content
stringlengths
5
1.05M
# -*- coding: utf-8 -*- """ Classifiers Created on Fri Mar 2 05:18:46 2018 @author: Oliver """ import sys import os from sklearn import svm, metrics #from sklearn.decomposition import PCA #from sklearn.pipeline import Pipeline #from sklearn.model_selection import GridSearchCV #from sklearn.linear_model import LogisticRegression #from sklearn.ensemble import BaggingClassifier, RandomForestClassifier #from sklearn.multiclass import OneVsRestClassifier import numpy as np import tensorflow as tf from attack import attacks import scipy.misc #import datetime flags = tf.app.flags flags.DEFINE_string("models", "linsvc,cnet", "the models to run") flags.DEFINE_bool("adversarial", False, "run adversarial attacks") flags.DEFINE_integer("examples", 20000, "number of examples") flags.DEFINE_string("log", 'record.txt' , "log file") flags.DEFINE_integer("epoch", -1, "number of epochs") FLAGS = flags.FLAGS def report(expected, predicted, message='', outfile = './results/record.txt') : creport = metrics.classification_report(expected, predicted) print(message) print("Classification report:\n%s\n" % (creport)) print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted)) with open(outfile, 'a') as log: log.write('\n' + ('*'*50) +'\n'+message+'\n\n'+ creport) return metrics.accuracy_score(expected, predicted) def build(pre, modeler, post, name): def train(x_train_raw, y_train_raw, train_descr): print('raw X,Y shapes: ', x_train_raw.shape, y_train_raw.shape) sys.stdout.flush() x_train,y_train, params = pre(x_train_raw, y_train_raw) print(name, ' -- train data ready. ', x_train.shape, y_train.shape) sys.stdout.flush() clf = modeler(x_train, y_train, **params) print(name, ' -- train data fit.') sys.stdout.flush() def test(x_test_raw, y_test_raw, test_descr): x_test, y_test, params2 = pre(x_test_raw, y_test_raw) if( FLAGS.adversarial ) : accuracy = attacks(clf, x_test, y_test) # require params = params2 adv = "\n\nvulnerability: "+str(accuracy) else: adv = '' predict = post(clf.predict(x_test)) expect = post(y_test) print(name, ' -- test data predicted') sys.stdout.flush() report(expect, predict, " Model: "+name+"\nTraining: "+train_descr+ "\n Testing: "+test_descr + adv, './results/'+FLAGS.log+'.txt') return test test.test = test return test train.train = train return name, train def linsvc(): def pre(X, Y): assert(X.shape[0] == Y.shape[0]) return X.reshape((Y.shape[0], -1)), Y, {} def post(Y): return Y def modeler(X, Y): classifier = svm.LinearSVC() #classifier = Pipeline([('pca', PCA(n_components = dim_latent)), ('log', LogisticRegression())], verbose=True); ##### too long #classifier = OneVsRestClassifier(BaggingClassifier(svm.SVC(kernel='linear'), # max_samples=1.0 / n_estimators, n_estimators=n_estimators)) classifier.fit(X, Y) return classifier return build(pre, modeler, post, "linsvc") def net(): import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D #from keras import backend as K def pre(X, Y): num_classes = len(set(Y)) # input image dimensions #img_rows, img_cols = 28, 28 #chan = #input_shape = (chan, img_rows, img_cols) if K.image_data_format() == 'channels_first' else (img_rows, img_cols, chan) # First dimension is the sample. If the next two are provided and nothing else, then we still need a channel. if len(X.shape) == 3: X = X.reshape(*X.shape, 1) input_shape = X.shape[1:] # X = X.reshape(X.shape[0], *input_shape) X = X.astype('float32') X /= 255 Y = keras.utils.to_categorical(Y, num_classes) return X, Y, dict(num_classes=num_classes, input_shape=input_shape) def modeler(X, Y, **params): epochs = 12 batch_size = 128 model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=params['input_shape'])) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(params['num_classes'], activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) model.fit(X, Y, batch_size=batch_size, epochs=epochs, verbose=1, validation_split=0.1) return model def post(Y): return Y.argmax(axis=1) return build(pre, modeler, post, "cnet") def sample(dataset, number): xs, ys, name = dataset indices = np.array(np.random.randint(xs.shape[0], size=number)) return xs[indices], ys[indices], name+'-crop['+str(number)+']' def ttsplit(X,Y, name, prc): n = int(prc * X.shape[0]) return (X[:n], Y[:n], name+'-train'), (X[n:], Y[n:], name+'-test') def both(data1, data2): X1, Y1, n1 = data1 X2, Y2, n2 = data2 sfx = ['-train', '-test'] name = n1 +'&'+ n2 for a, b in (sfx, reversed(sfx)): if n1.endswith(a): begin = n1[:-len(a)] if n2 == begin+b: name = begin+'-all' return np.concatenate((X1, X2), axis=0), np.concatenate((Y1, Y2), axis=0), name def shuffle(data): X, Y, n = data idx = np.arange(X.shape[0]) np.random.shuffle(idx) return X[idx], Y[idx], '§'+n global VARS; if __name__ == '__main__': import scipy.misc from keras import backend as K K.set_learning_phase(1) #set learning phase N_EXAMPLES = FLAGS.examples # Questions # HOw well trained on this test on original # train on this, test on thsi # train on original test on this. # trained on part this part original, test on original # samples are all in # /sampledir/fashion-n/split/... datasetname = sys.argv[1] gen_method = sys.argv[2] # First load original dataset def getoriginaldata(): # I suspsect these might be faster which is why I've left them in. # if datasetname == 'fashion': # from keras.datasets import fashion_mnist # return fashion_mnist.load_data() # # elif datasetname == 'mnist': # from keras.datasets import mnist # return mnist.load_data() # elif datasetname == 'cifar': # from keras.datasets import cifar10 # return cifar10.load_data() from scipy.misc import imread Xs = {'train': [], 'test':[]} Ys = {'train': [], 'test':[]} base = './data/'+datasetname for slabel in os.listdir(base): for mode in 'train', 'test': count = 0 base2 = base + '/' + slabel+ '/' + mode for imgfn in os.listdir(base2): x = imread(base2+"/"+imgfn) Xs[mode].append(x) Ys[mode].append(int(slabel)) count += 1 if count >= N_EXAMPLES: break print("original data loaded") sys.stdout.flush() return (np.array(Xs['train']), np.array(Ys['train'])), (np.array(Xs['test']), np.array(Ys['test'])) #raise ValueError('what is '+datasetname+'??') (xtrain, ytrain), (xtest, ytest) = getoriginaldata() nlabels = len(set(ytest)) stand_train = xtrain, ytrain, 'standard-'+datasetname+'-train' stand_test = xtest, ytest, 'standard-'+datasetname+'-test' X_stand = np.concatenate((xtrain, xtest), axis=0) Y_stand = np.concatenate((ytrain, ytest), axis=0) stand_all = X_stand, Y_stand, 'standard-'+datasetname+'-all' stand_train_small = sample(stand_train, N_EXAMPLES) if N_EXAMPLES < stand_train[0].shape[0] else stand_train stand_test_small = sample(stand_test, N_EXAMPLES) if N_EXAMPLES < stand_test[0].shape[0] else stand_test Xs = [] Ys = [] #datapath = './samples' for method in gen_method.split('&'): datapath = './samples/'+method folders = [f for f in os.listdir(datapath) if f.startswith(datasetname+'-')] for f in folders: label = int(f[len(datasetname)+1:]) extra = '' if FLAGS.epoch > 0: extra += '/epoch-%d' % FLAGS.epoch if 'split' in os.listdir(datapath+'/'+f + extra) : extra += '/split' for idx, imagename in enumerate(os.listdir(datapath+'/'+f+extra)): # silly test optimization, force smaller data. if idx > N_EXAMPLES / nlabels: break; # VERY IMPORTANT. This next line makes sure shitty training things from # early on in the GAN process are not reused. # if ('test' in imagename): dataX = scipy.misc.imread(datapath+'/'+f+extra+'/'+imagename) Xs.append(dataX) Ys.append(label) X_gen = np.array(Xs) Y_gen = np.array(Ys) gen_inorder = X_gen, Y_gen, datasetname + '-gen-' + gen_method gen = shuffle(gen_inorder) #gen_small = sample(gen, N_EXAMPLES) gen_small = gen gen_small_train, gen_small_test = ttsplit(*gen_small, 0.7) print("ALL DATA LOADED\n" + '*'*50) learners = dict([linsvc(), net()]) global VARS VARS = locals() for name in FLAGS.models.split(','): if name not in learners: print("NO such learner: "+name) continue learner = learners[name] print("learner: ", name) # train on gen, test on standard_all learner.train(*gen_small_train) \ .test(*stand_train_small)(*stand_test_small)(*gen_small_test) learner.train(*stand_train_small) \ .test(*stand_test_small)(*gen_small_test)(*gen_small) learner.train(*gen_small) \ .test(*stand_test)(*stand_all)
import PyV8 ctxt = PyV8.JSContext() ctxt.enter() func = ctxt.eval(""" (function(){ function hello(){ return "Hello world."; } return hello(); }) """) print func()
from django.apps import AppConfig class PriceAnalysisConfig(AppConfig): name = 'price_analysis'
# -*- coding: utf-8 -*- # Generated by Django 1.11.8 on 2019-07-10 15:28 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('trend', '0005_auto_20190710_1810'), ] operations = [ migrations.AlterField( model_name='product', name='category', field=models.CharField(choices=[(1, '1'), (2, '1'), (3, '3')], max_length=50), ), ]
# Copyright 2021 Pants project contributors. # Licensed under the Apache License, Version 2.0 (see LICENSE). DEV_PORTS = { "helloworld.service.frontend": 8000, "helloworld.service.admin": 8001, "helloworld.service.user": 8010, "helloworld.service.welcome": 8020, } def get_dev_port(service: str) -> int: try: return DEV_PORTS[service] except KeyError: raise ValueError(f"No dev port found for service {service}")
from random import randint, seed import cv2 as cv import sys import os import math import numpy as np import heapq from timeit import default_timer as timer # from numba import jit # from numba.typed import List seed(42069) # functions for converting images to grids def getListOfFiles(dirName, allFiles): # create a list of file and sub directories # names in the given directory listOfFile = os.listdir(dirName) # Iterate over all the entries for entry in listOfFile: # Create full path fullPath = os.path.join(dirName, entry) # If entry is a directory then get the list of files in this directory if os.path.isdir(fullPath): allFiles = allFiles + getListOfFiles(fullPath) else: allFiles.append(fullPath) def imageToGrid(image, grid, dim): print("----- Converting Image to Grid Object -----") # load image img = cv.imread(cv.samples.findFile(image)) if img is None: sys.exit("Could not read the image.") cv.imwrite("output/original.png", img) # resize image resized = cv.resize(img, dim, interpolation = cv.INTER_AREA) cv.imwrite("output/resized.png", resized) print('Resized Dimensions : ',resized.shape) # convert to grayscale grayImg = cv.cvtColor(resized, cv.COLOR_BGR2GRAY) cv.imwrite("output/grayscale.png", grayImg) # apply thresholding to easily separate walkable and unwalkable areas ret, thresh1 = cv.threshold(grayImg,75,229,cv.THRESH_BINARY) cv.imwrite("output/threshold.png", thresh1) print('Threshold Dimensions : ', thresh1.shape) for i in range(thresh1.shape[0]): for j in range(thresh1.shape[1]): # if the current value = 0 (meaning black) append to list of walls if thresh1[i][j] == 0: grid[i,j] = 0 else: grid[i,j] = 1 def createGridFromDatasetImage(dataset, grid, dim): print('----- Creating Grid Object from Dataset Image-----') listOfImages = [] getListOfFiles(dataset, listOfImages) image = listOfImages[randint(0, len(listOfImages)-1)] print('Random Image: ', image) imageToGrid(image, grid, dim) def randomStartGoal(grid, start, goal): print('----- Generating Random Start and Goal -----') dist = 0 width, height = grid.shape hypotenuse = math.sqrt(math.pow(width, 2) + math.pow(height,2)) while dist <= 0.50*hypotenuse: random_x = randint(0, width-1) random_y = randint(0, height-1) start[0] = random_x start[1] = random_y while grid[random_x, random_y] == 0: random_x = randint(0, width-1) random_y = randint(0, height-1) start[0] = random_x start[1] = random_y random_x = randint(0, width-1) random_y = randint(0, height-1) goal[0] = random_x goal[1] = random_y while grid[random_x, random_y] == 0: random_x = randint(0, width-1) random_y = randint(0, height-1) goal[0] = random_x goal[1] = random_y a = np.array(start) b = np.array(goal) dist = np.linalg.norm(a-b) # function for reconstructing found path def reconstructPathV2(cameFrom, start, goal, path): currentX, currentY = goal while (currentX, currentY) != start: path.append((currentX, currentY)) currentX, currentY = cameFrom[currentX, currentY] path.append(start) path.reverse # functions for pathfinding # @jit def passable(grid, tile): x,y = tile return grid[tile] == 1 # @jit def inBounds(grid, tile): (x, y) = tile return 0 <= x < grid.shape[0] and 0 <= y < grid.shape[1] # @jit def getNeighbors(grid, tile): (x, y) = tile results = [] possibleNeighbors = [(x+1,y), (x,y-1), (x-1,y), (x,y+1)] for tile in possibleNeighbors: if inBounds(grid, tile): if passable(grid, tile): results.append(tile) if (x + y)%2 == 0: results.reverse() return results # @jit def heuristic(a, b): (x1, y1) = a (x2, y2) = b return abs(x1-x2) + abs(y1-y2) # @jit(nopython=True) def search(grid, start, goal, parentHash, FValue): width, height = grid.shape openList = [] # openList.append([9999, (-1, -1)]) openListEntryFinder = {} closedList = [] # openList.append([9999, (-1, -1)]) closedListEntryFinder = {} GValue = np.zeros((width, height), dtype=np.int32) HValue = np.zeros((width, height), dtype=np.int32) parentHash[:] = np.array([-1,-1]) addToPQ(openList, openListEntryFinder, start, 0) startX, startY = start GValue[startX, startY] = 0 HValue[startX, startY] = heuristic(start, goal) FValue[startX, startY] = GValue[startX, startY] + HValue[startX, startY] while not len(openList) == 0: # print(openListEntryFinder) current = popFromPQ(openList, openListEntryFinder) # print(grid[current]) currentX, currentY = current if current == goal: # print('Found goal %s' %(str(current))) break for next in getNeighbors(grid, current): # print(next) nextX, nextY = next newG = GValue[currentX, currentY] + 1 # constant 1 since grid if next in openListEntryFinder: if newG < GValue[nextX, nextY]: removeFromPQ(openList, openListEntryFinder, next) if next in closedListEntryFinder: if newG < GValue[nextX, nextY]: removeFromPQ(closedList, closedListEntryFinder, next) if (next not in openListEntryFinder) and (next not in closedListEntryFinder): parentHash[nextX, nextY] = np.array([currentX, currentY]) GValue[nextX, nextY] = newG HValue[nextX, nextY] = heuristic(next, goal) FValue[nextX, nextY] = GValue[nextX, nextY] + HValue[nextX, nextY] addToPQ(openList, openListEntryFinder, next, FValue[nextX, nextY]) addToPQ(closedList, closedListEntryFinder, current, FValue[currentX, currentY]) # functions for priority queue # @jit def addToPQ(elements, entryFinder, item, priority=0): if item in entryFinder: removeFromPQ(elements, entryFinder, item) entry = (priority, item) entryFinder[item] = entry heapq.heappush(elements, entry) # print(elements) # print(entryFinder) # @jit def removeFromPQ(elements, entryFinder, item): entry = entryFinder.pop(item) elements.remove(entry) heapq.heapify(elements) # @jit def popFromPQ(elements, entryFinder): priority, item = heapq.heappop(elements) return item def main(): # create grid from image dataset scale_factor = 7 # scales to a power of 2 dim = (int(math.pow(2, scale_factor)), int(math.pow(2, scale_factor))) grid = np.zeros(dim, dtype=np.int32) createGridFromDatasetImage('dataset/da2-png', grid, dim) print(grid) # generate random start and goal start = [-1, -1] goal = [-1, -1] randomStartGoal(grid, start, goal) start = tuple(start) goal = tuple(goal) # search for path width, height = grid.shape parents = np.empty((width, height, 2), dtype=np.int32) cost = np.zeros((width, height), dtype=np.int32) s = timer() search(grid, start, goal, parents, cost) # print(parents) # print(cost) # reconstruct path path = [] reconstructPathV2(parents, tuple(start), tuple(goal), path) e = timer() print('Before compilation: ', e-s) s = timer() search(grid, start, goal, parents, cost) # print(parents) # print(cost) # reconstruct path path = [] reconstructPathV2(parents, tuple(start), tuple(goal), path) e = timer() print('After compilation: ', e-s) print(path) if __name__ == "__main__": main()
from datetime import datetime from pysnmp.smi import rfc1902 from piat.utils.logger import get_logger LOGGER = get_logger(__name__) class TrapMsg: """ Trap msg Object """ def __init__(self, var_binds, viewer): """ Trap Msg Object. :param var_binds: pysnmp var_binds. :param viewer: pysnmp MibViewController """ self._var_binds = var_binds self._viewer = viewer self.timestamp = datetime.now() self._parsed_data = {} self._parse() self.result = {'ip': self._parsed_data['snmpTrapAddress'], 'timestamp': self.timestamp, **self._parsed_data} def _parse(self): """ translate the trap msg with the mib viewer """ for name, val in self._var_binds: var_bind = rfc1902.ObjectType(rfc1902.ObjectIdentity(name), val) var_bind.resolveWithMib(self._viewer) obj_name = var_bind[0].getMibSymbol()[1] value = var_bind[1].prettyPrint() self._parsed_data[obj_name] = value def get_dictionary(self): return self.result
K = int(input()) h = K // 2 print((K - h) * h)
# Copyright (c) 2013, Lin To and contributors # For license information, please see license.txt # PLEASE NOTE : THIS CODE IS TERRIBLE, I GENERALLY DO BETTER THAN THIS from __future__ import unicode_literals import frappe from frappe import _ def execute(filters=None, filter_by_date=True): records = get_sql_records(filters, filter_by_date) if len(records) == 0: frappe.throw(_("No values available for set filters")) accounts = get_sql_records_accounts(filters) tree = build_sheet_tree(records, accounts) columns = get_columns() data = get_data(tree) chart = get_chart_data(data) return columns, data, "", chart def get_chart_data(data): labels = ["Assets", "Liabilities", "Equity"] c_dict = {} for d in data: acc = d["account"] amt = d["amount"] for l in labels: if l in acc: c_dict[l] = amt chart = dict( type="bar", data=dict( labels=labels, datasets=[dict(name=_(l), values=[f(c_dict[l])] ) for l in labels] ), ) return chart def f(v): return float(v.replace(",","")) def get_data(tree): tk = [(k, i[3]) for k, i in tree.items() if i[1] is None] tk.sort(key=lambda i: i[1]) data = [] totals = {0: 0, 1: 0} default = int(tk[0][1]) has_switched = False for i, (an, i_c) in enumerate(tk): assert isinstance(i_c, int), "Apply cast." totals[i_c] += tree[an][0] if i_c != default and not has_switched: append_total_row(default, totals, data) has_switched == True data.append(get_data_row("", "", 0, 0)) add_data_row(an, tree, data, 0) if i == len(tk) - 1: append_total_row(i_c, totals, data) return data def append_total_row(i_c, totals, data): label = frappe.bold(f'Total ({"Credit" if i_c else "Debit"})') amount = frappe.format(totals[i_c], "Currency") row = get_data_row(label, amount, 0, 0) data.append(row) def add_data_row(an, tree, data, i): balance, _, children, _ = tree[an] is_group = 0 if not children else 1 account = an if i == 0: account = frappe.bold(account) amount = frappe.format(balance, "Currency") data.append(get_data_row(account, amount, i, is_group)) if is_group: for child in children: add_data_row(child, tree, data, i + 1) def get_data_row(account, amount, indent, is_group): return frappe._dict( {"account": account, "amount": amount, "indent": indent, "is_group": is_group} ) def get_columns(): return ["Account:Data:300", "Amount:Currency:200"] def build_sheet_tree(records, accounts): statement = get_balance_statement(records) accounts = {n: (n, an, pn, i_g, i_c, c) for n, an, pn, i_g, i_c, c in accounts} accs = {} for an in statement: balance, pn, _ = statement[an] if an not in accs: pan = None if pn is None else accounts[pn][1] accs[an] = [balance, pan, None, None] manage_parents(an, pn, accs, accounts, balance) return accs def manage_parents(an, pn, accs, accounts, balance): insert_parents(pn, accs, accounts) update_parents(an, pn, accs, accounts, balance) def insert_parents(pn, accs, accounts): pan = accounts[pn][1] if pan in accs: return ppn = accounts[pn][2] i_c = accounts[pn][4] if ppn is None: accs[pan] = [0, None, [], i_c] else: ppan = accounts[ppn][1] accs[pan] = [0, ppan, [], None] insert_parents(ppn, accs, accounts) def update_parents(an, pn, accs, accounts, balance): pan = accounts[pn][1] accs[pan][0] += balance accs[pan][2].append(an) ppn = accounts[pn][2] if ppn is not None: update_parents(pan, ppn, accs, accounts, balance) def get_balance_statement(records): statement = {} for _, cr, dr, is_credit, account_name, parent_account in records: if account_name not in statement: statement[account_name] = [0, parent_account, None] if is_credit: statement[account_name][0] += cr statement[account_name][0] -= dr else: statement[account_name][0] -= cr statement[account_name][0] += dr return statement def get_sql_records_accounts(filters): query = f""" SELECT name, account_name, parent_account, is_group, is_credit, currency FROM tabAccount WHERE company="{filters['company']}" ORDER BY is_group DESC """ return frappe.db.sql(query) def get_sql_records(filters, filter_by_date=True): query = f""" SELECT `tabGL Entry`.account, `tabGL Entry`.credit, `tabGL Entry`.debit, `tabAccount`.is_credit, `tabAccount`.account_name, `tabAccount`.parent_account FROM `tabGL Entry` JOIN `tabAccount` ON `tabGL Entry`.account =`tabAccount`.name WHERE `tabAccount`.company="{filters['company']}" AND `tabAccount`.report_type="Balance Sheet" AND `tabGL Entry`.docstatus=1 """ if filter_by_date: query += f""" AND `tabGL Entry`.posting_date BETWEEN "{filters['from_date']}" AND "{filters['to_date']}" """ return frappe.db.sql(query) # PLEASE NOTE : THIS CODE IS TERRIBLE, I GENERALLY DO BETTER THAN THIS
#!/usr/bin/python import os import sys import argparse import numpy as np import pylab as pl import scipy.io from copy import deepcopy from scai_mne.viz import circular_layout, plot_connectivity_circle from scai_utils import * from aparc12 import get_aparc12_cort_rois lobes = ["Prefrontal", "Premotor", "Insular", "Precentral", \ "Postcentral", "PPC", "Temporal", "Cingulate"] # lobeClrs = [(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 0, 0), \ # (1, 1, 0), (0, 0.5, 0), (1, 0.5, 0), (0.5, 0, 0.5)] lobeClrs = [(0.5, 0.5, 0.5)] * len(lobes) COORD_FILE = "/users/cais/STUT/FSDATA/fsaverage2/mri/aparc12_roi_coords.txt" hemis=["lh", "rh"] FIG_DIR = "/users/cais/STUT/figures" if __name__ == "__main__": ap = argparse.ArgumentParser(description="Draw connectivity circle plot") ap.add_argument("inMatFN", help="Input mat file with the a_cmat") ap.add_argument("hemi", type=str, choices=hemis, help="Hemisphere") ap.add_argument("grp", type=str, help="Group (e.g., PWS, PFS: must exist as a_cmat[grp] in inMatFN") ap.add_argument("--vmax", type=float, default=np.nan, help="Maximum value (e.g., 331.8") if len(sys.argv) == 1: ap.print_help() sys.exit(0) # === Parse input arguments === # args = ap.parse_args() inMatFN = args.inMatFN hemi = args.hemi grp = args.grp vmax = args.vmax # === ROIs by lobe === rois_bl = {} for (i0, t_lobe) in enumerate(lobes): rois_bl[t_lobe] = get_aparc12_cort_rois(lobe=t_lobe, bSpeech=True) rois_bl[t_lobe] = np.array(rois_bl[t_lobe]) # === Read the ROI centers of gravity from text file === # # check_file(COORD_FILE) cf = open(COORD_FILE, "rt") ct = cf.read().split('\n') ct = remove_empty_strings(ct) cf.close() roi_names = [] roi_nums = [] roi_coords = [] for (i0, tline) in enumerate(ct): t_items = tline.split(' ') if len(t_items) != 5: raise Exception, "Unrecognized formant in a line of %s: %s" \ % (COORD_FILE, tline) roi_names.append(t_items[0]) roi_nums.append(t_items[1]) t_coord = [float(t_items[2]), float(t_items[3]), float(t_items[4])] roi_coords.append(t_coord) cogy_bl = {} for (i0, t_lobe) in enumerate(lobes): cogy_bl[t_lobe] = np.zeros(len(rois_bl[t_lobe])) for (i1, t_roi) in enumerate(rois_bl[t_lobe]): assert(roi_names.count("lh_" + t_roi) == 1) t_coord = roi_coords[roi_names.index("lh_" + t_roi)] cogy_bl[t_lobe][i1] = t_coord[1] # print("%s - %f" % (t_roi, t_coord[1])) # DEBUG sortidx = sorted(range(len(cogy_bl[t_lobe])), \ key=lambda k: cogy_bl[t_lobe][k], \ reverse=True) rois_bl[t_lobe] = rois_bl[t_lobe][sortidx] # === Combine into a single list of ROIs === # rois = [] for (i0, t_lobe) in enumerate(lobes): rois += rois_bl[t_lobe] for (i0, t_roi) in enumerate(rois): rois[i0] = hemi[0].upper() + " " + t_roi rois = np.array(rois) nrois = len(rois) roi_clrs = [()] * nrois ccnt = 0 for (i0, t_lobe) in enumerate(lobes): for i1 in range(len(rois_bl[t_lobe])): roi_clrs[ccnt] = lobeClrs[i0] ccnt += 1 print("nrois = %d" % (nrois)) # === Load the matrix from the mat file === # check_file(inMatFN) condat = scipy.io.loadmat(inMatFN) assert(condat.keys().count("mn_cmat") == 1) assert(condat.keys().count("sprois") == 1) trois = deepcopy(condat["sprois"]) trois = trois[0] assert(len(trois) == nrois) for (i0, t_roi) in enumerate(trois): t_str_roi = str(trois[i0]) trois[i0] = t_str_roi.replace("[u'", "").replace("']", "")\ .replace("lh_", "L ").replace("rh_", "R ") trois = list(trois) idxr = [] for (i0, t_roi) in enumerate(rois): idxr.append(trois.index(t_roi)) trois = np.array(trois) tcon = deepcopy(condat["mn_cmat"][grp]) mn_con = tcon[0][0] # mn_con = np.mean(tcon, axis=2) mn_con = mn_con[idxr, :] mn_con = mn_con[:, idxr] # == Set the self-connetions to zero == # for i0 in range(nrois): mn_con[i0][i0] = 0.0 # === === # node_order = list(rois) node_angles = circular_layout(rois, node_order, start_pos=0) if np.isnan(vmax): vmax = np.max(mn_con) print("vmax = %.1f" % vmax) # con = np.random.rand(nrois, nrois) # DEBUG plot_connectivity_circle(mn_con, rois, node_angles=node_angles, facecolor="w", textcolor="k", node_colors=roi_clrs, colormap="binary", vmax=vmax, fontsize=12, title="Connectivity matrix: %s - %s" % (grp, hemi)) # === Save to tif file === # figFN = os.path.join(FIG_DIR, "conn_mat_circle_%s_%s.png" % (grp, hemi)) pl.savefig(figFN, faceColor="w", format="png", dpi=200) check_file(figFN) print("INFO: Saved to image file: %s" % (figFN)) pl.show()
import os.path from validator.contextgenerator import ContextGenerator class ChromeManifest(object): """This class enables convenient parsing and iteration of chrome.manifest files.""" def __init__(self, data, path): self.context = ContextGenerator(data) self.lines = data.split('\n') # Extract the data from the triples in the manifest triples = [] counter = 0 for line in self.lines: line = line.strip() counter += 1 # Skip weird lines. if line.startswith('#'): continue triple = line.split(None, 2) if not triple: continue elif len(triple) == 2: triple.append('') if len(triple) < 3: continue triples.append({'subject': triple[0], 'predicate': triple[1], 'object': triple[2], 'line': counter, 'filename': path, 'context': self.context}) self.triples = triples def get_value(self, subject=None, predicate=None, object_=None): """Returns the first triple value matching the given subject, predicate, and/or object""" for triple in self.triples: # Filter out non-matches if (subject and triple['subject'] != subject) or \ (predicate and triple['predicate'] != predicate) or \ (object_ and triple['object'] != object_): # pragma: no cover continue # Return the first found. return triple return None def get_objects(self, subject=None, predicate=None): """Returns a generator of objects that correspond to the specified subjects and predicates.""" for triple in self.triples: # Filter out non-matches if ((subject and triple['subject'] != subject) or (predicate and triple['predicate'] != predicate)): continue yield triple['object'] def get_triples(self, subject=None, predicate=None, object_=None): """Returns triples that correspond to the specified subject, predicates, and objects.""" for triple in self.triples: # Filter out non-matches if subject is not None and triple['subject'] != subject: continue if predicate is not None and triple['predicate'] != predicate: continue if object_ is not None and triple['object'] != object_: continue yield triple def get_applicable_overlays(self, error_bundle): """ Given an error bundle, a list of overlays that are present in the current package or subpackage are returned. """ content_paths = self.get_triples(subject='content') if not content_paths: return set() # Create some variables that will store where the applicable content # instruction path references and where it links to. chrome_path = '' content_root_path = '/' # Look through each of the listed packages and paths. for path in content_paths: chrome_name = path['predicate'] if not path['object']: continue path_location = path['object'].strip().split()[0] # Handle jarred paths differently. if path_location.startswith('jar:'): if not error_bundle.is_nested_package: continue # Parse out the JAR and it's location within the chrome. split_jar_url = path_location[4:].split('!', 2) # Ignore invalid/unsupported JAR URLs. if len(split_jar_url) != 2: continue # Unpack the JAR URL. jar_path, package_path = split_jar_url # Ignore the instruction if the JAR it points to doesn't match # up with the current subpackage tree. if jar_path != error_bundle.package_stack[0]: continue chrome_path = self._url_chunk_join(chrome_name, package_path) # content_root_path stays at the default: / break else: # If we're in a subpackage, a content instruction referring to # the root of the package obviously doesn't apply. if error_bundle.is_nested_package: continue chrome_path = self._url_chunk_join(chrome_name, 'content') content_root_path = '/%s/' % path_location.strip('/') break if not chrome_path: return set() applicable_overlays = set() chrome_path = 'chrome://%s' % self._url_chunk_join(chrome_path + '/') for overlay in self.get_triples(subject='overlay'): if not overlay['object']: error_bundle.error( err_id=('chromemanifest', 'get_applicable_overalys', 'object'), error='Overlay instruction missing a property.', description='When overlays are registered in a chrome ' 'manifest file, they require a namespace and ' 'a chrome URL at minimum.', filename=overlay['filename'], line=overlay['line'], context=self.context) #TODO(basta): Update this! continue overlay_url = overlay['object'].split()[0] if overlay_url.startswith(chrome_path): overlay_relative_path = overlay_url[len(chrome_path):] applicable_overlays.add('/%s' % self._url_chunk_join(content_root_path, overlay_relative_path)) return applicable_overlays def reverse_lookup(self, state, path): """ Returns a chrome URL for a given path, given the current package depth in an error bundle. State may either be an error bundle or the actual package stack. """ # Make sure the path starts with a forward slash. if not path.startswith('/'): path = '/%s' % path # If the state is an error bundle, extract the package stack. if not isinstance(state, list): state = state.package_stack content_paths = self.get_triples(subject='content') for content_path in content_paths: chrome_name = content_path['predicate'] if not content_path['object']: continue path_location = content_path['object'].split()[0] if path_location.startswith('jar:'): if not state: continue # Parse out the JAR and it's location within the chrome. split_jar_url = path_location[4:].split('!', 2) # Ignore invalid/unsupported JAR URLs. if len(split_jar_url) != 2: continue # Unpack the JAR URL. jar_path, package_path = split_jar_url if jar_path != state[0]: continue return 'chrome://%s' % self._url_chunk_join(chrome_name, package_path, path) else: if state: continue path_location = '/%s/' % path_location.strip('/') rel_path = os.path.relpath(path, path_location) if rel_path.startswith('../') or rel_path == '..': continue return 'chrome://%s' % self._url_chunk_join(chrome_name, rel_path) return None def _url_chunk_join(self, *args): """Join the arguments together to form a predictable URL chunk.""" # Strip slashes from either side of each path piece. pathlets = map(lambda s: s.strip('/'), args) # Remove empty pieces. pathlets = filter(None, pathlets) url = '/'.join(pathlets) # If this is a directory, add a trailing slash. if args[-1].endswith('/'): url = '%s/' % url return url
import torch from torch.autograd import Variable import torch.utils.data as Data import torch.nn as nn import matplotlib.pyplot as plt import torch.optim as optim from matplotlib import cm import numpy as np import copy torch.manual_seed(1) # reproducible def franke(X, Y): term1 = .75*torch.exp(-((9*X - 2).pow(2) + (9*Y - 2).pow(2))/4) term2 = .75*torch.exp(-((9*X + 1).pow(2))/49 - (9*Y + 1)/10) term3 = .5*torch.exp(-((9*X - 7).pow(2) + (9*Y - 3).pow(2))/4) term4 = .2*torch.exp(-(9*X - 4).pow(2) - (9*Y - 7).pow(2)) f = term1 + term2 + term3 - term4 dfx = -2*(9*X - 2)*9/4 * term1 - 2*(9*X + 1)*9/49 * term2 + \ -2*(9*X - 7)*9/4 * term3 + 2*(9*X - 4)*9 * term4 dfy = -2*(9*Y - 2)*9/4 * term1 - 9/10 * term2 + \ -2*(9*Y - 3)*9/4 * term3 + 2*(9*Y - 7)*9 * term4 return f, dfx, dfy class Net(nn.Module): def __init__(self,inp,out, activation, num_hidden_units=100, num_layers=1): super(Net, self).__init__() self.fc1 = nn.Linear(inp, num_hidden_units, bias=True) self.fc2 = nn.ModuleList() for i in range(num_layers): self.fc2.append(nn.Linear(num_hidden_units, num_hidden_units, bias=True)) self.fc3 = nn.Linear(num_hidden_units, out, bias=True) self.activation = activation def forward(self, x): x = self.fc1(x) x = self.activation(x) for fc in self.fc2: x = fc(x) x = self.activation(x) x = self.fc3(x) return x def predict(self, x): self.eval() y = self(x) x = x.cpu().numpy().flatten() y = y.cpu().detach().numpy().flatten() return [x, y] def init_weights(m): classname = m.__class__.__name__ # for every Linear layer in a model.. if classname.find('Linear') != -1: # apply a uniform distribution to the weights and a bias=0 n = m.in_features y = 1.0 / np.sqrt(n) m.weight.data.uniform_(-y, y) m.bias.data.fill_(0) def train(lam1, loader, EPOCH, BATCH_SIZE): state = copy.deepcopy(net.state_dict()) best_loss = np.inf lossTotal = np.zeros((EPOCH, 1)) lossRegular = np.zeros((EPOCH, 1)) lossDerivatives = np.zeros((EPOCH, 1)) # start training for epoch in range(EPOCH): scheduler.step() epoch_mse0 = 0.0 epoch_mse1 = 0.0 for step, (batch_x, batch_y) in enumerate(loader): # for each training step b_x = Variable(batch_x) b_y = Variable(batch_y) net.eval() b_x.requires_grad = True output0 = net(b_x) output0.sum().backward(retain_graph=True, create_graph=True) output1 = b_x.grad b_x.requires_grad = False net.train() mse0 = loss_func(output0, b_y[:,0:1]) mse1 = loss_func(output1, b_y[:,1:3]) epoch_mse0 += mse0.item() * BATCH_SIZE epoch_mse1 += mse1.item() * BATCH_SIZE loss = mse0 + lam1 * mse1 optimizer.zero_grad() # clear gradients for next train loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients epoch_mse0 /= num_data epoch_mse1 /= num_data epoch_loss = epoch_mse0+lam1*epoch_mse1 lossTotal[epoch] = epoch_loss lossRegular[epoch] = epoch_mse0 lossDerivatives[epoch] = epoch_mse1 if epoch%50==0: print('epoch', epoch, 'lr', '{:.7f}'.format(optimizer.param_groups[0]['lr']), 'mse0', '{:.5f}'.format(epoch_mse0), 'mse1', '{:.5f}'.format(epoch_mse1), 'loss', '{:.5f}'.format(epoch_loss)) if epoch_loss < best_loss: best_loss = epoch_loss state = copy.deepcopy(net.state_dict()) #state = copy.deepcopy(net.state_dict()) print('Best score:', best_loss) return state, lossTotal, lossRegular, lossDerivatives def getDerivatives(x): x1 = x.requires_grad_(True) output = net.eval()(x1) nn = output.shape[0] gradx = np.zeros((nn,2)) for ii in range(output.shape[0]): y_def =output[ii].backward(retain_graph=True) gradx[ii,:] = x1.grad[ii] return gradx def plotLoss(lossTotal, lossRegular, lossDerivatives): fig, ax = plt.subplots(1, 1, dpi=120) plt.semilogy(lossTotal / lossTotal[0], label='Total loss') plt.semilogy(lossRegular[:, 0] / lossRegular[0], label='Regular loss') plt.semilogy(lossDerivatives[:, 0] / lossDerivatives[0], label='Derivatives loss') ax.set_xlabel("epochs") ax.set_ylabel("L/L0") ax.legend() fig.subplots_adjust(left=0.1, right=0.9, bottom=0.15, top=0.9, wspace=0.3, hspace=0.2) plt.savefig("figures/Loss.png") plt.show() def plotPredictions(prediction,gradx, f,dfx,dfy, extent): # Initialize plots fig, ax = plt.subplots(2, 3, figsize=(14, 10)) ax[0, 0].imshow(f, extent=extent) ax[0, 0].set_title('True values') psm_f = ax[0, 0].pcolormesh(f, cmap=cm.jet, vmin=np.amin(f.detach().numpy()), vmax=np.amax(f.detach().numpy())) fig.colorbar(psm_f, ax=ax[0, 0]) ax[0, 0].set_aspect('auto') ax[0, 1].imshow(dfx, extent=extent, cmap=cm.jet) ax[0, 1].set_title('True x-derivatives') psm_dfx = ax[0, 1].pcolormesh(dfx, cmap=cm.jet, vmin=np.amin(dfx.detach().numpy()), vmax=np.amax(dfx.detach().numpy())) fig.colorbar(psm_dfx, ax=ax[0, 1]) ax[0, 1].set_aspect('auto') ax[0, 2].imshow(dfy, extent=extent, cmap=cm.jet) ax[0, 2].set_title('True y-derivatives') psm_dfy = ax[0, 2].pcolormesh(dfy, cmap=cm.jet, vmin=np.amin(dfy.detach().numpy()), vmax=np.amax(dfy.detach().numpy())) fig.colorbar(psm_dfy, ax=ax[0, 2]) ax[0, 2].set_aspect('auto') ax[1, 0].imshow(prediction[:, 0].detach().numpy().reshape(nx_test, ny_test), extent=extent, cmap=cm.jet) ax[1, 0].set_title('Predicted values') fig.colorbar(psm_f, ax=ax[1, 0]) ax[1, 0].set_aspect('auto') ax[1, 1].imshow(gradx[:, 0].reshape(nx_test, ny_test), extent=extent, cmap=cm.jet) ax[1, 1].set_title('Predicted x-derivatives') fig.colorbar(psm_dfx, ax=ax[1, 1]) ax[1, 1].set_aspect('auto') ax[1, 2].imshow(gradx[:, 1].reshape(nx_test, ny_test), extent=extent, cmap=cm.jet) ax[1, 2].set_title('Predicted y-derivatives') fig.colorbar(psm_dfy, ax=ax[1, 2]) ax[1, 2].set_aspect('auto') plt.savefig("figures/PredictionOverTestPoints.png") plt.show() if __name__ == "__main__": nx_train = 10 ny_train = 10 xv, yv = torch.meshgrid([torch.linspace(0, 1, nx_train), torch.linspace(0, 1, ny_train)]) train_x = torch.cat(( xv.contiguous().view(xv.numel(), 1), yv.contiguous().view(yv.numel(), 1)), dim=1 ) f, dfx, dfy = franke(train_x[:, 0], train_x[:, 1]) train_y = torch.stack([f, dfx, dfy], -1).squeeze(1) x, y = Variable(train_x), Variable(train_y) net = Net(inp=2, out=1, activation=nn.Tanh(), num_hidden_units=256, num_layers=2) optimizer = torch.optim.Adam(net.parameters(), lr=3e-4, weight_decay=1e-6) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1000, gamma=0.5) loss_func = torch.nn.MSELoss() # this is for regression mean squared loss import torch.multiprocessing torch.multiprocessing.set_sharing_strategy('file_system') BATCH_SIZE = 100 EPOCH = 10000 num_data = train_x.shape[0] torch_dataset = Data.TensorDataset(x, y) loader = Data.DataLoader( dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=2, ) # Define derivative loss component to total loss lam1 = .5 state, lossTotal, lossRegular, lossDerivatives = train(lam1, loader, EPOCH, BATCH_SIZE) net.load_state_dict(state) # Test points nx_test, ny_test = 40, 40 xv, yv = torch.meshgrid([torch.linspace(0, 1, nx_test), torch.linspace(0, 1, ny_test)]) f, dfx, dfy = franke(xv, yv) test_x = torch.stack([xv.reshape(nx_test * ny_test, 1), yv.reshape(nx_test * ny_test, 1)], -1).squeeze(1) gradx = getDerivatives(test_x) plotLoss(lossTotal, lossRegular, lossDerivatives) prediction = net(test_x) extent = (xv.min(), xv.max(), yv.max(), yv.min()) plotPredictions(prediction, gradx, f, dfx, dfy, extent)
from struct import unpack from LnkParse3.text_processor import TextProcessor """ An ItemID is an element in an IDList structure (section 2.2.1). The data stored in a given ItemID is defined by the source that corresponds to the location in the target namespace of the preceding ItemIDs. This data uniquely identifies the items in that part of the namespace. ------------------------------------------------------------------ | 0-7b | 8-15b | 16-23b | 24-31b | ------------------------------------------------------------------ | ItemIDSize | Data (variable) | ------------------------------------------------------------------ | ... | ------------------------------------------------------------------ """ class LnkTargetBase: SHELL_ITEM_SHEL_FS_FOLDER = { 0x01: "Is directory", 0x02: "Is file", 0x04: "Has Unicode strings", 0x08: "Unknown", 0x80: "Has CLSID", } SIZE_OF_TARGET_SIZE = 2 def __init__(self, indata=None, cp=None): self._target = {} self.cp = cp self._raw = indata self.text_processor = TextProcessor(cp=self.cp) start = self.SIZE_OF_TARGET_SIZE end = start + self.size() self._raw_target = self._raw[start:end] def as_item(self): return { "class": self.name, } def size(self): """ItemIDSize (2 bytes): A 16-bit, unsigned integer that specifies the size, in bytes, of the ItemID structure, including the ItemIDSize field. """ start, end = 0, 2 size = unpack("<H", self._raw[start:end])[0] return size def class_type_indicator(self): start, end = 0, 1 flags = unpack("<B", self._raw_target[start:end])[0] return flags def has_unicode_strings(self): inv = {v: k for k, v in self.SHELL_ITEM_SHEL_FS_FOLDER.items()} mask = inv["Has Unicode strings"] return bool(self.class_type_indicator() & mask)
import sys from pathlib import Path from tools import human_readable, progress_bar, get_func_exec_time from datetime import datetime class FileCrawler: _directories: int = 0 _files: int = 0 _hidden_files: int = 0 _total_size: int = 0 _stats_link = "\x1b]8;;file://./crawls-stats.txt/\acrawls-stats.txt\x1b]8;;\a" _path = Path(sys.argv[1]) @classmethod def _save_path_info(cls) -> None: lines = [ f'\n----- In your {cls._path} path, you have:\n', f'* {human_readable(cls._directories)} directories\n', f'* {human_readable(cls._files)} files\n', f'* {human_readable(cls._hidden_files)} hidden files\n', f'Total size: {human_readable(cls._total_size, is_file_sys=True)}\n', f'Information generated on {datetime.today()}\n' ] with open('crawls-stats.txt', 'a+', encoding='utf8') as file: file.writelines(lines) @classmethod def _update_hidden_files(cls, path: Path) -> None: if path.is_file() and path.name.startswith('.'): cls._hidden_files += 1 @classmethod def _update_files(cls, path: Path) -> None: if path.is_file(): cls._files += 1 @classmethod def _update_directories(cls, path: Path) -> None: if path.is_dir(): cls._directories += 1 @classmethod def _update_path_info(cls, path: Path) -> None: if path.exists(): cls._total_size += path.stat().st_size cls._update_directories(path) cls._update_files(path) cls._update_hidden_files(path) @classmethod @get_func_exec_time def fetch_info(cls) -> None: if not cls._path.exists() or not cls._path.is_absolute() or not cls._path.is_dir(): return print('The path must exist, must be absolute and must be a directory.') print('\nLoading files...\n') try: for path in progress_bar(list(cls._path.glob('**/*'))): cls._update_path_info(path) except (PermissionError, OSError): print("\n\n🤕️ Due to system errors, the process was interrupted.") cls._save_path_info() print('\n🤗️ Ctrl+click on ->', cls._stats_link, 'to display info.', '\n') if __name__ == '__main__': try: FileCrawler.fetch_info() except IndexError: print('[command-error]: $ python file_crawler.py your_path')
from understat.constants import BASE_URL, LEAGUE_URL, PLAYER_URL, TEAM_URL from understat.utils import (filter_by_positions, filter_data, get_data, to_league_name) class Understat(): def __init__(self, session): self.session = session async def get_stats(self, options=None, **kwargs): """Returns a list containing stats of every league, grouped by month. :param options: Options to filter the data by, defaults to None. :param options: dict, optional :return: List of dictionaries. :rtype: list """ stats = await get_data(self.session, BASE_URL, "statData") if options: kwargs = options filtered_data = filter_data(stats, kwargs) return filtered_data async def get_teams(self, league_name, season, options=None, **kwargs): """Returns a list containing information about all the teams in the given league in the given season. :param league_name: The league's name. :type league_name: str :param season: The season. :param options: Options to filter the data by, defaults to None. :param options: dict, optional :type season: str or int :return: A list of the league's table as seen on Understat's league overview. :rtype: list """ url = LEAGUE_URL.format(to_league_name(league_name), season) teams_data = await get_data(self.session, url, "teamsData") if options: kwargs = options filtered_data = filter_data(list(teams_data.values()), kwargs) return filtered_data async def get_league_players( self, league_name, season, options=None, **kwargs): """Returns a list containing information about all the players in the given league in the given season. :param league_name: The league's name. :type league_name: str :param season: The season. :param options: Options to filter the data by, defaults to None. :param options: dict, optional :type season: str or int :return: A list of the players as seen on Understat's league overview. :rtype: list """ url = LEAGUE_URL.format(to_league_name(league_name), season) players_data = await get_data(self.session, url, "playersData") if options: kwargs = options filtered_data = filter_data(players_data, kwargs) return filtered_data async def get_league_results( self, league_name, season, options=None, **kwargs): """Returns a list containing information about all the results (matches) played by the teams in the given league in the given season. :param league_name: The league's name. :type league_name: str :param season: The season. :type season: str or int :param options: Options to filter the data by, defaults to None. :param options: dict, optional :return: A list of the results as seen on Understat's league overview. :rtype: list """ url = LEAGUE_URL.format(to_league_name(league_name), season) dates_data = await get_data(self.session, url, "datesData") results = [r for r in dates_data if r["isResult"]] if options: kwargs = options filtered_data = filter_data(results, kwargs) return filtered_data async def get_league_fixtures( self, league_name, season, options=None, **kwargs): """Returns a list containing information about all the upcoming fixtures of the given league in the given season. :param league_name: The league's name. :type league_name: str :param season: The season. :type season: str or int :param options: Options to filter the data by, defaults to None. :param options: dict, optional :return: A list of the fixtures as seen on Understat's league overview. :rtype: list """ url = LEAGUE_URL.format(to_league_name(league_name), season) dates_data = await get_data(self.session, url, "datesData") fixtures = [f for f in dates_data if not f["isResult"]] if options: kwargs = options filtered_data = filter_data(fixtures, kwargs) return filtered_data async def get_player_shots(self, player_id, options=None, **kwargs): """Returns the player with the given ID's shot data. :param player_id: The player's Understat ID. :type player_id: int or str :param options: Options to filter the data by, defaults to None. :param options: dict, optional :return: List of the player's shot data. :rtype: list """ url = PLAYER_URL.format(player_id) shots_data = await get_data(self.session, url, "shotsData") if options: kwargs = options filtered_data = filter_data(shots_data, kwargs) return filtered_data async def get_player_matches(self, player_id, options=None, **kwargs): """Returns the player with the given ID's matches data. :param player_id: The player's Understat ID. :type player_id: int or str :param options: Options to filter the data by, defaults to None. :param options: dict, optional :return: List of the player's matches data. :rtype: list """ url = PLAYER_URL.format(player_id) matches_data = await get_data(self.session, url, "matchesData") if options: kwargs = options filtered_data = filter_data(matches_data, kwargs) return filtered_data async def get_player_stats(self, player_id, positions=None): """Returns the player with the given ID's min / max stats, per position(s). :param player_id: The player's Understat ID. :type player_id: int or str :param positions: Positions to filter the data by, defaults to None. :param positions: list, optional :return: List of the player's stats per position. :rtype: list """ url = PLAYER_URL.format(player_id) player_stats = await get_data(self.session, url, "minMaxPlayerStats") player_stats = filter_by_positions(player_stats, positions) return player_stats async def get_player_grouped_stats(self, player_id): """Returns the player with the given ID's grouped stats (as seen at the top of a player's page). :param player_id: The player's Understat ID. :type player_id: int or str :return: Dictionary of the player's grouped stats. :rtype: dict """ url = PLAYER_URL.format(player_id) player_stats = await get_data(self.session, url, "groupsData") return player_stats async def get_team_stats(self, team_name, season): """Returns a team's stats, as seen on their page on Understat, in the given season. :param team_name: A team's name, e.g. Manchester United. :type team_name: str :param season: A season / year, e.g. 2018. :type season: int or str :return: A dictionary containing a team's stats. :rtype: dict """ url = TEAM_URL.format(team_name.replace(" ", "_"), season) team_stats = await get_data(self.session, url, "statisticsData") return team_stats async def get_team_results( self, team_name, season, options=None, **kwargs): """Returns a team's results in the given season. :param team_name: A team's name. :type team_name: str :param season: The season. :type season: int or str :param options: Options to filter the data by, defaults to None. :param options: dict, optional :return: List of the team's results in the given season. :rtype: list """ url = TEAM_URL.format(team_name.replace(" ", "_"), season) dates_data = await get_data(self.session, url, "datesData") results = [r for r in dates_data if r["isResult"]] if options: kwargs = options filtered_data = filter_data(results, kwargs) return filtered_data async def get_team_fixtures( self, team_name, season, options=None, **kwargs): """Returns a team's upcoming fixtures in the given season. :param team_name: A team's name. :type team_name: str :param season: The season. :type season: int or str :param options: Options to filter the data by, defaults to None. :param options: dict, optional :return: List of the team's upcoming fixtures in the given season. :rtype: list """ url = TEAM_URL.format(team_name.replace(" ", "_"), season) dates_data = await get_data(self.session, url, "datesData") fixtures = [f for f in dates_data if not f["isResult"]] if options: kwargs = options filtered_data = filter_data(fixtures, kwargs) return filtered_data async def get_team_players( self, team_name, season, options=None, **kwargs): """Returns a team's player statistics in the given season. :param team_name: A team's name. :type team_name: str :param season: The season. :type season: int or str :param options: Options to filter the data by, defaults to None. :param options: dict, optional :return: List of the team's players' statistics in the given season. :rtype: list """ url = TEAM_URL.format(team_name.replace(" ", "_"), season) players_data = await get_data(self.session, url, "playersData") if options: kwargs = options filtered_data = filter_data(players_data, kwargs) return filtered_data
from django.urls import path from .views import SharedImageListView,FriendsListView urlpatterns = [ path('get-shared-img/', SharedImageListView.as_view(), name="get-share"), path('get-friends/', FriendsListView.as_view(), name="get-friends"), ]
#!/usr/bin/env python # -*- coding: utf-8 -*- import pytest from smorest_sfs.utils.text import camel_to_snake @pytest.mark.parametrize( "camel, snake", [ ("AdminAvator", "admin_avator"), ("getHTTPResponseCode", "get_http_response_code"), ("HTTPResponseCodeXYZ", "http_response_code_xyz"), ], ) def test_check_ext_success(camel: str, snake: str) -> None: assert camel_to_snake(camel) == snake
from Views import stok_View as stokView from Controllers import stok_Controller as stokController stokView(stokController())
from selenium import webdriver import os result=os.system("ls -l ") print(result) driver=webdriver.Firefox() driver.get("http:/www.126.com") driver.implicitly_wait(10) driver.find_element_by_id("lbNormal").click() try: driver.find_element_by_css_selector(".j-inputtext dlemail").send_keys("jslzsy") driver.find_element_by_name("password").send_keys("jiangsulzsy") driver.find_element_by_id("dologin").click() except BaseException as msg: print(msg) driver.quit()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import sys import torch import numpy as np from torch.utils.data import DataLoader from torchvision.datasets import MNIST import torchvision.transforms as transforms parser = argparse.ArgumentParser(description='PyTorch GMVAE') # TRAINING PARAMS parser.add_argument('--epochs', type=int, default=1500, metavar='', help='Amount of epochs for training (default: 100)') parser.add_argument('--batch_size', type=int, default=100, metavar='', help='Batch size for SGD (default: 100)') parser.add_argument('--lrate', type=float, default=0.01, metavar="", help="Learning rate (default: 0.01") parser.add_argument('--use_cuda', action='store_true', dest='use_cuda', help="Shall cuda be used (default: False)") argv = parser.parse_args() sys.argv = [sys.argv[0]] from ummon import * import ummon.utils as uu from ummon.unsupervised import UnsupervisedTrainer from ummon.logger import Logger from ummon.trainingstate import Trainingstate from gmvae import GMVAE from gmvae import NegVariationalLowerBound torch.manual_seed(4) if __name__ == '__main__': def binarize(x, double = False): ''' Binarize Image ''' m = torch.distributions.Uniform(0, 1) xb = m.sample(x.size()) bin_image = (x > xb).float() * 1 if double == True: return bin_image.double() else: return bin_image # MNIST transform = transforms.Compose([transforms.ToTensor(), binarize]) mnist_data = MNIST("/ext/data/mnist", train=True, transform=transform, target_transform=None, download=True) mnist_data_test = MNIST("/ext/data/mnist", train=False, transform=transform, target_transform=None, download=True) trainloader = DataLoader(mnist_data, batch_size=argv.batch_size, shuffle=True, sampler=None, batch_sampler=None, num_workers=2) # MODEL gmvae = GMVAE() # INTANTIATE LOSS criterion = NegVariationalLowerBound(gmvae, size_average=False) # INSTANTIATE OPTIMIZER optimizer = torch.optim.Adam(gmvae.parameters()) # LOAD TRAINING STATE try: ts = Trainingstate("MNIST_GMVAE.pth.tar") except FileNotFoundError: ts = Trainingstate() with Logger(loglevel=10, logdir='.', log_batch_interval=20) as lg: # EARLY STOPPING earlystop = StepLR_earlystop(optimizer, ts, gmvae, step_size=100, nsteps=5, patience=20, logger=lg) # CREATE A TRAINER my_trainer = UnsupervisedTrainer(lg, gmvae, criterion, optimizer, scheduler = earlystop, trainingstate = ts, model_filename="MNIST_GMVAE", use_cuda= argv.use_cuda, after_eval_hook = criterion.compute_special_losses) # START TRAINING trainingsstate = my_trainer.fit(dataloader_training=trainloader, epochs=argv.epochs, validation_set=mnist_data_test) # def register_nan_checks_(model): # def check_grad(module, input, output): # if not hasattr(module, "weight"): # return # if module.weight is None or module.weight.grad is None: # return # # if (module.weight.grad.abs() == 0).any(): # # print('Gradient in ' + type(module).__name__) # # print(module.weight.grad) # # print(module.extra_repr) # #if (module.weight.grad.abs() > 1.).any(): # # print('Gradient in ' + type(module).__name__) # # print(module.weight.grad) # # print(module.extra_repr) # if (module.weight.grad != module.weight.grad).any(): # print('NaN Gradients in ' + type(module).__name__) # print(module.weight.grad) # print(module.extra_repr) # if module.weight.grad.abs().max() > 10000.: # print('Exploding Gradients in ' + type(module).__name__) # print(module.weight.grad) # print(module.extra_repr) # handles = [] # for module in model.modules(): # handles.append(module.register_forward_hook(check_grad)) # return handles # # register_nan_checks_(gmvae)
__author__ = 'stephen' import os,sys import numpy as np HK_DataMiner_Path = os.path.relpath(os.pardir) #HK_DataMiner_Path = os.path.abspath("/home/stephen/Dropbox/projects/work-2015.5/HK_DataMiner/") sys.path.append(HK_DataMiner_Path) from utils import plot_cluster, plot_each_cluster, XTCReader, plot_landscape import argparse cli = argparse.ArgumentParser() cli.add_argument('-t', '--trajListFns', default = 'trajlist', help='List of trajectory files to read in, separated by spaces.') cli.add_argument('-a', '--atomListFns', default='atom_indices', help='List of atom index files to read in, separated by spaces.') cli.add_argument('-g', '--topology', default='native.pdb', help='topology file.') cli.add_argument('-o', '--homedir', help='Home dir.', default=".", type=str) cli.add_argument('-e', '--iext', help='''The file extension of input trajectory files. Must be a filetype that mdtraj.load() can recognize.''', default="xtc", type=str) cli.add_argument('-c', '--assignments', type=str) cli.add_argument('-s', '--centers', type=str) cli.add_argument('-l', '--traj_len', type=str, default='traj_len.txt') args = cli.parse_args() trajlistname = args.trajListFns atom_indicesname = args.atomListFns trajext = args.iext File_TOP = args.topology homedir = args.homedir # =========================================================================== # Reading phi angles and psi angles data from XTC files if os.path.isfile("./phi_angles.txt") and os.path.isfile("./psi_angles.txt") is True: phi_angles = np.loadtxt("./phi_angles.txt", dtype=np.float32) psi_angles = np.loadtxt("./psi_angles.txt", dtype=np.float32) else: trajreader = XTCReader(trajlistname, atom_indicesname, homedir, trajext, File_TOP) trajs = trajreader.trajs traj_len = trajreader.traj_len np.savetxt("./traj_len.txt", traj_len, fmt="%d") phi_angles, psi_angles = trajreader.get_phipsi(trajs, psi=[6, 8, 14, 16], phi=[4, 6, 8, 14]) np.savetxt("./phi_angles.txt", phi_angles, fmt="%f") np.savetxt("./psi_angles.txt", psi_angles, fmt="%f") # =========================================================================== # Reading split assignments and the length of each traj assignments_dir = args.assignments labels = np.loadtxt(assignments_dir, dtype=np.int32) #centers_dir = args.centers #centers = np.loadtxt(centers_dir, dtype=np.int32) #plot_cluster(labels=labels, phi_angles=phi_angles, psi_angles=psi_angles, name=dir+'Dihedrals'+assignments_dir) #phi_ctr = phi_angles[centers] #psi_ctr = psi_angles[centers] #labels_ctr = labels[centers] #plot_cluster(labels=labels_lf, phi_angles=phi_new, psi_angles=psi_new, name=clustering_name) name = assignments_dir[:-4] + '_Energy_Landscape' #print "name:", name #plot_cluster_size_distribution(populations=populations, name=name) plot_landscape(labels=None, phi_angles=phi_angles, psi_angles=psi_angles, phi_ctr=None, psi_ctr=None, name=name) #plot_landscape(labels=None, phi_angles=phi_angles, psi_angles=psi_angles)
from selenium.webdriver.remote.webelement import WebElement import conftest from locators.course_page_locators import CoursePageLocators from locators.course_page_locators import ManageCoursePageLocators from locators.login_page_locators import LoginPageLocators from models.course import CourseData from pages.base_page import BasePage class CoursePage(BasePage): def sidebar_button(self) -> WebElement: return self.find_element(LoginPageLocators.SIDEBAR_BUTTON) def is_sidebar_open(self) -> bool: element = self.find_element(LoginPageLocators.SIDEBAR_MENU) is_open = self.element_is_visible(element) if is_open: return True return False def administration_button(self) -> WebElement: return self.get_clickable_element(LoginPageLocators.ADMINISTRATION_BUTTON) def courses_button(self) -> WebElement: return self.find_element(LoginPageLocators.COURSES_HEADER) def manage_courses_button(self) -> WebElement: return self.find_element(LoginPageLocators.MANAGE_COURSES_BUTTON) def create_course_button(self) -> WebElement: return self.find_element(ManageCoursePageLocators.CREATE_COURSE_BUTTON) def is_course_exist(self, data: CourseData) -> bool: elements = self.find_elements(ManageCoursePageLocators.COURSES_LIST_DATA) courses_list = [c.text for c in elements] if data.full_course_name in courses_list: return True return False def go_to_design_courses_frame(self) -> None: if not self.is_sidebar_open(): self.click_element(self.sidebar_button()) self.click_element(self.administration_button()) self.click_element(self.courses_button()) self.click_element(self.manage_courses_button()) self.click_element(self.create_course_button()) def full_course_name_input(self) -> WebElement: return self.find_element(CoursePageLocators.FULL_COURSE_NAME) def short_course_name_input(self) -> WebElement: return self.find_element(CoursePageLocators.SHORT_COURSE_NAME) def course_end_day_select(self) -> WebElement: return self.find_element(CoursePageLocators.END_DAY) def course_end_month_select(self) -> WebElement: return self.find_element(CoursePageLocators.END_MONTH) def course_end_year_select(self) -> WebElement: return self.find_element(CoursePageLocators.END_YEAR) def course_end_hour_select(self) -> WebElement: return self.find_element(CoursePageLocators.END_HOUR) def course_end_minute_select(self) -> WebElement: return self.find_element(CoursePageLocators.END_MINUTE) def course_id_input(self) -> WebElement: return self.find_element(CoursePageLocators.COURSE_ID) def course_description_input(self) -> WebElement: return self.find_element(CoursePageLocators.COURSE_DESCRIPTION) def course_format_button(self) -> WebElement: return self.find_element(CoursePageLocators.COURSE_FORMAT) def course_section_number_select(self) -> WebElement: return self.find_element(CoursePageLocators.SECTION_NUMBER) def course_appearance_button(self) -> WebElement: return self.find_element(CoursePageLocators.COURSE_APPEARANCE) def course_language_select(self) -> WebElement: return self.find_element(CoursePageLocators.COURSE_LANGUAGE) def grade_display_select(self) -> WebElement: return self.find_element(CoursePageLocators.GRADE_DISPLAY_OPTION) def files_and_downloads_button(self) -> WebElement: return self.find_element(CoursePageLocators.FILES_AND_DOWNLOADS) def max_file_size_select(self) -> WebElement: return self.find_element(CoursePageLocators.MAX_FILE_SIZE) def role_rename_button(self) -> WebElement: return self.find_element(CoursePageLocators.ROLE_RENAME_MENU) def course_creator_name_input(self) -> WebElement: return self.find_element(CoursePageLocators.COURSE_CREATOR_NAME) def course_teacher_name_input(self) -> WebElement: return self.find_element(CoursePageLocators.COURSE_TEACHER_NAME) def course_student_name_input(self) -> WebElement: return self.find_element(CoursePageLocators.COURSE_STUDENT_NAME) def save_return_button(self) -> WebElement: return self.find_element(CoursePageLocators.SAVE_AND_RETURN_BUTTON) def chooose_created_course_button(self, course_name): return self.find_element( ManageCoursePageLocators.get_course_locator(course_name) ) def delete_course_button(self) -> WebElement: return self.find_element(ManageCoursePageLocators.DELETE_COURSE_BUTTON) def confirm_delete_button(self) -> WebElement: return self.find_element(ManageCoursePageLocators.CONFIRM_DELETE_BUTTON) def course_delete_confirmation(self) -> WebElement: return self.find_element(ManageCoursePageLocators.COURSE_DELETE_CONFIRMATION) def continue_button(self) -> WebElement: return self.find_element(ManageCoursePageLocators.CONTINUE_BUTTON) def full_name_error_message(self) -> WebElement: return self.find_element(CoursePageLocators.EMPTY_FULL_NAME_ERROR) def short_name_error_message(self) -> WebElement: return self.find_element(CoursePageLocators.EMPTY_SHORT_NAME_ERROR) def create_course(self, data: CourseData) -> None: self.go_to_design_courses_frame() self.fill_element(self.full_course_name_input(), data.full_course_name) self.fill_element(self.short_course_name_input(), data.short_course_name) self.select_element(self.course_end_day_select(), value=data.end_day) self.select_element(self.course_end_month_select(), value=data.end_month) self.select_element(self.course_end_year_select(), value=data.end_year) self.select_element(self.course_end_hour_select(), value=data.end_hour) self.select_element(self.course_end_minute_select(), value=data.end_minute) self.fill_element(self.course_id_input(), data.course_id) self.fill_element(self.course_description_input(), data.course_description) self.click_element(self.course_format_button()) self.select_element( self.course_section_number_select(), value=data.section_number ) self.click_element(self.course_appearance_button()) self.select_element(self.course_language_select(), value=data.course_language) self.select_element(self.grade_display_select(), text=data.grade_display_option) self.click_element(self.files_and_downloads_button()) self.select_element(self.max_file_size_select(), value=data.max_file_size) self.click_element(self.role_rename_button()) self.fill_element(self.course_creator_name_input(), data.creator_name) self.fill_element(self.course_teacher_name_input(), data.teacher_name) self.fill_element(self.course_student_name_input(), data.student_name) self.click_element(self.save_return_button()) conftest.logger.info(f"Создан курс '{data.full_course_name}'") def remove_course(self, data: CourseData) -> None: conftest.logger.info(f"Курс '{data.full_course_name}' удалён!") self.click_element(self.chooose_created_course_button(data.full_course_name)) self.click_element(self.delete_course_button()) self.click_element(self.confirm_delete_button()) self.continue_button() def all_required_fields_filled(self) -> bool: if self.full_name_error_message() or self.short_name_error_message(): return False return True
# imports import argparse import numpy as np from scipy.special import gammainc ######################################################################################################################## # Game value as a function of m,n,k ######################################################################################################################## def game_value_mnk(m, n, d, k): """""" if n > m: log_val = np.log((n * (m + k)) / (m * (n + k))) denominator = 2 * k * (n - m) x1 = (n * d * (m + k) * log_val) / denominator x2 = (m * d * (n + k) * log_val) / denominator v = 0.5 + 0.5 * (gammainc(d/2, x1) - gammainc(d/2, x2)) else: v = 0.5 return v def game_value_as_func_of_n(m, n_max, d, k): """""" v = np.zeros((n_max,)) n_array = np.arange(1, n_max + 1) for n in n_array: v[n - 1] = game_value_mnk(m, n, d, k) return n_array, v ######################################################################################################################## # Game value as a function of delta, rho ######################################################################################################################## def game_value_rho_delta(d, rho, delta): """""" if delta < 1: log_val = np.log((1. + rho) / (delta + rho)) denominator = 2 * (1 - delta) x1 = d * (1 + rho) * log_val / denominator x2 = d * (delta + rho) * log_val / denominator v = 0.5 + 0.5 * (gammainc(d/2, x1) - gammainc(d/2, x2)) else: v = 0.5 return v def ml_attacker_game_value_rho_delta(d, rho, delta): """""" log_val = np.log((1. + rho + delta) / (delta + rho)) denominator = 2. x1 = d * (1 + rho + delta) * log_val / denominator x2 = d * (delta + rho) * log_val / denominator v = 0.5 + 0.5 * (gammainc(d/2, x1) - gammainc(d/2, x2)) return v def game_value_diff_ml_vs_opt_rho_delta(d, rho, delta): return ml_attacker_game_value_rho_delta(d, rho, delta) - game_value_rho_delta(d, rho, delta) def get_args(): parser = argparse.ArgumentParser() parser.add_argument('-m', type=int, default=1, help='m: the number of leaked observations') parser.add_argument('-n', type=int, default=5, help='n: the number of test observations') parser.add_argument('-k', type=int, default=10, help='k: the number of registration observations') parser.add_argument('-d', type=int, default=100, help='d: the dimension of observations') return parser.parse_args() ######################################################################################################################## # Unit Test ######################################################################################################################## if __name__ == '__main__': args = get_args() v = game_value_mnk(m=args.m, n=args.n, k=args.k, d=args.d) print(v)
# django imports from django.conf import settings from django.contrib.contenttypes.models import ContentType from django.contrib.sites.models import Site from django.core.mail import EmailMultiAlternatives from django.template import RequestContext from django.template.base import TemplateDoesNotExist from django.template.loader import render_to_string from django.utils.translation import ugettext_lazy as _ def send_order_sent_mail(order): try: _send_order_sent_mail.delay(order) except AttributeError: _send_order_sent_mail(order) def _send_order_sent_mail(order): """Sends an order has been sent mail to the shop customer """ import lfs.core.utils shop = lfs.core.utils.get_default_shop() try: subject = render_to_string("lfs/mail/order_sent_subject.txt", {"order": order}) except TemplateDoesNotExist: subject = _(u"Your order has been sent") from_email = shop.from_email to = [order.customer_email] bcc = shop.get_notification_emails() # text text = render_to_string("lfs/mail/order_sent_mail.txt", {"order": order}) mail = EmailMultiAlternatives( subject=subject, body=text, from_email=from_email, to=to, bcc=bcc) # html html = render_to_string("lfs/mail/order_sent_mail.html", { "order": order }) mail.attach_alternative(html, "text/html") mail.send(fail_silently=True) def send_order_paid_mail(order): try: _send_order_paid_mail.delay(order) except AttributeError: _send_order_paid_mail(order) def _send_order_paid_mail(order): """Sends an order has been paid mail to the shop customer. """ import lfs.core.utils shop = lfs.core.utils.get_default_shop() try: subject = render_to_string("lfs/mail/order_paid_subject.txt", {"order": order}) except TemplateDoesNotExist: subject = _(u"Your order has been paid") from_email = shop.from_email to = [order.customer_email] bcc = shop.get_notification_emails() # text text = render_to_string("lfs/mail/order_paid_mail.txt", {"order": order}) mail = EmailMultiAlternatives( subject=subject, body=text, from_email=from_email, to=to, bcc=bcc) # html html = render_to_string("lfs/mail/order_paid_mail.html", { "order": order }) mail.attach_alternative(html, "text/html") mail.send(fail_silently=True) def send_order_received_mail(request, order): try: _send_order_received_mail.delay(request, order) except AttributeError: _send_order_received_mail(request, order) def _send_order_received_mail(request, order): """Sends an order received mail to the shop customer. Customer information is taken from the provided order. """ import lfs.core.utils shop = lfs.core.utils.get_default_shop() try: subject = render_to_string("lfs/mail/order_received_subject.txt", {"order": order}) except TemplateDoesNotExist: subject = _(u"Your order has been received") from_email = shop.from_email to = [order.customer_email] bcc = shop.get_notification_emails() # text text = render_to_string("lfs/mail/order_received_mail.txt", RequestContext(request, {"order": order})) mail = EmailMultiAlternatives( subject=subject, body=text, from_email=from_email, to=to, bcc=bcc) # html html = render_to_string("lfs/mail/order_received_mail.html", RequestContext(request, { "order": order })) mail.attach_alternative(html, "text/html") mail.send(fail_silently=True) def send_customer_added(user): try: _send_customer_added.delay(user) except AttributeError: _send_customer_added(user) def _send_customer_added(user): """Sends a mail to a newly registered user. """ import lfs.core.utils shop = lfs.core.utils.get_default_shop() from_email = shop.from_email to = [user.email] bcc = shop.get_notification_emails() # text text = render_to_string("lfs/mail/new_user_mail.txt", { "user": user, "shop": shop}) # subject subject = render_to_string("lfs/mail/new_user_mail_subject.txt", { "user": user, "shop": shop}) mail = EmailMultiAlternatives( subject=subject, body=text, from_email=from_email, to=to, bcc=bcc) # html html = render_to_string("lfs/mail/new_user_mail.html", { "user": user, "shop": shop, }) mail.attach_alternative(html, "text/html") mail.send(fail_silently=True) def send_review_added(review): try: _send_review_added.delay(review) except AttributeError: _send_review_added(review) def _send_review_added(review): """Sends a mail to shop admins that a new review has been added """ import lfs.core.utils shop = lfs.core.utils.get_default_shop() subject = _(u"New review has been added") from_email = shop.from_email to = shop.get_notification_emails() ctype = ContentType.objects.get_for_id(review.content_type_id) product = ctype.get_object_for_this_type(pk=review.content_id) # text text = render_to_string("lfs/mail/review_added_mail.txt", { "review": review, "product": product, }) mail = EmailMultiAlternatives( subject=subject, body=text, from_email=from_email, to=to) # html html = render_to_string("lfs/mail/review_added_mail.html", { "site": "http://%s" % Site.objects.get(id=settings.SITE_ID), "review": review, "product": product, }) mail.attach_alternative(html, "text/html") mail.send(fail_silently=True) # celery try: from celery.task import task except ImportError: pass else: _send_customer_added = task(_send_customer_added) _send_order_paid_mail = task(_send_order_paid_mail) _send_order_received_mail = task(_send_order_received_mail) _send_order_sent_mail = task(_send_order_sent_mail) _send_review_added = task(_send_review_added)
#!/usr/bin/env python3 class Example: """Ez egy példa osztály""" bela = 'alma' def gizi(self): print('I love you.') jozsi = gizi def __init__(self): self.vali = 24 ex = Example() ey = Example() print('Kakukk') ex.bruno = ['répa'] print(ex.bruno[0]) del(Example.gizi) print(type(ex)) ex.bela = 'barack' print(ex.bela) print(ey.bela) ex.jozsi() #ex.gizi() # AttributeError message1 = 'Szép ' message2 = 'napot' message3 = '!' message = message1 + message2 + message3 print(message) print('Teszt')
import requests ''' launch simulation [POST] curl -X POST -H "Content-Type: application/json" -d "@input_data.json" http://localhost:5000/launch_simulation ''' response = requests.post('http://127.0.0.1:5000/launch_simulation', json={'key': 'value'}) print(response.headers) print(response.json()) ''' as_vulnerability_ranking [GET] curl -X GET -H "Content-Type: application/json" -d "@as_vuln_rank_data.json" http://localhost:5000/as_vulnerability_ranking ''' ''' get all simulation events from db [GET] curl -X GET -H "Content-Type: application/json" http://localhost:5000/simulation_events ''' ''' get all info for a specific simulation [GET] curl -X GET "http://localhost:5000/simulation_details?simulation_uuid=a5d3c351-bfd8-40be-ae25-e0c1912c5b7e" '''
from flyingpigeon import eodata from datetime import datetime as dt from os import listdir from os.path import join, basename from flyingpigeon.utils import archiveextract # DIR = '/home/nils/birdhouse/var/lib/pywps/cache/flyingpigeon/EO_data/PSScene4Band/analytic' # # DIR = '/home/nils/data/planet/PSScene3Band/' # tiles = [join(DIR, pic) for pic in listdir(DIR) if '.tif' in pic] DIR = '/home/nils/birdhouse/var/lib/pywps/cache/flyingpigeon/EO_data/PSScene4Band/analytic' # DIR = '/home/nils/data/planet/ndvi/' # DIR = '/home/nils/birdhouse/var/lib/pywps/cache/flyingpigeon/EO_data/PSScene3Band/visual' # DIR = '/home/nils/data/planet/PSScene3Band/' tiles = [join(DIR, pic) for pic in listdir(DIR) if '.tif' in pic] # tiles = archiveextract('/home/nils/data/planet/tmpQyYDEX.tar') dates = set() for tile in tiles: dates = dates.union([eodata.get_timestamp(tile).date()]) dl = list(dates) mosaics = [] for date in dl: print "calculating date %s " % date tiles_day = [tile for tile in tiles if eodata.get_timestamp(tile).date() == date] # print(tiles_day) archive = eodata.merge(tiles_day) print archive mosaics.extend([archive]) print mosaics for mosaic in mosaics: img = eodata.plot_truecolorcomposite(mosaic) print img # # from flyingpigeon import gdal_merge as gm # from os.path import join, basename # import sys # # # merged_tiles = [] # # dates = set() # # # dates = dates.union([basename(pic).split('_')[0] for pic in tiles]) # # dates = dates.union(get_timestamp(tile).date() for tile in tiles) # # # # for date in dates: # # # LOGGER.debug('start merging') # # prefix = dt.strftime(date, "%Y%m%d") # _, filename = mkstemp(dir='.', prefix=prefix, suffix='.tif') # call = ['-o', filename] # # # # tiles_day = [tile for tile in tiles if date.date() == get_timestamp(tile).date()] # # for tile in tiles: # call.extend([tile]) # sys.argv[1:] = call # gm.main()
# Import necessary libraries import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt from my_utils import getKmers, get_metrics, predict_sequence_class from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import GridSearchCV from sklearn.model_selection import cross_val_score, StratifiedKFold import pickle def app(): st.markdown("### Machine Learning for DNA Classification") st.markdown("[Get Jupyter Notebook](https://raw.githubusercontent.com/CyrilleMesue/dna-seq-classifier/main/DNA%20Sequencing%20and%20applying%20Classifier.ipynb)") st.markdown(""" In this notebook, we will apply a classification model that can predict a gene's function based on the DNA sequence of the coding sequence alone. The model can be used to deterimine if the gene product is any of the following classes of proteins. | Protein Class | Name | Description | ----------- | ----------- | ---------- | 0 | G protein coupled receptors | [Description](https://en.wikipedia.org/wiki/G_protein-coupled_receptor) | 1 | Tyrosine kinase | [Description](https://en.wikipedia.org/wiki/Tyrosine_kinase) | 2 | Tyrosine phosphatase | [Description](https://en.wikipedia.org/wiki/Protein_tyrosine_phosphatase) | 3 | Synthetase | [Description](https://en.wikipedia.org/w/index.php?title=Synthetase&redirect=no) | 4 | Synthase | [Description](https://en.wikipedia.org/wiki/Synthase) | 5 | Ion channel | [Description](https://en.wikipedia.org/wiki/Ion_channel) | 6 | Transcription factor | [Description](https://en.wikipedia.org/wiki/Transcription_factor#:~:text=In%20molecular%20biology%2C%20a%20transcription,to%20a%20specific%20DNA%20sequence.) The dataset for this study was gotten from kaggle and can be accessed through the link below: https://www.kaggle.com/nageshsingh/dna-sequence-dataset And this code was adapted from : https://github.com/krishnaik06/DNA-Sequencing-Classifier """ ) st.markdown("### Upload Data") st.markdown("You can get a sample dataset [here](https://raw.githubusercontent.com/CyrilleMesue/dna-seq-classifier/main/datasets/chimp_data.txt).") input_file = st.file_uploader("Please upload a comma separated text file!!! First column should contain dna strings and second column, the numeric labels", type=["txt"]) if st.button("Upload file"): # set the on_click if input_file == None: st.markdown("**Please upload a comma separated text file!!! First column should contain dna strings and second column, the numeric labels**") else: uploaded_data = pd.read_table(input_file) st.markdown(""" ***Data Uploaded. It might take about upto an hour for everything to display*** """) st.dataframe(uploaded_data) st.write("There are {} data samples\n".format(len(uploaded_data))) st.markdown("""### Methodology If all DNA molecules were of equal lengths, then perhaps the best solution would have to convert each DNA sequence into an image and train convolutional neural networks on such images. Every other machine learning appoach is not effective due to its requirements of fixed length elements. A solution to this is to split the DNA molecules into fixed length shorter DNA strings called k-mers. Therefore, each DNA molecule will have a particular number of different k-length sub DNA strings which encode a particular information. The k-mers of a given DNA string are then considered as words and the DNA itself as a sentence or paragraph, and a natural language processing algorithm is applied. """) st.markdown("### Import Utilites") st.code(""" import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt from my_utils import getKmers, get_metrics, predict_sequence_class from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import GridSearchCV from sklearn.model_selection import cross_val_score, StratifiedKFold import pickle """, language='python') st.markdown("### Helper functions") st.code(""" # function to convert sequence strings into k-mer words, default size = 6 (hexamer words) def getKmers(sequence, size=6): return [sequence[x:x+size].lower() for x in range(len(sequence) - size + 1)] # This function computes the accuracy, precision, recall and f1-score of the model def get_metrics(y_test, y_predicted): accuracy = accuracy_score(y_test, y_predicted) precision = precision_score(y_test, y_predicted, average='weighted') recall = recall_score(y_test, y_predicted, average='weighted') f1 = f1_score(y_test, y_predicted, average='weighted') return accuracy, precision, recall, f1 # This function predicts the class of any raw DNA string def predict_sequence_class(sequence, vectorizer_model, classifier_model, class_labels): ''' inputs: DNA sequence, model and class labels (dictionary) Function takes in a DNA sequence returns its class amongst: [G protein coupled receptors', Tyrosine kinase', 'Tyrosine phosphatase', 'Synthetase', 'Synthase', 'Ion channel', Transcription factor'} ''' seq_o_kmers = getKmers(sequence) text_data = ' '.join(seq_o_kmers) input_x = vectorizer_model.transform([text_data]) predicted_value = classifier_model.predict(input_x)[0] predicted_label = class_labels[str(predicted_value)] return predicted_label """, language='python') st.markdown("### Convert DNA strings into k-mers") st.code(""" data_preprocessed = uploaded_data data_preprocessed['words'] = data_preprocessed.apply(lambda x: getKmers(x['sequence']), axis=1) data_preprocessed = data_preprocessed.drop('sequence', axis=1) st.dataframe(data_preprocessed) """, language='python' ) data_preprocessed = uploaded_data data_preprocessed['words'] = data_preprocessed.apply(lambda x: getKmers(x['sequence']), axis=1) data_preprocessed = data_preprocessed.drop('sequence', axis=1) st.dataframe(data_preprocessed) st.markdown(""" ### Convert list of k_mers to a string of words This is necessing for applying Natural Language Processing Algorithms. The labels also need to be extracted from the pandas table into an array. """) st.code(""" # Convert to text texts = list(data_preprocessed['words']) for item in range(len(texts)): texts[item] = ' '.join(texts[item]) # extract labels y_data = data_preprocessed.iloc[:, 0].values texts[0] """, language='python' ) # Convert to text texts = list(data_preprocessed['words']) for item in range(len(texts)): texts[item] = ' '.join(texts[item]) # extract labels y_data = data_preprocessed.iloc[:, 0].values st.markdown(texts[0]) st.markdown("### Applying the BAG of WORDS using CountVectorizer using NLP") st.code(""" # Creating the Bag of Words model using CountVectorizer() # This is equivalent to k-mer counting cv = CountVectorizer(ngram_range=(4,4)) # This will create an n by m compressed matrix where n is the number of samples and m is the number of unique k-mers over # all the samples X = cv.fit_transform(texts) X.shape""", language='python' ) # Creating the Bag of Words model using CountVectorizer() # This is equivalent to k-mer counting cv = CountVectorizer(ngram_range=(4,4)) # This will create an n by m compressed matrix where n is the number of samples and m is the number of unique k-mers over # all the samples X = cv.fit_transform(texts) st.write(X.shape) st.markdown("### Checking for Class Imbalance dataset.") st.markdown("""``` data_preprocessed['class'].value_counts().sort_index().plot.bar() """) st.bar_chart(data=data_preprocessed['class'].value_counts().sort_index(), width=800, height=500, use_container_width=False) st.markdown("### Data Splitting into Training and Testing") st.markdown("By default we use 80 percent data for training and 20 percent for testing by setting the test_size to 0.2. You can change the test_size value and try different split ratios.") # Splitting the human dataset into the training set and test set st.code(""" X_train, X_test, y_train, y_test = train_test_split(X, y_data, test_size = 0.20, random_state=42) print("Training set : {}".format(X_train.shape)) print("Test set : {}".format(X_test.shape))""", language='python' ) X_train, X_test, y_train, y_test = train_test_split(X,y_data,test_size = 0.20,random_state=42) st.write("Training set : {}".format(X_train.shape)) st.write("Test set : {}".format(X_test.shape)) st.markdown("### Training A multinomial naive Bayes classifier ") st.code(""" ### Multinomial Naive Bayes Classifier ### # The alpha parameter was determined by grid search previously classifier = MultinomialNB(alpha=0.1) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test)""", language='python' ) ### Multinomial Naive Bayes Classifier ### # The alpha parameter was determined by grid search previously classifier = MultinomialNB(alpha=0.1) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) st.markdown("### Testing the model on the Test Data") st.code(""" print("Confusion matrix\n") print(pd.crosstab(pd.Series(y_test, name='Actual'), pd.Series(y_pred, name='Predicted'))) accuracy, precision, recall, f1 = get_metrics(y_test, y_pred) print("accuracy = {:.3f}\n precision = {:.3f} \n recall = {:.3f} \n f1 = {:.3f}".format(accuracy, precision, recall, f1))""", language='python' ) st.write("Confusion matrix\n") st.write(pd.crosstab(pd.Series(y_test, name='Actual'), pd.Series(y_pred, name='Predicted'))) accuracy, precision, recall, f1 = get_metrics(y_test, y_pred) st.write("accuracy = {:.3f}".format(accuracy)) st.write("precision = {:.3f}".format(precision)) st.write("recall = {:.3f}".format(recall)) st.write("f1 = {:.3f}".format(f1)) st.markdown(""" ### Hyperparameter Tunning and Cross Validation Cross validation employs that the model is trained on all the data and tested on all the data. First, the dataset is split into k equal groups. The first k-1 groups are used for the training while the k-th group is used for testing. This is reapeated over all grups such that each group becomes the test set and the average test accuracies over all groups is taken. This approach of validation provides a more convenient accuracy matrix than just randomly secting training and test set. Sklearn employs gridsearch to tune hyper parameters and return the various n-fold (n can be changed) cross validation accuracy for each parameter combination. Our parameter of interest is alpha.""" ) st.code(""" clf = GridSearchCV(MultinomialNB(), {'alpha': [1,0.1,0.01,0.001,0.0001,0.00001]}, cv=10, return_train_score=True) clf.fit(X, y_data) df = pd.DataFrame(clf.cv_results_) df[['param_alpha','mean_test_score', 'mean_train_score']] print(("The best alpha value is {} ".format(clf.best_params_["alpha"]))""", language='python' ) clf = GridSearchCV(MultinomialNB(), { 'alpha': [1,0.1,0.01,0.001,0.0001,0.00001] }, cv=10, return_train_score=True) clf.fit(X, y_data) df = pd.DataFrame(clf.cv_results_) st.dataframe(df[['param_alpha','mean_test_score', 'mean_train_score']]) st.write("The best alpha value is {} ".format(clf.best_params_["alpha"])) st.markdown("### Train Model on Optimal Parameter") st.code(""" a = clf.best_params_["alpha"] classifier = MultinomialNB(alpha=a) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) print("Confusion matrix\n") print(pd.crosstab(pd.Series(y_test, name='Actual'), pd.Series(y_pred, name='Predicted'))) accuracy, precision, recall, f1 = get_metrics(y_test, y_pred) print("accuracy = {:.3f}\n precision = {:.3f} \n recall = {:.3f} \n f1 = {:.3f}".format(accuracy, precision, recall, f1))""", language='python' ) a = clf.best_params_["alpha"] classifier = MultinomialNB(alpha=a) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) st.write("Confusion matrix\n") st.write(pd.crosstab(pd.Series(y_test, name='Actual'), pd.Series(y_pred, name='Predicted'))) accuracy, precision, recall, f1 = get_metrics(y_test, y_pred) st.write("accuracy = {:.3f}".format(accuracy)) st.write("precision = {:.3f}".format(precision)) st.write("recall = {:.3f}".format(recall)) st.write("f1 = {:.3f}".format(f1)) st.markdown("### Stratified k-fold Cross Validation") st.code(""" # 10-fold cross validation Can play with n_splits parameter kf = StratifiedKFold(n_splits=10, shuffle=True, random_state=43) # Print output scores = cross_val_score(MultinomialNB(alpha=a), X, y_data, cv=kf, n_jobs=None, scoring='f1_micro') print(f'K-Fold test: {scores}') print(f'Mean: {scores.mean().round(3)}') print(f'Std: {scores.std().round(3)}')""", language='python' ) # 10-fold cross validation Can play with n_splits parameter kf = StratifiedKFold(n_splits=10, shuffle=True, random_state=43) # Print output scores = cross_val_score(MultinomialNB(alpha=a), X, y_data, cv=kf, n_jobs=None, scoring='f1_micro') st.write(f'K-Fold test: {scores}') st.write(f'Mean: {scores.mean().round(3)}') st.write(f'Std: {scores.std().round(3)}') st.markdown("### Save Model") st.markdown("""``` # file name filename = 'tmp/dna_classifier.sav' pickle.dump(classifier, open(filename, 'wb'))""" ) # file name filename = 'tmp/dna_classifier.sav' pickle.dump(classifier, open(filename, 'wb')) st.markdown("### Load and Test Model") st.code(""" # load the model from disk dna_classifier = 'tmp/dna_classifier.sav' loaded_model = pickle.load(open(dna_classifier, 'rb')) dna_vectorizer = 'tmp/dna_vectorizer.sav' loaded_vectorizer = pickle.load(open(dna_vectorizer, 'rb')) result = loaded_model.score(X_test, y_test) print(result) loaded_model.predict(X_test[24]) #### This is the Label Map class_labels = {"0" : "G protein coupled receptors", "1" : "Tyrosine kinase", "2" :"Tyrosine phosphatase", "3" : "Synthetase", "4" : "Synthase", "5" : "Ion channel", "6" : "Transcription factor"} sequence = uploaded_data.iloc[70].sequence print(sequence) # Predict class predict_sequence_class(sequence, cv, loaded_model, class_labels) """, language='python' ) # load the model from disk dna_classifier = 'tmp/dna_classifier.sav' loaded_model = pickle.load(open(dna_classifier, 'rb')) dna_vectorizer = 'tmp/dna_vectorizer.sav' loaded_vectorizer = pickle.load(open(dna_vectorizer, 'rb')) result = loaded_model.score(X_test, y_test) st.write(result) loaded_model.predict(X_test[24]) #### This is the Label Map class_labels = {"0" : "G protein coupled receptors", "1" : "Tyrosine kinase", "2" :"Tyrosine phosphatase", "3" : "Synthetase", "4" : "Synthase", "5" : "Ion channel", "6" : "Transcription factor"} sequence = uploaded_data.iloc[70].sequence #sequence # Predict class st.write(predict_sequence_class(sequence, cv, loaded_model, class_labels)) st.markdown("### Performing Hyper parameter Tunning for both CountVectorizer and Multinomial Naive Bayes Classifier") st.code(""" # ngram_range values to test ngram_range_params = [(1,1), (1,2), (1,3), (1,4), (2,2),(2,3),(2,4),(3,3),(3,4),(4,4)] # alpa values to test alpha_params = [1,0.1,0.01,0.001,0.0001,0.00001] # initialize dictionary of best parameters best_parameters = {"best_alpha" : None, "best_ngram_range" : None} best_score = 0 for i in range(len(ngram_range_params)): ngram_range = ngram_range_params[i] cv = CountVectorizer(ngram_range=ngram_range) x = cv.fit_transform(texts) clf = GridSearchCV(MultinomialNB(), {'alpha': alpha_params}, cv = 5, return_train_score=False) clf.fit(x, y_data) if clf.best_score_ > best_score: best_score = clf.best_score_ best_parameters["best_alpha"] = clf.best_params_["alpha"] best_parameters["best_ngram_range"] = ngram_range_params[i] pd.DataFrame(best_parameters)""", language='python' ) # ngram_range values to test ngram_range_params = [(1,1), (1,2), (1,3), (1,4), (2,2),(2,3),(2,4),(3,3),(3,4),(4,4)] # alpa values to test alpha_params = [1,0.1,0.01,0.001,0.0001,0.00001] # initialize dictionary of best parameters best_parameters = {"best_alpha" : None, "best_ngram_range" : None} best_score = 0 for i in range(len(ngram_range_params)): ngram_range = ngram_range_params[i] cv = CountVectorizer(ngram_range=ngram_range) x = cv.fit_transform(texts) clf = GridSearchCV(MultinomialNB(), {'alpha': alpha_params}, cv = 5, return_train_score=False) clf.fit(x, y_data) if clf.best_score_ > best_score: best_score = clf.best_score_ best_parameters["best_alpha"] = clf.best_params_["alpha"] best_parameters["best_ngram_range"] = ngram_range_params[i] st.dataframe(pd.DataFrame(best_parameters)) st.markdown("***GET JUPYTER NOTEBOOK HERE FROM GITHUB*** ") st.markdown("[jupyter notebook](https://raw.githubusercontent.com/CyrilleMesue/dna-seq-classifier/main/DNA%20Sequencing%20and%20applying%20Classifier.ipynb)") st.markdown("***DONE!!!***") # st.markdown("### Save Models") # vec name # v_filepath = 'tmp/dna_vectorizer.sav' # pickle.dump(cv, open(v_filepath, 'wb')) # st.download_button("Download Vectorizer Model", open(v_filepath, 'rb'), file_name="dna_vectorizer.sav")
import os from multiprocessing import Pool from torch.cuda import is_available os.environ["CUDA_VISIBLE_DEVICES"] = "1" import logging import anomalytransfer as at from glob import glob from utils import run_time from typing import Sequence, Tuple, Dict, Optional import pandas as pd import numpy as np import torch from sklearn.metrics import precision_recall_curve from tqdm import tqdm logging.basicConfig(level=logging.INFO, format='[%(asctime)s [%(levelname)s]] %(message)s') config = at.utils.config() CLUSTER_OUTPUT = config.get("CLUSTERING", "output") EPOCHS = config.getint("CLUSTERING", "epochs") BASE_EPOCHS = config.getint('TRANSFER_LEARNING', 'base_epochs') DATA_EPOCHS = config.getint('TRANSFER_LEARNING', 'data_epochs') INPUT = config.get('TRANSFER_LEARNING', 'input') OUTPUT = config.get('TRANSFER_LEARNING', 'output') MODEL_PATH = config.get('TRANSFER_LEARNING', 'model_path') RATIO = config.getfloat('TRANSFER_LEARNING', 'ratio') RAW_INPUT = config.get("CLUSTERING_PREPROCESSING", "input") def _get_latent_vectors(x: np.ndarray) -> np.ndarray: x = torch.as_tensor(x) seq_length = x.shape[1] input_dim = x.shape[2] model = at.clustering.LatentTransformer( seq_length=seq_length, input_dim=input_dim) model.fit(x, epochs=EPOCHS, verbose=0) model.save(os.path.join(OUTPUT, 'model.pt')) return model.transform(x) def cluster_data(path: str) -> Tuple[str, str]: base = None data = None for item in os.listdir(path): item_path = os.path.join(path, item) if os.path.isdir(item_path): data = item_path else: base = item_path if base is None or data is None: raise ValueError('Base path or data path not found') return base, data def make_base_model(kpi: at.transfer.data.KPI, epochs: int): kpi.complete_timestamp() kpi, _, _ = kpi.standardize() model = at.transfer.models.AnomalyDetector() model.fit(kpi=kpi.no_labels(), epochs=epochs, verbose=0) return model def train_test(train_kpi: at.transfer.data.KPI, epochs: int, test_kpi: at.transfer.data.KPI = None, mask: Optional[Sequence] = None, **kwargs) -> float: model = at.transfer.models.AnomalyDetector() if mask is not None: model.load_partial(path=kwargs.get('model_path'), name=kwargs.get('base_kpi').name, mask=mask) model.freeze(mask) model.fit(kpi=train_kpi.no_labels(), epochs=epochs, verbose=0) model.unfreeze(mask) model.fit(kpi=train_kpi.no_labels(), epochs=epochs, verbose=0) if test_kpi is not None and test_kpi.labels is not None: anomaly_scores = model.predict(test_kpi, verbose=0) results = at.utils.get_test_results(labels=test_kpi.labels, scores=anomaly_scores, missing=test_kpi.missing, use_spot=False) at.utils.log_test_results(name=test_kpi.name, results=results) return results['f1score'] else: return None def _ignore_missing(series_list: Sequence, missing: np.ndarray) -> Tuple[np.ndarray, ...]: ret = [] for series in series_list: series = np.copy(series) ret.append(series[missing != 1]) return tuple(ret) def get_test_results( timestamps: np.ndarray, labels: np.ndarray, scores: np.ndarray, missing: np.ndarray, values: np.ndarray, window_size: int = 120, **kwargs) -> Dict: timestamps = timestamps[window_size - 1:] labels = labels[window_size - 1:] scores = scores[window_size - 1:] missing = missing[window_size - 1:] values = values[window_size - 1:] adjusted_timestamps, adjusted_labels, adjusted_scores, adjusted_values = _ignore_missing( [timestamps, labels, scores, values], missing=missing ) adjusted_scores = at.utils.adjust_scores( labels=adjusted_labels, scores=adjusted_scores) precision, recall, th = precision_recall_curve(adjusted_labels, adjusted_scores, pos_label=1) f1_score = 2 * precision * recall / (precision + recall + 1e-6) arg_max = np.argmax(f1_score) best_precision, best_recall, best_f1_score = precision[arg_max], recall[arg_max], f1_score[arg_max] threshold = th[arg_max] return best_f1_score def main(finetune_num=200): print(finetune_num) # with torch.cuda.device(torch.device(f"cuda:{finetune_num//200%2}")): clusters = os.listdir(INPUT) base_values = [] base_models = [] for cluster in tqdm(clusters, total=len(clusters)): base, data = cluster_data(os.path.join(INPUT, cluster)) base_kpi = at.utils.load_kpi(base) base_kpi.complete_timestamp() base_kpi, _, _ = base_kpi.standardize() base_model = make_base_model(base_kpi, BASE_EPOCHS) base_models.append(base_model) dt = pd.read_csv(base) base_values.append(dt["value"]) file_list = at.utils.file_list(RAW_INPUT) cluster_values = [] finetune_values = [] test_kpis = [] names = [] for file in file_list: data_kpi = at.utils.load_kpi(file) data_kpi.complete_timestamp() data_kpi, _, _ = data_kpi.standardize() filename = at.utils.filename(file) names.append(filename) # split idx ts = data_kpi.timestamps ts = ts % (60 * 60 * 24) split_idx = np.where(ts <= 60)[0] _, data_kpi = data_kpi.split_by_idx(split_idx[0], window_size=1) # split to [for cluster] and [for finetune] ts = data_kpi.timestamps ts = ts % (60 * 60 * 24) split_idx = np.where(ts <= 60)[0] cluster_value, finetune_value = data_kpi.split_by_idx(split_idx[1], window_size=1) finetune_value, test_value = finetune_value.split_by_idx(finetune_num, window_size=1) cluster_values.append(cluster_value.values) finetune_values.append(finetune_value) test_kpis.append(test_value) # get latent var base_values = np.asarray(base_values, dtype=np.float32)[..., None] base_feature = _get_latent_vectors(base_values) cluster_values = np.asarray(cluster_values, dtype=np.float32)[..., None] cluster_feature = _get_latent_vectors(cluster_values) tmp_result = {name: 0 for name in names} tmp_result["num_of_points"] = finetune_num for i, (ft, finetune, test_kpi, name) in enumerate(zip(cluster_feature, finetune_values, test_kpis, names)): cluster_idx = np.argmin(np.sum((ft - base_feature)**2, axis=1)) base_model = base_models[cluster_idx] # base_model.fit(kpi=finetune.no_labels(), epochs=DATA_EPOCHS, verbose=0) anomaly_scores = base_model.predict(test_kpi, verbose=1) f1_score = get_test_results( timestamps=test_kpi.timestamps, labels=test_kpi.labels, scores=anomaly_scores, missing=test_kpi.missing, values=test_kpi.values ) tmp_result[name] = f1_score print(f"{i} - {name}") return tmp_result if __name__ == '__main__': # for num in range(200, 5000, 200): # main(num) with Pool(1) as pool: results = pool.map(main, range(200, 201, 200)) # results = pool.map(main, range(200, 201, 200)) final_result = pd.DataFrame(columns=list(results[0].keys())) for res in results: final_result = final_result.append(res, ignore_index=True) final_result = final_result.sort_values("num_of_points") final_result.to_csv("result.csv", index=False)
class ConfigException(Exception): pass class ConfigLoadException(ConfigException): pass class NoConfigOptionError(ConfigException): pass
from flask import Flask import sys sys.path.append('../chordpro2html') from chordpro2html import Parser from songs import TWINKLE, LEAVES, TENSHI p = Parser() song = TWINKLE from flask import Flask app = Flask(__name__) @app.route('/') def hello(): return p.to_html(LEAVES) + p.to_html(TWINKLE) + p.to_html(TENSHI) if __name__ == '__main__': app.run(debug=True)
""" A set of classes that let you create interactive menus in the console """ from dataclasses import dataclass, field from console.inputs import SelectionInput, SelectionInputOptions, InputResult @dataclass class MenuOptions(SelectionInputOptions): recurring: bool = True cancel_codes: tuple = field(default_factory=tuple) class Menu(SelectionInput): options_class = MenuOptions options: MenuOptions = None def __call__(self, prompt, commands, context=None, *args, **kwargs) -> InputResult: return self._invoke(prompt, commands, context=context, *args, **kwargs) def _invoke(self, prompt, commands, context=None, *args, **kwargs) -> InputResult: if context is None: context = {} names = list(commands.keys()) result, selected_command_index = super()._invoke(prompt, names, *args, **kwargs) if result == InputResult.SUCCESS: commands.get(names[selected_command_index])(context) return result
from enum import Enum from typing import Optional from semantic_version import SimpleSpec, Version class ContractFeature(Enum): SERVICES = "services" MAX_TOKEN_NETWORKS = "max_token_networks" INITIAL_SERVICE_DEPOSIT = "initial_service_deposit" MS_NEEDS_TOKENNETWORK_REGISTRY = "ms_needs_tokennetwork_registry" CONTRACT_FEATURE_VERSIONS = { ContractFeature.SERVICES: SimpleSpec(">=0.8.0"), ContractFeature.MAX_TOKEN_NETWORKS: SimpleSpec(">=0.9.0"), ContractFeature.INITIAL_SERVICE_DEPOSIT: SimpleSpec(">=0.18.0"), ContractFeature.MS_NEEDS_TOKENNETWORK_REGISTRY: SimpleSpec(">=0.22.0"), } def _matches_feature(feature: ContractFeature, version: Optional[str]) -> bool: """Returns a bool indicating whether the passed version matches the minimum required version for the given feature.""" if version is None: # contracts_version == None means the stock version in development. return True return CONTRACT_FEATURE_VERSIONS[feature].match(Version(version)) def contracts_version_with_max_token_networks(version: Optional[str]) -> bool: return _matches_feature(ContractFeature.MAX_TOKEN_NETWORKS, version) def contracts_version_provides_services(version: Optional[str]) -> bool: return _matches_feature(ContractFeature.SERVICES, version) def contracts_version_has_initial_service_deposit(version: Optional[str]) -> bool: return _matches_feature(ContractFeature.INITIAL_SERVICE_DEPOSIT, version) def contracts_version_monitoring_service_takes_token_network_registry( version: Optional[str], ) -> bool: return _matches_feature(ContractFeature.MS_NEEDS_TOKENNETWORK_REGISTRY, version)
import io import re import sys from numba import njit _INPUT_ = """\ hellospaceRhellospace """ #sys.stdin = io.StringIO(_INPUT_) @njit def solve(S): T = "" for i in range(len(S)): s = S[i] if s == 'R': T = T[::-1] else: if len(T) > 0 and T[-1] == s: T = T[:-1] else: T += s return T S = input() print(solve(S))
from .._pixsfm._residuals import * # noqa F403
import pandas as pd def field_variety(data): """ Computes the number of different fields that each paper is about by taking the number of fields in 'fields_of_study' Input: - df['fields_of_study']: dataframe (dataset); 'fields_of_study' column [pandas dataframe] Output: - Field variety: vector of field_variety for each paper of the given dataset [pandas series] with field_variety [int] """ # Calculates how many fields a paper has Field_variety = pd.Series([len(i) for i in data['fields_of_study']]) return Field_variety
import gzip import io import lz4.frame import struct import sys from .event import Event import proio.proto as proto from .writer import magic_bytes class Reader(object): """ Reader for proio files This class can be used with the `with` statement, and it also may be used as an iterator that sequentially iterates all events. A filename may be omitted in favor of specifying `fileobj`. :param string filename: name of input file to read :param fileobj: file object to read from :example: .. code-block:: python with proio.Reader('input.proio') as reader: for event in reader: ... """ def __init__(self, filename = None, fileobj = None): if filename is None: if fileobj is not None: self._stream_reader = fileobj else: self._stream_reader = io.BytesIO(b'') else: self._stream_reader = open(filename, 'rb') self._close_file = True self._bucket_reader = io.BytesIO(b'') def __enter__(self): return self def __exit__(self, exception_type, exception_value, traceback): self.close() def __iter__(self): return self def __next__(self): """ :return: the next event :rtype: Event """ event = self._read_from_bucket(True) if event is None: raise StopIteration return event if sys.version_info[0] == 2: def next(self): return self.__next__() def close(self): """ closes the underlying input file object. """ try: if self._close_file: self._stream_reader.close() except: pass def next_header(self): """ returns the next event header. This is useful for scanning the stream/file. :return: the next event header :rtype: Event """ self._read_bucket(sys.maxsize) return self._bucket_header def skip(self, n_events): """ skips the next `n_events` events. :param int n_events: number of events to skip :return: number of events skipped :rtype: int """ try: bucket_evts_left = self._bucket_header.nEvents - self._bucket_evts_read except AttributeError: bucket_evts_left = 0 n_skipped = 0 if n_events > bucket_evts_left: n_skipped += bucket_evts_left while True: n = self._read_bucket(n_events - n_skipped) if n == 0: break n_skipped += n while n_skipped < n_events: if self._read_from_bucket(False) == True: n_skipped += 1 else: break return n_skipped def seek_to_start(self): """ seeks, if possible, to the start of the input file object. This can be used along with :func:`skip` to directly access events. """ if self._stream_reader.seekable(): self._stream_reader.seek(0, 0) self._bucket_reader = io.BytesIO(b'') self._bucket_header = None self._bucket_evts_read = 0 def _read_from_bucket(self, do_unmarshal = True): proto_size_buf = self._bucket_reader.read(4) if len(proto_size_buf) != 4: self._read_bucket() proto_size_buf = self._bucket_reader.read(4) if len(proto_size_buf) != 4: return proto_size = struct.unpack("I", proto_size_buf)[0] proto_buf = self._bucket_reader.read(proto_size) if len(proto_buf) != proto_size: return self._bucket_evts_read += 1 if do_unmarshal: event_proto = proto.Event.FromString(proto_buf) return Event(proto_obj = event_proto) return True def _read_bucket(self, max_skip_events = 0): self._bucket_evts_read = 0 events_skipped = 0 self._bucket_header = None n = self._sync_to_magic() if n < len(magic_bytes): return events_skipped header_size = struct.unpack("I", self._stream_reader.read(4))[0] header_string = self._stream_reader.read(header_size) if len(header_string) != header_size: return events_skipped self._bucket_header = proto.BucketHeader.FromString(header_string) if self._bucket_header.nEvents > max_skip_events: bucket = self._stream_reader.read(self._bucket_header.bucketSize) else: self._bucket_reader = io.BytesIO(b'') events_skipped = self._bucket_header.nEvents try: self._stream_reader.seek(self._bucket_header.bucketSize, 1) except OSError: self._stream_reader.read(self._bucket_header.bucketSize) return events_skipped if len(bucket) != self._bucket_header.bucketSize: return events_skipped if self._bucket_header.compression == proto.BucketHeader.GZIP: self._bucket_reader = gzip.GzipFile(fileobj = io.BytesIO(bucket), mode = 'rb') elif self._bucket_header.compression == proto.BucketHeader.LZ4: try: uncomp_bytes, _ = lz4.frame.decompress(bucket) except ValueError: uncomp_bytes = lz4.frame.decompress(bucket) self._bucket_reader = io.BytesIO(uncomp_bytes) else: self._bucket_reader = io.BytesIO(bucket) return events_skipped def _sync_to_magic(self): n_read = 0 while True: magic_byte = self._stream_reader.read(1) if len(magic_byte) != 1: return -1 n_read += 1 if magic_byte == magic_bytes[0]: goodSeq = True for i in range(1, len(magic_bytes)): magic_byte = self._stream_reader.read(1) if len(magic_byte) != 1: return -1 n_read += 1 if magic_byte != magic_bytes[i]: goodSeq = False break if goodSeq: break return n_read
version = "3.38"
from fairseq.models.transformer_lm import TransformerLanguageModel from fairseq.models.transformer_autoencoders import TransformerAutoencoders import torch import numpy as np import torch.nn.functional as F from random import randint from midi_preprocess import encode_midi, decode_midi import utils def temperature_sampling(x, temperature, topk): logits = x.cpu().detach().numpy()[0] probs = np.exp(logits / temperature) / np.sum(np.exp(logits / temperature)) if topk == 1: prediction = np.argmax(probs) else: sorted_index = np.argsort(probs)[::-1] candi_index = sorted_index[:topk] candi_probs = [probs[i] for i in candi_index] # normalize probs candi_probs /= sum(candi_probs) # choose by predicted probs prediction = np.random.choice(candi_index, size=1, p=candi_probs)[0] return x.new([prediction]).int()[None] def topk_sampling(x, topk): logits = x.cpu().detach().numpy()[0] probs = logits if topk == 1: prediction = np.argmax(probs) else: sorted_index = np.argsort(probs)[::-1] candi_index = sorted_index[:topk] candi_probs = [probs[i] for i in candi_index] # normalize probs candi_probs /= sum(candi_probs) # choose by predicted probs prediction = np.random.choice(candi_index, size=1, p=candi_probs)[0] return x.new([prediction]).int()[None] custom_lm = ( TransformerLanguageModel.from_pretrained( "/mnt/zhangyi/checkpoints/transformer_music_lm_remi_cov", "checkpoint_best.pt", ) .cuda() .half() .eval() ) model = custom_lm.models[0] for i in range(0, 100): l = 2048 a = [] s = 1 ss = "<time_shift,0>" if len(ss) == 0: input_sequence = custom_lm.encode(" ".join(encode_midi("primer.mid")))[:-1] with open("data/mae.test.tokens", "r") as fl: ss = fl.readline().strip().split()[3 : 3 + 2048] prev_input_seq = custom_lm.encode(" ".join(ss))[:-1] else: input_sequence = custom_lm.encode(ss)[:-1] print(len(input_sequence)) input_tensor = torch.LongTensor(input_sequence).cuda().unsqueeze(0) # prev_input_tensor = torch.LongTensor(prev_input_seq).cuda().unsqueeze(0) print("ok") a = custom_lm.decode(torch.LongTensor(input_sequence).cuda()).split() print(input_sequence.shape) try: flg = 0 for ind in range(len(input_sequence), l): x = model(input_tensor[-2000:, :])[0] y = x.clone().detach() x = F.softmax(x, dim=2)[:, -1, :] if flg: xx = F.softmax(y, dim=2) xx = xx.topk(1, dim=2)[1] flg -= 1 decode_midi( custom_lm.decode(xx[0, :, 0]).split(), file_path="final2.mid" ) if False: distrib = torch.distributions.categorical.Categorical(probs=x[None]) next_token = distrib.sample() elif False: next_token = x.topk(1)[1] elif False: next_token = temperature_sampling(x, 1.2, 5) else: next_token = topk_sampling(x, 5) input_tensor = torch.cat([input_tensor[:, :], next_token], dim=1) a.append(custom_lm.decode(next_token)) if ind % 100 == 0: print("saving {}".format(ind)) with open("fl.txt", "w") as fl: print(" ".join(a), file=fl) except Exception as e: print(e) print("Abort lenght {}".format(len(a))) try: decode_midi(a, file_path="remi_midi/{}.mid".format(i)) except: utils.write_midi(a, None, "remi_cov_top1/{}.mid".format(i), None)
import sys from xhtml2pdf import pisa def convert_html_to_pdf(source_html, output_filename): with open(output_filename, "w+b") as result_file: pisa_status = pisa.CreatePDF(source_html, dest=result_file) return pisa_status.err if __name__ == "__main__": if len(sys.argv) != 3: print("re-render.py <html> <pdf>") sys.exit(1) pisa.showLogging() with open(sys.argv[1]) as source_html: convert_html_to_pdf(source_html.read(), sys.argv[2])
# coding: utf-8 """ Qc API Qc API # noqa: E501 The version of the OpenAPI document: 3.0.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from telestream_cloud_qc.configuration import Configuration class Vidchecker8(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'audio_tests': 'AudioConfigs', 'file_tests': 'FileConfig', 'mxf_test': 'MxfTest', 'video_tests': 'VideoConfigs' } attribute_map = { 'audio_tests': 'audio_tests', 'file_tests': 'file_tests', 'mxf_test': 'mxf_test', 'video_tests': 'video_tests' } def __init__(self, audio_tests=None, file_tests=None, mxf_test=None, video_tests=None, local_vars_configuration=None): # noqa: E501 """Vidchecker8 - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._audio_tests = None self._file_tests = None self._mxf_test = None self._video_tests = None self.discriminator = None if audio_tests is not None: self.audio_tests = audio_tests if file_tests is not None: self.file_tests = file_tests if mxf_test is not None: self.mxf_test = mxf_test if video_tests is not None: self.video_tests = video_tests @property def audio_tests(self): """Gets the audio_tests of this Vidchecker8. # noqa: E501 :return: The audio_tests of this Vidchecker8. # noqa: E501 :rtype: AudioConfigs """ return self._audio_tests @audio_tests.setter def audio_tests(self, audio_tests): """Sets the audio_tests of this Vidchecker8. :param audio_tests: The audio_tests of this Vidchecker8. # noqa: E501 :type: AudioConfigs """ self._audio_tests = audio_tests @property def file_tests(self): """Gets the file_tests of this Vidchecker8. # noqa: E501 :return: The file_tests of this Vidchecker8. # noqa: E501 :rtype: FileConfig """ return self._file_tests @file_tests.setter def file_tests(self, file_tests): """Sets the file_tests of this Vidchecker8. :param file_tests: The file_tests of this Vidchecker8. # noqa: E501 :type: FileConfig """ self._file_tests = file_tests @property def mxf_test(self): """Gets the mxf_test of this Vidchecker8. # noqa: E501 :return: The mxf_test of this Vidchecker8. # noqa: E501 :rtype: MxfTest """ return self._mxf_test @mxf_test.setter def mxf_test(self, mxf_test): """Sets the mxf_test of this Vidchecker8. :param mxf_test: The mxf_test of this Vidchecker8. # noqa: E501 :type: MxfTest """ self._mxf_test = mxf_test @property def video_tests(self): """Gets the video_tests of this Vidchecker8. # noqa: E501 :return: The video_tests of this Vidchecker8. # noqa: E501 :rtype: VideoConfigs """ return self._video_tests @video_tests.setter def video_tests(self, video_tests): """Sets the video_tests of this Vidchecker8. :param video_tests: The video_tests of this Vidchecker8. # noqa: E501 :type: VideoConfigs """ self._video_tests = video_tests def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Vidchecker8): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, Vidchecker8): return True return self.to_dict() != other.to_dict()
import logging import time from collections import deque from itertools import count import numpy as np from qulab import BaseDriver from .AlazarTechWrapper import (AlazarTechDigitizer, AutoDMA, DMABufferArray, configure, initialize) from .exception import AlazarTechError log = logging.getLogger(__name__) def getSamplesPerRecode(numOfPoints): samplesPerRecord = (numOfPoints // 64) * 64 if samplesPerRecord < numOfPoints: samplesPerRecord += 64 return samplesPerRecord def getExpArray(f_list, numOfPoints, weight=None, sampleRate=1e9): e = [] t = np.arange(0, numOfPoints, 1) / sampleRate if weight is None: weight = np.ones(numOfPoints) for f in f_list: e.append(weight * np.exp(-1j * 2 * np.pi * f * t)) return np.asarray(e).T / numOfPoints class Driver(BaseDriver): def __init__(self, systemID=1, boardID=1, config=None, **kw): super().__init__(**kw) self.dig = AlazarTechDigitizer(systemID, boardID) self.config = dict(n=1024, sampleRate=1e9, f_list=[50e6], weight=None, repeats=512, maxlen=512, ARange=1.0, BRange=1.0, trigLevel=0.0, triggerDelay=0, triggerTimeout=0, recordsPerBuffer=64, bufferCount=512) self.config['e'] = getExpArray(self.config['f_list'], self.config['n'], self.config['weight'], self.config['sampleRate']) self.config['samplesPerRecord'] = getSamplesPerRecode(self.config['n']) if config is not None: self.set(**config) initialize(self.dig) configure(self.dig, **self.config) def set(self, **cmd): if 'n' in cmd: cmd['samplesPerRecord'] = getSamplesPerRecode(cmd['n']) self.config.update(cmd) if self.config['repeats'] % self.config['recordsPerBuffer'] != 0: self.config['repeats'] = ( self.config['repeats'] // self.config['recordsPerBuffer'] + 1) * self.config['recordsPerBuffer'] if any(key in ['f_list', 'n', 'weight', 'sampleRate'] for key in cmd): self.config['e'] = getExpArray(self.config['f_list'], self.config['n'], self.config['weight'], self.config['sampleRate']) if any(key in [ 'ARange', 'BRange', 'trigLevel', 'triggerDelay', 'triggerTimeout' ] for key in cmd): configure(self.dig, **self.config) def setValue(self, name, value): self.set(**{name: value}) def getValue(self, name): return self.config.get(name, None) def _aquireData(self, samplesPerRecord, repeats, buffers, recordsPerBuffer, timeout): with AutoDMA(self.dig, samplesPerRecord, repeats=repeats, buffers=buffers, recordsPerBuffer=recordsPerBuffer, timeout=timeout) as h: yield from h.read() def getData(self, fft=False, avg=False, timeout=None): samplesPerRecord = self.config['samplesPerRecord'] recordsPerBuffer = self.config['recordsPerBuffer'] repeats = self.config['repeats'] e = self.config['e'] n = e.shape[0] maxlen = self.config['maxlen'] if timeout is None: timeout = self.timeout A, B = [], [] retry = 0 while retry < 2: try: for index , (chA, chB) in zip(count(), self._aquireData( samplesPerRecord, repeats=repeats, buffers=None, recordsPerBuffer=recordsPerBuffer, timeout=timeout)): A_lst = chA.reshape((recordsPerBuffer, samplesPerRecord)) B_lst = chB.reshape((recordsPerBuffer, samplesPerRecord)) if fft: A_lst = (A_lst[:, :n]).dot(e) B_lst = (B_lst[:, :n]).dot(e) A.append(A_lst) B.append(B_lst) if repeats == 0 and index*recordsPerBuffer >= maxlen: break A = np.asarray(A) B = np.asarray(B) A = A.flatten().reshape(A.shape[0]*A.shape[1], A.shape[2]) B = B.flatten().reshape(B.shape[0]*B.shape[1], B.shape[2]) if avg: return A.mean(axis=0), B.mean(axis=0) else: return A, B except AlazarTechError as err: log.exception(err.msg) if err.code == 518: raise SystemExit(2) else: pass time.sleep(0.1) retry += 1 else: raise SystemExit(1) def getIQ(self, avg=False, timeout=None): return self.getData(True, avg, timeout=timeout) def getTraces(self, avg=True, timeout=None): return self.getData(False, avg, timeout=timeout)
#Faça um programa que leia o sexo de uma pessoas, mas só aceite valores 'M' e 'F'. #Caso esteja errado, peça a digitação novamente até terum valor correto. sexo = str(input('Informe o sexo: [M/F]')).strip().upper()[0] while sexo not in 'FfMm': sexo = str(input('Dados invalidos, Por favor infome seu sexo: ')).strip().upper()[0] if sexo == 'M': print('o sexo é Masculino') else: print('O sexo é Feminino')
"""satellite-3d setup.""" from setuptools import setup, find_packages with open("satellite_3d/__init__.py") as f: for line in f: if line.find("__version__") >= 0: version = line.split("=")[1].strip() version = version.strip('"') version = version.strip("'") break # Runtime requirements. inst_reqs = [ "rasterio[s3]", "rio-tiler", "rio_tiler_mvt", "lambda_proxy" ] extra_reqs = {} setup( name="satellite-3d", version=version, description=u"Skeleton of a python AWS Lambda function", python_requires=">=3", classifiers=[ "Intended Audience :: Information Technology", "Intended Audience :: Science/Research", "License :: OSI Approved :: BSD License", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", ], keywords="AWS-Lambda Python", author=u"", author_email="", url="", license="BSD", packages=find_packages(exclude=["ez_setup", "examples", "tests"]), include_package_data=True, zip_safe=False, install_requires=inst_reqs, extras_require=extra_reqs, )
from setuptools import setup, find_packages setup( name='PYLin', version='0.1', packages=find_packages(exclude=['tests*']), license='MIT', description='YLin-Python-Package, long_description=open('README.txt').read(), install_requires=['numpy'], url='https://github.com/BillMills/python-package-example', author='Yao Lin', author_email='[email protected]' )
def Boxing(box_number, box_size, object_volume_array, base_index): a_index = base_index object_counter = 0 for b_n in range(box_number): # filling each box total_objects_volume = 0 while total_objects_volume <= box_size and a_index < len(object_volume_array): # until box is full or no object left in array total_objects_volume += object_volume_array[a_index] a_index += 1 object_counter += 1 if total_objects_volume > box_size: # in case counter counts one extra object a_index -= 1 object_counter -= 1 return a_index, object_counter # returns index of last object in boxes and numbers of objects if __name__ == '__main__': while 1: # get and check inputs : they should be positive integers try: n, m, k = map(int, input().split()) if n < 0 or m < 0 or k < 0: print("wrong input! input is not a positive integer! please try again:") continue a = input().split() try: a = [int(x) for x in a] negative = 0 for x in a: if x < 0: negative += 1 if negative > 0: print("wrong input! input is not a positive integer! please try again:") continue except ValueError: print("wrong input! input is not a integer! please try again:") continue except ValueError: print("wrong input! input is not a integer! please try again:") continue break if len(a) != n: # in case input array size is wrong print("wrong input! array size is wrong!") else: Base_index = 0 last_index_in_box = 0 object_count = 0 while last_index_in_box < len(a): # until last object in boxes is the last object in array last_index_in_box, object_count = Boxing(m, k, a, Base_index) Base_index += 1 print(object_count)
from pathlib import Path import pathlib import cv2 import numpy as np import math from util import _get_furniture_info def place_multi_furniture(furniture_obj_dir="./data/basic_furniture/", wall_objs_dir="./data/mid/panel_384478_洋室/", room_scale_factor=1): """compute each wall's smoothness""" if not isinstance(wall_objs_dir, pathlib.PosixPath): wall_objs_dir = Path(wall_objs_dir) image_files = list(wall_objs_dir.glob("*.jpg")) wall2smoothness = {} for image_file in image_files: if "wall" in str(image_file): ima = cv2.imread(str(image_file)) gray_img = cv2.cvtColor(ima, cv2.COLOR_BGR2GRAY) wall2smoothness[image_file.stem] = cv2.Laplacian(gray_img, cv2.CV_64F).var() wall2smoothness = sorted(wall2smoothness.items(), key=lambda x: x[1]) walls = [] for wall_name, smoothness in wall2smoothness: current_wall_obj = wall_objs_dir / (wall_name+".obj") wall_coords, wall_width, vn, vn_axis, vn_direnction = _cal_wall_width(current_wall_obj, room_scale_factor) walls.append({"wall_name":wall_name, "smoothness":smoothness, "wall_coords":wall_coords, "wall_width":wall_width, "vn":vn, "vn_axis":vn_axis, "vn_direnction":vn_direnction}) for wall in walls: print(wall) if not isinstance(furniture_obj_dir, pathlib.PosixPath): furniture_obj_dir = Path(furniture_obj_dir) furniture_objs = list(furniture_obj_dir.glob("*.obj")) """sort the furniture objs by its size""" furniture_obj_volume = [[furniture_obj] + list(_get_furniture_info(furniture_obj)) for furniture_obj in furniture_objs] furniture_obj_volume.sort(key=lambda x:x[-1], reverse=True) furniture_obj_file2transform_info = {} for furniture_obj, furniture_axis2width, volume in furniture_obj_volume: print() print(furniture_obj) print(furniture_axis2width) if furniture_axis2width["y"] < 0.05: location_slide = np.zeros(3) location_slide[0] = -furniture_axis2width["x"]/2 location_slide[1] = -furniture_axis2width["z"]/2 furniture_obj_file2transform_info[furniture_obj] = {"location":location_slide, "rotation":0} continue for wall in walls: # check if the wall is wider than the width of the furniture if wall["wall_width"] > furniture_axis2width["x"]: wall_width_margin = wall["wall_width"] - furniture_axis2width["x"] rotation_angle = np.arctan2(wall["vn"][1], wall["vn"][0]) - np.arctan2(1, 0) # print((int(vn[0]+math.copysign(0.5,vn[0])), int(vn[1]+math.copysign(0.5,vn[1])))) wall_vn_rounded_X = int(wall["vn"][0]+math.copysign(0.5,wall["vn"][0])) # round the wall's normal vector along X-axis wall_vn_rounded_Y = int(wall["vn"][1]+math.copysign(0.5,wall["vn"][1])) # round the wall's normal vector along Y-axis # corner = nv2corner_location_func[(int(wall["vn"][0]+math.copysign(0.5,wall["vn"][0])), int(wall["vn"][1]+math.copysign(0.5,wall["vn"][1])))](wall["wall_coords"]) corner = nv2corner_location_func[(wall_vn_rounded_X, wall_vn_rounded_Y)](wall["wall_coords"]) location_slide = np.zeros(3) location_slide[0] = corner[0] location_slide[1] = corner[1] print(wall["wall_width"]) wall["wall_width"] -= (furniture_axis2width["x"] + 0.1) print(wall["wall_coords"]) if wall_vn_rounded_X==0 and wall_vn_rounded_Y==1: wall["wall_coords"][0,0] += (furniture_axis2width["x"] + 0.1) elif wall_vn_rounded_X==0 and wall_vn_rounded_Y==-1: wall["wall_coords"][0,0] -= (furniture_axis2width["x"] + 0.1) elif wall_vn_rounded_X==1 and wall_vn_rounded_Y==0: wall["wall_coords"][0,1] -= (furniture_axis2width["x"] + 0.1) elif wall_vn_rounded_X==-1 and wall_vn_rounded_Y==0: wall["wall_coords"][0,1] += (furniture_axis2width["x"] + 0.1) print(wall["wall_width"]) print(wall["wall_coords"]) # print(wall_coords) # print(rotation_angle / 3.14 * 180) # print(corner) # print(current_wall_obj) # return location_slide, rotation_angle furniture_obj_file2transform_info[furniture_obj] = {"location":location_slide, "rotation":rotation_angle} break return furniture_obj_file2transform_info def _cal_wall_width(obj_filepath, room_scale_factor): fin = open(str(obj_filepath), "r", encoding="utf-8") lines = fin.readlines() coords = np.zeros((2,2)) i = 0 for line in lines: if len(line.split()) == 0: continue if i <= 1 and line.split()[0] == "v" and float(line.split()[3]) == 0: # refer only coordinates on the floor coords[i,:] = np.array([float(line.split()[1]), float(line.split()[2])]) i += 1 if line.split()[0] == "vn": vn = np.array([float(vn) for vn in line.split()[1:]]) vn_axis = np.argmin(1.0 - np.abs(vn)) vn_direnction = 1.0 if vn[vn_axis] > 0 else -1.0 wall_width = np.max([np.abs(coords[0,0] - coords[1,0]), np.abs(coords[0,1] - coords[1,1])]) new_coords = np.zeros((2,2)) if vn_axis == 0 and vn_direnction == 1: new_coords[0],new_coords[1] = coords[np.argmax(coords[:,1])], coords[np.argmin(coords[:,1])] # wall facing +x elif vn_axis == 0 and vn_direnction == -1: new_coords[0],new_coords[1] = coords[np.argmin(coords[:,1])], coords[np.argmax(coords[:,1])] # wall facing -x elif vn_axis != 0 and vn_direnction == 1: new_coords[0],new_coords[1] = coords[np.argmin(coords[:,0])], coords[np.argmax(coords[:,0])] # wall facing +y elif vn_axis != 0 and vn_direnction == -1: new_coords[0],new_coords[1] = coords[np.argmax(coords[:,0])], coords[np.argmin(coords[:,0])] # wall facing -y return new_coords*room_scale_factor, wall_width*room_scale_factor, vn, "xyz"[vn_axis], vn_direnction # def _get_furniture_info(furniture_obj_filepath): # """obj file parser # input: path to a furniture_obj file (furniture size is written before hand during the preprocess) # output: axis2width: dict ex) {"x": 0.5 , "y": 0.5, "z":0.5}, volume: float # """ # with open(str(furniture_obj_filepath), "r", encoding="utf-8") as f: # lines = f.readlines() # axis2width = {} # volume = 1 # for line in lines: # if line.split()[0] == "###": # axis2width[line.split()[2]] = float(line.split()[3]) # volume *= float(line.split()[3]) # return axis2width, volume nv2corner_location_func = { (0,1): lambda wall_coords: [min(wall_coords[:, 0])+0.1, wall_coords[np.argmin(wall_coords[:, 0]), 1]+0.1], # the wall is facing +y direction, return left bottom corner (0,-1): lambda wall_coords: [max(wall_coords[:, 0])-0.1, wall_coords[np.argmax(wall_coords[:, 0]), 1]-0.1], # the wall is facing -y direction, return right top corner (1,0): lambda wall_coords: [wall_coords[np.argmax(wall_coords[:, 1]), 0]+0.1, max(wall_coords[:, 1])-0.1], # the wall is facing +x direction, return right top corner (-1,0): lambda wall_coords: [wall_coords[np.argmin(wall_coords[:, 1]), 0]-0.1, min(wall_coords[:, 1])+0.1], # the wall is facing -x direction, return left bottom corner } def place_multi_furniture_scoring(furniture_obj_dir="./data/basic_furniture/", wall_objs_dir="./data/mid/panel_384478_洋室/", room_scale_factor=1): def place_one_furniture(furniture_obj="./data/Nitori_obj/デスク 6200227_edit.obj", wall_objs_dir="./data/mid/panel_384478_洋室/", room_scale_factor=1.3): furniture_axis2width, volume = _get_furniture_info(furniture_obj) if not isinstance(wall_objs_dir, pathlib.PosixPath): wall_objs_dir = Path(wall_objs_dir) image_files = list(wall_objs_dir.glob("*.jpg")) # print(image_files) wall2smoothness = {} for image_file in image_files: if "wall" in str(image_file): ima = cv2.imread(str(image_file)) gray_img = cv2.cvtColor(ima, cv2.COLOR_BGR2GRAY) wall2smoothness[image_file.stem] = cv2.Laplacian(gray_img, cv2.CV_64F).var() wall2smoothness = sorted(wall2smoothness.items(), key=lambda x: x[1]) for wall_name, smoothness in wall2smoothness: current_wall_obj = wall_objs_dir / (wall_name+".obj") wall_coords, wall_width, vn, vn_axis, vn_direnction = _cal_wall_width(current_wall_obj, room_scale_factor) # check if the wall is wider than the width of the furniture if wall_width > furniture_axis2width["x"]: wall_width_margin = wall_width - furniture_axis2width["x"] rotation_angle = np.arctan2(vn[1], vn[0]) - np.arctan2(1, 0) # print((int(vn[0]+math.copysign(0.5,vn[0])), int(vn[1]+math.copysign(0.5,vn[1])))) corner = nv2corner_location_func[(int(vn[0]+math.copysign(0.5,vn[0])), int(vn[1]+math.copysign(0.5,vn[1])))](wall_coords) location_slide = np.zeros(3) location_slide[0] = corner[0] location_slide[1] = corner[1] print(wall_coords) print(rotation_angle / 3.14 * 180) print(corner) print(current_wall_obj) return location_slide, rotation_angle return None if __name__ == '__main__': res = place_multi_furniture() for k,v in res.items(): print(k,v)
""" WSGI config for django_practice project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.0/howto/deployment/wsgi/ """ import os import sys import logging from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "django_practice.settings") #sys.path.append('/home/ubuntu/projects/django_practice') #sys.path.append('/home/ubuntu/projects/django_practice/django_practice') import pymysql pymysql.install_as_MySQLdb() application = get_wsgi_application() def applicationxx(environ, start_response): status = '200 OK' output = u'mod_wsgi.application_group = %s' % sys.path #output = u'mod_wsgi.application_group = %s' % repr(environ['mod_wsgi.application_group']) response_headers = [('Content-type', 'text/plain'), ('Content-Length', str(len(output)))] start_response(status, response_headers) return [output.encode('UTF-8')]
#!/usr/bin/env python3 from __future__ import annotations import queue import time import pandas as pd import mecademicpy.mx_robot_def as mx_def from .robot_trajectory_files import RobotTrajectories from pathlib import PurePath # 2nd values of this dict are taken from controller.cpp HandleSetRealTimeMonitoring() -> ParseStatusCodeString() # dict and put in UpperCamelCase for convenience (all column names in logged dataframe will be in the format of these # values) robot_rt_data_to_real_time_monit = { 'rt_target_joint_pos': (mx_def.MX_ST_RT_TARGET_JOINT_POS, 'TargetJointPos'), 'rt_target_cart_pos': (mx_def.MX_ST_RT_TARGET_CART_POS, 'TargetCartPos'), 'rt_target_joint_vel': (mx_def.MX_ST_RT_TARGET_JOINT_VEL, 'TargetJointVel'), 'rt_target_joint_torq': (mx_def.MX_ST_RT_TARGET_JOINT_TORQ, 'TargetJointTorq'), # Unused in RobotState right now 'rt_target_cart_vel': (mx_def.MX_ST_RT_TARGET_CART_VEL, 'TargetCartVel'), 'rt_target_conf': (mx_def.MX_ST_RT_TARGET_CONF, 'TargetConf'), 'rt_target_conf_turn': (mx_def.MX_ST_RT_TARGET_CONF_TURN, 'TargetConfTurn'), 'rt_joint_pos': (mx_def.MX_ST_RT_JOINT_POS, 'JointPos'), 'rt_cart_pos': (mx_def.MX_ST_RT_CART_POS, 'CartPos'), 'rt_joint_vel': (mx_def.MX_ST_RT_JOINT_VEL, 'JointVel'), 'rt_joint_torq': (mx_def.MX_ST_RT_JOINT_TORQ, 'JointTorq'), 'rt_cart_vel': (mx_def.MX_ST_RT_CART_VEL, 'CartVel'), 'rt_conf': (mx_def.MX_ST_RT_CONF, 'Conf'), 'rt_conf_turn': (mx_def.MX_ST_RT_CONF_TURN, 'ConfTurn'), 'rt_accelerometer': (mx_def.MX_ST_RT_ACCELEROMETER, 'Accel'), 'rt_gripper_force': (mx_def.MX_ST_RT_GRIPPER_FORCE, 'GripperForce'), # Unused in RobotState right now 'rt_wrf': (mx_def.MX_ST_RT_WRF, 'Wrf'), 'rt_trf': (mx_def.MX_ST_RT_TRF, 'Trf'), 'rt_checkpoint': (mx_def.MX_ST_RT_CHECKPOINT, 'Checkpoint'), 'rt_external_tool_status': (mx_def.MX_ST_RT_EXTTOOL_STATUS, 'ExtToolStatus'), 'rt_valve_state': (mx_def.MX_ST_RT_VALVE_STATE, 'ValveState'), 'rt_gripper_state': (mx_def.MX_ST_RT_GRIPPER_STATE, 'GripperState'), '': (mx_def.MX_ST_RT_CYCLE_END, 'CycleEnd') # Should not be used, handled by Robot class when it uses the logger } class _RobotTrajectoryLogger: """Class to handle logging robot state to file. Attributes ---------- file_name : str Name of file produced by logger fields : dict of strings Fields to be logged. Key: attribute name in 'RobotState'. Value: Equivalent UpperCamelCase string or enum value used in 'SetRealTimeMonitoring' command_queue : queue Queue to store sent commands. element_width : int Each numerical element will have this width. timestamp_element_width: int Each timestamp will have this width done_logging: bool 'write_fields' wont log more robot states when this is True. Set to True by 'end_log' logging_commands: bool Indicate if sent commands are being logged expanded_fields: Elements of 'fields', but expanded to have a name for each sub-element of corresponding robot states data_dict: Keys: timestamps. Values: robot state stored at moment corresponding to timestamp robot_trajectories: RobotTrajectories object Contains robot states logged data and information about the robot used during logging """ def __init__(self, robot_info, robot_rt_data, fields: list[str] = None, file_name: str = None, file_path: str = None, record_time: bool = True, monitoring_interval: float = None): """Initialize class. Parameters ---------- robot_info : RobotInfo Contains robot information. fields : list of strings List of fields to be logged. robot_rt_data : RobotRtData object Contains state of robot. file_name: string or None Log file name If None, file name will be built with date/time and robot information (robot type, serial, version). file_path : string or None Path to save the zipped file that contains logged data + robot info in, respectively, csv and json file. If not provided, file will be saved in working directory. record_time : bool If true, current time will also be recorded in the text file. (Time is also available in filename.) monitoring_interval: float Indicates rate at which state from robot is received on monitor port. Unit: seconds """ current_date_time = time.strftime('%Y-%m-%d-%H-%M-%S') serial_number_or_blank = ('_serial_' + robot_info.serial) if robot_info.serial else "" # Add unique name to file path. if file_name: self.file_name = file_name else: self.file_name = (f'{robot_info.model}_R{robot_info.revision}_' f'v{robot_info.version.short_version}_' f'log_{current_date_time}{serial_number_or_blank}') self.file_path = file_path # If fields argument is None, log all compatible fields. self.fields = dict() if fields is None: if robot_info.rt_message_capable: for attr in vars(robot_rt_data): if attr.startswith('rt_'): self.fields[attr] = robot_rt_data_to_real_time_monit[attr][1] else: # Only the following fields are available if platform is not rt monitoring capable. self.fields = { 'rt_target_joint_pos': robot_rt_data_to_real_time_monit['rt_target_joint_pos'][1], 'rt_target_cart_pos': robot_rt_data_to_real_time_monit['rt_target_cart_pos'][1] } else: for field in fields: for key, val in robot_rt_data_to_real_time_monit.items(): if (isinstance(field, str) and field.lower() == val[1].lower()) or field == val[0]: self.fields[key] = val[1] break # Set attributes. self.command_queue = queue.Queue() self.element_width = 10 self.timestamp_element_width = 15 self.done_logging = False self.logging_commands = True self.expanded_fields = [] self.data_dict = dict() # Key: timestamp, Value: List of all corresponding robot_rt_data values self.robot_trajectories = RobotTrajectories() # Write robot information. # Maybe robot information could be stored as a RobotInfo object in robot_trajectories? self.robot_trajectories.robot_context.robot_information.append(dict()) for attr in ['model', 'revision', 'version']: self.robot_trajectories.robot_context.robot_information[0][attr] = f'{getattr(robot_info, attr)}' if robot_info.serial is not None: self.robot_trajectories.robot_context.robot_information[0]['serial_number'] = f'{robot_info.serial}' if record_time: self.robot_trajectories.robot_context.robot_information[0]['time_recorded'] = f'{current_date_time}' if monitoring_interval: self.robot_trajectories.robot_context.robot_information[0]['monitoring_interval'] = f'{monitoring_interval}' # Write headers for logged data self.write_field_and_element_headers(robot_info) def get_timestamp_data(self, robot_rt_data, field): """ Return timestamp data object associated with the specific field (or None). Parameters ---------- robot_rt_data : RobotRtData object Current state of robot to get timestamp_data from field : String Name of the field to get timestamp_data for. """ if field == 'rt_accelerometer': index = 5 # For now, only index 5 supported (joint 5's accelerometer) accel_dict = getattr(robot_rt_data, field) if index not in accel_dict: return None field_attr = accel_dict[index] else: field_attr = getattr(robot_rt_data, field) return field_attr def write_field_and_element_headers(self, robot_info): """Write the full field name and element name in each column. Parameters ---------- robot_info : RobotInfo Information about the robot, such as model name and number of joints. """ def assemble_with_prefix(field, names): return [field + '_' + str(x) for x in names] # Write full name for each field. for key, value in self.fields.items(): if (key.endswith('joint_pos') or key.endswith('joint_vel') or key.endswith('joint_torq')): # Write field name followed by joint number. For example: "TargetJointPos_1". self.expanded_fields.extend(assemble_with_prefix(value, range(robot_info.num_joints))) elif key.endswith('cart_pos') or key.endswith('wrf') or key.endswith('trf'): self.expanded_fields.extend(assemble_with_prefix(value, ['X', 'Y', 'Z', 'Alpha', 'Beta', 'Gamma'])) elif key.endswith('cart_vel'): self.expanded_fields.extend( assemble_with_prefix(value, ['X_Dot', 'Y_Dot', 'Z_Dot', 'Omega_X', 'Omega_Y', 'Omega_Z'])) elif key.endswith('rt_accelerometer'): self.expanded_fields.extend(assemble_with_prefix(value, ['X', 'Y', 'Z'])) elif key.endswith('conf_turn'): self.expanded_fields.append(value) elif key.endswith('conf'): self.expanded_fields.extend(assemble_with_prefix(value, ['Shoulder', 'Elbow', 'Wrist'])) elif key.endswith('checkpoint'): self.expanded_fields.append(value) elif key.endswith('rt_external_tool_status'): self.expanded_fields.extend(assemble_with_prefix(value, ['model', 'present', 'homed', 'error'])) elif key.endswith('rt_valve_state'): self.expanded_fields.extend(assemble_with_prefix(value, ['holding', 'limits'])) elif key.endswith('rt_gripper_state'): self.expanded_fields.extend(assemble_with_prefix(value, ['valve1', 'valve2'])) else: raise ValueError(f'Missing formatting for field: {key}') def write_fields(self, timestamp, robot_rt_data): """Write fields to file. Parameters ---------- timestamp : numeric The timestamp of the current data. robot_rt_data : RobotRtData object This object contains the current robot state. """ if self.done_logging: return # First write the timestamp formatted_tim = f'{timestamp:{self.timestamp_element_width}}' self.data_dict[formatted_tim] = [] for field in self.fields: # For each field, write each value with appropriate spacing. ts_data = self.get_timestamp_data(robot_rt_data, field) if ts_data is None: continue self.data_dict[formatted_tim].extend([f'{x:{self.element_width}}' for x in ts_data.data]) def stop_logging_commands(self): """Stops saving sent commands to log""" self.logging_commands = False def end_log(self, ignore_checkpoints=True): """ Write all accumulated sent commands and close file. Return -------- string Filename where logged info can be found """ self.done_logging = True self.robot_trajectories.robot_df_hist.output_dfs.append( pd.DataFrame.from_dict(self.data_dict, orient='index', columns=self.expanded_fields)) # Write all sent commands. while not self.command_queue.empty(): command = self.command_queue.get() if ignore_checkpoints and command.startswith('SetCheckpoint'): continue self.robot_trajectories.robot_context.sent_commands.append(command) self.robot_trajectories.to_file(self.file_name, file_path=self.file_path) if self.file_path: return PurePath.joinpath(PurePath(self.file_path), self.file_name) else: return PurePath(self.file_name)
# For reference, see <https://github.com/quinlan-lab/hts-python/blob/master/hts/htsffi.py>, even though it uses deprecated .verify() import cffi import os.path cxx_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'x.cpp') with open(cxx_path) as f: src = f.read() ffibuilder = cffi.FFI() ffibuilder.set_source('pheweb.load.cffi._x', src, source_extension='.cpp', extra_compile_args=['--std=c++11'], libraries=['z'], # needed on Linux but not macOS ) ffibuilder.cdef(''' int cffi_make_matrix(char *sites_filepath, char *augmented_pheno_glob, char *matrix_filepath); int cffi_bgzip_file(char *in_filepath, char *out_filepath, char *prepend_bytes); ''')
import textakel from flask import Flask from flask import jsonify from flask import render_template app = Flask(__name__) @app.route("/") def index(): return render_template("index.html") @app.route("/api/v1/<string:function_name>/<path:s>") def get_text(function_name, s): s = textakel.takel(function_name, s) response = {"text": s} return jsonify(response) @app.route("/api") def get_functions(): functions_names = textakel.get_functions() response = {"functions": functions_names} return jsonify(response) if __name__ == "__main__": app.run(debug=True)
import math from server.federation import alignment from server.eAd import paillier import pandas as pd import numpy as np import time # import rsa global theta_a,ra,alpha # 设置权重参数的初始值 theta_a = None rsa_len = 1112 ppk_a, psk_a = paillier.gen_key() scal = 1000 alpha = 0.1 def cal_ua(x,theta): temp1 = np.dot(theta.T, x) return int(temp1) def bytes2int(raw_bytes: bytes) -> int: r"""Converts a list of bytes or an 8-bit string to an integer. When using unicode strings, encode it to some encoding like UTF8 first. >>> (((128 * 256) + 64) * 256) + 15 8405007 >>> bytes2int(b'\x80@\x0f') 8405007 """ return int.from_bytes(raw_bytes, 'big', signed=False) def int2bytes(number: int, fill_size: int = 0) -> bytes: """ Convert an unsigned integer to bytes (big-endian):: Does not preserve leading zeros if you don't specify a fill size. :param number: Integer value :param fill_size: If the optional fill size is given the length of the resulting byte string is expected to be the fill size and will be padded with prefix zero bytes to satisfy that length. :returns: Raw bytes (base-256 representation). :raises: ``OverflowError`` when fill_size is given and the number takes up more bytes than fit into the block. This requires the ``overflow`` argument to this function to be set to ``False`` otherwise, no error will be raised. """ if number < 0: raise ValueError("Number must be an unsigned integer: %d" % number) bytes_required = max(1, math.ceil(number.bit_length() / 8)) if fill_size > 0: return number.to_bytes(fill_size, 'big') return number.to_bytes(bytes_required, 'big') def generate_random(n): return np.trunc(np.random.rand(n)*(scal**3)*10+(scal**3))# todo def lr1(ubb_list,ppk_b): lamb = 0.5 x_a = alignment.x n = alignment.x.shape[1] # 特征个数 global theta_a if theta_a is None: theta_a = pd.Series(np.ones(n)) theta = theta_a.apply(lambda x: int(x * scal)) uaa_list = [] # gradA_pb = theta.apply(lambda x : int(paillier.encipher((-lamb * 2 * (scal ** 2) * x),ppk_b))) gradA_pb = pd.Series(np.zeros(n)).apply(lambda x: int(paillier.encipher((-lamb * 2 * (scal ** 2) * x), ppk_b))) print(x_a.shape[0]) time_start = time.time() for i in range(x_a.shape[0]): # 计算Uaa xa = x_a.iloc[i].apply(lambda x: int(x*scal)) ua = cal_ua(xa,theta) uaa = int(paillier.encipher(ua,ppk_a)) uaa_list.append(uaa) # 计算Uab uab = int(paillier.encipher(ua, ppk_b)) # 计算Garb ubb = ubb_list[i] u_pb = paillier.plus(uab,ubb,ppk_b) u_pb_i = [paillier.multiply(u_pb,x,ppk_b) for x in xa] for num,ux in enumerate(u_pb_i): gradA_pb[num] = paillier.plus(ux,gradA_pb[num],ppk_b) if i % 1000 == 0: print('%.f%%' % (i/x_a.shape[0]*100)) global ra ra = generate_random(n) ra_pb = [int(paillier.encipher(int(r),ppk_b)) for r in ra] for num,r in enumerate(ra_pb): gradA_pb[num] = paillier.plus(r, gradA_pb[num], ppk_b) gradA_pb = list(gradA_pb) print('uaa和garb的计算耗时:',time.time()-time_start) return [gradA_pb, uaa_list,ppk_a] def lr2(gradB_pa, gradA_r): # 给B解密 time_start = time.time() gradB_r = [] for grad in gradB_pa: gradB_r.append(paillier.decipher(grad, ppk_a, psk_a)) print('Gar解密耗时:', time.time() - time_start) x_a = alignment.x # gar消除随机数 gradA = gradA_r - ra grad = gradA / 4 / (scal ** 3)/x_a.shape[0] print('当前梯度为',grad) global theta_a,alpha theta_a = theta_a - alpha * grad # alpha *= 0.98 print('学习率:', alpha) print('theta_a',theta_a) return gradB_r def sigmoid(x): return 1/(1 + np.exp(-x)) def save(id): model = theta_a model.to_csv(r'./server/data_storage/model_%s.csv' % id) def pre(ub_list): x_a = alignment.x global theta_a ua_list = [] for i in range(x_a.shape[0]): # 计算Uaa xa = x_a.iloc[i] ua = np.dot(theta_a.T, xa) ua_list.append(ua) u_list = np.array(ua_list) + np.array(ub_list) pred = pd.Series(u_list).apply(lambda x: sigmoid(x)) return pred.tolist()
from wrangle.wrangle import wrangle_function t_test, p_value, df = wrangle_function('sleepdata') print(f'T-test: {t_test} \nP-value: {p_value} \nDF-head: {df.head(3)}')
# ============================================================================= # PROJECT CHRONO - http://projectchrono.org # # Copyright (c) 2014 projectchrono.org # All rights reserved. # # Use of this source code is governed by a BSD-style license that can be found # in the LICENSE file at the top level of the distribution and at # http://projectchrono.org/license-chrono.txt. # # ============================================================================= # Authors: Radu Serban # ============================================================================= # # Demonstration of using a RigidTerrain constructed from different patches. # # The vehicle reference frame has Z up, X towards the front of the vehicle, and # Y pointing to the left. # # ============================================================================= import pychrono as chrono import pychrono.vehicle as veh import pychrono.irrlicht as irr #// ============================================================================= def main(): #print("Copyright (c) 2017 projectchrono.org\nChrono version: ", CHRONO_VERSION , "\n\n") # Create the HMMWV vehicle, set parameters, and initialize my_hmmwv = veh.HMMWV_Full() my_hmmwv.SetContactMethod(chrono.ChContactMethod_NSC) my_hmmwv.SetChassisFixed(False); my_hmmwv.SetInitPosition(chrono.ChCoordsysD(chrono.ChVectorD(-10, -2, 0.6), chrono.ChQuaternionD(1, 0, 0, 0))) my_hmmwv.SetPowertrainType(veh.PowertrainModelType_SIMPLE) my_hmmwv.SetDriveType(veh.DrivelineTypeWV_AWD) my_hmmwv.SetTireType(veh.TireModelType_TMEASY) my_hmmwv.SetTireStepSize(tire_step_size) my_hmmwv.Initialize() my_hmmwv.SetChassisVisualizationType(veh.VisualizationType_NONE) my_hmmwv.SetSuspensionVisualizationType(veh.VisualizationType_PRIMITIVES) my_hmmwv.SetSteeringVisualizationType(veh.VisualizationType_PRIMITIVES) my_hmmwv.SetWheelVisualizationType(veh.VisualizationType_MESH) my_hmmwv.SetTireVisualizationType(veh.VisualizationType_MESH) # Create the terrain with multiple patches terrain = veh.RigidTerrain(my_hmmwv.GetSystem()) patch1_mat = chrono.ChMaterialSurfaceNSC() patch1_mat.SetFriction(0.9) patch1_mat.SetRestitution(0.01) patch1 = terrain.AddPatch(patch1_mat, chrono.ChVectorD(-16, 0, 0), chrono.ChVectorD(0, 0, 1), 32, 20) patch1.SetColor(chrono.ChColor(0.8, 0.8, 0.5)) patch1.SetTexture(veh.GetDataFile("terrain/textures/tile4.jpg"), 20, 20) patch2_mat = chrono.ChMaterialSurfaceNSC() patch2_mat.SetFriction(0.9) patch2_mat.SetRestitution(0.01) patch2 = terrain.AddPatch(patch1_mat, chrono.ChVectorD(16, 0, 0.15), chrono.ChVectorD(0, 0, 1), 32, 30); patch2.SetColor(chrono.ChColor(1.0, 0.5, 0.5)) patch2.SetTexture(veh.GetDataFile("terrain/textures/concrete.jpg"), 20, 20) patch3_mat = chrono.ChMaterialSurfaceNSC() patch3_mat.SetFriction(0.9) patch3_mat.SetRestitution(0.01) patch3 = terrain.AddPatch(patch3_mat, chrono.ChCoordsysD(chrono.ChVectorD(0, -42, 0), chrono.QUNIT), veh.GetDataFile("terrain/meshes/bump.obj"), "hills_mesh") patch3.SetColor(chrono.ChColor(0.5, 0.5, 0.8)) patch3.SetTexture(veh.GetDataFile("terrain/textures/dirt.jpg"), 6.0, 6.0) patch4_mat = chrono.ChMaterialSurfaceNSC() patch4_mat.SetFriction(0.9) patch4_mat.SetRestitution(0.01) patch4 = terrain.AddPatch(patch4_mat, chrono.ChCoordsysD(chrono.ChVectorD(0, 42, 0), chrono.QUNIT), veh.GetDataFile("terrain/height_maps/bump64.bmp"), "field_mesh", 64.0, 64.0, 0.0, 3.0) patch4.SetTexture(veh.GetDataFile("terrain/textures/grass.jpg"), 6.0, 6.0) # Create the vehicle Irrlicht interface app = veh.ChWheeledVehicleIrrApp(my_hmmwv.GetVehicle(), 'HMMWV Rigid Terrain Demo', irr.dimension2du(1000,800)) app.SetSkyBox() app.AddTypicalLights(irr.vector3df(30, -30, 100), irr.vector3df(30, 50, 100), 250, 130) app.AddTypicalLogo(chrono.GetChronoDataFile('logo_pychrono_alpha.png')) app.SetChaseCamera(chrono.ChVectorD(0.0, 0.0, 0.75), 6.0, 0.5) app.SetTimestep(step_size) app.AssetBindAll() app.AssetUpdateAll() # Create the interactive driver system driver = veh.ChIrrGuiDriver(app) driver.SetSteeringDelta(0.02) driver.SetThrottleDelta(0.02) driver.SetBrakingDelta(0.06) driver.Initialize() realtime_timer = chrono.ChRealtimeStepTimer() while (app.GetDevice().run()): time = my_hmmwv.GetSystem().GetChTime() # Draw scene app.BeginScene() app.DrawAll() app.EndScene() # Get driver inputs driver_inputs = driver.GetInputs() # Update modules (process inputs from other modules) driver.Synchronize(time) terrain.Synchronize(time) my_hmmwv.Synchronize(time, driver_inputs, terrain) app.Synchronize(driver.GetInputModeAsString(), driver_inputs) # Advance simulation for one timestep for all modules driver.Advance(step_size) terrain.Advance(step_size) my_hmmwv.Advance(step_size) app.Advance(step_size) # Spin in place for real time to catch up realtime_timer.Spin(step_size) return 0 # The path to the Chrono data directory containing various assets (meshes, textures, data files) # is automatically set, relative to the default location of this demo. # If running from a different directory, you must change the path to the data directory with: #chrono.SetChronoDataPath('path/to/data') veh.SetDataPath(chrono.GetChronoDataPath() + 'vehicle/') # Simulation step sizes step_size = 2e-3; tire_step_size = 1e-3; main()
import requests import pandas as pd import numpy as np def fetch_url(url): res = requests.get(url) return res.json() def fetch_comments(comment_url): d = fetch_url(comment_url) try: nextPageToken = d["nextPageToken"] except: nextPageToken = None comments = [d["items"][index]['snippet']['topLevelComment']['snippet']['textDisplay'] for index in range(len(d["items"]))] while nextPageToken: comment_url = comment_url + '&pageToken=' + nextPageToken d = fetch_url(comment_url) try: nextPageToken = d["nextPageToken"] except: nextPageToken = None page_comments = [d["items"][index]['snippet']['topLevelComment']['snippet']['textDisplay'] for index in range(len(d["items"]))] comments.extend(page_comments) return comments def show_clusters(assign, corpus): clusters_dictionary = {} for i, c in enumerate(assign): if c in clusters_dictionary: clusters_dictionary[c].append(corpus[i]) else: clusters_dictionary[c] = [corpus[i]] return clusters_dictionary
from literal_distribution_thing import LiteralDistribution, exclude_subsets, PID_sets from cana.boolean_node import BooleanNode from binarize import to_binary # set up variables n_inputs = 2**3 rule = 131 output = to_binary(rule, n_inputs) bn = BooleanNode.from_output_list(outputs=output) # print(bn.input_symmetry()) # print(bn._two_symbols) ld = LiteralDistribution(bn) print('Output of ts_transitions:') print(ld._get_ts_transitions()) # print('\n') # print('Output of Literal Distribution') dist = ld._literal_distribution() # for t in dist: # print('Transitions to', t) # for key in dist[t]: # print(key, dist[t][key]) # print('information assignment:') ld._distributed = dist info = ld._assign_information() # for t in info: # print(t, info[t]) # print(len(info))
import numpy as np, tensorflow as tf, aolib.util as ut, aolib.img as ig, os import tensorflow.contrib.slim as slim import tensorflow.contrib.slim.nets as nets import vgg, h5py import sklearn.metrics pj = ut.pjoin full_dim = 256 crop_dim = 224 train_iters = 10000 batch_size = 32 #batch_size = 32 #base_lr = 1e-4 base_lr = 1e-4 gamma = 0.5 step_size = 1000 sample_dur_secs = 0.2 sample_fps = 60 gpu = '/gpu:0' init_path = '../results/vgg_16.ckpt' checkpoint_iters = 100 update_top_only = False ed = tf.expand_dims im_names = 'gel0_pre gel1_pre gel0_post gel1_post'.split() def download_pretrained(): # https://github.com/tensorflow/models/tree/master/slim ut.mkdir('../results') ut.sys_check('wget http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz ' ' -O ../results/vgg_16_2016_08_28.tar.gz') ut.sys_check('cd ../results; tar -xzf vgg_16_2016_08_28.tar.gz') def moving_avg(name, x, vals = {}, avg_win_size = 100): ut.add_dict_list(vals, name, x) return np.mean(vals[name][-avg_win_size:]) def read_example(rec_queue): reader = tf.TFRecordReader() k, s = reader.read(rec_queue) feats = { 'gel0_pre' : tf.FixedLenFeature([], dtype=tf.string), 'gel1_pre' : tf.FixedLenFeature([], dtype=tf.string), 'gel0_post' : tf.FixedLenFeature([], dtype=tf.string), 'gel1_post' : tf.FixedLenFeature([], dtype=tf.string), 'is_gripping' : tf.FixedLenFeature([], tf.int64), } example = tf.parse_single_example(s, features = feats) gel0_pre = tf.image.decode_png(example['gel0_pre']) gel1_pre = tf.image.decode_png(example['gel1_pre']) gel0_post = tf.image.decode_png(example['gel0_post']) gel1_post = tf.image.decode_png(example['gel1_post']) ims = [gel0_pre, gel1_pre, gel0_post, gel1_post] for x in ims: x.set_shape((full_dim, full_dim, 3)) combo = tf.concat([ed(x, 0) for x in ims], 0) combo = tf.random_crop(combo, (shape(combo, 0), crop_dim, crop_dim, shape(combo, 3))) gel0_pre = combo[0] gel1_pre = combo[1] gel0_post = combo[2] gel1_post = combo[3] label = example['is_gripping'] return gel0_pre, gel1_pre, gel0_post, gel1_post, label def read_data(path): tf_files = [pj(path, 'train.tf')] queue = tf.train.string_input_producer(tf_files) gel0_pre, gel1_pre, gel0_post, gel1_post, labels = \ tf.train.shuffle_batch(read_example(queue), batch_size = batch_size, capacity = 2000, min_after_dequeue = 500) return dict(gel0_pre = gel0_pre, gel1_pre = gel1_pre, gel0_post = gel0_post, gel1_post = gel1_post), labels def normalize_ims(im): if type(im) == type(np.array([])): im = im.astype('float32') else: im = tf.cast(im, tf.float32) return -1. + (2./255) * im def shape(x, d = None): s = x.get_shape().as_list() return s if d is None else s[d] def write_data(out_dir, train_frac = 0.75, val_frac = 0.05): ut.mkdir(out_dir) base_data = '../data/grasp/' ut.sys_check('find %s -name "*.hdf5" > %s/db_files.txt' % (base_data, out_dir)) all_db_files = ut.read_lines(pj(out_dir, 'db_files.txt')) all_db_files = ut.shuffled_with_seed(all_db_files) name_from_file = lambda x : '_'.join(x.split('/')[-1].split('_')[2:]) by_name = ut.accum_dict((name_from_file(x), x) for x in all_db_files) names = ut.shuffled_with_seed(sorted(by_name.keys())) num_names = len(all_db_files) num_train = int(train_frac * num_names) num_val = int(val_frac * num_names) i = 0 train_names = names[i : num_train] i += num_train val_names = names[i : i + num_val] i += num_val test_names = names[i:] for dset_name, names in [('train', train_names), ('val', val_names), ('test', test_names)]: ut.write_lines(pj(out_dir, '%s_objects.txt' % dset_name), names) tf_file = pj(out_dir, '%s.tf' % dset_name) pk_file = pj(out_dir, '%s.pk' % dset_name) if os.path.exists(tf_file): os.remove(tf_file) writer = tf.python_io.TFRecordWriter(tf_file) data = [] for name in names: for db_file in by_name[name]: with h5py.File(db_file, 'r') as db: def im(x): x = np.array(x) x = ig.scale(x, (256, 256), 1) return ig.compress(x) if 'is_gripping' in db: label = int(np.array(db['is_gripping'])) elif 'Is gripping?' in db: label = int(np.array(db['Is gripping?'])) else: print 'Skipping: %s. Missing is_gripping' % db_file print 'Keys:', ' '.join(db.keys()) continue data.append({ 'gel0_pre': im(db['GelSightA_image_pre_gripping']), 'gel1_pre': im(db['GelSightB_image_pre_gripping']), 'gel0_post': im(db['GelSightA_image_post_gripping']), 'gel1_post': im(db['GelSightB_image_post_gripping']), 'is_gripping' : label}) fbl = lambda x :tf.train.Feature(bytes_list = tf.train.BytesList(value = [x])) feat = { 'gel0_pre': fbl(im(db['GelSightA_image_pre_gripping'])), 'gel1_pre': fbl(im(db['GelSightB_image_pre_gripping'])), 'gel0_post': fbl(im(db['GelSightA_image_post_gripping'])), 'gel1_post': fbl(im(db['GelSightB_image_post_gripping'])), 'is_gripping' : tf.train.Feature(int64_list = tf.train.Int64List(value = [label]))} ex = tf.train.Example(features = tf.train.Features(feature = feat)) writer.write(ex.SerializeToString()) writer.close() ut.save(pk_file, data) print dset_name, '->', len(data), 'examples' def make_model(inputs, train): n = normalize_ims logits = vgg.vgg_gel2( n(inputs['gel0_pre']), n(inputs['gel0_post']), n(inputs['gel1_pre']), n(inputs['gel1_post']), is_training = train, update_top_only = update_top_only, num_classes = 2) return logits # def train(path, restore = False): # config = tf.ConfigProto(allow_soft_placement = True) # with tf.Graph().as_default(), tf.device(gpu), tf.Session(config = config) as sess: # global_step = tf.get_variable( # 'global_step', [], initializer = # tf.constant_initializer(0), trainable = False) # inputs, labels = read_data(path) # logits = make_model(inputs, train = True) # loss = tf.nn.sparse_softmax_cross_entropy_with_logits( # logits = logits, labels = labels) # loss = tf.reduce_mean(loss) # tf.summary.scalar('loss', loss) # eq = tf.equal(tf.argmax(logits, 1), labels) # acc = tf.reduce_mean(tf.cast(eq, tf.float32)) # tf.summary.scalar('acc', acc) # lr = base_lr * gamma**(global_step // step_size) # opt = tf.train.MomentumOptimizer(lr, 0.9) # train_op = opt.minimize(loss, global_step = global_step) # bn_ups = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # print 'Batch norm updates:', len(bn_ups) # train_op = tf.group(train_op, *bn_ups) # sess.run(tf.global_variables_initializer()) # var_list = slim.get_variables_to_restore() # exclude = ['Adam', 'beta1_power', 'beta2_power', 'Momentum', 'global_step', 'logits', 'fc8'] # var_list = [x for x in var_list if \ # not any(name in x.name for name in exclude)] # train_dir = pj(path, 'training') # if restore: # tf.train.Saver(var_list).restore(sess, tf.train.latest_checkpoint(train_dir)) # else: # tf.train.Saver(var_list).restore(sess, init_path) # #saver = tf.train.Saver() # tf.train.start_queue_runners(sess = sess) # summary_dir = ut.mkdir('../results/summary') # print 'tensorboard --logdir=%s' % summary_dir # sum_writer = tf.summary.FileWriter(summary_dir, sess.graph) # while True: # step = int(sess.run(global_step)) # if (step == 10 or step % checkpoint_iters == 0) or step == train_iters - 1: # check_path = pj(ut.mkdir(train_dir), 'net.tf') # print 'Saving:', check_path # vs = slim.get_model_variables() # tf.train.Saver(vs).save(sess, check_path, # global_step = global_step) # if step > train_iters: # break # merged = tf.summary.merge_all() # if step % 1 == 0: # [summary] = sess.run([merged]) # sum_writer.add_summary(summary, step) # _, lr_val, loss_val, acc_val = sess.run([train_op, lr, loss, acc]) # if step % 10 == 0: # print 'Iteration', step, 'lr = ', lr_val, \ # 'loss:', loss_val, 'acc:', acc_val def train(path, restore = False): config = tf.ConfigProto(allow_soft_placement = True) with tf.Graph().as_default(), tf.device(gpu), tf.Session(config = config) as sess: global_step = tf.get_variable('global_step', [], initializer = tf.constant_initializer(0), trainable = False) inputs, labels = read_data(path) logits = make_model(inputs, train = True) loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits = logits, labels = labels) loss = tf.reduce_mean(loss) eq = tf.equal(tf.argmax(logits, 1), labels) acc = tf.reduce_mean(tf.cast(eq, tf.float32)) lr = base_lr * gamma**(global_step // step_size) opt = tf.train.MomentumOptimizer(lr, 0.9) train_op = opt.minimize(loss, global_step = global_step) bn_ups = tf.get_collection(tf.GraphKeys.UPDATE_OPS) print 'Batch norm updates:', len(bn_ups) train_op = tf.group(train_op, *bn_ups) sess.run(tf.global_variables_initializer()) var_list = slim.get_variables_to_restore() exclude = ['Adam', 'beta1_power', 'beta2_power', 'Momentum', 'global_step', 'logits', 'fc8', 'fc6_', 'fc7_', 'conv6'] var_list = [x for x in var_list if \ not any(name in x.name for name in exclude)] train_dir = pj(path, 'training') if restore: tf.train.Saver(var_list).restore(sess, tf.train.latest_checkpoint(train_dir)) else: tf.train.Saver(var_list).restore(sess, init_path) #saver = tf.train.Saver() tf.train.start_queue_runners(sess = sess) summary_dir = ut.mkdir('../results/summary') print 'tensorboard --logdir=%s' % summary_dir sum_writer = tf.summary.FileWriter(summary_dir, sess.graph) while True: step = int(sess.run(global_step)) if (step == 10 or step % checkpoint_iters == 0) or step == train_iters - 1: check_path = pj(ut.mkdir(train_dir), 'net.tf') print 'Saving:', check_path #saver.save(sess, check_path, global_step = global_step) vs = slim.get_model_variables() # print 'Variables:' # for x in vs: # print x.name tf.train.Saver(vs).save(sess, check_path, global_step = global_step) if step > train_iters: break merged = tf.summary.merge_all() if step % 1 == 0: [summary] = sess.run([merged]) sum_writer.add_summary(summary, step) _, lr_val, loss_val, acc_val = sess.run([train_op, lr, loss, acc]) if step % 10 == 0: print 'Iteration', step, 'lr = ', lr_val, 'loss:', moving_avg('loss', loss_val), 'acc:', moving_avg('acc', acc_val) class NetClf: def __init__(self, model_file, gpu = '/cpu:0'): self.sess = None self.model_file = model_file self.gpu = gpu def __del__(self): self.deinit() def init(self): if self.sess is None: print 'Restoring:',self.model_file with tf.device(self.gpu): tf.reset_default_graph() print self.gpu tf.Graph().as_default() self.sess = tf.Session() s = (crop_dim, crop_dim, 3) self.gel0_pre = tf.placeholder(tf.uint8, s, name = 'gel0_pre') self.gel1_pre = tf.placeholder(tf.uint8, s, name = 'gel1_pre') self.gel0_post = tf.placeholder(tf.uint8, s, name = 'gel0_post') self.gel1_post = tf.placeholder(tf.uint8, s, name = 'gel1_post') self.logits = make_model({k : ed(getattr(self, k), 0) for k in im_names}, train = False) tf.train.Saver().restore(self.sess, self.model_file) tf.get_default_graph().finalize() def deinit(self): if self.sess is not None: self.sess.close() self.sess = None def format_im(self, im): return ig.scale(im, (crop_dim, crop_dim), 1)#.astype('float32') def predict(self, **kwargs): self.init() inputs = {} for k in im_names: inputs[getattr(self, k)] = self.format_im(kwargs[k]) [logits] = self.sess.run([self.logits], inputs) return ut.softmax(logits[0])[1] def test(path): train_dir = pj(path, 'training') check_path = tf.train.latest_checkpoint(train_dir) print 'Restoring from:', check_path net = NetClf(check_path, gpu) data = ut.load(pj(path, 'test.pk')) labels = [] probs = [] accs = [] for i in xrange(len(data)): ex = data[i] label = ex['is_gripping'] ex = {k : ig.uncompress(ex[k]) for k in im_names} prob = net.predict(**ex) print prob, label pred = int(prob >= 0.5) labels.append(label) probs.append(prob) accs.append(pred == label) labels = np.array(labels, 'bool') probs = np.array(probs, 'float32') accs = np.array(accs) print 'Accuracy:', np.mean(accs) print 'mAP:', sklearn.metrics.average_precision_score(labels, probs) def run(todo = 'all', out_dir = '../results/grasp/grasp-v1', restore = 0): todo = ut.make_todo(todo, 'im train test') if 'im' in todo: write_data(out_dir) if 'train' in todo: train(out_dir, restore = restore) if 'test' in todo: test(out_dir)
import logging from typing import Dict from typing import List import neo4j from cartography.intel.jamf.util import call_jamf_api from cartography.util import run_cleanup_job from cartography.util import timeit logger = logging.getLogger(__name__) @timeit def get_computer_groups(jamf_base_uri: str, jamf_user: str, jamf_password: str) -> List[Dict]: return call_jamf_api("/computergroups", jamf_base_uri, jamf_user, jamf_password) @timeit def load_computer_groups(data: Dict, neo4j_session: neo4j.Session, update_tag: int) -> None: ingest_groups = """ UNWIND {JsonData} as group MERGE (g:JamfComputerGroup{id: group.id}) ON CREATE SET g.name = group.name, g.firstseen = timestamp() SET g.is_smart = group.is_smart, g.lastupdated = {UpdateTag} """ groups = data.get("computer_groups") neo4j_session.run(ingest_groups, JsonData=groups, UpdateTag=update_tag) @timeit def cleanup(neo4j_session: neo4j.Session, common_job_parameters: Dict) -> None: run_cleanup_job('jamf_import_computers_cleanup.json', neo4j_session, common_job_parameters) @timeit def sync_computer_groups( neo4j_session: neo4j.Session, update_tag: int, jamf_base_uri: str, jamf_user: str, jamf_password: str, ) -> None: groups = get_computer_groups(jamf_base_uri, jamf_user, jamf_password) load_computer_groups(groups, neo4j_session, update_tag) @timeit def sync( neo4j_session: neo4j.Session, jamf_base_uri: str, jamf_user: str, jamf_password: str, common_job_parameters: Dict, ) -> None: sync_computer_groups(neo4j_session, common_job_parameters['UPDATE_TAG'], jamf_base_uri, jamf_user, jamf_password)
from __future__ import absolute_import from . import train_set # Globally-importable utils. from .train_set import train_A_x from .train_set import train_B_x
#!/usr/bin/env python from yaml import load, dump try: from yaml import CLoader as Loader except ImportError: from yaml import Loader from connection import Connection from logging import Logging import importlib import datetime import argparse parser = argparse.ArgumentParser(description='Start workload.') parser.add_argument('--test', action='store_true', help="run without executing commands") parser.add_argument('--verbose', action='store_true', help="more verbose output") args = parser.parse_args() # Logging logging = Logging(verbose=args.verbose) # Open yaml file f = open("deploy.yml", "r") data = load(f, Loader=Loader) # Connection logging.message("# Init connection") connectionConfig = data['connection'] connection = Connection(config=connectionConfig, logservice=logging, test=args.test) connection.test() # Create release name today = datetime.datetime.today() release_name = today.strftime('%Y-%m-%d_%H%M%S') # TODO: Find nicer solution for this data['deployment']['release_name'] = release_name # Run tasks one by one logging.message("# Init tasks") tasklist = data['tasks'] for taskconfig in tasklist: logging.message("! Task %s" % taskconfig['task']) TaskClass = getattr(importlib.import_module("tasks"), taskconfig['task']) task = TaskClass(connection, { "config": taskconfig, "deployment": data['deployment'] }, logging) task.run()
from unittest import TestCase from src.utils import order_diagnosis from src.consequents import COMMON_CONSEQUENT_NAME class ReferenceDiagnosisTest(TestCase): FOR_SURE_LEVEL = 60 common_consequent_name = COMMON_CONSEQUENT_NAME output = None def _get_diagnosis(self): if not self.medical_record: self.skipTest('Attribute "medical_record" should be defined') if not self.output: self.skipTest('Should have a "output" set') self.medical_record.compute() return order_diagnosis(self.output, self.medical_record.output[COMMON_CONSEQUENT_NAME]) def _get_best_diagnosis(self): return self._get_diagnosis()[0]
import matplotlib from matplotlib import pyplot as plt import pandas as pd import numpy as np from numpy import random # define initial population and coolperation def Init_pop_one(): POP_ONE = [] # define chromosome -- random.shuffle(ChromosomeX)[K] for i in range(POP_SIZE): POP_ONE.append(random.sample(ChromosomeX, K)) return POP_ONE def Init_pop_two(): POP_TWO = [] # define chromosome -- random.shuffle(ChromosomeX)[K] for i in range(POP_SIZE): POP_TWO.append(random.sample(ChromosomeX, K)) return POP_TWO # define fitness function def get_fitness(x): sqrt = np.sqrt(K) Eta = [] Upsilon = [] Sigma = [] Mu = [] maximum = max(x) standard = x.std() average = x.mean() Eta.append(maximum) Sigma.append(standard) Mu.append(average) for i in range(len(Eta)): if Eta[i] < 0.5: value = Sigma[i] / (2 * sqrt * Mu[i]) Upsilon.append(value) else: value = Sigma[i] / Mu[i] Upsilon.append(value) Coverage = sum(Eta) Mutual_exclusivity = sum(Upsilon) Weight = Coverage + Mutual_exclusivity return Weight # calculate the fitness of every individual in population def pop_fitness_one(POP_ONE): return [get_fitness(k) for k in POP_ONE] def pop_fitness_two(POP_TWO): return [get_fitness(k) for k in POP_TWO] # define population crossover operator def pop_one_crossover(pop_one_next): new_pop_one = [] for father in pop_one_next: mother = pop_one_next[np.random.randint(POP_SIZE)] same_pop = [x for x in father if x in mother] rest_pop = [y for y in (father + mother) if y not in same_pop] new_pop_one.append(same_pop.append(rest_pop[0: len(rest_pop) / 2])) new_pop_one.append(same_pop.append(rest_pop[len(rest_pop) / 2:])) pop_one_next.remove(father) pop_one_next.remove(mother) return new_pop_one def pop_two_crossover(pop_two_next): new_pop_two = [] for father in pop_two_next: mother = pop_two_next[np.random.randint(POP_SIZE)] same_pop = [x for x in father if x in mother] rest_pop = [y for y in (father + mother) if y not in same_pop] new_pop_two.append(same_pop.append(rest_pop[0: len(rest_pop) / 2])) new_pop_two.append(same_pop.append(rest_pop[len(rest_pop) / 2:])) pop_two_next.remove(father) pop_two_next.remove(mother) return new_pop_two # define cooperation crossover operator def cooperation_crossover_one(cp_next, pop_two_new, pop_one_new): for father in cp_next: mother = cp_next[np.random.randint(POP_SIZE)] same_pop = [x for x in father if x in mother] rest_pop = [y for y in (father + mother) if y not in same_pop] pop_one_new.append(same_pop.append(rest_pop[0: len(rest_pop) / 2])) pop_two_new.append(same_pop.append(rest_pop[len(rest_pop) / 2:])) cp_next.remove(father) cp_next.remove(mother) return pop_one_new, pop_two_new # define a roulette selector def selection_elitism(POP_ONE, POP_TWO, cp_init): pop_parents_one = sorted(POP_ONE, key=lambda x: get_fitness(x), revers=True) pop_parents_two = sorted(POP_TWO, key=lambda x: get_fitness(x), revers=True) cp_parents = sorted(cp_init, key=lambda x: get_fitness(x), revers=True) pop_one_next = pop_parents_one[0: int(POP_SIZE * 0.5)] pop_two_next = pop_parents_two[0: int(POP_SIZE * 0.5)] cp_next = cp_parents[0: int(POP_SIZE * 0.5)] return pop_one_next, pop_two_next, cp_next def pop_one_mutation(pop_new_one): fit = [] compare = [] for i in pop_new_one: if random.random() < Pm: H = [x for x in random.randint(0, MAXG_G) if x not in pop_new_one[i]] H = H[: 4] H_set = random.sample(pop_new_one[i], np.sqrt(len(H))) new_one = pop_new_one[i.remove(random.sample(pop_new_one[i], 1))] for r in H_set: compare.append(new_one.append(r)) for k in compare: fit.append(get_fitness(k)) return new_one if fit[0] > fit[1]: pop_new_one[i] = compare[0] else: pop_new_one[i] = pop_new_one[i] return pop_new_one def pop_two_mutation(pop_new_one): fit = [] compare = [] for i in pop_new_one: if random.random() < Pm: H = [x for x in random.randint(0, MAXG_G) if x not in pop_new_one[i]] H = H[: 4] H_set = random.sample(pop_new_one[i], np.sqrt(len(H))) new_one = pop_new_one[i.remove(random.sample(pop_new_one[i], 1))] for r in H_set: compare.append(new_one.append(r)) for k in compare: fit.append(get_fitness(k)) return new_one if fit[0] > fit[1]: pop_new_one[i] = compare[0] else: pop_new_one[i] = pop_new_one[i] return pop_new_one def CGA_MWS(): pop_one_init = Init_pop_one() pop_two_init = Init_pop_two() cp_init = pop_one_init | pop_two_init gen = 0 t = 0 for g in MAXG_G: while gen < g and t < MAXT: # step 4 :selection and crossover in pop pop_one_selection_elitism(pop_one_init, pop_two_init, cp_init) pop_one_new = pop_one_crossover(pop_one_next) pop_two_new = pop_two_crossover(pop_two_next) # step 5 :selection and crossover in cooperation cooperation_crossover_one(cp_next) # step 6 :mutation pop_one_mutation(pop_one_new) pop_two_mutation(pop_two_new) # step 7 :sort the pop pop_one_new = sorted(pop_one_new, key=lambda x: get_fitness(x), reverse=True)[: POP_SIZE] pop_two_new = sorted(pop_two_new, key=lambda x: get_fitness(x), reverse=True)[: POP_SIZE] # step 8 :sort the union set cp_next = sorted(cp_next | pop_one_new | pop_two_new, key=lambda x: get_fitness(x), reverse=True)[ : 2 * POP_SIZE] union_pop = pop_one_new | pop_two_new union_pop = sorted(union_pop, key=lambda x: get_fitness(x), reverse=True) if get_fitness(pop_one_new[0]) > get_fitness(pop_two_new[-1]): pop_two_new[-1] = pop_one_new[0] elif get_fitness(pop_two_new[0]) > get_fitness(pop_one_new[-1]): pop_one_new[-1] = pop_two_new[0] elif get_fitness(union_pop[0]) > get_fitness(best): best = union_pop[0] t = -1 t += 1 gen += 1 if __name__ == "__main__": K = int(input()) # set the parameters MAXG_G = [1000, 5000, 10000] MAXT = 10 POP_SIZE = MAXG_G / 4 Pm = 0.3 ChromosomeX = [c for c in range(MAXG_G)] CGA_MWS()
""" Copyright 2012 Ali Ok (aliokATapacheDOTorg) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging import math from trnltk.morphology.contextful.likelihoodmetrics.wordformcollocation.contextparsingcalculator import BaseContextParsingLikelihoodCalculator from trnltk.morphology.model import formatter logger = logging.getLogger('interpolatingCollocationLikelihoodCalculator') class InterpolatingLikelihoodCalculator(BaseContextParsingLikelihoodCalculator): ALPHA = 10 def __init__(self, wrapped_calculator): """ @type wrapped_calculator: BaseContextParsingLikelihoodCalculator """ self._wrapped_calculator = wrapped_calculator def build_indexes(self): self._wrapped_calculator.build_indexes() def calculate_oneway_likelihood(self, target, context, target_comes_after, calculation_context=None): if logger.isEnabledFor(logging.DEBUG): if target_comes_after: logger.debug(u" Calculating oneway likelihood of {1}, {0}".format(formatter.format_morpheme_container_for_simple_parseset(target), [t[0].get_surface() if t else "<Unparsable>" for t in context])) else: logger.debug(u" Calculating oneway likelihood of {0}, {1}".format(formatter.format_morpheme_container_for_simple_parseset(target), [t[0].get_surface() if t else "<Unparsable>" for t in context])) context_len = len(context) if calculation_context is not None: calculation_context['interpolation'] = {'context_length': context_len, 'likelihood': {}, 'weight': {}, 'item': {}, 'part_weight': {}} interpolation_weights = self._calculate_interpolation_weights(context_len) total_likelihood = 0 for i in range(0, len(context)): calculation_context_item = {} if calculation_context else None context_part = context[context_len - i - 1:] if target_comes_after else context[0: i + 1] part_likelihood = self._wrapped_calculator.calculate_oneway_likelihood(target, context_part, target_comes_after, calculation_context_item) part_weight = part_likelihood * interpolation_weights[i] total_likelihood += part_weight if calculation_context is not None: calculation_context['interpolation']['item'][i] = calculation_context_item calculation_context['interpolation']['likelihood'][i] = part_likelihood calculation_context['interpolation']['weight'][i] = interpolation_weights[i] calculation_context['interpolation']['part_weight'][i] = part_weight if calculation_context is not None: calculation_context['sum_likelihood'] = total_likelihood return total_likelihood def _calculate_interpolation_weights(self, context_len): denominator = 0 for i in range(0, context_len): denominator += math.pow(self.ALPHA, i) weights = [] for i in range(0, context_len): nominator = math.pow(self.ALPHA, i) weights.append(nominator / denominator) return weights
# Copyright (c) 2015 Red Hat Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from keystoneauth1 import exceptions as ks_exc from neutron_lib.api.definitions import port as port_def from neutron_lib.api.definitions import port_resource_request from neutron_lib.api.definitions import portbindings from neutron_lib.api.definitions import qos as qos_apidef from neutron_lib.api.definitions import qos_bw_limit_direction from neutron_lib.api.definitions import qos_bw_minimum_ingress from neutron_lib.api.definitions import qos_default from neutron_lib.api.definitions import qos_port_network_policy from neutron_lib.api.definitions import qos_pps_rule from neutron_lib.api.definitions import qos_rule_type_details from neutron_lib.api.definitions import qos_rules_alias from neutron_lib.callbacks import events as callbacks_events from neutron_lib.callbacks import registry as callbacks_registry from neutron_lib.callbacks import resources as callbacks_resources from neutron_lib import constants as nl_constants from neutron_lib import context from neutron_lib.db import api as db_api from neutron_lib.db import resource_extend from neutron_lib import exceptions as lib_exc from neutron_lib.exceptions import qos as qos_exc from neutron_lib.placement import client as pl_client from neutron_lib.placement import utils as pl_utils from neutron_lib.services.qos import constants as qos_consts import os_resource_classes as orc from oslo_config import cfg from oslo_log import log as logging from neutron._i18n import _ from neutron.db import db_base_plugin_common from neutron.extensions import qos from neutron.objects import base as base_obj from neutron.objects import network as network_object from neutron.objects import ports as ports_object from neutron.objects.qos import policy as policy_object from neutron.objects.qos import qos_policy_validator as checker from neutron.objects.qos import rule as rule_object from neutron.objects.qos import rule_type as rule_type_object from neutron.services.qos.drivers import manager LOG = logging.getLogger(__name__) @resource_extend.has_resource_extenders class QoSPlugin(qos.QoSPluginBase): """Implementation of the Neutron QoS Service Plugin. This class implements a Quality of Service plugin that provides quality of service parameters over ports and networks. """ supported_extension_aliases = [ qos_apidef.ALIAS, qos_bw_limit_direction.ALIAS, qos_default.ALIAS, qos_rule_type_details.ALIAS, port_resource_request.ALIAS, qos_bw_minimum_ingress.ALIAS, qos_rules_alias.ALIAS, qos_port_network_policy.ALIAS, qos_pps_rule.ALIAS, ] __native_pagination_support = True __native_sorting_support = True __filter_validation_support = True def __init__(self): super(QoSPlugin, self).__init__() self.driver_manager = manager.QosServiceDriverManager() self._placement_client = pl_client.PlacementAPIClient(cfg.CONF) callbacks_registry.subscribe( self._validate_create_port_callback, callbacks_resources.PORT, callbacks_events.PRECOMMIT_CREATE) callbacks_registry.subscribe( self._check_port_for_placement_allocation_change, callbacks_resources.PORT, callbacks_events.BEFORE_UPDATE) callbacks_registry.subscribe( self._validate_update_port_callback, callbacks_resources.PORT, callbacks_events.PRECOMMIT_UPDATE) callbacks_registry.subscribe( self._validate_update_network_callback, callbacks_resources.NETWORK, callbacks_events.PRECOMMIT_UPDATE) callbacks_registry.subscribe( self._validate_create_network_callback, callbacks_resources.NETWORK, callbacks_events.PRECOMMIT_CREATE) @staticmethod @resource_extend.extends([port_def.COLLECTION_NAME]) def _extend_port_resource_request(port_res, port_db): """Add resource request to a port.""" if isinstance(port_db, ports_object.Port): qos_id = port_db.qos_policy_id or port_db.qos_network_policy_id else: qos_id = None if port_db.get('qos_policy_binding'): qos_id = port_db.qos_policy_binding.policy_id elif port_db.get('qos_network_policy_binding'): qos_id = port_db.qos_network_policy_binding.policy_id port_res['resource_request'] = None if not qos_id: return port_res if port_res.get('bulk'): port_res['resource_request'] = { 'qos_id': qos_id, 'network_id': port_db.network_id, 'vnic_type': port_res[portbindings.VNIC_TYPE]} return port_res min_bw_rules = rule_object.QosMinimumBandwidthRule.get_objects( context.get_admin_context(), qos_policy_id=qos_id) resources = QoSPlugin._get_resources(min_bw_rules) if not resources: return port_res segments = network_object.NetworkSegment.get_objects( context.get_admin_context(), network_id=port_db.network_id) traits = QoSPlugin._get_traits(port_res[portbindings.VNIC_TYPE], segments) if not traits: return port_res port_res['resource_request'] = { 'required': traits, 'resources': resources} return port_res @staticmethod def _get_resources(min_bw_rules): resources = {} # NOTE(ralonsoh): we should move this translation dict to n-lib. rule_direction_class = { nl_constants.INGRESS_DIRECTION: orc.NET_BW_IGR_KILOBIT_PER_SEC, nl_constants.EGRESS_DIRECTION: orc.NET_BW_EGR_KILOBIT_PER_SEC } for rule in min_bw_rules: resources[rule_direction_class[rule.direction]] = rule.min_kbps return resources @staticmethod def _get_traits(vnic_type, segments): # TODO(lajoskatona): Change to handle all segments when any traits # support will be available. See Placement spec: # https://review.opendev.org/565730 first_segment = segments[0] if not first_segment or not first_segment.physical_network: return [] physnet_trait = pl_utils.physnet_trait( first_segment.physical_network) # NOTE(ralonsoh): we should not rely on the current execution order of # the port extending functions. Although here we have # port_res[VNIC_TYPE], we should retrieve this value from the port DB # object instead. vnic_trait = pl_utils.vnic_type_trait(vnic_type) return [physnet_trait, vnic_trait] @staticmethod @resource_extend.extends([port_def.COLLECTION_NAME_BULK]) def _extend_port_resource_request_bulk(ports_res, noop): """Add resource request to a list of ports.""" min_bw_rules = dict() net_segments = dict() for port_res in ports_res: if port_res.get('resource_request') is None: continue qos_id = port_res['resource_request'].pop('qos_id', None) if not qos_id: port_res['resource_request'] = None continue net_id = port_res['resource_request'].pop('network_id') vnic_type = port_res['resource_request'].pop('vnic_type') if qos_id not in min_bw_rules: rules = rule_object.QosMinimumBandwidthRule.get_objects( context.get_admin_context(), qos_policy_id=qos_id) min_bw_rules[qos_id] = rules resources = QoSPlugin._get_resources(min_bw_rules[qos_id]) if not resources: continue if net_id not in net_segments: segments = network_object.NetworkSegment.get_objects( context.get_admin_context(), network_id=net_id) net_segments[net_id] = segments traits = QoSPlugin._get_traits(vnic_type, net_segments[net_id]) if not traits: continue port_res['resource_request'] = { 'required': traits, 'resources': resources} return ports_res def _get_ports_with_policy(self, context, policy): networks_ids = policy.get_bound_networks() ports_with_net_policy = ports_object.Port.get_objects( context, network_id=networks_ids) # Filter only this ports which don't have overwritten policy ports_with_net_policy = [ port for port in ports_with_net_policy if port.qos_policy_id is None ] ports_ids = policy.get_bound_ports() ports_with_policy = ports_object.Port.get_objects( context, id=ports_ids) return list(set(ports_with_policy + ports_with_net_policy)) def _validate_create_port_callback(self, resource, event, trigger, payload=None): context = payload.context port_id = payload.resource_id port = ports_object.Port.get_object(context, id=port_id) policy_id = port.qos_policy_id or port.qos_network_policy_id if policy_id is None: return policy = policy_object.QosPolicy.get_object( context.elevated(), id=policy_id) self.validate_policy_for_port(context, policy, port) def _check_port_for_placement_allocation_change(self, resource, event, trigger, payload): context = payload.context orig_port = payload.states[0] port = payload.latest_state original_policy_id = orig_port.get(qos_consts.QOS_POLICY_ID) if qos_consts.QOS_POLICY_ID not in port: return policy_id = port.get(qos_consts.QOS_POLICY_ID) if policy_id == original_policy_id: return # Do this only for compute bound ports if (nl_constants.DEVICE_OWNER_COMPUTE_PREFIX in orig_port['device_owner']): original_policy = policy_object.QosPolicy.get_object( context.elevated(), id=original_policy_id) policy = policy_object.QosPolicy.get_object( context.elevated(), id=policy_id) self._change_placement_allocation(original_policy, policy, orig_port) def _prepare_allocation_needs(self, original_rule, desired_rule): if (isinstance(desired_rule, rule_object.QosMinimumBandwidthRule) or isinstance(desired_rule, dict)): o_dir = original_rule.get('direction') o_minkbps = original_rule.get('min_kbps') d_minkbps = desired_rule.get('min_kbps') d_dir = desired_rule.get('direction') if o_dir == d_dir and o_minkbps != d_minkbps: diff = d_minkbps - o_minkbps # TODO(lajoskatona): move this to neutron-lib, see similar # dict @l125. if d_dir == 'egress': drctn = orc.NET_BW_EGR_KILOBIT_PER_SEC else: drctn = orc.NET_BW_IGR_KILOBIT_PER_SEC return {drctn: diff} return {} def _change_placement_allocation(self, original_policy, desired_policy, orig_port): alloc_diff = {} original_rules = [] rp_uuid = orig_port['binding:profile'].get('allocation') device_id = orig_port['device_id'] if original_policy: original_rules = original_policy.get('rules') if desired_policy: desired_rules = desired_policy.get('rules') else: desired_rules = [{'direction': 'egress', 'min_kbps': 0}, {'direction': 'ingress', 'min_kbps': 0}] any_rules_minbw = any( [isinstance(r, rule_object.QosMinimumBandwidthRule) for r in desired_rules]) if (not original_rules and any_rules_minbw) or not rp_uuid: LOG.warning("There was no QoS policy with minimum_bandwidth rule " "attached to the port %s, there is no allocation " "record in placement for it, only the dataplane " "enforcement will happen!", orig_port['id']) return for o_rule in original_rules: if isinstance(o_rule, rule_object.QosMinimumBandwidthRule): for d_rule in desired_rules: alloc_diff.update( self._prepare_allocation_needs(o_rule, d_rule)) if alloc_diff: try: self._placement_client.update_qos_minbw_allocation( consumer_uuid=device_id, minbw_alloc_diff=alloc_diff, rp_uuid=rp_uuid) except ks_exc.Conflict: raise qos_exc.QosPlacementAllocationConflict( consumer=device_id, rp=rp_uuid) def _validate_update_port_callback(self, resource, event, trigger, payload=None): context = payload.context original_policy_id = payload.states[0].get( qos_consts.QOS_POLICY_ID) policy_id = payload.desired_state.get(qos_consts.QOS_POLICY_ID) if policy_id is None or policy_id == original_policy_id: return updated_port = ports_object.Port.get_object( context, id=payload.desired_state['id']) policy = policy_object.QosPolicy.get_object( context.elevated(), id=policy_id) self.validate_policy_for_port(context, policy, updated_port) def _validate_create_network_callback(self, resource, event, trigger, payload=None): context = payload.context network_id = payload.resource_id network = network_object.Network.get_object(context, id=network_id) policy_id = network.qos_policy_id if policy_id is None: return policy = policy_object.QosPolicy.get_object( context.elevated(), id=policy_id) self.validate_policy_for_network(context, policy, network_id) def _validate_update_network_callback(self, resource, event, trigger, payload=None): context = payload.context original_network = payload.states[0] updated_network = payload.desired_state original_policy_id = original_network.get(qos_consts.QOS_POLICY_ID) policy_id = updated_network.get(qos_consts.QOS_POLICY_ID) if policy_id is None or policy_id == original_policy_id: return policy = policy_object.QosPolicy.get_object( context.elevated(), id=policy_id) self.validate_policy_for_network( context, policy, network_id=updated_network['id']) ports = ports_object.Port.get_objects( context, network_id=updated_network['id']) # Filter only this ports which don't have overwritten policy ports = [ port for port in ports if port.qos_policy_id is None ] self.validate_policy_for_ports(context, policy, ports) def validate_policy(self, context, policy): ports = self._get_ports_with_policy(context, policy) self.validate_policy_for_ports(context, policy, ports) def validate_policy_for_ports(self, context, policy, ports): for port in ports: self.validate_policy_for_port(context, policy, port) def validate_policy_for_port(self, context, policy, port): for rule in policy.rules: if not self.driver_manager.validate_rule_for_port( context, rule, port): raise qos_exc.QosRuleNotSupported(rule_type=rule.rule_type, port_id=port['id']) def validate_policy_for_network(self, context, policy, network_id): for rule in policy.rules: if not self.driver_manager.validate_rule_for_network( context, rule, network_id): raise qos_exc.QosRuleNotSupportedByNetwork( rule_type=rule.rule_type, network_id=network_id) def reject_min_bw_rule_updates(self, context, policy): ports = self._get_ports_with_policy(context, policy) for port in ports: # NOTE(bence romsics): In some cases the presence of # 'binding:profile.allocation' is a more precise marker than # 'device_owner' about when we have to reject min-bw related # policy/rule updates. However 'binding:profile.allocation' cannot # be used in a generic way here. Consider the case when the first # min-bw rule is added to a policy having ports in-use. Those ports # will not have 'binding:profile.allocation', but this policy # update must be rejected. if (port.device_owner is not None and port.device_owner.startswith( nl_constants.DEVICE_OWNER_COMPUTE_PREFIX)): raise NotImplementedError(_( 'Cannot update QoS policies/rules backed by resources ' 'tracked in Placement')) @db_base_plugin_common.convert_result_to_dict def create_policy(self, context, policy): """Create a QoS policy. :param context: neutron api request context :type context: neutron_lib.context.Context :param policy: policy data to be applied :type policy: dict :returns: a QosPolicy object """ # NOTE(dasm): body 'policy' contains both tenant_id and project_id # but only latter needs to be used to create QosPolicy object. # We need to remove redundant keyword. # This cannot be done in other place of stacktrace, because neutron # needs to be backward compatible. tenant_id = policy['policy'].pop('tenant_id', None) if not policy['policy'].get('project_id'): policy['policy']['project_id'] = tenant_id policy_obj = policy_object.QosPolicy(context, **policy['policy']) with db_api.CONTEXT_WRITER.using(context): policy_obj.create() self.driver_manager.call(qos_consts.CREATE_POLICY_PRECOMMIT, context, policy_obj) self.driver_manager.call(qos_consts.CREATE_POLICY, context, policy_obj) return policy_obj @db_base_plugin_common.convert_result_to_dict def update_policy(self, context, policy_id, policy): """Update a QoS policy. :param context: neutron api request context :type context: neutron.context.Context :param policy_id: the id of the QosPolicy to update :param policy_id: str uuid :param policy: new policy data to be applied :type policy: dict :returns: a QosPolicy object """ policy_data = policy['policy'] with db_api.CONTEXT_WRITER.using(context): policy_obj = policy_object.QosPolicy.get_policy_obj( context, policy_id) policy_obj.update_fields(policy_data, reset_changes=True) policy_obj.update() self.driver_manager.call(qos_consts.UPDATE_POLICY_PRECOMMIT, context, policy_obj) self.driver_manager.call(qos_consts.UPDATE_POLICY, context, policy_obj) return policy_obj def delete_policy(self, context, policy_id): """Delete a QoS policy. :param context: neutron api request context :type context: neutron.context.Context :param policy_id: the id of the QosPolicy to delete :type policy_id: str uuid :returns: None """ with db_api.CONTEXT_WRITER.using(context): policy = policy_object.QosPolicy(context) policy.id = policy_id policy.delete() self.driver_manager.call(qos_consts.DELETE_POLICY_PRECOMMIT, context, policy) self.driver_manager.call(qos_consts.DELETE_POLICY, context, policy) @db_base_plugin_common.filter_fields @db_base_plugin_common.convert_result_to_dict def get_policy(self, context, policy_id, fields=None): """Get a QoS policy. :param context: neutron api request context :type context: neutron.context.Context :param policy_id: the id of the QosPolicy to update :type policy_id: str uuid :returns: a QosPolicy object """ return policy_object.QosPolicy.get_policy_obj(context, policy_id) @db_base_plugin_common.filter_fields @db_base_plugin_common.convert_result_to_dict def get_policies(self, context, filters=None, fields=None, sorts=None, limit=None, marker=None, page_reverse=False): """Get QoS policies. :param context: neutron api request context :type context: neutron.context.Context :param filters: search criteria :type filters: dict :returns: QosPolicy objects meeting the search criteria """ filters = filters or dict() pager = base_obj.Pager(sorts, limit, page_reverse, marker) return policy_object.QosPolicy.get_objects(context, _pager=pager, **filters) @db_base_plugin_common.filter_fields @db_base_plugin_common.convert_result_to_dict def get_rule_type(self, context, rule_type_name, fields=None): if not context.is_admin: raise lib_exc.NotAuthorized() return rule_type_object.QosRuleType.get_object(rule_type_name) @db_base_plugin_common.filter_fields @db_base_plugin_common.convert_result_to_dict def get_rule_types(self, context, filters=None, fields=None, sorts=None, limit=None, marker=None, page_reverse=False): if not filters: filters = {} return rule_type_object.QosRuleType.get_objects(**filters) def supported_rule_type_details(self, rule_type_name): return self.driver_manager.supported_rule_type_details(rule_type_name) @property def supported_rule_types(self): return self.driver_manager.supported_rule_types @db_base_plugin_common.convert_result_to_dict def create_policy_rule(self, context, rule_cls, policy_id, rule_data): """Create a QoS policy rule. :param context: neutron api request context :type context: neutron.context.Context :param rule_cls: the rule object class :type rule_cls: a class from the rule_object (qos.objects.rule) module :param policy_id: the id of the QosPolicy for which to create the rule :type policy_id: str uuid :param rule_data: the rule data to be applied :type rule_data: dict :returns: a QoS policy rule object """ rule_type = rule_cls.rule_type rule_data = rule_data[rule_type + '_rule'] with db_api.CONTEXT_WRITER.using(context): # Ensure that we have access to the policy. policy = policy_object.QosPolicy.get_policy_obj(context, policy_id) checker.check_bandwidth_rule_conflict(policy, rule_data) rule = rule_cls(context, qos_policy_id=policy_id, **rule_data) checker.check_rules_conflict(policy, rule) rule.create() policy.obj_load_attr('rules') self.validate_policy(context, policy) if rule.rule_type == qos_consts.RULE_TYPE_MINIMUM_BANDWIDTH: self.reject_min_bw_rule_updates(context, policy) self.driver_manager.call(qos_consts.UPDATE_POLICY_PRECOMMIT, context, policy) self.driver_manager.call(qos_consts.UPDATE_POLICY, context, policy) return rule @db_base_plugin_common.convert_result_to_dict def update_policy_rule(self, context, rule_cls, rule_id, policy_id, rule_data): """Update a QoS policy rule. :param context: neutron api request context :type context: neutron.context.Context :param rule_cls: the rule object class :type rule_cls: a class from the rule_object (qos.objects.rule) module :param rule_id: the id of the QoS policy rule to update :type rule_id: str uuid :param policy_id: the id of the rule's policy :type policy_id: str uuid :param rule_data: the new rule data to update :type rule_data: dict :returns: a QoS policy rule object """ rule_type = rule_cls.rule_type rule_data = rule_data[rule_type + '_rule'] with db_api.CONTEXT_WRITER.using(context): # Ensure we have access to the policy. policy = policy_object.QosPolicy.get_policy_obj(context, policy_id) # Ensure the rule belongs to the policy. checker.check_bandwidth_rule_conflict(policy, rule_data) rule = policy.get_rule_by_id(rule_id) rule.update_fields(rule_data, reset_changes=True) checker.check_rules_conflict(policy, rule) rule.update() policy.obj_load_attr('rules') self.validate_policy(context, policy) if rule.rule_type == qos_consts.RULE_TYPE_MINIMUM_BANDWIDTH: self.reject_min_bw_rule_updates(context, policy) self.driver_manager.call(qos_consts.UPDATE_POLICY_PRECOMMIT, context, policy) self.driver_manager.call(qos_consts.UPDATE_POLICY, context, policy) return rule def _get_policy_id(self, context, rule_cls, rule_id): with db_api.CONTEXT_READER.using(context): rule_object = rule_cls.get_object(context, id=rule_id) if not rule_object: raise qos_exc.QosRuleNotFound(policy_id="", rule_id=rule_id) return rule_object.qos_policy_id def update_rule(self, context, rule_cls, rule_id, rule_data): """Update a QoS policy rule alias. This method processes a QoS policy rule update, where the rule is an API first level resource instead of a subresource of a policy. :param context: neutron api request context :type context: neutron.context.Context :param rule_cls: the rule object class :type rule_cls: a class from the rule_object (qos.objects.rule) module :param rule_id: the id of the QoS policy rule to update :type rule_id: str uuid :param rule_data: the new rule data to update :type rule_data: dict :returns: a QoS policy rule object :raises: qos_exc.QosRuleNotFound """ policy_id = self._get_policy_id(context, rule_cls, rule_id) rule_data_name = rule_cls.rule_type + '_rule' alias_rule_data_name = 'alias_' + rule_data_name rule_data[rule_data_name] = rule_data.pop(alias_rule_data_name) return self.update_policy_rule(context, rule_cls, rule_id, policy_id, rule_data) def delete_policy_rule(self, context, rule_cls, rule_id, policy_id): """Delete a QoS policy rule. :param context: neutron api request context :type context: neutron.context.Context :param rule_cls: the rule object class :type rule_cls: a class from the rule_object (qos.objects.rule) module :param rule_id: the id of the QosPolicy Rule to delete :type rule_id: str uuid :param policy_id: the id of the rule's policy :type policy_id: str uuid :returns: None """ with db_api.CONTEXT_WRITER.using(context): # Ensure we have access to the policy. policy = policy_object.QosPolicy.get_policy_obj(context, policy_id) rule = policy.get_rule_by_id(rule_id) rule.delete() policy.obj_load_attr('rules') if rule.rule_type == qos_consts.RULE_TYPE_MINIMUM_BANDWIDTH: self.reject_min_bw_rule_updates(context, policy) self.driver_manager.call(qos_consts.UPDATE_POLICY_PRECOMMIT, context, policy) self.driver_manager.call(qos_consts.UPDATE_POLICY, context, policy) def delete_rule(self, context, rule_cls, rule_id): """Delete a QoS policy rule alias. This method processes a QoS policy rule delete, where the rule is an API first level resource instead of a subresource of a policy. :param context: neutron api request context :type context: neutron.context.Context :param rule_cls: the rule object class :type rule_cls: a class from the rule_object (qos.objects.rule) module :param rule_id: the id of the QosPolicy Rule to delete :type rule_id: str uuid :returns: None :raises: qos_exc.QosRuleNotFound """ policy_id = self._get_policy_id(context, rule_cls, rule_id) return self.delete_policy_rule(context, rule_cls, rule_id, policy_id) @db_base_plugin_common.filter_fields @db_base_plugin_common.convert_result_to_dict def get_policy_rule(self, context, rule_cls, rule_id, policy_id, fields=None): """Get a QoS policy rule. :param context: neutron api request context :type context: neutron.context.Context :param rule_cls: the rule object class :type rule_cls: a class from the rule_object (qos.objects.rule) module :param rule_id: the id of the QoS policy rule to get :type rule_id: str uuid :param policy_id: the id of the rule's policy :type policy_id: str uuid :returns: a QoS policy rule object :raises: qos_exc.QosRuleNotFound """ with db_api.CONTEXT_READER.using(context): # Ensure we have access to the policy. policy_object.QosPolicy.get_policy_obj(context, policy_id) rule = rule_cls.get_object(context, id=rule_id) if not rule: raise qos_exc.QosRuleNotFound(policy_id=policy_id, rule_id=rule_id) return rule def get_rule(self, context, rule_cls, rule_id, fields=None): """Get a QoS policy rule alias. This method processes a QoS policy rule get, where the rule is an API first level resource instead of a subresource of a policy :param context: neutron api request context :type context: neutron.context.Context :param rule_cls: the rule object class :type rule_cls: a class from the rule_object (qos.objects.rule) module :param rule_id: the id of the QoS policy rule to get :type rule_id: str uuid :returns: a QoS policy rule object :raises: qos_exc.QosRuleNotFound """ policy_id = self._get_policy_id(context, rule_cls, rule_id) return self.get_policy_rule(context, rule_cls, rule_id, policy_id) # TODO(QoS): enforce rule types when accessing rule objects @db_base_plugin_common.filter_fields @db_base_plugin_common.convert_result_to_dict def get_policy_rules(self, context, rule_cls, policy_id, filters=None, fields=None, sorts=None, limit=None, marker=None, page_reverse=False): """Get QoS policy rules. :param context: neutron api request context :type context: neutron.context.Context :param rule_cls: the rule object class :type rule_cls: a class from the rule_object (qos.objects.rule) module :param policy_id: the id of the QosPolicy for which to get rules :type policy_id: str uuid :returns: QoS policy rule objects meeting the search criteria """ with db_api.CONTEXT_READER.using(context): # Ensure we have access to the policy. policy_object.QosPolicy.get_policy_obj(context, policy_id) filters = filters or dict() filters[qos_consts.QOS_POLICY_ID] = policy_id pager = base_obj.Pager(sorts, limit, page_reverse, marker) return rule_cls.get_objects(context, _pager=pager, **filters)
#!/usr/bin/env python # license removed for brevity import sys import os current_folder = os.path.dirname(os.path.realpath(__file__)) sys.path.append(current_folder) modules_folder = os.path.join(current_folder, "..") sys.path.append(modules_folder) main_folder = os.path.join(modules_folder, "..") sys.path.append(main_folder) import time import json from config.console_formatter import Console_Formatter from bs4 import BeautifulSoup from Web_Browser_Driver import Web_Browser_Driver from Web_Browser_Driver_Keys import Web_Browser_Driver_Keys from Auto_Browser import Auto_Browser from Login_Breaker import Login_Breaker from Friend_Link_Parser import Friend_Link_Parser from Post_Data_Parser import Post_Data_Parser from Search_Person_Parser import Search_Person_Parser from User_Information_Database import User_Information_Database class Facebook_Finder: ##PUBLIC version = "1.0" agent_header = "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.77 Safari/537.36" user_infomation_database = User_Information_Database() post_data_parser = Post_Data_Parser() friend_link_parser = Friend_Link_Parser() search_person_parser = Search_Person_Parser() cookies_path = os.path.join(current_folder, "cookies.json") is_info = True banner_personal_profile_locate = '個人檔案' banner_personal_profile_main_page_locate = '首頁' headline_post_locate = '動態時報' headline_about_locate = '關於' headline_friends_locate = '朋友' headline_photos_locate = '相片' search_headline_posts = '貼文' search_headline_persons = '人物' search_headline_photos = '相片' search_headline_videos = '影片' ##PRIVATE program_name_ = __name__ console_formatter_ = Console_Formatter() parser_ = None page_links = {} browser = None auto_browser = None cookies = None is_login = False def link(self, address): self.browser.access_website(address) def login(self, account, passwd, wait_time=10): if self.is_info : msg = "Starting login as {} ...".format(account) print(self.console_formatter_.NOTIFY(self.program_name_, msg)) self.is_login = Login_Breaker(self.browser, self.is_info)(account, passwd, seperate=False, wait_time=wait_time) if self.is_login == False: if self.is_info : msg = "Returning back ..." print(self.console_formatter_.FATAL(self.program_name_, msg)) self.browser.backward() else: if self.is_info : msg = "Login successfully !" print(self.console_formatter_.INFO(self.program_name_, msg)) return self.is_login ''' def person_parser(self): if self.is_info : msg = "Personal infomation parsing ..." print(self.console_formatter_.INFO(self.program_name_, msg)) links = BeautifulSoup(self.browser.get_source(), "lxml").find_all('a') person_name = None is_name_find = False for link in links: if 'title' in link.attrs: if link.get('title') == "{}".format(self.banner_personal_profile_locate): self.person_profile.add_person(link.text) self.person_profile.add_info(link.text, 'href', link.get('href')) person_name = link.text is_name_find = True break if not is_name_find: if self.is_info : msg = "Personal infomation parsing fail ! Cannot find personal infomation link !" print(self.console_formatter_.FATAL(self.program_name_, msg)) return False if self.is_info : msg = "Entering personal infomation page : {} ...".format(person_name) print(self.console_formatter_.INFO(self.program_name_, msg)) self.link(self.person_profile.profile[person_name]['href']) self.parse_personal_page() return True ''' def parse_personal_page(self): if self.is_info : msg = "Parsing page ..." print(self.console_formatter_.INFO(self.program_name_, msg)) bs_ = BeautifulSoup(self.browser.get_source(), "lxml") user_name = bs_.find("a", {'class' : '_2nlw _2nlv'}).text user_link = bs_.find("a", {'class' : '_2nlw _2nlv'})['href'] self.user_infomation_database.add_user(user_link, user_name) headline = bs_.find("div", id='fbTimelineHeadline') headline_post = headline.find(text=self.headline_post_locate).find_parent("a") headline_about = headline.find(text=self.headline_about_locate).find_parent("a") headline_friends = headline.find(text=self.headline_friends_locate).find_parent("a") headline_photos = headline.find(text=self.headline_photos_locate).find_parent("a") self.page_links['headline'] = [headline] if headline_post != None: self.page_links['headline'].append([self.headline_post_locate, headline_post]) self.page_links[self.headline_post_locate] = headline_post if headline_about != None: self.page_links['headline'].append([self.headline_about_locate, headline_about]) self.page_links[self.headline_about_locate] = headline_about if headline_friends != None: self.page_links['headline'].append([self.headline_friends_locate, headline_friends]) self.page_links[self.headline_friends_locate] = headline_friends if headline_photos != None: self.page_links['headline'].append([self.headline_photos_locate, headline_photos]) self.page_links[self.headline_photos_locate] = headline_photos if headline_friends != None: friends_lists = self.friend_parser() self.user_infomation_database.add_info(user_link, 'friends', friends_lists) if headline_post != None: posts_lists = self.post_parser() self.user_infomation_database.add_info(user_link, 'posts', posts_lists) return self.page_links def post_parser(self, browse_counts=64): if self.is_info : msg = "Parsing posts ..." print(self.console_formatter_.INFO(self.program_name_, msg)) if not self.headline_post_locate in self.page_links: if self.is_info : msg = "Cannot find posts link !" print(self.console_formatter_.WARN(self.program_name_, msg)) return None self.link(self.page_links[self.headline_post_locate]['href']) self.auto_browser.auto_end(browse_counts=browse_counts) post_lists = self.post_data_parser.add_source(self.browser.get_source()) for post_list in post_lists: self.page_links[self.headline_post_locate].append(post_list) if self.is_info : msg = "Posts found : {} : {} ".format(post_list, post_lists[post_list]['article'] if 'article' in post_lists[post_list] else "") print(self.console_formatter_.NOTIFY(self.program_name_, msg)) for reply in post_lists[post_list]['replys']: msg = "---- {}".format(reply) print(self.console_formatter_.NOTIFY(self.program_name_, msg)) if self.is_info : msg = "Parsing posts done !" print(self.console_formatter_.INFO(self.program_name_, msg)) return post_lists def friend_parser(self, browse_counts=64): if self.is_info : msg = "Parsing friends ..." print(self.console_formatter_.INFO(self.program_name_, msg)) if not self.headline_friends_locate in self.page_links: if self.is_info : msg = "Cannot find friends link !" print(self.console_formatter_.WARN(self.program_name_, msg)) return None self.link(self.page_links[self.headline_friends_locate]['href']) self.auto_browser.auto_end(browse_counts=browse_counts) friends_lists = self.friend_link_parser.add_source(self.browser.get_source()) for href_link in friends_lists: #self.page_links[self.headline_friends_locate].append([friends_lists[href_link], href_link]) if self.is_info : msg = "Friends : {} {}".format(friends_lists[href_link], href_link) print(self.console_formatter_.NOTIFY(self.program_name_, msg)) if self.is_info : msg = "Parsing friends done !" print(self.console_formatter_.INFO(self.program_name_, msg)) return friends_lists def enter_personal_information(self, link_name=None): link_name = self.banner_personal_profile_locate if link_name == None else link_name if self.is_info : msg = "Entering personal profile information ..." print(self.console_formatter_.INFO(self.program_name_, msg)) if self.browser.find_xpath("//a[@title='{}']".format(link_name)): self.browser.click() return True else: if self.is_info : msg = "Cannot find personal profile information link !" print(self.console_formatter_.WARN(self.program_name_, msg)) return False def enter_personal_main_page(self, link_name=None): link_name = self.banner_personal_profile_main_page_locate if link_name == None else link_name if self.is_info : msg = "Entering personal profile main page links : {} ...".format(link_name) print(self.console_formatter_.INFO(self.program_name_, msg)) if self.browser.find_link_text("{}".format(link_name)): self.browser.click() return True else: if self.is_info : msg = "Cannot find personal profile main page links !".format(link_name) print(self.console_formatter_.WARN(self.program_name_, msg)) return False def user_search(self, user_name, browse_counts=64): if self.is_info : msg = "Searching users ..." print(self.console_formatter_.INFO(self.program_name_, msg)) if not self.search(user_name): if self.is_info : msg = "Searching fail !" print(self.console_formatter_.WARN(self.program_name_, msg)) return None self.browser.click_link(self.search_headline_persons) self.auto_browser.auto_page_down(browse_counts) search_person_lists = self.search_person_parser.add_source(self.browser.get_source()) for search_person in search_person_lists: if self.is_info : msg = "User : {} link={}".format(search_person_lists[search_person][0], search_person) print(self.console_formatter_.NOTIFY(self.program_name_, msg)) if self.is_info : msg = "Searching users done !" print(self.console_formatter_.INFO(self.program_name_, msg)) return search_person_lists def search(self, text): if self.is_info : msg = "Searching {} ...".format(text) print(self.console_formatter_.INFO(self.program_name_, msg)) if not self.browser.search(text): if self.is_info : msg = "Searching {} fail !".format(text) print(self.console_formatter_.WARN(self.program_name_, msg)) return False else: return True def screenshot(self, file_name): self.browser.screenshot(file_name) def wait(self, tm): self.browser.wait(tm) def get_source(self): return self.browser.get_source() def get_cookies(self): self.cookies = self.browser.get_cookies() return self.cookies def save_cookies(self, path): if self.is_info : msg = "Saving cookies : {} ...".format(path) print(self.console_formatter_.INFO(self.program_name_, msg)) with open(path, "w") as f: json.dump(json.dumps(self.cookies), f) return def load_cookies(self, path): if self.is_info : msg = "Checking cookies : {} ...".format(path) print(self.console_formatter_.INFO(self.program_name_, msg)) if not self.check_path(path): if self.is_info: msg = "Cookies : {} not found !".format(self.cookies_path) print(self.console_formatter_.WARN(self.program_name_, msg)) return False else: if self.is_info : msg = "Loading cookies : {} ...".format(path) print(self.console_formatter_.INFO(self.program_name_, msg)) with open(path,"r") as f: self.cookies = json.loads(json.load(f)) for cookie in self.cookies: self.browser.add_cookie(cookie) return True def set_browser(self, browser): self.browser = browser self.auto_browser = Auto_Browser(self.browser) def get_browser(self): return self.browser def check_path(self, path): return os.path.exists(path) def __init__(self, browser=None, is_cookies_clear=True, is_notifications=False, is_window=True, is_info=True, is_debug=True, **kwargs): self.is_info = is_info if self.is_info : msg = "Initializing ..." print(self.console_formatter_.INFO(self.program_name_, msg)) self.browser = Web_Browser_Driver(is_cookies_clear=is_cookies_clear, is_notifications=is_notifications, is_window=is_window, is_info=is_debug, **kwargs) if browser == None else browser self.auto_browser = Auto_Browser(self.browser, is_info=is_debug) self.user_infomation_database.load_database() if not is_cookies_clear: self.load_cookies(self.cookies_path) self.link("http://www.facebook.com") def __del__(self): self.get_cookies() self.save_cookies(self.cookies_path) self.user_infomation_database.save_database() if self.is_info : msg = "Closing ..." print(self.console_formatter_.WARN(self.program_name_, msg)) def main(**kwargs): ff = Facebook_Finder(is_cookies_clear=True, is_debug=True, **kwargs) #ff.login("[email protected]", "123") ff.login("[email protected]", "f2mPqDDG") search_user_list = ff.user_search("吳音寧") #ff.link("https://www.facebook.com/profile.php?id=100001277912128&__tn__=%2Cd-]-h-R&eid=ARBo_xeaJ8T0r8X6IQFxWM99sqIXjOpxCdTxL9g5s1dVhTKT1kJj44yQKvXMy1QNnx7pNQ6mK57MzBdk") #ff.link("https://www.facebook.com/profile.php?id=100022934512189") ##ff.link("https://www.facebook.com/chen0817") #ff.link("https://www.facebook.com/groups/451357468329757/?jazoest=2651001208210110412052665652120821001147665108731081051021078111868715776110715210810852651197711411010566768910065586510012079120113814597119578010410472116896948114861065253116104979811212210612210649121104102881201047611210511111065") #ff.parse_personal_page() #ff.enter_personal_main_page() #ff.enter_personal_main_page_links("關於") #ff.search("Kelly") #if ff.get_browser().find_tag_name("a"): #ff.get_browser().click() #ff.find_link_text("天氣預報", is_contact=False) #wb.access_website("https://world.taobao.com/product/%E6%B7%98%E5%AF%B6%E5%A4%A7%E9%99%B8.htm") #wb.find_link_text("淘寶網首頁", is_contact=False) #ff.click() #print(wb.get_source()) time.sleep(23) if __name__ == "__main__": args = sys.argv[1:] kwargs = {} for i in range(0, len(args),2): kwargs[args[i]] = args[i+1] main(**kwargs)
from rest_framework.serializers import ModelSerializer from garments.models import BaseGarment from garments.models import Garment from garments.models import GarmentType from garments.models import GarmentFabric from garments.models import Colorway from garments.models import GarmentSize from garments.models import GarmentGender from garments.models import GarmentImage from seasons.serializers import DropDateSerializer class GarmentTypeSerializer(ModelSerializer): class Meta: model = GarmentType fields = ('pk', 'name', 'description',) class GarmentFabricSerializer(ModelSerializer): class Meta: model = GarmentFabric fields = ('name', 'description',) class ColorwaySerializer(ModelSerializer): class Meta: model = Colorway fields = ('name', 'description',) class GarmentSizeSerializer(ModelSerializer): class Meta: model = GarmentSize fields = ('size', 'length', 'description',) class GarmentGenderSerializer(ModelSerializer): class Meta: model = GarmentGender fields = ('gender',) class BaseGarmentSerializer(ModelSerializer): type = GarmentTypeSerializer(many=False, read_only=True) fabric = GarmentFabricSerializer(many=False, read_only=True) drop_date = DropDateSerializer(many=False, read_only=True) class Meta: model = BaseGarment fields = ('description','name','type', 'fabric', 'drop_date') class GarmentSerializer(ModelSerializer): base_garment = BaseGarmentSerializer(many=False, read_only=True) color = ColorwaySerializer(many=False, read_only=True) size = GarmentSizeSerializer(many=False, read_only=True) class Meta: model = Garment fields = ('uuid', 'base_garment', 'color', 'size', 'quantity', 'price',)
warning2 = "Your email has not been verified, so if you forget your password, you will not be able to reset it." warning = "Your email has not been linked, so if you forget your password, you will not be able to reset it."
import warnings from collections.abc import MutableMapping MSG_ERROR_OPER = "Unsupported operand type(s) for {} and 'Polynomial'" MSG_ERROR_ARG = "Polynomial() takes least one argument (0 given)" MSG_ERROR_VAL = "{} must be 'int' or 'float' not '{}'" MSG_ERROR_KW = "Unexpedted keyword argument: '{}'" MSG_WARNING = "Repeated degree, replaced first assigned value" class DictProxy(MutableMapping, dict): """Copy of the ``dict`` with the ``__setitem__`` method modified """ def __getitem__(self, key): return dict.__getitem__(self, key) def __setitem__(self, key, value): """Set items key:value with check """ self._check_keys(key) self._check_values(value) dict.__setitem__(self, key, value) def __delitem__(self, key): dict.__delitem__(self, key) def __iter__(self): return dict.__iter__(self) def __len__(self): return dict.__len__(self) def __contains__(self, x): return dict.__contains__(self, x) def _check_keys(self, key): """Check the key have the form "x0", "x1", ..., "xn" when n is a positive integer. Raise an error otherwise. """ if key[0] == "x" and key[1:].isdecimal(): return key else: raise TypeError(MSG_ERROR_KW.format(key)) def _check_values(self, value): """Check that the value is 'int' or 'float'. Raise an error otherwise. """ if not isinstance(value, int) and not isinstance(value, float): s = value.__class__.__name__ raise TypeError(MSG_ERROR_VAL.format("Coefficients", s)) class Polynomial(): """Create a polynomial object. Polynomial provides numerical methods '+', '-', '*' and () .. versionadded:: 1.0 Instance -------- It is possible to initialize in these three ways: Polymian(*args) --> new polynomial initialized from args, values must be real numbers. Example: p = Polynomial(1, 2, 3) Polymian(**kwargs) --> new polynomial initialized with the xn=value pairs in the keyword argument list, x is the symbol and n is the degree and values must be real numbers. Example: p = Polynomial(x7 = 1, x3 = 2) Polymian(*args, **kwargs) --> new polynomial initialized following the above rules. Example: p = Polynomial(1, 2, 3, x9 = 4) Parameters ---------- coef : *args or/and **kwargs Series coefficients in order of increasing degree, the coefficients for the missing degrees are considering zero, i.e.: ``(1, 2, 3)`` gives ``1*x^1 + 2*x^2 + 3*x^3`` ``(x7 = 1, x3 = 2)`` gives ``2*x^3 + 1*x^7`` ``(1, 2, 3, x9 = 4)`` gives ``1*x^1 + 2*x^2 + 3*x^3 + 4*x^9`` Attributes ---------- coef : dict Dictionary with keys ``xi`` for degree ``i`` and its corresponding coefficient as value. This attribute can not reassigned, but it can be updated with `xi=value` pair. Otherwise it will give an error degree : int Degree polynomial (the highest of the degrees of individual terms) This attribute can not reassigned, but it can be updated when coefficients are updated. """ _superscript_map = {"0": "⁰", "1": "¹", "2": "²", "3": "³", "4": "⁴", "5": "⁵", "6": "⁶", "7": "⁷", "8": "⁸", "9": "⁹"} def __init__(self, *args, **kwargs): """ Parameters ---------- *args : iterable, list Series coefficients in order of increasing degree *kwargs : iterable, dict Series coefficients with degree in keys Raises ------ TypeError If no parameters are passed or `xi=value` pair is not the required form. Check Instance section. """ there_coef_in_args = len(args) != 0 there_coef_in_kwargs = len(kwargs) != 0 if not there_coef_in_args and not there_coef_in_kwargs: raise TypeError(MSG_ERROR_ARG) self._coef = DictProxy() if there_coef_in_args: self._coef.update({"x%d" % i: v for i, v in enumerate(args)}) if there_coef_in_kwargs: self._parse_kwargs(kwargs) @property def degree(self): return self._get_max_degree() @property def coef(self): return self._coef def _parse_kwargs(self, kwargs): """Update coef attribute with kwargs. If coef already has a value assigned to a grade, it is replaced and a warning is displayed. """ for k, v in kwargs.items(): if self._coef.get(k, None) is not None: warnings.warn(MSG_WARNING, Warning, stacklevel=1) self._coef[k] = v def _get_max_degree(self): _max_degree_expr = max(self.coef.keys(), key=self._get_degree) return self._get_degree(_max_degree_expr) def _get_degree(self, expr): """Get degree of expr 'str' as 'int'. """ return int(expr[1:]) def _all_degrees(self): return [self._get_degree(k) for k in self.coef.keys()] def _result_degrees(self, other): """Information of the coefficients and degrees for polynomial add/sub Add/Sub between polynomials can be done by add/sub like terms. If P(x) = `3x^9 + 5x^1 + 2x^0` degrees P_d = (9,1,0), in the same way R(x) = `x^1 + x^0` R_d =(1,0). The resultant degrees is P_d U R_d or (9,1,0) Parameters ---------- other : Polynomial Object of the same class as `self` for add/sub Returns ------- coef1 : dict The coefficients of `self` coef2 : dict The coefficients of `other` result_keys: dict Degrees of the resulting polynomial according to the degrees of `self` and `other` """ coef1, degree1 = self.coef, self._all_degrees() coef2, degree2 = other.coef, other._all_degrees() result_degrees = [d for d in degree1 if d not in degree2] + degree2 result_keys = ["x%d" % i for i in result_degrees] return coef1, coef2, result_keys def _result_degrees_mul(self, other): """Information of the coefficients and degrees for polynomial mul Mul between polynomials can be done by mul each terms and sum like terms. If P(x) = `3x^9 + 5x^1 + 2x^0` degrees P_d = (9,1,0), in the same way R(x) = `x^1 + x^0` R_d =(1,0) so resultant oper is (P_d_i, R_d_j) for i,j in P_d, R_d ((9,1),(9,0),(1,1),(1,0),(0,1),(0,0)) Ther resultant degrees sum(resultant oper) unique values, so (10,9,2,1,0) Parameters ---------- other : Polynomial Object of the same class as `self` for mul Returns ------- coef1 : dict The coefficients of `self` coef2 : dict The coefficients of `other` result_keys: dict Degrees of the resulting polynomial according to the degrees of `self` and `other` result_oper: list Combination of degrees in mul according to the degrees of `self` and `other` """ coef1, degree1 = self.coef, self._all_degrees() coef2, degree2 = other.coef, other._all_degrees() result_degrees = [] result_oper = [] for d in degree1: result_degrees += [d + d_ for d_ in degree2 if d + d_ not in result_degrees] result_oper.extend([(d, d_) for d_ in degree2]) result_keys = ["x%d" % i for i in result_degrees] return coef1, coef2, result_keys, result_oper def _mul_pol(self, value): """Polynomial Multiplication Multiplication between polynomials can be summarized, where P_i and R_i are the coefficients of P(x), R(x): `x^0` = `P_0*R_0` `x^1` = `P_1*R_0 + P_0*R_1` `x^2` = `P_2*R_1 + P_1*R_1 P_0*R_2` .... `x^n` = `P_n*R_1 + P_(n-1)*R_1 + ...+ P_0*R_n` With result_keys we select the `x^n` those are actually calculated, and with result_oper the coefficients other than 0 for optimization. Parameters ---------- other : Polynomial Object of the same class as `self` for mul Returns ------- Polynomial Degrees of the resulting polynomial according to the degrees of `self` and `other` result_oper: list Combination of degrees in mul according to the degrees of `self` and `other` """ coef1, coef2, result_keys, comb = self._result_degrees_mul(value) result_coef = {} for k in result_keys: deg = self._get_degree(k) comb_deg = [c for c in comb if sum(c) == deg] result_coef[k] = 0 for i, j in comb_deg: getc1 = coef1.get("x%d" % i, 0) getc2 = coef2.get("x%d" % j, 0) result_coef[k] += getc1*getc2 result_coef = {k: v for k, v in result_coef.items() if v != 0} return Polynomial(**result_coef) def _mul_scalar(self, value): """Polynomial scalar multiplication """ coef1, degree1 = self.coef, self._all_degrees() result_keys = ["x%d" % i for i in degree1] result_coef = {k: value * coef1.get(k, 0) for k in result_keys} result_coef = {k: v for k, v in result_coef.items() if v != 0} return Polynomial(**result_coef) def __repr__(self): """Nice print of the polynomial """ nice_str = "" keys = list(self.coef.keys()) keys.sort(key=self._get_degree) keys = keys[::-1] for k in keys: v = self.coef[k] deg = str(self._get_degree(k)) nice_deg = "".join([self._superscript_map[s] for s in deg]) nice_deg = k[0] + nice_deg nice_val = "%.2f%s" % (abs(v), nice_deg) if k == "x"+str(self.degree): nice_str += nice_val else: nice_str += " + " + nice_val if v > 0 else " - " + nice_val return nice_str[:-2] def __call__(self, value): """Polynomial evaluation Parameters ---------- value : int/float Object to be checked, must be 'float'/'int' Returns ------- float Result P(value) """ if not isinstance(value, int) and not isinstance(value, float): s = value.__class__.__name__ raise TypeError(MSG_ERROR_VAL.format("Value", s)) result = 0 for k, v in self.coef.items(): degree = self._get_degree(k) result += v * value ** degree return result def __add__(self, value): """Numerical method '+' Parameters ---------- other : anything Object to be checked, must the same class as `self` Returns ------- Polynomial `self` + `other` """ if not isinstance(value, self.__class__): s = value.__class__.__name__ raise TypeError(MSG_ERROR_OPER.format(" +: '%s' " % s)) coef1, coef2, result_keys = self._result_degrees(value) result_coef = {k: coef1.get(k, 0) + coef2.get(k, 0) for k in result_keys} result_coef = {k: v for k, v in result_coef.items() if v != 0} return Polynomial(**result_coef) def __sub__(self, value): """Numerical method '-' Parameters ---------- other : anything Object to be checked, must the same class as `self` Returns ------- Polynomial `self` - `other` """ if not isinstance(value, self.__class__): s = value.__class__.__name__ raise TypeError(MSG_ERROR_OPER.format(" -: '%s' " % s)) coef1, coef2, result_keys = self._result_degrees(value) result_coef = {k: coef1.get(k, 0) - coef2.get(k, 0) for k in result_keys} result_coef = {k: v for k, v in result_coef.items() if v != 0} return Polynomial(**result_coef) def __mul__(self, value): """Numerical method '*' Parameters ---------- other : anything Object to be checked, must the same class as `self` or 'float'/'int' Returns ------- Polynomial `self` * `other` """ if isinstance(value, int) or isinstance(value, float): return self._mul_scalar(value) elif isinstance(value, self.__class__): return self._mul_pol(value) else: s = value.__class__.__name__ raise TypeError(MSG_ERROR_OPER.format(" *: '%s' " % s)) def __rmul__(self, value): """Numerical method '*' Parameters ---------- other : anything Object to be checked, must the same class as `self` or 'float'/'int' Returns ------- Polynomial `other` * `self` """ if isinstance(value, int) or isinstance(value, float): return self._mul_scalar(value) else: s = value.__class__.__name__ raise TypeError(MSG_ERROR_OPER.format(" *: '%s' " % s))
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from telemetry.page import legacy_page_test from telemetry.page import shared_page_state from page_sets.rendering import rendering_story from page_sets.rendering import story_tags from page_sets.system_health import platforms class RepaintDesktopPage(rendering_story.RenderingStory): ABSTRACT_STORY = True TAGS = [story_tags.REPAINT_DESKTOP] SUPPORTED_PLATFORMS = platforms.DESKTOP_ONLY def __init__(self, page_set, name_suffix='', extra_browser_args=None, shared_page_state_class=shared_page_state.SharedMobilePageState): super(RepaintDesktopPage, self).__init__( page_set=page_set, name_suffix=name_suffix, extra_browser_args=extra_browser_args, shared_page_state_class=shared_page_state_class) def RunPageInteractions(self, action_runner): action_runner.WaitForJavaScriptCondition( 'document.readyState == "complete"', timeout=30) action_runner.ExecuteJavaScript( 'chrome.gpuBenchmarking.setRasterizeOnlyVisibleContent();') mode = 'viewport' width = None height = None args = {} args['mode'] = mode if width: args['width'] = width if height: args['height'] = height # Enqueue benchmark action_runner.ExecuteJavaScript(""" window.benchmark_results = {}; window.benchmark_results.id = chrome.gpuBenchmarking.runMicroBenchmark( "invalidation_benchmark", function(value) {}, {{ args }} ); """, args=args) micro_benchmark_id = action_runner.EvaluateJavaScript( 'window.benchmark_results.id') if not micro_benchmark_id: raise legacy_page_test.MeasurementFailure( 'Failed to schedule invalidation_benchmark.') with action_runner.CreateInteraction('Repaint'): action_runner.RepaintContinuously(seconds=5) action_runner.ExecuteJavaScript(""" window.benchmark_results.message_handled = chrome.gpuBenchmarking.sendMessageToMicroBenchmark( {{ micro_benchmark_id }}, { "notify_done": true }); """, micro_benchmark_id=micro_benchmark_id) class RepaintAmazon2018Page(RepaintDesktopPage): """ Why: #1 world commerce website by visits; #3 commerce in the US by time spent """ BASE_NAME = 'repaint_amazon' YEAR = '2018' URL = 'http://vmiura.github.io/snapit-pages/snapit_amazon.html' class RepaintCNN2018Page(RepaintDesktopPage): """# Why: #2 news worldwide""" BASE_NAME = 'repaint_cnn' YEAR = '2018' URL = 'http://vmiura.github.io/snapit-pages/snapit_cnn.html' class RepaintFacebook2018Page(RepaintDesktopPage): """Why: #3 (Alexa global)""" BASE_NAME = 'repaint_facebook' YEAR = '2018' URL = 'http://vmiura.github.io/snapit-pages/snapit_facebook.html' class RepaintGoogleSearch2018Page(RepaintDesktopPage): """Why: Top Google property; a Google tab is often open""" BASE_NAME = 'repaint_google_search' YEAR = '2018' URL = 'http://vmiura.github.io/snapit-pages/snapit_google_search.html' class RepaintInstagram2018Page(RepaintDesktopPage): """Why: A top social site""" BASE_NAME = 'repaint_instagram' YEAR = '2018' URL = 'http://vmiura.github.io/snapit-pages/snapit_instagram.html' class RepaintReddit2018Page(RepaintDesktopPage): """Why: #1 news worldwide""" BASE_NAME = 'repaint_reddit' YEAR = '2018' URL = 'http://vmiura.github.io/snapit-pages/snapit_reddit.html' class RepaintTheVerge2018Page(RepaintDesktopPage): """Why: Top tech blog""" BASE_NAME = 'repaint_theverge' YEAR = '2018' URL = 'http://vmiura.github.io/snapit-pages/snapit_theverge.html' class RepaintTwitter2018Page(RepaintDesktopPage): """Why: A top social site""" BASE_NAME = 'repaint_twitter' YEAR = '2018' URL = 'http://vmiura.github.io/snapit-pages/snapit_twitter.html' class RepaintWikipedia2018Page(RepaintDesktopPage): """Why: #5 (Alexa global)""" BASE_NAME = 'repaint_wikipedia' YEAR = '2018' URL = 'http://vmiura.github.io/snapit-pages/snapit_wikipedia.html' class RepaintYahoo2018Page(RepaintDesktopPage): """Why: #9 (Alexa global)""" BASE_NAME = 'repaint_yahoo_homepage' YEAR = '2018' URL = 'http://vmiura.github.io/snapit-pages/snapit_yahoo_homepage.html'
# -*- coding: UTF-8 -*- from resources.lib.modules import control from resources.lib.api import colorChoice AddonID = control.AddonID AddonTitle = control.AddonTitle SelectDialog = control.SelectDialog Execute = control.execute Notify = control.Notify CustomColor = control.setting('my_ColorChoice') if CustomColor == '': CustomColor = 'none' def mySpareMenu(): my_options = ['[B]Option1[/B]', '[B]Option2[/B]', '[B]Option3[/B]', '[B]Option4[/B]', '[B]Option5[/B]', '[ [B]Close[/B] ]'] selectList = [] for Item in my_options: selectList.append(colorChoice.colorString(Item, CustomColor)) mychoice = SelectDialog(AddonTitle, selectList, key=False) mychoice = mychoice.replace('[COLOR %s]' % (CustomColor),'').replace('[/COLOR]','') if mychoice == '[B]Option1[/B]': Notify(AddonTitle, 'Testing Option1...') elif mychoice == '[B]Option2[/B]': Notify(AddonTitle, 'Testing Option2...') elif mychoice == '[B]Option3[/B]': Notify(AddonTitle, 'Testing Option3...') elif mychoice == '[B]Option4[/B]': Notify(AddonTitle, 'Testing Option4...') elif mychoice == '[B]Option5[/B]': Notify(AddonTitle, 'Testing Option5...') elif mychoice == '[ [B]Close[/B] ]' : return
class Solution: def kWeakestRows(self, mat: List[List[int]], k: int) -> List[int]: ans = []; i = 0 for row in mat: ans.append((i, row.count(1))); i+= 1 ans = sorted(ans, key = lambda element: (element[1], element[0])) ans = [x[0] for x in ans] return ans[:k]
from abc import ABCMeta from typing import Dict, List, Union from urllib.parse import urlparse ArgumentsType = Dict[str, Union[int, float, str]] class BaseObject(metaclass=ABCMeta): __slots__ = [] def __eq__(self, other): if type(self) != type(other): # pylint: disable=unidiomatic-typecheck return False for name in self.__slots__: if getattr(self, name) != getattr(other, name): return False return True def __repr__(self): return '<{} {}>'.format( type(self).__name__, ' '.join('{}={}'.format(name, getattr(self, name)) for name in self.__slots__) ) class Exchange(BaseObject): __slots__ = ['name', 'type', 'durable', 'auto_delete', 'internal', 'arguments'] def __init__(self, name: str, type: str = 'topic', durable: bool = True, auto_delete: bool = False, internal: bool = False, arguments: ArgumentsType = None): self.name = name self.type = type self.durable = durable self.auto_delete = auto_delete self.internal = internal self.arguments = arguments class QueueBinding(BaseObject): __slots__ = ['exchange', 'routing_key', 'arguments'] def __init__(self, exchange: Exchange, routing_key: str, arguments: ArgumentsType = None): self.exchange = exchange self.routing_key = routing_key self.arguments = arguments class Queue(BaseObject): __slots__ = ['name', 'bindings', 'durable', 'exclusive', 'auto_delete', 'arguments'] def __init__(self, name: str, bindings: List[QueueBinding] = None, durable: bool = True, exclusive: bool = False, auto_delete: bool = False, arguments: ArgumentsType = None): self.name = name self.bindings = bindings self.durable = durable self.exclusive = exclusive self.auto_delete = auto_delete self.arguments = arguments class ConnectionParams(BaseObject): __slots__ = ['host', 'port', 'username', 'password', 'virtual_host'] def __init__(self, host: str = 'localhost', port: int = 5672, username: str = 'guest', password: str = 'guest', virtual_host: str = '/'): self.host = host self.port = port self.username = username self.password = password self.virtual_host = virtual_host @classmethod def from_string(cls, connection_string: str) -> 'ConnectionParams': parse_result = urlparse(connection_string) assert parse_result.scheme == 'amqp', 'Scheme must be amqp' kwargs = { 'virtual_host': parse_result.path[1:] if parse_result.path else None } if parse_result.hostname: kwargs['host'] = parse_result.hostname if parse_result.port: kwargs['port'] = int(parse_result.port) if parse_result.username: kwargs['username'] = parse_result.username if parse_result.password: kwargs['password'] = parse_result.password return cls(**kwargs)
import momaf_dataset import transformers import bert_regressor import sys import re import torch if __name__=="__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("--load-from",default=None,help="Path to a model") parser.add_argument("--field",default="content-noyearnopers",help="content-orig, content-noyear, content-noyear-nopers") parser.add_argument("--sep",default=False, action="store_true",help="populate with SEP") args = parser.parse_args() dataset=momaf_dataset.load_dataset("momaf_nonames.jsonl") #this is a list of three datasets: train,dev,test ## Tokenizer loaded from AutoTokenizer ## Creating the model from the desired transformer model if args.load_from: model=bert_regressor.BertRegressor.from_pretrained(args.load_from) tokenizer=transformers.AutoTokenizer.from_pretrained(args.load_from) def encode_dataset(d): txt=d[args.field] #WATCH OUT THIS GLOBAL VARIABLE if args.sep: txt=re.sub(r"([.?])\s+([A-ZÄÅÖ])",r"\1 [SEP] \2",txt) return tokenizer(txt,truncation=True) def make_year_target(d): return {"target":(d["year"]-1970)/10.0} for k in dataset: dataset[k]=dataset[k].map(encode_dataset) dataset[k]=dataset[k].map(make_year_target) with torch.no_grad(): for e in dataset["test"]: o=model(torch.tensor(e["input_ids"],device=model.device).unsqueeze(0),torch.tensor(e["attention_mask"],device=model.device).unsqueeze(0)) p=o.prediction[0][0].item()*10+1970 print(e["url"],e["year"],p,p-e["year"],sep="\t") # train_args = transformers.TrainingArguments('out.ckpt',evaluation_strategy='steps',eval_steps=30, logging_strategy='steps',save_strategy='steps',save_steps=30,save_total_limit=3, # learning_rate=args.lr,per_device_train_batch_size=args.bsize,gradient_accumulation_steps=args.grad_acc,max_steps=args.steps, logging_steps=5, label_names=["target"],load_best_model_at_end=True,warmup_steps=150) # if args.pretrain_frozen: # for param in model.bert.parameters(): # param.requires_grad=False # trainer = transformers.Trainer(model,train_args,train_dataset=dataset['train'],eval_dataset=dataset['validation'],tokenizer=tokenizer,callbacks=[transformers.EarlyStoppingCallback(early_stopping_patience=3)]) # trainer.train() # if args.save_to: # trainer.save_model(args.save_to)
class BaseBuilding(object): """ boilder-plate class used to initiale the various building in municipality """ def __init__(self, location=None, land_rate=500): if not isinstance(location, str) and location is not None: raise TypeError("Location should be of type str") if not isinstance(land_rate, (float, int, long)): raise TypeError("Land rate should be of type numeric") self.__location = location self.__land_rate = land_rate def set_location(self, location): if not isinstance(location, str): raise TypeError("Location should be of type str") self.__location = location def set_land_rate(self, land_rate): if not isinstance(land_rate, (float, int, long)): raise TypeError("Land rate should be of type numeric") self.__land_rate = land_rate def get_location(self): return self.__location def get_land_rate(self): return self.__land_rate class CommercialBuilding(BaseBuilding): """ This building provides space for offices and warehouses Land rate is based on the available floor space """ def __init__(self, location=None, floor_space=0): if not isinstance(floor_space, (float, int, long)): raise TypeError("Floor Space should be of type numeric") super(self.__class__, self).__init__(location) self.__floor_space = floor_space def set_floor_space(self, floor_space): self.__floor_space = floor_space def get_floor_space(self): return self.__floor_space def get_land_rate(self): return self.__floor_space * 30 class ResidentialBuilding(BaseBuilding): """ This building that provide space for housing Land rate depends on the numver of availabe units """ def __init__(self, location=None, num_units=0): if not isinstance(num_units, (float, int, long)): raise TypeError("Land rate should be of type numeric") super(self.__class__, self).__init__(location) self.__num_units = num_units def set_num_units(self, num_units): self.__num_units == num_units def get_num_units(self): return self.__num_units def get_land_rate(self): """land rate = num_unit * 20""" return self.__num_units * 20 class Utilities(BaseBuilding): """ This building are owned by the municipality hence pay no land rate """ def __init__(self, location=None, utility_name=None): if not isinstance(utility_name, str) and utility_name is not None: raise TypeError("Utlity hould be of type str") super(self.__class__, self).__init__(location) self.__utility_name = utility_name def set_land_rate(self, land_rate): raise NotImplementedError("Utility Building owned pay no land rate") def set_utility(self, utility_name): self.__utility_name = utility_name def get_utility(self): return self.__utility_name def get_land_rate(self): return 0
import gzip import json MAX_LUNATION = 102657 MIN_LUNATION = -21014 def generate(args, model): print( f'> Exporting {MAX_LUNATION - MIN_LUNATION + 1:d} lunations ' f'to {args.path_to_json_output:s}' ) with gzip.open(args.path_to_json_output, 'wt') as f: f.write(json.dumps(list(map(model.predict, range(MIN_LUNATION, MAX_LUNATION)))))
import torch from torch import nn as nn from transformers import BertConfig from transformers import BertModel from transformers import BertPreTrainedModel from spert import sampling from spert import util def get_token(h: torch.tensor, x: torch.tensor, token: int): """ 获得特定的token嵌入(例如[CLS])。 :param h: 句子经过bert后的隐藏层向量【batch_size, seq_length, emb_size] eg: [2,49,768] :type h: :param x: encodings后的id,[batch_size, seq_length] :type x: eg: tensor([[ 101, 1130, 2668, 117, 170, 7141, 1107, 5043, 1276, 2132, 11374, 5425, 1104, 23637, 2499, 7206, 18638, 117, 1103, 4806, 15467, 1104, 1697, 5107, 119, 102], [ 101, 1130, 12439, 117, 1103, 2835, 2084, 1104, 1103, 1244, 1311, 117, 19936, 139, 119, 10011, 117, 1108, 1255, 1107, 8056, 117, 3197, 119, 102, 0]], device='cuda:0') :param token: eg: 101, cls的id :type token:int :return: :rtype: """ # emb_size: 768 emb_size = h.shape[-1] # 合并前2个维度 token_h = h.view(-1, emb_size) # 拉平x flat = x.contiguous().view(-1) # 获取给定token的上下文嵌入。获取token_h中是和flat中的tokenid等于给定token的向量 token_h = token_h[flat == token, :] # token_h: 【batch_size, embedding_dim] return token_h class SpERT(BertPreTrainedModel): """ 基于跨度的模型来联合提取实体和关系""" VERSION = '1.1' def __init__(self, config: BertConfig, cls_token: int, relation_types: int, entity_types: int, size_embedding: int, prop_drop: float, freeze_transformer: bool, max_pairs: int = 100): super(SpERT, self).__init__(config) # 首先加载Bert模型 self.bert = BertModel(config) # 新建分类层, 关系分类, relation_types是关系label的数量,这里是5,5个关系 self.rel_classifier = nn.Linear(config.hidden_size * 3 + size_embedding * 2, relation_types) self.entity_classifier = nn.Linear(config.hidden_size * 2 + size_embedding, entity_types) # 实体的大小进行embedding self.size_embeddings = nn.Embedding(100, size_embedding) self.dropout = nn.Dropout(prop_drop) self._cls_token = cls_token self._relation_types = relation_types self._entity_types = entity_types # 考虑的最大的关系数量 self._max_pairs = max_pairs # weight initialization self.init_weights() if freeze_transformer: print("设置冻结transformer权重") # freeze all transformer weights for param in self.bert.parameters(): param.requires_grad = False def _forward_train(self, encodings: torch.tensor, context_masks: torch.tensor, entity_masks: torch.tensor, entity_sizes: torch.tensor, relations: torch.tensor, rel_masks: torch.tensor): """ # encodings: [batch_size, padding后的seq_length], token变成id后的内容 # context_masks: [batch_size, padding后的seq_length】, 样本的实际的长度的mask # entity_masks:[batch_size,实体数量,padding后的seq_length] 实体的在句子位置mask # entity_sizes: [batch_size,实体数量】 每个实体的长度 # 'entity_types',[batch_size,,实体数量】 # 'rels',[batch_size, 关系数量,头实体和尾实体的位置索引】, eg[2,6,2], 6是包含了正负样本 # 'rel_masks',[batch_size,关系数量,padding后的seq_length] 关系在样本中的位置,即2个实体之间的词 # 'rel_types',[batch_size,关系数量,关系的标签总数] one-hot了的关系 # 'entity_sample_masks',[batch_size,实体数量], padding后 # 'rel_sample_masks'[batch_size,关系数量],padding后,样本1可能有10个关系,样本2有3个关系,那么样本2就有7个FALSE 从最后一个transformer层获得上下文的token嵌入。 训练 :param encodings: 【batch_size,seq_length] :type encodings: :param context_masks:【batch_size,seq_length :type context_masks: :param entity_masks:【batch_size,实体数量, seq_length] :type entity_masks: :param entity_sizes:【batch_size,实体数量] :type entity_sizes: :param relations:【batch_size,关系数量,头实体和尾实体的位置索引] :type relations: :param rel_masks:【batch_size,关系数量, seq_length], 关系在样本中的位置,即2个实体之间的词 :type rel_masks: :return: :rtype: """ context_masks = context_masks.float() #context_masks转换成float格式 h = self.bert(input_ids=encodings, attention_mask=context_masks)['last_hidden_state'] # h是取最后一层隐藏层参数, h的shape, [batch_size, seq_length, hidden_size] batch_size = encodings.shape[0] # 实体分类,实体的大小的embedding, [batch_size,实体数量】-->[batch_size,实体数量,size_hidden_size】,eg: [2,104,25] size_embeddings = self.size_embeddings(entity_sizes) # embed entity candidate sizes # entity_clf [ batch_size, entity_num, entity_label_num], eg: [2,102,5] 实体分类 # entity_spans_pool [ batch_size, entity_num, embedding_size], eg: [2,102,768] 实体跨度中经过了最大池化, 如果一个实体中有3个词,找出最大的那个词代表这个实体 entity_clf, entity_spans_pool = self._classify_entities(encodings, h, entity_masks, size_embeddings) # 关系分类, 可能的self._max_pairs最大的关系数量, h_large 【batch_size, 关系数量,seq_length, hidden_size] h_large = h.unsqueeze(1).repeat(1, max(min(relations.shape[1], self._max_pairs), 1), 1, 1) # 初始一个分类的tensor, [batch_size, 关系数量,关系的label的总数], eg:[2,42, 5] rel_clf = torch.zeros([batch_size, relations.shape[1], self._relation_types]).to( self.rel_classifier.weight.device) # 获取关系的logits # 分块处理以减少内存使用 for i in range(0, relations.shape[1], self._max_pairs): # 对关系候选者进行分类, entity_spans_pool[batch_size,实体数量,hidden_size], size_embeddings实体的长度的embedding [batch_size,实体数量,size_hidden_size] # relations:【batch_size,关系数量,头实体和尾实体的位置索引] 关系的头实体和尾实体在实体向量中的位置索引 # 'rel_masks',[batch_size,关系数量,padding后的seq_length] 关系在样本中的位置,即2个实体之间的词 # h_large 【batch_size, 关系数量,seq_length, hidden_size] chunk_rel_logits = self._classify_relations(entity_spans_pool, size_embeddings, relations, rel_masks, h_large, i) # 分块后的关系的预测结果 rel_clf[:, i:i + self._max_pairs, :] = chunk_rel_logits # 返回实体和关系预测的logits return entity_clf, rel_clf def _forward_inference(self, encodings: torch.tensor, context_masks: torch.tensor, entity_masks: torch.tensor, entity_sizes: torch.tensor, entity_spans: torch.tensor, entity_sample_masks: torch.tensor): """ 从最后一个transformer层获取上下文的token嵌入 context_masks = {Tensor: (1, 26)} tensor([[True, True, True, True, True, True, True, True, True, True, True, True,\n True, True, True, True, True, True, True, True, True, True, True, True,\n True, True]]) encodings = {Tensor: (1, 26)} tensor([[ 101, 1130, 12439, 117, 1103, 4186, 2084, 1104, 1103, 1244,\n 1311, 117, 25427, 156, 119, 4468, 117, 1108, 1255, 1107,\n 4221, 16836, 117, 3197, 119, 102]]) entity_masks = {Tensor: (1, 185, 26)} tensor([[[False, True, False, ..., False, False, False],\n [False, False, True, ..., False, False, False],\n [False, False, False, ..., False, False, False],\n ...,\n [False, False, False, ..., False, False, False],\n entity_sample_masks = {Tensor: (1, 185)} tensor([[True, True, True, True, True, True, True, True, True, True, True, True,\n True, True, True, True, True, True, True, True, True, True, True, True,\n True, True, True, True, True, True, True, True, True, True, True, True,\n True entity_sizes = {Tensor: (1, 185)} tensor([[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,\n 3, entity_spans = {Tensor: (1, 185, 2)} tensor([[[ 1, 2],\n [ 2, 3],\n [ 3, 4],\n [ 4, 5],\n [ 5, 6],\n [ 6, 7],\n [ 7, 8],\n [ 8, 9],\n [ 9, 10],\n [10, 11],\n [11, 12],\n [12, 13],\n [13, 15],\n self = {SpERT} SpERT(\n (bert): BertModel(\n (embeddings): BertEmbeddings(\n (word_embeddings): Embedding(28996, 768, padding_idx=0)\n (position_embeddings): Embedding(512, 768)\n (token_type_embeddings): Embedding(2, 768)\n (LayerNorm): LayerNorm((768, :param encodings: token转换成id, [batch_size, seq_length] :type encodings: :param context_masks: 样本的实际的长度的mask, [batch_size, seq_length] :type context_masks: :param entity_masks: [batch_size,实体数量,padding后的seq_length] 实体的在句子位置mask, 实体数量是枚举的所有的可能 :type entity_masks: [batch_size,实体数量], 枚举的实体从最小到最大的跨度 :param entity_sizes: tensor([[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10]]) :type entity_sizes: :param entity_spans: [batch_size,实体数量, 2], 2表示头实体和尾实体的位置 :type entity_spans: :param entity_sample_masks: [batch_size,实体数量], 样本1可能有10个实体,样本2有3个实体,那么样本2就有7个FALSE :type entity_sample_masks: :return: :rtype: """ context_masks = context_masks.float() h = self.bert(input_ids=encodings, attention_mask=context_masks)['last_hidden_state'] batch_size = encodings.shape[0] # ctx_size:序列长度 ctx_size = context_masks.shape[-1] #实体分类, size_embeddings, [batch_size,实体数量,25】 size_embeddings = self.size_embeddings(entity_sizes) # embed entity candidate sizes # entity_clf: [batch_size, 实体数量,实体的labels总数] # entity_spans_pool: [batch_size,实体数量,hidden_size] entity_clf, entity_spans_pool = self._classify_entities(encodings, h, entity_masks, size_embeddings) # 忽略不构成关系的实际实体的实体候选对象(基于分类器), entity_spans: [batch_size,实体数量, 2], 2表示头实体和尾实体的位置 # relations: 【batch_size,关系的数量,2】 2是头实体尾实体的位置 # rel_masks: 【batch_size,关系的数量,seq_length] 2个实体之间的词的位置的mask # rel_sample_masks: [batch_size,关系数量],padding后,样本1可能有10个关系,样本2有3个关系,那么样本2就有7个FALSE relations, rel_masks, rel_sample_masks = self._filter_spans(entity_clf, entity_spans, entity_sample_masks, ctx_size) # # 关系分类, 可能的self._max_pairs最大的关系数量, h_large 【batch_size, 关系数量,seq_length, hidden_size] rel_sample_masks = rel_sample_masks.float().unsqueeze(-1) h_large = h.unsqueeze(1).repeat(1, max(min(relations.shape[1], self._max_pairs), 1), 1, 1) # 初始一个分类的tensor, [batch_size, 关系数量,关系的label的总数], eg:[1,6, 5] rel_clf = torch.zeros([batch_size, relations.shape[1], self._relation_types]).to( self.rel_classifier.weight.device) # obtain relation logits # 对关系进行分批次预测。这里叫分块预测 for i in range(0, relations.shape[1], self._max_pairs): #预测关系 chunk_rel_logits = self._classify_relations(entity_spans_pool, size_embeddings, relations, rel_masks, h_large, i) #对关系logits进行二分类 chunk_rel_clf = torch.sigmoid(chunk_rel_logits) # 预测结果加入 rel_clf[:, i:i + self._max_pairs, :] = chunk_rel_clf # 只要mask的关系部分 rel_clf = rel_clf * rel_sample_masks # mask #对实体进行分类结果进行softmax entity_clf = torch.softmax(entity_clf, dim=2) # 实体分类的logits,rel_clf关系分类的logits, relations带有每个实体的关系的位置信息 return entity_clf, rel_clf, relations def _classify_entities(self, encodings, h, entity_masks, size_embeddings): """ 最大池化实体候选跨度, 然后进行对实体分类 :param encodings: [batch_size, seq_length] eg: [2,26] :type encodings: :param h: 句子经过bert后的隐藏层向量, [batch_size, seq_length, embedding_size], eg: [2,26,768] :type h: :param entity_masks: [batch_size, entity_num, seq_length], eg: [2,104,26], 例如entity_num是实体的数量, 包括正样本和负样本 :type entity_masks: :param size_embeddings: # 对实体的长度的embedding, [batch_size, entity_num实体个数, embedding_size], eg: [2,106,25] :type size_embeddings: :return: :rtype: """ # eg: entity_masks增加一个维度,然盘是否为0, m维度 eg: [2,104,26,1] m = (entity_masks.unsqueeze(-1) == 0).float() * (-1e30) # 获取实体的向量, [batch_size, entity_num, seq_length, hidden_size], [2,104,26,768] entity_spans_pool = m + h.unsqueeze(1).repeat(1, entity_masks.shape[1], 1, 1) # 对实体跨度进行最大池化, entity_spans_pool: [batch_size, entity_num,hidden_size], eg: [2,104,768] entity_spans_pool = entity_spans_pool.max(dim=2)[0] # 获得作为候选上下文表示的cls token, entity_ctx: [batch_size, hidden_size] entity_ctx = get_token(h, encodings, self._cls_token) # 创建候选表示,包括背景、最大集合跨度和尺寸嵌入, 拼接这些表示, # entity_ctx 是cls的表示 # entity_ctx.unsqueeze(1).repeat(1, entity_spans_pool.shape[1], 1) 表示给每个实体都是复制一个cls entity_repr = torch.cat([entity_ctx.unsqueeze(1).repeat(1, entity_spans_pool.shape[1], 1), entity_spans_pool, size_embeddings], dim=2) entity_repr = self.dropout(entity_repr) # 对候选实体进行分类, entity_repr: 【batch_size, entity_num, embedding_size(拼接的向量)] # entity_clf, shape: [batch_size, entity_num, entity_labels_num] entity_clf = self.entity_classifier(entity_repr) # entity_spans_pool: 对实体跨度进行最大池化, entity_spans_pool: [batch_size, entity_num,hidden_size], eg: [2,104,768] return entity_clf, entity_spans_pool def _classify_relations(self, entity_spans, size_embeddings, relations, rel_masks, h, chunk_start): """ # 对关系候选者进行分类 :param entity_spans: entity_spans_pool [batch_size,实体数量,hidden_size], 代表这个实体的向量 :type entity_spans: :param size_embeddings: size_embeddings实体的长度的embedding [batch_size,实体数量,size_hidden_size] :type size_embeddings: :param relations: 【batch_size,关系数量,头实体和尾实体的位置索引] 关系的头实体和尾实体在实体向量中的位置索引 :type relations: :param rel_masks: [batch_size,关系数量,padding后的seq_length] 关系在样本中的位置,即2个实体之间的词 :type rel_masks: :param h: 【batch_size, 关系数量,seq_length, hidden_size] :type h: :param chunk_start: ???, eg:0, :type chunk_start: int :return: :rtype: """ batch_size = relations.shape[0] # 如果可能关系的数量大于我们预设的最大关系的对数,那么对关系进行拆分 if relations.shape[1] > self._max_pairs: relations = relations[:, chunk_start:chunk_start + self._max_pairs] rel_masks = rel_masks[:, chunk_start:chunk_start + self._max_pairs] h = h[:, :relations.shape[1], :] # 获取实体候选表示对, entity_spans: [batch_size,实体数量,hidden_size], # relations: [batch_size, 关系数量,头实体和尾实体的位置在实体列表中信息] # entity_pairs: [batch_size, 关系数量,头实体和尾实体的位置,hidden_size] # entity_pairs:每个关系对应的头尾实体的向量 entity_pairs = util.batch_index(entity_spans, relations) # 合并后2个维度, [batch_size, 关系数量,头实体和尾实体的位置 * hidden_size] entity_pairs = entity_pairs.view(batch_size, entity_pairs.shape[1], -1) # 每个实体的长度的位置,对应成关系 # size_embeddings 【batch_size, 实体数量, size_hidden_size】 # relations: [batch_size, 关系数量,头实体和尾实体的位置在实体列表中信息] # size_pair_embeddings 维度 [batch_size, 关系数量,头实体和尾实体的位置, size_hidden_size], eg: [2,6,2,25] size_pair_embeddings = util.batch_index(size_embeddings, relations) # 合并后2个维度, [batch_size, 关系数量,头实体和尾实体的位置, size_hidden_size] size_pair_embeddings = size_pair_embeddings.view(batch_size, size_pair_embeddings.shape[1], -1) # 关系上下文(实体候选对之间的上下文) # mask非实体候选token, rel_masks: [batch_size,关系数量,padding后的seq_length] 关系在样本中的位置,即2个实体之间的词 # m: [batch_size,关系数量,padding后的seq_length, 1] m = ((rel_masks == 0).float() * (-1e30)).unsqueeze(-1) # h和rel_ctx的形状都是【batch_size, 关系数量,seq_length, hidden_size],m+h的形状还是m的形状 rel_ctx = m + h #最大池化,rel_ctx: 维度【batch_size,关系数量, hidden_size】 rel_ctx = rel_ctx.max(dim=2)[0] # 将相邻或相邻候选实体的上下文向量设置为零, rel_ctx: 维度【batch_size,关系数量, hidden_size】 rel_ctx[rel_masks.to(torch.uint8).any(-1) == 0] = 0 # 创建关系候选表示,包括上下文、最大池化实体候选对和对应的实体size表示的嵌入向量 # rel_ctx: eg: [2,20,768], entity_pairs: [2,20,1539], size_pair_embeddings: [2,20,50] # rel_repr 是3个向量的拼接, [2,20,2354], 2354是3个隐藏向量维度+ 2个实体的size的维度 rel_repr = torch.cat([rel_ctx, entity_pairs, size_pair_embeddings], dim=2) rel_repr = self.dropout(rel_repr) #关系分类, chunk_rel_logits = self.rel_classifier(rel_repr) return chunk_rel_logits def _filter_spans(self, entity_clf, entity_spans, entity_sample_masks, ctx_size): """ :param entity_clf: [batch_size, 实体数量,实体的label总数] :type entity_clf: :param entity_spans: [batch_size, 实体数量,2】 头尾实体的位置 :type entity_spans: :param entity_sample_masks: [batch_size, 实体数量] :type entity_sample_masks: :param ctx_size: 序列长度 :type ctx_size: int :return: :rtype: """ batch_size = entity_clf.shape[0] # entity_logits_max: [batch_size, 实体数量], 找出分类出的实体 entity_logits_max = entity_clf.argmax(dim=-1) * entity_sample_masks.long() # get entity type (including none) batch_relations = [] batch_rel_masks = [] batch_rel_sample_masks = [] for i in range(batch_size): rels = [] rel_masks = [] sample_masks = [] # 将跨度分类为实体, shape为1, eg: tensor([31, 56, 84]), 获取最可能为实体的位置的索引 non_zero_indices = (entity_logits_max[i] != 0).nonzero().view(-1) # 找出实体的span,即实体的头尾的位置 non_zero_spans = entity_spans[i][non_zero_indices].tolist() # 实体的索引也变成列表 non_zero_indices = non_zero_indices.tolist() #创建关系和mask,枚举实体对,把所有实体两两配对 for i1, s1 in zip(non_zero_indices, non_zero_spans): for i2, s2 in zip(non_zero_indices, non_zero_spans): if i1 != i2: rels.append((i1, i2)) rel_masks.append(sampling.create_rel_mask(s1, s2, ctx_size)) sample_masks.append(1) if not rels: #情况1:分类为实体的跨度不超过两个,那么就没有关系,随便创建一个 batch_relations.append(torch.tensor([[0, 0]], dtype=torch.long)) batch_rel_masks.append(torch.tensor([[0] * ctx_size], dtype=torch.bool)) batch_rel_sample_masks.append(torch.tensor([0], dtype=torch.bool)) else: # 情况2:分类为实体的两个以上跨度,那么创建关系的tensor batch_relations.append(torch.tensor(rels, dtype=torch.long)) batch_rel_masks.append(torch.stack(rel_masks)) batch_rel_sample_masks.append(torch.tensor(sample_masks, dtype=torch.bool)) # 获取设备 device = self.rel_classifier.weight.device # 关系进行padding batch_relations = util.padded_stack(batch_relations).to(device) batch_rel_masks = util.padded_stack(batch_rel_masks).to(device) batch_rel_sample_masks = util.padded_stack(batch_rel_sample_masks).to(device) return batch_relations, batch_rel_masks, batch_rel_sample_masks def forward(self, *args, inference=False, **kwargs): """ args的内容,字典格式 # encodings: [batch_size, padding后的seq_length], token变成id后的内容 # context_masks: [batch_size, padding后的seq_length】, 样本的实际的长度的mask # entity_masks:[batch_size,实体数量,padding后的seq_length] 实体的在句子位置mask # entity_sizes: [batch_size,实体数量】 每个实体的长度 # 'entity_types',[batch_size,,实体数量】 # 'rels',[batch_size, 关系数量,头实体和尾实体的位置索引】, eg[2,6,2], 6是包含了正负样本 # 'rel_masks',[batch_size,关系数量,padding后的seq_length] 关系在样本中的位置,即2个实体之间的词 # 'rel_types',[batch_size,关系数量,关系的标签总数] one-hot了的关系 # 'entity_sample_masks',[batch_size,实体数量], padding后 # 'rel_sample_masks'[batch_size,关系数量],padding后,样本1可能有10个关系,样本2有3个关系,那么样本2就有7个FALSE :param args: :type args: :param inference: :type inference: :param kwargs: :type kwargs: :return: :rtype: """ if not inference: # 训练模式 return self._forward_train(*args, **kwargs) else: #推理模式 return self._forward_inference(*args, **kwargs) # Model access _MODELS = { 'spert': SpERT, } def get_model(name): return _MODELS[name]
""" config_utils.py --------------- Utility functions for parsing manim config files. """ __all__ = [ "_run_config", "_paths_config_file", "_from_command_line", "finalized_configs_dict", ] import argparse import configparser import os import sys import colour from .. import constants from ..utils.tex import TexTemplate, TexTemplateFromFile def _parse_file_writer_config(config_parser, args): """Parse config files and CLI arguments into a single dictionary.""" # By default, use the CLI section of the digested .cfg files default = config_parser["CLI"] # This will be the final file_writer_config dict exposed to the user fw_config = {} # Handle input files and scenes. Note these cannot be set from # the .cfg files, only from CLI arguments. # If a subcommand is given, manim will not render a video and # thus these specific input/output files are not needed. if not (hasattr(args, "subcommands")): fw_config["input_file"] = args.file fw_config["scene_names"] = ( args.scene_names if args.scene_names is not None else [] ) fw_config["output_file"] = args.output_file # Handle all options that are directly overridden by CLI # arguments. Note ConfigParser options are all strings and each # needs to be converted to the appropriate type. Thus, we do this # in batches, depending on their type: booleans and strings for boolean_opt in [ "preview", "show_in_file_browser", "sound", "leave_progress_bars", "write_to_movie", "save_last_frame", "save_pngs", "save_as_gif", "write_all", "disable_caching", "flush_cache", "log_to_file", ]: attr = getattr(args, boolean_opt) fw_config[boolean_opt] = ( default.getboolean(boolean_opt) if attr is None else attr ) # for str_opt in ['media_dir', 'video_dir', 'tex_dir', 'text_dir']: for str_opt in ["media_dir"]: attr = getattr(args, str_opt) fw_config[str_opt] = os.path.relpath(default[str_opt]) if attr is None else attr attr = getattr(args, "log_dir") fw_config["log_dir"] = ( os.path.join(fw_config["media_dir"], default["log_dir"]) if attr is None else attr ) dir_names = { "video_dir": "videos", "images_dir": "images", "tex_dir": "Tex", "text_dir": "texts", } for name in dir_names: fw_config[name] = os.path.join(fw_config["media_dir"], dir_names[name]) # the --custom_folders flag overrides the default folder structure with the # custom folders defined in the [custom_folders] section of the config file fw_config["custom_folders"] = args.custom_folders if fw_config["custom_folders"]: fw_config["media_dir"] = config_parser["custom_folders"].get("media_dir") for opt in ["video_dir", "images_dir", "tex_dir", "text_dir"]: fw_config[opt] = config_parser["custom_folders"].get(opt) # Handle the -s (--save_last_frame) flag: invalidate the -w flag # At this point the save_last_frame option has already been set by # both CLI and the cfg file, so read the config dict directly if fw_config["save_last_frame"]: fw_config["write_to_movie"] = False # Handle the -t (--transparent) flag. This flag determines which # section to use from the .cfg file. section = config_parser["transparent"] if args.transparent else default for opt in ["png_mode", "movie_file_extension", "background_opacity"]: fw_config[opt] = section[opt] # Handle the -n flag. Read first from the cfg and then override with CLI. # These two are integers -- use getint() for opt in ["from_animation_number", "upto_animation_number"]: fw_config[opt] = default.getint(opt) if fw_config["upto_animation_number"] == -1: fw_config["upto_animation_number"] = float("inf") nflag = args.from_animation_number if nflag is not None: if "," in nflag: start, end = nflag.split(",") fw_config["from_animation_number"] = int(start) fw_config["upto_animation_number"] = int(end) else: fw_config["from_animation_number"] = int(nflag) # Handle the --dry_run flag. This flag determines which section # to use from the .cfg file. All options involved are boolean. # Note this overrides the flags -w, -s, -a, -g, and -i. if args.dry_run: for opt in [ "write_to_movie", "save_last_frame", "save_pngs", "save_as_gif", "write_all", ]: fw_config[opt] = config_parser["dry_run"].getboolean(opt) if not fw_config["write_to_movie"]: fw_config["disable_caching"] = True # Read in the streaming section -- all values are strings fw_config["streaming"] = { opt: config_parser["streaming"][opt] for opt in [ "live_stream_name", "twitch_stream_key", "streaming_protocol", "streaming_ip", "streaming_protocol", "streaming_client", "streaming_port", "streaming_port", "streaming_console_banner", ] } # For internal use (no CLI flag) fw_config["skip_animations"] = fw_config["save_last_frame"] fw_config["max_files_cached"] = default.getint("max_files_cached") if fw_config["max_files_cached"] == -1: fw_config["max_files_cached"] = float("inf") # Parse the verbosity flag to read in the log level verbosity = getattr(args, "verbosity") verbosity = default["verbosity"] if verbosity is None else verbosity fw_config["verbosity"] = verbosity # Parse the ffmpeg log level in the config ffmpeg_loglevel = config_parser["ffmpeg"].get("loglevel", None) fw_config["ffmpeg_loglevel"] = ( constants.FFMPEG_VERBOSITY_MAP[verbosity] if ffmpeg_loglevel is None else ffmpeg_loglevel ) # Parse the progress_bar flag progress_bar = getattr(args, "progress_bar") if progress_bar is None: progress_bar = default.getboolean("progress_bar") fw_config["progress_bar"] = progress_bar return fw_config def _parse_cli(arg_list, input=True): parser = argparse.ArgumentParser( description="Animation engine for explanatory math videos", epilog="Made with <3 by the manim community devs", ) if input: # If the only command is `manim`, we want both subcommands like `cfg` # and mandatory positional arguments like `file` to show up in the help section. only_manim = len(sys.argv) == 1 if only_manim or _subcommand_name(): subparsers = parser.add_subparsers(dest="subcommands") # More subcommands can be added here, with elif statements. # If a help command is passed, we still want subcommands to show # up, so we check for help commands as well before adding the # subcommand's subparser. if only_manim or _subcommand_name() in ["cfg", "--help", "-h"]: cfg_related = _init_cfg_subcmd(subparsers) if only_manim or not _subcommand_name(ignore=["--help", "-h"]): parser.add_argument( "file", help="path to file holding the python code for the scene", ) parser.add_argument( "scene_names", nargs="*", help="Name of the Scene class you want to see", default=[""], ) parser.add_argument( "-o", "--output_file", help="Specify the name of the output file, if " "it should be different from the scene class name", default="", ) # The following use (action='store_const', const=True) instead of # the built-in (action='store_true'). This is because the latter # will default to False if not specified, while the former sets no # default value. Since we want to set the default value in # manim.cfg rather than here, we use the former. parser.add_argument( "-p", "--preview", action="store_const", const=True, help="Automatically open the saved file once its done", ) parser.add_argument( "-f", "--show_in_file_browser", action="store_const", const=True, help="Show the output file in the File Browser", ) parser.add_argument( "--sound", action="store_const", const=True, help="Play a success/failure sound", ) parser.add_argument( "--leave_progress_bars", action="store_const", const=True, help="Leave progress bars displayed in terminal", ) parser.add_argument( "-a", "--write_all", action="store_const", const=True, help="Write all the scenes from a file", ) parser.add_argument( "-w", "--write_to_movie", action="store_const", const=True, help="Render the scene as a movie file (this is on by default)", ) parser.add_argument( "-s", "--save_last_frame", action="store_const", const=True, help="Save the last frame only (no movie file is generated)", ) parser.add_argument( "-g", "--save_pngs", action="store_const", const=True, help="Save each frame as a png", ) parser.add_argument( "-i", "--save_as_gif", action="store_const", const=True, help="Save the video as gif", ) parser.add_argument( "--disable_caching", action="store_const", const=True, help="Disable caching (will generate partial-movie-files anyway)", ) parser.add_argument( "--flush_cache", action="store_const", const=True, help="Remove all cached partial-movie-files", ) parser.add_argument( "--log_to_file", action="store_const", const=True, help="Log terminal output to file", ) # The default value of the following is set in manim.cfg parser.add_argument( "-c", "--background_color", help="Specify background color", ) parser.add_argument( "--background_opacity", help="Specify background opacity", ) parser.add_argument( "--media_dir", help="Directory to store media (including video files)", ) parser.add_argument( "--log_dir", help="Directory to store log files", ) parser.add_argument( "--tex_template", help="Specify a custom TeX template file", ) # All of the following use (action="store_true"). This means that # they are by default False. In contrast to the previous ones that # used (action="store_const", const=True), the following do not # correspond to a single configuration option. Rather, they # override several options at the same time. # The following overrides -w, -a, -g, and -i parser.add_argument( "--dry_run", action="store_true", help="Do a dry run (render scenes but generate no output files)", ) # The following overrides PNG_MODE, MOVIE_FILE_EXTENSION, and # BACKGROUND_OPACITY parser.add_argument( "-t", "--transparent", action="store_true", help="Render a scene with an alpha channel", ) # The following are mutually exclusive and each overrides # FRAME_RATE, PIXEL_HEIGHT, and PIXEL_WIDTH, parser.add_argument( "-l", "--low_quality", action="store_true", help="Render at low quality", ) parser.add_argument( "-m", "--medium_quality", action="store_true", help="Render at medium quality", ) parser.add_argument( "-e", "--high_quality", action="store_true", help="Render at high quality", ) parser.add_argument( "-k", "--fourk_quality", action="store_true", help="Render at 4K quality", ) # This overrides any of the above parser.add_argument( "-r", "--resolution", help='Resolution, passed as "height,width". ' "Overrides the -l, -m, -e, and -k flags, if present", ) # This sets FROM_ANIMATION_NUMBER and UPTO_ANIMATION_NUMBER parser.add_argument( "-n", "--from_animation_number", help="Start rendering at the specified animation index, " "instead of the first animation. If you pass in two comma " "separated values, e.g. '3,6', it will end " "the rendering at the second value", ) # Specify the manim.cfg file parser.add_argument( "--config_file", help="Specify the configuration file", ) # Specify whether to use the custom folders parser.add_argument( "--custom_folders", action="store_true", help="Use the folders defined in the [custom_folders] " "section of the config file to define the output folder structure", ) # Specify the verbosity parser.add_argument( "-v", "--verbosity", type=str, help="Verbosity level. Also changes the ffmpeg log level unless the latter is specified in the config", choices=constants.VERBOSITY_CHOICES, ) # Specify if the progress bar should be displayed def _str2bool(s): if s == "True": return True elif s == "False": return False else: raise argparse.ArgumentTypeError("True or False expected") parser.add_argument( "--progress_bar", type=_str2bool, help="Display the progress bar", metavar="True/False", ) parsed = parser.parse_args(arg_list) if hasattr(parsed, "subcommands"): if _subcommand_name() == "cfg": setattr( parsed, "cfg_subcommand", cfg_related.parse_args(sys.argv[2:]).cfg_subcommand, ) return parsed def _init_dirs(config): # Make sure all folders exist for folder in [ config["media_dir"], config["video_dir"], config["tex_dir"], config["text_dir"], config["log_dir"], ]: if not os.path.exists(folder): # If log_to_file is False, ignore log_dir if folder is config["log_dir"] and (not config["log_to_file"]): pass else: os.makedirs(folder) def _from_command_line(): """Determine if manim was called from the command line.""" # Manim can be called from the command line in three different # ways. The first two involve using the manim or manimcm commands. # Note that some Windows CLIs replace those commands with the path # to their executables, so we must check for this as well prog = os.path.split(sys.argv[0])[-1] from_cli_command = prog in ["manim", "manim.exe", "manimcm", "manimcm.exe"] # The third way involves using `python -m manim ...`. In this # case, the CLI arguments passed to manim do not include 'manim', # 'manimcm', or even 'python'. However, the -m flag will always # be the first argument. from_python_m = sys.argv[0] == "-m" return from_cli_command or from_python_m def _from_dunder_main(): dunder_main_path = os.path.join( os.path.dirname(os.path.dirname(__file__)), "__main__.py" ) return sys.argv[0] == dunder_main_path def _paths_config_file(): library_wide = os.path.abspath( os.path.join(os.path.dirname(__file__), "default.cfg") ) if sys.platform.startswith("win32"): user_wide = os.path.expanduser( os.path.join("~", "AppData", "Roaming", "Manim", "manim.cfg") ) else: user_wide = os.path.expanduser( os.path.join("~", ".config", "manim", "manim.cfg") ) return [library_wide, user_wide] def _run_config(): # Config files to be parsed, in ascending priority config_files = _paths_config_file() if _from_command_line() or _from_dunder_main(): args = _parse_cli(sys.argv[1:]) if not hasattr(args, "subcommands"): if args.config_file is not None: if os.path.exists(args.config_file): config_files.append(args.config_file) else: raise FileNotFoundError( f"Config file {args.config_file} doesn't exist" ) else: script_directory_file_config = os.path.join( os.path.dirname(args.file), "manim.cfg" ) if os.path.exists(script_directory_file_config): config_files.append(script_directory_file_config) else: working_directory_file_config = os.path.join(os.getcwd(), "manim.cfg") if os.path.exists(working_directory_file_config): config_files.append(working_directory_file_config) else: # In this case, we still need an empty args object. args = _parse_cli([], input=False) # Need to populate the options left out args.file, args.scene_names, args.output_file = "", "", "" config_parser = configparser.ConfigParser() successfully_read_files = config_parser.read(config_files) # this is for internal use when writing output files file_writer_config = _parse_file_writer_config(config_parser, args) return args, config_parser, file_writer_config, successfully_read_files def finalized_configs_dict(): config = _run_config()[1] return {section: dict(config[section]) for section in config.sections()} def _subcommand_name(ignore=()): """Goes through sys.argv to check if any subcommand has been passed, and returns the first such subcommand's name, if found. Parameters ---------- ignore : Iterable[:class:`str`], optional List of NON_ANIM_UTILS to ignore when searching for subcommands, by default [] Returns ------- Optional[:class:`str`] If a subcommand is found, returns the string of its name. Returns None if no subcommand is found. """ NON_ANIM_UTILS = ["cfg", "--help", "-h"] NON_ANIM_UTILS = [util for util in NON_ANIM_UTILS if util not in ignore] # If a subcommand is found, break out of the inner loop, and hit the break of the outer loop # on the way out, effectively breaking out of both loops. The value of arg will be the # subcommand to be taken. # If no subcommand is found, none of the breaks are hit, and the else clause of the outer loop # is run, setting arg to None. for item in NON_ANIM_UTILS: for arg in sys.argv: if arg == item: break else: continue break else: arg = None return arg def _init_cfg_subcmd(subparsers): """Initialises the subparser for the `cfg` subcommand. Parameters ---------- subparsers : :class:`argparse._SubParsersAction` The subparser object for which to add the sub-subparser for the cfg subcommand. Returns ------- :class:`argparse.ArgumentParser` The parser that parser anything cfg subcommand related. """ cfg_related = subparsers.add_parser( "cfg", ) cfg_subparsers = cfg_related.add_subparsers(dest="cfg_subcommand") cfg_write_parser = cfg_subparsers.add_parser("write") cfg_write_parser.add_argument( "--level", choices=["user", "cwd"], default=None, help="Specify if this config is for user or just the working directory.", ) cfg_write_parser.add_argument( "--open", action="store_const", const=True, default=False ) cfg_subparsers.add_parser("show") cfg_export_parser = cfg_subparsers.add_parser("export") cfg_export_parser.add_argument("--dir", default=os.getcwd()) return cfg_related
import tornado.web import traceback import logging logger = logging.getLogger("tornado.application") class BaseHandler(tornado.web.RequestHandler): def write_error(self, status_code, **kwargs): exc_type, exc_value, exc_traceback = kwargs["exc_info"] logger.error("status_code %s: %s" % (status_code, exc_value)) logger.error("traceback: %s" % ''.join(traceback.format_tb(exc_traceback))) msg = "error %s" % exc_value if exc_type == tornado.web.HTTPError: msg = "%s" % exc_value.log_message if self.application.settings.get('debug', False): self.write(msg) # return custom error message in the body def get_current_user(self): user_json = self.get_secure_cookie("gallim_user") if not user_json: return None return tornado.escape.json_decode(user_json) @tornado.gen.coroutine def _fetch_async(self, req): http_client = tornado.httpclient.AsyncHTTPClient() logger.debug("fetching %s" % req.url) try: ans = yield http_client.fetch(req) except tornado.httpclient.HTTPError as e: if e.response is None: msg = "'%s'" % (req.url) else: msg = "'%s': %s" % (req.url, e.response.body.decode('utf-8')) raise tornado.web.HTTPError(e.code, msg) logger.debug("done") return ans
"""Test ndpoly baseclass functionality.""" import numpy from pytest import raises import numpoly XY = numpoly.variable(2) X, Y = numpoly.symbols("q0"), numpoly.symbols("q1") EMPTY = numpoly.polynomial([]) def test_scalars(): """Test scalar objects to catch edgecases.""" assert XY.shape == (2,) assert XY.size == 2 assert X.shape == () assert X.size == 1 assert EMPTY.shape in [(), (0,)] # different behavior in py2/3 assert EMPTY.size == 0 assert numpy.all(numpy.array(XY.coefficients) == [[1, 0], [0, 1]]) assert X.coefficients == [1] assert EMPTY.coefficients == [] assert numpy.all(XY.exponents == [[1, 0], [0, 1]]) assert XY.exponents.shape == (2, 2) assert X.exponents == 1 assert X.exponents.shape == (1, 1) assert numpy.all(EMPTY.exponents == 0) assert EMPTY.exponents.shape == (1, 1) assert numpy.all(XY.indeterminants == XY) assert X.indeterminants == X assert numpy.all(XY.values == numpy.array( [(1, 0), (0, 1)], dtype=[("<;", int), (";<", int)])) assert X.values == numpy.array((1,), dtype=[("<", int)]) assert EMPTY.values.dtype == numpy.dtype([(";", int)]) assert not EMPTY.values.size assert not X.isconstant() assert EMPTY.isconstant() assert X.todict() == {(1,): 1} assert EMPTY.todict() == {} assert isinstance(EMPTY.tonumpy(), numpy.ndarray) assert X.dtype == int assert X.astype(float).dtype == float assert EMPTY.dtype == int assert EMPTY.astype(float).dtype == float def test_dispatch_array_ufunc(): """Test dispatch for ufuncs.""" assert numpoly.sum(XY) == XY.__array_ufunc__(numpy.sum, "__call__", XY) with raises(numpoly.FeatureNotSupported): XY.__array_ufunc__(numpy.sum, "not_a_method", XY) with raises(numpoly.FeatureNotSupported): XY.__array_ufunc__(object, "__call__", XY) def test_dispatch_array_function(): """Test dispatch for functions.""" assert numpoly.sum(XY) == XY.__array_function__(numpy.sum, (int,), (XY,), {}) with raises(numpoly.FeatureNotSupported): XY.__array_function__(object, (int,), (XY,), {})
# Generated by Django 3.1.4 on 2021-04-22 11:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('booking', '0008_auto_20210320_1615'), ] operations = [ migrations.AlterField( model_name='cart', name='status', field=models.SmallIntegerField(default=0, verbose_name='Status'), ), migrations.AlterField( model_name='cartitem', name='created', field=models.DateTimeField(auto_now_add=True, verbose_name='erstellt'), ), migrations.AlterField( model_name='cartitem', name='status', field=models.SmallIntegerField(default=0, verbose_name='Status'), ), migrations.AlterField( model_name='coupon', name='created', field=models.DateTimeField(auto_now=True, verbose_name='Erstellt'), ), migrations.AlterField( model_name='invoice', name='email', field=models.EmailField(max_length=128, verbose_name='E-Mail-Adresse'), ), migrations.AlterField( model_name='paymentmethod', name='name', field=models.CharField(max_length=32, verbose_name='Anzeigename'), ), migrations.AlterField( model_name='paymentmethod', name='name_de', field=models.CharField(max_length=32, null=True, verbose_name='Anzeigename'), ), migrations.AlterField( model_name='paymentmethod', name='name_en', field=models.CharField(max_length=32, null=True, verbose_name='Anzeigename'), ), migrations.AlterField( model_name='product', name='players', field=models.SmallIntegerField(blank=True, null=True, verbose_name='Spieler'), ), migrations.AlterField( model_name='room', name='is_active', field=models.BooleanField(default=False, verbose_name='Aktiv'), ), migrations.AlterField( model_name='room', name='photo', field=models.ImageField(blank=True, null=True, upload_to='uploads/rooms', verbose_name='Bild'), ), migrations.AlterField( model_name='room', name='photo_alt', field=models.CharField(blank=True, max_length=128, null=True, verbose_name='Alternativtext'), ), migrations.AlterField( model_name='schedule', name='duration', field=models.PositiveSmallIntegerField(default=60, verbose_name='Zeitspanne'), ), migrations.AlterField( model_name='slot', name='duration', field=models.PositiveSmallIntegerField(default=60, verbose_name='Zeitspanne'), ), ]
""" """ import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sympy import * from sympy.matrices import Matrix,eye from moro.abc import * from moro.util import * __all__ = [ "axa2rot", "compose_rotations", "dh", "eul2htm", "htm2eul", "htmrot", "htmtra", "rot2axa", "rotx", "roty", "rotz", "skew" ] # ~ ========================================== # ~ Transformation operations # ~ ========================================== def rotz(theta, deg=False): """ Calculates the rotation matrix about the z-axis Parameters ---------- :param theta: Rotation angle (given in radians by default) :type theta: float, int or `symbolic` :param deg: ¿Is theta given in degrees?, False is default value. :type deg: bool Returns ------- :return: `sympy.matrices.dense.MutableDenseMatrix` :rtype: Rotation matrix (SO3) Examples -------- Using angle in radians, >>> rotz(pi/2) ⎡0 -1 0⎤ ⎢ ⎥ ⎢1 0 0⎥ ⎢ ⎥ ⎣0 0 1⎦ Or symbolic variables, >>> x = symbols("x") >>> rotz(x) ⎡cos(x) -sin(x) 0⎤ ⎢ ⎥ ⎢sin(x) cos(x) 0⎥ ⎢ ⎥ ⎣ 0 0 1⎦ Using angles in degrees: >>> rotz(45, deg=True) ⎡0.707106781186548 -0.707106781186547 0⎤ ⎢ ⎥ ⎢0.707106781186547 0.707106781186548 0⎥ ⎢ ⎥ ⎣ 0 0 1⎦ """ if deg: # If theta is given in degrees -> convert to radians theta = deg2rad(theta, False) ct = cos(theta) st = sin(theta) R = Matrix([[ct, -st, 0], [st, ct, 0], [0, 0, 1]]) return R def roty(theta, deg=False): """ Calculates the rotation matrix about the y-axis Parameters ---------- :param theta: Rotation angle (given in radians by default) :type theta: float, int or `symbolic` :param deg: ¿Is theta given in degrees?, False is default value. :type deg: bool Returns ------- :return: `sympy.matrices.dense.MutableDenseMatrix` :rtype: Rotation matrix (SO3) Examples -------- >>> roty(pi/3) ⎡ √3 ⎤ ⎢1/2 0 ── ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢ 0 1 0 ⎥ ⎢ ⎥ ⎢-√3 ⎥ ⎢──── 0 1/2⎥ ⎣ 2 ⎦ >>> roty(30, deg=True) ⎡0.866025403784439 0 0.5 ⎤ ⎢ ⎥ ⎢ 0 1 0 ⎥ ⎢ ⎥ ⎣ -0.5 0 0.866025403784439⎦ """ if deg: # If theta is given in degrees -> convert to radians theta = deg2rad(theta, False) ct = cos(theta) st = sin(theta) R = Matrix([[ct, 0, st], [0, 1, 0], [-st, 0, ct]]) return R def rotx(theta, deg=False): """ Calculates the rotation matrix about the x-axis Parameters ---------- :param theta: Rotation angle (given in radians by default) :type theta: float, int or `symbolic` :param deg: ¿Is theta given in degrees?, False is default value. :type deg: bool Returns ------- :return: `sympy.matrices.dense.MutableDenseMatrix` :rtype: Rotation matrix (SO3) Examples -------- >>> rotx(pi) ⎡1 0 0 ⎤ ⎢ ⎥ ⎢0 -1 0 ⎥ ⎢ ⎥ ⎣0 0 -1⎦ >>> rotx(60, deg=True) ⎡1 0 0 ⎤ ⎢ ⎥ ⎢0 0.5 -0.866025403784439⎥ ⎢ ⎥ ⎣0 0.866025403784439 0.5 ⎦ """ if deg: # If theta is given in degrees -> convert to radians theta = deg2rad(theta, False) ct = cos(theta) st = sin(theta) R = Matrix([[1, 0, 0], [0, ct, -st], [0, st, ct]]) return R def _rot(theta, axis, deg=False): if axis in ("X","x",1,"1"): R = rotx(theta, deg) elif axis in ("Y","y",2,"2"): R = roty(theta, deg) elif axis in ("Z","z",3,"3"): R = rotz(theta, deg) else: R = eye(3) return R def compose_rotations(*rotations): """ Composes rotation matrices w.r.t. fixed or movable frames Parameters ---------- :param rotations: A tuple that contains (angle, axis, frame, deg) :type rotations: tuple Returns ------- :return: Rotation matrix :rtype: :class:`sympy.matrices.dense.MutableDenseMatrix` Examples -------- >>> compose_rotations((45, "z", "fixed", True), (30, "x", "local", True)) ⎡0.707106781186548 -0.612372435695794 0.353553390593274 ⎤ ⎢ ⎥ ⎢0.707106781186547 0.612372435695795 -0.353553390593274⎥ ⎢ ⎥ ⎣ 0 0.5 0.866025403784439 ⎦ """ R = eye(3) # I3x3 matrix for rot in rotations: angle,axis,frame,*_ = rot if len(rot)==4: deg = rot[-1] else: deg = False # default value crm = _rot(angle,axis,deg) if frame in ("world","fixed","global","w","0",0): R = crm*R elif frame in ("current","movable","local","c","1",1): R = R*crm else: pass # Nothing to do here -> raise except. (to impl.) return R def dh(a,alpha,d,theta): """ Calculates Denavit-Hartenberg matrix given the four parameters. Parameters ---------- :param a: DH parameter :type a: int, float or symbol :param alpha: DH parameter :type alpha: int, float or symbol :param d: DH parameter :type d: int, float or symbol :param theta: DH parameter :type theta: int, float or symbol Returns ------- :return: Denavit-Hartenberg matrix (4x4) :rtype: :class:`sympy.matrices.dense.MutableDenseMatrix` Examples -------- With numerical values: >>> dh(100,pi/2,50,pi/2) ⎡0 0 1 0 ⎤ ⎢ ⎥ ⎢1 0 0 100⎥ ⎢ ⎥ ⎢0 1 0 50 ⎥ ⎢ ⎥ ⎣0 0 0 1 ⎦ Using symbolic values: >>> a = symbols("a") >>> t = symbols("t") >>> dh(a,0,0,t) ⎡cos(t) -sin(t) 0 a⋅cos(t)⎤ ⎢ ⎥ ⎢sin(t) cos(t) 0 a⋅sin(t)⎥ ⎢ ⎥ ⎢ 0 0 1 0 ⎥ ⎢ ⎥ ⎣ 0 0 0 1 ⎦ """ H = Matrix([[cos(theta),-sin(theta)*cos(alpha),sin(theta)*sin(alpha),a*cos(theta)], [sin(theta),cos(theta)*cos(alpha),-cos(theta)*sin(alpha),a*sin(theta)], [0,sin(alpha),cos(alpha),d], [0,0,0,1]]) return H def eul2htm(phi,theta,psi,seq="zxz",deg=False): """ Given a set of Euler Angles (phi,theta,psi) for specific sequence this function returns the homogeneous transformation matrix associated. Default sequence is ZXZ. Parameters ---------- :param phi: phi angle :type phi: int,float,symbol :param theta: theta angle :type theta: int,float,symbol :param psi: psi angle :type psi: int,float,symbol :param seq: Rotation sequence :type seq: str :param deg: True if (phi,theta,psi) are given in degrees :type deg: bool Returns ------- :return: Homogeneous transformation matrix :rtype: :class:`sympy.matrices.dense.MutableDenseMatrix` Examples -------- >>> eul2htm(90,90,90,"zxz",True) ⎡0 0 1 0⎤ ⎢ ⎥ ⎢0 -1 0 0⎥ ⎢ ⎥ ⎢1 0 0 0⎥ ⎢ ⎥ ⎣0 0 0 1⎦ >>> eul2htm(pi/2,pi/2,pi/2) ⎡0 0 1 0⎤ ⎢ ⎥ ⎢0 -1 0 0⎥ ⎢ ⎥ ⎢1 0 0 0⎥ ⎢ ⎥ ⎣0 0 0 1⎦ >>> eul2htm(0,pi/2,0,"zyz") ⎡0 0 1 0⎤ ⎢ ⎥ ⎢0 1 0 0⎥ ⎢ ⎥ ⎢-1 0 0 0⎥ ⎢ ⎥ ⎣0 0 0 1⎦ """ if deg: # If angles are given in degrees -> convert to radians phi,theta,psi = deg2rad(Matrix([phi,theta,psi]), evalf=False) seq = seq.lower() if not seq in ("zxz","zyz","xyx","xzx","yxy","yzy"): raise ValueError(f"{seq} is not a valid sequence") axis1 = seq[0] axis2 = seq[1] axis3 = seq[2] H = htmrot(phi,axis1) * htmrot(theta,axis2) * htmrot(psi,axis3) return H def htm2eul(H, seq="zxz", deg=False): """ Given a homogeneous transformation matrix this function return the equivalent set of Euler Angles. If "deg" is True then Euler Angles are converted to degrees. >>> H = htmrot(pi/3,"y")*htmrot(pi/4,"x") >>> H ⎡ √6 √6 ⎤ ⎢1/2 ── ── 0⎥ ⎢ 4 4 ⎥ ⎢ ⎥ ⎢ √2 -√2 ⎥ ⎢ 0 ── ──── 0⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢-√3 √2 √2 ⎥ ⎢──── ── ── 0⎥ ⎢ 2 4 4 ⎥ ⎢ ⎥ ⎣ 0 0 0 1⎦ >>> htm2eul(H) ⎛ ⎛√3⎞ ⎞ ⎜atan⎜──⎟, atan(√7), -atan(√6)⎟ ⎝ ⎝2 ⎠ ⎠ >>> htm2eul(H, deg=True) (40.8933946491309, 69.2951889453646, -67.7923457014035) """ if seq in ("ZXZ","zxz"): return _htm2zxz(H, deg) # elif seq in ("ZYZ","zyz"): # return _htm2zyz(H, deg) else: raise ValueError("Currently only ZXZ sequence is supported") def _htm2zxz(H, deg=False): """ Calculates ZXZ Euler Angles from a homogeneous transformation matrix """ R = H[:3,:3] # rotation sub-matrix r33,r13,r23,r31,r32,r11,r12,r21 = R[2,2],R[0,2],R[1,2],R[2,0],R[2,1],R[0,0],R[0,1],R[1,0] if abs(r33) != 1: theta = atan2(sqrt(1-r33**2), r33) phi = atan2(r13, -r23) psi = atan2(r31, r32) elif r33==1: theta = 0 phi = 0 psi = atan2(r21, r11) elif r33==-1: theta = pi psi = 0 phi = atan2(r21, r11) else: theta = atan2(sqrt(1-r33**2), r33) phi = atan2(r13,-r23) psi = atan2(r31,r32) if deg: return rad2deg(phi), rad2deg(theta), rad2deg(psi) return phi,theta,psi def htmtra(*args,**kwargs): """ Calculate the homogeneous transformation matrix of a translation Parameters ---------- *args : list, tuple, int, float Translation vector or components **kwargs : float, int dx, dy and dz keyword arguments Returns ------- H : :class:`sympy.matrices.dense.MutableDenseMatrix` Homogeneous transformation matrix Examples -------- >>> htmtra([50,-100,30]) ⎡1 0 0 50 ⎤ ⎢ ⎥ ⎢0 1 0 -100⎥ ⎢ ⎥ ⎢0 0 1 30 ⎥ ⎢ ⎥ ⎣0 0 0 1 ⎦ >>> a,b,c = symbols("a,b,c") >>> htmtra([a,b,c]) ⎡1 0 0 a⎤ ⎢ ⎥ ⎢0 1 0 b⎥ ⎢ ⎥ ⎢0 0 1 c⎥ ⎢ ⎥ ⎣0 0 0 1⎦ Using float/integer arguments: >>> htmtra(10,-40,50) ⎡1 0 0 10 ⎤ ⎢ ⎥ ⎢0 1 0 -40⎥ ⎢ ⎥ ⎢0 0 1 50 ⎥ ⎢ ⎥ ⎣0 0 0 1 ⎦ Using keyword arguments: >>> htmtra(dz=100,dx=300,dy=-200) ⎡1 0 0 300 ⎤ ⎢ ⎥ ⎢0 1 0 -200⎥ ⎢ ⎥ ⎢0 0 1 100 ⎥ ⎢ ⎥ ⎣0 0 0 1 ⎦ """ if args and not kwargs: if isinstance(args[0], (list,tuple)): d = args[0] elif len(args)==3: d = args elif kwargs and not args: d = [0,0,0] if "dx" in kwargs: d[0] = kwargs.get("dx") if "dy" in kwargs: d[1] = kwargs.get("dy") if "dz" in kwargs: d[2] = kwargs.get("dz") else: raise ValueError("Only pass *args or **kwargs, not both") dx,dy,dz = d[0],d[1],d[2] M = Matrix([[1,0,0,dx], [0,1,0,dy], [0,0,1,dz], [0,0,0,1]]) return M def htmrot(theta, axis="z", deg=False): """ Return a homogeneous transformation matrix that represents a rotation "theta" about "axis". Parameters ---------- theta : float, int or `symbolic` Rotation angle (given in radians by default) axis : str Rotation axis deg : bool ¿Is theta given in degrees? Returns ------- H : :class:`sympy.matrices.dense.MutableDenseMatrix` Homogeneous transformation matrix Examples -------- >>> htmrot(pi/2) ⎡0 -1 0 0⎤ ⎢ ⎥ ⎢1 0 0 0⎥ ⎢ ⎥ ⎢0 0 1 0⎥ ⎢ ⎥ ⎣0 0 0 1⎦ >>> htmrot(pi/2, "x") ⎡1 0 0 0⎤ ⎢ ⎥ ⎢0 0 -1 0⎥ ⎢ ⎥ ⎢0 1 0 0⎥ ⎢ ⎥ ⎣0 0 0 1⎦ >>> htmrot(30, "y", True) ⎡0.866025403784439 0 0.5 0⎤ ⎢ ⎥ ⎢ 0 1 0 0⎥ ⎢ ⎥ ⎢ -0.5 0 0.866025403784439 0⎥ ⎢ ⎥ ⎣ 0 0 0 1⎦ >>> t = symbols("t") >>> htmrot(t, "x") ⎡1 0 0 0⎤ ⎢ ⎥ ⎢0 cos(t) -sin(t) 0⎥ ⎢ ⎥ ⎢0 sin(t) cos(t) 0⎥ ⎢ ⎥ ⎣0 0 0 1⎦ """ if deg: # Is theta given in degrees? -> then convert to radians theta = deg2rad(theta) if axis in ("z","Z",3,"3"): R = rotz(theta) elif axis in ("y","Y",2,"2"): R = roty(theta) elif axis in ("x","X",1,"1"): R = rotx(theta) else: R = eye(3) # raise except (to impl) H = _rot2htm(R) return H def _rot2htm(R): """ Given a SO(3) matrix return a SE(3) homogeneous transformation matrix. """ _H = R.row_join(zeros(3,1)) H = _H.col_join(Matrix([0,0,0,1]).T) return H def rot2axa(R, deg=False): """ Given a SO(3) matrix return the axis-angle representation """ r32,r23 = R[2,1],R[1,2] r13,r31 = R[0,2],R[2,0] r21,r12 = R[1,0],R[0,1] theta = acos((R.trace() - 1)/2) k = ( (1/(2*sin(theta)))*Matrix([r32-r23, r13-r31, r21-r12]) ).evalf() if deg: theta = rad2deg(theta) return k,theta def axa2rot(k,theta): """ Given a R^3 vector (k) and an angle (theta), return the SO(3) matrix associated. """ if isinstance(k,(list,tuple)): k = Matrix(k) ct = cos(theta) st = sin(theta) vt = 1 - cos(theta) kx,ky,kz = k.normalized() r11 = kx**2*vt + ct r21 = kx*ky*vt + kz*st r31 = kx*kz*vt - ky*st r12 = kx*ky*vt - kz*st r22 = ky**2*vt + ct r32 = ky*kz*vt + kx*st r13 = kx*kz*vt + ky*st r23 = ky*kz*vt - kx*st r33 = kz**2*vt + ct R = Matrix([[r11,r12,r13],[r21,r22,r23],[r31,r32,r33]]) return R def skew(u): """ Return skew-symmetric matrix associated to u vector """ ux,uy,uz = u S = Matrix([[0, -uz, uy], [uz, 0, -ux], [-uy, ux, 0]]) return S if __name__=="__main__": print(eul2htm(0,0,pi,"xyy"))
# -*- coding: utf-8 -*- # Generated by Django 1.10.7 on 2017-07-09 02:03 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('projects', '0003_build_error'), ] operations = [ migrations.AlterField( model_name='build', name='result', field=models.IntegerField(choices=[(0, 'Pending'), (10, 'Fail'), (19, 'Non-critical Fail'), (20, 'Pass')], default=0), ), ]
# -*- coding: utf-8 -*- # # This file is part of AceQL Python Client SDK. # AceQL Python Client SDK: Remote SQL access over HTTP with AceQL HTTP. # Copyright (C) 2021, KawanSoft SAS # (http://www.kawansoft.com). All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## import os from os.path import sep from aceql import Connection from aceql._private.aceql_debug_parms import AceQLDebugParms from tests.util.connection_builder import ConnectionBuilder class TestExecuteServerQuery(): @staticmethod def test_main(connection: Connection): AceQLDebugParms.DEBUG_ON = False print() print("aceql version : " + Connection.get_client_version()) print("aceql version full : " + Connection.get_client_version_full()) print("Connection Options : " + str(connection.get_connections_options())) print("Connection creation: " + str(connection.get_creation_datetime())) print("Database Info : " + str(connection.get_database_info())) cursor = connection.cursor() server_query_executor_class_name = "com.mycompany.MyServerQueryExecutor" my_parameters = [1] cursor.execute_server_query(server_query_executor_class_name, my_parameters) print("cursor.rowcount : " + str(cursor.rowcount)) rows = cursor.fetchall() print("fetchall:") for row in rows: print(row) cursor.close() if __name__ == '__main__': connection: Connection = ConnectionBuilder.get_connection() try: TestExecuteServerQuery.test_main(connection) finally: connection.close() print("The End!") exit()
i=1 s=0 dec=int(input("Enter the value of number\n")) while(dec>0): rem=int(dec%10) s=s+(i*rem) dec=int(dec/10) i=i*2 print("\n") print(s) input()
''' Kattis - pervasiveheartmonitor Simple input parsing, just try to write as little code as possible. ''' import statistics from sys import stdin for line in stdin: line = line.strip() line = line.split() name = [] while line[0][0].isalpha(): name.append(line.pop(0)) while line[-1][0].isalpha(): name.insert(0, (line.pop())) name = ' '.join(name) line = [float(x) for x in line] line = statistics.mean(line) print(line, name)
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2019-08-02 13:59 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): replaces = [('analytics', '0001_initial'), ('analytics', '0002_node'), ('analytics', '0003_delete_node'), ('analytics', '0004_auto_20180117_1045'), ('analytics', '0005_importconfig'), ('analytics', '0006_analyticsimporttask'), ('analytics', '0007_query_api_mgmt_id'), ('analytics', '0008_auto_20180725_1114_squashed_0009_query_uri'), ('analytics', '0009_importconfig_last_cursor'), ('analytics', '0010_importconfig_time'), ('analytics', '0011_auto_20190123_1530'), ('analytics', '0012_auto_20190124_1117'), ('analytics', '0013_remove_importconfig_time'), ('analytics', '0014_auto_20190220_1127'), ('analytics', '0015_analyticsimporttask_node'), ('analytics', '0016_auto_20190613_1103')] initial = True dependencies = [ ('django_datajsonar', '0006_synchronizer_node'), ] operations = [ migrations.CreateModel( name='Query', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ids', models.TextField()), ('args', models.TextField()), ('timestamp', models.DateTimeField()), ('ip_address', models.CharField(max_length=200, null=True)), ('params', models.TextField()), ('api_mgmt_id', models.IntegerField(blank=True, null=True, unique=True)), ('request_time', models.DecimalField(decimal_places=25, default=0, max_digits=30)), ('status_code', models.IntegerField(default=0)), ('user_agent', models.TextField(default='')), ('uri', models.TextField(default='')), ], options={ 'verbose_name_plural': 'Tabla consultas', }, ), migrations.CreateModel( name='ImportConfig', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('endpoint', models.URLField()), ('token', models.CharField(max_length=64)), ('kong_api_id', models.CharField(max_length=64)), ('last_cursor', models.CharField(blank=True, max_length=64)), ], options={ 'abstract': False, 'verbose_name': 'Configuración de importación de analytics', }, ), migrations.CreateModel( name='AnalyticsImportTask', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('status', models.CharField(choices=[('RUNNING', 'Procesando catálogos'), ('FINISHED', 'Finalizada')], max_length=20)), ('logs', models.TextField()), ('created', models.DateTimeField(auto_now_add=True)), ('finished', models.DateTimeField(null=True)), ('node', models.ForeignKey(blank=True, default=None, null=True, on_delete=django.db.models.deletion.CASCADE, to='django_datajsonar.Node')), ], options={ 'verbose_name': 'Corrida de importación de analytics', 'verbose_name_plural': 'Corridas de importación de analytics', }, ), migrations.CreateModel( name='HitsIndicator', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('serie_id', models.CharField(max_length=64)), ('date', models.DateField()), ('hits', models.IntegerField()), ], options={ 'verbose_name': 'Consultas por día de serie', 'verbose_name_plural': 'Consultas por día de series', }, ), migrations.AlterUniqueTogether( name='hitsindicator', unique_together=set([('serie_id', 'date')]), ), ]
from torch import nn from video.ConvLstmCell import ConvLstmCell import torch class LSTM_PixelSnail(nn.Module): def _to_one_hot(self, y, num_classes): scatter_dim = len(y.size()) y_tensor = y.view(*y.size(), -1) zeros = torch.zeros(*y.size(), num_classes, dtype=y.dtype).to('cuda') return zeros.scatter(scatter_dim, y_tensor, 1) def __init__(self, lstm_model, cnn_model, pixel_model): super().__init__() self.type = type self.pixel_model = pixel_model self.lstm_model = lstm_model self.cnn_model = cnn_model def forward(self, inputs_, cells_state): input_ = inputs_[:, 0, :, :, :] target = inputs_[:, 1, :, :, :] lstm_out, cells_state = self.lstm_model(input_, cells_state) cnn_out = self.cnn_model(lstm_out) out, _ = self.pixel_model(target, condition=cnn_out) return out, cells_state
# :coding: utf-8 # :copyright: Copyright (c) 2021 strack """Describe the distribution to distutils.""" # Import third-party modules import os from setuptools import find_packages from setuptools import setup ROOT_PATH = os.path.dirname(os.path.realpath(__file__)) README_PATH = os.path.join(ROOT_PATH, 'README.md') requires = [ 'dayu_widgets >= 0.0.1', 'strack-api >=1.0.0', 'PyYAML >= 5.0' ] setup( name='strack-connect', author='weijer', url='https://github.com/cgpipline/strack-connect', license='Apache License (2.0)', version='0.0.1', author_email='[email protected]', description=('Connect for strack.'), long_description=open(README_PATH, 'r', encoding='UTF-8').read(), classifiers=[ 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: Implementation' ], packages=find_packages(), include_package_data=True, zip_safe=False, install_requires=requires, setup_requires=['pytest-runner'], tests_require=['pytest'] )
import unittest import subprocess import sys import socket import os import time import signal import argparse import across from across.__main__ import _parse_tcp from .utils import par, mktemp, localhost, localhost_ipv6, anyaddr, skip_if_no_unix_sockets, skip_if_no_ipv6 def spawn_main(args, **popen_extras): return subprocess.Popen( [sys.executable, '-m', 'across'] + args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, **popen_extras ) def run_main(args): process = spawn_main(args) process.stdin.close() stdout = process.stdout.read() process.stdout.close() rc = process.wait() return rc, stdout.decode() def serve(sock): with across.Connection.from_socket(sock.accept()[0]) as conn: conn.wait() class ParserTest(unittest.TestCase): def test_parse_tcp(self): for text, address in [ ('wonderland:1865', ('wonderland', 1865)), ('wonderland:0', ('wonderland', 0)), ('127.0.0.1:65535', ('127.0.0.1', 65535)), ('[::1]:20', ('::1', 20)), ('[::ffff:192.0.2.128]:20', ('::ffff:192.0.2.128', 20)), ]: self.assertEqual(_parse_tcp(text), ('tcp',) + address) for text in [ 'bad', '20', 'bad:-20', 'bad:100000', '[bad]:20', '[bad.bad]:20', '::1:20', '[[::1]:20', '[]::1]:20', 'ba[d:20', 'ba]d:20', ]: self.assertRaises(argparse.ArgumentTypeError, _parse_tcp, text) # Note that tests using this function have a race condition :( def _random_port(): sock = socket.socket() sock.bind((anyaddr, 0)) port = sock.getsockname()[1] sock.close() return port class MainTest(unittest.TestCase): def test_version(self): rc, out = run_main(['--version']) self.assertEqual(rc, 0) self.assertEqual(out.strip(), across.__version__) def test_tcp_client(self): sock = socket.socket() sock.bind((localhost, 0)) sock.listen(1) (rc, out), _ = par( lambda: run_main([ '--tcp', '{}:{}'.format(localhost, sock.getsockname()[1]), '--execute', 'import os; os.getpid()', ]), lambda: serve(sock), ) sock.close() self.assertEqual(rc, 0) self.assertEqual(int(out.strip()), os.getpid()) def test_tcp_server(self): self._run_tcp_server_test(socket.AF_INET) @skip_if_no_ipv6 def test_tcp_server_ipv6(self): self._run_tcp_server_test(socket.AF_INET6) def _run_tcp_server_test(self, family): if family == socket.AF_INET6: host = localhost_ipv6 escaped_host = '[{}]'.format(host) else: host = escaped_host = localhost port = _random_port() process = spawn_main(['--server', '--tcp', '{}:{}'.format(escaped_host, port)]) sock = socket.socket(family) while sock.connect_ex((host, port)) != 0: time.sleep(0.01) self.assertIsNone(process.poll()) os.kill(process.pid, signal.SIGINT) process.wait() sock.close() process.stdin.close() process.stdout.close() def test_bad_usage(self): args_list = [ # no action/address [], # no action ['--stdio'], # no address ['--wait'], # stdio in server mode ['--server', '--stdio'], # action in server mode ['--server', '--tcp', '{}:0'.format(localhost), '--execute', 'pass'], # bad TCP addresses ['--server', '--tcp', ''], ['--server', '--tcp', 'bad'], ['--server', '--tcp', '{}:bad'.format(localhost)], ] for args in args_list: process = spawn_main(args, stderr=subprocess.PIPE) out, err = process.communicate() self.assertEqual(process.wait(), 2) self.assertEqual(out, b'') @skip_if_no_unix_sockets class UnixMainTest(unittest.TestCase): def test_unix_client(self): path = mktemp() sock = socket.socket(socket.AF_UNIX) sock.bind(path) sock.listen(1) (rc, out), _ = par( lambda: run_main([ '--unix', path, '--execute', 'import os; os.getpid()', ]), lambda: serve(sock), ) sock.close() self.assertEqual(rc, 0) self.assertEqual(int(out.strip()), os.getpid()) def test_unix_server(self): path = mktemp() process = spawn_main(['--server', '--unix', path]) sock = socket.socket(socket.AF_UNIX) while sock.connect_ex(path) != 0: time.sleep(0.01) self.assertIsNone(process.poll()) os.kill(process.pid, signal.SIGINT) process.wait() sock.close() process.stdin.close() process.stdout.close()
# python stdlib dependencies import binascii import os import sys import yaml # local imports from .command import Command from .command import commandlet from .db import Db from .utils import TemporaryDirectory from .utils import hash_pass from .utils import check_pin from .utils import rand_str from .utils import getwrapper from .utils import load_sobject from .utils import load_sealobject from .tpm2 import Tpm2 from .pkcs11t import * class NewKeyCommandBase(Command): ''' creates a key to a token within a tpm2-pkcs11 store. ''' def generate_options(self, group_parser): group_parser.add_argument( '--id', help='The key id. Defaults to a random 8 bytes of hex.\n', default=binascii.hexlify(os.urandom(8))) pinopts = group_parser.add_mutually_exclusive_group(required=True) pinopts.add_argument('--sopin', help='The Administrator pin.\n'), pinopts.add_argument('--userpin', help='The User pin.\n'), # Implemented by derived class def new_key_create(self, sobjctx, sobjauth, objauth, tpm2, path, alg, privkey): raise NotImplementedError('Implement: new_key') @staticmethod def new_key_init(label, sopin, userpin, db, tpm2): token = db.gettoken(label) # Get the primary object encrypted auth value and sokey information # to decode it. Based on the incoming pin is_so = sopin != None pin = sopin if is_so else userpin pobjauth = check_pin(token, pin, is_so) # At this point we have recovered the ACTUAL auth value for the primary object, so now we # can load up the seal objects pobj, sealctx, sealauth = load_sealobject(token, tpm2, db, pobjauth, pin, is_so) # Now that the sealobject is loaded, we need to unseal the wrapping key # object auth or the key when the TPM doesn't support encryptdecrypt wrappingkeyauth = tpm2.unseal(sealctx, sealauth) wrapper = getwrapper(token, db, tpm2, pobjauth, wrappingkeyauth) sobjctx, sobjauth = load_sobject(token, db, tpm2, wrapper, pobj, pobjauth) #create an auth value for the tertiary object. objauth = hash_pass(rand_str(32))['hash'] encobjauth = wrapper.wrap(objauth) return (sobjctx, sobjauth, encobjauth, objauth) @staticmethod def new_key_save(alg, keylabel, tid, label, tertiarypriv, tertiarypub, tertiarypubdata, encobjauth, objauth, db, tpm2): token = db.gettoken(label) # # Cache the objects attributes from the public structure and other sources # and populate the db with the data. This allows use of the public data # without needed to load any objects which requires a pin to do. # y = yaml.load(tertiarypubdata) if alg.startswith('rsa'): attrs = [ { CKA_KEY_TYPE: CKK_RSA }, { CKA_CLASS: CKO_PRIVATE_KEY }, { CKA_CLASS: CKO_PUBLIC_KEY }, { CKA_ID: tid }, { CKA_MODULUS: y['rsa'] }, { CKA_PUBLIC_EXPONENT: 65537 }, ] mech = [{ CKM_RSA_X_509: "" }, { CKM_RSA_PKCS_OAEP: { "hashalg": CKM_SHA256, "mgf": CKG_MGF1_SHA256 } }] elif alg.startswith('ecc'): attrs = [ { CKA_KEY_TYPE: CKK_EC }, { CKA_CLASS: CKO_PRIVATE_KEY }, { CKA_CLASS: CKO_PUBLIC_KEY }, { CKA_ID: tid }, ] mech = [{CKM_ECDSA: ""},] elif alg.startswith('aes'): attrs = [{ CKA_CLASS: CKO_SECRET_KEY }, { CKA_KEY_TYPE: CKK_AES }, { CKA_VALUE_BITS: y['sym-keybits'] }, { CKA_VALUE_LEN: y['sym-keybits'] / 8 }] mech = [{CKM_AES_CBC: ""},] else: sys.exit('Cannot handle algorithm: "{}"'.format(alg)) # Add keylabel for ALL objects if set if keylabel is not None: attrs.append({CKA_LABEL: keylabel}) # Now get the secondary object from db sobj = db.getsecondary(token['id']) # Store to database rowid = db.addtertiary(sobj['id'], tertiarypriv, tertiarypub, encobjauth, attrs, mech) # if the keylabel is not set, use the tertiary object tid as the keylabel # Normally we would use a transaction to make this atomic, but Pythons # sqlite3 transaction handling is quite odd. So when the keylabel is None, just insert # into the db without that attribute, retrieve the primary key, and then issue an # update. A possible race exists if someone is looking for the key by label between # these operations. # See: # - https://stackoverflow.com/questions/107005/predict-next-auto-inserted-row-tid-sqlite if keylabel is None: keylabel = str(rowid) attrs.append({CKA_LABEL: keylabel}) db.updatetertiaryattrs(rowid, attrs) db.commit() return keylabel def __call__(self, args): path = args['path'] with Db(path) as db: with TemporaryDirectory() as d: tpm2 = Tpm2(d) label = args['label'] sopin = args['sopin'] userpin = args['userpin'] alg = args['algorithm'] key_label = args['key_label'] tid = args['id'] privkey = None try: privkey = args['privkey'] except: privkey = None else: path = args['path'] path = args['path'] sobjctx, sobjauth, encobjauth, objauth = NewKeyCommandBase.new_key_init( label, sopin, userpin, db, tpm2) tertiarypriv, tertiarypub, tertiarypubdata = self.new_key_create( sobjctx, sobjauth, objauth, tpm2, path, alg, privkey) final_key_label = NewKeyCommandBase.new_key_save( alg, key_label, tid, label, tertiarypriv, tertiarypub, tertiarypubdata, encobjauth, objauth, db, tpm2) return final_key_label @commandlet("import") class ImportCommand(NewKeyCommandBase): ''' Imports a rsa key to a token within a tpm2-pkcs11 store. ''' # adhere to an interface # pylint: disable=no-self-use def generate_options(self, group_parser): super(ImportCommand, self).generate_options(group_parser) group_parser.add_argument( '--privkey', help='Full path of the private key to be imported.\n', required=True) group_parser.add_argument( '--label', help='The tokens label to import the key too.\n', required=True) group_parser.add_argument( '--key-label', help='The label of the key imported. Defaults to an integer value.\n' ) group_parser.add_argument( '--algorithm', help='The type of the key.\n', choices=['rsa'], required=True) # Imports a new key def new_key_create(self, sobjctx, sobjauth, objauth, tpm2, path, alg, privkey): if alg != 'rsa': sys.exit('Unknown algorithm or algorithm not supported, got "%s"' % alg) if privkey == None: sys.exit("Invalid private key path") tertiarypriv, tertiarypub, tertiarypubdata = tpm2.importkey( sobjctx, sobjauth, objauth, privkey=privkey, alg=alg) return (tertiarypriv, tertiarypub, tertiarypubdata) def __call__(self, args): keylabel = super(self.__class__, self).__call__(args) print('Imported key as label: "{keylabel}"'.format(keylabel=keylabel)) @commandlet("addkey") class AddKeyCommand(NewKeyCommandBase): ''' Adds a key to a token within a tpm2-pkcs11 store. ''' # adhere to an interface # pylint: disable=no-self-use def generate_options(self, group_parser): super(self.__class__, self).generate_options(group_parser) group_parser.add_argument( '--label', help='The tokens label to add a key too.\n', required=True) group_parser.add_argument( '--algorithm', help='The type of the key.\n', choices=[ 'rsa1024', 'rsa2048', 'aes128', 'aes256', 'ecc224', 'ecc256', 'ecc384', 'ecc521' ], required=True) group_parser.add_argument( '--key-label', help='The key label to identify the key. Defaults to an integer value.\n' ) # Creates a new key def new_key_create(self, sobjctx, sobjauth, objauth, tpm2, path, alg, privkey): tertiarypriv, tertiarypub, tertiarypubdata = tpm2.create( sobjctx, sobjauth, objauth, alg=alg) return (tertiarypriv, tertiarypub, tertiarypubdata) def __call__(self, args): keylabel = super(self.__class__, self).__call__(args) print('Added key as label: "{keylabel}"'.format(keylabel=keylabel))
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import glob import time from collections import deque import os # os.environ['CUDA_VISIBLE_DEVICES']='-1' from tracker import tracker,detector,helpers import cv2 import tqdm import argparse import config from data_management import get_mapped_dir_lists,sort_frames from data_utils import box_to_str class single_tracker(object): def __init__(self,max_age=65,frame_count=0,min_hits=1): self.tracker_list=[] self.track_id_list= deque([str(i) for i in range(100)]) self.max_age=max_age self.frame_count=frame_count self.min_hits=min_hits self.detect_track_iou_thres=0.6 self.box_ios_thres=0.8 self.otsu_iou_thres=0.5 self.current_tracker=None # Global variables to be used by funcitons of VideoFileClop frame_count = 0 # frame counter max_age = 20 # no.of consecutive unmatched detection before # a track is deleted min_hits =1 # no. of consecutive matches needed to establish a track tracker_list =[] # list for trackers # list for track ID track_id_list= deque(['1', '2', '3', '4', '5', '6', '7', '7', '8', '9', '10']) debug = False ''' Function to track single person ''' def pipeline_single_tracker(det,img,otsu_box,track,draw=False): track.frame_count+=1 org_im=img.copy() img_dim = (img.shape[1], img.shape[0]) if debug: print('\nFrame:', track.frame_count,' \n') #Detect person in the image detect_box = det.get_localization(img) # measurement final_box=[] improved=False #check for small box if len(detect_box)!=0: detect_box=helpers.remove_small_box(detect_box[0],height_limit=150,width_limit=150) #If Detected if len(detect_box)!=0: if debug: print("Detection found") # detect_box=detect_box[0] if draw: img1= helpers.draw_box_label('Org Det.',img, detect_box, box_color=(255, 0, 0)) #Tracker alive or not if track.current_tracker!=None: #If alive if debug: print("Tracker Alive") track_box=track.current_tracker.box #Track result matches,detection or not #------------------------------------ #If matches if helpers.box_iou2(track_box,detect_box)>track.detect_track_iou_thres: #Check abnormal detect box #Abnormal, use previous box NOTE can be improved # detect_area=helpers.find_area(detect_box) # track_area=helpers.find_area(track_box) height_d,width_d=helpers.find_dim(detect_box) height_t,width_t=helpers.find_dim(track_box) delta=0.2 delta2=0.3 if height_d<(1-delta)*height_t or width_d<(1-delta)*width_t or height_d>(1+delta2)*height_t or width_d>(1+delta2)*width_t: if debug: print("Detection improved by tracker") improved=True detect_box=track.current_tracker.box # detect_box=helpers.union_box(track_box,detect_box) #Track box does not matched elif otsu_box==True and helpers.box_ios(detect_box,track_box)>track.box_ios_thres and helpers.box_iou2(track_box,helpers.largest_contour(img))>track.otsu_iou_thres: if debug: print("Detect box is subset of track. Track box and Otsu are similar.") print("Detection improved by tracker") detect_box=track.current_tracker.box improved=True else: if debug: print("Tracker lost deleting the current tracker") track.tracker_list.append(track.current_tracker) track.current_tracker=None #Improve detect_box by Otsu or any other way if otsu_box==True: ret,detect_box=helpers.detection_otsu(img,detect_box,draw=True,threshold=track.otsu_iou_thres) #Update or create tracker #Update if exist or matched if track.current_tracker!=None: final_box = detect_box z = np.expand_dims(detect_box, axis=0).T track.current_tracker.kalman_filter(z) xx = track.current_tracker.x_state.T[0].tolist() xx =[xx[0], xx[2], xx[4], xx[6]] if improved: final_box = xx track.current_tracker.box =xx track.current_tracker.hits += 1 track.current_tracker.no_losses =0 else: final_box = detect_box z = np.expand_dims(detect_box, axis=0).T track.current_tracker = tracker.Tracker() # Create a new tracker x = np.array([[z[0], 0, z[1], 0, z[2], 0, z[3], 0]]).T track.current_tracker.x_state = x track.current_tracker.predict_only() xx = track.current_tracker.x_state xx = xx.T[0].tolist() xx =[xx[0], xx[2], xx[4], xx[6]] track.current_tracker.box =xx track.current_tracker.id = track.track_id_list.popleft() # assign an ID for the tracker if debug: print("New Tracker\n ID: ",track.current_tracker.id) #Not Detection else: #Tracker alive or not #alive if track.current_tracker!=None: if debug: print("Tracker Alive") track.current_tracker.predict_only() xx = track.current_tracker.x_state xx = xx.T[0].tolist() xx =[xx[0], xx[2], xx[4], xx[6]] if otsu_box==True: # if False: current_state=xx flag,current_otsu=helpers.tracker_otsu(img,current_state,draw=True,threshold=track.otsu_iou_thres) if not flag: if debug: print("Tracker does not matched with Otsu box, Tracker id",track.current_tracker.id) xx=helpers.remove_small_box(xx,height_limit=150,width_limit=150) if len(xx)==0: if debug: print("Small track box. Deleting...............") track.tracker_list.append(track.current_tracker) track.current_tracker=None final_box = [] else: track.current_tracker.no_losses+=1 track.current_tracker.box =xx final_box = xx else: if debug: print("Tracker box matched with Otsu box, Tracker id",track.current_tracker.id) track.current_tracker.no_losses += 0.5 final_box = current_otsu current_otsu = np.expand_dims(current_otsu, axis=0).T track.current_tracker.kalman_filter(current_otsu) xx = track.current_tracker.x_state.T[0].tolist() xx =[xx[0], xx[2], xx[4], xx[6]] track.current_tracker.box =xx else: if debug: print("No Otsu") xx=helpers.remove_small_box(xx,height_limit=150,width_limit=150) if len(xx)==0: if debug: print("Small track box. Deleting...............") track.tracker_list.append(track.current_tracker) track.current_tracker=None final_box = [] else: track.current_tracker.no_losses += 1 track.current_tracker.box =xx final_box = xx #--------------------- #Person left the frames or not #If left #Not left, no detection #Not active tracker else: if debug: print("No tracked Box ") #Final box if track.current_tracker!=None: if ((track.current_tracker.hits >= min_hits) and (track.current_tracker.no_losses <=max_age)): # final_box = track.current_tracker.box if debug: print('updated box: ', final_box) print() if draw: img= helpers.draw_box_label("Final",img, final_box,show_label=True) # Draw the bounding boxes on the img= helpers.draw_box_label(track.current_tracker.id,img, track.current_tracker.box,box_color=(255, 255,0),show_label=False) # Draw the bounding boxes on the elif track.current_tracker.no_losses >max_age: if debug: print('Tracker age criteria is not satisfied. Deleting..........') track.tracker_list.append(track.current_tracker) track.current_tracker=None else: if debug: print('Tracker zero hit') if draw: img= helpers.draw_box_label("Final",img, final_box,show_label=True) # Draw the bounding boxes on the if debug: print("Final Box") print(final_box) return final_box,img def tracking_frames(detection_threshold,frames,numbers,otsu_box=True): """ Function to track and return boxes """ detector_ = detector.PersonDetector(threshold=float(detection_threshold),model_path=config.detector_model_path) track=single_tracker() total=len(frames) frame_num=[] boxes=[] for i in tqdm.tqdm(range(total)): frame=frames[i] number=numbers[i] img=cv2.imread(frame) box,new_img = pipeline_single_tracker(detector_,img,otsu_box,track,draw=False) if len(box)!=0: frame_num.append(number) boxes.append(box) return boxes,frame_num def tracking_frames_to_csv(detector,frames,numbers,output_path,otsu_box=True,visualize=False): """ Function to track and save the corner coordinates in csv input: frames:- list of frames path in sorted order numbers: the sorted numbes as mentioned in the image name Output_path: output csv path otsu_box: True or False visualize: True or False """ track=single_tracker() filename=os.path.basename(output_path) output_csvname=os.path.join(output_path,filename+'.csv') outFile = open(output_csvname, 'w') print("----------------------") print("csv output path-",output_csvname) print("----------------------") outFile.write(','.join(['Frame number', 'Track box (y_up x_left y_down x_right)']) + '\n'); total=len(frames) for i in tqdm.tqdm(range(total)): frame=frames[i] number=numbers[i] img=cv2.imread(frame) np.asarray(img) box,new_img = pipeline_single_tracker(detector,img,otsu_box,track,draw=visualize) if len(box)!=0: outFile.write(','.join([str(number),box_to_str(box)]) + '\n'); if visualize: cv2.imshow("frame",new_img) if cv2.waitKey(1) & 0xFF == ord('q'): break outFile.close() cv2.destroyAllWindows() """ Function to track and save the video visualizations input: frames:- list of frames path in sorted order Output_path: otsu_box: visualize: """ def tracking_frames_to_video(detector,frames,output_path,frame_rate=10.0,otsu_box=True,visualize=False): track=single_tracker() output_filename=os.path.join(output_path,'Track.avi') print("----------------------") print("Video output path-",output_filename) print("----------------------") # start=time.time() fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter(output_filename,fourcc, frame_rate, (640,480)) for frame in tqdm.tqdm(frames): img=cv2.imread(frame) np.asarray(img) # new_img = pipeline(det,img,otsu_box) _,new_img = pipeline_single_tracker(detector,img,otsu_box,track,draw=True) # cv2.imshow("frame",new_img) out.write(new_img) if visualize: cv2.imshow("frame",new_img) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows() out.release() if __name__ == "__main__": # print("Available GPU devices") parser = argparse.ArgumentParser(description='Person tracking on TSF dataset with Tensorflow API model and Kalman Filtering') parser.add_argument('--detection_threshold', default=0.3, help='Threshold for object detection') parser.add_argument('--output_type', default='csv', help='Type of output-csv or video') parser.add_argument('--otsu_box',default=True, help='Set True or False for contour box localization') parser.add_argument('--visualize',default=False, help='It will show the tracking boxes at run time') parser.add_argument('--debug',default=False, help='Print the intermediate steps for each image') args = parser.parse_args() otsu_box=False if args.otsu_box=='True': print("-------------------------") print("Using Otsu Contour box") print("-------------------------") otsu_box=True if args.debug=='True': debug=True visualize=False if args.visualize=='True': print("-------------------------") print("Viusal mode: All the frames will be shown") print("-------------------------") visualize=True #Initialization of tracker and detector detector_ = detector.PersonDetector(threshold=float(args.detection_threshold),model_path=config.detector_model_path) #Output video frame rate frame_rate=10.0 root_drive = config.root_drive track_root_folder=config.track_root_folder output_type=args.output_type dset=config.root_folder#The name of dataset should match the folder name output_dir=root_drive+'/'+track_root_folder+'/'+output_type #Getting input and output folder mapping ADL_list,Fall_list=get_mapped_dir_lists(dset,output_dir=output_dir,d_type='frame') if len(ADL_list)==0: print("Dataset directory not found") #Tracking fall videos for input_path,output_path in tqdm.tqdm(Fall_list): print("------------------") print("input_path:",input_path) print("------------------") os.makedirs(output_path, exist_ok=True) frames = glob.glob(input_path+'/*.jpg') + glob.glob(input_path+'/*.png') frames,numbers = sort_frames(frames, dset) if output_type=='video': tracking_frames_to_video(detector_,frames,output_path,frame_rate,otsu_box,visualize) elif output_type=='csv': tracking_frames_to_csv(detector_,frames,numbers,output_path,otsu_box,visualize) else: print("Invalid output_type argument") sys.exit() #Tracking ADL videos for input_path,output_path in tqdm.tqdm(ADL_list): os.makedirs(output_path, exist_ok=True) print("------------------") print("input_path:",input_path) print("------------------") frames = glob.glob(input_path+'/*.jpg') + glob.glob(input_path+'/*.png') frames,numbers = sort_frames(frames, dset) if output_type=='video': #tracking_frames_to_video(tracker,detector,frames,output_path,frame_rate=10.0,otsu_box=True,visualize=False) tracking_frames_to_video(detector,frames,output_path,frame_rate,otsu_box,visualize) elif output_type=='csv': tracking_frames_to_csv(detector,frames,numbers,output_path,otsu_box,visualize) else: print("Invalid output_type argument") sys.exit()
# -*- coding: utf-8 -*- """ This is a standalone script that writes a csv with columns Time in UTCG, Lat, Lon, and Alt to a great arc propagator file (.pg). Inputs of vehicle ID and full csv path are prompted from the user. Output is a .pg file in the same directory that can be imported into any STK object with a great arc propagator. """ from agi.stk12.stkengine import STKEngine from agi.stk12.stkutil import * import csv # Set up STK Engine for conversion utility to EpSec stk = STKEngine.StartApplication(noGraphics=True) root = stk.NewObjectRoot() converter = root.ConversionUtility epoch = converter.ConvertDate('EpSec', 'UTCG', '0') # Example vehicle ID: GV1 vehicleID = input('Input vehicle ID: ') # Example path: C:\LLA.csv csvPath = input('Input full csv path: ') # Read input file file = open(csvPath) inputData = list(csv.reader(file)) file.close() # Create output file outputPath = csvPath.rsplit('\\', 1)[0] ephem = open(f'{outputPath}\\{vehicleID}.pg', 'w') # Write header numPoints = len(inputData) - 1 header = ['stk.v.5.0\n', 'BEGIN GreatArc\n', 'Method DetVelFromTime\n', f'TimeOfFirstWaypoint {epoch}\n', 'ArcGranularity 0.01745\n', 'AltRef Terrain\n', f'NumberOfWaypoints {numPoints}\n', 'BEGIN Waypoints\n'] ephem.writelines(header) # Convert time to EpSec and write data points line_count = 0 for row in inputData: if line_count != 0: epSecTime = converter.ConvertDate('UTCG', 'EpSec', row[0]) ephem.write(f'{epSecTime}\t{row[1]}\t{row[2]}\t0\t0\t0\n') line_count += 1 # Write footer footer = ['END Waypoints\n', 'END GreatArc\n'] ephem.writelines(footer) # Close out ephem.close() stk.ShutDown()
import os import torch from tqdm.std import tqdm from SRDataset import SRDataset from SR_parser import parameter_parser from tqdm import tqdm from utils import save_result_pic from models.HidingRes import HidingRes opt = parameter_parser() stage = "IniStage" dataset_dir = "/home/ay3/houls/watermark_dataset/derain/" StageDir = os.path.join(dataset_dir, stage) mode = "train" # "/home/ay3/houls/watermark_dataset/derain/IniStage/train" modeStageDir = os.path.join(StageDir, mode) testDir = os.path.join(dataset_dir, "test") result_root = "/home/ay3/houls/Deep-Model-Watermarking/result" result_stage = "derain_flower_Init" result_time = "2021-09-30-11_20" result_dir = os.path.join(result_root, result_stage, result_time) rmodelname = "netR191.pth" modelpath = os.path.join(result_dir, 'modelrun/outckpts', rmodelname) # 输入到SR model中的路径 # input_dir = os.path.join(result_dir, input_name) # input_name = "test" # input_dir = os.path.join(dataset_dir, "test") input_dir = os.path.join(result_root, "derain_flower_SR/2021-10-05-21_22", "SRout_two") output_dir = os.path.join(result_root, "derain_flower_SR/2021-10-05-21_22", "SRout_Rextractone") if not os.path.exists(output_dir): os.makedirs(output_dir) netR = HidingRes(in_c=3, out_c=3) netR.load_state_dict(torch.load(modelpath)) netR.cuda() netR.eval() Rdataset = SRDataset(opt, input_dir) data_loader = torch.utils.data.DataLoader( Rdataset, batch_size=1, shuffle=False, num_workers=int(opt.nThreads)) for i, data in tqdm(enumerate(data_loader)): input_A = data['A'].cuda() real_B = data['B'].cuda() fake_B = data['B1'].cuda() # B2 = data['B2'].cuda() #print(f'input a size: {input_A.size()}') this_batch_size = int(input_A.size()[0]) img_path = data['A_paths'][1] watermark_B1 = netR(fake_B) # watermark_B = netR(B2) watermark_inputA = netR(input_A) images_tensor = torch.cat([input_A, watermark_inputA, real_B, watermark_B1], axis=-1) save_result_pic(images_tensor, img_path[0], "testSREmb", output_dir)
#!/usr/bin/env python import os import shutil import sys # Check if directory to be cleanup provided in command line arguments # Else take current command line path as a default root directory path if len(sys.argv) > 1: rootDir = sys.argv[1] else: rootDir = os.getcwd() # Defined directory to be removed rmDirs = ["build", ".gradle", ".settings", ".cxx", ".idea", ".externalNativeBuild"] # Defined file extensions to be removed rmFiles = '.iml' # Iterate to Root Directory for root, subDirs, files in os.walk(rootDir): for dir in subDirs: if dir in rmDirs: try: shutil.rmtree(os.path.join(root, dir)) print("Delete Directory: " + os.path.join(root, dir)) except FileNotFoundError as err: # Print error and continue print(err) print("Delete Failed: " + os.path.join(root, dir)) for file in files: if file.endswith(rmFiles): try: os.remove(os.path.join(root, file)) print("Delete File: " + os.path.join(root, file)) except FileNotFoundError as err: # Print error and continue print(err) print("Delete Failed: " + os.path.join(root, file))
import sys import argparse import RPi.GPIO as GPIO import txaio txaio.use_twisted() from twisted.internet import reactor from twisted.internet.defer import inlineCallbacks from twisted.internet.task import LoopingCall from twisted.internet.error import ReactorNotRunning from autobahn import wamp from autobahn.wamp.exception import ApplicationError from autobahn.twisted.wamp import ApplicationSession from autobahn.twisted.wamp import ApplicationRunner from autobahn.twisted.choosereactor import install_reactor def get_serial(): """ Get the Pi's serial number. """ with open('/proc/cpuinfo') as fd: for line in fd.read().splitlines(): line = line.strip() if line.startswith('Serial'): _, serial = line.split(':') return '{}'.format(int(serial.strip(), 16)) class DispenserAdapter(ApplicationSession): """ Connects the Pi's GPIOs to WAMP. """ PINMODES = { 'bcm': GPIO.BCM, 'board': GPIO.BOARD } @inlineCallbacks def onJoin(self, details): self._serial = get_serial() self._prefix = 'io.crossbar.demo.iotstarterkit.{}.dispenser'.format(self._serial) self.log.info("Crossbar.io IoT Starterkit Serial No.: {serial}", serial=self._serial) self.log.info("DispenserAdapter connected: {details}", details=details) # get custom configuration extra = self.config.extra # Device ID and auxiliary info self._digout_pins = extra.get("digout_pins", []) self._digin_pins = extra.get("digin_pins", []) self._scan_rate = extra.get("scan_rate", 30) # init GPIO GPIO.setwarnings(False) pinmode = extra.get("pin_mode", "bcm") if pinmode in DispenserAdapter.PINMODES: GPIO.setmode(DispenserAdapter.PINMODES[pinmode]) else: GPIO.setmode(GPIO.BCM) GPIO.cleanup() # setup GPIO pins for digout_pin in self._digout_pins: GPIO.setup(digout_pin, GPIO.OUT) for digin_pin in self._digin_pins: GPIO.setup(digin_pin, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) # setup pin state vectors self._digout_state = [False for digout in self._digout_pins] self._digin_state = [GPIO.input(digin_pin) == 1 for digin_pin in self._digin_pins] # register methods on this object for remote calling via WAMP for proc in [self.get_version, self.set_digout, self.get_digout, self.trigger_digout, self.toggle_digout, self.get_digin]: uri = '{}.{}'.format(self._prefix, proc.__name__) yield self.register(proc, uri) self.log.info("DispenserAdapter registered procedure {}".format(uri)) # start digin scanner self._digin_scanner = LoopingCall(self._scan_digins) self._digin_scanner.start(1./float(self._scan_rate)) # signal we are done with initializing our component self.publish('{}.on_ready'.format(self._prefix)) # install a heartbeat logger self._tick_no = 0 self._tick_loop = LoopingCall(self._tick) self._tick_loop.start(5) self.log.info("DispenserAdapter ready.") def onLeave(self, details): self.log.info("Session closed: {details}", details=details) self.disconnect() def onDisconnect(self): self.log.info("Connection closed") if self._tick_loop: self._tick_loop.stop() self._tick_loop = None try: reactor.stop() except ReactorNotRunning: pass def _tick(self): self._tick_no += 1 self.log.info('I am alive [tick {}]'.format(self._tick_no)) def get_version(self): """ Get Pi and board version information. """ version = { 'pi': GPIO.RPI_INFO, 'board': GPIO.RPI_INFO['P1_REVISION'] } return version def _check_digout_arg(self, digout): if digout not in range(0, len(self._digout_pins)): raise ApplicationError(ApplicationError.INVALID_ARGUMENT, "invalid value '{}' for digout".format(digout)) def set_digout(self, digout, state): """ Set a digout state. """ self._check_digout_arg(digout) if type(state) != bool: raise ApplicationError("ApplicationError.INVALID_ARGUMENT", "state must be a bool") # only process if state acually changes if self._digout_state[digout] != state: self._digout_state[digout] = state # now set the digout value GPIO.output(self._digout_pins[digout], GPIO.HIGH if state else GPIO.LOW) # publish WAMP event self.publish('{}.on_digout_changed'.format(self._prefix), digout=digout, state=state) if state: self.log.info("digout {} asserted".format(digout)) else: self.log.info("digout {} deasserted".format(digout)) return True else: return False def get_digout(self, digout=None): """ Get a digout state. """ if digout is not None: self._check_digout_arg(digout) return self._digout_state[digout] else: return self._digout_state def trigger_digout(self, digout, period=500): """ Trigger a digout. """ self._check_digout_arg(digout) self.set_digout(digout, True) def clear(): self.set_digout(digout, False) reactor.callLater(float(period)/1000., clear) def toggle_digout(self, digout): """ Toggle a digout. """ self._check_digout_arg(digout) self.set_digout(digout, not self._digout_state[digout]) return self._digout_state[digout] def _check_digin_arg(self, digin): if digin not in range(0, len(self._digin_pins)): raise ApplicationError("com.example.invalid_argument", "No digin with ID {}".format(digin)) def get_digin(self, digin = None): """ Get a digin state. """ if digin is not None: self._check_digin_arg(digin) return self._digin_state[digin] else: return self._digin_state def _scan_digins(self): for digin in range(0, len(self._digin_pins)): # read value from digin state = GPIO.input(self._digin_pins[digin]) == 1 # only process if state has changed if self._digin_state[digin] != state: self._digin_state[digin] = state # publish WAMP event self.publish('{}.on_digin_changed'.format(self._prefix), digin=digin, state=state) if state: self.log.info("digin {} state asserted".format(digin)) else: self.log.info("digin {} state unasserted".format(digin)) if __name__ == '__main__': # parse command line arguments parser = argparse.ArgumentParser() parser.add_argument('-d', '--debug', action='store_true', help='Enable debug output.') parser.add_argument("--router", type=str, default="wss://demo.crossbar.io/ws", help='WAMP router URL.') parser.add_argument("--realm", type=str, default="crossbardemo", help='WAMP router realm.') args = parser.parse_args() if args.debug: txaio.start_logging(level='debug') else: txaio.start_logging(level='info') # custom configuration data extra = { # PIN numbering mode (use "bcm" or "board") "pin_mode": "bcm", # these Pins are wired to digouts "digout_pins": [13, 19, 5, 6], # these Pins are wired to digins "digin_pins": [20, 21], # we will scan the digins at this rate (Hz) "scan_rate": 50 } # create and start app runner for our app component .. runner = ApplicationRunner(url=args.router, realm=args.realm, extra=extra) runner.run(DispenserAdapter, auto_reconnect=True)
''' 3.8.3 Common Permutation PC/UVa IDs: 110303/10252, Popularity: A, Success rate: average ''' import collections def commonPermutation(s1, s2): c1 = collections.Counter(s1) c2 = collections.Counter(s2) p = {} for i in c1: if i in c2: if c1[i] < c2[i]: p[i] = c1[i] else: p[i] = c2[i] result = [] for i in p: result.append(i * p[i]) result.sort() return ''.join(result) if __name__ == '__main__': f = open('input.txt') for line in f: if line == '': break s1 = line.strip() s2 = f.readline().strip() print(commonPermutation(s1, s2))
import os import plistlib import sqlite3 from scripts.artifact_report import ArtifactHtmlReport from scripts.ilapfuncs import logfunc, logdevinfo, tsv, is_platform_windows def get_dataArk(files_found, report_folder, seeker): data_list = [] file_found = str(files_found[0]) with open(file_found, "rb") as fp: pl = plistlib.load(fp) for key, val in pl.items(): data_list.append((key, val)) if key == "-DeviceName": logdevinfo(f"Device name: {val}") if key == "-TimeZone": logdevinfo(f"Timezone per Data Ark: {val}") if key == "com.apple.iTunes.backup-LastBackupComputerName": logdevinfo(f"Last backup computer name: {val}") if key == ("com.apple.iTunes.backup-LastBackupComputerType"): logdevinfo(f"Last backup computer type: {val}") report = ArtifactHtmlReport('Data Ark') report.start_artifact_report(report_folder, 'Data Ark') report.add_script() data_headers = ('Key','Values' ) report.write_artifact_data_table(data_headers, data_list, file_found) report.end_artifact_report() tsvname = 'Data Ark' tsv(report_folder, data_headers, data_list, tsvname)
import requests import json import time import sys import os def Salad_Earnings(): sys.stdout.write("\x1b]2;Downloading History\x07") headers = { "User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)' ' Salad/0.4.0 Chrome/78.0.3904.130 Electron/7.1.9 Safari/537.36' } with open('config.json') as f: js = json.load(f) salad_auth = js['salad_key'] salad_refresh_token = js['salad_refresh_token'] cookie = { "sAccessToken": salad_auth, "sIdRefreshToken": salad_refresh_token } r = requests.get(url='https://app-api.salad.io/api/v2/reports/1-day-earning-history', cookies=cookie, headers=headers) jason = r.json() with open('data.json', 'w+') as f: f.write(json.dumps(jason)) print('Downloading data...') time.sleep(2) os.system('python3 utils/History_show.py --asd -f data.json --smh -min -rev')
import json import sys import os import contextlib from subprocess import Popen from subprocess import check_output from subprocess import PIPE from toolz import first, filter, last from .container import Container from .utils import indent from .utils import TemporaryDirectory @contextlib.contextmanager def cd(path): """A context manager which changes the working directory to the given path, and then changes it back to its previous value on exit. """ prev_cwd = os.getcwd() os.chdir(path) yield os.chdir(prev_cwd) class Hume: def __init__(self, image, params=None): self._params = params self.set_container(image) def set_container(self, image): self.image = image self._container = Container(image) @classmethod def build(cls, tag, path=".", dockerfile=None, verbose=False): """Transform a plain dockerfile into a Humefile, with on-build instructions which will create a model. """ with cd(path): dockerfile = dockerfile or "./Dockerfile" try: with open(dockerfile, "r") as f: dockerfile_str = f.read() except Exception as e: dockerfile_str = dockerfile humefile = to_humefile(dockerfile_str) if verbose: print("New Humefile:") print(indent(humefile, "@@ ")) with open("./Humefile", "w+") as f: f.write(humefile) cmd = ["docker", "build", "-t", tag, "-f", "Humefile", "."] out = check_output(cmd).decode("utf-8") if verbose: print("Sending to `docker build`...") print(indent(out, " ")) return Hume(tag) def _fit_docker_cmd(self, image, build_args={}, path="."): cmd = ["docker", "build", "-t", image] for i,j in build_args.iteritems(): cmd += ["--build-arg", "{}={}".format(i,j)] cmd += [path] return cmd def fit(self, data, target=None, params=None, image=None, tag="fitted", inplace=True, verbose=True): """ Parameters ---------- data : file-like object or str Either a file object or a url string that will provide the data for fitting in a csv format. target : str The label of the target to fit with. params : dict A dictionary of model parameters. image : str Override the image to fit with. tag : str Set the output tag. Defaults to `<image>:fitted` inplace : bool Swap out underlying image with fitted version. By default `True`, mirroring `sklearn`'s behavior. verbose : bool Show verbose output (default: True) Return ------ self """ image = image or self.image new_image = "{}:{}".format(image, tag) params = params if params else self._params params_dump = json.dumps(params or "{}") build_args = {"TRAIN_PARAMS": params_dump} csv_ = data.read() if target: build_args['TARGET_LABEL'] = target with TemporaryDirectory() as tempdir: if verbose: print("Creating build context for Docker image at {}".format(tempdir)) with open("traindata.csv", "w+") as f: f.write(csv_) build_args["TRAIN_WITH"] = f.name with open("Dockerfile", "w+") as dckr: dckr.write("FROM {}".format(self.image)) p = Popen(self._fit_docker_cmd(new_image, build_args), stdout=PIPE, stderr=PIPE) out, err = p.communicate() p.wait() if inplace: self.set_container(new_image) if verbose: print(out) print(err) return self def params(self): cmd = ["docker", "run", "--entrypoint", "/bin/sh", self.image, "-c", 'echo "$TRAIN_PARAMS"'] return json.loads(check_output(cmd).strip() or "{}") #TODO: This is going to be tricky... def set_param(self, param, value): raise NotImplementedError def get_param(self, param): return self.params()[param] def predict(self, sample): "Predict with the container" cmd = ["docker", "run", "-i", self.image, "predict"] if hasattr(sample, "read"): return check_output(cmd, stdin=sample) elif isinstance(sample, basestring): p = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE) out, err = p.communicate(input=bytes(sample)) if err: raise Exception(err) p.wait() return out else: raise NotImplementedError #TODO: Delegate the above code to self._container / a docker module # return self._container.run(["predict", out]) def entrypoint(dockerfile): "Return the entrypoint, if declared" f = dockerfile.split("\n")[::-1] # reverse the lines try: entry_line = first(filter(lambda x: "ENTRYPOINT" in x, f)) except StopIteration as e: # No ENTRYPOINT line was found return None else: res = last(entry_line.partition("ENTRYPOINT")).strip() try: return json.loads(res) except: return res.split() return None def fitline(entry, fit_cmd): entry += [fit_cmd] run_args = ['{}'.format(arg) for arg in entry] return "ONBUILD RUN {}".format(" ".join(run_args)) def to_humefile(dockerfile, entry=None): # Get the entrypoint (if any) to know what we need to pass # to the ONBUILD RUN line. entry = entry or entrypoint(dockerfile) if not entry: raise Exception("You must provide an entrypoint.") out = dockerfile.split("\n") out += [ "#<<<HUMEDOC", "ONBUILD RUN mkdir /opt/hume", # Data "ONBUILD ARG TRAIN_WITH", "ONBUILD ENV TRAIN_WITH ${TRAIN_WITH}", "ONBUILD ENV HUME_TRAIN_DATA /opt/hume/data", "ONBUILD COPY ${TRAIN_WITH} $HUME_TRAIN_DATA", # Parameters "ONBUILD ARG TRAIN_PARAMS=", 'ONBUILD ENV TRAIN_PARAMS "${TRAIN_PARAMS}"', "ONBUILD ENV HUME_PARAMS_FILE /opt/hume/params", "ONBUILD RUN echo $TRAIN_PARAMS", 'ONBUILD RUN echo $TRAIN_PARAMS > $HUME_PARAMS_FILE', # Target label "ONBUILD ARG TARGET_LABEL=target", "ONBUILD ENV HUME_TARGET_LABEL ${TARGET_LABEL}", fitline(entry, 'fit'), "#HUMEDOC\n" ] return "\n".join(out) if __name__ == "__main__": main()
# This module is automatically generated by autogen.sh. DO NOT EDIT. from . import _Programming class _Framework(_Programming): _type = "framework" _icon_dir = "resources/programming/framework" class Angular(_Framework): _icon = "angular.png" class Backbone(_Framework): _icon = "backbone.png" class Django(_Framework): _icon = "django.png" class Ember(_Framework): _icon = "ember.png" class Fastapi(_Framework): _icon = "fastapi.png" class Flask(_Framework): _icon = "flask.png" class Flutter(_Framework): _icon = "flutter.png" class Laravel(_Framework): _icon = "laravel.png" class Micronaut(_Framework): _icon = "micronaut.png" class Rails(_Framework): _icon = "rails.png" class React(_Framework): _icon = "react.png" class Spring(_Framework): _icon = "spring.png" class Vue(_Framework): _icon = "vue.png" # Aliases FastAPI = Fastapi