id
int64 1
3.64k
| title
stringlengths 3
79
| difficulty
stringclasses 3
values | description
stringlengths 430
25.4k
| tags
stringlengths 0
131
| language
stringclasses 19
values | solution
stringlengths 47
20.6k
|
---|---|---|---|---|---|---|
201 |
Bitwise AND of Numbers Range
|
Medium
|
<p>Given two integers <code>left</code> and <code>right</code> that represent the range <code>[left, right]</code>, return <em>the bitwise AND of all numbers in this range, inclusive</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> left = 5, right = 7
<strong>Output:</strong> 4
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> left = 0, right = 0
<strong>Output:</strong> 0
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> left = 1, right = 2147483647
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= left <= right <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Bit Manipulation
|
JavaScript
|
/**
* @param {number} left
* @param {number} right
* @return {number}
*/
var rangeBitwiseAnd = function (left, right) {
while (left < right) {
right &= right - 1;
}
return right;
};
|
201 |
Bitwise AND of Numbers Range
|
Medium
|
<p>Given two integers <code>left</code> and <code>right</code> that represent the range <code>[left, right]</code>, return <em>the bitwise AND of all numbers in this range, inclusive</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> left = 5, right = 7
<strong>Output:</strong> 4
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> left = 0, right = 0
<strong>Output:</strong> 0
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> left = 1, right = 2147483647
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= left <= right <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Bit Manipulation
|
Python
|
class Solution:
def rangeBitwiseAnd(self, left: int, right: int) -> int:
while left < right:
right &= right - 1
return right
|
202 |
Happy Number
|
Easy
|
<p>Write an algorithm to determine if a number <code>n</code> is happy.</p>
<p>A <strong>happy number</strong> is a number defined by the following process:</p>
<ul>
<li>Starting with any positive integer, replace the number by the sum of the squares of its digits.</li>
<li>Repeat the process until the number equals 1 (where it will stay), or it <strong>loops endlessly in a cycle</strong> which does not include 1.</li>
<li>Those numbers for which this process <strong>ends in 1</strong> are happy.</li>
</ul>
<p>Return <code>true</code> <em>if</em> <code>n</code> <em>is a happy number, and</em> <code>false</code> <em>if not</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 19
<strong>Output:</strong> true
<strong>Explanation:</strong>
1<sup>2</sup> + 9<sup>2</sup> = 82
8<sup>2</sup> + 2<sup>2</sup> = 68
6<sup>2</sup> + 8<sup>2</sup> = 100
1<sup>2</sup> + 0<sup>2</sup> + 0<sup>2</sup> = 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Hash Table; Math; Two Pointers
|
C
|
int getNext(int n) {
int res = 0;
while (n) {
res += (n % 10) * (n % 10);
n /= 10;
}
return res;
}
bool isHappy(int n) {
int slow = n;
int fast = getNext(n);
while (slow != fast) {
slow = getNext(slow);
fast = getNext(getNext(fast));
}
return fast == 1;
}
|
202 |
Happy Number
|
Easy
|
<p>Write an algorithm to determine if a number <code>n</code> is happy.</p>
<p>A <strong>happy number</strong> is a number defined by the following process:</p>
<ul>
<li>Starting with any positive integer, replace the number by the sum of the squares of its digits.</li>
<li>Repeat the process until the number equals 1 (where it will stay), or it <strong>loops endlessly in a cycle</strong> which does not include 1.</li>
<li>Those numbers for which this process <strong>ends in 1</strong> are happy.</li>
</ul>
<p>Return <code>true</code> <em>if</em> <code>n</code> <em>is a happy number, and</em> <code>false</code> <em>if not</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 19
<strong>Output:</strong> true
<strong>Explanation:</strong>
1<sup>2</sup> + 9<sup>2</sup> = 82
8<sup>2</sup> + 2<sup>2</sup> = 68
6<sup>2</sup> + 8<sup>2</sup> = 100
1<sup>2</sup> + 0<sup>2</sup> + 0<sup>2</sup> = 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Hash Table; Math; Two Pointers
|
C++
|
class Solution {
public:
bool isHappy(int n) {
unordered_set<int> vis;
while (n != 1 && !vis.count(n)) {
vis.insert(n);
int x = 0;
for (; n; n /= 10) {
x += (n % 10) * (n % 10);
}
n = x;
}
return n == 1;
}
};
|
202 |
Happy Number
|
Easy
|
<p>Write an algorithm to determine if a number <code>n</code> is happy.</p>
<p>A <strong>happy number</strong> is a number defined by the following process:</p>
<ul>
<li>Starting with any positive integer, replace the number by the sum of the squares of its digits.</li>
<li>Repeat the process until the number equals 1 (where it will stay), or it <strong>loops endlessly in a cycle</strong> which does not include 1.</li>
<li>Those numbers for which this process <strong>ends in 1</strong> are happy.</li>
</ul>
<p>Return <code>true</code> <em>if</em> <code>n</code> <em>is a happy number, and</em> <code>false</code> <em>if not</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 19
<strong>Output:</strong> true
<strong>Explanation:</strong>
1<sup>2</sup> + 9<sup>2</sup> = 82
8<sup>2</sup> + 2<sup>2</sup> = 68
6<sup>2</sup> + 8<sup>2</sup> = 100
1<sup>2</sup> + 0<sup>2</sup> + 0<sup>2</sup> = 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Hash Table; Math; Two Pointers
|
Go
|
func isHappy(n int) bool {
vis := map[int]bool{}
for n != 1 && !vis[n] {
vis[n] = true
x := 0
for ; n > 0; n /= 10 {
x += (n % 10) * (n % 10)
}
n = x
}
return n == 1
}
|
202 |
Happy Number
|
Easy
|
<p>Write an algorithm to determine if a number <code>n</code> is happy.</p>
<p>A <strong>happy number</strong> is a number defined by the following process:</p>
<ul>
<li>Starting with any positive integer, replace the number by the sum of the squares of its digits.</li>
<li>Repeat the process until the number equals 1 (where it will stay), or it <strong>loops endlessly in a cycle</strong> which does not include 1.</li>
<li>Those numbers for which this process <strong>ends in 1</strong> are happy.</li>
</ul>
<p>Return <code>true</code> <em>if</em> <code>n</code> <em>is a happy number, and</em> <code>false</code> <em>if not</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 19
<strong>Output:</strong> true
<strong>Explanation:</strong>
1<sup>2</sup> + 9<sup>2</sup> = 82
8<sup>2</sup> + 2<sup>2</sup> = 68
6<sup>2</sup> + 8<sup>2</sup> = 100
1<sup>2</sup> + 0<sup>2</sup> + 0<sup>2</sup> = 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Hash Table; Math; Two Pointers
|
Java
|
class Solution {
public boolean isHappy(int n) {
Set<Integer> vis = new HashSet<>();
while (n != 1 && !vis.contains(n)) {
vis.add(n);
int x = 0;
while (n != 0) {
x += (n % 10) * (n % 10);
n /= 10;
}
n = x;
}
return n == 1;
}
}
|
202 |
Happy Number
|
Easy
|
<p>Write an algorithm to determine if a number <code>n</code> is happy.</p>
<p>A <strong>happy number</strong> is a number defined by the following process:</p>
<ul>
<li>Starting with any positive integer, replace the number by the sum of the squares of its digits.</li>
<li>Repeat the process until the number equals 1 (where it will stay), or it <strong>loops endlessly in a cycle</strong> which does not include 1.</li>
<li>Those numbers for which this process <strong>ends in 1</strong> are happy.</li>
</ul>
<p>Return <code>true</code> <em>if</em> <code>n</code> <em>is a happy number, and</em> <code>false</code> <em>if not</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 19
<strong>Output:</strong> true
<strong>Explanation:</strong>
1<sup>2</sup> + 9<sup>2</sup> = 82
8<sup>2</sup> + 2<sup>2</sup> = 68
6<sup>2</sup> + 8<sup>2</sup> = 100
1<sup>2</sup> + 0<sup>2</sup> + 0<sup>2</sup> = 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Hash Table; Math; Two Pointers
|
Python
|
class Solution:
def isHappy(self, n: int) -> bool:
vis = set()
while n != 1 and n not in vis:
vis.add(n)
x = 0
while n:
n, v = divmod(n, 10)
x += v * v
n = x
return n == 1
|
202 |
Happy Number
|
Easy
|
<p>Write an algorithm to determine if a number <code>n</code> is happy.</p>
<p>A <strong>happy number</strong> is a number defined by the following process:</p>
<ul>
<li>Starting with any positive integer, replace the number by the sum of the squares of its digits.</li>
<li>Repeat the process until the number equals 1 (where it will stay), or it <strong>loops endlessly in a cycle</strong> which does not include 1.</li>
<li>Those numbers for which this process <strong>ends in 1</strong> are happy.</li>
</ul>
<p>Return <code>true</code> <em>if</em> <code>n</code> <em>is a happy number, and</em> <code>false</code> <em>if not</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 19
<strong>Output:</strong> true
<strong>Explanation:</strong>
1<sup>2</sup> + 9<sup>2</sup> = 82
8<sup>2</sup> + 2<sup>2</sup> = 68
6<sup>2</sup> + 8<sup>2</sup> = 100
1<sup>2</sup> + 0<sup>2</sup> + 0<sup>2</sup> = 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Hash Table; Math; Two Pointers
|
Rust
|
use std::collections::HashSet;
impl Solution {
fn get_next(mut n: i32) -> i32 {
let mut res = 0;
while n != 0 {
res += (n % 10).pow(2);
n /= 10;
}
res
}
pub fn is_happy(mut n: i32) -> bool {
let mut set = HashSet::new();
while n != 1 {
let next = Self::get_next(n);
if set.contains(&next) {
return false;
}
set.insert(next);
n = next;
}
true
}
}
|
202 |
Happy Number
|
Easy
|
<p>Write an algorithm to determine if a number <code>n</code> is happy.</p>
<p>A <strong>happy number</strong> is a number defined by the following process:</p>
<ul>
<li>Starting with any positive integer, replace the number by the sum of the squares of its digits.</li>
<li>Repeat the process until the number equals 1 (where it will stay), or it <strong>loops endlessly in a cycle</strong> which does not include 1.</li>
<li>Those numbers for which this process <strong>ends in 1</strong> are happy.</li>
</ul>
<p>Return <code>true</code> <em>if</em> <code>n</code> <em>is a happy number, and</em> <code>false</code> <em>if not</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 19
<strong>Output:</strong> true
<strong>Explanation:</strong>
1<sup>2</sup> + 9<sup>2</sup> = 82
8<sup>2</sup> + 2<sup>2</sup> = 68
6<sup>2</sup> + 8<sup>2</sup> = 100
1<sup>2</sup> + 0<sup>2</sup> + 0<sup>2</sup> = 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 2
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
|
Hash Table; Math; Two Pointers
|
TypeScript
|
function isHappy(n: number): boolean {
const getNext = (n: number) => {
let res = 0;
while (n !== 0) {
res += (n % 10) ** 2;
n = Math.floor(n / 10);
}
return res;
};
const set = new Set();
while (n !== 1) {
const next = getNext(n);
if (set.has(next)) {
return false;
}
set.add(next);
n = next;
}
return true;
}
|
203 |
Remove Linked List Elements
|
Easy
|
<p>Given the <code>head</code> of a linked list and an integer <code>val</code>, remove all the nodes of the linked list that has <code>Node.val == val</code>, and return <em>the new head</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0203.Remove%20Linked%20List%20Elements/images/removelinked-list.jpg" style="width: 500px; height: 142px;" />
<pre>
<strong>Input:</strong> head = [1,2,6,3,4,5,6], val = 6
<strong>Output:</strong> [1,2,3,4,5]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> head = [], val = 1
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> head = [7,7,7,7], val = 7
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the list is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>1 <= Node.val <= 50</code></li>
<li><code>0 <= val <= 50</code></li>
</ul>
|
Recursion; Linked List
|
C++
|
class Solution {
public:
ListNode* removeElements(ListNode* head, int val) {
ListNode* dummy = new ListNode();
dummy->next = head;
ListNode* p = dummy;
while (p->next) {
if (p->next->val == val) {
p->next = p->next->next;
} else {
p = p->next;
}
}
return dummy->next;
}
};
|
203 |
Remove Linked List Elements
|
Easy
|
<p>Given the <code>head</code> of a linked list and an integer <code>val</code>, remove all the nodes of the linked list that has <code>Node.val == val</code>, and return <em>the new head</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0203.Remove%20Linked%20List%20Elements/images/removelinked-list.jpg" style="width: 500px; height: 142px;" />
<pre>
<strong>Input:</strong> head = [1,2,6,3,4,5,6], val = 6
<strong>Output:</strong> [1,2,3,4,5]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> head = [], val = 1
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> head = [7,7,7,7], val = 7
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the list is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>1 <= Node.val <= 50</code></li>
<li><code>0 <= val <= 50</code></li>
</ul>
|
Recursion; Linked List
|
C#
|
public class Solution {
public ListNode RemoveElements(ListNode head, int val) {
ListNode newHead = null;
ListNode newTail = null;
var current = head;
while (current != null)
{
if (current.val != val)
{
if (newHead == null)
{
newHead = newTail = current;
}
else
{
newTail.next = current;
newTail = current;
}
}
current = current.next;
}
if (newTail != null) newTail.next = null;
return newHead;
}
}
|
203 |
Remove Linked List Elements
|
Easy
|
<p>Given the <code>head</code> of a linked list and an integer <code>val</code>, remove all the nodes of the linked list that has <code>Node.val == val</code>, and return <em>the new head</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0203.Remove%20Linked%20List%20Elements/images/removelinked-list.jpg" style="width: 500px; height: 142px;" />
<pre>
<strong>Input:</strong> head = [1,2,6,3,4,5,6], val = 6
<strong>Output:</strong> [1,2,3,4,5]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> head = [], val = 1
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> head = [7,7,7,7], val = 7
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the list is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>1 <= Node.val <= 50</code></li>
<li><code>0 <= val <= 50</code></li>
</ul>
|
Recursion; Linked List
|
Go
|
func removeElements(head *ListNode, val int) *ListNode {
dummy := new(ListNode)
dummy.Next = head
p := dummy
for p.Next != nil {
if p.Next.Val == val {
p.Next = p.Next.Next
} else {
p = p.Next
}
}
return dummy.Next
}
|
203 |
Remove Linked List Elements
|
Easy
|
<p>Given the <code>head</code> of a linked list and an integer <code>val</code>, remove all the nodes of the linked list that has <code>Node.val == val</code>, and return <em>the new head</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0203.Remove%20Linked%20List%20Elements/images/removelinked-list.jpg" style="width: 500px; height: 142px;" />
<pre>
<strong>Input:</strong> head = [1,2,6,3,4,5,6], val = 6
<strong>Output:</strong> [1,2,3,4,5]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> head = [], val = 1
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> head = [7,7,7,7], val = 7
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the list is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>1 <= Node.val <= 50</code></li>
<li><code>0 <= val <= 50</code></li>
</ul>
|
Recursion; Linked List
|
Java
|
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode removeElements(ListNode head, int val) {
ListNode dummy = new ListNode(-1, head);
ListNode pre = dummy;
while (pre.next != null) {
if (pre.next.val != val)
pre = pre.next;
else
pre.next = pre.next.next;
}
return dummy.next;
}
}
|
203 |
Remove Linked List Elements
|
Easy
|
<p>Given the <code>head</code> of a linked list and an integer <code>val</code>, remove all the nodes of the linked list that has <code>Node.val == val</code>, and return <em>the new head</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0203.Remove%20Linked%20List%20Elements/images/removelinked-list.jpg" style="width: 500px; height: 142px;" />
<pre>
<strong>Input:</strong> head = [1,2,6,3,4,5,6], val = 6
<strong>Output:</strong> [1,2,3,4,5]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> head = [], val = 1
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> head = [7,7,7,7], val = 7
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the list is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>1 <= Node.val <= 50</code></li>
<li><code>0 <= val <= 50</code></li>
</ul>
|
Recursion; Linked List
|
Python
|
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def removeElements(self, head: ListNode, val: int) -> ListNode:
dummy = ListNode(-1, head)
pre = dummy
while pre.next:
if pre.next.val != val:
pre = pre.next
else:
pre.next = pre.next.next
return dummy.next
|
203 |
Remove Linked List Elements
|
Easy
|
<p>Given the <code>head</code> of a linked list and an integer <code>val</code>, remove all the nodes of the linked list that has <code>Node.val == val</code>, and return <em>the new head</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0203.Remove%20Linked%20List%20Elements/images/removelinked-list.jpg" style="width: 500px; height: 142px;" />
<pre>
<strong>Input:</strong> head = [1,2,6,3,4,5,6], val = 6
<strong>Output:</strong> [1,2,3,4,5]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> head = [], val = 1
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> head = [7,7,7,7], val = 7
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the list is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>1 <= Node.val <= 50</code></li>
<li><code>0 <= val <= 50</code></li>
</ul>
|
Recursion; Linked List
|
Rust
|
// Definition for singly-linked list.
// #[derive(PartialEq, Eq, Clone, Debug)]
// pub struct ListNode {
// pub val: i32,
// pub next: Option<Box<ListNode>>
// }
//
// impl ListNode {
// #[inline]
// fn new(val: i32) -> Self {
// ListNode {
// next: None,
// val
// }
// }
// }
impl Solution {
pub fn remove_elements(head: Option<Box<ListNode>>, val: i32) -> Option<Box<ListNode>> {
let mut dummy = Box::new(ListNode { val: 0, next: head });
let mut cur = &mut dummy;
while let Some(mut node) = cur.next.take() {
if node.val == val {
cur.next = node.next.take();
} else {
cur.next = Some(node);
cur = cur.next.as_mut().unwrap();
}
}
dummy.next.take()
}
}
|
203 |
Remove Linked List Elements
|
Easy
|
<p>Given the <code>head</code> of a linked list and an integer <code>val</code>, remove all the nodes of the linked list that has <code>Node.val == val</code>, and return <em>the new head</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0203.Remove%20Linked%20List%20Elements/images/removelinked-list.jpg" style="width: 500px; height: 142px;" />
<pre>
<strong>Input:</strong> head = [1,2,6,3,4,5,6], val = 6
<strong>Output:</strong> [1,2,3,4,5]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> head = [], val = 1
<strong>Output:</strong> []
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> head = [7,7,7,7], val = 7
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the list is in the range <code>[0, 10<sup>4</sup>]</code>.</li>
<li><code>1 <= Node.val <= 50</code></li>
<li><code>0 <= val <= 50</code></li>
</ul>
|
Recursion; Linked List
|
TypeScript
|
/**
* Definition for singly-linked list.
* class ListNode {
* val: number
* next: ListNode | null
* constructor(val?: number, next?: ListNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
* }
*/
function removeElements(head: ListNode | null, val: number): ListNode | null {
const dummy: ListNode = new ListNode(0, head);
let cur: ListNode = dummy;
while (cur.next != null) {
if (cur.next.val === val) {
cur.next = cur.next.next;
} else {
cur = cur.next;
}
}
return dummy.next;
}
|
204 |
Count Primes
|
Medium
|
<p>Given an integer <code>n</code>, return <em>the number of prime numbers that are strictly less than</em> <code>n</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 10
<strong>Output:</strong> 4
<strong>Explanation:</strong> There are 4 prime numbers less than 10, they are 2, 3, 5, 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 0
<strong>Output:</strong> 0
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = 1
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 5 * 10<sup>6</sup></code></li>
</ul>
|
Array; Math; Enumeration; Number Theory
|
C++
|
class Solution {
public:
int countPrimes(int n) {
vector<bool> primes(n, true);
int ans = 0;
for (int i = 2; i < n; ++i) {
if (primes[i]) {
++ans;
for (int j = i; j < n; j += i) primes[j] = false;
}
}
return ans;
}
};
|
204 |
Count Primes
|
Medium
|
<p>Given an integer <code>n</code>, return <em>the number of prime numbers that are strictly less than</em> <code>n</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 10
<strong>Output:</strong> 4
<strong>Explanation:</strong> There are 4 prime numbers less than 10, they are 2, 3, 5, 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 0
<strong>Output:</strong> 0
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = 1
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 5 * 10<sup>6</sup></code></li>
</ul>
|
Array; Math; Enumeration; Number Theory
|
C#
|
public class Solution {
public int CountPrimes(int n) {
var notPrimes = new bool[n];
int ans = 0;
for (int i = 2; i < n; ++i)
{
if (!notPrimes[i])
{
++ans;
for (int j = i + i; j < n; j += i)
{
notPrimes[j] = true;
}
}
}
return ans;
}
}
|
204 |
Count Primes
|
Medium
|
<p>Given an integer <code>n</code>, return <em>the number of prime numbers that are strictly less than</em> <code>n</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 10
<strong>Output:</strong> 4
<strong>Explanation:</strong> There are 4 prime numbers less than 10, they are 2, 3, 5, 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 0
<strong>Output:</strong> 0
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = 1
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 5 * 10<sup>6</sup></code></li>
</ul>
|
Array; Math; Enumeration; Number Theory
|
Go
|
func countPrimes(n int) int {
primes := make([]bool, n)
for i := range primes {
primes[i] = true
}
ans := 0
for i := 2; i < n; i++ {
if primes[i] {
ans++
for j := i + i; j < n; j += i {
primes[j] = false
}
}
}
return ans
}
|
204 |
Count Primes
|
Medium
|
<p>Given an integer <code>n</code>, return <em>the number of prime numbers that are strictly less than</em> <code>n</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 10
<strong>Output:</strong> 4
<strong>Explanation:</strong> There are 4 prime numbers less than 10, they are 2, 3, 5, 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 0
<strong>Output:</strong> 0
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = 1
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 5 * 10<sup>6</sup></code></li>
</ul>
|
Array; Math; Enumeration; Number Theory
|
Java
|
class Solution {
public int countPrimes(int n) {
boolean[] primes = new boolean[n];
Arrays.fill(primes, true);
int ans = 0;
for (int i = 2; i < n; ++i) {
if (primes[i]) {
++ans;
for (int j = i + i; j < n; j += i) {
primes[j] = false;
}
}
}
return ans;
}
}
|
204 |
Count Primes
|
Medium
|
<p>Given an integer <code>n</code>, return <em>the number of prime numbers that are strictly less than</em> <code>n</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 10
<strong>Output:</strong> 4
<strong>Explanation:</strong> There are 4 prime numbers less than 10, they are 2, 3, 5, 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 0
<strong>Output:</strong> 0
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = 1
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 5 * 10<sup>6</sup></code></li>
</ul>
|
Array; Math; Enumeration; Number Theory
|
JavaScript
|
/**
* @param {number} n
* @return {number}
*/
var countPrimes = function (n) {
let primes = new Array(n).fill(true);
let ans = 0;
for (let i = 2; i < n; ++i) {
if (primes[i]) {
++ans;
for (let j = i + i; j < n; j += i) {
primes[j] = false;
}
}
}
return ans;
};
|
204 |
Count Primes
|
Medium
|
<p>Given an integer <code>n</code>, return <em>the number of prime numbers that are strictly less than</em> <code>n</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 10
<strong>Output:</strong> 4
<strong>Explanation:</strong> There are 4 prime numbers less than 10, they are 2, 3, 5, 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 0
<strong>Output:</strong> 0
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = 1
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= n <= 5 * 10<sup>6</sup></code></li>
</ul>
|
Array; Math; Enumeration; Number Theory
|
Python
|
class Solution:
def countPrimes(self, n: int) -> int:
primes = [True] * n
ans = 0
for i in range(2, n):
if primes[i]:
ans += 1
for j in range(i + i, n, i):
primes[j] = False
return ans
|
205 |
Isomorphic Strings
|
Easy
|
<p>Given two strings <code>s</code> and <code>t</code>, <em>determine if they are isomorphic</em>.</p>
<p>Two strings <code>s</code> and <code>t</code> are isomorphic if the characters in <code>s</code> can be replaced to get <code>t</code>.</p>
<p>All occurrences of a character must be replaced with another character while preserving the order of characters. No two characters may map to the same character, but a character may map to itself.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "egg", t = "add"</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
<p><strong>Explanation:</strong></p>
<p>The strings <code>s</code> and <code>t</code> can be made identical by:</p>
<ul>
<li>Mapping <code>'e'</code> to <code>'a'</code>.</li>
<li>Mapping <code>'g'</code> to <code>'d'</code>.</li>
</ul>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "foo", t = "bar"</span></p>
<p><strong>Output:</strong> <span class="example-io">false</span></p>
<p><strong>Explanation:</strong></p>
<p>The strings <code>s</code> and <code>t</code> can not be made identical as <code>'o'</code> needs to be mapped to both <code>'a'</code> and <code>'r'</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "paper", t = "title"</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>t.length == s.length</code></li>
<li><code>s</code> and <code>t</code> consist of any valid ascii character.</li>
</ul>
|
Hash Table; String
|
C++
|
class Solution {
public:
bool isIsomorphic(string s, string t) {
int d1[256]{};
int d2[256]{};
int n = s.size();
for (int i = 0; i < n; ++i) {
char a = s[i], b = t[i];
if (d1[a] != d2[b]) {
return false;
}
d1[a] = d2[b] = i + 1;
}
return true;
}
};
|
205 |
Isomorphic Strings
|
Easy
|
<p>Given two strings <code>s</code> and <code>t</code>, <em>determine if they are isomorphic</em>.</p>
<p>Two strings <code>s</code> and <code>t</code> are isomorphic if the characters in <code>s</code> can be replaced to get <code>t</code>.</p>
<p>All occurrences of a character must be replaced with another character while preserving the order of characters. No two characters may map to the same character, but a character may map to itself.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "egg", t = "add"</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
<p><strong>Explanation:</strong></p>
<p>The strings <code>s</code> and <code>t</code> can be made identical by:</p>
<ul>
<li>Mapping <code>'e'</code> to <code>'a'</code>.</li>
<li>Mapping <code>'g'</code> to <code>'d'</code>.</li>
</ul>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "foo", t = "bar"</span></p>
<p><strong>Output:</strong> <span class="example-io">false</span></p>
<p><strong>Explanation:</strong></p>
<p>The strings <code>s</code> and <code>t</code> can not be made identical as <code>'o'</code> needs to be mapped to both <code>'a'</code> and <code>'r'</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "paper", t = "title"</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>t.length == s.length</code></li>
<li><code>s</code> and <code>t</code> consist of any valid ascii character.</li>
</ul>
|
Hash Table; String
|
C#
|
public class Solution {
public bool IsIsomorphic(string s, string t) {
int[] d1 = new int[256];
int[] d2 = new int[256];
for (int i = 0; i < s.Length; ++i) {
var a = s[i];
var b = t[i];
if (d1[a] != d2[b]) {
return false;
}
d1[a] = i + 1;
d2[b] = i + 1;
}
return true;
}
}
|
205 |
Isomorphic Strings
|
Easy
|
<p>Given two strings <code>s</code> and <code>t</code>, <em>determine if they are isomorphic</em>.</p>
<p>Two strings <code>s</code> and <code>t</code> are isomorphic if the characters in <code>s</code> can be replaced to get <code>t</code>.</p>
<p>All occurrences of a character must be replaced with another character while preserving the order of characters. No two characters may map to the same character, but a character may map to itself.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "egg", t = "add"</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
<p><strong>Explanation:</strong></p>
<p>The strings <code>s</code> and <code>t</code> can be made identical by:</p>
<ul>
<li>Mapping <code>'e'</code> to <code>'a'</code>.</li>
<li>Mapping <code>'g'</code> to <code>'d'</code>.</li>
</ul>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "foo", t = "bar"</span></p>
<p><strong>Output:</strong> <span class="example-io">false</span></p>
<p><strong>Explanation:</strong></p>
<p>The strings <code>s</code> and <code>t</code> can not be made identical as <code>'o'</code> needs to be mapped to both <code>'a'</code> and <code>'r'</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "paper", t = "title"</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>t.length == s.length</code></li>
<li><code>s</code> and <code>t</code> consist of any valid ascii character.</li>
</ul>
|
Hash Table; String
|
Go
|
func isIsomorphic(s string, t string) bool {
d1 := [256]int{}
d2 := [256]int{}
for i := range s {
if d1[s[i]] != d2[t[i]] {
return false
}
d1[s[i]] = i + 1
d2[t[i]] = i + 1
}
return true
}
|
205 |
Isomorphic Strings
|
Easy
|
<p>Given two strings <code>s</code> and <code>t</code>, <em>determine if they are isomorphic</em>.</p>
<p>Two strings <code>s</code> and <code>t</code> are isomorphic if the characters in <code>s</code> can be replaced to get <code>t</code>.</p>
<p>All occurrences of a character must be replaced with another character while preserving the order of characters. No two characters may map to the same character, but a character may map to itself.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "egg", t = "add"</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
<p><strong>Explanation:</strong></p>
<p>The strings <code>s</code> and <code>t</code> can be made identical by:</p>
<ul>
<li>Mapping <code>'e'</code> to <code>'a'</code>.</li>
<li>Mapping <code>'g'</code> to <code>'d'</code>.</li>
</ul>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "foo", t = "bar"</span></p>
<p><strong>Output:</strong> <span class="example-io">false</span></p>
<p><strong>Explanation:</strong></p>
<p>The strings <code>s</code> and <code>t</code> can not be made identical as <code>'o'</code> needs to be mapped to both <code>'a'</code> and <code>'r'</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "paper", t = "title"</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>t.length == s.length</code></li>
<li><code>s</code> and <code>t</code> consist of any valid ascii character.</li>
</ul>
|
Hash Table; String
|
Java
|
class Solution {
public boolean isIsomorphic(String s, String t) {
Map<Character, Character> d1 = new HashMap<>();
Map<Character, Character> d2 = new HashMap<>();
int n = s.length();
for (int i = 0; i < n; ++i) {
char a = s.charAt(i), b = t.charAt(i);
if (d1.containsKey(a) && d1.get(a) != b) {
return false;
}
if (d2.containsKey(b) && d2.get(b) != a) {
return false;
}
d1.put(a, b);
d2.put(b, a);
}
return true;
}
}
|
205 |
Isomorphic Strings
|
Easy
|
<p>Given two strings <code>s</code> and <code>t</code>, <em>determine if they are isomorphic</em>.</p>
<p>Two strings <code>s</code> and <code>t</code> are isomorphic if the characters in <code>s</code> can be replaced to get <code>t</code>.</p>
<p>All occurrences of a character must be replaced with another character while preserving the order of characters. No two characters may map to the same character, but a character may map to itself.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "egg", t = "add"</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
<p><strong>Explanation:</strong></p>
<p>The strings <code>s</code> and <code>t</code> can be made identical by:</p>
<ul>
<li>Mapping <code>'e'</code> to <code>'a'</code>.</li>
<li>Mapping <code>'g'</code> to <code>'d'</code>.</li>
</ul>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "foo", t = "bar"</span></p>
<p><strong>Output:</strong> <span class="example-io">false</span></p>
<p><strong>Explanation:</strong></p>
<p>The strings <code>s</code> and <code>t</code> can not be made identical as <code>'o'</code> needs to be mapped to both <code>'a'</code> and <code>'r'</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "paper", t = "title"</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>t.length == s.length</code></li>
<li><code>s</code> and <code>t</code> consist of any valid ascii character.</li>
</ul>
|
Hash Table; String
|
Python
|
class Solution:
def isIsomorphic(self, s: str, t: str) -> bool:
d1 = {}
d2 = {}
for a, b in zip(s, t):
if (a in d1 and d1[a] != b) or (b in d2 and d2[b] != a):
return False
d1[a] = b
d2[b] = a
return True
|
205 |
Isomorphic Strings
|
Easy
|
<p>Given two strings <code>s</code> and <code>t</code>, <em>determine if they are isomorphic</em>.</p>
<p>Two strings <code>s</code> and <code>t</code> are isomorphic if the characters in <code>s</code> can be replaced to get <code>t</code>.</p>
<p>All occurrences of a character must be replaced with another character while preserving the order of characters. No two characters may map to the same character, but a character may map to itself.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "egg", t = "add"</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
<p><strong>Explanation:</strong></p>
<p>The strings <code>s</code> and <code>t</code> can be made identical by:</p>
<ul>
<li>Mapping <code>'e'</code> to <code>'a'</code>.</li>
<li>Mapping <code>'g'</code> to <code>'d'</code>.</li>
</ul>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "foo", t = "bar"</span></p>
<p><strong>Output:</strong> <span class="example-io">false</span></p>
<p><strong>Explanation:</strong></p>
<p>The strings <code>s</code> and <code>t</code> can not be made identical as <code>'o'</code> needs to be mapped to both <code>'a'</code> and <code>'r'</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "paper", t = "title"</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>t.length == s.length</code></li>
<li><code>s</code> and <code>t</code> consist of any valid ascii character.</li>
</ul>
|
Hash Table; String
|
Rust
|
use std::collections::HashMap;
impl Solution {
fn help(s: &[u8], t: &[u8]) -> bool {
let mut map = HashMap::new();
for i in 0..s.len() {
if map.contains_key(&s[i]) {
if map.get(&s[i]).unwrap() != &t[i] {
return false;
}
} else {
map.insert(s[i], t[i]);
}
}
true
}
pub fn is_isomorphic(s: String, t: String) -> bool {
let (s, t) = (s.as_bytes(), t.as_bytes());
Self::help(s, t) && Self::help(t, s)
}
}
|
205 |
Isomorphic Strings
|
Easy
|
<p>Given two strings <code>s</code> and <code>t</code>, <em>determine if they are isomorphic</em>.</p>
<p>Two strings <code>s</code> and <code>t</code> are isomorphic if the characters in <code>s</code> can be replaced to get <code>t</code>.</p>
<p>All occurrences of a character must be replaced with another character while preserving the order of characters. No two characters may map to the same character, but a character may map to itself.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "egg", t = "add"</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
<p><strong>Explanation:</strong></p>
<p>The strings <code>s</code> and <code>t</code> can be made identical by:</p>
<ul>
<li>Mapping <code>'e'</code> to <code>'a'</code>.</li>
<li>Mapping <code>'g'</code> to <code>'d'</code>.</li>
</ul>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "foo", t = "bar"</span></p>
<p><strong>Output:</strong> <span class="example-io">false</span></p>
<p><strong>Explanation:</strong></p>
<p>The strings <code>s</code> and <code>t</code> can not be made identical as <code>'o'</code> needs to be mapped to both <code>'a'</code> and <code>'r'</code>.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">s = "paper", t = "title"</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>t.length == s.length</code></li>
<li><code>s</code> and <code>t</code> consist of any valid ascii character.</li>
</ul>
|
Hash Table; String
|
TypeScript
|
function isIsomorphic(s: string, t: string): boolean {
const d1: number[] = new Array(256).fill(0);
const d2: number[] = new Array(256).fill(0);
for (let i = 0; i < s.length; ++i) {
const a = s.charCodeAt(i);
const b = t.charCodeAt(i);
if (d1[a] !== d2[b]) {
return false;
}
d1[a] = i + 1;
d2[b] = i + 1;
}
return true;
}
|
206 |
Reverse Linked List
|
Easy
|
<p>Given the <code>head</code> of a singly linked list, reverse the list, and return <em>the reversed list</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0206.Reverse%20Linked%20List/images/rev1ex1.jpg" style="width: 542px; height: 222px;" />
<pre>
<strong>Input:</strong> head = [1,2,3,4,5]
<strong>Output:</strong> [5,4,3,2,1]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0206.Reverse%20Linked%20List/images/rev1ex2.jpg" style="width: 182px; height: 222px;" />
<pre>
<strong>Input:</strong> head = [1,2]
<strong>Output:</strong> [2,1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> head = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the list is the range <code>[0, 5000]</code>.</li>
<li><code>-5000 <= Node.val <= 5000</code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> A linked list can be reversed either iteratively or recursively. Could you implement both?</p>
|
Recursion; Linked List
|
C++
|
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* reverseList(ListNode* head) {
ListNode* dummy = new ListNode();
ListNode* curr = head;
while (curr) {
ListNode* next = curr->next;
curr->next = dummy->next;
dummy->next = curr;
curr = next;
}
return dummy->next;
}
};
|
206 |
Reverse Linked List
|
Easy
|
<p>Given the <code>head</code> of a singly linked list, reverse the list, and return <em>the reversed list</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0206.Reverse%20Linked%20List/images/rev1ex1.jpg" style="width: 542px; height: 222px;" />
<pre>
<strong>Input:</strong> head = [1,2,3,4,5]
<strong>Output:</strong> [5,4,3,2,1]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0206.Reverse%20Linked%20List/images/rev1ex2.jpg" style="width: 182px; height: 222px;" />
<pre>
<strong>Input:</strong> head = [1,2]
<strong>Output:</strong> [2,1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> head = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the list is the range <code>[0, 5000]</code>.</li>
<li><code>-5000 <= Node.val <= 5000</code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> A linked list can be reversed either iteratively or recursively. Could you implement both?</p>
|
Recursion; Linked List
|
C#
|
/**
* Definition for singly-linked list.
* public class ListNode {
* public int val;
* public ListNode next;
* public ListNode(int val=0, ListNode next=null) {
* this.val = val;
* this.next = next;
* }
* }
*/
public class Solution {
public ListNode ReverseList(ListNode head) {
ListNode dummy = new ListNode();
ListNode curr = head;
while (curr != null) {
ListNode next = curr.next;
curr.next = dummy.next;
dummy.next = curr;
curr = next;
}
return dummy.next;
}
}
|
206 |
Reverse Linked List
|
Easy
|
<p>Given the <code>head</code> of a singly linked list, reverse the list, and return <em>the reversed list</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0206.Reverse%20Linked%20List/images/rev1ex1.jpg" style="width: 542px; height: 222px;" />
<pre>
<strong>Input:</strong> head = [1,2,3,4,5]
<strong>Output:</strong> [5,4,3,2,1]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0206.Reverse%20Linked%20List/images/rev1ex2.jpg" style="width: 182px; height: 222px;" />
<pre>
<strong>Input:</strong> head = [1,2]
<strong>Output:</strong> [2,1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> head = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the list is the range <code>[0, 5000]</code>.</li>
<li><code>-5000 <= Node.val <= 5000</code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> A linked list can be reversed either iteratively or recursively. Could you implement both?</p>
|
Recursion; Linked List
|
Go
|
/**
* Definition for singly-linked list.
* type ListNode struct {
* Val int
* Next *ListNode
* }
*/
func reverseList(head *ListNode) *ListNode {
dummy := &ListNode{}
curr := head
for curr != nil {
next := curr.Next
curr.Next = dummy.Next
dummy.Next = curr
curr = next
}
return dummy.Next
}
|
206 |
Reverse Linked List
|
Easy
|
<p>Given the <code>head</code> of a singly linked list, reverse the list, and return <em>the reversed list</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0206.Reverse%20Linked%20List/images/rev1ex1.jpg" style="width: 542px; height: 222px;" />
<pre>
<strong>Input:</strong> head = [1,2,3,4,5]
<strong>Output:</strong> [5,4,3,2,1]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0206.Reverse%20Linked%20List/images/rev1ex2.jpg" style="width: 182px; height: 222px;" />
<pre>
<strong>Input:</strong> head = [1,2]
<strong>Output:</strong> [2,1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> head = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the list is the range <code>[0, 5000]</code>.</li>
<li><code>-5000 <= Node.val <= 5000</code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> A linked list can be reversed either iteratively or recursively. Could you implement both?</p>
|
Recursion; Linked List
|
Java
|
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public ListNode reverseList(ListNode head) {
ListNode dummy = new ListNode();
ListNode curr = head;
while (curr != null) {
ListNode next = curr.next;
curr.next = dummy.next;
dummy.next = curr;
curr = next;
}
return dummy.next;
}
}
|
206 |
Reverse Linked List
|
Easy
|
<p>Given the <code>head</code> of a singly linked list, reverse the list, and return <em>the reversed list</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0206.Reverse%20Linked%20List/images/rev1ex1.jpg" style="width: 542px; height: 222px;" />
<pre>
<strong>Input:</strong> head = [1,2,3,4,5]
<strong>Output:</strong> [5,4,3,2,1]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0206.Reverse%20Linked%20List/images/rev1ex2.jpg" style="width: 182px; height: 222px;" />
<pre>
<strong>Input:</strong> head = [1,2]
<strong>Output:</strong> [2,1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> head = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the list is the range <code>[0, 5000]</code>.</li>
<li><code>-5000 <= Node.val <= 5000</code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> A linked list can be reversed either iteratively or recursively. Could you implement both?</p>
|
Recursion; Linked List
|
JavaScript
|
/**
* Definition for singly-linked list.
* function ListNode(val, next) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
*/
/**
* @param {ListNode} head
* @return {ListNode}
*/
var reverseList = function (head) {
let dummy = new ListNode();
let curr = head;
while (curr) {
let next = curr.next;
curr.next = dummy.next;
dummy.next = curr;
curr = next;
}
return dummy.next;
};
|
206 |
Reverse Linked List
|
Easy
|
<p>Given the <code>head</code> of a singly linked list, reverse the list, and return <em>the reversed list</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0206.Reverse%20Linked%20List/images/rev1ex1.jpg" style="width: 542px; height: 222px;" />
<pre>
<strong>Input:</strong> head = [1,2,3,4,5]
<strong>Output:</strong> [5,4,3,2,1]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0206.Reverse%20Linked%20List/images/rev1ex2.jpg" style="width: 182px; height: 222px;" />
<pre>
<strong>Input:</strong> head = [1,2]
<strong>Output:</strong> [2,1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> head = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the list is the range <code>[0, 5000]</code>.</li>
<li><code>-5000 <= Node.val <= 5000</code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> A linked list can be reversed either iteratively or recursively. Could you implement both?</p>
|
Recursion; Linked List
|
Python
|
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def reverseList(self, head: ListNode) -> ListNode:
dummy = ListNode()
curr = head
while curr:
next = curr.next
curr.next = dummy.next
dummy.next = curr
curr = next
return dummy.next
|
206 |
Reverse Linked List
|
Easy
|
<p>Given the <code>head</code> of a singly linked list, reverse the list, and return <em>the reversed list</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0206.Reverse%20Linked%20List/images/rev1ex1.jpg" style="width: 542px; height: 222px;" />
<pre>
<strong>Input:</strong> head = [1,2,3,4,5]
<strong>Output:</strong> [5,4,3,2,1]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0206.Reverse%20Linked%20List/images/rev1ex2.jpg" style="width: 182px; height: 222px;" />
<pre>
<strong>Input:</strong> head = [1,2]
<strong>Output:</strong> [2,1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> head = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the list is the range <code>[0, 5000]</code>.</li>
<li><code>-5000 <= Node.val <= 5000</code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> A linked list can be reversed either iteratively or recursively. Could you implement both?</p>
|
Recursion; Linked List
|
Rust
|
// Definition for singly-linked list.
// #[derive(PartialEq, Eq, Clone, Debug)]
// pub struct ListNode {
// pub val: i32,
// pub next: Option<Box<ListNode>>
// }
//
// impl ListNode {
// #[inline]
// fn new(val: i32) -> Self {
// ListNode {
// next: None,
// val
// }
// }
// }
impl Solution {
pub fn reverse_list(head: Option<Box<ListNode>>) -> Option<Box<ListNode>> {
let mut head = head;
let mut pre = None;
while let Some(mut node) = head {
head = node.next.take();
node.next = pre.take();
pre = Some(node);
}
pre
}
}
|
206 |
Reverse Linked List
|
Easy
|
<p>Given the <code>head</code> of a singly linked list, reverse the list, and return <em>the reversed list</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0206.Reverse%20Linked%20List/images/rev1ex1.jpg" style="width: 542px; height: 222px;" />
<pre>
<strong>Input:</strong> head = [1,2,3,4,5]
<strong>Output:</strong> [5,4,3,2,1]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0206.Reverse%20Linked%20List/images/rev1ex2.jpg" style="width: 182px; height: 222px;" />
<pre>
<strong>Input:</strong> head = [1,2]
<strong>Output:</strong> [2,1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> head = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the list is the range <code>[0, 5000]</code>.</li>
<li><code>-5000 <= Node.val <= 5000</code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> A linked list can be reversed either iteratively or recursively. Could you implement both?</p>
|
Recursion; Linked List
|
TypeScript
|
/**
* Definition for singly-linked list.
* class ListNode {
* val: number
* next: ListNode | null
* constructor(val?: number, next?: ListNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.next = (next===undefined ? null : next)
* }
* }
*/
function reverseList(head: ListNode | null): ListNode | null {
if (head == null) {
return head;
}
let pre = null;
let cur = head;
while (cur != null) {
const next = cur.next;
cur.next = pre;
[pre, cur] = [cur, next];
}
return pre;
}
|
207 |
Course Schedule
|
Medium
|
<p>There are a total of <code>numCourses</code> courses you have to take, labeled from <code>0</code> to <code>numCourses - 1</code>. You are given an array <code>prerequisites</code> where <code>prerequisites[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that you <strong>must</strong> take course <code>b<sub>i</sub></code> first if you want to take course <code>a<sub>i</sub></code>.</p>
<ul>
<li>For example, the pair <code>[0, 1]</code>, indicates that to take course <code>0</code> you have to first take course <code>1</code>.</li>
</ul>
<p>Return <code>true</code> if you can finish all courses. Otherwise, return <code>false</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0]]
<strong>Output:</strong> true
<strong>Explanation:</strong> There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0],[0,1]]
<strong>Output:</strong> false
<strong>Explanation:</strong> There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numCourses <= 2000</code></li>
<li><code>0 <= prerequisites.length <= 5000</code></li>
<li><code>prerequisites[i].length == 2</code></li>
<li><code>0 <= a<sub>i</sub>, b<sub>i</sub> < numCourses</code></li>
<li>All the pairs prerequisites[i] are <strong>unique</strong>.</li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort
|
C++
|
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> g(numCourses);
vector<int> indeg(numCourses);
for (auto& p : prerequisites) {
int a = p[0], b = p[1];
g[b].push_back(a);
++indeg[a];
}
queue<int> q;
for (int i = 0; i < numCourses; ++i) {
if (indeg[i] == 0) {
q.push(i);
}
}
while (!q.empty()) {
int i = q.front();
q.pop();
--numCourses;
for (int j : g[i]) {
if (--indeg[j] == 0) {
q.push(j);
}
}
}
return numCourses == 0;
}
};
|
207 |
Course Schedule
|
Medium
|
<p>There are a total of <code>numCourses</code> courses you have to take, labeled from <code>0</code> to <code>numCourses - 1</code>. You are given an array <code>prerequisites</code> where <code>prerequisites[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that you <strong>must</strong> take course <code>b<sub>i</sub></code> first if you want to take course <code>a<sub>i</sub></code>.</p>
<ul>
<li>For example, the pair <code>[0, 1]</code>, indicates that to take course <code>0</code> you have to first take course <code>1</code>.</li>
</ul>
<p>Return <code>true</code> if you can finish all courses. Otherwise, return <code>false</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0]]
<strong>Output:</strong> true
<strong>Explanation:</strong> There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0],[0,1]]
<strong>Output:</strong> false
<strong>Explanation:</strong> There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numCourses <= 2000</code></li>
<li><code>0 <= prerequisites.length <= 5000</code></li>
<li><code>prerequisites[i].length == 2</code></li>
<li><code>0 <= a<sub>i</sub>, b<sub>i</sub> < numCourses</code></li>
<li>All the pairs prerequisites[i] are <strong>unique</strong>.</li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort
|
C#
|
public class Solution {
public bool CanFinish(int numCourses, int[][] prerequisites) {
var g = new List<int>[numCourses];
for (int i = 0; i < numCourses; ++i) {
g[i] = new List<int>();
}
var indeg = new int[numCourses];
foreach (var p in prerequisites) {
int a = p[0], b = p[1];
g[b].Add(a);
++indeg[a];
}
var q = new Queue<int>();
for (int i = 0; i < numCourses; ++i) {
if (indeg[i] == 0) {
q.Enqueue(i);
}
}
while (q.Count > 0) {
int i = q.Dequeue();
--numCourses;
foreach (int j in g[i]) {
if (--indeg[j] == 0) {
q.Enqueue(j);
}
}
}
return numCourses == 0;
}
}
|
207 |
Course Schedule
|
Medium
|
<p>There are a total of <code>numCourses</code> courses you have to take, labeled from <code>0</code> to <code>numCourses - 1</code>. You are given an array <code>prerequisites</code> where <code>prerequisites[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that you <strong>must</strong> take course <code>b<sub>i</sub></code> first if you want to take course <code>a<sub>i</sub></code>.</p>
<ul>
<li>For example, the pair <code>[0, 1]</code>, indicates that to take course <code>0</code> you have to first take course <code>1</code>.</li>
</ul>
<p>Return <code>true</code> if you can finish all courses. Otherwise, return <code>false</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0]]
<strong>Output:</strong> true
<strong>Explanation:</strong> There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0],[0,1]]
<strong>Output:</strong> false
<strong>Explanation:</strong> There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numCourses <= 2000</code></li>
<li><code>0 <= prerequisites.length <= 5000</code></li>
<li><code>prerequisites[i].length == 2</code></li>
<li><code>0 <= a<sub>i</sub>, b<sub>i</sub> < numCourses</code></li>
<li>All the pairs prerequisites[i] are <strong>unique</strong>.</li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort
|
Go
|
func canFinish(numCourses int, prerequisites [][]int) bool {
g := make([][]int, numCourses)
indeg := make([]int, numCourses)
for _, p := range prerequisites {
a, b := p[0], p[1]
g[b] = append(g[b], a)
indeg[a]++
}
q := []int{}
for i, x := range indeg {
if x == 0 {
q = append(q, i)
}
}
for len(q) > 0 {
i := q[0]
q = q[1:]
numCourses--
for _, j := range g[i] {
indeg[j]--
if indeg[j] == 0 {
q = append(q, j)
}
}
}
return numCourses == 0
}
|
207 |
Course Schedule
|
Medium
|
<p>There are a total of <code>numCourses</code> courses you have to take, labeled from <code>0</code> to <code>numCourses - 1</code>. You are given an array <code>prerequisites</code> where <code>prerequisites[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that you <strong>must</strong> take course <code>b<sub>i</sub></code> first if you want to take course <code>a<sub>i</sub></code>.</p>
<ul>
<li>For example, the pair <code>[0, 1]</code>, indicates that to take course <code>0</code> you have to first take course <code>1</code>.</li>
</ul>
<p>Return <code>true</code> if you can finish all courses. Otherwise, return <code>false</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0]]
<strong>Output:</strong> true
<strong>Explanation:</strong> There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0],[0,1]]
<strong>Output:</strong> false
<strong>Explanation:</strong> There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numCourses <= 2000</code></li>
<li><code>0 <= prerequisites.length <= 5000</code></li>
<li><code>prerequisites[i].length == 2</code></li>
<li><code>0 <= a<sub>i</sub>, b<sub>i</sub> < numCourses</code></li>
<li>All the pairs prerequisites[i] are <strong>unique</strong>.</li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort
|
Java
|
class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
List<Integer>[] g = new List[numCourses];
Arrays.setAll(g, k -> new ArrayList<>());
int[] indeg = new int[numCourses];
for (var p : prerequisites) {
int a = p[0], b = p[1];
g[b].add(a);
++indeg[a];
}
Deque<Integer> q = new ArrayDeque<>();
for (int i = 0; i < numCourses; ++i) {
if (indeg[i] == 0) {
q.offer(i);
}
}
while (!q.isEmpty()) {
int i = q.poll();
--numCourses;
for (int j : g[i]) {
if (--indeg[j] == 0) {
q.offer(j);
}
}
}
return numCourses == 0;
}
}
|
207 |
Course Schedule
|
Medium
|
<p>There are a total of <code>numCourses</code> courses you have to take, labeled from <code>0</code> to <code>numCourses - 1</code>. You are given an array <code>prerequisites</code> where <code>prerequisites[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that you <strong>must</strong> take course <code>b<sub>i</sub></code> first if you want to take course <code>a<sub>i</sub></code>.</p>
<ul>
<li>For example, the pair <code>[0, 1]</code>, indicates that to take course <code>0</code> you have to first take course <code>1</code>.</li>
</ul>
<p>Return <code>true</code> if you can finish all courses. Otherwise, return <code>false</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0]]
<strong>Output:</strong> true
<strong>Explanation:</strong> There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0],[0,1]]
<strong>Output:</strong> false
<strong>Explanation:</strong> There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numCourses <= 2000</code></li>
<li><code>0 <= prerequisites.length <= 5000</code></li>
<li><code>prerequisites[i].length == 2</code></li>
<li><code>0 <= a<sub>i</sub>, b<sub>i</sub> < numCourses</code></li>
<li>All the pairs prerequisites[i] are <strong>unique</strong>.</li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort
|
Python
|
class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
g = [[] for _ in range(numCourses)]
indeg = [0] * numCourses
for a, b in prerequisites:
g[b].append(a)
indeg[a] += 1
q = [i for i, x in enumerate(indeg) if x == 0]
for i in q:
numCourses -= 1
for j in g[i]:
indeg[j] -= 1
if indeg[j] == 0:
q.append(j)
return numCourses == 0
|
207 |
Course Schedule
|
Medium
|
<p>There are a total of <code>numCourses</code> courses you have to take, labeled from <code>0</code> to <code>numCourses - 1</code>. You are given an array <code>prerequisites</code> where <code>prerequisites[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that you <strong>must</strong> take course <code>b<sub>i</sub></code> first if you want to take course <code>a<sub>i</sub></code>.</p>
<ul>
<li>For example, the pair <code>[0, 1]</code>, indicates that to take course <code>0</code> you have to first take course <code>1</code>.</li>
</ul>
<p>Return <code>true</code> if you can finish all courses. Otherwise, return <code>false</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0]]
<strong>Output:</strong> true
<strong>Explanation:</strong> There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0],[0,1]]
<strong>Output:</strong> false
<strong>Explanation:</strong> There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numCourses <= 2000</code></li>
<li><code>0 <= prerequisites.length <= 5000</code></li>
<li><code>prerequisites[i].length == 2</code></li>
<li><code>0 <= a<sub>i</sub>, b<sub>i</sub> < numCourses</code></li>
<li>All the pairs prerequisites[i] are <strong>unique</strong>.</li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort
|
Rust
|
use std::collections::VecDeque;
impl Solution {
pub fn can_finish(mut num_courses: i32, prerequisites: Vec<Vec<i32>>) -> bool {
let mut g: Vec<Vec<i32>> = vec![vec![]; num_courses as usize];
let mut indeg: Vec<i32> = vec![0; num_courses as usize];
for p in prerequisites {
let a = p[0] as usize;
let b = p[1] as usize;
g[b].push(a as i32);
indeg[a] += 1;
}
let mut q: VecDeque<usize> = VecDeque::new();
for i in 0..num_courses {
if indeg[i as usize] == 0 {
q.push_back(i as usize);
}
}
while let Some(i) = q.pop_front() {
num_courses -= 1;
for &j in &g[i] {
let j = j as usize;
indeg[j] -= 1;
if indeg[j] == 0 {
q.push_back(j);
}
}
}
num_courses == 0
}
}
|
207 |
Course Schedule
|
Medium
|
<p>There are a total of <code>numCourses</code> courses you have to take, labeled from <code>0</code> to <code>numCourses - 1</code>. You are given an array <code>prerequisites</code> where <code>prerequisites[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that you <strong>must</strong> take course <code>b<sub>i</sub></code> first if you want to take course <code>a<sub>i</sub></code>.</p>
<ul>
<li>For example, the pair <code>[0, 1]</code>, indicates that to take course <code>0</code> you have to first take course <code>1</code>.</li>
</ul>
<p>Return <code>true</code> if you can finish all courses. Otherwise, return <code>false</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0]]
<strong>Output:</strong> true
<strong>Explanation:</strong> There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0],[0,1]]
<strong>Output:</strong> false
<strong>Explanation:</strong> There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numCourses <= 2000</code></li>
<li><code>0 <= prerequisites.length <= 5000</code></li>
<li><code>prerequisites[i].length == 2</code></li>
<li><code>0 <= a<sub>i</sub>, b<sub>i</sub> < numCourses</code></li>
<li>All the pairs prerequisites[i] are <strong>unique</strong>.</li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort
|
TypeScript
|
function canFinish(numCourses: number, prerequisites: number[][]): boolean {
const g: number[][] = Array.from({ length: numCourses }, () => []);
const indeg: number[] = Array(numCourses).fill(0);
for (const [a, b] of prerequisites) {
g[b].push(a);
indeg[a]++;
}
const q: number[] = [];
for (let i = 0; i < numCourses; ++i) {
if (indeg[i] === 0) {
q.push(i);
}
}
for (const i of q) {
--numCourses;
for (const j of g[i]) {
if (--indeg[j] === 0) {
q.push(j);
}
}
}
return numCourses === 0;
}
|
208 |
Implement Trie (Prefix Tree)
|
Medium
|
<p>A <a href="https://en.wikipedia.org/wiki/Trie" target="_blank"><strong>trie</strong></a> (pronounced as "try") or <strong>prefix tree</strong> is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.</p>
<p>Implement the Trie class:</p>
<ul>
<li><code>Trie()</code> Initializes the trie object.</li>
<li><code>void insert(String word)</code> Inserts the string <code>word</code> into the trie.</li>
<li><code>boolean search(String word)</code> Returns <code>true</code> if the string <code>word</code> is in the trie (i.e., was inserted before), and <code>false</code> otherwise.</li>
<li><code>boolean startsWith(String prefix)</code> Returns <code>true</code> if there is a previously inserted string <code>word</code> that has the prefix <code>prefix</code>, and <code>false</code> otherwise.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input</strong>
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
<strong>Output</strong>
[null, null, true, false, true, null, true]
<strong>Explanation</strong>
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // return True
trie.search("app"); // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app"); // return True
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= word.length, prefix.length <= 2000</code></li>
<li><code>word</code> and <code>prefix</code> consist only of lowercase English letters.</li>
<li>At most <code>3 * 10<sup>4</sup></code> calls <strong>in total</strong> will be made to <code>insert</code>, <code>search</code>, and <code>startsWith</code>.</li>
</ul>
|
Design; Trie; Hash Table; String
|
C++
|
class Trie {
private:
vector<Trie*> children;
bool isEnd;
Trie* searchPrefix(string s) {
Trie* node = this;
for (char c : s) {
int idx = c - 'a';
if (!node->children[idx]) return nullptr;
node = node->children[idx];
}
return node;
}
public:
Trie()
: children(26)
, isEnd(false) {}
void insert(string word) {
Trie* node = this;
for (char c : word) {
int idx = c - 'a';
if (!node->children[idx]) node->children[idx] = new Trie();
node = node->children[idx];
}
node->isEnd = true;
}
bool search(string word) {
Trie* node = searchPrefix(word);
return node != nullptr && node->isEnd;
}
bool startsWith(string prefix) {
Trie* node = searchPrefix(prefix);
return node != nullptr;
}
};
/**
* Your Trie object will be instantiated and called as such:
* Trie* obj = new Trie();
* obj->insert(word);
* bool param_2 = obj->search(word);
* bool param_3 = obj->startsWith(prefix);
*/
|
208 |
Implement Trie (Prefix Tree)
|
Medium
|
<p>A <a href="https://en.wikipedia.org/wiki/Trie" target="_blank"><strong>trie</strong></a> (pronounced as "try") or <strong>prefix tree</strong> is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.</p>
<p>Implement the Trie class:</p>
<ul>
<li><code>Trie()</code> Initializes the trie object.</li>
<li><code>void insert(String word)</code> Inserts the string <code>word</code> into the trie.</li>
<li><code>boolean search(String word)</code> Returns <code>true</code> if the string <code>word</code> is in the trie (i.e., was inserted before), and <code>false</code> otherwise.</li>
<li><code>boolean startsWith(String prefix)</code> Returns <code>true</code> if there is a previously inserted string <code>word</code> that has the prefix <code>prefix</code>, and <code>false</code> otherwise.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input</strong>
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
<strong>Output</strong>
[null, null, true, false, true, null, true]
<strong>Explanation</strong>
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // return True
trie.search("app"); // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app"); // return True
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= word.length, prefix.length <= 2000</code></li>
<li><code>word</code> and <code>prefix</code> consist only of lowercase English letters.</li>
<li>At most <code>3 * 10<sup>4</sup></code> calls <strong>in total</strong> will be made to <code>insert</code>, <code>search</code>, and <code>startsWith</code>.</li>
</ul>
|
Design; Trie; Hash Table; String
|
C#
|
public class Trie {
bool isEnd;
Trie[] children = new Trie[26];
public Trie() {
}
public void Insert(string word) {
Trie node = this;
foreach (var c in word)
{
var idx = c - 'a';
node.children[idx] ??= new Trie();
node = node.children[idx];
}
node.isEnd = true;
}
public bool Search(string word) {
Trie node = SearchPrefix(word);
return node != null && node.isEnd;
}
public bool StartsWith(string prefix) {
Trie node = SearchPrefix(prefix);
return node != null;
}
private Trie SearchPrefix(string s) {
Trie node = this;
foreach (var c in s)
{
var idx = c - 'a';
if (node.children[idx] == null)
{
return null;
}
node = node.children[idx];
}
return node;
}
}
/**
* Your Trie object will be instantiated and called as such:
* Trie obj = new Trie();
* obj.Insert(word);
* bool param_2 = obj.Search(word);
* bool param_3 = obj.StartsWith(prefix);
*/
|
208 |
Implement Trie (Prefix Tree)
|
Medium
|
<p>A <a href="https://en.wikipedia.org/wiki/Trie" target="_blank"><strong>trie</strong></a> (pronounced as "try") or <strong>prefix tree</strong> is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.</p>
<p>Implement the Trie class:</p>
<ul>
<li><code>Trie()</code> Initializes the trie object.</li>
<li><code>void insert(String word)</code> Inserts the string <code>word</code> into the trie.</li>
<li><code>boolean search(String word)</code> Returns <code>true</code> if the string <code>word</code> is in the trie (i.e., was inserted before), and <code>false</code> otherwise.</li>
<li><code>boolean startsWith(String prefix)</code> Returns <code>true</code> if there is a previously inserted string <code>word</code> that has the prefix <code>prefix</code>, and <code>false</code> otherwise.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input</strong>
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
<strong>Output</strong>
[null, null, true, false, true, null, true]
<strong>Explanation</strong>
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // return True
trie.search("app"); // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app"); // return True
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= word.length, prefix.length <= 2000</code></li>
<li><code>word</code> and <code>prefix</code> consist only of lowercase English letters.</li>
<li>At most <code>3 * 10<sup>4</sup></code> calls <strong>in total</strong> will be made to <code>insert</code>, <code>search</code>, and <code>startsWith</code>.</li>
</ul>
|
Design; Trie; Hash Table; String
|
Go
|
type Trie struct {
children [26]*Trie
isEnd bool
}
func Constructor() Trie {
return Trie{}
}
func (this *Trie) Insert(word string) {
node := this
for _, c := range word {
idx := c - 'a'
if node.children[idx] == nil {
node.children[idx] = &Trie{}
}
node = node.children[idx]
}
node.isEnd = true
}
func (this *Trie) Search(word string) bool {
node := this.SearchPrefix(word)
return node != nil && node.isEnd
}
func (this *Trie) StartsWith(prefix string) bool {
node := this.SearchPrefix(prefix)
return node != nil
}
func (this *Trie) SearchPrefix(s string) *Trie {
node := this
for _, c := range s {
idx := c - 'a'
if node.children[idx] == nil {
return nil
}
node = node.children[idx]
}
return node
}
/**
* Your Trie object will be instantiated and called as such:
* obj := Constructor();
* obj.Insert(word);
* param_2 := obj.Search(word);
* param_3 := obj.StartsWith(prefix);
*/
|
208 |
Implement Trie (Prefix Tree)
|
Medium
|
<p>A <a href="https://en.wikipedia.org/wiki/Trie" target="_blank"><strong>trie</strong></a> (pronounced as "try") or <strong>prefix tree</strong> is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.</p>
<p>Implement the Trie class:</p>
<ul>
<li><code>Trie()</code> Initializes the trie object.</li>
<li><code>void insert(String word)</code> Inserts the string <code>word</code> into the trie.</li>
<li><code>boolean search(String word)</code> Returns <code>true</code> if the string <code>word</code> is in the trie (i.e., was inserted before), and <code>false</code> otherwise.</li>
<li><code>boolean startsWith(String prefix)</code> Returns <code>true</code> if there is a previously inserted string <code>word</code> that has the prefix <code>prefix</code>, and <code>false</code> otherwise.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input</strong>
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
<strong>Output</strong>
[null, null, true, false, true, null, true]
<strong>Explanation</strong>
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // return True
trie.search("app"); // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app"); // return True
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= word.length, prefix.length <= 2000</code></li>
<li><code>word</code> and <code>prefix</code> consist only of lowercase English letters.</li>
<li>At most <code>3 * 10<sup>4</sup></code> calls <strong>in total</strong> will be made to <code>insert</code>, <code>search</code>, and <code>startsWith</code>.</li>
</ul>
|
Design; Trie; Hash Table; String
|
Java
|
class Trie {
private Trie[] children;
private boolean isEnd;
public Trie() {
children = new Trie[26];
}
public void insert(String word) {
Trie node = this;
for (char c : word.toCharArray()) {
int idx = c - 'a';
if (node.children[idx] == null) {
node.children[idx] = new Trie();
}
node = node.children[idx];
}
node.isEnd = true;
}
public boolean search(String word) {
Trie node = searchPrefix(word);
return node != null && node.isEnd;
}
public boolean startsWith(String prefix) {
Trie node = searchPrefix(prefix);
return node != null;
}
private Trie searchPrefix(String s) {
Trie node = this;
for (char c : s.toCharArray()) {
int idx = c - 'a';
if (node.children[idx] == null) {
return null;
}
node = node.children[idx];
}
return node;
}
}
/**
* Your Trie object will be instantiated and called as such:
* Trie obj = new Trie();
* obj.insert(word);
* boolean param_2 = obj.search(word);
* boolean param_3 = obj.startsWith(prefix);
*/
|
208 |
Implement Trie (Prefix Tree)
|
Medium
|
<p>A <a href="https://en.wikipedia.org/wiki/Trie" target="_blank"><strong>trie</strong></a> (pronounced as "try") or <strong>prefix tree</strong> is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.</p>
<p>Implement the Trie class:</p>
<ul>
<li><code>Trie()</code> Initializes the trie object.</li>
<li><code>void insert(String word)</code> Inserts the string <code>word</code> into the trie.</li>
<li><code>boolean search(String word)</code> Returns <code>true</code> if the string <code>word</code> is in the trie (i.e., was inserted before), and <code>false</code> otherwise.</li>
<li><code>boolean startsWith(String prefix)</code> Returns <code>true</code> if there is a previously inserted string <code>word</code> that has the prefix <code>prefix</code>, and <code>false</code> otherwise.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input</strong>
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
<strong>Output</strong>
[null, null, true, false, true, null, true]
<strong>Explanation</strong>
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // return True
trie.search("app"); // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app"); // return True
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= word.length, prefix.length <= 2000</code></li>
<li><code>word</code> and <code>prefix</code> consist only of lowercase English letters.</li>
<li>At most <code>3 * 10<sup>4</sup></code> calls <strong>in total</strong> will be made to <code>insert</code>, <code>search</code>, and <code>startsWith</code>.</li>
</ul>
|
Design; Trie; Hash Table; String
|
JavaScript
|
/**
* Initialize your data structure here.
*/
var Trie = function () {
this.children = {};
};
/**
* Inserts a word into the trie.
* @param {string} word
* @return {void}
*/
Trie.prototype.insert = function (word) {
let node = this.children;
for (let char of word) {
if (!node[char]) {
node[char] = {};
}
node = node[char];
}
node.isEnd = true;
};
/**
* Returns if the word is in the trie.
* @param {string} word
* @return {boolean}
*/
Trie.prototype.search = function (word) {
let node = this.searchPrefix(word);
return node != undefined && node.isEnd != undefined;
};
Trie.prototype.searchPrefix = function (prefix) {
let node = this.children;
for (let char of prefix) {
if (!node[char]) return false;
node = node[char];
}
return node;
};
/**
* Returns if there is any word in the trie that starts with the given prefix.
* @param {string} prefix
* @return {boolean}
*/
Trie.prototype.startsWith = function (prefix) {
return this.searchPrefix(prefix);
};
/**
* Your Trie object will be instantiated and called as such:
* var obj = new Trie()
* obj.insert(word)
* var param_2 = obj.search(word)
* var param_3 = obj.startsWith(prefix)
*/
|
208 |
Implement Trie (Prefix Tree)
|
Medium
|
<p>A <a href="https://en.wikipedia.org/wiki/Trie" target="_blank"><strong>trie</strong></a> (pronounced as "try") or <strong>prefix tree</strong> is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.</p>
<p>Implement the Trie class:</p>
<ul>
<li><code>Trie()</code> Initializes the trie object.</li>
<li><code>void insert(String word)</code> Inserts the string <code>word</code> into the trie.</li>
<li><code>boolean search(String word)</code> Returns <code>true</code> if the string <code>word</code> is in the trie (i.e., was inserted before), and <code>false</code> otherwise.</li>
<li><code>boolean startsWith(String prefix)</code> Returns <code>true</code> if there is a previously inserted string <code>word</code> that has the prefix <code>prefix</code>, and <code>false</code> otherwise.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input</strong>
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
<strong>Output</strong>
[null, null, true, false, true, null, true]
<strong>Explanation</strong>
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // return True
trie.search("app"); // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app"); // return True
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= word.length, prefix.length <= 2000</code></li>
<li><code>word</code> and <code>prefix</code> consist only of lowercase English letters.</li>
<li>At most <code>3 * 10<sup>4</sup></code> calls <strong>in total</strong> will be made to <code>insert</code>, <code>search</code>, and <code>startsWith</code>.</li>
</ul>
|
Design; Trie; Hash Table; String
|
Python
|
class Trie:
def __init__(self):
self.children = [None] * 26
self.is_end = False
def insert(self, word: str) -> None:
node = self
for c in word:
idx = ord(c) - ord('a')
if node.children[idx] is None:
node.children[idx] = Trie()
node = node.children[idx]
node.is_end = True
def search(self, word: str) -> bool:
node = self._search_prefix(word)
return node is not None and node.is_end
def startsWith(self, prefix: str) -> bool:
node = self._search_prefix(prefix)
return node is not None
def _search_prefix(self, prefix: str):
node = self
for c in prefix:
idx = ord(c) - ord('a')
if node.children[idx] is None:
return None
node = node.children[idx]
return node
# Your Trie object will be instantiated and called as such:
# obj = Trie()
# obj.insert(word)
# param_2 = obj.search(word)
# param_3 = obj.startsWith(prefix)
|
208 |
Implement Trie (Prefix Tree)
|
Medium
|
<p>A <a href="https://en.wikipedia.org/wiki/Trie" target="_blank"><strong>trie</strong></a> (pronounced as "try") or <strong>prefix tree</strong> is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.</p>
<p>Implement the Trie class:</p>
<ul>
<li><code>Trie()</code> Initializes the trie object.</li>
<li><code>void insert(String word)</code> Inserts the string <code>word</code> into the trie.</li>
<li><code>boolean search(String word)</code> Returns <code>true</code> if the string <code>word</code> is in the trie (i.e., was inserted before), and <code>false</code> otherwise.</li>
<li><code>boolean startsWith(String prefix)</code> Returns <code>true</code> if there is a previously inserted string <code>word</code> that has the prefix <code>prefix</code>, and <code>false</code> otherwise.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input</strong>
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
<strong>Output</strong>
[null, null, true, false, true, null, true]
<strong>Explanation</strong>
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // return True
trie.search("app"); // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app"); // return True
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= word.length, prefix.length <= 2000</code></li>
<li><code>word</code> and <code>prefix</code> consist only of lowercase English letters.</li>
<li>At most <code>3 * 10<sup>4</sup></code> calls <strong>in total</strong> will be made to <code>insert</code>, <code>search</code>, and <code>startsWith</code>.</li>
</ul>
|
Design; Trie; Hash Table; String
|
Rust
|
use std::{cell::RefCell, collections::HashMap, rc::Rc};
struct TrieNode {
pub val: Option<char>,
pub flag: bool,
pub child: HashMap<char, Rc<RefCell<TrieNode>>>,
}
impl TrieNode {
fn new() -> Self {
Self {
val: None,
flag: false,
child: HashMap::new(),
}
}
fn new_with_val(val: char) -> Self {
Self {
val: Some(val),
flag: false,
child: HashMap::new(),
}
}
}
struct Trie {
root: Rc<RefCell<TrieNode>>,
}
/// Your Trie object will be instantiated and called as such:
/// let obj = Trie::new();
/// obj.insert(word);
/// let ret_2: bool = obj.search(word);
/// let ret_3: bool = obj.starts_with(prefix);
impl Trie {
fn new() -> Self {
Self {
root: Rc::new(RefCell::new(TrieNode::new())),
}
}
fn insert(&self, word: String) {
let char_vec: Vec<char> = word.chars().collect();
// Get the clone of current root node
let mut root = Rc::clone(&self.root);
for c in &char_vec {
if !root.borrow().child.contains_key(c) {
// We need to manually create the entry
root.borrow_mut()
.child
.insert(*c, Rc::new(RefCell::new(TrieNode::new())));
}
// Get the child node
let root_clone = Rc::clone(root.borrow().child.get(c).unwrap());
root = root_clone;
}
{
root.borrow_mut().flag = true;
}
}
fn search(&self, word: String) -> bool {
let char_vec: Vec<char> = word.chars().collect();
// Get the clone of current root node
let mut root = Rc::clone(&self.root);
for c in &char_vec {
if !root.borrow().child.contains_key(c) {
return false;
}
// Get the child node
let root_clone = Rc::clone(root.borrow().child.get(c).unwrap());
root = root_clone;
}
let flag = root.borrow().flag;
flag
}
fn starts_with(&self, prefix: String) -> bool {
let char_vec: Vec<char> = prefix.chars().collect();
// Get the clone of current root node
let mut root = Rc::clone(&self.root);
for c in &char_vec {
if !root.borrow().child.contains_key(c) {
return false;
}
// Get the child node
let root_clone = Rc::clone(root.borrow().child.get(c).unwrap());
root = root_clone;
}
true
}
}
|
208 |
Implement Trie (Prefix Tree)
|
Medium
|
<p>A <a href="https://en.wikipedia.org/wiki/Trie" target="_blank"><strong>trie</strong></a> (pronounced as "try") or <strong>prefix tree</strong> is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.</p>
<p>Implement the Trie class:</p>
<ul>
<li><code>Trie()</code> Initializes the trie object.</li>
<li><code>void insert(String word)</code> Inserts the string <code>word</code> into the trie.</li>
<li><code>boolean search(String word)</code> Returns <code>true</code> if the string <code>word</code> is in the trie (i.e., was inserted before), and <code>false</code> otherwise.</li>
<li><code>boolean startsWith(String prefix)</code> Returns <code>true</code> if there is a previously inserted string <code>word</code> that has the prefix <code>prefix</code>, and <code>false</code> otherwise.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input</strong>
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
<strong>Output</strong>
[null, null, true, false, true, null, true]
<strong>Explanation</strong>
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // return True
trie.search("app"); // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app"); // return True
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= word.length, prefix.length <= 2000</code></li>
<li><code>word</code> and <code>prefix</code> consist only of lowercase English letters.</li>
<li>At most <code>3 * 10<sup>4</sup></code> calls <strong>in total</strong> will be made to <code>insert</code>, <code>search</code>, and <code>startsWith</code>.</li>
</ul>
|
Design; Trie; Hash Table; String
|
TypeScript
|
class TrieNode {
children;
isEnd;
constructor() {
this.children = new Array(26);
this.isEnd = false;
}
}
class Trie {
root;
constructor() {
this.root = new TrieNode();
}
insert(word: string): void {
let head = this.root;
for (let char of word) {
let index = char.charCodeAt(0) - 97;
if (!head.children[index]) {
head.children[index] = new TrieNode();
}
head = head.children[index];
}
head.isEnd = true;
}
search(word: string): boolean {
let head = this.searchPrefix(word);
return head != null && head.isEnd;
}
startsWith(prefix: string): boolean {
return this.searchPrefix(prefix) != null;
}
private searchPrefix(prefix: string) {
let head = this.root;
for (let char of prefix) {
let index = char.charCodeAt(0) - 97;
if (!head.children[index]) return null;
head = head.children[index];
}
return head;
}
}
|
209 |
Minimum Size Subarray Sum
|
Medium
|
<p>Given an array of positive integers <code>nums</code> and a positive integer <code>target</code>, return <em>the <strong>minimal length</strong> of a </em><span data-keyword="subarray-nonempty"><em>subarray</em></span><em> whose sum is greater than or equal to</em> <code>target</code>. If there is no such subarray, return <code>0</code> instead.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> target = 7, nums = [2,3,1,2,4,3]
<strong>Output:</strong> 2
<strong>Explanation:</strong> The subarray [4,3] has the minimal length under the problem constraint.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> target = 4, nums = [1,4,4]
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> target = 11, nums = [1,1,1,1,1,1,1,1]
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= target <= 10<sup>9</sup></code></li>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> If you have figured out the <code>O(n)</code> solution, try coding another solution of which the time complexity is <code>O(n log(n))</code>.
|
Array; Binary Search; Prefix Sum; Sliding Window
|
C++
|
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int n = nums.size();
vector<long long> s(n + 1);
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
int ans = n + 1;
for (int i = 0; i <= n; ++i) {
int j = lower_bound(s.begin(), s.end(), s[i] + target) - s.begin();
if (j <= n) {
ans = min(ans, j - i);
}
}
return ans <= n ? ans : 0;
}
};
|
209 |
Minimum Size Subarray Sum
|
Medium
|
<p>Given an array of positive integers <code>nums</code> and a positive integer <code>target</code>, return <em>the <strong>minimal length</strong> of a </em><span data-keyword="subarray-nonempty"><em>subarray</em></span><em> whose sum is greater than or equal to</em> <code>target</code>. If there is no such subarray, return <code>0</code> instead.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> target = 7, nums = [2,3,1,2,4,3]
<strong>Output:</strong> 2
<strong>Explanation:</strong> The subarray [4,3] has the minimal length under the problem constraint.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> target = 4, nums = [1,4,4]
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> target = 11, nums = [1,1,1,1,1,1,1,1]
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= target <= 10<sup>9</sup></code></li>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> If you have figured out the <code>O(n)</code> solution, try coding another solution of which the time complexity is <code>O(n log(n))</code>.
|
Array; Binary Search; Prefix Sum; Sliding Window
|
C#
|
public class Solution {
public int MinSubArrayLen(int target, int[] nums) {
int n = nums.Length;
long s = 0;
int ans = n + 1;
for (int i = 0, j = 0; i < n; ++i) {
s += nums[i];
while (s >= target) {
ans = Math.Min(ans, i - j + 1);
s -= nums[j++];
}
}
return ans == n + 1 ? 0 : ans;
}
}
|
209 |
Minimum Size Subarray Sum
|
Medium
|
<p>Given an array of positive integers <code>nums</code> and a positive integer <code>target</code>, return <em>the <strong>minimal length</strong> of a </em><span data-keyword="subarray-nonempty"><em>subarray</em></span><em> whose sum is greater than or equal to</em> <code>target</code>. If there is no such subarray, return <code>0</code> instead.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> target = 7, nums = [2,3,1,2,4,3]
<strong>Output:</strong> 2
<strong>Explanation:</strong> The subarray [4,3] has the minimal length under the problem constraint.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> target = 4, nums = [1,4,4]
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> target = 11, nums = [1,1,1,1,1,1,1,1]
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= target <= 10<sup>9</sup></code></li>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> If you have figured out the <code>O(n)</code> solution, try coding another solution of which the time complexity is <code>O(n log(n))</code>.
|
Array; Binary Search; Prefix Sum; Sliding Window
|
Go
|
func minSubArrayLen(target int, nums []int) int {
n := len(nums)
s := make([]int, n+1)
for i, x := range nums {
s[i+1] = s[i] + x
}
ans := n + 1
for i, x := range s {
j := sort.SearchInts(s, x+target)
if j <= n {
ans = min(ans, j-i)
}
}
if ans == n+1 {
return 0
}
return ans
}
|
209 |
Minimum Size Subarray Sum
|
Medium
|
<p>Given an array of positive integers <code>nums</code> and a positive integer <code>target</code>, return <em>the <strong>minimal length</strong> of a </em><span data-keyword="subarray-nonempty"><em>subarray</em></span><em> whose sum is greater than or equal to</em> <code>target</code>. If there is no such subarray, return <code>0</code> instead.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> target = 7, nums = [2,3,1,2,4,3]
<strong>Output:</strong> 2
<strong>Explanation:</strong> The subarray [4,3] has the minimal length under the problem constraint.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> target = 4, nums = [1,4,4]
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> target = 11, nums = [1,1,1,1,1,1,1,1]
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= target <= 10<sup>9</sup></code></li>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> If you have figured out the <code>O(n)</code> solution, try coding another solution of which the time complexity is <code>O(n log(n))</code>.
|
Array; Binary Search; Prefix Sum; Sliding Window
|
Java
|
class Solution {
public int minSubArrayLen(int target, int[] nums) {
int n = nums.length;
long[] s = new long[n + 1];
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
int ans = n + 1;
for (int i = 0; i <= n; ++i) {
int j = search(s, s[i] + target);
if (j <= n) {
ans = Math.min(ans, j - i);
}
}
return ans <= n ? ans : 0;
}
private int search(long[] nums, long x) {
int l = 0, r = nums.length;
while (l < r) {
int mid = (l + r) >> 1;
if (nums[mid] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
}
|
209 |
Minimum Size Subarray Sum
|
Medium
|
<p>Given an array of positive integers <code>nums</code> and a positive integer <code>target</code>, return <em>the <strong>minimal length</strong> of a </em><span data-keyword="subarray-nonempty"><em>subarray</em></span><em> whose sum is greater than or equal to</em> <code>target</code>. If there is no such subarray, return <code>0</code> instead.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> target = 7, nums = [2,3,1,2,4,3]
<strong>Output:</strong> 2
<strong>Explanation:</strong> The subarray [4,3] has the minimal length under the problem constraint.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> target = 4, nums = [1,4,4]
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> target = 11, nums = [1,1,1,1,1,1,1,1]
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= target <= 10<sup>9</sup></code></li>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> If you have figured out the <code>O(n)</code> solution, try coding another solution of which the time complexity is <code>O(n log(n))</code>.
|
Array; Binary Search; Prefix Sum; Sliding Window
|
Python
|
class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
n = len(nums)
s = list(accumulate(nums, initial=0))
ans = n + 1
for i, x in enumerate(s):
j = bisect_left(s, x + target)
if j <= n:
ans = min(ans, j - i)
return ans if ans <= n else 0
|
209 |
Minimum Size Subarray Sum
|
Medium
|
<p>Given an array of positive integers <code>nums</code> and a positive integer <code>target</code>, return <em>the <strong>minimal length</strong> of a </em><span data-keyword="subarray-nonempty"><em>subarray</em></span><em> whose sum is greater than or equal to</em> <code>target</code>. If there is no such subarray, return <code>0</code> instead.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> target = 7, nums = [2,3,1,2,4,3]
<strong>Output:</strong> 2
<strong>Explanation:</strong> The subarray [4,3] has the minimal length under the problem constraint.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> target = 4, nums = [1,4,4]
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> target = 11, nums = [1,1,1,1,1,1,1,1]
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= target <= 10<sup>9</sup></code></li>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> If you have figured out the <code>O(n)</code> solution, try coding another solution of which the time complexity is <code>O(n log(n))</code>.
|
Array; Binary Search; Prefix Sum; Sliding Window
|
Rust
|
impl Solution {
pub fn min_sub_array_len(target: i32, nums: Vec<i32>) -> i32 {
let n = nums.len();
let mut res = n + 1;
let mut sum = 0;
let mut i = 0;
for j in 0..n {
sum += nums[j];
while sum >= target {
res = res.min(j - i + 1);
sum -= nums[i];
i += 1;
}
}
if res == n + 1 {
return 0;
}
res as i32
}
}
|
209 |
Minimum Size Subarray Sum
|
Medium
|
<p>Given an array of positive integers <code>nums</code> and a positive integer <code>target</code>, return <em>the <strong>minimal length</strong> of a </em><span data-keyword="subarray-nonempty"><em>subarray</em></span><em> whose sum is greater than or equal to</em> <code>target</code>. If there is no such subarray, return <code>0</code> instead.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> target = 7, nums = [2,3,1,2,4,3]
<strong>Output:</strong> 2
<strong>Explanation:</strong> The subarray [4,3] has the minimal length under the problem constraint.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> target = 4, nums = [1,4,4]
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> target = 11, nums = [1,1,1,1,1,1,1,1]
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= target <= 10<sup>9</sup></code></li>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>1 <= nums[i] <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> If you have figured out the <code>O(n)</code> solution, try coding another solution of which the time complexity is <code>O(n log(n))</code>.
|
Array; Binary Search; Prefix Sum; Sliding Window
|
TypeScript
|
function minSubArrayLen(target: number, nums: number[]): number {
const n = nums.length;
const s: number[] = new Array(n + 1).fill(0);
for (let i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
let ans = n + 1;
const search = (x: number) => {
let l = 0;
let r = n + 1;
while (l < r) {
const mid = (l + r) >>> 1;
if (s[mid] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
};
for (let i = 0; i <= n; ++i) {
const j = search(s[i] + target);
if (j <= n) {
ans = Math.min(ans, j - i);
}
}
return ans === n + 1 ? 0 : ans;
}
|
210 |
Course Schedule II
|
Medium
|
<p>There are a total of <code>numCourses</code> courses you have to take, labeled from <code>0</code> to <code>numCourses - 1</code>. You are given an array <code>prerequisites</code> where <code>prerequisites[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that you <strong>must</strong> take course <code>b<sub>i</sub></code> first if you want to take course <code>a<sub>i</sub></code>.</p>
<ul>
<li>For example, the pair <code>[0, 1]</code>, indicates that to take course <code>0</code> you have to first take course <code>1</code>.</li>
</ul>
<p>Return <em>the ordering of courses you should take to finish all courses</em>. If there are many valid answers, return <strong>any</strong> of them. If it is impossible to finish all courses, return <strong>an empty array</strong>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0]]
<strong>Output:</strong> [0,1]
<strong>Explanation:</strong> There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1].
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
<strong>Output:</strong> [0,2,1,3]
<strong>Explanation:</strong> There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0.
So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3].
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 1, prerequisites = []
<strong>Output:</strong> [0]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numCourses <= 2000</code></li>
<li><code>0 <= prerequisites.length <= numCourses * (numCourses - 1)</code></li>
<li><code>prerequisites[i].length == 2</code></li>
<li><code>0 <= a<sub>i</sub>, b<sub>i</sub> < numCourses</code></li>
<li><code>a<sub>i</sub> != b<sub>i</sub></code></li>
<li>All the pairs <code>[a<sub>i</sub>, b<sub>i</sub>]</code> are <strong>distinct</strong>.</li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort
|
C++
|
class Solution {
public:
vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> g(numCourses);
vector<int> indeg(numCourses);
for (auto& p : prerequisites) {
int a = p[0], b = p[1];
g[b].push_back(a);
++indeg[a];
}
queue<int> q;
for (int i = 0; i < numCourses; ++i) {
if (indeg[i] == 0) {
q.push(i);
}
}
vector<int> ans;
while (!q.empty()) {
int i = q.front();
q.pop();
ans.push_back(i);
for (int j : g[i]) {
if (--indeg[j] == 0) {
q.push(j);
}
}
}
return ans.size() == numCourses ? ans : vector<int>();
}
};
|
210 |
Course Schedule II
|
Medium
|
<p>There are a total of <code>numCourses</code> courses you have to take, labeled from <code>0</code> to <code>numCourses - 1</code>. You are given an array <code>prerequisites</code> where <code>prerequisites[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that you <strong>must</strong> take course <code>b<sub>i</sub></code> first if you want to take course <code>a<sub>i</sub></code>.</p>
<ul>
<li>For example, the pair <code>[0, 1]</code>, indicates that to take course <code>0</code> you have to first take course <code>1</code>.</li>
</ul>
<p>Return <em>the ordering of courses you should take to finish all courses</em>. If there are many valid answers, return <strong>any</strong> of them. If it is impossible to finish all courses, return <strong>an empty array</strong>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0]]
<strong>Output:</strong> [0,1]
<strong>Explanation:</strong> There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1].
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
<strong>Output:</strong> [0,2,1,3]
<strong>Explanation:</strong> There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0.
So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3].
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 1, prerequisites = []
<strong>Output:</strong> [0]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numCourses <= 2000</code></li>
<li><code>0 <= prerequisites.length <= numCourses * (numCourses - 1)</code></li>
<li><code>prerequisites[i].length == 2</code></li>
<li><code>0 <= a<sub>i</sub>, b<sub>i</sub> < numCourses</code></li>
<li><code>a<sub>i</sub> != b<sub>i</sub></code></li>
<li>All the pairs <code>[a<sub>i</sub>, b<sub>i</sub>]</code> are <strong>distinct</strong>.</li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort
|
C#
|
public class Solution {
public int[] FindOrder(int numCourses, int[][] prerequisites) {
var g = new List<int>[numCourses];
for (int i = 0; i < numCourses; ++i) {
g[i] = new List<int>();
}
var indeg = new int[numCourses];
foreach (var p in prerequisites) {
int a = p[0], b = p[1];
g[b].Add(a);
++indeg[a];
}
var q = new Queue<int>();
for (int i = 0; i < numCourses; ++i) {
if (indeg[i] == 0) {
q.Enqueue(i);
}
}
var ans = new int[numCourses];
var cnt = 0;
while (q.Count > 0) {
int i = q.Dequeue();
ans[cnt++] = i;
foreach (int j in g[i]) {
if (--indeg[j] == 0) {
q.Enqueue(j);
}
}
}
return cnt == numCourses ? ans : new int[0];
}
}
|
210 |
Course Schedule II
|
Medium
|
<p>There are a total of <code>numCourses</code> courses you have to take, labeled from <code>0</code> to <code>numCourses - 1</code>. You are given an array <code>prerequisites</code> where <code>prerequisites[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that you <strong>must</strong> take course <code>b<sub>i</sub></code> first if you want to take course <code>a<sub>i</sub></code>.</p>
<ul>
<li>For example, the pair <code>[0, 1]</code>, indicates that to take course <code>0</code> you have to first take course <code>1</code>.</li>
</ul>
<p>Return <em>the ordering of courses you should take to finish all courses</em>. If there are many valid answers, return <strong>any</strong> of them. If it is impossible to finish all courses, return <strong>an empty array</strong>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0]]
<strong>Output:</strong> [0,1]
<strong>Explanation:</strong> There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1].
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
<strong>Output:</strong> [0,2,1,3]
<strong>Explanation:</strong> There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0.
So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3].
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 1, prerequisites = []
<strong>Output:</strong> [0]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numCourses <= 2000</code></li>
<li><code>0 <= prerequisites.length <= numCourses * (numCourses - 1)</code></li>
<li><code>prerequisites[i].length == 2</code></li>
<li><code>0 <= a<sub>i</sub>, b<sub>i</sub> < numCourses</code></li>
<li><code>a<sub>i</sub> != b<sub>i</sub></code></li>
<li>All the pairs <code>[a<sub>i</sub>, b<sub>i</sub>]</code> are <strong>distinct</strong>.</li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort
|
Go
|
func findOrder(numCourses int, prerequisites [][]int) []int {
g := make([][]int, numCourses)
indeg := make([]int, numCourses)
for _, p := range prerequisites {
a, b := p[0], p[1]
g[b] = append(g[b], a)
indeg[a]++
}
q := []int{}
for i, x := range indeg {
if x == 0 {
q = append(q, i)
}
}
ans := []int{}
for len(q) > 0 {
i := q[0]
q = q[1:]
ans = append(ans, i)
for _, j := range g[i] {
indeg[j]--
if indeg[j] == 0 {
q = append(q, j)
}
}
}
if len(ans) == numCourses {
return ans
}
return []int{}
}
|
210 |
Course Schedule II
|
Medium
|
<p>There are a total of <code>numCourses</code> courses you have to take, labeled from <code>0</code> to <code>numCourses - 1</code>. You are given an array <code>prerequisites</code> where <code>prerequisites[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that you <strong>must</strong> take course <code>b<sub>i</sub></code> first if you want to take course <code>a<sub>i</sub></code>.</p>
<ul>
<li>For example, the pair <code>[0, 1]</code>, indicates that to take course <code>0</code> you have to first take course <code>1</code>.</li>
</ul>
<p>Return <em>the ordering of courses you should take to finish all courses</em>. If there are many valid answers, return <strong>any</strong> of them. If it is impossible to finish all courses, return <strong>an empty array</strong>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0]]
<strong>Output:</strong> [0,1]
<strong>Explanation:</strong> There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1].
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
<strong>Output:</strong> [0,2,1,3]
<strong>Explanation:</strong> There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0.
So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3].
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 1, prerequisites = []
<strong>Output:</strong> [0]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numCourses <= 2000</code></li>
<li><code>0 <= prerequisites.length <= numCourses * (numCourses - 1)</code></li>
<li><code>prerequisites[i].length == 2</code></li>
<li><code>0 <= a<sub>i</sub>, b<sub>i</sub> < numCourses</code></li>
<li><code>a<sub>i</sub> != b<sub>i</sub></code></li>
<li>All the pairs <code>[a<sub>i</sub>, b<sub>i</sub>]</code> are <strong>distinct</strong>.</li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort
|
Java
|
class Solution {
public int[] findOrder(int numCourses, int[][] prerequisites) {
List<Integer>[] g = new List[numCourses];
Arrays.setAll(g, k -> new ArrayList<>());
int[] indeg = new int[numCourses];
for (var p : prerequisites) {
int a = p[0], b = p[1];
g[b].add(a);
++indeg[a];
}
Deque<Integer> q = new ArrayDeque<>();
for (int i = 0; i < numCourses; ++i) {
if (indeg[i] == 0) {
q.offer(i);
}
}
int[] ans = new int[numCourses];
int cnt = 0;
while (!q.isEmpty()) {
int i = q.poll();
ans[cnt++] = i;
for (int j : g[i]) {
if (--indeg[j] == 0) {
q.offer(j);
}
}
}
return cnt == numCourses ? ans : new int[0];
}
}
|
210 |
Course Schedule II
|
Medium
|
<p>There are a total of <code>numCourses</code> courses you have to take, labeled from <code>0</code> to <code>numCourses - 1</code>. You are given an array <code>prerequisites</code> where <code>prerequisites[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that you <strong>must</strong> take course <code>b<sub>i</sub></code> first if you want to take course <code>a<sub>i</sub></code>.</p>
<ul>
<li>For example, the pair <code>[0, 1]</code>, indicates that to take course <code>0</code> you have to first take course <code>1</code>.</li>
</ul>
<p>Return <em>the ordering of courses you should take to finish all courses</em>. If there are many valid answers, return <strong>any</strong> of them. If it is impossible to finish all courses, return <strong>an empty array</strong>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0]]
<strong>Output:</strong> [0,1]
<strong>Explanation:</strong> There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1].
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
<strong>Output:</strong> [0,2,1,3]
<strong>Explanation:</strong> There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0.
So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3].
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 1, prerequisites = []
<strong>Output:</strong> [0]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numCourses <= 2000</code></li>
<li><code>0 <= prerequisites.length <= numCourses * (numCourses - 1)</code></li>
<li><code>prerequisites[i].length == 2</code></li>
<li><code>0 <= a<sub>i</sub>, b<sub>i</sub> < numCourses</code></li>
<li><code>a<sub>i</sub> != b<sub>i</sub></code></li>
<li>All the pairs <code>[a<sub>i</sub>, b<sub>i</sub>]</code> are <strong>distinct</strong>.</li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort
|
Python
|
class Solution:
def findOrder(self, numCourses: int, prerequisites: List[List[int]]) -> List[int]:
g = defaultdict(list)
indeg = [0] * numCourses
for a, b in prerequisites:
g[b].append(a)
indeg[a] += 1
ans = []
q = deque(i for i, x in enumerate(indeg) if x == 0)
while q:
i = q.popleft()
ans.append(i)
for j in g[i]:
indeg[j] -= 1
if indeg[j] == 0:
q.append(j)
return ans if len(ans) == numCourses else []
|
210 |
Course Schedule II
|
Medium
|
<p>There are a total of <code>numCourses</code> courses you have to take, labeled from <code>0</code> to <code>numCourses - 1</code>. You are given an array <code>prerequisites</code> where <code>prerequisites[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that you <strong>must</strong> take course <code>b<sub>i</sub></code> first if you want to take course <code>a<sub>i</sub></code>.</p>
<ul>
<li>For example, the pair <code>[0, 1]</code>, indicates that to take course <code>0</code> you have to first take course <code>1</code>.</li>
</ul>
<p>Return <em>the ordering of courses you should take to finish all courses</em>. If there are many valid answers, return <strong>any</strong> of them. If it is impossible to finish all courses, return <strong>an empty array</strong>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0]]
<strong>Output:</strong> [0,1]
<strong>Explanation:</strong> There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1].
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
<strong>Output:</strong> [0,2,1,3]
<strong>Explanation:</strong> There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0.
So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3].
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 1, prerequisites = []
<strong>Output:</strong> [0]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numCourses <= 2000</code></li>
<li><code>0 <= prerequisites.length <= numCourses * (numCourses - 1)</code></li>
<li><code>prerequisites[i].length == 2</code></li>
<li><code>0 <= a<sub>i</sub>, b<sub>i</sub> < numCourses</code></li>
<li><code>a<sub>i</sub> != b<sub>i</sub></code></li>
<li>All the pairs <code>[a<sub>i</sub>, b<sub>i</sub>]</code> are <strong>distinct</strong>.</li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort
|
Rust
|
impl Solution {
pub fn find_order(num_courses: i32, prerequisites: Vec<Vec<i32>>) -> Vec<i32> {
let n = num_courses as usize;
let mut adjacency = vec![vec![]; n];
let mut entry = vec![0; n];
// init
for iter in prerequisites.iter() {
let (a, b) = (iter[0], iter[1]);
adjacency[b as usize].push(a);
entry[a as usize] += 1;
}
// construct deque & reslut
let mut deque = std::collections::VecDeque::new();
for index in 0..n {
if entry[index] == 0 {
deque.push_back(index);
}
}
let mut result = vec![];
// bfs
while !deque.is_empty() {
let head = deque.pop_front().unwrap();
result.push(head as i32);
// update degree of entry
for &out_entry in adjacency[head].iter() {
entry[out_entry as usize] -= 1;
if entry[out_entry as usize] == 0 {
deque.push_back(out_entry as usize);
}
}
}
if result.len() == n {
result
} else {
vec![]
}
}
}
|
210 |
Course Schedule II
|
Medium
|
<p>There are a total of <code>numCourses</code> courses you have to take, labeled from <code>0</code> to <code>numCourses - 1</code>. You are given an array <code>prerequisites</code> where <code>prerequisites[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that you <strong>must</strong> take course <code>b<sub>i</sub></code> first if you want to take course <code>a<sub>i</sub></code>.</p>
<ul>
<li>For example, the pair <code>[0, 1]</code>, indicates that to take course <code>0</code> you have to first take course <code>1</code>.</li>
</ul>
<p>Return <em>the ordering of courses you should take to finish all courses</em>. If there are many valid answers, return <strong>any</strong> of them. If it is impossible to finish all courses, return <strong>an empty array</strong>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 2, prerequisites = [[1,0]]
<strong>Output:</strong> [0,1]
<strong>Explanation:</strong> There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1].
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
<strong>Output:</strong> [0,2,1,3]
<strong>Explanation:</strong> There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0.
So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3].
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> numCourses = 1, prerequisites = []
<strong>Output:</strong> [0]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= numCourses <= 2000</code></li>
<li><code>0 <= prerequisites.length <= numCourses * (numCourses - 1)</code></li>
<li><code>prerequisites[i].length == 2</code></li>
<li><code>0 <= a<sub>i</sub>, b<sub>i</sub> < numCourses</code></li>
<li><code>a<sub>i</sub> != b<sub>i</sub></code></li>
<li>All the pairs <code>[a<sub>i</sub>, b<sub>i</sub>]</code> are <strong>distinct</strong>.</li>
</ul>
|
Depth-First Search; Breadth-First Search; Graph; Topological Sort
|
TypeScript
|
function findOrder(numCourses: number, prerequisites: number[][]): number[] {
const g: number[][] = Array.from({ length: numCourses }, () => []);
const indeg: number[] = new Array(numCourses).fill(0);
for (const [a, b] of prerequisites) {
g[b].push(a);
indeg[a]++;
}
const q: number[] = [];
for (let i = 0; i < numCourses; ++i) {
if (indeg[i] === 0) {
q.push(i);
}
}
const ans: number[] = [];
while (q.length) {
const i = q.shift()!;
ans.push(i);
for (const j of g[i]) {
if (--indeg[j] === 0) {
q.push(j);
}
}
}
return ans.length === numCourses ? ans : [];
}
|
211 |
Design Add and Search Words Data Structure
|
Medium
|
<p>Design a data structure that supports adding new words and finding if a string matches any previously added string.</p>
<p>Implement the <code>WordDictionary</code> class:</p>
<ul>
<li><code>WordDictionary()</code> Initializes the object.</li>
<li><code>void addWord(word)</code> Adds <code>word</code> to the data structure, it can be matched later.</li>
<li><code>bool search(word)</code> Returns <code>true</code> if there is any string in the data structure that matches <code>word</code> or <code>false</code> otherwise. <code>word</code> may contain dots <code>'.'</code> where dots can be matched with any letter.</li>
</ul>
<p> </p>
<p><strong class="example">Example:</strong></p>
<pre>
<strong>Input</strong>
["WordDictionary","addWord","addWord","addWord","search","search","search","search"]
[[],["bad"],["dad"],["mad"],["pad"],["bad"],[".ad"],["b.."]]
<strong>Output</strong>
[null,null,null,null,false,true,true,true]
<strong>Explanation</strong>
WordDictionary wordDictionary = new WordDictionary();
wordDictionary.addWord("bad");
wordDictionary.addWord("dad");
wordDictionary.addWord("mad");
wordDictionary.search("pad"); // return False
wordDictionary.search("bad"); // return True
wordDictionary.search(".ad"); // return True
wordDictionary.search("b.."); // return True
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= word.length <= 25</code></li>
<li><code>word</code> in <code>addWord</code> consists of lowercase English letters.</li>
<li><code>word</code> in <code>search</code> consist of <code>'.'</code> or lowercase English letters.</li>
<li>There will be at most <code>2</code> dots in <code>word</code> for <code>search</code> queries.</li>
<li>At most <code>10<sup>4</sup></code> calls will be made to <code>addWord</code> and <code>search</code>.</li>
</ul>
|
Depth-First Search; Design; Trie; String
|
C++
|
class trie {
public:
vector<trie*> children;
bool is_end;
trie() {
children = vector<trie*>(26, nullptr);
is_end = false;
}
void insert(const string& word) {
trie* cur = this;
for (char c : word) {
c -= 'a';
if (cur->children[c] == nullptr) {
cur->children[c] = new trie;
}
cur = cur->children[c];
}
cur->is_end = true;
}
};
class WordDictionary {
private:
trie* root;
public:
WordDictionary()
: root(new trie) {}
void addWord(string word) {
root->insert(word);
}
bool search(string word) {
return dfs(word, 0, root);
}
private:
bool dfs(const string& word, int i, trie* cur) {
if (i == word.size()) {
return cur->is_end;
}
char c = word[i];
if (c != '.') {
trie* child = cur->children[c - 'a'];
if (child != nullptr && dfs(word, i + 1, child)) {
return true;
}
} else {
for (trie* child : cur->children) {
if (child != nullptr && dfs(word, i + 1, child)) {
return true;
}
}
}
return false;
}
};
/**
* Your WordDictionary object will be instantiated and called as such:
* WordDictionary* obj = new WordDictionary();
* obj->addWord(word);
* bool param_2 = obj->search(word);
*/
|
211 |
Design Add and Search Words Data Structure
|
Medium
|
<p>Design a data structure that supports adding new words and finding if a string matches any previously added string.</p>
<p>Implement the <code>WordDictionary</code> class:</p>
<ul>
<li><code>WordDictionary()</code> Initializes the object.</li>
<li><code>void addWord(word)</code> Adds <code>word</code> to the data structure, it can be matched later.</li>
<li><code>bool search(word)</code> Returns <code>true</code> if there is any string in the data structure that matches <code>word</code> or <code>false</code> otherwise. <code>word</code> may contain dots <code>'.'</code> where dots can be matched with any letter.</li>
</ul>
<p> </p>
<p><strong class="example">Example:</strong></p>
<pre>
<strong>Input</strong>
["WordDictionary","addWord","addWord","addWord","search","search","search","search"]
[[],["bad"],["dad"],["mad"],["pad"],["bad"],[".ad"],["b.."]]
<strong>Output</strong>
[null,null,null,null,false,true,true,true]
<strong>Explanation</strong>
WordDictionary wordDictionary = new WordDictionary();
wordDictionary.addWord("bad");
wordDictionary.addWord("dad");
wordDictionary.addWord("mad");
wordDictionary.search("pad"); // return False
wordDictionary.search("bad"); // return True
wordDictionary.search(".ad"); // return True
wordDictionary.search("b.."); // return True
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= word.length <= 25</code></li>
<li><code>word</code> in <code>addWord</code> consists of lowercase English letters.</li>
<li><code>word</code> in <code>search</code> consist of <code>'.'</code> or lowercase English letters.</li>
<li>There will be at most <code>2</code> dots in <code>word</code> for <code>search</code> queries.</li>
<li>At most <code>10<sup>4</sup></code> calls will be made to <code>addWord</code> and <code>search</code>.</li>
</ul>
|
Depth-First Search; Design; Trie; String
|
C#
|
using System.Collections.Generic;
using System.Linq;
class TrieNode {
public bool IsEnd { get; set; }
public TrieNode[] Children { get; set; }
public TrieNode() {
Children = new TrieNode[26];
}
}
public class WordDictionary {
private TrieNode root;
public WordDictionary() {
root = new TrieNode();
}
public void AddWord(string word) {
var node = root;
for (var i = 0; i < word.Length; ++i)
{
TrieNode nextNode;
var index = word[i] - 'a';
nextNode = node.Children[index];
if (nextNode == null)
{
nextNode = new TrieNode();
node.Children[index] = nextNode;
}
node = nextNode;
}
node.IsEnd = true;
}
public bool Search(string word) {
var queue = new Queue<TrieNode>();
queue.Enqueue(root);
for (var i = 0; i < word.Length; ++i)
{
var count = queue.Count;
while (count-- > 0)
{
var node = queue.Dequeue();
if (word[i] == '.')
{
foreach (var nextNode in node.Children)
{
if (nextNode != null)
{
queue.Enqueue(nextNode);
}
}
}
else
{
var nextNode = node.Children[word[i] - 'a'];
if (nextNode != null)
{
queue.Enqueue(nextNode);
}
}
}
}
return queue.Any(n => n.IsEnd);
}
}
|
211 |
Design Add and Search Words Data Structure
|
Medium
|
<p>Design a data structure that supports adding new words and finding if a string matches any previously added string.</p>
<p>Implement the <code>WordDictionary</code> class:</p>
<ul>
<li><code>WordDictionary()</code> Initializes the object.</li>
<li><code>void addWord(word)</code> Adds <code>word</code> to the data structure, it can be matched later.</li>
<li><code>bool search(word)</code> Returns <code>true</code> if there is any string in the data structure that matches <code>word</code> or <code>false</code> otherwise. <code>word</code> may contain dots <code>'.'</code> where dots can be matched with any letter.</li>
</ul>
<p> </p>
<p><strong class="example">Example:</strong></p>
<pre>
<strong>Input</strong>
["WordDictionary","addWord","addWord","addWord","search","search","search","search"]
[[],["bad"],["dad"],["mad"],["pad"],["bad"],[".ad"],["b.."]]
<strong>Output</strong>
[null,null,null,null,false,true,true,true]
<strong>Explanation</strong>
WordDictionary wordDictionary = new WordDictionary();
wordDictionary.addWord("bad");
wordDictionary.addWord("dad");
wordDictionary.addWord("mad");
wordDictionary.search("pad"); // return False
wordDictionary.search("bad"); // return True
wordDictionary.search(".ad"); // return True
wordDictionary.search("b.."); // return True
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= word.length <= 25</code></li>
<li><code>word</code> in <code>addWord</code> consists of lowercase English letters.</li>
<li><code>word</code> in <code>search</code> consist of <code>'.'</code> or lowercase English letters.</li>
<li>There will be at most <code>2</code> dots in <code>word</code> for <code>search</code> queries.</li>
<li>At most <code>10<sup>4</sup></code> calls will be made to <code>addWord</code> and <code>search</code>.</li>
</ul>
|
Depth-First Search; Design; Trie; String
|
Go
|
type WordDictionary struct {
root *trie
}
func Constructor() WordDictionary {
return WordDictionary{new(trie)}
}
func (this *WordDictionary) AddWord(word string) {
this.root.insert(word)
}
func (this *WordDictionary) Search(word string) bool {
n := len(word)
var dfs func(int, *trie) bool
dfs = func(i int, cur *trie) bool {
if i == n {
return cur.isEnd
}
c := word[i]
if c != '.' {
child := cur.children[c-'a']
if child != nil && dfs(i+1, child) {
return true
}
} else {
for _, child := range cur.children {
if child != nil && dfs(i+1, child) {
return true
}
}
}
return false
}
return dfs(0, this.root)
}
type trie struct {
children [26]*trie
isEnd bool
}
func (t *trie) insert(word string) {
cur := t
for _, c := range word {
c -= 'a'
if cur.children[c] == nil {
cur.children[c] = new(trie)
}
cur = cur.children[c]
}
cur.isEnd = true
}
/**
* Your WordDictionary object will be instantiated and called as such:
* obj := Constructor();
* obj.AddWord(word);
* param_2 := obj.Search(word);
*/
|
211 |
Design Add and Search Words Data Structure
|
Medium
|
<p>Design a data structure that supports adding new words and finding if a string matches any previously added string.</p>
<p>Implement the <code>WordDictionary</code> class:</p>
<ul>
<li><code>WordDictionary()</code> Initializes the object.</li>
<li><code>void addWord(word)</code> Adds <code>word</code> to the data structure, it can be matched later.</li>
<li><code>bool search(word)</code> Returns <code>true</code> if there is any string in the data structure that matches <code>word</code> or <code>false</code> otherwise. <code>word</code> may contain dots <code>'.'</code> where dots can be matched with any letter.</li>
</ul>
<p> </p>
<p><strong class="example">Example:</strong></p>
<pre>
<strong>Input</strong>
["WordDictionary","addWord","addWord","addWord","search","search","search","search"]
[[],["bad"],["dad"],["mad"],["pad"],["bad"],[".ad"],["b.."]]
<strong>Output</strong>
[null,null,null,null,false,true,true,true]
<strong>Explanation</strong>
WordDictionary wordDictionary = new WordDictionary();
wordDictionary.addWord("bad");
wordDictionary.addWord("dad");
wordDictionary.addWord("mad");
wordDictionary.search("pad"); // return False
wordDictionary.search("bad"); // return True
wordDictionary.search(".ad"); // return True
wordDictionary.search("b.."); // return True
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= word.length <= 25</code></li>
<li><code>word</code> in <code>addWord</code> consists of lowercase English letters.</li>
<li><code>word</code> in <code>search</code> consist of <code>'.'</code> or lowercase English letters.</li>
<li>There will be at most <code>2</code> dots in <code>word</code> for <code>search</code> queries.</li>
<li>At most <code>10<sup>4</sup></code> calls will be made to <code>addWord</code> and <code>search</code>.</li>
</ul>
|
Depth-First Search; Design; Trie; String
|
Java
|
class Trie {
Trie[] children = new Trie[26];
boolean isEnd;
}
class WordDictionary {
private Trie trie;
/** Initialize your data structure here. */
public WordDictionary() {
trie = new Trie();
}
public void addWord(String word) {
Trie node = trie;
for (char c : word.toCharArray()) {
int idx = c - 'a';
if (node.children[idx] == null) {
node.children[idx] = new Trie();
}
node = node.children[idx];
}
node.isEnd = true;
}
public boolean search(String word) {
return search(word, trie);
}
private boolean search(String word, Trie node) {
for (int i = 0; i < word.length(); ++i) {
char c = word.charAt(i);
int idx = c - 'a';
if (c != '.' && node.children[idx] == null) {
return false;
}
if (c == '.') {
for (Trie child : node.children) {
if (child != null && search(word.substring(i + 1), child)) {
return true;
}
}
return false;
}
node = node.children[idx];
}
return node.isEnd;
}
}
/**
* Your WordDictionary object will be instantiated and called as such:
* WordDictionary obj = new WordDictionary();
* obj.addWord(word);
* boolean param_2 = obj.search(word);
*/
|
211 |
Design Add and Search Words Data Structure
|
Medium
|
<p>Design a data structure that supports adding new words and finding if a string matches any previously added string.</p>
<p>Implement the <code>WordDictionary</code> class:</p>
<ul>
<li><code>WordDictionary()</code> Initializes the object.</li>
<li><code>void addWord(word)</code> Adds <code>word</code> to the data structure, it can be matched later.</li>
<li><code>bool search(word)</code> Returns <code>true</code> if there is any string in the data structure that matches <code>word</code> or <code>false</code> otherwise. <code>word</code> may contain dots <code>'.'</code> where dots can be matched with any letter.</li>
</ul>
<p> </p>
<p><strong class="example">Example:</strong></p>
<pre>
<strong>Input</strong>
["WordDictionary","addWord","addWord","addWord","search","search","search","search"]
[[],["bad"],["dad"],["mad"],["pad"],["bad"],[".ad"],["b.."]]
<strong>Output</strong>
[null,null,null,null,false,true,true,true]
<strong>Explanation</strong>
WordDictionary wordDictionary = new WordDictionary();
wordDictionary.addWord("bad");
wordDictionary.addWord("dad");
wordDictionary.addWord("mad");
wordDictionary.search("pad"); // return False
wordDictionary.search("bad"); // return True
wordDictionary.search(".ad"); // return True
wordDictionary.search("b.."); // return True
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= word.length <= 25</code></li>
<li><code>word</code> in <code>addWord</code> consists of lowercase English letters.</li>
<li><code>word</code> in <code>search</code> consist of <code>'.'</code> or lowercase English letters.</li>
<li>There will be at most <code>2</code> dots in <code>word</code> for <code>search</code> queries.</li>
<li>At most <code>10<sup>4</sup></code> calls will be made to <code>addWord</code> and <code>search</code>.</li>
</ul>
|
Depth-First Search; Design; Trie; String
|
Python
|
class Trie:
def __init__(self):
self.children = [None] * 26
self.is_end = False
class WordDictionary:
def __init__(self):
self.trie = Trie()
def addWord(self, word: str) -> None:
node = self.trie
for c in word:
idx = ord(c) - ord('a')
if node.children[idx] is None:
node.children[idx] = Trie()
node = node.children[idx]
node.is_end = True
def search(self, word: str) -> bool:
def search(word, node):
for i in range(len(word)):
c = word[i]
idx = ord(c) - ord('a')
if c != '.' and node.children[idx] is None:
return False
if c == '.':
for child in node.children:
if child is not None and search(word[i + 1 :], child):
return True
return False
node = node.children[idx]
return node.is_end
return search(word, self.trie)
# Your WordDictionary object will be instantiated and called as such:
# obj = WordDictionary()
# obj.addWord(word)
# param_2 = obj.search(word)
|
212 |
Word Search II
|
Hard
|
<p>Given an <code>m x n</code> <code>board</code> of characters and a list of strings <code>words</code>, return <em>all words on the board</em>.</p>
<p>Each word must be constructed from letters of sequentially adjacent cells, where <strong>adjacent cells</strong> are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0212.Word%20Search%20II/images/search1.jpg" style="width: 322px; height: 322px;" />
<pre>
<strong>Input:</strong> board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
<strong>Output:</strong> ["eat","oath"]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0212.Word%20Search%20II/images/search2.jpg" style="width: 162px; height: 162px;" />
<pre>
<strong>Input:</strong> board = [["a","b"],["c","d"]], words = ["abcb"]
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == board.length</code></li>
<li><code>n == board[i].length</code></li>
<li><code>1 <= m, n <= 12</code></li>
<li><code>board[i][j]</code> is a lowercase English letter.</li>
<li><code>1 <= words.length <= 3 * 10<sup>4</sup></code></li>
<li><code>1 <= words[i].length <= 10</code></li>
<li><code>words[i]</code> consists of lowercase English letters.</li>
<li>All the strings of <code>words</code> are unique.</li>
</ul>
|
Trie; Array; String; Backtracking; Matrix
|
C++
|
class Trie {
public:
vector<Trie*> children;
int ref;
Trie()
: children(26, nullptr)
, ref(-1) {}
void insert(const string& w, int ref) {
Trie* node = this;
for (char c : w) {
c -= 'a';
if (!node->children[c]) {
node->children[c] = new Trie();
}
node = node->children[c];
}
node->ref = ref;
}
};
class Solution {
public:
vector<string> findWords(vector<vector<char>>& board, vector<string>& words) {
Trie* tree = new Trie();
for (int i = 0; i < words.size(); ++i) {
tree->insert(words[i], i);
}
vector<string> ans;
int m = board.size(), n = board[0].size();
function<void(Trie*, int, int)> dfs = [&](Trie* node, int i, int j) {
int idx = board[i][j] - 'a';
if (!node->children[idx]) {
return;
}
node = node->children[idx];
if (node->ref != -1) {
ans.emplace_back(words[node->ref]);
node->ref = -1;
}
int dirs[5] = {-1, 0, 1, 0, -1};
char c = board[i][j];
board[i][j] = '#';
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && board[x][y] != '#') {
dfs(node, x, y);
}
}
board[i][j] = c;
};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
dfs(tree, i, j);
}
}
return ans;
}
};
|
212 |
Word Search II
|
Hard
|
<p>Given an <code>m x n</code> <code>board</code> of characters and a list of strings <code>words</code>, return <em>all words on the board</em>.</p>
<p>Each word must be constructed from letters of sequentially adjacent cells, where <strong>adjacent cells</strong> are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0212.Word%20Search%20II/images/search1.jpg" style="width: 322px; height: 322px;" />
<pre>
<strong>Input:</strong> board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
<strong>Output:</strong> ["eat","oath"]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0212.Word%20Search%20II/images/search2.jpg" style="width: 162px; height: 162px;" />
<pre>
<strong>Input:</strong> board = [["a","b"],["c","d"]], words = ["abcb"]
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == board.length</code></li>
<li><code>n == board[i].length</code></li>
<li><code>1 <= m, n <= 12</code></li>
<li><code>board[i][j]</code> is a lowercase English letter.</li>
<li><code>1 <= words.length <= 3 * 10<sup>4</sup></code></li>
<li><code>1 <= words[i].length <= 10</code></li>
<li><code>words[i]</code> consists of lowercase English letters.</li>
<li>All the strings of <code>words</code> are unique.</li>
</ul>
|
Trie; Array; String; Backtracking; Matrix
|
Go
|
type Trie struct {
children [26]*Trie
ref int
}
func newTrie() *Trie {
return &Trie{ref: -1}
}
func (this *Trie) insert(w string, ref int) {
node := this
for _, c := range w {
c -= 'a'
if node.children[c] == nil {
node.children[c] = newTrie()
}
node = node.children[c]
}
node.ref = ref
}
func findWords(board [][]byte, words []string) (ans []string) {
trie := newTrie()
for i, w := range words {
trie.insert(w, i)
}
m, n := len(board), len(board[0])
var dfs func(*Trie, int, int)
dfs = func(node *Trie, i, j int) {
idx := board[i][j] - 'a'
if node.children[idx] == nil {
return
}
node = node.children[idx]
if node.ref != -1 {
ans = append(ans, words[node.ref])
node.ref = -1
}
c := board[i][j]
board[i][j] = '#'
dirs := [5]int{-1, 0, 1, 0, -1}
for k := 0; k < 4; k++ {
x, y := i+dirs[k], j+dirs[k+1]
if x >= 0 && x < m && y >= 0 && y < n && board[x][y] != '#' {
dfs(node, x, y)
}
}
board[i][j] = c
}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
dfs(trie, i, j)
}
}
return
}
|
212 |
Word Search II
|
Hard
|
<p>Given an <code>m x n</code> <code>board</code> of characters and a list of strings <code>words</code>, return <em>all words on the board</em>.</p>
<p>Each word must be constructed from letters of sequentially adjacent cells, where <strong>adjacent cells</strong> are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0212.Word%20Search%20II/images/search1.jpg" style="width: 322px; height: 322px;" />
<pre>
<strong>Input:</strong> board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
<strong>Output:</strong> ["eat","oath"]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0212.Word%20Search%20II/images/search2.jpg" style="width: 162px; height: 162px;" />
<pre>
<strong>Input:</strong> board = [["a","b"],["c","d"]], words = ["abcb"]
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == board.length</code></li>
<li><code>n == board[i].length</code></li>
<li><code>1 <= m, n <= 12</code></li>
<li><code>board[i][j]</code> is a lowercase English letter.</li>
<li><code>1 <= words.length <= 3 * 10<sup>4</sup></code></li>
<li><code>1 <= words[i].length <= 10</code></li>
<li><code>words[i]</code> consists of lowercase English letters.</li>
<li>All the strings of <code>words</code> are unique.</li>
</ul>
|
Trie; Array; String; Backtracking; Matrix
|
Java
|
class Trie {
Trie[] children = new Trie[26];
int ref = -1;
public void insert(String w, int ref) {
Trie node = this;
for (int i = 0; i < w.length(); ++i) {
int j = w.charAt(i) - 'a';
if (node.children[j] == null) {
node.children[j] = new Trie();
}
node = node.children[j];
}
node.ref = ref;
}
}
class Solution {
private char[][] board;
private String[] words;
private List<String> ans = new ArrayList<>();
public List<String> findWords(char[][] board, String[] words) {
this.board = board;
this.words = words;
Trie tree = new Trie();
for (int i = 0; i < words.length; ++i) {
tree.insert(words[i], i);
}
int m = board.length, n = board[0].length;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
dfs(tree, i, j);
}
}
return ans;
}
private void dfs(Trie node, int i, int j) {
int idx = board[i][j] - 'a';
if (node.children[idx] == null) {
return;
}
node = node.children[idx];
if (node.ref != -1) {
ans.add(words[node.ref]);
node.ref = -1;
}
char c = board[i][j];
board[i][j] = '#';
int[] dirs = {-1, 0, 1, 0, -1};
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < board.length && y >= 0 && y < board[0].length && board[x][y] != '#') {
dfs(node, x, y);
}
}
board[i][j] = c;
}
}
|
212 |
Word Search II
|
Hard
|
<p>Given an <code>m x n</code> <code>board</code> of characters and a list of strings <code>words</code>, return <em>all words on the board</em>.</p>
<p>Each word must be constructed from letters of sequentially adjacent cells, where <strong>adjacent cells</strong> are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0212.Word%20Search%20II/images/search1.jpg" style="width: 322px; height: 322px;" />
<pre>
<strong>Input:</strong> board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
<strong>Output:</strong> ["eat","oath"]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0212.Word%20Search%20II/images/search2.jpg" style="width: 162px; height: 162px;" />
<pre>
<strong>Input:</strong> board = [["a","b"],["c","d"]], words = ["abcb"]
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == board.length</code></li>
<li><code>n == board[i].length</code></li>
<li><code>1 <= m, n <= 12</code></li>
<li><code>board[i][j]</code> is a lowercase English letter.</li>
<li><code>1 <= words.length <= 3 * 10<sup>4</sup></code></li>
<li><code>1 <= words[i].length <= 10</code></li>
<li><code>words[i]</code> consists of lowercase English letters.</li>
<li>All the strings of <code>words</code> are unique.</li>
</ul>
|
Trie; Array; String; Backtracking; Matrix
|
Python
|
class Trie:
def __init__(self):
self.children: List[Trie | None] = [None] * 26
self.ref: int = -1
def insert(self, w: str, ref: int):
node = self
for c in w:
idx = ord(c) - ord('a')
if node.children[idx] is None:
node.children[idx] = Trie()
node = node.children[idx]
node.ref = ref
class Solution:
def findWords(self, board: List[List[str]], words: List[str]) -> List[str]:
def dfs(node: Trie, i: int, j: int):
idx = ord(board[i][j]) - ord('a')
if node.children[idx] is None:
return
node = node.children[idx]
if node.ref >= 0:
ans.append(words[node.ref])
node.ref = -1
c = board[i][j]
board[i][j] = '#'
for a, b in pairwise((-1, 0, 1, 0, -1)):
x, y = i + a, j + b
if 0 <= x < m and 0 <= y < n and board[x][y] != '#':
dfs(node, x, y)
board[i][j] = c
tree = Trie()
for i, w in enumerate(words):
tree.insert(w, i)
m, n = len(board), len(board[0])
ans = []
for i in range(m):
for j in range(n):
dfs(tree, i, j)
return ans
|
212 |
Word Search II
|
Hard
|
<p>Given an <code>m x n</code> <code>board</code> of characters and a list of strings <code>words</code>, return <em>all words on the board</em>.</p>
<p>Each word must be constructed from letters of sequentially adjacent cells, where <strong>adjacent cells</strong> are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0212.Word%20Search%20II/images/search1.jpg" style="width: 322px; height: 322px;" />
<pre>
<strong>Input:</strong> board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
<strong>Output:</strong> ["eat","oath"]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0212.Word%20Search%20II/images/search2.jpg" style="width: 162px; height: 162px;" />
<pre>
<strong>Input:</strong> board = [["a","b"],["c","d"]], words = ["abcb"]
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == board.length</code></li>
<li><code>n == board[i].length</code></li>
<li><code>1 <= m, n <= 12</code></li>
<li><code>board[i][j]</code> is a lowercase English letter.</li>
<li><code>1 <= words.length <= 3 * 10<sup>4</sup></code></li>
<li><code>1 <= words[i].length <= 10</code></li>
<li><code>words[i]</code> consists of lowercase English letters.</li>
<li>All the strings of <code>words</code> are unique.</li>
</ul>
|
Trie; Array; String; Backtracking; Matrix
|
TypeScript
|
class Trie {
children: Trie[];
ref: number;
constructor() {
this.children = new Array(26);
this.ref = -1;
}
insert(w: string, ref: number): void {
let node: Trie = this;
for (let i = 0; i < w.length; i++) {
const c = w.charCodeAt(i) - 97;
if (node.children[c] == null) {
node.children[c] = new Trie();
}
node = node.children[c];
}
node.ref = ref;
}
}
function findWords(board: string[][], words: string[]): string[] {
const tree = new Trie();
for (let i = 0; i < words.length; ++i) {
tree.insert(words[i], i);
}
const m = board.length;
const n = board[0].length;
const ans: string[] = [];
const dirs: number[] = [-1, 0, 1, 0, -1];
const dfs = (node: Trie, i: number, j: number) => {
const idx = board[i][j].charCodeAt(0) - 97;
if (node.children[idx] == null) {
return;
}
node = node.children[idx];
if (node.ref != -1) {
ans.push(words[node.ref]);
node.ref = -1;
}
const c = board[i][j];
board[i][j] = '#';
for (let k = 0; k < 4; ++k) {
const x = i + dirs[k];
const y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && board[x][y] != '#') {
dfs(node, x, y);
}
}
board[i][j] = c;
};
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
dfs(tree, i, j);
}
}
return ans;
}
|
213 |
House Robber II
|
Medium
|
<p>You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are <strong>arranged in a circle.</strong> That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have a security system connected, and <b>it will automatically contact the police if two adjacent houses were broken into on the same night</b>.</p>
<p>Given an integer array <code>nums</code> representing the amount of money of each house, return <em>the maximum amount of money you can rob tonight <strong>without alerting the police</strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [2,3,2]
<strong>Output:</strong> 3
<strong>Explanation:</strong> You cannot rob house 1 (money = 2) and then rob house 3 (money = 2), because they are adjacent houses.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3]
<strong>Output:</strong> 3
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 100</code></li>
<li><code>0 <= nums[i] <= 1000</code></li>
</ul>
|
Array; Dynamic Programming
|
C++
|
class Solution {
public:
int rob(vector<int>& nums) {
int n = nums.size();
if (n == 1) {
return nums[0];
}
return max(robRange(nums, 0, n - 2), robRange(nums, 1, n - 1));
}
int robRange(vector<int>& nums, int l, int r) {
int f = 0, g = 0;
for (; l <= r; ++l) {
int ff = max(f, g);
g = f + nums[l];
f = ff;
}
return max(f, g);
}
};
|
213 |
House Robber II
|
Medium
|
<p>You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are <strong>arranged in a circle.</strong> That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have a security system connected, and <b>it will automatically contact the police if two adjacent houses were broken into on the same night</b>.</p>
<p>Given an integer array <code>nums</code> representing the amount of money of each house, return <em>the maximum amount of money you can rob tonight <strong>without alerting the police</strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [2,3,2]
<strong>Output:</strong> 3
<strong>Explanation:</strong> You cannot rob house 1 (money = 2) and then rob house 3 (money = 2), because they are adjacent houses.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3]
<strong>Output:</strong> 3
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 100</code></li>
<li><code>0 <= nums[i] <= 1000</code></li>
</ul>
|
Array; Dynamic Programming
|
Go
|
func rob(nums []int) int {
n := len(nums)
if n == 1 {
return nums[0]
}
return max(robRange(nums, 0, n-2), robRange(nums, 1, n-1))
}
func robRange(nums []int, l, r int) int {
f, g := 0, 0
for _, x := range nums[l : r+1] {
f, g = max(f, g), f+x
}
return max(f, g)
}
|
213 |
House Robber II
|
Medium
|
<p>You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are <strong>arranged in a circle.</strong> That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have a security system connected, and <b>it will automatically contact the police if two adjacent houses were broken into on the same night</b>.</p>
<p>Given an integer array <code>nums</code> representing the amount of money of each house, return <em>the maximum amount of money you can rob tonight <strong>without alerting the police</strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [2,3,2]
<strong>Output:</strong> 3
<strong>Explanation:</strong> You cannot rob house 1 (money = 2) and then rob house 3 (money = 2), because they are adjacent houses.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3]
<strong>Output:</strong> 3
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 100</code></li>
<li><code>0 <= nums[i] <= 1000</code></li>
</ul>
|
Array; Dynamic Programming
|
Java
|
class Solution {
public int rob(int[] nums) {
int n = nums.length;
if (n == 1) {
return nums[0];
}
return Math.max(rob(nums, 0, n - 2), rob(nums, 1, n - 1));
}
private int rob(int[] nums, int l, int r) {
int f = 0, g = 0;
for (; l <= r; ++l) {
int ff = Math.max(f, g);
g = f + nums[l];
f = ff;
}
return Math.max(f, g);
}
}
|
213 |
House Robber II
|
Medium
|
<p>You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are <strong>arranged in a circle.</strong> That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have a security system connected, and <b>it will automatically contact the police if two adjacent houses were broken into on the same night</b>.</p>
<p>Given an integer array <code>nums</code> representing the amount of money of each house, return <em>the maximum amount of money you can rob tonight <strong>without alerting the police</strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [2,3,2]
<strong>Output:</strong> 3
<strong>Explanation:</strong> You cannot rob house 1 (money = 2) and then rob house 3 (money = 2), because they are adjacent houses.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3]
<strong>Output:</strong> 3
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 100</code></li>
<li><code>0 <= nums[i] <= 1000</code></li>
</ul>
|
Array; Dynamic Programming
|
Python
|
class Solution:
def rob(self, nums: List[int]) -> int:
def _rob(nums):
f = g = 0
for x in nums:
f, g = max(f, g), f + x
return max(f, g)
if len(nums) == 1:
return nums[0]
return max(_rob(nums[1:]), _rob(nums[:-1]))
|
213 |
House Robber II
|
Medium
|
<p>You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are <strong>arranged in a circle.</strong> That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have a security system connected, and <b>it will automatically contact the police if two adjacent houses were broken into on the same night</b>.</p>
<p>Given an integer array <code>nums</code> representing the amount of money of each house, return <em>the maximum amount of money you can rob tonight <strong>without alerting the police</strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [2,3,2]
<strong>Output:</strong> 3
<strong>Explanation:</strong> You cannot rob house 1 (money = 2) and then rob house 3 (money = 2), because they are adjacent houses.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3]
<strong>Output:</strong> 3
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 100</code></li>
<li><code>0 <= nums[i] <= 1000</code></li>
</ul>
|
Array; Dynamic Programming
|
Rust
|
impl Solution {
pub fn rob(nums: Vec<i32>) -> i32 {
let n = nums.len();
if n == 1 {
return nums[0];
}
let rob_range = |l, r| {
let mut f = [0, 0];
for i in l..r {
f = [f[0].max(f[1]), f[0] + nums[i]];
}
f[0].max(f[1])
};
rob_range(0, n - 1).max(rob_range(1, n))
}
}
|
213 |
House Robber II
|
Medium
|
<p>You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are <strong>arranged in a circle.</strong> That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have a security system connected, and <b>it will automatically contact the police if two adjacent houses were broken into on the same night</b>.</p>
<p>Given an integer array <code>nums</code> representing the amount of money of each house, return <em>the maximum amount of money you can rob tonight <strong>without alerting the police</strong></em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [2,3,2]
<strong>Output:</strong> 3
<strong>Explanation:</strong> You cannot rob house 1 (money = 2) and then rob house 3 (money = 2), because they are adjacent houses.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1]
<strong>Output:</strong> 4
<strong>Explanation:</strong> Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3]
<strong>Output:</strong> 3
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 100</code></li>
<li><code>0 <= nums[i] <= 1000</code></li>
</ul>
|
Array; Dynamic Programming
|
TypeScript
|
function rob(nums: number[]): number {
const n = nums.length;
if (n === 1) {
return nums[0];
}
const robRange = (l: number, r: number): number => {
let [f, g] = [0, 0];
for (; l <= r; ++l) {
[f, g] = [Math.max(f, g), f + nums[l]];
}
return Math.max(f, g);
};
return Math.max(robRange(0, n - 2), robRange(1, n - 1));
}
|
214 |
Shortest Palindrome
|
Hard
|
<p>You are given a string <code>s</code>. You can convert <code>s</code> to a <span data-keyword="palindrome-string">palindrome</span> by adding characters in front of it.</p>
<p>Return <em>the shortest palindrome you can find by performing this transformation</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> s = "aacecaaa"
<strong>Output:</strong> "aaacecaaa"
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> s = "abcd"
<strong>Output:</strong> "dcbabcd"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>s</code> consists of lowercase English letters only.</li>
</ul>
|
String; String Matching; Hash Function; Rolling Hash
|
C++
|
typedef unsigned long long ull;
class Solution {
public:
string shortestPalindrome(string s) {
int base = 131;
ull mul = 1;
ull prefix = 0;
ull suffix = 0;
int idx = 0, n = s.size();
for (int i = 0; i < n; ++i) {
int t = s[i] - 'a' + 1;
prefix = prefix * base + t;
suffix = suffix + mul * t;
mul *= base;
if (prefix == suffix) idx = i + 1;
}
if (idx == n) return s;
string x = s.substr(idx, n - idx);
reverse(x.begin(), x.end());
return x + s;
}
};
|
214 |
Shortest Palindrome
|
Hard
|
<p>You are given a string <code>s</code>. You can convert <code>s</code> to a <span data-keyword="palindrome-string">palindrome</span> by adding characters in front of it.</p>
<p>Return <em>the shortest palindrome you can find by performing this transformation</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> s = "aacecaaa"
<strong>Output:</strong> "aaacecaaa"
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> s = "abcd"
<strong>Output:</strong> "dcbabcd"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>s</code> consists of lowercase English letters only.</li>
</ul>
|
String; String Matching; Hash Function; Rolling Hash
|
C#
|
public class Solution {
public string ShortestPalindrome(string s) {
int baseValue = 131;
int mul = 1;
int mod = (int)1e9 + 7;
int prefix = 0, suffix = 0;
int idx = 0;
int n = s.Length;
for (int i = 0; i < n; ++i) {
int t = s[i] - 'a' + 1;
prefix = (int)(((long)prefix * baseValue + t) % mod);
suffix = (int)((suffix + (long)t * mul) % mod);
mul = (int)(((long)mul * baseValue) % mod);
if (prefix == suffix) {
idx = i + 1;
}
}
if (idx == n) {
return s;
}
return new string(s.Substring(idx).Reverse().ToArray()) + s;
}
}
|
214 |
Shortest Palindrome
|
Hard
|
<p>You are given a string <code>s</code>. You can convert <code>s</code> to a <span data-keyword="palindrome-string">palindrome</span> by adding characters in front of it.</p>
<p>Return <em>the shortest palindrome you can find by performing this transformation</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> s = "aacecaaa"
<strong>Output:</strong> "aaacecaaa"
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> s = "abcd"
<strong>Output:</strong> "dcbabcd"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>s</code> consists of lowercase English letters only.</li>
</ul>
|
String; String Matching; Hash Function; Rolling Hash
|
Go
|
func shortestPalindrome(s string) string {
n := len(s)
base, mod := 131, int(1e9)+7
prefix, suffix, mul := 0, 0, 1
idx := 0
for i, c := range s {
t := int(c-'a') + 1
prefix = (prefix*base + t) % mod
suffix = (suffix + t*mul) % mod
mul = (mul * base) % mod
if prefix == suffix {
idx = i + 1
}
}
if idx == n {
return s
}
x := []byte(s[idx:])
for i, j := 0, len(x)-1; i < j; i, j = i+1, j-1 {
x[i], x[j] = x[j], x[i]
}
return string(x) + s
}
|
214 |
Shortest Palindrome
|
Hard
|
<p>You are given a string <code>s</code>. You can convert <code>s</code> to a <span data-keyword="palindrome-string">palindrome</span> by adding characters in front of it.</p>
<p>Return <em>the shortest palindrome you can find by performing this transformation</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> s = "aacecaaa"
<strong>Output:</strong> "aaacecaaa"
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> s = "abcd"
<strong>Output:</strong> "dcbabcd"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>s</code> consists of lowercase English letters only.</li>
</ul>
|
String; String Matching; Hash Function; Rolling Hash
|
Java
|
class Solution {
public String shortestPalindrome(String s) {
int base = 131;
int mul = 1;
int mod = (int) 1e9 + 7;
int prefix = 0, suffix = 0;
int idx = 0;
int n = s.length();
for (int i = 0; i < n; ++i) {
int t = s.charAt(i) - 'a' + 1;
prefix = (int) (((long) prefix * base + t) % mod);
suffix = (int) ((suffix + (long) t * mul) % mod);
mul = (int) (((long) mul * base) % mod);
if (prefix == suffix) {
idx = i + 1;
}
}
if (idx == n) {
return s;
}
return new StringBuilder(s.substring(idx)).reverse().toString() + s;
}
}
|
214 |
Shortest Palindrome
|
Hard
|
<p>You are given a string <code>s</code>. You can convert <code>s</code> to a <span data-keyword="palindrome-string">palindrome</span> by adding characters in front of it.</p>
<p>Return <em>the shortest palindrome you can find by performing this transformation</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> s = "aacecaaa"
<strong>Output:</strong> "aaacecaaa"
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> s = "abcd"
<strong>Output:</strong> "dcbabcd"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>s</code> consists of lowercase English letters only.</li>
</ul>
|
String; String Matching; Hash Function; Rolling Hash
|
Python
|
class Solution:
def shortestPalindrome(self, s: str) -> str:
base = 131
mod = 10**9 + 7
n = len(s)
prefix = suffix = 0
mul = 1
idx = 0
for i, c in enumerate(s):
prefix = (prefix * base + (ord(c) - ord('a') + 1)) % mod
suffix = (suffix + (ord(c) - ord('a') + 1) * mul) % mod
mul = (mul * base) % mod
if prefix == suffix:
idx = i + 1
return s if idx == n else s[idx:][::-1] + s
|
214 |
Shortest Palindrome
|
Hard
|
<p>You are given a string <code>s</code>. You can convert <code>s</code> to a <span data-keyword="palindrome-string">palindrome</span> by adding characters in front of it.</p>
<p>Return <em>the shortest palindrome you can find by performing this transformation</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> s = "aacecaaa"
<strong>Output:</strong> "aaacecaaa"
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> s = "abcd"
<strong>Output:</strong> "dcbabcd"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= s.length <= 5 * 10<sup>4</sup></code></li>
<li><code>s</code> consists of lowercase English letters only.</li>
</ul>
|
String; String Matching; Hash Function; Rolling Hash
|
Rust
|
impl Solution {
pub fn shortest_palindrome(s: String) -> String {
let base = 131;
let (mut idx, mut prefix, mut suffix, mut mul) = (0, 0, 0, 1);
for (i, c) in s.chars().enumerate() {
let t = (c as u64) - ('0' as u64) + 1;
prefix = prefix * base + t;
suffix = suffix + t * mul;
mul *= base;
if prefix == suffix {
idx = i + 1;
}
}
if idx == s.len() {
s
} else {
let x: String = (&s[idx..]).chars().rev().collect();
String::from(x + &s)
}
}
}
|
215 |
Kth Largest Element in an Array
|
Medium
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <em>the</em> <code>k<sup>th</sup></code> <em>largest element in the array</em>.</p>
<p>Note that it is the <code>k<sup>th</sup></code> largest element in the sorted order, not the <code>k<sup>th</sup></code> distinct element.</p>
<p>Can you solve it without sorting?</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [3,2,1,5,6,4], k = 2
<strong>Output:</strong> 5
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [3,2,3,1,2,4,5,5,6], k = 4
<strong>Output:</strong> 4
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= k <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
</ul>
|
Array; Divide and Conquer; Quickselect; Sorting; Heap (Priority Queue)
|
C++
|
class Solution {
public:
int findKthLargest(vector<int>& nums, int k) {
int n = nums.size();
k = n - k;
auto quickSort = [&](auto&& quickSort, int l, int r) -> int {
if (l == r) {
return nums[l];
}
int i = l - 1, j = r + 1;
int x = nums[(l + r) >> 1];
while (i < j) {
while (nums[++i] < x) {
}
while (nums[--j] > x) {
}
if (i < j) {
swap(nums[i], nums[j]);
}
}
if (j < k) {
return quickSort(quickSort, j + 1, r);
}
return quickSort(quickSort, l, j);
};
return quickSort(quickSort, 0, n - 1);
}
};
|
215 |
Kth Largest Element in an Array
|
Medium
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <em>the</em> <code>k<sup>th</sup></code> <em>largest element in the array</em>.</p>
<p>Note that it is the <code>k<sup>th</sup></code> largest element in the sorted order, not the <code>k<sup>th</sup></code> distinct element.</p>
<p>Can you solve it without sorting?</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [3,2,1,5,6,4], k = 2
<strong>Output:</strong> 5
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [3,2,3,1,2,4,5,5,6], k = 4
<strong>Output:</strong> 4
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= k <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
</ul>
|
Array; Divide and Conquer; Quickselect; Sorting; Heap (Priority Queue)
|
Go
|
func findKthLargest(nums []int, k int) int {
k = len(nums) - k
var quickSort func(l, r int) int
quickSort = func(l, r int) int {
if l == r {
return nums[l]
}
i, j := l-1, r+1
x := nums[(l+r)>>1]
for i < j {
for {
i++
if nums[i] >= x {
break
}
}
for {
j--
if nums[j] <= x {
break
}
}
if i < j {
nums[i], nums[j] = nums[j], nums[i]
}
}
if j < k {
return quickSort(j+1, r)
}
return quickSort(l, j)
}
return quickSort(0, len(nums)-1)
}
|
215 |
Kth Largest Element in an Array
|
Medium
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <em>the</em> <code>k<sup>th</sup></code> <em>largest element in the array</em>.</p>
<p>Note that it is the <code>k<sup>th</sup></code> largest element in the sorted order, not the <code>k<sup>th</sup></code> distinct element.</p>
<p>Can you solve it without sorting?</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [3,2,1,5,6,4], k = 2
<strong>Output:</strong> 5
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [3,2,3,1,2,4,5,5,6], k = 4
<strong>Output:</strong> 4
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= k <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
</ul>
|
Array; Divide and Conquer; Quickselect; Sorting; Heap (Priority Queue)
|
Java
|
class Solution {
private int[] nums;
private int k;
public int findKthLargest(int[] nums, int k) {
this.nums = nums;
this.k = nums.length - k;
return quickSort(0, nums.length - 1);
}
private int quickSort(int l, int r) {
if (l == r) {
return nums[l];
}
int i = l - 1, j = r + 1;
int x = nums[(l + r) >>> 1];
while (i < j) {
while (nums[++i] < x) {
}
while (nums[--j] > x) {
}
if (i < j) {
int t = nums[i];
nums[i] = nums[j];
nums[j] = t;
}
}
if (j < k) {
return quickSort(j + 1, r);
}
return quickSort(l, j);
}
}
|
215 |
Kth Largest Element in an Array
|
Medium
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <em>the</em> <code>k<sup>th</sup></code> <em>largest element in the array</em>.</p>
<p>Note that it is the <code>k<sup>th</sup></code> largest element in the sorted order, not the <code>k<sup>th</sup></code> distinct element.</p>
<p>Can you solve it without sorting?</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [3,2,1,5,6,4], k = 2
<strong>Output:</strong> 5
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [3,2,3,1,2,4,5,5,6], k = 4
<strong>Output:</strong> 4
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= k <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
</ul>
|
Array; Divide and Conquer; Quickselect; Sorting; Heap (Priority Queue)
|
Python
|
class Solution:
def findKthLargest(self, nums: List[int], k: int) -> int:
def quick_sort(l: int, r: int) -> int:
if l == r:
return nums[l]
i, j = l - 1, r + 1
x = nums[(l + r) >> 1]
while i < j:
while 1:
i += 1
if nums[i] >= x:
break
while 1:
j -= 1
if nums[j] <= x:
break
if i < j:
nums[i], nums[j] = nums[j], nums[i]
if j < k:
return quick_sort(j + 1, r)
return quick_sort(l, j)
n = len(nums)
k = n - k
return quick_sort(0, n - 1)
|
215 |
Kth Largest Element in an Array
|
Medium
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <em>the</em> <code>k<sup>th</sup></code> <em>largest element in the array</em>.</p>
<p>Note that it is the <code>k<sup>th</sup></code> largest element in the sorted order, not the <code>k<sup>th</sup></code> distinct element.</p>
<p>Can you solve it without sorting?</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [3,2,1,5,6,4], k = 2
<strong>Output:</strong> 5
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [3,2,3,1,2,4,5,5,6], k = 4
<strong>Output:</strong> 4
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= k <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
</ul>
|
Array; Divide and Conquer; Quickselect; Sorting; Heap (Priority Queue)
|
Rust
|
impl Solution {
pub fn find_kth_largest(mut nums: Vec<i32>, k: i32) -> i32 {
let len = nums.len();
let k = len - k as usize;
Self::quick_sort(&mut nums, 0, len - 1, k)
}
fn quick_sort(nums: &mut Vec<i32>, l: usize, r: usize, k: usize) -> i32 {
if l == r {
return nums[l];
}
let (mut i, mut j) = (l as isize - 1, r as isize + 1);
let x = nums[(l + r) / 2];
while i < j {
i += 1;
while nums[i as usize] < x {
i += 1;
}
j -= 1;
while nums[j as usize] > x {
j -= 1;
}
if i < j {
nums.swap(i as usize, j as usize);
}
}
let j = j as usize;
if j < k {
Self::quick_sort(nums, j + 1, r, k)
} else {
Self::quick_sort(nums, l, j, k)
}
}
}
|
215 |
Kth Largest Element in an Array
|
Medium
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <em>the</em> <code>k<sup>th</sup></code> <em>largest element in the array</em>.</p>
<p>Note that it is the <code>k<sup>th</sup></code> largest element in the sorted order, not the <code>k<sup>th</sup></code> distinct element.</p>
<p>Can you solve it without sorting?</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> nums = [3,2,1,5,6,4], k = 2
<strong>Output:</strong> 5
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> nums = [3,2,3,1,2,4,5,5,6], k = 4
<strong>Output:</strong> 4
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= k <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
</ul>
|
Array; Divide and Conquer; Quickselect; Sorting; Heap (Priority Queue)
|
TypeScript
|
function findKthLargest(nums: number[], k: number): number {
const n = nums.length;
k = n - k;
const quickSort = (l: number, r: number): number => {
if (l === r) {
return nums[l];
}
let [i, j] = [l - 1, r + 1];
const x = nums[(l + r) >> 1];
while (i < j) {
while (nums[++i] < x);
while (nums[--j] > x);
if (i < j) {
[nums[i], nums[j]] = [nums[j], nums[i]];
}
}
if (j < k) {
return quickSort(j + 1, r);
}
return quickSort(l, j);
};
return quickSort(0, n - 1);
}
|
216 |
Combination Sum III
|
Medium
|
<p>Find all valid combinations of <code>k</code> numbers that sum up to <code>n</code> such that the following conditions are true:</p>
<ul>
<li>Only numbers <code>1</code> through <code>9</code> are used.</li>
<li>Each number is used <strong>at most once</strong>.</li>
</ul>
<p>Return <em>a list of all possible valid combinations</em>. The list must not contain the same combination twice, and the combinations may be returned in any order.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> k = 3, n = 7
<strong>Output:</strong> [[1,2,4]]
<strong>Explanation:</strong>
1 + 2 + 4 = 7
There are no other valid combinations.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> k = 3, n = 9
<strong>Output:</strong> [[1,2,6],[1,3,5],[2,3,4]]
<strong>Explanation:</strong>
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
There are no other valid combinations.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> k = 4, n = 1
<strong>Output:</strong> []
<strong>Explanation:</strong> There are no valid combinations.
Using 4 different numbers in the range [1,9], the smallest sum we can get is 1+2+3+4 = 10 and since 10 > 1, there are no valid combination.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= k <= 9</code></li>
<li><code>1 <= n <= 60</code></li>
</ul>
|
Array; Backtracking
|
C++
|
class Solution {
public:
vector<vector<int>> combinationSum3(int k, int n) {
vector<vector<int>> ans;
vector<int> t;
function<void(int, int)> dfs = [&](int i, int s) {
if (s == 0) {
if (t.size() == k) {
ans.emplace_back(t);
}
return;
}
if (i > 9 || i > s || t.size() >= k) {
return;
}
t.emplace_back(i);
dfs(i + 1, s - i);
t.pop_back();
dfs(i + 1, s);
};
dfs(1, n);
return ans;
}
};
|
216 |
Combination Sum III
|
Medium
|
<p>Find all valid combinations of <code>k</code> numbers that sum up to <code>n</code> such that the following conditions are true:</p>
<ul>
<li>Only numbers <code>1</code> through <code>9</code> are used.</li>
<li>Each number is used <strong>at most once</strong>.</li>
</ul>
<p>Return <em>a list of all possible valid combinations</em>. The list must not contain the same combination twice, and the combinations may be returned in any order.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> k = 3, n = 7
<strong>Output:</strong> [[1,2,4]]
<strong>Explanation:</strong>
1 + 2 + 4 = 7
There are no other valid combinations.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> k = 3, n = 9
<strong>Output:</strong> [[1,2,6],[1,3,5],[2,3,4]]
<strong>Explanation:</strong>
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
There are no other valid combinations.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> k = 4, n = 1
<strong>Output:</strong> []
<strong>Explanation:</strong> There are no valid combinations.
Using 4 different numbers in the range [1,9], the smallest sum we can get is 1+2+3+4 = 10 and since 10 > 1, there are no valid combination.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= k <= 9</code></li>
<li><code>1 <= n <= 60</code></li>
</ul>
|
Array; Backtracking
|
C#
|
public class Solution {
private List<IList<int>> ans = new List<IList<int>>();
private List<int> t = new List<int>();
private int k;
public IList<IList<int>> CombinationSum3(int k, int n) {
this.k = k;
dfs(1, n);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
if (t.Count == k) {
ans.Add(new List<int>(t));
}
return;
}
if (i > 9 || i > s || t.Count >= k) {
return;
}
t.Add(i);
dfs(i + 1, s - i);
t.RemoveAt(t.Count - 1);
dfs(i + 1, s);
}
}
|
216 |
Combination Sum III
|
Medium
|
<p>Find all valid combinations of <code>k</code> numbers that sum up to <code>n</code> such that the following conditions are true:</p>
<ul>
<li>Only numbers <code>1</code> through <code>9</code> are used.</li>
<li>Each number is used <strong>at most once</strong>.</li>
</ul>
<p>Return <em>a list of all possible valid combinations</em>. The list must not contain the same combination twice, and the combinations may be returned in any order.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> k = 3, n = 7
<strong>Output:</strong> [[1,2,4]]
<strong>Explanation:</strong>
1 + 2 + 4 = 7
There are no other valid combinations.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> k = 3, n = 9
<strong>Output:</strong> [[1,2,6],[1,3,5],[2,3,4]]
<strong>Explanation:</strong>
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
There are no other valid combinations.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> k = 4, n = 1
<strong>Output:</strong> []
<strong>Explanation:</strong> There are no valid combinations.
Using 4 different numbers in the range [1,9], the smallest sum we can get is 1+2+3+4 = 10 and since 10 > 1, there are no valid combination.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= k <= 9</code></li>
<li><code>1 <= n <= 60</code></li>
</ul>
|
Array; Backtracking
|
Go
|
func combinationSum3(k int, n int) (ans [][]int) {
t := []int{}
var dfs func(i, s int)
dfs = func(i, s int) {
if s == 0 {
if len(t) == k {
ans = append(ans, slices.Clone(t))
}
return
}
if i > 9 || i > s || len(t) >= k {
return
}
t = append(t, i)
dfs(i+1, s-i)
t = t[:len(t)-1]
dfs(i+1, s)
}
dfs(1, n)
return
}
|
216 |
Combination Sum III
|
Medium
|
<p>Find all valid combinations of <code>k</code> numbers that sum up to <code>n</code> such that the following conditions are true:</p>
<ul>
<li>Only numbers <code>1</code> through <code>9</code> are used.</li>
<li>Each number is used <strong>at most once</strong>.</li>
</ul>
<p>Return <em>a list of all possible valid combinations</em>. The list must not contain the same combination twice, and the combinations may be returned in any order.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> k = 3, n = 7
<strong>Output:</strong> [[1,2,4]]
<strong>Explanation:</strong>
1 + 2 + 4 = 7
There are no other valid combinations.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> k = 3, n = 9
<strong>Output:</strong> [[1,2,6],[1,3,5],[2,3,4]]
<strong>Explanation:</strong>
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
There are no other valid combinations.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> k = 4, n = 1
<strong>Output:</strong> []
<strong>Explanation:</strong> There are no valid combinations.
Using 4 different numbers in the range [1,9], the smallest sum we can get is 1+2+3+4 = 10 and since 10 > 1, there are no valid combination.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= k <= 9</code></li>
<li><code>1 <= n <= 60</code></li>
</ul>
|
Array; Backtracking
|
Java
|
class Solution {
private List<List<Integer>> ans = new ArrayList<>();
private List<Integer> t = new ArrayList<>();
private int k;
public List<List<Integer>> combinationSum3(int k, int n) {
this.k = k;
dfs(1, n);
return ans;
}
private void dfs(int i, int s) {
if (s == 0) {
if (t.size() == k) {
ans.add(new ArrayList<>(t));
}
return;
}
if (i > 9 || i > s || t.size() >= k) {
return;
}
t.add(i);
dfs(i + 1, s - i);
t.remove(t.size() - 1);
dfs(i + 1, s);
}
}
|
216 |
Combination Sum III
|
Medium
|
<p>Find all valid combinations of <code>k</code> numbers that sum up to <code>n</code> such that the following conditions are true:</p>
<ul>
<li>Only numbers <code>1</code> through <code>9</code> are used.</li>
<li>Each number is used <strong>at most once</strong>.</li>
</ul>
<p>Return <em>a list of all possible valid combinations</em>. The list must not contain the same combination twice, and the combinations may be returned in any order.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> k = 3, n = 7
<strong>Output:</strong> [[1,2,4]]
<strong>Explanation:</strong>
1 + 2 + 4 = 7
There are no other valid combinations.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> k = 3, n = 9
<strong>Output:</strong> [[1,2,6],[1,3,5],[2,3,4]]
<strong>Explanation:</strong>
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
There are no other valid combinations.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> k = 4, n = 1
<strong>Output:</strong> []
<strong>Explanation:</strong> There are no valid combinations.
Using 4 different numbers in the range [1,9], the smallest sum we can get is 1+2+3+4 = 10 and since 10 > 1, there are no valid combination.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= k <= 9</code></li>
<li><code>1 <= n <= 60</code></li>
</ul>
|
Array; Backtracking
|
JavaScript
|
function combinationSum3(k, n) {
const ans = [];
const t = [];
const dfs = (i, s) => {
if (s === 0) {
if (t.length === k) {
ans.push(t.slice());
}
return;
}
if (i > 9 || i > s || t.length >= k) {
return;
}
t.push(i);
dfs(i + 1, s - i);
t.pop();
dfs(i + 1, s);
};
dfs(1, n);
return ans;
}
|
216 |
Combination Sum III
|
Medium
|
<p>Find all valid combinations of <code>k</code> numbers that sum up to <code>n</code> such that the following conditions are true:</p>
<ul>
<li>Only numbers <code>1</code> through <code>9</code> are used.</li>
<li>Each number is used <strong>at most once</strong>.</li>
</ul>
<p>Return <em>a list of all possible valid combinations</em>. The list must not contain the same combination twice, and the combinations may be returned in any order.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> k = 3, n = 7
<strong>Output:</strong> [[1,2,4]]
<strong>Explanation:</strong>
1 + 2 + 4 = 7
There are no other valid combinations.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> k = 3, n = 9
<strong>Output:</strong> [[1,2,6],[1,3,5],[2,3,4]]
<strong>Explanation:</strong>
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
There are no other valid combinations.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> k = 4, n = 1
<strong>Output:</strong> []
<strong>Explanation:</strong> There are no valid combinations.
Using 4 different numbers in the range [1,9], the smallest sum we can get is 1+2+3+4 = 10 and since 10 > 1, there are no valid combination.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= k <= 9</code></li>
<li><code>1 <= n <= 60</code></li>
</ul>
|
Array; Backtracking
|
Python
|
class Solution:
def combinationSum3(self, k: int, n: int) -> List[List[int]]:
def dfs(i: int, s: int):
if s == 0:
if len(t) == k:
ans.append(t[:])
return
if i > 9 or i > s or len(t) >= k:
return
t.append(i)
dfs(i + 1, s - i)
t.pop()
dfs(i + 1, s)
ans = []
t = []
dfs(1, n)
return ans
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.