content
stringlengths
0
894k
type
stringclasses
2 values
# Generated by Django 2.2.7 on 2019-12-18 14:21 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('catalog', '0003_favourite'), ] operations = [ migrations.AlterField( model_name='recipe', name='edit_date', field=models.DateTimeField(auto_now=True), ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('pub_date', models.DateTimeField(auto_now_add=True)), ('text', models.CharField(max_length=250)), ('recipe', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comments', to='catalog.Recipe')), ('user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name': 'Comment', 'verbose_name_plural': 'Comments', 'ordering': ['-pub_date'], }, ), ]
python
# always write to disk FILE_UPLOAD_HANDLERS = [ 'django.core.files.uploadhandler.TemporaryFileUploadHandler' ] STATIC_URL = '/static/' STATIC_ROOT = '/app/public' MEDIA_ROOT = '/data' STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # compressor 'compressor.finders.CompressorFinder', ) COMPRESS_PRECOMPILERS = ( ('text/less', 'lessc {infile} {outfile}'), ) COMPRESS_CSS_FILTERS = ( 'compressor.filters.css_default.CssAbsoluteFilter', 'compressor.filters.yuglify.YUglifyCSSFilter', )
python
import os import keras import random as rn import numpy as np import tensorflow as tf from keras.layers import Dense, Activation, Embedding from keras.layers import Input, Flatten, dot, concatenate, Dropout from keras import backend as K from keras.models import Model from keras.engine.topology import Layer from keras import initializers from TemporalPositionEncoding import PositionalEncoding config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config = config) K.tensorflow_backend.set_session(sess) class SurroundingSlots(Layer): def __init__(self, window_length, max_range, trainable=True, name=None, **kwargs): super(SurroundingSlots, self).__init__(name=name, trainable=trainable, **kwargs) self.window_length = window_length self.max_range = max_range def build(self, inshape): 1 def call(self, x): surr = K.cast(x, dtype=tf.int32) + K.arange(start=-self.window_length, stop=self.window_length + 1, step=1) surrUnderflow = K.cast(surr < 0, dtype=tf.int32) surrOverflow = K.cast(surr > self.max_range - 1, dtype=tf.int32) return surr * (-(surrUnderflow + surrOverflow) + 1) + surrUnderflow * (surr + self.max_range) + surrOverflow * (surr - self.max_range) def compute_output_shape(self, inshape): return (inshape[0], self.window_length * 2 + 1) class MATE(Layer): def __init__(self, dimension, trainable=True, name=None, **kwargs): super(MATE, self).__init__(name=name, trainable=trainable, **kwargs) self.dimension = dimension def build(self, inshape): # for multiplicative attention self.W = self.add_weight(name="W", shape=(self.dimension, self.dimension), initializer=initializers.get("random_normal")) # for personalization self.Wmonth = self.add_weight(name="Wmonth", shape=(self.dimension, self.dimension), initializer=initializers.get("random_normal")) self.Wday = self.add_weight(name="Wday", shape=(self.dimension, self.dimension), initializer=initializers.get("random_normal")) self.Wdate = self.add_weight(name="Wdate", shape=(self.dimension, self.dimension), initializer=initializers.get("random_normal")) self.Whour = self.add_weight(name="Whour", shape=(self.dimension, self.dimension), initializer=initializers.get("random_normal")) def call(self, x): userEmbedding = x[0] curMonthEmbedding = K.reshape(x[1], shape=(-1, 1, self.dimension)) curDayEmbedding = K.reshape(x[2], shape=(-1, 1, self.dimension)) curDateEmbedding = K.reshape(x[3], shape=(-1, 1, self.dimension)) curHourEmbedding = K.reshape(x[4], shape=(-1, 1, self.dimension)) monthEmbeddings = x[5] dayEmbeddings = x[6] dateEmbeddings = x[7] hourEmbeddings = x[8] # personalization curMonthEmbedding = curMonthEmbedding * (K.dot(userEmbedding, self.Wmonth)) curDayEmbedding = curDayEmbedding * (K.dot(userEmbedding, self.Wday)) curDateEmbedding = curDateEmbedding * (K.dot(userEmbedding, self.Wdate)) curHourEmbedding = curHourEmbedding * (K.dot(userEmbedding, self.Whour)) monthEmbeddings = monthEmbeddings * (K.dot(userEmbedding, self.Wmonth)) dayEmbeddings = dayEmbeddings * (K.dot(userEmbedding, self.Wday)) dateEmbeddings = dateEmbeddings * (K.dot(userEmbedding, self.Wdate)) hourEmbeddings = hourEmbeddings * (K.dot(userEmbedding, self.Whour)) # query for gradated attention monthQ = curMonthEmbedding dayQ = curDayEmbedding dateQ = curDateEmbedding hourQ = curHourEmbedding # key, value monthKV = concatenate([monthEmbeddings, curMonthEmbedding], axis=1) dayKV = concatenate([dayEmbeddings, curDayEmbedding], axis=1) dateKV = concatenate([dateEmbeddings, curDateEmbedding], axis=1) hourKV = concatenate([hourEmbeddings, curHourEmbedding], axis=1) # attention score monthQKV = K.softmax(K.batch_dot(monthQ, K.permute_dimensions(monthKV, pattern=(0, 2, 1))) / K.sqrt(K.cast(self.dimension, dtype=tf.float32)), axis=-1) dayQKV = K.softmax(K.batch_dot(dayQ, K.permute_dimensions(dayKV, pattern=(0, 2, 1))) / K.sqrt(K.cast(self.dimension, dtype=tf.float32)), axis=-1) dateQKV = K.softmax(K.batch_dot(dateQ, K.permute_dimensions(dateKV, pattern=(0, 2, 1))) / K.sqrt(K.cast(self.dimension, dtype=tf.float32)), axis=-1) hourQKV = K.softmax(K.batch_dot(hourQ, K.permute_dimensions(hourKV, pattern=(0, 2, 1))) / K.sqrt(K.cast(self.dimension, dtype=tf.float32)), axis=-1) # embedding for each granularity of period information monthEmbedding = K.batch_dot(monthQKV, monthKV) dayEmbedding = K.batch_dot(dayQKV, dayKV) dateEmbedding = K.batch_dot(dateQKV, dateKV) hourEmbedding = K.batch_dot(hourQKV, hourKV) # multiplicative attention q = userEmbedding kv = K.concatenate([monthEmbedding, dayEmbedding, dateEmbedding, hourEmbedding], axis=1) qW = K.dot(q, self.W) a = K.sigmoid(K.batch_dot(qW, K.permute_dimensions(kv, pattern=(0, 2, 1)))) timeRepresentation = K.batch_dot(a, kv) return timeRepresentation def compute_output_shape(self, inshape): return (None, 1, self.dimension) class TAHE(Layer): def __init__(self, dimension, trainable=True, name=None, **kwargs): super(TAHE, self).__init__(name=name, trainable=trainable, **kwargs) self.dimension = dimension def build(self, inshape): 1 def call(self, x): recentTimeRepresentations = x[0] curTimeRepresentation = x[1] recentTimestamps = x[2] recentItemEmbeddings = x[3] # previous timestamp == 0 ==> no history mask = K.cast(recentTimestamps > 0, dtype=tf.float32) # time-based attention similarity = K.batch_dot(K.l2_normalize(curTimeRepresentation, axis=-1), K.permute_dimensions(K.l2_normalize(recentTimeRepresentations, axis=-1), pattern=(0, 2, 1))) masked_similarity = mask * ((similarity + 1.0) / 2.0) weightedPrevItemEmbeddings = K.batch_dot(masked_similarity, recentItemEmbeddings) userHistoryRepresentation = weightedPrevItemEmbeddings return userHistoryRepresentation def compute_output_shape(self, inshape): return (None, self.dimension) class meanLayer(Layer): def __init__(self, trainable=True, name=None, **kwargs): super(meanLayer, self).__init__(name=name, trainable=trainable, **kwargs) def build(self, inshape): 1 def call(self, x): return K.mean(x, axis=1, keepdims=True) def compute_output_shape(self, inshape): return (inshape[0], 1, inshape[2]) class Slice(Layer): def __init__(self, index, trainable=True, name=None, **kwargs): super(Slice, self).__init__(name=name, trainable=trainable, **kwargs) self.index = index def build(self, inshape): 1 def call(self, x): return x[:, self.index, :] def compute_output_shape(self, inshape): return (inshape[0], inshape[2]) class TemporalPositionEncoding(Layer): def __init__(self, trainable=True, name=None, **kwargs): super(TemporalPositionEncoding, self).__init__(name=name, trainable=trainable, **kwargs) def build(self, inshape): self.a = self.add_weight(name="a", shape=(1, ), initializer=initializers.get("ones")) def call(self, x): item = x[0] time = x[1] return item + time * self.a def compute_output_shape(self, inshape): return inshape[0] def TimelyRec(input_shape, num_users, num_items, embedding_size, sequence_length, width, depth, dropout=None): userInput = Input(shape=[1], dtype=tf.int32) itemInput = Input(shape=[1], dtype=tf.int32) monthInput = Input(shape=[1], dtype=tf.int32) dayInput = Input(shape=[1], dtype=tf.int32) dateInput = Input(shape=[1], dtype=tf.int32) hourInput = Input(shape=[1], dtype=tf.int32) curTimestampInput = Input(shape=[1], dtype=tf.int32) recentMonthInput = [] recentDayInput = [] recentDateInput = [] recentHourInput = [] recentTimestampInput = [] recentItemidInput = [] for i in range(sequence_length): recentMonthInput.append(Input(shape=[1], dtype=tf.int32)) for i in range(sequence_length): recentDayInput.append(Input(shape=[1], dtype=tf.int32)) for i in range(sequence_length): recentDateInput.append(Input(shape=[1], dtype=tf.int32)) for i in range(sequence_length): recentHourInput.append(Input(shape=[1], dtype=tf.int32)) for i in range(sequence_length): recentTimestampInput.append(Input(shape=[1], dtype=tf.int32)) for i in range(sequence_length): recentItemidInput.append(Input(shape=[1], dtype=tf.int32)) userEmbedding = Embedding(num_users+1, embedding_size)(userInput) itemEmbeddingSet = Embedding(num_items+1, embedding_size) itemEmbedding = itemEmbeddingSet(itemInput) recentItemEmbeddings = itemEmbeddingSet(concatenate(recentItemidInput, axis=-1)) recentTimestamps = concatenate(recentTimestampInput, axis=-1) monthEmbedding = Embedding(12, embedding_size) dayEmbedding = Embedding(7, embedding_size) dateEmbedding = Embedding(31, embedding_size) hourEmbedding = Embedding(24, embedding_size) curMonthEmbedding = monthEmbedding(monthInput) curDayEmbedding = dayEmbedding(dayInput) curDateEmbedding = dateEmbedding(dateInput) curHourEmbedding = hourEmbedding(hourInput) recentMonthEmbeddings = monthEmbedding(concatenate(recentMonthInput, axis=-1)) recentDayEmbeddings = dayEmbedding(concatenate(recentDayInput, axis=-1)) recentDateEmbeddings = dateEmbedding(concatenate(recentDateInput, axis=-1)) recentHourEmbeddings = hourEmbedding(concatenate(recentHourInput, axis=-1)) monthEmbeddings = [] dayEmbeddings = [] dateEmbeddings = [] hourEmbeddings = [] prevMonthEmbeddings = [] prevDayEmbeddings = [] prevDateEmbeddings = [] prevHourEmbeddings = [] ratio = 0.2 for i in range(sequence_length): prevMonthEmbeddings.append([]) for j in range(1, max(int(12 * ratio + 0.5), 1) + 1): monthSurr = monthEmbedding(SurroundingSlots(window_length=j, max_range=12)(recentMonthInput[i])) prevMonthEmbeddings[i].append(meanLayer()(monthSurr)) prevDayEmbeddings.append([]) for j in range(1, max(int(7 * ratio + 0.5), 1) + 1): daySurr = dayEmbedding(SurroundingSlots(window_length=j, max_range=7)(recentDayInput[i])) prevDayEmbeddings[i].append(meanLayer()(daySurr)) prevDateEmbeddings.append([]) for j in range(1, max(int(31 * ratio + 0.5), 1) + 1): dateSurr = dateEmbedding(SurroundingSlots(window_length=j, max_range=31)(recentDateInput[i])) prevDateEmbeddings[i].append(meanLayer()(dateSurr)) prevHourEmbeddings.append([]) for j in range(1, max(int(24 * ratio + 0.5), 1) + 1): hourSurr = hourEmbedding(SurroundingSlots(window_length=j, max_range=24)(recentHourInput[i])) prevHourEmbeddings[i].append(meanLayer()(hourSurr)) for i in range(1, max(int(12 * ratio + 0.5), 1) + 1): monthSurr = monthEmbedding(SurroundingSlots(window_length=i, max_range=12)(monthInput)) monthEmbeddings.append(meanLayer()(monthSurr)) for i in range(1, max(int(7 * ratio + 0.5), 1) + 1): daySurr = dayEmbedding(SurroundingSlots(window_length=i, max_range=7)(dayInput)) dayEmbeddings.append(meanLayer()(daySurr)) for i in range(1, max(int(31 * ratio + 0.5), 1) + 1): dateSurr = dateEmbedding(SurroundingSlots(window_length=i, max_range=31)(dateInput)) dateEmbeddings.append(meanLayer()(dateSurr)) for i in range(1, max(int(24 * ratio + 0.5), 1) + 1): hourSurr = hourEmbedding(SurroundingSlots(window_length=i, max_range=24)(hourInput)) hourEmbeddings.append(meanLayer()(hourSurr)) if int(12 * ratio + 0.5) <= 1: monthEmbeddings = monthEmbeddings[0] for i in range(sequence_length): prevMonthEmbeddings[i] = prevMonthEmbeddings[i][0] else: monthEmbeddings = concatenate(monthEmbeddings, axis=1) for i in range(sequence_length): prevMonthEmbeddings[i] = concatenate(prevMonthEmbeddings[i], axis=1) if int(7 * ratio + 0.5) <= 1: dayEmbeddings = dayEmbeddings[0] for i in range(sequence_length): prevDayEmbeddings[i] = prevDayEmbeddings[i][0] else: dayEmbeddings = concatenate(dayEmbeddings, axis=1) for i in range(sequence_length): prevDayEmbeddings[i] = concatenate(prevDayEmbeddings[i], axis=1) if int(31 * ratio + 0.5) <= 1: dateEmbeddings = dateEmbeddings[0] for i in range(sequence_length): prevDateEmbeddings[i] = prevDateEmbeddings[i][0] else: dateEmbeddings = concatenate(dateEmbeddings, axis=1) for i in range(sequence_length): prevDateEmbeddings[i] = concatenate(prevDateEmbeddings[i], axis=1) if int(24 * ratio + 0.5) <= 1: hourEmbeddings = hourEmbeddings[0] for i in range(sequence_length): prevHourEmbeddings[i] = prevHourEmbeddings[i][0] else: hourEmbeddings = concatenate(hourEmbeddings, axis=1) for i in range(sequence_length): prevHourEmbeddings[i] = concatenate(prevHourEmbeddings[i], axis=1) recentTimestampTEs = PositionalEncoding(output_dim=embedding_size)(recentTimestamps) curTimestampTE = PositionalEncoding(output_dim=embedding_size)(curTimestampInput) # temporal position encoding te = TemporalPositionEncoding() itemEmbedding = te([itemEmbedding, curTimestampTE]) recentItemEmbeddings = te([recentItemEmbeddings, recentTimestampTEs]) userVector = Flatten()(userEmbedding) itemVector = Flatten()(itemEmbedding) curTimestampTE = Flatten()(curTimestampTE) # MATE curTimeRepresentation = Flatten()(MATE(embedding_size)([userEmbedding, curMonthEmbedding, curDayEmbedding, curDateEmbedding, curHourEmbedding, monthEmbeddings, dayEmbeddings, dateEmbeddings, hourEmbeddings])) # None * embedding_size prevTimeRepresentations = [] for i in range(sequence_length): prevTimeRepresentations.append(MATE(embedding_size)([userEmbedding, Slice(i)(recentMonthEmbeddings), Slice(i)(recentDayEmbeddings), Slice(i)(recentDateEmbeddings), Slice(i)(recentHourEmbeddings), prevMonthEmbeddings[i], prevDayEmbeddings[i], prevDateEmbeddings[i], prevHourEmbeddings[i]])) # None * embedding_size) prevTimeRepresentations = concatenate(prevTimeRepresentations, axis=1) # TAHE userHistoryRepresentation = TAHE(embedding_size)([prevTimeRepresentations, curTimeRepresentation, recentTimestamps, recentItemEmbeddings]) # combination x = concatenate([userVector, itemVector, curTimeRepresentation, userHistoryRepresentation]) in_shape = embedding_size * 4 for i in range(depth): if i == depth - 1: x = Dense(1, input_shape=(in_shape,))(x) else: x = Dense(width, input_shape=(in_shape,))(x) x = Activation('relu')(x) if dropout is not None: x = Dropout(dropout)(x) in_shape = width outputs = Activation('sigmoid')(x) model = Model(inputs=[userInput, itemInput, monthInput, dayInput, dateInput, hourInput, curTimestampInput] + [recentMonthInput[i] for i in range(sequence_length)] + [recentDayInput[i] for i in range(sequence_length)] + [recentDateInput[i] for i in range(sequence_length)] + [recentHourInput[i] for i in range(sequence_length)] + [recentTimestampInput[i] for i in range(sequence_length)] + [recentItemidInput[i] for i in range(sequence_length)], outputs=outputs) return model
python
from sklearn.base import BaseEstimator, TransformerMixin import pandas as pd import unidecode as udc import scipy class CustomOneHotEncoder(BaseEstimator, TransformerMixin): """ Clase que convierte a dummies las variables categóricas de un dataFrame. Permite eliminar las dummies creadas según su representación. :param X: DataFrame sobre el que se van a realizar los cambios. :param categorical_columns: Lista de las variables categóricas para transformar. :param features_not_drop: Lista de las variables categóricas que se transforman pero de las que no queremos eliminar las columnas resultantes según su representación. :param threshold: Valor númerico entre 0 y 1 que indica el punto de corte para eliminar las dummies según representación. Se corta según el % de 0 que contiene la columna. Todas las columnas con un % de 0s mayor que el threshold indicado son eliminadas. :param sparse_matrix: Bool. Si es True el transformador devuelve una SparseMatrix. Por defecto False y devuelve un DataFrame :return: Devuelve el DataFrame o SparseMatrix modificado con las nuevas dummies. """ def __init__(self, categorical_columns, features_not_drop, threshold, sparse_matrix = False): super().__init__() self.categorical_columns = categorical_columns self.threshold = threshold self.features_not_drop = features_not_drop self.sparse_matrix = sparse_matrix self.columns_to_drop_ = list() def fit(self, X, y=None): X_ = X.copy() # Dummies para las categóricas X__ = pd.get_dummies(X_, drop_first = False) # Se marcan las columnas que se van a borrar for feat in self.categorical_columns: X__.rename(columns=lambda x: udc.unidecode(x.replace(feat, 'oneHotEncoder_' + feat)), inplace = True) for feat in self.features_not_drop: X__.rename(columns=lambda x: udc.unidecode(x.replace('oneHotEncoder_' + feat, 'oneHotEncoderX_' + feat)), inplace = True) # Se seleccionan las columnas del OneHot con representación 'threshold' for feat in X__.columns: try: if ((X__[feat].value_counts(normalize = True)[0] > self.threshold) & ('oneHotEncoder_' in feat)): self.columns_to_drop_.append(feat) except: pass return self def transform(self, X, y=None): X_ = X.copy() X__ = pd.get_dummies(X_, drop_first = False) for feat in self.categorical_columns: X__.rename(columns=lambda x: udc.unidecode(x.replace(feat, 'oneHotEncoder_' + feat)), inplace = True) # Se eliminan las columnas seleccionadas del dataframe for col in self.columns_to_drop_: try: X__.drop(columns= col, inplace = True) except: pass # Se eliminan caracteres de los column_names no admitidos por el modelo X__.rename(columns=lambda x: udc.unidecode(x.replace("]", ")")), inplace = True) if self.sparse_matrix: X__ = scipy.sparse.csr_matrix(X__.values) return X__
python
# -*- coding: utf-8 -*- ########################################################### # # # Copyright (c) 2018 Radek Augustýn, licensed under MIT. # # # ########################################################### __author__ = "[email protected]" # @PRODUCTION MODULE [Full] from base import fileRead templates = { } def registerTemplate(templateName, fileName, content = None): templates[templateName] = (fileName, content) templates["sample"] = (None, 'ahoj<div id="mojeTestId"><p class="caption">Moje Caption</p><p class="shortDescription">Moje shortDescription</p><p class="description">Moje dDescription</p></div>') def getTemplate(name): """Returns HTML template content. For the first time in a given template it reads data from the file. :param String name: Name of the template. :return String: Template HTML content. >>> print getTemplate("sample") ahoj<div id="mojeTestId"><p class="caption">Moje Caption</p><p class="shortDescription">Moje shortDescription</p><p class="description">Moje dDescription</p></div> """ if name in templates: fileName, content = templates[name] if not content: content = fileRead(fileName) registerTemplate(name, fileName, content) return content else: return "" def getHtmlDiv(templateName, identifier): """Extracts content of the html DIV element with given id. There must not be another div inside. :param String templateName: Name of the template in the templates list. :param String identifier: Id of the selected DIV element. :return String: Content of DIV element with given id. >>> getHtmlDiv("sample", "mojeTestId") '<p id="caption">Moje Caption</p><p id="shortDescription">Moje shortDescription</p><p id="description">Moje dDescription</p>' """ html = getTemplate(templateName) startPos = html.find('<div id="%s"' % identifier) startPos = html.find(">", startPos) endPos = html.find('</div>', startPos) if startPos >= 0 and endPos >= 0: return html[startPos+1:endPos] else: return "" def getHtmlItems(templateName, identifier): """ :param templateName: :param identifier: :return: >>> getHtmlItems("sample", "mojeTestId") {'caption': 'Moje Caption', 'shortDescription': 'Moje shortDescription', 'description': 'Moje dDescription'} """ result = {} divContent = getHtmlDiv(templateName, identifier) for paragraph in divContent.split("</p>"): paragraph = paragraph.strip() if paragraph and paragraph.startswith("<p"): classNameStart = paragraph.find('class="') + 7 classNameEnd = paragraph.find('"', classNameStart) className = paragraph[classNameStart:classNameEnd] content = paragraph[paragraph.find(">") + 1:] result[className] = content return result def setAttrsFromHTML(obj, templateName, identifier): """ :param obj: :param templateName: :param identifier: :return: >>> class A:pass >>> a = A >>> setAttrsFromHTML(a, "sample", "mojeTestId") >>> a.caption """ for key, value in getHtmlItems(templateName, identifier).iteritems(): setattr(obj, key, value) class HTMLFormatter: def __init__(self): self.html = "" self._indent = 0 self.indentStr = "" def add(self, str): self.html += str def addLine(self, str): for i in range(self._indent): str = "\t" + str self.add(str + "\n") def addLineAndIndent(self, str): self.addLine(str) self.indent() def unIndentAndAddLine(self, str): self.unIndent() self.addLine(str) def indent(self, count = 1): self._indent = self._indent + count def unIndent(self, count = 1): self._indent = self._indent - count if self._indent < 0 : self._indent = 0
python
""" Check if 2 strings are anagrams of each other """ from collections import Counter def check_anagrams(str1, str2): ctr1 = Counter(str1) ctr2 = Counter(str2) return ctr1 == ctr2 def check_anagrams_version2(str1, str2): hmap1 = [0] * 26 hmap2 = [0] * 26 for char in str1: pos = ord(char) - ord("a") hmap1[pos] += 1 for char in str2: pos = ord(char) - ord("a") hmap2[pos] += 1 return hmap1 == hmap2 if __name__ == "__main__": str1 = "apple" str2 = "pleap" op = check_anagrams(str1, str2) print(op)
python
import sys import os #reference = sys.argv[1] #os.system("cp "+reference+" "+sys.argv[4]) firstfile = sys.argv[1] #sys.argv[1] secondfile = sys.argv[2] thirdfile = sys.argv[3] seq1 = set() seq2 = set() file3 = open(thirdfile, 'r') for line in file3: myline = line.strip() seqnames = myline.split('\t') seq1.add(seqnames[0]) seq2.add(seqnames[1]) lines1 = [] file1 = open(firstfile, 'r') for line in file1: myline = line.strip() if (myline[0] == '>'): #contents = myline.split('\w') #myseq = contents[0][1:] myseq = myline[1:myline.find(' ')] if (myseq in seq1): lines1.append(myline) lines1.append(file1.readline().strip()) lines2 = [] file2 = open(secondfile, 'r') for line in file2: myline = line.strip() if (myline[0] == '>'): myseq = myline[1:myline.find(' ')] if (myseq in seq2): lines2.append(myline) lines2.append(file2.readline().strip()) fourthfile = open(firstfile, 'w') #fifthfile = open(sys.argv[2], 'w') for line in lines1: fourthfile.write(line+"\n") #for line in lines2: # fifthfile.write(line+"\n")
python
class TicTacToe(): ''' Game of Tic-Tac-Toe rules reference: https://en.wikipedia.org/wiki/Tic-tac-toe ''' # coordinates of the cells for each possible line lines = [ [(0,0), (0,1), (0,2)], [(1,0), (1,1), (1,2)], [(2,0), (2,1), (2,2)], [(0,0), (1,0), (2,0)], [(0,1), (1,1), (2,1)], [(0,2), (1,2), (2,2)], [(0,0), (1,1), (2,2)], [(0,2), (1,1), (2,0)] ] def __init__(self): # 3x3 board, 0 = empty, 1 = occupied by player 1, 2 = occupied by player 2 self.board = [[0 for y in range(self.rows())] for x in range(self.cols())] self.current_player = 1 def rows(self): return 3 def cols(self): return 3 # for display : width and height of a cell when displaying the game def cell_size(self): return 80, 80 # for display: label for cell at coordinates (x, y) def get_label(self, x, y): s = self.board[x][y] if s == 0: return "" elif s == 1: return "O" elif s == 2: return "X" # a move by a player is valid if the cell is empty def is_valid_play(self, move, player): x, y = move return self.board[x][y] == 0 # update the board with the move from a player def play(self, move, player): x, y = move self.board[x][y] = player # update the current_player self.current_player = 2 if self.current_player == 1 else 1 def get_current_player(self): return self.current_player # return -1 if the game is not finished, 0 if draw, 1 or 2 if one of the player wins def winner(self): for line in TicTacToe.lines: a, b, c = line if self.board[a[0]][a[1]] != 0 and \ self.board[a[0]][a[1]] == self.board[b[0]][b[1]] == self.board[c[0]][c[1]]: # one of the player won, return the player id (1 or 2) return self.board[a[0]][a[1]] # no player has won yet, check for a draw for x in range(3): for y in range(3): if self.board[x][y] == 0: # play still possible, game not finished return -1 # no play is possible anymore, this is a draw return 0
python
import cv2 import numpy as np # Read image img = cv2.imread("imori.jpg") # Dicrease color out = img.copy() out = out // 64 * 64 + 32 cv2.imwrite("out.jpg", out) cv2.imshow("result", out) cv2.waitKey(0) cv2.destroyAllWindows()
python
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import collections.abc import json import typing from azure.functions import _sql as sql from . import meta class SqlConverter(meta.InConverter, meta.OutConverter, binding='sql'): @classmethod def check_input_type_annotation(cls, pytype: type) -> bool: return issubclass(pytype, sql.SqlRowList) @classmethod def check_output_type_annotation(cls, pytype: type) -> bool: return issubclass(pytype, (sql.SqlRowList, sql.SqlRow)) @classmethod def decode(cls, data: meta.Datum, *, trigger_metadata) -> typing.Optional[sql.SqlRowList]: if data is None or data.type is None: return None data_type = data.type if data_type in ['string', 'json']: body = data.value elif data_type == 'bytes': body = data.value.decode('utf-8') else: raise NotImplementedError( f'Unsupported payload type: {data_type}') rows = json.loads(body) if not isinstance(rows, list): rows = [rows] return sql.SqlRowList( (None if row is None else sql.SqlRow.from_dict(row)) for row in rows) @classmethod def encode(cls, obj: typing.Any, *, expected_type: typing.Optional[type]) -> meta.Datum: if isinstance(obj, sql.SqlRow): data = sql.SqlRowList([obj]) elif isinstance(obj, sql.SqlRowList): data = obj elif isinstance(obj, collections.abc.Iterable): data = sql.SqlRowList() for row in obj: if not isinstance(row, sql.SqlRow): raise NotImplementedError( f'Unsupported list type: {type(obj)}, \ lists must contain SqlRow objects') else: data.append(row) else: raise NotImplementedError(f'Unsupported type: {type(obj)}') return meta.Datum( type='json', value=json.dumps([dict(d) for d in data]) )
python
''' This program parses a txt file containing proteins to analyse with IUPRED/BLAST/JALVIEW ''' import warnings # allows program to be able to ignore benign warnings ##### # IGNORE WARNINGS ##### warnings.filterwarnings("ignore", message="numpy.dtype size changed") warnings.filterwarnings("ignore", message="numpy.ufunc size changed") import requests import csv # allows for csv r/w import pandas as pd # allows for csv r/w import json import mechanize import webbrowser import time import collections # allows orderedDict from selenium import webdriver # for web browser interation/headless browser from bs4 import BeautifulSoup import glob import os.path import datetime import urllib2 # Also Using PhantomJS installed via npm (included with NodeJS) ######################################### ############WORKING FUNCTIONS############ ######################################### def parseDataSet(fileName='FruitiData.txt'): ''' Parses original dataSet containing the amino acid sequences of the maternal transcription factors we're interested in. Takes in file name as string Outputs: 1. orderdDict 2. list of dict keys 3. list of dict vals Can call function and set global variable equal to one or all of the dataTypes/Sets that this outputs. Example: variable = parseDataSet()[1] This would result in variable being equal to list of all keys in dict created. ''' # open dataset text file > create var == to each line as list fList = open(fileName).readlines() # convert list to dictionary fDict = collections.OrderedDict() # creates empty orderedDict ##fDict = {} dictVal = '' # empty string to hold dictVals dictKey = '' # empty string to hold dictKeys length = len(fList) for line in xrange(0, length): #print('inside for') #print('line: ' + str(line)) if(line % 2 == 0): # if zero or even > use as key #print('inside if1') dictKey = str(fList[line]).replace('\n', '') if(line % 2 != 0): # if odd > use as value #print('inside if2') dictVal = str(fList[line]).replace('\n', '') if(dictKey != '' and dictVal != ''): #print('inside if3') fDict.update({dictKey: dictVal}) dictKey = dictVal = '' listFDictKeys = fDict.keys() # saves dict keys as list listFDictVals = fDict.values() # saves dict vals as list # testing prints # print(fDict) # print(listFDictVals) return fDict, listFDictKeys, listFDictVals # creates timestamp def timeStamp(): ''' returns list = ['mmddyy','hh:mm:ss','Weekday'] ''' # ts = time.gmtime() ts = time.localtime() ts2 = time.strftime('%m%d%y,%H:%M:%S,%d%m%y-%H%M%S,%A', ts) ts2 = ts2.split(',') return ts2 ############################################### ############TESTING BELOW THIS LINE############ ############################################### # creates a csv to write to, add headers row def csvCreate(listX, listY, csvName='preIupred.csv'): ''' Takes in listFDictKeys, listFDictVals ''' f = csv.writer(open(csvName, 'w'), delimiter=',', lineterminator='\n') # f.writerow(['iupred2', 'meta', 'seqence', 'anchor2']) f.writerow(['mmddyy', 'hh:mm:ss', 'Key', 'Value', 'example1', 'example2', 'example3']) for i in xrange(len(listX)): f.writerow((timeStamp()[0], timeStamp()[1], listX[i], listY[i])) # using 'csv' library open csv > updates specific cell def csvUpdate(): ''' 1. Opens preIupred.csv (r) 2. Opens preIupred.csv (w) 3. Writes over header names 4. ''' # read csv file into 'fooReader' fooReader = csv.reader(open('preIupred.csv', 'rb'), delimiter=',', lineterminator='\n') f = csv.writer(open('preIupred.csv', 'w'), delimiter=',', lineterminator='\n') f.writerow(['mmddyy', 'hh:mm:ss', 'Key', 'Value', 'example1', 'example2', 'example3']) input = '>Mnt 64.001883 0.822785' # read each row in 'fooReader' for row in fooReader: # define first row column as 'value' for testing key = row[2] # test if value (1st column) is the same as input (user input) if key == input: #... if it is then print the 5th column in a certain way f.writerow(('FUCKOFF-ITWORKED', '', '', '', '', '', 'hello')) #print('this is where the beat drops!') ''' # f.writerow(['iupred2', 'meta', 'seqence', 'anchor2']) #OLD HEADER NAMES, MIGHT USE THEM AGAIN, JUST HERE TO SAVE EM # f.writerow(['mmddyy', 'hh:mm:ss', 'Key', 'Value', 'example1', 'example2', 'example3']) for i in xrange(5): f.writerow(('FUCKOFF-ITWORKED', '', '', '', '', '', 'hello')) ''' # using pandas - update csv file at cell level def csvUpdate2(): ''' Pandas Cheatsheet: import pandas as pd #Open csv and set to var: df = pd.read_csv('preIupred.csv') #Select single cell by row/column: df.iloc([0], [0]) OR df.iat([0], [0]) #Select single cell by row and column label df.loc([0], ['COLUMN-HEADER-NAME']) OR df.at([0], ['COLUMN-HEADER-NAME']) #Select single cell by row and column label df.ix[0, 'COLUMN-HEADER-NAME'] ''' pd.options.display.max_colwidth = 1000 # sets max string length to display df = pd.read_csv('preIupred.csv') # load csv to var 'df' df['example1'] # focuses on column with header 'example1' match = df['example1'].str.contains('>Mnt 64.001883 0.822785') #print('match: ' + str(match)) shell = df['Value'][match] # print(df) # print(df['Key'][match].value_counts()) # df.set_value(5, 'example1', 'USEFUL-DATA') #updates value of cell at row 5 + header 'Value' to 'CHANGED' #df.to_csv('preIupred.csv', index=False) # creates list holding URLs to visit def urlCreate(): pages = [] # empty list to hold URLs to visit # create list of urls to visit for i in xrange(1, 2): url = 'https://iupred2a.elte.hu/' # is missing other types of scenarios pages.append(url) ''' # opens each URL > sets var to html > sets var to cleaned up html for item in pages: page = requests.get(item) soup = BeautifulSoup(page.text, 'html.parser') # print(soup) ''' # Demo function def demo(txtName='FruitiData.txt', csvName='preIupred.csv', dateApndOpt=1): if(csvName[-4:] == '.csv'): if(dateApndOpt == 1): csvNameTime = csvName[:-4] + '_' + timeStamp()[2] + '.csv' else: csvNameTime = csvName[:-4] + '.csv' else: if(dateApndOpt == 1): csvNameTime = csvName + '_' + timeStamp()[2] + '.csv' else: csvNameTime = csvName + '.csv' listD, listX, listY = parseDataSet(txtName) # this parses data from file txtName, can insert different file name within same directory ''' 1. Calls function to parse data set from FruitiData.txt then saves/outputs as ordered dict 2. Calls function that takes parsed data from step one and then saves it to a csv 'collectData1.csv' ''' csvCreate(listX, listY, csvNameTime) # this takes in vars from 'parseDataSet()' > creates/writes to csv # csvUpdate() # csvUpdate2() # csvUpdate() # uncomment to continue testing this # csvUpdate2() # updates csv at cell level using pandas (seems best method) # demo() # uncomment to run main program def blastParse(fileName='PFK3E0EY015-Alignment.json', jalName='jalViewFile.fa'): with open(fileName) as json_file: data = json.load(json_file) # print(type(data)) # print(json.dumps(data, indent=2)) #pretty printed # for i in xrange(10): # print(data['BlastOutput2'][0]['report']['results']['search']['hits'][2]['hsps'][i]) # print('') # print('') dictHolder = {} iterMain = data['BlastOutput2'][0]['report']['results']['search']['hits'] f = open(jalName, 'w') f.write('') fl = open(jalName, 'a') for i in xrange(4): print '#########################' for item in xrange(len(iterMain)): subject = data['BlastOutput2'][0]['report']['results']['search']['hits'][item]['hsps'] title = data['BlastOutput2'][0]['report']['results']['search']['hits'][item]['description'][0]['title'] sciName = str(data['BlastOutput2'][0]['report']['results']['search']['hits'][item]['description'][0]['sciname']) dictHolder[sciName] = dictHolder.get(sciName, 0) + 1 if(dictHolder[sciName] == 1): fl.write('\n' + '> ' + sciName) print("title: " + str(title)) print("sciname: " + str(sciName)) subHolder = '' for i in xrange(len(subject)): subHolder += str(subject[i]['hseq']) print("index: " + str(i) + " subject: " + str(subject[i]['hseq'])) print("subjectFull: " + str(subHolder)) fl.write('\n' + str(subHolder)) print('\n\n') print(dictHolder) fl.close() # print data['BlastOutput2'][0]['report']['results']['search']['hits'][0]['description'][0]['title'] # fList = open(fileName).readlines() # print fList ''' # open dataset text file > create var == to each line as list fList = open(fileName).readlines() # convert list to dictionary fDict = collections.OrderedDict() # creates empty orderedDict ##fDict = {} dictVal = '' # empty string to hold dictVals dictKey = '' # empty string to hold dictKeys length = len(fList) for line in xrange(0, length): #print('inside for') #print('line: ' + str(line)) if(line % 2 == 0): # if zero or even > use as key #print('inside if1') dictKey = str(fList[line]).replace('\n', '') if(line % 2 != 0): # if odd > use as value #print('inside if2') dictVal = str(fList[line]).replace('\n', '') if(dictKey != '' and dictVal != ''): #print('inside if3') fDict.update({dictKey: dictVal}) dictKey = dictVal = '' listFDictKeys = fDict.keys() # saves dict keys as list listFDictVals = fDict.values() # saves dict vals as list # testing prints # print(fDict) # print(listFDictVals) return fDict, listFDictKeys, listFDictVals ''' def openDownloads(): list_of_files = glob.glob("C:/Users/SJCCRAC/Documents/Python Code") # * means all if need specific format then *.csv latest_file = max(list_of_files, key=os.path.getctime) print list_of_files print latest_file # blastParse() #runs blastParse function def downloadUrl(): print('Beginning file download with urllib2...') url = 'https://blast.ncbi.nlm.nih.gov/Blast.cgi?RESULTS_FILE=on&RID=P09YHPX0014&FORMAT_TYPE=JSON2_S&FORMAT_OBJECT=Alignment&CMD=Get' filedata = urllib2.urlopen(url) datatowrite = filedata.read() with open('/Users/SJCCRAC/Documents/Python Code/testDownload.json', 'wb') as f: f.write(datatowrite) print(datatowrite) # openDownloads() # tests openDownloads() functions # downloadUrl() demo('7_proteins.txt', 'preIupred.csv', 1) # (txtName='FruitiData.txt', csvName='preIupred.csv', apndDate[1=yes, 0=no]) ''' Parses original formatted amino acid sequence data Outputs is to csv file that you specify, default = 'preIupred.csv' '''
python
from typing import TYPE_CHECKING from UE4Parse.BinaryReader import BinaryStream from UE4Parse.Provider.Common import GameFile if TYPE_CHECKING: from UE4Parse.IO import FFileIoStoreReader from UE4Parse.IO.IoObjects.FIoChunkId import FIoChunkId from UE4Parse.IO.IoObjects.FIoOffsetAndLength import FIoOffsetAndLength class FIoStoreEntry(GameFile): __slots__ = ("UserData",) UserData: int def CompressionMethodString(self) -> str: return "COMPRESS_" + self.Container.TocResource.CompressionMethods[ self.CompressionMethodIndex - 1] if self.CompressionMethodIndex > 0 else "COMPRESS_None" @property def Offset(self) -> int: return self.OffsetLength.GetOffset @property def Length(self) -> int: return self.OffsetLength.GetLength @property def ContainerName(self) -> str: return self.Container.FileName[:-5] + ".utoc" @property def Encrypted(self) -> bool: return self.Container.TocResource.Header.is_encrypted() @property def OffsetLength(self) -> 'FIoOffsetAndLength': return self.Container.Toc[self.ChunkId] @property def ChunkId(self) -> 'FIoChunkId': return self.Container.TocResource.ChunkIds[self.UserData] def __init__(self, io_store, userdata: int, name: str): super().__init__() self.Container = io_store self.UserData = userdata self.Name = name.lower() if io_store.caseinSensitive else name # compressionBlockSize = ioStore.TocResource.Header.CompressionBlockSize # firstBlockIndex = int(self.Offset / compressionBlockSize) - 1 # lastBlockIndex = int((Align(self.Offset + self.Length, compressionBlockSize) - 1) / compressionBlockSize) # for i in range(firstBlockIndex, lastBlockIndex): # compressionBlock = ioStore.TocResource.CompressionBlocks[i] # self.UncompressedSize += compressionBlock.UncompressedSize # self.CompressionMethodIndex = compressionBlock.CompressionMethodIndex # # rawSize = Align(compressionBlock.CompressedSize, 16) # self.Size += rawSize # # if ioStore.TocResource.Header.is_encrypted(): # self.Encrypted = True def get_data(self) -> BinaryStream: return self.Container.Read(self.ChunkId)
python
# Copyright 2014 The Crashpad Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. { 'includes': [ '../build/crashpad.gypi', ], 'targets': [ { 'target_name': 'crashpad_snapshot_test_lib', 'type': 'static_library', 'dependencies': [ 'snapshot.gyp:crashpad_snapshot', '../compat/compat.gyp:crashpad_compat', '../third_party/mini_chromium/mini_chromium.gyp:base', '../util/util.gyp:crashpad_util', ], 'include_dirs': [ '..', ], 'sources': [ 'test/test_cpu_context.cc', 'test/test_cpu_context.h', 'test/test_exception_snapshot.cc', 'test/test_exception_snapshot.h', 'test/test_memory_snapshot.cc', 'test/test_memory_snapshot.h', 'test/test_module_snapshot.cc', 'test/test_module_snapshot.h', 'test/test_process_snapshot.cc', 'test/test_process_snapshot.h', 'test/test_system_snapshot.cc', 'test/test_system_snapshot.h', 'test/test_thread_snapshot.cc', 'test/test_thread_snapshot.h', ], }, { 'target_name': 'crashpad_snapshot_test', 'type': 'executable', 'dependencies': [ 'crashpad_snapshot_test_module', 'snapshot.gyp:crashpad_snapshot', '../client/client.gyp:crashpad_client', '../compat/compat.gyp:crashpad_compat', '../test/test.gyp:crashpad_test', '../third_party/gtest/gtest.gyp:gtest', '../third_party/gtest/gtest.gyp:gtest_main', '../third_party/mini_chromium/mini_chromium.gyp:base', '../util/util.gyp:crashpad_util', ], 'include_dirs': [ '..', ], 'sources': [ 'cpu_context_test.cc', 'crashpad_info_client_options_test.cc', 'mac/cpu_context_mac_test.cc', 'mac/mach_o_image_annotations_reader_test.cc', 'mac/mach_o_image_reader_test.cc', 'mac/mach_o_image_segment_reader_test.cc', 'mac/process_reader_test.cc', 'mac/process_types_test.cc', 'mac/system_snapshot_mac_test.cc', 'minidump/process_snapshot_minidump_test.cc', 'win/pe_image_annotations_reader_test.cc', 'win/process_reader_win_test.cc', 'win/system_snapshot_win_test.cc', ], 'conditions': [ ['OS=="mac"', { 'link_settings': { 'libraries': [ '$(SDKROOT)/System/Library/Frameworks/OpenCL.framework', ], }, }], ], }, { 'target_name': 'crashpad_snapshot_test_module', 'type': 'loadable_module', 'dependencies': [ '../client/client.gyp:crashpad_client', '../third_party/mini_chromium/mini_chromium.gyp:base', ], 'include_dirs': [ '..', ], 'sources': [ 'crashpad_info_client_options_test_module.cc', ], }, ], }
python
import unittest import numpy as np import tensorflow as tf from pplp.core import box_4c_encoder class Box4cEncoderTest(unittest.TestCase): def test_np_box_3d_to_box_4c(self): # Test non-vectorized numpy version on ortho boxes # Sideways box box_3d_1 = np.asarray([0, 0, 0, 2, 1, 5, 0]) # Straight box box_3d_2 = np.asarray([0, 0, 0, 2, 1, 5, -np.pi / 2]) # Ground plane facing upwards, at 2m along y axis ground_plane = [0, -1, 0, 2] exp_box_4c_1 = np.asarray( [1.0, 1.0, -1.0, -1.0, 0.5, -0.5, -0.5, 0.5, 2.0, 7.0]) exp_box_4c_2 = np.asarray( [0.5, 0.5, -0.5, -0.5, 1.0, -1.0, -1.0, 1.0, 2.0, 7.0]) # Convert box_3d to box_4c box_4c_1 = box_4c_encoder.np_box_3d_to_box_4c(box_3d_1, ground_plane) box_4c_2 = box_4c_encoder.np_box_3d_to_box_4c(box_3d_2, ground_plane) np.testing.assert_almost_equal(box_4c_1, exp_box_4c_1, decimal=3) np.testing.assert_almost_equal(box_4c_2, exp_box_4c_2, decimal=3) def test_np_box_3d_to_box_4c_rotated_translated(self): # Test non-vectorized numpy version on rotated boxes box_3d_1 = np.asarray([0.0, 0.0, 0.0, 2.0, 1.0, 5.0, -1 * np.pi / 8]) box_3d_2 = np.asarray([0.0, 0.0, 0.0, 2.0, 1.0, 5.0, -3 * np.pi / 8]) box_3d_3 = np.asarray([0.0, 0.0, 0.0, 2.0, 1.0, 5.0, -5 * np.pi / 8]) box_3d_4 = np.asarray([0.0, 0.0, 0.0, 2.0, 1.0, 5.0, -7 * np.pi / 8]) box_3d_5 = np.asarray([0.0, 0.0, 0.0, 2.0, 1.0, 5.0, 1 * np.pi / 8]) box_3d_6 = np.asarray([0.0, 0.0, 0.0, 2.0, 1.0, 5.0, 3 * np.pi / 8]) box_3d_7 = np.asarray([0.0, 0.0, 0.0, 2.0, 1.0, 5.0, 5 * np.pi / 8]) box_3d_8 = np.asarray([0.0, 0.0, 0.0, 2.0, 1.0, 5.0, 7 * np.pi / 8]) # Also test a box translated along xz box_3d_translated = box_3d_1 + [10, 0, 10, 0, 0, 0, 0] # Ground plane facing upwards, at 2m along y axis ground_plane = [0, -1, 0, 2] # Convert box_3d to box_4c box_4c_1 = box_4c_encoder.np_box_3d_to_box_4c(box_3d_1, ground_plane) box_4c_2 = box_4c_encoder.np_box_3d_to_box_4c(box_3d_2, ground_plane) box_4c_3 = box_4c_encoder.np_box_3d_to_box_4c(box_3d_3, ground_plane) box_4c_4 = box_4c_encoder.np_box_3d_to_box_4c(box_3d_4, ground_plane) box_4c_5 = box_4c_encoder.np_box_3d_to_box_4c(box_3d_5, ground_plane) box_4c_6 = box_4c_encoder.np_box_3d_to_box_4c(box_3d_6, ground_plane) box_4c_7 = box_4c_encoder.np_box_3d_to_box_4c(box_3d_7, ground_plane) box_4c_8 = box_4c_encoder.np_box_3d_to_box_4c(box_3d_8, ground_plane) box_4c_translated = box_4c_encoder.np_box_3d_to_box_4c( box_3d_translated, ground_plane) # Expected boxes_4c exp_box_4c_1 = [0.733, 1.115, -0.733, -1.115, 0.845, -0.079, -0.845, 0.079, 2.000, 7.000] exp_box_4c_2 = [0.845, 0.079, -0.845, -0.079, 0.733, -1.115, -0.733, 1.115, 2.000, 7.000] exp_box_4c_3 = [0.079, 0.845, -0.079, -0.845, 1.115, -0.733, -1.115, 0.733, 2.000, 7.000] exp_box_4c_4 = [1.115, 0.733, -1.115, -0.733, 0.079, -0.845, -0.079, 0.845, 2.000, 7.000] exp_box_4c_5 = [1.115, 0.733, -1.115, -0.733, 0.079, -0.845, -0.079, 0.845, 2.000, 7.000] exp_box_4c_6 = [0.079, 0.845, -0.079, -0.845, 1.115, -0.733, -1.115, 0.733, 2.000, 7.000] exp_box_4c_7 = [0.845, 0.079, -0.845, -0.079, 0.733, -1.115, -0.733, 1.115, 2.000, 7.000] exp_box_4c_8 = [0.733, 1.115, -0.733, -1.115, 0.845, -0.079, -0.845, 0.079, 2.000, 7.000] exp_box_4c_translated = [10.733, 11.115, 9.267, 8.885, 10.845, 9.921, 9.155, 10.079, 2.000, 7.000] np.testing.assert_almost_equal(box_4c_1, exp_box_4c_1, decimal=3) np.testing.assert_almost_equal(box_4c_2, exp_box_4c_2, decimal=3) np.testing.assert_almost_equal(box_4c_3, exp_box_4c_3, decimal=3) np.testing.assert_almost_equal(box_4c_4, exp_box_4c_4, decimal=3) np.testing.assert_almost_equal(box_4c_5, exp_box_4c_5, decimal=3) np.testing.assert_almost_equal(box_4c_6, exp_box_4c_6, decimal=3) np.testing.assert_almost_equal(box_4c_7, exp_box_4c_7, decimal=3) np.testing.assert_almost_equal(box_4c_8, exp_box_4c_8, decimal=3) np.testing.assert_almost_equal(box_4c_translated, exp_box_4c_translated, decimal=3) def test_np_box_3d_to_box_4c_heights(self): # Boxes above, on, or below ground plane box_3d_1 = np.asarray([0.0, 3.0, 0.0, 2.0, 1.0, 5.0, 0.0]) # below box_3d_2 = np.asarray([0.0, 2.0, 0.0, 2.0, 1.0, 5.0, 0.0]) # on box_3d_3 = np.asarray([0.0, 1.0, 0.0, 2.0, 1.0, 5.0, 0.0]) # above # Ground plane facing upwards, at 2m along y axis ground_plane = [0, -1, 0, 2] # Convert box_3d to box_4c box_4c_1 = box_4c_encoder.np_box_3d_to_box_4c(box_3d_1, ground_plane) box_4c_2 = box_4c_encoder.np_box_3d_to_box_4c(box_3d_2, ground_plane) box_4c_3 = box_4c_encoder.np_box_3d_to_box_4c(box_3d_3, ground_plane) # Expected boxes_4c exp_box_4c_1 = np.asarray([1.0, 1.0, -1.0, -1.0, 0.5, -0.5, -0.5, 0.5, -1.0, 4.0]) exp_box_4c_2 = np.asarray([1.0, 1.0, -1.0, -1.0, 0.5, -0.5, -0.5, 0.5, 0.0, 5.0]) exp_box_4c_3 = np.asarray([1.0, 1.0, -1.0, -1.0, 0.5, -0.5, -0.5, 0.5, 1.0, 6.0]) np.testing.assert_almost_equal(box_4c_1, exp_box_4c_1) np.testing.assert_almost_equal(box_4c_2, exp_box_4c_2) np.testing.assert_almost_equal(box_4c_3, exp_box_4c_3) def test_tf_box_3d_to_box_4c(self): # Test that tf version matches np version # (rotations, xz translation, heights) boxes_3d = np.asarray([ # Rotated [0.0, 0.0, 0.0, 2.0, 1.0, 5.0, -1 * np.pi / 8], [0.0, 0.0, 0.0, 2.0, 1.0, 5.0, -3 * np.pi / 8], [0.0, 0.0, 0.0, 2.0, 1.0, 5.0, -5 * np.pi / 8], [0.0, 0.0, 0.0, 2.0, 1.0, 5.0, -7 * np.pi / 8], [0.0, 0.0, 0.0, 2.0, 1.0, 5.0, 1 * np.pi / 8], [0.0, 0.0, 0.0, 2.0, 1.0, 5.0, 3 * np.pi / 8], [0.0, 0.0, 0.0, 2.0, 1.0, 5.0, 5 * np.pi / 8], [0.0, 0.0, 0.0, 2.0, 1.0, 5.0, 7 * np.pi / 8], # Translated along xz [10, 0, 5, 2, 1, 5, - 1 * np.pi / 8], # Below, on, or above ground plane [0.0, 3.0, 0.0, 2.0, 1.0, 5.0, 0.0], [0.0, 2.0, 0.0, 2.0, 1.0, 5.0, 0.0], [0.0, 1.0, 0.0, 2.0, 1.0, 5.0, 0.0], ]) # Ground plane facing upwards, at 2m along y axis ground_plane = [0, -1, 0, 2] # Numpy conversion box_3d to box_4c np_boxes_4c = np.asarray( [box_4c_encoder.np_box_3d_to_box_4c(box_3d, ground_plane) for box_3d in boxes_3d]) # Convert to tensors tf_boxes_3d = tf.convert_to_tensor(boxes_3d, dtype=tf.float32) tf_ground_plane = tf.convert_to_tensor(ground_plane, dtype=tf.float32) # Tensorflow conversion box_3d to box_4c tf_boxes_4c = box_4c_encoder.tf_box_3d_to_box_4c(tf_boxes_3d, tf_ground_plane) sess = tf.Session() with sess.as_default(): tf_boxes_4c_out = tf_boxes_4c.eval() # Loop through to show a separate error when box doesn't match for box_idx in range(len(np_boxes_4c)): np.testing.assert_almost_equal(np_boxes_4c[box_idx], tf_boxes_4c_out[box_idx], decimal=5) def test_np_box_4c_to_box_3d(self): box_4c_1 = np.asarray([1.0, 0.0, -1.0, 0.5, 0.5, -1.0, 0.0, 1.0, 1.0, 3.0]) box_4c_2 = np.asarray([1.0, 0.0, -1.0, -0.5, 0.0, -1.0, 0.5, 1.0, 1.0, 3.0]) ground_plane = np.asarray([0, -1, 0, 2]) box_3d_1 = box_4c_encoder.np_box_4c_to_box_3d(box_4c_1, ground_plane) box_3d_2 = box_4c_encoder.np_box_4c_to_box_3d(box_4c_2, ground_plane) # Expected boxes_3d exp_box_3d_1 = [0.125, 1.000, 0.125, 1.768, 1.414, 2.000, -0.785] exp_box_3d_2 = [-0.125, 1.000, 0.125, 1.768, 1.414, 2.000, 0.785] np.testing.assert_almost_equal(box_3d_1, exp_box_3d_1, decimal=3) np.testing.assert_almost_equal(box_3d_2, exp_box_3d_2, decimal=3) def test_tf_box_4c_to_box_3d(self): np_boxes_4c = np.asarray( [ [1.0, 0.0, -1.0, 0.5, 0.5, -1.0, 0.0, 1.0, 1.0, 3.0], [1.0, 0.0, -1.0, -0.5, 0.0, -1.0, 0.5, 1.0, 1.0, 3.0], [1.0, 0.0, -1.0, -0.5, 0.0, -1.0, 0.5, 1.0, 1.0, 3.0], [1.0, 0.0, -1.0, -0.5, 0.0, -1.0, 0.5, 1.0, 1.0, 3.0], [1.0, 0.0, -1.0, -0.5, 0.0, -1.0, 0.5, 1.0, 1.0, 3.0], ]) np_ground_plane = np.asarray([0, -1, 0, -1]) np_boxes_3d = [box_4c_encoder.np_box_4c_to_box_3d(box_4c, np_ground_plane) for box_4c in np_boxes_4c] tf_boxes_4c = tf.convert_to_tensor(np_boxes_4c, dtype=tf.float32) tf_ground_plane = tf.convert_to_tensor(np_ground_plane, dtype=tf.float32) tf_boxes_3d = box_4c_encoder.tf_box_4c_to_box_3d(tf_boxes_4c, tf_ground_plane) sess = tf.Session() with sess.as_default(): tf_boxes_3d_out = tf_boxes_3d.eval() for box_idx in range(len(np_boxes_3d)): np.testing.assert_almost_equal(np_boxes_3d[box_idx], tf_boxes_3d_out[box_idx], decimal=3)
python
from .xml_style import XMLDataset class VOCDataset(XMLDataset): CLASSES = ['spike'] def __init__(self, **kwargs): super(VOCDataset, self).__init__(**kwargs)
python
#!/usr/bin/env python from .web_api_2 import SwaggerGiant
python
import os, paramiko, time, schedule, smtplib, ssl from datetime import datetime from email.message import EmailMessage host='localhost' port='5432' user='postgres' password='admin' database='testdb' #chemin de sauvegarde locale local_dir = 'C:\\Users\\Kamla\\projets\\auto-backup-sqldb\\backup\\' #local_dir = 'Chemin vers le dossier de la base de donnees a sauvegarder\\' #chemin de sauvegarde distant remote_dir = '/C:/Users/vmwin10/Documents/ftpfile/' def job(): print("Backup working...") filestamp = time.strftime('%Y-%m-%dT%H-%M-%S.%z') #nom pour le fichier sql qui serra genere par pg_dump database_remote = database+"_"+filestamp+".bak.sql" PASS="set PGPASSWORD=%s" % (password) #lancement de la commande mysqldump qui va faire une sauvegarde en local #les fichiers sont sauvegarder dans le respertoire 'backup' os.system("(cd backup) && ("+PASS+") && (pg_dump -h %s -p %s -U %s -f %s -C -d %s)" % (host, port, user, database_remote, database)) print("Database dumped to "+database_remote) # debut du SFTP ssh_client=paramiko.SSHClient() ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) #on se connecte a la machine dans laquelle serra sauvegarde le le fichier backup ssh_client.connect(hostname='192.168.126.2',username='vmwin10',password='vmwin10') ftp_client=ssh_client.open_sftp() #envoie du fichier local vers le remote ftp_client.put(local_dir+database_remote,remote_dir+database_remote) ftp_client.close() print("Successfull Backup") # A chaque backup un email est envoye msg = EmailMessage() msg.set_content("Un backup vient d'etre effectue") msg["Subject"] = "Email de Backup" msg["From"] = "[email protected]" msg["To"] = "[email protected]" context=ssl.create_default_context() with smtplib.SMTP("smtp.gmail.com", port=587) as smtp: smtp.starttls(context=context) smtp.login(msg["From"], "password") smtp.send_message(msg) # le backup se fait chaque 1h schedule.every(3).seconds.do(job) #schedule.every(15).minutes.do(job) #schedule.every().hour.do(job) #schedule.every().day.at("10:30").do(job) #schedule.every(10).to(10).minutes.do(job) #schedule.every().monday.do(job) #schedule.every().wednesday.at("15:00").do(job) #schedule.every().minute.at(":15").do(job) while True: schedule.run_pending() time.sleep(1)
python
from pathlib import Path import pandas as pd from collections import defaultdict from typing import List, Union from .types import Child def create_csv(children: List[Child], output_dir: Union[Path,str]): header_df = create_header(children) episodes_df = create_episodes(children) uasc_df = create_uasc(children) reviews_df = create_reviews(children) oc2_df = create_oc2(children) oc3_df = create_oc3(children) ad1_df = create_ad1(children) sbpfa_df = create_should_be_placed_for_adoption(children) prev_perm_df = create_previous_permanence(children) missing_df = create_missing(children) output_dir = Path(output_dir) output_dir.mkdir(parents=True, exist_ok=True) header_df.to_csv(output_dir / 'header.csv', index=False) episodes_df.to_csv(output_dir / 'episodes.csv', index=False) uasc_df.to_csv(output_dir / 'uasc.csv', index=False) reviews_df.to_csv(output_dir / 'reviews.csv', index=False) oc2_df.to_csv(output_dir / 'oc2.csv', index=False) oc3_df.to_csv(output_dir / 'oc3.csv', index=False) ad1_df.to_csv(output_dir / 'ad1.csv', index=False) sbpfa_df.to_csv(output_dir / 'placed_for_adoption.csv', index=False) prev_perm_df.to_csv(output_dir / 'previous_permanence.csv', index=False) missing_df.to_csv(output_dir / 'missing.csv', index=False) def create_header(children: List[Child]) -> pd.DataFrame: return pd.DataFrame({ 'CHILD': [c.child_id for c in children], 'SEX': [c.sex for c in children], 'DOB': [c.dob.strftime('%d/%m/%Y') for c in children], 'ETHNIC': [c.ethnicity for c in children], 'UPN': [c.upn for c in children], 'MOTHER': [1 if c.mother_child_dob is not None else None for c in children], 'MC_DOB': [c.mother_child_dob.strftime('%d/%m/%Y') if c.mother_child_dob is not None else None for c in children], }) def create_episodes(children: List[Child]) -> pd.DataFrame: data = defaultdict(list) for child in children: for episode in child.episodes: data['CHILD'].append(child.child_id) data['DECOM'].append(episode.start_date.strftime('%d/%m/%Y')) data['RNE'].append(episode.reason_for_new_episode) data['LS'].append(episode.legal_status) data['CIN'].append(episode.cin) data['PLACE'].append(episode.place) data['PLACE_PROVIDER'].append(episode.place_provider) data['DEC'].append(episode.end_date.strftime('%d/%m/%y') if episode.end_date is not None else None) data['REC'].append(episode.reason_end) data['REASON_PLACE_CHANGE'].append(episode.reason_place_change) data['HOME_POST'].append(episode.home_postcode) data['PL_POST'].append(episode.place_postcode) data['URN'].append(episode.urn) return pd.DataFrame(data) def create_uasc(children: List[Child]) -> pd.DataFrame: data = defaultdict(list) for child in children: if child.date_uasc_ceased is not None: data['CHILD'].append(child.child_id) data['SEX'].append(child.sex) data['DOB'].append(child.dob.strftime('%d/%m/%Y')) data['DUC'].append(child.date_uasc_ceased.strftime('%d/%m/%Y')) return pd.DataFrame(data) def create_reviews(children: List[Child]) -> pd.DataFrame: data = defaultdict(list) for child in children: for review in child.reviews: data['CHILD'].append(child.child_id) data['DOB'].append(child.dob.strftime('%d/%m/%Y')) data['REVIEW'].append(review.review_date.strftime('%d/%m/%Y')) data['REVIEW_CODE'].append(review.review_code) return pd.DataFrame(data) def create_oc3(children: List[Child]) -> pd.DataFrame: data = defaultdict(list) for child in children: if child.leaving_care_data is not None: data['CHILD'].append(child.child_id) data['DOB'].append(child.dob.strftime('%d/%m/%Y')) data['IN_TOUCH'].append(child.leaving_care_data.in_touch) data['ACTIV'].append(child.leaving_care_data.activ) data['ACCOM'].append(child.leaving_care_data.accom) return pd.DataFrame(data) def create_ad1(children: List[Child]) -> pd.DataFrame: data = defaultdict(list) for child in children: if child.adoption_data is not None: ad = child.adoption_data data['CHILD'].append(child.child_id) data['DOB'].append(child.dob.strftime('%d/%m/%Y')) data['DATE_INT'].append(ad.start_date.strftime('%d/%m/%Y')) data['DATE_MATCH'].append(ad.start_date.strftime('%d/%m/%Y')) data['FOSTER_CARE'].append(ad.foster_care) data['NB_ADOPTR'].append(ad.number_adopters) data['SEX_ADOPTR'].append(ad.sex_adopter) data['LS_ADOPTR'].append(ad.ls_adopter) return pd.DataFrame(data) def create_should_be_placed_for_adoption(children: List[Child]) -> pd.DataFrame: data = defaultdict(list) for child in children: if child.adoption_data is not None: ad = child.adoption_data data['CHILD'].append(child.child_id) data['DOB'].append(child.dob.strftime('%d/%m/%Y')) data['DATE_PLACED'].append(ad.start_date.strftime('%d/%m/%Y')) data['DATE_PLACED_CEASED'].append(ad.end_date.strftime('%d/%m/%Y') if ad.end_date is not None else None) data['REASON_PLACED_CEASED'].append(ad.reason_ceased if ad.reason_ceased is not None else None) return pd.DataFrame(data) def create_oc2(children: List[Child]) -> pd.DataFrame: bool_to_str = lambda x: 1 if x else 0 data = defaultdict(list) for child in children: if child.outcomes_data is not None: oc = child.outcomes_data data['CHILD'].append(child.child_id) data['DOB'].append(child.dob.strftime('%d/%m/%Y')) data['SDQ_SCORE'].append(oc.sdq_score) data['SDQ_REASON'].append(oc.sdq_reason) data['CONVICTED'].append(bool_to_str(oc.convicted)) data['HEALTH_CHECK'].append(bool_to_str(oc.health_check)) data['IMMUNISATIONS'].append(bool_to_str(oc.immunisations)) data['TEETH_CHECK'].append(bool_to_str(oc.teeth_check)) data['HEALTH_ASSESSMENT'].append(bool_to_str(oc.health_assessment)) data['SUBSTANCE_MISUSE'].append(bool_to_str(oc.substance_misuse)) data['INTERVENTION_RECEIVED'].append(bool_to_str(oc.intervention_received)) data['INTERVENTION_OFFERED'].append(bool_to_str(oc.intervention_offered)) df = pd.DataFrame(data) # Pandas converts ints with null to float by default, so need to convert back # to nullable integer. df['SDQ_SCORE'] = df['SDQ_SCORE'].astype('Int64') return df def create_previous_permanence(children: List[Child]) -> pd.DataFrame: data = defaultdict(list) for child in children: data['CHILD'].append(child.child_id) data['DOB'].append(child.dob.strftime('%d/%m/%Y')) data['PREV_PERM'].append(child.previous_permanent) data['LA_PERM'].append(None) # this needs to be inferred data['DATE_PERM'].append(child.prev_permanent_date.strftime('%d/%m/%Y') if child.prev_permanent_date is not None else None) return pd.DataFrame(data) def create_missing(children: List[Child]) -> pd.DataFrame: data = defaultdict(list) for child in children: for mp in child.missing_periods: data['CHILD'].append(child.child_id) data['DOB'].append(child.dob.strftime('%d/%m/%Y')) data['MISSING'].append(mp.missing_type) data['MIS_START'].append(mp.start_date.strftime('%d/%m/%Y')) data['MIS_END'].append(mp.end_date.strftime('%d/%m/%Y') if mp.end_date is not None else None) return pd.DataFrame(data)
python
import argparse parser = argparse.ArgumentParser() parser.add_argument("--latitude", type=float, required=True, help="The latitude of your bounding box center") parser.add_argument("--longitude", type=float, required=True, help="The longitude of your bounding box center") args = parser.parse_args() dlat = 0.005 dlon = 0.02 # double it from 0.01 n = args.latitude + (dlat/2) s = args.latitude - (dlat/2) e = args.longitude + (dlon/2) w = args.longitude - (dlon/2) query = """<query type="way"> <bbox-query s="${south}" w="${west}" n="${north}" e="${east}"/> <has-kv k="highway" regv="."/> <has-kv k="access" modv="not" regv="no"/> <has-kv k="access" modv="not" regv="private"/> <has-kv k="area" modv="not" regv="yes"/> </query> <union> <item/> <recurse type="down"/> </union> <print/>""" from string import Template t = Template(query) interpolated = t.substitute(north=str(n), south=str(s), east=str(e), west=str(w)) print interpolated
python
from modules.data.fileRead import readMat from numpy import arange from modules.modelar.leastSquares import calculate # Alternativa para caso as constantes escolhidas não forem escolhidas pelo Usuário SP = 50 OVERSHOOT = 0.10 TS = 70 # Pegando vetores de entrada e saída ENTRADA, SAIDA, TEMPO = readMat() # Calculando intervalo de tempo TEMPO_AMOSTRAGEM = TEMPO[0][1] # Calculando intervalo de tempo TEMPO_CALCULO = arange(0,(len(TEMPO[0])*TEMPO_AMOSTRAGEM),TEMPO_AMOSTRAGEM) # Calculando coeficientes COEFICIENTE_A1, COEFICIENTE_B1 = calculate()
python
import argparse import os import pandas as pd import re import spacy import sys from datetime import datetime from geopy.extra.rate_limiter import RateLimiter from geopy import Nominatim from epitator.geoname_annotator import GeonameAnnotator from epitator.date_annotator import DateAnnotator from epitator.count_annotator import CountAnnotator from epitator.annotator import AnnoDoc from typing import Iterable, Union from transformers import BartForConditionalGeneration, BartTokenizer from tqdm import tqdm os.environ['SPACY_MODEL_SHORTCUT_LINK'] = 'en_core_web_trf' spacy.prefer_gpu() sys.path.append('../EpiTator') locator = Nominatim(user_agent="ppcoom") geocode = RateLimiter(locator.geocode, min_delay_seconds=1/20) locator = Nominatim(user_agent="ppcoom") geocode = RateLimiter(locator.geocode, min_delay_seconds=1/20) dengue_regex = re.compile( r'([A-Za-z ]+).*\[w\/e (.+)\] \/ (.+) \/ (.+) \/ (.+) \/ (.+) \/ (.+)', re.MULTILINE) tqdm.pandas() # setup our BART transformer summarization model print('loading transformers') tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn') model = BartForConditionalGeneration.from_pretrained( 'facebook/bart-large-cnn') COUNTRY_COL = "country" CONTENT_COL = "content" SUMMARY_COL = "summary" DATA_DIR = "../data" SUMMARIZED_DATA_DIR = f"{DATA_DIR}/summarized" EXTRACTED_DATA_DIR = f"{DATA_DIR}/extracted" def extract_arguments() -> Iterable[Union[str, list]]: """ Name: extract_arguments Purpose: extracts the arguments specified by the user Input: None Output: filepath - The csv filepath specified by the user countries - The countries specified by the user """ CSV_FILE_ENDING = ".csv" parser = argparse.ArgumentParser() parser.add_argument("-f", "--filepath", type=str, required=True, help="The filepath to the promed data to analyze") parser.add_argument("-c", "--countries", nargs="+", required=True, help="The countries to filter for in the data") args = parser.parse_args() """ Validate the following: 1. The filepath has a length > 0 2. The filepath actually points to a file 3. The file pointed to by the filepath is a csv """ filepath = args.filepath if ( len(filepath) <= 0 or os.path.isfile(filepath) is False or filepath.endswith(CSV_FILE_ENDING) is False ): print(f"The filepath: {filepath} is either not a valid csv or a valid file.") sys.exit(-1) """ Validate the countries specified are valid strings """ invalid_country_specified = False for country in args.countries: if (len(country.strip()) <= 0 or country is None): print(f"The country: {country} is not valid") invalid_country_specified = True if invalid_country_specified: sys.exit(-1) return filepath, args.countries def read_data(csv_filepath: str) -> pd.DataFrame: """ Name: read_data Purpose: To read the data inside the csv filepath specified Input: csv_filepath - The filepath to the csv Output: A DataFrame representation of the csv data """ return pd.read_csv(csv_filepath) def filter_df_by_countries(promed_df: pd.DataFrame, countries_to_srch_for: list) -> pd.DataFrame: """ Name: filter_df_by_countries Purpose: Filter the specified data frame by the countries specified Input: promed_df - The promed dataframe countries_to_srch_for - The countries we shoud filter on Output: A new filtered dataframe """ filtered_pd = None for country in countries_to_srch_for: country_filtered_df = promed_df.loc[(promed_df[COUNTRY_COL].str.lower() == country.lower())] if filtered_pd is None: filtered_pd = country_filtered_df else: filtered_pd.append(country_filtered_df) return filtered_pd def clean_df_content(promed_df: pd.DataFrame, debug: bool = False) -> pd.DataFrame: cleaned_df = {} for index, row in promed_df.iterrows(): content = row[CONTENT_COL] cleaned_content = clean(content) if (debug): print("---------------------------") print(f"{content}") print("---------------------------") for col in promed_df.columns: row_val = row[col] if col == CONTENT_COL: row_val = cleaned_content if col in cleaned_df: cleaned_df[col].append(row_val) else: cleaned_df[col] = [row_val] return pd.DataFrame(cleaned_df) def clean(content): split = content.splitlines() last_index = -1 lower = [x.lower().strip() for x in split] if '--' in lower: last_index = lower.index('--') elif 'communicated by:' in lower: last_index = lower.index('communicated by:')-1 cleaned = split[12:last_index] return '\n'.join([x for x in cleaned if x]) def summarize_df_content(promed_df: pd.DataFrame) -> pd.DataFrame: summarized_df = {} for index, row in promed_df.iterrows(): content = row[CONTENT_COL] summarized_content = summarizer(content) for col in promed_df.columns: row_val = row[col] if col == SUMMARY_COL: row_val = summarized_content if col != CONTENT_COL: if col in summarized_df: summarized_df[col].append(row_val) else: summarized_df[col] = [row_val] return pd.DataFrame(summarized_df) def summarizer(text: str) -> str: input_ids = tokenizer(text, return_tensors='pt', max_length=1024, padding=True, truncation=True)['input_ids'] summary_ids = model.generate(input_ids) summary = ''.join([tokenizer.decode(s) for s in summary_ids]) summary = summary.replace('<s>', '').replace('</s>', '') return summary def extract_cchf_data_from_df(promed_df: pd.DataFrame) -> pd.DataFrame: promed_df[[ 'admin1_code', 'admin2_code', 'admin3_code', 'admin4_code', 'location_name', 'location_lat', 'location_lon', 'cases', 'cases_tags', 'deaths', 'deaths_tags', 'dates_start', 'dates_end', ]] = promed_df[SUMMARY_COL].progress_apply(epitator_extract) promed_df = promed_df.applymap(lambda x: x[0] if isinstance( x, list) and len(x) > 0 else x) promed_df = promed_df.applymap(lambda y: pd.NA if isinstance( y, (list, str)) and len(y) == 0 else y) promed_df = promed_df.reset_index(drop=True) return promed_df # function that extracts location names/admin codes/lat/lng, case and death counts, and date ranges from the input string # uses epitator since it already trained rules for extracting medical/infectious disease data def epitator_extract(txt: str, max_ents: int = 1) -> dict: # input string and add annotators doc = AnnoDoc(txt) doc.add_tiers(GeonameAnnotator()) doc.add_tiers(CountAnnotator()) doc.add_tiers(DateAnnotator()) # extract geographic data geos = doc.tiers["geonames"].spans geo_admin1s = [x.geoname.admin1_code for x in geos] geo_admin2s = [x.geoname.admin2_code for x in geos] geo_admin3s = [x.geoname.admin3_code for x in geos] geo_admin4s = [x.geoname.admin4_code for x in geos] geo_names = [x.geoname.name for x in geos] geo_lats = [x.geoname.latitude for x in geos] geo_lons = [x.geoname.longitude for x in geos] # extract case counts and death counts counts = doc.tiers["counts"].spans cases_counts = [x.metadata['count'] for x in counts if 'case' in x.metadata['attributes'] and 'death' not in x.metadata['attributes']] cases_tags = [x.metadata['attributes'] for x in counts if 'case' in x.metadata['attributes'] and 'death' not in x.metadata['attributes']] death_counts = [x.metadata['count'] for x in counts if 'death' in x.metadata['attributes']] death_tags = [x.metadata['attributes'] for x in counts if 'death' in x.metadata['attributes']] # extract the date range dates = doc.tiers["dates"].spans dates_start = [pd.to_datetime( x.metadata["datetime_range"][0], errors='coerce') for x in dates] dates_end = [pd.to_datetime( x.metadata["datetime_range"][1], errors='coerce') for x in dates] # return only max_ents entities from the extracted lists # currently set to the first result for each list, since that is usually the most important one # and other ones can be filler/garbage data return pd.Series([ geo_admin1s[:max_ents], geo_admin2s[:max_ents], geo_admin3s[:max_ents], geo_admin4s[:max_ents], geo_names[:max_ents], geo_lats[:max_ents], geo_lons[:max_ents], cases_counts[:max_ents], cases_tags[:max_ents], death_counts[:max_ents], death_tags[:max_ents], dates_start[:max_ents], dates_end[:max_ents], ]) def main(): print("Extracting the specified arguments") csv_filepath, countries = extract_arguments() print("Reading the promed data") orig_promed_df = read_data( csv_filepath = csv_filepath ) print("Filtering the promed data") filtered_promed_df = filter_df_by_countries( promed_df = orig_promed_df, countries_to_srch_for = countries ) print(filtered_promed_df) print("Cleaning the promed data") cleaned_promed_content_df = clean_df_content( promed_df = filtered_promed_df ) print("Summarizing dataframe contents") summarized_promed_data = summarize_df_content( promed_df = filtered_promed_df ) if os.path.isdir(SUMMARIZED_DATA_DIR) is False: os.mkdir(SUMMARIZED_DATA_DIR) csv_countries_selected = "" for country in countries: csv_countries_selected += f"_{country.lower()}" print("Saving summarized promed data") csv_country_summarized_data = f"summarized_promed_cchf_data" summarized_promed_data.to_csv(f"{SUMMARIZED_DATA_DIR}/{csv_country_summarized_data}{csv_countries_selected}.csv", index=False) print("Extracting promed data") extraced_promed_data_df = extract_cchf_data_from_df( promed_df = summarized_promed_data ) print("Saving extracted promed data") if os.path.isdir(EXTRACTED_DATA_DIR) is False: os.mkdir(EXTRACTED_DATA_DIR) csv_country_extracted_data = f"extracted_promed_cchf_data" extraced_promed_data_df.to_csv(f"{EXTRACTED_DATA_DIR}/{csv_country_extracted_data}{csv_countries_selected}.csv", index=False) if __name__ == "__main__": main()
python
from cmsisdsp.sdf.nodes.simu import * import numpy as np import cmsisdsp as dsp class Processing(GenericNode): def __init__(self,inputSize,outputSize,fifoin,fifoout): GenericNode.__init__(self,inputSize,outputSize,fifoin,fifoout) def run(self): i=self.getReadBuffer() o=self.getWriteBuffer() b=dsp.arm_scale_q15(i,0x6000,1) o[:]=b[:] return(0)
python
def say_hi(): print("hello world function") def cube(num): return num*num*num say_hi() print(cube(3)) # Statements is_male = False if is_male: say_hi() else: print("Goodbay") # Statements is_female = True if is_female or is_male: print("Hi") else: print("Goodbay") # Dictionary months = { 0: "hola", 1: "adiós" }
python
import os from argh.dispatching import dispatch_command import application def start_app(): port = int(os.getenv('PORT')) application.start(port=port) if __name__ == '__main__': dispatch_command(start_app)
python
import os from git import Repo from django.core.exceptions import PermissionDenied from base.handlers.extra_handlers import ExtraHandler from base.handlers.file_handler import FileHandler from base.handlers.form_handler import FormHandler from base.handlers.path_handlers import PathHandler from base.handlers.github_handler import GithubHandler from base.handlers.yaml_handlers import YAMLHandler from startbootstrap.dbio import PostDbIO, SiteDataDbIO, SocialProfileDbIO from theJekyllProject.dbio import RepoDbIO class SBSFormHandler: def __init__(self, user, repo): """ :param user: logged in user :param repo: the main repo name """ self.path = PathHandler(user, repo).create_repo_path() def load_site_initials(self, request, form_class): """ Load the site data initials from the database """ site_data = SiteDataDbIO().get_obj({ 'repo': RepoDbIO().get_repo(request.user) }) return FormHandler(request, form_class).load_initials(site_data) def post_site_data(self, user, form_field_dict): """ handle the post site data View method :param user: the logged in user :param form_field_dict: form field cleaned data :return: """ repo = RepoDbIO().get_repo(user) form_field_dict['repo'] = repo site_data = SiteDataDbIO().get_obj({'repo': repo}) if site_data: SiteDataDbIO().update_obj(site_data, form_field_dict) else: SiteDataDbIO().create_obj(**form_field_dict) config_path = os.path.join(self.path, '_config.yml') self.del_repo(form_field_dict) # Complete all the yaml operations yaml_dict = YAMLHandler().read_yaml_file(config_path, True) new_yaml = YAMLHandler().change_yaml(yaml_dict, form_field_dict) YAMLHandler().write_dict_yaml(config_path, new_yaml) # Complete all the git operations repo = Repo(self.path) GithubHandler.commit_all_changes(repo, 'Change site data') GithubHandler.push_code(repo, 'gh-pages') def load_social_profile_initials(self, request, form_class): """ Load the site profile initials from the database """ social_data = SocialProfileDbIO().get_obj({ 'repo': RepoDbIO().get_repo(request.user) }) return FormHandler(request, form_class).load_initials(social_data) def post_social_profile_data(self, user, form_field_dict): """ handle the post social profile View method :param user: the logged in user :param form_field_dict: form field cleaned data :return: """ repo = RepoDbIO().get_repo(user) # repo is the foriegn key so it needs to be in the dict. form_field_dict['repo'] = repo social_data = SocialProfileDbIO().get_obj({'repo': repo}) if social_data: SocialProfileDbIO().update_obj(social_data, form_field_dict) else: SocialProfileDbIO().create_obj(**form_field_dict) config_path = os.path.join(self.path, '_config.yml') self.del_repo(form_field_dict) # Complete all the yaml operations yaml_dict = YAMLHandler().read_yaml_file(config_path, True) new_yaml = YAMLHandler().change_yaml(yaml_dict, form_field_dict) YAMLHandler().write_dict_yaml(config_path, new_yaml) # Complete all the git operations repo = Repo(self.path) GithubHandler.commit_all_changes(repo, 'Change site data') GithubHandler.push_code(repo, 'gh-pages') def load_posts_initials(self, request, form_class, pk=None): """ Load the posts initials from the database """ repo = RepoDbIO().get_repo(request.user) if pk: post = PostDbIO().get_obj({ 'pk': pk, 'repo__user': request.user, 'repo': repo }) if post is None: raise PermissionDenied else: post = None return FormHandler(request, form_class).load_initials(post) def post_posts_data(self, user, form_field_dict, pk=None): """ handle the post posts View method :param user: the logged in user :param form_field_dict: form field cleaned data We have to delete the file if the title is changed otherwise two different files will be created. :return: """ # TODO image copying is not done and delete the old one. # TODO take care of the layout repo = RepoDbIO().get_repo(user) if pk: post = PostDbIO().get_obj({ 'pk': pk, 'repo__user': user, 'repo': repo }) if pk is None: raise PermissionDenied if post.title is not form_field_dict['title']: file_name = ExtraHandler().file_name_f_title(post.title, 'html') FileHandler('/'.join([self.path, '_posts']), file_name).delete_file() post = PostDbIO().update_obj(post, **form_field_dict) else: form_field_dict['repo'] = repo post = PostDbIO().create_obj(**form_field_dict) ExtraHandler().del_keys(form_field_dict, ('repo', 'content',)) yaml_content = YAMLHandler().create_yaml(form_field_dict) w_yaml_content = ExtraHandler().wrap_content('---', yaml_content) full_content = ExtraHandler().join_content(w_yaml_content, post.content) file_name = ExtraHandler().file_name_f_title(post.title, 'html') FileHandler('/'.join([self.path, '_posts']), file_name).rewrite_file(full_content) # Complete all the git operations repo = Repo(self.path) GithubHandler.commit_all_changes(repo, 'Change site data') GithubHandler.push_code(repo, 'gh-pages') def load_page_initials(self, request, form_class, pk=None): """ Load the page initials from the database """ repo = RepoDbIO().get_repo(request.user) if pk: post = PostDbIO().get_obj({ 'pk': pk, 'repo__user': request.user, 'repo': repo }) else: raise PermissionDenied return FormHandler(request, form_class).load_initials(post) def post_page_data(self, user, form_field_dict, pk=None): """ handle the post page View method :param user: the logged in user :param form_field_dict: form field cleaned data We have to delete the file if the title is changed otherwise two different files will be created. :return: """ # TODO image copying is not done. # TODO take care of the layout repo = RepoDbIO().get_repo(user) if pk: post = PostDbIO().get_obj({ 'pk': pk, 'repo__user': user, 'repo': repo }) if pk is None: raise PermissionDenied if post.title is not form_field_dict['title']: file_name = ExtraHandler().file_name_f_title(post.title, 'html') FileHandler('/'.join([self.path, '_posts']), file_name).delete_file() post = PostDbIO().update_obj(post, **form_field_dict) else: raise PermissionDenied ExtraHandler().del_keys(form_field_dict, ('repo', 'content',)) yaml_content = YAMLHandler().create_yaml(form_field_dict) w_yaml_content = ExtraHandler().wrap_content('---', yaml_content) full_content = ExtraHandler().join_content(w_yaml_content, post.content) file_name = ExtraHandler().file_name_f_title(post.title, 'html') FileHandler('/'.join([self.path, '_posts']), file_name).rewrite_file(full_content) # Complete all the git operations repo = Repo(self.path) GithubHandler.commit_all_changes(repo, 'Change site data') GithubHandler.push_code(repo, 'gh-pages')
python
from radixlib.api_types.identifiers import AccountIdentifier from radixlib.serializable import Serializable from radixlib.api_types import TokenAmount from typing import Dict, Any import radixlib as radix import json class TransferTokens(Serializable): """ Defines a TransferTokens action """ def __init__( self, from_account: str, to_account: str, amount: int, token_rri: str, ) -> None: """ Instantiates a new TransferTokens action used for the creation of new tokens. Args: from_account (str): The account which will be sending the tokens. to_account (str): The account which will be getting the tokens. amount (int): The amount of tokens to send. token_rri (str): The RRI of the token to send. """ self.from_account: AccountIdentifier = AccountIdentifier(from_account) self.to_account: AccountIdentifier = AccountIdentifier(to_account) self.amount: int = amount self.token_rri: str = token_rri def to_dict(self) -> Dict[str, Any]: """" Converts the object to a dictionary """ return radix.utils.remove_none_values_recursively( radix.utils.convert_to_dict_recursively({ "type": "TransferTokens", "from_account": self.from_account, "to_account": self.to_account, "amount": TokenAmount( rri = self.token_rri, amount = self.amount ) }) ) def to_json_string(self) -> str: """ Converts the object to a JSON string """ return json.dumps(self.to_dict()) @classmethod def from_dict( cls, dictionary: Dict[Any, Any] ) -> 'TransferTokens': """ Loads a TransferTokens from a Gateway API response dictionary Args: dictionary (dict): The dictionary to load the object from Returns: TransferTokens: A new TransferTokens initalized from the dictionary Raises: TypeError: Raised when the type of the action in the dictionary does not match the action name of the class """ if dictionary.get('type') != "TransferTokens": raise TypeError(f"Expected a dictionary with a type of TransferTokens but got: {dictionary.get('type')}") return cls( from_account = dictionary['from_account']['address'], to_account = dictionary['to_account']['address'], amount = int(dictionary['amount']['value']), token_rri = dictionary['amount']['token_identifier']['rri'] ) @classmethod def from_json_string( cls, json_string: str ) -> 'TransferTokens': """ Loads a TransferTokens from a Gateway API response JSON string. """ return cls.from_dict(json.loads(json_string))
python
# -*- coding: utf-8 -*- from flask import render_template, redirect, request, url_for, flash, jsonify, abort from flask_login import login_user, logout_user, login_required, current_user from . import estate from .. import db from ..models import SzEstate import urllib import os import time import math from datetime import datetime,date import requests from bs4 import BeautifulSoup import chardet initCached = False max_cache_num = 1000 sz_cache = {} #房源公示 @estate.route('/sz', methods=['GET','POST']) #@login_required def sz(): formDate = None formZone = None formSN = None if request.method == 'POST': if 'textDate' in request.form: formDate = request.form['textDate'].lstrip().rstrip() if 'textZone' in request.form: formZone = request.form['textZone'].lstrip().rstrip() if 'textSn' in request.form: formSN = request.form['textSn'].lstrip().rstrip() #print formDate,formZone,formSN #初次使用系统,初始化缓存 global initCached global initCheckProcess global sz_cache if not initCached: initCached = True initCache() #准备首页数据 today = datetime.today() #当天时间 curDayString = '%d-%02d-%02d' % (today.year,today.month,today.day) #没有任何一个参数则默认显示今天 if not formDate and not formZone and not formSN:# formDate = curDayString #搜索结果 estates = searchEstates(formDate,formZone,formSN) if not estates: estates = [] return render_template("estate/sz_estate.html",curDayString=curDayString,formDate=formDate,curEstates=estates) #更新房源 @estate.route('/update_sz', methods=['GET']) @login_required def update_sz(): #doCheck() return redirect(url_for('estate.sz')) #初始化缓存 @estate.route('/cache_sz', methods=['GET']) @login_required def cache_sz(): initCache() return redirect(url_for('estate.sz')) #根据条件搜索 def searchEstates(date,zone,sn,no_repeat=True): global sz_cache es = sz_cache.get(date) #当日的数据强制重刷 today = datetime.today() curDayString = '%d-%02d-%02d' % (today.year,today.month,today.day) if curDayString == date: es = None arr = [] #sn是否为数字 isSnNum = True if sn: try: int(sn) except: isSnNum = False if not es: #无缓存,全部数据从数据库取得 #print 'search 1' if date and zone and sn: if isSnNum: es = SzEstate.query.filter_by(pub_date=date).filter_by(zone=zone).filter_by(sn=sn).all() else: es = SzEstate.query.filter_by(pub_date=date).filter_by(zone=zone).filter(SzEstate.name.like('%'+sn+'%')).all() elif zone and sn: if isSnNum: es = SzEstate.query.filter_by(zone=zone).filter_by(sn=sn).all() else: es = SzEstate.query.filter_by(zone=zone).filter(SzEstate.name.like('%'+sn+'%')).all() elif date and sn: if isSnNum: es = SzEstate.query.filter_by(pub_date=date).filter_by(sn=sn).all() else: es = SzEstate.query.filter_by(pub_date=date).filter(SzEstate.name.like('%'+sn+'%')).all() elif date and zone: es = SzEstate.query.filter_by(pub_date=date).filter_by(zone=zone).all() elif date: es = SzEstate.query.filter_by(pub_date=date).all() elif zone: es = SzEstate.query.filter_by(zone=zone).all() elif sn: if isSnNum: es = SzEstate.query.filter_by(sn=sn).all() else: es = SzEstate.query.filter(SzEstate.name.like('%'+sn+'%')).all() #包装数据 for e in es: ee = {'sid':e.sid,'name':e.name,'csn':e.csn,'zone':e.zone,'space':e.space,'usage':e.usage,'floor':e.floor,'sn':e.sn,'proxy':e.proxy,'pub_date':e.pub_date} arr.append(ee) analyzeEstate(ee) elif zone or sn: #有缓存且有zone或sn条件,从缓存中搜索 #print 'search 2' for e in es: if zone and sn and zone == e.get('zone') and sn == e.get('sn'): arr.append(e) elif zone and zone == e.get('zone'): arr.append(e) elif sn and sn == e.get('sn'): arr.append(e) else: #无zone或sn条件 #print 'search 3' arr = es #筛选重复的房源 if no_repeat: no_repeat_arr = [] no_repeat_keys = [] for e in arr: esn = e.get('sn') if not esn or no_repeat_keys.count(esn) > 0: continue no_repeat_keys.append(esn) no_repeat_arr.append(e) return no_repeat_arr return arr #获取指定参数房源 page:页数 zone:区域 tep_name:项目名称 retry_error = 0 max_retry_error = 5 def getEstates(page,zone="",tep_name=""): global retry_error global max_retry_error user_agent = 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 UBrowser/6.1.2107.204 Safari/537.36' values = {'targetpage' : page, 'zone' : zone, 'tep_name' : tep_name} headers = {'User-Agent' : user_agent} data = urllib.urlencode(values) #print "data:",data url = '%s%s%s' % ('http://ris.szpl.gov.cn/bol/EsSource.aspx','?',data) print url html = None try: html = requests.get(url, headers=headers) except Exception,e: print Exception,":",e retry_error = retry_error + 1 if retry_error < max_retry_error: #发生错误重新尝试,最多max_retry_error次 print "retry count:%d %d %s %s" % (retry_error,page,zone,tep_name) getEstates(page,zone,tep_name) return [] #解析html es = parse_html(html.content) retry_error = 0 return es #解析数据 def parse_html(html): objs = [] #print 'html:',html charset_obj = chardet.detect(html) #print 'html charset',charset_obj soup = BeautifulSoup(html,'html5lib',from_encoding=charset_obj['encoding']) table = soup.find('table',id='DataGrid1') trs = [] if table: trs = table.find_all('tr') #print "parse len:",len(trs) if len(trs) > 0: trs = trs[1:] for tr in trs: tds = tr.find_all('td') #sid sid = tds[0].find('a')['onclick'] sid = sid[sid.find('(')+1:sid.find(')')] #项目名称 招商路北住宅楼18栋 name = tds[0].find('a').string #合同流水号 (2017)第21090号 csn = tds[1].string #区属 南山 zone = tds[2].string #面积(㎡) 75.40 space = tds[3].string #用途 多层铝窗住宅 usage = tds[4].string #楼层 floor = tds[5].string #房源编码 sn = tds[6].string #代理中介名称 proxy = tds[7].find('a').string foid = tds[7].find('a')['href'] #中介电话 proxy_phone = tds[7].string #发布日期 pub_date = tds[8].string obj = {'sid':sid,'name':name,'csn':csn,'zone':zone,'space':space,'usage':usage,'floor':floor,'sn':sn,'proxy':proxy,'proxy_phone':proxy_phone,'pub_date':pub_date} objs.append(obj) #print obj #print "%s %s %s" % (sid,pub_date,sn) objs.reverse() return objs def hasUpdate(updates,sid): for e in updates: if e.get('sid') == sid: return True return False #实际检查更新函数 def doCheck(cached=True): loop = True page = 1 updates = [] while loop: es = getEstates(page) #降序 es.reverse() page = page + 1 loop = False count = 0 update_arr = [] no_update_arr = [] for e in es: count = count + 1 sz_es = SzEstate.query.filter_by(sid=e.get('sid')).first() if not sz_es: #插入到第一个 if not hasUpdate(updates,e.get('sid')): update_arr.append(e.get('sid','')) updates.insert(0,e) else: no_update_arr.append(e.get('sid','')) #第一个如果也是更新的房源,则去寻找下一页 if count == len(es): print 'doCheck next page:',page loop = True print "update_arr:",update_arr print "no_update_arr:",no_update_arr #更新数据库 for e in updates: estate = SzEstate() estate.sid=int(e.get('sid','')) estate.name=e.get('name','') estate.csn=e.get('csn','') estate.zone=e.get('zone','') estate.space=float(e.get('space','')) estate.usage=e.get('usage','') estate.floor=e.get('floor','') estate.total_floor=e.get('total_floor','') estate.sn=e.get('sn','') estate.proxy=e.get('proxy','') estate.pub_date=e.get('pub_date','') db.session.add(estate) if cached: pushCache(e) #提交事务 update_num = len(updates) if update_num > 0: db.session.commit() #排序并检查数量 sortCache() checkCacheNum() return update_num #初始化所有数据 def initEstates(maxPage = None, delay = 0.5): total_num = getEstatesNum() total_num = int(total_num) print 'total_num:',total_num if not maxPage: maxPage = math.floor(total_num/20) maxPage = int(maxPage)+1 print 'maxPage:',maxPage for i in range(maxPage): time.sleep(delay) page = maxPage-i print 'proccess page:',page if page < 1: print 'proccess complete:',page break es = getEstates(page) for e in es: sz_es = SzEstate.query.filter_by(sid=e.get('sid')).first() if not sz_es: estate = SzEstate() estate.sid=int(e.get('sid','')) estate.name=e.get('name','') estate.csn=e.get('csn','') estate.zone=e.get('zone','') estate.space=float(e.get('space','')) estate.usage=e.get('usage','') estate.floor=e.get('floor','') estate.total_floor=e.get('total_floor','') estate.sn=e.get('sn','') estate.proxy=e.get('proxy','') estate.pub_date=e.get('pub_date','') db.session.add(estate) #提交事务 db.session.commit() #获取记录数量 def getEstatesNum(): global retry_error global max_retry_error user_agent = 'Mozilla/4.0 (compatibl; MSIE 5.5; Windows NT)' values = {'targetpage' : 1, 'zone' : '', 'tep_name' : ''} headers = {'User-Agent' : user_agent} data = urllib.urlencode(values) url = '%s%s%s' % ('http://ris.szpl.gov.cn/bol/EsSource.aspx','?',data) html = None try: html = requests.get(url, headers=headers) except Exception,e: print Exception,":",e retry_error = retry_error + 1 if retry_error < max_retry_error: #发生错误重新尝试,最多max_retry_error次 print "retry count:%d %d %s %s" % (retry_error,page,zone,tep_name) getEstatesNum() return 0 charset_obj = chardet.detect(html.content) soup = BeautifulSoup(html.content,'html5lib',from_encoding=charset_obj['encoding']) span_a1s = soup.find_all('span',class_='a1') span_a1 = None if len(span_a1s) > 1: span_a1 = span_a1s[1] num = 0 if span_a1: num = int(span_a1.string[2:-4]) retry_error = 0 return num #初始化缓存 def initCache(): global sz_cache del sz_cache sz_cache = {} sz_es = SzEstate.query.all() total = len(sz_es) sz_es = sz_es[total-max_cache_num:total] for e in sz_es: ee = {'sid':e.sid,'name':e.name,'csn':e.csn,'zone':e.zone,'space':e.space,'usage':e.usage,'floor':e.floor,'sn':e.sn,'proxy':e.proxy,'pub_date':e.pub_date} pushCache(ee) #排序 sortCache() print '---------------initCache',len(sz_es) #获取最大和最小日期 def getCacheLimitDate(): global sz_cache max,min = None,None for k in sz_cache: if not max: min = max = k if k > max: max = k if k < min: min = k return max,min #统计缓存数量 def countCache(): count = 0 for k in sz_cache: count = count + len(sz_cache[k]) return count #删除时间最早的一个房源,也就是sid最小的一个 def delMinEstate(arr): min = None for e in arr: if not min: min = e if e.get('sid') < min.get('sid'): min = e if min: print 'remove cache date:',min.get('pub_date') arr.remove(min) #为缓存排序 def sortCache(date=None): print 'sortCache',date for k in sz_cache: if k == date or not date: arr = sz_cache[k] arr.sort(sortCompare) #排序算法 def sortCompare(e1,e2): if e1.get('sid')>e2.get('sid'): return -1 return 1 #分析房源 def analyzeEstate(estate): #暂不分析 #todo return es = SzEstate.query.filter_by(sn=estate.get('sn')).all() arr = [] for e in es: if e.sid != estate.get('sid'): ee = {'sid':e.sid,'name':e.name,'csn':e.csn,'zone':e.zone,'space':e.space,'usage':e.usage,'floor':e.floor,'sn':e.sn,'proxy':e.proxy,'pub_date':e.pub_date} arr.append(ee) estate['same'] = arr estate['new'] = True for e in arr: if e.get('pub_date') < estate.get('pub_date'): estate['new'] = False #插入数据到缓存 def pushCache(e,check = False): global sz_cache global max_cache_num pub_date = e.get('pub_date',None) if pub_date: arr = sz_cache.get(pub_date,None) if not arr: arr = [] sz_cache[pub_date] = arr print 'add cache date:',pub_date analyzeEstate(e) arr.append(e) if check: #排序 sortCache(pub_date) checkCacheNum() #检查并维持缓存大小 def checkCacheNum(): count = countCache() #print 'cache count start:',count if count > max_cache_num: maxDate,minDate = getCacheLimitDate() delMinEstate(sz_cache[minDate]) count = countCache() #print 'cache count end:',count #if count > max_cache_num: #checkCacheNum()
python
# Freetype library freetype = StaticLibrary( 'freetype', sources = [ 'src/base/*', 'src/gzip/ftgzip.c', 'src/winfonts/winfnt.c', 'src/cid/type1cid.c' ], defines = [ 'FT2_BUILD_LIBRARY', 'FT_CONFIG_OPTION_SYSTEM_ZLIB' ] ) freetype.include( 'include' ) # Add Freetype modules sources prefix = { 'gzip': 'ft', 'cid': 'type1', 'lzw': 'ft' } for folder in Folders( 'src/*' ): if not folder.name in ['tools', 'base', 'bzip2', 'cache', 'winfonts']: fileName = (prefix[folder.name] if folder.name in prefix.keys() else '') + folder.name + '.c' freetype.files( folder.path + '/' + fileName ) # Platform specific settings if platform == 'MacOS': freetype.define( 'DARWIN_NO_CARBON' )
python
""" Created on Wednesday Septebmer 25 17:07 2019 tools to work with XRF data from the Geotek MSCL (Olympus head) @author: SeanPaul La Selle """ import os import sys import glob import tkinter from tkinter import filedialog import numpy as np import csv import pandas import matplotlib as matplotlib import matplotlib.pyplot as plt from matplotlib.ticker import (MultipleLocator, FormatStrFormatter, AutoMinorLocator) matplotlib.rcParams['pdf.fonttype'] = 42 import warnings from corescan_plotting import ct, linescan ############################################################################### def xrf_in(filename='',mode='geochem'): """ read in Geotek MSCL (v7.9) XRF data from from .out file """ ## Get filename if not specified in function call if not filename: filename = filedialog.askopenfilename() if not filename: sys.exit() header, data = csv_xrf_parser(filename) dict = xrf_array2dict(header, data, mode) # Determine the directory of the file directory = os.path.dirname(filename) ## Read other files # if not xml_fname: # xml_fname = glob.glob(os.path.splitext(filename)[0]+'*.xml')[0] # xml_dic = linescan_xml(xml_fname) return dict ############################################################################### def csv_xrf_parser(filename): """ parses a Geotek XRF .out file (MSCL v7.9), returns the elements and an array with depths, counts, ppm and errors """ with open(filename) as csvfile: readcsv = csv.reader(csvfile,delimiter='\t') header=[] data = [] for i,row in enumerate(readcsv): # Assume header is 9 rows header.append(row) if(i>=9): break for row in readcsv: # From here, csv should be data data.append([float(i) for i in row]) for i,r in enumerate(data): # Need to pad rows with empty data if len(r) != len(max(data,key=len)): r = np.append(r,np.ones((len(max(data,key=len))-len(r)))) data[i] = np.nan*r data = np.reshape(data,(np.shape(data)[0],len(max(data,key=len)))) return header, data ############################################################################### def xrf_array2dict(header,data,mode='geochem'): """ passes an array of Geotek XRF data (MSCL v7.9) to a dictionary of values for each element """ dict = {'ID': os.path.splitext(str.split(header[0][0])[4])[0]} dict["elements"] = header[7][5::2] # Assume elements start on the 7th row dict["depth"] = data[:,0] dict["section number"] = data[:,1] dict["section depth"] = data[:,2] dict["xrf total counts"] = data[:,3] dict["live time"] = data[:,4] dict["comp"] = data[:,5::2] # full array of compositional data dict["error"] = data[:,6::2] # array of errors in measurement for i,e in enumerate(dict["elements"]): # create key-value pair for elements dict[e] = dict["comp"][:,i] #Set ppm tolerance depending on soil vs geochem mode if 'geochem' in mode: tol = 500 dict = remove_open(dict) elif 'soil' in mode: tol = 50. dict['comp'] = removeinvalid(dict['comp'],tol=tol) if 'geochem' in mode: dict['clr'] = clr(dict['comp']) dict['mode'] = mode return dict ############################################################################### def remove_open(dict,k=1000000): """ removes rows from a compositional data array (measurements x elements) if they don't add up to a constant sum "k", which should equal k = 1, 100, 10^6, 10^9, etc. (proportions, %, ppm, ppb, etc.) Default is set for ppm (1,000,000) """ sums = [np.sum(row) for row in dict['comp']] rounded_sums = np.around(sums,decimals=0) not_closed = np.where(rounded_sums != k) keys = ['comp','depth','section number','section depth','xrf total counts', 'live time','error'] for e in dict['elements']: keys.append(e) for key in keys: dict[key] = np.delete(dict[key],not_closed,axis=0) return dict ############################################################################### def removeinvalid(array,tol=500.): """ remove all XRF measurements whose concentrations are less than 'tol'. geotek recommends 500+ ppm in geochem mode, 50+ ppm in soil mode. """ array[array < tol] = np.nan return array ############################################################################### def clr(array): """ centered log ratio transform on matrix with each column having a different compositional component ported to python and modified from matlab code written by: Thio-Henestrosa, S., and J. A. Martin-Fernandez (2005), Dealing with compositional data: the freeware CoDaPack, Math. Geol., 37(7), 773-793. """ rows = np.shape(array)[0] clr = np.zeros_like(array) m = np.ma.log(array) for r in range(rows): clr[r,:] = m[r,:] - np.nanmean(m[r,:]) return clr ############################################################################### def makelogratio(dict, ratio): """ dict[ratio] is the log ratio of elements e1 and e2 ratio is a string in the form 'e1/e2' and e1 and e2 are elements in dic['elements']. If not in the form 'e1/e2', will not do anything (pass) """ try: e1, e2 = ratio.split('/') dict[ratio] = np.log(dict[e1]/dict[e2]) except ValueError: pass return dict ############################################################################### def makeppmratio(dict, ratio): """ dict[ratio] is the ratio of ppm concentrations of elements e1 and e2 ratio is a string in the form 'e1/e2' and e1 and e2 are elements in dic['elements']. If not in the form 'e1/e2', will not do anything (pass) """ try: e1, e2 = ratio.split('/') dict[ratio] = dict[e1]/dict[e2] except ValueError: pass return dict ############################################################################### def nptsmooth(y, n, inf_nan=True, keep_nans=True): """ smooths the data in y using a running mean over 2*n+1 successive point, n points on each side of the current point. At the ends of the series skewed or one-sided means are used. slightly modified from code ported from Matlab code written by: Olof Liungman, 1997 Dept. of Oceanography, Earth Sciences Centre Göteborg University, Sweden E-mail: [email protected] """ y = y.copy() if inf_nan: y[y == np.inf] = np.nan y[y == -np.inf] = np.nan d = len(y) filtr = np.isnan(y) out = np.zeros_like(y) temp = np.zeros((2*n+1, d-2*n)) temp[n,:] = y[n:-n] with warnings.catch_warnings(): # ignore "mean of empty slice" warnings warnings.simplefilter("ignore", category=RuntimeWarning) for ii in range(n): out[ii] = np.nanmean(y[:ii+n+1]) out[d-ii-1] = np.nanmean(y[d-ii-1-n:]) temp[ii,:] = y[ii:d-2*n+ii] temp[ii+n+1,:] = y[ii+n+1:d-n+ii+1] out[n:d-n] = np.nanmean(temp, axis=0) if keep_nans: out[filtr] = np.nan return out ############################################################################### def plot_xrf(dict, elements, smooth=5, clr=False): """ plot parts per mil (or centered log ratios) elemental ratios for elements/element pairs as a function of depth. elements = array of strings for elements/ratios to plot e.g. ['Al','Ti','Ca/K'] smooth = window size to smooth xrf data clr = False by default, will plot centered log ratios if True """ if not elements: elements = dict['elements'] root = tkinter.Tk() pix2in = root.winfo_fpixels('1i') screen_width = root.winfo_screenwidth()/pix2in*0.75 screen_height = root.winfo_screenheight()/pix2in*0.75 screen_aspect = screen_width/screen_height colormap = plt.cm.tab20 norm = matplotlib.colors.Normalize(vmin=0,vmax = np.size(elements)) nplots = np.size(elements) fig = plt.figure(figsize=(screen_width*nplots/12,screen_height)) keep_nans=False # for npointssmooth LinearLocator = matplotlib.ticker.LinearLocator for i,e in enumerate(elements): ax = plt.subplot(1,nplots,i+1) ax.xaxis.set_major_locator(LinearLocator(2)) ax.xaxis.set_major_formatter(FormatStrFormatter('%d')) if '/' in e: if clr: dict = makelogratio(dict,e) else: dict = makeppmratio(dict,e) p = ax.plot(dict[e],dict['depth'],color = colormap(norm(i))) else: if clr: clr_vector = dict['clr'][:,dict['elements'].index(e)] p = ax.plot(clr_vector,dict['depth'],color = colormap(norm(i))) else: ppm_vector = dict[e] p = ax.plot(ppm_vector,dict['depth'],color = colormap(norm(i))) if smooth: p[0].set_alpha(0.4) if '/' in e: x = nptsmooth(dict[e], smooth, keep_nans=keep_nans) else: if clr: x = nptsmooth(dict['clr'][:,dict['elements'].index(e)], smooth, keep_nans=keep_nans) else: x = nptsmooth(dict[e],smooth, keep_nans=keep_nans) ax.plot(x, dict['depth'], color=colormap(norm(i))) ax.xaxis.set_ticks_position('bottom') if not clr: plt.xticks(rotation=90) if i == 0: # Far left plot needs depth ticks ax.yaxis.set_ticks_position('left') loc = matplotlib.ticker.MultipleLocator(base=10.0) loc1 = matplotlib.ticker.MultipleLocator(base=1.0) ax.yaxis.set_major_locator(loc) ax.yaxis.set_minor_locator(loc1) ax.yaxis.set_tick_params(labelleft=True) ax.set_ylabel('Depth in core (cm)') ax.yaxis.set_label_position('left') ax.spines['left'].set_visible(True) elif i == nplots-1: # Far right plot needs depth ticks ax.yaxis.set_ticks_position('right') loc = matplotlib.ticker.MultipleLocator(base=10.0) loc1 = matplotlib.ticker.MultipleLocator(base=1.0) ax.yaxis.set_major_locator(loc) ax.yaxis.set_minor_locator(loc1) ax.yaxis.set_tick_params(labelright=True) ax.set_ylabel('Depth in core (cm)') ax.yaxis.set_label_position('right') ax.spines['right'].set_visible(True) else: # Plots in middle don't need depth ticks ax.yaxis.set_ticks([]) if ax.get_xlim()[0] < 0.: # avoid negative x axis limits ax.set_xlim(0,ax.get_xlim()[1]) ax.set_title(e,color=colormap(norm(i))) # ax.yaxis.grid(color='k',linewidth=0.1) ax.invert_yaxis() return fig ############################################################################### def plot_ct_ls_xrf(ct_image, ct_xml, ls_image, ls_xml, dict, elements, clr=False, smooth=5, ct_vmin=15000,ct_vmax=30000): """ plot ppm or centered log ratio of elements and ratios in 'elements' next to CT and linescan images. use "ct_in" and "ls_in" to complete image processing before running "plot_xrf_clr". Set clr=True to plot centered log ratios. By default, "parts per mil" are plotted. """ root = tkinter.Tk() pix2in = root.winfo_fpixels('1i') screen_width = root.winfo_screenwidth()/pix2in*0.75 screen_height = root.winfo_screenheight()/pix2in*0.75 screen_aspect = screen_width/screen_height nplots = np.size(elements)+1 if nplots > 12: print('WARNING: CANNOT PLOT MORE THAN 11 ELEMENTS AT A TIME') fig = plt.figure(figsize=(screen_width*nplots/12,screen_height)) plt.clf() # Plot CT aspect=1 ax = plt.subplot(1,nplots,1) ct_img = plt.imshow(ct_image, aspect=aspect, extent=(0,ct_xml['physical-width'], ct_xml['physical-height']+ct_xml['physical-top']/100, ct_xml['physical-top']/100),vmin=ct_vmin,vmax=ct_vmax, cmap=matplotlib.cm.CMRmap) ls_img = plt.imshow(ls_image, aspect=aspect, extent=(ct_xml['physical-width']+ 0.2*ct_xml['physical-width'], ct_xml['physical-width']+ls_xml['physical-width'], ls_xml['physical-top']+ls_xml['physical-height'], ls_xml['physical-top'])) ax.yaxis.set_major_locator(MultipleLocator(10)) ax.yaxis.set_minor_locator(MultipleLocator(1)) ax.set_xlim(0,ct_xml['physical-width']+ls_xml['physical-width']) ax.set_ylim(ct_xml['physical-height']+ct_xml['physical-top']/100, ct_xml['physical-top']/100) ## set equal to the linescan ax.get_xaxis().set_visible(False) ax.set_anchor('NW') im_pos=ax.get_position() # Plot XRF keep_nans=True # for npointssmooth LinearLocator = matplotlib.ticker.LinearLocator colormap = plt.cm.tab20 norm = matplotlib.colors.Normalize(vmin=0,vmax = np.size(elements)) n = np.size(elements) smooth=smooth depth = ls_xml['physical-top'] + dict['section depth'] for i,e in enumerate(elements): ax = plt.subplot(1,nplots,i+2) ax.xaxis.set_major_locator(LinearLocator(2)) ax.xaxis.set_major_formatter(FormatStrFormatter('%d')) pos=ax.get_position() ax.set_position([pos.x0,im_pos.y0,pos.width,im_pos.height]) ax.set_ylim(ct_xml['physical-height']+ct_xml['physical-top']/100, ct_xml['physical-top']/100) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) if '/' in e: if clr: dict = makelogratio(dict,e) else: dict = makeppmratio(dict,e) p = ax.plot(dict[e],dict['depth'],color = colormap(norm(i))) else: if clr: clr_vector = dict['clr'][:,dict['elements'].index(e)] p = ax.plot(clr_vector,depth,color = colormap(norm(i))) else: ppm_vector = dict[e] p = ax.plot(ppm_vector,depth,color = colormap(norm(i))) if smooth: p[0].set_alpha(0.4) if '/' in e: x = nptsmooth(dict[e], smooth, keep_nans=keep_nans) else: if clr: x = nptsmooth(dict['clr'][:,dict['elements'].index(e)], smooth, keep_nans=keep_nans) else: x = nptsmooth(dict[e],smooth, keep_nans=keep_nans) ax.plot(x, depth, color=colormap(norm(i))) if not clr: plt.xticks(rotation=90) ax.xaxis.set_ticks_position('bottom') if i == n-1: # Far right plot needs depth ticks ax.spines['left'].set_visible(False) ax.yaxis.set_ticks_position('right') loc = matplotlib.ticker.MultipleLocator(base=10.0) ax.yaxis.set_major_locator(loc) ax.yaxis.set_tick_params(labelright=True) ax.set_ylabel('Depth in core (cm)') ax.yaxis.set_label_position('right') ax.spines['right'].set_visible(True) else: # Plots in middle don't need depth ticks ax.yaxis.set_ticks([]) ax.set_title(e,color=colormap(norm(i)))
python
#!/usr/bin/python #coding=utf-8 ''' @author: sheng @license: ''' SPELL=u'fútū' CN=u'扶突' NAME=u'futu41' CHANNEL='largeintestine' CHANNEL_FULLNAME='LargeIntestineChannelofHand-Yangming' SEQ='LI18' if __name__ == '__main__': pass
python
class Bar(): pass
python
import os import core.settings as st from flask import Flask from api.login import app as login_router from api.create_account import app as account_router from api.products import app as products_router from api.producer import app as producer_router from api.shop_car import app as shop_car_router from api.order import app as order_router import core.settings as st CONFIG_FILES = os.path.join('static') app = Flask(__name__) app.secret_key = os.urandom(24) app.register_blueprint(login_router) app.register_blueprint(account_router) app.register_blueprint(products_router) app.register_blueprint(producer_router) app.register_blueprint(shop_car_router) app.register_blueprint(order_router) if __name__ == '__main__': app.run(debug = True, port = st.PORT)
python
# Copyright (c) 2017 Presslabs SRL # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import braintree import django from django.conf import settings settings.configure( DEBUG=True, DATABASES={ 'default': { 'ENGINE': 'django.db.backends.sqlite3', } }, PAYMENT_METHOD_SECRET=b'MOW_x1k-ayes3KqnFHNZUxvKipC8iLjxiczEN76TIEA=', PAYMENT_PROCESSORS={ 'BraintreeTriggered': { 'setup_data': { 'environment': braintree.Environment.Sandbox, 'merchant_id': "your-merchand-id-here", 'public_key': "your-public-id-here", 'private_key': "your-private-id-here" }, 'class': 'silver_braintree.payment_processors.BraintreeTriggered', }, 'BraintreeTriggeredRecurring': { 'setup_data': { 'environment': braintree.Environment.Sandbox, 'merchant_id': "your-merchand-id-here", 'public_key': "your-public-id-here", 'private_key': "your-private-id-here" }, 'class': 'silver_braintree.payment_processors.BraintreeTriggeredRecurring' }, 'Manual': { 'class': 'silver.models.payment_processors.manual.ManualProcessor' } }, INSTALLED_APPS=( 'dal', 'dal_select2', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.staticfiles', 'django.contrib.admin', 'silver', 'silver_braintree',), CACHES={ 'default': { 'BACKEND': 'django.core.cache.backends.dummy.DummyCache', 'LOCATION': 'unique-snowflake', } }, USE_TZ=True, STATIC_URL='/static/', SILVER_AUTOMATICALLY_CREATE_TRANSACTIONS=True, SECRET_KEY='dummy' ) django.setup()
python
from .logic import * from .notifications import * from .preprocessors import * from .vigil import *
python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Created on 2021.03.22 Start operation. @author: zoharslong """
python
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import sys import os import time as t import numpy as np import theano as th import theano.tensor as T import theano.ifelse import theano.compile import theano.compile.mode import hand_io ############## Objective in theano ################## def get_identity(dim,dtype): A = T.zeros((dim,dim),dtype=dtype) for i in range(dim): A = T.set_subtensor(A[i,i], 1.) return A def to_pose_params(theta,nbones): pose_params = T.zeros((nbones+3,3),theta.dtype) pose_params = T.set_subtensor(pose_params[0,:], theta[0:3]) pose_params = T.set_subtensor(pose_params[1,:], T.ones((3,),theta.dtype)) pose_params = T.set_subtensor(pose_params[2,:], theta[3:6]) i_theta = 6 i_pose_params = 5 n_fingers = 5 for i_finger in range(n_fingers): for i in [1, 2, 3]: pose_params = T.set_subtensor(pose_params[i_pose_params,0], theta[i_theta]) i_theta += 1 if i == 1: pose_params = T.set_subtensor(pose_params[i_pose_params,1], theta[i_theta]) i_theta += 1 i_pose_params += 1 i_pose_params += 1 return pose_params def euler_angles_to_rotation_matrix(xzy): tx = xzy[0] ty = xzy[2] tz = xzy[1] Rx = get_identity(3,dtype=tx.dtype) Rx = T.set_subtensor(Rx[1,1],T.cos(tx)) Rx = T.set_subtensor(Rx[2,1],T.sin(tx)) Rx = T.set_subtensor(Rx[1,2],-Rx[2,1]) Rx = T.set_subtensor(Rx[2,2],Rx[1,1]) Ry = get_identity(3,dtype=tx.dtype) Ry = T.set_subtensor(Ry[0,0],T.cos(ty)) Ry = T.set_subtensor(Ry[0,2],T.sin(ty)) Ry = T.set_subtensor(Ry[2,0],-Ry[0,2]) Ry = T.set_subtensor(Ry[2,2],Ry[0,0]) Rz = get_identity(3,dtype=tx.dtype) Rz = T.set_subtensor(Rz[0,0],T.cos(tz)) Rz = T.set_subtensor(Rz[1,0],T.sin(tz)) Rz = T.set_subtensor(Rz[0,1],-Rz[1,0]) Rz = T.set_subtensor(Rz[1,1],Rz[0,0]) return T.dot(T.dot(Rz,Ry),Rx) def get_posed_relatives(pose_params,base_relatives): def inner(rot_param,base_relative): tr = get_identity(4, dtype = base_relative.dtype) R = euler_angles_to_rotation_matrix(rot_param) tr = T.set_subtensor(tr[:3,:3], R) return T.dot(base_relative, tr) relatives,_ = th.scan(fn=inner, outputs_info=None, sequences=[pose_params[3:],base_relatives]) return relatives ### warning, this function contains hack ### def relatives_to_absolutes(relatives,parents): def compute_absolute(i,parent,relative,absolutes): # hack (parent == -1 accesses last element - we set it to zero) # Theano did not take ifselse here absolutes = T.set_subtensor(absolutes[i],T.dot(absolutes[parent],relative)) return absolutes absolutes = T.zeros_like(relatives) # hack (parent == -1 accesses last element - we set it to zero) # Theano did not take ifselse here absolutes = T.set_subtensor(absolutes[-1],get_identity(4,dtype=relatives.dtype)) absolutes_timeline,_ = th.scan(fn=compute_absolute, sequences=[T.arange(relatives.shape[0]),parents,relatives], outputs_info=absolutes) return absolutes_timeline[-1] def angle_axis_to_rotation_matrix(angle_axis): n = T.sqrt(T.sum(angle_axis**2)) def aa2R(): angle_axis_normalized = angle_axis / n x = angle_axis_normalized[0] y = angle_axis_normalized[1] z = angle_axis_normalized[2] s, c = T.sin(n), T.cos(n) R = T.zeros((3,3),dtype=angle_axis.dtype) R = T.set_subtensor(R[0,0], x*x+(1-x*x)*c) R = T.set_subtensor(R[0,1], x*y*(1-c)-z*s) R = T.set_subtensor(R[0,2], x*z*(1-c)+y*s) R = T.set_subtensor(R[1,0], x*y*(1-c)+z*s) R = T.set_subtensor(R[1,1], y*y+(1-y*y)*c) R = T.set_subtensor(R[1,2], y*z*(1-c)-x*s) R = T.set_subtensor(R[2,0], x*z*(1-c)-y*s) R = T.set_subtensor(R[2,1], z*y*(1-c)+x*s) R = T.set_subtensor(R[2,2], z*z+(1-z*z)*c) return R return th.ifelse.ifelse(T.lt(n,.0001), get_identity(3, dtype=angle_axis.dtype), aa2R()) def apply_global_transform(pose_params,positions): R = angle_axis_to_rotation_matrix(pose_params[0]) s = pose_params[1] R *= s[np.newaxis,:] t = pose_params[2] return T.transpose(T.dot(R, T.transpose(positions))) + t def get_skinned_vertex_positions(pose_params,base_relatives,parents,inverse_base_absolutes, base_positions,weights,mirror_factor): relatives = get_posed_relatives(pose_params,base_relatives) absolutes = relatives_to_absolutes(relatives,parents) transforms,_ = th.scan(fn=(lambda A, B : T.dot(A,B)), sequences=[absolutes,inverse_base_absolutes]) positions = T.tensordot(transforms,base_positions,[2, 1]).dimshuffle((2,0,1)) positions = (positions * weights[:,:,np.newaxis]).sum(axis=1)[:,:3] positions = T.set_subtensor(positions[:,0],positions[:,0]*mirror_factor) positions = apply_global_transform(pose_params,positions) return positions def hand_objective(params,nbones,base_relatives,parents,inverse_base_absolutes,base_positions, weights,mirror_factor,points,correspondences): pose_params = to_pose_params(params,nbones) vertex_positions = get_skinned_vertex_positions(pose_params,base_relatives,parents, inverse_base_absolutes,base_positions, weights,mirror_factor) err,_ = th.scan(fn=(lambda pt, i_vert : pt - vertex_positions[i_vert]), sequences=[points,correspondences], outputs_info=None) return err params_ = T.dvector('params_') parents_ = T.ivector('parents_') base_relatives_ = T.dtensor3('base_relatives_') inverse_base_absolutes_ = T.dtensor3('inverse_base_absolutes_') triangles_ = T.imatrix('triangles_') base_positions_ = T.dmatrix('base_positions_') weights_ = T.dmatrix('weights_') nbones_ = T.iscalar('nbones_') mirror_factor_ = T.dscalar('mirror_factor_') correspondences_ = T.ivector('correspondences_') points_ = T.dmatrix('points_') triangles_ = T.imatrix('triangles_') seed_ = T.dvector('seed_') compile_mode = 'FAST_COMPILE' #compile_mode = 'FAST_RUN' th.config.linker='cvm' start = t.time() err_ = hand_objective(params_,nbones_,base_relatives_,parents_,inverse_base_absolutes_,base_positions_, weights_,mirror_factor_,points_,correspondences_) f = th.function([params_,nbones_,base_relatives_,parents_,inverse_base_absolutes_,base_positions_, weights_,mirror_factor_,points_,correspondences_], err_, mode=compile_mode) end = t.time() tf_compile = (end - start) print("tf_compile: %f" % tf_compile) start = t.time() jac = T.Rop(T.flatten(err_),params_,seed_) fjac = th.function([params_,seed_,nbones_,base_relatives_,parents_,inverse_base_absolutes_,base_positions_, weights_,mirror_factor_,points_,correspondences_], jac, mode=compile_mode) end = t.time() tJ_compile = (end - start) print("tJ_compile: %f" % tJ_compile) ntasks = (len(sys.argv)-1)//5 for task_id in range(ntasks): print("task_id: %i" % task_id) argv_idx = task_id*5 + 1 dir_in = sys.argv[argv_idx] dir_out = sys.argv[argv_idx+1] fn = sys.argv[argv_idx+2] nruns_f = int(sys.argv[argv_idx+3]) nruns_J = int(sys.argv[argv_idx+4]) model_dir = dir_in + "model/" fn_in = dir_in + fn fn_out = dir_out + fn params, data = hand_io.read_hand_instance(model_dir, fn_in + ".txt", False) if data.model.is_mirrored: mirror_factor = -1. else: mirror_factor = 1. start = t.time() for i in range(nruns_f): err = f(params, data.model.nbones, data.model.base_relatives, data.model.parents, data.model.inverse_base_absolutes,data.model.base_positions, data.model.weights,mirror_factor,data.points, data.correspondences) end = t.time() tf = (end - start)/nruns_f print("err:") #print(err) name = "Theano_rop" seed = np.eye(params.shape[0],dtype=params.dtype) tJ = 0 if nruns_J > 0: start = t.time() for i in range(nruns_J): J = np.array([fjac(params,curr_seed,data.model.nbones, data.model.base_relatives, data.model.parents, data.model.inverse_base_absolutes,data.model.base_positions, data.model.weights,mirror_factor,data.points, data.correspondences) for curr_seed in seed]).transpose() end = t.time() tJ = ((end - start)/nruns_J) + tf ###!!!!!!!!! adding this because no function value is returned by fjac print("J:") #print(J) hand_io.write_J(fn_out + "_J_" + name + ".txt",J) hand_io.write_times(fn_out + "_times_" + name + ".txt",tf,tJ)
python
# Copyright 2018 Cisco and its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __author__ = "Miroslav Kovac" __copyright__ = "Copyright 2018 Cisco and its affiliates" __license__ = "Apache License, Version 2.0" __email__ = "[email protected]" import os import shutil import sys import tempfile from git import Repo from git.cmd import Git from git.exc import GitCommandError '''Notes: repo.index.add(repo.untracked_files) Add all new files to the index repo.index.add([i.a_path for i in repo.index.diff(None)]) Add all modified files to the index. Also works for new directories. repo.index.commit('commit for delete file') Commit any changes repo.git.push() Push changes to origin. repo.git.rm([f1, f2, ...]) Remove files safely and add removal to index (note that files are left in lace, and then look like untracked files). ''' def pull(repo_dir): """ Pull all the new files in the master in specified directory. Directory should contain path where .git file is located. :param repo_dir: directory where .git file is located """ g = Git(repo_dir) g.pull() a = Repo(repo_dir) for s in a.submodules: s.update(recursive=True, init=True) class RepoUtil(object): """Simple class for rolling up some git operations as part of file manipulation. The user should create the object with the URL to the repository and an appropriate set of credentials. At this """ def __init__(self, repourl): self.repourl = repourl self.localdir = None self.repo = None def get_repo_dir(self): """Return the repository directory name from the URL""" return os.path.basename(self.repourl) def get_repo_owner(self): """Return the root directory name of the repo. In GitHub parlance, this would be the owner of the repository. """ owner = os.path.basename(os.path.dirname(self.repourl)) if ':' in owner: return owner[owner.index(':') + 1:] return owner def clone(self, config_user_name=None, config_user_email=None): """Clone the specified repository to a local temp directory. This method may generate a git.exec.GitCommandError if the repository does not exist """ self.localdir = tempfile.mkdtemp() self.repo = Repo.clone_from(self.repourl, self.localdir) if config_user_name: with self.repo.config_writer() as config: config.set_value('user', 'email', config_user_email) config.set_value('user', 'name', config_user_name) def updateSubmodule(self, recursive=True, init=True): """Clone submodules of a git repository""" for submodule in self.repo.submodules: submodule.update(recursive, init) def add_all_untracked(self): """Commit all untracked and modified files. This method shouldn't generate any exceptions as we don't allow unexpected operations to be invoked. """ self.repo.index.add(self.repo.untracked_files) modified = [] deleted = [] for i in self.repo.index.diff(None): if os.path.exists(self.localdir+'/'+i.a_path): modified.append(i.a_path) else: deleted.append(i.a_path) if len(modified) > 0: self.repo.index.add(modified) if len(deleted) > 0: self.repo.index.remove(deleted) def commit_all(self, message='RepoUtil Commit'): """Equivalent of git commit -a -m MESSAGE.""" self.repo.git.commit(a=True, m=message) def push(self): """Push repo to origin. Credential errors may happen here.""" self.repo.git.push("origin") def remove(self): """Remove the temporary storage.""" shutil.rmtree(self.localdir) self.localdir = None self.repo = None if __name__ == '__main__': # # local imports # from argparse import ArgumentParser # # test arguments # parser = ArgumentParser(description='RepoUtil test params:') parser.add_argument('userpass', nargs=1, type=str, help='Provide username:password for github https access' ) args = parser.parse_args() if not args.userpass: print("username:password required") sys.exit(1) # # This repo exists # TEST_REPO = 'https://%[email protected]/einarnn/test.git' # # This repo does not exist # BOGUS_REPO = 'https://%[email protected]/einarnn/testtest.git' # # Create, clone and remove repo that exists. # print('\nTest 1\n------') try: r = RepoUtil(TEST_REPO % args.userpass[0]) r.clone() print('Temp directory: '+r.localdir) r.remove() except GitCommandError as e: print('Git Exception: ' + e.status) # # Create, clone and modify a repo with good credentials. Will Then # try to modify, commit and push. If the file 'ok.txt' is present, # we will try to delete it. If it's not, we will create it! # print('\nTest 2\n------') try: r = RepoUtil(TEST_REPO % args.userpass[0]) r.clone() print('Temp directory: '+r.localdir) ok_path = r.localdir + '/ok.txt' if os.path.exists(ok_path): print('Removing test file!') r.repo.git.rm(ok_path) # os.remove(ok_path) else: print('Creating test file!') with open(ok_path, 'w') as f: f.write('hello!\n') f.close() try: r.add_all_untracked() r.commit_all(message='push should succeed') r.push() except GitCommandError as e: print('Git Exception: ' + e.stderr) r.remove() except GitCommandError as e: print('Git Exception: ' + e.stderr) # # Create, clone and modify a repo with bogus credentials. Will Then try # to modify, commit and push, but still with bogus credentials. # print('\nTest 3\n------') try: r = RepoUtil(TEST_REPO % (args.userpass[0]+'bogus')) r.clone() print('Temp directory: '+r.localdir) with open(r.localdir+'/bogus.txt', 'w') as f: f.write('hello!\n') f.close() try: r.add_all_untracked() r.commit_all(message='push should fail') r.push() except GitCommandError as e: print('Git Exception as expected: ' + e.stderr) r.remove() except GitCommandError as e: print('Git Exception: ' + e.stderr) # # Try to create, clone and remove repo that does not exist. If # this is the caser, no dangling directory is left, so no need to # try and remove it. # print('\nTest 4\n------') try: r = RepoUtil(BOGUS_REPO % args.userpass[0]) r.clone() print('Temp directory: ' + r.localdir) r.remove() except GitCommandError as e: print('Git Exception as expected: ' + e.stderr)
python
import logging,uuid from exchangemanager import ExchangeManager from result import Result from order import Order class BacktestManager(ExchangeManager): def __init__(self, config = {} ): ExchangeManager.__init__(self, "BTEST", config ) self.balance = None self.log = logging.getLogger('crypto') def processOrder(self, order ): order.setExchange( self.getName() ) self.log.info("backtest exchange processing order") if order.rate != order.MARKET: r = { "uuid" : "test-{}".format(uuid.uuid4()) } order.ref_id = r["uuid"] order.status = order.OPEN order.meta["api"] = { "create": r } res = order.save() self.log.info("save results {}".format(res)) return Result(True,"success",r) else: return Result.fail("Market orders not allowed on bittrex") def syncOrder(self,order): if order.status < order.TERMINATED_STATE: status = order.status #results = self.api.account_get_order( order.ref_id ) #data = results.getData() if order.order_type == Order.SELL: order.status = Order.COMPLETED elif order.order_type == Order.BUY: order.status = Order.FILLED if status != order.status: order.save() if order.status == order.COMPLETED: assocorder = Order.findById(order.assoc_id) if assocorder.isOk(): aorder = assocorder.data["results"][0] aorder.status = Order.COMPLETED self.log.info("found associated order {}".format(aorder.ref_id)) aorder.meta["sold_at"] = float(order.rate) aorder.assoc_id = order.pkey res = aorder.save() self.log.info("saved associated order {}".format(res)) return True def getBalance(self,currency): return 10000 def getBalances(self): return {}
python
# Import libraries import matplotlib.pyplot as plt import numpy as np # Draw plt.title("Lines") # put title on plot plt.plot([-4,2], [-2,-2], "b") # Plot the lines to draw a house plt.plot([-4,-1], [2,3], "b") plt.plot([-1,1], [3,5], "b") plt.plot([2,4], [-2,0], "b") plt.plot([1,4], [5,4], "b") plt.plot([1,-2], [5,4], "b") plt.plot([-4,-2], [2,4], "b") plt.plot([4,4], [4,0], "b") plt.plot([-1,2], [3,2], "b") plt.plot([-4,-4], [-2,2], "b") plt.plot([2,4], [2,4], "b") plt.plot([2,2], [-2,2], "b") plt.show() #display the plot
python
# -*- coding: utf-8 -*- import sys from optparse import OptionParser; from xml.dom import minidom; import re import os import csv import hashlib import shutil sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from HorizonBuildFileUtil import HorizonBuildFileUtil import subprocess class HorizonUE4Build(object): """description of class""" def __init__(self): #current tool version is 1 self.m_iCodeVersion = 1 self.m_sConfig = "default"; self.m_sOutReportFilePath = "Output/HorizonUE4BuildReport.log" self.m_sClean = False def __generateOptionParser__(self): parser = OptionParser(); parser.add_option("--config", dest="config", default="./Config/HorizonUE4Build/UE4Build_sample.xml", help="config file", metavar="FILE") parser.add_option("--clean", action="store_true", dest="clean") parser.add_option("--engine", dest="unreal_engine_root", default="UnrealEngineRoot", help="root path of unreal engine", metavar="FILE") parser.add_option("--project", dest="project_file_full_path", default="project_file_full_path", help="project_file_full_path", metavar="project_file_full_path") parser.add_option("--build_platform", dest="build_platform", default="win64", help="ex: Win64, Win32, Android...", metavar="build_platform") parser.add_option("--build_config", dest="build_config", default="win64", help="ex: Win64, Win32, Android...", metavar="build_config") parser.add_option("--archive", dest="build_archive_path", default="./Archive/Build/", help="build_archive_path", metavar="build_archive_path") parser.add_option("--buildclient", action="store_true", dest="buildclient") parser.add_option("--buildserver", action="store_true", dest="buildserver") parser.add_option("--cookclient", action="store_true", dest="cookclient") parser.add_option("--cookserver", action="store_true", dest="cookserver") parser.add_option("--crosscompile", action="store_true", dest="crosscompile") return parser; def init(self): print("curretn folder:" + os.getcwd() + "\n") parser = self.__generateOptionParser__() (self.options, self.args) = parser.parse_args() print("options:" + str(self.options)) print("args" + str(self.args)) if(self.options.config != None): self.m_sConfig = self.options.config; if(self.options.clean != None): self.m_sClean = self.options.clean; if(self.options.unreal_engine_root != None): self.m_sUnrealEngineRoot = self.options.unreal_engine_root; if(self.options.project_file_full_path != None): self.m_sProjectFileFullPath = self.options.project_file_full_path; if(self.options.build_platform != None): self.m_sBuildPlatform = self.options.build_platform; if(self.options.build_config != None): self.m_sBuildConfig = self.options.build_config; if(self.options.build_archive_path != None): self.m_sBuildArchivePath = self.options.build_archive_path; print("m_sUnrealEngineRoot:" + str(self.m_sUnrealEngineRoot)) print("m_sProjectFileFullPath:" + str(self.m_sProjectFileFullPath)) print("m_sBuildPlatform:" + str(self.m_sBuildPlatform)) print("m_sBuildArchivePath:" + str(self.m_sBuildArchivePath)) #xmldoc = minidom.parse(self.m_sConfig) #self.m_sHorizonEngineRoot = os.path.abspath(xmldoc.getElementsByTagName('UnrealEngineRoot')[0].firstChild.nodeValue); def execute(self): HorizonBuildFileUtil.HorizonBuildFileUtil.EnsureDir(self.m_sOutReportFilePath) reportFile = open(self.m_sOutReportFilePath, 'w', encoding = 'utf-8') reportFile.truncate() reportFile.close() if(self.options.cookclient != None): self.cookClient() if(self.options.cookserver != None): self.cookServer() #self.__buildEngine() if(self.options.buildclient != None): self.buildClient() if(self.options.buildserver != None): self.buildServer() def buildClient(self): bSuccess = False self.__buildClientEditor() reportFile = open(self.m_sOutReportFilePath, 'a', encoding = 'utf-8') sCmd = '"{UNREAL_ENGINE_ROOT}/Engine/Build/BatchFiles/RunUAT.{EXT}" BuildCookRun \ -nocompileeditor -nop4 \ -project="{PROJECT_FILE_FULL_PATH}" -cook -stage -archive -archivedirectory="{BUILD_ARCHIVE_PATH}" \ -package -clientconfig={BUILD_CONFIG} \ -SKIPEDITORCONTENT -pak -prereqs -nodebuginfo -platform={BUILD_PLATFORM} \ -build -CrashReporter -utf8output -compile' sCmd = self.__getBuildCommand(sCmd) HorizonBuildFileUtil.HorizonBuildFileUtil.LogInfo(reportFile, "==================" + sCmd) result = subprocess.run(sCmd, shell=True) if(result.returncode == 0): bSuccess = True reportFile.close() return bSuccess def cookClient(self): bSuccess = False reportFile = open(self.m_sOutReportFilePath, 'a', encoding = 'utf-8') sCmd = '"{UNREAL_ENGINE_ROOT}/Engine/Build/BatchFiles/RunUAT.{EXT}" BuildCookRun \ -project="{PROJECT_FILE_FULL_PATH}" \ -noP4 -platform={BUILD_PLATFORM} \ -clientconfig={BUILD_CONFIG} -serverconfig={BUILD_CONFIG} \ -cook -allmaps -NoCompile -stage \ -pak -archive -archivedirectory="{BUILD_ARCHIVE_PATH}"' sCmd = self.__getBuildCommand(sCmd) HorizonBuildFileUtil.HorizonBuildFileUtil.LogInfo(reportFile, "==================" + sCmd) result = subprocess.run(sCmd, shell=True) if(result.returncode == 0): bSuccess = True reportFile.close() return bSuccess def buildServer(self): bSuccess = False #self.__buildServerEditor() reportFile = open(self.m_sOutReportFilePath, 'a', encoding = 'utf-8') sCmd = '"{UNREAL_ENGINE_ROOT}/Engine/Build/BatchFiles/RunUAT.{EXT}" BuildCookRun \ -nocompileeditor -nop4 \ -project="{PROJECT_FILE_FULL_PATH}" -cook -stage -archive -archivedirectory="{BUILD_ARCHIVE_PATH}" \ -package -server -serverconfig={BUILD_CONFIG} -noclient \ -SKIPEDITORCONTENT -pak -prereqs -nodebuginfo -platform={BUILD_PLATFORM} \ -build -CrashReporter -utf8output -compile' sCmd = self.__getBuildCommand(sCmd) HorizonBuildFileUtil.HorizonBuildFileUtil.LogInfo(reportFile, "==================" + sCmd) result = subprocess.run(sCmd, shell=True) if(result.returncode == 0): bSuccess = True reportFile.close() return bSuccess def cookServer(self): bSuccess = False self.__buildClientEditor() reportFile = open(self.m_sOutReportFilePath, 'a', encoding = 'utf-8') sCmd = '"{UNREAL_ENGINE_ROOT}/Engine/Build/BatchFiles/RunUAT.{EXT}" BuildCookRun \ -project="{PROJECT_FILE_FULL_PATH}" \ -noP4 -platform={BUILD_PLATFORM} \ -clientconfig={BUILD_CONFIG} -serverconfig={BUILD_CONFIG} \ -cook -server -serverplatform={BUILD_PLATFORM} -noclient -NoCompile -stage \ -pak -archive -archivedirectory="{BUILD_ARCHIVE_PATH}"' sCmd = self.__getBuildCommand(sCmd) HorizonBuildFileUtil.HorizonBuildFileUtil.LogInfo(reportFile, "==================" + sCmd) result = subprocess.run(sCmd, shell=True) if(result.returncode == 0): bSuccess = True reportFile.close() return bSuccess #========================private function============================== def __buildEngine(self): # for fix error: https://answers.unrealengine.com/questions/409205/automated-build-system-errors-ue4editor-xdll-missi.html bSuccess = False reportFile = open(self.m_sOutReportFilePath, 'a', encoding = 'utf-8') sCmd = '"{UNREAL_ENGINE_ROOT}/Engine/Binaries/DotNET/UnrealBuildTool.exe" \ UE4Game {BUILD_PLATFORM} {BUILD_CONFIG} -waitmutex -DEPLOY' sBuildTarget = os.path.splitext(os.path.basename(self.m_sProjectFileFullPath))[0] sCmd = sCmd.format( UNREAL_ENGINE_ROOT=self.m_sUnrealEngineRoot, BUILD_TARGET=sBuildTarget, PROJECT_FILE_FULL_PATH=self.m_sProjectFileFullPath, BUILD_PLATFORM=self.m_sBuildPlatform, BUILD_CONFIG=self.m_sBuildConfig) HorizonBuildFileUtil.HorizonBuildFileUtil.LogInfo(reportFile, "==================" + sCmd) result = subprocess.run(sCmd, shell=True) if(result.returncode == 0): bSuccess = True reportFile.close() return bSuccess def __buildClientEditor(self): # for fix error: https://answers.unrealengine.com/questions/409205/automated-build-system-errors-ue4editor-xdll-missi.html bSuccess = False reportFile = open(self.m_sOutReportFilePath, 'a', encoding = 'utf-8') sCmd = '"{UNREAL_ENGINE_ROOT}/Engine/Binaries/DotNET/UnrealBuildTool.exe" \ {BUILD_TARGET} {BUILD_PLATFORM} {BUILD_CONFIG} -project="{PROJECT_FILE_FULL_PATH}" \ -editorrecompile -progress -noubtmakefiles -NoHotReloadFromIDE -2015' sBuildTarget = os.path.splitext(os.path.basename(self.m_sProjectFileFullPath))[0] sCmd = sCmd.format( UNREAL_ENGINE_ROOT=self.m_sUnrealEngineRoot, BUILD_TARGET=sBuildTarget, PROJECT_FILE_FULL_PATH=self.m_sProjectFileFullPath, BUILD_PLATFORM=self.m_sBuildPlatform, BUILD_CONFIG=self.m_sBuildConfig) HorizonBuildFileUtil.HorizonBuildFileUtil.LogInfo(reportFile, "==================" + sCmd) result = subprocess.run(sCmd, shell=True) if(result.returncode == 0): bSuccess = True reportFile.close() return bSuccess def __buildServerEditor(self): # for fix error: https://answers.unrealengine.com/questions/409205/automated-build-system-errors-ue4editor-xdll-missi.html bSuccess = False reportFile = open(self.m_sOutReportFilePath, 'a', encoding = 'utf-8') sCmd = '"{UNREAL_ENGINE_ROOT}/Engine/Binaries/DotNET/UnrealBuildTool.exe" \ {BUILD_TARGET} {BUILD_CONFIG} {BUILD_PLATFORM} -project="{PROJECT_FILE_FULL_PATH}" \ -editorrecompile -progress -noubtmakefiles -NoHotReloadFromIDE -2015' sBuildTarget = os.path.splitext(os.path.basename(self.m_sProjectFileFullPath))[0] + "Server" sCmd = sCmd.format( UNREAL_ENGINE_ROOT=self.m_sUnrealEngineRoot, BUILD_TARGET=sBuildTarget, PROJECT_FILE_FULL_PATH=self.m_sProjectFileFullPath, BUILD_PLATFORM=self.m_sBuildPlatform, BUILD_CONFIG=self.m_sBuildConfig) HorizonBuildFileUtil.HorizonBuildFileUtil.LogInfo(reportFile, "==================" + sCmd) result = subprocess.run(sCmd, shell=True) if(result.returncode == 0): bSuccess = True reportFile.close() return bSuccess def __getExt(self): sExt = "sh" bIsWindows = sys.platform.startswith('win') if(bIsWindows): sExt = "bat" else: sExt = "sh" return sExt def __getBuildCommand(self, sCmd): sExt = self.__getExt() sResult = sCmd.format( UNREAL_ENGINE_ROOT=self.m_sUnrealEngineRoot, EXT=sExt, PROJECT_FILE_FULL_PATH=self.m_sProjectFileFullPath, BUILD_PLATFORM=self.m_sBuildPlatform, BUILD_CONFIG=self.m_sBuildConfig, BUILD_ARCHIVE_PATH=self.m_sBuildArchivePath ) return sResult
python
"""Flategy - a basic playable strategy game & bot.""" import os import io import subprocess import tempfile import cairo import IPython.display import numpy as np class State: __slots__ = ['position', 'radius', 'world_shape'] def __init__(self, position, radius, world_shape): self.position = position self.radius = radius self.world_shape = world_shape def to_dict(self): return dict(position=self.position, radius=self.radius, world_shape=self.world_shape) def replace(self, **args): d = self.to_dict() d.update(args) return type(self)(**d) @property def world_aspect(self): (left, top), (right, bottom) = self.world_shape return (bottom - top) / (right - left) # Rendering def draw(self, surface, width): ctx = cairo.Context(surface) # set up the basic view transformation (left, top), (right, bottom) = self.world_shape scale = width / (right - left) ctx.scale(scale, scale) ctx.translate(-left, -top) ctx.rectangle(left, top, right, bottom) ctx.set_source_rgb(255, 255, 255) ctx.fill() ctx.set_source_rgb(0, 0, 0) # render the world for pos, r in zip(self.position, self.radius): ctx.arc(pos[0], pos[1], r, 0, 2*np.pi) ctx.fill() def to_svg(self, width): f = io.BytesIO() with cairo.SVGSurface(f, width, int(self.world_aspect * width)) as surface: self.draw(surface, width) f.seek(0) return f.read() def _repr_svg_(self): return self.to_svg(256).decode('utf8') @classmethod def video(cls, states, filename, dt, width): with tempfile.TemporaryDirectory() as tmp: # Render PNG frames for n, frame in enumerate(states): with cairo.ImageSurface(cairo.FORMAT_ARGB32, width, int(frame.world_aspect * width)) as surface: frame.draw(surface, width) surface.write_to_png(os.path.join(tmp, 'frame_{:04d}.png'.format(n))) # Convert PNG* => MP4 subprocess.check_call(['ffmpeg', '-i', os.path.join(tmp, 'frame_%04d.png'), '-y', '-r', str(int(1/dt)), '-pix_fmt', 'yuv420p', filename]) return IPython.display.Video(filename)
python
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from transformers import BertModel, RobertaModel class EmbeddingGeneratorGLOVE(nn.Module): def __init__(self, config, path): super(EmbeddingGeneratorGLOVE, self).__init__() self.config = config print('Loading Pre-trained Glove Embeddings...') embed_weights = np.load(path) vocab_size, dim = embed_weights.shape embed_weights = torch.FloatTensor(embed_weights) self.embedding_model = nn.Embedding(vocab_size, dim, padding_idx=config.PAD_IDX) self.embedding_model.weight = nn.Parameter(embed_weights) def forward(self, xs): # [batch_size, max_seq_len, hidden_dim] xs = self.embedding_model(xs) return xs class EembeddingGeneratorBERT(nn.Module): """ Pretrained Language Model - BERT """ def __init__(self, config): super(EembeddingGeneratorBERT, self).__init__() self.embedding_model = BertModel.from_pretrained( config.PRETRAINED_BERT_NAME, return_dict=True ) self.embedding_model.to(config.DEVICE) def forward(self, xs, attn_mask): xs = self.embedding_model(xs, attention_mask=attn_mask) # [batch_size, max_seq_len, hidden_dim] xs = xs.last_hidden_state # extract the last hidden layer return xs class EembeddingGeneratorRoBERTa(nn.Module): """ Pretrained Language Model - RoBERTa """ def __init__(self, config): super(EembeddingGeneratorRoBERTa, self).__init__() self.embedding_model = RobertaModel.from_pretrained( config.PRETRAINED_ROBERTA_NAME, return_dict=True ) self.embedding_model.to(config.DEVICE) def forward(self, xs, attn_mask): xs = self.embedding_model(xs, attention_mask=attn_mask) # [batch_size, max_seq_len, hidden_dim] xs = xs.last_hidden_state # extract the last hidden layer return xs class CharacterEmbedding(nn.Module): ''' In : (N, sentence_len, word_len) Out: (N, sentence_len, c_embd_size) Reference: https://github.com/jojonki/BiDAF/blob/master/layers/char_embedding.py ''' def __init__(self, config): super(CharacterEmbedding, self).__init__() self.config = config self.embd_size = config.CHAR_EMBED_DIM self.embedding = nn.Embedding(config.CHAR_VOCAB_SIZE, config.CHAR_EMBED_DIM, padding_idx=config.PAD_IDX) # nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, ... self.conv = nn.ModuleList([nn.Conv2d(1, config.CHAR_EMBED_CNN_NUM_OUT_CHANNELS, (f[0], f[1])) for f in config.CHAR_EMBED_CHAR_FILTERS]) self.dropout = nn.Dropout(config.CHAR_EMBED_DROPOUT_RATE) def forward(self, x): # x: (N, seq_len, word_len) input_shape = x.size() # bs = x.size(0) # seq_len = x.size(1) word_len = x.size(2) x = x.view(-1, word_len) # (N*seq_len, word_len) x = self.embedding(x) # (N*seq_len, word_len, c_embd_size) x = x.view(*input_shape, -1) # (N, seq_len, word_len, c_embd_size) x = x.sum(2) # (N, seq_len, c_embd_size) # CNN x = x.unsqueeze(1) # (N, Cin, seq_len, c_embd_size), insert Channnel-In dim # Conv2d # Input : (N,Cin, Hin, Win ) # Output: (N,Cout,Hout,Wout) x = [F.relu(conv(x)) for conv in self.conv] # (N, Cout, seq_len, c_embd_size-filter_w+1). stride == 1 # [(N,Cout,Hout,Wout) -> [(N,Cout,Hout*Wout)] * len(filter_heights) # [(N, seq_len, c_embd_size-filter_w+1, Cout)] * len(filter_heights) x = [xx.view((xx.size(0), xx.size(2), xx.size(3), xx.size(1))) for xx in x] # maxpool like # [(N, seq_len, Cout)] * len(filter_heights) x = [torch.sum(xx, 2) for xx in x] # (N, seq_len, Cout==word_embd_size) x = torch.cat(x, 1) x = self.dropout(x) return x class EembeddingGeneratorPOS(nn.Module): def __init__(self, config): super(EembeddingGeneratorPOS, self).__init__() self.embedding_model = nn.Embedding(config.POS_VOCAB_SIZE, config.POS_EMBED_DIM, padding_idx=config.PAD_IDX) self.embedding_model.to(config.DEVICE) def forward(self, xs): xs = self.embedding_model(xs) # [batch_size, max_seq_len, hidden_dim] return xs
python
# -*- coding: utf-8 -*- import time as builtin_time import pandas as pd import numpy as np # ============================================================================== # ============================================================================== # ============================================================================== # ============================================================================== # ============================================================================== # ============================================================================== # ============================================================================== # ============================================================================== class Time(): """ A class object to get time. Its methods (functions) are: - reset() - get() See those for further informations. Parameters ---------- None Returns ---------- None Example ---------- >>> import neurokit as nk >>> myclock = nk.Time() >>> time_passed_since_myclock_creation = myclock.get() >>> myclock.reset() >>> time_passed_since_reset = myclock.get() Authors ---------- - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ Dependencies ---------- - time """ def __init__(self): self.clock = builtin_time.clock() def reset(self): """ Reset the clock of the Time object. Parameters ---------- None Returns ---------- None Example ---------- >>> import neurokit as nk >>> time_passed_since_neuropsydia_loading = nk.time.get() >>> nk.time.reset() >>> time_passed_since_reset = nk.time.get() Authors ---------- - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ Dependencies ---------- - time """ self.clock = builtin_time.clock() def get(self, reset=True): """ Get time since last initialisation / reset. Parameters ---------- reset = bool, optional Should the clock be reset after returning time? Returns ---------- float Time passed in milliseconds. Example ---------- >>> import neurokit as nk >>> time_passed_since_neurobox_loading = nk.time.get() >>> nk.time.reset() >>> time_passed_since_reset = nk.time.get() Authors ---------- - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ Dependencies ---------- - time """ t = (builtin_time.clock()-self.clock)*1000 if reset is True: self.reset() return(t) # ============================================================================== # ============================================================================== # ============================================================================== # ============================================================================== # ============================================================================== # ============================================================================== # ============================================================================== # ============================================================================== def find_following_duplicates(array): """ Find the duplicates that are following themselves. Parameters ---------- array : list or array A list containig duplicates. Returns ---------- list A list containing True for each unique and False for following duplicates. Example ---------- >>> import neurokit as nk >>> mylist = ["a","a","b","a","a","a","c","c","b","b"] >>> nk.find_following_duplicates(mylist) Authors ---------- - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ Dependencies ---------- - numpy """ array = array.copy() uniques = [] for i in range(len(array)): if i == 0: uniques.append(True) else: if array[i] == array[i-1]: uniques.append(False) else: uniques.append(True) # Find index of uniques indices = np.where(uniques) return(uniques) # ============================================================================== # ============================================================================== # ============================================================================== # ============================================================================== # ============================================================================== # ============================================================================== # ============================================================================== # ============================================================================== def find_closest_in_list(number, array, direction="both", strictly=False): """ Find the closest number in the array from x. Parameters ---------- number : float The number. array : list The list to look in. direction : str "both" for smaller or greater, "greater" for only greater numbers and "smaller" for the closest smaller. strictly : bool False for stricly superior or inferior or True for including equal. Returns ---------- closest = int Example ---------- >>> import neurokit as nk >>> nk.find_closest_in_list(1.8, [3, 5, 6, 1, 2]) Authors ---------- - `Dominique Makowski <https://dominiquemakowski.github.io/>`_ """ if direction == "both": closest = min(array, key=lambda x:abs(x-number)) if direction == "smaller": if strictly is True: closest = max(x for x in array if x < number) else: closest = max(x for x in array if x <= number) if direction == "greater": if strictly is True: closest = min(filter(lambda x: x > number, array)) else: closest = min(filter(lambda x: x >= number, array)) return(closest)
python
import workalendar.africa import workalendar.america import workalendar.asia import workalendar.europe import workalendar.oceania import workalendar.usa from pywatts.core.exceptions.util_exception import UtilException def _init_calendar(continent: str, country: str): """ Check if continent and country are correct and return calendar object. :param continent: Continent where the country or region is located. :type continent: str :param country: Country or region to use for the calendar object. :type country: str :return: Returns workalendar object to use for holiday lookup. :rtype: workalendar object """ if hasattr(workalendar, continent.lower()): module = getattr(workalendar, continent.lower()) if hasattr(module, country): return getattr(module, country)() else: raise UtilException(f"The country {country} does not fit to the continent {continent}") else: raise UtilException(f"The continent {continent} does not exist.")
python
from django.shortcuts import render from morad.models import Car from django.views.generic import (ListView,DetailView,DeleteView,UpdateView,CreateView) from django.urls.base import reverse_lazy class ListCars(ListView): template_name = 'cars/cars.html' model = Car class DetailCar(DetailView): template_name = 'cars/details.html' model = Car class CreateCar(CreateView): template_name = 'cars/create.html' model = Car fields = ['name','color','type_car','model_car','description','honer'] class UpdateCar(UpdateView): template_name = 'cars/update.html' model = Car fields = ['name','color','type_car','model_car','description','honer'] class DeleteCar(DeleteView): template_name = 'cars/delete.html' model = Car success_url = reverse_lazy("list-cars")
python
""" Tests for string_utils.py """ import pytest from django.test import TestCase from common.djangoapps.util.string_utils import str_to_bool class StringUtilsTest(TestCase): """ Tests for str_to_bool. """ def test_str_to_bool_true(self): assert str_to_bool('True') assert str_to_bool('true') assert str_to_bool('trUe') def test_str_to_bool_false(self): assert not str_to_bool('Tru') assert not str_to_bool('False') assert not str_to_bool('false') assert not str_to_bool('') assert not str_to_bool(None) assert not str_to_bool('anything') def test_str_to_bool_errors(self): def test_raises_error(val): with pytest.raises(AttributeError): assert not str_to_bool(val) test_raises_error({}) test_raises_error([]) test_raises_error(1) test_raises_error(True)
python
import sys from datetime import timedelta def print_expected_call_message(additional_message): print(f"""{additional_message} Expected application call: python3 regex_text.py [searched phrase] [left_padding] [right_padding] Example call: python3 regex_text.py "I don't know" 2 3""") def handle_arguments(): if not (arg_len := len(sys.argv)) == 4: print_expected_call_message(f'Expected two arguments, got {arg_len-1}.') exit() try: phrase = sys.argv[1] padding_left, padding_right = [timedelta(int(number)) for number in sys.argv[2:4]] return([phrase, padding_left, padding_right]) except: print_expected_call_message(f'An error has occured.') exit()
python
# Copyright 2008-2015 Nokia Networks # Copyright 2016- Robot Framework Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from robot.utils import (IRONPYTHON, JYTHON, py3to2, Sortable, secs_to_timestr, timestr_to_secs, WINDOWS) from robot.errors import TimeoutError, DataError, FrameworkError if JYTHON: from .jython import Timeout elif IRONPYTHON: from .ironpython import Timeout elif WINDOWS: from .windows import Timeout else: from .posix import Timeout @py3to2 class _Timeout(Sortable): def __init__(self, timeout=None, variables=None): self.string = timeout or '' self.secs = -1 self.starttime = -1 self.error = None if variables: self.replace_variables(variables) @property def active(self): return self.starttime > 0 def replace_variables(self, variables): try: self.string = variables.replace_string(self.string) if not self: return self.secs = timestr_to_secs(self.string) self.string = secs_to_timestr(self.secs) except (DataError, ValueError) as err: self.secs = 0.000001 # to make timeout active self.error = (u'Setting %s timeout failed: %s' % (self.type.lower(), err)) def start(self): if self.secs > 0: self.starttime = time.time() def time_left(self): if not self.active: return -1 elapsed = time.time() - self.starttime # Timeout granularity is 1ms. Without rounding some timeout tests fail # intermittently on Windows, probably due to threading.Event.wait(). return round(self.secs - elapsed, 3) def timed_out(self): return self.active and self.time_left() <= 0 def run(self, runnable, args=None, kwargs=None): if self.error: raise DataError(self.error) if not self.active: raise FrameworkError('Timeout is not active') timeout = self.time_left() error = TimeoutError(self._timeout_error, test_timeout=isinstance(self, TestTimeout)) if timeout <= 0: raise error executable = lambda: runnable(*(args or ()), **(kwargs or {})) return Timeout(timeout, error).execute(executable) def get_message(self): if not self.active: return '%s timeout not active.' % self.type if not self.timed_out(): return '%s timeout %s active. %s seconds left.' \ % (self.type, self.string, self.time_left()) return self._timeout_error @property def _timeout_error(self): return '%s timeout %s exceeded.' % (self.type, self.string) def __str__(self): return self.string def __bool__(self): return bool(self.string and self.string.upper() != 'NONE') @property def _sort_key(self): return not self.active, self.time_left() def __eq__(self, other): return self is other def __ne__(self, other): return not self == other def __hash__(self): return id(self) class TestTimeout(_Timeout): type = 'Test' _keyword_timeout_occurred = False def __init__(self, timeout=None, variables=None, rpa=False): if rpa: self.type = 'Task' _Timeout.__init__(self, timeout, variables) def set_keyword_timeout(self, timeout_occurred): if timeout_occurred: self._keyword_timeout_occurred = True def any_timeout_occurred(self): return self.timed_out() or self._keyword_timeout_occurred class KeywordTimeout(_Timeout): type = 'Keyword'
python
from import_export import resources from electricity.models import FeedBack class FeedBackResource(resources.ModelResource): class Meta: model = FeedBack
python
from nose import with_setup from pybbn.causality.ace import Ace from pybbn.graph.dag import Bbn from pybbn.graph.edge import Edge, EdgeType from pybbn.graph.node import BbnNode from pybbn.graph.variable import Variable def setup(): """ Setup. :return: None. """ pass def teardown(): """ Teardown. :return: None. """ pass def get_drug_network(): gender_probs = [0.49, 0.51] drug_probs = [0.23323615160349853, 0.7667638483965015, 0.7563025210084033, 0.24369747899159663] recovery_probs = [0.31000000000000005, 0.69, 0.27, 0.73, 0.13, 0.87, 0.06999999999999995, 0.93] X = BbnNode(Variable(1, 'drug', ['false', 'true']), drug_probs) Y = BbnNode(Variable(2, 'recovery', ['false', 'true']), recovery_probs) Z = BbnNode(Variable(0, 'gender', ['female', 'male']), gender_probs) bbn = Bbn() \ .add_node(X) \ .add_node(Y) \ .add_node(Z) \ .add_edge(Edge(Z, X, EdgeType.DIRECTED)) \ .add_edge(Edge(Z, Y, EdgeType.DIRECTED)) \ .add_edge(Edge(X, Y, EdgeType.DIRECTED)) return bbn @with_setup(setup, teardown) def test_ace(): """ Tests getting average causal effect. """ bbn = get_drug_network() ace = Ace(bbn) results = ace.get_ace('drug', 'recovery', 'true') t = results['true'] f = results['false'] assert t - 0.832 < 0.001 assert f - 0.782 < 0.001
python
__author__ = 'elsabakiu, neilthemathguy, dmorina' from rest_framework import status, viewsets from rest_framework.response import Response from crowdsourcing.serializers.project import * from rest_framework.decorators import detail_route, list_route from crowdsourcing.models import Module, Category, Project, Requester, ProjectRequester from crowdsourcing.permissions.project import IsProjectCollaborator from rest_framework.permissions import IsAuthenticated from rest_framework import mixins from django.shortcuts import get_object_or_404 class CategoryViewSet(viewsets.ModelViewSet): queryset = Category.objects.filter(deleted=False) serializer_class = CategorySerializer @detail_route(methods=['post']) def update_category(self, request, id=None): category_serializer = CategorySerializer(data=request.data) category = self.get_object() if category_serializer.is_valid(): category_serializer.update(category,category_serializer.validated_data) return Response({'status': 'updated category'}) else: return Response(category_serializer.errors, status=status.HTTP_400_BAD_REQUEST) def list(self, request, *args, **kwargs): try: category = self.queryset categories_serialized = CategorySerializer(category, many=True) return Response(categories_serialized.data) except: return Response([]) def destroy(self, request, *args, **kwargs): category_serializer = CategorySerializer() category = self.get_object() category_serializer.delete(category) return Response({'status': 'deleted category'}) class ProjectViewSet(viewsets.ModelViewSet): queryset = Project.objects.filter(deleted=False) serializer_class = ProjectSerializer @detail_route(methods=['post'], permission_classes=[IsProjectCollaborator]) def update_project(self, request, pk=None): project_serializer = ProjectSerializer(data=request.data) project = self.get_object() if project_serializer.is_valid(): project_serializer.update(project,project_serializer.validated_data) return Response({'status': 'updated project'}) else: return Response(project_serializer.errors, status=status.HTTP_400_BAD_REQUEST) def list(self, request, *args, **kwargs): try: projects = Project.objects.all() projects_serialized = ProjectSerializer(projects, many=True) return Response(projects_serialized.data) except: return Response([]) def destroy(self, request, *args, **kwargs): project_serializer = ProjectSerializer() project = self.get_object() project_serializer.delete(project) return Response({'status': 'deleted project'}) class ModuleViewSet(viewsets.ModelViewSet): from crowdsourcing.models import Module queryset = Module.objects.all() serializer_class = ModuleSerializer class ProjectRequesterViewSet(mixins.CreateModelMixin, mixins.DestroyModelMixin, mixins.RetrieveModelMixin, viewsets.GenericViewSet): serializer_class = ProjectRequesterSerializer queryset = ProjectRequester.objects.all() #permission_classes=(IsProjectCollaborator,) #TODO to be moved under Project def retrieve(self, request, *args, **kwargs): project_requester = get_object_or_404(self.queryset, project=get_object_or_404(Project.objects.all(),id=kwargs['pk'])) serializer = ProjectRequesterSerializer(instance=project_requester) return Response(serializer.data, status.HTTP_200_OK)
python
import torch import torch.nn as nn import torch.nn.functional as F from layers import ImplicitGraph from torch.nn import Parameter from utils import get_spectral_rad, SparseDropout import torch.sparse as sparse class IGNN(nn.Module): def __init__(self, nfeat, nhid, nclass, num_node, dropout, kappa=0.9, adj_orig=None): super(IGNN, self).__init__() self.adj = None self.adj_rho = None self.adj_orig = adj_orig #one layer with V self.ig1 = ImplicitGraph(nfeat, nhid, num_node, kappa) self.dropout = dropout self.X_0 = Parameter(torch.zeros(nhid, num_node), requires_grad=False) self.V = nn.Linear(nhid, nclass, bias=False) def forward(self, features, adj): if adj is not self.adj: self.adj = adj self.adj_rho = get_spectral_rad(adj) x = features x = self.ig1(self.X_0, adj, x, F.relu, self.adj_rho, A_orig=self.adj_orig).T x = F.dropout(x, self.dropout, training=self.training) x = self.V(x) return x
python
from PIL import Image import argparse import os import sys current_directory = os.getcwd() def args_check(args = None): if(args == None): print("Arguments are reqiured for execution") parser = argparse.ArgumentParser(description="Resizer - A lightweight Image size and resolution resizer") parser.add_argument('--input-file', '-i', help = "Path to the input file") parser.add_argument('--input-folder', '-if', help = "Path to the input folder") parser.add_argument('--resize', '-r', help = 'Change the image/images to the specified resolution') parser.add_argument('--reduce', '-rs', help = 'Reduce the size of the image/images', action='store_true') parser.add_argument('--output-file', '-o', help = "Path to the output file") parser.add_argument('--output-folder', '-of', help = "Path to the output folder") return parser.parse_args(args) def clear_screen(): if os.name == 'nt': os.system('cls') else: os.system('clear') def change_res(resolution, path=None, filename=None, output_location=None, fullpath=None): if fullpath is None: filepath = os.path.join(path, filename) print(filepath) print(output_location) image = Image.open(filepath) if output_location is None: change_res_path = os.path.join(current_directory, filename) else: change_res_path = os.path.join(output_location, filename) new_image = image.resize(dimensions(resolution)) new_image.save(change_res_path) print("Image saved at = " + change_res_path) else: filepath = fullpath filename = os.path.basename(filepath) image = Image.open(filepath) if output_location is None: change_res_path = os.path.join(current_directory, filename) else: change_res_path = os.path.join(output_location, filename) new_image = image.resize(dimensions(resolution)) new_image.save(change_res_path) print("Image saved at = " + change_res_path) def reduce_size(path=None, filename=None, output_location=None, fullpath=None): if fullpath is None: filepath = os.path.join(path, filename) image = Image.open(filepath) if output_location is None: reduce_size_path = os.path.join(current_directory, filename) else: reduce_size_path = os.path.join(output_location, filename) else: filepath = fullpath filename = os.path.basename(fullpath) image = Image.open(filepath) if output_location is None: reduce_size_path = os.path.join(current_directory, filename) else: reduce_size_path = os.path.join(output_location,filename) image.save(reduce_size_path, optimize = True, quality = 85) print("Image saved at = " + change_res_path) def dimensions(resolution): dimensions = resolution.split('x') width, height = int(dimensions[0]), int(dimensions[1]) print("New Height = " + str(height) + ", Width = " + str(width)) return (width, height) def bulkChange(change_type, input_location, output_folder=None, resolution=None): imgExts = ['png','bmp','jpg'] if input_location is None: print("Input Location can't be empty. Please try again.") else: for path, dirs, files in os.walk(input_location): for fn in files: print(path, fn) ext = fn[-3:].lower() if ext not in imgExts: continue if change_type is 'change_resolution': change_res(resolution, path, fn, output_location=output_folder) elif change_type is 'reduce_size': reduce_size(path, fn, output_location=output_folder) def main(): clear_screen() if args_check(sys.argv[1:]).input_file: input_f = args_check(sys.argv[1:]).input_file if args_check(sys.argv[1:]).output_file: print(args_check(sys.argv[1:]).output_file) output_f = args_check(sys.argv[1:]).output_file else: output_f = None if args_check(sys.argv[1:]).resize: change_type = 'change_resolution' change_res(args_check(sys.argv[1:]).resize,fullpath=input_f, output_location=output_f) elif args_check(sys.argv[1:]).reduce: print(args_check(sys.argv[1:]).reduce) change_type = 'reduce_size' reduce_size(fullpath=input_f, output_location=output_f) else: print("Please specify the --change-resolution or the --reduce-size arguments") elif args_check(sys.argv[1:]).input_folder: input_fld = args_check(sys.argv[1:]).input_folder if args_check(sys.argv[1:]).output_folder: print(args_check(sys.argv[1:]).output_folder) output_fld = args_check(sys.argv[1:]).output_folder else: output_fld = None if args_check(sys.argv[1:]).resize: change_type = 'change_resolution' bulkChange(change_type, input_fld, output_folder=output_fld, resolution=args_check(sys.argv[1:]).change_resolution) elif args_check(sys.argv[1:]).reduce: change_type = 'reduce_size' bulkChange(change_type, input_fld, output_folder=output_fld) else: print("Please enter an Input file using --input or -i. You can even use an input folder using --input-folder or -if.") if __name__ == '__main__': main()
python
a,b = 1,2 print a+b
python
import shlex import json from .BaseClient import BaseClient from .Response import JSONResponse from . import typchk DefaultTimeout = 10 # seconds class ContainerClient(BaseClient): class ContainerZerotierManager: def __init__(self, client, container): self._container = container self._client = client def info(self): return self._client.json('corex.zerotier.info', {'container': self._container}) def list(self): return self._client.json('corex.zerotier.list', {'container': self._container}) _raw_chk = typchk.Checker({ 'container': int, 'command': { 'command': str, 'arguments': typchk.Any(), 'queue': typchk.Or(str, typchk.IsNone()), 'max_time': typchk.Or(int, typchk.IsNone()), 'stream': bool, 'tags': typchk.Or([str], typchk.IsNone()), 'id': typchk.Or(str, typchk.IsNone()), } }) def __init__(self, client, container): super().__init__(client.timeout) self._client = client self._container = container self._zerotier = ContainerClient.ContainerZerotierManager(client, container) # not (self) we use core0 client @property def container(self): """ :return: container id """ return self._container @property def zerotier(self): """ information about zerotier id :return: """ return self._zerotier def raw(self, command, arguments, queue=None, max_time=None, stream=False, tags=None, id=None): """ Implements the low level command call, this needs to build the command structure and push it on the correct queue. :param command: Command name to execute supported by the node (ex: core.system, info.cpu, etc...) check documentation for list of built in commands :param arguments: A dict of required command arguments depends on the command name. :param queue: command queue (commands on the same queue are executed sequentially) :param max_time: kill job server side if it exceeded this amount of seconds :param stream: If True, process stdout and stderr are pushed to a special queue (stream:<id>) so client can stream output :param tags: job tags :param id: job id. Generated if not supplied :return: Response object """ args = { 'container': self._container, 'command': { 'command': command, 'arguments': arguments, 'queue': queue, 'max_time': max_time, 'stream': stream, 'tags': tags, 'id': id, }, } # check input self._raw_chk.check(args) response = self._client.raw('corex.dispatch', args) result = response.get() if result.state != 'SUCCESS': raise RuntimeError('failed to dispatch command to container: %s' % result.data) cmd_id = json.loads(result.data) return self._client.response_for(cmd_id) class ContainerManager(): _nic = { 'type': typchk.Enum('default', 'bridge', 'zerotier', 'vlan', 'vxlan', 'macvlan', 'passthrough'), 'id': typchk.Or(str, typchk.Missing()), 'name': typchk.Or(str, typchk.Missing()), 'hwaddr': typchk.Or(str, typchk.Missing()), 'config': typchk.Or( typchk.Missing(), { 'dhcp': typchk.Or(bool, typchk.IsNone(), typchk.Missing()), 'cidr': typchk.Or(str, typchk.IsNone(), typchk.Missing()), 'gateway': typchk.Or(str, typchk.IsNone(), typchk.Missing()), 'dns': typchk.Or([str], typchk.IsNone(), typchk.Missing()), } ), 'monitor': typchk.Or(bool, typchk.Missing()), } _create_chk = typchk.Checker({ 'root': str, 'mount': typchk.Or( typchk.Map(str, str), typchk.IsNone() ), 'host_network': bool, 'nics': [_nic], 'port': typchk.Or( typchk.Map(int, int), typchk.Map(str, int), typchk.IsNone() ), 'privileged': bool, 'hostname': typchk.Or( str, typchk.IsNone() ), 'storage': typchk.Or(str, typchk.IsNone()), 'name': typchk.Or(str, typchk.IsNone()), 'identity': typchk.Or(str, typchk.IsNone()), 'env': typchk.Or(typchk.IsNone(), typchk.Map(str, str)), 'cgroups': typchk.Or( typchk.IsNone(), [typchk.Length((str,), 2, 2)], # array of (str, str) tuples i.e [(subsyste, name), ...] ) }) _client_chk = typchk.Checker( typchk.Or(int, str) ) _nic_add = typchk.Checker({ 'container': int, 'nic': _nic, }) _nic_remove = typchk.Checker({ 'container': int, 'index': int, }) _portforward_chk = typchk.Checker({ 'container': int, 'host_port': str, 'container_port': int, }) DefaultNetworking = object() def __init__(self, client): self._client = client def create( self, root_url, mount=None, host_network=False, nics=DefaultNetworking, port=None, hostname=None, privileged=False, storage=None, name=None, tags=None, identity=None, env=None, cgroups=None, ): """ Creater a new container with the given root flist, mount points and zerotier id, and connected to the given bridges :param root_url: The root filesystem flist :param mount: a dict with {host_source: container_target} mount points. where host_source directory must exists. host_source can be a url to a flist to mount. :param host_network: Specify if the container should share the same network stack as the host. if True, container creation ignores both zerotier, bridge and ports arguments below. Not giving errors if provided. :param nics: Configure the attached nics to the container each nic object is a dict of the format { 'type': nic_type # one of default, bridge, zerotier, macvlan, passthrough, vlan, or vxlan (note, vlan and vxlan only supported by ovs) 'id': id # depends on the type bridge: bridge name, zerotier: network id, macvlan: the parent link name, passthrough: the link name, vlan: the vlan tag, vxlan: the vxlan id 'name': name of the nic inside the container (ignored in zerotier type) 'hwaddr': Mac address of nic. 'config': { # config is only honored for bridge, vlan, and vxlan types 'dhcp': bool, 'cidr': static_ip # ip/mask 'gateway': gateway 'dns': [dns] } } :param port: A dict of host_port: container_port pairs (only if default networking is enabled) Example: `port={8080: 80, 7000:7000}` Source Format: NUMBER, IP:NUMBER, IP/MAST:NUMBER, or DEV:NUMBER :param hostname: Specific hostname you want to give to the container. if None it will automatically be set to core-x, x beeing the ID of the container :param privileged: If true, container runs in privileged mode. :param storage: A Url to the ardb storage to use to mount the root flist (or any other mount that requires g8fs) if not provided, the default one from core0 configuration will be used. :param name: Optional name for the container :param identity: Container Zerotier identity, Only used if at least one of the nics is of type zerotier :param env: a dict with the environment variables needed to be set for the container :param cgroups: custom list of cgroups to apply to this container on creation. formated as [(subsystem, name), ...] please refer to the cgroup api for more detailes. """ if nics == self.DefaultNetworking: nics = [{'type': 'default'}] elif nics is None: nics = [] args = { 'root': root_url, 'mount': mount, 'host_network': host_network, 'nics': nics, 'port': port, 'hostname': hostname, 'privileged': privileged, 'storage': storage, 'name': name, 'identity': identity, 'env': env, 'cgroups': cgroups, } # validate input self._create_chk.check(args) response = self._client.raw('corex.create', args, tags=tags) return JSONResponse(response) def list(self): """ List running containers :return: a dict with {container_id: <container info object>} """ return self._client.json('corex.list', {}) def find(self, *tags): """ Find containers that matches set of tags :param tags: :return: """ tags = list(map(str, tags)) return self._client.json('corex.find', {'tags': tags}) def terminate(self, container): """ Terminate a container given it's id :param container: container id :return: """ self._client_chk.check(container) args = { 'container': int(container), } response = self._client.raw('corex.terminate', args) result = response.get() if result.state != 'SUCCESS': raise RuntimeError('failed to terminate container: %s' % result.data) def nic_add(self, container, nic): """ Hot plug a nic into a container :param container: container ID :param nic: { 'type': nic_type # one of default, bridge, zerotier, macvlan, passthrough, vlan, or vxlan (note, vlan and vxlan only supported by ovs) 'id': id # depends on the type bridge: bridge name, zerotier: network id, macvlan: the parent link name, passthrough: the link name, vlan: the vlan tag, vxlan: the vxlan id 'name': name of the nic inside the container (ignored in zerotier type) 'hwaddr': Mac address of nic. 'config': { # config is only honored for bridge, vlan, and vxlan types 'dhcp': bool, 'cidr': static_ip # ip/mask 'gateway': gateway 'dns': [dns] } } :return: """ args = { 'container': container, 'nic': nic } self._nic_add.check(args) return self._client.json('corex.nic-add', args) def nic_remove(self, container, index): """ Hot unplug of nic from a container Note: removing a nic, doesn't remove the nic from the container info object, instead it sets it's state to `destroyed`. :param container: container ID :param index: index of the nic as returned in the container object info (as shown by container.list()) :return: """ args = { 'container': container, 'index': index } self._nic_remove.check(args) return self._client.json('corex.nic-remove', args) def client(self, container): """ Return a client instance that is bound to that container. :param container: container id :return: Client object bound to the specified container id Return a ContainerResponse from container.create """ self._client_chk.check(container) return ContainerClient(self._client, int(container)) def backup(self, container, url): """ Backup a container to the given restic url all restic urls are supported :param container: :param url: Url to restic repo examples (file:///path/to/restic/?password=<password>) :return: Json response to the backup job (do .get() to get the snapshot ID """ args = { 'container': container, 'url': url, } return JSONResponse(self._client.raw('corex.backup', args)) def restore(self, url, tags=None): """ Full restore of a container backup. This restore method will recreate an exact copy of the backedup container (including same network setup, and other configurations as defined by the `create` method. To just restore the container data, and use new configuration, use the create method instead with the `root_url` set to `restic:<url>` :param url: Snapshot url, the snapshot ID is passed as a url fragment examples: `file:///path/to/restic/repo?password=<password>#<snapshot-id>` :param tags: this will always override the original container tags (even if not set) :return: """ args = { 'url': url, } return JSONResponse(self._client.raw('corex.restore', args, tags=tags)) def add_portforward(self, container, host_port, container_port): """ Add portforward from host to kvm container :param container: id of the container :param host_port: port on host to forward from (string) format: NUMBER, IP:NUMBER, IP/MAST:NUMBER, or DEV:NUMBER :param container_port: port on container to forward to :return: """ if isinstance(host_port, int): host_port = str(host_port) args = { 'container': container, 'host_port': host_port, 'container_port': container_port, } self._portforward_chk.check(args) return self._client.json('corex.portforward-add', args) def remove_portforward(self, container, host_port, container_port): """ Remove portforward from host to kvm container :param container: id of the container :param host_port: port on host forwarded from :param container_port: port on container forwarded to :return: """ if isinstance(host_port, int): host_port = str(host_port) args = { 'container': container, 'host_port': host_port, 'container_port': container_port, } self._portforward_chk.check(args) return self._client.json('corex.portforward-remove', args)
python
import tensorflow as tf import keras # print(tf.__version__, keras.__version__) amv_model_path = "model/frmodel.h5" export_path = "model/ArtMaterialVerification/2" model = tf.keras.models.load_model(amv_model_path) with tf.keras.backend.get_session() as sess: tf.saved_model.simple_save( sess, export_path, inputs={'input_image': model.input}, outputs={t.name:t for t in model.outputs} )
python
import pandas as pd import numpy as np import scipy as sp import random from scipy.spatial.distance import mahalanobis class TrainOutlier: data = None percentilek = None valuecountsdict = None colsum = None median = None invcovmx = None cols = None threshold = None datetimecols = None def train(self): df = self.data if((self.cols != None) & (self.datetimecols != None)): df = df[self.cols+self.datetimecols] elif(self.datetimecols == None): df = df[self.cols] elif(self.cols == None): df = df[self.datetimecols] else: raise ValueError('At least one categorical or date time column must be supplied') #df_cols = pd.DataFrame((df.nunique() < 100) & (df.nunique() > 2),columns = ['values']) #self.cols = df_cols[df_cols.values == True].index if(self.datetimecols != None): df = self.get_datetimefeatures(df) df,cols_freq = self.get_inv_frequency_values(df,self.cols) df,self.colsum = self.get_probability_values(df,self.cols,cols_freq) self.median = pd.DataFrame(df[cols_freq].apply(np.median),columns=['median']).reset_index() df_mahalanobis,self.invcovmx = self.get_mahalanobis_distance(df,self.median,cols_freq) self.threshold = np.percentile(df_mahalanobis,self.percentilek) self.valuecountsdict = self.get_value_counts_dict(df,self.cols) return self #value_counts_dict, df_sum_values, df_median_values, invcovmx, cols, threshold def get_datetimefeatures(self, df): for d in self.datetimecols: df[d+'_weekday'] = self.data[d].apply(lambda m : m.weekday()) df[d+'_hourofday'] = self.data[d].apply(lambda m : m.hour) self.cols = self.cols + [d+'_weekday',d+'_hourofday'] return df def get_inv_frequency_values(self,df,cols): cols_freq = [] for c in cols: d = pd.DataFrame(df[c].value_counts()).reset_index() d.columns = [c,c+'_frequency'] df = pd.merge(df,d,how='left',on=[c]) df[c+'_frequency'] = 1/df[c+'_frequency'] cols_freq.append(c+'_frequency') return(df,cols_freq) def get_probability_values(self,df,cols,cols_freq): df_sum_values = pd.DataFrame(df[cols_freq].apply(sum),columns=['sum']).reset_index() for c in cols_freq: v = df_sum_values.loc[df_sum_values['index'] == c,'sum'].values[0] df[c] = df[c].apply(lambda x : x/(1 + v)) return(df,df_sum_values) def get_mahalanobis_distance(self,df,df_median_values,cols_freq): #Calculate covariance matrix covmx = df[cols_freq].cov() invcovmx = sp.linalg.inv(covmx) df_mahalanobis = df[cols_freq].apply(lambda x: (mahalanobis(df_median_values['median'].values, x, invcovmx)), axis=1) return df_mahalanobis,invcovmx def get_value_counts_dict(self,df,cols): value_counts_dict = {} for c in cols: d = df.groupby([c,c+'_frequency']).size().reset_index() value_counts_dict[c] = d return(value_counts_dict) def __init__(self,data,percentile_k = 99.9,cat_cols=None, datetime_cols=None): self.data = data self.percentilek = percentile_k self.cols = cat_cols self.datetimecols = datetime_cols
python
import os from twisted.logger import FilteringLogObserver, LogLevelFilterPredicate, LogLevel, jsonFileLogObserver from twisted.python import logfile from twisted.python.log import FileLogObserver log_dir = os.environ.get("LOG_DIR", '/var/log/') log_level = os.environ.get("TWISTED_LOG_LEVEL", 'INFO').lower() log_rotate_length = int(os.environ.get("LOG_ROTATE_LENGTH", 100000000)) max_rotated_log_files = int(os.environ.get("MAX_LOG_ROTATED_FILES", 10)) def get_log_observer(): f = logfile.LogFile("carbon_forwarder.log", log_dir, rotateLength=log_rotate_length, maxRotatedFiles=max_rotated_log_files) observer = FileLogObserver(f) filterer = FilteringLogObserver(observer.emit, [LogLevelFilterPredicate( LogLevel.levelWithName(log_level))]) return filterer def get_json_log_observer(): f = logfile.LogFile("carbon_forwarder.log", log_dir, rotateLength=log_rotate_length, maxRotatedFiles=max_rotated_log_files) observer = jsonFileLogObserver(f) filterer = FilteringLogObserver(observer, [LogLevelFilterPredicate( LogLevel.levelWithName(log_level))]) return filterer
python
# (C) Datadog, Inc. 2019-present # All rights reserved # Licensed under Simplified BSD License (see LICENSE) import os import pytest from datadog_checks.redisdb import Redis from . import common pytestmark = pytest.mark.e2e def assert_common_metrics(aggregator): tags = ['redis_host:{}'.format(common.HOST), 'redis_port:6382', 'redis_role:master'] aggregator.assert_service_check('redis.can_connect', status=Redis.OK, tags=tags) aggregator.assert_metric('redis.mem.fragmentation_ratio', count=2, tags=tags) aggregator.assert_metric('redis.rdb.bgsave', count=2, tags=tags) aggregator.assert_metric('redis.aof.last_rewrite_time', count=2, tags=tags) aggregator.assert_metric('redis.replication.master_repl_offset', count=2, tags=tags) aggregator.assert_metric('redis.net.rejected', count=2, tags=tags) aggregator.assert_metric('redis.cpu.sys_children', count=1, tags=tags) aggregator.assert_metric('redis.aof.rewrite', count=2, tags=tags) aggregator.assert_metric('redis.mem.maxmemory', count=2, tags=tags) aggregator.assert_metric('redis.mem.lua', count=2, tags=tags) aggregator.assert_metric('redis.net.instantaneous_ops_per_sec', count=2, tags=tags) aggregator.assert_metric('redis.perf.latest_fork_usec', count=2, tags=tags) aggregator.assert_metric('redis.keys.evicted', count=2, tags=tags) aggregator.assert_metric('redis.net.slaves', count=2, tags=tags) aggregator.assert_metric('redis.net.maxclients', count=2, tags=tags) aggregator.assert_metric('redis.clients.blocked', count=2, tags=tags) aggregator.assert_metric('redis.stats.keyspace_misses', count=1, tags=tags) aggregator.assert_metric('redis.pubsub.channels', count=2, tags=tags) aggregator.assert_metric('redis.net.clients', count=2, tags=tags) aggregator.assert_metric('redis.net.connections', count=2, tags=tags + ['source:unknown']) aggregator.assert_metric('redis.mem.used', count=2, tags=tags) aggregator.assert_metric('redis.mem.peak', count=2, tags=tags) aggregator.assert_metric('redis.stats.keyspace_hits', count=1, tags=tags) aggregator.assert_metric('redis.net.commands', count=1, tags=tags) aggregator.assert_metric('redis.replication.backlog_histlen', count=2, tags=tags) aggregator.assert_metric('redis.mem.rss', count=2, tags=tags) aggregator.assert_metric('redis.cpu.sys', count=1, tags=tags) aggregator.assert_metric('redis.pubsub.patterns', count=2, tags=tags) aggregator.assert_metric('redis.keys.expired', count=2, tags=tags) aggregator.assert_metric('redis.info.latency_ms', count=2, tags=tags) aggregator.assert_metric('redis.cpu.user', count=1, tags=tags) aggregator.assert_metric('redis.cpu.user_children', count=1, tags=tags) aggregator.assert_metric('redis.rdb.last_bgsave_time', count=2, tags=tags) aggregator.assert_metric('redis.rdb.changes_since_last', count=2, tags=tags) tags += ['redis_db:db14'] aggregator.assert_metric('redis.expires', count=2, tags=tags) aggregator.assert_metric('redis.expires.percent', count=2, tags=tags) aggregator.assert_metric('redis.persist', count=2, tags=tags) aggregator.assert_metric('redis.persist.percent', count=2, tags=tags) aggregator.assert_metric('redis.keys', count=2, tags=tags) aggregator.assert_metric('redis.key.length', count=2, tags=(['key:test_key1', 'key_type:list'] + tags)) aggregator.assert_metric('redis.key.length', count=2, tags=(['key:test_key2', 'key_type:list'] + tags)) aggregator.assert_metric('redis.key.length', count=2, tags=(['key:test_key3', 'key_type:list'] + tags)) aggregator.assert_metric('redis.replication.delay', count=2) @pytest.mark.skipif(os.environ.get('REDIS_VERSION') != '3.2', reason='Test for redisdb v3.2') def test_e2e_v_3_2(dd_agent_check, master_instance): aggregator = dd_agent_check(master_instance, rate=True) assert_common_metrics(aggregator) tags = ['redis_host:{}'.format(common.HOST), 'redis_port:6382', 'redis_role:master'] aggregator.assert_metric('redis.clients.biggest_input_buf', count=2, tags=tags) aggregator.assert_metric('redis.clients.longest_output_list', count=2, tags=tags) aggregator.assert_all_metrics_covered() @pytest.mark.skipif(os.environ.get('REDIS_VERSION') != '4.0', reason='Test for redisdb v4.0') def test_e2e_v_4_0(dd_agent_check, master_instance): aggregator = dd_agent_check(master_instance, rate=True) assert_common_metrics(aggregator) tags = ['redis_host:{}'.format(common.HOST), 'redis_port:6382', 'redis_role:master'] aggregator.assert_metric('redis.clients.biggest_input_buf', count=2, tags=tags) aggregator.assert_metric('redis.mem.overhead', count=2, tags=tags) aggregator.assert_metric('redis.clients.longest_output_list', count=2, tags=tags) aggregator.assert_metric('redis.mem.startup', count=2, tags=tags) aggregator.assert_metric('redis.active_defrag.running', count=2, tags=tags) aggregator.assert_metric('redis.active_defrag.hits', count=2, tags=tags) aggregator.assert_metric('redis.active_defrag.misses', count=2, tags=tags) aggregator.assert_metric('redis.active_defrag.key_hits', count=2, tags=tags) aggregator.assert_metric('redis.active_defrag.key_misses', count=2, tags=tags) aggregator.assert_all_metrics_covered() @pytest.mark.skipif(os.environ.get('REDIS_VERSION') != 'latest', reason='Test for the latest redisdb version') def test_e2e_v_latest(dd_agent_check, master_instance): aggregator = dd_agent_check(master_instance, rate=True) assert_common_metrics(aggregator) tags = ['redis_host:{}'.format(common.HOST), 'redis_port:6382', 'redis_role:master'] aggregator.assert_metric('redis.mem.overhead', count=2, tags=tags) aggregator.assert_metric('redis.mem.startup', count=2, tags=tags) aggregator.assert_metric('redis.active_defrag.running', count=2, tags=tags) aggregator.assert_metric('redis.active_defrag.hits', count=2, tags=tags) aggregator.assert_metric('redis.active_defrag.misses', count=2, tags=tags) aggregator.assert_metric('redis.active_defrag.key_hits', count=2, tags=tags) aggregator.assert_metric('redis.active_defrag.key_misses', count=2, tags=tags) aggregator.assert_metric('redis.server.io_threads_active', count=2, tags=tags) aggregator.assert_metric('redis.stats.io_threaded_reads_processed', count=1, tags=tags) aggregator.assert_metric('redis.stats.io_threaded_writes_processed', count=1, tags=tags) aggregator.assert_metric('redis.cpu.sys_main_thread', count=1, tags=tags) aggregator.assert_metric('redis.cpu.user_main_thread', count=1, tags=tags) aggregator.assert_all_metrics_covered()
python
import os from oelint_adv.cls_rule import Rule from oelint_parser.helper_files import expand_term from oelint_parser.helper_files import get_layer_root class RubygemsTestCase(Rule): TESTCASE_DIR = "lib/oeqa/runtime/cases" def __init__(self): super().__init__(id="rubygems.testcase", severity="error", message="Recipe has to have a test case") def __sanitize_pn(self, name): return name.replace("@", "").replace("/", "-").replace("-", "_") def __needle_to_search_for(self, name): return "class RubyGemsTest{pn}(RubyGemsTestUtils)".format(pn=self.__sanitize_pn(name)) def check(self, _file, stash): res = [] if "recipes-rubygems/" not in _file: return [] found = False _pn = expand_term(stash, _file, "${PN}") _layer_root = get_layer_root(_file) _needle = self.__needle_to_search_for(_pn) for root, dirs, files in os.walk(os.path.join(_layer_root, RubygemsTestCase.TESTCASE_DIR)): for f in files: if not f.endswith(".py"): continue with open(os.path.join(root, f)) as i: if _needle in i.read(): found = True break if not found: res += self.finding(_file, 1) return res
python
# -*- coding: utf-8 -*- """Sonos Alarms.""" from __future__ import unicode_literals import logging from datetime import datetime import re import weakref from .core import discover, PLAY_MODES from .xml import XML log = logging.getLogger(__name__) # pylint: disable=C0103 TIME_FORMAT = "%H:%M:%S" def is_valid_recurrence(text): """Check that text is a valid recurrence string. A valid recurrence string is 'DAILY', 'ONCE', 'WEEKDAYS', 'WEEKENDS' or of the form 'ON_DDDDDD' where D is a number from 0-7 representing a day of the week (Sunday is 0), e.g. 'ON_034' meaning Sunday, Wednesday and Thursday Arg: text(str): the recurrence string to check Returns: bool: True if the recurrence string is valid, else False Examples: :: >>> from soco.alarms import is_valid_recurrence >>> is_valid_recurrence('WEEKENDS') True >>> is_valid_recurrence('') False >>> is_valid_recurrence('ON_132') # Mon, Tue, Wed True >>> is_valid_recurrence('ON_777') # Sat True >>> is_valid_recurrence('ON_3421') # Mon, Tue, Wed, Thur True >>> is_valid_recurrence('ON_123456789') # Too many digits False """ if text in ("DAILY", "ONCE", "WEEKDAYS", "WEEKENDS"): return True return re.search(r'^ON_[0-7]{1,7}$', text) is not None class Alarm(object): """A class representing a Sonos Alarm. Alarms may be created or updated and saved to, or removed from the Sonos system. An alarm is not automatically saved. Call `save()` to do that. Example: .. code-block:: >>> # create an alarm with default properties >>> alarm = Alarm(my_device) >>> print alarm.volume 20 >>> print get_alarms() set([]) >>> # save the alarm to the Sonos system >>> alarm.save() >>> print get_alarms() set([<Alarm id:88@15:26:15 at 0x107abb090>]) >>> # update the alarm >>> alarm.recurrence = "ONCE" >>> # Save it again for the change to take effect >>> alarm.save() >>> # Remove it >>> alarm.remove() >>> print get_alarms() set([]) """ # pylint: disable=too-many-instance-attributes _all_alarms = weakref.WeakValueDictionary() # pylint: disable=too-many-arguments def __init__( self, zone, start_time=None, duration=None, recurrence='DAILY', enabled=True, program_uri=None, program_metadata='', play_mode='NORMAL', volume=20, include_linked_zones=False): """ Args: zone (SoCo): The soco instance which will play the alarm. start_time (datetime.time, optional): The alarm's start time. Specify hours, minutes and seconds only. Defaults to the current time duration (datetime.time, optional): The alarm's duration. Specify hours, minutes and seconds only. May be None for unlimited duration. Defaults to None recurrence (str, optional): A string representing how often the alarm should be triggered. Can be 'DAILY', 'ONCE', 'WEEKDAYS', 'WEEKENDS' or of the form 'ON_DDDDDD' where D is a number from 0-7 representing a day of the week (Sunday is 0), e.g. 'ON_034' meaning Sunday, Wednesday and Thursday. Defaults to 'DAILY' enabled (bool, optional): True if alarm is enabled, False otherwise. Defaults to True program_uri(str, optional): The uri to play. If None, the built-in Sonos chime sound will be used. Defaults to None program_metadata (str, optional): The metadata associated with program_uri. Defaults to '' play_mode(str, optional): The play mode for the alarm. Can be one of 'NORMAL', 'SHUFFLE_NOREPEAT', 'SHUFFLE', 'REPEAT_ALL'. Defaults to 'NORMAL' volume (int, optional): The alarm's volume (0-100). Defaults to 20 include_linked_zones (bool, optional): True if the alarm should be played on the other speakers in the same group, False otherwise. Defaults to False """ super(Alarm, self).__init__() self.zone = zone if start_time is None: start_time = datetime.now().time() self.start_time = start_time self.duration = duration self._recurrence = recurrence self.enabled = enabled self.program_uri = program_uri self.program_metadata = program_metadata self._play_mode = play_mode self._volume = volume self.include_linked_zones = include_linked_zones self._alarm_id = None def __repr__(self): middle = str(self.start_time.strftime(TIME_FORMAT)) return "<{0} id:{1}@{2} at {3}>".format( self.__class__.__name__, self._alarm_id, middle, hex(id(self))) @property def play_mode(self): """The play mode for the alarm. Can be one of 'NORMAL', 'SHUFFLE_NOREPEAT', 'SHUFFLE', 'REPEAT_ALL'. """ return self._play_mode @play_mode.setter def play_mode(self, play_mode): """Set the play mode.""" play_mode = play_mode.upper() if play_mode not in PLAY_MODES: raise KeyError("'%s' is not a valid play mode" % play_mode) self._play_mode = play_mode @property def volume(self): """The alarm's volume (0-100).""" return self._volume @volume.setter def volume(self, volume): """Set the volume.""" # max 100 volume = int(volume) self._volume = max(0, min(volume, 100)) # Coerce in range @property def recurrence(self): """A string representing how often the alarm should be triggered. Can be 'DAILY', 'ONCE', 'WEEKDAYS', 'WEEKENDS' or of the form 'ON_DDDDDDD' where D is a number from 0-7 representing a day of the week (Sunday is 0), e.g. 'ON_034' meaning Sunday, Wednesday and Thursday. """ return self._recurrence @recurrence.setter def recurrence(self, recurrence): """Set the recurrence.""" if not is_valid_recurrence(recurrence): raise KeyError("'%s' is not a valid recurrence value" % recurrence) self._recurrence = recurrence def save(self): """Save the alarm to the Sonos system. Raises: SoCoUPnPError if the alarm cannot be created because there is already an alarm for this room at the specified time """ # pylint: disable=bad-continuation args = [ ('StartLocalTime', self.start_time.strftime(TIME_FORMAT)), ('Duration', '' if self.duration is None else self.duration.strftime(TIME_FORMAT)), ('Recurrence', self.recurrence), ('Enabled', '1' if self.enabled else '0'), ('RoomUUID', self.zone.uid), ('ProgramURI', "x-rincon-buzzer:0" if self.program_uri is None else self.program_uri), ('ProgramMetaData', self.program_metadata), ('PlayMode', self.play_mode), ('Volume', self.volume), ('IncludeLinkedZones', '1' if self.include_linked_zones else '0') ] if self._alarm_id is None: response = self.zone.alarmClock.CreateAlarm(args) self._alarm_id = response['AssignedID'] Alarm._all_alarms[self._alarm_id] = self else: # The alarm has been saved before. Update it instead. args.insert(0, ('ID', self._alarm_id)) self.zone.alarmClock.UpdateAlarm(args) def remove(self): """Removes the alarm. Removes the alarm from the Sonos system. There is no need to call `save`. The Python instance is not deleted, and can be saved back to Sonos again if desired. """ self.zone.alarmClock.DestroyAlarm([ ('ID', self._alarm_id) ]) alarm_id = self._alarm_id try: del Alarm._all_alarms[alarm_id] except KeyError: pass self._alarm_id = None def get_alarms(soco=None): """Get a set of all alarms known to the Sonos system. Args: soco (SoCo, optional): a SoCo instance to query. If None, a random instance is used. Defaults to None Returns: set: A set of Alarm instances Note: Any existing Alarm instance will have its attributes updated to those currently stored on the Sonos system. """ # Get a soco instance to query. It doesn't matter which. if soco is None: soco = discover().pop() response = soco.alarmClock.ListAlarms() alarm_list = response['CurrentAlarmList'] tree = XML.fromstring(alarm_list.encode('utf-8')) # An alarm list looks like this: # <Alarms> # <Alarm ID="14" StartTime="07:00:00" # Duration="02:00:00" Recurrence="DAILY" Enabled="1" # RoomUUID="RINCON_000ZZZZZZ1400" # ProgramURI="x-rincon-buzzer:0" ProgramMetaData="" # PlayMode="SHUFFLE_NOREPEAT" Volume="25" # IncludeLinkedZones="0"/> # <Alarm ID="15" StartTime="07:00:00" # Duration="02:00:00" Recurrence="DAILY" Enabled="1" # RoomUUID="RINCON_000ZZZZZZ01400" # ProgramURI="x-rincon-buzzer:0" ProgramMetaData="" # PlayMode="SHUFFLE_NOREPEAT" Volume="25" # IncludeLinkedZones="0"/> # </Alarms> # pylint: disable=protected-access alarms = tree.findall('Alarm') result = set() for alarm in alarms: values = alarm.attrib alarm_id = values['ID'] # If an instance already exists for this ID, update and return it. # Otherwise, create a new one and populate its values if Alarm._all_alarms.get(alarm_id): instance = Alarm._all_alarms.get(alarm_id) else: instance = Alarm(None) instance._alarm_id = alarm_id Alarm._all_alarms[instance._alarm_id] = instance instance.start_time = datetime.strptime( values['StartTime'], "%H:%M:%S").time() # NB StartTime, not # StartLocalTime, which is used by CreateAlarm instance.duration = None if values['Duration'] == '' else\ datetime.strptime(values['Duration'], "%H:%M:%S").time() instance.recurrence = values['Recurrence'] instance.enabled = values['Enabled'] == '1' instance.zone = [zone for zone in soco.all_zones if zone.uid == values['RoomUUID']][0] instance.program_uri = None if values['ProgramURI'] ==\ "x-rincon-buzzer:0" else values['ProgramURI'] instance.program_metadata = values['ProgramMetaData'] instance.play_mode = values['PlayMode'] instance.volume = values['Volume'] instance.include_linked_zones = values['IncludeLinkedZones'] == '1' result.add(instance) return result
python
"""The core event-based simulation engine""" import heapq from abc import abstractmethod from dataclasses import dataclass, field from enum import Enum, auto from typing import Iterator, List, NamedTuple, Optional, Protocol, runtime_checkable # from .event import EventError, EventLike, StopEngineError __all__ = [ "Engine", "EngineError", "EngineState", "EngineStatus", "Event", "EventError", "StopEngineError", ] class EngineError(Exception): # pragma: no cover """The simulation encountered an error""" def __init__(self, now: int, msg: str): self.now = now self.message = msg super().__init__(str(self)) def __str__(self): return f"{self.now}: {self.message}" class EngineState(Enum): """Enumeration of allowed engine states""" WAITING = auto() # Initial state of a fresh simulation STOPPED = auto() # Simulation was stopped early for a reason RUNNING = auto() # Simulation is in a normal running state PAUSED = auto() # Simulation was paused by the user ABORTED = auto() # Simulation was aborted due to error FINISHED = auto() # Simulation completed normally class EngineStatus(NamedTuple): """Data structure to hold the current simulation status""" state: EngineState message: str class EventError(Exception): """Base error raised by Events""" def __init__(self, event: "Event", msg: str): self.event = event super().__init__(msg) class StopEngineError(EventError): """Raised by Events to indicate that the simulation should be aborted""" @runtime_checkable class EventLike(Protocol): """An Event like interface to use in typing""" timestep: int name: str @abstractmethod def call(self, *args): """Executes the event callback""" class Event: """The core Event object""" def __init__(self, timestep: int, name: str, data: dict = {}): self.timestep = timestep self.name = name self.data = data def call(self, ctx: dict = {}) -> Iterator[Optional["Event"]]: """The event callback function. This is the business end of the event. It's job is to decide from the context which events to fire and when. The function yields events until exhausted. The engine will consume all yielded events and execute them in the order they are yielded. The engine will pass a yet ill-defined simulation context dictionary that should contain all relevant context objects an event would need """ yield None @dataclass(order=True) class QueueItem: timestep: int event: EventLike = field(compare=False) @dataclass class Engine: """The core simulation engine. The engine is responsible for managing the event queue and running the entire simulation """ name: str = "Unnamed" # The name of this engine def __post_init__(self): self.now = 0 self.queue: List[QueueItem] = [] self._status: EngineStatus = EngineStatus( state=EngineState.WAITING, message="Initialized", ) def __str__(self): return f"Engine({self.name}) - {len(self.queue)} events - Status: '{self.state.name}'" @property def status(self): """The status of the engine holds an `EngineStatus` object comprising of the current engine state and a message""" return self._status def set_status(self, state: EngineState, message: str): """Setter method for the engine status""" self._status = EngineStatus(state=state, message=message) @property def state(self) -> EngineState: """The engine state is an `Enginestate` enumerated object of allowed states""" return self.status.state @property def message(self) -> str: """The latest engine status message""" return self.status.message def is_state(self, state: EngineState) -> bool: """Returns whether the current engine state evaluates to the provided one""" return self.state == state def schedule(self, event: EventLike, timestep: int = None) -> None: """Schedule an event to the queue""" if isinstance(event, EventLike): timestep = timestep or event.timestep heapq.heappush(self.queue, QueueItem(timestep, event)) def stop(self, msg: str) -> None: """Stops the engine with a message""" self.set_status(EngineState.STOPPED, msg) def abort(self, msg: str) -> None: """Aborts the engine with a message""" self.set_status(EngineState.ABORTED, msg) def finish(self, msg: str) -> None: """Finish the program""" self.set_status(EngineState.FINISHED, msg) def run(self, stop_at: int = None) -> None: """Runs the simulation. This involves continually retrieving events from the queue until it either is exhausted or the timestep reaches a given `stop` time. """ self.set_status( EngineState.RUNNING, f"Stopping at {stop_at if stop_at else 'Never'}" ) while True: if not self.queue: self.finish(f"Simulation finished at {self.now}") return queue_item = heapq.heappop(self.queue) timestep = queue_item.timestep event = queue_item.event if stop_at is not None and timestep > stop_at: self.now = stop_at self.stop(f"Simulation max time {stop_at} exceeded") return else: self.now = timestep if not self.consume_event(event): return def consume_event(self, event: EventLike): """Processes an event, checks for errors and schedules any events that are yielded""" try: for evt in event.call(): if evt: self.schedule(evt) except StopEngineError as e: self.stop( f"Simulation was stopped by event {event.name} at t {self.now}: {e}" ) except EventError as e: self.abort( f"Simulation was aborted by event {event.name} at t{self.now}: {e}" ) else: return True
python
import pdb import copy import json import numpy as np from utils import game_util import constants class ActionUtil(object): def __init__(self): self.actions = [ {'action' : 'MoveAhead', 'moveMagnitude' : constants.AGENT_STEP_SIZE}, {'action' : 'RotateLeft'}, {'action' : 'RotateRight'}, #{'action' : 'LookUp'}, #{'action' : 'LookDown'}, ] self.action_to_ind = {frozenset(action.items()) : ii for ii,action in enumerate(self.actions)} self.reverse_actions = { 'MoveAhead' : 'MoveBack', 'MoveBack' : 'MoveAhead', 'MoveLeft' : 'MoveRight', 'MoveRight' : 'MoveLeft', 'RotateLeft' : 'RotateRight', 'RotateRight' : 'RotateLeft', 'LookUp' : 'LookDown', 'LookDown' : 'LookUp', 'PickupObject' : 'PutObject', 'PutObject' : 'PickupObject', 'OpenObject' : 'CloseObject', 'CloseObject' : 'OpenObject' } self.num_actions = len(self.actions) def action_dict_to_ind(self, action): return self.action_to_ind[frozenset(action.items())]
python
import requests apikey = "eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI6IjYwODE4ODU1YTcxOGRmNGVkMTkwZjE1ZSIsImlhdCI6MTYxOTEwMTc4MSwiZXhwIjoxNjIxNjkzNzgxfQ.SlyayNaXu8PTPYAtyR9h7tIlR9ooXn72DRn6EAwcgV6rNY1rZQCoSs_d2EESIJs3kb0LwCSfU9o5lWMW9_Twigj3FxX99iAg7_gB1m6TReJ2moZ-rYIst6RTtJtWQWBezZ-37RyACH9s44WQ9qnlrXBYKgnW6LyVi18KdfwEYekgbKM6bSkvPTVYdtjkzktKwKZfIouts4nQGm0tvTfQC_AtOP22338i5N2I952gBN0lf9fn6iaj64TCAXaUA4JhMNZad6ekK0AWauGZsHcaOaLiqpbxKjGs2d69fCOcdKsbDGwoGSEL_6TUho9Yfb405yS9ZE4TjatGNtBaRmSv9g" r2 = requests.get('clav-api.di.uminho.pt/v2/entidades?apikey=' + apikey) entidades = r2.json() f = open("entidades.txt", "w") for e in entidades: f.write(e['sigla'] + '::' + e['designacao'] + '::' + e['id'] + '\n') f.close()
python
# coding: utf-8 from distutils.core import setup __version__ = '0.2.3' short_description = 'Statistics for Django projects' try: import pypandoc long_description = pypandoc.convert('README.md', 'rst') except (IOError, ImportError): long_description = short_description install_requires = [ 'Django>=1.7', 'jsonfield>=1.0.0', 'python-dateutil==2.5.3', ] setup( name='django-statsy', packages=['statsy'], version=__version__, description=short_description, long_description=long_description, author='Alexander Zhebrak', author_email='[email protected]', license='MIT', url='https://github.com/zhebrak/django-statsy', download_url='https://pypi.python.org/pypi/django-statsy', keywords=['django', 'statistics', 'analytics'], install_requires=install_requires, zip_safe=False, include_package_data=True, classifiers=[], )
python
import os sd = None def set_sd(new_sd): global sd sd = new_sd tmp_dir = "tmp/" export_tmp = tmp_dir + "dashboard_export.csv" if not os.path.exists(tmp_dir): os.mkdir(tmp_dir)
python
# Seasons SEASONS = [ "PRESEASON 3", "SEASON 3", "PRESEASON 2014", "SEASON 2014", "PRESEASON 2015", "SEASON 2015", "PRESEASON 2016", "SEASON 2016", "PRESEASON 2017", "SEASON 2017", "PRESEASON 2018", "SEASON 2018", "PRESEASON 2019", "SEASON 2019", ]
python
import fire from .utils import * tfd=test_font_dir if __name__ == '__main__': fire.Fire()
python
print('='* 40) print('{:^40}'.format('Listagem de Preços!!')) print('='* 40) listagem = ('Espeto de Carne', 8.00, 'Espeto de Frango', 5.00, 'Espeto de Linguiça', 5.50, 'Espeto de Kafta', 6.00, 'Espeto de Queijo', 6.50, 'Espeto de Medalhão Frango', 6.00, 'Espeto de Mandioca C/Bacon', 6.00, 'Espeto de Filé de Tilapia', 6.50, 'Espeto de Coração', 6.50, 'Espeto de Linguiça C/Pimenta', 6.50) for pos in range(0, len(listagem)): if pos % 2 == 0: print(f'{listagem[pos]:.<30}', end='') else: print(f'R${listagem[pos]:>7.2f}') print('=' * 40)
python
from django.shortcuts import render from django.http import HttpResponse from random import randint def big(): return randint(0, 1_000_000) def index(request): return HttpResponse("Hello, there! Welcome to the base of the project! Your big ugly number is " + str(big()))
python
import os from selenium import webdriver from selenium.common.exceptions import NoSuchElementException from selenium.webdriver.common.by import By from selenium.webdriver.support.wait import WebDriverWait from settings import CLIENT_NAME, Client, LAUNCH_MODE, LaunchMode, URL, LocatorType class LauncherNotSupported(Exception): pass class LaunchModeNotSupported(Exception): pass class InvalidLocatorException(Exception): pass list_of_supported_locator_type = ( LocatorType.id, LocatorType.name, LocatorType.xpath, LocatorType.link_text, LocatorType.partial_link_text, LocatorType.tag, LocatorType.class_name, LocatorType.css, ) dictionary_of_locator_type_and_description = { LocatorType.id: By.ID, LocatorType.name: By.NAME, LocatorType.xpath: By.XPATH, LocatorType.link_text: By.LINK_TEXT, LocatorType.partial_link_text: By.PARTIAL_LINK_TEXT, LocatorType.tag: By.TAG_NAME, LocatorType.class_name: By.CLASS_NAME, LocatorType.css: By.CSS_SELECTOR } def wait_till_browser_is_ready(func): def ensure_browser_is_in_ready_state(self, *agrs): WebDriverWait(self.driver, self.wait_timeout).until( lambda driver: driver.execute_script( 'return document.readyState == "complete";'), 'page is not completely loaded' ) return func(self, *agrs) return ensure_browser_is_in_ready_state def wait_till_element_is_visible(func): def ensure_element_visible(self, *args): locator = args[0] WebDriverWait(self.driver, self.wait_timeout).until( lambda driver: self.is_element_visible(locator) ) return func(self, *args) return ensure_element_visible class Launcher(object): def launch(self): raise NotImplemented("launch method not implemented") class ChromeLauncher(Launcher): def __init__(self): self.chrome_options = webdriver.ChromeOptions() self.chrome_options.add_argument("--disable-extensions") self.chrome_options.add_argument("--disable-infobars") self.chrome_options.add_argument("--test-type") if os.name == 'posix': self.chrome_options.add_argument("--kiosk") else: self.chrome_options.add_argument("--start-maximized") def launch(self): web_driver = webdriver.Chrome(chrome_options=self.chrome_options) web_driver.get(URL) return web_driver class DealTapDriver(object): def click(self, name_of_item): raise NotImplemented def get_text(self, name_of_item): raise NotImplemented def launch_aut(self): raise NotImplemented def quit_aut(self): raise NotImplemented class DealTapWebDriver(DealTapDriver): def __init__(self, driver=None): self.driver = driver self.locator_dictionary = None self.wait_timeout = 20 def launch_aut(self): launcher = get_launcher_from_factory() driver = launcher.launch() return driver @wait_till_element_is_visible def click(self, name_of_item): element = self.find_element(name_of_item) element.click() @wait_till_element_is_visible def get_text(self, name_of_item): element = self.find_element(name_of_item) return element.text @wait_till_element_is_visible def set_text(self, name_of_item, text_to_set, append=False): element = self.find_element(name_of_item) if append: element.send_keys(text_to_set) else: element.clear() element.send_keys(text_to_set) @wait_till_browser_is_ready def find_element(self, name_of_locator): locator_description = self.locator_dictionary[name_of_locator] locator_type = locator_type_detector(locator_description) locator_description = locator_description.replace("{}=".format(locator_type), "", 1) return self.driver.find_element( dictionary_of_locator_type_and_description[locator_type], locator_description ) def is_element_visible(self, locator): try: element = self.find_element(locator) return element.is_displayed() and element.is_enabled() except NoSuchElementException: return False def quit_aut(self): self.driver.quit() def execute_javascript(self, script, *args): return self.driver.execute_script(script, *args) def get_launcher_from_factory(): if CLIENT_NAME == Client.CHROME: return ChromeLauncher() else: raise LauncherNotSupported() def get_dealtap_driver_from_factory(driver=None): if LAUNCH_MODE == LaunchMode.WEB: return DealTapWebDriver(driver) else: raise LaunchModeNotSupported() def locator_type_detector(locator_description): actual_locator_type = locator_description[0: locator_description.find('=')] locator = list([locator for locator in list_of_supported_locator_type if locator == actual_locator_type]) if len(locator) != 1: raise InvalidLocatorException("locator named {} is not a valid locator ".format(actual_locator_type)) return locator[0]
python
import logging import subprocess import os import platform import sys from cmd2 import utils logger = logging.getLogger(__name__.split(".")[-1]) class Command: """ Provides a way to run bash commands on local or remote side Remote execution of commands is done over SSH protocol for given username and host """ # Host platform string for Windows PLATFORM_OS_WIN32 = "win32" # Host platform string for Linux PLATFORM_OS_LINUX = "linux" # Host platform string for MAC OS PLATFORM_OS_MACOS = "darwin" # Path to System folder on Windows platform WIN32_SYSTEM_PATH = ( os.path.join( os.environ["SystemRoot"], "SysNative" if platform.architecture()[0] == "32bit" else "System32", ) if sys.platform == PLATFORM_OS_WIN32 else "" ) # Encoding used to decode stdout with OUTPUT_ENCODING = "ISO-8859-1" # ssh connection param template for linux platform LINUX_SSH_CONN_PARAM_TEMPLATE = " {} {}@{} '{}'" # ssh connection param template for win32 platform WIN32_SSH_CONN_PARAM_TEMPLATE = " {} {}@{} {}" # Relative path to the ssh executable on Windows platform WIN32_SSH_RELATIVE_EXE_PATH = "OpenSSH\\ssh.exe" # Path that is used to check if we have administrative rights ADMIN_CHECK_PATH = os.sep.join( [os.environ.get("SystemRoot", "C:\\windows"), "temp"] ) # Localhost string HOST_LOCALHOST = "localhost" def __init__(self, username): """ Constructor @param username Default username """ self.__username = username self.__host = None self.__port = None # Host platform self.__platform = sys.platform # Path to ssh binary on host self.__sshPath = None # Subprocess check_output shell param self.__coShell = None # Set subprocess params on init self.__setSshHostCommandParams() def setUsername(self, username): """ Change username @param username New username """ self.__username = username def setHost(self, host, port): """ Change host @param host New host @param port New port """ self.__host = host self.__port = port def getUsername(self): """ Get current username @return Current username """ return self.__username def getHost(self): """ Get current host @return Current host """ return self.__host if self.__host else self.HOST_LOCALHOST def getPort(self): """ Get current port @return Current port """ return self.__port def runCommand(self, command, local=False): """ Run a command locally or via ssh @param command Command to run @param local Set to True to run command on local host explicitly (default = False) @return stdout """ # If host is set -> run via SSH if self.__host and not local: if self.__sshPath: command = self.__sshPath.format( "-T {}".format("-p " + self.__port if self.__port else ""), self.__username, self.__host, command, ) else: # TODO: Proper Error handling, throw exception here (no ssh binary = no remote command execution) logger.error("No SSH binary found on host!") return None logger.debug(command) stdout = ( subprocess.check_output(command, shell=self.__coShell) .decode(self.OUTPUT_ENCODING) .strip() ) logger.debug(stdout) return stdout def spawnSshShell(self, host, command): """ Spawns an interactive ssh shell on the host @param host Remote host to connect to, if none jump-host will be used @param command Command to execute on remote shell @return Return code of the spawned ssh shell process """ proc = subprocess.Popen( self.__sshPath.format( "{}".format("-p " + self.__port if self.__port else ""), self.__username, self.__host if not host else host, "{}".format(command if command else ""), ), stdout=sys.stdout, stderr=sys.stderr, shell=True, ) # Start the process reader threads (for stdout and stderr) proc_reader = utils.ProcReader(proc, sys.stdout, sys.stderr) # Block here until we exit from the process proc_reader.wait() return proc.returncode def sshCommandStringConvert(self, command): """ Convert command that is sent over ssh acording to the host environment @param command Command string that needs to be converted @return converted command string """ # For now we need to convert the string which contains " chars to ' # only when host is Win32 platform # Some of the docker commands may fail if they are sent from Win32 # host over ssh if this conversion is not done if self.__platform == self.PLATFORM_OS_WIN32: command = command.replace('"', "'") return command def getHostPlatform(self): """ Return the host platform on which this tool is running @return current host platform """ if self.__platform is self.PLATFORM_OS_WIN32: return self.PLATFORM_OS_WIN32 elif self.__platform is self.PLATFORM_OS_MACOS: return self.PLATFORM_OS_MACOS # Assume for everything else that we are on Linux like OS else: return self.PLATFORM_OS_LINUX def checkAdmin(self): """ Checks if the environment in which this tool is run has administrative privileges @return Tuple with two values: username, hasAdmin (True or False) """ if self.__platform == self.PLATFORM_OS_WIN32: try: # only windows users with admin privileges can read the C:\windows\temp temp = os.listdir(self.ADMIN_CHECK_PATH) except: return (os.environ["USERNAME"], False) else: return (os.environ["USERNAME"], True) elif self.__platform == self.PLATFORM_OS_LINUX: if "SUDO_USER" in os.environ and os.geteuid() == 0: return (os.environ["SUDO_USER"], True) else: return (os.environ["USERNAME"], False) elif self.__platform == self.PLATFORM_OS_MACOS: logger.info("There is no need for SUDO check on MAC_OS for now") def __setSshHostCommandParams(self): """ Checks host platform and sets correct ssh binary path and params for subprocess command call """ logger.debug("Host platform: " + self.__platform) # Check the host platform in order to get the path to ssh binary if self.__platform == self.PLATFORM_OS_WIN32: self.__sshPath = ( os.path.join(self.WIN32_SYSTEM_PATH, self.WIN32_SSH_RELATIVE_EXE_PATH) + self.WIN32_SSH_CONN_PARAM_TEMPLATE ) self.__coShell = False elif self.__platform == self.PLATFORM_OS_LINUX or self.PLATFORM_OS_MACOS: self.__sshPath = "ssh" + self.LINUX_SSH_CONN_PARAM_TEMPLATE self.__coShell = True if self.__sshPath is not None: logger.debug("SSH binary path: " + self.__sshPath) else: logger.error( "No SSH binary found on host, only local cmd execution will work!" ) return
python
# print ' name ' , multiple times # for loop for i in range(1,11): i = 'Omkar' print(i) # while loop i = 1 while (i<11) : print('Omkar) i = i + 1
python
# see https://www.codewars.com/kata/614adaedbfd3cf00076d47de/train/python def expansion(matrix, n): for _ in range(n): rows = [x + [sum(x)] for x in matrix] extraRow = [sum([x[i] for x in rows]) for i in range(len(matrix))] + [sum([matrix[i][i] for i in range(len(matrix))])] rows.append(extraRow) matrix = rows return matrix from TestFunction import Test test = Test(None) m1 = [ [1,2], [5,3] ] m2 = [ [4,1], [19,-2] ] m3 = [ [102,39], [-11,-97] ] m4 = [ [53, -64, 16, 16], [-98, 0, -14, -87], [75, -74, 39, 36], [32, 90, 42, 12] ] test.describe("Example Tests") test.it('Depth 1') test.assert_equals(expansion(m1, 1), [[1, 2, 3], [5, 3, 8], [6, 5, 4]]) test.assert_equals(expansion(m2, 1), [[4, 1, 5], [19, -2, 17], [23, -1, 2]]) test.assert_equals(expansion(m3, 1), [[102, 39, 141], [-11, -97, -108], [91, -58, 5]]) test.it('Depth 2') test.assert_equals(expansion(m1, 2), [[1, 2, 3, 6], [5, 3, 8, 16], [6, 5, 4, 15], [12, 10, 15, 8]]) # test.assert_equals(expansion(m2, 2), [[4, 1, 5, 10], [19, -2, 17, 34], [23, -1, 2, 24], [46, -2, 24, 4]]) # test.assert_equals(expansion(m3, 2), [[102, 39, 141, 282], [-11, -97, -108, -216], [91, -58, 5, 38], [182, -116, 38, 10]]) # test.assert_equals(expansion(m4, 2), [[53, -64, 16, 16, 21, 42], [-98, 0, -14, -87, -199, -398], [75, -74, 39, 36, 76, 152], [32, 90, 42, 12, 176, 352], [62, -48, 83, -23, 104, 178], [124, -96, 166, -46, 178, 208]])
python
""" Multi-core and Distributed Sampling =================================== The choice of the sampler determines in which way parallelization is performed. See also the `explanation of the samplers <sampler.html>`_. """ from .singlecore import SingleCoreSampler from .mapping import MappingSampler from .multicore import MulticoreParticleParallelSampler from .base import Sample, Sampler from .dask_sampler import DaskDistributedSampler from .multicore_evaluation_parallel import MulticoreEvalParallelSampler from .redis_eps import (RedisEvalParallelSampler, RedisEvalParallelSamplerServerStarter) from .concurrent_future import ConcurrentFutureSampler __all__ = ["Sample", "Sampler", "SingleCoreSampler", "MulticoreParticleParallelSampler", "MappingSampler", "DaskDistributedSampler", "RedisEvalParallelSampler", "MulticoreEvalParallelSampler", "RedisEvalParallelSamplerServerStarter", "ConcurrentFutureSampler"]
python
from game_state import GameState import arcade as ac import math class DrawingManager: @classmethod def tick(cls): if "entities" in GameState.current_state: for ent in GameState.current_state["entities"]: if "pos" in ent and "rot" in ent and "drawing" in ent: cls.draw(ent, ent["drawing"]) @classmethod def draw(cls, ent, drawing): if "type" in drawing: if drawing["type"] == "filled_circle": color = drawing["color"] if "color" in drawing else (0, 0, 0) radius = drawing["radius"] if "radius" in drawing else 20 ac.draw_circle_filled( ent["pos"][0], ent["pos"][1], radius, color ) elif drawing["type"] == "particle": color = drawing["color"] if "color" in drawing else (0, 0, 0) radius = drawing["radius"]*(1-ent["elapsed"]/ent["lifespan"]) ac.draw_circle_filled( ent["pos"][0], ent["pos"][1], radius, color ) elif drawing["type"] == "filled_triangle": color = drawing["color"] if "color" in drawing else (0, 0, 0) radius = drawing["radius"] x, y = ent["pos"][0], ent["pos"][1] a1 = -math.pi/2 + ent["rot"] + math.pi/2 a2 = math.pi/6 + ent["rot"] + math.pi/2 a3 = 5*math.pi/6 + ent["rot"] + math.pi/2 p1 = [radius*math.cos(a1), radius*math.sin(a1)] p2 = [radius*math.cos(a2), radius*math.sin(a2)] p3 = [radius*math.cos(a3), radius*math.sin(a3)] ac.draw_triangle_filled( x + p1[0], y + p1[1], x + p2[0], y + p2[1], x + p3[0], y + p3[1], color )
python
#!/usr/bin/python3 # # Copyright 2012 Sonya Huang # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from wiod import config, common from common.dbconnect import db from common import imfdata, sqlhelper, utils from common.plotutils import GNUPlot, ScatterPlot import usa.config def do_overview_table(sortby): minyear = min(config.STUDY_YEARS) maxyear = max(config.STUDY_YEARS) data = {} reverse_data = {} for (country, name) in config.countries.items(): (env_i, gdp_i, intensity_i) = common.get_efficiency( country, minyear, "env", "gdp") (env_f, gdp_f, intensity_f) = common.get_efficiency( country, maxyear, "env", "gdp") if sortby == "growth": pop_i = common.get_national_value(country, minyear, "pop") pop_f = common.get_national_value(country, maxyear, "pop") ppp_i = common.get_national_value(country, minyear, "ppppc") ppp_f = common.get_national_value(country, maxyear, "ppppc") percap_i = env_i / pop_i * 1000 percap_f = env_f / pop_f * 1000 growth = intensity_f - intensity_i pgrowth = percap_f - percap_i reverse_data[ppp_i] = name data[name] = [ utils.add_commas(val).rjust(10) for val in (ppp_i, ppp_f)] data[name] += [ "%.2f" % val for val in (intensity_i, intensity_f, growth, percap_i, percap_f, pgrowth)] else: # end year intensity reverse_data[intensity_f] = name data[name] = [ utils.add_commas(val).rjust(10) for val in (gdp_i, gdp_f, env_i, env_f)] data[name] += ["%.2f" % val for val in (intensity_i, intensity_f)] for key in sorted(reverse_data.keys()): country = reverse_data[key] vals = data[country] print(country.ljust(18) + " & " + " & ".join(vals) + " \\NN") def do_import_table(): minyear = min(config.STUDY_YEARS) maxyear = max(config.STUDY_YEARS) sector = 'CONS_h' fd = {} fd_imports = {} for year in (minyear, maxyear): strings = { "schema": config.WIOD_SCHEMA, "year": year, } stmt = db.prepare( """SELECT country, sum(value) FROM %(schema)s.niot_%(year)d WHERE to_ind = $1 AND is_import = $2 GROUP BY country""" % strings) fd[year] = {} fd_imports[year] = {} for (country, value) in stmt(sector, True): fd_imports[year][country] = value fd[year][country] = value for (country, value) in stmt(sector, False): fd[year][country] += value shares = {} for (country, total) in fd[maxyear].items(): share = fd_imports[maxyear][country] / total shares[share] = country sorted_shares = sorted(shares.keys(), reverse=True) midpoint = int(len(sorted_shares) / 2) for i in range(midpoint): values = [] for index in (i, i + midpoint): country = shares[sorted_shares[index]] minval = imfdata.convert_to_2005( fd_imports[minyear][country], country, minyear) maxval = imfdata.convert_to_2005( fd_imports[maxyear][country], country, maxyear) minshare = fd_imports[minyear][country] / fd[minyear][country] maxshare = fd_imports[maxyear][country] / fd[maxyear][country] values += [ config.countries[country], utils.add_commas(minval), utils.add_commas(maxval), "%.1f" % (minshare * 100), "%.1f" % (maxshare * 100), ""] # want blank space between two halves values.pop() # remove trailing empty string print(" & ".join(values) + " \\NN") def do_kyoto_table(): minyear = min(config.STUDY_YEARS) maxyear = max(config.STUDY_YEARS) minstrings = { "schema": config.WIOD_SCHEMA, "year": minyear, "fd_sectors": sqlhelper.set_repr(config.default_fd_sectors), } maxstrings = minstrings.copy() maxstrings["year"] = maxyear envsql = """SELECT value FROM %(schema)s.env_%(year)d WHERE country = $1 AND measurement = $2 AND industry = 'total'""" envstmt_i = db.prepare(envsql % minstrings) envstmt_f = db.prepare(envsql % maxstrings) un_stmt = db.prepare( "SELECT value FROM %s.mdg_emissions" % config.UN_SCHEMA + " WHERE country = $1 AND year = $2") data = {} (eu_i, eu_f, un_eu_90, un_eu_i, un_eu_f) = (0, 0, 0, 0, 0) for (country, name) in config.countries.items(): env_i = envstmt_i(country, "CO2")[0][0] env_f = envstmt_f(country, "CO2")[0][0] percent = (env_f - env_i) / env_i * 100 (un_env_90, un_env_91, un_env_i, un_env_f, un_percent, un_percent_90) = \ (0, 0, 0, 0, None, None) result = un_stmt(country, 1990) if len(result): un_env_90 = result[0][0] else: # use 1991 as a proxy for 1990 for some countries if applicable # germany is the only annex b country that is applicable # so hopefully it won't mess up eu15 calculation too much result = un_stmt(country, 1991) if len(result): un_env_91 = result[0][0] result = un_stmt(country, minyear) if len(result): un_env_i = result[0][0] result = un_stmt(country, maxyear) if len(result): un_env_f = result[0][0] if un_env_i and un_env_f: un_percent = (un_env_f - un_env_i) / un_env_i * 100 if un_env_90 and un_env_f: un_percent_90 = (un_env_f - un_env_90) / un_env_90 * 100 data[country] = (env_i, env_f, percent, un_percent, un_percent_90) if country in config.eu15: eu_i += env_i eu_f += env_f un_eu_i += un_env_i un_eu_f += un_env_f if un_env_90: un_eu_90 += un_env_90 else: un_eu_90 += un_env_91 eu_percent = (eu_f - eu_i) / eu_i * 100 un_eu_percent = (un_eu_f - un_eu_i) / un_eu_i * 100 un_eu_percent_90 = (un_eu_f - un_eu_90) / un_eu_90 * 100 print("%s & %s & %s & %d\\%% & %.1f\\%% & %.1f\\%% & %.1f \\NN" % ("EU-15".ljust(18), utils.add_commas(eu_i).rjust(9), utils.add_commas(eu_f).rjust(9), -8, eu_percent, un_eu_percent, un_eu_percent_90)) for (target, countries) in config.annex_b_countries.items(): for country in countries: vals = data[country] if vals[4] is None: percent_90 = "" else: percent_90 = "%.1f" % vals[4] print("%s & %s & %s & %d\\%% & %.1f\\%% & %.1f & %s \\NN" % (config.countries[country].ljust(18), utils.add_commas(vals[0]).rjust(9), utils.add_commas(vals[1]).rjust(9), target, vals[2], vals[3], percent_90)) def do_plots(): for (name, measurements) in config.env_series_names.items(): data = {} for year in config.STUDY_YEARS: strings = { "schema": config.WIOD_SCHEMA, "year": year, "fd_sectors": sqlhelper.set_repr(config.default_fd_sectors), "measurements": sqlhelper.set_repr(measurements), "nipa_schema": usa.config.NIPA_SCHEMA, } stmt = db.prepare( """SELECT a.country, a.series, b.gdp, a.series / b.gdp as intensity FROM (SELECT country, sum(value) as series FROM %(schema)s.env_%(year)d WHERE industry = 'total' AND measurement in %(measurements)s GROUP BY country) a, (SELECT aa.country, sum(value) * deflator as gdp FROM %(schema)s.indbyind_%(year)d aa, (SELECT 100 / gdp as deflator FROM %(nipa_schema)s.implicit_price_deflators WHERE year = $1) bb WHERE to_ind in %(fd_sectors)s GROUP BY aa.country, deflator) b WHERE a.country = b.country AND a.series is not null ORDER BY a.series / b.gdp""" % strings) for row in stmt(year): country = row[0] intensity = row[3] if country not in data: data[country] = {} data[country][year] = intensity slopes = {} for (country, country_data) in data.items(): n = len(country_data.keys()) if n < 2: continue sum_y = sum(country_data.values()) sum_x = sum(country_data.keys()) slope = (n * sum([k * v for (k, v) in country_data.items()]) \ - sum_x * sum_y) / \ (n * sum([k * k for k in country_data.keys()]) - sum_x) slopes[country] = slope * 1000000 years = "%d-%d" % (config.STUDY_YEARS[0], config.STUDY_YEARS[-1]) i = 0 binsize = 8 plot = None for (country, slope) in sorted(slopes.items(), key=lambda x: x[1]): if i % binsize == 0: if plot is not None: plot.write_tables() plot.generate_plot() tier = i / binsize + 1 plot = GNUPlot("tier%d" % tier, "", #"%s intensity from %s, tier %d" \ # % (name, years, tier), "wiod-%s" % name.replace(" ", "-")) plot.legend("width -5") for year in config.STUDY_YEARS: if year in data[country]: plot.set_value( "%s (%.2f)" % (config.countries[country], slope), year, data[country][year]) i += 1 if plot is not None: plot.write_tables() plot.generate_plot() def do_kuznets_plot(): minyear = min(config.STUDY_YEARS) maxyear = max(config.STUDY_YEARS) plot = ScatterPlot("gdp vs emissions change", None, "wiod") for country in config.countries: gdp_pop = common.get_national_value(country, minyear, "ppppc") (env_i, denom_i, intensity_i) = common.get_efficiency( country, minyear, "env", "gdp") (env_f, denom_f, intensity_f) = common.get_efficiency( country, maxyear, "env", "gdp") # numbers are just for sorting which goes on x axis plot.set_value("1 ppp per capita", country, gdp_pop) plot.set_value("2 emiss change", country, intensity_f - intensity_i) plot.write_tables() plot.generate_plot() for year in (minyear, maxyear): plot = ScatterPlot("gdp vs emissions %d" % year, None, "wiod") for country in config.countries: gdp_pop = common.get_national_value(country, year, "ppppc") env_pop = common.get_efficiency(country, year, "env", "gdp") plot.set_value("1 gdp per capita", country, gdp_pop) plot.set_value("2 emissions per capita", country, env_pop[2]) plot.write_tables() plot.generate_plot() #do_overview_table() do_overview_table("growth") #do_import_table() #do_kyoto_table() #do_plots() #do_kuznets_plot()
python
import os, sys # add NADE to path nade_path = os.path.join(os.path.abspath('.'), 'bench_models', 'nade') sys.path.append('./bench_models/nade/')
python
""" Part of BME595 project Program: Show statistics of dataset """ from collections import Counter from data import data_loader, _preprocess_dataset_small, _preprocess_dataset_large def show_distribution(max_len=60, deduplicate=False): small_sentences, small_polarities, purposes, _ = _preprocess_dataset_small(max_len, deduplicate=deduplicate) large_sentences, large_polarities, polarity_to_idx = _preprocess_dataset_large(max_len, deduplicate=deduplicate) purpose_size = len(small_sentences) polarity_size = len(small_sentences) + len(large_sentences) print('\nsmall dataset size:', len(small_sentences)) print('large dataset size:', len(large_sentences)) print('purpose data size:', purpose_size) print('polarity data size (merge small and large):', polarity_size) print('\npurpose distribution:') purpose_to_idx = {'Criticizing': 0, 'Comparison': 1, 'Use': 2, 'Substantiating': 3, 'Basis': 4, 'Neutral': 5} ctr = Counter(purposes) for purpose, idx in purpose_to_idx.items(): print(purpose.ljust(30), ctr[idx]/purpose_size) print('\npolarity distribution:') polarity_to_idx = {'Neutral': 0, 'Positive': 1, 'Negative': 2} ctr = Counter(small_polarities+large_polarities) for polarity, idx in polarity_to_idx.items(): print(polarity.ljust(30), ctr[idx]/polarity_size) if __name__ == '__main__': show_distribution()
python
import re from behave import given, when, then from django.core import mail from {{ cookiecutter.project_slug }}.apps.myauth.tests.factories import VerifiedUserFactory from {{ cookiecutter.project_slug }}.apps.profile.models import Profile from features.hints import BehaveContext @given("a registered user") def step_impl(context: BehaveContext): context.user = VerifiedUserFactory() @when("they submit a password reset request") def step_impl(context: BehaveContext): context.response = context.test.client.post("/auth/password/reset/", data={ "email": context.user.email }) @when("the user logs in") def step_impl(context: BehaveContext): context.response = context.test.client.post("/auth/login/", data={"email": "[email protected]", "password": "qwertyuiop"}) @then("they are sent a {email_type} email") def step_impl(context: BehaveContext, email_type): """ :type context: behave.runner.Context """ response = context.response context.test.assertEqual(len(mail.outbox), 1) email = mail.outbox[0] if email_type == "password reset": subject_substring = "Password Reset" action_url_regex = r"http[^ ]*/auth/password/reset/[^ ]*/" elif email_type == "email confirm": subject_substring = "Confirm Your E-mail" action_url_regex = r"http[^ ]*/auth/email/confirm/[^ ]*/" else: raise NotImplementedError(f"{email_type}") context.test.assertIn(subject_substring, email.subject) action_url_search = re.search(action_url_regex, email.body) context.test.assertTrue(action_url_search, f"Expected to find link matchin {action_url_regex} in email body: {email.body}") context.action_url = action_url_search[0] context.action_url_type = email_type @then(u"the password reset link resets their password") def step_impl(context: BehaveContext): context.test.assertEqual(context.action_url_type, "password reset") response = context.test.client.get(context.action_url) context.test.assertEqual(response.status_code, 302, "First redirect to password form page") password_page_url = response["location"] response = context.test.client.get(password_page_url) context.test.assertEqual(response.status_code, 200, "Form page load") response = context.test.client.post(password_page_url, data={ "password1": "coco2017", "password2": "coco2017" }) context.test.assertRedirects(response, "/auth/password/reset/key/done/") @then(u"the email confirm link confirms their email") def step_impl(context: BehaveContext): context.test.assertEqual(context.action_url_type, "email confirm") response = context.test.client.get(context.action_url) context.test.assertRedirects(response, "/profile/") @then(u"the user is {neg} redirected to {url}") def step_impl(context: BehaveContext, neg: str, url: str): context.test.assertEqual(context.response.status_code, 302, "The user should be redirected") if neg == "not": context.test.assertNotEqual(context.response.url, url, f"The user should not be redirect to {url}") elif neg == "indeed": context.test.assertEqual(context.response.url, url, f"The user should be redirect to {url}")
python
from mle_monitor import MLEProtocol meta_data = { "purpose": "Test MLEProtocol", "project_name": "MNIST", "exec_resource": "local", "experiment_dir": "log_dir", "experiment_type": "hyperparameter-search", "base_fname": "main.py", "config_fname": "tests/fixtures/base_config.json", "num_seeds": 5, "num_total_jobs": 10, "num_jobs_per_batch": 5, "num_job_batches": 2, "time_per_job": "00:05:00", # days-hours-minutes "num_cpus": 2, "num_gpus": 1, } def test_add_protocol(): # Add experiment to new protocol and add data protocol = MLEProtocol(protocol_fname="mle_protocol.db") e_id = protocol.add(meta_data, save=False) proto_data = protocol.get(e_id) for k, v in meta_data.items(): assert proto_data[k] == v return def test_load_protocol(): # Reload database - assert correctness of data protocol = MLEProtocol(protocol_fname="tests/fixtures/mle_protocol_test.db") last_data = protocol.get() for k, v in meta_data.items(): if k not in ["config_fname", "purpose"]: assert last_data[k] == v # Check adding of new data e_id = protocol.add(meta_data, save=False) proto_data = protocol.get(e_id) for k, v in meta_data.items(): assert proto_data[k] == v return def test_update_delete_abort_protocol(): # Change some entry of DB store and check it protocol = MLEProtocol(protocol_fname="mle_protocol.db") e_id = protocol.add(meta_data, save=False) # Update some element in the database protocol.update(e_id, "exec_resource", "slurm-cluster", save=False) assert protocol.get(e_id, "exec_resource") == "slurm-cluster" # Abort the experiment - changes status protocol.abort(e_id, save=False) assert protocol.status(e_id) == "aborted" return def test_monitor_protocol(): # Check that all required keys are in collected data protocol = MLEProtocol(protocol_fname="mle_protocol.db") _ = protocol.add(meta_data, save=False) # Get the monitoring data - used later in dashboard data = protocol.monitor() total_keys = [ "total", "run", "done", "aborted", "sge", "slurm", "gcp", "local", "report_gen", "gcs_stored", "retrieved", ] for k in total_keys: assert k in data["total_data"].keys() last_keys = ["e_id", "e_dir", "e_type", "e_script", "e_config", "report_gen"] for k in last_keys: assert k in data["last_data"].keys() time_keys = [ "total_jobs", "total_batches", "jobs_per_batch", "time_per_batch", "start_time", "stop_time", "duration", ] for k in time_keys: assert k in data["time_data"].keys() return
python
""" Module: 'sys' on esp32 1.9.4 """ # MCU: (sysname='esp32', nodename='esp32', release='1.9.4', version='v1.9.4 on 2018-05-11', machine='ESP32 module with ESP32') # Stubber: 1.2.0 argv = None byteorder = 'little' def exit(): pass implementation = None maxsize = 2147483647 modules = None path = None platform = 'esp32' def print_exception(): pass stderr = None stdin = None stdout = None version = '3.4.0' version_info = None
python
import pickle filename = './data/29_header_payload_all.traffic' with open(filename, 'r') as f: traffic = f.readlines() with open('./data/29_payload_all.traffic','w') as f: for i in range(len(traffic)): s_traffic = traffic[i].split() if s_traffic[10] == '11': payload = s_traffic[0] + ' ' + ' '.join(s_traffic[29:]) else: payload = s_traffic[0] + ' ' + ' '.join(s_traffic[41:]) f.write(payload + '\n')
python
#!/usr/bin/python # -*- coding: utf-8 -*- # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = ''' --- module: fmgr_secprof_av notes: - Full Documentation at U(https://ftnt-ansible-docs.readthedocs.io/en/latest/). author: - Luke Weighall (@lweighall) - Andrew Welsh (@Ghilli3) - Jim Huber (@p4r4n0y1ng) short_description: Manage security profile description: - Manage security profile groups for FortiManager objects options: adom: description: - The ADOM the configuration should belong to. required: false default: root mode: description: - Sets one of three modes for managing the object. - Allows use of soft-adds instead of overwriting existing values choices: ['add', 'set', 'delete', 'update'] required: false default: add scan_mode: description: - Choose between full scan mode and quick scan mode. required: false choices: - quick - full replacemsg_group: description: - Replacement message group customized for this profile. required: false name: description: - Profile name. required: false mobile_malware_db: description: - Enable/disable using the mobile malware signature database. required: false choices: - disable - enable inspection_mode: description: - Inspection mode. required: false choices: - proxy - flow-based ftgd_analytics: description: - Settings to control which files are uploaded to FortiSandbox. required: false choices: - disable - suspicious - everything extended_log: description: - Enable/disable extended logging for antivirus. required: false choices: - disable - enable comment: description: - Comment. required: false av_virus_log: description: - Enable/disable AntiVirus logging. required: false choices: - disable - enable av_block_log: description: - Enable/disable logging for AntiVirus file blocking. required: false choices: - disable - enable analytics_wl_filetype: description: - Do not submit files matching this DLP file-pattern to FortiSandbox. required: false analytics_max_upload: description: - Maximum size of files that can be uploaded to FortiSandbox (1 - 395 MBytes, default = 10). required: false analytics_db: description: - Enable/disable using the FortiSandbox signature database to supplement the AV signature databases. required: false choices: - disable - enable analytics_bl_filetype: description: - Only submit files matching this DLP file-pattern to FortiSandbox. required: false content_disarm: description: - EXPERTS ONLY! KNOWLEDGE OF FMGR JSON API IS REQUIRED! - List of multiple child objects to be added. Expects a list of dictionaries. - Dictionaries must use FortiManager API parameters, not the ansible ones listed below. - If submitted, all other prefixed sub-parameters ARE IGNORED. - This object is MUTUALLY EXCLUSIVE with its options. - We expect that you know what you are doing with these list parameters, and are leveraging the JSON API Guide. - WHEN IN DOUBT, USE THE SUB OPTIONS BELOW INSTEAD TO CREATE OBJECTS WITH MULTIPLE TASKS required: false content_disarm_cover_page: description: - Enable/disable inserting a cover page into the disarmed document. required: false choices: - disable - enable content_disarm_detect_only: description: - Enable/disable only detect disarmable files, do not alter content. required: false choices: - disable - enable content_disarm_office_embed: description: - Enable/disable stripping of embedded objects in Microsoft Office documents. required: false choices: - disable - enable content_disarm_office_hylink: description: - Enable/disable stripping of hyperlinks in Microsoft Office documents. required: false choices: - disable - enable content_disarm_office_linked: description: - Enable/disable stripping of linked objects in Microsoft Office documents. required: false choices: - disable - enable content_disarm_office_macro: description: - Enable/disable stripping of macros in Microsoft Office documents. required: false choices: - disable - enable content_disarm_original_file_destination: description: - Destination to send original file if active content is removed. required: false choices: - fortisandbox - quarantine - discard content_disarm_pdf_act_form: description: - Enable/disable stripping of actions that submit data to other targets in PDF documents. required: false choices: - disable - enable content_disarm_pdf_act_gotor: description: - Enable/disable stripping of links to other PDFs in PDF documents. required: false choices: - disable - enable content_disarm_pdf_act_java: description: - Enable/disable stripping of actions that execute JavaScript code in PDF documents. required: false choices: - disable - enable content_disarm_pdf_act_launch: description: - Enable/disable stripping of links to external applications in PDF documents. required: false choices: - disable - enable content_disarm_pdf_act_movie: description: - Enable/disable stripping of embedded movies in PDF documents. required: false choices: - disable - enable content_disarm_pdf_act_sound: description: - Enable/disable stripping of embedded sound files in PDF documents. required: false choices: - disable - enable content_disarm_pdf_embedfile: description: - Enable/disable stripping of embedded files in PDF documents. required: false choices: - disable - enable content_disarm_pdf_hyperlink: description: - Enable/disable stripping of hyperlinks from PDF documents. required: false choices: - disable - enable content_disarm_pdf_javacode: description: - Enable/disable stripping of JavaScript code in PDF documents. required: false choices: - disable - enable ftp: description: - EXPERTS ONLY! KNOWLEDGE OF FMGR JSON API IS REQUIRED! - List of multiple child objects to be added. Expects a list of dictionaries. - Dictionaries must use FortiManager API parameters, not the ansible ones listed below. - If submitted, all other prefixed sub-parameters ARE IGNORED. - This object is MUTUALLY EXCLUSIVE with its options. - We expect that you know what you are doing with these list parameters, and are leveraging the JSON API Guide. - WHEN IN DOUBT, USE THE SUB OPTIONS BELOW INSTEAD TO CREATE OBJECTS WITH MULTIPLE TASKS required: false ftp_archive_block: description: - Select the archive types to block. - FLAG Based Options. Specify multiple in list form. required: false choices: - encrypted - corrupted - multipart - nested - mailbomb - unhandled - partiallycorrupted - fileslimit - timeout ftp_archive_log: description: - Select the archive types to log. - FLAG Based Options. Specify multiple in list form. required: false choices: - encrypted - corrupted - multipart - nested - mailbomb - unhandled - partiallycorrupted - fileslimit - timeout ftp_emulator: description: - Enable/disable the virus emulator. required: false choices: - disable - enable ftp_options: description: - Enable/disable FTP AntiVirus scanning, monitoring, and quarantine. - FLAG Based Options. Specify multiple in list form. required: false choices: - scan - quarantine - avmonitor ftp_outbreak_prevention: description: - Enable FortiGuard Virus Outbreak Prevention service. required: false choices: - disabled - files - full-archive http: description: - EXPERTS ONLY! KNOWLEDGE OF FMGR JSON API IS REQUIRED! - List of multiple child objects to be added. Expects a list of dictionaries. - Dictionaries must use FortiManager API parameters, not the ansible ones listed below. - If submitted, all other prefixed sub-parameters ARE IGNORED. - This object is MUTUALLY EXCLUSIVE with its options. - We expect that you know what you are doing with these list parameters, and are leveraging the JSON API Guide. - WHEN IN DOUBT, USE THE SUB OPTIONS BELOW INSTEAD TO CREATE OBJECTS WITH MULTIPLE TASKS required: false http_archive_block: description: - Select the archive types to block. - FLAG Based Options. Specify multiple in list form. required: false choices: - encrypted - corrupted - multipart - nested - mailbomb - unhandled - partiallycorrupted - fileslimit - timeout http_archive_log: description: - Select the archive types to log. - FLAG Based Options. Specify multiple in list form. required: false choices: - encrypted - corrupted - multipart - nested - mailbomb - unhandled - partiallycorrupted - fileslimit - timeout http_content_disarm: description: - Enable Content Disarm and Reconstruction for this protocol. required: false choices: - disable - enable http_emulator: description: - Enable/disable the virus emulator. required: false choices: - disable - enable http_options: description: - Enable/disable HTTP AntiVirus scanning, monitoring, and quarantine. - FLAG Based Options. Specify multiple in list form. required: false choices: - scan - quarantine - avmonitor http_outbreak_prevention: description: - Enable FortiGuard Virus Outbreak Prevention service. required: false choices: - disabled - files - full-archive imap: description: - EXPERTS ONLY! KNOWLEDGE OF FMGR JSON API IS REQUIRED! - List of multiple child objects to be added. Expects a list of dictionaries. - Dictionaries must use FortiManager API parameters, not the ansible ones listed below. - If submitted, all other prefixed sub-parameters ARE IGNORED. - This object is MUTUALLY EXCLUSIVE with its options. - We expect that you know what you are doing with these list parameters, and are leveraging the JSON API Guide. - WHEN IN DOUBT, USE THE SUB OPTIONS BELOW INSTEAD TO CREATE OBJECTS WITH MULTIPLE TASKS required: false imap_archive_block: description: - Select the archive types to block. - FLAG Based Options. Specify multiple in list form. required: false choices: - encrypted - corrupted - multipart - nested - mailbomb - unhandled - partiallycorrupted - fileslimit - timeout imap_archive_log: description: - Select the archive types to log. - FLAG Based Options. Specify multiple in list form. required: false choices: - encrypted - corrupted - multipart - nested - mailbomb - unhandled - partiallycorrupted - fileslimit - timeout imap_content_disarm: description: - Enable Content Disarm and Reconstruction for this protocol. required: false choices: - disable - enable imap_emulator: description: - Enable/disable the virus emulator. required: false choices: - disable - enable imap_executables: description: - Treat Windows executable files as viruses for the purpose of blocking or monitoring. required: false choices: - default - virus imap_options: description: - Enable/disable IMAP AntiVirus scanning, monitoring, and quarantine. - FLAG Based Options. Specify multiple in list form. required: false choices: - scan - quarantine - avmonitor imap_outbreak_prevention: description: - Enable FortiGuard Virus Outbreak Prevention service. required: false choices: - disabled - files - full-archive mapi: description: - EXPERTS ONLY! KNOWLEDGE OF FMGR JSON API IS REQUIRED! - List of multiple child objects to be added. Expects a list of dictionaries. - Dictionaries must use FortiManager API parameters, not the ansible ones listed below. - If submitted, all other prefixed sub-parameters ARE IGNORED. - This object is MUTUALLY EXCLUSIVE with its options. - We expect that you know what you are doing with these list parameters, and are leveraging the JSON API Guide. - WHEN IN DOUBT, USE THE SUB OPTIONS BELOW INSTEAD TO CREATE OBJECTS WITH MULTIPLE TASKS required: false mapi_archive_block: description: - Select the archive types to block. - FLAG Based Options. Specify multiple in list form. required: false choices: - encrypted - corrupted - multipart - nested - mailbomb - unhandled - partiallycorrupted - fileslimit - timeout mapi_archive_log: description: - Select the archive types to log. - FLAG Based Options. Specify multiple in list form. required: false choices: - encrypted - corrupted - multipart - nested - mailbomb - unhandled - partiallycorrupted - fileslimit - timeout mapi_emulator: description: - Enable/disable the virus emulator. required: false choices: - disable - enable mapi_executables: description: - Treat Windows executable files as viruses for the purpose of blocking or monitoring. required: false choices: - default - virus mapi_options: description: - Enable/disable MAPI AntiVirus scanning, monitoring, and quarantine. - FLAG Based Options. Specify multiple in list form. required: false choices: - scan - quarantine - avmonitor mapi_outbreak_prevention: description: - Enable FortiGuard Virus Outbreak Prevention service. required: false choices: - disabled - files - full-archive nac_quar: description: - EXPERTS ONLY! KNOWLEDGE OF FMGR JSON API IS REQUIRED! - List of multiple child objects to be added. Expects a list of dictionaries. - Dictionaries must use FortiManager API parameters, not the ansible ones listed below. - If submitted, all other prefixed sub-parameters ARE IGNORED. - This object is MUTUALLY EXCLUSIVE with its options. - We expect that you know what you are doing with these list parameters, and are leveraging the JSON API Guide. - WHEN IN DOUBT, USE THE SUB OPTIONS BELOW INSTEAD TO CREATE OBJECTS WITH MULTIPLE TASKS required: false nac_quar_expiry: description: - Duration of quarantine. required: false nac_quar_infected: description: - Enable/Disable quarantining infected hosts to the banned user list. required: false choices: - none - quar-src-ip nac_quar_log: description: - Enable/disable AntiVirus quarantine logging. required: false choices: - disable - enable nntp: description: - EXPERTS ONLY! KNOWLEDGE OF FMGR JSON API IS REQUIRED! - List of multiple child objects to be added. Expects a list of dictionaries. - Dictionaries must use FortiManager API parameters, not the ansible ones listed below. - If submitted, all other prefixed sub-parameters ARE IGNORED. - This object is MUTUALLY EXCLUSIVE with its options. - We expect that you know what you are doing with these list parameters, and are leveraging the JSON API Guide. - WHEN IN DOUBT, USE THE SUB OPTIONS BELOW INSTEAD TO CREATE OBJECTS WITH MULTIPLE TASKS required: false nntp_archive_block: description: - Select the archive types to block. - FLAG Based Options. Specify multiple in list form. required: false choices: - encrypted - corrupted - multipart - nested - mailbomb - unhandled - partiallycorrupted - fileslimit - timeout nntp_archive_log: description: - Select the archive types to log. - FLAG Based Options. Specify multiple in list form. required: false choices: - encrypted - corrupted - multipart - nested - mailbomb - unhandled - partiallycorrupted - fileslimit - timeout nntp_emulator: description: - Enable/disable the virus emulator. required: false choices: - disable - enable nntp_options: description: - Enable/disable NNTP AntiVirus scanning, monitoring, and quarantine. - FLAG Based Options. Specify multiple in list form. required: false choices: - scan - quarantine - avmonitor nntp_outbreak_prevention: description: - Enable FortiGuard Virus Outbreak Prevention service. required: false choices: - disabled - files - full-archive pop3: description: - EXPERTS ONLY! KNOWLEDGE OF FMGR JSON API IS REQUIRED! - List of multiple child objects to be added. Expects a list of dictionaries. - Dictionaries must use FortiManager API parameters, not the ansible ones listed below. - If submitted, all other prefixed sub-parameters ARE IGNORED. - This object is MUTUALLY EXCLUSIVE with its options. - We expect that you know what you are doing with these list parameters, and are leveraging the JSON API Guide. - WHEN IN DOUBT, USE THE SUB OPTIONS BELOW INSTEAD TO CREATE OBJECTS WITH MULTIPLE TASKS required: false pop3_archive_block: description: - Select the archive types to block. - FLAG Based Options. Specify multiple in list form. required: false choices: - encrypted - corrupted - multipart - nested - mailbomb - unhandled - partiallycorrupted - fileslimit - timeout pop3_archive_log: description: - Select the archive types to log. - FLAG Based Options. Specify multiple in list form. required: false choices: - encrypted - corrupted - multipart - nested - mailbomb - unhandled - partiallycorrupted - fileslimit - timeout pop3_content_disarm: description: - Enable Content Disarm and Reconstruction for this protocol. required: false choices: - disable - enable pop3_emulator: description: - Enable/disable the virus emulator. required: false choices: - disable - enable pop3_executables: description: - Treat Windows executable files as viruses for the purpose of blocking or monitoring. required: false choices: - default - virus pop3_options: description: - Enable/disable POP3 AntiVirus scanning, monitoring, and quarantine. - FLAG Based Options. Specify multiple in list form. required: false choices: - scan - quarantine - avmonitor pop3_outbreak_prevention: description: - Enable FortiGuard Virus Outbreak Prevention service. required: false choices: - disabled - files - full-archive smb: description: - EXPERTS ONLY! KNOWLEDGE OF FMGR JSON API IS REQUIRED! - List of multiple child objects to be added. Expects a list of dictionaries. - Dictionaries must use FortiManager API parameters, not the ansible ones listed below. - If submitted, all other prefixed sub-parameters ARE IGNORED. - This object is MUTUALLY EXCLUSIVE with its options. - We expect that you know what you are doing with these list parameters, and are leveraging the JSON API Guide. - WHEN IN DOUBT, USE THE SUB OPTIONS BELOW INSTEAD TO CREATE OBJECTS WITH MULTIPLE TASKS required: false smb_archive_block: description: - Select the archive types to block. - FLAG Based Options. Specify multiple in list form. required: false choices: - encrypted - corrupted - multipart - nested - mailbomb - unhandled - partiallycorrupted - fileslimit - timeout smb_archive_log: description: - Select the archive types to log. - FLAG Based Options. Specify multiple in list form. required: false choices: - encrypted - corrupted - multipart - nested - mailbomb - unhandled - partiallycorrupted - fileslimit - timeout smb_emulator: description: - Enable/disable the virus emulator. required: false choices: - disable - enable smb_options: description: - Enable/disable SMB AntiVirus scanning, monitoring, and quarantine. - FLAG Based Options. Specify multiple in list form. required: false choices: - scan - quarantine - avmonitor smb_outbreak_prevention: description: - Enable FortiGuard Virus Outbreak Prevention service. required: false choices: - disabled - files - full-archive smtp: description: - EXPERTS ONLY! KNOWLEDGE OF FMGR JSON API IS REQUIRED! - List of multiple child objects to be added. Expects a list of dictionaries. - Dictionaries must use FortiManager API parameters, not the ansible ones listed below. - If submitted, all other prefixed sub-parameters ARE IGNORED. - This object is MUTUALLY EXCLUSIVE with its options. - We expect that you know what you are doing with these list parameters, and are leveraging the JSON API Guide. - WHEN IN DOUBT, USE THE SUB OPTIONS BELOW INSTEAD TO CREATE OBJECTS WITH MULTIPLE TASKS required: false smtp_archive_block: description: - Select the archive types to block. - FLAG Based Options. Specify multiple in list form. required: false choices: - encrypted - corrupted - multipart - nested - mailbomb - unhandled - partiallycorrupted - fileslimit - timeout smtp_archive_log: description: - Select the archive types to log. - FLAG Based Options. Specify multiple in list form. required: false choices: - encrypted - corrupted - multipart - nested - mailbomb - unhandled - partiallycorrupted - fileslimit - timeout smtp_content_disarm: description: - Enable Content Disarm and Reconstruction for this protocol. required: false choices: - disable - enable smtp_emulator: description: - Enable/disable the virus emulator. required: false choices: - disable - enable smtp_executables: description: - Treat Windows executable files as viruses for the purpose of blocking or monitoring. required: false choices: - default - virus smtp_options: description: - Enable/disable SMTP AntiVirus scanning, monitoring, and quarantine. - FLAG Based Options. Specify multiple in list form. required: false choices: - scan - quarantine - avmonitor smtp_outbreak_prevention: description: - Enable FortiGuard Virus Outbreak Prevention service. required: false choices: - disabled - files - full-archive ''' EXAMPLES = ''' - name: DELETE Profile community.network.fmgr_secprof_av: name: "Ansible_AV_Profile" mode: "delete" - name: CREATE Profile community.network.fmgr_secprof_av: name: "Ansible_AV_Profile" comment: "Created by Ansible Module TEST" mode: "set" inspection_mode: "proxy" ftgd_analytics: "everything" av_block_log: "enable" av_virus_log: "enable" scan_mode: "full" mobile_malware_db: "enable" ftp_archive_block: "encrypted" ftp_outbreak_prevention: "files" ftp_archive_log: "timeout" ftp_emulator: "disable" ftp_options: "scan" ''' RETURN = """ api_result: description: full API response, includes status code and message returned: always type: str """ from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.connection import Connection from ansible_collections.fortinet.fortios.plugins.module_utils.fortimanager.fortimanager import FortiManagerHandler from ansible_collections.fortinet.fortios.plugins.module_utils.fortimanager.common import FMGBaseException from ansible_collections.fortinet.fortios.plugins.module_utils.fortimanager.common import FMGRCommon from ansible_collections.fortinet.fortios.plugins.module_utils.fortimanager.common import DEFAULT_RESULT_OBJ from ansible_collections.fortinet.fortios.plugins.module_utils.fortimanager.common import FAIL_SOCKET_MSG from ansible_collections.fortinet.fortios.plugins.module_utils.fortimanager.common import prepare_dict from ansible_collections.fortinet.fortios.plugins.module_utils.fortimanager.common import scrub_dict ############### # START METHODS ############### def fmgr_antivirus_profile_modify(fmgr, paramgram): """ :param fmgr: The fmgr object instance from fortimanager.py :type fmgr: class object :param paramgram: The formatted dictionary of options to process :type paramgram: dict :return: The response from the FortiManager :rtype: dict """ mode = paramgram["mode"] adom = paramgram["adom"] response = DEFAULT_RESULT_OBJ # EVAL THE MODE PARAMETER FOR SET OR ADD if mode in ['set', 'add', 'update']: url = '/pm/config/adom/{adom}/obj/antivirus/profile'.format(adom=adom) datagram = scrub_dict(prepare_dict(paramgram)) # EVAL THE MODE PARAMETER FOR DELETE else: # SET THE CORRECT URL FOR DELETE url = '/pm/config/adom/{adom}/obj/antivirus/profile/{name}'.format(adom=adom, name=paramgram["name"]) datagram = {} response = fmgr.process_request(url, datagram, paramgram["mode"]) return response ############# # END METHODS ############# def main(): argument_spec = dict( adom=dict(required=False, type="str", default="root"), mode=dict(choices=["add", "set", "delete", "update"], type="str", default="add"), scan_mode=dict(required=False, type="str", choices=["quick", "full"]), replacemsg_group=dict(required=False, type="dict"), name=dict(required=False, type="str"), mobile_malware_db=dict(required=False, type="str", choices=["disable", "enable"]), inspection_mode=dict(required=False, type="str", choices=["proxy", "flow-based"]), ftgd_analytics=dict(required=False, type="str", choices=["disable", "suspicious", "everything"]), extended_log=dict(required=False, type="str", choices=["disable", "enable"]), comment=dict(required=False, type="str"), av_virus_log=dict(required=False, type="str", choices=["disable", "enable"]), av_block_log=dict(required=False, type="str", choices=["disable", "enable"]), analytics_wl_filetype=dict(required=False, type="dict"), analytics_max_upload=dict(required=False, type="int"), analytics_db=dict(required=False, type="str", choices=["disable", "enable"]), analytics_bl_filetype=dict(required=False, type="dict"), content_disarm=dict(required=False, type="list"), content_disarm_cover_page=dict(required=False, type="str", choices=["disable", "enable"]), content_disarm_detect_only=dict(required=False, type="str", choices=["disable", "enable"]), content_disarm_office_embed=dict(required=False, type="str", choices=["disable", "enable"]), content_disarm_office_hylink=dict(required=False, type="str", choices=["disable", "enable"]), content_disarm_office_linked=dict(required=False, type="str", choices=["disable", "enable"]), content_disarm_office_macro=dict(required=False, type="str", choices=["disable", "enable"]), content_disarm_original_file_destination=dict(required=False, type="str", choices=["fortisandbox", "quarantine", "discard"]), content_disarm_pdf_act_form=dict(required=False, type="str", choices=["disable", "enable"]), content_disarm_pdf_act_gotor=dict(required=False, type="str", choices=["disable", "enable"]), content_disarm_pdf_act_java=dict(required=False, type="str", choices=["disable", "enable"]), content_disarm_pdf_act_launch=dict(required=False, type="str", choices=["disable", "enable"]), content_disarm_pdf_act_movie=dict(required=False, type="str", choices=["disable", "enable"]), content_disarm_pdf_act_sound=dict(required=False, type="str", choices=["disable", "enable"]), content_disarm_pdf_embedfile=dict(required=False, type="str", choices=["disable", "enable"]), content_disarm_pdf_hyperlink=dict(required=False, type="str", choices=["disable", "enable"]), content_disarm_pdf_javacode=dict(required=False, type="str", choices=["disable", "enable"]), ftp=dict(required=False, type="list"), ftp_archive_block=dict(required=False, type="str", choices=["encrypted", "corrupted", "multipart", "nested", "mailbomb", "unhandled", "partiallycorrupted", "fileslimit", "timeout"]), ftp_archive_log=dict(required=False, type="str", choices=["encrypted", "corrupted", "multipart", "nested", "mailbomb", "unhandled", "partiallycorrupted", "fileslimit", "timeout"]), ftp_emulator=dict(required=False, type="str", choices=["disable", "enable"]), ftp_options=dict(required=False, type="str", choices=["scan", "quarantine", "avmonitor"]), ftp_outbreak_prevention=dict(required=False, type="str", choices=["disabled", "files", "full-archive"]), http=dict(required=False, type="list"), http_archive_block=dict(required=False, type="str", choices=["encrypted", "corrupted", "multipart", "nested", "mailbomb", "unhandled", "partiallycorrupted", "fileslimit", "timeout"]), http_archive_log=dict(required=False, type="str", choices=["encrypted", "corrupted", "multipart", "nested", "mailbomb", "unhandled", "partiallycorrupted", "fileslimit", "timeout"]), http_content_disarm=dict(required=False, type="str", choices=["disable", "enable"]), http_emulator=dict(required=False, type="str", choices=["disable", "enable"]), http_options=dict(required=False, type="str", choices=["scan", "quarantine", "avmonitor"]), http_outbreak_prevention=dict(required=False, type="str", choices=["disabled", "files", "full-archive"]), imap=dict(required=False, type="list"), imap_archive_block=dict(required=False, type="str", choices=["encrypted", "corrupted", "multipart", "nested", "mailbomb", "unhandled", "partiallycorrupted", "fileslimit", "timeout"]), imap_archive_log=dict(required=False, type="str", choices=["encrypted", "corrupted", "multipart", "nested", "mailbomb", "unhandled", "partiallycorrupted", "fileslimit", "timeout"]), imap_content_disarm=dict(required=False, type="str", choices=["disable", "enable"]), imap_emulator=dict(required=False, type="str", choices=["disable", "enable"]), imap_executables=dict(required=False, type="str", choices=["default", "virus"]), imap_options=dict(required=False, type="str", choices=["scan", "quarantine", "avmonitor"]), imap_outbreak_prevention=dict(required=False, type="str", choices=["disabled", "files", "full-archive"]), mapi=dict(required=False, type="list"), mapi_archive_block=dict(required=False, type="str", choices=["encrypted", "corrupted", "multipart", "nested", "mailbomb", "unhandled", "partiallycorrupted", "fileslimit", "timeout"]), mapi_archive_log=dict(required=False, type="str", choices=["encrypted", "corrupted", "multipart", "nested", "mailbomb", "unhandled", "partiallycorrupted", "fileslimit", "timeout"]), mapi_emulator=dict(required=False, type="str", choices=["disable", "enable"]), mapi_executables=dict(required=False, type="str", choices=["default", "virus"]), mapi_options=dict(required=False, type="str", choices=["scan", "quarantine", "avmonitor"]), mapi_outbreak_prevention=dict(required=False, type="str", choices=["disabled", "files", "full-archive"]), nac_quar=dict(required=False, type="list"), nac_quar_expiry=dict(required=False, type="str"), nac_quar_infected=dict(required=False, type="str", choices=["none", "quar-src-ip"]), nac_quar_log=dict(required=False, type="str", choices=["disable", "enable"]), nntp=dict(required=False, type="list"), nntp_archive_block=dict(required=False, type="str", choices=["encrypted", "corrupted", "multipart", "nested", "mailbomb", "unhandled", "partiallycorrupted", "fileslimit", "timeout"]), nntp_archive_log=dict(required=False, type="str", choices=["encrypted", "corrupted", "multipart", "nested", "mailbomb", "unhandled", "partiallycorrupted", "fileslimit", "timeout"]), nntp_emulator=dict(required=False, type="str", choices=["disable", "enable"]), nntp_options=dict(required=False, type="str", choices=["scan", "quarantine", "avmonitor"]), nntp_outbreak_prevention=dict(required=False, type="str", choices=["disabled", "files", "full-archive"]), pop3=dict(required=False, type="list"), pop3_archive_block=dict(required=False, type="str", choices=["encrypted", "corrupted", "multipart", "nested", "mailbomb", "unhandled", "partiallycorrupted", "fileslimit", "timeout"]), pop3_archive_log=dict(required=False, type="str", choices=["encrypted", "corrupted", "multipart", "nested", "mailbomb", "unhandled", "partiallycorrupted", "fileslimit", "timeout"]), pop3_content_disarm=dict(required=False, type="str", choices=["disable", "enable"]), pop3_emulator=dict(required=False, type="str", choices=["disable", "enable"]), pop3_executables=dict(required=False, type="str", choices=["default", "virus"]), pop3_options=dict(required=False, type="str", choices=["scan", "quarantine", "avmonitor"]), pop3_outbreak_prevention=dict(required=False, type="str", choices=["disabled", "files", "full-archive"]), smb=dict(required=False, type="list"), smb_archive_block=dict(required=False, type="str", choices=["encrypted", "corrupted", "multipart", "nested", "mailbomb", "unhandled", "partiallycorrupted", "fileslimit", "timeout"]), smb_archive_log=dict(required=False, type="str", choices=["encrypted", "corrupted", "multipart", "nested", "mailbomb", "unhandled", "partiallycorrupted", "fileslimit", "timeout"]), smb_emulator=dict(required=False, type="str", choices=["disable", "enable"]), smb_options=dict(required=False, type="str", choices=["scan", "quarantine", "avmonitor"]), smb_outbreak_prevention=dict(required=False, type="str", choices=["disabled", "files", "full-archive"]), smtp=dict(required=False, type="list"), smtp_archive_block=dict(required=False, type="str", choices=["encrypted", "corrupted", "multipart", "nested", "mailbomb", "unhandled", "partiallycorrupted", "fileslimit", "timeout"]), smtp_archive_log=dict(required=False, type="str", choices=["encrypted", "corrupted", "multipart", "nested", "mailbomb", "unhandled", "partiallycorrupted", "fileslimit", "timeout"]), smtp_content_disarm=dict(required=False, type="str", choices=["disable", "enable"]), smtp_emulator=dict(required=False, type="str", choices=["disable", "enable"]), smtp_executables=dict(required=False, type="str", choices=["default", "virus"]), smtp_options=dict(required=False, type="str", choices=["scan", "quarantine", "avmonitor"]), smtp_outbreak_prevention=dict(required=False, type="str", choices=["disabled", "files", "full-archive"]), ) module = AnsibleModule(argument_spec=argument_spec, supports_check_mode=False, ) # MODULE PARAMGRAM paramgram = { "mode": module.params["mode"], "adom": module.params["adom"], "scan-mode": module.params["scan_mode"], "replacemsg-group": module.params["replacemsg_group"], "name": module.params["name"], "mobile-malware-db": module.params["mobile_malware_db"], "inspection-mode": module.params["inspection_mode"], "ftgd-analytics": module.params["ftgd_analytics"], "extended-log": module.params["extended_log"], "comment": module.params["comment"], "av-virus-log": module.params["av_virus_log"], "av-block-log": module.params["av_block_log"], "analytics-wl-filetype": module.params["analytics_wl_filetype"], "analytics-max-upload": module.params["analytics_max_upload"], "analytics-db": module.params["analytics_db"], "analytics-bl-filetype": module.params["analytics_bl_filetype"], "content-disarm": { "cover-page": module.params["content_disarm_cover_page"], "detect-only": module.params["content_disarm_detect_only"], "office-embed": module.params["content_disarm_office_embed"], "office-hylink": module.params["content_disarm_office_hylink"], "office-linked": module.params["content_disarm_office_linked"], "office-macro": module.params["content_disarm_office_macro"], "original-file-destination": module.params["content_disarm_original_file_destination"], "pdf-act-form": module.params["content_disarm_pdf_act_form"], "pdf-act-gotor": module.params["content_disarm_pdf_act_gotor"], "pdf-act-java": module.params["content_disarm_pdf_act_java"], "pdf-act-launch": module.params["content_disarm_pdf_act_launch"], "pdf-act-movie": module.params["content_disarm_pdf_act_movie"], "pdf-act-sound": module.params["content_disarm_pdf_act_sound"], "pdf-embedfile": module.params["content_disarm_pdf_embedfile"], "pdf-hyperlink": module.params["content_disarm_pdf_hyperlink"], "pdf-javacode": module.params["content_disarm_pdf_javacode"], }, "ftp": { "archive-block": module.params["ftp_archive_block"], "archive-log": module.params["ftp_archive_log"], "emulator": module.params["ftp_emulator"], "options": module.params["ftp_options"], "outbreak-prevention": module.params["ftp_outbreak_prevention"], }, "http": { "archive-block": module.params["http_archive_block"], "archive-log": module.params["http_archive_log"], "content-disarm": module.params["http_content_disarm"], "emulator": module.params["http_emulator"], "options": module.params["http_options"], "outbreak-prevention": module.params["http_outbreak_prevention"], }, "imap": { "archive-block": module.params["imap_archive_block"], "archive-log": module.params["imap_archive_log"], "content-disarm": module.params["imap_content_disarm"], "emulator": module.params["imap_emulator"], "executables": module.params["imap_executables"], "options": module.params["imap_options"], "outbreak-prevention": module.params["imap_outbreak_prevention"], }, "mapi": { "archive-block": module.params["mapi_archive_block"], "archive-log": module.params["mapi_archive_log"], "emulator": module.params["mapi_emulator"], "executables": module.params["mapi_executables"], "options": module.params["mapi_options"], "outbreak-prevention": module.params["mapi_outbreak_prevention"], }, "nac-quar": { "expiry": module.params["nac_quar_expiry"], "infected": module.params["nac_quar_infected"], "log": module.params["nac_quar_log"], }, "nntp": { "archive-block": module.params["nntp_archive_block"], "archive-log": module.params["nntp_archive_log"], "emulator": module.params["nntp_emulator"], "options": module.params["nntp_options"], "outbreak-prevention": module.params["nntp_outbreak_prevention"], }, "pop3": { "archive-block": module.params["pop3_archive_block"], "archive-log": module.params["pop3_archive_log"], "content-disarm": module.params["pop3_content_disarm"], "emulator": module.params["pop3_emulator"], "executables": module.params["pop3_executables"], "options": module.params["pop3_options"], "outbreak-prevention": module.params["pop3_outbreak_prevention"], }, "smb": { "archive-block": module.params["smb_archive_block"], "archive-log": module.params["smb_archive_log"], "emulator": module.params["smb_emulator"], "options": module.params["smb_options"], "outbreak-prevention": module.params["smb_outbreak_prevention"], }, "smtp": { "archive-block": module.params["smtp_archive_block"], "archive-log": module.params["smtp_archive_log"], "content-disarm": module.params["smtp_content_disarm"], "emulator": module.params["smtp_emulator"], "executables": module.params["smtp_executables"], "options": module.params["smtp_options"], "outbreak-prevention": module.params["smtp_outbreak_prevention"], } } module.paramgram = paramgram fmgr = None if module._socket_path: connection = Connection(module._socket_path) fmgr = FortiManagerHandler(connection, module) fmgr.tools = FMGRCommon() else: module.fail_json(**FAIL_SOCKET_MSG) list_overrides = ["content-disarm", "ftp", "http", "imap", "mapi", "nac-quar", "nntp", "pop3", "smb", "smtp"] paramgram = fmgr.tools.paramgram_child_list_override(list_overrides=list_overrides, paramgram=paramgram, module=module) module.paramgram = paramgram results = DEFAULT_RESULT_OBJ try: results = fmgr_antivirus_profile_modify(fmgr, paramgram) fmgr.govern_response(module=module, results=results, ansible_facts=fmgr.construct_ansible_facts(results, module.params, paramgram)) except Exception as err: raise FMGBaseException(err) return module.exit_json(**results[1]) if __name__ == "__main__": main()
python
import falcon from chromarestserver.resource import ( ChromaSdkResource, SessionRootResource, HeartBeatResource, KeyboardResource ) from chromarestserver.model import ( KeyboardModel, SessionModel ) app = falcon.API() usb_keyboard = KeyboardModel() session = SessionModel() chromasdk = ChromaSdkResource(session=session) session = SessionRootResource(session=session) heartbeat = HeartBeatResource(session=session) keyboard = KeyboardResource(session=session, usb=usb_keyboard) app.add_route('/razer/chromasdk', chromasdk) app.add_route('/{session_id}/chromasdk', session) app.add_route('/{session_id}/chromasdk/heartbeat', heartbeat) app.add_route('/{session_id}/chromasdk/keyboard', keyboard)
python
import os import json from typing import Optional from requests import post,get from fastapi import FastAPI app = FastAPI() ha_ip = os.environ['HA_IP'] ha_port = os.environ['HA_PORT'] ha_entity = os.environ['HA_ENTITY'] #must be a sensor ha_token = os.environ['HA_TOKEN'] ha_friendly_name = os.environ['HA_FRIENDLY_NAME'] ha_domain = ha_entity.split('.')[0] if not ha_domain.lower() == "sensor": print("Specify a sensor as HA_ENTITY") exit() base_url = str("http://" + ha_ip + ":" + ha_port + "/api/states/" + ha_entity) headers = { "Authorization": str("Bearer " + ha_token), "Content-Type": "application/json" } def get_current_value(): cur_val = json.loads(get(base_url, headers=headers).text) return cur_val["attributes"]["status"], cur_val["attributes"]["activity"] @app.post("/status/{status}") def catch_status(status:str): null,activity = get_current_value() payload = {"state":status,"attributes":{"activity":activity,"status":status,"friendly_name":ha_friendly_name,"unit_of_measurement":""}} print(payload) post(base_url,headers=headers,json=payload) @app.post("/activity/{activity}") def catch_activity(activity:str): status,null = get_current_value() payload = {"state":status,"attributes":{"activity":activity,"status":status,"friendly_name":ha_friendly_name,"unit_of_measurement":""}} print(payload) post(base_url,headers=headers,json=payload)
python
# ISC # # Copyright (c) 2022 Adir Vered <[email protected]> # # Permission to use, copy, modify, and/or distribute this software for any purpose # with or without fee is hereby granted, provided that the above copyright notice # and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH # REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY # AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, # INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM # LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE # OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE # OR PERFORMANCE OF THIS SOFTWARE. address = [ # GPIO_A/BOOT/C/DIF/H/X/Y/Z/...: # we need to substruct 0x400 from the original offset then we add 0x100 # to all mentiond above registers offsets in this region. # by the datasheet we need to multipile the offset by 4 and there for # the offset for each register is get the 0x400 missing, got it?! 0xC8834000, # GPIO_AO: 0xC8100000 ] offsets = { # GPIO_AO "AO" : { "O_EN" : 0x09, "O" : 0x09, "I" : 0x0A, "UP" : 0x0B, "UP_EN" : 0x0B, }, # GPIO_Z "Z" : { "O_EN" : 0x115, "O" : 0x116, "I" : 0x117, "UP" : 0x13D, "UP_EN" : 0x14B, }, # GPIO_CLK "CLK" : { "O_EN" : 0x115, "O" : 0x116, "I" : 0x117, "UP" : 0x13D, "UP_EN" : 0x14B, }, # GPIO_CARD "CARD" : { "O_EN" : 0x112, "O" : 0x113, "I" : 0x114, "UP" : 0x13C, "UP_EN" : 0x14A, }, # GPIO_BOOT "BOOT" : { "O_EN" : 0x112, "O" : 0x113, "I" : 0x114, "UP" : 0x13C, "UP_EN" : 0x14A, }, # GPIO_H "H" : { "O_EN" : 0x10F, "O" : 0x110, "I" : 0x111, "UP" : 0x13B, "UP_EN" : 0x149, }, # GPIO_Y "Y" : { "O_EN" : 0x10F, "O" : 0x110, "I" : 0x111, "UP" : 0x13B, "UP_EN" : 0x149, }, # GPIO_DV "DV" : { "O_EN" : 0x10C, "O" : 0x10D, "I" : 0x10E, "UP" : 0x13A, "UP_EN" : 0x148, }, # GPIO_X "X" : { "O_EN" : 0x118, "O" : 0x119, "I" : 0x11A, "UP" : 0x13E, "UP_EN" : 0x14C, }, } presets = { # offsets pre shift bit: "AO" : { "O" : 16, "UP" : 16 }, "Z" : { "O_EN" : 14, "O" : 14, "I" : 14, "UP" : 14, "UP_EN" : 14 }, "CLK" : { "O_EN" : 28, "O" : 28, "I" : 28, "UP" : 28, "UP_EN" : 28 }, "CARD" : { "O_EN" : 20, "O" : 20, "I" : 20, "UP" : 20, "UP_EN" : 20 }, "H" : { "O_EN" : 20, "O" : 20, "I" : 20, "UP" : 20, "UP_EN" : 20 } }
python
from huobi.client.trade import TradeClient from huobi.constant import * from huobi.utils import * trade_client = TradeClient(api_key=g_api_key, secret_key=g_secret_key) symbol_test = "eosusdt" i = 0 n = 3 order_id_list = [] while i < n: order_id = trade_client.create_order( symbol=symbol_test, account_id=g_account_id, order_type=OrderType.BUY_LIMIT, source=OrderSource.API, amount=18.0, price=0.292, ) LogInfo.output("created order id : {id}".format(id=order_id)) order_id_list.append(order_id) i = i + 1 result = trade_client.cancel_orders(symbol_test, order_id_list) result.print_object()
python
from Utils import * ''' On Adamson data ''' Data_dir = "/home/luodongyang/SCData/Perturb/Adamson/" #------------------------------------------------------------------------# # Read Data ## Matrix mat=mmread(os.path.join(Data_dir, "GSM2406677_10X005_matrix.mtx.txt")) cell_ident = pd.read_csv(os.path.join(Data_dir, "GSM2406677_10X005_cell_identities.csv")) genes_path = os.path.join(Data_dir, "GSM2406677_10X005_genes.tsv") barcodes_path = os.path.join(Data_dir, "GSM2406677_10X005_barcodes.tsv") gene_names = pd.read_table(genes_path, sep='\t', skiprows=0, header=None) gene_names = gene_names.iloc[:,1] barcodes = pd.read_table(barcodes_path, sep='\t', skiprows=0, header=None) barcodes = list(barcodes.iloc[:,0]) #------------------------------------------------------------------------# # Processing ## conversion & Filtering guide_summ = guide_summary(cell_ident) # Guide summary selected_guides = list(guide_summ['GuideName'][guide_summ['Count'] > 100]) temp_idx = [] for ll in range(len(cell_ident)): if cell_ident['guide identity'][ll] in selected_guides: temp_idx.append(ll) cell_ident = cell_ident.loc[temp_idx] Y = pd.DataFrame(mat.toarray()) Y.index = gene_names Y.columns = barcodes [filtered_genes,filtered_cells] = filter_Gene_Cell(Y, gene_thresh=10, cell_thresh=1000) # filtering selected_cells = list(set(filtered_cells) & set(cell_ident['cell BC'])) cell_ident.index = cell_ident['cell BC'] cell_ident = cell_ident.loc[selected_cells] Y = Y.loc[filtered_genes, selected_cells] Y_log = pd.DataFrame(np.log2(tp10k_transform(Y)+1)) guides = cell_ident['guide identity'] #------------------------------------------------------------------------# # PCA [Ufb,Sfb,Vfb,PCscore] = fb_pca(Y_log, n_components=50, center=True, scale=False) ## PC variance explained plt.plot(Sfb, label='PC Variance Explained') plt.savefig('./Figs/PC_eigens_Adamson.jpg', dpi=300) plt.close() ## Use PC scores for plotting plot_pca = PCscore[['PC1','PC2']] plot_pca['Guides'] = guides sns.lmplot('PC1','PC2',data=plot_pca,hue='Guides',fit_reg=False, scatter_kws={'s':5}) plt.savefig('./Figs/PCA_Adamson.jpg', dpi=300) plt.close() #------------------------------------------------------------------------# # t-SNE tsne_model = manifold.TSNE(n_components=2, perplexity=20, verbose=2,init='pca',n_iter_without_progress=10000,min_grad_norm=0) T_sne = tsne_model.fit_transform(PCscore.iloc[:,range(10)]) T_sne = pd.DataFrame(T_sne) plot_tsne = T_sne.copy() plot_tsne.columns = ['tSNE-1', 'tSNE-2'] plot_tsne.index = selected_cells plot_tsne['Guides'] = guides sns.lmplot('tSNE-1','tSNE-2',data=plot_tsne,hue='Guides',fit_reg=False, scatter_kws={'s':5}) plt.savefig('./Figs/tSNE_Adamson.jpg', dpi=300) plt.close() #------------------------------------------------------------------------# # LASSO X = pd.DataFrame(Vfb.transpose()) X.index = PCscore.index X.columns = PCscore.columns guides_dummy = pd.get_dummies(guides) lasso_model = linear_model.Lasso(alpha=0.1, precompute=True) lasso_model.fit(PCscore, guides_dummy) #------------------------------------------------------------------------# # Random Forest guides_dummy = pd.get_dummies(guides) RF_model = RandomForestClassifier(n_estimators=100,n_jobs=-1,oob_score=True,class_weight='balanced') RF_model.fit(PCscore, guides_dummy) PC_rank = pd.DataFrame({'PCs':['PC'+str(x+1) for x in range(50)], 'Importance':RF_model.feature_importances_}) PC_rank = PC_rank.loc[np.argsort(-PC_rank['Importance'], )] PC_rank.index = range(1,51) plt.plot(PC_rank['Importance'], label='PC Importance') plt.savefig('./Figs/PC_importance_Adamson.jpg', dpi=300) plt.close() PC_rank.to_csv('./Figs/PC_importance_Adamson.csv') #------------------------------------------------------------------------# # PCA with important PCs selected_PCs = list(PC_rank['PCs'][0:30]) # Previous = 10 New_feature_Y = PCscore[selected_PCs].transpose() [Unew,Snew,Vnew,PCscore_new] = fb_pca(New_feature_Y, n_components=10, center=True, scale=False) plot_pca = PCscore_new[['PC1','PC2']] plot_pca['Guides'] = guides sns.lmplot('PC1','PC2',data=plot_pca,hue='Guides',fit_reg=False, scatter_kws={'s':5}) plt.savefig('./Figs/PCA_new_Adamson.jpg', dpi=300) plt.close() #------------------------------------------------------------------------# # tSNE with important PCs tsne_model = manifold.TSNE(n_components=2, perplexity=20, verbose=2,init='pca',n_iter_without_progress=10000,min_grad_norm=0) T_sne = tsne_model.fit_transform(PCscore[selected_PCs]) T_sne = pd.DataFrame(T_sne) plot_tsne = T_sne.copy() plot_tsne.columns = ['tSNE-1', 'tSNE-2'] plot_tsne.index = selected_cells plot_tsne['Guides'] = guides sns.lmplot('tSNE-1','tSNE-2',data=plot_tsne,hue='Guides',fit_reg=False, scatter_kws={'s':5}) plt.savefig('./Figs/tSNE_new_Adamson.jpg', dpi=300) plt.close() #------------------------------------------------------------------------# # tSNE with important PCs tsne_model = manifold.TSNE(n_components=2, perplexity=20, verbose=2,init='pca',n_iter_without_progress=10000,min_grad_norm=0) selected_PCs = list(set(selected_PCs) - set(['PC'+str(x) for x in range(1,5)])) T_sne = tsne_model.fit_transform(PCscore[selected_PCs]) T_sne = pd.DataFrame(T_sne) plot_tsne = T_sne.copy() plot_tsne.columns = ['tSNE-1', 'tSNE-2'] plot_tsne.index = selected_cells plot_tsne['Guides'] = guides sns.lmplot('tSNE-1','tSNE-2',data=plot_tsne,hue='Guides',fit_reg=False, scatter_kws={'s':5}) plt.savefig('./Figs/tSNE_PC1-4_removed_Adamson.jpg', dpi=300) plt.close() #------------------------------------------------------------------------# ''' On Dixit data ''' from Utils import * Data_dir = "/home/luodongyang/SCData/Perturb/Dixit/" #------------------------------------------------------------------------# # Read Data ## Matrix mat=mmread(os.path.join(Data_dir, "GSM2396856_dc_3hr.mtx.txt")) genes_path = os.path.join(Data_dir, "GSM2396856_dc_3hr_genenames.csv") gene_names = pd.read_table(genes_path, sep=',', skiprows=0) gene_names = gene_names.iloc[:,1] barcodes_path = os.path.join(Data_dir, "GSM2396856_dc_3hr_cellnames.csv") barcodes = pd.read_table(barcodes_path, sep=',', skiprows=0) barcodes = list(barcodes.iloc[:,1]) ## Get the GUIDE part of the X cbc_gbc_dict_path = os.path.join(Data_dir, "GSM2396856_dc_3hr_cbc_gbc_dict_lenient.csv") gbcs = [row[0] for row in csv.reader(open(cbc_gbc_dict_path))] cbcs_raw = [row[1] for row in csv.reader(open(cbc_gbc_dict_path))] cbcs = [] for temp_val in cbcs_raw: temp = temp_val.replace(' ','').split(',') cbcs.append(list(set(temp)&set(barcodes))) gbc_cbc_dict = dict(zip(gbcs, cbcs)) X_guides = dict2X(GUIDES_DICT=gbc_cbc_dict, cbcs=barcodes) #------------------------------------------------------------------------# # Processing ## conversion & Filtering Y = pd.DataFrame(mat.toarray()) Y.index = gene_names Y.columns = barcodes [filtered_genes,filtered_cells] = filter_Gene_Cell(Y, gene_thresh=10, cell_thresh=1000) # filtering cell_idx = X_guides.index[X_guides.sum(axis=1)==1] selected_cells = list(set(filtered_cells) & set(cell_idx)) Y = Y.loc[filtered_genes, selected_cells] X_guides = X_guides.loc[selected_cells] Y_log = pd.DataFrame(np.log2(tp10k_transform(Y)+1)) guide_list = list(X_guides.columns) guides = [] for ii in range(len(X_guides)): guides.append(guide_list[list(X_guides.iloc[ii,:]).index(1)]) #------------------------------------------------------------------------# # Merge Guides --> same gene for ii in range(len(guides)): guides[ii] = guides[ii].split('_')[1] #------------------------------------------------------------------------# # PCA [Ufb,Sfb,Vfb,PCscore] = fb_pca(Y_log, n_components=100, center=True, scale=False) ## PC variance explained plt.plot(Sfb, label='PC Variance Explained') plt.savefig('./Figs/PC_eigens_Dixit.jpg', dpi=300) plt.close() ## Use PC scores for plotting plot_pca = PCscore[['PC1','PC2']] plot_pca['Guides'] = guides sns.lmplot('PC1','PC2',data=plot_pca,hue='Guides',fit_reg=False, scatter_kws={'s':5}) plt.savefig('./Figs/PCA_Dixit.jpg', dpi=300) plt.close() #------------------------------------------------------------------------# # t-SNE tsne_model = manifold.TSNE(n_components=2, perplexity=20, verbose=2,init='pca',n_iter_without_progress=10000,min_grad_norm=0) T_sne = tsne_model.fit_transform(PCscore.iloc[:,range(15)]) T_sne = pd.DataFrame(T_sne) plot_tsne = T_sne.copy() plot_tsne.columns = ['tSNE-1', 'tSNE-2'] plot_tsne.index = selected_cells plot_tsne['Guides'] = guides sns.lmplot('tSNE-1','tSNE-2',data=plot_tsne,hue='Guides',fit_reg=False, scatter_kws={'s':5}) plt.savefig('./Figs/tSNE_Dixit.jpg', dpi=300) plt.close() #------------------------------------------------------------------------# # LASSO ''' X = pd.DataFrame(Vfb.transpose()) X.index = PCscore.index X.columns = PCscore.columns guides_dummy = pd.get_dummies(guides) lasso_model = linear_model.Lasso(alpha=0.1, precompute=True) lasso_model.fit(PCscore, guides_dummy) ''' #------------------------------------------------------------------------# # Random Forest guides_dummy = pd.get_dummies(guides) RF_model = RandomForestClassifier(n_estimators=100,n_jobs=-1,oob_score=True,class_weight='balanced') RF_model.fit(PCscore, guides_dummy) PC_rank = pd.DataFrame({'PCs':['PC'+str(x+1) for x in range(100)], 'Importance':RF_model.feature_importances_}) PC_rank = PC_rank.loc[np.argsort(-PC_rank['Importance'], )] PC_rank.index = range(1,101) plt.plot(PC_rank['Importance'], label='PC Importance') plt.savefig('./Figs/PC_importance_Dixit.jpg', dpi=300) plt.close() PC_rank.to_csv('./Figs/PC_importance_Dixit.csv') #------------------------------------------------------------------------# # PCA with important PCs selected_PCs = list(PC_rank['PCs'][0:10]) New_feature_Y = PCscore[selected_PCs].transpose() [Unew,Snew,Vnew,PCscore_new] = fb_pca(New_feature_Y, n_components=10, center=True, scale=False) plot_pca = PCscore_new[['PC1','PC2']] plot_pca['Guides'] = guides sns.lmplot('PC1','PC2',data=plot_pca,hue='Guides',fit_reg=False, scatter_kws={'s':5}) plt.savefig('./Figs/PCA_new_Dixit.jpg', dpi=300) plt.close() #------------------------------------------------------------------------# # tSNE with important PCs tsne_model = manifold.TSNE(n_components=2, perplexity=20, verbose=2,init='pca',n_iter_without_progress=10000,min_grad_norm=0) T_sne = tsne_model.fit_transform(PCscore[selected_PCs]) T_sne = pd.DataFrame(T_sne) plot_tsne = T_sne.copy() plot_tsne.columns = ['tSNE-1', 'tSNE-2'] plot_tsne.index = selected_cells plot_tsne['Guides'] = guides sns.lmplot('tSNE-1','tSNE-2',data=plot_tsne,hue='Guides',fit_reg=False, scatter_kws={'s':5}) plt.savefig('./Figs/tSNE_new_Dixit.jpg', dpi=300) plt.close() #------------------------------------------------------------------------# # tSNE with important PCs tsne_model = manifold.TSNE(n_components=2, perplexity=20, verbose=2,init='pca',n_iter_without_progress=10000,min_grad_norm=0) selected_PCs = list(set(selected_PCs) - set(['PC'+str(x) for x in range(1,10)])) T_sne = tsne_model.fit_transform(PCscore[selected_PCs]) T_sne = pd.DataFrame(T_sne) plot_tsne = T_sne.copy() plot_tsne.columns = ['tSNE-1', 'tSNE-2'] plot_tsne.index = selected_cells plot_tsne['Guides'] = guides sns.lmplot('tSNE-1','tSNE-2',data=plot_tsne,hue='Guides',fit_reg=False, scatter_kws={'s':5}) plt.savefig('./Figs/tSNE_PC1-4_removed_Dixit.jpg', dpi=300) plt.close() #------------------------------------------------------------------------#
python
# debug_importer.py import sys class DebugFinder: @classmethod def find_spec(cls, name, path, target=None): print(f"Importing {name!r}") return None sys.meta_path.insert(0, DebugFinder)
python
import json import os import unittest from netdice.common import Flow, StaticRoute from netdice.explorer import Explorer from netdice.input_parser import InputParser from netdice.problem import Problem from netdice.properties import WaypointProperty, IsolationProperty from netdice.reference_explorer import ReferenceExplorer from netdice.util import project_root_dir from tests.problem_helper import get_test_input_file, get_paper_problem class CompareToReferenceTest(unittest.TestCase): @staticmethod def is_compatible(state: list, mask: list): pos = 0 for i in state: if mask[pos] != -1 and mask[pos] != i: return False pos += 1 return True @staticmethod def get_ground_truth_file(scenario_name: str): return os.path.join(project_root_dir, "tests", "ground_truth", scenario_name) @staticmethod def load_ref_from_file(fname: str): p_property_val = None data = [] with open(fname, 'r') as f: for l in f: entry = json.loads(l) data.append(entry) if "p_property" in entry: p_property_val = float(entry["p_property"]) return data, p_property_val @staticmethod def store_ref_to_file(fname: str, data: list): with open(fname, 'w') as f: for entry in data: print(json.dumps(entry), file=f) def compare_to_reference(self, problem: Problem, scenario_name: str, allow_cache=True): explorer = Explorer(problem, full_trace=True) solution = explorer.explore_all() # cache ground truth cache_file = CompareToReferenceTest.get_ground_truth_file(scenario_name) if allow_cache and os.path.exists(cache_file): ref_stats, ref_p_property_val = CompareToReferenceTest.load_ref_from_file(cache_file) else: ref_explorer = ReferenceExplorer(problem, full_trace=True) ref_solution = ref_explorer.explore_all() ref_stats = ref_explorer._trace ref_p_property_val = ref_solution.p_property.val() if allow_cache: CompareToReferenceTest.store_ref_to_file(cache_file, ref_stats) # check equal forwarding graphs for all states for dref in ref_stats: if "state" in dref: # find state for smart explorer found = False cmp_data = None for dsmart in explorer._trace: cmp_data = dsmart if CompareToReferenceTest.is_compatible(dref["state"], dsmart["state"]): found = True break self.assertTrue(found, "state {} not found for smart exploration".format(dref["state"])) self.assertEqual(dref["fw_graph"], cmp_data["fw_graph"], "state: {}\nmatched by: {}".format(dref["state"], cmp_data["state"])) # compare probabilities self.assertAlmostEqual(solution.p_property.val(), ref_p_property_val, delta=1E-10) def test_paper_example(self): problem = get_paper_problem() self.compare_to_reference(problem, "paper_example.txt") def test_paper_example_alt_flow(self): problem = get_paper_problem() problem.property = WaypointProperty(Flow(1, "42.42.0.0/16"), 2) self.compare_to_reference(problem, "paper_example_alt_flow.txt") def test_paper_example_alt_flow_2(self): problem = get_paper_problem() problem.property = WaypointProperty(Flow(2, "42.42.0.0/16"), 3) self.compare_to_reference(problem, "paper_example_alt_flow_2.txt") def test_paper_example_alt_flow_3(self): problem = get_paper_problem() problem.property = WaypointProperty(Flow(4, "42.42.0.0/16"), 3) self.compare_to_reference(problem, "paper_example_alt_flow_3.txt") def test_paper_example_static_route(self): problem = get_paper_problem() problem.property = WaypointProperty(Flow(1, "42.42.0.0/16"), 2) problem.static_routes = [StaticRoute("42.42.0.0/16", 1, 4)] self.compare_to_reference(problem, "paper_example_static_route.txt") def test_paper_example_multi_flow(self): problem = get_paper_problem() problem.property = IsolationProperty([Flow(1, "42.42.0.0/16"), Flow(4, "99.99.99.0/24")]) self.compare_to_reference(problem, "paper_example_multi_flow.txt") def test_nsfnet_node_failures(self): problem = InputParser(get_test_input_file("Nsfnet.json")).get_problems()[0] self.compare_to_reference(problem, "Nsfnet_node_failures.txt") def test_nsfnet_alt_(self): problem = InputParser(get_test_input_file("Nsfnet_alt.json")).get_problems()[0] self.compare_to_reference(problem, "Nsfnet_alt.txt") def test_ecmp(self): problem = InputParser(get_test_input_file("ecmp.json")).get_problems()[0] self.compare_to_reference(problem, "ecmp.txt")
python
import os from datetime import datetime from flask import Flask, render_template, redirect, flash, abort, url_for, request from flask.ext.restless import APIManager from flask_admin import Admin from flask_admin.contrib.sqla import ModelView from flask.ext.sqlalchemy import SQLAlchemy from flask.ext.login import UserMixin from wtforms import form, fields, validators from flask.ext import login from flask.ext.admin.contrib import sqla from flask.ext.admin import helpers, expose, AdminIndexView from werkzeug.security import generate_password_hash, check_password_hash # Create Flask application app = Flask(__name__) # Create secrey key so we can use sessions app.config['SECRET_KEY'] = os.urandom(24).encode('hex') # Create in-memory database basedir = os.path.abspath(os.path.dirname(__file__)) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///bubbles.db' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['SQLALCHEMY_ECHO'] = True db = SQLAlchemy(app) # Flask-SQLAlchemy: Define a models class BubblesUser(db.Model, UserMixin): __tablename__ = 'bubbles_users' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(64), index=True, unique=True, nullable=False) password = db.Column(db.String(50), nullable=False) email = db.Column(db.Unicode(50), nullable=False) description = db.Column(db.Text, nullable=False) role = db.Column(db.Unicode(50), nullable=False) experience_points = db.Column(db.Integer) skills = db.Column(db.Text) created_at = db.Column(db.Date) bubbles = db.relationship('BubblesBubble', backref='bubbles_users', lazy='dynamic') settings = db.relationship('BubblesUserSetting', backref='bubbles_users', uselist=False, lazy='select') resources = db.relationship('BubblesResource', backref='bubbles_users', lazy='dynamic') projects = db.relationship('BubblesProject', backref='bubbles_users', lazy='dynamic') quests = db.relationship('BubblesQuest', backref='bubbles_users', lazy='dynamic') def __repr__(self): return '<User: ' + str(self.name) + ' - Id: ' + str(self.id) + '>' # Flask-Login integration def is_authenticated(self): return True def is_active(self): return True def is_anonymous(self): return False def get_id(self): return self.id # Required for administrative interface def __unicode__(self): return self.username class BubblesBubble(db.Model, UserMixin): __tablename__ = 'bubbles_bubbles' id = db.Column(db.Integer, primary_key=True) data = db.Column(db.Text) project_id = db.Column(db.Integer, db.ForeignKey('bubbles_projects.id')) user_id = db.Column(db.Integer, db.ForeignKey('bubbles_users.id')) type = db.Column(db.String, default="bubble") order = db.Column(db.Integer, default=1) setting = db.relationship('BubblesSetting', backref='bubbles_bubbles', uselist=False, lazy='select') resources = db.relationship('BubblesResource', backref='bubbles_bubbles', uselist=False, lazy='select') def __repr__(self): return '<BubbleId: ' + str(self.id) + '>' class BubblesMetaGlobal(db.Model, UserMixin): __tablename__ = 'bubbles_meta_global' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(30), nullable=False) content = db.Column(db.Text, nullable=False) def __repr__(self): return '<BubblesMetaGlobal %r>' % str(self.name) class BubblesPage(db.Model): __tablename__ = 'bubbles_pages' id = db.Column(db.Integer, primary_key=True) alias = db.Column(db.String, nullable=False) title = db.Column(db.String, nullable=False) meta_locals = db.relationship('BubblesMetaLocal', backref='bubbles_pages', lazy='dynamic') def __repr__(self): return '<BubblesPage %r>' % self.id class BubblesMetaLocal(db.Model): __tablename__ = 'bubbles_meta_local' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String, nullable=False) page = db.Column(db.Integer, db.ForeignKey('bubbles_pages.id')) content = db.Column(db.String, nullable=False) def __repr__(self): return '<BubblesMetaLocal %r>' % str(self.name) bubbles_project_resource = db.Table('bubbles_project_resource', db.Column('project_id', db.Integer, db.ForeignKey('bubbles_projects.id')), db.Column('resource_id', db.Integer, db.ForeignKey('bubbles_resources.id')) ) class BubblesProject(db.Model): __tablename__ = 'bubbles_projects' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String, nullable=False) description = db.Column(db.Text) user_id = db.Column(db.Integer, db.ForeignKey('bubbles_users.id')) bubbles = db.relationship('BubblesBubble', backref='bubbles_projects', lazy='dynamic') resources = db.relationship('BubblesResource', secondary=bubbles_project_resource, backref=db.backref('bubbles_projects', lazy='dynamic')) def __repr__(self): return '<BubblesProject %r>' % str(self.id) class BubblesQuest(db.Model): __tablename__ = 'bubbles_quests' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(45)) description = db.Column(db.Text) author_id = db.Column(db.Integer, db.ForeignKey('bubbles_users.id')) editor_id = db.Column(db.String(255), default="null") state = db.Column(db.String(45), nullable=False) resource = db.Column(db.String(255), default="null") language = db.Column(db.String(45), default="null") def __repr__(self): return '<BubblesQuestId %r>' % str(self.id) class BubblesResource(db.Model): __tablename__ = 'bubbles_resources' id = db.Column(db.Integer, primary_key=True) type = db.Column(db.String(45), nullable=False) data = db.Column(db.String(255), nullable=False) user_id = db.Column(db.Integer, db.ForeignKey('bubbles_users.id')) bubble = db.Column(db.Integer, db.ForeignKey('bubbles_bubbles.id')) def __repr__(self): return '<BubblesResourceId %r>' % str(self.id) class BubblesSettingCms(db.Model): __tablename__ = 'bubbles_settings_cms' id = db.Column(db.Integer, primary_key=True) property = db.Column(db.String(255)) value = db.Column(db.String(255), nullable=False) activated = db.Column(db.Integer, nullable=False, default=1) description = db.Column(db.String(255), nullable=False) def __repr__(self): return '<BubblesSettingCms %r>' % self.property class BubblesSetting(db.Model): __tablename__ = 'bubbles_settings' id = db.Column(db.Integer, primary_key=True) bubble_id = db.Column(db.Integer, db.ForeignKey('bubbles_bubbles.id')) size_x = db.Column(db.Integer, nullable=False) size_y = db.Column(db.Integer, nullable=False) bubbles_image = db.Column(db.String(255)) def __repr__(self): return '<BubblesSetting %r>' % self.id class BubblesUserSetting(db.Model): __tablename__ = 'bubbles_user_settings' id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.Integer, db.ForeignKey('bubbles_users.id')) avatar_image = db.Column(db.String(128)) def __repr__(self): return '<BubblesUserSetting %r>' % self.id class BubbleSkin(db.Model): __tablename__ = 'bubble_skins' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(30), nullable=False) value = db.Column(db.Integer, nullable=False) activated = db.Column(db.Integer, nullable=False) description = db.Column(db.Text) def __repr__(self): return '<BubbleSkin %r>' % self.id class BubbleMessage(db.Model): __tablename__ = 'bubbles_messages' id = db.Column(db.Integer, primary_key=True) sender_id = db.Column(db.Integer, db.ForeignKey('bubbles_users.id'), primary_key=True) receiver_id = db.Column(db.Integer, db.ForeignKey('bubbles_users.id'), primary_key=True) sender = db.relationship('BubblesUser', backref='sender_id', foreign_keys='BubbleMessage.sender_id') receiver = db.relationship('BubblesUser', backref='receiver_id', foreign_keys='BubbleMessage.receiver_id') content = db.Column(db.Text, nullable=False) created_at = db.Column(db.DateTime, default=datetime.now) viewed_at = db.Column(db.DateTime) def __repr__(self): return '<BubbleMessage %r>' % self.id # Define login and registration forms (for flask-login) class LoginForm(form.Form): login = fields.TextField(validators=[validators.required()]) password = fields.PasswordField(validators=[validators.required()]) def validate_login(self, field): user = self.get_user() if user is None: raise validators.ValidationError('Invalid user') # we're comparing the plaintext pw with the the hash from the db if not check_password_hash(user.password, self.password.data): # to compare plain text passwords use # if user.password != self.password.data: raise validators.ValidationError('Invalid password') def get_user(self): return db.session.query(BubblesUser).filter_by(password=self.password.data).first() # Initialize flask-login def init_login(): login_manager = login.LoginManager() login_manager.init_app(app) # Create user loader function @login_manager.user_loader def load_user(user_id): return db.session.query(BubblesUser).get(user_id) manager = APIManager(app, flask_sqlalchemy_db=db) manager.create_api(BubblesUser, methods=['GET', 'POST', 'DELETE', 'UPDATE']) manager.create_api(BubblesBubble, methods=['GET', 'POST', 'DELETE', 'UPDATE']) manager.create_api(BubblesMetaGlobal, methods=['GET', 'POST', 'DELETE', 'UPDATE']) manager.create_api(BubblesMetaLocal, methods=['GET', 'POST', 'DELETE', 'UPDATE']) manager.create_api(BubblesPage, methods=['GET', 'POST', 'DELETE', 'UPDATE']) manager.create_api(BubblesProject, methods=['GET', 'POST', 'DELETE', 'UPDATE']) manager.create_api(BubblesQuest, methods=['GET', 'POST', 'DELETE', 'UPDATE']) manager.create_api(BubblesResource, methods=['GET', 'POST', 'DELETE', 'UPDATE']) manager.create_api(BubblesSetting, methods=['GET', 'POST', 'DELETE', 'UPDATE']) manager.create_api(BubbleSkin, methods=['GET', 'POST', 'DELETE', 'UPDATE']) manager.create_api(BubbleMessage, methods=['GET', 'POST', 'DELETE', 'UPDATE']) manager.create_api(BubblesUserSetting, methods=['GET', 'POST', 'DELETE', 'UPDATE']) manager.create_api(BubblesSettingCms, methods=['GET', 'POST', 'DELETE', 'UPDATE']) # Initialize flask-login init_login() # Create customized model view class class MyModelView(sqla.ModelView): def is_accessible(self): return login.current_user.is_authenticated and ( login.current_user.role == 'admin' or login.current_user.role == 'Admin') # Create customized index view class that handles login & registration class MyAdminIndexView(AdminIndexView): @expose('/') def index(self): if not login.current_user.is_authenticated: return redirect(url_for('.login_view')) return super(MyAdminIndexView, self).index() @expose('/login/', methods=('GET', 'POST')) def login_view(self): # handle user login form = LoginForm(request.form) if helpers.validate_form_on_submit(form): user = form.get_user() login.login_user(user) if login.current_user.is_authenticated: return redirect(url_for('.index')) self._template_args['form'] = form return super(MyAdminIndexView, self).index() @expose('/logout/') def logout_view(self): login.logout_user() return redirect(url_for('.index')) admin = Admin(app, name='bubbles', template_mode='bootstrap3', index_view=MyAdminIndexView()) admin.add_view(MyModelView(BubblesUser, db.session)) admin.add_view(MyModelView(BubblesBubble, db.session)) admin.add_view(MyModelView(BubblesProject, db.session)) admin.add_view(MyModelView(BubblesQuest, db.session)) admin.add_view(MyModelView(BubblesResource, db.session)) admin.add_view(MyModelView(BubblesSetting, db.session)) admin.add_view(MyModelView(BubbleMessage, db.session)) admin.add_view(MyModelView(BubblesUserSetting, db.session)) admin.add_view(MyModelView(BubblesPage, db.session)) admin.add_view(MyModelView(BubblesMetaLocal, db.session)) admin.add_view(MyModelView(BubblesSettingCms, db.session)) admin.add_view(MyModelView(BubbleSkin, db.session)) admin.add_view(MyModelView(BubblesMetaGlobal, db.session)) @app.route("/") def index(): return render_template('index.html') db.drop_all() db.create_all() if __name__ == "__main__": app.debug = True app.run(debug=True)
python
from setuptools import setup, find_packages from os import path this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='ciscoaplookup', version="0.10.0", author="Steffen Schumacher", author_email="[email protected]", description="The Cisco Wireless LAN Compliance Lookup library", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/steffenschumacher/ciscoaplookup.git", packages=find_packages(), classifiers=( "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ), include_package_data=True, install_requires=['requests', 'xlrd==1.2.0', 'beautifulsoup4', 'country_converter'], setup_requires=[ 'pytest-runner', ], tests_require=[ 'pytest', ], )
python
# -*- coding: utf-8 -*- """ Created on Fri Jun 28 11:07:41 2019 @author: Kevin """ import numpy as np import pickle from shapely.geometry import Point class TileCreator(object): def __init__(self, configuration, polygon): self.output_path = configuration['tile_coords_path'] # Avg. earth radius in meters self.radius = 6371000 # Square side length of tiles in meters self.side = 240 # Bounding box coordinates for NRW, i.e. North, South, East, West self.N = 52.7998 self.S = 50.0578 self.E = 9.74158 self.W = 5.59334 self.polygon = polygon def defineTileCoords(self): # dlat spans a distance of 'side' meters in north-south direction: # 1 degree in latitude direction spans (2*np.pi*r)/360° meters # Hence, 'side' meters need to be divided by this quantity to obtain # the number of degrees which span 'side' meters in latitude (north-south) direction dlat = (self.side*360) / (2*np.pi*self.radius) Tile_coords = [] y = self.S while y < self.N: x = self.W while x < self.E: # Center point of current image tile cp = Point(x,y) # Download 4800x4800 pixel imagery if one of the bounding box corners is inside the NRW polygon # Bounding box coordinates for a given image tile minx = x - (((self.side * 360) / (2 * np.pi * self.radius * np.cos(np.deg2rad(y))))/2) miny = y - dlat/2 maxx = x + (((self.side * 360) / (2 * np.pi * self.radius * np.cos(np.deg2rad(y))))/2) maxy = y + dlat/2 # Bounding box corners for a given image tile # Lower Left LL = Point(minx,miny) # Lower Right LR = Point(maxx,miny) # Upper Left UL = Point(minx,maxy) # Upper Right UR = Point(maxx, maxy) # If bounding box corners are within NRW polygon if (self.polygon.intersects(LL) | self.polygon.intersects(LR) | self.polygon.intersects(UL) | self.polygon.intersects(UR)): Tile_coords.append((minx, miny, maxx, maxy)) # Update longitude value x = x + ((self.side * 360) / (2 * np.pi * self.radius * np.cos(np.deg2rad(y)))) # Update latitude value y = y + dlat with open(self.output_path,'wb') as f: pickle.dump(Tile_coords, f)
python
from setuptools import setup setup( name='YAFN', version='0.0.1', author='txlyre', author_email='[email protected]', packages=['yafn', 'yafn-tracker'], url='https://github.com/txlyre/yafn', license='LICENSE', description='Yet another p2p file network protocol.', install_requires=[ 'cbor2', 'pyzmq', 'pyvis', 'aiohttp', 'pycryptodome', ], )
python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 14 14:47:38 2021 @author: cxue2 """ import torch from xfdlfw import Result from xfdlfw.metric import ConfusionMatrix, Accuracy, MeanSquaredError, MeanAbsoluteError, CrossEntropy acc = Accuracy('acc') ce_ = CrossEntropy('ce_') mse = MeanSquaredError('mse') mae = MeanAbsoluteError('mae') # __init__ rsl = Result((acc, ce_, ce_)) print(rsl.summary()) # unregistered metric check try: _ = Result((ce_, acc)) _.summary((mse,)) except Exception as e: print('Exception catched:', repr(e)) # test regression met = [mse, mae] rsl_0 = Result(met) o = torch.randn((7, 3)) t = torch.randn((7, 3)) rsl_0.push(o, t) o = torch.randn((7, 3)) t = torch.randn((7, 3)) rsl_0.push(o, t) print(rsl_0.summary(met)) rsl_1 = Result(met) o = torch.randn((7, 3)) t = torch.randn((7, 3)) rsl_1.push(o, t) o = torch.randn((7, 3)) t = torch.randn((7, 3)) rsl_1.push(o, t) print(rsl_1.summary()) print('is rsl_0 better than rsl_0?', rsl_0.is_better_than(rsl_0, met)) print('is rsl_0 better than rsl_1?', rsl_0.is_better_than(rsl_1, met)) # test classification met = [ce_, acc] rsl_0 = Result(met) o = torch.randn((7, 3)) t = torch.randint(0, 3, (7,)) rsl_0.push(o, t) o = torch.randn((7, 3)) t = torch.randint(0, 3, (7,)) rsl_0.push(o, t) print(rsl_0.summary()) rsl_1 = Result(met) o = torch.randn((7, 3)) t = torch.randint(0, 3, (7,)) rsl_1.push(o, t) o = torch.randn((7, 3)) t = torch.randint(0, 3, (7,)) rsl_1.push(o, t) print(rsl_1.summary()) print('is rsl_0 better than rsl_1?', rsl_0.is_better_than(rsl_1, met))
python
"""BleBox sensor entities.""" # pylint: disable=fixme from homeassistant.const import DEVICE_CLASS_TEMPERATURE, TEMP_CELSIUS from homeassistant.exceptions import PlatformNotReady from homeassistant.helpers.entity import Entity from . import CommonEntity, async_add_blebox async def async_setup_platform(hass, config, async_add, discovery_info=None): """Set up BleBox platform.""" return await async_add_blebox( BleBoxSensorEntity, "sensors", hass, config, async_add, PlatformNotReady ) async def async_setup_entry(hass, config_entry, async_add): """Set up a BleBox entry.""" return await async_add_blebox( BleBoxSensorEntity, "sensors", hass, config_entry.data, async_add, PlatformNotReady, ) # TODO: create and use constants from blebox_uniapi? UNIT_MAP = {"celsius": TEMP_CELSIUS} DEV_CLASS_MAP = {"temperature": DEVICE_CLASS_TEMPERATURE} class BleBoxSensorEntity(CommonEntity, Entity): """Representation of a BleBox sensor feature.""" @property def state(self): """Return the state.""" return self._feature.current @property def unit_of_measurement(self): """Return the unit.""" return UNIT_MAP[self._feature.unit] @property def device_class(self): """Return the device class.""" return DEV_CLASS_MAP[self._feature.device_class]
python
from CHECLabPy.spectrum_fitters.gentile import sipm_gentile_spe, \ calculate_spectrum, SiPMGentileFitter, SpectrumParameter import numpy as np from numpy.testing import assert_allclose from numba import typed def test_sipm_gentile_spe(): x = np.linspace(-1, 20, 1000, dtype=np.float32) y = sipm_gentile_spe(x, 0., 0.2, 1., 0.1, 0.2, 1.) np.testing.assert_allclose(np.trapz(y, x), 1, rtol=1e-3) def test_calculate_spectrum(): x = np.linspace(-1, 20, 1000, dtype=np.float32) parameter_values = [0., 0.2, 1., 0.1, 0.2, 1.] lookup = typed.Dict() lookup['eped'] = 0 lookup['eped_sigma'] = 1 lookup['spe'] = 2 lookup['spe_sigma'] = 3 lookup['opct'] = 4 lookup['lambda_'] = 5 y = calculate_spectrum(x, lookup, *parameter_values) np.testing.assert_allclose(np.trapz(y, x), 1, rtol=1e-3) def test_sipm_gentile_fitter(): # Define SPE params = dict( eped=-0.5, eped_sigma=0.2, spe=2, spe_sigma=0.15, opct=0.3, ) lambda_values = [0.5, 0.7, 0.9] # Get charges random = np.random.RandomState(1) pdf_x = np.linspace(-10, 50, 10000, dtype=np.float32) pdf_y = [] charges = [] for lambda_ in lambda_values: pdf = sipm_gentile_spe(pdf_x, lambda_=lambda_, **params) pdf /= pdf.sum() charge = random.choice(pdf_x, 30000, p=pdf) pdf_y.append(pdf) charges.append(charge) # Create Fitter class n_illuminations = len(lambda_values) fitter = SiPMGentileFitter(n_illuminations=n_illuminations) # Update Fit Parameters spectrum_parameter_list = [ SpectrumParameter("eped", 0, (-10, 10)), SpectrumParameter("eped_sigma", 0.5, (0.01, 1)), SpectrumParameter("spe", 1, (0.1, 5)), SpectrumParameter("spe_sigma", 0.5, (0.01, 1)), SpectrumParameter("opct", 0.4, (0.01, 0.8)), SpectrumParameter("lambda_", 0.7, (0.001, 3), multi=True), ] fitter.parameters.update(spectrum_parameter_list) fitter.range = (-10, 50) fitter.n_bins = 1000 fitter.apply(*charges) parameter_values = fitter.fit_result_values parameter_errors = fitter.fit_result_errors rtol = 1e-2 assert_allclose(parameter_values["eped"], params["eped"], rtol=rtol) assert_allclose(parameter_values["eped_sigma"], params["eped_sigma"], rtol=rtol) assert_allclose(parameter_values["spe"], params["spe"], rtol=rtol) assert_allclose(parameter_values["spe_sigma"], params["spe_sigma"], rtol=rtol) assert_allclose(parameter_values["opct"], params["opct"], rtol=rtol) assert_allclose(parameter_values["lambda_0"], lambda_values[0], rtol=rtol) assert_allclose(parameter_values["lambda_1"], lambda_values[1], rtol=rtol) assert_allclose(parameter_values["lambda_2"], lambda_values[2], rtol=rtol) assert parameter_errors["eped"] < 0.01 assert parameter_errors["eped_sigma"] < 0.01 assert parameter_errors["spe"] < 0.01 assert parameter_errors["spe_sigma"] < 0.01 assert parameter_errors["opct"] < 0.01 assert parameter_errors["lambda_0"] < 0.01 assert parameter_errors["lambda_1"] < 0.01 assert parameter_errors["lambda_2"] < 0.01
python
# the url address of the REST API server CDS_LB='https://rest-endpoint.example.com' # location of client certificate and key CDS_CERT='../certs/cds_cert.pem' CDS_KEY='../certs/cds_key.pem' # the endpoint url of REST server, multiple version can and will be available CDS_API='/v2.0/DetectionRequests' CDS_URL=CDS_LB+CDS_API USER_AGENT='symc-dlp-cloud-connector'
python
import dash from dash.dependencies import Input, Output import dash_core_components as dcc import dash_html_components as html import dash_table_experiments as dt import json import pandas as pd import numpy as np import plotly app = dash.Dash() app.scripts.config.serve_locally=True DF_WALMART = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/1962_2006_walmart_store_openings.csv') DF_GAPMINDER = pd.read_csv( 'https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv' ) DF_GAPMINDER = DF_GAPMINDER[DF_GAPMINDER['year'] == 2007] DF_SIMPLE = pd.DataFrame({ 'x': ['A', 'B', 'C', 'D', 'E', 'F'], 'y': [4, 3, 1, 2, 3, 6], 'z': ['a', 'b', 'c', 'a', 'b', 'c'] }) app.layout = html.Div([ html.H4('Gapminder DataTable'), dt.DataTable( rows=DF_GAPMINDER.to_dict('records'), filterable=False, sortable=True, id='datatable-gapminder' ), dcc.Graph( id='graph-gapminder' ), html.H4('Simple DataTable'), dt.DataTable( rows=DF_SIMPLE.to_dict('records'), filterable=False, sortable=True, id='datatable' ), dcc.Graph( id='graph' ), ], className="container") @app.callback( Output('graph', 'figure'), [Input('datatable', 'rows')]) def update_figure(rows): dff = pd.DataFrame(rows) return { 'data': [{ 'x': dff['x'], 'y': dff['y'], 'text': dff['z'], 'type': 'bar' }] } @app.callback( Output('graph-gapminder', 'figure'), [Input('datatable-gapminder', 'rows')]) def update_figure(rows): dff = pd.DataFrame(rows) fig = plotly.tools.make_subplots( rows=3, cols=1, subplot_titles=('Life Expectancy', 'GDP Per Capita', 'Population',), shared_xaxes=True) marker = {'color': '#0074D9'} fig.append_trace({ 'x': dff['country'], 'y': dff['lifeExp'], 'type': 'bar', 'marker': marker }, 1, 1) fig.append_trace({ 'x': dff['country'], 'y': dff['gdpPercap'], 'type': 'bar', 'marker': marker }, 2, 1) fig.append_trace({ 'x': dff['country'], 'y': dff['pop'], 'type': 'bar', 'marker': marker }, 3, 1) fig['layout']['showlegend'] = False fig['layout']['height'] = 800 fig['layout']['margin'] = { 'l': 20, 'r': 20, 't': 60, 'b': 200 } return fig app.css.append_css({"external_url": "https://codepen.io/chriddyp/pen/bWLwgP.css"}) if __name__ == '__main__': app.run_server(debug=True)
python