label
int64 0
1
| func1
stringlengths 23
97k
| id
int64 0
27.3k
|
---|---|---|
0 | static void do_help(int argc, const char **argv) { help_cmd(argv[1]); } | 13,591 |
0 | int main(int argc, char **argv, char **envp) { const char *gdbstub_dev = NULL; int i; int snapshot, linux_boot; const char *icount_option = NULL; const char *initrd_filename; const char *kernel_filename, *kernel_cmdline; char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */ DisplayState *ds; DisplayChangeListener *dcl; int cyls, heads, secs, translation; QemuOpts *hda_opts = NULL, *opts; QemuOptsList *olist; int optind; const char *optarg; const char *loadvm = NULL; QEMUMachine *machine; const char *cpu_model; const char *pid_file = NULL; const char *incoming = NULL; #ifdef CONFIG_VNC int show_vnc_port = 0; #endif int defconfig = 1; const char *log_mask = NULL; const char *log_file = NULL; GMemVTable mem_trace = { .malloc = malloc_and_trace, .realloc = realloc_and_trace, .free = free_and_trace, }; const char *trace_events = NULL; const char *trace_file = NULL; atexit(qemu_run_exit_notifiers); error_set_progname(argv[0]); g_mem_set_vtable(&mem_trace); if (!g_thread_supported()) { #if !GLIB_CHECK_VERSION(2, 31, 0) g_thread_init(NULL); #else fprintf(stderr, "glib threading failed to initialize.\n"); exit(1); #endif } runstate_init(); init_clocks(); rtc_clock = host_clock; qemu_cache_utils_init(envp); QLIST_INIT (&vm_change_state_head); os_setup_early_signal_handling(); module_call_init(MODULE_INIT_MACHINE); machine = find_default_machine(); cpu_model = NULL; initrd_filename = NULL; ram_size = 0; snapshot = 0; kernel_filename = NULL; kernel_cmdline = ""; cyls = heads = secs = 0; translation = BIOS_ATA_TRANSLATION_AUTO; for (i = 0; i < MAX_NODES; i++) { node_mem[i] = 0; node_cpumask[i] = 0; } nb_numa_nodes = 0; nb_nics = 0; autostart= 1; /* first pass of option parsing */ optind = 1; while (optind < argc) { if (argv[optind][0] != '-') { /* disk image */ optind++; continue; } else { const QEMUOption *popt; popt = lookup_opt(argc, argv, &optarg, &optind); switch (popt->index) { case QEMU_OPTION_nodefconfig: defconfig=0; break; } } } if (defconfig) { int ret; ret = qemu_read_config_file(CONFIG_QEMU_CONFDIR "/qemu.conf"); if (ret < 0 && ret != -ENOENT) { exit(1); } ret = qemu_read_config_file(arch_config_name); if (ret < 0 && ret != -ENOENT) { exit(1); } } cpudef_init(); /* second pass of option parsing */ optind = 1; for(;;) { if (optind >= argc) break; if (argv[optind][0] != '-') { hda_opts = drive_add(IF_DEFAULT, 0, argv[optind++], HD_OPTS); } else { const QEMUOption *popt; popt = lookup_opt(argc, argv, &optarg, &optind); if (!(popt->arch_mask & arch_type)) { printf("Option %s not supported for this target\n", popt->name); exit(1); } switch(popt->index) { case QEMU_OPTION_M: machine = machine_parse(optarg); break; case QEMU_OPTION_cpu: /* hw initialization will check this */ if (*optarg == '?') { list_cpus(stdout, &fprintf, optarg); exit(0); } else { cpu_model = optarg; } break; case QEMU_OPTION_initrd: initrd_filename = optarg; break; case QEMU_OPTION_hda: { char buf[256]; if (cyls == 0) snprintf(buf, sizeof(buf), "%s", HD_OPTS); else snprintf(buf, sizeof(buf), "%s,cyls=%d,heads=%d,secs=%d%s", HD_OPTS , cyls, heads, secs, translation == BIOS_ATA_TRANSLATION_LBA ? ",trans=lba" : translation == BIOS_ATA_TRANSLATION_NONE ? ",trans=none" : ""); drive_add(IF_DEFAULT, 0, optarg, buf); break; } case QEMU_OPTION_hdb: case QEMU_OPTION_hdc: case QEMU_OPTION_hdd: drive_add(IF_DEFAULT, popt->index - QEMU_OPTION_hda, optarg, HD_OPTS); break; case QEMU_OPTION_drive: if (drive_def(optarg) == NULL) { exit(1); } break; case QEMU_OPTION_set: if (qemu_set_option(optarg) != 0) exit(1); break; case QEMU_OPTION_global: if (qemu_global_option(optarg) != 0) exit(1); break; case QEMU_OPTION_mtdblock: drive_add(IF_MTD, -1, optarg, MTD_OPTS); break; case QEMU_OPTION_sd: drive_add(IF_SD, 0, optarg, SD_OPTS); break; case QEMU_OPTION_pflash: drive_add(IF_PFLASH, -1, optarg, PFLASH_OPTS); break; case QEMU_OPTION_snapshot: snapshot = 1; break; case QEMU_OPTION_hdachs: { const char *p; p = optarg; cyls = strtol(p, (char **)&p, 0); if (cyls < 1 || cyls > 16383) goto chs_fail; if (*p != ',') goto chs_fail; p++; heads = strtol(p, (char **)&p, 0); if (heads < 1 || heads > 16) goto chs_fail; if (*p != ',') goto chs_fail; p++; secs = strtol(p, (char **)&p, 0); if (secs < 1 || secs > 63) goto chs_fail; if (*p == ',') { p++; if (!strcmp(p, "none")) translation = BIOS_ATA_TRANSLATION_NONE; else if (!strcmp(p, "lba")) translation = BIOS_ATA_TRANSLATION_LBA; else if (!strcmp(p, "auto")) translation = BIOS_ATA_TRANSLATION_AUTO; else goto chs_fail; } else if (*p != '\0') { chs_fail: fprintf(stderr, "qemu: invalid physical CHS format\n"); exit(1); } if (hda_opts != NULL) { char num[16]; snprintf(num, sizeof(num), "%d", cyls); qemu_opt_set(hda_opts, "cyls", num); snprintf(num, sizeof(num), "%d", heads); qemu_opt_set(hda_opts, "heads", num); snprintf(num, sizeof(num), "%d", secs); qemu_opt_set(hda_opts, "secs", num); if (translation == BIOS_ATA_TRANSLATION_LBA) qemu_opt_set(hda_opts, "trans", "lba"); if (translation == BIOS_ATA_TRANSLATION_NONE) qemu_opt_set(hda_opts, "trans", "none"); } } break; case QEMU_OPTION_numa: if (nb_numa_nodes >= MAX_NODES) { fprintf(stderr, "qemu: too many NUMA nodes\n"); exit(1); } numa_add(optarg); break; case QEMU_OPTION_display: display_type = select_display(optarg); break; case QEMU_OPTION_nographic: display_type = DT_NOGRAPHIC; break; case QEMU_OPTION_curses: #ifdef CONFIG_CURSES display_type = DT_CURSES; #else fprintf(stderr, "Curses support is disabled\n"); exit(1); #endif break; case QEMU_OPTION_portrait: graphic_rotate = 90; break; case QEMU_OPTION_rotate: graphic_rotate = strtol(optarg, (char **) &optarg, 10); if (graphic_rotate != 0 && graphic_rotate != 90 && graphic_rotate != 180 && graphic_rotate != 270) { fprintf(stderr, "qemu: only 90, 180, 270 deg rotation is available\n"); exit(1); } break; case QEMU_OPTION_kernel: kernel_filename = optarg; break; case QEMU_OPTION_append: kernel_cmdline = optarg; break; case QEMU_OPTION_cdrom: drive_add(IF_DEFAULT, 2, optarg, CDROM_OPTS); break; case QEMU_OPTION_boot: { static const char * const params[] = { "order", "once", "menu", "splash", "splash-time", NULL }; char buf[sizeof(boot_devices)]; char *standard_boot_devices; int legacy = 0; if (!strchr(optarg, '=')) { legacy = 1; pstrcpy(buf, sizeof(buf), optarg); } else if (check_params(buf, sizeof(buf), params, optarg) < 0) { fprintf(stderr, "qemu: unknown boot parameter '%s' in '%s'\n", buf, optarg); exit(1); } if (legacy || get_param_value(buf, sizeof(buf), "order", optarg)) { validate_bootdevices(buf); pstrcpy(boot_devices, sizeof(boot_devices), buf); } if (!legacy) { if (get_param_value(buf, sizeof(buf), "once", optarg)) { validate_bootdevices(buf); standard_boot_devices = g_strdup(boot_devices); pstrcpy(boot_devices, sizeof(boot_devices), buf); qemu_register_reset(restore_boot_devices, standard_boot_devices); } if (get_param_value(buf, sizeof(buf), "menu", optarg)) { if (!strcmp(buf, "on")) { boot_menu = 1; } else if (!strcmp(buf, "off")) { boot_menu = 0; } else { fprintf(stderr, "qemu: invalid option value '%s'\n", buf); exit(1); } } qemu_opts_parse(qemu_find_opts("boot-opts"), optarg, 0); } } break; case QEMU_OPTION_fda: case QEMU_OPTION_fdb: drive_add(IF_FLOPPY, popt->index - QEMU_OPTION_fda, optarg, FD_OPTS); break; case QEMU_OPTION_no_fd_bootchk: fd_bootchk = 0; break; case QEMU_OPTION_netdev: if (net_client_parse(qemu_find_opts("netdev"), optarg) == -1) { exit(1); } break; case QEMU_OPTION_net: if (net_client_parse(qemu_find_opts("net"), optarg) == -1) { exit(1); } break; #ifdef CONFIG_SLIRP case QEMU_OPTION_tftp: legacy_tftp_prefix = optarg; break; case QEMU_OPTION_bootp: legacy_bootp_filename = optarg; break; case QEMU_OPTION_redir: if (net_slirp_redir(optarg) < 0) exit(1); break; #endif case QEMU_OPTION_bt: add_device_config(DEV_BT, optarg); break; case QEMU_OPTION_audio_help: if (!(audio_available())) { printf("Option %s not supported for this target\n", popt->name); exit(1); } AUD_help (); exit (0); break; case QEMU_OPTION_soundhw: if (!(audio_available())) { printf("Option %s not supported for this target\n", popt->name); exit(1); } select_soundhw (optarg); break; case QEMU_OPTION_h: help(0); break; case QEMU_OPTION_version: version(); exit(0); break; case QEMU_OPTION_m: { int64_t value; char *end; value = strtosz(optarg, &end); if (value < 0 || *end) { fprintf(stderr, "qemu: invalid ram size: %s\n", optarg); exit(1); } if (value != (uint64_t)(ram_addr_t)value) { fprintf(stderr, "qemu: ram size too large\n"); exit(1); } ram_size = value; break; } case QEMU_OPTION_mempath: mem_path = optarg; break; #ifdef MAP_POPULATE case QEMU_OPTION_mem_prealloc: mem_prealloc = 1; break; #endif case QEMU_OPTION_d: log_mask = optarg; break; case QEMU_OPTION_D: log_file = optarg; break; case QEMU_OPTION_s: gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT; break; case QEMU_OPTION_gdb: gdbstub_dev = optarg; break; case QEMU_OPTION_L: data_dir = optarg; break; case QEMU_OPTION_bios: bios_name = optarg; break; case QEMU_OPTION_singlestep: singlestep = 1; break; case QEMU_OPTION_S: autostart = 0; break; case QEMU_OPTION_k: keyboard_layout = optarg; break; case QEMU_OPTION_localtime: rtc_utc = 0; break; case QEMU_OPTION_vga: select_vgahw (optarg); break; case QEMU_OPTION_g: { const char *p; int w, h, depth; p = optarg; w = strtol(p, (char **)&p, 10); if (w <= 0) { graphic_error: fprintf(stderr, "qemu: invalid resolution or depth\n"); exit(1); } if (*p != 'x') goto graphic_error; p++; h = strtol(p, (char **)&p, 10); if (h <= 0) goto graphic_error; if (*p == 'x') { p++; depth = strtol(p, (char **)&p, 10); if (depth != 8 && depth != 15 && depth != 16 && depth != 24 && depth != 32) goto graphic_error; } else if (*p == '\0') { depth = graphic_depth; } else { goto graphic_error; } graphic_width = w; graphic_height = h; graphic_depth = depth; } break; case QEMU_OPTION_echr: { char *r; term_escape_char = strtol(optarg, &r, 0); if (r == optarg) printf("Bad argument to echr\n"); break; } case QEMU_OPTION_monitor: monitor_parse(optarg, "readline"); default_monitor = 0; break; case QEMU_OPTION_qmp: monitor_parse(optarg, "control"); default_monitor = 0; break; case QEMU_OPTION_mon: opts = qemu_opts_parse(qemu_find_opts("mon"), optarg, 1); if (!opts) { exit(1); } default_monitor = 0; break; case QEMU_OPTION_chardev: opts = qemu_opts_parse(qemu_find_opts("chardev"), optarg, 1); if (!opts) { exit(1); } break; case QEMU_OPTION_fsdev: olist = qemu_find_opts("fsdev"); if (!olist) { fprintf(stderr, "fsdev is not supported by this qemu build.\n"); exit(1); } opts = qemu_opts_parse(olist, optarg, 1); if (!opts) { fprintf(stderr, "parse error: %s\n", optarg); exit(1); } break; case QEMU_OPTION_virtfs: { QemuOpts *fsdev; QemuOpts *device; const char *writeout; olist = qemu_find_opts("virtfs"); if (!olist) { fprintf(stderr, "virtfs is not supported by this qemu build.\n"); exit(1); } opts = qemu_opts_parse(olist, optarg, 1); if (!opts) { fprintf(stderr, "parse error: %s\n", optarg); exit(1); } if (qemu_opt_get(opts, "fsdriver") == NULL || qemu_opt_get(opts, "mount_tag") == NULL || qemu_opt_get(opts, "path") == NULL) { fprintf(stderr, "Usage: -virtfs fsdriver,path=/share_path/," "[security_model={mapped|passthrough|none}]," "mount_tag=tag.\n"); exit(1); } fsdev = qemu_opts_create(qemu_find_opts("fsdev"), qemu_opt_get(opts, "mount_tag"), 1); if (!fsdev) { fprintf(stderr, "duplicate fsdev id: %s\n", qemu_opt_get(opts, "mount_tag")); exit(1); } writeout = qemu_opt_get(opts, "writeout"); if (writeout) { #ifdef CONFIG_SYNC_FILE_RANGE qemu_opt_set(fsdev, "writeout", writeout); #else fprintf(stderr, "writeout=immediate not supported on " "this platform\n"); exit(1); #endif } qemu_opt_set(fsdev, "fsdriver", qemu_opt_get(opts, "fsdriver")); qemu_opt_set(fsdev, "path", qemu_opt_get(opts, "path")); qemu_opt_set(fsdev, "security_model", qemu_opt_get(opts, "security_model")); qemu_opt_set_bool(fsdev, "readonly", qemu_opt_get_bool(opts, "readonly", 0)); device = qemu_opts_create(qemu_find_opts("device"), NULL, 0); qemu_opt_set(device, "driver", "virtio-9p-pci"); qemu_opt_set(device, "fsdev", qemu_opt_get(opts, "mount_tag")); qemu_opt_set(device, "mount_tag", qemu_opt_get(opts, "mount_tag")); break; } case QEMU_OPTION_virtfs_synth: { QemuOpts *fsdev; QemuOpts *device; fsdev = qemu_opts_create(qemu_find_opts("fsdev"), "v_synth", 1); if (!fsdev) { fprintf(stderr, "duplicate option: %s\n", "virtfs_synth"); exit(1); } qemu_opt_set(fsdev, "fsdriver", "synth"); qemu_opt_set(fsdev, "path", "/"); /* ignored */ device = qemu_opts_create(qemu_find_opts("device"), NULL, 0); qemu_opt_set(device, "driver", "virtio-9p-pci"); qemu_opt_set(device, "fsdev", "v_synth"); qemu_opt_set(device, "mount_tag", "v_synth"); break; } case QEMU_OPTION_serial: add_device_config(DEV_SERIAL, optarg); default_serial = 0; if (strncmp(optarg, "mon:", 4) == 0) { default_monitor = 0; } break; case QEMU_OPTION_watchdog: if (watchdog) { fprintf(stderr, "qemu: only one watchdog option may be given\n"); return 1; } watchdog = optarg; break; case QEMU_OPTION_watchdog_action: if (select_watchdog_action(optarg) == -1) { fprintf(stderr, "Unknown -watchdog-action parameter\n"); exit(1); } break; case QEMU_OPTION_virtiocon: add_device_config(DEV_VIRTCON, optarg); default_virtcon = 0; if (strncmp(optarg, "mon:", 4) == 0) { default_monitor = 0; } break; case QEMU_OPTION_parallel: add_device_config(DEV_PARALLEL, optarg); default_parallel = 0; if (strncmp(optarg, "mon:", 4) == 0) { default_monitor = 0; } break; case QEMU_OPTION_debugcon: add_device_config(DEV_DEBUGCON, optarg); break; case QEMU_OPTION_loadvm: loadvm = optarg; break; case QEMU_OPTION_full_screen: full_screen = 1; break; #ifdef CONFIG_SDL case QEMU_OPTION_no_frame: no_frame = 1; break; case QEMU_OPTION_alt_grab: alt_grab = 1; break; case QEMU_OPTION_ctrl_grab: ctrl_grab = 1; break; case QEMU_OPTION_no_quit: no_quit = 1; break; case QEMU_OPTION_sdl: display_type = DT_SDL; break; #else case QEMU_OPTION_no_frame: case QEMU_OPTION_alt_grab: case QEMU_OPTION_ctrl_grab: case QEMU_OPTION_no_quit: case QEMU_OPTION_sdl: fprintf(stderr, "SDL support is disabled\n"); exit(1); #endif case QEMU_OPTION_pidfile: pid_file = optarg; break; case QEMU_OPTION_win2k_hack: win2k_install_hack = 1; break; case QEMU_OPTION_rtc_td_hack: rtc_td_hack = 1; break; case QEMU_OPTION_acpitable: do_acpitable_option(optarg); break; case QEMU_OPTION_smbios: do_smbios_option(optarg); break; case QEMU_OPTION_enable_kvm: olist = qemu_find_opts("machine"); qemu_opts_reset(olist); qemu_opts_parse(olist, "accel=kvm", 0); break; case QEMU_OPTION_machine: olist = qemu_find_opts("machine"); qemu_opts_reset(olist); opts = qemu_opts_parse(olist, optarg, 1); if (!opts) { fprintf(stderr, "parse error: %s\n", optarg); exit(1); } optarg = qemu_opt_get(opts, "type"); if (optarg) { machine = machine_parse(optarg); } break; case QEMU_OPTION_usb: usb_enabled = 1; break; case QEMU_OPTION_usbdevice: usb_enabled = 1; add_device_config(DEV_USB, optarg); break; case QEMU_OPTION_device: if (!qemu_opts_parse(qemu_find_opts("device"), optarg, 1)) { exit(1); } break; case QEMU_OPTION_smp: smp_parse(optarg); if (smp_cpus < 1) { fprintf(stderr, "Invalid number of CPUs\n"); exit(1); } if (max_cpus < smp_cpus) { fprintf(stderr, "maxcpus must be equal to or greater than " "smp\n"); exit(1); } if (max_cpus > 255) { fprintf(stderr, "Unsupported number of maxcpus\n"); exit(1); } break; case QEMU_OPTION_vnc: #ifdef CONFIG_VNC display_remote++; vnc_display = optarg; #else fprintf(stderr, "VNC support is disabled\n"); exit(1); #endif break; case QEMU_OPTION_no_acpi: acpi_enabled = 0; break; case QEMU_OPTION_no_hpet: no_hpet = 1; break; case QEMU_OPTION_balloon: if (balloon_parse(optarg) < 0) { fprintf(stderr, "Unknown -balloon argument %s\n", optarg); exit(1); } break; case QEMU_OPTION_no_reboot: no_reboot = 1; break; case QEMU_OPTION_no_shutdown: no_shutdown = 1; break; case QEMU_OPTION_show_cursor: cursor_hide = 0; break; case QEMU_OPTION_uuid: if(qemu_uuid_parse(optarg, qemu_uuid) < 0) { fprintf(stderr, "Fail to parse UUID string." " Wrong format.\n"); exit(1); } break; case QEMU_OPTION_option_rom: if (nb_option_roms >= MAX_OPTION_ROMS) { fprintf(stderr, "Too many option ROMs\n"); exit(1); } opts = qemu_opts_parse(qemu_find_opts("option-rom"), optarg, 1); option_rom[nb_option_roms].name = qemu_opt_get(opts, "romfile"); option_rom[nb_option_roms].bootindex = qemu_opt_get_number(opts, "bootindex", -1); if (!option_rom[nb_option_roms].name) { fprintf(stderr, "Option ROM file is not specified\n"); exit(1); } nb_option_roms++; break; case QEMU_OPTION_semihosting: semihosting_enabled = 1; break; case QEMU_OPTION_name: qemu_name = g_strdup(optarg); { char *p = strchr(qemu_name, ','); if (p != NULL) { *p++ = 0; if (strncmp(p, "process=", 8)) { fprintf(stderr, "Unknown subargument %s to -name\n", p); exit(1); } p += 8; os_set_proc_name(p); } } break; case QEMU_OPTION_prom_env: if (nb_prom_envs >= MAX_PROM_ENVS) { fprintf(stderr, "Too many prom variables\n"); exit(1); } prom_envs[nb_prom_envs] = optarg; nb_prom_envs++; break; case QEMU_OPTION_old_param: old_param = 1; break; case QEMU_OPTION_clock: configure_alarms(optarg); break; case QEMU_OPTION_startdate: configure_rtc_date_offset(optarg, 1); break; case QEMU_OPTION_rtc: opts = qemu_opts_parse(qemu_find_opts("rtc"), optarg, 0); if (!opts) { exit(1); } configure_rtc(opts); break; case QEMU_OPTION_tb_size: tcg_tb_size = strtol(optarg, NULL, 0); if (tcg_tb_size < 0) { tcg_tb_size = 0; } break; case QEMU_OPTION_icount: icount_option = optarg; break; case QEMU_OPTION_incoming: incoming = optarg; break; case QEMU_OPTION_nodefaults: default_serial = 0; default_parallel = 0; default_virtcon = 0; default_monitor = 0; default_vga = 0; default_net = 0; default_floppy = 0; default_cdrom = 0; default_sdcard = 0; break; case QEMU_OPTION_xen_domid: if (!(xen_available())) { printf("Option %s not supported for this target\n", popt->name); exit(1); } xen_domid = atoi(optarg); break; case QEMU_OPTION_xen_create: if (!(xen_available())) { printf("Option %s not supported for this target\n", popt->name); exit(1); } xen_mode = XEN_CREATE; break; case QEMU_OPTION_xen_attach: if (!(xen_available())) { printf("Option %s not supported for this target\n", popt->name); exit(1); } xen_mode = XEN_ATTACH; break; case QEMU_OPTION_trace: { opts = qemu_opts_parse(qemu_find_opts("trace"), optarg, 0); if (!opts) { exit(1); } trace_events = qemu_opt_get(opts, "events"); trace_file = qemu_opt_get(opts, "file"); break; } case QEMU_OPTION_readconfig: { int ret = qemu_read_config_file(optarg); if (ret < 0) { fprintf(stderr, "read config %s: %s\n", optarg, strerror(-ret)); exit(1); } break; } case QEMU_OPTION_spice: olist = qemu_find_opts("spice"); if (!olist) { fprintf(stderr, "spice is not supported by this qemu build.\n"); exit(1); } opts = qemu_opts_parse(olist, optarg, 0); if (!opts) { fprintf(stderr, "parse error: %s\n", optarg); exit(1); } break; case QEMU_OPTION_writeconfig: { FILE *fp; if (strcmp(optarg, "-") == 0) { fp = stdout; } else { fp = fopen(optarg, "w"); if (fp == NULL) { fprintf(stderr, "open %s: %s\n", optarg, strerror(errno)); exit(1); } } qemu_config_write(fp); fclose(fp); break; } default: os_parse_cmd_args(popt->index, optarg); } } } loc_set_none(); /* Open the logfile at this point, if necessary. We can't open the logfile * when encountering either of the logging options (-d or -D) because the * other one may be encountered later on the command line, changing the * location or level of logging. */ if (log_mask) { if (log_file) { set_cpu_log_filename(log_file); } set_cpu_log(log_mask); } if (!trace_backend_init(trace_events, trace_file)) { exit(1); } /* If no data_dir is specified then try to find it relative to the executable path. */ if (!data_dir) { data_dir = os_find_datadir(argv[0]); } /* If all else fails use the install path specified when building. */ if (!data_dir) { data_dir = CONFIG_QEMU_DATADIR; } if (machine == NULL) { fprintf(stderr, "No machine found.\n"); exit(1); } /* * Default to max_cpus = smp_cpus, in case the user doesn't * specify a max_cpus value. */ if (!max_cpus) max_cpus = smp_cpus; machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */ if (smp_cpus > machine->max_cpus) { fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus " "supported by machine `%s' (%d)\n", smp_cpus, machine->name, machine->max_cpus); exit(1); } /* * Get the default machine options from the machine if it is not already * specified either by the configuration file or by the command line. */ if (machine->default_machine_opts) { QemuOptsList *list = qemu_find_opts("machine"); const char *p = NULL; if (!QTAILQ_EMPTY(&list->head)) { p = qemu_opt_get(QTAILQ_FIRST(&list->head), "accel"); } if (p == NULL) { qemu_opts_reset(list); opts = qemu_opts_parse(list, machine->default_machine_opts, 0); if (!opts) { fprintf(stderr, "parse error for machine %s: %s\n", machine->name, machine->default_machine_opts); exit(1); } } } qemu_opts_foreach(qemu_find_opts("device"), default_driver_check, NULL, 0); qemu_opts_foreach(qemu_find_opts("global"), default_driver_check, NULL, 0); if (machine->no_serial) { default_serial = 0; } if (machine->no_parallel) { default_parallel = 0; } if (!machine->use_virtcon) { default_virtcon = 0; } if (machine->no_vga) { default_vga = 0; } if (machine->no_floppy) { default_floppy = 0; } if (machine->no_cdrom) { default_cdrom = 0; } if (machine->no_sdcard) { default_sdcard = 0; } if (display_type == DT_NOGRAPHIC) { if (default_parallel) add_device_config(DEV_PARALLEL, "null"); if (default_serial && default_monitor) { add_device_config(DEV_SERIAL, "mon:stdio"); } else if (default_virtcon && default_monitor) { add_device_config(DEV_VIRTCON, "mon:stdio"); } else { if (default_serial) add_device_config(DEV_SERIAL, "stdio"); if (default_virtcon) add_device_config(DEV_VIRTCON, "stdio"); if (default_monitor) monitor_parse("stdio", "readline"); } } else { if (default_serial) add_device_config(DEV_SERIAL, "vc:80Cx24C"); if (default_parallel) add_device_config(DEV_PARALLEL, "vc:80Cx24C"); if (default_monitor) monitor_parse("vc:80Cx24C", "readline"); if (default_virtcon) add_device_config(DEV_VIRTCON, "vc:80Cx24C"); } if (default_vga) vga_interface_type = VGA_CIRRUS; socket_init(); if (qemu_opts_foreach(qemu_find_opts("chardev"), chardev_init_func, NULL, 1) != 0) exit(1); #ifdef CONFIG_VIRTFS if (qemu_opts_foreach(qemu_find_opts("fsdev"), fsdev_init_func, NULL, 1) != 0) { exit(1); } #endif os_daemonize(); if (pid_file && qemu_create_pidfile(pid_file) != 0) { os_pidfile_error(); exit(1); } /* init the memory */ if (ram_size == 0) { ram_size = DEFAULT_RAM_SIZE * 1024 * 1024; } configure_accelerator(); qemu_init_cpu_loop(); if (qemu_init_main_loop()) { fprintf(stderr, "qemu_init_main_loop failed\n"); exit(1); } linux_boot = (kernel_filename != NULL); if (!linux_boot && *kernel_cmdline != '\0') { fprintf(stderr, "-append only allowed with -kernel option\n"); exit(1); } if (!linux_boot && initrd_filename != NULL) { fprintf(stderr, "-initrd only allowed with -kernel option\n"); exit(1); } os_set_line_buffering(); if (init_timer_alarm() < 0) { fprintf(stderr, "could not initialize alarm timer\n"); exit(1); } if (icount_option && (kvm_enabled() || xen_enabled())) { fprintf(stderr, "-icount is not allowed with kvm or xen\n"); exit(1); } configure_icount(icount_option); if (net_init_clients() < 0) { exit(1); } /* init the bluetooth world */ if (foreach_device_config(DEV_BT, bt_parse)) exit(1); if (!xen_enabled()) { /* On 32-bit hosts, QEMU is limited by virtual address space */ if (ram_size > (2047 << 20) && HOST_LONG_BITS == 32) { fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n"); exit(1); } } cpu_exec_init_all(); bdrv_init_with_whitelist(); blk_mig_init(); /* open the virtual block devices */ if (snapshot) qemu_opts_foreach(qemu_find_opts("drive"), drive_enable_snapshot, NULL, 0); if (qemu_opts_foreach(qemu_find_opts("drive"), drive_init_func, &machine->use_scsi, 1) != 0) exit(1); default_drive(default_cdrom, snapshot, machine->use_scsi, IF_DEFAULT, 2, CDROM_OPTS); default_drive(default_floppy, snapshot, machine->use_scsi, IF_FLOPPY, 0, FD_OPTS); default_drive(default_sdcard, snapshot, machine->use_scsi, IF_SD, 0, SD_OPTS); register_savevm_live(NULL, "ram", 0, 4, NULL, ram_save_live, NULL, ram_load, NULL); if (nb_numa_nodes > 0) { int i; if (nb_numa_nodes > MAX_NODES) { nb_numa_nodes = MAX_NODES; } /* If no memory size if given for any node, assume the default case * and distribute the available memory equally across all nodes */ for (i = 0; i < nb_numa_nodes; i++) { if (node_mem[i] != 0) break; } if (i == nb_numa_nodes) { uint64_t usedmem = 0; /* On Linux, the each node's border has to be 8MB aligned, * the final node gets the rest. */ for (i = 0; i < nb_numa_nodes - 1; i++) { node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1); usedmem += node_mem[i]; } node_mem[i] = ram_size - usedmem; } for (i = 0; i < nb_numa_nodes; i++) { if (node_cpumask[i] != 0) break; } /* assigning the VCPUs round-robin is easier to implement, guest OSes * must cope with this anyway, because there are BIOSes out there in * real machines which also use this scheme. */ if (i == nb_numa_nodes) { for (i = 0; i < max_cpus; i++) { node_cpumask[i % nb_numa_nodes] |= 1 << i; } } } if (qemu_opts_foreach(qemu_find_opts("mon"), mon_init_func, NULL, 1) != 0) { exit(1); } if (foreach_device_config(DEV_SERIAL, serial_parse) < 0) exit(1); if (foreach_device_config(DEV_PARALLEL, parallel_parse) < 0) exit(1); if (foreach_device_config(DEV_VIRTCON, virtcon_parse) < 0) exit(1); if (foreach_device_config(DEV_DEBUGCON, debugcon_parse) < 0) exit(1); module_call_init(MODULE_INIT_DEVICE); if (qemu_opts_foreach(qemu_find_opts("device"), device_help_func, NULL, 0) != 0) exit(0); if (watchdog) { i = select_watchdog(watchdog); if (i > 0) exit (i == 1 ? 1 : 0); } if (machine->compat_props) { qdev_prop_register_global_list(machine->compat_props); } qemu_add_globals(); qdev_machine_init(); machine->init(ram_size, boot_devices, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); cpu_synchronize_all_post_init(); set_numa_modes(); current_machine = machine; /* init USB devices */ if (usb_enabled) { if (foreach_device_config(DEV_USB, usb_parse) < 0) exit(1); } /* init generic devices */ if (qemu_opts_foreach(qemu_find_opts("device"), device_init_func, NULL, 1) != 0) exit(1); net_check_clients(); /* just use the first displaystate for the moment */ ds = get_displaystate(); if (using_spice) display_remote++; if (display_type == DT_DEFAULT && !display_remote) { #if defined(CONFIG_SDL) || defined(CONFIG_COCOA) display_type = DT_SDL; #elif defined(CONFIG_VNC) vnc_display = "localhost:0,to=99"; show_vnc_port = 1; #else display_type = DT_NONE; #endif } /* init local displays */ switch (display_type) { case DT_NOGRAPHIC: break; #if defined(CONFIG_CURSES) case DT_CURSES: curses_display_init(ds, full_screen); break; #endif #if defined(CONFIG_SDL) case DT_SDL: sdl_display_init(ds, full_screen, no_frame); break; #elif defined(CONFIG_COCOA) case DT_SDL: cocoa_display_init(ds, full_screen); break; #endif default: break; } /* must be after terminal init, SDL library changes signal handlers */ os_setup_signal_handling(); #ifdef CONFIG_VNC /* init remote displays */ if (vnc_display) { vnc_display_init(ds); if (vnc_display_open(ds, vnc_display) < 0) exit(1); if (show_vnc_port) { printf("VNC server running on `%s'\n", vnc_display_local_addr(ds)); } } #endif #ifdef CONFIG_SPICE if (using_spice && !qxl_enabled) { qemu_spice_display_init(ds); } #endif /* display setup */ dpy_resize(ds); dcl = ds->listeners; while (dcl != NULL) { if (dcl->dpy_refresh != NULL) { ds->gui_timer = qemu_new_timer_ms(rt_clock, gui_update, ds); qemu_mod_timer(ds->gui_timer, qemu_get_clock_ms(rt_clock)); break; } dcl = dcl->next; } text_consoles_set_display(ds); if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) { fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n", gdbstub_dev); exit(1); } qdev_machine_creation_done(); if (rom_load_all() != 0) { fprintf(stderr, "rom loading failed\n"); exit(1); } /* TODO: once all bus devices are qdevified, this should be done * when bus is created by qdev.c */ qemu_register_reset(qbus_reset_all_fn, sysbus_get_default()); qemu_run_machine_init_done_notifiers(); qemu_system_reset(VMRESET_SILENT); if (loadvm) { if (load_vmstate(loadvm) < 0) { autostart = 0; } } if (incoming) { runstate_set(RUN_STATE_INMIGRATE); int ret = qemu_start_incoming_migration(incoming); if (ret < 0) { fprintf(stderr, "Migration failed. Exit code %s(%d), exiting.\n", incoming, ret); exit(ret); } } else if (autostart) { vm_start(); } os_setup_post(); resume_all_vcpus(); main_loop(); bdrv_close_all(); pause_all_vcpus(); net_cleanup(); res_free(); return 0; } | 13,593 |
0 | static int tcp_read(URLContext *h, uint8_t *buf, int size) { TCPContext *s = h->priv_data; int size1, len, fd_max; fd_set rfds; struct timeval tv; size1 = size; while (size > 0) { if (url_interrupt_cb()) return -EINTR; fd_max = s->fd; FD_ZERO(&rfds); FD_SET(s->fd, &rfds); tv.tv_sec = 0; tv.tv_usec = 100 * 1000; select(fd_max + 1, &rfds, NULL, NULL, &tv); #ifdef __BEOS__ len = recv(s->fd, buf, size, 0); #else len = read(s->fd, buf, size); #endif if (len < 0) { if (errno != EINTR && errno != EAGAIN) #ifdef __BEOS__ return errno; #else return -errno; #endif else continue; } else if (len == 0) { break; } size -= len; buf += len; } return size1 - size; } | 13,594 |
0 | static int hda_codec_dev_exit(DeviceState *qdev) { HDACodecDevice *dev = HDA_CODEC_DEVICE(qdev); HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev); if (cdc->exit) { cdc->exit(dev); } return 0; } | 13,596 |
0 | static bool virtqueue_map_desc(VirtIODevice *vdev, unsigned int *p_num_sg, hwaddr *addr, struct iovec *iov, unsigned int max_num_sg, bool is_write, hwaddr pa, size_t sz) { bool ok = false; unsigned num_sg = *p_num_sg; assert(num_sg <= max_num_sg); if (!sz) { virtio_error(vdev, "virtio: zero sized buffers are not allowed"); goto out; } while (sz) { hwaddr len = sz; if (num_sg == max_num_sg) { virtio_error(vdev, "virtio: too many write descriptors in " "indirect table"); goto out; } iov[num_sg].iov_base = cpu_physical_memory_map(pa, &len, is_write); if (!iov[num_sg].iov_base) { virtio_error(vdev, "virtio: bogus descriptor or out of resources"); goto out; } iov[num_sg].iov_len = len; addr[num_sg] = pa; sz -= len; pa += len; num_sg++; } ok = true; out: *p_num_sg = num_sg; return ok; } | 13,597 |
0 | void i8042_setup_a20_line(ISADevice *dev, qemu_irq *a20_out) { ISAKBDState *isa = I8042(dev); KBDState *s = &isa->kbd; s->a20_out = a20_out; } | 13,598 |
0 | static int swf_read_header(AVFormatContext *s, AVFormatParameters *ap) { SWFContext *swf = 0; ByteIOContext *pb = &s->pb; int nbits, len, frame_rate, tag, v; offset_t firstTagOff; AVStream *ast = 0; AVStream *vst = 0; swf = av_malloc(sizeof(SWFContext)); if (!swf) return -1; s->priv_data = swf; tag = get_be32(pb) & 0xffffff00; if (tag == MKBETAG('C', 'W', 'S', 0)) { av_log(s, AV_LOG_ERROR, "Compressed SWF format not supported\n"); return AVERROR_IO; } if (tag != MKBETAG('F', 'W', 'S', 0)) return AVERROR_IO; get_le32(pb); /* skip rectangle size */ nbits = get_byte(pb) >> 3; len = (4 * nbits - 3 + 7) / 8; url_fskip(pb, len); frame_rate = get_le16(pb); get_le16(pb); /* frame count */ /* The Flash Player converts 8.8 frame rates to milliseconds internally. Do the same to get a correct framerate */ swf->ms_per_frame = ( 1000 * 256 ) / frame_rate; swf->samples_per_frame = 0; swf->ch_id = -1; firstTagOff = url_ftell(pb); for(;;) { tag = get_swf_tag(pb, &len); if (tag < 0) { if ( ast || vst ) { if ( vst && ast ) { vst->codec->time_base.den = ast->codec->sample_rate / swf->samples_per_frame; vst->codec->time_base.num = 1; } break; } av_log(s, AV_LOG_ERROR, "No media found in SWF\n"); return AVERROR_IO; } if ( tag == TAG_VIDEOSTREAM && !vst) { int codec_id; swf->ch_id = get_le16(pb); get_le16(pb); get_le16(pb); get_le16(pb); get_byte(pb); /* Check for FLV1 */ codec_id = codec_get_id(swf_codec_tags, get_byte(pb)); if ( codec_id ) { vst = av_new_stream(s, 0); av_set_pts_info(vst, 24, 1, 1000); /* 24 bit pts in ms */ vst->codec->codec_type = CODEC_TYPE_VIDEO; vst->codec->codec_id = codec_id; if ( swf->samples_per_frame ) { vst->codec->time_base.den = 1000. / swf->ms_per_frame; vst->codec->time_base.num = 1; } } } else if ( ( tag == TAG_STREAMHEAD || tag == TAG_STREAMHEAD2 ) && !ast) { /* streaming found */ get_byte(pb); v = get_byte(pb); swf->samples_per_frame = get_le16(pb); if (len!=4) url_fskip(pb,len-4); /* if mp3 streaming found, OK */ if ((v & 0x20) != 0) { if ( tag == TAG_STREAMHEAD2 ) { get_le16(pb); } ast = av_new_stream(s, 1); av_set_pts_info(ast, 24, 1, 1000); /* 24 bit pts in ms */ if (!ast) return -ENOMEM; if (v & 0x01) ast->codec->channels = 2; else ast->codec->channels = 1; switch((v>> 2) & 0x03) { case 1: ast->codec->sample_rate = 11025; break; case 2: ast->codec->sample_rate = 22050; break; case 3: ast->codec->sample_rate = 44100; break; default: av_free(ast); return AVERROR_IO; } ast->codec->codec_type = CODEC_TYPE_AUDIO; ast->codec->codec_id = CODEC_ID_MP3; } } else { url_fskip(pb, len); } } url_fseek(pb, firstTagOff, SEEK_SET); return 0; } | 13,599 |
0 | void ff_weight_h264_pixels16_8_msa(uint8_t *src, int stride, int height, int log2_denom, int weight_src, int offset) { avc_wgt_16width_msa(src, stride, height, log2_denom, weight_src, offset); } | 13,600 |
0 | static int decode_dvd_subtitles(DVDSubContext *ctx, AVSubtitle *sub_header, const uint8_t *buf, int buf_size) { int cmd_pos, pos, cmd, x1, y1, x2, y2, offset1, offset2, next_cmd_pos; int big_offsets, offset_size, is_8bit = 0; const uint8_t *yuv_palette = 0; uint8_t colormap[4] = { 0 }, alpha[256] = { 0 }; int date; int i; int is_menu = 0; if (buf_size < 10) return -1; memset(sub_header, 0, sizeof(*sub_header)); if (AV_RB16(buf) == 0) { /* HD subpicture with 4-byte offsets */ big_offsets = 1; offset_size = 4; cmd_pos = 6; } else { big_offsets = 0; offset_size = 2; cmd_pos = 2; } cmd_pos = READ_OFFSET(buf + cmd_pos); while (cmd_pos > 0 && cmd_pos < buf_size - 2 - offset_size) { date = AV_RB16(buf + cmd_pos); next_cmd_pos = READ_OFFSET(buf + cmd_pos + 2); av_dlog(NULL, "cmd_pos=0x%04x next=0x%04x date=%d\n", cmd_pos, next_cmd_pos, date); pos = cmd_pos + 2 + offset_size; offset1 = -1; offset2 = -1; x1 = y1 = x2 = y2 = 0; while (pos < buf_size) { cmd = buf[pos++]; av_dlog(NULL, "cmd=%02x\n", cmd); switch(cmd) { case 0x00: /* menu subpicture */ is_menu = 1; break; case 0x01: /* set start date */ sub_header->start_display_time = (date << 10) / 90; break; case 0x02: /* set end date */ sub_header->end_display_time = (date << 10) / 90; break; case 0x03: /* set colormap */ if ((buf_size - pos) < 2) goto fail; colormap[3] = buf[pos] >> 4; colormap[2] = buf[pos] & 0x0f; colormap[1] = buf[pos + 1] >> 4; colormap[0] = buf[pos + 1] & 0x0f; pos += 2; break; case 0x04: /* set alpha */ if ((buf_size - pos) < 2) goto fail; alpha[3] = buf[pos] >> 4; alpha[2] = buf[pos] & 0x0f; alpha[1] = buf[pos + 1] >> 4; alpha[0] = buf[pos + 1] & 0x0f; pos += 2; av_dlog(NULL, "alpha=%x%x%x%x\n", alpha[0],alpha[1],alpha[2],alpha[3]); break; case 0x05: case 0x85: if ((buf_size - pos) < 6) goto fail; x1 = (buf[pos] << 4) | (buf[pos + 1] >> 4); x2 = ((buf[pos + 1] & 0x0f) << 8) | buf[pos + 2]; y1 = (buf[pos + 3] << 4) | (buf[pos + 4] >> 4); y2 = ((buf[pos + 4] & 0x0f) << 8) | buf[pos + 5]; if (cmd & 0x80) is_8bit = 1; av_dlog(NULL, "x1=%d x2=%d y1=%d y2=%d\n", x1, x2, y1, y2); pos += 6; break; case 0x06: if ((buf_size - pos) < 4) goto fail; offset1 = AV_RB16(buf + pos); offset2 = AV_RB16(buf + pos + 2); av_dlog(NULL, "offset1=0x%04x offset2=0x%04x\n", offset1, offset2); pos += 4; break; case 0x86: if ((buf_size - pos) < 8) goto fail; offset1 = AV_RB32(buf + pos); offset2 = AV_RB32(buf + pos + 4); av_dlog(NULL, "offset1=0x%04x offset2=0x%04x\n", offset1, offset2); pos += 8; break; case 0x83: /* HD set palette */ if ((buf_size - pos) < 768) goto fail; yuv_palette = buf + pos; pos += 768; break; case 0x84: /* HD set contrast (alpha) */ if ((buf_size - pos) < 256) goto fail; for (i = 0; i < 256; i++) alpha[i] = 0xFF - buf[pos+i]; pos += 256; break; case 0xff: goto the_end; default: av_dlog(NULL, "unrecognised subpicture command 0x%x\n", cmd); goto the_end; } } the_end: if (offset1 >= 0) { int w, h; uint8_t *bitmap; /* decode the bitmap */ w = x2 - x1 + 1; if (w < 0) w = 0; h = y2 - y1; if (h < 0) h = 0; if (w > 0 && h > 0) { if (sub_header->rects != NULL) { for (i = 0; i < sub_header->num_rects; i++) { av_freep(&sub_header->rects[i]->pict.data[0]); av_freep(&sub_header->rects[i]->pict.data[1]); av_freep(&sub_header->rects[i]); } av_freep(&sub_header->rects); sub_header->num_rects = 0; } bitmap = av_malloc(w * h); sub_header->rects = av_mallocz(sizeof(*sub_header->rects)); sub_header->rects[0] = av_mallocz(sizeof(AVSubtitleRect)); sub_header->num_rects = 1; sub_header->rects[0]->pict.data[0] = bitmap; decode_rle(bitmap, w * 2, w, (h + 1) / 2, buf, offset1, buf_size, is_8bit); decode_rle(bitmap + w, w * 2, w, h / 2, buf, offset2, buf_size, is_8bit); sub_header->rects[0]->pict.data[1] = av_mallocz(AVPALETTE_SIZE); if (is_8bit) { if (yuv_palette == 0) goto fail; sub_header->rects[0]->nb_colors = 256; yuv_a_to_rgba(yuv_palette, alpha, (uint32_t*)sub_header->rects[0]->pict.data[1], 256); } else { sub_header->rects[0]->nb_colors = 4; guess_palette(ctx, (uint32_t*)sub_header->rects[0]->pict.data[1], colormap, alpha, 0xffff00); } sub_header->rects[0]->x = x1; sub_header->rects[0]->y = y1; sub_header->rects[0]->w = w; sub_header->rects[0]->h = h; sub_header->rects[0]->type = SUBTITLE_BITMAP; sub_header->rects[0]->pict.linesize[0] = w; } } if (next_cmd_pos == cmd_pos) break; cmd_pos = next_cmd_pos; } if (sub_header->num_rects > 0) return is_menu; fail: if (sub_header->rects != NULL) { for (i = 0; i < sub_header->num_rects; i++) { av_freep(&sub_header->rects[i]->pict.data[0]); av_freep(&sub_header->rects[i]->pict.data[1]); av_freep(&sub_header->rects[i]); } av_freep(&sub_header->rects); sub_header->num_rects = 0; } return -1; } | 13,601 |
0 | static int format_name(char *buf, int buf_len, int index) { const char *proto, *dir; char *orig_buf_dup = NULL, *mod_buf_dup = NULL; int ret = 0; if (!av_stristr(buf, "%v")) return ret; orig_buf_dup = av_strdup(buf); if (!orig_buf_dup) { ret = AVERROR(ENOMEM); goto fail; } if (replace_int_data_in_filename(buf, buf_len, orig_buf_dup, 'v', index) < 1) { ret = AVERROR(EINVAL); goto fail; } proto = avio_find_protocol_name(orig_buf_dup); dir = av_dirname(orig_buf_dup); /* if %v is present in the file's directory, create sub-directory */ if (av_stristr(dir, "%v") && proto && !strcmp(proto, "file")) { mod_buf_dup = av_strdup(buf); if (!mod_buf_dup) { ret = AVERROR(ENOMEM); goto fail; } dir = av_dirname(mod_buf_dup); if (mkdir_p(dir) == -1 && errno != EEXIST) { ret = AVERROR(errno); goto fail; } } fail: av_freep(&orig_buf_dup); av_freep(&mod_buf_dup); return ret; } | 13,602 |
1 | void cpu_reset(CPUSPARCState *env) { if (qemu_loglevel_mask(CPU_LOG_RESET)) { qemu_log("CPU Reset (CPU %d)\n", env->cpu_index); log_cpu_state(env, 0); } tlb_flush(env, 1); env->cwp = 0; #ifndef TARGET_SPARC64 env->wim = 1; #endif env->regwptr = env->regbase + (env->cwp * 16); #if defined(CONFIG_USER_ONLY) #ifdef TARGET_SPARC64 env->cleanwin = env->nwindows - 2; env->cansave = env->nwindows - 2; env->pstate = PS_RMO | PS_PEF | PS_IE; env->asi = 0x82; // Primary no-fault #endif #else #if !defined(TARGET_SPARC64) env->psret = 0; #endif env->psrs = 1; env->psrps = 1; CC_OP = CC_OP_FLAGS; #ifdef TARGET_SPARC64 env->pstate = PS_PRIV; env->hpstate = HS_PRIV; env->tsptr = &env->ts[env->tl & MAXTL_MASK]; env->lsu = 0; #else env->mmuregs[0] &= ~(MMU_E | MMU_NF); env->mmuregs[0] |= env->def->mmu_bm; #endif env->pc = 0; env->npc = env->pc + 4; #endif } | 13,603 |
1 | net_rx_pkt_pull_data(struct NetRxPkt *pkt, const struct iovec *iov, int iovcnt, size_t ploff) { if (pkt->vlan_stripped) { net_rx_pkt_iovec_realloc(pkt, iovcnt + 1); pkt->vec[0].iov_base = pkt->ehdr_buf; pkt->vec[0].iov_len = sizeof(pkt->ehdr_buf); pkt->tot_len = iov_size(iov, iovcnt) - ploff + sizeof(struct eth_header); pkt->vec_len = iov_copy(pkt->vec + 1, pkt->vec_len_total - 1, iov, iovcnt, ploff, pkt->tot_len); } else { net_rx_pkt_iovec_realloc(pkt, iovcnt); pkt->tot_len = iov_size(iov, iovcnt) - ploff; pkt->vec_len = iov_copy(pkt->vec, pkt->vec_len_total, iov, iovcnt, ploff, pkt->tot_len); } eth_get_protocols(pkt->vec, pkt->vec_len, &pkt->isip4, &pkt->isip6, &pkt->isudp, &pkt->istcp, &pkt->l3hdr_off, &pkt->l4hdr_off, &pkt->l5hdr_off, &pkt->ip6hdr_info, &pkt->ip4hdr_info, &pkt->l4hdr_info); trace_net_rx_pkt_parsed(pkt->isip4, pkt->isip6, pkt->isudp, pkt->istcp, pkt->l3hdr_off, pkt->l4hdr_off, pkt->l5hdr_off); } | 13,606 |
1 | MigrationState *tcp_start_outgoing_migration(Monitor *mon, const char *host_port, int64_t bandwidth_limit, int detach, int blk, int inc) { struct sockaddr_in addr; FdMigrationState *s; int ret; if (parse_host_port(&addr, host_port) < 0) return NULL; s = qemu_mallocz(sizeof(*s)); s->get_error = socket_errno; s->write = socket_write; s->close = tcp_close; s->mig_state.cancel = migrate_fd_cancel; s->mig_state.get_status = migrate_fd_get_status; s->mig_state.release = migrate_fd_release; s->mig_state.blk = blk; s->mig_state.shared = inc; s->state = MIG_STATE_ACTIVE; s->mon = NULL; s->bandwidth_limit = bandwidth_limit; s->fd = socket(PF_INET, SOCK_STREAM, 0); if (s->fd == -1) { qemu_free(s); return NULL; } socket_set_nonblock(s->fd); if (!detach) { migrate_fd_monitor_suspend(s, mon); } do { ret = connect(s->fd, (struct sockaddr *)&addr, sizeof(addr)); if (ret == -1) ret = -(s->get_error(s)); if (ret == -EINPROGRESS || ret == -EWOULDBLOCK) qemu_set_fd_handler2(s->fd, NULL, NULL, tcp_wait_for_connect, s); } while (ret == -EINTR); if (ret < 0 && ret != -EINPROGRESS && ret != -EWOULDBLOCK) { dprintf("connect failed\n"); close(s->fd); qemu_free(s); return NULL; } else if (ret >= 0) migrate_fd_connect(s); return &s->mig_state; } | 13,607 |
1 | int main_loop(void *opaque) { struct pollfd ufds[2], *pf, *serial_ufd, *net_ufd, *gdb_ufd; int ret, n, timeout; uint8_t ch; CPUState *env = global_env; if (!term_inited) { /* initialize terminal only there so that the user has a chance to stop QEMU with Ctrl-C before the gdb connection is launched */ term_inited = 1; term_init(); } for(;;) { ret = cpu_x86_exec(env); if (reset_requested) break; if (ret == EXCP_DEBUG) return EXCP_DEBUG; /* if hlt instruction, we wait until the next IRQ */ if (ret == EXCP_HLT) timeout = 10; else timeout = 0; /* poll any events */ serial_ufd = NULL; pf = ufds; if (!(serial_ports[0].lsr & UART_LSR_DR)) { serial_ufd = pf; pf->fd = 0; pf->events = POLLIN; pf++; } net_ufd = NULL; if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) { net_ufd = pf; pf->fd = net_fd; pf->events = POLLIN; pf++; } gdb_ufd = NULL; if (gdbstub_fd > 0) { gdb_ufd = pf; pf->fd = gdbstub_fd; pf->events = POLLIN; pf++; } ret = poll(ufds, pf - ufds, timeout); if (ret > 0) { if (serial_ufd && (serial_ufd->revents & POLLIN)) { n = read(0, &ch, 1); if (n == 1) { serial_received_byte(&serial_ports[0], ch); } } if (net_ufd && (net_ufd->revents & POLLIN)) { uint8_t buf[MAX_ETH_FRAME_SIZE]; n = read(net_fd, buf, MAX_ETH_FRAME_SIZE); if (n > 0) { if (n < 60) { memset(buf + n, 0, 60 - n); n = 60; } ne2000_receive(&ne2000_state, buf, n); } } if (gdb_ufd && (gdb_ufd->revents & POLLIN)) { uint8_t buf[1]; /* stop emulation if requested by gdb */ n = read(gdbstub_fd, buf, 1); if (n == 1) break; } } /* timer IRQ */ if (timer_irq_pending) { pic_set_irq(0, 1); pic_set_irq(0, 0); timer_irq_pending = 0; } /* VGA */ if (gui_refresh_pending) { display_state.dpy_refresh(&display_state); gui_refresh_pending = 0; } } return EXCP_INTERRUPT; } | 13,608 |
1 | static int ehci_state_executing(EHCIQueue *q) { EHCIPacket *p = QTAILQ_FIRST(&q->packets); assert(p != NULL); assert(p->qtdaddr == q->qtdaddr); ehci_execute_complete(q); // 4.10.3 if (!q->async) { int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT); transactCtr--; set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT); // 4.10.3, bottom of page 82, should exit this state when transaction // counter decrements to 0 } /* 4.10.5 */ if (p->usb_status == USB_RET_NAK) { ehci_set_state(q->ehci, q->async, EST_HORIZONTALQH); } else { ehci_set_state(q->ehci, q->async, EST_WRITEBACK); } ehci_flush_qh(q); return 1; } | 13,609 |
1 | static int decode(MimicContext *ctx, int quality, int num_coeffs, int is_iframe) { int y, x, plane, cur_row = 0; for(plane = 0; plane < 3; plane++) { const int is_chroma = !!plane; const int qscale = av_clip(10000-quality,is_chroma?1000:2000,10000)<<2; const int stride = ctx->flipped_ptrs[ctx->cur_index].linesize[plane]; const uint8_t *src = ctx->flipped_ptrs[ctx->prev_index].data[plane]; uint8_t *dst = ctx->flipped_ptrs[ctx->cur_index ].data[plane]; for(y = 0; y < ctx->num_vblocks[plane]; y++) { for(x = 0; x < ctx->num_hblocks[plane]; x++) { /* Check for a change condition in the current block. * - iframes always change. * - Luma plane changes on get_bits1 == 0 * - Chroma planes change on get_bits1 == 1 */ if(is_iframe || get_bits1(&ctx->gb) == is_chroma) { /* Luma planes may use a backreference from the 15 last * frames preceding the previous. (get_bits1 == 1) * Chroma planes don't use backreferences. */ if(is_chroma || is_iframe || !get_bits1(&ctx->gb)) { if(!vlc_decode_block(ctx, num_coeffs, qscale)) return 0; ctx->dsp.idct_put(dst, stride, ctx->dct_block); } else { unsigned int backref = get_bits(&ctx->gb, 4); int index = (ctx->cur_index+backref)&15; uint8_t *p = ctx->flipped_ptrs[index].data[0]; ff_thread_await_progress(&ctx->buf_ptrs[index], cur_row, 0); if(p) { p += src - ctx->flipped_ptrs[ctx->prev_index].data[plane]; ctx->dsp.put_pixels_tab[1][0](dst, p, stride, 8); } else { av_log(ctx->avctx, AV_LOG_ERROR, "No such backreference! Buggy sample.\n"); } } } else { ff_thread_await_progress(&ctx->buf_ptrs[ctx->prev_index], cur_row, 0); ctx->dsp.put_pixels_tab[1][0](dst, src, stride, 8); } src += 8; dst += 8; } src += (stride - ctx->num_hblocks[plane])<<3; dst += (stride - ctx->num_hblocks[plane])<<3; ff_thread_report_progress(&ctx->buf_ptrs[ctx->cur_index], cur_row++, 0); } } return 1; } | 13,610 |
1 | static av_cold int init(AVFilterContext *ctx, const char *args, void *opaque) { UnsharpContext *unsharp = ctx->priv; int lmsize_x = 5, cmsize_x = 0; int lmsize_y = 5, cmsize_y = 0; double lamount = 1.0f, camount = 0.0f; if (args) sscanf(args, "%d:%d:%lf:%d:%d:%lf", &lmsize_x, &lmsize_y, &lamount, &cmsize_x, &cmsize_y, &camount); if (lmsize_x < 2 || lmsize_y < 2 || cmsize_x < 2 || cmsize_y < 2) { av_log(ctx, AV_LOG_ERROR, "Invalid value <2 for lmsize_x:%d or lmsize_y:%d or cmsize_x:%d or cmsize_y:%d\n", lmsize_x, lmsize_y, cmsize_x, cmsize_y); return AVERROR(EINVAL); } set_filter_param(&unsharp->luma, lmsize_x, lmsize_y, lamount); set_filter_param(&unsharp->chroma, cmsize_x, cmsize_y, camount); return 0; } | 13,611 |
0 | static int mxf_decrypt_triplet(AVFormatContext *s, AVPacket *pkt, KLVPacket *klv) { static const uint8_t checkv[16] = {0x43, 0x48, 0x55, 0x4b, 0x43, 0x48, 0x55, 0x4b, 0x43, 0x48, 0x55, 0x4b, 0x43, 0x48, 0x55, 0x4b}; MXFContext *mxf = s->priv_data; AVIOContext *pb = s->pb; int64_t end = avio_tell(pb) + klv->length; uint64_t size; uint64_t orig_size; uint64_t plaintext_size; uint8_t ivec[16]; uint8_t tmpbuf[16]; int index; if (!mxf->aesc && s->key && s->keylen == 16) { mxf->aesc = av_malloc(av_aes_size); if (!mxf->aesc) return -1; av_aes_init(mxf->aesc, s->key, 128, 1); } // crypto context avio_skip(pb, klv_decode_ber_length(pb)); // plaintext offset klv_decode_ber_length(pb); plaintext_size = avio_rb64(pb); // source klv key klv_decode_ber_length(pb); avio_read(pb, klv->key, 16); if (!IS_KLV_KEY(klv, mxf_essence_element_key)) return -1; index = mxf_get_stream_index(s, klv); if (index < 0) return -1; // source size klv_decode_ber_length(pb); orig_size = avio_rb64(pb); if (orig_size < plaintext_size) return -1; // enc. code size = klv_decode_ber_length(pb); if (size < 32 || size - 32 < orig_size) return -1; avio_read(pb, ivec, 16); avio_read(pb, tmpbuf, 16); if (mxf->aesc) av_aes_crypt(mxf->aesc, tmpbuf, tmpbuf, 1, ivec, 1); if (memcmp(tmpbuf, checkv, 16)) av_log(s, AV_LOG_ERROR, "probably incorrect decryption key\n"); size -= 32; size = av_get_packet(pb, pkt, size); if (size < 0) return size; else if (size < plaintext_size) return AVERROR_INVALIDDATA; size -= plaintext_size; if (mxf->aesc) av_aes_crypt(mxf->aesc, &pkt->data[plaintext_size], &pkt->data[plaintext_size], size >> 4, ivec, 1); av_shrink_packet(pkt, orig_size); pkt->stream_index = index; avio_skip(pb, end - avio_tell(pb)); return 0; } | 13,613 |
1 | static int libx265_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pic, int *got_packet) { libx265Context *ctx = avctx->priv_data; x265_picture x265pic; x265_picture x265pic_out = { { 0 } }; x265_nal *nal; uint8_t *dst; int payload = 0; int nnal; int ret; int i; if (pic) { for (i = 0; i < 3; i++) { x265pic.planes[i] = pic->data[i]; x265pic.stride[i] = pic->linesize[i]; } x265pic.pts = pic->pts; } ret = x265_encoder_encode(ctx->encoder, &nal, &nnal, pic ? &x265pic : NULL, &x265pic_out); if (ret < 0) return AVERROR_UNKNOWN; if (!nnal) return 0; for (i = 0; i < nnal; i++) payload += nal[i].sizeBytes; payload += ctx->header_size; ret = ff_alloc_packet(pkt, payload); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n"); return ret; } dst = pkt->data; if (ctx->header) { memcpy(dst, ctx->header, ctx->header_size); dst += ctx->header_size; av_freep(&ctx->header); ctx->header_size = 0; } for (i = 0; i < nnal; i++) { memcpy(dst, nal[i].payload, nal[i].sizeBytes); dst += nal[i].sizeBytes; if (is_keyframe(nal[i].type)) pkt->flags |= AV_PKT_FLAG_KEY; } pkt->pts = x265pic_out.pts; pkt->dts = x265pic_out.dts; *got_packet = 1; return 0; } | 13,614 |
1 | static inline TCGv gen_ld16u(TCGv addr, int index) { TCGv tmp = new_tmp(); tcg_gen_qemu_ld16u(tmp, addr, index); return tmp; } | 13,615 |
1 | static int opus_decode_packet(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt) { OpusContext *c = avctx->priv_data; AVFrame *frame = data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; int coded_samples = 0; int decoded_samples = 0; int i, ret; /* decode the header of the first sub-packet to find out the sample count */ if (buf) { OpusPacket *pkt = &c->streams[0].packet; ret = ff_opus_parse_packet(pkt, buf, buf_size, c->nb_streams > 1); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "Error parsing the packet header.\n"); return ret; coded_samples += pkt->frame_count * pkt->frame_duration; c->streams[0].silk_samplerate = get_silk_samplerate(pkt->config); frame->nb_samples = coded_samples + c->streams[0].delayed_samples; /* no input or buffered data => nothing to do */ if (!frame->nb_samples) { *got_frame_ptr = 0; return 0; /* setup the data buffers */ ret = ff_get_buffer(avctx, frame, 0); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return ret; frame->nb_samples = 0; for (i = 0; i < avctx->channels; i++) { ChannelMap *map = &c->channel_maps[i]; if (!map->copy) c->streams[map->stream_idx].out[map->channel_idx] = (float*)frame->extended_data[i]; for (i = 0; i < c->nb_streams; i++) c->streams[i].out_size = frame->linesize[0]; /* decode each sub-packet */ for (i = 0; i < c->nb_streams; i++) { OpusStreamContext *s = &c->streams[i]; if (i && buf) { ret = ff_opus_parse_packet(&s->packet, buf, buf_size, i != c->nb_streams - 1); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "Error parsing the packet header.\n"); return ret; s->silk_samplerate = get_silk_samplerate(s->packet.config); ret = opus_decode_subpacket(&c->streams[i], buf, s->packet.data_size, coded_samples); if (ret < 0) return ret; if (decoded_samples && ret != decoded_samples) { av_log(avctx, AV_LOG_ERROR, "Different numbers of decoded samples " "in a multi-channel stream\n"); decoded_samples = ret; buf += s->packet.packet_size; buf_size -= s->packet.packet_size; for (i = 0; i < avctx->channels; i++) { ChannelMap *map = &c->channel_maps[i]; /* handle copied channels */ if (map->copy) { memcpy(frame->extended_data[i], frame->extended_data[map->copy_idx], frame->linesize[0]); } else if (map->silence) { memset(frame->extended_data[i], 0, frame->linesize[0]); if (c->gain_i) { c->fdsp.vector_fmul_scalar((float*)frame->extended_data[i], (float*)frame->extended_data[i], c->gain, FFALIGN(decoded_samples, 8)); frame->nb_samples = decoded_samples; *got_frame_ptr = !!decoded_samples; return avpkt->size; | 13,616 |
1 | int page_check_range(target_ulong start, target_ulong len, int flags) { PageDesc *p; target_ulong end; target_ulong addr; /* This function should never be called with addresses outside the guest address space. If this assert fires, it probably indicates a missing call to h2g_valid. */ #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); #endif if (len == 0) { return 0; } if (start + len - 1 < start) { /* We've wrapped around. */ return -1; } /* must do before we loose bits in the next step */ end = TARGET_PAGE_ALIGN(start + len); start = start & TARGET_PAGE_MASK; for (addr = start, len = end - start; len != 0; len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { p = page_find(addr >> TARGET_PAGE_BITS); if (!p) { return -1; } if (!(p->flags & PAGE_VALID)) { return -1; } if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { return -1; } if (flags & PAGE_WRITE) { if (!(p->flags & PAGE_WRITE_ORG)) { return -1; } /* unprotect the page if it was put read-only because it contains translated code */ if (!(p->flags & PAGE_WRITE)) { if (!page_unprotect(addr, 0, NULL)) { return -1; } } return 0; } } return 0; } | 13,617 |
1 | static int add_file(AVFormatContext *avf, char *filename, ConcatFile **rfile, unsigned *nb_files_alloc) { ConcatContext *cat = avf->priv_data; ConcatFile *file; char *url; size_t url_len; if (cat->safe > 0 && !safe_filename(filename)) { av_log(avf, AV_LOG_ERROR, "Unsafe file name '%s'\n", filename); return AVERROR(EPERM); } url_len = strlen(avf->filename) + strlen(filename) + 16; if (!(url = av_malloc(url_len))) return AVERROR(ENOMEM); ff_make_absolute_url(url, url_len, avf->filename, filename); av_free(filename); if (cat->nb_files >= *nb_files_alloc) { size_t n = FFMAX(*nb_files_alloc * 2, 16); ConcatFile *new_files; if (n <= cat->nb_files || n > SIZE_MAX / sizeof(*cat->files) || !(new_files = av_realloc(cat->files, n * sizeof(*cat->files)))) return AVERROR(ENOMEM); cat->files = new_files; *nb_files_alloc = n; } file = &cat->files[cat->nb_files++]; memset(file, 0, sizeof(*file)); *rfile = file; file->url = url; file->start_time = AV_NOPTS_VALUE; file->duration = AV_NOPTS_VALUE; return 0; } | 13,618 |
1 | void avfilter_copy_buffer_ref_props(AVFilterBufferRef *dst, AVFilterBufferRef *src) { // copy common properties dst->pts = src->pts; dst->pos = src->pos; switch (src->type) { case AVMEDIA_TYPE_VIDEO: { if (dst->video->qp_table) av_freep(&dst->video->qp_table); copy_video_props(dst->video, src->video); break; } case AVMEDIA_TYPE_AUDIO: *dst->audio = *src->audio; break; default: break; } } | 13,619 |
1 | static void test_validate_fail_list(TestInputVisitorData *data, const void *unused) { UserDefOneList *head = NULL; Error *err = NULL; Visitor *v; v = validate_test_init(data, "[ { 'string': 'string0', 'integer': 42 }, { 'string': 'string1', 'integer': 43 }, { 'string': 'string2', 'integer': 44, 'extra': 'ggg' } ]"); visit_type_UserDefOneList(v, &head, NULL, &err); g_assert(err); error_free(err); qapi_free_UserDefOneList(head); } | 13,620 |
1 | int ff_find_unused_picture(MpegEncContext *s, int shared){ int i; if(shared){ for(i=0; i<MAX_PICTURE_COUNT; i++){ if(s->picture[i].data[0]==NULL && s->picture[i].type==0) return i; } }else{ for(i=0; i<MAX_PICTURE_COUNT; i++){ if(s->picture[i].data[0]==NULL && s->picture[i].type!=0) return i; //FIXME } for(i=0; i<MAX_PICTURE_COUNT; i++){ if(s->picture[i].data[0]==NULL) return i; } } assert(0); return -1; } | 13,621 |
1 | static void audio_init (PCIBus *pci_bus, qemu_irq *pic) { struct soundhw *c; int audio_enabled = 0; for (c = soundhw; !audio_enabled && c->name; ++c) { audio_enabled = c->enabled; } if (audio_enabled) { AudioState *s; s = AUD_init (); if (s) { for (c = soundhw; c->name; ++c) { if (c->enabled) { if (c->isa) { c->init.init_isa (s, pic); } else { if (pci_bus) { c->init.init_pci (pci_bus, s); } } } } } } } | 13,622 |
0 | static void destroy_buffers(VADisplay display, VABufferID *buffers, unsigned int n_buffers) { unsigned int i; for (i = 0; i < n_buffers; i++) { if (buffers[i]) { vaDestroyBuffer(display, buffers[i]); buffers[i] = 0; } } } | 13,624 |
1 | static void vmxnet3_activate_device(VMXNET3State *s) { int i; static const uint32_t VMXNET3_DEF_TX_THRESHOLD = 1; hwaddr qdescr_table_pa; uint64_t pa; uint32_t size; /* Verify configuration consistency */ if (!vmxnet3_verify_driver_magic(s->drv_shmem)) { VMW_ERPRN("Device configuration received from driver is invalid"); return; } /* Verify if device is active */ if (s->device_active) { VMW_CFPRN("Vmxnet3 device is active"); return; } vmxnet3_adjust_by_guest_type(s); vmxnet3_update_features(s); vmxnet3_update_pm_state(s); vmxnet3_setup_rx_filtering(s); /* Cache fields from shared memory */ s->mtu = VMXNET3_READ_DRV_SHARED32(s->drv_shmem, devRead.misc.mtu); VMW_CFPRN("MTU is %u", s->mtu); s->max_rx_frags = VMXNET3_READ_DRV_SHARED16(s->drv_shmem, devRead.misc.maxNumRxSG); if (s->max_rx_frags == 0) { s->max_rx_frags = 1; } VMW_CFPRN("Max RX fragments is %u", s->max_rx_frags); s->event_int_idx = VMXNET3_READ_DRV_SHARED8(s->drv_shmem, devRead.intrConf.eventIntrIdx); assert(vmxnet3_verify_intx(s, s->event_int_idx)); VMW_CFPRN("Events interrupt line is %u", s->event_int_idx); s->auto_int_masking = VMXNET3_READ_DRV_SHARED8(s->drv_shmem, devRead.intrConf.autoMask); VMW_CFPRN("Automatic interrupt masking is %d", (int)s->auto_int_masking); s->txq_num = VMXNET3_READ_DRV_SHARED8(s->drv_shmem, devRead.misc.numTxQueues); s->rxq_num = VMXNET3_READ_DRV_SHARED8(s->drv_shmem, devRead.misc.numRxQueues); VMW_CFPRN("Number of TX/RX queues %u/%u", s->txq_num, s->rxq_num); vmxnet3_validate_queues(s); qdescr_table_pa = VMXNET3_READ_DRV_SHARED64(s->drv_shmem, devRead.misc.queueDescPA); VMW_CFPRN("TX queues descriptors table is at 0x%" PRIx64, qdescr_table_pa); /* * Worst-case scenario is a packet that holds all TX rings space so * we calculate total size of all TX rings for max TX fragments number */ s->max_tx_frags = 0; /* TX queues */ for (i = 0; i < s->txq_num; i++) { hwaddr qdescr_pa = qdescr_table_pa + i * sizeof(struct Vmxnet3_TxQueueDesc); /* Read interrupt number for this TX queue */ s->txq_descr[i].intr_idx = VMXNET3_READ_TX_QUEUE_DESCR8(qdescr_pa, conf.intrIdx); assert(vmxnet3_verify_intx(s, s->txq_descr[i].intr_idx)); VMW_CFPRN("TX Queue %d interrupt: %d", i, s->txq_descr[i].intr_idx); /* Read rings memory locations for TX queues */ pa = VMXNET3_READ_TX_QUEUE_DESCR64(qdescr_pa, conf.txRingBasePA); size = VMXNET3_READ_TX_QUEUE_DESCR32(qdescr_pa, conf.txRingSize); vmxnet3_ring_init(&s->txq_descr[i].tx_ring, pa, size, sizeof(struct Vmxnet3_TxDesc), false); VMXNET3_RING_DUMP(VMW_CFPRN, "TX", i, &s->txq_descr[i].tx_ring); s->max_tx_frags += size; /* TXC ring */ pa = VMXNET3_READ_TX_QUEUE_DESCR64(qdescr_pa, conf.compRingBasePA); size = VMXNET3_READ_TX_QUEUE_DESCR32(qdescr_pa, conf.compRingSize); vmxnet3_ring_init(&s->txq_descr[i].comp_ring, pa, size, sizeof(struct Vmxnet3_TxCompDesc), true); VMXNET3_RING_DUMP(VMW_CFPRN, "TXC", i, &s->txq_descr[i].comp_ring); s->txq_descr[i].tx_stats_pa = qdescr_pa + offsetof(struct Vmxnet3_TxQueueDesc, stats); memset(&s->txq_descr[i].txq_stats, 0, sizeof(s->txq_descr[i].txq_stats)); /* Fill device-managed parameters for queues */ VMXNET3_WRITE_TX_QUEUE_DESCR32(qdescr_pa, ctrl.txThreshold, VMXNET3_DEF_TX_THRESHOLD); } /* Preallocate TX packet wrapper */ VMW_CFPRN("Max TX fragments is %u", s->max_tx_frags); net_tx_pkt_init(&s->tx_pkt, PCI_DEVICE(s), s->max_tx_frags, s->peer_has_vhdr); net_rx_pkt_init(&s->rx_pkt, s->peer_has_vhdr); /* Read rings memory locations for RX queues */ for (i = 0; i < s->rxq_num; i++) { int j; hwaddr qd_pa = qdescr_table_pa + s->txq_num * sizeof(struct Vmxnet3_TxQueueDesc) + i * sizeof(struct Vmxnet3_RxQueueDesc); /* Read interrupt number for this RX queue */ s->rxq_descr[i].intr_idx = VMXNET3_READ_TX_QUEUE_DESCR8(qd_pa, conf.intrIdx); assert(vmxnet3_verify_intx(s, s->rxq_descr[i].intr_idx)); VMW_CFPRN("RX Queue %d interrupt: %d", i, s->rxq_descr[i].intr_idx); /* Read rings memory locations */ for (j = 0; j < VMXNET3_RX_RINGS_PER_QUEUE; j++) { /* RX rings */ pa = VMXNET3_READ_RX_QUEUE_DESCR64(qd_pa, conf.rxRingBasePA[j]); size = VMXNET3_READ_RX_QUEUE_DESCR32(qd_pa, conf.rxRingSize[j]); vmxnet3_ring_init(&s->rxq_descr[i].rx_ring[j], pa, size, sizeof(struct Vmxnet3_RxDesc), false); VMW_CFPRN("RX queue %d:%d: Base: %" PRIx64 ", Size: %d", i, j, pa, size); } /* RXC ring */ pa = VMXNET3_READ_RX_QUEUE_DESCR64(qd_pa, conf.compRingBasePA); size = VMXNET3_READ_RX_QUEUE_DESCR32(qd_pa, conf.compRingSize); vmxnet3_ring_init(&s->rxq_descr[i].comp_ring, pa, size, sizeof(struct Vmxnet3_RxCompDesc), true); VMW_CFPRN("RXC queue %d: Base: %" PRIx64 ", Size: %d", i, pa, size); s->rxq_descr[i].rx_stats_pa = qd_pa + offsetof(struct Vmxnet3_RxQueueDesc, stats); memset(&s->rxq_descr[i].rxq_stats, 0, sizeof(s->rxq_descr[i].rxq_stats)); } vmxnet3_validate_interrupts(s); /* Make sure everything is in place before device activation */ smp_wmb(); vmxnet3_reset_mac(s); s->device_active = true; } | 13,625 |
1 | bool object_property_get_bool(Object *obj, const char *name, Error **errp) { QObject *ret = object_property_get_qobject(obj, name, errp); QBool *qbool; bool retval; if (!ret) { return false; } qbool = qobject_to_qbool(ret); if (!qbool) { error_setg(errp, QERR_INVALID_PARAMETER_TYPE, name, "boolean"); retval = false; } else { retval = qbool_get_bool(qbool); } QDECREF(qbool); return retval; } | 13,626 |
1 | static void mpegts_insert_pcr_only(AVFormatContext *s, AVStream *st) { MpegTSWrite *ts = s->priv_data; MpegTSWriteStream *ts_st = st->priv_data; uint8_t *q; uint8_t buf[TS_PACKET_SIZE]; q = buf; *q++ = 0x47; *q++ = ts_st->pid >> 8; *q++ = ts_st->pid; *q++ = 0x20 | ts_st->cc; /* Adaptation only */ /* Continuity Count field does not increment (see 13818-1 section 2.4.3.3) */ *q++ = TS_PACKET_SIZE - 5; /* Adaptation Field Length */ *q++ = 0x10; /* Adaptation flags: PCR present */ /* PCR coded into 6 bytes */ q += write_pcr_bits(q, get_pcr(ts, s->pb)); /* stuffing bytes */ memset(q, 0xFF, TS_PACKET_SIZE - (q - buf)); mpegts_prefix_m2ts_header(s); avio_write(s->pb, buf, TS_PACKET_SIZE); | 13,627 |
1 | static void disas_extract(DisasContext *s, uint32_t insn) { unsupported_encoding(s, insn); } | 13,628 |
1 | static int dxva2_mpeg2_end_frame(AVCodecContext *avctx) { struct MpegEncContext *s = avctx->priv_data; struct dxva2_picture_context *ctx_pic = s->current_picture_ptr->hwaccel_picture_private; int ret; if (ctx_pic->slice_count <= 0 || ctx_pic->bitstream_size <= 0) return -1; ret = ff_dxva2_common_end_frame(avctx, &s->current_picture_ptr->f, &ctx_pic->pp, sizeof(ctx_pic->pp), &ctx_pic->qm, sizeof(ctx_pic->qm), commit_bitstream_and_slice_buffer); if (!ret) ff_mpeg_draw_horiz_band(s, 0, avctx->height); return ret; } | 13,629 |
1 | static int au_read_header(AVFormatContext *s) { int size; unsigned int tag; AVIOContext *pb = s->pb; unsigned int id, channels, rate; int bps; enum AVCodecID codec; AVStream *st; /* check ".snd" header */ tag = avio_rl32(pb); if (tag != MKTAG('.', 's', 'n', 'd')) return -1; size = avio_rb32(pb); /* header size */ avio_rb32(pb); /* data size */ id = avio_rb32(pb); rate = avio_rb32(pb); channels = avio_rb32(pb); codec = ff_codec_get_id(codec_au_tags, id); if (codec == AV_CODEC_ID_NONE) { av_log_ask_for_sample(s, "unknown or unsupported codec tag: %d\n", id); return AVERROR_PATCHWELCOME; } bps = av_get_bits_per_sample(codec); if (!bps) { av_log_ask_for_sample(s, "could not determine bits per sample\n"); return AVERROR_PATCHWELCOME; } if (channels == 0 || channels > 64) { av_log(s, AV_LOG_ERROR, "Invalid number of channels %d\n", channels); return AVERROR_INVALIDDATA; } if (size >= 24) { /* skip unused data */ avio_skip(pb, size - 24); } /* now we are ready: build format streams */ st = avformat_new_stream(s, NULL); if (!st) return -1; st->codec->codec_type = AVMEDIA_TYPE_AUDIO; st->codec->codec_tag = id; st->codec->codec_id = codec; st->codec->channels = channels; st->codec->sample_rate = rate; st->codec->bit_rate = channels * rate * bps; st->codec->block_align = channels * bps >> 3; avpriv_set_pts_info(st, 64, 1, rate); return 0; } | 13,630 |
1 | static inline void bink_idct_col(DCTELEM *dest, const DCTELEM *src) { if ((src[8]|src[16]|src[24]|src[32]|src[40]|src[48]|src[56])==0) { dest[0] = dest[8] = dest[16] = dest[24] = dest[32] = dest[40] = dest[48] = dest[56] = src[0]; } else { IDCT_COL(dest, src); } } | 13,631 |
1 | static int decode_info_header(NUTContext *nut) { AVFormatContext *s = nut->avf; AVIOContext *bc = s->pb; uint64_t tmp, chapter_start, chapter_len; unsigned int stream_id_plus1, count; int chapter_id, i; int64_t value, end; char name[256], str_value[1024], type_str[256]; const char *type; int *event_flags; AVChapter *chapter = NULL; AVStream *st = NULL; AVDictionary **metadata = NULL; int metadata_flag = 0; end = get_packetheader(nut, bc, 1, INFO_STARTCODE); end += avio_tell(bc); GET_V(stream_id_plus1, tmp <= s->nb_streams); chapter_id = get_s(bc); chapter_start = ffio_read_varlen(bc); chapter_len = ffio_read_varlen(bc); count = ffio_read_varlen(bc); if (chapter_id && !stream_id_plus1) { int64_t start = chapter_start / nut->time_base_count; chapter = avpriv_new_chapter(s, chapter_id, nut->time_base[chapter_start % nut->time_base_count], start, start + chapter_len, NULL); metadata = &chapter->metadata; } else if (stream_id_plus1) { st = s->streams[stream_id_plus1 - 1]; metadata = &st->metadata; event_flags = &st->event_flags; metadata_flag = AVSTREAM_EVENT_FLAG_METADATA_UPDATED; } else { metadata = &s->metadata; event_flags = &s->event_flags; metadata_flag = AVFMT_EVENT_FLAG_METADATA_UPDATED; } for (i = 0; i < count; i++) { get_str(bc, name, sizeof(name)); value = get_s(bc); if (value == -1) { type = "UTF-8"; get_str(bc, str_value, sizeof(str_value)); } else if (value == -2) { get_str(bc, type_str, sizeof(type_str)); type = type_str; get_str(bc, str_value, sizeof(str_value)); } else if (value == -3) { type = "s"; value = get_s(bc); } else if (value == -4) { type = "t"; value = ffio_read_varlen(bc); } else if (value < -4) { type = "r"; get_s(bc); } else { type = "v"; } if (stream_id_plus1 > s->nb_streams) { av_log(s, AV_LOG_ERROR, "invalid stream id for info packet\n"); continue; } if (!strcmp(type, "UTF-8")) { if (chapter_id == 0 && !strcmp(name, "Disposition")) { set_disposition_bits(s, str_value, stream_id_plus1 - 1); continue; } if (metadata && av_strcasecmp(name, "Uses") && av_strcasecmp(name, "Depends") && av_strcasecmp(name, "Replaces")) { *event_flags |= metadata_flag; av_dict_set(metadata, name, str_value, 0); } } } if (skip_reserved(bc, end) || ffio_get_checksum(bc)) { av_log(s, AV_LOG_ERROR, "info header checksum mismatch\n"); return AVERROR_INVALIDDATA; } return 0; } | 13,632 |
1 | static void vhost_client_set_memory(CPUPhysMemoryClient *client, target_phys_addr_t start_addr, ram_addr_t size, ram_addr_t phys_offset, bool log_dirty) { struct vhost_dev *dev = container_of(client, struct vhost_dev, client); ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; int s = offsetof(struct vhost_memory, regions) + (dev->mem->nregions + 1) * sizeof dev->mem->regions[0]; uint64_t log_size; int r; dev->mem = g_realloc(dev->mem, s); if (log_dirty) { flags = IO_MEM_UNASSIGNED; } assert(size); /* Optimize no-change case. At least cirrus_vga does this a lot at this time. */ if (flags == IO_MEM_RAM) { if (!vhost_dev_cmp_memory(dev, start_addr, size, (uintptr_t)qemu_get_ram_ptr(phys_offset))) { /* Region exists with same address. Nothing to do. */ return; } } else { if (!vhost_dev_find_reg(dev, start_addr, size)) { /* Removing region that we don't access. Nothing to do. */ return; } } vhost_dev_unassign_memory(dev, start_addr, size); if (flags == IO_MEM_RAM) { /* Add given mapping, merging adjacent regions if any */ vhost_dev_assign_memory(dev, start_addr, size, (uintptr_t)qemu_get_ram_ptr(phys_offset)); } else { /* Remove old mapping for this memory, if any. */ vhost_dev_unassign_memory(dev, start_addr, size); } if (!dev->started) { return; } if (dev->started) { r = vhost_verify_ring_mappings(dev, start_addr, size); assert(r >= 0); } if (!dev->log_enabled) { r = ioctl(dev->control, VHOST_SET_MEM_TABLE, dev->mem); assert(r >= 0); return; } log_size = vhost_get_log_size(dev); /* We allocate an extra 4K bytes to log, * to reduce the * number of reallocations. */ #define VHOST_LOG_BUFFER (0x1000 / sizeof *dev->log) /* To log more, must increase log size before table update. */ if (dev->log_size < log_size) { vhost_dev_log_resize(dev, log_size + VHOST_LOG_BUFFER); } r = ioctl(dev->control, VHOST_SET_MEM_TABLE, dev->mem); assert(r >= 0); /* To log less, can only decrease log size after table update. */ if (dev->log_size > log_size + VHOST_LOG_BUFFER) { vhost_dev_log_resize(dev, log_size); } } | 13,633 |
1 | static int quant_psnr8x8_c(MpegEncContext *s, uint8_t *src1, uint8_t *src2, ptrdiff_t stride, int h) { LOCAL_ALIGNED_16(int16_t, temp, [64 * 2]); int16_t *const bak = temp + 64; int sum = 0, i; av_assert2(h == 8); s->mb_intra = 0; s->pdsp.diff_pixels(temp, src1, src2, stride); memcpy(bak, temp, 64 * sizeof(int16_t)); s->block_last_index[0 /* FIXME */] = s->fast_dct_quantize(s, temp, 0 /* FIXME */, s->qscale, &i); s->dct_unquantize_inter(s, temp, 0, s->qscale); ff_simple_idct_8(temp); // FIXME for (i = 0; i < 64; i++) sum += (temp[i] - bak[i]) * (temp[i] - bak[i]); return sum; } | 13,634 |
1 | static int vhdx_parse_metadata(BlockDriverState *bs, BDRVVHDXState *s) { int ret = 0; uint8_t *buffer; int offset = 0; uint32_t i = 0; VHDXMetadataTableEntry md_entry; buffer = qemu_blockalign(bs, VHDX_METADATA_TABLE_MAX_SIZE); ret = bdrv_pread(bs->file, s->metadata_rt.file_offset, buffer, VHDX_METADATA_TABLE_MAX_SIZE); if (ret < 0) { goto exit; } memcpy(&s->metadata_hdr, buffer, sizeof(s->metadata_hdr)); offset += sizeof(s->metadata_hdr); vhdx_metadata_header_le_import(&s->metadata_hdr); if (memcmp(&s->metadata_hdr.signature, "metadata", 8)) { ret = -EINVAL; goto exit; } s->metadata_entries.present = 0; if ((s->metadata_hdr.entry_count * sizeof(md_entry)) > (VHDX_METADATA_TABLE_MAX_SIZE - offset)) { ret = -EINVAL; goto exit; } for (i = 0; i < s->metadata_hdr.entry_count; i++) { memcpy(&md_entry, buffer + offset, sizeof(md_entry)); offset += sizeof(md_entry); vhdx_metadata_entry_le_import(&md_entry); if (guid_eq(md_entry.item_id, file_param_guid)) { if (s->metadata_entries.present & META_FILE_PARAMETER_PRESENT) { ret = -EINVAL; goto exit; } s->metadata_entries.file_parameters_entry = md_entry; s->metadata_entries.present |= META_FILE_PARAMETER_PRESENT; continue; } if (guid_eq(md_entry.item_id, virtual_size_guid)) { if (s->metadata_entries.present & META_VIRTUAL_DISK_SIZE_PRESENT) { ret = -EINVAL; goto exit; } s->metadata_entries.virtual_disk_size_entry = md_entry; s->metadata_entries.present |= META_VIRTUAL_DISK_SIZE_PRESENT; continue; } if (guid_eq(md_entry.item_id, page83_guid)) { if (s->metadata_entries.present & META_PAGE_83_PRESENT) { ret = -EINVAL; goto exit; } s->metadata_entries.page83_data_entry = md_entry; s->metadata_entries.present |= META_PAGE_83_PRESENT; continue; } if (guid_eq(md_entry.item_id, logical_sector_guid)) { if (s->metadata_entries.present & META_LOGICAL_SECTOR_SIZE_PRESENT) { ret = -EINVAL; goto exit; } s->metadata_entries.logical_sector_size_entry = md_entry; s->metadata_entries.present |= META_LOGICAL_SECTOR_SIZE_PRESENT; continue; } if (guid_eq(md_entry.item_id, phys_sector_guid)) { if (s->metadata_entries.present & META_PHYS_SECTOR_SIZE_PRESENT) { ret = -EINVAL; goto exit; } s->metadata_entries.phys_sector_size_entry = md_entry; s->metadata_entries.present |= META_PHYS_SECTOR_SIZE_PRESENT; continue; } if (guid_eq(md_entry.item_id, parent_locator_guid)) { if (s->metadata_entries.present & META_PARENT_LOCATOR_PRESENT) { ret = -EINVAL; goto exit; } s->metadata_entries.parent_locator_entry = md_entry; s->metadata_entries.present |= META_PARENT_LOCATOR_PRESENT; continue; } if (md_entry.data_bits & VHDX_META_FLAGS_IS_REQUIRED) { /* cannot read vhdx file - required region table entry that * we do not understand. per spec, we must fail to open */ ret = -ENOTSUP; goto exit; } } if (s->metadata_entries.present != META_ALL_PRESENT) { ret = -ENOTSUP; goto exit; } ret = bdrv_pread(bs->file, s->metadata_entries.file_parameters_entry.offset + s->metadata_rt.file_offset, &s->params, sizeof(s->params)); if (ret < 0) { goto exit; } le32_to_cpus(&s->params.block_size); le32_to_cpus(&s->params.data_bits); /* We now have the file parameters, so we can tell if this is a * differencing file (i.e.. has_parent), is dynamic or fixed * sized (leave_blocks_allocated), and the block size */ /* The parent locator required iff the file parameters has_parent set */ if (s->params.data_bits & VHDX_PARAMS_HAS_PARENT) { if (s->metadata_entries.present & META_PARENT_LOCATOR_PRESENT) { /* TODO: parse parent locator fields */ ret = -ENOTSUP; /* temp, until differencing files are supported */ goto exit; } else { /* if has_parent is set, but there is not parent locator present, * then that is an invalid combination */ ret = -EINVAL; goto exit; } } /* determine virtual disk size, logical sector size, * and phys sector size */ ret = bdrv_pread(bs->file, s->metadata_entries.virtual_disk_size_entry.offset + s->metadata_rt.file_offset, &s->virtual_disk_size, sizeof(uint64_t)); if (ret < 0) { goto exit; } ret = bdrv_pread(bs->file, s->metadata_entries.logical_sector_size_entry.offset + s->metadata_rt.file_offset, &s->logical_sector_size, sizeof(uint32_t)); if (ret < 0) { goto exit; } ret = bdrv_pread(bs->file, s->metadata_entries.phys_sector_size_entry.offset + s->metadata_rt.file_offset, &s->physical_sector_size, sizeof(uint32_t)); if (ret < 0) { goto exit; } le64_to_cpus(&s->virtual_disk_size); le32_to_cpus(&s->logical_sector_size); le32_to_cpus(&s->physical_sector_size); if (s->logical_sector_size == 0 || s->params.block_size == 0) { ret = -EINVAL; goto exit; } /* both block_size and sector_size are guaranteed powers of 2 */ s->sectors_per_block = s->params.block_size / s->logical_sector_size; s->chunk_ratio = (VHDX_MAX_SECTORS_PER_BLOCK) * (uint64_t)s->logical_sector_size / (uint64_t)s->params.block_size; /* These values are ones we will want to use for division / multiplication * later on, and they are all guaranteed (per the spec) to be powers of 2, * so we can take advantage of that for shift operations during * reads/writes */ if (s->logical_sector_size & (s->logical_sector_size - 1)) { ret = -EINVAL; goto exit; } if (s->sectors_per_block & (s->sectors_per_block - 1)) { ret = -EINVAL; goto exit; } if (s->chunk_ratio & (s->chunk_ratio - 1)) { ret = -EINVAL; goto exit; } s->block_size = s->params.block_size; if (s->block_size & (s->block_size - 1)) { ret = -EINVAL; goto exit; } vhdx_set_shift_bits(s); ret = 0; exit: qemu_vfree(buffer); return ret; } | 13,637 |
1 | void virtio_scsi_handle_cmd_vq(VirtIOSCSI *s, VirtQueue *vq) { VirtIOSCSIReq *req, *next; QTAILQ_HEAD(, VirtIOSCSIReq) reqs = QTAILQ_HEAD_INITIALIZER(reqs); while ((req = virtio_scsi_pop_req(s, vq))) { if (virtio_scsi_handle_cmd_req_prepare(s, req)) { QTAILQ_INSERT_TAIL(&reqs, req, next); } } QTAILQ_FOREACH_SAFE(req, &reqs, next, next) { virtio_scsi_handle_cmd_req_submit(s, req); } } | 13,638 |
1 | static void mch_realize(PCIDevice *d, Error **errp) { int i; MCHPCIState *mch = MCH_PCI_DEVICE(d); /* setup pci memory mapping */ pc_pci_as_mapping_init(OBJECT(mch), mch->system_memory, mch->pci_address_space); /* smram */ cpu_smm_register(&mch_set_smm, mch); memory_region_init_alias(&mch->smram_region, OBJECT(mch), "smram-region", mch->pci_address_space, 0xa0000, 0x20000); memory_region_add_subregion_overlap(mch->system_memory, 0xa0000, &mch->smram_region, 1); memory_region_set_enabled(&mch->smram_region, false); init_pam(DEVICE(mch), mch->ram_memory, mch->system_memory, mch->pci_address_space, &mch->pam_regions[0], PAM_BIOS_BASE, PAM_BIOS_SIZE); for (i = 0; i < 12; ++i) { init_pam(DEVICE(mch), mch->ram_memory, mch->system_memory, mch->pci_address_space, &mch->pam_regions[i+1], PAM_EXPAN_BASE + i * PAM_EXPAN_SIZE, PAM_EXPAN_SIZE); } /* Intel IOMMU (VT-d) */ if (qemu_opt_get_bool(qemu_get_machine_opts(), "iommu", false)) { mch_init_dmar(mch); } } | 13,639 |
0 | static uint64_t calc_rice_params(RiceContext *rc, int pmin, int pmax, int32_t *data, int n, int pred_order) { int i; uint64_t bits[MAX_PARTITION_ORDER+1]; int opt_porder; RiceContext tmp_rc; uint32_t *udata; uint64_t sums[MAX_PARTITION_ORDER + 1][MAX_PARTITIONS] = { { 0 } }; assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER); assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER); assert(pmin <= pmax); tmp_rc.coding_mode = rc->coding_mode; udata = av_malloc(n * sizeof(uint32_t)); for (i = 0; i < n; i++) udata[i] = (2*data[i]) ^ (data[i]>>31); calc_sums(pmin, pmax, udata, n, pred_order, sums); opt_porder = pmin; bits[pmin] = UINT32_MAX; for (i = pmin; i <= pmax; i++) { bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order); if (bits[i] <= bits[opt_porder]) { opt_porder = i; *rc = tmp_rc; } } av_freep(&udata); return bits[opt_porder]; } | 13,640 |
1 | static int handle_http(HTTPContext *c, long cur_time) { int len; switch(c->state) { case HTTPSTATE_WAIT_REQUEST: /* timeout ? */ if ((c->timeout - cur_time) < 0) return -1; if (c->poll_entry->revents & (POLLERR | POLLHUP)) return -1; /* no need to read if no events */ if (!(c->poll_entry->revents & POLLIN)) return 0; /* read the data */ len = read(c->fd, c->buffer_ptr, c->buffer_end - c->buffer_ptr); if (len < 0) { if (errno != EAGAIN && errno != EINTR) return -1; } else if (len == 0) { return -1; } else { /* search for end of request. XXX: not fully correct since garbage could come after the end */ UINT8 *ptr; c->buffer_ptr += len; ptr = c->buffer_ptr; if ((ptr >= c->buffer + 2 && !memcmp(ptr-2, "\n\n", 2)) || (ptr >= c->buffer + 4 && !memcmp(ptr-4, "\r\n\r\n", 4))) { /* request found : parse it and reply */ if (http_parse_request(c) < 0) return -1; } else if (ptr >= c->buffer_end) { /* request too long: cannot do anything */ return -1; } } break; case HTTPSTATE_SEND_HEADER: if (c->poll_entry->revents & (POLLERR | POLLHUP)) return -1; /* no need to read if no events */ if (!(c->poll_entry->revents & POLLOUT)) return 0; len = write(c->fd, c->buffer_ptr, c->buffer_end - c->buffer_ptr); if (len < 0) { if (errno != EAGAIN && errno != EINTR) { /* error : close connection */ return -1; } } else { c->buffer_ptr += len; if (c->stream) c->stream->bytes_served += len; c->data_count += len; if (c->buffer_ptr >= c->buffer_end) { /* if error, exit */ if (c->http_error) return -1; /* all the buffer was send : synchronize to the incoming stream */ c->state = HTTPSTATE_SEND_DATA_HEADER; c->buffer_ptr = c->buffer_end = c->buffer; } } break; case HTTPSTATE_SEND_DATA: case HTTPSTATE_SEND_DATA_HEADER: case HTTPSTATE_SEND_DATA_TRAILER: /* no need to read if no events */ if (c->poll_entry->revents & (POLLERR | POLLHUP)) return -1; if (!(c->poll_entry->revents & POLLOUT)) return 0; if (http_send_data(c, cur_time) < 0) return -1; break; case HTTPSTATE_RECEIVE_DATA: /* no need to read if no events */ if (c->poll_entry->revents & (POLLERR | POLLHUP)) return -1; if (!(c->poll_entry->revents & POLLIN)) return 0; if (http_receive_data(c) < 0) return -1; break; case HTTPSTATE_WAIT_FEED: /* no need to read if no events */ if (c->poll_entry->revents & (POLLIN | POLLERR | POLLHUP)) return -1; /* nothing to do, we'll be waken up by incoming feed packets */ break; default: return -1; } return 0; } | 13,641 |
1 | static int bfi_read_header(AVFormatContext * s) { BFIContext *bfi = s->priv_data; AVIOContext *pb = s->pb; AVStream *vstream; AVStream *astream; int fps, chunk_header; /* Initialize the video codec... */ vstream = avformat_new_stream(s, NULL); if (!vstream) return AVERROR(ENOMEM); /* Initialize the audio codec... */ astream = avformat_new_stream(s, NULL); if (!astream) return AVERROR(ENOMEM); /* Set the total number of frames. */ avio_skip(pb, 8); chunk_header = avio_rl32(pb); bfi->nframes = avio_rl32(pb); avio_rl32(pb); avio_rl32(pb); avio_rl32(pb); fps = avio_rl32(pb); avio_skip(pb, 12); vstream->codecpar->width = avio_rl32(pb); vstream->codecpar->height = avio_rl32(pb); /*Load the palette to extradata */ avio_skip(pb, 8); vstream->codecpar->extradata = av_malloc(768); if (!vstream->codecpar->extradata) return AVERROR(ENOMEM); vstream->codecpar->extradata_size = 768; avio_read(pb, vstream->codecpar->extradata, vstream->codecpar->extradata_size); astream->codecpar->sample_rate = avio_rl32(pb); if (astream->codecpar->sample_rate <= 0) { av_log(s, AV_LOG_ERROR, "Invalid sample rate %d\n", astream->codecpar->sample_rate); return AVERROR_INVALIDDATA; } /* Set up the video codec... */ avpriv_set_pts_info(vstream, 32, 1, fps); vstream->codecpar->codec_type = AVMEDIA_TYPE_VIDEO; vstream->codecpar->codec_id = AV_CODEC_ID_BFI; vstream->codecpar->format = AV_PIX_FMT_PAL8; vstream->nb_frames = vstream->duration = bfi->nframes; /* Set up the audio codec now... */ astream->codecpar->codec_type = AVMEDIA_TYPE_AUDIO; astream->codecpar->codec_id = AV_CODEC_ID_PCM_U8; astream->codecpar->channels = 1; astream->codecpar->channel_layout = AV_CH_LAYOUT_MONO; astream->codecpar->bits_per_coded_sample = 8; astream->codecpar->bit_rate = astream->codecpar->sample_rate * astream->codecpar->bits_per_coded_sample; avio_seek(pb, chunk_header - 3, SEEK_SET); avpriv_set_pts_info(astream, 64, 1, astream->codecpar->sample_rate); return 0; } | 13,642 |
1 | static int event_qdev_init(DeviceState *qdev) { SCLPEvent *event = DO_UPCAST(SCLPEvent, qdev, qdev); SCLPEventClass *child = SCLP_EVENT_GET_CLASS(event); return child->init(event); } | 13,643 |
1 | static void gen_rfid(DisasContext *ctx) { #if defined(CONFIG_USER_ONLY) gen_inval_exception(ctx, POWERPC_EXCP_PRIV_OPC); #else /* Restore CPU state */ if (unlikely(!ctx->mem_idx)) { gen_inval_exception(ctx, POWERPC_EXCP_PRIV_OPC); return; } gen_helper_rfid(); gen_sync_exception(ctx); #endif } | 13,644 |
1 | static void vga_update_text(void *opaque, console_ch_t *chardata) { VGACommonState *s = opaque; int graphic_mode, i, cursor_offset, cursor_visible; int cw, cheight, width, height, size, c_min, c_max; uint32_t *src; console_ch_t *dst, val; char msg_buffer[80]; int full_update = 0; if (!(s->ar_index & 0x20)) { graphic_mode = GMODE_BLANK; } else { graphic_mode = s->gr[6] & 1; } if (graphic_mode != s->graphic_mode) { s->graphic_mode = graphic_mode; full_update = 1; } if (s->last_width == -1) { s->last_width = 0; full_update = 1; } switch (graphic_mode) { case GMODE_TEXT: /* TODO: update palette */ full_update |= update_basic_params(s); /* total width & height */ cheight = (s->cr[9] & 0x1f) + 1; cw = 8; if (!(s->sr[1] & 0x01)) cw = 9; if (s->sr[1] & 0x08) cw = 16; /* NOTE: no 18 pixel wide */ width = (s->cr[0x01] + 1); if (s->cr[0x06] == 100) { /* ugly hack for CGA 160x100x16 - explain me the logic */ height = 100; } else { height = s->cr[0x12] | ((s->cr[0x07] & 0x02) << 7) | ((s->cr[0x07] & 0x40) << 3); height = (height + 1) / cheight; } size = (height * width); if (size > CH_ATTR_SIZE) { if (!full_update) return; snprintf(msg_buffer, sizeof(msg_buffer), "%i x %i Text mode", width, height); break; } if (width != s->last_width || height != s->last_height || cw != s->last_cw || cheight != s->last_ch) { s->last_scr_width = width * cw; s->last_scr_height = height * cheight; s->ds->surface->width = width; s->ds->surface->height = height; dpy_resize(s->ds); s->last_width = width; s->last_height = height; s->last_ch = cheight; s->last_cw = cw; full_update = 1; } /* Update "hardware" cursor */ cursor_offset = ((s->cr[0x0e] << 8) | s->cr[0x0f]) - s->start_addr; if (cursor_offset != s->cursor_offset || s->cr[0xa] != s->cursor_start || s->cr[0xb] != s->cursor_end || full_update) { cursor_visible = !(s->cr[0xa] & 0x20); if (cursor_visible && cursor_offset < size && cursor_offset >= 0) dpy_cursor(s->ds, TEXTMODE_X(cursor_offset), TEXTMODE_Y(cursor_offset)); else dpy_cursor(s->ds, -1, -1); s->cursor_offset = cursor_offset; s->cursor_start = s->cr[0xa]; s->cursor_end = s->cr[0xb]; } src = (uint32_t *) s->vram_ptr + s->start_addr; dst = chardata; if (full_update) { for (i = 0; i < size; src ++, dst ++, i ++) console_write_ch(dst, VMEM2CHTYPE(le32_to_cpu(*src))); dpy_update(s->ds, 0, 0, width, height); } else { c_max = 0; for (i = 0; i < size; src ++, dst ++, i ++) { console_write_ch(&val, VMEM2CHTYPE(le32_to_cpu(*src))); if (*dst != val) { *dst = val; c_max = i; break; } } c_min = i; for (; i < size; src ++, dst ++, i ++) { console_write_ch(&val, VMEM2CHTYPE(le32_to_cpu(*src))); if (*dst != val) { *dst = val; c_max = i; } } if (c_min <= c_max) { i = TEXTMODE_Y(c_min); dpy_update(s->ds, 0, i, width, TEXTMODE_Y(c_max) - i + 1); } } return; case GMODE_GRAPH: if (!full_update) return; s->get_resolution(s, &width, &height); snprintf(msg_buffer, sizeof(msg_buffer), "%i x %i Graphic mode", width, height); break; case GMODE_BLANK: default: if (!full_update) return; snprintf(msg_buffer, sizeof(msg_buffer), "VGA Blank mode"); break; } /* Display a message */ s->last_width = 60; s->last_height = height = 3; dpy_cursor(s->ds, -1, -1); s->ds->surface->width = s->last_width; s->ds->surface->height = height; dpy_resize(s->ds); for (dst = chardata, i = 0; i < s->last_width * height; i ++) console_write_ch(dst ++, ' '); size = strlen(msg_buffer); width = (s->last_width - size) / 2; dst = chardata + s->last_width + width; for (i = 0; i < size; i ++) console_write_ch(dst ++, 0x00200100 | msg_buffer[i]); dpy_update(s->ds, 0, 0, s->last_width, height); } | 13,645 |
1 | static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *pkt) { SANMVideoContext *ctx = avctx->priv_data; int i, ret; bytestream2_init(&ctx->gb, pkt->data, pkt->size); if (ctx->output->data[0]) avctx->release_buffer(avctx, ctx->output); if (!ctx->version) { int to_store = 0; while (bytestream2_get_bytes_left(&ctx->gb) >= 8) { uint32_t sig, size; int pos; sig = bytestream2_get_be32u(&ctx->gb); size = bytestream2_get_be32u(&ctx->gb); pos = bytestream2_tell(&ctx->gb); if (bytestream2_get_bytes_left(&ctx->gb) < size) { av_log(avctx, AV_LOG_ERROR, "incorrect chunk size %d\n", size); break; } switch (sig) { case MKBETAG('N', 'P', 'A', 'L'): if (size != 256 * 3) { av_log(avctx, AV_LOG_ERROR, "incorrect palette block size %d\n", size); return AVERROR_INVALIDDATA; } for (i = 0; i < 256; i++) ctx->pal[i] = 0xFF << 24 | bytestream2_get_be24u(&ctx->gb); break; case MKBETAG('F', 'O', 'B', 'J'): if (size < 16) return AVERROR_INVALIDDATA; if (ret = process_frame_obj(ctx)) return ret; break; case MKBETAG('X', 'P', 'A', 'L'): if (size == 6 || size == 4) { uint8_t tmp[3]; int j; for (i = 0; i < 256; i++) { for (j = 0; j < 3; j++) { int t = (ctx->pal[i] >> (16 - j * 8)) & 0xFF; tmp[j] = av_clip_uint8((t * 129 + ctx->delta_pal[i * 3 + j]) >> 7); } ctx->pal[i] = 0xFF << 24 | AV_RB24(tmp); } } else { if (size < 768 * 2 + 4) { av_log(avctx, AV_LOG_ERROR, "incorrect palette change block size %d\n", size); return AVERROR_INVALIDDATA; } bytestream2_skipu(&ctx->gb, 4); for (i = 0; i < 768; i++) ctx->delta_pal[i] = bytestream2_get_le16u(&ctx->gb); if (size >= 768 * 5 + 4) { for (i = 0; i < 256; i++) ctx->pal[i] = 0xFF << 24 | bytestream2_get_be24u(&ctx->gb); } else { memset(ctx->pal, 0, sizeof(ctx->pal)); } } break; case MKBETAG('S', 'T', 'O', 'R'): to_store = 1; break; case MKBETAG('F', 'T', 'C', 'H'): memcpy(ctx->frm0, ctx->stored_frame, ctx->buf_size); break; default: bytestream2_skip(&ctx->gb, size); av_log(avctx, AV_LOG_DEBUG, "unknown/unsupported chunk %x\n", sig); break; } bytestream2_seek(&ctx->gb, pos + size, SEEK_SET); if (size & 1) bytestream2_skip(&ctx->gb, 1); } if (to_store) memcpy(ctx->stored_frame, ctx->frm0, ctx->buf_size); if ((ret = copy_output(ctx, NULL))) return ret; memcpy(ctx->output->data[1], ctx->pal, 1024); } else { SANMFrameHeader header; if ((ret = read_frame_header(ctx, &header))) return ret; ctx->rotate_code = header.rotate_code; if ((ctx->output->key_frame = !header.seq_num)) { ctx->output->pict_type = AV_PICTURE_TYPE_I; fill_frame(ctx->frm1, ctx->npixels, header.bg_color); fill_frame(ctx->frm2, ctx->npixels, header.bg_color); } else { ctx->output->pict_type = AV_PICTURE_TYPE_P; } if (header.codec < FF_ARRAY_ELEMS(v1_decoders)) { if ((ret = v1_decoders[header.codec](ctx))) { av_log(avctx, AV_LOG_ERROR, "subcodec %d: error decoding frame\n", header.codec); return ret; } } else { av_log_ask_for_sample(avctx, "subcodec %d is not implemented\n", header.codec); return AVERROR_PATCHWELCOME; } if ((ret = copy_output(ctx, &header))) return ret; } if (ctx->rotate_code) rotate_bufs(ctx, ctx->rotate_code); *got_frame_ptr = 1; *(AVFrame*)data = *ctx->output; return pkt->size; } | 13,646 |
1 | static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset, ram_addr_t *ram_addr_abs) { RAMBlock *block = NULL; qemu_mutex_lock(&rs->src_page_req_mutex); if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { struct RAMSrcPageRequest *entry = QSIMPLEQ_FIRST(&rs->src_page_requests); block = entry->rb; *offset = entry->offset; *ram_addr_abs = (entry->offset + entry->rb->offset) & TARGET_PAGE_MASK; if (entry->len > TARGET_PAGE_SIZE) { entry->len -= TARGET_PAGE_SIZE; entry->offset += TARGET_PAGE_SIZE; } else { memory_region_unref(block->mr); QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); g_free(entry); } } qemu_mutex_unlock(&rs->src_page_req_mutex); return block; } | 13,647 |
0 | static int bands_dist(OpusPsyContext *s, CeltFrame *f, float *total_dist) { int i, tdist = 0.0f; OpusRangeCoder dump; ff_opus_rc_enc_init(&dump); ff_celt_enc_bitalloc(f, &dump); for (i = 0; i < CELT_MAX_BANDS; i++) { float bits = 0.0f; float dist = f->pvq->band_cost(f->pvq, f, &dump, i, &bits, s->lambda); tdist += dist; } *total_dist = tdist; return 0; } | 13,650 |
0 | static inline void apply_motion_generic(RoqContext *ri, int x, int y, int deltax, int deltay, int sz) { int mx, my, cp; mx = x + deltax; my = y + deltay; /* check MV against frame boundaries */ if ((mx < 0) || (mx > ri->width - sz) || (my < 0) || (my > ri->height - sz)) { av_log(ri->avctx, AV_LOG_ERROR, "motion vector out of bounds: MV = (%d, %d), boundaries = (0, 0, %d, %d)\n", mx, my, ri->width, ri->height); return; } if (ri->last_frame->data[0] == NULL) { av_log(ri->avctx, AV_LOG_ERROR, "Invalid decode type. Invalid header?\n"); return; } for(cp = 0; cp < 3; cp++) { int outstride = ri->current_frame->linesize[cp]; int instride = ri->last_frame ->linesize[cp]; block_copy(ri->current_frame->data[cp] + y*outstride + x, ri->last_frame->data[cp] + my*instride + mx, outstride, instride, sz); } } | 13,651 |
1 | QGuestAllocator *pc_alloc_init(void) { PCAlloc *s = g_malloc0(sizeof(*s)); uint64_t ram_size; QFWCFG *fw_cfg = pc_fw_cfg_init(); s->alloc.alloc = pc_alloc; s->alloc.free = pc_free; ram_size = qfw_cfg_get_u64(fw_cfg, FW_CFG_RAM_SIZE); /* Start at 1MB */ s->start = 1 << 20; /* Respect PCI hole */ s->end = MIN(ram_size, 0xE0000000); return &s->alloc; } | 13,652 |
1 | static int update_error_limit(WavpackFrameContext *ctx) { int i, br[2], sl[2]; for (i = 0; i <= ctx->stereo_in; i++) { if (ctx->ch[i].bitrate_acc > UINT_MAX - ctx->ch[i].bitrate_delta) return AVERROR_INVALIDDATA; ctx->ch[i].bitrate_acc += ctx->ch[i].bitrate_delta; br[i] = ctx->ch[i].bitrate_acc >> 16; sl[i] = LEVEL_DECAY(ctx->ch[i].slow_level); } if (ctx->stereo_in && ctx->hybrid_bitrate) { int balance = (sl[1] - sl[0] + br[1] + 1) >> 1; if (balance > br[0]) { br[1] = br[0] << 1; br[0] = 0; } else if (-balance > br[0]) { br[0] <<= 1; br[1] = 0; } else { br[1] = br[0] + balance; br[0] = br[0] - balance; } } for (i = 0; i <= ctx->stereo_in; i++) { if (ctx->hybrid_bitrate) { if (sl[i] - br[i] > -0x100) ctx->ch[i].error_limit = wp_exp2(sl[i] - br[i] + 0x100); else ctx->ch[i].error_limit = 0; } else { ctx->ch[i].error_limit = wp_exp2(br[i]); } } return 0; } | 13,653 |
1 | static void bdrv_co_io_em_complete(void *opaque, int ret) { CoroutineIOCompletion *co = opaque; co->ret = ret; qemu_coroutine_enter(co->coroutine, NULL); } | 13,654 |
1 | void HELPER(diag)(CPUS390XState *env, uint32_t r1, uint32_t r3, uint32_t num) { uint64_t r; switch (num) { case 0x500: /* KVM hypercall */ r = s390_virtio_hypercall(env); break; case 0x44: /* yield */ r = 0; break; case 0x308: /* ipl */ handle_diag_308(env, r1, r3); r = 0; break; case 0x288: /* time bomb (watchdog) */ r = handle_diag_288(env, r1, r3); break; default: r = -1; break; } if (r) { program_interrupt(env, PGM_SPECIFICATION, ILEN_AUTO); } } | 13,655 |
1 | static uint32_t fdctrl_read_data (fdctrl_t *fdctrl) { fdrive_t *cur_drv; uint32_t retval = 0; int pos, len; cur_drv = get_cur_drv(fdctrl); fdctrl->state &= ~FD_CTRL_SLEEP; if (FD_STATE(fdctrl->data_state) == FD_STATE_CMD) { FLOPPY_ERROR("can't read data in CMD state\n"); return 0; } pos = fdctrl->data_pos; if (FD_STATE(fdctrl->data_state) == FD_STATE_DATA) { pos %= FD_SECTOR_LEN; if (pos == 0) { len = fdctrl->data_len - fdctrl->data_pos; if (len > FD_SECTOR_LEN) len = FD_SECTOR_LEN; bdrv_read(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, len); } } retval = fdctrl->fifo[pos]; if (++fdctrl->data_pos == fdctrl->data_len) { fdctrl->data_pos = 0; /* Switch from transfer mode to status mode * then from status mode to command mode */ if (FD_STATE(fdctrl->data_state) == FD_STATE_DATA) { fdctrl_stop_transfer(fdctrl, 0x20, 0x00, 0x00); } else { fdctrl_reset_fifo(fdctrl); fdctrl_reset_irq(fdctrl); } } FLOPPY_DPRINTF("data register: 0x%02x\n", retval); return retval; } | 13,656 |
1 | static void scsi_dma_complete(void *opaque, int ret) { SCSIDiskReq *r = (SCSIDiskReq *)opaque; SCSIDiskState *s = DO_UPCAST(SCSIDiskState, qdev, r->req.dev); if (r->req.aiocb != NULL) { r->req.aiocb = NULL; bdrv_acct_done(s->qdev.conf.bs, &r->acct); } if (ret < 0) { if (scsi_handle_rw_error(r, -ret)) { goto done; } } r->sector += r->sector_count; r->sector_count = 0; if (r->req.cmd.mode == SCSI_XFER_TO_DEV) { scsi_write_do_fua(r); return; } else { scsi_req_complete(&r->req, GOOD); } done: if (!r->req.io_canceled) { scsi_req_unref(&r->req); } } | 13,657 |
1 | static inline void validate_seg(int seg_reg, int cpl) { int dpl; uint32_t e2; e2 = env->segs[seg_reg].flags; dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (!(e2 & DESC_CS_MASK) || !(e2 & DESC_C_MASK)) { /* data or non conforming code segment */ if (dpl < cpl) { cpu_x86_load_seg_cache(env, seg_reg, 0, 0, 0, 0); } } } | 13,658 |
1 | static void realize(DeviceState *d, Error **errp) { sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d); sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); Object *root_container; char link_name[256]; gchar *child_name; Error *err = NULL; DPRINTFN("drc realize: %x", drck->get_index(drc)); /* NOTE: we do this as part of realize/unrealize due to the fact * that the guest will communicate with the DRC via RTAS calls * referencing the global DRC index. By unlinking the DRC * from DRC_CONTAINER_PATH/<drc_index> we effectively make it * inaccessible by the guest, since lookups rely on this path * existing in the composition tree */ root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); snprintf(link_name, sizeof(link_name), "%x", drck->get_index(drc)); child_name = object_get_canonical_path_component(OBJECT(drc)); DPRINTFN("drc child name: %s", child_name); object_property_add_alias(root_container, link_name, drc->owner, child_name, &err); if (err) { error_report("%s", error_get_pretty(err)); error_free(err); object_unref(OBJECT(drc)); } DPRINTFN("drc realize complete"); } | 13,659 |
1 | connect_to_qemu( const char *host, const char *port ) { struct addrinfo hints; struct addrinfo *server; int ret, sock; sock = qemu_socket(AF_INET, SOCK_STREAM, 0); if (sock < 0) { /* Error */ fprintf(stderr, "Error opening socket!\n"); return -1; } memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; hints.ai_flags = 0; hints.ai_protocol = 0; /* Any protocol */ ret = getaddrinfo(host, port, &hints, &server); if (ret != 0) { /* Error */ fprintf(stderr, "getaddrinfo failed\n"); return -1; } if (connect(sock, server->ai_addr, server->ai_addrlen) < 0) { /* Error */ fprintf(stderr, "Could not connect\n"); return -1; } if (verbose) { printf("Connected (sizeof Header=%zd)!\n", sizeof(VSCMsgHeader)); } return sock; } | 13,661 |
1 | void ff_init_block_index(MpegEncContext *s){ //FIXME maybe rename const int linesize = s->current_picture.f.linesize[0]; //not s->linesize as this would be wrong for field pics const int uvlinesize = s->current_picture.f.linesize[1]; const int mb_size= 4; s->block_index[0]= s->b8_stride*(s->mb_y*2 ) - 2 + s->mb_x*2; s->block_index[1]= s->b8_stride*(s->mb_y*2 ) - 1 + s->mb_x*2; s->block_index[2]= s->b8_stride*(s->mb_y*2 + 1) - 2 + s->mb_x*2; s->block_index[3]= s->b8_stride*(s->mb_y*2 + 1) - 1 + s->mb_x*2; s->block_index[4]= s->mb_stride*(s->mb_y + 1) + s->b8_stride*s->mb_height*2 + s->mb_x - 1; s->block_index[5]= s->mb_stride*(s->mb_y + s->mb_height + 2) + s->b8_stride*s->mb_height*2 + s->mb_x - 1; //block_index is not used by mpeg2, so it is not affected by chroma_format s->dest[0] = s->current_picture.f.data[0] + ((s->mb_x - 1) << mb_size); s->dest[1] = s->current_picture.f.data[1] + ((s->mb_x - 1) << (mb_size - s->chroma_x_shift)); s->dest[2] = s->current_picture.f.data[2] + ((s->mb_x - 1) << (mb_size - s->chroma_x_shift)); if(!(s->pict_type==AV_PICTURE_TYPE_B && s->avctx->draw_horiz_band && s->picture_structure==PICT_FRAME)) { if(s->picture_structure==PICT_FRAME){ s->dest[0] += s->mb_y * linesize << mb_size; s->dest[1] += s->mb_y * uvlinesize << (mb_size - s->chroma_y_shift); s->dest[2] += s->mb_y * uvlinesize << (mb_size - s->chroma_y_shift); }else{ s->dest[0] += (s->mb_y>>1) * linesize << mb_size; s->dest[1] += (s->mb_y>>1) * uvlinesize << (mb_size - s->chroma_y_shift); s->dest[2] += (s->mb_y>>1) * uvlinesize << (mb_size - s->chroma_y_shift); assert((s->mb_y&1) == (s->picture_structure == PICT_BOTTOM_FIELD)); } } } | 13,662 |
1 | static void virtio_net_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); VirtioDeviceClass *vdc = VIRTIO_DEVICE_CLASS(klass); dc->exit = virtio_net_device_exit; dc->props = virtio_net_properties; set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); vdc->init = virtio_net_device_init; vdc->get_config = virtio_net_get_config; vdc->set_config = virtio_net_set_config; vdc->get_features = virtio_net_get_features; vdc->set_features = virtio_net_set_features; vdc->bad_features = virtio_net_bad_features; vdc->reset = virtio_net_reset; vdc->set_status = virtio_net_set_status; vdc->guest_notifier_mask = virtio_net_guest_notifier_mask; vdc->guest_notifier_pending = virtio_net_guest_notifier_pending; } | 13,663 |
1 | static int decode_tile(Jpeg2000DecoderContext *s, Jpeg2000Tile *tile) { int compno, reslevelno, bandno; int x, y; uint8_t *line; Jpeg2000T1Context t1; /* Loop on tile components */ for (compno = 0; compno < s->ncomponents; compno++) { Jpeg2000Component *comp = tile->comp + compno; Jpeg2000CodingStyle *codsty = tile->codsty + compno; /* Loop on resolution levels */ for (reslevelno = 0; reslevelno < codsty->nreslevels2decode; reslevelno++) { Jpeg2000ResLevel *rlevel = comp->reslevel + reslevelno; /* Loop on bands */ for (bandno = 0; bandno < rlevel->nbands; bandno++) { int nb_precincts, precno; Jpeg2000Band *band = rlevel->band + bandno; int cblkno=0, bandpos; bandpos = bandno + (reslevelno > 0); if (band->coord[0][0] == band->coord[0][1] || band->coord[1][0] == band->coord[1][1]) continue; nb_precincts = rlevel->num_precincts_x * rlevel->num_precincts_y; /* Loop on precincts */ for (precno = 0; precno < nb_precincts; precno++) { Jpeg2000Prec *prec = band->prec + precno; /* Loop on codeblocks */ for (cblkno = 0; cblkno < prec->nb_codeblocks_width * prec->nb_codeblocks_height; cblkno++) { int x, y; Jpeg2000Cblk *cblk = prec->cblk + cblkno; decode_cblk(s, codsty, &t1, cblk, cblk->coord[0][1] - cblk->coord[0][0], cblk->coord[1][1] - cblk->coord[1][0], bandpos); /* Manage band offsets */ x = cblk->coord[0][0]; y = cblk->coord[1][0]; if (codsty->transform == FF_DWT97) dequantization_float(x, y, cblk, comp, &t1, band); else dequantization_int(x, y, cblk, comp, &t1, band); } /* end cblk */ } /*end prec */ } /* end band */ } /* end reslevel */ ff_dwt_decode(&comp->dwt, comp->data); } /*end comp */ /* inverse MCT transformation */ if (tile->codsty[0].mct) mct_decode(s, tile); if (s->precision <= 8) { for (compno = 0; compno < s->ncomponents; compno++) { Jpeg2000Component *comp = tile->comp + compno; float *datap = (float*)comp->data; int32_t *i_datap = (int32_t *) comp->data; y = tile->comp[compno].coord[1][0] - s->image_offset_y; line = s->picture->data[0] + y * s->picture->linesize[0]; for (; y < tile->comp[compno].coord[1][1] - s->image_offset_y; y += s->cdy[compno]) { uint8_t *dst; x = tile->comp[compno].coord[0][0] - s->image_offset_x; dst = line + x * s->ncomponents + compno; for (; x < tile->comp[compno].coord[0][1] - s->image_offset_x; x += s->cdx[compno]) { int val; /* DC level shift and clip see ISO 15444-1:2002 G.1.2 */ if (tile->codsty->transform == FF_DWT97) val = lrintf(*datap) + (1 << (s->cbps[compno] - 1)); else val = *i_datap + (1 << (s->cbps[compno] - 1)); val = av_clip(val, 0, (1 << s->cbps[compno]) - 1); *dst = val << (8 - s->cbps[compno]); datap++; i_datap++; dst += s->ncomponents; } line += s->picture->linesize[0]; } } } else { for (compno = 0; compno < s->ncomponents; compno++) { Jpeg2000Component *comp = tile->comp + compno; float *datap = (float*)comp->data; int32_t *i_datap = (int32_t *) comp->data; uint16_t *linel; y = tile->comp[compno].coord[1][0] - s->image_offset_y; linel = (uint16_t*)s->picture->data[0] + y * (s->picture->linesize[0] >> 1); for (; y < tile->comp[compno].coord[1][1] - s->image_offset_y; y += s->cdy[compno]) { uint16_t *dst; x = tile->comp[compno].coord[0][0] - s->image_offset_x; dst = linel + (x * s->ncomponents + compno); for (; x < tile->comp[compno].coord[0][1] - s->image_offset_x; x += s-> cdx[compno]) { int val; /* DC level shift and clip see ISO 15444-1:2002 G.1.2 */ if (tile->codsty->transform == FF_DWT97) val = lrintf(*datap) + (1 << (s->cbps[compno] - 1)); else val = *i_datap + (1 << (s->cbps[compno] - 1)); val = av_clip(val, 0, (1 << s->cbps[compno]) - 1); /* align 12 bit values in little-endian mode */ *dst = val << (16 - s->cbps[compno]); datap++; i_datap++; dst += s->ncomponents; } linel += s->picture->linesize[0]>>1; } } } return 0; } | 13,664 |
1 | int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num, const uint8_t *buf, int nb_sectors) { BlockDriver *drv = bs->drv; if (!drv) return -ENOMEDIUM; if (!drv->bdrv_write_compressed) return -ENOTSUP; if (bdrv_check_request(bs, sector_num, nb_sectors)) return -EIO; if (bs->dirty_tracking) { set_dirty_bitmap(bs, sector_num, nb_sectors, 1); } return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors); } | 13,665 |
1 | static void moxie_cpu_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); CPUClass *cc = CPU_CLASS(oc); MoxieCPUClass *mcc = MOXIE_CPU_CLASS(oc); mcc->parent_realize = dc->realize; dc->realize = moxie_cpu_realizefn; mcc->parent_reset = cc->reset; cc->reset = moxie_cpu_reset; cc->class_by_name = moxie_cpu_class_by_name; cc->has_work = moxie_cpu_has_work; cc->do_interrupt = moxie_cpu_do_interrupt; cc->dump_state = moxie_cpu_dump_state; cc->set_pc = moxie_cpu_set_pc; #ifdef CONFIG_USER_ONLY cc->handle_mmu_fault = moxie_cpu_handle_mmu_fault; #else cc->get_phys_page_debug = moxie_cpu_get_phys_page_debug; cc->vmsd = &vmstate_moxie_cpu; #endif cc->disas_set_info = moxie_cpu_disas_set_info; /* * Reason: moxie_cpu_initfn() calls cpu_exec_init(), which saves * the object in cpus -> dangling pointer after final * object_unref(). */ dc->cannot_destroy_with_object_finalize_yet = true; } | 13,666 |
1 | static int vc1_decode_sprites(VC1Context *v, GetBitContext* gb) { int ret; MpegEncContext *s = &v->s; AVCodecContext *avctx = s->avctx; SpriteData sd; memset(&sd, 0, sizeof(sd)); ret = vc1_parse_sprites(v, gb, &sd); if (ret < 0) return ret; if (!s->current_picture.f->data[0]) { av_log(avctx, AV_LOG_ERROR, "Got no sprites\n"); return -1; } if (v->two_sprites && (!s->last_picture_ptr || !s->last_picture.f->data[0])) { av_log(avctx, AV_LOG_WARNING, "Need two sprites, only got one\n"); v->two_sprites = 0; } av_frame_unref(v->sprite_output_frame); if ((ret = ff_get_buffer(avctx, v->sprite_output_frame, 0)) < 0) return ret; vc1_draw_sprites(v, &sd); return 0; } | 13,668 |
1 | yuv2yuvX_altivec_real(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize, int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize, uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW) { const vector signed int vini = {(1 << 18), (1 << 18), (1 << 18), (1 << 18)}; register int i, j; { int __attribute__ ((aligned (16))) val[dstW]; for (i = 0; i < (dstW -7); i+=4) { vec_st(vini, i << 2, val); } for (; i < dstW; i++) { val[i] = (1 << 18); } for (j = 0; j < lumFilterSize; j++) { vector signed short l1, vLumFilter = vec_ld(j << 1, lumFilter); vector unsigned char perm, perm0 = vec_lvsl(j << 1, lumFilter); vLumFilter = vec_perm(vLumFilter, vLumFilter, perm0); vLumFilter = vec_splat(vLumFilter, 0); // lumFilter[j] is loaded 8 times in vLumFilter perm = vec_lvsl(0, lumSrc[j]); l1 = vec_ld(0, lumSrc[j]); for (i = 0; i < (dstW - 7); i+=8) { int offset = i << 2; vector signed short l2 = vec_ld((i << 1) + 16, lumSrc[j]); vector signed int v1 = vec_ld(offset, val); vector signed int v2 = vec_ld(offset + 16, val); vector signed short ls = vec_perm(l1, l2, perm); // lumSrc[j][i] ... lumSrc[j][i+7] vector signed int i1 = vec_mule(vLumFilter, ls); vector signed int i2 = vec_mulo(vLumFilter, ls); vector signed int vf1 = vec_mergeh(i1, i2); vector signed int vf2 = vec_mergel(i1, i2); // lumSrc[j][i] * lumFilter[j] ... lumSrc[j][i+7] * lumFilter[j] vector signed int vo1 = vec_add(v1, vf1); vector signed int vo2 = vec_add(v2, vf2); vec_st(vo1, offset, val); vec_st(vo2, offset + 16, val); l1 = l2; } for ( ; i < dstW; i++) { val[i] += lumSrc[j][i] * lumFilter[j]; } } altivec_packIntArrayToCharArray(val,dest,dstW); } if (uDest != 0) { int __attribute__ ((aligned (16))) u[chrDstW]; int __attribute__ ((aligned (16))) v[chrDstW]; for (i = 0; i < (chrDstW -7); i+=4) { vec_st(vini, i << 2, u); vec_st(vini, i << 2, v); } for (; i < chrDstW; i++) { u[i] = (1 << 18); v[i] = (1 << 18); } for (j = 0; j < chrFilterSize; j++) { vector signed short l1, l1_V, vChrFilter = vec_ld(j << 1, chrFilter); vector unsigned char perm, perm0 = vec_lvsl(j << 1, chrFilter); vChrFilter = vec_perm(vChrFilter, vChrFilter, perm0); vChrFilter = vec_splat(vChrFilter, 0); // chrFilter[j] is loaded 8 times in vChrFilter perm = vec_lvsl(0, chrSrc[j]); l1 = vec_ld(0, chrSrc[j]); l1_V = vec_ld(2048 << 1, chrSrc[j]); for (i = 0; i < (chrDstW - 7); i+=8) { int offset = i << 2; vector signed short l2 = vec_ld((i << 1) + 16, chrSrc[j]); vector signed short l2_V = vec_ld(((i + 2048) << 1) + 16, chrSrc[j]); vector signed int v1 = vec_ld(offset, u); vector signed int v2 = vec_ld(offset + 16, u); vector signed int v1_V = vec_ld(offset, v); vector signed int v2_V = vec_ld(offset + 16, v); vector signed short ls = vec_perm(l1, l2, perm); // chrSrc[j][i] ... chrSrc[j][i+7] vector signed short ls_V = vec_perm(l1_V, l2_V, perm); // chrSrc[j][i+2048] ... chrSrc[j][i+2055] vector signed int i1 = vec_mule(vChrFilter, ls); vector signed int i2 = vec_mulo(vChrFilter, ls); vector signed int i1_V = vec_mule(vChrFilter, ls_V); vector signed int i2_V = vec_mulo(vChrFilter, ls_V); vector signed int vf1 = vec_mergeh(i1, i2); vector signed int vf2 = vec_mergel(i1, i2); // chrSrc[j][i] * chrFilter[j] ... chrSrc[j][i+7] * chrFilter[j] vector signed int vf1_V = vec_mergeh(i1_V, i2_V); vector signed int vf2_V = vec_mergel(i1_V, i2_V); // chrSrc[j][i] * chrFilter[j] ... chrSrc[j][i+7] * chrFilter[j] vector signed int vo1 = vec_add(v1, vf1); vector signed int vo2 = vec_add(v2, vf2); vector signed int vo1_V = vec_add(v1_V, vf1_V); vector signed int vo2_V = vec_add(v2_V, vf2_V); vec_st(vo1, offset, u); vec_st(vo2, offset + 16, u); vec_st(vo1_V, offset, v); vec_st(vo2_V, offset + 16, v); l1 = l2; l1_V = l2_V; } for ( ; i < chrDstW; i++) { u[i] += chrSrc[j][i] * chrFilter[j]; v[i] += chrSrc[j][i + 2048] * chrFilter[j]; } } altivec_packIntArrayToCharArray(u,uDest,chrDstW); altivec_packIntArrayToCharArray(v,vDest,chrDstW); } } | 13,669 |
1 | static void m5206_mbar_writeb(void *opaque, target_phys_addr_t offset, uint32_t value) { m5206_mbar_state *s = (m5206_mbar_state *)opaque; int width; offset &= 0x3ff; if (offset > 0x200) { hw_error("Bad MBAR write offset 0x%x", (int)offset); } width = m5206_mbar_width[offset >> 2]; if (width > 1) { uint32_t tmp; tmp = m5206_mbar_readw(opaque, offset & ~1); if (offset & 1) { tmp = (tmp & 0xff00) | value; } else { tmp = (tmp & 0x00ff) | (value << 8); } m5206_mbar_writew(opaque, offset & ~1, tmp); return; } m5206_mbar_write(s, offset, value, 1); } | 13,670 |
1 | static bool is_zero_sectors(BlockDriverState *bs, int64_t start, uint32_t count) { int nr; BlockDriverState *file; int64_t res; if (!count) { return true; res = bdrv_get_block_status_above(bs, NULL, start, count, &nr, &file); return res >= 0 && (res & BDRV_BLOCK_ZERO) && nr == count; | 13,671 |
1 | static void mxf_write_multi_descriptor(AVFormatContext *s) { MXFContext *mxf = s->priv_data; AVIOContext *pb = s->pb; const uint8_t *ul; int i; mxf_write_metadata_key(pb, 0x014400); PRINT_KEY(s, "multiple descriptor key", pb->buf_ptr - 16); klv_encode_ber_length(pb, 64 + 16 * s->nb_streams); mxf_write_local_tag(pb, 16, 0x3C0A); mxf_write_uuid(pb, MultipleDescriptor, 0); PRINT_KEY(s, "multi_desc uid", pb->buf_ptr - 16); // write sample rate mxf_write_local_tag(pb, 8, 0x3001); avio_wb32(pb, mxf->time_base.den); avio_wb32(pb, mxf->time_base.num); // write essence container ul mxf_write_local_tag(pb, 16, 0x3004); if (mxf->essence_container_count > 1) ul = multiple_desc_ul; else { MXFStreamContext *sc = s->streams[0]->priv_data; ul = mxf_essence_container_uls[sc->index].container_ul; } avio_write(pb, ul, 16); // write sub descriptor refs mxf_write_local_tag(pb, s->nb_streams * 16 + 8, 0x3F01); mxf_write_refs_count(pb, s->nb_streams); for (i = 0; i < s->nb_streams; i++) mxf_write_uuid(pb, SubDescriptor, i); } | 13,674 |
1 | BlockDeviceInfo *bdrv_block_device_info(BlockDriverState *bs) { BlockDeviceInfo *info = g_malloc0(sizeof(*info)); info->file = g_strdup(bs->filename); info->ro = bs->read_only; info->drv = g_strdup(bs->drv->format_name); info->encrypted = bs->encrypted; info->encryption_key_missing = bdrv_key_required(bs); info->cache = g_new(BlockdevCacheInfo, 1); *info->cache = (BlockdevCacheInfo) { .writeback = bdrv_enable_write_cache(bs), .direct = !!(bs->open_flags & BDRV_O_NOCACHE), .no_flush = !!(bs->open_flags & BDRV_O_NO_FLUSH), }; if (bs->node_name[0]) { info->has_node_name = true; info->node_name = g_strdup(bs->node_name); } if (bs->backing_file[0]) { info->has_backing_file = true; info->backing_file = g_strdup(bs->backing_file); } info->backing_file_depth = bdrv_get_backing_file_depth(bs); info->detect_zeroes = bs->detect_zeroes; if (bs->io_limits_enabled) { ThrottleConfig cfg; throttle_get_config(&bs->throttle_state, &cfg); info->bps = cfg.buckets[THROTTLE_BPS_TOTAL].avg; info->bps_rd = cfg.buckets[THROTTLE_BPS_READ].avg; info->bps_wr = cfg.buckets[THROTTLE_BPS_WRITE].avg; info->iops = cfg.buckets[THROTTLE_OPS_TOTAL].avg; info->iops_rd = cfg.buckets[THROTTLE_OPS_READ].avg; info->iops_wr = cfg.buckets[THROTTLE_OPS_WRITE].avg; info->has_bps_max = cfg.buckets[THROTTLE_BPS_TOTAL].max; info->bps_max = cfg.buckets[THROTTLE_BPS_TOTAL].max; info->has_bps_rd_max = cfg.buckets[THROTTLE_BPS_READ].max; info->bps_rd_max = cfg.buckets[THROTTLE_BPS_READ].max; info->has_bps_wr_max = cfg.buckets[THROTTLE_BPS_WRITE].max; info->bps_wr_max = cfg.buckets[THROTTLE_BPS_WRITE].max; info->has_iops_max = cfg.buckets[THROTTLE_OPS_TOTAL].max; info->iops_max = cfg.buckets[THROTTLE_OPS_TOTAL].max; info->has_iops_rd_max = cfg.buckets[THROTTLE_OPS_READ].max; info->iops_rd_max = cfg.buckets[THROTTLE_OPS_READ].max; info->has_iops_wr_max = cfg.buckets[THROTTLE_OPS_WRITE].max; info->iops_wr_max = cfg.buckets[THROTTLE_OPS_WRITE].max; info->has_iops_size = cfg.op_size; info->iops_size = cfg.op_size; } info->write_threshold = bdrv_write_threshold_get(bs); return info; } | 13,675 |
1 | void gtk_display_init(DisplayState *ds, bool full_screen, bool grab_on_hover) { GtkDisplayState *s = g_malloc0(sizeof(*s)); char *filename; gtk_init(NULL, NULL); s->window = gtk_window_new(GTK_WINDOW_TOPLEVEL); #if GTK_CHECK_VERSION(3, 2, 0) s->vbox = gtk_box_new(GTK_ORIENTATION_VERTICAL, 0); #else s->vbox = gtk_vbox_new(FALSE, 0); #endif s->notebook = gtk_notebook_new(); s->menu_bar = gtk_menu_bar_new(); s->free_scale = FALSE; setlocale(LC_ALL, ""); bindtextdomain("qemu", CONFIG_QEMU_LOCALEDIR); textdomain("qemu"); s->null_cursor = gdk_cursor_new(GDK_BLANK_CURSOR); s->mouse_mode_notifier.notify = gd_mouse_mode_change; qemu_add_mouse_mode_change_notifier(&s->mouse_mode_notifier); qemu_add_vm_change_state_handler(gd_change_runstate, s); filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "qemu_logo_no_text.svg"); if (filename) { GError *error = NULL; GdkPixbuf *pixbuf = gdk_pixbuf_new_from_file(filename, &error); if (pixbuf) { gtk_window_set_icon(GTK_WINDOW(s->window), pixbuf); } else { g_error_free(error); } g_free(filename); } gd_create_menus(s); gd_connect_signals(s); gtk_notebook_set_show_tabs(GTK_NOTEBOOK(s->notebook), FALSE); gtk_notebook_set_show_border(GTK_NOTEBOOK(s->notebook), FALSE); gd_update_caption(s); gtk_box_pack_start(GTK_BOX(s->vbox), s->menu_bar, FALSE, TRUE, 0); gtk_box_pack_start(GTK_BOX(s->vbox), s->notebook, TRUE, TRUE, 0); gtk_container_add(GTK_CONTAINER(s->window), s->vbox); gtk_widget_show_all(s->window); #ifdef VTE_RESIZE_HACK { VirtualConsole *cur = gd_vc_find_current(s); int i; for (i = 0; i < s->nb_vcs; i++) { VirtualConsole *vc = &s->vc[i]; if (vc && vc->type == GD_VC_VTE && vc != cur) { gtk_widget_hide(vc->vte.terminal); } } gd_update_windowsize(cur); } #endif if (full_screen) { gtk_menu_item_activate(GTK_MENU_ITEM(s->full_screen_item)); } if (grab_on_hover) { gtk_menu_item_activate(GTK_MENU_ITEM(s->grab_on_hover_item)); } gd_set_keycode_type(s); } | 13,676 |
0 | static int analyze(const uint8_t *buf, int size, int packet_size, int probe) { int stat[TS_MAX_PACKET_SIZE]; int stat_all = 0; int i; int best_score = 0; memset(stat, 0, packet_size * sizeof(*stat)); for (i = 0; i < size - 3; i++) { if (buf[i] == 0x47 && (!probe || (buf[i + 3] & 0x30))) { int x = i % packet_size; stat[x]++; stat_all++; if (stat[x] > best_score) { best_score = stat[x]; } } } return best_score - FFMAX(stat_all - 10*best_score, 0)/10; } | 13,677 |
1 | static void get_tree_codes(uint32_t *bits, int16_t *lens, uint8_t *xlat, Node *nodes, int node, uint32_t pfx, int pl, int *pos) { int s; s = nodes[node].sym; if (s != -1) { bits[*pos] = (~pfx) & ((1U << FFMAX(pl, 1)) - 1); lens[*pos] = FFMAX(pl, 1); xlat[*pos] = s + (pl == 0); (*pos)++; } else { pfx <<= 1; pl++; get_tree_codes(bits, lens, xlat, nodes, nodes[node].l, pfx, pl, pos); pfx |= 1; get_tree_codes(bits, lens, xlat, nodes, nodes[node].r, pfx, pl, pos); } } | 13,679 |
0 | static int nprobe(AVFormatContext *s, uint8_t *enc_header, unsigned size, const uint8_t *n_val) { OMAContext *oc = s->priv_data; uint64_t pos; uint32_t taglen, datalen; struct AVDES av_des; if (!enc_header || !n_val || size < OMA_ENC_HEADER_SIZE + oc->k_size + 4) return -1; pos = OMA_ENC_HEADER_SIZE + oc->k_size; if (!memcmp(&enc_header[pos], "EKB ", 4)) pos += 32; if (size < pos + 44) return -1; if (AV_RB32(&enc_header[pos]) != oc->rid) av_log(s, AV_LOG_DEBUG, "Mismatching RID\n"); taglen = AV_RB32(&enc_header[pos + 32]); datalen = AV_RB32(&enc_header[pos + 36]) >> 4; pos += 44; if (size - pos < taglen) return -1; pos += taglen; if (pos + (((uint64_t)datalen) << 4) > size) return -1; av_des_init(&av_des, n_val, 192, 1); while (datalen-- > 0) { av_des_crypt(&av_des, oc->r_val, &enc_header[pos], 2, NULL, 1); kset(s, oc->r_val, NULL, 16); if (!rprobe(s, enc_header, size, oc->r_val)) return 0; pos += 16; } return -1; } | 13,680 |
0 | static void fill_block(uint16_t *pdest, uint16_t color, int block_size, int pitch) { int x, y; pitch -= block_size; for (y = 0; y != block_size; y++, pdest += pitch) for (x = 0; x != block_size; x++) *pdest++ = color; } | 13,681 |
0 | static void ini_print_section_header(WriterContext *wctx) { INIContext *ini = wctx->priv; AVBPrint buf; int i; const struct section *section = wctx->section[wctx->level]; const struct section *parent_section = wctx->level ? wctx->section[wctx->level-1] : NULL; av_bprint_init(&buf, 1, AV_BPRINT_SIZE_UNLIMITED); if (wctx->level == 0) { printf("# ffprobe output\n\n"); return; } if (wctx->nb_item[wctx->level-1]) printf("\n"); for (i = 1; i <= wctx->level; i++) { if (ini->hierarchical || !(section->flags & (SECTION_FLAG_IS_ARRAY|SECTION_FLAG_IS_WRAPPER))) av_bprintf(&buf, "%s%s", i>1 ? "." : "", wctx->section[i]->name); } if (parent_section->flags & SECTION_FLAG_IS_ARRAY) { int n = parent_section->id == SECTION_ID_PACKETS_AND_FRAMES ? wctx->nb_section_packet_frame : wctx->nb_item[wctx->level-1]; av_bprintf(&buf, ".%d", n); } if (!(section->flags & (SECTION_FLAG_IS_ARRAY|SECTION_FLAG_IS_WRAPPER))) printf("[%s]\n", buf.str); av_bprint_finalize(&buf, NULL); } | 13,682 |
1 | static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu, MSIMessage *origin, MSIMessage *translated) { int ret = 0; VTD_IR_MSIAddress addr; uint16_t index; VTDIrq irq = {0}; assert(origin && translated); if (!iommu || !iommu->intr_enabled) { goto do_not_translate; } if (origin->address & VTD_MSI_ADDR_HI_MASK) { VTD_DPRINTF(GENERAL, "error: MSI addr high 32 bits nonzero" " during interrupt remapping: 0x%"PRIx32, (uint32_t)((origin->address & VTD_MSI_ADDR_HI_MASK) >> \ VTD_MSI_ADDR_HI_SHIFT)); return -VTD_FR_IR_REQ_RSVD; } addr.data = origin->address & VTD_MSI_ADDR_LO_MASK; if (le16_to_cpu(addr.__head) != 0xfee) { VTD_DPRINTF(GENERAL, "error: MSI addr low 32 bits invalid: " "0x%"PRIx32, addr.data); return -VTD_FR_IR_REQ_RSVD; } /* This is compatible mode. */ if (addr.int_mode != VTD_IR_INT_FORMAT_REMAP) { goto do_not_translate; } index = addr.index_h << 15 | le16_to_cpu(addr.index_l); #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff) #define VTD_IR_MSI_DATA_RESERVED (0xffff0000) if (addr.sub_valid) { /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */ index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE; } ret = vtd_remap_irq_get(iommu, index, &irq); if (ret) { return ret; } if (addr.sub_valid) { VTD_DPRINTF(IR, "received MSI interrupt"); if (origin->data & VTD_IR_MSI_DATA_RESERVED) { VTD_DPRINTF(GENERAL, "error: MSI data bits non-zero for " "interrupt remappable entry: 0x%"PRIx32, origin->data); return -VTD_FR_IR_REQ_RSVD; } } else { uint8_t vector = origin->data & 0xff; VTD_DPRINTF(IR, "received IOAPIC interrupt"); /* IOAPIC entry vector should be aligned with IRTE vector * (see vt-d spec 5.1.5.1). */ if (vector != irq.vector) { VTD_DPRINTF(GENERAL, "IOAPIC vector inconsistent: " "entry: %d, IRTE: %d, index: %d", vector, irq.vector, index); } } /* * We'd better keep the last two bits, assuming that guest OS * might modify it. Keep it does not hurt after all. */ irq.msi_addr_last_bits = addr.__not_care; /* Translate VTDIrq to MSI message */ vtd_generate_msi_message(&irq, translated); VTD_DPRINTF(IR, "mapping MSI 0x%"PRIx64":0x%"PRIx32 " -> " "0x%"PRIx64":0x%"PRIx32, origin->address, origin->data, translated->address, translated->data); return 0; do_not_translate: memcpy(translated, origin, sizeof(*origin)); return 0; } | 13,684 |
1 | static int decode_mb_cabac(H264Context *h) { MpegEncContext * const s = &h->s; const int mb_xy= s->mb_x + s->mb_y*s->mb_stride; int mb_type, partition_count, cbp = 0; int dct8x8_allowed= h->pps.transform_8x8_mode; s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?) tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y); if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE ) { int skip; /* a skipped mb needs the aff flag from the following mb */ if( FRAME_MBAFF && s->mb_x==0 && (s->mb_y&1)==0 ) predict_field_decoding_flag(h); if( FRAME_MBAFF && (s->mb_y&1)==1 && h->prev_mb_skipped ) skip = h->next_mb_skipped; else skip = decode_cabac_mb_skip( h, s->mb_x, s->mb_y ); /* read skip flags */ if( skip ) { if( FRAME_MBAFF && (s->mb_y&1)==0 ){ s->current_picture.mb_type[mb_xy] = MB_TYPE_SKIP; h->next_mb_skipped = decode_cabac_mb_skip( h, s->mb_x, s->mb_y+1 ); if(h->next_mb_skipped) predict_field_decoding_flag(h); else h->mb_mbaff = h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h); } decode_mb_skip(h); h->cbp_table[mb_xy] = 0; h->chroma_pred_mode_table[mb_xy] = 0; h->last_qscale_diff = 0; return 0; } } if(FRAME_MBAFF){ if( (s->mb_y&1) == 0 ) h->mb_mbaff = h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h); }else h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME); h->prev_mb_skipped = 0; compute_mb_neighbors(h); if( ( mb_type = decode_cabac_mb_type( h ) ) < 0 ) { av_log( h->s.avctx, AV_LOG_ERROR, "decode_cabac_mb_type failed\n" ); return -1; } if( h->slice_type == B_TYPE ) { if( mb_type < 23 ){ partition_count= b_mb_type_info[mb_type].partition_count; mb_type= b_mb_type_info[mb_type].type; }else{ mb_type -= 23; goto decode_intra_mb; } } else if( h->slice_type == P_TYPE ) { if( mb_type < 5) { partition_count= p_mb_type_info[mb_type].partition_count; mb_type= p_mb_type_info[mb_type].type; } else { mb_type -= 5; goto decode_intra_mb; } } else { assert(h->slice_type == I_TYPE); decode_intra_mb: partition_count = 0; cbp= i_mb_type_info[mb_type].cbp; h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode; mb_type= i_mb_type_info[mb_type].type; } if(MB_FIELD) mb_type |= MB_TYPE_INTERLACED; h->slice_table[ mb_xy ]= h->slice_num; if(IS_INTRA_PCM(mb_type)) { const uint8_t *ptr; unsigned int x, y; // We assume these blocks are very rare so we do not optimize it. // FIXME The two following lines get the bitstream position in the cabac // decode, I think it should be done by a function in cabac.h (or cabac.c). ptr= h->cabac.bytestream; if(h->cabac.low&0x1) ptr--; if(CABAC_BITS==16){ if(h->cabac.low&0x1FF) ptr--; } // The pixels are stored in the same order as levels in h->mb array. for(y=0; y<16; y++){ const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3); for(x=0; x<16; x++){ tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", *ptr); h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= *ptr++; } } for(y=0; y<8; y++){ const int index= 256 + 4*(y&3) + 32*(y>>2); for(x=0; x<8; x++){ tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", *ptr); h->mb[index + (x&3) + 16*(x>>2)]= *ptr++; } } for(y=0; y<8; y++){ const int index= 256 + 64 + 4*(y&3) + 32*(y>>2); for(x=0; x<8; x++){ tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", *ptr); h->mb[index + (x&3) + 16*(x>>2)]= *ptr++; } } ff_init_cabac_decoder(&h->cabac, ptr, h->cabac.bytestream_end - ptr); // All blocks are present h->cbp_table[mb_xy] = 0x1ef; h->chroma_pred_mode_table[mb_xy] = 0; // In deblocking, the quantizer is 0 s->current_picture.qscale_table[mb_xy]= 0; h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, 0); // All coeffs are present memset(h->non_zero_count[mb_xy], 16, 16); s->current_picture.mb_type[mb_xy]= mb_type; return 0; } if(MB_MBAFF){ h->ref_count[0] <<= 1; h->ref_count[1] <<= 1; } fill_caches(h, mb_type, 0); if( IS_INTRA( mb_type ) ) { int i, pred_mode; if( IS_INTRA4x4( mb_type ) ) { if( dct8x8_allowed && decode_cabac_mb_transform_size( h ) ) { mb_type |= MB_TYPE_8x8DCT; for( i = 0; i < 16; i+=4 ) { int pred = pred_intra_mode( h, i ); int mode = decode_cabac_mb_intra4x4_pred_mode( h, pred ); fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 ); } } else { for( i = 0; i < 16; i++ ) { int pred = pred_intra_mode( h, i ); h->intra4x4_pred_mode_cache[ scan8[i] ] = decode_cabac_mb_intra4x4_pred_mode( h, pred ); //av_log( s->avctx, AV_LOG_ERROR, "i4x4 pred=%d mode=%d\n", pred, h->intra4x4_pred_mode_cache[ scan8[i] ] ); } } write_back_intra_pred_mode(h); if( check_intra4x4_pred_mode(h) < 0 ) return -1; } else { h->intra16x16_pred_mode= check_intra_pred_mode( h, h->intra16x16_pred_mode ); if( h->intra16x16_pred_mode < 0 ) return -1; } h->chroma_pred_mode_table[mb_xy] = pred_mode = decode_cabac_mb_chroma_pre_mode( h ); pred_mode= check_intra_pred_mode( h, pred_mode ); if( pred_mode < 0 ) return -1; h->chroma_pred_mode= pred_mode; } else if( partition_count == 4 ) { int i, j, sub_partition_count[4], list, ref[2][4]; if( h->slice_type == B_TYPE ) { for( i = 0; i < 4; i++ ) { h->sub_mb_type[i] = decode_cabac_b_mb_sub_type( h ); sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count; h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type; } if( IS_DIRECT(h->sub_mb_type[0] | h->sub_mb_type[1] | h->sub_mb_type[2] | h->sub_mb_type[3]) ) { pred_direct_motion(h, &mb_type); if( h->ref_count[0] > 1 || h->ref_count[1] > 1 ) { for( i = 0; i < 4; i++ ) if( IS_DIRECT(h->sub_mb_type[i]) ) fill_rectangle( &h->direct_cache[scan8[4*i]], 2, 2, 8, 1, 1 ); } } } else { for( i = 0; i < 4; i++ ) { h->sub_mb_type[i] = decode_cabac_p_mb_sub_type( h ); sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count; h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type; } } for( list = 0; list < h->list_count; list++ ) { for( i = 0; i < 4; i++ ) { if(IS_DIRECT(h->sub_mb_type[i])) continue; if(IS_DIR(h->sub_mb_type[i], 0, list)){ if( h->ref_count[list] > 1 ) ref[list][i] = decode_cabac_mb_ref( h, list, 4*i ); else ref[list][i] = 0; } else { ref[list][i] = -1; } h->ref_cache[list][ scan8[4*i]+1 ]= h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i]; } } if(dct8x8_allowed) dct8x8_allowed = get_dct8x8_allowed(h); for(list=0; list<h->list_count; list++){ for(i=0; i<4; i++){ if(IS_DIRECT(h->sub_mb_type[i])){ fill_rectangle(h->mvd_cache[list][scan8[4*i]], 2, 2, 8, 0, 4); continue; } h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]; if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){ const int sub_mb_type= h->sub_mb_type[i]; const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1; for(j=0; j<sub_partition_count[i]; j++){ int mpx, mpy; int mx, my; const int index= 4*i + block_width*j; int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ]; int16_t (* mvd_cache)[2]= &h->mvd_cache[list][ scan8[index] ]; pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mpx, &mpy); mx = mpx + decode_cabac_mb_mvd( h, list, index, 0 ); my = mpy + decode_cabac_mb_mvd( h, list, index, 1 ); tprintf(s->avctx, "final mv:%d %d\n", mx, my); if(IS_SUB_8X8(sub_mb_type)){ mv_cache[ 1 ][0]= mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx; mv_cache[ 1 ][1]= mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my; mvd_cache[ 1 ][0]= mvd_cache[ 8 ][0]= mvd_cache[ 9 ][0]= mx - mpx; mvd_cache[ 1 ][1]= mvd_cache[ 8 ][1]= mvd_cache[ 9 ][1]= my - mpy; }else if(IS_SUB_8X4(sub_mb_type)){ mv_cache[ 1 ][0]= mx; mv_cache[ 1 ][1]= my; mvd_cache[ 1 ][0]= mx - mpx; mvd_cache[ 1 ][1]= my - mpy; }else if(IS_SUB_4X8(sub_mb_type)){ mv_cache[ 8 ][0]= mx; mv_cache[ 8 ][1]= my; mvd_cache[ 8 ][0]= mx - mpx; mvd_cache[ 8 ][1]= my - mpy; } mv_cache[ 0 ][0]= mx; mv_cache[ 0 ][1]= my; mvd_cache[ 0 ][0]= mx - mpx; mvd_cache[ 0 ][1]= my - mpy; } }else{ uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0]; uint32_t *pd= (uint32_t *)&h->mvd_cache[list][ scan8[4*i] ][0]; p[0] = p[1] = p[8] = p[9] = 0; pd[0]= pd[1]= pd[8]= pd[9]= 0; } } } } else if( IS_DIRECT(mb_type) ) { pred_direct_motion(h, &mb_type); fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4); fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4); dct8x8_allowed &= h->sps.direct_8x8_inference_flag; } else { int list, mx, my, i, mpx, mpy; if(IS_16X16(mb_type)){ for(list=0; list<h->list_count; list++){ if(IS_DIR(mb_type, 0, list)){ const int ref = h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 0 ) : 0; fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, ref, 1); }else fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1); //FIXME factorize and the other fill_rect below too } for(list=0; list<h->list_count; list++){ if(IS_DIR(mb_type, 0, list)){ pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mpx, &mpy); mx = mpx + decode_cabac_mb_mvd( h, list, 0, 0 ); my = mpy + decode_cabac_mb_mvd( h, list, 0, 1 ); tprintf(s->avctx, "final mv:%d %d\n", mx, my); fill_rectangle(h->mvd_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx-mpx,my-mpy), 4); fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4); }else fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, 0, 4); } } else if(IS_16X8(mb_type)){ for(list=0; list<h->list_count; list++){ for(i=0; i<2; i++){ if(IS_DIR(mb_type, i, list)){ const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 8*i ) : 0; fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, ref, 1); }else fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1); } } for(list=0; list<h->list_count; list++){ for(i=0; i<2; i++){ if(IS_DIR(mb_type, i, list)){ pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mpx, &mpy); mx = mpx + decode_cabac_mb_mvd( h, list, 8*i, 0 ); my = mpy + decode_cabac_mb_mvd( h, list, 8*i, 1 ); tprintf(s->avctx, "final mv:%d %d\n", mx, my); fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx-mpx,my-mpy), 4); fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4); }else{ fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4); fill_rectangle(h-> mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4); } } } }else{ assert(IS_8X16(mb_type)); for(list=0; list<h->list_count; list++){ for(i=0; i<2; i++){ if(IS_DIR(mb_type, i, list)){ //FIXME optimize const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 4*i ) : 0; fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, ref, 1); }else fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1); } } for(list=0; list<h->list_count; list++){ for(i=0; i<2; i++){ if(IS_DIR(mb_type, i, list)){ pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mpx, &mpy); mx = mpx + decode_cabac_mb_mvd( h, list, 4*i, 0 ); my = mpy + decode_cabac_mb_mvd( h, list, 4*i, 1 ); tprintf(s->avctx, "final mv:%d %d\n", mx, my); fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx-mpx,my-mpy), 4); fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4); }else{ fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4); fill_rectangle(h-> mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4); } } } } } if( IS_INTER( mb_type ) ) { h->chroma_pred_mode_table[mb_xy] = 0; write_back_motion( h, mb_type ); } if( !IS_INTRA16x16( mb_type ) ) { cbp = decode_cabac_mb_cbp_luma( h ); cbp |= decode_cabac_mb_cbp_chroma( h ) << 4; } h->cbp_table[mb_xy] = h->cbp = cbp; if( dct8x8_allowed && (cbp&15) && !IS_INTRA( mb_type ) ) { if( decode_cabac_mb_transform_size( h ) ) mb_type |= MB_TYPE_8x8DCT; } s->current_picture.mb_type[mb_xy]= mb_type; if( cbp || IS_INTRA16x16( mb_type ) ) { const uint8_t *scan, *scan8x8, *dc_scan; int dqp; if(IS_INTERLACED(mb_type)){ scan8x8= s->qscale ? h->field_scan8x8 : h->field_scan8x8_q0; scan= s->qscale ? h->field_scan : h->field_scan_q0; dc_scan= luma_dc_field_scan; }else{ scan8x8= s->qscale ? h->zigzag_scan8x8 : h->zigzag_scan8x8_q0; scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0; dc_scan= luma_dc_zigzag_scan; } h->last_qscale_diff = dqp = decode_cabac_mb_dqp( h ); if( dqp == INT_MIN ){ av_log(h->s.avctx, AV_LOG_ERROR, "cabac decode of qscale diff failed at %d %d\n", s->mb_x, s->mb_y); return -1; } s->qscale += dqp; if(((unsigned)s->qscale) > 51){ if(s->qscale<0) s->qscale+= 52; else s->qscale-= 52; } h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->qscale); if( IS_INTRA16x16( mb_type ) ) { int i; //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 DC\n" ); if( decode_cabac_residual( h, h->mb, 0, 0, dc_scan, NULL, 16) < 0) return -1; if( cbp&15 ) { for( i = 0; i < 16; i++ ) { //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 AC:%d\n", i ); if( decode_cabac_residual(h, h->mb + 16*i, 1, i, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 ) return -1; } } else { fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1); } } else { int i8x8, i4x4; for( i8x8 = 0; i8x8 < 4; i8x8++ ) { if( cbp & (1<<i8x8) ) { if( IS_8x8DCT(mb_type) ) { if( decode_cabac_residual(h, h->mb + 64*i8x8, 5, 4*i8x8, scan8x8, h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 64) < 0 ) return -1; } else for( i4x4 = 0; i4x4 < 4; i4x4++ ) { const int index = 4*i8x8 + i4x4; //av_log( s->avctx, AV_LOG_ERROR, "Luma4x4: %d\n", index ); //START_TIMER if( decode_cabac_residual(h, h->mb + 16*index, 2, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) < 0 ) return -1; //STOP_TIMER("decode_residual") } } else { uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ]; nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0; } } } if( cbp&0x30 ){ int c; for( c = 0; c < 2; c++ ) { //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-DC\n",c ); if( decode_cabac_residual(h, h->mb + 256 + 16*4*c, 3, c, chroma_dc_scan, NULL, 4) < 0) return -1; } } if( cbp&0x20 ) { int c, i; for( c = 0; c < 2; c++ ) { const uint32_t *qmul = h->dequant4_coeff[c+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp]; for( i = 0; i < 4; i++ ) { const int index = 16 + 4 * c + i; //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-AC %d\n",c, index - 16 ); if( decode_cabac_residual(h, h->mb + 16*index, 4, index - 16, scan + 1, qmul, 15) < 0) return -1; } } } else { uint8_t * const nnz= &h->non_zero_count_cache[0]; nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] = nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0; } } else { uint8_t * const nnz= &h->non_zero_count_cache[0]; fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1); nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] = nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0; h->last_qscale_diff = 0; } s->current_picture.qscale_table[mb_xy]= s->qscale; write_back_non_zero_count(h); if(MB_MBAFF){ h->ref_count[0] >>= 1; h->ref_count[1] >>= 1; } return 0; } | 13,685 |
0 | static int mjpegb_decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; MJpegDecodeContext *s = avctx->priv_data; const uint8_t *buf_end, *buf_ptr; AVFrame *picture = data; GetBitContext hgb; /* for the header */ uint32_t dqt_offs, dht_offs, sof_offs, sos_offs, second_field_offs; uint32_t field_size, sod_offs; buf_ptr = buf; buf_end = buf + buf_size; read_header: /* reset on every SOI */ s->restart_interval = 0; s->restart_count = 0; s->mjpb_skiptosod = 0; if (buf_end - buf_ptr >= 1 << 28) return AVERROR_INVALIDDATA; init_get_bits(&hgb, buf_ptr, /*buf_size*/(buf_end - buf_ptr)*8); skip_bits(&hgb, 32); /* reserved zeros */ if (get_bits_long(&hgb, 32) != MKBETAG('m','j','p','g')) { av_log(avctx, AV_LOG_WARNING, "not mjpeg-b (bad fourcc)\n"); return 0; } field_size = get_bits_long(&hgb, 32); /* field size */ av_log(avctx, AV_LOG_DEBUG, "field size: 0x%x\n", field_size); skip_bits(&hgb, 32); /* padded field size */ second_field_offs = read_offs(avctx, &hgb, buf_end - buf_ptr, "second_field_offs is %d and size is %d\n"); av_log(avctx, AV_LOG_DEBUG, "second field offs: 0x%x\n", second_field_offs); dqt_offs = read_offs(avctx, &hgb, buf_end - buf_ptr, "dqt is %d and size is %d\n"); av_log(avctx, AV_LOG_DEBUG, "dqt offs: 0x%x\n", dqt_offs); if (dqt_offs) { init_get_bits(&s->gb, buf_ptr+dqt_offs, (buf_end - (buf_ptr+dqt_offs))*8); s->start_code = DQT; if (ff_mjpeg_decode_dqt(s) < 0 && (avctx->err_recognition & AV_EF_EXPLODE)) return AVERROR_INVALIDDATA; } dht_offs = read_offs(avctx, &hgb, buf_end - buf_ptr, "dht is %d and size is %d\n"); av_log(avctx, AV_LOG_DEBUG, "dht offs: 0x%x\n", dht_offs); if (dht_offs) { init_get_bits(&s->gb, buf_ptr+dht_offs, (buf_end - (buf_ptr+dht_offs))*8); s->start_code = DHT; ff_mjpeg_decode_dht(s); } sof_offs = read_offs(avctx, &hgb, buf_end - buf_ptr, "sof is %d and size is %d\n"); av_log(avctx, AV_LOG_DEBUG, "sof offs: 0x%x\n", sof_offs); if (sof_offs) { init_get_bits(&s->gb, buf_ptr+sof_offs, (buf_end - (buf_ptr+sof_offs))*8); s->start_code = SOF0; if (ff_mjpeg_decode_sof(s) < 0) return -1; } sos_offs = read_offs(avctx, &hgb, buf_end - buf_ptr, "sos is %d and size is %d\n"); av_log(avctx, AV_LOG_DEBUG, "sos offs: 0x%x\n", sos_offs); sod_offs = read_offs(avctx, &hgb, buf_end - buf_ptr, "sof is %d and size is %d\n"); av_log(avctx, AV_LOG_DEBUG, "sod offs: 0x%x\n", sod_offs); if (sos_offs) { init_get_bits(&s->gb, buf_ptr + sos_offs, 8 * FFMIN(field_size, buf_end - buf_ptr - sos_offs)); s->mjpb_skiptosod = (sod_offs - sos_offs - show_bits(&s->gb, 16)); s->start_code = SOS; if (ff_mjpeg_decode_sos(s, NULL, NULL) < 0 && (avctx->err_recognition & AV_EF_EXPLODE)) return AVERROR_INVALIDDATA; } if (s->interlaced) { s->bottom_field ^= 1; /* if not bottom field, do not output image yet */ if (s->bottom_field != s->interlace_polarity && second_field_offs) { buf_ptr = buf + second_field_offs; second_field_offs = 0; goto read_header; } } //XXX FIXME factorize, this looks very similar to the EOI code *picture= *s->picture_ptr; *data_size = sizeof(AVFrame); if(!s->lossless){ picture->quality= FFMAX3(s->qscale[0], s->qscale[1], s->qscale[2]); picture->qstride= 0; picture->qscale_table= s->qscale_table; memset(picture->qscale_table, picture->quality, (s->width+15)/16); if(avctx->debug & FF_DEBUG_QP) av_log(avctx, AV_LOG_DEBUG, "QP: %d\n", picture->quality); picture->quality*= FF_QP2LAMBDA; } return buf_ptr - buf; } | 13,686 |
1 | static void test_ivshmem_single(void) { IVState state, *s; uint32_t data[1024]; int i; setup_vm(&state); s = &state; /* valid io */ out_reg(s, INTRMASK, 0); in_reg(s, INTRSTATUS); in_reg(s, IVPOSITION); out_reg(s, INTRMASK, 0xffffffff); g_assert_cmpuint(in_reg(s, INTRMASK), ==, 0xffffffff); out_reg(s, INTRSTATUS, 1); /* XXX: intercept IRQ, not seen in resp */ g_assert_cmpuint(in_reg(s, INTRSTATUS), ==, 1); /* invalid io */ out_reg(s, IVPOSITION, 1); out_reg(s, DOORBELL, 8 << 16); for (i = 0; i < G_N_ELEMENTS(data); i++) { data[i] = i; } qtest_memwrite(s->qtest, (uintptr_t)s->mem_base, data, sizeof(data)); for (i = 0; i < G_N_ELEMENTS(data); i++) { g_assert_cmpuint(((uint32_t *)tmpshmem)[i], ==, i); } memset(data, 0, sizeof(data)); qtest_memread(s->qtest, (uintptr_t)s->mem_base, data, sizeof(data)); for (i = 0; i < G_N_ELEMENTS(data); i++) { g_assert_cmpuint(data[i], ==, i); } qtest_quit(s->qtest); } | 13,687 |
1 | static int mov_read_stsz(MOVContext *c, ByteIOContext *pb, MOVAtom atom) { AVStream *st; MOVStreamContext *sc; unsigned int i, entries, sample_size, field_size, num_bytes; GetBitContext gb; unsigned char* buf; if (c->fc->nb_streams < 1) return 0; st = c->fc->streams[c->fc->nb_streams-1]; sc = st->priv_data; get_byte(pb); /* version */ get_be24(pb); /* flags */ if (atom.type == MKTAG('s','t','s','z')) { sample_size = get_be32(pb); if (!sc->sample_size) /* do not overwrite value computed in stsd */ sc->sample_size = sample_size; field_size = 32; } else { sample_size = 0; get_be24(pb); /* reserved */ field_size = get_byte(pb); } entries = get_be32(pb); dprintf(c->fc, "sample_size = %d sample_count = %d\n", sc->sample_size, entries); sc->sample_count = entries; if (sample_size) return 0; if (field_size != 4 && field_size != 8 && field_size != 16 && field_size != 32) { av_log(c->fc, AV_LOG_ERROR, "Invalid sample field size %d\n", field_size); return -1; } if(entries >= UINT_MAX / sizeof(int)) return -1; sc->sample_sizes = av_malloc(entries * sizeof(int)); if (!sc->sample_sizes) return AVERROR(ENOMEM); num_bytes = (entries*field_size+4)>>3; buf = av_malloc(num_bytes+FF_INPUT_BUFFER_PADDING_SIZE); if (!buf) { av_freep(&sc->sample_sizes); return AVERROR(ENOMEM); } if (get_buffer(pb, buf, num_bytes) < num_bytes) { av_freep(&sc->sample_sizes); av_free(buf); return -1; } init_get_bits(&gb, buf, 8*num_bytes); for(i=0; i<entries; i++) sc->sample_sizes[i] = get_bits_long(&gb, field_size); av_free(buf); return 0; } | 13,688 |
1 | static void init_band_stepsize(AVCodecContext *avctx, Jpeg2000Band *band, Jpeg2000CodingStyle *codsty, Jpeg2000QuantStyle *qntsty, int bandno, int gbandno, int reslevelno, int cbps) { /* TODO: Implementation of quantization step not finished, * see ISO/IEC 15444-1:2002 E.1 and A.6.4. */ switch (qntsty->quantsty) { uint8_t gain; case JPEG2000_QSTY_NONE: /* TODO: to verify. No quantization in this case */ band->f_stepsize = 1; break; case JPEG2000_QSTY_SI: /*TODO: Compute formula to implement. */ // numbps = cbps + // lut_gain[codsty->transform == FF_DWT53][bandno + (reslevelno > 0)]; // band->f_stepsize = SHL(2048 + qntsty->mant[gbandno], // 2 + numbps - qntsty->expn[gbandno]); // break; case JPEG2000_QSTY_SE: /* Exponent quantization step. * Formula: * delta_b = 2 ^ (R_b - expn_b) * (1 + (mant_b / 2 ^ 11)) * R_b = R_I + log2 (gain_b ) * see ISO/IEC 15444-1:2002 E.1.1 eqn. E-3 and E-4 */ gain = cbps; band->f_stepsize = pow(2.0, gain - qntsty->expn[gbandno]); band->f_stepsize *= qntsty->mant[gbandno] / 2048.0 + 1.0; break; default: band->f_stepsize = 0; av_log(avctx, AV_LOG_ERROR, "Unknown quantization format\n"); break; } if (codsty->transform != FF_DWT53) { int lband = 0; switch (bandno + (reslevelno > 0)) { case 1: case 2: band->f_stepsize *= F_LFTG_X * 2; lband = 1; break; case 3: band->f_stepsize *= F_LFTG_X * F_LFTG_X * 4; break; } if (codsty->transform == FF_DWT97) { band->f_stepsize *= pow(F_LFTG_K, 2*(codsty->nreslevels2decode - reslevelno) + lband - 2); } } band->i_stepsize = band->f_stepsize * (1 << 15); /* FIXME: In openjepg code stespize = stepsize * 0.5. Why? * If not set output of entropic decoder is not correct. */ if (!av_codec_is_encoder(avctx->codec)) band->f_stepsize *= 0.5; } | 13,689 |
1 | static int teletext_init_decoder(AVCodecContext *avctx) { TeletextContext *ctx = avctx->priv_data; unsigned int maj, min, rev; vbi_version(&maj, &min, &rev); if (!(maj > 0 || min > 2 || min == 2 && rev >= 26)) { av_log(avctx, AV_LOG_ERROR, "decoder needs zvbi version >= 0.2.26.\n"); return AVERROR_EXTERNAL; } if (ctx->format_id == 0) { avctx->width = 41 * BITMAP_CHAR_WIDTH; avctx->height = 25 * BITMAP_CHAR_HEIGHT; } ctx->dx = NULL; ctx->vbi = NULL; ctx->pts = AV_NOPTS_VALUE; #ifdef DEBUG { char *t; ctx->ex = vbi_export_new("text", &t); } #endif av_log(avctx, AV_LOG_VERBOSE, "page filter: %s\n", ctx->pgno); return (ctx->format_id == 1) ? ff_ass_subtitle_header_default(avctx) : 0; } | 13,690 |
1 | static void block_job_ref(BlockJob *job) { ++job->refcnt; } | 13,691 |
1 | static void empty_input(void) { const char *empty = ""; QObject *obj = qobject_from_json(empty, NULL); g_assert(obj == NULL); } | 13,692 |
1 | static FlatRange *address_space_lookup(AddressSpace *as, AddrRange addr) { return bsearch(&addr, as->current_map.ranges, as->current_map.nr, sizeof(FlatRange), cmp_flatrange_addr); } | 13,693 |
1 | void ff_get_guid(AVIOContext *s, ff_asf_guid *g) { assert(sizeof(*g) == 16); avio_read(s, *g, sizeof(*g)); } | 13,694 |
1 | static int realloc_refcount_array(BDRVQcowState *s, uint16_t **array, int64_t *size, int64_t new_size) { size_t old_byte_size, new_byte_size; uint16_t *new_ptr; /* Round to clusters so the array can be directly written to disk */ old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size)) * s->cluster_size; new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size)) * s->cluster_size; if (new_byte_size == old_byte_size) { *size = new_size; return 0; } assert(new_byte_size > 0); new_ptr = g_try_realloc(*array, new_byte_size); if (!new_ptr) { return -ENOMEM; } if (new_byte_size > old_byte_size) { memset((void *)((uintptr_t)new_ptr + old_byte_size), 0, new_byte_size - old_byte_size); } *array = new_ptr; *size = new_size; return 0; } | 13,695 |
1 | static void imdct36(int *out, int *buf, int *in, int *win) { int i, j, t0, t1, t2, t3, s0, s1, s2, s3; int tmp[18], *tmp1, *in1; for(i=17;i>=1;i--) in[i] += in[i-1]; for(i=17;i>=3;i-=2) in[i] += in[i-2]; for(j=0;j<2;j++) { tmp1 = tmp + j; in1 = in + j; #if 0 //more accurate but slower int64_t t0, t1, t2, t3; t2 = in1[2*4] + in1[2*8] - in1[2*2]; t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32; t1 = in1[2*0] - in1[2*6]; tmp1[ 6] = t1 - (t2>>1); tmp1[16] = t1 + t2; t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2); t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8); t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4); tmp1[10] = (t3 - t0 - t2) >> 32; tmp1[ 2] = (t3 + t0 + t1) >> 32; tmp1[14] = (t3 + t2 - t1) >> 32; tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3); t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1); t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7); t0 = MUL64(2*in1[2*3], C3); t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5); tmp1[ 0] = (t2 + t3 + t0) >> 32; tmp1[12] = (t2 + t1 - t0) >> 32; tmp1[ 8] = (t3 - t1 - t0) >> 32; #else t2 = in1[2*4] + in1[2*8] - in1[2*2]; t3 = in1[2*0] + (in1[2*6]>>1); t1 = in1[2*0] - in1[2*6]; tmp1[ 6] = t1 - (t2>>1); tmp1[16] = t1 + t2; t0 = MULH(2*(in1[2*2] + in1[2*4]), C2); t1 = MULH( in1[2*4] - in1[2*8] , -2*C8); t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4); tmp1[10] = t3 - t0 - t2; tmp1[ 2] = t3 + t0 + t1; tmp1[14] = t3 + t2 - t1; tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3); t2 = MULH(2*(in1[2*1] + in1[2*5]), C1); t3 = MULH( in1[2*5] - in1[2*7] , -2*C7); t0 = MULH(2*in1[2*3], C3); t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5); tmp1[ 0] = t2 + t3 + t0; tmp1[12] = t2 + t1 - t0; tmp1[ 8] = t3 - t1 - t0; #endif } i = 0; for(j=0;j<4;j++) { t0 = tmp[i]; t1 = tmp[i + 2]; s0 = t1 + t0; s2 = t1 - t0; t2 = tmp[i + 1]; t3 = tmp[i + 3]; s1 = MULL(t3 + t2, icos36[j]); s3 = MULL(t3 - t2, icos36[8 - j]); t0 = (s0 + s1) << 5; t1 = (s0 - s1) << 5; out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j]; out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j]; buf[9 + j] = MULH(t0, win[18 + 9 + j]); buf[8 - j] = MULH(t0, win[18 + 8 - j]); t0 = (s2 + s3) << 5; t1 = (s2 - s3) << 5; out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j]; out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j]; buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]); buf[ + j] = MULH(t0, win[18 + j]); i += 4; } s0 = tmp[16]; s1 = MULL(tmp[17], icos36[4]); t0 = (s0 + s1) << 5; t1 = (s0 - s1) << 5; out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4]; out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4]; buf[9 + 4] = MULH(t0, win[18 + 9 + 4]); buf[8 - 4] = MULH(t0, win[18 + 8 - 4]); } | 13,696 |
1 | static void test_tco_second_timeout_none(void) { TestData td; const uint16_t ticks = TCO_SECS_TO_TICKS(256); QDict *ad; td.args = "-watchdog-action none"; td.noreboot = false; test_init(&td); stop_tco(&td); clear_tco_status(&td); reset_on_second_timeout(true); set_tco_timeout(&td, ticks); load_tco(&td); start_tco(&td); clock_step(ticks * TCO_TICK_NSEC * 2); ad = get_watchdog_action(); g_assert(!strcmp(qdict_get_str(ad, "action"), "none")); QDECREF(ad); stop_tco(&td); qtest_end(); } | 13,697 |
1 | static void pcx_palette(const uint8_t **src, uint32_t *dst, unsigned int pallen) { unsigned int i; for (i = 0; i < pallen; i++) *dst++ = bytestream_get_be24(src); if (pallen < 256) memset(dst, 0, (256 - pallen) * sizeof(*dst)); } | 13,698 |
1 | int qemu_set_fd_handler2(int fd, IOCanReadHandler *fd_read_poll, IOHandler *fd_read, IOHandler *fd_write, void *opaque) { IOHandlerRecord *ioh; if (!fd_read && !fd_write) { QLIST_FOREACH(ioh, &io_handlers, next) { if (ioh->fd == fd) { ioh->deleted = 1; break; } } } else { QLIST_FOREACH(ioh, &io_handlers, next) { if (ioh->fd == fd) goto found; } ioh = g_malloc0(sizeof(IOHandlerRecord)); QLIST_INSERT_HEAD(&io_handlers, ioh, next); found: ioh->fd = fd; ioh->fd_read_poll = fd_read_poll; ioh->fd_read = fd_read; ioh->fd_write = fd_write; ioh->opaque = opaque; ioh->deleted = 0; qemu_notify_event(); } return 0; } | 13,699 |
1 | static int bdrv_prwv_co(BdrvChild *child, int64_t offset, QEMUIOVector *qiov, bool is_write, BdrvRequestFlags flags) { Coroutine *co; RwCo rwco = { .child = child, .offset = offset, .qiov = qiov, .is_write = is_write, .ret = NOT_DONE, .flags = flags, }; if (qemu_in_coroutine()) { /* Fast-path if already in coroutine context */ bdrv_rw_co_entry(&rwco); } else { AioContext *aio_context = bdrv_get_aio_context(child->bs); co = qemu_coroutine_create(bdrv_rw_co_entry); qemu_coroutine_enter(co, &rwco); while (rwco.ret == NOT_DONE) { aio_poll(aio_context, true); } } return rwco.ret; } | 13,700 |
1 | static void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUM68KState *env) { struct target_sigframe *frame; abi_ulong frame_addr; abi_ulong retcode_addr; abi_ulong sc_addr; int err = 0; int i; frame_addr = get_sigframe(ka, env, sizeof *frame); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; __put_user(sig, &frame->sig); sc_addr = frame_addr + offsetof(struct target_sigframe, sc); __put_user(sc_addr, &frame->psc); setup_sigcontext(&frame->sc, env, set->sig[0]); for(i = 1; i < TARGET_NSIG_WORDS; i++) { if (__put_user(set->sig[i], &frame->extramask[i - 1])) goto give_sigsegv; } /* Set up to return from userspace. */ retcode_addr = frame_addr + offsetof(struct target_sigframe, retcode); __put_user(retcode_addr, &frame->pretcode); /* moveq #,d0; trap #0 */ __put_user(0x70004e40 + (TARGET_NR_sigreturn << 16), (long *)(frame->retcode)); if (err) goto give_sigsegv; /* Set up to return from userspace */ env->aregs[7] = frame_addr; env->pc = ka->_sa_handler; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sig(TARGET_SIGSEGV); } | 13,701 |
1 | static void openrisc_cpu_realizefn(DeviceState *dev, Error **errp) { OpenRISCCPU *cpu = OPENRISC_CPU(dev); OpenRISCCPUClass *occ = OPENRISC_CPU_GET_CLASS(dev); cpu_reset(CPU(cpu)); occ->parent_realize(dev, errp); } | 13,702 |
1 | void net_rx_pkt_attach_iovec(struct NetRxPkt *pkt, const struct iovec *iov, int iovcnt, size_t iovoff, bool strip_vlan) { uint16_t tci = 0; uint16_t ploff = iovoff; assert(pkt); pkt->vlan_stripped = false; if (strip_vlan) { pkt->vlan_stripped = eth_strip_vlan(iov, iovcnt, iovoff, pkt->ehdr_buf, &ploff, &tci); } pkt->tci = tci; net_rx_pkt_pull_data(pkt, iov, iovcnt, ploff); } | 13,703 |
1 | static inline void RENAME(yuy2ToUV)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src1, const uint8_t *src2, int width, uint32_t *unused) { #if COMPILE_TEMPLATE_MMX __asm__ volatile( "movq "MANGLE(bm01010101)", %%mm4 \n\t" "mov %0, %%"REG_a" \n\t" "1: \n\t" "movq (%1, %%"REG_a",4), %%mm0 \n\t" "movq 8(%1, %%"REG_a",4), %%mm1 \n\t" "psrlw $8, %%mm0 \n\t" "psrlw $8, %%mm1 \n\t" "packuswb %%mm1, %%mm0 \n\t" "movq %%mm0, %%mm1 \n\t" "psrlw $8, %%mm0 \n\t" "pand %%mm4, %%mm1 \n\t" "packuswb %%mm0, %%mm0 \n\t" "packuswb %%mm1, %%mm1 \n\t" "movd %%mm0, (%3, %%"REG_a") \n\t" "movd %%mm1, (%2, %%"REG_a") \n\t" "add $4, %%"REG_a" \n\t" " js 1b \n\t" : : "g" ((x86_reg)-width), "r" (src1+width*4), "r" (dstU+width), "r" (dstV+width) : "%"REG_a ); #else int i; for (i=0; i<width; i++) { dstU[i]= src1[4*i + 1]; dstV[i]= src1[4*i + 3]; } #endif assert(src1 == src2); } | 13,704 |
1 | static void qemu_rbd_complete_aio(RADOSCB *rcb) { RBDAIOCB *acb = rcb->acb; int64_t r; r = rcb->ret; if (acb->cmd != RBD_AIO_READ) { if (r < 0) { acb->ret = r; acb->error = 1; } else if (!acb->error) { acb->ret = rcb->size; } } else { if (r < 0) { memset(rcb->buf, 0, rcb->size); acb->ret = r; acb->error = 1; } else if (r < rcb->size) { memset(rcb->buf + r, 0, rcb->size - r); if (!acb->error) { acb->ret = rcb->size; } } else if (!acb->error) { acb->ret = r; } } /* Note that acb->bh can be NULL in case where the aio was cancelled */ acb->bh = qemu_bh_new(rbd_aio_bh_cb, acb); qemu_bh_schedule(acb->bh); g_free(rcb); } | 13,705 |
1 | static void scsi_disk_set_sense(SCSIDiskState *s, uint8_t key) { s->sense.key = key; } | 13,707 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.