id
int64 1
3.65k
| title
stringlengths 3
79
| difficulty
stringclasses 3
values | description
stringlengths 430
25.4k
| tags
stringlengths 0
131
| language
stringclasses 19
values | solution
stringlengths 47
20.6k
|
---|---|---|---|---|---|---|
216 |
Combination Sum III
|
Medium
|
<p>Find all valid combinations of <code>k</code> numbers that sum up to <code>n</code> such that the following conditions are true:</p>
<ul>
<li>Only numbers <code>1</code> through <code>9</code> are used.</li>
<li>Each number is used <strong>at most once</strong>.</li>
</ul>
<p>Return <em>a list of all possible valid combinations</em>. The list must not contain the same combination twice, and the combinations may be returned in any order.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> k = 3, n = 7
<strong>Output:</strong> [[1,2,4]]
<strong>Explanation:</strong>
1 + 2 + 4 = 7
There are no other valid combinations.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> k = 3, n = 9
<strong>Output:</strong> [[1,2,6],[1,3,5],[2,3,4]]
<strong>Explanation:</strong>
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
There are no other valid combinations.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> k = 4, n = 1
<strong>Output:</strong> []
<strong>Explanation:</strong> There are no valid combinations.
Using 4 different numbers in the range [1,9], the smallest sum we can get is 1+2+3+4 = 10 and since 10 > 1, there are no valid combination.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= k <= 9</code></li>
<li><code>1 <= n <= 60</code></li>
</ul>
|
Array; Backtracking
|
Rust
|
impl Solution {
#[allow(dead_code)]
pub fn combination_sum3(k: i32, n: i32) -> Vec<Vec<i32>> {
let mut ret = Vec::new();
let mut candidates = (1..=9).collect();
let mut cur_vec = Vec::new();
Self::dfs(n, k, 0, 0, &mut cur_vec, &mut candidates, &mut ret);
ret
}
#[allow(dead_code)]
fn dfs(
target: i32,
length: i32,
cur_index: usize,
cur_sum: i32,
cur_vec: &mut Vec<i32>,
candidates: &Vec<i32>,
ans: &mut Vec<Vec<i32>>,
) {
if cur_sum > target || cur_vec.len() > (length as usize) {
// No answer for this
return;
}
if cur_sum == target && cur_vec.len() == (length as usize) {
// We get an answer
ans.push(cur_vec.clone());
return;
}
for i in cur_index..candidates.len() {
cur_vec.push(candidates[i]);
Self::dfs(
target,
length,
i + 1,
cur_sum + candidates[i],
cur_vec,
candidates,
ans,
);
cur_vec.pop().unwrap();
}
}
}
|
216 |
Combination Sum III
|
Medium
|
<p>Find all valid combinations of <code>k</code> numbers that sum up to <code>n</code> such that the following conditions are true:</p>
<ul>
<li>Only numbers <code>1</code> through <code>9</code> are used.</li>
<li>Each number is used <strong>at most once</strong>.</li>
</ul>
<p>Return <em>a list of all possible valid combinations</em>. The list must not contain the same combination twice, and the combinations may be returned in any order.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> k = 3, n = 7
<strong>Output:</strong> [[1,2,4]]
<strong>Explanation:</strong>
1 + 2 + 4 = 7
There are no other valid combinations.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> k = 3, n = 9
<strong>Output:</strong> [[1,2,6],[1,3,5],[2,3,4]]
<strong>Explanation:</strong>
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
There are no other valid combinations.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> k = 4, n = 1
<strong>Output:</strong> []
<strong>Explanation:</strong> There are no valid combinations.
Using 4 different numbers in the range [1,9], the smallest sum we can get is 1+2+3+4 = 10 and since 10 > 1, there are no valid combination.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= k <= 9</code></li>
<li><code>1 <= n <= 60</code></li>
</ul>
|
Array; Backtracking
|
TypeScript
|
function combinationSum3(k: number, n: number): number[][] {
const ans: number[][] = [];
const t: number[] = [];
const dfs = (i: number, s: number) => {
if (s === 0) {
if (t.length === k) {
ans.push(t.slice());
}
return;
}
if (i > 9 || i > s || t.length >= k) {
return;
}
t.push(i);
dfs(i + 1, s - i);
t.pop();
dfs(i + 1, s);
};
dfs(1, n);
return ans;
}
|
217 |
Contains Duplicate
|
Easy
|
<p>Given an integer array <code>nums</code>, return <code>true</code> if any value appears <strong>at least twice</strong> in the array, and return <code>false</code> if every element is distinct.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
<p><strong>Explanation:</strong></p>
<p>The element 1 occurs at the indices 0 and 3.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4]</span></p>
<p><strong>Output:</strong> <span class="example-io">false</span></p>
<p><strong>Explanation:</strong></p>
<p>All elements are distinct.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,1,1,3,3,4,3,2,4,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Sorting
|
C
|
int cmp(const void* a, const void* b) {
return *(int*) a - *(int*) b;
}
bool containsDuplicate(int* nums, int numsSize) {
qsort(nums, numsSize, sizeof(int), cmp);
for (int i = 1; i < numsSize; i++) {
if (nums[i - 1] == nums[i]) {
return 1;
}
}
return 0;
}
|
217 |
Contains Duplicate
|
Easy
|
<p>Given an integer array <code>nums</code>, return <code>true</code> if any value appears <strong>at least twice</strong> in the array, and return <code>false</code> if every element is distinct.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
<p><strong>Explanation:</strong></p>
<p>The element 1 occurs at the indices 0 and 3.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4]</span></p>
<p><strong>Output:</strong> <span class="example-io">false</span></p>
<p><strong>Explanation:</strong></p>
<p>All elements are distinct.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,1,1,3,3,4,3,2,4,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Sorting
|
C++
|
class Solution {
public:
bool containsDuplicate(vector<int>& nums) {
sort(nums.begin(), nums.end());
for (int i = 0; i < nums.size() - 1; ++i) {
if (nums[i] == nums[i + 1]) {
return true;
}
}
return false;
}
};
|
217 |
Contains Duplicate
|
Easy
|
<p>Given an integer array <code>nums</code>, return <code>true</code> if any value appears <strong>at least twice</strong> in the array, and return <code>false</code> if every element is distinct.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
<p><strong>Explanation:</strong></p>
<p>The element 1 occurs at the indices 0 and 3.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4]</span></p>
<p><strong>Output:</strong> <span class="example-io">false</span></p>
<p><strong>Explanation:</strong></p>
<p>All elements are distinct.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,1,1,3,3,4,3,2,4,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Sorting
|
C#
|
public class Solution {
public bool ContainsDuplicate(int[] nums) {
return nums.Distinct().Count() < nums.Length;
}
}
|
217 |
Contains Duplicate
|
Easy
|
<p>Given an integer array <code>nums</code>, return <code>true</code> if any value appears <strong>at least twice</strong> in the array, and return <code>false</code> if every element is distinct.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
<p><strong>Explanation:</strong></p>
<p>The element 1 occurs at the indices 0 and 3.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4]</span></p>
<p><strong>Output:</strong> <span class="example-io">false</span></p>
<p><strong>Explanation:</strong></p>
<p>All elements are distinct.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,1,1,3,3,4,3,2,4,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Sorting
|
Go
|
func containsDuplicate(nums []int) bool {
sort.Ints(nums)
for i, v := range nums[1:] {
if v == nums[i] {
return true
}
}
return false
}
|
217 |
Contains Duplicate
|
Easy
|
<p>Given an integer array <code>nums</code>, return <code>true</code> if any value appears <strong>at least twice</strong> in the array, and return <code>false</code> if every element is distinct.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
<p><strong>Explanation:</strong></p>
<p>The element 1 occurs at the indices 0 and 3.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4]</span></p>
<p><strong>Output:</strong> <span class="example-io">false</span></p>
<p><strong>Explanation:</strong></p>
<p>All elements are distinct.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,1,1,3,3,4,3,2,4,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Sorting
|
Java
|
class Solution {
public boolean containsDuplicate(int[] nums) {
Arrays.sort(nums);
for (int i = 0; i < nums.length - 1; ++i) {
if (nums[i] == nums[i + 1]) {
return true;
}
}
return false;
}
}
|
217 |
Contains Duplicate
|
Easy
|
<p>Given an integer array <code>nums</code>, return <code>true</code> if any value appears <strong>at least twice</strong> in the array, and return <code>false</code> if every element is distinct.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
<p><strong>Explanation:</strong></p>
<p>The element 1 occurs at the indices 0 and 3.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4]</span></p>
<p><strong>Output:</strong> <span class="example-io">false</span></p>
<p><strong>Explanation:</strong></p>
<p>All elements are distinct.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,1,1,3,3,4,3,2,4,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Sorting
|
JavaScript
|
/**
* @param {number[]} nums
* @return {boolean}
*/
var containsDuplicate = function (nums) {
return new Set(nums).size !== nums.length;
};
|
217 |
Contains Duplicate
|
Easy
|
<p>Given an integer array <code>nums</code>, return <code>true</code> if any value appears <strong>at least twice</strong> in the array, and return <code>false</code> if every element is distinct.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
<p><strong>Explanation:</strong></p>
<p>The element 1 occurs at the indices 0 and 3.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4]</span></p>
<p><strong>Output:</strong> <span class="example-io">false</span></p>
<p><strong>Explanation:</strong></p>
<p>All elements are distinct.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,1,1,3,3,4,3,2,4,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Sorting
|
PHP
|
class Solution {
/**
* @param Integer[] $nums
* @return Boolean
*/
function containsDuplicate($nums) {
$numsUnique = array_unique($nums);
return count($nums) != count($numsUnique);
}
}
|
217 |
Contains Duplicate
|
Easy
|
<p>Given an integer array <code>nums</code>, return <code>true</code> if any value appears <strong>at least twice</strong> in the array, and return <code>false</code> if every element is distinct.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
<p><strong>Explanation:</strong></p>
<p>The element 1 occurs at the indices 0 and 3.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4]</span></p>
<p><strong>Output:</strong> <span class="example-io">false</span></p>
<p><strong>Explanation:</strong></p>
<p>All elements are distinct.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,1,1,3,3,4,3,2,4,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Sorting
|
Python
|
class Solution:
def containsDuplicate(self, nums: List[int]) -> bool:
return any(a == b for a, b in pairwise(sorted(nums)))
|
217 |
Contains Duplicate
|
Easy
|
<p>Given an integer array <code>nums</code>, return <code>true</code> if any value appears <strong>at least twice</strong> in the array, and return <code>false</code> if every element is distinct.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
<p><strong>Explanation:</strong></p>
<p>The element 1 occurs at the indices 0 and 3.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4]</span></p>
<p><strong>Output:</strong> <span class="example-io">false</span></p>
<p><strong>Explanation:</strong></p>
<p>All elements are distinct.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,1,1,3,3,4,3,2,4,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Sorting
|
Rust
|
impl Solution {
pub fn contains_duplicate(mut nums: Vec<i32>) -> bool {
nums.sort();
let n = nums.len();
for i in 1..n {
if nums[i - 1] == nums[i] {
return true;
}
}
false
}
}
|
217 |
Contains Duplicate
|
Easy
|
<p>Given an integer array <code>nums</code>, return <code>true</code> if any value appears <strong>at least twice</strong> in the array, and return <code>false</code> if every element is distinct.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,1]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
<p><strong>Explanation:</strong></p>
<p>The element 1 occurs at the indices 0 and 3.</p>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,2,3,4]</span></p>
<p><strong>Output:</strong> <span class="example-io">false</span></p>
<p><strong>Explanation:</strong></p>
<p>All elements are distinct.</p>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">nums = [1,1,1,3,3,4,3,2,4,2]</span></p>
<p><strong>Output:</strong> <span class="example-io">true</span></p>
</div>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
</ul>
|
Array; Hash Table; Sorting
|
TypeScript
|
function containsDuplicate(nums: number[]): boolean {
nums.sort((a, b) => a - b);
const n = nums.length;
for (let i = 1; i < n; i++) {
if (nums[i - 1] === nums[i]) {
return true;
}
}
return false;
}
|
218 |
The Skyline Problem
|
Hard
|
<p>A city's <strong>skyline</strong> is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Given the locations and heights of all the buildings, return <em>the <strong>skyline</strong> formed by these buildings collectively</em>.</p>
<p>The geometric information of each building is given in the array <code>buildings</code> where <code>buildings[i] = [left<sub>i</sub>, right<sub>i</sub>, height<sub>i</sub>]</code>:</p>
<ul>
<li><code>left<sub>i</sub></code> is the x coordinate of the left edge of the <code>i<sup>th</sup></code> building.</li>
<li><code>right<sub>i</sub></code> is the x coordinate of the right edge of the <code>i<sup>th</sup></code> building.</li>
<li><code>height<sub>i</sub></code> is the height of the <code>i<sup>th</sup></code> building.</li>
</ul>
<p>You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height <code>0</code>.</p>
<p>The <strong>skyline</strong> should be represented as a list of "key points" <strong>sorted by their x-coordinate</strong> in the form <code>[[x<sub>1</sub>,y<sub>1</sub>],[x<sub>2</sub>,y<sub>2</sub>],...]</code>. Each key point is the left endpoint of some horizontal segment in the skyline except the last point in the list, which always has a y-coordinate <code>0</code> and is used to mark the skyline's termination where the rightmost building ends. Any ground between the leftmost and rightmost buildings should be part of the skyline's contour.</p>
<p><b>Note:</b> There must be no consecutive horizontal lines of equal height in the output skyline. For instance, <code>[...,[2 3],[4 5],[7 5],[11 5],[12 7],...]</code> is not acceptable; the three lines of height 5 should be merged into one in the final output as such: <code>[...,[2 3],[4 5],[12 7],...]</code></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0218.The%20Skyline%20Problem/images/merged.jpg" style="width: 800px; height: 331px;" />
<pre>
<strong>Input:</strong> buildings = [[2,9,10],[3,7,15],[5,12,12],[15,20,10],[19,24,8]]
<strong>Output:</strong> [[2,10],[3,15],[7,12],[12,0],[15,10],[20,8],[24,0]]
<strong>Explanation:</strong>
Figure A shows the buildings of the input.
Figure B shows the skyline formed by those buildings. The red points in figure B represent the key points in the output list.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> buildings = [[0,2,3],[2,5,3]]
<strong>Output:</strong> [[0,3],[5,0]]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= buildings.length <= 10<sup>4</sup></code></li>
<li><code>0 <= left<sub>i</sub> < right<sub>i</sub> <= 2<sup>31</sup> - 1</code></li>
<li><code>1 <= height<sub>i</sub> <= 2<sup>31</sup> - 1</code></li>
<li><code>buildings</code> is sorted by <code>left<sub>i</sub></code> in non-decreasing order.</li>
</ul>
|
Binary Indexed Tree; Segment Tree; Array; Divide and Conquer; Ordered Set; Line Sweep; Heap (Priority Queue)
|
C++
|
class Solution {
public:
vector<pair<int, int>> getSkyline(vector<vector<int>>& buildings) {
set<int> poss;
map<int, int> m;
for (auto v : buildings) {
poss.insert(v[0]);
poss.insert(v[1]);
}
int i = 0;
for (int pos : poss)
m.insert(pair<int, int>(pos, i++));
vector<int> highs(m.size(), 0);
for (auto v : buildings) {
const int b = m[v[0]], e = m[v[1]];
for (int i = b; i < e; ++i)
highs[i] = max(highs[i], v[2]);
}
vector<pair<int, int>> res;
vector<int> mm(poss.begin(), poss.end());
for (int i = 0; i < highs.size(); ++i) {
if (highs[i] != highs[i + 1])
res.push_back(pair<int, int>(mm[i], highs[i]));
else {
const int start = i;
res.push_back(pair<int, int>(mm[start], highs[i]));
while (highs[i] == highs[i + 1])
++i;
}
}
return res;
}
};
|
218 |
The Skyline Problem
|
Hard
|
<p>A city's <strong>skyline</strong> is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Given the locations and heights of all the buildings, return <em>the <strong>skyline</strong> formed by these buildings collectively</em>.</p>
<p>The geometric information of each building is given in the array <code>buildings</code> where <code>buildings[i] = [left<sub>i</sub>, right<sub>i</sub>, height<sub>i</sub>]</code>:</p>
<ul>
<li><code>left<sub>i</sub></code> is the x coordinate of the left edge of the <code>i<sup>th</sup></code> building.</li>
<li><code>right<sub>i</sub></code> is the x coordinate of the right edge of the <code>i<sup>th</sup></code> building.</li>
<li><code>height<sub>i</sub></code> is the height of the <code>i<sup>th</sup></code> building.</li>
</ul>
<p>You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height <code>0</code>.</p>
<p>The <strong>skyline</strong> should be represented as a list of "key points" <strong>sorted by their x-coordinate</strong> in the form <code>[[x<sub>1</sub>,y<sub>1</sub>],[x<sub>2</sub>,y<sub>2</sub>],...]</code>. Each key point is the left endpoint of some horizontal segment in the skyline except the last point in the list, which always has a y-coordinate <code>0</code> and is used to mark the skyline's termination where the rightmost building ends. Any ground between the leftmost and rightmost buildings should be part of the skyline's contour.</p>
<p><b>Note:</b> There must be no consecutive horizontal lines of equal height in the output skyline. For instance, <code>[...,[2 3],[4 5],[7 5],[11 5],[12 7],...]</code> is not acceptable; the three lines of height 5 should be merged into one in the final output as such: <code>[...,[2 3],[4 5],[12 7],...]</code></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0218.The%20Skyline%20Problem/images/merged.jpg" style="width: 800px; height: 331px;" />
<pre>
<strong>Input:</strong> buildings = [[2,9,10],[3,7,15],[5,12,12],[15,20,10],[19,24,8]]
<strong>Output:</strong> [[2,10],[3,15],[7,12],[12,0],[15,10],[20,8],[24,0]]
<strong>Explanation:</strong>
Figure A shows the buildings of the input.
Figure B shows the skyline formed by those buildings. The red points in figure B represent the key points in the output list.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> buildings = [[0,2,3],[2,5,3]]
<strong>Output:</strong> [[0,3],[5,0]]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= buildings.length <= 10<sup>4</sup></code></li>
<li><code>0 <= left<sub>i</sub> < right<sub>i</sub> <= 2<sup>31</sup> - 1</code></li>
<li><code>1 <= height<sub>i</sub> <= 2<sup>31</sup> - 1</code></li>
<li><code>buildings</code> is sorted by <code>left<sub>i</sub></code> in non-decreasing order.</li>
</ul>
|
Binary Indexed Tree; Segment Tree; Array; Divide and Conquer; Ordered Set; Line Sweep; Heap (Priority Queue)
|
Go
|
type Matrix struct{ left, right, height int }
type Queue []Matrix
func (q Queue) Len() int { return len(q) }
func (q Queue) Top() Matrix { return q[0] }
func (q Queue) Swap(i, j int) { q[i], q[j] = q[j], q[i] }
func (q Queue) Less(i, j int) bool { return q[i].height > q[j].height }
func (q *Queue) Push(x any) { *q = append(*q, x.(Matrix)) }
func (q *Queue) Pop() any {
old, x := *q, (*q)[len(*q)-1]
*q = old[:len(old)-1]
return x
}
func getSkyline(buildings [][]int) [][]int {
skys, lines, pq := make([][]int, 0), make([]int, 0), &Queue{}
heap.Init(pq)
for _, v := range buildings {
lines = append(lines, v[0], v[1])
}
sort.Ints(lines)
city, n := 0, len(buildings)
for _, line := range lines {
// 将所有符合条件的矩形加入队列
for ; city < n && buildings[city][0] <= line && buildings[city][1] > line; city++ {
v := Matrix{left: buildings[city][0], right: buildings[city][1], height: buildings[city][2]}
heap.Push(pq, v)
}
// 从队列移除不符合条件的矩形
for pq.Len() > 0 && pq.Top().right <= line {
heap.Pop(pq)
}
high := 0
// 队列为空说明是最右侧建筑物的终点,其轮廓点为 (line, 0)
if pq.Len() != 0 {
high = pq.Top().height
}
// 如果该点高度和前一个轮廓点一样的话,直接忽略
if len(skys) > 0 && skys[len(skys)-1][1] == high {
continue
}
skys = append(skys, []int{line, high})
}
return skys
}
|
218 |
The Skyline Problem
|
Hard
|
<p>A city's <strong>skyline</strong> is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Given the locations and heights of all the buildings, return <em>the <strong>skyline</strong> formed by these buildings collectively</em>.</p>
<p>The geometric information of each building is given in the array <code>buildings</code> where <code>buildings[i] = [left<sub>i</sub>, right<sub>i</sub>, height<sub>i</sub>]</code>:</p>
<ul>
<li><code>left<sub>i</sub></code> is the x coordinate of the left edge of the <code>i<sup>th</sup></code> building.</li>
<li><code>right<sub>i</sub></code> is the x coordinate of the right edge of the <code>i<sup>th</sup></code> building.</li>
<li><code>height<sub>i</sub></code> is the height of the <code>i<sup>th</sup></code> building.</li>
</ul>
<p>You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height <code>0</code>.</p>
<p>The <strong>skyline</strong> should be represented as a list of "key points" <strong>sorted by their x-coordinate</strong> in the form <code>[[x<sub>1</sub>,y<sub>1</sub>],[x<sub>2</sub>,y<sub>2</sub>],...]</code>. Each key point is the left endpoint of some horizontal segment in the skyline except the last point in the list, which always has a y-coordinate <code>0</code> and is used to mark the skyline's termination where the rightmost building ends. Any ground between the leftmost and rightmost buildings should be part of the skyline's contour.</p>
<p><b>Note:</b> There must be no consecutive horizontal lines of equal height in the output skyline. For instance, <code>[...,[2 3],[4 5],[7 5],[11 5],[12 7],...]</code> is not acceptable; the three lines of height 5 should be merged into one in the final output as such: <code>[...,[2 3],[4 5],[12 7],...]</code></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0218.The%20Skyline%20Problem/images/merged.jpg" style="width: 800px; height: 331px;" />
<pre>
<strong>Input:</strong> buildings = [[2,9,10],[3,7,15],[5,12,12],[15,20,10],[19,24,8]]
<strong>Output:</strong> [[2,10],[3,15],[7,12],[12,0],[15,10],[20,8],[24,0]]
<strong>Explanation:</strong>
Figure A shows the buildings of the input.
Figure B shows the skyline formed by those buildings. The red points in figure B represent the key points in the output list.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> buildings = [[0,2,3],[2,5,3]]
<strong>Output:</strong> [[0,3],[5,0]]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= buildings.length <= 10<sup>4</sup></code></li>
<li><code>0 <= left<sub>i</sub> < right<sub>i</sub> <= 2<sup>31</sup> - 1</code></li>
<li><code>1 <= height<sub>i</sub> <= 2<sup>31</sup> - 1</code></li>
<li><code>buildings</code> is sorted by <code>left<sub>i</sub></code> in non-decreasing order.</li>
</ul>
|
Binary Indexed Tree; Segment Tree; Array; Divide and Conquer; Ordered Set; Line Sweep; Heap (Priority Queue)
|
Python
|
from queue import PriorityQueue
class Solution:
def getSkyline(self, buildings: List[List[int]]) -> List[List[int]]:
skys, lines, pq = [], [], PriorityQueue()
for build in buildings:
lines.extend([build[0], build[1]])
lines.sort()
city, n = 0, len(buildings)
for line in lines:
while city < n and buildings[city][0] <= line:
pq.put([-buildings[city][2], buildings[city][0], buildings[city][1]])
city += 1
while not pq.empty() and pq.queue[0][2] <= line:
pq.get()
high = 0
if not pq.empty():
high = -pq.queue[0][0]
if len(skys) > 0 and skys[-1][1] == high:
continue
skys.append([line, high])
return skys
|
218 |
The Skyline Problem
|
Hard
|
<p>A city's <strong>skyline</strong> is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Given the locations and heights of all the buildings, return <em>the <strong>skyline</strong> formed by these buildings collectively</em>.</p>
<p>The geometric information of each building is given in the array <code>buildings</code> where <code>buildings[i] = [left<sub>i</sub>, right<sub>i</sub>, height<sub>i</sub>]</code>:</p>
<ul>
<li><code>left<sub>i</sub></code> is the x coordinate of the left edge of the <code>i<sup>th</sup></code> building.</li>
<li><code>right<sub>i</sub></code> is the x coordinate of the right edge of the <code>i<sup>th</sup></code> building.</li>
<li><code>height<sub>i</sub></code> is the height of the <code>i<sup>th</sup></code> building.</li>
</ul>
<p>You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height <code>0</code>.</p>
<p>The <strong>skyline</strong> should be represented as a list of "key points" <strong>sorted by their x-coordinate</strong> in the form <code>[[x<sub>1</sub>,y<sub>1</sub>],[x<sub>2</sub>,y<sub>2</sub>],...]</code>. Each key point is the left endpoint of some horizontal segment in the skyline except the last point in the list, which always has a y-coordinate <code>0</code> and is used to mark the skyline's termination where the rightmost building ends. Any ground between the leftmost and rightmost buildings should be part of the skyline's contour.</p>
<p><b>Note:</b> There must be no consecutive horizontal lines of equal height in the output skyline. For instance, <code>[...,[2 3],[4 5],[7 5],[11 5],[12 7],...]</code> is not acceptable; the three lines of height 5 should be merged into one in the final output as such: <code>[...,[2 3],[4 5],[12 7],...]</code></p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0218.The%20Skyline%20Problem/images/merged.jpg" style="width: 800px; height: 331px;" />
<pre>
<strong>Input:</strong> buildings = [[2,9,10],[3,7,15],[5,12,12],[15,20,10],[19,24,8]]
<strong>Output:</strong> [[2,10],[3,15],[7,12],[12,0],[15,10],[20,8],[24,0]]
<strong>Explanation:</strong>
Figure A shows the buildings of the input.
Figure B shows the skyline formed by those buildings. The red points in figure B represent the key points in the output list.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> buildings = [[0,2,3],[2,5,3]]
<strong>Output:</strong> [[0,3],[5,0]]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= buildings.length <= 10<sup>4</sup></code></li>
<li><code>0 <= left<sub>i</sub> < right<sub>i</sub> <= 2<sup>31</sup> - 1</code></li>
<li><code>1 <= height<sub>i</sub> <= 2<sup>31</sup> - 1</code></li>
<li><code>buildings</code> is sorted by <code>left<sub>i</sub></code> in non-decreasing order.</li>
</ul>
|
Binary Indexed Tree; Segment Tree; Array; Divide and Conquer; Ordered Set; Line Sweep; Heap (Priority Queue)
|
Rust
|
impl Solution {
pub fn get_skyline(buildings: Vec<Vec<i32>>) -> Vec<Vec<i32>> {
let mut skys: Vec<Vec<i32>> = vec![];
let mut lines = vec![];
for building in buildings.iter() {
lines.push(building[0]);
lines.push(building[1]);
}
lines.sort_unstable();
let mut pq = std::collections::BinaryHeap::new();
let (mut city, n) = (0, buildings.len());
for line in lines {
while city < n && buildings[city][0] <= line && buildings[city][1] > line {
pq.push((buildings[city][2], buildings[city][1]));
city += 1;
}
while !pq.is_empty() && pq.peek().unwrap().1 <= line {
pq.pop();
}
let mut high = 0;
if !pq.is_empty() {
high = pq.peek().unwrap().0;
}
if !skys.is_empty() && skys.last().unwrap()[1] == high {
continue;
}
skys.push(vec![line, high]);
}
skys
}
}
|
219 |
Contains Duplicate II
|
Easy
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <code>true</code> <em>if there are two <strong>distinct indices</strong> </em><code>i</code><em> and </em><code>j</code><em> in the array such that </em><code>nums[i] == nums[j]</code><em> and </em><code>abs(i - j) <= k</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1], k = 3
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,0,1,1], k = 1
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1,2,3], k = 2
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>0 <= k <= 10<sup>5</sup></code></li>
</ul>
|
Array; Hash Table; Sliding Window
|
C++
|
class Solution {
public:
bool containsNearbyDuplicate(vector<int>& nums, int k) {
unordered_map<int, int> d;
for (int i = 0; i < nums.size(); ++i) {
if (d.count(nums[i]) && i - d[nums[i]] <= k) {
return true;
}
d[nums[i]] = i;
}
return false;
}
};
|
219 |
Contains Duplicate II
|
Easy
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <code>true</code> <em>if there are two <strong>distinct indices</strong> </em><code>i</code><em> and </em><code>j</code><em> in the array such that </em><code>nums[i] == nums[j]</code><em> and </em><code>abs(i - j) <= k</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1], k = 3
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,0,1,1], k = 1
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1,2,3], k = 2
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>0 <= k <= 10<sup>5</sup></code></li>
</ul>
|
Array; Hash Table; Sliding Window
|
C#
|
public class Solution {
public bool ContainsNearbyDuplicate(int[] nums, int k) {
var d = new Dictionary<int, int>();
for (int i = 0; i < nums.Length; ++i) {
if (d.ContainsKey(nums[i]) && i - d[nums[i]] <= k) {
return true;
}
d[nums[i]] = i;
}
return false;
}
}
|
219 |
Contains Duplicate II
|
Easy
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <code>true</code> <em>if there are two <strong>distinct indices</strong> </em><code>i</code><em> and </em><code>j</code><em> in the array such that </em><code>nums[i] == nums[j]</code><em> and </em><code>abs(i - j) <= k</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1], k = 3
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,0,1,1], k = 1
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1,2,3], k = 2
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>0 <= k <= 10<sup>5</sup></code></li>
</ul>
|
Array; Hash Table; Sliding Window
|
Go
|
func containsNearbyDuplicate(nums []int, k int) bool {
d := map[int]int{}
for i, x := range nums {
if j, ok := d[x]; ok && i-j <= k {
return true
}
d[x] = i
}
return false
}
|
219 |
Contains Duplicate II
|
Easy
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <code>true</code> <em>if there are two <strong>distinct indices</strong> </em><code>i</code><em> and </em><code>j</code><em> in the array such that </em><code>nums[i] == nums[j]</code><em> and </em><code>abs(i - j) <= k</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1], k = 3
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,0,1,1], k = 1
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1,2,3], k = 2
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>0 <= k <= 10<sup>5</sup></code></li>
</ul>
|
Array; Hash Table; Sliding Window
|
Java
|
class Solution {
public boolean containsNearbyDuplicate(int[] nums, int k) {
Map<Integer, Integer> d = new HashMap<>();
for (int i = 0; i < nums.length; ++i) {
if (i - d.getOrDefault(nums[i], -1000000) <= k) {
return true;
}
d.put(nums[i], i);
}
return false;
}
}
|
219 |
Contains Duplicate II
|
Easy
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <code>true</code> <em>if there are two <strong>distinct indices</strong> </em><code>i</code><em> and </em><code>j</code><em> in the array such that </em><code>nums[i] == nums[j]</code><em> and </em><code>abs(i - j) <= k</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1], k = 3
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,0,1,1], k = 1
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1,2,3], k = 2
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>0 <= k <= 10<sup>5</sup></code></li>
</ul>
|
Array; Hash Table; Sliding Window
|
JavaScript
|
/**
* @param {number[]} nums
* @param {number} k
* @return {boolean}
*/
var containsNearbyDuplicate = function (nums, k) {
const d = new Map();
for (let i = 0; i < nums.length; ++i) {
if (d.has(nums[i]) && i - d.get(nums[i]) <= k) {
return true;
}
d.set(nums[i], i);
}
return false;
};
|
219 |
Contains Duplicate II
|
Easy
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <code>true</code> <em>if there are two <strong>distinct indices</strong> </em><code>i</code><em> and </em><code>j</code><em> in the array such that </em><code>nums[i] == nums[j]</code><em> and </em><code>abs(i - j) <= k</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1], k = 3
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,0,1,1], k = 1
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1,2,3], k = 2
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>0 <= k <= 10<sup>5</sup></code></li>
</ul>
|
Array; Hash Table; Sliding Window
|
PHP
|
class Solution {
/**
* @param Integer[] $nums
* @param Integer $k
* @return Boolean
*/
function containsNearbyDuplicate($nums, $k) {
$d = [];
for ($i = 0; $i < count($nums); ++$i) {
if (array_key_exists($nums[$i], $d) && $i - $d[$nums[$i]] <= $k) {
return true;
}
$d[$nums[$i]] = $i;
}
return false;
}
}
|
219 |
Contains Duplicate II
|
Easy
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <code>true</code> <em>if there are two <strong>distinct indices</strong> </em><code>i</code><em> and </em><code>j</code><em> in the array such that </em><code>nums[i] == nums[j]</code><em> and </em><code>abs(i - j) <= k</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1], k = 3
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,0,1,1], k = 1
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1,2,3], k = 2
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>0 <= k <= 10<sup>5</sup></code></li>
</ul>
|
Array; Hash Table; Sliding Window
|
Python
|
class Solution:
def containsNearbyDuplicate(self, nums: List[int], k: int) -> bool:
d = {}
for i, x in enumerate(nums):
if x in d and i - d[x] <= k:
return True
d[x] = i
return False
|
219 |
Contains Duplicate II
|
Easy
|
<p>Given an integer array <code>nums</code> and an integer <code>k</code>, return <code>true</code> <em>if there are two <strong>distinct indices</strong> </em><code>i</code><em> and </em><code>j</code><em> in the array such that </em><code>nums[i] == nums[j]</code><em> and </em><code>abs(i - j) <= k</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1], k = 3
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,0,1,1], k = 1
<strong>Output:</strong> true
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1,2,3], k = 2
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>0 <= k <= 10<sup>5</sup></code></li>
</ul>
|
Array; Hash Table; Sliding Window
|
TypeScript
|
function containsNearbyDuplicate(nums: number[], k: number): boolean {
const d: Map<number, number> = new Map();
for (let i = 0; i < nums.length; ++i) {
if (d.has(nums[i]) && i - d.get(nums[i])! <= k) {
return true;
}
d.set(nums[i], i);
}
return false;
}
|
220 |
Contains Duplicate III
|
Hard
|
<p>You are given an integer array <code>nums</code> and two integers <code>indexDiff</code> and <code>valueDiff</code>.</p>
<p>Find a pair of indices <code>(i, j)</code> such that:</p>
<ul>
<li><code>i != j</code>,</li>
<li><code>abs(i - j) <= indexDiff</code>.</li>
<li><code>abs(nums[i] - nums[j]) <= valueDiff</code>, and</li>
</ul>
<p>Return <code>true</code><em> if such pair exists or </em><code>false</code><em> otherwise</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1], indexDiff = 3, valueDiff = 0
<strong>Output:</strong> true
<strong>Explanation:</strong> We can choose (i, j) = (0, 3).
We satisfy the three conditions:
i != j --> 0 != 3
abs(i - j) <= indexDiff --> abs(0 - 3) <= 3
abs(nums[i] - nums[j]) <= valueDiff --> abs(1 - 1) <= 0
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,5,9,1,5,9], indexDiff = 2, valueDiff = 3
<strong>Output:</strong> false
<strong>Explanation:</strong> After trying all the possible pairs (i, j), we cannot satisfy the three conditions, so we return false.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>1 <= indexDiff <= nums.length</code></li>
<li><code>0 <= valueDiff <= 10<sup>9</sup></code></li>
</ul>
|
Array; Bucket Sort; Ordered Set; Sorting; Sliding Window
|
C++
|
class Solution {
public:
bool containsNearbyAlmostDuplicate(vector<int>& nums, int indexDiff, int valueDiff) {
set<long> s;
for (int i = 0; i < nums.size(); ++i) {
auto it = s.lower_bound((long) nums[i] - valueDiff);
if (it != s.end() && *it <= (long) nums[i] + valueDiff) return true;
s.insert((long) nums[i]);
if (i >= indexDiff) s.erase((long) nums[i - indexDiff]);
}
return false;
}
};
|
220 |
Contains Duplicate III
|
Hard
|
<p>You are given an integer array <code>nums</code> and two integers <code>indexDiff</code> and <code>valueDiff</code>.</p>
<p>Find a pair of indices <code>(i, j)</code> such that:</p>
<ul>
<li><code>i != j</code>,</li>
<li><code>abs(i - j) <= indexDiff</code>.</li>
<li><code>abs(nums[i] - nums[j]) <= valueDiff</code>, and</li>
</ul>
<p>Return <code>true</code><em> if such pair exists or </em><code>false</code><em> otherwise</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1], indexDiff = 3, valueDiff = 0
<strong>Output:</strong> true
<strong>Explanation:</strong> We can choose (i, j) = (0, 3).
We satisfy the three conditions:
i != j --> 0 != 3
abs(i - j) <= indexDiff --> abs(0 - 3) <= 3
abs(nums[i] - nums[j]) <= valueDiff --> abs(1 - 1) <= 0
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,5,9,1,5,9], indexDiff = 2, valueDiff = 3
<strong>Output:</strong> false
<strong>Explanation:</strong> After trying all the possible pairs (i, j), we cannot satisfy the three conditions, so we return false.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>1 <= indexDiff <= nums.length</code></li>
<li><code>0 <= valueDiff <= 10<sup>9</sup></code></li>
</ul>
|
Array; Bucket Sort; Ordered Set; Sorting; Sliding Window
|
C#
|
public class Solution {
public bool ContainsNearbyAlmostDuplicate(int[] nums, int k, int t) {
if (k <= 0 || t < 0) return false;
var index = new SortedList<int, object>();
for (int i = 0; i < nums.Length; ++i) {
if (index.ContainsKey(nums[i])) {
return true;
}
index.Add(nums[i], null);
var j = index.IndexOfKey(nums[i]);
if (j > 0 && (long)nums[i] - index.Keys[j - 1] <= t) {
return true;
}
if (j < index.Count - 1 && (long)index.Keys[j + 1] - nums[i] <= t) {
return true;
}
if (index.Count > k) {
index.Remove(nums[i - k]);
}
}
return false;
}
}
|
220 |
Contains Duplicate III
|
Hard
|
<p>You are given an integer array <code>nums</code> and two integers <code>indexDiff</code> and <code>valueDiff</code>.</p>
<p>Find a pair of indices <code>(i, j)</code> such that:</p>
<ul>
<li><code>i != j</code>,</li>
<li><code>abs(i - j) <= indexDiff</code>.</li>
<li><code>abs(nums[i] - nums[j]) <= valueDiff</code>, and</li>
</ul>
<p>Return <code>true</code><em> if such pair exists or </em><code>false</code><em> otherwise</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1], indexDiff = 3, valueDiff = 0
<strong>Output:</strong> true
<strong>Explanation:</strong> We can choose (i, j) = (0, 3).
We satisfy the three conditions:
i != j --> 0 != 3
abs(i - j) <= indexDiff --> abs(0 - 3) <= 3
abs(nums[i] - nums[j]) <= valueDiff --> abs(1 - 1) <= 0
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,5,9,1,5,9], indexDiff = 2, valueDiff = 3
<strong>Output:</strong> false
<strong>Explanation:</strong> After trying all the possible pairs (i, j), we cannot satisfy the three conditions, so we return false.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>1 <= indexDiff <= nums.length</code></li>
<li><code>0 <= valueDiff <= 10<sup>9</sup></code></li>
</ul>
|
Array; Bucket Sort; Ordered Set; Sorting; Sliding Window
|
Go
|
func containsNearbyAlmostDuplicate(nums []int, k int, t int) bool {
n := len(nums)
left, right := 0, 0
rbt := redblacktree.NewWithIntComparator()
for right < n {
cur := nums[right]
right++
if p, ok := rbt.Floor(cur); ok && cur-p.Key.(int) <= t {
return true
}
if p, ok := rbt.Ceiling(cur); ok && p.Key.(int)-cur <= t {
return true
}
rbt.Put(cur, struct{}{})
if right-left > k {
rbt.Remove(nums[left])
left++
}
}
return false
}
|
220 |
Contains Duplicate III
|
Hard
|
<p>You are given an integer array <code>nums</code> and two integers <code>indexDiff</code> and <code>valueDiff</code>.</p>
<p>Find a pair of indices <code>(i, j)</code> such that:</p>
<ul>
<li><code>i != j</code>,</li>
<li><code>abs(i - j) <= indexDiff</code>.</li>
<li><code>abs(nums[i] - nums[j]) <= valueDiff</code>, and</li>
</ul>
<p>Return <code>true</code><em> if such pair exists or </em><code>false</code><em> otherwise</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1], indexDiff = 3, valueDiff = 0
<strong>Output:</strong> true
<strong>Explanation:</strong> We can choose (i, j) = (0, 3).
We satisfy the three conditions:
i != j --> 0 != 3
abs(i - j) <= indexDiff --> abs(0 - 3) <= 3
abs(nums[i] - nums[j]) <= valueDiff --> abs(1 - 1) <= 0
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,5,9,1,5,9], indexDiff = 2, valueDiff = 3
<strong>Output:</strong> false
<strong>Explanation:</strong> After trying all the possible pairs (i, j), we cannot satisfy the three conditions, so we return false.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>1 <= indexDiff <= nums.length</code></li>
<li><code>0 <= valueDiff <= 10<sup>9</sup></code></li>
</ul>
|
Array; Bucket Sort; Ordered Set; Sorting; Sliding Window
|
Java
|
class Solution {
public boolean containsNearbyAlmostDuplicate(int[] nums, int indexDiff, int valueDiff) {
TreeSet<Long> ts = new TreeSet<>();
for (int i = 0; i < nums.length; ++i) {
Long x = ts.ceiling((long) nums[i] - (long) valueDiff);
if (x != null && x <= (long) nums[i] + (long) valueDiff) {
return true;
}
ts.add((long) nums[i]);
if (i >= indexDiff) {
ts.remove((long) nums[i - indexDiff]);
}
}
return false;
}
}
|
220 |
Contains Duplicate III
|
Hard
|
<p>You are given an integer array <code>nums</code> and two integers <code>indexDiff</code> and <code>valueDiff</code>.</p>
<p>Find a pair of indices <code>(i, j)</code> such that:</p>
<ul>
<li><code>i != j</code>,</li>
<li><code>abs(i - j) <= indexDiff</code>.</li>
<li><code>abs(nums[i] - nums[j]) <= valueDiff</code>, and</li>
</ul>
<p>Return <code>true</code><em> if such pair exists or </em><code>false</code><em> otherwise</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1], indexDiff = 3, valueDiff = 0
<strong>Output:</strong> true
<strong>Explanation:</strong> We can choose (i, j) = (0, 3).
We satisfy the three conditions:
i != j --> 0 != 3
abs(i - j) <= indexDiff --> abs(0 - 3) <= 3
abs(nums[i] - nums[j]) <= valueDiff --> abs(1 - 1) <= 0
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,5,9,1,5,9], indexDiff = 2, valueDiff = 3
<strong>Output:</strong> false
<strong>Explanation:</strong> After trying all the possible pairs (i, j), we cannot satisfy the three conditions, so we return false.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>1 <= indexDiff <= nums.length</code></li>
<li><code>0 <= valueDiff <= 10<sup>9</sup></code></li>
</ul>
|
Array; Bucket Sort; Ordered Set; Sorting; Sliding Window
|
Python
|
class Solution:
def containsNearbyAlmostDuplicate(
self, nums: List[int], indexDiff: int, valueDiff: int
) -> bool:
s = SortedSet()
for i, v in enumerate(nums):
j = s.bisect_left(v - valueDiff)
if j < len(s) and s[j] <= v + valueDiff:
return True
s.add(v)
if i >= indexDiff:
s.remove(nums[i - indexDiff])
return False
|
220 |
Contains Duplicate III
|
Hard
|
<p>You are given an integer array <code>nums</code> and two integers <code>indexDiff</code> and <code>valueDiff</code>.</p>
<p>Find a pair of indices <code>(i, j)</code> such that:</p>
<ul>
<li><code>i != j</code>,</li>
<li><code>abs(i - j) <= indexDiff</code>.</li>
<li><code>abs(nums[i] - nums[j]) <= valueDiff</code>, and</li>
</ul>
<p>Return <code>true</code><em> if such pair exists or </em><code>false</code><em> otherwise</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,1], indexDiff = 3, valueDiff = 0
<strong>Output:</strong> true
<strong>Explanation:</strong> We can choose (i, j) = (0, 3).
We satisfy the three conditions:
i != j --> 0 != 3
abs(i - j) <= indexDiff --> abs(0 - 3) <= 3
abs(nums[i] - nums[j]) <= valueDiff --> abs(1 - 1) <= 0
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,5,9,1,5,9], indexDiff = 2, valueDiff = 3
<strong>Output:</strong> false
<strong>Explanation:</strong> After trying all the possible pairs (i, j), we cannot satisfy the three conditions, so we return false.
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 <= nums.length <= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
<li><code>1 <= indexDiff <= nums.length</code></li>
<li><code>0 <= valueDiff <= 10<sup>9</sup></code></li>
</ul>
|
Array; Bucket Sort; Ordered Set; Sorting; Sliding Window
|
TypeScript
|
function containsNearbyAlmostDuplicate(
nums: number[],
indexDiff: number,
valueDiff: number,
): boolean {
const ts = new TreeSet<number>();
for (let i = 0; i < nums.length; ++i) {
const x = ts.ceil(nums[i] - valueDiff);
if (x != null && x <= nums[i] + valueDiff) {
return true;
}
ts.add(nums[i]);
if (i >= indexDiff) {
ts.delete(nums[i - indexDiff]);
}
}
return false;
}
type Compare<T> = (lhs: T, rhs: T) => number;
class RBTreeNode<T = number> {
data: T;
count: number;
left: RBTreeNode<T> | null;
right: RBTreeNode<T> | null;
parent: RBTreeNode<T> | null;
color: number;
constructor(data: T) {
this.data = data;
this.left = this.right = this.parent = null;
this.color = 0;
this.count = 1;
}
sibling(): RBTreeNode<T> | null {
if (!this.parent) return null; // sibling null if no parent
return this.isOnLeft() ? this.parent.right : this.parent.left;
}
isOnLeft(): boolean {
return this === this.parent!.left;
}
hasRedChild(): boolean {
return (
Boolean(this.left && this.left.color === 0) ||
Boolean(this.right && this.right.color === 0)
);
}
}
class RBTree<T> {
root: RBTreeNode<T> | null;
lt: (l: T, r: T) => boolean;
constructor(compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)) {
this.root = null;
this.lt = (l: T, r: T) => compare(l, r) < 0;
}
rotateLeft(pt: RBTreeNode<T>): void {
const right = pt.right!;
pt.right = right.left;
if (pt.right) pt.right.parent = pt;
right.parent = pt.parent;
if (!pt.parent) this.root = right;
else if (pt === pt.parent.left) pt.parent.left = right;
else pt.parent.right = right;
right.left = pt;
pt.parent = right;
}
rotateRight(pt: RBTreeNode<T>): void {
const left = pt.left!;
pt.left = left.right;
if (pt.left) pt.left.parent = pt;
left.parent = pt.parent;
if (!pt.parent) this.root = left;
else if (pt === pt.parent.left) pt.parent.left = left;
else pt.parent.right = left;
left.right = pt;
pt.parent = left;
}
swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
const tmp = p1.color;
p1.color = p2.color;
p2.color = tmp;
}
swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
const tmp = p1.data;
p1.data = p2.data;
p2.data = tmp;
}
fixAfterInsert(pt: RBTreeNode<T>): void {
let parent = null;
let grandParent = null;
while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) {
parent = pt.parent;
grandParent = pt.parent.parent;
/* Case : A
Parent of pt is left child of Grand-parent of pt */
if (parent === grandParent?.left) {
const uncle = grandParent.right;
/* Case : 1
The uncle of pt is also red
Only Recoloring required */
if (uncle && uncle.color === 0) {
grandParent.color = 0;
parent.color = 1;
uncle.color = 1;
pt = grandParent;
} else {
/* Case : 2
pt is right child of its parent
Left-rotation required */
if (pt === parent.right) {
this.rotateLeft(parent);
pt = parent;
parent = pt.parent;
}
/* Case : 3
pt is left child of its parent
Right-rotation required */
this.rotateRight(grandParent);
this.swapColor(parent!, grandParent);
pt = parent!;
}
} else {
/* Case : B
Parent of pt is right child of Grand-parent of pt */
const uncle = grandParent!.left;
/* Case : 1
The uncle of pt is also red
Only Recoloring required */
if (uncle != null && uncle.color === 0) {
grandParent!.color = 0;
parent.color = 1;
uncle.color = 1;
pt = grandParent!;
} else {
/* Case : 2
pt is left child of its parent
Right-rotation required */
if (pt === parent.left) {
this.rotateRight(parent);
pt = parent;
parent = pt.parent;
}
/* Case : 3
pt is right child of its parent
Left-rotation required */
this.rotateLeft(grandParent!);
this.swapColor(parent!, grandParent!);
pt = parent!;
}
}
}
this.root!.color = 1;
}
delete(val: T): boolean {
const node = this.find(val);
if (!node) return false;
node.count--;
if (!node.count) this.deleteNode(node);
return true;
}
deleteAll(val: T): boolean {
const node = this.find(val);
if (!node) return false;
this.deleteNode(node);
return true;
}
deleteNode(v: RBTreeNode<T>): void {
const u = BSTreplace(v);
// True when u and v are both black
const uvBlack = (u === null || u.color === 1) && v.color === 1;
const parent = v.parent!;
if (!u) {
// u is null therefore v is leaf
if (v === this.root) this.root = null;
// v is root, making root null
else {
if (uvBlack) {
// u and v both black
// v is leaf, fix double black at v
this.fixDoubleBlack(v);
} else {
// u or v is red
if (v.sibling()) {
// sibling is not null, make it red"
v.sibling()!.color = 0;
}
}
// delete v from the tree
if (v.isOnLeft()) parent.left = null;
else parent.right = null;
}
return;
}
if (!v.left || !v.right) {
// v has 1 child
if (v === this.root) {
// v is root, assign the value of u to v, and delete u
v.data = u.data;
v.left = v.right = null;
} else {
// Detach v from tree and move u up
if (v.isOnLeft()) parent.left = u;
else parent.right = u;
u.parent = parent;
if (uvBlack) this.fixDoubleBlack(u);
// u and v both black, fix double black at u
else u.color = 1; // u or v red, color u black
}
return;
}
// v has 2 children, swap data with successor and recurse
this.swapData(u, v);
this.deleteNode(u);
// find node that replaces a deleted node in BST
function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null {
// when node have 2 children
if (x.left && x.right) return successor(x.right);
// when leaf
if (!x.left && !x.right) return null;
// when single child
return x.left ?? x.right;
}
// find node that do not have a left child
// in the subtree of the given node
function successor(x: RBTreeNode<T>): RBTreeNode<T> {
let temp = x;
while (temp.left) temp = temp.left;
return temp;
}
}
fixDoubleBlack(x: RBTreeNode<T>): void {
if (x === this.root) return; // Reached root
const sibling = x.sibling();
const parent = x.parent!;
if (!sibling) {
// No sibiling, double black pushed up
this.fixDoubleBlack(parent);
} else {
if (sibling.color === 0) {
// Sibling red
parent.color = 0;
sibling.color = 1;
if (sibling.isOnLeft()) this.rotateRight(parent);
// left case
else this.rotateLeft(parent); // right case
this.fixDoubleBlack(x);
} else {
// Sibling black
if (sibling.hasRedChild()) {
// at least 1 red children
if (sibling.left && sibling.left.color === 0) {
if (sibling.isOnLeft()) {
// left left
sibling.left.color = sibling.color;
sibling.color = parent.color;
this.rotateRight(parent);
} else {
// right left
sibling.left.color = parent.color;
this.rotateRight(sibling);
this.rotateLeft(parent);
}
} else {
if (sibling.isOnLeft()) {
// left right
sibling.right!.color = parent.color;
this.rotateLeft(sibling);
this.rotateRight(parent);
} else {
// right right
sibling.right!.color = sibling.color;
sibling.color = parent.color;
this.rotateLeft(parent);
}
}
parent.color = 1;
} else {
// 2 black children
sibling.color = 0;
if (parent.color === 1) this.fixDoubleBlack(parent);
else parent.color = 1;
}
}
}
}
insert(data: T): boolean {
// search for a position to insert
let parent = this.root;
while (parent) {
if (this.lt(data, parent.data)) {
if (!parent.left) break;
else parent = parent.left;
} else if (this.lt(parent.data, data)) {
if (!parent.right) break;
else parent = parent.right;
} else break;
}
// insert node into parent
const node = new RBTreeNode(data);
if (!parent) this.root = node;
else if (this.lt(node.data, parent.data)) parent.left = node;
else if (this.lt(parent.data, node.data)) parent.right = node;
else {
parent.count++;
return false;
}
node.parent = parent;
this.fixAfterInsert(node);
return true;
}
find(data: T): RBTreeNode<T> | null {
let p = this.root;
while (p) {
if (this.lt(data, p.data)) {
p = p.left;
} else if (this.lt(p.data, data)) {
p = p.right;
} else break;
}
return p ?? null;
}
*inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
if (!root) return;
for (const v of this.inOrder(root.left!)) yield v;
yield root.data;
for (const v of this.inOrder(root.right!)) yield v;
}
*reverseInOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
if (!root) return;
for (const v of this.reverseInOrder(root.right!)) yield v;
yield root.data;
for (const v of this.reverseInOrder(root.left!)) yield v;
}
}
class TreeSet<T = number> {
_size: number;
tree: RBTree<T>;
compare: Compare<T>;
constructor(
collection: T[] | Compare<T> = [],
compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
) {
if (typeof collection === 'function') {
compare = collection;
collection = [];
}
this._size = 0;
this.compare = compare;
this.tree = new RBTree(compare);
for (const val of collection) this.add(val);
}
size(): number {
return this._size;
}
has(val: T): boolean {
return !!this.tree.find(val);
}
add(val: T): boolean {
const successful = this.tree.insert(val);
this._size += successful ? 1 : 0;
return successful;
}
delete(val: T): boolean {
const deleted = this.tree.deleteAll(val);
this._size -= deleted ? 1 : 0;
return deleted;
}
ceil(val: T): T | undefined {
let p = this.tree.root;
let higher = null;
while (p) {
if (this.compare(p.data, val) >= 0) {
higher = p;
p = p.left;
} else {
p = p.right;
}
}
return higher?.data;
}
floor(val: T): T | undefined {
let p = this.tree.root;
let lower = null;
while (p) {
if (this.compare(val, p.data) >= 0) {
lower = p;
p = p.right;
} else {
p = p.left;
}
}
return lower?.data;
}
higher(val: T): T | undefined {
let p = this.tree.root;
let higher = null;
while (p) {
if (this.compare(val, p.data) < 0) {
higher = p;
p = p.left;
} else {
p = p.right;
}
}
return higher?.data;
}
lower(val: T): T | undefined {
let p = this.tree.root;
let lower = null;
while (p) {
if (this.compare(p.data, val) < 0) {
lower = p;
p = p.right;
} else {
p = p.left;
}
}
return lower?.data;
}
first(): T | undefined {
return this.tree.inOrder().next().value;
}
last(): T | undefined {
return this.tree.reverseInOrder().next().value;
}
shift(): T | undefined {
const first = this.first();
if (first === undefined) return undefined;
this.delete(first);
return first;
}
pop(): T | undefined {
const last = this.last();
if (last === undefined) return undefined;
this.delete(last);
return last;
}
*[Symbol.iterator](): Generator<T, void, void> {
for (const val of this.values()) yield val;
}
*keys(): Generator<T, void, void> {
for (const val of this.values()) yield val;
}
*values(): Generator<T, undefined, void> {
for (const val of this.tree.inOrder()) yield val;
return undefined;
}
/**
* Return a generator for reverse order traversing the set
*/
*rvalues(): Generator<T, undefined, void> {
for (const val of this.tree.reverseInOrder()) yield val;
return undefined;
}
}
class TreeMultiSet<T = number> {
_size: number;
tree: RBTree<T>;
compare: Compare<T>;
constructor(
collection: T[] | Compare<T> = [],
compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
) {
if (typeof collection === 'function') {
compare = collection;
collection = [];
}
this._size = 0;
this.compare = compare;
this.tree = new RBTree(compare);
for (const val of collection) this.add(val);
}
size(): number {
return this._size;
}
has(val: T): boolean {
return !!this.tree.find(val);
}
add(val: T): boolean {
const successful = this.tree.insert(val);
this._size++;
return successful;
}
delete(val: T): boolean {
const successful = this.tree.delete(val);
if (!successful) return false;
this._size--;
return true;
}
count(val: T): number {
const node = this.tree.find(val);
return node ? node.count : 0;
}
ceil(val: T): T | undefined {
let p = this.tree.root;
let higher = null;
while (p) {
if (this.compare(p.data, val) >= 0) {
higher = p;
p = p.left;
} else {
p = p.right;
}
}
return higher?.data;
}
floor(val: T): T | undefined {
let p = this.tree.root;
let lower = null;
while (p) {
if (this.compare(val, p.data) >= 0) {
lower = p;
p = p.right;
} else {
p = p.left;
}
}
return lower?.data;
}
higher(val: T): T | undefined {
let p = this.tree.root;
let higher = null;
while (p) {
if (this.compare(val, p.data) < 0) {
higher = p;
p = p.left;
} else {
p = p.right;
}
}
return higher?.data;
}
lower(val: T): T | undefined {
let p = this.tree.root;
let lower = null;
while (p) {
if (this.compare(p.data, val) < 0) {
lower = p;
p = p.right;
} else {
p = p.left;
}
}
return lower?.data;
}
first(): T | undefined {
return this.tree.inOrder().next().value;
}
last(): T | undefined {
return this.tree.reverseInOrder().next().value;
}
shift(): T | undefined {
const first = this.first();
if (first === undefined) return undefined;
this.delete(first);
return first;
}
pop(): T | undefined {
const last = this.last();
if (last === undefined) return undefined;
this.delete(last);
return last;
}
*[Symbol.iterator](): Generator<T, void, void> {
yield* this.values();
}
*keys(): Generator<T, void, void> {
for (const val of this.values()) yield val;
}
*values(): Generator<T, undefined, void> {
for (const val of this.tree.inOrder()) {
let count = this.count(val);
while (count--) yield val;
}
return undefined;
}
/**
* Return a generator for reverse order traversing the multi-set
*/
*rvalues(): Generator<T, undefined, void> {
for (const val of this.tree.reverseInOrder()) {
let count = this.count(val);
while (count--) yield val;
}
return undefined;
}
}
|
221 |
Maximal Square
|
Medium
|
<p>Given an <code>m x n</code> binary <code>matrix</code> filled with <code>0</code>'s and <code>1</code>'s, <em>find the largest square containing only</em> <code>1</code>'s <em>and return its area</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0221.Maximal%20Square/images/max1grid.jpg" style="width: 400px; height: 319px;" />
<pre>
<strong>Input:</strong> matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
<strong>Output:</strong> 4
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0221.Maximal%20Square/images/max2grid.jpg" style="width: 165px; height: 165px;" />
<pre>
<strong>Input:</strong> matrix = [["0","1"],["1","0"]]
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> matrix = [["0"]]
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == matrix.length</code></li>
<li><code>n == matrix[i].length</code></li>
<li><code>1 <= m, n <= 300</code></li>
<li><code>matrix[i][j]</code> is <code>'0'</code> or <code>'1'</code>.</li>
</ul>
|
Array; Dynamic Programming; Matrix
|
C++
|
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
int m = matrix.size(), n = matrix[0].size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
int mx = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == '1') {
dp[i + 1][j + 1] = min(min(dp[i][j + 1], dp[i + 1][j]), dp[i][j]) + 1;
mx = max(mx, dp[i + 1][j + 1]);
}
}
}
return mx * mx;
}
};
|
221 |
Maximal Square
|
Medium
|
<p>Given an <code>m x n</code> binary <code>matrix</code> filled with <code>0</code>'s and <code>1</code>'s, <em>find the largest square containing only</em> <code>1</code>'s <em>and return its area</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0221.Maximal%20Square/images/max1grid.jpg" style="width: 400px; height: 319px;" />
<pre>
<strong>Input:</strong> matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
<strong>Output:</strong> 4
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0221.Maximal%20Square/images/max2grid.jpg" style="width: 165px; height: 165px;" />
<pre>
<strong>Input:</strong> matrix = [["0","1"],["1","0"]]
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> matrix = [["0"]]
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == matrix.length</code></li>
<li><code>n == matrix[i].length</code></li>
<li><code>1 <= m, n <= 300</code></li>
<li><code>matrix[i][j]</code> is <code>'0'</code> or <code>'1'</code>.</li>
</ul>
|
Array; Dynamic Programming; Matrix
|
C#
|
public class Solution {
public int MaximalSquare(char[][] matrix) {
int m = matrix.Length, n = matrix[0].Length;
var dp = new int[m + 1, n + 1];
int mx = 0;
for (int i = 0; i < m; ++i)
{
for (int j = 0; j < n; ++j)
{
if (matrix[i][j] == '1')
{
dp[i + 1, j + 1] = Math.Min(Math.Min(dp[i, j + 1], dp[i + 1, j]), dp[i, j]) + 1;
mx = Math.Max(mx, dp[i + 1, j + 1]);
}
}
}
return mx * mx;
}
}
|
221 |
Maximal Square
|
Medium
|
<p>Given an <code>m x n</code> binary <code>matrix</code> filled with <code>0</code>'s and <code>1</code>'s, <em>find the largest square containing only</em> <code>1</code>'s <em>and return its area</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0221.Maximal%20Square/images/max1grid.jpg" style="width: 400px; height: 319px;" />
<pre>
<strong>Input:</strong> matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
<strong>Output:</strong> 4
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0221.Maximal%20Square/images/max2grid.jpg" style="width: 165px; height: 165px;" />
<pre>
<strong>Input:</strong> matrix = [["0","1"],["1","0"]]
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> matrix = [["0"]]
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == matrix.length</code></li>
<li><code>n == matrix[i].length</code></li>
<li><code>1 <= m, n <= 300</code></li>
<li><code>matrix[i][j]</code> is <code>'0'</code> or <code>'1'</code>.</li>
</ul>
|
Array; Dynamic Programming; Matrix
|
Go
|
func maximalSquare(matrix [][]byte) int {
m, n := len(matrix), len(matrix[0])
dp := make([][]int, m+1)
for i := 0; i <= m; i++ {
dp[i] = make([]int, n+1)
}
mx := 0
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
if matrix[i][j] == '1' {
dp[i+1][j+1] = min(min(dp[i][j+1], dp[i+1][j]), dp[i][j]) + 1
mx = max(mx, dp[i+1][j+1])
}
}
}
return mx * mx
}
|
221 |
Maximal Square
|
Medium
|
<p>Given an <code>m x n</code> binary <code>matrix</code> filled with <code>0</code>'s and <code>1</code>'s, <em>find the largest square containing only</em> <code>1</code>'s <em>and return its area</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0221.Maximal%20Square/images/max1grid.jpg" style="width: 400px; height: 319px;" />
<pre>
<strong>Input:</strong> matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
<strong>Output:</strong> 4
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0221.Maximal%20Square/images/max2grid.jpg" style="width: 165px; height: 165px;" />
<pre>
<strong>Input:</strong> matrix = [["0","1"],["1","0"]]
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> matrix = [["0"]]
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == matrix.length</code></li>
<li><code>n == matrix[i].length</code></li>
<li><code>1 <= m, n <= 300</code></li>
<li><code>matrix[i][j]</code> is <code>'0'</code> or <code>'1'</code>.</li>
</ul>
|
Array; Dynamic Programming; Matrix
|
Java
|
class Solution {
public int maximalSquare(char[][] matrix) {
int m = matrix.length, n = matrix[0].length;
int[][] dp = new int[m + 1][n + 1];
int mx = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == '1') {
dp[i + 1][j + 1] = Math.min(Math.min(dp[i][j + 1], dp[i + 1][j]), dp[i][j]) + 1;
mx = Math.max(mx, dp[i + 1][j + 1]);
}
}
}
return mx * mx;
}
}
|
221 |
Maximal Square
|
Medium
|
<p>Given an <code>m x n</code> binary <code>matrix</code> filled with <code>0</code>'s and <code>1</code>'s, <em>find the largest square containing only</em> <code>1</code>'s <em>and return its area</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0221.Maximal%20Square/images/max1grid.jpg" style="width: 400px; height: 319px;" />
<pre>
<strong>Input:</strong> matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
<strong>Output:</strong> 4
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0221.Maximal%20Square/images/max2grid.jpg" style="width: 165px; height: 165px;" />
<pre>
<strong>Input:</strong> matrix = [["0","1"],["1","0"]]
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> matrix = [["0"]]
<strong>Output:</strong> 0
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == matrix.length</code></li>
<li><code>n == matrix[i].length</code></li>
<li><code>1 <= m, n <= 300</code></li>
<li><code>matrix[i][j]</code> is <code>'0'</code> or <code>'1'</code>.</li>
</ul>
|
Array; Dynamic Programming; Matrix
|
Python
|
class Solution:
def maximalSquare(self, matrix: List[List[str]]) -> int:
m, n = len(matrix), len(matrix[0])
dp = [[0] * (n + 1) for _ in range(m + 1)]
mx = 0
for i in range(m):
for j in range(n):
if matrix[i][j] == '1':
dp[i + 1][j + 1] = min(dp[i][j + 1], dp[i + 1][j], dp[i][j]) + 1
mx = max(mx, dp[i + 1][j + 1])
return mx * mx
|
222 |
Count Complete Tree Nodes
|
Easy
|
<p>Given the <code>root</code> of a <strong>complete</strong> binary tree, return the number of the nodes in the tree.</p>
<p>According to <strong><a href="http://en.wikipedia.org/wiki/Binary_tree#Types_of_binary_trees" target="_blank">Wikipedia</a></strong>, every level, except possibly the last, is completely filled in a complete binary tree, and all nodes in the last level are as far left as possible. It can have between <code>1</code> and <code>2<sup>h</sup></code> nodes inclusive at the last level <code>h</code>.</p>
<p>Design an algorithm that runs in less than <code data-stringify-type="code">O(n)</code> time complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0222.Count%20Complete%20Tree%20Nodes/images/complete.jpg" style="width: 372px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,6]
<strong>Output:</strong> 6
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> 0
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5 * 10<sup>4</sup>]</code>.</li>
<li><code>0 <= Node.val <= 5 * 10<sup>4</sup></code></li>
<li>The tree is guaranteed to be <strong>complete</strong>.</li>
</ul>
|
Bit Manipulation; Tree; Binary Search; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int countNodes(TreeNode* root) {
if (!root) {
return 0;
}
return 1 + countNodes(root->left) + countNodes(root->right);
}
};
|
222 |
Count Complete Tree Nodes
|
Easy
|
<p>Given the <code>root</code> of a <strong>complete</strong> binary tree, return the number of the nodes in the tree.</p>
<p>According to <strong><a href="http://en.wikipedia.org/wiki/Binary_tree#Types_of_binary_trees" target="_blank">Wikipedia</a></strong>, every level, except possibly the last, is completely filled in a complete binary tree, and all nodes in the last level are as far left as possible. It can have between <code>1</code> and <code>2<sup>h</sup></code> nodes inclusive at the last level <code>h</code>.</p>
<p>Design an algorithm that runs in less than <code data-stringify-type="code">O(n)</code> time complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0222.Count%20Complete%20Tree%20Nodes/images/complete.jpg" style="width: 372px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,6]
<strong>Output:</strong> 6
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> 0
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5 * 10<sup>4</sup>]</code>.</li>
<li><code>0 <= Node.val <= 5 * 10<sup>4</sup></code></li>
<li>The tree is guaranteed to be <strong>complete</strong>.</li>
</ul>
|
Bit Manipulation; Tree; Binary Search; Binary Tree
|
C#
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
public int CountNodes(TreeNode root) {
if (root == null) {
return 0;
}
return 1 + CountNodes(root.left) + CountNodes(root.right);
}
}
|
222 |
Count Complete Tree Nodes
|
Easy
|
<p>Given the <code>root</code> of a <strong>complete</strong> binary tree, return the number of the nodes in the tree.</p>
<p>According to <strong><a href="http://en.wikipedia.org/wiki/Binary_tree#Types_of_binary_trees" target="_blank">Wikipedia</a></strong>, every level, except possibly the last, is completely filled in a complete binary tree, and all nodes in the last level are as far left as possible. It can have between <code>1</code> and <code>2<sup>h</sup></code> nodes inclusive at the last level <code>h</code>.</p>
<p>Design an algorithm that runs in less than <code data-stringify-type="code">O(n)</code> time complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0222.Count%20Complete%20Tree%20Nodes/images/complete.jpg" style="width: 372px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,6]
<strong>Output:</strong> 6
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> 0
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5 * 10<sup>4</sup>]</code>.</li>
<li><code>0 <= Node.val <= 5 * 10<sup>4</sup></code></li>
<li>The tree is guaranteed to be <strong>complete</strong>.</li>
</ul>
|
Bit Manipulation; Tree; Binary Search; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func countNodes(root *TreeNode) int {
if root == nil {
return 0
}
return 1 + countNodes(root.Left) + countNodes(root.Right)
}
|
222 |
Count Complete Tree Nodes
|
Easy
|
<p>Given the <code>root</code> of a <strong>complete</strong> binary tree, return the number of the nodes in the tree.</p>
<p>According to <strong><a href="http://en.wikipedia.org/wiki/Binary_tree#Types_of_binary_trees" target="_blank">Wikipedia</a></strong>, every level, except possibly the last, is completely filled in a complete binary tree, and all nodes in the last level are as far left as possible. It can have between <code>1</code> and <code>2<sup>h</sup></code> nodes inclusive at the last level <code>h</code>.</p>
<p>Design an algorithm that runs in less than <code data-stringify-type="code">O(n)</code> time complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0222.Count%20Complete%20Tree%20Nodes/images/complete.jpg" style="width: 372px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,6]
<strong>Output:</strong> 6
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> 0
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5 * 10<sup>4</sup>]</code>.</li>
<li><code>0 <= Node.val <= 5 * 10<sup>4</sup></code></li>
<li>The tree is guaranteed to be <strong>complete</strong>.</li>
</ul>
|
Bit Manipulation; Tree; Binary Search; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int countNodes(TreeNode root) {
if (root == null) {
return 0;
}
return 1 + countNodes(root.left) + countNodes(root.right);
}
}
|
222 |
Count Complete Tree Nodes
|
Easy
|
<p>Given the <code>root</code> of a <strong>complete</strong> binary tree, return the number of the nodes in the tree.</p>
<p>According to <strong><a href="http://en.wikipedia.org/wiki/Binary_tree#Types_of_binary_trees" target="_blank">Wikipedia</a></strong>, every level, except possibly the last, is completely filled in a complete binary tree, and all nodes in the last level are as far left as possible. It can have between <code>1</code> and <code>2<sup>h</sup></code> nodes inclusive at the last level <code>h</code>.</p>
<p>Design an algorithm that runs in less than <code data-stringify-type="code">O(n)</code> time complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0222.Count%20Complete%20Tree%20Nodes/images/complete.jpg" style="width: 372px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,6]
<strong>Output:</strong> 6
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> 0
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5 * 10<sup>4</sup>]</code>.</li>
<li><code>0 <= Node.val <= 5 * 10<sup>4</sup></code></li>
<li>The tree is guaranteed to be <strong>complete</strong>.</li>
</ul>
|
Bit Manipulation; Tree; Binary Search; Binary Tree
|
JavaScript
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var countNodes = function (root) {
if (!root) {
return 0;
}
return 1 + countNodes(root.left) + countNodes(root.right);
};
|
222 |
Count Complete Tree Nodes
|
Easy
|
<p>Given the <code>root</code> of a <strong>complete</strong> binary tree, return the number of the nodes in the tree.</p>
<p>According to <strong><a href="http://en.wikipedia.org/wiki/Binary_tree#Types_of_binary_trees" target="_blank">Wikipedia</a></strong>, every level, except possibly the last, is completely filled in a complete binary tree, and all nodes in the last level are as far left as possible. It can have between <code>1</code> and <code>2<sup>h</sup></code> nodes inclusive at the last level <code>h</code>.</p>
<p>Design an algorithm that runs in less than <code data-stringify-type="code">O(n)</code> time complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0222.Count%20Complete%20Tree%20Nodes/images/complete.jpg" style="width: 372px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,6]
<strong>Output:</strong> 6
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> 0
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5 * 10<sup>4</sup>]</code>.</li>
<li><code>0 <= Node.val <= 5 * 10<sup>4</sup></code></li>
<li>The tree is guaranteed to be <strong>complete</strong>.</li>
</ul>
|
Bit Manipulation; Tree; Binary Search; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def countNodes(self, root: Optional[TreeNode]) -> int:
if root is None:
return 0
return 1 + self.countNodes(root.left) + self.countNodes(root.right)
|
222 |
Count Complete Tree Nodes
|
Easy
|
<p>Given the <code>root</code> of a <strong>complete</strong> binary tree, return the number of the nodes in the tree.</p>
<p>According to <strong><a href="http://en.wikipedia.org/wiki/Binary_tree#Types_of_binary_trees" target="_blank">Wikipedia</a></strong>, every level, except possibly the last, is completely filled in a complete binary tree, and all nodes in the last level are as far left as possible. It can have between <code>1</code> and <code>2<sup>h</sup></code> nodes inclusive at the last level <code>h</code>.</p>
<p>Design an algorithm that runs in less than <code data-stringify-type="code">O(n)</code> time complexity.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0222.Count%20Complete%20Tree%20Nodes/images/complete.jpg" style="width: 372px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [1,2,3,4,5,6]
<strong>Output:</strong> 6
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> 0
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = [1]
<strong>Output:</strong> 1
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 5 * 10<sup>4</sup>]</code>.</li>
<li><code>0 <= Node.val <= 5 * 10<sup>4</sup></code></li>
<li>The tree is guaranteed to be <strong>complete</strong>.</li>
</ul>
|
Bit Manipulation; Tree; Binary Search; Binary Tree
|
Rust
|
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
pub fn count_nodes(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
if let Some(node) = root {
let node = node.borrow();
let left = Self::depth(&node.left);
let right = Self::depth(&node.right);
if left == right {
Self::count_nodes(node.right.clone()) + (1 << left)
} else {
Self::count_nodes(node.left.clone()) + (1 << right)
}
} else {
0
}
}
fn depth(root: &Option<Rc<RefCell<TreeNode>>>) -> i32 {
if let Some(node) = root {
Self::depth(&node.borrow().left) + 1
} else {
0
}
}
}
|
223 |
Rectangle Area
|
Medium
|
<p>Given the coordinates of two <strong>rectilinear</strong> rectangles in a 2D plane, return <em>the total area covered by the two rectangles</em>.</p>
<p>The first rectangle is defined by its <strong>bottom-left</strong> corner <code>(ax1, ay1)</code> and its <strong>top-right</strong> corner <code>(ax2, ay2)</code>.</p>
<p>The second rectangle is defined by its <strong>bottom-left</strong> corner <code>(bx1, by1)</code> and its <strong>top-right</strong> corner <code>(bx2, by2)</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="Rectangle Area" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0223.Rectangle%20Area/images/rectangle-plane.png" style="width: 700px; height: 365px;" />
<pre>
<strong>Input:</strong> ax1 = -3, ay1 = 0, ax2 = 3, ay2 = 4, bx1 = 0, by1 = -1, bx2 = 9, by2 = 2
<strong>Output:</strong> 45
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> ax1 = -2, ay1 = -2, ax2 = 2, ay2 = 2, bx1 = -2, by1 = -2, bx2 = 2, by2 = 2
<strong>Output:</strong> 16
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-10<sup>4</sup> <= ax1 <= ax2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= ay1 <= ay2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= bx1 <= bx2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= by1 <= by2 <= 10<sup>4</sup></code></li>
</ul>
|
Geometry; Math
|
C++
|
class Solution {
public:
int computeArea(int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2) {
int a = (ax2 - ax1) * (ay2 - ay1);
int b = (bx2 - bx1) * (by2 - by1);
int width = min(ax2, bx2) - max(ax1, bx1);
int height = min(ay2, by2) - max(ay1, by1);
return a + b - max(height, 0) * max(width, 0);
}
};
|
223 |
Rectangle Area
|
Medium
|
<p>Given the coordinates of two <strong>rectilinear</strong> rectangles in a 2D plane, return <em>the total area covered by the two rectangles</em>.</p>
<p>The first rectangle is defined by its <strong>bottom-left</strong> corner <code>(ax1, ay1)</code> and its <strong>top-right</strong> corner <code>(ax2, ay2)</code>.</p>
<p>The second rectangle is defined by its <strong>bottom-left</strong> corner <code>(bx1, by1)</code> and its <strong>top-right</strong> corner <code>(bx2, by2)</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="Rectangle Area" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0223.Rectangle%20Area/images/rectangle-plane.png" style="width: 700px; height: 365px;" />
<pre>
<strong>Input:</strong> ax1 = -3, ay1 = 0, ax2 = 3, ay2 = 4, bx1 = 0, by1 = -1, bx2 = 9, by2 = 2
<strong>Output:</strong> 45
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> ax1 = -2, ay1 = -2, ax2 = 2, ay2 = 2, bx1 = -2, by1 = -2, bx2 = 2, by2 = 2
<strong>Output:</strong> 16
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-10<sup>4</sup> <= ax1 <= ax2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= ay1 <= ay2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= bx1 <= bx2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= by1 <= by2 <= 10<sup>4</sup></code></li>
</ul>
|
Geometry; Math
|
C#
|
public class Solution {
public int ComputeArea(int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2) {
int a = (ax2 - ax1) * (ay2 - ay1);
int b = (bx2 - bx1) * (by2 - by1);
int width = Math.Min(ax2, bx2) - Math.Max(ax1, bx1);
int height = Math.Min(ay2, by2) - Math.Max(ay1, by1);
return a + b - Math.Max(height, 0) * Math.Max(width, 0);
}
}
|
223 |
Rectangle Area
|
Medium
|
<p>Given the coordinates of two <strong>rectilinear</strong> rectangles in a 2D plane, return <em>the total area covered by the two rectangles</em>.</p>
<p>The first rectangle is defined by its <strong>bottom-left</strong> corner <code>(ax1, ay1)</code> and its <strong>top-right</strong> corner <code>(ax2, ay2)</code>.</p>
<p>The second rectangle is defined by its <strong>bottom-left</strong> corner <code>(bx1, by1)</code> and its <strong>top-right</strong> corner <code>(bx2, by2)</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="Rectangle Area" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0223.Rectangle%20Area/images/rectangle-plane.png" style="width: 700px; height: 365px;" />
<pre>
<strong>Input:</strong> ax1 = -3, ay1 = 0, ax2 = 3, ay2 = 4, bx1 = 0, by1 = -1, bx2 = 9, by2 = 2
<strong>Output:</strong> 45
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> ax1 = -2, ay1 = -2, ax2 = 2, ay2 = 2, bx1 = -2, by1 = -2, bx2 = 2, by2 = 2
<strong>Output:</strong> 16
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-10<sup>4</sup> <= ax1 <= ax2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= ay1 <= ay2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= bx1 <= bx2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= by1 <= by2 <= 10<sup>4</sup></code></li>
</ul>
|
Geometry; Math
|
Go
|
func computeArea(ax1 int, ay1 int, ax2 int, ay2 int, bx1 int, by1 int, bx2 int, by2 int) int {
a := (ax2 - ax1) * (ay2 - ay1)
b := (bx2 - bx1) * (by2 - by1)
width := min(ax2, bx2) - max(ax1, bx1)
height := min(ay2, by2) - max(ay1, by1)
return a + b - max(height, 0)*max(width, 0)
}
|
223 |
Rectangle Area
|
Medium
|
<p>Given the coordinates of two <strong>rectilinear</strong> rectangles in a 2D plane, return <em>the total area covered by the two rectangles</em>.</p>
<p>The first rectangle is defined by its <strong>bottom-left</strong> corner <code>(ax1, ay1)</code> and its <strong>top-right</strong> corner <code>(ax2, ay2)</code>.</p>
<p>The second rectangle is defined by its <strong>bottom-left</strong> corner <code>(bx1, by1)</code> and its <strong>top-right</strong> corner <code>(bx2, by2)</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="Rectangle Area" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0223.Rectangle%20Area/images/rectangle-plane.png" style="width: 700px; height: 365px;" />
<pre>
<strong>Input:</strong> ax1 = -3, ay1 = 0, ax2 = 3, ay2 = 4, bx1 = 0, by1 = -1, bx2 = 9, by2 = 2
<strong>Output:</strong> 45
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> ax1 = -2, ay1 = -2, ax2 = 2, ay2 = 2, bx1 = -2, by1 = -2, bx2 = 2, by2 = 2
<strong>Output:</strong> 16
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-10<sup>4</sup> <= ax1 <= ax2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= ay1 <= ay2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= bx1 <= bx2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= by1 <= by2 <= 10<sup>4</sup></code></li>
</ul>
|
Geometry; Math
|
Java
|
class Solution {
public int computeArea(int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2) {
int a = (ax2 - ax1) * (ay2 - ay1);
int b = (bx2 - bx1) * (by2 - by1);
int width = Math.min(ax2, bx2) - Math.max(ax1, bx1);
int height = Math.min(ay2, by2) - Math.max(ay1, by1);
return a + b - Math.max(height, 0) * Math.max(width, 0);
}
}
|
223 |
Rectangle Area
|
Medium
|
<p>Given the coordinates of two <strong>rectilinear</strong> rectangles in a 2D plane, return <em>the total area covered by the two rectangles</em>.</p>
<p>The first rectangle is defined by its <strong>bottom-left</strong> corner <code>(ax1, ay1)</code> and its <strong>top-right</strong> corner <code>(ax2, ay2)</code>.</p>
<p>The second rectangle is defined by its <strong>bottom-left</strong> corner <code>(bx1, by1)</code> and its <strong>top-right</strong> corner <code>(bx2, by2)</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="Rectangle Area" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0223.Rectangle%20Area/images/rectangle-plane.png" style="width: 700px; height: 365px;" />
<pre>
<strong>Input:</strong> ax1 = -3, ay1 = 0, ax2 = 3, ay2 = 4, bx1 = 0, by1 = -1, bx2 = 9, by2 = 2
<strong>Output:</strong> 45
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> ax1 = -2, ay1 = -2, ax2 = 2, ay2 = 2, bx1 = -2, by1 = -2, bx2 = 2, by2 = 2
<strong>Output:</strong> 16
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-10<sup>4</sup> <= ax1 <= ax2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= ay1 <= ay2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= bx1 <= bx2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= by1 <= by2 <= 10<sup>4</sup></code></li>
</ul>
|
Geometry; Math
|
Python
|
class Solution:
def computeArea(
self,
ax1: int,
ay1: int,
ax2: int,
ay2: int,
bx1: int,
by1: int,
bx2: int,
by2: int,
) -> int:
a = (ax2 - ax1) * (ay2 - ay1)
b = (bx2 - bx1) * (by2 - by1)
width = min(ax2, bx2) - max(ax1, bx1)
height = min(ay2, by2) - max(ay1, by1)
return a + b - max(height, 0) * max(width, 0)
|
223 |
Rectangle Area
|
Medium
|
<p>Given the coordinates of two <strong>rectilinear</strong> rectangles in a 2D plane, return <em>the total area covered by the two rectangles</em>.</p>
<p>The first rectangle is defined by its <strong>bottom-left</strong> corner <code>(ax1, ay1)</code> and its <strong>top-right</strong> corner <code>(ax2, ay2)</code>.</p>
<p>The second rectangle is defined by its <strong>bottom-left</strong> corner <code>(bx1, by1)</code> and its <strong>top-right</strong> corner <code>(bx2, by2)</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="Rectangle Area" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0223.Rectangle%20Area/images/rectangle-plane.png" style="width: 700px; height: 365px;" />
<pre>
<strong>Input:</strong> ax1 = -3, ay1 = 0, ax2 = 3, ay2 = 4, bx1 = 0, by1 = -1, bx2 = 9, by2 = 2
<strong>Output:</strong> 45
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> ax1 = -2, ay1 = -2, ax2 = 2, ay2 = 2, bx1 = -2, by1 = -2, bx2 = 2, by2 = 2
<strong>Output:</strong> 16
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-10<sup>4</sup> <= ax1 <= ax2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= ay1 <= ay2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= bx1 <= bx2 <= 10<sup>4</sup></code></li>
<li><code>-10<sup>4</sup> <= by1 <= by2 <= 10<sup>4</sup></code></li>
</ul>
|
Geometry; Math
|
TypeScript
|
function computeArea(
ax1: number,
ay1: number,
ax2: number,
ay2: number,
bx1: number,
by1: number,
bx2: number,
by2: number,
): number {
const a = (ax2 - ax1) * (ay2 - ay1);
const b = (bx2 - bx1) * (by2 - by1);
const width = Math.min(ax2, bx2) - Math.max(ax1, bx1);
const height = Math.min(ay2, by2) - Math.max(ay1, by1);
return a + b - Math.max(width, 0) * Math.max(height, 0);
}
|
224 |
Basic Calculator
|
Hard
|
<p>Given a string <code>s</code> representing a valid expression, implement a basic calculator to evaluate it, and return <em>the result of the evaluation</em>.</p>
<p><strong>Note:</strong> You are <strong>not</strong> allowed to use any built-in function which evaluates strings as mathematical expressions, such as <code>eval()</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "1 + 1"
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = " 2-1 + 2 "
<strong>Output:</strong> 3
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = "(1+(4+5+2)-3)+(6+8)"
<strong>Output:</strong> 23
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 3 * 10<sup>5</sup></code></li>
<li><code>s</code> consists of digits, <code>'+'</code>, <code>'-'</code>, <code>'('</code>, <code>')'</code>, and <code>' '</code>.</li>
<li><code>s</code> represents a valid expression.</li>
<li><code>'+'</code> is <strong>not</strong> used as a unary operation (i.e., <code>"+1"</code> and <code>"+(2 + 3)"</code> is invalid).</li>
<li><code>'-'</code> could be used as a unary operation (i.e., <code>"-1"</code> and <code>"-(2 + 3)"</code> is valid).</li>
<li>There will be no two consecutive operators in the input.</li>
<li>Every number and running calculation will fit in a signed 32-bit integer.</li>
</ul>
|
Stack; Recursion; Math; String
|
C++
|
class Solution {
public:
int calculate(string s) {
stack<int> stk;
int ans = 0, sign = 1;
int n = s.size();
for (int i = 0; i < n; ++i) {
if (isdigit(s[i])) {
int x = 0;
int j = i;
while (j < n && isdigit(s[j])) {
x = x * 10 + (s[j] - '0');
++j;
}
ans += sign * x;
i = j - 1;
} else if (s[i] == '+') {
sign = 1;
} else if (s[i] == '-') {
sign = -1;
} else if (s[i] == '(') {
stk.push(ans);
stk.push(sign);
ans = 0;
sign = 1;
} else if (s[i] == ')') {
ans *= stk.top();
stk.pop();
ans += stk.top();
stk.pop();
}
}
return ans;
}
};
|
224 |
Basic Calculator
|
Hard
|
<p>Given a string <code>s</code> representing a valid expression, implement a basic calculator to evaluate it, and return <em>the result of the evaluation</em>.</p>
<p><strong>Note:</strong> You are <strong>not</strong> allowed to use any built-in function which evaluates strings as mathematical expressions, such as <code>eval()</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "1 + 1"
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = " 2-1 + 2 "
<strong>Output:</strong> 3
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = "(1+(4+5+2)-3)+(6+8)"
<strong>Output:</strong> 23
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 3 * 10<sup>5</sup></code></li>
<li><code>s</code> consists of digits, <code>'+'</code>, <code>'-'</code>, <code>'('</code>, <code>')'</code>, and <code>' '</code>.</li>
<li><code>s</code> represents a valid expression.</li>
<li><code>'+'</code> is <strong>not</strong> used as a unary operation (i.e., <code>"+1"</code> and <code>"+(2 + 3)"</code> is invalid).</li>
<li><code>'-'</code> could be used as a unary operation (i.e., <code>"-1"</code> and <code>"-(2 + 3)"</code> is valid).</li>
<li>There will be no two consecutive operators in the input.</li>
<li>Every number and running calculation will fit in a signed 32-bit integer.</li>
</ul>
|
Stack; Recursion; Math; String
|
C#
|
public class Solution {
public int Calculate(string s) {
var stk = new Stack<int>();
int sign = 1;
int n = s.Length;
int ans = 0;
for (int i = 0; i < n; ++i) {
if (s[i] == ' ') {
continue;
}
if (s[i] == '+') {
sign = 1;
} else if (s[i] == '-') {
sign = -1;
} else if (s[i] == '(') {
stk.Push(ans);
stk.Push(sign);
ans = 0;
sign = 1;
} else if (s[i] == ')') {
ans *= stk.Pop();
ans += stk.Pop();
} else {
int num = 0;
while (i < n && char.IsDigit(s[i])) {
num = num * 10 + s[i] - '0';
++i;
}
--i;
ans += sign * num;
}
}
return ans;
}
}
|
224 |
Basic Calculator
|
Hard
|
<p>Given a string <code>s</code> representing a valid expression, implement a basic calculator to evaluate it, and return <em>the result of the evaluation</em>.</p>
<p><strong>Note:</strong> You are <strong>not</strong> allowed to use any built-in function which evaluates strings as mathematical expressions, such as <code>eval()</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "1 + 1"
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = " 2-1 + 2 "
<strong>Output:</strong> 3
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = "(1+(4+5+2)-3)+(6+8)"
<strong>Output:</strong> 23
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 3 * 10<sup>5</sup></code></li>
<li><code>s</code> consists of digits, <code>'+'</code>, <code>'-'</code>, <code>'('</code>, <code>')'</code>, and <code>' '</code>.</li>
<li><code>s</code> represents a valid expression.</li>
<li><code>'+'</code> is <strong>not</strong> used as a unary operation (i.e., <code>"+1"</code> and <code>"+(2 + 3)"</code> is invalid).</li>
<li><code>'-'</code> could be used as a unary operation (i.e., <code>"-1"</code> and <code>"-(2 + 3)"</code> is valid).</li>
<li>There will be no two consecutive operators in the input.</li>
<li>Every number and running calculation will fit in a signed 32-bit integer.</li>
</ul>
|
Stack; Recursion; Math; String
|
Go
|
func calculate(s string) (ans int) {
stk := []int{}
sign := 1
n := len(s)
for i := 0; i < n; i++ {
switch s[i] {
case ' ':
case '+':
sign = 1
case '-':
sign = -1
case '(':
stk = append(stk, ans)
stk = append(stk, sign)
ans, sign = 0, 1
case ')':
ans *= stk[len(stk)-1]
stk = stk[:len(stk)-1]
ans += stk[len(stk)-1]
stk = stk[:len(stk)-1]
default:
x := 0
j := i
for ; j < n && '0' <= s[j] && s[j] <= '9'; j++ {
x = x*10 + int(s[j]-'0')
}
ans += sign * x
i = j - 1
}
}
return
}
|
224 |
Basic Calculator
|
Hard
|
<p>Given a string <code>s</code> representing a valid expression, implement a basic calculator to evaluate it, and return <em>the result of the evaluation</em>.</p>
<p><strong>Note:</strong> You are <strong>not</strong> allowed to use any built-in function which evaluates strings as mathematical expressions, such as <code>eval()</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "1 + 1"
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = " 2-1 + 2 "
<strong>Output:</strong> 3
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = "(1+(4+5+2)-3)+(6+8)"
<strong>Output:</strong> 23
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 3 * 10<sup>5</sup></code></li>
<li><code>s</code> consists of digits, <code>'+'</code>, <code>'-'</code>, <code>'('</code>, <code>')'</code>, and <code>' '</code>.</li>
<li><code>s</code> represents a valid expression.</li>
<li><code>'+'</code> is <strong>not</strong> used as a unary operation (i.e., <code>"+1"</code> and <code>"+(2 + 3)"</code> is invalid).</li>
<li><code>'-'</code> could be used as a unary operation (i.e., <code>"-1"</code> and <code>"-(2 + 3)"</code> is valid).</li>
<li>There will be no two consecutive operators in the input.</li>
<li>Every number and running calculation will fit in a signed 32-bit integer.</li>
</ul>
|
Stack; Recursion; Math; String
|
Java
|
class Solution {
public int calculate(String s) {
Deque<Integer> stk = new ArrayDeque<>();
int sign = 1;
int ans = 0;
int n = s.length();
for (int i = 0; i < n; ++i) {
char c = s.charAt(i);
if (Character.isDigit(c)) {
int j = i;
int x = 0;
while (j < n && Character.isDigit(s.charAt(j))) {
x = x * 10 + s.charAt(j) - '0';
j++;
}
ans += sign * x;
i = j - 1;
} else if (c == '+') {
sign = 1;
} else if (c == '-') {
sign = -1;
} else if (c == '(') {
stk.push(ans);
stk.push(sign);
ans = 0;
sign = 1;
} else if (c == ')') {
ans = stk.pop() * ans + stk.pop();
}
}
return ans;
}
}
|
224 |
Basic Calculator
|
Hard
|
<p>Given a string <code>s</code> representing a valid expression, implement a basic calculator to evaluate it, and return <em>the result of the evaluation</em>.</p>
<p><strong>Note:</strong> You are <strong>not</strong> allowed to use any built-in function which evaluates strings as mathematical expressions, such as <code>eval()</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "1 + 1"
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = " 2-1 + 2 "
<strong>Output:</strong> 3
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = "(1+(4+5+2)-3)+(6+8)"
<strong>Output:</strong> 23
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 3 * 10<sup>5</sup></code></li>
<li><code>s</code> consists of digits, <code>'+'</code>, <code>'-'</code>, <code>'('</code>, <code>')'</code>, and <code>' '</code>.</li>
<li><code>s</code> represents a valid expression.</li>
<li><code>'+'</code> is <strong>not</strong> used as a unary operation (i.e., <code>"+1"</code> and <code>"+(2 + 3)"</code> is invalid).</li>
<li><code>'-'</code> could be used as a unary operation (i.e., <code>"-1"</code> and <code>"-(2 + 3)"</code> is valid).</li>
<li>There will be no two consecutive operators in the input.</li>
<li>Every number and running calculation will fit in a signed 32-bit integer.</li>
</ul>
|
Stack; Recursion; Math; String
|
Python
|
class Solution:
def calculate(self, s: str) -> int:
stk = []
ans, sign = 0, 1
i, n = 0, len(s)
while i < n:
if s[i].isdigit():
x = 0
j = i
while j < n and s[j].isdigit():
x = x * 10 + int(s[j])
j += 1
ans += sign * x
i = j - 1
elif s[i] == "+":
sign = 1
elif s[i] == "-":
sign = -1
elif s[i] == "(":
stk.append(ans)
stk.append(sign)
ans, sign = 0, 1
elif s[i] == ")":
ans = stk.pop() * ans + stk.pop()
i += 1
return ans
|
224 |
Basic Calculator
|
Hard
|
<p>Given a string <code>s</code> representing a valid expression, implement a basic calculator to evaluate it, and return <em>the result of the evaluation</em>.</p>
<p><strong>Note:</strong> You are <strong>not</strong> allowed to use any built-in function which evaluates strings as mathematical expressions, such as <code>eval()</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = "1 + 1"
<strong>Output:</strong> 2
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = " 2-1 + 2 "
<strong>Output:</strong> 3
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = "(1+(4+5+2)-3)+(6+8)"
<strong>Output:</strong> 23
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 3 * 10<sup>5</sup></code></li>
<li><code>s</code> consists of digits, <code>'+'</code>, <code>'-'</code>, <code>'('</code>, <code>')'</code>, and <code>' '</code>.</li>
<li><code>s</code> represents a valid expression.</li>
<li><code>'+'</code> is <strong>not</strong> used as a unary operation (i.e., <code>"+1"</code> and <code>"+(2 + 3)"</code> is invalid).</li>
<li><code>'-'</code> could be used as a unary operation (i.e., <code>"-1"</code> and <code>"-(2 + 3)"</code> is valid).</li>
<li>There will be no two consecutive operators in the input.</li>
<li>Every number and running calculation will fit in a signed 32-bit integer.</li>
</ul>
|
Stack; Recursion; Math; String
|
TypeScript
|
function calculate(s: string): number {
const stk: number[] = [];
let sign = 1;
let ans = 0;
const n = s.length;
for (let i = 0; i < n; ++i) {
if (s[i] === ' ') {
continue;
}
if (s[i] === '+') {
sign = 1;
} else if (s[i] === '-') {
sign = -1;
} else if (s[i] === '(') {
stk.push(ans);
stk.push(sign);
ans = 0;
sign = 1;
} else if (s[i] === ')') {
ans *= stk.pop() as number;
ans += stk.pop() as number;
} else {
let x = 0;
let j = i;
for (; j < n && !isNaN(Number(s[j])) && s[j] !== ' '; ++j) {
x = x * 10 + (s[j].charCodeAt(0) - '0'.charCodeAt(0));
}
ans += sign * x;
i = j - 1;
}
}
return ans;
}
|
225 |
Implement Stack using Queues
|
Easy
|
<p>Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should support all the functions of a normal stack (<code>push</code>, <code>top</code>, <code>pop</code>, and <code>empty</code>).</p>
<p>Implement the <code>MyStack</code> class:</p>
<ul>
<li><code>void push(int x)</code> Pushes element x to the top of the stack.</li>
<li><code>int pop()</code> Removes the element on the top of the stack and returns it.</li>
<li><code>int top()</code> Returns the element on the top of the stack.</li>
<li><code>boolean empty()</code> Returns <code>true</code> if the stack is empty, <code>false</code> otherwise.</li>
</ul>
<p><b>Notes:</b></p>
<ul>
<li>You must use <strong>only</strong> standard operations of a queue, which means that only <code>push to back</code>, <code>peek/pop from front</code>, <code>size</code> and <code>is empty</code> operations are valid.</li>
<li>Depending on your language, the queue may not be supported natively. You may simulate a queue using a list or deque (double-ended queue) as long as you use only a queue's standard operations.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input</strong>
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
<strong>Output</strong>
[null, null, null, 2, 2, false]
<strong>Explanation</strong>
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // return 2
myStack.pop(); // return 2
myStack.empty(); // return False
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= x <= 9</code></li>
<li>At most <code>100</code> calls will be made to <code>push</code>, <code>pop</code>, <code>top</code>, and <code>empty</code>.</li>
<li>All the calls to <code>pop</code> and <code>top</code> are valid.</li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong> Can you implement the stack using only one queue?</p>
|
Stack; Design; Queue
|
C++
|
class MyStack {
public:
MyStack() {
}
void push(int x) {
q2.push(x);
while (!q1.empty()) {
q2.push(q1.front());
q1.pop();
}
swap(q1, q2);
}
int pop() {
int x = q1.front();
q1.pop();
return x;
}
int top() {
return q1.front();
}
bool empty() {
return q1.empty();
}
private:
queue<int> q1;
queue<int> q2;
};
/**
* Your MyStack object will be instantiated and called as such:
* MyStack* obj = new MyStack();
* obj->push(x);
* int param_2 = obj->pop();
* int param_3 = obj->top();
* bool param_4 = obj->empty();
*/
|
225 |
Implement Stack using Queues
|
Easy
|
<p>Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should support all the functions of a normal stack (<code>push</code>, <code>top</code>, <code>pop</code>, and <code>empty</code>).</p>
<p>Implement the <code>MyStack</code> class:</p>
<ul>
<li><code>void push(int x)</code> Pushes element x to the top of the stack.</li>
<li><code>int pop()</code> Removes the element on the top of the stack and returns it.</li>
<li><code>int top()</code> Returns the element on the top of the stack.</li>
<li><code>boolean empty()</code> Returns <code>true</code> if the stack is empty, <code>false</code> otherwise.</li>
</ul>
<p><b>Notes:</b></p>
<ul>
<li>You must use <strong>only</strong> standard operations of a queue, which means that only <code>push to back</code>, <code>peek/pop from front</code>, <code>size</code> and <code>is empty</code> operations are valid.</li>
<li>Depending on your language, the queue may not be supported natively. You may simulate a queue using a list or deque (double-ended queue) as long as you use only a queue's standard operations.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input</strong>
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
<strong>Output</strong>
[null, null, null, 2, 2, false]
<strong>Explanation</strong>
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // return 2
myStack.pop(); // return 2
myStack.empty(); // return False
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= x <= 9</code></li>
<li>At most <code>100</code> calls will be made to <code>push</code>, <code>pop</code>, <code>top</code>, and <code>empty</code>.</li>
<li>All the calls to <code>pop</code> and <code>top</code> are valid.</li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong> Can you implement the stack using only one queue?</p>
|
Stack; Design; Queue
|
Go
|
type MyStack struct {
q1 []int
q2 []int
}
func Constructor() MyStack {
return MyStack{}
}
func (this *MyStack) Push(x int) {
this.q2 = append(this.q2, x)
for len(this.q1) > 0 {
this.q2 = append(this.q2, this.q1[0])
this.q1 = this.q1[1:]
}
this.q1, this.q2 = this.q2, this.q1
}
func (this *MyStack) Pop() int {
x := this.q1[0]
this.q1 = this.q1[1:]
return x
}
func (this *MyStack) Top() int {
return this.q1[0]
}
func (this *MyStack) Empty() bool {
return len(this.q1) == 0
}
/**
* Your MyStack object will be instantiated and called as such:
* obj := Constructor();
* obj.Push(x);
* param_2 := obj.Pop();
* param_3 := obj.Top();
* param_4 := obj.Empty();
*/
|
225 |
Implement Stack using Queues
|
Easy
|
<p>Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should support all the functions of a normal stack (<code>push</code>, <code>top</code>, <code>pop</code>, and <code>empty</code>).</p>
<p>Implement the <code>MyStack</code> class:</p>
<ul>
<li><code>void push(int x)</code> Pushes element x to the top of the stack.</li>
<li><code>int pop()</code> Removes the element on the top of the stack and returns it.</li>
<li><code>int top()</code> Returns the element on the top of the stack.</li>
<li><code>boolean empty()</code> Returns <code>true</code> if the stack is empty, <code>false</code> otherwise.</li>
</ul>
<p><b>Notes:</b></p>
<ul>
<li>You must use <strong>only</strong> standard operations of a queue, which means that only <code>push to back</code>, <code>peek/pop from front</code>, <code>size</code> and <code>is empty</code> operations are valid.</li>
<li>Depending on your language, the queue may not be supported natively. You may simulate a queue using a list or deque (double-ended queue) as long as you use only a queue's standard operations.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input</strong>
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
<strong>Output</strong>
[null, null, null, 2, 2, false]
<strong>Explanation</strong>
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // return 2
myStack.pop(); // return 2
myStack.empty(); // return False
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= x <= 9</code></li>
<li>At most <code>100</code> calls will be made to <code>push</code>, <code>pop</code>, <code>top</code>, and <code>empty</code>.</li>
<li>All the calls to <code>pop</code> and <code>top</code> are valid.</li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong> Can you implement the stack using only one queue?</p>
|
Stack; Design; Queue
|
Java
|
class MyStack {
private Deque<Integer> q1 = new ArrayDeque<>();
private Deque<Integer> q2 = new ArrayDeque<>();
public MyStack() {
}
public void push(int x) {
q2.offer(x);
while (!q1.isEmpty()) {
q2.offer(q1.poll());
}
Deque<Integer> q = q1;
q1 = q2;
q2 = q;
}
public int pop() {
return q1.poll();
}
public int top() {
return q1.peek();
}
public boolean empty() {
return q1.isEmpty();
}
}
/**
* Your MyStack object will be instantiated and called as such:
* MyStack obj = new MyStack();
* obj.push(x);
* int param_2 = obj.pop();
* int param_3 = obj.top();
* boolean param_4 = obj.empty();
*/
|
225 |
Implement Stack using Queues
|
Easy
|
<p>Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should support all the functions of a normal stack (<code>push</code>, <code>top</code>, <code>pop</code>, and <code>empty</code>).</p>
<p>Implement the <code>MyStack</code> class:</p>
<ul>
<li><code>void push(int x)</code> Pushes element x to the top of the stack.</li>
<li><code>int pop()</code> Removes the element on the top of the stack and returns it.</li>
<li><code>int top()</code> Returns the element on the top of the stack.</li>
<li><code>boolean empty()</code> Returns <code>true</code> if the stack is empty, <code>false</code> otherwise.</li>
</ul>
<p><b>Notes:</b></p>
<ul>
<li>You must use <strong>only</strong> standard operations of a queue, which means that only <code>push to back</code>, <code>peek/pop from front</code>, <code>size</code> and <code>is empty</code> operations are valid.</li>
<li>Depending on your language, the queue may not be supported natively. You may simulate a queue using a list or deque (double-ended queue) as long as you use only a queue's standard operations.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input</strong>
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
<strong>Output</strong>
[null, null, null, 2, 2, false]
<strong>Explanation</strong>
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // return 2
myStack.pop(); // return 2
myStack.empty(); // return False
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= x <= 9</code></li>
<li>At most <code>100</code> calls will be made to <code>push</code>, <code>pop</code>, <code>top</code>, and <code>empty</code>.</li>
<li>All the calls to <code>pop</code> and <code>top</code> are valid.</li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong> Can you implement the stack using only one queue?</p>
|
Stack; Design; Queue
|
Python
|
class MyStack:
def __init__(self):
self.q1 = deque()
self.q2 = deque()
def push(self, x: int) -> None:
self.q2.append(x)
while self.q1:
self.q2.append(self.q1.popleft())
self.q1, self.q2 = self.q2, self.q1
def pop(self) -> int:
return self.q1.popleft()
def top(self) -> int:
return self.q1[0]
def empty(self) -> bool:
return len(self.q1) == 0
# Your MyStack object will be instantiated and called as such:
# obj = MyStack()
# obj.push(x)
# param_2 = obj.pop()
# param_3 = obj.top()
# param_4 = obj.empty()
|
225 |
Implement Stack using Queues
|
Easy
|
<p>Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should support all the functions of a normal stack (<code>push</code>, <code>top</code>, <code>pop</code>, and <code>empty</code>).</p>
<p>Implement the <code>MyStack</code> class:</p>
<ul>
<li><code>void push(int x)</code> Pushes element x to the top of the stack.</li>
<li><code>int pop()</code> Removes the element on the top of the stack and returns it.</li>
<li><code>int top()</code> Returns the element on the top of the stack.</li>
<li><code>boolean empty()</code> Returns <code>true</code> if the stack is empty, <code>false</code> otherwise.</li>
</ul>
<p><b>Notes:</b></p>
<ul>
<li>You must use <strong>only</strong> standard operations of a queue, which means that only <code>push to back</code>, <code>peek/pop from front</code>, <code>size</code> and <code>is empty</code> operations are valid.</li>
<li>Depending on your language, the queue may not be supported natively. You may simulate a queue using a list or deque (double-ended queue) as long as you use only a queue's standard operations.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input</strong>
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
<strong>Output</strong>
[null, null, null, 2, 2, false]
<strong>Explanation</strong>
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // return 2
myStack.pop(); // return 2
myStack.empty(); // return False
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= x <= 9</code></li>
<li>At most <code>100</code> calls will be made to <code>push</code>, <code>pop</code>, <code>top</code>, and <code>empty</code>.</li>
<li>All the calls to <code>pop</code> and <code>top</code> are valid.</li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong> Can you implement the stack using only one queue?</p>
|
Stack; Design; Queue
|
Rust
|
use std::collections::VecDeque;
struct MyStack {
/// There could only be two status at all time
/// 1. One contains N elements, the other is empty
/// 2. One contains N - 1 elements, the other contains exactly 1 element
q_1: VecDeque<i32>,
q_2: VecDeque<i32>,
// Either 1 or 2, originally begins from 1
index: i32,
}
impl MyStack {
fn new() -> Self {
Self {
q_1: VecDeque::new(),
q_2: VecDeque::new(),
index: 1,
}
}
fn move_data(&mut self) {
// Always move from q1 to q2
assert!(self.q_2.len() == 1);
while !self.q_1.is_empty() {
self.q_2.push_back(self.q_1.pop_front().unwrap());
}
let tmp = self.q_1.clone();
self.q_1 = self.q_2.clone();
self.q_2 = tmp;
}
fn push(&mut self, x: i32) {
self.q_2.push_back(x);
self.move_data();
}
fn pop(&mut self) -> i32 {
self.q_1.pop_front().unwrap()
}
fn top(&mut self) -> i32 {
*self.q_1.front().unwrap()
}
fn empty(&self) -> bool {
self.q_1.is_empty()
}
}
|
225 |
Implement Stack using Queues
|
Easy
|
<p>Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should support all the functions of a normal stack (<code>push</code>, <code>top</code>, <code>pop</code>, and <code>empty</code>).</p>
<p>Implement the <code>MyStack</code> class:</p>
<ul>
<li><code>void push(int x)</code> Pushes element x to the top of the stack.</li>
<li><code>int pop()</code> Removes the element on the top of the stack and returns it.</li>
<li><code>int top()</code> Returns the element on the top of the stack.</li>
<li><code>boolean empty()</code> Returns <code>true</code> if the stack is empty, <code>false</code> otherwise.</li>
</ul>
<p><b>Notes:</b></p>
<ul>
<li>You must use <strong>only</strong> standard operations of a queue, which means that only <code>push to back</code>, <code>peek/pop from front</code>, <code>size</code> and <code>is empty</code> operations are valid.</li>
<li>Depending on your language, the queue may not be supported natively. You may simulate a queue using a list or deque (double-ended queue) as long as you use only a queue's standard operations.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input</strong>
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
<strong>Output</strong>
[null, null, null, 2, 2, false]
<strong>Explanation</strong>
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // return 2
myStack.pop(); // return 2
myStack.empty(); // return False
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= x <= 9</code></li>
<li>At most <code>100</code> calls will be made to <code>push</code>, <code>pop</code>, <code>top</code>, and <code>empty</code>.</li>
<li>All the calls to <code>pop</code> and <code>top</code> are valid.</li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong> Can you implement the stack using only one queue?</p>
|
Stack; Design; Queue
|
TypeScript
|
class MyStack {
q1: number[] = [];
q2: number[] = [];
constructor() {}
push(x: number): void {
this.q2.push(x);
while (this.q1.length) {
this.q2.push(this.q1.shift()!);
}
[this.q1, this.q2] = [this.q2, this.q1];
}
pop(): number {
return this.q1.shift()!;
}
top(): number {
return this.q1[0];
}
empty(): boolean {
return this.q1.length === 0;
}
}
/**
* Your MyStack object will be instantiated and called as such:
* var obj = new MyStack()
* obj.push(x)
* var param_2 = obj.pop()
* var param_3 = obj.top()
* var param_4 = obj.empty()
*/
|
226 |
Invert Binary Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, invert the tree, and return <em>its root</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0226.Invert%20Binary%20Tree/images/invert1-tree.jpg" style="width: 500px; height: 165px;" />
<pre>
<strong>Input:</strong> root = [4,2,7,1,3,6,9]
<strong>Output:</strong> [4,7,2,9,6,3,1]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0226.Invert%20Binary%20Tree/images/invert2-tree.jpg" style="width: 500px; height: 120px;" />
<pre>
<strong>Input:</strong> root = [2,1,3]
<strong>Output:</strong> [2,3,1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 100]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if (!root) {
return root;
}
TreeNode* l = invertTree(root->left);
TreeNode* r = invertTree(root->right);
root->left = r;
root->right = l;
return root;
}
};
|
226 |
Invert Binary Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, invert the tree, and return <em>its root</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0226.Invert%20Binary%20Tree/images/invert1-tree.jpg" style="width: 500px; height: 165px;" />
<pre>
<strong>Input:</strong> root = [4,2,7,1,3,6,9]
<strong>Output:</strong> [4,7,2,9,6,3,1]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0226.Invert%20Binary%20Tree/images/invert2-tree.jpg" style="width: 500px; height: 120px;" />
<pre>
<strong>Input:</strong> root = [2,1,3]
<strong>Output:</strong> [2,3,1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 100]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
C#
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
public TreeNode InvertTree(TreeNode root) {
if (root == null) {
return null;
}
TreeNode l = InvertTree(root.left);
TreeNode r = InvertTree(root.right);
root.left = r;
root.right = l;
return root;
}
}
|
226 |
Invert Binary Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, invert the tree, and return <em>its root</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0226.Invert%20Binary%20Tree/images/invert1-tree.jpg" style="width: 500px; height: 165px;" />
<pre>
<strong>Input:</strong> root = [4,2,7,1,3,6,9]
<strong>Output:</strong> [4,7,2,9,6,3,1]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0226.Invert%20Binary%20Tree/images/invert2-tree.jpg" style="width: 500px; height: 120px;" />
<pre>
<strong>Input:</strong> root = [2,1,3]
<strong>Output:</strong> [2,3,1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 100]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func invertTree(root *TreeNode) *TreeNode {
if root == nil {
return root
}
l, r := invertTree(root.Left), invertTree(root.Right)
root.Left, root.Right = r, l
return root
}
|
226 |
Invert Binary Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, invert the tree, and return <em>its root</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0226.Invert%20Binary%20Tree/images/invert1-tree.jpg" style="width: 500px; height: 165px;" />
<pre>
<strong>Input:</strong> root = [4,2,7,1,3,6,9]
<strong>Output:</strong> [4,7,2,9,6,3,1]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0226.Invert%20Binary%20Tree/images/invert2-tree.jpg" style="width: 500px; height: 120px;" />
<pre>
<strong>Input:</strong> root = [2,1,3]
<strong>Output:</strong> [2,3,1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 100]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode invertTree(TreeNode root) {
if (root == null) {
return null;
}
TreeNode l = invertTree(root.left);
TreeNode r = invertTree(root.right);
root.left = r;
root.right = l;
return root;
}
}
|
226 |
Invert Binary Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, invert the tree, and return <em>its root</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0226.Invert%20Binary%20Tree/images/invert1-tree.jpg" style="width: 500px; height: 165px;" />
<pre>
<strong>Input:</strong> root = [4,2,7,1,3,6,9]
<strong>Output:</strong> [4,7,2,9,6,3,1]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0226.Invert%20Binary%20Tree/images/invert2-tree.jpg" style="width: 500px; height: 120px;" />
<pre>
<strong>Input:</strong> root = [2,1,3]
<strong>Output:</strong> [2,3,1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 100]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
JavaScript
|
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {TreeNode}
*/
var invertTree = function (root) {
if (!root) {
return root;
}
const l = invertTree(root.left);
const r = invertTree(root.right);
root.left = r;
root.right = l;
return root;
};
|
226 |
Invert Binary Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, invert the tree, and return <em>its root</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0226.Invert%20Binary%20Tree/images/invert1-tree.jpg" style="width: 500px; height: 165px;" />
<pre>
<strong>Input:</strong> root = [4,2,7,1,3,6,9]
<strong>Output:</strong> [4,7,2,9,6,3,1]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0226.Invert%20Binary%20Tree/images/invert2-tree.jpg" style="width: 500px; height: 120px;" />
<pre>
<strong>Input:</strong> root = [2,1,3]
<strong>Output:</strong> [2,3,1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 100]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
if root is None:
return None
l, r = self.invertTree(root.left), self.invertTree(root.right)
root.left, root.right = r, l
return root
|
226 |
Invert Binary Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, invert the tree, and return <em>its root</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0226.Invert%20Binary%20Tree/images/invert1-tree.jpg" style="width: 500px; height: 165px;" />
<pre>
<strong>Input:</strong> root = [4,2,7,1,3,6,9]
<strong>Output:</strong> [4,7,2,9,6,3,1]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0226.Invert%20Binary%20Tree/images/invert2-tree.jpg" style="width: 500px; height: 120px;" />
<pre>
<strong>Input:</strong> root = [2,1,3]
<strong>Output:</strong> [2,3,1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 100]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
Rust
|
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
pub fn invert_tree(root: Option<Rc<RefCell<TreeNode>>>) -> Option<Rc<RefCell<TreeNode>>> {
if let Some(node) = root.clone() {
let mut node = node.borrow_mut();
let left = node.left.take();
let right = node.right.take();
node.left = Self::invert_tree(right);
node.right = Self::invert_tree(left);
}
root
}
}
|
226 |
Invert Binary Tree
|
Easy
|
<p>Given the <code>root</code> of a binary tree, invert the tree, and return <em>its root</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0226.Invert%20Binary%20Tree/images/invert1-tree.jpg" style="width: 500px; height: 165px;" />
<pre>
<strong>Input:</strong> root = [4,2,7,1,3,6,9]
<strong>Output:</strong> [4,7,2,9,6,3,1]
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0226.Invert%20Binary%20Tree/images/invert2-tree.jpg" style="width: 500px; height: 120px;" />
<pre>
<strong>Input:</strong> root = [2,1,3]
<strong>Output:</strong> [2,3,1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> root = []
<strong>Output:</strong> []
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is in the range <code>[0, 100]</code>.</li>
<li><code>-100 <= Node.val <= 100</code></li>
</ul>
|
Tree; Depth-First Search; Breadth-First Search; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function invertTree(root: TreeNode | null): TreeNode | null {
if (!root) {
return root;
}
const l = invertTree(root.left);
const r = invertTree(root.right);
root.left = r;
root.right = l;
return root;
}
|
227 |
Basic Calculator II
|
Medium
|
<p>Given a string <code>s</code> which represents an expression, <em>evaluate this expression and return its value</em>. </p>
<p>The integer division should truncate toward zero.</p>
<p>You may assume that the given expression is always valid. All intermediate results will be in the range of <code>[-2<sup>31</sup>, 2<sup>31</sup> - 1]</code>.</p>
<p><strong>Note:</strong> You are not allowed to use any built-in function which evaluates strings as mathematical expressions, such as <code>eval()</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> s = "3+2*2"
<strong>Output:</strong> 7
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> s = " 3/2 "
<strong>Output:</strong> 1
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> s = " 3+5 / 2 "
<strong>Output:</strong> 5
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 3 * 10<sup>5</sup></code></li>
<li><code>s</code> consists of integers and operators <code>('+', '-', '*', '/')</code> separated by some number of spaces.</li>
<li><code>s</code> represents <strong>a valid expression</strong>.</li>
<li>All the integers in the expression are non-negative integers in the range <code>[0, 2<sup>31</sup> - 1]</code>.</li>
<li>The answer is <strong>guaranteed</strong> to fit in a <strong>32-bit integer</strong>.</li>
</ul>
|
Stack; Math; String
|
C++
|
class Solution {
public:
int calculate(string s) {
int v = 0, n = s.size();
char sign = '+';
stack<int> stk;
for (int i = 0; i < n; ++i) {
char c = s[i];
if (isdigit(c)) v = v * 10 + (c - '0');
if (i == n - 1 || c == '+' || c == '-' || c == '*' || c == '/') {
if (sign == '+')
stk.push(v);
else if (sign == '-')
stk.push(-v);
else if (sign == '*') {
int t = stk.top();
stk.pop();
stk.push(t * v);
} else {
int t = stk.top();
stk.pop();
stk.push(t / v);
}
sign = c;
v = 0;
}
}
int ans = 0;
while (!stk.empty()) {
ans += stk.top();
stk.pop();
}
return ans;
}
};
|
227 |
Basic Calculator II
|
Medium
|
<p>Given a string <code>s</code> which represents an expression, <em>evaluate this expression and return its value</em>. </p>
<p>The integer division should truncate toward zero.</p>
<p>You may assume that the given expression is always valid. All intermediate results will be in the range of <code>[-2<sup>31</sup>, 2<sup>31</sup> - 1]</code>.</p>
<p><strong>Note:</strong> You are not allowed to use any built-in function which evaluates strings as mathematical expressions, such as <code>eval()</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> s = "3+2*2"
<strong>Output:</strong> 7
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> s = " 3/2 "
<strong>Output:</strong> 1
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> s = " 3+5 / 2 "
<strong>Output:</strong> 5
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 3 * 10<sup>5</sup></code></li>
<li><code>s</code> consists of integers and operators <code>('+', '-', '*', '/')</code> separated by some number of spaces.</li>
<li><code>s</code> represents <strong>a valid expression</strong>.</li>
<li>All the integers in the expression are non-negative integers in the range <code>[0, 2<sup>31</sup> - 1]</code>.</li>
<li>The answer is <strong>guaranteed</strong> to fit in a <strong>32-bit integer</strong>.</li>
</ul>
|
Stack; Math; String
|
C#
|
using System.Collections.Generic;
using System.Linq;
struct Element
{
public char Op;
public int Number;
public Element(char op, int number)
{
Op = op;
Number = number;
}
}
public class Solution {
public int Calculate(string s) {
var stack = new Stack<Element>();
var readingNumber = false;
var number = 0;
var op = '+';
foreach (var ch in ((IEnumerable<char>)s).Concat(Enumerable.Repeat('+', 1)))
{
if (ch >= '0' && ch <= '9')
{
if (!readingNumber)
{
readingNumber = true;
number = 0;
}
number = (number * 10) + (ch - '0');
}
else if (ch != ' ')
{
readingNumber = false;
if (op == '+' || op == '-')
{
if (stack.Count == 2)
{
var prev = stack.Pop();
var first = stack.Pop();
if (prev.Op == '+')
{
stack.Push(new Element(first.Op, first.Number + prev.Number));
}
else // '-'
{
stack.Push(new Element(first.Op, first.Number - prev.Number));
}
}
stack.Push(new Element(op, number));
}
else
{
var prev = stack.Pop();
if (op == '*')
{
stack.Push(new Element(prev.Op, prev.Number * number));
}
else // '/'
{
stack.Push(new Element(prev.Op, prev.Number / number));
}
}
op = ch;
}
}
if (stack.Count == 2)
{
var second = stack.Pop();
var first = stack.Pop();
if (second.Op == '+')
{
stack.Push(new Element(first.Op, first.Number + second.Number));
}
else // '-'
{
stack.Push(new Element(first.Op, first.Number - second.Number));
}
}
return stack.Peek().Number;
}
}
|
227 |
Basic Calculator II
|
Medium
|
<p>Given a string <code>s</code> which represents an expression, <em>evaluate this expression and return its value</em>. </p>
<p>The integer division should truncate toward zero.</p>
<p>You may assume that the given expression is always valid. All intermediate results will be in the range of <code>[-2<sup>31</sup>, 2<sup>31</sup> - 1]</code>.</p>
<p><strong>Note:</strong> You are not allowed to use any built-in function which evaluates strings as mathematical expressions, such as <code>eval()</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> s = "3+2*2"
<strong>Output:</strong> 7
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> s = " 3/2 "
<strong>Output:</strong> 1
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> s = " 3+5 / 2 "
<strong>Output:</strong> 5
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 3 * 10<sup>5</sup></code></li>
<li><code>s</code> consists of integers and operators <code>('+', '-', '*', '/')</code> separated by some number of spaces.</li>
<li><code>s</code> represents <strong>a valid expression</strong>.</li>
<li>All the integers in the expression are non-negative integers in the range <code>[0, 2<sup>31</sup> - 1]</code>.</li>
<li>The answer is <strong>guaranteed</strong> to fit in a <strong>32-bit integer</strong>.</li>
</ul>
|
Stack; Math; String
|
Go
|
func calculate(s string) int {
sign := '+'
stk := []int{}
v := 0
for i, c := range s {
digit := '0' <= c && c <= '9'
if digit {
v = v*10 + int(c-'0')
}
if i == len(s)-1 || !digit && c != ' ' {
switch sign {
case '+':
stk = append(stk, v)
case '-':
stk = append(stk, -v)
case '*':
stk[len(stk)-1] *= v
case '/':
stk[len(stk)-1] /= v
}
sign = c
v = 0
}
}
ans := 0
for _, v := range stk {
ans += v
}
return ans
}
|
227 |
Basic Calculator II
|
Medium
|
<p>Given a string <code>s</code> which represents an expression, <em>evaluate this expression and return its value</em>. </p>
<p>The integer division should truncate toward zero.</p>
<p>You may assume that the given expression is always valid. All intermediate results will be in the range of <code>[-2<sup>31</sup>, 2<sup>31</sup> - 1]</code>.</p>
<p><strong>Note:</strong> You are not allowed to use any built-in function which evaluates strings as mathematical expressions, such as <code>eval()</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> s = "3+2*2"
<strong>Output:</strong> 7
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> s = " 3/2 "
<strong>Output:</strong> 1
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> s = " 3+5 / 2 "
<strong>Output:</strong> 5
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 3 * 10<sup>5</sup></code></li>
<li><code>s</code> consists of integers and operators <code>('+', '-', '*', '/')</code> separated by some number of spaces.</li>
<li><code>s</code> represents <strong>a valid expression</strong>.</li>
<li>All the integers in the expression are non-negative integers in the range <code>[0, 2<sup>31</sup> - 1]</code>.</li>
<li>The answer is <strong>guaranteed</strong> to fit in a <strong>32-bit integer</strong>.</li>
</ul>
|
Stack; Math; String
|
Java
|
class Solution {
public int calculate(String s) {
Deque<Integer> stk = new ArrayDeque<>();
char sign = '+';
int v = 0;
for (int i = 0; i < s.length(); ++i) {
char c = s.charAt(i);
if (Character.isDigit(c)) {
v = v * 10 + (c - '0');
}
if (i == s.length() - 1 || c == '+' || c == '-' || c == '*' || c == '/') {
if (sign == '+') {
stk.push(v);
} else if (sign == '-') {
stk.push(-v);
} else if (sign == '*') {
stk.push(stk.pop() * v);
} else {
stk.push(stk.pop() / v);
}
sign = c;
v = 0;
}
}
int ans = 0;
while (!stk.isEmpty()) {
ans += stk.pop();
}
return ans;
}
}
|
227 |
Basic Calculator II
|
Medium
|
<p>Given a string <code>s</code> which represents an expression, <em>evaluate this expression and return its value</em>. </p>
<p>The integer division should truncate toward zero.</p>
<p>You may assume that the given expression is always valid. All intermediate results will be in the range of <code>[-2<sup>31</sup>, 2<sup>31</sup> - 1]</code>.</p>
<p><strong>Note:</strong> You are not allowed to use any built-in function which evaluates strings as mathematical expressions, such as <code>eval()</code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre><strong>Input:</strong> s = "3+2*2"
<strong>Output:</strong> 7
</pre><p><strong class="example">Example 2:</strong></p>
<pre><strong>Input:</strong> s = " 3/2 "
<strong>Output:</strong> 1
</pre><p><strong class="example">Example 3:</strong></p>
<pre><strong>Input:</strong> s = " 3+5 / 2 "
<strong>Output:</strong> 5
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= s.length <= 3 * 10<sup>5</sup></code></li>
<li><code>s</code> consists of integers and operators <code>('+', '-', '*', '/')</code> separated by some number of spaces.</li>
<li><code>s</code> represents <strong>a valid expression</strong>.</li>
<li>All the integers in the expression are non-negative integers in the range <code>[0, 2<sup>31</sup> - 1]</code>.</li>
<li>The answer is <strong>guaranteed</strong> to fit in a <strong>32-bit integer</strong>.</li>
</ul>
|
Stack; Math; String
|
Python
|
class Solution:
def calculate(self, s: str) -> int:
v, n = 0, len(s)
sign = '+'
stk = []
for i, c in enumerate(s):
if c.isdigit():
v = v * 10 + int(c)
if i == n - 1 or c in '+-*/':
match sign:
case '+':
stk.append(v)
case '-':
stk.append(-v)
case '*':
stk.append(stk.pop() * v)
case '/':
stk.append(int(stk.pop() / v))
sign = c
v = 0
return sum(stk)
|
228 |
Summary Ranges
|
Easy
|
<p>You are given a <strong>sorted unique</strong> integer array <code>nums</code>.</p>
<p>A <strong>range</strong> <code>[a,b]</code> is the set of all integers from <code>a</code> to <code>b</code> (inclusive).</p>
<p>Return <em>the <strong>smallest sorted</strong> list of ranges that <strong>cover all the numbers in the array exactly</strong></em>. That is, each element of <code>nums</code> is covered by exactly one of the ranges, and there is no integer <code>x</code> such that <code>x</code> is in one of the ranges but not in <code>nums</code>.</p>
<p>Each range <code>[a,b]</code> in the list should be output as:</p>
<ul>
<li><code>"a->b"</code> if <code>a != b</code></li>
<li><code>"a"</code> if <code>a == b</code></li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [0,1,2,4,5,7]
<strong>Output:</strong> ["0->2","4->5","7"]
<strong>Explanation:</strong> The ranges are:
[0,2] --> "0->2"
[4,5] --> "4->5"
[7,7] --> "7"
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [0,2,3,4,6,8,9]
<strong>Output:</strong> ["0","2->4","6","8->9"]
<strong>Explanation:</strong> The ranges are:
[0,0] --> "0"
[2,4] --> "2->4"
[6,6] --> "6"
[8,9] --> "8->9"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= nums.length <= 20</code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
<li>All the values of <code>nums</code> are <strong>unique</strong>.</li>
<li><code>nums</code> is sorted in ascending order.</li>
</ul>
|
Array
|
C++
|
class Solution {
public:
vector<string> summaryRanges(vector<int>& nums) {
vector<string> ans;
auto f = [&](int i, int j) {
return i == j ? to_string(nums[i]) : to_string(nums[i]) + "->" + to_string(nums[j]);
};
for (int i = 0, j, n = nums.size(); i < n; i = j + 1) {
j = i;
while (j + 1 < n && nums[j + 1] == nums[j] + 1) {
++j;
}
ans.emplace_back(f(i, j));
}
return ans;
}
};
|
228 |
Summary Ranges
|
Easy
|
<p>You are given a <strong>sorted unique</strong> integer array <code>nums</code>.</p>
<p>A <strong>range</strong> <code>[a,b]</code> is the set of all integers from <code>a</code> to <code>b</code> (inclusive).</p>
<p>Return <em>the <strong>smallest sorted</strong> list of ranges that <strong>cover all the numbers in the array exactly</strong></em>. That is, each element of <code>nums</code> is covered by exactly one of the ranges, and there is no integer <code>x</code> such that <code>x</code> is in one of the ranges but not in <code>nums</code>.</p>
<p>Each range <code>[a,b]</code> in the list should be output as:</p>
<ul>
<li><code>"a->b"</code> if <code>a != b</code></li>
<li><code>"a"</code> if <code>a == b</code></li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [0,1,2,4,5,7]
<strong>Output:</strong> ["0->2","4->5","7"]
<strong>Explanation:</strong> The ranges are:
[0,2] --> "0->2"
[4,5] --> "4->5"
[7,7] --> "7"
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [0,2,3,4,6,8,9]
<strong>Output:</strong> ["0","2->4","6","8->9"]
<strong>Explanation:</strong> The ranges are:
[0,0] --> "0"
[2,4] --> "2->4"
[6,6] --> "6"
[8,9] --> "8->9"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= nums.length <= 20</code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
<li>All the values of <code>nums</code> are <strong>unique</strong>.</li>
<li><code>nums</code> is sorted in ascending order.</li>
</ul>
|
Array
|
C#
|
public class Solution {
public IList<string> SummaryRanges(int[] nums) {
var ans = new List<string>();
for (int i = 0, j = 0, n = nums.Length; i < n; i = j + 1) {
j = i;
while (j + 1 < n && nums[j + 1] == nums[j] + 1) {
++j;
}
ans.Add(f(nums, i, j));
}
return ans;
}
public string f(int[] nums, int i, int j) {
return i == j ? nums[i].ToString() : string.Format("{0}->{1}", nums[i], nums[j]);
}
}
|
228 |
Summary Ranges
|
Easy
|
<p>You are given a <strong>sorted unique</strong> integer array <code>nums</code>.</p>
<p>A <strong>range</strong> <code>[a,b]</code> is the set of all integers from <code>a</code> to <code>b</code> (inclusive).</p>
<p>Return <em>the <strong>smallest sorted</strong> list of ranges that <strong>cover all the numbers in the array exactly</strong></em>. That is, each element of <code>nums</code> is covered by exactly one of the ranges, and there is no integer <code>x</code> such that <code>x</code> is in one of the ranges but not in <code>nums</code>.</p>
<p>Each range <code>[a,b]</code> in the list should be output as:</p>
<ul>
<li><code>"a->b"</code> if <code>a != b</code></li>
<li><code>"a"</code> if <code>a == b</code></li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [0,1,2,4,5,7]
<strong>Output:</strong> ["0->2","4->5","7"]
<strong>Explanation:</strong> The ranges are:
[0,2] --> "0->2"
[4,5] --> "4->5"
[7,7] --> "7"
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [0,2,3,4,6,8,9]
<strong>Output:</strong> ["0","2->4","6","8->9"]
<strong>Explanation:</strong> The ranges are:
[0,0] --> "0"
[2,4] --> "2->4"
[6,6] --> "6"
[8,9] --> "8->9"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= nums.length <= 20</code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
<li>All the values of <code>nums</code> are <strong>unique</strong>.</li>
<li><code>nums</code> is sorted in ascending order.</li>
</ul>
|
Array
|
Go
|
func summaryRanges(nums []int) (ans []string) {
f := func(i, j int) string {
if i == j {
return strconv.Itoa(nums[i])
}
return strconv.Itoa(nums[i]) + "->" + strconv.Itoa(nums[j])
}
for i, j, n := 0, 0, len(nums); i < n; i = j + 1 {
j = i
for j+1 < n && nums[j+1] == nums[j]+1 {
j++
}
ans = append(ans, f(i, j))
}
return
}
|
228 |
Summary Ranges
|
Easy
|
<p>You are given a <strong>sorted unique</strong> integer array <code>nums</code>.</p>
<p>A <strong>range</strong> <code>[a,b]</code> is the set of all integers from <code>a</code> to <code>b</code> (inclusive).</p>
<p>Return <em>the <strong>smallest sorted</strong> list of ranges that <strong>cover all the numbers in the array exactly</strong></em>. That is, each element of <code>nums</code> is covered by exactly one of the ranges, and there is no integer <code>x</code> such that <code>x</code> is in one of the ranges but not in <code>nums</code>.</p>
<p>Each range <code>[a,b]</code> in the list should be output as:</p>
<ul>
<li><code>"a->b"</code> if <code>a != b</code></li>
<li><code>"a"</code> if <code>a == b</code></li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [0,1,2,4,5,7]
<strong>Output:</strong> ["0->2","4->5","7"]
<strong>Explanation:</strong> The ranges are:
[0,2] --> "0->2"
[4,5] --> "4->5"
[7,7] --> "7"
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [0,2,3,4,6,8,9]
<strong>Output:</strong> ["0","2->4","6","8->9"]
<strong>Explanation:</strong> The ranges are:
[0,0] --> "0"
[2,4] --> "2->4"
[6,6] --> "6"
[8,9] --> "8->9"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= nums.length <= 20</code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
<li>All the values of <code>nums</code> are <strong>unique</strong>.</li>
<li><code>nums</code> is sorted in ascending order.</li>
</ul>
|
Array
|
Java
|
class Solution {
public List<String> summaryRanges(int[] nums) {
List<String> ans = new ArrayList<>();
for (int i = 0, j, n = nums.length; i < n; i = j + 1) {
j = i;
while (j + 1 < n && nums[j + 1] == nums[j] + 1) {
++j;
}
ans.add(f(nums, i, j));
}
return ans;
}
private String f(int[] nums, int i, int j) {
return i == j ? nums[i] + "" : String.format("%d->%d", nums[i], nums[j]);
}
}
|
228 |
Summary Ranges
|
Easy
|
<p>You are given a <strong>sorted unique</strong> integer array <code>nums</code>.</p>
<p>A <strong>range</strong> <code>[a,b]</code> is the set of all integers from <code>a</code> to <code>b</code> (inclusive).</p>
<p>Return <em>the <strong>smallest sorted</strong> list of ranges that <strong>cover all the numbers in the array exactly</strong></em>. That is, each element of <code>nums</code> is covered by exactly one of the ranges, and there is no integer <code>x</code> such that <code>x</code> is in one of the ranges but not in <code>nums</code>.</p>
<p>Each range <code>[a,b]</code> in the list should be output as:</p>
<ul>
<li><code>"a->b"</code> if <code>a != b</code></li>
<li><code>"a"</code> if <code>a == b</code></li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [0,1,2,4,5,7]
<strong>Output:</strong> ["0->2","4->5","7"]
<strong>Explanation:</strong> The ranges are:
[0,2] --> "0->2"
[4,5] --> "4->5"
[7,7] --> "7"
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [0,2,3,4,6,8,9]
<strong>Output:</strong> ["0","2->4","6","8->9"]
<strong>Explanation:</strong> The ranges are:
[0,0] --> "0"
[2,4] --> "2->4"
[6,6] --> "6"
[8,9] --> "8->9"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= nums.length <= 20</code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
<li>All the values of <code>nums</code> are <strong>unique</strong>.</li>
<li><code>nums</code> is sorted in ascending order.</li>
</ul>
|
Array
|
Python
|
class Solution:
def summaryRanges(self, nums: List[int]) -> List[str]:
def f(i: int, j: int) -> str:
return str(nums[i]) if i == j else f'{nums[i]}->{nums[j]}'
i = 0
n = len(nums)
ans = []
while i < n:
j = i
while j + 1 < n and nums[j + 1] == nums[j] + 1:
j += 1
ans.append(f(i, j))
i = j + 1
return ans
|
228 |
Summary Ranges
|
Easy
|
<p>You are given a <strong>sorted unique</strong> integer array <code>nums</code>.</p>
<p>A <strong>range</strong> <code>[a,b]</code> is the set of all integers from <code>a</code> to <code>b</code> (inclusive).</p>
<p>Return <em>the <strong>smallest sorted</strong> list of ranges that <strong>cover all the numbers in the array exactly</strong></em>. That is, each element of <code>nums</code> is covered by exactly one of the ranges, and there is no integer <code>x</code> such that <code>x</code> is in one of the ranges but not in <code>nums</code>.</p>
<p>Each range <code>[a,b]</code> in the list should be output as:</p>
<ul>
<li><code>"a->b"</code> if <code>a != b</code></li>
<li><code>"a"</code> if <code>a == b</code></li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [0,1,2,4,5,7]
<strong>Output:</strong> ["0->2","4->5","7"]
<strong>Explanation:</strong> The ranges are:
[0,2] --> "0->2"
[4,5] --> "4->5"
[7,7] --> "7"
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [0,2,3,4,6,8,9]
<strong>Output:</strong> ["0","2->4","6","8->9"]
<strong>Explanation:</strong> The ranges are:
[0,0] --> "0"
[2,4] --> "2->4"
[6,6] --> "6"
[8,9] --> "8->9"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= nums.length <= 20</code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
<li>All the values of <code>nums</code> are <strong>unique</strong>.</li>
<li><code>nums</code> is sorted in ascending order.</li>
</ul>
|
Array
|
Rust
|
impl Solution {
#[allow(dead_code)]
pub fn summary_ranges(nums: Vec<i32>) -> Vec<String> {
if nums.is_empty() {
return vec![];
}
let mut ret = Vec::new();
let mut start = nums[0];
let mut prev = nums[0];
let mut current = 0;
let n = nums.len();
for i in 1..n {
current = nums[i];
if current != prev + 1 {
if start == prev {
ret.push(start.to_string());
} else {
ret.push(start.to_string() + "->" + &prev.to_string());
}
start = current;
prev = current;
} else {
prev = current;
}
}
if start == prev {
ret.push(start.to_string());
} else {
ret.push(start.to_string() + "->" + &prev.to_string());
}
ret
}
}
|
228 |
Summary Ranges
|
Easy
|
<p>You are given a <strong>sorted unique</strong> integer array <code>nums</code>.</p>
<p>A <strong>range</strong> <code>[a,b]</code> is the set of all integers from <code>a</code> to <code>b</code> (inclusive).</p>
<p>Return <em>the <strong>smallest sorted</strong> list of ranges that <strong>cover all the numbers in the array exactly</strong></em>. That is, each element of <code>nums</code> is covered by exactly one of the ranges, and there is no integer <code>x</code> such that <code>x</code> is in one of the ranges but not in <code>nums</code>.</p>
<p>Each range <code>[a,b]</code> in the list should be output as:</p>
<ul>
<li><code>"a->b"</code> if <code>a != b</code></li>
<li><code>"a"</code> if <code>a == b</code></li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [0,1,2,4,5,7]
<strong>Output:</strong> ["0->2","4->5","7"]
<strong>Explanation:</strong> The ranges are:
[0,2] --> "0->2"
[4,5] --> "4->5"
[7,7] --> "7"
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [0,2,3,4,6,8,9]
<strong>Output:</strong> ["0","2->4","6","8->9"]
<strong>Explanation:</strong> The ranges are:
[0,0] --> "0"
[2,4] --> "2->4"
[6,6] --> "6"
[8,9] --> "8->9"
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>0 <= nums.length <= 20</code></li>
<li><code>-2<sup>31</sup> <= nums[i] <= 2<sup>31</sup> - 1</code></li>
<li>All the values of <code>nums</code> are <strong>unique</strong>.</li>
<li><code>nums</code> is sorted in ascending order.</li>
</ul>
|
Array
|
TypeScript
|
function summaryRanges(nums: number[]): string[] {
const f = (i: number, j: number): string => {
return i === j ? `${nums[i]}` : `${nums[i]}->${nums[j]}`;
};
const n = nums.length;
const ans: string[] = [];
for (let i = 0, j = 0; i < n; i = j + 1) {
j = i;
while (j + 1 < n && nums[j + 1] === nums[j] + 1) {
++j;
}
ans.push(f(i, j));
}
return ans;
}
|
229 |
Majority Element II
|
Medium
|
<p>Given an integer array of size <code>n</code>, find all elements that appear more than <code>⌊ n/3 ⌋</code> times.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,2,3]
<strong>Output:</strong> [3]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1]
<strong>Output:</strong> [1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2]
<strong>Output:</strong> [1,2]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5 * 10<sup>4</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> Could you solve the problem in linear time and in <code>O(1)</code> space?</p>
|
Array; Hash Table; Counting; Sorting
|
C++
|
class Solution {
public:
vector<int> majorityElement(vector<int>& nums) {
int n1 = 0, n2 = 0;
int m1 = 0, m2 = 1;
for (int m : nums) {
if (m == m1)
++n1;
else if (m == m2)
++n2;
else if (n1 == 0) {
m1 = m;
++n1;
} else if (n2 == 0) {
m2 = m;
++n2;
} else {
--n1;
--n2;
}
}
vector<int> ans;
if (count(nums.begin(), nums.end(), m1) > nums.size() / 3) ans.push_back(m1);
if (count(nums.begin(), nums.end(), m2) > nums.size() / 3) ans.push_back(m2);
return ans;
}
};
|
229 |
Majority Element II
|
Medium
|
<p>Given an integer array of size <code>n</code>, find all elements that appear more than <code>⌊ n/3 ⌋</code> times.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,2,3]
<strong>Output:</strong> [3]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1]
<strong>Output:</strong> [1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2]
<strong>Output:</strong> [1,2]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5 * 10<sup>4</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> Could you solve the problem in linear time and in <code>O(1)</code> space?</p>
|
Array; Hash Table; Counting; Sorting
|
C#
|
public class Solution {
public IList<int> MajorityElement(int[] nums) {
int n1 = 0, n2 = 0;
int m1 = 0, m2 = 1;
foreach (int m in nums)
{
if (m == m1)
{
++n1;
}
else if (m == m2)
{
++n2;
}
else if (n1 == 0)
{
m1 = m;
++n1;
}
else if (n2 == 0)
{
m2 = m;
++n2;
}
else
{
--n1;
--n2;
}
}
var ans = new List<int>();
ans.Add(m1);
ans.Add(m2);
return ans.Where(m => nums.Count(n => n == m) > nums.Length / 3).ToList();
}
}
|
229 |
Majority Element II
|
Medium
|
<p>Given an integer array of size <code>n</code>, find all elements that appear more than <code>⌊ n/3 ⌋</code> times.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,2,3]
<strong>Output:</strong> [3]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1]
<strong>Output:</strong> [1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2]
<strong>Output:</strong> [1,2]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5 * 10<sup>4</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> Could you solve the problem in linear time and in <code>O(1)</code> space?</p>
|
Array; Hash Table; Counting; Sorting
|
Go
|
func majorityElement(nums []int) []int {
var n1, n2 int
m1, m2 := 0, 1
for _, m := range nums {
if m == m1 {
n1++
} else if m == m2 {
n2++
} else if n1 == 0 {
m1, n1 = m, 1
} else if n2 == 0 {
m2, n2 = m, 1
} else {
n1, n2 = n1-1, n2-1
}
}
n1, n2 = 0, 0
for _, m := range nums {
if m == m1 {
n1++
} else if m == m2 {
n2++
}
}
var ans []int
if n1 > len(nums)/3 {
ans = append(ans, m1)
}
if n2 > len(nums)/3 {
ans = append(ans, m2)
}
return ans
}
|
229 |
Majority Element II
|
Medium
|
<p>Given an integer array of size <code>n</code>, find all elements that appear more than <code>⌊ n/3 ⌋</code> times.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,2,3]
<strong>Output:</strong> [3]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1]
<strong>Output:</strong> [1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2]
<strong>Output:</strong> [1,2]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5 * 10<sup>4</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> Could you solve the problem in linear time and in <code>O(1)</code> space?</p>
|
Array; Hash Table; Counting; Sorting
|
Java
|
class Solution {
public List<Integer> majorityElement(int[] nums) {
int n1 = 0, n2 = 0;
int m1 = 0, m2 = 1;
for (int m : nums) {
if (m == m1) {
++n1;
} else if (m == m2) {
++n2;
} else if (n1 == 0) {
m1 = m;
++n1;
} else if (n2 == 0) {
m2 = m;
++n2;
} else {
--n1;
--n2;
}
}
List<Integer> ans = new ArrayList<>();
n1 = 0;
n2 = 0;
for (int m : nums) {
if (m == m1) {
++n1;
} else if (m == m2) {
++n2;
}
}
if (n1 > nums.length / 3) {
ans.add(m1);
}
if (n2 > nums.length / 3) {
ans.add(m2);
}
return ans;
}
}
|
229 |
Majority Element II
|
Medium
|
<p>Given an integer array of size <code>n</code>, find all elements that appear more than <code>⌊ n/3 ⌋</code> times.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,2,3]
<strong>Output:</strong> [3]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1]
<strong>Output:</strong> [1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2]
<strong>Output:</strong> [1,2]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5 * 10<sup>4</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> Could you solve the problem in linear time and in <code>O(1)</code> space?</p>
|
Array; Hash Table; Counting; Sorting
|
PHP
|
class Solution {
/**
* @param Integer[] $nums
* @return Integer[]
*/
function majorityElement($nums) {
$rs = [];
$n = count($nums);
for ($i = 0; $i < $n; $i++) {
$hashmap[$nums[$i]] += 1;
if ($hashmap[$nums[$i]] > $n / 3) {
array_push($rs, $nums[$i]);
}
}
return array_unique($rs);
}
}
|
229 |
Majority Element II
|
Medium
|
<p>Given an integer array of size <code>n</code>, find all elements that appear more than <code>⌊ n/3 ⌋</code> times.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,2,3]
<strong>Output:</strong> [3]
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [1]
<strong>Output:</strong> [1]
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2]
<strong>Output:</strong> [1,2]
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= nums.length <= 5 * 10<sup>4</sup></code></li>
<li><code>-10<sup>9</sup> <= nums[i] <= 10<sup>9</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> Could you solve the problem in linear time and in <code>O(1)</code> space?</p>
|
Array; Hash Table; Counting; Sorting
|
Python
|
class Solution:
def majorityElement(self, nums: List[int]) -> List[int]:
n1 = n2 = 0
m1, m2 = 0, 1
for m in nums:
if m == m1:
n1 += 1
elif m == m2:
n2 += 1
elif n1 == 0:
m1, n1 = m, 1
elif n2 == 0:
m2, n2 = m, 1
else:
n1, n2 = n1 - 1, n2 - 1
return [m for m in [m1, m2] if nums.count(m) > len(nums) // 3]
|
230 |
Kth Smallest Element in a BST
|
Medium
|
<p>Given the <code>root</code> of a binary search tree, and an integer <code>k</code>, return <em>the</em> <code>k<sup>th</sup></code> <em>smallest value (<strong>1-indexed</strong>) of all the values of the nodes in the tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0230.Kth%20Smallest%20Element%20in%20a%20BST/images/kthtree1.jpg" style="width: 212px; height: 301px;" />
<pre>
<strong>Input:</strong> root = [3,1,4,null,2], k = 1
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0230.Kth%20Smallest%20Element%20in%20a%20BST/images/kthtree2.jpg" style="width: 382px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [5,3,6,2,4,null,null,1], k = 3
<strong>Output:</strong> 3
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is <code>n</code>.</li>
<li><code>1 <= k <= n <= 10<sup>4</sup></code></li>
<li><code>0 <= Node.val <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> If the BST is modified often (i.e., we can do insert and delete operations) and you need to find the kth smallest frequently, how would you optimize?</p>
|
Tree; Depth-First Search; Binary Search Tree; Binary Tree
|
C++
|
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
stack<TreeNode*> stk;
while (root || !stk.empty()) {
if (root) {
stk.push(root);
root = root->left;
} else {
root = stk.top();
stk.pop();
if (--k == 0) return root->val;
root = root->right;
}
}
return 0;
}
};
|
230 |
Kth Smallest Element in a BST
|
Medium
|
<p>Given the <code>root</code> of a binary search tree, and an integer <code>k</code>, return <em>the</em> <code>k<sup>th</sup></code> <em>smallest value (<strong>1-indexed</strong>) of all the values of the nodes in the tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0230.Kth%20Smallest%20Element%20in%20a%20BST/images/kthtree1.jpg" style="width: 212px; height: 301px;" />
<pre>
<strong>Input:</strong> root = [3,1,4,null,2], k = 1
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0230.Kth%20Smallest%20Element%20in%20a%20BST/images/kthtree2.jpg" style="width: 382px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [5,3,6,2,4,null,null,1], k = 3
<strong>Output:</strong> 3
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is <code>n</code>.</li>
<li><code>1 <= k <= n <= 10<sup>4</sup></code></li>
<li><code>0 <= Node.val <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> If the BST is modified often (i.e., we can do insert and delete operations) and you need to find the kth smallest frequently, how would you optimize?</p>
|
Tree; Depth-First Search; Binary Search Tree; Binary Tree
|
Go
|
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func kthSmallest(root *TreeNode, k int) int {
stk := []*TreeNode{}
for root != nil || len(stk) > 0 {
if root != nil {
stk = append(stk, root)
root = root.Left
} else {
root = stk[len(stk)-1]
stk = stk[:len(stk)-1]
k--
if k == 0 {
return root.Val
}
root = root.Right
}
}
return 0
}
|
230 |
Kth Smallest Element in a BST
|
Medium
|
<p>Given the <code>root</code> of a binary search tree, and an integer <code>k</code>, return <em>the</em> <code>k<sup>th</sup></code> <em>smallest value (<strong>1-indexed</strong>) of all the values of the nodes in the tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0230.Kth%20Smallest%20Element%20in%20a%20BST/images/kthtree1.jpg" style="width: 212px; height: 301px;" />
<pre>
<strong>Input:</strong> root = [3,1,4,null,2], k = 1
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0230.Kth%20Smallest%20Element%20in%20a%20BST/images/kthtree2.jpg" style="width: 382px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [5,3,6,2,4,null,null,1], k = 3
<strong>Output:</strong> 3
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is <code>n</code>.</li>
<li><code>1 <= k <= n <= 10<sup>4</sup></code></li>
<li><code>0 <= Node.val <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> If the BST is modified often (i.e., we can do insert and delete operations) and you need to find the kth smallest frequently, how would you optimize?</p>
|
Tree; Depth-First Search; Binary Search Tree; Binary Tree
|
Java
|
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int kthSmallest(TreeNode root, int k) {
Deque<TreeNode> stk = new ArrayDeque<>();
while (root != null || !stk.isEmpty()) {
if (root != null) {
stk.push(root);
root = root.left;
} else {
root = stk.pop();
if (--k == 0) {
return root.val;
}
root = root.right;
}
}
return 0;
}
}
|
230 |
Kth Smallest Element in a BST
|
Medium
|
<p>Given the <code>root</code> of a binary search tree, and an integer <code>k</code>, return <em>the</em> <code>k<sup>th</sup></code> <em>smallest value (<strong>1-indexed</strong>) of all the values of the nodes in the tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0230.Kth%20Smallest%20Element%20in%20a%20BST/images/kthtree1.jpg" style="width: 212px; height: 301px;" />
<pre>
<strong>Input:</strong> root = [3,1,4,null,2], k = 1
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0230.Kth%20Smallest%20Element%20in%20a%20BST/images/kthtree2.jpg" style="width: 382px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [5,3,6,2,4,null,null,1], k = 3
<strong>Output:</strong> 3
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is <code>n</code>.</li>
<li><code>1 <= k <= n <= 10<sup>4</sup></code></li>
<li><code>0 <= Node.val <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> If the BST is modified often (i.e., we can do insert and delete operations) and you need to find the kth smallest frequently, how would you optimize?</p>
|
Tree; Depth-First Search; Binary Search Tree; Binary Tree
|
Python
|
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def kthSmallest(self, root: Optional[TreeNode], k: int) -> int:
stk = []
while root or stk:
if root:
stk.append(root)
root = root.left
else:
root = stk.pop()
k -= 1
if k == 0:
return root.val
root = root.right
|
230 |
Kth Smallest Element in a BST
|
Medium
|
<p>Given the <code>root</code> of a binary search tree, and an integer <code>k</code>, return <em>the</em> <code>k<sup>th</sup></code> <em>smallest value (<strong>1-indexed</strong>) of all the values of the nodes in the tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0230.Kth%20Smallest%20Element%20in%20a%20BST/images/kthtree1.jpg" style="width: 212px; height: 301px;" />
<pre>
<strong>Input:</strong> root = [3,1,4,null,2], k = 1
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0230.Kth%20Smallest%20Element%20in%20a%20BST/images/kthtree2.jpg" style="width: 382px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [5,3,6,2,4,null,null,1], k = 3
<strong>Output:</strong> 3
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is <code>n</code>.</li>
<li><code>1 <= k <= n <= 10<sup>4</sup></code></li>
<li><code>0 <= Node.val <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> If the BST is modified often (i.e., we can do insert and delete operations) and you need to find the kth smallest frequently, how would you optimize?</p>
|
Tree; Depth-First Search; Binary Search Tree; Binary Tree
|
Rust
|
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
fn dfs(root: Option<Rc<RefCell<TreeNode>>>, res: &mut Vec<i32>, k: usize) {
if let Some(node) = root {
let mut node = node.borrow_mut();
Self::dfs(node.left.take(), res, k);
res.push(node.val);
if res.len() >= k {
return;
}
Self::dfs(node.right.take(), res, k);
}
}
pub fn kth_smallest(root: Option<Rc<RefCell<TreeNode>>>, k: i32) -> i32 {
let k = k as usize;
let mut res: Vec<i32> = Vec::with_capacity(k);
Self::dfs(root, &mut res, k);
res[k - 1]
}
}
|
230 |
Kth Smallest Element in a BST
|
Medium
|
<p>Given the <code>root</code> of a binary search tree, and an integer <code>k</code>, return <em>the</em> <code>k<sup>th</sup></code> <em>smallest value (<strong>1-indexed</strong>) of all the values of the nodes in the tree</em>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0230.Kth%20Smallest%20Element%20in%20a%20BST/images/kthtree1.jpg" style="width: 212px; height: 301px;" />
<pre>
<strong>Input:</strong> root = [3,1,4,null,2], k = 1
<strong>Output:</strong> 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://fastly.jsdelivr.net/gh/doocs/leetcode@main/solution/0200-0299/0230.Kth%20Smallest%20Element%20in%20a%20BST/images/kthtree2.jpg" style="width: 382px; height: 302px;" />
<pre>
<strong>Input:</strong> root = [5,3,6,2,4,null,null,1], k = 3
<strong>Output:</strong> 3
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li>The number of nodes in the tree is <code>n</code>.</li>
<li><code>1 <= k <= n <= 10<sup>4</sup></code></li>
<li><code>0 <= Node.val <= 10<sup>4</sup></code></li>
</ul>
<p> </p>
<p><strong>Follow up:</strong> If the BST is modified often (i.e., we can do insert and delete operations) and you need to find the kth smallest frequently, how would you optimize?</p>
|
Tree; Depth-First Search; Binary Search Tree; Binary Tree
|
TypeScript
|
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function kthSmallest(root: TreeNode | null, k: number): number {
const dfs = (root: TreeNode | null) => {
if (root == null) {
return -1;
}
const { val, left, right } = root;
const l = dfs(left);
if (l !== -1) {
return l;
}
k--;
if (k === 0) {
return val;
}
return dfs(right);
};
return dfs(root);
}
|
231 |
Power of Two
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of two. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of two, if there exists an integer <code>x</code> such that <code>n == 2<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 1
<strong>Output:</strong> true
<strong>Explanation: </strong>2<sup>0</sup> = 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 16
<strong>Output:</strong> true
<strong>Explanation: </strong>2<sup>4</sup> = 16
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = 3
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Bit Manipulation; Recursion; Math
|
C++
|
class Solution {
public:
bool isPowerOfTwo(int n) {
return n > 0 && (n & (n - 1)) == 0;
}
};
|
231 |
Power of Two
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of two. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of two, if there exists an integer <code>x</code> such that <code>n == 2<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 1
<strong>Output:</strong> true
<strong>Explanation: </strong>2<sup>0</sup> = 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 16
<strong>Output:</strong> true
<strong>Explanation: </strong>2<sup>4</sup> = 16
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = 3
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Bit Manipulation; Recursion; Math
|
Go
|
func isPowerOfTwo(n int) bool {
return n > 0 && (n&(n-1)) == 0
}
|
231 |
Power of Two
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of two. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of two, if there exists an integer <code>x</code> such that <code>n == 2<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 1
<strong>Output:</strong> true
<strong>Explanation: </strong>2<sup>0</sup> = 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 16
<strong>Output:</strong> true
<strong>Explanation: </strong>2<sup>4</sup> = 16
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = 3
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Bit Manipulation; Recursion; Math
|
Java
|
class Solution {
public boolean isPowerOfTwo(int n) {
return n > 0 && (n & (n - 1)) == 0;
}
}
|
231 |
Power of Two
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of two. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of two, if there exists an integer <code>x</code> such that <code>n == 2<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 1
<strong>Output:</strong> true
<strong>Explanation: </strong>2<sup>0</sup> = 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 16
<strong>Output:</strong> true
<strong>Explanation: </strong>2<sup>4</sup> = 16
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = 3
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Bit Manipulation; Recursion; Math
|
JavaScript
|
/**
* @param {number} n
* @return {boolean}
*/
var isPowerOfTwo = function (n) {
return n > 0 && (n & (n - 1)) == 0;
};
|
231 |
Power of Two
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of two. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of two, if there exists an integer <code>x</code> such that <code>n == 2<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 1
<strong>Output:</strong> true
<strong>Explanation: </strong>2<sup>0</sup> = 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 16
<strong>Output:</strong> true
<strong>Explanation: </strong>2<sup>4</sup> = 16
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = 3
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Bit Manipulation; Recursion; Math
|
Python
|
class Solution:
def isPowerOfTwo(self, n: int) -> bool:
return n > 0 and (n & (n - 1)) == 0
|
231 |
Power of Two
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of two. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of two, if there exists an integer <code>x</code> such that <code>n == 2<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 1
<strong>Output:</strong> true
<strong>Explanation: </strong>2<sup>0</sup> = 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 16
<strong>Output:</strong> true
<strong>Explanation: </strong>2<sup>4</sup> = 16
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = 3
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Bit Manipulation; Recursion; Math
|
Rust
|
impl Solution {
pub fn is_power_of_two(n: i32) -> bool {
n > 0 && (n & (n - 1)) == 0
}
}
|
231 |
Power of Two
|
Easy
|
<p>Given an integer <code>n</code>, return <em><code>true</code> if it is a power of two. Otherwise, return <code>false</code></em>.</p>
<p>An integer <code>n</code> is a power of two, if there exists an integer <code>x</code> such that <code>n == 2<sup>x</sup></code>.</p>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 1
<strong>Output:</strong> true
<strong>Explanation: </strong>2<sup>0</sup> = 1
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 16
<strong>Output:</strong> true
<strong>Explanation: </strong>2<sup>4</sup> = 16
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> n = 3
<strong>Output:</strong> false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>-2<sup>31</sup> <= n <= 2<sup>31</sup> - 1</code></li>
</ul>
<p> </p>
<strong>Follow up:</strong> Could you solve it without loops/recursion?
|
Bit Manipulation; Recursion; Math
|
TypeScript
|
function isPowerOfTwo(n: number): boolean {
return n > 0 && (n & (n - 1)) === 0;
}
|
232 |
Implement Queue using Stacks
|
Easy
|
<p>Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal queue (<code>push</code>, <code>peek</code>, <code>pop</code>, and <code>empty</code>).</p>
<p>Implement the <code>MyQueue</code> class:</p>
<ul>
<li><code>void push(int x)</code> Pushes element x to the back of the queue.</li>
<li><code>int pop()</code> Removes the element from the front of the queue and returns it.</li>
<li><code>int peek()</code> Returns the element at the front of the queue.</li>
<li><code>boolean empty()</code> Returns <code>true</code> if the queue is empty, <code>false</code> otherwise.</li>
</ul>
<p><strong>Notes:</strong></p>
<ul>
<li>You must use <strong>only</strong> standard operations of a stack, which means only <code>push to top</code>, <code>peek/pop from top</code>, <code>size</code>, and <code>is empty</code> operations are valid.</li>
<li>Depending on your language, the stack may not be supported natively. You may simulate a stack using a list or deque (double-ended queue) as long as you use only a stack's standard operations.</li>
</ul>
<p> </p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input</strong>
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
<strong>Output</strong>
[null, null, null, 1, 1, false]
<strong>Explanation</strong>
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false
</pre>
<p> </p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 <= x <= 9</code></li>
<li>At most <code>100</code> calls will be made to <code>push</code>, <code>pop</code>, <code>peek</code>, and <code>empty</code>.</li>
<li>All the calls to <code>pop</code> and <code>peek</code> are valid.</li>
</ul>
<p> </p>
<p><strong>Follow-up:</strong> Can you implement the queue such that each operation is <strong><a href="https://en.wikipedia.org/wiki/Amortized_analysis" target="_blank">amortized</a></strong> <code>O(1)</code> time complexity? In other words, performing <code>n</code> operations will take overall <code>O(n)</code> time even if one of those operations may take longer.</p>
|
Stack; Design; Queue
|
C++
|
class MyQueue {
public:
MyQueue() {
}
void push(int x) {
stk1.push(x);
}
int pop() {
move();
int ans = stk2.top();
stk2.pop();
return ans;
}
int peek() {
move();
return stk2.top();
}
bool empty() {
return stk1.empty() && stk2.empty();
}
private:
stack<int> stk1;
stack<int> stk2;
void move() {
if (stk2.empty()) {
while (!stk1.empty()) {
stk2.push(stk1.top());
stk1.pop();
}
}
}
};
/**
* Your MyQueue object will be instantiated and called as such:
* MyQueue* obj = new MyQueue();
* obj->push(x);
* int param_2 = obj->pop();
* int param_3 = obj->peek();
* bool param_4 = obj->empty();
*/
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.