label
int64 0
1
| func1
stringlengths 23
97k
| id
int64 0
27.3k
|
---|---|---|
0 | void parse_options(int argc, char **argv, const OptionDef *options, void (* parse_arg_function)(const char*)) { const char *opt, *arg; int optindex, handleoptions=1; const OptionDef *po; /* parse options */ optindex = 1; while (optindex < argc) { opt = argv[optindex++]; if (handleoptions && opt[0] == '-' && opt[1] != '\0') { int bool_val = 1; if (opt[1] == '-' && opt[2] == '\0') { handleoptions = 0; continue; } opt++; po= find_option(options, opt); if (!po->name && opt[0] == 'n' && opt[1] == 'o') { /* handle 'no' bool option */ po = find_option(options, opt + 2); if (!(po->name && (po->flags & OPT_BOOL))) goto unknown_opt; bool_val = 0; } if (!po->name) po= find_option(options, "default"); if (!po->name) { unknown_opt: fprintf(stderr, "%s: unrecognized option '%s'\n", argv[0], opt); exit(1); } arg = NULL; if (po->flags & HAS_ARG) { arg = argv[optindex++]; if (!arg) { fprintf(stderr, "%s: missing argument for option '%s'\n", argv[0], opt); exit(1); } } if (po->flags & OPT_STRING) { char *str; str = av_strdup(arg); *po->u.str_arg = str; } else if (po->flags & OPT_BOOL) { *po->u.int_arg = bool_val; } else if (po->flags & OPT_INT) { *po->u.int_arg = parse_number_or_die(opt, arg, OPT_INT64, INT_MIN, INT_MAX); } else if (po->flags & OPT_INT64) { *po->u.int64_arg = parse_number_or_die(opt, arg, OPT_INT64, INT64_MIN, INT64_MAX); } else if (po->flags & OPT_FLOAT) { *po->u.float_arg = parse_number_or_die(opt, arg, OPT_FLOAT, -1.0/0.0, 1.0/0.0); } else if (po->flags & OPT_FUNC2) { if(po->u.func2_arg(opt, arg)<0) goto unknown_opt; } else { po->u.func_arg(arg); } if(po->flags & OPT_EXIT) exit(0); } else { if (parse_arg_function) parse_arg_function(opt); } } } | 13,954 |
0 | static int dma_buf_rw(BMDMAState *bm, int is_write) { IDEState *s = bmdma_active_if(bm); struct { uint32_t addr; uint32_t size; } prd; int l, len; for(;;) { l = s->io_buffer_size - s->io_buffer_index; if (l <= 0) break; if (bm->cur_prd_len == 0) { /* end of table (with a fail safe of one page) */ if (bm->cur_prd_last || (bm->cur_addr - bm->addr) >= 4096) return 0; cpu_physical_memory_read(bm->cur_addr, (uint8_t *)&prd, 8); bm->cur_addr += 8; prd.addr = le32_to_cpu(prd.addr); prd.size = le32_to_cpu(prd.size); len = prd.size & 0xfffe; if (len == 0) len = 0x10000; bm->cur_prd_len = len; bm->cur_prd_addr = prd.addr; bm->cur_prd_last = (prd.size & 0x80000000); } if (l > bm->cur_prd_len) l = bm->cur_prd_len; if (l > 0) { if (is_write) { cpu_physical_memory_write(bm->cur_prd_addr, s->io_buffer + s->io_buffer_index, l); } else { cpu_physical_memory_read(bm->cur_prd_addr, s->io_buffer + s->io_buffer_index, l); } bm->cur_prd_addr += l; bm->cur_prd_len -= l; s->io_buffer_index += l; } } return 1; } | 13,955 |
0 | static void eepro100_cu_command(EEPRO100State * s, uint8_t val) { eepro100_tx_t tx; uint32_t cb_address; switch (val) { case CU_NOP: /* No operation. */ break; case CU_START: if (get_cu_state(s) != cu_idle) { /* Intel documentation says that CU must be idle for the CU * start command. Intel driver for Linux also starts the CU * from suspended state. */ logout("CU state is %u, should be %u\n", get_cu_state(s), cu_idle); //~ assert(!"wrong CU state"); } set_cu_state(s, cu_active); s->cu_offset = s->pointer; next_command: cb_address = s->cu_base + s->cu_offset; cpu_physical_memory_read(cb_address, (uint8_t *) & tx, sizeof(tx)); uint16_t status = le16_to_cpu(tx.status); uint16_t command = le16_to_cpu(tx.command); logout ("val=0x%02x (cu start), status=0x%04x, command=0x%04x, link=0x%08x\n", val, status, command, tx.link); bool bit_el = ((command & 0x8000) != 0); bool bit_s = ((command & 0x4000) != 0); bool bit_i = ((command & 0x2000) != 0); bool bit_nc = ((command & 0x0010) != 0); bool success = true; //~ bool bit_sf = ((command & 0x0008) != 0); uint16_t cmd = command & 0x0007; s->cu_offset = le32_to_cpu(tx.link); switch (cmd) { case CmdNOp: /* Do nothing. */ break; case CmdIASetup: cpu_physical_memory_read(cb_address + 8, &s->macaddr[0], 6); TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->macaddr[0], 6))); break; case CmdConfigure: cpu_physical_memory_read(cb_address + 8, &s->configuration[0], sizeof(s->configuration)); TRACE(OTHER, logout("configuration: %s\n", nic_dump(&s->configuration[0], 16))); break; case CmdMulticastList: //~ missing("multicast list"); break; case CmdTx: (void)0; uint32_t tbd_array = le32_to_cpu(tx.tx_desc_addr); uint16_t tcb_bytes = (le16_to_cpu(tx.tcb_bytes) & 0x3fff); TRACE(RXTX, logout ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n", tbd_array, tcb_bytes, tx.tbd_count)); if (bit_nc) { missing("CmdTx: NC = 0"); success = false; break; } //~ assert(!bit_sf); if (tcb_bytes > 2600) { logout("TCB byte count too large, using 2600\n"); tcb_bytes = 2600; } /* Next assertion fails for local configuration. */ //~ assert((tcb_bytes > 0) || (tbd_array != 0xffffffff)); if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) { logout ("illegal values of TBD array address and TCB byte count!\n"); } // sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes uint8_t buf[2600]; uint16_t size = 0; uint32_t tbd_address = cb_address + 0x10; assert(tcb_bytes <= sizeof(buf)); while (size < tcb_bytes) { uint32_t tx_buffer_address = ldl_phys(tbd_address); uint16_t tx_buffer_size = lduw_phys(tbd_address + 4); //~ uint16_t tx_buffer_el = lduw_phys(tbd_address + 6); tbd_address += 8; TRACE(RXTX, logout ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n", tx_buffer_address, tx_buffer_size)); tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size); cpu_physical_memory_read(tx_buffer_address, &buf[size], tx_buffer_size); size += tx_buffer_size; } if (tbd_array == 0xffffffff) { /* Simplified mode. Was already handled by code above. */ } else { /* Flexible mode. */ uint8_t tbd_count = 0; if (device_supports_eTxCB(s) && !(s->configuration[6] & BIT(4))) { /* Extended Flexible TCB. */ for (; tbd_count < 2; tbd_count++) { uint32_t tx_buffer_address = ldl_phys(tbd_address); uint16_t tx_buffer_size = lduw_phys(tbd_address + 4); uint16_t tx_buffer_el = lduw_phys(tbd_address + 6); tbd_address += 8; TRACE(RXTX, logout ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n", tx_buffer_address, tx_buffer_size)); tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size); cpu_physical_memory_read(tx_buffer_address, &buf[size], tx_buffer_size); size += tx_buffer_size; if (tx_buffer_el & 1) { break; } } } tbd_address = tbd_array; for (; tbd_count < tx.tbd_count; tbd_count++) { uint32_t tx_buffer_address = ldl_phys(tbd_address); uint16_t tx_buffer_size = lduw_phys(tbd_address + 4); uint16_t tx_buffer_el = lduw_phys(tbd_address + 6); tbd_address += 8; TRACE(RXTX, logout ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n", tx_buffer_address, tx_buffer_size)); tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size); cpu_physical_memory_read(tx_buffer_address, &buf[size], tx_buffer_size); size += tx_buffer_size; if (tx_buffer_el & 1) { break; } } } TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size))); qemu_send_packet(s->vc, buf, size); s->statistics.tx_good_frames++; /* Transmit with bad status would raise an CX/TNO interrupt. * (82557 only). Emulation never has bad status. */ //~ eepro100_cx_interrupt(s); break; case CmdTDR: TRACE(OTHER, logout("load microcode\n")); /* Starting with offset 8, the command contains * 64 dwords microcode which we just ignore here. */ break; default: missing("undefined command"); success = false; break; } /* Write new status. */ stw_phys(cb_address, status | 0x8000 | (success ? 0x2000 : 0)); if (bit_i) { /* CU completed action. */ eepro100_cx_interrupt(s); } if (bit_el) { /* CU becomes idle. Terminate command loop. */ set_cu_state(s, cu_idle); eepro100_cna_interrupt(s); } else if (bit_s) { /* CU becomes suspended. */ set_cu_state(s, cu_suspended); eepro100_cna_interrupt(s); } else { /* More entries in list. */ TRACE(OTHER, logout("CU list with at least one more entry\n")); goto next_command; } TRACE(OTHER, logout("CU list empty\n")); /* List is empty. Now CU is idle or suspended. */ break; case CU_RESUME: if (get_cu_state(s) != cu_suspended) { logout("bad CU resume from CU state %u\n", get_cu_state(s)); /* Workaround for bad Linux eepro100 driver which resumes * from idle state. */ //~ missing("cu resume"); set_cu_state(s, cu_suspended); } if (get_cu_state(s) == cu_suspended) { TRACE(OTHER, logout("CU resuming\n")); set_cu_state(s, cu_active); goto next_command; } break; case CU_STATSADDR: /* Load dump counters address. */ s->statsaddr = s->pointer; TRACE(OTHER, logout("val=0x%02x (status address)\n", val)); break; case CU_SHOWSTATS: /* Dump statistical counters. */ TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val)); dump_statistics(s); break; case CU_CMD_BASE: /* Load CU base. */ TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val)); s->cu_base = s->pointer; break; case CU_DUMPSTATS: /* Dump and reset statistical counters. */ TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val)); dump_statistics(s); memset(&s->statistics, 0, sizeof(s->statistics)); break; case CU_SRESUME: /* CU static resume. */ missing("CU static resume"); break; default: missing("Undefined CU command"); } } | 13,956 |
0 | void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val) { int op1; int op2; int crm; op1 = (insn >> 21) & 7; op2 = (insn >> 5) & 7; crm = insn & 0xf; switch ((insn >> 16) & 0xf) { case 0: /* ID codes. */ if (arm_feature(env, ARM_FEATURE_XSCALE)) break; if (arm_feature(env, ARM_FEATURE_OMAPCP)) break; if (arm_feature(env, ARM_FEATURE_V7) && op1 == 2 && crm == 0 && op2 == 0) { env->cp15.c0_cssel = val & 0xf; break; } goto bad_reg; case 1: /* System configuration. */ if (arm_feature(env, ARM_FEATURE_OMAPCP)) op2 = 0; switch (op2) { case 0: if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0) env->cp15.c1_sys = val; /* ??? Lots of these bits are not implemented. */ /* This may enable/disable the MMU, so do a TLB flush. */ tlb_flush(env, 1); break; case 1: /* Auxiliary cotrol register. */ if (arm_feature(env, ARM_FEATURE_XSCALE)) { env->cp15.c1_xscaleauxcr = val; break; } /* Not implemented. */ break; case 2: if (arm_feature(env, ARM_FEATURE_XSCALE)) goto bad_reg; if (env->cp15.c1_coproc != val) { env->cp15.c1_coproc = val; /* ??? Is this safe when called from within a TB? */ tb_flush(env); } break; default: goto bad_reg; } break; case 2: /* MMU Page table control / MPU cache control. */ if (arm_feature(env, ARM_FEATURE_MPU)) { switch (op2) { case 0: env->cp15.c2_data = val; break; case 1: env->cp15.c2_insn = val; break; default: goto bad_reg; } } else { switch (op2) { case 0: env->cp15.c2_base0 = val; break; case 1: env->cp15.c2_base1 = val; break; case 2: val &= 7; env->cp15.c2_control = val; env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val); env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val); break; default: goto bad_reg; } } break; case 3: /* MMU Domain access control / MPU write buffer control. */ env->cp15.c3 = val; tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */ break; case 4: /* Reserved. */ goto bad_reg; case 5: /* MMU Fault status / MPU access permission. */ if (arm_feature(env, ARM_FEATURE_OMAPCP)) op2 = 0; switch (op2) { case 0: if (arm_feature(env, ARM_FEATURE_MPU)) val = extended_mpu_ap_bits(val); env->cp15.c5_data = val; break; case 1: if (arm_feature(env, ARM_FEATURE_MPU)) val = extended_mpu_ap_bits(val); env->cp15.c5_insn = val; break; case 2: if (!arm_feature(env, ARM_FEATURE_MPU)) goto bad_reg; env->cp15.c5_data = val; break; case 3: if (!arm_feature(env, ARM_FEATURE_MPU)) goto bad_reg; env->cp15.c5_insn = val; break; default: goto bad_reg; } break; case 6: /* MMU Fault address / MPU base/size. */ if (arm_feature(env, ARM_FEATURE_MPU)) { if (crm >= 8) goto bad_reg; env->cp15.c6_region[crm] = val; } else { if (arm_feature(env, ARM_FEATURE_OMAPCP)) op2 = 0; switch (op2) { case 0: env->cp15.c6_data = val; break; case 1: /* ??? This is WFAR on armv6 */ case 2: env->cp15.c6_insn = val; break; default: goto bad_reg; } } break; case 7: /* Cache control. */ env->cp15.c15_i_max = 0x000; env->cp15.c15_i_min = 0xff0; /* No cache, so nothing to do. */ /* ??? MPCore has VA to PA translation functions. */ break; case 8: /* MMU TLB control. */ switch (op2) { case 0: /* Invalidate all. */ tlb_flush(env, 0); break; case 1: /* Invalidate single TLB entry. */ #if 0 /* ??? This is wrong for large pages and sections. */ /* As an ugly hack to make linux work we always flush a 4K pages. */ val &= 0xfffff000; tlb_flush_page(env, val); tlb_flush_page(env, val + 0x400); tlb_flush_page(env, val + 0x800); tlb_flush_page(env, val + 0xc00); #else tlb_flush(env, 1); #endif break; case 2: /* Invalidate on ASID. */ tlb_flush(env, val == 0); break; case 3: /* Invalidate single entry on MVA. */ /* ??? This is like case 1, but ignores ASID. */ tlb_flush(env, 1); break; default: goto bad_reg; } break; case 9: if (arm_feature(env, ARM_FEATURE_OMAPCP)) break; switch (crm) { case 0: /* Cache lockdown. */ switch (op1) { case 0: /* L1 cache. */ switch (op2) { case 0: env->cp15.c9_data = val; break; case 1: env->cp15.c9_insn = val; break; default: goto bad_reg; } break; case 1: /* L2 cache. */ /* Ignore writes to L2 lockdown/auxiliary registers. */ break; default: goto bad_reg; } break; case 1: /* TCM memory region registers. */ /* Not implemented. */ goto bad_reg; default: goto bad_reg; } break; case 10: /* MMU TLB lockdown. */ /* ??? TLB lockdown not implemented. */ break; case 12: /* Reserved. */ goto bad_reg; case 13: /* Process ID. */ switch (op2) { case 0: /* Unlike real hardware the qemu TLB uses virtual addresses, not modified virtual addresses, so this causes a TLB flush. */ if (env->cp15.c13_fcse != val) tlb_flush(env, 1); env->cp15.c13_fcse = val; break; case 1: /* This changes the ASID, so do a TLB flush. */ if (env->cp15.c13_context != val && !arm_feature(env, ARM_FEATURE_MPU)) tlb_flush(env, 0); env->cp15.c13_context = val; break; case 2: env->cp15.c13_tls1 = val; break; case 3: env->cp15.c13_tls2 = val; break; case 4: env->cp15.c13_tls3 = val; break; default: goto bad_reg; } break; case 14: /* Reserved. */ goto bad_reg; case 15: /* Implementation specific. */ if (arm_feature(env, ARM_FEATURE_XSCALE)) { if (op2 == 0 && crm == 1) { if (env->cp15.c15_cpar != (val & 0x3fff)) { /* Changes cp0 to cp13 behavior, so needs a TB flush. */ tb_flush(env); env->cp15.c15_cpar = val & 0x3fff; } break; } goto bad_reg; } if (arm_feature(env, ARM_FEATURE_OMAPCP)) { switch (crm) { case 0: break; case 1: /* Set TI925T configuration. */ env->cp15.c15_ticonfig = val & 0xe7; env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */ ARM_CPUID_TI915T : ARM_CPUID_TI925T; break; case 2: /* Set I_max. */ env->cp15.c15_i_max = val; break; case 3: /* Set I_min. */ env->cp15.c15_i_min = val; break; case 4: /* Set thread-ID. */ env->cp15.c15_threadid = val & 0xffff; break; case 8: /* Wait-for-interrupt (deprecated). */ cpu_interrupt(env, CPU_INTERRUPT_HALT); break; default: goto bad_reg; } } break; } return; bad_reg: /* ??? For debugging only. Should raise illegal instruction exception. */ cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n", (insn >> 16) & 0xf, crm, op1, op2); } | 13,957 |
0 | static void pci_pcnet_cleanup(NetClientState *nc) { PCNetState *d = qemu_get_nic_opaque(nc); pcnet_common_cleanup(d); } | 13,958 |
0 | static void gen_mulo(DisasContext *ctx) { int l1 = gen_new_label(); TCGv_i64 t0 = tcg_temp_new_i64(); TCGv_i64 t1 = tcg_temp_new_i64(); TCGv t2 = tcg_temp_new(); /* Start with XER OV disabled, the most likely case */ tcg_gen_movi_tl(cpu_ov, 0); tcg_gen_extu_tl_i64(t0, cpu_gpr[rA(ctx->opcode)]); tcg_gen_extu_tl_i64(t1, cpu_gpr[rB(ctx->opcode)]); tcg_gen_mul_i64(t0, t0, t1); tcg_gen_trunc_i64_tl(t2, t0); gen_store_spr(SPR_MQ, t2); tcg_gen_shri_i64(t1, t0, 32); tcg_gen_trunc_i64_tl(cpu_gpr[rD(ctx->opcode)], t1); tcg_gen_ext32s_i64(t1, t0); tcg_gen_brcond_i64(TCG_COND_EQ, t0, t1, l1); tcg_gen_movi_tl(cpu_ov, 1); tcg_gen_movi_tl(cpu_so, 1); gen_set_label(l1); tcg_temp_free_i64(t0); tcg_temp_free_i64(t1); tcg_temp_free(t2); if (unlikely(Rc(ctx->opcode) != 0)) gen_set_Rc0(ctx, cpu_gpr[rD(ctx->opcode)]); } | 13,959 |
0 | static void test_source_flush_event_notifier(void) { EventNotifierTestData data = { .n = 0, .active = 10, .auto_set = true }; event_notifier_init(&data.e, false); aio_set_event_notifier(ctx, &data.e, event_ready_cb); g_assert(g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 0); g_assert_cmpint(data.active, ==, 10); event_notifier_set(&data.e); g_assert(g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 1); g_assert_cmpint(data.active, ==, 9); g_assert(g_main_context_iteration(NULL, false)); while (g_main_context_iteration(NULL, false)); g_assert_cmpint(data.n, ==, 10); g_assert_cmpint(data.active, ==, 0); g_assert(!g_main_context_iteration(NULL, false)); aio_set_event_notifier(ctx, &data.e, NULL); while (g_main_context_iteration(NULL, false)); event_notifier_cleanup(&data.e); } | 13,960 |
0 | uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) { uint32_t mask; unsigned el = arm_current_el(env); /* First handle registers which unprivileged can read */ switch (reg) { case 0 ... 7: /* xPSR sub-fields */ mask = 0; if ((reg & 1) && el) { mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ } if (!(reg & 4)) { mask |= XPSR_NZCV | XPSR_Q; /* APSR */ } /* EPSR reads as zero */ return xpsr_read(env) & mask; break; case 20: /* CONTROL */ return env->v7m.control; } if (el == 0) { return 0; /* unprivileged reads others as zero */ } switch (reg) { case 8: /* MSP */ return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ? env->v7m.other_sp : env->regs[13]; case 9: /* PSP */ return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ? env->regs[13] : env->v7m.other_sp; case 16: /* PRIMASK */ return env->v7m.primask[env->v7m.secure]; case 17: /* BASEPRI */ case 18: /* BASEPRI_MAX */ return env->v7m.basepri[env->v7m.secure]; case 19: /* FAULTMASK */ return env->v7m.faultmask[env->v7m.secure]; default: qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" " register %d\n", reg); return 0; } } | 13,961 |
0 | static void usbredir_control_packet(void *priv, uint32_t id, struct usb_redir_control_packet_header *control_packet, uint8_t *data, int data_len) { USBRedirDevice *dev = priv; int len = control_packet->length; AsyncURB *aurb; DPRINTF("ctrl-in status %d len %d id %u\n", control_packet->status, len, id); aurb = async_find(dev, id); if (!aurb) { free(data); return; } aurb->control_packet.status = control_packet->status; aurb->control_packet.length = control_packet->length; if (memcmp(&aurb->control_packet, control_packet, sizeof(*control_packet))) { ERROR("return control packet mismatch, please report this!\n"); len = USB_RET_NAK; } if (aurb->packet) { len = usbredir_handle_status(dev, control_packet->status, len); if (len > 0) { usbredir_log_data(dev, "ctrl data in:", data, data_len); if (data_len <= sizeof(dev->dev.data_buf)) { memcpy(dev->dev.data_buf, data, data_len); } else { ERROR("ctrl buffer too small (%d > %zu)\n", data_len, sizeof(dev->dev.data_buf)); len = USB_RET_STALL; } } aurb->packet->result = len; usb_generic_async_ctrl_complete(&dev->dev, aurb->packet); } async_free(dev, aurb); free(data); } | 13,962 |
0 | static int qemu_paio_submit(struct qemu_paiocb *aiocb, int is_write) { aiocb->is_write = is_write; aiocb->ret = -EINPROGRESS; aiocb->active = 0; mutex_lock(&lock); if (idle_threads == 0 && cur_threads < max_threads) spawn_thread(); TAILQ_INSERT_TAIL(&request_list, aiocb, node); mutex_unlock(&lock); cond_broadcast(&cond); return 0; } | 13,963 |
0 | static void input_linux_event_keyboard(void *opaque) { InputLinux *il = opaque; struct input_event event; int rc; for (;;) { rc = read(il->fd, &event, sizeof(event)); if (rc != sizeof(event)) { if (rc < 0 && errno != EAGAIN) { fprintf(stderr, "%s: read: %s\n", __func__, strerror(errno)); qemu_set_fd_handler(il->fd, NULL, NULL, NULL); close(il->fd); } break; } input_linux_handle_keyboard(il, &event); } } | 13,964 |
1 | static void v9fs_create(void *opaque) { int32_t fid; int err = 0; size_t offset = 7; V9fsFidState *fidp; V9fsQID qid; int32_t perm; int8_t mode; V9fsPath path; struct stat stbuf; V9fsString name; V9fsString extension; int iounit; V9fsPDU *pdu = opaque; v9fs_path_init(&path); pdu_unmarshal(pdu, offset, "dsdbs", &fid, &name, &perm, &mode, &extension); trace_v9fs_create(pdu->tag, pdu->id, fid, name.data, perm, mode); fidp = get_fid(pdu, fid); if (fidp == NULL) { err = -EINVAL; goto out_nofid; } if (perm & P9_STAT_MODE_DIR) { err = v9fs_co_mkdir(pdu, fidp, &name, perm & 0777, fidp->uid, -1, &stbuf); if (err < 0) { goto out; } err = v9fs_co_name_to_path(pdu, &fidp->path, name.data, &path); if (err < 0) { goto out; } v9fs_path_copy(&fidp->path, &path); err = v9fs_co_opendir(pdu, fidp); if (err < 0) { goto out; } fidp->fid_type = P9_FID_DIR; } else if (perm & P9_STAT_MODE_SYMLINK) { err = v9fs_co_symlink(pdu, fidp, &name, extension.data, -1 , &stbuf); if (err < 0) { goto out; } err = v9fs_co_name_to_path(pdu, &fidp->path, name.data, &path); if (err < 0) { goto out; } v9fs_path_copy(&fidp->path, &path); } else if (perm & P9_STAT_MODE_LINK) { int32_t ofid = atoi(extension.data); V9fsFidState *ofidp = get_fid(pdu, ofid); if (ofidp == NULL) { err = -EINVAL; goto out; } err = v9fs_co_link(pdu, ofidp, fidp, &name); put_fid(pdu, ofidp); if (err < 0) { goto out; } err = v9fs_co_name_to_path(pdu, &fidp->path, name.data, &path); if (err < 0) { fidp->fid_type = P9_FID_NONE; goto out; } v9fs_path_copy(&fidp->path, &path); err = v9fs_co_lstat(pdu, &fidp->path, &stbuf); if (err < 0) { fidp->fid_type = P9_FID_NONE; goto out; } } else if (perm & P9_STAT_MODE_DEVICE) { char ctype; uint32_t major, minor; mode_t nmode = 0; if (sscanf(extension.data, "%c %u %u", &ctype, &major, &minor) != 3) { err = -errno; goto out; } switch (ctype) { case 'c': nmode = S_IFCHR; break; case 'b': nmode = S_IFBLK; break; default: err = -EIO; goto out; } nmode |= perm & 0777; err = v9fs_co_mknod(pdu, fidp, &name, fidp->uid, -1, makedev(major, minor), nmode, &stbuf); if (err < 0) { goto out; } err = v9fs_co_name_to_path(pdu, &fidp->path, name.data, &path); if (err < 0) { goto out; } v9fs_path_copy(&fidp->path, &path); } else if (perm & P9_STAT_MODE_NAMED_PIPE) { err = v9fs_co_mknod(pdu, fidp, &name, fidp->uid, -1, 0, S_IFIFO | (perm & 0777), &stbuf); if (err < 0) { goto out; } err = v9fs_co_name_to_path(pdu, &fidp->path, name.data, &path); if (err < 0) { goto out; } v9fs_path_copy(&fidp->path, &path); } else if (perm & P9_STAT_MODE_SOCKET) { err = v9fs_co_mknod(pdu, fidp, &name, fidp->uid, -1, 0, S_IFSOCK | (perm & 0777), &stbuf); if (err < 0) { goto out; } err = v9fs_co_name_to_path(pdu, &fidp->path, name.data, &path); if (err < 0) { goto out; } v9fs_path_copy(&fidp->path, &path); } else { err = v9fs_co_open2(pdu, fidp, &name, -1, omode_to_uflags(mode)|O_CREAT, perm, &stbuf); if (err < 0) { goto out; } fidp->fid_type = P9_FID_FILE; fidp->open_flags = omode_to_uflags(mode); if (fidp->open_flags & O_EXCL) { /* * We let the host file system do O_EXCL check * We should not reclaim such fd */ fidp->flags |= FID_NON_RECLAIMABLE; } } iounit = get_iounit(pdu, &fidp->path); stat_to_qid(&stbuf, &qid); offset += pdu_marshal(pdu, offset, "Qd", &qid, iounit); err = offset; out: put_fid(pdu, fidp); out_nofid: complete_pdu(pdu->s, pdu, err); v9fs_string_free(&name); v9fs_string_free(&extension); v9fs_path_free(&path); } | 13,965 |
1 | static int gen_neon_unzip(int rd, int rm, int size, int q) { TCGv tmp, tmp2; if (size == 3 || (!q && size == 2)) { return 1; } tmp = tcg_const_i32(rd); tmp2 = tcg_const_i32(rm); if (q) { switch (size) { case 0: gen_helper_neon_qunzip8(tmp, tmp2); break; case 1: gen_helper_neon_qunzip16(tmp, tmp2); break; case 2: gen_helper_neon_qunzip32(tmp, tmp2); break; default: abort(); } } else { switch (size) { case 0: gen_helper_neon_unzip8(tmp, tmp2); break; case 1: gen_helper_neon_unzip16(tmp, tmp2); break; default: abort(); } } tcg_temp_free_i32(tmp); tcg_temp_free_i32(tmp2); return 0; } | 13,966 |
1 | static void gen_wait(DisasContext *ctx) { TCGv_i32 t0 = tcg_temp_new_i32(); tcg_gen_st_i32(t0, cpu_env, -offsetof(PowerPCCPU, env) + offsetof(CPUState, halted)); tcg_temp_free_i32(t0); /* Stop translation, as the CPU is supposed to sleep from now */ gen_exception_err(ctx, EXCP_HLT, 1); } | 13,967 |
1 | GuestExec *qmp_guest_exec(const char *path, bool has_arg, strList *arg, bool has_env, strList *env, bool has_input_data, const char *input_data, bool has_capture_output, bool capture_output, Error **err) { GPid pid; GuestExec *ge = NULL; GuestExecInfo *gei; char **argv, **envp; strList arglist; gboolean ret; GError *gerr = NULL; gint in_fd, out_fd, err_fd; GIOChannel *in_ch, *out_ch, *err_ch; GSpawnFlags flags; bool has_output = (has_capture_output && capture_output); uint8_t *input = NULL; size_t ninput = 0; arglist.value = (char *)path; arglist.next = has_arg ? arg : NULL; if (has_input_data) { input = qbase64_decode(input_data, -1, &ninput, err); if (!input) { return NULL; } } argv = guest_exec_get_args(&arglist, true); envp = has_env ? guest_exec_get_args(env, false) : NULL; flags = G_SPAWN_SEARCH_PATH | G_SPAWN_DO_NOT_REAP_CHILD; #if GLIB_CHECK_VERSION(2, 33, 2) flags |= G_SPAWN_SEARCH_PATH_FROM_ENVP; #endif if (!has_output) { flags |= G_SPAWN_STDOUT_TO_DEV_NULL | G_SPAWN_STDERR_TO_DEV_NULL; } ret = g_spawn_async_with_pipes(NULL, argv, envp, flags, guest_exec_task_setup, NULL, &pid, has_input_data ? &in_fd : NULL, has_output ? &out_fd : NULL, has_output ? &err_fd : NULL, &gerr); if (!ret) { error_setg(err, QERR_QGA_COMMAND_FAILED, gerr->message); g_error_free(gerr); goto done; } ge = g_new0(GuestExec, 1); ge->pid = gpid_to_int64(pid); gei = guest_exec_info_add(pid); gei->has_output = has_output; g_child_watch_add(pid, guest_exec_child_watch, gei); if (has_input_data) { gei->in.data = input; gei->in.size = ninput; #ifdef G_OS_WIN32 in_ch = g_io_channel_win32_new_fd(in_fd); #else in_ch = g_io_channel_unix_new(in_fd); #endif g_io_channel_set_encoding(in_ch, NULL, NULL); g_io_channel_set_buffered(in_ch, false); g_io_channel_set_flags(in_ch, G_IO_FLAG_NONBLOCK, NULL); g_io_add_watch(in_ch, G_IO_OUT, guest_exec_input_watch, &gei->in); } if (has_output) { #ifdef G_OS_WIN32 out_ch = g_io_channel_win32_new_fd(out_fd); err_ch = g_io_channel_win32_new_fd(err_fd); #else out_ch = g_io_channel_unix_new(out_fd); err_ch = g_io_channel_unix_new(err_fd); #endif g_io_channel_set_encoding(out_ch, NULL, NULL); g_io_channel_set_encoding(err_ch, NULL, NULL); g_io_channel_set_buffered(out_ch, false); g_io_channel_set_buffered(err_ch, false); g_io_channel_set_close_on_unref(out_ch, true); g_io_channel_set_close_on_unref(err_ch, true); g_io_add_watch(out_ch, G_IO_IN | G_IO_HUP, guest_exec_output_watch, &gei->out); g_io_add_watch(err_ch, G_IO_IN | G_IO_HUP, guest_exec_output_watch, &gei->err); } done: g_free(argv); g_free(envp); return ge; } | 13,968 |
0 | static inline void RENAME(bgr24ToUV_mmx)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src, long width, enum PixelFormat srcFormat) { __asm__ volatile( "movq 24(%4), %%mm6 \n\t" "mov %3, %%"REG_a" \n\t" "pxor %%mm7, %%mm7 \n\t" "1: \n\t" PREFETCH" 64(%0) \n\t" "movd (%0), %%mm0 \n\t" "movd 2(%0), %%mm1 \n\t" "punpcklbw %%mm7, %%mm0 \n\t" "punpcklbw %%mm7, %%mm1 \n\t" "movq %%mm0, %%mm2 \n\t" "movq %%mm1, %%mm3 \n\t" "pmaddwd (%4), %%mm0 \n\t" "pmaddwd 8(%4), %%mm1 \n\t" "pmaddwd 16(%4), %%mm2 \n\t" "pmaddwd %%mm6, %%mm3 \n\t" "paddd %%mm1, %%mm0 \n\t" "paddd %%mm3, %%mm2 \n\t" "movd 6(%0), %%mm1 \n\t" "movd 8(%0), %%mm3 \n\t" "add $12, %0 \n\t" "punpcklbw %%mm7, %%mm1 \n\t" "punpcklbw %%mm7, %%mm3 \n\t" "movq %%mm1, %%mm4 \n\t" "movq %%mm3, %%mm5 \n\t" "pmaddwd (%4), %%mm1 \n\t" "pmaddwd 8(%4), %%mm3 \n\t" "pmaddwd 16(%4), %%mm4 \n\t" "pmaddwd %%mm6, %%mm5 \n\t" "paddd %%mm3, %%mm1 \n\t" "paddd %%mm5, %%mm4 \n\t" "movq "MANGLE(ff_bgr24toUVOffset)", %%mm3 \n\t" "paddd %%mm3, %%mm0 \n\t" "paddd %%mm3, %%mm2 \n\t" "paddd %%mm3, %%mm1 \n\t" "paddd %%mm3, %%mm4 \n\t" "psrad $15, %%mm0 \n\t" "psrad $15, %%mm2 \n\t" "psrad $15, %%mm1 \n\t" "psrad $15, %%mm4 \n\t" "packssdw %%mm1, %%mm0 \n\t" "packssdw %%mm4, %%mm2 \n\t" "packuswb %%mm0, %%mm0 \n\t" "packuswb %%mm2, %%mm2 \n\t" "movd %%mm0, (%1, %%"REG_a") \n\t" "movd %%mm2, (%2, %%"REG_a") \n\t" "add $4, %%"REG_a" \n\t" " js 1b \n\t" : "+r" (src) : "r" (dstU+width), "r" (dstV+width), "g" ((x86_reg)-width), "r"(ff_bgr24toUV[srcFormat == PIX_FMT_RGB24]) : "%"REG_a ); } | 13,970 |
1 | void intra_predict(VP8Context *s, VP8ThreadData *td, uint8_t *dst[3], VP8Macroblock *mb, int mb_x, int mb_y) { int x, y, mode, nnz; uint32_t tr; /* for the first row, we need to run xchg_mb_border to init the top edge * to 127 otherwise, skip it if we aren't going to deblock */ if (mb_y && (s->deblock_filter || !mb_y) && td->thread_nr == 0) xchg_mb_border(s->top_border[mb_x + 1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width, s->filter.simple, 1); if (mb->mode < MODE_I4x4) { mode = check_intra_pred8x8_mode_emuedge(mb->mode, mb_x, mb_y); s->hpc.pred16x16[mode](dst[0], s->linesize); } else { uint8_t *ptr = dst[0]; uint8_t *intra4x4 = mb->intra4x4_pred_mode_mb; uint8_t tr_top[4] = { 127, 127, 127, 127 }; // all blocks on the right edge of the macroblock use bottom edge // the top macroblock for their topright edge uint8_t *tr_right = ptr - s->linesize + 16; // if we're on the right edge of the frame, said edge is extended // from the top macroblock if (mb_y && mb_x == s->mb_width - 1) { tr = tr_right[-1] * 0x01010101u; tr_right = (uint8_t *) &tr; } if (mb->skip) AV_ZERO128(td->non_zero_count_cache); for (y = 0; y < 4; y++) { uint8_t *topright = ptr + 4 - s->linesize; for (x = 0; x < 4; x++) { int copy = 0, linesize = s->linesize; uint8_t *dst = ptr + 4 * x; DECLARE_ALIGNED(4, uint8_t, copy_dst)[5 * 8]; if ((y == 0 || x == 3) && mb_y == 0) { topright = tr_top; } else if (x == 3) topright = tr_right; mode = check_intra_pred4x4_mode_emuedge(intra4x4[x], mb_x + x, mb_y + y, ©); if (copy) { dst = copy_dst + 12; linesize = 8; if (!(mb_y + y)) { copy_dst[3] = 127U; AV_WN32A(copy_dst + 4, 127U * 0x01010101U); } else { AV_COPY32(copy_dst + 4, ptr + 4 * x - s->linesize); if (!(mb_x + x)) { copy_dst[3] = 129U; } else { copy_dst[3] = ptr[4 * x - s->linesize - 1]; } } if (!(mb_x + x)) { copy_dst[11] = copy_dst[19] = copy_dst[27] = copy_dst[35] = 129U; } else { copy_dst[11] = ptr[4 * x - 1]; copy_dst[19] = ptr[4 * x + s->linesize - 1]; copy_dst[27] = ptr[4 * x + s->linesize * 2 - 1]; copy_dst[35] = ptr[4 * x + s->linesize * 3 - 1]; } } s->hpc.pred4x4[mode](dst, topright, linesize); if (copy) { AV_COPY32(ptr + 4 * x, copy_dst + 12); AV_COPY32(ptr + 4 * x + s->linesize, copy_dst + 20); AV_COPY32(ptr + 4 * x + s->linesize * 2, copy_dst + 28); AV_COPY32(ptr + 4 * x + s->linesize * 3, copy_dst + 36); } nnz = td->non_zero_count_cache[y][x]; if (nnz) { if (nnz == 1) s->vp8dsp.vp8_idct_dc_add(ptr + 4 * x, td->block[y][x], s->linesize); else s->vp8dsp.vp8_idct_add(ptr + 4 * x, td->block[y][x], s->linesize); } topright += 4; } ptr += 4 * s->linesize; intra4x4 += 4; } } mode = check_intra_pred8x8_mode_emuedge(mb->chroma_pred_mode, mb_x, mb_y); s->hpc.pred8x8[mode](dst[1], s->uvlinesize); s->hpc.pred8x8[mode](dst[2], s->uvlinesize); if (mb_y && (s->deblock_filter || !mb_y) && td->thread_nr == 0) xchg_mb_border(s->top_border[mb_x + 1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width, s->filter.simple, 0); } | 13,971 |
1 | static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith) { int cb_x, cb_y, left, right, top, bottom; DiracArith c; GetBitContext gb; int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width; int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height; int blockcnt_one = (cb_width + cb_height) == 2; if (!b->length) return; init_get_bits8(&gb, b->coeff_data, b->length); if (is_arith) ff_dirac_init_arith_decoder(&c, &gb, b->length); top = 0; for (cb_y = 0; cb_y < cb_height; cb_y++) { bottom = (b->height * (cb_y+1)) / cb_height; left = 0; for (cb_x = 0; cb_x < cb_width; cb_x++) { right = (b->width * (cb_x+1)) / cb_width; codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith); left = right; } top = bottom; } if (b->orientation == subband_ll && s->num_refs == 0) intra_dc_prediction(b); } | 13,972 |
1 | static inline void RENAME(yuv2rgb2)(uint16_t *buf0, uint16_t *buf1, uint16_t *uvbuf0, uint16_t *uvbuf1, uint8_t *dest, int dstW, int yalpha, int uvalpha, int dstbpp) { int yalpha1=yalpha^4095; int uvalpha1=uvalpha^4095; if(fullUVIpol) { #ifdef HAVE_MMX if(dstbpp == 32) { asm volatile( FULL_YSCALEYUV2RGB "punpcklbw %%mm1, %%mm3 \n\t" // BGBGBGBG "punpcklbw %%mm7, %%mm0 \n\t" // R0R0R0R0 "movq %%mm3, %%mm1 \n\t" "punpcklwd %%mm0, %%mm3 \n\t" // BGR0BGR0 "punpckhwd %%mm0, %%mm1 \n\t" // BGR0BGR0 MOVNTQ(%%mm3, (%4, %%eax, 4)) MOVNTQ(%%mm1, 8(%4, %%eax, 4)) "addl $4, %%eax \n\t" "cmpl %5, %%eax \n\t" " jb 1b \n\t" :: "r" (buf0), "r" (buf1), "r" (uvbuf0), "r" (uvbuf1), "r" (dest), "m" (dstW), "m" (yalpha1), "m" (uvalpha1) : "%eax" ); } else if(dstbpp==24) { asm volatile( FULL_YSCALEYUV2RGB // lsb ... msb "punpcklbw %%mm1, %%mm3 \n\t" // BGBGBGBG "punpcklbw %%mm7, %%mm0 \n\t" // R0R0R0R0 "movq %%mm3, %%mm1 \n\t" "punpcklwd %%mm0, %%mm3 \n\t" // BGR0BGR0 "punpckhwd %%mm0, %%mm1 \n\t" // BGR0BGR0 "movq %%mm3, %%mm2 \n\t" // BGR0BGR0 "psrlq $8, %%mm3 \n\t" // GR0BGR00 "pand "MANGLE(bm00000111)", %%mm2\n\t" // BGR00000 "pand "MANGLE(bm11111000)", %%mm3\n\t" // 000BGR00 "por %%mm2, %%mm3 \n\t" // BGRBGR00 "movq %%mm1, %%mm2 \n\t" "psllq $48, %%mm1 \n\t" // 000000BG "por %%mm1, %%mm3 \n\t" // BGRBGRBG "movq %%mm2, %%mm1 \n\t" // BGR0BGR0 "psrld $16, %%mm2 \n\t" // R000R000 "psrlq $24, %%mm1 \n\t" // 0BGR0000 "por %%mm2, %%mm1 \n\t" // RBGRR000 "movl %4, %%ebx \n\t" "addl %%eax, %%ebx \n\t" #ifdef HAVE_MMX2 //FIXME Alignment "movntq %%mm3, (%%ebx, %%eax, 2)\n\t" "movntq %%mm1, 8(%%ebx, %%eax, 2)\n\t" #else "movd %%mm3, (%%ebx, %%eax, 2) \n\t" "psrlq $32, %%mm3 \n\t" "movd %%mm3, 4(%%ebx, %%eax, 2) \n\t" "movd %%mm1, 8(%%ebx, %%eax, 2) \n\t" #endif "addl $4, %%eax \n\t" "cmpl %5, %%eax \n\t" " jb 1b \n\t" :: "r" (buf0), "r" (buf1), "r" (uvbuf0), "r" (uvbuf1), "m" (dest), "m" (dstW), "m" (yalpha1), "m" (uvalpha1) : "%eax", "%ebx" ); } else if(dstbpp==15) { asm volatile( FULL_YSCALEYUV2RGB #ifdef DITHER1XBPP "paddusb "MANGLE(g5Dither)", %%mm1\n\t" "paddusb "MANGLE(r5Dither)", %%mm0\n\t" "paddusb "MANGLE(b5Dither)", %%mm3\n\t" #endif "punpcklbw %%mm7, %%mm1 \n\t" // 0G0G0G0G "punpcklbw %%mm7, %%mm3 \n\t" // 0B0B0B0B "punpcklbw %%mm7, %%mm0 \n\t" // 0R0R0R0R "psrlw $3, %%mm3 \n\t" "psllw $2, %%mm1 \n\t" "psllw $7, %%mm0 \n\t" "pand "MANGLE(g15Mask)", %%mm1 \n\t" "pand "MANGLE(r15Mask)", %%mm0 \n\t" "por %%mm3, %%mm1 \n\t" "por %%mm1, %%mm0 \n\t" MOVNTQ(%%mm0, (%4, %%eax, 2)) "addl $4, %%eax \n\t" "cmpl %5, %%eax \n\t" " jb 1b \n\t" :: "r" (buf0), "r" (buf1), "r" (uvbuf0), "r" (uvbuf1), "r" (dest), "m" (dstW), "m" (yalpha1), "m" (uvalpha1) : "%eax" ); } else if(dstbpp==16) { asm volatile( FULL_YSCALEYUV2RGB #ifdef DITHER1XBPP "paddusb "MANGLE(g6Dither)", %%mm1\n\t" "paddusb "MANGLE(r5Dither)", %%mm0\n\t" "paddusb "MANGLE(b5Dither)", %%mm3\n\t" #endif "punpcklbw %%mm7, %%mm1 \n\t" // 0G0G0G0G "punpcklbw %%mm7, %%mm3 \n\t" // 0B0B0B0B "punpcklbw %%mm7, %%mm0 \n\t" // 0R0R0R0R "psrlw $3, %%mm3 \n\t" "psllw $3, %%mm1 \n\t" "psllw $8, %%mm0 \n\t" "pand "MANGLE(g16Mask)", %%mm1 \n\t" "pand "MANGLE(r16Mask)", %%mm0 \n\t" "por %%mm3, %%mm1 \n\t" "por %%mm1, %%mm0 \n\t" MOVNTQ(%%mm0, (%4, %%eax, 2)) "addl $4, %%eax \n\t" "cmpl %5, %%eax \n\t" " jb 1b \n\t" :: "r" (buf0), "r" (buf1), "r" (uvbuf0), "r" (uvbuf1), "r" (dest), "m" (dstW), "m" (yalpha1), "m" (uvalpha1) : "%eax" ); } #else if(dstbpp==32 || dstbpp==24) { int i; for(i=0;i<dstW;i++){ // vertical linear interpolation && yuv2rgb in a single step: int Y=yuvtab_2568[((buf0[i]*yalpha1+buf1[i]*yalpha)>>19)]; int U=((uvbuf0[i]*uvalpha1+uvbuf1[i]*uvalpha)>>19); int V=((uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19); dest[0]=clip_table[((Y + yuvtab_40cf[U]) >>13)]; dest[1]=clip_table[((Y + yuvtab_1a1e[V] + yuvtab_0c92[U]) >>13)]; dest[2]=clip_table[((Y + yuvtab_3343[V]) >>13)]; dest+=dstbpp>>3; } } else if(dstbpp==16) { int i; for(i=0;i<dstW;i++){ // vertical linear interpolation && yuv2rgb in a single step: int Y=yuvtab_2568[((buf0[i]*yalpha1+buf1[i]*yalpha)>>19)]; int U=((uvbuf0[i]*uvalpha1+uvbuf1[i]*uvalpha)>>19); int V=((uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19); ((uint16_t*)dest)[i] = clip_table16b[(Y + yuvtab_40cf[U]) >>13] | clip_table16g[(Y + yuvtab_1a1e[V] + yuvtab_0c92[U]) >>13] | clip_table16r[(Y + yuvtab_3343[V]) >>13]; } } else if(dstbpp==15) { int i; for(i=0;i<dstW;i++){ // vertical linear interpolation && yuv2rgb in a single step: int Y=yuvtab_2568[((buf0[i]*yalpha1+buf1[i]*yalpha)>>19)]; int U=((uvbuf0[i]*uvalpha1+uvbuf1[i]*uvalpha)>>19); int V=((uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19); ((uint16_t*)dest)[i] = clip_table15b[(Y + yuvtab_40cf[U]) >>13] | clip_table15g[(Y + yuvtab_1a1e[V] + yuvtab_0c92[U]) >>13] | clip_table15r[(Y + yuvtab_3343[V]) >>13]; } } #endif }//FULL_UV_IPOL else { #ifdef HAVE_MMX if(dstbpp == 32) { asm volatile( YSCALEYUV2RGB WRITEBGR32 :: "r" (buf0), "r" (buf1), "r" (uvbuf0), "r" (uvbuf1), "r" (dest), "m" (dstW), "m" (yalpha1), "m" (uvalpha1) : "%eax" ); } else if(dstbpp==24) { asm volatile( "movl %4, %%ebx \n\t" YSCALEYUV2RGB WRITEBGR24 :: "r" (buf0), "r" (buf1), "r" (uvbuf0), "r" (uvbuf1), "m" (dest), "m" (dstW), "m" (yalpha1), "m" (uvalpha1) : "%eax", "%ebx" ); } else if(dstbpp==15) { asm volatile( YSCALEYUV2RGB /* mm2=B, %%mm4=G, %%mm5=R, %%mm7=0 */ #ifdef DITHER1XBPP "paddusb "MANGLE(b5Dither)", %%mm2\n\t" "paddusb "MANGLE(g5Dither)", %%mm4\n\t" "paddusb "MANGLE(r5Dither)", %%mm5\n\t" #endif WRITEBGR15 :: "r" (buf0), "r" (buf1), "r" (uvbuf0), "r" (uvbuf1), "r" (dest), "m" (dstW), "m" (yalpha1), "m" (uvalpha1) : "%eax" ); } else if(dstbpp==16) { asm volatile( YSCALEYUV2RGB /* mm2=B, %%mm4=G, %%mm5=R, %%mm7=0 */ #ifdef DITHER1XBPP "paddusb "MANGLE(b5Dither)", %%mm2\n\t" "paddusb "MANGLE(g6Dither)", %%mm4\n\t" "paddusb "MANGLE(r5Dither)", %%mm5\n\t" #endif WRITEBGR16 :: "r" (buf0), "r" (buf1), "r" (uvbuf0), "r" (uvbuf1), "r" (dest), "m" (dstW), "m" (yalpha1), "m" (uvalpha1) : "%eax" ); } #else if(dstbpp==32) { int i; for(i=0; i<dstW-1; i+=2){ // vertical linear interpolation && yuv2rgb in a single step: int Y1=yuvtab_2568[((buf0[i]*yalpha1+buf1[i]*yalpha)>>19)]; int Y2=yuvtab_2568[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19)]; int U=((uvbuf0[i>>1]*uvalpha1+uvbuf1[i>>1]*uvalpha)>>19); int V=((uvbuf0[(i>>1)+2048]*uvalpha1+uvbuf1[(i>>1)+2048]*uvalpha)>>19); int Cb= yuvtab_40cf[U]; int Cg= yuvtab_1a1e[V] + yuvtab_0c92[U]; int Cr= yuvtab_3343[V]; dest[4*i+0]=clip_table[((Y1 + Cb) >>13)]; dest[4*i+1]=clip_table[((Y1 + Cg) >>13)]; dest[4*i+2]=clip_table[((Y1 + Cr) >>13)]; dest[4*i+4]=clip_table[((Y2 + Cb) >>13)]; dest[4*i+5]=clip_table[((Y2 + Cg) >>13)]; dest[4*i+6]=clip_table[((Y2 + Cr) >>13)]; } } else if(dstbpp==24) { int i; for(i=0; i<dstW-1; i+=2){ // vertical linear interpolation && yuv2rgb in a single step: int Y1=yuvtab_2568[((buf0[i]*yalpha1+buf1[i]*yalpha)>>19)]; int Y2=yuvtab_2568[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19)]; int U=((uvbuf0[i>>1]*uvalpha1+uvbuf1[i>>1]*uvalpha)>>19); int V=((uvbuf0[(i>>1)+2048]*uvalpha1+uvbuf1[(i>>1)+2048]*uvalpha)>>19); int Cb= yuvtab_40cf[U]; int Cg= yuvtab_1a1e[V] + yuvtab_0c92[U]; int Cr= yuvtab_3343[V]; dest[0]=clip_table[((Y1 + Cb) >>13)]; dest[1]=clip_table[((Y1 + Cg) >>13)]; dest[2]=clip_table[((Y1 + Cr) >>13)]; dest[3]=clip_table[((Y2 + Cb) >>13)]; dest[4]=clip_table[((Y2 + Cg) >>13)]; dest[5]=clip_table[((Y2 + Cr) >>13)]; dest+=6; } } else if(dstbpp==16) { int i; for(i=0; i<dstW-1; i+=2){ // vertical linear interpolation && yuv2rgb in a single step: int Y1=yuvtab_2568[((buf0[i]*yalpha1+buf1[i]*yalpha)>>19)]; int Y2=yuvtab_2568[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19)]; int U=((uvbuf0[i>>1]*uvalpha1+uvbuf1[i>>1]*uvalpha)>>19); int V=((uvbuf0[(i>>1)+2048]*uvalpha1+uvbuf1[(i>>1)+2048]*uvalpha)>>19); int Cb= yuvtab_40cf[U]; int Cg= yuvtab_1a1e[V] + yuvtab_0c92[U]; int Cr= yuvtab_3343[V]; ((uint16_t*)dest)[i] = clip_table16b[(Y1 + Cb) >>13] | clip_table16g[(Y1 + Cg) >>13] | clip_table16r[(Y1 + Cr) >>13]; ((uint16_t*)dest)[i+1] = clip_table16b[(Y2 + Cb) >>13] | clip_table16g[(Y2 + Cg) >>13] | clip_table16r[(Y2 + Cr) >>13]; } } else if(dstbpp==15) { int i; for(i=0; i<dstW-1; i+=2){ // vertical linear interpolation && yuv2rgb in a single step: int Y1=yuvtab_2568[((buf0[i]*yalpha1+buf1[i]*yalpha)>>19)]; int Y2=yuvtab_2568[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19)]; int U=((uvbuf0[i>>1]*uvalpha1+uvbuf1[i>>1]*uvalpha)>>19); int V=((uvbuf0[(i>>1)+2048]*uvalpha1+uvbuf1[(i>>1)+2048]*uvalpha)>>19); int Cb= yuvtab_40cf[U]; int Cg= yuvtab_1a1e[V] + yuvtab_0c92[U]; int Cr= yuvtab_3343[V]; ((uint16_t*)dest)[i] = clip_table15b[(Y1 + Cb) >>13] | clip_table15g[(Y1 + Cg) >>13] | clip_table15r[(Y1 + Cr) >>13]; ((uint16_t*)dest)[i+1] = clip_table15b[(Y2 + Cb) >>13] | clip_table15g[(Y2 + Cg) >>13] | clip_table15r[(Y2 + Cr) >>13]; } } #endif } //!FULL_UV_IPOL } | 13,973 |
1 | static int wavpack_encode_block(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, uint8_t *out, int out_size) { int block_size, start, end, data_size, tcount, temp, m = 0; int i, j, ret, got_extra = 0, nb_samples = s->block_samples; uint32_t crc = 0xffffffffu; struct Decorr *dpp; PutByteContext pb; if (!(s->flags & WV_MONO) && s->optimize_mono) { int32_t lor = 0, diff = 0; for (i = 0; i < nb_samples; i++) { lor |= samples_l[i] | samples_r[i]; diff |= samples_l[i] - samples_r[i]; if (lor && diff) break; } if (i == nb_samples && lor && !diff) { s->flags &= ~(WV_JOINT_STEREO | WV_CROSS_DECORR); s->flags |= WV_FALSE_STEREO; if (!s->false_stereo) { s->false_stereo = 1; s->num_terms = 0; CLEAR(s->w); } } else if (s->false_stereo) { s->false_stereo = 0; s->num_terms = 0; CLEAR(s->w); } } if (s->flags & SHIFT_MASK) { int shift = (s->flags & SHIFT_MASK) >> SHIFT_LSB; int mag = (s->flags & MAG_MASK) >> MAG_LSB; if (s->flags & WV_MONO_DATA) shift_mono(samples_l, nb_samples, shift); else shift_stereo(samples_l, samples_r, nb_samples, shift); if ((mag -= shift) < 0) s->flags &= ~MAG_MASK; else s->flags -= (1 << MAG_LSB) * shift; } if ((s->flags & WV_FLOAT_DATA) || (s->flags & MAG_MASK) >> MAG_LSB >= 24) { av_fast_padded_malloc(&s->orig_l, &s->orig_l_size, sizeof(int32_t) * nb_samples); memcpy(s->orig_l, samples_l, sizeof(int32_t) * nb_samples); if (!(s->flags & WV_MONO_DATA)) { av_fast_padded_malloc(&s->orig_r, &s->orig_r_size, sizeof(int32_t) * nb_samples); memcpy(s->orig_r, samples_r, sizeof(int32_t) * nb_samples); } if (s->flags & WV_FLOAT_DATA) got_extra = scan_float(s, samples_l, samples_r, nb_samples); else got_extra = scan_int32(s, samples_l, samples_r, nb_samples); s->num_terms = 0; } else { scan_int23(s, samples_l, samples_r, nb_samples); if (s->shift != s->int32_zeros + s->int32_ones + s->int32_dups) { s->shift = s->int32_zeros + s->int32_ones + s->int32_dups; s->num_terms = 0; } } if (!s->num_passes && !s->num_terms) { s->num_passes = 1; if (s->flags & WV_MONO_DATA) ret = wv_mono(s, samples_l, 1, 0); else ret = wv_stereo(s, samples_l, samples_r, 1, 0); s->num_passes = 0; } if (s->flags & WV_MONO_DATA) { for (i = 0; i < nb_samples; i++) crc += (crc << 1) + samples_l[i]; if (s->num_passes) ret = wv_mono(s, samples_l, !s->num_terms, 1); } else { for (i = 0; i < nb_samples; i++) crc += (crc << 3) + (samples_l[i] << 1) + samples_l[i] + samples_r[i]; if (s->num_passes) ret = wv_stereo(s, samples_l, samples_r, !s->num_terms, 1); } if (ret < 0) return ret; if (!s->ch_offset) s->flags |= WV_INITIAL_BLOCK; s->ch_offset += 1 + !(s->flags & WV_MONO); if (s->ch_offset == s->avctx->channels) s->flags |= WV_FINAL_BLOCK; bytestream2_init_writer(&pb, out, out_size); bytestream2_put_le32(&pb, MKTAG('w', 'v', 'p', 'k')); bytestream2_put_le32(&pb, 0); bytestream2_put_le16(&pb, 0x410); bytestream2_put_le16(&pb, 0); bytestream2_put_le32(&pb, 0); bytestream2_put_le32(&pb, s->sample_index); bytestream2_put_le32(&pb, nb_samples); bytestream2_put_le32(&pb, s->flags); bytestream2_put_le32(&pb, crc); if (s->flags & WV_INITIAL_BLOCK && s->avctx->channel_layout != AV_CH_LAYOUT_MONO && s->avctx->channel_layout != AV_CH_LAYOUT_STEREO) { put_metadata_block(&pb, WP_ID_CHANINFO, 5); bytestream2_put_byte(&pb, s->avctx->channels); bytestream2_put_le32(&pb, s->avctx->channel_layout); bytestream2_put_byte(&pb, 0); } if ((s->flags & SRATE_MASK) == SRATE_MASK) { put_metadata_block(&pb, WP_ID_SAMPLE_RATE, 3); bytestream2_put_le24(&pb, s->avctx->sample_rate); bytestream2_put_byte(&pb, 0); } put_metadata_block(&pb, WP_ID_DECTERMS, s->num_terms); for (i = 0; i < s->num_terms; i++) { struct Decorr *dpp = &s->decorr_passes[i]; bytestream2_put_byte(&pb, ((dpp->value + 5) & 0x1f) | ((dpp->delta << 5) & 0xe0)); } if (s->num_terms & 1) bytestream2_put_byte(&pb, 0); #define WRITE_DECWEIGHT(type) do { \ temp = store_weight(type); \ bytestream2_put_byte(&pb, temp); \ type = restore_weight(temp); \ } while (0) bytestream2_put_byte(&pb, WP_ID_DECWEIGHTS); bytestream2_put_byte(&pb, 0); start = bytestream2_tell_p(&pb); for (i = s->num_terms - 1; i >= 0; --i) { struct Decorr *dpp = &s->decorr_passes[i]; if (store_weight(dpp->weightA) || (!(s->flags & WV_MONO_DATA) && store_weight(dpp->weightB))) break; } tcount = i + 1; for (i = 0; i < s->num_terms; i++) { struct Decorr *dpp = &s->decorr_passes[i]; if (i < tcount) { WRITE_DECWEIGHT(dpp->weightA); if (!(s->flags & WV_MONO_DATA)) WRITE_DECWEIGHT(dpp->weightB); } else { dpp->weightA = dpp->weightB = 0; } } end = bytestream2_tell_p(&pb); out[start - 2] = WP_ID_DECWEIGHTS | (((end - start) & 1) ? WP_IDF_ODD: 0); out[start - 1] = (end - start + 1) >> 1; if ((end - start) & 1) bytestream2_put_byte(&pb, 0); #define WRITE_DECSAMPLE(type) do { \ temp = log2s(type); \ type = wp_exp2(temp); \ bytestream2_put_le16(&pb, temp); \ } while (0) bytestream2_put_byte(&pb, WP_ID_DECSAMPLES); bytestream2_put_byte(&pb, 0); start = bytestream2_tell_p(&pb); for (i = 0; i < s->num_terms; i++) { struct Decorr *dpp = &s->decorr_passes[i]; if (i == 0) { if (dpp->value > MAX_TERM) { WRITE_DECSAMPLE(dpp->samplesA[0]); WRITE_DECSAMPLE(dpp->samplesA[1]); if (!(s->flags & WV_MONO_DATA)) { WRITE_DECSAMPLE(dpp->samplesB[0]); WRITE_DECSAMPLE(dpp->samplesB[1]); } } else if (dpp->value < 0) { WRITE_DECSAMPLE(dpp->samplesA[0]); WRITE_DECSAMPLE(dpp->samplesB[0]); } else { for (j = 0; j < dpp->value; j++) { WRITE_DECSAMPLE(dpp->samplesA[j]); if (!(s->flags & WV_MONO_DATA)) WRITE_DECSAMPLE(dpp->samplesB[j]); } } } else { CLEAR(dpp->samplesA); CLEAR(dpp->samplesB); } } end = bytestream2_tell_p(&pb); out[start - 1] = (end - start) >> 1; #define WRITE_CHAN_ENTROPY(chan) do { \ for (i = 0; i < 3; i++) { \ temp = wp_log2(s->w.c[chan].median[i]); \ bytestream2_put_le16(&pb, temp); \ s->w.c[chan].median[i] = wp_exp2(temp); \ } \ } while (0) put_metadata_block(&pb, WP_ID_ENTROPY, 6 * (1 + (!(s->flags & WV_MONO_DATA)))); WRITE_CHAN_ENTROPY(0); if (!(s->flags & WV_MONO_DATA)) WRITE_CHAN_ENTROPY(1); if (s->flags & WV_FLOAT_DATA) { put_metadata_block(&pb, WP_ID_FLOATINFO, 4); bytestream2_put_byte(&pb, s->float_flags); bytestream2_put_byte(&pb, s->float_shift); bytestream2_put_byte(&pb, s->float_max_exp); bytestream2_put_byte(&pb, 127); } if (s->flags & WV_INT32_DATA) { put_metadata_block(&pb, WP_ID_INT32INFO, 4); bytestream2_put_byte(&pb, s->int32_sent_bits); bytestream2_put_byte(&pb, s->int32_zeros); bytestream2_put_byte(&pb, s->int32_ones); bytestream2_put_byte(&pb, s->int32_dups); } if (s->flags & WV_MONO_DATA && !s->num_passes) { for (i = 0; i < nb_samples; i++) { int32_t code = samples_l[i]; for (tcount = s->num_terms, dpp = s->decorr_passes; tcount--; dpp++) { int32_t sam; if (dpp->value > MAX_TERM) { if (dpp->value & 1) sam = 2 * dpp->samplesA[0] - dpp->samplesA[1]; else sam = (3 * dpp->samplesA[0] - dpp->samplesA[1]) >> 1; dpp->samplesA[1] = dpp->samplesA[0]; dpp->samplesA[0] = code; } else { sam = dpp->samplesA[m]; dpp->samplesA[(m + dpp->value) & (MAX_TERM - 1)] = code; } code -= APPLY_WEIGHT(dpp->weightA, sam); UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, code); } m = (m + 1) & (MAX_TERM - 1); samples_l[i] = code; } if (m) { for (tcount = s->num_terms, dpp = s->decorr_passes; tcount--; dpp++) if (dpp->value > 0 && dpp->value <= MAX_TERM) { int32_t temp_A[MAX_TERM], temp_B[MAX_TERM]; int k; memcpy(temp_A, dpp->samplesA, sizeof(dpp->samplesA)); memcpy(temp_B, dpp->samplesB, sizeof(dpp->samplesB)); for (k = 0; k < MAX_TERM; k++) { dpp->samplesA[k] = temp_A[m]; dpp->samplesB[k] = temp_B[m]; m = (m + 1) & (MAX_TERM - 1); } } } } else if (!s->num_passes) { if (s->flags & WV_JOINT_STEREO) { for (i = 0; i < nb_samples; i++) samples_r[i] += ((samples_l[i] -= samples_r[i]) >> 1); } for (i = 0; i < s->num_terms; i++) { struct Decorr *dpp = &s->decorr_passes[i]; if (((s->flags & MAG_MASK) >> MAG_LSB) >= 16 || dpp->delta != 2) decorr_stereo_pass2(dpp, samples_l, samples_r, nb_samples); else decorr_stereo_pass_id2(dpp, samples_l, samples_r, nb_samples); } } bytestream2_put_byte(&pb, WP_ID_DATA | WP_IDF_LONG); init_put_bits(&s->pb, pb.buffer + 3, bytestream2_get_bytes_left_p(&pb)); if (s->flags & WV_MONO_DATA) { for (i = 0; i < nb_samples; i++) wavpack_encode_sample(s, &s->w.c[0], s->samples[0][i]); } else { for (i = 0; i < nb_samples; i++) { wavpack_encode_sample(s, &s->w.c[0], s->samples[0][i]); wavpack_encode_sample(s, &s->w.c[1], s->samples[1][i]); } } encode_flush(s); flush_put_bits(&s->pb); data_size = put_bits_count(&s->pb) >> 3; bytestream2_put_le24(&pb, (data_size + 1) >> 1); bytestream2_skip_p(&pb, data_size); if (data_size & 1) bytestream2_put_byte(&pb, 0); if (got_extra) { bytestream2_put_byte(&pb, WP_ID_EXTRABITS | WP_IDF_LONG); init_put_bits(&s->pb, pb.buffer + 7, bytestream2_get_bytes_left_p(&pb)); if (s->flags & WV_FLOAT_DATA) pack_float(s, s->orig_l, s->orig_r, nb_samples); else pack_int32(s, s->orig_l, s->orig_r, nb_samples); flush_put_bits(&s->pb); data_size = put_bits_count(&s->pb) >> 3; bytestream2_put_le24(&pb, (data_size + 5) >> 1); bytestream2_put_le32(&pb, s->crc_x); bytestream2_skip_p(&pb, data_size); if (data_size & 1) bytestream2_put_byte(&pb, 0); } block_size = bytestream2_tell_p(&pb); AV_WL32(out + 4, block_size - 8); return block_size; } | 13,974 |
1 | static void qemu_laio_process_completion(struct qemu_laio_state *s, struct qemu_laiocb *laiocb) { int ret; s->count--; ret = laiocb->ret; if (ret != -ECANCELED) { if (ret == laiocb->nbytes) ret = 0; else if (ret >= 0) ret = -EINVAL; laiocb->common.cb(laiocb->common.opaque, ret); } qemu_aio_release(laiocb); } | 13,975 |
1 | void throttle_get_config(ThrottleState *ts, ThrottleConfig *cfg) { *cfg = ts->cfg; | 13,976 |
1 | vreader_xfr_bytes(VReader *reader, unsigned char *send_buf, int send_buf_len, unsigned char *receive_buf, int *receive_buf_len) { VCardAPDU *apdu; VCardResponse *response = NULL; VCardStatus card_status; unsigned short status; VCard *card = vreader_get_card(reader); if (card == NULL) { return VREADER_NO_CARD; } apdu = vcard_apdu_new(send_buf, send_buf_len, &status); if (apdu == NULL) { response = vcard_make_response(status); card_status = VCARD_DONE; } else { g_debug("%s: CLS=0x%x,INS=0x%x,P1=0x%x,P2=0x%x,Lc=%d,Le=%d %s", __func__, apdu->a_cla, apdu->a_ins, apdu->a_p1, apdu->a_p2, apdu->a_Lc, apdu->a_Le, apdu_ins_to_string(apdu->a_ins)); card_status = vcard_process_apdu(card, apdu, &response); if (response) { g_debug("%s: status=%d sw1=0x%x sw2=0x%x len=%d (total=%d)", __func__, response->b_status, response->b_sw1, response->b_sw2, response->b_len, response->b_total_len); } } assert(card_status == VCARD_DONE); if (card_status == VCARD_DONE) { int size = MIN(*receive_buf_len, response->b_total_len); memcpy(receive_buf, response->b_data, size); *receive_buf_len = size; } vcard_response_delete(response); vcard_apdu_delete(apdu); vcard_free(card); /* free our reference */ return VREADER_OK; } | 13,977 |
1 | static int tsc210x_load(QEMUFile *f, void *opaque, int version_id) { TSC210xState *s = (TSC210xState *) opaque; int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); int i; s->x = qemu_get_be16(f); s->y = qemu_get_be16(f); s->pressure = qemu_get_byte(f); s->state = qemu_get_byte(f); s->page = qemu_get_byte(f); s->offset = qemu_get_byte(f); s->command = qemu_get_byte(f); s->irq = qemu_get_byte(f); qemu_get_be16s(f, &s->dav); timer_get(f, s->timer); s->enabled = qemu_get_byte(f); s->host_mode = qemu_get_byte(f); s->function = qemu_get_byte(f); s->nextfunction = qemu_get_byte(f); s->precision = qemu_get_byte(f); s->nextprecision = qemu_get_byte(f); s->filter = qemu_get_byte(f); s->pin_func = qemu_get_byte(f); s->ref = qemu_get_byte(f); s->timing = qemu_get_byte(f); s->noise = qemu_get_be32(f); qemu_get_be16s(f, &s->audio_ctrl1); qemu_get_be16s(f, &s->audio_ctrl2); qemu_get_be16s(f, &s->audio_ctrl3); qemu_get_be16s(f, &s->pll[0]); qemu_get_be16s(f, &s->pll[1]); qemu_get_be16s(f, &s->volume); s->volume_change = qemu_get_sbe64(f) + now; s->powerdown = qemu_get_sbe64(f) + now; s->softstep = qemu_get_byte(f); qemu_get_be16s(f, &s->dac_power); for (i = 0; i < 0x14; i ++) qemu_get_be16s(f, &s->filter_data[i]); s->busy = timer_pending(s->timer); qemu_set_irq(s->pint, !s->irq); qemu_set_irq(s->davint, !s->dav); return 0; | 13,978 |
1 | static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr) { uint16_t val; if (addr <= sizeof(s->mem) - sizeof(val)) { memcpy(&val, &s->mem[addr], sizeof(val)); } switch (addr) { case SCBStatus: case SCBCmd: TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); break; case SCBeeprom: val = eepro100_read_eeprom(s); TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val)); break; default: logout("addr=%s val=0x%04x\n", regname(addr), val); missing("unknown word read"); } return val; } | 13,979 |
1 | static int disas_cp15_insn(CPUState *env, DisasContext *s, uint32_t insn) { uint32_t rd; TCGv tmp, tmp2; /* M profile cores use memory mapped registers instead of cp15. */ if (arm_feature(env, ARM_FEATURE_M)) return 1; if ((insn & (1 << 25)) == 0) { if (insn & (1 << 20)) { /* mrrc */ return 1; } /* mcrr. Used for block cache operations, so implement as no-op. */ return 0; } if ((insn & (1 << 4)) == 0) { /* cdp */ return 1; } if (IS_USER(s) && !cp15_user_ok(insn)) { return 1; } /* Pre-v7 versions of the architecture implemented WFI via coprocessor * instructions rather than a separate instruction. */ if ((insn & 0x0fff0fff) == 0x0e070f90) { /* 0,c7,c0,4: Standard v6 WFI (also used in some pre-v6 cores). * In v7, this must NOP. */ if (!arm_feature(env, ARM_FEATURE_V7)) { /* Wait for interrupt. */ gen_set_pc_im(s->pc); s->is_jmp = DISAS_WFI; } return 0; } if ((insn & 0x0fff0fff) == 0x0e070f58) { /* 0,c7,c8,2: Not all pre-v6 cores implemented this WFI, * so this is slightly over-broad. */ if (!arm_feature(env, ARM_FEATURE_V6)) { /* Wait for interrupt. */ gen_set_pc_im(s->pc); s->is_jmp = DISAS_WFI; return 0; } /* Otherwise fall through to handle via helper function. * In particular, on v7 and some v6 cores this is one of * the VA-PA registers. */ } rd = (insn >> 12) & 0xf; if (cp15_tls_load_store(env, s, insn, rd)) return 0; tmp2 = tcg_const_i32(insn); if (insn & ARM_CP_RW_BIT) { tmp = new_tmp(); gen_helper_get_cp15(tmp, cpu_env, tmp2); /* If the destination register is r15 then sets condition codes. */ if (rd != 15) store_reg(s, rd, tmp); else dead_tmp(tmp); } else { tmp = load_reg(s, rd); gen_helper_set_cp15(cpu_env, tmp2, tmp); dead_tmp(tmp); /* Normally we would always end the TB here, but Linux * arch/arm/mach-pxa/sleep.S expects two instructions following * an MMU enable to execute from cache. Imitate this behaviour. */ if (!arm_feature(env, ARM_FEATURE_XSCALE) || (insn & 0x0fff0fff) != 0x0e010f10) gen_lookup_tb(s); } tcg_temp_free_i32(tmp2); return 0; } | 13,980 |
1 | static int asf_write_packet(AVFormatContext *s, AVPacket *pkt) { ASFContext *asf = s->priv_data; AVIOContext *pb = s->pb; ASFStream *stream; AVCodecContext *codec; uint32_t packet_number; int64_t pts; int start_sec; int flags = pkt->flags; int ret; uint64_t offset = avio_tell(pb); codec = s->streams[pkt->stream_index]->codec; stream = &asf->streams[pkt->stream_index]; if (codec->codec_type == AVMEDIA_TYPE_AUDIO) flags &= ~AV_PKT_FLAG_KEY; pts = (pkt->pts != AV_NOPTS_VALUE) ? pkt->pts : pkt->dts; av_assert0(pts != AV_NOPTS_VALUE); pts *= 10000; asf->duration = FFMAX(asf->duration, pts + pkt->duration * 10000); packet_number = asf->nb_packets; put_frame(s, stream, s->streams[pkt->stream_index], pkt->dts, pkt->data, pkt->size, flags); start_sec = (int)((PREROLL_TIME * 10000 + pts + ASF_INDEXED_INTERVAL - 1) / ASF_INDEXED_INTERVAL); /* check index */ if ((!asf->is_streamed) && (flags & AV_PKT_FLAG_KEY)) { uint16_t packet_count = asf->nb_packets - packet_number; ret = update_index(s, start_sec, packet_number, packet_count, offset); if (ret < 0) return ret; asf->end_sec = start_sec; return 0; | 13,981 |
1 | static void pl181_class_init(ObjectClass *klass, void *data) { SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass); DeviceClass *k = DEVICE_CLASS(klass); sdc->init = pl181_init; k->vmsd = &vmstate_pl181; k->reset = pl181_reset; k->no_user = 1; } | 13,982 |
1 | static void ahci_start_transfer(IDEDMA *dma) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); IDEState *s = &ad->port.ifs[0]; uint32_t size = (uint32_t)(s->data_end - s->data_ptr); /* write == ram -> device */ uint16_t opts = le16_to_cpu(ad->cur_cmd->opts); int is_write = opts & AHCI_CMD_WRITE; int is_atapi = opts & AHCI_CMD_ATAPI; int has_sglist = 0; if (is_atapi && !ad->done_atapi_packet) { /* already prepopulated iobuffer */ ad->done_atapi_packet = true; size = 0; goto out; } if (ahci_dma_prepare_buf(dma, is_write)) { has_sglist = 1; } DPRINTF(ad->port_no, "%sing %d bytes on %s w/%s sglist\n", is_write ? "writ" : "read", size, is_atapi ? "atapi" : "ata", has_sglist ? "" : "o"); if (has_sglist && size) { if (is_write) { dma_buf_write(s->data_ptr, size, &s->sg); } else { dma_buf_read(s->data_ptr, size, &s->sg); } } out: /* declare that we processed everything */ s->data_ptr = s->data_end; /* Update number of transferred bytes, destroy sglist */ ahci_commit_buf(dma, size); s->end_transfer_func(s); if (!(s->status & DRQ_STAT)) { /* done with PIO send/receive */ ahci_write_fis_pio(ad, le32_to_cpu(ad->cur_cmd->status)); } } | 13,983 |
1 | void bmdma_init(IDEBus *bus, BMDMAState *bm, PCIIDEState *d) { qemu_irq *irq; if (bus->dma == &bm->dma) { return; } bm->dma.ops = &bmdma_ops; bus->dma = &bm->dma; bm->irq = bus->irq; irq = qemu_allocate_irqs(bmdma_irq, bm, 1); bus->irq = *irq; bm->pci_dev = d; } | 13,984 |
1 | static void qemu_tcg_wait_io_event(void) { CPUState *env; while (all_cpu_threads_idle()) { /* Start accounting real time to the virtual clock if the CPUs are idle. */ qemu_clock_warp(vm_clock); qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex); } qemu_mutex_unlock(&qemu_global_mutex); /* * Users of qemu_global_mutex can be starved, having no chance * to acquire it since this path will get to it first. * So use another lock to provide fairness. */ qemu_mutex_lock(&qemu_fair_mutex); qemu_mutex_unlock(&qemu_fair_mutex); qemu_mutex_lock(&qemu_global_mutex); for (env = first_cpu; env != NULL; env = env->next_cpu) { qemu_wait_io_event_common(env); } } | 13,985 |
1 | void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input) { int i, j, n, n8, n4, n2, n3; FFTDouble re, im; const uint16_t *revtab = s->revtab; const FFTSample *tcos = s->tcos; const FFTSample *tsin = s->tsin; FFTComplex *x = (FFTComplex *)out; n = 1 << s->mdct_bits; n2 = n >> 1; n4 = n >> 2; n8 = n >> 3; n3 = 3 * n4; /* pre rotation */ for(i=0;i<n8;i++) { re = RSCALE(-input[2*i+n3] - input[n3-1-2*i]); im = RSCALE(-input[n4+2*i] + input[n4-1-2*i]); j = revtab[i]; CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]); re = RSCALE( input[2*i] - input[n2-1-2*i]); im = RSCALE(-input[n2+2*i] - input[ n-1-2*i]); j = revtab[n8 + i]; CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]); } s->fft_calc(s, x); /* post rotation */ for(i=0;i<n8;i++) { FFTSample r0, i0, r1, i1; CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]); CMUL(i0, r1, x[n8+i ].re, x[n8+i ].im, -tsin[n8+i ], -tcos[n8+i ]); x[n8-i-1].re = r0; x[n8-i-1].im = i0; x[n8+i ].re = r1; x[n8+i ].im = i1; } } | 13,986 |
1 | int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags) { BlockDriverState *bs; int ret; bs = bdrv_new(""); if (!bs) return -ENOMEM; ret = bdrv_open2(bs, filename, flags | BDRV_O_FILE, NULL); if (ret < 0) { bdrv_delete(bs); return ret; } *pbs = bs; return 0; } | 13,987 |
1 | static int sdp_parse_fmtp_config_h264(AVStream * stream, PayloadContext * h264_data, char *attr, char *value) { AVCodecContext *codec = stream->codec; assert(codec->codec_id == CODEC_ID_H264); assert(h264_data != NULL); if (!strcmp(attr, "packetization-mode")) { av_log(codec, AV_LOG_DEBUG, "RTP Packetization Mode: %d\n", atoi(value)); h264_data->packetization_mode = atoi(value); /* Packetization Mode: 0 or not present: Single NAL mode (Only nals from 1-23 are allowed) 1: Non-interleaved Mode: 1-23, 24 (STAP-A), 28 (FU-A) are allowed. 2: Interleaved Mode: 25 (STAP-B), 26 (MTAP16), 27 (MTAP24), 28 (FU-A), and 29 (FU-B) are allowed. */ if (h264_data->packetization_mode > 1) av_log(codec, AV_LOG_ERROR, "Interleaved RTP mode is not supported yet."); } else if (!strcmp(attr, "profile-level-id")) { if (strlen(value) == 6) { char buffer[3]; // 6 characters=3 bytes, in hex. uint8_t profile_idc; uint8_t profile_iop; uint8_t level_idc; buffer[0] = value[0]; buffer[1] = value[1]; buffer[2] = '\0'; profile_idc = strtol(buffer, NULL, 16); buffer[0] = value[2]; buffer[1] = value[3]; profile_iop = strtol(buffer, NULL, 16); buffer[0] = value[4]; buffer[1] = value[5]; level_idc = strtol(buffer, NULL, 16); // set the parameters... av_log(codec, AV_LOG_DEBUG, "RTP Profile IDC: %x Profile IOP: %x Level: %x\n", profile_idc, profile_iop, level_idc); h264_data->profile_idc = profile_idc; h264_data->profile_iop = profile_iop; h264_data->level_idc = level_idc; } } else if (!strcmp(attr, "sprop-parameter-sets")) { uint8_t start_sequence[]= { 0, 0, 1 }; codec->extradata_size= 0; codec->extradata= NULL; while (*value) { char base64packet[1024]; uint8_t decoded_packet[1024]; uint32_t packet_size; char *dst = base64packet; while (*value && *value != ',' && (dst - base64packet) < sizeof(base64packet) - 1) { *dst++ = *value++; } *dst++ = '\0'; if (*value == ',') value++; packet_size= av_base64_decode(decoded_packet, base64packet, sizeof(decoded_packet)); if (packet_size) { uint8_t *dest = av_malloc(packet_size + sizeof(start_sequence) + codec->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE); if(dest) { if(codec->extradata_size) { // av_realloc? memcpy(dest, codec->extradata, codec->extradata_size); av_free(codec->extradata); } memcpy(dest+codec->extradata_size, start_sequence, sizeof(start_sequence)); memcpy(dest+codec->extradata_size+sizeof(start_sequence), decoded_packet, packet_size); memset(dest+codec->extradata_size+sizeof(start_sequence)+ packet_size, 0, FF_INPUT_BUFFER_PADDING_SIZE); codec->extradata= dest; codec->extradata_size+= sizeof(start_sequence)+packet_size; } else { av_log(codec, AV_LOG_ERROR, "Unable to allocate memory for extradata!"); return AVERROR(ENOMEM); } } } av_log(codec, AV_LOG_DEBUG, "Extradata set to %p (size: %d)!", codec->extradata, codec->extradata_size); } return 0; } | 13,989 |
1 | void qpci_io_writeq(QPCIDevice *dev, void *data, uint64_t value) { uintptr_t addr = (uintptr_t)data; if (addr < QPCI_PIO_LIMIT) { dev->bus->pio_writeq(dev->bus, addr, value); } else { value = cpu_to_le64(value); dev->bus->memwrite(dev->bus, addr, &value, sizeof(value)); } } | 13,990 |
1 | static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags, abi_ulong target_addr, socklen_t addrlen) { void *addr; void *host_msg; abi_long ret; if ((int)addrlen < 0) { return -TARGET_EINVAL; } host_msg = lock_user(VERIFY_READ, msg, len, 1); if (!host_msg) return -TARGET_EFAULT; if (fd_trans_target_to_host_data(fd)) { ret = fd_trans_target_to_host_data(fd)(host_msg, len); if (ret < 0) { unlock_user(host_msg, msg, 0); return ret; } } if (target_addr) { addr = alloca(addrlen+1); ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen); if (ret) { unlock_user(host_msg, msg, 0); return ret; } ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen)); } else { ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0)); } unlock_user(host_msg, msg, 0); return ret; } | 13,991 |
1 | static int vscsi_srp_direct_data(VSCSIState *s, vscsi_req *req, uint8_t *buf, uint32_t len) { struct srp_direct_buf *md = req->cur_desc; uint32_t llen; int rc; dprintf("VSCSI: direct segment 0x%x bytes, va=0x%llx desc len=0x%x\n", len, (unsigned long long)md->va, md->len); llen = MIN(len, md->len); if (llen) { if (req->writing) { /* writing = to device = reading from memory */ rc = spapr_tce_dma_read(&s->vdev, md->va, buf, llen); } else { rc = spapr_tce_dma_write(&s->vdev, md->va, buf, llen); } } md->len -= llen; md->va += llen; if (rc) { return -1; } return llen; } | 13,992 |
1 | static inline void flash_sync_area(Flash *s, int64_t off, int64_t len) { QEMUIOVector *iov = g_new(QEMUIOVector, 1); if (!s->blk || blk_is_read_only(s->blk)) { return; } assert(!(len % BDRV_SECTOR_SIZE)); qemu_iovec_init(iov, 1); qemu_iovec_add(iov, s->storage + off, len); blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov); } | 13,993 |
1 | static void gdb_vm_stopped(void *opaque, int reason) { GDBState *s = opaque; char buf[256]; int ret; if (s->state == RS_SYSCALL) /* disable single step if it was enable */ cpu_single_step(s->env, 0); if (reason == EXCP_DEBUG) { tb_flush(s->env); ret = SIGTRAP; } else if (reason == EXCP_INTERRUPT) { ret = SIGINT; } else { ret = 0; snprintf(buf, sizeof(buf), "S%02x", ret); | 13,994 |
1 | void main_loop_wait(int timeout) { IOHandlerRecord *ioh; fd_set rfds, wfds, xfds; int ret, nfds; #ifdef _WIN32 int ret2, i; #endif struct timeval tv; PollingEntry *pe; /* XXX: need to suppress polling by better using win32 events */ ret = 0; for(pe = first_polling_entry; pe != NULL; pe = pe->next) { ret |= pe->func(pe->opaque); } #ifdef _WIN32 if (ret == 0) { int err; WaitObjects *w = &wait_objects; ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout); if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) { if (w->func[ret - WAIT_OBJECT_0]) w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]); /* Check for additional signaled events */ for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) { /* Check if event is signaled */ ret2 = WaitForSingleObject(w->events[i], 0); if(ret2 == WAIT_OBJECT_0) { if (w->func[i]) w->func[i](w->opaque[i]); } else if (ret2 == WAIT_TIMEOUT) { } else { err = GetLastError(); fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err); } } } else if (ret == WAIT_TIMEOUT) { } else { err = GetLastError(); fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err); } } #endif /* poll any events */ /* XXX: separate device handlers from system ones */ nfds = -1; FD_ZERO(&rfds); FD_ZERO(&wfds); FD_ZERO(&xfds); for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) { if (ioh->deleted) continue; if (ioh->fd_read && (!ioh->fd_read_poll || ioh->fd_read_poll(ioh->opaque) != 0)) { FD_SET(ioh->fd, &rfds); if (ioh->fd > nfds) nfds = ioh->fd; } if (ioh->fd_write) { FD_SET(ioh->fd, &wfds); if (ioh->fd > nfds) nfds = ioh->fd; } } tv.tv_sec = 0; #ifdef _WIN32 tv.tv_usec = 0; #else tv.tv_usec = timeout * 1000; #endif #if defined(CONFIG_SLIRP) if (slirp_inited) { slirp_select_fill(&nfds, &rfds, &wfds, &xfds); } #endif ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv); if (ret > 0) { IOHandlerRecord **pioh; for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) { if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) { ioh->fd_read(ioh->opaque); } if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) { ioh->fd_write(ioh->opaque); } } /* remove deleted IO handlers */ pioh = &first_io_handler; while (*pioh) { ioh = *pioh; if (ioh->deleted) { *pioh = ioh->next; qemu_free(ioh); } else pioh = &ioh->next; } } #if defined(CONFIG_SLIRP) if (slirp_inited) { if (ret < 0) { FD_ZERO(&rfds); FD_ZERO(&wfds); FD_ZERO(&xfds); } slirp_select_poll(&rfds, &wfds, &xfds); } #endif qemu_aio_poll(); if (vm_running) { if (likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER))) qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL], qemu_get_clock(vm_clock)); /* run dma transfers, if any */ DMA_run(); } /* real time timers */ qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME], qemu_get_clock(rt_clock)); if (alarm_timer->flags & ALARM_FLAG_EXPIRED) { alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED); qemu_rearm_alarm_timer(alarm_timer); } /* Check bottom-halves last in case any of the earlier events triggered them. */ qemu_bh_poll(); } | 13,995 |
1 | static int buf_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size) { QEMUBuffer *s = opaque; return qsb_write_at(s->qsb, buf, pos, size); } | 13,996 |
1 | static void mv88w8618_eth_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { mv88w8618_eth_state *s = opaque; switch (offset) { case MP_ETH_SMIR: s->smir = value; break; case MP_ETH_PCXR: s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2; break; case MP_ETH_SDCMR: if (value & MP_ETH_CMD_TXHI) { eth_send(s, 1); } if (value & MP_ETH_CMD_TXLO) { eth_send(s, 0); } if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr) { qemu_irq_raise(s->irq); } break; case MP_ETH_ICR: s->icr &= value; break; case MP_ETH_IMR: s->imr = value; if (s->icr & s->imr) { qemu_irq_raise(s->irq); } break; case MP_ETH_FRDP0 ... MP_ETH_FRDP3: s->frx_queue[(offset - MP_ETH_FRDP0)/4] = value; break; case MP_ETH_CRDP0 ... MP_ETH_CRDP3: s->rx_queue[(offset - MP_ETH_CRDP0)/4] = s->cur_rx[(offset - MP_ETH_CRDP0)/4] = value; break; case MP_ETH_CTDP0 ... MP_ETH_CTDP3: s->tx_queue[(offset - MP_ETH_CTDP0)/4] = value; break; } } | 13,997 |
1 | static int config_props(AVFilterLink *inlink) { FadeContext *s = inlink->dst->priv; const AVPixFmtDescriptor *pixdesc = av_pix_fmt_desc_get(inlink->format); s->hsub = pixdesc->log2_chroma_w; s->vsub = pixdesc->log2_chroma_h; s->bpp = av_get_bits_per_pixel(pixdesc) >> 3; s->alpha &= !!(pixdesc->flags & AV_PIX_FMT_FLAG_ALPHA); s->is_packed_rgb = ff_fill_rgba_map(s->rgba_map, inlink->format) >= 0; /* use CCIR601/709 black level for studio-level pixel non-alpha components */ s->black_level = ff_fmt_is_in(inlink->format, studio_level_pix_fmts) && !s->alpha ? 16 : 0; /* 32768 = 1 << 15, it is an integer representation * of 0.5 and is for rounding. */ s->black_level_scaled = (s->black_level << 16) + 32768; return 0; } | 13,998 |
1 | static void gen_msa(CPUMIPSState *env, DisasContext *ctx) { uint32_t opcode = ctx->opcode; check_insn(ctx, ASE_MSA); check_msa_access(ctx); switch (MASK_MSA_MINOR(opcode)) { case OPC_MSA_I8_00: case OPC_MSA_I8_01: case OPC_MSA_I8_02: gen_msa_i8(env, ctx); break; case OPC_MSA_I5_06: case OPC_MSA_I5_07: gen_msa_i5(env, ctx); break; case OPC_MSA_BIT_09: case OPC_MSA_BIT_0A: gen_msa_bit(env, ctx); break; case OPC_MSA_3R_0D: case OPC_MSA_3R_0E: case OPC_MSA_3R_0F: case OPC_MSA_3R_10: case OPC_MSA_3R_11: case OPC_MSA_3R_12: case OPC_MSA_3R_13: case OPC_MSA_3R_14: case OPC_MSA_3R_15: gen_msa_3r(env, ctx); break; case OPC_MSA_ELM: gen_msa_elm(env, ctx); break; case OPC_MSA_3RF_1A: case OPC_MSA_3RF_1B: case OPC_MSA_3RF_1C: gen_msa_3rf(env, ctx); break; case OPC_MSA_VEC: gen_msa_vec(env, ctx); break; case OPC_LD_B: case OPC_LD_H: case OPC_LD_W: case OPC_LD_D: case OPC_ST_B: case OPC_ST_H: case OPC_ST_W: case OPC_ST_D: { int32_t s10 = sextract32(ctx->opcode, 16, 10); uint8_t rs = (ctx->opcode >> 11) & 0x1f; uint8_t wd = (ctx->opcode >> 6) & 0x1f; uint8_t df = (ctx->opcode >> 0) & 0x3; TCGv_i32 tdf = tcg_const_i32(df); TCGv_i32 twd = tcg_const_i32(wd); TCGv_i32 trs = tcg_const_i32(rs); TCGv_i32 ts10 = tcg_const_i32(s10); switch (MASK_MSA_MINOR(opcode)) { case OPC_LD_B: case OPC_LD_H: case OPC_LD_W: case OPC_LD_D: gen_helper_msa_ld_df(cpu_env, tdf, twd, trs, ts10); break; case OPC_ST_B: case OPC_ST_H: case OPC_ST_W: case OPC_ST_D: gen_helper_msa_st_df(cpu_env, tdf, twd, trs, ts10); break; } tcg_temp_free_i32(twd); tcg_temp_free_i32(tdf); tcg_temp_free_i32(trs); tcg_temp_free_i32(ts10); } break; default: MIPS_INVAL("MSA instruction"); generate_exception(ctx, EXCP_RI); break; } } | 13,999 |
1 | static BlockAIOCB *read_fifo_child(QuorumAIOCB *acb) { BDRVQuorumState *s = acb->common.bs->opaque; acb->qcrs[acb->child_iter].buf = qemu_blockalign(s->children[acb->child_iter]->bs, acb->qiov->size); qemu_iovec_init(&acb->qcrs[acb->child_iter].qiov, acb->qiov->niov); qemu_iovec_clone(&acb->qcrs[acb->child_iter].qiov, acb->qiov, acb->qcrs[acb->child_iter].buf); bdrv_aio_readv(s->children[acb->child_iter]->bs, acb->sector_num, &acb->qcrs[acb->child_iter].qiov, acb->nb_sectors, quorum_aio_cb, &acb->qcrs[acb->child_iter]); return &acb->common; } | 14,000 |
1 | static void qmp_monitor_complete(void *opaque, QObject *ret_data) { monitor_protocol_emitter(opaque, ret_data); } | 14,002 |
1 | static int old_codec37(SANMVideoContext *ctx, int top, int left, int width, int height) { int stride = ctx->pitch; int i, j, k, t; int skip_run = 0; int compr, mvoff, seq, flags; uint32_t decoded_size; uint8_t *dst, *prev; compr = bytestream2_get_byte(&ctx->gb); mvoff = bytestream2_get_byte(&ctx->gb); seq = bytestream2_get_le16(&ctx->gb); decoded_size = bytestream2_get_le32(&ctx->gb); bytestream2_skip(&ctx->gb, 4); flags = bytestream2_get_byte(&ctx->gb); bytestream2_skip(&ctx->gb, 3); if (decoded_size > height * stride - left - top * stride) { decoded_size = height * stride - left - top * stride; av_log(ctx->avctx, AV_LOG_WARNING, "decoded size is too large\n"); } ctx->rotate_code = 0; if (((seq & 1) || !(flags & 1)) && (compr && compr != 2)) rotate_bufs(ctx, 1); dst = ((uint8_t*)ctx->frm0) + left + top * stride; prev = ((uint8_t*)ctx->frm2) + left + top * stride; if (mvoff > 2) { av_log(ctx->avctx, AV_LOG_ERROR, "invalid motion base value %d\n", mvoff); return AVERROR_INVALIDDATA; } av_dlog(ctx->avctx, "compression %d\n", compr); switch (compr) { case 0: for (i = 0; i < height; i++) { bytestream2_get_buffer(&ctx->gb, dst, width); dst += stride; } memset(ctx->frm1, 0, ctx->height * stride); memset(ctx->frm2, 0, ctx->height * stride); break; case 2: if (rle_decode(ctx, dst, decoded_size)) return AVERROR_INVALIDDATA; memset(ctx->frm1, 0, ctx->frm1_size); memset(ctx->frm2, 0, ctx->frm2_size); break; case 3: case 4: if (flags & 4) { for (j = 0; j < height; j += 4) { for (i = 0; i < width; i += 4) { int code; if (skip_run) { skip_run--; copy_block4(dst + i, prev + i, stride, stride, 4); continue; } if (bytestream2_get_bytes_left(&ctx->gb) < 1) return AVERROR_INVALIDDATA; code = bytestream2_get_byteu(&ctx->gb); switch (code) { case 0xFF: if (bytestream2_get_bytes_left(&ctx->gb) < 16) return AVERROR_INVALIDDATA; for (k = 0; k < 4; k++) bytestream2_get_bufferu(&ctx->gb, dst + i + k * stride, 4); break; case 0xFE: if (bytestream2_get_bytes_left(&ctx->gb) < 4) return AVERROR_INVALIDDATA; for (k = 0; k < 4; k++) memset(dst + i + k * stride, bytestream2_get_byteu(&ctx->gb), 4); break; case 0xFD: if (bytestream2_get_bytes_left(&ctx->gb) < 1) return AVERROR_INVALIDDATA; t = bytestream2_get_byteu(&ctx->gb); for (k = 0; k < 4; k++) memset(dst + i + k * stride, t, 4); break; default: if (compr == 4 && !code) { if (bytestream2_get_bytes_left(&ctx->gb) < 1) return AVERROR_INVALIDDATA; skip_run = bytestream2_get_byteu(&ctx->gb) + 1; i -= 4; } else { int mx, my; mx = c37_mv[(mvoff * 255 + code) * 2 ]; my = c37_mv[(mvoff * 255 + code) * 2 + 1]; codec37_mv(dst + i, prev + i + mx + my * stride, ctx->height, stride, i + mx, j + my); } } } dst += stride * 4; prev += stride * 4; } } else { for (j = 0; j < height; j += 4) { for (i = 0; i < width; i += 4) { int code; if (skip_run) { skip_run--; copy_block4(dst + i, prev + i, stride, stride, 4); continue; } code = bytestream2_get_byte(&ctx->gb); if (code == 0xFF) { if (bytestream2_get_bytes_left(&ctx->gb) < 16) return AVERROR_INVALIDDATA; for (k = 0; k < 4; k++) bytestream2_get_bufferu(&ctx->gb, dst + i + k * stride, 4); } else if (compr == 4 && !code) { if (bytestream2_get_bytes_left(&ctx->gb) < 1) return AVERROR_INVALIDDATA; skip_run = bytestream2_get_byteu(&ctx->gb) + 1; i -= 4; } else { int mx, my; mx = c37_mv[(mvoff * 255 + code) * 2]; my = c37_mv[(mvoff * 255 + code) * 2 + 1]; codec37_mv(dst + i, prev + i + mx + my * stride, ctx->height, stride, i + mx, j + my); } } dst += stride * 4; prev += stride * 4; } } break; default: av_log(ctx->avctx, AV_LOG_ERROR, "subcodec 37 compression %d not implemented\n", compr); return AVERROR_PATCHWELCOME; } return 0; } | 14,003 |
1 | static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix, bool *rebuild, void **refcount_table, int64_t *nb_clusters) { BDRVQcow2State *s = bs->opaque; int64_t i; QCowSnapshot *sn; int ret; if (!*refcount_table) { int64_t old_size = 0; ret = realloc_refcount_array(s, refcount_table, &old_size, *nb_clusters); res->check_errors++; /* header */ 0, s->cluster_size); /* current L1 table */ ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO); /* snapshots */ for (i = 0; i < s->nb_snapshots; i++) { sn = s->snapshots + i; ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, sn->l1_table_offset, sn->l1_size, 0); s->snapshots_offset, s->snapshots_size); /* refcount data */ s->refcount_table_offset, s->refcount_table_size * sizeof(uint64_t)); return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters); | 14,004 |
1 | static uint64_t calc_rice_params(RiceContext *rc, uint32_t udata[FLAC_MAX_BLOCKSIZE], uint64_t sums[32][MAX_PARTITIONS], int pmin, int pmax, const int32_t *data, int n, int pred_order, int exact) { int i; uint64_t bits[MAX_PARTITION_ORDER+1]; int opt_porder; RiceContext tmp_rc; int kmax = (1 << rc->coding_mode) - 2; av_assert1(pmin >= 0 && pmin <= MAX_PARTITION_ORDER); av_assert1(pmax >= 0 && pmax <= MAX_PARTITION_ORDER); av_assert1(pmin <= pmax); tmp_rc.coding_mode = rc->coding_mode; for (i = 0; i < n; i++) udata[i] = (2 * data[i]) ^ (data[i] >> 31); calc_sum_top(pmax, exact ? kmax : 0, udata, n, pred_order, sums); opt_porder = pmin; bits[pmin] = UINT32_MAX; for (i = pmax; ; ) { bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums, n, pred_order, kmax, exact); if (bits[i] < bits[opt_porder]) { opt_porder = i; *rc = tmp_rc; } if (i == pmin) break; calc_sum_next(--i, sums, exact ? kmax : 0); } return bits[opt_porder]; } | 14,005 |
1 | static void nvdimm_realize(PCDIMMDevice *dimm, Error **errp) { MemoryRegion *mr = host_memory_backend_get_memory(dimm->hostmem, errp); NVDIMMDevice *nvdimm = NVDIMM(dimm); uint64_t align, pmem_size, size = memory_region_size(mr); align = memory_region_get_alignment(mr); pmem_size = size - nvdimm->label_size; nvdimm->label_data = memory_region_get_ram_ptr(mr) + pmem_size; pmem_size = QEMU_ALIGN_DOWN(pmem_size, align); if (size <= nvdimm->label_size || !pmem_size) { HostMemoryBackend *hostmem = dimm->hostmem; char *path = object_get_canonical_path_component(OBJECT(hostmem)); error_setg(errp, "the size of memdev %s (0x%" PRIx64 ") is too " "small to contain nvdimm label (0x%" PRIx64 ") and " "aligned PMEM (0x%" PRIx64 ")", path, memory_region_size(mr), nvdimm->label_size, align); return; } memory_region_init_alias(&nvdimm->nvdimm_mr, OBJECT(dimm), "nvdimm-memory", mr, 0, pmem_size); nvdimm->nvdimm_mr.align = align; } | 14,006 |
1 | ReSampleContext *av_audio_resample_init(int output_channels, int input_channels, int output_rate, int input_rate, enum AVSampleFormat sample_fmt_out, enum AVSampleFormat sample_fmt_in, int filter_length, int log2_phase_count, int linear, double cutoff) { ReSampleContext *s; if (input_channels > MAX_CHANNELS) { av_log(NULL, AV_LOG_ERROR, "Resampling with input channels greater than %d is unsupported.\n", MAX_CHANNELS); return NULL; } if (output_channels > 2 && !(output_channels == 6 && input_channels == 2) && output_channels != input_channels) { av_log(NULL, AV_LOG_ERROR, "Resampling output channel count must be 1 or 2 for mono input; 1, 2 or 6 for stereo input; or N for N channel input.\n"); return NULL; } s = av_mallocz(sizeof(ReSampleContext)); if (!s) { av_log(NULL, AV_LOG_ERROR, "Can't allocate memory for resample context.\n"); return NULL; } s->ratio = (float)output_rate / (float)input_rate; s->input_channels = input_channels; s->output_channels = output_channels; s->filter_channels = s->input_channels; if (s->output_channels < s->filter_channels) s->filter_channels = s->output_channels; s->sample_fmt[0] = sample_fmt_in; s->sample_fmt[1] = sample_fmt_out; s->sample_size[0] = av_get_bits_per_sample_fmt(s->sample_fmt[0]) >> 3; s->sample_size[1] = av_get_bits_per_sample_fmt(s->sample_fmt[1]) >> 3; if (s->sample_fmt[0] != AV_SAMPLE_FMT_S16) { if (!(s->convert_ctx[0] = av_audio_convert_alloc(AV_SAMPLE_FMT_S16, 1, s->sample_fmt[0], 1, NULL, 0))) { av_log(s, AV_LOG_ERROR, "Cannot convert %s sample format to s16 sample format\n", av_get_sample_fmt_name(s->sample_fmt[0])); av_free(s); return NULL; } } if (s->sample_fmt[1] != AV_SAMPLE_FMT_S16) { if (!(s->convert_ctx[1] = av_audio_convert_alloc(s->sample_fmt[1], 1, AV_SAMPLE_FMT_S16, 1, NULL, 0))) { av_log(s, AV_LOG_ERROR, "Cannot convert s16 sample format to %s sample format\n", av_get_sample_fmt_name(s->sample_fmt[1])); av_audio_convert_free(s->convert_ctx[0]); av_free(s); return NULL; } } #define TAPS 16 s->resample_context = av_resample_init(output_rate, input_rate, filter_length, log2_phase_count, linear, cutoff); *(const AVClass**)s->resample_context = &audioresample_context_class; return s; } | 14,007 |
1 | static void gen_sync(DisasContext *ctx) { uint32_t l = (ctx->opcode >> 21) & 3; /* * We may need to check for a pending TLB flush. * * We do this on ptesync (l == 2) on ppc64 and any sync pn ppc32. * * Additionally, this can only happen in kernel mode however so * check MSR_PR as well. */ if (((l == 2) || !(ctx->insns_flags & PPC_64B)) && !ctx->pr) { gen_check_tlb_flush(ctx); } } | 14,008 |
1 | static int qcrypto_ivgen_essiv_calculate(QCryptoIVGen *ivgen, uint64_t sector, uint8_t *iv, size_t niv, Error **errp) { QCryptoIVGenESSIV *essiv = ivgen->private; size_t ndata = qcrypto_cipher_get_block_len(ivgen->cipher); uint8_t *data = g_new(uint8_t, ndata); sector = cpu_to_le64(sector); memcpy(data, (uint8_t *)§or, ndata); if (sizeof(sector) < ndata) { memset(data + sizeof(sector), 0, ndata - sizeof(sector)); } if (qcrypto_cipher_encrypt(essiv->cipher, data, data, ndata, errp) < 0) { g_free(data); return -1; } if (ndata > niv) { ndata = niv; } memcpy(iv, data, ndata); if (ndata < niv) { memset(iv + ndata, 0, niv - ndata); } g_free(data); return 0; } | 14,009 |
1 | void ff_nut_free_sp(NUTContext *nut) { av_tree_enumerate(nut->syncpoints, NULL, NULL, enu_free); av_tree_destroy(nut->syncpoints); } | 14,010 |
1 | static void memory_region_oldmmio_write_accessor(MemoryRegion *mr, hwaddr addr, uint64_t *value, unsigned size, unsigned shift, uint64_t mask) { uint64_t tmp; tmp = (*value >> shift) & mask; trace_memory_region_ops_write(mr, addr, tmp, size); mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp); } | 14,011 |
1 | static void scsi_cmd_xfer_mode(SCSICommand *cmd) { if (!cmd->xfer) { cmd->mode = SCSI_XFER_NONE; return; } switch (cmd->buf[0]) { case WRITE_6: case WRITE_10: case WRITE_VERIFY_10: case WRITE_12: case WRITE_VERIFY_12: case WRITE_16: case WRITE_VERIFY_16: case COPY: case COPY_VERIFY: case COMPARE: case CHANGE_DEFINITION: case LOG_SELECT: case MODE_SELECT: case MODE_SELECT_10: case SEND_DIAGNOSTIC: case WRITE_BUFFER: case FORMAT_UNIT: case REASSIGN_BLOCKS: case SEARCH_EQUAL: case SEARCH_HIGH: case SEARCH_LOW: case UPDATE_BLOCK: case WRITE_LONG_10: case WRITE_SAME_10: case WRITE_SAME_16: case UNMAP: case SEARCH_HIGH_12: case SEARCH_EQUAL_12: case SEARCH_LOW_12: case MEDIUM_SCAN: case SEND_VOLUME_TAG: case SEND_CUE_SHEET: case SEND_DVD_STRUCTURE: case PERSISTENT_RESERVE_OUT: case MAINTENANCE_OUT: cmd->mode = SCSI_XFER_TO_DEV; break; default: cmd->mode = SCSI_XFER_FROM_DEV; break; } } | 14,012 |
1 | static void test_visitor_in_union_flat(TestInputVisitorData *data, const void *unused) { Visitor *v; UserDefFlatUnion *tmp; UserDefUnionBase *base; v = visitor_input_test_init(data, "{ 'enum1': 'value1', " "'integer': 41, " "'string': 'str', " "'boolean': true }"); visit_type_UserDefFlatUnion(v, NULL, &tmp, &error_abort); g_assert_cmpint(tmp->enum1, ==, ENUM_ONE_VALUE1); g_assert_cmpstr(tmp->string, ==, "str"); g_assert_cmpint(tmp->integer, ==, 41); g_assert_cmpint(tmp->u.value1->boolean, ==, true); base = qapi_UserDefFlatUnion_base(tmp); g_assert(&base->enum1 == &tmp->enum1); qapi_free_UserDefFlatUnion(tmp); } | 14,013 |
1 | static int ape_read_header(AVFormatContext * s, AVFormatParameters * ap) { AVIOContext *pb = s->pb; APEContext *ape = s->priv_data; AVStream *st; uint32_t tag; int i; int total_blocks; int64_t pts; /* TODO: Skip any leading junk such as id3v2 tags */ ape->junklength = 0; tag = avio_rl32(pb); if (tag != MKTAG('M', 'A', 'C', ' ')) return -1; ape->fileversion = avio_rl16(pb); if (ape->fileversion < APE_MIN_VERSION || ape->fileversion > APE_MAX_VERSION) { av_log(s, AV_LOG_ERROR, "Unsupported file version - %d.%02d\n", ape->fileversion / 1000, (ape->fileversion % 1000) / 10); return -1; if (ape->fileversion >= 3980) { ape->padding1 = avio_rl16(pb); ape->descriptorlength = avio_rl32(pb); ape->headerlength = avio_rl32(pb); ape->seektablelength = avio_rl32(pb); ape->wavheaderlength = avio_rl32(pb); ape->audiodatalength = avio_rl32(pb); ape->audiodatalength_high = avio_rl32(pb); ape->wavtaillength = avio_rl32(pb); avio_read(pb, ape->md5, 16); /* Skip any unknown bytes at the end of the descriptor. This is for future compatibility */ if (ape->descriptorlength > 52) avio_seek(pb, ape->descriptorlength - 52, SEEK_CUR); /* Read header data */ ape->compressiontype = avio_rl16(pb); ape->formatflags = avio_rl16(pb); ape->blocksperframe = avio_rl32(pb); ape->finalframeblocks = avio_rl32(pb); ape->totalframes = avio_rl32(pb); ape->bps = avio_rl16(pb); ape->channels = avio_rl16(pb); ape->samplerate = avio_rl32(pb); } else { ape->descriptorlength = 0; ape->headerlength = 32; ape->compressiontype = avio_rl16(pb); ape->formatflags = avio_rl16(pb); ape->channels = avio_rl16(pb); ape->samplerate = avio_rl32(pb); ape->wavheaderlength = avio_rl32(pb); ape->wavtaillength = avio_rl32(pb); ape->totalframes = avio_rl32(pb); ape->finalframeblocks = avio_rl32(pb); if (ape->formatflags & MAC_FORMAT_FLAG_HAS_PEAK_LEVEL) { avio_seek(pb, 4, SEEK_CUR); /* Skip the peak level */ ape->headerlength += 4; if (ape->formatflags & MAC_FORMAT_FLAG_HAS_SEEK_ELEMENTS) { ape->seektablelength = avio_rl32(pb); ape->headerlength += 4; ape->seektablelength *= sizeof(int32_t); } else ape->seektablelength = ape->totalframes * sizeof(int32_t); if (ape->formatflags & MAC_FORMAT_FLAG_8_BIT) ape->bps = 8; else if (ape->formatflags & MAC_FORMAT_FLAG_24_BIT) ape->bps = 24; else ape->bps = 16; if (ape->fileversion >= 3950) ape->blocksperframe = 73728 * 4; else if (ape->fileversion >= 3900 || (ape->fileversion >= 3800 && ape->compressiontype >= 4000)) ape->blocksperframe = 73728; else ape->blocksperframe = 9216; /* Skip any stored wav header */ if (!(ape->formatflags & MAC_FORMAT_FLAG_CREATE_WAV_HEADER)) avio_seek(pb, ape->wavheaderlength, SEEK_CUR); if(ape->totalframes > UINT_MAX / sizeof(APEFrame)){ av_log(s, AV_LOG_ERROR, "Too many frames: %d\n", ape->totalframes); return -1; ape->frames = av_malloc(ape->totalframes * sizeof(APEFrame)); if(!ape->frames) return AVERROR(ENOMEM); ape->firstframe = ape->junklength + ape->descriptorlength + ape->headerlength + ape->seektablelength + ape->wavheaderlength; ape->currentframe = 0; ape->totalsamples = ape->finalframeblocks; if (ape->totalframes > 1) ape->totalsamples += ape->blocksperframe * (ape->totalframes - 1); if (ape->seektablelength > 0) { ape->seektable = av_malloc(ape->seektablelength); for (i = 0; i < ape->seektablelength / sizeof(uint32_t); i++) ape->seektable[i] = avio_rl32(pb); ape->frames[0].pos = ape->firstframe; ape->frames[0].nblocks = ape->blocksperframe; ape->frames[0].skip = 0; for (i = 1; i < ape->totalframes; i++) { ape->frames[i].pos = ape->seektable[i]; //ape->frames[i-1].pos + ape->blocksperframe; ape->frames[i].nblocks = ape->blocksperframe; ape->frames[i - 1].size = ape->frames[i].pos - ape->frames[i - 1].pos; ape->frames[i].skip = (ape->frames[i].pos - ape->frames[0].pos) & 3; ape->frames[ape->totalframes - 1].size = ape->finalframeblocks * 4; ape->frames[ape->totalframes - 1].nblocks = ape->finalframeblocks; for (i = 0; i < ape->totalframes; i++) { if(ape->frames[i].skip){ ape->frames[i].pos -= ape->frames[i].skip; ape->frames[i].size += ape->frames[i].skip; ape->frames[i].size = (ape->frames[i].size + 3) & ~3; ape_dumpinfo(s, ape); /* try to read APE tags */ if (!url_is_streamed(pb)) { ff_ape_parse_tag(s); avio_seek(pb, 0, SEEK_SET); av_log(s, AV_LOG_DEBUG, "Decoding file - v%d.%02d, compression level %d\n", ape->fileversion / 1000, (ape->fileversion % 1000) / 10, ape->compressiontype); /* now we are ready: build format streams */ st = av_new_stream(s, 0); if (!st) return -1; total_blocks = (ape->totalframes == 0) ? 0 : ((ape->totalframes - 1) * ape->blocksperframe) + ape->finalframeblocks; st->codec->codec_type = AVMEDIA_TYPE_AUDIO; st->codec->codec_id = CODEC_ID_APE; st->codec->codec_tag = MKTAG('A', 'P', 'E', ' '); st->codec->channels = ape->channels; st->codec->sample_rate = ape->samplerate; st->codec->bits_per_coded_sample = ape->bps; st->codec->frame_size = MAC_SUBFRAME_SIZE; st->nb_frames = ape->totalframes; st->start_time = 0; st->duration = total_blocks / MAC_SUBFRAME_SIZE; av_set_pts_info(st, 64, MAC_SUBFRAME_SIZE, ape->samplerate); st->codec->extradata = av_malloc(APE_EXTRADATA_SIZE); st->codec->extradata_size = APE_EXTRADATA_SIZE; AV_WL16(st->codec->extradata + 0, ape->fileversion); AV_WL16(st->codec->extradata + 2, ape->compressiontype); AV_WL16(st->codec->extradata + 4, ape->formatflags); pts = 0; for (i = 0; i < ape->totalframes; i++) { ape->frames[i].pts = pts; av_add_index_entry(st, ape->frames[i].pos, ape->frames[i].pts, 0, 0, AVINDEX_KEYFRAME); pts += ape->blocksperframe / MAC_SUBFRAME_SIZE; return 0; | 14,015 |
1 | static int buf_close(void *opaque) { QEMUBuffer *s = opaque; qsb_free(s->qsb); g_free(s); return 0; } | 14,016 |
1 | static const struct URLProtocol *url_find_protocol(const char *filename) { const URLProtocol **protocols; char proto_str[128], proto_nested[128], *ptr; size_t proto_len = strspn(filename, URL_SCHEME_CHARS); int i; if (filename[proto_len] != ':' && (strncmp(filename, "subfile,", 8) || !strchr(filename + proto_len + 1, ':')) || is_dos_path(filename)) strcpy(proto_str, "file"); else av_strlcpy(proto_str, filename, FFMIN(proto_len + 1, sizeof(proto_str))); if ((ptr = strchr(proto_str, ','))) *ptr = '\0'; av_strlcpy(proto_nested, proto_str, sizeof(proto_nested)); if ((ptr = strchr(proto_nested, '+'))) *ptr = '\0'; protocols = ffurl_get_protocols(NULL, NULL); for (i = 0; protocols[i]; i++) { const URLProtocol *up = protocols[i]; if (!strcmp(proto_str, up->name)) { av_freep(&protocols); return up; } if (up->flags & URL_PROTOCOL_FLAG_NESTED_SCHEME && !strcmp(proto_nested, up->name)) { av_freep(&protocols); return up; } } av_freep(&protocols); } | 14,017 |
1 | void qmp_nbd_server_stop(Error **errp) { while (!QTAILQ_EMPTY(&close_notifiers)) { NBDCloseNotifier *cn = QTAILQ_FIRST(&close_notifiers); nbd_close_notifier(&cn->n, nbd_export_get_blockdev(cn->exp)); } qemu_set_fd_handler2(server_fd, NULL, NULL, NULL, NULL); close(server_fd); server_fd = -1; } | 14,018 |
1 | int arm_reset_cpu(uint64_t cpuid) { CPUState *target_cpu_state; ARMCPU *target_cpu; DPRINTF("cpu %" PRId64 "\n", cpuid); /* change to the cpu we are resetting */ target_cpu_state = arm_get_cpu_by_id(cpuid); if (!target_cpu_state) { return QEMU_ARM_POWERCTL_INVALID_PARAM; } target_cpu = ARM_CPU(target_cpu_state); if (target_cpu->powered_off) { qemu_log_mask(LOG_GUEST_ERROR, "[ARM]%s: CPU %" PRId64 " is off\n", __func__, cpuid); return QEMU_ARM_POWERCTL_IS_OFF; } /* Reset the cpu */ cpu_reset(target_cpu_state); return QEMU_ARM_POWERCTL_RET_SUCCESS; } | 14,019 |
1 | static void postprocess_chroma(AVFrame *frame, int w, int h, int depth) { uint16_t *dstu = (uint16_t *)frame->data[1]; uint16_t *dstv = (uint16_t *)frame->data[2]; int16_t *srcu = (int16_t *)frame->data[1]; int16_t *srcv = (int16_t *)frame->data[2]; ptrdiff_t strideu = frame->linesize[1] / 2; ptrdiff_t stridev = frame->linesize[2] / 2; const int add = 1 << (depth - 1); const int shift = 16 - depth; int i, j; for (j = 0; j < h; j++) { for (i = 0; i < w; i++) { dstu[i] = (add + srcu[i]) << shift; dstv[i] = (add + srcv[i]) << shift; } dstu += strideu; dstv += stridev; srcu += strideu; srcv += stridev; } } | 14,020 |
0 | static void id3v2_parse(AVFormatContext *s, int len, uint8_t version, uint8_t flags, ID3v2ExtraMeta **extra_meta) { int isv34, tlen, unsync; char tag[5]; int64_t next, end = avio_tell(s->pb) + len; int taghdrlen; const char *reason = NULL; AVIOContext pb; AVIOContext *pbx; unsigned char *buffer = NULL; int buffer_size = 0; const ID3v2EMFunc *extra_func; switch (version) { case 2: if (flags & 0x40) { reason = "compression"; goto error; } isv34 = 0; taghdrlen = 6; break; case 3: case 4: isv34 = 1; taghdrlen = 10; break; default: reason = "version"; goto error; } unsync = flags & 0x80; if (isv34 && flags & 0x40) { /* Extended header present, just skip over it */ int extlen = get_size(s->pb, 4); if (version == 4) /* In v2.4 the length includes the length field we just read. */ extlen -= 4; if (extlen < 0) { reason = "invalid extended header length"; goto error; } avio_skip(s->pb, extlen); } while (len >= taghdrlen) { unsigned int tflags = 0; int tunsync = 0; if (isv34) { avio_read(s->pb, tag, 4); tag[4] = 0; if (version == 3) { tlen = avio_rb32(s->pb); } else tlen = get_size(s->pb, 4); tflags = avio_rb16(s->pb); tunsync = tflags & ID3v2_FLAG_UNSYNCH; } else { avio_read(s->pb, tag, 3); tag[3] = 0; tlen = avio_rb24(s->pb); } if (tlen < 0 || tlen > len - taghdrlen) { av_log(s, AV_LOG_WARNING, "Invalid size in frame %s, skipping the rest of tag.\n", tag); break; } len -= taghdrlen + tlen; next = avio_tell(s->pb) + tlen; if (!tlen) { if (tag[0]) av_log(s, AV_LOG_DEBUG, "Invalid empty frame %s, skipping.\n", tag); continue; } if (tflags & ID3v2_FLAG_DATALEN) { avio_rb32(s->pb); tlen -= 4; } if (tflags & (ID3v2_FLAG_ENCRYPTION | ID3v2_FLAG_COMPRESSION)) { av_log(s, AV_LOG_WARNING, "Skipping encrypted/compressed ID3v2 frame %s.\n", tag); avio_skip(s->pb, tlen); /* check for text tag or supported special meta tag */ } else if (tag[0] == 'T' || (extra_meta && (extra_func = get_extra_meta_func(tag, isv34)))) { if (unsync || tunsync) { int64_t end = avio_tell(s->pb) + tlen; uint8_t *b; av_fast_malloc(&buffer, &buffer_size, tlen); if (!buffer) { av_log(s, AV_LOG_ERROR, "Failed to alloc %d bytes\n", tlen); goto seek; } b = buffer; while (avio_tell(s->pb) < end) { *b++ = avio_r8(s->pb); if (*(b - 1) == 0xff && avio_tell(s->pb) < end - 1) { uint8_t val = avio_r8(s->pb); *b++ = val ? val : avio_r8(s->pb); } } ffio_init_context(&pb, buffer, b - buffer, 0, NULL, NULL, NULL, NULL); tlen = b - buffer; pbx = &pb; // read from sync buffer } else { pbx = s->pb; // read straight from input } if (tag[0] == 'T') /* parse text tag */ read_ttag(s, pbx, tlen, tag); else /* parse special meta tag */ extra_func->read(s, pbx, tlen, tag, extra_meta); } else if (!tag[0]) { if (tag[1]) av_log(s, AV_LOG_WARNING, "invalid frame id, assuming padding"); avio_skip(s->pb, tlen); break; } /* Skip to end of tag */ seek: avio_seek(s->pb, next, SEEK_SET); } /* Footer preset, always 10 bytes, skip over it */ if (version == 4 && flags & 0x10) end += 10; error: if (reason) av_log(s, AV_LOG_INFO, "ID3v2.%d tag skipped, cannot handle %s\n", version, reason); avio_seek(s->pb, end, SEEK_SET); av_free(buffer); return; } | 14,021 |
1 | static int ehci_state_fetchqtd(EHCIQueue *q) { EHCIqtd qtd; EHCIPacket *p; int again = 0; get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &qtd, sizeof(EHCIqtd) >> 2); ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &qtd); p = QTAILQ_FIRST(&q->packets); if (p != NULL) { if (p->qtdaddr != q->qtdaddr || (!NLPTR_TBIT(p->qtd.next) && (p->qtd.next != qtd.next)) || (!NLPTR_TBIT(p->qtd.altnext) && (p->qtd.altnext != qtd.altnext)) || p->qtd.bufptr[0] != qtd.bufptr[0]) { ehci_cancel_queue(q); ehci_trace_guest_bug(q->ehci, "guest updated active QH or qTD"); p = NULL; } else { p->qtd = qtd; ehci_qh_do_overlay(q); } } if (!(qtd.token & QTD_TOKEN_ACTIVE)) { if (p != NULL) { /* transfer canceled by guest (clear active) */ ehci_cancel_queue(q); p = NULL; } ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH); again = 1; } else if (p != NULL) { switch (p->async) { case EHCI_ASYNC_NONE: /* Previously nacked packet (likely interrupt ep) */ ehci_set_state(q->ehci, q->async, EST_EXECUTE); break; case EHCI_ASYNC_INFLIGHT: /* Unfinyshed async handled packet, go horizontal */ ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH); break; case EHCI_ASYNC_FINISHED: /* Should never happen, as this case is caught by fetchqh */ ehci_set_state(q->ehci, q->async, EST_EXECUTING); break; } again = 1; } else { p = ehci_alloc_packet(q); p->qtdaddr = q->qtdaddr; p->qtd = qtd; ehci_set_state(q->ehci, q->async, EST_EXECUTE); again = 1; } return again; } | 14,026 |
0 | static av_always_inline int encode_line(FFV1Context *s, int w, int16_t *sample[3], int plane_index, int bits) { PlaneContext *const p = &s->plane[plane_index]; RangeCoder *const c = &s->c; int x; int run_index = s->run_index; int run_count = 0; int run_mode = 0; if (s->ac) { if (c->bytestream_end - c->bytestream < w * 20) { av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return AVERROR_INVALIDDATA; } } else { if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < w * 4) { av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return AVERROR_INVALIDDATA; } } for (x = 0; x < w; x++) { int diff, context; context = get_context(p, sample[0] + x, sample[1] + x, sample[2] + x); diff = sample[0][x] - predict(sample[0] + x, sample[1] + x); if (context < 0) { context = -context; diff = -diff; } diff = fold(diff, bits); if (s->ac) { if (s->flags & CODEC_FLAG_PASS1) { put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat, s->rc_stat2[p->quant_table_index][context]); } else { put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL); } } else { if (context == 0) run_mode = 1; if (run_mode) { if (diff) { while (run_count >= 1 << ff_log2_run[run_index]) { run_count -= 1 << ff_log2_run[run_index]; run_index++; put_bits(&s->pb, 1, 1); } put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count); if (run_index) run_index--; run_count = 0; run_mode = 0; if (diff > 0) diff--; } else { run_count++; } } av_dlog(s->avctx, "count:%d index:%d, mode:%d, x:%d pos:%d\n", run_count, run_index, run_mode, x, (int)put_bits_count(&s->pb)); if (run_mode == 0) put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits); } } if (run_mode) { while (run_count >= 1 << ff_log2_run[run_index]) { run_count -= 1 << ff_log2_run[run_index]; run_index++; put_bits(&s->pb, 1, 1); } if (run_count) put_bits(&s->pb, 1, 1); } s->run_index = run_index; return 0; } | 14,028 |
1 | static int mpeg4_decode_header(AVCodecParserContext *s1, AVCodecContext *avctx, const uint8_t *buf, int buf_size) { struct Mp4vParseContext *pc = s1->priv_data; Mpeg4DecContext *dec_ctx = &pc->dec_ctx; MpegEncContext *s = &dec_ctx->m; GetBitContext gb1, *gb = &gb1; int ret; s->avctx = avctx; s->current_picture_ptr = &s->current_picture; if (avctx->extradata_size && pc->first_picture) { init_get_bits(gb, avctx->extradata, avctx->extradata_size * 8); ret = ff_mpeg4_decode_picture_header(dec_ctx, gb); } init_get_bits(gb, buf, 8 * buf_size); ret = ff_mpeg4_decode_picture_header(dec_ctx, gb); if (s->width && (!avctx->width || !avctx->height || !avctx->coded_width || !avctx->coded_height)) { ret = ff_set_dimensions(avctx, s->width, s->height); return ret; } if((s1->flags & PARSER_FLAG_USE_CODEC_TS) && s->avctx->time_base.den>0 && ret>=0){ av_assert1(s1->pts == AV_NOPTS_VALUE); av_assert1(s1->dts == AV_NOPTS_VALUE); s1->pts = av_rescale_q(s->time, (AVRational){1, s->avctx->time_base.den}, (AVRational){1, 1200000}); } s1->pict_type = s->pict_type; pc->first_picture = 0; return ret; } | 14,029 |
1 | void vnc_tls_client_cleanup(VncState *vs) { if (vs->tls.session) { gnutls_deinit(vs->tls.session); vs->tls.session = NULL; } g_free(vs->tls.dname); } | 14,032 |
1 | void colo_do_failover(MigrationState *s) { /* Make sure VM stopped while failover happened. */ if (!colo_runstate_is_stopped()) { vm_stop_force_state(RUN_STATE_COLO); } if (get_colo_mode() == COLO_MODE_PRIMARY) { primary_vm_do_failover(); } } | 14,033 |
1 | static void test_validate_union_flat(TestInputVisitorData *data, const void *unused) { UserDefFlatUnion *tmp = NULL; Visitor *v; Error *err = NULL; v = validate_test_init(data, "{ 'enum1': 'value1', " "'string': 'str', " "'boolean': true }"); /* TODO when generator bug is fixed, add 'integer': 41 */ visit_type_UserDefFlatUnion(v, &tmp, NULL, &err); g_assert(!err); qapi_free_UserDefFlatUnion(tmp); } | 14,035 |
1 | static inline void RENAME(yuvPlanartouyvy)(const uint8_t *ysrc, const uint8_t *usrc, const uint8_t *vsrc, uint8_t *dst, long width, long height, long lumStride, long chromStride, long dstStride, long vertLumPerChroma) { long y; const long chromWidth= width>>1; for(y=0; y<height; y++) { #ifdef HAVE_MMX //FIXME handle 2 lines a once (fewer prefetch, reuse some chrom, but very likely limited by mem anyway) asm volatile( "xor %%"REG_a", %%"REG_a" \n\t" ASMALIGN(4) "1: \n\t" PREFETCH" 32(%1, %%"REG_a", 2) \n\t" PREFETCH" 32(%2, %%"REG_a") \n\t" PREFETCH" 32(%3, %%"REG_a") \n\t" "movq (%2, %%"REG_a"), %%mm0 \n\t" // U(0) "movq %%mm0, %%mm2 \n\t" // U(0) "movq (%3, %%"REG_a"), %%mm1 \n\t" // V(0) "punpcklbw %%mm1, %%mm0 \n\t" // UVUV UVUV(0) "punpckhbw %%mm1, %%mm2 \n\t" // UVUV UVUV(8) "movq (%1, %%"REG_a",2), %%mm3 \n\t" // Y(0) "movq 8(%1, %%"REG_a",2), %%mm5 \n\t" // Y(8) "movq %%mm0, %%mm4 \n\t" // Y(0) "movq %%mm2, %%mm6 \n\t" // Y(8) "punpcklbw %%mm3, %%mm0 \n\t" // YUYV YUYV(0) "punpckhbw %%mm3, %%mm4 \n\t" // YUYV YUYV(4) "punpcklbw %%mm5, %%mm2 \n\t" // YUYV YUYV(8) "punpckhbw %%mm5, %%mm6 \n\t" // YUYV YUYV(12) MOVNTQ" %%mm0, (%0, %%"REG_a", 4)\n\t" MOVNTQ" %%mm4, 8(%0, %%"REG_a", 4)\n\t" MOVNTQ" %%mm2, 16(%0, %%"REG_a", 4)\n\t" MOVNTQ" %%mm6, 24(%0, %%"REG_a", 4)\n\t" "add $8, %%"REG_a" \n\t" "cmp %4, %%"REG_a" \n\t" " jb 1b \n\t" ::"r"(dst), "r"(ysrc), "r"(usrc), "r"(vsrc), "g" (chromWidth) : "%"REG_a ); #else //FIXME adapt the alpha asm code from yv12->yuy2 #if __WORDSIZE >= 64 int i; uint64_t *ldst = (uint64_t *) dst; const uint8_t *yc = ysrc, *uc = usrc, *vc = vsrc; for(i = 0; i < chromWidth; i += 2){ uint64_t k, l; k = uc[0] + (yc[0] << 8) + (vc[0] << 16) + (yc[1] << 24); l = uc[1] + (yc[2] << 8) + (vc[1] << 16) + (yc[3] << 24); *ldst++ = k + (l << 32); yc += 4; uc += 2; vc += 2; } #else int i, *idst = (int32_t *) dst; const uint8_t *yc = ysrc, *uc = usrc, *vc = vsrc; for(i = 0; i < chromWidth; i++){ #ifdef WORDS_BIGENDIAN *idst++ = (uc[0] << 24)+ (yc[0] << 16) + (vc[0] << 8) + (yc[1] << 0); #else *idst++ = uc[0] + (yc[0] << 8) + (vc[0] << 16) + (yc[1] << 24); #endif yc += 2; uc++; vc++; } #endif #endif if((y&(vertLumPerChroma-1))==(vertLumPerChroma-1) ) { usrc += chromStride; vsrc += chromStride; } ysrc += lumStride; dst += dstStride; } #ifdef HAVE_MMX asm( EMMS" \n\t" SFENCE" \n\t" :::"memory"); #endif } | 14,036 |
1 | int target_munmap(target_ulong start, target_ulong len) { target_ulong end, real_start, real_end, addr; int prot, ret; #ifdef DEBUG_MMAP printf("munmap: start=0x%lx len=0x%lx\n", start, len); #endif if (start & ~TARGET_PAGE_MASK) return -EINVAL; len = TARGET_PAGE_ALIGN(len); if (len == 0) return -EINVAL; end = start + len; real_start = start & qemu_host_page_mask; real_end = HOST_PAGE_ALIGN(end); if (start > real_start) { /* handle host page containing start */ prot = 0; for(addr = real_start; addr < start; addr += TARGET_PAGE_SIZE) { prot |= page_get_flags(addr); } if (real_end == real_start + qemu_host_page_size) { for(addr = end; addr < real_end; addr += TARGET_PAGE_SIZE) { prot |= page_get_flags(addr); } end = real_end; } if (prot != 0) real_start += qemu_host_page_size; } if (end < real_end) { prot = 0; for(addr = end; addr < real_end; addr += TARGET_PAGE_SIZE) { prot |= page_get_flags(addr); } if (prot != 0) real_end -= qemu_host_page_size; } /* unmap what we can */ if (real_start < real_end) { ret = munmap((void *)real_start, real_end - real_start); if (ret != 0) return ret; } page_set_flags(start, start + len, 0); return 0; } | 14,037 |
1 | int cpu_exec(CPUState *env) { int ret, interrupt_request; TranslationBlock *tb; uint8_t *tc_ptr; unsigned long next_tb; if (env->halted) { if (!cpu_has_work(env)) { return EXCP_HALTED; } env->halted = 0; } cpu_single_env = env; if (unlikely(exit_request)) { env->exit_request = 1; } #if defined(TARGET_I386) /* put eflags in CPU temporary format */ CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); DF = 1 - (2 * ((env->eflags >> 10) & 1)); CC_OP = CC_OP_EFLAGS; env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); #elif defined(TARGET_SPARC) #elif defined(TARGET_M68K) env->cc_op = CC_OP_FLAGS; env->cc_dest = env->sr & 0xf; env->cc_x = (env->sr >> 4) & 1; #elif defined(TARGET_ALPHA) #elif defined(TARGET_ARM) #elif defined(TARGET_UNICORE32) #elif defined(TARGET_PPC) #elif defined(TARGET_LM32) #elif defined(TARGET_MICROBLAZE) #elif defined(TARGET_MIPS) #elif defined(TARGET_SH4) #elif defined(TARGET_CRIS) #elif defined(TARGET_S390X) /* XXXXX */ #else #error unsupported target CPU #endif env->exception_index = -1; /* prepare setjmp context for exception handling */ for(;;) { if (setjmp(env->jmp_env) == 0) { /* if an exception is pending, we execute it here */ if (env->exception_index >= 0) { if (env->exception_index >= EXCP_INTERRUPT) { /* exit request from the cpu execution loop */ ret = env->exception_index; if (ret == EXCP_DEBUG) { cpu_handle_debug_exception(env); } break; #if defined(CONFIG_USER_ONLY) /* if user mode only, we simulate a fake exception which will be handled outside the cpu execution loop */ #if defined(TARGET_I386) do_interrupt(env); #endif ret = env->exception_index; break; #else do_interrupt(env); env->exception_index = -1; #endif } } next_tb = 0; /* force lookup of first TB */ for(;;) { interrupt_request = env->interrupt_request; if (unlikely(interrupt_request)) { if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) { /* Mask out external interrupts for this step. */ interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; } if (interrupt_request & CPU_INTERRUPT_DEBUG) { env->interrupt_request &= ~CPU_INTERRUPT_DEBUG; env->exception_index = EXCP_DEBUG; cpu_loop_exit(env); } #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \ defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \ defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32) if (interrupt_request & CPU_INTERRUPT_HALT) { env->interrupt_request &= ~CPU_INTERRUPT_HALT; env->halted = 1; env->exception_index = EXCP_HLT; cpu_loop_exit(env); } #endif #if defined(TARGET_I386) if (interrupt_request & CPU_INTERRUPT_INIT) { svm_check_intercept(env, SVM_EXIT_INIT); do_cpu_init(env); env->exception_index = EXCP_HALTED; cpu_loop_exit(env); } else if (interrupt_request & CPU_INTERRUPT_SIPI) { do_cpu_sipi(env); } else if (env->hflags2 & HF2_GIF_MASK) { if ((interrupt_request & CPU_INTERRUPT_SMI) && !(env->hflags & HF_SMM_MASK)) { svm_check_intercept(env, SVM_EXIT_SMI); env->interrupt_request &= ~CPU_INTERRUPT_SMI; do_smm_enter(env); next_tb = 0; } else if ((interrupt_request & CPU_INTERRUPT_NMI) && !(env->hflags2 & HF2_NMI_MASK)) { env->interrupt_request &= ~CPU_INTERRUPT_NMI; env->hflags2 |= HF2_NMI_MASK; do_interrupt_x86_hardirq(env, EXCP02_NMI, 1); next_tb = 0; } else if (interrupt_request & CPU_INTERRUPT_MCE) { env->interrupt_request &= ~CPU_INTERRUPT_MCE; do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0); next_tb = 0; } else if ((interrupt_request & CPU_INTERRUPT_HARD) && (((env->hflags2 & HF2_VINTR_MASK) && (env->hflags2 & HF2_HIF_MASK)) || (!(env->hflags2 & HF2_VINTR_MASK) && (env->eflags & IF_MASK && !(env->hflags & HF_INHIBIT_IRQ_MASK))))) { int intno; svm_check_intercept(env, SVM_EXIT_INTR); env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ); intno = cpu_get_pic_interrupt(env); qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno); do_interrupt_x86_hardirq(env, intno, 1); /* ensure that no TB jump will be modified as the program flow was changed */ next_tb = 0; #if !defined(CONFIG_USER_ONLY) } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) && (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) { int intno; /* FIXME: this should respect TPR */ svm_check_intercept(env, SVM_EXIT_VINTR); intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector)); qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno); do_interrupt_x86_hardirq(env, intno, 1); env->interrupt_request &= ~CPU_INTERRUPT_VIRQ; next_tb = 0; #endif } } #elif defined(TARGET_PPC) #if 0 if ((interrupt_request & CPU_INTERRUPT_RESET)) { cpu_reset(env); } #endif if (interrupt_request & CPU_INTERRUPT_HARD) { ppc_hw_interrupt(env); if (env->pending_interrupts == 0) env->interrupt_request &= ~CPU_INTERRUPT_HARD; next_tb = 0; } #elif defined(TARGET_LM32) if ((interrupt_request & CPU_INTERRUPT_HARD) && (env->ie & IE_IE)) { env->exception_index = EXCP_IRQ; do_interrupt(env); next_tb = 0; } #elif defined(TARGET_MICROBLAZE) if ((interrupt_request & CPU_INTERRUPT_HARD) && (env->sregs[SR_MSR] & MSR_IE) && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP)) && !(env->iflags & (D_FLAG | IMM_FLAG))) { env->exception_index = EXCP_IRQ; do_interrupt(env); next_tb = 0; } #elif defined(TARGET_MIPS) if ((interrupt_request & CPU_INTERRUPT_HARD) && cpu_mips_hw_interrupts_pending(env)) { /* Raise it */ env->exception_index = EXCP_EXT_INTERRUPT; env->error_code = 0; do_interrupt(env); next_tb = 0; } #elif defined(TARGET_SPARC) if (interrupt_request & CPU_INTERRUPT_HARD) { if (cpu_interrupts_enabled(env) && env->interrupt_index > 0) { int pil = env->interrupt_index & 0xf; int type = env->interrupt_index & 0xf0; if (((type == TT_EXTINT) && cpu_pil_allowed(env, pil)) || type != TT_EXTINT) { env->exception_index = env->interrupt_index; do_interrupt(env); next_tb = 0; } } } #elif defined(TARGET_ARM) if (interrupt_request & CPU_INTERRUPT_FIQ && !(env->uncached_cpsr & CPSR_F)) { env->exception_index = EXCP_FIQ; do_interrupt(env); next_tb = 0; } /* ARMv7-M interrupt return works by loading a magic value into the PC. On real hardware the load causes the return to occur. The qemu implementation performs the jump normally, then does the exception return when the CPU tries to execute code at the magic address. This will cause the magic PC value to be pushed to the stack if an interrupt occurred at the wrong time. We avoid this by disabling interrupts when pc contains a magic address. */ if (interrupt_request & CPU_INTERRUPT_HARD && ((IS_M(env) && env->regs[15] < 0xfffffff0) || !(env->uncached_cpsr & CPSR_I))) { env->exception_index = EXCP_IRQ; do_interrupt(env); next_tb = 0; } #elif defined(TARGET_UNICORE32) if (interrupt_request & CPU_INTERRUPT_HARD && !(env->uncached_asr & ASR_I)) { do_interrupt(env); next_tb = 0; } #elif defined(TARGET_SH4) if (interrupt_request & CPU_INTERRUPT_HARD) { do_interrupt(env); next_tb = 0; } #elif defined(TARGET_ALPHA) { int idx = -1; /* ??? This hard-codes the OSF/1 interrupt levels. */ switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) { case 0 ... 3: if (interrupt_request & CPU_INTERRUPT_HARD) { idx = EXCP_DEV_INTERRUPT; } /* FALLTHRU */ case 4: if (interrupt_request & CPU_INTERRUPT_TIMER) { idx = EXCP_CLK_INTERRUPT; } /* FALLTHRU */ case 5: if (interrupt_request & CPU_INTERRUPT_SMP) { idx = EXCP_SMP_INTERRUPT; } /* FALLTHRU */ case 6: if (interrupt_request & CPU_INTERRUPT_MCHK) { idx = EXCP_MCHK; } } if (idx >= 0) { env->exception_index = idx; env->error_code = 0; do_interrupt(env); next_tb = 0; } } #elif defined(TARGET_CRIS) if (interrupt_request & CPU_INTERRUPT_HARD && (env->pregs[PR_CCS] & I_FLAG) && !env->locked_irq) { env->exception_index = EXCP_IRQ; do_interrupt(env); next_tb = 0; } if (interrupt_request & CPU_INTERRUPT_NMI && (env->pregs[PR_CCS] & M_FLAG)) { env->exception_index = EXCP_NMI; do_interrupt(env); next_tb = 0; } #elif defined(TARGET_M68K) if (interrupt_request & CPU_INTERRUPT_HARD && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) { /* Real hardware gets the interrupt vector via an IACK cycle at this point. Current emulated hardware doesn't rely on this, so we provide/save the vector when the interrupt is first signalled. */ env->exception_index = env->pending_vector; do_interrupt_m68k_hardirq(env); next_tb = 0; } #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY) if ((interrupt_request & CPU_INTERRUPT_HARD) && (env->psw.mask & PSW_MASK_EXT)) { do_interrupt(env); next_tb = 0; } #endif /* Don't use the cached interrupt_request value, do_interrupt may have updated the EXITTB flag. */ if (env->interrupt_request & CPU_INTERRUPT_EXITTB) { env->interrupt_request &= ~CPU_INTERRUPT_EXITTB; /* ensure that no TB jump will be modified as the program flow was changed */ next_tb = 0; } } if (unlikely(env->exit_request)) { env->exit_request = 0; env->exception_index = EXCP_INTERRUPT; cpu_loop_exit(env); } #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC) if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { /* restore flags in standard format */ #if defined(TARGET_I386) env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP) | (DF & DF_MASK); log_cpu_state(env, X86_DUMP_CCOP); env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); #elif defined(TARGET_M68K) cpu_m68k_flush_flags(env, env->cc_op); env->cc_op = CC_OP_FLAGS; env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4); log_cpu_state(env, 0); #else log_cpu_state(env, 0); #endif } #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */ spin_lock(&tb_lock); tb = tb_find_fast(env); /* Note: we do it here to avoid a gcc bug on Mac OS X when doing it in tb_find_slow */ if (tb_invalidated_flag) { /* as some TB could have been invalidated because of memory exceptions while generating the code, we must recompute the hash index here */ next_tb = 0; tb_invalidated_flag = 0; } #ifdef CONFIG_DEBUG_EXEC qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n", (long)tb->tc_ptr, tb->pc, lookup_symbol(tb->pc)); #endif /* see if we can patch the calling TB. When the TB spans two pages, we cannot safely do a direct jump. */ if (next_tb != 0 && tb->page_addr[1] == -1) { tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb); } spin_unlock(&tb_lock); /* cpu_interrupt might be called while translating the TB, but before it is linked into a potentially infinite loop and becomes env->current_tb. Avoid starting execution if there is a pending interrupt. */ env->current_tb = tb; barrier(); if (likely(!env->exit_request)) { tc_ptr = tb->tc_ptr; /* execute the generated code */ next_tb = tcg_qemu_tb_exec(env, tc_ptr); if ((next_tb & 3) == 2) { /* Instruction counter expired. */ int insns_left; tb = (TranslationBlock *)(long)(next_tb & ~3); /* Restore PC. */ cpu_pc_from_tb(env, tb); insns_left = env->icount_decr.u32; if (env->icount_extra && insns_left >= 0) { /* Refill decrementer and continue execution. */ env->icount_extra += insns_left; if (env->icount_extra > 0xffff) { insns_left = 0xffff; insns_left = env->icount_extra; } env->icount_extra -= insns_left; env->icount_decr.u16.low = insns_left; if (insns_left > 0) { /* Execute remaining instructions. */ cpu_exec_nocache(env, insns_left, tb); } env->exception_index = EXCP_INTERRUPT; next_tb = 0; cpu_loop_exit(env); } } } env->current_tb = NULL; /* reset soft MMU for next block (it can currently only be set by a memory fault) */ } /* for(;;) */ } } /* for(;;) */ #if defined(TARGET_I386) /* restore flags in standard format */ env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP) | (DF & DF_MASK); #elif defined(TARGET_ARM) /* XXX: Save/restore host fpu exception state?. */ #elif defined(TARGET_UNICORE32) #elif defined(TARGET_SPARC) #elif defined(TARGET_PPC) #elif defined(TARGET_LM32) #elif defined(TARGET_M68K) cpu_m68k_flush_flags(env, env->cc_op); env->cc_op = CC_OP_FLAGS; env->sr = (env->sr & 0xffe0) | env->cc_dest | (env->cc_x << 4); #elif defined(TARGET_MICROBLAZE) #elif defined(TARGET_MIPS) #elif defined(TARGET_SH4) #elif defined(TARGET_ALPHA) #elif defined(TARGET_CRIS) #elif defined(TARGET_S390X) /* XXXXX */ #else #error unsupported target CPU #endif /* fail safe : never use cpu_single_env outside cpu_exec() */ cpu_single_env = NULL; return ret; } | 14,038 |
0 | callback(void *priv_data, int index, uint8_t *buf, int buf_size, int64_t time) { AVFormatContext *s = priv_data; struct dshow_ctx *ctx = s->priv_data; AVPacketList **ppktl, *pktl_next; // dump_videohdr(s, vdhdr); WaitForSingleObject(ctx->mutex, INFINITE); if(shall_we_drop(s)) goto fail; pktl_next = av_mallocz(sizeof(AVPacketList)); if(!pktl_next) goto fail; if(av_new_packet(&pktl_next->pkt, buf_size) < 0) { av_free(pktl_next); goto fail; } pktl_next->pkt.stream_index = index; pktl_next->pkt.pts = time; memcpy(pktl_next->pkt.data, buf, buf_size); for(ppktl = &ctx->pktl ; *ppktl ; ppktl = &(*ppktl)->next); *ppktl = pktl_next; ctx->curbufsize += buf_size; SetEvent(ctx->event); ReleaseMutex(ctx->mutex); return; fail: ReleaseMutex(ctx->mutex); return; } | 14,039 |
1 | static inline void RENAME(yvu9_to_yuy2)(const uint8_t *src1, const uint8_t *src2, const uint8_t *src3, uint8_t *dst, unsigned width, unsigned height, int srcStride1, int srcStride2, int srcStride3, int dstStride) { unsigned long y,x,w,h; w=width/2; h=height; for(y=0;y<h;y++){ const uint8_t* yp=src1+srcStride1*y; const uint8_t* up=src2+srcStride2*(y>>2); const uint8_t* vp=src3+srcStride3*(y>>2); uint8_t* d=dst+dstStride*y; x=0; #ifdef HAVE_MMX for(;x<w-7;x+=8) { asm volatile( PREFETCH" 32(%1, %0)\n\t" PREFETCH" 32(%2, %0)\n\t" PREFETCH" 32(%3, %0)\n\t" "movq (%1, %0, 4), %%mm0\n\t" /* Y0Y1Y2Y3Y4Y5Y6Y7 */ "movq (%2, %0), %%mm1\n\t" /* U0U1U2U3U4U5U6U7 */ "movq (%3, %0), %%mm2\n\t" /* V0V1V2V3V4V5V6V7 */ "movq %%mm0, %%mm3\n\t" /* Y0Y1Y2Y3Y4Y5Y6Y7 */ "movq %%mm1, %%mm4\n\t" /* U0U1U2U3U4U5U6U7 */ "movq %%mm2, %%mm5\n\t" /* V0V1V2V3V4V5V6V7 */ "punpcklbw %%mm1, %%mm1\n\t" /* U0U0 U1U1 U2U2 U3U3 */ "punpcklbw %%mm2, %%mm2\n\t" /* V0V0 V1V1 V2V2 V3V3 */ "punpckhbw %%mm4, %%mm4\n\t" /* U4U4 U5U5 U6U6 U7U7 */ "punpckhbw %%mm5, %%mm5\n\t" /* V4V4 V5V5 V6V6 V7V7 */ "movq %%mm1, %%mm6\n\t" "punpcklbw %%mm2, %%mm1\n\t" /* U0V0 U0V0 U1V1 U1V1*/ "punpcklbw %%mm1, %%mm0\n\t" /* Y0U0 Y1V0 Y2U0 Y3V0*/ "punpckhbw %%mm1, %%mm3\n\t" /* Y4U1 Y5V1 Y6U1 Y7V1*/ MOVNTQ" %%mm0, (%4, %0, 8)\n\t" MOVNTQ" %%mm3, 8(%4, %0, 8)\n\t" "punpckhbw %%mm2, %%mm6\n\t" /* U2V2 U2V2 U3V3 U3V3*/ "movq 8(%1, %0, 4), %%mm0\n\t" "movq %%mm0, %%mm3\n\t" "punpcklbw %%mm6, %%mm0\n\t" /* Y U2 Y V2 Y U2 Y V2*/ "punpckhbw %%mm6, %%mm3\n\t" /* Y U3 Y V3 Y U3 Y V3*/ MOVNTQ" %%mm0, 16(%4, %0, 8)\n\t" MOVNTQ" %%mm3, 24(%4, %0, 8)\n\t" "movq %%mm4, %%mm6\n\t" "movq 16(%1, %0, 4), %%mm0\n\t" "movq %%mm0, %%mm3\n\t" "punpcklbw %%mm5, %%mm4\n\t" "punpcklbw %%mm4, %%mm0\n\t" /* Y U4 Y V4 Y U4 Y V4*/ "punpckhbw %%mm4, %%mm3\n\t" /* Y U5 Y V5 Y U5 Y V5*/ MOVNTQ" %%mm0, 32(%4, %0, 8)\n\t" MOVNTQ" %%mm3, 40(%4, %0, 8)\n\t" "punpckhbw %%mm5, %%mm6\n\t" "movq 24(%1, %0, 4), %%mm0\n\t" "movq %%mm0, %%mm3\n\t" "punpcklbw %%mm6, %%mm0\n\t" /* Y U6 Y V6 Y U6 Y V6*/ "punpckhbw %%mm6, %%mm3\n\t" /* Y U7 Y V7 Y U7 Y V7*/ MOVNTQ" %%mm0, 48(%4, %0, 8)\n\t" MOVNTQ" %%mm3, 56(%4, %0, 8)\n\t" : "+r" (x) : "r"(yp), "r" (up), "r"(vp), "r"(d) :"memory"); } #endif for(; x<w; x++) { const int x2= x<<2; d[8*x+0]=yp[x2]; d[8*x+1]=up[x]; d[8*x+2]=yp[x2+1]; d[8*x+3]=vp[x]; d[8*x+4]=yp[x2+2]; d[8*x+5]=up[x]; d[8*x+6]=yp[x2+3]; d[8*x+7]=vp[x]; } } #ifdef HAVE_MMX asm( EMMS" \n\t" SFENCE" \n\t" ::: "memory" ); #endif } | 14,040 |
1 | static int qio_channel_websock_handshake_process(QIOChannelWebsock *ioc, const char *line, size_t size, Error **errp) { int ret = -1; char *protocols = qio_channel_websock_handshake_entry( line, size, QIO_CHANNEL_WEBSOCK_HEADER_PROTOCOL); char *version = qio_channel_websock_handshake_entry( line, size, QIO_CHANNEL_WEBSOCK_HEADER_VERSION); char *key = qio_channel_websock_handshake_entry( line, size, QIO_CHANNEL_WEBSOCK_HEADER_KEY); if (!protocols) { error_setg(errp, "Missing websocket protocol header data"); goto cleanup; } if (!version) { error_setg(errp, "Missing websocket version header data"); goto cleanup; } if (!key) { error_setg(errp, "Missing websocket key header data"); goto cleanup; } if (!g_strrstr(protocols, QIO_CHANNEL_WEBSOCK_PROTOCOL_BINARY)) { error_setg(errp, "No '%s' protocol is supported by client '%s'", QIO_CHANNEL_WEBSOCK_PROTOCOL_BINARY, protocols); goto cleanup; } if (!g_str_equal(version, QIO_CHANNEL_WEBSOCK_SUPPORTED_VERSION)) { error_setg(errp, "Version '%s' is not supported by client '%s'", QIO_CHANNEL_WEBSOCK_SUPPORTED_VERSION, version); goto cleanup; } if (strlen(key) != QIO_CHANNEL_WEBSOCK_CLIENT_KEY_LEN) { error_setg(errp, "Key length '%zu' was not as expected '%d'", strlen(key), QIO_CHANNEL_WEBSOCK_CLIENT_KEY_LEN); goto cleanup; } ret = qio_channel_websock_handshake_send_response(ioc, key, errp); cleanup: g_free(protocols); g_free(version); g_free(key); return ret; } | 14,041 |
1 | static void *av_mallocz_static(unsigned int size) { void *ptr = av_mallocz(size); if(ptr){ array_static =av_fast_realloc(array_static, &allocated_static, sizeof(void*)*(last_static+1)); if(!array_static) return NULL; array_static[last_static++] = ptr; } return ptr; } | 14,042 |
1 | int index_from_key(const char *key) { int i; for (i = 0; QKeyCode_lookup[i] != NULL; i++) { if (!strcmp(key, QKeyCode_lookup[i])) { break; } } /* Return Q_KEY_CODE__MAX if the key is invalid */ return i; } | 14,043 |
1 | static int mxf_read_primer_pack(MXFContext *mxf) { ByteIOContext *pb = mxf->fc->pb; int item_num = get_be32(pb); int item_len = get_be32(pb); if (item_len != 18) { av_log(mxf->fc, AV_LOG_ERROR, "unsupported primer pack item length\n"); return -1; } if (item_num > UINT_MAX / item_len) return -1; mxf->local_tags_count = item_num; mxf->local_tags = av_malloc(item_num*item_len); if (!mxf->local_tags) return -1; get_buffer(pb, mxf->local_tags, item_num*item_len); return 0; } | 14,045 |
1 | static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, sPAPREnvironment *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint32_t config_addr = rtas_ld(args, 0); uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); int ndev; sPAPRPHBState *phb = NULL; /* Fins sPAPRPHBState */ phb = find_phb(spapr, buid); if (!phb) { rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); return; } /* Find device descriptor and start IRQ */ ndev = spapr_msicfg_find(phb, config_addr, false); if (ndev < 0) { trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr); rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } intr_src_num = phb->msi_table[ndev].irq + ioa_intr_num; trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, intr_src_num); rtas_st(rets, 0, RTAS_OUT_SUCCESS); rtas_st(rets, 1, intr_src_num); rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ } | 14,047 |
0 | static int convert_bitstream(const uint8_t *src, int src_size, uint8_t *dst, int max_size) { switch (AV_RB32(src)) { case DCA_SYNCWORD_CORE_BE: case DCA_SYNCWORD_SUBSTREAM: memcpy(dst, src, src_size); return src_size; case DCA_SYNCWORD_CORE_LE: case DCA_SYNCWORD_CORE_14B_BE: case DCA_SYNCWORD_CORE_14B_LE: return avpriv_dca_convert_bitstream(src, src_size, dst, max_size); default: return AVERROR_INVALIDDATA; } } | 14,048 |
0 | int ff_scale_image(uint8_t *dst_data[4], int dst_linesize[4], int dst_w, int dst_h, enum AVPixelFormat dst_pix_fmt, uint8_t * const src_data[4], int src_linesize[4], int src_w, int src_h, enum AVPixelFormat src_pix_fmt, void *log_ctx) { int ret; struct SwsContext *sws_ctx = sws_getContext(src_w, src_h, src_pix_fmt, dst_w, dst_h, dst_pix_fmt, SWS_BILINEAR, NULL, NULL, NULL); if (!sws_ctx) { av_log(log_ctx, AV_LOG_ERROR, "Impossible to create scale context for the conversion " "fmt:%s s:%dx%d -> fmt:%s s:%dx%d\n", av_get_pix_fmt_name(src_pix_fmt), src_w, src_h, av_get_pix_fmt_name(dst_pix_fmt), dst_w, dst_h); ret = AVERROR(EINVAL); goto end; } if ((ret = av_image_alloc(dst_data, dst_linesize, dst_w, dst_h, dst_pix_fmt, 16)) < 0) goto end; ret = 0; sws_scale(sws_ctx, (const uint8_t * const*)src_data, src_linesize, 0, src_h, dst_data, dst_linesize); end: sws_freeContext(sws_ctx); return ret; } | 14,049 |
0 | static int ftp_read(URLContext *h, unsigned char *buf, int size) { FTPContext *s = h->priv_data; int read, err, retry_done = 0; av_dlog(h, "ftp protocol read %d bytes\n", size); retry: if (s->state == DISCONNECTED) { /* optimization */ if (s->position >= s->filesize) return 0; if ((err = ftp_connect_data_connection(h)) < 0) return err; } if (s->state == READY) { if (s->position >= s->filesize) return 0; if ((err = ftp_retrieve(s)) < 0) return err; } if (s->conn_data && s->state == DOWNLOADING) { read = ffurl_read(s->conn_data, buf, size); if (read >= 0) { s->position += read; if (s->position >= s->filesize) { /* server will terminate, but keep current position to avoid madness */ /* save position to restart from it */ int64_t pos = s->position; if (ftp_abort(h) < 0) { s->position = pos; return AVERROR(EIO); } s->position = pos; } } if (read <= 0 && s->position < s->filesize && !h->is_streamed) { /* Server closed connection. Probably due to inactivity */ int64_t pos = s->position; av_log(h, AV_LOG_INFO, "Reconnect to FTP server.\n"); if ((err = ftp_abort(h)) < 0) return err; if ((err = ftp_seek(h, pos, SEEK_SET)) < 0) { av_log(h, AV_LOG_ERROR, "Position cannot be restored.\n"); return err; } if (!retry_done) { retry_done = 1; goto retry; } } return read; } av_log(h, AV_LOG_DEBUG, "FTP read failed\n"); return AVERROR(EIO); } | 14,050 |
1 | sPAPROptionVector *spapr_ovec_new(void) { sPAPROptionVector *ov; ov = g_new0(sPAPROptionVector, 1); ov->bitmap = bitmap_new(OV_MAXBITS); return ov; } | 14,051 |
1 | static uint32_t vmdk_read_cid(BlockDriverState *bs, int parent) { char desc[DESC_SIZE]; uint32_t cid; const char *p_name, *cid_str; size_t cid_str_size; BDRVVmdkState *s = bs->opaque; if (bdrv_pread(bs->file, s->desc_offset, desc, DESC_SIZE) != DESC_SIZE) { return 0; } if (parent) { cid_str = "parentCID"; cid_str_size = sizeof("parentCID"); } else { cid_str = "CID"; cid_str_size = sizeof("CID"); } p_name = strstr(desc, cid_str); if (p_name != NULL) { p_name += cid_str_size; sscanf(p_name, "%x", &cid); } return cid; } | 14,052 |
1 | QemuOpts *qemu_opts_find(QemuOptsList *list, const char *id) { QemuOpts *opts; QTAILQ_FOREACH(opts, &list->head, next) { if (!opts->id) { if (!id) { return opts; } continue; } if (strcmp(opts->id, id) != 0) { continue; } return opts; } return NULL; } | 14,053 |
1 | static void do_video_out(AVFormatContext *s, OutputStream *ost, AVFrame *in_picture, float quality) { int ret, format_video_sync; AVPacket pkt; AVCodecContext *enc = ost->st->codec; int nb_frames; double sync_ipts, delta; double duration = 0; int frame_size = 0; InputStream *ist = NULL; if (ost->source_index >= 0) ist = input_streams[ost->source_index]; if(ist && ist->st->start_time != AV_NOPTS_VALUE && ist->st->first_dts != AV_NOPTS_VALUE && ost->frame_rate.num) duration = 1/(av_q2d(ost->frame_rate) * av_q2d(enc->time_base)); sync_ipts = in_picture->pts; delta = sync_ipts - ost->sync_opts + duration; /* by default, we output a single frame */ nb_frames = 1; format_video_sync = video_sync_method; if (format_video_sync == VSYNC_AUTO) format_video_sync = (s->oformat->flags & AVFMT_VARIABLE_FPS) ? ((s->oformat->flags & AVFMT_NOTIMESTAMPS) ? VSYNC_PASSTHROUGH : VSYNC_VFR) : 1; switch (format_video_sync) { case VSYNC_CFR: // FIXME set to 0.5 after we fix some dts/pts bugs like in avidec.c if (delta < -1.1) nb_frames = 0; else if (delta > 1.1) nb_frames = lrintf(delta); break; case VSYNC_VFR: if (delta <= -0.6) nb_frames = 0; else if (delta > 0.6) ost->sync_opts = lrint(sync_ipts); break; case VSYNC_DROP: case VSYNC_PASSTHROUGH: ost->sync_opts = lrint(sync_ipts); break; default: av_assert0(0); nb_frames = FFMIN(nb_frames, ost->max_frames - ost->frame_number); if (nb_frames == 0) { av_log(NULL, AV_LOG_VERBOSE, "*** drop!\n"); } else if (nb_frames > 1) { nb_frames_dup += nb_frames - 1; av_log(NULL, AV_LOG_VERBOSE, "*** %d dup!\n", nb_frames - 1); duplicate_frame: av_init_packet(&pkt); pkt.data = NULL; pkt.size = 0; in_picture->pts = ost->sync_opts; if (s->oformat->flags & AVFMT_RAWPICTURE && enc->codec->id == CODEC_ID_RAWVIDEO) { /* raw pictures are written as AVPicture structure to avoid any copies. We support temporarily the older method. */ enc->coded_frame->interlaced_frame = in_picture->interlaced_frame; enc->coded_frame->top_field_first = in_picture->top_field_first; pkt.data = (uint8_t *)in_picture; pkt.size = sizeof(AVPicture); pkt.pts = av_rescale_q(in_picture->pts, enc->time_base, ost->st->time_base); pkt.flags |= AV_PKT_FLAG_KEY; write_frame(s, &pkt, ost); video_size += pkt.size; } else { int got_packet; AVFrame big_picture; big_picture = *in_picture; /* better than nothing: use input picture interlaced settings */ big_picture.interlaced_frame = in_picture->interlaced_frame; if (ost->st->codec->flags & (CODEC_FLAG_INTERLACED_DCT|CODEC_FLAG_INTERLACED_ME)) { if (ost->top_field_first == -1) big_picture.top_field_first = in_picture->top_field_first; else big_picture.top_field_first = !!ost->top_field_first; /* handles same_quant here. This is not correct because it may not be a global option */ big_picture.quality = quality; if (!enc->me_threshold) big_picture.pict_type = 0; if (ost->forced_kf_index < ost->forced_kf_count && big_picture.pts >= ost->forced_kf_pts[ost->forced_kf_index]) { big_picture.pict_type = AV_PICTURE_TYPE_I; ost->forced_kf_index++; update_benchmark(NULL); ret = avcodec_encode_video2(enc, &pkt, &big_picture, &got_packet); update_benchmark("encode_video %d.%d", ost->file_index, ost->index); if (ret < 0) { av_log(NULL, AV_LOG_FATAL, "Video encoding failed\n"); exit_program(1); if (got_packet) { if (pkt.pts == AV_NOPTS_VALUE && !(enc->codec->capabilities & CODEC_CAP_DELAY)) pkt.pts = ost->sync_opts; if (pkt.pts != AV_NOPTS_VALUE) pkt.pts = av_rescale_q(pkt.pts, enc->time_base, ost->st->time_base); if (pkt.dts != AV_NOPTS_VALUE) pkt.dts = av_rescale_q(pkt.dts, enc->time_base, ost->st->time_base); if (debug_ts) { av_log(NULL, AV_LOG_INFO, "encoder -> type:video " "pkt_pts:%s pkt_pts_time:%s pkt_dts:%s pkt_dts_time:%s\n", av_ts2str(pkt.pts), av_ts2timestr(pkt.pts, &ost->st->time_base), av_ts2str(pkt.dts), av_ts2timestr(pkt.dts, &ost->st->time_base)); write_frame(s, &pkt, ost); frame_size = pkt.size; video_size += pkt.size; av_free_packet(&pkt); /* if two pass, output log */ if (ost->logfile && enc->stats_out) { fprintf(ost->logfile, "%s", enc->stats_out); ost->sync_opts++; /* * For video, number of frames in == number of packets out. * But there may be reordering, so we can't throw away frames on encoder * flush, we need to limit them here, before they go into encoder. */ ost->frame_number++; if(--nb_frames) goto duplicate_frame; if (vstats_filename && frame_size) do_video_stats(output_files[ost->file_index]->ctx, ost, frame_size); | 14,054 |
1 | static av_cold int read_specific_config(ALSDecContext *ctx) { GetBitContext gb; uint64_t ht_size; int i, config_offset; MPEG4AudioConfig m4ac; ALSSpecificConfig *sconf = &ctx->sconf; AVCodecContext *avctx = ctx->avctx; uint32_t als_id, header_size, trailer_size; init_get_bits(&gb, avctx->extradata, avctx->extradata_size * 8); config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata, avctx->extradata_size * 8, 1); if (config_offset < 0) return -1; skip_bits_long(&gb, config_offset); if (get_bits_left(&gb) < (30 << 3)) return -1; // read the fixed items als_id = get_bits_long(&gb, 32); avctx->sample_rate = m4ac.sample_rate; skip_bits_long(&gb, 32); // sample rate already known sconf->samples = get_bits_long(&gb, 32); avctx->channels = m4ac.channels; skip_bits(&gb, 16); // number of channels already known skip_bits(&gb, 3); // skip file_type sconf->resolution = get_bits(&gb, 3); sconf->floating = get_bits1(&gb); sconf->msb_first = get_bits1(&gb); sconf->frame_length = get_bits(&gb, 16) + 1; sconf->ra_distance = get_bits(&gb, 8); sconf->ra_flag = get_bits(&gb, 2); sconf->adapt_order = get_bits1(&gb); sconf->coef_table = get_bits(&gb, 2); sconf->long_term_prediction = get_bits1(&gb); sconf->max_order = get_bits(&gb, 10); sconf->block_switching = get_bits(&gb, 2); sconf->bgmc = get_bits1(&gb); sconf->sb_part = get_bits1(&gb); sconf->joint_stereo = get_bits1(&gb); sconf->mc_coding = get_bits1(&gb); sconf->chan_config = get_bits1(&gb); sconf->chan_sort = get_bits1(&gb); sconf->crc_enabled = get_bits1(&gb); sconf->rlslms = get_bits1(&gb); skip_bits(&gb, 5); // skip 5 reserved bits skip_bits1(&gb); // skip aux_data_enabled // check for ALSSpecificConfig struct if (als_id != MKBETAG('A','L','S','\0')) return -1; ctx->cur_frame_length = sconf->frame_length; // read channel config if (sconf->chan_config) sconf->chan_config_info = get_bits(&gb, 16); // TODO: use this to set avctx->channel_layout // read channel sorting if (sconf->chan_sort && avctx->channels > 1) { int chan_pos_bits = av_ceil_log2(avctx->channels); int bits_needed = avctx->channels * chan_pos_bits + 7; if (get_bits_left(&gb) < bits_needed) return -1; if (!(sconf->chan_pos = av_malloc(avctx->channels * sizeof(*sconf->chan_pos)))) return AVERROR(ENOMEM); ctx->cs_switch = 1; for (i = 0; i < avctx->channels; i++) { int idx; idx = get_bits(&gb, chan_pos_bits); if (idx >= avctx->channels) { av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n"); ctx->cs_switch = 0; break; } sconf->chan_pos[idx] = i; } align_get_bits(&gb); } // read fixed header and trailer sizes, // if size = 0xFFFFFFFF then there is no data field! if (get_bits_left(&gb) < 64) return -1; header_size = get_bits_long(&gb, 32); trailer_size = get_bits_long(&gb, 32); if (header_size == 0xFFFFFFFF) header_size = 0; if (trailer_size == 0xFFFFFFFF) trailer_size = 0; ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3; // skip the header and trailer data if (get_bits_left(&gb) < ht_size) return -1; if (ht_size > INT32_MAX) return -1; skip_bits_long(&gb, ht_size); // initialize CRC calculation if (sconf->crc_enabled) { if (get_bits_left(&gb) < 32) return -1; if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) { ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE); ctx->crc = 0xFFFFFFFF; ctx->crc_org = ~get_bits_long(&gb, 32); } else skip_bits_long(&gb, 32); } // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data) dprint_specific_config(ctx); return 0; } | 14,055 |
1 | static int v4l2_receive_frame(AVCodecContext *avctx, AVFrame *frame) { V4L2m2mContext *s = avctx->priv_data; V4L2Context *const capture = &s->capture; V4L2Context *const output = &s->output; AVPacket avpkt = {0}; int ret; ret = ff_decode_get_packet(avctx, &avpkt); if (ret < 0 && ret != AVERROR_EOF) return ret; if (s->draining) goto dequeue; ret = ff_v4l2_context_enqueue_packet(output, &avpkt); if (ret < 0) { if (ret != AVERROR(ENOMEM)) return ret; /* no input buffers available, continue dequeing */ } if (avpkt.size) { ret = v4l2_try_start(avctx); if (ret) return 0; } dequeue: return ff_v4l2_context_dequeue_frame(capture, frame); } | 14,057 |
1 | static int jpeg2000_decode_tile(Jpeg2000DecoderContext *s, Jpeg2000Tile *tile, AVFrame *picture) { int compno, reslevelno, bandno; int x, y; uint8_t *line; Jpeg2000T1Context t1; /* Loop on tile components */ for (compno = 0; compno < s->ncomponents; compno++) { Jpeg2000Component *comp = tile->comp + compno; Jpeg2000CodingStyle *codsty = tile->codsty + compno; /* Loop on resolution levels */ for (reslevelno = 0; reslevelno < codsty->nreslevels2decode; reslevelno++) { Jpeg2000ResLevel *rlevel = comp->reslevel + reslevelno; /* Loop on bands */ for (bandno = 0; bandno < rlevel->nbands; bandno++) { uint16_t nb_precincts, precno; Jpeg2000Band *band = rlevel->band + bandno; int cblkno = 0, bandpos; bandpos = bandno + (reslevelno > 0); if (band->coord[0][0] == band->coord[0][1] || band->coord[1][0] == band->coord[1][1]) continue; nb_precincts = rlevel->num_precincts_x * rlevel->num_precincts_y; /* Loop on precincts */ for (precno = 0; precno < nb_precincts; precno++) { Jpeg2000Prec *prec = band->prec + precno; /* Loop on codeblocks */ for (cblkno = 0; cblkno < prec->nb_codeblocks_width * prec->nb_codeblocks_height; cblkno++) { int x, y; Jpeg2000Cblk *cblk = prec->cblk + cblkno; decode_cblk(s, codsty, &t1, cblk, cblk->coord[0][1] - cblk->coord[0][0], cblk->coord[1][1] - cblk->coord[1][0], bandpos); x = cblk->coord[0][0]; y = cblk->coord[1][0]; if (codsty->transform == FF_DWT97) dequantization_float(x, y, cblk, comp, &t1, band); else dequantization_int(x, y, cblk, comp, &t1, band); } /* end cblk */ } /*end prec */ } /* end band */ } /* end reslevel */ /* inverse DWT */ ff_dwt_decode(&comp->dwt, codsty->transform == FF_DWT97 ? (void*)comp->f_data : (void*)comp->i_data); } /*end comp */ /* inverse MCT transformation */ if (tile->codsty[0].mct) mct_decode(s, tile); if (s->precision <= 8) { for (compno = 0; compno < s->ncomponents; compno++) { Jpeg2000Component *comp = tile->comp + compno; float *datap = comp->f_data; int32_t *i_datap = comp->i_data; int cbps = s->cbps[compno]; int w = tile->comp[compno].coord[0][1] - s->image_offset_x; y = tile->comp[compno].coord[1][0] - s->image_offset_y; line = picture->data[0] + y * picture->linesize[0]; for (; y < tile->comp[compno].coord[1][1] - s->image_offset_y; y += s->cdy[compno]) { uint8_t *dst; x = tile->comp[compno].coord[0][0] - s->image_offset_x; dst = line + x * s->ncomponents + compno; if (tile->codsty->transform == FF_DWT97) { for (; x < w; x += s->cdx[compno]) { int val = lrintf(*datap) + (1 << (cbps - 1)); /* DC level shift and clip see ISO 15444-1:2002 G.1.2 */ val = av_clip(val, 0, (1 << cbps) - 1); *dst = val << (8 - cbps); datap++; dst += s->ncomponents; } } else { for (; x < w; x += s->cdx[compno]) { int val = *i_datap + (1 << (cbps - 1)); /* DC level shift and clip see ISO 15444-1:2002 G.1.2 */ val = av_clip(val, 0, (1 << cbps) - 1); *dst = val << (8 - cbps); i_datap++; dst += s->ncomponents; } } line += picture->linesize[0]; } } } else { for (compno = 0; compno < s->ncomponents; compno++) { Jpeg2000Component *comp = tile->comp + compno; float *datap = comp->f_data; int32_t *i_datap = comp->i_data; uint16_t *linel; int cbps = s->cbps[compno]; int w = tile->comp[compno].coord[0][1] - s->image_offset_x; y = tile->comp[compno].coord[1][0] - s->image_offset_y; linel = (uint16_t *)picture->data[0] + y * (picture->linesize[0] >> 1); for (; y < tile->comp[compno].coord[1][1] - s->image_offset_y; y += s->cdy[compno]) { uint16_t *dst; x = tile->comp[compno].coord[0][0] - s->image_offset_x; dst = linel + (x * s->ncomponents + compno); if (tile->codsty->transform == FF_DWT97) { for (; x < w; x += s-> cdx[compno]) { int val = lrintf(*datap) + (1 << (cbps - 1)); /* DC level shift and clip see ISO 15444-1:2002 G.1.2 */ val = av_clip(val, 0, (1 << cbps) - 1); /* align 12 bit values in little-endian mode */ *dst = val << (16 - cbps); datap++; dst += s->ncomponents; } } else { for (; x < w; x += s-> cdx[compno]) { int val = *i_datap + (1 << (cbps - 1)); /* DC level shift and clip see ISO 15444-1:2002 G.1.2 */ val = av_clip(val, 0, (1 << cbps) - 1); /* align 12 bit values in little-endian mode */ *dst = val << (16 - cbps); i_datap++; dst += s->ncomponents; } } linel += picture->linesize[0] >> 1; } } } return 0; } | 14,058 |
1 | static int rtmp_open(URLContext *s, const char *uri, int flags) { RTMPContext *rt = s->priv_data; char proto[8], hostname[256], path[1024], auth[100], *fname; char *old_app, *qmark, fname_buffer[1024]; uint8_t buf[2048]; int port; AVDictionary *opts = NULL; int ret; if (rt->listen_timeout > 0) rt->listen = 1; rt->is_input = !(flags & AVIO_FLAG_WRITE); av_url_split(proto, sizeof(proto), auth, sizeof(auth), hostname, sizeof(hostname), &port, path, sizeof(path), s->filename); if (strchr(path, ' ')) { av_log(s, AV_LOG_WARNING, "Detected librtmp style URL parameters, these aren't supported " "by the libavformat internal RTMP handler currently enabled. " "See the documentation for the correct way to pass parameters.\n"); } if (auth[0]) { char *ptr = strchr(auth, ':'); if (ptr) { *ptr = '\0'; av_strlcpy(rt->username, auth, sizeof(rt->username)); av_strlcpy(rt->password, ptr + 1, sizeof(rt->password)); } } if (rt->listen && strcmp(proto, "rtmp")) { av_log(s, AV_LOG_ERROR, "rtmp_listen not available for %s\n", proto); return AVERROR(EINVAL); } if (!strcmp(proto, "rtmpt") || !strcmp(proto, "rtmpts")) { if (!strcmp(proto, "rtmpts")) av_dict_set(&opts, "ffrtmphttp_tls", "1", 1); /* open the http tunneling connection */ ff_url_join(buf, sizeof(buf), "ffrtmphttp", NULL, hostname, port, NULL); } else if (!strcmp(proto, "rtmps")) { /* open the tls connection */ if (port < 0) port = RTMPS_DEFAULT_PORT; ff_url_join(buf, sizeof(buf), "tls", NULL, hostname, port, NULL); } else if (!strcmp(proto, "rtmpe") || (!strcmp(proto, "rtmpte"))) { if (!strcmp(proto, "rtmpte")) av_dict_set(&opts, "ffrtmpcrypt_tunneling", "1", 1); /* open the encrypted connection */ ff_url_join(buf, sizeof(buf), "ffrtmpcrypt", NULL, hostname, port, NULL); rt->encrypted = 1; } else { /* open the tcp connection */ if (port < 0) port = RTMP_DEFAULT_PORT; if (rt->listen) ff_url_join(buf, sizeof(buf), "tcp", NULL, hostname, port, "?listen&listen_timeout=%d", rt->listen_timeout * 1000); else ff_url_join(buf, sizeof(buf), "tcp", NULL, hostname, port, NULL); } reconnect: if ((ret = ffurl_open(&rt->stream, buf, AVIO_FLAG_READ_WRITE, &s->interrupt_callback, &opts)) < 0) { av_log(s , AV_LOG_ERROR, "Cannot open connection %s\n", buf); goto fail; } if (rt->swfverify) { if ((ret = rtmp_calc_swfhash(s)) < 0) goto fail; } rt->state = STATE_START; if (!rt->listen && (ret = rtmp_handshake(s, rt)) < 0) goto fail; if (rt->listen && (ret = rtmp_server_handshake(s, rt)) < 0) goto fail; rt->out_chunk_size = 128; rt->in_chunk_size = 128; // Probably overwritten later rt->state = STATE_HANDSHAKED; // Keep the application name when it has been defined by the user. old_app = rt->app; rt->app = av_malloc(APP_MAX_LENGTH); if (!rt->app) { ret = AVERROR(ENOMEM); goto fail; } //extract "app" part from path qmark = strchr(path, '?'); if (qmark && strstr(qmark, "slist=")) { char* amp; // After slist we have the playpath, before the params, the app av_strlcpy(rt->app, path + 1, FFMIN(qmark - path, APP_MAX_LENGTH)); fname = strstr(path, "slist=") + 6; // Strip any further query parameters from fname amp = strchr(fname, '&'); if (amp) { av_strlcpy(fname_buffer, fname, FFMIN(amp - fname + 1, sizeof(fname_buffer))); fname = fname_buffer; } } else if (!strncmp(path, "/ondemand/", 10)) { fname = path + 10; memcpy(rt->app, "ondemand", 9); } else { char *next = *path ? path + 1 : path; char *p = strchr(next, '/'); if (!p) { fname = next; rt->app[0] = '\0'; } else { // make sure we do not mismatch a playpath for an application instance char *c = strchr(p + 1, ':'); fname = strchr(p + 1, '/'); if (!fname || (c && c < fname)) { fname = p + 1; av_strlcpy(rt->app, path + 1, FFMIN(p - path, APP_MAX_LENGTH)); } else { fname++; av_strlcpy(rt->app, path + 1, FFMIN(fname - path - 1, APP_MAX_LENGTH)); } } } if (old_app) { // The name of application has been defined by the user, override it. if (strlen(old_app) >= APP_MAX_LENGTH) { ret = AVERROR(EINVAL); goto fail; } av_free(rt->app); rt->app = old_app; } if (!rt->playpath) { int len = strlen(fname); rt->playpath = av_malloc(PLAYPATH_MAX_LENGTH); if (!rt->playpath) { ret = AVERROR(ENOMEM); goto fail; } if (!strchr(fname, ':') && len >= 4 && (!strcmp(fname + len - 4, ".f4v") || !strcmp(fname + len - 4, ".mp4"))) { memcpy(rt->playpath, "mp4:", 5); } else { if (len >= 4 && !strcmp(fname + len - 4, ".flv")) fname[len - 4] = '\0'; rt->playpath[0] = 0; } av_strlcat(rt->playpath, fname, PLAYPATH_MAX_LENGTH); } if (!rt->tcurl) { rt->tcurl = av_malloc(TCURL_MAX_LENGTH); if (!rt->tcurl) { ret = AVERROR(ENOMEM); goto fail; } ff_url_join(rt->tcurl, TCURL_MAX_LENGTH, proto, NULL, hostname, port, "/%s", rt->app); } if (!rt->flashver) { rt->flashver = av_malloc(FLASHVER_MAX_LENGTH); if (!rt->flashver) { ret = AVERROR(ENOMEM); goto fail; } if (rt->is_input) { snprintf(rt->flashver, FLASHVER_MAX_LENGTH, "%s %d,%d,%d,%d", RTMP_CLIENT_PLATFORM, RTMP_CLIENT_VER1, RTMP_CLIENT_VER2, RTMP_CLIENT_VER3, RTMP_CLIENT_VER4); } else { snprintf(rt->flashver, FLASHVER_MAX_LENGTH, "FMLE/3.0 (compatible; %s)", LIBAVFORMAT_IDENT); } } rt->client_report_size = 1048576; rt->bytes_read = 0; rt->has_audio = 0; rt->has_video = 0; rt->received_metadata = 0; rt->last_bytes_read = 0; rt->server_bw = 2500000; av_log(s, AV_LOG_DEBUG, "Proto = %s, path = %s, app = %s, fname = %s\n", proto, path, rt->app, rt->playpath); if (!rt->listen) { if ((ret = gen_connect(s, rt)) < 0) goto fail; } else { if ((ret = read_connect(s, s->priv_data)) < 0) goto fail; } do { ret = get_packet(s, 1); } while (ret == AVERROR(EAGAIN)); if (ret < 0) goto fail; if (rt->do_reconnect) { int i; ffurl_close(rt->stream); rt->stream = NULL; rt->do_reconnect = 0; rt->nb_invokes = 0; for (i = 0; i < 2; i++) memset(rt->prev_pkt[i], 0, sizeof(**rt->prev_pkt) * rt->nb_prev_pkt[i]); free_tracked_methods(rt); goto reconnect; } if (rt->is_input) { int err; // generate FLV header for demuxer rt->flv_size = 13; if ((err = av_reallocp(&rt->flv_data, rt->flv_size)) < 0) return err; rt->flv_off = 0; memcpy(rt->flv_data, "FLV\1\0\0\0\0\011\0\0\0\0", rt->flv_size); // Read packets until we reach the first A/V packet or read metadata. // If there was a metadata package in front of the A/V packets, we can // build the FLV header from this. If we do not receive any metadata, // the FLV decoder will allocate the needed streams when their first // audio or video packet arrives. while (!rt->has_audio && !rt->has_video && !rt->received_metadata) { if ((ret = get_packet(s, 0)) < 0) return ret; } // Either after we have read the metadata or (if there is none) the // first packet of an A/V stream, we have a better knowledge about the // streams, so set the FLV header accordingly. if (rt->has_audio) { rt->flv_data[4] |= FLV_HEADER_FLAG_HASAUDIO; } if (rt->has_video) { rt->flv_data[4] |= FLV_HEADER_FLAG_HASVIDEO; } } else { rt->flv_size = 0; rt->flv_data = NULL; rt->flv_off = 0; rt->skip_bytes = 13; } s->max_packet_size = rt->stream->max_packet_size; s->is_streamed = 1; return 0; fail: av_dict_free(&opts); rtmp_close(s); return ret; } | 14,059 |
1 | static int read_random(uint32_t *dst, const char *file) { int fd = open(file, O_RDONLY); int err = -1; if (fd == -1) return -1; #if HAVE_FCNTL && defined(O_NONBLOCK) if (fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_NONBLOCK) != -1) #endif err = read(fd, dst, sizeof(*dst)); close(fd); return err; } | 14,060 |
1 | static void enable_device(PIIX4PMState *s, int slot) { s->ar.gpe.sts[0] |= PIIX4_PCI_HOTPLUG_STATUS; s->pci0_status.up |= (1 << slot); } | 14,061 |
1 | static QObject *parse_literal(JSONParserContext *ctxt) { QObject *token, *obj; JSONParserContext saved_ctxt = parser_context_save(ctxt); token = parser_context_pop_token(ctxt); if (token == NULL) { goto out; } switch (token_get_type(token)) { case JSON_STRING: obj = QOBJECT(qstring_from_escaped_str(ctxt, token)); break; case JSON_INTEGER: obj = QOBJECT(qint_from_int(strtoll(token_get_value(token), NULL, 10))); break; case JSON_FLOAT: /* FIXME dependent on locale */ obj = QOBJECT(qfloat_from_double(strtod(token_get_value(token), NULL))); break; default: goto out; } return obj; out: parser_context_restore(ctxt, saved_ctxt); return NULL; } | 14,062 |
1 | void cpu_loop(CPUM68KState *env) { CPUState *cs = CPU(m68k_env_get_cpu(env)); int trapnr; unsigned int n; target_siginfo_t info; TaskState *ts = cs->opaque; for(;;) { cpu_exec_start(cs); trapnr = cpu_exec(cs); cpu_exec_end(cs); process_queued_cpu_work(cs); switch(trapnr) { case EXCP_ILLEGAL: { if (ts->sim_syscalls) { uint16_t nr; get_user_u16(nr, env->pc + 2); env->pc += 4; do_m68k_simcall(env, nr); } else { goto do_sigill; } } case EXCP_HALT_INSN: /* Semihosing syscall. */ env->pc += 4; do_m68k_semihosting(env, env->dregs[0]); case EXCP_LINEA: case EXCP_LINEF: case EXCP_UNSUPPORTED: do_sigill: info.si_signo = TARGET_SIGILL; info.si_code = TARGET_ILL_ILLOPN; case EXCP_TRAP0: { abi_long ret; ts->sim_syscalls = 0; n = env->dregs[0]; env->pc += 2; ret = do_syscall(env, n, env->dregs[1], env->dregs[2], env->dregs[3], env->dregs[4], env->dregs[5], env->aregs[0], 0, 0); if (ret == -TARGET_ERESTARTSYS) { env->pc -= 2; } else if (ret != -TARGET_QEMU_ESIGRETURN) { env->dregs[0] = ret; } } case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ case EXCP_ACCESS: { info.si_signo = TARGET_SIGSEGV; /* XXX: check env->error_code */ info.si_code = TARGET_SEGV_MAPERR; info._sifields._sigfault._addr = env->mmu.ar; } case EXCP_DEBUG: { int sig; sig = gdb_handlesig(cs, TARGET_SIGTRAP); if (sig) { info.si_signo = sig; info.si_code = TARGET_TRAP_BRKPT; } } case EXCP_ATOMIC: cpu_exec_step_atomic(cs); default: EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); abort(); } process_pending_signals(env); } } | 14,064 |
1 | void do_savevm(Monitor *mon, const QDict *qdict) { DriveInfo *dinfo; BlockDriverState *bs, *bs1; QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1; int ret; QEMUFile *f; int saved_vm_running; uint32_t vm_state_size; #ifdef _WIN32 struct _timeb tb; #else struct timeval tv; #endif const char *name = qdict_get_try_str(qdict, "name"); bs = get_bs_snapshots(); if (!bs) { monitor_printf(mon, "No block device can accept snapshots\n"); return; } /* ??? Should this occur after vm_stop? */ qemu_aio_flush(); saved_vm_running = vm_running; vm_stop(0); memset(sn, 0, sizeof(*sn)); if (name) { ret = bdrv_snapshot_find(bs, old_sn, name); if (ret >= 0) { pstrcpy(sn->name, sizeof(sn->name), old_sn->name); pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str); } else { pstrcpy(sn->name, sizeof(sn->name), name); } } /* fill auxiliary fields */ #ifdef _WIN32 _ftime(&tb); sn->date_sec = tb.time; sn->date_nsec = tb.millitm * 1000000; #else gettimeofday(&tv, NULL); sn->date_sec = tv.tv_sec; sn->date_nsec = tv.tv_usec * 1000; #endif sn->vm_clock_nsec = qemu_get_clock(vm_clock); /* Delete old snapshots of the same name */ if (name && del_existing_snapshots(mon, name) < 0) { goto the_end; } /* save the VM state */ f = qemu_fopen_bdrv(bs, 1); if (!f) { monitor_printf(mon, "Could not open VM state file\n"); goto the_end; } ret = qemu_savevm_state(mon, f); vm_state_size = qemu_ftell(f); qemu_fclose(f); if (ret < 0) { monitor_printf(mon, "Error %d while writing VM\n", ret); goto the_end; } /* create the snapshots */ QTAILQ_FOREACH(dinfo, &drives, next) { bs1 = dinfo->bdrv; if (bdrv_has_snapshot(bs1)) { /* Write VM state size only to the image that contains the state */ sn->vm_state_size = (bs == bs1 ? vm_state_size : 0); ret = bdrv_snapshot_create(bs1, sn); if (ret < 0) { monitor_printf(mon, "Error while creating snapshot on '%s'\n", bdrv_get_device_name(bs1)); } } } the_end: if (saved_vm_running) vm_start(); } | 14,065 |
1 | int paio_init(void) { struct sigaction act; PosixAioState *s; int fds[2]; int ret; if (posix_aio_state) return 0; s = qemu_malloc(sizeof(PosixAioState)); sigfillset(&act.sa_mask); act.sa_flags = 0; /* do not restart syscalls to interrupt select() */ act.sa_handler = aio_signal_handler; sigaction(SIGUSR2, &act, NULL); s->first_aio = NULL; if (pipe(fds) == -1) { fprintf(stderr, "failed to create pipe\n"); return -1; } s->rfd = fds[0]; s->wfd = fds[1]; fcntl(s->rfd, F_SETFL, O_NONBLOCK); fcntl(s->wfd, F_SETFL, O_NONBLOCK); qemu_aio_set_fd_handler(s->rfd, posix_aio_read, NULL, posix_aio_flush, posix_aio_process_queue, s); ret = pthread_attr_init(&attr); if (ret) die2(ret, "pthread_attr_init"); ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); if (ret) die2(ret, "pthread_attr_setdetachstate"); QTAILQ_INIT(&request_list); posix_aio_state = s; return 0; } | 14,066 |
1 | static int set_dirty_tracking(void) { BlkMigDevState *bmds; int ret; QSIMPLEQ_FOREACH(bmds, &block_mig_state.bmds_list, entry) { bmds->dirty_bitmap = bdrv_create_dirty_bitmap(bmds->bs, BLOCK_SIZE, NULL); if (!bmds->dirty_bitmap) { ret = -errno; goto fail; } } return 0; fail: QSIMPLEQ_FOREACH(bmds, &block_mig_state.bmds_list, entry) { if (bmds->dirty_bitmap) { bdrv_release_dirty_bitmap(bmds->bs, bmds->dirty_bitmap); } } return ret; } | 14,067 |
1 | static int draw_slice(AVFilterLink *link, int y, int h, int slice_dir) { SliceContext *slice = link->dst->priv; int y2, ret = 0; if (slice_dir == 1) { for (y2 = y; y2 + slice->h <= y + h; y2 += slice->h) { ret = ff_draw_slice(link->dst->outputs[0], y2, slice->h, slice_dir); if (ret < 0) return ret; } if (y2 < y + h) return ff_draw_slice(link->dst->outputs[0], y2, y + h - y2, slice_dir); } else if (slice_dir == -1) { for (y2 = y + h; y2 - slice->h >= y; y2 -= slice->h) { ret = ff_draw_slice(link->dst->outputs[0], y2 - slice->h, slice->h, slice_dir); if (ret < 0) return ret; } if (y2 > y) return ff_draw_slice(link->dst->outputs[0], y, y2 - y, slice_dir); } return 0; } | 14,068 |
1 | void cpu_check_irqs(CPUSPARCState *env) { CPUState *cs; if (env->pil_in && (env->interrupt_index == 0 || (env->interrupt_index & ~15) == TT_EXTINT)) { unsigned int i; for (i = 15; i > 0; i--) { if (env->pil_in & (1 << i)) { int old_interrupt = env->interrupt_index; env->interrupt_index = TT_EXTINT | i; if (old_interrupt != env->interrupt_index) { cs = CPU(sparc_env_get_cpu(env)); trace_sun4m_cpu_interrupt(i); cpu_interrupt(cs, CPU_INTERRUPT_HARD); } break; } } } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) { cs = CPU(sparc_env_get_cpu(env)); trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15); env->interrupt_index = 0; cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); } } | 14,069 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.