content
stringlengths
0
894k
type
stringclasses
2 values
import mysql.connector from mysql.connector import errorcode from flask import flash try: # Establish a connection with the MySQL database # Password here is hardcoded for simplicity. # For all practical purposes, use environment variables or config files. cnx = mysql.connector.connect(user='test_user', password='password', host='127.0.0.1', database='phone_directory') except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: print("Something is wrong with your user name or password") elif err.errno == errorcode.ER_BAD_DB_ERROR: print("Database does not exist") else: print(err) def add_contact(contact): status = None cursor = cnx.cursor() insert_query = "INSERT INTO contacts (name, mobile_no, email) VALUES (%s, %s, %s)" contact = (contact.get("name"), contact.get( "mobile_no"), contact.get("email")) try: cursor.execute(insert_query, contact) status = True except Exception as e: print(e) status = False finally: cnx.commit() cursor.close() return status def get_contacts(): try: cursor = cnx.cursor() cursor.execute("SELECT * FROM contacts") contacts = cursor.fetchall() cursor.close() return contacts except Exception as e: print(e) flash("Error occured while reading from the database") return None def delete_contact(contact_id): cursor = cnx.cursor() try: cursor.execute("DELETE FROM contacts WHERE id = %s", (contact_id, )) flash("Contact deleted successfully") except Exception as e: print(e) flash("Error occured while deleting from the database") cursor.close()
python
""" Django template tags for configurations. """
python
from services import user_service from viewmodels.shared.viewmodelbase import ViewModelBase class IndexViewModel(ViewModelBase): def __init__(self): super().__init__() self.user = user_service.get_user_by_id(self.user_id) def validate(self): if not self.user_id: self.errors.append('No user id. ') if self.user_id and not self.user: self.errors.append('No user. ')
python
# coding: utf-8 # In[1]: from flask import Flask,render_template,session,url_for,request,redirect from flask_pymongo import PyMongo from flask_bcrypt import Bcrypt from flask import jsonify,json import os import gspread from oauth2client.service_account import ServiceAccountCredentials import pprint import datetime import argparse import pickle from model import create_model import pprint import datetime app1 = Flask(__name__) nn4_small2_pretrained = create_model() # In[2]: nn4_small2_pretrained.load_weights('weights/nn4.small2.v1.h5') # arguments parser = argparse.ArgumentParser() parser.add_argument("-c","--course",help="Course ID for attendance") args = vars(parser.parse_args()) print(args['course']) # In[3]: import numpy as np import os.path class IdentityMetadata(): def __init__(self, base, name, file): # dataset base directory self.base = base # identity name self.name = name # image file name self.file = file def __repr__(self): return self.image_path() def image_path(self): return os.path.join(self.base, self.name, self.file) def load_metadata(path): metadata = [] for i in os.listdir(path): for f in os.listdir(os.path.join(path, i)): # Check file extension. Allow only jpg/jpeg' files. ext = os.path.splitext(f)[1] if ext == '.jpg' or ext == '.jpeg' or ext=='.png': metadata.append(IdentityMetadata(path, i, f)) return np.array(metadata) metadata = load_metadata('images') print('metadata created') print(metadata) # In[4]: import cv2 import matplotlib.pyplot as plt import matplotlib.patches as patches from align import AlignDlib # get_ipython().run_line_magic('matplotlib', 'inline') def load_image(path): img = cv2.imread(path, 1) #BGR return img[...,::-1] #RGB alignment = AlignDlib('shape_predictor_68_face_landmarks.dat') #combined transformation def align_image(img): return alignment.align(96, img, alignment.getLargestFaceBoundingBox(img), landmarkIndices=AlignDlib.OUTER_EYES_AND_NOSE) # In[5]: import pickle embedded = np.zeros((metadata.shape[0], 128)) real_name = {} embeddings = open('embeddings.pkl','rb') embedded = pickle.load(embeddings) embeddings.close() for i, m in enumerate(metadata): # img = load_image(m.image_path()) # img = align_image(img) # scale RGB values to interval [0,1] # if img is not None: # img = (img / 255.).astype(np.float32) # obtain embedding vector for image # embedded[i] = nn4_small2_pretrained.predict(np.expand_dims(img, axis=0))[0] real_name[os.path.dirname(m.image_path()[7:])] = embedded[i] print(i) print(m.name) # embeddings = open('embeddings.pkl','wb') # pickle.dump(embedded,embeddings) # embeddings.close() def real_names(): return real_name # In[6]: def distance(emb1, emb2): return np.sum(np.square(emb1 - emb2)) # In[7]: def show_pair(idx1, idx2): plt.figure(figsize=(6,3)) plt.suptitle(f'Distance = {distance(embedded[idx1], embedded[idx2]):.2f}') plt.subplot(121) plt.imshow(load_image(metadata[idx1].image_path())) plt.subplot(122) plt.imshow(load_image(metadata[idx2].image_path())); show_pair(78, 76) show_pair(78, 17) # In[8]: def recognize(embedded): min_dist = 100 _id = None for name,emb in real_name.items(): dist = np.sum(np.square(emb - embedded)) if dist < min_dist: min_dist = dist _id = name if min_dist > 0.58: print(min_dist) return None else: print(min_dist) return _id # In[9]: from sklearn.metrics import f1_score, accuracy_score distances = [] # squared L2 distance between pairs identical = [] # 1 if same identity, 0 otherwise num = len(metadata) for i in range(num - 1): for j in range(1, num): distances.append(distance(embedded[i], embedded[j])) identical.append(1 if metadata[i].name == metadata[j].name else 0) distances = np.array(distances) identical = np.array(identical) thresholds = np.arange(0.3, 1.0, 0.01) f1_scores = [f1_score(identical, distances < t) for t in thresholds] acc_scores = [accuracy_score(identical, distances < t) for t in thresholds] opt_idx = np.argmax(f1_scores) # Threshold at maximal F1 score opt_tau = thresholds[opt_idx] # Accuracy at maximal F1 score opt_acc = accuracy_score(identical, distances < opt_tau) # Plot F1 score and accuracy as function of distance threshold plt.plot(thresholds, f1_scores, label='F1 score'); plt.plot(thresholds, acc_scores, label='Accuracy'); plt.axvline(x=opt_tau, linestyle='--', lw=1, c='lightgrey', label='Threshold') plt.title(f'Accuracy at threshold {opt_tau:.2f} = {opt_acc:.3f}'); plt.xlabel('Distance threshold') plt.legend(); # In[10]: embedded = np.zeros((1, 128)) def recognize_image(image_path): img = load_image(image_path) img = align_image(img) if img is not None: img = (img / 255.).astype(np.float32) # obtain embedding vector for image embedded = nn4_small2_pretrained.predict(np.expand_dims(np.array(img), axis=0))[0] name = recognize(embedded) print(name) return name return None cap = cv2.VideoCapture(1) # def webcam_recognize(): # while(True): # ret, frame = cap.read() # cv2.imwrite('temp.jpg',frame) # cv2.waitKey(20) # if 'temp.jpg' is not None: # name = recognize_image('temp.jpg') # cv2.imshow('temp',frame) # print(name) # if cv2.waitKey(1) & 0xFF == ord('q'): # break # cap.release() # cv2.destroyAllWindows() # webcam_recognize() # recognize_image('.jpg') #students list for gspread updations students = [] from mtcnn.mtcnn import MTCNN import pickle def multiple_recognize(): while(True): ret,frame = cap.read() cv2.imwrite('temp.jpg',frame) detector = MTCNN() image = load_image('temp.jpg') faces = detector.detect_faces(image) print(faces) if faces is not None: for face in faces: (x,y,w,h) = face['box'] cv2.imwrite('temp.jpg',frame) if 'temp.jpg' is not None: name = recognize_image('temp.jpg') cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),5) cv2.imshow('Faces',frame) if name!=None and name not in students: students.append(name) stud_names = open('present.pickle','wb') pickle.dump(students, stud_names,protocol=2) stud_names.close() if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() # cv2.imshow('parts',image[y:y+h,x:x+w]) multiple_recognize() # In[11]: # import datetime # import os # import subprocess as s # s.call("python mark_attendance.py", shell=True) # today = datetime.date.today() # formatted_date = today.strftime("%m-%d-%Y") # print(formatted_date) # from mark_attendance import mark_attendance # mark_attendance(students) import datetime today = datetime.date.today() formatted_date = today.strftime("%m-%d-%Y") print(formatted_date) from mark_attendance import mark_attendance mark_attendance(students,args['course'])
python
# Copyright (c) The Diem Core Contributors # SPDX-License-Identifier: Apache-2.0 from typing import List, Callable, Optional import requests from .models import ( User, Address, Transaction, Transactions, RequestForQuote, Quote, CreateTransaction, AccountInfo, OffChainSequenceInfo, TransactionId, FundsTransfer, PaymentDetails, PreparePaymentInfoResponse, ) from .models_fppa import ( FundPullPreApprovalScope, FundsPullPreApprovalRequest, FundsPullPreApproval, FundPullPreApprovalStatus, ) RequestSender = Callable[[str, str, Optional[dict]], requests.Response] class ReferenceWalletProxy: def __init__(self, base_url): self.base_url = base_url self.authorization_header = {} self.funds_pull_preapproval = ReferenceWalletProxyFPPA(self._request_authorized) def create_new_user(self, username, password): add_user_json = {"username": username, "password": password} add_user_response = self._request("POST", "user", json=add_user_json) self._set_authorization_token(add_user_response.text) def get_user(self): user_response = self._request_authorized("GET", "user") return User.from_json(user_response.text) def update_user(self, user: User): self._request_authorized("PUT", "user", json=user.to_dict()) return self.get_user() def get_account_info(self) -> AccountInfo: response = self._request_authorized("GET", "account") return AccountInfo.from_json(response.text) def get_balance(self, currency): return sum( x.balance for x in self.get_account_info().balances if x.currency == currency ) def get_receiving_address(self) -> str: address_response = self._request_authorized( "POST", "account/receiving-addresses" ) address = Address.from_json(address_response.text) return address.address def get_transaction_list(self) -> List[Transaction]: account_transactions_response = self._request_authorized( "GET", "account/transactions" ) transactions = Transactions.from_json(account_transactions_response.text) return transactions.transaction_list def create_deposit_quote(self, amount: int, currency_pair) -> Quote: quote_request = RequestForQuote( action="buy", amount=amount, currency_pair=currency_pair, ) quote_response = self._request_authorized( "POST", "account/quotes", json=quote_request.to_dict() ) return Quote.from_json(quote_response.text) def execute_quote(self, quote_id: str): self._request_authorized( "POST", f"account/quotes/{quote_id}/actions/execute", json={} ) def get_offchain_state(self, reference_id) -> OffChainSequenceInfo: # TBD: There is no way, at the moment, to get off-chain sequence # state. Should be implemented. return OffChainSequenceInfo() def send_transaction(self, address, amount, currency) -> TransactionId: tx_request = CreateTransaction( currency=currency, amount=amount, receiver_address=address, ) send_transaction_response = self._request_authorized( "POST", "account/transactions", json=tx_request.to_dict() ) return TransactionId.from_json(send_transaction_response.text) def create_payment_command_as_sender( self, reference_id, vasp_address, merchant_name, action, currency, amount, expiration, ): request = { "reference_id": reference_id, "vasp_address": vasp_address, "merchant_name": merchant_name, "action": action, "currency": currency, "amount": amount, "expiration": expiration, } self._request_authorized("POST", "offchain/payment_command", json=request) def get_payment_details(self, reference_id, vasp_address) -> PaymentDetails: response = self._request_authorized( "GET", f"offchain/query/payment_details?" f"vasp_address={vasp_address}&" f"reference_id={reference_id}", ) return PaymentDetails.from_json(response.text) if response.text else None def prepare_payment_as_receiver(self, action: str = "charge") -> (str, str): response = self._request_authorized( "POST", f"/validation/payment_info/{action}" ) response_object = PreparePaymentInfoResponse.from_json(response.text) return response_object.reference_id, response_object.address def approve_payment(self, reference_id: str, init_offchain: bool): self._request_authorized( "POST", f"/offchain/payment/{reference_id}/actions/approve", json={"init_offchain_required": init_offchain}, ) def approve_payment_command(self, reference_id): self._request_authorized( "POST", f"/offchain/payment_command/{reference_id}/actions/approve" ) def reject_payment_command(self, reference_id): self._request_authorized( "POST", f"/offchain/payment_command/{reference_id}/actions/reject" ) def get_transaction(self, tx_id) -> FundsTransfer: response = self._request_authorized("GET", f"account/transactions/{tx_id}") return FundsTransfer.from_json(response.text) def _set_authorization_token(self, token): self.authorization_header = {"Authorization": "Bearer " + token} def _request(self, method, endpoint, json=None): response = requests.request( method, url=f"{self.base_url}/{endpoint}", json=json ) response.raise_for_status() return response def _request_authorized(self, method, endpoint, json=None) -> requests.Response: response = requests.request( method, url=f"{self.base_url}/{endpoint}", json=json, headers=self.authorization_header, ) response.raise_for_status() return response class ReferenceWalletProxyFPPA: """ Sends to the reference wallet funds pull pre-approval related requests. """ def __init__(self, request_wallet_authorized: RequestSender): self._request_authorized = request_wallet_authorized def get_all_preapprovals(self) -> List[FundsPullPreApproval]: r = self._request_authorized("GET", "offchain/funds_pull_pre_approvals") preapprovals = r.json() return [ FundsPullPreApproval.from_dict(x) for x in preapprovals["funds_pull_pre_approvals"] ] def request_preapproval_from_another( self, payer_addr_bech32: str, scope: FundPullPreApprovalScope, description: str = None, ) -> str: fppa_request = FundsPullPreApprovalRequest( payer_address=payer_addr_bech32, description=description, scope=scope, ) r = self._request_authorized( "POST", "validation/funds_pull_pre_approvals", fppa_request.to_dict() ) return r.json()["funds_pull_pre_approval_id"] def create_fppa_request_for_unknown_payer( self, scope: FundPullPreApprovalScope, description: str = None, ) -> (str, str): r = self._request_authorized( "POST", "validation/funds_pull_pre_approvals", {"description": description, "scope": scope.to_dict()}, ) return r.json()["funds_pull_pre_approval_id"], r.json()["address"] def update_preapproval_status( self, fppa_id: str, status: FundPullPreApprovalStatus ): self._request_authorized( "PUT", f"offchain/funds_pull_pre_approvals/{fppa_id}", {"status": status.value}, ) def create_and_approve( self, biller_address: str, funds_pull_pre_approval_id: str, scope: FundPullPreApprovalScope, description: str, ): self._request_authorized( "POST", "offchain/funds_pull_pre_approvals", { "biller_address": biller_address, "funds_pull_pre_approval_id": funds_pull_pre_approval_id, "scope": scope.to_dict(), "description": description, }, )
python
# -*- coding: utf-8 -*- """ Created on Wed Oct 30 14:05:38 2019 @author: ico """ import numpy as np class MyNeuron: def training(self,X,Y): self.W=np.random.random((X.shape[1]+1,1)) X=np.append(np.ones((X.shape[0],1)),X,axis=1) for j in range(1,21): i=0 for x in X: if np.dot(self.W.T,x)>0: y = 1 else: y = 0 self.W=self.W+(Y[i]-y)*x.reshape(3,1) i=i+1 #W=np.array([-100,100/6]) #constructor def __init__(self,funcActivation): self.funcAct=funcActivation #Predice si aprueba o no def predict(self,x): x=np.append(1,x) y=np.dot(self.W.T,x.reshape(self.W.shape[0])) if self.funcAct=="heaviside": return self.heaviside(y) if self.funcAct=="tanh": return self.tanh(y) if self.funcAct=="sigmoid": return self.sigmoid(y) #funciones activación def Yp(self,x): if x>=0: return 1#aprobado else: return -1#no aprobado def tanh(self,x): return np.sinh(x)/np.cosh(x) def sigmoid(self,x): return 1/(1+np.exp(-x)) #transforma a 0 o 1 def transformPredictions(self,Y): Y=np.array(Y) if self.funcAct=='heaviside': idxNeg=Y==-1 Y[idxNeg]=0 elif self.funcAct=='tanh': idxPos = Y >=0 idxNeg = Y<0 Y[idxPos]=1 Y[idxNeg]=0 else: idxPos = Y>=0.5 idxNeg=Y<0.5 Y[idxPos]=1 Y[idxNeg]=0 return Y clf=MyNeuron("sigmoid") import pandas as pd #datos=pd.read_csv('training.csv') #X=datos.iloc[:,[0,1]] #Y=datos.iloc[:,2] ceros=np.random.uniform(0,0.3,10)#vector de 10 ceros unos= np.random.uniform(0.7,1.0,10)#vecto de 10 unos #creo conjunto de datos X=np.append(ceros,ceros) X=np.append(X,unos) X=np.append(X,unos) X=np.append(X,ceros) X=np.append(X,unos) X=np.append(X,ceros) X=np.append(X,unos) X=X.reshape(40,2) Y=np.zeros((30,1)) Y=np.append(Y,np.ones((10,1))) Y=Y.reshape(40,1) clf.training(X,Y) prueba=pd.read_csv('test.csv') Xt=prueba.iloc[:,[0,1]] Yt=prueba.iloc[:,2] Yp=[] for i in range(0,Xt.shape[0]): p=np.array(Xt.iloc[i,:]) Yp.append(clf.predict(p)) """ import matplotlib.pyplot as plt idxPos = Y ==1 idxNeg = Y ==0 Xgraf=X[idxPos] plt.plot(Xgraf.iloc[:,0],Xgraf.iloc[:,1],'bo') Xgraf=X[idxNeg] plt.plot(Xgraf.iloc[:,0],Xgraf.iloc[:,1],'ro') plt.title("Entrenamiento") plt.show() for i in range(0,Xt.shape[0]): p=np.array(Xt.iloc[i,:]) Yp.append(clf.predict(p)) idxPos = Yt ==1 idxNeg = Yt ==0 Xgraf=Xt[idxPos] plt.plot(Xgraf.iloc[:,0],Xgraf.iloc[:,1],'bo') Xgraf=Xt[idxNeg] plt.plot(Xgraf.iloc[:,0],Xgraf.iloc[:,1],'ro') plt.title("Test") plt.show() #calculo de matriz de confusion #convertir las predicciones en clases Yp=clf.transformPredictions(Yp) Yt=np.array(Yt) Yt=Yt.reshape(Yt.shape[0],1) a=np.sum(np.logical_and(Yp==0,Yt==0)) b=np.sum(np.logical_and(Yp==1,Yt==0)) c=np.sum(np.logical_and(Yp==0,Yt==1)) d=np.sum(np.logical_and(Yp==1,Yt==1)) """ #cm=np.array([a,b,c,d]).reshape((2,2)) #Ypprint(cm) #con imprimimos los resultados#
python
#!/usr/bin/env python3 import argparse import random import sys from mpmath import mp from common import print_integral_single_input from common.randomgen import generate_basis_function parser = argparse.ArgumentParser() parser.add_argument("--filename", type=str, required=True, help="Output file name") parser.add_argument("--max-am", type=int, required=True, help="Maximum AM of the basis functions") parser.add_argument("--alpha-power", type=int, required=True, help="Maximum power of the exponent (range will be 1e-x to 1e+x)") parser.add_argument("--xyz-power", type=int, required=True, help="Maximum power of the coordinates (range will be -1e+x to 1e+x)") parser.add_argument("--seed", type=int, required=True, help="Seed to use for the pseudo-random number generator") parser.add_argument("--ndigits", type=int, required=True, help="Number of digits for the value of the integral") parser.add_argument("--ncenter", type=int, required=True, help="Number of centers in the integral (typically 2 or 4)") parser.add_argument("--ntests", type=int, required=True, help="Number of tests to generate") args = parser.parse_args() random.seed(args.seed, version=2) with open(args.filename, 'w') as f: f.write("# THIS FILE IS GENERATED VIA A SCRIPT. DO NOT EDIT\n") f.write("#\n") f.write("# Input parameters for integral generated with:\n") f.write("# " + " ".join(sys.argv[:]) + "\n") f.write("#\n") f.write(str(args.ntests)) f.write("\n") for i in range(args.ntests): entry = [] for n in range(args.ncenter): bf = generate_basis_function(args.max_am, args.alpha_power, args.xyz_power, args.ndigits) entry.append(bf) print_integral_single_input(f, entry)
python
# coding: utf-8 r"""Distance conversions""" from corelib.units.base import create_code distances = {"mm": 1e-3, "millimeter": 1e-3, "millimeters": 1e-3, "millimetre": 1e-3, "millimetres": 1e-3, "cm": 1e-2, "centimeter": 1e-2, "centimeters": 1e-2, "centimetre": 1e-2, "centimetres": 1e-2, "m": 1., "meter": 1., "meters": 1., "metre": 1., "metres": 1., "km": 1000., "kilometer": 1000., "kilometers": 1000., "kilometre": 1000., "kilometres": 1000., # "in": 0.0254, # in is a reserved keyword in Python "inch": 0.0254, "inches": 0.0254, "ft": 0.3048, "foot": 0.3048, "feet": 0.3048, "yd": 0.9144, "yard": 0.9144, "yards": 0.9144, "mi": 1609.344, "mile": 1609.344, "miles": 1609.344, "ftm": 1.8288, "fathom": 1.8288, "fathoms": 1.8288, "nm": 1852., "nautical_mile": 1852., "nautical_miles": 1852.} for k in distances.keys(): # code = fs_units.base.create_code("distances", k) # exec code in module.__dict__ # g = globals() exec(create_code("distances", k), globals()) def convert(value, to_unit, from_unit): r"""Convenience function for cases where the to_unit and the from_unit are in string form Parameters ---------- value : float or int to_unit : str The desired unit from_unit : str The input unit """ return globals()[to_unit](**{from_unit: value})
python
kOk = 0 kNoSuchSession = 6 kNoSuchElement = 7 kNoSuchFrame = 8 kUnknownCommand = 9 kStaleElementReference = 10 kElementNotVisible = 11 kInvalidElementState = 12 kUnknownError = 13 kJavaScriptError = 17 kXPathLookupError = 19 kTimeout = 21 kNoSuchWindow = 23 kInvalidCookieDomain = 24 kUnexpectedAlertOpen = 26 kNoAlertOpen = 27 kScriptTimeout = 28 kInvalidSelector = 32 kSessionNotCreatedException = 33 # Xwalk-specific status codes. kXwalkNotReachable = 100 kNoSuchExecutionContext = 101 kDisconnected = 102 kForbidden = 103 kTabCrashed = 104 class _DefaultMessageForStatusCode(object): """ Returns the string equivalent of the given |ErrorCode|.""" Message = { kOk: "ok", kNoSuchSession: "no such session", kNoSuchElement: "no such element", kNoSuchFrame: "no such frame", kUnknownCommand: "unknown command", kStaleElementReference: "stale element reference", kElementNotVisible: "element not visible", kInvalidElementState: "invalid element state", kUnknownError: "unknown error", kJavaScriptError: "javascript error", kXPathLookupError: "xpath lookup error", kTimeout: "timeout", kNoSuchWindow: "no such window", kInvalidCookieDomain: "invalid cookie domain", kUnexpectedAlertOpen: "unexpected alert open", kNoAlertOpen: "no alert open", kScriptTimeout: "asynchronous script timeout", kInvalidSelector: "invalid selector", kSessionNotCreatedException: "session not created exception", kNoSuchExecutionContext: "no such execution context", kXwalkNotReachable: "xwalk not reachable", kDisconnected: "disconnected", kForbidden: "forbidden", kTabCrashed: "tab crashed", } class Status(object): def __init__(self, code=kOk, details=""): self.code = code if type(details) == str and details: self.msg = _DefaultMessageForStatusCode.Message[code] + ":" + details else: self.msg = _DefaultMessageForStatusCode.Message[code] def Update(self, other): self.code = other.code self.msg = other.msg def IsOk(self): return self.code == kOk def IsError(self): return self.code != kOk def Code(self): return self.code def Message(self): return self.msg def AddDetails(self, details): self.msg += details
python
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Library containing helpers for adding post export metrics for evaluation. These post export metrics can be included in the add_post_export_metrics parameter of Evaluate to compute them. """ from typing import Any, Dict, List, Optional, Tuple import tensorflow as tf from tensorflow_model_analysis import types from tensorflow_model_analysis.post_export_metrics import metric_keys from tensorflow_model_analysis.post_export_metrics import post_export_metrics from tensorflow_model_analysis.proto import metrics_for_slice_pb2 as metrics_pb2 from tensorflow_model_analysis.slicer import slicer_lib as slicer # pylint: disable=protected-access @post_export_metrics._export('fairness_indicators') class _FairnessIndicators(post_export_metrics._ConfusionMatrixBasedMetric): """Metrics that can be used to evaluate the following fairness metrics. * Demographic Parity or Equality of Outcomes. For each slice measure the Positive* Rate, or the percentage of all examples receiving positive scores. * Equality of Opportunity Equality of Opportunity attempts to match the True Positive* rate (aka recall) of different data slices. * Equality of Odds In addition to looking at Equality of Opportunity, looks at equalizing the False Positive* rates of slices as well. The choice to focus on these metrics as a starting point is based primarily on the paper Equality of Opportunity in Supervised Learning and the excellent visualization created as a companion to the paper. https://arxiv.org/abs/1610.02413 http://research.google.com/bigpicture/attacking-discrimination-in-ml/ * Note that these fairness formulations assume that a positive prediction is associated with a positive outcome for the user--in certain contexts such as abuse, positive predictions translate to non-opportunity. You may want to use the provided negative rates for comparison instead. """ _thresholds = ... # type: List[float] _example_weight_key = ... # type: str _labels_key = ... # type: str _metric_tag = None # type: str # We could use the same keys as the ConfusionMatrix metrics, but with the way # that post_export_metrics are currently implemented, if both # post_export_metrics were specified we would pop the matrices/thresholds in # the first call, and have issues with the second. thresholds_key = metric_keys.FAIRNESS_CONFUSION_MATRIX_THESHOLDS matrices_key = metric_keys.FAIRNESS_CONFUSION_MATRIX_MATRICES def __init__(self, thresholds: Optional[List[float]] = None, example_weight_key: Optional[str] = None, target_prediction_keys: Optional[List[str]] = None, labels_key: Optional[str] = None, metric_tag: Optional[str] = None, tensor_index: Optional[int] = None) -> None: if not thresholds: thresholds = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] # Determine the number of threshold digits to display as part of the metric # key. We want lower numbers for readability, but allow differentiation # between close thresholds. self._key_digits = 2 for t in thresholds: if len(str(t)) - 2 > self._key_digits: self._key_digits = len(str(t)) - 2 super().__init__( thresholds, example_weight_key, target_prediction_keys, labels_key, metric_tag, tensor_index=tensor_index) def get_metric_ops( self, features_dict: types.TensorTypeMaybeDict, predictions_dict: types.TensorTypeMaybeDict, labels_dict: types.TensorTypeMaybeDict ) -> Dict[str, Tuple[types.TensorType, types.TensorType]]: values, update_ops = self.confusion_matrix_metric_ops( features_dict, predictions_dict, labels_dict) # True positive rate is computed by confusion_matrix_metric_ops as 'recall'. # pytype: disable=unsupported-operands values['tnr'] = tf.math.divide_no_nan(values['tn'], values['tn'] + values['fp']) values['fpr'] = tf.math.divide_no_nan(values['fp'], values['fp'] + values['tn']) values['positive_rate'] = tf.math.divide_no_nan( values['tp'] + values['fp'], values['tp'] + values['fp'] + values['tn'] + values['fn']) values['fnr'] = tf.math.divide_no_nan(values['fn'], values['fn'] + values['tp']) values['negative_rate'] = tf.math.divide_no_nan( values['tn'] + values['fn'], values['tp'] + values['fp'] + values['tn'] + values['fn']) values['false_discovery_rate'] = tf.math.divide_no_nan( values['fp'], values['fp'] + values['tp']) values['false_omission_rate'] = tf.math.divide_no_nan( values['fn'], values['fn'] + values['tn']) # pytype: enable=unsupported-operands update_op = tf.group(update_ops['fn'], update_ops['tn'], update_ops['fp'], update_ops['tp']) value_op = tf.transpose( a=tf.stack([ values['fn'], values['tn'], values['fp'], values['tp'], values['precision'], values['recall'] ])) output_dict = { self._metric_key(self.matrices_key): (value_op, update_op), self._metric_key(self.thresholds_key): (tf.identity(self._thresholds), tf.no_op()), } for i, threshold in enumerate(self._thresholds): output_dict[self._metric_key( metric_keys.base_key( 'positive_rate@%.*f' % (self._key_digits, threshold)))] = (values['positive_rate'][i], update_op) output_dict[self._metric_key( metric_keys.base_key( 'true_positive_rate@%.*f' % (self._key_digits, threshold)))] = (values['recall'][i], update_op) output_dict[self._metric_key( metric_keys.base_key( 'false_positive_rate@%.*f' % (self._key_digits, threshold)))] = (values['fpr'][i], update_op) output_dict[self._metric_key( metric_keys.base_key( 'negative_rate@%.*f' % (self._key_digits, threshold)))] = (values['negative_rate'][i], update_op) output_dict[self._metric_key( metric_keys.base_key( 'true_negative_rate@%.*f' % (self._key_digits, threshold)))] = (values['tnr'][i], update_op) output_dict[self._metric_key( metric_keys.base_key( 'false_negative_rate@%.*f' % (self._key_digits, threshold)))] = (values['fnr'][i], update_op) output_dict[self._metric_key( metric_keys.base_key('false_discovery_rate@%.*f' % (self._key_digits, threshold)))] = ( values['false_discovery_rate'][i], update_op) output_dict[self._metric_key( metric_keys.base_key('false_omission_rate@%.*f' % (self._key_digits, threshold)))] = ( values['false_omission_rate'][i], update_op) return output_dict # pytype: disable=bad-return-type def populate_stats_and_pop( self, unused_slice_key: slicer.SliceKeyType, combine_metrics: Dict[str, Any], output_metrics: Dict[str, metrics_pb2.MetricValue]) -> None: matrices = combine_metrics.pop(self._metric_key(self.matrices_key)) thresholds = combine_metrics.pop(self._metric_key(self.thresholds_key)) # We assume that thresholds are already sorted. if len(matrices) != len(thresholds): raise ValueError( 'matrices should have the same length as thresholds, but lengths ' 'were: matrices: %d, thresholds: %d' % (len(matrices), len(thresholds))) for threshold, raw_matrix in zip(thresholds, matrices): # Adds confusion matrix table as well as ratios used for fairness metrics. if isinstance(threshold, types.ValueWithTDistribution): threshold = threshold.unsampled_value output_matrix = post_export_metrics._create_confusion_matrix_proto( raw_matrix, threshold) (output_metrics[self._metric_key(metric_keys.FAIRNESS_CONFUSION_MATRIX)] .confusion_matrix_at_thresholds.matrices.add().CopyFrom(output_matrix)) # If the fairness_indicator in enabled, the slicing inside the tfx evaluator # config will also be added into this metrics as a subgroup key. # However, handling the subgroup metrics with slices is still TBD. @post_export_metrics._export('fairness_auc') class _FairnessAuc(post_export_metrics._PostExportMetric): """Metric that computes bounded AUC for predictions in [0, 1]. This metrics calculates the subgroup auc, the background positive subgroup negative auc and background negative subgroup positive auc. For more explanation about the concepts of these auc metrics, please refer to paper [Measuring and Mitigating Unintended Bias in Text Classification](https://ai.google/research/pubs/pub46743) """ _target_prediction_keys = ... # type: List[str] _labels_key = ... # type: str _metric_tag = None # type: str _tensor_index = ... # type: int def __init__(self, subgroup_key: str, example_weight_key: Optional[str] = None, num_buckets: int = post_export_metrics._DEFAULT_NUM_BUCKETS, target_prediction_keys: Optional[List[str]] = None, labels_key: Optional[str] = None, metric_tag: Optional[str] = None, tensor_index: Optional[int] = None) -> None: """Create a metric that computes fairness auc. Predictions should be one of: (a) a single float in [0, 1] (b) a dict containing the LOGISTIC key (c) a dict containing the PREDICTIONS key, where the prediction is in [0, 1] Label should be a single float that is either exactly 0 or exactly 1 (soft labels, i.e. labels between 0 and 1 are *not* supported). Args: subgroup_key: The key inside the feature column to indicate where this example belongs to the subgroup or not. The expected mapping tensor of this key should contain an integer/float value that's either 1 or 0. example_weight_key: The key of the example weight column in the features dict. If None, all predictions are given a weight of 1.0. num_buckets: The number of buckets used for the curve. (num_buckets + 1) is used as the num_thresholds in tf.metrics.auc(). target_prediction_keys: If provided, the prediction keys to look for in order. labels_key: If provided, a custom label key. metric_tag: If provided, a custom metric tag. Only necessary to disambiguate instances of the same metric on different predictions. tensor_index: Optional index to specify class predictions to calculate metrics on in the case of multi-class models. """ self._subgroup_key = subgroup_key self._example_weight_key = example_weight_key self._curve = 'ROC' self._num_buckets = num_buckets self._metric_name = metric_keys.FAIRNESS_AUC self._subgroup_auc_metric = self._metric_key(self._metric_name + '/subgroup_auc/' + self._subgroup_key) self._bpsn_auc_metric = self._metric_key( f'{self._metric_name}/bpsn_auc/{self._subgroup_key}') self._bnsp_auc_metric = self._metric_key(self._metric_name + '/bnsp_auc/' + self._subgroup_key) super().__init__( target_prediction_keys=target_prediction_keys, labels_key=labels_key, metric_tag=metric_tag, tensor_index=tensor_index) def check_compatibility(self, features_dict: types.TensorTypeMaybeDict, predictions_dict: types.TensorTypeMaybeDict, labels_dict: types.TensorTypeMaybeDict) -> None: post_export_metrics._check_feature_present(features_dict, self._example_weight_key) post_export_metrics._check_feature_present(features_dict, self._subgroup_key) self._get_labels_and_predictions(predictions_dict, labels_dict) def get_metric_ops( self, features_dict: types.TensorTypeMaybeDict, predictions_dict: types.TensorTypeMaybeDict, labels_dict: types.TensorTypeMaybeDict ) -> Dict[str, Tuple[types.TensorType, types.TensorType]]: # Note that we have to squeeze predictions, labels, weights so they are all # N element vectors (otherwise some of them might be N x 1 tensors, and # multiplying a N element vector with a N x 1 tensor uses matrix # multiplication rather than element-wise multiplication). predictions, labels = self._get_labels_and_predictions( predictions_dict, labels_dict) predictions = post_export_metrics._flatten_to_one_dim( tf.cast(predictions, tf.float64)) labels = post_export_metrics._flatten_to_one_dim( tf.cast(labels, tf.float64)) weights = tf.ones_like(predictions) subgroup = post_export_metrics._flatten_to_one_dim( tf.cast(features_dict[self._subgroup_key], tf.bool)) if self._example_weight_key: weights = post_export_metrics._flatten_to_one_dim( tf.cast(features_dict[self._example_weight_key], tf.float64)) predictions, labels, weights = ( post_export_metrics ._create_predictions_labels_weights_for_fractional_labels( predictions, labels, weights)) # To let subgroup tensor match the size with prediction, labels and weights # above. subgroup = tf.concat([subgroup, subgroup], axis=0) labels_bool = tf.cast(labels, tf.bool) pos_subgroup = tf.math.logical_and(labels_bool, subgroup) neg_subgroup = tf.math.logical_and( tf.math.logical_not(labels_bool), subgroup) pos_background = tf.math.logical_and(labels_bool, tf.math.logical_not(subgroup)) neg_background = tf.math.logical_and( tf.math.logical_not(labels_bool), tf.math.logical_not(subgroup)) bnsp = tf.math.logical_or(pos_subgroup, neg_background) bpsn = tf.math.logical_or(neg_subgroup, pos_background) ops_dict = {} # Add subgroup auc. ops_dict.update( post_export_metrics._build_auc_metrics_ops( self._subgroup_auc_metric, labels, predictions, tf.multiply(weights, tf.cast(subgroup, tf.float64)), self._num_buckets + 1, self._curve)) # Add backgroup positive subgroup negative auc. ops_dict.update( post_export_metrics._build_auc_metrics_ops( self._bpsn_auc_metric, labels, predictions, tf.multiply(weights, tf.cast(bpsn, tf.float64)), self._num_buckets + 1, self._curve)) # Add backgroup negative subgroup positive auc. ops_dict.update( post_export_metrics._build_auc_metrics_ops( self._bnsp_auc_metric, labels, predictions, tf.multiply(weights, tf.cast(bnsp, tf.float64)), self._num_buckets + 1, self._curve)) return ops_dict def populate_stats_and_pop( self, slice_key: slicer.SliceKeyType, combine_metrics: Dict[str, Any], output_metrics: Dict[str, metrics_pb2.MetricValue]) -> None: for metrics_key in (self._subgroup_auc_metric, self._bpsn_auc_metric, self._bnsp_auc_metric): if slice_key: combine_metrics.pop(metric_keys.lower_bound_key(metrics_key)) combine_metrics.pop(metric_keys.upper_bound_key(metrics_key)) combine_metrics.pop(metrics_key) else: post_export_metrics._populate_to_auc_bounded_value_and_pop( combine_metrics, output_metrics, metrics_key) # pylint: enable=protected-access
python
# terrascript/arukas/d.py
python
# Simple NTP daemon for MicroPython using asyncio. # Copyright (c) 2020 by Thorsten von Eicken # Based on https://github.com/wieck/micropython-ntpclient by Jan Wieck # See LICENSE file try: import uasyncio as asyncio from sys import print_exception except ImportError: import asyncio import sys, socket, struct, time, logging try: from time import time_us, settime, adjtime except ImportError: # (date(2000, 1, 1) - date(1970, 1, 1)).days * 24*60*60 UNIX_DELTA = 946684800 def time_us(): return int((time.time() - UNIX_DELTA) * 1000000) def settime(usecs): print("settime(%d) - a step of %d" % (usecs, time_us() - (usecs + UNIX_DELTA))) def adjtime(usecs): print("adjtime(%d) - an adjustment of %d" % (usecs, time_us() - (usecs + UNIX_DELTA))) from asyncio_dgram import connect as dgram_connect log = logging.getLogger(__name__) # (date(2000, 1, 1) - date(1900, 1, 1)).days * 24*60*60 NTP_DELTA = 3155673600 # Delta from MP Epoch of 2000/1/1 to NTP Epoch 1 of Feb 7, 2036 06:28:16 UTC # NTP_DELTA = 1139293696 # Offsets into the NTP packet OFF_ORIG = 24 OFF_RX = 32 OFF_TX = 40 # Poll and adjust intervals MIN_POLL = 64 # never poll faster than every 32 seconds MAX_POLL = 1024 # default maximum poll interval # ntp2mp converts from NTP seconds+fraction with an Epoch 1 of Feb 7, 2036 06:28:16 UTC # to MP microseconds with an Epoch of 2000/1/1 def ntp2mp(secs, frac): usec = (frac * 1000000) >> 32 # print(secs, frac, "->", secs - NTP_DELTA, (secs - NTP_DELTA) * 1000000, usec) return ((secs - NTP_DELTA) * 1000000) + usec # mp2ntp converts from MP microseconds to NTP seconds and frac def mp2ntp(usecs): (secs, usecs) = divmod(usecs, 1000000) return (secs + NTP_DELTA, (usecs << 32) // 1000000) # ntpclient - # Class implementing the uasyncio based NTP client class SNTP: def __init__(self, host="pool.ntp.org", poll=MAX_POLL, max_step=1): self._host = host self._sock = None self._addr = None self._send = None self._recv = None self._close = None self._req_poll = poll self._min_poll = MIN_POLL self._max_step = int(max_step * 1000000) self._poll_task = None def start(self): self._poll_task = asyncio.get_event_loop().create_task(self._poller()) async def stop(self): if self._poll_task is not None: self._poll_task.cancel() try: await self._poll_task except: pass self._close() self._poll_task = None async def _poll(self): # We try to stay with the same server as long as possible. Only # lookup the address on startup or after errors. if self._sock is None: self._addr = socket.getaddrinfo(self._host, 123)[0][-1] log.debug("server %s->%s", self._host, self._addr) if sys.implementation.name == "micropython": self._sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self._sock.connect(self._addr) stream = asyncio.StreamReader(self._sock) async def write_drain(pkt): stream.write(pkt) await stream.drain() self._send = write_drain self._recv = lambda length: stream.read(length) self._close = lambda: self._sock.close() else: stream = await dgram_connect(self._addr) async def stream_send(pkt): return await stream.send(pkt) self._send = stream_send async def stream_recv(length): return (await stream.recv())[0] self._recv = stream_recv self._close = lambda: stream.close() # Send the NTP v3 request to the server wbuf = bytearray(48) wbuf[0] = 0b00011011 send_us = time_us() send_ntp = mp2ntp(send_us) struct.pack_into("!II", wbuf, OFF_TX, send_ntp[0], send_ntp[1]) # set tx timestamp await self._send(wbuf) # Get server reply while True: # Raises asyncio.TimeoutError on time-out rbuf = await asyncio.wait_for(self._recv(48), timeout=1) recv_us = time_us() # Verify it's truly a response to our request orig_ntp = struct.unpack_from("!II", rbuf, OFF_ORIG) # get originate timestamp if orig_ntp == send_ntp: break # Calculate clock step to apply per RFC4330 rx_us = ntp2mp(*struct.unpack_from("!II", rbuf, OFF_RX)) # get server recv timestamp tx_us = ntp2mp(*struct.unpack_from("!II", rbuf, OFF_TX)) # get server transmit timestamp delay = (recv_us - send_us) - (tx_us - rx_us) step = ((rx_us - send_us) + (tx_us - recv_us)) // 2 tup = struct.unpack_from("!IIIIII", rbuf, OFF_ORIG) r = mp2ntp(recv_us) # log.debug( "orig=[%d,%x] rx=[%d,%x] tx=[%d,%x] recv=[%d,%x] -> delay=%fms step=%dus", # tup[0], tup[1], tup[2], tup[3], tup[4], tup[5], r[0], r[1], delay / 1000, step) return (delay, step) async def _poller(self): self._status = 0 while True: # print("\nperforming NTP query") try: self.status = (self._status << 1) & 0xFFFF (delay_us, step_us) = await self._poll() if step_us > self._max_step or -step_us > self._max_step: # print(time.localtime()) (tgt_s, tgt_us) = divmod(time.time_us() + step_us, 1000000) log.warning("stepping to %s", time.localtime(tgt_s)) settime(tgt_s, tgt_us) # print(time.localtime()) else: lvl = logging.DEBUG if abs(step_us) < 10000 else logging.INFO log.log(lvl, "adjusting by %dus (delay=%dus)", step_us, delay_us) adjtime(step_us) self.status |= 1 await asyncio.sleep(61) except asyncio.TimeoutError: log.warning("%s timed out", self._host) if (self._status & 0x7) == 0: # Three failures in a row, force fresh DNS look-up self.sock = None await asyncio.sleep(11) except OSError as e: # Most likely DNS lookup failure log.warning("%s: %s", self._host, e) self.sock = None await asyncio.sleep(11) except Exception as e: log.error("%s", e) print_exception(e) await asyncio.sleep(121) def start(mqtt, config): from utime import tzset tzset(config.pop("zone", "UTC+0")) async def on_init(config): ss = SNTP(**config) ss.start() mqtt.on_init(on_init(config)) # if __name__ == "__main__": # # logging.basicConfig(level=logging.DEBUG) # # async def runner(): # ss = SNTP(host="192.168.0.1") # ss.start() # while True: # await asyncio.sleep(300) # # asyncio.run(runner())
python
import re import random TOOBIG = -1 TOOSMALL = -2 NOTNEW = -3 EMPTY = -1 class NameJoiner: def __init__(self, str1, str2): words = [str1, str2] random.shuffle(words) self.fullStartName = words[0] self.fullEndName = words[1] self.initVariables() def initVariables(self): self.lower_limit = min(len(self.fullStartName), len(self.fullEndName)) self.upper_limit = max(len(self.fullStartName), len(self.fullEndName)) + self.lower_limit - 1 self.firstPositions = self.getKeyVocalsPositions(self.fullStartName) self.secondPositions = self.getKeyVocalsPositions(self.fullEndName) def join(self): res = self.tryToJoin() if res == -1: self.fullStartName, self.fullEndName = self.fullEndName, self.fullStartName self.initVariables() res = self.tryToJoin() if res == -1: self.initVariables() return self.fullStartName+self.fullEndName[self.secondPositions[-1]+1:] return res def tryToJoin(self): firstSplitPlace = self.chooseRandomFirstSplit() secondSplitPlace = NOTNEW while secondSplitPlace < 0: secondSplitPlace = self.chooseRandomSecondSplit(firstSplitPlace) if secondSplitPlace < 0: self.handleErrorWithFirstPlace( secondSplitPlace, firstSplitPlace) firstSplitPlace = self.chooseRandomFirstSplit() if firstSplitPlace == EMPTY: return EMPTY else: namex = self.fullStartName[:firstSplitPlace] + \ self.fullEndName[secondSplitPlace:] if namex in [self.fullStartName, self.fullEndName]: self.secondPositions = [ i for i in self.secondPositions if i != secondSplitPlace-1] if len(self.secondPositions) == 0: self.secondPositions = self.getKeyVocalsPositions( self.fullEndName) self.firstPositions = self.erasePlaceEq( firstSplitPlace) firstSplitPlace = self.chooseRandomFirstSplit() if firstSplitPlace == EMPTY: return EMPTY secondSplitPlace = NOTNEW return self.fullStartName[:firstSplitPlace] + self.fullEndName[secondSplitPlace:] def handleErrorWithFirstPlace(self, error, firstSplitPlace): if error == TOOBIG: # Need smaller first part self.firstPositions = self.erasePlacesGreaterEq(firstSplitPlace) elif error == TOOSMALL: # Need greater first part self.firstPositions = self.erasePlacesLowerEq(firstSplitPlace) def erasePlaceEq(self, position): p = position - 1 res = [i for i in self.firstPositions if i != p] return res def erasePlacesLowerEq(self, position): p = position - 1 res = [i for i in self.firstPositions if i > p] return res def erasePlacesGreaterEq(self, position): p = position - 1 res = [i for i in self.firstPositions if i < p] return res def chooseRandomFirstSplit(self): if len(self.firstPositions) == 0: print( f"{self.fullStartName} has been omitted while trying to join with {self.fullEndName}") return -1 pos = random.choice(self.firstPositions) + 1 return pos def getKeyVocalsPositions(self, s): regex_iter = re.finditer(r'[aeiouy][^aeiou]', s.lower()) positions = [i.start() for i in regex_iter] return positions def chooseRandomSecondSplit(self, firstSplitPlace): minimumCharactersLeft = self.lower_limit - firstSplitPlace maximumCharactersLeft = self.upper_limit - firstSplitPlace minimumIndex = len(self.fullEndName) - maximumCharactersLeft maximumIndex = len(self.fullEndName) - minimumCharactersLeft filtered_big_positions = [ i for i in self.secondPositions if i <= maximumIndex] if len(filtered_big_positions) == 0: return -2 filtered_positions = [ i for i in self.secondPositions if minimumIndex <= i + 1 <= maximumIndex] if len(filtered_positions) == 0: return -1 return random.choice(filtered_positions) + 1
python
import sys from PySide2.QtWidgets import QApplication, QWidget, QPushButton, QLineEdit, QTextBrowser, QMainWindow, QTextEdit from PySide2.QtCore import QFile, Slot from ui_mainwindow import Ui_MainWindow class MainWindow(QMainWindow): def __init__(self, filename : str): super(MainWindow, self).__init__() self.ui = Ui_MainWindow() self.ui.setupUi(self) self.filename = filename self.getChildren() self.rechercher_button.clicked.connect(self.check_if_in_table) self.inserer_button.clicked.connect(self.add_in_table) self.supprimer_button.clicked.connect(self.delete_from_table) self.output_field.setReadOnly(True) self.output_field.append("Messages :\n") self.table_visualizer.setReadOnly(True) self.visualize_table() self.show() def getChildren(self): self.central_widget = self.findChild(QWidget, "centralwidget") self.inserer_button = self.central_widget.findChild(QPushButton,"inserer_button") self.rechercher_button = self.central_widget.findChild(QPushButton,"rechercher_button") self.supprimer_button = self.central_widget.findChild(QPushButton,"supprimer_button") self.output_field = self.central_widget.findChild(QTextEdit,"output_field") self.table_visualizer = self.central_widget.findChild(QTextEdit,"table_visualizer") self.corps_text_input = self.central_widget.findChild(QLineEdit,"corps_text_input") self.tete_text_input = self.central_widget.findChild(QLineEdit,"tete_text_input") self.antenne_text_input = self.central_widget.findChild(QLineEdit,"antenne_text_input") self.bras_text_input = self.central_widget.findChild(QLineEdit,"bras_text_input") self.jambes_text_input = self.central_widget.findChild(QLineEdit,"jambes_text_input") self.doigts_text_input = self.central_widget.findChild(QLineEdit,"doigts_text_input") self.yeux_text_input = self.central_widget.findChild(QLineEdit,"yeux_text_input") def visualize_table(self): self.table_visualizer.setText("Ficher texte \"{}\" :\n".format(filename)) with open(self.filename, "r") as table: for line in table.readlines(): entry_as_list = line.replace("\n", '').split(",")[:-1] self.table_visualizer.append("{}".format(entry_as_list)) def _get_input_list(self) -> list: input_list = [] input_list.append(self.corps_text_input.text()) input_list.append(self.tete_text_input.text()) input_list.append(self.antenne_text_input.text()) input_list.append(self.bras_text_input.text()) input_list.append(self.jambes_text_input.text()) input_list.append(self.doigts_text_input.text()) input_list.append(self.yeux_text_input.text()) new_list = [] for val in input_list: if(val == ''): new_list.append('0') else: new_list.append(val) return new_list def check_if_in_table(self, input_list : list = None, standalone : bool = True) -> bool: """ Function that checks whether a given input_list is already in the table. Can be called either by itself, in this case the boolean outputdoesn't matter but an output is produced on the GUI. Or it is called by the methods add_to_table() or _delete_from_table() where the boolean value is used but there is no output on the GUI. """ print("In function check_if_in_table()") if(not input_list): input_list = self._get_input_list() print("Input list is {}".format(input_list)) is_numeric = self._is_input_numeric(input_list) if(not is_numeric and standalone): print("ERROR, INPUT IS NOT NUMERIC") self.output_field.append("{} n'est pas valide. Reessayez (chiffres uniquement).".format(input_list)) else: with open(self.filename, "r") as table: print("Opening file") for line in table.readlines(): entry_as_list = line.replace("\n", '').split(",")[:-1] if(input_list == entry_as_list): print("{} is present in table".format(input_list)) if(standalone): # Write only when check_if_in_table is called by itself self.output_field.append("{} est déjà présent dans la table".format(input_list)) return True if(standalone): self.output_field.append("{} n'est pas présent dans la table".format(input_list)) return False def add_in_table(self): print("In function add_in_table()") input_list = self._get_input_list() print("Input list is {}".format(input_list)) if(self.check_if_in_table(input_list, False)): print("{} already in table. Aborting...".format(input_list)) self.output_field.append("{} est déjà présent dans la table. Abandon...".format(input_list)) else: with open(self.filename, "a") as table: status = self._add_one_line(table, input_list) if(status): self.output_field.append("{} inséré.".format(input_list)) self.visualize_table() def _is_input_numeric(self, input_list) -> bool: write_line = True # Check if everything is correct with the input list for input in input_list: write_line = write_line and input.isnumeric() return write_line def _add_one_line(self, file, input_list) -> bool: # Check if everything is correct with the input list is_numeric = self._is_input_numeric(input_list) # If correct, write to file if(is_numeric): for input in input_list: file.write("{},".format(int(input))) file.write("\n") print("Inserted {}".format(input_list)) # Else, print error else: print("ERROR, INPUT IS NOT NUMERIC") self.output_field.append("{} n'est pas valide. Reessayez (chiffres uniquement).".format(input_list)) return is_numeric # Report status def delete_from_table(self): print("In function delete_from_table()") input_list = self._get_input_list() if(not self._is_input_numeric(input_list)): print("ERROR, INPUT IS NOT NUMERIC") self.output_field.append("{} n'est pas valide. Reessayez (chiffres uniquement).".format(input_list)) return all_entries = [] if(self.check_if_in_table(input_list, False)): print("Deleting {}".format(input_list)) self.output_field.append("{} supprimé.".format(input_list)) # Reading all line from file and converting them to a list with open(self.filename, "r") as table: for line in table.readlines(): all_entries.append(line.replace("\n", '').split(",")[:-1]) print(line) # Re-opening the same file and writing back every item except # the input_list that we want to delete with open(self.filename, "w") as table: for entry in all_entries: if(entry != input_list): print("Writing {} to file".format(entry)) self._add_one_line(table, entry) self.visualize_table() else: print("{} not in file".format(input_list)) self.output_field.append("{} n'est PAS présent dans la table. Abandon...".format(input_list)) if __name__ == "__main__": app = QApplication(sys.argv) # filename = sys.argv[1] filename = 'tables.txt' window = MainWindow(filename) sys.exit(app.exec_())
python
#! usr/bin/activate """AstroThings library: imagination and Universe.""" def main(): pass if __name__ == '__main__': main() __version__ = '0.1.0.dev1'
python
from unittest import TestCase from tilapia.lib.provider.chains.btc.sdk import transaction class TestTransaction(TestCase): def test_calculate_vsize(self): self.assertEqual(79, transaction.calculate_vsize(["P2WPKH"], [])) self.assertEqual(176, transaction.calculate_vsize(["P2WPKH"], ["P2WPKH", "P2PKH", "P2WPKH-P2SH"])) self.assertEqual(255, transaction.calculate_vsize(["P2PKH"], ["P2WPKH", "P2PKH", "P2WPKH-P2SH"])) self.assertEqual(199, transaction.calculate_vsize(["P2WPKH-P2SH"], ["P2WPKH", "P2PKH", "P2WPKH-P2SH"])) self.assertEqual(246, transaction.calculate_vsize([], [], op_return="a" * 200))
python
from applauncher.event import EventManager, KernelReadyEvent, ConfigurationReadyEvent class TestClass: def test_events(self): em = EventManager() class KernelCounter: c = 0 @staticmethod def inc(event): KernelCounter.c += 1 @staticmethod def dec(event): KernelCounter.c -= 1 class OtherCounter: c = 0 @staticmethod def inc(event): OtherCounter.c += 1 @staticmethod def dec(event): OtherCounter.c -= 1 assert KernelCounter.c == 0 assert OtherCounter.c == 0 em.add_listener(KernelReadyEvent, KernelCounter.inc) em.add_listener(ConfigurationReadyEvent, OtherCounter.inc) assert KernelCounter.c == 0 em.dispatch(KernelReadyEvent()) assert KernelCounter.c == 1 assert OtherCounter.c == 0 em.dispatch(KernelReadyEvent()) assert KernelCounter.c == 2 assert OtherCounter.c == 0 em.dispatch(ConfigurationReadyEvent({"config": "config"})) assert KernelCounter.c == 2 assert OtherCounter.c == 1 def test_event_content(self): em = EventManager() class OtherCounter: config = None @staticmethod def event(event): OtherCounter.config = event.configuration assert OtherCounter.config is None em.dispatch(ConfigurationReadyEvent({"config": "config"})) assert OtherCounter.config is None em.add_listener(ConfigurationReadyEvent, OtherCounter.event) em.dispatch(ConfigurationReadyEvent({"config": "config"})) assert OtherCounter.config == {"config": "config"} def test_string_event(self): """The same as above but using a string value instead of the event""" em = EventManager() class OtherCounter: config = None @staticmethod def event(event): OtherCounter.config = event.configuration assert OtherCounter.config is None em.dispatch(ConfigurationReadyEvent({"config": "config"})) assert OtherCounter.config is None em.add_listener(ConfigurationReadyEvent.event_name, OtherCounter.event) em.dispatch(ConfigurationReadyEvent({"config": "config"})) assert OtherCounter.config == {"config": "config"}
python
from flask_wtf import FlaskForm from wtforms import BooleanField, SelectField, IntegerField from wtforms.validators import Required, Optional from .vcconnect import get_main_area_dropdown, get_service_dropdown, get_client_group_dropdown class OrgSearchForm(FlaskForm): main_area_id = SelectField('Area', coerce=int, choices=get_main_area_dropdown(), validators=[Optional()]) service_id = SelectField('Service', coerce=int, choices=get_service_dropdown(), validators=[Optional()]) client_group_id = SelectField('Client Group', coerce=int, choices=get_client_group_dropdown(), validators=[Optional()]) class VenueSearchForm(FlaskForm): area_id = SelectField('Area', coerce=int, choices=get_main_area_dropdown(), validators=[Optional()]) venue_car_parking = BooleanField('Car Parking') disabled = BooleanField('Disabled Parking') catering = BooleanField('Catering') event_management = BooleanField('Event Management') hearing = BooleanField('Hearing Loop') photocopy = BooleanField('Photocopying') refreshments = BooleanField('Refreshments') wheelchair = BooleanField('Wheelchair Access') max_capacity = IntegerField('Room Capacity', validators=[Optional()])
python
from airflow.hooks.base_hook import BaseHook def get_conn(conn_id): # get connection by name from BaseHook conn = BaseHook.get_connection(conn_id) return conn
python
import sys import torch.nn as nn from net6c import ClusterNet6c, ClusterNet6cTrunk from vgg import VGGNet __all__ = ["ClusterNet6cTwoHead"] class ClusterNet6cTwoHeadHead(nn.Module): def __init__(self, config, output_k, semisup=False): super(ClusterNet6cTwoHeadHead, self).__init__() self.batchnorm_track = config.batchnorm_track self.cfg = ClusterNet6c.cfg num_features = self.cfg[-1][0] self.semisup = semisup # Features are downsampled three times by MaxPool layers, size is halved every time, so each dimension is # effectively divided by 8 if config.input_sz == [24, 24]: features_sp_size = [3, 3] elif config.input_sz == [64, 64]: features_sp_size = [8, 8] elif config.input_sz == [64, 216]: features_sp_size = [8, 27] else: raise NotImplementedError("input images have to be of size 24x24, 64x64 or 64x216") if not semisup: self.num_subheads = config.num_subheads # is default (used for iid loss) # use multi heads # include softmax self.heads = nn.ModuleList([ nn.Sequential( nn.Linear(num_features * features_sp_size[0] * features_sp_size[1], output_k), nn.Softmax(dim=1) ) for _ in xrange(self.num_subheads) ]) else: self.head = nn.Linear(num_features * features_sp_size[0] * features_sp_size[1], output_k) def forward(self, x, kmeans_use_features=False): if not self.semisup: results = [] for i in xrange(self.num_subheads): if kmeans_use_features: results.append(x) # duplicates else: results.append(self.heads[i](x)) return results else: return self.head(x) class ClusterNet6cTwoHead(VGGNet): cfg = [(64, 1), ('M', None), (128, 1), ('M', None), (256, 1), ('M', None), (512, 1)] def __init__(self, config): super(ClusterNet6cTwoHead, self).__init__() assert len(config.output_ks) == 2 self.batchnorm_track = config.batchnorm_track self.trunk = ClusterNet6cTrunk(config) self.head_A = ClusterNet6cTwoHeadHead(config, output_k=config.output_ks[0]) semisup = (hasattr(config, "semisup") and config.semisup) print("semisup: %s" % semisup) self.head_B = ClusterNet6cTwoHeadHead(config, output_k=config.output_ks[1], semisup=semisup) self._initialize_weights() def forward(self, x, head_idx=1, kmeans_use_features=False, trunk_features=False, penultimate_features=False): if penultimate_features: print("Not needed/implemented for this arch") exit(1) # default is index 1 (for head B) for use by eval code # training script switches between A (index 0) and B x = self.trunk(x) if trunk_features: # for semisup return x # returns list or single if head_idx == 0: x = self.head_A(x, kmeans_use_features=kmeans_use_features) elif head_idx == 1: x = self.head_B(x, kmeans_use_features=kmeans_use_features) else: assert False, "Index too high for TwoHead architecture" return x
python
import webbrowser import click from ghutil.types import Repository @click.command() @Repository.argument('repo') def cli(repo): """ Open a repository in a web browser """ webbrowser.open_new(repo.data["html_url"])
python
from __future__ import print_function import os import json from typtop.dbaccess import ( UserTypoDB, get_time, on_wrong_password, on_correct_password, logT, auxT, FREQ_COUNTS, INDEX_J, WAITLIST_SIZE, WAIT_LIST, pkdecrypt, NUMBER_OF_ENTRIES_TO_ALLOW_TYPO_LOGIN, logT, auxT, call_check ) import typtop.config as config import typtop.dbaccess as dbaccess import yaml import pytest import time import pwd dbaccess.WARM_UP_CACHE = False NN = 5 secretAuxSysT = "SecretAuxData" ORIG_PW_ID = 'OrgPwID' dbaccess.NUMBER_OF_ENTRIES_TO_ALLOW_TYPO_LOGIN = 30 dbaccess.WARM_UP_CACHE = 0 @pytest.fixture(autouse=True) def no_requests(monkeypatch): monkeypatch.setattr("typtop.config.TEST", True) def get_username(): user = pwd.getpwuid(os.getuid()).pw_name return user def DB_path(): # TODO _ for some reason it does't work user = get_username() db = UserTypoDB(user, debug_mode=True) return db.get_db_path() #return "/home/{}/{}.db".format(get_username(), DB_NAME) def remove_DB(): print(DB_path()) os.remove(DB_path()) def start_DB(): remove_DB() db = UserTypoDB(get_username(), debug_mode=True) db.init_typtop(get_pw(), allow_typo_login=True) return db def test_warmed_cache(): t1, dbaccess.WARM_UP_CACHE = dbaccess.WARM_UP_CACHE, 1 t2, dbaccess.NUMBER_OF_ENTRIES_TO_ALLOW_TYPO_LOGIN = dbaccess.NUMBER_OF_ENTRIES_TO_ALLOW_TYPO_LOGIN, 0 typoDB = start_DB() assert typoDB.check(pws[1]), pws[1] assert typoDB.check(pws[0]), pws[0] dbaccess.WARM_UP_CACHE, dbaccess.NUMBER_OF_ENTRIES_TO_ALLOW_TYPO_LOGIN = t1, t2 def count_real_typos_in_cache(t_db, PW_CHANGE=False): flist_ctx = t_db.get_from_auxtdb(FREQ_COUNTS) # , yaml.load) f_list_all = json.loads(pkdecrypt(t_db._sk, flist_ctx)) f_list = [f for f in f_list_all if f>0] return len(f_list), sum(f_list) def test_login_settings(): typoDB = start_DB() #db = typoDB.getdb() assert typoDB.is_allowed_login() typoDB.allow_login(allow=False) assert not typoDB.is_allowed_login() typoDB.allow_login() assert typoDB.is_allowed_login() @pytest.mark.skip(reason='Root is allowed now') def test_root_login(): with pytest.raises(AssertionError): db = UserTypoDB('root', debug_mode=True) def test_db_not_readable(): import stat db = start_DB() on_correct_password(db, get_pw()) on_wrong_password(db, get_pw()+'1') s = os.stat(db.get_db_path()).st_mode assert not ((stat.S_IROTH | stat.S_IWOTH) & s) remove_DB() def test_waitlist(isStandAlone=True): typoDB = start_DB() pwset = set(pws[:4]) for i in range(4): typoDB.check(pws[i]) typos_in_waitlist = set() install_id = typoDB.get_installation_id() for typo_ctx in typoDB.get_from_auxtdb(WAIT_LIST): typo_txt = pkdecrypt(typoDB._sk, typo_ctx) typo, ts = yaml.safe_load(typo_txt) if not typo.startswith(install_id): typos_in_waitlist.add(typo) assert not (typos_in_waitlist - pwset) and not (pwset - typos_in_waitlist) def test_unintialized_exceptions(): db = UserTypoDB(get_username(), debug_mode=True) assert not call_check(0, get_username(), get_pw()) assert call_check(1, get_username(), get_pw()) db.init_typtop(get_pw()) assert call_check(0, get_username(), get_pw()) == 0 assert call_check(0, get_username(), pws[1]) == 0 assert call_check(0, get_username(), get_pw()) == 0 def test_typtop_id(): db = start_DB() oid = db.get_installation_id() db.reinit_typtop(pws[0]) nid = db.get_installation_id() assert oid == nid def test_add_to_cache(isStandAlone=True): typoDB = start_DB() indexj = typoDB.get_from_auxtdb(INDEX_J) # , int) typoDB.check(pws[0]) typoDB.check(pws[0]) typoDB.check(pws[1]) typoDB.check(pws[5]) typoDB.check(pws[2]) assert (typoDB.get_from_auxtdb(INDEX_J) - indexj) % WAITLIST_SIZE == 5 typoDB.check(get_pw()) # ntypo, fcount = count_real_typos_in_cache(typoDB) # assert ntypo == 3 # assert fcount > 5 # No idea what the followig is doing. # sk_dict1, isIn_t1 = typoDB.fetch_from_cache(pws[0], False, False) # t1_h,_ = sk_dict1.popitem() # assert isIn_t1 # assert hash_t.count(H_typo=t1_h) == 1 # assert # assert hash_t.count(H_typo=t5_h) == 1 if isStandAlone: remove_DB() else: return typoDB def test_alt_typo(isStandAlone = True): typoDB = test_add_to_cache(False) # assert count_real_typos_in_cache(typoDB) > 0 for _ in xrange(30): typoDB.check_login_count(update=True) for _ in range(5): typoDB.check(pws[4]) ## print("added 5 typos to waitlist") assert typoDB.check(get_pw()) assert typoDB.check(pws[4]) if isStandAlone: remove_DB() else: return typoDB def test_many_entries(isStandAlone = True): print("TEST MANY ENTRIES") BIG = 60 config.WARM_UP_CACHE = True typoDB = start_DB() log_t = typoDB.getdb('Log') assert all(a['ts'] == -1 for a in log_t) assert len(log_t)> 0 and len(log_t) <= len(config.warm_up_with(get_pw())) print("start log:{}".format(len(log_t))) for typ in listOfOneDist(BIG): typoDB.check(typ) typoDB.check(get_pw()) print("log len:{}".format(len(log_t))) # print("hash len:{}".format(count_real_typos_in_cache(typoDB))) assert(len(log_t) >= WAITLIST_SIZE + 1) # plus the original password # realIn = min(BIG, NN) # tcnt, fcnt = count_real_typos_in_cache(typoDB) config.WARM_UP_CACHE = False if isStandAlone: remove_DB() else: return typoDB def test_deleting_logs(isStandAlone = True): typoDB = start_DB() insert = 10 for i in range(10): typoDB.check(pws[i%len(pws)]) typoDB.check(get_pw()) log_t = typoDB.getdb('Log') assert len(log_t) >= 11 # because that's the length of the log so far to_send, log_iter = typoDB.get_last_unsent_logs_iter() assert not to_send typoDB.update_last_log_sent_time('0') to_send,log_iter = typoDB.get_last_unsent_logs_iter() count = len(list(log_iter)) now = get_time() typoDB.update_last_log_sent_time(now) typoDB.update_last_log_sent_time(now,delete_old_logs=True) assert len(log_t) == 0 if isStandAlone: remove_DB() else: return typoDB def test_pw_change(isStandAlone = True): typoDB = test_alt_typo(isStandAlone = False) db = typoDB._db typoDB.reinit_typtop(new_pw()) # assert count_real_typos_in_cache(typoDB,True)[0] == 1 # assert len(db[logT]) == 0 assert len(db[auxT][WAIT_LIST]) == WAITLIST_SIZE for newTypo in listOfOneDist(5): typoDB.check(newTypo) typoDB.check(new_pw()) # ntypo, ftypo = count_real_typos_in_cache(typoDB, True) # assert ntypo == 1 for newTypo in listOfOneDist(5): typoDB.check(newTypo) assert not typoDB.check(get_pw()) if isStandAlone: remove_DB() else: return typoDB def test_edit_dist_entropy_cap(is_stand_alone=True): typodb = start_DB() typodb.allow_login() on_correct_password(typodb, get_pw()) on_wrong_password(typodb, '') on_wrong_password(typodb, ' ') log = typodb._db[logT] assert all((l['edit_dist'] <= 5 for l in log)) assert all((-10 <= l['rel_entropy'] <= 10 for l in log)) if is_stand_alone: remove_DB() else: return typodb # TODO: assert some property of logT def test_logT(is_stand_alone=True): typoDB = start_DB() typoDB.allow_login() assert typoDB.is_allowed_login() assert not on_wrong_password(typoDB, pws[0]) assert on_correct_password(typoDB, get_pw()) # 1 assert not on_wrong_password(typoDB, pws[0]) # not enough login count for _ in range(dbaccess.NUMBER_OF_ENTRIES_TO_ALLOW_TYPO_LOGIN-1): # on_wrong_password(typoDB, pws[0]) # not enough login count assert typoDB.check(get_pw()) # on_correct_password(typoDB, get_pw()) assert on_wrong_password(typoDB, pws[0]) # now it should work typoDB.allow_login(allow=False) assert not on_wrong_password(typoDB, pws[0]) # now it should work assert on_correct_password(typoDB, get_pw()) typoDB.allow_login(allow=True) assert on_wrong_password(typoDB, pws[0]) assert set(typoDB._db[logT][0].keys()) == set(config.logT_cols) if is_stand_alone: remove_DB() else: return typoDB # TODO: assert some property of logT # this test takes a bit longer def test_disabling_first_30_times(isStandAlone = True): # checks that entry with a typo is allowed # only after the real pw was entered more than 30 times typoDB = start_DB() assert not on_wrong_password(typoDB, pws[0]) assert not on_wrong_password(typoDB, pws[1]) assert on_correct_password(typoDB, get_pw()) # count = 1 # 29 left for i in xrange(29): print("{}th try".format(i)) assert not on_wrong_password(typoDB, pws[0]) assert not on_wrong_password(typoDB, pws[1]) assert on_correct_password(typoDB, get_pw()) # 30 entries have been done assert on_wrong_password(typoDB,pws[0]) assert on_wrong_password(typoDB,pws[1]) if isStandAlone: remove_DB() else: return typoDB def add_pw(pw, correct=False): db = UserTypoDB(get_username(), debug_mode=False) if correct: on_correct_password(db, pw) else: on_wrong_password(db, pw) def test_profile(): typoDB = start_DB() time_to_add, time_to_delete = 0, 0 for t in xrange(10): t0 = time.time() for i in xrange(10): add_pw(pws[i%len(pws)], correct=False) time_to_add += (time.time() - t0)/(i+1) t0 = time.time() add_pw(get_pw(), correct=True) time_to_delete += time.time() - t0 time_to_delete /= (t+1) time_to_add /= (t+1) assert time_to_add < 0.06 and time_to_delete < 0.07 remove_DB() def get_pw(): return 'GoldApp&3' def new_pw(): return "Beetle*Juice94" pws = [ 'goldApp&3', # 0, lower initial 'gOLDaPP&3', # 1, caps 'GoldApp3', # 2, dropped 1 char, too low entropy 'GoldApp&2', # 3, 1 edit distance 'GoldApp&35', # 4, 1 edit distance 'G0ldAppp&3' # 5, 2 edit dist ] def listOfOneDist(length): # using only lower letters # to avoid shift --> 2 edit dist m = ord('a') M = ord('z') + 1 - m for ii in range(length): col = ii/M + 1 newC = chr(ii%M + m) typo = get_pw()[:col]+newC+get_pw()[col:] yield typo # profile() # pytest.main([__file__])
python
#!/usr/bin/env python import argparse import os import sys from functools import partial from glob import iglob as glob from itertools import chain from dautil.IO import makedirs from dautil.util import map_parallel PY2 = sys.version_info[0] == 2 if PY2: import cPickle as pickle else: import pickle __version__ = '0.1' def convert(basedir, output, in_path, protocol=2): out_path = in_path.replace(basedir, output, 1) if os.path.isfile(out_path): print('{} existed, skip.'.format(out_path)) return makedirs(os.path.dirname(out_path)) with open(in_path, 'rb') as f: data = pickle.load(f) if PY2 else pickle.load(f, encoding='latin1') with open(out_path, 'wb') as f: pickle.dump(data, f, protocol=2) return def main(args): _glob = partial(glob, recursive=True) if args.recursive else glob in_paths = chain(*(_glob(os.path.join(args.basedir, glob_i)) for glob_i in args.glob)) _convert = partial(convert, args.basedir, args.output, protocol=args.protocol) Nones = map_parallel( _convert, in_paths, mode=('mpi' if args.mpi else 'multiprocessing'), processes=args.processes ) if args.verbose: print('Finish converting {} pickle files.'.format(len(Nones))) def cli(): parser = argparse.ArgumentParser(description='Convert pickle to pickle in a certain protocol.') parser.add_argument('basedir', help='Base directory of input pickle files.') parser.add_argument('-o', '--output', required=True, help='Base directory of output pickle files.') parser.add_argument('--glob', required=True, nargs='+', help='Glob pattern from BASEDIR.') parser.add_argument('-R', '--recursive', action='store_true', help='If specified, recursive globbing, Python 3 only.') parser.add_argument('--protocol', type=int, default=2, help='Output pickle procotol. Default: 2.') parser.add_argument('-v', '--version', action='version', version='%(prog)s {}'.format(__version__)) parser.add_argument('-V', '--verbose', action='store_true', help='Print info on the input files. If not selected, only the filename of the to-be-deleted files are print.') parser.add_argument('--mpi', action='store_true', help='If specified, use MPI.') parser.add_argument('-p', '--processes', type=int, default=1, help='use p processes with multiprocessing. Hint: use total no. of threads available.') args = parser.parse_args() main(args) if __name__ == "__main__": cli()
python
# -*- coding: utf-8 -*- from scrapy import signals from scrapy.exporters import CsvItemExporter class CompanyListStorePipeline: exporter = None @classmethod def from_crawler(cls, crawler): pipeline = cls() crawler.signals.connect(pipeline.spider_opened, signals.spider_opened) crawler.signals.connect(pipeline.spider_closed, signals.spider_closed) return pipeline def spider_opened(self, spider): self.file = open(spider.name + '.csv', 'wb') self.exporter = CsvItemExporter(self.file) self.exporter.start_exporting() def spider_closed(self, spider): self.exporter.finish_exporting() self.file.close() def process_item(self, item, spider): self.exporter.export_item(item) return item
python
""" :mod:`cookie` ------------- This is a cookie authentication implementation for Pando. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import datetime from .. import auth from ..utils import to_rfc822, utcnow from ..website import THE_PAST MINUTE = datetime.timedelta(seconds=60) HOUR = 60 * MINUTE DAY = 24 * HOUR WEEK = 7 * DAY TIMEOUT = 2 * HOUR # Public config knobs # =================== # Feel free to modify for your application. NAME = "auth" DOMAIN = None PATH = "/" HTTPONLY = "Yes, please." # Hooks # ===== def inbound_early(request): """Authenticate from a cookie. """ if 'user' not in request.context: token = None if NAME in request.headers.cookie: token = request.headers.cookie[NAME].value token = token.decode('US-ASCII') request.context['user'] = auth.User(token) def outbound(response): """Set outbound auth cookie. """ if 'user' not in response.request.context: # XXX When does this happen? When auth.inbound_early hasn't run, eh? raise # XXX raise what? user = response.request.context['user'] if not isinstance(user, auth.User): raise Exception("If you define 'user' in a simplate it has to be an " "instance of pando.auth.User.") if NAME not in response.request.headers.cookie: # no cookie in the request, don't set one on response return elif user.ANON: # user is anonymous, instruct browser to delete any auth cookie cookie_value = '' cookie_expires = THE_PAST else: # user is authenticated, keep it rolling for them cookie_value = user.token cookie_expires = to_rfc822(utcnow() + TIMEOUT) # Configure outgoing cookie. # ========================== response.headers.cookie[NAME] = cookie_value # creates a cookie object? cookie = response.headers.cookie[NAME] # loads a cookie object? cookie['expires'] = cookie_expires if DOMAIN is not None: # Browser default is the domain of the resource requested. # Pando default is the browser default. cookie['domain'] = DOMAIN if PATH is not None: # XXX What's the browser default? Probably /? Or current dir? # Pando default is "/". cookie['path'] = PATH if HTTPONLY is not None: # Browser default is to allow access from JavaScript. # Pando default is to prevent access from JavaScript. cookie['httponly'] = HTTPONLY
python
from query_generator.query import Query from utils.contracts import Operator, Schema class UnionOperator(Operator): def __init__(self, schema: Schema, leftSubQuery: Query, rightSubQuery: Query): super().__init__(schema) self._leftSubQuery = leftSubQuery self._rightSubQuery = rightSubQuery def generate_code(self) -> str: return f"{self._leftSubQuery.generate_code()}.unionWith({self._rightSubQuery.generate_code()})"
python
#!/usr/bin/python3 from flask import request from modules import simple_jwt from modules.database import get_db_conn # ---------------------------------------- # Check Auth Token before execute request # ---------------------------------------- from server_error import server_error def logged_before_request(): try: auth = request.headers.get('Authorization') if auth is not None: token = auth.split(' ') if token[0].lower() == 'bearer': token_check = simple_jwt.check(token[1]) if token_check: return except UnicodeDecodeError: pass return server_error('AUTH_FAILED') # ------------------------ # SQLite3 results to list # ------------------------ def db_data_to_list(db_data, db_desc): db_result = [] if db_data: for row in db_data: result_row = dict(map(lambda x, y: (x[0], y), db_desc, row)) db_result.append(result_row) return db_result # -------------------------------------- # Return permissions of given "role_id" # -------------------------------------- def get_role_perms(role_id: int): if role_id: perms = get_role_perms.__cache.get(role_id) if perms: return perms else: with get_db_conn(True) as database: cursor = database.cursor() cursor.execute('SELECT * FROM roles WHERE id = ?', [role_id]) db_data = cursor.fetchone() db_desc = cursor.description cursor.close() get_role_perms.__cache[role_id] = dict(map(lambda x, y: (x[0], y), db_desc, db_data)) return get_role_perms.__cache.get(role_id) return {} get_role_perms.__cache = {} # Static variable
python
import os import tempfile import re import shutil import requests import io import urllib from mitmproxy.net import tcp from mitmproxy.test import tutils from pathod import language from pathod import pathoc from pathod import pathod from pathod import test from pathod.pathod import CA_CERT_NAME def treader(bytes): """ Construct a tcp.Read object from bytes. """ fp = io.BytesIO(bytes) return tcp.Reader(fp) class DaemonTests: nohang = False ssl = False timeout = None hexdump = False ssloptions = None nocraft = False explain = True @classmethod def setup_class(cls): opts = cls.ssloptions or {} cls.confdir = tempfile.mkdtemp() opts["confdir"] = cls.confdir so = pathod.SSLOptions(**opts) cls.d = test.Daemon( staticdir=tutils.test_data.path("pathod/data"), anchors=[ (re.compile("/anchor/.*"), "202:da") ], ssl=cls.ssl, ssloptions=so, sizelimit=1 * 1024 * 1024, nohang=cls.nohang, timeout=cls.timeout, hexdump=cls.hexdump, nocraft=cls.nocraft, logreq=True, logresp=True, explain=cls.explain ) @classmethod def teardown_class(cls): cls.d.shutdown() shutil.rmtree(cls.confdir) def teardown(self): self.d.wait_for_silence() self.d.clear_log() def _getpath(self, path, params=None): scheme = "https" if self.ssl else "http" resp = requests.get( "%s://localhost:%s/%s" % ( scheme, self.d.port, path ), verify=os.path.join(self.d.thread.server.ssloptions.confdir, CA_CERT_NAME), params=params ) return resp def getpath(self, path, params=None): logfp = io.StringIO() c = pathoc.Pathoc( ("localhost", self.d.port), ssl=self.ssl, fp=logfp, ) with c.connect(): if params: path = path + "?" + urllib.parse.urlencode(params) resp = c.request("get:%s" % path) return resp def get(self, spec): logfp = io.StringIO() c = pathoc.Pathoc( ("localhost", self.d.port), ssl=self.ssl, fp=logfp, ) with c.connect(): resp = c.request( "get:/p/%s" % urllib.parse.quote(spec) ) return resp def pathoc( self, specs, timeout=None, connect_to=None, ssl=None, ws_read_limit=None, use_http2=False, ): """ Returns a (messages, text log) tuple. """ if ssl is None: ssl = self.ssl logfp = io.StringIO() c = pathoc.Pathoc( ("localhost", self.d.port), ssl=ssl, ws_read_limit=ws_read_limit, timeout=timeout, fp=logfp, use_http2=use_http2, ) with c.connect(connect_to): ret = [] for i in specs: resp = c.request(i) if resp: ret.append(resp) for frm in c.wait(): ret.append(frm) c.stop() return ret, logfp.getvalue() def render(r, settings=language.Settings()): r = r.resolve(settings) s = io.BytesIO() assert language.serve(r, s, settings) return s.getvalue()
python
import zipfile import pandas as pd from datanator_query_python.util import mongo_util from datanator_query_python.config import config as q_conf import os class proteinHalfLives(mongo_util.MongoUtil): def __init__(self, MongoDB, db, collection, username, password, path): super().__init__(MongoDB=MongoDB, db=db, username=username, password=password) self.collection = self.db_obj[collection] self.MongoDB = MongoDB self.username = username self.password = password self.path = path def unzip_file(self): with zipfile.ZipFile(self.path) as zfile: zfile.extractall(self.path.replace('.zip', '')) def parse_protein(self): """parse data for protein half life and protein abundances """ filepath = self.path.replace('.zip', '') data = pd.read_excel(filepath+"/Table_S4.xls") #print(data.columns) for i in range(len(data)): d = {} query = Query(MongoDB=self.MongoDB, db='datanator-test', entity_query_collection='uniprot', taxon_query_collection='taxon_tree', username=self.username, password=self.password) d['entity'] = {'type': 'protein', 'name': query.query_entity(data.iloc[i,0][:6]), 'identifiers': [{'namespace': 'uniprot_id', 'value': data.iloc[i,0][:6]}, {'namespace': 'entry_name', 'value': data.iloc[i,0][7:]}]} d['identifier'] = {'namespace': 'uniprot_id', 'value': data.iloc[i,0][:6]} d['values'] = [{'type': 'half life', 'value': data['Half_Life/days'][i]*86400, 'units': 'seconds'}, {'type': 'protein abundance', 'value': data['protein abundance'][i], 'units': 'copies/cell'}] d['genotype'] = query.query_genotype('Mycoplasma pneumoniae') d['source'] = [{'namespace': 'doi', 'value': '10.1038/msb.2011.38'}] d['schema_version'] = '2.0' #print(d) self.collection.update_one({'type': 'protein', 'name': query.query_entity(data.iloc[i,0][:6]), 'identifiers': [{'namespace': 'uniprot_id', 'value': data.iloc[i,0][:6]}, {'namespace': 'entry_name', 'value': data.iloc[i,0][7:]}]}, {'$set': d}, upsert=True) print('row {} has been added'.format(str(i))) def parse_rna(self): ''' parse data of RNA abundance ''' filepath = self.path.replace('.zip', '') data = pd.read_excel(filepath+'/Table_S4.xls') rows_no_gene_name = [] # list with rows which are missing a gene name in database for i in range(len(data)): # ROW 3 DOES NOT HAVE A GENE NAME d = {} query = Query(MongoDB=self.MongoDB, db='datanator-test', entity_query_collection='uniprot', taxon_query_collection='taxon_tree', username=self.username, password=self.password) d['entity'] = {'type': 'RNA', 'name': query.query_gene_name(data.iloc[i,0][:6]), 'identifiers': [query.query_gene_identifier(data.iloc[i,0][:6]), {'namespace': 'uniprot_id', 'value': data.iloc[i,0][:6]}, {'namespace': 'entry_name', 'value': data.iloc[i,0][7:]}]} d['identifier'] = query.query_gene_identifier(data.iloc[i,0][:6]) d['values'] = [{'type': 'RNA abundance', 'value': data['mRNA abundance'][i], 'units': 'copies/cell'}] d['genotype'] = query.query_genotype('Mycoplasma pneumoniae') d['source'] = [{'namespace': 'doi', 'value': '10.1038/msb.2011.38'}] d['schema_version'] = '2.0' #print(d) if d['entity']['name'] == None: rows_no_gene_name.append(i) else: ''' self.collection.update_one({'type': 'RNA', 'name': query.query_entity(data.iloc[i,0][:6]), 'identifiers': [{'namespace': 'uniprot_id', 'value': data.iloc[i,0][:6]}, {'namespace': 'entry_name', 'value': data.iloc[i,0][7:]}]}, {'$set': d}, upsert=True)''' print('row {} has been added'.format(str(i))) print('Rows missing gene names: ' + str(rows_no_gene_name)) class Query(mongo_util.MongoUtil): def __init__(self, MongoDB, db, entity_query_collection, taxon_query_collection, username, password): super().__init__(MongoDB=MongoDB, db=db, username=username, password=password) self.entity_collection = self.db_obj[entity_query_collection] self.taxon_collection = self.db_obj[taxon_query_collection] def query_entity(self, uniprot_id): """takes the uniprot id and returns sring with protein name Args: uniprot_id {:obj:`str`}: uniprotID of the wanted protein name Returns: protein_name (:obj:`str`}: string of the protein name """ query = {'uniprot_id': uniprot_id} projection = {'protein_name': 1, '_id': 0} result = self.entity_collection.find_one(query, projection) return str(result['protein_name']) def query_genotype(self, tax_name): '''takes name of species and returns genotype object Args: tax_name {:obj:'str'}: name of species Returns: genotype_obj {:obj:obj}: genotype object for document ''' query = {'tax_name': tax_name} projection = {'_id': 0, 'tax_id': 1, 'canon_anc_ids': 1, 'canon_anc_names': 1} result = self.taxon_collection.find_one(query, projection) genotype = {'taxon': {'ncbi_taxonomy_id': result['tax_id'], 'name': 'Mycoplasma pneumoniae', 'canon_ancestors': []}} for i in range(len(result['canon_anc_ids'])): genotype['taxon']['canon_ancestors'].append({'ncbi_taxonomy_id': result['canon_anc_ids'][i], 'name': result['canon_anc_names'][i]}) return genotype def query_gene_identifier(self, uniprot_id): """ takes uniprot ID and returns the identifier object of the protein Args: uniprot_id {:obj:'str'}: uniprot ID of protein Returns: identifier {:obj:'obj'}: object for identifier """ query = {'uniprot_id': uniprot_id} projection = {'_id': 0, 'ko_number': 1, 'gene_name': 1} result = self.entity_collection.find_one(query, projection) return {'namespace': 'ko_number', 'value': result['ko_number']} def query_gene_name(self, uniprot_id): """ takes uniprot ID and returns the gene name of the protein Args: uniprot_id (:obj:'str'): uniprot ID of protein Return: gene_name (:obj:'str'): gene name of the protein """ query = {'uniprot_id': uniprot_id} projection = {'_id': 0, 'gene_name': 1} result = self.entity_collection.find_one(query, projection) return result['gene_name'] def main(): conf = q_conf.Justin() username = conf.USERNAME password = conf.PASSWORD MongoDB = conf.SERVER db = 'datanator-demo' collection = 'observation' filepath = 'datanator/docs/msb201138-sup-0003.zip' src = proteinHalfLives(MongoDB=MongoDB, db=db, collection=collection, username=username, password=password, path=filepath) #src.unzip_file() #src.parse_protein() src.parse_rna() if __name__ == "__main__": main()
python
import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines sys.setrecursionlimit(10 ** 7) h = int(readline()) cnt = 0 if h == 1: print(1) elif h == 2: print(3) else: for i in range(h): if h < 2 ** i: print(cnt) exit() else: cnt += 2 ** i
python
_SCRIPT_VERSION = "Script version: Nuthouse01 - 6/10/2021 - v6.00" # This code is free to use and re-distribute, but I cannot be held responsible for damages that it may or may not cause. ##################### try: # these imports work if running from GUI from . import nuthouse01_core as core from . import nuthouse01_pmx_parser as pmxlib from . import nuthouse01_pmx_struct as pmxstruct from . import model_shift from . import morph_scale except ImportError as eee: try: # these imports work if running from double-click on THIS script import nuthouse01_core as core import nuthouse01_pmx_parser as pmxlib import nuthouse01_pmx_struct as pmxstruct import model_shift import morph_scale except ImportError as eee: print(eee.__class__.__name__, eee) print("ERROR: failed to import some of the necessary files, all my scripts must be together in the same folder!") print("...press ENTER to exit...") input() exit() core = pmxlib = model_shift = morph_scale = pmxstruct = None # when debug=True, disable the catchall try-except block. this means the full stack trace gets printed when it crashes, # but if launched in a new window it exits immediately so you can't read it. DEBUG = False helptext = '''================================================= model_scale: Scale the entire model around 0,0,0 by some X,Y,Z value. This also scales all vertex and bone morphs by the same amount, so you don't need to do that separately. Output: PMX file '[modelname]_scale.pmx' ''' def main(moreinfo=True): # prompt PMX name core.MY_PRINT_FUNC("Please enter name of PMX input file:") input_filename_pmx = core.MY_FILEPROMPT_FUNC(".pmx") pmx = pmxlib.read_pmx(input_filename_pmx, moreinfo=moreinfo) # to shift the model by a set amount: # first, ask user for X Y Z # create the prompt popup scale_str = core.MY_GENERAL_INPUT_FUNC( lambda x: (model_shift.is_3float(x) is not None), ["Enter the X,Y,Z amount to scale this model by:", "Three decimal values separated by commas.", "Empty input will quit the script."]) # if empty, quit if scale_str == "": core.MY_PRINT_FUNC("quitting") return None # use the same func to convert the input string scale = model_shift.is_3float(scale_str) uniform_scale = (scale[0] == scale[1] == scale[2]) if not uniform_scale: core.MY_PRINT_FUNC("Warning: when scaling by non-uniform amounts, rigidbody sizes will not be modified") #################### # what does it mean to scale the entire model? # scale vertex position, sdef params # ? scale vertex normal vectors, then normalize? need to convince myself of this interaction # scale bone position, tail offset # scale fixedaxis and localaxis vectors, then normalize # scale vert morph, bone morph # scale rigid pos, size # scale joint pos, movelimits for v in pmx.verts: # vertex position for i in range(3): v.pos[i] *= scale[i] # vertex normal for i in range(3): if scale[i] != 0: v.norm[i] /= scale[i] else: v.norm[i] = 100000 # then re-normalize the normal vector v.norm = core.normalize_distance(v.norm) # c, r0, r1 params of every SDEF vertex # these correspond to real positions in 3d space so they need to be modified if v.weighttype == pmxstruct.WeightMode.SDEF: for param in v.weight_sdef: for i in range(3): param[i] *= scale[i] for b in pmx.bones: # bone position for i in range(3): b.pos[i] *= scale[i] # bone tail if using offset mode if not b.tail_usebonelink: for i in range(3): b.tail[i] *= scale[i] # scale fixedaxis and localaxis vectors, then normalize if b.has_fixedaxis: for i in range(3): b.fixedaxis[i] *= scale[i] # then re-normalize b.fixedaxis = core.normalize_distance(b.fixedaxis) # scale fixedaxis and localaxis vectors, then normalize if b.has_localaxis: for i in range(3): b.localaxis_x[i] *= scale[i] for i in range(3): b.localaxis_z[i] *= scale[i] # then re-normalize b.localaxis_x = core.normalize_distance(b.localaxis_x) b.localaxis_z = core.normalize_distance(b.localaxis_z) for m in pmx.morphs: # vertex morph and bone morph (only translate, not rotate) if m.morphtype in (pmxstruct.MorphType.VERTEX, pmxstruct.MorphType.BONE): morph_scale.morph_scale(m, scale, bone_mode=1) for rb in pmx.rigidbodies: # rigid body position for i in range(3): rb.pos[i] *= scale[i] # rigid body size # NOTE: rigid body size is a special conundrum # spheres have only one dimension, capsules have two, and only boxes have 3 # what's the "right" way to scale a sphere by 1,5,1? there isn't a right way! # boxes and capsules can be rotated and stuff so their axes dont line up with world axes, too # is it at least possible to rotate bodies so they are still aligned with their bones? # eh, why even bother with any of that. 95% of the time full-model scale will be uniform scaling. # only scale the rigidbody size if doing uniform scaling: that is guaranteed to be safe! if uniform_scale: for i in range(3): rb.size[i] *= scale[i] for j in pmx.joints: # joint position for i in range(3): j.pos[i] *= scale[i] # joint min slip for i in range(3): j.movemin[i] *= scale[i] # joint max slip for i in range(3): j.movemax[i] *= scale[i] # that's it? that's it! # write out output_filename_pmx = input_filename_pmx[0:-4] + "_scale.pmx" output_filename_pmx = core.get_unused_file_name(output_filename_pmx) pmxlib.write_pmx(output_filename_pmx, pmx, moreinfo=moreinfo) core.MY_PRINT_FUNC("Done!") return None if __name__ == '__main__': print(_SCRIPT_VERSION) if DEBUG: # print info to explain the purpose of this file core.MY_PRINT_FUNC(helptext) core.MY_PRINT_FUNC("") main() core.pause_and_quit("Done with everything! Goodbye!") else: try: # print info to explain the purpose of this file core.MY_PRINT_FUNC(helptext) core.MY_PRINT_FUNC("") main() core.pause_and_quit("Done with everything! Goodbye!") except (KeyboardInterrupt, SystemExit): # this is normal and expected, do nothing and die normally pass except Exception as ee: # if an unexpected error occurs, catch it and print it and call pause_and_quit so the window stays open for a bit print(ee) core.pause_and_quit("ERROR: something truly strange and unexpected has occurred, sorry, good luck figuring out what tho")
python
# -*- coding: utf-8 -*- from setuptools import setup, find_packages setup( name="sio2puppetMaster", version="0.3", packages=find_packages(), install_requires=[], scripts=['scripts/sio2pm-spawndocker'], license="MIT", author="Mateusz Żółtak", author_email="[email protected]" )
python
# -*- coding: utf-8 -*- from __future__ import print_function, unicode_literals import re, os if not hasattr(__builtins__, 'cmp'): def cmp(a, b): return (a > b) - (a < b) from collections import OrderedDict, namedtuple as NamedTuple from functools import wraps from pkg_resources import parse_version as pkg_resources_parse_version # type: ignore from pkg_resources.extern.packaging.version import Version as PkgResourcesVersion from clu.version.read_version import read_version_file FIELDS = ('major', 'minor', 'patch', 'pre', 'build') # The `namedtuple` ancestor, # from which our VersionInfo struct inherits: VersionAncestor = NamedTuple('VersionAncestor', FIELDS) # type: ignore # sets, for various comparisons and checks: fields = frozenset(FIELDS) string_types = { type(lit) for lit in ('', u'', r'') } byte_types = { bytes, bytearray } - string_types # On py2, bytes == str dict_types = { dict, OrderedDict } comparable = dict_types | { VersionAncestor } # utility conversion functions: def intify(arg): if arg is None: return None return int(arg) def strify(arg): if arg is None: return None if isinstance(arg, tuple(string_types)): return arg if isinstance(arg, tuple(byte_types)): return arg.decode('UTF-8') # type: ignore return str(arg) def dictify(arg): if arg is None: return None if hasattr(arg, '_asdict'): return arg._asdict() if hasattr(arg, 'to_dict'): return arg.to_dict() if isinstance(arg, tuple(dict_types)): return arg return dict(arg) # compare version information by dicts: def compare_keys(dict1, dict2): """ Blatantly based on code from “semver”: https://git.io/fhb98 """ for key in ('major', 'minor', 'patch'): result = cmp(dict1.get(key), dict2.get(key)) if result: return result pre1, pre2 = dict1.get('pre'), dict2.get('pre') if pre1 is None and pre2 is None: return 0 if pre1 is None: pre1 = '<unknown>' elif pre2 is None: pre2 = '<unknown>' preresult = cmp(pre1, pre2) if not preresult: return 0 if not pre1: return 1 elif not pre2: return -1 return preresult # comparison-operator method decorator: def comparator(operator): """ Wrap a VersionInfo binary op method in a typechecker """ @wraps(operator) def wrapper(self, other): if not isinstance(other, tuple(comparable)): return NotImplemented return operator(self, other) return wrapper # the VersionInfo class: class VersionInfo(VersionAncestor): """ NamedTuple-descendant class allowing for convenient and reasonably sane manipulation of semantic-version (née “semver”) string-triple numberings, or whatever the fuck is the technical term for them, erm. Yes! """ SEPARATORS = '..-+' UNKNOWN = '‽' NULL_VERSION = f"{UNKNOWN}.{UNKNOWN}.{UNKNOWN}" REG = re.compile(r'(?P<major>[\d‽]+)\.' \ r'(?P<minor>[\d‽]+)' \ r'(?:\.(?P<patch>[\d‽]+)' \ r'(?:\-(?P<pre>[\w‽]+)' \ r'(?:[\+\-](?P<build>g?[0-9a-f‽]+))?)?)?', re.IGNORECASE) @classmethod def from_string(cls, version_string): """ Instantiate a VersionInfo with a semver string """ result = cls.REG.search(version_string) if result: return cls.from_dict(result.groupdict()) return cls.from_dict({ field : cls.UNKNOWN for field in FIELDS }) @classmethod def from_dict(cls, version_dict): """ Instantiate a VersionInfo with a dict of related values (q.v. FIELD string names supra.) """ for field in FIELDS[:2]: # major, minor assert field in version_dict assert frozenset(version_dict.keys()).issubset(fields) return cls(**version_dict) def to_string(self): """ Return the VersionInfo data as a semver string """ if not bool(self): return type(self).NULL_VERSION SEPARATORS = type(self).SEPARATORS out = f"{self.major or 0}{SEPARATORS[0]}{self.minor or 0}" if self.patch is not None: out += f"{SEPARATORS[1]}{self.patch}" if self.pre: out += f"{SEPARATORS[2]}{self.pre}" if self.build: out += f"{SEPARATORS[3]}{self.build}" return out def to_dict(self): """ Returns what you think it returns """ out = {} # type: dict for field in FIELDS: if getattr(self, field, None) is not None: out[field] = getattr(self, field) return out def to_tuple(self): """ Return a complete tuple (as in, including “pre” and “build” fields) """ return (self.major, self.minor, self.patch, self.pre, self.build) def to_packaging_version(self): """ aka an instance of `pkg_resources.extern.packaging.version.Version` """ return pkg_resources_parse_version(self.to_string()) def __new__(cls, from_value=None, major='‽', minor='‽', patch='‽', pre='‽', build=0): """ Instantiate a VersionInfo, populating its fields per args """ if from_value is not None: if type(from_value) in string_types: return cls.from_string(from_value) elif type(from_value) is PkgResourcesVersion: return cls.from_string(str(from_value)) elif type(from_value) in byte_types: return cls.from_string(from_value.decode('UTF-8')) elif type(from_value) in dict_types: return cls.from_dict(from_value) elif type(from_value) is cls: return cls.from_dict(from_value.to_dict()) if cls.UNKNOWN in str(major): major = None if cls.UNKNOWN in str(minor): minor = None if cls.UNKNOWN in str(patch): patch = None if cls.UNKNOWN in str(pre): pre = None if cls.UNKNOWN in str(build): build = 0 instance = super(VersionInfo, cls).__new__(cls, intify(major), intify(minor), intify(patch), strify(pre), strify(build)) return instance def __str__(self): """ Stringify the VersionInfo (q.v. “to_string(…)” supra.) """ return self.to_string() def __repr__(self): """ Repr-cize the VersionInfo (q.v. “to_string(…)” supra.) """ return self.to_string() def __bytes__(self): """ Bytes-ify the VersionInfo (q.v. “to_string(…)” supra.) """ return bytes(self.to_string(), encoding='UTF-8') def __hash__(self): """ Hash the VersionInfo, using its tuplized value """ return hash(self.to_tuple()) def __bool__(self): """ An instance of VersionInfo is considered Falsey if its “major”, “minor”, and “patch” fields are all set to None; otherwise it’s a Truthy value in boolean contexts """ return not (self.major is None and \ self.minor is None and \ self.patch is None) # Comparison methods also lifted from “semver”: https://git.io/fhb9i @comparator def __eq__(self, other): return compare_keys(self._asdict(), dictify(other)) == 0 @comparator def __ne__(self, other): return compare_keys(self._asdict(), dictify(other)) != 0 @comparator def __lt__(self, other): return compare_keys(self._asdict(), dictify(other)) < 0 @comparator def __le__(self, other): return compare_keys(self._asdict(), dictify(other)) <= 0 @comparator def __gt__(self, other): return compare_keys(self._asdict(), dictify(other)) > 0 @comparator def __ge__(self, other): return compare_keys(self._asdict(), dictify(other)) >= 0 # Get the project version tag without importing: BASEPATH = os.path.dirname(os.path.dirname(__file__)) __version__ = read_version_file(BASEPATH) version_info = VersionInfo(__version__)
python
#!/usr/bin/env python ## # omnibus - deadbits # fullcontact.com ## from http import get from common import get_apikey class Plugin(object): def __init__(self, artifact): self.artifact = artifact self.artifact['data']['fullcontact'] = None self.api_key = get_apikey('fullcontact') self.headers = { 'X-FullContact-APIKey': self.api_key, 'User-Agent': 'OSINT Omnibus (https://github.com/InQuest/Omnibus)' } def run(self): try: status, response = get('https://api.fullcontact.com/v2/person.json?email=%s' % self.artifact['name'], headers=self.headers) if status: self.artifact['data']['fullcontact'] = response.json() if 'socialProfiles' in self.artifact['data']['fullcontact'].keys(): for profile in self.artifact['data']['fullcontact']['socialProfiles']: child = { 'type': 'user', 'name': profile['username'], 'source': 'fullcontact', 'subtype': profile['type'] } self.artifact['children'].append(child) except: pass def main(artifact): plugin = Plugin(artifact) plugin.run() return plugin.artifact
python
NAME='console_broadcast' GCC_LIST=['broadcast']
python
from pyspark import SparkContext from pyspark.sql import SQLContext from pyspark.sql import SparkSession from pyspark.sql import Row import numpy as np import seaborn as sns import matplotlib.pyplot as plt from pyspark.ml.fpm import FPGrowth if __name__ == "__main__": sc = SparkContext('local', 'arules') sqlContext = SQLContext(sc) spark = SparkSession\ .builder\ .appName("arules")\ .getOrCreate() #dataset = sc.textFile("./data/retail.txt") df = spark.createDataFrame([ (0, [1, 2, 5]), (1, [1, 2, 3, 5]), (2, [1, 2]) ], ["id", "items"]) fpGrowth = FPGrowth(itemsCol="items", minSupport=0.5, minConfidence=0.6) model = fpGrowth.fit(df) #display frequent itemsets model.freqItemsets.show() #display generated association rules model.associationRules.show() #apply transform model.transform(df).show()
python
#coding:utf-8 #KDD99数据集预处理 #共使用39个特征,去除了原数据集中20、21号特征 import numpy as np import pandas as pd import csv from datetime import datetime from sklearn import preprocessing # 数据标准化处理 #定义KDD99字符型特征转数值型特征函数 def char2num(sourceFile, handledFile): print('START: 字符型特征转数值型特征函数中') data_file=open(handledFile,'w',newline='') #python3.x中添加newline=''这一参数使写入的文件没有多余的空行 global dataCnt with open(sourceFile, 'r') as data_source: csv_reader=csv.reader(data_source) csv_writer=csv.writer(data_file) dataCnt=0 #记录数据的行数,初始化为0 for row in csv_reader: temp_line=np.array(row) #将每行数据存入temp_line数组里 temp_line[1]=handleProtocol(row) #将源文件行中3种协议类型转换成数字标识 temp_line[2]=handleService(row) #将源文件行中70种网络服务类型转换成数字标识 temp_line[3]=handleFlag(row) #将源文件行中11种网络连接状态转换成数字标识 temp_line[41]=handleLabel(row) #将源文件行中23种攻击类型转换成数字标识 csv_writer.writerow(temp_line) dataCnt+=1 #输出每行数据中所修改后的状态 data_file.close() print('FINISH: 字符型特征转数值型特征函数完成\n') #将相应的非数字类型转换为数字标识即符号型数据转化为数值型数据 def find_index(x,y): return [i for i in range(len(y)) if y[i]==x] #定义将源文件行中3种协议类型转换成数字标识的函数 def handleProtocol(input): protocol_list=['tcp','udp','icmp'] if input[1] in protocol_list: return find_index(input[1],protocol_list)[0] #定义将源文件行中70种网络服务类型转换成数字标识的函数 def handleService(input): service_list=['aol','auth','bgp','courier','csnet_ns','ctf','daytime','discard','domain','domain_u', 'echo','eco_i','ecr_i','efs','exec','finger','ftp','ftp_data','gopher','harvest','hostnames', 'http','http_2784','http_443','http_8001','imap4','IRC','iso_tsap','klogin','kshell','ldap', 'link','login','mtp','name','netbios_dgm','netbios_ns','netbios_ssn','netstat','nnsp','nntp', 'ntp_u','other','pm_dump','pop_2','pop_3','printer','private','red_i','remote_job','rje','shell', 'smtp','sql_net','ssh','sunrpc','supdup','systat','telnet','tftp_u','tim_i','time','urh_i','urp_i', 'uucp','uucp_path','vmnet','whois','X11','Z39_50'] if input[2] in service_list: return find_index(input[2],service_list)[0] #定义将源文件行中11种网络连接状态转换成数字标识的函数 def handleFlag(input): flag_list=['OTH','REJ','RSTO','RSTOS0','RSTR','S0','S1','S2','S3','SF','SH'] if input[3] in flag_list: return find_index(input[3],flag_list)[0] #定义将源文件行中攻击类型转换成数字标识的函数(共出现了22个攻击类型+1个未受到攻击) def handleLabel(input): global label_list label_list = ['normal.', # normal 'back.', 'land.', 'neptune.', 'pod.', 'smurf.', 'teardrop.', # DOS 'ipsweep.', 'nmap.', 'portsweep.', 'satan.', # PROBE 'ftp_write.', 'guess_passwd.', 'imap.', 'multihop.', 'phf.', 'spy.', 'warezclient.', 'warezmaster.', # R2L 'buffer_overflow.', 'loadmodule.', 'perl.', 'rootkit.'] # U2R if input[41] in label_list: return find_index(input[41], label_list)[0] else: label_list.append(input[41]) return find_index(input[41], label_list)[0] def standardize(inputFile): import warnings # 忽略UserWarning: Numerical issues were encountered when centering the data and might not be solved. Dataset may contain too large values. You may need to prescale your features. # warnings.warn("Numerical issues were encountered " warnings.filterwarnings("ignore", message="Numerical issues were encountered ") print('START: 数据标准化中') dataMatrix = np.loadtxt(open(inputFile,"rb"),delimiter=",",skiprows=0) # 读入数据 labelColumn = dataMatrix[:,-1] result = preprocessing.scale(dataMatrix[:,:-1]) # 标签列不参与训练 print('FINISH: 数据标准化完成\n') return result, labelColumn def normalize(inMatrix): print('START: 数据归一化中') np.seterr(divide='ignore',invalid='ignore') # 忽略0/0的报错 minVals = inMatrix.min(0) maxVals = inMatrix.max(0) ranges = maxVals - minVals # normData = np.zeros(np.shape(inMatrix)) m = inMatrix.shape[0] normData = inMatrix - np.tile(minVals, (m, 1)) normData = normData/np.tile(ranges, (m, 1)) # 去掉数据中的空列 print('FINISH: 数据归一化完成\n') return normData, ranges, minVals def exportData(npData, outputFile): pd_data = pd.DataFrame(npData, columns=['duration', 'protocol_type', 'service', 'flag', 'src_bytes', 'dst_bytes', 'land', 'wrong_fragment', 'urgent', 'hot', 'num_failed_logins', 'logged_in', 'num_compromised', 'root_shell', 'su_attempted', 'num_root', 'num_file_creations', 'num_shells', 'num_access_files', 'num_outbound_cmds', 'is_host_login', 'is_guest_login', 'count', 'srv_count', 'serror_rate', 'srv_serror_rate', 'rerror_rate', 'srv_rerror_rate', 'same_srv_rate', 'diff_srv_rate', 'srv_diff_host_rate', 'dst_host_count', 'dst_host_srv_count', 'dst_host_same_srv_rate', 'dst_host_diff_srv_rate', 'dst_host_same_src_port_rate', 'dst_host_srv_diff_host_rate', 'dst_host_serror_rate', 'dst_host_srv_serror_rate', 'dst_host_rerror_rate', 'dst_host_srv_rerror_rate']) pd_data.drop('num_outbound_cmds', axis=1, inplace=True) # 删除存在空值的列 pd_data.drop('is_host_login', axis=1, inplace=True) # 删除存在空值的列 pd_data.to_csv(outputFile, header=None, index=None) def run(source,temp): char2num(source, temp) # 字符型特征转数字型特征 stdData, labelColumn = standardize(temp) normData, _, _ = normalize(stdData) #数据集乱序 np.random.seed(116) np.random.shuffle(normData) np.random.seed(116) np.random.shuffle(labelColumn) #按6:2:2分出训练集,验证集和测试集 n_data=len(labelColumn) split_ind1 = int(n_data * 0.6) split_ind2 = int(n_data * 0.8) train_data=normData[:split_ind1,:] train_label = labelColumn[:split_ind1] val_data=normData[split_ind1:split_ind2,:] val_label = labelColumn[split_ind1:split_ind2] test_data=normData[split_ind2:,:] test_label = labelColumn[split_ind2:] label = pd.DataFrame(train_label,columns=["attack_type"]) label.to_csv(".//dataset//"+"train_label.csv", header=None, index=None) label = pd.DataFrame(val_label, columns=["attack_type"]) label.to_csv(".//dataset//"+"val_label.csv", header=None, index=None) label = pd.DataFrame(test_label, columns=["attack_type"]) label.to_csv(".//dataset//"+"test_label.csv", header=None, index=None) print('START: 数据导出中') exportData(train_data, ".//dataset//"+"train_data.csv") exportData(val_data, ".//dataset//"+"val_data.csv") exportData(test_data, ".//dataset//"+"test_data.csv") print(f'FINISH: 数据导出成功\n共导出 {dataCnt} 条数据') if __name__=='__main__': start_time=datetime.now() sourceFile= './/dataset//kddcup.data_10_percent_corrected' deCharFile = './/dataset//decharedData.csv' run(sourceFile,deCharFile) end_time=datetime.now() print("运行时间 ",(end_time-start_time),'s') #输出程序运行时间
python
import matplotlib.pyplot as plt import os from pathlib import Path from typing import Union import bilby import redback.get_data from redback.likelihoods import GaussianLikelihood, PoissonLikelihood from redback.model_library import all_models_dict from redback.result import RedbackResult from redback.utils import logger from redback.transient.afterglow import Afterglow from redback.transient.prompt import PromptTimeSeries from redback.transient.transient import OpticalTransient dirname = os.path.dirname(__file__) def fit_model( transient: redback.transient.transient.Transient, model: Union[callable, str], outdir: str = None, label: str = None, sampler: str = "dynesty", nlive: int = 2000, prior: dict = None, walks: int = 200, truncate: bool = True, use_photon_index_prior: bool = False, truncate_method: str = "prompt_time_error", resume: bool = True, save_format: str = "json", model_kwargs: dict = None, plot=True, **kwargs)\ -> redback.result.RedbackResult: """ :param transient: The transient to be fitted :param model: Name of the model to fit to data or a function. :param outdir: Output directory. Will default to a sensible structure if not given. :param label: Result file labels. Will use the model name if not given. :param sampler: The sampling backend. Nested samplers are encouraged to allow evidence calculation. (Default value = 'dynesty') :param nlive: Number of live points. :param prior: Priors to use during sampling. If not given, we use the default priors for the given model. :param walks: Number of `dynesty` random walks. :param truncate: Flag to confirm whether to truncate the prompt emission data :param use_photon_index_prior: flag to turn off/on photon index prior and fits according to the curvature effect :param truncate_method: method of truncation :param resume: Whether to resume the run from a checkpoint if available. :param save_format: The format to save the result in. (Default value = 'json'_ :param model_kwargs: Additional keyword arguments for the model. :param kwargs: Additional parameters that will be passed to the sampler :param plot: If True, create corner and lightcurve plot :return: Redback result object, transient specific data object """ if isinstance(model, str): model = all_models_dict[model] if transient.data_mode in ["flux_density", "magnitude"]: if model_kwargs["output_format"] != transient.data_mode: raise ValueError( f"Transient data mode {transient.data_mode} is inconsistent with " f"output format {model_kwargs['output_format']}. These should be the same.") prior = prior or bilby.prior.PriorDict(filename=f"{dirname}/Priors/{model}.prior") outdir = outdir or f"{transient.directory_structure.directory_path}/{model.__name__}" Path(outdir).mkdir(parents=True, exist_ok=True) label = label or transient.name if isinstance(transient, Afterglow): return _fit_grb( transient=transient, model=model, outdir=outdir, label=label, sampler=sampler, nlive=nlive, prior=prior, walks=walks, use_photon_index_prior=use_photon_index_prior, resume=resume, save_format=save_format, model_kwargs=model_kwargs, truncate=truncate, truncate_method=truncate_method, plot=plot, **kwargs) elif isinstance(transient, PromptTimeSeries): return _fit_prompt( transient=transient, model=model, outdir=outdir, label=label, sampler=sampler, nlive=nlive, prior=prior, walks=walks, resume=resume, save_format=save_format, model_kwargs=model_kwargs, plot=plot, **kwargs) elif isinstance(transient, OpticalTransient): return _fit_optical_transient( transient=transient, model=model, outdir=outdir, label=label, sampler=sampler, nlive=nlive, prior=prior, walks=walks, truncate=truncate, use_photon_index_prior=use_photon_index_prior, truncate_method=truncate_method, resume=resume, save_format=save_format, model_kwargs=model_kwargs, plot=plot, **kwargs) else: raise ValueError(f'Source type {transient.__class__.__name__} not known') def _fit_grb(transient, model, outdir, label, sampler='dynesty', nlive=3000, prior=None, walks=1000, use_photon_index_prior=False, resume=True, save_format='json', model_kwargs=None, plot=True, **kwargs): if use_photon_index_prior: label += '_photon_index' if transient.photon_index < 0.: logger.info('photon index for GRB', transient.name, 'is negative. Using default prior on alpha_1') prior['alpha_1'] = bilby.prior.Uniform(-10, -0.5, 'alpha_1', latex_label=r'$\alpha_{1}$') else: prior['alpha_1'] = bilby.prior.Gaussian(mu=-(transient.photon_index + 1), sigma=0.1, latex_label=r'$\alpha_{1}$') if transient.flux_density_data or transient.magnitude_data: x, x_err, y, y_err = transient.get_filtered_data() else: x, x_err, y, y_err = transient.x, transient.x_err, transient.y, transient.y_err likelihood = \ kwargs.get('likelihood', GaussianLikelihood(x=x, y=y, sigma=y_err, function=model, kwargs=model_kwargs)) meta_data = dict(model=model.__name__, transient_type=transient.__class__.__name__.lower()) transient_kwargs = {k.lstrip("_"): v for k, v in transient.__dict__.items()} meta_data.update(transient_kwargs) meta_data['model_kwargs'] = model_kwargs result = None if not kwargs.get("clean", False): try: result = redback.result.read_in_result( outdir=outdir, label=label, extension=kwargs.get("extension", "json"), gzip=kwargs.get("gzip", False)) plt.close('all') return result except Exception: pass result = result or bilby.run_sampler( likelihood=likelihood, priors=prior, label=label, sampler=sampler, nlive=nlive, outdir=outdir, plot=plot, use_ratio=False, walks=walks, resume=resume, maxmcmc=10 * walks, result_class=RedbackResult, meta_data=meta_data, nthreads=4, save_bounds=False, nsteps=nlive, nwalkers=walks, save=save_format, **kwargs) plt.close('all') if plot: result.plot_lightcurve(model=model) return result def _fit_optical_transient(transient, model, outdir, label, sampler='dynesty', nlive=3000, prior=None, walks=1000, resume=True, save_format='json', model_kwargs=None, plot=True, **kwargs): if transient.flux_density_data or transient.magnitude_data: x, x_err, y, y_err = transient.get_filtered_data() else: x, x_err, y, y_err = transient.x, transient.x_err, transient.y, transient.y_err likelihood = kwargs.get( 'likelihood', GaussianLikelihood(x=x, y=y, sigma=y_err, function=model, kwargs=model_kwargs)) meta_data = dict(model=model.__name__, transient_type=transient.__class__.__name__.lower()) transient_kwargs = {k.lstrip("_"): v for k, v in transient.__dict__.items()} meta_data.update(transient_kwargs) meta_data['model_kwargs'] = model_kwargs result = None if not kwargs.get("clean", False): try: result = redback.result.read_in_result( outdir=outdir, label=label, extension=kwargs.get("extension", "json"), gzip=kwargs.get("gzip", False)) plt.close('all') return result except Exception: pass result = result or bilby.run_sampler( likelihood=likelihood, priors=prior, label=label, sampler=sampler, nlive=nlive, outdir=outdir, plot=plot, use_ratio=False, walks=walks, resume=resume, maxmcmc=10 * walks, result_class=RedbackResult, meta_data=meta_data, nthreads=4, save_bounds=False, nsteps=nlive, nwalkers=walks, save=save_format, **kwargs) plt.close('all') if plot: result.plot_lightcurve(model=model) return result def _fit_prompt(transient, model, outdir, label, integrated_rate_function=True, sampler='dynesty', nlive=3000, prior=None, walks=1000, resume=True, save_format='json', model_kwargs=None, plot=True, **kwargs): likelihood = PoissonLikelihood( time=transient.x, counts=transient.y, dt=transient.bin_size, function=model, integrated_rate_function=integrated_rate_function, kwargs=model_kwargs) meta_data = dict(model=model.__name__, transient_type=transient.__class__.__name__.lower()) transient_kwargs = {k.lstrip("_"): v for k, v in transient.__dict__.items()} meta_data.update(transient_kwargs) meta_data['model_kwargs'] = model_kwargs result = None if not kwargs.get("clean", False): try: result = redback.result.read_in_result( outdir=outdir, label=label, extension=kwargs.get("extension", "json"), gzip=kwargs.get("gzip", False)) plt.close('all') return result except Exception: pass result = result or bilby.run_sampler( likelihood=likelihood, priors=prior, label=label, sampler=sampler, nlive=nlive, outdir=outdir, plot=False, use_ratio=False, walks=walks, resume=resume, maxmcmc=10 * walks, result_class=RedbackResult, meta_data=meta_data, nthreads=4, save_bounds=False, nsteps=nlive, nwalkers=walks, save=save_format, **kwargs) plt.close('all') if plot: result.plot_lightcurve(model=model) return result
python
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads_v4/proto/errors/conversion_action_error.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads_v4/proto/errors/conversion_action_error.proto', package='google.ads.googleads.v4.errors', syntax='proto3', serialized_options=_b('\n\"com.google.ads.googleads.v4.errorsB\032ConversionActionErrorProtoP\001ZDgoogle.golang.org/genproto/googleapis/ads/googleads/v4/errors;errors\242\002\003GAA\252\002\036Google.Ads.GoogleAds.V4.Errors\312\002\036Google\\Ads\\GoogleAds\\V4\\Errors\352\002\"Google::Ads::GoogleAds::V4::Errors'), serialized_pb=_b('\nBgoogle/ads/googleads_v4/proto/errors/conversion_action_error.proto\x12\x1egoogle.ads.googleads.v4.errors\x1a\x1cgoogle/api/annotations.proto\"\x8b\x03\n\x19\x43onversionActionErrorEnum\"\xed\x02\n\x15\x43onversionActionError\x12\x0f\n\x0bUNSPECIFIED\x10\x00\x12\x0b\n\x07UNKNOWN\x10\x01\x12\x12\n\x0e\x44UPLICATE_NAME\x10\x02\x12\x14\n\x10\x44UPLICATE_APP_ID\x10\x03\x12\x37\n3TWO_CONVERSION_ACTIONS_BIDDING_ON_SAME_APP_DOWNLOAD\x10\x04\x12\x31\n-BIDDING_ON_SAME_APP_DOWNLOAD_AS_GLOBAL_ACTION\x10\x05\x12)\n%DATA_DRIVEN_MODEL_WAS_NEVER_GENERATED\x10\x06\x12\x1d\n\x19\x44\x41TA_DRIVEN_MODEL_EXPIRED\x10\x07\x12\x1b\n\x17\x44\x41TA_DRIVEN_MODEL_STALE\x10\x08\x12\x1d\n\x19\x44\x41TA_DRIVEN_MODEL_UNKNOWN\x10\t\x12\x1a\n\x16\x43REATION_NOT_SUPPORTED\x10\nB\xf5\x01\n\"com.google.ads.googleads.v4.errorsB\x1a\x43onversionActionErrorProtoP\x01ZDgoogle.golang.org/genproto/googleapis/ads/googleads/v4/errors;errors\xa2\x02\x03GAA\xaa\x02\x1eGoogle.Ads.GoogleAds.V4.Errors\xca\x02\x1eGoogle\\Ads\\GoogleAds\\V4\\Errors\xea\x02\"Google::Ads::GoogleAds::V4::Errorsb\x06proto3') , dependencies=[google_dot_api_dot_annotations__pb2.DESCRIPTOR,]) _CONVERSIONACTIONERRORENUM_CONVERSIONACTIONERROR = _descriptor.EnumDescriptor( name='ConversionActionError', full_name='google.ads.googleads.v4.errors.ConversionActionErrorEnum.ConversionActionError', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='UNSPECIFIED', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='UNKNOWN', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DUPLICATE_NAME', index=2, number=2, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DUPLICATE_APP_ID', index=3, number=3, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='TWO_CONVERSION_ACTIONS_BIDDING_ON_SAME_APP_DOWNLOAD', index=4, number=4, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='BIDDING_ON_SAME_APP_DOWNLOAD_AS_GLOBAL_ACTION', index=5, number=5, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATA_DRIVEN_MODEL_WAS_NEVER_GENERATED', index=6, number=6, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATA_DRIVEN_MODEL_EXPIRED', index=7, number=7, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATA_DRIVEN_MODEL_STALE', index=8, number=8, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DATA_DRIVEN_MODEL_UNKNOWN', index=9, number=9, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CREATION_NOT_SUPPORTED', index=10, number=10, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=163, serialized_end=528, ) _sym_db.RegisterEnumDescriptor(_CONVERSIONACTIONERRORENUM_CONVERSIONACTIONERROR) _CONVERSIONACTIONERRORENUM = _descriptor.Descriptor( name='ConversionActionErrorEnum', full_name='google.ads.googleads.v4.errors.ConversionActionErrorEnum', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ _CONVERSIONACTIONERRORENUM_CONVERSIONACTIONERROR, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=133, serialized_end=528, ) _CONVERSIONACTIONERRORENUM_CONVERSIONACTIONERROR.containing_type = _CONVERSIONACTIONERRORENUM DESCRIPTOR.message_types_by_name['ConversionActionErrorEnum'] = _CONVERSIONACTIONERRORENUM _sym_db.RegisterFileDescriptor(DESCRIPTOR) ConversionActionErrorEnum = _reflection.GeneratedProtocolMessageType('ConversionActionErrorEnum', (_message.Message,), dict( DESCRIPTOR = _CONVERSIONACTIONERRORENUM, __module__ = 'google.ads.googleads_v4.proto.errors.conversion_action_error_pb2' , __doc__ = """Container for enum describing possible conversion action errors. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v4.errors.ConversionActionErrorEnum) )) _sym_db.RegisterMessage(ConversionActionErrorEnum) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
python
#!/usr/bin/env python3 import sys import os import time import docker def error(msg): print(msg, file=sys.stderr) exit(1) def main(): if len(sys.argv) != 2: error(f"{sys.argv[0]} <container_name>") container_name = sys.argv[1] client = docker.from_env() try: container = client.containers.get(container_name) except docker.errors.NotFound: error("No active challenge session; start a challenge!") original_command = os.getenv("SSH_ORIGINAL_COMMAND", "/bin/bash") ssh_tty = os.getenv("SSH_TTY") is not None if not ssh_tty: global print print = lambda *args, **kwargs: None attempts = 0 while attempts < 30: try: container = client.containers.get(container_name) status = container.status except docker.errors.NotFound: status = "uninitialized" if status == "running": attempts = 0 print("\r", " " * 80, "\rConnected!") else: attempts += 1 print("\r", " " * 80, f"\rConnecting -- instance status: {status}", end="") time.sleep(1) continue if not os.fork(): os.execve( "/usr/bin/docker", [ "docker", "exec", "-it" if ssh_tty else "-i", "--user=hacker", container_name, "/bin/bash", "-c", original_command, ], { "HOME": os.environ["HOME"], }, ) else: _, status = os.wait() if status == 0: break print() print("\r", " " * 80, "\rConnecting", end="") time.sleep(0.5) else: print("\r", " " * 80, "\rError: failed to connect!") if __name__ == "__main__": main()
python
# ------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------- import json import sys from datetime import datetime from pathlib import Path from typing import Any, Dict, TypeVar import yaml from azure.cosmosdb.table.tableservice import TableService from azure.storage.blob import BlobClient from flask import Flask, Response, jsonify, request from werkzeug.http import HTTP_STATUS_CODES ROOT_DIR = Path(__file__).parent.parent.parent.parent sys.path.append(str(ROOT_DIR)) PYBCKG_DIR = ROOT_DIR / "libraries" / "PyBCKG" sys.path.append(str(PYBCKG_DIR)) SPECS_DIR = ROOT_DIR / "libraries/ABEX/tests/data/specs" from abex.optimizers.optimizer_base import OptimizerBase # noqa: E402 from abex.settings import load_config_from_path_or_name, load_resolutions # noqa: E402 # type: ignore # auto from libraries.PyBCKG.pyBCKG.azurestorage.api import from_connection_string # noqa: E402 from libraries.PyBCKG.pyBCKG.utils import HttpRequestMethod # noqa: E402 app = Flask(__name__) @app.route("/") @app.route("/get-experiment-options", methods=["GET"]) def get_experiments(): connection_string = request.headers.get("storageConnectionString") az_conn = from_connection_string(connection_string) query = "experiments()" # queryfilter = az_conn._queryfilter('deprecated', "False") # queryfilter = f"?$filter=Deprecated eq '{False}'" queryfilter = "" expt_json = az_conn.query_table(HttpRequestMethod.GET, query, queryfilter) experiments = expt_json["value"] return Response(json.dumps(experiments), mimetype="application/json") @app.route("/get-aml-runs", methods=["GET"]) def get_aml_runs(): connection_string = request.headers.get("storageConnectionString") az_conn = from_connection_string(connection_string) query = "azuremlruns()" queryfilter = "" aml_runs_json = az_conn.query_table(HttpRequestMethod.GET, query, queryfilter) aml_runs = aml_runs_json["value"] return Response(json.dumps(aml_runs), mimetype="application/json") @app.route("/get-experiment-result", methods=["GET"]) def get_experiment_results(): # connection_string = request.headers.get("storageConnectionString") experiment_name = request.args.get("experimentName") print(f"experiment name: {experiment_name}") # TODO: Download AML run and construct IExperimentResult object experiment_results = [ { "id": 1, "description": "", "samples": [{}], "signals": [{}], "type": "", "timestamp": "", "deprecated": "", "name": "experiment1", "iterations": ["1"], "folds": ["1", "2", "3"], "imageFolders": ["/abex-results/tutorial-intro"], "imageNames": [ "slice1d_", "slice2d_", "acquisition1d_", "train_test_", "bo_distance", "bo_experiment", ], "suggestedExperiments": [ {"x": 5.0, "y": 8.4}, {"x": 5.6, "y": 8.3}, {"x": 5.3, "y": 8.5}, {"x": 5.7, "y": 8.8}, {"x": 5.4, "y": 8.2}, ], }, { "id": 2, "description": "", "samples": [{}], "signals": [{}], "type": "", "timestamp": "", "deprecated": "", "name": "experiment2", "iterations": ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10"], "folds": ["1", "2", "3", "4", "5", "6", "7", "8", "9"], "imageFolders": ["/abex-results/synthetic_3input_batch5"], "imageNames": [ "slice1d_", "slice2d_", "acquisition1d_", "train_only", "bo_distance", "bo_experiment", ], "suggestedExperiments": [ {"ARA": 1.0, "ATC": 3.3, "C_on": 1}, {"ARA": 1.1, "ATC": 3.5, "C_on": 1}, {"ARA": 1.1, "ATC": 3.6, "C_on": 1}, {"ARA": 1.1, "ATC": 3.8, "C_on": 1}, {"ARA": 1.1, "ATC": 3.5, "C_on": 1}, ], }, ] # This will be the real result once we are storing these storing results in BCKG # expt_result =[ex for ex in experiment_results if ex.name == experiment_name][0] expt_result = experiment_results[0] return Response(json.dumps(expt_result), mimetype="application/json") @app.route("/get-config-options", methods=["GET"]) def get_configs(): configs = [{"id": "1", "name": "config1"}, {"id": "2", "name": "config2"}] return Response(json.dumps(configs), mimetype="application/json") @app.route("/get-dataset-options", methods=["GET"]) def get_datasets(): datasets = [ { "id": "1", "name": "dataset1", "dateCreated": "17 Feb 2021", "dataRecords": [ { "SampleId": "S1", "ObservationId": "O3", "Arabinose": 4.67, "C6": 345.23, "C12": 12334.34, "EYFP": 187982.23, "ECFP": 23445.4, "MRFP": 765.67, }, { "SampleId": "S2", "ObservationId": "O1", "Arabinose": 6.54, "C6": 234.63, "C12": 3243.98, "EYFP": 87668.34, "ECFP": 72726.21, "MRFP": 7725.43, }, ], }, { "id": "2", "name": "dataset2", "dateCreated": "01 March 2021", "dataRecords": [ {"A": "a", "B": 2, "C": "e", "D": 4}, {"A": "b", "B": 1, "C": "f", "D": 1}, ], }, ] return Response(json.dumps(datasets), mimetype="application/json") def parse_binary_to_dict(data: bytes) -> yaml.YAMLObject: header_dict = json.loads(data) data_dict = header_dict.get("headers") return data_dict def get_file_name(data_dict: Dict[str, Any]): config_name = data_dict.get("fileName") return config_name def get_config_data(data_dict: Dict[str, Any]): config_data = data_dict.get("config") config_json = yaml.safe_load(config_data) # type: ignore return config_json T = TypeVar("T") def get_csv_data(data_dict: Dict[str, T]) -> T: observation_data = data_dict.get("observations") print("observation data: ", observation_data) # TODO: PARSE CSV observations = observation_data assert observations is not None # since non-None return is assumed by some callers return observations def get_connection_str_from_binary(data: bytes): header_dict = json.loads(data) data_dict = header_dict.get("headers") connection_str = data_dict.get("storageConnectionString") return connection_str def http_response(status_code, message, error_code=None, response=None, reason=None): response_status_code = HTTP_STATUS_CODES.get(status_code, "Unknown error") if response_status_code == 409 and "blob already exists" in message: message += " If you are sure this is new data, try renaming the file." response = jsonify( error=response_status_code, error_code=error_code, reason=reason, message=message, ) response.status_code = status_code return response def upload_to_blob_storage(yaml_data: yaml.YAMLObject, connection_string: str, blob_name: str): blob = BlobClient.from_connection_string( conn_str=connection_string, container_name="testfiles", blob_name=blob_name ) # upload blob try: blob.upload_blob(json.dumps(yaml_data), overwrite=False) return http_response(200, "Success") except Exception as e: # TODO: specify the type of the exception more exactly, so we can be sure it has the fields assumed here. response = http_response( e.status_code, # type: ignore e.message, # type: ignore error_code=e.error_code, # type: ignore response=e.response, # type: ignore reason=e.reason, # type: ignore ) print(response) return response # List the blobs in the container # blob_list_after = container_client.list_blobs() def insert_config_table_entry(connection_string: str, config_name: str, config_path: str): table_conn = TableService(connection_string=connection_string) new_entry = { "PartitionKey": "app", "RowKey": config_name, "Timestamp": datetime.now(), "ConfigName": config_name, "PathToBlob": config_path, } table_conn.insert_entity("abexconfigs", new_entry) def insert_observation_table_entry(connection_string: str, file_name: str, file_path: str): table_conn = TableService(connection_string=connection_string) new_entry = { "PartitionKey": "app", "RowKey": file_name, "Timestamp": datetime.now(), "FileName": file_name, "PathToBlob": file_path, } table_conn.insert_entity("abexObservations", new_entry) @app.route("/upload-config-data", methods=["GET", "POST"]) def upload_config_data(): """ Parse data into yaml and then upload to blob storage, as well as creating table entry """ data = request.get_data() data_dict = parse_binary_to_dict(data) config_name: str = get_file_name(data_dict) # type: ignore # auto config_data = get_config_data(data_dict) # type: ignore # auto blob_name = config_name.split(".")[0] blob_path = "testfiles/" + blob_name # Upload the file to blob storage connection_string = get_connection_str_from_binary(data) upload_blob_response = upload_to_blob_storage(config_data, connection_string, blob_name) if upload_blob_response.status_code != 200: return upload_blob_response # TODO: move this once specs folders fixed # copy into abex specs folder new_spec_path = SPECS_DIR / config_name print("saving new spec to: ", new_spec_path) with open(new_spec_path, "w+") as f_path: yaml.dump(config_data, f_path) assert new_spec_path.is_file() # Add storage table entry insert_config_table_entry(connection_string, blob_name, blob_path) return {"filePath": config_name} @app.route("/upload-observation-data", methods=["GET", "POST"]) def upload_observation_data(): """ Upload observations """ data = request.get_data() data_dict = parse_binary_to_dict(data) print(f"data dict: {data_dict}") file_name = get_file_name(data_dict) # type: ignore # auto csv_data: yaml.YAMLObject = get_csv_data(data_dict) # type: ignore # auto blob_name = file_name.split(".")[0] blob_path = "testfiles/" + blob_name # Upload the file to blob storage connection_string = get_connection_str_from_binary(data) upload_blob_response = upload_to_blob_storage(csv_data, connection_string, blob_name) if upload_blob_response.status_code != 200: return upload_blob_response # Add storage table entry insert_observation_table_entry(connection_string, blob_name, blob_path) return {"filePath": file_name} @app.route("/login/<string:connection_string>", methods=["GET"]) def login(connection_string: str): conn = from_connection_string(connection_string) if conn: print("conn successful") return {"success": True} @app.route("/submit-new-experiment", methods=["GET", "POST"]) def submit_new_experiment(): # TODO: start new experiment track """ Submit a new experiment action. 1. Retrieve the config from user's config table 2. Retrieve the csv to user's csv table x. Create ABEX Config y. Submit the ABEX experiment """ data = request.get_data() print(f"Data sent to submit-new-experiment: {data}") data_dict = parse_binary_to_dict(data) print(f"\ndata dict: {data_dict}") config_path = data_dict.get("configPath") # type: ignore # auto # config_name = config_path.split('.')[0] print(f"config path: {config_path}") # observation_path = data_dict.get("observationsPath") yaml_file_path, config_dict = load_config_from_path_or_name(config_path) print(f"yaml file path: {yaml_file_path}") print(f"config dict: {config_dict}") for pair_list in load_resolutions(config_path): for _, config in pair_list: # Decide which optimization strategy should be used print(f"\nConfig: {config}") optimizer = OptimizerBase.from_strategy(config, config.optimization_strategy) optimizer.run() return data @app.route("/submit-iteration", methods=["GET", "POST"]) def submit_iteration_form(): # TODO: kick off new iteration data = request.get_data() print(data) return data @app.route("/submit-clone", methods=["GET", "POST"]) def submit_cloneform(): # TODO: kick off clone of previous experiment data = request.get_data() print(data) return data
python
import json from carla.driving_benchmark.results_printer import print_summary with open('../_benchmarks_results/outputs-27/metrics.json') as json_file: metrics_summary = json.load(json_file) train_weathers = [1, 3, 6, 8] test_weathers = [4, 14] print("Printing Data\n") print_summary(metrics_summary, test_weathers, None) print("\nDone Printing Data")
python
import json import os.path as osp from glob import glob import numpy as np from nms_cpu import nms_cpu as nms ''' load annotation from BDD format json files ''' def load_annos_bdd(path, folder=True, json_name='*/*_final.json'): print("Loading GT file {} ...".format(path)) if folder: jsonlist = sorted(glob(osp.join(path, json_name))) else: jsonlist = json.load(open(path, 'r')) assert len(jsonlist) > 0, "{} has no files".format(path) anno = [] for idx, trackjson in enumerate(jsonlist): if folder: trackinfo = json.load(open(trackjson, 'r')) else: trackinfo = trackjson annotations = {} annotations.update({ 'name': [], 'truncated': [], 'occluded': [], 'alpha': [], 'bbox': [], 'dimensions': [], 'location': [], 'orientation': [] }) for obj in trackinfo['labels']: if not obj['attributes']['ignore']: annotations['name'].append('Car') annotations['truncated'].append(obj['attributes']['truncated']) annotations['occluded'].append(obj['attributes']['occluded']) annotations['bbox'].append( [obj['box2d']['x1'], obj['box2d']['y1'], obj['box2d']['x2'], obj['box2d']['y2']]) annotations['alpha'].append(obj['box3d']['alpha']) annotations['dimensions'].append(obj['box3d']['dimension']) annotations['location'].append(obj['box3d']['location']) annotations['orientation'].append(obj['box3d']['orientation']) annotations['name'] = np.array(annotations['name']) annotations['truncated'] = np.array(annotations['truncated']) annotations['occluded'] = np.array(annotations['occluded']) annotations['alpha'] = np.array(annotations['alpha']).astype( 'float') annotations['bbox'] = np.array(annotations['bbox']).astype( 'float').reshape(-1, 4) annotations['dimensions'] = np.array( annotations['dimensions']).reshape(-1, 3)[:, [2, 0, 1]] annotations['location'] = np.array(annotations['location']).reshape( -1, 3) annotations['orientation'] = np.array( annotations['orientation']).reshape(-1) anno.append(annotations) return anno def load_preds_bdd(path, use_nms=True, folder=False, json_name='*bdd_3d.json'): print("Loading PD file {} ...".format(path)) # A flag indicate using kitti (bottom center) or gta (3D box center) format use_kitti_location = 'kitti' in path if folder: jsonlists = sorted(glob(osp.join(path, json_name))) jsonlist = [itm for ji in jsonlists for itm in json.load(open(ji, 'r'))] else: jsonlist = json.load(open(path, 'r')) assert len(jsonlist) > 0, "{} has no files".format(path) anno = [] for idx, trackinfo in enumerate(jsonlist): annotations = {} annotations.update({ 'name': [], 'truncated': [], 'occluded': [], 'alpha': [], 'bbox': [], 'score': [], 'dimensions': [], 'location': [], 'orientation': [] }) for obj in trackinfo['prediction']: if not obj['attributes']['ignore']: annotations['name'].append('Car') annotations['truncated'].append(0) annotations['occluded'].append(0) annotations['bbox'].append( [obj['box2d']['x1'], obj['box2d']['y1'], obj['box2d']['x2'], obj['box2d']['y2']]) annotations['score'].append(obj['box2d']['confidence']) annotations['alpha'].append(obj['box3d']['alpha']) annotations['dimensions'].append(obj['box3d']['dimension']) annotations['location'].append(obj['box3d']['location']) annotations['orientation'].append(obj['box3d']['orientation']) name = np.array(annotations['name']) truncated = np.array(annotations['truncated']) occluded = np.array(annotations['occluded']) box = np.array(annotations['bbox']).astype('float').reshape(-1, 4) score = np.array(annotations['score']).astype('float').reshape(-1) dim = np.array(annotations['dimensions']).reshape(-1, 3)[:, [2, 0, 1]] alpha = np.array(annotations['alpha']).astype('float') loc = np.array(annotations['location']).reshape(-1, 3) if use_kitti_location: # Bottom center of a 3D object, instead of 3D box center loc[:, 1] += dim[:, 2] / 2 rot_y = np.array(annotations['orientation']).reshape(-1) if use_nms: # print("Using NMS to suppress number of bounding box") keep = nms(np.hstack([box, score.reshape(-1, 1)]), 0.3) name = name[keep] truncated = truncated[keep] occluded = occluded[keep] box = box[keep] score = score[keep] dim = dim[keep].reshape(-1, 3) alpha = alpha[keep] loc = loc[keep].reshape(-1, 3) rot_y = rot_y[keep].reshape(-1) annotations['name'] = name annotations['truncated'] = truncated annotations['occluded'] = occluded annotations['alpha'] = alpha annotations['bbox'] = box annotations['dimensions'] = dim annotations['location'] = loc annotations['orientation'] = rot_y annotations['score'] = score anno.append(annotations) return anno
python
import context import sys import pytest from dice import dice from score import scoreCalculate from game.Player import Player from game.score_bracket import score_bracket @pytest.fixture(scope='session') def load_normal_player(): one = score_bracket(250,350,4) two = score_bracket(400,500,3) three = score_bracket(550,850,2) four = score_bracket(900,99999,1) p = Player('test',350,3,2) p.passToBrackets.append(one) p.passToBrackets.append(two) p.passToBrackets.append(three) p.passToBrackets.append(four) pytest.normal_player = p def test_judge_normal_150(load_normal_player): result = pytest.normal_player.player_judge_accept_passed(150, 3) assert result == False def test_judge_normal_300(load_normal_player): result = pytest.normal_player.player_judge_accept_passed(300, 3) assert result == False def test_judge_normal_350(load_normal_player): result = pytest.normal_player.player_judge_accept_passed(350, 4) assert result == True def test_judge_normal_400(load_normal_player): result = pytest.normal_player.player_judge_accept_passed(400, 3) assert result == True def test_judge_normal_550(load_normal_player): result = pytest.normal_player.player_judge_accept_passed(550, 2) assert result == True def test_judge_normal_550_One(load_normal_player): result = pytest.normal_player.player_judge_accept_passed(550, 1) assert result == False def test_judge_normal_900(load_normal_player): result = pytest.normal_player.player_judge_accept_passed(900, 2) assert result == True def test_judge_normal_900(load_normal_player): result = pytest.normal_player.player_judge_accept_passed(1100, 1) assert result == True def test_judge_normal_200_2(load_normal_player): result = pytest.normal_player.player_judge_accept_passed(200, 2) assert result == False def test_judge_normal_300_1(load_normal_player): result = pytest.normal_player.player_judge_accept_passed(300, 2) assert result == False def test_judge_normal_2000_1(load_normal_player): result = pytest.normal_player.player_judge_accept_passed(2000, 1) assert result == True def test_judge_normal_2000_2(load_normal_player): result = pytest.normal_player.player_judge_accept_passed(2000, 2) assert result == True def test_judge_normal_1100_1(load_normal_player): result = pytest.normal_player.player_judge_accept_passed(1100, 1) assert result == True
python
import os import random import re import sys DAMPING = 0.85 SAMPLES = 10000 def main(): if len(sys.argv) != 2: sys.exit("Usage: python pagerank.py corpus") corpus = crawl(sys.argv[1]) ranks = sample_pagerank(corpus, DAMPING, SAMPLES) print(f"PageRank Results from Sampling (n = {SAMPLES})") for page in sorted(ranks): print(f" {page}: {ranks[page]:.4f}") ranks = iterate_pagerank(corpus, DAMPING) print(f"PageRank Results from Iteration") for page in sorted(ranks): print(f" {page}: {ranks[page]:.4f}") def crawl(directory): """ Parse a directory of HTML pages and check for links to other pages. Return a dictionary where each key is a page, and values are a list of all other pages in the corpus that are linked to by the page. """ pages = dict() # Extract all links from HTML files for filename in os.listdir(directory): if not filename.endswith(".html"): continue with open(os.path.join(directory, filename)) as f: contents = f.read() links = re.findall(r"<a\s+(?:[^>]*?)href=\"([^\"]*)\"", contents) pages[filename] = set(links) - {filename} # Only include links to other pages in the corpus for filename in pages: pages[filename] = set( link for link in pages[filename] if link in pages ) return pages def transition_model(corpus, page, damping_factor): """ Return a probability distribution over which page to visit next, given a current page. With probability `damping_factor`, choose a link at random linked to by `page`. With probability `1 - damping_factor`, choose a link at random chosen from all pages in the corpus. """ pagePointers = set() for x, y in corpus.items(): if x == page: pagePointers = y break chances = dict() if len(pagePointers) == 0: chance = 1/len(corpus) for x in corpus: chances[x] = chance return chances chanceAmortecimento = (1-damping_factor)/(len(corpus)) chanceComum = (damping_factor/len(pagePointers)) for x in corpus: if x in pagePointers: chances[x] = chanceAmortecimento + chanceComum else: chances[x] = chanceAmortecimento return chances def sample_pagerank(corpus, damping_factor, n): """ Return PageRank values for each page by sampling `n` pages according to transition model, starting with a page at random. Return a dictionary where keys are page names, and values are their estimated PageRank value (a value between 0 and 1). All PageRank values should sum to 1. """ visitedPages = [] paginaAtual = random.choice(list(corpus.keys())) for i in range(n): chances = transition_model(corpus, paginaAtual, damping_factor) pageList = [] pageChances = [] for x, y in chances.items(): pageList.append(x) pageChances.append(y) paginaAtual = random.choices(pageList, pageChances)[0] visitedPages.append(paginaAtual) oneFactor = 1/n pageRanks = dict() for page in corpus: pageRanks[page] = visitedPages.count(page) * oneFactor return pageRanks def iterate_pagerank(corpus, damping_factor): """ Return PageRank values for each page by iteratively updating PageRank values until convergence. Return a dictionary where keys are page names, and values are their estimated PageRank value (a value between 0 and 1). All PageRank values should sum to 1. """ prs = dict() initialValue = 1/len(corpus) for x in corpus: prs[x] = initialValue altaDiferenca = True while altaDiferenca: altaDiferenca = False for x in prs: if recursive_pagerank(corpus, x, damping_factor, prs): altaDiferenca = True return prs def recursive_pagerank(corpus, page, damping_factor, prs): somatorio = 0 for i, links in corpus.items(): if page in links: somatorio += prs[i]/len(links) pr = ((1-damping_factor)/len(corpus)) + damping_factor*somatorio if -0.001 < pr - prs[page] < 0.001: prs[page] = pr return False else: prs[page] = pr return True if __name__ == "__main__": main()
python
import logging import pandas as pd import numpy as np import glob_utils.file.utils logger = logging.getLogger(__name__) ################################################################################ # Save/Load csv files ################################################################################ def save_as_csv(file_path:str, data:dict)->None: """Save data in a csv-file Args: file_path (str): saving path data (dict): The values of dict should be ndarray or list. And it will be converted to 1-D array for saving csv-file. The length of data should be the same. """ if not isinstance(data, dict): logger.error(f'Saving of {data=} in csv file - failed, data should be a dict') return # convert list to 1-D nparray if values of dict is list or nested list for key, values in data.items(): if isinstance(values, list): data[key]= np.hstack(values) # convert to 1-D array if dim not 1 data = {k: v.flatten() for k,v in data.items()} file_path= glob_utils.file.utils.append_extension(file_path, glob_utils.file.utils.FileExt.csv) df = pd.DataFrame.from_dict(data) df.to_csv(file_path, index = False, header=True,) def load_csv(file_path:str) -> dict: """Load a csv-file. All variables contained in a csv-file (except the private var) are return in a dictionnary Args: file_path (str): path of csv to load Returns: dict: variables contained in the csv-file """ if not glob_utils.file.utils.check_file(file_path, glob_utils.file.utils.FileExt.csv): return None return pd.read_csv(file_path).to_dict('list')
python
# Generated by Django 3.1.4 on 2021-05-07 01:28 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('TFS', '0002_auto_20210507_0656'), ] operations = [ migrations.AlterField( model_name='customerdetail', name='email', field=models.EmailField(max_length=30), ), migrations.AlterField( model_name='transectiondetail', name='email', field=models.EmailField(max_length=30), ), ]
python
#-*-coding:utf-8-*- import sys import time from flask import Flask,jsonify app = Flask(__name__) appJSON={ "controller":{ "title":"Speed Dial Squared Up", "rightButton":{ "title":"请求", "click":"${()=>{$dispatch('fetchData')}}" } }, "lifeCircle":{ "viewDidMount":"${()=>{$dispatch('fetchData')}}", }, "components":[ { "id":"header", "type":"View", "style":{ "position":"`{{2,0},{${UI.screenW-2},200}}`", "backgroundColor":"rgb(255,255,255)", }, "components":[ { "id":"nameLabel", "type":"TextView", "style":{ "position":"`{{6,6},{${UI.screenW-12},264}}`", "backgroundColor":"`rgb(255,255,255)`", "text":" 相信大家肯定有这样的烦恼,因为各式各样的需求,每次app更新版本都需要编码->测试->打包->提交app store 审核,这样花费的时间太多,又或者你会想到这不是有现成的解决方案嘛,ReactNative就可以,并且可以热更新(不同于JSPatch)。是的,但是我不想因为简单的需求就引入那么多文件,更增加了app体积。JSONRenderKit核心就只有几个.h.m文件。\n\n 同时一个非常好玩的库,不用重新command+R,只要改动JSON就可以看到新的UI效果。之所以说他好玩,因为它可以做很多彩蛋,给用户惊喜。\n\n并且我也已经正式放进项目-(”掌上理工大 “app store 可以搜索)里面使用啦,并且抽出代码,详细注释做成了Demo放在github。你也可以修改源代码并扩展新组件后放进的你自己的项目,重要的是你也可以参考JavaScript是怎样和OC进行交互的,代码里面有详细的注释。要是有兴趣,你可以自己将他打造成为一个有用的工具。", "textColor":"rgb(132,132,132)", "cornerRadius":4, "borderColor":"rgb(244,244,244)", "borderWidth":1, "allowEdit":0, "fontSize":14.0, }, }, ] }, { "id":"listbox", "type":"ListView", "style":{ "position":"`{{0,270},{${UI.screenW},270}}`", "itemSize":"`{${UI.screenW/3},90}`", "itemVMarign":0, "itemHMarign":0, "scrollDirection":"vertical", }, "itemStyle":{ "separatorDirection":"right|bottom", "separatorColor":"rgb(240,240,240)", }, "clickItem":"${(index)=>{UI.alert('you pressed',$props.apps[index].name)}}", "item":[ { "id":"appname", "type":"Label", "style":{ "position":"`{{0,60},{${UI.screenW/3},30}}`", "text":"标签", "align":"center", "fontSize":14, "textColor":"rgb(130,130,130)", }, }, { "id":"appicon", "type":"ImageView", "style":{ "position":"{{48,30},{26,26}}", "image":"https://static.wutnews.net/icon/calendar/2x.png?2", "imageMode":"aspectfit", }, }, ], } ], "props":{ "testIndex":1, "apps":[], }, "actions":{ "fetchData":{ "viewId":"listbox", "URLRequest":{ "type":"GET", "url":"http://palmwhut.sinaapp.com/member/get_app?timestamp=0&platform=ios", "check":"${(json)=>{return json.status == '200';}}", "failure":"${(desc)=>{UI.alert('信息获取失败',desc)}}", "extractData":"${(json)=>{$props.apps=$props.apps.concat(json.data);return json.data;}}", "itemToStyleTemplate":{ "subStyles":[ { "viewId":"appname", "style":{ "text":"`${item.name}`", } }, { "viewId":"appicon", "style":{ "image":"`${item.icon['3x']}`",#item.icon.3x 语法格式不正确 } }, ] }, "render":"${(data)=>{$getView('listbox').setDataArray([]).addDatas(data).reloadData()}}", }, }, } } translation={ "controller":{ "title":"translation", }, "components":[ { "id":"searchField", "type":"TextField", "style":{ "position":"`{{6,6},{${UI.screenW-80},36}}`", "textColor":"rgb(80,80,80)", "borderStyle":"none", "backgroundColor":"rgb(240,240,240)", "cornerRadius":4, "placeholder":"请输入你要翻译的单词", } }, { "id":"searchButton", "type":"Button", "style":{ "position":"`{{${UI.screenW-68},4},{68,40}}`", "titleColor":"rgb(40,40,40)", "title":"search" }, "click":"${()=>{$dispatch('transAction');}}" }, { "id":"resultList", "type":"ListView", "style":{ "position":"`{{0,60},{${UI.screenW},${UI.screenH-60}}}`", "itemSize":"`{${UI.screenW},54}`", "itemVMarign":0, "scrollDirection":"vertical", }, "itemStyle":{ "separatorDirection":"bottom", "separatorColor":"rgb(240,240,240)", }, "item":[ { "id":"fixLabel", "type":"Label", "style":{ "position":"`{{13,8},{${UI.screenW-13},20}}`", "fontSize":12, "textColor":"rgb(200,200,200)", } }, { "id":"descLabel", "type":"Label", "style":{ "position":"`{{13,30},{${UI.screenW-13},20}}`", "fontSize":14, "textColor":"rgb(80,80,80)", } }, ], "dataArray":[ { "subStyles":[ { "viewId":"fixLabel", "style":{ "text":"译文", }, }, { "viewId":"descLabel", "style":{ "text":"Who am I?", }, }, ] }, { "subStyles":[ { "viewId":"fixLabel", "style":{ "text":"译文", }, }, { "viewId":"descLabel", "style":{ "text":"Who are you?", }, }, ] }, ] } ], "props":{ "transResults":[] }, "actions":{ "transAction":{ "viewId":"resultList", "URLRequest":{ "type":"get", "url":"`https://dict.bing.com.cn/api/http/v2/4154AA7A1FC54ad7A84A0236AA4DCAF3/zh-cn/en-us/?q=${$getView('searchField').text}&format=application/json`", "check":"${(json)=>{return true}}", #进行检查 必须返回一个布尔值 "failure":"${(desc)=>{UI.alert('信息获取失败',desc)}}", # "success":"${(data)=>{$props.apps=$props.apps.concat(data);}}", #将结果进行保存 "extractData":"${(json)=>{return json.LEX.C_DEF[1].SEN}}", "willRender":"", "willSend":"${()=>{UI.showIndicator('gray');}}", "itemToStyleTemplate":{ "subStyles":[ { "viewId":"descLabel", "style":{ "text":"`${item.D}`",#item.icon.3x 语法格式不正确 } }, { "viewId":"fixLabel", "style":{ "text":"译文",#item.icon.3x 语法格式不正确 } }, ] }, "render":"${(renderData)=>{$getView('resultList').setDataArray([]).addDatas(renderData).reloadData()}}", "didRender":"${()=>{UI.hideIndicatorDelay(0.618)}}", }, }, } } todo={ "controller":{ "title":"todo", }, "components":[ { "id":"addField", "type":"TextField", "style":{ "position":"`{{6,6},{${UI.screenW-80},36}}`", "textColor":"rgb(80,80,80)", "borderStyle":"none", "backgroundColor":"rgb(240,240,240)", "cornerRadius":4, "placeholder":"请输入项目", } }, { "id":"addButton", "type":"Button", "style":{ "position":"`{{${UI.screenW-68},4},{68,40}}`", "titleColor":"rgb(40,40,40)", "title":"add" }, "click":"${()=>{$dispatch('addToDo');}}" }, { "id":"todoList", "type":"ListView", "style":{ "position":"`{{0,60},{${UI.screenW},${UI.screenH-60-64}}}`", "itemSize":"`{${UI.screenW},60}`", "itemVMarign":0, "scrollDirection":"vertical", }, "itemStyle":{ "separatorDirection":"bottom", "separatorColor":"rgb(240,240,240)", "itemHighlightColor":"rgb(220,220,220)", }, "item":[ { "id":"nameLabel", "type":"Label", "style":{ "position":"`{{13,8},{${UI.screenW/2-13},20}}`", "fontSize":18, "textColor":"rgb(20,20,20)", "adjustTextFont":1, } }, { "id":"deleteLabel", "type":"Label", "style":{ "position":"`{{13,30},{${UI.screenW/2-13},20}}`", "fontSize":14, "textColor":"rgb(90,90,90)", "adjustTextFont":1, } }, ], "clickItem":"${(index)=>{$props.selectedIndex=index;$dispatch('removeToDo')}}", "dataArray":[ { "subStyles":[ { "viewId":"nameLabel", "style":{ "text":"apple", }, }, { "viewId":"deleteLabel", "style":{ "text":"tap to delete", }, }, ] }, { "subStyles":[ { "viewId":"nameLabel", "style":{ "text":"orange", }, }, { "viewId":"deleteLabel", "style":{ "text":"tap to delete", }, }, ] }, ] }], "props":{ "selectedIndex":-1, "toDoItemStyle":{ "subStyles":[ { "viewId":"nameLabel", "style":{ "text":"`${$getView('addField').text}`", }, }, { "viewId":"deleteLabel", "style":{ "text":"tap to delete", }, }, ] }, }, "actions":{ "removeToDo":{ "viewId":"todoList", "valKey":"dataArray", "reduce":"${(oldVal)=>{return oldVal.removeAtIndex($props.selectedIndex);}}", }, "addToDo":{ "viewId":"todoList", "valKey":"dataArray", "reduce":"${(oldVal)=>{oldVal.push($props.getCopy('toDoItemStyle'));return oldVal;}}", } } } newApi = { "controller":{ "title":"swipe the banner", }, "components":[ { "id":"imageLists", "type":"ListView", "style":{ "position":"`{{0,0},{${UI.screenW},${220}}}`", "itemSize":"`{${UI.screenW},220}`", "itemHMarign":0, "itemVMarign":0, "scrollDirection":"horizontal", "backgroundColor":"rgb(255,255,255)", "splitPage":1, "infiniteScroll":1, "showHBar":0 }, "clickItem":"${(index)=>{UI.log(index)}}", "item":[ { "id":"image", "type":"ImageView", "style":{ "position":"`{{0,0},{${UI.screenW},220}}`", } }, ], "dataArray":[ { "subStyles":[ { "viewId":"image", "style":{ "image":"`https://unsplash.it/${UI.screenW*2}/440/?image=210`", }, }, ] }, { "subStyles":[ { "viewId":"image", "style":{ "image":"`https://unsplash.it/${UI.screenW*2}/440/?image=211`", }, }, ] }, { "subStyles":[ { "viewId":"image", "style":{ "image":"`https://unsplash.it/${UI.screenW*2}/440/?image=223`", }, }, ] }, ] }, { "id":"UIToolLists", "type":"ListView", "style":{ "position":"`{{0,220},{${UI.screenW},${UI.screenH-220-64}}}`", "itemSize":"`{${UI.screenW},50}`", "itemVMarign":0, "scrollDirection":"vertical", "backgroundColor":"rgb(255,255,255)", }, "clickItem":"${(index)=>{$props.runFuncs(index)}}", "itemStyle":{ "separatorDirection":"bottom", "separatorColor":"rgb(220,220,220)", }, "item":[ { "id":"toolLabel", "type":"Label", "style":{ "position":"`{{14,8},{${UI.screenW-14},40}}`", "fontSize":18, "textColor":"rgb(20,20,20)", } }, ], "dataArray":[ { "subStyles":[ { "viewId":"toolLabel", "style":{ "text":"showActionSheet", }, }, ] }, { "subStyles":[ { "viewId":"toolLabel", "style":{ "text":"showActionAlert", }, }, ] }, { "subStyles":[ { "viewId":"toolLabel", "style":{ "text":"alertDeviceScreenSize", }, }, ] }, { "subStyles":[ { "viewId":"toolLabel", "style":{ "text":"showIndicator", }, }, ] }, { "subStyles":[ { "viewId":"toolLabel", "style":{ "text":"hideIndicatorDelay", }, }, ] }, ] }, ], "props":{ "$runFunctions":[ "${()=>{UI.showSheetView('sheetView标题','点击非标题列表按钮,index=-1',['apple','orange','litchi'],(index)=>{UI.log('你点击了'+index)});}}", "${()=>{UI.alertTitles('alert标题','点击非标题列表按钮,index=-1',['banana','grape'],(index)=>{UI.log('你点击了'+index)});}}", "${()=>{let info = `设备宽:${UI.screenW} \n 设备高:${UI.screenH}`;UI.alert('设备屏幕详情',info);}}", "${()=>{UI.showIndicator();}}", "${()=>{UI.hideIndicatorDelay(0);}}" ] } } @app.route('/') def hello_world(): return 'JSON render Hello World!' @app.route('/appjson', methods=['GET']) def get_appjson(): return jsonify(appJSON) @app.route('/trans', methods=['GET']) def get_translation(): return jsonify(translation) @app.route('/todo', methods=['GET']) def get_todo(): return jsonify(todo) @app.route('/newApi', methods=['GET']) def get_newApi(): return jsonify(newApi) if __name__ == '__main__': app.run()
python
import tensorflow as tf import numpy as np interpreter = tf.lite.Interpreter('models/mobilefacenet.tflite') interpreter.allocate_tensors() def set_input_tensor_face(input): input_details = interpreter.get_input_details()[0] tensor_index = input_details['index'] input_tensor = interpreter.tensor(tensor_index)()[0] input_tensor[:, :] = np.float32((input-127.5)/127.5) def get_embeddings(input): set_input_tensor_face(input) interpreter.invoke() output_details = interpreter.get_output_details()[0] output = interpreter.get_tensor(output_details['index']) return output
python
from typing import Sequence from torch import nn class Model(nn.Module): def __init__( self, n_features: int, n_classes: int, units: Sequence[int] = [512], dropout: float = 0.5, ): super().__init__() sizes = [n_features] + list(units) self.hidden = nn.Sequential( *( nn.Sequential( nn.Linear(sizes[i], sizes[i + 1]), nn.ReLU(), nn.Dropout(dropout) ) for i in range(len(units)) ) ) self.final = nn.Linear(units[-1], n_classes) def forward(self, x): return self.final(self.hidden(x))
python
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2019-02-12 23:07 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): def forwards_func(apps, schema_editor): Menu = apps.get_model("das", "Menu") db_alias = schema_editor.connection.alias Menu.objects.using(db_alias).bulk_create([ Menu(menu_name=u'默认右侧边栏', menu_type="tool") ]) def reverse_func(apps, schema_editor): Menu = apps.get_model("das", "Menu") db_alias = schema_editor.connection.alias Menu.objects.using(db_alias).filter(menu_name=u'默认右侧边栏').delete() dependencies = [ ('das', '0033_auto_20190212_2241'), ] operations = [ migrations.RunPython(forwards_func, reverse_func), ]
python
"""Unit tests for the `cf_predict` package."""
python
import torch import argparse from Transformer import Transformer parser = argparse.ArgumentParser(description='Test transformer') parser.add_argument('--src_len', '-s', type=int, default=5, help='the source sequence length') parser.add_argument('--batch_size', '-bs', type=int, default=2, help='batch size') parser.add_argument('--dmodel', '-d', type=int, default=512, help='embedding dimension') parser.add_argument('--tgt_len', '-t', type=int, default=6, help='the target sequence length') parser.add_argument('--num_head', '-nh', type=int, default=8, help='the number of head') parser.add_argument('--num_encoder_layers', '-ne', type=int, default=6, help='the number of encoder layers') parser.add_argument('--num_decoder_layers', '-nd', type=int, default=6, help='the number of decoder layers') parser.add_argument('--dim_feedforward', '-df', type=int, default=2048, help='the dimension of the feedforward network model') args = parser.parse_args() if __name__ == '__main__': print(args) transformer = Transformer(d_model=args.dmodel, nhead=args.num_head, num_encoder_layers=args.num_encoder_layers, num_decoder_layers=args.num_decoder_layers, dim_feedforward=args.dim_feedforward ) src = torch.rand((args.src_len, args.batch_size, args.dmodel)) # shape: [src_len, batch_size, embed_dim] # src_mask = transformer.generate_square_subsequent_mask(args.src_len) src_key_padding_mask = torch.tensor([[True, True, True, False, False], [True, True, True, True, False]]) # shape: [batch_size, src_len] tgt = torch.rand((args.tgt_len, args.batch_size, args.dmodel)) # shape: [tgt_len, batch_size, embed_dim] tgt_mask = transformer.generate_square_subsequent_mask(args.tgt_len) tgt_key_padding_mask = torch.tensor([[True, True, True, False, False, False], [True, True, True, True, False, False]]) # shape: [batch_size, tgt_len] out = transformer(src=src, tgt=tgt, tgt_mask=tgt_mask, src_key_padding_mask=src_key_padding_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=src_key_padding_mask ) print(out.shape)
python
import FWCore.ParameterSet.Config as cms # # #------------------ #Preshower clustering: #------------------ from RecoEcal.EgammaClusterProducers.multi5x5SuperClustersWithPreshower_cfi import * # producer for endcap SuperClusters including preshower energy from RecoEcal.EgammaClusterProducers.correctedMulti5x5SuperClustersWithPreshower_cfi import * # producer for preshower cluster shapes from RecoEcal.EgammaClusterProducers.multi5x5PreshowerClusterShape_cfi import * # create sequence for preshower clustering multi5x5PreshowerClusteringSequence = cms.Sequence(correctedMulti5x5SuperClustersWithPreshower* multi5x5PreshowerClusterShape* uncleanedOnlyMulti5x5SuperClustersWithPreshower* uncleanedOnlyCorrectedMulti5x5SuperClustersWithPreshower)
python
# Process PET from worldclim temperature # Peter Uhe # 25/3/2019 # # This script uses python3, set up using conda environment gdal_env2 import os,sys,glob import gdal import numpy as np import datetime,calendar import netCDF4 sys.path.append('/home/pu17449/gitsrc/PyETo') import pyeto inpath = '/home/pu17449/data2/worldclim_precip/' outfile = '/home/pu17449/data2/worldclim_precip/pet_yearmean_v3.nc' #f_tiffout = '/home/pu17449/data2/worldclim_precip/pet_yearmean_v2.tif' # Construct lat and lon arrays (centrepoints) step = 0.25/30. lons = np.arange(-180,180,step)+step/2. lats = np.arange(90,-90,-1*step)-step/2. nlats = len(lats) nlons = len(lons) lats_rad = pyeto.deg2rad(lats) #lat2D = np.repeat(lats_rad[:,np.newaxis],len(lons),axis=1) # Data array to store time/lon slices of PET pet_timeslice = np.zeros([12,nlons],dtype=np.float32) pet = np.zeros([nlons],dtype=np.float32) #yearly mean ############################################################################### # Write output file for modsim: # Follows format of variables needed in 'domain' file for metsim e.g. '/home/bridge/pu17449/src/MetSim/metsim/data/domain.nc' with netCDF4.Dataset(outfile,'w') as f_out: f_out.createDimension('lat',nlats) f_out.createVariable('lat',np.float,('lat')) f_out.variables['lat'].standard_name = "latitude" f_out.variables['lat'].long_name = "latitude" f_out.variables['lat'].units = "degrees_north" f_out.variables['lat'].axis = "Y" f_out.variables['lat'][:] = lats f_out.createDimension('lon',nlons) f_out.createVariable('lon',np.float,('lon')) f_out.variables['lon'].standard_name = "longitude" f_out.variables['lon'].long_name = "longitude" f_out.variables['lon'].units = "degrees_east" f_out.variables['lon'].axis = "X" f_out.variables['lon'][:] = lons #f_out.createDimension('time',None) #f_out.createVariable('time',np.float,('time')) #f_out.variables['time'].standard_name = "time" #f_out.variables['time'].long_name = "time" #f_out.variables['time'].units = "days since 2000-01-01" #f_out.variables['time'].axis = "T" #f_out.variables['time'][:] = [15] f_out.createVariable('pet',np.float32,('lat','lon')) f_out.variables['pet'].long_name = 'Yearly average Potential Evapotranspiration' f_out.variables['pet'].comment = 'Calculated by Hargraeves Method, using WorldClim2 monthly data and pyeto (https://pyeto.readthedocs.io)' f_out.variables['pet'].units = 'mm/day' # Try writing out to geotiff (currently not working) #gtiffDriver = gdal.GetDriverByName('GTiff') #f_template = os.path.join(inpath,'wc2.0_30s_tavg','wc2.0_30s_tavg_01.tif') #f1 = gdal.Open(f_template) #f2 = gtiffDriver.CreateCopy(f_tiffout,f1,strict=0,options=["COMPRESS=DEFLATE"]) #rasterband = f2.GetRasterBand(1) # Monthdays: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec monthdays = [31, 28.25, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] for i,lat in enumerate(lats_rad): print(i) #pet = np.zeros([12,nlons],dtype=np.float32) for month in range(1,13): # Test for Jan (this is a climatology project, just use date of year 1999) # choose (approx) middle of month tmp,day_in_month = calendar.monthrange(1999,month) day_of_year = datetime.date(1999,month,(day_in_month+1)//2).timetuple().tm_yday sol_dec = pyeto.sol_dec(day_of_year) # Solar declination sha = pyeto.sunset_hour_angle(lat, sol_dec) ird = pyeto.inv_rel_dist_earth_sun(day_of_year) et_rad = pyeto.et_rad(lat, sol_dec, sha, ird) # Extraterrestrial radiation # Load data files f_tavg = os.path.join(inpath,'wc2.0_30s_tavg','wc2.0_30s_tavg_'+str(month).zfill(2)+'.tif') #print('Loading tavg:',f_tavg) f=gdal.Open(f_tavg) rasterband = f.GetRasterBand(1) tavg = rasterband.ReadAsArray(yoff=i,win_ysize=1) #print(tavg.shape) #f.close() f_tmax = os.path.join(inpath,'wc2.0_30s_tmax','wc2.0_30s_tmax_'+str(month).zfill(2)+'.tif') #print('Loading tmax:',f_tmax) f=gdal.Open(f_tmax) rasterband = f.GetRasterBand(1) tmax = rasterband.ReadAsArray(yoff=i,win_ysize=1) #f.close() f_tmin = os.path.join(inpath,'wc2.0_30s_tmin','wc2.0_30s_tmin_'+str(month).zfill(2)+'.tif') #print('Loading tmin:',f_tmax) f=gdal.Open(f_tmin) rasterband = f.GetRasterBand(1) tmin = rasterband.ReadAsArray(yoff=i,win_ysize=1) #f.close() # pyeto gives mm/day, multiply by monthdays to get mm/month pet_timeslice[month-1,:] = pyeto.hargreaves(tmin,tmax,tavg, et_rad)*monthdays[month-1] # Sum over months to get mm/year, and write out pet = pet_timeslice.sum(0,keepdims=True) f_out.variables['pet'][i,:] = pet[0,:] #print(rasterband) # Also write data out to tiff format #rasterband.WriteArray(pet,yoff=i) # Close tif datasets #f1 = None #f2 = None print('done')
python
""" Created on Wed Nov 7 13:06:08 2018 @author: david """ import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn.model_selection import train_test_split from sklearn.preprocessing import PolynomialFeatures import pandas as pd #from astropy.convolution import Gaussian2DKernel,convolve #import scipy.linalg as linalg #from mpl_toolkits.mplot3d import Axes3D DATA=pd.read_csv("SIGCOL_RUN.txt",delimiter=" ",header=None) x=DATA[2].values y=DATA[3].values names=DATA[0].values #plt.scatter(x,y) ii=x>np.amin(x) x=x[ii] y=y[ii] n_bins=15 tam_x=np.amax(x)-np.amin(x) l_bin=tam_x/n_bins n_x=np.zeros(n_bins) n_y=np.zeros(n_bins) for i in range(n_bins): n_x[i]=np.amin(x)+i*l_bin ii=np.logical_and(x>=n_x[i],x<n_x[i]+l_bin) n_y[i]=0 if(len(y[ii])!=0): n_y[i]=np.mean(y[ii]) deg=5 poly = PolynomialFeatures(degree=deg) X = poly.fit_transform(n_x.reshape(-1,1)) pred_x=poly.fit_transform(x.reshape(-1,1)) act_y=poly.fit_transform(y.reshape(-1,1)) Y=poly.fit_transform(n_y.reshape(-1,1)) clf = linear_model.LinearRegression() clf.fit(X,Y) pred_y=clf.predict(pred_x) TH=2 rev=1 ii=TH*pred_y[:,1]<=act_y[:,1] jj=np.logical_not(ii) indexes=np.where(ii)[0] #variabs=names[ii] fileout=open("VAR_"+str(deg)+".txt","w") for i in indexes: fileout.write(names[i]+" "+str(x[i])+" " +str(y[i])) fileout.write("\n") fileout.close() fileout=open("VAR_"+str(deg)+"_names.txt","w") for i in indexes: fileout.write(names[i]) fileout.write("\n") fileout.close() plt.figure(figsize=[10,10]) plt.title("Numero de candidatos = "+str(len(x[ii]))) plt.scatter(x[ii],y[ii],c="g",alpha=0.2) print(len(x[ii]), " estrellas candidatas.") plt.scatter(x[jj],y[jj],c="r",alpha=0.2) t="Y = " for i in range (len(clf.coef_[rev])): t=t+str(round(clf.coef_[rev][i]*10**1,2))+"x $10^{-10}$ "+"$X^{"+str(i+1)+"}$ + " t=t+str(round(clf.intercept_[rev]*10**1,2))+"x $10^{-10}$ " plt.title(t,fontsize=int(65/len(clf.coef_[rev]))) plt.scatter(x,TH*pred_y[:,rev],s=2) plt.savefig("FIT_"+str(deg)+"sigc.png") #plt.scatter(x,y)
python
import autodisc as ad from autodisc.gui.gui import DictTableGUI, BaseFrame import collections try: import tkinter as tk except: import Tkinter as tk import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg class StatisticTableGUI(DictTableGUI): @staticmethod def default_gui_config(): def_config = DictTableGUI.default_gui_config() def_config.dialog.title = 'Statistics' def_config.statistics = ad.Config() return def_config def display_exploration_data(self, exploration_data, run_id): self.display_data(exploration_data.runs[run_id].statistics) def display_data(self, statistics): if not isinstance(statistics, collections.abc.Sequence): self.statistics = [statistics] else: self.statistics = statistics # get the data from the stats that should be displayed data = collections.OrderedDict() for stat_config in self.gui_config.statistics: stat_name = stat_config['name'] disp_name = stat_config.get('disp_name', stat_name) stats_idx = stat_config.get('stats_idx', 0) format_str = stat_config.get('format', None) stat_data = self.statistics[stats_idx][stat_name] if format_str: stat_data = format_str.format(stat_data) data[disp_name] = stat_data super().display_data(data) class StatisticLineGUI(BaseFrame): @staticmethod def default_gui_config(): default_config = BaseFrame.default_gui_config() default_config.figure = {'figsize':(6,5), 'dpi':100} default_config.legend = {'loc': 'upper right'} default_config.statistics = ad.Config() return default_config def __init__(self, master=None, gui_config=None, **kwargs): super().__init__(master=master, gui_config=gui_config, **kwargs) self.create_gui() def create_gui(self): # make the treeview in the frame resizable self.columnconfigure(0, weight=1) self.rowconfigure(0, weight=1) self.figure = plt.Figure(**self.gui_config['figure']) self.ax = self.figure.add_subplot(111) self.legend = None self.figure_canvas = FigureCanvasTkAgg(self.figure, master=self) self.figure_canvas.get_tk_widget().grid(sticky=tk.NSEW) self.master.update_idletasks() def display_exploration_data(self, exploration_data, run_id): self.display_data(exploration_data.runs[run_id].statistics) def display_data(self, statistics): if not isinstance(statistics, collections.abc.Sequence): self.statistics = [statistics] else: self.statistics = statistics self.ax.clear() for stat_config in self.gui_config.statistics: stat_name = stat_config['name'] disp_name = stat_config.get('disp_name', stat_name) stats_idx = stat_config.get('stats_idx', 0) stat_data = self.statistics[stats_idx][stat_name] self.ax.plot(stat_data, label=disp_name) self.legend = self.ax.legend(**self.gui_config.legend) self.figure_canvas.draw_idle() class StatisticBarGUI(BaseFrame): @staticmethod def default_gui_config(): default_config = BaseFrame.default_gui_config() default_config.figure = {'figsize':(6,5), 'dpi':100} default_config.legend = {'loc': 'upper right'} default_config.statistics = ad.Config() return default_config def __init__(self, master=None, gui_config=None, **kwargs): super().__init__(master=master, gui_config=gui_config, **kwargs) self.create_gui() def create_gui(self): # make the treeview in the frame resizable self.columnconfigure(0, weight=1) self.rowconfigure(0, weight=1) self.figure = plt.Figure(**self.gui_config['figure']) self.ax = self.figure.add_subplot(111) self.legend = None self.figure_canvas = FigureCanvasTkAgg(self.figure, master=self) self.figure_canvas.get_tk_widget().grid(sticky=tk.NSEW) self.master.update_idletasks() def display_exploration_data(self, exploration_data, run_id): self.display_data(exploration_data.runs[run_id].statistics) def display_data(self, statistics): if not isinstance(statistics, collections.abc.Sequence): self.statistics = [statistics] else: self.statistics = statistics self.ax.clear() stat_names = [] for stat_config_idx in range(len(self.gui_config.statistics)): stat_config = self.gui_config.statistics[stat_config_idx] stat_name = stat_config['name'] disp_name = stat_config.get('disp_name', stat_name) stats_idx = stat_config.get('stats_idx', 0) stat_data = self.statistics[stats_idx][stat_name] stat_names.append(disp_name) self.ax.bar(stat_config_idx, stat_data, align='center') self.ax.set_xticks(range(len(stat_names))) self.ax.set_xticklabels(stat_names) self.figure_canvas.draw_idle()
python
from gf.models.account import Account from time import time from uuid import uuid4 import multiprocessing as mp import gf.lib.db.db_utils as db #db.get_row_by_id("users", uuid4()) #db.get_row_by_id("shit", uuid4()) Account(id=uuid4(), username= "hello", name="John", email="shit").commit() quit() init_id = uuid4() acc = Account(id=init_id, name='Matt Morse', username='matt', email='[email protected]', login_count=80, email_authorized=True, grade='14', city_name='Buffalo', bio_text='THE MOST BADASS STEM STUDENT IN TOWN', tags=[uuid4(), uuid4(), uuid4(), uuid4(), uuid4()], subscribed=[uuid4(), uuid4()], subscribers=[uuid4(), uuid4()], projects=[uuid4()], following_projects=[uuid4(),uuid4()], trophies=[uuid4(),uuid4(),uuid4()]) acc.commit() quit() n = 100 avg_write = 0.0 avg_read = 0.0 for i in range(n): start = time() acc.commit() avg_write += time() - start start = time() Account.get_by_lookup('matt') avg_read += time() - start avg_read /= float(n) avg_write /= float(n) print "serial test:" print "Average read speed:", avg_read print "Average write speed:", avg_write def threaded_test(filler): print 'starting' n = 100 avg_write = 0.0 avg_read = 0.0 for i in range(n): print 'commiting' start = time() acc.commit() avg_write += time() - start print 'commited!' print 'looking up' start = time() Account.get_by_lookup('matt') avg_read += time() - start print 'looked up!' avg_read /= float(n) avg_write /= float(n) return avg_read, avg_write num_threads = 4 pool = mp.Pool(num_threads) results = pool.map(threaded_test, [1,1,1,1]) avg_write = 0.0 avg_read = 0.0 for read, write in results: avg_write += write avg_read += read avg_read /= float(num_threads) avg_write /= float(num_threads) print "parallel test:" print "Average read speed:", avg_read print "Average write speed:", avg_write
python
from collections import deque import json from kafka import KafkaProducer, KafkaConsumer from anonymizer import Anonymizer consumer = KafkaConsumer(bootstrap_servers="localhost:9092", value_deserializer=json.loads) consumer.subscribe(["unanon"]) producer = KafkaProducer(bootstrap_servers="localhost:9092") def anonymize(consumer): cache = deque() for msg in consumer: print(msg) cache.append(msg) if len(cache) > CACHE_SIZE: output = anonymizer.process([{**msg.value} for msg in cache]) if isinstance(output, list): for _ in output: yield _ else: yield output CACHE_SIZE = 5 anonymizer = Anonymizer({ "drop": {"keys": ["something-unimportant"]}, "mean": {"keys": ["some-number"]} }) for anon_msg in anonymize(consumer): producer.send("anon", anon_msg.value if hasattr(anon_msg, "value") else str(anon_msg).encode())
python
import click import pprint @click.command() @click.argument('type', default='all') @click.option('--check/--no-check', help="Just check (no changes)", default=False) @click.option('--update/--no-update', help="Update if exists", default=False) @click.option('--push/--no-push', help="Push update (when specifed with --update)", default=False) @click.option('--diff/--no-diff', help="Show Diffs", default=False) @click.option('--file', '-f', help="output File name", required=True) # @click.option('--type', # help="Device type [vedges, controllers]", # type=click.Choice(['vedges', 'controllers'])) @click.pass_context def policy(ctx, type, file, update, check, diff, push): """ Import policy from file """ vmanage_session = ctx.obj pp = pprint.PrettyPrinter(indent=2) click.echo(f"{'Checking' if check else 'Importing'} policy from {file}") result = vmanage_session.import_policy_from_file(file, update=update, check_mode=check, push=push) print(f"Policy List Updates: {len(result['policy_list_updates'])}") if diff: for diff_item in result['policy_list_updates']: click.echo(f"{diff_item['name']}:") pp.pprint(diff_item['diff']) print(f"Policy Definition Updates: {len(result['policy_definition_updates'])}") if diff: for diff_item in result['policy_definition_updates']: click.echo(f"{diff_item['name']}:") pp.pprint(diff_item['diff']) print(f"Central Policy Updates: {len(result['central_policy_updates'])}") if diff: for diff_item in result['central_policy_updates']: click.echo(f"{diff_item['name']}:") pp.pprint(diff_item['diff']) print(f"Local Policy Updates: {len(result['local_policy_updates'])}") if diff: for diff_item in result['local_policy_updates']: click.echo(f"{diff_item['name']}:") pp.pprint(diff_item['diff'])
python
import pytest import yaml from utils import utils class TestConvertReiwaToYear: @pytest.fixture(scope="function") def data_fixture(self): return ((1, 2019), (2, 2020), (3, 2021)) def test_convert(self, data_fixture): for reiwa, actual in data_fixture: assert utils.convert_reiwa_to_year(reiwa) == actual class TestLoadSettings: @pytest.fixture(scope="function") def yml_data(self, tmp_path): _path = tmp_path / "settings_test.yml" _expected = {"line": {"token": "test"}} with _path.open(mode="w") as f: yaml.safe_dump(_expected, f) return _path, _expected def test_load_settings(self, yml_data): path, expected = yml_data actual = utils.load_settings(str(path)) assert actual == expected
python
""" FactSet ESG API FactSet ESG (powered by FactSet Truvalue Labs) applies machine learning to uncover risks and opportunities from companies' Environmental, Social and Governance (ESG) behavior, which are aggregated and categorized into continuously updated, material ESG scores. The service focuses on company ESG behavior from external sources and includes both positive and negative events that go beyond traditional sources of ESG risk data.<p> FactSet ESG extracts, analyzes, and generates scores from millions of documents each month collected from more than 100,000 data sources in over 13 languages. Sources include news, trade journals, NGOs, watchdog groups, trade blogs, industry reports and social media. Products deliver investable insights by revealing value and risk factors from unstructured data at the speed of current events.</p> # noqa: E501 The version of the OpenAPI document: 1.3.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from fds.sdk.FactSetESG.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from fds.sdk.FactSetESG.exceptions import ApiAttributeError class SdgCategories(ModelSimple): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'value': ([str],), } @cached_property def discriminator(): return None attribute_map = {} read_only_vars = set() _composed_schemas = None required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): """SdgCategories - a model defined in OpenAPI Note that value can be passed either in args or in kwargs, but not in both. Args: args[0] ([str]): The SDG Categories specified for the Truvalue Scores being requested. To specify select categories returned in the response, provide a comma-separated list of the scores using the description below. |**SDG Category Input**|**Description**| |---|---| |**IMPACT**|**Impact** - The aggregate SDG score for each company is simply named \"Impact.\" The SDG Impact Score is produced using a weighted average of individual category scores, where the weight utilized is the category score volume.| |**IMPACTARTICLES**|**Impact Articles** - The All Goals Category Volume measures the total number of times any of the 16 goals received a score over a trailing twelve-month (TTM) period of time. **( Data wil be returned only for `TTM_VOLUME` score type)** | |**GOAL1NOPOVERTY**|**No Poverty** - Goal 1 focuses on poverty in all its manifestations and also aims to ensure social protection for the poor and vulnerable, increase access to basic services and support people harmed by climate related extreme events and other economic, social and environmental shocks and disasters. <p>**Company-Level Issue Examples** *- Financial services access and affordability, Underserved groups,Unethical pricing.*| |**GOAL2ZEROHUNGER**|**Zero Hunger** - Goal 2 aims to end hunger and all forms of malnutrition and commits to universal access to safe, nutritious and sufficient food at all times of the year, particularly for the poor and people in vulnerable situations (e.g., infants). This will require sustainable food production systems and resilient agricultural practices, equal access to land, technology, and markets and international cooperation on investments in infrastructure and technology to boost agricultural productivity. <p>**Company-Level Issue Examples** *- Sustainable agricultural practices, Agricultural ingredients sourcing and certifications, Food safety concerns, Animal welfare.*| |**GOAL3GOODHEALTHANDWELLBEING**|**Good Health and Wellbeing** - Goal 3 seeks to ensure health and wellbeing for all, at every stage of life and addresses all major health priorities, including reproductive, maternal, and child health; communicable, noncommunicable and environmental diseases; universal health coverage; and access for all to safe, effective, quality, and affordable medicines and vaccines.<p> **Company-Level Issue Examples** *- Harmful Chemicals in Products, Product Recalls, Healthcare Access and Affordability.*| |**GOAL4QUALITYEDUCATION**|**Quality Education** - Goal 4 addresses access and affordability of education and skills development starting from childhood development and continuing through adulthood, including for girls, persons with disabilities, indigenous peoples and children in vulnerable situations, Improvements to the access to education it hopes to ensure that all youth and a substantial proportion of adults achieve literacy and numeracy. It also seeks to build and upgrade education facilities and to increase the supply of qualified teachers.<p>**Company-Level Issue Examples** *- Mentorship and training, Education company quality, Education company ethics.*| |**GOAL5GENDEREQUALITY**|**Gender Equality** - Goal 5 emphasizes eliminating discrimination and violence against women and girls. The Goal emphasizes ensuring women's full and effective participation and equal opportunities for leadership at all levels of decision-making in political, economic and public life. Access to sexual and reproductive health and reproductive rights and access to economic resources (e.g., land ownership, financial services) are also emphasized.<p>**Company-Level Issue Examples** *- Board Diversity, Gender Discrimination, Sexual Harassment.*| |**GOAL6CLEANWATERANDSANITATION**|**Clean Water and Sanitation** - Goal 6 not only addresses issues relating to drinking water, sanitation and hygiene, but also the quality and sustainability of water resources worldwide. It strives to achieve universal and equitable access to safe and affordable drinking water for all. It also focuses on adequate and equitable sanitation and hygiene and reducing pollution, minimizing release of hazardous chemicals and materials, and protection of water-related ecosystems. It also highlights increasing water-use efficiency across all sectors, recycling, and ensuring sustainable withdrawals and supply of freshwater.<p>**Company-Level Issue Examples** *- Water Pollution, Water Recycling and Stewardship, Water Infrastructure.*| |**GOAL7AFFORDABLEANDCLEANENERGY**|**Goal 7 Affordable and Clean Energy** - Goal 7 seeks to ensure access to affordable, reliable, and modern energy services for all. It aims to increase renewable energy in the global energy mix and improve energy efficiency significantly. It also calls for more access to clean energy research, technology, and infrastructure for renewable energy, energy efficiency, and advanced and cleaner fossil-fuel technology, and promoting investment in energy infrastructure and clean energy technology.<p>**Company-Level Issue Examples** *- Green Buildings, Renewable Energy, Unethical Utility Pricing.*| |**GOAL8DECENTWORKANDECONOMICGROWTH**|**Decent Work and Economic Growth** - Goal 8 focuses on economic productivity and supports policies for entrepreneurship, creativity and innovation that assist micro, small, and medium-sized enterprises. The Goal also seeks to reduce unemployment, the proportion of youth not working or in school, child labor, and forced labor. Also covered are the protection of labor rights, migrant workers, safe and secure working environments, sustainable tourism, and increasing the capacity of domestic financial institutions in regards to access to banking, insurance, and financial services.<p>**Company-Level Issue Examples** *- Job Creation, Labor Exploitation, Employee Health and Safety, Workplace Turnover, Supplier Transparency.*| |**GOAL9INDUSTRYINNOVATIONANDINFRASTRUCTURE**|**Industry Innovation and Infrastructure** - Goal 9 focuses on three important aspects of sustainable development, infrastructure, industrialization and innovation, including considerations for resiliency, equity, quality, reliability, access and affordability, and regional and transborder infrastructure. The Goal focuses on infrastructure upgrades and retrofitting of industries with increased resource-use efficiency and clean and environmentally sound technologies and industrial processes.<p>**Company-Level Issue Examples** *- Digital Divide, ESG integration in financial services, Engineering Structural Integrity.*| |**GOAL10REDUCEDINEQUALITIES**|**Reduced Inequalities** - Goal 10 calls for reducing inequalities in income as well as those based on age, sex, disability, race, ethnicity, origin, religion, or economic or other status within a country. The Goal addresses inequalities among countries, including those related to representation, migration, and development assistance. It aims to empower and promote social, economic, and political inclusion of all. The Goal stresses regulation and monitoring of global financial markets and institutions.<p>**Company-Level Issue Examples** *- Responsible Lending, Worker Discrimination, CEO Pay Gap, Worker Pay Gap, Workplace Diversity and Inclusion.*| |**GOAL11SUSTAINABLECITIESANDCOMMUNITIES**|**Sustainable Cities and Communities** - Goal 11 seeks to ensure access for all to adequate, safe, and affordable housing and basic services, and green and public spaces, and to upgrade slums. It focuses on improving transportation, air quality and municipal and other waste management, and creating inclusive and sustainable urbanization through participatory urban planning. The Goal also supports safeguarding the world's cultural and natural heritage, while aiming to increase the number of cities and human settlements adopting and implementing integrated policies and plans towards inclusion, resource efficiency, mitigation and adaptation to climate change, and resilience to disasters.<p>**Company-Level Issue Examples** *- Air Pollution, Environmental Justice, Human Rights Violations, Affordable Housing.*| |**GOAL12RESPONSIBLECONSUMPTIONANDPRODUCTION**|**Responsible Consumption and Production** - Goal 12 aims to achieve the sustainable management and efficient use of natural resources through both the public and private sector. It specifically addresses global food waste in consumption, production, and distribution, sustainable tourism, waste and chemicals management. Goal 12 encourages sustainability reporting in the private sector, while in the public sector it encourages restructuring taxation and subsidies for fossil fuels and promoting sustainable public procurement practices.<p>**Company-Level Issue Examples** *- Sustainability Reporting, Circular Economy, Hazardous Waste Management, Waste Reduction.*| |**GOAL13CLIMATEACTION**|**Climate Action** - While Goal 13 is focused on actions by countries towards climate mitigation and adaptation, the private sector can also play a role in these areas. The goal seeks to strengthen resilience and adaptive capacity to climate-related hazards and natural disasters in all countries. It calls for integrating climate change measures, including those related to climate resilience and low GHG development, into national policies, strategies, and planning. It aims to improve education and awareness of climate change mitigation, adaptation, impact reduction, and early warning.<p>**Company-Level Issue Examples** *- GHG Emissions, Sustainable Transportation, Physical Climate Impacts.*| |**GOAL14LIFEBELOWWATER**|**Life Below Water** - Goal 14 focuses on preventing marine pollution of all kinds, particularly from land-based activities, and to minimize and address the impacts of ocean acidification. The Goal also aims to achieve sustainable yields in fisheries, through regulation of harvesting, controlling subsidies, and ending overfishing. It seeks to sustainably manage and protect marine and coastal ecosystems to avoid significant adverse impacts, including by strengthening their resilience, and take action for their restoration in order to achieve healthy and productive oceans.<p>**Company-Level Issue Examples** *- Impacts on water-related endangered species and habitats, Oil Spills, Seafood Sourcing.*| |**GOAL15LIFEONLAND**|**Life On Land** - Goal 15 seeks to ensure the conservation, restoration, and sustainable use of terrestrial and inland freshwater ecosystems and their services, in order to preserve biodiversity. It focuses specifically on sustainably managing forests, halting deforestation, restoring degraded lands and successfully combating desertification, reducing degraded natural habitats and ending biodiversity loss, with an emphasis on threatened species and invasive alien species.<p>**Company-Level Issue Examples** *- Impacts on land-related endangered species and habitats, Sustainable forestry practices and certifications, Project lifecycle environmental impacts.*| |**GOAL16PEACEJUSTICEANDSTRONGINSTITUTIONS**|**Peace, Justice, and Strong Institutions** - Goal 16 aims to significantly reduce all forms of violence, and also focuses specifically on reducing violence against children in the forms of abuse, exploitation, trafficking, and torture. It also aims to significantly reduce illicit financial and arms flows and to substantially reduce corruption and bribery in all their forms. The Goal also emphasizes effective and transparent institutions at all levels, inclusive and participatory decision-making, ensuring public access to information, and protection of fundamental freedoms.<p>**Company-Level Issue Examples** *- Tax Avoidance, Anti-Competitive Behavior, Cyber Security, Corruption, ESG Resolutions.*| . if omitted defaults to ["IMPACT"] # noqa: E501 Keyword Args: value ([str]): The SDG Categories specified for the Truvalue Scores being requested. To specify select categories returned in the response, provide a comma-separated list of the scores using the description below. |**SDG Category Input**|**Description**| |---|---| |**IMPACT**|**Impact** - The aggregate SDG score for each company is simply named \"Impact.\" The SDG Impact Score is produced using a weighted average of individual category scores, where the weight utilized is the category score volume.| |**IMPACTARTICLES**|**Impact Articles** - The All Goals Category Volume measures the total number of times any of the 16 goals received a score over a trailing twelve-month (TTM) period of time. **( Data wil be returned only for `TTM_VOLUME` score type)** | |**GOAL1NOPOVERTY**|**No Poverty** - Goal 1 focuses on poverty in all its manifestations and also aims to ensure social protection for the poor and vulnerable, increase access to basic services and support people harmed by climate related extreme events and other economic, social and environmental shocks and disasters. <p>**Company-Level Issue Examples** *- Financial services access and affordability, Underserved groups,Unethical pricing.*| |**GOAL2ZEROHUNGER**|**Zero Hunger** - Goal 2 aims to end hunger and all forms of malnutrition and commits to universal access to safe, nutritious and sufficient food at all times of the year, particularly for the poor and people in vulnerable situations (e.g., infants). This will require sustainable food production systems and resilient agricultural practices, equal access to land, technology, and markets and international cooperation on investments in infrastructure and technology to boost agricultural productivity. <p>**Company-Level Issue Examples** *- Sustainable agricultural practices, Agricultural ingredients sourcing and certifications, Food safety concerns, Animal welfare.*| |**GOAL3GOODHEALTHANDWELLBEING**|**Good Health and Wellbeing** - Goal 3 seeks to ensure health and wellbeing for all, at every stage of life and addresses all major health priorities, including reproductive, maternal, and child health; communicable, noncommunicable and environmental diseases; universal health coverage; and access for all to safe, effective, quality, and affordable medicines and vaccines.<p> **Company-Level Issue Examples** *- Harmful Chemicals in Products, Product Recalls, Healthcare Access and Affordability.*| |**GOAL4QUALITYEDUCATION**|**Quality Education** - Goal 4 addresses access and affordability of education and skills development starting from childhood development and continuing through adulthood, including for girls, persons with disabilities, indigenous peoples and children in vulnerable situations, Improvements to the access to education it hopes to ensure that all youth and a substantial proportion of adults achieve literacy and numeracy. It also seeks to build and upgrade education facilities and to increase the supply of qualified teachers.<p>**Company-Level Issue Examples** *- Mentorship and training, Education company quality, Education company ethics.*| |**GOAL5GENDEREQUALITY**|**Gender Equality** - Goal 5 emphasizes eliminating discrimination and violence against women and girls. The Goal emphasizes ensuring women's full and effective participation and equal opportunities for leadership at all levels of decision-making in political, economic and public life. Access to sexual and reproductive health and reproductive rights and access to economic resources (e.g., land ownership, financial services) are also emphasized.<p>**Company-Level Issue Examples** *- Board Diversity, Gender Discrimination, Sexual Harassment.*| |**GOAL6CLEANWATERANDSANITATION**|**Clean Water and Sanitation** - Goal 6 not only addresses issues relating to drinking water, sanitation and hygiene, but also the quality and sustainability of water resources worldwide. It strives to achieve universal and equitable access to safe and affordable drinking water for all. It also focuses on adequate and equitable sanitation and hygiene and reducing pollution, minimizing release of hazardous chemicals and materials, and protection of water-related ecosystems. It also highlights increasing water-use efficiency across all sectors, recycling, and ensuring sustainable withdrawals and supply of freshwater.<p>**Company-Level Issue Examples** *- Water Pollution, Water Recycling and Stewardship, Water Infrastructure.*| |**GOAL7AFFORDABLEANDCLEANENERGY**|**Goal 7 Affordable and Clean Energy** - Goal 7 seeks to ensure access to affordable, reliable, and modern energy services for all. It aims to increase renewable energy in the global energy mix and improve energy efficiency significantly. It also calls for more access to clean energy research, technology, and infrastructure for renewable energy, energy efficiency, and advanced and cleaner fossil-fuel technology, and promoting investment in energy infrastructure and clean energy technology.<p>**Company-Level Issue Examples** *- Green Buildings, Renewable Energy, Unethical Utility Pricing.*| |**GOAL8DECENTWORKANDECONOMICGROWTH**|**Decent Work and Economic Growth** - Goal 8 focuses on economic productivity and supports policies for entrepreneurship, creativity and innovation that assist micro, small, and medium-sized enterprises. The Goal also seeks to reduce unemployment, the proportion of youth not working or in school, child labor, and forced labor. Also covered are the protection of labor rights, migrant workers, safe and secure working environments, sustainable tourism, and increasing the capacity of domestic financial institutions in regards to access to banking, insurance, and financial services.<p>**Company-Level Issue Examples** *- Job Creation, Labor Exploitation, Employee Health and Safety, Workplace Turnover, Supplier Transparency.*| |**GOAL9INDUSTRYINNOVATIONANDINFRASTRUCTURE**|**Industry Innovation and Infrastructure** - Goal 9 focuses on three important aspects of sustainable development, infrastructure, industrialization and innovation, including considerations for resiliency, equity, quality, reliability, access and affordability, and regional and transborder infrastructure. The Goal focuses on infrastructure upgrades and retrofitting of industries with increased resource-use efficiency and clean and environmentally sound technologies and industrial processes.<p>**Company-Level Issue Examples** *- Digital Divide, ESG integration in financial services, Engineering Structural Integrity.*| |**GOAL10REDUCEDINEQUALITIES**|**Reduced Inequalities** - Goal 10 calls for reducing inequalities in income as well as those based on age, sex, disability, race, ethnicity, origin, religion, or economic or other status within a country. The Goal addresses inequalities among countries, including those related to representation, migration, and development assistance. It aims to empower and promote social, economic, and political inclusion of all. The Goal stresses regulation and monitoring of global financial markets and institutions.<p>**Company-Level Issue Examples** *- Responsible Lending, Worker Discrimination, CEO Pay Gap, Worker Pay Gap, Workplace Diversity and Inclusion.*| |**GOAL11SUSTAINABLECITIESANDCOMMUNITIES**|**Sustainable Cities and Communities** - Goal 11 seeks to ensure access for all to adequate, safe, and affordable housing and basic services, and green and public spaces, and to upgrade slums. It focuses on improving transportation, air quality and municipal and other waste management, and creating inclusive and sustainable urbanization through participatory urban planning. The Goal also supports safeguarding the world's cultural and natural heritage, while aiming to increase the number of cities and human settlements adopting and implementing integrated policies and plans towards inclusion, resource efficiency, mitigation and adaptation to climate change, and resilience to disasters.<p>**Company-Level Issue Examples** *- Air Pollution, Environmental Justice, Human Rights Violations, Affordable Housing.*| |**GOAL12RESPONSIBLECONSUMPTIONANDPRODUCTION**|**Responsible Consumption and Production** - Goal 12 aims to achieve the sustainable management and efficient use of natural resources through both the public and private sector. It specifically addresses global food waste in consumption, production, and distribution, sustainable tourism, waste and chemicals management. Goal 12 encourages sustainability reporting in the private sector, while in the public sector it encourages restructuring taxation and subsidies for fossil fuels and promoting sustainable public procurement practices.<p>**Company-Level Issue Examples** *- Sustainability Reporting, Circular Economy, Hazardous Waste Management, Waste Reduction.*| |**GOAL13CLIMATEACTION**|**Climate Action** - While Goal 13 is focused on actions by countries towards climate mitigation and adaptation, the private sector can also play a role in these areas. The goal seeks to strengthen resilience and adaptive capacity to climate-related hazards and natural disasters in all countries. It calls for integrating climate change measures, including those related to climate resilience and low GHG development, into national policies, strategies, and planning. It aims to improve education and awareness of climate change mitigation, adaptation, impact reduction, and early warning.<p>**Company-Level Issue Examples** *- GHG Emissions, Sustainable Transportation, Physical Climate Impacts.*| |**GOAL14LIFEBELOWWATER**|**Life Below Water** - Goal 14 focuses on preventing marine pollution of all kinds, particularly from land-based activities, and to minimize and address the impacts of ocean acidification. The Goal also aims to achieve sustainable yields in fisheries, through regulation of harvesting, controlling subsidies, and ending overfishing. It seeks to sustainably manage and protect marine and coastal ecosystems to avoid significant adverse impacts, including by strengthening their resilience, and take action for their restoration in order to achieve healthy and productive oceans.<p>**Company-Level Issue Examples** *- Impacts on water-related endangered species and habitats, Oil Spills, Seafood Sourcing.*| |**GOAL15LIFEONLAND**|**Life On Land** - Goal 15 seeks to ensure the conservation, restoration, and sustainable use of terrestrial and inland freshwater ecosystems and their services, in order to preserve biodiversity. It focuses specifically on sustainably managing forests, halting deforestation, restoring degraded lands and successfully combating desertification, reducing degraded natural habitats and ending biodiversity loss, with an emphasis on threatened species and invasive alien species.<p>**Company-Level Issue Examples** *- Impacts on land-related endangered species and habitats, Sustainable forestry practices and certifications, Project lifecycle environmental impacts.*| |**GOAL16PEACEJUSTICEANDSTRONGINSTITUTIONS**|**Peace, Justice, and Strong Institutions** - Goal 16 aims to significantly reduce all forms of violence, and also focuses specifically on reducing violence against children in the forms of abuse, exploitation, trafficking, and torture. It also aims to significantly reduce illicit financial and arms flows and to substantially reduce corruption and bribery in all their forms. The Goal also emphasizes effective and transparent institutions at all levels, inclusive and participatory decision-making, ensuring public access to information, and protection of fundamental freedoms.<p>**Company-Level Issue Examples** *- Tax Avoidance, Anti-Competitive Behavior, Cyber Security, Corruption, ESG Resolutions.*| . if omitted defaults to ["IMPACT"] # noqa: E501 _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ # required up here when default value is not given _path_to_item = kwargs.pop('_path_to_item', ()) if 'value' in kwargs: value = kwargs.pop('value') elif args: args = list(args) value = args.pop(0) else: value = ["IMPACT"] _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.value = value if kwargs: raise ApiTypeError( "Invalid named arguments=%s passed to %s. Remove those invalid named arguments." % ( kwargs, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): """SdgCategories - a model defined in OpenAPI Note that value can be passed either in args or in kwargs, but not in both. Args: args[0] ([str]): The SDG Categories specified for the Truvalue Scores being requested. To specify select categories returned in the response, provide a comma-separated list of the scores using the description below. |**SDG Category Input**|**Description**| |---|---| |**IMPACT**|**Impact** - The aggregate SDG score for each company is simply named \"Impact.\" The SDG Impact Score is produced using a weighted average of individual category scores, where the weight utilized is the category score volume.| |**IMPACTARTICLES**|**Impact Articles** - The All Goals Category Volume measures the total number of times any of the 16 goals received a score over a trailing twelve-month (TTM) period of time. **( Data wil be returned only for `TTM_VOLUME` score type)** | |**GOAL1NOPOVERTY**|**No Poverty** - Goal 1 focuses on poverty in all its manifestations and also aims to ensure social protection for the poor and vulnerable, increase access to basic services and support people harmed by climate related extreme events and other economic, social and environmental shocks and disasters. <p>**Company-Level Issue Examples** *- Financial services access and affordability, Underserved groups,Unethical pricing.*| |**GOAL2ZEROHUNGER**|**Zero Hunger** - Goal 2 aims to end hunger and all forms of malnutrition and commits to universal access to safe, nutritious and sufficient food at all times of the year, particularly for the poor and people in vulnerable situations (e.g., infants). This will require sustainable food production systems and resilient agricultural practices, equal access to land, technology, and markets and international cooperation on investments in infrastructure and technology to boost agricultural productivity. <p>**Company-Level Issue Examples** *- Sustainable agricultural practices, Agricultural ingredients sourcing and certifications, Food safety concerns, Animal welfare.*| |**GOAL3GOODHEALTHANDWELLBEING**|**Good Health and Wellbeing** - Goal 3 seeks to ensure health and wellbeing for all, at every stage of life and addresses all major health priorities, including reproductive, maternal, and child health; communicable, noncommunicable and environmental diseases; universal health coverage; and access for all to safe, effective, quality, and affordable medicines and vaccines.<p> **Company-Level Issue Examples** *- Harmful Chemicals in Products, Product Recalls, Healthcare Access and Affordability.*| |**GOAL4QUALITYEDUCATION**|**Quality Education** - Goal 4 addresses access and affordability of education and skills development starting from childhood development and continuing through adulthood, including for girls, persons with disabilities, indigenous peoples and children in vulnerable situations, Improvements to the access to education it hopes to ensure that all youth and a substantial proportion of adults achieve literacy and numeracy. It also seeks to build and upgrade education facilities and to increase the supply of qualified teachers.<p>**Company-Level Issue Examples** *- Mentorship and training, Education company quality, Education company ethics.*| |**GOAL5GENDEREQUALITY**|**Gender Equality** - Goal 5 emphasizes eliminating discrimination and violence against women and girls. The Goal emphasizes ensuring women's full and effective participation and equal opportunities for leadership at all levels of decision-making in political, economic and public life. Access to sexual and reproductive health and reproductive rights and access to economic resources (e.g., land ownership, financial services) are also emphasized.<p>**Company-Level Issue Examples** *- Board Diversity, Gender Discrimination, Sexual Harassment.*| |**GOAL6CLEANWATERANDSANITATION**|**Clean Water and Sanitation** - Goal 6 not only addresses issues relating to drinking water, sanitation and hygiene, but also the quality and sustainability of water resources worldwide. It strives to achieve universal and equitable access to safe and affordable drinking water for all. It also focuses on adequate and equitable sanitation and hygiene and reducing pollution, minimizing release of hazardous chemicals and materials, and protection of water-related ecosystems. It also highlights increasing water-use efficiency across all sectors, recycling, and ensuring sustainable withdrawals and supply of freshwater.<p>**Company-Level Issue Examples** *- Water Pollution, Water Recycling and Stewardship, Water Infrastructure.*| |**GOAL7AFFORDABLEANDCLEANENERGY**|**Goal 7 Affordable and Clean Energy** - Goal 7 seeks to ensure access to affordable, reliable, and modern energy services for all. It aims to increase renewable energy in the global energy mix and improve energy efficiency significantly. It also calls for more access to clean energy research, technology, and infrastructure for renewable energy, energy efficiency, and advanced and cleaner fossil-fuel technology, and promoting investment in energy infrastructure and clean energy technology.<p>**Company-Level Issue Examples** *- Green Buildings, Renewable Energy, Unethical Utility Pricing.*| |**GOAL8DECENTWORKANDECONOMICGROWTH**|**Decent Work and Economic Growth** - Goal 8 focuses on economic productivity and supports policies for entrepreneurship, creativity and innovation that assist micro, small, and medium-sized enterprises. The Goal also seeks to reduce unemployment, the proportion of youth not working or in school, child labor, and forced labor. Also covered are the protection of labor rights, migrant workers, safe and secure working environments, sustainable tourism, and increasing the capacity of domestic financial institutions in regards to access to banking, insurance, and financial services.<p>**Company-Level Issue Examples** *- Job Creation, Labor Exploitation, Employee Health and Safety, Workplace Turnover, Supplier Transparency.*| |**GOAL9INDUSTRYINNOVATIONANDINFRASTRUCTURE**|**Industry Innovation and Infrastructure** - Goal 9 focuses on three important aspects of sustainable development, infrastructure, industrialization and innovation, including considerations for resiliency, equity, quality, reliability, access and affordability, and regional and transborder infrastructure. The Goal focuses on infrastructure upgrades and retrofitting of industries with increased resource-use efficiency and clean and environmentally sound technologies and industrial processes.<p>**Company-Level Issue Examples** *- Digital Divide, ESG integration in financial services, Engineering Structural Integrity.*| |**GOAL10REDUCEDINEQUALITIES**|**Reduced Inequalities** - Goal 10 calls for reducing inequalities in income as well as those based on age, sex, disability, race, ethnicity, origin, religion, or economic or other status within a country. The Goal addresses inequalities among countries, including those related to representation, migration, and development assistance. It aims to empower and promote social, economic, and political inclusion of all. The Goal stresses regulation and monitoring of global financial markets and institutions.<p>**Company-Level Issue Examples** *- Responsible Lending, Worker Discrimination, CEO Pay Gap, Worker Pay Gap, Workplace Diversity and Inclusion.*| |**GOAL11SUSTAINABLECITIESANDCOMMUNITIES**|**Sustainable Cities and Communities** - Goal 11 seeks to ensure access for all to adequate, safe, and affordable housing and basic services, and green and public spaces, and to upgrade slums. It focuses on improving transportation, air quality and municipal and other waste management, and creating inclusive and sustainable urbanization through participatory urban planning. The Goal also supports safeguarding the world's cultural and natural heritage, while aiming to increase the number of cities and human settlements adopting and implementing integrated policies and plans towards inclusion, resource efficiency, mitigation and adaptation to climate change, and resilience to disasters.<p>**Company-Level Issue Examples** *- Air Pollution, Environmental Justice, Human Rights Violations, Affordable Housing.*| |**GOAL12RESPONSIBLECONSUMPTIONANDPRODUCTION**|**Responsible Consumption and Production** - Goal 12 aims to achieve the sustainable management and efficient use of natural resources through both the public and private sector. It specifically addresses global food waste in consumption, production, and distribution, sustainable tourism, waste and chemicals management. Goal 12 encourages sustainability reporting in the private sector, while in the public sector it encourages restructuring taxation and subsidies for fossil fuels and promoting sustainable public procurement practices.<p>**Company-Level Issue Examples** *- Sustainability Reporting, Circular Economy, Hazardous Waste Management, Waste Reduction.*| |**GOAL13CLIMATEACTION**|**Climate Action** - While Goal 13 is focused on actions by countries towards climate mitigation and adaptation, the private sector can also play a role in these areas. The goal seeks to strengthen resilience and adaptive capacity to climate-related hazards and natural disasters in all countries. It calls for integrating climate change measures, including those related to climate resilience and low GHG development, into national policies, strategies, and planning. It aims to improve education and awareness of climate change mitigation, adaptation, impact reduction, and early warning.<p>**Company-Level Issue Examples** *- GHG Emissions, Sustainable Transportation, Physical Climate Impacts.*| |**GOAL14LIFEBELOWWATER**|**Life Below Water** - Goal 14 focuses on preventing marine pollution of all kinds, particularly from land-based activities, and to minimize and address the impacts of ocean acidification. The Goal also aims to achieve sustainable yields in fisheries, through regulation of harvesting, controlling subsidies, and ending overfishing. It seeks to sustainably manage and protect marine and coastal ecosystems to avoid significant adverse impacts, including by strengthening their resilience, and take action for their restoration in order to achieve healthy and productive oceans.<p>**Company-Level Issue Examples** *- Impacts on water-related endangered species and habitats, Oil Spills, Seafood Sourcing.*| |**GOAL15LIFEONLAND**|**Life On Land** - Goal 15 seeks to ensure the conservation, restoration, and sustainable use of terrestrial and inland freshwater ecosystems and their services, in order to preserve biodiversity. It focuses specifically on sustainably managing forests, halting deforestation, restoring degraded lands and successfully combating desertification, reducing degraded natural habitats and ending biodiversity loss, with an emphasis on threatened species and invasive alien species.<p>**Company-Level Issue Examples** *- Impacts on land-related endangered species and habitats, Sustainable forestry practices and certifications, Project lifecycle environmental impacts.*| |**GOAL16PEACEJUSTICEANDSTRONGINSTITUTIONS**|**Peace, Justice, and Strong Institutions** - Goal 16 aims to significantly reduce all forms of violence, and also focuses specifically on reducing violence against children in the forms of abuse, exploitation, trafficking, and torture. It also aims to significantly reduce illicit financial and arms flows and to substantially reduce corruption and bribery in all their forms. The Goal also emphasizes effective and transparent institutions at all levels, inclusive and participatory decision-making, ensuring public access to information, and protection of fundamental freedoms.<p>**Company-Level Issue Examples** *- Tax Avoidance, Anti-Competitive Behavior, Cyber Security, Corruption, ESG Resolutions.*| . if omitted defaults to ["IMPACT"] # noqa: E501 Keyword Args: value ([str]): The SDG Categories specified for the Truvalue Scores being requested. To specify select categories returned in the response, provide a comma-separated list of the scores using the description below. |**SDG Category Input**|**Description**| |---|---| |**IMPACT**|**Impact** - The aggregate SDG score for each company is simply named \"Impact.\" The SDG Impact Score is produced using a weighted average of individual category scores, where the weight utilized is the category score volume.| |**IMPACTARTICLES**|**Impact Articles** - The All Goals Category Volume measures the total number of times any of the 16 goals received a score over a trailing twelve-month (TTM) period of time. **( Data wil be returned only for `TTM_VOLUME` score type)** | |**GOAL1NOPOVERTY**|**No Poverty** - Goal 1 focuses on poverty in all its manifestations and also aims to ensure social protection for the poor and vulnerable, increase access to basic services and support people harmed by climate related extreme events and other economic, social and environmental shocks and disasters. <p>**Company-Level Issue Examples** *- Financial services access and affordability, Underserved groups,Unethical pricing.*| |**GOAL2ZEROHUNGER**|**Zero Hunger** - Goal 2 aims to end hunger and all forms of malnutrition and commits to universal access to safe, nutritious and sufficient food at all times of the year, particularly for the poor and people in vulnerable situations (e.g., infants). This will require sustainable food production systems and resilient agricultural practices, equal access to land, technology, and markets and international cooperation on investments in infrastructure and technology to boost agricultural productivity. <p>**Company-Level Issue Examples** *- Sustainable agricultural practices, Agricultural ingredients sourcing and certifications, Food safety concerns, Animal welfare.*| |**GOAL3GOODHEALTHANDWELLBEING**|**Good Health and Wellbeing** - Goal 3 seeks to ensure health and wellbeing for all, at every stage of life and addresses all major health priorities, including reproductive, maternal, and child health; communicable, noncommunicable and environmental diseases; universal health coverage; and access for all to safe, effective, quality, and affordable medicines and vaccines.<p> **Company-Level Issue Examples** *- Harmful Chemicals in Products, Product Recalls, Healthcare Access and Affordability.*| |**GOAL4QUALITYEDUCATION**|**Quality Education** - Goal 4 addresses access and affordability of education and skills development starting from childhood development and continuing through adulthood, including for girls, persons with disabilities, indigenous peoples and children in vulnerable situations, Improvements to the access to education it hopes to ensure that all youth and a substantial proportion of adults achieve literacy and numeracy. It also seeks to build and upgrade education facilities and to increase the supply of qualified teachers.<p>**Company-Level Issue Examples** *- Mentorship and training, Education company quality, Education company ethics.*| |**GOAL5GENDEREQUALITY**|**Gender Equality** - Goal 5 emphasizes eliminating discrimination and violence against women and girls. The Goal emphasizes ensuring women's full and effective participation and equal opportunities for leadership at all levels of decision-making in political, economic and public life. Access to sexual and reproductive health and reproductive rights and access to economic resources (e.g., land ownership, financial services) are also emphasized.<p>**Company-Level Issue Examples** *- Board Diversity, Gender Discrimination, Sexual Harassment.*| |**GOAL6CLEANWATERANDSANITATION**|**Clean Water and Sanitation** - Goal 6 not only addresses issues relating to drinking water, sanitation and hygiene, but also the quality and sustainability of water resources worldwide. It strives to achieve universal and equitable access to safe and affordable drinking water for all. It also focuses on adequate and equitable sanitation and hygiene and reducing pollution, minimizing release of hazardous chemicals and materials, and protection of water-related ecosystems. It also highlights increasing water-use efficiency across all sectors, recycling, and ensuring sustainable withdrawals and supply of freshwater.<p>**Company-Level Issue Examples** *- Water Pollution, Water Recycling and Stewardship, Water Infrastructure.*| |**GOAL7AFFORDABLEANDCLEANENERGY**|**Goal 7 Affordable and Clean Energy** - Goal 7 seeks to ensure access to affordable, reliable, and modern energy services for all. It aims to increase renewable energy in the global energy mix and improve energy efficiency significantly. It also calls for more access to clean energy research, technology, and infrastructure for renewable energy, energy efficiency, and advanced and cleaner fossil-fuel technology, and promoting investment in energy infrastructure and clean energy technology.<p>**Company-Level Issue Examples** *- Green Buildings, Renewable Energy, Unethical Utility Pricing.*| |**GOAL8DECENTWORKANDECONOMICGROWTH**|**Decent Work and Economic Growth** - Goal 8 focuses on economic productivity and supports policies for entrepreneurship, creativity and innovation that assist micro, small, and medium-sized enterprises. The Goal also seeks to reduce unemployment, the proportion of youth not working or in school, child labor, and forced labor. Also covered are the protection of labor rights, migrant workers, safe and secure working environments, sustainable tourism, and increasing the capacity of domestic financial institutions in regards to access to banking, insurance, and financial services.<p>**Company-Level Issue Examples** *- Job Creation, Labor Exploitation, Employee Health and Safety, Workplace Turnover, Supplier Transparency.*| |**GOAL9INDUSTRYINNOVATIONANDINFRASTRUCTURE**|**Industry Innovation and Infrastructure** - Goal 9 focuses on three important aspects of sustainable development, infrastructure, industrialization and innovation, including considerations for resiliency, equity, quality, reliability, access and affordability, and regional and transborder infrastructure. The Goal focuses on infrastructure upgrades and retrofitting of industries with increased resource-use efficiency and clean and environmentally sound technologies and industrial processes.<p>**Company-Level Issue Examples** *- Digital Divide, ESG integration in financial services, Engineering Structural Integrity.*| |**GOAL10REDUCEDINEQUALITIES**|**Reduced Inequalities** - Goal 10 calls for reducing inequalities in income as well as those based on age, sex, disability, race, ethnicity, origin, religion, or economic or other status within a country. The Goal addresses inequalities among countries, including those related to representation, migration, and development assistance. It aims to empower and promote social, economic, and political inclusion of all. The Goal stresses regulation and monitoring of global financial markets and institutions.<p>**Company-Level Issue Examples** *- Responsible Lending, Worker Discrimination, CEO Pay Gap, Worker Pay Gap, Workplace Diversity and Inclusion.*| |**GOAL11SUSTAINABLECITIESANDCOMMUNITIES**|**Sustainable Cities and Communities** - Goal 11 seeks to ensure access for all to adequate, safe, and affordable housing and basic services, and green and public spaces, and to upgrade slums. It focuses on improving transportation, air quality and municipal and other waste management, and creating inclusive and sustainable urbanization through participatory urban planning. The Goal also supports safeguarding the world's cultural and natural heritage, while aiming to increase the number of cities and human settlements adopting and implementing integrated policies and plans towards inclusion, resource efficiency, mitigation and adaptation to climate change, and resilience to disasters.<p>**Company-Level Issue Examples** *- Air Pollution, Environmental Justice, Human Rights Violations, Affordable Housing.*| |**GOAL12RESPONSIBLECONSUMPTIONANDPRODUCTION**|**Responsible Consumption and Production** - Goal 12 aims to achieve the sustainable management and efficient use of natural resources through both the public and private sector. It specifically addresses global food waste in consumption, production, and distribution, sustainable tourism, waste and chemicals management. Goal 12 encourages sustainability reporting in the private sector, while in the public sector it encourages restructuring taxation and subsidies for fossil fuels and promoting sustainable public procurement practices.<p>**Company-Level Issue Examples** *- Sustainability Reporting, Circular Economy, Hazardous Waste Management, Waste Reduction.*| |**GOAL13CLIMATEACTION**|**Climate Action** - While Goal 13 is focused on actions by countries towards climate mitigation and adaptation, the private sector can also play a role in these areas. The goal seeks to strengthen resilience and adaptive capacity to climate-related hazards and natural disasters in all countries. It calls for integrating climate change measures, including those related to climate resilience and low GHG development, into national policies, strategies, and planning. It aims to improve education and awareness of climate change mitigation, adaptation, impact reduction, and early warning.<p>**Company-Level Issue Examples** *- GHG Emissions, Sustainable Transportation, Physical Climate Impacts.*| |**GOAL14LIFEBELOWWATER**|**Life Below Water** - Goal 14 focuses on preventing marine pollution of all kinds, particularly from land-based activities, and to minimize and address the impacts of ocean acidification. The Goal also aims to achieve sustainable yields in fisheries, through regulation of harvesting, controlling subsidies, and ending overfishing. It seeks to sustainably manage and protect marine and coastal ecosystems to avoid significant adverse impacts, including by strengthening their resilience, and take action for their restoration in order to achieve healthy and productive oceans.<p>**Company-Level Issue Examples** *- Impacts on water-related endangered species and habitats, Oil Spills, Seafood Sourcing.*| |**GOAL15LIFEONLAND**|**Life On Land** - Goal 15 seeks to ensure the conservation, restoration, and sustainable use of terrestrial and inland freshwater ecosystems and their services, in order to preserve biodiversity. It focuses specifically on sustainably managing forests, halting deforestation, restoring degraded lands and successfully combating desertification, reducing degraded natural habitats and ending biodiversity loss, with an emphasis on threatened species and invasive alien species.<p>**Company-Level Issue Examples** *- Impacts on land-related endangered species and habitats, Sustainable forestry practices and certifications, Project lifecycle environmental impacts.*| |**GOAL16PEACEJUSTICEANDSTRONGINSTITUTIONS**|**Peace, Justice, and Strong Institutions** - Goal 16 aims to significantly reduce all forms of violence, and also focuses specifically on reducing violence against children in the forms of abuse, exploitation, trafficking, and torture. It also aims to significantly reduce illicit financial and arms flows and to substantially reduce corruption and bribery in all their forms. The Goal also emphasizes effective and transparent institutions at all levels, inclusive and participatory decision-making, ensuring public access to information, and protection of fundamental freedoms.<p>**Company-Level Issue Examples** *- Tax Avoidance, Anti-Competitive Behavior, Cyber Security, Corruption, ESG Resolutions.*| . if omitted defaults to ["IMPACT"] # noqa: E501 _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ # required up here when default value is not given _path_to_item = kwargs.pop('_path_to_item', ()) self = super(OpenApiModel, cls).__new__(cls) if 'value' in kwargs: value = kwargs.pop('value') elif args: args = list(args) value = args.pop(0) else: value = ["IMPACT"] _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.value = value if kwargs: raise ApiTypeError( "Invalid named arguments=%s passed to %s. Remove those invalid named arguments." % ( kwargs, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) return self
python
#SPDX-License-Identifier: MIT from augur.application import Application from augur.augurplugin import AugurPlugin from augur import logger class FacadePlugin(AugurPlugin): """ This plugin serves as an example as to how to load plugins into Augur """ def __init__(self, augur): self.__facade = None # _augur will be set by the super init super().__init__(augur) def __call__(self): from .facade import Facade if self.__facade is None: logger.debug('Initializing Facade') self.__facade = Facade( user=self._augur.read_config('Facade', 'user', 'AUGUR_FACADE_DB_USER', 'root'), password=self._augur.read_config('Facade', 'pass', 'AUGUR_FACADE_DB_PASS', ''), host=self._augur.read_config('Facade', 'host', 'AUGUR_FACADE_DB_HOST', '127.0.0.1'), port=self._augur.read_config('Facade', 'port', 'AUGUR_FACADE_DB_PORT', '3306'), dbname=self._augur.read_config('Facade', 'name', 'AUGUR_FACADE_DB_NAME', 'facade'), projects=self._augur.read_config('Facade', 'projects', None, []) ) return self.__facade def create_routes(self, flask_app): """ Responsible for adding this plugin's data sources to the API """ from .routes import create_routes create_routes(flask_app) FacadePlugin.augur_plugin_meta = { 'name': 'facade', 'datasource': True } Application.register_plugin(FacadePlugin) __all__ = ['FacadePlugin']
python
from .currencies import Currencies from .rates import Rates
python
import pandas as pd import numpy as np import datetime import time import requests from splinter import Browser from bs4 import BeautifulSoup as bs from selenium import webdriver from flask import Flask, render_template import pymongo def Scraper(): executable_path = {'executable_path': 'chromedriver.exe'} browser = Browser('chrome', **executable_path, headless=False) url="https://mars.nasa.gov/news/?page=0&per_page=40&order=publish_date+desc%2Ccreated_at+desc&search=&category=19%2C165%2C184%2C204&blank_scope=Latest" browser.visit(url) html=browser.html soup=bs(html,'html.parser') print(soup.prettify()) news_title=soup.find('div',class_='content_title').get_text() news_paragraph=soup.find('div',class_='article_teaser_body').get_text() news_title news_paragraph # **JPL FEATURED IMAGE** executable_path = {'executable_path': 'chromedriver.exe'} browser = Browser('chrome', **executable_path, headless=False) url="https://www.jpl.nasa.gov/spaceimages/?search=&category=Mars" browser.visit(url) html=browser.html soup=bs(html,'html.parser') images=soup.footer.find('a',class_='button fancybox')['data-fancybox-href'] url2='https://www.jpl.nasa.gov' actual_url=url2+images # **MARS WEATHER TWEETS** executable_path={'executable_path':'chromedriver.exe'} browser=Browser('chrome',**executable_path,headless=False) url='https://twitter.com/marswxreport?lang=en' browser.visit(url) html=browser.html soup=bs(html,'html.parser') relevant_tweets=soup.find_all('p',class_='TweetTextSize TweetTextSize--normal js-tweet-text tweet-text') relevant_tweets weather_tweet=relevant_tweets[7].get_text() weather_tweet # **MARS FACTS** url='https://space-facts.com/mars/' tables=pd.read_html(url) tables df=tables[0] df df=df.rename(columns={0:'Charactristic',1:'Value'}) df.set_index('Charactristic') final_fact_table=df.to_html(classes='Striped-table') final_fact_table # **MARS HEMISPHERES** executable_path={'executable_path':'chromedriver.exe'} browser=Browser('chrome',**executable_path,headless=False) url='https://astrogeology.usgs.gov/search/results?q=hemisphere+enhanced&k1=target&v1=Mars' browser.visit(url) html=browser.html soup=bs(html,'html.parser') titles=[] hemi_titles=soup.find_all('h3') for i in hemi_titles: x=i.get_text() titles.append(x) titles links=[] for j in titles: browser.visit(url) browser.click_link_by_partial_text(j) browser.click_link_by_text('Sample') html=browser.html soup=bs(html,'html.parser') link=soup.find('div',class_='downloads').find('a')['href'] links.append(link) links # mars_hemis={} # for m,k in zip(titles,links): # mars_hemis[m]=k mars_hemis=[] for m,k in zip(titles,links): mars_hemis.append({"title":m,"link":k}) data={"news_title":news_title, "news_paragraph":news_paragraph, "actual_url":actual_url, "weather_tweet":weather_tweet, "final_fact_table":final_fact_table, "mars_hemis":mars_hemis} # data={"Latest Mars News Headline":news_title, # "Latest Mars News":news_paragraph, # "Featured Image":image_url, # "Latest Mars Weather Update":weather_tweet, # "Mars Fun Facts":final_fact_table, # "Mars Hemispheres":mars_hemis} return data
python
import os, matplotlib class FileSaver: def save_figure(self, selected_month, plt, charttype): DIR = (selected_month) CHECK_FOLDER = os.path.isdir(f"output/{DIR}") # If folder doesn't exist, then create it. if not CHECK_FOLDER: os.makedirs(f"output/{DIR}") plt.savefig(f"output/{selected_month}/{charttype}", bbox_inches='tight') print(f"Your {charttype} Chart has been saved!")
python
from django.apps import AppConfig class books_repoConfig(AppConfig): name = 'books_repo'
python
import discord from discord.ext import commands, tasks import os import pickle import config import asyncio import typing import re import traceback from enum import Enum from collections import OrderedDict import datetime import pytz from apiclient import discovery from google.oauth2 import service_account class GPQ(commands.Cog): def __init__(self, bot): self.bot = bot self.scopes = ["https://www.googleapis.com/auth/spreadsheets"] self.spreadsheetId = config.GPQ_SHEET_ID self.sheet = None self.gpqMessage = None self.filePath = "{0}/gpq.pickle".format(os.getcwd()) self.fileLock = asyncio.Lock() self.currentPageId = 0 self.currentPageName = None self.nicknamePageId = 0 self.nicknamePageName = "Nicknames" self.loadSheets() self.loadMessage() self.getActivePage() self.getNicknamePage() self.reactLoop.start() @tasks.loop(seconds=300) async def reactLoop(self): if(self.gpqMessage): try: ch = self.bot.get_channel(self.gpqMessage["ch"]) msg = await ch.fetch_message(self.gpqMessage["id"]) for reaction in msg.reactions: users = await reaction.users().flatten() if(reaction.emoji == "✅"): await self.updateSheet(users, self.Attendance.YES) elif(reaction.emoji == "❌"): await self.updateSheet(users, self.Attendance.NO) elif(reaction.emoji == "❔"): await self.updateSheet(users, self.Attendance.MAYBE) else: try: await reaction.clear() except: pass ## Didn't have permissions probably except discord.errors.NotFound as e: pass except Exception as e: print(e) traceback.print_exc() @reactLoop.before_loop async def beforeReactLoop(self): print("reactLoop waiting...") await self.bot.wait_until_ready() @commands.command() @commands.check_any(commands.has_guild_permissions(manage_guild=True), commands.is_owner()) async def postGpq(self, ctx, hours : int = 3, minutes : int = 45): today = datetime.date.today() friday = today + datetime.timedelta( (5-today.weekday()) % 7 ) dt = datetime.datetime.combine(friday, datetime.time()) gpqTime = dt + datetime.timedelta(hours = hours, minutes = minutes) pstTZ = pytz.timezone('US/Pacific') pst = pytz.utc.localize(gpqTime).astimezone(pstTZ) cstTZ = pytz.timezone('US/Central') cst = pytz.utc.localize(gpqTime).astimezone(cstTZ) estTZ = pytz.timezone('US/Eastern') est = pytz.utc.localize(gpqTime).astimezone(estTZ) bstTZ = pytz.timezone('Europe/London') bst = pytz.utc.localize(gpqTime).astimezone(bstTZ) aestTZ = pytz.timezone('Australia/Melbourne') aest = pytz.utc.localize(gpqTime).astimezone(aestTZ) gpqText = """ <@&795087707046543370> This week's GPQ will be Friday Reset+{0}. Check below for your time zone and react if you can/can't make it. {1} {3} PST / {4} CST / {5} EST [ {2} {6} BST / {7} AEST ] React with :white_check_mark: if you are able to make it, :x: if you are not, :grey_question:if you don't know/want to fill. """ plusTime = "{0}:{1}".format(hours, minutes) d = int(pst.strftime("%d")) d2 = int(bst.strftime("%d")) suffix1 = 'th' if 11<=d<=13 else {1:'st',2:'nd',3:'rd'}.get(d%10, 'th') weekday1 = pst.strftime("%A %B %d{0}".format(suffix1)) suffix2 = 'th' if 11<=d2<=13 else {1:'st',2:'nd',3:'rd'}.get(d2%10, 'th') weekday2 = bst.strftime("%A %B %d{0}".format(suffix2)) time1 = pst.strftime("%I:%M %p") time2 = cst.strftime("%I:%M %p") time3 = est.strftime("%I:%M %p") time4 = bst.strftime("%I:%M %p") time5 = aest.strftime("%I:%M %p") ch = self.bot.get_channel(794753791153012788) msg = await ch.send(gpqText.format(plusTime, weekday1, weekday2, time1, time2, time3, time4, time5)) await self.gpq(ctx, msg, 0) ###<@&795087707046543370> @commands.command() @commands.check_any(commands.has_guild_permissions(manage_guild=True), commands.is_owner()) async def gpq(self, ctx, u : typing.Union[discord.Message, discord.TextChannel, int, None], c : typing.Optional[int]): if(u): msg = None if(isinstance(u, discord.Message)): msg = u elif(isinstance(u, int) and c): ch = self.bot.get_channel(c) msg = await ch.fetch_message(u) else: print("Getting latest message in channel {0}".format(u.name)) messages = await u.history(limit=1).flatten() msg = messages[0] print("Setting GPQ message to {0}".format(msg.id)) await self.updateMessage(msg) ##Add Yes and no Reactions await msg.add_reaction("✅") await msg.add_reaction("❌") await msg.add_reaction("❔") await ctx.send("Tracking GPQ attendance") else: await ctx.send("Closing GPQ attendance") await self.updateMessage(None) ## updates the gpq message id and saves to pickle, all under lock async def updateMessage(self, msg): async with self.fileLock: self.gpqMessage = None if(msg): self.gpqMessage = { "id" : msg.id, "ch" : msg.channel.id } with open(self.filePath, "wb") as f: pickle.dump(self.gpqMessage, f) ## Not under lock because we only call this in init def loadMessage(self): if os.path.exists(self.filePath): with open(self.filePath, "rb") as f: self.gpqMessage = pickle.load(f) ## Load Sheets with service account def loadSheets(self): credFile = os.path.join(os.getcwd(), config.CRED_FILE) creds = service_account.Credentials.from_service_account_file(credFile, scopes=self.scopes) service = discovery.build('sheets', 'v4', credentials=creds) self.sheet = service.spreadsheets() ## updates the sheet based on the latest reactions async def updateSheet(self, users, attendance): self.getActivePage() self.getNicknamePage() nicks = OrderedDict([ x for x in self.getNicknameMapping() if not len(x) is 0 ]) arr = [] for user in users: if(not user == self.bot.user): ## Not using setdefault() here because we want to avoid unnecessary interation with discord API if not str(user.id) in nicks: nicks[str(user.id)] = await self.getNickOrIgn(user.id) arr.append([nicks[str(user.id)]]) self.updateNicknameMapping(list(nicks.items())) self.updateAttendance(arr, attendance) ## Gets the Nickname page, and if it does not exist, creates it def getNicknamePage(self): if(not self.sheet == None): metadata = self.sheet.get(spreadsheetId=self.spreadsheetId).execute() sheets = metadata['sheets'] for sheet in sheets: props = sheet["properties"] if(props["title"] == self.nicknamePageName): self.nicknamePageId = props["sheetId"] return ## If we get here there was no nickname sheet body = { 'requests' : [ { 'addSheet' : { 'properties' : { 'title' : self.nicknamePageName, } } } ] } reply = self.sheet.batchUpdate(spreadsheetId=self.spreadsheetId, body=body).execute() self.nicknamePageId = reply.get("replies")[0].get("addSheet").get("properties").get("sheetId") body = { "values" : [ ["ID (DO NOT CHANGE)", "Nickname"] ] } r1 = "{0}!A1".format(self.nicknamePageName) reply = self.sheet.values().update(spreadsheetId=self.spreadsheetId, range=r1, body=body, valueInputOption="RAW").execute() ## Gets the current nickname mapping def getNicknameMapping(self): if(not self.sheet == None): ## First row is headers r1 = "{0}!A:B".format(self.nicknamePageName) reply = self.sheet.values().get(spreadsheetId=self.spreadsheetId, range=r1).execute() return(reply["values"]) ## Clears the nickname mapping, then adds back the new mapping def updateNicknameMapping(self, v): if(not self.sheet == None): r1 = "{0}!A:B".format(self.nicknamePageName) body= { "values" : v } reply = self.sheet.values().clear(spreadsheetId=self.spreadsheetId, range=r1).execute() reply = self.sheet.values().update(spreadsheetId=self.spreadsheetId, range=r1, valueInputOption='RAW', body=body).execute() ## Gets active GPQ party page def getActivePage(self): if(not self.sheet == None): metadata = self.sheet.get(spreadsheetId=self.spreadsheetId).execute() sheets = metadata.get('sheets', '') for sheet in sheets: props = sheet["properties"] if(props["index"] == 0): self.currentPageId = props["sheetId"] self.currentPageName = props["title"] return ## Clears the attending column, then adds back everyone that is still attending def updateAttendance(self, v, attendance): if(not self.sheet == None): r1 = "{0}!{1}3:{1}".format(self.currentPageName, attendance.value) body = { "values" : v } reply = self.sheet.values().clear(spreadsheetId=self.spreadsheetId, range=r1).execute() reply = self.sheet.values().update(spreadsheetId = self.spreadsheetId, range=r1, valueInputOption="RAW", body=body).execute() ## display_name is not always accurate it appears (perhaps just in reaction lists) ## Also will extract text within parenthesis if available, assuming that is an IGN async def getNickOrIgn(self, i): ch = self.bot.get_channel(self.gpqMessage["ch"]) g = ch.guild user = await g.fetch_member(i) res = re.search(r"\((.*)\)", user.display_name) if(res): return(res.group(1)) else: return(user.display_name) ## converts a number to the column string def cs(self, n): n += 1 s = "" while n > 0: n, r = divmod(n - 1, 26) s = chr(65 + r) + s return(s) class Attendance(Enum): YES = 'Z' NO = 'AC' MAYBE = 'AE' def setup(bot): bot.add_cog(GPQ(bot))
python
''' Created on 16 de nov de 2020 @author: klaus ''' import jsonlines from folders import DATA_DIR, SUBMISSIONS_DIR import os from os import path import pandas as pd import numpy as np import igraph as ig from input.read_input import read_item_data, get_mappings, NUM_DOMS from nn import domain_string_identifier from nn.domain_string_identifier import predict_model from input.create_ratio import get_ratio def create_graph_domain(): """ Creates graph linking (domain searched, domain bought) """ """ Fetch data """ df = read_item_data() df['item_id'] = df.index dct_title = df['title'].to_dict() dct_domain = df['domain_id'].to_dict() dct_cat= df['category_id'].to_dict() dct_price = df['price'].to_dict() """ Ratio stuff """ from input.create_ratio import get_ratio dct_ratio_dom = get_ratio(which='domain_id') ratio_df = get_ratio(which='item_id',full=True) ratio_df['popularity'] = 100.0*ratio_df['bought'] + ratio_df['searched'] dct_ratio_item_b = ratio_df['popularity'].to_dict() """ JSON """ check = lambda x: x <= np.round(413163*0.8).astype(np.int32) DATA_PATH = path.join(DATA_DIR,'train_dataset.jl') line_i = 0 """ Create graph vertices """ g = ig.Graph() counter, f_map_func, r_map_func = get_mappings() num_items = df.shape[0] for k in dct_title.keys(): g.add_vertex(value=k,deg=dct_ratio_item_b[k],domain_id=dct_domain[k],price=dct_price[k],cat='item_id') """ ['item_id','domain_id','category_id','product_id'] """ for k in pd.unique(df['domain_id']): g.add_vertex(value=k,cat='domain_id') for k in pd.unique(df['category_id']): g.add_vertex(value=k,cat='category_id') for k in pd.unique(df['product_id']): g.add_vertex(value=k,cat='product_id') """ Create edges """ E1 = [] E2 = [] with jsonlines.open(DATA_PATH) as reader: for line_i, obj in enumerate(reader): if check(line_i): print(line_i) L = [] for h in obj['user_history']: if h['event_type'] == 'view': #print("Viewed {}".format(dct[h['event_info']])) L.append(h['event_info']) elif h['event_type'] == 'search': #print("Searched {}".format(h['event_info'])) pass L_domain = [dct_domain[k] for k in L] L_domain = pd.unique(L_domain) L_cat = [dct_cat[k] for k in L] L_cat = pd.unique(L_cat) for i in range(len(L)): E1.append(L[i]) E2.append(obj['item_bought'] ) E1 = f_map_func['item_id'](E1) E2 = f_map_func['item_id'](E2) E = pd.Series(list(zip(E1,E2))).value_counts() g.add_edges(E.index) g.es["weight"] = E.values g.write_pickle(fname=path.join(DATA_DIR,'graph_item_to_item.pkl')) def deg_matrix(W,pwr=1,flat=False, NA_replace_val = 1.0): import scipy.sparse """ Returns a diagonal matrix with the row-wise sums of a matrix W.""" ws = W.sum(axis=0) if scipy.sparse.issparse(W) else np.sum(W,axis=0) D_flat = np.reshape(np.asarray(ws),(-1,)) D_flat = np.power(D_flat,np.abs(pwr)) is_zero = (D_flat == 0) if pwr < 0: D_flat[np.logical_not(is_zero)] = np.reciprocal(D_flat[np.logical_not(is_zero)]) D_flat[is_zero] = NA_replace_val if scipy.sparse.issparse(W): if flat: return D_flat else: row = np.asarray([i for i in range(W.shape[0])]) col = np.asarray([i for i in range(W.shape[0])]) coo = scipy.sparse.coo_matrix((D_flat, (row, col)), shape=(W.shape[0], W.shape[0])) return coo.tocsr() else: if flat: return D_flat else: return(np.diag(D_flat)) def fit_RNN(): import tensorflow as tf from tensorflow import keras import tf_geometric as tfg """ Create graph """ df = read_item_data() NUM_ITEMS = read_item_data().shape[0] NUM_FEATURES = 1 counter, f_map_func, r_map_func = get_mappings() NUM_DOMS = pd.unique(df['domain_id']).shape[0] """ Load graph """ G = ig.Graph.Read_Pickle(path.join(DATA_DIR,'graph_item_to_item.pkl')) #weights = np.log(1+np.array(G.es["weight"])) weights = np.array(G.es["weight"]) indices = np.array([ np.array(e.tuple) for e in G.es]) indices = np.transpose(indices) """ Create sparse matrix W """ from scipy.sparse import coo_matrix import scipy.sparse row = indices[0,:] col = indices[1,:] W = coo_matrix((weights, (row, col)),shape=(NUM_ITEMS,NUM_ITEMS)) """ Normalize rows """ #W = deg_matrix(W,pwr=-1) @ W W = W.transpose() W = scipy.sparse.csr_matrix(W) assert scipy.sparse.issparse(W) @tf.function def smooth_labels(labels, factor=0.001): # smooth the labels labels = tf.cast(labels,tf.float32) labels *= (1 - factor) labels += (factor / tf.cast(tf.shape(labels)[1],tf.float32)) # returned the smoothed labels return labels @tf.function def compute_loss(labels,logits): logits = tf.reshape(logits,(-1,NUM_ITEMS)) labels = tf.reshape(labels,(-1,NUM_ITEMS)) #logits = tf.nn.softmax(logits) #print(logits) logits = smooth_labels(logits) labels = smooth_labels(labels) losses = -tf.reduce_sum(logits*tf.math.log(labels),axis=1) return tf.reduce_mean(losses) @tf.function def evaluate(labels,logits): logits = tf.reshape(logits,(-1,NUM_ITEMS)) labels = tf.reshape(labels,(-1,NUM_ITEMS)) #logits = tf.nn.softmax(logits) #print(logits) logits = smooth_labels(logits) labels = smooth_labels(labels) acc = tf.metrics.categorical_accuracy(labels,logits) return tf.reduce_mean(acc) """ Read data, yadda yadda """ from input.create_ratio import get_ratio ratio_df = get_ratio(which='item_id',full=True) ratio_df['popularity'] = 100.0*ratio_df['bought'] + ratio_df['searched'] dct_ratio_item_b = ratio_df['popularity'].to_dict() dct = df['title'].to_dict() dct_domain = df['domain_id'].to_dict() dct_cat = df['category_id'].to_dict() dct_price = df['price'].to_dict() """ Ratio stuff """ from input.create_ratio import get_ratio category_df = get_ratio(which='category_id',full=True) domain_df = get_ratio(which='domain_id', full = True) feat_1, feat_2, feat_3 = domain_df['searched'].to_dict(), domain_df['bought'].to_dict(), domain_df['rat'].to_dict() feat_1,feat_2,feat_3 = [ [X[dct_domain[k]] for k in df.index] for X in [feat_1,feat_2,feat_3]] feat_1_1, feat_2_1, feat_3_1 = category_df['searched'].to_dict(), category_df['bought'].to_dict(), category_df['rat'].to_dict() feat_1_1,feat_2_1,feat_3_1 = [ [X[dct_cat[k]] for k in df.index] for X in [feat_1_1,feat_2_1,feat_3_1]] def standardize(x): return (x - np.min(x)) / (np.max(x)+1e-06 - np.min(x)) feat_1, feat_2, feat_3 = [standardize(x) for x in [feat_1,feat_2,feat_3]] feat_1_1, feat_2_1, feat_3_1 = [standardize(x) for x in [feat_1_1,feat_2_1,feat_3_1]] del df del domain_df del category_df del G #dom_ratios = np.array([dct_ratio_dom[k] for k in pd.unique(df['domain_id'].values)]) #dom_ratios = (dom_ratios - np.mean(dom_ratios)) / np.std(dom_ratios) from nn.domain_string_identifier import load_model domain_prediction_model = load_model() def my_generator(mode='train'): if mode == 'train': check = lambda x: x <= np.round(413163*0.8).astype(np.int32) elif mode == 'val': check = lambda x: x > np.round(413163*0.8).astype(np.int32) else: check = lambda x: True DATA_PATH = path.join(DATA_DIR,'test_dataset.jl' if mode == 'test' else 'train_dataset.jl') print("Reading....") X = np.zeros((NUM_ITEMS,10)).astype(np.float32) with jsonlines.open(DATA_PATH) as reader: for line_i, obj in enumerate(reader): if check(line_i): L = [] S = [] C =[] IDS = [] for h in obj['user_history']: if h['event_type'] == 'view': L.append(dct_domain[h['event_info']]) C.append(dct_cat[h['event_info']]) IDS.append(h['event_info']) elif h['event_type'] == 'search': S.append(h['event_info']) if obj['item_bought'] in L: continue L = f_map_func['domain_id'](L) C = f_map_func['category_id'](C) IDS_map = f_map_func['item_id'](IDS) """ Adjust graph """ Y = np.zeros((NUM_ITEMS,1)).astype(np.float32) """ X[:,0] = feat_1 X[:,1] = feat_2 X[:,2] = feat_3 X[:,6] = feat_1_1 X[:,7] = feat_2_1 X[:,8] = feat_3_1 #if len(S) > 0: # X[:,8] = np.mean(predict_model(domain_prediction_model,S,return_numeric=True),axis=0) """ target_id = f_map_func['item_id']( [ obj['item_bought'] ] )[0] if not mode == 'test': Y[ target_id,0 ] = 1.0 """ for i,k in enumerate(IDS_map): X[k,3] += 1 X[k,4] += dct_ratio_item_b[IDS[i]]/len(C) X[k,5] = dct_price[IDS[i]] #W[target_id,:] = (np.clip(np.array(W[target_id,:].todense())-1,a_min=0.0,a_max=None)) X[:,9] = np.reshape(np.asarray(W @ X[:,3]),(-1,)) X[:,9] = X[:,8] * X[:,2] #X[:,:8] = 0 for i in range(10): X[:,i] = (X[:,i] - np.min(X[:,i])) / (1e-06+ np.max(X[:,i]) - np.min(X[:,i])) """ if not mode == 'test': Y[ target_id,0 ] = 0.0 #X = X -0.5 yield X,Y """ Optimize """ BS = 2 step = 0 def batch_generator(mode, loop =True,batch_size=BS): BATCH_X = [] BATCH_Y = [] i = 0 while True: for x,y in my_generator(mode): BATCH_X.append(x[None,:,:]) BATCH_Y.append(y[None,:,:]) i+= 1 if i % batch_size == 0: yield np.concatenate(BATCH_X,axis=0), np.concatenate(BATCH_Y,axis=0) BATCH_X = [] BATCH_Y = [] i = 0 if loop == False: yield np.concatenate(BATCH_X,axis=0), np.concatenate(BATCH_Y,axis=0) break """ Define train_model """ import tensorflow.keras as keras import tensorflow.keras.layers as layers inp_x = keras.Input((NUM_ITEMS,10)) x = layers.Dense(32,activation='relu')(inp_x) x = layers.Dense(32,activation='relu')(x) x = layers.Dense(1)(x) x = layers.Flatten()(x) x = layers.Softmax(axis=-1)(x) train_model = keras.Model(inputs=[inp_x],outputs=[x]) print(train_model.summary()) lr_schedule = keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=0.5*1e-2, decay_steps=1000, decay_rate=0.9) optimizer = tf.keras.optimizers.Adam(learning_rate=0.2*1e-2) train_model.compile(optimizer=optimizer,loss=compute_loss,metrics=[evaluate]) from functools import partial from input.read_input import TRAIN_LINES train_model.fit_generator(batch_generator('train',True), steps_per_epoch=TRAIN_LINES//BS, epochs=1 ) ITEM_PATH = path.join(DATA_DIR,'train_model','item_classifier.h5') train_model.save_weights(ITEM_PATH) def predict(mode): PREDS = [] CONFS = [] NUM_SELECT = 10 batch_size = 1 for batch_id, X in enumerate(batch_generator(mode,batch_size=batch_size,loop=False)): x = X[0] print("Predicting {} - Batch {}".format(mode,batch_id)) pred = train_model.predict_on_batch(x) if batch_id == 0: print(pred) PREDS.append(tf.argsort(pred,axis=-1)[:,-NUM_SELECT:]) CONFS.append(tf.sort(pred,axis=-1)[:,-NUM_SELECT:]) PREDS = np.concatenate(PREDS,axis=0) CONFS = np.concatenate(CONFS,axis=0) #PREDS = np.concatenate([PREDS,CONFS],axis=1) cols = ['pred_{}'.format(k) for k in range(NUM_SELECT)] fname = os.path.join(DATA_DIR,'item_pred_{}.csv'.format(mode)) pd.DataFrame(PREDS,index=range(PREDS.shape[0]),columns=cols).to_csv(fname) predict('train') predict('val') predict('test') ############################################################################################################################################################# if __name__ == "__main__": #create_graph_domain() fit_RNN()
python
import sys import torchvision import torch from torch.utils.data import Dataset from .episodic_dataset import EpisodicDataset, FewShotSampler import json import os import numpy as np import numpy import cv2 import pickle as pkl # Inherit order is important, FewShotDataset constructor is prioritary class EpisodicTieredImagenet(EpisodicDataset): tasks_type = "clss" name = "tiered-imagenet" split_paths = {"train":"train", "test":"test", "valid": "val"} c = 3 h = 84 w = 84 def __init__(self, data_root, split, sampler, size, transforms): self.data_root = data_root self.split = split img_path = os.path.join(self.data_root, "%s_images_png.pkl" %(split)) label_path = os.path.join(self.data_root, "%s_labels.pkl" %(split)) with open(img_path, 'rb') as infile: self.features = pkl.load(infile, encoding="bytes") with open(label_path, 'rb') as infile: labels = pkl.load(infile, encoding="bytes")[b'label_specific'] super().__init__(labels, sampler, size, transforms) def sample_images(self, indices): return [cv2.imdecode(self.features[i], cv2.IMREAD_COLOR)[:,:,::-1] for i in indices] def __iter__(self): return super().__iter__() if __name__ == '__main__': import sys from torch.utils.data import DataLoader from tools.plot_episode import plot_episode sampler = FewShotSampler(5, 5, 15, 0) transforms = torchvision.transforms.Compose([torchvision.transforms.ToPILImage(), torchvision.transforms.Resize((84,84)), torchvision.transforms.ToTensor(), ]) dataset = EpisodicTieredImagenet("train", sampler, 10, transforms) loader = DataLoader(dataset, batch_size=1, collate_fn=lambda x: x) for batch in loader: plot_episode(batch[0], classes_first=False)
python
# Test the difference in computation time between a set of functions that calculate all prime numbers in a given range import time import math import matplotlib.pyplot as plt # Methods for finding all prime numbers up to max value 'n' # Slow method using a basic check def slow_method(n: int) -> list[int]: results = [2] for i in range(3, n, 2): is_prime = True for j in range(3, i): if i % j == 0: is_prime = False break if is_prime: results.append(i) return results # Fast method using squares def fast_method(n: int) -> list[int]: results = [2] for i in range(3, n, 2): is_prime = True for j in range(3, int(math.sqrt(i) + 1)): if i % j == 0: is_prime = False break if is_prime: results.append(i) return results # Faster method using previous results def faster_method(n: int) -> list[int]: results = [2] for i in range(3, n, 2): is_prime = True limit = math.sqrt(i) for j in results: if j > limit: break if i % j == 0: is_prime = False break if is_prime: results.append(i) return results def main(): # Graph the methods against each other to show the speed over time # Add methods to test into the 'methods' list methods = [fast_method, faster_method] times = [[] for method in methods] # Test all 'n' values from 0 to 100000 in increments of 1000 n_values = range(0, 100000, 1000) for n in n_values: # Test each method and record the elapsed time for method in methods: start_time = time.perf_counter() results = method(n) elapsed_time = time.perf_counter() - start_time times[methods.index(method)].append(elapsed_time) print(f"Method '{method.__name__}' found \t{len(results)} primes in \t{elapsed_time} seconds") # Graph elapsed time for each method for method in methods: plt.plot(n_values, times[methods.index(method)], label=method.__name__) plt.legend() plt.xlabel("n") plt.ylabel("seconds") plt.show() if __name__ == '__main__': main()
python
from typing import List, Optional from fastapi.datastructures import UploadFile from pydantic.main import BaseModel from enum import Enum class TextSpan(BaseModel): text: str start: int end: int class NamedEntity(TextSpan): label: str # The (predicted) label of the text span definition: Optional[str] = None # A short description class NounChunk(TextSpan): definition: Optional[str] = None class Lemma(BaseModel): text: str is_stopword: Optional[bool] = None class Sentence(TextSpan): text: str lemmatized_text: Optional[str] score: Optional[float] = None # # Request Models (= schema for API requests) # class BaseRequest(BaseModel): verbose: Optional[bool] = None metadata: Optional[dict] = None class NLPBaseRequest(BaseRequest): language: Optional[str] = None model: Optional[str] = None text: str class SentenceRequest(NLPBaseRequest): pass class AnalyzeRequest(NLPBaseRequest): num_sentences: Optional[int] = 3 class Config: schema_extra = { "example": { "text": "Breast cancer most commonly presents as a lump that feels different from the rest of the breast tissue.\ More than 80% of cases are discovered when a person detects such a lump with the fingertips.", } } # # Response Models (= schema for API responses) # class BaseResponse(BaseModel): error: Optional[str] = None class TranslateResponse(BaseResponse): """ Response for a text translation request """ from_language: str from_text: str to_language: str to_text: str class ExtractResponse(BaseResponse): sourceUrl: str text: str document_class: str language: str mediatype: str metadata: Optional[dict] = None class NLPBaseResponse(BaseResponse): language: Optional[str] model: Optional[str] text: Optional[str] class AnalyzeResponse(NLPBaseResponse): entities: Optional[List[NamedEntity]] = None health_entities: Optional[List[NamedEntity]] = None # entities_text: Optional[List[str]] noun_chunks: Optional[List[NounChunk]] = None # noun_chunks_text: Optional[List[str]] sentences: Optional[List[Sentence]] = None top_sentences: Optional[List[Sentence]] = None # lemma: Optional[List[Lemma]] # lemmatized_text: Optional[str] class Config: schema_extra = { "example": { "language": "en", "model": "core_web_sm", "text": "Hello again! The quick brown fox jumps over the lazy dog. A second time !", "entities": [], "health_entities": [{"text": "..."}], "sentences": [{"text": "Hello again!"}], } } class ImmersiveReaderTokenResponse(BaseResponse): token: str subdomain: str class TermDefinition(BaseModel): id: str term: str type: str text: str class DefinitionResponse(BaseResponse): term: str definitions: Optional[List[TermDefinition]] class RenderRequest(AnalyzeResponse): """ Request to renders the result a previous "analyze" response into an output format, such as HTML/... """ format: Optional[str] = "html" class Page(BaseModel): """ A related webpage - **title** Title of the web page - **text** Text (usually a summary) - **url** The web address """ title: str text: str url: str class Image(BaseModel): """ An Image Url - **text** Short text/ description of the image - **url** The web address - **hostPageUrl** The web address of the webpage that hosts the image - **webSearchUrl** The web adress to do a Microsoft Bing "similarity" search """ text: str url: str hostPageUrl: str thumbnailUrl: str webSearchUrl: str class Video(BaseModel): """ An Video Url - **text** Short text/ description of the video - **url** The web address - **hostPageUrl** The web address of the webpage that hosts the video - **webSearchUrl** The web adress to do a Microsoft Bing "similarity" search """ text: str url: str hostPageUrl: str thumbnailUrl: str webSearchUrl: str class SearchResponse(BaseModel): """ Search responses, contain pages, images and videos - **pages** List of (web) pages - **images** List of images - **videos** List of videos """ pages: Optional[List[Page]] images: Optional[List[Image]] videos: Optional[List[Video]]
python
import numpy as np from sklearn.metrics import confusion_matrix def test_data_index(true_label,pred_label,class_num): M = 0 C = np.zeros((class_num+1,class_num+1)) c1 = confusion_matrix(true_label, pred_label) C[0:class_num,0:class_num] = c1 C[0:class_num,class_num] = np.sum(c1,axis=1) C[class_num,0:class_num] = np.sum(c1,axis=0) N = np.sum(np.sum(c1,axis=1)) C[class_num,class_num] = N # all of the pixel number OA = np.trace(C[0:class_num,0:class_num])/N every_class = np.zeros((class_num+3,)) for i in range(class_num): acc = C[i,i]/C[i,class_num] M = M + C[class_num,i] * C[i,class_num] every_class[i] = acc kappa = (N * np.trace(C[0:class_num,0:class_num]) - M) / (N*N - M) AA = np.sum(every_class,axis=0)/class_num every_class[class_num] = OA every_class[class_num+1] = AA every_class[class_num+2] = kappa return every_class, C def caculate_index(true_label,pred_label,class_num): our_label = pred_label confusion_matrix = np.zeros((class_num+2,class_num+1)) for i in range(our_label.shape[0]): for j in range(our_label.shape[1]): x = our_label[i,j] y = true_label[i,j] if y==0: continue confusion_matrix[int(x)-1,int(y)-1] += 1 confusion_matrix[class_num,:]=np.sum(confusion_matrix[0:class_num,:], axis=0) confusion_matrix[0:class_num,class_num]=np.sum(confusion_matrix[0:class_num,0:class_num], axis=1) confusion_matrix[class_num+1,0]= confusion_matrix[0,0]/confusion_matrix[class_num,0] confusion_matrix[class_num+1,1]= confusion_matrix[1,1]/confusion_matrix[class_num,1] confusion_matrix[class_num+1,2]= confusion_matrix[2,2]/confusion_matrix[class_num,2] M = 0 N = our_label.shape[0] * our_label.shape[1] - np.sum(true_label==0) for i in range(class_num): M = M + confusion_matrix[class_num,i] * confusion_matrix[i,class_num] kappa = (N * np.trace(confusion_matrix[0:class_num,0:class_num]) - M) / (N*N - M) every_class = confusion_matrix[class_num+1,0:class_num] OA = np.trace(confusion_matrix[0:class_num,0:class_num])/N AA = np.sum(confusion_matrix[class_num+1,0:class_num])/class_num return OA,AA,kappa,every_class def generate_image(label): classifaction_result_img = np.zeros((label.shape[0],label.shape[1], 3)) a,b = np.where(label==1) for location in range(len(a)): classifaction_result_img[a[location],b[location],0] = 255 classifaction_result_img[a[location],b[location],1] = 0 classifaction_result_img[a[location],b[location],2] = 0 a,b = np.where(label==2) for location in range(len(a)): classifaction_result_img[a[location],b[location],0] = 0 classifaction_result_img[a[location],b[location],1] = 255 classifaction_result_img[a[location],b[location],2] = 0 a,b = np.where(label==3) for location in range(len(a)): classifaction_result_img[a[location],b[location],0] = 0 classifaction_result_img[a[location],b[location],1] = 0 classifaction_result_img[a[location],b[location],2] = 255 return classifaction_result_img
python
l=input() n=len(l) f=0 prev=0 found=0 for i in range(n-1): if l[i:i+2]=='AB': if f==0: prev=i+1 f=1 else: continue elif l[i:i+2]=='BA': if f==1: if i!=prev: found=1 else: continue prev=0 f=0 for i in range(n-1): if l[i:i+2]=='BA': if f==0: prev=i+1 f=1 else: continue elif l[i:i+2]=='AB': if f==1: if i!=prev: found=1 else: continue if found: print('YES') else: print('NO')
python
""" A Python library for generating Atom feeds for podcasts. Uses the specification described at http://www.atomenabled.org/developers/syndication/ """ from xml.etree import ElementTree as ET from xml.dom import minidom import copy from datetime import datetime, timedelta from uuid import UUID def parse_datetime(dt): """Return RFC 3339 compliant datetime.""" return dt.isoformat() + 'Z' if hasattr(dt, 'isoformat') else dt def parse_timedelta(td): """Return time offset as HH:MM:SS.sss.""" if isinstance(td, timedelta): microseconds_per_millisecond = 1000 seconds_per_minute = 60 minutes_per_hour = 60 seconds_per_hour = seconds_per_minute * minutes_per_hour hours_per_day = 24 hours = int(td.seconds / seconds_per_hour) + hours_per_day * td.days minutes = int(td.seconds / seconds_per_minute) % minutes_per_hour seconds = td.seconds % seconds_per_minute milliseconds = int(td.microseconds / microseconds_per_millisecond) return '%02i:%02i:%02i.%03i' % (hours, minutes, seconds, milliseconds) else: return td def parse_id(id): """If id is a UUID, prefix it with "urn:uuid:".""" if isinstance(id, UUID): return 'urn:uuid:%s' % id else: return id class Element(ET.Element): """Base class of all elements which are added to the feed.""" def __init__(self, *args, **kwargs): for kw, kwval in kwargs.items(): if kwval is None: del(kwargs[kw]) super(Element, self).__init__(*args, **kwargs) self.subelement_names = [] def tostring(self, pretty=False): rough_string = ET.tostring(self.tree(), 'utf-8') if not pretty: return '<?xml version="1.0" encoding="utf-8"?>' + rough_string else: reparsed = minidom.parseString(rough_string) return reparsed.toprettyxml(indent=' ', encoding='utf-8') def tree(self): el = copy.copy(self) for subelement_name in self.subelement_names: if subelement_name in dir(self): subelement = self.__getattribute__(subelement_name) if subelement is None: continue if isinstance(subelement, ElementList): el.extend(subelement.tree()) elif isinstance(subelement, list): for subelement_item in subelement: if subelement_item is None: continue el.extend([subelement_item.tree()]) else: el.extend([subelement.tree()]) return el def add_custom_element(self, tag, content=None, **kwargs): el = Element(tag, **kwargs) if content is not None: el.text = content self.__setattr__(tag, el) self.subelement_names.append(tag) class ElementList(list): """A list of elements. Intended for subclassing to overwrite tree method.""" def __init__(self, values=None): if values is None: values = [] super(ElementList, self).__init__() for value in values: self.append(value) def tree(self): return self.tree_elements() def tree_elements(self): return [el.tree() for el in self] class Person(Element): """ <author> and <contributor> describe a person, corporation, or similar entity. It has one required element, name, and two optional elements: uri, email. * name: conveys a human-readable name for the person. * uri: contains a home page for the person. * email: contains an email address for the person. """ def __init__(self, tag, name, email=None, uri=None): super(Person, self).__init__(tag) self.subelement_names = ['name', 'email', 'uri'] # Required self.name = Element('name') self.name.text = name # Optional if email is not None: self.email = Element('email') self.email.text = email if uri is not None: self.uri = Element('uri') self.uri.text = uri class Author(Person): """Creates a <author> element. See Person class for more information.""" def __init__(self, name, email=None, uri=None): super(Author, self).__init__('author', name, email, uri) class Contributor(Person): """Creates a <contributor> element. See Person class for more information.""" def __init__(self, name, email=None, uri=None): super(Contributor, self).__init__('contributor', name, email, uri) class Link(Element): """ Creates a <link> element to a web page or resource. Has one required attribute, href, and five optional attributes: rel, type, hreflang, title, and length. Required: * href: the URI of the referenced resource (typically a Web page) Optional: * rel: a single link relationship type. It can be a full URI (see extensibility), or one of the following predefined values (default=alternate): - alternate: an alternate representation of the entry or feed, for example a permalink to the html version of the entry, or the front page of the weblog. - enclosure: a related resource which is potentially large in size and might require special handling, for example an audio or video recording. - related: an document related to the entry or feed. - self: the feed itself. - via: the source of the information provided in the entry. - type indicates the media type of the resource. * type: the media type of the resource. * hreflang: the language of the referenced resource. * title: human readable information about the link, typically for display purposes. * length: the length of the resource, in bytes. """ def __init__(self, href, rel=None, type=None, hreflang=None, title=None, length=None): super(Link, self).__init__('link', href=href, rel=rel, type=type, hreflang=hreflang, title=title, length=length) class Category(Element): """ Creates a <category> element. Has one required attribute, term, and two optional attributes, scheme and label. Required: * term: identifies the category. Optional: * scheme: identifies the categorization scheme via a URI. * label: provides a human-readable label for display. """ def __init__(self, term, scheme=None, label=None): super(Category, self).__init__('category', term=term, scheme=scheme, label=label) class Chapter(Element): """ Podcast chapters as described at http://podlove.org/simple-chapters/ Required: * start: a single point in time relative to the beginning of the media file. * title: the name of the chapter. Optional: * href: a hypertext reference as an extension of the title that refers to a resource that provides related information. * image: an URL pointing to an image to be associated with the chapter. """ def __init__(self, start, title, href=None, image=None): start = parse_timedelta(start) super(Chapter, self).__init__('psc:chapter', start=start, title=title, href=href, image=image) class ChapterList(ElementList): """Chapters should be encapsulated in this class.""" def __init__(self, values=None): if values is None: values = [] super(ChapterList, self).__init__(values) def tree(self): if len(self) == 0: return [] el = Element('psc:chapters', version="1.1") el.set('xmlns:psc', 'http://podlove.org/simple-chapters') el.extend(self.tree_elements()) return [el] class Entry(Element): """Generates an entry element to be added to the elements array in the Feed class. Required: * id: Identifies the entry using a universally unique and permanent URI. Two entries in a feed can have the same value for id if they represent the same entry at different points in time. * title: Contains a human readable title for the entry. This value should not be blank. * updated: Indicates the last time the entry was modified in a significant way. This value need not change after a typo is fixed, only after a substantial modification. Generally, different entries in a feed will have different updated timestamps. Recommended: * author: Names one author of the entry. An entry may have multiple authors. An entry must contain at least one author element unless there is an author element in the enclosing feed, or there is an author element in the enclosed source element. See Author class. * content: Contains or links to the complete content of the entry. Content must be provided if there is no alternate link, and should be provided if there is no summary. * link: Identifies a related Web page. The type of relation is defined by the rel attribute. An entry is limited to one alternate per type and hreflang. An entry must contain an alternate link if there is no content element. See Link class. * summary: Conveys a short summary, abstract, or excerpt of the entry. Summary should be provided if there either is no content provided for the entry, or that content is not inline (i.e., contains a src attribute), or if the content is encoded in base64. Optional: * category: Specifies a category that the entry belongs to. A entry may have multiple category elements. See Category class. * contributor: Names one contributor to the entry. An entry may have multiple contributor elements. See Contributor class. * published: Contains the time of the initial creation or first availability of the entry. * source: If an entry is copied from one feed into another feed, then the source feed's metadata (all child elements of feed other than the entry elements) should be preserved if the source feed contains any of the child elements author, contributor, rights, or category and those child elements are not present in the source entry. * rights: Conveys information about rights, e.g. copyrights, held in and over the entry. * chapters: Podcast chapters as described at http://podlove.org/simple-chapters/. See Chapter class. """ def __init__(self, id, title, updated, authors=None, content=None, links=None, summary=None, categories=None, contributors=None, published=None, source=None, rights=None, chapters=None): if authors is None: authors = [] if links is None: links = [] if categories is None: categories = [] if contributors is None: contributors = [] if chapters is None: chapters = [] super(Entry, self).__init__('entry') self.subelement_names = [ 'id', 'title', 'updated', 'authors', 'content', 'links', 'summary', 'categories', 'contributors', 'published', 'source', 'rights', 'chapters' ] self.id = Element('id') self.id.text = parse_id(id) self.title = Element('title') self.title.text = title self.updated = Element('updated') self.updated.text = parse_datetime(updated) self.authors = authors if content: self.content = Element('content') self.content.text = content self.links = links if summary: self.summary = Element('summary') self.summary.text = summary self.categories = categories self.contributors = contributors if published is not None: self.published = Element('published') self.published.text = parse_datetime(published) self.source = source # Should be an Entry if rights: self.rights = Element('rights') self.rights.text = rights self.chapters = ChapterList(chapters) class Feed(Element): """Generates an Atom feed based on the specification described at http://www.atomenabled.org/developers/syndication/ Required elements: * id: Identifies the feed using a universally unique and permanent URI. If you have a long-term, renewable lease on your Internet domain name, then you can feel free to use your website's address. * title: Contains a human readable title for the feed. Often the same as the title of the associated website. This value should not be blank. * updated: Indicates the last time the feed was modified in a significant way. Recommended elements: * author: Names one author of the feed. A feed may have multiple author elements. A feed must contain at least one author element unless all of the entry elements contain at least one author element. See Author class. * link: Identifies a related Web page. The type of relation is defined by the rel attribute. A feed is limited to one alternate per type and hreflang. A feed should contain a link back to the feed itself. See Link class. Optional elements: * category: Specifies a category that the feed belongs to. A feed may have multiple category elements. See Category class. * contributor: Names one contributor to the feed. An feed may have multiple contributor elements. * generator: Identifies the software used to generate the feed, for debugging and other purposes. Both the uri and version attributes are optional. * icon: Identifies a small image which provides iconic visual identification for the feed. Icons should be square. * logo: Identifies a larger image which provides visual identification for the feed. Images should be twice as wide as they are tall. * rights: Conveys information about rights, e.g. copyrights, held in and over the feed. * subtitle: Contains a human-readable description or subtitle for the feed. """ def __init__(self, id, title, updated=None, authors=None, links=None, categories=None, contributors=None, generator=None, icon=None, logo=None, rights=None, subtitle=None, entries=None, **kwargs): if authors is None: authors = [] if links is None: links = [] if categories is None: categories = [] if contributors is None: contributors = [] if entries is None: entries = [] if 'xmlns' not in kwargs: kwargs['xmlns'] = 'http://www.w3.org/2005/Atom' super(Feed, self).__init__('feed', **kwargs) if updated is None: updated = datetime.now() self.subelement_names = [ 'id', 'title', 'updated', 'authors', 'links', 'categories', 'contributors', 'generator', 'icon', 'logo', 'rights', 'subtitle', 'entries' ] # Required self.id = Element('id') self.id.text = parse_id(id) self.title = Element('title') self.title.text = title self.updated = Element('updated') self.updated.text = parse_datetime(updated) # Recommended self.authors = authors self.links = links # Optional self.categories = categories self.contributors = contributors # List of Category objects if generator: self.generator = Element('generator') self.generator.text = generator if icon: self.icon = Element('icon') self.icon.text = icon if logo: self.logo = Element('logo') self.logo.text = logo if rights: self.rights = Element('rights') self.rights.text = rights if subtitle: self.subtitle = Element('subtitle') self.subtitle.text = subtitle self.entries = entries
python
from datetime import timedelta import json import sys import click from humanize import naturaldelta from . import __version__ from .click_timedelta import TIME_DELTA from .watson_overtime import watson_overtime def _build_work_diff_msg(diff: timedelta) -> str: msg = f"You are {naturaldelta(diff)} " if diff < timedelta(0): msg += "behind" else: msg += "ahead of" msg += " schedule." return msg @click.command() @click.version_option(version=__version__) @click.option( "--watson-report", "-r", help="Read json style of watson report", type=click.File("r"), default=sys.stdin, ) @click.option( "--working-hours", "-w", help="Amount of planned working time", type=TIME_DELTA, default="40 hours", ) @click.option( "--period", "-p", help="Duration in which the amount of planned working time should be achieved", type=TIME_DELTA, default="1 week", ) def main( watson_report: click.File, working_hours: timedelta, period: timedelta ) -> None: watson_report = json.load(watson_report) diff = watson_overtime(watson_report, working_hours, period) click.echo(_build_work_diff_msg(diff)) if __name__ == "__main__": main()
python
def dump_locals(lcls): print('|' + ('='*78) + '|') print("|Locals:".ljust(79) + '|') print('|' + ('- -'*(79//3)) + '|') for (k, v) in lcls.items(): print("| {} => {}".format(k, v).ljust(79) + '|') print('|' + ('='*78) + '|') def dump_obj(name, obj): print('|' + ('='*78) + '|') print('|dump of {} (type: {})'.format(name, obj).ljust(79) + '|') print('|' + (' - ' * (79//3)) + "|") for (k, v) in obj.__dict__.items(): print("| {} => {}".format(k, v.__repr__()).ljust(79) + '|') print('|' + ('='*78) + '|')
python
""" Settings file You can set the database settings in here at DATABASES['default'] You can also set the supported languages with SUPPORTED_LANGUAGES Before you launch the site, you should probably set DATABASE password and the SECRET_KEY to something that is not in a public git repository... """ from random import SystemRandom from django.utils.translation import ugettext_lazy as _ from os.path import join, dirname, exists import string import sys SUPPORTED_LANGUAGES = ( # the first is language key / database value (max 8 chars, don't change), the second is the display name ('en-gb', _('English (British)')), ('zh-cn', _('Chinese (simplified Mandarin)')), ('he', _('Hebrew')), ('de', _('German')), ('nl', _('Dutch')), ) #SUPPORTED_LANGUAGES = DEFAULT_LANGUAGES # replace this if you want to limit the available languages DEFAULT_KNOWN_LANGUAGE = 'en-gb' DEFAULT_LEARN_LANGUAGE = 'zh-cn' # Build paths inside the project like this: join(BASE_DIR, ...) BASE_DIR = dirname(dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '=)z3(+)z!jaizz^$ggqme0q)49vy2qs-9g+5@h&340qopx^$4w' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] AUTH_USER_MODEL = 'learners.Learner' # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'haystack', 'basics', 'learners', 'phrasebook', 'lists', 'study', 'opinions', 'importing', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.locale.LocaleMiddleware', # should be after SessionMiddleware 'basics.middleware.SetLearningLanguage' # should be after LocaleMiddleWare ) TEMPLATE_CONTEXT_PROCESSORS = ( 'django.contrib.auth.context_processors.auth', 'django.core.context_processors.debug', 'django.core.context_processors.i18n', 'django.core.context_processors.media', 'django.core.context_processors.static', 'django.core.context_processors.tz', 'django.contrib.messages.context_processors.messages', 'django.core.context_processors.request', 'basics.context.statistics', ) MESSAGE_STORAGE = 'django.contrib.messages.storage.session.SessionStorage' ROOT_URLCONF = 'urls' WSGI_APPLICATION = 'wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': join(BASE_DIR, 'data', 'database.sqlite3'), }, ## reaplce with this to us mySQL (make sure the database is UTF8): #'default': { # 'ENGINE': 'django.db.backends.mysql', # 'NAME': 'words_database', # 'USER': 'werner', # 'PASSWORD': 'Wx3G4fqABzwZZAz', # 'HOST': '127.0.0.1', # 'PORT': '', #} } LOGIN_URL = '/learner/login/' LOGIN_REDIRECT_URL = '/learner/profile/' PREPEND_WWW = False # I like turning this on for real sites, but it doesn't work if you access the site using an IP (like 127.0.0.1), so turn it on after testing APPEND_SLASH = True # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGES = SUPPORTED_LANGUAGES LANGUAGE_CODE = DEFAULT_LEARN_LANGUAGE TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True LOCALE_PATHS = (join(BASE_DIR, 'locale'),) # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.7/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = join(BASE_DIR, 'static') MEDIA_URL = '/media/' MEDIA_ROOT = join(BASE_DIR, 'media') TEMPLATE_DIRS = ( join(BASE_DIR, 'templates'), ) # search engine # http://django-haystack.readthedocs.org/en/latest/tutorial.html # should probably be changed once performance becomes an issue HAYSTACK_CONNECTIONS = { 'default': { 'ENGINE': 'haystack.backends.whoosh_backend.WhooshEngine', 'PATH': join(BASE_DIR, 'data', 'searchindex.whoosh'), }, } HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor' try: if not exists(join(BASE_DIR, 'source', 'local.py')): with open(join(BASE_DIR, 'source', 'local.py'), 'w+') as fh: fh.write('"""\nLocal (machine specific) settings that overwrite the general ones.\n"""\n\n') fh.write('from os.path import join, realpath, dirname\n\n\n') fh.write('BASE_DIR = dirname(dirname(realpath(__file__)))\n\n') fh.write('DATABASES = {\'default\': {\n\t\'ENGINE\': \'django.db.backends.sqlite3\',\n\t\'NAME\': join(BASE_DIR, \'data\', \'aqua.db\'),\n}}\n\n') fh.write('ALLOWED_HOSTS = [\'localhost\', \'.localhost.markv.nl\',]\n\n') fh.write('SECRET_KEY = "{0:s}"\n\n'.format(''.join(SystemRandom().choice(string.ascii_letters + string.digits + '#$%&()*+,-./:;?@[]^_`{|}~') for _ in range(50)))) fh.write('NOTIFICATION_PATH = join(BASE_DIR, \'notification.html\')\n\n') fh.write('TEMPLATE_DEBUG = DEBUG = True\n\n\n') except Exception as err: print('could not create local.py settings file: {0:s}'.format(str(err))) from local import *
python
# From any external file our program counts the number of lines # thanks to Stackoverflow # @program 3 # @author unobatbayar # @date 03-10-2018 num_lines = sum(1 for line in open('out.txt')) print(num_lines)
python
#!/usr/bin/env python import requests import traceback import sys from bs4 import BeautifulSoup import csv ## getHTML def getHTML(): url = "http://mcc-mnc.com/" html = "" try : r = requests.get(url) html = r.text.encode("utf-8") except: traceback.print_exc() return html return html ## end ## getHeaders def getHeaders(table): ## Find thead thead = table.find("thead") if thead is None: print "Didn't find thead tag in table, cannot proceed!!!" sys.exit(1) return [header.text.strip() for header in thead.find_all("th")] ## end ## getRows def getRows(table): ## Find tbody tbody = table.find("tbody") if tbody is None: print "Didn't find tbody tag in table, cannot proceed!!!" sys.exit(1) rows= [] for row in tbody.find_all("tr"): rows.append([val.text.strip() for val in row.find_all("td")]) return rows ## end html = getHTML() if html == "": print "HTML retrieve is empty, cannot proceed!!!" sys.exit(1) soup = BeautifulSoup(html) table = soup.find("table", attrs={"id": "mncmccTable"}) headers = getHeaders(table) rows = getRows(table) outputFileName = "mcc-mnc.csv" try : f = open(outputFileName, "wb") writer = csv.writer(f, delimiter=",", quoting = csv.QUOTE_MINIMAL) writer.writerow(headers) writer.writerows(rows) except: traceback.print_exc() sys.exit(1)
python
from user import User from db import Base, Session from sqlalchemy import * from sqlalchemy.orm import relation, sessionmaker from datetime import datetime, date from attendee import Attendee from werkzeug.security import generate_password_hash, check_password_hash from flask import json from sqlalchemy import exc from event import Event import organization class OrgMember(User): __tablename__ = "orgmembers" __mapper_args__ = {'polymorphic_identity': 'orgmember'} id = Column(Integer, ForeignKey('users.id'), primary_key=True, nullable=False) # the OrgMember will have all User fields org = Column(Integer, ForeignKey('organizations.id'), nullable=False) # object or id? poc = Column(Boolean, nullable=False) @classmethod def fromdict(cls, d): allowed = ('name', 'email', 'passwordhash', 'phone', 'last_active', 'birthdate', 'bio', 'gender', 'org', 'poc') df = {k: v for k, v in d.items() if k in allowed} return cls(**df) def asdict(self): dict_ = {} for key in self.__mapper__.c.keys(): result = getattr(self, key) if isinstance(result, date): dict_[key] = str(result) else: dict_[key] = result return dict_ def __init__(self, name, email, passwordhash, phone, poc, org, birthdate=None, bio=None, gender=None): self.name = name self.email = email self.set_password(passwordhash) if len(phone) > 15 : raise ValueError("phone number is too long") elif len(phone) < 10: raise ValueError("phone number is too short") elif phone.isdigit() == False: raise ValueError("phone number must be a string of digits") else: self.phone = phone self.poc = poc self.last_activity = datetime.now() self.birthdate = birthdate self.bio = bio self.gender = gender self.org = org def set_password(self, password): self.passwordhash = generate_password_hash(password) def check_password(self, password): return check_password_hash(self.passwordhash, password) # create a volunteer from a json blob def getOrgMember(self, id): s = Session() content = s.query(OrgMember).filter_by(id=id).first() s.close() if content: return content else: raise ValueError("user does not exist") def confirmAttendee(self, event, user): s = Session() attendee = s.query(Attendee).filter_by(event).filter_by(user).first() if attendee: attendee.confirmed = True s.commit() s.close() return True else: return False def validateHour(self, event, user): s = Session() attendee = s.query(Attendee).filter_by(event).filter_by(user).first() if attendee: attendee.hoursValidated = True s.commit() s.close() return True else: return False def deleteSelf(self, session): s = session try: s.delete(self) except: raise exc.SQLAlchemyError("failed to delete orgMember " + self.id) def link_org(orgmember): s = Session() o2_org = orgmember.org org_m = s.query(OrgMember).filter_by(email=orgmember.email).first() s.close() if org_m: org_id = org_m.id else : print (exc.InvalidRequestError("query failed")) return False json2 = json.dumps({'poc': org_id}) organization.updateOrg(o2_org, json2) return True def createMember(json): o = OrgMember.fromdict(json) s = Session() try: s.add(o) s.commit() except: return False finally: s.close() o2 = OrgMember.fromdict(json) if link_org(o2): return True else: return False
python
# Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE file in the project root for full license information. import random import time # Using the Python Device SDK for IoT Hub: # https://github.com/Azure/azure-iot-sdk-python # The sample connects to a device-specific MQTT endpoint on your IoT Hub. from azure.iot.device import IoTHubDeviceClient, Message import requests import os from datetime import datetime lat="45.657974" lon="25.601198" key="3c8ed3ac65cb597f0d30d0c07259b6ff" CONNECTION_STRING = "HostName=WeatherData.azure-devices.net;DeviceId=DataSender;SharedAccessKey=FChK/5Ls4g4a37TaMp8jhQdsXjyQwILDFHAhieM+Ymw=" def call_api(): #complete_api_link = "https://api.openweathermap.org/data/2.5/onecall?lat="+lat+"&lon="+lon+"&appid="+key complete_api_link = "https://api.openweathermap.org/data/2.5/weather?q=brasov&appid="+key api_link = requests.get(complete_api_link) api_data = api_link.json() return api_data def iothub_client_init(): # Create an IoT Hub client client = IoTHubDeviceClient.create_from_connection_string(CONNECTION_STRING) return client def iothub_client_telemetry_sample_run(): try: client = iothub_client_init() print ( "IoT Hub device sending periodic messages, press Ctrl-C to exit" ) while True: # Build the message with simulated telemetry values. api_data=call_api() message = Message(str(api_data)) # Send the message. print( "Sending message: {}".format(message) ) client.send_message(message) print ( "Message successfully sent" ) time.sleep(20) except KeyboardInterrupt: print ( "IoTHubClient sample stopped" ) if __name__ == '__main__': print ( "IoT Hub Quickstart #1 - Simulated device" ) print ( "Press Ctrl-C to exit" ) iothub_client_telemetry_sample_run()
python
# -*- coding: utf-8 -*- # Copyright: (c) 2018, www.privaz.io Valletech AB # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) class ModuleDocFragment(object): # OpenNebula common documentation DOCUMENTATION = r''' options: api_url: description: - The ENDPOINT URL of the XMLRPC server. - If not specified then the value of the ONE_URL environment variable, if any, is used. type: str aliases: - api_endpoint api_username: description: - The name of the user for XMLRPC authentication. - If not specified then the value of the ONE_USERNAME environment variable, if any, is used. type: str api_password: description: - The password or token for XMLRPC authentication. - If not specified then the value of the ONE_PASSWORD environment variable, if any, is used. type: str aliases: - api_token validate_certs: description: - Whether to validate the SSL certificates or not. - This parameter is ignored if PYTHONHTTPSVERIFY environment variable is used. type: bool default: yes wait_timeout: description: - Time to wait for the desired state to be reached before timeout, in seconds. type: int default: 300 '''
python
#!/usr/bin/env python3 import os from electroncash.util import json_decode from tkinter import filedialog from tkinter import * Tk().withdraw() wallet = filedialog.askopenfilename(initialdir = "~/.electron-cash/wallets",title = "Select wallet") coins = os.popen("electron-cash -w "+wallet+" listunspent").read() coins = json_decode(coins) #print(coins) addrValues = {} for c in coins: addrValues.setdefault(c['address'], []).append(c['value']) for ad in addrValues: numVals = len(addrValues[ad]) if numVals > 1: numDust = 0 for i in range(numVals): if addrValues[ad][i] == '0.00000547': numDust += 1 if numVals - numDust > 1: print(ad, numVals, addrValues[ad])
python
from unittest import mock from django.conf import settings from django.contrib.auth.models import User from django.test import Client, TestCase from .models import Lamp from .views import LampControlForm class LoginTests(TestCase): def setUp(self): self.client = Client() def test_login_view(self): response = self.client.get(settings.LOGIN_URL) self.assertEqual(response.status_code, 200) self.assertContains(response, 'Log in') def checkLoginRedirect(self, path): response = self.client.get(path) self.assertRedirects(response, f'{settings.LOGIN_URL}?next={path}') def test_lamp_list_no_auth(self): self.checkLoginRedirect('/lamps/') def test_lamp_detail_no_auth(self): self.checkLoginRedirect('/lamps/1') def test_lamp_control_no_auth(self): self.checkLoginRedirect('/lamps/1/control') class LampsSiteViewsTests(TestCase): def setUp(self): self.client = Client() user = User.objects.create_user('testuser') self.client.force_login(user) def test_root_redirect(self): response = self.client.get('/') self.assertRedirects(response, '/lamps/') def test_list(self): lamp = Lamp.objects.create(name='lamp1') response = self.client.get('/lamps/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'lights/lamp_list.html') self.assertIn(lamp, response.context['lamp_list']) def test_details(self): lamp = Lamp.objects.create(name='lamp1') response = self.client.get(f'/lamps/{lamp.pk}') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'lights/lamp_detail.html') self.assertEqual(lamp, response.context['lamp']) def test_control_get(self): lamp = Lamp.objects.create(name='lamp1') response = self.client.get(f'/lamps/{lamp.pk}/control') self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'lights/lamp_control.html') self.assertEqual(lamp, response.context['lamp']) def test_control_get_status_off(self): lamp = Lamp.objects.create(name='lamp1') response = self.client.get(f'/lamps/{lamp.pk}/control') self.assertEqual(response.status_code, 200) form = response.context['form'] self.assertEqual(form['status'].value(), LampControlForm.STATUS_OFF) def test_control_post_action(self): lamp = Lamp.objects.create(name='lamp1') new_brightness = 70 self.client.post(f'/lamps/{lamp.pk}/control', { 'brightness': str(new_brightness), 'status': 'on'}) lamp.refresh_from_db() self.assertEqual(lamp.brightness, new_brightness) self.assertTrue(lamp.is_on) def test_control_post_redirect(self): lamp = Lamp.objects.create(name='lamp1') response = self.client.post(f'/lamps/{lamp.pk}/control', {'brightness': '20', 'status': 'on'}) self.assertRedirects(response, f'/lamps/{lamp.pk}') @mock.patch('lights.views.lamp_service', autospec=True) def test_control_service_call(self, mock_lamp_service): lamp = Lamp.objects.create(name='lamp1') new_brightness = 75 self.client.post(f'/lamps/{lamp.pk}/control', { 'brightness': str(new_brightness), 'status': 'on'}) mock_lamp_service.set_lamp_mode.assert_called_once_with( lamp, on=True, brightness=new_brightness) def test_control_get_404(self): response = self.client.get(f'/lamps/1/control') self.assertEqual(response.status_code, 404) def test_control_post_404(self): response = self.client.post(f'/lamps/1/control') self.assertEqual(response.status_code, 404) def test_control_validation_error_response(self): lamp = Lamp.objects.create(name='lamp1') response = self.client.post(f'/lamps/{lamp.pk}/control', { 'brightness': 101, 'status': 'on'}) self.assertEqual(response.status_code, 200) @mock.patch('lights.views.lamp_service', autospec=True) def test_control_validation_error_action(self, mock_lamp_service): lamp = Lamp.objects.create(name='lamp1') self.client.post(f'/lamps/{lamp.pk}/control', { 'brightness': 101, 'status': 'on'}) mock_lamp_service.assert_not_called()
python
# -*- coding: utf-8 -*- # Copyright © 2018 by IBPort. All rights reserved. # @Author: Neal Wong # @Email: [email protected] from setuptools import setup setup( name='scrapy_autoproxy', version='1.0.0', description='Machine learning proxy picker', long_description=open('README.rst').read(), keywords='scrapy proxy web-scraping', license='MIT License', author="Dan Chrostowski", author_email='[email protected]', url='https://streetscrape.com', packages=[ 'scrapy_autoproxy', ], package_dir={'scrapy_autoproxy': 'scrapy_autoproxy'}, package_data={'scrapy_autoproxy/data': ['docker-compose.yml','.env','config/autoproxy.cfg','database/','init_sql/1-schema.sql','init_sql/2-seeds.sql']}, install_requires=[ 'redis', 'psycopg2-binary', 'docker' ], )
python
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from argcomplete.completers import FilesCompleter from knack.arguments import CLIArgumentType from azure.cli.core.commands.parameters import (get_location_type, file_type, get_resource_name_completion_list, get_enum_type, get_three_state_flag, tags_type) from azure.mgmt.iotcentral.models import AppSku from azure.mgmt.iothub.models import IotHubSku from azure.mgmt.iothubprovisioningservices.models import (IotDpsSku, AllocationPolicy, AccessRightsDescription) from azure.cli.command_modules.iot.shared import (EndpointType, RouteSourceType, EncodingFormat, RenewKeyType, AuthenticationType) from .custom import KeyType, SimpleAccessRights from ._validators import (validate_policy_permissions, validate_retention_days, validate_fileupload_notification_max_delivery_count, validate_fileupload_notification_ttl, validate_fileupload_sas_ttl, validate_feedback_ttl, validate_feedback_lock_duration, validate_feedback_max_delivery_count, validate_c2d_max_delivery_count, validate_c2d_ttl) hub_name_type = CLIArgumentType( completer=get_resource_name_completion_list('Microsoft.Devices/IotHubs'), help='IoT Hub name.') dps_name_type = CLIArgumentType( options_list=['--dps-name'], completer=get_resource_name_completion_list('Microsoft.Devices/ProvisioningServices'), help='IoT Provisioning Service name') app_name_type = CLIArgumentType( completer=get_resource_name_completion_list('Microsoft.IoTCentral/IoTApps'), help='IoT Central application name.') def load_arguments(self, _): # pylint: disable=too-many-statements # Arguments for IoT DPS with self.argument_context('iot dps') as c: c.argument('dps_name', dps_name_type, options_list=['--name', '-n'], id_part='name') c.argument('tags', tags_type) with self.argument_context('iot dps create') as c: c.argument('location', get_location_type(self.cli_ctx), help='Location of your IoT Provisioning Service. Default is the location of target resource group.') c.argument('sku', arg_type=get_enum_type(IotDpsSku), help='Pricing tier for the IoT provisioning service.') c.argument('unit', help='Units in your IoT Provisioning Service.', type=int) for subgroup in ['access-policy', 'linked-hub', 'certificate']: with self.argument_context('iot dps {}'.format(subgroup)) as c: c.argument('dps_name', options_list=['--dps-name'], id_part=None) with self.argument_context('iot dps access-policy') as c: c.argument('access_policy_name', options_list=['--access-policy-name', '--name', '-n'], help='A friendly name for DPS access policy.') with self.argument_context('iot dps access-policy create') as c: c.argument('rights', options_list=['--rights', '-r'], nargs='+', arg_type=get_enum_type(AccessRightsDescription), help='Access rights for the IoT provisioning service. Use space-separated list for multiple rights.') c.argument('primary_key', help='Primary SAS key value.') c.argument('secondary_key', help='Secondary SAS key value.') with self.argument_context('iot dps access-policy update') as c: c.argument('rights', options_list=['--rights', '-r'], nargs='+', arg_type=get_enum_type(AccessRightsDescription), help='Access rights for the IoT provisioning service. Use space-separated list for multiple rights.') c.argument('primary_key', help='Primary SAS key value.') c.argument('secondary_key', help='Secondary SAS key value.') with self.argument_context('iot dps linked-hub') as c: c.argument('linked_hub', options_list=['--linked-hub'], help='Host name of linked IoT Hub.') with self.argument_context('iot dps linked-hub create') as c: c.argument('connection_string', help='Connection string of the IoT hub.') c.argument('location', get_location_type(self.cli_ctx), help='Location of the IoT hub.') c.argument('apply_allocation_policy', help='A boolean indicating whether to apply allocation policy to the IoT hub.', arg_type=get_three_state_flag()) c.argument('allocation_weight', help='Allocation weight of the IoT hub.') with self.argument_context('iot dps linked-hub update') as c: c.argument('apply_allocation_policy', help='A boolean indicating whether to apply allocation policy to the Iot hub.', arg_type=get_three_state_flag()) c.argument('allocation_weight', help='Allocation weight of the IoT hub.') with self.argument_context('iot dps allocation-policy update') as c: c.argument('allocation_policy', options_list=['--policy', '-p'], arg_type=get_enum_type(AllocationPolicy), help='Allocation policy for the IoT provisioning service.') with self.argument_context('iot dps certificate') as c: c.argument('certificate_path', options_list=['--path', '-p'], type=file_type, completer=FilesCompleter([".cer", ".pem"]), help='The path to the file containing the certificate.') c.argument('certificate_name', options_list=['--certificate-name', '--name', '-n'], help='A friendly name for the certificate.') c.argument('etag', options_list=['--etag', '-e'], help='Entity Tag (etag) of the object.') # Arguments for IoT Hub with self.argument_context('iot hub') as c: c.argument('hub_name', hub_name_type, options_list=['--name', '-n'], id_part='name') c.argument('etag', options_list=['--etag', '-e'], help='Entity Tag (etag) of the object.') c.argument('sku', arg_type=get_enum_type(IotHubSku), help='Pricing tier for Azure IoT Hub. ' 'Note that only one free IoT hub instance (F1) is allowed in each ' 'subscription. Exception will be thrown if free instances exceed one.') c.argument('unit', help='Units in your IoT Hub.', type=int) c.argument('partition_count', help='The number of partitions of the backing Event Hub for device-to-cloud messages.', type=int) c.argument('retention_day', options_list=['--retention-day', '--rd'], type=int, validator=validate_retention_days, help='Specifies how long this IoT hub will maintain device-to-cloud events, between 1 and 7 days.') c.argument('c2d_ttl', options_list=['--c2d-ttl', '--ct'], type=int, validator=validate_c2d_ttl, help='The amount of time a message is available for the device to consume before it is expired' ' by IoT Hub, between 1 and 48 hours.') c.argument('c2d_max_delivery_count', options_list=['--c2d-max-delivery-count', '--cdd'], type=int, validator=validate_c2d_max_delivery_count, help='The number of times the IoT hub will attempt to deliver a cloud-to-device' ' message to a device, between 1 and 100.') c.argument('feedback_ttl', options_list=['--feedback-ttl', '--ft'], type=int, validator=validate_feedback_ttl, help='The period of time for which the IoT hub will maintain the feedback for expiration' ' or delivery of cloud-to-device messages, between 1 and 48 hours.') c.argument('feedback_lock_duration', options_list=['--feedback-lock-duration', '--fld'], type=int, validator=validate_feedback_lock_duration, help='The lock duration for the feedback queue, between 5 and 300 seconds.') c.argument('feedback_max_delivery_count', options_list=['--feedback-max-delivery-count', '--fd'], type=int, validator=validate_feedback_max_delivery_count, help='The number of times the IoT hub attempts to' ' deliver a message on the feedback queue, between 1 and 100.') c.argument('enable_fileupload_notifications', options_list=['--fileupload-notifications', '--fn'], arg_type=get_three_state_flag(), help='A boolean indicating whether to log information about uploaded files to the' ' messages/servicebound/filenotifications IoT Hub endpoint.') c.argument('fileupload_notification_max_delivery_count', type=int, options_list=['--fileupload-notification-max-delivery-count', '--fnd'], validator=validate_fileupload_notification_max_delivery_count, help='The number of times the IoT hub will attempt to deliver a file notification message,' ' between 1 and 100.') c.argument('fileupload_notification_ttl', options_list=['--fileupload-notification-ttl', '--fnt'], type=int, validator=validate_fileupload_notification_ttl, help='The amount of time a file upload notification is available for the service to' ' consume before it is expired by IoT Hub, between 1 and 48 hours.') c.argument('fileupload_storage_connectionstring', options_list=['--fileupload-storage-connectionstring', '--fcs'], help='The connection string for the Azure Storage account to which files are uploaded.') c.argument('fileupload_storage_authentication_type', options_list=['--fileupload-storage-auth-type', '--fsa'], help='The authentication type for the Azure Storage account to which files are uploaded.' 'Possible values are keyBased and identityBased') c.argument('fileupload_storage_container_uri', options_list=['--fileupload-storage-container-uri', '--fcu'], help='The container URI for the Azure Storage account to which files are uploaded.') c.argument('fileupload_storage_container_name', options_list=['--fileupload-storage-container-name', '--fc'], help='The name of the root container where you upload files. The container need not exist but' ' should be creatable using the connectionString specified.') c.argument('fileupload_sas_ttl', options_list=['--fileupload-sas-ttl', '--fst'], type=int, validator=validate_fileupload_sas_ttl, help='The amount of time a SAS URI generated by IoT Hub is valid before it expires,' ' between 1 and 24 hours.') c.argument('min_tls_version', options_list=['--min-tls-version', '--mintls'], type=str, help='Specify the minimum TLS version to support for this hub. Can be set to' ' "1.2" to have clients that use a TLS version below 1.2 to be rejected.') for subgroup in ['consumer-group', 'policy', 'certificate', 'routing-endpoint', 'route']: with self.argument_context('iot hub {}'.format(subgroup)) as c: c.argument('hub_name', options_list=['--hub-name']) with self.argument_context('iot hub route') as c: c.argument('route_name', options_list=['--route-name', '--name', '-n'], help='Name of the Route.') c.argument('endpoint_name', options_list=['--endpoint-name', '--endpoint', '--en'], help='Name of the routing endpoint.') c.argument('condition', options_list=['--condition', '-c'], help='Condition that is evaluated to apply the routing rule.') c.argument('enabled', options_list=['--enabled', '-e'], arg_type=get_three_state_flag(), help='A boolean indicating whether to enable route to the Iot hub.') c.argument('source_type', arg_type=get_enum_type(RouteSourceType), options_list=['--source-type', '--type', '--source', '-s'], help='Source of the route.') with self.argument_context('iot hub route test') as c: c.argument('body', options_list=['--body', '-b'], help='Body of the route message.') c.argument('app_properties', options_list=['--app-properties', '--ap'], help='App properties of the route message.') c.argument('system_properties', options_list=['--system-properties', '--sp'], help='System properties of the route message.') with self.argument_context('iot hub routing-endpoint') as c: c.argument('endpoint_name', options_list=['--endpoint-name', '--name', '-n'], help='Name of the Routing Endpoint.') c.argument('endpoint_resource_group', options_list=['--endpoint-resource-group', '--erg', '-r'], help='Resource group of the Endpoint resoure.') c.argument('endpoint_subscription_id', options_list=['--endpoint-subscription-id', '-s'], help='SubscriptionId of the Endpoint resource.') c.argument('connection_string', options_list=['--connection-string', '-c'], help='Connection string of the Routing Endpoint.') c.argument('container_name', options_list=['--container-name', '--container'], help='Name of the storage container.') c.argument('endpoint_type', arg_type=get_enum_type(EndpointType), options_list=['--endpoint-type', '--type', '-t'], help='Type of the Routing Endpoint.') c.argument('encoding', options_list=['--encoding'], arg_type=get_enum_type(EncodingFormat), help='Encoding format for the container. The default is AVRO. ' 'Note that this field is applicable only for blob container endpoints.') c.argument('endpoint_uri', options_list=['--endpoint-uri'], help='The uri of the endpoint resource.') c.argument('entity_path', options_list=['--entity-path'], help='The entity path of the endpoint resource.') with self.argument_context('iot hub routing-endpoint create') as c: c.argument('batch_frequency', options_list=['--batch-frequency', '-b'], type=int, help='Request batch frequency in seconds. The maximum amount of time that can elapse before data is' ' written to a blob, between 60 and 720 seconds.') c.argument('chunk_size_window', options_list=['--chunk-size', '-w'], type=int, help='Request chunk size in megabytes(MB). The maximum size of blobs, between 10 and 500 MB.') c.argument('file_name_format', options_list=['--file-name-format', '--ff'], help='File name format for the blob. The file name format must contain {iothub},' ' {partition}, {YYYY}, {MM}, {DD}, {HH} and {mm} fields. All parameters are' ' mandatory but can be reordered with or without delimiters.') c.argument('authentication_type', options_list=['--auth-type'], arg_type=get_enum_type(AuthenticationType), help='Authentication type for the endpoint. The default is keyBased.') with self.argument_context('iot hub certificate') as c: c.argument('certificate_path', options_list=['--path', '-p'], type=file_type, completer=FilesCompleter([".cer", ".pem"]), help='The path to the file containing the certificate.') c.argument('certificate_name', options_list=['--name', '-n'], help='A friendly name for the certificate.') with self.argument_context('iot hub consumer-group') as c: c.argument('consumer_group_name', options_list=['--name', '-n'], id_part='child_name_2', help='Event hub consumer group name.') c.argument('event_hub_name', id_part='child_name_1', help='Event hub endpoint name.') with self.argument_context('iot hub policy') as c: c.argument('policy_name', options_list=['--name', '-n'], id_part='child_name_1', help='Shared access policy name.') permission_values = ', '.join([x.value for x in SimpleAccessRights]) c.argument('permissions', nargs='*', validator=validate_policy_permissions, type=str.lower, help='Permissions of shared access policy. Use space-separated list for multiple permissions. ' 'Possible values: {}'.format(permission_values)) with self.argument_context('iot hub policy renew-key') as c: c.argument('regenerate_key', options_list=['--renew-key', '--rk'], arg_type=get_enum_type(RenewKeyType), help='Regenerate keys') with self.argument_context('iot hub create') as c: c.argument('hub_name', completer=None) c.argument('location', get_location_type(self.cli_ctx), help='Location of your IoT Hub. Default is the location of target resource group.') with self.argument_context('iot hub show-connection-string') as c: c.argument('show_all', options_list=['--all'], help='Allow to show all shared access policies.') c.argument('hub_name', options_list=['--hub-name', '--name', '-n']) c.argument('policy_name', help='Shared access policy to use.') c.argument('key_type', arg_type=get_enum_type(KeyType), options_list=['--key'], help='The key to use.') # Arguments for Message Enrichments with self.argument_context('iot hub message-enrichment') as c: c.argument('key', options_list=['--key', '-k'], help='The enrichment\'s key.') c.argument('value', options_list=['--value', '-v'], help='The enrichment\'s value.') c.argument('endpoints', options_list=['--endpoints', '-e'], nargs='*', help='Endpoint(s) to apply enrichments to. Use a space-separated list for multiple endpoints.') with self.argument_context('iot central app') as c: c.argument('app_name', app_name_type, options_list=['--name', '-n']) with self.argument_context('iot central app create') as c: c.argument('app_name', completer=None, help='Give your IoT Central app a unique name so you can find it later.' 'This will be used as the resource name in the Azure portal and CLI.' 'Avoid special characters `-` ' 'instead, use lower case letters (a-z), numbers (0-9), and dashes (-)') c.argument('location', get_location_type(self.cli_ctx), help='Where your app\'s info and resources are stored. We will default to the location' ' of the target resource group. See documentation for a full list of supported locations.') c.argument('sku', arg_type=get_enum_type(AppSku), options_list=['--sku', '-p'], help='Pricing plan for IoT Central application.') c.argument('subdomain', options_list=['--subdomain', '-s'], help='Enter a unique URL. Your app will be accessible via https://<subdomain>.azureiotcentral.com/.' ' Avoid special characters `-` instead, use lower ' 'case letters (a-z), numbers (0-9), and dashes (-).') c.argument('template', options_list=['--template', '-t'], help='IoT Central application template name. Default is "Custom application". See documentation for' ' a list of available templates.') c.argument('display_name', options_list=['--display-name', '-d'], help='Custom display name for the IoT Central app. This will be used in the IoT Central application' ' manager to help you identify your app. Default value is the resource name.')
python
def bin_count(x): return bin(x).count('1') def logic(n, m, y): print(2) print(n, 1) if n == 0: print(1) print(1) for i in range(m): print(-1.0, end=' ') print(-1.0) return for idx in range(n): for binary in range(m): if idx & (2 ** binary) > 0: print(1.0, end=' ') else: print(-1e7, end=' ') print(0.5 - bin_count(idx)) print(*y) print(-0.5) if __name__ == '__main__': m = int(input()) y = list() for _ in range(2 ** m): y.append(int(input())) n = 2 ** m logic(n, m, y)
python
import remi.gui as gui import remi.server import collections class DraggableItem(gui.EventSource): def __init__(self, container, **kwargs): gui.EventSource.__init__(self) self.container = container self.refWidget = None self.parent = None self.active = False self.origin_x = -1 self.origin_y = -1 self.snap_grid_size = 1 def setup(self, refWidget, newParent): #refWidget is the target widget that will be resized #newParent is the container if self.parent: try: self.parent.remove_child(self) except: pass if newParent==None: return self.parent = newParent self.refWidget = refWidget try: self.parent.append(self) except: pass self.update_position() def start_drag(self, emitter, x, y): self.active = True self.container.onmousemove.connect(self.on_drag) self.container.onmouseup.connect(self.stop_drag) self.container.onmouseleave.connect(self.stop_drag, 0, 0) self.origin_x = -1 self.origin_y = -1 @gui.decorate_event def stop_drag(self, emitter, x, y): self.active = False self.update_position() return () def on_drag(self, emitter, x, y): pass def update_position(self): pass def set_snap_grid_size(self, value): self.snap_grid_size = value def round_grid(self, value): return int(value/self.snap_grid_size)*self.snap_grid_size class ResizeHelper(gui.Widget, DraggableItem): def __init__(self, container, **kwargs): super(ResizeHelper, self).__init__(**kwargs) DraggableItem.__init__(self, container, **kwargs) self.style['float'] = 'none' self.style['position'] = 'absolute' self.style['left']='0px' self.style['top']='0px' self.onmousedown.connect(self.start_drag) def setup(self, refWidget, newParent): if type(refWidget) in [gui.Widget, gui.Button, gui.GridBox, gui.VBox, gui.HBox, gui.ListView, gui.DropDown, gui.Label, gui.Image, gui.Link, gui.TableWidget, gui.TextInput, gui.CheckBox, gui.CheckBox, gui.CheckBoxLabel, gui.Slider, gui.SpinBox, gui.ColorPicker, gui.Svg, gui.VideoPlayer, gui.Progress]: DraggableItem.setup(self, refWidget, newParent) def on_drag(self, emitter, x, y): if self.active: if self.origin_x == -1: self.origin_x = float(x) self.origin_y = float(y) self.refWidget_origin_w = gui.from_pix(self.refWidget.style['width']) self.refWidget_origin_h = gui.from_pix(self.refWidget.style['height']) else: self.refWidget.style['width'] = gui.to_pix( self.round_grid( self.refWidget_origin_w + float(x) - self.origin_x ) ) self.refWidget.style['height'] = gui.to_pix( self.round_grid( self.refWidget_origin_h + float(y) - self.origin_y ) ) self.update_position() def update_position(self): self.style['position']='absolute' if self.refWidget: if 'left' in self.refWidget.style and 'top' in self.refWidget.style: self.style['left']=gui.to_pix(gui.from_pix(self.refWidget.style['left']) + gui.from_pix(self.refWidget.style['width']) ) self.style['top']=gui.to_pix(gui.from_pix(self.refWidget.style['top']) + gui.from_pix(self.refWidget.style['height']) ) class DragHelper(gui.Widget, DraggableItem): def __init__(self, container, **kwargs): super(DragHelper, self).__init__(**kwargs) DraggableItem.__init__(self, container, **kwargs) self.style['float'] = 'none' self.style['position'] = 'absolute' self.style['left']='0px' self.style['top']='0px' self.onmousedown.connect(self.start_drag) def setup(self, refWidget, newParent): if type(refWidget) in [gui.Widget, gui.Button, gui.GridBox, gui.VBox, gui.HBox, gui.ListView, gui.DropDown, gui.Label, gui.Image, gui.Link, gui.TableWidget, gui.TextInput, gui.CheckBox, gui.CheckBox, gui.CheckBoxLabel, gui.Slider, gui.SpinBox, gui.ColorPicker, gui.Svg, gui.VideoPlayer, gui.Progress]: DraggableItem.setup(self, refWidget, newParent) def on_drag(self, emitter, x, y): if self.active: if self.origin_x == -1: self.origin_x = float(x) self.origin_y = float(y) self.refWidget_origin_x = gui.from_pix(self.refWidget.style['left']) self.refWidget_origin_y = gui.from_pix(self.refWidget.style['top']) else: self.refWidget.style['left'] = gui.to_pix( self.round_grid( self.refWidget_origin_x + float(x) - self.origin_x ) ) self.refWidget.style['top'] = gui.to_pix( self.round_grid( self.refWidget_origin_y + float(y) - self.origin_y ) ) self.update_position() def update_position(self): self.style['position']='absolute' if self.refWidget: if 'left' in self.refWidget.style and 'top' in self.refWidget.style: self.style['left']=gui.to_pix(gui.from_pix(self.refWidget.style['left'])-gui.from_pix(self.style['width'])) self.style['top']=gui.to_pix(gui.from_pix(self.refWidget.style['top'])-gui.from_pix(self.style['width'])) class SvgComposedPoly(gui.SvgGroup): """ A group of polyline and circles """ def __init__(self, x, y, maxlen, stroke, color, **kwargs): super(SvgComposedPoly, self).__init__(x, y, **kwargs) self.maxlen = maxlen self.plotData = gui.SvgPolyline(self.maxlen) self.append(self.plotData) self.set_stroke(stroke, color) self.set_fill(color) self.circle_radius = stroke self.circles_list = list() self.x_factor = 1.0 self.y_factor = 1.0 def add_coord(self, x, y): """ Adds a coord to the polyline and creates another circle """ x = x*self.x_factor y = y*self.y_factor self.plotData.add_coord(x, y) #self.circles_list.append(gui.SvgCircle(x, y, self.circle_radius)) #self.append(self.circles_list[-1]) #if len(self.circles_list) > self.maxlen: # self.remove_child(self.circles_list[0]) # del self.circles_list[0] def scale(self, x_factor, y_factor): self.x_factor = x_factor/self.x_factor self.y_factor = y_factor/self.y_factor self.plotData.attributes['points'] = "" tmpx = collections.deque() tmpy = collections.deque() for c in self.circles_list: self.remove_child(c) self.circles_list = list() while len(self.plotData.coordsX)>0: tmpx.append( self.plotData.coordsX.popleft() ) tmpy.append( self.plotData.coordsY.popleft() ) while len(tmpx)>0: self.add_coord(tmpx.popleft(), tmpy.popleft()) self.x_factor = x_factor self.y_factor = y_factor class SvgPlot(gui.Svg): def __init__(self, width, height): super(SvgPlot, self).__init__(width, height) self.width = width self.height = height self.polyList = [] self.font_size = 15 self.plot_inner_border = self.font_size self.textYMin = gui.SvgText(0, self.height + self.font_size, "min") self.textYMax = gui.SvgText(0, 0, "max") self.textYMin.style['font-size'] = gui.to_pix(self.font_size) self.textYMax.style['font-size'] = gui.to_pix(self.font_size) self.append([self.textYMin, self.textYMax]) def append_poly(self, polys): for poly in polys: self.append(poly) self.polyList.append(poly) poly.textXMin = gui.SvgText(0, 0, "actualValue") poly.textXMax = gui.SvgText(0, 0, "actualValue") poly.textYVal = gui.SvgText(0, 0, "actualValue") poly.textYVal.style['font-size'] = gui.to_pix(self.font_size) poly.lineYValIndicator = gui.SvgLine(0, 0, 0, 0) poly.lineXMinIndicator = gui.SvgLine(0, 0, 0, 0) poly.lineXMaxIndicator = gui.SvgLine(0, 0, 0, 0) self.append([poly.textXMin, poly.textXMax, poly.textYVal, poly.lineYValIndicator, poly.lineXMinIndicator, poly.lineXMaxIndicator]) def remove_poly(self, poly): self.remove_child(poly) self.polyList.remove(poly) self.remove_child(poly.textXMin) self.remove_child(poly.textXMax) self.remove_child(poly.textYVal) def render(self): self.set_viewbox(-self.plot_inner_border, -self.plot_inner_border, self.width + self.plot_inner_border * 2, self.height + self.plot_inner_border * 2) if len(self.polyList) < 1: return minX = min(self.polyList[0].plotData.coordsX) maxX = max(self.polyList[0].plotData.coordsX) minY = min(self.polyList[0].plotData.coordsY) maxY = max(self.polyList[0].plotData.coordsY) for poly in self.polyList: minX = min(minX, min(poly.plotData.coordsX)) maxX = max(maxX, max(poly.plotData.coordsX)) minY = min(minY, min(poly.plotData.coordsY)) maxY = max(maxY, max(poly.plotData.coordsY)) self.textYMin.set_text("min:%s" % minY) self.textYMax.set_text("max:%s" % maxY) i = 1 for poly in self.polyList: scaledTranslatedYpos = (-poly.plotData.coordsY[-1] + maxY + (self.height-(maxY-minY))/2.0) textXpos = self.height / (len(self.polyList) + 1) * i poly.textXMin.set_text(str(min(poly.plotData.coordsX))) poly.textXMin.set_fill(poly.attributes['stroke']) poly.textXMin.set_position(-textXpos, (min(poly.plotData.coordsX) - minX) ) poly.textXMin.attributes['transform'] = "rotate(%s)" % (-90) poly.textXMax.set_text(str(max(poly.plotData.coordsX))) poly.textXMax.set_fill(poly.attributes['stroke']) poly.textXMax.set_position(-textXpos, (max(poly.plotData.coordsX) - minX) ) poly.textXMax.attributes['transform'] = "rotate(%s)" % (-90) poly.textYVal.set_text(str(poly.plotData.coordsY[-1])) poly.textYVal.set_fill(poly.attributes['stroke']) poly.textYVal.set_position(0, scaledTranslatedYpos) poly.lineYValIndicator.set_stroke(1, poly.attributes['stroke']) poly.lineXMinIndicator.set_stroke(1, poly.attributes['stroke']) poly.lineXMaxIndicator.set_stroke(1, poly.attributes['stroke']) poly.lineYValIndicator.set_coords(0, scaledTranslatedYpos, self.width, scaledTranslatedYpos) poly.lineXMinIndicator.set_coords((min(poly.plotData.coordsX) - minX), 0, (min(poly.plotData.coordsX) - minX), self.height) poly.lineXMaxIndicator.set_coords((max(poly.plotData.coordsX) - minX), 0, (max(poly.plotData.coordsX) - minX), self.height) poly.attributes['transform'] = ('translate(%s,%s)' % (-minX, maxY + (self.height-(maxY-minY))/2.0) + ' scale(%s,%s)' % ((1.0), -(1.0))) i = i + 1
python
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'EA.ui' # # Created by: PyQt5 UI code generator 5.6 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Form(object): def setupUi(self, Form): Form.setObjectName("Form") Form.resize(1130, 807) self.verticalLayout = QtWidgets.QVBoxLayout(Form) self.verticalLayout.setContentsMargins(2, 2, 2, 2) self.verticalLayout.setSpacing(20) self.verticalLayout.setObjectName("verticalLayout") self.fgdc_eainfo = QtWidgets.QTabWidget(Form) self.fgdc_eainfo.setTabPosition(QtWidgets.QTabWidget.West) self.fgdc_eainfo.setObjectName("fgdc_eainfo") self.tab_instructions = QtWidgets.QWidget() self.tab_instructions.setObjectName("tab_instructions") self.verticalLayout_4 = QtWidgets.QVBoxLayout(self.tab_instructions) self.verticalLayout_4.setContentsMargins(25, 15, 0, 25) self.verticalLayout_4.setSpacing(20) self.verticalLayout_4.setObjectName("verticalLayout_4") self.label_5 = QtWidgets.QLabel(self.tab_instructions) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_5.sizePolicy().hasHeightForWidth()) self.label_5.setSizePolicy(sizePolicy) self.label_5.setMinimumSize(QtCore.QSize(15, 0)) self.label_5.setMaximumSize(QtCore.QSize(16777215, 20)) font = QtGui.QFont() font.setFamily("Arial") font.setPointSize(9) font.setBold(False) font.setItalic(False) font.setWeight(50) self.label_5.setFont(font) self.label_5.setTextFormat(QtCore.Qt.RichText) self.label_5.setScaledContents(False) self.label_5.setAlignment(QtCore.Qt.AlignHCenter|QtCore.Qt.AlignTop) self.label_5.setIndent(0) self.label_5.setObjectName("label_5") self.verticalLayout_4.addWidget(self.label_5) self.label_2 = QtWidgets.QLabel(self.tab_instructions) self.label_2.setWordWrap(True) self.label_2.setObjectName("label_2") self.verticalLayout_4.addWidget(self.label_2) self.label_4 = QtWidgets.QLabel(self.tab_instructions) self.label_4.setObjectName("label_4") self.verticalLayout_4.addWidget(self.label_4) spacerItem = QtWidgets.QSpacerItem(20, 419, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.verticalLayout_4.addItem(spacerItem) self.widget = QtWidgets.QWidget(self.tab_instructions) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.widget.sizePolicy().hasHeightForWidth()) self.widget.setSizePolicy(sizePolicy) self.widget.setMinimumSize(QtCore.QSize(700, 150)) self.widget.setObjectName("widget") self.verticalLayout_5 = QtWidgets.QVBoxLayout(self.widget) self.verticalLayout_5.setContentsMargins(0, 0, 0, 0) self.verticalLayout_5.setObjectName("verticalLayout_5") self.groupBox = QtWidgets.QGroupBox(self.widget) self.groupBox.setStyleSheet("QGroupBox{ \n" "font: 75 10pt \"Arial\";\n" "border: 1px solid black;\n" "border-radius: 3px;\n" "background: QLinearGradient(x1: 0, y1: 0, x2: 0, y2: 1, stop: 0 #eef, stop: 1 #ccf);\n" "} ") self.groupBox.setObjectName("groupBox") self.verticalLayout_3 = QtWidgets.QVBoxLayout(self.groupBox) self.verticalLayout_3.setObjectName("verticalLayout_3") self.label_34 = QtWidgets.QLabel(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_34.sizePolicy().hasHeightForWidth()) self.label_34.setSizePolicy(sizePolicy) self.label_34.setStyleSheet("font: italic;") self.label_34.setWordWrap(True) self.label_34.setObjectName("label_34") self.verticalLayout_3.addWidget(self.label_34) self.label_35 = QtWidgets.QLabel(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_35.sizePolicy().hasHeightForWidth()) self.label_35.setSizePolicy(sizePolicy) self.label_35.setStyleSheet("font: italic;") self.label_35.setWordWrap(True) self.label_35.setObjectName("label_35") self.verticalLayout_3.addWidget(self.label_35) self.horizontalLayout_2 = QtWidgets.QHBoxLayout() self.horizontalLayout_2.setObjectName("horizontalLayout_2") spacerItem1 = QtWidgets.QSpacerItem(38, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_2.addItem(spacerItem1) self.btn_add_detailed = QtWidgets.QPushButton(self.groupBox) self.btn_add_detailed.setObjectName("btn_add_detailed") self.horizontalLayout_2.addWidget(self.btn_add_detailed) spacerItem2 = QtWidgets.QSpacerItem(38, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_2.addItem(spacerItem2) self.verticalLayout_3.addLayout(self.horizontalLayout_2) self.verticalLayout_5.addWidget(self.groupBox) self.verticalLayout_4.addWidget(self.widget) self.fgdc_eainfo.addTab(self.tab_instructions, "") self.fgdc_overview = QtWidgets.QWidget() self.fgdc_overview.setObjectName("fgdc_overview") self.label = QtWidgets.QLabel(self.fgdc_overview) self.label.setGeometry(QtCore.QRect(30, 30, 111, 16)) self.label.setObjectName("label") self.fgdc_eaover = QtWidgets.QPlainTextEdit(self.fgdc_overview) self.fgdc_eaover.setGeometry(QtCore.QRect(30, 50, 571, 192)) self.fgdc_eaover.setObjectName("fgdc_eaover") self.label_6 = QtWidgets.QLabel(self.fgdc_overview) self.label_6.setGeometry(QtCore.QRect(30, 250, 111, 16)) self.label_6.setObjectName("label_6") self.fgdc_eadetcit = QtWidgets.QPlainTextEdit(self.fgdc_overview) self.fgdc_eadetcit.setGeometry(QtCore.QRect(30, 270, 571, 192)) self.fgdc_eadetcit.setObjectName("fgdc_eadetcit") self.fgdc_eainfo.addTab(self.fgdc_overview, "") self.verticalLayout.addWidget(self.fgdc_eainfo) self.retranslateUi(Form) self.fgdc_eainfo.setCurrentIndex(0) QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): _translate = QtCore.QCoreApplication.translate Form.setWindowTitle(_translate("Form", "Form")) self.label_5.setToolTip(_translate("Form", "Required")) self.label_5.setText(_translate("Form", "<html><head/><body><p><span style=\" font-size:12pt; font-style:italic; color:#55aaff;\">Provide Specific Information about the data content, organization, units, and values.</span></p></body></html>")) self.label_2.setText(_translate("Form", "If this record describes a CSV, Shapefile, or other tabular or spatial dataset you need to fill out a Detailed section. Use the \'Browse to Dataset\' button on a detailed tab to autopopulate this section with the column labels and values. Then provide definitions for each column (attribute) and values. \n" "\n" "If this record describes multiple files or sheets, one Detailed section should be created for each, see below.")) self.label_4.setText(_translate("Form", "Use both the Overview and one or more Detailed sections if that provides more clarity to data users.")) self.groupBox.setTitle(_translate("Form", "Additional \'Detailed\' tabs")) self.label_34.setText(_translate("Form", "In some cases more than one Detailed section is required. This could be the case if the metadata record is describing multiple CSV files, multiple worksheets in an Excel Workbook, or a data bundle consisting of multiple files.")) self.label_35.setText(_translate("Form", "Use the button below to add additional Detailed sections. These can be removed from their respective tab, using the \'Remove this Detailed\' Button")) self.btn_add_detailed.setText(_translate("Form", "Add Detailed")) self.fgdc_eainfo.setTabText(self.fgdc_eainfo.indexOf(self.tab_instructions), _translate("Form", "Instructions")) self.label.setText(_translate("Form", "Overview Description")) self.label_6.setText(_translate("Form", "Citation")) self.fgdc_eainfo.setTabText(self.fgdc_eainfo.indexOf(self.fgdc_overview), _translate("Form", "Overview"))
python
from flask_appbuilder.security.sqla.apis.permission import PermissionApi # noqa: F401 from flask_appbuilder.security.sqla.apis.permission_view_menu import ( # noqa: F401 PermissionViewMenuApi, ) from flask_appbuilder.security.sqla.apis.role import RoleApi # noqa: F401 from flask_appbuilder.security.sqla.apis.user import UserApi # noqa: F401 from flask_appbuilder.security.sqla.apis.view_menu import ViewMenuApi # noqa: F401
python
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2013-2016 DNAnexus, Inc. # # This file is part of dx-toolkit (DNAnexus platform client libraries). # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import print_function, unicode_literals, division, absolute_import import os import unittest import shutil import random import time import dxpy from dxpy_testutil import (DXTestCase, temporary_project, run) import dxpy_testutil as testutil import pytest CACHE_DIR = '/tmp/dx-docker-cache' def create_file_in_project(fname, trg_proj_id, folder=None): data = "foo" if folder is None: dxfile = dxpy.upload_string(data, name=fname, project=trg_proj_id, wait_on_close=True) else: dxfile = dxpy.upload_string(data, name=fname, project=trg_proj_id, folder=folder, wait_on_close=True) return dxfile.get_id() def create_project(): project_name = "test_dx_cp_" + str(random.randint(0, 1000000)) + "_" + str(int(time.time() * 1000)) return dxpy.api.project_new({'name': project_name})['id'] def rm_project(proj_id): dxpy.api.project_destroy(proj_id, {"terminateJobs": True}) def create_folder_in_project(proj_id, path): dxpy.api.project_new_folder(proj_id, {"folder": path}) @unittest.skipUnless(testutil.TEST_DX_DOCKER, 'skipping tests that would run dx-docker') class TestDXDocker(DXTestCase): @classmethod def tearDownClass(cls): shutil.rmtree(CACHE_DIR) @classmethod def setUpClass(cls): run("docker pull ubuntu:14.04") run("docker pull busybox") def test_dx_docker_pull(self): run("dx-docker pull ubuntu:14.04") self.assertTrue(os.path.isfile(os.path.join(CACHE_DIR, 'ubuntu%3A14.04.aci'))) run("dx-docker pull ubuntu:15.04") self.assertTrue(os.path.isfile(os.path.join(CACHE_DIR, 'ubuntu%3A15.04.aci'))) def test_dx_docker_pull_silent(self): dx_docker_out = run("dx-docker pull -q busybox").strip() self.assertEqual(dx_docker_out, '') def test_dx_docker_pull_quay(self): run("dx-docker pull quay.io/ucsc_cgl/samtools") self.assertTrue(os.path.isfile(os.path.join(CACHE_DIR, 'quay.io%2Fucsc_cgl%2Fsamtools.aci'))) def test_dx_docker_pull_hash_or_not(self): run("dx-docker pull dnanexus/testdocker") self.assertTrue(os.path.isfile(os.path.join(CACHE_DIR, 'dnanexus%2Ftestdocker.aci'))) repo = "dnanexus/testdocker@sha256:4f983c07e762f5afadf9c45ccd6a557e1a414460e769676826b01c99c4ccb1cb" run("dx-docker pull {}".format(repo)) sanit='dnanexus%2Ftestdocker%40sha256%3A4f983c07e762f5afadf9c45ccd6a557e1a414460e769676826b01c99c4ccb1cb.aci' self.assertTrue(os.path.isfile(os.path.join(CACHE_DIR, sanit))) def test_dx_docker_pull_failure(self): with self.assertSubprocessFailure(exit_code=1, stderr_regexp='Failed to obtain image'): run("dx-docker pull busyboxasdf") @pytest.mark.TRACEABILITY_MATRIX @testutil.update_traceability_matrix(["DNA_CLI_APP_RUN_DOCKER_CONTAINERS"]) def test_dx_docker_basic_commands(self): run("dx-docker run ubuntu:14.04 ls --color") run("dx-docker run ubuntu:15.04 ls") def test_dx_docker_run_from_hash(self): repo = "dnanexus/testdocker@sha256:4f983c07e762f5afadf9c45ccd6a557e1a414460e769676826b01c99c4ccb1cb" run("dx-docker run {}".format(repo)) def test_dx_docker_run_error_codes(self): with self.assertSubprocessFailure(exit_code=1): run("dx-docker run ubuntu:14.04 false") run("dx-docker run ubuntu:14.04 true") def test_dx_docker_volume(self): os.makedirs('dxdtestdata') run("dx-docker run -v dxdtestdata:/data-host ubuntu:14.04 touch /data-host/newfile.txt") self.assertTrue(os.path.isfile(os.path.join('dxdtestdata', 'newfile.txt'))) shutil.rmtree('dxdtestdata') def test_dx_docker_entrypoint_cmd(self): docker_out = run("docker run dnanexus/testdocker /bin") dx_docker_out = run("dx-docker run -q dnanexus/testdocker /bin") self.assertEqual(docker_out, dx_docker_out) def test_dx_docker_home_dir(self): run("dx-docker run julia:0.5.0 julia -E 'println(\"hello world\")'") def test_dx_docker_run_rm(self): run("dx-docker run --rm ubuntu ls") def test_dx_docker_set_env(self): dx_docker_out = run("dx-docker run --env HOME=/somethingelse busybox env") self.assertTrue(dx_docker_out.find("HOME=/somethingelse") != -1) def test_dx_docker_run_canonical(self): run("dx-docker run quay.io/ucsc_cgl/samtools --help") def test_dx_docker_add_to_applet(self): os.makedirs('tmpapp') run("docker pull busybox") with self.assertSubprocessFailure(exit_code=1, stderr_regexp='does not appear to have a dxapp.json that parses'): run("dx-docker add-to-applet busybox tmpapp") with open('tmpapp/dxapp.json', 'w') as dxapp: dxapp.write("[]") run("dx-docker add-to-applet busybox tmpapp") self.assertTrue(os.path.isfile(os.path.join('tmpapp', 'resources/tmp/dx-docker-cache/busybox.aci'))) shutil.rmtree('tmpapp') def test_dx_docker_create_asset(self): with temporary_project(select=True) as temp_project: test_projectid = temp_project.get_id() run("docker pull ubuntu:14.04") run("dx-docker create-asset ubuntu:14.04") self.assertEqual(run("dx ls ubuntu\\\\:14.04").strip(), 'ubuntu:14.04') create_folder_in_project(test_projectid, '/testfolder') run("dx-docker create-asset busybox -o testfolder") ls_out = run("dx ls /testfolder").strip() self.assertEqual(ls_out, 'busybox') ls_out = run("dx ls testfolder\\/busybox.tar.gz").strip() self.assertEqual(ls_out, 'busybox.tar.gz') def test_dx_docker_create_asset_with_short_imageid(self): with temporary_project(select=True) as temp_project: test_projectid = temp_project.get_id() run("docker pull ubuntu:14.04") short_id = run("docker images -q ubuntu:14.04").strip() create_folder_in_project(test_projectid, '/testfolder') run("dx-docker create-asset {short_id} -o testfolder".format(short_id=short_id)) ls_out = run("dx ls /testfolder").strip() self.assertEqual(ls_out, short_id) def test_dx_docker_create_asset_with_long_imageid(self): with temporary_project(select=True) as temp_project: test_projectid = temp_project.get_id() run("docker pull ubuntu:14.04") long_id = run("docker images --no-trunc -q ubuntu:14.04").strip() create_folder_in_project(test_projectid, '/testfolder') run("dx-docker create-asset {long_id} -o testfolder".format(long_id=long_id)) ls_out = run("dx ls /testfolder").strip() self.assertEqual(ls_out, long_id) def test_dx_docker_create_asset_with_image_digest(self): with temporary_project(select=True) as temp_project: test_projectid = temp_project.get_id() run("docker pull ubuntu:14.04") create_folder_in_project(test_projectid, '/testfolder') image_digest = run("docker inspect ubuntu:14.04 | jq -r '.[] | .RepoDigests[0]'").strip() run("dx-docker create-asset {image_digest} -o testfolder".format(image_digest=image_digest)) ls_out = run("dx ls /testfolder").strip() self.assertEqual(ls_out, image_digest) def test_dx_docker_additional_container(self): run("dx-docker run busybox ls") def test_dx_docker_working_dir_override(self): run("dx-docker run -v $PWD:/tmp -w /tmp quay.io/ucsc_cgl/samtools faidx test.fa") def test_complex_quote(self): run('dx-docker run python:2-slim /bin/sh -c "echo \'{"foo": {"location": "file:///"}}\' > /dev/stdout"')
python
# # The XBUILD builder. # # (c) 2012 The XTK Developers <[email protected]> # import datetime import os import stat import sys import subprocess import config from _cdash import CDash from _colors import Colors from _jsfilefinder import JSFileFinder from _licenser import Licenser # # # class Builder( object ): ''' ''' def run( self, options=None ): ''' Performs the action. ''' print 'Building ' + config.SOFTWARE_SHORT + '...' # grab all js files filefinder = JSFileFinder() jsfiles = filefinder.run() arguments = [] # add js files for j in jsfiles: arguments.extend( ['-i', j] ) # add the project root arguments.extend( ['--root', config.SOFTWARE_PATH] ) # set the output mode to compiled arguments.extend( ['-o', 'compiled'] ) # configure the compiler path arguments.extend( ['-c', config.CLOSURECOMPILER_PATH] ) # configure the output file arguments.extend( ['--output_file', config.BUILD_OUTPUT_PATH] ) # configure additional compiler arguments arguments.extend( [ '-f', '--warning_level=VERBOSE'] ) # verbose arguments.extend( [ '-f', '--compilation_level=ADVANCED_OPTIMIZATIONS'] ) # advanced compilation arguments.extend( [ '-f', '--jscomp_warning=missingProperties'] ) # enable strict mode 1 arguments.extend( [ '-f', '--jscomp_warning=checkTypes'] ) # enable strict mode 2 arguments.extend( ['-f', '--summary_detail_level=3'] ) # always show summary arguments.extend( [ '-f', '--define=goog.DEBUG=false'] ) # turn of closure library debugging # add the goog/deps.js file from closure according to # https://code.google.com/p/closure-library/wiki/FrequentlyAskedQuestions#When_I_compile_with_type-checking_on,_I_get_warnings_about_unkno arguments.extend( [ '-f', '--js=' + config.CLOSURELIBRARY_DEPS_PATH] ) # if enabled, set debug options if options.debug: arguments.extend( ['-f', '--debug'] ) arguments.extend( ['-f', '--formatting=PRETTY_PRINT'] ) # # call the compiler (through the closure builder) # # make sure the closurebuilder is executable st = os.stat( config.CLOSUREBUILDER_PATH ) os.chmod( config.CLOSUREBUILDER_PATH, st.st_mode | stat.S_IEXEC ) command = [config.CLOSUREBUILDER_PATH] command.extend( arguments ) process = subprocess.Popen( command, bufsize=0, stdout=subprocess.PIPE, stderr=subprocess.STDOUT ) # ignore the next X lines ignoreNext = 0 # save warnings and errors in a log logActive = False log = [] # fancy displaying using ANSI colors for line in process.stdout: if ignoreNext > 0: # we ignore this line ignoreNext -= 1 continue line = line.strip( '\n' ) color = Colors._CLEAR # default is no color # colorize depending on line content if line.find( 'Scanning' ) != -1: color = Colors.YELLOW elif line.find( 'scanned' ) != -1: color = Colors.YELLOW elif line.find( 'Building' ) != -1: color = Colors.PURPLE elif line.find( 'Compiling' ) != -1: color = Colors.PURPLE # start logging now logActive = True elif line.find( 'ERROR' ) != -1: color = Colors.RED elif line.find( 'WARNING' ) != -1: # this is a warning, only display these if verbose mode is on if not options.verbose: ignoreNext = 3 # and ignore the next 2 lines continue color = Colors.ORANGE if logActive: # log this line if we are in logging mode log.append( line ) # print colored line print color + line + Colors._CLEAR # we have errors and warnings logged now log = log[1:-1] # remove first and last log entries since they are additional information # now we create a dashboard submission file cdasher = CDash() xmlfile = cdasher.run( ['Build', log, True] ) with open( os.path.join( config.TEMP_PATH, config.SOFTWARE_SHORT + '_Build.xml' ), 'w' ) as f: f.write( xmlfile ) # and add a timestamp to the compiled file with open( config.BUILD_OUTPUT_PATH, 'r' ) as f: content = f.read() # read everything in the file now = datetime.datetime.now() content_with_timestamp = content.replace( '###TIMESTAMP###', now.strftime( '%Y-%m-%d %H:%M:%S' ) ) with open( config.BUILD_OUTPUT_PATH, 'w' ) as f: f.write( content_with_timestamp ) # write the new stuff # and attach the license licenser = Licenser() licenser.run() print Colors.ORANGE + 'Compiled file ' + Colors.CYAN + config.BUILD_OUTPUT_PATH + Colors.ORANGE + ' written. ' + Colors._CLEAR
python
import logging from src.backup.datastore.backup_finder import BackupFinder from src.restore.list.backup_list_restore_service import \ BackupListRestoreRequest, BackupItem, BackupListRestoreService from src.restore.status.restoration_job_status_service import \ RestorationJobStatusService class TableRestoreService(object): @classmethod def restore(cls, table_reference, target_project_id, target_dataset_id, create_disposition, write_disposition, restoration_datetime): backup = BackupFinder.for_table(table_reference, restoration_datetime) restore_request = BackupListRestoreRequest([BackupItem(backup.key)], target_project_id, target_dataset_id, create_disposition, write_disposition) restoration_job_id = BackupListRestoreService().restore(restore_request) logging.info("Scheduled restoration job: %s", restoration_job_id) return { 'restorationJobId': restoration_job_id, 'restorationStatusEndpoint': RestorationJobStatusService.get_status_endpoint(restoration_job_id), 'restorationWarningsOnlyStatusEndpoint': RestorationJobStatusService.get_warnings_only_status_endpoint(restoration_job_id) }
python
class Solution: def findMaxForm(self, strs: List[str], m: int, n: int) -> int: # 初始化dp[i][j] 当成二维的01背包问题 dp=[[0]*(n+1) for _ in range(m+1)] for str in strs: zeroNum = 0 oneNum = 0 #获得每个str下有几个0 和几个1 相当于物品价值 for i in str: if i == '0': zeroNum+=1 else: oneNum+=1 for i in range(m, zeroNum-1, -1): for j in range(n, oneNum-1, -1): dp[i][j] = max(dp[i][j], dp[i-zeroNum][j-oneNum] + 1) return dp[-1][-1]
python
import sys assert sys.version_info >= (3,9), "This script requires at least Python 3.9" world = { "uuid": "1A507EF7-87D8-4EBA-865E-C5D36673C916", "name": "YELLOWSTONE", "creator": "Twine", "creatorVersion": "2.3.14", "schemaName": "Harlowe 3 to JSON", "schemaVersion": "0.0.6", "createdAtMs": 1631210521173, "passages": [ { "name": "WELCOME TO YELLOWSTONE", "tags": "", "id": "1", "text": "You are at the entrance to Yellowstone, you have the option to advance to the Cabin or the fire pit. \n[[CABIN -> Cabin]]\n[[FIRE PIT -> Fire pit]]", "links": [ { "linkText": "CABIN", "passageName": "Cabin", "original": "[[CABIN -> Cabin]]" }, { "linkText": "FIRE PIT", "passageName": "Fire pit", "original": "[[FIRE PIT -> Fire pit]]" } ], "hooks": [], "cleanText": "You are at the entrance to Yellowstone, you have the option to advance to the Cabin or the fire pit." }, { "name": "Cabin", "tags": "", "id": "2", "text": "You enter the cabin to find no one inside, but you find a note on the desk that says (text-style:\"bold\",\"italic\",\"smear\")[\"HELP FIND US, HE CAN'T BE TRUSTED\"] You now have the option to retreat to the entrance, or advance to the fire pit or the forest.\n[[ENTRANCE ->WELCOME TO YELLOWSTONE]] \n[[FIRE PIT -> Fire pit]]\n[[FOREST -> Forest]]", "links": [ { "linkText": "ENTRANCE", "passageName": "WELCOME TO YELLOWSTONE", "original": "[[ENTRANCE ->WELCOME TO YELLOWSTONE]]" }, { "linkText": "FIRE PIT", "passageName": "Fire pit", "original": "[[FIRE PIT -> Fire pit]]" }, { "linkText": "FOREST", "passageName": "Forest", "original": "[[FOREST -> Forest]]" } ], "hooks": [ { "hookText": "\"HELP FIND US, HE CAN'T BE TRUSTED\"", "original": "side, but you find a note on the desk that says (text-style:\"bold\",\"italic\",\"smear\")" } ], "cleanText": "You enter the cabin to find no one in but you find a note that says 'HELP FIND US, HE WILL KILL US ALL' You now have the option to retreat to the entrance, or advance to the fire pit or the forest." }, { "name": "Fire pit", "tags": "", "id": "3", "text": "You are at the fire pit, and you find a log with the information and photos of three missing Park Rangers: Melissa, Joshua, and Francis. You are determined to find them, but worrisome about what caused them to go missing. You have the option to go to cabin, the forest, or back to the entrance.\n[[ENTRANCE ->WELCOME TO YELLOWSTONE]] \n[[CABIN -> Cabin]]\n[[FOREST -> Forest]]", "links": [ { "linkText": "ENTRANCE", "passageName": "WELCOME TO YELLOWSTONE", "original": "[[ENTRANCE ->WELCOME TO YELLOWSTONE]]" }, { "linkText": "CABIN", "passageName": "Cabin", "original": "[[CABIN -> Cabin]]" }, { "linkText": "FOREST", "passageName": "Forest", "original": "[[FOREST -> Forest]]" } ], "hooks": [], "cleanText": "You are at the fire pit, and you find a log with the information and photos of three missing Park Rangers: Melissa, Joshua, and Francis. You are determined to find them, but worrisome about what caused them to go missing. You have the option to go to cabin, the forest, or back to the entrance." }, { "name": "Forest", "tags": "", "id": "4", "text": "You have now entered the forest, you see three pathways, one leads to a ledge, the other leads down a narrow path but with visible foot prints heading down the path, and finally the third path leads into a cave with a bloody handprint on the outter stone. You have three options: ledge, narrow path, cave.\n[[ENTRANCE ->WELCOME TO YELLOWSTONE]] \n[[LEDGE -> Ledge]]\n[[NARROW PATH -> Narrow Path]]\n[[CAVE -> Cave]]", "links": [ { "linkText": "ENTRANCE", "passageName": "WELCOME TO YELLOWSTONE", "original": "[[ENTRANCE ->WELCOME TO YELLOWSTONE]]" }, { "linkText": "LEDGE", "passageName": "Ledge", "original": "[[LEDGE -> Ledge]]" }, { "linkText": "NARROW PATH", "passageName": "Narrow Path", "original": "[[NARROW PATH -> Narrow Path]]" }, { "linkText": "CAVE", "passageName": "Cave", "original": "[[CAVE -> Cave]]" } ], "hooks": [], "cleanText": "You have now entered the forest, you see three pathways, one leads to a ledge, the other leads down a narrow path but with visible foot prints heading down the path, and finally the third path leads into a cave with a bloody handprint on the outter stone. You have three options: ledge, narrow path, cave." }, { "name": "Ledge", "tags": "", "id": "5", "score":10, "text": "As you walk up to the ledge something feels off, you look down and about 80 feet down a body lays there that fits the description of Joshua. You cross off his name and begin to panic and try to contact the authorities, but there is no cell service. You have the option to return to the forest.\n[[FOREST -> Forest]]", "links": [ { "linkText": "FOREST", "passageName": "Forest", "original": "[[FOREST -> Forest]]" } ], "hooks": [], "cleanText": "As you walk up to the ledge something feels off, you look down and about 80 feet down a body lays there that fits the description of Joshua. You cross off his name and begin to panic and try to contact the authorities, but there is no cell service. You have the option to return to the forest." }, { "name": "Narrow Path", "tags": "", "id": "6", "text": "You continue down the narrow path until you find a fork in the path, leading off in two directions. There is a sign that states going left will take you to the lake, and going right will take you to the equestrian park. You have two options: Lake, or Equestrian.\n[[LAKE -> Lake]]\n[[EQUESTRIAN -> Equestrian Park]]", "links": [ { "linkText": "LAKE", "passageName": "Lake", "original": "[[LAKE -> Lake]]" }, { "linkText": "EQUESTRIAN", "passageName": "Equestrian Park", "original": "[[EQUESTRIAN -> Equestrian Park]]" } ], "hooks": [], "cleanText": "You continue down the narrow path until you find a fork in the path, leading off in two directions. There is a sign that states going left will take you to the lake, and going right will take you to the equestrian park. You have two options: Lake or Equestrian." }, { "name": "Cave", "tags": "", "id": "7", "text": "As you approach the cave you investigate the bloody handprint. You use your phones flashlight so you can see in the cave, and written in blood on the wall you see [BEWARE OF THE STABLES] frightened you retreat out of the cave. Your only option is to retreat to the forest.\n[[FOREST -> Forest]]", "links": [ { "linkText": "CAVE", "passageName": "Cave", "original": "[[CAVE -> Cave]]" }, { "linkText": "FOREST", "passageName": "Forest", "original": "[[FOREST -> Forest]]" } ], "hooks": [], "cleanText": "As you approach the cave you investigate the bloody handprint. You use your phones flashlight so you can see in the cave, and written in blood on the wall you see [BEWARE OF THE STABLES] frightened you retreat out of the cave. Your only option is to retreat to the forest." }, { "name": "Lake", "tags": "", "id": "8", "text": "Once you get to the lake you find nothing of importance, but out of nowhere you hear the sound of startled horses. You have the option to retreat back down the narrow path to head to the equestrian park, or head to the beach off the side of the lake to investigate further. Two options: beach, or equestrian park. \n[[BEACH -> Beach off the side of the lake]]\n[[NARROW PATH -> Narrow Path]]", "links": [ { "linkText": "BEACH", "passageName": "Beach off the side of the lake", "original": "[[BEACH -> Beach off the side of the lake]]" }, { "linkText": "NARROW PATH", "passageName": "Narrow Path", "original": "[[NARROW PATH -> Narrow Path]]" } ], "hooks": [], "cleanText": "Once you get to the lake you find nothing of importance, but out of nowhere you hear the sound of startled horses. You have the option to retreat back down the narrow path to head to the equestrian park, or head to the beach off the side of the lake to investigate further. Two options: beach, or equestrian park." }, { "name": "Equestrian Park", "tags": "", "id": "9", "text": "Once you arrive at the equestrian park there are two signs one pointing to the left that reads [STABLES] and another pointing to the right that reads [MAINTENANCE SHED]. You have the options to go back to the narrow path, stable, or maintenance shed.\n[[NARROW PATH -> Narrow Path]] \n[[STABLES -> Stables]]\n[[MAINTENANCE SHED -> Maintenance shed]]", "links": [ { "linkText": "STABLES", "passageName": "Stables", "original": "[[STABLES -> Stables]]" }, { "linkText": "MAINTENANCE SHED", "passageName": "Maintenance shed", "original": "[[MAINTENANCE SHED -> Maintenance shed]]" } ], "hooks":[], "cleanText": "Once you arrive at the equestrian park there are two signs one pointing left that reads [STABLES] and another pointing to the right that reads [MAINTENANCE SHED]. You have the options to go back to the narrow path, stable, or maintenance shed." }, { "name": "Beach off the side of the lake", "tags": "", "id": "10", "text": "Nothing here besides a shell that you find interest in so you put it in your pocket for later. If there will be a later. Return back to narrow path.\n[[NARROW PATH -> Narrow Path]]", "links": [ { "linkText": "NARROW PATH", "passageName": "Narrow Path", "original": "[[NARROW PATH -> Narrow Path]]" } ], "hooks": [], "cleanText": "Nothing here besides a shell that you find interest in so you put it in your pocket for later. If there will be a later. Return back to narrow path." }, { "name": "Stables", "tags": "", "id": "11", "text": "You should have looked for the cautions against going to the stables, a deranged man on a horse covered in blood rides up to you and..... game over ehad back to the entrance to try again.\n[[ENTRANCE ->WELCOME TO YELLOWSTONE]]", "links": [ { "linkText": "ENTRANCE", "passageName": "WELCOME TO YELLOWSTONE", "original": "[[ENTRANCE -> WELCOME TO YELLOWSTONE]]" } ], "hooks": [], "cleanText": "You should have looked for the cautions against going to the stables, a deranged man on a horse covered in blood rides up to you and..... game over head back to the entrance to try again." }, { "name": "Maintenance shed", "tags": "", "id": "12", "score":20, "text": "As you approach the shed it seems oddly quiet, you become hesitant as you reach to open the door until you hear a light sob. You open the door to find Francis taking care of an injured Melissa. Francis breaks down as now he has help to carry Melissa to the entrance of the park to find help. Success! You avoided the deranged man at the stables! If you scored 30 then you found all of the missing rangers! If you only scored 20 then you never found the third, go back and see if you can find the third ranger. Type quit to end game.\n[[EQUESTRIAN PARK -> Equestrian Park]]", "links": [ { "linkText": "EQUESTRIAN", "passageName": "Equestrian Park", "original": "[[EQUESTRIAN -> Equestrian Park]]" } ], "hooks": [], "cleanText": "As you approach the shed it seems oddly quiet, you become hesitant as you reach to open the door until you hear a light sob. You open the door to find Francis taking care of an injured Melissa. Francis breaks down as now he has help to carry Melissa to the entrance of the park to find help. Success! You avoided the deranged man at the stables! If you scored 30 then you found all of the missing rangers! If you only scored 20 then you never found the third, go back and see if you can find the third ranger. Type quit to end game." } ] } def find_current_location(location_label): if "passages" in world: for passage in world["passages"]: if location_label == passage["name"]: return passage return {} # ---------------------------------------------------------------- def render(current_location, score, moves): if "name" in current_location and "cleanText" in current_location: print("Moves: " + str(moves) + ", Score: " + str(score)) print(current_location["cleanText"] + "\n") def get_input(): response = input("What do you want to do? ") response = response.upper().strip() return response def update(current_location, location_label, response): if response == "": return location_label if "links" in current_location: for link in current_location["links"]: if link["linkText"] == response: return link["passageName"] print("I don't understand what you are trying to do. Try again.") return location_label location_label = "WELCOME TO YELLOWSTONE" current_location = {} response = "" score = 0 moves = 0 while True: if response == "QUIT": break moves += 1 location_label = update(current_location, location_label, response) current_location = find_current_location(location_label) if "score" in current_location: score = score + current_location["score"] render(current_location, score, moves) response = get_input() print("Thanks for playing!")
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2015 Jérémie DECOCK (http://www.jdhp.org) # See: https://docs.python.org/2/library/string.html#format-specification-mini-language import math def main(): # "{field_name:format_spec}".format(...) # # format_spec ::= [[fill]align][sign][#][0][width][,][.precision][type] # # fill ::= <any character> # align ::= "<" | ">" | "=" | "^" # sign ::= "+" | "-" | " " # width ::= integer # precision ::= integer # type ::= "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%" # # The '#' option is only valid for integers, and only for binary, octal, or # hexadecimal output. If present, it specifies that the output will be # prefixed by '0b', '0o', or '0x', respectively. # # The ',' option signals the use of a comma for a thousands separator. For # a locale aware separator, use the 'n' integer presentation type instead. # Fill and align: # '<' : Forces the field to be left-aligned within the available space # (this is the default for most objects). # '>' : Forces the field to be right-aligned within the available space # (this is the default for numbers). # '=' : Forces the padding to be placed after the sign (if any) but before # the digits. This is used for printing fields in the form ‘+000000120’. # This alignment option is only valid for numeric types. # '^' : Forces the field to be centered within the available space. print("{:.<9}".format(3)) print("{:.<9}".format(11)) print("{:.>9}".format(3)) print("{:.>9}".format(11)) print("{:.=9}".format(3)) print("{:.=9}".format(11)) print("{:.^9}".format(3)) print("{:.^9}".format(11)) print() # Sign: # '+' : indicates that a sign should be used for both positive as well # as negative numbers. # '-' : indicates that a sign should be used only for negative numbers # (this is the default behavior). # space : indicates that a leading space should be used on positive # numbers, and a minus sign on negative numbers. print("{:+}".format(3)) print("{:+}".format(-3)) print("{:-}".format(3)) print("{:-}".format(-3)) print("{: }".format(3)) print("{: }".format(-3)) print() # Width print("{}".format(3)) print("{}".format(11)) print("{:3}".format(3)) print("{:3}".format(11)) print() # Precision print("{}".format(math.pi)) print("{:.2f}".format(math.pi)) print() # Type: # The available integer presentation types are: # 'b' : Binary format. Outputs the number in base 2. # 'c' : Character. Converts the integer to the corresponding unicode character before printing. # 'd' : Decimal Integer. Outputs the number in base 10. # 'o' : Octal format. Outputs the number in base 8. # 'x' : Hex format. Outputs the number in base 16, using lower- case letters for the digits above 9. # 'X' : Hex format. Outputs the number in base 16, using upper- case letters for the digits above 9. # 'n' : Number. This is the same as 'd', except that it uses the current locale setting to insert the appropriate number separator characters. # None : The same as 'd'. print("{:}".format(21)) print("{:b}".format(21)) print("{:#b}".format(21)) #print("{:c}".format(21)) print("{:d}".format(21)) print("{:o}".format(21)) print("{:#o}".format(21)) print("{:x}".format(21)) print("{:X}".format(21)) print("{:#x}".format(21)) print("{:#X}".format(21)) print("{:n}".format(21)) print() # Type: # The available presentation types for floating point and decimal values are: # 'e' : Exponent notation. Prints the number in scientific notation using # the letter ‘e’ to indicate the exponent. The default precision is 6. # 'E' : Exponent notation. Same as 'e' except it uses an upper case ‘E’ # as the separator character. # 'f' : Fixed point. Displays the number as a fixed-point number. The # default precision is 6. # 'F' : Fixed point. Same as 'f'. # 'g' : General format. For a given precision p >= 1, this rounds the # number to p significant digits and then formats the result in # either fixed-point format or in scientific notation, depending on # its magnitude. # The precise rules are as follows: suppose that the result # formatted with presentation type 'e' and precision p-1 would have # exponent exp. Then if -4 <= exp < p, the number is formatted with # presentation type 'f' and precision p-1-exp. Otherwise, the # number is formatted with presentation type 'e' and precision p-1. # In both cases insignificant trailing zeros are removed from the # significand, and the decimal point is also removed if there are # no remaining digits following it. # Positive and negative infinity, positive and negative zero, and # nans, are formatted as inf, -inf, 0, -0 and nan respectively, # regardless of the precision. # A precision of 0 is treated as equivalent to a precision of 1. # The default precision is 6. # 'G' : General format. Same as 'g' except switches to 'E' if the number # gets too large. The representations of infinity and NaN are # uppercased, too. # 'n' : Number. This is the same as 'g', except that it uses the current # locale setting to insert the appropriate number separator # characters. # '%' : Percentage. Multiplies the number by 100 and displays in fixed # ('f') format, followed by a percent sign. # None : The same as 'g'. print("{}".format(math.pi)) print("{:e}".format(math.pi)) print("{:E}".format(math.pi)) print("{:f}".format(math.pi)) print("{:F}".format(math.pi)) print("{:g}".format(math.pi)) print("{:G}".format(math.pi)) print("{:n}".format(math.pi)) print("{:%}".format(math.pi)) if __name__ == '__main__': main()
python
import uuid from yandex_checkout.domain.common.http_verb import HttpVerb from yandex_checkout.client import ApiClient from yandex_checkout.domain.request.webhook_request import WebhookRequest from yandex_checkout.domain.response.webhook_response import WebhookResponse, WebhookList class Webhook: base_path = '/webhooks' def __init__(self): self.client = ApiClient() """ Get list of installed webhooks :return: WebhookList """ @classmethod def list(cls): instance = cls() path = cls.base_path response = instance.client.request(HttpVerb.GET, path) return WebhookList(response) """ Add webhook :param params: data passed to API :param idempotency_key: :return: WebhookResponse """ @classmethod def add(cls, params, idempotency_key=None): instance = cls() path = cls.base_path if not idempotency_key: idempotency_key = uuid.uuid4() headers = { 'Idempotence-Key': str(idempotency_key) } if isinstance(params, dict): params_object = WebhookRequest(params) elif isinstance(params, WebhookRequest): params_object = params else: raise TypeError('Invalid params value type') response = instance.client.request(HttpVerb.POST, path, None, headers, params_object) return WebhookResponse(response) """ Remove webhook :param webhook_id: :param idempotency_key: :return: WebhookResponse """ @classmethod def remove(cls, webhook_id, idempotency_key=None): instance = cls() path = cls.base_path + '/' + webhook_id if not idempotency_key: idempotency_key = uuid.uuid4() headers = { 'Idempotence-Key': str(idempotency_key) } response = instance.client.request(HttpVerb.DELETE, path, None, headers) return WebhookResponse(response)
python
from .cache import LRUCache
python
from kasa_device_manager import KasaDeviceManager if __name__ == "__main__": kasa_device_manager = KasaDeviceManager() # Print all the discovered devices out to the console devices = kasa_device_manager.get_all_devices() print(devices) # Toggle a devices power state # kasa_device_manager.toggle_device_by_name("family room plug")
python