pseudo ) self.forward_ret_dict.update(targets_dict_dom) else: if self.range_guidance and self.range_guidance_dom_only: total_range = spatial_features_2d.shape[-1] half_range = int(spatial_features_2d.shape[-1] * 0.5) x_range = torch.abs(torch.arange(-half_range, half_range, 1).float() + 0.5).unsqueeze(0).unsqueeze(0).unsqueeze(0).repeat(spatial_features_2d.shape[0],1, total_range, 1).cuda() y_range = torch.abs(torch.arange(-half_range, half_range, 1).float() + 0.5).unsqueeze(-1).unsqueeze(0).unsqueeze(0).repeat(spatial_features_2d.shape[0],1,1,total_range).cuda() spatial_features_2d = torch.cat((spatial_features_2d, x_range, y_range), dim=1) x_pool = self.domain_pool(spatial_features_2d).view(spatial_features_2d.size(0), -1) x_reverse = grad_reverse(x_pool, l*-1) # dom_img_preds = self.domain_classifier(x_reverse).squeeze(-1) dom_head_context = self.domain_classifier[:-2](x_reverse) if 'dom_img_det' in t_mode: data_dict['dom_head_context'] = dom_head_context dom_img_preds = self.domain_classifier[-2:](dom_head_context) self.forward_ret_dict['dom_img_preds'] = dom_img_preds if self.training: targets_dict_dom = self.assign_targets( gt_boxes=data_dict['gt_boxes'], dom_src=dom_src, pseudo=pseudo ) self.forward_ret_dict.update(targets_dict_dom) if 'det' not in t_mode: return data_dict dom_head_context = data_dict[f'dom_head_context'] dom_head_context_reshape = dom_head_context.unsqueeze(-1).unsqueeze(-1).repeat(1,1,spatial_features_2d.shape[-2],spatial_features_2d.shape[-1]) spatial_features_2d = torch.cat((spatial_features_2d, dom_head_context_reshape), dim=1) cls_preds = self.conv_cls(spatial_features_2d) box_preds = self.conv_box(spatial_features_2d) cls_preds = cls_preds.permute(0, 2, 3, 1).contiguous() # [N, H, W, C] box_preds = box_preds.permute(0, 2, 3, 1).contiguous() # [N, H, W, C] self.forward_ret_dict['cls_preds'] = cls_preds self.forward_ret_dict['box_preds'] = box_preds if self.conv_dir_cls is not None: dir_cls_preds = self.conv_dir_cls(spatial_features_2d) dir_cls_preds = dir_cls_preds.permute(0, 2, 3, 1).contiguous() self.forward_ret_dict['dir_cls_preds'] = dir_cls_preds else: dir_cls_preds = None if self.training: if pseudo: pseudo_weights = data_dict['pseudo_weights'] else: pseudo_weights = None targets_dict = self.assign_targets( gt_boxes=data_dict['gt_boxes'], pseudo=pseudo, pseudo_weights=pseudo_weights ) self.forward_ret_dict.update(targets_dict) if not self.training or self.predict_boxes_when_training: batch_cls_preds, batch_box_preds = self.generate_predicted_boxes( batch_size=data_dict['batch_size'], cls_preds=cls_preds, box_preds=box_preds, dir_cls_preds=dir_cls_preds ) data_dict['batch_cls_preds'] = batch_cls_preds data_dict['batch_box_preds'] = batch_box_preds data_dict['cls_preds_normalized'] = False if self.rangeinv: # print("spatial_features_2d", spatial_features_2d.shape) #512,128,128 thresh = self.rm_thresh start_dim = int(spatial_features_2d.shape[-1]/4.) mid_dim = int(spatial_features_2d.shape[-1]/2.) end_dim = start_dim+int(spatial_features_2d.shape[-1]/2.) near_idx = torch.LongTensor([i for i in range(start_dim, mid_dim-thresh)]+[i for i in range(mid_dim+thresh, end_dim)]) far_idx = torch.LongTensor([i for i in range(start_dim)]+[i for i in range(end_dim, spatial_features_2d.shape[-1])]) if self.keep_x: near_feat_2d = spatial_features_2d[:,:,:,near_idx] far_feat_2d = spatial_features_2d[:,:,:, far_idx] elif self.keep_y: near_feat_2d = spatial_features_2d[:,:,near_idx,:] far_feat_2d = spatial_features_2d[:,:,far_idx,:] near_feat_2d_reverse = grad_reverse(near_feat_2d, l*-1) range_pred_near = self.conv_range(near_feat_2d_reverse) # print("near_range_pred", near_range_pred.shape) far_feat_2d_reverse = grad_reverse(far_feat_2d, l*-1) range_pred_far = self.conv_range(far_feat_2d_reverse) # print("far_range_pred", far_range_pred.shape) range_labels_near = torch.ones((range_pred_near.shape), dtype=torch.float32, device=spatial_features_2d.device) range_labels_far = torch.zeros((range_pred_far.shape), dtype=torch.float32, device=spatial_features_2d.device) targets_dict_range = { 'range_pred_near': range_pred_near, 'range_pred_far': range_pred_far, 'range_labels_near': range_labels_near, 'range_labels_far': range_labels_far, } self.forward_ret_dict.update(targets_dict_range) return data_dict
python
# coding= utf-8 # author= Administrator # date= 2021/3/15 17:38 from bs4 import BeautifulSoup # 创建html字符串 html_doc = """ <!DOCTYPE html><!--STATUS OK--> <html><head><meta http-equiv="Content-Type" content="text/html;charset=utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"><meta content="always" name="referrer"><meta name="theme-color" content="#2932e1"><meta name="description" content="全球最大的中文搜索引擎、致力于让网民更便捷地获取信息,找到所求。百度超过千亿的中文网页数据库,可以瞬间找到相关的搜索结果。"><link rel="shortcut icon" href="/favicon.ico" type="image/x-icon" /><link rel="search" type="application/opensearchdescription+xml" href="/content-search.xml" title="百度搜索" /><link rel="icon" sizes="any" mask href="//www.baidu.com/img/baidu_85beaf5496f291521eb75ba38eacbd87.svg"><link rel="dns-prefetch" href="//dss0.bdstatic.com"/><link rel="dns-prefetch" href="//dss1.bdstatic.com"/><link rel="dns-prefetch" href="//ss1.bdstatic.com"/><link rel="dns-prefetch" href="//sp0.baidu.com"/><link rel="dns-prefetch" href="//sp1.baidu.com"/><link rel="dns-prefetch" href="//sp2.baidu.com"/><title>百度一下,你就知道</title> <style index="newi" type="text/css">#form .bdsug{top:39px}.bdsug{display:none;position:absolute;width:535px;background:#fff;border:1px solid #ccc!important;_overflow:hidden;box-shadow:1px 1px 3px #ededed;-webkit-box-shadow:1px 1px 3px #ededed;-moz-box-shadow:1px 1px 3px #ededed;-o-box-shadow:1px 1px 3px #ededed}.bdsug li{width:519px;color:#000;font:14px arial;line-height:25px;padding:0 8px;position:relative;cursor:default}.bdsug li.bdsug-s{background:#f0f0f0}.bdsug-store span,.bdsug-store b{color:#7A77C8}.bdsug-store-del{font-size:12px;color:#666;text-decoration:underline;position:absolute;right:8px;top:0;cursor:pointer;display:none}.bdsug-s .bdsug-store-del{display:inline-block}.bdsug-ala{display:inline-block;border-bottom:1px solid #e6e6e6}.bdsug-ala h3{line-height:14px;background:url(//www.baidu.com/img/sug_bd.png?v=09816787.png) no-repeat left center;margin:6px 0 4px;font-size:12px;font-weight:400;color:#7B7B7B;padding-left:20px}.bdsug-ala p{font-size:14px;font-weight:700;padding-left:20px}#m .bdsug .bdsug-direct p{color:#00c;font-weight:700;line-height:34px;padding:0 8px;margin-top:0;cursor:pointer;white-space:nowrap;overflow:hidden}#m .bdsug .bdsug-direct p img{width:16px;height:16px;margin:7px 6px 9px 0;vertical-align:middle}#m .bdsug .bdsug-direct p span{margin-left:8px}#form .bdsug .bdsug-direct{width:auto;padding:0;border-bottom:1px solid #f1f1f1}#form .bdsug .bdsug-direct p i{font-size:12px;line-height:100%;font-style:normal;font-weight:400;color:#fff;background-color:#2b99ff;display:inline;text-align:center;padding:1px 5px;*padding:2px 5px 0;margin-left:8px;overflow:hidden}.bdsug .bdsug-pcDirect{color:#000;font-size:14px;line-height:30px;height:30px;background-color:#f8f8f8}.bdsug .bdsug-pc-direct-tip{position:absolute;right:15px;top:8px;width:55px;height:15px;display:block;background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/pc_direct_42d6311.png) no-repeat 0 0}.bdsug li.bdsug-pcDirect-s{background-color:#f0f0f0}.bdsug .bdsug-pcDirect-is{color:#000;font-size:14px;line-height:22px;background-color:#f5f5f5}.bdsug .bdsug-pc-direct-tip-is{position:absolute;right:15px;top:3px;width:55px;height:15px;display:block;background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/pc_direct_42d6311.png) no-repeat 0 0}.bdsug li.bdsug-pcDirect-is-s{background-color:#f0f0f0}.bdsug .bdsug-pcDirect-s .bdsug-pc-direct-tip,.bdsug .bdsug-pcDirect-is-s .bdsug-pc-direct-tip-is{background-position:0 -15px}.bdsug .bdsug-newicon{color:#929292;opacity:.7;font-size:12px;display:inline-block;line-height:22px;letter-spacing:2px}.bdsug .bdsug-s .bdsug-newicon{opacity:1}.bdsug .bdsug-newicon i{letter-spacing:0;font-style:normal}.bdsug .bdsug-feedback-wrap{display:none}.toggle-underline{text-decoration:none}.toggle-underline:hover{text-decoration:underline}.bdpfmenu,.usermenu{border:1px solid #d1d1d1;position:absolute;width:105px;top:36px;z-index:302;box-shadow:1px 1px 5px #d1d1d1;-webkit-box-shadow:1px 1px 5px #d1d1d1;-moz-box-shadow:1px 1px 5px #d1d1d1;-o-box-shadow:1px 1px 5px #d1d1d1}.bdpfmenu{font-size:12px;background-color:#fff}.bdpfmenu a,.usermenu a{display:block;text-align:left;margin:0!important;padding:0 9px;line-height:26px;text-decoration:none}.briiconsbg{background-repeat:no-repeat;background-size:300px 18px;background-image:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/home/img/icons_0c37e9b.png);background-image:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/home/img/icons_809ae65.gif)\9}.bdpfmenu a:link,.bdpfmenu a:visited,#u .usermenu a:link,#u .usermenu a:visited{background:#fff;color:#333}.bdpfmenu a:hover,.bdpfmenu a:active,#u .usermenu a:hover,#u .usermenu a:active{background:#38f;text-decoration:none;color:#fff}.bdpfmenu{width:70px}#wrapper .bdnuarrow{width:0;height:0;font-size:0;line-height:0;display:block;position:absolute;top:-10px;left:50%;margin-left:-5px}#wrapper .bdnuarrow em,#wrapper .bdnuarrow i{width:0;height:0;font-size:0;line-height:0;display:block;position:absolute;border:5px solid transparent;border-style:dashed dashed solid}#wrapper .bdnuarrow em{border-bottom-color:#d8d8d8;top:-1px}#wrapper .bdnuarrow i{border-bottom-color:#fff;top:0}#gxszHead .prefpanelclose{cursor:pointer;width:16px;height:16px;float:right;margin-top:7px;background-position:-248px 0}#gxszHead .prefpanelclose:hover{background-position:-264px 0}.s_ipt::-webkit-input-placeholder{padding-left:3px;color:#aaa;font-size:13px}.s_ipt::-moz-placeholder{padding-left:3px;color:#aaa;font-size:13px}.s_ipt:-ms-input-placeholder{padding-left:3px;color:#aaa;font-size:13px}.s_ipt::placeholder{padding-left:3px;color:#aaa;font-size:13px}.kw-placeholder{position:absolute;top:0;left:0;color:#aaa;font-size:13px;height:40px;line-height:40px;padding-left:10px;max-width:360px;z-index:99;pointer-events:none}.kw-placeholder.kw-placehlder-high{height:40px;line-height:40px}.kw-placeholder.placeholders-hidden{visibility:hidden}#head_wrapper #form .bdsug-new{width:544px;top:35px;border-radius:0 0 10px 10px;border:2px solid #4E6EF2!important;border-top:0!important;box-shadow:none;font-family:Arial,"PingFang SC","Microsoft YaHei",sans-serif;z-index:1}#head_wrapper.sam_head_wrapper2 #form .bdsug-new{width:545px;z-index:1;border:1px solid #4E6EF2!important;border-top:0!important}#head_wrapper #form .bdsug-new ul{margin:7px 14px 0;padding:8px 0 7px;background:0 0;border-top:2px solid #f5f5f6}#head_wrapper #form .bdsug-new ul li{padding:0;color:#626675;line-height:28px;background:0 0;font-family:Arial,"PingFang SC","Microsoft YaHei",sans-serif}#head_wrapper #form .bdsug-new ul li span{color:#626675}#head_wrapper #form .bdsug-new ul li b{font-weight:400;color:#222}#head_wrapper #form .bdsug-new .bdsug-store-del{font-size:13px;text-decoration:none;color:#9195A3;right:3px}#head_wrapper #form .bdsug-new .bdsug-store-del:hover{color:#315EFB;cursor:pointer}#head_wrapper #form .bdsug-new ul li:hover,#head_wrapper #form .bdsug-new ul li:hover span,#head_wrapper #form .bdsug-new ul li:hover b{cursor:pointer}#head .s-down #form .bdsug-new{top:32px}.s-skin-hasbg #head_wrapper #form .bdsug-new{border-color:#E4E4E5!important;border-top:0!important}.s-skin-hasbg #head_wrapper.s-down #form .bdsug-new{border-color:#4e6ef2!important;border-top:0!important}#head_wrapper #form .bdsug-new .bdsug-s,#head_wrapper #form .bdsug-new .bdsug-s span,#head_wrapper #form .bdsug-new .bdsug-s b{color:#315EFB}#head_wrapper #form .bdsug-new>div span:hover,#head_wrapper #form .bdsug-new>div a:hover{color:#315EFB!important}#head_wrapper #form #kw.new-ipt-focus{border-color:#4e6ef2}</style> <style type="text/css" index="head">blockquote,body,button,dd,dl,dt,fieldset,form,h1,h2,h3,h4,h5,h6,hr,input,legend,li,ol,p,pre,td,textarea,th,ul{margin:0;padding:0} html{color:#000;overflow-y:scroll;overflow:-moz-scrollbars} body,button,input,select,textarea{font-size:12px;font-family:"PingFang SC",Arial,"Microsoft YaHei",sans-serif} h1,h2,h3,h4,h5,h6{font-size:100%} em{font-style:normal} small{font-size:12px} ol,ul{list-style:none} a{text-decoration:none} a:hover{text-decoration:underline} legend{color:#000} fieldset,img{border:0} button,input,select,textarea{font-size:100%} table{border-collapse:collapse;border-spacing:0} img{-ms-interpolation-mode:bicubic} textarea{resize:vertical} .left{float:left} .right{float:right} .overflow{overflow:hidden} .hide{display:none} .block{display:block} .inline{display:inline} .error{color:red;font-size:12px} button,label{cursor:pointer} .clearfix:after{content:'\20';display:block;height:0;clear:both} .clearfix{zoom:1} .clear{clear:both;height:0;line-height:0;font-size:0;visibility:hidden;overflow:hidden} .wordwrap{word-break:break-all;word-wrap:break-word} .s-yahei{font-family:arial,'Microsoft Yahei','微软雅黑'} pre.wordwrap{white-space:pre-wrap} body{text-align:center;background:#fff} body,form{position:relative;z-index:0} td{text-align:left} img{border:0} #s_wrap{position:relative;z-index:0;min-width:1000px} #wrapper{height:100%} #head .s-ps-islite{_padding-bottom:370px} #head_wrapper.s-ps-islite{padding-bottom:370px} #head_wrapper.s-ps-islite #s_lm_wrap{bottom:298px;background:0 0!important;filter:none!important} #head_wrapper.s-ps-islite .s_form{position:relative;z-index:1} #head_wrapper.s-ps-islite .fm{position:absolute;bottom:0} #head_wrapper.s-ps-islite .s-p-top{position:absolute;bottom:40px;width:100%;height:181px} #head_wrapper.s-ps-islite #s_lg_img,#head_wrapper.s-ps-islite #s_lg_img_new{position:static;margin:33px auto 0 auto} .s_lm_hide{display:none!important} #head_wrapper.s-down #s_lm_wrap{display:none} .s-lite-version #m{padding-top:125px} #s_lg_img,#s_lg_img_new{position:absolute;bottom:10px;left:50%;margin-left:-135px} #form{z-index:1} #s_lm_wrap{position:absolute;margin-left:-447px;bottom:0;left:50%;z-index:0;height:30px;width:895px;line-height:30px;text-align:center} .s-skin-hasbg #s_lm_wrap{background:0 0;background-image:-webkit-gradient(linear,left top,left bottom,from(rgba(0,0,0,.3)),to(rgba(0,0,0,.3)));background-image:-moz-linear-gradient(rgba(0,0,0,.3) 0,rgba(0,0,0,.3) 100%);background-image:-ms-linear-gradient(rgba(0,0,0,.3) 0,rgba(0,0,0,.3) 100%);background-image:-o-linear-gradient(rgba(0,0,0,.3) 0,rgba(0,0,0,.3) 100%);background-image:linear-gradient(rgba(0,0,0,.3) 0,rgba(0,0,0,.3) 100%);filter:progid:DXImageTransform.Microsoft.gradient(startColorstr=#66000000, endColorstr=#66000000)} #s_lm_wrap.s-down{display:none} #lm{color:#666;height:15px;line-height:16px;padding:7px 0} #lm a{text-decoration:underline;color:#666} #nv{margin:0 0 5px;_margin-bottom:4px;padding:2px 0 0;text-align:left;text-indent:50px} #nv a,#nv b{margin-left:19px} #lk,#nv a,#nv b,.btn{font-size:14px} .s-down .s_form{padding-left:0;margin-top:0;min-height:0} .s_form .tools{position:absolute;right:-55px} .s_form_wrapper{height:100%} #head_wrapper.s-down #mCon span{color:#000} #lk{margin:33px 0} #lk span{font:14px "\5b8b\4f53"} #lh{margin:16px 0 5px;word-spacing:3px} #mCon{height:15px;line-height:15px;width:28px;padding:10px 8px 0 0;cursor:pointer;background:url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/spis7-d578e7ff4b.png) no-repeat -684px -605px} #mCon span{color:#333;cursor:default;display:block} #mCon .hw{text-decoration:underline;cursor:pointer} #mMenu{width:56px;border:1px solid #9b9b9b;list-style:none;position:absolute;right:-9px;top:30px;display:none;background:#fff;box-shadow:1px 1px 2px #ccc;-moz-box-shadow:1px 1px 2px #ccc;-webkit-box-shadow:1px 1px 2px #ccc;filter:progid:DXImageTransform.Microsoft.Shadow(Strength=2, Direction=135, Color="#cccccc")\9} #mMenu a,#mMenu a:visited{color:#00c;width:100%;height:100%;display:block;line-height:22px;text-indent:6px;text-decoration:none;filter:none\9} #mMenu a:hover{background:#ebebeb} #mMenu .ln{height:1px;background:#ebebeb;overflow:hidden;font-size:1px;line-height:1px;margin-top:-1px} #cp,#cp a{color:#77c} #tb_mr{color:#00c;cursor:pointer;position:relative;z-index:200} #tb_mr b{font-weight:400} #nv a,#tb_mr b{text-decoration:underline} #nv a{color:#00c} #hwr_div,#loading{z-index:3000} .bd_bear_home{display:none} #mHolder{display:none} #mHolder .c-icon{right:0;top:0;position:absolute;float:right;width:15px;height:15px} .main{display:none} #s_feed{display:none} .s-ps-sug{border:1px solid #ccc!important;box-shadow:1px 1px 3px #ededed;-webkit-box-shadow:1px 1px 3px #ededed;-moz-box-shadow:1px 1px 3px #ededed;-o-box-shadow:1px 1px 3px #ededed;position:absolute;top:32px;left:0} .s-ps-sug table{width:100%;background:#fff;cursor:default} .s-ps-sug td{color:#000;font:14px arial;height:25px;line-height:25px;padding:0 8px} .s-ps-sug td b{color:#000} .s-ps-sug .mo{background:#ebebeb;cursor:pointer} .s-ps-sug .ml{background:#fff} .s-ps-sug td.sug_storage{color:#7a77c8} .s-ps-sug td.sug_storage b{color:#7a77c8} .s-ps-sug .sug_del{font-size:12px;color:#666;text-decoration:underline;float:right;cursor:pointer;display:none} .s-ps-sug .sug_del{font-size:12px;color:#666;text-decoration:underline;float:right;cursor:pointer;display:none} .s-ps-sug .mo .sug_del{display:block} .s-ps-sug .sug_ala{border-bottom:1px solid #e6e6e6} .s-ps-sug td h3{line-height:14px;margin:6px 0 4px 0;font-size:12px;font-weight:400;color:#7b7b7b;padding-left:20px;background:url(img/sug_bd.png) no-repeat left center} .s-ps-sug td p{font-size:14px;font-weight:700;padding-left:20px} .s-ps-sug td p span{font-size:12px;font-weight:400;color:#7b7b7b} #s_user_center{font-weight:400;background-position:right -223px\9} #s_user_center_menu{right:131px} .s-ps-islite #nv{padding-top:22px;line-height:16px;height:16px;margin-bottom:13px} #form .bdsug .bdsug-direct{width:auto;padding:0;border-bottom:1px solid #f1f1f1} #head_wrapper .bdsug .bdsug-direct p{color:#00c;font-weight:700;line-height:34px;padding:0 8px;margin-top:0;cursor:pointer;white-space:nowrap;overflow:hidden} #head_wrapper .bdsug .bdsug-direct p img{width:16px;height:16px;margin:7px 6px 9px 0;vertical-align:middle} #head_wrapper .bdsug .bdsug-direct p span{margin-left:8px} #head_wrapper .bdsug .bdsug-direct p i{font-size:12px;line-height:100%;font-style:normal;font-weight:400;color:#fff;background-color:#2b99ff;display:inline;text-align:center;padding:1px 5px;*padding:2px 5px 0 5px;margin-left:8px;overflow:hidden} #result_logo,#s_tab,#u,#wrapper_wrapper{display:none} #prefpanel{background:#fafafa;display:none;opacity:0;position:fixed;_position:absolute;top:-359px;z-index:500;width:100%;min-width:960px;border-bottom:1px solid #ebebeb;*left:0!important;text-align:left} #prefpanel form{_width:850px} @font-face{font-family:cIconfont;src:url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/font/iconfont-03f7028492.eot);src:url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/font/iconfont-03f7028492.eot?#iefix) format('embedded-opentype'),url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/font/iconfont-d312d35c5b.woff2) format('woff2'),url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/font/iconfont-d187c4be30.woff) format('woff'),url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/font/iconfont-81527e9464.ttf) format('truetype'),url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/font/iconfont-4816f3b73b.svg#iconfont) format('svg')} .c-gap-top-small{margin-top:3px} .c-gap-top{margin-top:7px} .c-gap-top-large{margin-top:11px} .c-gap-top-mini{margin-top:2px} .c-gap-top-xsmall{margin-top:4px} .c-gap-top-middle{margin-top:10px} .c-gap-bottom-small{margin-bottom:3px} .c-gap-bottom{margin-bottom:7px} .c-gap-bottom-large{margin-bottom:11px} .c-gap-bottom-mini{margin-bottom:2px} .c-gap-bottom-xsmall{margin-bottom:4px} .c-gap-bottom-middle{margin-bottom:10px} .c-gap-left{margin-left:12px} .c-gap-left-small{margin-left:8px} .c-gap-left-xsmall{margin-left:4px} .c-gap-left-mini{margin-left:2px} .c-gap-left-large{margin-left:16px} .c-gap-left-middle{margin-left:10px} .c-gap-right{margin-right:12px} .c-gap-right-small{margin-right:8px} .c-gap-right-xsmall{margin-right:4px} .c-gap-right-mini{margin-right:2px} .c-gap-right-large{margin-right:16px} .c-gap-right-middle{margin-right:10px} .c-gap-icon-right-small{margin-right:5px} .c-gap-icon-right{margin-right:10px} .c-gap-icon-left-small{margin-left:5px} .c-gap-icon-left{margin-left:10px} .c-row{*zoom:1} .c-row:after{display:block;height:0;content:"";clear:both;visibility:hidden} .c-span1{width:32px} .c-span2{width:80px} .c-span3{width:128px} .c-span4{width:176px} .c-span5{width:224px} .c-span6{width:272px} .c-span7{width:320px} .c-span8{width:368px} .c-span9{width:416px} .c-span10{width:464px} .c-span11{width:512px} .c-span12{width:560px} .c-span10,.c-span11,.c-span12,.c-span2,.c-span3,.c-span4,.c-span5,.c-span6,.c-span7,.c-span8,.c-span9{float:left;_display:inline;margin-right:16px;list-style:none} .c-span-last{margin-right:0} .c-span-last-s{margin-right:0} .c-feed-box .c-span1{width:43px} .c-feed-box .c-span2{width:90px} .c-feed-box .c-span3{width:137px} .c-feed-box .c-span4{width:184px} .c-feed-box .c-span5{width:231px} .c-feed-box .c-span6{width:278px} .c-feed-box .c-span7{width:325px} .c-feed-box .c-span8{width:372px} .c-feed-box .c-span9{width:419px} .c-feed-box .c-span10{width:466px} .c-feed-box .c-span11{width:513px} .c-feed-box .c-span12{width:560px} .c-feed-box .c-span10,.c-feed-box .c-span11,.c-feed-box .c-span12,.c-feed-box .c-span2,.c-feed-box .c-span3,.c-feed-box .c-span4,.c-feed-box .c-span5,.c-feed-box .c-span6,.c-feed-box .c-span7,.c-feed-box .c-span8,.c-feed-box .c-span9{margin-right:4px} .c-feed-box .c-span-last{margin-right:0} .c-index{display:inline-block;width:14px;padding:1px 0;line-height:100%;text-align:center;color:#fff;background-color:#8eb9f5;font-size:12px} .c-index-hot,.c-index-hot1{background-color:#f54545} .c-index-hot2{background-color:#ff8547} .c-index-hot3{background-color:#ffac38} .c-index-single{display:inline-block;background:0 0;color:#9195a3;width:18px;font-size:15px;letter-spacing:-1px} .c-index-single-hot,.c-index-single-hot1{color:#fe2d46} .c-index-single-hot2{color:#f60} .c-index-single-hot3{color:#faa90e} .c-font-sigma{font:36px/60px Arial,sans-serif} .c-font-large{font:20px/30px Arial,sans-serif} .c-font-big{font:20px/30px Arial,sans-serif} .c-font-special{font:16px/26px Arial,sans-serif} .c-font-medium{font:14px/24px Arial,sans-serif} .c-font-middle{font:14px/24px Arial,sans-serif} .c-font-normal{font:13px/23px Arial,sans-serif} .c-font-small{font:12px/20px Arial,sans-serif} .c-font-family{font-family:Arial,sans-serif} .c-color-t{color:#222} .c-color-text{color:#333} .c-color-gray{color:#626675} .c-color-gray2{color:#9195a3} .c-color-visited{color:#626675} .c-color-link{color:#222} .c-color-orange{color:#fa4901} .c-color-green{color:#0ebe90} .c-color-ad{color:#77a9f9} .c-color-red{color:#f63051} .c-color-red:visited{color:#f63051} .c-color-warn{color:#ff7900} .c-color-warn:visited{color:#ff7900} .c-color-link{color:#3951b3} .c-btn,.c-btn:visited{color:#333!important} .c-btn{display:inline-block;overflow:hidden;font-family:inherit;font-weight:400;text-align:center;vertical-align:middle;outline:0;border:0;height:30px;width:80px;line-height:30px;font-size:13px;border-radius:6px;padding:0;background-color:#f5f5f6;*zoom:1;cursor:pointer} .c-btn:hover{background-color:#315efb;color:#fff!important} a.c-btn{text-decoration:none} button.c-btn{*overflow:visible;border:0} button.c-btn::-moz-focus-inner{padding:0;border:0} .c-btn-disable{color:#c4c7ce!important} .c-btn-disable:visited{color:#c4c7ce!important} .c-btn-disable:hover{cursor:default;color:#c4c7ce!important;background-color:#f5f5f6} .c-btn-mini{height:24px;width:48px;line-height:24px} .c-btn-mini .c-icon{margin-top:2px} .c-btn-large{height:30px;line-height:30px;font-size:14px} button.c-btn-large{height:30px;_line-height:24px} .c-btn-large .c-icon{margin-top:7px;_margin-top:6px} .c-btn-primary,.c-btn-primary:visited{color:#fff!important} .c-btn-primary{background-color:#4e6ef2} .c-btn-primary:hover{background-color:#315efb} .c-btn-weak{height:24px;line-height:24px;border-radius:4px;font-size:12px} .c-btn-add{width:32px;height:32px;line-height:32px;text-align:center;color:#9195a3!important} .c-btn-add:hover{background-color:#4e6ef2;color:#fff!important} .c-btn-add .c-icon{float:none} .c-btn-add-disable:hover{cursor:default;color:#c4c7ce!important;background-color:#f5f5f6} .c-select{position:relative;display:inline-block;width:96px;box-sizing:border-box;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;vertical-align:middle;color:#222;font:13px/23px Arial,sans-serif} .c-select-selection{display:block;height:30px;line-height:29px;box-sizing:border-box;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;padding:0 26px 0 10px;background-color:#fff;border-radius:6px;border:1px solid #d7d9e0;outline:0;user-select:none;cursor:pointer;position:relative;overflow:hidden;text-overflow:ellipsis;white-space:nowrap} .c-select-arrow,.c-select-arrow-up{position:absolute;top:-1px;right:10px;color:#9195a3;font-size:16px} .c-select-dropdown{display:none;position:absolute;padding-top:4px;top:25px;z-index:999;left:0;width:94px;box-sizing:content-box;-webkit-box-sizing:content-box;-moz-box-sizing:content-box;background:#fff;border-radius:0 0 6px 6px;border:1px solid #d7d9e0;border-top:0;zoom:1} .c-select-split{border-top:1px solid #f5f5f5;margin:0 5px} .c-select-dropdown-list{padding:0;margin:5px 0 0;list-style:none} .c-select-dropdown-list.c-select-scroll{max-height:207px;overflow-y:auto;overflow-x:hidden;margin-right:5px;margin-bottom:9px} .c-select-dropdown-list.c-select-scroll::-webkit-scrollbar{width:2px} .c-select-dropdown-list.c-select-scroll::-webkit-scrollbar-track{width:2px;background:#f5f5f6;border-radius:1px} .c-select-dropdown-list.c-select-scroll::-webkit-scrollbar-thumb{width:2px;height:58px;background-color:#4e71f2;border-radius:1px} .c-select-dropdown-list.c-select-scroll .c-select-item:last-child{margin:0} .c-select-item{margin:0 0 4px;padding:0 10px;clear:both;white-space:nowrap;list-style:none;cursor:pointer;box-sizing:border-box;-webkit-box-sizing:border-box;-moz-box-sizing:border-box} .c-select-item:hover{color:#315efb} .c-select-item-selected{color:#315efb} .c-select-arrow-up{display:none} .c-select-visible .c-select-selection{border-radius:6px 6px 0 0} .c-select-visible .c-select-dropdown{display:block} .c-select-visible .c-select-arrow{display:none} .c-select-visible .c-select-arrow-up{display:inline-block} .c-img{position:relative;display:block;min-height:1px;border:0;line-height:0;background:#f5f5f6;overflow:hidden} .c-img img{width:100%} .c-img1{width:32px} .c-img2{width:80px} .c-img3{width:128px} .c-img4{width:176px} .c-img6{width:272px} .c-img12{width:560px} .c-feed-box .c-img1{width:43px} .c-feed-box .c-img2{width:90px} .c-feed-box .c-img3{width:137px} .c-feed-box .c-img4{width:184px} .c-feed-box .c-img6{width:278px} .c-feed-box .c-img12{width:560px} .c-img-l,.c-img-s,.c-img-v,.c-img-w,.c-img-x,.c-img-y,.c-img-z{height:0;overflow:hidden} .c-img-s{padding-bottom:100%} .c-img-l{padding-bottom:133.33333333%} .c-img-w{padding-bottom:56.25%} .c-img-x{padding-bottom:75%} .c-img-y{padding-bottom:66.66666667%} .c-img-v{padding-bottom:116.66666667%} .c-img-z{padding-bottom:62.5%} .c-img-radius{border-radius:6px} .c-img-radius-s{border-radius:2px} .c-img-radius-small{border-radius:2px} .c-img-radius-large{border-radius:12px} .c-img-radius-middle{border-radius:4px} .c-img-radius-left{border-top-left-radius:6px;border-bottom-left-radius:6px} .c-img-radius-right{border-top-right-radius:6px;border-bottom-right-radius:6px} .c-img-radius-left-s{border-top-left-radius:2px;border-bottom-left-radius:2px} .c-img-radius-right-s{border-top-right-radius:2px;border-bottom-right-radius:2px} .c-img-radius-left-l{border-top-left-radius:12px;border-bottom-left-radius:12px} .c-img-radius-right-l{border-top-right-radius:12px;border-bottom-right-radius:12px} .c-img-mask{position:absolute;top:0;left:0;z-index:2;width:100%;height:100%;background-image:radial-gradient(circle,rgba(0,0,0,0),rgba(0,0,0,.04));background-image:-ms-radial-gradient(circle,rgba(0,0,0,0),rgba(0,0,0,.04))} .c-img-border{content:'';position:absolute;top:0;left:0;bottom:0;right:0;border:1px solid rgba(0,0,0,.05)} .c-img-circle{border-radius:100%;overflow:hidden} .c-input{display:inline-block;font:13px/23px Arial,sans-serif;color:#333;padding:0 10px;border:1px solid #d7d9e0;border-radius:6px;height:28px;line-height:28px\9;font-size:13px;outline:0;box-sizing:content-box;-webkit-box-sizing:content-box;-moz-box-sizing:content-box;vertical-align:top;overflow:hidden} .c-input .c-icon{float:right;margin-top:6px;font-size:16px;color:#9195a3} .c-input .c-icon-left{float:left;margin-right:4px} .c-input input{float:left;font-size:13px;border:0;outline:0} .c-input input::-webkit-input-placeholder{color:#9195a3} .c-input input::-ms-input-placeholder{color:#9195a3} .c-input input::-moz-placeholder{color:#9195a3} .c-input::-webkit-input-placeholder{color:#9195a3} .c-input::-ms-input-placeholder{color:#9195a3} .c-input::-moz-placeholder{color:#9195a3} .c-input{width:394px} .c-input input{width:374px} .c-input-xmini{width:154px} .c-input-xmini input{width:134px} .c-input-mini{width:202px} .c-input-mini input{width:182px} .c-input-small{width:346px} .c-input-small input{width:326px} .c-input-large{width:442px} .c-input-large input{width:422px} .c-input-xlarge{width:730px} .c-input-xlarge input{width:710px} .c-input12{width:538px} .c-input12 input{width:518px} .c-input20{width:922px} .c-input20 input{width:902px} .c-checkbox,.c-radio{display:inline-block;position:relative;white-space:nowrap;outline:0;line-height:1;vertical-align:middle;cursor:pointer;width:16px;height:16px} .c-checkbox-inner,.c-radio-inner{display:inline-block;position:relative;width:16px;height:16px;line-height:16px;text-align:center;top:0;left:0;background-color:#fff;color:#d7d9e0} .c-checkbox-input,.c-radio-input{position:absolute;top:0;bottom:0;left:0;right:0;z-index:1;opacity:0;filter:alpha(opacity=0)\9;user-select:none;margin:0;padding:0;width:100%;height:100%;cursor:pointer;zoom:1} .c-checkbox-inner-i,.c-radio-inner-i{display:none;font-size:16px} .c-checkbox-inner-bg,.c-radio-inner-bg{font-size:16px;position:absolute;top:0;left:0;z-index:1} .c-checkbox-checked .c-checkbox-inner-i,.c-radio-checked .c-radio-inner-i{color:#4e71f2;display:inline-block} .c-textarea{font:13px/23px Arial,sans-serif;color:#333;padding:0 10px;border:1px solid #d7d9e0;border-radius:6px;padding:5px 10px;resize:none;outline:0} .c-textarea::-webkit-input-placeholder{color:#9195a3} .c-textarea::-ms-input-placeholder{color:#9195a3} .c-textarea::-moz-placeholder{color:#9195a3} .c-icon{font-family:cIconfont!important;font-style:normal;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale} .c-line-clamp1{overflow:hidden;text-overflow:ellipsis;white-space:nowrap} .c-text{display:inline-block;padding:0 2px;text-align:center;vertical-align:middle;font-style:normal;color:#fff;overflow:hidden;line-height:16px;height:16px;font-size:12px;border-radius:4px;font-weight:200} a.c-text{text-decoration:none!important} .c-text-info{padding-left:0;padding-right:0;font-weight:700;color:#2b99ff;vertical-align:text-bottom} .c-text-info span{padding:0 2px;font-weight:400} .c-text-important{background-color:#1cb7fd} .c-text-public{background-color:#4e6ef2} .c-text-warning{background-color:#f60} .c-text-prompt{background-color:#ffc20d} .c-text-danger{background-color:#f73131} .c-text-safe{background-color:#39b362} .c-text-mult{padding:0 4px;line-height:18px;height:18px;border-radius:4px;font-weight:400} .c-text-blue{background-color:#4e6ef2} .c-text-blue-border{border:1px solid #cbd2ff;padding:0 8px;border-radius:4px;font-weight:400;color:#4e6ef2!important} .c-text-green{background-color:#39b362} .c-text-green-border{border:1px solid #c9e7cd;padding:0 8px;border-radius:4px;font-weight:400;color:#39b362!important} .c-text-red{background-color:#f73131} .c-text-red-border{border:1px solid #f0c8bd;padding:0 8px;border-radius:4px;font-weight:400;color:#f73131!important} .c-text-yellow{background-color:#ffc20d} .c-text-yellow-border{border:1px solid #fcedb1;padding:0 8px;border-radius:4px;font-weight:400;color:#ffc20d!important} .c-text-orange{background-color:#f60} .c-text-orange-border{border:1px solid #f8d2b0;padding:0 8px;border-radius:4px;font-weight:400;color:#f60!important} .c-text-pink{background-color:#fc3274} .c-text-pink-border{border:1px solid #f6c4d7;padding:0 8px;border-radius:4px;font-weight:400;color:#fc3274!important} .c-text-gray{background-color:#858585} .c-text-gray-border{border:1px solid #dbdbdb;padding:0 8px;border-radius:4px;font-weight:400;color:#858585!important} .c-text-dark-red{background-color:#cc2929} .c-text-gray-opacity{background-color:rgba(0,0,0,.3)} .c-text-white-border{border:1px solid rgba(255,255,255,.8);padding:0 8px;border-radius:4px;font-weight:400;color:#fff!important} .c-text-hot{background-color:#ff9812} .c-text-new{background-color:#ff455b} .c-text-fei{background-color:#ff7413} .c-text-bao{background-color:#d61a6e} .c-text-rec{background-color:#3ca6ff} .c-text-time{background-color:rgba(0,0,0,.3)} .c-wrapper{word-wrap:break-word;word-break:break-all;font:14px/24px Arial,sans-serif;color:#222} .c-wrapper:after{display:block;height:0;content:"";clear:both;visibility:hidden} .c-container{width:560px} .c-wrapper-l{width:1040px} .c-wrapper-l .c-container-r{width:368px} .c-wrapper-s{width:896px} .c-wrapper-s .c-container-r{width:272px} @media screen and (max-width:1340px){ .c-wrapper{width:896px} .c-wrapper .c-container-r{width:272px} } .c-dialog-box{display:none;position:absolute;z-index:999;box-shadow:0 2px 10px 0 rgba(0,0,0,.1);-webkit-box-shadow:0 2px 10px 0 rgba(0,0,0,.1);-moz-box-shadow:0 2px 10px 0 rgba(0,0,0,.1);-o-box-shadow:0 2px 10px 0 rgba(0,0,0,.1);border-radius:16px;background:#fff;padding:19px 24px} .c-dialog-box .c-dialog-close{position:absolute;cursor:pointer;top:12px;right:12px;height:14px;width:14px;line-height:1;color:#d7d9e0} .c-dialog-box .c-dialog-close:hover{color:#315efb} .c-floating-box{background:#fff;box-shadow:0 2px 10px 0 rgba(0,0,0,.15);-webkit-box-shadow:0 2px 10px 0 rgba(0,0,0,.15);-moz-box-shadow:0 2px 10px 0 rgba(0,0,0,.15);-o-box-shadow:0 2px 10px 0 rgba(0,0,0,.15);border-radius:12px;*border:1px solid #d7d9e0} .c-link{color:#222;text-decoration:none} .c-link:visited{color:#626675} .c-link:hover{color:#315efb;text-decoration:none} .c-capsule-tip{display:inline-block;background:#f63051;border-radius:7px;padding:0 4px;height:13px;font-size:11px;line-height:14px;color:#fff;text-align:center}</style> <style type="text/css" index="common">#head_wrapper{position:relative;height:40%;min-height:314px;max-height:510px;width:1000px;margin:0 auto} #head_wrapper .s-p-top{height:60%;min-height:185px;max-height:310px;position:relative;z-index:0;text-align:center} #head_wrapper #s_lg_img,#head_wrapper #s_lg_img_new{bottom:15px!important} #head_wrapper input{outline:0;-webkit-appearance:none} #head_wrapper input::-webkit-input-placeholder{color:#9195a3} #head_wrapper .s_btn_wr,#head_wrapper .s_ipt_wr{display:inline-block;*display:inline;zoom:1;background:0 0;vertical-align:top;*vertical-align:middle} #head_wrapper .s_ipt_wr{position:relative;width:546px} #head_wrapper .s_btn_wr{width:108px;height:44px;position:relative;z-index:2} #head_wrapper .s_ipt_wr:hover #kw{border-color:#a7aab5} #head_wrapper #kw{width:512px;height:16px;padding:12px 16px;font-size:16px;margin:0;vertical-align:top;outline:0;box-shadow:none;border-radius:10px 0 0 10px;border:2px solid #c4c7ce;background:#fff;color:#222;overflow:hidden;box-sizing:content-box} #head_wrapper #kw:focus{border-color:#4e6ef2!important;opacity:1;filter:alpha(opacity=100)\9} #head_wrapper .soutu-env-mac #form #kw{width:450px!important;padding-right:78px!important} #head_wrapper.s-down .soutu-env-mac #form #kw{width:450px!important} #head_wrapper .soutu-env-nomac #form #kw{width:480px!important;padding-right:48px!important} #head_wrapper.s-down .soutu-env-nomac #form #kw{width:480px!important} #head_wrapper .s_form{width:654px;height:100%;margin:0 auto;text-align:left;z-index:100} #head_wrapper .s_btn{cursor:pointer;width:108px;height:44px;line-height:45px;line-height:44px\9;padding:0;background:0 0;background-color:#4e6ef2;border-radius:0 10px 10px 0;font-size:17px;color:#fff;box-shadow:none;font-weight:400;border:none;outline:0} #head_wrapper .s_btn:hover{background-color:#4662d9} #head_wrapper .s_btn:active{background-color:#4662d9} #head_wrapper.s-down{position:fixed;_position:static;top:0;left:0;height:50px;min-height:50px;z-index:20;width:100%;padding-top:15px;_margin:0 auto} #head_wrapper.s-down .s_form{width:100%;min-width:1250px;margin:0 auto;height:100%;padding-left:0;margin-top:0;min-height:0} #head_wrapper.s-down .s_form .s_form_wrapper{margin:0 auto} #head_wrapper.s-down .s-p-top{display:none} #head_wrapper.s-down #result_logo,#head_wrapper.s-down .fm{display:inline-block;*display:inline;zoom:1;vertical-align:middle;margin-left:-119px} @-webkit-keyframes fadein{ from{opacity:0} to{opacity:1} } #head_wrapper.s-down #result_logo{-webkit-animation:fadein 1s} #head_wrapper.s-down .fm{margin:0 0 0 18px} #head_wrapper.s-down #result_logo img{width:101px} #head_wrapper.s-down #kw{padding:10px 16px;width:512px} #head_wrapper.s-down .s_ipt_wr{width:546px} #head_wrapper.s-down .s_btn,#head_wrapper.s-down .s_btn_wr{height:40px} #head_wrapper.s-down .s_btn{line-height:41px;line-height:40px\9} #head_wrapper .ipt_rec,#head_wrapper .soutu-btn{background:#fff url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/searchbox/nicon-10750f3f7d.png) no-repeat;width:24px;height:20px} @media only screen and (-webkit-min-device-pixel-ratio:2){ #head_wrapper .ipt_rec,#head_wrapper .soutu-btn{background-image:url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/searchbox/nicon-2x-6258e1cf13.png);background-size:24px 96px} } #head_wrapper .soutu-btn{background-position:0 -51px;right:16px;margin-top:-9px} #head_wrapper .soutu-btn:hover{background-position:0 -75px} #head_wrapper .ipt_rec{background-position:0 -2px;top:50%;right:52px!important;margin-top:-10px} #head_wrapper .ipt_rec:hover{background-position:0 -26px} #head_wrapper .ipt_rec:after{display:none} #head_wrapper .under-tips{font-size:13px;color:#222;text-align:center} #head_wrapper .under-tips .links-link{color:#222;display:inline-block} #head_wrapper .under-tips .links-link:hover{color:#315efb} #head_wrapper .under-tips .links-link--image{display:inline-block;width:176px;height:30px;border-radius:6px;overflow:hidden;margin-top:8px} #head_wrapper .under-tips .links-emphasize-link{margin-top:2px;margin-right:20px;padding:0 8px;font-size:14px;text-decoration:none;line-height:30px;display:inline-block;color:#2027b4;border-radius:6px;background:#f5f7fe} #head_wrapper .under-tips .links-emphasize-link:hover{color:#315efb} #head_wrapper .under-tips .links-emphasize-link.last{margin-right:0} #head_wrapper .under-tips .icon{display:inline-block;background-color:#dadde2;width:4px;height:4px;border-radius:50%;margin:0 20px;line-height:18px;vertical-align:top} #head_wrapper #m{margin:38px auto 0 auto;width:100%} #head_wrapper #m .icon{margin-top:8px} #head_wrapper #s_lm_wrap{position:static;margin:32px auto 0 auto;width:100%} #head_wrapper #s_lm_wrap .links-wrap{display:inline-block;margin:0 auto} #head_wrapper #s_lm_wrap .links-wrap .links-link:hover{text-decoration:none} #head_wrapper #s_lm_wrap .links-wrap .icon{margin-top:13px} #head_wrapper.s-ps-islite #m{position:absolute;bottom:-56px} #head_wrapper.s-ps-islite #s_lm_wrap{position:absolute;margin-bottom:0;bottom:-62px;left:0;box-sizing:border-box} .s-skin-hasbg #head_wrapper .s_btn{background:#e4e4e5;color:#222} .s-skin-hasbg #head_wrapper .s_btn:hover{background-color:#cdcdce} .s-skin-hasbg #head_wrapper .s_btn:active{background-color:#cdcdce} .s-skin-hasbg #head_wrapper #form #kw{border-color:#e4e4e5} .s-skin-hasbg #head_wrapper #form #kw:hover{border-color:#e4e4e5;opacity:1;filter:alpha(opacity=100)\9} .s-skin-hasbg #head_wrapper #form #kw:focus{border-color:#e4e4e5!important;opacity:1;filter:alpha(opacity=100)\9} .s-skin-hasbg #head_wrapper #form #kw.new-ipt-focus{border-color:#e4e4e5} .s-skin-hasbg #head_wrapper #s_lm_wrap{background-image:none;filter:none} .s-skin-hasbg #head_wrapper #s_lm_wrap .links-wrap{background-color:rgba(255,255,255,.65)!important;padding:0 12px;border-radius:6px} .s-skin-hasbg #head_wrapper #s_lm_wrap .links-wrap .icon{margin-top:13px} .s-skin-hasbg #head_wrapper.s-down #form #kw{border-color:#c4c7ce} .s-skin-hasbg #head_wrapper.s-down #form #kw:hover{border-color:#a7aab5;opacity:.8;filter:alpha(opacity=80)\9} .s-skin-hasbg #head_wrapper.s-down #form #kw:focus{border-color:#4e6ef2!important;opacity:1;filter:alpha(opacity=100)\9} .s-skin-hasbg #head_wrapper.s-down #form #kw.new-ipt-focus{border-color:#4e6ef2} .s-skin-hasbg #head_wrapper.s-down .s_btn{background:#4e6ef2;color:#fff} .s-skin-hasbg #head_wrapper.s-down .s_btn:hover{background-color:#4662d9} .s-skin-hasbg #head_wrapper.s-down .s_btn:active{background-color:#4662d9} #s_top_wrap{position:absolute;z-index:99;min-width:1000px;width:100%} #s_top_wrap.s-down{position:fixed;_position:absolute;top:0;left:0;height:70px;z-index:10;width:100%} #s_top_wrap .s-center-box{position:relative;z-index:1;width:100%;_width:1000px;height:100%} #s_top_wrap.s-down .s-center-box{box-shadow:0 2px 10px 0 rgba(0,0,0,.1);background-color:#fff;border-bottom:1px solid #888\9;_border-bottom:0} #s_top_wrap .s-top-nav{position:absolute;top:70px;width:100%;min-width:1250px;_width:1000px;height:40px;overflow:hidden;display:none} .s-top-wrap{border-bottom:0;height:60px;background:#fff} .s-top-left{position:absolute;left:0;top:0;z-index:100;height:60px;padding-left:24px} .s-top-left .mnav{margin-right:31px;margin-top:19px;display:inline-block;position:relative} .s-top-left .mnav:hover .s-bri,.s-top-left a:hover{color:#315efb;text-decoration:none} .s-top-left .s-top-more-btn{padding-bottom:19px} .s-top-left .s-top-more{display:none;position:absolute;top:29px;right:-12px;width:304px;height:223px;background:#fff;box-shadow:0 2px 10px 0 rgba(0,0,0,.15);border-radius:12px} .s-top-left .s-top-more .s-top-more-content.row-1{padding-top:16px} .s-top-left .s-top-more .s-top-more-content.row-2{padding-top:19px} .s-top-left .s-top-more .s-top-more-content a{width:76px;height:70px;float:left} .s-top-left .s-top-more .s-top-more-content img{width:42px;height:42px;margin:auto;border:1px solid rgba(0,0,0,.03);border-radius:12px;display:block} .s-top-left .s-top-more .s-top-more-content .s-top-more-title{width:76px;text-align:center;margin-top:3px} .s-top-left .s-top-more .s-top-more-content>a:hover .s-top-more-title{color:#315efb} .s-top-left .s-top-more .s-top-tomore{margin-top:10px} .s-top-left .s-top-more-btn:hover .s-top-more{display:block} .s-top-right{position:absolute;right:0;top:0;z-index:100;height:60px;padding-right:24px} .s-top-right .s-top-right-text{margin-left:32px;margin-top:19px;display:inline-block;position:relative;vertical-align:top;cursor:pointer} .s-top-right .s-top-right-text:hover{color:#315efb} .s-top-right .s-top-username{margin-left:32px;margin-top:15px;display:inline-block;height:30px} .s-top-right .s-top-username .s-top-img-wrapper{position:relative;width:28px;height:28px;border:1px solid #4e71f2;display:inline-block;border-radius:50%} .s-top-right .s-top-username img{padding:2px;width:24px;height:24px;border-radius:50%} .s-top-right .s-top-username:hover .user-name{color:#315efb} .s-top-right .s-top-username .user-name{display:inline-block;max-width:100px;overflow:hidden;white-space:nowrap;text-overflow:ellipsis;-o-text-overflow:ellipsis;vertical-align:top;margin-top:3px;margin-left:6px} .s-top-right .s-top-username.s-hasmsg-tip .s-top-img-wrapper::after{content:'';position:absolute;top:-1px;right:0;width:6px;height:6px;border:1px solid #fff;border-radius:6px;background:#f63051} .s-top-right .s-top-login-btn{display:inline-block;margin-top:18px;margin-left:32px;font-size:13px} .s-top-right a:hover{text-decoration:none} .s-top-userset-menu{display:none;width:84px;padding:8px 0;top:48px;position:absolute;right:10px;float:right;z-index:999;text-align:left} .s-top-userset-menu a{display:block;margin:3px 16px 3px 16px;color:#333} .s-top-userset-menu a:hover{color:#315efb;text-decoration:none} .s-top-userset-menu .split-line{display:block;margin:8px 16px;background:#d7d9e0;height:1px} .s-top-userset-menu .s-msg-count{display:none;margin-left:4px} .s-top-userset-menu .hide-feed{display:inline-block} .s-top-userset-menu .show-feed{display:none} .s-top-userset-menu.hiding-feed .hide-feed{display:none} .s-top-userset-menu.hiding-feed .show-feed{display:inline-block} .s-skin-hasbg .s-top-wrap{background:rgba(0,0,0,.2)} .s-skin-hasbg .s-top-left .mnav,.s-skin-hasbg .s-top-left .mnav .s-bri{color:rgba(255,255,255,.85)} .s-skin-hasbg .s-top-left .mnav:hover,.s-skin-hasbg .s-top-left .mnav:hover .s-bri{color:#fff;text-decoration:none} .s-skin-hasbg .s-top-right .s-top-right-text.c-color-t{color:rgba(255,255,255,.85)} .s-skin-hasbg .s-top-right .s-top-right-text.c-color-t:hover{color:#fff} .s-skin-hasbg .s-top-right .s-top-username .user-name{color:rgba(255,255,255,.85)} .s-skin-hasbg .s-top-right .s-top-username:hover .user-name{color:#fff} .s-top-right.s-down{position:fixed;left:0;top:5px;min-width:1250px;width:100%;height:0;text-align:right;padding-right:0} .s-top-right.s-down>*{display:none} .s-top-right.s-down>#s-top-username,.s-top-right.s-down>#s-usersetting-top{display:inline-block} .s-top-right.s-down #s-top-username{margin-right:24px} .s-top-right.s-down .s-top-right-text.c-color-t{color:#222} .s-top-right.s-down .s-top-right-text.c-color-t:hover{color:#315efb} .s-top-right.s-down .s-top-username .user-name{color:#222} .s-top-right.s-down .s-top-username:hover .user-name{color:#315efb} .guide-info{background-color:#fff;box-shadow:0 2px 10px 0 rgba(0,0,0,.1);border-radius:12px 2px 12px 12px;height:36px;width:258px;text-align:left;position:absolute;margin-top:6px;padding:5px 0 5px 10px;display:none} .guide-info .guide-icon{color:#4e6ef2;font-size:15px;display:inline-block;line-height:36px;vertical-align:top;margin-right:6px} .guide-info span{display:inline-block;line-height:36px;vertical-align:top;font-size:13px;font-family:Arial,sans-serif;color:#333} .guide-info .guide-close{color:#c4c7ce;margin-left:11px;display:inline-block;width:20px;height:36px;text-align:center;line-height:36px;vertical-align:top;font-size:13px;cursor:pointer} .guide-info .guide-close:hover{color:#4e6ef2} .guide-info-login{width:244px} .s-ie8-hack .s-top-userset-menu{margin-right:-20px} .s-ie8-hack .s-top-userset-menu{border:1px solid #f5f5f6} #bottom_layer{width:100%;position:fixed;z-index:302;bottom:0;left:0;height:39px;padding-top:1px;overflow:hidden;zoom:1;margin:0;line-height:39px;background:#fff} #bottom_layer .lh{display:inline;margin-right:18px} #bottom_layer .lh .emphasize{text-decoration:underline;font-weight:700} #bottom_layer .lh:last-child{margin-left:-2px;margin-right:0} #bottom_layer .lh.activity{font-weight:700;text-decoration:underline} #bottom_layer a{font-size:12px;text-decoration:none} #bottom_layer .text-color{color:#bbb} #bottom_layer a:hover{color:#222} #bottom_layer .s-bottom-layer-content{text-align:center} .s-bottom-space{position:static;width:100%;height:40px;margin:23px auto 12px} #blind-box{position:fixed;right:24px;bottom:185px;height:44px;width:44px;border-radius:22px} #blind-box .blind-search-box{position:absolute;bottom:-17px;right:0;min-width:208px;height:80px;box-sizing:border-box;padding:17px 0 17px 6px;overflow:hidden;text-align:right} #blind-box .blind-search-box .blind-search-area{background-color:#fff;text-align:left;display:inline-block;height:46px;max-width:100%;width:fit-content;white-space:nowrap;overflow:hidden;box-sizing:border-box;padding-right:56px;border-radius:12px 2px 12px 12px;font-size:13px;cursor:pointer;color:#333;transform:translateX(110%);line-height:46px;position:relative} #blind-box .blind-search-box .blind-search-area .blind-text,#blind-box .blind-search-box .blind-search-area .i{display:inline-block;vertical-align:top} #blind-box .blind-search-box .blind-search-area i{color:#4e71f2;font-size:14px;margin-left:10px} #blind-box .blind-search-box .blind-search-area .blind-text{height:100%;min-width:50px;position:relative;line-height:46px;transition:all .3s;overflow:hidden} #blind-box .blind-search-box .blind-search-area .blind-text:hover{color:#315efb} #blind-box .blind-search-box .blind-search-area .blind-text .blind-span{line-height:46px;position:absolute;white-space:nowrap;left:0;top:0;opacity:0;transition:all .3s} #blind-box .blind-search-box .blind-search-area .blind-text .span-now{opacity:1} #blind-box .blind-search-box .blind-search-area .blind-text .span-next{opacity:0;transform:translateX(-40%)} #blind-box .blind-search-box .blind-search-area .blind-text .span-last{opacity:0;transform:translateX(40%)} #blind-box .blind-search-box .blind-box-hover{transform:translateX(0);box-shadow:0 2px 10px 0 rgba(0,0,0,.1)} #blind-box .blind-search-img{height:80px;width:80px;position:absolute;left:-12px;bottom:0;transform-origin:bottom center;transform:scale(.55);border-radius:40px;cursor:pointer;background-color:#fbfbfb;overflow:hidden} #blind-box .blind-search-img .blind-img{height:100%;width:100%;position:absolute;top:0;left:0;object-fit:contain;object-position:center;opacity:0;transition:all .3s} #blind-box .blind-search-img .blind-img-show{opacity:1} #blind-box .blind-img-hover{transform:scale(1) translateZ(0);border-radius:0;background-color:transparent} #blind-box .blind-img-ie,#blind-box .blind-title-ie{cursor:pointer;position:absolute;bottom:0;right:0} #blind-box .blind-title-ie{background-color:#fff;height:46px;width:191px;line-height:46px;box-sizing:border-box;padding:0 10px;font-size:13px;color:#333;visibility:hidden} #blind-box .blind-title-ie:hover{color:#315efb} #blind-box .blind-img-ie{height:44px;width:44px;object-fit:cover;object-position:center} #blind-box:hover .blind-img-ie{height:80px;width:80px;right:-24px} #blind-box:hover .blind-img-ie,#blind-box:hover .blind-title-ie{visibility:visible} @media screen and (max-width:1158px){ #blind-box{display:none} } #s_popup_advert{position:absolute} #s_popup_advert .popup-advert{display:none;position:fixed;right:0;bottom:0;z-index:303;width:100%;text-align:center} #s_popup_advert .advert-link{display:block;width:100%} #s_popup_advert .advert{display:block;width:100%;height:auto} #s_popup_advert .right-wrap{position:absolute;right:24px;top:24px;width:152px;height:30px;border-radius:6px;line-height:30px;font-size:13px;color:#9195a3} #s_popup_advert .popup-count-down{float:left;padding-left:10px} #s_popup_advert .close-wrap{float:right;padding-left:10px;padding-right:10px;cursor:pointer} #s_popup_advert .close-icon{vertical-align:middle;color:#c0c2c8} #s_popup_advert .close-text{padding-left:8px} #s_popup_advert .close-wrap:hover .close-icon{color:#9195a3} #s_popup_advert .close-wrap:hover .close-text{color:#626675} #s_popup_advert .advert-shrink{transform:scale(0);-ms-transform:scale(0);-moz-transform:scale(0);-webkit-transform:scale(0);-o-transform:scale(0);opacity:0;position:fixed;right:24px;bottom:140px;z-index:303;width:44px} #s_popup_advert .close-shrink{cursor:pointer;position:absolute;left:41px;top:-5px;color:#c0c2c8;font-size:12px} #s_popup_advert .shrink-link{display:block;height:44px} #s_popup_advert .shrink{display:block;width:100%;height:100%;border-radius:22px} #s_popup_advert .replay{cursor:pointer;display:block;margin-top:6px;border-radius:4px;text-align:center;line-height:20px;font-size:13px;color:#9195a3} #s_popup_advert .close-shrink:hover{color:#9195a3} #s_popup_advert .replay:hover{color:#626675} @media screen and (max-width:1158px){ #s_popup_advert{display:none} } .guide-info-new{z-index:999;height:34px;padding:0 15px;min-width:120px;background-color:rgba(98,102,117,.8);box-shadow:0 2px 10px 0 rgba(0,0,0,.1);border-radius:6px 6px 6px 6px;text-align:left;position:absolute;line-height:35px} .guide-info-new span{display:inline-block;vertical-align:top;font-size:13px;font-family:Arial,sans-serif;color:#fff;margin-right:-5px} .guide-info-new .guide-close{color:#d7d9e0;margin-left:8px;display:inline-block;height:34px;text-align:center;vertical-align:top;font-size:13px!important;cursor:pointer} .guide-info-new .guide-close:hover{color:#fff!important} .guide-info-new .guide-arrow-bottom,.guide-info-new .guide-arrow-left,.guide-info-new .guide-arrow-right,.guide-info-new .guide-arrow-top{position:absolute;opacity:.8} .guide-info-new .guide-arrow-bottom{top:-11px;right:0;height:22px;width:22px;background:url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/guide_new/arrow-bottom-a44a0c6a30.png) no-repeat 0 0;background-image:-webkit-image-set(url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/guide_new/arrow-bottom-a44a0c6a30.png) 2x)} .guide-info-new .guide-arrow-left{right:-22px;top:10px;height:22px;width:22px;background:url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/guide_new/arrow-left-a7b272965a.png) no-repeat 0 0;background-image:-webkit-image-set(url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/guide_new/arrow-left-a7b272965a.png) 2x)} .guide-info-new .guide-arrow-top{bottom:-22px;left:10px;height:22px;width:22px;background:url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/guide_new/arrow-top-d81f5f8843.png) no-repeat 0 0;background-image:-webkit-image-set(url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/guide_new/arrow-top-d81f5f8843.png) 2x)} .guide-info-new .guide-arrow-right{left:-11px;top:10px;height:22px;width:22px;background:url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/guide_new/arrow-right-69f7969669.png) no-repeat 0 0;background-image:-webkit-image-set(url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/guide_new/arrow-right-69f7969669.png) 2x)} .guide-info-new :hover .guide-close{color:#d7d9e0} .red-point{position:relative} .red-point::before{content:" ";border:3px solid #f73131;border-radius:3px;position:absolute;z-index:1000;right:0;margin-right:-5px;margin-top:-2px} .color222{color:#222!important}</style> <style type="text/css" index="weather">.s-weather-wrapper{float:none;display:inline-block;margin-left:32px;margin-top:19px;height:23px;vertical-align:top} .s-weather-wrapper .s-mod-weather{margin:0;height:23px;line-height:23px;display:inline-block} .s-weather-wrapper .s-mod-weather .weather-mod{display:none} .s-weather-wrapper .s-mod-weather .weather-mod .city-wather{display:inline-block} .s-weather-wrapper .s-mod-weather .weather-mod .city-wather .show-city{height:23px;display:inline-block;vertical-align:top;margin-right:8px} .s-weather-wrapper .s-mod-weather .weather-mod .city-wather .show-icon{margin-right:8px} .s-weather-wrapper .s-mod-weather .weather-mod .city-wather .show-icon .weather-icon{width:23px;height:23px;display:inline-block;background-size:100% 100%;margin-right:4px} .s-weather-wrapper .s-mod-weather .weather-mod .city-wather .show-icon .show-icon-temp{vertical-align:top} .s-weather-wrapper .s-mod-weather .weather-mod .show-pollution{display:inline-block;vertical-align:top;height:23px;line-height:23px} .s-weather-wrapper .s-mod-weather .weather-mod .show-pollution .show-polution-name{height:16px;color:#fff;background:#4e71f2;border-radius:3px;font-size:11px;display:inline-block;line-height:17px;text-align:center;padding:0 2px} .s-weather-wrapper .s-mod-weather .unknown-city .unknown-icon{color:#4e71f2;font-size:20px;background:0 0;margin-right:4px} .s-weather-wrapper .s-mod-weather .unknown-city .unknown-setting{vertical-align:top;color:#222} .s-weather-wrapper .s-mod-weather.hide-unknow-city .weather-mod{display:block} .s-weather-wrapper .s-mod-weather.hide-unknow-city .unknown-city{display:none} .s-weather-wrapper:hover a{text-decoration:none} .s-weather-wrapper:hover .show-city-name,.s-weather-wrapper:hover .show-icon-temp{color:#315efb} .s-weather-wrapper:hover .unknown-city .unknown-setting{color:#315efb} .s-skin-hasbg .s-weather-wrapper .show-city-name,.s-skin-hasbg .s-weather-wrapper .show-icon-temp{color:rgba(255,255,255,.85)} .s-skin-hasbg .s-weather-wrapper .unknown-city .unknown-setting{color:rgba(255,255,255,.85)} .s-skin-hasbg .s-weather-wrapper:hover .show-city-name,.s-skin-hasbg .s-weather-wrapper:hover .show-icon-temp{color:#fff} .s-skin-hasbg .s-weather-wrapper:hover .unknown-city .unknown-setting{color:#fff} .s-mod-setweather{position:absolute;top:48px;right:24px;width:496px;z-index:500;display:none;background-color:#fff;box-shadow:0 2px 10px 0 rgba(0,0,0,.1);border-radius:12px;text-align:left} .s-mod-setweather span{user-select:none} .s-mod-setweather.hide{display:none} .s-mod-setweather.show{display:block} .s-mod-setweather.show-setting .setweather-content,.s-mod-setweather.show-setting .warn-icon-link{display:none} .s-mod-setweather.hide-warning .warn-icon-link,.s-mod-setweather.hide-warning .warn-mod{display:none} .s-mod-setweather.show-content .setweather-setting{display:none} .s-mod-setweather .warn-icon-link{position:absolute;top:21px;left:22px;width:24px;height:24px;background-image:url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/weather/[email protected]);background-size:100% 100%;_background-image:none;_filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(src='https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/weather/[email protected]', enabled=true, sizingMethod="crop")} .s-mod-setweather .setweather-content{padding:12px 16px 16px} .s-mod-setweather .setweather-content .warn-mod{height:36px;background:#f5f5f6;border-radius:6px;margin-top:4px;margin-bottom:12px} .s-mod-setweather .setweather-content .warn-mod .warn-mod-wrapper:hover .warn-title{color:#315efb} .s-mod-setweather .setweather-content .warn-mod .warn-img-bg{float:left;width:36px;height:36px;border-radius:6px} .s-mod-setweather .setweather-content .warn-mod .warn-title{float:left;margin-top:6px;margin-left:10px} .s-mod-setweather .setweather-content .warn-mod .warn-title:hover{text-decoration:none} .s-mod-setweather .setweather-content .lunar-mod .lunar-festival{margin-left:16px} .s-mod-setweather .setweather-content .lunar-mod .lunar-sevenday{margin-left:16px;color:#315efb} .s-mod-setweather .setweather-content .lunar-mod .lunar-setting-btn{float:right;cursor:pointer} .s-mod-setweather .setweather-content .lunar-mod .lunar-setting-btn .c-icon{color:#4e71f2;display:inline-block;margin-right:4px;font-size:18px;margin-top:3px;line-height:17px;vertical-align:top} .s-mod-setweather .setweather-content .lunar-mod .lunar-setting-btn:hover .lunar-settint-text{color:#315efb} .s-mod-setweather .setweather-content .everyday-mod{text-align:center} .s-mod-setweather .setweather-content .everyday-mod .everyday-item{float:left;width:84px;overflow:hidden;margin-right:11px;margin-top:13px;padding:5px 0} .s-mod-setweather .setweather-content .everyday-mod .everyday-item:hover{background:#f5f5f6;border-radius:6px} .s-mod-setweather .setweather-content .everyday-mod .everyday-item:last-child{margin-right:0} .s-mod-setweather .setweather-content .everyday-mod .everyday-icon{width:32px;height:32px;margin:3px auto;display:block} .s-mod-setweather .setweather-content .everyday-mod .everyday-condition,.s-mod-setweather .setweather-content .everyday-mod .everyday-temp,.s-mod-setweather .setweather-content .everyday-mod .everyday-wind{font-size:12px;line-height:22px} .s-mod-setweather .setweather-content .everyday-mod .everyday-condition,.s-mod-setweather .setweather-content .everyday-mod .everyday-wind{margin-top:-2px} .s-mod-setweather .setweather-setting{padding:12px 16px 16px} .s-mod-setweather .setweather-setting .c-select{width:122px} .s-mod-setweather .setweather-setting .c-select-dropdown{width:120px} .s-mod-setweather .setweather-setting .setting-city-title{text-align:left} .s-mod-setweather .setweather-setting .setting-city-select{margin-top:11px;margin-bottom:12px;text-align:left} .s-mod-setweather .setweather-setting .setting-city-select .setting-city-province{margin-right:16px} .s-mod-setweather .setweather-setting .setting-extreme-weather{text-align:left} .s-mod-setweather .setweather-setting .setting-extreme-weather .setting-extreme-weather-checkbox{margin-bottom:4px} .s-mod-setweather .setweather-setting .setting-extreme-weather .setting-extreme-weather-label{display:inline-block;padding-left:8px} .s-mod-setweather .setweather-setting .setting-save-or-cancel{margin-top:15px;text-align:left} .s-mod-setweather .setweather-setting .setting-save-or-cancel .setting-save{margin-left:16px} .s-mod-setweather .setweather-setting .setting-save-or-cancel .setting-cancel{cursor:pointer}</style> <link rel="stylesheet" id="s_superplus_css_lnk" type="text/css" href="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/css/super_min-fe4f97903e.css" /> <style type="text/css">#s_main{display:block;position:relative;margin:0 auto;border-radius:16px;box-sizing:content-box;background:#fff;padding:14px 24px 0}.s-skin-hasbg #s_main{background:rgba(255,255,255,.85)}.main a,.main span{outline:0}.s-mancacrd-main{position:relative;z-index:2}.s-content{padding-bottom:24px}#s_content_1{padding-bottom:0}.s-menu-container,.s-menu-gurd{width:100%}.s-menu-container{min-height:32px}.s-ctner-menus{position:relative;z-index:0;width:100%;margin:0 auto;text-align:left;height:32px}#s_menu_gurd.s-down .s-ctner-menus{width:1040px}@media screen and (max-width:1340px){#s_menu_gurd.s-down .s-ctner-menus{width:896px}}#s_menu_gurd.s-down{background-color:#f5f5f6;margin-top:-32px}.s-ctner-menus .s-menus-outer{width:100%}.s-ctner-menus .menus-wrapper{height:100%;color:#9195a3}.s-ctner-menus .s-menu-item{position:relative;display:inline-block;cursor:pointer;margin-right:24px;margin-top:4px;line-height:26px}.s-top-nav .s-menu-gurd{min-height:40px}.s-top-nav .s-ctner-menus{height:40px}.s-top-nav .s-ctner-menus .s-menu-item{margin-top:2px;line-height:36px}.s-ctner-menus .s-menu-item:hover{color:#222}.s-ctner-menus .current,.s-ctner-menus .current:hover{color:#222}.s-ctner-menus .s-menu-item-underline{display:none;content:'';position:absolute;bottom:-2px;left:0;height:2px;width:100%;background:#4e71f2;border-radius:4px}.s-ctner-menus .current .s-menu-item-underline{display:inline-block}.s-ctner-contents{width:100%;min-height:363px;_height:363px;_overflow:visible}.s-skin-hasbg .s-ctner-contents{_background-color:#fff;_border:none;_padding:1px}.s-ctner-contents .s-content-load{padding:150px 0}.s-ctner-contents .s-content-load img{width:44px;height:16px}.s-ctner-contents .s-loading{height:53px;width:95%;padding-top:11px;margin:0 auto;border-top:1px solid #f0f0f0;font-size:14px}.s-ctner-contents .s-loading img{width:44px;height:16px}.s-ctner-contents .s-loading .load-done,.s-ctner-contents .s-loading .load-text,.s-ctner-contents .s-loading img{display:inline-block;*display:inline;zoom:1;vertical-align:middle}.s-ctner-contents .s-loading .no-more{color:#9195a3;margin-top:10px}.s-ctner-contents .s-loading .load-done{height:22px;width:22px;margin-top:10px;background:url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/mancard/img/card_setts-c75091e958.png) no-repeat 0 -72px;_background:url(https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/mancard/img/card_setts_ie-50c159f293.png) no-repeat 0 -72px}.s-ctner-contents .s-loading .load-text{margin-left:10px;color:#9195a3}.s-more-bar{width:90px;height:45px;cursor:pointer;position:absolute;bottom:-48px;left:50%;z-index:5;margin-left:-45px;padding-top:0}.s-skin-hasbg .s-more-bar{bottom:-50px}.s-ctner-contents .rect .animate-arrow{display:none}.s-more-bar .rect{height:24px;width:34px;margin:0 auto;font-size:19px}.s-card-split{height:363px;overflow:hidden} #s_side_wrapper{position:fixed;right:24px;bottom:64px;background-color:#fbfbfb;width:44px;border-radius:22px;z-index:3}#s_side_wrapper .video-meet-entry{width:44px;height:44px;border-radius:50%;line-height:44px}#s_side_wrapper .video-meet-entry .c-icon{font-size:20px}#s_side_wrapper .video-meet-entry:hover{box-shadow:0 3px 5px 0 rgba(0,0,0,.1);cursor:pointer}#s_side_wrapper .video-meet-entry:hover .c-icon{color:#4e71f2}#s_side_wrapper .video-meet-entry .video-meet-toast{display:none;position:absolute;right:52px;background:#fff;box-shadow:0 1px 10px 0 rgba(0,0,0,.1);border-radius:6px;width:110px;height:34px;line-height:34px;top:9px;font-size:13px}#s_side_wrapper .qrcode-feed,#s_side_wrapper .top-feed{width:44px;height:44px;border-radius:50%}#s_side_wrapper .qrcode-feed:hover,#s_side_wrapper .top-feed:hover{box-shadow:0 3px 5px 0 rgba(0,0,0,.1)}#s_side_wrapper .qrcode-feed:hover .tooltip,#s_side_wrapper .top-feed:hover .tooltip{display:block}#s_side_wrapper .qrcode-feed:hover .icon-mask-wrapper .icon,#s_side_wrapper .top-feed:hover .icon-mask-wrapper .icon{display:none}#s_side_wrapper .qrcode-feed:hover .icon-mask-wrapper .icon-hover,#s_side_wrapper .top-feed:hover .icon-mask-wrapper .icon-hover{display:block}#s_side_wrapper .icon-mask-wrapper{width:100%;border-radius:50%;padding:10px 0;cursor:pointer}#s_side_wrapper .icon-mask-wrapper .icon,#s_side_wrapper .icon-mask-wrapper .icon-hover{height:24px;width:24px;margin-right:auto;margin-left:auto;display:block}#s_side_wrapper .icon-mask-wrapper .icon-hover{display:none}#s_side_wrapper .qrcode-feed{position:relative}#s_side_wrapper .qrcode-feed:hover .icon-mask-wrapper::before{position:absolute;top:0;left:-20px;content:'';width:44px;height:44px}#s_side_wrapper .tooltip{display:none;position:absolute;right:56px;bottom:0;background-color:#fff;z-index:303;box-shadow:0 2px 10px 0 rgba(0,0,0,.1);border-radius:12px}#s_side_wrapper .totop-tooltip{width:80px;height:36px;line-height:36px}#s_side_wrapper .qrcode-tooltip{width:279px;height:102px}#s_side_wrapper .qrcode-tooltip .text{text-align:left;margin-top:24px;margin-left:16px}#s_side_wrapper .qrcode-tooltip .download-text{color:#000}#s_side_wrapper .qrcode-tooltip .qrcode{position:absolute;width:70px;height:70px;top:16px;right:16px}@media screen and (max-width:1158px){#s_side_wrapper{display:none}}</style><script>(function(){var hashMatch=document.location.href.match(/#+(.*wd=[^&]+)/);if(hashMatch&&hashMatch[0]&&hashMatch[1]){var css='body {display: none}',head=document.head||document.getElementsByTagName('head')[0],style=document.createElement('style');if(style.styleSheet){style.styleSheet.cssText = css;}else{style.appendChild(document.createTextNode(css));}head.appendChild(style);location.href="//"+location.host+"/s?"+hashMatch[1];}})();</script> <script> window.sysTime=1615801165; _manCard = { asynJs : [], asynLoad : function(id){ _manCard.asynJs.push(id); } }; </script> <noscript><meta http-equiv="refresh" content="0; url=http://www.baidu.com/baidu.html?from=noscript" /></noscript></head><body class=" has-background s-manhattan-index"> <script> if (navigator.userAgent.indexOf('Edge') > -1) { var body = document.querySelector('body'); body.className += ' browser-edge'; } </script> <textarea id="s_is_result_css" style="display:none;"> &lt;style data-for=&quot;result&quot; type=&quot;text/css&quot; &gt;body{color:#333;background:#fff;padding:6px 0 0;margin:0;position:relative}body,th,td,.p1,.p2{font-family:arial}p,form,ol,ul,li,dl,dt,dd,h3{margin:0;padding:0;list-style:none}input{padding-top:0;padding-bottom:0;-moz-box-sizing:border-box;-webkit-box-sizing:border-box;box-sizing:border-box}table,img{border:0}td{font-size:9pt;line-height:18px}em{font-style:normal}em{font-style:normal;color:#c00}a em{text-decoration:underline}cite{font-style:normal;color:green}.m,a.m{color:#666}a.m:visited{color:#606}.g,a.g{color:green}.c{color:#77c}.f14{font-size:14px}.f10{font-size:10.5pt}.f16{font-size:16px}.f13{font-size:13px}.bg{background-image:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/icons_441e82f.png);_background-image:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/icons_d5b04cc.gif);background-repeat:no-repeat}#u,#head,#tool,#search,#foot{font-size:12px}.logo{width:117px;height:38px;cursor:pointer}.p1{line-height:120%;margin-left:-12pt}.p2{width:100%;line-height:120%;margin-left:-12pt}#wrapper{_zoom:1}#container{word-break:break-all;word-wrap:break-word;position:relative}.container_s{width:1002px}.container_l{width:1222px}#content_left{width:636px;float:left;padding-left:35px}#content_right{border-left:1px solid #e1e1e1;float:right}.container_s #content_right{width:271px}.container_l #content_right{width:434px}.content_none{padding-left:35px}#u{color:#999;white-space:nowrap;position:absolute;right:10px;top:4px;z-index:299}#u a{color:#00c;margin:0 5px}#u .reg{margin:0}#u .last{margin-right:0}#u .un{font-weight:700;margin-right:5px}#u ul{width:100%;background:#fff;border:1px solid #9b9b9b}#u li{height:25px}#u li a{width:100%;height:25px;line-height:25px;display:block;text-align:left;text-decoration:none;text-indent:6px;margin:0;filter:none\9}#u li a:hover{background:#ebebeb}#u li.nl{border-top:1px solid #ebebeb}#user{display:inline-block}#user_center{position:relative;display:inline-block}#user_center .user_center_btn{margin-right:5px}.userMenu{width:64px;position:absolute;right:7px;_right:2px;top:15px;top:14px\9;*top:15px;padding-top:4px;display:none;*background:#fff}#head{padding-left:35px;margin-bottom:20px;width:900px}.fm{clear:both;position:relative;z-index:297}.nv a,.nv b,.btn,#page,#more{font-size:14px}.s_nav{height:45px}.s_nav .s_logo{margin-right:20px;float:left}.s_nav .s_logo img{border:0;display:block}.s_tab{line-height:18px;padding:20px 0 0;float:left}.s_nav a{color:#00c;font-size:14px}.s_nav b{font-size:14px}.s_ipt_wr{width:536px;height:30px;display:inline-block;margin-right:5px;background-position:0 -96px;border:1px solid #b6b6b6;border-color:#7b7b7b #b6b6b6 #b6b6b6 #7b7b7b;vertical-align:top}.s_ipt{width:523px;height:22px;font:16px/18px arial;line-height:22px;margin:5px 0 0 7px;padding:0;background:#fff;border:0;outline:0;-webkit-appearance:none}.s_btn{width:95px;height:32px;padding-top:2px\9;font-size:14px;padding:0;background-color:#ddd;background-position:0 -48px;border:0;cursor:pointer}.s_btn_h{background-position:-240px -48px}.s_btn_wr{width:97px;height:34px;display:inline-block;background-position:-120px -48px;*position:relative;z-index:0;vertical-align:top}.fm_red .s_ipt_wr,.fm_red .s_ipt_wr.iptfocus,.fm_red .s_ipt_wr:hover,.fm_red .s_ipt_wr.ipthover{border-color:#e10602 transparent #e10602 #e10602}.fm_red .s_btn{background-color:#e10602;border-bottom:1px solid #c30602}.yy_fm .s_ipt_wr,.yy_fm .s_ipt_wr.iptfocus,.yy_fm .s_ipt_wr:hover,.yy_fm .s_ipt_wr.ipthover{border-color:#e10602 transparent #e10602 #e10602;animation:yy-ipt .2s;-moz-animation:yy-ipt .2s;-webkit-animation:yy-ipt .2s;-o-animation:yy-ipt .2s}.yy_fm .s_btn{background-color:#e10602;border-bottom:1px solid #c30602;animation:yunying .2s;-moz-animation:yunying .2s;-webkit-animation:yunying .2s;-o-animation:yunying .2s}.yy_fm_blue .s_ipt_wr,.yy_fm_blue .s_ipt_wr.iptfocus,.yy_fm_blue .s_ipt_wr:hover,.yy_fm_blue .s_ipt_wr.ipthover{animation:yy-ipt-blue .2s;border-color:#4791ff transparent #4791ff #4791ff}.yy_fm_blue .s_btn{animation:yunying-blue .2s;background-color:#3385ff;border-bottom:1px solid #2d78f4}@keyframes yy-ipt{0%{border-color:#4791ff transparent #4791ff #4791ff}100%{border-color:#e10602 transparent #e10602 #e10602}}@-moz-keyframes yy-ipt{0%{border-color:#4791ff transparent #4791ff #4791ff}100%{border-color:#e10602 transparent #e10602 #e10602}}@-webkit-keyframes yy-ipt{0%{border-color:#4791ff transparent #4791ff #4791ff}100%{border-color:#e10602 transparent #e10602 #e10602}}@-o-keyframes yy-ipt{0%{border-color:#4791ff transparent #4791ff #4791ff}100%{border-color:#e10602 transparent #e10602 #e10602}}@keyframes yy-ipt-blue{0%{border-color:#e10602 transparent #e10602 #e10602}100%{border-color:#4791ff transparent #4791ff #4791ff}}@-moz-keyframes yy-ipt-blue{0%{border-color:#e10602 transparent #e10602 #e10602}100%{border-color:#4791ff transparent #4791ff #4791ff}}@-webkit-keyframes yy-ipt-blue{0%{border-color:#e10602 transparent #e10602 #e10602}100%{border-color:#4791ff transparent #4791ff #4791ff}}@-o-keyframes yy-ipt-blue{0%{border-color:#e10602 transparent #e10602 #e10602}100%{border-color:#4791ff transparent #4791ff #4791ff}}@keyframes yunying{0%{background-color:#3385ff;border-bottom:1px solid #2d78f4}100%{background-color:#e10602;border-bottom:1px solid #c30602}}@-moz-keyframes yunying{0%{background-color:#3385ff;border-bottom:1px solid #2d78f4}100%{background-color:#e10602;border-bottom:1px solid #c30602}}@-webkit-keyframes yunying{0%{background-color:#3385ff;border-bottom:1px solid #2d78f4}100%{background-color:#e10602;border-bottom:1px solid #c30602}}@-o-keyframes yunying{0%{background-color:#3385ff;border-bottom:1px solid #2d78f4}100%{background-color:#e10602;border-bottom:1px solid #c30602}}@keyframes yunying-blue{0%{background-color:#e10602;border-bottom:1px solid #c30602}100%{background-color:#3385ff;border-bottom:1px solid #2d78f4}}@-moz-keyframes yunying-blue{0%{background-color:#e10602;border-bottom:1px solid #c30602}100%{background-color:#3385ff;border-bottom:1px solid #2d78f4}}@-webkit-keyframes yunying-blue{0%{background-color:#e10602;border-bottom:1px solid #c30602}100%{background-color:#3385ff;border-bottom:1px solid #2d78f4}}@-o-keyframes yunying-blue{0%{background-color:#e10602;border-bottom:1px solid #c30602}100%{background-color:#3385ff;border-bottom:1px solid #2d78f4}}.sethf{padding:0;margin:0;font-size:14px}.set_h{display:none;behavior:url(#default#homepage)}.set_f{display:none}.shouji{margin-left:19px}.shouji a{text-decoration:none}#head .bdsug{top:33px}#search form{position:relative}#search form .bdsug{bottom:33px}.bdsug{display:none;position:absolute;z-index:1;width:538px;background:#fff;border:1px solid #ccc;_overflow:hidden;box-shadow:1px 1px 3px #ededed;-webkit-box-shadow:1px 1px 3px #ededed;-moz-box-shadow:1px 1px 3px #ededed;-o-box-shadow:1px 1px 3px #ededed}.bdsug.bdsugbg ul{background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/home/img/sugbg_1762fe7.png) 100% 100% no-repeat;background-size:100px 110px;background-image:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/home/img/sugbg_90fc9cf.gif)\9}.bdsug li{width:522px;color:#000;font:14px arial;line-height:22px;padding:0 8px;position:relative;cursor:default}.bdsug li.bdsug-s{background:#f0f0f0}.bdsug-store span,.bdsug-store b{color:#7A77C8}.bdsug-store-del{font-size:12px;color:#666;text-decoration:underline;position:absolute;right:8px;top:0;cursor:pointer;display:none}.bdsug-s .bdsug-store-del{display:inline-block}.bdsug-ala{display:inline-block;border-bottom:1px solid #e6e6e6}.bdsug-ala h3{line-height:14px;background:url(//www.baidu.com/img/sug_bd.png) no-repeat left center;margin:8px 0 5px;font-size:12px;font-weight:400;color:#7B7B7B;padding-left:20px}.bdsug-ala p{font-size:14px;font-weight:700;padding-left:20px}.bdsug .bdsug-direct{width:auto;padding:0;border-bottom:1px solid #f1f1f1}.bdsug .bdsug-direct p{color:#00c;font-weight:700;line-height:34px;padding:0 8px;cursor:pointer;white-space:nowrap;overflow:hidden}.bdsug .bdsug-direct p img{width:16px;height:16px;margin:7px 6px 9px 0;vertical-align:middle}.bdsug .bdsug-direct p span{margin-left:8px}.bdsug .bdsug-direct p i{font-size:12px;line-height:100%;font-style:normal;font-weight:400;color:#fff;background-color:#2b99ff;display:inline;text-align:center;padding:1px 5px;*padding:2px 5px 0;margin-left:8px;overflow:hidden}.bdsug .bdsug-pcDirect{color:#000;font-size:14px;line-height:30px;height:30px;background-color:#f8f8f8}.bdsug .bdsug-pc-direct-tip{position:absolute;right:15px;top:8px;width:55px;height:15px;display:block;background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/pc_direct_42d6311.png) no-repeat 0 0}.bdsug li.bdsug-pcDirect-s{background-color:#f0f0f0}.bdsug .bdsug-pcDirect-is{color:#000;font-size:14px;line-height:22px;background-color:#f8f8f8}.bdsug .bdsug-pc-direct-tip-is{position:absolute;right:15px;top:3px;width:55px;height:15px;display:block;background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/pc_direct_42d6311.png) no-repeat 0 0}.bdsug li.bdsug-pcDirect-is-s{background-color:#f0f0f0}.bdsug .bdsug-pcDirect-s .bdsug-pc-direct-tip,.bdsug .bdsug-pcDirect-is-s .bdsug-pc-direct-tip-is{background-position:0 -15px}.bdsug .bdsug-newicon{color:#929292;opacity:.7;font-size:12px;display:inline-block;line-height:22px;letter-spacing:2px}.bdsug .bdsug-s .bdsug-newicon{opacity:1}.bdsug .bdsug-newicon i{letter-spacing:0;font-style:normal}.bdsug .bdsug-feedback-wrap{text-align:right;background:#fafafa;color:#666;height:25px;line-height:27px}.bdsug .bdsug-feedback{margin-right:10px;text-decoration:underline;color:#666}.toggle-underline{text-decoration:none}.toggle-underline:hover{text-decoration:underline}#tb_mr{color:#00c;cursor:pointer;position:relative;z-index:298}#tb_mr b{font-weight:400;text-decoration:underline}#tb_mr small{font-size:11px}#page{font:14px arial;white-space:nowrap;padding-left:35px}#page a,#page strong{display:inline-block;vertical-align:text-bottom;height:66px;text-align:center;line-height:34px;text-decoration:none;overflow:hidden;margin-right:9px;background:#fff}#page a{cursor:pointer}#page a:hover{background:0 0}#page .n:hover,#page a:hover .pc{background:#f2f8ff;border:1px solid #38f}#page .n{height:34px;padding:0 18px;border:1px solid #e1e2e3}#page span{display:block}#page .pc{width:34px;height:34px;border:1px solid #e1e2e3;cursor:pointer}#page .fk{width:24px;height:24px;margin-bottom:6px;margin-left:6px;cursor:pointer}#page strong .fk,#page strong .pc{cursor:auto}#page .fk .c-icon-bear-pn{top:-3px;position:relative}#page .fkd .c-icon-bear-pn{top:3px;position:relative}#page .fk_cur .c-icon-bear-p{top:-2px;position:relative}#page strong .pc{border:0;width:36px;height:36px;line-height:36px}#page .nums{display:inline-block;vertical-align:text-bottom;height:36px;line-height:36px;margin-left:10px}#rs{width:900px;background:#fff;padding:8px 0;margin:20px 0 0 15px}#rs td{width:5%}#rs th{font-size:14px;font-weight:400;line-height:19px;white-space:nowrap;text-align:left;vertical-align:top}#rs .tt{font-weight:700;padding:0 10px 0 20px}#rs .tt_normal{font-weight:400}#rs_top{font-size:14px;margin-bottom:22px}#rs_top a{margin-right:18px}#container .rs{margin:30px 0 20px;padding:5px 0 15px;font-size:14px;width:540px;padding-left:121px;position:relative;background-color:#fafafa}#container .noback{background-color:#fff}#content_left .rs{margin-left:-121px}#container .rs table{width:540px}#container .rs td{width:5px}#container .rs th{font-size:14px;font-weight:400;white-space:nowrap;text-align:left;vertical-align:top;width:175px;line-height:22px}#container .rs .tt{font-weight:700;padding:0 10px 0 20px;padding:0;line-height:30px;font-size:16px}#container .rs a{margin:0;height:24px;width:173px;display:inline-block;line-height:25px;border:1px solid #ebebeb;text-align:center;vertical-align:middle;overflow:hidden;outline:0;color:#333;background-color:#fff;text-decoration:none}#container .rs a:hover{border-color:#388bff}.c-tip-con .c-tip-menu-b ul{width:100px}.c-tip-con .c-tip-menu-b ul{text-align:center}.c-tip-con .c-tip-menu-b li a{display:block;text-decoration:none;cursor:pointer;background-color:#fff;padding:3px 0;color:#666}.c-tip-con .c-tip-menu-b li a:hover{display:block;background-color:#ebebeb}#search{width:900px;padding:35px 0 16px 35px}#search .s_help{position:relative;top:10px}#foot{height:20px;line-height:20px;color:#77c;background:#e6e6e6;text-align:center}#foot span{color:#666}.site_tip{font-size:12px;margin-bottom:20px}.site_tip_icon{width:56px;height:56px;background:url(//www.baidu.com/aladdin/img/tools/tools-3.png) -288px 0 no-repeat}.to_zhidao,.to_tieba,.to_zhidao_bottom{font-size:16px;line-height:24px;margin:20px 0 0 35px}.to_tieba .c-icon-tieba{float:left}.f{line-height:115%;*line-height:120%;font-size:100%;width:33.7em;word-break:break-all;word-wrap:break-word}.h{margin-left:8px;width:100%}.r{word-break:break-all;cursor:hand;width:238px}.t{font-weight:400;font-size:medium;margin-bottom:1px}.pl{padding-left:3px;height:8px;padding-right:2px;font-size:14px}.mo,a.mo:link,a.mo:visited{color:#666;font-size:100%;line-height:10px}.htb{margin-bottom:5px}.jc a{color:#c00}a font[size=&quot;3&quot;] font,font[size=&quot;3&quot;] a font{text-decoration:underline}div.blog,div.bbs{color:#707070;padding-top:2px;font-size:13px}.result{width:33.7em;table-layout:fixed}.result-op .f{word-wrap:normal}.nums{font-size:12px;color:#999}.tools{position:absolute;top:10px;white-space:nowrap}#mHolder{width:62px;position:relative;z-index:296;top:-18px;margin-left:9px;margin-right:-12px;display:none}#mCon{height:18px;position:absolute;top:3px;top:6px\9;cursor:pointer;line-height:18px}.wrapper_l #mCon{right:7px}#mCon span{color:#00c;display:block}#mCon .hw{text-decoration:underline;cursor:pointer;display:inline-block}#mCon .pinyin{display:inline-block}#mCon .c-icon-chevron-unfold2{margin-left:5px}#mMenu{width:56px;border:1px solid #9b9b9b;position:absolute;right:7px;top:23px;display:none;background:#fff}#mMenu a{width:100%;height:100%;color:#00c;display:block;line-height:22px;text-indent:6px;text-decoration:none;filter:none\9}#mMenu a:hover{background:#ebebeb}#mMenu .ln{height:1px;background:#ebebeb;overflow:hidden;font-size:1px;line-height:1px;margin-top:-1px}.op_LAMP{background:url(//www.baidu.com/cache/global/img/aladdinIcon-1.0.gif) no-repeat 0 2px;color:#77C;display:inline-block;font-size:13px;height:12px;*height:14px;width:16px;text-decoration:none;zoom:1}.EC_mr15{margin-left:0}.pd15{padding-left:0}.map_1{width:30em;font-size:80%;line-height:145%}.map_2{width:25em;font-size:80%;line-height:145%}.favurl{background-repeat:no-repeat;background-position:0 1px;padding-left:20px}.dan_tip{font-size:12px;margin-top:4px}.dan_tip a{color:#b95b07}#more,#u ul,#mMenu,.msg_holder{box-shadow:1px 1px 2px #ccc;-moz-box-shadow:1px 1px 2px #ccc;-webkit-box-shadow:1px 1px 2px #ccc;filter:progid:DXImageTransform.Microsoft.Shadow(Strength=2, Direction=135, Color=#cccccc)\9}.hit_top{line-height:18px;margin:0 15px 10px 0;width:516px}.hit_top .c-icon-bear{height:18px;margin-right:4px}#rs_top_new,.hit_top_new{width:538px;font-size:13px;line-height:1.54;word-wrap:break-word;word-break:break-all;margin:0 0 14px}.zhannei-si{margin:0 0 10px 121px}.zhannei-si-none{margin:10px 0 -10px 121px}.zhannei-search{margin:10px 0 0 121px;color:#999;font-size:14px}.f a font[size=&quot;3&quot;] font,.f font[size=&quot;-1&quot;] a font{text-decoration:underline}h3 a font{text-decoration:underline}.c-title{font-weight:400;font-size:16px}.c-title-size{font-size:16px}.c-abstract{font-size:13px}.c-abstract-size{font-size:13px}.c-showurl{color:green;font-size:13px}.c-showurl-color{color:green}.c-cache-color{color:#666}.c-lightblue{color:#77c}.c-highlight-color{color:#c00}.c-clearfix:after{content:&quot;.&quot;;display:block;height:0;clear:both;visibility:hidden}.c-clearfix{zoom:1}.c-wrap{word-break:break-all;word-wrap:break-word}.c-icons-outer{overflow:hidden;display:inline-block;vertical-align:bottom;*vertical-align:-1px;_vertical-align:bottom}.c-icons-inner{margin-left:-4px;display:inline-block}.c-container table.result,.c-container table.result-op{width:100%}.c-container td.f{font-size:13px;line-height:1.54;width:auto}.c-container .vd_newest_main{width:auto}.c-customicon{display:inline-block;width:16px;height:16px;vertical-align:text-bottom;font-style:normal;overflow:hidden}.c-tip-icon i{display:inline-block;cursor:pointer}.c-tip-con{position:absolute;z-index:1;top:22px;left:-35px;background:#fff;border:1px solid #dcdcdc;border:1px solid rgba(0,0,0,.2);-webkit-transition:opacity .218s;transition:opacity .218s;-webkit-box-shadow:0 2px 4px rgba(0,0,0,.2);box-shadow:0 2px 4px rgba(0,0,0,.2);padding:5px 0;display:none;font-size:12px;line-height:20px}.c-tip-arrow{width:0;height:0;font-size:0;line-height:0;display:block;position:absolute;top:-16px}.c-tip-arrow-down{top:auto;bottom:0}.c-tip-arrow em,.c-tip-arrow ins{width:0;height:0;font-size:0;line-height:0;display:block;position:absolute;border:8px solid transparent;border-style:dashed dashed solid}.c-tip-arrow em{border-bottom-color:#d8d8d8}.c-tip-arrow ins{border-bottom-color:#fff;top:2px}.c-tip-arrow-down em,.c-tip-arrow-down ins{border-style:solid dashed dashed;border-color:transparent}.c-tip-arrow-down em{border-top-color:#d8d8d8}.c-tip-arrow-down ins{border-top-color:#fff;top:-2px}.c-tip-arrow .c-tip-arrow-r{border-bottom-color:#82c9fa;top:2px}.c-tip-arrow-down .c-tip-arrow-r{border-bottom-color:transparent;top:-2px}.c-tip-arrow .c-tip-arrow-c{border-bottom-color:#fecc47;top:2px}.c-tip-arrow-down .c-tip-arrow-c{border-bottom-color:transparent;top:-2px}.c-tip-con h3{font-size:12px}.c-tip-con .c-tip-title{margin:0 10px;display:inline-block;width:239px}.c-tip-con .c-tip-info{color:#666;margin:0 10px 1px;width:239px}.c-tip-con .c-tip-cer{width:370px;color:#666;margin:0 10px 1px}.c-tip-con .c-tip-title{width:auto;_width:354px}.c-tip-con .c-tip-item-i{padding:3px 0 3px 20px;line-height:14px}.c-tip-con .c-tip-item-i .c-tip-item-icon{margin-left:-20px}.c-tip-con .c-tip-menu ul{width:74px}.c-tip-con .c-tip-menu ul{text-align:center}.c-tip-con .c-tip-menu li a{display:block;text-decoration:none;cursor:pointer;background-color:#fff;padding:3px 0;color:#0000d0}.c-tip-con .c-tip-menu li a:hover{display:block;background-color:#ebebeb}.c-tip-con .c-tip-notice{width:239px;padding:0 10px}.c-tip-con .c-tip-notice .c-tip-notice-succ{color:#4cbd37}.c-tip-con .c-tip-notice .c-tip-notice-fail{color:#f13F40}.c-tip-con .c-tip-notice .c-tip-item-succ{color:#444}.c-tip-con .c-tip-notice .c-tip-item-fail{color:#aaa}.c-tip-con .c-tip-notice .c-tip-item-fail a{color:#aaa}.c-tip-close{right:10px;position:absolute;cursor:pointer}.ecard{height:86px;overflow:hidden}.c-tools{display:inline}.c-tools-share{width:239px;padding:0 10px}.c-fanyi{display:none;width:20px;height:20px;border:solid 1px #d1d1d1;cursor:pointer;position:absolute;margin-left:516px;text-align:center;color:#333;line-height:22px;opacity:.9;background-color:#fff}.c-fanyi:hover{background-color:#39f;color:#fff;border-color:#39f;opacity:1}.c-fanyi-title,.c-fanyi-abstract{display:none}.icp_info{color:#666;margin-top:2px;font-size:13px}.icon-gw,.icon-unsafe-icon{background:#2c99ff;vertical-align:text-bottom;*vertical-align:baseline;height:16px;padding-top:0;padding-bottom:0;padding-left:6px;padding-right:6px;line-height:16px;_padding-top:2px;_height:14px;_line-height:14px;font-size:12px;font-family:simsun;margin-left:10px;overflow:hidden;display:inline-block;-moz-border-radius:1px;-webkit-border-radius:1px;border-radius:1px;color:#fff}a.icon-gw{color:#fff;background:#2196ff;text-decoration:none;cursor:pointer}a.icon-gw:hover{background:#1e87ef}a.icon-gw:active{height:15px;_height:13px;line-height:15px;_line-height:13px;padding-left:5px;background:#1c80d9;border-left:1px solid #145997;border-top:1px solid #145997}.icon-unsafe-icon{background:#e54d4b}#con-at{margin-bottom:9px;padding-left:121px}#con-at .result-op{font-size:13px;line-height:1.52em}.wrapper_l #con-at .result-op{width:1058px}.wrapper_s #con-at .result-op{width:869px}#con-ar{margin-bottom:40px}#con-ar .result-op{margin-bottom:28px;font-size:13px;line-height:1.52em}.result_hidden{position:absolute;top:-10000px;left:-10000px}#content_left .result-op,#content_left .result{margin-bottom:14px;border-collapse:collapse}#content_left .c-border .result-op,#content_left .c-border .result{margin-bottom:25px}#content_left .c-border .result-op:last-child,#content_left .c-border .result:last-child{margin-bottom:12px}#content_left .result .f,#content_left .result-op .f{padding:0}.subLink_factory{border-collapse:collapse}.subLink_factory td{padding:0}.subLink_factory td.middle,.subLink_factory td.last{color:#666}.subLink_factory td a{text-decoration:underline}.subLink_factory td.rightTd{text-align:right}.subLink_factory_right{width:100%}.subLink_factory_left td{padding-right:26px}.subLink_factory_left td.last{padding:0}.subLink_factory_left td.first{padding-right:75px}.subLink_factory_right td{width:90px}.subLink_factory_right td.first{width:auto}.subLink_answer{padding-top:4px}.subLink_answer li{margin-bottom:4px}.subLink_answer h4{margin:0;padding:0;font-weight:400}.subLink_answer .label_wrap span{display:inline-block;color:#666;margin-right:8px}.subLink_answer .label_wrap span em{color:#666;padding-left:8px}.subLink_answer span.c-icon{margin-right:4px}.subLink_answer_dis{padding:0 3px}.subLink_answer .date{color:#666}.general_image_pic a{background:#fff no-repeat center center;text-decoration:none;display:block;overflow:hidden;text-align:left}.res_top_banner{height:36px;text-align:left;border-bottom:1px solid #e3e3e3;background:#f7f7f7;font-size:13px;padding-left:8px;color:#333;position:relative;z-index:302}.res_top_banner span{_zoom:1}.res_top_banner .res_top_banner_icon{background-position:0 -216px;width:18px;height:18px;margin:9px 10px 0 0}.res_top_banner .res_top_banner_icon_baiduapp{background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/baiduappLogo_de45621.png) no-repeat 0 0;width:24px;height:24px;margin:3px 10px 0 0;position:relative;top:3px}.res_top_banner .res_top_banner_icon_windows{background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/winlogo_e925689.png) no-repeat 0 0;width:18px;height:18px;margin:9px 10px 0 0}.res_top_banner .res_top_banner_download{display:inline-block;width:65px;line-height:21px;_padding-top:1px;margin:0 0 0 10px;color:#333;background:#fbfbfb;border:1px solid #b4b6b8;text-align:center;text-decoration:none}.res_top_banner .res_top_banner_download:hover{border:1px solid #38f}.res_top_banner .res_top_banner_download:active{background:#f0f0f0;border:1px solid #b4b6b8}.res_top_banner .res_top_banner_close{background-position:-672px -144px;cursor:pointer;position:absolute;right:10px;top:10px}.res_top_banner_for_win{height:34px;text-align:left;border-bottom:1px solid #f0f0f0;background:#fdfdfd;font-size:13px;padding-left:12px;color:#333;position:relative;z-index:302}.res_top_banner_for_win span{_zoom:1;color:#666}.res_top_banner_for_win .res_top_banner_download{display:inline-block;width:auto;line-height:21px;_padding-top:1px;margin:0 0 0 16px;color:#333;text-align:left;text-decoration:underline}.res_top_banner_for_win .res_top_banner_icon_windows{background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/winlogo_e925689.png) no-repeat 0 0;width:18px;height:18px;margin:8px 8px 0 0}.res_top_banner_for_win .res_top_banner_close{background-position:-672px -144px;cursor:pointer;position:absolute;right:10px;top:10px}.res-gap-right16{margin-right:16px}.res-border-top{border-top:1px solid #f3f3f3}.res-border-bottom{border-bottom:1px solid #f3f3f3}.res-queryext-pos{position:relative;top:1px;_top:0}.res-queryext-pos-new{position:relative;top:-2px;_top:0}.c-trust-ecard{height:86px;_height:97px;overflow:hidden}.op-recommend-sp-gap{margin-right:6px}@-moz-document url-prefix(){.result,.f{width:538px}}#ftCon{display:none}#qrcode{display:none}#pad-version{display:none}#index_guide{display:none}#index_logo{display:none}#u1{display:none}.s_ipt_wr{height:32px}body{padding:0}.s_form:after,.s_tab:after{content:&quot;.&quot;;display:block;height:0;clear:both;visibility:hidden}.s_form{zoom:1;height:55px;padding:0 0 0 10px}#result_logo{float:left;margin:7px 0 0}#result_logo img{width:101px;height:33px}#result_logo.qm-activity{filter:progid:DXImageTransform.Microsoft.BasicImage(grayscale=1);-webkit-filter:grayscale(100%);-moz-filter:grayscale(100%);-ms-filter:grayscale(100%);-o-filter:grayscale(100%);filter:grayscale(100%);filter:gray}#head{padding:0;margin:0;width:100%;position:absolute;z-index:301;min-width:1000px;background:#fff;border-bottom:1px solid #ebebeb;position:fixed;_position:absolute;-webkit-transform:translateZ(0)}#head .head_wrapper{_width:1000px}#head.s_down{box-shadow:0 0 5px #888}.fm{clear:none;float:left;margin:11px 0 0 10px}#s_tab{background:#f8f8f8;line-height:36px;height:38px;padding:55px 0 0 121px;float:none;zoom:1}#s_tab a,#s_tab b{width:54px;display:inline-block;text-decoration:none;text-align:center;color:#666;font-size:14px}#s_tab b{border-bottom:2px solid #38f;font-weight:700;color:#323232}#s_tab a:hover{color:#323232}#content_left{width:540px;padding-left:121px;padding-top:5px}#content_right{margin-top:45px}.sam_newgrid #content_right{margin-top:40px}#content_bottom{width:540px;padding-left:121px}#page{padding:0 0 0 121px;margin:30px 0 40px}.to_tieba,.to_zhidao_bottom{margin:10px 0 0 121px;padding-top:5px}.nums{margin:0 0 0 121px;height:42px;line-height:42px}.new_nums{font-size:13px;height:41px;line-height:41px}#rs{padding:0;margin:6px 0 0 121px;width:600px}#rs th{width:175px;line-height:22px}#rs .tt{padding:0;line-height:30px}#rs td{width:5px}#rs table{width:540px}#help{background:#f5f6f5;zoom:1;padding:0 0 0 50px;float:right}#help a{color:#777;padding:0 15px;text-decoration:none}#help a.emphasize{font-weight:700;text-decoration:underline}#help a:hover{color:#333}#foot{background:#f5f6f5;border-top:1px solid #ebebeb;text-align:left;height:42px;line-height:42px;margin-top:40px;*margin-top:0}#foot .foot_c{float:left;padding:0 0 0 121px}.content_none{padding:45px 0 25px 121px;float:left;width:560px}.nors p{font-size:18px;color:#000}.nors p em{color:#c00}.nors .tip_head{color:#666;font-size:13px;line-height:28px}.nors li{color:#333;line-height:28px;font-size:13px;list-style-type:none}#mCon{top:5px}.s_ipt_wr.bg,.s_btn_wr.bg,#su.bg{background-image:none}.s_ipt_wr.bg{background:0 0}.s_btn_wr{width:auto;height:auto;border-bottom:1px solid transparent;*border-bottom:0}.s_btn{width:100px;height:34px;color:#fff;letter-spacing:1px;background:#3385ff;border-bottom:1px solid #2d78f4;outline:medium;*border-bottom:0;-webkit-appearance:none;-webkit-border-radius:0}.s_btn.btnhover{background:#317ef3;border-bottom:1px solid #2868c8;*border-bottom:0;box-shadow:1px 1px 1px #ccc}.s_btn_h{background:#3075dc;box-shadow:inset 1px 1px 3px #2964bb;-webkit-box-shadow:inset 1px 1px 3px #2964bb;-moz-box-shadow:inset 1px 1px 3px #2964bb;-o-box-shadow:inset 1px 1px 3px #2964bb}.yy_fm .s_btn.btnhover,.fm_red .s_btn.btnhover{background:#D10400;border-bottom:1px solid #D10400}.yy_fm .s_btn_h,.fm_red .s_btn_h{background:#C00400;box-shadow:inset 1px 1px 3px #A00300;-webkit-box-shadow:inset 1px 1px 3px #A00300}#wrapper_wrapper .container_l .EC_ppim_top,#wrapper_wrapper .container_xl .EC_ppim_top{width:640px}#wrapper_wrapper .container_s .EC_ppim_top{width:570px}#head .c-icon-bear-round{display:none}.container_l #content_right{width:384px}.container_l{width:1212px}.container_xl #content_right{width:384px}.container_xl{width:1257px}.index_tab_top{display:none}.index_tab_bottom{display:none}#lg{display:none}#m{display:none}#ftCon{display:none}#ent_sug{position:absolute;margin:141px 0 0 130px;font-size:13px;color:#666}.foot_fixed_bottom{position:fixed;bottom:0;width:100%;_position:absolute;_bottom:auto}#head .headBlock{margin:-5px 0 6px 121px}#content_left .leftBlock{margin-bottom:14px;padding-bottom:5px;border-bottom:1px solid #f3f3f3}.hint_toprq_tips{position:relative;width:537px;height:19px;line-height:19px;overflow:hidden;display:none}.hint_toprq_tips span{color:#666}.hint_toprq_icon{margin:0 4px 0 0}.hint_toprq_tips_items{width:444px;_width:440px;max-height:38px;position:absolute;left:95px;top:1px}.hint_toprq_tips_items div{display:inline-block;float:left;height:19px;margin-right:18px;white-space:nowrap;word-break:keep-all}.translateContent{max-width:350px}.translateContent .translateTool{height:16px;margin:-3px 2px}.translateContent .action-translate,.translateContent .action-search{display:inline-block;width:20px;height:16px;background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/translate_tool_icon_57087b6.gif) no-repeat}.translateContent .action-translate{background-position:0 0;border-right:1px solid #dcdcdc}.translateContent .action-translate:hover{background-position:0 -20px}.translateContent .action-search{background-position:-20px 0}.translateContent .action-search:hover{background-position:-20px -20px}.nums{width:538px}.search_tool{_padding-top:15px}.head_nums_cont_outer{height:40px;overflow:hidden;position:relative}.new_head_nums_cont_outer{height:35px}.head_nums_cont_inner{position:relative}.search_tool_conter .c-gap-left{margin-left:23px}.search_tool_conter .c-icon-triangle-down{opacity:.6}.search_tool_conter .c-icon-triangle-down:hover{opacity:1}.search_tool,.search_tool_close{float:right}.search_tool,.search_tool_conter span{cursor:pointer;color:#666}.search_tool:hover,.search_tool_conter span:hover{color:#333}.search_tool_conter{font-size:12px;color:#666;margin:0 0 0 121px;height:42px;width:538px;line-height:42px;*height:auto;*line-height:normal;*padding:14px 0}.new_search_tool_conter{font-size:12px;color:#666;margin:0 0 0 121px;height:41px;width:538px;line-height:39px;*height:auto;*line-height:normal;*padding:14px 0}.search_tool_conter span strong{color:#666}.c-tip-con .c-tip-langfilter ul{width:80px;text-align:left;color:#666}.c-tip-con .c-tip-langfilter li a{text-indent:15px;color:#666}.c-tip-con .c-tip-langfilter li span{text-indent:15px;padding:3px 0;color:#999;display:block}.c-tip-con .c-tip-timerfilter ul{width:117px;text-align:left;color:#666}.c-tip-con .c-tip-timerfilter-ft ul{width:180px}.c-tip-con .c-tip-timerfilter-si ul{width:206px;padding:7px 10px 10px}.c-tip-con .c-tip-timerfilter li a{text-indent:15px;color:#666}.c-tip-con .c-tip-timerfilter li span{text-indent:15px;padding:3px 0;color:#999;display:block}.c-tip-con .c-tip-timerfilter-ft li a,.c-tip-con .c-tip-timerfilter-ft li span{text-indent:20px}.c-tip-custom{padding:0 15px 10px;position:relative;zoom:1}.c-tip-custom hr{border:0;height:0;border-top:1px solid #ebebeb}.c-tip-custom p{color:#b6b6b6;height:25px;line-height:25px;margin:2px 0}.c-tip-custom .c-tip-custom-et{margin-bottom:7px}.c-tip-custom-input,.c-tip-si-input{display:inline-block;font-size:11px;color:#333;margin-left:4px;padding:0 2px;width:74%;height:16px;line-height:16px\9;border:1px solid #ebebeb;outline:0;box-sizing:content-box;-webkit-box-sizing:content-box;-moz-box-sizing:content-box;overflow:hidden;position:relative}.c-tip-custom-input-init{color:#d4d4d4}.c-tip-custom-input-focus,.c-tip-si-input-focus{border:1px solid #3385ff}.c-tip-timerfilter-si .c-tip-si-input{width:138px;height:22px;line-height:22px;vertical-align:0;*vertical-align:-6px;_vertical-align:-5px;padding:0 5px;margin-left:0}.c-tip-con .c-tip-timerfilter li .c-tip-custom-submit,.c-tip-con .c-tip-timerfilter li .c-tip-timerfilter-si-submit{display:inline;padding:4px 10px;margin:0;color:#333;border:1px solid #d8d8d8;font-family:inherit;font-weight:400;text-align:center;vertical-align:0;background-color:#f9f9f9;outline:0}.c-tip-con .c-tip-timerfilter li .c-tip-custom-submit:hover,.c-tip-con .c-tip-timerfilter li .c-tip-timerfilter-si-submit:hover{display:inline;border-color:#388bff}.c-tip-timerfilter-si-error,.c-tip-timerfilter-custom-error{display:none;color:#3385FF;padding-left:4px}.c-tip-timerfilter-custom-error{padding:0;margin:-5px -13px 7px 0}#c-tip-custom-calenderCont{position:absolute;background:#fff;white-space:nowrap;padding:5px 10px;color:#000;border:1px solid #e4e4e4;-webkit-box-shadow:0 2px 4px rgba(0,0,0,.2);box-shadow:0 2px 4px rgba(0,0,0,.2)}#c-tip-custom-calenderCont p{text-align:center;padding:2px 0 4px;*padding:4px 0}#c-tip-custom-calenderCont p i{color:#8e9977;cursor:pointer;text-decoration:underline;font-size:13px}#c-tip-custom-calenderCont .op_cal{background:#fff}.op_cal table{background:#eeefea;margin:0;border-collapse:separate}.op_btn_pre_month,.op_btn_next_month{cursor:pointer;display:block;margin-top:6px}.op_btn_pre_month{float:left;background-position:0 -46px}.op_btn_next_month{float:right;background-position:-18px -46px}.op_cal .op_mon_pre1{padding:0}.op_mon th{text-align:center;font-size:12px;background:#FFF;font-weight:700;border:1px solid #FFF;padding:0}.op_mon td{text-align:center;cursor:pointer}.op_mon h5{margin:0;padding:0 4px;text-align:center;font-size:14px;background:#FFF;height:28px;line-height:28px;border-bottom:1px solid #f5f5f5;margin-bottom:5px}.op_mon strong{font-weight:700}.op_mon td{padding:0 5px;border:1px solid #fff;font-size:12px;background:#fff;height:100%}.op_mon td.op_mon_pre_month{color:#a4a4a4}.op_mon td.op_mon_cur_month{color:#00c}.op_mon td.op_mon_next_month{color:#a4a4a4}.op_mon td.op_mon_day_hover{color:#000;border:1px solid #278df2}.op_mon td.op_mon_day_selected{color:#FFF;border:1px solid #278df2;background:#278df2}.op_mon td.op_mon_day_disabled{cursor:not-allowed;color:#ddd}.zhannei-si-none,.zhannei-si,.hit_quet,.zhannei-search{display:none}#c-tip-custom-calenderCont .op_mon td.op_mon_cur_month{color:#000}#c-tip-custom-calenderCont .op_mon td.op_mon_day_selected{color:#fff}.c-icon-toen{width:24px;height:24px;line-height:24px;background-color:#1cb7fd;color:#fff;font-size:14px;font-weight:700;font-style:normal;display:block;display:inline-block;float:left;text-align:center}.hint_common_restop{width:538px;color:#999;font-size:12px;text-align:left;margin:5px 0 10px 121px}.hint_common_restop.hint-adrisk-pro{margin-top:4px;margin-bottom:13px}.hint_common_restop .hint-adrisk-title{color:#333;margin-bottom:3px}#con-at~#wrapper_wrapper .hint_common_restop{padding-top:7px}.sitelink{overflow:auto;zoom:1}.sitelink_summary{float:left;width:47%;padding-right:30px}.sitelink_summary a{font-size:1.1em;position:relative}.sitelink_summary_last{padding-right:0}.sitelink_en{overflow:auto;zoom:1}.sitelink_en_summary{float:left;width:47%;padding-right:30px}.sitelink_en_summary a{font-size:1.1em;position:relative}.sitelink_en_summary_last{padding-right:0}.sitelink_en_summary_title,.sitelink_en_summary .m{height:22px;overflow:hidden}.without-summary-sitelink-en-container{overflow:hidden;height:22px}.without-summary-sitelink-en{float:left}.without-summary-sitelink-en-delimiter{margin-right:5px;margin-left:5px}.wise-qrcode-wrapper{height:42px;line-height:42px;position:absolute;margin-left:8px;top:0;z-index:300}.wise-qrcode-icon-outer{overflow:hidden}.wise-qrcode-icon{position:relative;display:inline-block;width:15px;height:15px;vertical-align:text-bottom;overflow:hidden;opacity:.5;background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/qrcode_icon_ae03227.png) no-repeat;-webkit-transform:translateY(42px);-ms-transform:translateY(42px);transform:translateY(42px);-webkit-background-size:100% 100%;background-size:100%}.wise-qrcode-container{padding:15px;background:#fff;display:none;top:61px;left:0;-webkit-transform:translateX(-50%);-ms-transform:translateX(-50%);transform:translateX(-50%);-webkit-box-shadow:0 0 1px rgba(0,0,0,.5);box-shadow:0 0 1px rgba(0,0,0,.5)}.wise-qrcode-wrapper.show:hover .wise-qrcode-container{display:block}.wise-qrcode-image{width:90px;height:90px;display:inline-block;vertical-align:middle}.wise-qrcode-image .wise-qrcode-canvas{width:100%;height:100%}.wise-qrcode-right{display:inline-block;vertical-align:middle;margin-left:15px}.wise-qrcode-title{font-size:16px;color:#000;line-height:26px}.wise-qrcode-text{font-size:12px;line-height:22px;color:#555}#container.sam_newgrid{margin-left:150px}#container.sam_newgrid #content_right{border-left:0;padding:0}#container.sam_newgrid #content_left{padding-left:0}#container.sam_newgrid #content_left .result-op,#container.sam_newgrid #content_left .result{margin-bottom:20px}#container.sam_newgrid #con-ar .result-op{margin-bottom:20px;line-height:21px}#container.sam_newgrid .c-container .t,#container.sam_newgrid .c-container .c-title{font-size:20px;line-height:24px;margin-bottom:4px}#container.sam_newgrid .c-container .t a,#container.sam_newgrid .c-container .c-title a{display:inline-block}#container.sam_newgrid .c-container .t.c-title-border-gap,#container.sam_newgrid .c-container .c-title.c-title-border-gap{margin-bottom:8px}#container.sam_newgrid .hint_common_restop,#container.sam_newgrid .nums,#container.sam_newgrid #rs,#container.sam_newgrid .search_tool_conter{margin-left:0}#container.sam_newgrid #page,#container.sam_newgrid .content_none{padding-left:0}#container.sam_newgrid .result .c-tools,#container.sam_newgrid .result-op .c-tools{margin-left:8px;cursor:pointer}#container.sam_newgrid .result .c-tools .c-icon,#container.sam_newgrid .result-op .c-tools .c-icon{font-size:13px;color:rgba(0,0,0,.1);height:17px;width:13px;text-decoration:none;overflow:visible}#container.sam_newgrid .se_st_footer .c-tools .c-icon{position:relative;top:-1px}#container.sam_newgrid .c-showurl{color:#626675;font-family:Arial,sans-serif}#container.sam_newgrid .c-showurl-hover{text-decoration:underline;color:#315efb}#container.sam_newgrid .c-showem{text-decoration:underline;color:#f73131}#container.sam_newgrid .c-icons-inner{margin-left:0}#container.sam_newgrid .c-trust-as{cursor:pointer}#container.sam_newgrid .c-icon-xls-new{color:#8bba75}#container.sam_newgrid .c-icon-txt-new{color:#708cf6}#container.sam_newgrid .c-icon-pdf-new{color:#e56755}#container.sam_newgrid .c-icon-ppt-new{color:#e27c59}#container.sam_newgrid .c-icon-doc-new{color:#509de0}#container.sam_newgrid .se-st-default-abs-icon{font-size:16px;width:16px;height:18px}#container.sam_newgrid .se-st-default-t-icon{width:20px;height:22px;position:relative;font-size:20px;top:-1px}.new-pmd .subLink_answer{padding-top:3px}.new-pmd .subLink_answer li{margin-bottom:3px}.new-pmd .subLink_answer li:last-child{margin-bottom:4px}.new-pmd .normal-gf-icon{font-size:12px;padding:0 3px;position:relative;top:-3px}.new-pmd .kuaizhao:hover{text-decoration:none;color:#626675}.new-pmd .sitelink_summary{width:272px;padding-right:16px}.new-pmd .sitelink_summary_last{padding-right:0}.new-pmd.bd_weixin_popup .c-tips-icon-close{font-size:16px!important;position:absolute;right:-6px;top:-6px;height:16px;width:16px;line-height:16px;cursor:pointer;text-align:center;color:#d7d9e0}.new-pmd.bd_weixin_popup .c-tips-icon-close:active,.new-pmd.bd_weixin_popup .c-tips-icon-close:hover{color:#626675}.new-pmd .c-tools-share-tip-con{padding-bottom:0}.new-pmd .c-tools-favo-tip-con{padding-bottom:10px}.new-pmd .c-tools-favo-tip-con .favo-icon{background-image:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/favo_sprites_e33db52.png);background-repeat:no-repeat;height:16px;width:16px;background-size:32px 16px;display:inline-block;vertical-align:text-bottom}.new-pmd .c-tools-favo-tip-con .success-icon{background-position:0 0}.new-pmd .c-tools-favo-tip-con .fail-icon{background-position:-16px 0}.new-pmd .c-tools-tip-con{box-shadow:0 2px 10px 0 rgba(0,0,0,.1);border-radius:6px;border:0;font-size:13px!important;line-height:13px;padding:11px 10px 10px}.new-pmd .c-tools-tip-con h3{font-size:13px!important}.new-pmd .c-tools-tip-con a{text-decoration:none}.new-pmd .c-tools-tip-con .c-tip-menu li{margin-bottom:13px}.new-pmd .c-tools-tip-con .c-tip-menu li a{color:#333;line-height:13px;padding:0}.new-pmd .c-tools-tip-con .c-tip-menu li a:hover{color:#315efb;background:none!important;text-decoration:none}.new-pmd .c-tools-tip-con .c-tip-menu li a:active{color:#f73131}.new-pmd .c-tools-tip-con .c-tip-menu li:last-child{margin-bottom:0}.new-pmd .c-tools-tip-con .c-tip-menu ul{width:auto;padding:0}.new-pmd .c-tools-tip-con .c-tip-notice{width:164px;padding:0}.new-pmd .c-tools-tip-con .c-tip-notice .c-tip-notice-succ{color:#333;font-weight:400;padding-bottom:10px}.new-pmd .c-tools-tip-con .c-tip-notice .c-tip-item-succ:first-child{padding-bottom:8px}.new-pmd .c-tools-tip-con .c-tip-notice .c-tip-item-succ a{color:#2440b3}.new-pmd .c-tools-tip-con .c-tip-notice .c-tip-item-succ a:hover{text-decoration:underline;color:#315efb}.new-pmd .c-tools-tip-con .c-tip-notice .c-tip-item-succ a:active{color:#f73131}.new-pmd .c-tools-tip-con .c-tip-notice .c-tip-item-fail{color:#9195A3}.new-pmd .c-tools-tip-con .c-tip-notice .c-tip-item-fail a:hover{text-decoration:underline;color:#315efb}.new-pmd .c-tools-tip-con .c-tip-notice .c-tip-item-fail a:active{color:#f73131}.new-pmd .c-tools-tip-con .c-tips-icon-close{font-size:13px!important;width:13px;line-height:13px;color:#C4C7CE}.new-pmd .c-tools-tip-con .c-tips-icon-close:hover,.new-pmd .c-tools-tip-con .c-tips-icon-close:active{color:#626675}.new-pmd .c-tools-tip-con .c-tools-share{padding:0}.new-pmd .c-tools-tip-con .c-tools-share a:hover{color:#315efb}.new-pmd .c-tools-tip-con .c-tools-share a:active{color:#f73131}.new-pmd .c-tools-tip-con .c-tools-share .bds_v2_share_box{margin-right:0}.new-pmd .c-tools-tip-con .c-tip-arrow{top:-5px}.new-pmd .c-tools-tip-con .c-tip-arrow em{border-width:0 4px 5px;border-style:solid;border-color:transparent;border-bottom-color:#fff;box-shadow:0 2px 10px 0 rgba(0,0,0,.1)}.new-pmd .c-tools-tip-con .c-tip-arrow ins{display:none}body{min-width:1060px}.wrapper_new{font-family:Arial,sans-serif}.wrapper_new #head{border-bottom:0;min-width:1060px}.wrapper_new #head.s_down{box-shadow:0 2px 10px 0 rgba(0,0,0,.1)}.wrapper_new .s_form{height:70px;padding-left:16px}.wrapper_new #result_logo{margin:17px 0 0}.wrapper_new .fm{margin:15px 0 15px 16px}.wrapper_new .quickdelete{display:none!important}@media screen and (min-width:1921px){.wrapper_new #s_tab.s_tab .s_tab_inner{padding-left:106px}}.wrapper_new .s_ipt_wr{width:590px;height:36px;border:2px solid #c4c7ce;border-radius:10px 0 0 10px;border-right:0;overflow:visible}.wrapper_new .s_ipt_wr.new-ipt-focus{border-color:#4e6ef2}.wrapper_new.wrapper_s .s_ipt_wr{width:478px}.wrapper_new .iptfocus.s_ipt_wr{border-color:#4e71f2!important}.wrapper_new .s_ipt_wr:hover{border-color:#A7AAB5}.wrapper_new .head_wrapper input{outline:0;-webkit-appearance:none}.wrapper_new .s_ipt{height:38px;font:16px/18px arial;padding:10px 0 10px 14px;margin:0;width:484px;background:transparent;border:0;outline:0;-webkit-appearance:none}.wrapper_new.wrapper_l #kw.s_ipt{width:484px}.wrapper_new .s_ipt_tip{height:37px;line-height:35px}.wrapper_new .s_btn_wr{width:112px;position:relative;z-index:2;zoom:1;border:0}.wrapper_new .s_btn_wr .s_btn{cursor:pointer;width:112px;height:40px;line-height:41px;line-height:40px\9;background-color:#4e6ef2;border-radius:0 10px 10px 0;font-size:17px;box-shadow:none;font-weight:400;border:0;outline:0;letter-spacing:normal}.wrapper_new .s_btn_wr .s_btn:hover{background:#4662D9}.wrapper_new .ipt_rec,.wrapper_new .soutu-btn{background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/nicon_10750f3.png) no-repeat;width:24px;height:20px}.wrapper_new .ipt_rec{background-position:0 -2px;top:50%;right:52px!important;margin-top:-10px}.wrapper_new .ipt_rec:hover{background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/nicon_10750f3.png) no-repeat;background-position:0 -26px}.wrapper_new .ipt_rec:after{display:none}.wrapper_new .soutu-btn{background-position:0 -51px;right:16px;margin-top:-9px}.wrapper_new .soutu-btn:hover{background-position:0 -75px}@media only screen and (-webkit-min-device-pixel-ratio:2){.wrapper_new .soutu-btn,.wrapper_new .ipt_rec{background-image:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/nicon-2x_6258e1c.png);background-size:24px 96px}.wrapper_new .ipt_rec:hover{background-image:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/nicon-2x_6258e1c.png);background-size:24px 96px}}.wrapper_new #s_tab{color:#626675;padding-top:59px;background:0 0;padding-left:150px}.wrapper_new #s_tab a{color:#626675}.wrapper_new #s_tab a,.wrapper_new #s_tab b{width:auto;min-width:44px;margin-right:27px;line-height:28px;text-align:left;margin-top:4px}.wrapper_new #s_tab i{font-size:14px;font-weight:400}.wrapper_new #s_tab .cur-tab{color:#222;font-weight:400;border-bottom:0}.wrapper_new #s_tab .cur-tab:before{font-family:cIconfont!important;color:#626675;margin-right:2px;content:&#39;\e608&#39;}.wrapper_new #s_tab .cur-tab:after{content:&#39;&#39;;width:auto;min-width:44px;height:2px;background:#4e6ef2;border-radius:1px;display:block;margin-top:1px}.wrapper_new.wrapper_s #s_tab a,.wrapper_new.wrapper_s #s_tab b{margin-right:15px}.wrapper_new #s_tab .s-tab-item:hover{color:#222}.wrapper_new #s_tab .s-tab-item:hover:before{color:#626675}.wrapper_new #s_tab .s-tab-item:before{font-family:cIconfont!important;font-style:normal;-webkit-font-smoothing:antialiased;background:initial;margin-right:2px;color:#C0C2C8;display:inline-block}.wrapper_new #s_tab .s-tab-news:before{content:&#39;\e606&#39;}.wrapper_new #s_tab .s-tab-video:before{content:&#39;\e604&#39;}.wrapper_new #s_tab .s-tab-pic:before{content:&#39;\e607&#39;}.wrapper_new #s_tab .s-tab-zhidao:before{content:&#39;\e633&#39;}.wrapper_new #s_tab .s-tab-wenku:before{content:&#39;\e605&#39;}.wrapper_new #s_tab .s-tab-tieba:before{content:&#39;\e609&#39;}.wrapper_new #s_tab .s-tab-b2b:before{content:&#39;\e603&#39;}.wrapper_new #s_tab .s-tab-map:before{content:&#39;\e630&#39;}.wrapper_new #u{height:60px;margin:4px 0 0;padding-right:24px}.wrapper_new #u&gt;a{text-decoration:none;line-height:24px;font-size:13px;margin:19px 0 0 24px;display:inline-block;vertical-align:top;cursor:pointer;color:#222}.wrapper_new #u&gt;a:hover{text-decoration:none;color:#315efb}.wrapper_new #u .pf .c-icon-triangle-down{display:none}.wrapper_new #u .lb{color:#fff;background-color:#4e71f2;height:24px;width:48px;line-height:24px;border-radius:6px;display:inline-block;text-align:center;margin-top:18px}.wrapper_new #u .lb:hover{color:#fff}.wrapper_new #u .username{margin-left:24px;margin-top:15px;display:inline-block;height:30px}.wrapper_new #u .s-msg-count{display:none;margin-left:4px}.wrapper_new #u .s-top-img-wrapper{position:relative;width:28px;height:28px;border:1px solid #4e71f2;display:inline-block;border-radius:50%}.wrapper_new #u .s-top-img-wrapper img{padding:2px;width:24px;height:24px;border-radius:50%}.wrapper_new #u .s-top-username{display:inline-block;max-width:100px;overflow:hidden;white-space:nowrap;text-overflow:ellipsis;-o-text-overflow:ellipsis;vertical-align:top;margin-top:3px;margin-left:6px;font:13px/23px &#39;PingFang SC&#39;,Arial,&#39;Microsoft YaHei&#39;,sans-serif}.wrapper_new #u .username .c-icon{display:none}#wrapper.wrapper_new .bdnuarrow{display:none}#wrapper.wrapper_new .bdpfmenu{display:none}#wrapper.wrapper_new .bdpfmenu,#wrapper.wrapper_new .usermenu{width:84px;padding:8px 0;background:#fff;box-shadow:0 2px 10px 0 rgba(0,0,0,.15);-webkit-box-shadow:0 2px 10px 0 rgba(0,0,0,.15);-moz-box-shadow:0 2px 10px 0 rgba(0,0,0,.15);-o-box-shadow:0 2px 10px 0 rgba(0,0,0,.15);border-radius:12px;*border:1px solid #d7d9e0;border:0;overflow:hidden}.wrapper_new .s-top-img-wrapper{display:none}.wrapper_new .bdpfmenu a,.wrapper_new .usermenu a{padding:3px 0 3px 16px;color:#333;font-size:13px;line-height:23px}.wrapper_new #u .bdpfmenu a:hover,.wrapper_new #u .usermenu a:hover{color:#315efb;text-decoration:none;background:0 0}.wrapper_new .sam_newgrid~#page{background-color:#F5F5F6;margin:30px 0 0;padding-left:0}.wrapper_new .page-inner{padding:14px 0 14px 150px}.wrapper_new .sam_newgrid~#page .fk{display:none}.wrapper_new .sam_newgrid~#page strong,.wrapper_new .sam_newgrid~#page a{width:36px;height:36px;border:0;border-radius:6px;background-color:#fff;color:#3951B3;margin-right:12px}.wrapper_new .sam_newgrid~#page a .pc{border:0;width:36px;height:36px;line-height:36px}.wrapper_new .sam_newgrid~#page strong{background:#4E6EF2;color:#fff;font-weight:400}.wrapper_new .sam_newgrid~#page .n{width:80px;padding:0;line-height:36px}.wrapper_new .sam_newgrid~#page a:hover,.wrapper_new .sam_newgrid~#page a:hover .pc,.wrapper_new .sam_newgrid~#page .n:hover{border:0;background:#4E6EF2;color:#fff}.wrapper_new #foot{border-top:0;margin-top:0;background-color:#F5F5F6}.wrapper_new #foot #help{padding-left:150px!important;background:#F5F5F6}.wrapper_new #foot a{color:#9195A3;padding:0 12px}.wrapper_new #foot a:hover{color:#222}.wrapper_new #foot a:first-child{padding-left:0}.wrapper_new #form .bdsug-new{width:590px;top:31px;border-radius:0 0 10px 10px;border:2px solid #4e71f2!important;border-top:0!important;box-shadow:none;font-family:&#39;Microsoft YaHei&#39;,Arial,sans-serif;z-index:1}.wrapper_new.wrapper_s #form .bdsug-new{width:478px}.wrapper_new #form .bdsug-new ul{margin:7px 14px 0;padding:8px 0 7px;background:0 0;border-top:2px solid #f5f5f6}.wrapper_new.wrapper_s #form .bdsug-new ul li{width:440px}.wrapper_new #form .bdsug-new ul li{width:530px;padding:0;color:#626675;line-height:28px;background:0 0;font-family:&#39;Microsoft YaHei&#39;,Arial,sans-serif}.wrapper_new #form .bdsug-new ul li span{color:#626675}.wrapper_new #form .bdsug-new ul li b{font-weight:400;color:#222}.wrapper_new #form .bdsug-new .bdsug-store-del{font-size:13px;text-decoration:none;color:#9195A3;right:3px}.wrapper_new #form .bdsug-new .bdsug-store-del:hover{color:#315EFB;cursor:pointer}.wrapper_new #form .bdsug-new ul li:hover,.wrapper_new #form .bdsug-new ul li:hover span,.wrapper_new #form .bdsug-new ul li:hover b{cursor:pointer}#head .s-down #form .bdsug-new{top:32px}.wrapper_new #form .bdsug-new .bdsug-s,.wrapper_new #form .bdsug-new .bdsug-s span,.wrapper_new #form .bdsug-new .bdsug-s b{color:#315EFB}.wrapper_new #form .bdsug-new&gt;div span:hover,.wrapper_new #form .bdsug-new&gt;div a:hover{color:#315EFB!important}.wrapper_new #form #kw.new-ipt-focus{border-color:#4e6ef2}.wrapper_new .bdsug-new .bdsug-feedback-wrap{border-radius:0 0 10px 10px;background:0 0;line-height:19px;margin-bottom:3px;margin-top:-7px}.wrapper_new .bdsug-new .bdsug-feedback-wrap span{text-decoration:none;color:#9195A3;font-size:13px;cursor:pointer;margin-right:14px}.wrapper_new .bdsug-new .bdsug-feedback-wrap span:hover{color:#315EFB}.wrapper_new .soutu-env-new .soutu-layer{width:704px}.wrapper_new .soutu-env-new .soutu-layer .soutu-url-wrap,.wrapper_new .soutu-env-new .soutu-layer #soutu-url-kw{width:592px;height:40px}.wrapper_new.wrapper_s .soutu-env-new .soutu-layer{width:592px}.wrapper_new.wrapper_s .soutu-env-new .soutu-layer .soutu-url-wrap,.wrapper_new.wrapper_s .soutu-env-new .soutu-layer #soutu-url-kw{width:480px;height:40px}.wrapper_new .soutu-env-new .soutu-layer .soutu-url-btn-new{width:112px;height:40px;line-height:41px;line-height:40px\9}.wrapper_new .soutu-hover-tip,.wrapper_new .voice-hover{top:50px}.wrapper_new .bdlayer .c-icon{width:16px;height:100%;vertical-align:top}.wrapper_new #content_left{padding-left:140px}.wrapper_new .search_tool_conter,.wrapper_new .nums,.wrapper_new #rs,.wrapper_new .hint_common_restop{margin-left:140px}.wrapper_new #rs{margin-bottom:10px}.wrapper_new #rs th{font-family:&#39;Microsoft YaHei&#39;,Arial,sans-serif}@media screen and (min-width:1921px){.wrapper_new .page-inner{width:1212px;margin:0 auto;box-sizing:border-box;padding:14px 0 14px 140px}}#help .activity{font-weight:700;text-decoration:underline}.index-logo-peak{display:none}.baozhang-new-v2{margin-left:8px}.c-trust-as.baozhang-new-v2 i{display:inline-block;vertical-align:text-bottom;font-family:none;width:43px;height:17px;background-image:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/bao_02f5d40.svg);background-repeat:no-repeat;background-size:contain;position:relative;top:1px}.c-trust-as.baozhang-new-v2+.c-trust-as.vstar a{position:relative;top:1px}@supports (-ms-ime-align:auto){.c-trust-as.baozhang-new-v2+.c-trust-as.vstar a{top:0}}.c-frame{margin-bottom:18px}.c-offset{padding-left:10px}.c-gray{color:#666}.c-gap-top-small{margin-top:5px}.c-gap-top{margin-top:10px}.c-gap-bottom-small{margin-bottom:5px}.c-gap-bottom{margin-bottom:10px}.c-gap-left{margin-left:12px}.c-gap-left-small{margin-left:6px}.c-gap-right{margin-right:12px}.c-gap-right-small{margin-right:6px}.c-gap-right-large{margin-right:16px}.c-gap-left-large{margin-left:16px}.c-gap-icon-right-small{margin-right:5px}.c-gap-icon-right{margin-right:10px}.c-gap-icon-left-small{margin-left:5px}.c-gap-icon-left{margin-left:10px}.c-container{width:538px;font-size:13px;line-height:1.54;word-wrap:break-word;word-break:break-word}.c-container .c-container{width:auto}.c-container table{border-collapse:collapse;border-spacing:0}.c-container td{font-size:13px;line-height:1.54}.c-default{font-size:13px;line-height:1.54;word-wrap:break-word;word-break:break-all}.c-container .t,.c-default .t{line-height:1.54}.c-default .t{margin-bottom:0}.cr-content{width:259px;font-size:13px;line-height:1.54;color:#333;word-wrap:break-word;word-break:normal}.cr-content table{border-collapse:collapse;border-spacing:0}.cr-content td{font-size:13px;line-height:1.54;vertical-align:top}.cr-offset{padding-left:17px}.cr-title{font-size:14px;line-height:1.29;font-weight:700}.cr-title-sub{float:right;font-size:13px;font-weight:400}.c-row{*zoom:1}.c-row:after{display:block;height:0;content:&quot;&quot;;clear:both;visibility:hidden}.c-span2{width:29px}.c-span3{width:52px}.c-span4{width:75px}.c-span5{width:98px}.c-span6{width:121px}.c-span7{width:144px}.c-span8{width:167px}.c-span9{width:190px}.c-span10{width:213px}.c-span11{width:236px}.c-span12{width:259px}.c-span13{width:282px}.c-span14{width:305px}.c-span15{width:328px}.c-span16{width:351px}.c-span17{width:374px}.c-span18{width:397px}.c-span19{width:420px}.c-span20{width:443px}.c-span21{width:466px}.c-span22{width:489px}.c-span23{width:512px}.c-span24{width:535px}.c-span2,.c-span3,.c-span4,.c-span5,.c-span6,.c-span7,.c-span8,.c-span9,.c-span10,.c-span11,.c-span12,.c-span13,.c-span14,.c-span15,.c-span16,.c-span17,.c-span18,.c-span19,.c-span20,.c-span21,.c-span22,.c-span23,.c-span24{float:left;_display:inline;margin-right:17px;list-style:none}.c-span-last{margin-right:0}.c-span-last-s{margin-right:0}.container_l .cr-content{width:351px}.container_l .cr-content .c-span-last-s{margin-right:17px}.container_l .cr-content-narrow{width:259px}.container_l .cr-content-narrow .c-span-last-s{margin-right:0}.c-border{width:518px;padding:9px;border:1px solid #e3e3e3;border-bottom-color:#e0e0e0;border-right-color:#ececec;box-shadow:1px 2px 1px rgba(0,0,0,.072);-webkit-box-shadow:1px 2px 1px rgba(0,0,0,.072);-moz-box-shadow:1px 2px 1px rgba(0,0,0,.072);-o-box-shadow:1px 2px 1px rgba(0,0,0,.072)}.c-border .c-gap-left{margin-left:10px}.c-border .c-gap-left-small{margin-left:5px}.c-border .c-gap-right{margin-right:10px}.c-border .c-gap-right-small{margin-right:5px}.c-border .c-border{width:auto;padding:0;border:0;box-shadow:none;-webkit-box-shadow:none;-moz-box-shadow:none;-o-box-shadow:none}.c-border .c-span2{width:34px}.c-border .c-span3{width:56px}.c-border .c-span4{width:78px}.c-border .c-span5{width:100px}.c-border .c-span6{width:122px}.c-border .c-span7{width:144px}.c-border .c-span8{width:166px}.c-border .c-span9{width:188px}.c-border .c-span10{width:210px}.c-border .c-span11{width:232px}.c-border .c-span12{width:254px}.c-border .c-span13{width:276px}.c-border .c-span14{width:298px}.c-border .c-span15{width:320px}.c-border .c-span16{width:342px}.c-border .c-span17{width:364px}.c-border .c-span18{width:386px}.c-border .c-span19{width:408px}.c-border .c-span20{width:430px}.c-border .c-span21{width:452px}.c-border .c-span22{width:474px}.c-border .c-span23{width:496px}.c-border .c-span24{width:518px}.c-border .c-span2,.c-border .c-span3,.c-border .c-span4,.c-border .c-span5,.c-border .c-span6,.c-border .c-span7,.c-border .c-span8,.c-border .c-span9,.c-border .c-span10,.c-border .c-span11,.c-border .c-span12,.c-border .c-span13,.c-border .c-span14,.c-border .c-span15,.c-border .c-span16,.c-border .c-span17,.c-border .c-span18,.c-border .c-span19,.c-border .c-span20,.c-border .c-span21,.c-border .c-span22,.c-border .c-span23,.c-border .c-span24{margin-right:10px}.c-border .c-span-last{margin-right:0}.c-loading{display:block;width:50px;height:50px;background:url(//www.baidu.com/aladdin/img/tools/loading.gif) no-repeat 0 0}.c-vline{display:inline-block;margin:0 3px;border-left:1px solid #ddd;width:0;height:12px;_vertical-align:middle;_overflow:hidden}.c-icon{background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/icons_441e82f.png) no-repeat 0 0;_background-image:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/icons_d5b04cc.gif)}.c-icon{display:inline-block;width:14px;height:14px;vertical-align:text-bottom;font-style:normal;overflow:hidden}.c-icon-unfold,.c-icon-fold,.c-icon-chevron-unfold,.c-icon-chevron-fold{width:12px;height:12px}.c-icon-star,.c-icon-star-gray{width:60px}.c-icon-qa-empty,.c-icon-safeguard,.c-icon-register-empty,.c-icon-zan,.c-icon-music,.c-icon-music-gray,.c-icon-location,.c-icon-warning,.c-icon-doc,.c-icon-xls,.c-icon-ppt,.c-icon-pdf,.c-icon-txt,.c-icon-play-black,.c-icon-gift,.c-icon-baidu-share,.c-icon-bear,.c-icon-bear-border,.c-icon-location-blue,.c-icon-hotAirBall,.c-icon-moon,.c-icon-streetMap,.c-icon-mv,.c-icon-zhidao-s,.c-icon-shopping{width:16px;height:16px}.c-icon-bear-circle,.c-icon-warning-circle,.c-icon-warning-triangle,.c-icon-warning-circle-gray{width:18px;height:18px}.c-icon-tieba,.c-icon-zhidao,.c-icon-bear-p,.c-icon-bear-pn{width:24px;height:24px}.c-icon-ball-blue,.c-icon-ball-red{width:38px;height:38px}.c-icon-unfold:hover,.c-icon-fold:hover,.c-icon-chevron-unfold:hover,.c-icon-chevron-fold:hover,.c-icon-download:hover,.c-icon-lyric:hover,.c-icon-v:hover,.c-icon-hui:hover,.c-icon-bao:hover,.c-icon-newbao:hover,.c-icon-person:hover,.c-icon-high-v:hover,.c-icon-phone:hover,.c-icon-nuo:hover,.c-icon-fan:hover,.c-icon-med:hover,.c-icon-air:hover,.c-icon-share2:hover,.c-icon-v1:hover,.c-icon-v2:hover,.c-icon-write:hover,.c-icon-R:hover{border-color:#388bff}.c-icon-unfold:active,.c-icon-fold:active,.c-icon-chevron-unfold:active,.c-icon-chevron-fold:active,.c-icon-download:active,.c-icon-lyric:active,.c-icon-v:active,.c-icon-hui:active,.c-icon-bao:active,.c-icon-newbao:active,.c-icon-person:active,.c-icon-high-v:active,.c-icon-phone:active,.c-icon-nuo:active,.c-icon-fan:active,.c-icon-med:active,.c-icon-air:active,.c-icon-share2:active,.c-icon-v1:active,.c-icon-v2:active,.c-icon-write:active,.c-icon-R:active{border-color:#a2a6ab;background-color:#f0f0f0;box-shadow:inset 1px 1px 1px #c7c7c7;-webkit-box-shadow:inset 1px 1px 1px #c7c7c7;-moz-box-shadow:inset 1px 1px 1px #c7c7c7;-o-box-shadow:inset 1px 1px 1px #c7c7c7}.c-icon-v3:hover{border-color:#ffb300}.c-icon-v3:active{border-color:#a2a6ab;background-color:#f0f0f0;box-shadow:inset 1px 1px 1px #c7c7c7;-webkit-box-shadow:inset 1px 1px 1px #c7c7c7;-moz-box-shadow:inset 1px 1px 1px #c7c7c7;-o-box-shadow:inset 1px 1px 1px #c7c7c7}.c-icon-unfold,.c-icon-fold,.c-icon-chevron-unfold,.c-icon-chevron-fold,.c-icon-download,.c-icon-lyric{border:1px solid #d8d8d8;cursor:pointer}.c-icon-v,.c-icon-hui,.c-icon-bao,.c-icon-newbao,.c-icon-person,.c-icon-high-v,.c-icon-phone,.c-icon-nuo,.c-icon-fan,.c-icon-med,.c-icon-air,.c-icon-share2,.c-icon-v1,.c-icon-v2,.c-icon-v3,.c-icon-write,.c-icon-R{border:1px solid #d8d8d8;cursor:pointer;border-color:transparent;_border-color:tomato;_filter:chroma(color=#ff6347)}.c-icon-v1,.c-icon-v2,.c-icon-v3,.c-icon-v1-noborder,.c-icon-v2-noborder,.c-icon-v3-noborder,.c-icon-v1-noborder-disable,.c-icon-v2-noborder-disable,.c-icon-v3-noborder-disable{width:19px}.c-icon-download,.c-icon-lyric{width:16px;height:16px}.c-icon-play-circle,.c-icon-stop-circle{width:18px;height:18px}.c-icon-play-circle-middle,.c-icon-stop-circle-middle{width:24px;height:24px}.c-icon-play-black-large,.c-icon-stop-black-large{width:36px;height:36px}.c-icon-play-black-larger,.c-icon-stop-black-larger{width:52px;height:52px}.c-icon-flag{background-position:0 -144px}.c-icon-bus{background-position:-24px -144px}.c-icon-calendar{background-position:-48px -144px}.c-icon-street{background-position:-72px -144px}.c-icon-map{background-position:-96px -144px}.c-icon-bag{background-position:-120px -144px}.c-icon-money{background-position:-144px -144px}.c-icon-game{background-position:-168px -144px}.c-icon-user{background-position:-192px -144px}.c-icon-globe{background-position:-216px -144px}.c-icon-lock{background-position:-240px -144px}.c-icon-plane{background-position:-264px -144px}.c-icon-list{background-position:-288px -144px}.c-icon-star-gray{background-position:-312px -144px}.c-icon-circle-gray{background-position:-384px -144px}.c-icon-triangle-down{background-position:-408px -144px}.c-icon-triangle-up{background-position:-432px -144px}.c-icon-triangle-up-empty{background-position:-456px -144px}.c-icon-sort-gray{background-position:-480px -144px}.c-icon-sort-up{background-position:-504px -144px}.c-icon-sort-down{background-position:-528px -144px}.c-icon-down-gray{background-position:-552px -144px}.c-icon-up-gray{background-position:-576px -144px}.c-icon-download-noborder{background-position:-600px -144px}.c-icon-lyric-noborder{background-position:-624px -144px}.c-icon-download-white{background-position:-648px -144px}.c-icon-close{background-position:-672px -144px}.c-icon-fail{background-position:-696px -144px}.c-icon-success{background-position:-720px -144px}.c-icon-triangle-down-g{background-position:-744px -144px}.c-icon-refresh{background-position:-768px -144px}.c-icon-chevron-left-gray{background-position:-816px -144px}.c-icon-chevron-right-gray{background-position:-840px -144px}.c-icon-setting{background-position:-864px -144px}.c-icon-close2{background-position:-888px -144px}.c-icon-chevron-top-gray-s{background-position:-912px -144px}.c-icon-fullscreen{background-position:0 -168px}.c-icon-safe{background-position:-24px -168px}.c-icon-exchange{background-position:-48px -168px}.c-icon-chevron-bottom{background-position:-72px -168px}.c-icon-chevron-top{background-position:-96px -168px}.c-icon-unfold{background-position:-120px -168px}.c-icon-fold{background-position:-144px -168px}.c-icon-chevron-unfold{background-position:-168px -168px}.c-icon-qa{background-position:-192px -168px}.c-icon-register{background-position:-216px -168px}.c-icon-star{background-position:-240px -168px}.c-icon-star-gray{position:relative}.c-icon-star-gray .c-icon-star{position:absolute;top:0;left:0}.c-icon-play-blue{background-position:-312px -168px}.c-icon-pic{width:16px;background-position:-336px -168px}.c-icon-chevron-fold{background-position:-360px -168px}.c-icon-video{width:18px;background-position:-384px -168px}.c-icon-circle-blue{background-position:-408px -168px}.c-icon-circle-yellow{background-position:-432px -168px}.c-icon-play-white{background-position:-456px -168px}.c-icon-triangle-down-blue{background-position:-480px -168px}.c-icon-chevron-unfold2{background-position:-504px -168px}.c-icon-right{background-position:-528px -168px}.c-icon-right-empty{background-position:-552px -168px}.c-icon-new-corner{width:15px;background-position:-576px -168px}.c-icon-horn{background-position:-600px -168px}.c-icon-right-large{width:18px;background-position:-624px -168px}.c-icon-wrong-large{background-position:-648px -168px}.c-icon-circle-blue-s{background-position:-672px -168px}.c-icon-play-gray{background-position:-696px -168px}.c-icon-up{background-position:-720px -168px}.c-icon-down{background-position:-744px -168px}.c-icon-stable{background-position:-768px -168px}.c-icon-calendar-blue{background-position:-792px -168px}.c-icon-triangle-down-blue2{background-position:-816px -168px}.c-icon-triangle-up-blue2{background-position:-840px -168px}.c-icon-down-blue{background-position:-864px -168px}.c-icon-up-blue{background-position:-888px -168px}.c-icon-ting{background-position:-912px -168px}.c-icon-piao{background-position:-936px -168px}.c-icon-wrong-empty{background-position:-960px -168px}.c-icon-warning-circle-s{background-position:-984px -168px}.c-icon-chevron-left{background-position:-1008px -168px}.c-icon-chevron-right{background-position:-1032px -168px}.c-icon-circle-gray-s{background-position:-1056px -168px}.c-icon-v,.c-icon-v-noborder{background-position:0 -192px}.c-icon-hui{background-position:-24px -192px}.c-icon-bao{background-position:-48px -192px}.c-icon-newbao{background-position:-97px -218px}.c-icon-phone{background-position:-72px -192px}.c-icon-qa-empty{background-position:-96px -192px}.c-icon-safeguard{background-position:-120px -192px}.c-icon-register-empty{background-position:-144px -192px}.c-icon-zan{background-position:-168px -192px}.c-icon-music{background-position:-192px -192px}.c-icon-music-gray{background-position:-216px -192px}.c-icon-location{background-position:-240px -192px}.c-icon-warning{background-position:-264px -192px}.c-icon-doc{background-position:-288px -192px}.c-icon-xls{background-position:-312px -192px}.c-icon-ppt{background-position:-336px -192px}.c-icon-pdf{background-position:-360px -192px}.c-icon-txt{background-position:-384px -192px}.c-icon-play-black{background-position:-408px -192px}.c-icon-play-black:hover{background-position:-432px -192px}.c-icon-gift{background-position:-456px -192px}.c-icon-baidu-share{background-position:-480px -192px}.c-icon-bear{background-position:-504px -192px}.c-icon-R{background-position:-528px -192px}.c-icon-bear-border{background-position:-576px -192px}.c-icon-person,.c-icon-person-noborder{background-position:-600px -192px}.c-icon-location-blue{background-position:-624px -192px}.c-icon-hotAirBall{background-position:-648px -192px}.c-icon-moon{background-position:-672px -192px}.c-icon-streetMap{background-position:-696px -192px}.c-icon-high-v,.c-icon-high-v-noborder{background-position:-720px -192px}.c-icon-nuo{background-position:-744px -192px}.c-icon-mv{background-position:-768px -192px}.c-icon-fan{background-position:-792px -192px}.c-icon-med{background-position:-816px -192px}.c-icon-air{background-position:-840px -192px}.c-icon-share2{background-position:-864px -192px}.c-icon-v1,.c-icon-v1-noborder{background-position:-888px -192px}.c-icon-v2,.c-icon-v2-noborder{background-position:-912px -192px}.c-icon-v3,.c-icon-v3-noborder{background-position:-936px -192px}.c-icon-v1-noborder-disable{background-position:-960px -192px}.c-icon-v2-noborder-disable{background-position:-984px -192px}.c-icon-v3-noborder-disable{background-position:-1008px -192px}.c-icon-write{background-position:-1032px -192px}.c-icon-zhidao-s{background-position:-1056px -192px}.c-icon-shopping{background-position:-1080px -192px}.c-icon-bear-circle{background-position:0 -216px}.c-icon-warning-circle{background-position:-24px -216px}.c-icon-warning-triangle{width:24px;background-position:-48px -216px}.c-icon-warning-circle-gray{background-position:-72px -216px}.c-icon-ball-red{background-position:0 -240px}.c-icon-ball-blue{background-position:-48px -240px}.c-icon-tieba{background-position:0 -288px}.c-icon-zhidao{background-position:-48px -288px}.c-icon-bear-p{background-position:-96px -288px}.c-icon-bear-pn{background-position:-144px -288px}.c-icon-download{background-position:0 -336px}.c-icon-lyric{background-position:-24px -336px}.c-icon-play-circle{background-position:-48px -336px}.c-icon-play-circle:hover{background-position:-72px -336px}.c-icon-stop-circle{background-position:-96px -336px}.c-icon-stop-circle:hover{background-position:-120px -336px}.c-icon-play-circle-middle{background-position:0 -360px}.c-icon-play-circle-middle:hover{background-position:-48px -360px}.c-icon-stop-circle-middle{background-position:-96px -360px}.c-icon-stop-circle-middle:hover{background-position:-144px -360px}.c-icon-play-black-large{background-position:0 -408px}.c-icon-play-black-large:hover{background-position:-48px -408px}.c-icon-stop-black-large{background-position:-96px -408px}.c-icon-stop-black-large:hover{background-position:-144px -408px}.c-icon-play-black-larger{background-position:0 -456px}.c-icon-play-black-larger:hover{background-position:-72px -456px}.c-icon-stop-black-larger{background-position:-144px -456px}.c-icon-stop-black-larger:hover{background-position:-216px -456px}.c-recommend{font-size:0;padding:5px 0;border:1px solid #f3f3f3;border-left:0;border-right:0}.c-recommend .c-icon{margin-bottom:-4px}.c-recommend .c-gray,.c-recommend a{font-size:13px}.c-recommend-notopline{padding-top:0;border-top:0}.c-recommend-vline{display:inline-block;margin:0 10px -2px;border-left:1px solid #d8d8d8;width:0;height:12px;_vertical-align:middle;_overflow:hidden}.c-text{display:inline-block;padding:2px;text-align:center;vertical-align:text-bottom;font-size:12px;line-height:100%;font-style:normal;font-weight:400;color:#fff;overflow:hidden}a.c-text,a.c-text:hover,a.c-text:active,a.c-text:visited{color:#fff;text-decoration:none}.c-text-new{background-color:#f13f40}.c-text-info{padding-left:0;padding-right:0;font-weight:700;color:#2b99ff;*vertical-align:baseline;_position:relative;_top:2px}a.c-text-info,a.c-text-info:hover,a.c-text-info:active,a.c-text-info:visited{color:#2b99ff}.c-text-info b{_position:relative;_top:-1px}.c-text-info span{padding:0 2px;font-weight:400}.c-text-important{background-color:#1cb7fd}.c-text-public{background-color:#2b99ff}.c-text-warning{background-color:#ff830f}.c-text-prompt{background-color:#f5c537}.c-text-danger{background-color:#f13f40}.c-text-safe{background-color:#52c277}.c-text-empty{padding-top:1px;padding-bottom:1px;border:1px solid #d8d8d8;cursor:pointer;color:#23b9fd;background-color:#fff}a.c-text-empty,a.c-text-empty:visited{color:#23b9fd}.c-text-empty:hover{border-color:#388bff;color:#23b9fd}.c-text-empty:active{color:#23b9fd;border-color:#a2a6ab;background-color:#f0f0f0;box-shadow:inset 1px 1px 1px #c7c7c7;-webkit-box-shadow:inset 1px 1px 1px #c7c7c7;-moz-box-shadow:inset 1px 1px 1px #c7c7c7;-o-box-shadow:inset 1px 1px 1px #c7c7c7}.c-text-mult{padding-left:5px;padding-right:5px}.c-text-gray{background-color:#666}.c-btn,.c-btn:visited{color:#333!important}.c-btn{display:inline-block;padding:0 14px;margin:0;height:24px;line-height:25px;font-size:13px;filter:chroma(color=#000000);*zoom:1;border:1px solid #d8d8d8;cursor:pointer;font-family:inherit;font-weight:400;text-align:center;vertical-align:middle;background-color:#f9f9f9;overflow:hidden;outline:0}.c-btn:hover{border-color:#388bff}.c-btn:active{border-color:#a2a6ab;background-color:#f0f0f0;box-shadow:inset 1px 1px 1px #c7c7c7;-webkit-box-shadow:inset 1px 1px 1px #c7c7c7;-moz-box-shadow:inset 1px 1px 1px #c7c7c7;-o-box-shadow:inset 1px 1px 1px #c7c7c7}a.c-btn{text-decoration:none}button.c-btn{height:26px;_line-height:18px;*overflow:visible}button.c-btn::-moz-focus-inner{padding:0;border:0}.c-btn .c-icon{margin-top:5px}.c-btn-disable{color:#999!important}.c-btn-disable:visited{color:#999!important}.c-btn-disable:hover{border:1px solid #d8d8d8;cursor:default}.c-btn-disable:active{border-color:#d8d8d8;background-color:#f9f9f9;box-shadow:none;-webkit-box-shadow:none;-moz-box-shadow:none;-o-box-shadow:none}.c-btn-mini{padding-left:5px;padding-right:5px;height:18px;line-height:18px;font-size:12px}button.c-btn-mini{height:20px;_height:18px;_line-height:14px}.c-btn-mini .c-icon{margin-top:2px}.c-btn-large{height:28px;line-height:28px;font-size:14px;font-family:&quot;微软雅黑&quot;,&quot;黑体&quot;}button.c-btn-large{height:30px;_line-height:24px}.c-btn-large .c-icon{margin-top:7px;_margin-top:6px}.c-btn-primary,.c-btn-primary:visited{color:#fff!important}.c-btn-primary{background-color:#388bff;border-color:#3c8dff #408ffe #3680e6}.c-btn-primary:hover{border-color:#2678ec #2575e7 #1c6fe2 #2677e7;background-color:#388bff;background-image:url();*background-image:none;background-repeat:repeat-x;box-shadow:1px 1px 1px rgba(0,0,0,.4);-webkit-box-shadow:1px 1px 1px rgba(0,0,0,.4);-moz-box-shadow:1px 1px 1px rgba(0,0,0,.4);-o-box-shadow:1px 1px 1px rgba(0,0,0,.4)}.c-btn-primary:active{border-color:#178ee3 #1784d0 #177bbf #1780ca;background-color:#388bff;background-image:none;box-shadow:inset 1px 1px 1px rgba(0,0,0,.15);-webkit-box-shadow:inset 1px 1px 1px rgba(0,0,0,.15);-moz-box-shadow:inset 1px 1px 1px rgba(0,0,0,.15);-o-box-shadow:inset 1px 1px 1px rgba(0,0,0,.15)}.c-btn .c-icon{float:left}.c-dropdown2{position:relative;display:inline-block;width:100%;height:26px;line-height:26px;font-size:13px;vertical-align:middle;outline:0;_font-family:SimSun;background-color:#fff;word-wrap:normal;word-break:normal}.c-dropdown2 .c-dropdown2-btn-group{position:relative;height:24px;border:1px solid #999;border-bottom-color:#d8d8d8;border-right-color:#d8d8d8;-moz-user-select:none;-webkit-user-select:none;user-select:none}.c-dropdown2:hover .c-dropdown2-btn-group,.c-dropdown2-hover .c-dropdown2-btn-group{box-shadow:inset 1px 1px 0 0 #d8d8d8;-webkit-box-shadow:inset 1px 1px 0 0 #d8d8d8;-moz-box-shadow:inset 1px 1px 0 0 #d8d8d8;-o-box-shadow:inset 1px 1px 0 0 #d8d8d8}.c-dropdown2:hover .c-dropdown2-btn-icon,.c-dropdown2-hover .c-dropdown2-btn-icon{box-shadow:inset 0 1px 0 0 #d8d8d8;-webkit-box-shadow:inset 0 1px 0 0 #d8d8d8;-moz-box-shadow:inset 0 1px 0 0 #d8d8d8;-o-box-shadow:inset 0 1px 0 0 #d8d8d8}.c-dropdown2:hover .c-dropdown2-btn-icon-border,.c-dropdown2-hover .c-dropdown2-btn-icon-border{background-color:#f2f2f2}.c-dropdown2 .c-dropdown2-btn{height:24px;padding-left:10px;padding-right:10px;cursor:default;overflow:hidden;white-space:nowrap}.c-dropdown2 .c-dropdown2-btn-icon{position:absolute;top:0;right:0;width:23px;height:24px;line-height:24px;background-color:#fff;padding:0 1px 0 10px}.c-dropdown2 .c-dropdown2-btn-icon-border{height:24px;width:23px;border-left:1px solid #d9d9d9;text-align:center;zoom:1}.c-dropdown2 .c-icon-triangle-down{*margin-top:5px;_margin-left:2px}.c-dropdown2 .c-dropdown2-menu{position:absolute;left:0;top:100%;_margin-top:0;width:100%;overflow:hidden;border:1px solid #bbb;background:#fff;visibility:hidden}.c-dropdown2 .c-dropdown2-menu-inner{overflow:hidden}.c-dropdown2 .c-dropdown2-option{background-color:#fff;cursor:pointer}.c-dropdown2 .c-dropdown2-selected{background-color:#f5f5f5}.c-dropdown2-common ul,.c-dropdown2-common li{margin:0;padding:0;list-style:none}.c-dropdown2-common .c-dropdown2-option{height:26px;line-height:26px;font-size:12px;color:#333;white-space:nowrap;cursor:pointer;padding-left:10px}.c-dropdown2-common .c-dropdown2-selected{background-color:#f5f5f5}.c-dropdown2-common .c-dropdown2-menu-group .c-dropdown2-group{padding-left:10px;font-weight:700;cursor:default}.c-dropdown2-common .c-dropdown2-menu-group .c-dropdown2-option{padding-left:20px}.c-img{display:block;min-height:1px;border:0 0}.c-img3{width:52px}.c-img4{width:75px}.c-img6{width:121px}.c-img7{width:144px}.c-img12{width:259px}.c-img15{width:328px}.c-img18{width:397px}.c-border .c-img3{width:56px}.c-border .c-img4{width:78px}.c-border .c-img7{width:144px}.c-border .c-img12{width:254px}.c-border .c-img15{width:320px}.c-border .c-img18{width:386px}.c-index{display:inline-block;padding:1px 0;color:#fff;width:14px;line-height:100%;font-size:12px;text-align:center;background-color:#8eb9f5}.c-index-hot,.c-index-hot1{background-color:#f54545}.c-index-hot2{background-color:#ff8547}.c-index-hot3{background-color:#ffac38}.c-input{display:inline-block;padding:0 4px;height:24px;line-height:24px\9;font-size:13px;border:1px solid #999;border-bottom-color:#d8d8d8;border-right-color:#d8d8d8;outline:0;box-sizing:content-box;-webkit-box-sizing:content-box;-moz-box-sizing:content-box;vertical-align:top;overflow:hidden}.c-input:hover{box-shadow:inset 1px 1px 1px 0 #d8d8d8;-webkit-box-shadow:inset 1px 1px 1px 0 #d8d8d8;-moz-box-shadow:inset 1px 1px 1px 0 #d8d8d8;-o-box-shadow:inset 1px 1px 1px 0 #d8d8d8}.c-input .c-icon{float:right;margin-top:6px}.c-input .c-icon-left{float:left;margin-right:4px}.c-input input{float:left;height:22px;*padding-top:4px;margin-top:2px;font-size:13px;border:0;outline:0}.c-input{width:180px}.c-input input{width:162px}.c-input-xmini{width:65px}.c-input-xmini input{width:47px}.c-input-mini{width:88px}.c-input-mini input{width:70px}.c-input-small{width:157px}.c-input-small input{width:139px}.c-input-large{width:203px}.c-input-large input{width:185px}.c-input-xlarge{width:341px}.c-input-xlarge input{width:323px}.c-input12{width:249px}.c-input12 input{width:231px}.c-input20{width:433px}.c-input20 input{width:415px}.c-border .c-input{width:178px}.c-border .c-input input{width:160px}.c-border .c-input-xmini{width:68px}.c-border .c-input-xmini input{width:50px}.c-border .c-input-mini{width:90px}.c-border .c-input-mini input{width:72px}.c-border .c-input-small{width:156px}.c-border .c-input-small input{width:138px}.c-border .c-input-large{width:200px}.c-border .c-input-large input{width:182px}.c-border .c-input-xlarge{width:332px}.c-border .c-input-xlarge input{width:314px}.c-border .c-input12{width:244px}.c-border .c-input12 input{width:226px}.c-border .c-input20{width:420px}.c-border .c-input20 input{width:402px}.c-numberset{*zoom:1}.c-numberset:after{display:block;height:0;content:&quot;&quot;;clear:both;visibility:hidden}.c-numberset li{float:left;margin-right:17px;list-style:none}.c-numberset .c-numberset-last{margin-right:0}.c-numberset a{display:block;width:50px;text-decoration:none;text-align:center;border:1px solid #d8d8d8;cursor:pointer}.c-numberset a:hover{border-color:#388bff}.c-border .c-numberset li{margin-right:10px}.c-border .c-numberset .c-numberset-last{margin-right:0}.c-border .c-numberset a{width:54px}.c-table{width:100%;border-collapse:collapse;border-spacing:0}.c-table th,.c-table td{padding-left:10px;line-height:1.54;font-size:13px;border-bottom:1px solid #f3f3f3;text-align:left}.cr-content .c-table th:first-child,.cr-content .c-table td:first-child{padding-left:0}.c-table th{padding-top:4px;padding-bottom:4px;font-weight:400;color:#666;border-color:#f0f0f0;white-space:nowrap;background-color:#fafafa}.c-table td{padding-top:6.5px;padding-bottom:6.5px}.c-table-hasimg td{padding-top:10px;padding-bottom:10px}.c-table a,.c-table em{text-decoration:none}.c-table a:hover,.c-table a:hover em{text-decoration:underline}.c-table a.c-icon:hover{text-decoration:none}.c-table .c-btn:hover,.c-table .c-btn:hover em{text-decoration:none}.c-table-nohihead th{background-color:transparent}.c-table-noborder td{border-bottom:0}.c-tabs-nav-movetop{margin:-10px -9px 0 -10px;position:relative}.c-tabs-nav{border-bottom:1px solid #d9d9d9;background-color:#fafafa;line-height:1.54;font-size:0;*zoom:1;_overflow-x:hidden;_position:relative}.c-tabs-nav:after{display:block;height:0;content:&quot;&quot;;clear:both;visibility:hidden}.c-tabs-nav .c-tabs-nav-btn{float:right;_position:absolute;_top:0;_right:0;_z-index:1;background:#fafafa}.c-tabs-nav .c-tabs-nav-btn .c-tabs-nav-btn-prev,.c-tabs-nav .c-tabs-nav-btn .c-tabs-nav-btn-next{float:left;padding:6px 2px;cursor:pointer}.c-tabs-nav .c-tabs-nav-btn .c-tabs-nav-btn-disable{cursor:default}.c-tabs-nav .c-tabs-nav-view{_position:relative;overflow:hidden;*zoom:1;margin-bottom:-1px}.c-tabs-nav .c-tabs-nav-view .c-tabs-nav-li{margin-bottom:0}.c-tabs-nav .c-tabs-nav-more{float:left;white-space:nowrap}.c-tabs-nav li,.c-tabs-nav a{color:#666;font-size:13px;*zoom:1}.c-tabs-nav li{display:inline-block;margin-bottom:-1px;*display:inline;padding:3px 15px;vertical-align:bottom;border-style:solid;border-width:2px 1px 0;border-color:transparent;_border-color:tomato;_filter:chroma(color=#ff6347);list-style:none;cursor:pointer;white-space:nowrap;overflow:hidden}.c-tabs-nav a{text-decoration:none}.c-tabs-nav .c-tabs-nav-sep{height:16px;width:0;padding:0;margin-bottom:4px;border-style:solid;border-width:0 1px;border-color:transparent #fff transparent #dedede}.c-tabs-nav .c-tabs-nav-selected{_position:relative;border-color:#2c99ff #e4e4e4 #fff #dedede;background-color:#fff;color:#000;cursor:default}.c-tabs-nav-one .c-tabs-nav-selected{border-color:transparent;_border-color:tomato;_filter:chroma(color=#ff6347);background-color:transparent;color:#666}.c-tabs .c-tabs .c-tabs-nav{padding:10px 0 5px;border:0 0;background-color:#fff}.c-tabs .c-tabs .c-tabs-nav li,.c-tabs .c-tabs .c-tabs-nav a{color:#00c}.c-tabs .c-tabs .c-tabs-nav li{padding:0 5px;position:static;margin:0 10px;border:0 0;cursor:pointer;white-space:nowrap}.c-tabs .c-tabs .c-tabs-nav .c-tabs-nav-sep{height:11px;width:0;padding:0;margin:0 0 4px;border:0 0;border-left:1px solid #d8d8d8}.c-tabs .c-tabs .c-tabs-nav .c-tabs-nav-selected{background-color:#2c99ff;color:#fff;cursor:default}.c-tag{padding-top:3px;margin-bottom:3px;height:1.7em;font-size:13px;line-height:1.4em;transition:height .3s ease-in;-webkit-transition:height .3s ease-in;-moz-transition:height .3s ease-in;-ms-transition:height .3s ease-in;-o-transition:height .3s ease-in;*zoom:1;overflow:hidden}.c-tag:after{display:block;height:0;content:&quot;&quot;;clear:both;visibility:hidden}.c-tag-cont{overflow:hidden;*zoom:1}.c-tag-type,.c-tag-li,.c-tag-more,.c-tag-cont span{margin:2px 0}.c-tag-type,.c-tag-li,.c-tag-cont span{float:left}.c-tag-type,.c-tag-more{color:#666}.c-tag-li,.c-tag-cont span{padding:0 4px;display:inline-block;margin-right:12px;white-space:nowrap;cursor:pointer;color:#00c}.c-tag .c-tag-selected{background:#388bff;color:#fff}.c-tag-more{float:right;background:#fff;cursor:pointer;*height:18px}.c-tool{display:inline-block;width:56px;height:56px;background:url(//www.baidu.com/aladdin/img/tools/tools-5.png) no-repeat}.c-tool-region{background-position:0 0}.c-tool-calendar{background-position:-72px 0}.c-tool-city{background-position:-144px 0}.c-tool-phone-pos{background-position:-216px 0}.c-tool-other{background-position:-288px 0}.c-tool-midnight{background-position:-360px 0}.c-tool-kefu{width:121px;background-position:-432px 0}.c-tool-phone{background-position:-576px 0}.c-tool-car{background-position:-648px 0}.c-tool-station{background-position:0 -72px}.c-tool-cheat{background-position:-72px -72px}.c-tool-counter{background-position:-144px -72px}.c-tool-time{background-position:-216px -72px}.c-tool-zip{background-position:-288px -72px}.c-tool-warning{background-position:-360px -72px}.c-tool-ip{background-position:0 -144px}.c-tool-unit{background-position:-72px -144px}.c-tool-rate{background-position:-144px -144px}.c-tool-conversion{background-position:-288px -144px}.c-tool-ads{background-position:-360px -144px}.c-icon-baozhang-new{width:14px;height:14px;background-image:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/pc-bao_96f4fc0.png);background-size:140px 14px;background-repeat:no-repeat;cursor:pointer;border-color:transparent;margin-left:11px;margin-right:3px}.c-icon-baozhang-new.animate{-webkit-animation-name:keyframesBao;animation-name:keyframesBao;-webkit-animation-duration:1s;animation-duration:1s;-webkit-animation-delay:0s;animation-delay:0s;-webkit-animation-iteration-count:1;animation-iteration-count:1;-webkit-animation-fill-mode:forwards;animation-fill-mode:forwards;-webkit-animation-timing-function:steps(1);animation-timing-function:steps(1)}@-webkit-keyframes keyframesBao{0%{background-position:0 0}10%{background-position:-14px 0}20%{background-position:-28px 0}30%{background-position:-42px 0}40%{background-position:-56px 0}50%{background-position:-70px 0}60%{background-position:-84px 0}70%{background-position:-98px 0}80%{background-position:-112px 0}90%,100%{background-position:-126px 0}}@keyframes keyframesBao{0%{background-position:0 0}10%{background-position:-14px 0}20%{background-position:-28px 0}30%{background-position:-42px 0}40%{background-position:-56px 0}50%{background-position:-70px 0}60%{background-position:-84px 0}70%{background-position:-98px 0}80%{background-position:-112px 0}90%,100%{background-position:-126px 0}}.opui-honourCard4-new-bao-title{font-size:12px;line-height:16px;color:#333;margin:3px 10px 0}.c-tip-con .opui-honourCard4-new-bao-style{width:100%;margin-top:4px}.c-tip-con .opui-honourCard4-new-bao-style a,.c-tip-con .opui-honourCard4-new-bao-style a:visited{color:#666}.new-pmd{}.new-pmd .c-gap-top-small{margin-top:6px}.new-pmd .c-gap-top{margin-top:8px}.new-pmd .c-gap-top-large{margin-top:12px}.new-pmd .c-gap-top-mini{margin-top:2px}.new-pmd .c-gap-top-xsmall{margin-top:4px}.new-pmd .c-gap-top-middle{margin-top:10px}.new-pmd .c-gap-bottom-small{margin-bottom:6px}.new-pmd .c-gap-bottom{margin-bottom:8px}.new-pmd .c-gap-bottom-large{margin-bottom:12px}.new-pmd .c-gap-bottom-mini{margin-bottom:2px}.new-pmd .c-gap-bottom-xsmall{margin-bottom:4px}.new-pmd .c-gap-bottom-middle{margin-bottom:10px}.new-pmd .c-gap-left{margin-left:12px}.new-pmd .c-gap-left-small{margin-left:8px}.new-pmd .c-gap-left-xsmall{margin-left:4px}.new-pmd .c-gap-left-mini{margin-left:2px}.new-pmd .c-gap-left-large{margin-left:16px}.new-pmd .c-gap-left-middle{margin-left:10px}.new-pmd .c-gap-right{margin-right:12px}.new-pmd .c-gap-right-small{margin-right:8px}.new-pmd .c-gap-right-xsmall{margin-right:4px}.new-pmd .c-gap-right-mini{margin-right:2px}.new-pmd .c-gap-right-large{margin-right:16px}.new-pmd .c-gap-right-middle{margin-right:10px}.new-pmd .c-gap-icon-right-small{margin-right:5px}.new-pmd .c-gap-icon-right{margin-right:10px}.new-pmd .c-gap-icon-left-small{margin-left:5px}.new-pmd .c-gap-icon-left{margin-left:10px}.new-pmd .c-row{*zoom:1}.new-pmd .c-row:after{display:block;height:0;content:&quot;&quot;;clear:both;visibility:hidden}.new-pmd .c-span1{width:32px}.new-pmd .c-span2{width:80px}.new-pmd .c-span3{width:128px}.new-pmd .c-span4{width:176px}.new-pmd .c-span5{width:224px}.new-pmd .c-span6{width:272px}.new-pmd .c-span7{width:320px}.new-pmd .c-span8{width:368px}.new-pmd .c-span9{width:416px}.new-pmd .c-span10{width:464px}.new-pmd .c-span11{width:512px}.new-pmd .c-span12{width:560px}.new-pmd .c-span2,.new-pmd .c-span3,.new-pmd .c-span4,.new-pmd .c-span5,.new-pmd .c-span6,.new-pmd .c-span7,.new-pmd .c-span8,.new-pmd .c-span9,.new-pmd .c-span10,.new-pmd .c-span11,.new-pmd .c-span12{float:left;_display:inline;margin-right:16px;list-style:none}.new-pmd .c-span-last{margin-right:0}.new-pmd .c-span-last-s{margin-right:0}.new-pmd .c-icon{font-family:cIconfont!important;font-style:normal;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.new-pmd .c-index{display:inline-block;width:14px;padding:1px 0;line-height:100%;text-align:center;color:#fff;background-color:#8eb9f5;font-size:12px}.new-pmd .c-index-hot,.new-pmd .c-index-hot1{background-color:#f54545}.new-pmd .c-index-hot2{background-color:#ff8547}.new-pmd .c-index-hot3{background-color:#ffac38}.new-pmd .c-index-single{display:inline-block;background:0 0;color:#9195A3;width:18px;font-size:15px;letter-spacing:-1px}.new-pmd .c-index-single-hot,.new-pmd .c-index-single-hot1{color:#FE2D46}.new-pmd .c-index-single-hot2{color:#F60}.new-pmd .c-index-single-hot3{color:#FAA90E}.new-pmd .c-text{display:inline-block;padding:0 2px;text-align:center;vertical-align:middle;font-style:normal;color:#fff;overflow:hidden;line-height:16px;height:16px;font-size:12px;border-radius:4px;font-weight:200}.new-pmd a.c-text{text-decoration:none!important}.new-pmd .c-text-info{padding-left:0;padding-right:0;font-weight:700;color:#2b99ff;vertical-align:text-bottom}.new-pmd .c-text-info span{padding:0 2px;font-weight:400}.new-pmd .c-text-important{background-color:#1cb7fd}.new-pmd .c-text-public{background-color:#4E6EF2}.new-pmd .c-text-warning{background-color:#f60}.new-pmd .c-text-prompt{background-color:#ffc20d}.new-pmd .c-text-danger{background-color:#f73131}.new-pmd .c-text-safe{background-color:#39b362}.new-pmd .c-text-mult{padding:0 4px;line-height:18px;height:18px;border-radius:4px;font-weight:400}.new-pmd .c-text-blue{background-color:#4E6EF2}.new-pmd .c-text-blue-border{border:1px solid #CBD2FF;padding:0 8px;border-radius:4px;font-weight:400;color:#4E6EF2!important}.new-pmd .c-text-green{background-color:#39b362}.new-pmd .c-text-green-border{border:1px solid #C9E7CD;padding:0 8px;border-radius:4px;font-weight:400;color:#39b362!important}.new-pmd .c-text-red{background-color:#f73131}.new-pmd .c-text-red-border{border:1px solid #F0C8BD;padding:0 8px;border-radius:4px;font-weight:400;color:#f73131!important}.new-pmd .c-text-yellow{background-color:#ffc20d}.new-pmd .c-text-yellow-border{border:1px solid #FCEDB1;padding:0 8px;border-radius:4px;font-weight:400;color:#ffc20d!important}.new-pmd .c-text-orange{background-color:#f60}.new-pmd .c-text-orange-border{border:1px solid #F8D2B0;padding:0 8px;border-radius:4px;font-weight:400;color:#f60!important}.new-pmd .c-text-pink{background-color:#fc3274}.new-pmd .c-text-pink-border{border:1px solid #F6C4D7;padding:0 8px;border-radius:4px;font-weight:400;color:#fc3274!important}.new-pmd .c-text-gray{background-color:#858585}.new-pmd .c-text-gray-border{border:1px solid #DBDBDB;padding:0 8px;border-radius:4px;font-weight:400;color:#858585!important}.new-pmd .c-text-dark-red{background-color:#CC2929}.new-pmd .c-text-gray-opacity{background-color:rgba(0,0,0,.3)}.new-pmd .c-text-white-border{border:1px solid rgba(255,255,255,.8);padding:0 8px;border-radius:4px;font-weight:400;color:#fff!important}.new-pmd .c-text-hot{background-color:#FF9812}.new-pmd .c-text-new{background-color:#FF455B}.new-pmd .c-text-fei{background-color:#FF7413}.new-pmd .c-text-bao{background-color:#D61A6E}.new-pmd .c-text-rec{background-color:#3CA6FF}.new-pmd .c-text-time{background-color:rgba(0,0,0,.3)}.new-pmd .c-btn,.new-pmd .c-btn:visited{color:#333!important}.new-pmd .c-btn{display:inline-block;overflow:hidden;font-family:inherit;font-weight:400;text-align:center;vertical-align:middle;outline:0;border:0;height:30px;width:80px;line-height:30px;font-size:13px;border-radius:6px;padding:0;background-color:#F2F2F2;*zoom:1;cursor:pointer}.new-pmd a.c-btn{text-decoration:none}.new-pmd button.c-btn{*overflow:visible;border:0;outline:0}.new-pmd button.c-btn::-moz-focus-inner{padding:0;border:0}.new-pmd .c-btn-disable{color:#9195A3!important}.new-pmd .c-btn-disable:visited{color:#9195A3!important}.new-pmd .c-btn-disable:hover{cursor:default;color:#9195A3!important;background-color:#F2F2F2}.new-pmd .c-btn-mini{height:24px;width:48px;line-height:24px}.new-pmd .c-btn-mini .c-icon{margin-top:2px}.new-pmd .c-btn-large{height:30px;line-height:30px;font-size:14px}.new-pmd button.c-btn-large{height:30px}.new-pmd .c-btn-large .c-icon{margin-top:7px}.new-pmd .c-btn-primary,.new-pmd .c-btn-primary:visited{color:#fff!important}.new-pmd .c-btn-primary{background-color:#4E6EF2}.new-pmd .c-btn-primary:hover{border:0!important;box-shadow:none!important;background-image:none!important}.new-pmd .c-btn-primary:active{border:0!important;box-shadow:none!important;background-image:none!important}.new-pmd .c-btn-add{width:32px;height:32px;line-height:32px;text-align:center;color:#9195A3!important}.new-pmd .c-btn-add:hover{background-color:#4E6EF2;color:#fff!important}.new-pmd .c-btn-add .c-icon{float:none}.new-pmd .c-btn-add-disable:hover{cursor:default;color:#9195A3!important;background-color:#F5F5F6}.new-pmd .c-tag{color:#333;display:inline-block;padding:0 8px;height:30px;line-height:30px;font-size:13px;border-radius:6px;background-color:#f5f5f6;cursor:pointer}.new-pmd .c-img{position:relative;display:block;min-height:0;border:0;line-height:0;background:#f5f5f6;overflow:hidden}.new-pmd .c-img img{width:100%}.new-pmd .c-img1{width:32px}.new-pmd .c-img2{width:80px}.new-pmd .c-img3{width:128px}.new-pmd .c-img4{width:176px}.new-pmd .c-img6{width:272px}.new-pmd .c-img12{width:560px}.new-pmd .c-img-s,.new-pmd .c-img-l,.new-pmd .c-img-w,.new-pmd .c-img-x,.new-pmd .c-img-y,.new-pmd .c-img-v,.new-pmd .c-img-z{height:0;overflow:hidden}.new-pmd .c-img-s{padding-bottom:100%}.new-pmd .c-img-l{padding-bottom:133.33333333%}.new-pmd .c-img-w{padding-bottom:56.25%}.new-pmd .c-img-x{padding-bottom:75%}.new-pmd .c-img-y{padding-bottom:66.66666667%}.new-pmd .c-img-v{padding-bottom:116.66666667%}.new-pmd .c-img-z{padding-bottom:62.5%}.new-pmd .c-img-radius{border-radius:6px}.new-pmd .c-img-radius-s{border-radius:2px}.new-pmd .c-img-radius-small{border-radius:2px}.new-pmd .c-img-radius-large{border-radius:12px}.new-pmd .c-img-radius-middle{border-radius:4px}.new-pmd .c-img-radius-left{border-top-left-radius:6px;border-bottom-left-radius:6px}.new-pmd .c-img-radius-right{border-top-right-radius:6px;border-bottom-right-radius:6px}.new-pmd .c-img-radius-left-s{border-top-left-radius:2px;border-bottom-left-radius:2px}.new-pmd .c-img-radius-right-s{border-top-right-radius:2px;border-bottom-right-radius:2px}.new-pmd .c-img-radius-left-l{border-top-left-radius:12px;border-bottom-left-radius:12px}.new-pmd .c-img-radius-right-l{border-top-right-radius:12px;border-bottom-right-radius:12px}.new-pmd .c-img-mask{position:absolute;top:0;left:0;z-index:2;width:100%;height:100%;background-image:radial-gradient(circle,rgba(0,0,0,0),rgba(0,0,0,.04));background-image:-ms-radial-gradient(circle,rgba(0,0,0,0),rgba(0,0,0,.04))}.new-pmd .c-img-border{content:&#39;&#39;;position:absolute;top:0;left:0;bottom:0;right:0;border:1px solid rgba(0,0,0,.05)}.new-pmd .c-img-circle{border-radius:100%;overflow:hidden}.new-pmd .c-input{display:inline-block;font:13px/21px Arial,sans-serif;color:#333;border:1px solid #D7D9E0;padding:0 8px;height:28px;line-height:28px\9;border-radius:6px;font-size:13px;outline:0;box-sizing:content-box;-webkit-box-sizing:content-box;-moz-box-sizing:content-box;vertical-align:top;overflow:hidden}.new-pmd .c-input:hover{box-shadow:none;-webkit-box-shadow:none;-moz-box-shadow:none;-o-box-shadow:none}.new-pmd .c-input .c-icon{float:right;margin-top:5px;font-size:16px;color:#9195A3}.new-pmd .c-input .c-icon-left{float:left;margin-right:4px}.new-pmd .c-input input{float:left;height:26px;padding:0;margin-top:1px;font-size:13px;border:0;outline:0}.new-pmd .c-input input::-webkit-input-placeholder{color:#9195A3}.new-pmd .c-input input::-ms-input-placeholder{color:#9195A3}.new-pmd .c-input input::-moz-placeholder{color:#9195A3}.new-pmd .c-input::-webkit-input-placeholder{color:#9195A3}.new-pmd .c-input::-ms-input-placeholder{color:#9195A3}.new-pmd .c-input::-moz-placeholder{color:#9195A3}.new-pmd .c-input{width:398px}.new-pmd .c-input input{width:378px}.new-pmd .c-input-xmini{width:158px}.new-pmd .c-input-xmini input{width:138px}.new-pmd .c-input-mini{width:206px}.new-pmd .c-input-mini input{width:186px}.new-pmd .c-input-small{width:350px}.new-pmd .c-input-small input{width:330px}.new-pmd .c-input-large{width:446px}.new-pmd .c-input-large input{width:426px}.new-pmd .c-input-xlarge{width:734px}.new-pmd .c-input-xlarge input{width:714px}.new-pmd .c-input12{width:542px}.new-pmd .c-input12 input{width:522px}.new-pmd .c-input20{width:926px}.new-pmd .c-input20 input{width:906px}.new-pmd .c-radio,.new-pmd .c-checkbox{display:inline-block;position:relative;white-space:nowrap;outline:0;line-height:1;vertical-align:middle;cursor:pointer;width:16px;height:16px}.new-pmd .c-radio-inner,.new-pmd .c-checkbox-inner{display:inline-block;position:relative;width:16px;height:16px;line-height:16px;text-align:center;top:0;left:0;background-color:#fff;color:#D7D9E0}.new-pmd .c-radio-input,.new-pmd .c-checkbox-input{position:absolute;top:0;bottom:0;left:0;right:0;z-index:1;opacity:0;filter:alpha(opacity=0) \9;user-select:none;margin:0;padding:0;width:100%;height:100%;cursor:pointer;zoom:1}.new-pmd .c-radio-inner-i,.new-pmd .c-checkbox-inner-i{display:none;font-size:16px}.new-pmd .c-radio-inner-bg,.new-pmd .c-checkbox-inner-bg{font-size:16px;position:absolute;top:0;left:0;z-index:1}.new-pmd .c-radio-checked .c-radio-inner-i,.new-pmd .c-checkbox-checked .c-checkbox-inner-i{color:#4E71F2;display:inline-block}.new-pmd .c-textarea{font:13px/21px Arial,sans-serif;color:#333;border:1px solid #D7D9E0;padding:8px 12px;border-radius:12px;resize:none;outline:0}.new-pmd .c-textarea::-webkit-input-placeholder{color:#9195A3}.new-pmd .c-textarea::-ms-input-placeholder{color:#9195A3}.new-pmd .c-textarea::-moz-placeholder{color:#9195A3}.new-pmd .c-table{width:100%;border-spacing:0;border-collapse:collapse}.new-pmd .c-table th,.new-pmd .c-table td{padding-left:10px;border-bottom:1px solid #f3f3f3;text-align:left;font-size:13px;line-height:1.54}.new-pmd .cr-content .c-table th:first-child,.new-pmd .cr-content .c-table td:first-child{padding-left:0}.new-pmd .c-table th{padding-top:4px;padding-bottom:4px;border-color:#f0f0f0;font-weight:400;white-space:nowrap;color:#666;background-color:#fafafa}.new-pmd .c-table td{padding-top:6.5px;padding-bottom:6.5px}.new-pmd .c-table-hasimg td{padding-top:10px;padding-bottom:10px}.new-pmd .c-table a,.new-pmd .c-table em{text-decoration:none}.new-pmd .c-table a:hover,.new-pmd .c-table a:hover em{text-decoration:underline}.new-pmd .c-table a.c-icon:hover{text-decoration:none}.new-pmd .c-table .c-btn:hover,.new-pmd .c-table .c-btn:hover em{text-decoration:none}.new-pmd .c-table-nohihead th{background-color:transparent}.new-pmd .c-table-noborder td{border-bottom:0}.new-pmd .c-tabs{font-size:14px;border-radius:12px;color:#222}.new-pmd .c-tabs-nav{color:#626675;background:#f5f5f6;border-radius:12px 12px 0 0;list-style:none;height:52px;margin:0;padding:0 12px}.new-pmd .c-tabs-nav-li{position:relative;display:inline-block;list-style:none;line-height:40px;height:40px;margin-right:32px;cursor:pointer}.new-pmd .c-tabs-nav-li:last-child{margin-right:0}.new-pmd .c-tabs-nav-selected{color:#222}.new-pmd .c-tabs-nav-selected::after{content:&#39;&#39;;position:absolute;bottom:0;height:2px;border-radius:1px;width:100%;left:0;z-index:1;background:#222}.new-pmd .c-tabs-content{padding:14px 16px;background:#fff;border-radius:12px;margin-top:-12px;box-shadow:0 2px 3px 0 rgba(0,0,0,.1);-webkit-box-shadow:0 2px 3px 0 rgba(0,0,0,.1);-moz-box-shadow:0 2px 3px 0 rgba(0,0,0,.1);-o-box-shadow:0 2px 3px 0 rgba(0,0,0,.1)}.new-pmd .c-tabs-nav-icon{display:inline-block;width:18px;height:18px;line-height:18px;border-radius:4px;margin-right:8px;background-size:contain;margin-top:11px;vertical-align:top}.new-pmd .c-tabs-nav-icon img{width:18px;height:18px}.new-pmd .c-tabs.c-sub-tabs .c-tabs-nav{height:29px;line-height:29px;border-bottom:1px solid #f2f2f2;background:#fff}.new-pmd .c-tabs.c-sub-tabs .c-tabs-content{box-shadow:none;-webkit-box-shadow:none;-moz-box-shadow:none;-o-box-shadow:none;margin-top:0;border-radius:0}.new-pmd .c-tabs.c-sub-tabs .c-tabs-nav-li{height:29px;line-height:29px}.new-pmd .c-tabs.c-sub-tabs .c-tabs-nav-icon{position:relative;margin-top:5px}.new-pmd .c-tabs.c-sub-tabs .c-tabs-nav-icon::after{content:&#39;&#39;;position:absolute;top:0;left:0;bottom:0;right:0;border:1px solid rgba(0,0,0,.03);border-radius:4px}.new-pmd .c-line-clamp1{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.new-pmd .c-font-sigma{font:36px/60px Arial,sans-serif}.new-pmd .c-font-large{font:18px/22px Arial,sans-serif}.new-pmd .c-font-big{font:18px/22px Arial,sans-serif}.new-pmd .c-font-special{font:16px/26px Arial,sans-serif}.new-pmd .c-font-medium{font:14px/22px Arial,sans-serif}.new-pmd .c-font-middle{font:14px/22px Arial,sans-serif}.new-pmd .c-font-normal{font:13px/21px Arial,sans-serif}.new-pmd .c-font-small{font:12px/20px Arial,sans-serif}.new-pmd .c-font-family{font-family:Arial,sans-serif}.new-pmd .c-color-t{color:#222}.new-pmd .c-color-text{color:#333}.new-pmd .c-color-gray{color:#626675}.new-pmd .c-color-gray2{color:#9195A3}.new-pmd .c-color-visited{color:#771CAA}.new-pmd .c-color-link{color:#222}.new-pmd .c-color-orange{color:#f60}.new-pmd .c-color-green{color:#00B198}.new-pmd .c-color-ad{color:#77A9F9}.new-pmd .c-color-red{color:#F73131}.new-pmd .c-color-red:visited{color:#F73131}.new-pmd .c-color-warn{color:#FF7900}.new-pmd .c-color-warn:visited{color:#FF7900}.new-pmd .c-color-link{color:#2440B3}.new-pmd .c-select{position:relative;display:inline-block;width:96px;box-sizing:border-box;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;vertical-align:middle;color:#222;font:13px/21px Arial,sans-serif}.new-pmd .c-select-selection{display:block;height:30px;line-height:29px;box-sizing:border-box;-webkit-box-sizing:border-box;-moz-box-sizing:border-box;padding:0 26px 0 10px;background-color:#fff;border-radius:6px;border:1px solid #D7D9E0;outline:0;user-select:none;cursor:pointer;position:relative;overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.new-pmd .c-select-arrow,.new-pmd .c-select-arrow-up{position:absolute;top:-1px;right:10px;color:#9195A3;font-size:16px}.new-pmd .c-select-dropdown{display:none;position:absolute;padding-top:4px;top:25px;z-index:999;left:0;width:94px;box-sizing:content-box;-webkit-box-sizing:content-box;-moz-box-sizing:content-box;background:#fff;border-radius:0 0 6px 6px;border:1px solid #D7D9E0;border-top:0;zoom:1}.new-pmd .c-select-split{border-top:1px solid #f5f5f5;margin:0 5px}.new-pmd .c-select-dropdown-list{padding:0;margin:5px 0 0;list-style:none}.new-pmd .c-select-dropdown-list.c-select-scroll{max-height:207px;overflow-y:auto;overflow-x:hidden;margin-right:5px;margin-bottom:9px}.new-pmd .c-select-dropdown-list.c-select-scroll::-webkit-scrollbar{width:2px}.new-pmd .c-select-dropdown-list.c-select-scroll::-webkit-scrollbar-track{width:2px;background:#f5f5f6;border-radius:1px}.new-pmd .c-select-dropdown-list.c-select-scroll::-webkit-scrollbar-thumb{width:2px;height:58px;background-color:#4e71f2;border-radius:1px}.new-pmd .c-select-dropdown-list.c-select-scroll .c-select-item:last-child{margin:0}.new-pmd .c-select-item{margin:0 0 4px;padding:0 10px;clear:both;white-space:nowrap;list-style:none;cursor:pointer;box-sizing:border-box;-webkit-box-sizing:border-box;-moz-box-sizing:border-box}.new-pmd .c-select-item:hover{color:#315EFB}.new-pmd .c-select-item-selected{color:#315EFB}.new-pmd .c-select-arrow-up{display:none}.new-pmd .c-select-visible .c-select-selection{border-radius:6px 6px 0 0}.new-pmd .c-select-visible .c-select-dropdown{display:block}.new-pmd .c-select-visible .c-select-arrow{display:none}.new-pmd .c-select-visible .c-select-arrow-up{display:inline-block}.new-pmd .c-frame{margin-bottom:18px}.new-pmd .c-offset{padding-left:10px}.new-pmd .c-link{color:#2440B3;text-decoration:none;cursor:pointer}.new-pmd .c-link:hover{text-decoration:underline;color:#315EFB}.new-pmd .c-link:visited{color:#771CAA}.new-pmd .c-gray{color:#626675}.new-pmd.c-container{width:560px;word-wrap:break-word;word-break:break-all;color:#333;font-size:13px;line-height:21px}.new-pmd.c-container .c-container{width:auto;font-size:13px;line-height:21px}.new-pmd .c-title{font:18px/22px Arial,sans-serif;font-weight:400;margin-bottom:4px}.new-pmd .c-abstract{font:13px/21px Arial,sans-serif;color:#333}.new-pmd .cr-title{font:14px/22px Arial,sans-serif;color:#222;font-weight:400}.new-pmd .cr-title-sub{float:right;font-weight:400;font-size:13px}.new-pmd .c-vline{display:inline-block;width:0;height:12px;margin:0 3px;border-left:1px solid #ddd}.new-pmd .c-border{border-radius:12px;border:0;margin:0 -16px;padding:12px 16px;width:auto;box-shadow:0 2px 5px 0 rgba(0,0,0,.1);-webkit-box-shadow:0 2px 5px 0 rgba(0,0,0,.1);-moz-box-shadow:0 2px 5px 0 rgba(0,0,0,.1);-o-box-shadow:0 2px 5px 0 rgba(0,0,0,.1)}.new-pmd .c-capsule-tip{display:inline-block;background:#F73131;border-radius:7px;padding:0 4px;height:13px;font-size:11px;line-height:14px;color:#fff;text-align:center}.c-group-wrapper{box-shadow:0 2px 10px 0 rgba(0,0,0,.1);border-radius:12px;margin-left:-16px;margin-right:-16px}.c-group-wrapper .result-op{padding:0 16px 11px;width:560px!important;border:0}.c-group-wrapper .result-op[id=&quot;1&quot;]{padding-top:16px}.c-group-wrapper .result-op:not(:last-child){margin-bottom:0!important}.c-group-wrapper .result-op:last-child{padding-bottom:13px}.c-group-wrapper .result-op .c-group-title{font-size:14px!important;line-height:14px;font-weight:400;margin-bottom:4px}.c-group-wrapper .result-op .c-group-title a{text-decoration:none;color:#222;line-height:24px}.c-group-wrapper .result-op .c-group-title .c-group-arrow-icon{font-size:13px;line-height:13px;color:#c4c7ce;margin-left:-4px}#container.sam_newgrid{font:13px/21px Arial,sans-serif}#container.sam_newgrid td,#container.sam_newgrid th{font:13px/21px Arial,sans-serif}#container.sam_newgrid #content_left{width:560px}.container_l.sam_newgrid{width:1088px}.container_l.sam_newgrid #content_right{width:368px}.container_l.sam_newgrid .cr-content{width:368px}.container_l.sam_newgrid .cr-content .c-span-last-s{margin-right:16px}.container_l.sam_newgrid .cr-content-narrow .c-span-last-s{margin-right:0}.container_s.sam_newgrid{width:944px}.container_s.sam_newgrid .cr-content{width:272px}.container_s.sam_newgrid #content_right{width:272px}.c-onlyshow-toppic{height:100%;width:100%;margin-top:-97px;padding-top:97px;position:absolute;overflow:hidden}.soutu-input{padding-left:55px!important}.soutu-input-image{position:absolute;left:1px;top:1px;height:28px;width:49px;z-index:1;padding:0;background:#e6e6e6;border:1px solid #e6e6e6}.soutu-input-thumb{height:28px;width:28px;min-width:1px}.soutu-input-close{position:absolute;right:0;top:0;cursor:pointer;display:block;width:22px;height:28px}.soutu-input-close::after{content:&quot; &quot;;position:absolute;right:3px;top:50%;cursor:pointer;margin-top:-7px;display:block;width:14px;height:14px;background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/soutu/img/soutu_icons_new_8abaf8a.png) no-repeat -163px 0}.soutu-input-image:hover .soutu-input-close::after{background-position:-215px 2px}.fb-hint{margin-top:5px;transition-duration:.9s;opacity:0;display:none;color:red}.fb-img{display:none}.fb-hint-tip{height:44px;line-height:24px;background-color:#38f;color:#fff;box-sizing:border-box;width:269px;font-size:16px;padding:10px;padding-left:14px;position:absolute;top:-65px;right:-15px;border-radius:3px;z-index:299}.fb-hint-tip::before{content:&quot;&quot;;width:0;height:0;display:block;position:absolute;border-left:8px solid transparent;border-right:8px solid transparent;border-top:8px solid #38f;bottom:-8px;right:25px}.fb-mask,.fb-mask-light{position:fixed;top:0;left:0;bottom:0;right:0;z-index:296;background-color:#000;filter:alpha(opacity=60);background-color:rgba(0,0,0,.6)}.fb-mask-light{background-color:#fff;filter:alpha(opacity=0);background-color:rgba(255,255,255,0)}.fb-success .fb-success-text{text-align:center;color:#333;font-size:13px;margin-bottom:14px}.fb-success-text.fb-success-text-title{color:#3b6;font-size:16px;margin-bottom:16px}.fb-success-text-title i{width:16px;height:16px;margin-right:5px}.fb-list-container{box-sizing:border-box;padding:4px 8px;position:absolute;top:0;left:0;bottom:0;right:0;z-index:298;display:block;width:100%;cursor:pointer;margin-top:-5px;margin-left:-5px}.fb-list-container-hover{background-color:#fff;border:2px #38f solid}.fb-list-container-first{box-sizing:border-box;padding-left:10px;padding-top:5px;position:absolute;top:0;left:0;bottom:0;right:0;z-index:297;display:block;width:100%;cursor:pointer;margin-top:-5px;margin-left:-5px;border:3px #f5f5f5 dashed;border-radius:3px}.fb-des-content{font-size:13px!important;color:#000}.fb-des-content::-webkit-input-placeholder{font-size:13px!important;color:#9a9a9a}.fb-des-content:-moz-placeholder{font-size:13px!important;color:#9a9a9a}.fb-des-content::-moz-placeholder{font-size:13px!important;color:#9a9a9a}.fb-des-content:-ms-input-placeholder{font-size:13px!important;color:#9a9a9a}.fb-btn,.fb-btn:visited{color:#333!important}.fb-select{position:relative;background-color:#fff;border:1px solid #ccc}.fb-select i{position:absolute;right:2px;top:7px}.fb-type{width:350px;box-sizing:border-box;height:28px;font-size:13px;line-height:28px;border:0;word-break:normal;word-wrap:normal;position:relative;appearance:none;-moz-appearance:none;-webkit-appearance:none;display:inline-block;vertical-align:middle;line-height:normal;color:#333;background-color:transparent;border-radius:0;overflow:hidden;outline:0;padding-left:5px}.fb-type::-ms-expand{display:none}.fb-btn{display:inline-block;padding:0 14px;margin:0;height:24px;line-height:25px;font-size:13px;filter:chroma(color=#000000);*zoom:1;border:1px solid #d8d8d8;cursor:pointer;font-family:inherit;font-weight:400;text-align:center;vertical-align:middle;background-color:#f9f9f9;overflow:hidden;outline:0}.fb-btn:hover{border-color:#388bff}.fb-btn:active{border-color:#a2a6ab;background-color:#f0f0f0;box-shadow:inset 1px 1px 1px #c7c7c7;-webkit-box-shadow:inset 1px 1px 1px #c7c7c7;-moz-box-shadow:inset 1px 1px 1px #c7c7c7;-o-box-shadow:inset 1px 1px 1px #c7c7c7}a.fb-btn{text-decoration:none}button.fb-btn{height:26px;_line-height:18px;*overflow:visible}button.fb-btn::-moz-focus-inner{padding:0;border:0}.fb-btn .c-icon{margin-top:5px}.fb-btn-primary,.fb-btn-primary:visited{color:#fff!important}.fb-btn-primary{background-color:#388bff;_width:82px;border-color:#3c8dff #408ffe #3680e6}.fb-btn-primary:hover{border-color:#2678ec #2575e7 #1c6fe2 #2677e7;background-color:#388bff;background-image:url(data:image/png; base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAACCAMAAACuX0YVAAAABlBMVEVnpv85i/9PO5r4AAAAD0lEQVR42gEEAPv/AAAAAQAFAAIros7PAAAAAElFTkSuQmCC);background-repeat:repeat-x;box-shadow:1px 1px 1px rgba(0,0,0,.4);-webkit-box-shadow:1px 1px 1px rgba(0,0,0,.4);-moz-box-shadow:1px 1px 1px rgba(0,0,0,.4);-o-box-shadow:1px 1px 1px rgba(0,0,0,.4)}.fb-btn-primary:active{border-color:#178ee3 #1784d0 #177bbf #1780ca;background-color:#388bff;background-image:none;box-shadow:inset 1px 1px 1px rgba(0,0,0,.15);-webkit-box-shadow:inset 1px 1px 1px rgba(0,0,0,.15);-moz-box-shadow:inset 1px 1px 1px rgba(0,0,0,.15);-o-box-shadow:inset 1px 1px 1px rgba(0,0,0,.15)}.fb-feedback-right-dialog{position:fixed;z-index:299;bottom:0;right:0}.fb-feedback-list-dialog,.fb-feedback-list-dialog-left{position:absolute;z-index:299}.fb-feedback-list-dialog:before{content:&quot;&quot;;width:0;height:0;display:block;position:absolute;top:15px;left:-6px;border-top:8px solid transparent;border-bottom:8px solid transparent;border-right:8px solid #fff}.fb-feedback-list-dialog-left:before{content:&quot;&quot;;width:0;height:0;display:block;position:absolute;top:15px;right:-6px;border-top:8px solid transparent;border-bottom:8px solid transparent;border-left:8px solid #fff}.fb-header{padding-left:20px;padding-right:20px;margin-top:14px;text-align:left;-moz-user-select:none}.fb-header .fb-close{color:#e0e0e0}.fb-close{text-decoration:none;margin-top:2px;float:right;font-size:20px;font-weight:700;line-height:18px;color:#666;text-shadow:0 1px 0 #fff}.fb-photo-block{display:none}.fb-photo-block-title{font-size:13px;color:#333;padding-top:10px}.fb-photo-block-title-span{color:#999}.fb-photo-sub-block{margin-top:10px;margin-bottom:10px;width:60px;text-align:center}.fb-photo-sub-block-hide{display:none}.fb-photo-update-block{overflow:hidden}.fb-photo-update-item-block{width:100px;height:100px;background:red;border:solid 1px #ccc;margin-top:10px;float:left;margin-right:20px;position:relative;background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/feedback_add_photo_69ff822.png);background-repeat:no-repeat;background-size:contain;background-position:center center;background-size:24px 24px}.fb-photo-block-title-ex{font-size:13px;float:right}.fb-photo-block-title-ex img{vertical-align:text-top;margin-right:4px}.fb-photo-block-title-span{margin-left:4px;color:#999}.fb-photo-update-item-show-img{width:100%;height:100%;display:none}.fb-photo-update-item-close{width:13px;height:13px;position:absolute;top:-6px;right:-6px;display:none}.fb-photo-block input{display:none}.fb-photo-update-hide{display:none}.fb-photo-update-item-block{width:60px;height:60px;border:solid 1px #ccc;float:left}.fb-photo-block-example{position:absolute;top:0;left:0;display:none;background-color:#fff;padding:14px;padding-top:0;width:392px}.fb-photo-block-example-header{padding-top:14px;overflow:hidden}.fb-photo-block-example-header p{float:left}.fb-photo-block-example-header img{float:right;width:13px;height:13px}.fb-photo-block-example-img img{margin:0 auto;margin-top:14px;display:block;width:200px}.fb-photo-block-example-title{text-align:center}.fb-photo-block-example-title-big{font-size:14px;color:#333}.fb-photo-block-example-title-small{font-size:13px;color:#666}.fb-header a.fb-close:hover{text-decoration:none}.fb-photo-block-upinfo{width:100%}.fb-header-tips{font-size:16px;margin:0;color:#333;text-rendering:optimizelegibility}.fb-body{margin-bottom:0;padding:20px;padding-top:10px;overflow:hidden;text-align:left}.fb-modal,.fb-success,.fb-vertify{background-color:#fff;cursor:default;top:100%;left:100%;width:390px;overflow:hidden;border:1px solid #999;*border:1px solid #ddd;font-size:13px;line-height:1.54}.fb-textarea textarea{width:350px;height:64px;padding:4px;margin:10px 0;vertical-align:top;resize:none;overflow:auto;box-sizing:border-box;display:inline-block;border:1px solid #ccc;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);box-shadow:inset 0 1px 1px rgba(0,0,0,.075);-webkit-transition:border linear .2s,box-shadow linear .2s;-moz-transition:border linear .2s,box-shadow linear .2s;-ms-transition:border linear .2s,box-shadow linear .2s;-o-transition:border linear .2s,box-shadow linear .2s;transition:border linear .2s,box-shadow linear .2s}.fb-selected{display:none;width:12px;height:12px;background:url() no-repeat 2px 3px}.fb-guide{padding-top:10px;color:#9a9a9a;margin-left:-20px;padding-left:20px;border-right-width:0;margin-right:-20px;padding-right:25px;margin-bottom:-20px;padding-bottom:15px}.fb-footer{padding-top:10px;text-align:left}.fb-block{overflow:hidden;position:relative}.fb-block .fb-email{height:28px;line-height:26px;width:350px;border:1px solid #ccc;padding:4px;padding-top:0;box-sizing:border-box;padding-bottom:0;display:inline-block;font-family:&#39;Helvetica Neue&#39;,Helvetica,Arial,sans-serif;vertical-align:middle!important;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);box-shadow:inset 0 1px 1px rgba(0,0,0,.075);-webkit-transition:border linear .2s,box-shadow linear .2s;-moz-transition:border linear .2s,box-shadow linear .2s;-ms-transition:border linear .2s,box-shadow linear .2s;-o-transition:border linear .2s,box-shadow linear .2s;transition:border linear .2s,box-shadow linear .2s}.fb-email{font-size:13px!important;color:#000}.fb-email::-webkit-input-placeholder{font-size:13px!important;color:#9a9a9a}.fb-email:-moz-placeholder{font-size:13px!important;color:#9a9a9a}.fb-email::-moz-placeholder{font-size:13px!important;color:#9a9a9a}.fb-email:-ms-input-placeholder{font-size:13px!important;color:#9a9a9a}.fb-cut-block{height:15px;padding-bottom:10px}.fb-canvas-block{height:172px;border:1px solid #ccc;margin-bottom:10px;position:relative;overflow:hidden;width:100%;background-position:center;box-sizing:border-box}.fb-canvas-block img{width:350px;position:absolute}.fb-canvas-block img[src=&quot;&quot;]{opacity:0}.fb-cut-input{width:14px;height:14px;margin:0;margin-right:10px;display:inline-block;border:1px solid #ccc}.fb-cut-btn{width:60px!important}#fb_tips_span{vertical-align:middle}#fb_popwindow{display:block;left:457px;top:69.5px;position:absolute;width:450px;z-index:999999;background:none repeat scroll 0 0 #fff;border:1px solid #999;border-radius:3px;box-shadow:0 0 9px #999;padding:0}#feedback_dialog_content{text-align:center}#fb_right_post_save:hover{background-image:url(data:image/png; base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAACCAMAAACuX0YVAAAABlBMVEVnpv85i/9PO5r4AAAAD0lEQVR42gEEAPv/AAAAAQAFAAIros7PAAAAAElFTkSuQmCC);background-repeat:repeat-x;box-shadow:1px 1px 1px rgba(0,0,0,.4);-webkit-box-shadow:1px 1px 1px rgba(0,0,0,.4);-moz-box-shadow:1px 1px 1px rgba(0,0,0,.4);-o-box-shadow:1px 1px 1px rgba(0,0,0,.4)}.fb-select-icon{position:absolute;bottom:6px;right:5px;width:16px;height:16px;box-sizing:content-box;background-position:center center;background-repeat:no-repeat;background-size:7px 4px;-webkit-background-size:7px 4px;background-image:url()}.fb-select-shorter{position:relative;min-height:28px}.fb-type-container{line-height:28px;position:absolute;top:28px;width:100%;background-color:#fff;border:1px solid #ccc;z-index:300;margin-left:-1px;display:none}.fb-type-item,.fb-type-selected{height:28px;line-height:30px;padding-left:4px}.fb-type-item:hover{background:#f5F5F5}.fb-checkbox{position:relative;border-bottom:1px solid #eee;height:34px;line-height:35px}.fb-checkbox:last-child{border-bottom:0}.fb-list-wrapper{margin-top:-10px}.fb-textarea-sug textarea{margin-top:0}@media screen and (min-width:1921px){.slowmsg{left:50%!important;-webkit-transform:translateX(-50%);-ms-transform:translateX(-50%);transform:translateX(-50%)}.wrapper_l #head{-webkit-transform-style:preserve-3d;transform-style:preserve-3d}.head_wrapper{width:1196px;margin:0 auto;position:relative;-webkit-transform:translate3d(-52px,0,1px);transform:translate3d(-52px,0,1px)}.head_wrapper #u{right:-66px}#head .headBlock{-webkit-box-sizing:border-box;box-sizing:border-box;margin-left:auto;margin-right:auto;width:1196px;padding-left:121px;-webkit-transform:translate3d(-52px,0,0);transform:translate3d(-52px,0,0)}#s_tab.s_tab{padding-left:0}#s_tab.s_tab .s_tab_inner{display:block;-webkit-box-sizing:border-box;box-sizing:border-box;padding-left:77px;width:1212px;margin:0 auto}#con-at .result-op{margin-left:auto;margin-right:auto;-webkit-transform:translateX(-60px);-ms-transform:translateX(-60px);transform:translateX(-60px)}#wrapper_wrapper{margin-left:-72px}#container{-webkit-box-sizing:border-box;box-sizing:border-box;width:1212px;margin:0 auto}.wrapper_new #foot .foot-inner{width:1212px;margin:0 auto}.wrapper_new #foot .foot-inner #help{padding-left:140px!important}#container.sam_newgrid{margin:0 auto;width:1088px;padding-left:158px;-webkit-box-sizing:content-box;box-sizing:content-box}}@font-face{font-family:cicons;font-weight:400;font-style:normal;src:url(//m.baidu.com/se/static/font/cicon.eot?t=1615437921122#);src:url(//m.baidu.com/se/static/font/cicon.eot?t=1615437921122#iefix) format(&#39;embedded-opentype&#39;),url(//m.baidu.com/se/static/font/cicon.woff?t=1615437921122#) format(&#39;woff&#39;),url(//m.baidu.com/se/static/font/cicon.ttf?t=1615437921122#) format(&#39;truetype&#39;),url(//m.baidu.com/se/static/font/cicon.svg?t=1615437921122#cicons) format(&#39;svg&#39;)}@font-face{font-family:cIconfont;font-weight:400;font-style:normal;src:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/font/iconfont.eot);src:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/font/iconfont.eot?#iefix) format(&#39;embedded-opentype&#39;),url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/font/iconfont.woff2) format(&#39;woff2&#39;),url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/font/iconfont.woff) format(&#39;woff&#39;),url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/font/iconfont.ttf) format(&#39;truetype&#39;),url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/font/iconfont_9587117.svg#iconfont) format(&#39;svg&#39;)}html{font-size:100px}html body{font-size:.14rem;font-size:14px}[data-pmd] a{color:#333;text-decoration:none;-webkit-tap-highlight-color:rgba(23,23,23,.1)}[data-pmd] .c-icon{display:inline;width:auto;height:auto;vertical-align:baseline;overflow:auto}[data-pmd] .c-row-tile{position:relative;margin:0 -9px}[data-pmd] .c-row-tile .c-row{padding:0 9px}[data-pmd] .c-row :last-child,[data-pmd] .c-row-tile :last-child{margin-right:0}[data-pmd] .c-row *,[data-pmd] .c-row-tile *{-webkit-box-sizing:border-box;box-sizing:border-box}[data-pmd] .c-icon{font-family:cicons!important;font-style:normal;-webkit-font-smoothing:antialiased}[data-pmd] .c-result{padding:0;margin:0;background:0 0;border:0 none}[data-pmd] .c-blocka{display:block}[data-pmd] a .c-title,[data-pmd] a.c-title{font:18px/26px Arial,Helvetica,sans-serif;color:#000}[data-pmd] a:visited .c-title,[data-pmd] a:visited.c-title{color:#999}[data-pmd] .sfa-view a:visited .c-title,[data-pmd] .sfa-view a:visited.c-title,[data-pmd] .sfa-view .c-title{color:#000;font:18px/26px Arial,Helvetica,sans-serif}[data-pmd] .c-title-noclick,[data-pmd] .c-title{font:18px/26px Arial,Helvetica,sans-serif;color:#999}[data-pmd] .c-title-nowrap{padding-right:33px;width:100%;position:relative;white-space:nowrap;box-sizing:border-box}[data-pmd] .c-title-nowrap .c-text{display:inline-block;vertical-align:middle}[data-pmd] .c-title-nowrap .c-title-text{display:inline-block;max-width:100%;white-space:nowrap;overflow:hidden;text-overflow:ellipsis;vertical-align:bottom}[data-pmd] .c-font-sigma{font:22px/30px Arial,Helvetica,sans-serif}[data-pmd] .c-font-large{font:18px/26px Arial,Helvetica,sans-serif}[data-pmd] .c-font-big{font:18px/26px Arial,Helvetica,sans-serif}[data-pmd] .c-font-medium{font:14px/22px Arial,Helvetica,sans-serif}[data-pmd] .c-font-normal{font:13px/21px Arial,Helvetica,sans-serif}[data-pmd] .c-font-small{font:12px/20px Arial,Helvetica,sans-serif}[data-pmd] .c-font-tiny{font:12px/20px Arial,Helvetica,sans-serif}[data-pmd] .c-price{font:18px/26px Arial,Helvetica,sans-serif;color:#f60}[data-pmd] .c-title-wrap{display:block}[data-pmd] .c-title-nowrap{display:none}@media (min-width:376px){[data-pmd] .c-title{display:block;max-width:100%;white-space:nowrap;overflow:hidden;text-overflow:ellipsis;vertical-align:middle}[data-pmd] .c-title-nowrap{display:block;overflow:visible}[data-pmd] .c-title-wrap{display:none}}[data-pmd] .c-abstract{color:#555}[data-pmd] .c-showurl{color:#999;font:13px/21px Arial,Helvetica,sans-serif}[data-pmd] .c-gray{color:#999;font:13px/21px Arial,Helvetica,sans-serif}[data-pmd] .c-moreinfo{color:#555;text-align:right;font:13px/21px Arial,Helvetica,sans-serif}[data-pmd] .c-foot-icon{display:inline-block;position:relative;top:.02rem;background:url(//m.baidu.com/static/search/sprite.png) no-repeat;-webkit-background-size:1.9rem 1.42rem;background-size:1.9rem 1.42rem}[data-pmd] .c-foot-icon-16{width:.16rem;height:.13rem}[data-pmd] .c-foot-icon-16-aladdin{display:none;background-position:0 -.98rem}[data-pmd] .c-foot-icon-16-lightapp{background-position:-.2rem -.98rem}[data-pmd] .c-visited,[data-pmd] .c-visited .c-title,[data-pmd] .c-visited.c-title{color:#999!important}[data-pmd] .c-container{margin:8px 0;padding:10px 9px 15px;background-color:#fff;width:auto;color:#555;font:13px/21px Arial,Helvetica,sans-serif;word-break:break-word;word-wrap:break-word;border:0 none}[data-pmd] .c-container-tight{padding:10px 9px 15px;background-color:#fff;width:auto;color:#555;font:13px/21px Arial,Helvetica,sans-serif;word-break:break-word;word-wrap:break-word;border:0 none}[data-pmd] .c-container-tile{margin:0;padding:0}[data-pmd] .c-span-middle{display:-webkit-box;display:-moz-box;display:-ms-flexbox;display:-webkit-flex;display:flex;-webkit-box-orient:vertical;-moz-box-orient:vertical;-webkit-box-direction:normal;-moz-box-direction:normal;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;-moz-box-pack:center;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center}[data-pmd] .c-line-clamp2,[data-pmd] .c-line-clamp3,[data-pmd] .c-line-clamp4,[data-pmd] .c-line-clamp5{display:-webkit-box;-webkit-box-orient:vertical;overflow:hidden;text-overflow:ellipsis;margin-bottom:4px;white-space:normal}[data-pmd] .c-line-clamp2{-webkit-line-clamp:2}[data-pmd] .c-line-clamp3{-webkit-line-clamp:3}[data-pmd] .c-line-clamp4{-webkit-line-clamp:4}[data-pmd] .c-line-clamp5{-webkit-line-clamp:5}[data-pmd] .c-line-clamp1{display:block;overflow:hidden;text-overflow:ellipsis;white-space:nowrap}[data-pmd] .c-line-top{border-top:1px solid #eee}[data-pmd] .c-line-dotted-top{border-top:1px dotted #eee}[data-pmd] .c-line-bottom{border-bottom:1px solid #eee}[data-pmd] .c-line-dotted-bottom{border-bottom:1px dotted #eee}[data-pmd] .c-color{color:#555}[data-pmd] .c-color-gray-a{color:#666}[data-pmd] .c-color-gray{color:#999}[data-pmd] .c-color-link{color:#000}[data-pmd] .c-color-noclick{color:#999}[data-pmd] .c-color-url{color:#999}[data-pmd] .c-color-red{color:#e43}[data-pmd] .c-color-red:visited{color:#e43}[data-pmd] .c-color-orange{color:#f60}[data-pmd] .c-color-orange:visited{color:#f60}[data-pmd] .c-color-icon-special{color:#b4b4b4}[data-pmd] .c-color-split{color:#eee}[data-pmd] .c-bg-color-white{background-color:#fff}[data-pmd] .c-bg-color-black{background-color:#000}[data-pmd] .se-page-bd .c-bg-color-gray{background-color:#f1f1f1}[data-pmd] .sfa-view .c-bg-color-gray{background-color:#f2f2f2}[data-pmd] .c-gap-top-zero{margin-top:0}[data-pmd] .c-gap-right-zero{margin-right:0}[data-pmd] .c-gap-bottom-zero{margin-bottom:0}[data-pmd] .c-gap-left-zero{margin-left:0}[data-pmd] .c-gap-top{margin-top:8px}[data-pmd] .c-gap-right{margin-right:8px}[data-pmd] .c-gap-bottom{margin-bottom:8px}[data-pmd] .c-gap-left{margin-left:8px}[data-pmd] .c-gap-top-small{margin-top:4px}[data-pmd] .c-gap-right-small{margin-right:4px}[data-pmd] .c-gap-bottom-small{margin-bottom:4px}[data-pmd] .c-gap-left-small{margin-left:4px}[data-pmd] .c-gap-top-large{margin-top:12px}[data-pmd] .c-gap-right-large{margin-right:12px}[data-pmd] .c-gap-bottom-large{margin-bottom:12px}[data-pmd] .c-gap-left-large{margin-left:12px}[data-pmd] .c-gap-left-middle{margin-left:8px}[data-pmd] .c-gap-right-middle{margin-right:8px}[data-pmd] .c-gap-inner-top-zero{padding-top:0}[data-pmd] .c-gap-inner-right-zero{padding-right:0}[data-pmd] .c-gap-inner-bottom-zero{padding-bottom:0}[data-pmd] .c-gap-inner-left-zero{padding-left:0}[data-pmd] .c-gap-inner-top{padding-top:8px}[data-pmd] .c-gap-inner-right{padding-right:8px}[data-pmd] .c-gap-inner-bottom{padding-bottom:8px}[data-pmd] .c-gap-inner-left{padding-left:8px}[data-pmd] .c-gap-inner-top-small{padding-top:4px}[data-pmd] .c-gap-inner-right-small{padding-right:4px}[data-pmd] .c-gap-inner-bottom-small{padding-bottom:4px}[data-pmd] .c-gap-inner-left-small{padding-left:4px}[data-pmd] .c-gap-inner-top-large{padding-top:12px}[data-pmd] .c-gap-inner-right-large{padding-right:12px}[data-pmd] .c-gap-inner-bottom-large{padding-bottom:12px}[data-pmd] .c-gap-inner-left-large{padding-left:12px}[data-pmd] .c-gap-inner-left-middle{padding-left:8px}[data-pmd] .c-gap-inner-right-middle{padding-right:8px}[data-pmd] .c-img{position:relative;display:block;width:100%;border:0 none;background:#f7f7f7 url(//m.baidu.com/static/search/image_default.png) center center no-repeat;margin:4px 0}[data-pmd] .c-img img{width:100%}[data-pmd] .c-img .c-img-text{position:absolute;left:0;bottom:0;width:100%;height:.16rem;background:rgba(51,51,51,.4);font-size:.12rem;line-height:1.33333333;color:#fff;text-align:center}[data-pmd] .c-img-s,[data-pmd] .c-img-l,[data-pmd] .c-img-w,[data-pmd] .c-img-x,[data-pmd] .c-img-y,[data-pmd] .c-img-v,[data-pmd] .c-img-z{height:0;overflow:hidden}[data-pmd] .c-img-s{padding-bottom:100%}[data-pmd] .c-img-l{padding-bottom:133.33333333%}[data-pmd] .c-img-w{padding-bottom:56.25%}[data-pmd] .c-img-x{padding-bottom:75%}[data-pmd] .c-img-y{padding-bottom:66.66666667%}[data-pmd] .c-img-v{padding-bottom:33.33333333%}[data-pmd] .c-img-z{padding-bottom:40%}[data-pmd] .c-table{width:100%;border-collapse:collapse;border-spacing:0;color:#000}[data-pmd] .c-table th{color:#999}[data-pmd] .c-table th,[data-pmd] .c-table td{border-bottom:1px solid #eee;text-align:left;font-weight:400;padding:8px 0}[data-pmd] .c-table-hihead th{padding:0;border-bottom:0 none;background-color:#f6f6f6;line-height:.37rem}[data-pmd] .c-table-hihead div{background-color:#f6f6f6}[data-pmd] .c-table-hihead th:first-child div{margin-left:-9px;padding-left:9px}[data-pmd] .c-table-hihead th:last-child div{margin-right:-9px;padding-right:9px}[data-pmd] .c-table-noborder th,[data-pmd] .c-table-noborder td{border-bottom:0 none}[data-pmd] .c-table-slink tbody{color:#555;border-bottom:1px solid #eee}[data-pmd] .c-table-slink tbody th{border-bottom:1px solid #eee;padding:0}[data-pmd] .c-table-slink tbody td{border-bottom:0;padding:0}[data-pmd] .c-table-slink tbody td .c-slink-auto{margin:5px 0}[data-pmd] .c-table-slink tbody tr:first-child th,[data-pmd] .c-table-slink tbody tr:first-child td{padding:8px 0}[data-pmd] .c-table-slink tbody tr:nth-child(2) th,[data-pmd] .c-table-slink tbody tr:nth-child(2) td{padding-top:8px}[data-pmd] .c-table-slink tbody tr th,[data-pmd] .c-table-slink tbody tr td{padding-bottom:4px}[data-pmd] .c-table-slink tbody tr:last-child th,[data-pmd] .c-table-slink tbody tr:last-child td{padding-bottom:8px}[data-pmd] .c-table-abstract tbody{color:#555;border-bottom:1px solid #eee}[data-pmd] .c-table-abstract tbody th{border-bottom:1px solid #eee;padding:0}[data-pmd] .c-table-abstract tbody td{border-bottom:0;padding:0}[data-pmd] .c-table-abstract tbody tr:first-child th,[data-pmd] .c-table-abstract tbody tr:nth-child(2) th,[data-pmd] .c-table-abstract tbody tr:first-child td,[data-pmd] .c-table-abstract tbody tr:nth-child(2) td{padding-top:8px}[data-pmd] .c-table-abstract tbody tr th,[data-pmd] .c-table-abstract tbody tr td{padding-bottom:8px}[data-pmd] .c-table-abstract .c-table-gray{color:#999;font:12px/20px Arial,Helvetica,sans-serif}[data-pmd] .c-table-shaft th{color:#999}[data-pmd] .c-table-shaft td,[data-pmd] .c-table-shaft th{border-right:1px solid #eee;text-align:center}[data-pmd] .c-table-shaft td:last-child,[data-pmd] .c-table-shaft th:last-child{border-right:0}[data-pmd] .c-table-shaft tr:last-child td{border-bottom:0}[data-pmd] .c-slink{width:auto;display:-webkit-box;-webkit-box-orient:horizontal;-webkit-box-direction:normal;-webkit-box-pack:justify;-webkit-box-align:stretch;-webkit-box-lines:single;display:-webkit-flex;-webkit-flex-direction:row;-webkit-justify-content:space-between;-webkit-align-items:stretch;-webkit-align-content:flex-start;-webkit-flex-wrap:nowrap}[data-pmd] .c-slink a,[data-pmd] .c-slink .c-slink-elem{position:relative;display:block;-webkit-box-flex:1;-webkit-flex:1 1 auto;width:16.66666667%;height:.32rem;line-height:2.28571429;padding:0 .06rem;font-size:.14rem;text-align:center;text-decoration:none;color:#666;overflow:hidden;text-overflow:ellipsis;white-space:nowrap}[data-pmd] .c-slink a:first-child::before,[data-pmd] .c-slink .c-slink-elem:first-child::before,[data-pmd] .c-slink a::after,[data-pmd] .c-slink .c-slink-elem::after{content:&quot;&quot;;width:1px;height:.1rem;background-color:#eee;position:absolute;top:.11rem;right:0}[data-pmd] .c-slink a:first-child::before,[data-pmd] .c-slink .c-slink-elem:first-child::before{left:0}[data-pmd] .c-slink-strong{margin-bottom:1px}[data-pmd] .c-slink-strong:last-child{margin-bottom:0}[data-pmd] .c-slink-strong:last-child a,[data-pmd] .c-slink-strong:last-child .c-slink-elem{border-bottom:1px solid #eee}[data-pmd] .c-slink-strong a,[data-pmd] .c-slink-strong .c-slink-elem{height:.3rem;margin-right:1px;line-height:.3rem;background-color:#f5f5f5}[data-pmd] .c-slink-strong a:last-child,[data-pmd] .c-slink-strong .c-slink-elem:last-child{margin-right:0}[data-pmd] .c-slink-strong a:first-child::before,[data-pmd] .c-slink-strong .c-slink-elem:first-child::before,[data-pmd] .c-slink-strong a::after,[data-pmd] .c-slink-strong .c-slink-elem::after{display:none}[data-pmd] .c-slink-new{display:block;width:100%;height:.3rem;line-height:.3rem;background-color:#f5f5f5;font-size:.14rem;color:#000;text-align:center;text-decoration:none;overflow:hidden;text-overflow:ellipsis;white-space:nowrap;padding:0 .08rem;border-radius:.03rem;vertical-align:middle;outline:0;-webkit-tap-highlight-color:rgba(0,0,0,0)}[data-pmd] .c-slink-new:visited{color:#000}[data-pmd] .c-slink-new:active{background-color:#e5e5e5}[data-pmd] .c-slink-new-strong{display:block;width:100%;background-color:#f5f5f5;font-size:.14rem;color:#000;text-align:center;text-decoration:none;overflow:hidden;text-overflow:ellipsis;white-space:nowrap;padding:0 .08rem;border-radius:.03rem;vertical-align:middle;outline:0;-webkit-tap-highlight-color:rgba(0,0,0,0);height:.3rem;line-height:.3rem}[data-pmd] .c-slink-new-strong:visited{color:#000}[data-pmd] .c-slink-new-strong:active{background-color:#e5e5e5}[data-pmd] .c-slink-auto{display:inline-block;max-width:100%;height:.3rem;line-height:.3rem;background-color:#f5f5f5;font-size:.14rem;color:#000;text-align:center;text-decoration:none;overflow:hidden;text-overflow:ellipsis;white-space:nowrap;padding:0 .1rem;border-radius:3px;vertical-align:middle;outline:0;-webkit-tap-highlight-color:rgba(0,0,0,0)}[data-pmd] .c-slink-auto:active{background-color:#e5e5e5}[data-pmd] .c-slink-auto:visited{color:#000}[data-pmd] .c-text{display:inline-block;height:14px;padding:0 2px;margin-bottom:2px;text-decoration:none;vertical-align:middle;color:#fff;font-size:10px;line-height:15px;font-style:normal;font-weight:400;overflow:hidden;border-radius:2px}[data-pmd] .c-text-danger{background-color:#f13f40}[data-pmd] .c-text-public{background-color:#2b99ff}[data-pmd] .c-text-box{display:inline-block;padding:1px 2px;margin-bottom:2px;text-decoration:none;vertical-align:middle;font-size:10px;line-height:11px;height:10px;font-style:normal;font-weight:400;overflow:hidden;-webkit-box-sizing:content-box;box-sizing:content-box;border-radius:2px}[data-pmd] .c-text-box-gray{color:#999;border:1px solid #e3e3e3}[data-pmd] .c-text-box-orange{color:#f60;border:1px solid #f3d9c5}[data-pmd] .c-text-box-pink{color:#ff4683;border:1px solid #ffc7da}[data-pmd] .c-text-box-red{color:#f13f40;border:1px solid #efb9b9}[data-pmd] .c-text-box-blue{color:#2b99ff;border:1px solid #b3d4f3}[data-pmd] .c-text-box-green{color:#65b12c;border:1px solid #d7efc6}[data-pmd] .c-text-box-yellow{color:#faa90e;border:1px solid #feecc9}[data-pmd] .c-text-info{display:inline;color:#999;font-style:normal;font-weight:400;font-family:sans-serif}[data-pmd] .c-index{display:inline-block;height:15px;margin:0 5px 3px 0;text-align:center;vertical-align:middle;color:#999;font-size:14px;line-height:15px;overflow:hidden}[data-pmd] .c-index-hot-common{font-size:12px;color:#fff;width:16px}[data-pmd] .c-index-hot,[data-pmd] .c-index-hot1{background-color:#ff2d46;font-size:12px;color:#fff;width:16px}[data-pmd] .c-index-hot2{background-color:#ff7f49;font-size:12px;color:#fff;width:16px}[data-pmd] .c-index-hot3{background-color:#ffaa3b;font-size:12px;color:#fff;width:16px}[data-pmd] .c-btn{display:inline-block;padding:0 .08rem;width:100%;height:.3rem;font:13px/21px Arial,Helvetica,sans-serif;line-height:.28rem;text-decoration:none;text-align:center;color:#000;background-color:#fff;border:1px solid #707379;border-radius:3px;vertical-align:middle;overflow:hidden;outline:0;-webkit-tap-highlight-color:rgba(0,0,0,0)}[data-pmd] .c-btn:visited{color:#000}[data-pmd] .c-btn:active{border-color:#707379;background-color:#f2f2f2}[data-pmd] .c-btn .c-icon{position:relative;top:-1px;vertical-align:middle;font-size:14px;margin-right:4px}[data-pmd] .c-btn-small{display:inline-block;padding:0 .08rem;width:100%;height:.3rem;line-height:.28rem;font-size:12px;font-weight:400;text-decoration:none;text-align:center;color:#000;background-color:#fff;border:1px solid #707379;border-radius:3px;vertical-align:middle;overflow:hidden;outline:0;-webkit-tap-highlight-color:rgba(0,0,0,0)}[data-pmd] .c-btn-small:visited{color:#000}[data-pmd] .c-btn-small:active{border-color:#707379;background-color:#f2f2f2}[data-pmd] .c-btn-small .c-icon{position:relative;top:-1px;vertical-align:middle;font-size:14px;margin-right:4px}@media screen and (max-width:360px){[data-pmd] .c-btn{padding:0 .05rem}}@media screen and (max-width:375px){[data-pmd] .c-btn-small{padding:0 .02rem}}[data-pmd] .c-btn-primary{background-color:#f8f8f8;border-color:#d0d0d0;border-bottom-color:#b2b2b2;-webkit-box-shadow:0 1px 1px 0 #e1e1e1;box-shadow:0 1px 1px 0 #e1e1e1}[data-pmd] .c-btn-primary .c-icon{color:#02aaf8}[data-pmd] .c-btn-disable{color:#999;background-color:#fff;border-color:#f1f1f1}[data-pmd] .c-btn-disable:visited{color:#999}[data-pmd] .c-btn-disable:active{border-color:#f1f1f1}[data-pmd] .c-btn-disable .c-icon{color:#999}[data-pmd] .c-btn-weak{height:.3rem;line-height:.3rem;border-width:0}[data-pmd] .c-btn-weak:active{background-color:#f2f2f2}[data-pmd] .c-btn-weak-auto{width:auto;height:.3rem;line-height:.3rem;border-width:0}[data-pmd] .c-btn-weak-auto:active{background-color:#f2f2f2}[data-pmd] .c-btn-weak-gray{height:.3rem;line-height:.3rem;background-color:#f8f8f8;border-width:0}[data-pmd] .c-btn-weak-gray:active{background-color:#e5e5e5}[data-pmd] .c-btn-pills{height:.2rem;padding:0 .08rem;border-width:0;border-radius:.2rem;line-height:.2rem;font-size:10px;background-color:rgba(0,0,0,.4);color:#fff;width:auto;word-spacing:-3px;letter-spacing:0}[data-pmd] .c-btn-pills span{position:relative;top:1px}[data-pmd] .c-btn-pills::selection{color:#fff}[data-pmd] .c-btn-pills:visited{color:#fff}[data-pmd] .c-btn-pills:active{background-color:rgba(0,0,0,.4);color:#fff}[data-pmd] .c-btn-pills .c-icon{font-size:10px;top:1px;margin-right:4px}[data-pmd] .c-btn-circle{height:.3rem;width:.3rem;border-radius:50%;color:#fff;background-color:rgba(0,0,0,.4);border:0;padding:0;line-height:.3rem;text-align:center;vertical-align:middle;white-space:nowrap}[data-pmd] .c-btn-circle:active{color:#fff;background-color:rgba(0,0,0,.4)}[data-pmd] .c-btn-circle .c-icon{top:0;margin:0;display:block;font-size:14px;color:#fff}[data-pmd] .c-btn-circle-big{height:.3rem;width:.3rem;border-radius:50%;background-color:rgba(0,0,0,.4);border:0;padding:0;line-height:.3rem;text-align:center;vertical-align:middle;white-space:nowrap;height:.48rem;width:.48rem;line-height:.48rem;font-size:18px;color:#fff}[data-pmd] .c-btn-circle-big:active{color:#fff;background-color:rgba(0,0,0,.4)}[data-pmd] .c-btn-circle-big .c-icon{top:0;margin:0;display:block;font-size:14px;color:#fff}[data-pmd] .c-btn-circle-big .c-icon{font-size:24px}[data-pmd] .c-input{word-break:normal;word-wrap:normal;-webkit-appearance:none;appearance:none;display:inline-block;padding:0 .08rem;width:100%;height:.3rem;vertical-align:middle;line-height:normal;font-size:.14rem;color:#000;background-color:#fff;border:1px solid #eee;border-radius:1px;overflow:hidden;outline:0}[data-pmd] .c-input::-webkit-input-placeholder{color:#999;border-color:#eee}[data-pmd] .c-input:focus{border-color:#000}[data-pmd] .c-input:focus .c-icon{color:#dbdbdb}[data-pmd] .c-input:disabled{color:#999;border-color:#f1f1f1}[data-pmd] .c-dropdown{position:relative;background-color:#fff}[data-pmd] .c-dropdown::before{font-family:cicons;content:&quot;\e73c&quot;;display:inline-block;position:absolute;bottom:0;right:.08rem;color:#555;font-size:.14rem;height:.3rem;line-height:.3rem}[data-pmd] .c-dropdown&gt;label{display:block;color:#999;background-color:#fff;width:100%;height:.26rem}[data-pmd] .c-dropdown&gt;select{word-break:normal;word-wrap:normal;position:relative;-webkit-appearance:none;appearance:none;display:inline-block;padding:0 .24rem 0 .08rem;width:100%;height:.3rem;vertical-align:middle;line-height:normal;font-size:.14rem;color:#000;background-color:transparent;border:1px solid #eee;border-radius:0;overflow:hidden;outline:0}[data-pmd] .c-dropdown&gt;select:focus{border-color:#000}[data-pmd] .c-dropdown-disable{background-color:#fff}[data-pmd] .c-dropdown-disable::before{color:#999}[data-pmd] .c-dropdown-disable&gt;label{color:#999}[data-pmd] .c-dropdown-disable&gt;select{color:#999;border-color:#f1f1f1}[data-pmd] .c-btn-shaft{border:1px solid #f1f1f1;text-overflow:ellipsis;white-space:nowrap}[data-pmd] .c-btn-shaft:active{border-color:#f1f1f1}[data-pmd] .c-tab-select{background-color:#f5f5f5;height:.38rem;line-height:.38rem;font-size:.14rem;color:#000;text-align:center}[data-pmd] .c-tab-select .c-icon{display:inline-block;font-size:.14rem;color:#555}[data-pmd] .c-tab-select .c-span12{text-align:left}[data-pmd] .c-tab-select .c-span12 .c-icon{position:absolute;right:0;bottom:0}@-webkit-keyframes c-loading-rotation{from{-webkit-transform:rotate(1deg)}to{-webkit-transform:rotate(360deg)}}[data-pmd] .c-loading,[data-pmd] .c-loading-zbios{text-align:center}[data-pmd] .c-loading i{display:block;position:relative;font-size:.3rem;width:.54rem;height:.54rem;line-height:.52rem;color:#f3f3f3;margin:auto}[data-pmd] .c-loading i::before{content:&quot;&quot;;display:block;position:absolute;width:.5rem;height:.5rem;margin:auto;border-radius:50%;border:.02rem solid #f3f3f3;border-top-color:#ddd;-webkit-transform-origin:50% 50%;-webkit-animation:c-loading-rotation 1s ease 0s infinite normal}[data-pmd] .c-loading-zbios i{display:block;position:relative;font-size:.48rem;width:.54rem;height:.54rem;line-height:.54rem;color:#f3f3f3;margin:auto;-webkit-transform-origin:50% 50%;-webkit-animation:c-loading-rotation .5s linear 0s infinite normal}[data-pmd] .c-loading p,[data-pmd] .c-loading-zbios p{color:#999;margin-top:.08rem;text-indent:.5em}[data-pmd] .c-tabs{position:relative}[data-pmd] .c-tabs-nav{position:relative;min-width:100%;height:.38rem;padding:0 9px;font-size:.14rem;white-space:nowrap;background-color:#f5f5f5;display:-webkit-box;-webkit-box-orient:horizontal;-webkit-box-direction:normal;-webkit-box-pack:justify;-webkit-box-align:stretch;-webkit-box-lines:single;display:-webkit-flex;-webkit-flex-direction:row;-webkit-justify-content:space-between;-webkit-align-items:stretch;-webkit-align-content:flex-start;-webkit-flex-wrap:nowrap;-webkit-user-select:none!important;user-select:none!important;-khtml-user-select:none!important;-webkit-touch-callout:none!important}[data-pmd] .c-tabs-nav *{-webkit-box-sizing:border-box;box-sizing:border-box}[data-pmd] .c-tabs-nav-li{display:block;-webkit-box-flex:1;-webkit-flex:1 1 auto;width:16.66666667%;list-style:none;text-decoration:none;height:.38rem;line-height:.38rem;color:#555;text-align:center;text-overflow:ellipsis;white-space:nowrap;overflow:hidden;-webkit-tap-highlight-color:rgba(0,0,0,0)}[data-pmd] .c-tabs-nav .c-tabs-nav-selected{color:#000;border-bottom:1px solid #000}[data-pmd] .c-tabs-nav-bottom{border-top:1px solid #f1f1f1;padding:0}[data-pmd] .c-tabs-nav-bottom .c-tabs-nav-li{color:#999}[data-pmd] .c-tabs-nav-bottom .c-tabs-nav-icon{display:none}[data-pmd] .c-tabs-nav-bottom .c-tabs-nav-selected{position:relative;top:-1px;height:.38rem;line-height:.39rem;color:#000;background-color:#fff;border-bottom:1px solid #000;border-top-color:#fff}[data-pmd] .c-tabs-nav-bottom .c-tabs-nav-selected:first-child{margin-left:-1px}[data-pmd] .c-tabs-nav-bottom .c-tabs-nav-selected .c-tabs-nav-icon{display:inline-block;width:.15rem;height:.15rem}[data-pmd] .c-tabs-nav-view{position:relative;height:.38rem;background-color:#f5f5f5;overflow:hidden}[data-pmd] .c-tabs-nav-view .c-tabs-nav{display:block}[data-pmd] .c-tabs-nav-view .c-tabs-nav .c-tabs-nav-li{display:inline-block;width:auto;padding:0 .17rem}[data-pmd] .c-tabs-nav-toggle{position:absolute;top:0;right:0;z-index:9;display:block;text-align:center;width:.38rem;height:.38rem;border-left:1px solid #eee;background-color:#f5f5f5}[data-pmd] .c-tabs-nav-toggle::before{display:inline-block;font-family:cicons;content:&quot;\e73c&quot;;font-size:.12rem;color:#333;line-height:.36rem}[data-pmd] .c-tabs-nav-layer{position:absolute;top:0;z-index:8;width:100%;background-color:#f5f5f5;border-bottom:1px solid #eee}[data-pmd] .c-tabs-nav-layer p{color:#999;height:.39rem;line-height:.39rem;padding:0 .17rem;border-bottom:1px solid #eee}[data-pmd] .c-tabs-nav-layer-ul .c-tabs-nav-li{display:inline-block;width:16.66666667%;padding:0}[data-pmd] .c-tabs-nav-layer-ul .c-tabs-nav-selected{color:#000}[data-pmd] .c-tabs2 .c-tabs-view-content{overflow:hidden}[data-pmd] .c-tabs2 .c-tabs-content{position:relative;float:left;display:none}[data-pmd] .c-tabs2 .c-tabs-selected{display:block}[data-pmd] .c-tabs2 .c-tabs-view-content-anim{transition:height .3s cubic-bezier(0.7,0,.3,1);-webkit-transition:height .3s cubic-bezier(0.7,0,.3,1);-moz-transition:height .3s cubic-bezier(0.7,0,.3,1);-o-transition:height .3s cubic-bezier(0.7,0,.3,1);transform:translate3d(0,0,0);-webkit-transform:translate3d(0,0,0);-moz-transition:translate3d(0,0,0);-o-transition:translate3d(0,0,0)}[data-pmd] .c-tabs2 .c-tabs-stopanimate{transition:none;-webkit-transition:none;transform:none;-webkit-transform:none;-moz-transition:none;-o-transition:none}[data-pmd] .c-tabs2 .c-tabs-tabcontent{transition:transform .3s cubic-bezier(0.7,0,.3,1);-webkit-transition:transform .3s cubic-bezier(0.7,0,.3,1);-moz-transition:transform .3s cubic-bezier(0.7,0,.3,1);-o-transition:transform .3s cubic-bezier(0.7,0,.3,1);transform:translate3d(0,0,0);-webkit-transform:translate3d(0,0,0);-moz-transition:translate3d(0,0,0);-o-transition:translate3d(0,0,0)}[data-pmd] .c-tabs-animation .c-tabs-view-content{margin:0 -.17rem;overflow:hidden}[data-pmd] .c-tabs-animation .c-tabs-content{position:relative;padding-left:.17rem;padding-right:.17rem;box-sizing:border-box;float:left;display:none}[data-pmd] .c-tabs-animation .c-tabs-selected{display:block}[data-pmd] .c-tabs-animation .c-tabs-view-content-anim{transition:height .3s cubic-bezier(0.7,0,.3,1);-webkit-transition:height .3s cubic-bezier(0.7,0,.3,1);-moz-transition:height .3s cubic-bezier(0.7,0,.3,1);-o-transition:height .3s cubic-bezier(0.7,0,.3,1);transform:translate3d(0,0,0);-webkit-transform:translate3d(0,0,0);-moz-transition:translate3d(0,0,0);-o-transition:translate3d(0,0,0)}[data-pmd] .c-tabs-animation .c-tabs-stopanimate{transition:none;-webkit-transition:none;transform:none;-webkit-transform:none;-moz-transition:none;-o-transition:none}[data-pmd] .c-tabs-animation .c-tabs-tabcontent{transition:transform .3s cubic-bezier(0.7,0,.3,1);-webkit-transition:transform .3s cubic-bezier(0.7,0,.3,1);-moz-transition:transform .3s cubic-bezier(0.7,0,.3,1);-o-transition:transform .3s cubic-bezier(0.7,0,.3,1);transform:translate3d(0,0,0);-webkit-transform:translate3d(0,0,0);-moz-transition:translate3d(0,0,0);-o-transition:translate3d(0,0,0)}[data-pmd] .c-scroll-wrapper,[data-pmd] .c-scroll-wrapper-new{position:relative;overflow:hidden}[data-pmd] .c-scroll-wrapper-new .c-scroll-touch{padding-left:9px;padding-right:9px}[data-pmd] .c-scroll-parent-gap{padding:0 .11rem 0 9px}[data-pmd] .c-scroll-parent-gap .c-scroll-element-gap{padding-right:.1rem}[data-pmd] .c-scroll-indicator-wrapper{text-align:center;height:6px}[data-pmd] .c-scroll-indicator-wrapper .c-scroll-indicator{vertical-align:top}[data-pmd] .c-scroll-indicator{display:inline-block;position:relative;height:6px}[data-pmd] .c-scroll-indicator .c-scroll-dotty{position:absolute;width:6px;height:6px;border-radius:50%;background-color:#999}[data-pmd] .c-scroll-indicator .c-scroll-dotty-now{background-color:#999}[data-pmd] .c-scroll-indicator span{display:block;float:left;width:6px;height:6px;border-radius:50%;background-color:#e1e1e1;margin-right:.07rem}[data-pmd] .c-scroll-indicator span:last-child{margin-right:0}[data-pmd] .c-scroll-touch{position:relative;overflow-x:auto;-webkit-overflow-scrolling:touch;padding-bottom:.3rem;margin-top:-.3rem;-webkit-transform:translateY(0.3rem);transform:translateY(0.3rem)}[data-pmd] .c-location-wrap{overflow:hidden;padding:0 .15rem;background-color:#f7f7f7}[data-pmd] .c-location-header-tips{font-size:.13rem}[data-pmd] .c-location-header-btn{padding-top:.08rem;-webkit-box-flex:0;-webkit-flex:none}[data-pmd] .c-location-header-btn div{display:inline-block}[data-pmd] .c-location-header-btn-reload:after{content:&quot;&quot;;display:inline-block;overflow:hidden;width:1px;height:.1rem;margin:0 .08rem;background-color:#ccc}[data-pmd] .c-location-header-btn-788{display:none}[data-pmd] .c-location-header-btn-in,[data-pmd] .c-location-header-btn-reload{color:#333}[data-pmd] .c-location-header-btn .c-icon{color:#666;vertical-align:top}[data-pmd] .c-location-header-tips{color:#999}[data-pmd] .c-location-header-tips-err{color:#c00}[data-pmd] .c-location-header-tips-success{color:#38f}[data-pmd] .c-location-header-btn-reload-ing .c-location-header-btn-787{display:none}[data-pmd] .c-location-header-btn-reload-ing .c-location-header-btn-788{display:inline-block;color:#999;-webkit-animation-name:c_location_rotate;-webkit-animation-duration:1.5s;-webkit-animation-iteration-count:infinite;-webkit-animation-timing-function:linear}[data-pmd] .c-location-header-btn-reload-ing{color:#999}@-webkit-keyframes c_location_rotate{from{-webkit-transform:rotate(0deg)}to{-webkit-transform:rotate(360deg)}}@keyframes c_location_rotate{from{transform:rotate(0deg)}to{transform:rotate(360deg)}}[data-pmd] .c-location-header-btn-in-active,[data-pmd] .c-location-header-btn-in-active .c-icon{color:#38f}[data-pmd] .c-location-form{position:relative}[data-pmd] .c-location-form .c-input{padding-right:.7rem}[data-pmd] .c-location-input-close{position:absolute;z-index:10;top:1px;right:.37rem;display:none;width:.36rem;height:.36rem;line-height:.36rem;text-align:center;color:#ddd;font-size:.16rem}[data-pmd] .c-location-form .c-input:focus{border-color:#ddd #eee #eee #ddd;background-color:#fff}[data-pmd] .c-location-sub{position:absolute;z-index:10;top:1px;right:1px;width:.36rem;height:.36rem;border-left:1px solid #eee;line-height:.36rem;text-align:center;background-color:#fafafa}[data-pmd] .c-location-body{display:none;padding-bottom:.14rem}[data-pmd] .c-location-down{display:none;border:1px solid #eee;border-top:0;background-color:#fff;-webkit-tap-highlight-color:rgba(0,0,0,0)}[data-pmd] .c-location-down-tips{height:.38rem;padding-left:.12rem;line-height:.38rem;background-color:#fafafa}[data-pmd] .c-location-down-tips-close{padding-right:.12rem}[data-pmd] .c-location-down-tips-close:before{content:&quot;&quot;;display:inline-block;width:1px;height:.1rem;margin-right:.08rem;background-color:#ddd}[data-pmd] .c-location-down ul{list-style:none}[data-pmd] .c-location-down li{padding:.04rem .12rem;border-top:1px solid #eee}[data-pmd] .c-navs{position:relative}[data-pmd] .c-navs-bar{position:relative;min-width:100%;height:40px;white-space:nowrap;display:-webkit-box;-webkit-box-orient:horizontal;-webkit-box-direction:normal;-webkit-box-pack:justify;-webkit-box-align:stretch;-webkit-box-lines:single;display:-webkit-flex;-webkit-flex-direction:row;-webkit-justify-content:space-between;-webkit-align-items:stretch;-webkit-align-content:flex-start;-webkit-flex-wrap:nowrap}[data-pmd] .c-navs .c-row-tile{border-bottom:1px solid #f1f1f1}[data-pmd] .c-navs-sub .c-navs-bar{height:38px}[data-pmd] .c-navs-bar *{-webkit-box-sizing:border-box;box-sizing:border-box}[data-pmd] .c-navs-bar-li{display:block;-webkit-box-flex:1;-webkit-flex:1 1 auto;width:16.66666667%;height:40px;line-height:40px;list-style:none;text-decoration:none;color:#666;text-align:center;font-size:15px;-webkit-tap-highlight-color:transparent;padding:0 17px}[data-pmd] .c-navs-sub .c-navs-bar-li{height:38px;line-height:38px}[data-pmd] .c-navs-bar-li span{height:100%;display:inline-block;max-width:100%;text-overflow:ellipsis;white-space:nowrap;overflow:hidden}[data-pmd] .c-navs-bar .c-navs-bar-selected span{color:#333;font-weight:700;border-bottom:2px solid #333}[data-pmd] .c-navs-bar-view{position:relative;overflow:hidden}[data-pmd] .c-navs-bar-view .c-navs-bar{display:block}[data-pmd] .c-navs-bar-view .c-navs-bar .c-navs-bar-li{display:inline-block;width:auto;padding:0 17px}[data-pmd] .c-navs-bar-toggle{position:absolute;top:0;right:0;width:34px;height:40px;background-color:#fff}[data-pmd] .c-navs-sub .c-navs-bar-toggle{height:38px}[data-pmd] .c-navs-bar-toggle i{width:0;height:0;right:17px;top:17px;border-right:5px solid transparent;border-top:5px solid #999;border-left:5px solid transparent;position:absolute}[data-pmd] .c-navs-bar-layer{position:absolute;top:0;z-index:8;width:100%;background-color:#fff;overflow-x:hidden}[data-pmd] .c-navs-bar-layer p{color:#999;padding:9px 17px 13px}[data-pmd] .c-navs-sub .c-navs-bar-layer p{padding:8px 17px 13px}[data-pmd] .c-navs-bar-layer .c-row{margin-bottom:17px}[data-pmd] .c-navs-sub .c-navs-bar-toggle i{top:16px}[data-pmd] .c-navs-bar-layer .c-navs-bar-toggle i{border-right:5px solid transparent;border-bottom:5px solid #999;border-left:5px solid transparent;border-top:0}[data-pmd] .c-navs-bar-layer .c-navs-bar-li{height:33px;line-height:33px;text-align:center;font-size:14px;color:#333;width:33.33333333%;-webkit-box-flex:4;-webkit-flex:4 4 auto;padding-right:1.55367232%;padding-left:1.55367232%}[data-pmd] .c-navs-bar-layer .c-span4.c-navs-bar-li span{display:inline-block;width:100%;border:1px solid #f1f1f1;border-bottom:1px solid #f1f1f1}[data-pmd] .c-navs-bar-layer .c-span4.c-navs-bar-selected span{border:2px solid #333;line-height:31px}[data-pmd] .c-navs-shadow{right:34px;position:absolute;top:0;width:10px;height:40px;background:-webkit-linear-gradient(left,rgba(255,255,255,0),#fff);background:linear-gradient(to right,rgba(255,255,255,0),#fff)}[data-pmd] .c-navs-sub .c-navs-shadow{height:38px}[data-pmd] .c-navs-bar-mask{position:absolute;z-index:7;top:0;left:0;background:rgba(0,0,0,.65);height:1024px;width:100%}[data-pmd] .c-navs-sub .c-navs-bar-li span{border-bottom:0;font-size:14px}a{color:#2440b3;text-decoration:underline}a em{color:#f73131;text-decoration:underline}a:hover{text-decoration:underline;color:#315efb}a:hover em{text-decoration:underline}a:visited{color:#771caa}a:active{color:#f73131;text-decoration:none}a:active em{text-decoration:none}em{color:#f73131}body{min-width:1116px}#content_right a{text-decoration:none}#content_right a:hover{text-decoration:underline}.new-pmd .kuaizhao:hover{text-decoration:underline;color:#626675}#container.sam_newgrid .c-container .t,#container.sam_newgrid .c-container .c-title{font-size:18px;line-height:22px}#rs .new-pmd .inc-rs-new-title{line-height:14px}#rs .new-pmd .new-inc-rs-table{width:704px;border-collapse:collapse;margin-bottom:-9px}#rs .new-pmd .new-inc-rs-table td{width:16px}#rs .new-pmd .new-inc-rs-table th{width:224px;line-height:26px}#rs .new-inc-rs-item{width:224px;overflow:hidden;display:inline-block;text-overflow:ellipsis;vertical-align:top;margin-top:2px}.new-pmd .c-recommend .recommend-line-height-new{line-height:1.8}.new-pmd .c-recommend .recommend-line-one{height:18px;overflow:hidden}.new-pmd .c-recommend .recommend-line-one .recommend-item-a{display:inline-block;height:17px;line-height:17px}.new-pmd .c-recommend .recommend-icon-bear-circle-new{width:14px;height:15px;line-height:16px;text-align:center;color:#fff;background-color:#91B9F7;margin-bottom:-6px;border-radius:4px;overflow:visible;padding-left:2px;padding-top:1px}.new-pmd .recommend-none-border{border-top:0;margin-bottom:-4px;padding-bottom:8px;border-color:#f2f2f2}.new-pmd .new-url-right-icon{position:relative;top:-3px;font-size:16px}.new-pmd .recommend-a-gap{padding-top:3px;padding-bottom:4px;padding-right:6px;padding-left:6px;border-radius:6px}.new-pmd .recommend-a-gap:hover{text-decoration:underline}.new-pmd .recommend-none-border{border-top:0;margin-bottom:-4px;padding-top:10px;padding-bottom:8px;border-color:#f2f2f2;width:560px}.new-pmd .recommend-sample-g{padding-bottom:10px}.new-pmd .recommend-sample-g .recommend-line-one{height:24px}.new-pmd .recommend-sample-g .recommend-line-one .recommend-item-a{display:inline-block;height:24px;line-height:24px;padding:0 6px;background:#F5F5F6;border-radius:6px}.new-pmd .recommend-sample-g .recommend-line-one .recommend-item-a:hover{background-color:#F0F0F1}.new-pmd .recommend-sample-g .recommend-line-height-new{line-height:2.4}.new-pmd .recommend-sample-h{padding-bottom:10px}.new-pmd .recommend-sample-h .recommend-line-one{height:24px}.new-pmd .recommend-sample-h .recommend-line-one .recommend-item-a{display:inline-block;height:24px;line-height:24px;padding:0 6px;background:#F5F5F6;border-radius:6px;text-decoration:none}.new-pmd .recommend-sample-h .recommend-line-one .recommend-item-a:hover{background-color:#F0F0F1}.new-pmd .recommend-sample-h .recommend-line-height-new{line-height:2.4}#seth{display:inline;behavior:url(#default#homepage)}#setf{display:inline}#sekj{margin-left:14px}#st,#sekj{display:none}.s_ipt_wr{border:1px solid #b6b6b6;border-color:#7b7b7b #b6b6b6 #b6b6b6 #7b7b7b;background:#fff;display:inline-block;vertical-align:top;width:539px;margin-right:0;border-right-width:0;border-color:#b8b8b8 transparent #ccc #b8b8b8;overflow:hidden}.wrapper_s .s_ipt_wr{width:439px}.wrapper_s .s_ipt{width:434px}.wrapper_s .s_ipt_tip{width:434px}.s_ipt_wr:hover,.s_ipt_wr.ipthover{border-color:#999 transparent #b3b3b3 #999}.s_ipt_wr.iptfocus{border-color:#4791ff transparent #4791ff #4791ff}.s_ipt_tip{color:#aaa;position:absolute;z-index:-10;font:16px/22px arial;height:32px;line-height:32px;padding-left:7px;overflow:hidden;width:526px}.s_ipt{width:526px;height:22px;font:16px/18px arial;line-height:22px;margin:6px 0 0 7px;padding:0;background:transparent;border:0;outline:0;-webkit-appearance:none}#kw{position:relative}#u .username i{background-position:-408px -144px}.bdpfmenu,.usermenu{border:1px solid #d1d1d1;position:absolute;width:105px;top:36px;z-index:302;box-shadow:1px 1px 5px #d1d1d1;-webkit-box-shadow:1px 1px 5px #d1d1d1;-moz-box-shadow:1px 1px 5px #d1d1d1;-o-box-shadow:1px 1px 5px #d1d1d1}.bdpfmenu{font-size:12px;background-color:#fff}.bdpfmenu a,.usermenu a{display:block;text-align:left;margin:0!important;padding:0 9px;line-height:26px;text-decoration:none}.briiconsbg{background-repeat:no-repeat;background-size:300px 18px;background-image:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/home/img/icons_0c37e9b.png);background-image:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/home/img/icons_809ae65.gif)\9}#u{z-index:301;position:absolute;right:0;top:0;margin:21px 9px 5px 0;padding:0}.wrapper_s #u{margin-right:3px}#u a{text-decoration:underline;color:#333;margin:0 7px}.wrapper_s #u a{margin-right:0 6px}#u div a{text-decoration:none}#u a:hover{text-decoration:underline}#u .back_org{color:#666;float:left;display:inline-block;height:24px;line-height:24px}#u .bri{display:inline-block;width:24px;height:24px;float:left;line-height:24px;color:transparent;background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/home/img/icons_0c37e9b.png) no-repeat 4px 3px;background-size:300px 18px;background-image:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/home/img/icons_809ae65.gif)\9;overflow:hidden}#u .bri:hover,#u .bri.brihover{background-position:-18px 3px}#mCon #imeSIcon{background-position:-408px -144px;margin-left:0}#mCon span{color:#333}.bdpfmenu a:link,.bdpfmenu a:visited,#u .usermenu a:link,#u .usermenu a:visited{background:#fff;color:#333}.bdpfmenu a:hover,.bdpfmenu a:active,#u .usermenu a:hover,#u .usermenu a:active{background:#38f;text-decoration:none;color:#fff}.bdpfmenu{width:70px}.usermenu{width:68px;right:8px}#wrapper .bdnuarrow{width:0;height:0;font-size:0;line-height:0;display:block;position:absolute;top:-10px;left:50%;margin-left:-5px}#wrapper .bdnuarrow em,#wrapper .bdnuarrow i{width:0;height:0;font-size:0;line-height:0;display:block;position:absolute;border:5px solid transparent;border-style:dashed dashed solid}#wrapper .bdnuarrow em{border-bottom-color:#d8d8d8;top:-1px}#wrapper .bdnuarrow i{border-bottom-color:#fff;top:0}#prefpanel{background:#fafafa;display:none;opacity:0;position:fixed;_position:absolute;top:-359px;z-index:500;width:100%;min-width:960px;border-bottom:1px solid #ebebeb}#prefpanel form{_width:850px}#kw_tip{cursor:default;display:none;margin-top:1px}#bds-message-wrapper{top:43px}.quickdelete-wrap{position:relative}.quickdelete-wrap input{width:500px}.wrapper_l .quickdelete-wrap input{width:500px}.wrapper_s .quickdelete-wrap input{width:402px}input::-ms-clear{display:none}.quickdelete{width:32px;height:32px;background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/quickdelete_33e3eb8.png) no-repeat;background-position:10px 10px;position:absolute;display:block}.quickdelete:hover{background-position:10px -24px}#lh a{margin-left:25px}.bdbriwrapper-tuiguang{display:none!important}.soutu-input{padding-left:55px!important}.soutu-input-image{position:absolute;left:1px;top:1px;height:28px;width:49px;z-index:1;padding:0;background:#e6e6e6;border:1px solid #e6e6e6}.soutu-input-thumb{height:28px;width:28px;min-width:1px}.soutu-input-close{position:absolute;right:0;top:0;cursor:pointer;display:block;width:22px;height:28px}.soutu-input-close::after{content:&quot; &quot;;position:absolute;right:3px;top:50%;cursor:pointer;margin-top:-7px;display:block;width:14px;height:14px;background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/soutu/img/soutu_icons_new_8abaf8a.png) no-repeat -163px 0}.soutu-input-image:hover .soutu-input-close::after{background-position:-215px 2px}.fb-hint{margin-top:5px;transition-duration:.9s;opacity:0;display:none;color:red}.fb-img{display:none}.fb-hint-tip{height:44px;line-height:24px;background-color:#38f;color:#fff;box-sizing:border-box;width:269px;font-size:16px;padding:10px;padding-left:14px;position:absolute;top:-65px;right:-15px;border-radius:3px;z-index:299}.fb-hint-tip::before{content:&quot;&quot;;width:0;height:0;display:block;position:absolute;border-left:8px solid transparent;border-right:8px solid transparent;border-top:8px solid #38f;bottom:-8px;right:25px}.fb-mask,.fb-mask-light{position:fixed;top:0;left:0;bottom:0;right:0;z-index:296;background-color:#000;filter:alpha(opacity=60);background-color:rgba(0,0,0,.6)}.fb-mask-light{background-color:#fff;filter:alpha(opacity=0);background-color:rgba(255,255,255,0)}.fb-success .fb-success-text{text-align:center;color:#333;font-size:13px;margin-bottom:14px}.fb-success-text.fb-success-text-title{color:#3b6;font-size:16px;margin-bottom:16px}.fb-success-text-title i{width:16px;height:16px;margin-right:5px}.fb-list-container{box-sizing:border-box;padding:4px 8px;position:absolute;top:0;left:0;bottom:0;right:0;z-index:298;display:block;width:100%;cursor:pointer;margin-top:-5px;margin-left:-5px}.fb-list-container-hover{background-color:#fff;border:2px #38f solid}.fb-list-container-first{box-sizing:border-box;padding-left:10px;padding-top:5px;position:absolute;top:0;left:0;bottom:0;right:0;z-index:297;display:block;width:100%;cursor:pointer;margin-top:-5px;margin-left:-5px;border:3px #f5f5f5 dashed;border-radius:3px}.fb-des-content{font-size:13px!important;color:#000}.fb-des-content::-webkit-input-placeholder{font-size:13px!important;color:#9a9a9a}.fb-des-content:-moz-placeholder{font-size:13px!important;color:#9a9a9a}.fb-des-content::-moz-placeholder{font-size:13px!important;color:#9a9a9a}.fb-des-content:-ms-input-placeholder{font-size:13px!important;color:#9a9a9a}.fb-btn,.fb-btn:visited{color:#333!important}.fb-select{position:relative;background-color:#fff;border:1px solid #ccc}.fb-select i{position:absolute;right:2px;top:7px}.fb-type{width:350px;box-sizing:border-box;height:28px;font-size:13px;line-height:28px;border:0;word-break:normal;word-wrap:normal;position:relative;appearance:none;-moz-appearance:none;-webkit-appearance:none;display:inline-block;vertical-align:middle;line-height:normal;color:#333;background-color:transparent;border-radius:0;overflow:hidden;outline:0;padding-left:5px}.fb-type::-ms-expand{display:none}.fb-btn{display:inline-block;padding:0 14px;margin:0;height:24px;line-height:25px;font-size:13px;filter:chroma(color=#000000);*zoom:1;border:1px solid #d8d8d8;cursor:pointer;font-family:inherit;font-weight:400;text-align:center;vertical-align:middle;background-color:#f9f9f9;overflow:hidden;outline:0}.fb-btn:hover{border-color:#388bff}.fb-btn:active{border-color:#a2a6ab;background-color:#f0f0f0;box-shadow:inset 1px 1px 1px #c7c7c7;-webkit-box-shadow:inset 1px 1px 1px #c7c7c7;-moz-box-shadow:inset 1px 1px 1px #c7c7c7;-o-box-shadow:inset 1px 1px 1px #c7c7c7}a.fb-btn{text-decoration:none}button.fb-btn{height:26px;_line-height:18px;*overflow:visible}button.fb-btn::-moz-focus-inner{padding:0;border:0}.fb-btn .c-icon{margin-top:5px}.fb-btn-primary,.fb-btn-primary:visited{color:#fff!important}.fb-btn-primary{background-color:#388bff;_width:82px;border-color:#3c8dff #408ffe #3680e6}.fb-btn-primary:hover{border-color:#2678ec #2575e7 #1c6fe2 #2677e7;background-color:#388bff;background-image:url(data:image/png; base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAACCAMAAACuX0YVAAAABlBMVEVnpv85i/9PO5r4AAAAD0lEQVR42gEEAPv/AAAAAQAFAAIros7PAAAAAElFTkSuQmCC);background-repeat:repeat-x;box-shadow:1px 1px 1px rgba(0,0,0,.4);-webkit-box-shadow:1px 1px 1px rgba(0,0,0,.4);-moz-box-shadow:1px 1px 1px rgba(0,0,0,.4);-o-box-shadow:1px 1px 1px rgba(0,0,0,.4)}.fb-btn-primary:active{border-color:#178ee3 #1784d0 #177bbf #1780ca;background-color:#388bff;background-image:none;box-shadow:inset 1px 1px 1px rgba(0,0,0,.15);-webkit-box-shadow:inset 1px 1px 1px rgba(0,0,0,.15);-moz-box-shadow:inset 1px 1px 1px rgba(0,0,0,.15);-o-box-shadow:inset 1px 1px 1px rgba(0,0,0,.15)}.fb-feedback-right-dialog{position:fixed;z-index:299;bottom:0;right:0}.fb-feedback-list-dialog,.fb-feedback-list-dialog-left{position:absolute;z-index:299}.fb-feedback-list-dialog:before{content:&quot;&quot;;width:0;height:0;display:block;position:absolute;top:15px;left:-6px;border-top:8px solid transparent;border-bottom:8px solid transparent;border-right:8px solid #fff}.fb-feedback-list-dialog-left:before{content:&quot;&quot;;width:0;height:0;display:block;position:absolute;top:15px;right:-6px;border-top:8px solid transparent;border-bottom:8px solid transparent;border-left:8px solid #fff}.fb-header{padding-left:20px;padding-right:20px;margin-top:14px;text-align:left;-moz-user-select:none}.fb-header .fb-close{color:#e0e0e0}.fb-close{text-decoration:none;margin-top:2px;float:right;font-size:20px;font-weight:700;line-height:18px;color:#666;text-shadow:0 1px 0 #fff}.fb-photo-block{display:none}.fb-photo-block-title{font-size:13px;color:#333;padding-top:10px}.fb-photo-block-title-span{color:#999}.fb-photo-sub-block{margin-top:10px;margin-bottom:10px;width:60px;text-align:center}.fb-photo-sub-block-hide{display:none}.fb-photo-update-block{overflow:hidden}.fb-photo-update-item-block{width:100px;height:100px;background:red;border:solid 1px #ccc;margin-top:10px;float:left;margin-right:20px;position:relative;background:url(https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/img/feedback_add_photo_69ff822.png);background-repeat:no-repeat;background-size:contain;background-position:center center;background-size:24px 24px}.fb-photo-block-title-ex{font-size:13px;float:right}.fb-photo-block-title-ex img{vertical-align:text-top;margin-right:4px}.fb-photo-block-title-span{margin-left:4px;color:#999}.fb-photo-update-item-show-img{width:100%;height:100%;display:none}.fb-photo-update-item-close{width:13px;height:13px;position:absolute;top:-6px;right:-6px;display:none}.fb-photo-block input{display:none}.fb-photo-update-hide{display:none}.fb-photo-update-item-block{width:60px;height:60px;border:solid 1px #ccc;float:left}.fb-photo-block-example{position:absolute;top:0;left:0;display:none;background-color:#fff;padding:14px;padding-top:0;width:392px}.fb-photo-block-example-header{padding-top:14px;overflow:hidden}.fb-photo-block-example-header p{float:left}.fb-photo-block-example-header img{float:right;width:13px;height:13px}.fb-photo-block-example-img img{margin:0 auto;margin-top:14px;display:block;width:200px}.fb-photo-block-example-title{text-align:center}.fb-photo-block-example-title-big{font-size:14px;color:#333}.fb-photo-block-example-title-small{font-size:13px;color:#666}.fb-header a.fb-close:hover{text-decoration:none}.fb-photo-block-upinfo{width:100%}.fb-header-tips{font-size:16px;margin:0;color:#333;text-rendering:optimizelegibility}.fb-body{margin-bottom:0;padding:20px;padding-top:10px;overflow:hidden;text-align:left}.fb-modal,.fb-success,.fb-vertify{background-color:#fff;cursor:default;top:100%;left:100%;width:390px;overflow:hidden;border:1px solid #999;*border:1px solid #ddd;font-size:13px;line-height:1.54}.fb-textarea textarea{width:350px;height:64px;padding:4px;margin:10px 0;vertical-align:top;resize:none;overflow:auto;box-sizing:border-box;display:inline-block;border:1px solid #ccc;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);box-shadow:inset 0 1px 1px rgba(0,0,0,.075);-webkit-transition:border linear .2s,box-shadow linear .2s;-moz-transition:border linear .2s,box-shadow linear .2s;-ms-transition:border linear .2s,box-shadow linear .2s;-o-transition:border linear .2s,box-shadow linear .2s;transition:border linear .2s,box-shadow linear .2s}.fb-selected{display:none;width:12px;height:12px;background:url() no-repeat 2px 3px}.fb-guide{padding-top:10px;color:#9a9a9a;margin-left:-20px;padding-left:20px;border-right-width:0;margin-right:-20px;padding-right:25px;margin-bottom:-20px;padding-bottom:15px}.fb-footer{padding-top:10px;text-align:left}.fb-block{overflow:hidden;position:relative}.fb-block .fb-email{height:28px;line-height:26px;width:350px;border:1px solid #ccc;padding:4px;padding-top:0;box-sizing:border-box;padding-bottom:0;display:inline-block;font-family:&#39;Helvetica Neue&#39;,Helvetica,Arial,sans-serif;vertical-align:middle!important;-webkit-border-radius:0;-moz-border-radius:0;border-radius:0;-webkit-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);-moz-box-shadow:inset 0 1px 1px rgba(0,0,0,.075);box-shadow:inset 0 1px 1px rgba(0,0,0,.075);-webkit-transition:border linear .2s,box-shadow linear .2s;-moz-transition:border linear .2s,box-shadow linear .2s;-ms-transition:border linear .2s,box-shadow linear .2s;-o-transition:border linear .2s,box-shadow linear .2s;transition:border linear .2s,box-shadow linear .2s}.fb-email{font-size:13px!important;color:#000}.fb-email::-webkit-input-placeholder{font-size:13px!important;color:#9a9a9a}.fb-email:-moz-placeholder{font-size:13px!important;color:#9a9a9a}.fb-email::-moz-placeholder{font-size:13px!important;color:#9a9a9a}.fb-email:-ms-input-placeholder{font-size:13px!important;color:#9a9a9a}.fb-cut-block{height:15px;padding-bottom:10px}.fb-canvas-block{height:172px;border:1px solid #ccc;margin-bottom:10px;position:relative;overflow:hidden;width:100%;background-position:center;box-sizing:border-box}.fb-canvas-block img{width:350px;position:absolute}.fb-canvas-block img[src=&quot;&quot;]{opacity:0}.fb-cut-input{width:14px;height:14px;margin:0;margin-right:10px;display:inline-block;border:1px solid #ccc}.fb-cut-btn{width:60px!important}#fb_tips_span{vertical-align:middle}#fb_popwindow{display:block;left:457px;top:69.5px;position:absolute;width:450px;z-index:999999;background:none repeat scroll 0 0 #fff;border:1px solid #999;border-radius:3px;box-shadow:0 0 9px #999;padding:0}#feedback_dialog_content{text-align:center}#fb_right_post_save:hover{background-image:url(data:image/png; base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAACCAMAAACuX0YVAAAABlBMVEVnpv85i/9PO5r4AAAAD0lEQVR42gEEAPv/AAAAAQAFAAIros7PAAAAAElFTkSuQmCC);background-repeat:repeat-x;box-shadow:1px 1px 1px rgba(0,0,0,.4);-webkit-box-shadow:1px 1px 1px rgba(0,0,0,.4);-moz-box-shadow:1px 1px 1px rgba(0,0,0,.4);-o-box-shadow:1px 1px 1px rgba(0,0,0,.4)}.fb-select-icon{position:absolute;bottom:6px;right:5px;width:16px;height:16px;box-sizing:content-box;background-position:center center;background-repeat:no-repeat;background-size:7px 4px;-webkit-background-size:7px 4px;background-image:url()}.fb-select-shorter{position:relative;min-height:28px}.fb-type-container{line-height:28px;position:absolute;top:28px;width:100%;background-color:#fff;border:1px solid #ccc;z-index:300;margin-left:-1px;display:none}.fb-type-item,.fb-type-selected{height:28px;line-height:30px;padding-left:4px}.fb-type-item:hover{background:#f5F5F5}.fb-checkbox{position:relative;border-bottom:1px solid #eee;height:34px;line-height:35px}.fb-checkbox:last-child{border-bottom:0}.fb-list-wrapper{margin-top:-10px}.fb-textarea-sug textarea{margin-top:0}&lt;/style&gt; </textarea> <textarea id="s_index_off_css" style="display:none;"> <style data-for="result" id="css_result" type="text/css">#ftCon{display:none} #qrcode{display:none} #pad-version{display:none} #index_guide{display:none} #index_logo{display:none} #u1{display:none} .s-top-left{display:none} .s_ipt_wr{height:32px} body{padding:0} #head .c-icon-bear-round{display:none} .index_tab_top{display:none} .index_tab_bottom{display:none} #lg{display:none} #m{display:none} #ftCon{display:none} #bottom_layer,#bottom_space,#s_wrap{display:none} .s-isindex-wrap{display:none} #nv{display:none!important} #head .head_wrapper{display:block;padding-top:0!important} .s-bottom-ctner{display:none!important} #head .s-upfunc-menus{display:none} #s_skin_upload{display:none}</style></textarea><div id="wrapper" class="wrapper_new"> <div class='s-skin-container s-isindex-wrap' style="background-color:#FFF; background-image:url(https://dss1.bdstatic.com/kvoZeXSm1A5BphGlnYG/skin_zoom/883.jpg?2)"></div><div id="head" class="s-skin-hasbg white-logo s-opacity-70"> <div id="s_top_wrap" class="s-top-wrap s-isindex-wrap"><div class="s-top-nav"></div><div class="s-center-box"></div></div><div id="s-top-left" class="s-top-left s-isindex-wrap"><a href="http://news.baidu.com" target="_blank" class="mnav c-font-normal c-color-t">新闻</a><a href="https://www.hao123.com" target="_blank" class="mnav c-font-normal c-color-t">hao123</a><a href="http://map.baidu.com" target="_blank" class="mnav c-font-normal c-color-t">地图</a><a href="https://live.baidu.com/" target="_blank" class="mnav c-font-normal c-color-t">直播</a><a href="https://haokan.baidu.com/?sfrom=baidu-top" target="_blank" class="mnav c-font-normal c-color-t">视频</a><a href="http://tieba.baidu.com" target="_blank" class="mnav c-font-normal c-color-t">贴吧</a><a href="http://xueshu.baidu.com" target="_blank" class="mnav c-font-normal c-color-t">学术</a><div class="mnav s-top-more-btn"><a href="http://www.baidu.com/more/" name="tj_briicon" class="s-bri c-font-normal c-color-t" target="_blank">更多</a><div class='s-top-more' id="s-top-more"><div class='s-top-more-content row-1 clearfix'><a href='https://pan.baidu.com' target='_blank' name='tj_wangpan'><img src='https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/topnav/[email protected]'/><div class="s-top-more-title c-font-normal c-color-t">网盘</div></a><a href='https://zhidao.baidu.com' target='_blank' name='tj_zhidao'><img src='https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/topnav/[email protected]'/><div class="s-top-more-title c-font-normal c-color-t">知道</div></a><a href='https://baike.baidu.com' target='_blank' name='tj_baike'><img src='https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/topnav/[email protected]'/><div class="s-top-more-title c-font-normal c-color-t">百科</div></a><a href='http://image.baidu.com' target='_blank' name='tj_img'><img src='https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/topnav/[email protected]'/><div class="s-top-more-title c-font-normal c-color-t">图片</div></a></div><div class='s-top-more-content row-2 clearfix'><a href='https://baobao.baidu.com' target='_blank' name='tj_baobaozhidao'><img src='https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/topnav/[email protected]'/><div class="s-top-more-title c-font-normal c-color-t">宝宝知道</div></a><a href='https://wenku.baidu.com' target='_blank' name='tj_wenku'><img src='https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/topnav/[email protected]'/><div class="s-top-more-title c-font-normal c-color-t">文库</div></a><a href='https://jingyan.baidu.com' target='_blank' name='tj_jingyan'><img src='https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/topnav/[email protected]'/><div class="s-top-more-title c-font-normal c-color-t">经验</div></a><a href='http://music.taihe.com' target='_blank' name='tj_mp3'><img src='https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/topnav/[email protected]'/><div class="s-top-more-title c-font-normal c-color-t">音乐</div></a></div><div class="s-top-tomore"><a class="c-color-gray2 c-font-normal" href='http://www.baidu.com/more/' target='_blank' name='tj_more'>查看全部百度产品 ></a></div></div></div></div><div id="u1" class="s-top-right s-isindex-wrap"><div class="s-weather-wrapper"><div id="s_mod_weather" class="s-mod-weather s-isindex-wrap hide-unknow-city"><div class="weather-mod"><a class="city-wather" href="//www.baidu.com/s?tn=baidutop10&rsv_idx=2&wd=%E6%88%90%E9%83%BD%E5%A4%A9%E6%B0%94%E9%A2%84%E6%8A%A5" target="_blank" class="weather-mod-link"><div class="show-weather"><span class="show-city"><span class="show-city-name c-font-normal c-color-t" data-key="成都">成都</span></span><span class="show-icon"><img class="weather-icon" src="https://dss2.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/weather/icons/a1.png";/><span class="show-icon-temp c-font-normal c-color-t">27℃</span></span><span class="show-temp"></span></div></a><div class="show-pollution "><span class="show-airParm polution-level-10"><span class="show-polution-name">良</span></span></div></div><div class="unknown-city"><span class="unknown-icon c-icon">&#xe60f;</span><span class="unknown-setting c-font-normal c-color-t">查看天气信息</span></div></div></div><span class="s-top-right-text c-font-normal c-color-t" id="s-usersetting-top" name="tj_settingicon">设置</span><a id="s-top-username" class="s-top-username" data-tid="2004" href="http://i.baidu.com/" target="_blank"><span class="s-top-img-wrapper"><img src="https://himg.bdimg.com/sys/portraitn/item/9e3869636869676f72756b69613132334520"/></span><span class="user-name c-font-normal c-color-t">ichigorukia123</span></a><div id="s-user-name-menu" class="s-top-userset-menu c-floating-box c-font-normal"><a href="http://i.baidu.com/center" class="user-menu-item" target="_blank" data-tid="1000">个人中心</a><a href="http://passport.baidu.com/" class="user-menu-item" data-tid="1001" target="_blank">帐号设置</a><a class="s-switch-accunt" href="javascript:;">切换帐号</a><a class="quit" style="overflow:hidden" class="user-menu-item" href="javascript:;" onclick="return false;">退出登录</a></div><div id="s-user-setting-menu" class="s-top-userset-menu c-floating-box c-font-normal"><div class="s-user-setting-pfmenu"></div><a class="s-set-feed hide-feed" href="javascript:;">隐藏资讯</a><a class="s-set-feed show-feed" href="javascript:;">展示资讯</a><span class="split-line"></span><a class="s-set-skin" href="javascript:;" data-tid="2001">更换皮肤</a></div><div class="guide-info guide-info-login"><i class="c-icon guide-icon">&#xe625;</i><span>新春焕新肤,设置后即可拥有!</span><i class="c-icon guide-close">&#xe610;</i></div></div><style>.s_lg_img_gold_showre {display: none !important;}.index-logo-srcnew,.index-logo-peak {display: none;}@media (-webkit-min-device-pixel-ratio: 2),(min--moz-device-pixel-ratio: 2),(-o-min-device-pixel-ratio: 2),(min-device-pixel-ratio: 2){.s_lg_img_gold_show {display: none !important;}.s_lg_img_gold_showre {display: inline !important;}.index-logo-src {display: none;}.index-logo-srcnew {display: inline;}}</style><div class='clear'></div><div id="head_wrapper" class="s-isindex-wrap head_wrapper s-title-img"><div id="s_fm" class="s_form s_form_login"><div class="s_form_wrapper" id="s_form_wrapper"><div id="lg" class="s-p-top"><img id="s_lg_img" class='s_lg_img_gold_show' src="//www.baidu.com/img/PCfb_5bf082d29588c07f842ccde3f97243ea.png" width="270" height="129" onerror="this.src='https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/logo/logo_white-d0c9fe2af5.png';this.onerror=null;" usemap="#mp" /><img id="s_lg_img_new" class='s_lg_img_gold_showre' src="//www.baidu.com/img/PCfb_5bf082d29588c07f842ccde3f97243ea.png" width="270" height="129" onerror="this.src='https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/img/logo/logo_white-d0c9fe2af5.png';this.onerror=null;" usemap="#mp" /><map name="mp" id="s_mp"><area style="cursor:pointer;outline:none;" shape="rect" coords="0,0,270,129" href="//www.baidu.com/s?wd=%E4%BB%8A%E6%97%A5%E6%96%B0%E9%B2%9C%E4%BA%8B&tn=SE_Pclogo_6ysd4c7a&sa=ire_dl_gh_logo&rsv_dl=igh_logo_pc" target="_blank" style="outline:none;" title="点击一下,了解更多" onmousedown="return ns_c({'fm':'behs','tab':'bdlogo'})"></map></div><a href="/" id="result_logo" onmousedown="return c({'fm':'tab','tab':'logo'})"><img class="index-logo-src" src="//www.baidu.com/img/flexible/logo/pc/result.png" alt="到百度首页" title="到百度首页"><img class='index-logo-srcnew' src="//www.baidu.com/img/flexible/logo/pc/[email protected]" alt="到百度首页" title="到百度首页"><img class='index-logo-peak' src="//www.baidu.com/img/flexible/logo/pc/peak-result.png" alt="到百度首页" title="到百度首页"></a><form name="f" id="form" action="/s" class="fm" onsubmit="javascript:F.call('ps/sug','pssubmit');"><span id="s_kw_wrap" class="bg s_ipt_wr"><input type="text" class="s_ipt" name="wd" id="kw" maxlength="100" autocomplete="off"></span><input type="hidden" name="rsv_spt" value="1"><input type="hidden" name="rsv_iqid" value="0x8859d2d000010c25"><input type="hidden" name="issp" value="1"><input type="hidden" name="f" value="8"><input type="hidden" name="rsv_bp" value="0"><input type="hidden" name="rsv_idx" value="2"><input type="hidden" name="ie" value="utf-8"><input type="hidden" name="rqlang" value=""><input type="hidden" name="tn" value="baiduhome_pg" /><input type="hidden" name="ch" value=""><span class="btn_wr s_btn_wr bg" id="s_btn_wr"><input type="submit" value="百度一下" id="su" class="btn self-btn bg s_btn"></span><span class="tools"><span id="mHolder"><div id="mCon"><span>输入法</span></div><ul id="mMenu"><li><a href="javascript:;" name="ime_hw">手写</a></li><li><a href="javascript:;" name="ime_py">拼音</a></li><li class="ln"></li><li><a href="javascript:;" name="ime_cl">关闭</a></li></ul></span><span class="bd_bear_home"></span></span></form><div id="s_lm_wrap" class="s_lm_hide s-isindex-wrap under-tips"><div id="lm-new"></div></div></div></div><div id="u"><a class="toindex" href="/">百度首页</a><span class="toindex"></span><a href="javascript:;" name="tj_settingicon" class="pf">设置<i class="c-icon c-icon-triangle-down"></i></a><a href="http://i.baidu.com" id="user" class="username"> <span class="s-top-img-wrapper"><img src="https://himg.bdimg.com/sys/portraitn/item/9e3869636869676f72756b69613132334520"/></span> <span class="s-top-username">ichigorukia123</span> </a> <div class="bdpfmenu"></div></div><p class="s-skin-lm s-isindex-wrap"></p></div> <div id="s_wrap" class="s-isindex-wrap"><div id="s_main" class="main clearfix c-wrapper c-wrapper-l"><div id="s_mancard_main" class="s-mancacrd-main"> <script>/* eslint-disable */window.isNewGridCard = 1;</script><div class="s-menu-container"><div id="s_menu_gurd" class="s-menu-gurd c-font-medium"><div id="s_ctner_menus" class="s-ctner-menus s-opacity-blank8"><div class="s-menus-outer"><div id="s_menus_wrapper" class="menus-wrapper"><span id="s_menu_mine" class="s-menu-item s-menu-mine" data-id="100">我的关注<span class="s-menu-item-underline"></span></span><span class="s-menu-item current" data-id="2">推荐<span class="s-menu-item-underline"></span></span><span class="s-menu-item" data-id="1">导航<span class="s-menu-item-underline"></span></span></div><span class="s-menu-music" data-id="3"></span></div></div></div></div><div id="s_ctner_contents" class="s-ctner-contents"><div id="s_content_2" class="s-content" data-id="2"> <div data-curtab="" id="s_xmancard_news_new" data-logactid="page-card-tpl-news_new" class="s-xmancard-news_new s-xmancard s-news-split" data-waterpara="offset=1;pos=3;newsNum=3;blacklist_timestamp=0;" > <link rel="stylesheet" type="text/css" href="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/mantpl/css/news_new/init-bf3f169817.css"/> <div class="s-news-wrapper clearfix"> <div class="s-news-rank-wrapper s-news-special-rank-wrapper c-container-r"> <div class="s-rank-title"> <a href="http://top.baidu.com/?fr=mhd_card" target="_blank"> <div class="title-text c-font-medium c-color-t"> 百度热榜 </div> </a> <a class="hot-refresh c-font-normal c-color-gray2"> <i class="c-icon">&#xe619;</i><span class="hot-refresh-text">换一换</span> </a> </div> <ul class="s-news-rank-content"> <li class="news-meta-item clearfix" data-index="0"><a class="title-content c-link c-font-medium c-line-ellipsis" href="https://www.baidu.com/s?cl=3&tn=baidutop10&fr=top1000&wd=%E4%B8%AD%E5%9B%BD%E6%98%AF%E5%90%A6%E5%AE%89%E6%8E%92%E4%BB%8E%E7%BC%85%E7%94%B8%E6%92%A4%E4%BE%A8%3F%E4%B8%AD%E6%96%B9%E5%9B%9E%E5%BA%94&rsv_idx=2&rsv_dl=fyb_n_homepage&hisfilter=1" target="_blank" ><span class="title-content-index c-index-single c-index-single-hot1">1</span><span class="title-content-title">中国是否安排从缅甸撤侨?中方回应</span><span class="title-content-mark c-text c-text-hot">热</span></a><div class="news-count c-font-normal c-color-gray2" title="搜索指数466万">466万</div></li> <li class="news-meta-item clearfix" data-index="1"><a class="title-content c-link c-font-medium c-line-ellipsis" href="https://www.baidu.com/s?cl=3&tn=baidutop10&fr=top1000&wd=%E4%BD%8E%E9%A3%8E%E9%99%A9%E5%9C%B0%E5%8C%BA%E5%A8%B1%E4%B9%90%E5%9C%BA%E6%89%80%E4%BA%BA%E6%95%B0%E4%B8%8D%E5%86%8D%E9%99%90%E5%88%B6&rsv_idx=2&rsv_dl=fyb_n_homepage&hisfilter=1" target="_blank" ><span class="title-content-index c-index-single c-index-single-hot2">2</span><span class="title-content-title">低风险地区娱乐场所人数不再限制</span><span class="title-content-mark c-text"></span></a><div class="news-count c-font-normal c-color-gray2" title="搜索指数450万">450万</div></li> <li class="news-meta-item clearfix" data-index="2"><a class="title-content c-link c-font-medium c-line-ellipsis" href="https://www.baidu.com/s?cl=3&tn=baidutop10&fr=top1000&wd=%E4%BB%8A%E5%B9%B43%C2%B715%E8%BF%99%E5%85%AD%E7%A7%8D%E4%BA%A7%E5%93%81%E8%A2%AB%E7%82%B9%E5%90%8D&rsv_idx=2&rsv_dl=fyb_n_homepage&hisfilter=1" target="_blank" ><span class="title-content-index c-index-single c-index-single-hot3">3</span><span class="title-content-title">今年3·15这六种产品被点名</span><span class="title-content-mark c-text"></span></a><div class="news-count c-font-normal c-color-gray2" title="搜索指数434万">434万</div></li> <li class="news-meta-item clearfix" data-index="3"><a class="title-content c-link c-font-medium c-line-ellipsis" href="https://www.baidu.com/s?cl=3&tn=baidutop10&fr=top1000&wd=%E5%8C%97%E4%BA%AC%E6%B2%99%E5%B0%98%E6%9D%A5%E4%B8%B4+%E6%BC%AB%E5%A4%A9%E6%A9%98%E9%BB%84%E8%89%B2&rsv_idx=2&rsv_dl=fyb_n_homepage&hisfilter=1" target="_blank" ><span class="title-content-index c-index-single c-index-single-hot4">4</span><span class="title-content-title">北京沙尘来临 漫天橘黄色</span><span class="title-content-mark c-text"></span></a><div class="news-count c-font-normal c-color-gray2" title="搜索指数419万">419万</div></li> <li class="news-meta-item clearfix" data-index="4"><a class="title-content c-link c-font-medium c-line-ellipsis" href="https://www.baidu.com/s?cl=3&tn=baidutop10&fr=top1000&wd=%E4%B8%AD%E5%9B%BD%E5%85%B6%E4%BB%96%E6%96%B0%E5%86%A0%E7%96%AB%E8%8B%97%E7%9A%84%E5%BC%80%E5%8F%91%E8%BF%9B%E5%B1%95%E5%A6%82%E4%BD%95%3F&rsv_idx=2&rsv_dl=fyb_n_homepage&hisfilter=1" target="_blank" ><span class="title-content-index c-index-single c-index-single-hot5">5</span><span class="title-content-title">中国其他新冠疫苗的开发进展如何?</span><span class="title-content-mark c-text "></span></a><div class="news-count c-font-normal c-color-gray2" title="搜索指数404万">404万</div></li> <li class="news-meta-item clearfix" data-index="5"><a class="title-content c-link c-font-medium c-line-ellipsis" href="https://www.baidu.com/s?cl=3&tn=baidutop10&fr=top1000&wd=%E7%94%A8%E6%89%AB%E5%B8%9A%E6%8D%A3%E5%88%B6%E5%86%B0%E6%9C%BA%3F%E5%B0%8F%E9%BE%99%E5%9D%8E%E7%81%AB%E9%94%85%E8%87%B4%E6%AD%89&rsv_idx=2&rsv_dl=fyb_n_homepage&hisfilter=1" target="_blank" ><span class="title-content-index c-index-single c-index-single-hot6">6</span><span class="title-content-title">用扫帚捣制冰机?小龙坎火锅致歉</span><span class="title-content-mark c-text"></span></a><div class="news-count c-font-normal c-color-gray2" title="搜索指数390万">390万</div></li> <li class="news-meta-item clearfix" data-index="6"><a class="title-content c-link c-font-medium c-line-ellipsis" href="https://www.baidu.com/s?cl=3&tn=baidutop10&fr=top1000&wd=%E5%8F%98%E5%BC%82%E7%97%85%E6%AF%92%E5%AF%B9%E6%88%91%E5%9B%BD4%E6%AC%BE%E7%96%AB%E8%8B%97%E6%97%A0%E6%98%8E%E6%98%BE%E5%BD%B1%E5%93%8D&rsv_idx=2&rsv_dl=fyb_n_homepage&hisfilter=1" target="_blank" ><span class="title-content-index c-index-single c-index-single-hot7">7</span><span class="title-content-title">变异病毒对我国4款疫苗无明显影响</span><span class="title-content-mark c-text c-text-new">新</span></a><div class="news-count c-font-normal c-color-gray2" title="搜索指数376万">376万</div></li> <li class="news-meta-item clearfix" data-index="7"><a class="title-content c-link c-font-medium c-line-ellipsis" href="https://www.baidu.com/s?cl=3&tn=baidutop10&fr=top1000&wd=%E5%85%AC%E5%AE%89%E9%83%A8%E5%9B%9E%E5%BA%94%E5%90%B8%E6%AF%92%E7%BB%88%E8%BA%AB%E7%A6%81%E6%BC%94%E5%BB%BA%E8%AE%AE&rsv_idx=2&rsv_dl=fyb_n_homepage&hisfilter=1" target="_blank" ><span class="title-content-index c-index-single c-index-single-hot8">8</span><span class="title-content-title">公安部回应吸毒终身禁演建议</span><span class="title-content-mark c-text"></span></a><div class="news-count c-font-normal c-color-gray2" title="搜索指数363万">363万</div></li> <li class="news-meta-item clearfix" data-index="8"><a class="title-content c-link c-font-medium c-line-ellipsis" href="https://www.baidu.com/s?cl=3&tn=baidutop10&fr=top1000&wd=%E7%AC%AC63%E5%B1%8A%E6%A0%BC%E8%8E%B1%E7%BE%8E%E8%8E%B7%E5%A5%96%E5%90%8D%E5%8D%95%E6%8F%AD%E6%99%93&rsv_idx=2&rsv_dl=fyb_n_homepage&hisfilter=1" target="_blank" ><span class="title-content-index c-index-single c-index-single-hot9">9</span><span class="title-content-title">第63届格莱美获奖名单揭晓</span><span class="title-content-mark c-text"></span></a><div class="news-count c-font-normal c-color-gray2" title="搜索指数350万">350万</div></li> <li class="news-meta-item clearfix" data-index="9"><a class="title-content c-link c-font-medium c-line-ellipsis" href="https://www.baidu.com/s?cl=3&tn=baidutop10&fr=top1000&wd=%E8%8B%A6%E7%AD%899%E4%B8%AA%E6%9C%88%E7%9A%84%E5%A9%9A%E7%A4%BC%E8%A7%86%E9%A2%91%E5%85%A8%E6%98%AF%E8%83%8C%E5%BD%B1&rsv_idx=2&rsv_dl=fyb_n_homepage&hisfilter=1" target="_blank" ><span class="title-content-index c-index-single c-index-single-hot10">10</span><span class="title-content-title">苦等9个月的婚礼视频全是背影</span><span class="title-content-mark c-text"></span></a><div class="news-count c-font-normal c-color-gray2" title="搜索指数338万">338万</div></li> </ul> </div> <textarea id="news_hot_data" style="display:none;">{"banner":[{"pure_title": "中国是否安排从缅甸撤侨?中方回应","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E4%25B8%25AD%25E5%259B%25BD%25E6%2598%25AF%25E5%2590%25A6%25E5%25AE%2589%25E6%258E%2592%25E4%25BB%258E%25E7%25BC%2585%25E7%2594%25B8%25E6%2592%25A4%25E4%25BE%25A8%253F%25E4%25B8%25AD%25E6%2596%25B9%25E5%259B%259E%25E5%25BA%2594%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "4663942","hotTags": "3"},{"pure_title": "低风险地区娱乐场所人数不再限制","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E4%25BD%258E%25E9%25A3%258E%25E9%2599%25A9%25E5%259C%25B0%25E5%258C%25BA%25E5%25A8%25B1%25E4%25B9%2590%25E5%259C%25BA%25E6%2589%2580%25E4%25BA%25BA%25E6%2595%25B0%25E4%25B8%258D%25E5%2586%258D%25E9%2599%2590%25E5%2588%25B6%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "4500704","hotTags": "3"},{"pure_title": "今年3·15这六种产品被点名","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E4%25BB%258A%25E5%25B9%25B43%25C2%25B715%25E8%25BF%2599%25E5%2585%25AD%25E7%25A7%258D%25E4%25BA%25A7%25E5%2593%2581%25E8%25A2%25AB%25E7%2582%25B9%25E5%2590%258D%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "4343180","hotTags": "3"},{"pure_title": "北京沙尘来临 漫天橘黄色","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E5%258C%2597%25E4%25BA%25AC%25E6%25B2%2599%25E5%25B0%2598%25E6%259D%25A5%25E4%25B8%25B4%2B%25E6%25BC%25AB%25E5%25A4%25A9%25E6%25A9%2598%25E9%25BB%2584%25E8%2589%25B2%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "4191168","hotTags": "3"},{"pure_title": "中国其他新冠疫苗的开发进展如何?","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E4%25B8%25AD%25E5%259B%25BD%25E5%2585%25B6%25E4%25BB%2596%25E6%2596%25B0%25E5%2586%25A0%25E7%2596%25AB%25E8%258B%2597%25E7%259A%2584%25E5%25BC%2580%25E5%258F%2591%25E8%25BF%259B%25E5%25B1%2595%25E5%25A6%2582%25E4%25BD%2595%253F%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "4044478","hotTags": "0"},{"pure_title": "用扫帚捣制冰机?小龙坎火锅致歉","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E7%2594%25A8%25E6%2589%25AB%25E5%25B8%259A%25E6%258D%25A3%25E5%2588%25B6%25E5%2586%25B0%25E6%259C%25BA%253F%25E5%25B0%258F%25E9%25BE%2599%25E5%259D%258E%25E7%2581%25AB%25E9%2594%2585%25E8%2587%25B4%25E6%25AD%2589%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "3902921","hotTags": "0"},{"pure_title": "变异病毒对我国4款疫苗无明显影响","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E5%258F%2598%25E5%25BC%2582%25E7%2597%2585%25E6%25AF%2592%25E5%25AF%25B9%25E6%2588%2591%25E5%259B%25BD4%25E6%25AC%25BE%25E7%2596%25AB%25E8%258B%2597%25E6%2597%25A0%25E6%2598%258E%25E6%2598%25BE%25E5%25BD%25B1%25E5%2593%258D%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "3766319","hotTags": "1"},{"pure_title": "公安部回应吸毒终身禁演建议","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E5%2585%25AC%25E5%25AE%2589%25E9%2583%25A8%25E5%259B%259E%25E5%25BA%2594%25E5%2590%25B8%25E6%25AF%2592%25E7%25BB%2588%25E8%25BA%25AB%25E7%25A6%2581%25E6%25BC%2594%25E5%25BB%25BA%25E8%25AE%25AE%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "3634497","hotTags": "0"},{"pure_title": "第63届格莱美获奖名单揭晓","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E7%25AC%25AC63%25E5%25B1%258A%25E6%25A0%25BC%25E8%258E%25B1%25E7%25BE%258E%25E8%258E%25B7%25E5%25A5%2596%25E5%2590%258D%25E5%258D%2595%25E6%258F%25AD%25E6%2599%2593%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "3507290","hotTags": "0"},{"pure_title": "苦等9个月的婚礼视频全是背影","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E8%258B%25A6%25E7%25AD%25899%25E4%25B8%25AA%25E6%259C%2588%25E7%259A%2584%25E5%25A9%259A%25E7%25A4%25BC%25E8%25A7%2586%25E9%25A2%2591%25E5%2585%25A8%25E6%2598%25AF%25E8%2583%258C%25E5%25BD%25B1%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "3384535","hotTags": "0"},{"pure_title": "云南男子高位截瘫 躺家里成\&quot;毒王\&quot;","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E4%25BA%2591%25E5%258D%2597%25E7%2594%25B7%25E5%25AD%2590%25E9%25AB%2598%25E4%25BD%258D%25E6%2588%25AA%25E7%2598%25AB%2B%25E8%25BA%25BA%25E5%25AE%25B6%25E9%2587%258C%25E6%2588%2590%25E6%25AF%2592%25E7%258E%258B%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "3266076","hotTags": "1"},{"pure_title": "背娘上大学小伙回应曾拒绝55万年薪","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E8%2583%258C%25E5%25A8%2598%25E4%25B8%258A%25E5%25A4%25A7%25E5%25AD%25A6%25E5%25B0%258F%25E4%25BC%2599%25E5%259B%259E%25E5%25BA%2594%25E6%259B%25BE%25E6%258B%2592%25E7%25BB%259D55%25E4%25B8%2587%25E5%25B9%25B4%25E8%2596%25AA%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "3151763","hotTags": "0"},{"pure_title": "机长与乘务长飞机上互殴:终身停飞","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E6%259C%25BA%25E9%2595%25BF%25E4%25B8%258E%25E4%25B9%2598%25E5%258A%25A1%25E9%2595%25BF%25E9%25A3%259E%25E6%259C%25BA%25E4%25B8%258A%25E4%25BA%2592%25E6%25AE%25B4%253A%25E7%25BB%2588%25E8%25BA%25AB%25E5%2581%259C%25E9%25A3%259E%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "3041452","hotTags": "0"},{"pure_title": "市场监管总局点名直播带货","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E5%25B8%2582%25E5%259C%25BA%25E7%259B%2591%25E7%25AE%25A1%25E6%2580%25BB%25E5%25B1%2580%25E7%2582%25B9%25E5%2590%258D%25E7%259B%25B4%25E6%2592%25AD%25E5%25B8%25A6%25E8%25B4%25A7%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "2935001","hotTags": "0"},{"pure_title": "刘德华晒隔离经历","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E5%2588%2598%25E5%25BE%25B7%25E5%258D%258E%25E6%2599%2592%25E9%259A%2594%25E7%25A6%25BB%25E7%25BB%258F%25E5%258E%2586%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "2832276","hotTags": "0"},{"pure_title": "遭滴滴司机撞击身亡乘客家属发声","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E9%2581%25AD%25E6%25BB%25B4%25E6%25BB%25B4%25E5%258F%25B8%25E6%259C%25BA%25E6%2592%259E%25E5%2587%25BB%25E8%25BA%25AB%25E4%25BA%25A1%25E4%25B9%2598%25E5%25AE%25A2%25E5%25AE%25B6%25E5%25B1%259E%25E5%258F%2591%25E5%25A3%25B0%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "2733146","hotTags": "0"},{"pure_title": "北京上空出现蓝太阳","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E5%258C%2597%25E4%25BA%25AC%25E4%25B8%258A%25E7%25A9%25BA%25E5%2587%25BA%25E7%258E%25B0%25E8%2593%259D%25E5%25A4%25AA%25E9%2598%25B3%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "2637486","hotTags": "0"},{"pure_title": "蒙古国暴风雪强沙尘天气已致9死","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E8%2592%2599%25E5%258F%25A4%25E5%259B%25BD%25E6%259A%25B4%25E9%25A3%258E%25E9%259B%25AA%25E5%25BC%25BA%25E6%25B2%2599%25E5%25B0%2598%25E5%25A4%25A9%25E6%25B0%2594%25E5%25B7%25B2%25E8%2587%25B49%25E6%25AD%25BB%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "2545174","hotTags": "0"},{"pure_title": "北京市教委建议暂停户外活动","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E5%258C%2597%25E4%25BA%25AC%25E5%25B8%2582%25E6%2595%2599%25E5%25A7%2594%25E5%25BB%25BA%25E8%25AE%25AE%25E6%259A%2582%25E5%2581%259C%25E6%2588%25B7%25E5%25A4%2596%25E6%25B4%25BB%25E5%258A%25A8%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "2456093","hotTags": "0"},{"pure_title": "吴倩带娃与母亲聚餐","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E5%2590%25B4%25E5%2580%25A9%25E5%25B8%25A6%25E5%25A8%2583%25E4%25B8%258E%25E6%25AF%258D%25E4%25BA%25B2%25E8%2581%259A%25E9%25A4%2590%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "2370130","hotTags": "0"},{"pure_title": "高校应届毕业生数量再创新高","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E9%25AB%2598%25E6%25A0%25A1%25E5%25BA%2594%25E5%25B1%258A%25E6%25AF%2595%25E4%25B8%259A%25E7%2594%259F%25E6%2595%25B0%25E9%2587%258F%25E5%2586%258D%25E5%2588%259B%25E6%2596%25B0%25E9%25AB%2598%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "2287175","hotTags": "0"},{"pure_title": "苹果新专利可扩大电池容量","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E8%258B%25B9%25E6%259E%259C%25E6%2596%25B0%25E4%25B8%2593%25E5%2588%25A9%25E5%258F%25AF%25E6%2589%25A9%25E5%25A4%25A7%25E7%2594%25B5%25E6%25B1%25A0%25E5%25AE%25B9%25E9%2587%258F%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "2207124","hotTags": "0"},{"pure_title": "马思纯谢谢杨紫最难时候的陪伴","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E9%25A9%25AC%25E6%2580%259D%25E7%25BA%25AF%25E8%25B0%25A2%25E8%25B0%25A2%25E6%259D%25A8%25E7%25B4%25AB%25E6%259C%2580%25E9%259A%25BE%25E6%2597%25B6%25E5%2580%2599%25E7%259A%2584%25E9%2599%25AA%25E4%25BC%25B4%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "2129875","hotTags": "0"},{"pure_title": "女生辞职回乡当茶农为村里增收","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E5%25A5%25B3%25E7%2594%259F%25E8%25BE%259E%25E8%2581%258C%25E5%259B%259E%25E4%25B9%25A1%25E5%25BD%2593%25E8%258C%25B6%25E5%2586%259C%25E4%25B8%25BA%25E6%259D%2591%25E9%2587%258C%25E5%25A2%259E%25E6%2594%25B6%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "2055329","hotTags": "0"},{"pure_title": "男子因种树换了16天年假","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E7%2594%25B7%25E5%25AD%2590%25E5%259B%25A0%25E7%25A7%258D%25E6%25A0%2591%25E6%258D%25A2%25E4%25BA%258616%25E5%25A4%25A9%25E5%25B9%25B4%25E5%2581%2587%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "1983392","hotTags": "0"},{"pure_title": "31省区市新增确诊5例均为境外输入","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D31%25E7%259C%2581%25E5%258C%25BA%25E5%25B8%2582%25E6%2596%25B0%25E5%25A2%259E%25E7%25A1%25AE%25E8%25AF%258A5%25E4%25BE%258B%25E5%259D%2587%25E4%25B8%25BA%25E5%25A2%2583%25E5%25A4%2596%25E8%25BE%2593%25E5%2585%25A5%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "1913974","hotTags": "0"},{"pure_title": "救坠江女孩牺牲的民警被追记一等功","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E6%2595%2591%25E5%259D%25A0%25E6%25B1%259F%25E5%25A5%25B3%25E5%25AD%25A9%25E7%2589%25BA%25E7%2589%25B2%25E7%259A%2584%25E6%25B0%2591%25E8%25AD%25A6%25E8%25A2%25AB%25E8%25BF%25BD%25E8%25AE%25B0%25E4%25B8%2580%25E7%25AD%2589%25E5%258A%259F%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "1846985","hotTags": "0"},{"pure_title": "护肤中心查出兽用注射器","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E6%258A%25A4%25E8%2582%25A4%25E4%25B8%25AD%25E5%25BF%2583%25E6%259F%25A5%25E5%2587%25BA%25E5%2585%25BD%25E7%2594%25A8%25E6%25B3%25A8%25E5%25B0%2584%25E5%2599%25A8%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "1782340","hotTags": "1"},{"pure_title": "币圈首富比特币投资收益100倍","linkurl": "https%3A//www.baidu.com/s%3Fcl%3D3%26tn%3Dbaidutop10%26fr%3Dtop1000%26wd%3D%25E5%25B8%2581%25E5%259C%2588%25E9%25A6%2596%25E5%25AF%258C%25E6%25AF%2594%25E7%2589%25B9%25E5%25B8%2581%25E6%258A%2595%25E8%25B5%2584%25E6%2594%25B6%25E7%259B%258A100%25E5%2580%258D%26rsv_idx%3D2%26rsv_dl%3Dfyb_n_homepage%26hisfilter%3D1","views": "","isViewed": "","isNew": "","heat_score": "1719958","hotTags": "0"}]}</textarea> <textarea id="news_banner_data" style="display:none;">{"isViewed": "0","url": "","img": "","title": "","bannerId": ""}</textarea> <div class="water-container"> <!-- htmlcs-disable --> <div class="s-news-list-wrapper c-container c-feed-box"> <div class="s-news-special s-news-item s-news-special-item-tpl-1 s-opacity-blank8 clearfix" data-url="https://m.thepaper.cn/baijiahao_11712521" data-rid="10291215178515336380" data-relatewords="1" data-log="stype:0;picNum:7;title:官方提示!这6类产品购买时要注意!涉及口罩、儿童玩具……;pos:0;st:news;" data-extra="{&quot;rec_src&quot;:[4400],&quot;type&quot;:0,&quot;score&quot;:601499.125,&quot;mark&quot;:0,&quot;recall_type&quot;:0,&quot;vertical_type&quot;:0,&quot;mthid&quot;:&quot;1631765915188804&quot;,&quot;predictor_result&quot;:&quot;CAEZAICwoOie+kA=&quot;,&quot;q_ratio&quot;:5.5163903280274,&quot;recall_attention&quot;:[&quot;&quot;],&quot;img_num&quot;:7,&quot;predictor_extmsg&quot;:&quot;ElUIARkAAABAS32mPyAEMQAAAMD9xLE\/OQAAAIDXQ7w\/oQEAAAAAAADwP6gBArUBAACAP7UBAACAP7UBAACAP+kBAAAAAAAAAACFAq5awj2IArjAvIIGIj8ZAAAAIPPpuz8gBDEAAADAw5O2P1EAAADAw5O2P1kAAADAw5O2P3EAAAAg8+m7P6ECAAAAAAAAAACtAq5awj0=&quot;,&quot;dnn_score_cp&quot;:0.034930813608801,&quot;th&quot;:-1,&quot;gr_layout&quot;:&quot;image3&quot;,&quot;session_id&quot;:&quot;&quot;,&quot;refresh_index&quot;:&quot;0&quot;,&quot;session_index&quot;:0,&quot;position&quot;:0,&quot;log_id&quot;:3446857958,&quot;refresh_state&quot;:0,&quot;refresh_type&quot;:1,&quot;refresh_timestamp_ms&quot;:1615801165364,&quot;news_attention&quot;:[&quot;\u78c1\u529b&quot;,&quot;\u80ba\u708e&quot;,&quot;\u51a0\u72b6\u75c5\u6bd2&quot;,&quot;\u53e3\u7f69&quot;,&quot;\u6bcd\u5a74\u80b2\u513f&quot;,&quot;\u73a9\u5177&quot;,&quot;\u65b0\u578b\u80ba\u708e&quot;,&quot;\u65b0\u578b\u51a0\u72b6\u75c5\u6bd2&quot;,&quot;\u533b\u7528\u53e3\u7f69&quot;,&quot;\u75ab\u60c5&quot;],&quot;predictor_q_score&quot;:109038.53923082,&quot;is_microvideo&quot;:false,&quot;video_type&quot;:&quot;&quot;,&quot;channel_id&quot;:1,&quot;wifiinfo&quot;:&quot;&quot;,&quot;gr_step_click&quot;:-1,&quot;gr_step_related_click&quot;:0,&quot;attentionnum&quot;:153,&quot;video_attentionnum&quot;:0,&quot;gr_news_sub_category_single&quot;:&quot;\u73a9\u5177&quot;,&quot;ext_multi_score&quot;:0,&quot;predictor_result_array&quot;:[{&quot;rec_src&quot;:4400,&quot;predictorq&quot;:&quot;CAEZAICwoOie+kA=&quot;}],&quot;user_activity_v1&quot;:0.0011187717822663,&quot;loc_city&quot;:&quot;\u6210\u90fd&quot;,&quot;pass_through&quot;:&quot;{\&quot;cold_start\&quot;:0,\&quot;user_activity\&quot;:0.0011187717822662609,\&quot;user_activity_v1\&quot;:0.0011187717822662609,\&quot;user_stay_time\&quot;:0.0,\&quot;first_use_time\&quot;:0,\&quot;_new_xm_usr_20210122\&quot;:false,\&quot;user_long_all_ctr\&quot;:0.0,\&quot;user_long_news_ctr\&quot;:0.0,\&quot;user_long_video_ctr\&quot;:0.0,\&quot;user_baipai_always_prefer_video\&quot;:0,\&quot;user_long_prefer_resource\&quot;:-1,\&quot;baipai_user_lastrefresh_clicked\&quot;:0}&quot;,&quot;crudely_stat&quot;:&quot;|ri_0&quot;}"><a class="s-news-item-title c-link c-font-big c-line-clamp1" href="https://m.thepaper.cn/baijiahao_11712521" title="官方提示!这6类产品购买时要注意!涉及口罩、儿童玩具……" target="_blank" data-title="官方提示!这6类产品购买时要注意!涉及口罩、儿童玩具……" data-link="https://m.thepaper.cn/baijiahao_11712521" data-click="LOG_LINK">官方提示!这6类产品购买时要注意!涉及口罩、儿童玩具……</a><div class="s-pic-content c-gap-top-large c-gap-bottom"><ul class="s-news-content-imgs clearfix"><li class="item-img-wrap c-span4"><a class="c-img c-img-radius-left-l c-img-radius-right-s" href="https://m.thepaper.cn/baijiahao_11712521" target="_blank" data-click="LOG_LINK" title="官方提示!这6类产品购买时要注意!涉及口罩、儿童玩具……" data-title="官方提示!这6类产品购买时要注意!涉及口罩、儿童玩具……"><img class="s-news-img" src="https://pics1.baidu.com/feed/0df3d7ca7bcb0a460f713056ed4ec42c6a60afc0.jpeg?token=e7989166a0c19ca4001258ef5d8aa2ee&amp;s=91A39ABA1F747D88CED61CDA030090BB"/><div class="s-img-mask c-img-radius-left-l c-img-radius-right-s"></div></a></li><li class="item-img-wrap c-span4"><a class="c-img c-img-radius-s" href="https://m.thepaper.cn/baijiahao_11712521" target="_blank" data-click="LOG_LINK" title="官方提示!这6类产品购买时要注意!涉及口罩、儿童玩具……" data-title="官方提示!这6类产品购买时要注意!涉及口罩、儿童玩具……"><img class="s-news-img" src="https://pics4.baidu.com/feed/80cb39dbb6fd5266bab1b3792d35a523d50736fe.jpeg?token=03a0da2f6c16d19ffc0fcbfc6259d707&amp;s=B9A28A1A1B2D79095EFCB5D2030050B9"/><div class="s-img-mask c-img-radius-s"></div></a></li><li class="item-img-wrap c-span4 c-span-last"><a class="c-img c-img-radius-right-l c-img-radius-left-s" href="https://m.thepaper.cn/baijiahao_11712521" target="_blank" data-click="LOG_LINK" title="官方提示!这6类产品购买时要注意!涉及口罩、儿童玩具……" data-title="官方提示!这6类产品购买时要注意!涉及口罩、儿童玩具……"><img class="s-news-img" src="https://pics2.baidu.com/feed/8694a4c27d1ed21b95179b472b43efcc50da3f6f.jpeg?token=8c661ab4320c962417c644b1c88bf793&amp;s=D9B202D20F6C7D0F5AF5AD52030040FF"/><div class="s-img-mask c-img-radius-right-l c-img-radius-left-s"></div></a></li></ul></div><div class="from c-font-normal"><a class="c-gap-right" href="https://author.baidu.com/home?app_id=1631765915188804&from=homepage_nickname" target="_blank" data-src="1" data-click="LOG_LINK"><span class="src-net c-color-gray">澎湃在线</span></a><span class="src-time c-color-gray2 c-gap-right">03-15 16:52</span><div class="dustbin" data-click="LOG_BTN_DUSTBIN"><i class="c-icon">&#xe610;</i></div></div></div> <div class="s-news-special s-news-item s-news-special-item-tpl-1 s-opacity-blank8 clearfix" data-url="https://mbd.baidu.com/newspage/data/landingsuper?context=%7B%22nid%22%3A%22news_10095670282616431000%22%7D&n_type=0&p_from=1" data-rid="10095670282616431000" data-relatewords="1" data-log="stype:9;picNum:5;title:沈腾姐姐颜值惹争议!颜值惊艳却被嘲嘴大,身份曝光被赞叹太优秀;pos:1;st:news;" data-extra="{&quot;rec_src&quot;:[4400],&quot;type&quot;:9,&quot;score&quot;:266985.03125,&quot;mark&quot;:0,&quot;recall_type&quot;:9,&quot;vertical_type&quot;:0,&quot;mthid&quot;:&quot;1591194039445781&quot;,&quot;predictor_result&quot;:&quot;CAEZAAB\/QHjF60A=&quot;,&quot;q_ratio&quot;:4.6941795396664,&quot;recall_attention&quot;:[&quot;&quot;],&quot;img_num&quot;:5,&quot;predictor_extmsg&quot;:&quot;ElUIARkAAAAAnR6oPyAEMQAAAIBDaaU\/OQAAAADCXr4\/oQEAAAAAAADwP6gBArUBAACAP7UBAACAP7UBAACAP+kBAAAAAAAAAACFAlCfFT2IArK9vIIGIj8ZAAAAwNEerT8gBDEAAABAl7ShP1EAAABAl7ShP1kAAABAl7ShP3EAAADA0R6tP6ECAAAAAAAAAACtAlCfFT0=&quot;,&quot;dnn_score_cp&quot;:0.033378039130906,&quot;th&quot;:-1,&quot;gr_layout&quot;:&quot;image3&quot;,&quot;session_id&quot;:&quot;&quot;,&quot;refresh_index&quot;:&quot;0&quot;,&quot;session_index&quot;:0,&quot;position&quot;:1,&quot;log_id&quot;:3446857958,&quot;refresh_state&quot;:0,&quot;refresh_type&quot;:1,&quot;refresh_timestamp_ms&quot;:1615801165364,&quot;news_attention&quot;:[&quot;\u8d3e\u73b2&quot;,&quot;\u6c88\u5a1c&quot;,&quot;\u6c88\u817e&quot;,&quot;\u5a31\u4e50\u516b\u5366&quot;,&quot;\u5a31\u4e50\u65b0\u95fb&quot;],&quot;predictor_q_score&quot;:56875.757873058,&quot;is_microvideo&quot;:false,&quot;video_type&quot;:&quot;&quot;,&quot;channel_id&quot;:1,&quot;wifiinfo&quot;:&quot;&quot;,&quot;gr_step_click&quot;:-1,&quot;gr_step_related_click&quot;:0,&quot;attentionnum&quot;:153,&quot;video_attentionnum&quot;:0,&quot;gr_news_sub_category_single&quot;:&quot;\u7efc\u827a&quot;,&quot;ext_multi_score&quot;:0,&quot;predictor_result_array&quot;:[{&quot;rec_src&quot;:4400,&quot;predictorq&quot;:&quot;CAEZAAB\/QHjF60A=&quot;}],&quot;user_activity_v1&quot;:0.0011187717822663,&quot;loc_city&quot;:&quot;\u6210\u90fd&quot;,&quot;pass_through&quot;:&quot;{\&quot;cold_start\&quot;:0,\&quot;user_activity\&quot;:0.0011187717822662609,\&quot;user_activity_v1\&quot;:0.0011187717822662609,\&quot;user_stay_time\&quot;:0.0,\&quot;first_use_time\&quot;:0,\&quot;_new_xm_usr_20210122\&quot;:false,\&quot;user_long_all_ctr\&quot;:0.0,\&quot;user_long_news_ctr\&quot;:0.0,\&quot;user_long_video_ctr\&quot;:0.0,\&quot;user_baipai_always_prefer_video\&quot;:0,\&quot;user_long_prefer_resource\&quot;:-1,\&quot;baipai_user_lastrefresh_clicked\&quot;:0}&quot;,&quot;crudely_stat&quot;:&quot;|ri_0&quot;}"><a class="s-news-item-title c-link c-font-big c-line-clamp1" href="https://mbd.baidu.com/newspage/data/landingsuper?context=%7B%22nid%22%3A%22news_10095670282616431000%22%7D&n_type=0&p_from=1" title="沈腾姐姐颜值惹争议!颜值惊艳却被嘲嘴大,身份曝光被赞叹太优秀" target="_blank" data-title="沈腾姐姐颜值惹争议!颜值惊艳却被嘲嘴大,身份曝光被赞叹太优秀" data-link="https://mbd.baidu.com/newspage/data/landingsuper?context=%7B%22nid%22%3A%22news_10095670282616431000%22%7D&n_type=0&p_from=1" data-click="LOG_LINK">沈腾姐姐颜值惹争议!颜值惊艳却被嘲嘴大,身份曝光被赞叹太优秀</a><div class="s-pic-content c-gap-top-large c-gap-bottom"><ul class="s-news-content-imgs clearfix"><li class="item-img-wrap c-span4"><a class="c-img c-img-radius-left-l c-img-radius-right-s" href="https://mbd.baidu.com/newspage/data/landingsuper?context=%7B%22nid%22%3A%22news_10095670282616431000%22%7D&n_type=0&p_from=1" target="_blank" data-click="LOG_LINK" title="沈腾姐姐颜值惹争议!颜值惊艳却被嘲嘴大,身份曝光被赞叹太优秀" data-title="沈腾姐姐颜值惹争议!颜值惊艳却被嘲嘴大,身份曝光被赞叹太优秀"><img class="s-news-img" src="https://pics1.baidu.com/feed/faf2b2119313b07eb51dcfdb07fba32b96dd8c71.jpeg?token=0ad29ca64c5f14d16b80b0d3dc9c47c1&amp;s=B121D915541353D41089B5B503004021"/><div class="s-img-mask c-img-radius-left-l c-img-radius-right-s"></div></a></li><li class="item-img-wrap c-span4"><a class="c-img c-img-radius-s" href="https://mbd.baidu.com/newspage/data/landingsuper?context=%7B%22nid%22%3A%22news_10095670282616431000%22%7D&n_type=0&p_from=1" target="_blank" data-click="LOG_LINK" title="沈腾姐姐颜值惹争议!颜值惊艳却被嘲嘴大,身份曝光被赞叹太优秀" data-title="沈腾姐姐颜值惹争议!颜值惊艳却被嘲嘴大,身份曝光被赞叹太优秀"><img class="s-news-img" src="https://pics4.baidu.com/feed/b7003af33a87e950217ccbc11b14614bfaf2b4e3.jpeg?token=dc06c5e95c52293024c56b61e313005b&amp;s=F216568C7C33D2C4420A34D4030050B8"/><div class="s-img-mask c-img-radius-s"></div></a></li><li class="item-img-wrap c-span4 c-span-last"><a class="c-img c-img-radius-right-l c-img-radius-left-s" href="https://mbd.baidu.com/newspage/data/landingsuper?context=%7B%22nid%22%3A%22news_10095670282616431000%22%7D&n_type=0&p_from=1" target="_blank" data-click="LOG_LINK" title="沈腾姐姐颜值惹争议!颜值惊艳却被嘲嘴大,身份曝光被赞叹太优秀" data-title="沈腾姐姐颜值惹争议!颜值惊艳却被嘲嘴大,身份曝光被赞叹太优秀"><img class="s-news-img" src="https://pics6.baidu.com/feed/9f2f070828381f3020c3adc4a32d7e006f06f0bd.jpeg?token=bc8c7e4715c02d0cef834dc5fdde0d14&amp;s=F6937B8B5E4246CC2C38ED52010080A0"/><div class="s-img-mask c-img-radius-right-l c-img-radius-left-s"></div></a></li></ul></div><div class="from c-font-normal"><a class="c-gap-right" href="https://author.baidu.com/home?app_id=1591194039445781&from=homepage_nickname" target="_blank" data-src="1" data-click="LOG_LINK"><span class="src-net c-color-gray">猫眼娱乐</span></a><span class="src-time c-color-gray2 c-gap-right">03-15 16:48</span><div class="dustbin" data-click="LOG_BTN_DUSTBIN"><i class="c-icon">&#xe610;</i></div></div></div> <div class="s-news-special s-news-item s-news-special-item-tpl-2 s-opacity-blank8 clearfix" data-url="https://mbd.baidu.com/newspage/data/landingsuper?context=%7B%22nid%22%3A%22news_10196819597045273144%22%7D&n_type=0&p_from=1" data-rid="10196819597045273144" data-relatewords="1" data-log="stype:0;picNum:2;title:移民潮冲击美国边境,佩洛西:都怪特朗普留下的烂摊子;pos:2;st:news;" data-extra="{&quot;rec_src&quot;:[4201],&quot;type&quot;:0,&quot;score&quot;:108682.5859375,&quot;mark&quot;:0,&quot;recall_type&quot;:1,&quot;vertical_type&quot;:5,&quot;mthid&quot;:&quot;1546608532556400&quot;,&quot;predictor_result&quot;:&quot;CAEZAABlZ6mI+kA5AABlZ6mI+kA=&quot;,&quot;q_ratio&quot;:1,&quot;recall_attention&quot;:[&quot;\u89c2\u5bdf\u8005\u7f51&quot;],&quot;img_num&quot;:2,&quot;sample_name&quot;:&quot;integration_news&quot;,&quot;predictor_extmsg&quot;:&quot;EhQZAAAAQJ\/Suz8gKzEAAABAn9K7PxoA&quot;,&quot;dnn_score_cp&quot;:0.10868258774281,&quot;th&quot;:-1,&quot;gr_layout&quot;:&quot;image1&quot;,&quot;session_id&quot;:&quot;&quot;,&quot;refresh_index&quot;:&quot;0&quot;,&quot;session_index&quot;:0,&quot;position&quot;:2,&quot;log_id&quot;:3446857958,&quot;refresh_state&quot;:0,&quot;refresh_type&quot;:1,&quot;refresh_timestamp_ms&quot;:1615801165364,&quot;news_attention&quot;:[&quot;\u89c2\u5bdf\u8005\u7f51&quot;,&quot;\u4f69\u6d1b\u897f&quot;,&quot;\u7279\u6717\u666e&quot;,&quot;\u7279\u6717\u666e\u73b0\u8c61&quot;,&quot;\u7279\u6717\u666e\u79fb\u6c11&quot;,&quot;\u7279\u6717\u666e\u603b\u7edf&quot;,&quot;\u79fb\u6c11&quot;],&quot;predictor_q_score&quot;:108682.58774281,&quot;is_microvideo&quot;:false,&quot;video_type&quot;:&quot;&quot;,&quot;channel_id&quot;:1,&quot;wifiinfo&quot;:&quot;&quot;,&quot;gr_step_click&quot;:-1,&quot;gr_step_related_click&quot;:0,&quot;attentionnum&quot;:153,&quot;video_attentionnum&quot;:0,&quot;gr_pred_score&quot;:0.082673198288524,&quot;gr_dnn_score&quot;:0.10868258774281,&quot;gr_calibration_q&quot;:0,&quot;gr_pred_dur&quot;:0,&quot;gr_news_sub_category_single&quot;:&quot;\u79fb\u6c11&quot;,&quot;ext_multi_score&quot;:0,&quot;predictor_result_array&quot;:[{&quot;rec_src&quot;:4201,&quot;predictorq&quot;:&quot;CAEZAABlZ6mI+kA5AABlZ6mI+kA=&quot;}],&quot;user_activity_v1&quot;:0.0011187717822663,&quot;loc_city&quot;:&quot;\u6210\u90fd&quot;,&quot;pass_through&quot;:&quot;{\&quot;cold_start\&quot;:0,\&quot;user_activity\&quot;:0.0011187717822662609,\&quot;user_activity_v1\&quot;:0.0011187717822662609,\&quot;user_stay_time\&quot;:0.0,\&quot;first_use_time\&quot;:0,\&quot;_new_xm_usr_20210122\&quot;:false,\&quot;user_long_all_ctr\&quot;:0.0,\&quot;user_long_news_ctr\&quot;:0.0,\&quot;user_long_video_ctr\&quot;:0.0,\&quot;user_baipai_always_prefer_video\&quot;:0,\&quot;user_long_prefer_resource\&quot;:-1,\&quot;baipai_user_lastrefresh_clicked\&quot;:0}&quot;,&quot;crudely_stat&quot;:&quot;|ri_0&quot;}"><div class="s-pic-content"><div class="s-pic-content-own"><ul class="s-news-content-imgs clearfix"><li class="item-img-wrap c-span4 c-span-last"><a class="c-img c-img-radius-large" href="https://mbd.baidu.com/newspage/data/landingsuper?context=%7B%22nid%22%3A%22news_10196819597045273144%22%7D&n_type=0&p_from=1" target="_blank" data-click="LOG_LINK" title="移民潮冲击美国边境,佩洛西:都怪特朗普留下的烂摊子" data-title="移民潮冲击美国边境,佩洛西:都怪特朗普留下的烂摊子"><img class="s-news-img" src="https://pics5.baidu.com/feed/d1160924ab18972bda71b83ff5c049819f510a94.jpeg?token=2825b40f8ace8e05084c66db14039fd7&amp;s=809010DD4413A07B48C048B70300E041"/><div class="s-img-mask c-img-radius-large"></div></a></li></ul></div></div><div class="s-block-container c-span8 c-span-last"><div class="s-text-content"><a class="s-news-item-title c-link c-font-big c-gap-bottom-small" href="https://mbd.baidu.com/newspage/data/landingsuper?context=%7B%22nid%22%3A%22news_10196819597045273144%22%7D&n_type=0&p_from=1" title="移民潮冲击美国边境,佩洛西:都怪特朗普留下的烂摊子" target="_blank" data-title="移民潮冲击美国边境,佩洛西:都怪特朗普留下的烂摊子" data-link="https://mbd.baidu.com/newspage/data/landingsuper?context=%7B%22nid%22%3A%22news_10196819597045273144%22%7D&n_type=0&p_from=1" data-click="LOG_LINK">移民潮冲击美国边境,佩洛西:都怪特朗普留下的烂摊子</a></div><div class="from c-font-normal"><a class="c-gap-right" href="https://author.baidu.com/home?app_id=1546608532556400&from=homepage_nickname" target="_blank" data-src="1" data-click="LOG_LINK"><span class="src-net c-color-gray">观察者网</span></a><span class="src-time c-color-gray2 c-gap-right">03-15 14:33</span><div class="dustbin" data-click="LOG_BTN_DUSTBIN"><i class="c-icon">&#xe610;</i></div></div></div></div> </div> <!-- htmlcs-enable --> </div> </div> <script id="s_js_news" data-src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/mantpl/js/news_new/index-94d11f9966.js?v=md5"> _manCard.asynLoad("s_js_news"); </script> </div> <div class="s-loading s-opacity-border4-top" style="display:none;border:none;"> <img src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/mantpl/img/base/loading_new-f4a658cef0.gif?v=md5"/> </div> </div></div><div class="s-more-bar c-color-gray2" style="visibility:hidden"><div class="rect"><div class="animate-arrow c-icon">&#xe615;</div></div></div><textarea id="s_menus_textarea" style="display:none;">{"data": [{"id": 1,"name": "导航","state": "1","ismenu": "1"},{"id": 2,"name": "推荐","state": "1","ismenu": "1"},{"id": 3,"name": "音乐","state": "1","ismenu": "1"},{"id": 100,"name": "我的关注","state": "1","ismenu": "0"},{"id": 20,"name": "","state": "1","ismenu": ""}],"isEnd": "0","illegal": ""}</textarea><div id="s_side_wrapper"><div id="s_qrcode_feed" class="qrcode-feed"><div class="qrcode-layer icon-mask-wrapper"><img class="icon" src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/mancard/img/side/[email protected]"/><img class="icon-hover" src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/mancard/img/side/[email protected]"/></div><div class="tooltip qrcode-tooltip"><div class="text"><div class="download-text c-font-big">扫码下载百度APP</div><div class="c-font-normal c-color-gray2">有事搜一搜&nbsp;&nbsp;没事看一看</div></div><img class="qrcode" src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/mancard/img/qrcode_download-02b84e1f66.png"/></div></div><div id="s_top_feed" class="top-feed" style="display:none;"><div class="to-top icon-mask-wrapper" data-tool="1"><img class="icon" src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/mancard/img/side/[email protected]"/><img class="icon-hover" src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/mancard/img/side/[email protected]"/></div><div class="tooltip totop-tooltip c-font-medium c-color-text">返回顶部</div></div></div></div> <script type="text/javascript">window._card_sync = 1;window._xman_speed && _xman_speed.imgLoadTime(2);</script></div><textarea id="s_sync_data" style="display:none;"></textarea></div><div id="bottom_layer" class="s-bottom-layer s-isindex-wrap"><div class="s-bottom-layer-content"><p class="lh"><a class="text-color" href="//www.baidu.com/cache/setindex/index.html" target="_blank">设为首页</a></p><p class="lh"><a class="text-color" href="//home.baidu.com" target="_blank">关于百度</a></p><p class="lh"><a class="text-color" href="http://ir.baidu.com" target="_blank">About Baidu</a></p><p class="lh"><a class="text-color" href="https://isite.baidu.com/site/e.baidu.com/d38e8023-2131-4904-adf7-a8d1108f51ef?refer=888" target="_blank">百度营销</a></p><p class="lh"><a class="text-color" href="//www.baidu.com/duty" target="_blank">使用百度前必读</a></p><p class="lh"><a class="text-color" href="//help.baidu.com/newadd?prod_id=1&category=4" target="_blank">意见反馈</a></p><p class="lh"><a class="text-color" href="//help.baidu.com" target="_blank">帮助中心</a></p><p class="lh"><a class="text-color" href="http://www.beian.gov.cn/portal/registerSystemInfo?recordcode=11000002000001" target="_blank">京公网安备11000002000001号</a></p><p class="lh"><a class="text-color" href="https://beian.miit.gov.cn" target="_blank">京ICP证030173号</a></p><p class="lh"><span class="text-color">&#169;2021&nbsp;Baidu&nbsp;</span></p><p class="lh"><span class="text-color">(京)-经营性-2017-0020</span></p></div></div><div id="bottom_space" class="s-bottom-space"></div><div class="s-newmusic s-isindex-wrap" id=s_mancard_newmusic style="display:none;"> <div class="p-panel clearfix" id=p_panel> <div class=p-main-wrapper> <div class="p-img js-p-img"><a class=cur-img target=_blank><img height=50px width=50px src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/newmusic/img/default_b91837ae.png"></a></div> <div class=p-main-area> <div class=p-main> <div class=p-music-info> <div class=p-chanel> <span class="p-chanel-btn js-change-sence"><span class=change-bg></span><span class="p-chanel-txt js-chanel-name"></span></span> </div> <div class=p-songinfo><div class=p-songinfo-scroll><span class=song-name></span><span class=sep>-</span><span class=song-artist></span></div></div> </div> <div class="control-btn clearfix" style="float:left;"> <div class="common-music-btn icon-pic p-prev-btn js-play-prev" title="上一首"></div> <div class="common-music-btn icon-pic p-status js-play-pause icon-play-pause icon-play-playing"></div> <div class="common-music-btn icon-pic p-next-btn js-play-next" title="下一首"></div> <div class="common-music-btn icon-pic p-switch-btn icon-play-mode-normal js-switch-mode" title="循环播放"></div> <div class="js-scroll-wrapper p-progress-wrapper"> <div class="p-progress js-scroll-root hide-icon"> <div class="past js-scroll-indicator"><span class="icon-pic progress-icon js-scroll-ctrl"></span></div> </div> </div> <div class=time-total>00:00</div> <div class="common-music-btn other-btn icon-pic p-collect-btn icon-song-collect js-song-collect" title="收藏"></div> <div class="common-music-btn other-btn icon-pic lrc-btn js-song-lrc" title="歌词"></div> <div class="p-volume-wrapper js-volume-hover clearfix"> <div class=p-volume-bg> <div class="p-volume-line js-volume-line"> <div class="p-volume js-scroll-root"> <div class="past js-scroll-indicator"><a class="icon-pic progress-icon js-scroll-ctrl" style="display:none;"></a></div> </div> </div> <div class="common-music-btn other-btn icon-pic p-volume-btn js-volume-onoff icon-volume-on" title="音量"></div> </div> </div> <div class="p-more-wrapper js-more-hover"> <div class=p-more-panel> <ul> <li class=js-delete-song> <div class="common-music-btn icon-pic p-delete-btn " title="删除"></div><span class=text>删除</span> <li class=js-song-share> <div class="common-music-btn icon-pic p-share-btn" title="分享"></div><span class=text>分享</span> <div class=share-panel-wrapper id=share_panel> <div class=share-body> <a href="###" target=_blank data-type=tsina class=share-icons-tsina></a> <a href="###" target=_blank data-type=tqq class=share-icons-tqq></a> <a href="###" target=_blank data-type=qzone class=share-icons-qzone></a> <a href="###" target=_blank data-type=sqq class=share-icons-sqq></a> <a href="###" target=_blank data-type=tieba class=share-icons-tieba></a> </div> <div class=triangle-right></div> </div> </ul> <div class=triangle-down></div> </div> <div class="common-music-btn other-btn icon-pic p-more-btn" title="更多"></div> </div> </div> <div class=p-close-bg></div> <div class="common-music-btn icon-pic p-close-btn js-player-close down" title="收起"></div> </div> </div> </div> <div class=bg-group> <div class=bg></div> <div class=bg-mask></div> <div class=bg-base></div> <div class=bg-ie></div> </div></div><div class=result-tips-wrapper><div class=result-tips-area><span class=icon-pic></span><p>歌曲加载失败</p></div></div> <div class="s-panel js-panel" id=s_panel> <div class=s-panel-bg></div> <div class=s-panel-wrapper> <div class="head clearfix"><p class=title>推荐电台(<span class=count>48</span>)</p><p class=mylike><a class=js-formy href="http://play.baidu.com/?__t=list_allfavor&from=bd_card" target=_blank>我的收藏 (<span class="like-count js-like-count"></span>)</a></p></div> <div class="s-list-wrapper clearfix slider-wrapper"> <div class="prev-page-btn control-left" title="上一页"><span class="icon-pic prev-page-icon"></span></div> <div class="next-page-btn control-right" title="下一页"><span class="icon-pic next-page-icon"></span></div> <div style="position:relative;overflow:hidden;width:100%;"> <div style="position:relative;left:0px;width:60000px;" class="clearfix mui-slider-scroll-container"> <ul class="s-list clearfix" data-index="0""> <li data-id="public_tuijian_suibiantingting" data-type="other" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/suibiantingting.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>随便听听</div> <li data-id="lovesongs" data-type="other" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/lovesong.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>红心频道</div> <li data-id="public_tuijian_chengmingqu" data-type="other" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss1.bdstatic.com/kvoZeXSm1A5BphGlnYG/newmusic/chengmingqu.png?v=md5"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>成名曲</div> <li data-id="public_shiguang_jingdianlaoge" data-type="other" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss1.bdstatic.com/kvoZeXSm1A5BphGlnYG/newmusic/jingdianlaoge.png?v=md5"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>经典老歌</div> <li data-id="public_tuijian_yingshi" data-type="other" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss1.bdstatic.com/kvoZeXSm1A5BphGlnYG/newmusic/yingshi.png?v=md5"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>影视</div> <li data-id="public_fengge_qingyinyue" data-type="other" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss1.bdstatic.com/kvoZeXSm1A5BphGlnYG/newmusic/qingyinyue.png?v=md5"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>轻音乐</div> <li data-id="public_xinqing_qingge" data-type="other" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss1.bdstatic.com/kvoZeXSm1A5BphGlnYG/newmusic/danshen.png?v=md5"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>单身情歌</div> <li data-id="156" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss1.bdstatic.com/kvoZeXSm1A5BphGlnYG/newmusic/wangluogequ.png?v=md5"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>网络歌曲</div> <li data-id="42" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/chinese.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>国语</div> </ul> <ul class="s-list clearfix" data-index="1""> <li data-id="71" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss1.bdstatic.com/kvoZeXSm1A5BphGlnYG/newmusic/2000nian.png?v=md5"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>2000年代</div> <li data-id="public_fengge_yaogun" data-type="other" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss1.bdstatic.com/kvoZeXSm1A5BphGlnYG/newmusic/yaogun.png?v=md5"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>摇滚</div> <li data-id="44" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/english.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>英文</div> <li data-id="public_tuijian_ktv" data-type="other" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss1.bdstatic.com/kvoZeXSm1A5BphGlnYG/newmusic/KTV.png?v=md5"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>KTV金曲</div> <li data-id="public_shiguang_90hou" data-type="other" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss1.bdstatic.com/kvoZeXSm1A5BphGlnYG/newmusic/90.png?v=md5"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>90后</div> <li data-id="public_fengge_zhongguofeng" data-type="other" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss1.bdstatic.com/kvoZeXSm1A5BphGlnYG/newmusic/zhongguofeng.png?v=md5"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>中国风</div> <li data-id="public_shiguang_80hou" data-type="other" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss1.bdstatic.com/kvoZeXSm1A5BphGlnYG/newmusic/80.png?v=md5"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>80后</div> <li data-id="public_fengge_xiaoqingxin" data-type="other" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss1.bdstatic.com/kvoZeXSm1A5BphGlnYG/newmusic/xiaoqingxin.png?v=md5"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>小清新</div> <li data-id="public_yuzhong_hanyu" data-type="other" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss1.bdstatic.com/kvoZeXSm1A5BphGlnYG/newmusic/hanyu.png?v=md5"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>韩语</div> </ul> <ul class="s-list clearfix" data-index="2""> <li data-id="public_fengge_dj" data-type="other" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss1.bdstatic.com/kvoZeXSm1A5BphGlnYG/newmusic/DJ.png?v=md5"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>DJ舞曲</div> <li data-id="10" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/single.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>独处</div> <li data-id="5" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/morining.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>清晨</div> <li data-id="40" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/relax.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>轻松时刻</div> <li data-id="15" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/afternoon.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>慵懒午后</div> <li data-id="33" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/newsong.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>新歌试听</div> <li data-id="38" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/happy.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>欢乐旋律</div> <li data-id="41" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/miss.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>思念</div> <li data-id="37" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/zhiyu.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>治愈系</div> </ul> <ul class="s-list clearfix" data-index="3""> <li data-id="81" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/slience.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>安静</div> <li data-id="36" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/sad.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>伤感</div> <li data-id="35" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/lonly.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>寂寞电波</div> <li data-id="43" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/yueyu.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>粤语</div> <li data-id="39" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/zuile.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>醉了</div> <li data-id="9" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/sleep.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>睡眠</div> <li data-id="16" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/study.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>学习</div> <li data-id="1" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/sport.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>运动</div> <li data-id="13" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/evening.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>傍晚</div> </ul> <ul class="s-list clearfix" data-index="4""> <li data-id="12" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/work.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>工作</div> <li data-id="48" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/pop.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>流行风</div> <li data-id="31" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/household.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>家务</div> <li data-id="23" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/coffee.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>咖啡时光</div> <li data-id="28" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/home.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>宅</div> <li data-id="2" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/party.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>聚会</div> <li data-id="29" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/net.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>上网</div> <li data-id="21" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/haichuang.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>赖床</div> <li data-id="20" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/wake.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>懒洋洋</div> </ul> <ul class="s-list clearfix" data-index="5""> <li data-id="34" data-type="" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/jidong.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>活力四射</div> <li data-id="26" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/son.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>亲子时光</div> <li data-id="30" data-type="default" class="s-item js-play-songlist"> <span class=sence-block-hover></span> <span href="javascript:void(0);" class=sence-block> <img width=70px height=70px data-src="https://dss0.bdstatic.com/k4oZeXSm1A5BphGlnYG/newmusic/yujia.png"> </span> <div class="icon-pic s-play-btn js-splay-btn"></div> <div class="icon-pic s-playing-wrapper"> </div> <div class=desc>瑜伽</div> </ul> </div> </div> </div> </div> <span class="icon-pic close-btn js-sence-close" title="关闭"></span></div> <div class=l-panel-wrapper id=lyc_panel> <div class=l-panel-bg></div> <div class=l-panel-area data-tid=7777> <div class=lyc-wrapper> <div class=l-panel id=s_mancard_newmusic_playingLrc></div> </div> <div class=l-header> <div class="icon-pic close-btn js-lyc-close" title="关闭"></div> </div> </div></div> <div class="p-sidebar js-player-open"> <div class=bar-bg data-tid=7778></div> <div class=bar-mask></div> <span class=bar-text>音乐</span> <span class=bar-playing style="display:none;"></span> </div> <link rel=stylesheet type=text/css href="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/newmusic/css/newmusic_min_1b1ebf56.css"> <script id=s_js_newmusic data-src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/newmusic/js/newmusic_min_c7fb6ae7.js"> _manCard.asynLoad("s_js_newmusic"); </script></div></div><div class="s_tab" id="s_tab"><div class="s_tab_inner"><b class="cur-tab">网页</b><a href="https://www.baidu.com/s?rtt=1&bsst=1&cl=2&tn=news" wdfield="word" sync="true" class="s-tab-item s-tab-news">资讯</a><a href="http://v.baidu.com/v?ct=301989888&rn=20&pn=0&db=0&s=25&ie=utf-8" wdfield="word" class="s-tab-item s-tab-video">视频</a><a href="http://image.baidu.com/i?tn=baiduimage&ps=1&ct=201326592&lm=-1&cl=2&nc=1&ie=utf-8" wdfield="word" class="s-tab-item s-tab-pic">图片</a><a href="http://zhidao.baidu.com/q?ct=17&pn=0&tn=ikaslist&rn=10&fr=wwwt" wdfield="word" class="s-tab-item s-tab-zhidao">知道</a><a href="http://wenku.baidu.com/search?lm=0&od=0&ie=utf-8" wdfield="word" class="s-tab-item s-tab-wenku">文库</a><a href="http://tieba.baidu.com/f?fr=wwwt" wdfield="kw" class="s-tab-item s-tab-tieba">贴吧</a><a href="https://map.baidu.com/?newmap=1&ie=utf-8&s=s" class="s-tab-item s-tab-map">地图</a><a href="https://b2b.baidu.com/s?fr=wwwt" wdfield="q" class="s-tab-item s-tab-b2b">采购</a><a href="http://www.baidu.com/more/" class="s-tab-item s-tab-more">更多</a></div></div><div id="wrapper_wrapper"></div> </div> <input type="hidden" id="bsToken" name="bsToken" value="23b55c7cf77905114cebbe27d30a7cfe" /> <script> var bds = { se: {}, su: { urdata:[], urSendClick: function(){}, urStatic:"https://dss1.bdstatic.com/5aV1bjqh_Q23odCf" }, util: {}, use: {}, comm: { domain:"", ubsurl:"", tn:"", queryEnc:"", queryId:"8859d2d000010c25", inter:"", sugHost:"", query:"", qid:"", cid:"", sid:"", stoken:"", serverTime:"", user:"ichigorukia123", username:"ichigorukia123", loginAction:[], useFavo:"", pinyin:"", favoOn:"", curResultNum:"0", rightResultExist:false, protectNum:0, zxlNum:0, pageNum:1, pageSize:10, ishome:1, newindex:1 } }; bds.comm.indexSid = "33344_31253_33689_33595_33570_26350_33266"; bds.comm.personalData = {"sugSet":{"value":"1","ErrMsg":"SUCCESS"},"sugStoreSet":{"value":"0","ErrMsg":"SUCCESS"},"fullSkinName":{"value":"super_883","ErrMsg":"SUCCESS"},"imeSwitch":{"value":"0","ErrMsg":"SUCCESS"},"resultNum":{"value":"10","ErrMsg":"SUCCESS"},"resultLang":{"value":"0","ErrMsg":"SUCCESS"},"isSwitch":{"value":"1","ErrMsg":"SUCCESS"},"skinOpen":{"value":"","ErrMsg":"NOFOUND"},"isJumpHttps":{"value":"1","ErrMsg":"SUCCESS"},"duRobotState":{"value":"","ErrMsg":"NOFOUND"}}; bds.comm.dpquery=""; var name,navigate,al_arr=[]; var selfOpen = window.open; eval("var open = selfOpen;"); var isIE = navigator.userAgent.indexOf("MSIE") != -1 && !window.opera; var E = bds.ecom = {}; bds.se.mon = { loadedItems: [], load: function() {}, srvt:-1 }; try { bds.se.mon.srvt = parseInt(document.cookie.match(new RegExp("(^| )BDSVRTM=([^;]*)(;|$)"))[2]); document.cookie = "BDSVRTM=;expires=Sat, 01 Jan 2000 00:00:00 GMT" } catch (e) {} var bdUser = bds.comm.user?bds.comm.user:null, bdQuery = bds.comm.query, bdUseFavo = bds.comm.useFavo, bdFavoOn = bds.comm.favoOn, bdCid = bds.comm.cid, bdSid = bds.comm.sid, bdServerTime = bds.comm.serverTime, bdQid = bds.comm.queryId, bdstoken = bds.comm.stoken, login_success = []; bds.comm.sampleval= []; bds.comm.newTopMenu = 1; bds.comm.newSearchBox = 1; bds.comm.newSearchbox = 1; bds.comm.sIndex = 1; bds.comm.pdc = 0; bds.comm.newNav = 0; bds.comm.popUpAdvert = false var s_domain={ "protocol":"https:", "staticUrl":"https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/", "base":"home", "baseuri":"/home", "passconf":"http://passport.baidu.com/ubrwsbas", "logout":"https://passport.baidu.com/?logout&u=", "bs":"https://www.baidu.com", "login":"http://passport.baidu.com/?login&tpl=super&u=", "sp":"http://hi.baidu.com/", "ssllist":{"su.bdimg.com":"dss0.bdstatic.com\/5a21bjqh_Q23odCf","1.ur.bdimg.com":"dss1.bdstatic.com\/k4oTfnSm1A5BphGlnYG","2.ur.bdimg.com":"dss2.bdstatic.com\/kvoTfnSm1A5BphGlnYG","3.ur.bdimg.com":"dss3.bdstatic.com\/kfoTfnSm1A5BphGlnYG","4.ur.bdimg.com":"dss0.bdstatic.com\/lPoTfnSm1A5BphGlnYG","5.ur.bdimg.com":"dss1.bdstatic.com\/l4oTfnSm1A5BphGlnYG","6.ur.bdimg.com":"dss2.bdstatic.com\/lvoTfnSm1A5BphGlnYG","7.ur.bdimg.com":"dss3.bdstatic.com\/lfoTfnSm1A5BphGlnYG","8.ur.bdimg.com":"dss0.bdstatic.com\/iPoTfnSm1A5BphGlnYG","dj0.baidu.com":"sp0.baidu.com\/-L-Wsjip0QIZ8tyhnq","dj1.baidu.com":"sp1.baidu.com\/-L-Xsjip0QIZ8tyhnq","dj2.baidu.com":"sp2.baidu.com\/-L-Ysjip0QIZ8tyhnq","eclick.baidu.com":"sp3.baidu.com\/-0U_dTmfKgQFm2e88IuM_a","a.hiphotos.baidu.com":"dss0.baidu.com\/94o3dSag_xI4khGko9WTAnF6hhy","b.hiphotos.baidu.com":"dss1.baidu.com\/9vo3dSag_xI4khGko9WTAnF6hhy","c.hiphotos.baidu.com":"dss3.baidu.com\/9fo3dSag_xI4khGko9WTAnF6hhy","d.hiphotos.baidu.com":"dss0.baidu.com\/-Po3dSag_xI4khGko9WTAnF6hhy","e.hiphotos.baidu.com":"dss1.baidu.com\/-4o3dSag_xI4khGko9WTAnF6hhy","f.hiphotos.baidu.com":"dss2.baidu.com\/-vo3dSag_xI4khGko9WTAnF6hhy","g.hiphotos.baidu.com":"dss3.baidu.com\/-fo3dSag_xI4khGko9WTAnF6hhy","h.hiphotos.baidu.com":"dss0.baidu.com\/7Po3dSag_xI4khGko9WTAnF6hhy","bdimg.share.baidu.com":"dss1.baidu.com\/9rA4cT8aBw9FktbgoI7O1ygwehsv","s.share.baidu.com":"sp0.baidu.com\/5foZdDe71MgCo2Kml5_Y_D3","s1.bdstatic.com":"dss1.bdstatic.com\/5eN1bjq8AAUYm2zgoY3K","p2.youxi.bdimg.com":"dss2.bdstatic.com\/5OZ1hTW64A63otebn9fN2DJv","youxi.baidu.com":"sp3.baidu.com\/y0kThD4a2gU2pMbgoY3K","fm.baidu.com":"dss3.baidu.com\/-rd1bjeh1BF3odCf","music.baidu.com":"dss2.baidu.com\/8_1ZdTna2gU2pMbgoY3K","f3.baidu.com":"sp2.baidu.com\/-uV1bjeh1BF3odCf","sclick.baidu.com":"sp0.baidu.com\/5bU_dTmfKgQFm2e88IuM_a","1.su.bdimg.com":"dss0.bdstatic.com\/k4oZeXSm1A5BphGlnYG","2.su.bdimg.com":"dss1.bdstatic.com\/kvoZeXSm1A5BphGlnYG","3.su.bdimg.com":"dss2.bdstatic.com\/kfoZeXSm1A5BphGlnYG","4.su.bdimg.com":"dss3.bdstatic.com\/lPoZeXSm1A5BphGlnYG","5.su.bdimg.com":"dss0.bdstatic.com\/l4oZeXSm1A5BphGlnYG","6.su.bdimg.com":"dss1.bdstatic.com\/lvoZeXSm1A5BphGlnYG","7.su.bdimg.com":"dss2.bdstatic.com\/lfoZeXSm1A5BphGlnYG","8.su.bdimg.com":"dss3.bdstatic.com\/iPoZeXSm1A5BphGlnYG","nssug.baidu.com":"sp1.baidu.com\/8qUZeT8a2gU2pMbgoY3K","up.photo.baidu.com":"sp0.baidu.com\/6_R1fD_bAAd3otqbppnN2DJv","suggestion.baidu.com":"sp0.baidu.com\/5a1Fazu8AA54nxGko9WTAnF6hhy","t10.baidu.com":"dss0.baidu.com\/6ONWsjip0QIZ8tyhnq","t11.baidu.com":"dss1.baidu.com\/6ONXsjip0QIZ8tyhnq","t12.baidu.com":"dss2.baidu.com\/6ONYsjip0QIZ8tyhnq","play.baidu.com":"dss3.baidu.com\/5LgHhXSm2Q5IlBGlnYG","olime.baidu.com":"sp0.baidu.com\/8bg4cTva2gU2pMbgoY3K","i.baidu.com":"sp0.baidu.com\/74oIbT3kAMgDnd_","c.baidu.com":"sp0.baidu.com\/9foIbT3kAMgDnd_","b1.baidu.com":"dss1.baidu.com\/9uN1bjeh1BF3odCf","nsclick.baidu.com":"sp1.baidu.com\/8qUJcD3n0sgCo2Kml5_Y_D3","b1.bdstatic.com":"dss0.bdstatic.com\/9uN1bjq8AAUYm2zgoY3K","i7.baidu.com":"dss0.baidu.com\/73F1bjeh1BF3odCf","i8.baidu.com":"dss0.baidu.com\/73x1bjeh1BF3odCf","i9.baidu.com":"dss0.baidu.com\/73t1bjeh1BF3odCf","ecma.bdimg.com":"dss1.bdstatic.com\/-0U0bXSm1A5BphGlnYG","tag.baidu.com":"sp1.baidu.com\/6LMFsjip0QIZ8tyhnq","hw.baidu.com":"sp0.baidu.com\/7KF1bjeh1BF3odCf","opendata.baidu.com":"sp0.baidu.com\/8aQDcjqpAAV3otqbppnN2DJv","open.baidu.com":"dss1.baidu.com\/8aQDcnSm2Q5IlBGlnYG","api.open.baidu.com":"sp0.baidu.com\/9_Q4sjW91Qh3otqbppnN2DJv","xiaodu.baidu.com":"sp0.baidu.com\/yLsHczq6KgQFm2e88IuM_a","s0.nuomi.bdimg.com":"dss1.bdstatic.com\/5eR1ciub_Q63otebn9fN2DJv","s1.nuomi.bdimg.com":"dss0.baidu.com\/5eN1ciub_Q63otebn9fN2DJv","s2.nuomi.bdimg.com":"dss2.bdstatic.com\/5eZ1ciub_Q63otebn9fN2DJv","vse.baidu.com":"sp3.baidu.com\/6qUDsjip0QIZ8tyhnq","himg.bdimg.com":"dss1.bdstatic.com\/7Ls0a8Sm1A5BphGlnYG","ss.bdimg.com":"dss1.bdstatic.com\/5aV1bjqh_Q23odCf","ecmb.bdimg.com":"dss0.bdstatic.com\/-0U0bnSm1A5BphGlnYG","e.su.bdimg.com":"dss0.bdstatic.com\/-4oZeXSm1A5BphGlnYG","sensearch.baidu.com":"sp1.baidu.com\/5b11fzupBgM18t7jm9iCKT-xh_","sestat.baidu.com":"sp1.baidu.com\/5b1ZeDe5KgQFm2e88IuM_a","cdn00.baidu-img.cn":"dss0.bdstatic.com\/9bA1vGba2gU2pMbfm9GUKT-w","cdn01.baidu-img.cn":"dss0.bdstatic.com\/9bA1vGfa2gU2pMbfm9GUKT-w"} }; var s_session={ "logId":"3446857958", "sessionId":"16158011653626", "rids":["10291215178515336380","10095670282616431000","10196819597045273144"], "seqId":"0x8859d2d000010c25", "debug":false, "portrait":"9e3869636869676f72756b69613132334520", "portraitSkin2nd":"9e3869636869676f72756b69613132334520", "userProp":{"sawVideoGuide":false,"navClean":true,"appOffline":true,"toResGuide":false,"editNavGuide":true,"backToIndexGuide":false,"customAddGuide":true,"customAddTipGuide":true,"resciteGuide":false,"resvideoGuide":false,"emptyNavGuide":false,"resreadGuide":true,"nplusGuide":true,"nplusToEditGuide":true,"nplusSortGuide":true,"nplusViewChoice":true,"nplusViewChoosed":false,"newResFuncGuide":true,"isNplus":false,"nplusExchangeGuide":false,"resGoodMusicGuide":true,"appendVideo":false,"resTiebaGuide":true,"isPhotoAlbum":false,"packRecGuide":true,"packAddMoreGuide":true,"searchAgroupGuide":false,"starSkinTips":false,"treasureTips":false}, "userTips":{"rpUpdateGuide":false,"rpUpdatePack":true,"ncrGuide":false,"hideIndexLink":true,"ipadLastAccess":true,"navRecommendGuide":true,"bdKuaiJieGuide":true,"tbEncourageGuide":false,"commTab":true,"currentWebTab":"myweb","rpShowNewNavGuide":true,"resFirstAddGuide":true,"navMywebTip":true,"blowBirthday":true,"packCloseGuide":true,"isNewVersion":true,"showFmSearchGuide":true,"tbEncourageEndGuide":true,"shopingBannerGuide":true,"shopingBirdGuide":true,"shopingBirdDailyGuide":true,"shopingDefaultGuide":false,"browserPluginGuide":false,"addFromPsGuide":false,"tiebaStarPkGuide":false,"isCustomDir":false,"customFirstGuide":false,"customSecondGuide":false,"customThirdGuide":false,"rpIndividualGuide":true,"rpIndividualContentGuide":true,"nplusClean":"1399813237","nplusCleanKey":true,"recommendGuide":"1367936540","addToBaiduSideGuide":true,"addToBaiduBannerGuide":true,"noManualNavsGuide":true,"msgVideoKey":false,"msgWeatherKey":true,"msgNbaKey":false,"msgLotteryKey":false,"msgStateKey":true,"msgModKey":true,"msgGuideKey":true,"msgFirstSeeKey":false,"msgHeadTipKey":true,"telephoneOpen":true,"telephoneNewYearGuide":true,"telephoneValentineGuide":true,"nplusViewNewThreshold":false,"emptyUserGuide":"8","emptyHotNavsAdded":true,"newUserHotGuide":"1","addLayerDelTip":false,"hotChangeTip":true,"autoClassifyGuide":false,"navClfTipAdd":false,"navClfTipEdit":false,"newWeatherUser":false,"newWeatherGuide":false,"navAddHighLightTip":false,"msgCslTipKey":true,"msgCslKey":false,"msgGuoanKey":false,"msgBCKey":false,"msgFocusKey":true,"msgLocalKey":true,"footStateKey":false,"msgSetTipKey":true,"tiebaLikeGuide":false,"msgAddFocusKey":true,"navNoClickClean":false,"emptyUserFirTime":false,"msgSnsTipKey":true,"topModKey":true,"msgGameKey":false,"msgGameCtrlKey":false,"skinGuide":true,"skinLogoGuide":true,"skinLogoBackGuide":true,"skinChangeToFes":false,"msgModuleTip":true,"skinUpdateGuide":true,"bxUrFirst":true,"treasureUserGuide":false,"skinLogoHasSkined":true,"msgWeiboRebindKey":false,"skinAjustGuide":true,"newsGuideTip":true,"isNavUsed":false,"navUsedTip":"1386947073","navUsedUpdateTip":"1394541170","navUsedDelTip":true,"skinNewPicGuide":"3","newsIdioTip":true,"msgTagKey":true,"news2GuideTip":false,"weatherSetPolution":true,"weatherShowBear":true,"skinGuideShowType":"A","skinLayerType":"A","newsHalfVersion":false,"skinSingleColorTip":true,"definedGuideShowType":false,"skinBgAddTip":true,"travelBigGuide":false,"travelInsideGuide":true,"travelCutDownGuide":false,"isXman":true,"weatherShowWarning":true,"showAllTab":false,"nusedExtendTip":true,"firstDelAddedTip":true,"recNavTip":false,"nbaCardTip":true,"tripEntranceTip":true,"groupbuyCardTip":true,"xingzuoCardTip":true,"isLite":"null","commonNavClean":true,"soccerCardTip":true,"lotteryCardTip":false,"pageTutorialTip":false,"zeroOpacityGuide":true,"hasWeatherMod":true,"weatherTipGuide":true,"stockCardTip":true,"navResortTip":false,"mouseScrollGuide":true,"conRecommendTip":true,"conRecommendGuide":false,"treasureAlert":false,"huaGuide":false,"huaHasChance":true,"huaNewSkin":false,"huaShowNum":true,"gameCardTip":false,"rcmdCardUserType":"0","rcmdCardHasData":false,"conNavTip":true,"conNavNewTip":true,"conNavCardTip":true,"navInproduct":false,"groupbuyTipShowFlag":false,"treasureRemind":true,"treakillAlert":false,"isReqSkinLottery":false,"starSkinLottery":true,"treaGroupbuy":false,"lastAddCardTime":"1615795173","treasureTips":true,"starSkinTips":false,"navNsTipsStatus":"0","conNSNavTip":true,"conNSNavCardTip":true,"asiaCupTabTip":false,"settingDragTips":false,"firstMahattan":false,"isNewTabSearch":false,"goddessLottery":true,"mineNavTips":false,"supermanGuide":false,"navQuanyiTip":true,"neverShowSkinTip":true,"delrecLayer":"2","isFirstUseGameSkin":true,"randomSkin":false,"supermanNavGuide":false,"treaAB":false}, "userAttr":Number("")|| 0, "username":"ichigorukia123", "unametype":"2", "userIsSkined":"off", "userIsNewSkined":"on", "userSkinName":"883", "userSkinOpacity":"70", "userSkinUrl":"", "userSkinLogo":"logo_white", "userSkinDefined":"off", "userLogoSrc":"\/\/www.baidu.com\/img\/PCfb_5bf082d29588c07f842ccde3f97243ea.png", "userLogoSrcRe":"\/\/www.baidu.com\/img\/PCfb_5bf082d29588c07f842ccde3f97243ea.png", "userLogoIsFestival":"1", "userLogoIsupload":"", "usertype":"0", "curmod": "2", "firstmod":"", "userFirst":"", "logoCode":false, "isFesLogo":true, "isHaveWrodLink":false, "userNavEmpty":"", "bgUNE":"", "isEmptyRpRec":"", "userBirthday":"", "yuce":"", "sid":"33344_31253_33689_33595_33570_26350_33266", "mSid":"", "sample_value":"", "strategy_hit":"0", "issync":"", "isdev":"", "isUsedNav":"", "isRewardBox":"", "isNewMsg":"", "load_module":{"type":["weather"],"weatherID":''}, "modules":["0"], "modules_load":["0"], "isLiteVersion":"0", "crids":"", "audioModernizr":false, "isLogin":true }; window._sp_async = 1; window.__async_strategy=2; </script> <script type="text/javascript" src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/js/lib/jquery-1-edb203c114.10.2.js"></script> <script type="text/javascript" src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/js/lib/esl-ef22c5ed31.js"></script> <script type="text/javascript">bds.util.domain=function(){var list=$.extend({},s_domain.ssllist);$.each(list,function(i,e){if(list[i].indexOf("https://")<0){list[i]="https://"+list[i]}});var get=function(url){if(s_domain.protocol=="http:"){return url}var reg=/^(http[s]?:\/\/)?([^\/]+)(.*)/,matches=url.match(reg);url=list.hasOwnProperty(matches[2])&&list[matches[2]]+matches[3]||url;return url},set=function(kdomain,vdomain){list[kdomain]=vdomain};return{get:get,set:set}}();bds.comm.sugHost=bds.util.domain.get( "http://suggestion.baidu.com/su");</script> <script type="text/javascript">define("modules/monitor/log-send",["require","exports"],function(e,t){"use strict";function o(e){if(!e)return!1;var t=document.cookie.indexOf("webbtest=1")>-1;return t||Math.random()<e}function i(e){if(!e.group||!o(n.sample[e.group]))return"";var t=n.logServer+"?pid="+n.pid+"&lid="+bds.comm.qid+"&ts="+Date.now()+"&type=except&group="+e.group+"&info="+encodeURIComponent(JSON.stringify(e.info))+"&dim="+encodeURIComponent(JSON.stringify(e.dim||{})),i=new Image;return i.src=t,t}t.__esModule=!0,t.send=void 0;var n={pid:"1_87",sample:{jserror:.02},logServer:"https://sp1.baidu.com/5b1ZeDe5KgQFm2e88IuM_a/mwb2.gif"};t.send=i}),define("modules/monitor/js-except",["require","exports","./log-send"],function(e,t,o){"use strict";function i(e,t){if(t.indexOf("chrome-extension://")>-1||t.indexOf("moz-extension://")>-1)return!1;var o=e.toLowerCase();return"script error."===o||"script error"===o?!1:!0}function n(e,t){try{var n={info:{},dim:{},group:""},s=n.info,r=e.target||e.srcElement,a=navigator.connection||{};if(s.downlink=a.downlink,s.effectiveType=a.effectiveType,s.rtt=a.rtt,s.deviceMemory=navigator.deviceMemory||0,s.hardwareConcurrency=navigator.hardwareConcurrency||0,r!==window&&"onerror"!==t)return;var c=e.error||{},m=c.stack||"";e.message&&i(e.message,m)&&(n.group="jserror",s.msg=e.message,s.file=e.filename,s.ln=e.lineno,s.col=e.colno,s.stack=m.split("\n").slice(0,3).join("\n"),o.send(n))}catch(p){console.error(p)}}function s(){var e,t=!1,o=navigator.userAgent.toLowerCase(),i=o.match(/msie ([0-9]+)/);if(i&&i[1]){if(e=parseInt(i[1],10),7>=e)return;9>=e&&(t=!0)}t?window.onerror=function(e,t,o,i){n({message:e,filename:t,lineno:o,colno:i},"onerror")}:window.addEventListener&&window.addEventListener("error",n,!0)}t.__esModule=!0,t.listenerExcept=void 0,t.listenerExcept=s});var Cookie={set:function(e,t,o,i,n,s){document.cookie=e+"="+(s?t:escape(t))+(n?"; expires="+n.toGMTString():"")+(i?"; path="+i:"; path=/")+(o?"; domain="+o:"")},get:function(e,t){var o=document.cookie.match(new RegExp("(^| )"+e+"=([^;]*)(;|$)"));return null!=o?unescape(o[2]):t},clear:function(e,t,o){this.get(e)&&(document.cookie=e+"="+(t?"; path="+t:"; path=/")+(o?"; domain="+o:"")+";expires=Fri, 02-Jan-1970 00:00:00 GMT")}};!function(){function save(e){var t=[];for(tmpName in options)options.hasOwnProperty(tmpName)&&"duRobotState"!==tmpName&&t.push('"'+tmpName+'":"'+options[tmpName]+'"');var o="{"+t.join(",")+"}";bds.comm.personalData?$.ajax({url:"//www.baidu.com/ups/submit/addtips/?product=ps&tips="+encodeURIComponent(o)+"&_r="+(new Date).getTime(),success:function(){writeCookie(),"function"==typeof e&&e()}}):(writeCookie(),"function"==typeof e&&setTimeout(e,0))}function set(e,t){options[e]=t}function get(e){return options[e]}function writeCookie(){if(options.hasOwnProperty("sugSet")){var e="0"==options.sugSet?"0":"3";clearCookie("sug"),Cookie.set("sug",e,document.domain,"/",expire30y)}if(options.hasOwnProperty("sugStoreSet")){var e=0==options.sugStoreSet?"0":"1";clearCookie("sugstore"),Cookie.set("sugstore",e,document.domain,"/",expire30y)}if(options.hasOwnProperty("isSwitch")){var t={0:"2",1:"0",2:"1"},e=t[options.isSwitch];clearCookie("ORIGIN"),Cookie.set("ORIGIN",e,document.domain,"/",expire30y)}if(options.hasOwnProperty("imeSwitch")){var e=options.imeSwitch;clearCookie("bdime"),Cookie.set("bdime",e,document.domain,"/",expire30y)}}function writeBAIDUID(){var e,t,o,i=Cookie.get("BAIDUID");/FG=(\d+)/.test(i)&&(t=RegExp.$1),/SL=(\d+)/.test(i)&&(o=RegExp.$1),/NR=(\d+)/.test(i)&&(e=RegExp.$1),options.hasOwnProperty("resultNum")&&(e=options.resultNum),options.hasOwnProperty("resultLang")&&(o=options.resultLang),Cookie.set("BAIDUID",i.replace(/:.*$/,"")+("undefined"!=typeof o?":SL="+o:"")+("undefined"!=typeof e?":NR="+e:"")+("undefined"!=typeof t?":FG="+t:""),".baidu.com","/",expire30y,!0)}function clearCookie(e){Cookie.clear(e,"/"),Cookie.clear(e,"/",document.domain),Cookie.clear(e,"/","."+document.domain),Cookie.clear(e,"/",".baidu.com")}function reset(e){options=defaultOptions,save(e)}var defaultOptions={sugSet:1,sugStoreSet:1,isSwitch:1,isJumpHttps:1,imeSwitch:0,resultNum:10,skinOpen:1,resultLang:0,duRobotState:"000"},options={},tmpName,expire30y=new Date;expire30y.setTime(expire30y.getTime()+94608e7);try{if(bds&&bds.comm&&bds.comm.personalData){if("string"==typeof bds.comm.personalData&&(bds.comm.personalData=eval("("+bds.comm.personalData+")")),!bds.comm.personalData)return;for(tmpName in bds.comm.personalData)defaultOptions.hasOwnProperty(tmpName)&&bds.comm.personalData.hasOwnProperty(tmpName)&&"SUCCESS"==bds.comm.personalData[tmpName].ErrMsg&&(options[tmpName]=bds.comm.personalData[tmpName].value)}try{parseInt(options.resultNum)||delete options.resultNum,parseInt(options.resultLang)||"0"==options.resultLang||delete options.resultLang}catch(e){}writeCookie(),"sugSet"in options||(options.sugSet=3!=Cookie.get("sug",3)?0:1),"sugStoreSet"in options||(options.sugStoreSet=Cookie.get("sugstore",0));var BAIDUID=Cookie.get("BAIDUID");"resultNum"in options||(options.resultNum=/NR=(\d+)/.test(BAIDUID)&&RegExp.$1?parseInt(RegExp.$1):10),"resultLang"in options||(options.resultLang=/SL=(\d+)/.test(BAIDUID)&&RegExp.$1?parseInt(RegExp.$1):0),"isSwitch"in options||(options.isSwitch=2==Cookie.get("ORIGIN",0)?0:1==Cookie.get("ORIGIN",0)?2:1),"imeSwitch"in options||(options.imeSwitch=Cookie.get("bdime",0))}catch(e){}window.UPS={writeBAIDUID:writeBAIDUID,reset:reset,get:get,set:set,save:save}}(),function(){require(["modules/monitor/js-except"],function(e){e.listenerExcept()});var e="https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/plugins/every_cookie_4644b13.js";("Mac68K"==navigator.platform||"MacPPC"==navigator.platform||"Macintosh"==navigator.platform||"MacIntel"==navigator.platform)&&(e="https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/plugins/every_cookie_mac_82990d4.js"),setTimeout(function(){$.ajax({url:e,cache:!0,dataType:"script"})},0);var t=navigator&&navigator.userAgent?navigator.userAgent:"",o=document&&document.cookie?document.cookie:"",i=!!(t.match(/(msie [2-8])/i)||t.match(/windows.*safari/i)&&!t.match(/chrome/i)||t.match(/(linux.*firefox)/i)||t.match(/Chrome\/29/i)||t.match(/mac os x.*firefox/i)||o.match(/\bISSW=1/)||0==UPS.get("isSwitch"));bds&&bds.comm&&(bds.comm.supportis=!i,bds.comm.isui=!0),window.__restart_confirm_timeout=!0,window.__confirm_timeout=8e3,window.__disable_is_guide=!0,window.__disable_swap_to_empty=!0,window.__switch_add_mask=!0;var n="https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/bundles/polyfill_9354efa.js",s="https://ss1.bdstatic.com/5eN1bjq8AAUYm2zgoY3K/r/www/cache/static/protocol/https/global/js/all_async_search_78252fa.js",r="/script";document.write("<script src='"+n+"'><"+r+">"),document.write("<script src='"+s+"'><"+r+">"),bds.comm.newindex&&$(window).on("index_off",function(){$('<div class="c-tips-container" id="c-tips-container"></div>').insertAfter("#wrapper"),window.__sample_dynamic_tab&&$("#s_tab").remove()}),bds.comm&&bds.comm.ishome&&Cookie.get("H_PS_PSSID")&&(bds.comm.indexSid=Cookie.get("H_PS_PSSID"));var a=$(document).find("#s_tab").find("a");a&&a.length>0&&a.each(function(e,t){t.innerHTML&&t.innerHTML.match(/新闻/)&&(t.innerHTML="资讯",t.href="//www.baidu.com/s?rtt=1&bsst=1&cl=2&tn=news&word=",t.setAttribute("sync",!0))})}();</script> <script> if(bds.comm.supportis){ window.__restart_confirm_timeout=true; window.__confirm_timeout=8000; window.__disable_is_guide=true; window.__disable_swap_to_empty=true; } if(typeof initPreload == "function"){ initPreload({ 'isui':true, 'index_form':"#form", 'index_kw':"#kw", 'result_form':"#form", 'result_kw':"#kw", 'isui':true }); } else{ window._sp_async = undefined; new Image().src = "/home/page/data/pageserver?errno=7004&from=superman&_t" + new Date() * 1; } </script> <script type="text/javascript">(function(){var index_head_css=$("#style_super_head_inline");var index_is_css=$("#s_is_index_css");window.index_links=[];var head_index_css=$("head [index]");window.index_on=function(){s_session.index_off=false};window.index_off=function(){s_session.index_off=true;bds.comm.sIndex=0;$(document.body).attr("link","#0000cc");index_links=[];$("head").find("link").each(function(){if($(this).attr("data-for")!=="result"){index_links.push(this);$(this).remove()}});index_is_css.remove() ;index_head_css.remove();$("#head_wrapper").css("width","");$("#kw").css("font-family","");$("head").append($.decodeHTML($("#s_index_off_css").html()));$("head").append($.decodeHTML($("#s_is_result_css").html()));$(".s-tips-skin").remove();$(".s-skin-container").remove();$("#s_mancard_newmusic").remove();head_index_css.remove();$("#s-hotsearch-wrapper").remove();$("#s_side_wrapper").remove();$("#blind-box").remove();$("#s_popup_advert").remove()}})();</script> <script data-for="esl-config">(function(){var amd={keys:{},addPaths:function(opt){if(typeof opt!=="object"){return}for(var key in opt){if(opt.hasOwnProperty(key)){opt[key]=opt[key].replace(/(\.js)/,"")}}require.config({paths:opt});$.extend(amd.keys,opt)},addConfig:function(config){if(typeof config!=="object"){return}require.config(config);for(var item in config){if(config.hasOwnProperty(item)){if(!amd[item]){amd[item]={}}for(var key in config[item]){if(config[item].hasOwnProperty(key)&&config[item][key]){ amd[item][key]=config[item][key]}}}}}};s_domain.amd=amd;var staticUrl=s_domain.staticUrl+"static/superman/";amd.addPaths({"@baidu/video-meeting":staticUrl+"amd_modules/@baidu/video-meeting-f4677451d6.js","superman/components/video-meet":staticUrl+"js/components/video-meet-0a47672cbd.js",tslib:staticUrl+"amd_modules/tslib-c95383af0c.js","superman/components/guide_tips":staticUrl+"js/components/guide_tips-f3005ad909.js", "superman/components/bbox/bbox_view":staticUrl+"js/components/bbox/bbox-view-322dff347c.js"})})();</script> <!--[if lt IE 9]> <script type="text/javascript" src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/js/polyfill-ie8-30f98ab294.js"></script> <![endif]--> <script type="text/javascript" src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/js/sbase-0948aa26f1.js"></script> <style type="text/css">.sui-scrollbar-container{position:relative;overflow:hidden}.sui-scrollbar-bar{border-left:1px solid #E1E1E1;border-right:1px solid #E3E3E3;border-top:1px solid #E3E3E3;border-bottom:1px solid #E3E3E3;background:#E3E3E3;width:7px;position:absolute;top:0;right:0;height:100%;cursor:pointer}.sui-scrollbar-slider{border:1px solid #E1E1E1;background:#fff;width:100%;left:-1px;position:absolute;cursor:pointer}</style><script type="text/javascript">F._setMod("superui");F._fileMap({"/js/ubase_5a7b0933.js":["superui","util/tool","util/emitter","util/dot","util/smDot","component","component/draggable","component/scrollbar","component/dialog","component/tips","component/share","component/share2","component/notify","component/suggestion","component/placeholder"],"/js/ubase_unused_addca7b6.js":["component/draggsort","component/draggselect","component/draggdirs"],"/css/ubase_9376fdcf.css":["superui.css","dialog.css","tips.css","share.css","scrollbar.css","suggestion.css"],"/css/ubase_sync_ac0620ef.css":["scrollbar_sync.css"],"/js/utils_65f6f1b7.js":["util/pubsub"]});</script><script>F._setMod("superman");F._fileMap({"/js/sbase-0948aa26f1.js":["lib/event.ts","plugin/browser","plugin/strpx","plugin/url","plugin/ajax","plugin/load_file","plugin/string","plugin/stringify","plugin/localstorage","plugin/fn","plugin/easing","plugin/mousewheel","plugin/cookie","lib/base","lib/sbase","lib/class","lib/mod_evt","lib/log","lib/thunder","lib/utils.js","common/user_attr","common/select","common/bottom_layer"],"js/polyfill-ie8-30f98ab294.js":["polyfill/object-define-property", "polyfill/object-keys"],"/js/min_super-e0af2b7705.js":["common/result_page","common/image_lazy_load","log/webb.min","log/super_all","lib/carditem_log","ps/log","ps/sindex","ps/sug","ps/fpid","start/super_start","page/info","page/scroll"],"/js/super_ext-5de6ed6474.js":["plugin/mousewheel","weather/setting_refresh","weather/setting_ctrl","weather/setting_view","weather/weather_city"],"/js/super_load-f911f99123.js":["weather/weather_tpl","weather/weather_ctrl","weather/weather_autorefresh", "start/skin_start","skin/skin_rewrite","mngr/top_layer","mngr/menu_user","mngr/menu_common","mngr/quit_dialog","mngr/top_menunav_new","common/guide_tip","page/page_exp"],"/js/skin_layer-8c8751990d.js":["skin/skin_init_new","skin/skin_cut_img","skin/skin_model","skin/skin_nav","skin/skin_page","skin/skin_tools","skin/skin_img","skin/skin_control_new","skin/skin_view","skin/skin_new_upload","skin/skin_setting","skin/skin_preview","skin/skin_defined","skin/skin_opacity","skin/skin_ajax", "skin/skin_extra","skin/skin_random"],"/js/opacity_mod-57b92b76b5.js":["opacity/opacity_tpl","opacity/opacity_action","opacity/opacity_conf"],"/js/min_setting-c3f73c1e26.js":["setting/setting_constructor","setting/mod_drag","setting/setting_action"],"/js/page_setting-88d3fe3a98.js":["log/super_all","setting/page_setting","setting/tab_msg","start/page_setting_start","common/pop","setting/yaohao","msg/const","setting/data_adapter","msg/bind","msg/bind_window","setting/common_setting"], "/js/s_super_index-855fcfd82e.js":["ps/autohover_input","page/ua_monitor"],"/js/min_mt-3df544d11c.js":["msg/const","msg/data_server","msg/data_adapter"],"/js/mt_ext-4eee81afe1.js":["msg/index_nav_msg_extend","msg/msg_builder","msg/bind","msg/bind_window"],"/js/min_notice-816c20c940.js":["mt/mt_show","mt/mt_msg_constructor"],"/js/notice_ext-0bfec0da78.js":["mt/mt_ext","mt/mt_msg_item","mt/mt_msg_operate"],"/js/ps/ishttps-8b74cccb13.js":["ps/ishttps"],"/js/ps/async-destroy-f0bcd7cda7.js":[ "ps/async-destroy"],"/js/lib/exception-13bf584742.js":["lib/exception"],"/js/lib/jquery-1-edb203c114.10.2.js":["lib/jquery-1.10.2"],"/js/lib/esl-ef22c5ed31.js":["lib/esl"],"/js/ps/yc-4c3e9b9cb3.js":["ps/yc"],"/js/components/hotsearch-2a7ea8a5a8.js":["components/hotsearch"],"/js/components/qrcode-7c53a95a4e.js":["components/qrcode"],"/js/components/advert-957191b9be.js":["components/advert"],"/js/components/nav-c3fe815932.js":["components/nav"],"/js/components/tips-e2ceadd14d.js":[ "components/tips"],"/js/components/guide-8759cd328f.js":["components/guide"],"/js/components/bbox/bbox-view-322dff347c.js":["components/bbox/bbox_view.ts","components/bbox/bbox_animate.ts"],"/js/components/guide_tips-f3005ad909.js":["components/guide_tips.ts"],"/js/components/video-meet-0a47672cbd.js":["components/video-meet.ts"],"/amd_modules/@baidu/video-meeting-f4677451d6.js":["@baidu/video-meeting/dist/index","@baidu/video-meeting"],"/amd_modules/tslib-c95383af0c.js":["tslib","./tslib/tslib" ],"/css/super_ext-36b360db2f.css":["mngr_quit_guid.css"],"/css/components/user_quit_dialog-527f3ede74.css":["components/user_quit_dialog.css"],"/css/super_min-fe4f97903e.css":["super_init.css","skin.css","super_skin.css","select.css","index_guide.css"],"/css/skin/skin_layer-6dcfdc6170.css":["skin/skin_layer.css"],"/css/guidetip-b41ed60c8a.css":["guide.css"],"/css/nsguide-a66438b784.css":["ns_guide.css"],"/css/setting_min-4dae12391e.css":["setting.css"],"/css/card_setting-673b2943c1.css":[ "card_setting.css"],"/css/page_setting-da9f239ab9.css":["super_setting.css","select.css","setting_msg.css","setting_yaohao.css","pop.css","dialog.css"],"/css/mt_min-88763bc1c9.css":["mt_mod.css","index_msg.css"],"/css/pages/index-73ac294d4e.css":["pages/index.css","components/qrcode_new.css"],"/css/pages/index_result-6cd495e677.css":["pages/index_result.css"],"/css/pages/result-7014ae574c.css":["pages/result.css"],"/css/pages/ps-b9cff98254.css":["pages/ps.css","grid/grid.css"], "/css/weather/weather_new-5585ee28ba.css":["weather/weather_new.css","weather/weather_setting_new.css"],"/css/pages/common-29b6dddbc1.css":["components/head_wrapper_new.css","s_top_wrap_new.css","components/topmenu_new.css","bottom_layer.css","components/blind_box.css","popup_advert.css","components/guide_info.css"],"/css/components/hotsearch-edb10b7749.css":["components/hotsearch.css"],"/css/components/nav-c468ec637c.css":["components/nav.css"]});window._xman_speed=window._xman_speed||{} ;F._setContext({base:"lib/sbase"});F.use("lib/mod_evt",function(evt){F._setContextMethod("fire",function(evtName,evtArgs){return evt.fire(this.svnMod+":"+this.modName,evtName,evtArgs)});F._setContextMethod("listen",function(modName,evtName,handler){var mType=Object.prototype.toString.call(modName);if(mType=="[object String]"){if(modName.indexOf(":")<0){modName=this.svnMod+":"+modName}}else if(mType=="[object Array]"){for(var i=0,len=modName.length;i<len;i++){if(modName[i].indexOf(":")<0){ modName[i]=this.svnMod+":"+modName[i]}}}evt.on(modName,evtName,handler)});F._setContextMethod("unListen",function(modName,evtName,handler){evt.un(this.svnMod+":"+this.modName,evtName,handler)})});F._loadScriptTimeout=15e3;F._useConfig=true;F._firstScreenCSS=F._firstScreenCSS||[];F._firstScreenCSS.push("/css/super_min-fe4f97903e.css");F._firstScreenJS=F._firstScreenJS||[];F._firstScreenJS.push("/js/min_super-e0af2b7705.js");</script> <script> $(window).on("load", function() { var e = $('#virus-2020'); e.click(function() { $.setCookie('virus-2020-clicked', '1'); e.removeClass('dot'); }); var hasClicked = $.getCookie && $.getCookie('virus-2020-clicked'); if (!hasClicked) { e.addClass('dot'); } }); </script> <script>(function(){var staticUrl=s_domain.staticUrl+"static/mancard/"})();</script> <script>F._setMod("mancard");F._fileMap({"/js/mancard-10edf2de21.js":["skeleton/card","skeleton/model","skeleton/card_collection","skeleton/card_showLog","skeleton/card_alsLog","skeleton/presenter","skeleton/card_tab","setting/card_setting","subscribe/parabola","subscribe/subscribe"],"/js/subscribe-a79648b40d.js":["subscribe/subscribe"],"/css/card_min-3a8869cb98.css":["card_setting.css","card_menu.css","card_side.css"],"/css/card_min2-208810b82b.css":["card_menu2.css","card_side2.css"]}) ;F._useConfig=true;</script> <script id="s_js_mancard_main" data-src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/mancard/js/mancard-10edf2de21.js"> _manCard.asynLoad("s_js_mancard_main"); </script> <script id="s_js_mancard_subscribe" data-src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/mancard/js/subscribe-a79648b40d.js"> _manCard.asynLoad("s_js_mancard_subscribe"); </script> <script type="text/javascript" src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/js/min_super-e0af2b7705.js"></script> <script> (function(){ var skinOff = "\/\/www.baidu.com\/img\/PCtm_d9c8750bed0b3c7d089fa7d55720d6cf.png", skinOffRe = "\/\/www.baidu.com\/img\/PCtm_d9c8750bed0b3c7d089fa7d55720d6cf.png", skinOn = "\/\/www.baidu.com\/img\/PCfb_5bf082d29588c07f842ccde3f97243ea.png", skinOnRe = "\/\/www.baidu.com\/img\/PCfb_5bf082d29588c07f842ccde3f97243ea.png", userSetLogoWrite = "https:\/\/dss0.bdstatic.com\/5aV1bjqh_Q23odCf\/static\/superman\/img\/logo\/logo_white-d0c9fe2af5.png", userSetLogoRed = "https:\/\/dss0.bdstatic.com\/5aV1bjqh_Q23odCf\/static\/superman\/img\/logo\/logo_redBlue-0a7c20fcaa.png"; if(!skinOn) { skinOn = skinOff; skinOnRe = skinOffRe; } var change = function(src, newsrc){ if ($('#s_lg_img').attr('src')!=src){ $('#s_lg_img').attr('src',src); $('#s_lg_img_new').attr('src',newsrc); } } if (s_session.userSkinName==""){change(skinOff, skinOffRe);} $(window).on('s-skinoff',function(){change(skinOff,skinOffRe);}); $(window).on('s-skinon',function(){ var LogoColor = $("#head"); if(LogoColor.hasClass('red-blue-logo')) { if (s_session.logoCode) { change(skinOn,skinOnRe); }else { change(userSetLogoRed, userSetLogoRed); } }else if(LogoColor.hasClass('white-logo')){ if(!s_session.userLogoIsupload || s_session.logoCode) { change(skinOn,skinOnRe); }else { change(userSetLogoWrite,userSetLogoWrite); } }else { change(skinOff,skinOffRe); } }); })() </script> <script type="text/javascript" id="s_js_setting" data-src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/superman/js/min_setting-c3f73c1e26.js"></script> <script id=tipsplus-js data-src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/tipsplus/js/min_tips_f870f501.js"></script><script data-onload=true data-src="https://dss0.bdstatic.com/5aV1bjqh_Q23odCf/static/activity/js/activity_start_31d46e4f.js"></script> <script> setTimeout(function(){if(document.getElementById("s_main").offsetWidth==0 && typeof(F)=='undefined'){new Image().src=s_domain.baseuri+'/page/data/pageserver?errno=2015&msg=cdn_failed'}},2000); if(typeof ns_c == "undefined"){var ns_c=function(){}} </script> <script defer src="//hectorstatic.baidu.com/cd37ed75a9387c5b.js"></script> </body> </html> """ # 使用soup对象解析 soup = BeautifulSoup(html_doc, features= 'lxml') print(soup)
python
# Generated by Django 3.0.7 on 2020-06-30 17:03 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('portfolio', '0005_auto_20200630_1658'), ] operations = [ migrations.AddField( model_name='collection', name='spotlight', field=models.BooleanField(default=True), preserve_default=False, ), ]
python
from tool.runners.python import SubmissionPy class DivSubmission(SubmissionPy): def match(self, x): s = str(x) n = len(s) if n != 6: return False # always increasing (or equal) for i in range(n-1): if s[i] > s[i+1]: return False # should have two identical adjacent digits # and only two i = 0 while i < n: j = i while j < n and s[j] == s[i]: j += 1 if j-i == 2: return True i = j return False def run(self, s): min_value, max_value = [int(x) for x in s.split("-")] return sum(1 for x in range(min_value, max_value+1) if self.match(x))
python
#take file called numbers.txt to start fileName = "numbers.txt" def main(): global fileName fileInput = open(fileName, 'r') numAry = [] for line in fileInput.readlines(): numAry.append(eval(line)) maxInt = findMax(numAry, 0, len(numAry)-1) print("The Max Value Is " + str(maxInt)) def findMax(numAry, start, end): if (end-start == 0): return numAry[start] else: midpoint = ((end-start)//2)+start l = findMax(numAry, start, midpoint) #recursive call to left half r = findMax(numAry, midpoint+1, end) #recursive call to right half if (l > r): return l else: return r main()
python
#!/usr/bin/python2.7 # coding:utf-8 import logging from time import sleep from RPi import GPIO from cmdtree import INT from cmdtree import command from cmdtree import entry from cmdtree import group from cmdtree import option GPIO_CONTROL_PORT = 12 FAN_ON_TEMPERATURE = 55 def get_cpu_temp(): with open("/sys/class/thermal/thermal_zone0/temp", 'r') as f: temp = float(f.read()) / 1000 return temp def init(): GPIO.setmode(GPIO.BOARD) def set_debug(): logging.basicConfig(level=logging.DEBUG) @group(name="port", help="Turn a pin port to `IN` or `OUT`") def port_manage(): pass @option("port", help="Port on GPIO Physical Port", type=INT, default=GPIO_CONTROL_PORT) @port_manage.command("turn-out", help="Turn a port into `OUT` mode") def turn_port_out(port): GPIO.setup(port, GPIO.OUT) GPIO.output(port, 1) return True @option("port", help="Port number of GPIO Physical Port", type=INT, default=GPIO_CONTROL_PORT) @port_manage.command("turn-in", help="Turn a port into `IN` mode") def turn_port_in(port): GPIO.setup(port, GPIO.IN) return False @option("loop", help="loop until user interrupting execution.", is_flag=True) @command("cpu-show") def show_cpu_temperature(loop): def show_temperature(): print("Cpu Temperature is: {0}".format(get_cpu_temp())) if loop: while True: show_temperature() sleep(1) else: show_temperature() @option( "on-t", help="Temperature which triggers the fan on.", type=INT, default=FAN_ON_TEMPERATURE, ) @option( "port", help="Port number of GPIO Physical Port", type=INT, default=GPIO_CONTROL_PORT, ) @group(name="fan", help="Auto tune the cpu fan in `simple` or `auto` mode.") def auto_fan(): pass @auto_fan.command("on", help="Turn one the fan.") def on_fan(port, **kwargs): turn_port_out(port) @auto_fan.command("off", help="Turn off the fan.") def off_fan(port, **kwargs): turn_port_in(port) @option("debug", is_flag=True, default=False) @auto_fan.command("simple", help="Simply turn on or off the fan in given temperature range.") def simple_on_of(debug, port, on_t): if debug: set_debug() fan_on = turn_port_in(port) try: while True: temperature = get_cpu_temp() if temperature >= on_t: if not fan_on: logging.debug("Temperature {0} CPU fan on.".format(temperature)) fan_on = turn_port_out(port) else: if fan_on: logging.debug("Temperature {0} CPU fan off.".format(temperature)) fan_on = turn_port_in(port) sleep(10) except Exception: logging.exception("Error occurs while tune fan status:") GPIO.cleanup() def main(): init() entry() if __name__ == '__main__': main()
python
from copy import deepcopy from torch import nn import numpy as np import math import torch from torch.utils.data import dataset from torch.utils.data.dataset import Subset from torch.utils.data import DataLoader # def compare_models(model: nn.Module, clients: 'list[Client]', num: int): # def print_params(model: nn.Module, num: int): # counter = 1 # for name, param in model.state_dict().items(): # if counter > num: # break # else: # print(param[0][0], end="") # counter += 1 # print("") # print_params(model, num) # print_params(clients[0].model, num) # print_params(clients[len(clients)//2].model, num) # print_params(clients[-1].model, num) # def regroup(G: np.ndarray, A: np.ndarray, s: int) -> 'tuple[np.ndarry, np.ndarry]': # "s: each new group contains s old groups" # group_num: int = G.shape[1] # new_group_size: int = math.ceil(group_num / s) # A_T = A.transpose() # group2server: list[int] = [] # # get new groups as list # new_groups: 'list[list[int]]' = [] # for i, server in enumerate(A_T): # new_group: 'list[int]' = [] # for j, group in server: # if A_T[i][j] == 1: # if len(new_group) < new_group_size: # new_group.append(j) # else: # new_groups.append(new_group) # new_group = [] # # construct new A # new_A = np.zeros((len(new_groups), A.shape[1],)) # for i, new_group in enumerate(new_groups): # one_group = new_group[0] # belong_to_server = 0 # for j, to_server in enumerate(A[one_group]): # if to_server == 1: # belong_to_server = j # break # new_A[i][belong_to_server] = 1 # # construct new G # new_G = np.zeros((G.shape[0], len(new_groups),)) # for i, new_group in enumerate(new_groups): # for old_group in new_group: # G_T = G.transpose() # for k, contain_client in enumerate(G_T[old_group]): # if contain_client == 1: # new_G[k][i] = 1 # return new_G, new_A
python
#!/usr/bin/env python3 # Copyright 2018 Brocade Communications Systems LLC. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may also obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ :mod:`password_cfg_set` - PyFOS util to change password \ configuration parameters. ********************************************************\ ************************** This module is a stand-alone script and API that can be used to change password configuration paramters. * Input: | Infrastructure Options: | -i,--ipaddr=IPADDR The IP address of FOS switch. | -L,--login=LOGIN The login name. | -P,--password=PASSWORD The password. | -f,--vfid=VFID The VFID to which the request is directed [OPTIONAL]. | -s,--secured=MODE The HTTPS mode "self" or "CA" [OPTIONAL]. | -v,--verbose The Verbose mode [OPTIONAL]. * Util Script Options: --password-action The actions to be performed. --minimum-length The minumum length of the password. --character-set The minimum criteria of the \ character set. --user-name-allowed Whether the username can be used in \ the password. --min-lower-case-char The minimum number of lowercase \ alphabetic characters. --min-upper-case-char The minimum number of uppercase \ alphabetic characters. --min-numeric-char The minimum number of numeric digits. --min-special-char The minimum number of special \ characters. --past-password-history The number of past password values \ that are disallowed. --min-password-age Sets the minimum number of days before \ which the password cannot be modified. --max-password-age Sets the maximum number of days after \ which the password should be modified. --warn-on-expire The number of days to display warning \ messages until password expiration. --lock-out-threshold The maximum number of login attempts \ before the account is locked. --lock-out-duration The duration, in minutes, to wait and \ unlock the locked account. --admin-lock-out-enabled Enables or disables admin lockout. --repeat-char-limit The maximum length of repeated character \ sequences that is disallowed. --sequence-character-limit The length of sequential character \ sequences that is disallowed. --reverse-user-name-allowed Enables or disables a reverse string of \ the username as the password. --hash-type Sets the hash type. --manual-hash-enabled Manually enforces a password change \ due to hash change. --enforce-expire Enforces password expiration. --min-diff The minimum difference between the old \ and new password. * Output: * A success response or a dictionary in case of error. """ import sys from pyfos import pyfos_auth from pyfos import pyfos_util from pyfos.pyfos_brocade_security import password_cfg from pyfos.utils import brcd_util def main(argv): filters = ["minimum_length", "character_set", "user_name_allowed", "minimum_lower_case_character", "minimum_upper_case_character", "minimum_numeric_character", "minimum_special_character", "past_password_history", "minimum_password_age", "maximum_password_age", "warn_on_expire", "lock_out_threshold", "lock_out_duration", "admin_lock_out_enabled", "repeat_character_limit", "sequence_character_limit", "reverse_user_name_allowed", "hash_type", "manual_hash_enabled", "enforce_expire", "password_action", "minimum_difference"] inputs = brcd_util.parse(argv, password_cfg, filters) password_cfg_obj = inputs['utilobject'] if (password_cfg_obj.peek_password_action() is None and password_cfg_obj.peek_minimum_length() is None and password_cfg_obj.peek_character_set() is None and password_cfg_obj.peek_user_name_allowed() is None and password_cfg_obj.peek_minimum_lower_case_character() is None and password_cfg_obj.peek_minimum_upper_case_character() is None and password_cfg_obj.peek_minimum_numeric_character() is None and password_cfg_obj.peek_minimum_special_character() is None and password_cfg_obj.peek_past_password_history() is None and password_cfg_obj.peek_lock_out_threshold() is None and password_cfg_obj.peek_lock_out_duration() is None and password_cfg_obj.peek_admin_lock_out_enabled() is None and password_cfg_obj.peek_repeat_character_limit() is None and password_cfg_obj.peek_sequence_character_limit() is None and password_cfg_obj.peek_reverse_user_name_allowed() is None and password_cfg_obj.peek_minimum_password_age() is None and password_cfg_obj.peek_maximum_password_age() is None and password_cfg_obj.peek_warn_on_expire() is None and password_cfg_obj.peek_minimum_difference() is None and password_cfg_obj.peek_enforce_expire() is None): print("Missing command line options") print(inputs['utilusage']) exit(1) elif (password_cfg_obj.peek_password_action() == "hash-config" and password_cfg_obj.peek_hash_type() is None and password_cfg_obj.peek_manual_hash_enabled() is None): print("Missing command line options") print(inputs['utilusage']) exit(1) elif (password_cfg_obj.peek_password_action() == "default" or password_cfg_obj.peek_password_action() == "delete-all"): pass session = brcd_util.getsession(inputs) result = password_cfg_obj.patch(session) pyfos_util.response_print(result) pyfos_auth.logout(session) if __name__ == "__main__": main(sys.argv[1:])
python
import json from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required from django.core.paginator import Paginator from django.db import IntegrityError from django.http import HttpResponse, HttpResponseRedirect, JsonResponse from django.shortcuts import render from django.urls import reverse from .models import POST_MAX_LENGTH, Following, Post, User def index(request): post_objects = Post.objects.all().order_by("-created_on") paginator = Paginator(post_objects, 10) # show 10 posts per page. page_number = request.GET.get("page", 1) posts = paginator.get_page(page_number) return render( request, "network/index.html", { "posts": posts, "num_page_range": range(posts.paginator.num_pages), "current_page": page_number, "post_max_length": POST_MAX_LENGTH, }, ) # return render(request, "network/index.html", {"posts": posts}) @login_required def get_following_posts(request): user = User.objects.get(id=request.user.id) following = user.following.all() following_users = [follow.user for follow in following] post_objects = Post.objects.filter(user__in=following_users).order_by("-created_on") paginator = Paginator(post_objects, 10) # show 10 posts per page. page_number = request.GET.get("page", 1) posts = paginator.get_page(page_number) return render( request, "network/following.html", { "posts": posts, "num_page_range": range(posts.paginator.num_pages), "current_page": page_number, }, ) def login_view(request): if request.method == "POST": # Attempt to sign user in username = request.POST["username"] password = request.POST["password"] user = authenticate(request, username=username, password=password) # Check if authentication successful if user is not None: login(request, user) return HttpResponseRedirect(reverse("index")) else: return render( request, "network/login.html", {"message": "Invalid username and/or password."}, ) else: return render(request, "network/login.html") def logout_view(request): logout(request) return HttpResponseRedirect(reverse("index")) def register(request): if request.method == "POST": username = request.POST["username"] email = request.POST["email"] # Ensure password matches confirmation password = request.POST["password"] confirmation = request.POST["confirmation"] if password != confirmation: return render( request, "network/register.html", {"message": "Passwords must match."} ) # Attempt to create new user try: user = User.objects.create_user(username, email, password) user.save() except IntegrityError: return render( request, "network/register.html", {"message": "Username already taken."} ) login(request, user) return HttpResponseRedirect(reverse("index")) else: return render(request, "network/register.html") @login_required def like_post(request, post_id): if request.method == "POST": post = Post.objects.get(id=post_id) user = request.user if user in post.likes.all(): post.likes.remove(user) post.save() return JsonResponse({"liked": "False", "post_id": post_id}, status=200) post.likes.add(user) post.save() return JsonResponse({"liked": "True", "post_id": post_id}, status=200) @login_required def post(request, post_id=None): if request.method == "POST": if not post_id: user = User.objects.get(id=request.user.id) user_post = Post.objects.create( user=user, message=request.POST["post-message"] ) user_post.likes.add(user) user_post.save() return HttpResponseRedirect(reverse("index")) post = Post.objects.get(id=post_id) if request.user.id != post.user.id: return HttpResponseRedirect(reverse("index")) data = json.loads(request.body) if len(data.get("message", "")) <= 0: return JsonResponse({"message": "Posts cannot be empty"}, status=406) if len(data.get("message")) > POST_MAX_LENGTH: return JsonResponse( {"message": "Posts cannot be over 240 characters"}, status=406 ) post.message = data.get("message") post.save() return JsonResponse({"saved": True}, status=200) return render(request, "network/post.html", {"post_max_length": POST_MAX_LENGTH}) def get_user(request, user_id): user_profile = User.objects.get(id=user_id) followed_user, _ = Following.objects.get_or_create(user=user_profile) is_following = request.user in followed_user.followers.all() numbers_of_followers = followed_user.followers.count() number_of_users_followed = user_profile.following.count() post_objects = Post.objects.filter(user=user_profile).order_by("-created_on") paginator = Paginator(post_objects, 10) # show 10 posts per page. page_number = request.GET.get("page", 1) posts = paginator.get_page(page_number) return render( request, "network/profile.html", { "user": user_profile, "following": is_following, "number_of_followers": numbers_of_followers, "number_of_users_followed": number_of_users_followed, "posts": posts, "num_page_range": range(posts.paginator.num_pages), "current_page": page_number, "post_max_length": POST_MAX_LENGTH, }, ) def follow_user(request, user_id): if request.method == "POST": user = User.objects.get(id=user_id) if request.user == user: return JsonResponse({"message": "Can not follow yourself"}, status=400) user_following, _ = Following.objects.get_or_create(user=user) if request.user not in user_following.followers.all(): user_following.followers.add(request.user) user_following.save() return JsonResponse( {"followed": True, "user_id": user.id, "follower": request.user.id}, status=200, ) user_following.followers.remove(request.user) user_following.save() return JsonResponse( {"followed": False, "user": user.id, "follower": request.user.id}, status=200, ) return JsonResponse({"message": "Can only post to method"}, status=400)
python
nome = str(input('Digite seu nome completo: ')).strip() print('Silva' in nome.title())
python
from __future__ import print_function from optparse import make_option from datetime import datetime, timedelta import sys from textwrap import dedent from django.core.mail import mail_admins from django.contrib.auth.models import User from reversion.models import Revision from cobl.utilities import LexDBManagementCommand from cobl.lexicon.models import LanguageListOrder class Command(LexDBManagementCommand): help = """Report the changes to the database over the previous N days""" option_list = ( make_option( "-d", "--dry-run", dest="dry_run", action="store_true", default=False, help="Report daily summary to stdout " "[default: email it to admins]"), make_option( "-e", "--no-empty", dest="include_empty", action="store_false", default=True, help="Suppress reports when there have been no changes " "[default: show empty]"), make_option( "-n", "--num-days", dest="num_days", action="store", default=1, type=int, metavar="N", help="Report the activity for the previous N days " "[default: 1]"), ) def handle(self, **options): if options["dry_run"]: io = sys.stdout else: import StringIO import codecs buffer = StringIO.StringIO() codecinfo = codecs.lookup("utf8") io = codecs.StreamReaderWriter( buffer, codecinfo.streamreader, codecinfo.streamwriter) activity_flag = False print_report = get_printer(io) end_date = datetime.now() start_date = end_date - timedelta(days=options["num_days"]) print_report("== Report period ==") print_report("Start:", strftime(start_date)) print_report(" End:", strftime(end_date)) print_report() recent_changes = Revision.objects.filter( date_created__gt=start_date).order_by("date_created") # Report logins print_report("== Logins ==") for user in User.objects.filter( last_login__gt=start_date).order_by("last_name"): print_report(strftime(user.last_login), strfuser(user)) activity_flag = True print_report() print_report("== Active editors ==") user_ids = set(recent_changes.values_list("user", flat=True)) if None in user_ids: print_report(dedent("""\ *********************************************** WARNING: revisions made by unauthenticated user (indicates a missing login_required constraint) ***********************************************""")) for user in User.objects.filter( id__in=user_ids): print_report(strftime(user.last_login), strfuser(user)) print_report() # Report database changes boring_models = [LanguageListOrder] print_report("== Activity report ==") for revision in recent_changes: timestamp = strftime(revision.date_created) user = revision.user if user: print_report(timestamp, user) else: print_report(timestamp, "** UNAUTHENTICATED USER **") for version in revision.version_set.all(): model = version.content_type.model_class() if model not in boring_models: try: print_report( " %s %s#%s <%s>" % ( version.get_type_display(), model.__name__, version.object_id, version.object_repr)) except: print_report(" %s OBJECT UNAVAILABLE", version.get_type_display()) activity_flag = True # Send email if not options["dry_run"]: if activity_flag: io.seek(0) subject = ("Activity report %s" % strftime(end_date)) mail_admins(subject, io.read()) else: if options["include_empty"]: subject = ("No activity %s" % strftime(end_date)) msg = "No activity from %s to %s" % \ (strftime(start_date), strftime(end_date)) mail_admins(subject, msg) # standard report formatters def get_printer(fileobj): def printer(*args, **kwargs): kwargs["file"] = fileobj print(*args, **kwargs) return printer def strfuser(userobj): if userobj.last_name: return "%s %s (%s)" % \ (userobj.first_name, userobj.last_name, userobj.username) else: return userobj.username def strftime(datetimeobj): return datetimeobj.strftime("%Y-%m-%d %H:%M:%S")
python
def load_STNTable(fobj, kwArgCheck = None, debug = False, errors = "strict", indent = 0): # NOTE: see https://github.com/lw/BluRay/wiki/STNTable # Import standard modules ... import struct # Import sub-functions ... from .load_StreamAttributes import load_StreamAttributes from .load_StreamEntry import load_StreamEntry # Check keyword arguments ... if kwArgCheck is not None: print(f"WARNING: \"{__name__}\" has been called with an extra positional argument") # Initialize answer and find it current position ... ans = {} pos = fobj.tell() # [B] if debug: print("DEBUG:{:s} {:s}() called at {:,d} bytes".format(indent * " ", __name__, pos), end = "") # Read the binary data ... ans["Length"], = struct.unpack(">H", fobj.read(2)) # [B] if debug: print(" and is {:,d} bytes long".format(ans["Length"] + 2)) if ans["Length"] != 0: fobj.read(2) ans["NumberOfPrimaryVideoStreamEntries"], = struct.unpack(">B", fobj.read(1)) ans["NumberOfPrimaryAudioStreamEntries"], = struct.unpack(">B", fobj.read(1)) ans["NumberOfPrimaryPGStreamEntries"], = struct.unpack(">B", fobj.read(1)) ans["NumberOfPrimaryIGStreamEntries"], = struct.unpack(">B", fobj.read(1)) ans["NumberOfSecondaryAudioStreamEntries"], = struct.unpack(">B", fobj.read(1)) ans["NumberOfSecondaryVideoStreamEntries"], = struct.unpack(">B", fobj.read(1)) ans["NumberOfSecondaryPGStreamEntries"], = struct.unpack(">B", fobj.read(1)) ans["NumberOfDVStreamEntries"], = struct.unpack(">B", fobj.read(1)) fobj.read(4) # Loop over stream list names ... for name in ["PrimaryVideoStreamEntries", "PrimaryAudioStreamEntries", "PrimaryPGStreamEntries", "SecondaryPGStreamEntries", "PrimaryIGStreamEntries", "SecondaryAudioStreamEntries", "SecondaryVideoStreamEntries", "DVStreamEntries"]: # Loop over entries and add to list ... ans[name] = [] for i in range(ans["NumberOf{:s}".format(name)]): tmp = {} tmp["StreamEntry"] = load_StreamEntry(fobj, debug = debug, errors = errors, indent = indent + 1) tmp["StreamAttributes"] = load_StreamAttributes(fobj, debug = debug, errors = errors, indent = indent + 1) ans[name].append(tmp) # Skip ahead to the end of the data structure ... fobj.seek(pos + ans["Length"] + 2) # Return answer ... return ans
python
import unicodedata def parse(dict_file): with open(dict_file, 'r', encoding='utf-8') as r: for line in r: for word in line.split("#")[1].split(","): word = unicodedata.normalize('NFKC', word.strip()) yield word def parse_lexemes(dict_file): with open(dict_file, 'r', encoding='utf-8') as r: for line in r: yield [unicodedata.normalize('NFKC', word.strip()) for word in line.split("#")[1].split(",")]
python
#!/usr/bin/env python # Copyright (c) 2014, Stanford University # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import sys import os import argparse # from cgi import logfile import datetime import time source_dir = [os.path.join(os.path.dirname(os.path.abspath(__file__)), "../json_to_relation/")] source_dir.extend(sys.path) sys.path = source_dir from json_to_relation import JSONToRelation from output_disposition import OutputDisposition, OutputFile from input_source import InURI from edxTrackLogJSONParser import EdXTrackLogJSONParser if __name__ == "__main__": parser = argparse.ArgumentParser(prog='json2sql.py') parser.add_argument('-x', '--expungeTables', help='DROP all tables in database before beginning transform', dest='dropTables', action='store_true', default=False) # parser.add_argument('-l', '--logFile', # help='fully qualified log file name. Default: no logging.', # dest='logFile', # default='/tmp/j2s.sql'); parser.add_argument('-v', '--verbose', help='print operational info to console.', dest='verbose', action='store_true'); parser.add_argument('destDir', help='file path for the destination .sql file') parser.add_argument('inFilePath', help='json file path to be converted to sql.') args = parser.parse_args(); # Output file is name of input file with the # .json extension replaced by .sql, and a unique # timestamp/pid added to avoid name collisions during # parallel processing: dt = datetime.datetime.fromtimestamp(time.time()) fileStamp = dt.isoformat().replace(':','_') + '_' + str(os.getpid()) outFullPath = os.path.join(args.destDir, os.path.basename(args.inFilePath)) + '.' + fileStamp + '.sql' # Log file will go to <destDir>/../TransformLogs, the file being named j2s_<inputFileName>.log: logDir = os.path.join(args.destDir, '..') + '/TransformLogs' if not os.access(logDir, os.W_OK): os.makedirs(logDir) logFile = os.path.join(logDir, 'j2s_%s_%s.log' % (os.path.basename(args.inFilePath), fileStamp)) # print('xpunge: %s' % args.dropTables) # print('verbose: %s' % args.verbose) # print('destDir: %s' % args.destDir) # print('in=FilePath: %s' % args.inFilePath) # print('outFullPath: %s' % outFullPath) # print('logFile: %s' % logFile) # Create an instance of JSONToRelation, taking input from the given file: # and pumping output to the given output path: jsonConverter = JSONToRelation(InURI(args.inFilePath), OutputFile(outFullPath, OutputDisposition.OutputFormat.SQL_INSERT_STATEMENTS, options='wb'), # overwrite any sql file that's there mainTableName='EdxTrackEvent', logFile=logFile ) jsonConverter.setParser(EdXTrackLogJSONParser(jsonConverter, 'EdxTrackEvent', replaceTables=args.dropTables, dbName='Edx' )) jsonConverter.convert()
python
import pyperclip class User: ''' class for passing all instances of the user ''' user_list = [] def __init__(self,user_name,account_name,email,password): ''' initiates properties of my objects Args: user_name:New username of the account ''' self.user_name = user_name self.account_name = account_name self.email = email self.password = password def save_user(self): ''' save_contact method saves contact objects into contact_list ''' User.user_list.append(self) def delete_user(self): ''' delete_user method delete a saved user from user_list ''' User.user_list.remove(self) @classmethod def find_by_account_name(cls,account_name): ''' Method takes account name and returns password that matches that account Args: number: Phone number to search for Returns: Contact of person that matches the number ''' for user in cls.user_list: if user.account_name == account_name : return user @classmethod def user_exist(cls,account_name): ''' Method that checks if a contact exists from contact lists. Args: number: account name to search if it exists Returns: Boolean: True or False depending if the contact exists ''' for user in cls.user_list: if user.account_name == account_name: return True return False @classmethod def display_user(cls): ''' method that returns the user list ''' return cls.user_list @classmethod def copy_email(cls,account_name): user_found = User.find_by_account_name(account_name) pyperclip.copy(user_found.email)
python
from ecco.attribution import gradient_x_inputs_attribution import torch import pytest @pytest.fixture def simpleNNModel(): class simpleNNModel(torch.nn.Module): def __init__(self): super(simpleNNModel, self).__init__() self.w = torch.tensor([[10., 10.]]) def forward(self, x): return x * self.w yield simpleNNModel() class TestAttribution: def test_grad_x_input(self, simpleNNModel): input = torch.tensor([[9., 9.]], requires_grad=True) output = simpleNNModel(input) expected = torch.tensor([1.]) actual = gradient_x_inputs_attribution(output[0][0], input) assert torch.all(torch.eq(actual, expected))
python
from sklearn import ensemble from model_man import get_models def create(): models = get_models() v_models = [(key, models[key].create()) for key in models.keys()] return ensemble.VotingClassifier( estimators=v_models, voting="hard" )
python
# -*- coding: utf-8 -*- """ A nested dict with both attribute and item access. NA stands for Nested and Attribute. """ import collections import copy class NADict: """A nested dict with both attribute and item access. It is intended to be used with keys that are valid Python identifiers. However, except for string keys containing a dot, there are actually no hard limitations. If a key equals an existing attribute name, attribute access is of cause not possible. Nested items can be accessed via a dot notation, as shown in the example below. Examples -------- >>> n = NADict(a=1, b=NADict(c=3, d=4)) >>> n['a'] 1 >>> n.a 1 >>> n['b.c'] 3 >>> n.b.c 3 >>> n['b.e'] = 5 >>> n.b.e 5 Attributes ---------- _dict : dict Dictionary holding the actial items. """ def __init__(self, *args, **kw): object.__setattr__(self, '_dict', {}) self.update(*args, **kw) def __getitem__(self, key): if '.' in key: k1, k2 = key.split('.', 1) return self._dict[k1][k2] else: return self._dict[key] def __setitem__(self, key, value): if key in ('clear', 'copy', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem', 'setdefault', 'update', 'values'): raise ValueError('invalid key "%s": must not override supported ' 'dict method names' % key) elif '.' in key: k1, k2 = key.split('.', 1) if k1 not in self._dict: self._dict[k1] = NADict() self._dict[k1][k2] = value elif key in self._dict: if isinstance(self._dict[key], NADict): self._dict[key].update(value) else: self._dict[key] = value else: if isinstance(value, collections.abc.Mapping): self._dict[key] = NADict(value) else: self._dict[key] = value def __delitem__(self, key): if '.' in key: k1, k2 = key.split('.', 1) del self._dict[k1][k2] else: del self._dict[key] def __getattr__(self, key): if key not in self._dict: raise AttributeError('No such key: %s' % (key, )) return self._dict[key] def __setattr__(self, key, value): if key in self._dict: self._dict[key] = value else: object.__setattr__(self, key, value) def __delattr__(self, key): if key in self._dict: del self._dict[key] else: object.__delattr__(self, key) def __len__(self): return len(self._dict) def __contains__(self, key): if '.' in key: k1, k2 = key.split('.', 1) return k2 in self._dict[k1] else: return key in self._dict def __iter__(self, prefix=''): for k, v in self._dict.items(): key = '%s.%s' % (prefix, k) if prefix else k if isinstance(v, NADict): yield from v.__iter__(key) else: yield key def __repr__(self): return '%s(%s)' % ( self.__class__.__name__, ', '.join('%s=%s' % (k, repr(v)) for k, v in self._dict.items())) def clear(self): """Clear all keys.""" self._dict.clear() def copy(self): """Returns a deep copy of self.""" return copy.deepcopy(self) @staticmethod def fromkeys(self, iterable, value=None): """Returns a new NADict with keys from `iterable` and values set to `value`.""" n = NADict() for key in iterable: n[key] = value return n def get(self, key, default=None): """Returns the value for `key` if `key` is in self, else return `default`.""" if '.' in key: k1, k2 = key.split('.', 1) return self._dict[k1].get(k2, default) else: return self._dict.get(key, default) def items(self, prefix=''): """Returns an iterator over all items as (key, value) pairs.""" for k, v in self._dict.items(): key = '%s.%s' % (prefix, k) if prefix else k if isinstance(v, NADict): yield from v.items(key) else: yield (key, v) def keys(self, prefix=''): """Returns an iterator over all keys.""" for k, v in self._dict.items(): key = '%s.%s' % (prefix, k) if prefix else k if isinstance(v, NADict): yield from v.keys(key) else: yield key def pop(self, key, default=None): """Removed `key` and returns corresponding value. If `key` is not found, `default` is returned if given, otherwise KeyError is raised.""" if '.' in key: k1, k2 = key.split('.', 1) return self._dict[k1].pop(k2, default) else: return self._dict.pop(key, default) def popitem(self, prefix=''): """Removes and returns some (key, value). Raises KeyError if empty.""" item = self._dict.popitem() if isinstance(item, NADict): k, v = item item2 = item.popitem(k) self._dict[k] = v return item2 else: k, v = self._dict.popitem() key = '%s.%s' % (prefix, k) if prefix else k return (key, v) def setdefault(self, key, value=None): """Inserts `key` and `value` pair if key is not found. Returns the new value for `key`.""" if '.' in key: k1, k2 = key.split('.', 1) return self._dict[k1].setdefault(k2, value) else: return self._dict.setdefault(key, value) def update(self, *args, **kw): """Updates self with dict/iterable from `args` and keyword arguments from `kw`.""" for arg in args: if hasattr(arg, 'keys'): for k in arg: self[k] = arg[k] else: for k, v in arg: self[k] = v for k, v in kw.items(): self[k] = v def values(self): """Returns a set-like providing a view of all style values.""" return self._dict.values()
python
# -*- coding: utf-8 -*- # FreeCAD macro for woodworking # Author: Darek L (aka dprojects) # Version: 5.0 # Latest version: https://github.com/dprojects/getDimensions import FreeCAD # ####################################################### # SETTINGS ( SET HERE ) # ####################################################### # set language: # "pl" - Polish # "en" - English sLang = "pl" # set metric system: # "mm" - millimeter # "m" - meter # "in" - inch sUnits = "mm" # set square area units: # "m" - meter # "mm" - millimeter # "in" - inch sSquareArea = "m" # toggle visibility: # "on" - the feature is on and hidden items (visibility = false) will be skipped # "off" - all items are calculated, like it was before sVisible = "on" # ####################################################### # MAIN CODE ( NOT CHANGE HERE ) # ####################################################### # setting variables - autoconfig if sLang == "pl": vLang1 = "Element" vLang2 = "Wymiary" vLang3 = "Grubość" vLang4 = "Sztuki" if sSquareArea == "mm": vLang5 = "Milimetry kwadratowe" if sSquareArea == "m": vLang5 = "Metry kwadratowe" if sSquareArea == "in": vLang5 = "Cale kwadratowe" vLang6 = "Suma" else: vLang1 = "Name" vLang2 = "Dimensions" vLang3 = "Thickness" vLang4 = "Quantity" if sSquareArea == "mm": vLang5 = "Square millimeters" if sSquareArea == "m": vLang5 = "Square meters" if sSquareArea == "in": vLang5 = "Square inches" vLang6 = "Summary" # create spreadsheet and prepere it for data if FreeCAD.ActiveDocument.getObject("toCut"): FreeCAD.ActiveDocument.removeObject("toCut") result = FreeCAD.ActiveDocument.addObject("Spreadsheet::Sheet", "toCut") result.mergeCells("B1:D1") result.set("A1", vLang1) result.set("B1", vLang2) result.set("E1", vLang3) result.set("F1", vLang4) result.set("G1", vLang5) result.setForeground("A1:G1", (0, 0, 0)) result.setBackground("A1:G1", (1, 1, 1)) result.setStyle("A1:G1", "bold", "add") result.setAlignment("A1:G1", "top", "keep") result.setAlignment("A1:G1", "center", "keep") # scan all objects and count chipboards (cubes) objs = FreeCAD.ActiveDocument.Objects quantity = dict() sqmSum = dict() for obj in objs: if sVisible == "on": if FreeCADGui.ActiveDocument.getObject(obj.Name).Visibility is False: continue # support for cube objects if obj.isDerivedFrom("Part::Box"): keyArr = [str(obj.Length), str(obj.Width), str(obj.Height)] keyArr.sort() key = "x".join(keyArr) if key in quantity: quantity[key] = quantity[key] + 1 else: quantity[key] = 1 # support for array objects with cube as base elif obj.isDerivedFrom("Part::FeaturePython") and obj.Base.isDerivedFrom("Part::Box"): # the main box cube will be added in next loop if obj.ArrayType == "polar": arrayQuantity = obj.NumberPolar - 1 else: arrayQuantity = obj.NumberX * obj.NumberY * obj.NumberZ - 1 keyArr = [str(obj.Base.Length), str(obj.Base.Width), str(obj.Base.Height)] keyArr.sort() key = "x".join(keyArr) if key in quantity: quantity[key] = quantity[key] + arrayQuantity else: quantity[key] = arrayQuantity # check what we have... sqm = 0 i = 1 # calculate rows for later TechDraw print, first row for header vRows = 1 for obj in objs: if obj.isDerivedFrom("Part::Box"): keyArr = [str(obj.Length), str(obj.Width), str(obj.Height)] keyArr.sort() key = "x".join(keyArr) if key not in quantity: continue i = i + 1 if obj.Length.Value < 30: size1 = obj.Width size2 = obj.Height thick = obj.Length elif obj.Width.Value < 30: size1 = obj.Length size2 = obj.Height thick = obj.Width else: size1 = obj.Length size2 = obj.Width thick = obj.Height # calculate square area sqm = quantity[key] * size1.getValueAs(sSquareArea) * size2.getValueAs(sSquareArea) # ...and add to spreadsheet result.set("A" + str(i), "'" + str(obj.Label)) result.set("B" + str(i), "'" + str(size1)) result.set("C" + str(i), "x") result.set("D" + str(i), "'" + str(size2)) result.set("E" + str(i), "'" + str(thick)) result.set("F" + str(i), "'" + str(quantity[key])) result.set("G" + str(i), "'" + str(sqm)) vRows = vRows + 1 # set metric system result.setDisplayUnit("B" + str(i), sUnits) result.setDisplayUnit("D" + str(i), sUnits) result.setDisplayUnit("E" + str(i), sUnits) # recalculate and add partial square meters del quantity[key] key = str(thick) if key in sqmSum: sqmSum[key] = sqmSum[key] + sqm else: sqmSum[key] = sqm # add to spreadsheet summary for square meters i = i + 1 # add empty line separator vRows = vRows + 1 for key in sqmSum.keys(): i = i + 1 result.set("A" + str(i), vLang6) result.set("E" + str(i), "'" + str(key)) result.set("G" + str(i), "'" + str(sqmSum[key])) result.setDisplayUnit("E" + str(i), sUnits) vRows = vRows + 1 # final decoration result.setForeground("A2:G" + str(i), (0, 0, 0)) result.setBackground("A2:G" + str(i), (1, 1, 1)) # result.setStyle( 'A2:A'+str(i), 'bold', 'add') result.setColumnWidth("A", 135) result.setColumnWidth("B", 80) result.setColumnWidth("C", 40) result.setColumnWidth("D", 80) result.setColumnWidth("E", 100) result.setColumnWidth("F", 100) result.setColumnWidth("G", 180) result.setAlignment("A1:A" + str(i), "left", "keep") result.setAlignment("B2:B" + str(i), "right", "keep") result.setAlignment("C1:C" + str(i), "center", "keep") result.setAlignment("D1:D" + str(i), "right", "keep") result.setAlignment("E1:E" + str(i), "right", "keep") result.setAlignment("F1:F" + str(i), "right", "keep") result.setAlignment("G1:G" + str(i), "right", "keep") result.setAlignment("B1:B1", "center", "keep") result.setAlignment("C1:C1", "center", "keep") result.setAlignment("D1:D1", "center", "keep") # refresh document App.ActiveDocument.recompute() # remove existing toPrint page if FreeCAD.ActiveDocument.getObject("toPrint"): App.getDocument("Index").removeObject("toPrint") # create TechDraw page for print App.activeDocument().addObject("TechDraw::DrawPage", "toPrint") App.activeDocument().addObject("TechDraw::DrawSVGTemplate", "Template") App.activeDocument().Template.Template = App.getResourceDir() + "Mod/TechDraw/Templates/A4_Portrait_blank.svg" App.activeDocument().toPrint.Template = App.activeDocument().Template # add spreadsheet to TechDraw page App.activeDocument().addObject("TechDraw::DrawViewSpreadsheet", "Sheet") App.activeDocument().Sheet.Source = App.activeDocument().toCut App.activeDocument().toPrint.addView(App.activeDocument().Sheet) # add decoration to the table FreeCAD.getDocument("Index").getObject("Sheet").X = 105.00 FreeCAD.getDocument("Index").getObject("Sheet").Y = 260.00 FreeCAD.getDocument("Index").getObject("Sheet").CellEnd = "G" + str(vRows) # reload to see changes App.ActiveDocument.recompute()
python
def get_length_of_missing_array(arr): if len(arr) == 0: return 0 else: lens = [] for i in arr: if i == None or len(i) == 0: return 0 lens.append(len(i)) lens.sort() prevInt = 0 for i in lens: if (prevInt == 0): prevInt = i continue if (i - 1 > prevInt): return prevInt + 1 prevInt = i return 0 print(get_length_of_missing_array([[5, 2, 9], [4, 5, 1, 1], [1], [69, 69], [5, 6, 7, 8, 9]]))
python
""" Given an array of positive integers nums and a positive integer target, return the minimal length of a contiguous subarray [numsl, numsl+1, ..., numsr-1, numsr] of which the sum is greater than or equal to target. If there is no such subarray, return 0 instead. Example 1: Input: target = 7, nums = [2,3,1,2,4,3] Output: 2 Explanation: The subarray [4,3] has the minimal length under the problem constraint. Example 2: Input: target = 4, nums = [1,4,4] Output: 1 Example 3: Input: target = 11, nums = [1,1,1,1,1,1,1,1] Output: 0 Constraints: 1 <= target <= 109 1 <= nums.length <= 105 1 <= nums[i] <= 105 Follow up: If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log(n)). """ from typing import List class Solution: """ Time Limit Exceeded (TLE). """ def minSubArrayLen(self, s: int, nums: List[int]) -> int: min_len = len(nums) sum_found = False for i in range(len(nums)): for j in range(i + 1, len(nums) + 1): subarray_sum = sum(nums[i:j]) subarray_len = j - i if subarray_sum >= s: sum_found = True min_len = min(subarray_len, min_len) return min_len if sum_found else 0 class Solution2: """ Another TLE. Trying to put two-pointer approach. Works ok on small arrays. LC fails on long array (with len 33168). Time complexity: O(n**3) - two cycles plus sum calculation on each subarray """ def minSubArrayLen(self, s: int, nums: List[int]) -> int: i, k = 0, 0 min_len = None while i < len(nums): k = i while k < len(nums): if sum(nums[i:k + 1]) >= s: min_len = min((k + 1) - i, min_len) if min_len is not None else (k + 1) - i break k += 1 i += 1 return min_len or 0 class Solution3: """ LC proposed solution (ported from C++). Also got TLE, LOL :) Algorithm idea: In 1st/2nd solution sum is calculated for every subarray in O(n) time. But, we could easily find the sum in O(1) time by storing the cumulative sum from the beginning(Memoization). After we have stored the cumulative sum in sums, we could easily find the sum of any subarray from i to j. Time complexity: O(n**2) """ def minSubArrayLen(self, s: int, nums: List[int]) -> int: len_n = len(nums) if len_n == 0 or len_n == 1: return len_n int32max = (1 << 31) ans = int32max sums = list() sums.append(nums[0]) for i in range(1, len_n): sums.append(sums[i - 1] + nums[i]) for i in range(len_n): for j in range(i, len_n): subarray_sum = sums[j] - sums[i] + nums[i] if subarray_sum >= s: ans = min(ans, (j - i + 1)) # found the smallest subarray with sum >= s starting with current index i, move to the next index i. break return ans if ans != int32max else 0 class Solution4: """ Algorithm: scan from left to right, 'total' tracks the sum of the subarray. If the sum is less than s, right moves forward one step, else left moves forward one step. Left (tail) and right (head) form a window. Runtime: 72 ms, faster than 67.25% of Python3 Memory Usage: 16.7 MB, less than 28.44% of Python3 Time complexity: O(n) """ def minSubArrayLen(self, s: int, nums: List[int]) -> int: total = left = right = 0 res = len(nums) + 1 # found seq will never exceed that while right < len(nums): total += nums[right] while total >= s: res = min(res, right - left + 1) total -= nums[left] left += 1 right += 1 return res if res <= len(nums) else 0 if __name__ == '__main__': tc = [ (11, [1, 2, 3, 4, 5], 3), (7, [2, 3, 1, 2, 4, 3], 2), ] solutions = [Solution(), Solution2(), Solution3(), Solution4()] for sol in solutions: for inp_s, inp_nums, expected in tc: assert sol.minSubArrayLen(inp_s, inp_nums) == expected
python
# -*- coding: utf-8 -*- # Copyright 2021 Jacob M. Graving <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch.nn.functional as F def logmeanexp(x, dim=-1): return x.logsumexp(dim) - np.log(x.shape[dim]) def categorical_cross_entropy(pos_logits, neg_logits): attract = -pos_logits repel = logmeanexp(neg_logits) return attract + repel def binary_cross_entropy(pos_logits, neg_logits): attract = -F.logsigmoid(pos_logits) # use numerically stable repulsion term # Shi et al. 2022 (https://arxiv.org/abs/2111.08851) # log(1 - sigmoid(logits)) = log(sigmoid(logits)) - logits repel = -(F.logsigmoid(neg_logits) - neg_logits).mean(-1) return attract + repel def cauchy_schwarz_divergence(pos_logits, neg_logits): attract = -pos_logits repel = 0.5 * logmeanexp(2 * neg_logits) return attract + repel # discriminators from Qin et al. (2020) https://arxiv.org/abs/1811.09567 def wasserstein_logits(pos_logits, neg_logits): attract = -pos_logits repel = neg_logits.mean(-1) return attract + repel def wasserstein(pos_logits, neg_logits): attract = -pos_logits.exp() repel = logmeanexp(neg_logits).exp() return attract + repel def least_squares(pos_logits, neg_logits): attract = pos_logits.expm1().pow(2) repel = neg_logits.exp().pow(2).mean(-1) return attract + repel def zero_centered_least_squares(pos_logits, neg_logits): attract = pos_logits.expm1().pow(2) repel = F.softplus(neg_logits).exp().pow(2).mean(-1) return attract + repel def cosine(pos_logits, neg_logits): attract = -pos_logits.expm1().cos() repel = -neg_logits.exp().cos().add(1).mean(-1) return attract + repel # discriminators from Nowozin et al. (2016) https://arxiv.org/abs/1606.00709 def jensen_shannon_divergence(pos_logits, neg_logits): def activation(v): return np.log(2) + F.logsigmoid(v) def conjugate(t): return -(2 - t.exp()).log() attract = -activation(pos_logits) repel = conjugate(activation(neg_logits)).mean(-1) return attract + repel def kullback_leibler_divergence(pos_logits, neg_logits): def activation(v): return v def conjugate(t): return (t - 1).exp() attract = -activation(pos_logits) repel = conjugate(activation(neg_logits)).mean(-1) return attract + repel def reverse_kullback_leibler_divergence(pos_logits, neg_logits): def activation(v): return -torch.exp(-v) def conjugate(t): return -1 - torch.log(-t) attract = -activation(pos_logits) repel = conjugate(activation(neg_logits)).mean(-1) return attract + repel def pearson_chi_sq(pos_logits, neg_logits): def activation(v): return v def conjugate(t): return 0.25 * t ** 2 + t attract = -activation(pos_logits) repel = conjugate(activation(neg_logits)).mean(-1) return attract + repel def squared_hellinger(pos_logits, neg_logits): def activation(v): return 1 - (-v).exp() def conjugate(t): return t / (1 - t) attract = -activation(pos_logits) repel = conjugate(activation(neg_logits)).mean(-1) return attract + repel DISCRIMINATORS = { "categorical": categorical_cross_entropy, "binary": binary_cross_entropy, "bernoulli": binary_cross_entropy, "jsd": jensen_shannon_divergence, "reverse_kld": reverse_kullback_leibler_divergence, "kld": kullback_leibler_divergence, "pearson": pearson_chi_sq, "squared_hellinger": squared_hellinger, "wasserstein": wasserstein, "wasserstein_logits": wasserstein_logits, "least_squares": least_squares, "centered_least_squares": zero_centered_least_squares, "cosine": cosine, "cauchy_schwarz": cauchy_schwarz_divergence, }
python
from typing import Sequence, Hashable def find_field(d, candidates): """ Given a dict and a list of possible keys, find the first key which is included into this dict. Throws ValueError if not found. """ for c in candidates: if c in d: return c raise ValueError(f"Can't find any of: {candidates}") def find_value(d, candidates): """ Given a dict and a list of possible keys, find the first key which is included into this dict and return its value. Throws ValueError if not found. """ fieldname = find_field(d, candidates) return d[fieldname] def normalize_dict(source, replacements, allow_original_key=True): """ Given a dict and a map: reference key -> [] possible replacements, return a new dict where all keys are guaranteed to be reference keys with values taken from any of replacement keys. Typically used to normalize a dataset where the same info can be listed under different names. Example map: { "artist": ["Artist", "ARTIST"], "year": ["Year", "yr", "yob"], } """ ret = {} for key in replacements: candidates = replacements[key] if allow_original_key: candidates += (key,) value = find_value(source, candidates) ret[key] = value return ret def filter_dict(src: dict, keys_to_filter: Sequence[Hashable]) -> dict: """ Filters dictionary by keys_to_filter set. Parameters ---------- src: dict Source dictionary. keys_to_filter: Sequence[Hashable] Set of keys that should be in the final dictionary. Returns ------- dict Filtered source dictionary. """ return {key: value for key, value in src.items() if key in keys_to_filter}
python
from zmodulo.plot.properties.color.color import Color class LineColor: """ A Z-Tree plot line color """ def __init__(self, color=None): """ Initializes the LineColor object :param color: line color :type color: Color """ if color is None: self.color = Color() else: self.color = color self.template = '\tlinecolor = {line_color};\n' def to_str(self): """ Converts the LineColor instance to a z-tree plot line property declaration :return: Z-Tree linecolor property declaration :rtype: str """ return self.template.format(line_color=self.color.to_str())
python
from lin import db from lin.core import File from lin.exception import NotFound from pydash import uniq_by from sqlalchemy import Column, Integer, String from sqlalchemy.orm import aliased from app.models.base import Base class Category(Base): id = Column(Integer, primary_key=True) name = Column(String(50), nullable=False, unique=True, comment='分类名称') img_id = Column(Integer, comment='关联图片ID') mini_img_id = Column(Integer, comment='关联小图片ID') summary = Column(String(100), comment='描述') @classmethod def get_all_with_mini_img(cls, soft=True, *, throw=False): res = db.session.query(cls, File.path).filter_by(soft=soft).filter( cls.mini_img_id == File.id ).all() if not res: if not throw: return [] else: raise NotFound(msg='相关种类不存在') models = cls._combine_data_for_get_all_with_mini_img(res) return models @classmethod def _combine_data_for_get_all_with_mini_img(cls, data): models = [] for item in data: category, mini_path = item category.mini_image = cls.get_file_url(mini_path) category._fields.append('mini_image') models.append(category) return models @classmethod def get_pagiante(cls, start, count, q=None, soft=True, *, throw=False): Image = aliased(File) MiniImage = aliased(File) statement = db.session.query(cls, Image.path, MiniImage.path).join( Image, cls.img_id == Image.id, ).join( MiniImage, cls.mini_img_id == MiniImage.id ).filter_by(soft=soft).filter( ).order_by(cls.id.desc()).offset(start).limit(count) if q: q = '%{}%'.format(q) statement = statement.filter(cls.name.ilike(q)) total = statement.count() res = statement.all() if not res: if not throw: return [] else: raise NotFound(msg='相关种类不存在') models = cls._combine_data_for_get_paginate(res) return { 'start': start, 'count': count, 'models': models, 'total': total } @classmethod def _combine_data_for_get_paginate(cls, data): models = [] for item in data: model = cls._combine_single_data_for_get_paginate(*item) models.append(model) return models @classmethod def _combine_single_data_for_get_paginate(cls, category, path, mini_path): category.image = cls.get_file_url(path) category.mini_image = cls.get_file_url(mini_path) category._fields.extend(['image', 'mini_image']) return category @classmethod def get_with_products(cls, cid, count=12, soft=True, *, throw=False): from app.models.product import Product cate_img = aliased(File) prod_img = aliased(File) res = db.session.query(cls, Product, cate_img.path, prod_img.path).filter_by(soft=soft).filter( cls.id == cid, cls.id == Product.category_id, cls.img_id == cate_img.id, Product.img_id == prod_img.id ).offset(0).limit(count).all() if not res: if not throw: return [] else: raise NotFound(msg='相关种类不存在') model = cls._combine_data(res)[0] return model @classmethod def get_all_with_products(cls, count=12, soft=True, *, throw=False): from app.models.product import Product cate_img = aliased(File) prod_img = aliased(File) res = db.session.query(cls, Product, cate_img.path, prod_img.path).filter_by(soft=soft).filter( cls.id == Product.category_id, cls.img_id == cate_img.id, Product.img_id == prod_img.id ).order_by(cls.id.desc()).all() if not res: if not throw: return [] else: raise NotFound(msg='相关种类和产品不存在') models = cls._combine_data(res) for model in models: model.products = model.products[0:count] return models @classmethod def _combine_data(cls, data): res = [] for category, product, cate_path, prod_path in data: category.products = getattr(category, 'products', []) product.image = cls.get_file_url(prod_path) product._fields.append('image') category.products.append(product) category.image = cls.get_file_url(cate_path) res.append(category) res = uniq_by(res, 'id') for category in res: category._fields.extend(['products', 'image']) return res
python
swaps=[] def heapify(data,n,vert): min=vert l=2*vert+1 r=2*vert+2 if l<n and data[l]<data[min]: min=l if r<n and data[r]<data[min]: min=r if min!=vert: data[vert],data[min]=data[min],data[vert] swaps.append([vert,min]) heapify(data,n,min) def main(): n = int(input()) data = list(map(int, input().split())) for i in range(n//2-1,-1,-1): heapify(data,n,i) print(len(swaps)) for i, j in swaps: print(i, j) print(data) if __name__ == "__main__": main()
python
from django.contrib import admin from .models import Report, ReportFiles, ReportIndex admin.site.register(Report) admin.site.register(ReportFiles) admin.site.register(ReportIndex)
python
#!/usr/bin/env python # encoding: utf-8 """ @author: anly_jun @file: github_trending @time: 16/10/17 下午2:23 """ import requests from bs4 import BeautifulSoup GITHUB = 'https://github.com' TRENDING_URL = GITHUB + "/trending" TRENDING_DEV_URL = TRENDING_URL + "/developers" USER_AGENT_BY_MOBILE = 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.23 Mobile Safari/537.36' def get_trending_repos(opts): repos = [] language = opts.get('language', None) since = opts.get('since', None) url = TRENDING_URL if language: url = url + '/' + language if since: url += '?since={}'.format(since) response, code = read_page(url) if code == 200: repos = parser_repos(response) return repos def get_trending_developers(opts): developers = [] language = opts.get('language', None) since = opts.get('since', None) url = TRENDING_DEV_URL if language: url = url + '/' + language if since: url += '?since={}'.format(since) print url response, code = read_page(url) if code == 200: developers = parser_developers(response) return developers def parser_repos(response): repos = [] soup = BeautifulSoup(response.text, "lxml") for li in soup.find_all('li', {'class': 'col-12 d-block width-full py-4 border-bottom'}): avatar_img = li.find('img', {'class': 'avatar mb-1'}) if avatar_img: avatar = avatar_img['src'] name_div = li.find('div', {'class': 'd-inline-block col-9 mb-1'}) name_string = name_div.find('a', href=True)['href'] # name_string = li.find('span', {'class': 'text-normal'}).string owner = name_string.split('/')[1] repo = name_string.split('/')[2] link = GITHUB + name_string meta = li.find('div', {'class': 'f6 text-gray mt-2'}) if meta: stars = li.find('a', {'class': 'muted-link d-inline-block mr-3'}).text.replace('\n', '').strip(' ') else: stars = "0" desc = parser_desc(li.find('div', {'class': 'py-1'})) repos.append({ 'owner': owner, 'avatar': avatar, 'repo': repo, 'stars': stars, 'desc': desc, 'link': link }) return repos def parser_desc(desc): repo_desc = "" if desc: for each in desc.stripped_strings: repo_desc += " " + each return repo_desc.lstrip(" ") def parser_developers(response): developers = [] soup = BeautifulSoup(response.text, "lxml") for li in soup.find_all('li', {'class': 'd-sm-flex flex-justify-between border-bottom border-gray-light py-3'}): avatar_img = li.find('img', {'class': 'rounded-1'})['src'] if avatar_img: avatar = avatar_img['src'] href = li.find('a', {'class': 'd-inline-block'})['href'] link = GITHUB + href name = href[1:] developers.append({ 'avatar': avatar, 'name': name, 'full_name': "", 'link': link }) return developers def parser_developer_name(name): full_name = "" if name: for each in name.stripped_strings: full_name += " " + each return full_name.lstrip(" ") def read_page(url, timeout=5): header = {'User-Agent': USER_AGENT_BY_MOBILE} try: response = requests.get(url=url, timeout=timeout, headers=header) except requests.exceptions.ConnectionError as e: print e return None, False return response, response.status_code if __name__ == '__main__': response, code = read_page(TRENDING_DEV_URL) if code == 200: parser_developers(response)
python
import requests from bs4 import BeautifulSoup as bs import time import random import os import pandas as pd from pathlib import Path pwd = os.getcwd() # Creating /details_page folder Path(pwd + '/details_pages').mkdir(parents=True, exist_ok=True) df = pd.read_csv(pwd + '\\dataframes\\Data - IT_Companies_Algiers.csv') URL = "https://www.example.com/profil/?id=" page_counter = 0 for i in df.index: page = requests.get(URL + str(df['company_id'][i])) soup = bs(page.content, "html.parser") # setting a timeout each 10 pages of 8 to 13 seconds if(page_counter % 10 == 0 and page_counter != 0): time.sleep(random.randrange(8, 13)) print(page_counter) with open('details_pages/'+str(df['company_id'][i])+".html", "w", encoding='utf-8') as file: file.write(str(soup)) print('Finished with page :' + str(page_counter)) page_counter += 1
python
def make_local_image( embedded_cid , filename, payload): """helper func that creates an image object. others may replace this with a specific solution. the important point is that it returns a link """ import models #my models module. you will probably replace this entire function with your own code image_model = models.EmbeddedImageModel(filename=filename, data = payload) image_model.put() return image_model.link def cid_2_images(message): '''this replaces the <img src="<cid:SOMETHING>"/> tags with <img src="SOME URL"/> tags in the message''' from BeautifulSoup import BeautifulSoup import re cid_to_link = {} for part in message.walk(): if part.get('Content-ID') : logging.info('found cid:%s', part.get('Content-ID')) cid_to_link[part.get('Content-ID')] = \ make_local_image(part.get('Content-ID'), part.get_filename(), part.get_payload(decode=True) ) for part in message.walk(): if str(part.get_content_type()) == 'text/html': soup = BeautifulSoup(part.get_payload(decode=True)) images_with_cid = soup('img', attrs = {'src' : re.compile('cid:.*')}) for image_tag in images_with_cid: cid = '<%s>'% image_tag['src'][4:] image_tag['src'] = cid_to_link[cid] part.set_payload(soup.renderContents())
python
import json from mock import patch import jenkins from tests.base import JenkinsTestBase class JenkinsCancelQueueTest(JenkinsTestBase): @patch.object(jenkins.Jenkins, 'jenkins_open') def test_simple(self, jenkins_mock): job_name_to_return = {u'name': 'TestJob'} jenkins_mock.return_value = json.dumps(job_name_to_return) self.j.cancel_queue(52) self.assertEqual( jenkins_mock.call_args[0][0].url, self.make_url('queue/cancelItem?id=52')) self._check_requests(jenkins_mock.call_args_list) @patch.object(jenkins.Jenkins, 'jenkins_open', side_effect=jenkins.NotFoundException('not found')) def test_notfound(self, jenkins_mock): job_name_to_return = {u'name': 'TestJob'} jenkins_mock.return_value = json.dumps(job_name_to_return) self.j.cancel_queue(52) self.assertEqual( jenkins_mock.call_args[0][0].url, self.make_url('queue/cancelItem?id=52')) self._check_requests(jenkins_mock.call_args_list) class JenkinsQueueInfoTest(JenkinsTestBase): @patch.object(jenkins.Jenkins, 'jenkins_open') def test_simple(self, jenkins_mock): queue_info_to_return = { 'items': { u'task': { u'url': u'http://your_url/job/my_job/', u'color': u'aborted_anime', u'name': u'my_job' }, u'stuck': False, u'actions': [ { u'causes': [ { u'shortDescription': u'Started by timer', }, ], }, ], u'buildable': False, u'params': u'', u'buildableStartMilliseconds': 1315087293316, u'why': u'Build #2,532 is already in progress (ETA:10 min)', u'blocked': True, } } jenkins_mock.return_value = json.dumps(queue_info_to_return) queue_info = self.j.get_queue_info() self.assertEqual(queue_info, queue_info_to_return['items']) self.assertEqual( jenkins_mock.call_args[0][0].url, self.make_url('queue/api/json?depth=0')) self._check_requests(jenkins_mock.call_args_list) class JenkinsQueueItemTest(JenkinsTestBase): @patch.object(jenkins.Jenkins, 'jenkins_open') def test_simple(self, jenkins_mock): queue_item_to_return = { u'_class': u'hudson.model.Queue$LeftItem', u'actions': [{u'_class': u'hudson.model.CauseAction', u'causes': [{u'_class': u'hudson.model.Cause$UserIdCause', u'shortDescription': u'Started by user Bob', u'userId': u'bsmith', u'userName': u'Bob'}]}], u'blocked': False, u'buildable': False, u'cancelled': False, u'executable': {u'_class': u'hudson.model.FreeStyleBuild', u'number': 198, u'url': u'http://your_url/job/my_job/198/'}, u'id': 25, u'inQueueSince': 1507914654469, u'params': u'', u'stuck': False, u'task': {u'_class': u'hudson.model.FreeStyleProject', u'color': u'red', u'name': u'my_job', u'url': u'http://your_url/job/my_job/'}, u'url': u'queue/item/25/', u'why': None, } jenkins_mock.return_value = json.dumps(queue_item_to_return) queue_item = self.j.get_queue_item(25) self.assertEqual(queue_item, queue_item_to_return) self.assertEqual( jenkins_mock.call_args[0][0].url, self.make_url('queue/item/25/api/json?depth=0')) self._check_requests(jenkins_mock.call_args_list)
python
from itertools import permutations l=list(map(int,input().split())) r=list(permutations(l)) print(r)
python
import typing import datetime import pandas as pd from .make_df import ComicDataFrame from lib.aws_util.s3.upload import upload_to_s3 from lib.aws_util.s3.download import download_from_s3 def store(df: ComicDataFrame) -> typing.NoReturn: dt = datetime.datetime.now() bucket = 'av-adam-store' save_dir = '/tmp/' upload_dir = f'ruijianime/comic/' meta_path = f'{save_dir}meta.csv' meta_obj = f'{upload_dir}meta.csv' tag_path = f'{save_dir}tag.csv' tag_obj = f'{upload_dir}tag.csv' author_path = f'{save_dir}author.csv' author_obj = f'{upload_dir}author.csv' def add_timestamp() -> typing.NoReturn: df.meta['updated_at'] = dt df.tag['updated_at'] = dt df.author['updated_at'] = dt def download() -> typing.NoReturn: download_from_s3(bucket, meta_obj, meta_path) download_from_s3(bucket, tag_obj, tag_path) download_from_s3(bucket, author_obj, author_path) def merge() -> typing.NoReturn: meta_old = pd.read_csv(meta_path) meta = pd.concat((meta_old, df.meta), ignore_index=True) meta.drop_duplicates( subset=['comic_id'], keep='last', inplace=True, ) print(meta) meta.to_csv(meta_path, index=False) tag_old = pd.read_csv(tag_path) tag = pd.concat((tag_old, df.tag), ignore_index=True) tag.drop_duplicates( subset=['comic_id', 'tag_id'], keep='last', inplace=True, ) print(tag) tag.to_csv(tag_path, index=False) author_old = pd.read_csv(author_path) author = pd.concat( (author_old, df.author), ignore_index=True, ) author.drop_duplicates( subset=['comic_id', 'author'], keep='last', inplace=True, ) print(author) author.to_csv(author_path, index=False) def upload() -> typing.NoReturn: upload_to_s3(bucket, meta_obj, meta_path) upload_to_s3(bucket, tag_obj, tag_path) upload_to_s3(bucket, author_obj, author_path) add_timestamp() download() merge() upload()
python
from .charge import Charge
python
from telegram.ext import Updater, CommandHandler, ConversationHandler, MessageHandler, Filters, CallbackQueryHandler from telegram import InlineKeyboardMarkup, InlineKeyboardButton, ChatAction #Google import gspread from oauth2client.service_account import ServiceAccountCredentials import os import pandas as pd INPUT_TEXT=0 # Google nSHEET='publi' SPREAD_KEY='SPREAD' CREDS_JSON = 'access-key.json' scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive.file", "https://www.googleapis.com/auth/drive"] creds = ServiceAccountCredentials.from_json_keyfile_name( CREDS_JSON, scope ) client = gspread.authorize(creds) gsheet = client.open_by_key(SPREAD_KEY) #termina Google def start(update, context): user = update.message.from_user.username button1 = InlineKeyboardButton( text='Autor', #url='https://app.proofofhumanity.id/profile/0xEc5E23454b8Efe59E990e7AC2e443B8d980EEa18', callback_data = 'autorcb' #Devolver nombre y wallet ) button2=InlineKeyboardButton( text='Publicar', callback_data='publicarcb' ) button3=InlineKeyboardButton( text='Borrar', url='https://app.proofofhumanity.id/profile/0xEc5E23454b8Efe59E990e7AC2e443B8d980EEa18' #Tomar datos del usuario y borrar en la lista de publicaciones ) button4 = InlineKeyboardButton( text='Lista', callback_data='listacb' ) update.message.reply_text( f'Bienvenido {update.message.from_user.username}, \nSelecciona una opcion:', reply_markup=InlineKeyboardMarkup([ [button4], [button2, button3], [button1] ]) ) #Enviar lista def lista_command (update, context): # tomar id del grupo de telegram P2P # mirar como pasar persona # user_id:update.effective_user['id'] # context.bot.send_message( # chat_id='@ubip2p', ''' columna 1 itemss = get_items() for a in itemss: update.message.reply_text(a) ''' items = get_items() update.message.reply_text(f'{items}') #TO-DO: Sacar id de pandas y primer fila. #TO-DO: Poner @ antes del nombre def lista_callback(update, context): query = update.callback_query query.answer() items = get_items() query.edit_message_text('Lista:') query.message.reply_text( f'{items}' ) #TO-DO: Sacar id de pandas y primer fila. # Publicar def publicar_command(update, context): update.message.reply_text( 'Publica tu anuncio con los siguientes datos: \n\nCantidad de UBIS, COMRPO|VENDO, comentario') return INPUT_TEXT def publicar_callback(update, context): query = update.callback_query query.answer() query.edit_message_text( text='Publica tu anuncio con los siguientes datos: \n\nCantidad de UBIS, COMRPO|VENDO, comentario' ) return INPUT_TEXT #Autor def autor_command(update, context): update.message.reply_text( 'Autor del bot:\nhttps://app.proofofhumanity.id/profile/0xEc5E23454b8Efe59E990e7AC2e443B8d980EEa18\nSi queres ayudar, podes contribuir con UBIS o con el token que puedas, en la red que quieras.\nWallet:\n0xEc5E23454b8Efe59E990e7AC2e443B8d980EEa18') return INPUT_TEXT def autor_callback(update, context): query = update.callback_query query.answer() query.edit_message_text( text='Autor del bot:\nhttps://app.proofofhumanity.id/profile/0xEc5E23454b8Efe59E990e7AC2e443B8d980EEa18\nSi queres ayudar, podes contribuir con UBIS o con el token que puedas, en la red que quieras.\nWallet:\n0xEc5E23454b8Efe59E990e7AC2e443B8d980EEa18' ) #Borrar #Fin def fin_conv(update, context): return ConversationHandler.END #Google def get_items(): items = get_sheet(nSHEET) return items #Toma los valores de la segunda columna def get_sheetcol(sheet_name): sheet = gsheet.worksheet(sheet_name) items = sheet.col_values(2) return items #anterior (toma todos los valores como lsita de listas) def get_sheet(sheet_name): sheet = gsheet.worksheet(sheet_name) items = pd.DataFrame(sheet.get_all_records()) return items def store_publi(update,context): text = update.message.text user = update.message.from_user.username chat = update.message.chat sheet = gsheet.worksheet(nSHEET) clients = pd.DataFrame(get_sheet(nSHEET)) cond = sheet.findall(user) if (cond == []): sheet.add_rows(1) sheet.append_row([text,user]) update.message.reply_text(f'El anuncio ha sido creado.') else: update.message.reply_text(f'Ya existe un anuncio hecho al nombre de @{user}.\nBorralo para publicar uno nuevo.') return ConversationHandler.END if __name__== '__main__': updater = Updater(token='TOKEN', use_context=True) dp= updater.dispatcher #manejadores dp.add_handler(CommandHandler('start', start)) dp.add_handler(ConversationHandler( entry_points=[ CommandHandler('autor', autor_command), CallbackQueryHandler(pattern='autorcb', callback=autor_callback), CommandHandler('lista', lista_command), CallbackQueryHandler(pattern='listacb', callback=lista_callback), ], states={ INPUT_TEXT: [MessageHandler(Filters.text, fin_conv)] }, fallbacks=[] )) dp.add_handler(ConversationHandler( entry_points=[ CommandHandler('publicar', publicar_command), CallbackQueryHandler(pattern='publicarcb', callback=publicar_callback), ], states = { INPUT_TEXT: [MessageHandler(Filters.text, store_publi)] }, fallbacks = [] )) #add handdler updater.start_polling() updater.idle()
python
""" Manages creation of POVMs and geneartion of outcomes from measuring these POVM given a state Author: Akshay Seshadri """ import numpy as np import scipy as sp from scipy import stats import project_root # noqa from src.utilities.qi_utilities import generate_random_state, generate_POVM, generate_Pauli_operator from src.utilities.noise_process import depolarizing_channel class Measurement_Manager(): """ Manages creation of different types of POVMs, and generating measurement outcomes from these POVMs (for which a state is created) """ def __init__(self, random_seed = 1): """ Initializes some of the parameters """ # store the random seed for access by other functions (mainly for including it in parameters to be saved) self.random_seed = random_seed # set the random seed only once when the class is invoked, and nowhere else if random_seed: np.random.seed(int(random_seed)) def create_measurements(self, n = 2, N = 2, num_povm_list = 2, pauli = True, rho = None, projective_list = False, return_POVM = True): """ Generates POVM using the specified parameters. The actual POVM generation is done by qi_utilities.generate_POVM; create_measurements generates appropriate parameters to pass to this function and does the necessary post-processing. 'pauli' can either be True, False/None, or a list of pauli operators (represented by a string of the form 'i_1i_2...i_nq', where each i_k is between 0 & 3) If pauli is True, then a state "rho" must be provided; Pauli weights are obtained using this state """ ### store the parameters for later use # dimension of the system self.n = n # number of (types of) measurements self.N = N # list of number of POVM elements for each (type of) measurement # if a number is provided, a list (of integers) is created from it if type(num_povm_list) != list: num_povm_list = [int(num_povm_list)]*N else: num_povm_list = [int(num_povm) for num_povm in num_povm_list] # list specifying whether to use projective measurements if type(projective_list) != list: projective_list = [projective_list]*N self.projective_list = projective_list else: projective_list = [bool(is_projective) for is_projective in projective_list] self.projective_list = projective_list # whether to use Pauli measurements self.pauli = pauli # generate the POVM # list of POVMs POVM_list = [0]*N # generate a POVM if not (pauli is None or pauli is False): # ensure that the systems is comprised of qubits # number of qubits nq = int(np.log2(n)) if 2**nq != n: raise ValueError("Pauli weighting possible only in systems of qubits, i.e., the dimension should be a power of 2") # pauli can either be True, False/None, or a list of pauli operators (represented by a string of the form 'i_1i_2...i_nq', where each i_k is between 0 & 3) # if pauli is not a list, do weighted Pauli measurements if type(pauli) not in [tuple, list, np.ndarray]: if rho is None: raise ValueError("A state must be provided to find the Pauli weights") # find Tr(rho W) for each Pauli operator W; this is only a heuristic weight if rho is not pure self.pauli_weight_list = [(count + 1, (np.abs(np.conj(rho).dot(W))/np.sqrt(n))**2) for (count, W) in\ enumerate(generate_Pauli_operator(nq, list(range(1, 4**nq)), flatten = True))] # find the largest 'N' weights, and measure the corresponding Pauli operators self.pauli_measurements = sorted(self.pauli_weight_list, key = lambda x: x[1], reverse = True)[:N] # Note: if the entries of num_povm_list are different, it is ambiguous which entry corresponds to the Pauli operator after the above re-ordering, # so we don't allow for this; one can specify the pauli operators as well as num_povm_list explicitly (as a list) for using this option # see https://stackoverflow.com/questions/3844801/check-if-all-elements-in-a-list-are-identical if [num_povm_list[0]] * len(num_povm_list) != num_povm_list: raise ValueError("When Pauli operators are to be inferred using weights, every element of num_povm_list must be the same") else: num_povm = num_povm_list[0] # build a POVM for each selected Pauli measurement POVM_list = [generate_POVM(n, num_povm = num_povm, projective = True, flatten = True, isComplex = True, verify = False,\ pauli = np.base_repr(i, base = 4), random_seed = None) for (i, _) in self.pauli_measurements] else: if len(pauli) != N: raise ValueError("Number of measurements (N) provided and the number of pauli operators listed do not match") # use the strings specified in pauli to measure those Pauli operators POVM_list = [generate_POVM(n, num_povm = num_povm, projective = True, flatten = True, isComplex = True, verify = False,\ pauli = pauli_string, random_seed = None) for (num_povm, pauli_string) in zip(num_povm_list, pauli)] else: for i in range(N): num_povm = num_povm_list[i] # when projective is True, ensure that num_povm = n if projective_list[i]: num_povm = n POVM_list[i] = generate_POVM(n, num_povm = num_povm, projective = projective_list[i], flatten = True, isComplex = True, verify = False,\ random_seed = None) # list of POVM elements corresponding to each measurement self.POVM_list = POVM_list # list of POVM elements flattened and stacked to be stored as one large matrix for each measurement self.POVM_mat_list = [np.vstack(POVM) for POVM in POVM_list] # we also store N_list (which is basically num_povm_list), but this naming convention is used for other parts of the code self.N_list = [len(POVM) for POVM in POVM_list] if return_POVM: return POVM_list def perform_measurements(self, sigma = None, R_list = 1000, epsilon_o = 1e-5, outcome_eigvals = None, num_sets_outcomes = 1, pure = True, noise = False,\ noise_type = 'depolarizing', return_outcomes = True): """ Performs measurements specified by generate_POVM. The number of repetitions of each type of measurement is specified by R_list. For performing the measurement, a state (of the system) 'sigma' can be specified. If this is not specified, a state is generated. This can either be pure or mixed (speified by 'pure'). The state can optionally be passed through a noise channel. The type of noise channel is specified by 'noise_type', and whether or how much noise to add is specified by 'noise'. sigma : state of the system R_list : a list of number of repetitions of each type of measurement epsilon_o : constant incorporated in Born's rule to avoid zero division (a positive number much smaller than 1) outcome_eigvals : The eigenvalues of the outcomes described by the POVM (each eigenvalue should correspond to the appropriate POVM element). Default is None, which means instead of the eigenvalue, the index of the POVM is returned. Should have the format [[Ni elts] for Ni in range(N_list)]. Checks are not performed to ensure this is the case. num_sets_outcomes : one set of outcomes is each of the measurements repeated a number of times specified by R_list; 'num_sets_outcomes' specifies how many such sets are generated pure : specifies whether the state of the system is pure or mixed noise : if True/False, specifies whether to pass the generated state through a noise channel if True, a noise value of 0.1 is used if noise is a number between 0 and 1, that noise level is used noise_type : specifies which noise channel to use TODO: If num_sets_outcomes = 1, return the outcomes directly, instead of nested them in a list. Not changing this behaviour now as it would break some other code. """ # constant in modified Born's rule that prevents zero-division self.epsilon_o = epsilon_o # list of number of repetitions of each (type of) measurement if type(R_list) not in [tuple, list, np.ndarray]: self.R_list = [int(R_list)]*self.N else: # convert R to an integer if it already isn't one self.R_list = [int(R) for R in R_list] num_sets_outcomes = int(num_sets_outcomes) ### parameters related to the state # whether to create a pure or mixed state self.pure = pure # whether to pass the prepared state through a noisy channel # note that noise can be True, False or any number between 0 and 1 self.noise = noise # type of noise channel self.noise_type = noise_type # generate the state # create the state ("prepared in the lab") if sigma is None: sigma = generate_random_state(self.n, pure = pure, density_matrix = True, flatten = True, isComplex = True, verify = False,\ random_seed = None) if noise: # the state decoheres due to noise if type(noise) == float: if not (noise >= 0 and noise <= 1): raise ValueError("noise level must be between 0 and 1") sigma = depolarizing_channel(sigma, p = noise) else: sigma = depolarizing_channel(sigma, p = 0.1) ### perform the measurements # check if we have POVM_list to perform the measurement try: POVM_mat_list = self.POVM_mat_list except AttributeError: raise ValueError("Measurements to be performed have not been specified. Use Measurement_Manager.create_measurements to generate the necessary measurements.") # assign eigenvalues the POVM outcomes if provided, else return the index of the POVM if outcome_eigvals is None or outcome_eigvals is False: # point to the index of the outcome self.outcome_indicator = [list(range(Ni)) for Ni in self.N_list] else: # if eigenvalues are provided, generate them self.outcome_indicator = outcome_eigvals # a (discrete) random variable present with probabilities from Born's rule for each measurement self.drv_list = [None]*self.N self.p_sigma_list = [np.zeros(Ni) for Ni in self.N_list] # first obtain the probability distribution corresponding to each POVM measurement, and create a random variable with these # probability distributions for repeated use for i in range(self.N): # matrix for ith POVM POVM_mat_i = POVM_mat_list[i] # number of repetitions for ith measurement Ri = self.R_list[i] # number of possible outcomes for ith measurement Ni = self.N_list[i] # outcomes to be generated for the ith measurement outcome_indicator_i = self.outcome_indicator[i] # the probability distribution corresponding to the ith POVM in the actual state sigma p_sigma_i = np.real(np.conj(POVM_mat_i).dot(sigma) + epsilon_o/Ni) / (1. + epsilon_o) self.p_sigma_list[i] = p_sigma_i # create a list discrete random variable distributed as per p_sigma and taking values in outcome_indicator_i drv = sp.stats.rv_discrete(values = (outcome_indicator_i, p_sigma_i)) self.drv_list[i] = drv # use the random variables to generate measurement outcomes self.num_sets_outcomes = num_sets_outcomes # Caution: don't do [[list]]*num in the following because this duplicates the inner list [list], and # changing the ith inner list will change all of the inner list self.data_list = [[np.zeros(Ri) for Ri in self.R_list] for _ in range(num_sets_outcomes)] for i_set in range(num_sets_outcomes): for i in range(self.N): # generate Ri samples from {0, ..., N - 1} as per the probability distribution p_sigma_i data_i = self.drv_list[i].rvs(size = self.R_list[i]) # raw data is used to estimate fidelity directly self.data_list[i_set][i] = data_i if return_outcomes: return self.data_list
python
#!/usr/bin/env python3 import logging import resource import sys logging.basicConfig(level=logging.INFO) import teether.project if __name__ == '__main__': if len(sys.argv) < 2: print('Usage: %s [flags] <code>' % sys.argv[0]) exit(-1) mem_limit = 4 * 1024 * 1024 * 1024 # 4GB resource.setrlimit(resource.RLIMIT_AS, (mem_limit, mem_limit)) infile = sys.argv[-1] if infile.endswith('.json'): import json with open(infile, 'rb') as f: jd = json.load(f) p = teether.project.Project.from_json(jd) else: p = teether.project.load(infile) print(p.cfg.to_dot(minimal='-m' in sys.argv or '--minimal' in sys.argv))
python
#!/usr/bin/python3 from PyQt5.QtWidgets import * class ModulPU(QWidget): def __init__(self): super().__init__() self.layout = QGridLayout() self.setLayout(self.layout) ################################################################################################################# #################################################################################### Przykladowa klasa modulu #### ################################################################################################################# #class Przyklad(ModulPU): #Dziedziczenie po klasie glownej "Modul" # def __init__(self,config): # super().__init__() # butt = QPushButton("Click ME",self) # butt.clicked.connect(self.wcisniety) # butt.show() # self.layout.addWidget(butt,0,0) # self.cn = config # def wcisniety(self): # qm = QMessageBox(self) # qm.setText(self.cn["LOGIN"]) # qm.show()
python
# encoding: utf-8 # Copyright 2011 California Institute of Technology. ALL RIGHTS # RESERVED. U.S. Government Sponsorship acknowledged. '''Service Binding: implementation''' from Acquisition import aq_inner, aq_parent from ipdasite.services import ProjectMessageFactory as _ from ipdasite.services.config import PROJECTNAME from ipdasite.services.interfaces import IServiceBinding from Products.Archetypes import atapi from Products.ATContentTypes.content import folder from Products.ATContentTypes.content import schemata from zope.interface import implements import pds.registry.model, registryobject ServiceBindingSchema = registryobject.RegistryObjectSchema.copy() + folder.ATFolderSchema.copy() + atapi.Schema(( atapi.StringField( 'accessURI', required=False, searchable=False, storage=atapi.AnnotationStorage(), widget=atapi.StringWidget( label=_(u'Access URI'), description=_(u'URI that identifies the endpoint where the service may be accessed'), size=50, ), ), )) ServiceBindingSchema['title'].storage = atapi.AnnotationStorage() ServiceBindingSchema['description'].storage = atapi.AnnotationStorage() schemata.finalizeATCTSchema(ServiceBindingSchema, folderish=True, moveDiscussion=False) class ServiceBinding(folder.ATFolder, registryobject.RegistryObject): '''A service binding identifies the endpoint and specifications for a service.''' implements(IServiceBinding) schema = ServiceBindingSchema portal_type = 'Service Binding' accessURI = atapi.ATFieldProperty('accessURI') description = atapi.ATFieldProperty('description') title = atapi.ATFieldProperty('title') def toPDSRegistry(self): service = aq_parent(aq_inner(self)) b = pds.registry.model.ServiceBinding( self.guid, self.lid, service.guid, self.home, set(), self.title, 'accepted', self.description, versionName=self.versionID, accessURI=self.accessURI, specificationLinks=None, targetBinding=None ) for i in self.keys(): specificationLink = self[i] b.specificationLinks.add(specificationLink.toPDSRegistry()) return b atapi.registerType(ServiceBinding, PROJECTNAME)
python
from pathlib import Path from conanRunner import conanRunner def conanInstall(conanfile, installFolder): print("\n") conanfile = str(conanfile) installFolder = str(installFolder) args = ["install", conanfile, "--install-folder", installFolder] for s in conanRunner(args): print(s)
python
# coding: utf-8 """ Telstra Event Detection API # Introduction Telstra's Event Detection API provides the ability to subscribe to and receive mobile network events for registered mobile numbers associated with Telstra's mobile network, such as; SIM swap, port-in, port-out, new MSIDN, new mobile service and cancelled mobile service, as well as carrier-detection. ## Features Event Detection API provides these features | Feature | Description | |---|---| |`SIM swap` | Returns timestamped event data when any of the following network events occurs in connection with a registered mobile number associated with Telstra’s mobile network: SIM swap, port-in, port-out, new MSISDN, new mobile service or cancelled mobile service | |`Carrier Detection` | Find out what Australian carrier a mobile number is subscribed to | |`International Roaming` | *Coming soon.* Will indicate if a mobile number is operaing in Australia or outside of Australia. | ## Getting access to the API The Event Detection API is available on our Enterprise Plans only. Please submit your [sales enquiry](https://dev.telstra.com/content/sales-enquiry-contact-form) . Or contact your Telstra Account Executive. We're available Monday to Friday 9am - 5pm. ## Frequently asked questions **Q: What is the Telstra Event Detection (TED) API?** A: The Telstra Event Detection (TED) API is a subscription based service from Telstra that enables a customer to be alerted when a particular network event is detected in connection with a registered mobile number that may indicate that a fraudulent misuse of an end user’s mobility service is about to occur. **Q: What are the network events that the TED API can detect?** A: Currently the TED API is able to detect a bundle of events associated with Telstra SIM swaps. **Q: Can TED API detect number porting between operators other than Telstra? E.g. Optus to Vodafone?** A: No, we don’t report these type of events at present. **Q: How quickly are the network events detected?** A: This will vary depending on the event being detected, but generally we detect the event within a couple of seconds of it occurring and notify subscribers within near real time via the API. **Q: How long does Telstra store the event data for?** A: Event data is stored for 90 days from the occurrence of a network event and then securely purged. **Q: Is there a limit to the number of registered mobile numbers I can have for the Telstra Event Detection API?** A: No. You may have as many Telstra Event Detection API registered mobile numbers as you require within practical limits. **Q: Why is monitoring for SIM SWAP events important?** A: Criminals are becoming much more savvy and will often try to circumvent two factor authentication protocols by swapping the SIM card for a particular mobile number in order to gain fraudulent access to the end user’s service. Monitoring for SIM swap events may provide early detection that this is occurring and help prevent criminals from being successful in their endeavours. **Q: If an end user is currently a customer of a Telstra Reseller that still utilises the Telstra Network, am I able to detect their Network events?** A: No. Telstra resellers such as Aldi Mobile are Mobile Virtual Network Operators (MVNO) that operate as totally independent businesses to Telstra. The Telstra SIM swap API does not monitor MNVO network events at present. **Q: How do I purchase Telstra Event Detection API?** A: At the moment, the Telstra Event Detection API is only available through your Telstra Account Manager. If you don't have a Telstra Account Manager, or are not sure who they are, please submit a [sales enquiry](https://dev.telstra.com/content/sales-enquiry-contact-form). **Q: What support options are available for the Telstra Event Detection API?** A: We provide 24/7 telephone based technical support (for paid plans) along with email support and an online community forum. **Q: Do you detect network events from another carrier?** A: The Telstra Event Detection API detects network events associated with the Telstra network and Telstra mobile services. **Q: Which Telstra personnel have access to the event detection data?** A: Access to Telstra Event Detection data is restricted to only Telstra personnel that require access for the purposes of providing the service. **Q: Why should I purchase the Telstra Event Detection API from Telstra?** A: As the network events are occurring on the Telstra network, Telstra is in a position to be able to provide fast notification of an event as it is occurring, helping subscribers to prevent fraudulent activity from occurring and to minimise the resulting financial losses. **Q: If I require assistance setting up my Telstra Event Detection API, are there any Professional Services options available to me?** A: At the current time, the Telstra Event Detection API does not have any Professional Service options available. **Q: What subscription options are available for Telstra Event Detection API?** A: There is a month-by-month Pay As You Go (PAYG) plan or 12 Month contract option available. **Q: Do Early Termination Charges (ETC’s) apply?** A: If you have subscribed to a 12 month contract and want to terminate the plan or downgrade to a lower plan before the expiry of your existing 12 month term, we may charge you ETCs. **Q: What privacy requirements apply to my use of the Telstra Event Detection API?** A: Before registering an end user’s mobile number with Telstra Event Detection API, you must: 1. prepare an “End User Notification” for our approval, which sets out what end user information will be disclosed via the API, the purposes for which that information will be disclosed, and to which third parties that information will be disclosed; 2. provide each of your end user with the End User Notification; and 3. obtain express, informed consent from each end user to the use and disclosure of their event data via the API for the purposes set out in the notification. **Q: What terms and conditions apply to my use of the Telstra Event Detection API?** A: Before using the Telstra Event Detection API, you must agree to the TED API [“Our Customer Terms”](https://www.telstra.com.au/customer-terms/business-government#cloud-services). # Getting Started First step is to create an `App`. After you've created an `App`, follow these steps 1. Authenticate by getting an Oauth token 2. Use the Event Detection API ## Run in Postman To get started quickly and easily with all the features of the Event Detection API, download the Postman collection here <a href=\"https://app.getpostman.com/run-collection/8ab2273e066e5c6fd653#?env%5BEvent%20Detection%20API%5D=W3sidHlwZSI6InRleHQiLCJlbmFibGVkIjp0cnVlLCJrZXkiOiJjbGllbnRfaWQiLCJ2YWx1ZSI6ImNsaWVudF9pZCJ9LHsidHlwZSI6InRleHQiLCJlbmFibGVkIjp0cnVlLCJrZXkiOiJjbGllbnRfc2VjcmV0IiwidmFsdWUiOiJjbGllbnRfc2VjcmV0In0seyJ0eXBlIjoidGV4dCIsImVuYWJsZWQiOnRydWUsImtleSI6ImFjY2Vzc190b2tlbiIsInZhbHVlIjoiaTZPdmtyelVuc3hvODhrcU9BMXg4RWtPVWxuSyJ9LHsidHlwZSI6InRleHQiLCJlbmFibGVkIjp0cnVlLCJrZXkiOiJob3N0IiwidmFsdWUiOiJ0YXBpLnRlbHN0cmEuY29tIn0seyJ0eXBlIjoidGV4dCIsImVuYWJsZWQiOnRydWUsImtleSI6Im9hdXRoLWhvc3QiLCJ2YWx1ZSI6InRhcGkudGVsc3RyYS5jb20ifV0=\"><img alt=\"Run in Postman\" src=\"https://run.pstmn.io/button.svg\" /></a> ## Authentication To get an OAuth 2.0 Authentication token, pass through your Consumer Key and Consumer Secret that you received when you registered for the Event Detection API key. The `grant_type` should be left as `client_credentials` and the scope as v1_eventdetection_simswap. The token will expire in one hour. Get your keys by creating an `App`. # Request ` CONSUMER_KEY=\"your consumer key\" CONSUMER_SECRET=\"your consumer secret\" curl -X POST -H 'Content-Type: application/x-www-form-urlencoded' \\ -d 'grant_type=client_credentials&client_id=$CONSUMER_KEY&client_secret=$CONSUMER_SECRET&scope=v1_eventdetection_simswap' \\ 'https://tapi.telstra.com/v2/oauth/token' ` # Response `{ \"access_token\" : \"1234567890123456788901234567\", \"token_type\" : \"Bearer\", \"expires_in\" : \"3599\" }` ## Subscribe mobile numbers Subscribing end user mobile numbers informs the API to register that mobile number so that you can poll those numbers for particular events. You can subscribe and unsubscribe numbers (opt in and opt out) against this service. Only numbers that are opted in (i.e. subscribed) can be polled for events. You must have obtained your end customer’s consent before you can opt them into the Event Detection service. # Request `curl -X POST -H 'content-type: application/json' \\ -H 'Authorization: Bearer $TOKEN' \\ -d '{ \"msisdns\": [ \"61467754783\" ], \"eventType\": \"simswap\", \"notificationUrl\": \"https://requestb.in/161r14g1\" }' \\ 'https://tapi.telstra.com/v1/eventdetection/events'` | Parameter | Description | |---|---| |`msisdns` | list of mobile numbers that has to be registered for the event | |`eventType` | event Type to be subscribed to | |`notificationUrl` | URL where the event notifications has to be posted (Optional) | # Response `{ \"msisdns\": [ { \"msisdn\": \"61467754783\", \"description\": \"opt-in status updated for this MSISDN\", \"carrierName\": \"Telstra\" } ] }` | Parameter | Description | |---|---| |`msisdn` | msisdn | |`description` | status description indicating if the msisdn was opted-in| |`carrierName` | carrier name for the msisdn | ## Unsubscribe mobile numbers Unsubscribe mobile numbers against a particular event # Request `curl -X DELETE -H 'content-type: application/json' \\ -H 'Authorization: Bearer $token' \\ -d '{\"msisdns\": [\"61467754783\"]}' \\ 'https://tapi.telstra.com/v1/eventdetection/events/{event-type}'` | Parameter | Description | |---|---| |`msisdns` | list of mobile numbers that has to be unsubscribed from the event | |`eventType` | event Type to be unsubscribed from | |`notificationUrl` | notification URL that has to be removed (Optional) | # Response ` { \"msisdns\": [ { \"msisdn\": \"61467754783\", \"description\": \"opt-out status updated for this MSISDN\", \"carrierName\": \"Telstra\" } ] } ` | Parameter | Description | |---|---| |`msisdn` | msisdn | |`description` | status description indicating if the msisdn was opted-out | |`carrierName` | carrier name for the msisdn | ## Get event subscriptions Get the list of events subscribed for # Request `curl -X POST -H 'content-type: application/json' \\ -H 'Authorization: Bearer $TOKEN' \\ -d '{ \"msisdns\": [ \"61467754783\" ] }' \\ 'https://tapi.telstra.com/v1/eventdetection/events/subscriptions'` | Parameter | Description | |---|---| |`msisdns` | list of msisdns to get the subscription details | # Response ` { \"notificationURL\": \"https://requestb.in/161r14g1\", \"subscriptions\": [ { \"msisdn\": \"61467754783\", \"events\": [ \"SIM_SWAP\" ], \"carrierName\": \"Telstra\" } ] } ` | Parameter | Description | |---|---| |`notificationURL` | notification URL configured while registering msisdns | |`msisdn` | msisdn | |`events` | list of subscribed events for that msisdn | |`carrierName` | carrier name for the msisdn | ## Poll events Poll events for a given set of msisdns # Request `curl -X POST -H 'content-type: application/json' \\ -H 'Authorization: Bearer $token' \\ -d '{ \"msisdns\": [ \"61467754783\", \"61467984007\" ] }' \\ 'https://tapi.telstra.com/v1/eventdetection/events/{event_type}'` Parameter | Description | |---|---| |`msisdns` | list of msisdns to be polled for events | |`eventType` | event Type to be polled for | # Response ` { \"eventType\": \"simswap\", \"msisdns\": [ { \"msisdn\": \"+61467754783\", \"mobileServiceEvents\": [ { \"eventId\": \"NEW_SIM\", \"eventDate\": \"2018-01-19T14:40:34\" } ] }, { \"msisdn\": \"+61467984007\", \"mobileServiceEvents\": [ { \"eventId\": \"PORTOUT_SVC\", \"eventDate\": \"2018-02-21T15:20:01\", \"carrierName\": \"Telstra\" } ] } ] } ` | Parameter | Description | |---|---| |`eventType` | event type requested | |`msisdn` | msisdn | |`mobileServiceEvents` | list of service events | |`eventId` | Id of the event occured. Event Id can be any one of the following - NEW_MSISDN, PORTIN_SVC, PORTOUT_SVC, NEW_SIM, CREATE_SVC, DELETE_SVC | |`eventDate` | timestamp indicating when the event occured | |`carrierName` | carrier name for the msisdn. Carrier name will be returned only for port out events | ## Push notifications Push event notifications to the URL are configured with the parameter `notificationUrl` while subscribing mobile numbers. # Event notification format ` { \"eventId\": \"NEW_SIM\", \"msisdn\" : \"61467754783\", \"eventDate\" : \"2018-01-19T14:40:34\" } ` | Parameter | Description | |---|---| |`eventId` | event Id indicating the event occured. Event Id can be any one of the following - NEW_MSISDN, PORTIN_SVC, PORTOUT_SVC, NEW_SIM, CREATE_SVC, DELETE_SVC | |`msisdn` | msisdn for which the event occured | |`eventDate` | timestamp indicating when the event occured | ## SIMswap sub-features The following is a list of the sub-features for SIM swap and the description for that sub-feature. These will appear in the 'eventId' parameter in the API response payload for SIMswap events. | SIM swap Sub-Feature | Description | |---|---| |`NEW_MSISDN` | The MSISDN of a service changes. The SIM card is not changed. Results in two events being created: 1) CREATE_SVC/PORT_IN_SVC for the new number, and 2) a NEW_MSISDN for the old MSISDN | |`PORTIN_SVC` | A MSISDN registered for event detection is created as a mobile service on the Telstra network (note: if the MSISDN was not already registered by at least one customer for at least one event type, this event would be interpreted as a CREATE_SVC) | |`PORTOUT_SVC` | The MSISDN is ported out from Telstra to another domestic operator | |`NEW_SIM` | An existing Telstra MSISDN is moved onto a new SIM | |`CREATE_SVC` | A new mobile service is created on the Telstra network (a new SIM and a new MSISDN) | |`DELETE_SVC` | A mobile service (MSISDN and SIM) on the Telstra network is cancelled outright (as opposed to ported out to another domestic network) | ## SDK repos * [Event Detection API - Java SDK](https://github.com/telstra/EventDetectionAPI-SDK-java) * [Event Detection API - .Net2 SDK](https://github.com/telstra/EventDetectionAPI-SDK-dotnet) * [Event Detection API - NodeJS SDK](https://github.com/telstra/EventDetectionAPI-SDK-node) * [Event Detection API - PHP SDK](https://github.com/telstra/EventDetectionAPI-SDK-php) * [Event Detection API - Python SDK](https://github.com/telstra/EventDetectionAPI-SDK-python) * [Event Detection API - Ruby SDK](https://github.com/telstra/EventDetectionAPI-SDK-ruby) # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import io import json import logging import re import ssl import certifi # python 2 and python 3 compatibility library import six from six.moves.urllib.parse import urlencode try: import urllib3 except ImportError: raise ImportError('Swagger python client requires urllib3.') logger = logging.getLogger(__name__) class RESTResponse(io.IOBase): def __init__(self, resp): self.urllib3_response = resp self.status = resp.status self.reason = resp.reason self.data = resp.data def getheaders(self): """Returns a dictionary of the response headers.""" return self.urllib3_response.getheaders() def getheader(self, name, default=None): """Returns a given response header.""" return self.urllib3_response.getheader(name, default) class RESTClientObject(object): def __init__(self, configuration, pools_size=4, maxsize=None): # urllib3.PoolManager will pass all kw parameters to connectionpool # https://github.com/shazow/urllib3/blob/f9409436f83aeb79fbaf090181cd81b784f1b8ce/urllib3/poolmanager.py#L75 # noqa: E501 # https://github.com/shazow/urllib3/blob/f9409436f83aeb79fbaf090181cd81b784f1b8ce/urllib3/connectionpool.py#L680 # noqa: E501 # maxsize is the number of requests to host that are allowed in parallel # noqa: E501 # Custom SSL certificates and client certificates: http://urllib3.readthedocs.io/en/latest/advanced-usage.html # noqa: E501 # cert_reqs if configuration.verify_ssl: cert_reqs = ssl.CERT_REQUIRED else: cert_reqs = ssl.CERT_NONE # ca_certs if configuration.ssl_ca_cert: ca_certs = configuration.ssl_ca_cert else: # if not set certificate file, use Mozilla's root certificates. ca_certs = certifi.where() addition_pool_args = {} if configuration.assert_hostname is not None: addition_pool_args['assert_hostname'] = configuration.assert_hostname # noqa: E501 if maxsize is None: if configuration.connection_pool_maxsize is not None: maxsize = configuration.connection_pool_maxsize else: maxsize = 4 # https pool manager if configuration.proxy: self.pool_manager = urllib3.ProxyManager( num_pools=pools_size, maxsize=maxsize, cert_reqs=cert_reqs, ca_certs=ca_certs, cert_file=configuration.cert_file, key_file=configuration.key_file, proxy_url=configuration.proxy, **addition_pool_args ) else: self.pool_manager = urllib3.PoolManager( num_pools=pools_size, maxsize=maxsize, cert_reqs=cert_reqs, ca_certs=ca_certs, cert_file=configuration.cert_file, key_file=configuration.key_file, **addition_pool_args ) def request(self, method, url, query_params=None, headers=None, body=None, post_params=None, _preload_content=True, _request_timeout=None): """Perform requests. :param method: http request method :param url: http request url :param query_params: query parameters in the url :param headers: http request headers :param body: request json body, for `application/json` :param post_params: request post parameters, `application/x-www-form-urlencoded` and `multipart/form-data` :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. """ method = method.upper() assert method in ['GET', 'HEAD', 'DELETE', 'POST', 'PUT', 'PATCH', 'OPTIONS'] if post_params and body: raise ValueError( "body parameter cannot be used with post_params parameter." ) post_params = post_params or {} headers = headers or {} timeout = None if _request_timeout: if isinstance(_request_timeout, (int, ) if six.PY3 else (int, long)): # noqa: E501,F821 timeout = urllib3.Timeout(total=_request_timeout) elif (isinstance(_request_timeout, tuple) and len(_request_timeout) == 2): timeout = urllib3.Timeout( connect=_request_timeout[0], read=_request_timeout[1]) if 'Content-Type' not in headers: headers['Content-Type'] = 'application/json' try: # For `POST`, `PUT`, `PATCH`, `OPTIONS`, `DELETE` if method in ['POST', 'PUT', 'PATCH', 'OPTIONS', 'DELETE']: if query_params: url += '?' + urlencode(query_params) if re.search('json', headers['Content-Type'], re.IGNORECASE): request_body = None if body is not None: request_body = json.dumps(body) r = self.pool_manager.request( method, url, body=request_body, preload_content=_preload_content, timeout=timeout, headers=headers) elif headers['Content-Type'] == 'application/x-www-form-urlencoded': # noqa: E501 r = self.pool_manager.request( method, url, fields=post_params, encode_multipart=False, preload_content=_preload_content, timeout=timeout, headers=headers) elif headers['Content-Type'] == 'multipart/form-data': # must del headers['Content-Type'], or the correct # Content-Type which generated by urllib3 will be # overwritten. del headers['Content-Type'] r = self.pool_manager.request( method, url, fields=post_params, encode_multipart=True, preload_content=_preload_content, timeout=timeout, headers=headers) # Pass a `string` parameter directly in the body to support # other content types than Json when `body` argument is # provided in serialized form elif isinstance(body, str): request_body = body r = self.pool_manager.request( method, url, body=request_body, preload_content=_preload_content, timeout=timeout, headers=headers) else: # Cannot generate the request from given parameters msg = """Cannot prepare a request message for provided arguments. Please check that your arguments match declared content type.""" raise ApiException(status=0, reason=msg) # For `GET`, `HEAD` else: r = self.pool_manager.request(method, url, fields=query_params, preload_content=_preload_content, timeout=timeout, headers=headers) except urllib3.exceptions.SSLError as e: msg = "{0}\n{1}".format(type(e).__name__, str(e)) raise ApiException(status=0, reason=msg) if _preload_content: r = RESTResponse(r) # In the python 3, the response.data is bytes. # we need to decode it to string. if six.PY3: r.data = r.data.decode('utf8') # log response body logger.debug("response body: %s", r.data) if not 200 <= r.status <= 299: raise ApiException(http_resp=r) return r def GET(self, url, headers=None, query_params=None, _preload_content=True, _request_timeout=None): return self.request("GET", url, headers=headers, _preload_content=_preload_content, _request_timeout=_request_timeout, query_params=query_params) def HEAD(self, url, headers=None, query_params=None, _preload_content=True, _request_timeout=None): return self.request("HEAD", url, headers=headers, _preload_content=_preload_content, _request_timeout=_request_timeout, query_params=query_params) def OPTIONS(self, url, headers=None, query_params=None, post_params=None, body=None, _preload_content=True, _request_timeout=None): return self.request("OPTIONS", url, headers=headers, query_params=query_params, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) def DELETE(self, url, headers=None, query_params=None, body=None, _preload_content=True, _request_timeout=None): return self.request("DELETE", url, headers=headers, query_params=query_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) def POST(self, url, headers=None, query_params=None, post_params=None, body=None, _preload_content=True, _request_timeout=None): return self.request("POST", url, headers=headers, query_params=query_params, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) def PUT(self, url, headers=None, query_params=None, post_params=None, body=None, _preload_content=True, _request_timeout=None): return self.request("PUT", url, headers=headers, query_params=query_params, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) def PATCH(self, url, headers=None, query_params=None, post_params=None, body=None, _preload_content=True, _request_timeout=None): return self.request("PATCH", url, headers=headers, query_params=query_params, post_params=post_params, _preload_content=_preload_content, _request_timeout=_request_timeout, body=body) class ApiException(Exception): def __init__(self, status=None, reason=None, http_resp=None): if http_resp: self.status = http_resp.status self.reason = http_resp.reason self.body = http_resp.data self.headers = http_resp.getheaders() else: self.status = status self.reason = reason self.body = None self.headers = None def __str__(self): """Custom error messages for exception""" error_message = "({0})\n"\ "Reason: {1}\n".format(self.status, self.reason) if self.headers: error_message += "HTTP response headers: {0}\n".format( self.headers) if self.body: error_message += "HTTP response body: {0}\n".format(self.body) return error_message
python
import unittest import mock from factor_graph import FactorGraph, FactorGraphService, Node, Edge class TestFactorGraph(unittest.TestCase): pass class TestFactorGraphService(unittest.TestCase): ## mock FG for failure tests def test_create_success(self): factor_graph_service = FactorGraphService() factor_graph = factor_graph_service.create('some path') self.assertIsInstance(factor_graph, FactorGraph) def test_run_success(self): factor_graph_service = FactorGraphService() factor_graph = factor_graph_service.create('some path') result = factor_graph_service.run(factor_graph) self.assertIsInstance(result, dict) class TestEdge(unittest.TestCase): pass class TestNode(unittest.TestCase): @mock.patch('state.NodeState') def setUp(self, mock_node_state): node_id = 0 node_function = lambda x, y: x + y self.node_state = mock_node_state.return_value self.node = Node(node_id, node_function, self.node_state) def test_message_pass_success(self): incoming_message = 'incoming' self.assertIsNone(self.node.message_pass(incoming_message)) def test_message_pass_update_state_exception(self): self.node_state.update.side_effect = Exception() incoming_message = 'incoming' self.assertRaises(Exception, self.node.message_pass, incoming_message) def test_message_pass_compute_outgoing_message_exception(self): pass @mock.patch('Pubsub.Publisher.publish') def test_message_pass_propagate_message_exception(self, mock_publish_call): mock_publish_call.side_effect = Exception() incoming_message = 'incoming' self.assertRaises(Exception, self.node.message_pass, incoming_message) if __name__ == '__main__': unittest.main()
python
import configparser import inspect import logging import os import typing import numpy as np from ConfigSpace.configuration_space import Configuration from smac.runhistory.runhistory import RunHistory, RunKey from cave.utils.exceptions import NotApplicable def get_timeout(rh, conf, cutoff): """Check for timeouts. If multiple runs for an inst/config-pair are available, using the median (not the mean: no fractional timeouts) Parameters ---------- rh: RunHistory runhistory to take runs from conf: Configuration config to use cutoff: int to determine timeouts Returns ------- timeouts: Dict(str: bool) mapping instances to [True, False], where True indicates a timeout """ # TODO Possibly inconsistent: median over timeouts is timeout, but mean over # costs is not. Possible? if not cutoff: return {} # Check if config is in runhistory conf_id = rh.config_ids[conf] timeouts = {} runs = rh.get_runs_for_config(conf, only_max_observed_budget=True) for run in runs: # Averaging over seeds, run = (inst, seed) inst, seed, _git = run status = rh.data[RunKey(conf_id, inst, seed)].time < cutoff if inst in timeouts: timeouts[inst].append(status) else: timeouts[inst] = [status] # Use median timeouts = {i: np.floor(np.median(timeouts[i])) for i in timeouts.keys()} return timeouts def get_cost_dict_for_config(rh: RunHistory, conf: Configuration, par: int=1, cutoff: typing.Union[float, None]=None): """ Aggregates loss for configuration on evaluated instances over seeds. Parameters ---------- rh: RunHistory runhistory with data conf: Configuration configuration to evaluate par: int par-factor with which to multiply timeouts cutoff: float cutoff of scenario - used to penalize costs if par != 1 Returns ------- cost: dict(instance->cost) cost per instance (aggregated or as list per seed) """ instance_costs = rh.get_instance_costs_for_config(conf) if par != 1: if cutoff: instance_costs = {k: v if v < cutoff else v * par for k, v in instance_costs.items()} else: raise ValueError("To apply penalization of costs, a cutoff needs to be provided.") return instance_costs def escape_parameter_name(p): """Necessary because: 1. parameters called 'size' or 'origin' might exist in cs 2. '-' not allowed in bokeh's CDS""" return 'p_' + p.replace('-', '_') def scenario_sanity_check(s, logger): """Check scenario for number of train- and test-instances, (duplicate) features and inconsistencies. Logs information and raises ValueError if train-features available, but test-features not.""" train, test, feat = [t for t in s.train_insts if t], [t for t in s.test_insts if t], list(s.feature_dict.keys()) train_feat, test_feat = [t for t in feat if t in train], [t for t in feat if t in test] logger.debug("Instances: train=%d, test=%d, train-features=%d, test-features=%d", len([t for t in train if t]), len([t for t in test if t]), len(train_feat), len(test_feat)) if (train and train_feat) and (test and not test_feat): raise ValueError("Detected train- and test-instances, but only train-features. Either\n (a) remove train-" "features\n (b) add test-features or\n (c) remove test-instances.") def combine_runhistories(rhs, logger=None): """Combine list of given runhistories. interleaving to best approximate execution order""" combi_rh = RunHistory() rh_to_runs = {rh : list(rh.data.items()) for rh in rhs} if logger: logger.debug("number of elements: " + str({k : len(v) for k, v in rh_to_runs})) idx = 0 while len(rh_to_runs) > 0: for rh in list(rh_to_runs.keys()): try: k, v = rh_to_runs[rh][idx] combi_rh.add(config=rh.ids_config[k.config_id], cost=v.cost, time=v.time, status=v.status, instance_id=k.instance_id, #TODO budget option seed=k.seed, additional_info=v.additional_info) except IndexError: rh_to_runs.pop(rh) idx += 1 if logger: logger.debug("number of elements in individual rhs: " + str({k : len(v) for k, v in rh_to_runs})) logger.debug("number of elements in combined rh: " + str(len(combi_rh.data))) return combi_rh def combine_trajectories(trajs, logger=None): """Combine trajectories. Trajectories are expected as an iterable of sorted lists, which are increasing in time. A trajectory entry is expected as: TrajEntry = collections.namedtuple( 'TrajEntry', ['train_perf', 'incumbent_id', 'incumbent', 'ta_runs', 'ta_time_used', 'wallclock_time']) Parameters ---------- trajs: List[List[TrajEntry]] trajectories to be combined Returns ------- combined_traj: List[TrajEntry] combined trajectory """ # flatten list flattened_list = [a for b in trajs for a in b] # Sort by wallclock-time flattened_list.sort(key=lambda traj_entry: traj_entry['wallclock_time']) if logger: logger.debug("{} trajectories combined to one with {} elements".format(len(trajs), len(flattened_list))) #logger.debug(flattened_list) # Now add one by one in order of time if better performance than before combined_traj = [flattened_list[0]] for entry in flattened_list: if entry['cost'] < combined_traj[-1]['cost']: combined_traj.append(entry) return combined_traj class MissingInstancesError(Exception): """Exception indicating that instances are missing.""" pass def get_config_origin(c): """Return appropriate configuration origin Parameters ---------- c: Configuration configuration to be examined Returns ------- origin: str origin of configuration (e.g. "Local", "Random", etc.) """ if not c.origin: origin = "Unknown" elif c.origin.startswith("Local") or c.origin == 'Model based pick' or "sorted" in c.origin: origin = "Acquisition Function" elif c.origin.startswith("Random"): origin = "Random" else: logging.getLogger("cave.utils.helpers").debug("Cannot interpret origin: %s", c.origin) origin = "Unknown" return origin def check_for_features(scenario): features = scenario.feature_dict # filter instance features train = scenario.train_insts test = scenario.test_insts train_feats = {k: v for k, v in features.items() if k in train} test_feats = {k: v for k, v in features.items() if k in test} if not (train_feats or test_feats): raise NotApplicable("Could not detect any instances.") def load_default_options(options=None, file_format=None): # Load the configuration file own_folder = os.path.realpath(os.path.abspath(os.path.split(inspect.getfile(inspect.currentframe()))[0])) default_options = configparser.ConfigParser() default_options.read(os.path.join(own_folder, 'options/default_analysis_options.ini')) if options is not None: if isinstance(options, str): default_options.read_file(options) else: default_options.read_dict(options) return default_options def detect_fileformat(folders): from cave.reader.conversion.csv2smac import CSV2SMAC from cave.reader.smac2_reader import SMAC2Reader from cave.reader.smac3_reader import SMAC3Reader # First check if it's APT, else BOHB bohb_files = ["configs.json", "results.json", "configspace.json"] apt_files = ["autonet_config.json", "results_fit.json"] if all([all([os.path.isfile(os.path.join(f, sub)) for sub in bohb_files]) for f in folders]): if all([all([os.path.isfile(os.path.join(f, sub)) for sub in apt_files]) for f in folders]): return "APT" else: return "BOHB" # Check if it's SMAC if all([SMAC3Reader.check_for_files(f) for f in folders]): return "SMAC3" if all([SMAC2Reader.check_for_files(f) for f in folders]): return "SMAC2" # Check if it's CSV if all([CSV2SMAC.check_for_files(f) for f in folders]): return "CSV" raise RuntimeError("Autodetection of file-format failed. Please try to specify (using --file_format on cmd-line)") def get_folder_basenames(folders): """Shorten folder-strings as much as possible (always keeping the basename). ["foo/bar/run_1", "foo/bar/run_2/"] will be ["run_1", "run_2"] ["foo/run_1/bar/", "foo/run_2/bar"] will be ["run_1/bar", "run_2/bar"] """ throw, keep = folders[:], ['' for _ in range(len(set(folders)))] max_parts = max([len(f.split('/')) for f in folders]) for _ in range(max_parts): for idx in range(len(folders)): throw[idx], new = os.path.split(throw[idx].rstrip('/')) keep[idx] = os.path.join(new, keep[idx]).rstrip('/') if len(set(keep)) == len(set(folders)): break return keep
python
# encoding: utf-8 from .default import Config class DevelopmentConfig(Config): # App config DEBUG = True SQLALCHEMY_DATABASE_URI = "sqlite:///../db/dictionary.sqlite3"
python
# -*- coding: utf-8 -*- # # Copyright (C) 2017 KuraLabs S.R.L # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Module implementating Aggregator base class. All custom Flowbber aggregators must extend from the Aggregator class. """ from functools import wraps from collections import OrderedDict from .loader import PluginLoader from ..logging import get_logger from ..components import Aggregator log = get_logger(__name__) class AggregatorsLoader(PluginLoader): """ Aggregators plugins loader class. """ _base_class = Aggregator _locally_registered = OrderedDict() def __init__(self): super().__init__('aggregators') @wraps(AggregatorsLoader.register) def register(key): return AggregatorsLoader.register(key) __all__ = ['AggregatorsLoader', 'register']
python
############################################################ # -*- coding: utf-8 -*- # # # # # # # # # ## ## # ## # # # # # # # # # # # # # # # ## # ## ## ###### # # # # # # # # # Python-based Tool for interaction with the 10micron mounts # GUI with PyQT5 for python # # written in python3, (c) 2019-2021 by mworion # # Licence APL2.0 # ########################################################### # standard libraries # external packages # local imports from base.alpacaClass import AlpacaClass class PegasusUPBAlpaca(AlpacaClass): """ """ __all__ = ['PegasusUPBAlpaca', ] def __init__(self, app=None, signals=None, data=None): super().__init__(app=app, data=data, threadPool=app.threadPool) self.signals = signals self.data = data def workerPollData(self): """ :return: true for test purpose """ if not self.deviceConnected: return False model = 'UPB' if self.getAlpacaProperty('maxswitch') == 15 else 'UPBv2' self.data['FIRMWARE_INFO.VERSION'] = '1.4' if model == 'UPB' else '2.1' if model == 'UPB': self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=0), 'POWER_CONTROL.POWER_CONTROL_1') self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=1), 'POWER_CONTROL.POWER_CONTROL_2') self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=2), 'POWER_CONTROL.POWER_CONTROL_3') self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=3), 'POWER_CONTROL.POWER_CONTROL_4') self.storePropertyToData(self.getAlpacaProperty('getswitchvalue', Id=4), 'DEW_CURRENT.DEW_CURRENT_A') self.storePropertyToData(self.getAlpacaProperty('getswitchvalue', Id=5), 'DEW_CURRENT.DEW_CURRENT_B') self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=6), 'USB_HUB_CONTROL.INDI_ENABLED') self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=7), 'AUTO_DEW.INDI_ENABLED') self.storePropertyToData(self.getAlpacaProperty('getswitchvalue', Id=11), 'POWER_SENSORS.SENSOR_VOLTAGE') self.storePropertyToData(self.getAlpacaProperty('getswitchvalue', Id=12), 'POWER_SENSORS.SENSOR_CURRENT') self.storePropertyToData(self.getAlpacaProperty('getswitchvalue', Id=13), 'POWER_SENSORS.SENSOR_POWER') if model == 'UPBv2': self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=0), 'POWER_CONTROL.POWER_CONTROL_1') self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=1), 'POWER_CONTROL.POWER_CONTROL_2') self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=2), 'POWER_CONTROL.POWER_CONTROL_3') self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=3), 'POWER_CONTROL.POWER_CONTROL_4') self.storePropertyToData(self.getAlpacaProperty('getswitchvalue', Id=4) / 2.55, 'DEW_PWM.DEW_A') self.storePropertyToData(self.getAlpacaProperty('getswitchvalue', Id=5) / 2.55, 'DEW_PWM.DEW_B') self.storePropertyToData(self.getAlpacaProperty('getswitchvalue', Id=6) / 2.55, 'DEW_PWM.DEW_C') self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=7), 'USB_PORT_CONTROL.PORT_1') self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=8), 'USB_PORT_CONTROL.PORT_2') self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=9), 'USB_PORT_CONTROL.PORT_3') self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=10), 'USB_PORT_CONTROL.PORT_4') self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=11), 'USB_PORT_CONTROL.PORT_5') self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=12), 'USB_PORT_CONTROL.PORT_6') self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=13), 'AUTO_DEW.DEW_A') self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=13), 'AUTO_DEW.DEW_B') self.storePropertyToData(self.getAlpacaProperty('getswitch', Id=13), 'AUTO_DEW.DEW_C') self.storePropertyToData(self.getAlpacaProperty('getswitchvalue', Id=17), 'POWER_SENSORS.SENSOR_VOLTAGE') self.storePropertyToData(self.getAlpacaProperty('getswitchvalue', Id=18), 'POWER_SENSORS.SENSOR_CURRENT') self.storePropertyToData(self.getAlpacaProperty('getswitchvalue', Id=19), 'POWER_SENSORS.SENSOR_POWER') return True def togglePowerPort(self, port=None): if not self.deviceConnected: return False if port is None: return False switchNumber = int(port) - 1 val = self.data.get(f'POWER_CONTROL.POWER_CONTROL_{port}', True) self.setAlpacaProperty('setswitchvalue', Id=switchNumber, Value=not val) return True def togglePowerPortBoot(self, port=None): if not self.deviceConnected: return False return True def toggleHubUSB(self): if not self.deviceConnected: return False return True def togglePortUSB(self, port=None): if not self.deviceConnected: return False if port is None: return False model = 'UPB' if self.getAlpacaProperty('maxswitch') == 15 else 'UPBv2' if model == 'UPBv2': switchNumber = int(port) + 6 val = self.data.get(f'USB_PORT_CONTROL.PORT_{port}', True) self.setAlpacaProperty('setswitchvalue', Id=switchNumber, Value=val) return True def toggleAutoDew(self): if not self.deviceConnected: return False model = 'UPB' if self.getAlpacaProperty('maxswitch') == 15 else 'UPBv2' if model == 'UPB': val = self.data.get('AUTO_DEW.INDI_ENABLED', False) self.setAlpacaProperty('setswitchvalue', Id=7, Value=val) else: val = self.data.get('AUTO_DEW.DEW_A', False) self.setAlpacaProperty('setswitchvalue', Id=13, Value=val) return True def sendDew(self, port=None, value=None): if not self.deviceConnected: return False if port is None: return False if value is None: return False model = 'UPB' if self.getAlpacaProperty('maxswitch') == 15 else 'UPBv2' switchNumber = ord(port) - ord('A') + 4 val = int(value * 2.55) if model == 'UPBv2': self.setAlpacaProperty('setswitchvalue', Id=switchNumber, Value=val) return True def sendAdjustableOutput(self, value=None): if not self.deviceConnected: return False return True def reboot(self): if not self.deviceConnected: return False return True
python
import sysconfig import sys CFLAGS = "{} -I{} -I{} -fno-omit-frame-pointer".format( sysconfig.get_config_var("CFLAGS"), sysconfig.get_path("include"), sysconfig.get_path("platinclude"), ) if __name__ == "__main__": print(f'export CFLAGS="{CFLAGS}"')
python
#!/usr/bin/env python3 # This example demonstrates the interaction between different execution modes import mavlinkinterface # Needed to use the library from time import sleep # For waiting between commands # Create interface object, All calls will be made through this # execMode="queue" means that the "queue" execution mode will be used when none is given to a function MLI = mavlinkinterface.mavlinkInterface(execMode="queue") MLI.arm() # Enable the propellors. print("synchronous command has started") MLI.move(0, 1, execMode="synchronous") print("synchronous command has ended") # MLI.setFlightMode("STABILIZE") # Sets the drone to stabilize itself. For more info, see docs/active/setFlightMode.md # Add some commands to the queue MLI.move(90, 3) # Strafe right for 3 sec, Since no execMode flag is given, reverts to queue (see above) MLI.move(270, 3) # Strafe left for 3 sec, Since no execMode flag is given, reverts to queue (see above) MLI.move(90, 3) # Strafe right for 3 sec, Since no execMode flag is given, reverts to queue (see above) MLI.move(270, 3) # Strafe left for 3 sec, Since no execMode flag is given, reverts to queue (see above) MLI.move(90, 3) # Strafe right for 3 sec, Since no execMode flag is given, reverts to queue (see above) MLI.move(270, 3) # Strafe left for 3 sec, Since no execMode flag is given, reverts to queue (see above) print("all queuing commands have been added to the queue") # Wait 5 seconds to give the queue a chance to start sleep(5) MLI.move(90, 5, execMode="ignore") # Move right for 5 sec MLI.move(0, 5, execMode="override") # Move forward for 5 sec input("Test 1 done, press enter to continue") MLI.move(90, 3) # Strafe right for 3 sec, Since no execMode flag is given, reverts to queue (see above) MLI.move(270, 3) # Strafe left for 3 sec, Since no execMode flag is given, reverts to queue (see above) MLI.move(90, 3) # Strafe right for 3 sec, Since no execMode flag is given, reverts to queue (see above) MLI.move(270, 3) # Strafe left for 3 sec, Since no execMode flag is given, reverts to queue (see above) # This should wait until the queue finishes MLI.move(180, 3, execMode="synchronous") # Move backward for 3 sec
python
from uuid import uuid4 import pytest from protean import BaseCommand, BaseEventSourcedAggregate from protean.exceptions import IncorrectUsageError from protean.fields import String from protean.fields.basic import Identifier class User(BaseEventSourcedAggregate): id = Identifier(identifier=True) email = String() name = String() class Register(BaseCommand): user_id = Identifier(identifier=True) email = String() name = String() def test_command_definition_without_aggregate_or_stream(test_domain): test_domain.register(User) test_domain.register(Register) with pytest.raises(IncorrectUsageError) as exc: test_domain.process( Register( user_id=str(uuid4()), email="[email protected]", name="John Doe", ) ) assert exc.value.messages == { "_entity": [ "Command `Register` needs to be associated with an aggregate or a stream" ] } def test_that_abstract_commands_can_be_defined_without_aggregate_or_stream(test_domain): class AbstractCommand(BaseCommand): foo = String() class Meta: abstract = True try: test_domain.register(AbstractCommand) except Exception: pytest.fail( "Abstract commands should be definable without being associated with an aggregate or a stream" ) @pytest.mark.eventstore def test_command_associated_with_aggregate(test_domain): test_domain.register(User) test_domain.register(Register, aggregate_cls=User) identifier = str(uuid4()) test_domain.process( Register( user_id=identifier, email="[email protected]", name="John Doe", ) ) messages = test_domain.event_store.store.read("user:command") assert len(messages) == 1 messages[0].stream_name == f"user:command-{identifier}" @pytest.mark.eventstore def test_command_associated_with_stream_name(test_domain): test_domain.register(Register, stream_name="foo") identifier = str(uuid4()) test_domain.process( Register( user_id=identifier, email="[email protected]", name="John Doe", ) ) messages = test_domain.event_store.store.read("foo:command") assert len(messages) == 1 messages[0].stream_name == f"foo:command-{identifier}"
python
#!/usr/bin/env python3 # MIT License # # Copyright (c) 2020 FABRIC Testbed # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # # Author: Komal Thareja ([email protected]) import time from fabric_cf.actor.core.apis.abc_controller_policy import ABCControllerPolicy from fabric_cf.actor.core.common.constants import Constants from fabric_cf.actor.core.kernel.reservation_client import ClientReservationFactory from fabric_cf.actor.core.kernel.resource_set import ResourceSet from fabric_cf.actor.core.kernel.slice import SliceFactory from fabric_cf.actor.core.time.term import Term from fabric_cf.actor.core.util.id import ID from fabric_cf.actor.core.util.resource_type import ResourceType from fabric_cf.actor.test.core.policy.controller_simple_policy_test import ControllerSimplePolicyTest from fabric_cf.actor.test.core.policy.controller_ticket_review_policy_test_wrapper import \ ControllerTicketReviewPolicyTestWrapper class ControllerTicketReviewPolicyTest(ControllerSimplePolicyTest): def get_controller_policy(self) -> ABCControllerPolicy: return ControllerTicketReviewPolicyTestWrapper() def test_c_fail(self): controller = self.get_controller() clock = controller.get_actor_clock() Term.clock = clock resources = ResourceSet(units=1, rtype=ResourceType(resource_type="1")) slice_obj = SliceFactory.create(slice_id=ID(), name="fail") controller.register_slice(slice_object=slice_obj) start = 5 end = 10 term = Term(start=clock.cycle_start_date(cycle=start), end=clock.cycle_end_date(cycle=end)) r1 = ClientReservationFactory.create(rid=ID(), resources=resources, term=term, slice_object=slice_obj) r1.set_renewable(renewable=False) controller.register(reservation=r1) controller.demand(rid=r1.get_reservation_id()) r2 = ClientReservationFactory.create(rid=ID(), resources=resources, term=term, slice_object=slice_obj) r2.set_renewable(renewable=False) controller.register(reservation=r2) controller.demand(rid=r2.get_reservation_id()) for i in range(1, end + 3): controller.external_tick(cycle=i) while controller.get_current_cycle() != i: time.sleep(0.001) if i >= start and (i < (end - 1)): self.assertTrue(r1.is_closed()) self.assertTrue(r2.is_closed()) self.assertTrue(r2.get_notices().__contains__(Constants.CLOSURE_BY_TICKET_REVIEW_POLICY)) def test_d_nascent(self): controller = self.get_controller() clock = controller.get_actor_clock() Term.clock = clock resources = ResourceSet(units=1, rtype=ResourceType(resource_type="1")) slice_obj = SliceFactory.create(slice_id=ID(), name="nascent") controller.register_slice(slice_object=slice_obj) start = 5 end = 10 term = Term(start=clock.cycle_start_date(cycle=start), end=clock.cycle_end_date(cycle=end)) r1 = ClientReservationFactory.create(rid=ID(), resources=resources, term=term, slice_object=slice_obj) r1.set_renewable(renewable=False) controller.register(reservation=r1) controller.demand(rid=r1.get_reservation_id()) r2 = ClientReservationFactory.create(rid=ID(), resources=resources, term=term, slice_object=slice_obj) r2.set_renewable(renewable=False) controller.register(reservation=r2) r2demanded = False for i in range(1, end + 3): controller.external_tick(cycle=i) while controller.get_current_cycle() != i: time.sleep(0.001) if i == (start -3) and not r2demanded: self.assertTrue(r1.is_ticketed()) self.assertTrue(r2.is_nascent()) controller.demand(rid=r2.get_reservation_id()) r2demanded = True if i >= start and (i < end - 1): self.assertTrue(r1.is_active()) self.assertTrue(r2.is_active()) if i > end: self.assertTrue(r1.is_closed()) self.assertTrue(r2.is_closed()) def test_e_fail_and_nascent(self): controller = self.get_controller() clock = controller.get_actor_clock() Term.clock = clock resources = ResourceSet(units=1, rtype=ResourceType(resource_type="1")) slice_obj = SliceFactory.create(slice_id=ID(), name="fail_nascent") controller.register_slice(slice_object=slice_obj) start = 10 end = 15 term = Term(start=clock.cycle_start_date(cycle=start), end=clock.cycle_end_date(cycle=end)) r1 = ClientReservationFactory.create(rid=ID(), resources=resources, term=term, slice_object=slice_obj) r1.set_renewable(renewable=False) controller.register(reservation=r1) controller.demand(rid=r1.get_reservation_id()) r2 = ClientReservationFactory.create(rid=ID(), resources=resources, term=term, slice_object=slice_obj) r2.set_renewable(renewable=False) controller.register(reservation=r2) r2demanded = False r3 = ClientReservationFactory.create(rid=ID(), resources=resources, term=term, slice_object=slice_obj) r3.set_renewable(renewable=False) controller.register(reservation=r3) controller.demand(rid=r3.get_reservation_id()) for i in range(1, end + 3): controller.external_tick(cycle=i) while controller.get_current_cycle() != i: time.sleep(0.001) if i > 2 and not r2demanded: self.assertTrue(r1.is_failed()) self.assertTrue(r2.is_nascent()) self.assertTrue(r3.is_ticketed()) if i > 6: controller.demand(rid=r2.get_reservation_id()) r2demanded = True if (i >= start) and (i < (end - 1)): self.assertTrue(r1.is_closed()) self.assertTrue(r2.is_closed()) self.assertTrue(r3.is_closed()) self.assertTrue(r2.get_notices().__contains__(Constants.CLOSURE_BY_TICKET_REVIEW_POLICY)) self.assertTrue(r3.get_notices().__contains__(Constants.CLOSURE_BY_TICKET_REVIEW_POLICY)) if i > end: self.assertTrue(r1.is_closed()) self.assertTrue(r2.is_closed()) self.assertTrue(r3.is_closed()) self.assertTrue(r2.get_notices().__contains__(Constants.CLOSURE_BY_TICKET_REVIEW_POLICY)) self.assertTrue(r3.get_notices().__contains__(Constants.CLOSURE_BY_TICKET_REVIEW_POLICY))
python
import dataclasses import logging from dataclasses import dataclass import tempfile import os from typing import Optional import loaders import synth from synth import ( # noqa: F401 grid_dataset, grid_dataset_path, dataset_fixtures_dir, ) import fv3fit from fv3net.diagnostics.offline import compute from fv3net.diagnostics.offline.views.create_report import create_report import pathlib import pytest import numpy as np import yaml logger = logging.getLogger(__name__) @pytest.fixture def data_path(tmpdir): schema_path = pathlib.Path(__file__).parent / "data.zarr.json" with open(schema_path) as f: schema = synth.load(f) ranges = {"pressure_thickness_of_atmospheric_layer": synth.Range(0.99, 1.01)} ds = synth.generate(schema, ranges) ds.to_zarr(str(tmpdir), consolidated=True) return str(tmpdir) @dataclass class ComputeDiagsArgs: model_path: str output_path: str data_yaml: str snapshot_time: Optional[str] = None grid: str = None grid_resolution: str = "c8_random_values" n_jobs: int = 1 @dataclass class CreateReportArgs: input_path: str output_path: str commit_sha: str = "commit_sha_placeholder" training_config: Optional[str] = None training_data_config: Optional[str] = None def test_offline_diags_integration(data_path, grid_dataset_path): # noqa: F811 """ Test the bash endpoint for computing offline diagnostics """ batches_kwargs = { "needs_grid": False, "res": "c8_random_values", "timesteps_per_batch": 1, "timesteps": ["20160801.001500"], } trained_model = fv3fit.testing.ConstantOutputPredictor( input_variables=["air_temperature", "specific_humidity"], output_variables=["dQ1", "dQ2"], ) trained_model.set_outputs(dQ1=np.zeros([19]), dQ2=np.zeros([19])) data_config = loaders.BatchesFromMapperConfig( loaders.MapperConfig(function="open_zarr", kwargs={"data_path": data_path},), function="batches_from_mapper", kwargs=batches_kwargs, ) with tempfile.TemporaryDirectory() as tmpdir: model_dir = os.path.join(tmpdir, "trained_model") fv3fit.dump(trained_model, model_dir) data_config_filename = os.path.join(tmpdir, "data_config.yaml") with open(data_config_filename, "w") as f: yaml.safe_dump(dataclasses.asdict(data_config), f) compute_diags_args = ComputeDiagsArgs( model_path=model_dir, output_path=os.path.join(tmpdir, "offline_diags"), data_yaml=data_config_filename, grid=grid_dataset_path, ) compute.main(compute_diags_args) if isinstance(data_config, loaders.BatchesFromMapperConfig): assert "transect_lon0.nc" in os.listdir( os.path.join(tmpdir, "offline_diags") ) create_report_args = CreateReportArgs( input_path=os.path.join(tmpdir, "offline_diags"), output_path=os.path.join(tmpdir, "report"), ) create_report(create_report_args) with open(os.path.join(tmpdir, "report/index.html")) as f: report = f.read() if isinstance(data_config, loaders.BatchesFromMapperConfig): assert "Transect snapshot at" in report
python
import gym from agents.random_agent import RandomAgent def main(episode_count): env = gym.make('CartPole-v0') agent = RandomAgent(env.action_space.n) for i in range(episode_count): observation = env.reset() # initialize the environment done = False step = 0 while not done: env.render() action = agent.act(observation) next_observation, reward, done, info = env.step(action) if done: print("Episode finished after {} timesteps".format(step + 1)) observation = next_observation step += 1 if __name__ == "__main__": main(episode_count=20)
python
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import io from knack import util from unittest import mock import unittest from azext_ssh import custom class SshCustomCommandTest(unittest.TestCase): @mock.patch('azext_ssh.custom._do_ssh_op') @mock.patch('azext_ssh.custom.ssh_utils') def test_ssh_vm(self, mock_ssh_utils, mock_do_op): cmd = mock.Mock() custom.ssh_vm(cmd, "rg", "vm", "ip", "public", "private", False) mock_do_op.assert_called_once_with( cmd, "rg", "vm", "ip", "public", "private", False, mock_ssh_utils.start_ssh_connection) @mock.patch('azext_ssh.custom._do_ssh_op') @mock.patch('azext_ssh.ssh_utils.write_ssh_config') def test_ssh_config(self, mock_ssh_utils, mock_do_op): cmd = mock.Mock() def do_op_side_effect(cmd, resource_group, vm_name, ssh_ip, public_key_file, private_key_file, use_private_ip, op_call): op_call(ssh_ip, "username", "cert_file", private_key_file) mock_do_op.side_effect = do_op_side_effect custom.ssh_config(cmd, "path/to/file", "rg", "vm", "ip", "public", "private", False, False) mock_ssh_utils.assert_called_once_with("path/to/file", "rg", "vm", False, "ip", "username", "cert_file", "private") mock_do_op.assert_called_once_with( cmd, "rg", "vm", "ip", "public", "private", False, mock.ANY) @mock.patch('azext_ssh.ssh_utils.get_ssh_cert_principals') @mock.patch('os.path.join') @mock.patch('azext_ssh.custom._assert_args') @mock.patch('azext_ssh.custom._check_or_create_public_private_files') @mock.patch('azext_ssh.ip_utils.get_ssh_ip') @mock.patch('azext_ssh.custom._get_modulus_exponent') @mock.patch('azure.cli.core._profile.Profile.get_msal_token') @mock.patch('azext_ssh.custom._write_cert_file') def test_do_ssh_op(self, mock_write_cert, mock_ssh_creds, mock_get_mod_exp, mock_ip, mock_check_files, mock_assert, mock_join, mock_principal): cmd = mock.Mock() mock_op = mock.Mock() mock_check_files.return_value = "public", "private" mock_principal.return_value = ["username"] mock_get_mod_exp.return_value = "modulus", "exponent" mock_ssh_creds.return_value = "username", "certificate" mock_join.return_value = "public-aadcert.pub" custom._do_ssh_op(cmd, None, None, "1.2.3.4", "publicfile", "privatefile", False, mock_op) mock_assert.assert_called_once_with(None, None, "1.2.3.4") mock_check_files.assert_called_once_with("publicfile", "privatefile") mock_ip.assert_not_called() mock_get_mod_exp.assert_called_once_with("public") mock_write_cert.assert_called_once_with("certificate", "public-aadcert.pub") mock_op.assert_called_once_with( "1.2.3.4", "username", "public-aadcert.pub", "private") @mock.patch('azext_ssh.custom._assert_args') @mock.patch('azext_ssh.custom._check_or_create_public_private_files') @mock.patch('azext_ssh.ip_utils.get_ssh_ip') @mock.patch('azext_ssh.custom._get_modulus_exponent') def test_do_ssh_op_no_public_ip(self, mock_get_mod_exp, mock_ip, mock_check_files, mock_assert): cmd = mock.Mock() mock_op = mock.Mock() mock_check_files.return_value = "public", "private" mock_get_mod_exp.return_value = "modulus", "exponent" mock_ip.return_value = None self.assertRaises( util.CLIError, custom._do_ssh_op, cmd, "rg", "vm", None, "publicfile", "privatefile", False, mock_op) mock_assert.assert_called_once_with("rg", "vm", None) mock_check_files.assert_called_once_with("publicfile", "privatefile") mock_ip.assert_called_once_with(cmd, "rg", "vm", False) def test_assert_args_no_ip_or_vm(self): self.assertRaises(util.CLIError, custom._assert_args, None, None, None) def test_assert_args_vm_rg_mismatch(self): self.assertRaises(util.CLIError, custom._assert_args, "rg", None, None) self.assertRaises(util.CLIError, custom._assert_args, None, "vm", None) def test_assert_args_ip_with_vm_or_rg(self): self.assertRaises(util.CLIError, custom._assert_args, None, "vm", "ip") self.assertRaises(util.CLIError, custom._assert_args, "rg", "vm", "ip") @mock.patch('azext_ssh.ssh_utils.create_ssh_keyfile') @mock.patch('tempfile.mkdtemp') @mock.patch('os.path.isfile') @mock.patch('os.path.join') def test_check_or_create_public_private_files_defaults(self, mock_join, mock_isfile, mock_temp, mock_create): mock_isfile.return_value = True mock_temp.return_value = "/tmp/aadtemp" mock_join.side_effect = ['/tmp/aadtemp/id_rsa.pub', '/tmp/aadtemp/id_rsa'] public, private = custom._check_or_create_public_private_files(None, None) self.assertEqual('/tmp/aadtemp/id_rsa.pub', public) self.assertEqual('/tmp/aadtemp/id_rsa', private) mock_join.assert_has_calls([ mock.call("/tmp/aadtemp", "id_rsa.pub"), mock.call("/tmp/aadtemp", "id_rsa") ]) mock_isfile.assert_has_calls([ mock.call('/tmp/aadtemp/id_rsa.pub'), mock.call('/tmp/aadtemp/id_rsa') ]) mock_create.assert_has_calls([ mock.call('/tmp/aadtemp/id_rsa') ]) @mock.patch('os.path.isfile') @mock.patch('os.path.join') def test_check_or_create_public_private_files_no_public(self, mock_join, mock_isfile): mock_isfile.side_effect = [False] self.assertRaises( util.CLIError, custom._check_or_create_public_private_files, "public", None) mock_isfile.assert_called_once_with("public") @mock.patch('os.path.isfile') @mock.patch('os.path.join') def test_check_or_create_public_private_files_no_private(self, mock_join, mock_isfile): mock_isfile.side_effect = [True, False] self.assertRaises( util.CLIError, custom._check_or_create_public_private_files, "public", "private") mock_join.assert_not_called() mock_isfile.assert_has_calls([ mock.call("public"), mock.call("private") ]) @mock.patch('builtins.open') def test_write_cert_file(self, mock_open): mock_file = mock.Mock() mock_open.return_value.__enter__.return_value = mock_file custom._write_cert_file("cert", "publickey-aadcert.pub") mock_open.assert_called_once_with("publickey-aadcert.pub", 'w') mock_file.write.assert_called_once_with("[email protected] cert") @mock.patch('azext_ssh.rsa_parser.RSAParser') @mock.patch('os.path.isfile') @mock.patch('builtins.open') def test_get_modulus_exponent_success(self, mock_open, mock_isfile, mock_parser): mock_isfile.return_value = True mock_open.return_value = io.StringIO('publickey') modulus, exponent = custom._get_modulus_exponent('file') self.assertEqual(mock_parser.return_value.modulus, modulus) self.assertEqual(mock_parser.return_value.exponent, exponent) mock_isfile.assert_called_once_with('file') mock_open.assert_called_once_with('file', 'r') mock_parser.return_value.parse.assert_called_once_with('publickey') @mock.patch('os.path.isfile') def test_get_modulus_exponent_file_not_found(self, mock_isfile): mock_isfile.return_value = False self.assertRaises(util.CLIError, custom._get_modulus_exponent, 'file') mock_isfile.assert_called_once_with('file') @mock.patch('azext_ssh.rsa_parser.RSAParser') @mock.patch('os.path.isfile') @mock.patch('builtins.open') def test_get_modulus_exponent_parse_error(self, mock_open, mock_isfile, mock_parser): mock_isfile.return_value = True mock_open.return_value = io.StringIO('publickey') mock_parser_obj = mock.Mock() mock_parser.return_value = mock_parser_obj mock_parser_obj.parse.side_effect = ValueError self.assertRaises(util.CLIError, custom._get_modulus_exponent, 'file') if __name__ == '__main__': unittest.main()
python
XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXX XX XXX XXXXXX XXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXXXX XXXX XXXXXXX XX X XXXXXXXXXXX XXXX XXXXXX XXX XXXXX XXXXXXXXXX XX XXXXXXX XX XXX XXXXXX XXXXXXXX XX XXXX XX XXX XXXXXXXXX XXXXXX XXX XXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXX XXX XXX XXXXXXX XXXXXX XXXX XXXXXXXXX XXXXXX XX XXX XXXXXXX XXXXXX XXXXXXX XXXXXX XX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXXXX XX XXXXXXXXXX X XXXXXXXXXX XXXXXXX XX XXXXXXXXX XXXXX XXXXXX XXX XXXXXX XXXXXX XXXXXXXX XX XXX XXXXXXXXX XXXXXX XXXXX XX XX XXXXXX XXXX XXX XXXXXXXX XX X XXXXXX XXXXXXXXXX XX XXXX XXXXXXXXXXX XXXXXXX XXXXXXXX XX XXXX XXX XXXXXXXXXXX XX XXXXXX XXXXXXXXXX XX X XXXXXXX XXX X XXXXXXX XXXXXX XXXXXXXX XXXXXXXX XXXXXX XXXXX XXXX XXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XXXX XXXXX XXX XXXXXXX XXXXXXXXX XX XXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXX XXXX XXXXXXX XX XX XXX XXXXXX XXXXX XX XXXXXX XXXX XXX XXXX XXXXXXX XXXX XXX XXXX XXXXXXXXX XX XXXX XXXXXXXXXXXXX XXXXX
python
""" zoom.mail email services """ import os import json import logging from smtplib import SMTP from mimetypes import guess_type from email import encoders from email.mime.text import MIMEText from email.mime.base import MIMEBase from email.mime.image import MIMEImage from email.mime.audio import MIMEAudio from email.mime.multipart import MIMEMultipart from email.utils import formataddr import zoom from zoom.context import context from zoom.store import EntityStore from zoom.tools import ensure_listy, now from zoom.utils import Record from zoom.tools import get_template __all__ = ( 'send', 'send_as', 'deliver', 'Attachment', ) class AttachmentDataException(Exception): """raised when asked to deliver data in background process""" pass class SystemMail(Record): """system message""" pass class Attachment(object): """Email attachment provide either a pathname, or a filename and a pathname, or if sending directly a filename and a file-like object. """ # pylint: disable=too-few-public-methods def __init__(self, pathname, data=None, mime_type=None): self.pathname = pathname self.data = data self.mimetype = mime_type self.filename = os.path.split(pathname)[1] def as_tuple(self): """partilars required for delivery""" if hasattr(self.data, 'read'): msg = 'Unable to deliver data directly, use physical file instead' raise AttachmentDataException(msg) return self.pathname, self.data, self.mimetype @property def read(self): """provides a reader for the data if the data is not open, it will be because the user provided only a pathanme so we open the file at the pathname and return it""" if not self.data: self.data = open(self.pathname) elif isinstance(self.data, str): self.data = open(self.data) return self.data.read def get_mail_store(site): """returns the mail store""" return EntityStore(site.db, SystemMail) def format_as_html(text, logo_url): site = zoom.get_site() template = get_template('email_template', theme=site.theme) return template.format(logo_url=logo_url, message=text) def display_email_address(email): """Make a formatted address (eg: "User Name <[email protected]>"), from a tuple (Display name, email address) or a list of tuples. If the parameter is a string, it is returned. >>> recipients = [('Joe','[email protected]'),'[email protected]'] >>> display_email_address(recipients) 'Joe <[email protected]>;[email protected]' """ if isinstance(email, (list, tuple)): result = [] for item in email: if isinstance(item, (list, tuple)) and len(item) == 2: result.append(formataddr(item)) else: result.append(item) return ';'.join(result) return email def get_plain_from_html(html): """extract plain text from html >>> test_html = "<div><h1>Hey<h1><p>This is some text</p></div>" >>> get_plain_from_html(test_html) 'Hey\\nThis is some text' """ # import here to avoid high startup cost from html.parser import HTMLParser class MyHTMLParser(HTMLParser): """custom HTML parser""" def __init__(self): HTMLParser.__init__(self) self.lines = [] def handle_data(self, data): self.lines.append(data) def value(self): return '\n'.join(self.lines) parser = MyHTMLParser() parser.feed(html) parser.close() return parser.value() def compose(sender, reply_to, recipients, subject, body, attachments, style, logo_url): """compose an email message""" email = MIMEMultipart() email['Subject'] = subject email['From'] = formataddr(sender) email['To'] = display_email_address(recipients) if sender != reply_to: email['Reply-To'] = formataddr(reply_to) email.preamble = ( 'This message is in MIME format. ' 'You will not see this in a MIME-aware mail reader.\n' ) email.epilogue = '' # To guarantee the message ends with a newline # Encapsulate the plain and HTML versions of the message body in an # 'alternative' part, so message agents can decide which they # want to display. msg_alternative = MIMEMultipart('alternative') email.attach(msg_alternative) # if isinstance(body, str): # body = body.encode('utf8') # # simple encoding test, we will leave as ascii if possible (readable) _char = 'us-ascii' try: body.encode('ascii') except UnicodeDecodeError: _char = 'utf8' except AttributeError: _char = 'utf8' # attach a plain text version of the html email if style == 'html': msg_alternative.attach( MIMEText(get_plain_from_html(body), 'plain', _char) ) body = format_as_html(body, logo_url) body = MIMEText(body.encode('utf8'), style, _char) msg_alternative.attach(body) for attachment in attachments or []: # Guess the content type based on the file's extension. Encoding # will be ignored, although we should check for simple things like # gzip'd or compressed files. ctype, encoding = guess_type(attachment.filename) if ctype is None or encoding is not None: # No guess could be made, or the file is encoded (compressed), # so use a generic bag-of-bits type. ctype = 'application/octet-stream' maintype, subtype = ctype.split('/', 1) if maintype == 'text' or ( ctype is not None and attachment.filename[-4:].lower() == '.ini' ): # Note: we should handle calculating the charset msg = MIMEText(attachment.read(), _subtype=subtype) elif maintype == 'image': msg = MIMEImage(attachment.read(), _subtype=subtype) elif maintype == 'audio': msg = MIMEAudio(attachment.read(), _subtype=subtype) else: msg = MIMEBase(maintype, subtype) msg.set_payload(attachment.read()) # Encode the payload using Base64 encoders.encode_base64(msg) # Set the filename parameter msg.add_header( 'Content-Disposition', 'attachment', filename=attachment.filename ) email.attach(msg) return email.as_string() def connect(site, get_server, debug=False): """connect to the mail server""" if site.smtp_host and site.smtp_port: server = get_server(site.smtp_host, site.smtp_port) if debug: server.set_debuglevel(1) if site.smtp_user and site.smtp_passwd: server.login(site.smtp_user, site.smtp_passwd) return server def disconnect(server): """disconnect from the mail server""" if server: server.quit() def deliver(): """deliver mail""" # spylint: disable=too-many-locals count = 0 server = connect(context.site, SMTP) try: mail_store = get_mail_store(context.site) mails = mail_store.find(status='waiting') for mail in mails: sender = json.loads(mail.sender) reply_to = json.loads(mail.reply_to) if mail.reply_to else sender recipients = json.loads(mail.recipients) attachments = [ Attachment(name, data, mimetype) for name, data, mimetype in json.loads(mail.attachments) or [] ] email = compose( sender, reply_to, recipients, mail.subject, mail.body, attachments, mail.style, context.site.mail_logo, ) try: sender_address = sender[1] except IndexError: sender_address = sender try: server.sendmail( sender_address, [r[1] for r in recipients], email ) mail.status = 'sent' count += 1 except Exception: mail.status = 'error' raise finally: mail_store.put(mail) finally: disconnect(server) return count def expedite(site, sender, recipients, subject, body, attachments=None, style='plain'): """deliver this email now""" logger = logging.getLogger(__name__) email = compose( sender, sender, recipients, subject, body, attachments or [], style, site.mail_logo, ) sender_address = formataddr(sender) server = connect(site, SMTP) if server: try: result = server.sendmail( sender_address, [r[1] for r in recipients], email ) if result: msg = 'Unable to send email. Please contact administrator.' logger.error('Unable to send email: {}'.format(result)) raise Exception(msg) else: logger.debug('mail sent successfully') finally: disconnect(server) else: logger.error('unable to connect to mail server') def post(put, sender, recipients, subject, body, attachments=None, style='plain'): """post an email message for delivery""" # pylint: disable=too-many-arguments dumps = json.dumps mail = SystemMail( sender=dumps(sender), recipients=dumps(recipients), subject=subject, body=body, attachments=dumps([a.as_tuple() for a in attachments or []]), style=style, status='waiting', created=now(), ) put(mail) def make_recipients_list(recipients): """build a well formed list of recipients >>> make_recipients_list('[email protected]') [('[email protected]', '[email protected]')] >>> v = make_recipients_list('[email protected];[email protected]') >>> v == [ ... ('[email protected]', '[email protected]'), ... ('[email protected]', '[email protected]') ... ] True >>> make_recipients_list(['[email protected]']) [('[email protected]', '[email protected]')] >>> v = make_recipients_list( ... [ ... '[email protected]', ... ('Sally', '[email protected]') ... ]) >>> v == [ ... ('[email protected]', '[email protected]'), ... ('Sally', '[email protected]') ... ] True """ if isinstance(recipients, str): if ';' in recipients: recipients = list(zip(recipients.split(';'), recipients.split(';'))) else: recipients = (recipients, recipients) recipients = isinstance(recipients, list) and recipients or [recipients] # if it's a list we interpret it as a list of addresses since # (name, address) pairs are always tuples. recipients = ensure_listy(recipients) recipients = [isinstance(x, str) and (x, x) or x for x in recipients] return recipients def as_sender_tuple(sender): """build a sender tuple >>> as_sender_tuple('[email protected]') ('[email protected]', '[email protected]') >>> as_sender_tuple(('[email protected]', '[email protected]')) ('[email protected]', '[email protected]') >>> as_sender_tuple(['[email protected]', '[email protected]']) ('[email protected]', '[email protected]') """ if isinstance(sender, str): return sender, sender return tuple(sender) def send_as(sender, recipients, subject, message, attachments=None): """send an email as a specific sender >>> zoom.system.site = zoom.sites.Site() >>> send_as('[email protected]', '[email protected]', "test", "This is a test") This function compares the sender to the default send_from information configured for the site, and if they differ it includes a Reply-To header in the email message. NOTE: Some email providers may flag emails sent using the reply-to header as spam or phishing emails. To send email reliably when the domains of the site send_from address differ from the reply-to address domain the system must be configured properly. There is much written on this topic so we don't try to cover it here, however here is a useful place to start: * https://blog.codinghorror.com/so-youd-like-to-send-some-email-through-code/ """ site = context.site sender = as_sender_tuple(sender) recipients = make_recipients_list(recipients) if site.mail_delivery != 'background': expedite(site, sender, recipients, subject, message, attachments, 'html') else: raise Exception('background email processing not yet implemented') # put = get_mail_store(site).put # post(put, sender, recipients, subject, message, attachments, 'html') def get_default_sender(site): """get default sender (name, address) tuple""" sender = (site.mail_from_name, site.mail_from_addr) return sender def send(recipients, subject, message, attachments=None): """send an email >>> zoom.system.site = zoom.sites.Site() >>> send('[email protected]', "test", "This is a test") """ sender = get_default_sender(context.site) send_as(sender, recipients, subject, message, attachments)
python
# SPDX-License-Identifier: MIT # Copyright (c) 2022 MBition GmbH from ..globals import logger from .compumethodbase import CompuMethod class TabIntpCompuMethod(CompuMethod): def __init__(self, internal_type, physical_type): super().__init__(internal_type, physical_type, "TAB-INTP") logger.debug("Created table interpolation compu method!") logger.warning( "TODO: Implement table interpolation compu method properly!") def convert_physical_to_internal(self, physical_value): return self.internal_type.make_from(physical_value) def convert_internal_to_physical(self, internal_value): return self.physical_type.make_from(internal_value) def is_valid_physical_value(self, physical_value): return True def is_valid_internal_value(self, internal_value): return True
python
# -*- coding: utf-8 -*- from datetime import datetime, timedelta from hashlib import md5 from flask import Flask, request, redirect, current_app from time import gmtime from xmltodict import parse import requests import urllib app = Flask(__name__) app.config.from_pyfile('config.py', silent=True) app.config.from_pyfile('/etc/dim/cas.cfg', silent=True) @app.after_request def after_request(response): if app.config.get('FRONTEND_SERVICE', ''): header = response.headers header['Access-Control-Allow-Origin'] = app.config['FRONTEND_SERVICE'] return response @app.route("/") def login(): if (not app.config.get('CURRENT_SERVICE', '') or not app.config.get('CAS_LOGIN_URL', '') or not app.config.get('CAS_VALIDATE_URL', '')): return "CAS config incomplete", 500 if (not app.config.get('FRONTEND_SERVICE', '') or not app.config.get('TOOL_NAME', '') or not app.config.get('SECRET_KEY', '')): return "DIM frontend config incomplete", 500 if 'ticket' not in request.args: return redirect(app.config['CAS_LOGIN_URL'].format( app.config['CURRENT_SERVICE'])) ticket = request.args['ticket'] cas_response = requests.get(app.config['CAS_VALIDATE_URL'].format( app.config['CURRENT_SERVICE'], ticket)) tree = parse(cas_response.content) if not tree.get('cas:serviceResponse', False): return "CAS response invalid", 500 service_response = tree.get('cas:serviceResponse') if (not service_response.get('cas:authenticationSuccess', False) and not service_response.get('cas:authenticationFailure', False)): return "CAS response invalid", 400 if service_response.get('cas:authenticationFailure', False): return service_response.get('cas:authenticationFailure').get('#text'), 400 success = service_response.get('cas:authenticationSuccess', False) if not success.get('cas:user', False): return "CAS response does not contain user", 400 username = success.get('cas:user') attributes = success.get('cas:attributes') last_name = '' if 'cas:lastName' in attributes: last_name = attributes['cas:lastName'].encode('latin-1') first_name = '' if 'cas:firstName' in attributes: first_name = attributes['cas:firstName'].encode('latin-1') full_name = first_name + " " + last_name salt = str(gmtime()) response = current_app.make_response(redirect(app.config['FRONTEND_SERVICE'])) response.set_cookie( key='LOGIN_ARGS', value=urllib.urlencode({ 'username': username, 'tool': app.config['TOOL_NAME'], 'salt': salt, 'sign': md5((username + salt + app.config['SECRET_KEY']).encode()).hexdigest() }), expires=datetime.now() + timedelta(seconds=24 * 3600) ) response.set_cookie( key='FULL_NAME', value=full_name, expires=datetime.now() + timedelta(seconds=24 * 3600) ) return response @app.route("/logout") def logout(): if not app.config.get('CAS_LOGOUT_URL', ''): return "CAS config incomplete", 500 return redirect(app.config['CAS_LOGOUT_URL']) if __name__ == "__main__": app.run(ssl_context='adhoc', port=443, host='0.0.0.0')
python
import matplotlib.pyplot as plt import numpy as np import pandas as pd from catboost import Pool from sklearn.model_selection import StratifiedKFold from tqdm import tqdm class CatBoostCustomModel: def __init__(self, model, model_params={}): self.result = {} try: self.model = model self.model.set_params(**model_params) except: raise def fit(self, X, y, cat_features=[], fit_params={}, n_folds=None, shuffle=False): if not len(cat_features): cat_features = np.where(X.dtypes == np.object)[0] if not n_folds: df_pool = Pool(X, label=y, cat_features=cat_features) model_fit = self.model.fit(df_pool, **fit_params) else: kf = StratifiedKFold(n_splits=n_folds, random_state=42, shuffle=shuffle) model_fit = self.model for train_index, valid_index in tqdm(kf.split(X, y)): print(len(train_index), len(valid_index)) df_pool = Pool(X.iloc[train_index], label=y.iloc[train_index], cat_features=cat_features) x_val, y_val = X.iloc[valid_index], y.iloc[valid_index] model_fit.fit(df_pool, eval_set=(x_val, y_val) , **fit_params) self.result = { "X": X, "y": y, "cat_features": cat_features, "model": self.model, "fit_params": fit_params, "model_fit": model_fit } return model_fit def get_features_importance(self, sorted=False): feature_score = pd.DataFrame( list(zip(self.result.get("X").dtypes.index, self.result.get("model_fit").get_feature_importance())), columns=['Feature', 'Score']) if sorted: feature_score.sort_values(by='Score', ascending=False, inplace=True, na_position='last') return feature_score def plot_features_importance(self, sorted=True): feature_score = self.get_features_importance(sorted=sorted) ax = feature_score.plot('Feature', 'Score', kind='bar') ax.set_title("Catboost Feature Importance Ranking", fontsize=14) ax.set_xlabel('') rects = ax.patches # get feature score as labels round to 2 decimal labels = feature_score['Score'].round(2) for rect, label in zip(rects, labels): height = rect.get_height() ax.text(rect.get_x() + rect.get_width() / 2, height + 0.35, label, ha='center', va='bottom') plt.show() def get_score(self): return self.result["model_fit"].score(self.result["X"], self.result["y"]) def get_crosstab(self): crosstab = pd.DataFrame() crosstab['GroundTruth'] = self.result["y"] crosstab['Predict'] = self.result["model_fit"].predict(self.result["X"]) return pd.crosstab(crosstab['GroundTruth'], crosstab['Predict'], margins=True)
python