label
int64
0
1
func1
stringlengths
23
97k
id
int64
0
27.3k
1
static int rtp_write_packet(AVFormatContext *s1, AVPacket *pkt) { RTPMuxContext *s = s1->priv_data; AVStream *st = s1->streams[0]; int rtcp_bytes; int size= pkt->size; av_dlog(s1, "%d: write len=%d\n", pkt->stream_index, size); rtcp_bytes = ((s->octet_count - s->last_octet_count) * RTCP_TX_RATIO_NUM) / RTCP_TX_RATIO_DEN; if ((s->first_packet || ((rtcp_bytes >= RTCP_SR_SIZE) && (ff_ntp_time() - s->last_rtcp_ntp_time > 5000000))) && !(s->flags & FF_RTP_FLAG_SKIP_RTCP)) { rtcp_send_sr(s1, ff_ntp_time(), 0); s->last_octet_count = s->octet_count; s->first_packet = 0; } s->cur_timestamp = s->base_timestamp + pkt->pts; switch(st->codec->codec_id) { case AV_CODEC_ID_PCM_MULAW: case AV_CODEC_ID_PCM_ALAW: case AV_CODEC_ID_PCM_U8: case AV_CODEC_ID_PCM_S8: return rtp_send_samples(s1, pkt->data, size, 8 * st->codec->channels); case AV_CODEC_ID_PCM_U16BE: case AV_CODEC_ID_PCM_U16LE: case AV_CODEC_ID_PCM_S16BE: case AV_CODEC_ID_PCM_S16LE: return rtp_send_samples(s1, pkt->data, size, 16 * st->codec->channels); case AV_CODEC_ID_ADPCM_G722: /* The actual sample size is half a byte per sample, but since the * stream clock rate is 8000 Hz while the sample rate is 16000 Hz, * the correct parameter for send_samples_bits is 8 bits per stream * clock. */ return rtp_send_samples(s1, pkt->data, size, 8 * st->codec->channels); case AV_CODEC_ID_ADPCM_G726: return rtp_send_samples(s1, pkt->data, size, st->codec->bits_per_coded_sample * st->codec->channels); case AV_CODEC_ID_MP2: case AV_CODEC_ID_MP3: rtp_send_mpegaudio(s1, pkt->data, size); break; case AV_CODEC_ID_MPEG1VIDEO: case AV_CODEC_ID_MPEG2VIDEO: ff_rtp_send_mpegvideo(s1, pkt->data, size); break; case AV_CODEC_ID_AAC: if (s->flags & FF_RTP_FLAG_MP4A_LATM) ff_rtp_send_latm(s1, pkt->data, size); else ff_rtp_send_aac(s1, pkt->data, size); break; case AV_CODEC_ID_AMR_NB: case AV_CODEC_ID_AMR_WB: ff_rtp_send_amr(s1, pkt->data, size); break; case AV_CODEC_ID_MPEG2TS: rtp_send_mpegts_raw(s1, pkt->data, size); break; case AV_CODEC_ID_H264: ff_rtp_send_h264(s1, pkt->data, size); break; case AV_CODEC_ID_H261: ff_rtp_send_h261(s1, pkt->data, size); break; case AV_CODEC_ID_H263: if (s->flags & FF_RTP_FLAG_RFC2190) { int mb_info_size = 0; const uint8_t *mb_info = av_packet_get_side_data(pkt, AV_PKT_DATA_H263_MB_INFO, &mb_info_size); ff_rtp_send_h263_rfc2190(s1, pkt->data, size, mb_info, mb_info_size); break; } /* Fallthrough */ case AV_CODEC_ID_H263P: ff_rtp_send_h263(s1, pkt->data, size); break; case AV_CODEC_ID_HEVC: ff_rtp_send_hevc(s1, pkt->data, size); break; case AV_CODEC_ID_VORBIS: case AV_CODEC_ID_THEORA: ff_rtp_send_xiph(s1, pkt->data, size); break; case AV_CODEC_ID_VP8: ff_rtp_send_vp8(s1, pkt->data, size); break; case AV_CODEC_ID_ILBC: rtp_send_ilbc(s1, pkt->data, size); break; case AV_CODEC_ID_MJPEG: ff_rtp_send_jpeg(s1, pkt->data, size); break; case AV_CODEC_ID_OPUS: if (size > s->max_payload_size) { av_log(s1, AV_LOG_ERROR, "Packet size %d too large for max RTP payload size %d\n", size, s->max_payload_size); return AVERROR(EINVAL); } /* Intentional fallthrough */ default: /* better than nothing : send the codec raw data */ rtp_send_raw(s1, pkt->data, size); break; } return 0; }
13,708
1
static void cirrus_do_copy(CirrusVGAState *s, int dst, int src, int w, int h) { int sx, sy; int dx, dy; int width, height; int depth; int notify = 0; depth = s->get_bpp((VGAState *)s) / 8; s->get_resolution((VGAState *)s, &width, &height); /* extra x, y */ sx = (src % (width * depth)) / depth; sy = (src / (width * depth)); dx = (dst % (width *depth)) / depth; dy = (dst / (width * depth)); /* normalize width */ w /= depth; /* if we're doing a backward copy, we have to adjust our x/y to be the upper left corner (instead of the lower right corner) */ if (s->cirrus_blt_dstpitch < 0) { sx -= (s->cirrus_blt_width / depth) - 1; dx -= (s->cirrus_blt_width / depth) - 1; sy -= s->cirrus_blt_height - 1; dy -= s->cirrus_blt_height - 1; } /* are we in the visible portion of memory? */ if (sx >= 0 && sy >= 0 && dx >= 0 && dy >= 0 && (sx + w) <= width && (sy + h) <= height && (dx + w) <= width && (dy + h) <= height) { notify = 1; } /* make to sure only copy if it's a plain copy ROP */ if (*s->cirrus_rop != cirrus_bitblt_rop_fwd_src && *s->cirrus_rop != cirrus_bitblt_rop_bkwd_src) notify = 0; /* we have to flush all pending changes so that the copy is generated at the appropriate moment in time */ if (notify) vga_hw_update(); (*s->cirrus_rop) (s, s->vram_ptr + (s->cirrus_blt_dstaddr & s->cirrus_addr_mask), s->vram_ptr + (s->cirrus_blt_srcaddr & s->cirrus_addr_mask), s->cirrus_blt_dstpitch, s->cirrus_blt_srcpitch, s->cirrus_blt_width, s->cirrus_blt_height); if (notify) qemu_console_copy(s->ds, sx, sy, dx, dy, s->cirrus_blt_width / depth, s->cirrus_blt_height); /* we don't have to notify the display that this portion has changed since qemu_console_copy implies this */ if (!notify) cirrus_invalidate_region(s, s->cirrus_blt_dstaddr, s->cirrus_blt_dstpitch, s->cirrus_blt_width, s->cirrus_blt_height); }
13,709
1
void vnc_write(VncState *vs, const void *data, size_t len) { buffer_reserve(&vs->output, len); if (buffer_empty(&vs->output)) { qemu_set_fd_handler2(vs->csock, NULL, vnc_client_read, vnc_client_write, vs); } buffer_append(&vs->output, data, len); }
13,710
1
static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr, const char* strmmu, CPUState *env1) { unsigned int i; target_ulong mask; for (i = 0; i < 64; i++) { if (TTE_IS_VALID(tlb[i].tte)) { mask = 0xffffffffffffe000ULL; mask <<= 3 * ((tlb[i].tte >> 61) & 3); if ((demap_addr & mask) == (tlb[i].tag & mask)) { replace_tlb_entry(&tlb[i], 0, 0, env1); #ifdef DEBUG_MMU DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i); dump_mmu(env1); #endif } //return; } } }
13,711
1
static void vda_decoder_callback(void *vda_hw_ctx, CFDictionaryRef user_info, OSStatus status, uint32_t infoFlags, CVImageBufferRef image_buffer) { struct vda_context *vda_ctx = vda_hw_ctx; if (!image_buffer) return; if (vda_ctx->cv_pix_fmt_type != CVPixelBufferGetPixelFormatType(image_buffer)) return; vda_ctx->cv_buffer = CVPixelBufferRetain(image_buffer); }
13,715
1
static int wc3_read_close(AVFormatContext *s) { Wc3DemuxContext *wc3 = s->priv_data; av_free(wc3->palettes); return 0; }
13,716
1
static int64_t cpu_get_clock_locked(void) { int64_t ti; if (!timers_state.cpu_ticks_enabled) { ti = timers_state.cpu_clock_offset; } else { ti = get_clock(); ti += timers_state.cpu_clock_offset; } return ti; }
13,717
1
int main(void){ int i,k; AVTreeNode *root= NULL, *node=NULL; for(i=0; i<10000; i++){ int j= (random()%86294); if(check(root) > 999){ av_log(NULL, AV_LOG_ERROR, "FATAL error %d\n", i); print(root, 0); return -1; } av_log(NULL, AV_LOG_ERROR, "inserting %4d\n", j); if(!node) node= av_mallocz(av_tree_node_size); av_tree_insert(&root, (void*)(j+1), cmp, &node); j= (random()%86294); k= av_tree_find(root, (void*)(j+1), cmp, NULL); if(k){ AVTreeNode *node2=NULL; av_log(NULL, AV_LOG_ERROR, "removing %4d\n", j); av_tree_insert(&root, (void*)(j+1), cmp, &node2); k= av_tree_find(root, (void*)(j+1), cmp, NULL); if(k) av_log(NULL, AV_LOG_ERROR, "removial failure %d\n", i); } } return 0; }
13,718
1
static void qpeg_decode_inter(uint8_t *src, uint8_t *dst, int size, int stride, int width, int height, int delta, uint8_t *ctable, uint8_t *refdata) { int i, j; int code; int filled = 0; uint8_t *blkdata; /* copy prev frame */ for(i = 0; i < height; i++) memcpy(refdata + (i * width), dst + (i * stride), width); blkdata = src - 0x86; height--; dst = dst + height * stride; while(size > 0) { code = *src++; size--; if(delta) { /* motion compensation */ while((code & 0xF0) == 0xF0) { if(delta == 1) { int me_idx; int me_w, me_h, me_x, me_y; uint8_t *me_plane; int corr, val; /* get block size by index */ me_idx = code & 0xF; me_w = qpeg_table_w[me_idx]; me_h = qpeg_table_h[me_idx]; /* extract motion vector */ corr = *src++; size--; val = corr >> 4; if(val > 7) val -= 16; me_x = val; val = corr & 0xF; if(val > 7) val -= 16; me_y = val; /* do motion compensation */ me_plane = refdata + (filled + me_x) + (height - me_y) * width; for(j = 0; j < me_h; j++) { for(i = 0; i < me_w; i++) dst[filled + i - (j * stride)] = me_plane[i - (j * width)]; } } code = *src++; size--; } } if(code == 0xE0) /* end-of-picture code */ break; if(code > 0xE0) { /* run code: 0xE1..0xFF */ int p; code &= 0x1F; p = *src++; size--; for(i = 0; i <= code; i++) { dst[filled++] = p; if(filled >= width) { filled = 0; dst -= stride; height--; } } } else if(code >= 0xC0) { /* copy code: 0xC0..0xDF */ code &= 0x1F; for(i = 0; i <= code; i++) { dst[filled++] = *src++; if(filled >= width) { filled = 0; dst -= stride; height--; } } size -= code + 1; } else if(code >= 0x80) { /* skip code: 0x80..0xBF */ int skip; code &= 0x3F; /* codes 0x80 and 0x81 are actually escape codes, skip value minus constant is in the next byte */ if(!code) skip = (*src++) + 64; else if(code == 1) skip = (*src++) + 320; else skip = code; filled += skip; while( filled >= width) { filled -= width; dst -= stride; height--; } } else { /* zero code treated as one-pixel skip */ if(code) dst[filled++] = ctable[code & 0x7F]; else filled++; if(filled >= width) { filled = 0; dst -= stride; height--; } } } }
13,719
1
static int cpu_sparc_find_by_name(sparc_def_t *cpu_def, const char *cpu_model) { unsigned int i; const sparc_def_t *def = NULL; char *s = strdup(cpu_model); char *featurestr, *name = strtok(s, ","); uint32_t plus_features = 0; uint32_t minus_features = 0; uint64_t iu_version; uint32_t fpu_version, mmu_version, nwindows; for (i = 0; i < ARRAY_SIZE(sparc_defs); i++) { if (strcasecmp(name, sparc_defs[i].name) == 0) { def = &sparc_defs[i]; } } if (!def) { goto error; } memcpy(cpu_def, def, sizeof(*def)); featurestr = strtok(NULL, ","); while (featurestr) { char *val; if (featurestr[0] == '+') { add_flagname_to_bitmaps(featurestr + 1, &plus_features); } else if (featurestr[0] == '-') { add_flagname_to_bitmaps(featurestr + 1, &minus_features); } else if ((val = strchr(featurestr, '='))) { *val = 0; val++; if (!strcmp(featurestr, "iu_version")) { char *err; iu_version = strtoll(val, &err, 0); if (!*val || *err) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } cpu_def->iu_version = iu_version; #ifdef DEBUG_FEATURES fprintf(stderr, "iu_version %" PRIx64 "\n", iu_version); #endif } else if (!strcmp(featurestr, "fpu_version")) { char *err; fpu_version = strtol(val, &err, 0); if (!*val || *err) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } cpu_def->fpu_version = fpu_version; #ifdef DEBUG_FEATURES fprintf(stderr, "fpu_version %x\n", fpu_version); #endif } else if (!strcmp(featurestr, "mmu_version")) { char *err; mmu_version = strtol(val, &err, 0); if (!*val || *err) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } cpu_def->mmu_version = mmu_version; #ifdef DEBUG_FEATURES fprintf(stderr, "mmu_version %x\n", mmu_version); #endif } else if (!strcmp(featurestr, "nwindows")) { char *err; nwindows = strtol(val, &err, 0); if (!*val || *err || nwindows > MAX_NWINDOWS || nwindows < MIN_NWINDOWS) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } cpu_def->nwindows = nwindows; #ifdef DEBUG_FEATURES fprintf(stderr, "nwindows %d\n", nwindows); #endif } else { fprintf(stderr, "unrecognized feature %s\n", featurestr); goto error; } } else { fprintf(stderr, "feature string `%s' not in format " "(+feature|-feature|feature=xyz)\n", featurestr); goto error; } featurestr = strtok(NULL, ","); } cpu_def->features |= plus_features; cpu_def->features &= ~minus_features; #ifdef DEBUG_FEATURES print_features(stderr, fprintf, cpu_def->features, NULL); #endif free(s); return 0; error: free(s); return -1; }
13,720
1
void spapr_drc_reset(sPAPRDRConnector *drc) { trace_spapr_drc_reset(spapr_drc_index(drc)); g_free(drc->ccs); drc->ccs = NULL; /* immediately upon reset we can safely assume DRCs whose devices * are pending removal can be safely removed. */ if (drc->awaiting_release) { spapr_drc_release(drc); } drc->awaiting_allocation = false; if (drc->dev) { /* A device present at reset is coldplugged */ drc->isolation_state = SPAPR_DR_ISOLATION_STATE_UNISOLATED; if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) { drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_USABLE; } drc->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; } else { /* Otherwise device is absent, but might be hotplugged */ drc->isolation_state = SPAPR_DR_ISOLATION_STATE_ISOLATED; if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) { drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_UNUSABLE; } drc->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; } }
13,721
1
static void clipper_init(MachineState *machine) { ram_addr_t ram_size = machine->ram_size; const char *cpu_model = machine->cpu_model; const char *kernel_filename = machine->kernel_filename; const char *kernel_cmdline = machine->kernel_cmdline; const char *initrd_filename = machine->initrd_filename; AlphaCPU *cpus[4]; PCIBus *pci_bus; ISABus *isa_bus; qemu_irq rtc_irq; long size, i; const char *palcode_filename; uint64_t palcode_entry, palcode_low, palcode_high; uint64_t kernel_entry, kernel_low, kernel_high; /* Create up to 4 cpus. */ memset(cpus, 0, sizeof(cpus)); for (i = 0; i < smp_cpus; ++i) { cpus[i] = cpu_alpha_init(cpu_model ? cpu_model : "ev67"); } cpus[0]->env.trap_arg0 = ram_size; cpus[0]->env.trap_arg1 = 0; cpus[0]->env.trap_arg2 = smp_cpus; /* Init the chipset. */ pci_bus = typhoon_init(ram_size, &isa_bus, &rtc_irq, cpus, clipper_pci_map_irq); /* Since we have an SRM-compatible PALcode, use the SRM epoch. */ rtc_init(isa_bus, 1900, rtc_irq); pit_init(isa_bus, 0x40, 0, NULL); isa_create_simple(isa_bus, "i8042"); /* VGA setup. Don't bother loading the bios. */ pci_vga_init(pci_bus); /* Serial code setup. */ serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS); /* Network setup. e1000 is good enough, failing Tulip support. */ for (i = 0; i < nb_nics; i++) { pci_nic_init_nofail(&nd_table[i], pci_bus, "e1000", NULL); } /* IDE disk setup. */ { DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS]; ide_drive_get(hd, ARRAY_SIZE(hd)); pci_cmd646_ide_init(pci_bus, hd, 0); } /* Load PALcode. Given that this is not "real" cpu palcode, but one explicitly written for the emulation, we might as well load it directly from and ELF image. */ palcode_filename = (bios_name ? bios_name : "palcode-clipper"); palcode_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, palcode_filename); if (palcode_filename == NULL) { hw_error("no palcode provided\n"); exit(1); } size = load_elf(palcode_filename, cpu_alpha_superpage_to_phys, NULL, &palcode_entry, &palcode_low, &palcode_high, 0, EM_ALPHA, 0); if (size < 0) { hw_error("could not load palcode '%s'\n", palcode_filename); exit(1); } /* Start all cpus at the PALcode RESET entry point. */ for (i = 0; i < smp_cpus; ++i) { cpus[i]->env.pal_mode = 1; cpus[i]->env.pc = palcode_entry; cpus[i]->env.palbr = palcode_entry; } /* Load a kernel. */ if (kernel_filename) { uint64_t param_offset; size = load_elf(kernel_filename, cpu_alpha_superpage_to_phys, NULL, &kernel_entry, &kernel_low, &kernel_high, 0, EM_ALPHA, 0); if (size < 0) { hw_error("could not load kernel '%s'\n", kernel_filename); exit(1); } cpus[0]->env.trap_arg1 = kernel_entry; param_offset = kernel_low - 0x6000; if (kernel_cmdline) { pstrcpy_targphys("cmdline", param_offset, 0x100, kernel_cmdline); } if (initrd_filename) { long initrd_base, initrd_size; initrd_size = get_image_size(initrd_filename); if (initrd_size < 0) { hw_error("could not load initial ram disk '%s'\n", initrd_filename); exit(1); } /* Put the initrd image as high in memory as possible. */ initrd_base = (ram_size - initrd_size) & TARGET_PAGE_MASK; load_image_targphys(initrd_filename, initrd_base, ram_size - initrd_base); address_space_stq(&address_space_memory, param_offset + 0x100, initrd_base + 0xfffffc0000000000ULL, MEMTXATTRS_UNSPECIFIED, NULL); address_space_stq(&address_space_memory, param_offset + 0x108, initrd_size, MEMTXATTRS_UNSPECIFIED, NULL); } } }
13,722
1
ogm_dshow_header(AVFormatContext *s, int idx) { struct ogg *ogg = s->priv_data; struct ogg_stream *os = ogg->streams + idx; AVStream *st = s->streams[idx]; uint8_t *p = os->buf + os->pstart; uint32_t t; if(!(*p & 1)) return 0; if(*p != 1) return 1; t = AV_RL32(p + 96); if(t == 0x05589f80){ st->codec->codec_type = AVMEDIA_TYPE_VIDEO; st->codec->codec_id = ff_codec_get_id(ff_codec_bmp_tags, AV_RL32(p + 68)); avpriv_set_pts_info(st, 64, AV_RL64(p + 164), 10000000); st->codec->width = AV_RL32(p + 176); st->codec->height = AV_RL32(p + 180); } else if(t == 0x05589f81){ st->codec->codec_type = AVMEDIA_TYPE_AUDIO; st->codec->codec_id = ff_codec_get_id(ff_codec_wav_tags, AV_RL16(p + 124)); st->codec->channels = AV_RL16(p + 126); st->codec->sample_rate = AV_RL32(p + 128); st->codec->bit_rate = AV_RL32(p + 132) * 8; } return 1; }
13,723
1
void qemu_bh_schedule(QEMUBH *bh) { AioContext *ctx; if (bh->scheduled) return; ctx = bh->ctx; bh->idle = 0; /* Make sure that: * 1. idle & any writes needed by the callback are done before the * locations are read in the aio_bh_poll. * 2. ctx is loaded before scheduled is set and the callback has a chance * to execute. */ smp_mb(); bh->scheduled = 1; aio_notify(ctx); }
13,724
1
static void emulate_spapr_hypercall(CPUPPCState *env) { env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]); }
13,727
1
static struct pathelem *add_dir_maybe(struct pathelem *path) { DIR *dir; if ((dir = opendir(path->pathname)) != NULL) { struct dirent *dirent; while ((dirent = readdir(dir)) != NULL) { if (!streq(dirent->d_name,".") && !streq(dirent->d_name,"..")){ path = add_entry(path, dirent->d_name); } } closedir(dir); } return path; }
13,729
1
static void test_qemu_strtoul_whitespace(void) { const char *str = " \t "; char f = 'X'; const char *endptr = &f; unsigned long res = 999; int err; err = qemu_strtoul(str, &endptr, 0, &res); g_assert_cmpint(err, ==, 0); g_assert_cmpint(res, ==, 0); g_assert(endptr == str); }
13,730
1
static int vmd_read_packet(AVFormatContext *s, AVPacket *pkt) { VmdDemuxContext *vmd = (VmdDemuxContext *)s->priv_data; ByteIOContext *pb = &s->pb; int ret = 0; vmd_frame_t *frame; if (vmd->current_frame >= vmd->frame_count) return -EIO; frame = &vmd->frame_table[vmd->current_frame]; /* position the stream (will probably be there already) */ url_fseek(pb, frame->frame_offset, SEEK_SET); if (av_new_packet(pkt, frame->frame_size + BYTES_PER_FRAME_RECORD)) return AVERROR_NOMEM; memcpy(pkt->data, frame->frame_record, BYTES_PER_FRAME_RECORD); ret = get_buffer(pb, pkt->data + BYTES_PER_FRAME_RECORD, frame->frame_size); if (ret != frame->frame_size) ret = -EIO; pkt->stream_index = frame->stream_index; pkt->pts = frame->pts; vmd->current_frame++; return ret; }
13,731
1
int qemu_add_balloon_handler(QEMUBalloonEvent *event_func, QEMUBalloonStatus *stat_func, void *opaque) { if (balloon_event_fn || balloon_stat_fn || balloon_opaque) { /* We're already registered one balloon handler. How many can * a guest really have? */ error_report("Another balloon device already registered"); return -1; } balloon_event_fn = event_func; balloon_stat_fn = stat_func; balloon_opaque = opaque; return 0; }
13,732
1
static int parse_object_segment(AVCodecContext *avctx, const uint8_t *buf, int buf_size) { PGSSubContext *ctx = avctx->priv_data; PGSSubObject *object; uint8_t sequence_desc; unsigned int rle_bitmap_len, width, height; int id; if (buf_size <= 4) buf_size -= 4; id = bytestream_get_be16(&buf); object = find_object(id, &ctx->objects); if (!object) { if (ctx->objects.count >= MAX_EPOCH_OBJECTS) { av_log(avctx, AV_LOG_ERROR, "Too many objects in epoch\n"); object = &ctx->objects.object[ctx->objects.count++]; object->id = id; /* skip object version number */ buf += 1; /* Read the Sequence Description to determine if start of RLE data or appended to previous RLE */ sequence_desc = bytestream_get_byte(&buf); if (!(sequence_desc & 0x80)) { /* Additional RLE data */ if (buf_size > object->rle_remaining_len) memcpy(object->rle + object->rle_data_len, buf, buf_size); object->rle_data_len += buf_size; object->rle_remaining_len -= buf_size; return 0; if (buf_size <= 7) buf_size -= 7; /* Decode rle bitmap length, stored size includes width/height data */ rle_bitmap_len = bytestream_get_be24(&buf) - 2*2; /* Get bitmap dimensions from data */ width = bytestream_get_be16(&buf); height = bytestream_get_be16(&buf); /* Make sure the bitmap is not too large */ if (avctx->width < width || avctx->height < height) { av_log(avctx, AV_LOG_ERROR, "Bitmap dimensions larger than video.\n"); object->w = width; object->h = height; av_fast_malloc(&object->rle, &object->rle_buffer_size, rle_bitmap_len); if (!object->rle) return AVERROR(ENOMEM); memcpy(object->rle, buf, buf_size); object->rle_data_len = buf_size; object->rle_remaining_len = rle_bitmap_len - buf_size; return 0;
13,733
1
static void pci_error_message(Monitor *mon) { monitor_printf(mon, "PCI devices not supported\n"); }
13,735
1
static void usbredir_interface_info(void *priv, struct usb_redir_interface_info_header *interface_info) { USBRedirDevice *dev = priv; dev->interface_info = *interface_info; /* * If we receive interface info after the device has already been * connected (ie on a set_config), re-check the filter. */ if (qemu_timer_pending(dev->attach_timer) || dev->dev.attached) { if (usbredir_check_filter(dev)) { ERROR("Device no longer matches filter after interface info " "change, disconnecting!\n"); } } }
13,737
1
static void update_irq(struct HPETTimer *timer) { qemu_irq irq; int route; if (timer->tn <= 1 && hpet_in_legacy_mode()) { /* if LegacyReplacementRoute bit is set, HPET specification requires * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC, * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC. */ if (timer->tn == 0) { irq=timer->state->irqs[0]; } else irq=timer->state->irqs[8]; } else { route=timer_int_route(timer); irq=timer->state->irqs[route]; } if (timer_enabled(timer) && hpet_enabled()) { qemu_irq_pulse(irq); } }
13,741
1
void virtio_reset(void *opaque) { VirtIODevice *vdev = opaque; VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); int i; virtio_set_status(vdev, 0); if (current_cpu) { /* Guest initiated reset */ vdev->device_endian = virtio_current_cpu_endian(); } else { /* System reset */ vdev->device_endian = virtio_default_endian(); } if (k->reset) { k->reset(vdev); } vdev->guest_features = 0; vdev->queue_sel = 0; vdev->status = 0; vdev->isr = 0; vdev->config_vector = VIRTIO_NO_VECTOR; virtio_notify_vector(vdev, vdev->config_vector); for(i = 0; i < VIRTIO_QUEUE_MAX; i++) { vdev->vq[i].vring.desc = 0; vdev->vq[i].vring.avail = 0; vdev->vq[i].vring.used = 0; vdev->vq[i].last_avail_idx = 0; vdev->vq[i].shadow_avail_idx = 0; vdev->vq[i].used_idx = 0; virtio_queue_set_vector(vdev, i, VIRTIO_NO_VECTOR); vdev->vq[i].signalled_used = 0; vdev->vq[i].signalled_used_valid = false; vdev->vq[i].notification = true; vdev->vq[i].vring.num = vdev->vq[i].vring.num_default; vdev->vq[i].inuse = 0; } }
13,742
0
int ffurl_get_short_seek(URLContext *h) { if (!h->prot->url_get_short_seek) return AVERROR(ENOSYS); return h->prot->url_get_short_seek(h); }
13,744
1
static uint64_t vmxnet3_get_command_status(VMXNET3State *s) { uint64_t ret; switch (s->last_command) { case VMXNET3_CMD_ACTIVATE_DEV: ret = (s->device_active) ? 0 : -1; VMW_CFPRN("Device active: %" PRIx64, ret); break; case VMXNET3_CMD_RESET_DEV: case VMXNET3_CMD_QUIESCE_DEV: case VMXNET3_CMD_GET_QUEUE_STATUS: ret = 0; break; case VMXNET3_CMD_GET_LINK: ret = s->link_status_and_speed; VMW_CFPRN("Link and speed: %" PRIx64, ret); break; case VMXNET3_CMD_GET_PERM_MAC_LO: ret = vmxnet3_get_mac_low(&s->perm_mac); break; case VMXNET3_CMD_GET_PERM_MAC_HI: ret = vmxnet3_get_mac_high(&s->perm_mac); break; case VMXNET3_CMD_GET_CONF_INTR: ret = vmxnet3_get_interrupt_config(s); break; case VMXNET3_CMD_GET_ADAPTIVE_RING_INFO: ret = VMXNET3_DISABLE_ADAPTIVE_RING; break; default: VMW_WRPRN("Received request for unknown command: %x", s->last_command); ret = -1; break; } return ret; }
13,745
1
static int mxpeg_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; MXpegDecodeContext *s = avctx->priv_data; MJpegDecodeContext *jpg = &s->jpg; const uint8_t *buf_end, *buf_ptr; const uint8_t *unescaped_buf_ptr; int unescaped_buf_size; int start_code; int ret; buf_ptr = buf; buf_end = buf + buf_size; jpg->got_picture = 0; s->got_mxm_bitmask = 0; while (buf_ptr < buf_end) { start_code = ff_mjpeg_find_marker(jpg, &buf_ptr, buf_end, &unescaped_buf_ptr, &unescaped_buf_size); if (start_code < 0) goto the_end; { init_get_bits(&jpg->gb, unescaped_buf_ptr, unescaped_buf_size*8); if (start_code >= APP0 && start_code <= APP15) { mxpeg_decode_app(s, unescaped_buf_ptr, unescaped_buf_size); } switch (start_code) { case SOI: if (jpg->got_picture) //emulating EOI goto the_end; break; case EOI: goto the_end; case DQT: ret = ff_mjpeg_decode_dqt(jpg); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "quantization table decode error\n"); return ret; } break; case DHT: ret = ff_mjpeg_decode_dht(jpg); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "huffman table decode error\n"); return ret; } break; case COM: ret = mxpeg_decode_com(s, unescaped_buf_ptr, unescaped_buf_size); if (ret < 0) return ret; break; case SOF0: s->got_sof_data = 0; ret = ff_mjpeg_decode_sof(jpg); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "SOF data decode error\n"); return ret; } if (jpg->interlaced) { av_log(avctx, AV_LOG_ERROR, "Interlaced mode not supported in MxPEG\n"); return AVERROR(EINVAL); } s->got_sof_data = 1; break; case SOS: if (!s->got_sof_data) { av_log(avctx, AV_LOG_WARNING, "Can not process SOS without SOF data, skipping\n"); break; } if (!jpg->got_picture) { if (jpg->first_picture) { av_log(avctx, AV_LOG_WARNING, "First picture has no SOF, skipping\n"); break; } if (!s->got_mxm_bitmask){ av_log(avctx, AV_LOG_WARNING, "Non-key frame has no MXM, skipping\n"); break; } /* use stored SOF data to allocate current picture */ av_frame_unref(jpg->picture_ptr); if ((ret = ff_get_buffer(avctx, jpg->picture_ptr, AV_GET_BUFFER_FLAG_REF)) < 0) return ret; jpg->picture_ptr->pict_type = AV_PICTURE_TYPE_P; jpg->picture_ptr->key_frame = 0; jpg->got_picture = 1; } else { jpg->picture_ptr->pict_type = AV_PICTURE_TYPE_I; jpg->picture_ptr->key_frame = 1; } if (s->got_mxm_bitmask) { AVFrame *reference_ptr = s->picture[s->picture_index ^ 1]; if (mxpeg_check_dimensions(s, jpg, reference_ptr) < 0) break; /* allocate dummy reference picture if needed */ if (!reference_ptr->data[0] && (ret = ff_get_buffer(avctx, reference_ptr, AV_GET_BUFFER_FLAG_REF)) < 0) return ret; ret = ff_mjpeg_decode_sos(jpg, s->mxm_bitmask, reference_ptr); if (ret < 0 && (avctx->err_recognition & AV_EF_EXPLODE)) return ret; } else { ret = ff_mjpeg_decode_sos(jpg, NULL, NULL); if (ret < 0 && (avctx->err_recognition & AV_EF_EXPLODE)) return ret; } break; } buf_ptr += (get_bits_count(&jpg->gb)+7) >> 3; } } the_end: if (jpg->got_picture) { int ret = av_frame_ref(data, jpg->picture_ptr); if (ret < 0) return ret; *got_frame = 1; s->picture_index ^= 1; jpg->picture_ptr = s->picture[s->picture_index]; if (!s->has_complete_frame) { if (!s->got_mxm_bitmask) s->has_complete_frame = 1; else *got_frame = 0; } } return buf_ptr - buf; }
13,746
1
int main(int argc, char* argv[]) { FILE *f[2]; uint8_t *buf[2], *plane[2][3]; int *temp; uint64_t ssd[3] = {0,0,0}; double ssim[3] = {0,0,0}; int frame_size, w, h; int frames, seek; int i; if( argc<4 || 2 != sscanf(argv[3], "%dx%d", &w, &h) ) { printf("tiny_ssim <file1.yuv> <file2.yuv> <width>x<height> [<seek>]\n"); return -1; } f[0] = fopen(argv[1], "rb"); f[1] = fopen(argv[2], "rb"); sscanf(argv[3], "%dx%d", &w, &h); frame_size = w*h*3/2; for( i=0; i<2; i++ ) { buf[i] = malloc(frame_size); plane[i][0] = buf[i]; plane[i][1] = plane[i][0] + w*h; plane[i][2] = plane[i][1] + w*h/4; } temp = malloc((2*w+12)*sizeof(*temp)); seek = argc<5 ? 0 : atoi(argv[4]); fseek(f[seek<0], seek < 0 ? -seek : seek, SEEK_SET); for( frames=0;; frames++ ) { uint64_t ssd_one[3]; double ssim_one[3]; if( fread(buf[0], frame_size, 1, f[0]) != 1) break; if( fread(buf[1], frame_size, 1, f[1]) != 1) break; for( i=0; i<3; i++ ) { ssd_one[i] = ssd_plane ( plane[0][i], plane[1][i], w*h>>2*!!i ); ssim_one[i] = ssim_plane( plane[0][i], w>>!!i, plane[1][i], w>>!!i, w>>!!i, h>>!!i, temp, NULL ); ssd[i] += ssd_one[i]; ssim[i] += ssim_one[i]; } printf("Frame %d | ", frames); print_results(ssd_one, ssim_one, 1, w, h); printf(" \r"); fflush(stdout); } if( !frames ) return 0; printf("Total %d frames | ", frames); print_results(ssd, ssim, frames, w, h); printf("\n"); return 0; }
13,747
1
static void load_linux(void *fw_cfg, const char *kernel_filename, const char *initrd_filename, const char *kernel_cmdline, target_phys_addr_t max_ram_size) { uint16_t protocol; int setup_size, kernel_size, initrd_size = 0, cmdline_size; uint32_t initrd_max; uint8_t header[8192], *setup, *kernel, *initrd_data; target_phys_addr_t real_addr, prot_addr, cmdline_addr, initrd_addr = 0; FILE *f; char *vmode; /* Align to 16 bytes as a paranoia measure */ cmdline_size = (strlen(kernel_cmdline)+16) & ~15; /* load the kernel header */ f = fopen(kernel_filename, "rb"); if (!f || !(kernel_size = get_file_size(f)) || fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != MIN(ARRAY_SIZE(header), kernel_size)) { fprintf(stderr, "qemu: could not load kernel '%s': %s\n", kernel_filename, strerror(errno)); /* kernel protocol version */ #if 0 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); #endif if (ldl_p(header+0x202) == 0x53726448) protocol = lduw_p(header+0x206); else { /* This looks like a multiboot kernel. If it is, let's stop treating it like a Linux kernel. */ if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, kernel_cmdline, kernel_size, header)) return; protocol = 0; if (protocol < 0x200 || !(header[0x211] & 0x01)) { /* Low kernel */ real_addr = 0x90000; cmdline_addr = 0x9a000 - cmdline_size; prot_addr = 0x10000; } else if (protocol < 0x202) { /* High but ancient kernel */ real_addr = 0x90000; cmdline_addr = 0x9a000 - cmdline_size; prot_addr = 0x100000; } else { /* High and recent kernel */ real_addr = 0x10000; cmdline_addr = 0x20000; prot_addr = 0x100000; #if 0 fprintf(stderr, "qemu: real_addr = 0x" TARGET_FMT_plx "\n" "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", real_addr, cmdline_addr, prot_addr); #endif /* highest address for loading the initrd */ if (protocol >= 0x203) initrd_max = ldl_p(header+0x22c); else initrd_max = 0x37ffffff; if (initrd_max >= max_ram_size-ACPI_DATA_SIZE) initrd_max = max_ram_size-ACPI_DATA_SIZE-1; fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA, (uint8_t*)strdup(kernel_cmdline), strlen(kernel_cmdline)+1); if (protocol >= 0x202) { stl_p(header+0x228, cmdline_addr); } else { stw_p(header+0x20, 0xA33F); stw_p(header+0x22, cmdline_addr-real_addr); /* handle vga= parameter */ vmode = strstr(kernel_cmdline, "vga="); if (vmode) { unsigned int video_mode; /* skip "vga=" */ vmode += 4; if (!strncmp(vmode, "normal", 6)) { video_mode = 0xffff; } else if (!strncmp(vmode, "ext", 3)) { video_mode = 0xfffe; } else if (!strncmp(vmode, "ask", 3)) { video_mode = 0xfffd; } else { video_mode = strtol(vmode, NULL, 0); stw_p(header+0x1fa, video_mode); /* loader type */ /* High nybble = B reserved for Qemu; low nybble is revision number. If this code is substantially changed, you may want to consider incrementing the revision. */ if (protocol >= 0x200) header[0x210] = 0xB0; /* heap */ if (protocol >= 0x201) { header[0x211] |= 0x80; /* CAN_USE_HEAP */ stw_p(header+0x224, cmdline_addr-real_addr-0x200); /* load initrd */ if (initrd_filename) { if (protocol < 0x200) { fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); initrd_size = get_image_size(initrd_filename); initrd_addr = (initrd_max-initrd_size) & ~4095; initrd_data = qemu_malloc(initrd_size); load_image(initrd_filename, initrd_data); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); stl_p(header+0x218, initrd_addr); stl_p(header+0x21c, initrd_size); /* load kernel and setup */ setup_size = header[0x1f1]; if (setup_size == 0) setup_size = 4; setup_size = (setup_size+1)*512; kernel_size -= setup_size; setup = qemu_malloc(setup_size); kernel = qemu_malloc(kernel_size); fseek(f, 0, SEEK_SET); if (fread(setup, 1, setup_size, f) != setup_size) { fprintf(stderr, "fread() failed\n"); if (fread(kernel, 1, kernel_size, f) != kernel_size) { fprintf(stderr, "fread() failed\n"); fclose(f); memcpy(setup, header, MIN(sizeof(header), setup_size)); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); option_rom[nb_option_roms] = "linuxboot.bin"; nb_option_roms++;
13,749
1
target_ulong spapr_hypercall(CPUPPCState *env, target_ulong opcode, target_ulong *args) { if (msr_pr) { hcall_dprintf("Hypercall made with MSR[PR]=1\n"); return H_PRIVILEGE; } if ((opcode <= MAX_HCALL_OPCODE) && ((opcode & 0x3) == 0)) { spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; if (fn) { return fn(env, spapr, opcode, args); } } else if ((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)) { spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; if (fn) { return fn(env, spapr, opcode, args); } } hcall_dprintf("Unimplemented hcall 0x" TARGET_FMT_lx "\n", opcode); return H_FUNCTION; }
13,750
1
void av_thread_message_queue_set_err_send(AVThreadMessageQueue *mq, int err) { #if HAVE_THREADS pthread_mutex_lock(&mq->lock); mq->err_send = err; pthread_cond_broadcast(&mq->cond); pthread_mutex_unlock(&mq->lock); #endif /* HAVE_THREADS */ }
13,751
0
static int piix4_pm_initfn(PCIDevice *dev) { PIIX4PMState *s = DO_UPCAST(PIIX4PMState, dev, dev); uint8_t *pci_conf; pci_conf = s->dev.config; pci_conf[0x06] = 0x80; pci_conf[0x07] = 0x02; pci_conf[0x09] = 0x00; pci_conf[0x3d] = 0x01; // interrupt pin 1 /* APM */ apm_init(dev, &s->apm, apm_ctrl_changed, s); if (s->kvm_enabled) { /* Mark SMM as already inited to prevent SMM from running. KVM does not * support SMM mode. */ pci_conf[0x5B] = 0x02; } /* XXX: which specification is used ? The i82731AB has different mappings */ pci_conf[0x90] = s->smb_io_base | 1; pci_conf[0x91] = s->smb_io_base >> 8; pci_conf[0xd2] = 0x09; pm_smbus_init(&s->dev.qdev, &s->smb); memory_region_set_enabled(&s->smb.io, pci_conf[0xd2] & 1); memory_region_add_subregion(pci_address_space_io(dev), s->smb_io_base, &s->smb.io); memory_region_init(&s->io, "piix4-pm", 64); memory_region_set_enabled(&s->io, false); memory_region_add_subregion(pci_address_space_io(dev), 0, &s->io); acpi_pm_tmr_init(&s->ar, pm_tmr_timer, &s->io); acpi_pm1_evt_init(&s->ar, pm_tmr_timer, &s->io); acpi_pm1_cnt_init(&s->ar, &s->io); acpi_gpe_init(&s->ar, GPE_LEN); s->powerdown_notifier.notify = piix4_pm_powerdown_req; qemu_register_powerdown_notifier(&s->powerdown_notifier); s->machine_ready.notify = piix4_pm_machine_ready; qemu_add_machine_init_done_notifier(&s->machine_ready); qemu_register_reset(piix4_reset, s); piix4_acpi_system_hot_add_init(pci_address_space_io(dev), dev->bus, s); return 0; }
13,752
0
static AVIndexEntry *mov_find_next_sample(AVFormatContext *s, AVStream **st) { AVIndexEntry *sample = NULL; int64_t best_dts = INT64_MAX; int i; for (i = 0; i < s->nb_streams; i++) { AVStream *avst = s->streams[i]; MOVStreamContext *msc = avst->priv_data; if (msc->pb && msc->current_sample < avst->nb_index_entries) { AVIndexEntry *current_sample = &avst->index_entries[msc->current_sample]; int64_t dts; if (msc->ctts_data) dts = av_rescale(current_sample->timestamp - msc->dts_shift - msc->ctts_data[msc->ctts_index].duration, AV_TIME_BASE, msc->time_scale); else dts = av_rescale(current_sample->timestamp, AV_TIME_BASE, msc->time_scale); av_dlog(s, "stream %d, sample %d, dts %"PRId64"\n", i, msc->current_sample, dts); if (!sample || (!s->pb->seekable && current_sample->pos < sample->pos) || (s->pb->seekable && ((msc->pb != s->pb && dts < best_dts) || (msc->pb == s->pb && ((FFABS(best_dts - dts) <= AV_TIME_BASE && current_sample->pos < sample->pos) || (FFABS(best_dts - dts) > AV_TIME_BASE && dts < best_dts)))))) { sample = current_sample; best_dts = dts; *st = avst; } } } return sample; }
13,755
0
static int kvm_put_msrs(X86CPU *cpu, int level) { CPUX86State *env = &cpu->env; int i; int ret; kvm_msr_buf_reset(cpu); kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); kvm_msr_entry_add(cpu, MSR_PAT, env->pat); if (has_msr_star) { kvm_msr_entry_add(cpu, MSR_STAR, env->star); } if (has_msr_hsave_pa) { kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); } if (has_msr_tsc_aux) { kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); } if (has_msr_tsc_adjust) { kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); } if (has_msr_misc_enable) { kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, env->msr_ia32_misc_enable); } if (has_msr_smbase) { kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); } if (has_msr_bndcfgs) { kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); } if (has_msr_xss) { kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); } #ifdef TARGET_X86_64 if (lm_capable_kernel) { kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); } #endif /* * The following MSRs have side effects on the guest or are too heavy * for normal writeback. Limit them to reset or full state updates. */ if (level >= KVM_PUT_RESET_STATE) { kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); if (has_msr_async_pf_en) { kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); } if (has_msr_pv_eoi_en) { kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); } if (has_msr_kvm_steal_time) { kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); } if (has_msr_architectural_pmu) { /* Stop the counter. */ kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); /* Set the counter values. */ for (i = 0; i < MAX_FIXED_COUNTERS; i++) { kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, env->msr_fixed_counters[i]); } for (i = 0; i < num_architectural_pmu_counters; i++) { kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, env->msr_gp_counters[i]); kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, env->msr_gp_evtsel[i]); } kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, env->msr_global_status); kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, env->msr_global_ovf_ctrl); /* Now start the PMU. */ kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, env->msr_fixed_ctr_ctrl); kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, env->msr_global_ctrl); } if (has_msr_hv_hypercall) { kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, env->msr_hv_guest_os_id); kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, env->msr_hv_hypercall); } if (has_msr_hv_vapic) { kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, env->msr_hv_vapic); } if (has_msr_hv_tsc) { kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, env->msr_hv_tsc); } if (has_msr_hv_crash) { int j; for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, env->msr_hv_crash_params[j]); kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_X64_MSR_CRASH_CTL_NOTIFY); } if (has_msr_hv_runtime) { kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); } if (cpu->hyperv_synic) { int j; kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, env->msr_hv_synic_control); kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, env->msr_hv_synic_version); kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, env->msr_hv_synic_evt_page); kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, env->msr_hv_synic_msg_page); for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, env->msr_hv_synic_sint[j]); } } if (has_msr_hv_stimer) { int j; for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, env->msr_hv_stimer_config[j]); } for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, env->msr_hv_stimer_count[j]); } } if (has_msr_mtrr) { kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); for (i = 0; i < MSR_MTRRcap_VCNT; i++) { kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), env->mtrr_var[i].base); kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), env->mtrr_var[i].mask); } } /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see * kvm_put_msr_feature_control. */ } if (env->mcg_cap) { int i; kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); if (has_msr_mcg_ext_ctl) { kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); } for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); } } ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); if (ret < 0) { return ret; } assert(ret == cpu->kvm_msr_buf->nmsrs); return 0; }
13,756
0
static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset, uint64_t value, unsigned size) { mv88w8618_pic_state *s = opaque; switch (offset) { case MP_PIC_ENABLE_SET: s->enabled |= value; break; case MP_PIC_ENABLE_CLR: s->enabled &= ~value; s->level &= ~value; break; } mv88w8618_pic_update(s); }
13,757
0
static int ram_load(QEMUFile *f, void *opaque, int version_id) { ram_addr_t addr; int flags; if (version_id != 3) return -EINVAL; do { addr = qemu_get_be64(f); flags = addr & ~TARGET_PAGE_MASK; addr &= TARGET_PAGE_MASK; if (flags & RAM_SAVE_FLAG_MEM_SIZE) { if (addr != last_ram_offset) return -EINVAL; } if (flags & RAM_SAVE_FLAG_COMPRESS) { uint8_t ch = qemu_get_byte(f); memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE); #ifndef _WIN32 if (ch == 0 && (!kvm_enabled() || kvm_has_sync_mmu())) { madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED); } #endif } else if (flags & RAM_SAVE_FLAG_PAGE) { qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE); } if (qemu_file_has_error(f)) { return -EIO; } } while (!(flags & RAM_SAVE_FLAG_EOS)); return 0; }
13,759
0
int gen_intermediate_code_internal (CPUState *env, TranslationBlock *tb, int search_pc) { DisasContext ctx, *ctxp = &ctx; opc_handler_t **table, *handler; uint32_t pc_start; uint16_t *gen_opc_end; int j, lj = -1; pc_start = tb->pc; gen_opc_ptr = gen_opc_buf; gen_opc_end = gen_opc_buf + OPC_MAX_SIZE; gen_opparam_ptr = gen_opparam_buf; ctx.nip = pc_start; ctx.tb = tb; ctx.exception = EXCP_NONE; #if defined(CONFIG_USER_ONLY) ctx.mem_idx = 0; #else ctx.supervisor = 1 - msr_pr; ctx.mem_idx = (1 - msr_pr); #endif #if defined (DO_SINGLE_STEP) /* Single step trace mode */ msr_se = 1; #endif env->access_type = ACCESS_CODE; /* Set env in case of segfault during code fetch */ while (ctx.exception == EXCP_NONE && gen_opc_ptr < gen_opc_end) { if (search_pc) { if (loglevel > 0) fprintf(logfile, "Search PC...\n"); j = gen_opc_ptr - gen_opc_buf; if (lj < j) { lj++; while (lj < j) gen_opc_instr_start[lj++] = 0; gen_opc_pc[lj] = ctx.nip; gen_opc_instr_start[lj] = 1; } } #if defined PPC_DEBUG_DISAS if (loglevel & CPU_LOG_TB_IN_ASM) { fprintf(logfile, "----------------\n"); fprintf(logfile, "nip=%08x super=%d ir=%d\n", ctx.nip, 1 - msr_pr, msr_ir); } #endif ctx.opcode = ldl_code((void *)ctx.nip); #if defined PPC_DEBUG_DISAS if (loglevel & CPU_LOG_TB_IN_ASM) { fprintf(logfile, "translate opcode %08x (%02x %02x %02x)\n", ctx.opcode, opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode)); } #endif ctx.nip += 4; table = ppc_opcodes; handler = table[opc1(ctx.opcode)]; if (is_indirect_opcode(handler)) { table = ind_table(handler); handler = table[opc2(ctx.opcode)]; if (is_indirect_opcode(handler)) { table = ind_table(handler); handler = table[opc3(ctx.opcode)]; } } /* Is opcode *REALLY* valid ? */ if (handler->handler == &gen_invalid) { if (loglevel > 0) { fprintf(logfile, "invalid/unsupported opcode: " "%02x - %02x - %02x (%08x) 0x%08x %d\n", opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), ctx.opcode, ctx.nip - 4, msr_ir); } else { printf("invalid/unsupported opcode: " "%02x - %02x - %02x (%08x) 0x%08x %d\n", opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), ctx.opcode, ctx.nip - 4, msr_ir); } } else { if ((ctx.opcode & handler->inval) != 0) { if (loglevel > 0) { fprintf(logfile, "invalid bits: %08x for opcode: " "%02x -%02x - %02x (0x%08x) (0x%08x)\n", ctx.opcode & handler->inval, opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), ctx.opcode, ctx.nip - 4); } else { printf("invalid bits: %08x for opcode: " "%02x -%02x - %02x (0x%08x) (0x%08x)\n", ctx.opcode & handler->inval, opc1(ctx.opcode), opc2(ctx.opcode), opc3(ctx.opcode), ctx.opcode, ctx.nip - 4); } RET_INVAL(ctxp); break; } } (*(handler->handler))(&ctx); /* Check trace mode exceptions */ if ((msr_be && ctx.exception == EXCP_BRANCH) || /* Check in single step trace mode * we need to stop except if: * - rfi, trap or syscall * - first instruction of an exception handler */ (msr_se && (ctx.nip < 0x100 || ctx.nip > 0xF00 || (ctx.nip & 0xFC) != 0x04) && ctx.exception != EXCP_SYSCALL && ctx.exception != EXCP_RFI && ctx.exception != EXCP_TRAP)) { RET_EXCP(ctxp, EXCP_TRACE, 0); } /* if we reach a page boundary, stop generation */ if ((ctx.nip & (TARGET_PAGE_SIZE - 1)) == 0) { RET_EXCP(ctxp, EXCP_BRANCH, 0); } } if (ctx.exception == EXCP_NONE) { gen_op_b((unsigned long)ctx.tb, ctx.nip); } else if (ctx.exception != EXCP_BRANCH) { gen_op_set_T0(0); } #if 1 /* TO BE FIXED: T0 hasn't got a proper value, which makes tb_add_jump * do bad business and then qemu crashes ! */ gen_op_set_T0(0); #endif /* Generate the return instruction */ gen_op_exit_tb(); *gen_opc_ptr = INDEX_op_end; if (search_pc) { j = gen_opc_ptr - gen_opc_buf; lj++; while (lj <= j) gen_opc_instr_start[lj++] = 0; tb->size = 0; #if 0 if (loglevel > 0) { page_dump(logfile); } #endif } else { tb->size = ctx.nip - pc_start; } #ifdef DEBUG_DISAS if (loglevel & CPU_LOG_TB_CPU) { fprintf(logfile, "---------------- excp: %04x\n", ctx.exception); cpu_ppc_dump_state(env, logfile, 0); } if (loglevel & CPU_LOG_TB_IN_ASM) { fprintf(logfile, "IN: %s\n", lookup_symbol((void *)pc_start)); disas(logfile, (void *)pc_start, ctx.nip - pc_start, 0, 0); fprintf(logfile, "\n"); } if (loglevel & CPU_LOG_TB_OP) { fprintf(logfile, "OP:\n"); dump_ops(gen_opc_buf, gen_opparam_buf); fprintf(logfile, "\n"); } #endif env->access_type = ACCESS_INT; return 0; }
13,760
0
static void bdrv_cow_init(void) { bdrv_register(&bdrv_cow); }
13,761
0
void vnc_zlib_clear(VncState *vs) { if (vs->zlib_stream.opaque) { deflateEnd(&vs->zlib_stream); } buffer_free(&vs->zlib); }
13,762
0
void bt_device_done(struct bt_device_s *dev) { struct bt_device_s **p = &dev->net->slave; while (*p && *p != dev) p = &(*p)->next; if (*p != dev) { fprintf(stderr, "%s: bad bt device \"%s\"\n", __FUNCTION__, dev->lmp_name ?: "(null)"); exit(-1); } *p = dev->next; }
13,763
0
static void s390_init(MachineState *machine) { ram_addr_t my_ram_size = machine->ram_size; MemoryRegion *sysmem = get_system_memory(); MemoryRegion *ram = g_new(MemoryRegion, 1); int increment_size = 20; void *virtio_region; hwaddr virtio_region_len; hwaddr virtio_region_start; if (machine->ram_slots) { error_report("Memory hotplug not supported by the selected machine."); exit(EXIT_FAILURE); } /* * The storage increment size is a multiple of 1M and is a power of 2. * The number of storage increments must be MAX_STORAGE_INCREMENTS or * fewer. */ while ((my_ram_size >> increment_size) > MAX_STORAGE_INCREMENTS) { increment_size++; } my_ram_size = my_ram_size >> increment_size << increment_size; /* let's propagate the changed ram size into the global variable. */ ram_size = my_ram_size; /* get a BUS */ s390_bus = s390_virtio_bus_init(&my_ram_size); s390_sclp_init(); s390_init_ipl_dev(machine->kernel_filename, machine->kernel_cmdline, machine->initrd_filename, ZIPL_FILENAME, false); s390_flic_init(); /* register hypercalls */ s390_virtio_register_hcalls(); /* allocate RAM */ memory_region_init_ram(ram, NULL, "s390.ram", my_ram_size, &error_abort); vmstate_register_ram_global(ram); memory_region_add_subregion(sysmem, 0, ram); /* clear virtio region */ virtio_region_len = my_ram_size - ram_size; virtio_region_start = ram_size; virtio_region = cpu_physical_memory_map(virtio_region_start, &virtio_region_len, true); memset(virtio_region, 0, virtio_region_len); cpu_physical_memory_unmap(virtio_region, virtio_region_len, 1, virtio_region_len); /* Initialize storage key device */ s390_skeys_init(); /* init CPUs */ s390_init_cpus(machine->cpu_model); /* Create VirtIO network adapters */ s390_create_virtio_net((BusState *)s390_bus, "virtio-net-s390"); /* Register savevm handler for guest TOD clock */ register_savevm(NULL, "todclock", 0, 1, gtod_save, gtod_load, NULL); }
13,764
0
static bool scsi_block_is_passthrough(SCSIDiskState *s, uint8_t *buf) { switch (buf[0]) { case READ_6: case READ_10: case READ_12: case READ_16: case VERIFY_10: case VERIFY_12: case VERIFY_16: case WRITE_6: case WRITE_10: case WRITE_12: case WRITE_16: case WRITE_VERIFY_10: case WRITE_VERIFY_12: case WRITE_VERIFY_16: /* If we are not using O_DIRECT, we might read stale data from the * host cache if writes were made using other commands than these * ones (such as WRITE SAME or EXTENDED COPY, etc.). So, without * O_DIRECT everything must go through SG_IO. */ if (!(bdrv_get_flags(s->qdev.conf.bs) & BDRV_O_NOCACHE)) { break; } /* MMC writing cannot be done via pread/pwrite, because it sometimes * involves writing beyond the maximum LBA or to negative LBA (lead-in). * And once you do these writes, reading from the block device is * unreliable, too. It is even possible that reads deliver random data * from the host page cache (this is probably a Linux bug). * * We might use scsi_disk_dma_reqops as long as no writing commands are * seen, but performance usually isn't paramount on optical media. So, * just make scsi-block operate the same as scsi-generic for them. */ if (s->qdev.type != TYPE_ROM) { return false; } break; default: break; } return true; }
13,765
0
int ff_lpc_calc_coefs(LPCContext *s, const int32_t *samples, int blocksize, int min_order, int max_order, int precision, int32_t coefs[][MAX_LPC_ORDER], int *shift, enum FFLPCType lpc_type, int lpc_passes, int omethod, int max_shift, int zero_shift) { double autoc[MAX_LPC_ORDER+1]; double ref[MAX_LPC_ORDER]; double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER]; int i, j, pass; int opt_order; av_assert2(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER && lpc_type > FF_LPC_TYPE_FIXED); /* reinit LPC context if parameters have changed */ if (blocksize != s->blocksize || max_order != s->max_order || lpc_type != s->lpc_type) { ff_lpc_end(s); ff_lpc_init(s, blocksize, max_order, lpc_type); } if (lpc_type == FF_LPC_TYPE_LEVINSON) { s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples); s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc); compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1); for(i=0; i<max_order; i++) ref[i] = fabs(lpc[i][i]); } else if (lpc_type == FF_LPC_TYPE_CHOLESKY) { LLSModel m[2]; double var[MAX_LPC_ORDER+1], av_uninit(weight); if(lpc_passes <= 0) lpc_passes = 2; for(pass=0; pass<lpc_passes; pass++){ av_init_lls(&m[pass&1], max_order); weight=0; for(i=max_order; i<blocksize; i++){ for(j=0; j<=max_order; j++) var[j]= samples[i-j]; if(pass){ double eval, inv, rinv; eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1); eval= (512>>pass) + fabs(eval - var[0]); inv = 1/eval; rinv = sqrt(inv); for(j=0; j<=max_order; j++) var[j] *= rinv; weight += inv; }else weight++; av_update_lls(&m[pass&1], var, 1.0); } av_solve_lls(&m[pass&1], 0.001, 0); } for(i=0; i<max_order; i++){ for(j=0; j<max_order; j++) lpc[i][j]=-m[(pass-1)&1].coeff[i][j]; ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000; } for(i=max_order-1; i>0; i--) ref[i] = ref[i-1] - ref[i]; } opt_order = max_order; if(omethod == ORDER_METHOD_EST) { opt_order = estimate_best_order(ref, min_order, max_order); i = opt_order-1; quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift); } else { for(i=min_order-1; i<max_order; i++) { quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift); } } return opt_order; }
13,766
0
static uint64_t pci_config_get_memory_base(PCIDevice *d, uint32_t base) { return ((uint64_t)pci_get_word(d->config + base) & PCI_MEMORY_RANGE_MASK) << 16; }
13,767
0
void pci_default_write_config(PCIDevice *d, uint32_t address, uint32_t val, int len) { int can_write, i; uint32_t end, addr; if (len == 4 && ((address >= 0x10 && address < 0x10 + 4 * 6) || (address >= 0x30 && address < 0x34))) { PCIIORegion *r; int reg; if ( address >= 0x30 ) { reg = PCI_ROM_SLOT; }else{ reg = (address - 0x10) >> 2; } r = &d->io_regions[reg]; if (r->size == 0) goto default_config; /* compute the stored value */ if (reg == PCI_ROM_SLOT) { /* keep ROM enable bit */ val &= (~(r->size - 1)) | 1; } else { val &= ~(r->size - 1); val |= r->type; } *(uint32_t *)(d->config + address) = cpu_to_le32(val); pci_update_mappings(d); return; } default_config: /* not efficient, but simple */ addr = address; for(i = 0; i < len; i++) { /* default read/write accesses */ switch(d->config[0x0e]) { case 0x00: case 0x80: switch(addr) { case 0x00: case 0x01: case 0x02: case 0x03: case 0x06: case 0x07: case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0e: case 0x10 ... 0x27: /* base */ case 0x2c ... 0x2f: /* read-only subsystem ID & vendor ID */ case 0x30 ... 0x33: /* rom */ case 0x3d: can_write = 0; break; default: can_write = 1; break; } break; default: case 0x01: switch(addr) { case 0x00: case 0x01: case 0x02: case 0x03: case 0x06: case 0x07: case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0e: case 0x2c ... 0x2f: /* read-only subsystem ID & vendor ID */ case 0x38 ... 0x3b: /* rom */ case 0x3d: can_write = 0; break; default: can_write = 1; break; } break; } if (can_write) { /* Mask out writes to reserved bits in registers */ switch (addr) { case 0x05: val &= ~PCI_COMMAND_RESERVED_MASK_HI; break; case 0x06: val &= ~PCI_STATUS_RESERVED_MASK_LO; break; case 0x07: val &= ~PCI_STATUS_RESERVED_MASK_HI; break; } d->config[addr] = val; } if (++addr > 0xff) break; val >>= 8; } end = address + len; if (end > PCI_COMMAND && address < (PCI_COMMAND + 2)) { /* if the command register is modified, we must modify the mappings */ pci_update_mappings(d); } }
13,769
0
static int ehci_state_writeback(EHCIQueue *q, int async) { int again = 0; /* Write back the QTD from the QH area */ ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd); put_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qh.next_qtd, sizeof(EHCIqtd) >> 2); /* * EHCI specs say go horizontal here. * * We can also advance the queue here for performance reasons. We * need to take care to only take that shortcut in case we've * processed the qtd just written back without errors, i.e. halt * bit is clear. */ if (q->qh.token & QTD_TOKEN_HALT) { ehci_set_state(q->ehci, async, EST_HORIZONTALQH); again = 1; } else { ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE); again = 1; } return again; }
13,770
0
static uint64_t omap_dpll_read(void *opaque, target_phys_addr_t addr, unsigned size) { struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque; if (size != 2) { return omap_badwidth_read16(opaque, addr); } if (addr == 0x00) /* CTL_REG */ return s->mode; OMAP_BAD_REG(addr); return 0; }
13,771
1
static QEMUCursor *qxl_cursor(PCIQXLDevice *qxl, QXLCursor *cursor) { QEMUCursor *c; uint8_t *image, *mask; size_t size; c = cursor_alloc(cursor->header.width, cursor->header.height); c->hot_x = cursor->header.hot_spot_x; c->hot_y = cursor->header.hot_spot_y; switch (cursor->header.type) { case SPICE_CURSOR_TYPE_ALPHA: size = sizeof(uint32_t) * cursor->header.width * cursor->header.height; memcpy(c->data, cursor->chunk.data, size); if (qxl->debug > 2) { cursor_print_ascii_art(c, "qxl/alpha"); } break; case SPICE_CURSOR_TYPE_MONO: mask = cursor->chunk.data; image = mask + cursor_get_mono_bpl(c) * c->width; cursor_set_mono(c, 0xffffff, 0x000000, image, 1, mask); if (qxl->debug > 2) { cursor_print_ascii_art(c, "qxl/mono"); } break; default: fprintf(stderr, "%s: not implemented: type %d\n", __FUNCTION__, cursor->header.type); goto fail; } return c; fail: cursor_put(c); return NULL; }
13,774
1
static inline int silk_is_lpc_stable(const int16_t lpc[16], int order) { int k, j, DC_resp = 0; int32_t lpc32[2][16]; // Q24 int totalinvgain = 1 << 30; // 1.0 in Q30 int32_t *row = lpc32[0], *prevrow; /* initialize the first row for the Levinson recursion */ for (k = 0; k < order; k++) { DC_resp += lpc[k]; row[k] = lpc[k] * 4096; } if (DC_resp >= 4096) return 0; /* check if prediction gain pushes any coefficients too far */ for (k = order - 1; 1; k--) { int rc; // Q31; reflection coefficient int gaindiv; // Q30; inverse of the gain (the divisor) int gain; // gain for this reflection coefficient int fbits; // fractional bits used for the gain int error; // Q29; estimate of the error of our partial estimate of 1/gaindiv if (FFABS(row[k]) > 16773022) return 0; rc = -(row[k] * 128); gaindiv = (1 << 30) - MULH(rc, rc); totalinvgain = MULH(totalinvgain, gaindiv) << 2; if (k == 0) return (totalinvgain >= 107374); /* approximate 1.0/gaindiv */ fbits = opus_ilog(gaindiv); gain = ((1 << 29) - 1) / (gaindiv >> (fbits + 1 - 16)); // Q<fbits-16> error = (1 << 29) - MULL(gaindiv << (15 + 16 - fbits), gain, 16); gain = ((gain << 16) + (error * gain >> 13)); /* switch to the next row of the LPC coefficients */ prevrow = row; row = lpc32[k & 1]; for (j = 0; j < k; j++) { int x = prevrow[j] - ROUND_MULL(prevrow[k - j - 1], rc, 31); row[j] = ROUND_MULL(x, gain, fbits); } } }
13,775
1
static inline int mov_get_stsc_samples(MOVStreamContext *sc, int index) { int chunk_count; if (mov_stsc_index_valid(index, sc->stsc_count)) chunk_count = sc->stsc_data[index + 1].first - sc->stsc_data[index].first; else chunk_count = sc->chunk_count - (sc->stsc_data[index].first - 1); return sc->stsc_data[index].count * chunk_count; }
13,776
1
static void test_machine(const void *data) { const testdef_t *test = data; char *args; char tmpname[] = "/tmp/qtest-boot-serial-XXXXXX"; int fd; fd = mkstemp(tmpname); g_assert(fd != -1); args = g_strdup_printf("-M %s,accel=tcg -chardev file,id=serial0,path=%s" " -serial chardev:serial0 %s", test->machine, tmpname, test->extra); qtest_start(args); unlink(tmpname); check_guest_output(test, fd); qtest_quit(global_qtest); g_free(args); close(fd); }
13,777
0
static int write_number(void *obj, const AVOption *o, void *dst, double num, int den, int64_t intnum) { if (o->max*den < num*intnum || o->min*den > num*intnum) { av_log(obj, AV_LOG_ERROR, "Value %f for parameter '%s' out of range\n", num*intnum/den, o->name); return AVERROR(ERANGE); } switch (o->type) { case AV_OPT_TYPE_FLAGS: case AV_OPT_TYPE_INT: *(int *)dst= llrint(num/den)*intnum; break; case AV_OPT_TYPE_INT64: *(int64_t *)dst= llrint(num/den)*intnum; break; case AV_OPT_TYPE_FLOAT: *(float *)dst= num*intnum/den; break; case AV_OPT_TYPE_DOUBLE:*(double *)dst= num*intnum/den; break; case AV_OPT_TYPE_RATIONAL: if ((int)num == num) *(AVRational*)dst= (AVRational){num*intnum, den}; else *(AVRational*)dst= av_d2q(num*intnum/den, 1<<24); break; default: return AVERROR(EINVAL); } return 0; }
13,778
1
static void rtas_stop_self(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); cs->halted = 1; qemu_cpu_kick(cs); /* * While stopping a CPU, the guest calls H_CPPR which * effectively disables interrupts on XICS level. * However decrementer interrupts in TCG can still * wake the CPU up so here we disable interrupts in MSR * as well. * As rtas_start_cpu() resets the whole MSR anyway, there is * no need to bother with specific bits, we just clear it. */ env->msr = 0; }
13,779
1
static void count_colors(AVCodecContext *avctx, unsigned hits[33], const AVSubtitleRect *r) { DVDSubtitleContext *dvdc = avctx->priv_data; unsigned count[256] = { 0 }; uint32_t *palette = (uint32_t *)r->pict.data[1]; uint32_t color; int x, y, i, j, match, d, best_d, av_uninit(best_j); uint8_t *p = r->pict.data[0]; for (y = 0; y < r->h; y++) { for (x = 0; x < r->w; x++) count[*(p++)]++; p += r->pict.linesize[0] - r->w; } for (i = 0; i < 256; i++) { if (!count[i]) /* avoid useless search */ continue; color = palette[i]; /* 0: transparent, 1-16: semi-transparent, 17-33 opaque */ match = color < 0x33000000 ? 0 : color < 0xCC000000 ? 1 : 17; if (match) { best_d = INT_MAX; for (j = 0; j < 16; j++) { d = color_distance(color & 0xFFFFFF, dvdc->global_palette[j]); if (d < best_d) { best_d = d; best_j = j; } } match += best_j; } hits[match] += count[i]; } }
13,780
1
Coroutine *qemu_coroutine_new(void) { const size_t stack_size = 1 << 20; CoroutineUContext *co; CoroutineThreadState *coTS; struct sigaction sa; struct sigaction osa; stack_t ss; stack_t oss; sigset_t sigs; sigset_t osigs; jmp_buf old_env; /* The way to manipulate stack is with the sigaltstack function. We * prepare a stack, with it delivering a signal to ourselves and then * put sigsetjmp/siglongjmp where needed. * This has been done keeping coroutine-ucontext as a model and with the * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics * of the coroutines and see pth_mctx.c (from the pth project) for the * sigaltstack way of manipulating stacks. */ co = g_malloc0(sizeof(*co)); co->stack = g_malloc(stack_size); co->base.entry_arg = &old_env; /* stash away our jmp_buf */ coTS = coroutine_get_thread_state(); coTS->tr_handler = co; /* * Preserve the SIGUSR2 signal state, block SIGUSR2, * and establish our signal handler. The signal will * later transfer control onto the signal stack. */ sigemptyset(&sigs); sigaddset(&sigs, SIGUSR2); pthread_sigmask(SIG_BLOCK, &sigs, &osigs); sa.sa_handler = coroutine_trampoline; sigfillset(&sa.sa_mask); sa.sa_flags = SA_ONSTACK; if (sigaction(SIGUSR2, &sa, &osa) != 0) { abort(); } /* * Set the new stack. */ ss.ss_sp = co->stack; ss.ss_size = stack_size; ss.ss_flags = 0; if (sigaltstack(&ss, &oss) < 0) { abort(); } /* * Now transfer control onto the signal stack and set it up. * It will return immediately via "return" after the sigsetjmp() * was performed. Be careful here with race conditions. The * signal can be delivered the first time sigsuspend() is * called. */ coTS->tr_called = 0; pthread_kill(pthread_self(), SIGUSR2); sigfillset(&sigs); sigdelset(&sigs, SIGUSR2); while (!coTS->tr_called) { sigsuspend(&sigs); } /* * Inform the system that we are back off the signal stack by * removing the alternative signal stack. Be careful here: It * first has to be disabled, before it can be removed. */ sigaltstack(NULL, &ss); ss.ss_flags = SS_DISABLE; if (sigaltstack(&ss, NULL) < 0) { abort(); } sigaltstack(NULL, &ss); if (!(oss.ss_flags & SS_DISABLE)) { sigaltstack(&oss, NULL); } /* * Restore the old SIGUSR2 signal handler and mask */ sigaction(SIGUSR2, &osa, NULL); pthread_sigmask(SIG_SETMASK, &osigs, NULL); /* * Now enter the trampoline again, but this time not as a signal * handler. Instead we jump into it directly. The functionally * redundant ping-pong pointer arithmetic is necessary to avoid * type-conversion warnings related to the `volatile' qualifier and * the fact that `jmp_buf' usually is an array type. */ if (!sigsetjmp(old_env, 0)) { siglongjmp(coTS->tr_reenter, 1); } /* * Ok, we returned again, so now we're finished */ return &co->base; }
13,781
1
static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr, hwaddr addr, uint64_t *value, unsigned size, unsigned shift, uint64_t mask, MemTxAttrs attrs) { uint64_t tmp = 0; MemTxResult r; r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs); if (mr->subpage) { trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size); } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) { hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr); trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size); } *value |= (tmp & mask) << shift; return r; }
13,782
1
void kvm_arch_remove_all_hw_breakpoints(void) { }
13,783
1
static inline void RENAME(rgb24ToUV)(uint8_t *dstU, uint8_t *dstV, uint8_t *src1, uint8_t *src2, int width) { int i; assert(src1==src2); for(i=0; i<width; i++) { int r= src1[6*i + 0] + src1[6*i + 3]; int g= src1[6*i + 1] + src1[6*i + 4]; int b= src1[6*i + 2] + src1[6*i + 5]; dstU[i]= ((RU*r + GU*g + BU*b)>>(RGB2YUV_SHIFT+1)) + 128; dstV[i]= ((RV*r + GV*g + BV*b)>>(RGB2YUV_SHIFT+1)) + 128; } }
13,785
1
void ff_filter_samples(AVFilterLink *link, AVFilterBufferRef *samplesref) { void (*filter_samples)(AVFilterLink *, AVFilterBufferRef *); AVFilterPad *dst = link->dstpad; FF_DPRINTF_START(NULL, filter_samples); ff_dlog_link(NULL, link, 1); if (!(filter_samples = dst->filter_samples)) filter_samples = ff_default_filter_samples; /* prepare to copy the samples if the buffer has insufficient permissions */ if ((dst->min_perms & samplesref->perms) != dst->min_perms || dst->rej_perms & samplesref->perms) { int i, planar = av_sample_fmt_is_planar(samplesref->format); int planes = !planar ? 1: av_get_channel_layout_nb_channels(samplesref->audio->channel_layout); av_log(link->dst, AV_LOG_DEBUG, "Copying audio data in avfilter (have perms %x, need %x, reject %x)\n", samplesref->perms, link->dstpad->min_perms, link->dstpad->rej_perms); link->cur_buf = ff_default_get_audio_buffer(link, dst->min_perms, samplesref->audio->nb_samples); link->cur_buf->pts = samplesref->pts; link->cur_buf->audio->sample_rate = samplesref->audio->sample_rate; /* Copy actual data into new samples buffer */ for (i = 0; i < planes; i++) memcpy(link->cur_buf->extended_data[i], samplesref->extended_data[i], samplesref->linesize[0]); avfilter_unref_buffer(samplesref); } else link->cur_buf = samplesref; filter_samples(link, link->cur_buf); }
13,786
1
int nbd_send_request(int csock, struct nbd_request *request) { uint8_t buf[4 + 4 + 8 + 8 + 4]; cpu_to_be32w((uint32_t*)buf, NBD_REQUEST_MAGIC); cpu_to_be32w((uint32_t*)(buf + 4), request->type); cpu_to_be64w((uint64_t*)(buf + 8), request->handle); cpu_to_be64w((uint64_t*)(buf + 16), request->from); cpu_to_be32w((uint32_t*)(buf + 24), request->len); TRACE("Sending request to client: " "{ .from = %" PRIu64", .len = %u, .handle = %" PRIu64", .type=%i}", request->from, request->len, request->handle, request->type); if (write_sync(csock, buf, sizeof(buf)) != sizeof(buf)) { LOG("writing to socket failed"); errno = EINVAL; return -1; } return 0; }
13,787
1
static int movie_push_frame(AVFilterContext *ctx, unsigned out_id) { MovieContext *movie = ctx->priv; AVPacket *pkt = &movie->pkt; enum AVMediaType frame_type; MovieStream *st; int ret, got_frame = 0, pkt_out_id; AVFilterLink *outlink; if (!pkt->size) { if (movie->eof) { if (movie->st[out_id].done) { if (movie->loop_count != 1) { ret = rewind_file(ctx); if (ret < 0) return ret; movie->loop_count -= movie->loop_count > 1; av_log(ctx, AV_LOG_VERBOSE, "Stream finished, looping.\n"); return 0; /* retry */ } return AVERROR_EOF; } pkt->stream_index = movie->st[out_id].st->index; /* packet is already ready for flushing */ } else { ret = av_read_frame(movie->format_ctx, &movie->pkt0); if (ret < 0) { av_init_packet(&movie->pkt0); /* ready for flushing */ *pkt = movie->pkt0; if (ret == AVERROR_EOF) { movie->eof = 1; return 0; /* start flushing */ } return ret; } *pkt = movie->pkt0; } } pkt_out_id = pkt->stream_index > movie->max_stream_index ? -1 : movie->out_index[pkt->stream_index]; if (pkt_out_id < 0) { av_free_packet(&movie->pkt0); pkt->size = 0; /* ready for next run */ pkt->data = NULL; return 0; } st = &movie->st[pkt_out_id]; outlink = ctx->outputs[pkt_out_id]; movie->frame = av_frame_alloc(); if (!movie->frame) return AVERROR(ENOMEM); frame_type = st->st->codec->codec_type; switch (frame_type) { case AVMEDIA_TYPE_VIDEO: ret = avcodec_decode_video2(st->st->codec, movie->frame, &got_frame, pkt); break; case AVMEDIA_TYPE_AUDIO: ret = avcodec_decode_audio4(st->st->codec, movie->frame, &got_frame, pkt); break; default: ret = AVERROR(ENOSYS); break; } if (ret < 0) { av_log(ctx, AV_LOG_WARNING, "Decode error: %s\n", av_err2str(ret)); av_frame_free(&movie->frame); av_free_packet(&movie->pkt0); movie->pkt.size = 0; movie->pkt.data = NULL; return 0; } if (!ret || st->st->codec->codec_type == AVMEDIA_TYPE_VIDEO) ret = pkt->size; pkt->data += ret; pkt->size -= ret; if (pkt->size <= 0) { av_free_packet(&movie->pkt0); pkt->size = 0; /* ready for next run */ pkt->data = NULL; } if (!got_frame) { if (!ret) st->done = 1; av_frame_free(&movie->frame); return 0; } movie->frame->pts = av_frame_get_best_effort_timestamp(movie->frame); av_dlog(ctx, "movie_push_frame(): file:'%s' %s\n", movie->file_name, describe_frame_to_str((char[1024]){0}, 1024, movie->frame, frame_type, outlink)); if (st->st->codec->codec_type == AVMEDIA_TYPE_VIDEO) { if (movie->frame->format != outlink->format) { av_log(ctx, AV_LOG_ERROR, "Format changed %s -> %s, discarding frame\n", av_get_pix_fmt_name(outlink->format), av_get_pix_fmt_name(movie->frame->format) ); av_frame_free(&movie->frame); return 0; } } ret = ff_filter_frame(outlink, movie->frame); movie->frame = NULL; if (ret < 0) return ret; return pkt_out_id == out_id; }
13,788
1
void blk_remove_bs(BlockBackend *blk) { BlockDriverState *bs; ThrottleTimers *tt; notifier_list_notify(&blk->remove_bs_notifiers, blk); if (blk->public.throttle_group_member.throttle_state) { tt = &blk->public.throttle_group_member.throttle_timers; bs = blk_bs(blk); bdrv_drained_begin(bs); throttle_timers_detach_aio_context(tt); bdrv_drained_end(bs); } blk_update_root_state(blk); bdrv_root_unref_child(blk->root); blk->root = NULL; }
13,789
1
static void vmsvga_init(DeviceState *dev, struct vmsvga_state_s *s, MemoryRegion *address_space, MemoryRegion *io) { s->scratch_size = SVGA_SCRATCH_SIZE; s->scratch = g_malloc(s->scratch_size * 4); s->vga.con = graphic_console_init(dev, 0, &vmsvga_ops, s); s->fifo_size = SVGA_FIFO_SIZE; memory_region_init_ram(&s->fifo_ram, NULL, "vmsvga.fifo", s->fifo_size, &error_abort); vmstate_register_ram_global(&s->fifo_ram); s->fifo_ptr = memory_region_get_ram_ptr(&s->fifo_ram); vga_common_init(&s->vga, OBJECT(dev), true); vga_init(&s->vga, OBJECT(dev), address_space, io, true); vmstate_register(NULL, 0, &vmstate_vga_common, &s->vga); s->new_depth = 32; }
13,790
1
static void x86_cpu_common_class_init(ObjectClass *oc, void *data) { X86CPUClass *xcc = X86_CPU_CLASS(oc); CPUClass *cc = CPU_CLASS(oc); DeviceClass *dc = DEVICE_CLASS(oc); xcc->parent_realize = dc->realize; dc->realize = x86_cpu_realizefn; dc->props = x86_cpu_properties; xcc->parent_reset = cc->reset; cc->reset = x86_cpu_reset; cc->reset_dump_flags = CPU_DUMP_FPU | CPU_DUMP_CCOP; cc->class_by_name = x86_cpu_class_by_name; cc->parse_features = x86_cpu_parse_featurestr; cc->has_work = x86_cpu_has_work; cc->do_interrupt = x86_cpu_do_interrupt; cc->cpu_exec_interrupt = x86_cpu_exec_interrupt; cc->dump_state = x86_cpu_dump_state; cc->set_pc = x86_cpu_set_pc; cc->synchronize_from_tb = x86_cpu_synchronize_from_tb; cc->gdb_read_register = x86_cpu_gdb_read_register; cc->gdb_write_register = x86_cpu_gdb_write_register; cc->get_arch_id = x86_cpu_get_arch_id; cc->get_paging_enabled = x86_cpu_get_paging_enabled; #ifdef CONFIG_USER_ONLY cc->handle_mmu_fault = x86_cpu_handle_mmu_fault; #else cc->get_memory_mapping = x86_cpu_get_memory_mapping; cc->get_phys_page_debug = x86_cpu_get_phys_page_debug; cc->write_elf64_note = x86_cpu_write_elf64_note; cc->write_elf64_qemunote = x86_cpu_write_elf64_qemunote; cc->write_elf32_note = x86_cpu_write_elf32_note; cc->write_elf32_qemunote = x86_cpu_write_elf32_qemunote; cc->vmsd = &vmstate_x86_cpu; #endif cc->gdb_num_core_regs = CPU_NB_REGS * 2 + 25; #ifndef CONFIG_USER_ONLY cc->debug_excp_handler = breakpoint_handler; #endif cc->cpu_exec_enter = x86_cpu_exec_enter; cc->cpu_exec_exit = x86_cpu_exec_exit; }
13,791
1
static int ds1225y_set_to_mode(ds1225y_t *NVRAM, nvram_open_mode mode, const char *filemode) { if (NVRAM->open_mode != mode) { if (NVRAM->file) qemu_fclose(NVRAM->file); NVRAM->file = qemu_fopen(NVRAM->filename, filemode); NVRAM->open_mode = mode; } return (NVRAM->file != NULL); }
13,792
1
static int usb_wacom_handle_data(USBDevice *dev, USBPacket *p) { USBWacomState *s = (USBWacomState *) dev; int ret = 0; switch (p->pid) { case USB_TOKEN_IN: if (p->devep == 1) { if (!(s->changed || s->idle)) return USB_RET_NAK; s->changed = 0; if (s->mode == WACOM_MODE_HID) ret = usb_mouse_poll(s, p->data, p->len); else if (s->mode == WACOM_MODE_WACOM) ret = usb_wacom_poll(s, p->data, p->len); break; } /* Fall through. */ case USB_TOKEN_OUT: default: ret = USB_RET_STALL; break; } return ret; }
13,793
1
static float quantize_band_cost(struct AACEncContext *s, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, int *bits) { const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512]; const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512]; const float CLIPPED_ESCAPE = 165140.0f*IQ; int i, j, k; float cost = 0; const int dim = cb < FIRST_PAIR_BT ? 4 : 2; int resbits = 0; #ifndef USE_REALLY_FULL_SEARCH const float Q34 = sqrtf(Q * sqrtf(Q)); const int range = aac_cb_range[cb]; const int maxval = aac_cb_maxval[cb]; int offs[4]; #endif /* USE_REALLY_FULL_SEARCH */ if (!cb) { for (i = 0; i < size; i++) cost += in[i]*in[i]; if (bits) *bits = 0; return cost * lambda; } #ifndef USE_REALLY_FULL_SEARCH offs[0] = 1; for (i = 1; i < dim; i++) offs[i] = offs[i-1]*range; quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval); #endif /* USE_REALLY_FULL_SEARCH */ for (i = 0; i < size; i += dim) { float mincost; int minidx = 0; int minbits = 0; const float *vec; #ifndef USE_REALLY_FULL_SEARCH int (*quants)[2] = &s->qcoefs[i]; mincost = 0.0f; for (j = 0; j < dim; j++) mincost += in[i+j]*in[i+j]; minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; minbits = ff_aac_spectral_bits[cb-1][minidx]; mincost = mincost * lambda + minbits; for (j = 0; j < (1<<dim); j++) { float rd = 0.0f; int curbits; int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; int same = 0; for (k = 0; k < dim; k++) { if ((j & (1 << k)) && quants[k][0] == quants[k][1]) { same = 1; break; } } if (same) continue; for (k = 0; k < dim; k++) curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k]; curbits = ff_aac_spectral_bits[cb-1][curidx]; vec = &ff_aac_codebook_vectors[cb-1][curidx*dim]; #else mincost = INFINITY; vec = ff_aac_codebook_vectors[cb-1]; for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) { float rd = 0.0f; int curbits = ff_aac_spectral_bits[cb-1][j]; #endif /* USE_REALLY_FULL_SEARCH */ if (IS_CODEBOOK_UNSIGNED(cb)) { for (k = 0; k < dim; k++) { float t = fabsf(in[i+k]); float di; if (vec[k] == 64.0f) { //FIXME: slow //do not code with escape sequence small values if (t < 39.0f*IQ) { rd = INFINITY; break; } if (t >= CLIPPED_ESCAPE) { di = t - CLIPPED_ESCAPE; curbits += 21; } else { int c = av_clip(quant(t, Q), 0, 8191); di = t - c*cbrtf(c)*IQ; curbits += av_log2(c)*2 - 4 + 1; } } else { di = t - vec[k]*IQ; } if (vec[k] != 0.0f) curbits++; rd += di*di; } } else { for (k = 0; k < dim; k++) { float di = in[i+k] - vec[k]*IQ; rd += di*di; } } rd = rd * lambda + curbits; if (rd < mincost) { mincost = rd; minidx = j; minbits = curbits; } } cost += mincost; resbits += minbits; if (cost >= uplim) return uplim; } if (bits) *bits = resbits; return cost; }
13,794
1
static void sysbus_esp_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = sysbus_esp_realize; dc->reset = sysbus_esp_hard_reset; dc->vmsd = &vmstate_sysbus_esp_scsi; set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); }
13,795
1
static int vfio_initfn(PCIDevice *pdev) { VFIODevice *pvdev, *vdev = DO_UPCAST(VFIODevice, pdev, pdev); VFIOGroup *group; char path[PATH_MAX], iommu_group_path[PATH_MAX], *group_name; ssize_t len; struct stat st; int groupid; int ret; /* Check that the host device exists */ snprintf(path, sizeof(path), "/sys/bus/pci/devices/%04x:%02x:%02x.%01x/", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); if (stat(path, &st) < 0) { error_report("vfio: error: no such host device: %s", path); return -errno; } strncat(path, "iommu_group", sizeof(path) - strlen(path) - 1); len = readlink(path, iommu_group_path, PATH_MAX); if (len <= 0) { error_report("vfio: error no iommu_group for device"); return -errno; } iommu_group_path[len] = 0; group_name = basename(iommu_group_path); if (sscanf(group_name, "%d", &groupid) != 1) { error_report("vfio: error reading %s: %m", path); return -errno; } DPRINTF("%s(%04x:%02x:%02x.%x) group %d\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, groupid); group = vfio_get_group(groupid); if (!group) { error_report("vfio: failed to get group %d", groupid); return -ENOENT; } snprintf(path, sizeof(path), "%04x:%02x:%02x.%01x", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); QLIST_FOREACH(pvdev, &group->device_list, next) { if (pvdev->host.domain == vdev->host.domain && pvdev->host.bus == vdev->host.bus && pvdev->host.slot == vdev->host.slot && pvdev->host.function == vdev->host.function) { error_report("vfio: error: device %s is already attached", path); vfio_put_group(group); return -EBUSY; } } ret = vfio_get_device(group, path, vdev); if (ret) { error_report("vfio: failed to get device %s", path); vfio_put_group(group); return ret; } /* Get a copy of config space */ ret = pread(vdev->fd, vdev->pdev.config, MIN(pci_config_size(&vdev->pdev), vdev->config_size), vdev->config_offset); if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) { ret = ret < 0 ? -errno : -EFAULT; error_report("vfio: Failed to read device config space"); goto out_put; } /* vfio emulates a lot for us, but some bits need extra love */ vdev->emulated_config_bits = g_malloc0(vdev->config_size); /* QEMU can choose to expose the ROM or not */ memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4); /* QEMU can change multi-function devices to single function, or reverse */ vdev->emulated_config_bits[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_MULTI_FUNCTION; /* Restore or clear multifunction, this is always controlled by QEMU */ if (vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { vdev->pdev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION; } else { vdev->pdev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION; } /* * Clear host resource mapping info. If we choose not to register a * BAR, such as might be the case with the option ROM, we can get * confusing, unwritable, residual addresses from the host here. */ memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24); memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4); vfio_pci_size_rom(vdev); ret = vfio_early_setup_msix(vdev); if (ret) { goto out_put; } vfio_map_bars(vdev); ret = vfio_add_capabilities(vdev); if (ret) { goto out_teardown; } /* QEMU emulates all of MSI & MSIX */ if (pdev->cap_present & QEMU_PCI_CAP_MSIX) { memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff, MSIX_CAP_LENGTH); } if (pdev->cap_present & QEMU_PCI_CAP_MSI) { memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff, vdev->msi_cap_size); } if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) { vdev->intx.mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, vfio_intx_mmap_enable, vdev); pci_device_set_intx_routing_notifier(&vdev->pdev, vfio_update_irq); ret = vfio_enable_intx(vdev); if (ret) { goto out_teardown; } } add_boot_device_path(vdev->bootindex, &pdev->qdev, NULL); vfio_register_err_notifier(vdev); return 0; out_teardown: pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); vfio_teardown_msi(vdev); vfio_unmap_bars(vdev); out_put: g_free(vdev->emulated_config_bits); vfio_put_device(vdev); vfio_put_group(group); return ret; }
13,796
1
static target_ulong disas_insn(CPUX86State *env, DisasContext *s, target_ulong pc_start) { int b, prefixes, aflag, dflag; int shift, ot; int modrm, reg, rm, mod, reg_addr, op, opreg, offset_addr, val; target_ulong next_eip, tval; int rex_w, rex_r; if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT))) { tcg_gen_debug_insn_start(pc_start); s->pc = pc_start; prefixes = 0; s->override = -1; rex_w = -1; rex_r = 0; #ifdef TARGET_X86_64 s->rex_x = 0; s->rex_b = 0; x86_64_hregs = 0; #endif s->rip_offset = 0; /* for relative ip address */ s->vex_l = 0; s->vex_v = 0; next_byte: b = cpu_ldub_code(env, s->pc); s->pc++; /* Collect prefixes. */ switch (b) { case 0xf3: prefixes |= PREFIX_REPZ; goto next_byte; case 0xf2: prefixes |= PREFIX_REPNZ; goto next_byte; case 0xf0: prefixes |= PREFIX_LOCK; goto next_byte; case 0x2e: s->override = R_CS; goto next_byte; case 0x36: s->override = R_SS; goto next_byte; case 0x3e: s->override = R_DS; goto next_byte; case 0x26: s->override = R_ES; goto next_byte; case 0x64: s->override = R_FS; goto next_byte; case 0x65: s->override = R_GS; goto next_byte; case 0x66: prefixes |= PREFIX_DATA; goto next_byte; case 0x67: prefixes |= PREFIX_ADR; goto next_byte; #ifdef TARGET_X86_64 case 0x40 ... 0x4f: if (CODE64(s)) { /* REX prefix */ rex_w = (b >> 3) & 1; rex_r = (b & 0x4) << 1; s->rex_x = (b & 0x2) << 2; REX_B(s) = (b & 0x1) << 3; x86_64_hregs = 1; /* select uniform byte register addressing */ goto next_byte; break; #endif case 0xc5: /* 2-byte VEX */ case 0xc4: /* 3-byte VEX */ /* VEX prefixes cannot be used except in 32-bit mode. Otherwise the instruction is LES or LDS. */ if (s->code32 && !s->vm86) { static const int pp_prefix[4] = { 0, PREFIX_DATA, PREFIX_REPZ, PREFIX_REPNZ }; int vex3, vex2 = cpu_ldub_code(env, s->pc); if (!CODE64(s) && (vex2 & 0xc0) != 0xc0) { /* 4.1.4.6: In 32-bit mode, bits [7:6] must be 11b, otherwise the instruction is LES or LDS. */ break; s->pc++; /* 4.1.1-4.1.3: No preceding lock, 66, f2, f3, or rex prefixes. */ if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_LOCK | PREFIX_DATA)) { #ifdef TARGET_X86_64 if (x86_64_hregs) { #endif rex_r = (~vex2 >> 4) & 8; if (b == 0xc5) { vex3 = vex2; b = cpu_ldub_code(env, s->pc++); } else { #ifdef TARGET_X86_64 s->rex_x = (~vex2 >> 3) & 8; s->rex_b = (~vex2 >> 2) & 8; #endif vex3 = cpu_ldub_code(env, s->pc++); rex_w = (vex3 >> 7) & 1; switch (vex2 & 0x1f) { case 0x01: /* Implied 0f leading opcode bytes. */ b = cpu_ldub_code(env, s->pc++) | 0x100; break; case 0x02: /* Implied 0f 38 leading opcode bytes. */ b = 0x138; break; case 0x03: /* Implied 0f 3a leading opcode bytes. */ b = 0x13a; break; default: /* Reserved for future use. */ s->vex_v = (~vex3 >> 3) & 0xf; s->vex_l = (vex3 >> 2) & 1; prefixes |= pp_prefix[vex3 & 3] | PREFIX_VEX; break; /* Post-process prefixes. */ if (CODE64(s)) { /* In 64-bit mode, the default data size is 32-bit. Select 64-bit data with rex_w, and 16-bit data with 0x66; rex_w takes precedence over 0x66 if both are present. */ dflag = (rex_w > 0 ? 2 : prefixes & PREFIX_DATA ? 0 : 1); /* In 64-bit mode, 0x67 selects 32-bit addressing. */ aflag = (prefixes & PREFIX_ADR ? 1 : 2); } else { /* In 16/32-bit mode, 0x66 selects the opposite data size. */ dflag = s->code32; if (prefixes & PREFIX_DATA) { dflag ^= 1; /* In 16/32-bit mode, 0x67 selects the opposite addressing. */ aflag = s->code32; if (prefixes & PREFIX_ADR) { aflag ^= 1; s->prefix = prefixes; s->aflag = aflag; s->dflag = dflag; /* lock generation */ if (prefixes & PREFIX_LOCK) gen_helper_lock(); /* now check op code */ reswitch: switch(b) { case 0x0f: /**************************/ /* extended op code */ b = cpu_ldub_code(env, s->pc++) | 0x100; goto reswitch; /**************************/ /* arith & logic */ case 0x00 ... 0x05: case 0x08 ... 0x0d: case 0x10 ... 0x15: case 0x18 ... 0x1d: case 0x20 ... 0x25: case 0x28 ... 0x2d: case 0x30 ... 0x35: case 0x38 ... 0x3d: { int op, f, val; op = (b >> 3) & 7; f = (b >> 1) & 3; if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; switch(f) { case 0: /* OP Ev, Gv */ modrm = cpu_ldub_code(env, s->pc++); reg = ((modrm >> 3) & 7) | rex_r; mod = (modrm >> 6) & 3; rm = (modrm & 7) | REX_B(s); if (mod != 3) { gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); opreg = OR_TMP0; } else if (op == OP_XORL && rm == reg) { xor_zero: /* xor reg, reg optimisation */ set_cc_op(s, CC_OP_CLR); gen_op_movl_T0_0(); gen_op_mov_reg_T0(ot, reg); break; } else { opreg = rm; gen_op_mov_TN_reg(ot, 1, reg); gen_op(s, op, ot, opreg); break; case 1: /* OP Gv, Ev */ modrm = cpu_ldub_code(env, s->pc++); mod = (modrm >> 6) & 3; reg = ((modrm >> 3) & 7) | rex_r; rm = (modrm & 7) | REX_B(s); if (mod != 3) { gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); gen_op_ld_T1_A0(ot + s->mem_index); } else if (op == OP_XORL && rm == reg) { goto xor_zero; } else { gen_op_mov_TN_reg(ot, 1, rm); gen_op(s, op, ot, reg); break; case 2: /* OP A, Iv */ val = insn_get(env, s, ot); gen_op_movl_T1_im(val); gen_op(s, op, ot, OR_EAX); break; break; case 0x82: if (CODE64(s)) case 0x80: /* GRP1 */ case 0x81: case 0x83: { int val; if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); mod = (modrm >> 6) & 3; rm = (modrm & 7) | REX_B(s); op = (modrm >> 3) & 7; if (mod != 3) { if (b == 0x83) s->rip_offset = 1; else s->rip_offset = insn_const_size(ot); gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); opreg = OR_TMP0; } else { opreg = rm; switch(b) { default: case 0x80: case 0x81: case 0x82: val = insn_get(env, s, ot); break; case 0x83: val = (int8_t)insn_get(env, s, OT_BYTE); break; gen_op_movl_T1_im(val); gen_op(s, op, ot, opreg); break; /**************************/ /* inc, dec, and other misc arith */ case 0x40 ... 0x47: /* inc Gv */ ot = dflag ? OT_LONG : OT_WORD; gen_inc(s, ot, OR_EAX + (b & 7), 1); break; case 0x48 ... 0x4f: /* dec Gv */ ot = dflag ? OT_LONG : OT_WORD; gen_inc(s, ot, OR_EAX + (b & 7), -1); break; case 0xf6: /* GRP3 */ case 0xf7: if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); mod = (modrm >> 6) & 3; rm = (modrm & 7) | REX_B(s); op = (modrm >> 3) & 7; if (mod != 3) { if (op == 0) s->rip_offset = insn_const_size(ot); gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); gen_op_ld_T0_A0(ot + s->mem_index); } else { gen_op_mov_TN_reg(ot, 0, rm); switch(op) { case 0: /* test */ val = insn_get(env, s, ot); gen_op_movl_T1_im(val); gen_op_testl_T0_T1_cc(); set_cc_op(s, CC_OP_LOGICB + ot); break; case 2: /* not */ tcg_gen_not_tl(cpu_T[0], cpu_T[0]); if (mod != 3) { gen_op_st_T0_A0(ot + s->mem_index); } else { gen_op_mov_reg_T0(ot, rm); break; case 3: /* neg */ tcg_gen_neg_tl(cpu_T[0], cpu_T[0]); if (mod != 3) { gen_op_st_T0_A0(ot + s->mem_index); } else { gen_op_mov_reg_T0(ot, rm); gen_op_update_neg_cc(); set_cc_op(s, CC_OP_SUBB + ot); break; case 4: /* mul */ switch(ot) { case OT_BYTE: gen_op_mov_TN_reg(OT_BYTE, 1, R_EAX); tcg_gen_ext8u_tl(cpu_T[0], cpu_T[0]); tcg_gen_ext8u_tl(cpu_T[1], cpu_T[1]); /* XXX: use 32 bit mul which could be faster */ tcg_gen_mul_tl(cpu_T[0], cpu_T[0], cpu_T[1]); gen_op_mov_reg_T0(OT_WORD, R_EAX); tcg_gen_mov_tl(cpu_cc_dst, cpu_T[0]); tcg_gen_andi_tl(cpu_cc_src, cpu_T[0], 0xff00); set_cc_op(s, CC_OP_MULB); break; case OT_WORD: gen_op_mov_TN_reg(OT_WORD, 1, R_EAX); tcg_gen_ext16u_tl(cpu_T[0], cpu_T[0]); tcg_gen_ext16u_tl(cpu_T[1], cpu_T[1]); /* XXX: use 32 bit mul which could be faster */ tcg_gen_mul_tl(cpu_T[0], cpu_T[0], cpu_T[1]); gen_op_mov_reg_T0(OT_WORD, R_EAX); tcg_gen_mov_tl(cpu_cc_dst, cpu_T[0]); tcg_gen_shri_tl(cpu_T[0], cpu_T[0], 16); gen_op_mov_reg_T0(OT_WORD, R_EDX); tcg_gen_mov_tl(cpu_cc_src, cpu_T[0]); set_cc_op(s, CC_OP_MULW); break; default: case OT_LONG: tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); tcg_gen_trunc_tl_i32(cpu_tmp3_i32, cpu_regs[R_EAX]); tcg_gen_mulu2_i32(cpu_tmp2_i32, cpu_tmp3_i32, cpu_tmp2_i32, cpu_tmp3_i32); tcg_gen_extu_i32_tl(cpu_regs[R_EAX], cpu_tmp2_i32); tcg_gen_extu_i32_tl(cpu_regs[R_EDX], cpu_tmp3_i32); tcg_gen_mov_tl(cpu_cc_dst, cpu_regs[R_EAX]); tcg_gen_mov_tl(cpu_cc_src, cpu_regs[R_EDX]); set_cc_op(s, CC_OP_MULL); break; #ifdef TARGET_X86_64 case OT_QUAD: tcg_gen_mulu2_i64(cpu_regs[R_EAX], cpu_regs[R_EDX], cpu_T[0], cpu_regs[R_EAX]); tcg_gen_mov_tl(cpu_cc_dst, cpu_regs[R_EAX]); tcg_gen_mov_tl(cpu_cc_src, cpu_regs[R_EDX]); set_cc_op(s, CC_OP_MULQ); break; #endif break; case 5: /* imul */ switch(ot) { case OT_BYTE: gen_op_mov_TN_reg(OT_BYTE, 1, R_EAX); tcg_gen_ext8s_tl(cpu_T[0], cpu_T[0]); tcg_gen_ext8s_tl(cpu_T[1], cpu_T[1]); /* XXX: use 32 bit mul which could be faster */ tcg_gen_mul_tl(cpu_T[0], cpu_T[0], cpu_T[1]); gen_op_mov_reg_T0(OT_WORD, R_EAX); tcg_gen_mov_tl(cpu_cc_dst, cpu_T[0]); tcg_gen_ext8s_tl(cpu_tmp0, cpu_T[0]); tcg_gen_sub_tl(cpu_cc_src, cpu_T[0], cpu_tmp0); set_cc_op(s, CC_OP_MULB); break; case OT_WORD: gen_op_mov_TN_reg(OT_WORD, 1, R_EAX); tcg_gen_ext16s_tl(cpu_T[0], cpu_T[0]); tcg_gen_ext16s_tl(cpu_T[1], cpu_T[1]); /* XXX: use 32 bit mul which could be faster */ tcg_gen_mul_tl(cpu_T[0], cpu_T[0], cpu_T[1]); gen_op_mov_reg_T0(OT_WORD, R_EAX); tcg_gen_mov_tl(cpu_cc_dst, cpu_T[0]); tcg_gen_ext16s_tl(cpu_tmp0, cpu_T[0]); tcg_gen_sub_tl(cpu_cc_src, cpu_T[0], cpu_tmp0); tcg_gen_shri_tl(cpu_T[0], cpu_T[0], 16); gen_op_mov_reg_T0(OT_WORD, R_EDX); set_cc_op(s, CC_OP_MULW); break; default: case OT_LONG: tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); tcg_gen_trunc_tl_i32(cpu_tmp3_i32, cpu_regs[R_EAX]); tcg_gen_muls2_i32(cpu_tmp2_i32, cpu_tmp3_i32, cpu_tmp2_i32, cpu_tmp3_i32); tcg_gen_extu_i32_tl(cpu_regs[R_EAX], cpu_tmp2_i32); tcg_gen_extu_i32_tl(cpu_regs[R_EDX], cpu_tmp3_i32); tcg_gen_sari_i32(cpu_tmp2_i32, cpu_tmp2_i32, 31); tcg_gen_mov_tl(cpu_cc_dst, cpu_regs[R_EAX]); tcg_gen_sub_i32(cpu_tmp2_i32, cpu_tmp2_i32, cpu_tmp3_i32); tcg_gen_extu_i32_tl(cpu_cc_src, cpu_tmp2_i32); set_cc_op(s, CC_OP_MULL); break; #ifdef TARGET_X86_64 case OT_QUAD: tcg_gen_muls2_i64(cpu_regs[R_EAX], cpu_regs[R_EDX], cpu_T[0], cpu_regs[R_EAX]); tcg_gen_mov_tl(cpu_cc_dst, cpu_regs[R_EAX]); tcg_gen_sari_tl(cpu_cc_src, cpu_regs[R_EAX], 63); tcg_gen_sub_tl(cpu_cc_src, cpu_cc_src, cpu_regs[R_EDX]); set_cc_op(s, CC_OP_MULQ); break; #endif break; case 6: /* div */ switch(ot) { case OT_BYTE: gen_jmp_im(pc_start - s->cs_base); gen_helper_divb_AL(cpu_env, cpu_T[0]); break; case OT_WORD: gen_jmp_im(pc_start - s->cs_base); gen_helper_divw_AX(cpu_env, cpu_T[0]); break; default: case OT_LONG: gen_jmp_im(pc_start - s->cs_base); gen_helper_divl_EAX(cpu_env, cpu_T[0]); break; #ifdef TARGET_X86_64 case OT_QUAD: gen_jmp_im(pc_start - s->cs_base); gen_helper_divq_EAX(cpu_env, cpu_T[0]); break; #endif break; case 7: /* idiv */ switch(ot) { case OT_BYTE: gen_jmp_im(pc_start - s->cs_base); gen_helper_idivb_AL(cpu_env, cpu_T[0]); break; case OT_WORD: gen_jmp_im(pc_start - s->cs_base); gen_helper_idivw_AX(cpu_env, cpu_T[0]); break; default: case OT_LONG: gen_jmp_im(pc_start - s->cs_base); gen_helper_idivl_EAX(cpu_env, cpu_T[0]); break; #ifdef TARGET_X86_64 case OT_QUAD: gen_jmp_im(pc_start - s->cs_base); gen_helper_idivq_EAX(cpu_env, cpu_T[0]); break; #endif break; default: break; case 0xfe: /* GRP4 */ case 0xff: /* GRP5 */ if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); mod = (modrm >> 6) & 3; rm = (modrm & 7) | REX_B(s); op = (modrm >> 3) & 7; if (op >= 2 && b == 0xfe) { if (CODE64(s)) { if (op == 2 || op == 4) { /* operand size for jumps is 64 bit */ ot = OT_QUAD; } else if (op == 3 || op == 5) { ot = dflag ? OT_LONG + (rex_w == 1) : OT_WORD; } else if (op == 6) { /* default push size is 64 bit */ ot = dflag ? OT_QUAD : OT_WORD; if (mod != 3) { gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); if (op >= 2 && op != 3 && op != 5) gen_op_ld_T0_A0(ot + s->mem_index); } else { gen_op_mov_TN_reg(ot, 0, rm); switch(op) { case 0: /* inc Ev */ if (mod != 3) opreg = OR_TMP0; else opreg = rm; gen_inc(s, ot, opreg, 1); break; case 1: /* dec Ev */ if (mod != 3) opreg = OR_TMP0; else opreg = rm; gen_inc(s, ot, opreg, -1); break; case 2: /* call Ev */ /* XXX: optimize if memory (no 'and' is necessary) */ if (s->dflag == 0) gen_op_andl_T0_ffff(); next_eip = s->pc - s->cs_base; gen_movtl_T1_im(next_eip); gen_push_T1(s); gen_op_jmp_T0(); gen_eob(s); break; case 3: /* lcall Ev */ gen_op_ld_T1_A0(ot + s->mem_index); gen_add_A0_im(s, 1 << (ot - OT_WORD + 1)); gen_op_ldu_T0_A0(OT_WORD + s->mem_index); do_lcall: if (s->pe && !s->vm86) { gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); gen_helper_lcall_protected(cpu_env, cpu_tmp2_i32, cpu_T[1], tcg_const_i32(dflag), tcg_const_i32(s->pc - pc_start)); } else { tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); gen_helper_lcall_real(cpu_env, cpu_tmp2_i32, cpu_T[1], tcg_const_i32(dflag), tcg_const_i32(s->pc - s->cs_base)); gen_eob(s); break; case 4: /* jmp Ev */ if (s->dflag == 0) gen_op_andl_T0_ffff(); gen_op_jmp_T0(); gen_eob(s); break; case 5: /* ljmp Ev */ gen_op_ld_T1_A0(ot + s->mem_index); gen_add_A0_im(s, 1 << (ot - OT_WORD + 1)); gen_op_ldu_T0_A0(OT_WORD + s->mem_index); do_ljmp: if (s->pe && !s->vm86) { gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); gen_helper_ljmp_protected(cpu_env, cpu_tmp2_i32, cpu_T[1], tcg_const_i32(s->pc - pc_start)); } else { gen_op_movl_seg_T0_vm(R_CS); gen_op_movl_T0_T1(); gen_op_jmp_T0(); gen_eob(s); break; case 6: /* push Ev */ gen_push_T0(s); break; default: break; case 0x84: /* test Ev, Gv */ case 0x85: if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); reg = ((modrm >> 3) & 7) | rex_r; gen_ldst_modrm(env, s, modrm, ot, OR_TMP0, 0); gen_op_mov_TN_reg(ot, 1, reg); gen_op_testl_T0_T1_cc(); set_cc_op(s, CC_OP_LOGICB + ot); break; case 0xa8: /* test eAX, Iv */ case 0xa9: if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; val = insn_get(env, s, ot); gen_op_mov_TN_reg(ot, 0, OR_EAX); gen_op_movl_T1_im(val); gen_op_testl_T0_T1_cc(); set_cc_op(s, CC_OP_LOGICB + ot); break; case 0x98: /* CWDE/CBW */ #ifdef TARGET_X86_64 if (dflag == 2) { gen_op_mov_TN_reg(OT_LONG, 0, R_EAX); tcg_gen_ext32s_tl(cpu_T[0], cpu_T[0]); gen_op_mov_reg_T0(OT_QUAD, R_EAX); } else #endif if (dflag == 1) { gen_op_mov_TN_reg(OT_WORD, 0, R_EAX); tcg_gen_ext16s_tl(cpu_T[0], cpu_T[0]); gen_op_mov_reg_T0(OT_LONG, R_EAX); } else { gen_op_mov_TN_reg(OT_BYTE, 0, R_EAX); tcg_gen_ext8s_tl(cpu_T[0], cpu_T[0]); gen_op_mov_reg_T0(OT_WORD, R_EAX); break; case 0x99: /* CDQ/CWD */ #ifdef TARGET_X86_64 if (dflag == 2) { gen_op_mov_TN_reg(OT_QUAD, 0, R_EAX); tcg_gen_sari_tl(cpu_T[0], cpu_T[0], 63); gen_op_mov_reg_T0(OT_QUAD, R_EDX); } else #endif if (dflag == 1) { gen_op_mov_TN_reg(OT_LONG, 0, R_EAX); tcg_gen_ext32s_tl(cpu_T[0], cpu_T[0]); tcg_gen_sari_tl(cpu_T[0], cpu_T[0], 31); gen_op_mov_reg_T0(OT_LONG, R_EDX); } else { gen_op_mov_TN_reg(OT_WORD, 0, R_EAX); tcg_gen_ext16s_tl(cpu_T[0], cpu_T[0]); tcg_gen_sari_tl(cpu_T[0], cpu_T[0], 15); gen_op_mov_reg_T0(OT_WORD, R_EDX); break; case 0x1af: /* imul Gv, Ev */ case 0x69: /* imul Gv, Ev, I */ case 0x6b: ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); reg = ((modrm >> 3) & 7) | rex_r; if (b == 0x69) s->rip_offset = insn_const_size(ot); else if (b == 0x6b) s->rip_offset = 1; gen_ldst_modrm(env, s, modrm, ot, OR_TMP0, 0); if (b == 0x69) { val = insn_get(env, s, ot); gen_op_movl_T1_im(val); } else if (b == 0x6b) { val = (int8_t)insn_get(env, s, OT_BYTE); gen_op_movl_T1_im(val); } else { gen_op_mov_TN_reg(ot, 1, reg); switch (ot) { #ifdef TARGET_X86_64 case OT_QUAD: tcg_gen_muls2_i64(cpu_regs[reg], cpu_T[1], cpu_T[0], cpu_T[1]); tcg_gen_mov_tl(cpu_cc_dst, cpu_regs[reg]); tcg_gen_sari_tl(cpu_cc_src, cpu_cc_dst, 63); tcg_gen_sub_tl(cpu_cc_src, cpu_cc_src, cpu_T[1]); break; #endif case OT_LONG: tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); tcg_gen_trunc_tl_i32(cpu_tmp3_i32, cpu_T[1]); tcg_gen_muls2_i32(cpu_tmp2_i32, cpu_tmp3_i32, cpu_tmp2_i32, cpu_tmp3_i32); tcg_gen_extu_i32_tl(cpu_regs[reg], cpu_tmp2_i32); tcg_gen_sari_i32(cpu_tmp2_i32, cpu_tmp2_i32, 31); tcg_gen_mov_tl(cpu_cc_dst, cpu_regs[reg]); tcg_gen_sub_i32(cpu_tmp2_i32, cpu_tmp2_i32, cpu_tmp3_i32); tcg_gen_extu_i32_tl(cpu_cc_src, cpu_tmp2_i32); break; default: tcg_gen_ext16s_tl(cpu_T[0], cpu_T[0]); tcg_gen_ext16s_tl(cpu_T[1], cpu_T[1]); /* XXX: use 32 bit mul which could be faster */ tcg_gen_mul_tl(cpu_T[0], cpu_T[0], cpu_T[1]); tcg_gen_mov_tl(cpu_cc_dst, cpu_T[0]); tcg_gen_ext16s_tl(cpu_tmp0, cpu_T[0]); tcg_gen_sub_tl(cpu_cc_src, cpu_T[0], cpu_tmp0); gen_op_mov_reg_T0(ot, reg); break; set_cc_op(s, CC_OP_MULB + ot); break; case 0x1c0: case 0x1c1: /* xadd Ev, Gv */ if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); reg = ((modrm >> 3) & 7) | rex_r; mod = (modrm >> 6) & 3; if (mod == 3) { rm = (modrm & 7) | REX_B(s); gen_op_mov_TN_reg(ot, 0, reg); gen_op_mov_TN_reg(ot, 1, rm); gen_op_addl_T0_T1(); gen_op_mov_reg_T1(ot, reg); gen_op_mov_reg_T0(ot, rm); } else { gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); gen_op_mov_TN_reg(ot, 0, reg); gen_op_ld_T1_A0(ot + s->mem_index); gen_op_addl_T0_T1(); gen_op_st_T0_A0(ot + s->mem_index); gen_op_mov_reg_T1(ot, reg); gen_op_update2_cc(); set_cc_op(s, CC_OP_ADDB + ot); break; case 0x1b0: case 0x1b1: /* cmpxchg Ev, Gv */ { int label1, label2; TCGv t0, t1, t2, a0; if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); reg = ((modrm >> 3) & 7) | rex_r; mod = (modrm >> 6) & 3; t0 = tcg_temp_local_new(); t1 = tcg_temp_local_new(); t2 = tcg_temp_local_new(); a0 = tcg_temp_local_new(); gen_op_mov_v_reg(ot, t1, reg); if (mod == 3) { rm = (modrm & 7) | REX_B(s); gen_op_mov_v_reg(ot, t0, rm); } else { gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); tcg_gen_mov_tl(a0, cpu_A0); gen_op_ld_v(ot + s->mem_index, t0, a0); rm = 0; /* avoid warning */ label1 = gen_new_label(); tcg_gen_mov_tl(t2, cpu_regs[R_EAX]); gen_extu(ot, t0); gen_extu(ot, t2); tcg_gen_brcond_tl(TCG_COND_EQ, t2, t0, label1); label2 = gen_new_label(); if (mod == 3) { gen_op_mov_reg_v(ot, R_EAX, t0); tcg_gen_br(label2); gen_set_label(label1); gen_op_mov_reg_v(ot, rm, t1); } else { /* perform no-op store cycle like physical cpu; must be before changing accumulator to ensure idempotency if the store faults and the instruction is restarted */ gen_op_st_v(ot + s->mem_index, t0, a0); gen_op_mov_reg_v(ot, R_EAX, t0); tcg_gen_br(label2); gen_set_label(label1); gen_op_st_v(ot + s->mem_index, t1, a0); gen_set_label(label2); tcg_gen_mov_tl(cpu_cc_src, t0); tcg_gen_mov_tl(cpu_cc_srcT, t2); tcg_gen_sub_tl(cpu_cc_dst, t2, t0); set_cc_op(s, CC_OP_SUBB + ot); tcg_temp_free(t0); tcg_temp_free(t1); tcg_temp_free(t2); tcg_temp_free(a0); break; case 0x1c7: /* cmpxchg8b */ modrm = cpu_ldub_code(env, s->pc++); mod = (modrm >> 6) & 3; if ((mod == 3) || ((modrm & 0x38) != 0x8)) #ifdef TARGET_X86_64 if (dflag == 2) { if (!(s->cpuid_ext_features & CPUID_EXT_CX16)) gen_jmp_im(pc_start - s->cs_base); gen_update_cc_op(s); gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); gen_helper_cmpxchg16b(cpu_env, cpu_A0); } else #endif { if (!(s->cpuid_features & CPUID_CX8)) gen_jmp_im(pc_start - s->cs_base); gen_update_cc_op(s); gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); gen_helper_cmpxchg8b(cpu_env, cpu_A0); set_cc_op(s, CC_OP_EFLAGS); break; /**************************/ /* push/pop */ case 0x50 ... 0x57: /* push */ gen_op_mov_TN_reg(OT_LONG, 0, (b & 7) | REX_B(s)); gen_push_T0(s); break; case 0x58 ... 0x5f: /* pop */ if (CODE64(s)) { ot = dflag ? OT_QUAD : OT_WORD; } else { ot = dflag + OT_WORD; gen_pop_T0(s); /* NOTE: order is important for pop %sp */ gen_pop_update(s); gen_op_mov_reg_T0(ot, (b & 7) | REX_B(s)); break; case 0x60: /* pusha */ if (CODE64(s)) gen_pusha(s); break; case 0x61: /* popa */ if (CODE64(s)) gen_popa(s); break; case 0x68: /* push Iv */ case 0x6a: if (CODE64(s)) { ot = dflag ? OT_QUAD : OT_WORD; } else { ot = dflag + OT_WORD; if (b == 0x68) val = insn_get(env, s, ot); else val = (int8_t)insn_get(env, s, OT_BYTE); gen_op_movl_T0_im(val); gen_push_T0(s); break; case 0x8f: /* pop Ev */ if (CODE64(s)) { ot = dflag ? OT_QUAD : OT_WORD; } else { ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); mod = (modrm >> 6) & 3; gen_pop_T0(s); if (mod == 3) { /* NOTE: order is important for pop %sp */ gen_pop_update(s); rm = (modrm & 7) | REX_B(s); gen_op_mov_reg_T0(ot, rm); } else { /* NOTE: order is important too for MMU exceptions */ s->popl_esp_hack = 1 << ot; gen_ldst_modrm(env, s, modrm, ot, OR_TMP0, 1); s->popl_esp_hack = 0; gen_pop_update(s); break; case 0xc8: /* enter */ { int level; val = cpu_lduw_code(env, s->pc); s->pc += 2; level = cpu_ldub_code(env, s->pc++); gen_enter(s, val, level); break; case 0xc9: /* leave */ /* XXX: exception not precise (ESP is updated before potential exception) */ if (CODE64(s)) { gen_op_mov_TN_reg(OT_QUAD, 0, R_EBP); gen_op_mov_reg_T0(OT_QUAD, R_ESP); } else if (s->ss32) { gen_op_mov_TN_reg(OT_LONG, 0, R_EBP); gen_op_mov_reg_T0(OT_LONG, R_ESP); } else { gen_op_mov_TN_reg(OT_WORD, 0, R_EBP); gen_op_mov_reg_T0(OT_WORD, R_ESP); gen_pop_T0(s); if (CODE64(s)) { ot = dflag ? OT_QUAD : OT_WORD; } else { ot = dflag + OT_WORD; gen_op_mov_reg_T0(ot, R_EBP); gen_pop_update(s); break; case 0x06: /* push es */ case 0x0e: /* push cs */ case 0x16: /* push ss */ case 0x1e: /* push ds */ if (CODE64(s)) gen_op_movl_T0_seg(b >> 3); gen_push_T0(s); break; case 0x1a0: /* push fs */ case 0x1a8: /* push gs */ gen_op_movl_T0_seg((b >> 3) & 7); gen_push_T0(s); break; case 0x07: /* pop es */ case 0x17: /* pop ss */ case 0x1f: /* pop ds */ if (CODE64(s)) reg = b >> 3; gen_pop_T0(s); gen_movl_seg_T0(s, reg, pc_start - s->cs_base); gen_pop_update(s); if (reg == R_SS) { /* if reg == SS, inhibit interrupts/trace. */ /* If several instructions disable interrupts, only the _first_ does it */ if (!(s->tb->flags & HF_INHIBIT_IRQ_MASK)) gen_helper_set_inhibit_irq(cpu_env); s->tf = 0; if (s->is_jmp) { gen_jmp_im(s->pc - s->cs_base); gen_eob(s); break; case 0x1a1: /* pop fs */ case 0x1a9: /* pop gs */ gen_pop_T0(s); gen_movl_seg_T0(s, (b >> 3) & 7, pc_start - s->cs_base); gen_pop_update(s); if (s->is_jmp) { gen_jmp_im(s->pc - s->cs_base); gen_eob(s); break; /**************************/ /* mov */ case 0x88: case 0x89: /* mov Gv, Ev */ if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); reg = ((modrm >> 3) & 7) | rex_r; /* generate a generic store */ gen_ldst_modrm(env, s, modrm, ot, reg, 1); break; case 0xc6: case 0xc7: /* mov Ev, Iv */ if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); mod = (modrm >> 6) & 3; if (mod != 3) { s->rip_offset = insn_const_size(ot); gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); val = insn_get(env, s, ot); gen_op_movl_T0_im(val); if (mod != 3) gen_op_st_T0_A0(ot + s->mem_index); else gen_op_mov_reg_T0(ot, (modrm & 7) | REX_B(s)); break; case 0x8a: case 0x8b: /* mov Ev, Gv */ if ((b & 1) == 0) ot = OT_BYTE; else ot = OT_WORD + dflag; modrm = cpu_ldub_code(env, s->pc++); reg = ((modrm >> 3) & 7) | rex_r; gen_ldst_modrm(env, s, modrm, ot, OR_TMP0, 0); gen_op_mov_reg_T0(ot, reg); break; case 0x8e: /* mov seg, Gv */ modrm = cpu_ldub_code(env, s->pc++); reg = (modrm >> 3) & 7; if (reg >= 6 || reg == R_CS) gen_ldst_modrm(env, s, modrm, OT_WORD, OR_TMP0, 0); gen_movl_seg_T0(s, reg, pc_start - s->cs_base); if (reg == R_SS) { /* if reg == SS, inhibit interrupts/trace */ /* If several instructions disable interrupts, only the _first_ does it */ if (!(s->tb->flags & HF_INHIBIT_IRQ_MASK)) gen_helper_set_inhibit_irq(cpu_env); s->tf = 0; if (s->is_jmp) { gen_jmp_im(s->pc - s->cs_base); gen_eob(s); break; case 0x8c: /* mov Gv, seg */ modrm = cpu_ldub_code(env, s->pc++); reg = (modrm >> 3) & 7; mod = (modrm >> 6) & 3; if (reg >= 6) gen_op_movl_T0_seg(reg); if (mod == 3) ot = OT_WORD + dflag; else ot = OT_WORD; gen_ldst_modrm(env, s, modrm, ot, OR_TMP0, 1); break; case 0x1b6: /* movzbS Gv, Eb */ case 0x1b7: /* movzwS Gv, Eb */ case 0x1be: /* movsbS Gv, Eb */ case 0x1bf: /* movswS Gv, Eb */ { int d_ot; /* d_ot is the size of destination */ d_ot = dflag + OT_WORD; /* ot is the size of source */ ot = (b & 1) + OT_BYTE; modrm = cpu_ldub_code(env, s->pc++); reg = ((modrm >> 3) & 7) | rex_r; mod = (modrm >> 6) & 3; rm = (modrm & 7) | REX_B(s); if (mod == 3) { gen_op_mov_TN_reg(ot, 0, rm); switch(ot | (b & 8)) { case OT_BYTE: tcg_gen_ext8u_tl(cpu_T[0], cpu_T[0]); break; case OT_BYTE | 8: tcg_gen_ext8s_tl(cpu_T[0], cpu_T[0]); break; case OT_WORD: tcg_gen_ext16u_tl(cpu_T[0], cpu_T[0]); break; default: case OT_WORD | 8: tcg_gen_ext16s_tl(cpu_T[0], cpu_T[0]); break; gen_op_mov_reg_T0(d_ot, reg); } else { gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); if (b & 8) { gen_op_lds_T0_A0(ot + s->mem_index); } else { gen_op_ldu_T0_A0(ot + s->mem_index); gen_op_mov_reg_T0(d_ot, reg); break; case 0x8d: /* lea */ ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); mod = (modrm >> 6) & 3; if (mod == 3) reg = ((modrm >> 3) & 7) | rex_r; /* we must ensure that no segment is added */ s->override = -1; val = s->addseg; s->addseg = 0; gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); s->addseg = val; gen_op_mov_reg_A0(ot - OT_WORD, reg); break; case 0xa0: /* mov EAX, Ov */ case 0xa1: case 0xa2: /* mov Ov, EAX */ case 0xa3: { target_ulong offset_addr; if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; #ifdef TARGET_X86_64 if (s->aflag == 2) { offset_addr = cpu_ldq_code(env, s->pc); s->pc += 8; gen_op_movq_A0_im(offset_addr); } else #endif { if (s->aflag) { offset_addr = insn_get(env, s, OT_LONG); } else { offset_addr = insn_get(env, s, OT_WORD); gen_op_movl_A0_im(offset_addr); gen_add_A0_ds_seg(s); if ((b & 2) == 0) { gen_op_ld_T0_A0(ot + s->mem_index); gen_op_mov_reg_T0(ot, R_EAX); } else { gen_op_mov_TN_reg(ot, 0, R_EAX); gen_op_st_T0_A0(ot + s->mem_index); break; case 0xd7: /* xlat */ #ifdef TARGET_X86_64 if (s->aflag == 2) { gen_op_movq_A0_reg(R_EBX); gen_op_mov_TN_reg(OT_QUAD, 0, R_EAX); tcg_gen_andi_tl(cpu_T[0], cpu_T[0], 0xff); tcg_gen_add_tl(cpu_A0, cpu_A0, cpu_T[0]); } else #endif { gen_op_movl_A0_reg(R_EBX); gen_op_mov_TN_reg(OT_LONG, 0, R_EAX); tcg_gen_andi_tl(cpu_T[0], cpu_T[0], 0xff); tcg_gen_add_tl(cpu_A0, cpu_A0, cpu_T[0]); if (s->aflag == 0) gen_op_andl_A0_ffff(); else tcg_gen_andi_tl(cpu_A0, cpu_A0, 0xffffffff); gen_add_A0_ds_seg(s); gen_op_ldu_T0_A0(OT_BYTE + s->mem_index); gen_op_mov_reg_T0(OT_BYTE, R_EAX); break; case 0xb0 ... 0xb7: /* mov R, Ib */ val = insn_get(env, s, OT_BYTE); gen_op_movl_T0_im(val); gen_op_mov_reg_T0(OT_BYTE, (b & 7) | REX_B(s)); break; case 0xb8 ... 0xbf: /* mov R, Iv */ #ifdef TARGET_X86_64 if (dflag == 2) { uint64_t tmp; /* 64 bit case */ tmp = cpu_ldq_code(env, s->pc); s->pc += 8; reg = (b & 7) | REX_B(s); gen_movtl_T0_im(tmp); gen_op_mov_reg_T0(OT_QUAD, reg); } else #endif { ot = dflag ? OT_LONG : OT_WORD; val = insn_get(env, s, ot); reg = (b & 7) | REX_B(s); gen_op_movl_T0_im(val); gen_op_mov_reg_T0(ot, reg); break; case 0x91 ... 0x97: /* xchg R, EAX */ do_xchg_reg_eax: ot = dflag + OT_WORD; reg = (b & 7) | REX_B(s); rm = R_EAX; goto do_xchg_reg; case 0x86: case 0x87: /* xchg Ev, Gv */ if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); reg = ((modrm >> 3) & 7) | rex_r; mod = (modrm >> 6) & 3; if (mod == 3) { rm = (modrm & 7) | REX_B(s); do_xchg_reg: gen_op_mov_TN_reg(ot, 0, reg); gen_op_mov_TN_reg(ot, 1, rm); gen_op_mov_reg_T0(ot, rm); gen_op_mov_reg_T1(ot, reg); } else { gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); gen_op_mov_TN_reg(ot, 0, reg); /* for xchg, lock is implicit */ if (!(prefixes & PREFIX_LOCK)) gen_helper_lock(); gen_op_ld_T1_A0(ot + s->mem_index); gen_op_st_T0_A0(ot + s->mem_index); if (!(prefixes & PREFIX_LOCK)) gen_helper_unlock(); gen_op_mov_reg_T1(ot, reg); break; case 0xc4: /* les Gv */ /* In CODE64 this is VEX3; see above. */ op = R_ES; goto do_lxx; case 0xc5: /* lds Gv */ /* In CODE64 this is VEX2; see above. */ op = R_DS; goto do_lxx; case 0x1b2: /* lss Gv */ op = R_SS; goto do_lxx; case 0x1b4: /* lfs Gv */ op = R_FS; goto do_lxx; case 0x1b5: /* lgs Gv */ op = R_GS; do_lxx: ot = dflag ? OT_LONG : OT_WORD; modrm = cpu_ldub_code(env, s->pc++); reg = ((modrm >> 3) & 7) | rex_r; mod = (modrm >> 6) & 3; if (mod == 3) gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); gen_op_ld_T1_A0(ot + s->mem_index); gen_add_A0_im(s, 1 << (ot - OT_WORD + 1)); /* load the segment first to handle exceptions properly */ gen_op_ldu_T0_A0(OT_WORD + s->mem_index); gen_movl_seg_T0(s, op, pc_start - s->cs_base); /* then put the data */ gen_op_mov_reg_T1(ot, reg); if (s->is_jmp) { gen_jmp_im(s->pc - s->cs_base); gen_eob(s); break; /************************/ /* shifts */ case 0xc0: case 0xc1: /* shift Ev,Ib */ shift = 2; grp2: { if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); mod = (modrm >> 6) & 3; op = (modrm >> 3) & 7; if (mod != 3) { if (shift == 2) { s->rip_offset = 1; gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); opreg = OR_TMP0; } else { opreg = (modrm & 7) | REX_B(s); /* simpler op */ if (shift == 0) { gen_shift(s, op, ot, opreg, OR_ECX); } else { if (shift == 2) { shift = cpu_ldub_code(env, s->pc++); gen_shifti(s, op, ot, opreg, shift); break; case 0xd0: case 0xd1: /* shift Ev,1 */ shift = 1; goto grp2; case 0xd2: case 0xd3: /* shift Ev,cl */ shift = 0; goto grp2; case 0x1a4: /* shld imm */ op = 0; shift = 1; goto do_shiftd; case 0x1a5: /* shld cl */ op = 0; shift = 0; goto do_shiftd; case 0x1ac: /* shrd imm */ op = 1; shift = 1; goto do_shiftd; case 0x1ad: /* shrd cl */ op = 1; shift = 0; do_shiftd: ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); mod = (modrm >> 6) & 3; rm = (modrm & 7) | REX_B(s); reg = ((modrm >> 3) & 7) | rex_r; if (mod != 3) { gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); opreg = OR_TMP0; } else { opreg = rm; gen_op_mov_TN_reg(ot, 1, reg); if (shift) { TCGv imm = tcg_const_tl(cpu_ldub_code(env, s->pc++)); gen_shiftd_rm_T1(s, ot, opreg, op, imm); tcg_temp_free(imm); } else { gen_shiftd_rm_T1(s, ot, opreg, op, cpu_regs[R_ECX]); break; /************************/ /* floats */ case 0xd8 ... 0xdf: if (s->flags & (HF_EM_MASK | HF_TS_MASK)) { /* if CR0.EM or CR0.TS are set, generate an FPU exception */ /* XXX: what to do if illegal op ? */ gen_exception(s, EXCP07_PREX, pc_start - s->cs_base); break; modrm = cpu_ldub_code(env, s->pc++); mod = (modrm >> 6) & 3; rm = modrm & 7; op = ((b & 7) << 3) | ((modrm >> 3) & 7); if (mod != 3) { /* memory op */ gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); switch(op) { case 0x00 ... 0x07: /* fxxxs */ case 0x10 ... 0x17: /* fixxxl */ case 0x20 ... 0x27: /* fxxxl */ case 0x30 ... 0x37: /* fixxx */ { int op1; op1 = op & 7; switch(op >> 4) { case 0: gen_op_ld_T0_A0(OT_LONG + s->mem_index); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); gen_helper_flds_FT0(cpu_env, cpu_tmp2_i32); break; case 1: gen_op_ld_T0_A0(OT_LONG + s->mem_index); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); gen_helper_fildl_FT0(cpu_env, cpu_tmp2_i32); break; case 2: tcg_gen_qemu_ld64(cpu_tmp1_i64, cpu_A0, (s->mem_index >> 2) - 1); gen_helper_fldl_FT0(cpu_env, cpu_tmp1_i64); break; case 3: default: gen_op_lds_T0_A0(OT_WORD + s->mem_index); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); gen_helper_fildl_FT0(cpu_env, cpu_tmp2_i32); break; gen_helper_fp_arith_ST0_FT0(op1); if (op1 == 3) { /* fcomp needs pop */ gen_helper_fpop(cpu_env); break; case 0x08: /* flds */ case 0x0a: /* fsts */ case 0x0b: /* fstps */ case 0x18 ... 0x1b: /* fildl, fisttpl, fistl, fistpl */ case 0x28 ... 0x2b: /* fldl, fisttpll, fstl, fstpl */ case 0x38 ... 0x3b: /* filds, fisttps, fists, fistps */ switch(op & 7) { case 0: switch(op >> 4) { case 0: gen_op_ld_T0_A0(OT_LONG + s->mem_index); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); gen_helper_flds_ST0(cpu_env, cpu_tmp2_i32); break; case 1: gen_op_ld_T0_A0(OT_LONG + s->mem_index); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); gen_helper_fildl_ST0(cpu_env, cpu_tmp2_i32); break; case 2: tcg_gen_qemu_ld64(cpu_tmp1_i64, cpu_A0, (s->mem_index >> 2) - 1); gen_helper_fldl_ST0(cpu_env, cpu_tmp1_i64); break; case 3: default: gen_op_lds_T0_A0(OT_WORD + s->mem_index); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); gen_helper_fildl_ST0(cpu_env, cpu_tmp2_i32); break; break; case 1: /* XXX: the corresponding CPUID bit must be tested ! */ switch(op >> 4) { case 1: gen_helper_fisttl_ST0(cpu_tmp2_i32, cpu_env); tcg_gen_extu_i32_tl(cpu_T[0], cpu_tmp2_i32); gen_op_st_T0_A0(OT_LONG + s->mem_index); break; case 2: gen_helper_fisttll_ST0(cpu_tmp1_i64, cpu_env); tcg_gen_qemu_st64(cpu_tmp1_i64, cpu_A0, (s->mem_index >> 2) - 1); break; case 3: default: gen_helper_fistt_ST0(cpu_tmp2_i32, cpu_env); tcg_gen_extu_i32_tl(cpu_T[0], cpu_tmp2_i32); gen_op_st_T0_A0(OT_WORD + s->mem_index); break; gen_helper_fpop(cpu_env); break; default: switch(op >> 4) { case 0: gen_helper_fsts_ST0(cpu_tmp2_i32, cpu_env); tcg_gen_extu_i32_tl(cpu_T[0], cpu_tmp2_i32); gen_op_st_T0_A0(OT_LONG + s->mem_index); break; case 1: gen_helper_fistl_ST0(cpu_tmp2_i32, cpu_env); tcg_gen_extu_i32_tl(cpu_T[0], cpu_tmp2_i32); gen_op_st_T0_A0(OT_LONG + s->mem_index); break; case 2: gen_helper_fstl_ST0(cpu_tmp1_i64, cpu_env); tcg_gen_qemu_st64(cpu_tmp1_i64, cpu_A0, (s->mem_index >> 2) - 1); break; case 3: default: gen_helper_fist_ST0(cpu_tmp2_i32, cpu_env); tcg_gen_extu_i32_tl(cpu_T[0], cpu_tmp2_i32); gen_op_st_T0_A0(OT_WORD + s->mem_index); break; if ((op & 7) == 3) gen_helper_fpop(cpu_env); break; break; case 0x0c: /* fldenv mem */ gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_fldenv(cpu_env, cpu_A0, tcg_const_i32(s->dflag)); break; case 0x0d: /* fldcw mem */ gen_op_ld_T0_A0(OT_WORD + s->mem_index); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); gen_helper_fldcw(cpu_env, cpu_tmp2_i32); break; case 0x0e: /* fnstenv mem */ gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_fstenv(cpu_env, cpu_A0, tcg_const_i32(s->dflag)); break; case 0x0f: /* fnstcw mem */ gen_helper_fnstcw(cpu_tmp2_i32, cpu_env); tcg_gen_extu_i32_tl(cpu_T[0], cpu_tmp2_i32); gen_op_st_T0_A0(OT_WORD + s->mem_index); break; case 0x1d: /* fldt mem */ gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_fldt_ST0(cpu_env, cpu_A0); break; case 0x1f: /* fstpt mem */ gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_fstt_ST0(cpu_env, cpu_A0); gen_helper_fpop(cpu_env); break; case 0x2c: /* frstor mem */ gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_frstor(cpu_env, cpu_A0, tcg_const_i32(s->dflag)); break; case 0x2e: /* fnsave mem */ gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_fsave(cpu_env, cpu_A0, tcg_const_i32(s->dflag)); break; case 0x2f: /* fnstsw mem */ gen_helper_fnstsw(cpu_tmp2_i32, cpu_env); tcg_gen_extu_i32_tl(cpu_T[0], cpu_tmp2_i32); gen_op_st_T0_A0(OT_WORD + s->mem_index); break; case 0x3c: /* fbld */ gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_fbld_ST0(cpu_env, cpu_A0); break; case 0x3e: /* fbstp */ gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_fbst_ST0(cpu_env, cpu_A0); gen_helper_fpop(cpu_env); break; case 0x3d: /* fildll */ tcg_gen_qemu_ld64(cpu_tmp1_i64, cpu_A0, (s->mem_index >> 2) - 1); gen_helper_fildll_ST0(cpu_env, cpu_tmp1_i64); break; case 0x3f: /* fistpll */ gen_helper_fistll_ST0(cpu_tmp1_i64, cpu_env); tcg_gen_qemu_st64(cpu_tmp1_i64, cpu_A0, (s->mem_index >> 2) - 1); gen_helper_fpop(cpu_env); break; default: } else { /* register float ops */ opreg = rm; switch(op) { case 0x08: /* fld sti */ gen_helper_fpush(cpu_env); gen_helper_fmov_ST0_STN(cpu_env, tcg_const_i32((opreg + 1) & 7)); break; case 0x09: /* fxchg sti */ case 0x29: /* fxchg4 sti, undocumented op */ case 0x39: /* fxchg7 sti, undocumented op */ gen_helper_fxchg_ST0_STN(cpu_env, tcg_const_i32(opreg)); break; case 0x0a: /* grp d9/2 */ switch(rm) { case 0: /* fnop */ /* check exceptions (FreeBSD FPU probe) */ gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_fwait(cpu_env); break; default: break; case 0x0c: /* grp d9/4 */ switch(rm) { case 0: /* fchs */ gen_helper_fchs_ST0(cpu_env); break; case 1: /* fabs */ gen_helper_fabs_ST0(cpu_env); break; case 4: /* ftst */ gen_helper_fldz_FT0(cpu_env); gen_helper_fcom_ST0_FT0(cpu_env); break; case 5: /* fxam */ gen_helper_fxam_ST0(cpu_env); break; default: break; case 0x0d: /* grp d9/5 */ { switch(rm) { case 0: gen_helper_fpush(cpu_env); gen_helper_fld1_ST0(cpu_env); break; case 1: gen_helper_fpush(cpu_env); gen_helper_fldl2t_ST0(cpu_env); break; case 2: gen_helper_fpush(cpu_env); gen_helper_fldl2e_ST0(cpu_env); break; case 3: gen_helper_fpush(cpu_env); gen_helper_fldpi_ST0(cpu_env); break; case 4: gen_helper_fpush(cpu_env); gen_helper_fldlg2_ST0(cpu_env); break; case 5: gen_helper_fpush(cpu_env); gen_helper_fldln2_ST0(cpu_env); break; case 6: gen_helper_fpush(cpu_env); gen_helper_fldz_ST0(cpu_env); break; default: break; case 0x0e: /* grp d9/6 */ switch(rm) { case 0: /* f2xm1 */ gen_helper_f2xm1(cpu_env); break; case 1: /* fyl2x */ gen_helper_fyl2x(cpu_env); break; case 2: /* fptan */ gen_helper_fptan(cpu_env); break; case 3: /* fpatan */ gen_helper_fpatan(cpu_env); break; case 4: /* fxtract */ gen_helper_fxtract(cpu_env); break; case 5: /* fprem1 */ gen_helper_fprem1(cpu_env); break; case 6: /* fdecstp */ gen_helper_fdecstp(cpu_env); break; default: case 7: /* fincstp */ gen_helper_fincstp(cpu_env); break; break; case 0x0f: /* grp d9/7 */ switch(rm) { case 0: /* fprem */ gen_helper_fprem(cpu_env); break; case 1: /* fyl2xp1 */ gen_helper_fyl2xp1(cpu_env); break; case 2: /* fsqrt */ gen_helper_fsqrt(cpu_env); break; case 3: /* fsincos */ gen_helper_fsincos(cpu_env); break; case 5: /* fscale */ gen_helper_fscale(cpu_env); break; case 4: /* frndint */ gen_helper_frndint(cpu_env); break; case 6: /* fsin */ gen_helper_fsin(cpu_env); break; default: case 7: /* fcos */ gen_helper_fcos(cpu_env); break; break; case 0x00: case 0x01: case 0x04 ... 0x07: /* fxxx st, sti */ case 0x20: case 0x21: case 0x24 ... 0x27: /* fxxx sti, st */ case 0x30: case 0x31: case 0x34 ... 0x37: /* fxxxp sti, st */ { int op1; op1 = op & 7; if (op >= 0x20) { gen_helper_fp_arith_STN_ST0(op1, opreg); if (op >= 0x30) gen_helper_fpop(cpu_env); } else { gen_helper_fmov_FT0_STN(cpu_env, tcg_const_i32(opreg)); gen_helper_fp_arith_ST0_FT0(op1); break; case 0x02: /* fcom */ case 0x22: /* fcom2, undocumented op */ gen_helper_fmov_FT0_STN(cpu_env, tcg_const_i32(opreg)); gen_helper_fcom_ST0_FT0(cpu_env); break; case 0x03: /* fcomp */ case 0x23: /* fcomp3, undocumented op */ case 0x32: /* fcomp5, undocumented op */ gen_helper_fmov_FT0_STN(cpu_env, tcg_const_i32(opreg)); gen_helper_fcom_ST0_FT0(cpu_env); gen_helper_fpop(cpu_env); break; case 0x15: /* da/5 */ switch(rm) { case 1: /* fucompp */ gen_helper_fmov_FT0_STN(cpu_env, tcg_const_i32(1)); gen_helper_fucom_ST0_FT0(cpu_env); gen_helper_fpop(cpu_env); gen_helper_fpop(cpu_env); break; default: break; case 0x1c: switch(rm) { case 0: /* feni (287 only, just do nop here) */ break; case 1: /* fdisi (287 only, just do nop here) */ break; case 2: /* fclex */ gen_helper_fclex(cpu_env); break; case 3: /* fninit */ gen_helper_fninit(cpu_env); break; case 4: /* fsetpm (287 only, just do nop here) */ break; default: break; case 0x1d: /* fucomi */ gen_update_cc_op(s); gen_helper_fmov_FT0_STN(cpu_env, tcg_const_i32(opreg)); gen_helper_fucomi_ST0_FT0(cpu_env); set_cc_op(s, CC_OP_EFLAGS); break; case 0x1e: /* fcomi */ gen_update_cc_op(s); gen_helper_fmov_FT0_STN(cpu_env, tcg_const_i32(opreg)); gen_helper_fcomi_ST0_FT0(cpu_env); set_cc_op(s, CC_OP_EFLAGS); break; case 0x28: /* ffree sti */ gen_helper_ffree_STN(cpu_env, tcg_const_i32(opreg)); break; case 0x2a: /* fst sti */ gen_helper_fmov_STN_ST0(cpu_env, tcg_const_i32(opreg)); break; case 0x2b: /* fstp sti */ case 0x0b: /* fstp1 sti, undocumented op */ case 0x3a: /* fstp8 sti, undocumented op */ case 0x3b: /* fstp9 sti, undocumented op */ gen_helper_fmov_STN_ST0(cpu_env, tcg_const_i32(opreg)); gen_helper_fpop(cpu_env); break; case 0x2c: /* fucom st(i) */ gen_helper_fmov_FT0_STN(cpu_env, tcg_const_i32(opreg)); gen_helper_fucom_ST0_FT0(cpu_env); break; case 0x2d: /* fucomp st(i) */ gen_helper_fmov_FT0_STN(cpu_env, tcg_const_i32(opreg)); gen_helper_fucom_ST0_FT0(cpu_env); gen_helper_fpop(cpu_env); break; case 0x33: /* de/3 */ switch(rm) { case 1: /* fcompp */ gen_helper_fmov_FT0_STN(cpu_env, tcg_const_i32(1)); gen_helper_fcom_ST0_FT0(cpu_env); gen_helper_fpop(cpu_env); gen_helper_fpop(cpu_env); break; default: break; case 0x38: /* ffreep sti, undocumented op */ gen_helper_ffree_STN(cpu_env, tcg_const_i32(opreg)); gen_helper_fpop(cpu_env); break; case 0x3c: /* df/4 */ switch(rm) { case 0: gen_helper_fnstsw(cpu_tmp2_i32, cpu_env); tcg_gen_extu_i32_tl(cpu_T[0], cpu_tmp2_i32); gen_op_mov_reg_T0(OT_WORD, R_EAX); break; default: break; case 0x3d: /* fucomip */ gen_update_cc_op(s); gen_helper_fmov_FT0_STN(cpu_env, tcg_const_i32(opreg)); gen_helper_fucomi_ST0_FT0(cpu_env); gen_helper_fpop(cpu_env); set_cc_op(s, CC_OP_EFLAGS); break; case 0x3e: /* fcomip */ gen_update_cc_op(s); gen_helper_fmov_FT0_STN(cpu_env, tcg_const_i32(opreg)); gen_helper_fcomi_ST0_FT0(cpu_env); gen_helper_fpop(cpu_env); set_cc_op(s, CC_OP_EFLAGS); break; case 0x10 ... 0x13: /* fcmovxx */ case 0x18 ... 0x1b: { int op1, l1; static const uint8_t fcmov_cc[8] = { (JCC_B << 1), (JCC_Z << 1), (JCC_BE << 1), (JCC_P << 1), }; op1 = fcmov_cc[op & 3] | (((op >> 3) & 1) ^ 1); l1 = gen_new_label(); gen_jcc1_noeob(s, op1, l1); gen_helper_fmov_ST0_STN(cpu_env, tcg_const_i32(opreg)); gen_set_label(l1); break; default: break; /************************/ /* string ops */ case 0xa4: /* movsS */ case 0xa5: if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ)) { gen_repz_movs(s, ot, pc_start - s->cs_base, s->pc - s->cs_base); } else { gen_movs(s, ot); break; case 0xaa: /* stosS */ case 0xab: if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ)) { gen_repz_stos(s, ot, pc_start - s->cs_base, s->pc - s->cs_base); } else { gen_stos(s, ot); break; case 0xac: /* lodsS */ case 0xad: if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ)) { gen_repz_lods(s, ot, pc_start - s->cs_base, s->pc - s->cs_base); } else { gen_lods(s, ot); break; case 0xae: /* scasS */ case 0xaf: if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; if (prefixes & PREFIX_REPNZ) { gen_repz_scas(s, ot, pc_start - s->cs_base, s->pc - s->cs_base, 1); } else if (prefixes & PREFIX_REPZ) { gen_repz_scas(s, ot, pc_start - s->cs_base, s->pc - s->cs_base, 0); } else { gen_scas(s, ot); break; case 0xa6: /* cmpsS */ case 0xa7: if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag + OT_WORD; if (prefixes & PREFIX_REPNZ) { gen_repz_cmps(s, ot, pc_start - s->cs_base, s->pc - s->cs_base, 1); } else if (prefixes & PREFIX_REPZ) { gen_repz_cmps(s, ot, pc_start - s->cs_base, s->pc - s->cs_base, 0); } else { gen_cmps(s, ot); break; case 0x6c: /* insS */ case 0x6d: if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag ? OT_LONG : OT_WORD; gen_op_mov_TN_reg(OT_WORD, 0, R_EDX); gen_op_andl_T0_ffff(); gen_check_io(s, ot, pc_start - s->cs_base, SVM_IOIO_TYPE_MASK | svm_is_rep(prefixes) | 4); if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ)) { gen_repz_ins(s, ot, pc_start - s->cs_base, s->pc - s->cs_base); } else { gen_ins(s, ot); if (use_icount) { gen_jmp(s, s->pc - s->cs_base); break; case 0x6e: /* outsS */ case 0x6f: if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag ? OT_LONG : OT_WORD; gen_op_mov_TN_reg(OT_WORD, 0, R_EDX); gen_op_andl_T0_ffff(); gen_check_io(s, ot, pc_start - s->cs_base, svm_is_rep(prefixes) | 4); if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ)) { gen_repz_outs(s, ot, pc_start - s->cs_base, s->pc - s->cs_base); } else { gen_outs(s, ot); if (use_icount) { gen_jmp(s, s->pc - s->cs_base); break; /************************/ /* port I/O */ case 0xe4: case 0xe5: if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag ? OT_LONG : OT_WORD; val = cpu_ldub_code(env, s->pc++); gen_op_movl_T0_im(val); gen_check_io(s, ot, pc_start - s->cs_base, SVM_IOIO_TYPE_MASK | svm_is_rep(prefixes)); if (use_icount) gen_io_start(); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); gen_helper_in_func(ot, cpu_T[1], cpu_tmp2_i32); gen_op_mov_reg_T1(ot, R_EAX); if (use_icount) { gen_io_end(); gen_jmp(s, s->pc - s->cs_base); break; case 0xe6: case 0xe7: if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag ? OT_LONG : OT_WORD; val = cpu_ldub_code(env, s->pc++); gen_op_movl_T0_im(val); gen_check_io(s, ot, pc_start - s->cs_base, svm_is_rep(prefixes)); gen_op_mov_TN_reg(ot, 1, R_EAX); if (use_icount) gen_io_start(); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); tcg_gen_trunc_tl_i32(cpu_tmp3_i32, cpu_T[1]); gen_helper_out_func(ot, cpu_tmp2_i32, cpu_tmp3_i32); if (use_icount) { gen_io_end(); gen_jmp(s, s->pc - s->cs_base); break; case 0xec: case 0xed: if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag ? OT_LONG : OT_WORD; gen_op_mov_TN_reg(OT_WORD, 0, R_EDX); gen_op_andl_T0_ffff(); gen_check_io(s, ot, pc_start - s->cs_base, SVM_IOIO_TYPE_MASK | svm_is_rep(prefixes)); if (use_icount) gen_io_start(); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); gen_helper_in_func(ot, cpu_T[1], cpu_tmp2_i32); gen_op_mov_reg_T1(ot, R_EAX); if (use_icount) { gen_io_end(); gen_jmp(s, s->pc - s->cs_base); break; case 0xee: case 0xef: if ((b & 1) == 0) ot = OT_BYTE; else ot = dflag ? OT_LONG : OT_WORD; gen_op_mov_TN_reg(OT_WORD, 0, R_EDX); gen_op_andl_T0_ffff(); gen_check_io(s, ot, pc_start - s->cs_base, svm_is_rep(prefixes)); gen_op_mov_TN_reg(ot, 1, R_EAX); if (use_icount) gen_io_start(); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); tcg_gen_trunc_tl_i32(cpu_tmp3_i32, cpu_T[1]); gen_helper_out_func(ot, cpu_tmp2_i32, cpu_tmp3_i32); if (use_icount) { gen_io_end(); gen_jmp(s, s->pc - s->cs_base); break; /************************/ /* control */ case 0xc2: /* ret im */ val = cpu_ldsw_code(env, s->pc); s->pc += 2; gen_pop_T0(s); if (CODE64(s) && s->dflag) s->dflag = 2; gen_stack_update(s, val + (2 << s->dflag)); if (s->dflag == 0) gen_op_andl_T0_ffff(); gen_op_jmp_T0(); gen_eob(s); break; case 0xc3: /* ret */ gen_pop_T0(s); gen_pop_update(s); if (s->dflag == 0) gen_op_andl_T0_ffff(); gen_op_jmp_T0(); gen_eob(s); break; case 0xca: /* lret im */ val = cpu_ldsw_code(env, s->pc); s->pc += 2; do_lret: if (s->pe && !s->vm86) { gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_lret_protected(cpu_env, tcg_const_i32(s->dflag), tcg_const_i32(val)); } else { gen_stack_A0(s); /* pop offset */ gen_op_ld_T0_A0(1 + s->dflag + s->mem_index); if (s->dflag == 0) gen_op_andl_T0_ffff(); /* NOTE: keeping EIP updated is not a problem in case of exception */ gen_op_jmp_T0(); /* pop selector */ gen_op_addl_A0_im(2 << s->dflag); gen_op_ld_T0_A0(1 + s->dflag + s->mem_index); gen_op_movl_seg_T0_vm(R_CS); /* add stack offset */ gen_stack_update(s, val + (4 << s->dflag)); gen_eob(s); break; case 0xcb: /* lret */ val = 0; goto do_lret; case 0xcf: /* iret */ gen_svm_check_intercept(s, pc_start, SVM_EXIT_IRET); if (!s->pe) { /* real mode */ gen_helper_iret_real(cpu_env, tcg_const_i32(s->dflag)); set_cc_op(s, CC_OP_EFLAGS); } else if (s->vm86) { if (s->iopl != 3) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { gen_helper_iret_real(cpu_env, tcg_const_i32(s->dflag)); set_cc_op(s, CC_OP_EFLAGS); } else { gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_iret_protected(cpu_env, tcg_const_i32(s->dflag), tcg_const_i32(s->pc - s->cs_base)); set_cc_op(s, CC_OP_EFLAGS); gen_eob(s); break; case 0xe8: /* call im */ { if (dflag) tval = (int32_t)insn_get(env, s, OT_LONG); else tval = (int16_t)insn_get(env, s, OT_WORD); next_eip = s->pc - s->cs_base; tval += next_eip; if (s->dflag == 0) tval &= 0xffff; else if(!CODE64(s)) tval &= 0xffffffff; gen_movtl_T0_im(next_eip); gen_push_T0(s); gen_jmp(s, tval); break; case 0x9a: /* lcall im */ { unsigned int selector, offset; if (CODE64(s)) ot = dflag ? OT_LONG : OT_WORD; offset = insn_get(env, s, ot); selector = insn_get(env, s, OT_WORD); gen_op_movl_T0_im(selector); gen_op_movl_T1_imu(offset); goto do_lcall; case 0xe9: /* jmp im */ if (dflag) tval = (int32_t)insn_get(env, s, OT_LONG); else tval = (int16_t)insn_get(env, s, OT_WORD); tval += s->pc - s->cs_base; if (s->dflag == 0) tval &= 0xffff; else if(!CODE64(s)) tval &= 0xffffffff; gen_jmp(s, tval); break; case 0xea: /* ljmp im */ { unsigned int selector, offset; if (CODE64(s)) ot = dflag ? OT_LONG : OT_WORD; offset = insn_get(env, s, ot); selector = insn_get(env, s, OT_WORD); gen_op_movl_T0_im(selector); gen_op_movl_T1_imu(offset); goto do_ljmp; case 0xeb: /* jmp Jb */ tval = (int8_t)insn_get(env, s, OT_BYTE); tval += s->pc - s->cs_base; if (s->dflag == 0) tval &= 0xffff; gen_jmp(s, tval); break; case 0x70 ... 0x7f: /* jcc Jb */ tval = (int8_t)insn_get(env, s, OT_BYTE); goto do_jcc; case 0x180 ... 0x18f: /* jcc Jv */ if (dflag) { tval = (int32_t)insn_get(env, s, OT_LONG); } else { tval = (int16_t)insn_get(env, s, OT_WORD); do_jcc: next_eip = s->pc - s->cs_base; tval += next_eip; if (s->dflag == 0) tval &= 0xffff; gen_jcc(s, b, tval, next_eip); break; case 0x190 ... 0x19f: /* setcc Gv */ modrm = cpu_ldub_code(env, s->pc++); gen_setcc1(s, b, cpu_T[0]); gen_ldst_modrm(env, s, modrm, OT_BYTE, OR_TMP0, 1); break; case 0x140 ... 0x14f: /* cmov Gv, Ev */ ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); reg = ((modrm >> 3) & 7) | rex_r; gen_cmovcc1(env, s, ot, b, modrm, reg); break; /************************/ /* flags */ case 0x9c: /* pushf */ gen_svm_check_intercept(s, pc_start, SVM_EXIT_PUSHF); if (s->vm86 && s->iopl != 3) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { gen_update_cc_op(s); gen_helper_read_eflags(cpu_T[0], cpu_env); gen_push_T0(s); break; case 0x9d: /* popf */ gen_svm_check_intercept(s, pc_start, SVM_EXIT_POPF); if (s->vm86 && s->iopl != 3) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { gen_pop_T0(s); if (s->cpl == 0) { if (s->dflag) { gen_helper_write_eflags(cpu_env, cpu_T[0], tcg_const_i32((TF_MASK | AC_MASK | ID_MASK | NT_MASK | IF_MASK | IOPL_MASK))); } else { gen_helper_write_eflags(cpu_env, cpu_T[0], tcg_const_i32((TF_MASK | AC_MASK | ID_MASK | NT_MASK | IF_MASK | IOPL_MASK) & 0xffff)); } else { if (s->cpl <= s->iopl) { if (s->dflag) { gen_helper_write_eflags(cpu_env, cpu_T[0], tcg_const_i32((TF_MASK | AC_MASK | ID_MASK | NT_MASK | IF_MASK))); } else { gen_helper_write_eflags(cpu_env, cpu_T[0], tcg_const_i32((TF_MASK | AC_MASK | ID_MASK | NT_MASK | IF_MASK) & 0xffff)); } else { if (s->dflag) { gen_helper_write_eflags(cpu_env, cpu_T[0], tcg_const_i32((TF_MASK | AC_MASK | ID_MASK | NT_MASK))); } else { gen_helper_write_eflags(cpu_env, cpu_T[0], tcg_const_i32((TF_MASK | AC_MASK | ID_MASK | NT_MASK) & 0xffff)); gen_pop_update(s); set_cc_op(s, CC_OP_EFLAGS); /* abort translation because TF/AC flag may change */ gen_jmp_im(s->pc - s->cs_base); gen_eob(s); break; case 0x9e: /* sahf */ if (CODE64(s) && !(s->cpuid_ext3_features & CPUID_EXT3_LAHF_LM)) gen_op_mov_TN_reg(OT_BYTE, 0, R_AH); gen_compute_eflags(s); tcg_gen_andi_tl(cpu_cc_src, cpu_cc_src, CC_O); tcg_gen_andi_tl(cpu_T[0], cpu_T[0], CC_S | CC_Z | CC_A | CC_P | CC_C); tcg_gen_or_tl(cpu_cc_src, cpu_cc_src, cpu_T[0]); break; case 0x9f: /* lahf */ if (CODE64(s) && !(s->cpuid_ext3_features & CPUID_EXT3_LAHF_LM)) gen_compute_eflags(s); /* Note: gen_compute_eflags() only gives the condition codes */ tcg_gen_ori_tl(cpu_T[0], cpu_cc_src, 0x02); gen_op_mov_reg_T0(OT_BYTE, R_AH); break; case 0xf5: /* cmc */ gen_compute_eflags(s); tcg_gen_xori_tl(cpu_cc_src, cpu_cc_src, CC_C); break; case 0xf8: /* clc */ gen_compute_eflags(s); tcg_gen_andi_tl(cpu_cc_src, cpu_cc_src, ~CC_C); break; case 0xf9: /* stc */ gen_compute_eflags(s); tcg_gen_ori_tl(cpu_cc_src, cpu_cc_src, CC_C); break; case 0xfc: /* cld */ tcg_gen_movi_i32(cpu_tmp2_i32, 1); tcg_gen_st_i32(cpu_tmp2_i32, cpu_env, offsetof(CPUX86State, df)); break; case 0xfd: /* std */ tcg_gen_movi_i32(cpu_tmp2_i32, -1); tcg_gen_st_i32(cpu_tmp2_i32, cpu_env, offsetof(CPUX86State, df)); break; /************************/ /* bit operations */ case 0x1ba: /* bt/bts/btr/btc Gv, im */ ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); op = (modrm >> 3) & 7; mod = (modrm >> 6) & 3; rm = (modrm & 7) | REX_B(s); if (mod != 3) { s->rip_offset = 1; gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); gen_op_ld_T0_A0(ot + s->mem_index); } else { gen_op_mov_TN_reg(ot, 0, rm); /* load shift */ val = cpu_ldub_code(env, s->pc++); gen_op_movl_T1_im(val); if (op < 4) op -= 4; goto bt_op; case 0x1a3: /* bt Gv, Ev */ op = 0; goto do_btx; case 0x1ab: /* bts */ op = 1; goto do_btx; case 0x1b3: /* btr */ op = 2; goto do_btx; case 0x1bb: /* btc */ op = 3; do_btx: ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); reg = ((modrm >> 3) & 7) | rex_r; mod = (modrm >> 6) & 3; rm = (modrm & 7) | REX_B(s); gen_op_mov_TN_reg(OT_LONG, 1, reg); if (mod != 3) { gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); /* specific case: we need to add a displacement */ gen_exts(ot, cpu_T[1]); tcg_gen_sari_tl(cpu_tmp0, cpu_T[1], 3 + ot); tcg_gen_shli_tl(cpu_tmp0, cpu_tmp0, ot); tcg_gen_add_tl(cpu_A0, cpu_A0, cpu_tmp0); gen_op_ld_T0_A0(ot + s->mem_index); } else { gen_op_mov_TN_reg(ot, 0, rm); bt_op: tcg_gen_andi_tl(cpu_T[1], cpu_T[1], (1 << (3 + ot)) - 1); switch(op) { case 0: tcg_gen_shr_tl(cpu_cc_src, cpu_T[0], cpu_T[1]); tcg_gen_movi_tl(cpu_cc_dst, 0); break; case 1: tcg_gen_shr_tl(cpu_tmp4, cpu_T[0], cpu_T[1]); tcg_gen_movi_tl(cpu_tmp0, 1); tcg_gen_shl_tl(cpu_tmp0, cpu_tmp0, cpu_T[1]); tcg_gen_or_tl(cpu_T[0], cpu_T[0], cpu_tmp0); break; case 2: tcg_gen_shr_tl(cpu_tmp4, cpu_T[0], cpu_T[1]); tcg_gen_movi_tl(cpu_tmp0, 1); tcg_gen_shl_tl(cpu_tmp0, cpu_tmp0, cpu_T[1]); tcg_gen_not_tl(cpu_tmp0, cpu_tmp0); tcg_gen_and_tl(cpu_T[0], cpu_T[0], cpu_tmp0); break; default: case 3: tcg_gen_shr_tl(cpu_tmp4, cpu_T[0], cpu_T[1]); tcg_gen_movi_tl(cpu_tmp0, 1); tcg_gen_shl_tl(cpu_tmp0, cpu_tmp0, cpu_T[1]); tcg_gen_xor_tl(cpu_T[0], cpu_T[0], cpu_tmp0); break; set_cc_op(s, CC_OP_SARB + ot); if (op != 0) { if (mod != 3) gen_op_st_T0_A0(ot + s->mem_index); else gen_op_mov_reg_T0(ot, rm); tcg_gen_mov_tl(cpu_cc_src, cpu_tmp4); tcg_gen_movi_tl(cpu_cc_dst, 0); break; case 0x1bc: /* bsf / tzcnt */ case 0x1bd: /* bsr / lzcnt */ ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); reg = ((modrm >> 3) & 7) | rex_r; gen_ldst_modrm(env, s, modrm, ot, OR_TMP0, 0); gen_extu(ot, cpu_T[0]); /* Note that lzcnt and tzcnt are in different extensions. */ if ((prefixes & PREFIX_REPZ) && (b & 1 ? s->cpuid_ext3_features & CPUID_EXT3_ABM : s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1)) { int size = 8 << ot; tcg_gen_mov_tl(cpu_cc_src, cpu_T[0]); if (b & 1) { /* For lzcnt, reduce the target_ulong result by the number of zeros that we expect to find at the top. */ gen_helper_clz(cpu_T[0], cpu_T[0]); tcg_gen_subi_tl(cpu_T[0], cpu_T[0], TARGET_LONG_BITS - size); } else { /* For tzcnt, a zero input must return the operand size: force all bits outside the operand size to 1. */ target_ulong mask = (target_ulong)-2 << (size - 1); tcg_gen_ori_tl(cpu_T[0], cpu_T[0], mask); gen_helper_ctz(cpu_T[0], cpu_T[0]); /* For lzcnt/tzcnt, C and Z bits are defined and are related to the result. */ gen_op_update1_cc(); set_cc_op(s, CC_OP_BMILGB + ot); } else { /* For bsr/bsf, only the Z bit is defined and it is related to the input and not the result. */ tcg_gen_mov_tl(cpu_cc_dst, cpu_T[0]); set_cc_op(s, CC_OP_LOGICB + ot); if (b & 1) { /* For bsr, return the bit index of the first 1 bit, not the count of leading zeros. */ gen_helper_clz(cpu_T[0], cpu_T[0]); tcg_gen_xori_tl(cpu_T[0], cpu_T[0], TARGET_LONG_BITS - 1); } else { gen_helper_ctz(cpu_T[0], cpu_T[0]); /* ??? The manual says that the output is undefined when the input is zero, but real hardware leaves it unchanged, and real programs appear to depend on that. */ tcg_gen_movi_tl(cpu_tmp0, 0); tcg_gen_movcond_tl(TCG_COND_EQ, cpu_T[0], cpu_cc_dst, cpu_tmp0, cpu_regs[reg], cpu_T[0]); gen_op_mov_reg_T0(ot, reg); break; /************************/ /* bcd */ case 0x27: /* daa */ if (CODE64(s)) gen_update_cc_op(s); gen_helper_daa(cpu_env); set_cc_op(s, CC_OP_EFLAGS); break; case 0x2f: /* das */ if (CODE64(s)) gen_update_cc_op(s); gen_helper_das(cpu_env); set_cc_op(s, CC_OP_EFLAGS); break; case 0x37: /* aaa */ if (CODE64(s)) gen_update_cc_op(s); gen_helper_aaa(cpu_env); set_cc_op(s, CC_OP_EFLAGS); break; case 0x3f: /* aas */ if (CODE64(s)) gen_update_cc_op(s); gen_helper_aas(cpu_env); set_cc_op(s, CC_OP_EFLAGS); break; case 0xd4: /* aam */ if (CODE64(s)) val = cpu_ldub_code(env, s->pc++); if (val == 0) { gen_exception(s, EXCP00_DIVZ, pc_start - s->cs_base); } else { gen_helper_aam(cpu_env, tcg_const_i32(val)); set_cc_op(s, CC_OP_LOGICB); break; case 0xd5: /* aad */ if (CODE64(s)) val = cpu_ldub_code(env, s->pc++); gen_helper_aad(cpu_env, tcg_const_i32(val)); set_cc_op(s, CC_OP_LOGICB); break; /************************/ /* misc */ case 0x90: /* nop */ /* XXX: correct lock test for all insn */ if (prefixes & PREFIX_LOCK) { /* If REX_B is set, then this is xchg eax, r8d, not a nop. */ if (REX_B(s)) { goto do_xchg_reg_eax; if (prefixes & PREFIX_REPZ) { gen_svm_check_intercept(s, pc_start, SVM_EXIT_PAUSE); break; case 0x9b: /* fwait */ if ((s->flags & (HF_MP_MASK | HF_TS_MASK)) == (HF_MP_MASK | HF_TS_MASK)) { gen_exception(s, EXCP07_PREX, pc_start - s->cs_base); } else { gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_fwait(cpu_env); break; case 0xcc: /* int3 */ gen_interrupt(s, EXCP03_INT3, pc_start - s->cs_base, s->pc - s->cs_base); break; case 0xcd: /* int N */ val = cpu_ldub_code(env, s->pc++); if (s->vm86 && s->iopl != 3) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { gen_interrupt(s, val, pc_start - s->cs_base, s->pc - s->cs_base); break; case 0xce: /* into */ if (CODE64(s)) gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_into(cpu_env, tcg_const_i32(s->pc - pc_start)); break; #ifdef WANT_ICEBP case 0xf1: /* icebp (undocumented, exits to external debugger) */ gen_svm_check_intercept(s, pc_start, SVM_EXIT_ICEBP); #if 1 gen_debug(s, pc_start - s->cs_base); #else /* start debug */ tb_flush(env); qemu_set_log(CPU_LOG_INT | CPU_LOG_TB_IN_ASM); #endif break; #endif case 0xfa: /* cli */ if (!s->vm86) { if (s->cpl <= s->iopl) { gen_helper_cli(cpu_env); } else { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { if (s->iopl == 3) { gen_helper_cli(cpu_env); } else { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); break; case 0xfb: /* sti */ if (!s->vm86) { if (s->cpl <= s->iopl) { gen_sti: gen_helper_sti(cpu_env); /* interruptions are enabled only the first insn after sti */ /* If several instructions disable interrupts, only the _first_ does it */ if (!(s->tb->flags & HF_INHIBIT_IRQ_MASK)) gen_helper_set_inhibit_irq(cpu_env); /* give a chance to handle pending irqs */ gen_jmp_im(s->pc - s->cs_base); gen_eob(s); } else { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { if (s->iopl == 3) { goto gen_sti; } else { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); break; case 0x62: /* bound */ if (CODE64(s)) ot = dflag ? OT_LONG : OT_WORD; modrm = cpu_ldub_code(env, s->pc++); reg = (modrm >> 3) & 7; mod = (modrm >> 6) & 3; if (mod == 3) gen_op_mov_TN_reg(ot, 0, reg); gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); gen_jmp_im(pc_start - s->cs_base); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); if (ot == OT_WORD) { gen_helper_boundw(cpu_env, cpu_A0, cpu_tmp2_i32); } else { gen_helper_boundl(cpu_env, cpu_A0, cpu_tmp2_i32); break; case 0x1c8 ... 0x1cf: /* bswap reg */ reg = (b & 7) | REX_B(s); #ifdef TARGET_X86_64 if (dflag == 2) { gen_op_mov_TN_reg(OT_QUAD, 0, reg); tcg_gen_bswap64_i64(cpu_T[0], cpu_T[0]); gen_op_mov_reg_T0(OT_QUAD, reg); } else #endif { gen_op_mov_TN_reg(OT_LONG, 0, reg); tcg_gen_ext32u_tl(cpu_T[0], cpu_T[0]); tcg_gen_bswap32_tl(cpu_T[0], cpu_T[0]); gen_op_mov_reg_T0(OT_LONG, reg); break; case 0xd6: /* salc */ if (CODE64(s)) gen_compute_eflags_c(s, cpu_T[0]); tcg_gen_neg_tl(cpu_T[0], cpu_T[0]); gen_op_mov_reg_T0(OT_BYTE, R_EAX); break; case 0xe0: /* loopnz */ case 0xe1: /* loopz */ case 0xe2: /* loop */ case 0xe3: /* jecxz */ { int l1, l2, l3; tval = (int8_t)insn_get(env, s, OT_BYTE); next_eip = s->pc - s->cs_base; tval += next_eip; if (s->dflag == 0) tval &= 0xffff; l1 = gen_new_label(); l2 = gen_new_label(); l3 = gen_new_label(); b &= 3; switch(b) { case 0: /* loopnz */ case 1: /* loopz */ gen_op_add_reg_im(s->aflag, R_ECX, -1); gen_op_jz_ecx(s->aflag, l3); gen_jcc1(s, (JCC_Z << 1) | (b ^ 1), l1); break; case 2: /* loop */ gen_op_add_reg_im(s->aflag, R_ECX, -1); gen_op_jnz_ecx(s->aflag, l1); break; default: case 3: /* jcxz */ gen_op_jz_ecx(s->aflag, l1); break; gen_set_label(l3); gen_jmp_im(next_eip); tcg_gen_br(l2); gen_set_label(l1); gen_jmp_im(tval); gen_set_label(l2); gen_eob(s); break; case 0x130: /* wrmsr */ case 0x132: /* rdmsr */ if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); if (b & 2) { gen_helper_rdmsr(cpu_env); } else { gen_helper_wrmsr(cpu_env); break; case 0x131: /* rdtsc */ gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); if (use_icount) gen_io_start(); gen_helper_rdtsc(cpu_env); if (use_icount) { gen_io_end(); gen_jmp(s, s->pc - s->cs_base); break; case 0x133: /* rdpmc */ gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_rdpmc(cpu_env); break; case 0x134: /* sysenter */ /* For Intel SYSENTER is valid on 64-bit */ if (CODE64(s) && env->cpuid_vendor1 != CPUID_VENDOR_INTEL_1) if (!s->pe) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_sysenter(cpu_env); gen_eob(s); break; case 0x135: /* sysexit */ /* For Intel SYSEXIT is valid on 64-bit */ if (CODE64(s) && env->cpuid_vendor1 != CPUID_VENDOR_INTEL_1) if (!s->pe) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_sysexit(cpu_env, tcg_const_i32(dflag)); gen_eob(s); break; #ifdef TARGET_X86_64 case 0x105: /* syscall */ /* XXX: is it usable in real mode ? */ gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_syscall(cpu_env, tcg_const_i32(s->pc - pc_start)); gen_eob(s); break; case 0x107: /* sysret */ if (!s->pe) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_sysret(cpu_env, tcg_const_i32(s->dflag)); /* condition codes are modified only in long mode */ if (s->lma) { set_cc_op(s, CC_OP_EFLAGS); gen_eob(s); break; #endif case 0x1a2: /* cpuid */ gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_cpuid(cpu_env); break; case 0xf4: /* hlt */ if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_hlt(cpu_env, tcg_const_i32(s->pc - pc_start)); s->is_jmp = DISAS_TB_JUMP; break; case 0x100: modrm = cpu_ldub_code(env, s->pc++); mod = (modrm >> 6) & 3; op = (modrm >> 3) & 7; switch(op) { case 0: /* sldt */ if (!s->pe || s->vm86) gen_svm_check_intercept(s, pc_start, SVM_EXIT_LDTR_READ); tcg_gen_ld32u_tl(cpu_T[0], cpu_env, offsetof(CPUX86State,ldt.selector)); ot = OT_WORD; if (mod == 3) ot += s->dflag; gen_ldst_modrm(env, s, modrm, ot, OR_TMP0, 1); break; case 2: /* lldt */ if (!s->pe || s->vm86) if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { gen_svm_check_intercept(s, pc_start, SVM_EXIT_LDTR_WRITE); gen_ldst_modrm(env, s, modrm, OT_WORD, OR_TMP0, 0); gen_jmp_im(pc_start - s->cs_base); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); gen_helper_lldt(cpu_env, cpu_tmp2_i32); break; case 1: /* str */ if (!s->pe || s->vm86) gen_svm_check_intercept(s, pc_start, SVM_EXIT_TR_READ); tcg_gen_ld32u_tl(cpu_T[0], cpu_env, offsetof(CPUX86State,tr.selector)); ot = OT_WORD; if (mod == 3) ot += s->dflag; gen_ldst_modrm(env, s, modrm, ot, OR_TMP0, 1); break; case 3: /* ltr */ if (!s->pe || s->vm86) if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { gen_svm_check_intercept(s, pc_start, SVM_EXIT_TR_WRITE); gen_ldst_modrm(env, s, modrm, OT_WORD, OR_TMP0, 0); gen_jmp_im(pc_start - s->cs_base); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); gen_helper_ltr(cpu_env, cpu_tmp2_i32); break; case 4: /* verr */ case 5: /* verw */ if (!s->pe || s->vm86) gen_ldst_modrm(env, s, modrm, OT_WORD, OR_TMP0, 0); gen_update_cc_op(s); if (op == 4) { gen_helper_verr(cpu_env, cpu_T[0]); } else { gen_helper_verw(cpu_env, cpu_T[0]); set_cc_op(s, CC_OP_EFLAGS); break; default: break; case 0x101: modrm = cpu_ldub_code(env, s->pc++); mod = (modrm >> 6) & 3; op = (modrm >> 3) & 7; rm = modrm & 7; switch(op) { case 0: /* sgdt */ if (mod == 3) gen_svm_check_intercept(s, pc_start, SVM_EXIT_GDTR_READ); gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); tcg_gen_ld32u_tl(cpu_T[0], cpu_env, offsetof(CPUX86State, gdt.limit)); gen_op_st_T0_A0(OT_WORD + s->mem_index); gen_add_A0_im(s, 2); tcg_gen_ld_tl(cpu_T[0], cpu_env, offsetof(CPUX86State, gdt.base)); if (!s->dflag) gen_op_andl_T0_im(0xffffff); gen_op_st_T0_A0(CODE64(s) + OT_LONG + s->mem_index); break; case 1: if (mod == 3) { switch (rm) { case 0: /* monitor */ if (!(s->cpuid_ext_features & CPUID_EXT_MONITOR) || s->cpl != 0) gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); #ifdef TARGET_X86_64 if (s->aflag == 2) { gen_op_movq_A0_reg(R_EAX); } else #endif { gen_op_movl_A0_reg(R_EAX); if (s->aflag == 0) gen_op_andl_A0_ffff(); gen_add_A0_ds_seg(s); gen_helper_monitor(cpu_env, cpu_A0); break; case 1: /* mwait */ if (!(s->cpuid_ext_features & CPUID_EXT_MONITOR) || s->cpl != 0) gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_mwait(cpu_env, tcg_const_i32(s->pc - pc_start)); gen_eob(s); break; case 2: /* clac */ if (!(s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_SMAP) || s->cpl != 0) { gen_helper_clac(cpu_env); gen_jmp_im(s->pc - s->cs_base); gen_eob(s); break; case 3: /* stac */ if (!(s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_SMAP) || s->cpl != 0) { gen_helper_stac(cpu_env); gen_jmp_im(s->pc - s->cs_base); gen_eob(s); break; default: } else { /* sidt */ gen_svm_check_intercept(s, pc_start, SVM_EXIT_IDTR_READ); gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); tcg_gen_ld32u_tl(cpu_T[0], cpu_env, offsetof(CPUX86State, idt.limit)); gen_op_st_T0_A0(OT_WORD + s->mem_index); gen_add_A0_im(s, 2); tcg_gen_ld_tl(cpu_T[0], cpu_env, offsetof(CPUX86State, idt.base)); if (!s->dflag) gen_op_andl_T0_im(0xffffff); gen_op_st_T0_A0(CODE64(s) + OT_LONG + s->mem_index); break; case 2: /* lgdt */ case 3: /* lidt */ if (mod == 3) { gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); switch(rm) { case 0: /* VMRUN */ if (!(s->flags & HF_SVME_MASK) || !s->pe) if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); break; } else { gen_helper_vmrun(cpu_env, tcg_const_i32(s->aflag), tcg_const_i32(s->pc - pc_start)); tcg_gen_exit_tb(0); s->is_jmp = DISAS_TB_JUMP; break; case 1: /* VMMCALL */ if (!(s->flags & HF_SVME_MASK)) gen_helper_vmmcall(cpu_env); break; case 2: /* VMLOAD */ if (!(s->flags & HF_SVME_MASK) || !s->pe) if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); break; } else { gen_helper_vmload(cpu_env, tcg_const_i32(s->aflag)); break; case 3: /* VMSAVE */ if (!(s->flags & HF_SVME_MASK) || !s->pe) if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); break; } else { gen_helper_vmsave(cpu_env, tcg_const_i32(s->aflag)); break; case 4: /* STGI */ if ((!(s->flags & HF_SVME_MASK) && !(s->cpuid_ext3_features & CPUID_EXT3_SKINIT)) || !s->pe) if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); break; } else { gen_helper_stgi(cpu_env); break; case 5: /* CLGI */ if (!(s->flags & HF_SVME_MASK) || !s->pe) if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); break; } else { gen_helper_clgi(cpu_env); break; case 6: /* SKINIT */ if ((!(s->flags & HF_SVME_MASK) && !(s->cpuid_ext3_features & CPUID_EXT3_SKINIT)) || !s->pe) gen_helper_skinit(cpu_env); break; case 7: /* INVLPGA */ if (!(s->flags & HF_SVME_MASK) || !s->pe) if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); break; } else { gen_helper_invlpga(cpu_env, tcg_const_i32(s->aflag)); break; default: } else if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { gen_svm_check_intercept(s, pc_start, op==2 ? SVM_EXIT_GDTR_WRITE : SVM_EXIT_IDTR_WRITE); gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); gen_op_ld_T1_A0(OT_WORD + s->mem_index); gen_add_A0_im(s, 2); gen_op_ld_T0_A0(CODE64(s) + OT_LONG + s->mem_index); if (!s->dflag) gen_op_andl_T0_im(0xffffff); if (op == 2) { tcg_gen_st_tl(cpu_T[0], cpu_env, offsetof(CPUX86State,gdt.base)); tcg_gen_st32_tl(cpu_T[1], cpu_env, offsetof(CPUX86State,gdt.limit)); } else { tcg_gen_st_tl(cpu_T[0], cpu_env, offsetof(CPUX86State,idt.base)); tcg_gen_st32_tl(cpu_T[1], cpu_env, offsetof(CPUX86State,idt.limit)); break; case 4: /* smsw */ gen_svm_check_intercept(s, pc_start, SVM_EXIT_READ_CR0); #if defined TARGET_X86_64 && defined HOST_WORDS_BIGENDIAN tcg_gen_ld32u_tl(cpu_T[0], cpu_env, offsetof(CPUX86State,cr[0]) + 4); #else tcg_gen_ld32u_tl(cpu_T[0], cpu_env, offsetof(CPUX86State,cr[0])); #endif gen_ldst_modrm(env, s, modrm, OT_WORD, OR_TMP0, 1); break; case 6: /* lmsw */ if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { gen_svm_check_intercept(s, pc_start, SVM_EXIT_WRITE_CR0); gen_ldst_modrm(env, s, modrm, OT_WORD, OR_TMP0, 0); gen_helper_lmsw(cpu_env, cpu_T[0]); gen_jmp_im(s->pc - s->cs_base); gen_eob(s); break; case 7: if (mod != 3) { /* invlpg */ if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); gen_helper_invlpg(cpu_env, cpu_A0); gen_jmp_im(s->pc - s->cs_base); gen_eob(s); } else { switch (rm) { case 0: /* swapgs */ #ifdef TARGET_X86_64 if (CODE64(s)) { if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { tcg_gen_ld_tl(cpu_T[0], cpu_env, offsetof(CPUX86State,segs[R_GS].base)); tcg_gen_ld_tl(cpu_T[1], cpu_env, offsetof(CPUX86State,kernelgsbase)); tcg_gen_st_tl(cpu_T[1], cpu_env, offsetof(CPUX86State,segs[R_GS].base)); tcg_gen_st_tl(cpu_T[0], cpu_env, offsetof(CPUX86State,kernelgsbase)); } else #endif { break; case 1: /* rdtscp */ if (!(s->cpuid_ext2_features & CPUID_EXT2_RDTSCP)) gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); if (use_icount) gen_io_start(); gen_helper_rdtscp(cpu_env); if (use_icount) { gen_io_end(); gen_jmp(s, s->pc - s->cs_base); break; default: break; default: break; case 0x108: /* invd */ case 0x109: /* wbinvd */ if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { gen_svm_check_intercept(s, pc_start, (b & 2) ? SVM_EXIT_INVD : SVM_EXIT_WBINVD); /* nothing to do */ break; case 0x63: /* arpl or movslS (x86_64) */ #ifdef TARGET_X86_64 if (CODE64(s)) { int d_ot; /* d_ot is the size of destination */ d_ot = dflag + OT_WORD; modrm = cpu_ldub_code(env, s->pc++); reg = ((modrm >> 3) & 7) | rex_r; mod = (modrm >> 6) & 3; rm = (modrm & 7) | REX_B(s); if (mod == 3) { gen_op_mov_TN_reg(OT_LONG, 0, rm); /* sign extend */ if (d_ot == OT_QUAD) tcg_gen_ext32s_tl(cpu_T[0], cpu_T[0]); gen_op_mov_reg_T0(d_ot, reg); } else { gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); if (d_ot == OT_QUAD) { gen_op_lds_T0_A0(OT_LONG + s->mem_index); } else { gen_op_ld_T0_A0(OT_LONG + s->mem_index); gen_op_mov_reg_T0(d_ot, reg); } else #endif { int label1; TCGv t0, t1, t2, a0; if (!s->pe || s->vm86) t0 = tcg_temp_local_new(); t1 = tcg_temp_local_new(); t2 = tcg_temp_local_new(); ot = OT_WORD; modrm = cpu_ldub_code(env, s->pc++); reg = (modrm >> 3) & 7; mod = (modrm >> 6) & 3; rm = modrm & 7; if (mod != 3) { gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); gen_op_ld_v(ot + s->mem_index, t0, cpu_A0); a0 = tcg_temp_local_new(); tcg_gen_mov_tl(a0, cpu_A0); } else { gen_op_mov_v_reg(ot, t0, rm); TCGV_UNUSED(a0); gen_op_mov_v_reg(ot, t1, reg); tcg_gen_andi_tl(cpu_tmp0, t0, 3); tcg_gen_andi_tl(t1, t1, 3); tcg_gen_movi_tl(t2, 0); label1 = gen_new_label(); tcg_gen_brcond_tl(TCG_COND_GE, cpu_tmp0, t1, label1); tcg_gen_andi_tl(t0, t0, ~3); tcg_gen_or_tl(t0, t0, t1); tcg_gen_movi_tl(t2, CC_Z); gen_set_label(label1); if (mod != 3) { gen_op_st_v(ot + s->mem_index, t0, a0); tcg_temp_free(a0); } else { gen_op_mov_reg_v(ot, rm, t0); gen_compute_eflags(s); tcg_gen_andi_tl(cpu_cc_src, cpu_cc_src, ~CC_Z); tcg_gen_or_tl(cpu_cc_src, cpu_cc_src, t2); tcg_temp_free(t0); tcg_temp_free(t1); tcg_temp_free(t2); break; case 0x102: /* lar */ case 0x103: /* lsl */ { int label1; TCGv t0; if (!s->pe || s->vm86) ot = dflag ? OT_LONG : OT_WORD; modrm = cpu_ldub_code(env, s->pc++); reg = ((modrm >> 3) & 7) | rex_r; gen_ldst_modrm(env, s, modrm, OT_WORD, OR_TMP0, 0); t0 = tcg_temp_local_new(); gen_update_cc_op(s); if (b == 0x102) { gen_helper_lar(t0, cpu_env, cpu_T[0]); } else { gen_helper_lsl(t0, cpu_env, cpu_T[0]); tcg_gen_andi_tl(cpu_tmp0, cpu_cc_src, CC_Z); label1 = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_tmp0, 0, label1); gen_op_mov_reg_v(ot, reg, t0); gen_set_label(label1); set_cc_op(s, CC_OP_EFLAGS); tcg_temp_free(t0); break; case 0x118: modrm = cpu_ldub_code(env, s->pc++); mod = (modrm >> 6) & 3; op = (modrm >> 3) & 7; switch(op) { case 0: /* prefetchnta */ case 1: /* prefetchnt0 */ case 2: /* prefetchnt0 */ case 3: /* prefetchnt0 */ if (mod == 3) gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); /* nothing more to do */ break; default: /* nop (multi byte) */ gen_nop_modrm(env, s, modrm); break; break; case 0x119 ... 0x11f: /* nop (multi byte) */ modrm = cpu_ldub_code(env, s->pc++); gen_nop_modrm(env, s, modrm); break; case 0x120: /* mov reg, crN */ case 0x122: /* mov crN, reg */ if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { modrm = cpu_ldub_code(env, s->pc++); /* Ignore the mod bits (assume (modrm&0xc0)==0xc0). * AMD documentation (24594.pdf) and testing of * intel 386 and 486 processors all show that the mod bits * are assumed to be 1's, regardless of actual values. */ rm = (modrm & 7) | REX_B(s); reg = ((modrm >> 3) & 7) | rex_r; if (CODE64(s)) ot = OT_QUAD; else ot = OT_LONG; if ((prefixes & PREFIX_LOCK) && (reg == 0) && (s->cpuid_ext3_features & CPUID_EXT3_CR8LEG)) { reg = 8; switch(reg) { case 0: case 2: case 3: case 4: case 8: gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); if (b & 2) { gen_op_mov_TN_reg(ot, 0, rm); gen_helper_write_crN(cpu_env, tcg_const_i32(reg), cpu_T[0]); gen_jmp_im(s->pc - s->cs_base); gen_eob(s); } else { gen_helper_read_crN(cpu_T[0], cpu_env, tcg_const_i32(reg)); gen_op_mov_reg_T0(ot, rm); break; default: break; case 0x121: /* mov reg, drN */ case 0x123: /* mov drN, reg */ if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { modrm = cpu_ldub_code(env, s->pc++); /* Ignore the mod bits (assume (modrm&0xc0)==0xc0). * AMD documentation (24594.pdf) and testing of * intel 386 and 486 processors all show that the mod bits * are assumed to be 1's, regardless of actual values. */ rm = (modrm & 7) | REX_B(s); reg = ((modrm >> 3) & 7) | rex_r; if (CODE64(s)) ot = OT_QUAD; else ot = OT_LONG; /* XXX: do it dynamically with CR4.DE bit */ if (reg == 4 || reg == 5 || reg >= 8) if (b & 2) { gen_svm_check_intercept(s, pc_start, SVM_EXIT_WRITE_DR0 + reg); gen_op_mov_TN_reg(ot, 0, rm); gen_helper_movl_drN_T0(cpu_env, tcg_const_i32(reg), cpu_T[0]); gen_jmp_im(s->pc - s->cs_base); gen_eob(s); } else { gen_svm_check_intercept(s, pc_start, SVM_EXIT_READ_DR0 + reg); tcg_gen_ld_tl(cpu_T[0], cpu_env, offsetof(CPUX86State,dr[reg])); gen_op_mov_reg_T0(ot, rm); break; case 0x106: /* clts */ if (s->cpl != 0) { gen_exception(s, EXCP0D_GPF, pc_start - s->cs_base); } else { gen_svm_check_intercept(s, pc_start, SVM_EXIT_WRITE_CR0); gen_helper_clts(cpu_env); /* abort block because static cpu state changed */ gen_jmp_im(s->pc - s->cs_base); gen_eob(s); break; /* MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4 support */ case 0x1c3: /* MOVNTI reg, mem */ if (!(s->cpuid_features & CPUID_SSE2)) ot = s->dflag == 2 ? OT_QUAD : OT_LONG; modrm = cpu_ldub_code(env, s->pc++); mod = (modrm >> 6) & 3; if (mod == 3) reg = ((modrm >> 3) & 7) | rex_r; /* generate a generic store */ gen_ldst_modrm(env, s, modrm, ot, reg, 1); break; case 0x1ae: modrm = cpu_ldub_code(env, s->pc++); mod = (modrm >> 6) & 3; op = (modrm >> 3) & 7; switch(op) { case 0: /* fxsave */ if (mod == 3 || !(s->cpuid_features & CPUID_FXSR) || (s->prefix & PREFIX_LOCK)) if ((s->flags & HF_EM_MASK) || (s->flags & HF_TS_MASK)) { gen_exception(s, EXCP07_PREX, pc_start - s->cs_base); break; gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_fxsave(cpu_env, cpu_A0, tcg_const_i32((s->dflag == 2))); break; case 1: /* fxrstor */ if (mod == 3 || !(s->cpuid_features & CPUID_FXSR) || (s->prefix & PREFIX_LOCK)) if ((s->flags & HF_EM_MASK) || (s->flags & HF_TS_MASK)) { gen_exception(s, EXCP07_PREX, pc_start - s->cs_base); break; gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); gen_update_cc_op(s); gen_jmp_im(pc_start - s->cs_base); gen_helper_fxrstor(cpu_env, cpu_A0, tcg_const_i32((s->dflag == 2))); break; case 2: /* ldmxcsr */ case 3: /* stmxcsr */ if (s->flags & HF_TS_MASK) { gen_exception(s, EXCP07_PREX, pc_start - s->cs_base); break; if ((s->flags & HF_EM_MASK) || !(s->flags & HF_OSFXSR_MASK) || mod == 3) gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); if (op == 2) { gen_op_ld_T0_A0(OT_LONG + s->mem_index); tcg_gen_trunc_tl_i32(cpu_tmp2_i32, cpu_T[0]); gen_helper_ldmxcsr(cpu_env, cpu_tmp2_i32); } else { tcg_gen_ld32u_tl(cpu_T[0], cpu_env, offsetof(CPUX86State, mxcsr)); gen_op_st_T0_A0(OT_LONG + s->mem_index); break; case 5: /* lfence */ case 6: /* mfence */ if ((modrm & 0xc7) != 0xc0 || !(s->cpuid_features & CPUID_SSE2)) break; case 7: /* sfence / clflush */ if ((modrm & 0xc7) == 0xc0) { /* sfence */ /* XXX: also check for cpuid_ext2_features & CPUID_EXT2_EMMX */ if (!(s->cpuid_features & CPUID_SSE)) } else { /* clflush */ if (!(s->cpuid_features & CPUID_CLFLUSH)) gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); break; default: break; case 0x10d: /* 3DNow! prefetch(w) */ modrm = cpu_ldub_code(env, s->pc++); mod = (modrm >> 6) & 3; if (mod == 3) gen_lea_modrm(env, s, modrm, &reg_addr, &offset_addr); /* ignore for now */ break; case 0x1aa: /* rsm */ gen_svm_check_intercept(s, pc_start, SVM_EXIT_RSM); if (!(s->flags & HF_SMM_MASK)) gen_update_cc_op(s); gen_jmp_im(s->pc - s->cs_base); gen_helper_rsm(cpu_env); gen_eob(s); break; case 0x1b8: /* SSE4.2 popcnt */ if ((prefixes & (PREFIX_REPZ | PREFIX_LOCK | PREFIX_REPNZ)) != PREFIX_REPZ) if (!(s->cpuid_ext_features & CPUID_EXT_POPCNT)) modrm = cpu_ldub_code(env, s->pc++); reg = ((modrm >> 3) & 7) | rex_r; if (s->prefix & PREFIX_DATA) ot = OT_WORD; else if (s->dflag != 2) ot = OT_LONG; else ot = OT_QUAD; gen_ldst_modrm(env, s, modrm, ot, OR_TMP0, 0); gen_helper_popcnt(cpu_T[0], cpu_env, cpu_T[0], tcg_const_i32(ot)); gen_op_mov_reg_T0(ot, reg); set_cc_op(s, CC_OP_EFLAGS); break; case 0x10e ... 0x10f: /* 3DNow! instructions, ignore prefixes */ s->prefix &= ~(PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA); case 0x110 ... 0x117: case 0x128 ... 0x12f: case 0x138 ... 0x13a: case 0x150 ... 0x179: case 0x17c ... 0x17f: case 0x1c2: case 0x1c4 ... 0x1c6: case 0x1d0 ... 0x1fe: gen_sse(env, s, b, pc_start, rex_r); break; default: /* lock generation */ if (s->prefix & PREFIX_LOCK) gen_helper_unlock(); return s->pc; illegal_op: if (s->prefix & PREFIX_LOCK) gen_helper_unlock(); /* XXX: ensure that no lock was generated */ gen_exception(s, EXCP06_ILLOP, pc_start - s->cs_base); return s->pc;
13,797
1
int h261_decode_picture_header(H261Context *h){ MpegEncContext * const s = &h->s; int format, i; static int h261_framecounter = 0; uint32_t startcode; align_get_bits(&s->gb); startcode = (h->last_bits << (12 - (8-h->bits_left))) | get_bits(&s->gb, 20-8 - (8- h->bits_left)); for(i= s->gb.size_in_bits - get_bits_count(&s->gb); i>24; i-=1){ startcode = ((startcode << 1) | get_bits(&s->gb, 1)) & 0x000FFFFF; if(startcode == 0x10) break; } if (startcode != 0x10){ av_log(s->avctx, AV_LOG_ERROR, "Bad picture start code\n"); return -1; } /* temporal reference */ s->picture_number = get_bits(&s->gb, 5); /* picture timestamp */ /* PTYPE starts here */ skip_bits1(&s->gb); /* split screen off */ skip_bits1(&s->gb); /* camera off */ skip_bits1(&s->gb); /* freeze picture release off */ format = get_bits1(&s->gb); //only 2 formats possible if (format == 0){//QCIF s->width = 176; s->height = 144; s->mb_width = 11; s->mb_height = 9; }else{//CIF s->width = 352; s->height = 288; s->mb_width = 22; s->mb_height = 18; } s->mb_num = s->mb_width * s->mb_height; skip_bits1(&s->gb); /* still image mode off */ skip_bits1(&s->gb); /* Reserved */ /* PEI */ while (get_bits1(&s->gb) != 0){ skip_bits(&s->gb, 8); } //h261 has no I-FRAMES, pass the test in MPV_frame_start in mpegvideo.c if(h261_framecounter > 1) s->pict_type = P_TYPE; else s->pict_type = I_TYPE; h261_framecounter++; h->gob_number = 0; return 0; }
13,798
0
void HELPER(srst)(CPUS390XState *env, uint32_t r1, uint32_t r2) { uintptr_t ra = GETPC(); uint64_t end, str; uint32_t len; uint8_t v, c = env->regs[0]; /* Bits 32-55 must contain all 0. */ if (env->regs[0] & 0xffffff00u) { cpu_restore_state(ENV_GET_CPU(env), ra); program_interrupt(env, PGM_SPECIFICATION, 6); } str = get_address(env, r2); end = get_address(env, r1); /* Lest we fail to service interrupts in a timely manner, limit the amount of work we're willing to do. For now, let's cap at 8k. */ for (len = 0; len < 0x2000; ++len) { if (str + len == end) { /* Character not found. R1 & R2 are unmodified. */ env->cc_op = 2; return; } v = cpu_ldub_data_ra(env, str + len, ra); if (v == c) { /* Character found. Set R1 to the location; R2 is unmodified. */ env->cc_op = 1; set_address(env, r1, str + len); return; } } /* CPU-determined bytes processed. Advance R2 to next byte to process. */ env->cc_op = 3; set_address(env, r2, str + len); }
13,799
0
void qemu_vfree(void *ptr) { /* may be useful some day, but currently we do not need to free */ }
13,800
0
int qemu_sem_timedwait(QemuSemaphore *sem, int ms) { int rc = WaitForSingleObject(sem->sema, ms); if (rc == WAIT_OBJECT_0) { return 0; } if (rc != WAIT_TIMEOUT) { error_exit(GetLastError(), __func__); } return -1; }
13,801
0
static void disas_simd_3same_int(DisasContext *s, uint32_t insn) { int is_q = extract32(insn, 30, 1); int u = extract32(insn, 29, 1); int size = extract32(insn, 22, 2); int opcode = extract32(insn, 11, 5); int rm = extract32(insn, 16, 5); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); int pass; switch (opcode) { case 0x13: /* MUL, PMUL */ if (u && size != 0) { unallocated_encoding(s); return; } /* fall through */ case 0x0: /* SHADD, UHADD */ case 0x2: /* SRHADD, URHADD */ case 0x4: /* SHSUB, UHSUB */ case 0xc: /* SMAX, UMAX */ case 0xd: /* SMIN, UMIN */ case 0xe: /* SABD, UABD */ case 0xf: /* SABA, UABA */ case 0x12: /* MLA, MLS */ if (size == 3) { unallocated_encoding(s); return; } break; case 0x16: /* SQDMULH, SQRDMULH */ if (size == 0 || size == 3) { unallocated_encoding(s); return; } break; default: if (size == 3 && !is_q) { unallocated_encoding(s); return; } break; } if (!fp_access_check(s)) { return; } if (size == 3) { for (pass = 0; pass < (is_q ? 2 : 1); pass++) { TCGv_i64 tcg_op1 = tcg_temp_new_i64(); TCGv_i64 tcg_op2 = tcg_temp_new_i64(); TCGv_i64 tcg_res = tcg_temp_new_i64(); read_vec_element(s, tcg_op1, rn, pass, MO_64); read_vec_element(s, tcg_op2, rm, pass, MO_64); handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); write_vec_element(s, tcg_res, rd, pass, MO_64); tcg_temp_free_i64(tcg_res); tcg_temp_free_i64(tcg_op1); tcg_temp_free_i64(tcg_op2); } } else { for (pass = 0; pass < (is_q ? 4 : 2); pass++) { TCGv_i32 tcg_op1 = tcg_temp_new_i32(); TCGv_i32 tcg_op2 = tcg_temp_new_i32(); TCGv_i32 tcg_res = tcg_temp_new_i32(); NeonGenTwoOpFn *genfn = NULL; NeonGenTwoOpEnvFn *genenvfn = NULL; read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); switch (opcode) { case 0x0: /* SHADD, UHADD */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, }; genfn = fns[size][u]; break; } case 0x1: /* SQADD, UQADD */ { static NeonGenTwoOpEnvFn * const fns[3][2] = { { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, }; genenvfn = fns[size][u]; break; } case 0x2: /* SRHADD, URHADD */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, }; genfn = fns[size][u]; break; } case 0x4: /* SHSUB, UHSUB */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, }; genfn = fns[size][u]; break; } case 0x5: /* SQSUB, UQSUB */ { static NeonGenTwoOpEnvFn * const fns[3][2] = { { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, }; genenvfn = fns[size][u]; break; } case 0x6: /* CMGT, CMHI */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_u8 }, { gen_helper_neon_cgt_s16, gen_helper_neon_cgt_u16 }, { gen_helper_neon_cgt_s32, gen_helper_neon_cgt_u32 }, }; genfn = fns[size][u]; break; } case 0x7: /* CMGE, CMHS */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_cge_s8, gen_helper_neon_cge_u8 }, { gen_helper_neon_cge_s16, gen_helper_neon_cge_u16 }, { gen_helper_neon_cge_s32, gen_helper_neon_cge_u32 }, }; genfn = fns[size][u]; break; } case 0x8: /* SSHL, USHL */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 }, { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 }, { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 }, }; genfn = fns[size][u]; break; } case 0x9: /* SQSHL, UQSHL */ { static NeonGenTwoOpEnvFn * const fns[3][2] = { { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, }; genenvfn = fns[size][u]; break; } case 0xa: /* SRSHL, URSHL */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, }; genfn = fns[size][u]; break; } case 0xb: /* SQRSHL, UQRSHL */ { static NeonGenTwoOpEnvFn * const fns[3][2] = { { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, }; genenvfn = fns[size][u]; break; } case 0xc: /* SMAX, UMAX */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_max_s8, gen_helper_neon_max_u8 }, { gen_helper_neon_max_s16, gen_helper_neon_max_u16 }, { gen_max_s32, gen_max_u32 }, }; genfn = fns[size][u]; break; } case 0xd: /* SMIN, UMIN */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_min_s8, gen_helper_neon_min_u8 }, { gen_helper_neon_min_s16, gen_helper_neon_min_u16 }, { gen_min_s32, gen_min_u32 }, }; genfn = fns[size][u]; break; } case 0xe: /* SABD, UABD */ case 0xf: /* SABA, UABA */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 }, { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 }, { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 }, }; genfn = fns[size][u]; break; } case 0x10: /* ADD, SUB */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 }, { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, { tcg_gen_add_i32, tcg_gen_sub_i32 }, }; genfn = fns[size][u]; break; } case 0x11: /* CMTST, CMEQ */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_tst_u8, gen_helper_neon_ceq_u8 }, { gen_helper_neon_tst_u16, gen_helper_neon_ceq_u16 }, { gen_helper_neon_tst_u32, gen_helper_neon_ceq_u32 }, }; genfn = fns[size][u]; break; } case 0x13: /* MUL, PMUL */ if (u) { /* PMUL */ assert(size == 0); genfn = gen_helper_neon_mul_p8; break; } /* fall through : MUL */ case 0x12: /* MLA, MLS */ { static NeonGenTwoOpFn * const fns[3] = { gen_helper_neon_mul_u8, gen_helper_neon_mul_u16, tcg_gen_mul_i32, }; genfn = fns[size]; break; } case 0x16: /* SQDMULH, SQRDMULH */ { static NeonGenTwoOpEnvFn * const fns[2][2] = { { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, }; assert(size == 1 || size == 2); genenvfn = fns[size - 1][u]; break; } default: g_assert_not_reached(); } if (genenvfn) { genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); } else { genfn(tcg_res, tcg_op1, tcg_op2); } if (opcode == 0xf || opcode == 0x12) { /* SABA, UABA, MLA, MLS: accumulating ops */ static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 }, { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, { tcg_gen_add_i32, tcg_gen_sub_i32 }, }; bool is_sub = (opcode == 0x12 && u); /* MLS */ genfn = fns[size][is_sub]; read_vec_element_i32(s, tcg_op1, rd, pass, MO_32); genfn(tcg_res, tcg_op1, tcg_res); } write_vec_element_i32(s, tcg_res, rd, pass, MO_32); tcg_temp_free_i32(tcg_res); tcg_temp_free_i32(tcg_op1); tcg_temp_free_i32(tcg_op2); } } if (!is_q) { clear_vec_high(s, rd); } }
13,803
0
static ssize_t proxy_preadv(FsContext *ctx, V9fsFidOpenState *fs, const struct iovec *iov, int iovcnt, off_t offset) { ssize_t ret; #ifdef CONFIG_PREADV ret = preadv(fs->fd, iov, iovcnt, offset); #else ret = lseek(fs->fd, offset, SEEK_SET); if (ret >= 0) { ret = readv(fs->fd, iov, iovcnt); } #endif return ret; }
13,804
0
MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr, hwaddr *xlat, hwaddr *plen, bool is_write) { IOMMUTLBEntry iotlb; MemoryRegionSection *section; MemoryRegion *mr; hwaddr len = *plen; for (;;) { section = address_space_translate_internal(as->dispatch, addr, &addr, &len, true); mr = section->mr; if (!mr->iommu_ops) { break; } iotlb = mr->iommu_ops->translate(mr, addr); addr = ((iotlb.translated_addr & ~iotlb.addr_mask) | (addr & iotlb.addr_mask)); len = MIN(len, (addr | iotlb.addr_mask) - addr + 1); if (!(iotlb.perm & (1 << is_write))) { mr = &io_mem_unassigned; break; } as = iotlb.target_as; } *plen = len; *xlat = addr; return mr; }
13,805
0
static void shpc_set_status(SHPCDevice *shpc, int slot, uint8_t value, uint16_t msk) { uint8_t *status = shpc->config + SHPC_SLOT_STATUS(slot); pci_word_test_and_clear_mask(status, msk); pci_word_test_and_set_mask(status, value << (ffs(msk) - 1)); }
13,806
0
static void prom_set(uint32_t* prom_buf, int index, const char *string, ...) { va_list ap; int32_t table_addr; if (index >= ENVP_NB_ENTRIES) return; if (string == NULL) { prom_buf[index] = 0; return; } table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE; prom_buf[index] = tswap32(ENVP_ADDR + table_addr); va_start(ap, string); vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap); va_end(ap); }
13,807
0
DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit) { DriveInfo *dinfo; /* seek interface, bus and unit */ TAILQ_FOREACH(dinfo, &drives, next) { if (dinfo->type == type && dinfo->bus == bus && dinfo->unit == unit) return dinfo; } return NULL; }
13,808
0
static void do_rematrixing(AC3DecodeContext *ctx) { ac3_audio_block *ab = &ctx->audio_block; uint8_t bnd1 = 13, bnd2 = 25, bnd3 = 37, bnd4 = 61; uint8_t bndend; bndend = FFMIN(ab->endmant[0], ab->endmant[1]); if (ab->rematflg & 1) _do_rematrixing(ctx, bnd1, bnd2); if (ab->rematflg & 2) _do_rematrixing(ctx, bnd2, bnd3); if (ab->rematflg & 4) { if (ab->cplbegf > 0 && ab->cplbegf <= 2 && (ab->flags & AC3_AB_CPLINU)) _do_rematrixing(ctx, bnd3, bndend); else { _do_rematrixing(ctx, bnd3, bnd4); if (ab->rematflg & 8) _do_rematrixing(ctx, bnd4, bndend); } } }
13,810
0
static void acpi_table_install(const char unsigned *blob, size_t bloblen, bool has_header, const struct AcpiTableOptions *hdrs, Error **errp) { size_t body_start; const char unsigned *hdr_src; size_t body_size, acpi_payload_size; struct acpi_table_header *ext_hdr; unsigned changed_fields; /* Calculate where the ACPI table body starts within the blob, plus where * to copy the ACPI table header from. */ if (has_header) { /* _length | ACPI header in blob | blob body * ^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^ * ACPI_TABLE_PFX_SIZE sizeof dfl_hdr body_size * == body_start * * ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ * acpi_payload_size == bloblen */ body_start = sizeof dfl_hdr; if (bloblen < body_start) { error_setg(errp, "ACPI table claiming to have header is too " "short, available: %zu, expected: %zu", bloblen, body_start); return; } hdr_src = blob; } else { /* _length | ACPI header in template | blob body * ^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^ * ACPI_TABLE_PFX_SIZE sizeof dfl_hdr body_size * == bloblen * * ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ * acpi_payload_size */ body_start = 0; hdr_src = dfl_hdr; } body_size = bloblen - body_start; acpi_payload_size = sizeof dfl_hdr + body_size; if (acpi_payload_size > UINT16_MAX) { error_setg(errp, "ACPI table too big, requested: %zu, max: %u", acpi_payload_size, (unsigned)UINT16_MAX); return; } /* We won't fail from here on. Initialize / extend the globals. */ if (acpi_tables == NULL) { acpi_tables_len = sizeof(uint16_t); acpi_tables = g_malloc0(acpi_tables_len); } acpi_tables = g_realloc(acpi_tables, acpi_tables_len + ACPI_TABLE_PFX_SIZE + sizeof dfl_hdr + body_size); ext_hdr = (struct acpi_table_header *)(acpi_tables + acpi_tables_len); acpi_tables_len += ACPI_TABLE_PFX_SIZE; memcpy(acpi_tables + acpi_tables_len, hdr_src, sizeof dfl_hdr); acpi_tables_len += sizeof dfl_hdr; if (blob != NULL) { memcpy(acpi_tables + acpi_tables_len, blob + body_start, body_size); acpi_tables_len += body_size; } /* increase number of tables */ stw_le_p(acpi_tables, lduw_le_p(acpi_tables) + 1u); /* Update the header fields. The strings need not be NUL-terminated. */ changed_fields = 0; ext_hdr->_length = cpu_to_le16(acpi_payload_size); if (hdrs->has_sig) { strncpy(ext_hdr->sig, hdrs->sig, sizeof ext_hdr->sig); ++changed_fields; } if (has_header && le32_to_cpu(ext_hdr->length) != acpi_payload_size) { fprintf(stderr, "warning: ACPI table has wrong length, header says " "%" PRIu32 ", actual size %zu bytes\n", le32_to_cpu(ext_hdr->length), acpi_payload_size); } ext_hdr->length = cpu_to_le32(acpi_payload_size); if (hdrs->has_rev) { ext_hdr->revision = hdrs->rev; ++changed_fields; } ext_hdr->checksum = 0; if (hdrs->has_oem_id) { strncpy(ext_hdr->oem_id, hdrs->oem_id, sizeof ext_hdr->oem_id); ++changed_fields; } if (hdrs->has_oem_table_id) { strncpy(ext_hdr->oem_table_id, hdrs->oem_table_id, sizeof ext_hdr->oem_table_id); ++changed_fields; } if (hdrs->has_oem_rev) { ext_hdr->oem_revision = cpu_to_le32(hdrs->oem_rev); ++changed_fields; } if (hdrs->has_asl_compiler_id) { strncpy(ext_hdr->asl_compiler_id, hdrs->asl_compiler_id, sizeof ext_hdr->asl_compiler_id); ++changed_fields; } if (hdrs->has_asl_compiler_rev) { ext_hdr->asl_compiler_revision = cpu_to_le32(hdrs->asl_compiler_rev); ++changed_fields; } if (!has_header && changed_fields == 0) { warn_report("ACPI table: no headers are specified"); } /* recalculate checksum */ ext_hdr->checksum = acpi_checksum((const char unsigned *)ext_hdr + ACPI_TABLE_PFX_SIZE, acpi_payload_size); }
13,811
0
static void spapr_hotplug_req_event(uint8_t hp_id, uint8_t hp_action, sPAPRDRConnectorType drc_type, union drc_identifier *drc_id) { sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); struct hp_log_full *new_hp; struct rtas_error_log *hdr; struct rtas_event_log_v6 *v6hdr; struct rtas_event_log_v6_maina *maina; struct rtas_event_log_v6_mainb *mainb; struct rtas_event_log_v6_hp *hp; new_hp = g_malloc0(sizeof(struct hp_log_full)); hdr = &new_hp->hdr; v6hdr = &new_hp->v6hdr; maina = &new_hp->maina; mainb = &new_hp->mainb; hp = &new_hp->hp; hdr->summary = cpu_to_be32(RTAS_LOG_VERSION_6 | RTAS_LOG_SEVERITY_EVENT | RTAS_LOG_DISPOSITION_NOT_RECOVERED | RTAS_LOG_OPTIONAL_PART_PRESENT | RTAS_LOG_INITIATOR_HOTPLUG | RTAS_LOG_TYPE_HOTPLUG); hdr->extended_length = cpu_to_be32(sizeof(*new_hp) - sizeof(new_hp->hdr)); spapr_init_v6hdr(v6hdr); spapr_init_maina(maina, 3 /* Main-A, Main-B, HP */); mainb->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINB); mainb->hdr.section_length = cpu_to_be16(sizeof(*mainb)); mainb->subsystem_id = 0x80; /* External environment */ mainb->event_severity = 0x00; /* Informational / non-error */ mainb->event_subtype = 0x00; /* Normal shutdown */ hp->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_HOTPLUG); hp->hdr.section_length = cpu_to_be16(sizeof(*hp)); hp->hdr.section_version = 1; /* includes extended modifier */ hp->hotplug_action = hp_action; hp->hotplug_identifier = hp_id; switch (drc_type) { case SPAPR_DR_CONNECTOR_TYPE_PCI: hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PCI; if (hp->hotplug_action == RTAS_LOG_V6_HP_ACTION_ADD) { spapr_hotplug_set_signalled(drc_id->index); } break; case SPAPR_DR_CONNECTOR_TYPE_LMB: hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_MEMORY; break; case SPAPR_DR_CONNECTOR_TYPE_CPU: hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_CPU; break; default: /* we shouldn't be signaling hotplug events for resources * that don't support them */ g_assert(false); return; } if (hp_id == RTAS_LOG_V6_HP_ID_DRC_COUNT) { hp->drc_id.count = cpu_to_be32(drc_id->count); } else if (hp_id == RTAS_LOG_V6_HP_ID_DRC_INDEX) { hp->drc_id.index = cpu_to_be32(drc_id->index); } else if (hp_id == RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED) { /* we should not be using count_indexed value unless the guest * supports dedicated hotplug event source */ g_assert(spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT)); hp->drc_id.count_indexed.count = cpu_to_be32(drc_id->count_indexed.count); hp->drc_id.count_indexed.index = cpu_to_be32(drc_id->count_indexed.index); } rtas_event_log_queue(RTAS_LOG_TYPE_HOTPLUG, new_hp, true); qemu_irq_pulse(xics_get_qirq(XICS_FABRIC(spapr), rtas_event_log_to_irq(spapr, RTAS_LOG_TYPE_HOTPLUG))); }
13,813
0
void qemu_aio_flush(void) { AioHandler *node; int ret; do { ret = 0; /* * If there are pending emulated aio start them now so flush * will be able to return 1. */ qemu_aio_wait(); QLIST_FOREACH(node, &aio_handlers, node) { if (node->io_flush) { ret |= node->io_flush(node->opaque); } } } while (qemu_bh_poll() || ret > 0); }
13,814
0
static void gen_srs(DisasContext *s, uint32_t mode, uint32_t amode, bool writeback) { int32_t offset; TCGv_i32 addr = tcg_temp_new_i32(); TCGv_i32 tmp = tcg_const_i32(mode); gen_helper_get_r13_banked(addr, cpu_env, tmp); tcg_temp_free_i32(tmp); switch (amode) { case 0: /* DA */ offset = -4; break; case 1: /* IA */ offset = 0; break; case 2: /* DB */ offset = -8; break; case 3: /* IB */ offset = 4; break; default: abort(); } tcg_gen_addi_i32(addr, addr, offset); tmp = load_reg(s, 14); gen_aa32_st32(tmp, addr, get_mem_index(s)); tcg_temp_free_i32(tmp); tmp = load_cpu_field(spsr); tcg_gen_addi_i32(addr, addr, 4); gen_aa32_st32(tmp, addr, get_mem_index(s)); tcg_temp_free_i32(tmp); if (writeback) { switch (amode) { case 0: offset = -8; break; case 1: offset = 4; break; case 2: offset = -4; break; case 3: offset = 0; break; default: abort(); } tcg_gen_addi_i32(addr, addr, offset); tmp = tcg_const_i32(mode); gen_helper_set_r13_banked(cpu_env, tmp, addr); tcg_temp_free_i32(tmp); } tcg_temp_free_i32(addr); }
13,815
0
void kvm_mips_reset_vcpu(MIPSCPU *cpu) { CPUMIPSState *env = &cpu->env; if (env->CP0_Config1 & (1 << CP0C1_FP)) { fprintf(stderr, "Warning: FPU not supported with KVM, disabling\n"); env->CP0_Config1 &= ~(1 << CP0C1_FP); } DPRINTF("%s\n", __func__); }
13,816
0
static int qcow2_amend_options(BlockDriverState *bs, QemuOpts *opts, BlockDriverAmendStatusCB *status_cb, void *cb_opaque) { BDRVQcow2State *s = bs->opaque; int old_version = s->qcow_version, new_version = old_version; uint64_t new_size = 0; const char *backing_file = NULL, *backing_format = NULL; bool lazy_refcounts = s->use_lazy_refcounts; const char *compat = NULL; uint64_t cluster_size = s->cluster_size; bool encrypt; int refcount_bits = s->refcount_bits; Error *local_err = NULL; int ret; QemuOptDesc *desc = opts->list->desc; Qcow2AmendHelperCBInfo helper_cb_info; while (desc && desc->name) { if (!qemu_opt_find(opts, desc->name)) { /* only change explicitly defined options */ desc++; continue; } if (!strcmp(desc->name, BLOCK_OPT_COMPAT_LEVEL)) { compat = qemu_opt_get(opts, BLOCK_OPT_COMPAT_LEVEL); if (!compat) { /* preserve default */ } else if (!strcmp(compat, "0.10")) { new_version = 2; } else if (!strcmp(compat, "1.1")) { new_version = 3; } else { error_report("Unknown compatibility level %s", compat); return -EINVAL; } } else if (!strcmp(desc->name, BLOCK_OPT_PREALLOC)) { error_report("Cannot change preallocation mode"); return -ENOTSUP; } else if (!strcmp(desc->name, BLOCK_OPT_SIZE)) { new_size = qemu_opt_get_size(opts, BLOCK_OPT_SIZE, 0); } else if (!strcmp(desc->name, BLOCK_OPT_BACKING_FILE)) { backing_file = qemu_opt_get(opts, BLOCK_OPT_BACKING_FILE); } else if (!strcmp(desc->name, BLOCK_OPT_BACKING_FMT)) { backing_format = qemu_opt_get(opts, BLOCK_OPT_BACKING_FMT); } else if (!strcmp(desc->name, BLOCK_OPT_ENCRYPT)) { encrypt = qemu_opt_get_bool(opts, BLOCK_OPT_ENCRYPT, !!s->cipher); if (encrypt != !!s->cipher) { error_report("Changing the encryption flag is not supported"); return -ENOTSUP; } } else if (!strcmp(desc->name, BLOCK_OPT_CLUSTER_SIZE)) { cluster_size = qemu_opt_get_size(opts, BLOCK_OPT_CLUSTER_SIZE, cluster_size); if (cluster_size != s->cluster_size) { error_report("Changing the cluster size is not supported"); return -ENOTSUP; } } else if (!strcmp(desc->name, BLOCK_OPT_LAZY_REFCOUNTS)) { lazy_refcounts = qemu_opt_get_bool(opts, BLOCK_OPT_LAZY_REFCOUNTS, lazy_refcounts); } else if (!strcmp(desc->name, BLOCK_OPT_REFCOUNT_BITS)) { refcount_bits = qemu_opt_get_number(opts, BLOCK_OPT_REFCOUNT_BITS, refcount_bits); if (refcount_bits <= 0 || refcount_bits > 64 || !is_power_of_2(refcount_bits)) { error_report("Refcount width must be a power of two and may " "not exceed 64 bits"); return -EINVAL; } } else { /* if this point is reached, this probably means a new option was * added without having it covered here */ abort(); } desc++; } helper_cb_info = (Qcow2AmendHelperCBInfo){ .original_status_cb = status_cb, .original_cb_opaque = cb_opaque, .total_operations = (new_version < old_version) + (s->refcount_bits != refcount_bits) }; /* Upgrade first (some features may require compat=1.1) */ if (new_version > old_version) { s->qcow_version = new_version; ret = qcow2_update_header(bs); if (ret < 0) { s->qcow_version = old_version; return ret; } } if (s->refcount_bits != refcount_bits) { int refcount_order = ctz32(refcount_bits); if (new_version < 3 && refcount_bits != 16) { error_report("Different refcount widths than 16 bits require " "compatibility level 1.1 or above (use compat=1.1 or " "greater)"); return -EINVAL; } helper_cb_info.current_operation = QCOW2_CHANGING_REFCOUNT_ORDER; ret = qcow2_change_refcount_order(bs, refcount_order, &qcow2_amend_helper_cb, &helper_cb_info, &local_err); if (ret < 0) { error_report_err(local_err); return ret; } } if (backing_file || backing_format) { ret = qcow2_change_backing_file(bs, backing_file ?: s->image_backing_file, backing_format ?: s->image_backing_format); if (ret < 0) { return ret; } } if (s->use_lazy_refcounts != lazy_refcounts) { if (lazy_refcounts) { if (new_version < 3) { error_report("Lazy refcounts only supported with compatibility " "level 1.1 and above (use compat=1.1 or greater)"); return -EINVAL; } s->compatible_features |= QCOW2_COMPAT_LAZY_REFCOUNTS; ret = qcow2_update_header(bs); if (ret < 0) { s->compatible_features &= ~QCOW2_COMPAT_LAZY_REFCOUNTS; return ret; } s->use_lazy_refcounts = true; } else { /* make image clean first */ ret = qcow2_mark_clean(bs); if (ret < 0) { return ret; } /* now disallow lazy refcounts */ s->compatible_features &= ~QCOW2_COMPAT_LAZY_REFCOUNTS; ret = qcow2_update_header(bs); if (ret < 0) { s->compatible_features |= QCOW2_COMPAT_LAZY_REFCOUNTS; return ret; } s->use_lazy_refcounts = false; } } if (new_size) { BlockBackend *blk = blk_new(BLK_PERM_RESIZE, BLK_PERM_ALL); ret = blk_insert_bs(blk, bs, &local_err); if (ret < 0) { error_report_err(local_err); blk_unref(blk); return ret; } ret = blk_truncate(blk, new_size, &local_err); blk_unref(blk); if (ret < 0) { error_report_err(local_err); return ret; } } /* Downgrade last (so unsupported features can be removed before) */ if (new_version < old_version) { helper_cb_info.current_operation = QCOW2_DOWNGRADING; ret = qcow2_downgrade(bs, new_version, &qcow2_amend_helper_cb, &helper_cb_info); if (ret < 0) { return ret; } } return 0; }
13,817
0
static void bmdma_map(PCIDevice *pci_dev, int region_num, pcibus_t addr, pcibus_t size, int type) { PCIIDEState *d = DO_UPCAST(PCIIDEState, dev, pci_dev); int i; for(i = 0;i < 2; i++) { BMDMAState *bm = &d->bmdma[i]; d->bus[i].bmdma = bm; bm->bus = d->bus+i; bm->pci_dev = d; qemu_add_vm_change_state_handler(ide_dma_restart_cb, bm); register_ioport_write(addr, 1, 1, bmdma_cmd_writeb, bm); register_ioport_write(addr + 1, 3, 1, bmdma_writeb, bm); register_ioport_read(addr, 4, 1, bmdma_readb, bm); register_ioport_write(addr + 4, 4, 1, bmdma_addr_writeb, bm); register_ioport_read(addr + 4, 4, 1, bmdma_addr_readb, bm); register_ioport_write(addr + 4, 4, 2, bmdma_addr_writew, bm); register_ioport_read(addr + 4, 4, 2, bmdma_addr_readw, bm); register_ioport_write(addr + 4, 4, 4, bmdma_addr_writel, bm); register_ioport_read(addr + 4, 4, 4, bmdma_addr_readl, bm); addr += 8; } }
13,818
0
static void pcnet_transmit(PCNetState *s) { target_phys_addr_t xmit_cxda = 0; int count = CSR_XMTRL(s)-1; s->xmit_pos = -1; if (!CSR_TXON(s)) { s->csr[0] &= ~0x0008; return; } s->tx_busy = 1; txagain: if (pcnet_tdte_poll(s)) { struct pcnet_TMD tmd; TMDLOAD(&tmd, PHYSADDR(s,CSR_CXDA(s))); #ifdef PCNET_DEBUG_TMD printf(" TMDLOAD 0x%08x\n", PHYSADDR(s,CSR_CXDA(s))); PRINT_TMD(&tmd); #endif if (GET_FIELD(tmd.status, TMDS, STP)) { s->xmit_pos = 0; xmit_cxda = PHYSADDR(s,CSR_CXDA(s)); } if (!GET_FIELD(tmd.status, TMDS, ENP)) { int bcnt = 4096 - GET_FIELD(tmd.length, TMDL, BCNT); s->phys_mem_read(s->dma_opaque, PHYSADDR(s, tmd.tbadr), s->buffer + s->xmit_pos, bcnt, CSR_BSWP(s)); s->xmit_pos += bcnt; } else if (s->xmit_pos >= 0) { int bcnt = 4096 - GET_FIELD(tmd.length, TMDL, BCNT); s->phys_mem_read(s->dma_opaque, PHYSADDR(s, tmd.tbadr), s->buffer + s->xmit_pos, bcnt, CSR_BSWP(s)); s->xmit_pos += bcnt; #ifdef PCNET_DEBUG printf("pcnet_transmit size=%d\n", s->xmit_pos); #endif if (CSR_LOOP(s)) pcnet_receive(s, s->buffer, s->xmit_pos); else if (s->vc) qemu_send_packet(s->vc, s->buffer, s->xmit_pos); s->csr[0] &= ~0x0008; /* clear TDMD */ s->csr[4] |= 0x0004; /* set TXSTRT */ s->xmit_pos = -1; } SET_FIELD(&tmd.status, TMDS, OWN, 0); TMDSTORE(&tmd, PHYSADDR(s,CSR_CXDA(s))); if (!CSR_TOKINTD(s) || (CSR_LTINTEN(s) && GET_FIELD(tmd.status, TMDS, LTINT))) s->csr[0] |= 0x0200; /* set TINT */ if (CSR_XMTRC(s)<=1) CSR_XMTRC(s) = CSR_XMTRL(s); else CSR_XMTRC(s)--; if (count--) goto txagain; } else if (s->xmit_pos >= 0) { struct pcnet_TMD tmd; TMDLOAD(&tmd, PHYSADDR(s,xmit_cxda)); SET_FIELD(&tmd.misc, TMDM, BUFF, 1); SET_FIELD(&tmd.misc, TMDM, UFLO, 1); SET_FIELD(&tmd.status, TMDS, ERR, 1); SET_FIELD(&tmd.status, TMDS, OWN, 0); TMDSTORE(&tmd, PHYSADDR(s,xmit_cxda)); s->csr[0] |= 0x0200; /* set TINT */ if (!CSR_DXSUFLO(s)) { s->csr[0] &= ~0x0010; } else if (count--) goto txagain; } s->tx_busy = 0; }
13,819
0
static av_cold int decoder_init(AVCodecContext * avctx) { G729Context* ctx = avctx->priv_data; int i,k; if (avctx->channels != 1) { av_log(avctx, AV_LOG_ERROR, "Only mono sound is supported (requested channels: %d).\n", avctx->channels); return AVERROR(EINVAL); } avctx->sample_fmt = AV_SAMPLE_FMT_S16; /* Both 8kbit/s and 6.4kbit/s modes uses two subframes per frame. */ avctx->frame_size = SUBFRAME_SIZE << 1; ctx->gain_coeff = 16384; // 1.0 in (1.14) for (k = 0; k < MA_NP + 1; k++) { ctx->past_quantizer_outputs[k] = ctx->past_quantizer_output_buf[k]; for (i = 1; i < 11; i++) ctx->past_quantizer_outputs[k][i - 1] = (18717 * i) >> 3; } ctx->lsp[0] = ctx->lsp_buf[0]; ctx->lsp[1] = ctx->lsp_buf[1]; memcpy(ctx->lsp[0], lsp_init, 10 * sizeof(int16_t)); ctx->exc = &ctx->exc_base[PITCH_DELAY_MAX+INTERPOL_LEN]; /* random seed initialization */ ctx->rand_value = 21845; /* quantized prediction error */ for(i=0; i<4; i++) ctx->quant_energy[i] = -14336; // -14 in (5.10) avctx->dsp_mask= ~AV_CPU_FLAG_FORCE; dsputil_init(&ctx->dsp, avctx); return 0; }
13,821
0
static void set_enum(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { DeviceState *dev = DEVICE(obj); Property *prop = opaque; int *ptr = qdev_get_prop_ptr(dev, prop); if (dev->state != DEV_STATE_CREATED) { error_set(errp, QERR_PERMISSION_DENIED); return; } visit_type_enum(v, ptr, prop->info->enum_table, prop->info->name, prop->name, errp); }
13,822
0
static void imx_timerg_write(void *opaque, target_phys_addr_t offset, uint64_t value, unsigned size) { IMXTimerGState *s = (IMXTimerGState *)opaque; DPRINTF("g-write(offset=%x, value = 0x%x)\n", (unsigned int)offset >> 2, (unsigned int)value); switch (offset >> 2) { case 0: { uint32_t oldcr = s->cr; /* CR */ if (value & GPT_CR_SWR) { /* force reset */ value &= ~GPT_CR_SWR; imx_timerg_reset(&s->busdev.qdev); imx_timerg_update(s); } s->cr = value & ~0x7c00; imx_timerg_set_freq(s); if ((oldcr ^ value) & GPT_CR_EN) { if (value & GPT_CR_EN) { if (value & GPT_CR_ENMOD) { ptimer_set_count(s->timer, s->ocr1); s->cnt = 0; } ptimer_run(s->timer, (value & GPT_CR_FRR) && (s->ocr1 != TIMER_MAX)); } else { ptimer_stop(s->timer); }; } return; } case 1: /* Prescaler */ s->pr = value & 0xfff; imx_timerg_set_freq(s); return; case 2: /* SR */ /* * No point in implementing the status register bits to do with * external interrupt sources. */ value &= GPT_SR_OF1 | GPT_SR_ROV; s->sr &= ~value; imx_timerg_update(s); return; case 3: /* IR -- interrupt register */ s->ir = value & 0x3f; imx_timerg_update(s); return; case 4: /* OCR1 -- output compare register */ /* In non-freerun mode, reset count when this register is written */ if (!(s->cr & GPT_CR_FRR)) { s->waiting_rov = 0; ptimer_set_limit(s->timer, value, 1); } else { imx_timerg_update_counts(s); if (value > s->cnt) { s->waiting_rov = 0; imx_timerg_reload(s, value); } else { s->waiting_rov = 1; imx_timerg_reload(s, TIMER_MAX - s->cnt); } } s->ocr1 = value; return; default: IPRINTF("imx_timerg_write: Bad offset %x\n", (int)offset >> 2); } }
13,823
0
GuestFileSeek *qmp_guest_file_seek(int64_t handle, int64_t offset, int64_t whence, Error **errp) { GuestFileHandle *gfh; GuestFileSeek *seek_data; HANDLE fh; LARGE_INTEGER new_pos, off_pos; off_pos.QuadPart = offset; BOOL res; gfh = guest_file_handle_find(handle, errp); if (!gfh) { return NULL; } fh = gfh->fh; res = SetFilePointerEx(fh, off_pos, &new_pos, whence); if (!res) { error_setg_win32(errp, GetLastError(), "failed to seek file"); return NULL; } seek_data = g_new0(GuestFileSeek, 1); seek_data->position = new_pos.QuadPart; return seek_data; }
13,824
0
static void add_to_iovec(QEMUFile *f, const uint8_t *buf, int size) { /* check for adjacent buffer and coalesce them */ if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base + f->iov[f->iovcnt - 1].iov_len) { f->iov[f->iovcnt - 1].iov_len += size; } else { f->iov[f->iovcnt].iov_base = (uint8_t *)buf; f->iov[f->iovcnt++].iov_len = size; } if (f->buf_index >= IO_BUF_SIZE || f->iovcnt >= MAX_IOV_SIZE) { qemu_fflush(f); } }
13,825
0
static void qapi_clone_type_str(Visitor *v, const char *name, char **obj, Error **errp) { QapiCloneVisitor *qcv = to_qcv(v); assert(qcv->depth); /* * Pointer was already cloned by g_memdup; create fresh copy. * Note that as long as qmp-output-visitor accepts NULL instead of * "", then we must do likewise. However, we want to obey the * input visitor semantics of never producing NULL when the empty * string is intended. */ *obj = g_strdup(*obj ?: ""); }
13,826
0
static int eth_can_receive(void *opaque) { return 1; }
13,827
0
static inline void terminate_compression_threads(void) { int idx, thread_count; thread_count = migrate_compress_threads(); quit_comp_thread = true; for (idx = 0; idx < thread_count; idx++) { qemu_mutex_lock(&comp_param[idx].mutex); qemu_cond_signal(&comp_param[idx].cond); qemu_mutex_unlock(&comp_param[idx].mutex); } }
13,828
0
static int vp8_decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size) { VP56RangeCoder *c = &s->c; int header_size, hscale, vscale, ret; int width = s->avctx->width; int height = s->avctx->height; s->keyframe = !(buf[0] & 1); s->profile = (buf[0]>>1) & 7; s->invisible = !(buf[0] & 0x10); header_size = AV_RL24(buf) >> 5; buf += 3; buf_size -= 3; if (s->profile > 3) av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile); if (!s->profile) memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab)); else // profile 1-3 use bilinear, 4+ aren't defined so whatever memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab, sizeof(s->put_pixels_tab)); if (header_size > buf_size - 7 * s->keyframe) { av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n"); return AVERROR_INVALIDDATA; } if (s->keyframe) { if (AV_RL24(buf) != 0x2a019d) { av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", AV_RL24(buf)); return AVERROR_INVALIDDATA; } width = AV_RL16(buf + 3) & 0x3fff; height = AV_RL16(buf + 5) & 0x3fff; hscale = buf[4] >> 6; vscale = buf[6] >> 6; buf += 7; buf_size -= 7; if (hscale || vscale) avpriv_request_sample(s->avctx, "Upscaling"); s->update_golden = s->update_altref = VP56_FRAME_CURRENT; vp78_reset_probability_tables(s); memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16)); memcpy(s->prob->pred8x8c, vp8_pred8x8c_prob_inter, sizeof(s->prob->pred8x8c)); memcpy(s->prob->mvc, vp8_mv_default_prob, sizeof(s->prob->mvc)); memset(&s->segmentation, 0, sizeof(s->segmentation)); memset(&s->lf_delta, 0, sizeof(s->lf_delta)); } ff_vp56_init_range_decoder(c, buf, header_size); buf += header_size; buf_size -= header_size; if (s->keyframe) { if (vp8_rac_get(c)) av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n"); vp8_rac_get(c); // whether we can skip clamping in dsp functions } if ((s->segmentation.enabled = vp8_rac_get(c))) parse_segment_info(s); else s->segmentation.update_map = 0; // FIXME: move this to some init function? s->filter.simple = vp8_rac_get(c); s->filter.level = vp8_rac_get_uint(c, 6); s->filter.sharpness = vp8_rac_get_uint(c, 3); if ((s->lf_delta.enabled = vp8_rac_get(c))) if (vp8_rac_get(c)) update_lf_deltas(s); if (setup_partitions(s, buf, buf_size)) { av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n"); return AVERROR_INVALIDDATA; } if (!s->macroblocks_base || /* first frame */ width != s->avctx->width || height != s->avctx->height) if ((ret = vp8_update_dimensions(s, width, height)) < 0) return ret; get_quants(s); if (!s->keyframe) { update_refs(s); s->sign_bias[VP56_FRAME_GOLDEN] = vp8_rac_get(c); s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c); } // if we aren't saving this frame's probabilities for future frames, // make a copy of the current probabilities if (!(s->update_probabilities = vp8_rac_get(c))) s->prob[1] = s->prob[0]; s->update_last = s->keyframe || vp8_rac_get(c); vp78_update_probability_tables(s); if ((s->mbskip_enabled = vp8_rac_get(c))) s->prob->mbskip = vp8_rac_get_uint(c, 8); if (!s->keyframe) { s->prob->intra = vp8_rac_get_uint(c, 8); s->prob->last = vp8_rac_get_uint(c, 8); s->prob->golden = vp8_rac_get_uint(c, 8); vp78_update_pred16x16_pred8x8_mvc_probabilities(s, VP8_MVC_SIZE); } return 0; }
13,830
0
static inline void RENAME(planar2x)(const uint8_t *src, uint8_t *dst, long srcWidth, long srcHeight, long srcStride, long dstStride) { long x,y; dst[0]= src[0]; // first line for (x=0; x<srcWidth-1; x++) { dst[2*x+1]= (3*src[x] + src[x+1])>>2; dst[2*x+2]= ( src[x] + 3*src[x+1])>>2; } dst[2*srcWidth-1]= src[srcWidth-1]; dst+= dstStride; for (y=1; y<srcHeight; y++) { #if COMPILE_TEMPLATE_MMX2 || COMPILE_TEMPLATE_AMD3DNOW const x86_reg mmxSize= srcWidth&~15; __asm__ volatile( "mov %4, %%"REG_a" \n\t" "movq "MANGLE(mmx_ff)", %%mm0 \n\t" "movq (%0, %%"REG_a"), %%mm4 \n\t" "movq %%mm4, %%mm2 \n\t" "psllq $8, %%mm4 \n\t" "pand %%mm0, %%mm2 \n\t" "por %%mm2, %%mm4 \n\t" "movq (%1, %%"REG_a"), %%mm5 \n\t" "movq %%mm5, %%mm3 \n\t" "psllq $8, %%mm5 \n\t" "pand %%mm0, %%mm3 \n\t" "por %%mm3, %%mm5 \n\t" "1: \n\t" "movq (%0, %%"REG_a"), %%mm0 \n\t" "movq (%1, %%"REG_a"), %%mm1 \n\t" "movq 1(%0, %%"REG_a"), %%mm2 \n\t" "movq 1(%1, %%"REG_a"), %%mm3 \n\t" PAVGB" %%mm0, %%mm5 \n\t" PAVGB" %%mm0, %%mm3 \n\t" PAVGB" %%mm0, %%mm5 \n\t" PAVGB" %%mm0, %%mm3 \n\t" PAVGB" %%mm1, %%mm4 \n\t" PAVGB" %%mm1, %%mm2 \n\t" PAVGB" %%mm1, %%mm4 \n\t" PAVGB" %%mm1, %%mm2 \n\t" "movq %%mm5, %%mm7 \n\t" "movq %%mm4, %%mm6 \n\t" "punpcklbw %%mm3, %%mm5 \n\t" "punpckhbw %%mm3, %%mm7 \n\t" "punpcklbw %%mm2, %%mm4 \n\t" "punpckhbw %%mm2, %%mm6 \n\t" #if 1 MOVNTQ" %%mm5, (%2, %%"REG_a", 2) \n\t" MOVNTQ" %%mm7, 8(%2, %%"REG_a", 2) \n\t" MOVNTQ" %%mm4, (%3, %%"REG_a", 2) \n\t" MOVNTQ" %%mm6, 8(%3, %%"REG_a", 2) \n\t" #else "movq %%mm5, (%2, %%"REG_a", 2) \n\t" "movq %%mm7, 8(%2, %%"REG_a", 2) \n\t" "movq %%mm4, (%3, %%"REG_a", 2) \n\t" "movq %%mm6, 8(%3, %%"REG_a", 2) \n\t" #endif "add $8, %%"REG_a" \n\t" "movq -1(%0, %%"REG_a"), %%mm4 \n\t" "movq -1(%1, %%"REG_a"), %%mm5 \n\t" " js 1b \n\t" :: "r" (src + mmxSize ), "r" (src + srcStride + mmxSize ), "r" (dst + mmxSize*2), "r" (dst + dstStride + mmxSize*2), "g" (-mmxSize) : "%"REG_a ); #else const x86_reg mmxSize=1; dst[0 ]= (3*src[0] + src[srcStride])>>2; dst[dstStride]= ( src[0] + 3*src[srcStride])>>2; #endif for (x=mmxSize-1; x<srcWidth-1; x++) { dst[2*x +1]= (3*src[x+0] + src[x+srcStride+1])>>2; dst[2*x+dstStride+2]= ( src[x+0] + 3*src[x+srcStride+1])>>2; dst[2*x+dstStride+1]= ( src[x+1] + 3*src[x+srcStride ])>>2; dst[2*x +2]= (3*src[x+1] + src[x+srcStride ])>>2; } dst[srcWidth*2 -1 ]= (3*src[srcWidth-1] + src[srcWidth-1 + srcStride])>>2; dst[srcWidth*2 -1 + dstStride]= ( src[srcWidth-1] + 3*src[srcWidth-1 + srcStride])>>2; dst+=dstStride*2; src+=srcStride; } // last line #if 1 dst[0]= src[0]; for (x=0; x<srcWidth-1; x++) { dst[2*x+1]= (3*src[x] + src[x+1])>>2; dst[2*x+2]= ( src[x] + 3*src[x+1])>>2; } dst[2*srcWidth-1]= src[srcWidth-1]; #else for (x=0; x<srcWidth; x++) { dst[2*x+0]= dst[2*x+1]= src[x]; } #endif #if COMPILE_TEMPLATE_MMX __asm__ volatile(EMMS" \n\t" SFENCE" \n\t" :::"memory"); #endif }
13,831
0
static av_cold void ffat_encode_flush(AVCodecContext *avctx) { ATDecodeContext *at = avctx->priv_data; AudioConverterReset(at->converter); av_frame_unref(&at->new_in_frame); av_frame_unref(&at->in_frame); }
13,832