problem_id
stringlengths
18
22
source
stringclasses
1 value
task_type
stringclasses
1 value
in_source_id
stringlengths
13
58
prompt
stringlengths
1.1k
25.4k
golden_diff
stringlengths
145
5.13k
verification_info
stringlengths
582
39.1k
num_tokens
int64
271
4.1k
num_tokens_diff
int64
47
1.02k
gh_patches_debug_30341
rasdani/github-patches
git_diff
pyinstaller__pyinstaller-7411
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Multiprocessing "spawn" not thread-safe on Linux. <!-- Welcome to the PyInstaller issue tracker! Before creating an issue, please heed the following: 1. This tracker should only be used to report bugs and request features / enhancements to PyInstaller - For questions and general support, use the discussions forum. 2. Use the search function before creating a new issue. Duplicates will be closed and directed to the original discussion. 3. When making a bug report, make sure you provide all required information. The easier it is for maintainers to reproduce, the faster it'll be fixed. --> <!-- +++ ONLY TEXT +++ DO NOT POST IMAGES +++ --> ## Description of the issue When using multiprocessing with the "spawn" method on Linux, processes sometimes fail to start with the message: `FileNotFoundError: [Errno 2] No such file or directory: '/tmp/_MEIOchafX/multiprocessing_bug.py'` This happens if different threads try to launch processes concurrently. It would appear that the "spawn" method is not thread-safe when used with freeze support. As mentioned below, this bug does not manifest when built with `--onedir`. [debug.log](https://github.com/pyinstaller/pyinstaller/files/10560051/debug.log) contains import and bootloader logging for a failure case. Q: Does this happen with "fork"? A: No Q: Does this happen when running from source? A: No, only when packaged as a pyinstaller executable with `--onefile`. Q: Does this happen on Windows? A: Unknown ### Context information (for bug reports) * Output of `pyinstaller --version`: ```5.7.0``` * Version of Python: Python 3.10.6 * Platform: Ubuntu 22.04.1 LTS * How you installed Python: apt * Did you also try this on another platform? * Ubuntu 18.04.6 LTS, pyinstaller 4.7, Python 3.7 - Bug is present * WSL2 pyinstaller 4.7, Python 3.7 - Bug is present * try the latest development version, using the following command: ```shell pip install https://github.com/pyinstaller/pyinstaller/archive/develop.zip ``` * follow *all* the instructions in our "If Things Go Wrong" Guide (https://github.com/pyinstaller/pyinstaller/wiki/If-Things-Go-Wrong) and ### Make sure [everything is packaged correctly](https://github.com/pyinstaller/pyinstaller/wiki/How-to-Report-Bugs#make-sure-everything-is-packaged-correctly) * [x] start with clean installation * [x] use the latest development version * [x] Run your frozen program **from a command window (shell)** — instead of double-clicking on it * [x] Package your program in **--onedir mode** - **BUG DOES NOT MANIFEST** * [x] Package **without UPX**, say: use the option `--noupx` or set `upx=False` in your .spec-file - - **BUG DOES NOT MANIFEST** * [x] Repackage you application in **verbose/debug mode**. For this, pass the option `--debug` to `pyi-makespec` or `pyinstaller` or use `EXE(..., debug=1, ...)` in your .spec file. ### A minimal example program which shows the error ```python import multiprocessing import sys from threading import Thread DEFAULT_N = 3 def main(): try: n = int(sys.argv[1]) except IndexError: n=DEFAULT_N threads = [] for i in range(n): threads.append(Thread(target=foo, args=(i, ))) for i in range(n): threads[i].start() for i in range(n): threads[i].join() def foo(i): multiprocessing_context = multiprocessing.get_context(method="spawn") q = multiprocessing_context.Queue() p = multiprocessing_context.Process(target=bar, args=(q, i), daemon=True) p.start() p.join() def bar(q, i): q.put('hello') print(f"{i} Added to queue") if __name__ == "__main__": multiprocessing.freeze_support() main() ``` ### Stacktrace / full error message Note: If you can't reproduce the bug, try increasing the parameter from 2 to 5 (or higher). ``` $> dist/multiprocessing_bug 2 0 Added to queue Traceback (most recent call last): File "multiprocessing_bug.py", line 34, in <module> multiprocessing.freeze_support() File "PyInstaller/hooks/rthooks/pyi_rth_multiprocessing.py", line 49, in _freeze_support File "multiprocessing/spawn.py", line 116, in spawn_main File "multiprocessing/spawn.py", line 125, in _main File "multiprocessing/spawn.py", line 236, in prepare File "multiprocessing/spawn.py", line 287, in _fixup_main_from_path File "runpy.py", line 288, in run_path File "runpy.py", line 252, in _get_code_from_file FileNotFoundError: [Errno 2] No such file or directory: '/tmp/_MEIOchafX/multiprocessing_bug.py' [8216] Failed to execute script 'multiprocessing_bug' due to unhandled exception! ``` ### Workaround As shown below, adding a lock around the call to `process.start()` seems to resolve the issue. ```python import multiprocessing import sys from threading import Thread, Lock DEFAULT_N = 3 def main(): try: n = int(sys.argv[1]) except IndexError: n=DEFAULT_N threads = [] for i in range(n): threads.append(Thread(target=foo, args=(i, ))) for i in range(n): threads[i].start() for i in range(n): threads[i].join() lock = Lock() def foo(i): multiprocessing_context = multiprocessing.get_context(method="spawn") q = multiprocessing_context.Queue() p = multiprocessing_context.Process(target=bar, args=(q, i), daemon=True) with lock: p.start() p.join() def bar(q, i): q.put('hello') print(f"{i} Added to queue") if __name__ == "__main__": multiprocessing.freeze_support() main() ``` --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `PyInstaller/hooks/rthooks/pyi_rth_multiprocessing.py` Content: ``` 1 #----------------------------------------------------------------------------- 2 # Copyright (c) 2017-2023, PyInstaller Development Team. 3 # 4 # Licensed under the Apache License, Version 2.0 (the "License"); 5 # you may not use this file except in compliance with the License. 6 # 7 # The full license is in the file COPYING.txt, distributed with this software. 8 # 9 # SPDX-License-Identifier: Apache-2.0 10 #----------------------------------------------------------------------------- 11 12 import multiprocessing 13 import multiprocessing.spawn as spawn 14 # 'spawn' multiprocessing needs some adjustments on osx 15 import os 16 import sys 17 from subprocess import _args_from_interpreter_flags 18 19 # prevent spawn from trying to read __main__ in from the main script 20 multiprocessing.process.ORIGINAL_DIR = None 21 22 23 def _freeze_support(): 24 # We want to catch the two processes that are spawned by the multiprocessing code: 25 # - the semaphore tracker, which cleans up named semaphores in the spawn multiprocessing mode 26 # - the fork server, which keeps track of worker processes in forkserver mode. 27 # both of these processes are started by spawning a new copy of the running executable, passing it the flags from 28 # _args_from_interpreter_flags and then "-c" and an import statement. 29 # Look for those flags and the import statement, then exec() the code ourselves. 30 31 if ( 32 len(sys.argv) >= 2 and sys.argv[-2] == '-c' and sys.argv[-1].startswith(( 33 'from multiprocessing.semaphore_tracker import main', # Py<3.8 34 'from multiprocessing.resource_tracker import main', # Py>=3.8 35 'from multiprocessing.forkserver import main' 36 )) and set(sys.argv[1:-2]) == set(_args_from_interpreter_flags()) 37 ): 38 exec(sys.argv[-1]) 39 sys.exit() 40 41 if spawn.is_forking(sys.argv): 42 kwds = {} 43 for arg in sys.argv[2:]: 44 name, value = arg.split('=') 45 if value == 'None': 46 kwds[name] = None 47 else: 48 kwds[name] = int(value) 49 spawn.spawn_main(**kwds) 50 sys.exit() 51 52 53 multiprocessing.freeze_support = spawn.freeze_support = _freeze_support 54 55 # Bootloader unsets _MEIPASS2 for child processes to allow running PyInstaller binaries inside pyinstaller binaries. 56 # This is ok for mac or unix with fork() system call. But on Windows we need to overcome missing fork() function. 57 58 if sys.platform.startswith('win'): 59 import multiprocessing.popen_spawn_win32 as forking 60 else: 61 import multiprocessing.popen_fork as forking 62 import multiprocessing.popen_spawn_posix as spawning 63 64 65 # Mix-in to re-set _MEIPASS2 from sys._MEIPASS. 66 class FrozenSupportMixIn: 67 def __init__(self, *args, **kw): 68 if hasattr(sys, 'frozen'): 69 # We have to set original _MEIPASS2 value from sys._MEIPASS to get --onefile mode working. 70 os.putenv('_MEIPASS2', sys._MEIPASS) # @UndefinedVariable 71 try: 72 super().__init__(*args, **kw) 73 finally: 74 if hasattr(sys, 'frozen'): 75 # On some platforms (e.g. AIX) 'os.unsetenv()' is not available. In those cases we cannot delete the 76 # variable but only set it to the empty string. The bootloader can handle this case. 77 if hasattr(os, 'unsetenv'): 78 os.unsetenv('_MEIPASS2') 79 else: 80 os.putenv('_MEIPASS2', '') 81 82 83 # Patch forking.Popen to re-set _MEIPASS2 from sys._MEIPASS. 84 class _Popen(FrozenSupportMixIn, forking.Popen): 85 pass 86 87 88 forking.Popen = _Popen 89 90 if not sys.platform.startswith('win'): 91 # Patch spawning.Popen to re-set _MEIPASS2 from sys._MEIPASS. 92 class _Spawning_Popen(FrozenSupportMixIn, spawning.Popen): 93 pass 94 95 spawning.Popen = _Spawning_Popen 96 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/PyInstaller/hooks/rthooks/pyi_rth_multiprocessing.py b/PyInstaller/hooks/rthooks/pyi_rth_multiprocessing.py --- a/PyInstaller/hooks/rthooks/pyi_rth_multiprocessing.py +++ b/PyInstaller/hooks/rthooks/pyi_rth_multiprocessing.py @@ -9,6 +9,7 @@ # SPDX-License-Identifier: Apache-2.0 #----------------------------------------------------------------------------- +import threading import multiprocessing import multiprocessing.spawn as spawn # 'spawn' multiprocessing needs some adjustments on osx @@ -64,14 +65,17 @@ # Mix-in to re-set _MEIPASS2 from sys._MEIPASS. class FrozenSupportMixIn: + _lock = threading.Lock() + def __init__(self, *args, **kw): - if hasattr(sys, 'frozen'): + # The whole code block needs be executed under a lock to prevent race conditions between `os.putenv` and + # `os.unsetenv` calls when processes are spawned concurrently from multiple threads. See #7410. + with self._lock: # We have to set original _MEIPASS2 value from sys._MEIPASS to get --onefile mode working. os.putenv('_MEIPASS2', sys._MEIPASS) # @UndefinedVariable - try: - super().__init__(*args, **kw) - finally: - if hasattr(sys, 'frozen'): + try: + super().__init__(*args, **kw) + finally: # On some platforms (e.g. AIX) 'os.unsetenv()' is not available. In those cases we cannot delete the # variable but only set it to the empty string. The bootloader can handle this case. if hasattr(os, 'unsetenv'):
{"golden_diff": "diff --git a/PyInstaller/hooks/rthooks/pyi_rth_multiprocessing.py b/PyInstaller/hooks/rthooks/pyi_rth_multiprocessing.py\n--- a/PyInstaller/hooks/rthooks/pyi_rth_multiprocessing.py\n+++ b/PyInstaller/hooks/rthooks/pyi_rth_multiprocessing.py\n@@ -9,6 +9,7 @@\n # SPDX-License-Identifier: Apache-2.0\n #-----------------------------------------------------------------------------\n \n+import threading\n import multiprocessing\n import multiprocessing.spawn as spawn\n # 'spawn' multiprocessing needs some adjustments on osx\n@@ -64,14 +65,17 @@\n \n # Mix-in to re-set _MEIPASS2 from sys._MEIPASS.\n class FrozenSupportMixIn:\n+ _lock = threading.Lock()\n+\n def __init__(self, *args, **kw):\n- if hasattr(sys, 'frozen'):\n+ # The whole code block needs be executed under a lock to prevent race conditions between `os.putenv` and\n+ # `os.unsetenv` calls when processes are spawned concurrently from multiple threads. See #7410.\n+ with self._lock:\n # We have to set original _MEIPASS2 value from sys._MEIPASS to get --onefile mode working.\n os.putenv('_MEIPASS2', sys._MEIPASS) # @UndefinedVariable\n- try:\n- super().__init__(*args, **kw)\n- finally:\n- if hasattr(sys, 'frozen'):\n+ try:\n+ super().__init__(*args, **kw)\n+ finally:\n # On some platforms (e.g. AIX) 'os.unsetenv()' is not available. In those cases we cannot delete the\n # variable but only set it to the empty string. The bootloader can handle this case.\n if hasattr(os, 'unsetenv'):\n", "issue": "Multiprocessing \"spawn\" not thread-safe on Linux.\n<!--\r\nWelcome to the PyInstaller issue tracker! Before creating an issue, please heed the following:\r\n\r\n1. This tracker should only be used to report bugs and request features / enhancements to PyInstaller\r\n - For questions and general support, use the discussions forum.\r\n2. Use the search function before creating a new issue. Duplicates will be closed and directed to\r\n the original discussion.\r\n3. When making a bug report, make sure you provide all required information. The easier it is for\r\n maintainers to reproduce, the faster it'll be fixed.\r\n-->\r\n\r\n<!-- +++ ONLY TEXT +++ DO NOT POST IMAGES +++ -->\r\n\r\n## Description of the issue\r\n\r\nWhen using multiprocessing with the \"spawn\" method on Linux, processes sometimes fail to start with the message: `FileNotFoundError: [Errno 2] No such file or directory: '/tmp/_MEIOchafX/multiprocessing_bug.py'` This happens if different threads try to launch processes concurrently. It would appear that the \"spawn\" method is not thread-safe when used with freeze support.\r\n\r\nAs mentioned below, this bug does not manifest when built with `--onedir`.\r\n\r\n[debug.log](https://github.com/pyinstaller/pyinstaller/files/10560051/debug.log) contains import and bootloader logging for a failure case. \r\n\r\n\r\nQ: Does this happen with \"fork\"? \r\nA: No\r\n\r\nQ: Does this happen when running from source?\r\nA: No, only when packaged as a pyinstaller executable with `--onefile`.\r\n\r\nQ: Does this happen on Windows?\r\nA: Unknown\r\n\r\n### Context information (for bug reports)\r\n\r\n* Output of `pyinstaller --version`: ```5.7.0```\r\n* Version of Python: Python 3.10.6\r\n* Platform: Ubuntu 22.04.1 LTS\r\n* How you installed Python: apt\r\n* Did you also try this on another platform?\r\n * Ubuntu 18.04.6 LTS, pyinstaller 4.7, Python 3.7 - Bug is present\r\n * WSL2 pyinstaller 4.7, Python 3.7 - Bug is present\r\n\r\n\r\n* try the latest development version, using the following command:\r\n\r\n```shell\r\npip install https://github.com/pyinstaller/pyinstaller/archive/develop.zip\r\n```\r\n\r\n* follow *all* the instructions in our \"If Things Go Wrong\" Guide\r\n (https://github.com/pyinstaller/pyinstaller/wiki/If-Things-Go-Wrong) and\r\n\r\n### Make sure [everything is packaged correctly](https://github.com/pyinstaller/pyinstaller/wiki/How-to-Report-Bugs#make-sure-everything-is-packaged-correctly)\r\n\r\n * [x] start with clean installation\r\n * [x] use the latest development version\r\n * [x] Run your frozen program **from a command window (shell)** \u2014 instead of double-clicking on it\r\n * [x] Package your program in **--onedir mode** - **BUG DOES NOT MANIFEST**\r\n * [x] Package **without UPX**, say: use the option `--noupx` or set `upx=False` in your .spec-file - - **BUG DOES NOT MANIFEST**\r\n * [x] Repackage you application in **verbose/debug mode**. For this, pass the option `--debug` to `pyi-makespec` or `pyinstaller` or use `EXE(..., debug=1, ...)` in your .spec file.\r\n\r\n\r\n### A minimal example program which shows the error\r\n\r\n```python\r\nimport multiprocessing\r\nimport sys\r\nfrom threading import Thread\r\n\r\nDEFAULT_N = 3\r\n\r\ndef main():\r\n try:\r\n n = int(sys.argv[1])\r\n except IndexError:\r\n n=DEFAULT_N\r\n\r\n threads = []\r\n for i in range(n):\r\n threads.append(Thread(target=foo, args=(i, )))\r\n for i in range(n):\r\n threads[i].start()\r\n for i in range(n):\r\n threads[i].join()\r\n\r\ndef foo(i):\r\n multiprocessing_context = multiprocessing.get_context(method=\"spawn\")\r\n q = multiprocessing_context.Queue()\r\n p = multiprocessing_context.Process(target=bar, args=(q, i), daemon=True)\r\n p.start()\r\n p.join()\r\n\r\n\r\ndef bar(q, i):\r\n q.put('hello')\r\n print(f\"{i} Added to queue\")\r\n\r\nif __name__ == \"__main__\":\r\n multiprocessing.freeze_support()\r\n main()\r\n\r\n```\r\n\r\n### Stacktrace / full error message\r\n\r\nNote: If you can't reproduce the bug, try increasing the parameter from 2 to 5 (or higher).\r\n\r\n```\r\n$> dist/multiprocessing_bug 2\r\n0 Added to queue\r\nTraceback (most recent call last):\r\n File \"multiprocessing_bug.py\", line 34, in <module>\r\n multiprocessing.freeze_support()\r\n File \"PyInstaller/hooks/rthooks/pyi_rth_multiprocessing.py\", line 49, in _freeze_support\r\n File \"multiprocessing/spawn.py\", line 116, in spawn_main\r\n File \"multiprocessing/spawn.py\", line 125, in _main\r\n File \"multiprocessing/spawn.py\", line 236, in prepare\r\n File \"multiprocessing/spawn.py\", line 287, in _fixup_main_from_path\r\n File \"runpy.py\", line 288, in run_path\r\n File \"runpy.py\", line 252, in _get_code_from_file\r\nFileNotFoundError: [Errno 2] No such file or directory: '/tmp/_MEIOchafX/multiprocessing_bug.py'\r\n[8216] Failed to execute script 'multiprocessing_bug' due to unhandled exception!\r\n\r\n```\r\n\r\n### Workaround\r\n\r\nAs shown below, adding a lock around the call to `process.start()` seems to resolve the issue.\r\n\r\n```python\r\nimport multiprocessing\r\nimport sys\r\nfrom threading import Thread, Lock\r\n\r\nDEFAULT_N = 3\r\n\r\ndef main():\r\n try:\r\n n = int(sys.argv[1])\r\n except IndexError:\r\n n=DEFAULT_N\r\n\r\n threads = []\r\n for i in range(n):\r\n threads.append(Thread(target=foo, args=(i, )))\r\n for i in range(n):\r\n threads[i].start()\r\n for i in range(n):\r\n threads[i].join()\r\n\r\nlock = Lock()\r\ndef foo(i):\r\n multiprocessing_context = multiprocessing.get_context(method=\"spawn\")\r\n q = multiprocessing_context.Queue()\r\n p = multiprocessing_context.Process(target=bar, args=(q, i), daemon=True)\r\n\r\n with lock:\r\n p.start()\r\n\r\n p.join()\r\n\r\n\r\ndef bar(q, i):\r\n q.put('hello')\r\n print(f\"{i} Added to queue\")\r\n\r\nif __name__ == \"__main__\":\r\n multiprocessing.freeze_support()\r\n main()\r\n\r\n```\r\n\n", "before_files": [{"content": "#-----------------------------------------------------------------------------\n# Copyright (c) 2017-2023, PyInstaller Development Team.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n#\n# The full license is in the file COPYING.txt, distributed with this software.\n#\n# SPDX-License-Identifier: Apache-2.0\n#-----------------------------------------------------------------------------\n\nimport multiprocessing\nimport multiprocessing.spawn as spawn\n# 'spawn' multiprocessing needs some adjustments on osx\nimport os\nimport sys\nfrom subprocess import _args_from_interpreter_flags\n\n# prevent spawn from trying to read __main__ in from the main script\nmultiprocessing.process.ORIGINAL_DIR = None\n\n\ndef _freeze_support():\n # We want to catch the two processes that are spawned by the multiprocessing code:\n # - the semaphore tracker, which cleans up named semaphores in the spawn multiprocessing mode\n # - the fork server, which keeps track of worker processes in forkserver mode.\n # both of these processes are started by spawning a new copy of the running executable, passing it the flags from\n # _args_from_interpreter_flags and then \"-c\" and an import statement.\n # Look for those flags and the import statement, then exec() the code ourselves.\n\n if (\n len(sys.argv) >= 2 and sys.argv[-2] == '-c' and sys.argv[-1].startswith((\n 'from multiprocessing.semaphore_tracker import main', # Py<3.8\n 'from multiprocessing.resource_tracker import main', # Py>=3.8\n 'from multiprocessing.forkserver import main'\n )) and set(sys.argv[1:-2]) == set(_args_from_interpreter_flags())\n ):\n exec(sys.argv[-1])\n sys.exit()\n\n if spawn.is_forking(sys.argv):\n kwds = {}\n for arg in sys.argv[2:]:\n name, value = arg.split('=')\n if value == 'None':\n kwds[name] = None\n else:\n kwds[name] = int(value)\n spawn.spawn_main(**kwds)\n sys.exit()\n\n\nmultiprocessing.freeze_support = spawn.freeze_support = _freeze_support\n\n# Bootloader unsets _MEIPASS2 for child processes to allow running PyInstaller binaries inside pyinstaller binaries.\n# This is ok for mac or unix with fork() system call. But on Windows we need to overcome missing fork() function.\n\nif sys.platform.startswith('win'):\n import multiprocessing.popen_spawn_win32 as forking\nelse:\n import multiprocessing.popen_fork as forking\n import multiprocessing.popen_spawn_posix as spawning\n\n\n# Mix-in to re-set _MEIPASS2 from sys._MEIPASS.\nclass FrozenSupportMixIn:\n def __init__(self, *args, **kw):\n if hasattr(sys, 'frozen'):\n # We have to set original _MEIPASS2 value from sys._MEIPASS to get --onefile mode working.\n os.putenv('_MEIPASS2', sys._MEIPASS) # @UndefinedVariable\n try:\n super().__init__(*args, **kw)\n finally:\n if hasattr(sys, 'frozen'):\n # On some platforms (e.g. AIX) 'os.unsetenv()' is not available. In those cases we cannot delete the\n # variable but only set it to the empty string. The bootloader can handle this case.\n if hasattr(os, 'unsetenv'):\n os.unsetenv('_MEIPASS2')\n else:\n os.putenv('_MEIPASS2', '')\n\n\n# Patch forking.Popen to re-set _MEIPASS2 from sys._MEIPASS.\nclass _Popen(FrozenSupportMixIn, forking.Popen):\n pass\n\n\nforking.Popen = _Popen\n\nif not sys.platform.startswith('win'):\n # Patch spawning.Popen to re-set _MEIPASS2 from sys._MEIPASS.\n class _Spawning_Popen(FrozenSupportMixIn, spawning.Popen):\n pass\n\n spawning.Popen = _Spawning_Popen\n", "path": "PyInstaller/hooks/rthooks/pyi_rth_multiprocessing.py"}], "after_files": [{"content": "#-----------------------------------------------------------------------------\n# Copyright (c) 2017-2023, PyInstaller Development Team.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n#\n# The full license is in the file COPYING.txt, distributed with this software.\n#\n# SPDX-License-Identifier: Apache-2.0\n#-----------------------------------------------------------------------------\n\nimport threading\nimport multiprocessing\nimport multiprocessing.spawn as spawn\n# 'spawn' multiprocessing needs some adjustments on osx\nimport os\nimport sys\nfrom subprocess import _args_from_interpreter_flags\n\n# prevent spawn from trying to read __main__ in from the main script\nmultiprocessing.process.ORIGINAL_DIR = None\n\n\ndef _freeze_support():\n # We want to catch the two processes that are spawned by the multiprocessing code:\n # - the semaphore tracker, which cleans up named semaphores in the spawn multiprocessing mode\n # - the fork server, which keeps track of worker processes in forkserver mode.\n # both of these processes are started by spawning a new copy of the running executable, passing it the flags from\n # _args_from_interpreter_flags and then \"-c\" and an import statement.\n # Look for those flags and the import statement, then exec() the code ourselves.\n\n if (\n len(sys.argv) >= 2 and sys.argv[-2] == '-c' and sys.argv[-1].startswith((\n 'from multiprocessing.semaphore_tracker import main', # Py<3.8\n 'from multiprocessing.resource_tracker import main', # Py>=3.8\n 'from multiprocessing.forkserver import main'\n )) and set(sys.argv[1:-2]) == set(_args_from_interpreter_flags())\n ):\n exec(sys.argv[-1])\n sys.exit()\n\n if spawn.is_forking(sys.argv):\n kwds = {}\n for arg in sys.argv[2:]:\n name, value = arg.split('=')\n if value == 'None':\n kwds[name] = None\n else:\n kwds[name] = int(value)\n spawn.spawn_main(**kwds)\n sys.exit()\n\n\nmultiprocessing.freeze_support = spawn.freeze_support = _freeze_support\n\n# Bootloader unsets _MEIPASS2 for child processes to allow running PyInstaller binaries inside pyinstaller binaries.\n# This is ok for mac or unix with fork() system call. But on Windows we need to overcome missing fork() function.\n\nif sys.platform.startswith('win'):\n import multiprocessing.popen_spawn_win32 as forking\nelse:\n import multiprocessing.popen_fork as forking\n import multiprocessing.popen_spawn_posix as spawning\n\n\n# Mix-in to re-set _MEIPASS2 from sys._MEIPASS.\nclass FrozenSupportMixIn:\n _lock = threading.Lock()\n\n def __init__(self, *args, **kw):\n # The whole code block needs be executed under a lock to prevent race conditions between `os.putenv` and\n # `os.unsetenv` calls when processes are spawned concurrently from multiple threads. See #7410.\n with self._lock:\n # We have to set original _MEIPASS2 value from sys._MEIPASS to get --onefile mode working.\n os.putenv('_MEIPASS2', sys._MEIPASS) # @UndefinedVariable\n try:\n super().__init__(*args, **kw)\n finally:\n # On some platforms (e.g. AIX) 'os.unsetenv()' is not available. In those cases we cannot delete the\n # variable but only set it to the empty string. The bootloader can handle this case.\n if hasattr(os, 'unsetenv'):\n os.unsetenv('_MEIPASS2')\n else:\n os.putenv('_MEIPASS2', '')\n\n\n# Patch forking.Popen to re-set _MEIPASS2 from sys._MEIPASS.\nclass _Popen(FrozenSupportMixIn, forking.Popen):\n pass\n\n\nforking.Popen = _Popen\n\nif not sys.platform.startswith('win'):\n # Patch spawning.Popen to re-set _MEIPASS2 from sys._MEIPASS.\n class _Spawning_Popen(FrozenSupportMixIn, spawning.Popen):\n pass\n\n spawning.Popen = _Spawning_Popen\n", "path": "PyInstaller/hooks/rthooks/pyi_rth_multiprocessing.py"}]}
2,763
402
gh_patches_debug_13193
rasdani/github-patches
git_diff
opensearch-project__opensearch-build-499
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Make plugin integtest.sh run against non-snapshot build The plugin integtest.sh picks up the opensearch version provided in build.gradle, which is 1.1.0-SNAPSHOT. Since the release candidates are non snapshot built artifacts, make this configurable in integ test job --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `bundle-workflow/src/paths/script_finder.py` Content: ``` 1 # SPDX-License-Identifier: Apache-2.0 2 # 3 # The OpenSearch Contributors require contributions made to 4 # this file be licensed under the Apache-2.0 license or a 5 # compatible open source license. 6 7 import os 8 9 10 class ScriptFinder: 11 class ScriptNotFoundError(Exception): 12 def __init__(self, kind, paths): 13 self.kind = kind 14 self.paths = paths 15 super().__init__(f"Could not find {kind} script. Looked in {paths}.") 16 17 component_scripts_path = os.path.realpath( 18 os.path.join( 19 os.path.dirname(os.path.abspath(__file__)), "../../scripts/components" 20 ) 21 ) 22 23 default_scripts_path = os.path.realpath( 24 os.path.join( 25 os.path.dirname(os.path.abspath(__file__)), "../../scripts/default" 26 ) 27 ) 28 29 """ 30 ScriptFinder is a helper that abstracts away the details of where to look for build, test and install scripts. 31 32 For build.sh and integtest.sh scripts, given a component name and a checked-out Git repository, 33 it will look in the following locations, in order: 34 * Root of the Git repository 35 * /scripts/<script-name> in the Git repository 36 * <component_scripts_path>/<component_name>/<script-name> 37 * <default_scripts_path>/<script-name> 38 39 For install.sh scripts, given a component name, it will look in the following locations, in order: 40 * <component_scripts_path>/<component_name>/<script-name> 41 * <default_scripts_path>/<script-name> 42 """ 43 44 @classmethod 45 def __find_script(cls, name, paths): 46 script = next(filter(lambda path: os.path.exists(path), paths), None) 47 if script is None: 48 raise ScriptFinder.ScriptNotFoundError(name, paths) 49 return script 50 51 @classmethod 52 def find_build_script(cls, component_name, git_dir): 53 paths = [ 54 os.path.realpath(os.path.join(git_dir, "build.sh")), 55 os.path.realpath(os.path.join(git_dir, "scripts/build.sh")), 56 os.path.realpath( 57 os.path.join(cls.component_scripts_path, component_name, "build.sh") 58 ), 59 os.path.realpath(os.path.join(cls.default_scripts_path, "build.sh")), 60 ] 61 62 return cls.__find_script("build.sh", paths) 63 64 @classmethod 65 def find_integ_test_script(cls, component_name, git_dir): 66 paths = [ 67 os.path.realpath(os.path.join(git_dir, "integtest.sh")), 68 os.path.realpath(os.path.join(git_dir, "scripts/integtest.sh")), 69 os.path.realpath( 70 os.path.join(cls.component_scripts_path, component_name, "integtest.sh") 71 ), 72 os.path.realpath(os.path.join(cls.default_scripts_path, "integtest.sh")), 73 ] 74 75 return cls.__find_script("integtest.sh", paths) 76 77 @classmethod 78 def find_install_script(cls, component_name): 79 paths = [ 80 os.path.realpath( 81 os.path.join(cls.component_scripts_path, component_name, "install.sh") 82 ), 83 os.path.realpath(os.path.join(cls.default_scripts_path, "install.sh")), 84 ] 85 86 return cls.__find_script("install.sh", paths) 87 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/bundle-workflow/src/paths/script_finder.py b/bundle-workflow/src/paths/script_finder.py --- a/bundle-workflow/src/paths/script_finder.py +++ b/bundle-workflow/src/paths/script_finder.py @@ -64,8 +64,9 @@ @classmethod def find_integ_test_script(cls, component_name, git_dir): paths = [ - os.path.realpath(os.path.join(git_dir, "integtest.sh")), - os.path.realpath(os.path.join(git_dir, "scripts/integtest.sh")), + # TODO: Uncomment this after the integtest.sh tool is removed from plugin repos. See issue #497 + # os.path.realpath(os.path.join(git_dir, "integtest.sh")), + # os.path.realpath(os.path.join(git_dir, "scripts/integtest.sh")), os.path.realpath( os.path.join(cls.component_scripts_path, component_name, "integtest.sh") ),
{"golden_diff": "diff --git a/bundle-workflow/src/paths/script_finder.py b/bundle-workflow/src/paths/script_finder.py\n--- a/bundle-workflow/src/paths/script_finder.py\n+++ b/bundle-workflow/src/paths/script_finder.py\n@@ -64,8 +64,9 @@\n @classmethod\n def find_integ_test_script(cls, component_name, git_dir):\n paths = [\n- os.path.realpath(os.path.join(git_dir, \"integtest.sh\")),\n- os.path.realpath(os.path.join(git_dir, \"scripts/integtest.sh\")),\n+ # TODO: Uncomment this after the integtest.sh tool is removed from plugin repos. See issue #497\n+ # os.path.realpath(os.path.join(git_dir, \"integtest.sh\")),\n+ # os.path.realpath(os.path.join(git_dir, \"scripts/integtest.sh\")),\n os.path.realpath(\n os.path.join(cls.component_scripts_path, component_name, \"integtest.sh\")\n ),\n", "issue": "Make plugin integtest.sh run against non-snapshot build\nThe plugin integtest.sh picks up the opensearch version provided in build.gradle, which is 1.1.0-SNAPSHOT. Since the release candidates are non snapshot built artifacts, make this configurable in integ test job\n", "before_files": [{"content": "# SPDX-License-Identifier: Apache-2.0\n#\n# The OpenSearch Contributors require contributions made to\n# this file be licensed under the Apache-2.0 license or a\n# compatible open source license.\n\nimport os\n\n\nclass ScriptFinder:\n class ScriptNotFoundError(Exception):\n def __init__(self, kind, paths):\n self.kind = kind\n self.paths = paths\n super().__init__(f\"Could not find {kind} script. Looked in {paths}.\")\n\n component_scripts_path = os.path.realpath(\n os.path.join(\n os.path.dirname(os.path.abspath(__file__)), \"../../scripts/components\"\n )\n )\n\n default_scripts_path = os.path.realpath(\n os.path.join(\n os.path.dirname(os.path.abspath(__file__)), \"../../scripts/default\"\n )\n )\n\n \"\"\"\n ScriptFinder is a helper that abstracts away the details of where to look for build, test and install scripts.\n\n For build.sh and integtest.sh scripts, given a component name and a checked-out Git repository,\n it will look in the following locations, in order:\n * Root of the Git repository\n * /scripts/<script-name> in the Git repository\n * <component_scripts_path>/<component_name>/<script-name>\n * <default_scripts_path>/<script-name>\n\n For install.sh scripts, given a component name, it will look in the following locations, in order:\n * <component_scripts_path>/<component_name>/<script-name>\n * <default_scripts_path>/<script-name>\n \"\"\"\n\n @classmethod\n def __find_script(cls, name, paths):\n script = next(filter(lambda path: os.path.exists(path), paths), None)\n if script is None:\n raise ScriptFinder.ScriptNotFoundError(name, paths)\n return script\n\n @classmethod\n def find_build_script(cls, component_name, git_dir):\n paths = [\n os.path.realpath(os.path.join(git_dir, \"build.sh\")),\n os.path.realpath(os.path.join(git_dir, \"scripts/build.sh\")),\n os.path.realpath(\n os.path.join(cls.component_scripts_path, component_name, \"build.sh\")\n ),\n os.path.realpath(os.path.join(cls.default_scripts_path, \"build.sh\")),\n ]\n\n return cls.__find_script(\"build.sh\", paths)\n\n @classmethod\n def find_integ_test_script(cls, component_name, git_dir):\n paths = [\n os.path.realpath(os.path.join(git_dir, \"integtest.sh\")),\n os.path.realpath(os.path.join(git_dir, \"scripts/integtest.sh\")),\n os.path.realpath(\n os.path.join(cls.component_scripts_path, component_name, \"integtest.sh\")\n ),\n os.path.realpath(os.path.join(cls.default_scripts_path, \"integtest.sh\")),\n ]\n\n return cls.__find_script(\"integtest.sh\", paths)\n\n @classmethod\n def find_install_script(cls, component_name):\n paths = [\n os.path.realpath(\n os.path.join(cls.component_scripts_path, component_name, \"install.sh\")\n ),\n os.path.realpath(os.path.join(cls.default_scripts_path, \"install.sh\")),\n ]\n\n return cls.__find_script(\"install.sh\", paths)\n", "path": "bundle-workflow/src/paths/script_finder.py"}], "after_files": [{"content": "# SPDX-License-Identifier: Apache-2.0\n#\n# The OpenSearch Contributors require contributions made to\n# this file be licensed under the Apache-2.0 license or a\n# compatible open source license.\n\nimport os\n\n\nclass ScriptFinder:\n class ScriptNotFoundError(Exception):\n def __init__(self, kind, paths):\n self.kind = kind\n self.paths = paths\n super().__init__(f\"Could not find {kind} script. Looked in {paths}.\")\n\n component_scripts_path = os.path.realpath(\n os.path.join(\n os.path.dirname(os.path.abspath(__file__)), \"../../scripts/components\"\n )\n )\n\n default_scripts_path = os.path.realpath(\n os.path.join(\n os.path.dirname(os.path.abspath(__file__)), \"../../scripts/default\"\n )\n )\n\n \"\"\"\n ScriptFinder is a helper that abstracts away the details of where to look for build, test and install scripts.\n\n For build.sh and integtest.sh scripts, given a component name and a checked-out Git repository,\n it will look in the following locations, in order:\n * Root of the Git repository\n * /scripts/<script-name> in the Git repository\n * <component_scripts_path>/<component_name>/<script-name>\n * <default_scripts_path>/<script-name>\n\n For install.sh scripts, given a component name, it will look in the following locations, in order:\n * <component_scripts_path>/<component_name>/<script-name>\n * <default_scripts_path>/<script-name>\n \"\"\"\n\n @classmethod\n def __find_script(cls, name, paths):\n script = next(filter(lambda path: os.path.exists(path), paths), None)\n if script is None:\n raise ScriptFinder.ScriptNotFoundError(name, paths)\n return script\n\n @classmethod\n def find_build_script(cls, component_name, git_dir):\n paths = [\n os.path.realpath(os.path.join(git_dir, \"build.sh\")),\n os.path.realpath(os.path.join(git_dir, \"scripts/build.sh\")),\n os.path.realpath(\n os.path.join(cls.component_scripts_path, component_name, \"build.sh\")\n ),\n os.path.realpath(os.path.join(cls.default_scripts_path, \"build.sh\")),\n ]\n\n return cls.__find_script(\"build.sh\", paths)\n\n @classmethod\n def find_integ_test_script(cls, component_name, git_dir):\n paths = [\n # TODO: Uncomment this after the integtest.sh tool is removed from plugin repos. See issue #497\n # os.path.realpath(os.path.join(git_dir, \"integtest.sh\")),\n # os.path.realpath(os.path.join(git_dir, \"scripts/integtest.sh\")),\n os.path.realpath(\n os.path.join(cls.component_scripts_path, component_name, \"integtest.sh\")\n ),\n os.path.realpath(os.path.join(cls.default_scripts_path, \"integtest.sh\")),\n ]\n\n return cls.__find_script(\"integtest.sh\", paths)\n\n @classmethod\n def find_install_script(cls, component_name):\n paths = [\n os.path.realpath(\n os.path.join(cls.component_scripts_path, component_name, \"install.sh\")\n ),\n os.path.realpath(os.path.join(cls.default_scripts_path, \"install.sh\")),\n ]\n\n return cls.__find_script(\"install.sh\", paths)\n", "path": "bundle-workflow/src/paths/script_finder.py"}]}
1,165
214
gh_patches_debug_1486
rasdani/github-patches
git_diff
certbot__certbot-8776
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Fix lint and mypy with Python < 3.8 In https://github.com/certbot/certbot/pull/8748, we made a change that causes our lint and mypy tests to need to be run on Python 3.8+ to pass. See https://github.com/certbot/certbot/pull/8748#issuecomment-808790093 for the discussion of the problem here. I don't think we should do this. Certbot supports Python 3.6+ and I think it could cause a particularly bad experience for new devs that don't happen to know they need Python 3.8+. This change also broke our development Dockerfile as can be seen at https://dev.azure.com/certbot/certbot/_build/results?buildId=3742&view=logs&j=bea2d267-f41e-5b33-7b51-a88065a8cbb0&t=0dc90756-6888-5ee6-5a6a-5855e6b9ae76&l=1873. Instead, I think we should change our approach here so the tests work on all versions of Python we support. I'm open to other ideas, but the two ideas I had for this are: 1. Just declare a runtime dependency on `typing-extensions`. 2. Add `typing-extensions` as a dev/test dependency and try to import it, but use similar fallback code to what we current have if it's not available. What do you think @adferrand? Are you interested in working on this? --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `certbot/setup.py` Content: ``` 1 import codecs 2 from distutils.version import LooseVersion 3 import os 4 import re 5 import sys 6 7 from setuptools import __version__ as setuptools_version 8 from setuptools import find_packages 9 from setuptools import setup 10 11 min_setuptools_version='39.0.1' 12 # This conditional isn't necessary, but it provides better error messages to 13 # people who try to install this package with older versions of setuptools. 14 if LooseVersion(setuptools_version) < LooseVersion(min_setuptools_version): 15 raise RuntimeError(f'setuptools {min_setuptools_version}+ is required') 16 17 # Workaround for https://bugs.python.org/issue8876, see 18 # https://bugs.python.org/issue8876#msg208792 19 # This can be removed when using Python 2.7.9 or later: 20 # https://hg.python.org/cpython/raw-file/v2.7.9/Misc/NEWS 21 if os.path.abspath(__file__).split(os.path.sep)[1] == 'vagrant': 22 del os.link 23 24 25 def read_file(filename, encoding='utf8'): 26 """Read unicode from given file.""" 27 with codecs.open(filename, encoding=encoding) as fd: 28 return fd.read() 29 30 31 here = os.path.abspath(os.path.dirname(__file__)) 32 33 # read version number (and other metadata) from package init 34 init_fn = os.path.join(here, 'certbot', '__init__.py') 35 meta = dict(re.findall(r"""__([a-z]+)__ = '([^']+)""", read_file(init_fn))) 36 37 readme = read_file(os.path.join(here, 'README.rst')) 38 version = meta['version'] 39 40 # This package relies on PyOpenSSL and requests, however, it isn't specified 41 # here to avoid masking the more specific request requirements in acme. See 42 # https://github.com/pypa/pip/issues/988 for more info. 43 install_requires = [ 44 'acme>=1.8.0', 45 # We technically need ConfigArgParse 0.10.0 for Python 2.6 support, but 46 # saying so here causes a runtime error against our temporary fork of 0.9.3 47 # in which we added 2.6 support (see #2243), so we relax the requirement. 48 'ConfigArgParse>=0.9.3', 49 'configobj>=5.0.6', 50 'cryptography>=2.1.4', 51 'distro>=1.0.1', 52 # 1.1.0+ is required to avoid the warnings described at 53 # https://github.com/certbot/josepy/issues/13. 54 'josepy>=1.1.0', 55 'parsedatetime>=2.4', 56 'pyrfc3339', 57 'pytz', 58 # This dependency needs to be added using environment markers to avoid its 59 # installation on Linux. 60 'pywin32>=300 ; sys_platform == "win32"', 61 f'setuptools>={min_setuptools_version}', 62 'zope.component', 63 'zope.interface', 64 ] 65 66 dev_extras = [ 67 'astroid', 68 'azure-devops', 69 'coverage', 70 'ipdb', 71 'mypy', 72 'PyGithub', 73 # 1.1.0+ is required for poetry to use the poetry-core library for the 74 # build system declared in tools/pinning/pyproject.toml. 75 'poetry>=1.1.0', 76 'pylint', 77 'pytest', 78 'pytest-cov', 79 'pytest-xdist', 80 'tox', 81 'twine', 82 'wheel', 83 ] 84 85 docs_extras = [ 86 # If you have Sphinx<1.5.1, you need docutils<0.13.1 87 # https://github.com/sphinx-doc/sphinx/issues/3212 88 'repoze.sphinx.autointerface', 89 'Sphinx>=1.2', # Annotation support 90 'sphinx_rtd_theme', 91 ] 92 93 setup( 94 name='certbot', 95 version=version, 96 description="ACME client", 97 long_description=readme, 98 url='https://github.com/letsencrypt/letsencrypt', 99 author="Certbot Project", 100 author_email='[email protected]', 101 license='Apache License 2.0', 102 python_requires='>=3.6', 103 classifiers=[ 104 'Development Status :: 5 - Production/Stable', 105 'Environment :: Console', 106 'Environment :: Console :: Curses', 107 'Intended Audience :: System Administrators', 108 'License :: OSI Approved :: Apache Software License', 109 'Operating System :: POSIX :: Linux', 110 'Programming Language :: Python', 111 'Programming Language :: Python :: 3', 112 'Programming Language :: Python :: 3.6', 113 'Programming Language :: Python :: 3.7', 114 'Programming Language :: Python :: 3.8', 115 'Programming Language :: Python :: 3.9', 116 'Topic :: Internet :: WWW/HTTP', 117 'Topic :: Security', 118 'Topic :: System :: Installation/Setup', 119 'Topic :: System :: Networking', 120 'Topic :: System :: Systems Administration', 121 'Topic :: Utilities', 122 ], 123 124 packages=find_packages(exclude=['docs', 'examples', 'tests', 'venv']), 125 include_package_data=True, 126 127 install_requires=install_requires, 128 extras_require={ 129 'dev': dev_extras, 130 'docs': docs_extras, 131 }, 132 133 entry_points={ 134 'console_scripts': [ 135 'certbot = certbot.main:main', 136 ], 137 'certbot.plugins': [ 138 'manual = certbot._internal.plugins.manual:Authenticator', 139 'null = certbot._internal.plugins.null:Installer', 140 'standalone = certbot._internal.plugins.standalone:Authenticator', 141 'webroot = certbot._internal.plugins.webroot:Authenticator', 142 ], 143 }, 144 ) 145 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/certbot/setup.py b/certbot/setup.py --- a/certbot/setup.py +++ b/certbot/setup.py @@ -77,6 +77,9 @@ 'pytest', 'pytest-cov', 'pytest-xdist', + # typing-extensions is required to import typing.Protocol and make the mypy checks + # pass (along with pylint about non-existent objects) on Python 3.6 & 3.7 + 'typing-extensions', 'tox', 'twine', 'wheel',
{"golden_diff": "diff --git a/certbot/setup.py b/certbot/setup.py\n--- a/certbot/setup.py\n+++ b/certbot/setup.py\n@@ -77,6 +77,9 @@\n 'pytest',\n 'pytest-cov',\n 'pytest-xdist',\n+ # typing-extensions is required to import typing.Protocol and make the mypy checks\n+ # pass (along with pylint about non-existent objects) on Python 3.6 & 3.7\n+ 'typing-extensions',\n 'tox',\n 'twine',\n 'wheel',\n", "issue": "Fix lint and mypy with Python < 3.8\nIn https://github.com/certbot/certbot/pull/8748, we made a change that causes our lint and mypy tests to need to be run on Python 3.8+ to pass. See https://github.com/certbot/certbot/pull/8748#issuecomment-808790093 for the discussion of the problem here.\r\n\r\nI don't think we should do this. Certbot supports Python 3.6+ and I think it could cause a particularly bad experience for new devs that don't happen to know they need Python 3.8+. This change also broke our development Dockerfile as can be seen at https://dev.azure.com/certbot/certbot/_build/results?buildId=3742&view=logs&j=bea2d267-f41e-5b33-7b51-a88065a8cbb0&t=0dc90756-6888-5ee6-5a6a-5855e6b9ae76&l=1873. Instead, I think we should change our approach here so the tests work on all versions of Python we support. I'm open to other ideas, but the two ideas I had for this are:\r\n\r\n1. Just declare a runtime dependency on `typing-extensions`.\r\n2. Add `typing-extensions` as a dev/test dependency and try to import it, but use similar fallback code to what we current have if it's not available.\r\n\r\nWhat do you think @adferrand? Are you interested in working on this?\n", "before_files": [{"content": "import codecs\nfrom distutils.version import LooseVersion\nimport os\nimport re\nimport sys\n\nfrom setuptools import __version__ as setuptools_version\nfrom setuptools import find_packages\nfrom setuptools import setup\n\nmin_setuptools_version='39.0.1'\n# This conditional isn't necessary, but it provides better error messages to\n# people who try to install this package with older versions of setuptools.\nif LooseVersion(setuptools_version) < LooseVersion(min_setuptools_version):\n raise RuntimeError(f'setuptools {min_setuptools_version}+ is required')\n\n# Workaround for https://bugs.python.org/issue8876, see\n# https://bugs.python.org/issue8876#msg208792\n# This can be removed when using Python 2.7.9 or later:\n# https://hg.python.org/cpython/raw-file/v2.7.9/Misc/NEWS\nif os.path.abspath(__file__).split(os.path.sep)[1] == 'vagrant':\n del os.link\n\n\ndef read_file(filename, encoding='utf8'):\n \"\"\"Read unicode from given file.\"\"\"\n with codecs.open(filename, encoding=encoding) as fd:\n return fd.read()\n\n\nhere = os.path.abspath(os.path.dirname(__file__))\n\n# read version number (and other metadata) from package init\ninit_fn = os.path.join(here, 'certbot', '__init__.py')\nmeta = dict(re.findall(r\"\"\"__([a-z]+)__ = '([^']+)\"\"\", read_file(init_fn)))\n\nreadme = read_file(os.path.join(here, 'README.rst'))\nversion = meta['version']\n\n# This package relies on PyOpenSSL and requests, however, it isn't specified\n# here to avoid masking the more specific request requirements in acme. See\n# https://github.com/pypa/pip/issues/988 for more info.\ninstall_requires = [\n 'acme>=1.8.0',\n # We technically need ConfigArgParse 0.10.0 for Python 2.6 support, but\n # saying so here causes a runtime error against our temporary fork of 0.9.3\n # in which we added 2.6 support (see #2243), so we relax the requirement.\n 'ConfigArgParse>=0.9.3',\n 'configobj>=5.0.6',\n 'cryptography>=2.1.4',\n 'distro>=1.0.1',\n # 1.1.0+ is required to avoid the warnings described at\n # https://github.com/certbot/josepy/issues/13.\n 'josepy>=1.1.0',\n 'parsedatetime>=2.4',\n 'pyrfc3339',\n 'pytz',\n # This dependency needs to be added using environment markers to avoid its\n # installation on Linux.\n 'pywin32>=300 ; sys_platform == \"win32\"',\n f'setuptools>={min_setuptools_version}',\n 'zope.component',\n 'zope.interface',\n]\n\ndev_extras = [\n 'astroid',\n 'azure-devops',\n 'coverage',\n 'ipdb',\n 'mypy',\n 'PyGithub',\n # 1.1.0+ is required for poetry to use the poetry-core library for the\n # build system declared in tools/pinning/pyproject.toml.\n 'poetry>=1.1.0',\n 'pylint',\n 'pytest',\n 'pytest-cov',\n 'pytest-xdist',\n 'tox',\n 'twine',\n 'wheel',\n]\n\ndocs_extras = [\n # If you have Sphinx<1.5.1, you need docutils<0.13.1\n # https://github.com/sphinx-doc/sphinx/issues/3212\n 'repoze.sphinx.autointerface',\n 'Sphinx>=1.2', # Annotation support\n 'sphinx_rtd_theme',\n]\n\nsetup(\n name='certbot',\n version=version,\n description=\"ACME client\",\n long_description=readme,\n url='https://github.com/letsencrypt/letsencrypt',\n author=\"Certbot Project\",\n author_email='[email protected]',\n license='Apache License 2.0',\n python_requires='>=3.6',\n classifiers=[\n 'Development Status :: 5 - Production/Stable',\n 'Environment :: Console',\n 'Environment :: Console :: Curses',\n 'Intended Audience :: System Administrators',\n 'License :: OSI Approved :: Apache Software License',\n 'Operating System :: POSIX :: Linux',\n 'Programming Language :: Python',\n 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3.6',\n 'Programming Language :: Python :: 3.7',\n 'Programming Language :: Python :: 3.8',\n 'Programming Language :: Python :: 3.9',\n 'Topic :: Internet :: WWW/HTTP',\n 'Topic :: Security',\n 'Topic :: System :: Installation/Setup',\n 'Topic :: System :: Networking',\n 'Topic :: System :: Systems Administration',\n 'Topic :: Utilities',\n ],\n\n packages=find_packages(exclude=['docs', 'examples', 'tests', 'venv']),\n include_package_data=True,\n\n install_requires=install_requires,\n extras_require={\n 'dev': dev_extras,\n 'docs': docs_extras,\n },\n\n entry_points={\n 'console_scripts': [\n 'certbot = certbot.main:main',\n ],\n 'certbot.plugins': [\n 'manual = certbot._internal.plugins.manual:Authenticator',\n 'null = certbot._internal.plugins.null:Installer',\n 'standalone = certbot._internal.plugins.standalone:Authenticator',\n 'webroot = certbot._internal.plugins.webroot:Authenticator',\n ],\n },\n)\n", "path": "certbot/setup.py"}], "after_files": [{"content": "import codecs\nfrom distutils.version import LooseVersion\nimport os\nimport re\nimport sys\n\nfrom setuptools import __version__ as setuptools_version\nfrom setuptools import find_packages\nfrom setuptools import setup\n\nmin_setuptools_version='39.0.1'\n# This conditional isn't necessary, but it provides better error messages to\n# people who try to install this package with older versions of setuptools.\nif LooseVersion(setuptools_version) < LooseVersion(min_setuptools_version):\n raise RuntimeError(f'setuptools {min_setuptools_version}+ is required')\n\n# Workaround for https://bugs.python.org/issue8876, see\n# https://bugs.python.org/issue8876#msg208792\n# This can be removed when using Python 2.7.9 or later:\n# https://hg.python.org/cpython/raw-file/v2.7.9/Misc/NEWS\nif os.path.abspath(__file__).split(os.path.sep)[1] == 'vagrant':\n del os.link\n\n\ndef read_file(filename, encoding='utf8'):\n \"\"\"Read unicode from given file.\"\"\"\n with codecs.open(filename, encoding=encoding) as fd:\n return fd.read()\n\n\nhere = os.path.abspath(os.path.dirname(__file__))\n\n# read version number (and other metadata) from package init\ninit_fn = os.path.join(here, 'certbot', '__init__.py')\nmeta = dict(re.findall(r\"\"\"__([a-z]+)__ = '([^']+)\"\"\", read_file(init_fn)))\n\nreadme = read_file(os.path.join(here, 'README.rst'))\nversion = meta['version']\n\n# This package relies on PyOpenSSL and requests, however, it isn't specified\n# here to avoid masking the more specific request requirements in acme. See\n# https://github.com/pypa/pip/issues/988 for more info.\ninstall_requires = [\n 'acme>=1.8.0',\n # We technically need ConfigArgParse 0.10.0 for Python 2.6 support, but\n # saying so here causes a runtime error against our temporary fork of 0.9.3\n # in which we added 2.6 support (see #2243), so we relax the requirement.\n 'ConfigArgParse>=0.9.3',\n 'configobj>=5.0.6',\n 'cryptography>=2.1.4',\n 'distro>=1.0.1',\n # 1.1.0+ is required to avoid the warnings described at\n # https://github.com/certbot/josepy/issues/13.\n 'josepy>=1.1.0',\n 'parsedatetime>=2.4',\n 'pyrfc3339',\n 'pytz',\n # This dependency needs to be added using environment markers to avoid its\n # installation on Linux.\n 'pywin32>=300 ; sys_platform == \"win32\"',\n f'setuptools>={min_setuptools_version}',\n 'zope.component',\n 'zope.interface',\n]\n\ndev_extras = [\n 'astroid',\n 'azure-devops',\n 'coverage',\n 'ipdb',\n 'mypy',\n 'PyGithub',\n # 1.1.0+ is required for poetry to use the poetry-core library for the\n # build system declared in tools/pinning/pyproject.toml.\n 'poetry>=1.1.0',\n 'pylint',\n 'pytest',\n 'pytest-cov',\n 'pytest-xdist',\n # typing-extensions is required to import typing.Protocol and make the mypy checks\n # pass (along with pylint about non-existent objects) on Python 3.6 & 3.7\n 'typing-extensions',\n 'tox',\n 'twine',\n 'wheel',\n]\n\ndocs_extras = [\n # If you have Sphinx<1.5.1, you need docutils<0.13.1\n # https://github.com/sphinx-doc/sphinx/issues/3212\n 'repoze.sphinx.autointerface',\n 'Sphinx>=1.2', # Annotation support\n 'sphinx_rtd_theme',\n]\n\nsetup(\n name='certbot',\n version=version,\n description=\"ACME client\",\n long_description=readme,\n url='https://github.com/letsencrypt/letsencrypt',\n author=\"Certbot Project\",\n author_email='[email protected]',\n license='Apache License 2.0',\n python_requires='>=3.6',\n classifiers=[\n 'Development Status :: 5 - Production/Stable',\n 'Environment :: Console',\n 'Environment :: Console :: Curses',\n 'Intended Audience :: System Administrators',\n 'License :: OSI Approved :: Apache Software License',\n 'Operating System :: POSIX :: Linux',\n 'Programming Language :: Python',\n 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3.6',\n 'Programming Language :: Python :: 3.7',\n 'Programming Language :: Python :: 3.8',\n 'Programming Language :: Python :: 3.9',\n 'Topic :: Internet :: WWW/HTTP',\n 'Topic :: Security',\n 'Topic :: System :: Installation/Setup',\n 'Topic :: System :: Networking',\n 'Topic :: System :: Systems Administration',\n 'Topic :: Utilities',\n ],\n\n packages=find_packages(exclude=['docs', 'examples', 'tests', 'venv']),\n include_package_data=True,\n\n install_requires=install_requires,\n extras_require={\n 'dev': dev_extras,\n 'docs': docs_extras,\n },\n\n entry_points={\n 'console_scripts': [\n 'certbot = certbot.main:main',\n ],\n 'certbot.plugins': [\n 'manual = certbot._internal.plugins.manual:Authenticator',\n 'null = certbot._internal.plugins.null:Installer',\n 'standalone = certbot._internal.plugins.standalone:Authenticator',\n 'webroot = certbot._internal.plugins.webroot:Authenticator',\n ],\n },\n)\n", "path": "certbot/setup.py"}]}
2,224
125
gh_patches_debug_32163
rasdani/github-patches
git_diff
opsdroid__opsdroid-1183
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Add Google Style Docstrings We should implement Google Style Docstrings to every function, method, class in opsdroid. This style will support existing documentation and will help in the future by generating documentation automatically. This consists in a bit of effort so this issue can be worked by more than one contributor, just make sure that everyone knows what you are working on in order to avoid other contributors spending time on something that you are working on. If you are unfamiliar with the Google Style Docstrings I'd recommend that you check these resources: - [Sphix 1.8.0+ - Google Style Docstrings](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) Docstrings that need to be updated: - main.py - [x] configure_lang - [ ] configure_log - [ ] get_logging_level - [ ] check_dependencies - [ ] print_version - [ ] print_example_config - [ ] edit_files - [x] welcome_message - ~~helper.py~~ - [x] get_opsdroid - [x] del_rw - [x] move_config_to_appdir - memory.py - [x] Memory - [x] get - [x] put - [x] _get_from_database - [x] _put_to_database - message.py - [x] Message - [x] __init__ - [x] _thinking_delay - [x] _typing delay - [x] respond - [x] react - web.py - [ ] Web - [x] get_port - [x] get_host - [x] get_ssl_context - [ ] start - [ ] build_response - [ ] web_index_handler - [ ] web_stats_handler - matchers.py - [ ] match_regex - [ ] match_apiai_action - [ ] match_apiai_intent - [ ] match_dialogflow_action - [ ] match_dialogflow_intent - [ ] match_luisai_intent - [ ] match_rasanlu - [ ] match_recastai - [ ] match_witai - [ ] match_crontab - [ ] match_webhook - [ ] match_always - core.py - [ ] OpsDroid - [ ] default_connector - [ ] exit - [ ] critical - [ ] call_stop - [ ] disconnect - [ ] stop - [ ] load - [ ] start_loop - [x] setup_skills - [ ] train_parsers - [ ] start_connector_tasks - [ ] start_database - [ ] run_skill - [ ] get_ranked_skills - [ ] parse - loader.py - [ ] Loader - [x] import_module_from_spec - [x] import_module - [x] check_cache - [x] build_module_import_path - [x] build_module_install_path - [x] git_clone - [x] git_pull - [x] pip_install_deps - [x] create_default_config - [x] load_config_file - [ ] envvar_constructor - [ ] include_constructor - [x] setup_modules_directory - [x] load_modules_from_config - [x] _load_modules - [x] _install_module - [x] _update_module - [ ] _install_git_module - [x] _install_local_module ---- ORIGINAL POST ---- I've been wondering about this for a while now and I would like to know if we should replace/update all the docstrings in opsdroid with the Google Style doc strings. I think this could help new and old contributors to contribute and commit to opsdroid since the Google Style docstrings give more information about every method/function and specifies clearly what sort of input the function/method expects, what will it return and what will be raised (if applicable). The downsize of this style is that the length of every .py file will increase due to the doc strings, but since most IDE's allow you to hide those fields it shouldn't be too bad. Here is a good example of Google Style Doc strings: [Sphix 1.8.0+ - Google Style Docstrings](http://www.sphinx-doc.org/en/master/ext/example_google.html) I would like to know what you all think about this idea and if its worth spending time on it. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `opsdroid/cli/utils.py` Content: ``` 1 """Utilities for the opsdroid CLI commands.""" 2 3 import click 4 import gettext 5 import os 6 import logging 7 import subprocess 8 import sys 9 import time 10 import warnings 11 12 from opsdroid.const import ( 13 DEFAULT_LOG_FILENAME, 14 LOCALE_DIR, 15 DEFAULT_LANGUAGE, 16 DEFAULT_CONFIG_PATH, 17 ) 18 19 _LOGGER = logging.getLogger("opsdroid") 20 21 22 def edit_files(ctx, param, value): 23 """Open config/log file with favourite editor.""" 24 if value == "config": 25 file = DEFAULT_CONFIG_PATH 26 if ctx.command.name == "cli": 27 warn_deprecated_cli_option( 28 "The flag -e/--edit-files has been deprecated. " 29 "Please run `opsdroid config edit` instead." 30 ) 31 elif value == "log": 32 file = DEFAULT_LOG_FILENAME 33 if ctx.command.name == "cli": 34 warn_deprecated_cli_option( 35 "The flag -l/--view-log has been deprecated. " 36 "Please run `opsdroid logs` instead." 37 ) 38 else: 39 return 40 41 editor = os.environ.get("EDITOR", "vi") 42 if editor == "vi": 43 click.echo( 44 "You are about to edit a file in vim. \n" 45 "Read the tutorial on vim at: https://bit.ly/2HRvvrB" 46 ) 47 time.sleep(3) 48 49 subprocess.run([editor, file]) 50 ctx.exit(0) 51 52 53 def warn_deprecated_cli_option(text): 54 """Warn users that the cli option they have used is deprecated.""" 55 print(f"Warning: {text}") 56 warnings.warn(text, DeprecationWarning) 57 58 59 def configure_lang(config): 60 """Configure app language based on user config. 61 62 Args: 63 config: Language Configuration and it uses ISO 639-1 code. 64 for more info https://en.m.wikipedia.org/wiki/List_of_ISO_639-1_codes 65 66 67 """ 68 lang_code = config.get("lang", DEFAULT_LANGUAGE) 69 if lang_code != DEFAULT_LANGUAGE: 70 lang = gettext.translation("opsdroid", LOCALE_DIR, (lang_code,), fallback=True) 71 lang.install() 72 73 74 def check_dependencies(): 75 """Check for system dependencies required by opsdroid.""" 76 if sys.version_info.major < 3 or sys.version_info.minor < 6: 77 logging.critical(_("Whoops! opsdroid requires python 3.6 or above.")) 78 sys.exit(1) 79 80 81 def welcome_message(config): 82 """Add welcome message if set to true in configuration. 83 84 Args: 85 config: config loaded by Loader 86 87 Raises: 88 KeyError: If 'welcome-message' key is not found in configuration file 89 90 """ 91 try: 92 if config["welcome-message"]: 93 _LOGGER.info("=" * 40) 94 _LOGGER.info( 95 _( 96 "You can customise your opsdroid by modifying " 97 "your configuration.yaml" 98 ) 99 ) 100 _LOGGER.info( 101 _("Read more at: " "http://opsdroid.readthedocs.io/#configuration") 102 ) 103 _LOGGER.info(_("Watch the Get Started Videos at: " "http://bit.ly/2fnC0Fh")) 104 _LOGGER.info( 105 _( 106 "Install Opsdroid Desktop at: \n" 107 "https://github.com/opsdroid/opsdroid-desktop/" 108 "releases" 109 ) 110 ) 111 _LOGGER.info("=" * 40) 112 except KeyError: 113 _LOGGER.warning( 114 _("'welcome-message: true/false' is missing in configuration.yaml") 115 ) 116 ``` Path: `opsdroid/cli/config.py` Content: ``` 1 """The config subcommand for opsdroid cli.""" 2 3 import click 4 5 from opsdroid.cli.utils import edit_files, warn_deprecated_cli_option 6 from opsdroid.const import EXAMPLE_CONFIG_FILE 7 8 9 def print_example_config(ctx, param, value): 10 """[Deprecated] Print out the example config.""" 11 if not value or ctx.resilient_parsing: 12 return 13 if ctx.command.name == "cli": 14 warn_deprecated_cli_option( 15 "The flag --gen-config has been deprecated. " 16 "Please run `opsdroid config gen` instead." 17 ) 18 with open(EXAMPLE_CONFIG_FILE, "r") as conf: 19 click.echo(conf.read()) 20 ctx.exit(0) 21 22 23 @click.group() 24 def config(): 25 """Subcommands related to opsdroid configuration.""" 26 27 28 @config.command() 29 @click.pass_context 30 def gen(ctx): 31 """Print out the example config.""" 32 print_example_config(ctx, None, True) 33 34 35 @config.command() 36 @click.pass_context 37 def edit(ctx): 38 """Print out the example config.""" 39 edit_files(ctx, None, "config") 40 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/opsdroid/cli/config.py b/opsdroid/cli/config.py --- a/opsdroid/cli/config.py +++ b/opsdroid/cli/config.py @@ -7,7 +7,19 @@ def print_example_config(ctx, param, value): - """[Deprecated] Print out the example config.""" + """[Deprecated] Print out the example config. + + Args: + ctx (:obj:`click.Context`): The current click cli context. + param (dict): a dictionary of all parameters pass to the click + context when invoking this function as a callback. + value (bool): the value of this parameter after invocation. + Defaults to False, set to True when this flag is called. + + Returns: + int: the exit code. Always returns 0 in this case. + + """ if not value or ctx.resilient_parsing: return if ctx.command.name == "cli": diff --git a/opsdroid/cli/utils.py b/opsdroid/cli/utils.py --- a/opsdroid/cli/utils.py +++ b/opsdroid/cli/utils.py @@ -20,7 +20,21 @@ def edit_files(ctx, param, value): - """Open config/log file with favourite editor.""" + """Open config/log file with favourite editor. + + Args: + ctx (:obj:`click.Context`): The current click cli context. + param (dict): a dictionary of all parameters pass to the click + context when invoking this function as a callback. + value (string): the value of this parameter after invocation. + It is either "config" or "log" depending on the program + calling this function. + + Returns: + int: the exit code. Always returns 0 in this case. + + """ + if value == "config": file = DEFAULT_CONFIG_PATH if ctx.command.name == "cli": @@ -72,7 +86,13 @@ def check_dependencies(): - """Check for system dependencies required by opsdroid.""" + """Check for system dependencies required by opsdroid. + + Returns: + int: the exit code. Returns 1 if the Python version installed is + below 3.6. + + """ if sys.version_info.major < 3 or sys.version_info.minor < 6: logging.critical(_("Whoops! opsdroid requires python 3.6 or above.")) sys.exit(1)
{"golden_diff": "diff --git a/opsdroid/cli/config.py b/opsdroid/cli/config.py\n--- a/opsdroid/cli/config.py\n+++ b/opsdroid/cli/config.py\n@@ -7,7 +7,19 @@\n \n \n def print_example_config(ctx, param, value):\n- \"\"\"[Deprecated] Print out the example config.\"\"\"\n+ \"\"\"[Deprecated] Print out the example config.\n+\n+ Args:\n+ ctx (:obj:`click.Context`): The current click cli context.\n+ param (dict): a dictionary of all parameters pass to the click\n+ context when invoking this function as a callback.\n+ value (bool): the value of this parameter after invocation.\n+ Defaults to False, set to True when this flag is called.\n+\n+ Returns:\n+ int: the exit code. Always returns 0 in this case.\n+\n+ \"\"\"\n if not value or ctx.resilient_parsing:\n return\n if ctx.command.name == \"cli\":\ndiff --git a/opsdroid/cli/utils.py b/opsdroid/cli/utils.py\n--- a/opsdroid/cli/utils.py\n+++ b/opsdroid/cli/utils.py\n@@ -20,7 +20,21 @@\n \n \n def edit_files(ctx, param, value):\n- \"\"\"Open config/log file with favourite editor.\"\"\"\n+ \"\"\"Open config/log file with favourite editor.\n+\n+ Args:\n+ ctx (:obj:`click.Context`): The current click cli context.\n+ param (dict): a dictionary of all parameters pass to the click\n+ context when invoking this function as a callback.\n+ value (string): the value of this parameter after invocation.\n+ It is either \"config\" or \"log\" depending on the program\n+ calling this function.\n+\n+ Returns:\n+ int: the exit code. Always returns 0 in this case.\n+\n+ \"\"\"\n+\n if value == \"config\":\n file = DEFAULT_CONFIG_PATH\n if ctx.command.name == \"cli\":\n@@ -72,7 +86,13 @@\n \n \n def check_dependencies():\n- \"\"\"Check for system dependencies required by opsdroid.\"\"\"\n+ \"\"\"Check for system dependencies required by opsdroid.\n+\n+ Returns:\n+ int: the exit code. Returns 1 if the Python version installed is\n+ below 3.6.\n+\n+ \"\"\"\n if sys.version_info.major < 3 or sys.version_info.minor < 6:\n logging.critical(_(\"Whoops! opsdroid requires python 3.6 or above.\"))\n sys.exit(1)\n", "issue": "Add Google Style Docstrings\nWe should implement Google Style Docstrings to every function, method, class in opsdroid. This style will support existing documentation and will help in the future by generating documentation automatically.\r\n\r\nThis consists in a bit of effort so this issue can be worked by more than one contributor, just make sure that everyone knows what you are working on in order to avoid other contributors spending time on something that you are working on.\r\n\r\nIf you are unfamiliar with the Google Style Docstrings I'd recommend that you check these resources:\r\n\r\n - [Sphix 1.8.0+ - Google Style Docstrings](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html)\r\n\r\n\r\n\r\nDocstrings that need to be updated:\r\n\r\n- main.py\r\n - [x] configure_lang\r\n - [ ] configure_log\r\n - [ ] get_logging_level\r\n - [ ] check_dependencies\r\n - [ ] print_version\r\n - [ ] print_example_config\r\n - [ ] edit_files\r\n - [x] welcome_message\r\n- ~~helper.py~~\r\n - [x] get_opsdroid\r\n - [x] del_rw\r\n - [x] move_config_to_appdir\r\n- memory.py\r\n - [x] Memory\r\n - [x] get\r\n - [x] put\r\n - [x] _get_from_database\r\n - [x] _put_to_database\r\n- message.py\r\n - [x] Message\r\n - [x] __init__\r\n - [x] _thinking_delay\r\n - [x] _typing delay\r\n - [x] respond\r\n - [x] react\r\n- web.py\r\n - [ ] Web\r\n - [x] get_port\r\n - [x] get_host\r\n - [x] get_ssl_context\r\n - [ ] start\r\n - [ ] build_response\r\n - [ ] web_index_handler\r\n - [ ] web_stats_handler\r\n- matchers.py\r\n - [ ] match_regex\r\n - [ ] match_apiai_action\r\n - [ ] match_apiai_intent\r\n - [ ] match_dialogflow_action\r\n - [ ] match_dialogflow_intent\r\n - [ ] match_luisai_intent\r\n - [ ] match_rasanlu\r\n - [ ] match_recastai\r\n - [ ] match_witai\r\n - [ ] match_crontab\r\n - [ ] match_webhook\r\n - [ ] match_always\r\n- core.py\r\n - [ ] OpsDroid\r\n - [ ] default_connector\r\n - [ ] exit\r\n - [ ] critical\r\n - [ ] call_stop\r\n - [ ] disconnect\r\n - [ ] stop\r\n - [ ] load\r\n - [ ] start_loop\r\n - [x] setup_skills\r\n - [ ] train_parsers\r\n - [ ] start_connector_tasks\r\n - [ ] start_database\r\n - [ ] run_skill\r\n - [ ] get_ranked_skills\r\n - [ ] parse\r\n- loader.py\r\n - [ ] Loader\r\n - [x] import_module_from_spec\r\n - [x] import_module\r\n - [x] check_cache\r\n - [x] build_module_import_path\r\n - [x] build_module_install_path\r\n - [x] git_clone\r\n - [x] git_pull\r\n - [x] pip_install_deps\r\n - [x] create_default_config\r\n - [x] load_config_file\r\n - [ ] envvar_constructor\r\n - [ ] include_constructor\r\n - [x] setup_modules_directory\r\n - [x] load_modules_from_config\r\n - [x] _load_modules\r\n - [x] _install_module\r\n - [x] _update_module\r\n - [ ] _install_git_module\r\n - [x] _install_local_module\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n---- ORIGINAL POST ---- \r\nI've been wondering about this for a while now and I would like to know if we should replace/update all the docstrings in opsdroid with the Google Style doc strings. \r\n\r\nI think this could help new and old contributors to contribute and commit to opsdroid since the Google Style docstrings give more information about every method/function and specifies clearly what sort of input the function/method expects, what will it return and what will be raised (if applicable).\r\n\r\nThe downsize of this style is that the length of every .py file will increase due to the doc strings, but since most IDE's allow you to hide those fields it shouldn't be too bad.\r\n\r\nHere is a good example of Google Style Doc strings: [Sphix 1.8.0+ - Google Style Docstrings](http://www.sphinx-doc.org/en/master/ext/example_google.html)\r\n\r\nI would like to know what you all think about this idea and if its worth spending time on it.\n", "before_files": [{"content": "\"\"\"Utilities for the opsdroid CLI commands.\"\"\"\n\nimport click\nimport gettext\nimport os\nimport logging\nimport subprocess\nimport sys\nimport time\nimport warnings\n\nfrom opsdroid.const import (\n DEFAULT_LOG_FILENAME,\n LOCALE_DIR,\n DEFAULT_LANGUAGE,\n DEFAULT_CONFIG_PATH,\n)\n\n_LOGGER = logging.getLogger(\"opsdroid\")\n\n\ndef edit_files(ctx, param, value):\n \"\"\"Open config/log file with favourite editor.\"\"\"\n if value == \"config\":\n file = DEFAULT_CONFIG_PATH\n if ctx.command.name == \"cli\":\n warn_deprecated_cli_option(\n \"The flag -e/--edit-files has been deprecated. \"\n \"Please run `opsdroid config edit` instead.\"\n )\n elif value == \"log\":\n file = DEFAULT_LOG_FILENAME\n if ctx.command.name == \"cli\":\n warn_deprecated_cli_option(\n \"The flag -l/--view-log has been deprecated. \"\n \"Please run `opsdroid logs` instead.\"\n )\n else:\n return\n\n editor = os.environ.get(\"EDITOR\", \"vi\")\n if editor == \"vi\":\n click.echo(\n \"You are about to edit a file in vim. \\n\"\n \"Read the tutorial on vim at: https://bit.ly/2HRvvrB\"\n )\n time.sleep(3)\n\n subprocess.run([editor, file])\n ctx.exit(0)\n\n\ndef warn_deprecated_cli_option(text):\n \"\"\"Warn users that the cli option they have used is deprecated.\"\"\"\n print(f\"Warning: {text}\")\n warnings.warn(text, DeprecationWarning)\n\n\ndef configure_lang(config):\n \"\"\"Configure app language based on user config.\n\n Args:\n config: Language Configuration and it uses ISO 639-1 code.\n for more info https://en.m.wikipedia.org/wiki/List_of_ISO_639-1_codes\n\n\n \"\"\"\n lang_code = config.get(\"lang\", DEFAULT_LANGUAGE)\n if lang_code != DEFAULT_LANGUAGE:\n lang = gettext.translation(\"opsdroid\", LOCALE_DIR, (lang_code,), fallback=True)\n lang.install()\n\n\ndef check_dependencies():\n \"\"\"Check for system dependencies required by opsdroid.\"\"\"\n if sys.version_info.major < 3 or sys.version_info.minor < 6:\n logging.critical(_(\"Whoops! opsdroid requires python 3.6 or above.\"))\n sys.exit(1)\n\n\ndef welcome_message(config):\n \"\"\"Add welcome message if set to true in configuration.\n\n Args:\n config: config loaded by Loader\n\n Raises:\n KeyError: If 'welcome-message' key is not found in configuration file\n\n \"\"\"\n try:\n if config[\"welcome-message\"]:\n _LOGGER.info(\"=\" * 40)\n _LOGGER.info(\n _(\n \"You can customise your opsdroid by modifying \"\n \"your configuration.yaml\"\n )\n )\n _LOGGER.info(\n _(\"Read more at: \" \"http://opsdroid.readthedocs.io/#configuration\")\n )\n _LOGGER.info(_(\"Watch the Get Started Videos at: \" \"http://bit.ly/2fnC0Fh\"))\n _LOGGER.info(\n _(\n \"Install Opsdroid Desktop at: \\n\"\n \"https://github.com/opsdroid/opsdroid-desktop/\"\n \"releases\"\n )\n )\n _LOGGER.info(\"=\" * 40)\n except KeyError:\n _LOGGER.warning(\n _(\"'welcome-message: true/false' is missing in configuration.yaml\")\n )\n", "path": "opsdroid/cli/utils.py"}, {"content": "\"\"\"The config subcommand for opsdroid cli.\"\"\"\n\nimport click\n\nfrom opsdroid.cli.utils import edit_files, warn_deprecated_cli_option\nfrom opsdroid.const import EXAMPLE_CONFIG_FILE\n\n\ndef print_example_config(ctx, param, value):\n \"\"\"[Deprecated] Print out the example config.\"\"\"\n if not value or ctx.resilient_parsing:\n return\n if ctx.command.name == \"cli\":\n warn_deprecated_cli_option(\n \"The flag --gen-config has been deprecated. \"\n \"Please run `opsdroid config gen` instead.\"\n )\n with open(EXAMPLE_CONFIG_FILE, \"r\") as conf:\n click.echo(conf.read())\n ctx.exit(0)\n\n\[email protected]()\ndef config():\n \"\"\"Subcommands related to opsdroid configuration.\"\"\"\n\n\[email protected]()\[email protected]_context\ndef gen(ctx):\n \"\"\"Print out the example config.\"\"\"\n print_example_config(ctx, None, True)\n\n\[email protected]()\[email protected]_context\ndef edit(ctx):\n \"\"\"Print out the example config.\"\"\"\n edit_files(ctx, None, \"config\")\n", "path": "opsdroid/cli/config.py"}], "after_files": [{"content": "\"\"\"Utilities for the opsdroid CLI commands.\"\"\"\n\nimport click\nimport gettext\nimport os\nimport logging\nimport subprocess\nimport sys\nimport time\nimport warnings\n\nfrom opsdroid.const import (\n DEFAULT_LOG_FILENAME,\n LOCALE_DIR,\n DEFAULT_LANGUAGE,\n DEFAULT_CONFIG_PATH,\n)\n\n_LOGGER = logging.getLogger(\"opsdroid\")\n\n\ndef edit_files(ctx, param, value):\n \"\"\"Open config/log file with favourite editor.\n\n Args:\n ctx (:obj:`click.Context`): The current click cli context.\n param (dict): a dictionary of all parameters pass to the click\n context when invoking this function as a callback.\n value (string): the value of this parameter after invocation.\n It is either \"config\" or \"log\" depending on the program\n calling this function.\n\n Returns:\n int: the exit code. Always returns 0 in this case.\n\n \"\"\"\n\n if value == \"config\":\n file = DEFAULT_CONFIG_PATH\n if ctx.command.name == \"cli\":\n warn_deprecated_cli_option(\n \"The flag -e/--edit-files has been deprecated. \"\n \"Please run `opsdroid config edit` instead.\"\n )\n elif value == \"log\":\n file = DEFAULT_LOG_FILENAME\n if ctx.command.name == \"cli\":\n warn_deprecated_cli_option(\n \"The flag -l/--view-log has been deprecated. \"\n \"Please run `opsdroid logs` instead.\"\n )\n else:\n return\n\n editor = os.environ.get(\"EDITOR\", \"vi\")\n if editor == \"vi\":\n click.echo(\n \"You are about to edit a file in vim. \\n\"\n \"Read the tutorial on vim at: https://bit.ly/2HRvvrB\"\n )\n time.sleep(3)\n\n subprocess.run([editor, file])\n ctx.exit(0)\n\n\ndef warn_deprecated_cli_option(text):\n \"\"\"Warn users that the cli option they have used is deprecated.\"\"\"\n print(f\"Warning: {text}\")\n warnings.warn(text, DeprecationWarning)\n\n\ndef configure_lang(config):\n \"\"\"Configure app language based on user config.\n\n Args:\n config: Language Configuration and it uses ISO 639-1 code.\n for more info https://en.m.wikipedia.org/wiki/List_of_ISO_639-1_codes\n\n\n \"\"\"\n lang_code = config.get(\"lang\", DEFAULT_LANGUAGE)\n if lang_code != DEFAULT_LANGUAGE:\n lang = gettext.translation(\"opsdroid\", LOCALE_DIR, (lang_code,), fallback=True)\n lang.install()\n\n\ndef check_dependencies():\n \"\"\"Check for system dependencies required by opsdroid.\n\n Returns:\n int: the exit code. Returns 1 if the Python version installed is\n below 3.6.\n\n \"\"\"\n if sys.version_info.major < 3 or sys.version_info.minor < 6:\n logging.critical(_(\"Whoops! opsdroid requires python 3.6 or above.\"))\n sys.exit(1)\n\n\ndef welcome_message(config):\n \"\"\"Add welcome message if set to true in configuration.\n\n Args:\n config: config loaded by Loader\n\n Raises:\n KeyError: If 'welcome-message' key is not found in configuration file\n\n \"\"\"\n try:\n if config[\"welcome-message\"]:\n _LOGGER.info(\"=\" * 40)\n _LOGGER.info(\n _(\n \"You can customise your opsdroid by modifying \"\n \"your configuration.yaml\"\n )\n )\n _LOGGER.info(\n _(\"Read more at: \" \"http://opsdroid.readthedocs.io/#configuration\")\n )\n _LOGGER.info(_(\"Watch the Get Started Videos at: \" \"http://bit.ly/2fnC0Fh\"))\n _LOGGER.info(\n _(\n \"Install Opsdroid Desktop at: \\n\"\n \"https://github.com/opsdroid/opsdroid-desktop/\"\n \"releases\"\n )\n )\n _LOGGER.info(\"=\" * 40)\n except KeyError:\n _LOGGER.warning(\n _(\"'welcome-message: true/false' is missing in configuration.yaml\")\n )\n", "path": "opsdroid/cli/utils.py"}, {"content": "\"\"\"The config subcommand for opsdroid cli.\"\"\"\n\nimport click\n\nfrom opsdroid.cli.utils import edit_files, warn_deprecated_cli_option\nfrom opsdroid.const import EXAMPLE_CONFIG_FILE\n\n\ndef print_example_config(ctx, param, value):\n \"\"\"[Deprecated] Print out the example config.\n\n Args:\n ctx (:obj:`click.Context`): The current click cli context.\n param (dict): a dictionary of all parameters pass to the click\n context when invoking this function as a callback.\n value (bool): the value of this parameter after invocation.\n Defaults to False, set to True when this flag is called.\n\n Returns:\n int: the exit code. Always returns 0 in this case.\n\n \"\"\"\n if not value or ctx.resilient_parsing:\n return\n if ctx.command.name == \"cli\":\n warn_deprecated_cli_option(\n \"The flag --gen-config has been deprecated. \"\n \"Please run `opsdroid config gen` instead.\"\n )\n with open(EXAMPLE_CONFIG_FILE, \"r\") as conf:\n click.echo(conf.read())\n ctx.exit(0)\n\n\[email protected]()\ndef config():\n \"\"\"Subcommands related to opsdroid configuration.\"\"\"\n\n\[email protected]()\[email protected]_context\ndef gen(ctx):\n \"\"\"Print out the example config.\"\"\"\n print_example_config(ctx, None, True)\n\n\[email protected]()\[email protected]_context\ndef edit(ctx):\n \"\"\"Print out the example config.\"\"\"\n edit_files(ctx, None, \"config\")\n", "path": "opsdroid/cli/config.py"}]}
2,614
556
gh_patches_debug_19840
rasdani/github-patches
git_diff
hydroshare__hydroshare-5100
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- hsapi /scimeta/elements endpoint errors with no authentication **Description of the bug** /scimeta/elements hsapi endpoint responds with a system error when no authentication credentials are provided. Steps to reproduce the bug: 1. Go to https://www.hydroshare.org/hsapi/resource/16b27156f2b1483099f09d3b688e43fb/scimeta/elements/ 1. See error **Expected behavior** API endpoints should handle requests that do not provide authentication. Unauthenticated requests that make publicly accessible requests should provide a response. Unauthenticated requests that make privately accessible requests should respond with a 403. **Additional information** Environment: Request Method: GET Request URL: http://localhost:8000/hsapi/resource/068d77bb3f4c442194e9f08056aca1cf/scimeta/elements/ Django Version: 1.11.29 Python Version: 3.6.9 Installed Applications: ('mezzanine.boot', 'test_without_migrations', 'autocomplete_light', 'django.contrib.auth', 'oauth2_provider', 'corsheaders', 'django.contrib.contenttypes', 'django.contrib.redirects', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.sitemaps', 'django.contrib.gis', 'django.contrib.postgres', 'inplaceeditform', 'django_nose', 'django_irods', 'drf_yasg', 'theme', 'theme.blog_mods', 'heartbeat', 'mezzanine.conf', 'mezzanine.core', 'mezzanine.generic', 'mezzanine.blog', 'mezzanine.forms', 'mezzanine.pages', 'mezzanine.galleries', 'crispy_forms', 'mezzanine.accounts', 'haystack', 'rest_framework', 'robots', 'hs_core', 'hs_access_control', 'hs_labels', 'hs_metrics', 'irods_browser_app', 'hs_geo_raster_resource', 'ref_ts', 'hs_app_timeseries', 'widget_tweaks', 'hs_app_netCDF', 'hs_model_program', 'hs_modelinstance', 'hs_tools_resource', 'hs_swat_modelinstance', 'hs_geographic_feature_resource', 'hs_script_resource', 'hs_sitemap', 'hs_collection_resource', 'hs_modflow_modelinstance', 'hs_tracking', 'hs_file_types', 'hs_composite_resource', 'hs_rest_api', 'hs_dictionary', 'hs_odm2', 'security', 'markdown', 'hs_communities', 'hs_discover', 'debug_toolbar', 'filebrowser_safe', 'grappelli_safe', 'django.contrib.admin', 'django.contrib.staticfiles', 'django_comments') Installed Middleware: ('django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'mezzanine.core.request.CurrentRequestMiddleware', 'mezzanine.core.middleware.RedirectFallbackMiddleware', 'mezzanine.core.middleware.AdminLoginInterfaceSelectorMiddleware', 'mezzanine.core.middleware.SitePermissionMiddleware', 'mezzanine.pages.middleware.PageMiddleware', 'hs_core.robots.RobotFilter', 'hs_tracking.middleware.Tracking', 'debug_toolbar.middleware.DebugToolbarMiddleware') Traceback: File "/usr/local/lib/python3.6/site-packages/django/core/handlers/exception.py" in inner 41. response = get_response(request) File "/usr/local/lib/python3.6/site-packages/django/core/handlers/base.py" in _get_response 217. response = self.process_exception_by_middleware(e, request) File "/usr/local/lib/python3.6/site-packages/django/core/handlers/base.py" in _get_response 215. response = response.render() File "/usr/local/lib/python3.6/site-packages/django/template/response.py" in render 107. self.content = self.rendered_content File "/usr/local/lib/python3.6/site-packages/rest_framework/response.py" in rendered_content 70. ret = renderer.render(self.data, accepted_media_type, context) File "/usr/local/lib/python3.6/site-packages/rest_framework/renderers.py" in render 724. context = self.get_context(data, accepted_media_type, renderer_context) File "/usr/local/lib/python3.6/site-packages/rest_framework/renderers.py" in get_context 656. raw_data_put_form = self.get_raw_data_form(data, view, 'PUT', request) File "/usr/local/lib/python3.6/site-packages/rest_framework/renderers.py" in get_raw_data_form 552. serializer = view.get_serializer(instance=instance) File "/usr/local/lib/python3.6/site-packages/rest_framework/generics.py" in get_serializer 110. return serializer_class(*args, **kwargs) Exception Type: TypeError at /hsapi/resource/068d77bb3f4c442194e9f08056aca1cf/scimeta/elements/ Exception Value: 'CoreMetaDataSerializer' object is not callable --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `hs_core/views/resource_metadata_rest_api.py` Content: ``` 1 import logging 2 3 from django.http import QueryDict 4 5 from rest_framework.response import Response 6 from rest_framework.exceptions import ValidationError 7 from rest_framework import status 8 from rest_framework import generics 9 from rest_framework import serializers 10 11 from hs_core import hydroshare 12 from hs_core.models import Contributor, CoreMetaData, Coverage, Creator, Date, \ 13 Format, FundingAgency, Identifier, Subject, Relation, GeospatialRelation 14 from hs_core.views import utils as view_utils 15 from hs_core.views.utils import ACTION_TO_AUTHORIZE 16 17 logger = logging.getLogger(__name__) 18 19 20 class Identifiers(serializers.DictField): 21 child = serializers.CharField() 22 23 24 class PartySerializer(serializers.Serializer): 25 name = serializers.CharField() 26 hydroshare_user_id = serializers.IntegerField(required=False) 27 organization = serializers.CharField(required=False) 28 email = serializers.EmailField(required=False) 29 address = serializers.CharField(required=False) 30 phone = serializers.CharField(required=False) 31 homepage = serializers.URLField(required=False) 32 identifiers = Identifiers(required=False) 33 34 class Meta: 35 model = Creator 36 fields = {'name', 'hydroshare_user_id', 'organization', 'email', 37 'address', 'phone', 'homepage', 'identifiers'} 38 39 40 class CreatorSerializer(PartySerializer): 41 order = serializers.IntegerField(required=False) 42 43 class Meta: 44 model = Contributor 45 46 47 class DateSerializer(serializers.Serializer): 48 # term = 'Date' 49 type = serializers.CharField(required=False) 50 start_date = serializers.DateTimeField(required=False) 51 end_date = serializers.DateTimeField(required=False) 52 53 class Meta: 54 model = Date 55 56 57 class CoverageSerializer(serializers.Serializer): 58 type = serializers.CharField(required=False) 59 value = serializers.SerializerMethodField(required=False) 60 61 class Meta: 62 model = Coverage 63 64 def get_value(self, obj): 65 return obj.value 66 67 68 class FormatSerializer(serializers.Serializer): 69 value = serializers.CharField(required=False) 70 71 class Meta: 72 model = Format 73 74 75 class FundingAgencySerializer(serializers.Serializer): 76 agency_name = serializers.CharField() 77 award_title = serializers.CharField(required=False) 78 award_number = serializers.CharField(required=False) 79 agency_url = serializers.URLField(required=False) 80 81 class Meta: 82 model = FundingAgency 83 84 85 class IdentifierSerializer(serializers.Serializer): 86 name = serializers.CharField(required=False) 87 url = serializers.URLField(required=False) 88 89 class Meta: 90 model = Identifier 91 92 93 class SubjectSerializer(serializers.Serializer): 94 value = serializers.CharField(required=False) 95 96 class Meta: 97 model = Subject 98 99 100 class RelationSerializer(serializers.Serializer): 101 type = serializers.CharField(required=False) 102 value = serializers.CharField(required=False) 103 104 class Meta: 105 model = Relation 106 107 108 class GeospatialRelationSerializer(RelationSerializer): 109 type = serializers.CharField(required=False) 110 value = serializers.CharField(required=False) 111 text = serializers.CharField(required=False) 112 113 class Meta: 114 model = GeospatialRelation 115 116 117 class CoreMetaDataSerializer(serializers.Serializer): 118 title = serializers.CharField(required=False) 119 creators = CreatorSerializer(required=False, many=True) 120 contributors = PartySerializer(required=False, many=True) 121 coverages = CoverageSerializer(required=False, many=True) 122 dates = DateSerializer(required=False, many=True) 123 description = serializers.CharField(required=False) 124 formats = FormatSerializer(required=False, many=True) 125 funding_agencies = FundingAgencySerializer(required=False, many=True) 126 identifiers = IdentifierSerializer(required=False, many=True) 127 language = serializers.CharField(required=False) 128 rights = serializers.CharField(required=False) 129 type = serializers.CharField(required=False) 130 publisher = serializers.CharField(required=False) 131 subjects = SubjectSerializer(required=False, many=True) 132 relations = RelationSerializer(required=False, many=True) 133 geospatialrelations = GeospatialRelationSerializer(required=False, many=True) 134 135 class Meta: 136 model = CoreMetaData 137 138 139 class MetadataElementsRetrieveUpdate(generics.RetrieveUpdateDestroyAPIView): 140 """ 141 Retrieve resource science (Dublin Core) metadata 142 143 REST URL: /hsapi/resource/{pk}/scimeta/elements/ 144 HTTP method: GET 145 146 :type pk: str 147 :param pk: id of the resource 148 :return: resource science metadata as JSON document 149 :rtype: str 150 :raises: 151 NotFound: return json format: {'detail': 'No resource was found for resource id:pk'} 152 PermissionDenied: return json format: {'detail': 'You do not have permission to perform 153 this action.'} 154 155 REST URL: /hsapi/resource/{pk}/scimeta/elements/ 156 HTTP method: PUT 157 158 :type pk: str 159 :param pk: id of the resource 160 :type request: JSON formatted string 161 :param request: resource metadata 162 :return: updated resource science metadata as JSON document 163 :rtype: str 164 :raises: 165 NotFound: return json format: {'detail': 'No resource was found for resource id':pk} 166 PermissionDenied: return json format: {'detail': 'You do not have permission to perform 167 this action.'} 168 ValidationError: return json format: {parameter-1': ['error message-1'], 169 'parameter-2': ['error message-2'], .. } 170 """ 171 ACCEPT_FORMATS = ('application/json',) 172 173 allowed_methods = ('GET', 'PUT') 174 175 # Overwritten by resource types with extended metadata 176 serializer_class = CoreMetaDataSerializer 177 178 def get(self, request, pk): 179 view_utils.authorize(request, pk, needed_permission=ACTION_TO_AUTHORIZE.VIEW_METADATA) 180 resource = hydroshare.get_resource_by_shortkey(shortkey=pk) 181 serializer = resource.metadata.serializer 182 self.serializer_class = resource.metadata.serializer 183 return Response(data=serializer.data, status=status.HTTP_200_OK) 184 185 def put(self, request, pk): 186 # Update science metadata 187 resource, _, _ = view_utils.authorize( 188 request, pk, 189 needed_permission=ACTION_TO_AUTHORIZE.EDIT_RESOURCE) 190 191 metadata = [] 192 put_data = request.data.copy() 193 194 # convert the QueryDict to dict 195 if isinstance(put_data, QueryDict): 196 put_data = put_data.dict() 197 try: 198 resource.metadata.parse_for_bulk_update(put_data, metadata) 199 hydroshare.update_science_metadata(pk=pk, metadata=metadata, user=request.user) 200 except Exception as ex: 201 error_msg = { 202 'resource': "Resource metadata update failed: %s, %s" 203 % (ex.__class__, str(ex)) 204 } 205 raise ValidationError(detail=error_msg) 206 207 resource = hydroshare.get_resource_by_shortkey(shortkey=pk) 208 serializer = resource.metadata.serializer 209 self.serializer_class = serializer 210 return Response(data=serializer.data, status=status.HTTP_202_ACCEPTED) 211 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/hs_core/views/resource_metadata_rest_api.py b/hs_core/views/resource_metadata_rest_api.py --- a/hs_core/views/resource_metadata_rest_api.py +++ b/hs_core/views/resource_metadata_rest_api.py @@ -179,7 +179,6 @@ view_utils.authorize(request, pk, needed_permission=ACTION_TO_AUTHORIZE.VIEW_METADATA) resource = hydroshare.get_resource_by_shortkey(shortkey=pk) serializer = resource.metadata.serializer - self.serializer_class = resource.metadata.serializer return Response(data=serializer.data, status=status.HTTP_200_OK) def put(self, request, pk): @@ -206,5 +205,4 @@ resource = hydroshare.get_resource_by_shortkey(shortkey=pk) serializer = resource.metadata.serializer - self.serializer_class = serializer return Response(data=serializer.data, status=status.HTTP_202_ACCEPTED)
{"golden_diff": "diff --git a/hs_core/views/resource_metadata_rest_api.py b/hs_core/views/resource_metadata_rest_api.py\n--- a/hs_core/views/resource_metadata_rest_api.py\n+++ b/hs_core/views/resource_metadata_rest_api.py\n@@ -179,7 +179,6 @@\n view_utils.authorize(request, pk, needed_permission=ACTION_TO_AUTHORIZE.VIEW_METADATA)\n resource = hydroshare.get_resource_by_shortkey(shortkey=pk)\n serializer = resource.metadata.serializer\n- self.serializer_class = resource.metadata.serializer\n return Response(data=serializer.data, status=status.HTTP_200_OK)\n \n def put(self, request, pk):\n@@ -206,5 +205,4 @@\n \n resource = hydroshare.get_resource_by_shortkey(shortkey=pk)\n serializer = resource.metadata.serializer\n- self.serializer_class = serializer\n return Response(data=serializer.data, status=status.HTTP_202_ACCEPTED)\n", "issue": "hsapi /scimeta/elements endpoint errors with no authentication\n**Description of the bug**\r\n/scimeta/elements hsapi endpoint responds with a system error when no authentication credentials are provided.\r\n\r\nSteps to reproduce the bug:\r\n1. Go to https://www.hydroshare.org/hsapi/resource/16b27156f2b1483099f09d3b688e43fb/scimeta/elements/\r\n1. See error\r\n\r\n**Expected behavior**\r\nAPI endpoints should handle requests that do not provide authentication. Unauthenticated requests that make publicly accessible requests should provide a response. Unauthenticated requests that make privately accessible requests should respond with a 403.\r\n\r\n**Additional information**\r\nEnvironment:\r\n\r\n\r\nRequest Method: GET\r\nRequest URL: http://localhost:8000/hsapi/resource/068d77bb3f4c442194e9f08056aca1cf/scimeta/elements/\r\n\r\nDjango Version: 1.11.29\r\nPython Version: 3.6.9\r\nInstalled Applications:\r\n('mezzanine.boot',\r\n 'test_without_migrations',\r\n 'autocomplete_light',\r\n 'django.contrib.auth',\r\n 'oauth2_provider',\r\n 'corsheaders',\r\n 'django.contrib.contenttypes',\r\n 'django.contrib.redirects',\r\n 'django.contrib.sessions',\r\n 'django.contrib.sites',\r\n 'django.contrib.sitemaps',\r\n 'django.contrib.gis',\r\n 'django.contrib.postgres',\r\n 'inplaceeditform',\r\n 'django_nose',\r\n 'django_irods',\r\n 'drf_yasg',\r\n 'theme',\r\n 'theme.blog_mods',\r\n 'heartbeat',\r\n 'mezzanine.conf',\r\n 'mezzanine.core',\r\n 'mezzanine.generic',\r\n 'mezzanine.blog',\r\n 'mezzanine.forms',\r\n 'mezzanine.pages',\r\n 'mezzanine.galleries',\r\n 'crispy_forms',\r\n 'mezzanine.accounts',\r\n 'haystack',\r\n 'rest_framework',\r\n 'robots',\r\n 'hs_core',\r\n 'hs_access_control',\r\n 'hs_labels',\r\n 'hs_metrics',\r\n 'irods_browser_app',\r\n 'hs_geo_raster_resource',\r\n 'ref_ts',\r\n 'hs_app_timeseries',\r\n 'widget_tweaks',\r\n 'hs_app_netCDF',\r\n 'hs_model_program',\r\n 'hs_modelinstance',\r\n 'hs_tools_resource',\r\n 'hs_swat_modelinstance',\r\n 'hs_geographic_feature_resource',\r\n 'hs_script_resource',\r\n 'hs_sitemap',\r\n 'hs_collection_resource',\r\n 'hs_modflow_modelinstance',\r\n 'hs_tracking',\r\n 'hs_file_types',\r\n 'hs_composite_resource',\r\n 'hs_rest_api',\r\n 'hs_dictionary',\r\n 'hs_odm2',\r\n 'security',\r\n 'markdown',\r\n 'hs_communities',\r\n 'hs_discover',\r\n 'debug_toolbar',\r\n 'filebrowser_safe',\r\n 'grappelli_safe',\r\n 'django.contrib.admin',\r\n 'django.contrib.staticfiles',\r\n 'django_comments')\r\nInstalled Middleware:\r\n('django.contrib.sessions.middleware.SessionMiddleware',\r\n 'django.middleware.locale.LocaleMiddleware',\r\n 'django.contrib.auth.middleware.AuthenticationMiddleware',\r\n 'corsheaders.middleware.CorsMiddleware',\r\n 'django.middleware.common.CommonMiddleware',\r\n 'django.middleware.csrf.CsrfViewMiddleware',\r\n 'django.contrib.messages.middleware.MessageMiddleware',\r\n 'mezzanine.core.request.CurrentRequestMiddleware',\r\n 'mezzanine.core.middleware.RedirectFallbackMiddleware',\r\n 'mezzanine.core.middleware.AdminLoginInterfaceSelectorMiddleware',\r\n 'mezzanine.core.middleware.SitePermissionMiddleware',\r\n 'mezzanine.pages.middleware.PageMiddleware',\r\n 'hs_core.robots.RobotFilter',\r\n 'hs_tracking.middleware.Tracking',\r\n 'debug_toolbar.middleware.DebugToolbarMiddleware')\r\n\r\n\r\n\r\nTraceback:\r\n\r\nFile \"/usr/local/lib/python3.6/site-packages/django/core/handlers/exception.py\" in inner\r\n 41. response = get_response(request)\r\n\r\nFile \"/usr/local/lib/python3.6/site-packages/django/core/handlers/base.py\" in _get_response\r\n 217. response = self.process_exception_by_middleware(e, request)\r\n\r\nFile \"/usr/local/lib/python3.6/site-packages/django/core/handlers/base.py\" in _get_response\r\n 215. response = response.render()\r\n\r\nFile \"/usr/local/lib/python3.6/site-packages/django/template/response.py\" in render\r\n 107. self.content = self.rendered_content\r\n\r\nFile \"/usr/local/lib/python3.6/site-packages/rest_framework/response.py\" in rendered_content\r\n 70. ret = renderer.render(self.data, accepted_media_type, context)\r\n\r\nFile \"/usr/local/lib/python3.6/site-packages/rest_framework/renderers.py\" in render\r\n 724. context = self.get_context(data, accepted_media_type, renderer_context)\r\n\r\nFile \"/usr/local/lib/python3.6/site-packages/rest_framework/renderers.py\" in get_context\r\n 656. raw_data_put_form = self.get_raw_data_form(data, view, 'PUT', request)\r\n\r\nFile \"/usr/local/lib/python3.6/site-packages/rest_framework/renderers.py\" in get_raw_data_form\r\n 552. serializer = view.get_serializer(instance=instance)\r\n\r\nFile \"/usr/local/lib/python3.6/site-packages/rest_framework/generics.py\" in get_serializer\r\n 110. return serializer_class(*args, **kwargs)\r\n\r\nException Type: TypeError at /hsapi/resource/068d77bb3f4c442194e9f08056aca1cf/scimeta/elements/\r\nException Value: 'CoreMetaDataSerializer' object is not callable\r\n\r\n\n", "before_files": [{"content": "import logging\n\nfrom django.http import QueryDict\n\nfrom rest_framework.response import Response\nfrom rest_framework.exceptions import ValidationError\nfrom rest_framework import status\nfrom rest_framework import generics\nfrom rest_framework import serializers\n\nfrom hs_core import hydroshare\nfrom hs_core.models import Contributor, CoreMetaData, Coverage, Creator, Date, \\\n Format, FundingAgency, Identifier, Subject, Relation, GeospatialRelation\nfrom hs_core.views import utils as view_utils\nfrom hs_core.views.utils import ACTION_TO_AUTHORIZE\n\nlogger = logging.getLogger(__name__)\n\n\nclass Identifiers(serializers.DictField):\n child = serializers.CharField()\n\n\nclass PartySerializer(serializers.Serializer):\n name = serializers.CharField()\n hydroshare_user_id = serializers.IntegerField(required=False)\n organization = serializers.CharField(required=False)\n email = serializers.EmailField(required=False)\n address = serializers.CharField(required=False)\n phone = serializers.CharField(required=False)\n homepage = serializers.URLField(required=False)\n identifiers = Identifiers(required=False)\n\n class Meta:\n model = Creator\n fields = {'name', 'hydroshare_user_id', 'organization', 'email',\n 'address', 'phone', 'homepage', 'identifiers'}\n\n\nclass CreatorSerializer(PartySerializer):\n order = serializers.IntegerField(required=False)\n\n class Meta:\n model = Contributor\n\n\nclass DateSerializer(serializers.Serializer):\n # term = 'Date'\n type = serializers.CharField(required=False)\n start_date = serializers.DateTimeField(required=False)\n end_date = serializers.DateTimeField(required=False)\n\n class Meta:\n model = Date\n\n\nclass CoverageSerializer(serializers.Serializer):\n type = serializers.CharField(required=False)\n value = serializers.SerializerMethodField(required=False)\n\n class Meta:\n model = Coverage\n\n def get_value(self, obj):\n return obj.value\n\n\nclass FormatSerializer(serializers.Serializer):\n value = serializers.CharField(required=False)\n\n class Meta:\n model = Format\n\n\nclass FundingAgencySerializer(serializers.Serializer):\n agency_name = serializers.CharField()\n award_title = serializers.CharField(required=False)\n award_number = serializers.CharField(required=False)\n agency_url = serializers.URLField(required=False)\n\n class Meta:\n model = FundingAgency\n\n\nclass IdentifierSerializer(serializers.Serializer):\n name = serializers.CharField(required=False)\n url = serializers.URLField(required=False)\n\n class Meta:\n model = Identifier\n\n\nclass SubjectSerializer(serializers.Serializer):\n value = serializers.CharField(required=False)\n\n class Meta:\n model = Subject\n\n\nclass RelationSerializer(serializers.Serializer):\n type = serializers.CharField(required=False)\n value = serializers.CharField(required=False)\n\n class Meta:\n model = Relation\n\n\nclass GeospatialRelationSerializer(RelationSerializer):\n type = serializers.CharField(required=False)\n value = serializers.CharField(required=False)\n text = serializers.CharField(required=False)\n\n class Meta:\n model = GeospatialRelation\n\n\nclass CoreMetaDataSerializer(serializers.Serializer):\n title = serializers.CharField(required=False)\n creators = CreatorSerializer(required=False, many=True)\n contributors = PartySerializer(required=False, many=True)\n coverages = CoverageSerializer(required=False, many=True)\n dates = DateSerializer(required=False, many=True)\n description = serializers.CharField(required=False)\n formats = FormatSerializer(required=False, many=True)\n funding_agencies = FundingAgencySerializer(required=False, many=True)\n identifiers = IdentifierSerializer(required=False, many=True)\n language = serializers.CharField(required=False)\n rights = serializers.CharField(required=False)\n type = serializers.CharField(required=False)\n publisher = serializers.CharField(required=False)\n subjects = SubjectSerializer(required=False, many=True)\n relations = RelationSerializer(required=False, many=True)\n geospatialrelations = GeospatialRelationSerializer(required=False, many=True)\n\n class Meta:\n model = CoreMetaData\n\n\nclass MetadataElementsRetrieveUpdate(generics.RetrieveUpdateDestroyAPIView):\n \"\"\"\n Retrieve resource science (Dublin Core) metadata\n\n REST URL: /hsapi/resource/{pk}/scimeta/elements/\n HTTP method: GET\n\n :type pk: str\n :param pk: id of the resource\n :return: resource science metadata as JSON document\n :rtype: str\n :raises:\n NotFound: return json format: {'detail': 'No resource was found for resource id:pk'}\n PermissionDenied: return json format: {'detail': 'You do not have permission to perform\n this action.'}\n\n REST URL: /hsapi/resource/{pk}/scimeta/elements/\n HTTP method: PUT\n\n :type pk: str\n :param pk: id of the resource\n :type request: JSON formatted string\n :param request: resource metadata\n :return: updated resource science metadata as JSON document\n :rtype: str\n :raises:\n NotFound: return json format: {'detail': 'No resource was found for resource id':pk}\n PermissionDenied: return json format: {'detail': 'You do not have permission to perform\n this action.'}\n ValidationError: return json format: {parameter-1': ['error message-1'],\n 'parameter-2': ['error message-2'], .. }\n \"\"\"\n ACCEPT_FORMATS = ('application/json',)\n\n allowed_methods = ('GET', 'PUT')\n\n # Overwritten by resource types with extended metadata\n serializer_class = CoreMetaDataSerializer\n\n def get(self, request, pk):\n view_utils.authorize(request, pk, needed_permission=ACTION_TO_AUTHORIZE.VIEW_METADATA)\n resource = hydroshare.get_resource_by_shortkey(shortkey=pk)\n serializer = resource.metadata.serializer\n self.serializer_class = resource.metadata.serializer\n return Response(data=serializer.data, status=status.HTTP_200_OK)\n\n def put(self, request, pk):\n # Update science metadata\n resource, _, _ = view_utils.authorize(\n request, pk,\n needed_permission=ACTION_TO_AUTHORIZE.EDIT_RESOURCE)\n\n metadata = []\n put_data = request.data.copy()\n\n # convert the QueryDict to dict\n if isinstance(put_data, QueryDict):\n put_data = put_data.dict()\n try:\n resource.metadata.parse_for_bulk_update(put_data, metadata)\n hydroshare.update_science_metadata(pk=pk, metadata=metadata, user=request.user)\n except Exception as ex:\n error_msg = {\n 'resource': \"Resource metadata update failed: %s, %s\"\n % (ex.__class__, str(ex))\n }\n raise ValidationError(detail=error_msg)\n\n resource = hydroshare.get_resource_by_shortkey(shortkey=pk)\n serializer = resource.metadata.serializer\n self.serializer_class = serializer\n return Response(data=serializer.data, status=status.HTTP_202_ACCEPTED)\n", "path": "hs_core/views/resource_metadata_rest_api.py"}], "after_files": [{"content": "import logging\n\nfrom django.http import QueryDict\n\nfrom rest_framework.response import Response\nfrom rest_framework.exceptions import ValidationError\nfrom rest_framework import status\nfrom rest_framework import generics\nfrom rest_framework import serializers\n\nfrom hs_core import hydroshare\nfrom hs_core.models import Contributor, CoreMetaData, Coverage, Creator, Date, \\\n Format, FundingAgency, Identifier, Subject, Relation, GeospatialRelation\nfrom hs_core.views import utils as view_utils\nfrom hs_core.views.utils import ACTION_TO_AUTHORIZE\n\nlogger = logging.getLogger(__name__)\n\n\nclass Identifiers(serializers.DictField):\n child = serializers.CharField()\n\n\nclass PartySerializer(serializers.Serializer):\n name = serializers.CharField()\n hydroshare_user_id = serializers.IntegerField(required=False)\n organization = serializers.CharField(required=False)\n email = serializers.EmailField(required=False)\n address = serializers.CharField(required=False)\n phone = serializers.CharField(required=False)\n homepage = serializers.URLField(required=False)\n identifiers = Identifiers(required=False)\n\n class Meta:\n model = Creator\n fields = {'name', 'hydroshare_user_id', 'organization', 'email',\n 'address', 'phone', 'homepage', 'identifiers'}\n\n\nclass CreatorSerializer(PartySerializer):\n order = serializers.IntegerField(required=False)\n\n class Meta:\n model = Contributor\n\n\nclass DateSerializer(serializers.Serializer):\n # term = 'Date'\n type = serializers.CharField(required=False)\n start_date = serializers.DateTimeField(required=False)\n end_date = serializers.DateTimeField(required=False)\n\n class Meta:\n model = Date\n\n\nclass CoverageSerializer(serializers.Serializer):\n type = serializers.CharField(required=False)\n value = serializers.SerializerMethodField(required=False)\n\n class Meta:\n model = Coverage\n\n def get_value(self, obj):\n return obj.value\n\n\nclass FormatSerializer(serializers.Serializer):\n value = serializers.CharField(required=False)\n\n class Meta:\n model = Format\n\n\nclass FundingAgencySerializer(serializers.Serializer):\n agency_name = serializers.CharField()\n award_title = serializers.CharField(required=False)\n award_number = serializers.CharField(required=False)\n agency_url = serializers.URLField(required=False)\n\n class Meta:\n model = FundingAgency\n\n\nclass IdentifierSerializer(serializers.Serializer):\n name = serializers.CharField(required=False)\n url = serializers.URLField(required=False)\n\n class Meta:\n model = Identifier\n\n\nclass SubjectSerializer(serializers.Serializer):\n value = serializers.CharField(required=False)\n\n class Meta:\n model = Subject\n\n\nclass RelationSerializer(serializers.Serializer):\n type = serializers.CharField(required=False)\n value = serializers.CharField(required=False)\n\n class Meta:\n model = Relation\n\n\nclass GeospatialRelationSerializer(RelationSerializer):\n type = serializers.CharField(required=False)\n value = serializers.CharField(required=False)\n text = serializers.CharField(required=False)\n\n class Meta:\n model = GeospatialRelation\n\n\nclass CoreMetaDataSerializer(serializers.Serializer):\n title = serializers.CharField(required=False)\n creators = CreatorSerializer(required=False, many=True)\n contributors = PartySerializer(required=False, many=True)\n coverages = CoverageSerializer(required=False, many=True)\n dates = DateSerializer(required=False, many=True)\n description = serializers.CharField(required=False)\n formats = FormatSerializer(required=False, many=True)\n funding_agencies = FundingAgencySerializer(required=False, many=True)\n identifiers = IdentifierSerializer(required=False, many=True)\n language = serializers.CharField(required=False)\n rights = serializers.CharField(required=False)\n type = serializers.CharField(required=False)\n publisher = serializers.CharField(required=False)\n subjects = SubjectSerializer(required=False, many=True)\n relations = RelationSerializer(required=False, many=True)\n geospatialrelations = GeospatialRelationSerializer(required=False, many=True)\n\n class Meta:\n model = CoreMetaData\n\n\nclass MetadataElementsRetrieveUpdate(generics.RetrieveUpdateDestroyAPIView):\n \"\"\"\n Retrieve resource science (Dublin Core) metadata\n\n REST URL: /hsapi/resource/{pk}/scimeta/elements/\n HTTP method: GET\n\n :type pk: str\n :param pk: id of the resource\n :return: resource science metadata as JSON document\n :rtype: str\n :raises:\n NotFound: return json format: {'detail': 'No resource was found for resource id:pk'}\n PermissionDenied: return json format: {'detail': 'You do not have permission to perform\n this action.'}\n\n REST URL: /hsapi/resource/{pk}/scimeta/elements/\n HTTP method: PUT\n\n :type pk: str\n :param pk: id of the resource\n :type request: JSON formatted string\n :param request: resource metadata\n :return: updated resource science metadata as JSON document\n :rtype: str\n :raises:\n NotFound: return json format: {'detail': 'No resource was found for resource id':pk}\n PermissionDenied: return json format: {'detail': 'You do not have permission to perform\n this action.'}\n ValidationError: return json format: {parameter-1': ['error message-1'],\n 'parameter-2': ['error message-2'], .. }\n \"\"\"\n ACCEPT_FORMATS = ('application/json',)\n\n allowed_methods = ('GET', 'PUT')\n\n # Overwritten by resource types with extended metadata\n serializer_class = CoreMetaDataSerializer\n\n def get(self, request, pk):\n view_utils.authorize(request, pk, needed_permission=ACTION_TO_AUTHORIZE.VIEW_METADATA)\n resource = hydroshare.get_resource_by_shortkey(shortkey=pk)\n serializer = resource.metadata.serializer\n return Response(data=serializer.data, status=status.HTTP_200_OK)\n\n def put(self, request, pk):\n # Update science metadata\n resource, _, _ = view_utils.authorize(\n request, pk,\n needed_permission=ACTION_TO_AUTHORIZE.EDIT_RESOURCE)\n\n metadata = []\n put_data = request.data.copy()\n\n # convert the QueryDict to dict\n if isinstance(put_data, QueryDict):\n put_data = put_data.dict()\n try:\n resource.metadata.parse_for_bulk_update(put_data, metadata)\n hydroshare.update_science_metadata(pk=pk, metadata=metadata, user=request.user)\n except Exception as ex:\n error_msg = {\n 'resource': \"Resource metadata update failed: %s, %s\"\n % (ex.__class__, str(ex))\n }\n raise ValidationError(detail=error_msg)\n\n resource = hydroshare.get_resource_by_shortkey(shortkey=pk)\n serializer = resource.metadata.serializer\n return Response(data=serializer.data, status=status.HTTP_202_ACCEPTED)\n", "path": "hs_core/views/resource_metadata_rest_api.py"}]}
3,349
202
gh_patches_debug_16787
rasdani/github-patches
git_diff
tensorflow__addons-219
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- WeightNormalization fails after update Yesterday I cut a 0.3 release on pypi test, but as a sanity check on the weightnorm changes #208 I ran a quick regression check: https://colab.research.google.com/drive/1RQlVR9X7vj8q3W3sJC6YA3Cq45XTXrau The new layer is failing with loss of nan. Looking at the test coverage for this layer I'm struggling how to best catch this without running a full model. The losses for our toy test cases do not return nan so perhaps we need a true regression test like mnist? EDIT -- Fix colab link --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `tensorflow_addons/layers/wrappers.py` Content: ``` 1 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 # ============================================================================= 15 from __future__ import absolute_import 16 from __future__ import division 17 from __future__ import print_function 18 19 import tensorflow as tf 20 from tensorflow_addons.utils import keras_utils 21 22 23 @keras_utils.register_keras_custom_object 24 class WeightNormalization(tf.keras.layers.Wrapper): 25 """This wrapper reparameterizes a layer by decoupling the weight's 26 magnitude and direction. 27 28 This speeds up convergence by improving the 29 conditioning of the optimization problem. 30 Weight Normalization: A Simple Reparameterization to Accelerate 31 Training of Deep Neural Networks: https://arxiv.org/abs/1602.07868 32 Tim Salimans, Diederik P. Kingma (2016) 33 WeightNormalization wrapper works for keras and tf layers. 34 ```python 35 net = WeightNormalization( 36 tf.keras.layers.Conv2D(2, 2, activation='relu'), 37 input_shape=(32, 32, 3), 38 data_init=True)(x) 39 net = WeightNormalization( 40 tf.keras.layers.Conv2D(16, 5, activation='relu'), 41 data_init=True)(net) 42 net = WeightNormalization( 43 tf.keras.layers.Dense(120, activation='relu'), 44 data_init=True)(net) 45 net = WeightNormalization( 46 tf.keras.layers.Dense(n_classes), 47 data_init=True)(net) 48 ``` 49 Arguments: 50 layer: a layer instance. 51 data_init: If `True` use data dependent variable initialization 52 Raises: 53 ValueError: If not initialized with a `Layer` instance. 54 ValueError: If `Layer` does not contain a `kernel` of weights 55 NotImplementedError: If `data_init` is True and running graph execution 56 """ 57 58 def __init__(self, layer, data_init=True, **kwargs): 59 super(WeightNormalization, self).__init__(layer, **kwargs) 60 self.data_init = data_init 61 self._initialized = False 62 self._track_trackable(layer, name='layer') 63 64 def build(self, input_shape): 65 """Build `Layer`""" 66 input_shape = tf.TensorShape(input_shape).as_list() 67 self.input_spec = tf.keras.layers.InputSpec(shape=input_shape) 68 69 if not self.layer.built: 70 self.layer.build(input_shape) 71 72 if not hasattr(self.layer, 'kernel'): 73 raise ValueError('`WeightNormalization` must wrap a layer that' 74 ' contains a `kernel` for weights') 75 76 # The kernel's filter or unit dimension is -1 77 self.layer_depth = int(self.layer.kernel.shape[-1]) 78 self.kernel_norm_axes = list( 79 range(self.layer.kernel.shape.rank - 1)) 80 81 self.v = self.layer.kernel 82 self.g = self.add_variable( 83 name="g", 84 shape=(self.layer_depth,), 85 initializer=tf.keras.initializers.get('ones'), 86 dtype=self.layer.kernel.dtype, 87 trainable=True) 88 89 super(WeightNormalization, self).build() 90 91 def call(self, inputs): 92 """Call `Layer`""" 93 if not self._initialized: 94 self._initialize_weights(inputs) 95 96 self._compute_weights() # Recompute weights for each forward pass 97 output = self.layer(inputs) 98 return output 99 100 def compute_output_shape(self, input_shape): 101 return tf.TensorShape( 102 self.layer.compute_output_shape(input_shape).as_list()) 103 104 def _compute_weights(self): 105 """Generate normalized weights. 106 107 This method will update the value of self.layer.kernel with the 108 normalized value, so that the layer is ready for call(). 109 """ 110 with tf.name_scope('compute_weights'): 111 self.layer.kernel = tf.nn.l2_normalize( 112 self.v, axis=self.kernel_norm_axes) * self.g 113 114 def _initialize_weights(self, inputs): 115 """Initialize weight g. 116 117 The initial value of g could either from the initial value in v, 118 or by the input value if self.data_init is True. 119 """ 120 if self.data_init: 121 self._data_dep_init(inputs) 122 else: 123 self._init_norm() 124 self._initialized = True 125 126 def _init_norm(self): 127 """Set the weight g with the norm of the weight vector.""" 128 with tf.name_scope('init_norm'): 129 flat = tf.reshape(self.v, [-1, self.layer_depth]) 130 self.g.assign( 131 tf.reshape(tf.linalg.norm(flat, axis=0), (self.layer_depth,))) 132 133 def _data_dep_init(self, inputs): 134 """Data dependent initialization.""" 135 136 with tf.name_scope('data_dep_init'): 137 # Generate data dependent init values 138 existing_activation = self.layer.activation 139 self.layer.activation = None 140 x_init = self.layer(inputs) 141 data_norm_axes = list(range(x_init.shape.rank - 1)) 142 m_init, v_init = tf.nn.moments(x_init, data_norm_axes) 143 scale_init = 1. / tf.math.sqrt(v_init + 1e-10) 144 145 # Assign data dependent init values 146 self.g.assign(self.g * scale_init) 147 if hasattr(self.layer, 'bias'): 148 self.layer.bias.assign(-m_init * scale_init) 149 self.layer.activation = existing_activation 150 151 def get_config(self): 152 config = {'data_init': self.data_init} 153 base_config = super(WeightNormalization, self).get_config() 154 return dict(list(base_config.items()) + list(config.items())) 155 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/tensorflow_addons/layers/wrappers.py b/tensorflow_addons/layers/wrappers.py --- a/tensorflow_addons/layers/wrappers.py +++ b/tensorflow_addons/layers/wrappers.py @@ -88,6 +88,7 @@ super(WeightNormalization, self).build() + @tf.function def call(self, inputs): """Call `Layer`""" if not self._initialized: @@ -143,9 +144,9 @@ scale_init = 1. / tf.math.sqrt(v_init + 1e-10) # Assign data dependent init values - self.g.assign(self.g * scale_init) + self.g = self.g * scale_init if hasattr(self.layer, 'bias'): - self.layer.bias.assign(-m_init * scale_init) + self.layer.bias = -m_init * scale_init self.layer.activation = existing_activation def get_config(self):
{"golden_diff": "diff --git a/tensorflow_addons/layers/wrappers.py b/tensorflow_addons/layers/wrappers.py\n--- a/tensorflow_addons/layers/wrappers.py\n+++ b/tensorflow_addons/layers/wrappers.py\n@@ -88,6 +88,7 @@\n \n super(WeightNormalization, self).build()\n \n+ @tf.function\n def call(self, inputs):\n \"\"\"Call `Layer`\"\"\"\n if not self._initialized:\n@@ -143,9 +144,9 @@\n scale_init = 1. / tf.math.sqrt(v_init + 1e-10)\n \n # Assign data dependent init values\n- self.g.assign(self.g * scale_init)\n+ self.g = self.g * scale_init\n if hasattr(self.layer, 'bias'):\n- self.layer.bias.assign(-m_init * scale_init)\n+ self.layer.bias = -m_init * scale_init\n self.layer.activation = existing_activation\n \n def get_config(self):\n", "issue": "WeightNormalization fails after update\nYesterday I cut a 0.3 release on pypi test, but as a sanity check on the weightnorm changes #208 I ran a quick regression check:\r\n\r\nhttps://colab.research.google.com/drive/1RQlVR9X7vj8q3W3sJC6YA3Cq45XTXrau\r\n\r\nThe new layer is failing with loss of nan. Looking at the test coverage for this layer I'm struggling how to best catch this without running a full model. The losses for our toy test cases do not return nan so perhaps we need a true regression test like mnist?\r\n\r\nEDIT -- Fix colab link\n", "before_files": [{"content": "# Copyright 2019 The TensorFlow Authors. All Rights Reserved.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n# =============================================================================\nfrom __future__ import absolute_import\nfrom __future__ import division\nfrom __future__ import print_function\n\nimport tensorflow as tf\nfrom tensorflow_addons.utils import keras_utils\n\n\n@keras_utils.register_keras_custom_object\nclass WeightNormalization(tf.keras.layers.Wrapper):\n \"\"\"This wrapper reparameterizes a layer by decoupling the weight's\n magnitude and direction.\n\n This speeds up convergence by improving the\n conditioning of the optimization problem.\n Weight Normalization: A Simple Reparameterization to Accelerate\n Training of Deep Neural Networks: https://arxiv.org/abs/1602.07868\n Tim Salimans, Diederik P. Kingma (2016)\n WeightNormalization wrapper works for keras and tf layers.\n ```python\n net = WeightNormalization(\n tf.keras.layers.Conv2D(2, 2, activation='relu'),\n input_shape=(32, 32, 3),\n data_init=True)(x)\n net = WeightNormalization(\n tf.keras.layers.Conv2D(16, 5, activation='relu'),\n data_init=True)(net)\n net = WeightNormalization(\n tf.keras.layers.Dense(120, activation='relu'),\n data_init=True)(net)\n net = WeightNormalization(\n tf.keras.layers.Dense(n_classes),\n data_init=True)(net)\n ```\n Arguments:\n layer: a layer instance.\n data_init: If `True` use data dependent variable initialization\n Raises:\n ValueError: If not initialized with a `Layer` instance.\n ValueError: If `Layer` does not contain a `kernel` of weights\n NotImplementedError: If `data_init` is True and running graph execution\n \"\"\"\n\n def __init__(self, layer, data_init=True, **kwargs):\n super(WeightNormalization, self).__init__(layer, **kwargs)\n self.data_init = data_init\n self._initialized = False\n self._track_trackable(layer, name='layer')\n\n def build(self, input_shape):\n \"\"\"Build `Layer`\"\"\"\n input_shape = tf.TensorShape(input_shape).as_list()\n self.input_spec = tf.keras.layers.InputSpec(shape=input_shape)\n\n if not self.layer.built:\n self.layer.build(input_shape)\n\n if not hasattr(self.layer, 'kernel'):\n raise ValueError('`WeightNormalization` must wrap a layer that'\n ' contains a `kernel` for weights')\n\n # The kernel's filter or unit dimension is -1\n self.layer_depth = int(self.layer.kernel.shape[-1])\n self.kernel_norm_axes = list(\n range(self.layer.kernel.shape.rank - 1))\n\n self.v = self.layer.kernel\n self.g = self.add_variable(\n name=\"g\",\n shape=(self.layer_depth,),\n initializer=tf.keras.initializers.get('ones'),\n dtype=self.layer.kernel.dtype,\n trainable=True)\n\n super(WeightNormalization, self).build()\n\n def call(self, inputs):\n \"\"\"Call `Layer`\"\"\"\n if not self._initialized:\n self._initialize_weights(inputs)\n\n self._compute_weights() # Recompute weights for each forward pass\n output = self.layer(inputs)\n return output\n\n def compute_output_shape(self, input_shape):\n return tf.TensorShape(\n self.layer.compute_output_shape(input_shape).as_list())\n\n def _compute_weights(self):\n \"\"\"Generate normalized weights.\n\n This method will update the value of self.layer.kernel with the\n normalized value, so that the layer is ready for call().\n \"\"\"\n with tf.name_scope('compute_weights'):\n self.layer.kernel = tf.nn.l2_normalize(\n self.v, axis=self.kernel_norm_axes) * self.g\n\n def _initialize_weights(self, inputs):\n \"\"\"Initialize weight g.\n\n The initial value of g could either from the initial value in v,\n or by the input value if self.data_init is True.\n \"\"\"\n if self.data_init:\n self._data_dep_init(inputs)\n else:\n self._init_norm()\n self._initialized = True\n\n def _init_norm(self):\n \"\"\"Set the weight g with the norm of the weight vector.\"\"\"\n with tf.name_scope('init_norm'):\n flat = tf.reshape(self.v, [-1, self.layer_depth])\n self.g.assign(\n tf.reshape(tf.linalg.norm(flat, axis=0), (self.layer_depth,)))\n\n def _data_dep_init(self, inputs):\n \"\"\"Data dependent initialization.\"\"\"\n\n with tf.name_scope('data_dep_init'):\n # Generate data dependent init values\n existing_activation = self.layer.activation\n self.layer.activation = None\n x_init = self.layer(inputs)\n data_norm_axes = list(range(x_init.shape.rank - 1))\n m_init, v_init = tf.nn.moments(x_init, data_norm_axes)\n scale_init = 1. / tf.math.sqrt(v_init + 1e-10)\n\n # Assign data dependent init values\n self.g.assign(self.g * scale_init)\n if hasattr(self.layer, 'bias'):\n self.layer.bias.assign(-m_init * scale_init)\n self.layer.activation = existing_activation\n\n def get_config(self):\n config = {'data_init': self.data_init}\n base_config = super(WeightNormalization, self).get_config()\n return dict(list(base_config.items()) + list(config.items()))\n", "path": "tensorflow_addons/layers/wrappers.py"}], "after_files": [{"content": "# Copyright 2019 The TensorFlow Authors. All Rights Reserved.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n# =============================================================================\nfrom __future__ import absolute_import\nfrom __future__ import division\nfrom __future__ import print_function\n\nimport tensorflow as tf\nfrom tensorflow_addons.utils import keras_utils\n\n\n@keras_utils.register_keras_custom_object\nclass WeightNormalization(tf.keras.layers.Wrapper):\n \"\"\"This wrapper reparameterizes a layer by decoupling the weight's\n magnitude and direction.\n\n This speeds up convergence by improving the\n conditioning of the optimization problem.\n Weight Normalization: A Simple Reparameterization to Accelerate\n Training of Deep Neural Networks: https://arxiv.org/abs/1602.07868\n Tim Salimans, Diederik P. Kingma (2016)\n WeightNormalization wrapper works for keras and tf layers.\n ```python\n net = WeightNormalization(\n tf.keras.layers.Conv2D(2, 2, activation='relu'),\n input_shape=(32, 32, 3),\n data_init=True)(x)\n net = WeightNormalization(\n tf.keras.layers.Conv2D(16, 5, activation='relu'),\n data_init=True)(net)\n net = WeightNormalization(\n tf.keras.layers.Dense(120, activation='relu'),\n data_init=True)(net)\n net = WeightNormalization(\n tf.keras.layers.Dense(n_classes),\n data_init=True)(net)\n ```\n Arguments:\n layer: a layer instance.\n data_init: If `True` use data dependent variable initialization\n Raises:\n ValueError: If not initialized with a `Layer` instance.\n ValueError: If `Layer` does not contain a `kernel` of weights\n NotImplementedError: If `data_init` is True and running graph execution\n \"\"\"\n\n def __init__(self, layer, data_init=True, **kwargs):\n super(WeightNormalization, self).__init__(layer, **kwargs)\n self.data_init = data_init\n self._initialized = False\n self._track_trackable(layer, name='layer')\n\n def build(self, input_shape):\n \"\"\"Build `Layer`\"\"\"\n input_shape = tf.TensorShape(input_shape).as_list()\n self.input_spec = tf.keras.layers.InputSpec(shape=input_shape)\n\n if not self.layer.built:\n self.layer.build(input_shape)\n\n if not hasattr(self.layer, 'kernel'):\n raise ValueError('`WeightNormalization` must wrap a layer that'\n ' contains a `kernel` for weights')\n\n # The kernel's filter or unit dimension is -1\n self.layer_depth = int(self.layer.kernel.shape[-1])\n self.kernel_norm_axes = list(\n range(self.layer.kernel.shape.rank - 1))\n\n self.v = self.layer.kernel\n self.g = self.add_variable(\n name=\"g\",\n shape=(self.layer_depth,),\n initializer=tf.keras.initializers.get('ones'),\n dtype=self.layer.kernel.dtype,\n trainable=True)\n\n super(WeightNormalization, self).build()\n\n @tf.function\n def call(self, inputs):\n \"\"\"Call `Layer`\"\"\"\n if not self._initialized:\n self._initialize_weights(inputs)\n\n self._compute_weights() # Recompute weights for each forward pass\n output = self.layer(inputs)\n return output\n\n def compute_output_shape(self, input_shape):\n return tf.TensorShape(\n self.layer.compute_output_shape(input_shape).as_list())\n\n def _compute_weights(self):\n \"\"\"Generate normalized weights.\n\n This method will update the value of self.layer.kernel with the\n normalized value, so that the layer is ready for call().\n \"\"\"\n with tf.name_scope('compute_weights'):\n self.layer.kernel = tf.nn.l2_normalize(\n self.v, axis=self.kernel_norm_axes) * self.g\n\n def _initialize_weights(self, inputs):\n \"\"\"Initialize weight g.\n\n The initial value of g could either from the initial value in v,\n or by the input value if self.data_init is True.\n \"\"\"\n if self.data_init:\n self._data_dep_init(inputs)\n else:\n self._init_norm()\n self._initialized = True\n\n def _init_norm(self):\n \"\"\"Set the weight g with the norm of the weight vector.\"\"\"\n with tf.name_scope('init_norm'):\n flat = tf.reshape(self.v, [-1, self.layer_depth])\n self.g.assign(\n tf.reshape(tf.linalg.norm(flat, axis=0), (self.layer_depth,)))\n\n def _data_dep_init(self, inputs):\n \"\"\"Data dependent initialization.\"\"\"\n\n with tf.name_scope('data_dep_init'):\n # Generate data dependent init values\n existing_activation = self.layer.activation\n self.layer.activation = None\n x_init = self.layer(inputs)\n data_norm_axes = list(range(x_init.shape.rank - 1))\n m_init, v_init = tf.nn.moments(x_init, data_norm_axes)\n scale_init = 1. / tf.math.sqrt(v_init + 1e-10)\n\n # Assign data dependent init values\n self.g = self.g * scale_init\n if hasattr(self.layer, 'bias'):\n self.layer.bias = -m_init * scale_init\n self.layer.activation = existing_activation\n\n def get_config(self):\n config = {'data_init': self.data_init}\n base_config = super(WeightNormalization, self).get_config()\n return dict(list(base_config.items()) + list(config.items()))\n", "path": "tensorflow_addons/layers/wrappers.py"}]}
2,050
222
gh_patches_debug_12300
rasdani/github-patches
git_diff
mlcommons__GaNDLF-729
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Model saving is calling on `git` which causes an issue when the `subprocess` library is from the system **Describe the bug** When the `subprocess` library is called from the system installation of python, `git` invocation does not work, since there is no git repo for the system python installation. **To Reproduce** Steps to reproduce the behavior: 1. Start GaNDLF training 2. See the following error: ```bash $ > cat ${error_log} [SNIP!] File "/geode2/home/u070/patis/BigRed200/projects/gandlf_mine/GANDLF/compute/training_loop.py", line 290, in training_loop save_model( File "/geode2/home/u070/patis/BigRed200/projects/gandlf_mine/GANDLF/utils/modelio.py", line 159, in save_model subprocess.check_output(["git", "rev-parse", "HEAD"]) File "/N/soft/sles15/deeplearning/Python-3.10.10/Lib/subprocess.py", line 421, in check_output return run(*popenargs, stdout=PIPE, timeout=timeout, check=True, File "/N/soft/sles15/deeplearning/Python-3.10.10/Lib/subprocess.py", line 503, in run with Popen(*popenargs, **kwargs) as process: File "/N/soft/sles15/deeplearning/Python-3.10.10/Lib/subprocess.py", line 971, in __init__ self._execute_child(args, executable, preexec_fn, close_fds, File "/N/soft/sles15/deeplearning/Python-3.10.10/Lib/subprocess.py", line 1847, in _execute_child raise child_exception_type(errno_num, err_msg, err_filename) ``` **Expected behavior** The model saving should work. **Screenshots** N.A. **GaNDLF Version** <!-- Put the output of the following command: python -c 'import GANDLF as g;print(g.__version__)' --> 0.0.17-dev **Desktop (please complete the following information):** N.A. **Additional context** This is seen for the IU BigRed cluster. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `GANDLF/utils/modelio.py` Content: ``` 1 import hashlib 2 import os 3 import subprocess 4 from typing import Any, Dict 5 6 import torch 7 8 from ..version import __version__ 9 from .generic import get_unique_timestamp 10 11 # these are the base keys for the model dictionary to save 12 model_dict_full = { 13 "epoch": 0, 14 "model_state_dict": None, 15 "optimizer_state_dict": None, 16 "loss": None, 17 "timestamp": None, 18 "timestamp_hash": None, 19 "git_hash": None, 20 "version": None, 21 } 22 23 model_dict_required = { 24 "model_state_dict": None, 25 "optimizer_state_dict": None, 26 } 27 28 best_model_path_end = "_best.pth.tar" 29 latest_model_path_end = "_latest.pth.tar" 30 initial_model_path_end = "_initial.pth.tar" 31 32 33 def optimize_and_save_model(model, params, path, onnx_export=True): 34 """ 35 Perform post-training optimization and save it to a file. 36 37 Args: 38 model (torch.nn.Module): Trained torch model. 39 params (dict): The parameter dictionary. 40 path (str): The path to save the model dictionary to. 41 onnx_export (bool): Whether to export to ONNX and OpenVINO. 42 """ 43 # Check if ONNX export is enabled in the parameter dictionary 44 onnx_export = params["model"].get("onnx_export", onnx_export) 45 46 # Check for incompatible topologies and disable ONNX export 47 # Customized imagenet_vgg no longer supported for ONNX export 48 if onnx_export: 49 architecture = params["model"]["architecture"] 50 if architecture in ["sdnet", "brain_age"] or "imagenet_vgg" in architecture: 51 onnx_export = False 52 53 if not onnx_export: 54 # Print a warning if ONNX export is disabled and not already warned 55 if "onnx_print" not in params: 56 print("WARNING: Current model is not supported by ONNX/OpenVINO!") 57 params["onnx_print"] = True 58 return 59 else: 60 try: 61 print("Optimizing the best model.") 62 num_channel = params["model"]["num_channels"] 63 model_dimension = params["model"]["dimension"] 64 input_shape = params["patch_size"] 65 onnx_path = path 66 if not onnx_path.endswith(".onnx"): 67 onnx_path = onnx_path.replace("pth.tar", "onnx") 68 69 if model_dimension == 2: 70 dummy_input = torch.randn( 71 (1, num_channel, input_shape[0], input_shape[1]) 72 ) 73 else: 74 dummy_input = torch.randn( 75 (1, num_channel, input_shape[0], input_shape[1], input_shape[2]) 76 ) 77 78 # Export the model to ONNX format 79 with torch.no_grad(): 80 torch.onnx.export( 81 model.to("cpu"), 82 dummy_input.to("cpu"), 83 onnx_path, 84 opset_version=11, 85 export_params=True, 86 verbose=True, 87 input_names=["input"], 88 output_names=["output"], 89 ) 90 except RuntimeWarning: 91 print("WARNING: Cannot export to ONNX model.") 92 return 93 94 # Check if OpenVINO is present and try to convert the ONNX model 95 openvino_present = False 96 try: 97 import openvino as ov 98 from openvino.tools.mo import convert_model 99 from openvino.runtime import get_version 100 101 openvino_present = False 102 # check for the correct openvino version to prevent inadvertent api breaks 103 if "2023.0.1" in get_version(): 104 openvino_present = True 105 except ImportError: 106 print("WARNING: OpenVINO is not present.") 107 108 if openvino_present: 109 xml_path = onnx_path.replace("onnx", "xml") 110 bin_path = onnx_path.replace("onnx", "bin") 111 try: 112 if model_dimension == 2: 113 ov_model = convert_model( 114 onnx_path, 115 input_shape=(1, num_channel, input_shape[0], input_shape[1]), 116 ) 117 else: 118 ov_model = convert_model( 119 onnx_path, 120 input_shape=( 121 1, 122 num_channel, 123 input_shape[0], 124 input_shape[1], 125 input_shape[2], 126 ), 127 ) 128 ov.runtime.serialize(ov_model, xml_path=xml_path, bin_path=bin_path) 129 except Exception as e: 130 print("WARNING: OpenVINO Model Optimizer IR conversion failed: " + e) 131 132 133 def save_model( 134 model_dict: Dict[str, Any], 135 model: torch.nn.Module, 136 params: Dict[str, Any], 137 path: str, 138 onnx_export: bool = True, 139 ): 140 """ 141 Save the model dictionary to a file. 142 143 Args: 144 model_dict (dict): Model dictionary to save. 145 model (torch.nn.Module): Trained torch model. 146 params (dict): The parameter dictionary. 147 path (str): The path to save the model dictionary to. 148 onnx_export (bool): Whether to export to ONNX and OpenVINO. 149 """ 150 model_dict["timestamp"] = get_unique_timestamp() 151 model_dict["timestamp_hash"] = hashlib.sha256( 152 str(model_dict["timestamp"]).encode("utf-8") 153 ).hexdigest() 154 model_dict["version"] = __version__ 155 model_dict["parameters"] = params 156 157 try: 158 model_dict["git_hash"] = ( 159 subprocess.check_output(["git", "rev-parse", "HEAD"]) 160 .decode("ascii") 161 .strip() 162 ) 163 except subprocess.CalledProcessError: 164 model_dict["git_hash"] = None 165 166 torch.save(model_dict, path) 167 168 # post-training optimization 169 optimize_and_save_model(model, params, path, onnx_export=onnx_export) 170 171 172 def load_model( 173 path: str, device: torch.device, full_sanity_check: bool = True 174 ) -> Dict[str, Any]: 175 """ 176 Load a model dictionary from a file. 177 178 Args: 179 path (str): The path to save the model dictionary to. 180 device (torch.device): The device to run the model on. 181 full_sanity_check (bool): Whether to run full sanity checking on the model. 182 183 Returns: 184 dict: Model dictionary containing model parameters and metadata. 185 """ 186 model_dict = torch.load(path, map_location=device) 187 188 # check if the model dictionary is complete 189 if full_sanity_check: 190 incomplete_keys = [ 191 key for key in model_dict_full.keys() if key not in model_dict.keys() 192 ] 193 if len(incomplete_keys) > 0: 194 raise RuntimeWarning( 195 "Model dictionary is incomplete; the following keys are missing:", 196 incomplete_keys, 197 ) 198 199 # check if required keys are absent, and if so raise an error 200 incomplete_required_keys = [ 201 key for key in model_dict_required.keys() if key not in model_dict.keys() 202 ] 203 if len(incomplete_required_keys) > 0: 204 raise KeyError( 205 "Model dictionary is incomplete; the following keys are missing:", 206 incomplete_required_keys, 207 ) 208 209 return model_dict 210 211 212 def load_ov_model(path: str, device: str = "CPU"): 213 """ 214 Load an OpenVINO IR model from an .xml file. 215 216 Args: 217 path (str): The path to the OpenVINO .xml file. 218 device (str): The device to run inference, can be "CPU", "GPU" or "MULTI:CPU,GPU". Default to be "CPU". 219 220 Returns: 221 exec_net (OpenVINO executable net): executable OpenVINO model. 222 input_blob (str): Input name. 223 output_blob (str): Output name. 224 """ 225 226 try: 227 from openvino import runtime as ov 228 except ImportError: 229 raise ImportError("OpenVINO inference engine is not configured correctly.") 230 231 core = ov.Core() 232 if device.lower() == "cuda": 233 device = "GPU" 234 235 if device == "GPU": 236 core.set_property({"CACHE_DIR": os.path.dirname(os.path.abspath(path))}) 237 238 model = core.read_model(model=path, weights=path.replace("xml", "bin")) 239 compiled_model = core.compile_model(model=model, device_name=device.upper()) 240 input_layer = compiled_model.inputs 241 output_layer = compiled_model.outputs 242 243 return compiled_model, input_layer, output_layer 244 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/GANDLF/utils/modelio.py b/GANDLF/utils/modelio.py --- a/GANDLF/utils/modelio.py +++ b/GANDLF/utils/modelio.py @@ -155,13 +155,14 @@ model_dict["parameters"] = params try: + # this will try to encode the git hash of the current GaNDLF codebase, and reverts to "None" if not found model_dict["git_hash"] = ( - subprocess.check_output(["git", "rev-parse", "HEAD"]) + subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=os.getcwd()) .decode("ascii") .strip() ) - except subprocess.CalledProcessError: - model_dict["git_hash"] = None + except (subprocess.CalledProcessError, FileNotFoundError): + model_dict["git_hash"] = "None" torch.save(model_dict, path)
{"golden_diff": "diff --git a/GANDLF/utils/modelio.py b/GANDLF/utils/modelio.py\n--- a/GANDLF/utils/modelio.py\n+++ b/GANDLF/utils/modelio.py\n@@ -155,13 +155,14 @@\n model_dict[\"parameters\"] = params\n \n try:\n+ # this will try to encode the git hash of the current GaNDLF codebase, and reverts to \"None\" if not found\n model_dict[\"git_hash\"] = (\n- subprocess.check_output([\"git\", \"rev-parse\", \"HEAD\"])\n+ subprocess.check_output([\"git\", \"rev-parse\", \"HEAD\"], cwd=os.getcwd())\n .decode(\"ascii\")\n .strip()\n )\n- except subprocess.CalledProcessError:\n- model_dict[\"git_hash\"] = None\n+ except (subprocess.CalledProcessError, FileNotFoundError):\n+ model_dict[\"git_hash\"] = \"None\"\n \n torch.save(model_dict, path)\n", "issue": "Model saving is calling on `git` which causes an issue when the `subprocess` library is from the system\n**Describe the bug**\r\nWhen the `subprocess` library is called from the system installation of python, `git` invocation does not work, since there is no git repo for the system python installation. \r\n\r\n**To Reproduce**\r\nSteps to reproduce the behavior:\r\n1. Start GaNDLF training\r\n2. See the following error:\r\n```bash\r\n$ > cat ${error_log}\r\n[SNIP!]\r\n File \"/geode2/home/u070/patis/BigRed200/projects/gandlf_mine/GANDLF/compute/training_loop.py\", line 290, in training_loop\r\n save_model(\r\n File \"/geode2/home/u070/patis/BigRed200/projects/gandlf_mine/GANDLF/utils/modelio.py\", line 159, in save_model\r\n subprocess.check_output([\"git\", \"rev-parse\", \"HEAD\"])\r\n File \"/N/soft/sles15/deeplearning/Python-3.10.10/Lib/subprocess.py\", line 421, in check_output\r\n return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,\r\n File \"/N/soft/sles15/deeplearning/Python-3.10.10/Lib/subprocess.py\", line 503, in run\r\n with Popen(*popenargs, **kwargs) as process:\r\n File \"/N/soft/sles15/deeplearning/Python-3.10.10/Lib/subprocess.py\", line 971, in __init__\r\n self._execute_child(args, executable, preexec_fn, close_fds,\r\n File \"/N/soft/sles15/deeplearning/Python-3.10.10/Lib/subprocess.py\", line 1847, in _execute_child\r\n raise child_exception_type(errno_num, err_msg, err_filename)\r\n```\r\n\r\n**Expected behavior**\r\nThe model saving should work.\r\n\r\n**Screenshots**\r\nN.A.\r\n\r\n**GaNDLF Version**\r\n<!-- Put the output of the following command:\r\npython -c 'import GANDLF as g;print(g.__version__)'\r\n-->\r\n0.0.17-dev\r\n\r\n**Desktop (please complete the following information):**\r\nN.A.\r\n\r\n**Additional context**\r\nThis is seen for the IU BigRed cluster. \n", "before_files": [{"content": "import hashlib\nimport os\nimport subprocess\nfrom typing import Any, Dict\n\nimport torch\n\nfrom ..version import __version__\nfrom .generic import get_unique_timestamp\n\n# these are the base keys for the model dictionary to save\nmodel_dict_full = {\n \"epoch\": 0,\n \"model_state_dict\": None,\n \"optimizer_state_dict\": None,\n \"loss\": None,\n \"timestamp\": None,\n \"timestamp_hash\": None,\n \"git_hash\": None,\n \"version\": None,\n}\n\nmodel_dict_required = {\n \"model_state_dict\": None,\n \"optimizer_state_dict\": None,\n}\n\nbest_model_path_end = \"_best.pth.tar\"\nlatest_model_path_end = \"_latest.pth.tar\"\ninitial_model_path_end = \"_initial.pth.tar\"\n\n\ndef optimize_and_save_model(model, params, path, onnx_export=True):\n \"\"\"\n Perform post-training optimization and save it to a file.\n\n Args:\n model (torch.nn.Module): Trained torch model.\n params (dict): The parameter dictionary.\n path (str): The path to save the model dictionary to.\n onnx_export (bool): Whether to export to ONNX and OpenVINO.\n \"\"\"\n # Check if ONNX export is enabled in the parameter dictionary\n onnx_export = params[\"model\"].get(\"onnx_export\", onnx_export)\n\n # Check for incompatible topologies and disable ONNX export\n # Customized imagenet_vgg no longer supported for ONNX export\n if onnx_export:\n architecture = params[\"model\"][\"architecture\"]\n if architecture in [\"sdnet\", \"brain_age\"] or \"imagenet_vgg\" in architecture:\n onnx_export = False\n\n if not onnx_export:\n # Print a warning if ONNX export is disabled and not already warned\n if \"onnx_print\" not in params:\n print(\"WARNING: Current model is not supported by ONNX/OpenVINO!\")\n params[\"onnx_print\"] = True\n return\n else:\n try:\n print(\"Optimizing the best model.\")\n num_channel = params[\"model\"][\"num_channels\"]\n model_dimension = params[\"model\"][\"dimension\"]\n input_shape = params[\"patch_size\"]\n onnx_path = path\n if not onnx_path.endswith(\".onnx\"):\n onnx_path = onnx_path.replace(\"pth.tar\", \"onnx\")\n\n if model_dimension == 2:\n dummy_input = torch.randn(\n (1, num_channel, input_shape[0], input_shape[1])\n )\n else:\n dummy_input = torch.randn(\n (1, num_channel, input_shape[0], input_shape[1], input_shape[2])\n )\n\n # Export the model to ONNX format\n with torch.no_grad():\n torch.onnx.export(\n model.to(\"cpu\"),\n dummy_input.to(\"cpu\"),\n onnx_path,\n opset_version=11,\n export_params=True,\n verbose=True,\n input_names=[\"input\"],\n output_names=[\"output\"],\n )\n except RuntimeWarning:\n print(\"WARNING: Cannot export to ONNX model.\")\n return\n\n # Check if OpenVINO is present and try to convert the ONNX model\n openvino_present = False\n try:\n import openvino as ov\n from openvino.tools.mo import convert_model\n from openvino.runtime import get_version\n\n openvino_present = False\n # check for the correct openvino version to prevent inadvertent api breaks\n if \"2023.0.1\" in get_version():\n openvino_present = True\n except ImportError:\n print(\"WARNING: OpenVINO is not present.\")\n\n if openvino_present:\n xml_path = onnx_path.replace(\"onnx\", \"xml\")\n bin_path = onnx_path.replace(\"onnx\", \"bin\")\n try:\n if model_dimension == 2:\n ov_model = convert_model(\n onnx_path,\n input_shape=(1, num_channel, input_shape[0], input_shape[1]),\n )\n else:\n ov_model = convert_model(\n onnx_path,\n input_shape=(\n 1,\n num_channel,\n input_shape[0],\n input_shape[1],\n input_shape[2],\n ),\n )\n ov.runtime.serialize(ov_model, xml_path=xml_path, bin_path=bin_path)\n except Exception as e:\n print(\"WARNING: OpenVINO Model Optimizer IR conversion failed: \" + e)\n\n\ndef save_model(\n model_dict: Dict[str, Any],\n model: torch.nn.Module,\n params: Dict[str, Any],\n path: str,\n onnx_export: bool = True,\n):\n \"\"\"\n Save the model dictionary to a file.\n\n Args:\n model_dict (dict): Model dictionary to save.\n model (torch.nn.Module): Trained torch model.\n params (dict): The parameter dictionary.\n path (str): The path to save the model dictionary to.\n onnx_export (bool): Whether to export to ONNX and OpenVINO.\n \"\"\"\n model_dict[\"timestamp\"] = get_unique_timestamp()\n model_dict[\"timestamp_hash\"] = hashlib.sha256(\n str(model_dict[\"timestamp\"]).encode(\"utf-8\")\n ).hexdigest()\n model_dict[\"version\"] = __version__\n model_dict[\"parameters\"] = params\n\n try:\n model_dict[\"git_hash\"] = (\n subprocess.check_output([\"git\", \"rev-parse\", \"HEAD\"])\n .decode(\"ascii\")\n .strip()\n )\n except subprocess.CalledProcessError:\n model_dict[\"git_hash\"] = None\n\n torch.save(model_dict, path)\n\n # post-training optimization\n optimize_and_save_model(model, params, path, onnx_export=onnx_export)\n\n\ndef load_model(\n path: str, device: torch.device, full_sanity_check: bool = True\n) -> Dict[str, Any]:\n \"\"\"\n Load a model dictionary from a file.\n\n Args:\n path (str): The path to save the model dictionary to.\n device (torch.device): The device to run the model on.\n full_sanity_check (bool): Whether to run full sanity checking on the model.\n\n Returns:\n dict: Model dictionary containing model parameters and metadata.\n \"\"\"\n model_dict = torch.load(path, map_location=device)\n\n # check if the model dictionary is complete\n if full_sanity_check:\n incomplete_keys = [\n key for key in model_dict_full.keys() if key not in model_dict.keys()\n ]\n if len(incomplete_keys) > 0:\n raise RuntimeWarning(\n \"Model dictionary is incomplete; the following keys are missing:\",\n incomplete_keys,\n )\n\n # check if required keys are absent, and if so raise an error\n incomplete_required_keys = [\n key for key in model_dict_required.keys() if key not in model_dict.keys()\n ]\n if len(incomplete_required_keys) > 0:\n raise KeyError(\n \"Model dictionary is incomplete; the following keys are missing:\",\n incomplete_required_keys,\n )\n\n return model_dict\n\n\ndef load_ov_model(path: str, device: str = \"CPU\"):\n \"\"\"\n Load an OpenVINO IR model from an .xml file.\n\n Args:\n path (str): The path to the OpenVINO .xml file.\n device (str): The device to run inference, can be \"CPU\", \"GPU\" or \"MULTI:CPU,GPU\". Default to be \"CPU\".\n\n Returns:\n exec_net (OpenVINO executable net): executable OpenVINO model.\n input_blob (str): Input name.\n output_blob (str): Output name.\n \"\"\"\n\n try:\n from openvino import runtime as ov\n except ImportError:\n raise ImportError(\"OpenVINO inference engine is not configured correctly.\")\n\n core = ov.Core()\n if device.lower() == \"cuda\":\n device = \"GPU\"\n\n if device == \"GPU\":\n core.set_property({\"CACHE_DIR\": os.path.dirname(os.path.abspath(path))})\n\n model = core.read_model(model=path, weights=path.replace(\"xml\", \"bin\"))\n compiled_model = core.compile_model(model=model, device_name=device.upper())\n input_layer = compiled_model.inputs\n output_layer = compiled_model.outputs\n\n return compiled_model, input_layer, output_layer\n", "path": "GANDLF/utils/modelio.py"}], "after_files": [{"content": "import hashlib\nimport os\nimport subprocess\nfrom typing import Any, Dict\n\nimport torch\n\nfrom ..version import __version__\nfrom .generic import get_unique_timestamp\n\n# these are the base keys for the model dictionary to save\nmodel_dict_full = {\n \"epoch\": 0,\n \"model_state_dict\": None,\n \"optimizer_state_dict\": None,\n \"loss\": None,\n \"timestamp\": None,\n \"timestamp_hash\": None,\n \"git_hash\": None,\n \"version\": None,\n}\n\nmodel_dict_required = {\n \"model_state_dict\": None,\n \"optimizer_state_dict\": None,\n}\n\nbest_model_path_end = \"_best.pth.tar\"\nlatest_model_path_end = \"_latest.pth.tar\"\ninitial_model_path_end = \"_initial.pth.tar\"\n\n\ndef optimize_and_save_model(model, params, path, onnx_export=True):\n \"\"\"\n Perform post-training optimization and save it to a file.\n\n Args:\n model (torch.nn.Module): Trained torch model.\n params (dict): The parameter dictionary.\n path (str): The path to save the model dictionary to.\n onnx_export (bool): Whether to export to ONNX and OpenVINO.\n \"\"\"\n # Check if ONNX export is enabled in the parameter dictionary\n onnx_export = params[\"model\"].get(\"onnx_export\", onnx_export)\n\n # Check for incompatible topologies and disable ONNX export\n # Customized imagenet_vgg no longer supported for ONNX export\n if onnx_export:\n architecture = params[\"model\"][\"architecture\"]\n if architecture in [\"sdnet\", \"brain_age\"] or \"imagenet_vgg\" in architecture:\n onnx_export = False\n\n if not onnx_export:\n # Print a warning if ONNX export is disabled and not already warned\n if \"onnx_print\" not in params:\n print(\"WARNING: Current model is not supported by ONNX/OpenVINO!\")\n params[\"onnx_print\"] = True\n return\n else:\n try:\n print(\"Optimizing the best model.\")\n num_channel = params[\"model\"][\"num_channels\"]\n model_dimension = params[\"model\"][\"dimension\"]\n input_shape = params[\"patch_size\"]\n onnx_path = path\n if not onnx_path.endswith(\".onnx\"):\n onnx_path = onnx_path.replace(\"pth.tar\", \"onnx\")\n\n if model_dimension == 2:\n dummy_input = torch.randn(\n (1, num_channel, input_shape[0], input_shape[1])\n )\n else:\n dummy_input = torch.randn(\n (1, num_channel, input_shape[0], input_shape[1], input_shape[2])\n )\n\n # Export the model to ONNX format\n with torch.no_grad():\n torch.onnx.export(\n model.to(\"cpu\"),\n dummy_input.to(\"cpu\"),\n onnx_path,\n opset_version=11,\n export_params=True,\n verbose=True,\n input_names=[\"input\"],\n output_names=[\"output\"],\n )\n except RuntimeWarning:\n print(\"WARNING: Cannot export to ONNX model.\")\n return\n\n # Check if OpenVINO is present and try to convert the ONNX model\n openvino_present = False\n try:\n import openvino as ov\n from openvino.tools.mo import convert_model\n from openvino.runtime import get_version\n\n openvino_present = False\n # check for the correct openvino version to prevent inadvertent api breaks\n if \"2023.0.1\" in get_version():\n openvino_present = True\n except ImportError:\n print(\"WARNING: OpenVINO is not present.\")\n\n if openvino_present:\n xml_path = onnx_path.replace(\"onnx\", \"xml\")\n bin_path = onnx_path.replace(\"onnx\", \"bin\")\n try:\n if model_dimension == 2:\n ov_model = convert_model(\n onnx_path,\n input_shape=(1, num_channel, input_shape[0], input_shape[1]),\n )\n else:\n ov_model = convert_model(\n onnx_path,\n input_shape=(\n 1,\n num_channel,\n input_shape[0],\n input_shape[1],\n input_shape[2],\n ),\n )\n ov.runtime.serialize(ov_model, xml_path=xml_path, bin_path=bin_path)\n except Exception as e:\n print(\"WARNING: OpenVINO Model Optimizer IR conversion failed: \" + e)\n\n\ndef save_model(\n model_dict: Dict[str, Any],\n model: torch.nn.Module,\n params: Dict[str, Any],\n path: str,\n onnx_export: bool = True,\n):\n \"\"\"\n Save the model dictionary to a file.\n\n Args:\n model_dict (dict): Model dictionary to save.\n model (torch.nn.Module): Trained torch model.\n params (dict): The parameter dictionary.\n path (str): The path to save the model dictionary to.\n onnx_export (bool): Whether to export to ONNX and OpenVINO.\n \"\"\"\n model_dict[\"timestamp\"] = get_unique_timestamp()\n model_dict[\"timestamp_hash\"] = hashlib.sha256(\n str(model_dict[\"timestamp\"]).encode(\"utf-8\")\n ).hexdigest()\n model_dict[\"version\"] = __version__\n model_dict[\"parameters\"] = params\n\n try:\n # this will try to encode the git hash of the current GaNDLF codebase, and reverts to \"None\" if not found\n model_dict[\"git_hash\"] = (\n subprocess.check_output([\"git\", \"rev-parse\", \"HEAD\"], cwd=os.getcwd())\n .decode(\"ascii\")\n .strip()\n )\n except (subprocess.CalledProcessError, FileNotFoundError):\n model_dict[\"git_hash\"] = \"None\"\n\n torch.save(model_dict, path)\n\n # post-training optimization\n optimize_and_save_model(model, params, path, onnx_export=onnx_export)\n\n\ndef load_model(\n path: str, device: torch.device, full_sanity_check: bool = True\n) -> Dict[str, Any]:\n \"\"\"\n Load a model dictionary from a file.\n\n Args:\n path (str): The path to save the model dictionary to.\n device (torch.device): The device to run the model on.\n full_sanity_check (bool): Whether to run full sanity checking on the model.\n\n Returns:\n dict: Model dictionary containing model parameters and metadata.\n \"\"\"\n model_dict = torch.load(path, map_location=device)\n\n # check if the model dictionary is complete\n if full_sanity_check:\n incomplete_keys = [\n key for key in model_dict_full.keys() if key not in model_dict.keys()\n ]\n if len(incomplete_keys) > 0:\n raise RuntimeWarning(\n \"Model dictionary is incomplete; the following keys are missing:\",\n incomplete_keys,\n )\n\n # check if required keys are absent, and if so raise an error\n incomplete_required_keys = [\n key for key in model_dict_required.keys() if key not in model_dict.keys()\n ]\n if len(incomplete_required_keys) > 0:\n raise KeyError(\n \"Model dictionary is incomplete; the following keys are missing:\",\n incomplete_required_keys,\n )\n\n return model_dict\n\n\ndef load_ov_model(path: str, device: str = \"CPU\"):\n \"\"\"\n Load an OpenVINO IR model from an .xml file.\n\n Args:\n path (str): The path to the OpenVINO .xml file.\n device (str): The device to run inference, can be \"CPU\", \"GPU\" or \"MULTI:CPU,GPU\". Default to be \"CPU\".\n\n Returns:\n exec_net (OpenVINO executable net): executable OpenVINO model.\n input_blob (str): Input name.\n output_blob (str): Output name.\n \"\"\"\n\n try:\n from openvino import runtime as ov\n except ImportError:\n raise ImportError(\"OpenVINO inference engine is not configured correctly.\")\n\n core = ov.Core()\n if device.lower() == \"cuda\":\n device = \"GPU\"\n\n if device == \"GPU\":\n core.set_property({\"CACHE_DIR\": os.path.dirname(os.path.abspath(path))})\n\n model = core.read_model(model=path, weights=path.replace(\"xml\", \"bin\"))\n compiled_model = core.compile_model(model=model, device_name=device.upper())\n input_layer = compiled_model.inputs\n output_layer = compiled_model.outputs\n\n return compiled_model, input_layer, output_layer\n", "path": "GANDLF/utils/modelio.py"}]}
3,214
208
gh_patches_debug_22600
rasdani/github-patches
git_diff
pyca__cryptography-1349
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- _truncate_digest_for_ecdsa in the OpenSSL document should be commented Right now there are no comments explaining why it exists, or what it's attempting to do. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `cryptography/hazmat/backends/openssl/ec.py` Content: ``` 1 # Licensed under the Apache License, Version 2.0 (the "License"); 2 # you may not use this file except in compliance with the License. 3 # You may obtain a copy of the License at 4 # 5 # http://www.apache.org/licenses/LICENSE-2.0 6 # 7 # Unless required by applicable law or agreed to in writing, software 8 # distributed under the License is distributed on an "AS IS" BASIS, 9 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 10 # implied. 11 # See the License for the specific language governing permissions and 12 # limitations under the License. 13 14 from __future__ import absolute_import, division, print_function 15 16 import six 17 18 from cryptography import utils 19 from cryptography.exceptions import ( 20 InvalidSignature, UnsupportedAlgorithm, _Reasons 21 ) 22 from cryptography.hazmat.primitives import hashes, interfaces 23 from cryptography.hazmat.primitives.asymmetric import ec 24 25 26 def _truncate_digest_for_ecdsa(ec_key_cdata, digest, backend): 27 _lib = backend._lib 28 _ffi = backend._ffi 29 30 digest_len = len(digest) 31 32 group = _lib.EC_KEY_get0_group(ec_key_cdata) 33 34 bn_ctx = _lib.BN_CTX_new() 35 assert bn_ctx != _ffi.NULL 36 bn_ctx = _ffi.gc(bn_ctx, _lib.BN_CTX_free) 37 38 order = _lib.BN_CTX_get(bn_ctx) 39 assert order != _ffi.NULL 40 41 res = _lib.EC_GROUP_get_order(group, order, bn_ctx) 42 assert res == 1 43 44 order_bits = _lib.BN_num_bits(order) 45 46 if 8 * digest_len > order_bits: 47 digest_len = (order_bits + 7) // 8 48 digest = digest[:digest_len] 49 50 if 8 * digest_len > order_bits: 51 rshift = 8 - (order_bits & 0x7) 52 assert rshift > 0 and rshift < 8 53 54 mask = 0xFF >> rshift << rshift 55 56 # Set the bottom rshift bits to 0 57 digest = digest[:-1] + six.int2byte(six.indexbytes(digest, -1) & mask) 58 59 return digest 60 61 62 @utils.register_interface(interfaces.AsymmetricSignatureContext) 63 class _ECDSASignatureContext(object): 64 def __init__(self, backend, private_key, algorithm): 65 self._backend = backend 66 self._private_key = private_key 67 self._digest = hashes.Hash(algorithm, backend) 68 69 def update(self, data): 70 self._digest.update(data) 71 72 def finalize(self): 73 ec_key = self._private_key._ec_key 74 75 digest = self._digest.finalize() 76 77 digest = _truncate_digest_for_ecdsa(ec_key, digest, self._backend) 78 79 max_size = self._backend._lib.ECDSA_size(ec_key) 80 assert max_size > 0 81 82 sigbuf = self._backend._ffi.new("char[]", max_size) 83 siglen_ptr = self._backend._ffi.new("unsigned int[]", 1) 84 res = self._backend._lib.ECDSA_sign( 85 0, 86 digest, 87 len(digest), 88 sigbuf, 89 siglen_ptr, 90 ec_key 91 ) 92 assert res == 1 93 return self._backend._ffi.buffer(sigbuf)[:siglen_ptr[0]] 94 95 96 @utils.register_interface(interfaces.AsymmetricVerificationContext) 97 class _ECDSAVerificationContext(object): 98 def __init__(self, backend, public_key, signature, algorithm): 99 self._backend = backend 100 self._public_key = public_key 101 self._signature = signature 102 self._digest = hashes.Hash(algorithm, backend) 103 104 def update(self, data): 105 self._digest.update(data) 106 107 def verify(self): 108 ec_key = self._public_key._ec_key 109 110 digest = self._digest.finalize() 111 112 digest = _truncate_digest_for_ecdsa(ec_key, digest, self._backend) 113 114 res = self._backend._lib.ECDSA_verify( 115 0, 116 digest, 117 len(digest), 118 self._signature, 119 len(self._signature), 120 ec_key 121 ) 122 if res != 1: 123 self._backend._consume_errors() 124 raise InvalidSignature 125 return True 126 127 128 @utils.register_interface(interfaces.EllipticCurvePrivateKey) 129 class _EllipticCurvePrivateKey(object): 130 def __init__(self, backend, ec_key_cdata, curve): 131 self._backend = backend 132 self._ec_key = ec_key_cdata 133 self._curve = curve 134 135 @property 136 def curve(self): 137 return self._curve 138 139 def signer(self, signature_algorithm): 140 if isinstance(signature_algorithm, ec.ECDSA): 141 return _ECDSASignatureContext( 142 self._backend, self, signature_algorithm.algorithm 143 ) 144 else: 145 raise UnsupportedAlgorithm( 146 "Unsupported elliptic curve signature algorithm.", 147 _Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM) 148 149 def public_key(self): 150 group = self._backend._lib.EC_KEY_get0_group(self._ec_key) 151 assert group != self._backend._ffi.NULL 152 153 curve_nid = self._backend._lib.EC_GROUP_get_curve_name(group) 154 155 public_ec_key = self._backend._lib.EC_KEY_new_by_curve_name(curve_nid) 156 assert public_ec_key != self._backend._ffi.NULL 157 public_ec_key = self._backend._ffi.gc( 158 public_ec_key, self._backend._lib.EC_KEY_free 159 ) 160 161 point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key) 162 assert point != self._backend._ffi.NULL 163 164 res = self._backend._lib.EC_KEY_set_public_key(public_ec_key, point) 165 assert res == 1 166 167 return _EllipticCurvePublicKey( 168 self._backend, public_ec_key, self._curve 169 ) 170 171 172 @utils.register_interface(interfaces.EllipticCurvePublicKey) 173 class _EllipticCurvePublicKey(object): 174 def __init__(self, backend, ec_key_cdata, curve): 175 self._backend = backend 176 self._ec_key = ec_key_cdata 177 self._curve = curve 178 179 @property 180 def curve(self): 181 return self._curve 182 183 def verifier(self, signature, signature_algorithm): 184 if isinstance(signature_algorithm, ec.ECDSA): 185 return _ECDSAVerificationContext( 186 self._backend, self, signature, signature_algorithm.algorithm 187 ) 188 else: 189 raise UnsupportedAlgorithm( 190 "Unsupported elliptic curve signature algorithm.", 191 _Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM) 192 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/cryptography/hazmat/backends/openssl/ec.py b/cryptography/hazmat/backends/openssl/ec.py --- a/cryptography/hazmat/backends/openssl/ec.py +++ b/cryptography/hazmat/backends/openssl/ec.py @@ -24,6 +24,13 @@ def _truncate_digest_for_ecdsa(ec_key_cdata, digest, backend): + """ + This function truncates digests that are longer than a given elliptic + curve key's length so they can be signed. Since elliptic curve keys are + much shorter than RSA keys many digests (e.g. SHA-512) may require + truncation. + """ + _lib = backend._lib _ffi = backend._ffi @@ -31,17 +38,14 @@ group = _lib.EC_KEY_get0_group(ec_key_cdata) - bn_ctx = _lib.BN_CTX_new() - assert bn_ctx != _ffi.NULL - bn_ctx = _ffi.gc(bn_ctx, _lib.BN_CTX_free) - - order = _lib.BN_CTX_get(bn_ctx) - assert order != _ffi.NULL + with backend._bn_ctx_manager() as bn_ctx: + order = _lib.BN_CTX_get(bn_ctx) + assert order != _ffi.NULL - res = _lib.EC_GROUP_get_order(group, order, bn_ctx) - assert res == 1 + res = _lib.EC_GROUP_get_order(group, order, bn_ctx) + assert res == 1 - order_bits = _lib.BN_num_bits(order) + order_bits = _lib.BN_num_bits(order) if 8 * digest_len > order_bits: digest_len = (order_bits + 7) // 8
{"golden_diff": "diff --git a/cryptography/hazmat/backends/openssl/ec.py b/cryptography/hazmat/backends/openssl/ec.py\n--- a/cryptography/hazmat/backends/openssl/ec.py\n+++ b/cryptography/hazmat/backends/openssl/ec.py\n@@ -24,6 +24,13 @@\n \n \n def _truncate_digest_for_ecdsa(ec_key_cdata, digest, backend):\n+ \"\"\"\n+ This function truncates digests that are longer than a given elliptic\n+ curve key's length so they can be signed. Since elliptic curve keys are\n+ much shorter than RSA keys many digests (e.g. SHA-512) may require\n+ truncation.\n+ \"\"\"\n+\n _lib = backend._lib\n _ffi = backend._ffi\n \n@@ -31,17 +38,14 @@\n \n group = _lib.EC_KEY_get0_group(ec_key_cdata)\n \n- bn_ctx = _lib.BN_CTX_new()\n- assert bn_ctx != _ffi.NULL\n- bn_ctx = _ffi.gc(bn_ctx, _lib.BN_CTX_free)\n-\n- order = _lib.BN_CTX_get(bn_ctx)\n- assert order != _ffi.NULL\n+ with backend._bn_ctx_manager() as bn_ctx:\n+ order = _lib.BN_CTX_get(bn_ctx)\n+ assert order != _ffi.NULL\n \n- res = _lib.EC_GROUP_get_order(group, order, bn_ctx)\n- assert res == 1\n+ res = _lib.EC_GROUP_get_order(group, order, bn_ctx)\n+ assert res == 1\n \n- order_bits = _lib.BN_num_bits(order)\n+ order_bits = _lib.BN_num_bits(order)\n \n if 8 * digest_len > order_bits:\n digest_len = (order_bits + 7) // 8\n", "issue": "_truncate_digest_for_ecdsa in the OpenSSL document should be commented\nRight now there are no comments explaining why it exists, or what it's attempting to do.\n\n", "before_files": [{"content": "# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or\n# implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nfrom __future__ import absolute_import, division, print_function\n\nimport six\n\nfrom cryptography import utils\nfrom cryptography.exceptions import (\n InvalidSignature, UnsupportedAlgorithm, _Reasons\n)\nfrom cryptography.hazmat.primitives import hashes, interfaces\nfrom cryptography.hazmat.primitives.asymmetric import ec\n\n\ndef _truncate_digest_for_ecdsa(ec_key_cdata, digest, backend):\n _lib = backend._lib\n _ffi = backend._ffi\n\n digest_len = len(digest)\n\n group = _lib.EC_KEY_get0_group(ec_key_cdata)\n\n bn_ctx = _lib.BN_CTX_new()\n assert bn_ctx != _ffi.NULL\n bn_ctx = _ffi.gc(bn_ctx, _lib.BN_CTX_free)\n\n order = _lib.BN_CTX_get(bn_ctx)\n assert order != _ffi.NULL\n\n res = _lib.EC_GROUP_get_order(group, order, bn_ctx)\n assert res == 1\n\n order_bits = _lib.BN_num_bits(order)\n\n if 8 * digest_len > order_bits:\n digest_len = (order_bits + 7) // 8\n digest = digest[:digest_len]\n\n if 8 * digest_len > order_bits:\n rshift = 8 - (order_bits & 0x7)\n assert rshift > 0 and rshift < 8\n\n mask = 0xFF >> rshift << rshift\n\n # Set the bottom rshift bits to 0\n digest = digest[:-1] + six.int2byte(six.indexbytes(digest, -1) & mask)\n\n return digest\n\n\[email protected]_interface(interfaces.AsymmetricSignatureContext)\nclass _ECDSASignatureContext(object):\n def __init__(self, backend, private_key, algorithm):\n self._backend = backend\n self._private_key = private_key\n self._digest = hashes.Hash(algorithm, backend)\n\n def update(self, data):\n self._digest.update(data)\n\n def finalize(self):\n ec_key = self._private_key._ec_key\n\n digest = self._digest.finalize()\n\n digest = _truncate_digest_for_ecdsa(ec_key, digest, self._backend)\n\n max_size = self._backend._lib.ECDSA_size(ec_key)\n assert max_size > 0\n\n sigbuf = self._backend._ffi.new(\"char[]\", max_size)\n siglen_ptr = self._backend._ffi.new(\"unsigned int[]\", 1)\n res = self._backend._lib.ECDSA_sign(\n 0,\n digest,\n len(digest),\n sigbuf,\n siglen_ptr,\n ec_key\n )\n assert res == 1\n return self._backend._ffi.buffer(sigbuf)[:siglen_ptr[0]]\n\n\[email protected]_interface(interfaces.AsymmetricVerificationContext)\nclass _ECDSAVerificationContext(object):\n def __init__(self, backend, public_key, signature, algorithm):\n self._backend = backend\n self._public_key = public_key\n self._signature = signature\n self._digest = hashes.Hash(algorithm, backend)\n\n def update(self, data):\n self._digest.update(data)\n\n def verify(self):\n ec_key = self._public_key._ec_key\n\n digest = self._digest.finalize()\n\n digest = _truncate_digest_for_ecdsa(ec_key, digest, self._backend)\n\n res = self._backend._lib.ECDSA_verify(\n 0,\n digest,\n len(digest),\n self._signature,\n len(self._signature),\n ec_key\n )\n if res != 1:\n self._backend._consume_errors()\n raise InvalidSignature\n return True\n\n\[email protected]_interface(interfaces.EllipticCurvePrivateKey)\nclass _EllipticCurvePrivateKey(object):\n def __init__(self, backend, ec_key_cdata, curve):\n self._backend = backend\n self._ec_key = ec_key_cdata\n self._curve = curve\n\n @property\n def curve(self):\n return self._curve\n\n def signer(self, signature_algorithm):\n if isinstance(signature_algorithm, ec.ECDSA):\n return _ECDSASignatureContext(\n self._backend, self, signature_algorithm.algorithm\n )\n else:\n raise UnsupportedAlgorithm(\n \"Unsupported elliptic curve signature algorithm.\",\n _Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)\n\n def public_key(self):\n group = self._backend._lib.EC_KEY_get0_group(self._ec_key)\n assert group != self._backend._ffi.NULL\n\n curve_nid = self._backend._lib.EC_GROUP_get_curve_name(group)\n\n public_ec_key = self._backend._lib.EC_KEY_new_by_curve_name(curve_nid)\n assert public_ec_key != self._backend._ffi.NULL\n public_ec_key = self._backend._ffi.gc(\n public_ec_key, self._backend._lib.EC_KEY_free\n )\n\n point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)\n assert point != self._backend._ffi.NULL\n\n res = self._backend._lib.EC_KEY_set_public_key(public_ec_key, point)\n assert res == 1\n\n return _EllipticCurvePublicKey(\n self._backend, public_ec_key, self._curve\n )\n\n\[email protected]_interface(interfaces.EllipticCurvePublicKey)\nclass _EllipticCurvePublicKey(object):\n def __init__(self, backend, ec_key_cdata, curve):\n self._backend = backend\n self._ec_key = ec_key_cdata\n self._curve = curve\n\n @property\n def curve(self):\n return self._curve\n\n def verifier(self, signature, signature_algorithm):\n if isinstance(signature_algorithm, ec.ECDSA):\n return _ECDSAVerificationContext(\n self._backend, self, signature, signature_algorithm.algorithm\n )\n else:\n raise UnsupportedAlgorithm(\n \"Unsupported elliptic curve signature algorithm.\",\n _Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)\n", "path": "cryptography/hazmat/backends/openssl/ec.py"}], "after_files": [{"content": "# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or\n# implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nfrom __future__ import absolute_import, division, print_function\n\nimport six\n\nfrom cryptography import utils\nfrom cryptography.exceptions import (\n InvalidSignature, UnsupportedAlgorithm, _Reasons\n)\nfrom cryptography.hazmat.primitives import hashes, interfaces\nfrom cryptography.hazmat.primitives.asymmetric import ec\n\n\ndef _truncate_digest_for_ecdsa(ec_key_cdata, digest, backend):\n \"\"\"\n This function truncates digests that are longer than a given elliptic\n curve key's length so they can be signed. Since elliptic curve keys are\n much shorter than RSA keys many digests (e.g. SHA-512) may require\n truncation.\n \"\"\"\n\n _lib = backend._lib\n _ffi = backend._ffi\n\n digest_len = len(digest)\n\n group = _lib.EC_KEY_get0_group(ec_key_cdata)\n\n with backend._bn_ctx_manager() as bn_ctx:\n order = _lib.BN_CTX_get(bn_ctx)\n assert order != _ffi.NULL\n\n res = _lib.EC_GROUP_get_order(group, order, bn_ctx)\n assert res == 1\n\n order_bits = _lib.BN_num_bits(order)\n\n if 8 * digest_len > order_bits:\n digest_len = (order_bits + 7) // 8\n digest = digest[:digest_len]\n\n if 8 * digest_len > order_bits:\n rshift = 8 - (order_bits & 0x7)\n assert rshift > 0 and rshift < 8\n\n mask = 0xFF >> rshift << rshift\n\n # Set the bottom rshift bits to 0\n digest = digest[:-1] + six.int2byte(six.indexbytes(digest, -1) & mask)\n\n return digest\n\n\[email protected]_interface(interfaces.AsymmetricSignatureContext)\nclass _ECDSASignatureContext(object):\n def __init__(self, backend, private_key, algorithm):\n self._backend = backend\n self._private_key = private_key\n self._digest = hashes.Hash(algorithm, backend)\n\n def update(self, data):\n self._digest.update(data)\n\n def finalize(self):\n ec_key = self._private_key._ec_key\n\n digest = self._digest.finalize()\n\n digest = _truncate_digest_for_ecdsa(ec_key, digest, self._backend)\n\n max_size = self._backend._lib.ECDSA_size(ec_key)\n assert max_size > 0\n\n sigbuf = self._backend._ffi.new(\"char[]\", max_size)\n siglen_ptr = self._backend._ffi.new(\"unsigned int[]\", 1)\n res = self._backend._lib.ECDSA_sign(\n 0,\n digest,\n len(digest),\n sigbuf,\n siglen_ptr,\n ec_key\n )\n assert res == 1\n return self._backend._ffi.buffer(sigbuf)[:siglen_ptr[0]]\n\n\[email protected]_interface(interfaces.AsymmetricVerificationContext)\nclass _ECDSAVerificationContext(object):\n def __init__(self, backend, public_key, signature, algorithm):\n self._backend = backend\n self._public_key = public_key\n self._signature = signature\n self._digest = hashes.Hash(algorithm, backend)\n\n def update(self, data):\n self._digest.update(data)\n\n def verify(self):\n ec_key = self._public_key._ec_key\n\n digest = self._digest.finalize()\n\n digest = _truncate_digest_for_ecdsa(ec_key, digest, self._backend)\n\n res = self._backend._lib.ECDSA_verify(\n 0,\n digest,\n len(digest),\n self._signature,\n len(self._signature),\n ec_key\n )\n if res != 1:\n self._backend._consume_errors()\n raise InvalidSignature\n return True\n\n\[email protected]_interface(interfaces.EllipticCurvePrivateKey)\nclass _EllipticCurvePrivateKey(object):\n def __init__(self, backend, ec_key_cdata, curve):\n self._backend = backend\n self._ec_key = ec_key_cdata\n self._curve = curve\n\n @property\n def curve(self):\n return self._curve\n\n def signer(self, signature_algorithm):\n if isinstance(signature_algorithm, ec.ECDSA):\n return _ECDSASignatureContext(\n self._backend, self, signature_algorithm.algorithm\n )\n else:\n raise UnsupportedAlgorithm(\n \"Unsupported elliptic curve signature algorithm.\",\n _Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)\n\n def public_key(self):\n group = self._backend._lib.EC_KEY_get0_group(self._ec_key)\n assert group != self._backend._ffi.NULL\n\n curve_nid = self._backend._lib.EC_GROUP_get_curve_name(group)\n\n public_ec_key = self._backend._lib.EC_KEY_new_by_curve_name(curve_nid)\n assert public_ec_key != self._backend._ffi.NULL\n public_ec_key = self._backend._ffi.gc(\n public_ec_key, self._backend._lib.EC_KEY_free\n )\n\n point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)\n assert point != self._backend._ffi.NULL\n\n res = self._backend._lib.EC_KEY_set_public_key(public_ec_key, point)\n assert res == 1\n\n return _EllipticCurvePublicKey(\n self._backend, public_ec_key, self._curve\n )\n\n\[email protected]_interface(interfaces.EllipticCurvePublicKey)\nclass _EllipticCurvePublicKey(object):\n def __init__(self, backend, ec_key_cdata, curve):\n self._backend = backend\n self._ec_key = ec_key_cdata\n self._curve = curve\n\n @property\n def curve(self):\n return self._curve\n\n def verifier(self, signature, signature_algorithm):\n if isinstance(signature_algorithm, ec.ECDSA):\n return _ECDSAVerificationContext(\n self._backend, self, signature, signature_algorithm.algorithm\n )\n else:\n raise UnsupportedAlgorithm(\n \"Unsupported elliptic curve signature algorithm.\",\n _Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM)\n", "path": "cryptography/hazmat/backends/openssl/ec.py"}]}
2,217
411
gh_patches_debug_26665
rasdani/github-patches
git_diff
netbox-community__netbox-11076
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Beta: CachedValue search values may (and do) exceed maximum PostgreSQL B-Tree index row size ### NetBox version v3.4-beta1 ### Python version 3.10 ### Steps to Reproduce 1. Have a NetBox instance with a lot of real-life data 2. Try to migrate data from NetBox 3.3.8 to 3.4-beta1 ### Expected Behavior Migrations succeed ### Observed Behavior Migration `extras.0083_search` fails. Log: ```bash $ NETBOX_DELETE_LEGACY_DATA=1 netbox/manage.py migrate netbox.denormalized: DEBUG Registering denormalized field <class 'dcim.models.cables.CableTermination'>._device netbox.denormalized: DEBUG Registering denormalized field <class 'dcim.models.cables.CableTermination'>._rack netbox.denormalized: DEBUG Registering denormalized field <class 'dcim.models.cables.CableTermination'>._location Operations to perform: Apply all migrations: admin, auth, circuits, contenttypes, dcim, django_rq, extras, ipam, sessions, social_django, taggit, tenancy, users, virtualization, wireless Running migrations: Applying extras.0083_search...Reindexing 63 models. Clearing cached values... 0 entries deleted. Indexing models circuits.circuit... 153 entries cached. circuits.circuittermination... 234 entries cached. circuits.circuittype... 20 entries cached. circuits.provider... 17 entries cached. circuits.providernetwork... 2 entries cached. dcim.cable... 13284 entries cached. dcim.consoleport... 6478 entries cached. dcim.consoleserverport... 1378 entries cached. dcim.device... 39290 entries cached. dcim.devicebay... 422 entries cached. dcim.devicerole... 68 entries cached. dcim.devicetype... 1022 entries cached. dcim.frontport... 21296 entries cached. dcim.interface... 805260 entries cached. dcim.inventoryitem... None found. dcim.location... 469 entries cached. dcim.manufacturer... 144 entries cached. dcim.module... 40 entries cached. dcim.modulebay... 136 entries cached. dcim.moduletype... 24 entries cached. dcim.platform... 212 entries cached. dcim.powerfeed... 48 entries cached. dcim.poweroutlet... 464 entries cached. dcim.powerpanel... 3 entries cached. dcim.powerport... 33112 entries cached. dcim.rack... 7741 entries cached. dcim.rackreservation... 223 entries cached. dcim.rackrole... 33 entries cached. dcim.rearport... 17705 entries cached. dcim.region... 39 entries cached. dcim.site... 270 entries cached. dcim.sitegroup... 18 entries cached. dcim.virtualchassis... 347 entries cached. dcim.virtualdevicecontext... None found. ipam.aggregate... 647 entries cached. ipam.asn... 18 entries cached. ipam.fhrpgroup... None found. ipam.ipaddress... 159974 entries cached. ipam.iprange... None found. ipam.l2vpn... None found. ipam.prefix... 43320 entries cached. ipam.rir... 12 entries cached. ipam.role... 9 entries cached. ipam.routetarget... 129 entries cached. ipam.service... None found. ipam.servicetemplate... None found. ipam.vlan... 30219 entries cached. ipam.vlangroup... 298 entries cached. ipam.vrf... 7301 entries cached. extras.journalentry... 23594 entries cached. tenancy.contact... 24 entries cached. tenancy.contactgroup... 2 entries cached. tenancy.contactrole... 6 entries cached. tenancy.tenant... 14755 entries cached. tenancy.tenantgroup... 9 entries cached. virtualization.cluster... 257 entries cached. virtualization.clustergroup... 161 entries cached. virtualization.clustertype... 14 entries cached. virtualization.virtualmachine... 25878 entries cached. virtualization.vminterface... 13559 entries cached. wireless.wirelesslan... None found. wireless.wirelesslangroup... None found. wireless.wirelesslink... None found. Completed. Total entries: 1270138 Traceback (most recent call last): File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/backends/utils.py", line 89, in _execute return self.cursor.execute(sql, params) psycopg2.errors.ProgramLimitExceeded: FEHLER: Indexzeile benötigt 122744 Bytes, Maximalgröße ist 8191 The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/var/dev/netbox/netbox/manage.py", line 10, in <module> execute_from_command_line(sys.argv) File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/core/management/__init__.py", line 446, in execute_from_command_line utility.execute() File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/core/management/__init__.py", line 440, in execute self.fetch_command(subcommand).run_from_argv(self.argv) File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/core/management/base.py", line 402, in run_from_argv self.execute(*args, **cmd_options) File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/core/management/base.py", line 448, in execute output = self.handle(*args, **options) File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/core/management/base.py", line 96, in wrapped res = handle_func(*args, **kwargs) File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/core/management/commands/migrate.py", line 349, in handle post_migrate_state = executor.migrate( File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/migrations/executor.py", line 135, in migrate state = self._migrate_all_forwards( File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/migrations/executor.py", line 167, in _migrate_all_forwards state = self.apply_migration( File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/migrations/executor.py", line 249, in apply_migration with self.connection.schema_editor( File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/backends/base/schema.py", line 164, in __exit__ self.execute(sql) File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/backends/base/schema.py", line 199, in execute cursor.execute(sql, params) File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/backends/utils.py", line 103, in execute return super().execute(sql, params) File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/backends/utils.py", line 67, in execute return self._execute_with_wrappers( File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/backends/utils.py", line 80, in _execute_with_wrappers return executor(sql, params, many, context) File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/backends/utils.py", line 84, in _execute with self.db.wrap_database_errors: File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/utils.py", line 91, in __exit__ raise dj_exc_value.with_traceback(traceback) from exc_value File "/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/backends/utils.py", line 89, in _execute return self.cursor.execute(sql, params) django.db.utils.OperationalError: FEHLER: Indexzeile benötigt 122744 Bytes, Maximalgröße ist 8191 ``` which translates to: `ERROR: index row requires 122744 bytes, maximum size is 8191` This seems to be the issue from the perspective of the migration: * https://github.com/netbox-community/netbox/blob/v3.4-beta1/netbox/extras/migrations/0083_search.py#L12 * causes run of: https://github.com/netbox-community/netbox/blob/v3.4-beta1/netbox/extras/management/commands/reindex.py * causes run of: https://github.com/netbox-community/netbox/blob/v3.4-beta1/netbox/netbox/search/backends.py#L138 As I am not a database engineer, I'm somewhat guessing my way through here, so in the case, I've missed an obvious configuration value, please have that in mind. Django seems to use B-Tree indexes in PostgreSQL by default: https://docs.djangoproject.com/en/4.1/ref/models/indexes/#index-options B-Tree indexes are described in PostgreSQL-docs with a size limit: > ["The only limitation is that an index entry cannot exceed approximately one-third of a page (after TOAST compression, if applicable)."](https://www.postgresql.org/docs/current/btree-intro.html) From my understanding of the matter, the size is exceeded as a [CachedValue.value](https://github.com/netbox-community/netbox/blob/v3.4-beta1/netbox/extras/models/search.py#L39) may be too large for a B-Tree index row. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `netbox/extras/migrations/0083_search.py` Content: ``` 1 import sys 2 import uuid 3 4 import django.db.models.deletion 5 from django.core import management 6 from django.db import migrations, models 7 8 9 def reindex(apps, schema_editor): 10 # Build the search index (except during tests) 11 if 'test' not in sys.argv: 12 management.call_command('reindex') 13 14 15 class Migration(migrations.Migration): 16 17 dependencies = [ 18 ('circuits', '0041_standardize_description_comments'), 19 ('contenttypes', '0002_remove_content_type_name'), 20 ('dcim', '0166_virtualdevicecontext'), 21 ('extras', '0082_savedfilter'), 22 ('ipam', '0063_standardize_description_comments'), 23 ('tenancy', '0009_standardize_description_comments'), 24 ('virtualization', '0034_standardize_description_comments'), 25 ('wireless', '0008_wirelesslan_status'), 26 ] 27 28 operations = [ 29 migrations.AddField( 30 model_name='customfield', 31 name='search_weight', 32 field=models.PositiveSmallIntegerField(default=1000), 33 ), 34 migrations.CreateModel( 35 name='CachedValue', 36 fields=[ 37 ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), 38 ('timestamp', models.DateTimeField(auto_now_add=True)), 39 ('object_id', models.PositiveBigIntegerField()), 40 ('field', models.CharField(max_length=200)), 41 ('type', models.CharField(max_length=30)), 42 ('value', models.TextField(db_index=True)), 43 ('weight', models.PositiveSmallIntegerField(default=1000)), 44 ('object_type', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='+', to='contenttypes.contenttype')), 45 ], 46 options={ 47 'ordering': ('weight', 'object_type', 'object_id'), 48 }, 49 ), 50 migrations.RunPython( 51 code=reindex, 52 reverse_code=migrations.RunPython.noop 53 ), 54 ] 55 ``` Path: `netbox/extras/models/search.py` Content: ``` 1 import uuid 2 3 from django.contrib.contenttypes.models import ContentType 4 from django.db import models 5 6 from utilities.fields import RestrictedGenericForeignKey 7 8 __all__ = ( 9 'CachedValue', 10 ) 11 12 13 class CachedValue(models.Model): 14 id = models.UUIDField( 15 primary_key=True, 16 default=uuid.uuid4, 17 editable=False 18 ) 19 timestamp = models.DateTimeField( 20 auto_now_add=True, 21 editable=False 22 ) 23 object_type = models.ForeignKey( 24 to=ContentType, 25 on_delete=models.CASCADE, 26 related_name='+' 27 ) 28 object_id = models.PositiveBigIntegerField() 29 object = RestrictedGenericForeignKey( 30 ct_field='object_type', 31 fk_field='object_id' 32 ) 33 field = models.CharField( 34 max_length=200 35 ) 36 type = models.CharField( 37 max_length=30 38 ) 39 value = models.TextField( 40 db_index=True 41 ) 42 weight = models.PositiveSmallIntegerField( 43 default=1000 44 ) 45 46 class Meta: 47 ordering = ('weight', 'object_type', 'object_id') 48 49 def __str__(self): 50 return f'{self.object_type} {self.object_id}: {self.field}={self.value}' 51 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/netbox/extras/migrations/0083_search.py b/netbox/extras/migrations/0083_search.py --- a/netbox/extras/migrations/0083_search.py +++ b/netbox/extras/migrations/0083_search.py @@ -2,6 +2,7 @@ import uuid import django.db.models.deletion +import django.db.models.lookups from django.core import management from django.db import migrations, models @@ -39,7 +40,7 @@ ('object_id', models.PositiveBigIntegerField()), ('field', models.CharField(max_length=200)), ('type', models.CharField(max_length=30)), - ('value', models.TextField(db_index=True)), + ('value', models.TextField()), ('weight', models.PositiveSmallIntegerField(default=1000)), ('object_type', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='+', to='contenttypes.contenttype')), ], diff --git a/netbox/extras/models/search.py b/netbox/extras/models/search.py --- a/netbox/extras/models/search.py +++ b/netbox/extras/models/search.py @@ -36,9 +36,7 @@ type = models.CharField( max_length=30 ) - value = models.TextField( - db_index=True - ) + value = models.TextField() weight = models.PositiveSmallIntegerField( default=1000 )
{"golden_diff": "diff --git a/netbox/extras/migrations/0083_search.py b/netbox/extras/migrations/0083_search.py\n--- a/netbox/extras/migrations/0083_search.py\n+++ b/netbox/extras/migrations/0083_search.py\n@@ -2,6 +2,7 @@\n import uuid\n \n import django.db.models.deletion\n+import django.db.models.lookups\n from django.core import management\n from django.db import migrations, models\n \n@@ -39,7 +40,7 @@\n ('object_id', models.PositiveBigIntegerField()),\n ('field', models.CharField(max_length=200)),\n ('type', models.CharField(max_length=30)),\n- ('value', models.TextField(db_index=True)),\n+ ('value', models.TextField()),\n ('weight', models.PositiveSmallIntegerField(default=1000)),\n ('object_type', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='+', to='contenttypes.contenttype')),\n ],\ndiff --git a/netbox/extras/models/search.py b/netbox/extras/models/search.py\n--- a/netbox/extras/models/search.py\n+++ b/netbox/extras/models/search.py\n@@ -36,9 +36,7 @@\n type = models.CharField(\n max_length=30\n )\n- value = models.TextField(\n- db_index=True\n- )\n+ value = models.TextField()\n weight = models.PositiveSmallIntegerField(\n default=1000\n )\n", "issue": "Beta: CachedValue search values may (and do) exceed maximum PostgreSQL B-Tree index row size\n### NetBox version\n\nv3.4-beta1\n\n### Python version\n\n3.10\n\n### Steps to Reproduce\n\n1. Have a NetBox instance with a lot of real-life data\r\n2. Try to migrate data from NetBox 3.3.8 to 3.4-beta1\n\n### Expected Behavior\n\nMigrations succeed\n\n### Observed Behavior\n\nMigration `extras.0083_search` fails.\r\n\r\nLog:\r\n```bash\r\n$ NETBOX_DELETE_LEGACY_DATA=1 netbox/manage.py migrate\r\nnetbox.denormalized: DEBUG Registering denormalized field <class 'dcim.models.cables.CableTermination'>._device\r\nnetbox.denormalized: DEBUG Registering denormalized field <class 'dcim.models.cables.CableTermination'>._rack\r\nnetbox.denormalized: DEBUG Registering denormalized field <class 'dcim.models.cables.CableTermination'>._location\r\nOperations to perform:\r\n Apply all migrations: admin, auth, circuits, contenttypes, dcim, django_rq, extras, ipam, sessions, social_django, taggit, tenancy, users, virtualization, wireless\r\nRunning migrations:\r\n Applying extras.0083_search...Reindexing 63 models.\r\nClearing cached values... 0 entries deleted.\r\nIndexing models\r\n circuits.circuit... 153 entries cached.\r\n circuits.circuittermination... 234 entries cached.\r\n circuits.circuittype... 20 entries cached.\r\n circuits.provider... 17 entries cached.\r\n circuits.providernetwork... 2 entries cached.\r\n dcim.cable... 13284 entries cached.\r\n dcim.consoleport... 6478 entries cached.\r\n dcim.consoleserverport... 1378 entries cached.\r\n dcim.device... 39290 entries cached.\r\n dcim.devicebay... 422 entries cached.\r\n dcim.devicerole... 68 entries cached.\r\n dcim.devicetype... 1022 entries cached.\r\n dcim.frontport... 21296 entries cached.\r\n dcim.interface... 805260 entries cached.\r\n dcim.inventoryitem... None found.\r\n dcim.location... 469 entries cached.\r\n dcim.manufacturer... 144 entries cached.\r\n dcim.module... 40 entries cached.\r\n dcim.modulebay... 136 entries cached.\r\n dcim.moduletype... 24 entries cached.\r\n dcim.platform... 212 entries cached.\r\n dcim.powerfeed... 48 entries cached.\r\n dcim.poweroutlet... 464 entries cached.\r\n dcim.powerpanel... 3 entries cached.\r\n dcim.powerport... 33112 entries cached.\r\n dcim.rack... 7741 entries cached.\r\n dcim.rackreservation... 223 entries cached.\r\n dcim.rackrole... 33 entries cached.\r\n dcim.rearport... 17705 entries cached.\r\n dcim.region... 39 entries cached.\r\n dcim.site... 270 entries cached.\r\n dcim.sitegroup... 18 entries cached.\r\n dcim.virtualchassis... 347 entries cached.\r\n dcim.virtualdevicecontext... None found.\r\n ipam.aggregate... 647 entries cached.\r\n ipam.asn... 18 entries cached.\r\n ipam.fhrpgroup... None found.\r\n ipam.ipaddress... 159974 entries cached.\r\n ipam.iprange... None found.\r\n ipam.l2vpn... None found.\r\n ipam.prefix... 43320 entries cached.\r\n ipam.rir... 12 entries cached.\r\n ipam.role... 9 entries cached.\r\n ipam.routetarget... 129 entries cached.\r\n ipam.service... None found.\r\n ipam.servicetemplate... None found.\r\n ipam.vlan... 30219 entries cached.\r\n ipam.vlangroup... 298 entries cached.\r\n ipam.vrf... 7301 entries cached.\r\n extras.journalentry... 23594 entries cached.\r\n tenancy.contact... 24 entries cached.\r\n tenancy.contactgroup... 2 entries cached.\r\n tenancy.contactrole... 6 entries cached.\r\n tenancy.tenant... 14755 entries cached.\r\n tenancy.tenantgroup... 9 entries cached.\r\n virtualization.cluster... 257 entries cached.\r\n virtualization.clustergroup... 161 entries cached.\r\n virtualization.clustertype... 14 entries cached.\r\n virtualization.virtualmachine... 25878 entries cached.\r\n virtualization.vminterface... 13559 entries cached.\r\n wireless.wirelesslan... None found.\r\n wireless.wirelesslangroup... None found.\r\n wireless.wirelesslink... None found.\r\nCompleted. Total entries: 1270138\r\nTraceback (most recent call last):\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/backends/utils.py\", line 89, in _execute\r\n return self.cursor.execute(sql, params)\r\npsycopg2.errors.ProgramLimitExceeded: FEHLER: Indexzeile ben\u00f6tigt 122744 Bytes, Maximalgr\u00f6\u00dfe ist 8191\r\n\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"/var/dev/netbox/netbox/manage.py\", line 10, in <module>\r\n execute_from_command_line(sys.argv)\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/core/management/__init__.py\", line 446, in execute_from_command_line\r\n utility.execute()\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/core/management/__init__.py\", line 440, in execute\r\n self.fetch_command(subcommand).run_from_argv(self.argv)\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/core/management/base.py\", line 402, in run_from_argv\r\n self.execute(*args, **cmd_options)\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/core/management/base.py\", line 448, in execute\r\n output = self.handle(*args, **options)\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/core/management/base.py\", line 96, in wrapped\r\n res = handle_func(*args, **kwargs)\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/core/management/commands/migrate.py\", line 349, in handle\r\n post_migrate_state = executor.migrate(\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/migrations/executor.py\", line 135, in migrate\r\n state = self._migrate_all_forwards(\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/migrations/executor.py\", line 167, in _migrate_all_forwards\r\n state = self.apply_migration(\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/migrations/executor.py\", line 249, in apply_migration\r\n with self.connection.schema_editor(\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/backends/base/schema.py\", line 164, in __exit__\r\n self.execute(sql)\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/backends/base/schema.py\", line 199, in execute\r\n cursor.execute(sql, params)\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/backends/utils.py\", line 103, in execute\r\n return super().execute(sql, params)\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/backends/utils.py\", line 67, in execute\r\n return self._execute_with_wrappers(\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/backends/utils.py\", line 80, in _execute_with_wrappers\r\n return executor(sql, params, many, context)\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/backends/utils.py\", line 84, in _execute\r\n with self.db.wrap_database_errors:\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/utils.py\", line 91, in __exit__\r\n raise dj_exc_value.with_traceback(traceback) from exc_value\r\n File \"/var/dev/netbox/venv/lib64/python3.10/site-packages/django/db/backends/utils.py\", line 89, in _execute\r\n return self.cursor.execute(sql, params)\r\ndjango.db.utils.OperationalError: FEHLER: Indexzeile ben\u00f6tigt 122744 Bytes, Maximalgr\u00f6\u00dfe ist 8191\r\n```\r\nwhich translates to: `ERROR: index row requires 122744 bytes, maximum size is 8191`\r\n\r\nThis seems to be the issue from the perspective of the migration:\r\n* https://github.com/netbox-community/netbox/blob/v3.4-beta1/netbox/extras/migrations/0083_search.py#L12\r\n* causes run of: https://github.com/netbox-community/netbox/blob/v3.4-beta1/netbox/extras/management/commands/reindex.py\r\n* causes run of: https://github.com/netbox-community/netbox/blob/v3.4-beta1/netbox/netbox/search/backends.py#L138\r\n\r\nAs I am not a database engineer, I'm somewhat guessing my way through here, so in the case, I've missed an obvious configuration value, please have that in mind.\r\n\r\nDjango seems to use B-Tree indexes in PostgreSQL by default: https://docs.djangoproject.com/en/4.1/ref/models/indexes/#index-options\r\n\r\nB-Tree indexes are described in PostgreSQL-docs with a size limit:\r\n> [\"The only limitation is that an index entry cannot exceed approximately one-third of a page (after TOAST compression, if applicable).\"](https://www.postgresql.org/docs/current/btree-intro.html)\r\n\r\nFrom my understanding of the matter, the size is exceeded as a [CachedValue.value](https://github.com/netbox-community/netbox/blob/v3.4-beta1/netbox/extras/models/search.py#L39) may be too large for a B-Tree index row.\n", "before_files": [{"content": "import sys\nimport uuid\n\nimport django.db.models.deletion\nfrom django.core import management\nfrom django.db import migrations, models\n\n\ndef reindex(apps, schema_editor):\n # Build the search index (except during tests)\n if 'test' not in sys.argv:\n management.call_command('reindex')\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('circuits', '0041_standardize_description_comments'),\n ('contenttypes', '0002_remove_content_type_name'),\n ('dcim', '0166_virtualdevicecontext'),\n ('extras', '0082_savedfilter'),\n ('ipam', '0063_standardize_description_comments'),\n ('tenancy', '0009_standardize_description_comments'),\n ('virtualization', '0034_standardize_description_comments'),\n ('wireless', '0008_wirelesslan_status'),\n ]\n\n operations = [\n migrations.AddField(\n model_name='customfield',\n name='search_weight',\n field=models.PositiveSmallIntegerField(default=1000),\n ),\n migrations.CreateModel(\n name='CachedValue',\n fields=[\n ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)),\n ('timestamp', models.DateTimeField(auto_now_add=True)),\n ('object_id', models.PositiveBigIntegerField()),\n ('field', models.CharField(max_length=200)),\n ('type', models.CharField(max_length=30)),\n ('value', models.TextField(db_index=True)),\n ('weight', models.PositiveSmallIntegerField(default=1000)),\n ('object_type', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='+', to='contenttypes.contenttype')),\n ],\n options={\n 'ordering': ('weight', 'object_type', 'object_id'),\n },\n ),\n migrations.RunPython(\n code=reindex,\n reverse_code=migrations.RunPython.noop\n ),\n ]\n", "path": "netbox/extras/migrations/0083_search.py"}, {"content": "import uuid\n\nfrom django.contrib.contenttypes.models import ContentType\nfrom django.db import models\n\nfrom utilities.fields import RestrictedGenericForeignKey\n\n__all__ = (\n 'CachedValue',\n)\n\n\nclass CachedValue(models.Model):\n id = models.UUIDField(\n primary_key=True,\n default=uuid.uuid4,\n editable=False\n )\n timestamp = models.DateTimeField(\n auto_now_add=True,\n editable=False\n )\n object_type = models.ForeignKey(\n to=ContentType,\n on_delete=models.CASCADE,\n related_name='+'\n )\n object_id = models.PositiveBigIntegerField()\n object = RestrictedGenericForeignKey(\n ct_field='object_type',\n fk_field='object_id'\n )\n field = models.CharField(\n max_length=200\n )\n type = models.CharField(\n max_length=30\n )\n value = models.TextField(\n db_index=True\n )\n weight = models.PositiveSmallIntegerField(\n default=1000\n )\n\n class Meta:\n ordering = ('weight', 'object_type', 'object_id')\n\n def __str__(self):\n return f'{self.object_type} {self.object_id}: {self.field}={self.value}'\n", "path": "netbox/extras/models/search.py"}], "after_files": [{"content": "import sys\nimport uuid\n\nimport django.db.models.deletion\nimport django.db.models.lookups\nfrom django.core import management\nfrom django.db import migrations, models\n\n\ndef reindex(apps, schema_editor):\n # Build the search index (except during tests)\n if 'test' not in sys.argv:\n management.call_command('reindex')\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('circuits', '0041_standardize_description_comments'),\n ('contenttypes', '0002_remove_content_type_name'),\n ('dcim', '0166_virtualdevicecontext'),\n ('extras', '0082_savedfilter'),\n ('ipam', '0063_standardize_description_comments'),\n ('tenancy', '0009_standardize_description_comments'),\n ('virtualization', '0034_standardize_description_comments'),\n ('wireless', '0008_wirelesslan_status'),\n ]\n\n operations = [\n migrations.AddField(\n model_name='customfield',\n name='search_weight',\n field=models.PositiveSmallIntegerField(default=1000),\n ),\n migrations.CreateModel(\n name='CachedValue',\n fields=[\n ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)),\n ('timestamp', models.DateTimeField(auto_now_add=True)),\n ('object_id', models.PositiveBigIntegerField()),\n ('field', models.CharField(max_length=200)),\n ('type', models.CharField(max_length=30)),\n ('value', models.TextField()),\n ('weight', models.PositiveSmallIntegerField(default=1000)),\n ('object_type', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='+', to='contenttypes.contenttype')),\n ],\n options={\n 'ordering': ('weight', 'object_type', 'object_id'),\n },\n ),\n migrations.RunPython(\n code=reindex,\n reverse_code=migrations.RunPython.noop\n ),\n ]\n", "path": "netbox/extras/migrations/0083_search.py"}, {"content": "import uuid\n\nfrom django.contrib.contenttypes.models import ContentType\nfrom django.db import models\n\nfrom utilities.fields import RestrictedGenericForeignKey\n\n__all__ = (\n 'CachedValue',\n)\n\n\nclass CachedValue(models.Model):\n id = models.UUIDField(\n primary_key=True,\n default=uuid.uuid4,\n editable=False\n )\n timestamp = models.DateTimeField(\n auto_now_add=True,\n editable=False\n )\n object_type = models.ForeignKey(\n to=ContentType,\n on_delete=models.CASCADE,\n related_name='+'\n )\n object_id = models.PositiveBigIntegerField()\n object = RestrictedGenericForeignKey(\n ct_field='object_type',\n fk_field='object_id'\n )\n field = models.CharField(\n max_length=200\n )\n type = models.CharField(\n max_length=30\n )\n value = models.TextField()\n weight = models.PositiveSmallIntegerField(\n default=1000\n )\n\n class Meta:\n ordering = ('weight', 'object_type', 'object_id')\n\n def __str__(self):\n return f'{self.object_type} {self.object_id}: {self.field}={self.value}'\n", "path": "netbox/extras/models/search.py"}]}
3,591
325
gh_patches_debug_15180
rasdani/github-patches
git_diff
pre-commit__pre-commit-38
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Consider using --no-checkout for cloning I'd assume it is faster... --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `pre_commit/repository.py` Content: ``` 1 2 import contextlib 3 from plumbum import local 4 5 import pre_commit.constants as C 6 from pre_commit.clientlib.validate_manifest import validate_manifest 7 from pre_commit.hooks_workspace import in_hooks_workspace 8 from pre_commit.languages.all import languages 9 from pre_commit.util import cached_property 10 11 12 class Repository(object): 13 def __init__(self, repo_config): 14 self.repo_config = repo_config 15 16 @cached_property 17 def repo_url(self): 18 return self.repo_config['repo'] 19 20 @cached_property 21 def sha(self): 22 return self.repo_config['sha'] 23 24 @cached_property 25 def languages(self): 26 return set(filter(None, ( 27 hook.get('language') for hook in self.hooks.values() 28 ))) 29 30 @cached_property 31 def hooks(self): 32 return dict( 33 (hook['id'], dict(hook, **self.manifest[hook['id']])) 34 for hook in self.repo_config['hooks'] 35 ) 36 37 @cached_property 38 def manifest(self): 39 with self.in_checkout(): 40 return dict( 41 (hook['id'], hook) 42 for hook in validate_manifest(C.MANIFEST_FILE) 43 ) 44 45 @contextlib.contextmanager 46 def in_checkout(self): 47 with in_hooks_workspace(): 48 # SMELL: 49 self.create() 50 with local.cwd(self.sha): 51 yield 52 53 def create(self): 54 with in_hooks_workspace(): 55 if local.path(self.sha).exists(): 56 # Project already exists, no reason to re-create it 57 return 58 59 local['git']['clone', self.repo_url, self.sha]() 60 with self.in_checkout(): 61 local['git']['checkout', self.sha]() 62 63 def install(self): 64 with self.in_checkout(): 65 for language in C.SUPPORTED_LANGUAGES: 66 if language in self.languages: 67 languages[language].install_environment() 68 69 def run_hook(self, hook_id, file_args): 70 with self.in_checkout(): 71 hook = self.hooks[hook_id] 72 return languages[hook['language']].run_hook(hook, file_args) ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/pre_commit/repository.py b/pre_commit/repository.py --- a/pre_commit/repository.py +++ b/pre_commit/repository.py @@ -56,7 +56,7 @@ # Project already exists, no reason to re-create it return - local['git']['clone', self.repo_url, self.sha]() + local['git']['clone', '--no-checkout', self.repo_url, self.sha]() with self.in_checkout(): local['git']['checkout', self.sha]() @@ -69,4 +69,4 @@ def run_hook(self, hook_id, file_args): with self.in_checkout(): hook = self.hooks[hook_id] - return languages[hook['language']].run_hook(hook, file_args) \ No newline at end of file + return languages[hook['language']].run_hook(hook, file_args)
{"golden_diff": "diff --git a/pre_commit/repository.py b/pre_commit/repository.py\n--- a/pre_commit/repository.py\n+++ b/pre_commit/repository.py\n@@ -56,7 +56,7 @@\n # Project already exists, no reason to re-create it\n return\n \n- local['git']['clone', self.repo_url, self.sha]()\n+ local['git']['clone', '--no-checkout', self.repo_url, self.sha]()\n with self.in_checkout():\n local['git']['checkout', self.sha]()\n \n@@ -69,4 +69,4 @@\n def run_hook(self, hook_id, file_args):\n with self.in_checkout():\n hook = self.hooks[hook_id]\n- return languages[hook['language']].run_hook(hook, file_args)\n\\ No newline at end of file\n+ return languages[hook['language']].run_hook(hook, file_args)\n", "issue": "Consider using --no-checkout for cloning\nI'd assume it is faster...\n\n", "before_files": [{"content": "\nimport contextlib\nfrom plumbum import local\n\nimport pre_commit.constants as C\nfrom pre_commit.clientlib.validate_manifest import validate_manifest\nfrom pre_commit.hooks_workspace import in_hooks_workspace\nfrom pre_commit.languages.all import languages\nfrom pre_commit.util import cached_property\n\n\nclass Repository(object):\n def __init__(self, repo_config):\n self.repo_config = repo_config\n\n @cached_property\n def repo_url(self):\n return self.repo_config['repo']\n\n @cached_property\n def sha(self):\n return self.repo_config['sha']\n\n @cached_property\n def languages(self):\n return set(filter(None, (\n hook.get('language') for hook in self.hooks.values()\n )))\n\n @cached_property\n def hooks(self):\n return dict(\n (hook['id'], dict(hook, **self.manifest[hook['id']]))\n for hook in self.repo_config['hooks']\n )\n\n @cached_property\n def manifest(self):\n with self.in_checkout():\n return dict(\n (hook['id'], hook)\n for hook in validate_manifest(C.MANIFEST_FILE)\n )\n\n @contextlib.contextmanager\n def in_checkout(self):\n with in_hooks_workspace():\n # SMELL:\n self.create()\n with local.cwd(self.sha):\n yield\n\n def create(self):\n with in_hooks_workspace():\n if local.path(self.sha).exists():\n # Project already exists, no reason to re-create it\n return\n\n local['git']['clone', self.repo_url, self.sha]()\n with self.in_checkout():\n local['git']['checkout', self.sha]()\n\n def install(self):\n with self.in_checkout():\n for language in C.SUPPORTED_LANGUAGES:\n if language in self.languages:\n languages[language].install_environment()\n\n def run_hook(self, hook_id, file_args):\n with self.in_checkout():\n hook = self.hooks[hook_id]\n return languages[hook['language']].run_hook(hook, file_args)", "path": "pre_commit/repository.py"}], "after_files": [{"content": "\nimport contextlib\nfrom plumbum import local\n\nimport pre_commit.constants as C\nfrom pre_commit.clientlib.validate_manifest import validate_manifest\nfrom pre_commit.hooks_workspace import in_hooks_workspace\nfrom pre_commit.languages.all import languages\nfrom pre_commit.util import cached_property\n\n\nclass Repository(object):\n def __init__(self, repo_config):\n self.repo_config = repo_config\n\n @cached_property\n def repo_url(self):\n return self.repo_config['repo']\n\n @cached_property\n def sha(self):\n return self.repo_config['sha']\n\n @cached_property\n def languages(self):\n return set(filter(None, (\n hook.get('language') for hook in self.hooks.values()\n )))\n\n @cached_property\n def hooks(self):\n return dict(\n (hook['id'], dict(hook, **self.manifest[hook['id']]))\n for hook in self.repo_config['hooks']\n )\n\n @cached_property\n def manifest(self):\n with self.in_checkout():\n return dict(\n (hook['id'], hook)\n for hook in validate_manifest(C.MANIFEST_FILE)\n )\n\n @contextlib.contextmanager\n def in_checkout(self):\n with in_hooks_workspace():\n # SMELL:\n self.create()\n with local.cwd(self.sha):\n yield\n\n def create(self):\n with in_hooks_workspace():\n if local.path(self.sha).exists():\n # Project already exists, no reason to re-create it\n return\n\n local['git']['clone', '--no-checkout', self.repo_url, self.sha]()\n with self.in_checkout():\n local['git']['checkout', self.sha]()\n\n def install(self):\n with self.in_checkout():\n for language in C.SUPPORTED_LANGUAGES:\n if language in self.languages:\n languages[language].install_environment()\n\n def run_hook(self, hook_id, file_args):\n with self.in_checkout():\n hook = self.hooks[hook_id]\n return languages[hook['language']].run_hook(hook, file_args)\n", "path": "pre_commit/repository.py"}]}
844
190
gh_patches_debug_12470
rasdani/github-patches
git_diff
joke2k__faker-759
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Generating invalid cpf (brazillian ssn) Faker is generating invalid checksum digits for cpf (brazillian ssn). ### Steps to reproduce 1. Create fake instance using localization "pt_BR" 1. Call fake.cpf() ### Expected behavior It should generate a valid CPF. ### Actual behavior It is generating a CPF with invalid checksum digits, in some cases. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `faker/providers/ssn/pt_BR/__init__.py` Content: ``` 1 # -*- coding: utf-8 -*- 2 3 from __future__ import unicode_literals 4 from .. import Provider as SsnProvider 5 6 7 def checksum(digits): 8 s = 0 9 p = len(digits) + 1 10 for i in range(0, len(digits)): 11 s += digits[i] * p 12 p -= 1 13 14 reminder = s % 11 15 if reminder == 0 or reminder == 1: 16 return 1 17 else: 18 return 11 - reminder 19 20 21 class Provider(SsnProvider): 22 """ 23 Provider for Brazilian SSN also known in Brazil as CPF. 24 There are two methods Provider.ssn and Provider.cpf 25 The snn returns a valid number with numbers only 26 The cpf return a valid number formatted with brazilian mask. eg nnn.nnn.nnn-nn 27 """ 28 29 def ssn(self): 30 digits = self.generator.random.sample(range(10), 9) 31 32 dv = checksum(digits) 33 digits.append(dv) 34 digits.append(checksum(digits)) 35 36 return ''.join(map(str, digits)) 37 38 def cpf(self): 39 c = self.ssn() 40 return c[:3] + '.' + c[3:6] + '.' + c[6:9] + '-' + c[9:] 41 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/faker/providers/ssn/pt_BR/__init__.py b/faker/providers/ssn/pt_BR/__init__.py --- a/faker/providers/ssn/pt_BR/__init__.py +++ b/faker/providers/ssn/pt_BR/__init__.py @@ -5,6 +5,12 @@ def checksum(digits): + """ + Returns the checksum of CPF digits. + References to the algorithm: + https://pt.wikipedia.org/wiki/Cadastro_de_pessoas_f%C3%ADsicas#Algoritmo + https://metacpan.org/source/MAMAWE/Algorithm-CheckDigits-v1.3.0/lib/Algorithm/CheckDigits/M11_004.pm + """ s = 0 p = len(digits) + 1 for i in range(0, len(digits)): @@ -13,7 +19,7 @@ reminder = s % 11 if reminder == 0 or reminder == 1: - return 1 + return 0 else: return 11 - reminder
{"golden_diff": "diff --git a/faker/providers/ssn/pt_BR/__init__.py b/faker/providers/ssn/pt_BR/__init__.py\n--- a/faker/providers/ssn/pt_BR/__init__.py\n+++ b/faker/providers/ssn/pt_BR/__init__.py\n@@ -5,6 +5,12 @@\n \n \n def checksum(digits):\n+ \"\"\"\n+ Returns the checksum of CPF digits.\n+ References to the algorithm:\n+ https://pt.wikipedia.org/wiki/Cadastro_de_pessoas_f%C3%ADsicas#Algoritmo\n+ https://metacpan.org/source/MAMAWE/Algorithm-CheckDigits-v1.3.0/lib/Algorithm/CheckDigits/M11_004.pm\n+ \"\"\"\n s = 0\n p = len(digits) + 1\n for i in range(0, len(digits)):\n@@ -13,7 +19,7 @@\n \n reminder = s % 11\n if reminder == 0 or reminder == 1:\n- return 1\n+ return 0\n else:\n return 11 - reminder\n", "issue": "Generating invalid cpf (brazillian ssn)\nFaker is generating invalid checksum digits for cpf (brazillian ssn).\r\n\r\n### Steps to reproduce\r\n\r\n1. Create fake instance using localization \"pt_BR\"\r\n1. Call fake.cpf()\r\n\r\n### Expected behavior\r\n\r\nIt should generate a valid CPF.\r\n\r\n### Actual behavior\r\n\r\nIt is generating a CPF with invalid checksum digits, in some cases.\r\n\n", "before_files": [{"content": "# -*- coding: utf-8 -*-\n\nfrom __future__ import unicode_literals\nfrom .. import Provider as SsnProvider\n\n\ndef checksum(digits):\n s = 0\n p = len(digits) + 1\n for i in range(0, len(digits)):\n s += digits[i] * p\n p -= 1\n\n reminder = s % 11\n if reminder == 0 or reminder == 1:\n return 1\n else:\n return 11 - reminder\n\n\nclass Provider(SsnProvider):\n \"\"\"\n Provider for Brazilian SSN also known in Brazil as CPF.\n There are two methods Provider.ssn and Provider.cpf\n The snn returns a valid number with numbers only\n The cpf return a valid number formatted with brazilian mask. eg nnn.nnn.nnn-nn\n \"\"\"\n\n def ssn(self):\n digits = self.generator.random.sample(range(10), 9)\n\n dv = checksum(digits)\n digits.append(dv)\n digits.append(checksum(digits))\n\n return ''.join(map(str, digits))\n\n def cpf(self):\n c = self.ssn()\n return c[:3] + '.' + c[3:6] + '.' + c[6:9] + '-' + c[9:]\n", "path": "faker/providers/ssn/pt_BR/__init__.py"}], "after_files": [{"content": "# -*- coding: utf-8 -*-\n\nfrom __future__ import unicode_literals\nfrom .. import Provider as SsnProvider\n\n\ndef checksum(digits):\n \"\"\"\n Returns the checksum of CPF digits.\n References to the algorithm:\n https://pt.wikipedia.org/wiki/Cadastro_de_pessoas_f%C3%ADsicas#Algoritmo\n https://metacpan.org/source/MAMAWE/Algorithm-CheckDigits-v1.3.0/lib/Algorithm/CheckDigits/M11_004.pm\n \"\"\"\n s = 0\n p = len(digits) + 1\n for i in range(0, len(digits)):\n s += digits[i] * p\n p -= 1\n\n reminder = s % 11\n if reminder == 0 or reminder == 1:\n return 0\n else:\n return 11 - reminder\n\n\nclass Provider(SsnProvider):\n \"\"\"\n Provider for Brazilian SSN also known in Brazil as CPF.\n There are two methods Provider.ssn and Provider.cpf\n The snn returns a valid number with numbers only\n The cpf return a valid number formatted with brazilian mask. eg nnn.nnn.nnn-nn\n \"\"\"\n\n def ssn(self):\n digits = self.generator.random.sample(range(10), 9)\n\n dv = checksum(digits)\n digits.append(dv)\n digits.append(checksum(digits))\n\n return ''.join(map(str, digits))\n\n def cpf(self):\n c = self.ssn()\n return c[:3] + '.' + c[3:6] + '.' + c[6:9] + '-' + c[9:]\n", "path": "faker/providers/ssn/pt_BR/__init__.py"}]}
701
246
gh_patches_debug_7971
rasdani/github-patches
git_diff
ipython__ipython-4563
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- nbconvert: Default encoding problem on OS X Greetings. I am using IPython 1.1.0 via MacPorts on OSX 10.7.5. The following problem is reproducible on the master git branch (IPython 2.0.0-dev). On any call to nbconvert, I get the following failure: ``` [NbConvertApp] Using existing profile dir: u'/Users/USERNAME_REDACTED/.ipython/profile_default' [NbConvertApp] Converting notebook ticks.ipynb to html [NbConvertApp] Support files will be in ticks_files/ Traceback (most recent call last): File "/opt/local/bin/ipython", line 6, in <module> start_ipython() File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/__init__.py", line 118, in start_ipython return launch_new_instance(argv=argv, **kwargs) File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/config/application.py", line 545, in launch_instance app.start() File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/terminal/ipapp.py", line 358, in start return self.subapp.start() File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/nbconvert/nbconvertapp.py", line 267, in start self.convert_notebooks() File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/nbconvert/nbconvertapp.py", line 300, in convert_notebooks output, resources = exporter.from_filename(notebook_filename, resources=resources) File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/nbconvert/exporters/exporter.py", line 288, in from_filename with io.open(filename) as f: LookupError: unknown encoding: If you suspect this is an IPython bug, please report it at: https://github.com/ipython/ipython/issues or send an email to the mailing list at [email protected] You can print a more detailed traceback right now with "%tb", or use "%debug" to interactively debug it. Extra-detailed tracebacks for bug-reporting purposes can be enabled via: c.Application.verbose_crash=True ``` This is an easy fix: I change the troublesome line such that it reads, ``` with io.open(filename, encoding='ascii') as f: ``` However, this ad hoc and likely a suboptimal solution. I wanted to bring this to the developers' attention and inquire about a proper solution. Thanks! System info: ``` python -c "import IPython; print(IPython.sys_info())" {'codename': 'An Afternoon Hack', 'commit_hash': '7c2ea3a', 'commit_source': 'installation', 'default_encoding': 'US-ASCII', 'ipython_path': '/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython', 'ipython_version': '1.1.0', 'os_name': 'posix', 'platform': 'Darwin-11.4.2-x86_64-i386-64bit', 'sys_executable': '/opt/local/Library/Frameworks/Python.framework/Versions/2.7/Resources/Python.app/Contents/MacOS/Python', 'sys_platform': 'darwin', 'sys_version': '2.7.6 (default, Nov 19 2013, 16:37:14) \n[GCC 4.2.1 (Based on Apple Inc. build 5658) (LLVM build 2336.11.00)]'} ``` --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `IPython/nbconvert/exporters/exporter.py` Content: ``` 1 """This module defines Exporter, a highly configurable converter 2 that uses Jinja2 to export notebook files into different formats. 3 """ 4 5 #----------------------------------------------------------------------------- 6 # Copyright (c) 2013, the IPython Development Team. 7 # 8 # Distributed under the terms of the Modified BSD License. 9 # 10 # The full license is in the file COPYING.txt, distributed with this software. 11 #----------------------------------------------------------------------------- 12 13 #----------------------------------------------------------------------------- 14 # Imports 15 #----------------------------------------------------------------------------- 16 17 from __future__ import print_function, absolute_import 18 19 # Stdlib imports 20 import io 21 import os 22 import copy 23 import collections 24 import datetime 25 26 27 # IPython imports 28 from IPython.config.configurable import LoggingConfigurable 29 from IPython.config import Config 30 from IPython.nbformat import current as nbformat 31 from IPython.utils.traitlets import MetaHasTraits, Unicode, List 32 from IPython.utils.importstring import import_item 33 from IPython.utils import text, py3compat 34 35 #----------------------------------------------------------------------------- 36 # Class 37 #----------------------------------------------------------------------------- 38 39 class ResourcesDict(collections.defaultdict): 40 def __missing__(self, key): 41 return '' 42 43 44 class Exporter(LoggingConfigurable): 45 """ 46 Class containing methods that sequentially run a list of preprocessors on a 47 NotebookNode object and then return the modified NotebookNode object and 48 accompanying resources dict. 49 """ 50 51 file_extension = Unicode( 52 'txt', config=True, 53 help="Extension of the file that should be written to disk" 54 ) 55 56 #Configurability, allows the user to easily add filters and preprocessors. 57 preprocessors = List(config=True, 58 help="""List of preprocessors, by name or namespace, to enable.""") 59 60 _preprocessors = None 61 62 default_preprocessors = List(['IPython.nbconvert.preprocessors.coalesce_streams', 63 'IPython.nbconvert.preprocessors.SVG2PDFPreprocessor', 64 'IPython.nbconvert.preprocessors.ExtractOutputPreprocessor', 65 'IPython.nbconvert.preprocessors.CSSHTMLHeaderPreprocessor', 66 'IPython.nbconvert.preprocessors.RevealHelpPreprocessor', 67 'IPython.nbconvert.preprocessors.LatexPreprocessor', 68 'IPython.nbconvert.preprocessors.HighlightMagicsPreprocessor'], 69 config=True, 70 help="""List of preprocessors available by default, by name, namespace, 71 instance, or type.""") 72 73 74 def __init__(self, config=None, **kw): 75 """ 76 Public constructor 77 78 Parameters 79 ---------- 80 config : config 81 User configuration instance. 82 """ 83 with_default_config = self.default_config 84 if config: 85 with_default_config.merge(config) 86 87 super(Exporter, self).__init__(config=with_default_config, **kw) 88 89 self._init_preprocessors() 90 91 92 @property 93 def default_config(self): 94 return Config() 95 96 @nbformat.docstring_nbformat_mod 97 def from_notebook_node(self, nb, resources=None, **kw): 98 """ 99 Convert a notebook from a notebook node instance. 100 101 Parameters 102 ---------- 103 nb : :class:`~{nbformat_mod}.nbbase.NotebookNode` 104 Notebook node 105 resources : dict 106 Additional resources that can be accessed read/write by 107 preprocessors and filters. 108 **kw 109 Ignored (?) 110 """ 111 nb_copy = copy.deepcopy(nb) 112 resources = self._init_resources(resources) 113 114 # Preprocess 115 nb_copy, resources = self._preprocess(nb_copy, resources) 116 117 return nb_copy, resources 118 119 120 def from_filename(self, filename, resources=None, **kw): 121 """ 122 Convert a notebook from a notebook file. 123 124 Parameters 125 ---------- 126 filename : str 127 Full filename of the notebook file to open and convert. 128 """ 129 130 # Pull the metadata from the filesystem. 131 if resources is None: 132 resources = ResourcesDict() 133 if not 'metadata' in resources or resources['metadata'] == '': 134 resources['metadata'] = ResourcesDict() 135 basename = os.path.basename(filename) 136 notebook_name = basename[:basename.rfind('.')] 137 resources['metadata']['name'] = notebook_name 138 139 modified_date = datetime.datetime.fromtimestamp(os.path.getmtime(filename)) 140 resources['metadata']['modified_date'] = modified_date.strftime(text.date_format) 141 142 with io.open(filename) as f: 143 return self.from_notebook_node(nbformat.read(f, 'json'), resources=resources, **kw) 144 145 146 def from_file(self, file_stream, resources=None, **kw): 147 """ 148 Convert a notebook from a notebook file. 149 150 Parameters 151 ---------- 152 file_stream : file-like object 153 Notebook file-like object to convert. 154 """ 155 return self.from_notebook_node(nbformat.read(file_stream, 'json'), resources=resources, **kw) 156 157 158 def register_preprocessor(self, preprocessor, enabled=False): 159 """ 160 Register a preprocessor. 161 Preprocessors are classes that act upon the notebook before it is 162 passed into the Jinja templating engine. preprocessors are also 163 capable of passing additional information to the Jinja 164 templating engine. 165 166 Parameters 167 ---------- 168 preprocessor : preprocessor 169 """ 170 if preprocessor is None: 171 raise TypeError('preprocessor') 172 isclass = isinstance(preprocessor, type) 173 constructed = not isclass 174 175 # Handle preprocessor's registration based on it's type 176 if constructed and isinstance(preprocessor, py3compat.string_types): 177 # Preprocessor is a string, import the namespace and recursively call 178 # this register_preprocessor method 179 preprocessor_cls = import_item(preprocessor) 180 return self.register_preprocessor(preprocessor_cls, enabled) 181 182 if constructed and hasattr(preprocessor, '__call__'): 183 # Preprocessor is a function, no need to construct it. 184 # Register and return the preprocessor. 185 if enabled: 186 preprocessor.enabled = True 187 self._preprocessors.append(preprocessor) 188 return preprocessor 189 190 elif isclass and isinstance(preprocessor, MetaHasTraits): 191 # Preprocessor is configurable. Make sure to pass in new default for 192 # the enabled flag if one was specified. 193 self.register_preprocessor(preprocessor(parent=self), enabled) 194 195 elif isclass: 196 # Preprocessor is not configurable, construct it 197 self.register_preprocessor(preprocessor(), enabled) 198 199 else: 200 # Preprocessor is an instance of something without a __call__ 201 # attribute. 202 raise TypeError('preprocessor') 203 204 205 def _init_preprocessors(self): 206 """ 207 Register all of the preprocessors needed for this exporter, disabled 208 unless specified explicitly. 209 """ 210 if self._preprocessors is None: 211 self._preprocessors = [] 212 213 #Load default preprocessors (not necessarly enabled by default). 214 if self.default_preprocessors: 215 for preprocessor in self.default_preprocessors: 216 self.register_preprocessor(preprocessor) 217 218 #Load user preprocessors. Enable by default. 219 if self.preprocessors: 220 for preprocessor in self.preprocessors: 221 self.register_preprocessor(preprocessor, enabled=True) 222 223 224 def _init_resources(self, resources): 225 226 #Make sure the resources dict is of ResourcesDict type. 227 if resources is None: 228 resources = ResourcesDict() 229 if not isinstance(resources, ResourcesDict): 230 new_resources = ResourcesDict() 231 new_resources.update(resources) 232 resources = new_resources 233 234 #Make sure the metadata extension exists in resources 235 if 'metadata' in resources: 236 if not isinstance(resources['metadata'], ResourcesDict): 237 resources['metadata'] = ResourcesDict(resources['metadata']) 238 else: 239 resources['metadata'] = ResourcesDict() 240 if not resources['metadata']['name']: 241 resources['metadata']['name'] = 'Notebook' 242 243 #Set the output extension 244 resources['output_extension'] = self.file_extension 245 return resources 246 247 248 def _preprocess(self, nb, resources): 249 """ 250 Preprocess the notebook before passing it into the Jinja engine. 251 To preprocess the notebook is to apply all of the 252 253 Parameters 254 ---------- 255 nb : notebook node 256 notebook that is being exported. 257 resources : a dict of additional resources that 258 can be accessed read/write by preprocessors 259 """ 260 261 # Do a copy.deepcopy first, 262 # we are never safe enough with what the preprocessors could do. 263 nbc = copy.deepcopy(nb) 264 resc = copy.deepcopy(resources) 265 266 #Run each preprocessor on the notebook. Carry the output along 267 #to each preprocessor 268 for preprocessor in self._preprocessors: 269 nbc, resc = preprocessor(nbc, resc) 270 return nbc, resc 271 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/IPython/nbconvert/exporters/exporter.py b/IPython/nbconvert/exporters/exporter.py --- a/IPython/nbconvert/exporters/exporter.py +++ b/IPython/nbconvert/exporters/exporter.py @@ -139,7 +139,7 @@ modified_date = datetime.datetime.fromtimestamp(os.path.getmtime(filename)) resources['metadata']['modified_date'] = modified_date.strftime(text.date_format) - with io.open(filename) as f: + with io.open(filename, encoding='utf-8') as f: return self.from_notebook_node(nbformat.read(f, 'json'), resources=resources, **kw)
{"golden_diff": "diff --git a/IPython/nbconvert/exporters/exporter.py b/IPython/nbconvert/exporters/exporter.py\n--- a/IPython/nbconvert/exporters/exporter.py\n+++ b/IPython/nbconvert/exporters/exporter.py\n@@ -139,7 +139,7 @@\n modified_date = datetime.datetime.fromtimestamp(os.path.getmtime(filename))\n resources['metadata']['modified_date'] = modified_date.strftime(text.date_format)\n \n- with io.open(filename) as f:\n+ with io.open(filename, encoding='utf-8') as f:\n return self.from_notebook_node(nbformat.read(f, 'json'), resources=resources, **kw)\n", "issue": "nbconvert: Default encoding problem on OS X\nGreetings.\n\nI am using IPython 1.1.0 via MacPorts on OSX 10.7.5. The following problem is reproducible on the master git branch (IPython 2.0.0-dev).\n\nOn any call to nbconvert, I get the following failure:\n\n```\n[NbConvertApp] Using existing profile dir: u'/Users/USERNAME_REDACTED/.ipython/profile_default'\n[NbConvertApp] Converting notebook ticks.ipynb to html\n[NbConvertApp] Support files will be in ticks_files/\nTraceback (most recent call last):\n File \"/opt/local/bin/ipython\", line 6, in <module>\n start_ipython()\n File \"/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/__init__.py\", line 118, in start_ipython\n return launch_new_instance(argv=argv, **kwargs)\n File \"/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/config/application.py\", line 545, in launch_instance\n app.start()\n File \"/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/terminal/ipapp.py\", line 358, in start\n return self.subapp.start()\n File \"/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/nbconvert/nbconvertapp.py\", line 267, in start\n self.convert_notebooks()\n File \"/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/nbconvert/nbconvertapp.py\", line 300, in convert_notebooks\n output, resources = exporter.from_filename(notebook_filename, resources=resources)\n File \"/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/nbconvert/exporters/exporter.py\", line 288, in from_filename\n with io.open(filename) as f:\nLookupError: unknown encoding: \n\nIf you suspect this is an IPython bug, please report it at:\n https://github.com/ipython/ipython/issues\nor send an email to the mailing list at [email protected]\n\nYou can print a more detailed traceback right now with \"%tb\", or use \"%debug\"\nto interactively debug it.\n\nExtra-detailed tracebacks for bug-reporting purposes can be enabled via:\n c.Application.verbose_crash=True\n```\n\nThis is an easy fix: I change the troublesome line such that it reads,\n\n```\nwith io.open(filename, encoding='ascii') as f:\n```\n\nHowever, this ad hoc and likely a suboptimal solution. I wanted to bring this to the developers' attention and inquire about a proper solution. Thanks!\n\nSystem info:\n\n```\npython -c \"import IPython; print(IPython.sys_info())\"\n{'codename': 'An Afternoon Hack',\n 'commit_hash': '7c2ea3a',\n 'commit_source': 'installation',\n 'default_encoding': 'US-ASCII',\n 'ipython_path': '/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython',\n 'ipython_version': '1.1.0',\n 'os_name': 'posix',\n 'platform': 'Darwin-11.4.2-x86_64-i386-64bit',\n 'sys_executable': '/opt/local/Library/Frameworks/Python.framework/Versions/2.7/Resources/Python.app/Contents/MacOS/Python',\n 'sys_platform': 'darwin',\n 'sys_version': '2.7.6 (default, Nov 19 2013, 16:37:14) \\n[GCC 4.2.1 (Based on Apple Inc. build 5658) (LLVM build 2336.11.00)]'}\n```\n\n", "before_files": [{"content": "\"\"\"This module defines Exporter, a highly configurable converter\nthat uses Jinja2 to export notebook files into different formats.\n\"\"\"\n\n#-----------------------------------------------------------------------------\n# Copyright (c) 2013, the IPython Development Team.\n#\n# Distributed under the terms of the Modified BSD License.\n#\n# The full license is in the file COPYING.txt, distributed with this software.\n#-----------------------------------------------------------------------------\n\n#-----------------------------------------------------------------------------\n# Imports\n#-----------------------------------------------------------------------------\n\nfrom __future__ import print_function, absolute_import\n\n# Stdlib imports\nimport io\nimport os\nimport copy\nimport collections\nimport datetime\n\n\n# IPython imports\nfrom IPython.config.configurable import LoggingConfigurable\nfrom IPython.config import Config\nfrom IPython.nbformat import current as nbformat\nfrom IPython.utils.traitlets import MetaHasTraits, Unicode, List\nfrom IPython.utils.importstring import import_item\nfrom IPython.utils import text, py3compat\n\n#-----------------------------------------------------------------------------\n# Class\n#-----------------------------------------------------------------------------\n\nclass ResourcesDict(collections.defaultdict):\n def __missing__(self, key):\n return ''\n\n\nclass Exporter(LoggingConfigurable):\n \"\"\"\n Class containing methods that sequentially run a list of preprocessors on a \n NotebookNode object and then return the modified NotebookNode object and \n accompanying resources dict.\n \"\"\"\n\n file_extension = Unicode(\n 'txt', config=True,\n help=\"Extension of the file that should be written to disk\"\n )\n\n #Configurability, allows the user to easily add filters and preprocessors.\n preprocessors = List(config=True,\n help=\"\"\"List of preprocessors, by name or namespace, to enable.\"\"\")\n\n _preprocessors = None\n\n default_preprocessors = List(['IPython.nbconvert.preprocessors.coalesce_streams',\n 'IPython.nbconvert.preprocessors.SVG2PDFPreprocessor',\n 'IPython.nbconvert.preprocessors.ExtractOutputPreprocessor',\n 'IPython.nbconvert.preprocessors.CSSHTMLHeaderPreprocessor',\n 'IPython.nbconvert.preprocessors.RevealHelpPreprocessor',\n 'IPython.nbconvert.preprocessors.LatexPreprocessor',\n 'IPython.nbconvert.preprocessors.HighlightMagicsPreprocessor'],\n config=True,\n help=\"\"\"List of preprocessors available by default, by name, namespace, \n instance, or type.\"\"\")\n\n\n def __init__(self, config=None, **kw):\n \"\"\"\n Public constructor\n\n Parameters\n ----------\n config : config\n User configuration instance.\n \"\"\"\n with_default_config = self.default_config\n if config:\n with_default_config.merge(config)\n \n super(Exporter, self).__init__(config=with_default_config, **kw)\n\n self._init_preprocessors()\n\n\n @property\n def default_config(self):\n return Config()\n\n @nbformat.docstring_nbformat_mod\n def from_notebook_node(self, nb, resources=None, **kw):\n \"\"\"\n Convert a notebook from a notebook node instance.\n\n Parameters\n ----------\n nb : :class:`~{nbformat_mod}.nbbase.NotebookNode`\n Notebook node\n resources : dict\n Additional resources that can be accessed read/write by\n preprocessors and filters.\n **kw\n Ignored (?)\n \"\"\"\n nb_copy = copy.deepcopy(nb)\n resources = self._init_resources(resources)\n\n # Preprocess\n nb_copy, resources = self._preprocess(nb_copy, resources)\n\n return nb_copy, resources\n\n\n def from_filename(self, filename, resources=None, **kw):\n \"\"\"\n Convert a notebook from a notebook file.\n\n Parameters\n ----------\n filename : str\n Full filename of the notebook file to open and convert.\n \"\"\"\n\n # Pull the metadata from the filesystem.\n if resources is None:\n resources = ResourcesDict()\n if not 'metadata' in resources or resources['metadata'] == '':\n resources['metadata'] = ResourcesDict()\n basename = os.path.basename(filename)\n notebook_name = basename[:basename.rfind('.')]\n resources['metadata']['name'] = notebook_name\n\n modified_date = datetime.datetime.fromtimestamp(os.path.getmtime(filename))\n resources['metadata']['modified_date'] = modified_date.strftime(text.date_format)\n\n with io.open(filename) as f:\n return self.from_notebook_node(nbformat.read(f, 'json'), resources=resources, **kw)\n\n\n def from_file(self, file_stream, resources=None, **kw):\n \"\"\"\n Convert a notebook from a notebook file.\n\n Parameters\n ----------\n file_stream : file-like object\n Notebook file-like object to convert.\n \"\"\"\n return self.from_notebook_node(nbformat.read(file_stream, 'json'), resources=resources, **kw)\n\n\n def register_preprocessor(self, preprocessor, enabled=False):\n \"\"\"\n Register a preprocessor.\n Preprocessors are classes that act upon the notebook before it is\n passed into the Jinja templating engine. preprocessors are also\n capable of passing additional information to the Jinja\n templating engine.\n\n Parameters\n ----------\n preprocessor : preprocessor\n \"\"\"\n if preprocessor is None:\n raise TypeError('preprocessor')\n isclass = isinstance(preprocessor, type)\n constructed = not isclass\n\n # Handle preprocessor's registration based on it's type\n if constructed and isinstance(preprocessor, py3compat.string_types):\n # Preprocessor is a string, import the namespace and recursively call\n # this register_preprocessor method\n preprocessor_cls = import_item(preprocessor)\n return self.register_preprocessor(preprocessor_cls, enabled)\n\n if constructed and hasattr(preprocessor, '__call__'):\n # Preprocessor is a function, no need to construct it.\n # Register and return the preprocessor.\n if enabled:\n preprocessor.enabled = True\n self._preprocessors.append(preprocessor)\n return preprocessor\n\n elif isclass and isinstance(preprocessor, MetaHasTraits):\n # Preprocessor is configurable. Make sure to pass in new default for \n # the enabled flag if one was specified.\n self.register_preprocessor(preprocessor(parent=self), enabled)\n\n elif isclass:\n # Preprocessor is not configurable, construct it\n self.register_preprocessor(preprocessor(), enabled)\n\n else:\n # Preprocessor is an instance of something without a __call__ \n # attribute. \n raise TypeError('preprocessor')\n\n\n def _init_preprocessors(self):\n \"\"\"\n Register all of the preprocessors needed for this exporter, disabled\n unless specified explicitly.\n \"\"\"\n if self._preprocessors is None:\n self._preprocessors = []\n\n #Load default preprocessors (not necessarly enabled by default).\n if self.default_preprocessors:\n for preprocessor in self.default_preprocessors:\n self.register_preprocessor(preprocessor)\n\n #Load user preprocessors. Enable by default.\n if self.preprocessors:\n for preprocessor in self.preprocessors:\n self.register_preprocessor(preprocessor, enabled=True)\n\n\n def _init_resources(self, resources):\n\n #Make sure the resources dict is of ResourcesDict type.\n if resources is None:\n resources = ResourcesDict()\n if not isinstance(resources, ResourcesDict):\n new_resources = ResourcesDict()\n new_resources.update(resources)\n resources = new_resources\n\n #Make sure the metadata extension exists in resources\n if 'metadata' in resources:\n if not isinstance(resources['metadata'], ResourcesDict):\n resources['metadata'] = ResourcesDict(resources['metadata'])\n else:\n resources['metadata'] = ResourcesDict()\n if not resources['metadata']['name']:\n resources['metadata']['name'] = 'Notebook'\n\n #Set the output extension\n resources['output_extension'] = self.file_extension\n return resources\n\n\n def _preprocess(self, nb, resources):\n \"\"\"\n Preprocess the notebook before passing it into the Jinja engine.\n To preprocess the notebook is to apply all of the\n\n Parameters\n ----------\n nb : notebook node\n notebook that is being exported.\n resources : a dict of additional resources that\n can be accessed read/write by preprocessors\n \"\"\"\n\n # Do a copy.deepcopy first,\n # we are never safe enough with what the preprocessors could do.\n nbc = copy.deepcopy(nb)\n resc = copy.deepcopy(resources)\n\n #Run each preprocessor on the notebook. Carry the output along\n #to each preprocessor\n for preprocessor in self._preprocessors:\n nbc, resc = preprocessor(nbc, resc)\n return nbc, resc\n", "path": "IPython/nbconvert/exporters/exporter.py"}], "after_files": [{"content": "\"\"\"This module defines Exporter, a highly configurable converter\nthat uses Jinja2 to export notebook files into different formats.\n\"\"\"\n\n#-----------------------------------------------------------------------------\n# Copyright (c) 2013, the IPython Development Team.\n#\n# Distributed under the terms of the Modified BSD License.\n#\n# The full license is in the file COPYING.txt, distributed with this software.\n#-----------------------------------------------------------------------------\n\n#-----------------------------------------------------------------------------\n# Imports\n#-----------------------------------------------------------------------------\n\nfrom __future__ import print_function, absolute_import\n\n# Stdlib imports\nimport io\nimport os\nimport copy\nimport collections\nimport datetime\n\n\n# IPython imports\nfrom IPython.config.configurable import LoggingConfigurable\nfrom IPython.config import Config\nfrom IPython.nbformat import current as nbformat\nfrom IPython.utils.traitlets import MetaHasTraits, Unicode, List\nfrom IPython.utils.importstring import import_item\nfrom IPython.utils import text, py3compat\n\n#-----------------------------------------------------------------------------\n# Class\n#-----------------------------------------------------------------------------\n\nclass ResourcesDict(collections.defaultdict):\n def __missing__(self, key):\n return ''\n\n\nclass Exporter(LoggingConfigurable):\n \"\"\"\n Class containing methods that sequentially run a list of preprocessors on a \n NotebookNode object and then return the modified NotebookNode object and \n accompanying resources dict.\n \"\"\"\n\n file_extension = Unicode(\n 'txt', config=True,\n help=\"Extension of the file that should be written to disk\"\n )\n\n #Configurability, allows the user to easily add filters and preprocessors.\n preprocessors = List(config=True,\n help=\"\"\"List of preprocessors, by name or namespace, to enable.\"\"\")\n\n _preprocessors = None\n\n default_preprocessors = List(['IPython.nbconvert.preprocessors.coalesce_streams',\n 'IPython.nbconvert.preprocessors.SVG2PDFPreprocessor',\n 'IPython.nbconvert.preprocessors.ExtractOutputPreprocessor',\n 'IPython.nbconvert.preprocessors.CSSHTMLHeaderPreprocessor',\n 'IPython.nbconvert.preprocessors.RevealHelpPreprocessor',\n 'IPython.nbconvert.preprocessors.LatexPreprocessor',\n 'IPython.nbconvert.preprocessors.HighlightMagicsPreprocessor'],\n config=True,\n help=\"\"\"List of preprocessors available by default, by name, namespace, \n instance, or type.\"\"\")\n\n\n def __init__(self, config=None, **kw):\n \"\"\"\n Public constructor\n\n Parameters\n ----------\n config : config\n User configuration instance.\n \"\"\"\n with_default_config = self.default_config\n if config:\n with_default_config.merge(config)\n \n super(Exporter, self).__init__(config=with_default_config, **kw)\n\n self._init_preprocessors()\n\n\n @property\n def default_config(self):\n return Config()\n\n @nbformat.docstring_nbformat_mod\n def from_notebook_node(self, nb, resources=None, **kw):\n \"\"\"\n Convert a notebook from a notebook node instance.\n\n Parameters\n ----------\n nb : :class:`~{nbformat_mod}.nbbase.NotebookNode`\n Notebook node\n resources : dict\n Additional resources that can be accessed read/write by\n preprocessors and filters.\n **kw\n Ignored (?)\n \"\"\"\n nb_copy = copy.deepcopy(nb)\n resources = self._init_resources(resources)\n\n # Preprocess\n nb_copy, resources = self._preprocess(nb_copy, resources)\n\n return nb_copy, resources\n\n\n def from_filename(self, filename, resources=None, **kw):\n \"\"\"\n Convert a notebook from a notebook file.\n\n Parameters\n ----------\n filename : str\n Full filename of the notebook file to open and convert.\n \"\"\"\n\n # Pull the metadata from the filesystem.\n if resources is None:\n resources = ResourcesDict()\n if not 'metadata' in resources or resources['metadata'] == '':\n resources['metadata'] = ResourcesDict()\n basename = os.path.basename(filename)\n notebook_name = basename[:basename.rfind('.')]\n resources['metadata']['name'] = notebook_name\n\n modified_date = datetime.datetime.fromtimestamp(os.path.getmtime(filename))\n resources['metadata']['modified_date'] = modified_date.strftime(text.date_format)\n\n with io.open(filename, encoding='utf-8') as f:\n return self.from_notebook_node(nbformat.read(f, 'json'), resources=resources, **kw)\n\n\n def from_file(self, file_stream, resources=None, **kw):\n \"\"\"\n Convert a notebook from a notebook file.\n\n Parameters\n ----------\n file_stream : file-like object\n Notebook file-like object to convert.\n \"\"\"\n return self.from_notebook_node(nbformat.read(file_stream, 'json'), resources=resources, **kw)\n\n\n def register_preprocessor(self, preprocessor, enabled=False):\n \"\"\"\n Register a preprocessor.\n Preprocessors are classes that act upon the notebook before it is\n passed into the Jinja templating engine. preprocessors are also\n capable of passing additional information to the Jinja\n templating engine.\n\n Parameters\n ----------\n preprocessor : preprocessor\n \"\"\"\n if preprocessor is None:\n raise TypeError('preprocessor')\n isclass = isinstance(preprocessor, type)\n constructed = not isclass\n\n # Handle preprocessor's registration based on it's type\n if constructed and isinstance(preprocessor, py3compat.string_types):\n # Preprocessor is a string, import the namespace and recursively call\n # this register_preprocessor method\n preprocessor_cls = import_item(preprocessor)\n return self.register_preprocessor(preprocessor_cls, enabled)\n\n if constructed and hasattr(preprocessor, '__call__'):\n # Preprocessor is a function, no need to construct it.\n # Register and return the preprocessor.\n if enabled:\n preprocessor.enabled = True\n self._preprocessors.append(preprocessor)\n return preprocessor\n\n elif isclass and isinstance(preprocessor, MetaHasTraits):\n # Preprocessor is configurable. Make sure to pass in new default for \n # the enabled flag if one was specified.\n self.register_preprocessor(preprocessor(parent=self), enabled)\n\n elif isclass:\n # Preprocessor is not configurable, construct it\n self.register_preprocessor(preprocessor(), enabled)\n\n else:\n # Preprocessor is an instance of something without a __call__ \n # attribute. \n raise TypeError('preprocessor')\n\n\n def _init_preprocessors(self):\n \"\"\"\n Register all of the preprocessors needed for this exporter, disabled\n unless specified explicitly.\n \"\"\"\n if self._preprocessors is None:\n self._preprocessors = []\n\n #Load default preprocessors (not necessarly enabled by default).\n if self.default_preprocessors:\n for preprocessor in self.default_preprocessors:\n self.register_preprocessor(preprocessor)\n\n #Load user preprocessors. Enable by default.\n if self.preprocessors:\n for preprocessor in self.preprocessors:\n self.register_preprocessor(preprocessor, enabled=True)\n\n\n def _init_resources(self, resources):\n\n #Make sure the resources dict is of ResourcesDict type.\n if resources is None:\n resources = ResourcesDict()\n if not isinstance(resources, ResourcesDict):\n new_resources = ResourcesDict()\n new_resources.update(resources)\n resources = new_resources\n\n #Make sure the metadata extension exists in resources\n if 'metadata' in resources:\n if not isinstance(resources['metadata'], ResourcesDict):\n resources['metadata'] = ResourcesDict(resources['metadata'])\n else:\n resources['metadata'] = ResourcesDict()\n if not resources['metadata']['name']:\n resources['metadata']['name'] = 'Notebook'\n\n #Set the output extension\n resources['output_extension'] = self.file_extension\n return resources\n\n\n def _preprocess(self, nb, resources):\n \"\"\"\n Preprocess the notebook before passing it into the Jinja engine.\n To preprocess the notebook is to apply all of the\n\n Parameters\n ----------\n nb : notebook node\n notebook that is being exported.\n resources : a dict of additional resources that\n can be accessed read/write by preprocessors\n \"\"\"\n\n # Do a copy.deepcopy first,\n # we are never safe enough with what the preprocessors could do.\n nbc = copy.deepcopy(nb)\n resc = copy.deepcopy(resources)\n\n #Run each preprocessor on the notebook. Carry the output along\n #to each preprocessor\n for preprocessor in self._preprocessors:\n nbc, resc = preprocessor(nbc, resc)\n return nbc, resc\n", "path": "IPython/nbconvert/exporters/exporter.py"}]}
3,684
145
gh_patches_debug_4256
rasdani/github-patches
git_diff
ivy-llc__ivy-17092
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- solve --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `ivy/functional/frontends/paddle/tensor/linalg.py` Content: ``` 1 # global 2 import ivy 3 from ivy.func_wrapper import with_unsupported_dtypes, with_supported_dtypes 4 from ivy.functional.frontends.paddle import promote_types_of_paddle_inputs 5 from ivy.functional.frontends.paddle.func_wrapper import ( 6 to_ivy_arrays_and_back, 7 ) 8 9 10 @with_supported_dtypes( 11 {"2.4.2 and below": ("float32", "float64", "int32", "int64")}, "paddle" 12 ) 13 @to_ivy_arrays_and_back 14 def cross(x, y, /, *, axis=9, name=None): 15 x, y = promote_types_of_paddle_inputs(x, y) 16 return ivy.cross(x, y, axis=axis) 17 18 19 # matmul 20 @with_unsupported_dtypes({"2.4.2 and below": ("float16", "bfloat16")}, "paddle") 21 @to_ivy_arrays_and_back 22 def matmul(x, y, transpose_x=False, transpose_y=False, name=None): 23 x, y = promote_types_of_paddle_inputs(x, y) 24 return ivy.matmul(x, y, transpose_a=transpose_x, transpose_b=transpose_y) 25 26 27 # norm 28 @with_supported_dtypes({"2.4.2 and below": ("float32", "float64")}, "paddle") 29 @to_ivy_arrays_and_back 30 def norm(x, p="fro", axis=None, keepdim=False, name=None): 31 if axis is None and p is not None: 32 if p == "fro": 33 p = 2 34 ret = ivy.vector_norm(x.flatten(), ord=p, axis=-1) 35 if keepdim: 36 ret = ret.reshape([1] * len(x.shape)) 37 if len(ret.shape) == 0: 38 return ivy.array([ret]) 39 return ret 40 41 if isinstance(axis, tuple): 42 axis = list(axis) 43 if isinstance(axis, list) and len(axis) == 1: 44 axis = axis[0] 45 46 if isinstance(axis, int): 47 if p == "fro": 48 p = 2 49 if p in [0, 1, 2, ivy.inf, -ivy.inf]: 50 ret = ivy.vector_norm(x, ord=p, axis=axis, keepdims=keepdim) 51 elif isinstance(p, (int, float)): 52 ret = ivy.pow( 53 ivy.sum(ivy.pow(ivy.abs(x), p), axis=axis, keepdims=keepdim), 54 float(1.0 / p), 55 ) 56 57 elif isinstance(axis, list) and len(axis) == 2: 58 if p == 0: 59 raise ValueError 60 elif p == 1: 61 ret = ivy.sum(ivy.abs(x), axis=axis, keepdims=keepdim) 62 elif p == 2 or p == "fro": 63 ret = ivy.matrix_norm(x, ord="fro", axis=axis, keepdims=keepdim) 64 elif p == ivy.inf: 65 ret = ivy.max(ivy.abs(x), axis=axis, keepdims=keepdim) 66 elif p == -ivy.inf: 67 ret = ivy.min(ivy.abs(x), axis=axis, keepdims=keepdim) 68 elif isinstance(p, (int, float)) and p > 0: 69 ret = ivy.pow( 70 ivy.sum(ivy.pow(ivy.abs(x), p), axis=axis, keepdims=keepdim), 71 float(1.0 / p), 72 ) 73 else: 74 raise ValueError 75 76 else: 77 raise ValueError 78 79 if len(ret.shape) == 0: 80 ret = ivy.array( 81 [ret] 82 ) # this is done so as to match shape of output from paddle 83 return ret 84 85 86 # eig 87 @to_ivy_arrays_and_back 88 def eig(x, name=None): 89 return ivy.eig(x) 90 91 92 # eigvals 93 @to_ivy_arrays_and_back 94 def eigvals(x, name=None): 95 return ivy.eigvals(x) 96 97 98 # eigvalsh 99 @to_ivy_arrays_and_back 100 def eigvalsh(x, UPLO="L", name=None): 101 return ivy.eigvalsh(x, UPLO=UPLO) 102 103 104 # eigh 105 @to_ivy_arrays_and_back 106 def eigh(x, UPLO="L", name=None): 107 return ivy.eigh(x, UPLO=UPLO) 108 109 110 # pinv 111 @with_unsupported_dtypes({"2.4.2 and below": ("float16", "bfloat16")}, "paddle") 112 @to_ivy_arrays_and_back 113 def pinv(x, rcond=1e-15, hermitian=False, name=None): 114 # TODO: Add hermitian functionality 115 return ivy.pinv(x, rtol=rcond) 116 117 118 # cholesky 119 @with_supported_dtypes({"2.4.2 and below": ("float32", "float64")}, "paddle") 120 @to_ivy_arrays_and_back 121 def cholesky(x, /, *, upper=False, name=None): 122 return ivy.cholesky(x, upper=upper) 123 124 125 # bmm 126 @with_unsupported_dtypes({"2.4.2 and below": ("float16", "bfloat16")}, "paddle") 127 @to_ivy_arrays_and_back 128 def bmm(x, y, transpose_x=False, transpose_y=False, name=None): 129 if len(ivy.shape(x)) != 3 or len(ivy.shape(y)) != 3: 130 raise RuntimeError("input must be 3D matrices") 131 x, y = promote_types_of_paddle_inputs(x, y) 132 return ivy.matmul(x, y, transpose_a=transpose_x, transpose_b=transpose_y) 133 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/ivy/functional/frontends/paddle/tensor/linalg.py b/ivy/functional/frontends/paddle/tensor/linalg.py --- a/ivy/functional/frontends/paddle/tensor/linalg.py +++ b/ivy/functional/frontends/paddle/tensor/linalg.py @@ -115,6 +115,13 @@ return ivy.pinv(x, rtol=rcond) +# solve +@with_unsupported_dtypes({"2.4.2 and below": ("float16", "bfloat16")}, "paddle") +@to_ivy_arrays_and_back +def solve(x1, x2, name=None): + return ivy.solve(x1, x2) + + # cholesky @with_supported_dtypes({"2.4.2 and below": ("float32", "float64")}, "paddle") @to_ivy_arrays_and_back
{"golden_diff": "diff --git a/ivy/functional/frontends/paddle/tensor/linalg.py b/ivy/functional/frontends/paddle/tensor/linalg.py\n--- a/ivy/functional/frontends/paddle/tensor/linalg.py\n+++ b/ivy/functional/frontends/paddle/tensor/linalg.py\n@@ -115,6 +115,13 @@\n return ivy.pinv(x, rtol=rcond)\n \n \n+# solve\n+@with_unsupported_dtypes({\"2.4.2 and below\": (\"float16\", \"bfloat16\")}, \"paddle\")\n+@to_ivy_arrays_and_back\n+def solve(x1, x2, name=None):\n+ return ivy.solve(x1, x2)\n+\n+\n # cholesky\n @with_supported_dtypes({\"2.4.2 and below\": (\"float32\", \"float64\")}, \"paddle\")\n @to_ivy_arrays_and_back\n", "issue": "solve\n\n", "before_files": [{"content": "# global\nimport ivy\nfrom ivy.func_wrapper import with_unsupported_dtypes, with_supported_dtypes\nfrom ivy.functional.frontends.paddle import promote_types_of_paddle_inputs\nfrom ivy.functional.frontends.paddle.func_wrapper import (\n to_ivy_arrays_and_back,\n)\n\n\n@with_supported_dtypes(\n {\"2.4.2 and below\": (\"float32\", \"float64\", \"int32\", \"int64\")}, \"paddle\"\n)\n@to_ivy_arrays_and_back\ndef cross(x, y, /, *, axis=9, name=None):\n x, y = promote_types_of_paddle_inputs(x, y)\n return ivy.cross(x, y, axis=axis)\n\n\n# matmul\n@with_unsupported_dtypes({\"2.4.2 and below\": (\"float16\", \"bfloat16\")}, \"paddle\")\n@to_ivy_arrays_and_back\ndef matmul(x, y, transpose_x=False, transpose_y=False, name=None):\n x, y = promote_types_of_paddle_inputs(x, y)\n return ivy.matmul(x, y, transpose_a=transpose_x, transpose_b=transpose_y)\n\n\n# norm\n@with_supported_dtypes({\"2.4.2 and below\": (\"float32\", \"float64\")}, \"paddle\")\n@to_ivy_arrays_and_back\ndef norm(x, p=\"fro\", axis=None, keepdim=False, name=None):\n if axis is None and p is not None:\n if p == \"fro\":\n p = 2\n ret = ivy.vector_norm(x.flatten(), ord=p, axis=-1)\n if keepdim:\n ret = ret.reshape([1] * len(x.shape))\n if len(ret.shape) == 0:\n return ivy.array([ret])\n return ret\n\n if isinstance(axis, tuple):\n axis = list(axis)\n if isinstance(axis, list) and len(axis) == 1:\n axis = axis[0]\n\n if isinstance(axis, int):\n if p == \"fro\":\n p = 2\n if p in [0, 1, 2, ivy.inf, -ivy.inf]:\n ret = ivy.vector_norm(x, ord=p, axis=axis, keepdims=keepdim)\n elif isinstance(p, (int, float)):\n ret = ivy.pow(\n ivy.sum(ivy.pow(ivy.abs(x), p), axis=axis, keepdims=keepdim),\n float(1.0 / p),\n )\n\n elif isinstance(axis, list) and len(axis) == 2:\n if p == 0:\n raise ValueError\n elif p == 1:\n ret = ivy.sum(ivy.abs(x), axis=axis, keepdims=keepdim)\n elif p == 2 or p == \"fro\":\n ret = ivy.matrix_norm(x, ord=\"fro\", axis=axis, keepdims=keepdim)\n elif p == ivy.inf:\n ret = ivy.max(ivy.abs(x), axis=axis, keepdims=keepdim)\n elif p == -ivy.inf:\n ret = ivy.min(ivy.abs(x), axis=axis, keepdims=keepdim)\n elif isinstance(p, (int, float)) and p > 0:\n ret = ivy.pow(\n ivy.sum(ivy.pow(ivy.abs(x), p), axis=axis, keepdims=keepdim),\n float(1.0 / p),\n )\n else:\n raise ValueError\n\n else:\n raise ValueError\n\n if len(ret.shape) == 0:\n ret = ivy.array(\n [ret]\n ) # this is done so as to match shape of output from paddle\n return ret\n\n\n# eig\n@to_ivy_arrays_and_back\ndef eig(x, name=None):\n return ivy.eig(x)\n\n\n# eigvals\n@to_ivy_arrays_and_back\ndef eigvals(x, name=None):\n return ivy.eigvals(x)\n\n\n# eigvalsh\n@to_ivy_arrays_and_back\ndef eigvalsh(x, UPLO=\"L\", name=None):\n return ivy.eigvalsh(x, UPLO=UPLO)\n\n\n# eigh\n@to_ivy_arrays_and_back\ndef eigh(x, UPLO=\"L\", name=None):\n return ivy.eigh(x, UPLO=UPLO)\n\n\n# pinv\n@with_unsupported_dtypes({\"2.4.2 and below\": (\"float16\", \"bfloat16\")}, \"paddle\")\n@to_ivy_arrays_and_back\ndef pinv(x, rcond=1e-15, hermitian=False, name=None):\n # TODO: Add hermitian functionality\n return ivy.pinv(x, rtol=rcond)\n\n\n# cholesky\n@with_supported_dtypes({\"2.4.2 and below\": (\"float32\", \"float64\")}, \"paddle\")\n@to_ivy_arrays_and_back\ndef cholesky(x, /, *, upper=False, name=None):\n return ivy.cholesky(x, upper=upper)\n\n\n# bmm\n@with_unsupported_dtypes({\"2.4.2 and below\": (\"float16\", \"bfloat16\")}, \"paddle\")\n@to_ivy_arrays_and_back\ndef bmm(x, y, transpose_x=False, transpose_y=False, name=None):\n if len(ivy.shape(x)) != 3 or len(ivy.shape(y)) != 3:\n raise RuntimeError(\"input must be 3D matrices\")\n x, y = promote_types_of_paddle_inputs(x, y)\n return ivy.matmul(x, y, transpose_a=transpose_x, transpose_b=transpose_y)\n", "path": "ivy/functional/frontends/paddle/tensor/linalg.py"}], "after_files": [{"content": "# global\nimport ivy\nfrom ivy.func_wrapper import with_unsupported_dtypes, with_supported_dtypes\nfrom ivy.functional.frontends.paddle import promote_types_of_paddle_inputs\nfrom ivy.functional.frontends.paddle.func_wrapper import (\n to_ivy_arrays_and_back,\n)\n\n\n@with_supported_dtypes(\n {\"2.4.2 and below\": (\"float32\", \"float64\", \"int32\", \"int64\")}, \"paddle\"\n)\n@to_ivy_arrays_and_back\ndef cross(x, y, /, *, axis=9, name=None):\n x, y = promote_types_of_paddle_inputs(x, y)\n return ivy.cross(x, y, axis=axis)\n\n\n# matmul\n@with_unsupported_dtypes({\"2.4.2 and below\": (\"float16\", \"bfloat16\")}, \"paddle\")\n@to_ivy_arrays_and_back\ndef matmul(x, y, transpose_x=False, transpose_y=False, name=None):\n x, y = promote_types_of_paddle_inputs(x, y)\n return ivy.matmul(x, y, transpose_a=transpose_x, transpose_b=transpose_y)\n\n\n# norm\n@with_supported_dtypes({\"2.4.2 and below\": (\"float32\", \"float64\")}, \"paddle\")\n@to_ivy_arrays_and_back\ndef norm(x, p=\"fro\", axis=None, keepdim=False, name=None):\n if axis is None and p is not None:\n if p == \"fro\":\n p = 2\n ret = ivy.vector_norm(x.flatten(), ord=p, axis=-1)\n if keepdim:\n ret = ret.reshape([1] * len(x.shape))\n if len(ret.shape) == 0:\n return ivy.array([ret])\n return ret\n\n if isinstance(axis, tuple):\n axis = list(axis)\n if isinstance(axis, list) and len(axis) == 1:\n axis = axis[0]\n\n if isinstance(axis, int):\n if p == \"fro\":\n p = 2\n if p in [0, 1, 2, ivy.inf, -ivy.inf]:\n ret = ivy.vector_norm(x, ord=p, axis=axis, keepdims=keepdim)\n elif isinstance(p, (int, float)):\n ret = ivy.pow(\n ivy.sum(ivy.pow(ivy.abs(x), p), axis=axis, keepdims=keepdim),\n float(1.0 / p),\n )\n\n elif isinstance(axis, list) and len(axis) == 2:\n if p == 0:\n raise ValueError\n elif p == 1:\n ret = ivy.sum(ivy.abs(x), axis=axis, keepdims=keepdim)\n elif p == 2 or p == \"fro\":\n ret = ivy.matrix_norm(x, ord=\"fro\", axis=axis, keepdims=keepdim)\n elif p == ivy.inf:\n ret = ivy.max(ivy.abs(x), axis=axis, keepdims=keepdim)\n elif p == -ivy.inf:\n ret = ivy.min(ivy.abs(x), axis=axis, keepdims=keepdim)\n elif isinstance(p, (int, float)) and p > 0:\n ret = ivy.pow(\n ivy.sum(ivy.pow(ivy.abs(x), p), axis=axis, keepdims=keepdim),\n float(1.0 / p),\n )\n else:\n raise ValueError\n\n else:\n raise ValueError\n\n if len(ret.shape) == 0:\n ret = ivy.array(\n [ret]\n ) # this is done so as to match shape of output from paddle\n return ret\n\n\n# eig\n@to_ivy_arrays_and_back\ndef eig(x, name=None):\n return ivy.eig(x)\n\n\n# eigvals\n@to_ivy_arrays_and_back\ndef eigvals(x, name=None):\n return ivy.eigvals(x)\n\n\n# eigvalsh\n@to_ivy_arrays_and_back\ndef eigvalsh(x, UPLO=\"L\", name=None):\n return ivy.eigvalsh(x, UPLO=UPLO)\n\n\n# eigh\n@to_ivy_arrays_and_back\ndef eigh(x, UPLO=\"L\", name=None):\n return ivy.eigh(x, UPLO=UPLO)\n\n\n# pinv\n@with_unsupported_dtypes({\"2.4.2 and below\": (\"float16\", \"bfloat16\")}, \"paddle\")\n@to_ivy_arrays_and_back\ndef pinv(x, rcond=1e-15, hermitian=False, name=None):\n # TODO: Add hermitian functionality\n return ivy.pinv(x, rtol=rcond)\n\n\n# solve\n@with_unsupported_dtypes({\"2.4.2 and below\": (\"float16\", \"bfloat16\")}, \"paddle\")\n@to_ivy_arrays_and_back\ndef solve(x1, x2, name=None):\n return ivy.solve(x1, x2)\n\n\n# cholesky\n@with_supported_dtypes({\"2.4.2 and below\": (\"float32\", \"float64\")}, \"paddle\")\n@to_ivy_arrays_and_back\ndef cholesky(x, /, *, upper=False, name=None):\n return ivy.cholesky(x, upper=upper)\n\n\n# bmm\n@with_unsupported_dtypes({\"2.4.2 and below\": (\"float16\", \"bfloat16\")}, \"paddle\")\n@to_ivy_arrays_and_back\ndef bmm(x, y, transpose_x=False, transpose_y=False, name=None):\n if len(ivy.shape(x)) != 3 or len(ivy.shape(y)) != 3:\n raise RuntimeError(\"input must be 3D matrices\")\n x, y = promote_types_of_paddle_inputs(x, y)\n return ivy.matmul(x, y, transpose_a=transpose_x, transpose_b=transpose_y)\n", "path": "ivy/functional/frontends/paddle/tensor/linalg.py"}]}
1,818
205
gh_patches_debug_63106
rasdani/github-patches
git_diff
kornia__kornia-1263
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- [Bug] save pointcloud not updates num_points when inf ## 🐛 Bug The function `K.utils.save_pointcloud_ply` doesn't update the final number of points to be serialized when one of the values contain an infinite value. How to fix: update this line https://github.com/kornia/kornia/blob/master/kornia/utils/pointcloud_io.py#L34 ```python if not bool(torch.isfinite(xyz).any()): continue ``` by ```python if not bool(torch.isfinite(xyz).any()): num_points -= 1 continue ``` --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `kornia/utils/pointcloud_io.py` Content: ``` 1 import os 2 from typing import Optional 3 4 import torch 5 6 7 def save_pointcloud_ply(filename: str, pointcloud: torch.Tensor) -> None: 8 r"""Utility function to save to disk a pointcloud in PLY format. 9 10 Args: 11 filename: the path to save the pointcloud. 12 pointcloud: tensor containing the pointcloud to save. 13 The tensor must be in the shape of :math:`(*, 3)` where the last 14 component is assumed to be a 3d point coordinate :math:`(X, Y, Z)`. 15 """ 16 if not isinstance(filename, str) and filename[-3:] == '.ply': 17 raise TypeError("Input filename must be a string in with the .ply " "extension. Got {}".format(filename)) 18 19 if not torch.is_tensor(pointcloud): 20 raise TypeError(f"Input pointcloud type is not a torch.Tensor. Got {type(pointcloud)}") 21 22 if not len(pointcloud.shape) == 3 and pointcloud.shape[-1] == 3: 23 raise TypeError("Input pointcloud must be in the following shape " "HxWx3. Got {}.".format(pointcloud.shape)) 24 25 # flatten the input pointcloud in a vector to iterate points 26 xyz_vec: torch.Tensor = pointcloud.reshape(-1, 3) 27 28 with open(filename, 'w') as f: 29 data_str: str = '' 30 num_points: int = xyz_vec.shape[0] 31 for idx in range(num_points): 32 xyz = xyz_vec[idx] 33 if not bool(torch.isfinite(xyz).any()): 34 continue 35 x: float = xyz[0].item() 36 y: float = xyz[1].item() 37 z: float = xyz[2].item() 38 data_str += f'{x} {y} {z}\n' 39 40 f.write("ply\n") 41 f.write("format ascii 1.0\n") 42 f.write("comment arraiy generated\n") 43 f.write("element vertex %d\n" % num_points) 44 f.write("property double x\n") 45 f.write("property double y\n") 46 f.write("property double z\n") 47 f.write("end_header\n") 48 f.write(data_str) 49 50 51 def load_pointcloud_ply(filename: str, header_size: int = 8) -> torch.Tensor: 52 r"""Utility function to load from disk a pointcloud in PLY format. 53 54 Args: 55 filename: the path to the pointcloud. 56 header_size: the size of the ply file header that will 57 be skipped during loading. 58 59 Return: 60 tensor containing the loaded point with shape :math:`(*, 3)` where 61 :math:`*` represents the number of points. 62 """ 63 if not isinstance(filename, str) and filename[-3:] == '.ply': 64 raise TypeError("Input filename must be a string in with the .ply " "extension. Got {}".format(filename)) 65 if not os.path.isfile(filename): 66 raise ValueError("Input filename is not an existing file.") 67 if not (isinstance(header_size, int) and header_size > 0): 68 raise TypeError(f"Input header_size must be a positive integer. Got {header_size}.") 69 # open the file and populate tensor 70 with open(filename) as f: 71 points = [] 72 73 # skip header 74 lines = f.readlines()[header_size:] 75 76 # iterate over the points 77 for line in lines: 78 x_str, y_str, z_str = line.split() 79 points.append((torch.tensor(float(x_str)), torch.tensor(float(y_str)), torch.tensor(float(z_str)))) 80 81 # create tensor from list 82 pointcloud: torch.Tensor = torch.tensor(points) 83 return pointcloud 84 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/kornia/utils/pointcloud_io.py b/kornia/utils/pointcloud_io.py --- a/kornia/utils/pointcloud_io.py +++ b/kornia/utils/pointcloud_io.py @@ -31,6 +31,7 @@ for idx in range(num_points): xyz = xyz_vec[idx] if not bool(torch.isfinite(xyz).any()): + num_points -= 1 continue x: float = xyz[0].item() y: float = xyz[1].item()
{"golden_diff": "diff --git a/kornia/utils/pointcloud_io.py b/kornia/utils/pointcloud_io.py\n--- a/kornia/utils/pointcloud_io.py\n+++ b/kornia/utils/pointcloud_io.py\n@@ -31,6 +31,7 @@\n for idx in range(num_points):\n xyz = xyz_vec[idx]\n if not bool(torch.isfinite(xyz).any()):\n+ num_points -= 1\n continue\n x: float = xyz[0].item()\n y: float = xyz[1].item()\n", "issue": "[Bug] save pointcloud not updates num_points when inf\n## \ud83d\udc1b Bug\r\n\r\nThe function `K.utils.save_pointcloud_ply` doesn't update the final number of points to be serialized when one of the values contain an infinite value.\r\n\r\nHow to fix:\r\n\r\nupdate this line https://github.com/kornia/kornia/blob/master/kornia/utils/pointcloud_io.py#L34\r\n\r\n```python\r\n if not bool(torch.isfinite(xyz).any()):\r\n continue\r\n```\r\nby\r\n\r\n```python\r\n if not bool(torch.isfinite(xyz).any()):\r\n num_points -= 1\r\n continue\r\n```\n", "before_files": [{"content": "import os\nfrom typing import Optional\n\nimport torch\n\n\ndef save_pointcloud_ply(filename: str, pointcloud: torch.Tensor) -> None:\n r\"\"\"Utility function to save to disk a pointcloud in PLY format.\n\n Args:\n filename: the path to save the pointcloud.\n pointcloud: tensor containing the pointcloud to save.\n The tensor must be in the shape of :math:`(*, 3)` where the last\n component is assumed to be a 3d point coordinate :math:`(X, Y, Z)`.\n \"\"\"\n if not isinstance(filename, str) and filename[-3:] == '.ply':\n raise TypeError(\"Input filename must be a string in with the .ply \" \"extension. Got {}\".format(filename))\n\n if not torch.is_tensor(pointcloud):\n raise TypeError(f\"Input pointcloud type is not a torch.Tensor. Got {type(pointcloud)}\")\n\n if not len(pointcloud.shape) == 3 and pointcloud.shape[-1] == 3:\n raise TypeError(\"Input pointcloud must be in the following shape \" \"HxWx3. Got {}.\".format(pointcloud.shape))\n\n # flatten the input pointcloud in a vector to iterate points\n xyz_vec: torch.Tensor = pointcloud.reshape(-1, 3)\n\n with open(filename, 'w') as f:\n data_str: str = ''\n num_points: int = xyz_vec.shape[0]\n for idx in range(num_points):\n xyz = xyz_vec[idx]\n if not bool(torch.isfinite(xyz).any()):\n continue\n x: float = xyz[0].item()\n y: float = xyz[1].item()\n z: float = xyz[2].item()\n data_str += f'{x} {y} {z}\\n'\n\n f.write(\"ply\\n\")\n f.write(\"format ascii 1.0\\n\")\n f.write(\"comment arraiy generated\\n\")\n f.write(\"element vertex %d\\n\" % num_points)\n f.write(\"property double x\\n\")\n f.write(\"property double y\\n\")\n f.write(\"property double z\\n\")\n f.write(\"end_header\\n\")\n f.write(data_str)\n\n\ndef load_pointcloud_ply(filename: str, header_size: int = 8) -> torch.Tensor:\n r\"\"\"Utility function to load from disk a pointcloud in PLY format.\n\n Args:\n filename: the path to the pointcloud.\n header_size: the size of the ply file header that will\n be skipped during loading.\n\n Return:\n tensor containing the loaded point with shape :math:`(*, 3)` where\n :math:`*` represents the number of points.\n \"\"\"\n if not isinstance(filename, str) and filename[-3:] == '.ply':\n raise TypeError(\"Input filename must be a string in with the .ply \" \"extension. Got {}\".format(filename))\n if not os.path.isfile(filename):\n raise ValueError(\"Input filename is not an existing file.\")\n if not (isinstance(header_size, int) and header_size > 0):\n raise TypeError(f\"Input header_size must be a positive integer. Got {header_size}.\")\n # open the file and populate tensor\n with open(filename) as f:\n points = []\n\n # skip header\n lines = f.readlines()[header_size:]\n\n # iterate over the points\n for line in lines:\n x_str, y_str, z_str = line.split()\n points.append((torch.tensor(float(x_str)), torch.tensor(float(y_str)), torch.tensor(float(z_str))))\n\n # create tensor from list\n pointcloud: torch.Tensor = torch.tensor(points)\n return pointcloud\n", "path": "kornia/utils/pointcloud_io.py"}], "after_files": [{"content": "import os\nfrom typing import Optional\n\nimport torch\n\n\ndef save_pointcloud_ply(filename: str, pointcloud: torch.Tensor) -> None:\n r\"\"\"Utility function to save to disk a pointcloud in PLY format.\n\n Args:\n filename: the path to save the pointcloud.\n pointcloud: tensor containing the pointcloud to save.\n The tensor must be in the shape of :math:`(*, 3)` where the last\n component is assumed to be a 3d point coordinate :math:`(X, Y, Z)`.\n \"\"\"\n if not isinstance(filename, str) and filename[-3:] == '.ply':\n raise TypeError(\"Input filename must be a string in with the .ply \" \"extension. Got {}\".format(filename))\n\n if not torch.is_tensor(pointcloud):\n raise TypeError(f\"Input pointcloud type is not a torch.Tensor. Got {type(pointcloud)}\")\n\n if not len(pointcloud.shape) == 3 and pointcloud.shape[-1] == 3:\n raise TypeError(\"Input pointcloud must be in the following shape \" \"HxWx3. Got {}.\".format(pointcloud.shape))\n\n # flatten the input pointcloud in a vector to iterate points\n xyz_vec: torch.Tensor = pointcloud.reshape(-1, 3)\n\n with open(filename, 'w') as f:\n data_str: str = ''\n num_points: int = xyz_vec.shape[0]\n for idx in range(num_points):\n xyz = xyz_vec[idx]\n if not bool(torch.isfinite(xyz).any()):\n num_points -= 1\n continue\n x: float = xyz[0].item()\n y: float = xyz[1].item()\n z: float = xyz[2].item()\n data_str += f'{x} {y} {z}\\n'\n\n f.write(\"ply\\n\")\n f.write(\"format ascii 1.0\\n\")\n f.write(\"comment arraiy generated\\n\")\n f.write(\"element vertex %d\\n\" % num_points)\n f.write(\"property double x\\n\")\n f.write(\"property double y\\n\")\n f.write(\"property double z\\n\")\n f.write(\"end_header\\n\")\n f.write(data_str)\n\n\ndef load_pointcloud_ply(filename: str, header_size: int = 8) -> torch.Tensor:\n r\"\"\"Utility function to load from disk a pointcloud in PLY format.\n\n Args:\n filename: the path to the pointcloud.\n header_size: the size of the ply file header that will\n be skipped during loading.\n\n Return:\n tensor containing the loaded point with shape :math:`(*, 3)` where\n :math:`*` represents the number of points.\n \"\"\"\n if not isinstance(filename, str) and filename[-3:] == '.ply':\n raise TypeError(\"Input filename must be a string in with the .ply \" \"extension. Got {}\".format(filename))\n if not os.path.isfile(filename):\n raise ValueError(\"Input filename is not an existing file.\")\n if not (isinstance(header_size, int) and header_size > 0):\n raise TypeError(f\"Input header_size must be a positive integer. Got {header_size}.\")\n # open the file and populate tensor\n with open(filename) as f:\n points = []\n\n # skip header\n lines = f.readlines()[header_size:]\n\n # iterate over the points\n for line in lines:\n x_str, y_str, z_str = line.split()\n points.append((torch.tensor(float(x_str)), torch.tensor(float(y_str)), torch.tensor(float(z_str))))\n\n # create tensor from list\n pointcloud: torch.Tensor = torch.tensor(points)\n return pointcloud\n", "path": "kornia/utils/pointcloud_io.py"}]}
1,354
120
gh_patches_debug_39139
rasdani/github-patches
git_diff
digitalfabrik__integreat-cms-304
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Add currently_in_translation to translation coverage The translation coverage lacks the `currently_in_translation` field, which should also be added. Add currently_in_translation to translation coverage The translation coverage lacks the `currently_in_translation` field, which should also be added. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `backend/cms/views/analytics/translation_coverage_view.py` Content: ``` 1 """Views related to the statistics module""" 2 from django.contrib.auth.decorators import login_required 3 from django.utils.decorators import method_decorator 4 from django.views.generic import TemplateView 5 from django.shortcuts import render 6 7 from ...models import PageTranslation, Region 8 from ...decorators import region_permission_required 9 10 11 @method_decorator(login_required, name='dispatch') 12 @method_decorator(region_permission_required, name='dispatch') 13 class TranslationCoverageView(TemplateView): 14 """ 15 Class to create the translation coverage statistic 16 """ 17 template_name = 'analytics/translation_coverage.html' 18 base_context = {'current_menu_item': 'translation_coverage'} 19 20 def get(self, request, *args, **kwargs): 21 22 region = Region.get_current_region(request) 23 num_pages = region.pages.count() 24 languages = [] 25 26 for language in region.languages: 27 page_translations = PageTranslation.get_translations(region, language) 28 languages.append({ 29 'translated_name': language.translated_name, 30 'num_page_translations_up_to_date': len([t for t in page_translations if not t.is_outdated]), 31 'num_page_translations_outdated': len([t for t in page_translations if t.is_outdated]), 32 'num_page_translations_missing': num_pages - page_translations.count() 33 }) 34 35 return render( 36 request, 37 self.template_name, 38 { 39 **self.base_context, 40 'languages': languages 41 } 42 ) 43 ``` Path: `backend/cms/models/pages/page_translation.py` Content: ``` 1 """Models representing a page and page translation with content 2 """ 3 import logging 4 5 from django.conf import settings 6 from django.db import models 7 from django.utils import timezone 8 9 from .page import Page 10 from ..languages.language import Language 11 from ...constants import status 12 13 14 logger = logging.getLogger(__name__) 15 16 17 class PageTranslation(models.Model): 18 """Class defining a Translation of a Page 19 20 Args: 21 models : Class inherit of django-Models 22 """ 23 24 page = models.ForeignKey(Page, related_name='translations', on_delete=models.CASCADE) 25 language = models.ForeignKey( 26 Language, 27 related_name='page_translations', 28 on_delete=models.CASCADE 29 ) 30 slug = models.SlugField(max_length=200, blank=True, allow_unicode=True) 31 title = models.CharField(max_length=250) 32 text = models.TextField(blank=True) 33 status = models.CharField(max_length=6, choices=status.CHOICES, default=status.DRAFT) 34 currently_in_translation = models.BooleanField(default=False) 35 version = models.PositiveIntegerField(default=0) 36 minor_edit = models.BooleanField(default=False) 37 creator = models.ForeignKey(settings.AUTH_USER_MODEL, null=True, on_delete=models.SET_NULL) 38 created_date = models.DateTimeField(default=timezone.now) 39 last_updated = models.DateTimeField(auto_now=True) 40 41 @property 42 def foreign_object(self): 43 return self.page 44 45 @property 46 def ancestor_path(self): 47 return '/'.join([ 48 ancestor.get_first_translation([self.language.code]).slug 49 for ancestor in self.page.get_ancestors() 50 ]) 51 52 @property 53 def permalink(self): 54 return '/'.join(filter(None, [ 55 self.page.region.slug, 56 self.language.code, 57 self.ancestor_path, 58 self.slug 59 ])) 60 61 @property 62 def available_languages(self): 63 languages = self.page.languages 64 languages.remove(self.language) 65 available_languages = {} 66 for language in languages: 67 other_translation = self.page.get_public_translation(language.code) 68 if other_translation: 69 available_languages[language.code] = { 70 'id': other_translation.id, 71 'url': other_translation.permalink 72 } 73 return available_languages 74 75 @property 76 def source_translation(self): 77 source_language_tree_node = self.page.region.language_tree_nodes.get(language=self.language).parent 78 if source_language_tree_node: 79 return self.page.get_translation(source_language_tree_node.code) 80 return None 81 82 @property 83 def latest_public_revision(self): 84 return self.page.translations.filter( 85 language=self.language, 86 status=status.PUBLIC, 87 ).first() 88 89 @property 90 def latest_major_revision(self): 91 return self.page.translations.filter( 92 language=self.language, 93 minor_edit=False, 94 ).first() 95 96 @property 97 def latest_major_public_revision(self): 98 return self.page.translations.filter( 99 language=self.language, 100 status=status.PUBLIC, 101 minor_edit=False, 102 ).first() 103 104 @property 105 def previous_revision(self): 106 version = self.version - 1 107 return self.page.translations.filter( 108 language=self.language, 109 version=version, 110 ).first() 111 112 @property 113 def is_outdated(self): 114 source_translation = self.source_translation 115 # If self.language is the root language, this translation can never be outdated 116 if not source_translation: 117 return False 118 # If the source translation is outdated, this translation can not be up to date 119 if source_translation.is_outdated: 120 return True 121 self_revision = self.latest_major_public_revision 122 source_revision = source_translation.latest_major_public_revision 123 # If one of the translations has no major public revision, it cannot be outdated 124 if not self_revision or not source_revision: 125 return False 126 return self_revision.last_updated < source_revision.last_updated 127 128 @property 129 def combined_text(self): 130 """ 131 Combines the text from the PageTranslation with the text from the mirrored page. 132 """ 133 if self.page.mirrored_page_first: 134 return self.page.get_mirrored_text(self.language.code) + self.text 135 return self.text + self.page.get_mirrored_text(self.language.code) 136 137 @classmethod 138 def get_translations(cls, region, language): 139 return cls.objects.filter(page__region=region, language=language).distinct('page') 140 141 @classmethod 142 def get_outdated_translations(cls, region, language): 143 return [t for t in cls.objects.filter(page__region=region, language=language).distinct('page') if t.is_outdated] 144 145 @classmethod 146 def get_up_to_date_translations(cls, region, language): 147 return [t for t in cls.objects.filter(page__region=region, language=language).distinct('page') if not t.is_outdated] 148 149 def __str__(self): 150 if self.id: 151 return '(id: {}, page_id: {}, lang: {}, version: {}, slug: {})'.format(self.id, self.page.id, self.language.code, self.version, self.slug) 152 return super(PageTranslation, self).__str__() 153 154 class Meta: 155 ordering = ['page', '-version'] 156 default_permissions = () 157 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/backend/cms/models/pages/page_translation.py b/backend/cms/models/pages/page_translation.py --- a/backend/cms/models/pages/page_translation.py +++ b/backend/cms/models/pages/page_translation.py @@ -111,6 +111,9 @@ @property def is_outdated(self): + # If the page translation is currently in translation, it is defined as not outdated + if self.currently_in_translation: + return False source_translation = self.source_translation # If self.language is the root language, this translation can never be outdated if not source_translation: @@ -125,6 +128,10 @@ return False return self_revision.last_updated < source_revision.last_updated + @property + def is_up_to_date(self): + return not self.currently_in_translation and not self.is_outdated + @property def combined_text(self): """ @@ -139,12 +146,16 @@ return cls.objects.filter(page__region=region, language=language).distinct('page') @classmethod - def get_outdated_translations(cls, region, language): - return [t for t in cls.objects.filter(page__region=region, language=language).distinct('page') if t.is_outdated] + def get_up_to_date_translations(cls, region, language): + return [t for t in cls.objects.filter(page__region=region, language=language).distinct('page') if t.is_up_to_date] @classmethod - def get_up_to_date_translations(cls, region, language): - return [t for t in cls.objects.filter(page__region=region, language=language).distinct('page') if not t.is_outdated] + def get_current_translations(cls, region, language): + return [t for t in cls.objects.filter(page__region=region, language=language).distinct('page') if t.currently_in_translation] + + @classmethod + def get_outdated_translations(cls, region, language): + return [t for t in cls.objects.filter(page__region=region, language=language).distinct('page') if t.is_outdated] def __str__(self): if self.id: diff --git a/backend/cms/views/analytics/translation_coverage_view.py b/backend/cms/views/analytics/translation_coverage_view.py --- a/backend/cms/views/analytics/translation_coverage_view.py +++ b/backend/cms/views/analytics/translation_coverage_view.py @@ -27,7 +27,8 @@ page_translations = PageTranslation.get_translations(region, language) languages.append({ 'translated_name': language.translated_name, - 'num_page_translations_up_to_date': len([t for t in page_translations if not t.is_outdated]), + 'num_page_translations_up_to_date': len([t for t in page_translations if t.is_up_to_date]), + 'num_page_translations_currently_in_translation': len([t for t in page_translations if t.currently_in_translation]), 'num_page_translations_outdated': len([t for t in page_translations if t.is_outdated]), 'num_page_translations_missing': num_pages - page_translations.count() })
{"golden_diff": "diff --git a/backend/cms/models/pages/page_translation.py b/backend/cms/models/pages/page_translation.py\n--- a/backend/cms/models/pages/page_translation.py\n+++ b/backend/cms/models/pages/page_translation.py\n@@ -111,6 +111,9 @@\n \n @property\n def is_outdated(self):\n+ # If the page translation is currently in translation, it is defined as not outdated\n+ if self.currently_in_translation:\n+ return False\n source_translation = self.source_translation\n # If self.language is the root language, this translation can never be outdated\n if not source_translation:\n@@ -125,6 +128,10 @@\n return False\n return self_revision.last_updated < source_revision.last_updated\n \n+ @property\n+ def is_up_to_date(self):\n+ return not self.currently_in_translation and not self.is_outdated\n+\n @property\n def combined_text(self):\n \"\"\"\n@@ -139,12 +146,16 @@\n return cls.objects.filter(page__region=region, language=language).distinct('page')\n \n @classmethod\n- def get_outdated_translations(cls, region, language):\n- return [t for t in cls.objects.filter(page__region=region, language=language).distinct('page') if t.is_outdated]\n+ def get_up_to_date_translations(cls, region, language):\n+ return [t for t in cls.objects.filter(page__region=region, language=language).distinct('page') if t.is_up_to_date]\n \n @classmethod\n- def get_up_to_date_translations(cls, region, language):\n- return [t for t in cls.objects.filter(page__region=region, language=language).distinct('page') if not t.is_outdated]\n+ def get_current_translations(cls, region, language):\n+ return [t for t in cls.objects.filter(page__region=region, language=language).distinct('page') if t.currently_in_translation]\n+\n+ @classmethod\n+ def get_outdated_translations(cls, region, language):\n+ return [t for t in cls.objects.filter(page__region=region, language=language).distinct('page') if t.is_outdated]\n \n def __str__(self):\n if self.id:\ndiff --git a/backend/cms/views/analytics/translation_coverage_view.py b/backend/cms/views/analytics/translation_coverage_view.py\n--- a/backend/cms/views/analytics/translation_coverage_view.py\n+++ b/backend/cms/views/analytics/translation_coverage_view.py\n@@ -27,7 +27,8 @@\n page_translations = PageTranslation.get_translations(region, language)\n languages.append({\n 'translated_name': language.translated_name,\n- 'num_page_translations_up_to_date': len([t for t in page_translations if not t.is_outdated]),\n+ 'num_page_translations_up_to_date': len([t for t in page_translations if t.is_up_to_date]),\n+ 'num_page_translations_currently_in_translation': len([t for t in page_translations if t.currently_in_translation]),\n 'num_page_translations_outdated': len([t for t in page_translations if t.is_outdated]),\n 'num_page_translations_missing': num_pages - page_translations.count()\n })\n", "issue": "Add currently_in_translation to translation coverage\nThe translation coverage lacks the `currently_in_translation` field, which should also be added.\nAdd currently_in_translation to translation coverage\nThe translation coverage lacks the `currently_in_translation` field, which should also be added.\n", "before_files": [{"content": "\"\"\"Views related to the statistics module\"\"\"\nfrom django.contrib.auth.decorators import login_required\nfrom django.utils.decorators import method_decorator\nfrom django.views.generic import TemplateView\nfrom django.shortcuts import render\n\nfrom ...models import PageTranslation, Region\nfrom ...decorators import region_permission_required\n\n\n@method_decorator(login_required, name='dispatch')\n@method_decorator(region_permission_required, name='dispatch')\nclass TranslationCoverageView(TemplateView):\n \"\"\"\n Class to create the translation coverage statistic\n \"\"\"\n template_name = 'analytics/translation_coverage.html'\n base_context = {'current_menu_item': 'translation_coverage'}\n\n def get(self, request, *args, **kwargs):\n\n region = Region.get_current_region(request)\n num_pages = region.pages.count()\n languages = []\n\n for language in region.languages:\n page_translations = PageTranslation.get_translations(region, language)\n languages.append({\n 'translated_name': language.translated_name,\n 'num_page_translations_up_to_date': len([t for t in page_translations if not t.is_outdated]),\n 'num_page_translations_outdated': len([t for t in page_translations if t.is_outdated]),\n 'num_page_translations_missing': num_pages - page_translations.count()\n })\n\n return render(\n request,\n self.template_name,\n {\n **self.base_context,\n 'languages': languages\n }\n )\n", "path": "backend/cms/views/analytics/translation_coverage_view.py"}, {"content": "\"\"\"Models representing a page and page translation with content\n\"\"\"\nimport logging\n\nfrom django.conf import settings\nfrom django.db import models\nfrom django.utils import timezone\n\nfrom .page import Page\nfrom ..languages.language import Language\nfrom ...constants import status\n\n\nlogger = logging.getLogger(__name__)\n\n\nclass PageTranslation(models.Model):\n \"\"\"Class defining a Translation of a Page\n\n Args:\n models : Class inherit of django-Models\n \"\"\"\n\n page = models.ForeignKey(Page, related_name='translations', on_delete=models.CASCADE)\n language = models.ForeignKey(\n Language,\n related_name='page_translations',\n on_delete=models.CASCADE\n )\n slug = models.SlugField(max_length=200, blank=True, allow_unicode=True)\n title = models.CharField(max_length=250)\n text = models.TextField(blank=True)\n status = models.CharField(max_length=6, choices=status.CHOICES, default=status.DRAFT)\n currently_in_translation = models.BooleanField(default=False)\n version = models.PositiveIntegerField(default=0)\n minor_edit = models.BooleanField(default=False)\n creator = models.ForeignKey(settings.AUTH_USER_MODEL, null=True, on_delete=models.SET_NULL)\n created_date = models.DateTimeField(default=timezone.now)\n last_updated = models.DateTimeField(auto_now=True)\n\n @property\n def foreign_object(self):\n return self.page\n\n @property\n def ancestor_path(self):\n return '/'.join([\n ancestor.get_first_translation([self.language.code]).slug\n for ancestor in self.page.get_ancestors()\n ])\n\n @property\n def permalink(self):\n return '/'.join(filter(None, [\n self.page.region.slug,\n self.language.code,\n self.ancestor_path,\n self.slug\n ]))\n\n @property\n def available_languages(self):\n languages = self.page.languages\n languages.remove(self.language)\n available_languages = {}\n for language in languages:\n other_translation = self.page.get_public_translation(language.code)\n if other_translation:\n available_languages[language.code] = {\n 'id': other_translation.id,\n 'url': other_translation.permalink\n }\n return available_languages\n\n @property\n def source_translation(self):\n source_language_tree_node = self.page.region.language_tree_nodes.get(language=self.language).parent\n if source_language_tree_node:\n return self.page.get_translation(source_language_tree_node.code)\n return None\n\n @property\n def latest_public_revision(self):\n return self.page.translations.filter(\n language=self.language,\n status=status.PUBLIC,\n ).first()\n\n @property\n def latest_major_revision(self):\n return self.page.translations.filter(\n language=self.language,\n minor_edit=False,\n ).first()\n\n @property\n def latest_major_public_revision(self):\n return self.page.translations.filter(\n language=self.language,\n status=status.PUBLIC,\n minor_edit=False,\n ).first()\n\n @property\n def previous_revision(self):\n version = self.version - 1\n return self.page.translations.filter(\n language=self.language,\n version=version,\n ).first()\n\n @property\n def is_outdated(self):\n source_translation = self.source_translation\n # If self.language is the root language, this translation can never be outdated\n if not source_translation:\n return False\n # If the source translation is outdated, this translation can not be up to date\n if source_translation.is_outdated:\n return True\n self_revision = self.latest_major_public_revision\n source_revision = source_translation.latest_major_public_revision\n # If one of the translations has no major public revision, it cannot be outdated\n if not self_revision or not source_revision:\n return False\n return self_revision.last_updated < source_revision.last_updated\n\n @property\n def combined_text(self):\n \"\"\"\n Combines the text from the PageTranslation with the text from the mirrored page.\n \"\"\"\n if self.page.mirrored_page_first:\n return self.page.get_mirrored_text(self.language.code) + self.text\n return self.text + self.page.get_mirrored_text(self.language.code)\n\n @classmethod\n def get_translations(cls, region, language):\n return cls.objects.filter(page__region=region, language=language).distinct('page')\n\n @classmethod\n def get_outdated_translations(cls, region, language):\n return [t for t in cls.objects.filter(page__region=region, language=language).distinct('page') if t.is_outdated]\n\n @classmethod\n def get_up_to_date_translations(cls, region, language):\n return [t for t in cls.objects.filter(page__region=region, language=language).distinct('page') if not t.is_outdated]\n\n def __str__(self):\n if self.id:\n return '(id: {}, page_id: {}, lang: {}, version: {}, slug: {})'.format(self.id, self.page.id, self.language.code, self.version, self.slug)\n return super(PageTranslation, self).__str__()\n\n class Meta:\n ordering = ['page', '-version']\n default_permissions = ()\n", "path": "backend/cms/models/pages/page_translation.py"}], "after_files": [{"content": "\"\"\"Views related to the statistics module\"\"\"\nfrom django.contrib.auth.decorators import login_required\nfrom django.utils.decorators import method_decorator\nfrom django.views.generic import TemplateView\nfrom django.shortcuts import render\n\nfrom ...models import PageTranslation, Region\nfrom ...decorators import region_permission_required\n\n\n@method_decorator(login_required, name='dispatch')\n@method_decorator(region_permission_required, name='dispatch')\nclass TranslationCoverageView(TemplateView):\n \"\"\"\n Class to create the translation coverage statistic\n \"\"\"\n template_name = 'analytics/translation_coverage.html'\n base_context = {'current_menu_item': 'translation_coverage'}\n\n def get(self, request, *args, **kwargs):\n\n region = Region.get_current_region(request)\n num_pages = region.pages.count()\n languages = []\n\n for language in region.languages:\n page_translations = PageTranslation.get_translations(region, language)\n languages.append({\n 'translated_name': language.translated_name,\n 'num_page_translations_up_to_date': len([t for t in page_translations if t.is_up_to_date]),\n 'num_page_translations_currently_in_translation': len([t for t in page_translations if t.currently_in_translation]),\n 'num_page_translations_outdated': len([t for t in page_translations if t.is_outdated]),\n 'num_page_translations_missing': num_pages - page_translations.count()\n })\n\n return render(\n request,\n self.template_name,\n {\n **self.base_context,\n 'languages': languages\n }\n )\n", "path": "backend/cms/views/analytics/translation_coverage_view.py"}, {"content": "\"\"\"Models representing a page and page translation with content\n\"\"\"\nimport logging\n\nfrom django.conf import settings\nfrom django.db import models\nfrom django.utils import timezone\n\nfrom .page import Page\nfrom ..languages.language import Language\nfrom ...constants import status\n\n\nlogger = logging.getLogger(__name__)\n\n\nclass PageTranslation(models.Model):\n \"\"\"Class defining a Translation of a Page\n\n Args:\n models : Class inherit of django-Models\n \"\"\"\n\n page = models.ForeignKey(Page, related_name='translations', on_delete=models.CASCADE)\n language = models.ForeignKey(\n Language,\n related_name='page_translations',\n on_delete=models.CASCADE\n )\n slug = models.SlugField(max_length=200, blank=True, allow_unicode=True)\n title = models.CharField(max_length=250)\n text = models.TextField(blank=True)\n status = models.CharField(max_length=6, choices=status.CHOICES, default=status.DRAFT)\n currently_in_translation = models.BooleanField(default=False)\n version = models.PositiveIntegerField(default=0)\n minor_edit = models.BooleanField(default=False)\n creator = models.ForeignKey(settings.AUTH_USER_MODEL, null=True, on_delete=models.SET_NULL)\n created_date = models.DateTimeField(default=timezone.now)\n last_updated = models.DateTimeField(auto_now=True)\n\n @property\n def foreign_object(self):\n return self.page\n\n @property\n def ancestor_path(self):\n return '/'.join([\n ancestor.get_first_translation([self.language.code]).slug\n for ancestor in self.page.get_ancestors()\n ])\n\n @property\n def permalink(self):\n return '/'.join(filter(None, [\n self.page.region.slug,\n self.language.code,\n self.ancestor_path,\n self.slug\n ]))\n\n @property\n def available_languages(self):\n languages = self.page.languages\n languages.remove(self.language)\n available_languages = {}\n for language in languages:\n other_translation = self.page.get_public_translation(language.code)\n if other_translation:\n available_languages[language.code] = {\n 'id': other_translation.id,\n 'url': other_translation.permalink\n }\n return available_languages\n\n @property\n def source_translation(self):\n source_language_tree_node = self.page.region.language_tree_nodes.get(language=self.language).parent\n if source_language_tree_node:\n return self.page.get_translation(source_language_tree_node.code)\n return None\n\n @property\n def latest_public_revision(self):\n return self.page.translations.filter(\n language=self.language,\n status=status.PUBLIC,\n ).first()\n\n @property\n def latest_major_revision(self):\n return self.page.translations.filter(\n language=self.language,\n minor_edit=False,\n ).first()\n\n @property\n def latest_major_public_revision(self):\n return self.page.translations.filter(\n language=self.language,\n status=status.PUBLIC,\n minor_edit=False,\n ).first()\n\n @property\n def previous_revision(self):\n version = self.version - 1\n return self.page.translations.filter(\n language=self.language,\n version=version,\n ).first()\n\n @property\n def is_outdated(self):\n # If the page translation is currently in translation, it is defined as not outdated\n if self.currently_in_translation:\n return False\n source_translation = self.source_translation\n # If self.language is the root language, this translation can never be outdated\n if not source_translation:\n return False\n # If the source translation is outdated, this translation can not be up to date\n if source_translation.is_outdated:\n return True\n self_revision = self.latest_major_public_revision\n source_revision = source_translation.latest_major_public_revision\n # If one of the translations has no major public revision, it cannot be outdated\n if not self_revision or not source_revision:\n return False\n return self_revision.last_updated < source_revision.last_updated\n\n @property\n def is_up_to_date(self):\n return not self.currently_in_translation and not self.is_outdated\n\n @property\n def combined_text(self):\n \"\"\"\n Combines the text from the PageTranslation with the text from the mirrored page.\n \"\"\"\n if self.page.mirrored_page_first:\n return self.page.get_mirrored_text(self.language.code) + self.text\n return self.text + self.page.get_mirrored_text(self.language.code)\n\n @classmethod\n def get_translations(cls, region, language):\n return cls.objects.filter(page__region=region, language=language).distinct('page')\n\n @classmethod\n def get_up_to_date_translations(cls, region, language):\n return [t for t in cls.objects.filter(page__region=region, language=language).distinct('page') if t.is_up_to_date]\n\n @classmethod\n def get_current_translations(cls, region, language):\n return [t for t in cls.objects.filter(page__region=region, language=language).distinct('page') if t.currently_in_translation]\n\n @classmethod\n def get_outdated_translations(cls, region, language):\n return [t for t in cls.objects.filter(page__region=region, language=language).distinct('page') if t.is_outdated]\n\n def __str__(self):\n if self.id:\n return '(id: {}, page_id: {}, lang: {}, version: {}, slug: {})'.format(self.id, self.page.id, self.language.code, self.version, self.slug)\n return super(PageTranslation, self).__str__()\n\n class Meta:\n ordering = ['page', '-version']\n default_permissions = ()\n", "path": "backend/cms/models/pages/page_translation.py"}]}
2,163
713
gh_patches_debug_42864
rasdani/github-patches
git_diff
sunpy__sunpy-4129
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Maintain coherence between keycomments and the metadict See #2748 This is probably best implemented by adding the functionality to our `MetaDict` object or something, so that we don't have to do it manually everywhere. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `sunpy/util/metadata.py` Content: ``` 1 """ 2 This module provides a generalized dictionary class that deals with header 3 parsing and normalization. 4 """ 5 from collections import OrderedDict 6 7 __all__ = ['MetaDict'] 8 9 10 class MetaDict(OrderedDict): 11 """ 12 A class to hold metadata associated with a `sunpy.map.Map 13 <sunpy.map.map_factory.MapFactory.__call__>` derivative. 14 15 This class handles everything in lower case. This allows case 16 insensitive indexing. 17 """ 18 19 def __init__(self, *args): 20 """ 21 Creates a new MapHeader instance. 22 """ 23 # Store all keys as upper-case to allow for case-insensitive indexing 24 # OrderedDict can be instantiated from a list of lists or a tuple of tuples 25 tags = dict() 26 if args: 27 args = list(args) 28 adict = args[0] 29 if isinstance(adict, list) or isinstance(adict, tuple): 30 tags = OrderedDict((k.upper(), v) for k, v in adict) 31 elif isinstance(adict, dict): 32 tags = OrderedDict((k.upper(), v) for k, v in adict.items()) 33 else: 34 raise TypeError("Can not create a MetaDict from this type input") 35 args[0] = tags 36 37 super().__init__(*args) 38 39 def __contains__(self, key): 40 """ 41 Override ``__contains__``. 42 """ 43 return OrderedDict.__contains__(self, key.lower()) 44 45 def __getitem__(self, key): 46 """ 47 Override ``[]`` indexing. 48 """ 49 return OrderedDict.__getitem__(self, key.lower()) 50 51 def __setitem__(self, key, value): 52 """ 53 Override ``[]`` indexing. 54 """ 55 return OrderedDict.__setitem__(self, key.lower(), value) 56 57 def get(self, key, default=None): 58 """ 59 Override ``.get()`` indexing. 60 """ 61 return OrderedDict.get(self, key.lower(), default) 62 63 def has_key(self, key): 64 """ 65 Override ``.has_key()`` to perform case-insensitively. 66 """ 67 return key.lower() in self 68 69 def pop(self, key, default=None): 70 """ 71 Override ``.pop()`` to perform case-insensitively. 72 """ 73 return OrderedDict.pop(self, key.lower(), default) 74 75 def update(self, d2): 76 """ 77 Override ``.update()`` to perform case-insensitively. 78 """ 79 return OrderedDict.update(self, OrderedDict((k.lower(), v) for k, v in d2.items())) 80 81 def setdefault(self, key, default=None): 82 """ 83 Override ``.setdefault()`` to perform case-insensitively. 84 """ 85 return OrderedDict.setdefault(self, key.lower(), default) 86 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/sunpy/util/metadata.py b/sunpy/util/metadata.py --- a/sunpy/util/metadata.py +++ b/sunpy/util/metadata.py @@ -1,6 +1,6 @@ """ This module provides a generalized dictionary class that deals with header -parsing and normalization. +parsing, normalization, and maintaining coherence between keys and keycomments. """ from collections import OrderedDict @@ -14,28 +14,67 @@ This class handles everything in lower case. This allows case insensitive indexing. + + If the key 'keycomments' exists, its value must be a dictionary mapping + keys in the `MetaDict` to their comments. The casing of keys in the + keycomments dictionary is not significant. If a key is removed from the + `MetaDict`, it will also be removed from the keycomments dictionary. + Additionally, any extraneous keycomments will be removed when the + `MetaDict` is instantiated. """ def __init__(self, *args): """ - Creates a new MapHeader instance. + Creates a new MetaDict instance. """ - # Store all keys as upper-case to allow for case-insensitive indexing + # Store all keys as lower-case to allow for case-insensitive indexing # OrderedDict can be instantiated from a list of lists or a tuple of tuples tags = dict() if args: args = list(args) adict = args[0] if isinstance(adict, list) or isinstance(adict, tuple): - tags = OrderedDict((k.upper(), v) for k, v in adict) + tags = OrderedDict((k.lower(), v) for k, v in adict) elif isinstance(adict, dict): - tags = OrderedDict((k.upper(), v) for k, v in adict.items()) + tags = OrderedDict((k.lower(), v) for k, v in adict.items()) else: raise TypeError("Can not create a MetaDict from this type input") args[0] = tags super().__init__(*args) + # Use `copy=True` to avoid mutating the caller's keycomments + # dictionary (if they provided one). + self._prune_keycomments(copy=True) + + def _prune_keycomments(self, copy=False): + """ + Remove keycomments for keys that are not contained in the MetaDict. + + Parameters + ---------- + copy : `bool`, optional + Make a copy of the current keycomments dict before removing keys. + """ + if 'keycomments' not in self: + return + + keycomments = self['keycomments'] + + if not isinstance(keycomments, dict): + raise TypeError( + "'keycomments' key must have a value of type `dict`. Found " + "the following type: %r" % type(keycomments)) + + if copy: + keycomments = keycomments.copy() + + for key in list(keycomments.keys()): + if key not in self: + del keycomments[key] + + self['keycomments'] = keycomments + def __contains__(self, key): """ Override ``__contains__``. @@ -54,6 +93,15 @@ """ return OrderedDict.__setitem__(self, key.lower(), value) + # Note: `OrderedDict.popitem()` does not need to be overridden to prune + # keycomments because it calls `__delitem__` internally. + def __delitem__(self, key): + """ + Override ``del dict[key]`` key deletion. + """ + OrderedDict.__delitem__(self, key.lower()) + self._prune_keycomments() + def get(self, key, default=None): """ Override ``.get()`` indexing. @@ -70,7 +118,11 @@ """ Override ``.pop()`` to perform case-insensitively. """ - return OrderedDict.pop(self, key.lower(), default) + has_key = key in self + result = OrderedDict.pop(self, key.lower(), default) + if has_key: + self._prune_keycomments() + return result def update(self, d2): """
{"golden_diff": "diff --git a/sunpy/util/metadata.py b/sunpy/util/metadata.py\n--- a/sunpy/util/metadata.py\n+++ b/sunpy/util/metadata.py\n@@ -1,6 +1,6 @@\n \"\"\"\n This module provides a generalized dictionary class that deals with header\n-parsing and normalization.\n+parsing, normalization, and maintaining coherence between keys and keycomments.\n \"\"\"\n from collections import OrderedDict\n \n@@ -14,28 +14,67 @@\n \n This class handles everything in lower case. This allows case\n insensitive indexing.\n+\n+ If the key 'keycomments' exists, its value must be a dictionary mapping\n+ keys in the `MetaDict` to their comments. The casing of keys in the\n+ keycomments dictionary is not significant. If a key is removed from the\n+ `MetaDict`, it will also be removed from the keycomments dictionary.\n+ Additionally, any extraneous keycomments will be removed when the\n+ `MetaDict` is instantiated.\n \"\"\"\n \n def __init__(self, *args):\n \"\"\"\n- Creates a new MapHeader instance.\n+ Creates a new MetaDict instance.\n \"\"\"\n- # Store all keys as upper-case to allow for case-insensitive indexing\n+ # Store all keys as lower-case to allow for case-insensitive indexing\n # OrderedDict can be instantiated from a list of lists or a tuple of tuples\n tags = dict()\n if args:\n args = list(args)\n adict = args[0]\n if isinstance(adict, list) or isinstance(adict, tuple):\n- tags = OrderedDict((k.upper(), v) for k, v in adict)\n+ tags = OrderedDict((k.lower(), v) for k, v in adict)\n elif isinstance(adict, dict):\n- tags = OrderedDict((k.upper(), v) for k, v in adict.items())\n+ tags = OrderedDict((k.lower(), v) for k, v in adict.items())\n else:\n raise TypeError(\"Can not create a MetaDict from this type input\")\n args[0] = tags\n \n super().__init__(*args)\n \n+ # Use `copy=True` to avoid mutating the caller's keycomments\n+ # dictionary (if they provided one).\n+ self._prune_keycomments(copy=True)\n+\n+ def _prune_keycomments(self, copy=False):\n+ \"\"\"\n+ Remove keycomments for keys that are not contained in the MetaDict.\n+\n+ Parameters\n+ ----------\n+ copy : `bool`, optional\n+ Make a copy of the current keycomments dict before removing keys.\n+ \"\"\"\n+ if 'keycomments' not in self:\n+ return\n+\n+ keycomments = self['keycomments']\n+\n+ if not isinstance(keycomments, dict):\n+ raise TypeError(\n+ \"'keycomments' key must have a value of type `dict`. Found \"\n+ \"the following type: %r\" % type(keycomments))\n+\n+ if copy:\n+ keycomments = keycomments.copy()\n+\n+ for key in list(keycomments.keys()):\n+ if key not in self:\n+ del keycomments[key]\n+\n+ self['keycomments'] = keycomments\n+\n def __contains__(self, key):\n \"\"\"\n Override ``__contains__``.\n@@ -54,6 +93,15 @@\n \"\"\"\n return OrderedDict.__setitem__(self, key.lower(), value)\n \n+ # Note: `OrderedDict.popitem()` does not need to be overridden to prune\n+ # keycomments because it calls `__delitem__` internally.\n+ def __delitem__(self, key):\n+ \"\"\"\n+ Override ``del dict[key]`` key deletion.\n+ \"\"\"\n+ OrderedDict.__delitem__(self, key.lower())\n+ self._prune_keycomments()\n+\n def get(self, key, default=None):\n \"\"\"\n Override ``.get()`` indexing.\n@@ -70,7 +118,11 @@\n \"\"\"\n Override ``.pop()`` to perform case-insensitively.\n \"\"\"\n- return OrderedDict.pop(self, key.lower(), default)\n+ has_key = key in self\n+ result = OrderedDict.pop(self, key.lower(), default)\n+ if has_key:\n+ self._prune_keycomments()\n+ return result\n \n def update(self, d2):\n \"\"\"\n", "issue": "Maintain coherence between keycomments and the metadict\nSee #2748 \r\n\r\nThis is probably best implemented by adding the functionality to our `MetaDict` object or something, so that we don't have to do it manually everywhere.\n", "before_files": [{"content": "\"\"\"\nThis module provides a generalized dictionary class that deals with header\nparsing and normalization.\n\"\"\"\nfrom collections import OrderedDict\n\n__all__ = ['MetaDict']\n\n\nclass MetaDict(OrderedDict):\n \"\"\"\n A class to hold metadata associated with a `sunpy.map.Map\n <sunpy.map.map_factory.MapFactory.__call__>` derivative.\n\n This class handles everything in lower case. This allows case\n insensitive indexing.\n \"\"\"\n\n def __init__(self, *args):\n \"\"\"\n Creates a new MapHeader instance.\n \"\"\"\n # Store all keys as upper-case to allow for case-insensitive indexing\n # OrderedDict can be instantiated from a list of lists or a tuple of tuples\n tags = dict()\n if args:\n args = list(args)\n adict = args[0]\n if isinstance(adict, list) or isinstance(adict, tuple):\n tags = OrderedDict((k.upper(), v) for k, v in adict)\n elif isinstance(adict, dict):\n tags = OrderedDict((k.upper(), v) for k, v in adict.items())\n else:\n raise TypeError(\"Can not create a MetaDict from this type input\")\n args[0] = tags\n\n super().__init__(*args)\n\n def __contains__(self, key):\n \"\"\"\n Override ``__contains__``.\n \"\"\"\n return OrderedDict.__contains__(self, key.lower())\n\n def __getitem__(self, key):\n \"\"\"\n Override ``[]`` indexing.\n \"\"\"\n return OrderedDict.__getitem__(self, key.lower())\n\n def __setitem__(self, key, value):\n \"\"\"\n Override ``[]`` indexing.\n \"\"\"\n return OrderedDict.__setitem__(self, key.lower(), value)\n\n def get(self, key, default=None):\n \"\"\"\n Override ``.get()`` indexing.\n \"\"\"\n return OrderedDict.get(self, key.lower(), default)\n\n def has_key(self, key):\n \"\"\"\n Override ``.has_key()`` to perform case-insensitively.\n \"\"\"\n return key.lower() in self\n\n def pop(self, key, default=None):\n \"\"\"\n Override ``.pop()`` to perform case-insensitively.\n \"\"\"\n return OrderedDict.pop(self, key.lower(), default)\n\n def update(self, d2):\n \"\"\"\n Override ``.update()`` to perform case-insensitively.\n \"\"\"\n return OrderedDict.update(self, OrderedDict((k.lower(), v) for k, v in d2.items()))\n\n def setdefault(self, key, default=None):\n \"\"\"\n Override ``.setdefault()`` to perform case-insensitively.\n \"\"\"\n return OrderedDict.setdefault(self, key.lower(), default)\n", "path": "sunpy/util/metadata.py"}], "after_files": [{"content": "\"\"\"\nThis module provides a generalized dictionary class that deals with header\nparsing, normalization, and maintaining coherence between keys and keycomments.\n\"\"\"\nfrom collections import OrderedDict\n\n__all__ = ['MetaDict']\n\n\nclass MetaDict(OrderedDict):\n \"\"\"\n A class to hold metadata associated with a `sunpy.map.Map\n <sunpy.map.map_factory.MapFactory.__call__>` derivative.\n\n This class handles everything in lower case. This allows case\n insensitive indexing.\n\n If the key 'keycomments' exists, its value must be a dictionary mapping\n keys in the `MetaDict` to their comments. The casing of keys in the\n keycomments dictionary is not significant. If a key is removed from the\n `MetaDict`, it will also be removed from the keycomments dictionary.\n Additionally, any extraneous keycomments will be removed when the\n `MetaDict` is instantiated.\n \"\"\"\n\n def __init__(self, *args):\n \"\"\"\n Creates a new MetaDict instance.\n \"\"\"\n # Store all keys as lower-case to allow for case-insensitive indexing\n # OrderedDict can be instantiated from a list of lists or a tuple of tuples\n tags = dict()\n if args:\n args = list(args)\n adict = args[0]\n if isinstance(adict, list) or isinstance(adict, tuple):\n tags = OrderedDict((k.lower(), v) for k, v in adict)\n elif isinstance(adict, dict):\n tags = OrderedDict((k.lower(), v) for k, v in adict.items())\n else:\n raise TypeError(\"Can not create a MetaDict from this type input\")\n args[0] = tags\n\n super().__init__(*args)\n\n # Use `copy=True` to avoid mutating the caller's keycomments\n # dictionary (if they provided one).\n self._prune_keycomments(copy=True)\n\n def _prune_keycomments(self, copy=False):\n \"\"\"\n Remove keycomments for keys that are not contained in the MetaDict.\n\n Parameters\n ----------\n copy : `bool`, optional\n Make a copy of the current keycomments dict before removing keys.\n \"\"\"\n if 'keycomments' not in self:\n return\n\n keycomments = self['keycomments']\n\n if not isinstance(keycomments, dict):\n raise TypeError(\n \"'keycomments' key must have a value of type `dict`. Found \"\n \"the following type: %r\" % type(keycomments))\n\n if copy:\n keycomments = keycomments.copy()\n\n for key in list(keycomments.keys()):\n if key not in self:\n del keycomments[key]\n\n self['keycomments'] = keycomments\n\n def __contains__(self, key):\n \"\"\"\n Override ``__contains__``.\n \"\"\"\n return OrderedDict.__contains__(self, key.lower())\n\n def __getitem__(self, key):\n \"\"\"\n Override ``[]`` indexing.\n \"\"\"\n return OrderedDict.__getitem__(self, key.lower())\n\n def __setitem__(self, key, value):\n \"\"\"\n Override ``[]`` indexing.\n \"\"\"\n return OrderedDict.__setitem__(self, key.lower(), value)\n\n # Note: `OrderedDict.popitem()` does not need to be overridden to prune\n # keycomments because it calls `__delitem__` internally.\n def __delitem__(self, key):\n \"\"\"\n Override ``del dict[key]`` key deletion.\n \"\"\"\n OrderedDict.__delitem__(self, key.lower())\n self._prune_keycomments()\n\n def get(self, key, default=None):\n \"\"\"\n Override ``.get()`` indexing.\n \"\"\"\n return OrderedDict.get(self, key.lower(), default)\n\n def has_key(self, key):\n \"\"\"\n Override ``.has_key()`` to perform case-insensitively.\n \"\"\"\n return key.lower() in self\n\n def pop(self, key, default=None):\n \"\"\"\n Override ``.pop()`` to perform case-insensitively.\n \"\"\"\n has_key = key in self\n result = OrderedDict.pop(self, key.lower(), default)\n if has_key:\n self._prune_keycomments()\n return result\n\n def update(self, d2):\n \"\"\"\n Override ``.update()`` to perform case-insensitively.\n \"\"\"\n return OrderedDict.update(self, OrderedDict((k.lower(), v) for k, v in d2.items()))\n\n def setdefault(self, key, default=None):\n \"\"\"\n Override ``.setdefault()`` to perform case-insensitively.\n \"\"\"\n return OrderedDict.setdefault(self, key.lower(), default)\n", "path": "sunpy/util/metadata.py"}]}
1,048
951
gh_patches_debug_14578
rasdani/github-patches
git_diff
vllm-project__vllm-2151
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- torch.distributed.all_reduce does not free memory I've visualized the memory usage: * llama 7B, TP=1 <img width="3346" alt="Screenshot 2023-12-16 at 11 14 03 PM" src="https://github.com/vllm-project/vllm/assets/46394894/e6ed7069-2190-4823-8f25-8e27bd94fe35"> The activation memory is reused after every layer. * llama-70B, TP=8 <img width="3247" alt="Screenshot 2023-12-16 at 11 20 10 PM" src="https://github.com/vllm-project/vllm/assets/46394894/b5f492bb-7262-4c06-a040-7796e0f7fc06"> **However, when using TP, the activation memory for all reduce is not reused** _Originally posted by @WoosukKwon in https://github.com/vllm-project/vllm/pull/2031#discussion_r1429046645_ --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `vllm/worker/worker.py` Content: ``` 1 """A GPU worker class.""" 2 import os 3 from typing import Dict, List, Optional, Tuple 4 5 import torch 6 import torch.distributed 7 8 from vllm.config import (CacheConfig, ModelConfig, ParallelConfig, 9 SchedulerConfig) 10 from vllm.model_executor import set_random_seed 11 from vllm.model_executor.parallel_utils import cupy_utils 12 from vllm.model_executor.parallel_utils.parallel_state import ( 13 initialize_model_parallel) 14 from vllm.sequence import SamplerOutput, SequenceGroupMetadata 15 from vllm.worker.cache_engine import CacheEngine 16 from vllm.worker.model_runner import ModelRunner 17 18 19 class Worker: 20 """A worker class that executes (a partition of) the model on a GPU. 21 22 Each worker is associated with a single GPU. The worker is responsible for 23 maintaining the KV cache and executing the model on the GPU. In case of 24 distributed inference, each worker is assigned a partition of the model. 25 """ 26 27 def __init__( 28 self, 29 model_config: ModelConfig, 30 parallel_config: ParallelConfig, 31 scheduler_config: SchedulerConfig, 32 rank: Optional[int] = None, 33 distributed_init_method: Optional[str] = None, 34 ) -> None: 35 self.model_config = model_config 36 self.parallel_config = parallel_config 37 self.scheduler_config = scheduler_config 38 self.rank = rank 39 self.distributed_init_method = distributed_init_method 40 41 self.model_runner = ModelRunner(model_config, parallel_config, 42 scheduler_config) 43 # Uninitialized cache engine. Will be initialized by 44 # self.init_cache_engine(). 45 self.cache_config = None 46 self.cache_engine = None 47 self.cache_events = None 48 self.gpu_cache = None 49 50 def init_model(self, cupy_port: Optional[int] = None): 51 # This env var set by Ray causes exceptions with graph building. 52 os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None) 53 # Env vars will be set by Ray. 54 self.rank = self.rank if self.rank is not None else int( 55 os.getenv("RANK", "-1")) 56 local_rank = int(os.getenv("LOCAL_RANK", "0")) 57 self.device = torch.device(f"cuda:{local_rank}") 58 if self.rank < 0: 59 raise ValueError("Invalid or unspecified rank.") 60 torch.cuda.set_device(self.device) 61 62 _check_if_gpu_supports_dtype(self.model_config.dtype) 63 64 # Initialize the distributed environment. 65 _init_distributed_environment(self.parallel_config, self.rank, 66 cupy_port, self.distributed_init_method) 67 68 # Initialize the model. 69 set_random_seed(self.model_config.seed) 70 71 def load_model(self): 72 self.model_runner.load_model() 73 74 @torch.inference_mode() 75 def profile_num_available_blocks( 76 self, 77 block_size: int, 78 gpu_memory_utilization: float, 79 cpu_swap_space: int, 80 ) -> Tuple[int, int]: 81 # Profile the memory usage of the model and get the maximum number of 82 # cache blocks that can be allocated with the remaining free memory. 83 torch.cuda.empty_cache() 84 85 # Execute a forward pass with dummy inputs to profile the memory usage 86 # of the model. 87 self.model_runner.profile_run() 88 89 # Calculate the number of blocks that can be allocated with the 90 # profiled peak memory. 91 torch.cuda.synchronize() 92 free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info() 93 peak_memory = total_gpu_memory - free_gpu_memory 94 95 cache_block_size = CacheEngine.get_cache_block_size( 96 block_size, self.model_config, self.parallel_config) 97 num_gpu_blocks = int( 98 (total_gpu_memory * gpu_memory_utilization - peak_memory) // 99 cache_block_size) 100 num_cpu_blocks = int(cpu_swap_space // cache_block_size) 101 num_gpu_blocks = max(num_gpu_blocks, 0) 102 num_cpu_blocks = max(num_cpu_blocks, 0) 103 torch.cuda.empty_cache() 104 return num_gpu_blocks, num_cpu_blocks 105 106 def init_cache_engine(self, cache_config: CacheConfig) -> None: 107 self.cache_config = cache_config 108 self.cache_engine = CacheEngine(self.cache_config, self.model_config, 109 self.parallel_config) 110 self.cache_events = self.cache_engine.events 111 self.gpu_cache = self.cache_engine.gpu_cache 112 self.model_runner.set_block_size(self.cache_engine.block_size) 113 114 def warm_up_model(self) -> None: 115 if not self.model_config.enforce_eager: 116 self.model_runner.capture_model(self.gpu_cache) 117 # Reset the seed to ensure that the random state is not affected by 118 # the model initialization and profiling. 119 set_random_seed(self.model_config.seed) 120 121 @torch.inference_mode() 122 def execute_model( 123 self, 124 seq_group_metadata_list: List[SequenceGroupMetadata], 125 blocks_to_swap_in: Dict[int, int], 126 blocks_to_swap_out: Dict[int, int], 127 blocks_to_copy: Dict[int, List[int]], 128 ) -> SamplerOutput: 129 # Issue cache operations. 130 issued_cache_op = False 131 if blocks_to_swap_in: 132 self.cache_engine.swap_in(blocks_to_swap_in) 133 issued_cache_op = True 134 if blocks_to_swap_out: 135 self.cache_engine.swap_out(blocks_to_swap_out) 136 issued_cache_op = True 137 if blocks_to_copy: 138 self.cache_engine.copy(blocks_to_copy) 139 issued_cache_op = True 140 141 cache_events = self.cache_events if issued_cache_op else None 142 143 # Wait for cache operations to finish. 144 # TODO(woosuk): Profile swapping overhead and optimize if needed. 145 if cache_events is not None: 146 for event in cache_events: 147 event.wait() 148 # If there is no input, we don't need to execute the model. 149 if not seq_group_metadata_list: 150 return {} 151 152 output = self.model_runner.execute_model(seq_group_metadata_list, 153 self.gpu_cache) 154 return output 155 156 157 def _init_distributed_environment( 158 parallel_config: ParallelConfig, 159 rank: int, 160 cupy_port: Optional[int], 161 distributed_init_method: Optional[str] = None, 162 ) -> None: 163 """Initialize the distributed environment.""" 164 if torch.distributed.is_initialized(): 165 torch_world_size = torch.distributed.get_world_size() 166 if torch_world_size != parallel_config.world_size: 167 raise RuntimeError( 168 "torch.distributed is already initialized but the torch world " 169 "size does not match parallel_config.world_size " 170 f"({torch_world_size} vs. {parallel_config.world_size}).") 171 elif not distributed_init_method: 172 raise ValueError( 173 "distributed_init_method must be set if torch.distributed " 174 "is not already initialized") 175 else: 176 torch.distributed.init_process_group( 177 backend="nccl", 178 world_size=parallel_config.world_size, 179 rank=rank, 180 init_method=distributed_init_method, 181 ) 182 183 if cupy_utils.is_initialized(): 184 cupy_world_size = cupy_utils.get_world_size() 185 if cupy_world_size != parallel_config.world_size: 186 raise RuntimeError( 187 "cupy.distributed is already initialized but the cupy world " 188 "size does not match parallel_config.world_size " 189 f"({cupy_world_size} vs. {parallel_config.world_size}).") 190 elif parallel_config.world_size > 1: 191 # NOTE(woosuk): We don't initialize CuPy process group when world size 192 # is 1. 193 # TODO(woosuk): Support multi-node connection. 194 cupy_utils.init_process_group( 195 world_size=parallel_config.world_size, 196 rank=rank, 197 host="localhost", 198 port=cupy_port, 199 ) 200 201 if parallel_config.world_size > 1: 202 # A small all_reduce for warmup. 203 torch.distributed.all_reduce(torch.zeros(1).cuda()) 204 cupy_utils.all_reduce(torch.zeros(1).cuda()) 205 206 initialize_model_parallel(parallel_config.tensor_parallel_size, 207 parallel_config.pipeline_parallel_size) 208 209 210 def _check_if_gpu_supports_dtype(torch_dtype: torch.dtype): 211 # Check if the GPU supports the dtype. 212 if torch_dtype == torch.bfloat16: 213 compute_capability = torch.cuda.get_device_capability() 214 if compute_capability[0] < 8: 215 gpu_name = torch.cuda.get_device_name() 216 raise ValueError( 217 "Bfloat16 is only supported on GPUs with compute capability " 218 f"of at least 8.0. Your {gpu_name} GPU has compute capability " 219 f"{compute_capability[0]}.{compute_capability[1]}.") 220 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/vllm/worker/worker.py b/vllm/worker/worker.py --- a/vllm/worker/worker.py +++ b/vllm/worker/worker.py @@ -48,6 +48,14 @@ self.gpu_cache = None def init_model(self, cupy_port: Optional[int] = None): + # torch.distributed.all_reduce does not free the input tensor until + # the synchronization point. This causes the memory usage to grow + # as the number of all_reduce calls increases. This env var disables + # this behavior. + # Related issue: + # https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573 + os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1" + # This env var set by Ray causes exceptions with graph building. os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None) # Env vars will be set by Ray.
{"golden_diff": "diff --git a/vllm/worker/worker.py b/vllm/worker/worker.py\n--- a/vllm/worker/worker.py\n+++ b/vllm/worker/worker.py\n@@ -48,6 +48,14 @@\n self.gpu_cache = None\n \n def init_model(self, cupy_port: Optional[int] = None):\n+ # torch.distributed.all_reduce does not free the input tensor until\n+ # the synchronization point. This causes the memory usage to grow\n+ # as the number of all_reduce calls increases. This env var disables\n+ # this behavior.\n+ # Related issue:\n+ # https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573\n+ os.environ[\"TORCH_NCCL_AVOID_RECORD_STREAMS\"] = \"1\"\n+\n # This env var set by Ray causes exceptions with graph building.\n os.environ.pop(\"NCCL_ASYNC_ERROR_HANDLING\", None)\n # Env vars will be set by Ray.\n", "issue": "torch.distributed.all_reduce does not free memory\n I've visualized the memory usage:\r\n\r\n* llama 7B, TP=1\r\n<img width=\"3346\" alt=\"Screenshot 2023-12-16 at 11 14 03\u202fPM\" src=\"https://github.com/vllm-project/vllm/assets/46394894/e6ed7069-2190-4823-8f25-8e27bd94fe35\">\r\n\r\nThe activation memory is reused after every layer.\r\n\r\n* llama-70B, TP=8\r\n<img width=\"3247\" alt=\"Screenshot 2023-12-16 at 11 20 10\u202fPM\" src=\"https://github.com/vllm-project/vllm/assets/46394894/b5f492bb-7262-4c06-a040-7796e0f7fc06\">\r\n\r\n**However, when using TP, the activation memory for all reduce is not reused**\r\n\r\n_Originally posted by @WoosukKwon in https://github.com/vllm-project/vllm/pull/2031#discussion_r1429046645_\r\n \n", "before_files": [{"content": "\"\"\"A GPU worker class.\"\"\"\nimport os\nfrom typing import Dict, List, Optional, Tuple\n\nimport torch\nimport torch.distributed\n\nfrom vllm.config import (CacheConfig, ModelConfig, ParallelConfig,\n SchedulerConfig)\nfrom vllm.model_executor import set_random_seed\nfrom vllm.model_executor.parallel_utils import cupy_utils\nfrom vllm.model_executor.parallel_utils.parallel_state import (\n initialize_model_parallel)\nfrom vllm.sequence import SamplerOutput, SequenceGroupMetadata\nfrom vllm.worker.cache_engine import CacheEngine\nfrom vllm.worker.model_runner import ModelRunner\n\n\nclass Worker:\n \"\"\"A worker class that executes (a partition of) the model on a GPU.\n\n Each worker is associated with a single GPU. The worker is responsible for\n maintaining the KV cache and executing the model on the GPU. In case of\n distributed inference, each worker is assigned a partition of the model.\n \"\"\"\n\n def __init__(\n self,\n model_config: ModelConfig,\n parallel_config: ParallelConfig,\n scheduler_config: SchedulerConfig,\n rank: Optional[int] = None,\n distributed_init_method: Optional[str] = None,\n ) -> None:\n self.model_config = model_config\n self.parallel_config = parallel_config\n self.scheduler_config = scheduler_config\n self.rank = rank\n self.distributed_init_method = distributed_init_method\n\n self.model_runner = ModelRunner(model_config, parallel_config,\n scheduler_config)\n # Uninitialized cache engine. Will be initialized by\n # self.init_cache_engine().\n self.cache_config = None\n self.cache_engine = None\n self.cache_events = None\n self.gpu_cache = None\n\n def init_model(self, cupy_port: Optional[int] = None):\n # This env var set by Ray causes exceptions with graph building.\n os.environ.pop(\"NCCL_ASYNC_ERROR_HANDLING\", None)\n # Env vars will be set by Ray.\n self.rank = self.rank if self.rank is not None else int(\n os.getenv(\"RANK\", \"-1\"))\n local_rank = int(os.getenv(\"LOCAL_RANK\", \"0\"))\n self.device = torch.device(f\"cuda:{local_rank}\")\n if self.rank < 0:\n raise ValueError(\"Invalid or unspecified rank.\")\n torch.cuda.set_device(self.device)\n\n _check_if_gpu_supports_dtype(self.model_config.dtype)\n\n # Initialize the distributed environment.\n _init_distributed_environment(self.parallel_config, self.rank,\n cupy_port, self.distributed_init_method)\n\n # Initialize the model.\n set_random_seed(self.model_config.seed)\n\n def load_model(self):\n self.model_runner.load_model()\n\n @torch.inference_mode()\n def profile_num_available_blocks(\n self,\n block_size: int,\n gpu_memory_utilization: float,\n cpu_swap_space: int,\n ) -> Tuple[int, int]:\n # Profile the memory usage of the model and get the maximum number of\n # cache blocks that can be allocated with the remaining free memory.\n torch.cuda.empty_cache()\n\n # Execute a forward pass with dummy inputs to profile the memory usage\n # of the model.\n self.model_runner.profile_run()\n\n # Calculate the number of blocks that can be allocated with the\n # profiled peak memory.\n torch.cuda.synchronize()\n free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()\n peak_memory = total_gpu_memory - free_gpu_memory\n\n cache_block_size = CacheEngine.get_cache_block_size(\n block_size, self.model_config, self.parallel_config)\n num_gpu_blocks = int(\n (total_gpu_memory * gpu_memory_utilization - peak_memory) //\n cache_block_size)\n num_cpu_blocks = int(cpu_swap_space // cache_block_size)\n num_gpu_blocks = max(num_gpu_blocks, 0)\n num_cpu_blocks = max(num_cpu_blocks, 0)\n torch.cuda.empty_cache()\n return num_gpu_blocks, num_cpu_blocks\n\n def init_cache_engine(self, cache_config: CacheConfig) -> None:\n self.cache_config = cache_config\n self.cache_engine = CacheEngine(self.cache_config, self.model_config,\n self.parallel_config)\n self.cache_events = self.cache_engine.events\n self.gpu_cache = self.cache_engine.gpu_cache\n self.model_runner.set_block_size(self.cache_engine.block_size)\n\n def warm_up_model(self) -> None:\n if not self.model_config.enforce_eager:\n self.model_runner.capture_model(self.gpu_cache)\n # Reset the seed to ensure that the random state is not affected by\n # the model initialization and profiling.\n set_random_seed(self.model_config.seed)\n\n @torch.inference_mode()\n def execute_model(\n self,\n seq_group_metadata_list: List[SequenceGroupMetadata],\n blocks_to_swap_in: Dict[int, int],\n blocks_to_swap_out: Dict[int, int],\n blocks_to_copy: Dict[int, List[int]],\n ) -> SamplerOutput:\n # Issue cache operations.\n issued_cache_op = False\n if blocks_to_swap_in:\n self.cache_engine.swap_in(blocks_to_swap_in)\n issued_cache_op = True\n if blocks_to_swap_out:\n self.cache_engine.swap_out(blocks_to_swap_out)\n issued_cache_op = True\n if blocks_to_copy:\n self.cache_engine.copy(blocks_to_copy)\n issued_cache_op = True\n\n cache_events = self.cache_events if issued_cache_op else None\n\n # Wait for cache operations to finish.\n # TODO(woosuk): Profile swapping overhead and optimize if needed.\n if cache_events is not None:\n for event in cache_events:\n event.wait()\n # If there is no input, we don't need to execute the model.\n if not seq_group_metadata_list:\n return {}\n\n output = self.model_runner.execute_model(seq_group_metadata_list,\n self.gpu_cache)\n return output\n\n\ndef _init_distributed_environment(\n parallel_config: ParallelConfig,\n rank: int,\n cupy_port: Optional[int],\n distributed_init_method: Optional[str] = None,\n) -> None:\n \"\"\"Initialize the distributed environment.\"\"\"\n if torch.distributed.is_initialized():\n torch_world_size = torch.distributed.get_world_size()\n if torch_world_size != parallel_config.world_size:\n raise RuntimeError(\n \"torch.distributed is already initialized but the torch world \"\n \"size does not match parallel_config.world_size \"\n f\"({torch_world_size} vs. {parallel_config.world_size}).\")\n elif not distributed_init_method:\n raise ValueError(\n \"distributed_init_method must be set if torch.distributed \"\n \"is not already initialized\")\n else:\n torch.distributed.init_process_group(\n backend=\"nccl\",\n world_size=parallel_config.world_size,\n rank=rank,\n init_method=distributed_init_method,\n )\n\n if cupy_utils.is_initialized():\n cupy_world_size = cupy_utils.get_world_size()\n if cupy_world_size != parallel_config.world_size:\n raise RuntimeError(\n \"cupy.distributed is already initialized but the cupy world \"\n \"size does not match parallel_config.world_size \"\n f\"({cupy_world_size} vs. {parallel_config.world_size}).\")\n elif parallel_config.world_size > 1:\n # NOTE(woosuk): We don't initialize CuPy process group when world size\n # is 1.\n # TODO(woosuk): Support multi-node connection.\n cupy_utils.init_process_group(\n world_size=parallel_config.world_size,\n rank=rank,\n host=\"localhost\",\n port=cupy_port,\n )\n\n if parallel_config.world_size > 1:\n # A small all_reduce for warmup.\n torch.distributed.all_reduce(torch.zeros(1).cuda())\n cupy_utils.all_reduce(torch.zeros(1).cuda())\n\n initialize_model_parallel(parallel_config.tensor_parallel_size,\n parallel_config.pipeline_parallel_size)\n\n\ndef _check_if_gpu_supports_dtype(torch_dtype: torch.dtype):\n # Check if the GPU supports the dtype.\n if torch_dtype == torch.bfloat16:\n compute_capability = torch.cuda.get_device_capability()\n if compute_capability[0] < 8:\n gpu_name = torch.cuda.get_device_name()\n raise ValueError(\n \"Bfloat16 is only supported on GPUs with compute capability \"\n f\"of at least 8.0. Your {gpu_name} GPU has compute capability \"\n f\"{compute_capability[0]}.{compute_capability[1]}.\")\n", "path": "vllm/worker/worker.py"}], "after_files": [{"content": "\"\"\"A GPU worker class.\"\"\"\nimport os\nfrom typing import Dict, List, Optional, Tuple\n\nimport torch\nimport torch.distributed\n\nfrom vllm.config import (CacheConfig, ModelConfig, ParallelConfig,\n SchedulerConfig)\nfrom vllm.model_executor import set_random_seed\nfrom vllm.model_executor.parallel_utils import cupy_utils\nfrom vllm.model_executor.parallel_utils.parallel_state import (\n initialize_model_parallel)\nfrom vllm.sequence import SamplerOutput, SequenceGroupMetadata\nfrom vllm.worker.cache_engine import CacheEngine\nfrom vllm.worker.model_runner import ModelRunner\n\n\nclass Worker:\n \"\"\"A worker class that executes (a partition of) the model on a GPU.\n\n Each worker is associated with a single GPU. The worker is responsible for\n maintaining the KV cache and executing the model on the GPU. In case of\n distributed inference, each worker is assigned a partition of the model.\n \"\"\"\n\n def __init__(\n self,\n model_config: ModelConfig,\n parallel_config: ParallelConfig,\n scheduler_config: SchedulerConfig,\n rank: Optional[int] = None,\n distributed_init_method: Optional[str] = None,\n ) -> None:\n self.model_config = model_config\n self.parallel_config = parallel_config\n self.scheduler_config = scheduler_config\n self.rank = rank\n self.distributed_init_method = distributed_init_method\n\n self.model_runner = ModelRunner(model_config, parallel_config,\n scheduler_config)\n # Uninitialized cache engine. Will be initialized by\n # self.init_cache_engine().\n self.cache_config = None\n self.cache_engine = None\n self.cache_events = None\n self.gpu_cache = None\n\n def init_model(self, cupy_port: Optional[int] = None):\n # torch.distributed.all_reduce does not free the input tensor until\n # the synchronization point. This causes the memory usage to grow\n # as the number of all_reduce calls increases. This env var disables\n # this behavior.\n # Related issue:\n # https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573\n os.environ[\"TORCH_NCCL_AVOID_RECORD_STREAMS\"] = \"1\"\n\n # This env var set by Ray causes exceptions with graph building.\n os.environ.pop(\"NCCL_ASYNC_ERROR_HANDLING\", None)\n # Env vars will be set by Ray.\n self.rank = self.rank if self.rank is not None else int(\n os.getenv(\"RANK\", \"-1\"))\n local_rank = int(os.getenv(\"LOCAL_RANK\", \"0\"))\n self.device = torch.device(f\"cuda:{local_rank}\")\n if self.rank < 0:\n raise ValueError(\"Invalid or unspecified rank.\")\n torch.cuda.set_device(self.device)\n\n _check_if_gpu_supports_dtype(self.model_config.dtype)\n\n # Initialize the distributed environment.\n _init_distributed_environment(self.parallel_config, self.rank,\n cupy_port, self.distributed_init_method)\n\n # Initialize the model.\n set_random_seed(self.model_config.seed)\n\n def load_model(self):\n self.model_runner.load_model()\n\n @torch.inference_mode()\n def profile_num_available_blocks(\n self,\n block_size: int,\n gpu_memory_utilization: float,\n cpu_swap_space: int,\n ) -> Tuple[int, int]:\n # Profile the memory usage of the model and get the maximum number of\n # cache blocks that can be allocated with the remaining free memory.\n torch.cuda.empty_cache()\n\n # Execute a forward pass with dummy inputs to profile the memory usage\n # of the model.\n self.model_runner.profile_run()\n\n # Calculate the number of blocks that can be allocated with the\n # profiled peak memory.\n torch.cuda.synchronize()\n free_gpu_memory, total_gpu_memory = torch.cuda.mem_get_info()\n peak_memory = total_gpu_memory - free_gpu_memory\n\n cache_block_size = CacheEngine.get_cache_block_size(\n block_size, self.model_config, self.parallel_config)\n num_gpu_blocks = int(\n (total_gpu_memory * gpu_memory_utilization - peak_memory) //\n cache_block_size)\n num_cpu_blocks = int(cpu_swap_space // cache_block_size)\n num_gpu_blocks = max(num_gpu_blocks, 0)\n num_cpu_blocks = max(num_cpu_blocks, 0)\n torch.cuda.empty_cache()\n return num_gpu_blocks, num_cpu_blocks\n\n def init_cache_engine(self, cache_config: CacheConfig) -> None:\n self.cache_config = cache_config\n self.cache_engine = CacheEngine(self.cache_config, self.model_config,\n self.parallel_config)\n self.cache_events = self.cache_engine.events\n self.gpu_cache = self.cache_engine.gpu_cache\n self.model_runner.set_block_size(self.cache_engine.block_size)\n\n def warm_up_model(self) -> None:\n if not self.model_config.enforce_eager:\n self.model_runner.capture_model(self.gpu_cache)\n # Reset the seed to ensure that the random state is not affected by\n # the model initialization and profiling.\n set_random_seed(self.model_config.seed)\n\n @torch.inference_mode()\n def execute_model(\n self,\n seq_group_metadata_list: List[SequenceGroupMetadata],\n blocks_to_swap_in: Dict[int, int],\n blocks_to_swap_out: Dict[int, int],\n blocks_to_copy: Dict[int, List[int]],\n ) -> SamplerOutput:\n # Issue cache operations.\n issued_cache_op = False\n if blocks_to_swap_in:\n self.cache_engine.swap_in(blocks_to_swap_in)\n issued_cache_op = True\n if blocks_to_swap_out:\n self.cache_engine.swap_out(blocks_to_swap_out)\n issued_cache_op = True\n if blocks_to_copy:\n self.cache_engine.copy(blocks_to_copy)\n issued_cache_op = True\n\n cache_events = self.cache_events if issued_cache_op else None\n\n # Wait for cache operations to finish.\n # TODO(woosuk): Profile swapping overhead and optimize if needed.\n if cache_events is not None:\n for event in cache_events:\n event.wait()\n # If there is no input, we don't need to execute the model.\n if not seq_group_metadata_list:\n return {}\n\n output = self.model_runner.execute_model(seq_group_metadata_list,\n self.gpu_cache)\n return output\n\n\ndef _init_distributed_environment(\n parallel_config: ParallelConfig,\n rank: int,\n cupy_port: Optional[int],\n distributed_init_method: Optional[str] = None,\n) -> None:\n \"\"\"Initialize the distributed environment.\"\"\"\n if torch.distributed.is_initialized():\n torch_world_size = torch.distributed.get_world_size()\n if torch_world_size != parallel_config.world_size:\n raise RuntimeError(\n \"torch.distributed is already initialized but the torch world \"\n \"size does not match parallel_config.world_size \"\n f\"({torch_world_size} vs. {parallel_config.world_size}).\")\n elif not distributed_init_method:\n raise ValueError(\n \"distributed_init_method must be set if torch.distributed \"\n \"is not already initialized\")\n else:\n torch.distributed.init_process_group(\n backend=\"nccl\",\n world_size=parallel_config.world_size,\n rank=rank,\n init_method=distributed_init_method,\n )\n\n if cupy_utils.is_initialized():\n cupy_world_size = cupy_utils.get_world_size()\n if cupy_world_size != parallel_config.world_size:\n raise RuntimeError(\n \"cupy.distributed is already initialized but the cupy world \"\n \"size does not match parallel_config.world_size \"\n f\"({cupy_world_size} vs. {parallel_config.world_size}).\")\n elif parallel_config.world_size > 1:\n # NOTE(woosuk): We don't initialize CuPy process group when world size\n # is 1.\n # TODO(woosuk): Support multi-node connection.\n cupy_utils.init_process_group(\n world_size=parallel_config.world_size,\n rank=rank,\n host=\"localhost\",\n port=cupy_port,\n )\n\n if parallel_config.world_size > 1:\n # A small all_reduce for warmup.\n torch.distributed.all_reduce(torch.zeros(1).cuda())\n cupy_utils.all_reduce(torch.zeros(1).cuda())\n\n initialize_model_parallel(parallel_config.tensor_parallel_size,\n parallel_config.pipeline_parallel_size)\n\n\ndef _check_if_gpu_supports_dtype(torch_dtype: torch.dtype):\n # Check if the GPU supports the dtype.\n if torch_dtype == torch.bfloat16:\n compute_capability = torch.cuda.get_device_capability()\n if compute_capability[0] < 8:\n gpu_name = torch.cuda.get_device_name()\n raise ValueError(\n \"Bfloat16 is only supported on GPUs with compute capability \"\n f\"of at least 8.0. Your {gpu_name} GPU has compute capability \"\n f\"{compute_capability[0]}.{compute_capability[1]}.\")\n", "path": "vllm/worker/worker.py"}]}
2,915
232
gh_patches_debug_31866
rasdani/github-patches
git_diff
intel__dffml-566
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- feature: add a load function in high level Add a load function in `high_level.py` so the data from sources can be loaded. After completing this, #555 can be worked on. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `dffml/high_level.py` Content: ``` 1 """ 2 High level abstraction interfaces to DFFML. These are probably going to be used 3 in a lot of quick and dirty python files. 4 """ 5 import pathlib 6 from typing import Union, Dict, Any 7 8 from .record import Record 9 from .source.source import Sources, BaseSource 10 from .source.memory import MemorySource, MemorySourceConfig 11 12 13 def _records_to_sources(*args): 14 """ 15 Create a memory source out of any records passed as a variable length list. 16 Add all sources found in the variable length list to a list of sources, and 17 the created source containing records, and return that list of sources. 18 """ 19 # If the first arg is an instance of sources, append the rest to that. 20 if args and isinstance(args[0], Sources): 21 sources = args[0] 22 else: 23 sources = Sources( 24 *[arg for arg in args if isinstance(arg, BaseSource)] 25 ) 26 # Records to add to memory source 27 records = [] 28 # Make args mutable 29 args = list(args) 30 # Convert dicts to records 31 for i, arg in enumerate(args): 32 if isinstance(arg, dict): 33 arg = Record(i, data={"features": arg}) 34 if isinstance(arg, Record): 35 records.append(arg) 36 if isinstance(arg, str) and "." in arg: 37 filepath = pathlib.Path(arg) 38 source = BaseSource.load(filepath.suffix.replace(".", "")) 39 sources.append(source(filename=arg)) 40 # Create memory source if there are any records 41 if records: 42 sources.append(MemorySource(MemorySourceConfig(records=records))) 43 return sources 44 45 46 async def save(source: BaseSource, *args: Record) -> None: 47 """ 48 Update a source's knowledge about given records. 49 50 For each record given, call 51 :py:func:`update <dffml.source.source.BaseSourceContext.update>` on the 52 source. Effectively saving all the records to the source. 53 54 Parameters 55 ---------- 56 source : BaseSource 57 Data source to use. See :doc:`/plugins/dffml_source` for sources and 58 options. 59 *args : list 60 Records to be saved. 61 62 Examples 63 -------- 64 65 >>> source = CSVSource(filename="save.csv", allowempty=True, readwrite=True) 66 >>> 67 >>> async def main(): 68 ... await save( 69 ... source, 70 ... Record( 71 ... "myrecord", 72 ... data={ 73 ... "features": {"Years": 0, "Expertise": 1, "Trust": 0.1}, 74 ... "prediction": {"Salary": {"value": 10, "confidence": 1.0}}, 75 ... } 76 ... ) 77 ... ) 78 ... print(pathlib.Path("save.csv").read_text().strip()) 79 >>> 80 >>> asyncio.run(main()) 81 key,tag,Expertise,Trust,Years,prediction_Salary,confidence_Salary 82 myrecord,untagged,1,0.1,0,10,1.0 83 """ 84 async with source: 85 async with source() as sctx: 86 for record in args: 87 await sctx.update(record) 88 89 90 async def train(model, *args: Union[BaseSource, Record, Dict[str, Any]]): 91 """ 92 Train a machine learning model. 93 94 Provide records to the model to train it. The model should be already 95 instantiated. 96 97 Parameters 98 ---------- 99 model : Model 100 Machine Learning model to use. See :doc:`/plugins/dffml_model` for 101 models options. 102 *args : list 103 Input data for training. Could be a ``dict``, :py:class:`Record`, 104 filename, one of the data :doc:`/plugins/dffml_source`, or a filename 105 with the extension being one of the data sources. 106 107 Examples 108 -------- 109 110 >>> model = LinearRegressionModel( 111 ... features=Features( 112 ... DefFeature("Years", int, 1), 113 ... DefFeature("Expertise", int, 1), 114 ... DefFeature("Trust", float, 1), 115 ... ), 116 ... predict=DefFeature("Salary", int, 1), 117 ... ) 118 >>> 119 >>> async def main(): 120 ... await train( 121 ... model, 122 ... {"Years": 0, "Expertise": 1, "Trust": 0.1, "Salary": 10}, 123 ... {"Years": 1, "Expertise": 3, "Trust": 0.2, "Salary": 20}, 124 ... {"Years": 2, "Expertise": 5, "Trust": 0.3, "Salary": 30}, 125 ... {"Years": 3, "Expertise": 7, "Trust": 0.4, "Salary": 40}, 126 ... ) 127 >>> 128 >>> asyncio.run(main()) 129 """ 130 sources = _records_to_sources(*args) 131 async with sources as sources, model as model: 132 async with sources() as sctx, model() as mctx: 133 return await mctx.train(sctx) 134 135 136 async def accuracy( 137 model, *args: Union[BaseSource, Record, Dict[str, Any]] 138 ) -> float: 139 """ 140 Assess the accuracy of a machine learning model. 141 142 Provide records to the model to assess the percent accuracy of its 143 prediction abilities. The model should be already instantiated and trained. 144 145 Parameters 146 ---------- 147 model : Model 148 Machine Learning model to use. See :doc:`/plugins/dffml_model` for 149 models options. 150 *args : list 151 Input data for training. Could be a ``dict``, :py:class:`Record`, 152 filename, one of the data :doc:`/plugins/dffml_source`, or a filename 153 with the extension being one of the data sources. 154 155 Returns 156 ------- 157 float 158 A decimal value representing the percent of the time the model made the 159 correct prediction. For some models this has another meaning. Please see 160 the documentation for the model your using for further details. 161 162 Examples 163 -------- 164 165 >>> model = LinearRegressionModel( 166 ... features=Features( 167 ... DefFeature("Years", int, 1), 168 ... DefFeature("Expertise", int, 1), 169 ... DefFeature("Trust", float, 1), 170 ... ), 171 ... predict=DefFeature("Salary", int, 1), 172 ... ) 173 >>> 174 >>> async def main(): 175 ... print( 176 ... "Accuracy:", 177 ... await accuracy( 178 ... model, 179 ... {"Years": 4, "Expertise": 9, "Trust": 0.5, "Salary": 50}, 180 ... {"Years": 5, "Expertise": 11, "Trust": 0.6, "Salary": 60}, 181 ... ), 182 ... ) 183 >>> 184 >>> asyncio.run(main()) 185 Accuracy: 1.0 186 """ 187 sources = _records_to_sources(*args) 188 async with sources as sources, model as model: 189 async with sources() as sctx, model() as mctx: 190 return float(await mctx.accuracy(sctx)) 191 192 193 async def predict( 194 model, 195 *args: Union[BaseSource, Record, Dict[str, Any]], 196 update: bool = False, 197 keep_record: bool = False, 198 ): 199 """ 200 Make a prediction using a machine learning model. 201 202 The model must be trained before using it to make a prediction. 203 204 Parameters 205 ---------- 206 model : Model 207 Machine Learning model to use. See :doc:`/plugins/dffml_model` for 208 models options. 209 *args : list 210 Input data for prediction. Could be a ``dict``, :py:class:`Record`, 211 filename, or one of the data :doc:`/plugins/dffml_source`. 212 update : boolean, optional 213 If ``True`` prediction data within records will be written back to all 214 sources given. Defaults to ``False``. 215 keep_record : boolean, optional 216 If ``True`` the results will be kept as their ``Record`` objects instead 217 of being converted to a ``(record.key, features, predictions)`` tuple. 218 Defaults to ``False``. 219 220 Returns 221 ------- 222 asynciterator 223 ``Record`` objects or ``(record.key, features, predictions)`` tuple. 224 225 Examples 226 -------- 227 228 >>> model = LinearRegressionModel( 229 ... features=Features( 230 ... DefFeature("Years", int, 1), 231 ... DefFeature("Expertise", int, 1), 232 ... DefFeature("Trust", float, 1), 233 ... ), 234 ... predict=DefFeature("Salary", int, 1), 235 ... ) 236 >>> 237 >>> async def main(): 238 ... async for i, features, prediction in predict( 239 ... model, 240 ... {"Years": 6, "Expertise": 13, "Trust": 0.7}, 241 ... {"Years": 7, "Expertise": 15, "Trust": 0.8}, 242 ... ): 243 ... features["Salary"] = round(prediction["Salary"]["value"]) 244 ... print(features) 245 >>> 246 >>> asyncio.run(main()) 247 {'Years': 6, 'Expertise': 13, 'Trust': 0.7, 'Salary': 70.0} 248 {'Years': 7, 'Expertise': 15, 'Trust': 0.8, 'Salary': 80.0} 249 """ 250 sources = _records_to_sources(*args) 251 async with sources as sources, model as model: 252 async with sources() as sctx, model() as mctx: 253 async for record in mctx.predict(sctx.records()): 254 yield record if keep_record else ( 255 record.key, 256 record.features(), 257 record.predictions(), 258 ) 259 if update: 260 await sctx.update(record) 261 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/dffml/high_level.py b/dffml/high_level.py --- a/dffml/high_level.py +++ b/dffml/high_level.py @@ -3,7 +3,7 @@ in a lot of quick and dirty python files. """ import pathlib -from typing import Union, Dict, Any +from typing import Union, Dict, Any, AsyncIterator from .record import Record from .source.source import Sources, BaseSource @@ -258,3 +258,60 @@ ) if update: await sctx.update(record) + + +async def load(source: BaseSource, *args: str) -> AsyncIterator[Record]: + """ + Yields records from a source. + + Yields all the records from the source, if record keys are given then only + those records are yielded. + + Parameters + ---------- + source : BaseSource + Data source to use. See :doc:`/plugins/dffml_source` for sources and + options. + *args : str + Records to be returned. If empty, all the records in a source will be returned. + + Returns + ------- + asynciterator + :py:class:`Record <dffml.record.Record>` object + + Examples + -------- + + >>> source = CSVSource(filename="save.csv", allowempty=True, readwrite=True) + >>> + >>> async def main(): + ... await save( + ... source, + ... Record("1", data={"features": {"A": 0, "B": 1}}), + ... Record("2", data={"features": {"A": 3, "B": 4}}), + ... ) + ... + ... # All records in source + ... async for record in load(source): + ... print(record.export()) + ... + ... # For specific records in a source + ... async for record in load(source, "1"): + ... print(record.export()) + >>> + >>> asyncio.run(main()) + {'key': '1', 'features': {'A': 0, 'B': 1}, 'extra': {}} + {'key': '2', 'features': {'A': 3, 'B': 4}, 'extra': {}} + {'key': '1', 'features': {'A': 0, 'B': 1}, 'extra': {}} + """ + async with source: + async with source() as sctx: + if args: + # If specific records are to be loaded + for record in args: + yield await sctx.record(record) + else: + # All the records are loaded + async for record in sctx.records(): + yield record
{"golden_diff": "diff --git a/dffml/high_level.py b/dffml/high_level.py\n--- a/dffml/high_level.py\n+++ b/dffml/high_level.py\n@@ -3,7 +3,7 @@\n in a lot of quick and dirty python files.\n \"\"\"\n import pathlib\n-from typing import Union, Dict, Any\n+from typing import Union, Dict, Any, AsyncIterator\n \n from .record import Record\n from .source.source import Sources, BaseSource\n@@ -258,3 +258,60 @@\n )\n if update:\n await sctx.update(record)\n+\n+\n+async def load(source: BaseSource, *args: str) -> AsyncIterator[Record]:\n+ \"\"\"\n+ Yields records from a source.\n+\n+ Yields all the records from the source, if record keys are given then only\n+ those records are yielded.\n+\n+ Parameters\n+ ----------\n+ source : BaseSource\n+ Data source to use. See :doc:`/plugins/dffml_source` for sources and\n+ options.\n+ *args : str\n+ Records to be returned. If empty, all the records in a source will be returned.\n+\n+ Returns\n+ -------\n+ asynciterator\n+ :py:class:`Record <dffml.record.Record>` object\n+\n+ Examples\n+ --------\n+\n+ >>> source = CSVSource(filename=\"save.csv\", allowempty=True, readwrite=True)\n+ >>>\n+ >>> async def main():\n+ ... await save(\n+ ... source,\n+ ... Record(\"1\", data={\"features\": {\"A\": 0, \"B\": 1}}),\n+ ... Record(\"2\", data={\"features\": {\"A\": 3, \"B\": 4}}),\n+ ... )\n+ ...\n+ ... # All records in source\n+ ... async for record in load(source):\n+ ... print(record.export())\n+ ...\n+ ... # For specific records in a source\n+ ... async for record in load(source, \"1\"):\n+ ... print(record.export())\n+ >>>\n+ >>> asyncio.run(main())\n+ {'key': '1', 'features': {'A': 0, 'B': 1}, 'extra': {}}\n+ {'key': '2', 'features': {'A': 3, 'B': 4}, 'extra': {}}\n+ {'key': '1', 'features': {'A': 0, 'B': 1}, 'extra': {}}\n+ \"\"\"\n+ async with source:\n+ async with source() as sctx:\n+ if args:\n+ # If specific records are to be loaded\n+ for record in args:\n+ yield await sctx.record(record)\n+ else:\n+ # All the records are loaded\n+ async for record in sctx.records():\n+ yield record\n", "issue": "feature: add a load function in high level\nAdd a load function in `high_level.py` so the data from sources can be loaded.\r\nAfter completing this, #555 can be worked on.\n", "before_files": [{"content": "\"\"\"\nHigh level abstraction interfaces to DFFML. These are probably going to be used\nin a lot of quick and dirty python files.\n\"\"\"\nimport pathlib\nfrom typing import Union, Dict, Any\n\nfrom .record import Record\nfrom .source.source import Sources, BaseSource\nfrom .source.memory import MemorySource, MemorySourceConfig\n\n\ndef _records_to_sources(*args):\n \"\"\"\n Create a memory source out of any records passed as a variable length list.\n Add all sources found in the variable length list to a list of sources, and\n the created source containing records, and return that list of sources.\n \"\"\"\n # If the first arg is an instance of sources, append the rest to that.\n if args and isinstance(args[0], Sources):\n sources = args[0]\n else:\n sources = Sources(\n *[arg for arg in args if isinstance(arg, BaseSource)]\n )\n # Records to add to memory source\n records = []\n # Make args mutable\n args = list(args)\n # Convert dicts to records\n for i, arg in enumerate(args):\n if isinstance(arg, dict):\n arg = Record(i, data={\"features\": arg})\n if isinstance(arg, Record):\n records.append(arg)\n if isinstance(arg, str) and \".\" in arg:\n filepath = pathlib.Path(arg)\n source = BaseSource.load(filepath.suffix.replace(\".\", \"\"))\n sources.append(source(filename=arg))\n # Create memory source if there are any records\n if records:\n sources.append(MemorySource(MemorySourceConfig(records=records)))\n return sources\n\n\nasync def save(source: BaseSource, *args: Record) -> None:\n \"\"\"\n Update a source's knowledge about given records.\n\n For each record given, call\n :py:func:`update <dffml.source.source.BaseSourceContext.update>` on the\n source. Effectively saving all the records to the source.\n\n Parameters\n ----------\n source : BaseSource\n Data source to use. See :doc:`/plugins/dffml_source` for sources and\n options.\n *args : list\n Records to be saved.\n\n Examples\n --------\n\n >>> source = CSVSource(filename=\"save.csv\", allowempty=True, readwrite=True)\n >>>\n >>> async def main():\n ... await save(\n ... source,\n ... Record(\n ... \"myrecord\",\n ... data={\n ... \"features\": {\"Years\": 0, \"Expertise\": 1, \"Trust\": 0.1},\n ... \"prediction\": {\"Salary\": {\"value\": 10, \"confidence\": 1.0}},\n ... }\n ... )\n ... )\n ... print(pathlib.Path(\"save.csv\").read_text().strip())\n >>>\n >>> asyncio.run(main())\n key,tag,Expertise,Trust,Years,prediction_Salary,confidence_Salary\n myrecord,untagged,1,0.1,0,10,1.0\n \"\"\"\n async with source:\n async with source() as sctx:\n for record in args:\n await sctx.update(record)\n\n\nasync def train(model, *args: Union[BaseSource, Record, Dict[str, Any]]):\n \"\"\"\n Train a machine learning model.\n\n Provide records to the model to train it. The model should be already\n instantiated.\n\n Parameters\n ----------\n model : Model\n Machine Learning model to use. See :doc:`/plugins/dffml_model` for\n models options.\n *args : list\n Input data for training. Could be a ``dict``, :py:class:`Record`,\n filename, one of the data :doc:`/plugins/dffml_source`, or a filename\n with the extension being one of the data sources.\n\n Examples\n --------\n\n >>> model = LinearRegressionModel(\n ... features=Features(\n ... DefFeature(\"Years\", int, 1),\n ... DefFeature(\"Expertise\", int, 1),\n ... DefFeature(\"Trust\", float, 1),\n ... ),\n ... predict=DefFeature(\"Salary\", int, 1),\n ... )\n >>>\n >>> async def main():\n ... await train(\n ... model,\n ... {\"Years\": 0, \"Expertise\": 1, \"Trust\": 0.1, \"Salary\": 10},\n ... {\"Years\": 1, \"Expertise\": 3, \"Trust\": 0.2, \"Salary\": 20},\n ... {\"Years\": 2, \"Expertise\": 5, \"Trust\": 0.3, \"Salary\": 30},\n ... {\"Years\": 3, \"Expertise\": 7, \"Trust\": 0.4, \"Salary\": 40},\n ... )\n >>>\n >>> asyncio.run(main())\n \"\"\"\n sources = _records_to_sources(*args)\n async with sources as sources, model as model:\n async with sources() as sctx, model() as mctx:\n return await mctx.train(sctx)\n\n\nasync def accuracy(\n model, *args: Union[BaseSource, Record, Dict[str, Any]]\n) -> float:\n \"\"\"\n Assess the accuracy of a machine learning model.\n\n Provide records to the model to assess the percent accuracy of its\n prediction abilities. The model should be already instantiated and trained.\n\n Parameters\n ----------\n model : Model\n Machine Learning model to use. See :doc:`/plugins/dffml_model` for\n models options.\n *args : list\n Input data for training. Could be a ``dict``, :py:class:`Record`,\n filename, one of the data :doc:`/plugins/dffml_source`, or a filename\n with the extension being one of the data sources.\n\n Returns\n -------\n float\n A decimal value representing the percent of the time the model made the\n correct prediction. For some models this has another meaning. Please see\n the documentation for the model your using for further details.\n\n Examples\n --------\n\n >>> model = LinearRegressionModel(\n ... features=Features(\n ... DefFeature(\"Years\", int, 1),\n ... DefFeature(\"Expertise\", int, 1),\n ... DefFeature(\"Trust\", float, 1),\n ... ),\n ... predict=DefFeature(\"Salary\", int, 1),\n ... )\n >>>\n >>> async def main():\n ... print(\n ... \"Accuracy:\",\n ... await accuracy(\n ... model,\n ... {\"Years\": 4, \"Expertise\": 9, \"Trust\": 0.5, \"Salary\": 50},\n ... {\"Years\": 5, \"Expertise\": 11, \"Trust\": 0.6, \"Salary\": 60},\n ... ),\n ... )\n >>>\n >>> asyncio.run(main())\n Accuracy: 1.0\n \"\"\"\n sources = _records_to_sources(*args)\n async with sources as sources, model as model:\n async with sources() as sctx, model() as mctx:\n return float(await mctx.accuracy(sctx))\n\n\nasync def predict(\n model,\n *args: Union[BaseSource, Record, Dict[str, Any]],\n update: bool = False,\n keep_record: bool = False,\n):\n \"\"\"\n Make a prediction using a machine learning model.\n\n The model must be trained before using it to make a prediction.\n\n Parameters\n ----------\n model : Model\n Machine Learning model to use. See :doc:`/plugins/dffml_model` for\n models options.\n *args : list\n Input data for prediction. Could be a ``dict``, :py:class:`Record`,\n filename, or one of the data :doc:`/plugins/dffml_source`.\n update : boolean, optional\n If ``True`` prediction data within records will be written back to all\n sources given. Defaults to ``False``.\n keep_record : boolean, optional\n If ``True`` the results will be kept as their ``Record`` objects instead\n of being converted to a ``(record.key, features, predictions)`` tuple.\n Defaults to ``False``.\n\n Returns\n -------\n asynciterator\n ``Record`` objects or ``(record.key, features, predictions)`` tuple.\n\n Examples\n --------\n\n >>> model = LinearRegressionModel(\n ... features=Features(\n ... DefFeature(\"Years\", int, 1),\n ... DefFeature(\"Expertise\", int, 1),\n ... DefFeature(\"Trust\", float, 1),\n ... ),\n ... predict=DefFeature(\"Salary\", int, 1),\n ... )\n >>>\n >>> async def main():\n ... async for i, features, prediction in predict(\n ... model,\n ... {\"Years\": 6, \"Expertise\": 13, \"Trust\": 0.7},\n ... {\"Years\": 7, \"Expertise\": 15, \"Trust\": 0.8},\n ... ):\n ... features[\"Salary\"] = round(prediction[\"Salary\"][\"value\"])\n ... print(features)\n >>>\n >>> asyncio.run(main())\n {'Years': 6, 'Expertise': 13, 'Trust': 0.7, 'Salary': 70.0}\n {'Years': 7, 'Expertise': 15, 'Trust': 0.8, 'Salary': 80.0}\n \"\"\"\n sources = _records_to_sources(*args)\n async with sources as sources, model as model:\n async with sources() as sctx, model() as mctx:\n async for record in mctx.predict(sctx.records()):\n yield record if keep_record else (\n record.key,\n record.features(),\n record.predictions(),\n )\n if update:\n await sctx.update(record)\n", "path": "dffml/high_level.py"}], "after_files": [{"content": "\"\"\"\nHigh level abstraction interfaces to DFFML. These are probably going to be used\nin a lot of quick and dirty python files.\n\"\"\"\nimport pathlib\nfrom typing import Union, Dict, Any, AsyncIterator\n\nfrom .record import Record\nfrom .source.source import Sources, BaseSource\nfrom .source.memory import MemorySource, MemorySourceConfig\n\n\ndef _records_to_sources(*args):\n \"\"\"\n Create a memory source out of any records passed as a variable length list.\n Add all sources found in the variable length list to a list of sources, and\n the created source containing records, and return that list of sources.\n \"\"\"\n # If the first arg is an instance of sources, append the rest to that.\n if args and isinstance(args[0], Sources):\n sources = args[0]\n else:\n sources = Sources(\n *[arg for arg in args if isinstance(arg, BaseSource)]\n )\n # Records to add to memory source\n records = []\n # Make args mutable\n args = list(args)\n # Convert dicts to records\n for i, arg in enumerate(args):\n if isinstance(arg, dict):\n arg = Record(i, data={\"features\": arg})\n if isinstance(arg, Record):\n records.append(arg)\n if isinstance(arg, str) and \".\" in arg:\n filepath = pathlib.Path(arg)\n source = BaseSource.load(filepath.suffix.replace(\".\", \"\"))\n sources.append(source(filename=arg))\n # Create memory source if there are any records\n if records:\n sources.append(MemorySource(MemorySourceConfig(records=records)))\n return sources\n\n\nasync def save(source: BaseSource, *args: Record) -> None:\n \"\"\"\n Update a source's knowledge about given records.\n\n For each record given, call\n :py:func:`update <dffml.source.source.BaseSourceContext.update>` on the\n source. Effectively saving all the records to the source.\n\n Parameters\n ----------\n source : BaseSource\n Data source to use. See :doc:`/plugins/dffml_source` for sources and\n options.\n *args : list\n Records to be saved.\n\n Examples\n --------\n\n >>> source = CSVSource(filename=\"save.csv\", allowempty=True, readwrite=True)\n >>>\n >>> async def main():\n ... await save(\n ... source,\n ... Record(\n ... \"myrecord\",\n ... data={\n ... \"features\": {\"Years\": 0, \"Expertise\": 1, \"Trust\": 0.1},\n ... \"prediction\": {\"Salary\": {\"value\": 10, \"confidence\": 1.0}},\n ... }\n ... )\n ... )\n ... print(pathlib.Path(\"save.csv\").read_text().strip())\n >>>\n >>> asyncio.run(main())\n key,tag,Expertise,Trust,Years,prediction_Salary,confidence_Salary\n myrecord,untagged,1,0.1,0,10,1.0\n \"\"\"\n async with source:\n async with source() as sctx:\n for record in args:\n await sctx.update(record)\n\n\nasync def train(model, *args: Union[BaseSource, Record, Dict[str, Any]]):\n \"\"\"\n Train a machine learning model.\n\n Provide records to the model to train it. The model should be already\n instantiated.\n\n Parameters\n ----------\n model : Model\n Machine Learning model to use. See :doc:`/plugins/dffml_model` for\n models options.\n *args : list\n Input data for training. Could be a ``dict``, :py:class:`Record`,\n filename, one of the data :doc:`/plugins/dffml_source`, or a filename\n with the extension being one of the data sources.\n\n Examples\n --------\n\n >>> model = LinearRegressionModel(\n ... features=Features(\n ... DefFeature(\"Years\", int, 1),\n ... DefFeature(\"Expertise\", int, 1),\n ... DefFeature(\"Trust\", float, 1),\n ... ),\n ... predict=DefFeature(\"Salary\", int, 1),\n ... )\n >>>\n >>> async def main():\n ... await train(\n ... model,\n ... {\"Years\": 0, \"Expertise\": 1, \"Trust\": 0.1, \"Salary\": 10},\n ... {\"Years\": 1, \"Expertise\": 3, \"Trust\": 0.2, \"Salary\": 20},\n ... {\"Years\": 2, \"Expertise\": 5, \"Trust\": 0.3, \"Salary\": 30},\n ... {\"Years\": 3, \"Expertise\": 7, \"Trust\": 0.4, \"Salary\": 40},\n ... )\n >>>\n >>> asyncio.run(main())\n \"\"\"\n sources = _records_to_sources(*args)\n async with sources as sources, model as model:\n async with sources() as sctx, model() as mctx:\n return await mctx.train(sctx)\n\n\nasync def accuracy(\n model, *args: Union[BaseSource, Record, Dict[str, Any]]\n) -> float:\n \"\"\"\n Assess the accuracy of a machine learning model.\n\n Provide records to the model to assess the percent accuracy of its\n prediction abilities. The model should be already instantiated and trained.\n\n Parameters\n ----------\n model : Model\n Machine Learning model to use. See :doc:`/plugins/dffml_model` for\n models options.\n *args : list\n Input data for training. Could be a ``dict``, :py:class:`Record`,\n filename, one of the data :doc:`/plugins/dffml_source`, or a filename\n with the extension being one of the data sources.\n\n Returns\n -------\n float\n A decimal value representing the percent of the time the model made the\n correct prediction. For some models this has another meaning. Please see\n the documentation for the model your using for further details.\n\n Examples\n --------\n\n >>> model = LinearRegressionModel(\n ... features=Features(\n ... DefFeature(\"Years\", int, 1),\n ... DefFeature(\"Expertise\", int, 1),\n ... DefFeature(\"Trust\", float, 1),\n ... ),\n ... predict=DefFeature(\"Salary\", int, 1),\n ... )\n >>>\n >>> async def main():\n ... print(\n ... \"Accuracy:\",\n ... await accuracy(\n ... model,\n ... {\"Years\": 4, \"Expertise\": 9, \"Trust\": 0.5, \"Salary\": 50},\n ... {\"Years\": 5, \"Expertise\": 11, \"Trust\": 0.6, \"Salary\": 60},\n ... ),\n ... )\n >>>\n >>> asyncio.run(main())\n Accuracy: 1.0\n \"\"\"\n sources = _records_to_sources(*args)\n async with sources as sources, model as model:\n async with sources() as sctx, model() as mctx:\n return float(await mctx.accuracy(sctx))\n\n\nasync def predict(\n model,\n *args: Union[BaseSource, Record, Dict[str, Any]],\n update: bool = False,\n keep_record: bool = False,\n):\n \"\"\"\n Make a prediction using a machine learning model.\n\n The model must be trained before using it to make a prediction.\n\n Parameters\n ----------\n model : Model\n Machine Learning model to use. See :doc:`/plugins/dffml_model` for\n models options.\n *args : list\n Input data for prediction. Could be a ``dict``, :py:class:`Record`,\n filename, or one of the data :doc:`/plugins/dffml_source`.\n update : boolean, optional\n If ``True`` prediction data within records will be written back to all\n sources given. Defaults to ``False``.\n keep_record : boolean, optional\n If ``True`` the results will be kept as their ``Record`` objects instead\n of being converted to a ``(record.key, features, predictions)`` tuple.\n Defaults to ``False``.\n\n Returns\n -------\n asynciterator\n ``Record`` objects or ``(record.key, features, predictions)`` tuple.\n\n Examples\n --------\n\n >>> model = LinearRegressionModel(\n ... features=Features(\n ... DefFeature(\"Years\", int, 1),\n ... DefFeature(\"Expertise\", int, 1),\n ... DefFeature(\"Trust\", float, 1),\n ... ),\n ... predict=DefFeature(\"Salary\", int, 1),\n ... )\n >>>\n >>> async def main():\n ... async for i, features, prediction in predict(\n ... model,\n ... {\"Years\": 6, \"Expertise\": 13, \"Trust\": 0.7},\n ... {\"Years\": 7, \"Expertise\": 15, \"Trust\": 0.8},\n ... ):\n ... features[\"Salary\"] = round(prediction[\"Salary\"][\"value\"])\n ... print(features)\n >>>\n >>> asyncio.run(main())\n {'Years': 6, 'Expertise': 13, 'Trust': 0.7, 'Salary': 70.0}\n {'Years': 7, 'Expertise': 15, 'Trust': 0.8, 'Salary': 80.0}\n \"\"\"\n sources = _records_to_sources(*args)\n async with sources as sources, model as model:\n async with sources() as sctx, model() as mctx:\n async for record in mctx.predict(sctx.records()):\n yield record if keep_record else (\n record.key,\n record.features(),\n record.predictions(),\n )\n if update:\n await sctx.update(record)\n\n\nasync def load(source: BaseSource, *args: str) -> AsyncIterator[Record]:\n \"\"\"\n Yields records from a source.\n\n Yields all the records from the source, if record keys are given then only\n those records are yielded.\n\n Parameters\n ----------\n source : BaseSource\n Data source to use. See :doc:`/plugins/dffml_source` for sources and\n options.\n *args : str\n Records to be returned. If empty, all the records in a source will be returned.\n\n Returns\n -------\n asynciterator\n :py:class:`Record <dffml.record.Record>` object\n\n Examples\n --------\n\n >>> source = CSVSource(filename=\"save.csv\", allowempty=True, readwrite=True)\n >>>\n >>> async def main():\n ... await save(\n ... source,\n ... Record(\"1\", data={\"features\": {\"A\": 0, \"B\": 1}}),\n ... Record(\"2\", data={\"features\": {\"A\": 3, \"B\": 4}}),\n ... )\n ...\n ... # All records in source\n ... async for record in load(source):\n ... print(record.export())\n ...\n ... # For specific records in a source\n ... async for record in load(source, \"1\"):\n ... print(record.export())\n >>>\n >>> asyncio.run(main())\n {'key': '1', 'features': {'A': 0, 'B': 1}, 'extra': {}}\n {'key': '2', 'features': {'A': 3, 'B': 4}, 'extra': {}}\n {'key': '1', 'features': {'A': 0, 'B': 1}, 'extra': {}}\n \"\"\"\n async with source:\n async with source() as sctx:\n if args:\n # If specific records are to be loaded\n for record in args:\n yield await sctx.record(record)\n else:\n # All the records are loaded\n async for record in sctx.records():\n yield record\n", "path": "dffml/high_level.py"}]}
3,145
634
gh_patches_debug_5108
rasdani/github-patches
git_diff
roboflow__supervision-289
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Wrong COCO format while exporting a `sv.DetectionDataset` using its `as_coco` method ### The Issue: I export some annotations using: ```python sv.DetectionDataset( classes=CLASSES, images=images, annotations=annotations ).as_coco( annotations_path=ANNOTATIONS_PATH, min_image_area_percentage=0, max_image_area_percentage=1., approximation_percentage=0 ) ``` The resulting `.json` is created successfully. Then, loading the annotations using `pycocotools` and plotting annotations of an image: ```python from pycocotools.coco import COCO coco=COCO(ANNOTATIONS_PATH) imgId = 42 # an arbitrary image id file_name = coco.loadImgs(imgId)[0]["file_name"] img = plt.imread(file_name) plt.imshow(img) plt.axis("off") annIds = coco.getAnnIds(imgIds=imgId, iscrowd=None) anns = coco.loadAnns(annIds) coco.showAnns(anns, draw_bbox=True) ``` which plots wrong annotations for the given `imgId`: the annotations (box & mask) is seen bottom-right and it seems that there is a mismatch between the image and its annotations. ![image](https://github.com/roboflow/supervision/assets/40141130/2b277d28-7487-49cf-a624-11b31f6e508b) Actually, for any `imgId`, we have the same issue: the image is shown correctly but the annotations are not. Interestingly, the annotations (`annIds`) are always the same for different `imgId`'s. In my case, there is only 1 box & mask per image and for various values of `imgId`, the `annIds` are always equal to `1`. ### The Cause: The `annIds` are not unique among all the annotations (the "id" in "annotations" in COCO format). I presume they have to be unique among all annotation id's ([see the following issue](https://github.com/cocodataset/cocoapi/issues/95#issuecomment-448038572)). However, the current implementation resets the ***annotation id*** to 1 for each image: https://github.com/roboflow/supervision/blob/4f79d29934ebfbb59d4cb789b70e8e451f545332/supervision/dataset/formats/coco.py#L202 ### The (possible) Fix: Simply changing `label_id` to `annotation_id` in the following line will assign a unique id for each annotation: https://github.com/roboflow/supervision/blob/4f79d29934ebfbb59d4cb789b70e8e451f545332/supervision/dataset/formats/coco.py#L218 I would be glad to open a PR. Wrong COCO format while exporting a `sv.DetectionDataset` using its `as_coco` method ### The Issue: I export some annotations using: ```python sv.DetectionDataset( classes=CLASSES, images=images, annotations=annotations ).as_coco( annotations_path=ANNOTATIONS_PATH, min_image_area_percentage=0, max_image_area_percentage=1., approximation_percentage=0 ) ``` The resulting `.json` is created successfully. Then, loading the annotations using `pycocotools` and plotting annotations of an image: ```python from pycocotools.coco import COCO coco=COCO(ANNOTATIONS_PATH) imgId = 42 # an arbitrary image id file_name = coco.loadImgs(imgId)[0]["file_name"] img = plt.imread(file_name) plt.imshow(img) plt.axis("off") annIds = coco.getAnnIds(imgIds=imgId, iscrowd=None) anns = coco.loadAnns(annIds) coco.showAnns(anns, draw_bbox=True) ``` which plots wrong annotations for the given `imgId`: the annotations (box & mask) is seen bottom-right and it seems that there is a mismatch between the image and its annotations. ![image](https://github.com/roboflow/supervision/assets/40141130/2b277d28-7487-49cf-a624-11b31f6e508b) Actually, for any `imgId`, we have the same issue: the image is shown correctly but the annotations are not. Interestingly, the annotations (`annIds`) are always the same for different `imgId`'s. In my case, there is only 1 box & mask per image and for various values of `imgId`, the `annIds` are always equal to `1`. ### The Cause: The `annIds` are not unique among all the annotations (the "id" in "annotations" in COCO format). I presume they have to be unique among all annotation id's ([see the following issue](https://github.com/cocodataset/cocoapi/issues/95#issuecomment-448038572)). However, the current implementation resets the ***annotation id*** to 1 for each image: https://github.com/roboflow/supervision/blob/4f79d29934ebfbb59d4cb789b70e8e451f545332/supervision/dataset/formats/coco.py#L202 ### The (possible) Fix: Simply changing `label_id` to `annotation_id` in the following line will assign a unique id for each annotation: https://github.com/roboflow/supervision/blob/4f79d29934ebfbb59d4cb789b70e8e451f545332/supervision/dataset/formats/coco.py#L218 I would be glad to open a PR. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `supervision/dataset/formats/coco.py` Content: ``` 1 import os 2 from datetime import datetime 3 from pathlib import Path 4 from typing import Dict, List, Tuple 5 6 import cv2 7 import numpy as np 8 9 from supervision.dataset.utils import ( 10 approximate_mask_with_polygons, 11 map_detections_class_id, 12 ) 13 from supervision.detection.core import Detections 14 from supervision.detection.utils import polygon_to_mask 15 from supervision.utils.file import read_json_file, save_json_file 16 17 18 def coco_categories_to_classes(coco_categories: List[dict]) -> List[str]: 19 return [ 20 category["name"] 21 for category in sorted(coco_categories, key=lambda category: category["id"]) 22 ] 23 24 25 def build_coco_class_index_mapping( 26 coco_categories: List[dict], target_classes: List[str] 27 ) -> Dict[int, int]: 28 source_class_to_index = { 29 category["name"]: category["id"] for category in coco_categories 30 } 31 return { 32 source_class_to_index[target_class_name]: target_class_index 33 for target_class_index, target_class_name in enumerate(target_classes) 34 } 35 36 37 def classes_to_coco_categories(classes: List[str]) -> List[dict]: 38 return [ 39 { 40 "id": class_id, 41 "name": class_name, 42 "supercategory": "common-objects", 43 } 44 for class_id, class_name in enumerate(classes) 45 ] 46 47 48 def group_coco_annotations_by_image_id( 49 coco_annotations: List[dict], 50 ) -> Dict[int, List[dict]]: 51 annotations = {} 52 for annotation in coco_annotations: 53 image_id = annotation["image_id"] 54 if image_id not in annotations: 55 annotations[image_id] = [] 56 annotations[image_id].append(annotation) 57 return annotations 58 59 60 def _polygons_to_masks( 61 polygons: List[np.ndarray], resolution_wh: Tuple[int, int] 62 ) -> np.ndarray: 63 return np.array( 64 [ 65 polygon_to_mask(polygon=polygon, resolution_wh=resolution_wh) 66 for polygon in polygons 67 ], 68 dtype=bool, 69 ) 70 71 72 def coco_annotations_to_detections( 73 image_annotations: List[dict], resolution_wh: Tuple[int, int], with_masks: bool 74 ) -> Detections: 75 if not image_annotations: 76 return Detections.empty() 77 78 class_ids = [ 79 image_annotation["category_id"] for image_annotation in image_annotations 80 ] 81 xyxy = [image_annotation["bbox"] for image_annotation in image_annotations] 82 xyxy = np.asarray(xyxy) 83 xyxy[:, 2:4] += xyxy[:, 0:2] 84 85 if with_masks: 86 polygons = [ 87 np.reshape( 88 np.asarray(image_annotation["segmentation"], dtype=np.int32), (-1, 2) 89 ) 90 for image_annotation in image_annotations 91 ] 92 mask = _polygons_to_masks(polygons=polygons, resolution_wh=resolution_wh) 93 return Detections( 94 class_id=np.asarray(class_ids, dtype=int), xyxy=xyxy, mask=mask 95 ) 96 97 return Detections(xyxy=xyxy, class_id=np.asarray(class_ids, dtype=int)) 98 99 100 def detections_to_coco_annotations( 101 detections: Detections, 102 image_id: int, 103 annotation_id: int, 104 min_image_area_percentage: float = 0.0, 105 max_image_area_percentage: float = 1.0, 106 approximation_percentage: float = 0.75, 107 ) -> Tuple[List[Dict], int]: 108 coco_annotations = [] 109 for xyxy, mask, _, class_id, _ in detections: 110 box_width, box_height = xyxy[2] - xyxy[0], xyxy[3] - xyxy[1] 111 polygon = [] 112 if mask is not None: 113 polygon = list( 114 approximate_mask_with_polygons( 115 mask=mask, 116 min_image_area_percentage=min_image_area_percentage, 117 max_image_area_percentage=max_image_area_percentage, 118 approximation_percentage=approximation_percentage, 119 )[0].flatten() 120 ) 121 coco_annotation = { 122 "id": annotation_id, 123 "image_id": image_id, 124 "category_id": int(class_id), 125 "bbox": [xyxy[0], xyxy[1], box_width, box_height], 126 "area": box_width * box_height, 127 "segmentation": [polygon] if polygon else [], 128 "iscrowd": 0, 129 } 130 coco_annotations.append(coco_annotation) 131 annotation_id += 1 132 return coco_annotations, annotation_id 133 134 135 def load_coco_annotations( 136 images_directory_path: str, 137 annotations_path: str, 138 force_masks: bool = False, 139 ) -> Tuple[List[str], Dict[str, np.ndarray], Dict[str, Detections]]: 140 coco_data = read_json_file(file_path=annotations_path) 141 classes = coco_categories_to_classes(coco_categories=coco_data["categories"]) 142 class_index_mapping = build_coco_class_index_mapping( 143 coco_categories=coco_data["categories"], target_classes=classes 144 ) 145 coco_images = coco_data["images"] 146 coco_annotations_groups = group_coco_annotations_by_image_id( 147 coco_annotations=coco_data["annotations"] 148 ) 149 150 images = {} 151 annotations = {} 152 153 for coco_image in coco_images: 154 image_name, image_width, image_height = ( 155 coco_image["file_name"], 156 coco_image["width"], 157 coco_image["height"], 158 ) 159 image_annotations = coco_annotations_groups.get(coco_image["id"], []) 160 image_path = os.path.join(images_directory_path, image_name) 161 162 image = cv2.imread(str(image_path)) 163 annotation = coco_annotations_to_detections( 164 image_annotations=image_annotations, 165 resolution_wh=(image_width, image_height), 166 with_masks=force_masks, 167 ) 168 annotation = map_detections_class_id( 169 source_to_target_mapping=class_index_mapping, 170 detections=annotation, 171 ) 172 173 images[image_name] = image 174 annotations[image_name] = annotation 175 176 return classes, images, annotations 177 178 179 def save_coco_annotations( 180 annotation_path: str, 181 images: Dict[str, np.ndarray], 182 annotations: Dict[str, Detections], 183 classes: List[str], 184 min_image_area_percentage: float = 0.0, 185 max_image_area_percentage: float = 1.0, 186 approximation_percentage: float = 0.75, 187 ) -> None: 188 Path(annotation_path).parent.mkdir(parents=True, exist_ok=True) 189 info = {} 190 licenses = [ 191 { 192 "id": 1, 193 "url": "https://creativecommons.org/licenses/by/4.0/", 194 "name": "CC BY 4.0", 195 } 196 ] 197 198 coco_annotations = [] 199 coco_images = [] 200 coco_categories = classes_to_coco_categories(classes=classes) 201 202 image_id, annotation_id = 1, 1 203 for image_name, image in images.items(): 204 image_height, image_width, _ = image.shape 205 206 coco_image = { 207 "id": image_id, 208 "license": 1, 209 "file_name": image_name, 210 "height": image_height, 211 "width": image_width, 212 "date_captured": datetime.now().strftime("%m/%d/%Y,%H:%M:%S"), 213 } 214 215 coco_images.append(coco_image) 216 detections = annotations[image_name] 217 218 coco_annotation, label_id = detections_to_coco_annotations( 219 detections=detections, 220 image_id=image_id, 221 annotation_id=annotation_id, 222 min_image_area_percentage=min_image_area_percentage, 223 max_image_area_percentage=max_image_area_percentage, 224 approximation_percentage=approximation_percentage, 225 ) 226 227 coco_annotations.extend(coco_annotation) 228 image_id += 1 229 230 annotation_dict = { 231 "info": info, 232 "licenses": licenses, 233 "categories": coco_categories, 234 "images": coco_images, 235 "annotations": coco_annotations, 236 } 237 save_json_file(annotation_dict, file_path=annotation_path) 238 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/supervision/dataset/formats/coco.py b/supervision/dataset/formats/coco.py --- a/supervision/dataset/formats/coco.py +++ b/supervision/dataset/formats/coco.py @@ -215,7 +215,7 @@ coco_images.append(coco_image) detections = annotations[image_name] - coco_annotation, label_id = detections_to_coco_annotations( + coco_annotation, annotation_id = detections_to_coco_annotations( detections=detections, image_id=image_id, annotation_id=annotation_id,
{"golden_diff": "diff --git a/supervision/dataset/formats/coco.py b/supervision/dataset/formats/coco.py\n--- a/supervision/dataset/formats/coco.py\n+++ b/supervision/dataset/formats/coco.py\n@@ -215,7 +215,7 @@\n coco_images.append(coco_image)\n detections = annotations[image_name]\n \n- coco_annotation, label_id = detections_to_coco_annotations(\n+ coco_annotation, annotation_id = detections_to_coco_annotations(\n detections=detections,\n image_id=image_id,\n annotation_id=annotation_id,\n", "issue": "Wrong COCO format while exporting a `sv.DetectionDataset` using its `as_coco` method\n### The Issue:\r\nI export some annotations using:\r\n ```python\r\nsv.DetectionDataset(\r\n classes=CLASSES,\r\n images=images,\r\n annotations=annotations\r\n).as_coco(\r\n annotations_path=ANNOTATIONS_PATH,\r\n min_image_area_percentage=0,\r\n max_image_area_percentage=1.,\r\n approximation_percentage=0\r\n)\r\n```\r\nThe resulting `.json` is created successfully. \r\nThen, loading the annotations using `pycocotools` and plotting annotations of an image:\r\n```python\r\nfrom pycocotools.coco import COCO\r\ncoco=COCO(ANNOTATIONS_PATH)\r\n\r\nimgId = 42 # an arbitrary image id\r\nfile_name = coco.loadImgs(imgId)[0][\"file_name\"]\r\n\r\nimg = plt.imread(file_name)\r\nplt.imshow(img)\r\nplt.axis(\"off\")\r\n\r\nannIds = coco.getAnnIds(imgIds=imgId, iscrowd=None)\r\nanns = coco.loadAnns(annIds)\r\ncoco.showAnns(anns, draw_bbox=True)\r\n```\r\nwhich plots wrong annotations for the given `imgId`: the annotations (box & mask) is seen bottom-right and it seems that there is a mismatch between the image and its annotations. \r\n![image](https://github.com/roboflow/supervision/assets/40141130/2b277d28-7487-49cf-a624-11b31f6e508b)\r\n\r\nActually, for any `imgId`, we have the same issue: the image is shown correctly but the annotations are not. Interestingly, the annotations (`annIds`) are always the same for different `imgId`'s. In my case, there is only 1 box & mask per image and for various values of `imgId`, the `annIds` are always equal to `1`.\r\n\r\n### The Cause:\r\nThe `annIds` are not unique among all the annotations (the \"id\" in \"annotations\" in COCO format). \r\nI presume they have to be unique among all annotation id's ([see the following issue](https://github.com/cocodataset/cocoapi/issues/95#issuecomment-448038572)). \r\n\r\nHowever, the current implementation resets the ***annotation id*** to 1 for each image:\r\nhttps://github.com/roboflow/supervision/blob/4f79d29934ebfbb59d4cb789b70e8e451f545332/supervision/dataset/formats/coco.py#L202\r\n\r\n\r\n### The (possible) Fix:\r\nSimply changing `label_id` to `annotation_id` in the following line will assign a unique id for each annotation:\r\nhttps://github.com/roboflow/supervision/blob/4f79d29934ebfbb59d4cb789b70e8e451f545332/supervision/dataset/formats/coco.py#L218\r\n\r\nI would be glad to open a PR.\r\n\nWrong COCO format while exporting a `sv.DetectionDataset` using its `as_coco` method\n### The Issue:\r\nI export some annotations using:\r\n ```python\r\nsv.DetectionDataset(\r\n classes=CLASSES,\r\n images=images,\r\n annotations=annotations\r\n).as_coco(\r\n annotations_path=ANNOTATIONS_PATH,\r\n min_image_area_percentage=0,\r\n max_image_area_percentage=1.,\r\n approximation_percentage=0\r\n)\r\n```\r\nThe resulting `.json` is created successfully. \r\nThen, loading the annotations using `pycocotools` and plotting annotations of an image:\r\n```python\r\nfrom pycocotools.coco import COCO\r\ncoco=COCO(ANNOTATIONS_PATH)\r\n\r\nimgId = 42 # an arbitrary image id\r\nfile_name = coco.loadImgs(imgId)[0][\"file_name\"]\r\n\r\nimg = plt.imread(file_name)\r\nplt.imshow(img)\r\nplt.axis(\"off\")\r\n\r\nannIds = coco.getAnnIds(imgIds=imgId, iscrowd=None)\r\nanns = coco.loadAnns(annIds)\r\ncoco.showAnns(anns, draw_bbox=True)\r\n```\r\nwhich plots wrong annotations for the given `imgId`: the annotations (box & mask) is seen bottom-right and it seems that there is a mismatch between the image and its annotations. \r\n![image](https://github.com/roboflow/supervision/assets/40141130/2b277d28-7487-49cf-a624-11b31f6e508b)\r\n\r\nActually, for any `imgId`, we have the same issue: the image is shown correctly but the annotations are not. Interestingly, the annotations (`annIds`) are always the same for different `imgId`'s. In my case, there is only 1 box & mask per image and for various values of `imgId`, the `annIds` are always equal to `1`.\r\n\r\n### The Cause:\r\nThe `annIds` are not unique among all the annotations (the \"id\" in \"annotations\" in COCO format). \r\nI presume they have to be unique among all annotation id's ([see the following issue](https://github.com/cocodataset/cocoapi/issues/95#issuecomment-448038572)). \r\n\r\nHowever, the current implementation resets the ***annotation id*** to 1 for each image:\r\nhttps://github.com/roboflow/supervision/blob/4f79d29934ebfbb59d4cb789b70e8e451f545332/supervision/dataset/formats/coco.py#L202\r\n\r\n\r\n### The (possible) Fix:\r\nSimply changing `label_id` to `annotation_id` in the following line will assign a unique id for each annotation:\r\nhttps://github.com/roboflow/supervision/blob/4f79d29934ebfbb59d4cb789b70e8e451f545332/supervision/dataset/formats/coco.py#L218\r\n\r\nI would be glad to open a PR.\r\n\n", "before_files": [{"content": "import os\nfrom datetime import datetime\nfrom pathlib import Path\nfrom typing import Dict, List, Tuple\n\nimport cv2\nimport numpy as np\n\nfrom supervision.dataset.utils import (\n approximate_mask_with_polygons,\n map_detections_class_id,\n)\nfrom supervision.detection.core import Detections\nfrom supervision.detection.utils import polygon_to_mask\nfrom supervision.utils.file import read_json_file, save_json_file\n\n\ndef coco_categories_to_classes(coco_categories: List[dict]) -> List[str]:\n return [\n category[\"name\"]\n for category in sorted(coco_categories, key=lambda category: category[\"id\"])\n ]\n\n\ndef build_coco_class_index_mapping(\n coco_categories: List[dict], target_classes: List[str]\n) -> Dict[int, int]:\n source_class_to_index = {\n category[\"name\"]: category[\"id\"] for category in coco_categories\n }\n return {\n source_class_to_index[target_class_name]: target_class_index\n for target_class_index, target_class_name in enumerate(target_classes)\n }\n\n\ndef classes_to_coco_categories(classes: List[str]) -> List[dict]:\n return [\n {\n \"id\": class_id,\n \"name\": class_name,\n \"supercategory\": \"common-objects\",\n }\n for class_id, class_name in enumerate(classes)\n ]\n\n\ndef group_coco_annotations_by_image_id(\n coco_annotations: List[dict],\n) -> Dict[int, List[dict]]:\n annotations = {}\n for annotation in coco_annotations:\n image_id = annotation[\"image_id\"]\n if image_id not in annotations:\n annotations[image_id] = []\n annotations[image_id].append(annotation)\n return annotations\n\n\ndef _polygons_to_masks(\n polygons: List[np.ndarray], resolution_wh: Tuple[int, int]\n) -> np.ndarray:\n return np.array(\n [\n polygon_to_mask(polygon=polygon, resolution_wh=resolution_wh)\n for polygon in polygons\n ],\n dtype=bool,\n )\n\n\ndef coco_annotations_to_detections(\n image_annotations: List[dict], resolution_wh: Tuple[int, int], with_masks: bool\n) -> Detections:\n if not image_annotations:\n return Detections.empty()\n\n class_ids = [\n image_annotation[\"category_id\"] for image_annotation in image_annotations\n ]\n xyxy = [image_annotation[\"bbox\"] for image_annotation in image_annotations]\n xyxy = np.asarray(xyxy)\n xyxy[:, 2:4] += xyxy[:, 0:2]\n\n if with_masks:\n polygons = [\n np.reshape(\n np.asarray(image_annotation[\"segmentation\"], dtype=np.int32), (-1, 2)\n )\n for image_annotation in image_annotations\n ]\n mask = _polygons_to_masks(polygons=polygons, resolution_wh=resolution_wh)\n return Detections(\n class_id=np.asarray(class_ids, dtype=int), xyxy=xyxy, mask=mask\n )\n\n return Detections(xyxy=xyxy, class_id=np.asarray(class_ids, dtype=int))\n\n\ndef detections_to_coco_annotations(\n detections: Detections,\n image_id: int,\n annotation_id: int,\n min_image_area_percentage: float = 0.0,\n max_image_area_percentage: float = 1.0,\n approximation_percentage: float = 0.75,\n) -> Tuple[List[Dict], int]:\n coco_annotations = []\n for xyxy, mask, _, class_id, _ in detections:\n box_width, box_height = xyxy[2] - xyxy[0], xyxy[3] - xyxy[1]\n polygon = []\n if mask is not None:\n polygon = list(\n approximate_mask_with_polygons(\n mask=mask,\n min_image_area_percentage=min_image_area_percentage,\n max_image_area_percentage=max_image_area_percentage,\n approximation_percentage=approximation_percentage,\n )[0].flatten()\n )\n coco_annotation = {\n \"id\": annotation_id,\n \"image_id\": image_id,\n \"category_id\": int(class_id),\n \"bbox\": [xyxy[0], xyxy[1], box_width, box_height],\n \"area\": box_width * box_height,\n \"segmentation\": [polygon] if polygon else [],\n \"iscrowd\": 0,\n }\n coco_annotations.append(coco_annotation)\n annotation_id += 1\n return coco_annotations, annotation_id\n\n\ndef load_coco_annotations(\n images_directory_path: str,\n annotations_path: str,\n force_masks: bool = False,\n) -> Tuple[List[str], Dict[str, np.ndarray], Dict[str, Detections]]:\n coco_data = read_json_file(file_path=annotations_path)\n classes = coco_categories_to_classes(coco_categories=coco_data[\"categories\"])\n class_index_mapping = build_coco_class_index_mapping(\n coco_categories=coco_data[\"categories\"], target_classes=classes\n )\n coco_images = coco_data[\"images\"]\n coco_annotations_groups = group_coco_annotations_by_image_id(\n coco_annotations=coco_data[\"annotations\"]\n )\n\n images = {}\n annotations = {}\n\n for coco_image in coco_images:\n image_name, image_width, image_height = (\n coco_image[\"file_name\"],\n coco_image[\"width\"],\n coco_image[\"height\"],\n )\n image_annotations = coco_annotations_groups.get(coco_image[\"id\"], [])\n image_path = os.path.join(images_directory_path, image_name)\n\n image = cv2.imread(str(image_path))\n annotation = coco_annotations_to_detections(\n image_annotations=image_annotations,\n resolution_wh=(image_width, image_height),\n with_masks=force_masks,\n )\n annotation = map_detections_class_id(\n source_to_target_mapping=class_index_mapping,\n detections=annotation,\n )\n\n images[image_name] = image\n annotations[image_name] = annotation\n\n return classes, images, annotations\n\n\ndef save_coco_annotations(\n annotation_path: str,\n images: Dict[str, np.ndarray],\n annotations: Dict[str, Detections],\n classes: List[str],\n min_image_area_percentage: float = 0.0,\n max_image_area_percentage: float = 1.0,\n approximation_percentage: float = 0.75,\n) -> None:\n Path(annotation_path).parent.mkdir(parents=True, exist_ok=True)\n info = {}\n licenses = [\n {\n \"id\": 1,\n \"url\": \"https://creativecommons.org/licenses/by/4.0/\",\n \"name\": \"CC BY 4.0\",\n }\n ]\n\n coco_annotations = []\n coco_images = []\n coco_categories = classes_to_coco_categories(classes=classes)\n\n image_id, annotation_id = 1, 1\n for image_name, image in images.items():\n image_height, image_width, _ = image.shape\n\n coco_image = {\n \"id\": image_id,\n \"license\": 1,\n \"file_name\": image_name,\n \"height\": image_height,\n \"width\": image_width,\n \"date_captured\": datetime.now().strftime(\"%m/%d/%Y,%H:%M:%S\"),\n }\n\n coco_images.append(coco_image)\n detections = annotations[image_name]\n\n coco_annotation, label_id = detections_to_coco_annotations(\n detections=detections,\n image_id=image_id,\n annotation_id=annotation_id,\n min_image_area_percentage=min_image_area_percentage,\n max_image_area_percentage=max_image_area_percentage,\n approximation_percentage=approximation_percentage,\n )\n\n coco_annotations.extend(coco_annotation)\n image_id += 1\n\n annotation_dict = {\n \"info\": info,\n \"licenses\": licenses,\n \"categories\": coco_categories,\n \"images\": coco_images,\n \"annotations\": coco_annotations,\n }\n save_json_file(annotation_dict, file_path=annotation_path)\n", "path": "supervision/dataset/formats/coco.py"}], "after_files": [{"content": "import os\nfrom datetime import datetime\nfrom pathlib import Path\nfrom typing import Dict, List, Tuple\n\nimport cv2\nimport numpy as np\n\nfrom supervision.dataset.utils import (\n approximate_mask_with_polygons,\n map_detections_class_id,\n)\nfrom supervision.detection.core import Detections\nfrom supervision.detection.utils import polygon_to_mask\nfrom supervision.utils.file import read_json_file, save_json_file\n\n\ndef coco_categories_to_classes(coco_categories: List[dict]) -> List[str]:\n return [\n category[\"name\"]\n for category in sorted(coco_categories, key=lambda category: category[\"id\"])\n ]\n\n\ndef build_coco_class_index_mapping(\n coco_categories: List[dict], target_classes: List[str]\n) -> Dict[int, int]:\n source_class_to_index = {\n category[\"name\"]: category[\"id\"] for category in coco_categories\n }\n return {\n source_class_to_index[target_class_name]: target_class_index\n for target_class_index, target_class_name in enumerate(target_classes)\n }\n\n\ndef classes_to_coco_categories(classes: List[str]) -> List[dict]:\n return [\n {\n \"id\": class_id,\n \"name\": class_name,\n \"supercategory\": \"common-objects\",\n }\n for class_id, class_name in enumerate(classes)\n ]\n\n\ndef group_coco_annotations_by_image_id(\n coco_annotations: List[dict],\n) -> Dict[int, List[dict]]:\n annotations = {}\n for annotation in coco_annotations:\n image_id = annotation[\"image_id\"]\n if image_id not in annotations:\n annotations[image_id] = []\n annotations[image_id].append(annotation)\n return annotations\n\n\ndef _polygons_to_masks(\n polygons: List[np.ndarray], resolution_wh: Tuple[int, int]\n) -> np.ndarray:\n return np.array(\n [\n polygon_to_mask(polygon=polygon, resolution_wh=resolution_wh)\n for polygon in polygons\n ],\n dtype=bool,\n )\n\n\ndef coco_annotations_to_detections(\n image_annotations: List[dict], resolution_wh: Tuple[int, int], with_masks: bool\n) -> Detections:\n if not image_annotations:\n return Detections.empty()\n\n class_ids = [\n image_annotation[\"category_id\"] for image_annotation in image_annotations\n ]\n xyxy = [image_annotation[\"bbox\"] for image_annotation in image_annotations]\n xyxy = np.asarray(xyxy)\n xyxy[:, 2:4] += xyxy[:, 0:2]\n\n if with_masks:\n polygons = [\n np.reshape(\n np.asarray(image_annotation[\"segmentation\"], dtype=np.int32), (-1, 2)\n )\n for image_annotation in image_annotations\n ]\n mask = _polygons_to_masks(polygons=polygons, resolution_wh=resolution_wh)\n return Detections(\n class_id=np.asarray(class_ids, dtype=int), xyxy=xyxy, mask=mask\n )\n\n return Detections(xyxy=xyxy, class_id=np.asarray(class_ids, dtype=int))\n\n\ndef detections_to_coco_annotations(\n detections: Detections,\n image_id: int,\n annotation_id: int,\n min_image_area_percentage: float = 0.0,\n max_image_area_percentage: float = 1.0,\n approximation_percentage: float = 0.75,\n) -> Tuple[List[Dict], int]:\n coco_annotations = []\n for xyxy, mask, _, class_id, _ in detections:\n box_width, box_height = xyxy[2] - xyxy[0], xyxy[3] - xyxy[1]\n polygon = []\n if mask is not None:\n polygon = list(\n approximate_mask_with_polygons(\n mask=mask,\n min_image_area_percentage=min_image_area_percentage,\n max_image_area_percentage=max_image_area_percentage,\n approximation_percentage=approximation_percentage,\n )[0].flatten()\n )\n coco_annotation = {\n \"id\": annotation_id,\n \"image_id\": image_id,\n \"category_id\": int(class_id),\n \"bbox\": [xyxy[0], xyxy[1], box_width, box_height],\n \"area\": box_width * box_height,\n \"segmentation\": [polygon] if polygon else [],\n \"iscrowd\": 0,\n }\n coco_annotations.append(coco_annotation)\n annotation_id += 1\n return coco_annotations, annotation_id\n\n\ndef load_coco_annotations(\n images_directory_path: str,\n annotations_path: str,\n force_masks: bool = False,\n) -> Tuple[List[str], Dict[str, np.ndarray], Dict[str, Detections]]:\n coco_data = read_json_file(file_path=annotations_path)\n classes = coco_categories_to_classes(coco_categories=coco_data[\"categories\"])\n class_index_mapping = build_coco_class_index_mapping(\n coco_categories=coco_data[\"categories\"], target_classes=classes\n )\n coco_images = coco_data[\"images\"]\n coco_annotations_groups = group_coco_annotations_by_image_id(\n coco_annotations=coco_data[\"annotations\"]\n )\n\n images = {}\n annotations = {}\n\n for coco_image in coco_images:\n image_name, image_width, image_height = (\n coco_image[\"file_name\"],\n coco_image[\"width\"],\n coco_image[\"height\"],\n )\n image_annotations = coco_annotations_groups.get(coco_image[\"id\"], [])\n image_path = os.path.join(images_directory_path, image_name)\n\n image = cv2.imread(str(image_path))\n annotation = coco_annotations_to_detections(\n image_annotations=image_annotations,\n resolution_wh=(image_width, image_height),\n with_masks=force_masks,\n )\n annotation = map_detections_class_id(\n source_to_target_mapping=class_index_mapping,\n detections=annotation,\n )\n\n images[image_name] = image\n annotations[image_name] = annotation\n\n return classes, images, annotations\n\n\ndef save_coco_annotations(\n annotation_path: str,\n images: Dict[str, np.ndarray],\n annotations: Dict[str, Detections],\n classes: List[str],\n min_image_area_percentage: float = 0.0,\n max_image_area_percentage: float = 1.0,\n approximation_percentage: float = 0.75,\n) -> None:\n Path(annotation_path).parent.mkdir(parents=True, exist_ok=True)\n info = {}\n licenses = [\n {\n \"id\": 1,\n \"url\": \"https://creativecommons.org/licenses/by/4.0/\",\n \"name\": \"CC BY 4.0\",\n }\n ]\n\n coco_annotations = []\n coco_images = []\n coco_categories = classes_to_coco_categories(classes=classes)\n\n image_id, annotation_id = 1, 1\n for image_name, image in images.items():\n image_height, image_width, _ = image.shape\n\n coco_image = {\n \"id\": image_id,\n \"license\": 1,\n \"file_name\": image_name,\n \"height\": image_height,\n \"width\": image_width,\n \"date_captured\": datetime.now().strftime(\"%m/%d/%Y,%H:%M:%S\"),\n }\n\n coco_images.append(coco_image)\n detections = annotations[image_name]\n\n coco_annotation, annotation_id = detections_to_coco_annotations(\n detections=detections,\n image_id=image_id,\n annotation_id=annotation_id,\n min_image_area_percentage=min_image_area_percentage,\n max_image_area_percentage=max_image_area_percentage,\n approximation_percentage=approximation_percentage,\n )\n\n coco_annotations.extend(coco_annotation)\n image_id += 1\n\n annotation_dict = {\n \"info\": info,\n \"licenses\": licenses,\n \"categories\": coco_categories,\n \"images\": coco_images,\n \"annotations\": coco_annotations,\n }\n save_json_file(annotation_dict, file_path=annotation_path)\n", "path": "supervision/dataset/formats/coco.py"}]}
3,931
132
gh_patches_debug_65041
rasdani/github-patches
git_diff
PokemonGoF__PokemonGo-Bot-4931
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- [BUG] Error in Telegram: "AttributeError: 'module' object has no attribute 'now'" ### Expected Behavior <!-- Tell us what you expect to happen --> Bot running with Telegram enabled ### Actual Behavior <!-- Tell us what is happening --> Bot not starting due to error message ### Your FULL config.json (remove your username, password, gmapkey and any other private info) <!-- Provide your FULL config file, feel free to use services such as pastebin.com to reduce clutter --> http://pastebin.com/5nQC2ceh ### Output when issue occurred <!-- Provide a reasonable sample from your output log (not just the error message), feel free to use services such as pastebin.com to reduce clutter --> Traceback (most recent call last): File "pokecli.py", line 781, in <module> main() File "pokecli.py", line 128, in main bot = start_bot(bot, config) File "pokecli.py", line 88, in start_bot initialize_task(bot, config) File "pokecli.py", line 79, in initialize_task tree = TreeConfigBuilder(bot, config.raw_tasks).build() File "/PokemonGo-Bot/pokemongo_bot/tree_config_builder.py", line 79, in build instance = worker(self.bot, task_config) File "/PokemonGo-Bot/pokemongo_bot/base_task.py", line 23, in **init** self.initialize() File "/PokemonGo-Bot/pokemongo_bot/cell_workers/telegram_task.py", line 42, in initialize self.next_job=datetime.now() + timedelta(seconds=self.min_interval) AttributeError: 'module' object has no attribute 'now' ### Steps to Reproduce <!-- Tell us the steps you have taken to reproduce the issue --> Start the bot with the above config. ### Other Information OS: CentOS <!-- Tell us what Operating system you're using --> Branch: dev <!-- dev or master --> Git Commit: 9e81c6ed90d79e181599ec7f0a0cfa2ecd4d09f5 <!-- run 'git log -n 1 --pretty=format:"%H"' --> Python Version: Python 2.7.5 <!-- run 'python -V' and paste it here) --> Any other relevant files/configs (eg: path files) <!-- Anything else which may be of relevance --> <!-- ===============END OF ISSUE SECTION=============== --> --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `pokemongo_bot/cell_workers/telegram_task.py` Content: ``` 1 # -*- coding: utf-8 -*- 2 import datetime 3 import telegram 4 import os 5 import logging 6 import json 7 from pokemongo_bot.base_task import BaseTask 8 from pokemongo_bot.base_dir import _base_dir 9 from pokemongo_bot.event_handlers import TelegramHandler 10 11 from pprint import pprint 12 import re 13 14 class FileIOException(Exception): 15 pass 16 17 class TelegramTask(BaseTask): 18 SUPPORTED_TASK_API_VERSION = 1 19 update_id = None 20 tbot = None 21 min_interval=None 22 next_job=None 23 24 def initialize(self): 25 if not self.enabled: 26 return 27 api_key = self.bot.config.telegram_token 28 if api_key == None: 29 self.emit_event( 30 'config_error', 31 formatted='api_key not defined.' 32 ) 33 return 34 self.tbot = telegram.Bot(api_key) 35 if self.config.get('master',None): 36 self.bot.event_manager.add_handler(TelegramHandler(self.tbot,self.config.get('master',None),self.config.get('alert_catch'))) 37 try: 38 self.update_id = self.tbot.getUpdates()[0].update_id 39 except IndexError: 40 self.update_id = None 41 self.min_interval=self.config.get('min_interval',120) 42 self.next_job=datetime.now() + timedelta(seconds=self.min_interval) 43 def work(self): 44 if not self.enabled: 45 return 46 if datetime.now()<self.next_job: 47 return 48 self.next_job=datetime.now() + timedelta(seconds=self.min_interval) 49 for update in self.tbot.getUpdates(offset=self.update_id, timeout=10): 50 self.update_id = update.update_id+1 51 if update.message: 52 self.bot.logger.info("message from {} ({}): {}".format(update.message.from_user.username, update.message.from_user.id, update.message.text)) 53 if self.config.get('master',None) and self.config.get('master',None) not in [update.message.from_user.id, "@{}".format(update.message.from_user.username)]: 54 self.emit_event( 55 'debug', 56 formatted="Master wrong: expecting {}, got {}({})".format(self.config.get('master',None), update.message.from_user.username, update.message.from_user.id)) 57 continue 58 else: 59 if not re.match(r'^[0-9]+$', "{}".format(self.config['master'])): # master was not numeric... 60 self.config['master'] = update.message.chat_id 61 idx = (i for i,v in enumerate(self.bot.event_manager._handlers) if type(v) is TelegramHandler).next() 62 self.bot.event_manager._handlers[idx] = TelegramHandler(self.tbot,self.config['master'], self.config.get('alert_catch')) 63 64 65 66 if update.message.text == "/info": 67 stats = self._get_player_stats() 68 if stats: 69 with self.bot.database as conn: 70 cur = conn.cursor() 71 cur.execute("SELECT DISTINCT COUNT(encounter_id) FROM catch_log WHERE dated >= datetime('now','-1 day')") 72 catch_day = cur.fetchone()[0] 73 cur.execute("SELECT DISTINCT COUNT(pokestop) FROM pokestop_log WHERE dated >= datetime('now','-1 day')") 74 ps_day = cur.fetchone()[0] 75 res = ( 76 "*"+self.bot.config.username+"*", 77 "_Level:_ "+str(stats["level"]), 78 "_XP:_ "+str(stats["experience"])+"/"+str(stats["next_level_xp"]), 79 "_Pokemons Captured:_ "+str(stats["pokemons_captured"])+" ("+str(catch_day)+" _last 24h_)", 80 "_Poke Stop Visits:_ "+str(stats["poke_stop_visits"])+" ("+str(ps_day)+" _last 24h_)", 81 "_KM Walked:_ "+str(stats["km_walked"]) 82 ) 83 self.tbot.sendMessage(chat_id=update.message.chat_id, parse_mode='Markdown', text="\n".join(res)) 84 self.tbot.send_location(chat_id=update.message.chat_id, latitude=self.bot.api._position_lat, longitude=self.bot.api._position_lng) 85 else: 86 self.tbot.sendMessage(chat_id=update.message.chat_id, parse_mode='Markdown', text="Stats not loaded yet\n") 87 elif update.message.text == "/start" or update.message.text == "/help": 88 res = ( 89 "Commands: ", 90 "/info - info about bot" 91 ) 92 self.tbot.sendMessage(chat_id=update.message.chat_id, parse_mode='Markdown', text="\n".join(res)) 93 94 def _get_player_stats(self): 95 """ 96 Helper method parsing the bot inventory object and returning the player stats object. 97 :return: The player stats object. 98 :rtype: dict 99 """ 100 web_inventory = os.path.join(_base_dir, "web", "inventory-%s.json" % self.bot.config.username) 101 102 try: 103 with open(web_inventory, "r") as infile: 104 json_inventory = json.load(infile) 105 except ValueError as e: 106 # Unable to read json from web inventory 107 # File may be corrupt. Create a new one. 108 self.bot.logger.info('[x] Error while opening inventory file for read: %s' % e) 109 json_inventory = [] 110 except: 111 raise FileIOException("Unexpected error reading from {}".web_inventory) 112 113 return next((x["inventory_item_data"]["player_stats"] 114 for x in json_inventory 115 if x.get("inventory_item_data", {}).get("player_stats", {})), 116 None) 117 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/pokemongo_bot/cell_workers/telegram_task.py b/pokemongo_bot/cell_workers/telegram_task.py --- a/pokemongo_bot/cell_workers/telegram_task.py +++ b/pokemongo_bot/cell_workers/telegram_task.py @@ -1,5 +1,6 @@ # -*- coding: utf-8 -*- -import datetime +from datetime import datetime +from datetime import timedelta import telegram import os import logging
{"golden_diff": "diff --git a/pokemongo_bot/cell_workers/telegram_task.py b/pokemongo_bot/cell_workers/telegram_task.py\n--- a/pokemongo_bot/cell_workers/telegram_task.py\n+++ b/pokemongo_bot/cell_workers/telegram_task.py\n@@ -1,5 +1,6 @@\n # -*- coding: utf-8 -*-\n-import datetime\n+from datetime import datetime\n+from datetime import timedelta\n import telegram\n import os\n import logging\n", "issue": "[BUG] Error in Telegram: \"AttributeError: 'module' object has no attribute 'now'\"\n### Expected Behavior\n\n<!-- Tell us what you expect to happen -->\n\nBot running with Telegram enabled\n### Actual Behavior\n\n<!-- Tell us what is happening -->\n\nBot not starting due to error message\n### Your FULL config.json (remove your username, password, gmapkey and any other private info)\n\n<!-- Provide your FULL config file, feel free to use services such as pastebin.com to reduce clutter -->\n\nhttp://pastebin.com/5nQC2ceh\n### Output when issue occurred\n\n<!-- Provide a reasonable sample from your output log (not just the error message), feel free to use services such as pastebin.com to reduce clutter -->\n\nTraceback (most recent call last):\n File \"pokecli.py\", line 781, in <module>\n main()\n File \"pokecli.py\", line 128, in main\n bot = start_bot(bot, config)\n File \"pokecli.py\", line 88, in start_bot\n initialize_task(bot, config)\n File \"pokecli.py\", line 79, in initialize_task\n tree = TreeConfigBuilder(bot, config.raw_tasks).build()\n File \"/PokemonGo-Bot/pokemongo_bot/tree_config_builder.py\", line 79, in build\n instance = worker(self.bot, task_config)\n File \"/PokemonGo-Bot/pokemongo_bot/base_task.py\", line 23, in **init**\n self.initialize()\n File \"/PokemonGo-Bot/pokemongo_bot/cell_workers/telegram_task.py\", line 42, in initialize\n self.next_job=datetime.now() + timedelta(seconds=self.min_interval)\nAttributeError: 'module' object has no attribute 'now'\n### Steps to Reproduce\n\n<!-- Tell us the steps you have taken to reproduce the issue -->\n\nStart the bot with the above config.\n### Other Information\n\nOS: CentOS\n\n<!-- Tell us what Operating system you're using --> \n\nBranch: dev\n\n<!-- dev or master --> \n\nGit Commit: 9e81c6ed90d79e181599ec7f0a0cfa2ecd4d09f5\n\n<!-- run 'git log -n 1 --pretty=format:\"%H\"' --> \n\nPython Version: Python 2.7.5\n\n<!-- run 'python -V' and paste it here) --> \n\nAny other relevant files/configs (eg: path files) \n\n<!-- Anything else which may be of relevance -->\n\n<!-- ===============END OF ISSUE SECTION=============== -->\n\n", "before_files": [{"content": "# -*- coding: utf-8 -*-\nimport datetime\nimport telegram\nimport os\nimport logging\nimport json\nfrom pokemongo_bot.base_task import BaseTask\nfrom pokemongo_bot.base_dir import _base_dir\nfrom pokemongo_bot.event_handlers import TelegramHandler\n\nfrom pprint import pprint\nimport re\n\nclass FileIOException(Exception):\n pass\n\nclass TelegramTask(BaseTask):\n SUPPORTED_TASK_API_VERSION = 1\n update_id = None\n tbot = None\n min_interval=None\n next_job=None\n \n def initialize(self):\n if not self.enabled:\n return\n api_key = self.bot.config.telegram_token\n if api_key == None:\n self.emit_event(\n 'config_error',\n formatted='api_key not defined.'\n )\n return\n self.tbot = telegram.Bot(api_key)\n if self.config.get('master',None):\n self.bot.event_manager.add_handler(TelegramHandler(self.tbot,self.config.get('master',None),self.config.get('alert_catch')))\n try:\n self.update_id = self.tbot.getUpdates()[0].update_id\n except IndexError:\n self.update_id = None\n self.min_interval=self.config.get('min_interval',120)\n self.next_job=datetime.now() + timedelta(seconds=self.min_interval)\n def work(self):\n if not self.enabled:\n return\n if datetime.now()<self.next_job:\n return\n self.next_job=datetime.now() + timedelta(seconds=self.min_interval)\n for update in self.tbot.getUpdates(offset=self.update_id, timeout=10):\n self.update_id = update.update_id+1\n if update.message:\n self.bot.logger.info(\"message from {} ({}): {}\".format(update.message.from_user.username, update.message.from_user.id, update.message.text))\n if self.config.get('master',None) and self.config.get('master',None) not in [update.message.from_user.id, \"@{}\".format(update.message.from_user.username)]:\n self.emit_event( \n 'debug', \n formatted=\"Master wrong: expecting {}, got {}({})\".format(self.config.get('master',None), update.message.from_user.username, update.message.from_user.id))\n continue\n else:\n if not re.match(r'^[0-9]+$', \"{}\".format(self.config['master'])): # master was not numeric...\n self.config['master'] = update.message.chat_id\n idx = (i for i,v in enumerate(self.bot.event_manager._handlers) if type(v) is TelegramHandler).next()\n self.bot.event_manager._handlers[idx] = TelegramHandler(self.tbot,self.config['master'], self.config.get('alert_catch'))\n \n\n\n if update.message.text == \"/info\":\n stats = self._get_player_stats()\n if stats:\n with self.bot.database as conn:\n cur = conn.cursor()\n cur.execute(\"SELECT DISTINCT COUNT(encounter_id) FROM catch_log WHERE dated >= datetime('now','-1 day')\")\n catch_day = cur.fetchone()[0]\n cur.execute(\"SELECT DISTINCT COUNT(pokestop) FROM pokestop_log WHERE dated >= datetime('now','-1 day')\")\n ps_day = cur.fetchone()[0]\n res = (\n \"*\"+self.bot.config.username+\"*\",\n \"_Level:_ \"+str(stats[\"level\"]),\n \"_XP:_ \"+str(stats[\"experience\"])+\"/\"+str(stats[\"next_level_xp\"]),\n \"_Pokemons Captured:_ \"+str(stats[\"pokemons_captured\"])+\" (\"+str(catch_day)+\" _last 24h_)\",\n \"_Poke Stop Visits:_ \"+str(stats[\"poke_stop_visits\"])+\" (\"+str(ps_day)+\" _last 24h_)\",\n \"_KM Walked:_ \"+str(stats[\"km_walked\"])\n )\n self.tbot.sendMessage(chat_id=update.message.chat_id, parse_mode='Markdown', text=\"\\n\".join(res))\n self.tbot.send_location(chat_id=update.message.chat_id, latitude=self.bot.api._position_lat, longitude=self.bot.api._position_lng)\n else:\n self.tbot.sendMessage(chat_id=update.message.chat_id, parse_mode='Markdown', text=\"Stats not loaded yet\\n\")\n elif update.message.text == \"/start\" or update.message.text == \"/help\":\n res = (\n \"Commands: \",\n \"/info - info about bot\"\n )\n self.tbot.sendMessage(chat_id=update.message.chat_id, parse_mode='Markdown', text=\"\\n\".join(res))\n\n def _get_player_stats(self):\n \"\"\"\n Helper method parsing the bot inventory object and returning the player stats object.\n :return: The player stats object.\n :rtype: dict\n \"\"\"\n web_inventory = os.path.join(_base_dir, \"web\", \"inventory-%s.json\" % self.bot.config.username)\n \n try:\n with open(web_inventory, \"r\") as infile:\n json_inventory = json.load(infile)\n except ValueError as e:\n # Unable to read json from web inventory\n # File may be corrupt. Create a new one. \n self.bot.logger.info('[x] Error while opening inventory file for read: %s' % e)\n json_inventory = []\n except:\n raise FileIOException(\"Unexpected error reading from {}\".web_inventory)\n \n return next((x[\"inventory_item_data\"][\"player_stats\"]\n for x in json_inventory\n if x.get(\"inventory_item_data\", {}).get(\"player_stats\", {})),\n None)\n", "path": "pokemongo_bot/cell_workers/telegram_task.py"}], "after_files": [{"content": "# -*- coding: utf-8 -*-\nfrom datetime import datetime\nfrom datetime import timedelta\nimport telegram\nimport os\nimport logging\nimport json\nfrom pokemongo_bot.base_task import BaseTask\nfrom pokemongo_bot.base_dir import _base_dir\nfrom pokemongo_bot.event_handlers import TelegramHandler\n\nfrom pprint import pprint\nimport re\n\nclass FileIOException(Exception):\n pass\n\nclass TelegramTask(BaseTask):\n SUPPORTED_TASK_API_VERSION = 1\n update_id = None\n tbot = None\n min_interval=None\n next_job=None\n \n def initialize(self):\n if not self.enabled:\n return\n api_key = self.bot.config.telegram_token\n if api_key == None:\n self.emit_event(\n 'config_error',\n formatted='api_key not defined.'\n )\n return\n self.tbot = telegram.Bot(api_key)\n if self.config.get('master',None):\n self.bot.event_manager.add_handler(TelegramHandler(self.tbot,self.config.get('master',None),self.config.get('alert_catch')))\n try:\n self.update_id = self.tbot.getUpdates()[0].update_id\n except IndexError:\n self.update_id = None\n self.min_interval=self.config.get('min_interval',120)\n self.next_job=datetime.now() + timedelta(seconds=self.min_interval)\n def work(self):\n if not self.enabled:\n return\n if datetime.now()<self.next_job:\n return\n self.next_job=datetime.now() + timedelta(seconds=self.min_interval)\n for update in self.tbot.getUpdates(offset=self.update_id, timeout=10):\n self.update_id = update.update_id+1\n if update.message:\n self.bot.logger.info(\"message from {} ({}): {}\".format(update.message.from_user.username, update.message.from_user.id, update.message.text))\n if self.config.get('master',None) and self.config.get('master',None) not in [update.message.from_user.id, \"@{}\".format(update.message.from_user.username)]:\n self.emit_event( \n 'debug', \n formatted=\"Master wrong: expecting {}, got {}({})\".format(self.config.get('master',None), update.message.from_user.username, update.message.from_user.id))\n continue\n else:\n if not re.match(r'^[0-9]+$', \"{}\".format(self.config['master'])): # master was not numeric...\n self.config['master'] = update.message.chat_id\n idx = (i for i,v in enumerate(self.bot.event_manager._handlers) if type(v) is TelegramHandler).next()\n self.bot.event_manager._handlers[idx] = TelegramHandler(self.tbot,self.config['master'], self.config.get('alert_catch'))\n \n\n\n if update.message.text == \"/info\":\n stats = self._get_player_stats()\n if stats:\n with self.bot.database as conn:\n cur = conn.cursor()\n cur.execute(\"SELECT DISTINCT COUNT(encounter_id) FROM catch_log WHERE dated >= datetime('now','-1 day')\")\n catch_day = cur.fetchone()[0]\n cur.execute(\"SELECT DISTINCT COUNT(pokestop) FROM pokestop_log WHERE dated >= datetime('now','-1 day')\")\n ps_day = cur.fetchone()[0]\n res = (\n \"*\"+self.bot.config.username+\"*\",\n \"_Level:_ \"+str(stats[\"level\"]),\n \"_XP:_ \"+str(stats[\"experience\"])+\"/\"+str(stats[\"next_level_xp\"]),\n \"_Pokemons Captured:_ \"+str(stats[\"pokemons_captured\"])+\" (\"+str(catch_day)+\" _last 24h_)\",\n \"_Poke Stop Visits:_ \"+str(stats[\"poke_stop_visits\"])+\" (\"+str(ps_day)+\" _last 24h_)\",\n \"_KM Walked:_ \"+str(stats[\"km_walked\"])\n )\n self.tbot.sendMessage(chat_id=update.message.chat_id, parse_mode='Markdown', text=\"\\n\".join(res))\n self.tbot.send_location(chat_id=update.message.chat_id, latitude=self.bot.api._position_lat, longitude=self.bot.api._position_lng)\n else:\n self.tbot.sendMessage(chat_id=update.message.chat_id, parse_mode='Markdown', text=\"Stats not loaded yet\\n\")\n elif update.message.text == \"/start\" or update.message.text == \"/help\":\n res = (\n \"Commands: \",\n \"/info - info about bot\"\n )\n self.tbot.sendMessage(chat_id=update.message.chat_id, parse_mode='Markdown', text=\"\\n\".join(res))\n\n def _get_player_stats(self):\n \"\"\"\n Helper method parsing the bot inventory object and returning the player stats object.\n :return: The player stats object.\n :rtype: dict\n \"\"\"\n web_inventory = os.path.join(_base_dir, \"web\", \"inventory-%s.json\" % self.bot.config.username)\n \n try:\n with open(web_inventory, \"r\") as infile:\n json_inventory = json.load(infile)\n except ValueError as e:\n # Unable to read json from web inventory\n # File may be corrupt. Create a new one. \n self.bot.logger.info('[x] Error while opening inventory file for read: %s' % e)\n json_inventory = []\n except:\n raise FileIOException(\"Unexpected error reading from {}\".web_inventory)\n \n return next((x[\"inventory_item_data\"][\"player_stats\"]\n for x in json_inventory\n if x.get(\"inventory_item_data\", {}).get(\"player_stats\", {})),\n None)\n", "path": "pokemongo_bot/cell_workers/telegram_task.py"}]}
2,204
102
gh_patches_debug_6721
rasdani/github-patches
git_diff
microsoft__Qcodes-5565
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Cannot exit ipython with running qcodes.Monitor() ### Steps to reproduce iPython version 8.10, qcodes version 0.42, Windows 10 Pro 22H2 1. open ipython 2. from qcodes import Monitor monitor = Monitor() 3. exit ipython It hangs instead of closing iPython. The terminal must be terminated. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `src/qcodes/monitor/monitor.py` Content: ``` 1 #! /usr/bin/env python 2 # vim:fenc=utf-8 3 # 4 # Copyright © 2017 unga <[email protected]> 5 # 6 # Distributed under terms of the MIT license. 7 """ 8 Monitor a set of parameters in a background thread 9 stream output over websocket 10 11 To start monitor, run this file, or if qcodes is installed as a module: 12 13 ``% python -m qcodes.monitor.monitor`` 14 15 Add parameters to monitor in your measurement by creating a new monitor with a 16 list of parameters to monitor: 17 18 ``monitor = qcodes.Monitor(param1, param2, param3, ...)`` 19 """ 20 from __future__ import annotations 21 22 import asyncio 23 import json 24 import logging 25 import os 26 import socketserver 27 import time 28 import webbrowser 29 from asyncio import CancelledError 30 from collections import defaultdict 31 from collections.abc import Awaitable, Sequence 32 from contextlib import suppress 33 from importlib.resources import as_file, files 34 from threading import Event, Thread 35 from typing import Any, Callable 36 37 import websockets 38 import websockets.exceptions 39 import websockets.server 40 41 from qcodes.parameters import Parameter 42 43 WEBSOCKET_PORT = 5678 44 SERVER_PORT = 3000 45 46 log = logging.getLogger(__name__) 47 48 49 def _get_metadata( 50 *parameters: Parameter, use_root_instrument: bool = True 51 ) -> dict[str, Any]: 52 """ 53 Return a dictionary that contains the parameter metadata grouped by the 54 instrument it belongs to. 55 """ 56 metadata_timestamp = time.time() 57 # group metadata by instrument 58 metas: dict[Any, Any] = defaultdict(list) 59 for parameter in parameters: 60 # Get the latest value from the parameter, 61 # respecting the max_val_age parameter 62 meta: dict[str, float | str | None] = {} 63 meta["value"] = str(parameter.get_latest()) 64 timestamp = parameter.get_latest.get_timestamp() 65 if timestamp is not None: 66 meta["ts"] = timestamp.timestamp() 67 else: 68 meta["ts"] = None 69 meta["name"] = parameter.label or parameter.name 70 meta["unit"] = parameter.unit 71 72 # find the base instrument that this parameter belongs to 73 if use_root_instrument: 74 baseinst = parameter.root_instrument 75 else: 76 baseinst = parameter.instrument 77 if baseinst is None: 78 metas["Unbound Parameter"].append(meta) 79 else: 80 metas[str(baseinst)].append(meta) 81 82 # Create list of parameters, grouped by instrument 83 parameters_out = [] 84 for instrument in metas: 85 temp = {"instrument": instrument, "parameters": metas[instrument]} 86 parameters_out.append(temp) 87 88 state = {"ts": metadata_timestamp, "parameters": parameters_out} 89 return state 90 91 92 def _handler( 93 parameters: Sequence[Parameter], interval: float, use_root_instrument: bool = True 94 ) -> Callable[[websockets.server.WebSocketServerProtocol, str], Awaitable[None]]: 95 """ 96 Return the websockets server handler. 97 """ 98 99 async def server_func( 100 websocket: websockets.server.WebSocketServerProtocol, _: str 101 ) -> None: 102 """ 103 Create a websockets handler that sends parameter values to a listener 104 every "interval" seconds. 105 """ 106 while True: 107 try: 108 # Update the parameter values 109 try: 110 meta = _get_metadata( 111 *parameters, use_root_instrument=use_root_instrument 112 ) 113 except ValueError: 114 log.exception("Error getting parameters") 115 break 116 log.debug("sending.. to %r", websocket) 117 await websocket.send(json.dumps(meta)) 118 # Wait for interval seconds and then send again 119 await asyncio.sleep(interval) 120 except (CancelledError, websockets.exceptions.ConnectionClosed): 121 log.debug("Got CancelledError or ConnectionClosed", 122 exc_info=True) 123 break 124 log.debug("Closing websockets connection") 125 126 return server_func 127 128 129 class Monitor(Thread): 130 """ 131 QCodes Monitor - WebSockets server to monitor qcodes parameters. 132 """ 133 running = None 134 135 def __init__( 136 self, 137 *parameters: Parameter, 138 interval: float = 1, 139 use_root_instrument: bool = True, 140 ): 141 """ 142 Monitor qcodes parameters. 143 144 Args: 145 *parameters: Parameters to monitor. 146 interval: How often one wants to refresh the values. 147 use_root_instrument: Defines if parameters are grouped according to 148 parameter.root_instrument or parameter.instrument 149 """ 150 super().__init__() 151 152 # Check that all values are valid parameters 153 for parameter in parameters: 154 if not isinstance(parameter, Parameter): 155 raise TypeError(f"We can only monitor QCodes " 156 f"Parameters, not {type(parameter)}") 157 158 self.loop: asyncio.AbstractEventLoop | None = None 159 self._stop_loop_future: asyncio.Future | None = None 160 self._parameters = parameters 161 self.loop_is_closed = Event() 162 self.server_is_started = Event() 163 self.handler = _handler( 164 parameters, interval=interval, use_root_instrument=use_root_instrument 165 ) 166 log.debug("Start monitoring thread") 167 if Monitor.running: 168 # stop the old server 169 log.debug("Stopping and restarting server") 170 Monitor.running.stop() 171 self.start() 172 173 # Wait until the loop is running 174 self.server_is_started.wait(timeout=5) 175 if not self.server_is_started.is_set(): 176 raise RuntimeError("Failed to start server") 177 Monitor.running = self 178 179 def run(self) -> None: 180 """ 181 Start the event loop and run forever. 182 """ 183 log.debug("Running Websocket server") 184 185 async def run_loop() -> None: 186 self.loop = asyncio.get_running_loop() 187 self._stop_loop_future = self.loop.create_future() 188 189 async with websockets.server.serve( 190 self.handler, "127.0.0.1", WEBSOCKET_PORT, close_timeout=1 191 ): 192 self.server_is_started.set() 193 try: 194 await self._stop_loop_future 195 except asyncio.CancelledError: 196 log.debug("Websocket server thread shutting down") 197 198 try: 199 asyncio.run(run_loop()) 200 finally: 201 self.loop_is_closed.set() 202 203 def update_all(self) -> None: 204 """ 205 Update all parameters in the monitor. 206 """ 207 for parameter in self._parameters: 208 # call get if it can be called without arguments 209 with suppress(TypeError): 210 parameter.get() 211 212 def stop(self) -> None: 213 """ 214 Shutdown the server, close the event loop and join the thread. 215 Setting active Monitor to ``None``. 216 """ 217 self.join() 218 Monitor.running = None 219 220 def join(self, timeout: float | None = None) -> None: 221 """ 222 Overwrite ``Thread.join`` to make sure server is stopped before 223 joining avoiding a potential deadlock. 224 """ 225 log.debug("Shutting down server") 226 if not self.is_alive(): 227 # we run this check before trying to run to prevent a cryptic 228 # error message 229 log.debug("monitor is dead") 230 return 231 try: 232 if self.loop is not None and self._stop_loop_future is not None: 233 log.debug("Instructing server to stop event loop.") 234 self.loop.call_soon_threadsafe(self._stop_loop_future.cancel) 235 else: 236 log.debug("No event loop found. Cannot stop event loop.") 237 except RuntimeError: 238 # the above may throw a runtime error if the loop is already 239 # stopped in which case there is nothing more to do 240 log.exception("Could not close loop") 241 self.loop_is_closed.wait(timeout=5) 242 if not self.loop_is_closed.is_set(): 243 raise RuntimeError("Failed to join loop") 244 log.debug("Loop reported closed") 245 super().join(timeout=timeout) 246 log.debug("Monitor Thread has joined") 247 248 @staticmethod 249 def show() -> None: 250 """ 251 Overwrite this method to show/raise your monitor GUI 252 F.ex. 253 254 :: 255 256 import webbrowser 257 url = "localhost:3000" 258 # Open URL in new window, raising the window if possible. 259 webbrowser.open_new(url) 260 261 """ 262 webbrowser.open(f"http://localhost:{SERVER_PORT}") 263 264 265 def main() -> None: 266 import http.server 267 268 # If this file is run, create a simple webserver that serves a simple 269 # website that can be used to view monitored parameters. 270 # # https://github.com/python/mypy/issues/4182 271 parent_module = ".".join(__loader__.name.split(".")[:-1]) # type: ignore[name-defined] 272 273 static_dir = files(parent_module).joinpath("dist") 274 try: 275 with as_file(static_dir) as extracted_dir: 276 os.chdir(extracted_dir) 277 log.info("Starting HTTP Server at http://localhost:%i", SERVER_PORT) 278 with socketserver.TCPServer( 279 ("", SERVER_PORT), http.server.SimpleHTTPRequestHandler 280 ) as httpd: 281 log.debug("serving directory %s", static_dir) 282 webbrowser.open(f"http://localhost:{SERVER_PORT}") 283 httpd.serve_forever() 284 except KeyboardInterrupt: 285 log.info("Shutting Down HTTP Server") 286 287 288 if __name__ == "__main__": 289 main() 290 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/src/qcodes/monitor/monitor.py b/src/qcodes/monitor/monitor.py --- a/src/qcodes/monitor/monitor.py +++ b/src/qcodes/monitor/monitor.py @@ -147,7 +147,7 @@ use_root_instrument: Defines if parameters are grouped according to parameter.root_instrument or parameter.instrument """ - super().__init__() + super().__init__(daemon=True) # Check that all values are valid parameters for parameter in parameters:
{"golden_diff": "diff --git a/src/qcodes/monitor/monitor.py b/src/qcodes/monitor/monitor.py\n--- a/src/qcodes/monitor/monitor.py\n+++ b/src/qcodes/monitor/monitor.py\n@@ -147,7 +147,7 @@\n use_root_instrument: Defines if parameters are grouped according to\n parameter.root_instrument or parameter.instrument\n \"\"\"\n- super().__init__()\n+ super().__init__(daemon=True)\n \n # Check that all values are valid parameters\n for parameter in parameters:\n", "issue": "Cannot exit ipython with running qcodes.Monitor()\n### Steps to reproduce\r\niPython version 8.10, qcodes version 0.42, Windows 10 Pro 22H2\r\n\r\n1. open ipython\r\n2. from qcodes import Monitor\r\nmonitor = Monitor()\r\n3. exit ipython\r\n\r\nIt hangs instead of closing iPython. The terminal must be terminated.\r\n\n", "before_files": [{"content": "#! /usr/bin/env python\n# vim:fenc=utf-8\n#\n# Copyright \u00a9 2017 unga <[email protected]>\n#\n# Distributed under terms of the MIT license.\n\"\"\"\nMonitor a set of parameters in a background thread\nstream output over websocket\n\nTo start monitor, run this file, or if qcodes is installed as a module:\n\n``% python -m qcodes.monitor.monitor``\n\nAdd parameters to monitor in your measurement by creating a new monitor with a\nlist of parameters to monitor:\n\n``monitor = qcodes.Monitor(param1, param2, param3, ...)``\n\"\"\"\nfrom __future__ import annotations\n\nimport asyncio\nimport json\nimport logging\nimport os\nimport socketserver\nimport time\nimport webbrowser\nfrom asyncio import CancelledError\nfrom collections import defaultdict\nfrom collections.abc import Awaitable, Sequence\nfrom contextlib import suppress\nfrom importlib.resources import as_file, files\nfrom threading import Event, Thread\nfrom typing import Any, Callable\n\nimport websockets\nimport websockets.exceptions\nimport websockets.server\n\nfrom qcodes.parameters import Parameter\n\nWEBSOCKET_PORT = 5678\nSERVER_PORT = 3000\n\nlog = logging.getLogger(__name__)\n\n\ndef _get_metadata(\n *parameters: Parameter, use_root_instrument: bool = True\n) -> dict[str, Any]:\n \"\"\"\n Return a dictionary that contains the parameter metadata grouped by the\n instrument it belongs to.\n \"\"\"\n metadata_timestamp = time.time()\n # group metadata by instrument\n metas: dict[Any, Any] = defaultdict(list)\n for parameter in parameters:\n # Get the latest value from the parameter,\n # respecting the max_val_age parameter\n meta: dict[str, float | str | None] = {}\n meta[\"value\"] = str(parameter.get_latest())\n timestamp = parameter.get_latest.get_timestamp()\n if timestamp is not None:\n meta[\"ts\"] = timestamp.timestamp()\n else:\n meta[\"ts\"] = None\n meta[\"name\"] = parameter.label or parameter.name\n meta[\"unit\"] = parameter.unit\n\n # find the base instrument that this parameter belongs to\n if use_root_instrument:\n baseinst = parameter.root_instrument\n else:\n baseinst = parameter.instrument\n if baseinst is None:\n metas[\"Unbound Parameter\"].append(meta)\n else:\n metas[str(baseinst)].append(meta)\n\n # Create list of parameters, grouped by instrument\n parameters_out = []\n for instrument in metas:\n temp = {\"instrument\": instrument, \"parameters\": metas[instrument]}\n parameters_out.append(temp)\n\n state = {\"ts\": metadata_timestamp, \"parameters\": parameters_out}\n return state\n\n\ndef _handler(\n parameters: Sequence[Parameter], interval: float, use_root_instrument: bool = True\n) -> Callable[[websockets.server.WebSocketServerProtocol, str], Awaitable[None]]:\n \"\"\"\n Return the websockets server handler.\n \"\"\"\n\n async def server_func(\n websocket: websockets.server.WebSocketServerProtocol, _: str\n ) -> None:\n \"\"\"\n Create a websockets handler that sends parameter values to a listener\n every \"interval\" seconds.\n \"\"\"\n while True:\n try:\n # Update the parameter values\n try:\n meta = _get_metadata(\n *parameters, use_root_instrument=use_root_instrument\n )\n except ValueError:\n log.exception(\"Error getting parameters\")\n break\n log.debug(\"sending.. to %r\", websocket)\n await websocket.send(json.dumps(meta))\n # Wait for interval seconds and then send again\n await asyncio.sleep(interval)\n except (CancelledError, websockets.exceptions.ConnectionClosed):\n log.debug(\"Got CancelledError or ConnectionClosed\",\n exc_info=True)\n break\n log.debug(\"Closing websockets connection\")\n\n return server_func\n\n\nclass Monitor(Thread):\n \"\"\"\n QCodes Monitor - WebSockets server to monitor qcodes parameters.\n \"\"\"\n running = None\n\n def __init__(\n self,\n *parameters: Parameter,\n interval: float = 1,\n use_root_instrument: bool = True,\n ):\n \"\"\"\n Monitor qcodes parameters.\n\n Args:\n *parameters: Parameters to monitor.\n interval: How often one wants to refresh the values.\n use_root_instrument: Defines if parameters are grouped according to\n parameter.root_instrument or parameter.instrument\n \"\"\"\n super().__init__()\n\n # Check that all values are valid parameters\n for parameter in parameters:\n if not isinstance(parameter, Parameter):\n raise TypeError(f\"We can only monitor QCodes \"\n f\"Parameters, not {type(parameter)}\")\n\n self.loop: asyncio.AbstractEventLoop | None = None\n self._stop_loop_future: asyncio.Future | None = None\n self._parameters = parameters\n self.loop_is_closed = Event()\n self.server_is_started = Event()\n self.handler = _handler(\n parameters, interval=interval, use_root_instrument=use_root_instrument\n )\n log.debug(\"Start monitoring thread\")\n if Monitor.running:\n # stop the old server\n log.debug(\"Stopping and restarting server\")\n Monitor.running.stop()\n self.start()\n\n # Wait until the loop is running\n self.server_is_started.wait(timeout=5)\n if not self.server_is_started.is_set():\n raise RuntimeError(\"Failed to start server\")\n Monitor.running = self\n\n def run(self) -> None:\n \"\"\"\n Start the event loop and run forever.\n \"\"\"\n log.debug(\"Running Websocket server\")\n\n async def run_loop() -> None:\n self.loop = asyncio.get_running_loop()\n self._stop_loop_future = self.loop.create_future()\n\n async with websockets.server.serve(\n self.handler, \"127.0.0.1\", WEBSOCKET_PORT, close_timeout=1\n ):\n self.server_is_started.set()\n try:\n await self._stop_loop_future\n except asyncio.CancelledError:\n log.debug(\"Websocket server thread shutting down\")\n\n try:\n asyncio.run(run_loop())\n finally:\n self.loop_is_closed.set()\n\n def update_all(self) -> None:\n \"\"\"\n Update all parameters in the monitor.\n \"\"\"\n for parameter in self._parameters:\n # call get if it can be called without arguments\n with suppress(TypeError):\n parameter.get()\n\n def stop(self) -> None:\n \"\"\"\n Shutdown the server, close the event loop and join the thread.\n Setting active Monitor to ``None``.\n \"\"\"\n self.join()\n Monitor.running = None\n\n def join(self, timeout: float | None = None) -> None:\n \"\"\"\n Overwrite ``Thread.join`` to make sure server is stopped before\n joining avoiding a potential deadlock.\n \"\"\"\n log.debug(\"Shutting down server\")\n if not self.is_alive():\n # we run this check before trying to run to prevent a cryptic\n # error message\n log.debug(\"monitor is dead\")\n return\n try:\n if self.loop is not None and self._stop_loop_future is not None:\n log.debug(\"Instructing server to stop event loop.\")\n self.loop.call_soon_threadsafe(self._stop_loop_future.cancel)\n else:\n log.debug(\"No event loop found. Cannot stop event loop.\")\n except RuntimeError:\n # the above may throw a runtime error if the loop is already\n # stopped in which case there is nothing more to do\n log.exception(\"Could not close loop\")\n self.loop_is_closed.wait(timeout=5)\n if not self.loop_is_closed.is_set():\n raise RuntimeError(\"Failed to join loop\")\n log.debug(\"Loop reported closed\")\n super().join(timeout=timeout)\n log.debug(\"Monitor Thread has joined\")\n\n @staticmethod\n def show() -> None:\n \"\"\"\n Overwrite this method to show/raise your monitor GUI\n F.ex.\n\n ::\n\n import webbrowser\n url = \"localhost:3000\"\n # Open URL in new window, raising the window if possible.\n webbrowser.open_new(url)\n\n \"\"\"\n webbrowser.open(f\"http://localhost:{SERVER_PORT}\")\n\n\ndef main() -> None:\n import http.server\n\n # If this file is run, create a simple webserver that serves a simple\n # website that can be used to view monitored parameters.\n # # https://github.com/python/mypy/issues/4182\n parent_module = \".\".join(__loader__.name.split(\".\")[:-1]) # type: ignore[name-defined]\n\n static_dir = files(parent_module).joinpath(\"dist\")\n try:\n with as_file(static_dir) as extracted_dir:\n os.chdir(extracted_dir)\n log.info(\"Starting HTTP Server at http://localhost:%i\", SERVER_PORT)\n with socketserver.TCPServer(\n (\"\", SERVER_PORT), http.server.SimpleHTTPRequestHandler\n ) as httpd:\n log.debug(\"serving directory %s\", static_dir)\n webbrowser.open(f\"http://localhost:{SERVER_PORT}\")\n httpd.serve_forever()\n except KeyboardInterrupt:\n log.info(\"Shutting Down HTTP Server\")\n\n\nif __name__ == \"__main__\":\n main()\n", "path": "src/qcodes/monitor/monitor.py"}], "after_files": [{"content": "#! /usr/bin/env python\n# vim:fenc=utf-8\n#\n# Copyright \u00a9 2017 unga <[email protected]>\n#\n# Distributed under terms of the MIT license.\n\"\"\"\nMonitor a set of parameters in a background thread\nstream output over websocket\n\nTo start monitor, run this file, or if qcodes is installed as a module:\n\n``% python -m qcodes.monitor.monitor``\n\nAdd parameters to monitor in your measurement by creating a new monitor with a\nlist of parameters to monitor:\n\n``monitor = qcodes.Monitor(param1, param2, param3, ...)``\n\"\"\"\nfrom __future__ import annotations\n\nimport asyncio\nimport json\nimport logging\nimport os\nimport socketserver\nimport time\nimport webbrowser\nfrom asyncio import CancelledError\nfrom collections import defaultdict\nfrom collections.abc import Awaitable, Sequence\nfrom contextlib import suppress\nfrom importlib.resources import as_file, files\nfrom threading import Event, Thread\nfrom typing import Any, Callable\n\nimport websockets\nimport websockets.exceptions\nimport websockets.server\n\nfrom qcodes.parameters import Parameter\n\nWEBSOCKET_PORT = 5678\nSERVER_PORT = 3000\n\nlog = logging.getLogger(__name__)\n\n\ndef _get_metadata(\n *parameters: Parameter, use_root_instrument: bool = True\n) -> dict[str, Any]:\n \"\"\"\n Return a dictionary that contains the parameter metadata grouped by the\n instrument it belongs to.\n \"\"\"\n metadata_timestamp = time.time()\n # group metadata by instrument\n metas: dict[Any, Any] = defaultdict(list)\n for parameter in parameters:\n # Get the latest value from the parameter,\n # respecting the max_val_age parameter\n meta: dict[str, float | str | None] = {}\n meta[\"value\"] = str(parameter.get_latest())\n timestamp = parameter.get_latest.get_timestamp()\n if timestamp is not None:\n meta[\"ts\"] = timestamp.timestamp()\n else:\n meta[\"ts\"] = None\n meta[\"name\"] = parameter.label or parameter.name\n meta[\"unit\"] = parameter.unit\n\n # find the base instrument that this parameter belongs to\n if use_root_instrument:\n baseinst = parameter.root_instrument\n else:\n baseinst = parameter.instrument\n if baseinst is None:\n metas[\"Unbound Parameter\"].append(meta)\n else:\n metas[str(baseinst)].append(meta)\n\n # Create list of parameters, grouped by instrument\n parameters_out = []\n for instrument in metas:\n temp = {\"instrument\": instrument, \"parameters\": metas[instrument]}\n parameters_out.append(temp)\n\n state = {\"ts\": metadata_timestamp, \"parameters\": parameters_out}\n return state\n\n\ndef _handler(\n parameters: Sequence[Parameter], interval: float, use_root_instrument: bool = True\n) -> Callable[[websockets.server.WebSocketServerProtocol, str], Awaitable[None]]:\n \"\"\"\n Return the websockets server handler.\n \"\"\"\n\n async def server_func(\n websocket: websockets.server.WebSocketServerProtocol, _: str\n ) -> None:\n \"\"\"\n Create a websockets handler that sends parameter values to a listener\n every \"interval\" seconds.\n \"\"\"\n while True:\n try:\n # Update the parameter values\n try:\n meta = _get_metadata(\n *parameters, use_root_instrument=use_root_instrument\n )\n except ValueError:\n log.exception(\"Error getting parameters\")\n break\n log.debug(\"sending.. to %r\", websocket)\n await websocket.send(json.dumps(meta))\n # Wait for interval seconds and then send again\n await asyncio.sleep(interval)\n except (CancelledError, websockets.exceptions.ConnectionClosed):\n log.debug(\"Got CancelledError or ConnectionClosed\",\n exc_info=True)\n break\n log.debug(\"Closing websockets connection\")\n\n return server_func\n\n\nclass Monitor(Thread):\n \"\"\"\n QCodes Monitor - WebSockets server to monitor qcodes parameters.\n \"\"\"\n running = None\n\n def __init__(\n self,\n *parameters: Parameter,\n interval: float = 1,\n use_root_instrument: bool = True,\n ):\n \"\"\"\n Monitor qcodes parameters.\n\n Args:\n *parameters: Parameters to monitor.\n interval: How often one wants to refresh the values.\n use_root_instrument: Defines if parameters are grouped according to\n parameter.root_instrument or parameter.instrument\n \"\"\"\n super().__init__(daemon=True)\n\n # Check that all values are valid parameters\n for parameter in parameters:\n if not isinstance(parameter, Parameter):\n raise TypeError(f\"We can only monitor QCodes \"\n f\"Parameters, not {type(parameter)}\")\n\n self.loop: asyncio.AbstractEventLoop | None = None\n self._stop_loop_future: asyncio.Future | None = None\n self._parameters = parameters\n self.loop_is_closed = Event()\n self.server_is_started = Event()\n self.handler = _handler(\n parameters, interval=interval, use_root_instrument=use_root_instrument\n )\n log.debug(\"Start monitoring thread\")\n if Monitor.running:\n # stop the old server\n log.debug(\"Stopping and restarting server\")\n Monitor.running.stop()\n self.start()\n\n # Wait until the loop is running\n self.server_is_started.wait(timeout=5)\n if not self.server_is_started.is_set():\n raise RuntimeError(\"Failed to start server\")\n Monitor.running = self\n\n def run(self) -> None:\n \"\"\"\n Start the event loop and run forever.\n \"\"\"\n log.debug(\"Running Websocket server\")\n\n async def run_loop() -> None:\n self.loop = asyncio.get_running_loop()\n self._stop_loop_future = self.loop.create_future()\n\n async with websockets.server.serve(\n self.handler, \"127.0.0.1\", WEBSOCKET_PORT, close_timeout=1\n ):\n self.server_is_started.set()\n try:\n await self._stop_loop_future\n except asyncio.CancelledError:\n log.debug(\"Websocket server thread shutting down\")\n\n try:\n asyncio.run(run_loop())\n finally:\n self.loop_is_closed.set()\n\n def update_all(self) -> None:\n \"\"\"\n Update all parameters in the monitor.\n \"\"\"\n for parameter in self._parameters:\n # call get if it can be called without arguments\n with suppress(TypeError):\n parameter.get()\n\n def stop(self) -> None:\n \"\"\"\n Shutdown the server, close the event loop and join the thread.\n Setting active Monitor to ``None``.\n \"\"\"\n self.join()\n Monitor.running = None\n\n def join(self, timeout: float | None = None) -> None:\n \"\"\"\n Overwrite ``Thread.join`` to make sure server is stopped before\n joining avoiding a potential deadlock.\n \"\"\"\n log.debug(\"Shutting down server\")\n if not self.is_alive():\n # we run this check before trying to run to prevent a cryptic\n # error message\n log.debug(\"monitor is dead\")\n return\n try:\n if self.loop is not None and self._stop_loop_future is not None:\n log.debug(\"Instructing server to stop event loop.\")\n self.loop.call_soon_threadsafe(self._stop_loop_future.cancel)\n else:\n log.debug(\"No event loop found. Cannot stop event loop.\")\n except RuntimeError:\n # the above may throw a runtime error if the loop is already\n # stopped in which case there is nothing more to do\n log.exception(\"Could not close loop\")\n self.loop_is_closed.wait(timeout=5)\n if not self.loop_is_closed.is_set():\n raise RuntimeError(\"Failed to join loop\")\n log.debug(\"Loop reported closed\")\n super().join(timeout=timeout)\n log.debug(\"Monitor Thread has joined\")\n\n @staticmethod\n def show() -> None:\n \"\"\"\n Overwrite this method to show/raise your monitor GUI\n F.ex.\n\n ::\n\n import webbrowser\n url = \"localhost:3000\"\n # Open URL in new window, raising the window if possible.\n webbrowser.open_new(url)\n\n \"\"\"\n webbrowser.open(f\"http://localhost:{SERVER_PORT}\")\n\n\ndef main() -> None:\n import http.server\n\n # If this file is run, create a simple webserver that serves a simple\n # website that can be used to view monitored parameters.\n # # https://github.com/python/mypy/issues/4182\n parent_module = \".\".join(__loader__.name.split(\".\")[:-1]) # type: ignore[name-defined]\n\n static_dir = files(parent_module).joinpath(\"dist\")\n try:\n with as_file(static_dir) as extracted_dir:\n os.chdir(extracted_dir)\n log.info(\"Starting HTTP Server at http://localhost:%i\", SERVER_PORT)\n with socketserver.TCPServer(\n (\"\", SERVER_PORT), http.server.SimpleHTTPRequestHandler\n ) as httpd:\n log.debug(\"serving directory %s\", static_dir)\n webbrowser.open(f\"http://localhost:{SERVER_PORT}\")\n httpd.serve_forever()\n except KeyboardInterrupt:\n log.info(\"Shutting Down HTTP Server\")\n\n\nif __name__ == \"__main__\":\n main()\n", "path": "src/qcodes/monitor/monitor.py"}]}
3,098
115
gh_patches_debug_21742
rasdani/github-patches
git_diff
pypa__pip-7326
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Call for clarification: acceptable values for build-system.requires in pyproject.toml **Environment** * pip version: 19.0.3 * Python version: 3.7 * OS: GNU/Linux <!-- Feel free to add more information about your environment here --> **Description** <!-- A clear and concise description of what the bug is. --> It's not clear nor is clearly specified by PEP518. But I was having a need to have an in-tree build back-end. So I've hacked it via installing with a relative path. *And it works!* Yet, @pradyunsg has pointed out that the way I used probably doesn't conform to PEP 508. So I tried some other ways to point to the in-tree distribution. And those didn't work. **How to Reproduce** <!-- Describe the steps to reproduce this bug. --> (this works) ```toml [build-system] requires = ["./build-aiohttp", ] build-backend = "build_aiohttp.api" # not yet supported, so it doesn't influence anything, it's for forward-compat: backend-path = "./build-aiohttp" ``` But if instead of `"./build-aiohttp"` in `requires` I try any of `"file://build-aiohttp"`, `"file:///./build-aiohttp"`, `"build_aiohttp @ file://./build-aiohttp"`, `"build_aiohttp @ file:./build-aiohttp"` pip fails to recognize those as installables. **Expected behavior** <!-- A clear and concise description of what you expected to happen. --> I don't know what to expect. The method which works seems to be undefined in PEPs so I probably shouldn't rely on it. Pip may either decide to improve the filtering of `requires` option or document it being permissive... P.S. Oh and, by the way, I was able to test my other PEP517 backend outside of the project tree via ```toml [build-system] requires = ["../fortunate_pkg"] ``` so this relative path feature proves to be quite useful for development/debugging purposes. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `src/pip/_internal/pyproject.py` Content: ``` 1 from __future__ import absolute_import 2 3 import io 4 import os 5 import sys 6 7 from pip._vendor import pytoml, six 8 9 from pip._internal.exceptions import InstallationError 10 from pip._internal.utils.typing import MYPY_CHECK_RUNNING 11 12 if MYPY_CHECK_RUNNING: 13 from typing import Any, Tuple, Optional, List 14 15 16 def _is_list_of_str(obj): 17 # type: (Any) -> bool 18 return ( 19 isinstance(obj, list) and 20 all(isinstance(item, six.string_types) for item in obj) 21 ) 22 23 24 def make_pyproject_path(unpacked_source_directory): 25 # type: (str) -> str 26 path = os.path.join(unpacked_source_directory, 'pyproject.toml') 27 28 # Python2 __file__ should not be unicode 29 if six.PY2 and isinstance(path, six.text_type): 30 path = path.encode(sys.getfilesystemencoding()) 31 32 return path 33 34 35 def load_pyproject_toml( 36 use_pep517, # type: Optional[bool] 37 pyproject_toml, # type: str 38 setup_py, # type: str 39 req_name # type: str 40 ): 41 # type: (...) -> Optional[Tuple[List[str], str, List[str]]] 42 """Load the pyproject.toml file. 43 44 Parameters: 45 use_pep517 - Has the user requested PEP 517 processing? None 46 means the user hasn't explicitly specified. 47 pyproject_toml - Location of the project's pyproject.toml file 48 setup_py - Location of the project's setup.py file 49 req_name - The name of the requirement we're processing (for 50 error reporting) 51 52 Returns: 53 None if we should use the legacy code path, otherwise a tuple 54 ( 55 requirements from pyproject.toml, 56 name of PEP 517 backend, 57 requirements we should check are installed after setting 58 up the build environment 59 ) 60 """ 61 has_pyproject = os.path.isfile(pyproject_toml) 62 has_setup = os.path.isfile(setup_py) 63 64 if has_pyproject: 65 with io.open(pyproject_toml, encoding="utf-8") as f: 66 pp_toml = pytoml.load(f) 67 build_system = pp_toml.get("build-system") 68 else: 69 build_system = None 70 71 # The following cases must use PEP 517 72 # We check for use_pep517 being non-None and falsey because that means 73 # the user explicitly requested --no-use-pep517. The value 0 as 74 # opposed to False can occur when the value is provided via an 75 # environment variable or config file option (due to the quirk of 76 # strtobool() returning an integer in pip's configuration code). 77 if has_pyproject and not has_setup: 78 if use_pep517 is not None and not use_pep517: 79 raise InstallationError( 80 "Disabling PEP 517 processing is invalid: " 81 "project does not have a setup.py" 82 ) 83 use_pep517 = True 84 elif build_system and "build-backend" in build_system: 85 if use_pep517 is not None and not use_pep517: 86 raise InstallationError( 87 "Disabling PEP 517 processing is invalid: " 88 "project specifies a build backend of {} " 89 "in pyproject.toml".format( 90 build_system["build-backend"] 91 ) 92 ) 93 use_pep517 = True 94 95 # If we haven't worked out whether to use PEP 517 yet, 96 # and the user hasn't explicitly stated a preference, 97 # we do so if the project has a pyproject.toml file. 98 elif use_pep517 is None: 99 use_pep517 = has_pyproject 100 101 # At this point, we know whether we're going to use PEP 517. 102 assert use_pep517 is not None 103 104 # If we're using the legacy code path, there is nothing further 105 # for us to do here. 106 if not use_pep517: 107 return None 108 109 if build_system is None: 110 # Either the user has a pyproject.toml with no build-system 111 # section, or the user has no pyproject.toml, but has opted in 112 # explicitly via --use-pep517. 113 # In the absence of any explicit backend specification, we 114 # assume the setuptools backend that most closely emulates the 115 # traditional direct setup.py execution, and require wheel and 116 # a version of setuptools that supports that backend. 117 118 build_system = { 119 "requires": ["setuptools>=40.8.0", "wheel"], 120 "build-backend": "setuptools.build_meta:__legacy__", 121 } 122 123 # If we're using PEP 517, we have build system information (either 124 # from pyproject.toml, or defaulted by the code above). 125 # Note that at this point, we do not know if the user has actually 126 # specified a backend, though. 127 assert build_system is not None 128 129 # Ensure that the build-system section in pyproject.toml conforms 130 # to PEP 518. 131 error_template = ( 132 "{package} has a pyproject.toml file that does not comply " 133 "with PEP 518: {reason}" 134 ) 135 136 # Specifying the build-system table but not the requires key is invalid 137 if "requires" not in build_system: 138 raise InstallationError( 139 error_template.format(package=req_name, reason=( 140 "it has a 'build-system' table but not " 141 "'build-system.requires' which is mandatory in the table" 142 )) 143 ) 144 145 # Error out if requires is not a list of strings 146 requires = build_system["requires"] 147 if not _is_list_of_str(requires): 148 raise InstallationError(error_template.format( 149 package=req_name, 150 reason="'build-system.requires' is not a list of strings.", 151 )) 152 153 backend = build_system.get("build-backend") 154 check = [] # type: List[str] 155 if backend is None: 156 # If the user didn't specify a backend, we assume they want to use 157 # the setuptools backend. But we can't be sure they have included 158 # a version of setuptools which supplies the backend, or wheel 159 # (which is needed by the backend) in their requirements. So we 160 # make a note to check that those requirements are present once 161 # we have set up the environment. 162 # This is quite a lot of work to check for a very specific case. But 163 # the problem is, that case is potentially quite common - projects that 164 # adopted PEP 518 early for the ability to specify requirements to 165 # execute setup.py, but never considered needing to mention the build 166 # tools themselves. The original PEP 518 code had a similar check (but 167 # implemented in a different way). 168 backend = "setuptools.build_meta:__legacy__" 169 check = ["setuptools>=40.8.0", "wheel"] 170 171 return (requires, backend, check) 172 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/src/pip/_internal/pyproject.py b/src/pip/_internal/pyproject.py --- a/src/pip/_internal/pyproject.py +++ b/src/pip/_internal/pyproject.py @@ -5,6 +5,7 @@ import sys from pip._vendor import pytoml, six +from pip._vendor.packaging.requirements import InvalidRequirement, Requirement from pip._internal.exceptions import InstallationError from pip._internal.utils.typing import MYPY_CHECK_RUNNING @@ -150,6 +151,21 @@ reason="'build-system.requires' is not a list of strings.", )) + # Each requirement must be valid as per PEP 508 + for requirement in requires: + try: + Requirement(requirement) + except InvalidRequirement: + raise InstallationError( + error_template.format( + package=req_name, + reason=( + "'build-system.requires' contains an invalid " + "requirement: {!r}".format(requirement) + ), + ) + ) + backend = build_system.get("build-backend") check = [] # type: List[str] if backend is None:
{"golden_diff": "diff --git a/src/pip/_internal/pyproject.py b/src/pip/_internal/pyproject.py\n--- a/src/pip/_internal/pyproject.py\n+++ b/src/pip/_internal/pyproject.py\n@@ -5,6 +5,7 @@\n import sys\n \n from pip._vendor import pytoml, six\n+from pip._vendor.packaging.requirements import InvalidRequirement, Requirement\n \n from pip._internal.exceptions import InstallationError\n from pip._internal.utils.typing import MYPY_CHECK_RUNNING\n@@ -150,6 +151,21 @@\n reason=\"'build-system.requires' is not a list of strings.\",\n ))\n \n+ # Each requirement must be valid as per PEP 508\n+ for requirement in requires:\n+ try:\n+ Requirement(requirement)\n+ except InvalidRequirement:\n+ raise InstallationError(\n+ error_template.format(\n+ package=req_name,\n+ reason=(\n+ \"'build-system.requires' contains an invalid \"\n+ \"requirement: {!r}\".format(requirement)\n+ ),\n+ )\n+ )\n+\n backend = build_system.get(\"build-backend\")\n check = [] # type: List[str]\n if backend is None:\n", "issue": "Call for clarification: acceptable values for build-system.requires in pyproject.toml\n**Environment**\r\n\r\n* pip version: 19.0.3\r\n* Python version: 3.7\r\n* OS: GNU/Linux\r\n\r\n<!-- Feel free to add more information about your environment here -->\r\n\r\n**Description**\r\n<!-- A clear and concise description of what the bug is. -->\r\nIt's not clear nor is clearly specified by PEP518. But I was having a need to have an in-tree build back-end.\r\nSo I've hacked it via installing with a relative path.\r\n*And it works!*\r\nYet, @pradyunsg has pointed out that the way I used probably doesn't conform to PEP 508.\r\nSo I tried some other ways to point to the in-tree distribution. And those didn't work.\r\n\r\n**How to Reproduce**\r\n<!-- Describe the steps to reproduce this bug. -->\r\n(this works)\r\n```toml\r\n[build-system]\r\nrequires = [\"./build-aiohttp\", ]\r\nbuild-backend = \"build_aiohttp.api\"\r\n\r\n# not yet supported, so it doesn't influence anything, it's for forward-compat:\r\nbackend-path = \"./build-aiohttp\"\r\n```\r\n\r\nBut if instead of `\"./build-aiohttp\"` in `requires` I try any of `\"file://build-aiohttp\"`, `\"file:///./build-aiohttp\"`, `\"build_aiohttp @ file://./build-aiohttp\"`, `\"build_aiohttp @ file:./build-aiohttp\"` pip fails to recognize those as installables.\r\n\r\n**Expected behavior**\r\n<!-- A clear and concise description of what you expected to happen. -->\r\n\r\nI don't know what to expect. The method which works seems to be undefined in PEPs so I probably shouldn't rely on it.\r\n\r\nPip may either decide to improve the filtering of `requires` option or document it being permissive...\r\n\r\nP.S. Oh and, by the way, I was able to test my other PEP517 backend outside of the project tree via\r\n```toml\r\n[build-system]\r\nrequires = [\"../fortunate_pkg\"]\r\n```\r\nso this relative path feature proves to be quite useful for development/debugging purposes.\n", "before_files": [{"content": "from __future__ import absolute_import\n\nimport io\nimport os\nimport sys\n\nfrom pip._vendor import pytoml, six\n\nfrom pip._internal.exceptions import InstallationError\nfrom pip._internal.utils.typing import MYPY_CHECK_RUNNING\n\nif MYPY_CHECK_RUNNING:\n from typing import Any, Tuple, Optional, List\n\n\ndef _is_list_of_str(obj):\n # type: (Any) -> bool\n return (\n isinstance(obj, list) and\n all(isinstance(item, six.string_types) for item in obj)\n )\n\n\ndef make_pyproject_path(unpacked_source_directory):\n # type: (str) -> str\n path = os.path.join(unpacked_source_directory, 'pyproject.toml')\n\n # Python2 __file__ should not be unicode\n if six.PY2 and isinstance(path, six.text_type):\n path = path.encode(sys.getfilesystemencoding())\n\n return path\n\n\ndef load_pyproject_toml(\n use_pep517, # type: Optional[bool]\n pyproject_toml, # type: str\n setup_py, # type: str\n req_name # type: str\n):\n # type: (...) -> Optional[Tuple[List[str], str, List[str]]]\n \"\"\"Load the pyproject.toml file.\n\n Parameters:\n use_pep517 - Has the user requested PEP 517 processing? None\n means the user hasn't explicitly specified.\n pyproject_toml - Location of the project's pyproject.toml file\n setup_py - Location of the project's setup.py file\n req_name - The name of the requirement we're processing (for\n error reporting)\n\n Returns:\n None if we should use the legacy code path, otherwise a tuple\n (\n requirements from pyproject.toml,\n name of PEP 517 backend,\n requirements we should check are installed after setting\n up the build environment\n )\n \"\"\"\n has_pyproject = os.path.isfile(pyproject_toml)\n has_setup = os.path.isfile(setup_py)\n\n if has_pyproject:\n with io.open(pyproject_toml, encoding=\"utf-8\") as f:\n pp_toml = pytoml.load(f)\n build_system = pp_toml.get(\"build-system\")\n else:\n build_system = None\n\n # The following cases must use PEP 517\n # We check for use_pep517 being non-None and falsey because that means\n # the user explicitly requested --no-use-pep517. The value 0 as\n # opposed to False can occur when the value is provided via an\n # environment variable or config file option (due to the quirk of\n # strtobool() returning an integer in pip's configuration code).\n if has_pyproject and not has_setup:\n if use_pep517 is not None and not use_pep517:\n raise InstallationError(\n \"Disabling PEP 517 processing is invalid: \"\n \"project does not have a setup.py\"\n )\n use_pep517 = True\n elif build_system and \"build-backend\" in build_system:\n if use_pep517 is not None and not use_pep517:\n raise InstallationError(\n \"Disabling PEP 517 processing is invalid: \"\n \"project specifies a build backend of {} \"\n \"in pyproject.toml\".format(\n build_system[\"build-backend\"]\n )\n )\n use_pep517 = True\n\n # If we haven't worked out whether to use PEP 517 yet,\n # and the user hasn't explicitly stated a preference,\n # we do so if the project has a pyproject.toml file.\n elif use_pep517 is None:\n use_pep517 = has_pyproject\n\n # At this point, we know whether we're going to use PEP 517.\n assert use_pep517 is not None\n\n # If we're using the legacy code path, there is nothing further\n # for us to do here.\n if not use_pep517:\n return None\n\n if build_system is None:\n # Either the user has a pyproject.toml with no build-system\n # section, or the user has no pyproject.toml, but has opted in\n # explicitly via --use-pep517.\n # In the absence of any explicit backend specification, we\n # assume the setuptools backend that most closely emulates the\n # traditional direct setup.py execution, and require wheel and\n # a version of setuptools that supports that backend.\n\n build_system = {\n \"requires\": [\"setuptools>=40.8.0\", \"wheel\"],\n \"build-backend\": \"setuptools.build_meta:__legacy__\",\n }\n\n # If we're using PEP 517, we have build system information (either\n # from pyproject.toml, or defaulted by the code above).\n # Note that at this point, we do not know if the user has actually\n # specified a backend, though.\n assert build_system is not None\n\n # Ensure that the build-system section in pyproject.toml conforms\n # to PEP 518.\n error_template = (\n \"{package} has a pyproject.toml file that does not comply \"\n \"with PEP 518: {reason}\"\n )\n\n # Specifying the build-system table but not the requires key is invalid\n if \"requires\" not in build_system:\n raise InstallationError(\n error_template.format(package=req_name, reason=(\n \"it has a 'build-system' table but not \"\n \"'build-system.requires' which is mandatory in the table\"\n ))\n )\n\n # Error out if requires is not a list of strings\n requires = build_system[\"requires\"]\n if not _is_list_of_str(requires):\n raise InstallationError(error_template.format(\n package=req_name,\n reason=\"'build-system.requires' is not a list of strings.\",\n ))\n\n backend = build_system.get(\"build-backend\")\n check = [] # type: List[str]\n if backend is None:\n # If the user didn't specify a backend, we assume they want to use\n # the setuptools backend. But we can't be sure they have included\n # a version of setuptools which supplies the backend, or wheel\n # (which is needed by the backend) in their requirements. So we\n # make a note to check that those requirements are present once\n # we have set up the environment.\n # This is quite a lot of work to check for a very specific case. But\n # the problem is, that case is potentially quite common - projects that\n # adopted PEP 518 early for the ability to specify requirements to\n # execute setup.py, but never considered needing to mention the build\n # tools themselves. The original PEP 518 code had a similar check (but\n # implemented in a different way).\n backend = \"setuptools.build_meta:__legacy__\"\n check = [\"setuptools>=40.8.0\", \"wheel\"]\n\n return (requires, backend, check)\n", "path": "src/pip/_internal/pyproject.py"}], "after_files": [{"content": "from __future__ import absolute_import\n\nimport io\nimport os\nimport sys\n\nfrom pip._vendor import pytoml, six\nfrom pip._vendor.packaging.requirements import InvalidRequirement, Requirement\n\nfrom pip._internal.exceptions import InstallationError\nfrom pip._internal.utils.typing import MYPY_CHECK_RUNNING\n\nif MYPY_CHECK_RUNNING:\n from typing import Any, Tuple, Optional, List\n\n\ndef _is_list_of_str(obj):\n # type: (Any) -> bool\n return (\n isinstance(obj, list) and\n all(isinstance(item, six.string_types) for item in obj)\n )\n\n\ndef make_pyproject_path(unpacked_source_directory):\n # type: (str) -> str\n path = os.path.join(unpacked_source_directory, 'pyproject.toml')\n\n # Python2 __file__ should not be unicode\n if six.PY2 and isinstance(path, six.text_type):\n path = path.encode(sys.getfilesystemencoding())\n\n return path\n\n\ndef load_pyproject_toml(\n use_pep517, # type: Optional[bool]\n pyproject_toml, # type: str\n setup_py, # type: str\n req_name # type: str\n):\n # type: (...) -> Optional[Tuple[List[str], str, List[str]]]\n \"\"\"Load the pyproject.toml file.\n\n Parameters:\n use_pep517 - Has the user requested PEP 517 processing? None\n means the user hasn't explicitly specified.\n pyproject_toml - Location of the project's pyproject.toml file\n setup_py - Location of the project's setup.py file\n req_name - The name of the requirement we're processing (for\n error reporting)\n\n Returns:\n None if we should use the legacy code path, otherwise a tuple\n (\n requirements from pyproject.toml,\n name of PEP 517 backend,\n requirements we should check are installed after setting\n up the build environment\n )\n \"\"\"\n has_pyproject = os.path.isfile(pyproject_toml)\n has_setup = os.path.isfile(setup_py)\n\n if has_pyproject:\n with io.open(pyproject_toml, encoding=\"utf-8\") as f:\n pp_toml = pytoml.load(f)\n build_system = pp_toml.get(\"build-system\")\n else:\n build_system = None\n\n # The following cases must use PEP 517\n # We check for use_pep517 being non-None and falsey because that means\n # the user explicitly requested --no-use-pep517. The value 0 as\n # opposed to False can occur when the value is provided via an\n # environment variable or config file option (due to the quirk of\n # strtobool() returning an integer in pip's configuration code).\n if has_pyproject and not has_setup:\n if use_pep517 is not None and not use_pep517:\n raise InstallationError(\n \"Disabling PEP 517 processing is invalid: \"\n \"project does not have a setup.py\"\n )\n use_pep517 = True\n elif build_system and \"build-backend\" in build_system:\n if use_pep517 is not None and not use_pep517:\n raise InstallationError(\n \"Disabling PEP 517 processing is invalid: \"\n \"project specifies a build backend of {} \"\n \"in pyproject.toml\".format(\n build_system[\"build-backend\"]\n )\n )\n use_pep517 = True\n\n # If we haven't worked out whether to use PEP 517 yet,\n # and the user hasn't explicitly stated a preference,\n # we do so if the project has a pyproject.toml file.\n elif use_pep517 is None:\n use_pep517 = has_pyproject\n\n # At this point, we know whether we're going to use PEP 517.\n assert use_pep517 is not None\n\n # If we're using the legacy code path, there is nothing further\n # for us to do here.\n if not use_pep517:\n return None\n\n if build_system is None:\n # Either the user has a pyproject.toml with no build-system\n # section, or the user has no pyproject.toml, but has opted in\n # explicitly via --use-pep517.\n # In the absence of any explicit backend specification, we\n # assume the setuptools backend that most closely emulates the\n # traditional direct setup.py execution, and require wheel and\n # a version of setuptools that supports that backend.\n\n build_system = {\n \"requires\": [\"setuptools>=40.8.0\", \"wheel\"],\n \"build-backend\": \"setuptools.build_meta:__legacy__\",\n }\n\n # If we're using PEP 517, we have build system information (either\n # from pyproject.toml, or defaulted by the code above).\n # Note that at this point, we do not know if the user has actually\n # specified a backend, though.\n assert build_system is not None\n\n # Ensure that the build-system section in pyproject.toml conforms\n # to PEP 518.\n error_template = (\n \"{package} has a pyproject.toml file that does not comply \"\n \"with PEP 518: {reason}\"\n )\n\n # Specifying the build-system table but not the requires key is invalid\n if \"requires\" not in build_system:\n raise InstallationError(\n error_template.format(package=req_name, reason=(\n \"it has a 'build-system' table but not \"\n \"'build-system.requires' which is mandatory in the table\"\n ))\n )\n\n # Error out if requires is not a list of strings\n requires = build_system[\"requires\"]\n if not _is_list_of_str(requires):\n raise InstallationError(error_template.format(\n package=req_name,\n reason=\"'build-system.requires' is not a list of strings.\",\n ))\n\n # Each requirement must be valid as per PEP 508\n for requirement in requires:\n try:\n Requirement(requirement)\n except InvalidRequirement:\n raise InstallationError(\n error_template.format(\n package=req_name,\n reason=(\n \"'build-system.requires' contains an invalid \"\n \"requirement: {!r}\".format(requirement)\n ),\n )\n )\n\n backend = build_system.get(\"build-backend\")\n check = [] # type: List[str]\n if backend is None:\n # If the user didn't specify a backend, we assume they want to use\n # the setuptools backend. But we can't be sure they have included\n # a version of setuptools which supplies the backend, or wheel\n # (which is needed by the backend) in their requirements. So we\n # make a note to check that those requirements are present once\n # we have set up the environment.\n # This is quite a lot of work to check for a very specific case. But\n # the problem is, that case is potentially quite common - projects that\n # adopted PEP 518 early for the ability to specify requirements to\n # execute setup.py, but never considered needing to mention the build\n # tools themselves. The original PEP 518 code had a similar check (but\n # implemented in a different way).\n backend = \"setuptools.build_meta:__legacy__\"\n check = [\"setuptools>=40.8.0\", \"wheel\"]\n\n return (requires, backend, check)\n", "path": "src/pip/_internal/pyproject.py"}]}
2,725
261
gh_patches_debug_33161
rasdani/github-patches
git_diff
sql-machine-learning__elasticdl-952
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Use tf.function-decorated functions to accelerate model compute --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `elasticdl/python/worker/worker.py` Content: ``` 1 import logging 2 import time 3 import traceback 4 from contextlib import closing 5 6 import recordio 7 import tensorflow as tf 8 from tensorflow.python.ops import math_ops 9 10 from elasticdl.proto import elasticdl_pb2, elasticdl_pb2_grpc 11 from elasticdl.python.common.model_helper import ( 12 load_model_from_module, 13 load_module, 14 ) 15 from elasticdl.python.common.ndarray import ( 16 ndarray_to_tensor, 17 tensor_to_ndarray, 18 ) 19 20 # The default maximum number of a minibatch retry as its results 21 # (e.g. gradients) are not accepted by master. 22 DEFAULT_MAX_MINIBATCH_RETRY_NUM = 64 23 24 25 class Worker(object): 26 """ElasticDL worker""" 27 28 def __init__( 29 self, 30 worker_id, 31 model_file, 32 input_fn="input_fn", 33 loss="loss", 34 optimizer="optimizer", 35 eval_metrics_fn="eval_metrics_fn", 36 channel=None, 37 model_def=None, 38 model_params="", 39 max_minibatch_retry_num=DEFAULT_MAX_MINIBATCH_RETRY_NUM, 40 ): 41 """ 42 Arguments: 43 model_file: A module to define the model 44 channel: grpc channel 45 max_minibatch_retry_num: The maximum number of a minibatch retry 46 as its results (e.g. gradients) are not accepted by master. 47 """ 48 self._logger = logging.getLogger(__name__) 49 self._worker_id = worker_id 50 model_module = load_module(model_file).__dict__ 51 self._model = load_model_from_module( 52 model_def, model_module, model_params 53 ) 54 self._var_created = self._model.built 55 self._input_fn = model_module[input_fn] 56 self._opt_fn = model_module[optimizer] 57 self._loss = model_module[loss] 58 self._eval_metrics_fn = model_module[eval_metrics_fn] 59 60 if channel is None: 61 self._stub = None 62 else: 63 self._stub = elasticdl_pb2_grpc.MasterStub(channel) 64 self._max_minibatch_retry_num = max_minibatch_retry_num 65 self._model_version = -1 66 67 def get_task(self): 68 """ 69 get task from master 70 """ 71 req = elasticdl_pb2.GetTaskRequest() 72 req.worker_id = self._worker_id 73 74 return self._stub.GetTask(req) 75 76 def get_model(self, version, method): 77 """ 78 get model from master, and update model_version 79 """ 80 req = elasticdl_pb2.GetModelRequest() 81 req.version = version 82 req.method = method 83 model = self._stub.GetModel(req) 84 85 for var in self._model.trainable_variables: 86 # Assumes all trainable variables exist in model.param. 87 var.assign(tensor_to_ndarray(model.param[var.name])) 88 self._model_version = model.version 89 90 def report_task_result(self, task_id, err_msg): 91 """ 92 report task result to master 93 """ 94 report = elasticdl_pb2.ReportTaskResultRequest() 95 report.task_id = task_id 96 report.err_message = err_msg 97 return self._stub.ReportTaskResult(report) 98 99 def report_variable(self): 100 """ 101 report variable to ps. 102 """ 103 req = elasticdl_pb2.ReportVariableRequest() 104 for v in self._model.trainable_variables: 105 req.variable[v.name].CopyFrom(ndarray_to_tensor(v.numpy())) 106 self._stub.ReportVariable(req) 107 108 def report_gradient(self, grads): 109 """ 110 report gradient to ps, return (accepted, model_version) from rpc call. 111 """ 112 req = elasticdl_pb2.ReportGradientRequest() 113 for g, v in zip(grads, self._model.trainable_variables): 114 req.gradient[v.name].CopyFrom(ndarray_to_tensor(g.numpy())) 115 req.model_version = self._model_version 116 res = self._stub.ReportGradient(req) 117 return res.accepted, res.model_version 118 119 def report_evaluation_metrics(self, evaluation_metrics): 120 """ 121 report evaluation metrics to ps, return (accepted, model_version) 122 from rpc call. 123 """ 124 req = elasticdl_pb2.ReportEvaluationMetricsRequest() 125 for k, v in evaluation_metrics.items(): 126 v_np = v.numpy() 127 # If scalar, convert to numpy 1D array with size 1 128 if not v_np.shape: 129 v_np = v_np.reshape(1) 130 req.evaluation_metrics[k].CopyFrom(ndarray_to_tensor(v_np)) 131 req.model_version = self._model_version 132 res = self._stub.ReportEvaluationMetrics(req) 133 return res.accepted, res.model_version 134 135 def report_prediction_outputs(self, predictions): 136 self._logger.info("Predicted: %f" % predictions.numpy()) 137 # TODO: Decide whether we need to send results to master first 138 # or write results to destination directly from workers. 139 # Also, need to think about how users configure where to 140 # write results. 141 return True 142 143 def _get_batch(self, reader, batch_size): 144 res = [] 145 for i in range(batch_size): 146 record = reader.record() 147 if record is None: 148 break 149 res.append(record) 150 return res 151 152 def _create_variable_and_report(self, features): 153 # Use model.call to create variables, then report to ps 154 _ = self._model.call(features) 155 self.report_variable() 156 self._var_created = True 157 158 def _run_training_task(self, features, labels): 159 with tf.GradientTape() as tape: 160 outputs = self._model.call(features, training=True) 161 loss = self._loss(outputs, labels) 162 # Add regularization loss if any 163 if self._model.losses: 164 loss += math_ops.add_n(self._model.losses) 165 grads = tape.gradient(loss, self._model.trainable_variables) 166 accepted, min_model_version = self.report_gradient(grads) 167 return accepted, min_model_version, loss 168 169 def _run_evaluation_task(self, features, labels): 170 outputs = self._model.call(features, training=False) 171 evaluation_metrics = self._eval_metrics_fn(outputs, labels) 172 return self.report_evaluation_metrics(evaluation_metrics) 173 174 def _run_prediction_task(self, features): 175 predictions = self._model.call(features, training=False) 176 return self.report_prediction_outputs(predictions) 177 178 def _handle_task(self, task): 179 min_model_version = task.model_version 180 with closing( 181 recordio.Scanner( 182 task.shard_file_name, task.start, task.end - task.start 183 ) 184 ) as reader: 185 while True: 186 record_buf = self._get_batch(reader, task.minibatch_size) 187 if not record_buf: 188 break 189 min_model_version = self._process_minibatch( 190 task, record_buf, min_model_version 191 ) 192 193 def _process_minibatch(self, task, record_buf, min_model_version): 194 # TODO: Discuss how we separate input_fn for different tasks 195 features, labels = self._input_fn(record_buf) 196 if not self._var_created: 197 self._create_variable_and_report(features) 198 for _ in range(self._max_minibatch_retry_num): 199 if task.type == elasticdl_pb2.EVALUATION: 200 if min_model_version == -1: 201 if self._model_version < 0: 202 self.get_model(0, elasticdl_pb2.MINIMUM) 203 elif self._model_version != min_model_version: 204 self.get_model(min_model_version, elasticdl_pb2.FIXED) 205 accepted, _ = self._run_evaluation_task(features, labels) 206 if accepted: 207 break 208 elif task.type == elasticdl_pb2.TRAINING: 209 # TODO: optimize the logic to avoid unnecessary 210 # get_model call. 211 self.get_model( 212 max(self._model_version, min_model_version), 213 elasticdl_pb2.MINIMUM, 214 ) 215 accepted, min_model_version, loss = self._run_training_task( 216 features, labels 217 ) 218 if accepted: 219 self._logger.info("Loss is %f" % loss.numpy()) 220 break 221 elif task.type == elasticdl_pb2.PREDICTION: 222 if self._model_version != min_model_version: 223 self.get_model(min_model_version, elasticdl_pb2.FIXED) 224 accepted = self._run_prediction_task(features) 225 if accepted: 226 break 227 else: 228 raise RuntimeError("Unrecognized task type, %s" % task.type) 229 else: 230 # Worker got stuck, fail the task. 231 # TODO: stop the worker if it fails to make any 232 # progress for some time. 233 raise RuntimeError("Worker got stuck") 234 return min_model_version 235 236 def run(self): 237 """ 238 Fetches task from master and performs training or evaluation. 239 """ 240 while True: 241 task = self.get_task() 242 if not task.shard_file_name: 243 if task.type == elasticdl_pb2.WAIT: 244 # Wait a few seconds then try to get_task again 245 time.sleep(5) 246 continue 247 else: 248 # No more task 249 self._logger.info("No more task, stopping") 250 break 251 self._logger.info("Receive a new task: %d", task.task_id) 252 err_msg = "" 253 try: 254 self._handle_task(task) 255 except RuntimeError as err: 256 err_msg = str(err) 257 traceback.print_exc() 258 except Exception as ex: 259 err_msg = str(ex) 260 traceback.print_exc() 261 raise ex 262 self.report_task_result(task.task_id, err_msg) 263 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/elasticdl/python/worker/worker.py b/elasticdl/python/worker/worker.py --- a/elasticdl/python/worker/worker.py +++ b/elasticdl/python/worker/worker.py @@ -155,7 +155,8 @@ self.report_variable() self._var_created = True - def _run_training_task(self, features, labels): + @tf.function + def training_process(self, features, labels): with tf.GradientTape() as tape: outputs = self._model.call(features, training=True) loss = self._loss(outputs, labels) @@ -163,16 +164,30 @@ if self._model.losses: loss += math_ops.add_n(self._model.losses) grads = tape.gradient(loss, self._model.trainable_variables) + return loss, grads + + @tf.function + def evaluation_process(self, features, labels): + outputs = self._model.call(features, training=False) + evaluation_metrics = self._eval_metrics_fn(outputs, labels) + return evaluation_metrics + + @tf.function + def predict_process(self, features): + outputs = self._model.call(features, training=False) + return outputs + + def _run_training_task(self, features, labels): + loss, grads = self.training_process(features, labels) accepted, min_model_version = self.report_gradient(grads) return accepted, min_model_version, loss def _run_evaluation_task(self, features, labels): - outputs = self._model.call(features, training=False) - evaluation_metrics = self._eval_metrics_fn(outputs, labels) + evaluation_metrics = self.evaluation_process(features, labels) return self.report_evaluation_metrics(evaluation_metrics) def _run_prediction_task(self, features): - predictions = self._model.call(features, training=False) + predictions = self.predict_process(features) return self.report_prediction_outputs(predictions) def _handle_task(self, task):
{"golden_diff": "diff --git a/elasticdl/python/worker/worker.py b/elasticdl/python/worker/worker.py\n--- a/elasticdl/python/worker/worker.py\n+++ b/elasticdl/python/worker/worker.py\n@@ -155,7 +155,8 @@\n self.report_variable()\n self._var_created = True\n \n- def _run_training_task(self, features, labels):\n+ @tf.function\n+ def training_process(self, features, labels):\n with tf.GradientTape() as tape:\n outputs = self._model.call(features, training=True)\n loss = self._loss(outputs, labels)\n@@ -163,16 +164,30 @@\n if self._model.losses:\n loss += math_ops.add_n(self._model.losses)\n grads = tape.gradient(loss, self._model.trainable_variables)\n+ return loss, grads\n+\n+ @tf.function\n+ def evaluation_process(self, features, labels):\n+ outputs = self._model.call(features, training=False)\n+ evaluation_metrics = self._eval_metrics_fn(outputs, labels)\n+ return evaluation_metrics\n+\n+ @tf.function\n+ def predict_process(self, features):\n+ outputs = self._model.call(features, training=False)\n+ return outputs\n+\n+ def _run_training_task(self, features, labels):\n+ loss, grads = self.training_process(features, labels)\n accepted, min_model_version = self.report_gradient(grads)\n return accepted, min_model_version, loss\n \n def _run_evaluation_task(self, features, labels):\n- outputs = self._model.call(features, training=False)\n- evaluation_metrics = self._eval_metrics_fn(outputs, labels)\n+ evaluation_metrics = self.evaluation_process(features, labels)\n return self.report_evaluation_metrics(evaluation_metrics)\n \n def _run_prediction_task(self, features):\n- predictions = self._model.call(features, training=False)\n+ predictions = self.predict_process(features)\n return self.report_prediction_outputs(predictions)\n \n def _handle_task(self, task):\n", "issue": "Use tf.function-decorated functions to accelerate model compute\n\n", "before_files": [{"content": "import logging\nimport time\nimport traceback\nfrom contextlib import closing\n\nimport recordio\nimport tensorflow as tf\nfrom tensorflow.python.ops import math_ops\n\nfrom elasticdl.proto import elasticdl_pb2, elasticdl_pb2_grpc\nfrom elasticdl.python.common.model_helper import (\n load_model_from_module,\n load_module,\n)\nfrom elasticdl.python.common.ndarray import (\n ndarray_to_tensor,\n tensor_to_ndarray,\n)\n\n# The default maximum number of a minibatch retry as its results\n# (e.g. gradients) are not accepted by master.\nDEFAULT_MAX_MINIBATCH_RETRY_NUM = 64\n\n\nclass Worker(object):\n \"\"\"ElasticDL worker\"\"\"\n\n def __init__(\n self,\n worker_id,\n model_file,\n input_fn=\"input_fn\",\n loss=\"loss\",\n optimizer=\"optimizer\",\n eval_metrics_fn=\"eval_metrics_fn\",\n channel=None,\n model_def=None,\n model_params=\"\",\n max_minibatch_retry_num=DEFAULT_MAX_MINIBATCH_RETRY_NUM,\n ):\n \"\"\"\n Arguments:\n model_file: A module to define the model\n channel: grpc channel\n max_minibatch_retry_num: The maximum number of a minibatch retry\n as its results (e.g. gradients) are not accepted by master.\n \"\"\"\n self._logger = logging.getLogger(__name__)\n self._worker_id = worker_id\n model_module = load_module(model_file).__dict__\n self._model = load_model_from_module(\n model_def, model_module, model_params\n )\n self._var_created = self._model.built\n self._input_fn = model_module[input_fn]\n self._opt_fn = model_module[optimizer]\n self._loss = model_module[loss]\n self._eval_metrics_fn = model_module[eval_metrics_fn]\n\n if channel is None:\n self._stub = None\n else:\n self._stub = elasticdl_pb2_grpc.MasterStub(channel)\n self._max_minibatch_retry_num = max_minibatch_retry_num\n self._model_version = -1\n\n def get_task(self):\n \"\"\"\n get task from master\n \"\"\"\n req = elasticdl_pb2.GetTaskRequest()\n req.worker_id = self._worker_id\n\n return self._stub.GetTask(req)\n\n def get_model(self, version, method):\n \"\"\"\n get model from master, and update model_version\n \"\"\"\n req = elasticdl_pb2.GetModelRequest()\n req.version = version\n req.method = method\n model = self._stub.GetModel(req)\n\n for var in self._model.trainable_variables:\n # Assumes all trainable variables exist in model.param.\n var.assign(tensor_to_ndarray(model.param[var.name]))\n self._model_version = model.version\n\n def report_task_result(self, task_id, err_msg):\n \"\"\"\n report task result to master\n \"\"\"\n report = elasticdl_pb2.ReportTaskResultRequest()\n report.task_id = task_id\n report.err_message = err_msg\n return self._stub.ReportTaskResult(report)\n\n def report_variable(self):\n \"\"\"\n report variable to ps.\n \"\"\"\n req = elasticdl_pb2.ReportVariableRequest()\n for v in self._model.trainable_variables:\n req.variable[v.name].CopyFrom(ndarray_to_tensor(v.numpy()))\n self._stub.ReportVariable(req)\n\n def report_gradient(self, grads):\n \"\"\"\n report gradient to ps, return (accepted, model_version) from rpc call.\n \"\"\"\n req = elasticdl_pb2.ReportGradientRequest()\n for g, v in zip(grads, self._model.trainable_variables):\n req.gradient[v.name].CopyFrom(ndarray_to_tensor(g.numpy()))\n req.model_version = self._model_version\n res = self._stub.ReportGradient(req)\n return res.accepted, res.model_version\n\n def report_evaluation_metrics(self, evaluation_metrics):\n \"\"\"\n report evaluation metrics to ps, return (accepted, model_version)\n from rpc call.\n \"\"\"\n req = elasticdl_pb2.ReportEvaluationMetricsRequest()\n for k, v in evaluation_metrics.items():\n v_np = v.numpy()\n # If scalar, convert to numpy 1D array with size 1\n if not v_np.shape:\n v_np = v_np.reshape(1)\n req.evaluation_metrics[k].CopyFrom(ndarray_to_tensor(v_np))\n req.model_version = self._model_version\n res = self._stub.ReportEvaluationMetrics(req)\n return res.accepted, res.model_version\n\n def report_prediction_outputs(self, predictions):\n self._logger.info(\"Predicted: %f\" % predictions.numpy())\n # TODO: Decide whether we need to send results to master first\n # or write results to destination directly from workers.\n # Also, need to think about how users configure where to\n # write results.\n return True\n\n def _get_batch(self, reader, batch_size):\n res = []\n for i in range(batch_size):\n record = reader.record()\n if record is None:\n break\n res.append(record)\n return res\n\n def _create_variable_and_report(self, features):\n # Use model.call to create variables, then report to ps\n _ = self._model.call(features)\n self.report_variable()\n self._var_created = True\n\n def _run_training_task(self, features, labels):\n with tf.GradientTape() as tape:\n outputs = self._model.call(features, training=True)\n loss = self._loss(outputs, labels)\n # Add regularization loss if any\n if self._model.losses:\n loss += math_ops.add_n(self._model.losses)\n grads = tape.gradient(loss, self._model.trainable_variables)\n accepted, min_model_version = self.report_gradient(grads)\n return accepted, min_model_version, loss\n\n def _run_evaluation_task(self, features, labels):\n outputs = self._model.call(features, training=False)\n evaluation_metrics = self._eval_metrics_fn(outputs, labels)\n return self.report_evaluation_metrics(evaluation_metrics)\n\n def _run_prediction_task(self, features):\n predictions = self._model.call(features, training=False)\n return self.report_prediction_outputs(predictions)\n\n def _handle_task(self, task):\n min_model_version = task.model_version\n with closing(\n recordio.Scanner(\n task.shard_file_name, task.start, task.end - task.start\n )\n ) as reader:\n while True:\n record_buf = self._get_batch(reader, task.minibatch_size)\n if not record_buf:\n break\n min_model_version = self._process_minibatch(\n task, record_buf, min_model_version\n )\n\n def _process_minibatch(self, task, record_buf, min_model_version):\n # TODO: Discuss how we separate input_fn for different tasks\n features, labels = self._input_fn(record_buf)\n if not self._var_created:\n self._create_variable_and_report(features)\n for _ in range(self._max_minibatch_retry_num):\n if task.type == elasticdl_pb2.EVALUATION:\n if min_model_version == -1:\n if self._model_version < 0:\n self.get_model(0, elasticdl_pb2.MINIMUM)\n elif self._model_version != min_model_version:\n self.get_model(min_model_version, elasticdl_pb2.FIXED)\n accepted, _ = self._run_evaluation_task(features, labels)\n if accepted:\n break\n elif task.type == elasticdl_pb2.TRAINING:\n # TODO: optimize the logic to avoid unnecessary\n # get_model call.\n self.get_model(\n max(self._model_version, min_model_version),\n elasticdl_pb2.MINIMUM,\n )\n accepted, min_model_version, loss = self._run_training_task(\n features, labels\n )\n if accepted:\n self._logger.info(\"Loss is %f\" % loss.numpy())\n break\n elif task.type == elasticdl_pb2.PREDICTION:\n if self._model_version != min_model_version:\n self.get_model(min_model_version, elasticdl_pb2.FIXED)\n accepted = self._run_prediction_task(features)\n if accepted:\n break\n else:\n raise RuntimeError(\"Unrecognized task type, %s\" % task.type)\n else:\n # Worker got stuck, fail the task.\n # TODO: stop the worker if it fails to make any\n # progress for some time.\n raise RuntimeError(\"Worker got stuck\")\n return min_model_version\n\n def run(self):\n \"\"\"\n Fetches task from master and performs training or evaluation.\n \"\"\"\n while True:\n task = self.get_task()\n if not task.shard_file_name:\n if task.type == elasticdl_pb2.WAIT:\n # Wait a few seconds then try to get_task again\n time.sleep(5)\n continue\n else:\n # No more task\n self._logger.info(\"No more task, stopping\")\n break\n self._logger.info(\"Receive a new task: %d\", task.task_id)\n err_msg = \"\"\n try:\n self._handle_task(task)\n except RuntimeError as err:\n err_msg = str(err)\n traceback.print_exc()\n except Exception as ex:\n err_msg = str(ex)\n traceback.print_exc()\n raise ex\n self.report_task_result(task.task_id, err_msg)\n", "path": "elasticdl/python/worker/worker.py"}], "after_files": [{"content": "import logging\nimport time\nimport traceback\nfrom contextlib import closing\n\nimport recordio\nimport tensorflow as tf\nfrom tensorflow.python.ops import math_ops\n\nfrom elasticdl.proto import elasticdl_pb2, elasticdl_pb2_grpc\nfrom elasticdl.python.common.model_helper import (\n load_model_from_module,\n load_module,\n)\nfrom elasticdl.python.common.ndarray import (\n ndarray_to_tensor,\n tensor_to_ndarray,\n)\n\n# The default maximum number of a minibatch retry as its results\n# (e.g. gradients) are not accepted by master.\nDEFAULT_MAX_MINIBATCH_RETRY_NUM = 64\n\n\nclass Worker(object):\n \"\"\"ElasticDL worker\"\"\"\n\n def __init__(\n self,\n worker_id,\n model_file,\n input_fn=\"input_fn\",\n loss=\"loss\",\n optimizer=\"optimizer\",\n eval_metrics_fn=\"eval_metrics_fn\",\n channel=None,\n model_def=None,\n model_params=\"\",\n max_minibatch_retry_num=DEFAULT_MAX_MINIBATCH_RETRY_NUM,\n ):\n \"\"\"\n Arguments:\n model_file: A module to define the model\n channel: grpc channel\n max_minibatch_retry_num: The maximum number of a minibatch retry\n as its results (e.g. gradients) are not accepted by master.\n \"\"\"\n self._logger = logging.getLogger(__name__)\n self._worker_id = worker_id\n model_module = load_module(model_file).__dict__\n self._model = load_model_from_module(\n model_def, model_module, model_params\n )\n self._var_created = self._model.built\n self._input_fn = model_module[input_fn]\n self._opt_fn = model_module[optimizer]\n self._loss = model_module[loss]\n self._eval_metrics_fn = model_module[eval_metrics_fn]\n\n if channel is None:\n self._stub = None\n else:\n self._stub = elasticdl_pb2_grpc.MasterStub(channel)\n self._max_minibatch_retry_num = max_minibatch_retry_num\n self._model_version = -1\n\n def get_task(self):\n \"\"\"\n get task from master\n \"\"\"\n req = elasticdl_pb2.GetTaskRequest()\n req.worker_id = self._worker_id\n\n return self._stub.GetTask(req)\n\n def get_model(self, version, method):\n \"\"\"\n get model from master, and update model_version\n \"\"\"\n req = elasticdl_pb2.GetModelRequest()\n req.version = version\n req.method = method\n model = self._stub.GetModel(req)\n\n for var in self._model.trainable_variables:\n # Assumes all trainable variables exist in model.param.\n var.assign(tensor_to_ndarray(model.param[var.name]))\n self._model_version = model.version\n\n def report_task_result(self, task_id, err_msg):\n \"\"\"\n report task result to master\n \"\"\"\n report = elasticdl_pb2.ReportTaskResultRequest()\n report.task_id = task_id\n report.err_message = err_msg\n return self._stub.ReportTaskResult(report)\n\n def report_variable(self):\n \"\"\"\n report variable to ps.\n \"\"\"\n req = elasticdl_pb2.ReportVariableRequest()\n for v in self._model.trainable_variables:\n req.variable[v.name].CopyFrom(ndarray_to_tensor(v.numpy()))\n self._stub.ReportVariable(req)\n\n def report_gradient(self, grads):\n \"\"\"\n report gradient to ps, return (accepted, model_version) from rpc call.\n \"\"\"\n req = elasticdl_pb2.ReportGradientRequest()\n for g, v in zip(grads, self._model.trainable_variables):\n req.gradient[v.name].CopyFrom(ndarray_to_tensor(g.numpy()))\n req.model_version = self._model_version\n res = self._stub.ReportGradient(req)\n return res.accepted, res.model_version\n\n def report_evaluation_metrics(self, evaluation_metrics):\n \"\"\"\n report evaluation metrics to ps, return (accepted, model_version)\n from rpc call.\n \"\"\"\n req = elasticdl_pb2.ReportEvaluationMetricsRequest()\n for k, v in evaluation_metrics.items():\n v_np = v.numpy()\n # If scalar, convert to numpy 1D array with size 1\n if not v_np.shape:\n v_np = v_np.reshape(1)\n req.evaluation_metrics[k].CopyFrom(ndarray_to_tensor(v_np))\n req.model_version = self._model_version\n res = self._stub.ReportEvaluationMetrics(req)\n return res.accepted, res.model_version\n\n def report_prediction_outputs(self, predictions):\n self._logger.info(\"Predicted: %f\" % predictions.numpy())\n # TODO: Decide whether we need to send results to master first\n # or write results to destination directly from workers.\n # Also, need to think about how users configure where to\n # write results.\n return True\n\n def _get_batch(self, reader, batch_size):\n res = []\n for i in range(batch_size):\n record = reader.record()\n if record is None:\n break\n res.append(record)\n return res\n\n def _create_variable_and_report(self, features):\n # Use model.call to create variables, then report to ps\n _ = self._model.call(features)\n self.report_variable()\n self._var_created = True\n\n @tf.function\n def training_process(self, features, labels):\n with tf.GradientTape() as tape:\n outputs = self._model.call(features, training=True)\n loss = self._loss(outputs, labels)\n # Add regularization loss if any\n if self._model.losses:\n loss += math_ops.add_n(self._model.losses)\n grads = tape.gradient(loss, self._model.trainable_variables)\n return loss, grads\n\n @tf.function\n def evaluation_process(self, features, labels):\n outputs = self._model.call(features, training=False)\n evaluation_metrics = self._eval_metrics_fn(outputs, labels)\n return evaluation_metrics\n\n @tf.function\n def predict_process(self, features):\n outputs = self._model.call(features, training=False)\n return outputs\n\n def _run_training_task(self, features, labels):\n loss, grads = self.training_process(features, labels)\n accepted, min_model_version = self.report_gradient(grads)\n return accepted, min_model_version, loss\n\n def _run_evaluation_task(self, features, labels):\n evaluation_metrics = self.evaluation_process(features, labels)\n return self.report_evaluation_metrics(evaluation_metrics)\n\n def _run_prediction_task(self, features):\n predictions = self.predict_process(features)\n return self.report_prediction_outputs(predictions)\n\n def _handle_task(self, task):\n min_model_version = task.model_version\n with closing(\n recordio.Scanner(\n task.shard_file_name, task.start, task.end - task.start\n )\n ) as reader:\n while True:\n record_buf = self._get_batch(reader, task.minibatch_size)\n if not record_buf:\n break\n min_model_version = self._process_minibatch(\n task, record_buf, min_model_version\n )\n\n def _process_minibatch(self, task, record_buf, min_model_version):\n # TODO: Discuss how we separate input_fn for different tasks\n features, labels = self._input_fn(record_buf)\n if not self._var_created:\n self._create_variable_and_report(features)\n for _ in range(self._max_minibatch_retry_num):\n if task.type == elasticdl_pb2.EVALUATION:\n if min_model_version == -1:\n if self._model_version < 0:\n self.get_model(0, elasticdl_pb2.MINIMUM)\n elif self._model_version != min_model_version:\n self.get_model(min_model_version, elasticdl_pb2.FIXED)\n accepted, _ = self._run_evaluation_task(features, labels)\n if accepted:\n break\n elif task.type == elasticdl_pb2.TRAINING:\n # TODO: optimize the logic to avoid unnecessary\n # get_model call.\n self.get_model(\n max(self._model_version, min_model_version),\n elasticdl_pb2.MINIMUM,\n )\n accepted, min_model_version, loss = self._run_training_task(\n features, labels\n )\n if accepted:\n self._logger.info(\"Loss is %f\" % loss.numpy())\n break\n elif task.type == elasticdl_pb2.PREDICTION:\n if self._model_version != min_model_version:\n self.get_model(min_model_version, elasticdl_pb2.FIXED)\n accepted = self._run_prediction_task(features)\n if accepted:\n break\n else:\n raise RuntimeError(\"Unrecognized task type, %s\" % task.type)\n else:\n # Worker got stuck, fail the task.\n # TODO: stop the worker if it fails to make any\n # progress for some time.\n raise RuntimeError(\"Worker got stuck\")\n return min_model_version\n\n def run(self):\n \"\"\"\n Fetches task from master and performs training or evaluation.\n \"\"\"\n while True:\n task = self.get_task()\n if not task.shard_file_name:\n if task.type == elasticdl_pb2.WAIT:\n # Wait a few seconds then try to get_task again\n time.sleep(5)\n continue\n else:\n # No more task\n self._logger.info(\"No more task, stopping\")\n break\n self._logger.info(\"Receive a new task: %d\", task.task_id)\n err_msg = \"\"\n try:\n self._handle_task(task)\n except RuntimeError as err:\n err_msg = str(err)\n traceback.print_exc()\n except Exception as ex:\n err_msg = str(ex)\n traceback.print_exc()\n raise ex\n self.report_task_result(task.task_id, err_msg)\n", "path": "elasticdl/python/worker/worker.py"}]}
2,971
443
gh_patches_debug_16288
rasdani/github-patches
git_diff
pytorch__vision-7702
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- to_grayscale gives non-actionable deprecation warning _Originally reported in the [user forum](https://discuss.pytorch.org/t/cannot-find-convert-color-space/182591) by `@function2`._ > When I use to_grayscale, there’s a deprecation warning: > ``` > UserWarning: The function `to_grayscale(...)` is deprecated in will be removed in a future release. Instead, please use `convert_color_space(..., color_space=datapoints.ColorSpace.GRAY)`. > ``` > However, I can’t find this function in the current code base --- Note that this only applies to `torchvision.transforms.v2.function` https://github.com/pytorch/vision/blob/52eb5039bed1a23eee14014ff4cd6fd9cc9b2b08/torchvision/transforms/v2/functional/_deprecated.py#L12-L22 since the v1 version, i.e. `torchvision.transforms.functional` does not emit the warning https://github.com/pytorch/vision/blob/52eb5039bed1a23eee14014ff4cd6fd9cc9b2b08/torchvision/transforms/functional.py#L1249-L1253 Fixing the v2 warning was forgotten in #7120. cc @vfdev-5 --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `torchvision/transforms/v2/functional/_deprecated.py` Content: ``` 1 import warnings 2 from typing import Any, List, Union 3 4 import PIL.Image 5 import torch 6 7 from torchvision import datapoints 8 from torchvision.transforms import functional as _F 9 10 11 @torch.jit.unused 12 def to_grayscale(inpt: PIL.Image.Image, num_output_channels: int = 1) -> PIL.Image.Image: 13 call = ", num_output_channels=3" if num_output_channels == 3 else "" 14 replacement = "convert_color_space(..., color_space=datapoints.ColorSpace.GRAY)" 15 if num_output_channels == 3: 16 replacement = f"convert_color_space({replacement}, color_space=datapoints.ColorSpace.RGB)" 17 warnings.warn( 18 f"The function `to_grayscale(...{call})` is deprecated in will be removed in a future release. " 19 f"Instead, please use `{replacement}`.", 20 ) 21 22 return _F.to_grayscale(inpt, num_output_channels=num_output_channels) 23 24 25 @torch.jit.unused 26 def to_tensor(inpt: Any) -> torch.Tensor: 27 warnings.warn( 28 "The function `to_tensor(...)` is deprecated and will be removed in a future release. " 29 "Instead, please use `to_image_tensor(...)` followed by `convert_image_dtype(...)`." 30 ) 31 return _F.to_tensor(inpt) 32 33 34 def get_image_size(inpt: Union[datapoints._ImageTypeJIT, datapoints._VideoTypeJIT]) -> List[int]: 35 warnings.warn( 36 "The function `get_image_size(...)` is deprecated and will be removed in a future release. " 37 "Instead, please use `get_spatial_size(...)` which returns `[h, w]` instead of `[w, h]`." 38 ) 39 return _F.get_image_size(inpt) 40 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/torchvision/transforms/v2/functional/_deprecated.py b/torchvision/transforms/v2/functional/_deprecated.py --- a/torchvision/transforms/v2/functional/_deprecated.py +++ b/torchvision/transforms/v2/functional/_deprecated.py @@ -10,15 +10,10 @@ @torch.jit.unused def to_grayscale(inpt: PIL.Image.Image, num_output_channels: int = 1) -> PIL.Image.Image: - call = ", num_output_channels=3" if num_output_channels == 3 else "" - replacement = "convert_color_space(..., color_space=datapoints.ColorSpace.GRAY)" - if num_output_channels == 3: - replacement = f"convert_color_space({replacement}, color_space=datapoints.ColorSpace.RGB)" warnings.warn( - f"The function `to_grayscale(...{call})` is deprecated in will be removed in a future release. " - f"Instead, please use `{replacement}`.", + "The function `to_grayscale` is deprecated in will be removed in a future release. " + "Instead, please use `rgb_to_grayscale`.", ) - return _F.to_grayscale(inpt, num_output_channels=num_output_channels)
{"golden_diff": "diff --git a/torchvision/transforms/v2/functional/_deprecated.py b/torchvision/transforms/v2/functional/_deprecated.py\n--- a/torchvision/transforms/v2/functional/_deprecated.py\n+++ b/torchvision/transforms/v2/functional/_deprecated.py\n@@ -10,15 +10,10 @@\n \n @torch.jit.unused\n def to_grayscale(inpt: PIL.Image.Image, num_output_channels: int = 1) -> PIL.Image.Image:\n- call = \", num_output_channels=3\" if num_output_channels == 3 else \"\"\n- replacement = \"convert_color_space(..., color_space=datapoints.ColorSpace.GRAY)\"\n- if num_output_channels == 3:\n- replacement = f\"convert_color_space({replacement}, color_space=datapoints.ColorSpace.RGB)\"\n warnings.warn(\n- f\"The function `to_grayscale(...{call})` is deprecated in will be removed in a future release. \"\n- f\"Instead, please use `{replacement}`.\",\n+ \"The function `to_grayscale` is deprecated in will be removed in a future release. \"\n+ \"Instead, please use `rgb_to_grayscale`.\",\n )\n-\n return _F.to_grayscale(inpt, num_output_channels=num_output_channels)\n", "issue": "to_grayscale gives non-actionable deprecation warning\n_Originally reported in the [user forum](https://discuss.pytorch.org/t/cannot-find-convert-color-space/182591) by `@function2`._\r\n\r\n> When I use to_grayscale, there\u2019s a deprecation warning:\r\n> ```\r\n> UserWarning: The function `to_grayscale(...)` is deprecated in will be removed in a future release. Instead, please use `convert_color_space(..., color_space=datapoints.ColorSpace.GRAY)`.\r\n> ```\r\n> However, I can\u2019t find this function in the current code base\r\n\r\n---\r\n\r\nNote that this only applies to `torchvision.transforms.v2.function`\r\n\r\nhttps://github.com/pytorch/vision/blob/52eb5039bed1a23eee14014ff4cd6fd9cc9b2b08/torchvision/transforms/v2/functional/_deprecated.py#L12-L22\r\n\r\nsince the v1 version, i.e. `torchvision.transforms.functional` does not emit the warning\r\n\r\nhttps://github.com/pytorch/vision/blob/52eb5039bed1a23eee14014ff4cd6fd9cc9b2b08/torchvision/transforms/functional.py#L1249-L1253\r\n\r\nFixing the v2 warning was forgotten in #7120.\r\n\n\ncc @vfdev-5\n", "before_files": [{"content": "import warnings\nfrom typing import Any, List, Union\n\nimport PIL.Image\nimport torch\n\nfrom torchvision import datapoints\nfrom torchvision.transforms import functional as _F\n\n\[email protected]\ndef to_grayscale(inpt: PIL.Image.Image, num_output_channels: int = 1) -> PIL.Image.Image:\n call = \", num_output_channels=3\" if num_output_channels == 3 else \"\"\n replacement = \"convert_color_space(..., color_space=datapoints.ColorSpace.GRAY)\"\n if num_output_channels == 3:\n replacement = f\"convert_color_space({replacement}, color_space=datapoints.ColorSpace.RGB)\"\n warnings.warn(\n f\"The function `to_grayscale(...{call})` is deprecated in will be removed in a future release. \"\n f\"Instead, please use `{replacement}`.\",\n )\n\n return _F.to_grayscale(inpt, num_output_channels=num_output_channels)\n\n\[email protected]\ndef to_tensor(inpt: Any) -> torch.Tensor:\n warnings.warn(\n \"The function `to_tensor(...)` is deprecated and will be removed in a future release. \"\n \"Instead, please use `to_image_tensor(...)` followed by `convert_image_dtype(...)`.\"\n )\n return _F.to_tensor(inpt)\n\n\ndef get_image_size(inpt: Union[datapoints._ImageTypeJIT, datapoints._VideoTypeJIT]) -> List[int]:\n warnings.warn(\n \"The function `get_image_size(...)` is deprecated and will be removed in a future release. \"\n \"Instead, please use `get_spatial_size(...)` which returns `[h, w]` instead of `[w, h]`.\"\n )\n return _F.get_image_size(inpt)\n", "path": "torchvision/transforms/v2/functional/_deprecated.py"}], "after_files": [{"content": "import warnings\nfrom typing import Any, List, Union\n\nimport PIL.Image\nimport torch\n\nfrom torchvision import datapoints\nfrom torchvision.transforms import functional as _F\n\n\[email protected]\ndef to_grayscale(inpt: PIL.Image.Image, num_output_channels: int = 1) -> PIL.Image.Image:\n warnings.warn(\n \"The function `to_grayscale` is deprecated in will be removed in a future release. \"\n \"Instead, please use `rgb_to_grayscale`.\",\n )\n return _F.to_grayscale(inpt, num_output_channels=num_output_channels)\n\n\[email protected]\ndef to_tensor(inpt: Any) -> torch.Tensor:\n warnings.warn(\n \"The function `to_tensor(...)` is deprecated and will be removed in a future release. \"\n \"Instead, please use `to_image_tensor(...)` followed by `convert_image_dtype(...)`.\"\n )\n return _F.to_tensor(inpt)\n\n\ndef get_image_size(inpt: Union[datapoints._ImageTypeJIT, datapoints._VideoTypeJIT]) -> List[int]:\n warnings.warn(\n \"The function `get_image_size(...)` is deprecated and will be removed in a future release. \"\n \"Instead, please use `get_spatial_size(...)` which returns `[h, w]` instead of `[w, h]`.\"\n )\n return _F.get_image_size(inpt)\n", "path": "torchvision/transforms/v2/functional/_deprecated.py"}]}
1,025
276
gh_patches_debug_28038
rasdani/github-patches
git_diff
TheAlgorithms__Python-796
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- math CheckPrime is wrong The current implementation doesn't support: * Negative values, -1 is not a prime number. Current implementation raise a TypeError due to `math.sqrt` on negative values. The current implementation return the wrong value for: * 0, 0 doesn't have any divider, primes must have two. * 1, 1 just have one divider, primes must have two. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `maths/PrimeCheck.py` Content: ``` 1 import math 2 def primeCheck(number): 3 if number % 2 == 0 and number > 2: 4 return False 5 return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2)) 6 7 def main(): 8 print(primeCheck(37)) 9 print(primeCheck(100)) 10 print(primeCheck(77)) 11 12 if __name__ == '__main__': 13 main() 14 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/maths/PrimeCheck.py b/maths/PrimeCheck.py --- a/maths/PrimeCheck.py +++ b/maths/PrimeCheck.py @@ -1,13 +1,54 @@ import math +import unittest + + def primeCheck(number): - if number % 2 == 0 and number > 2: + """ + A number is prime if it has exactly two dividers: 1 and itself. + """ + if number < 2: + # Negatives, 0 and 1 are not primes return False - return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2)) + if number < 4: + # 2 and 3 are primes + return True + if number % 2 == 0: + # Even values are not primes + return False + + # Except 2, all primes are odd. If any odd value divide + # the number, then that number is not prime. + odd_numbers = range(3, int(math.sqrt(number)) + 1, 2) + return not any(number % i == 0 for i in odd_numbers) + + +class Test(unittest.TestCase): + def test_primes(self): + self.assertTrue(primeCheck(2)) + self.assertTrue(primeCheck(3)) + self.assertTrue(primeCheck(5)) + self.assertTrue(primeCheck(7)) + self.assertTrue(primeCheck(11)) + self.assertTrue(primeCheck(13)) + self.assertTrue(primeCheck(17)) + self.assertTrue(primeCheck(19)) + self.assertTrue(primeCheck(23)) + self.assertTrue(primeCheck(29)) + + def test_not_primes(self): + self.assertFalse(primeCheck(-19), + "Negative numbers are not prime.") + self.assertFalse(primeCheck(0), + "Zero doesn't have any divider, primes must have two") + self.assertFalse(primeCheck(1), + "One just have 1 divider, primes must have two.") + self.assertFalse(primeCheck(2 * 2)) + self.assertFalse(primeCheck(2 * 3)) + self.assertFalse(primeCheck(3 * 3)) + self.assertFalse(primeCheck(3 * 5)) + self.assertFalse(primeCheck(3 * 5 * 7)) -def main(): - print(primeCheck(37)) - print(primeCheck(100)) - print(primeCheck(77)) if __name__ == '__main__': - main() + unittest.main() +
{"golden_diff": "diff --git a/maths/PrimeCheck.py b/maths/PrimeCheck.py\n--- a/maths/PrimeCheck.py\n+++ b/maths/PrimeCheck.py\n@@ -1,13 +1,54 @@\n import math\n+import unittest\n+\n+\n def primeCheck(number):\n- if number % 2 == 0 and number > 2: \n+ \"\"\"\n+ A number is prime if it has exactly two dividers: 1 and itself.\n+ \"\"\"\n+ if number < 2:\n+ # Negatives, 0 and 1 are not primes\n return False\n- return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2))\n+ if number < 4:\n+ # 2 and 3 are primes\n+ return True\n+ if number % 2 == 0:\n+ # Even values are not primes\n+ return False\n+\n+ # Except 2, all primes are odd. If any odd value divide\n+ # the number, then that number is not prime.\n+ odd_numbers = range(3, int(math.sqrt(number)) + 1, 2)\n+ return not any(number % i == 0 for i in odd_numbers)\n+\n+\n+class Test(unittest.TestCase):\n+ def test_primes(self):\n+ self.assertTrue(primeCheck(2))\n+ self.assertTrue(primeCheck(3))\n+ self.assertTrue(primeCheck(5))\n+ self.assertTrue(primeCheck(7))\n+ self.assertTrue(primeCheck(11))\n+ self.assertTrue(primeCheck(13))\n+ self.assertTrue(primeCheck(17))\n+ self.assertTrue(primeCheck(19))\n+ self.assertTrue(primeCheck(23))\n+ self.assertTrue(primeCheck(29))\n+\n+ def test_not_primes(self):\n+ self.assertFalse(primeCheck(-19),\n+ \"Negative numbers are not prime.\")\n+ self.assertFalse(primeCheck(0),\n+ \"Zero doesn't have any divider, primes must have two\")\n+ self.assertFalse(primeCheck(1),\n+ \"One just have 1 divider, primes must have two.\")\n+ self.assertFalse(primeCheck(2 * 2))\n+ self.assertFalse(primeCheck(2 * 3))\n+ self.assertFalse(primeCheck(3 * 3))\n+ self.assertFalse(primeCheck(3 * 5))\n+ self.assertFalse(primeCheck(3 * 5 * 7))\n \n-def main():\n- print(primeCheck(37))\n- print(primeCheck(100))\n- print(primeCheck(77))\n \n if __name__ == '__main__':\n-\tmain()\n+ unittest.main()\n+\n", "issue": "math CheckPrime is wrong\nThe current implementation doesn't support:\r\n\r\n* Negative values, -1 is not a prime number. Current implementation raise a TypeError due to `math.sqrt` on negative values.\r\n\r\nThe current implementation return the wrong value for:\r\n\r\n* 0, 0 doesn't have any divider, primes must have two.\r\n* 1, 1 just have one divider, primes must have two.\n", "before_files": [{"content": "import math\ndef primeCheck(number):\n if number % 2 == 0 and number > 2: \n return False\n return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2))\n\ndef main():\n print(primeCheck(37))\n print(primeCheck(100))\n print(primeCheck(77))\n\nif __name__ == '__main__':\n\tmain()\n", "path": "maths/PrimeCheck.py"}], "after_files": [{"content": "import math\nimport unittest\n\n\ndef primeCheck(number):\n \"\"\"\n A number is prime if it has exactly two dividers: 1 and itself.\n \"\"\"\n if number < 2:\n # Negatives, 0 and 1 are not primes\n return False\n if number < 4:\n # 2 and 3 are primes\n return True\n if number % 2 == 0:\n # Even values are not primes\n return False\n\n # Except 2, all primes are odd. If any odd value divide\n # the number, then that number is not prime.\n odd_numbers = range(3, int(math.sqrt(number)) + 1, 2)\n return not any(number % i == 0 for i in odd_numbers)\n\n\nclass Test(unittest.TestCase):\n def test_primes(self):\n self.assertTrue(primeCheck(2))\n self.assertTrue(primeCheck(3))\n self.assertTrue(primeCheck(5))\n self.assertTrue(primeCheck(7))\n self.assertTrue(primeCheck(11))\n self.assertTrue(primeCheck(13))\n self.assertTrue(primeCheck(17))\n self.assertTrue(primeCheck(19))\n self.assertTrue(primeCheck(23))\n self.assertTrue(primeCheck(29))\n\n def test_not_primes(self):\n self.assertFalse(primeCheck(-19),\n \"Negative numbers are not prime.\")\n self.assertFalse(primeCheck(0),\n \"Zero doesn't have any divider, primes must have two\")\n self.assertFalse(primeCheck(1),\n \"One just have 1 divider, primes must have two.\")\n self.assertFalse(primeCheck(2 * 2))\n self.assertFalse(primeCheck(2 * 3))\n self.assertFalse(primeCheck(3 * 3))\n self.assertFalse(primeCheck(3 * 5))\n self.assertFalse(primeCheck(3 * 5 * 7))\n\n\nif __name__ == '__main__':\n unittest.main()\n\n", "path": "maths/PrimeCheck.py"}]}
458
599
gh_patches_debug_38846
rasdani/github-patches
git_diff
python-discord__bot-971
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Remove periodic ping in #verification This creates "accept bombs" that may trigger our anti-raid and burst spam filters, and is not really necessary anymore. We have more than enough people joining without having to periodically nag at them. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `bot/cogs/verification.py` Content: ``` 1 import logging 2 from contextlib import suppress 3 from datetime import datetime 4 5 from discord import Colour, Forbidden, Message, NotFound, Object 6 from discord.ext import tasks 7 from discord.ext.commands import Cog, Context, command 8 9 from bot import constants 10 from bot.bot import Bot 11 from bot.cogs.moderation import ModLog 12 from bot.decorators import in_whitelist, without_role 13 from bot.utils.checks import InWhitelistCheckFailure, without_role_check 14 15 log = logging.getLogger(__name__) 16 17 WELCOME_MESSAGE = f""" 18 Hello! Welcome to the server, and thanks for verifying yourself! 19 20 For your records, these are the documents you accepted: 21 22 `1)` Our rules, here: <https://pythondiscord.com/pages/rules> 23 `2)` Our privacy policy, here: <https://pythondiscord.com/pages/privacy> - you can find information on how to have \ 24 your information removed here as well. 25 26 Feel free to review them at any point! 27 28 Additionally, if you'd like to receive notifications for the announcements \ 29 we post in <#{constants.Channels.announcements}> 30 from time to time, you can send `!subscribe` to <#{constants.Channels.bot_commands}> at any time \ 31 to assign yourself the **Announcements** role. We'll mention this role every time we make an announcement. 32 33 If you'd like to unsubscribe from the announcement notifications, simply send `!unsubscribe` to \ 34 <#{constants.Channels.bot_commands}>. 35 """ 36 37 if constants.DEBUG_MODE: 38 PERIODIC_PING = "Periodic checkpoint message successfully sent." 39 else: 40 PERIODIC_PING = ( 41 f"@everyone To verify that you have read our rules, please type `{constants.Bot.prefix}accept`." 42 " If you encounter any problems during the verification process, " 43 f"send a direct message to a staff member." 44 ) 45 BOT_MESSAGE_DELETE_DELAY = 10 46 47 48 class Verification(Cog): 49 """User verification and role self-management.""" 50 51 def __init__(self, bot: Bot): 52 self.bot = bot 53 self.periodic_ping.start() 54 55 @property 56 def mod_log(self) -> ModLog: 57 """Get currently loaded ModLog cog instance.""" 58 return self.bot.get_cog("ModLog") 59 60 @Cog.listener() 61 async def on_message(self, message: Message) -> None: 62 """Check new message event for messages to the checkpoint channel & process.""" 63 if message.channel.id != constants.Channels.verification: 64 return # Only listen for #checkpoint messages 65 66 if message.author.bot: 67 # They're a bot, delete their message after the delay. 68 # But not the periodic ping; we like that one. 69 if message.content != PERIODIC_PING: 70 await message.delete(delay=BOT_MESSAGE_DELETE_DELAY) 71 return 72 73 # if a user mentions a role or guild member 74 # alert the mods in mod-alerts channel 75 if message.mentions or message.role_mentions: 76 log.debug( 77 f"{message.author} mentioned one or more users " 78 f"and/or roles in {message.channel.name}" 79 ) 80 81 embed_text = ( 82 f"{message.author.mention} sent a message in " 83 f"{message.channel.mention} that contained user and/or role mentions." 84 f"\n\n**Original message:**\n>>> {message.content}" 85 ) 86 87 # Send pretty mod log embed to mod-alerts 88 await self.mod_log.send_log_message( 89 icon_url=constants.Icons.filtering, 90 colour=Colour(constants.Colours.soft_red), 91 title=f"User/Role mentioned in {message.channel.name}", 92 text=embed_text, 93 thumbnail=message.author.avatar_url_as(static_format="png"), 94 channel_id=constants.Channels.mod_alerts, 95 ) 96 97 ctx: Context = await self.bot.get_context(message) 98 if ctx.command is not None and ctx.command.name == "accept": 99 return 100 101 if any(r.id == constants.Roles.verified for r in ctx.author.roles): 102 log.info( 103 f"{ctx.author} posted '{ctx.message.content}' " 104 "in the verification channel, but is already verified." 105 ) 106 return 107 108 log.debug( 109 f"{ctx.author} posted '{ctx.message.content}' in the verification " 110 "channel. We are providing instructions how to verify." 111 ) 112 await ctx.send( 113 f"{ctx.author.mention} Please type `!accept` to verify that you accept our rules, " 114 f"and gain access to the rest of the server.", 115 delete_after=20 116 ) 117 118 log.trace(f"Deleting the message posted by {ctx.author}") 119 with suppress(NotFound): 120 await ctx.message.delete() 121 122 @command(name='accept', aliases=('verify', 'verified', 'accepted'), hidden=True) 123 @without_role(constants.Roles.verified) 124 @in_whitelist(channels=(constants.Channels.verification,)) 125 async def accept_command(self, ctx: Context, *_) -> None: # We don't actually care about the args 126 """Accept our rules and gain access to the rest of the server.""" 127 log.debug(f"{ctx.author} called !accept. Assigning the 'Developer' role.") 128 await ctx.author.add_roles(Object(constants.Roles.verified), reason="Accepted the rules") 129 try: 130 await ctx.author.send(WELCOME_MESSAGE) 131 except Forbidden: 132 log.info(f"Sending welcome message failed for {ctx.author}.") 133 finally: 134 log.trace(f"Deleting accept message by {ctx.author}.") 135 with suppress(NotFound): 136 self.mod_log.ignore(constants.Event.message_delete, ctx.message.id) 137 await ctx.message.delete() 138 139 @command(name='subscribe') 140 @in_whitelist(channels=(constants.Channels.bot_commands,)) 141 async def subscribe_command(self, ctx: Context, *_) -> None: # We don't actually care about the args 142 """Subscribe to announcement notifications by assigning yourself the role.""" 143 has_role = False 144 145 for role in ctx.author.roles: 146 if role.id == constants.Roles.announcements: 147 has_role = True 148 break 149 150 if has_role: 151 await ctx.send(f"{ctx.author.mention} You're already subscribed!") 152 return 153 154 log.debug(f"{ctx.author} called !subscribe. Assigning the 'Announcements' role.") 155 await ctx.author.add_roles(Object(constants.Roles.announcements), reason="Subscribed to announcements") 156 157 log.trace(f"Deleting the message posted by {ctx.author}.") 158 159 await ctx.send( 160 f"{ctx.author.mention} Subscribed to <#{constants.Channels.announcements}> notifications.", 161 ) 162 163 @command(name='unsubscribe') 164 @in_whitelist(channels=(constants.Channels.bot_commands,)) 165 async def unsubscribe_command(self, ctx: Context, *_) -> None: # We don't actually care about the args 166 """Unsubscribe from announcement notifications by removing the role from yourself.""" 167 has_role = False 168 169 for role in ctx.author.roles: 170 if role.id == constants.Roles.announcements: 171 has_role = True 172 break 173 174 if not has_role: 175 await ctx.send(f"{ctx.author.mention} You're already unsubscribed!") 176 return 177 178 log.debug(f"{ctx.author} called !unsubscribe. Removing the 'Announcements' role.") 179 await ctx.author.remove_roles(Object(constants.Roles.announcements), reason="Unsubscribed from announcements") 180 181 log.trace(f"Deleting the message posted by {ctx.author}.") 182 183 await ctx.send( 184 f"{ctx.author.mention} Unsubscribed from <#{constants.Channels.announcements}> notifications." 185 ) 186 187 # This cannot be static (must have a __func__ attribute). 188 async def cog_command_error(self, ctx: Context, error: Exception) -> None: 189 """Check for & ignore any InWhitelistCheckFailure.""" 190 if isinstance(error, InWhitelistCheckFailure): 191 error.handled = True 192 193 @staticmethod 194 def bot_check(ctx: Context) -> bool: 195 """Block any command within the verification channel that is not !accept.""" 196 if ctx.channel.id == constants.Channels.verification and without_role_check(ctx, *constants.MODERATION_ROLES): 197 return ctx.command.name == "accept" 198 else: 199 return True 200 201 @tasks.loop(hours=12) 202 async def periodic_ping(self) -> None: 203 """Every week, mention @everyone to remind them to verify.""" 204 messages = self.bot.get_channel(constants.Channels.verification).history(limit=10) 205 need_to_post = True # True if a new message needs to be sent. 206 207 async for message in messages: 208 if message.author == self.bot.user and message.content == PERIODIC_PING: 209 delta = datetime.utcnow() - message.created_at # Time since last message. 210 if delta.days >= 7: # Message is older than a week. 211 await message.delete() 212 else: 213 need_to_post = False 214 215 break 216 217 if need_to_post: 218 await self.bot.get_channel(constants.Channels.verification).send(PERIODIC_PING) 219 220 @periodic_ping.before_loop 221 async def before_ping(self) -> None: 222 """Only start the loop when the bot is ready.""" 223 await self.bot.wait_until_guild_available() 224 225 def cog_unload(self) -> None: 226 """Cancel the periodic ping task when the cog is unloaded.""" 227 self.periodic_ping.cancel() 228 229 230 def setup(bot: Bot) -> None: 231 """Load the Verification cog.""" 232 bot.add_cog(Verification(bot)) 233 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/bot/cogs/verification.py b/bot/cogs/verification.py --- a/bot/cogs/verification.py +++ b/bot/cogs/verification.py @@ -1,9 +1,7 @@ import logging from contextlib import suppress -from datetime import datetime from discord import Colour, Forbidden, Message, NotFound, Object -from discord.ext import tasks from discord.ext.commands import Cog, Context, command from bot import constants @@ -34,14 +32,6 @@ <#{constants.Channels.bot_commands}>. """ -if constants.DEBUG_MODE: - PERIODIC_PING = "Periodic checkpoint message successfully sent." -else: - PERIODIC_PING = ( - f"@everyone To verify that you have read our rules, please type `{constants.Bot.prefix}accept`." - " If you encounter any problems during the verification process, " - f"send a direct message to a staff member." - ) BOT_MESSAGE_DELETE_DELAY = 10 @@ -50,7 +40,6 @@ def __init__(self, bot: Bot): self.bot = bot - self.periodic_ping.start() @property def mod_log(self) -> ModLog: @@ -65,9 +54,7 @@ if message.author.bot: # They're a bot, delete their message after the delay. - # But not the periodic ping; we like that one. - if message.content != PERIODIC_PING: - await message.delete(delay=BOT_MESSAGE_DELETE_DELAY) + await message.delete(delay=BOT_MESSAGE_DELETE_DELAY) return # if a user mentions a role or guild member @@ -198,34 +185,6 @@ else: return True - @tasks.loop(hours=12) - async def periodic_ping(self) -> None: - """Every week, mention @everyone to remind them to verify.""" - messages = self.bot.get_channel(constants.Channels.verification).history(limit=10) - need_to_post = True # True if a new message needs to be sent. - - async for message in messages: - if message.author == self.bot.user and message.content == PERIODIC_PING: - delta = datetime.utcnow() - message.created_at # Time since last message. - if delta.days >= 7: # Message is older than a week. - await message.delete() - else: - need_to_post = False - - break - - if need_to_post: - await self.bot.get_channel(constants.Channels.verification).send(PERIODIC_PING) - - @periodic_ping.before_loop - async def before_ping(self) -> None: - """Only start the loop when the bot is ready.""" - await self.bot.wait_until_guild_available() - - def cog_unload(self) -> None: - """Cancel the periodic ping task when the cog is unloaded.""" - self.periodic_ping.cancel() - def setup(bot: Bot) -> None: """Load the Verification cog."""
{"golden_diff": "diff --git a/bot/cogs/verification.py b/bot/cogs/verification.py\n--- a/bot/cogs/verification.py\n+++ b/bot/cogs/verification.py\n@@ -1,9 +1,7 @@\n import logging\n from contextlib import suppress\n-from datetime import datetime\n \n from discord import Colour, Forbidden, Message, NotFound, Object\n-from discord.ext import tasks\n from discord.ext.commands import Cog, Context, command\n \n from bot import constants\n@@ -34,14 +32,6 @@\n <#{constants.Channels.bot_commands}>.\n \"\"\"\n \n-if constants.DEBUG_MODE:\n- PERIODIC_PING = \"Periodic checkpoint message successfully sent.\"\n-else:\n- PERIODIC_PING = (\n- f\"@everyone To verify that you have read our rules, please type `{constants.Bot.prefix}accept`.\"\n- \" If you encounter any problems during the verification process, \"\n- f\"send a direct message to a staff member.\"\n- )\n BOT_MESSAGE_DELETE_DELAY = 10\n \n \n@@ -50,7 +40,6 @@\n \n def __init__(self, bot: Bot):\n self.bot = bot\n- self.periodic_ping.start()\n \n @property\n def mod_log(self) -> ModLog:\n@@ -65,9 +54,7 @@\n \n if message.author.bot:\n # They're a bot, delete their message after the delay.\n- # But not the periodic ping; we like that one.\n- if message.content != PERIODIC_PING:\n- await message.delete(delay=BOT_MESSAGE_DELETE_DELAY)\n+ await message.delete(delay=BOT_MESSAGE_DELETE_DELAY)\n return\n \n # if a user mentions a role or guild member\n@@ -198,34 +185,6 @@\n else:\n return True\n \n- @tasks.loop(hours=12)\n- async def periodic_ping(self) -> None:\n- \"\"\"Every week, mention @everyone to remind them to verify.\"\"\"\n- messages = self.bot.get_channel(constants.Channels.verification).history(limit=10)\n- need_to_post = True # True if a new message needs to be sent.\n-\n- async for message in messages:\n- if message.author == self.bot.user and message.content == PERIODIC_PING:\n- delta = datetime.utcnow() - message.created_at # Time since last message.\n- if delta.days >= 7: # Message is older than a week.\n- await message.delete()\n- else:\n- need_to_post = False\n-\n- break\n-\n- if need_to_post:\n- await self.bot.get_channel(constants.Channels.verification).send(PERIODIC_PING)\n-\n- @periodic_ping.before_loop\n- async def before_ping(self) -> None:\n- \"\"\"Only start the loop when the bot is ready.\"\"\"\n- await self.bot.wait_until_guild_available()\n-\n- def cog_unload(self) -> None:\n- \"\"\"Cancel the periodic ping task when the cog is unloaded.\"\"\"\n- self.periodic_ping.cancel()\n-\n \n def setup(bot: Bot) -> None:\n \"\"\"Load the Verification cog.\"\"\"\n", "issue": "Remove periodic ping in #verification\nThis creates \"accept bombs\" that may trigger our anti-raid and burst spam filters, and is not really necessary anymore. We have more than enough people joining without having to periodically nag at them.\n", "before_files": [{"content": "import logging\nfrom contextlib import suppress\nfrom datetime import datetime\n\nfrom discord import Colour, Forbidden, Message, NotFound, Object\nfrom discord.ext import tasks\nfrom discord.ext.commands import Cog, Context, command\n\nfrom bot import constants\nfrom bot.bot import Bot\nfrom bot.cogs.moderation import ModLog\nfrom bot.decorators import in_whitelist, without_role\nfrom bot.utils.checks import InWhitelistCheckFailure, without_role_check\n\nlog = logging.getLogger(__name__)\n\nWELCOME_MESSAGE = f\"\"\"\nHello! Welcome to the server, and thanks for verifying yourself!\n\nFor your records, these are the documents you accepted:\n\n`1)` Our rules, here: <https://pythondiscord.com/pages/rules>\n`2)` Our privacy policy, here: <https://pythondiscord.com/pages/privacy> - you can find information on how to have \\\nyour information removed here as well.\n\nFeel free to review them at any point!\n\nAdditionally, if you'd like to receive notifications for the announcements \\\nwe post in <#{constants.Channels.announcements}>\nfrom time to time, you can send `!subscribe` to <#{constants.Channels.bot_commands}> at any time \\\nto assign yourself the **Announcements** role. We'll mention this role every time we make an announcement.\n\nIf you'd like to unsubscribe from the announcement notifications, simply send `!unsubscribe` to \\\n<#{constants.Channels.bot_commands}>.\n\"\"\"\n\nif constants.DEBUG_MODE:\n PERIODIC_PING = \"Periodic checkpoint message successfully sent.\"\nelse:\n PERIODIC_PING = (\n f\"@everyone To verify that you have read our rules, please type `{constants.Bot.prefix}accept`.\"\n \" If you encounter any problems during the verification process, \"\n f\"send a direct message to a staff member.\"\n )\nBOT_MESSAGE_DELETE_DELAY = 10\n\n\nclass Verification(Cog):\n \"\"\"User verification and role self-management.\"\"\"\n\n def __init__(self, bot: Bot):\n self.bot = bot\n self.periodic_ping.start()\n\n @property\n def mod_log(self) -> ModLog:\n \"\"\"Get currently loaded ModLog cog instance.\"\"\"\n return self.bot.get_cog(\"ModLog\")\n\n @Cog.listener()\n async def on_message(self, message: Message) -> None:\n \"\"\"Check new message event for messages to the checkpoint channel & process.\"\"\"\n if message.channel.id != constants.Channels.verification:\n return # Only listen for #checkpoint messages\n\n if message.author.bot:\n # They're a bot, delete their message after the delay.\n # But not the periodic ping; we like that one.\n if message.content != PERIODIC_PING:\n await message.delete(delay=BOT_MESSAGE_DELETE_DELAY)\n return\n\n # if a user mentions a role or guild member\n # alert the mods in mod-alerts channel\n if message.mentions or message.role_mentions:\n log.debug(\n f\"{message.author} mentioned one or more users \"\n f\"and/or roles in {message.channel.name}\"\n )\n\n embed_text = (\n f\"{message.author.mention} sent a message in \"\n f\"{message.channel.mention} that contained user and/or role mentions.\"\n f\"\\n\\n**Original message:**\\n>>> {message.content}\"\n )\n\n # Send pretty mod log embed to mod-alerts\n await self.mod_log.send_log_message(\n icon_url=constants.Icons.filtering,\n colour=Colour(constants.Colours.soft_red),\n title=f\"User/Role mentioned in {message.channel.name}\",\n text=embed_text,\n thumbnail=message.author.avatar_url_as(static_format=\"png\"),\n channel_id=constants.Channels.mod_alerts,\n )\n\n ctx: Context = await self.bot.get_context(message)\n if ctx.command is not None and ctx.command.name == \"accept\":\n return\n\n if any(r.id == constants.Roles.verified for r in ctx.author.roles):\n log.info(\n f\"{ctx.author} posted '{ctx.message.content}' \"\n \"in the verification channel, but is already verified.\"\n )\n return\n\n log.debug(\n f\"{ctx.author} posted '{ctx.message.content}' in the verification \"\n \"channel. We are providing instructions how to verify.\"\n )\n await ctx.send(\n f\"{ctx.author.mention} Please type `!accept` to verify that you accept our rules, \"\n f\"and gain access to the rest of the server.\",\n delete_after=20\n )\n\n log.trace(f\"Deleting the message posted by {ctx.author}\")\n with suppress(NotFound):\n await ctx.message.delete()\n\n @command(name='accept', aliases=('verify', 'verified', 'accepted'), hidden=True)\n @without_role(constants.Roles.verified)\n @in_whitelist(channels=(constants.Channels.verification,))\n async def accept_command(self, ctx: Context, *_) -> None: # We don't actually care about the args\n \"\"\"Accept our rules and gain access to the rest of the server.\"\"\"\n log.debug(f\"{ctx.author} called !accept. Assigning the 'Developer' role.\")\n await ctx.author.add_roles(Object(constants.Roles.verified), reason=\"Accepted the rules\")\n try:\n await ctx.author.send(WELCOME_MESSAGE)\n except Forbidden:\n log.info(f\"Sending welcome message failed for {ctx.author}.\")\n finally:\n log.trace(f\"Deleting accept message by {ctx.author}.\")\n with suppress(NotFound):\n self.mod_log.ignore(constants.Event.message_delete, ctx.message.id)\n await ctx.message.delete()\n\n @command(name='subscribe')\n @in_whitelist(channels=(constants.Channels.bot_commands,))\n async def subscribe_command(self, ctx: Context, *_) -> None: # We don't actually care about the args\n \"\"\"Subscribe to announcement notifications by assigning yourself the role.\"\"\"\n has_role = False\n\n for role in ctx.author.roles:\n if role.id == constants.Roles.announcements:\n has_role = True\n break\n\n if has_role:\n await ctx.send(f\"{ctx.author.mention} You're already subscribed!\")\n return\n\n log.debug(f\"{ctx.author} called !subscribe. Assigning the 'Announcements' role.\")\n await ctx.author.add_roles(Object(constants.Roles.announcements), reason=\"Subscribed to announcements\")\n\n log.trace(f\"Deleting the message posted by {ctx.author}.\")\n\n await ctx.send(\n f\"{ctx.author.mention} Subscribed to <#{constants.Channels.announcements}> notifications.\",\n )\n\n @command(name='unsubscribe')\n @in_whitelist(channels=(constants.Channels.bot_commands,))\n async def unsubscribe_command(self, ctx: Context, *_) -> None: # We don't actually care about the args\n \"\"\"Unsubscribe from announcement notifications by removing the role from yourself.\"\"\"\n has_role = False\n\n for role in ctx.author.roles:\n if role.id == constants.Roles.announcements:\n has_role = True\n break\n\n if not has_role:\n await ctx.send(f\"{ctx.author.mention} You're already unsubscribed!\")\n return\n\n log.debug(f\"{ctx.author} called !unsubscribe. Removing the 'Announcements' role.\")\n await ctx.author.remove_roles(Object(constants.Roles.announcements), reason=\"Unsubscribed from announcements\")\n\n log.trace(f\"Deleting the message posted by {ctx.author}.\")\n\n await ctx.send(\n f\"{ctx.author.mention} Unsubscribed from <#{constants.Channels.announcements}> notifications.\"\n )\n\n # This cannot be static (must have a __func__ attribute).\n async def cog_command_error(self, ctx: Context, error: Exception) -> None:\n \"\"\"Check for & ignore any InWhitelistCheckFailure.\"\"\"\n if isinstance(error, InWhitelistCheckFailure):\n error.handled = True\n\n @staticmethod\n def bot_check(ctx: Context) -> bool:\n \"\"\"Block any command within the verification channel that is not !accept.\"\"\"\n if ctx.channel.id == constants.Channels.verification and without_role_check(ctx, *constants.MODERATION_ROLES):\n return ctx.command.name == \"accept\"\n else:\n return True\n\n @tasks.loop(hours=12)\n async def periodic_ping(self) -> None:\n \"\"\"Every week, mention @everyone to remind them to verify.\"\"\"\n messages = self.bot.get_channel(constants.Channels.verification).history(limit=10)\n need_to_post = True # True if a new message needs to be sent.\n\n async for message in messages:\n if message.author == self.bot.user and message.content == PERIODIC_PING:\n delta = datetime.utcnow() - message.created_at # Time since last message.\n if delta.days >= 7: # Message is older than a week.\n await message.delete()\n else:\n need_to_post = False\n\n break\n\n if need_to_post:\n await self.bot.get_channel(constants.Channels.verification).send(PERIODIC_PING)\n\n @periodic_ping.before_loop\n async def before_ping(self) -> None:\n \"\"\"Only start the loop when the bot is ready.\"\"\"\n await self.bot.wait_until_guild_available()\n\n def cog_unload(self) -> None:\n \"\"\"Cancel the periodic ping task when the cog is unloaded.\"\"\"\n self.periodic_ping.cancel()\n\n\ndef setup(bot: Bot) -> None:\n \"\"\"Load the Verification cog.\"\"\"\n bot.add_cog(Verification(bot))\n", "path": "bot/cogs/verification.py"}], "after_files": [{"content": "import logging\nfrom contextlib import suppress\n\nfrom discord import Colour, Forbidden, Message, NotFound, Object\nfrom discord.ext.commands import Cog, Context, command\n\nfrom bot import constants\nfrom bot.bot import Bot\nfrom bot.cogs.moderation import ModLog\nfrom bot.decorators import in_whitelist, without_role\nfrom bot.utils.checks import InWhitelistCheckFailure, without_role_check\n\nlog = logging.getLogger(__name__)\n\nWELCOME_MESSAGE = f\"\"\"\nHello! Welcome to the server, and thanks for verifying yourself!\n\nFor your records, these are the documents you accepted:\n\n`1)` Our rules, here: <https://pythondiscord.com/pages/rules>\n`2)` Our privacy policy, here: <https://pythondiscord.com/pages/privacy> - you can find information on how to have \\\nyour information removed here as well.\n\nFeel free to review them at any point!\n\nAdditionally, if you'd like to receive notifications for the announcements \\\nwe post in <#{constants.Channels.announcements}>\nfrom time to time, you can send `!subscribe` to <#{constants.Channels.bot_commands}> at any time \\\nto assign yourself the **Announcements** role. We'll mention this role every time we make an announcement.\n\nIf you'd like to unsubscribe from the announcement notifications, simply send `!unsubscribe` to \\\n<#{constants.Channels.bot_commands}>.\n\"\"\"\n\nBOT_MESSAGE_DELETE_DELAY = 10\n\n\nclass Verification(Cog):\n \"\"\"User verification and role self-management.\"\"\"\n\n def __init__(self, bot: Bot):\n self.bot = bot\n\n @property\n def mod_log(self) -> ModLog:\n \"\"\"Get currently loaded ModLog cog instance.\"\"\"\n return self.bot.get_cog(\"ModLog\")\n\n @Cog.listener()\n async def on_message(self, message: Message) -> None:\n \"\"\"Check new message event for messages to the checkpoint channel & process.\"\"\"\n if message.channel.id != constants.Channels.verification:\n return # Only listen for #checkpoint messages\n\n if message.author.bot:\n # They're a bot, delete their message after the delay.\n await message.delete(delay=BOT_MESSAGE_DELETE_DELAY)\n return\n\n # if a user mentions a role or guild member\n # alert the mods in mod-alerts channel\n if message.mentions or message.role_mentions:\n log.debug(\n f\"{message.author} mentioned one or more users \"\n f\"and/or roles in {message.channel.name}\"\n )\n\n embed_text = (\n f\"{message.author.mention} sent a message in \"\n f\"{message.channel.mention} that contained user and/or role mentions.\"\n f\"\\n\\n**Original message:**\\n>>> {message.content}\"\n )\n\n # Send pretty mod log embed to mod-alerts\n await self.mod_log.send_log_message(\n icon_url=constants.Icons.filtering,\n colour=Colour(constants.Colours.soft_red),\n title=f\"User/Role mentioned in {message.channel.name}\",\n text=embed_text,\n thumbnail=message.author.avatar_url_as(static_format=\"png\"),\n channel_id=constants.Channels.mod_alerts,\n )\n\n ctx: Context = await self.bot.get_context(message)\n if ctx.command is not None and ctx.command.name == \"accept\":\n return\n\n if any(r.id == constants.Roles.verified for r in ctx.author.roles):\n log.info(\n f\"{ctx.author} posted '{ctx.message.content}' \"\n \"in the verification channel, but is already verified.\"\n )\n return\n\n log.debug(\n f\"{ctx.author} posted '{ctx.message.content}' in the verification \"\n \"channel. We are providing instructions how to verify.\"\n )\n await ctx.send(\n f\"{ctx.author.mention} Please type `!accept` to verify that you accept our rules, \"\n f\"and gain access to the rest of the server.\",\n delete_after=20\n )\n\n log.trace(f\"Deleting the message posted by {ctx.author}\")\n with suppress(NotFound):\n await ctx.message.delete()\n\n @command(name='accept', aliases=('verify', 'verified', 'accepted'), hidden=True)\n @without_role(constants.Roles.verified)\n @in_whitelist(channels=(constants.Channels.verification,))\n async def accept_command(self, ctx: Context, *_) -> None: # We don't actually care about the args\n \"\"\"Accept our rules and gain access to the rest of the server.\"\"\"\n log.debug(f\"{ctx.author} called !accept. Assigning the 'Developer' role.\")\n await ctx.author.add_roles(Object(constants.Roles.verified), reason=\"Accepted the rules\")\n try:\n await ctx.author.send(WELCOME_MESSAGE)\n except Forbidden:\n log.info(f\"Sending welcome message failed for {ctx.author}.\")\n finally:\n log.trace(f\"Deleting accept message by {ctx.author}.\")\n with suppress(NotFound):\n self.mod_log.ignore(constants.Event.message_delete, ctx.message.id)\n await ctx.message.delete()\n\n @command(name='subscribe')\n @in_whitelist(channels=(constants.Channels.bot_commands,))\n async def subscribe_command(self, ctx: Context, *_) -> None: # We don't actually care about the args\n \"\"\"Subscribe to announcement notifications by assigning yourself the role.\"\"\"\n has_role = False\n\n for role in ctx.author.roles:\n if role.id == constants.Roles.announcements:\n has_role = True\n break\n\n if has_role:\n await ctx.send(f\"{ctx.author.mention} You're already subscribed!\")\n return\n\n log.debug(f\"{ctx.author} called !subscribe. Assigning the 'Announcements' role.\")\n await ctx.author.add_roles(Object(constants.Roles.announcements), reason=\"Subscribed to announcements\")\n\n log.trace(f\"Deleting the message posted by {ctx.author}.\")\n\n await ctx.send(\n f\"{ctx.author.mention} Subscribed to <#{constants.Channels.announcements}> notifications.\",\n )\n\n @command(name='unsubscribe')\n @in_whitelist(channels=(constants.Channels.bot_commands,))\n async def unsubscribe_command(self, ctx: Context, *_) -> None: # We don't actually care about the args\n \"\"\"Unsubscribe from announcement notifications by removing the role from yourself.\"\"\"\n has_role = False\n\n for role in ctx.author.roles:\n if role.id == constants.Roles.announcements:\n has_role = True\n break\n\n if not has_role:\n await ctx.send(f\"{ctx.author.mention} You're already unsubscribed!\")\n return\n\n log.debug(f\"{ctx.author} called !unsubscribe. Removing the 'Announcements' role.\")\n await ctx.author.remove_roles(Object(constants.Roles.announcements), reason=\"Unsubscribed from announcements\")\n\n log.trace(f\"Deleting the message posted by {ctx.author}.\")\n\n await ctx.send(\n f\"{ctx.author.mention} Unsubscribed from <#{constants.Channels.announcements}> notifications.\"\n )\n\n # This cannot be static (must have a __func__ attribute).\n async def cog_command_error(self, ctx: Context, error: Exception) -> None:\n \"\"\"Check for & ignore any InWhitelistCheckFailure.\"\"\"\n if isinstance(error, InWhitelistCheckFailure):\n error.handled = True\n\n @staticmethod\n def bot_check(ctx: Context) -> bool:\n \"\"\"Block any command within the verification channel that is not !accept.\"\"\"\n if ctx.channel.id == constants.Channels.verification and without_role_check(ctx, *constants.MODERATION_ROLES):\n return ctx.command.name == \"accept\"\n else:\n return True\n\n\ndef setup(bot: Bot) -> None:\n \"\"\"Load the Verification cog.\"\"\"\n bot.add_cog(Verification(bot))\n", "path": "bot/cogs/verification.py"}]}
2,925
682
gh_patches_debug_655
rasdani/github-patches
git_diff
pex-tool__pex-2104
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Release 2.1.130 On the docket: + [x] Pex fails to lock - missing artifact #2098 --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `pex/version.py` Content: ``` 1 # Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). 2 # Licensed under the Apache License, Version 2.0 (see LICENSE). 3 4 __version__ = "2.1.129" 5 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/pex/version.py b/pex/version.py --- a/pex/version.py +++ b/pex/version.py @@ -1,4 +1,4 @@ # Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). -__version__ = "2.1.129" +__version__ = "2.1.130"
{"golden_diff": "diff --git a/pex/version.py b/pex/version.py\n--- a/pex/version.py\n+++ b/pex/version.py\n@@ -1,4 +1,4 @@\n # Copyright 2015 Pants project contributors (see CONTRIBUTORS.md).\n # Licensed under the Apache License, Version 2.0 (see LICENSE).\n \n-__version__ = \"2.1.129\"\n+__version__ = \"2.1.130\"\n", "issue": "Release 2.1.130\nOn the docket:\r\n+ [x] Pex fails to lock - missing artifact #2098 \n", "before_files": [{"content": "# Copyright 2015 Pants project contributors (see CONTRIBUTORS.md).\n# Licensed under the Apache License, Version 2.0 (see LICENSE).\n\n__version__ = \"2.1.129\"\n", "path": "pex/version.py"}], "after_files": [{"content": "# Copyright 2015 Pants project contributors (see CONTRIBUTORS.md).\n# Licensed under the Apache License, Version 2.0 (see LICENSE).\n\n__version__ = \"2.1.130\"\n", "path": "pex/version.py"}]}
341
98
gh_patches_debug_18520
rasdani/github-patches
git_diff
pydantic__pydantic-7346
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Failure to override an inherited field with a computed field ### Initial Checks - [X] I confirm that I'm using Pydantic V2 ### Description It seems that overriding a regular field with a computed field doesn't behave as expected. Instead of a value being returned by accessing the property the property object itself is returned. And as for `@cached_property` causes an exception within `pydantic/_internal/_utils.py:smart_deepcopy`. ### Example Code ```Python from pydantic import BaseModel, computed_field from functools import cached_property class Foo(BaseModel): name: str = "Foo" class Bar(Foo): @computed_field @property def name(self) -> str: return "Bar" print(Foo().name) # Foo print(Bar().name) # <property object at 0x...> # Upon definition: # > TypeError: cannot pickle '_thread.RLock' object class Baz(Foo): @computed_field @cached_property def name(self) -> str: return "Baz" ``` Edit: After some further playing around, removing the default `name = "Foo"` from `Foo` it's clear that `name` within `Bar` is in some kind of weird hybrid state. ```Python class Foo(BaseModel): name: str class Bar(Foo): @computed_field @property def name(self) -> str: print("from property") return "Bar" # Pyright complains: # 1. Pyright: Argument missing for parameter "name" [reportGeneralTypeIssues] # But runs and I get the same result print(Bar().name) # <property object at 0x...> # Prints name as inherited from Foo, and without the `"from property"` print(Bar(name="Bar")) # Bar ``` ### Python, Pydantic & OS Version ```Text pydantic version: 2.1.1 pydantic-core version: 2.4.0 pydantic-core build: profile=release pgo=false mimalloc=true install path: /Users/.../.pyenv/versions/3.11.1/lib/python3.11/site-packages/pydantic python version: 3.11.1 (main, Jan 14 2023, 16:44:31) [Clang 13.1.6 (clang-1316.0.21.2.5)] platform: macOS-13.4-arm64-arm-64bit optional deps. installed: ['email-validator', 'typing-extensions'] ``` Selected Assignee: @hramezani --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `pydantic/_internal/_fields.py` Content: ``` 1 """Private logic related to fields (the `Field()` function and `FieldInfo` class), and arguments to `Annotated`.""" 2 from __future__ import annotations as _annotations 3 4 import dataclasses 5 import sys 6 import warnings 7 from copy import copy 8 from typing import TYPE_CHECKING, Any 9 10 from annotated_types import BaseMetadata 11 from pydantic_core import PydanticUndefined 12 13 from . import _typing_extra 14 from ._config import ConfigWrapper 15 from ._repr import Representation 16 from ._typing_extra import get_cls_type_hints_lenient, get_type_hints, is_classvar, is_finalvar 17 18 if TYPE_CHECKING: 19 from ..fields import FieldInfo 20 from ..main import BaseModel 21 from ._dataclasses import StandardDataclass 22 23 24 def get_type_hints_infer_globalns( 25 obj: Any, 26 localns: dict[str, Any] | None = None, 27 include_extras: bool = False, 28 ) -> dict[str, Any]: 29 """Gets type hints for an object by inferring the global namespace. 30 31 It uses the `typing.get_type_hints`, The only thing that we do here is fetching 32 global namespace from `obj.__module__` if it is not `None`. 33 34 Args: 35 obj: The object to get its type hints. 36 localns: The local namespaces. 37 include_extras: Whether to recursively include annotation metadata. 38 39 Returns: 40 The object type hints. 41 """ 42 module_name = getattr(obj, '__module__', None) 43 globalns: dict[str, Any] | None = None 44 if module_name: 45 try: 46 globalns = sys.modules[module_name].__dict__ 47 except KeyError: 48 # happens occasionally, see https://github.com/pydantic/pydantic/issues/2363 49 pass 50 return get_type_hints(obj, globalns=globalns, localns=localns, include_extras=include_extras) 51 52 53 class PydanticMetadata(Representation): 54 """Base class for annotation markers like `Strict`.""" 55 56 __slots__ = () 57 58 59 class PydanticGeneralMetadata(PydanticMetadata, BaseMetadata): 60 """Pydantic general metada like `max_digits`.""" 61 62 def __init__(self, **metadata: Any): 63 self.__dict__ = metadata 64 65 66 def collect_model_fields( # noqa: C901 67 cls: type[BaseModel], 68 bases: tuple[type[Any], ...], 69 config_wrapper: ConfigWrapper, 70 types_namespace: dict[str, Any] | None, 71 *, 72 typevars_map: dict[Any, Any] | None = None, 73 ) -> tuple[dict[str, FieldInfo], set[str]]: 74 """Collect the fields of a nascent pydantic model. 75 76 Also collect the names of any ClassVars present in the type hints. 77 78 The returned value is a tuple of two items: the fields dict, and the set of ClassVar names. 79 80 Args: 81 cls: BaseModel or dataclass. 82 bases: Parents of the class, generally `cls.__bases__`. 83 config_wrapper: The config wrapper instance. 84 types_namespace: Optional extra namespace to look for types in. 85 typevars_map: A dictionary mapping type variables to their concrete types. 86 87 Returns: 88 A tuple contains fields and class variables. 89 90 Raises: 91 NameError: 92 - If there is a conflict between a field name and protected namespaces. 93 - If there is a field other than `root` in `RootModel`. 94 - If a field shadows an attribute in the parent model. 95 """ 96 from ..fields import FieldInfo 97 98 type_hints = get_cls_type_hints_lenient(cls, types_namespace) 99 100 # https://docs.python.org/3/howto/annotations.html#accessing-the-annotations-dict-of-an-object-in-python-3-9-and-older 101 # annotations is only used for finding fields in parent classes 102 annotations = cls.__dict__.get('__annotations__', {}) 103 fields: dict[str, FieldInfo] = {} 104 105 class_vars: set[str] = set() 106 for ann_name, ann_type in type_hints.items(): 107 if ann_name == 'model_config': 108 # We never want to treat `model_config` as a field 109 # Note: we may need to change this logic if/when we introduce a `BareModel` class with no 110 # protected namespaces (where `model_config` might be allowed as a field name) 111 continue 112 for protected_namespace in config_wrapper.protected_namespaces: 113 if ann_name.startswith(protected_namespace): 114 for b in bases: 115 if hasattr(b, ann_name): 116 from ..main import BaseModel 117 118 if not (issubclass(b, BaseModel) and ann_name in b.model_fields): 119 raise NameError( 120 f'Field "{ann_name}" conflicts with member {getattr(b, ann_name)}' 121 f' of protected namespace "{protected_namespace}".' 122 ) 123 else: 124 valid_namespaces = tuple( 125 x for x in config_wrapper.protected_namespaces if not ann_name.startswith(x) 126 ) 127 warnings.warn( 128 f'Field "{ann_name}" has conflict with protected namespace "{protected_namespace}".' 129 '\n\nYou may be able to resolve this warning by setting' 130 f" `model_config['protected_namespaces'] = {valid_namespaces}`.", 131 UserWarning, 132 ) 133 if is_classvar(ann_type): 134 class_vars.add(ann_name) 135 continue 136 if _is_finalvar_with_default_val(ann_type, getattr(cls, ann_name, PydanticUndefined)): 137 class_vars.add(ann_name) 138 continue 139 if not is_valid_field_name(ann_name): 140 continue 141 if cls.__pydantic_root_model__ and ann_name != 'root': 142 raise NameError( 143 f"Unexpected field with name {ann_name!r}; only 'root' is allowed as a field of a `RootModel`" 144 ) 145 146 # when building a generic model with `MyModel[int]`, the generic_origin check makes sure we don't get 147 # "... shadows an attribute" errors 148 generic_origin = getattr(cls, '__pydantic_generic_metadata__', {}).get('origin') 149 for base in bases: 150 dataclass_fields = { 151 field.name for field in (dataclasses.fields(base) if dataclasses.is_dataclass(base) else ()) 152 } 153 if hasattr(base, ann_name): 154 if base is generic_origin: 155 # Don't error when "shadowing" of attributes in parametrized generics 156 continue 157 158 if ann_name in dataclass_fields: 159 # Don't error when inheriting stdlib dataclasses whose fields are "shadowed" by defaults being set 160 # on the class instance. 161 continue 162 warnings.warn( 163 f'Field name "{ann_name}" shadows an attribute in parent "{base.__qualname__}"; ', 164 UserWarning, 165 ) 166 167 try: 168 default = getattr(cls, ann_name, PydanticUndefined) 169 if default is PydanticUndefined: 170 raise AttributeError 171 except AttributeError: 172 if ann_name in annotations: 173 field_info = FieldInfo.from_annotation(ann_type) 174 else: 175 # if field has no default value and is not in __annotations__ this means that it is 176 # defined in a base class and we can take it from there 177 model_fields_lookup: dict[str, FieldInfo] = {} 178 for x in cls.__bases__[::-1]: 179 model_fields_lookup.update(getattr(x, 'model_fields', {})) 180 if ann_name in model_fields_lookup: 181 # The field was present on one of the (possibly multiple) base classes 182 # copy the field to make sure typevar substitutions don't cause issues with the base classes 183 field_info = copy(model_fields_lookup[ann_name]) 184 else: 185 # The field was not found on any base classes; this seems to be caused by fields not getting 186 # generated thanks to models not being fully defined while initializing recursive models. 187 # Nothing stops us from just creating a new FieldInfo for this type hint, so we do this. 188 field_info = FieldInfo.from_annotation(ann_type) 189 else: 190 field_info = FieldInfo.from_annotated_attribute(ann_type, default) 191 # attributes which are fields are removed from the class namespace: 192 # 1. To match the behaviour of annotation-only fields 193 # 2. To avoid false positives in the NameError check above 194 try: 195 delattr(cls, ann_name) 196 except AttributeError: 197 pass # indicates the attribute was on a parent class 198 199 fields[ann_name] = field_info 200 201 if typevars_map: 202 for field in fields.values(): 203 field.apply_typevars_map(typevars_map, types_namespace) 204 205 return fields, class_vars 206 207 208 def _is_finalvar_with_default_val(type_: type[Any], val: Any) -> bool: 209 from ..fields import FieldInfo 210 211 if not is_finalvar(type_): 212 return False 213 elif val is PydanticUndefined: 214 return False 215 elif isinstance(val, FieldInfo) and (val.default is PydanticUndefined and val.default_factory is None): 216 return False 217 else: 218 return True 219 220 221 def collect_dataclass_fields( 222 cls: type[StandardDataclass], types_namespace: dict[str, Any] | None, *, typevars_map: dict[Any, Any] | None = None 223 ) -> dict[str, FieldInfo]: 224 """Collect the fields of a dataclass. 225 226 Args: 227 cls: dataclass. 228 types_namespace: Optional extra namespace to look for types in. 229 typevars_map: A dictionary mapping type variables to their concrete types. 230 231 Returns: 232 The dataclass fields. 233 """ 234 from ..fields import FieldInfo 235 236 fields: dict[str, FieldInfo] = {} 237 dataclass_fields: dict[str, dataclasses.Field] = cls.__dataclass_fields__ 238 cls_localns = dict(vars(cls)) # this matches get_cls_type_hints_lenient, but all tests pass with `= None` instead 239 240 for ann_name, dataclass_field in dataclass_fields.items(): 241 ann_type = _typing_extra.eval_type_lenient(dataclass_field.type, types_namespace, cls_localns) 242 if is_classvar(ann_type): 243 continue 244 245 if not dataclass_field.init and dataclass_field.default_factory == dataclasses.MISSING: 246 # TODO: We should probably do something with this so that validate_assignment behaves properly 247 # Issue: https://github.com/pydantic/pydantic/issues/5470 248 continue 249 250 if isinstance(dataclass_field.default, FieldInfo): 251 if dataclass_field.default.init_var: 252 # TODO: same note as above 253 continue 254 field_info = FieldInfo.from_annotated_attribute(ann_type, dataclass_field.default) 255 else: 256 field_info = FieldInfo.from_annotated_attribute(ann_type, dataclass_field) 257 fields[ann_name] = field_info 258 259 if field_info.default is not PydanticUndefined and isinstance(getattr(cls, ann_name, field_info), FieldInfo): 260 # We need this to fix the default when the "default" from __dataclass_fields__ is a pydantic.FieldInfo 261 setattr(cls, ann_name, field_info.default) 262 263 if typevars_map: 264 for field in fields.values(): 265 field.apply_typevars_map(typevars_map, types_namespace) 266 267 return fields 268 269 270 def is_valid_field_name(name: str) -> bool: 271 return not name.startswith('_') 272 273 274 def is_valid_privateattr_name(name: str) -> bool: 275 return name.startswith('_') and not name.startswith('__') 276 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/pydantic/_internal/_fields.py b/pydantic/_internal/_fields.py --- a/pydantic/_internal/_fields.py +++ b/pydantic/_internal/_fields.py @@ -19,6 +19,7 @@ from ..fields import FieldInfo from ..main import BaseModel from ._dataclasses import StandardDataclass + from ._decorators import DecoratorInfos def get_type_hints_infer_globalns( @@ -196,6 +197,11 @@ except AttributeError: pass # indicates the attribute was on a parent class + # Use cls.__dict__['__pydantic_decorators__'] instead of cls.__pydantic_decorators__ + # to make sure the decorators have already been built for this exact class + decorators: DecoratorInfos = cls.__dict__['__pydantic_decorators__'] + if ann_name in decorators.computed_fields: + raise ValueError("you can't override a field with a computed field") fields[ann_name] = field_info if typevars_map:
{"golden_diff": "diff --git a/pydantic/_internal/_fields.py b/pydantic/_internal/_fields.py\n--- a/pydantic/_internal/_fields.py\n+++ b/pydantic/_internal/_fields.py\n@@ -19,6 +19,7 @@\n from ..fields import FieldInfo\n from ..main import BaseModel\n from ._dataclasses import StandardDataclass\n+ from ._decorators import DecoratorInfos\n \n \n def get_type_hints_infer_globalns(\n@@ -196,6 +197,11 @@\n except AttributeError:\n pass # indicates the attribute was on a parent class\n \n+ # Use cls.__dict__['__pydantic_decorators__'] instead of cls.__pydantic_decorators__\n+ # to make sure the decorators have already been built for this exact class\n+ decorators: DecoratorInfos = cls.__dict__['__pydantic_decorators__']\n+ if ann_name in decorators.computed_fields:\n+ raise ValueError(\"you can't override a field with a computed field\")\n fields[ann_name] = field_info\n \n if typevars_map:\n", "issue": "Failure to override an inherited field with a computed field\n### Initial Checks\r\n\r\n- [X] I confirm that I'm using Pydantic V2\r\n\r\n### Description\r\n\r\nIt seems that overriding a regular field with a computed field doesn't behave as expected. Instead of a value being returned by accessing the property the property object itself is returned. And as for `@cached_property` causes an exception within `pydantic/_internal/_utils.py:smart_deepcopy`.\r\n\r\n### Example Code\r\n\r\n```Python\r\nfrom pydantic import BaseModel, computed_field\r\nfrom functools import cached_property\r\n\r\nclass Foo(BaseModel):\r\n name: str = \"Foo\"\r\n\r\nclass Bar(Foo):\r\n @computed_field\r\n @property\r\n def name(self) -> str:\r\n return \"Bar\"\r\n\r\nprint(Foo().name) # Foo\r\nprint(Bar().name) # <property object at 0x...>\r\n\r\n# Upon definition:\r\n# > TypeError: cannot pickle '_thread.RLock' object\r\nclass Baz(Foo):\r\n @computed_field\r\n @cached_property\r\n def name(self) -> str:\r\n return \"Baz\"\r\n```\r\n\r\nEdit: After some further playing around, removing the default `name = \"Foo\"` from `Foo` it's clear that `name` within `Bar` is in some kind of weird hybrid state.\r\n\r\n```Python\r\nclass Foo(BaseModel):\r\n name: str\r\n\r\nclass Bar(Foo):\r\n @computed_field\r\n @property\r\n def name(self) -> str:\r\n print(\"from property\")\r\n return \"Bar\"\r\n\r\n# Pyright complains:\r\n# 1. Pyright: Argument missing for parameter \"name\" [reportGeneralTypeIssues]\r\n# But runs and I get the same result\r\nprint(Bar().name) # <property object at 0x...>\r\n\r\n# Prints name as inherited from Foo, and without the `\"from property\"`\r\nprint(Bar(name=\"Bar\")) # Bar\r\n```\r\n\r\n\r\n### Python, Pydantic & OS Version\r\n\r\n```Text\r\npydantic version: 2.1.1\r\n pydantic-core version: 2.4.0\r\n pydantic-core build: profile=release pgo=false mimalloc=true\r\n install path: /Users/.../.pyenv/versions/3.11.1/lib/python3.11/site-packages/pydantic\r\n python version: 3.11.1 (main, Jan 14 2023, 16:44:31) [Clang 13.1.6 (clang-1316.0.21.2.5)]\r\n platform: macOS-13.4-arm64-arm-64bit\r\n optional deps. installed: ['email-validator', 'typing-extensions']\r\n```\r\n\r\n\r\nSelected Assignee: @hramezani\n", "before_files": [{"content": "\"\"\"Private logic related to fields (the `Field()` function and `FieldInfo` class), and arguments to `Annotated`.\"\"\"\nfrom __future__ import annotations as _annotations\n\nimport dataclasses\nimport sys\nimport warnings\nfrom copy import copy\nfrom typing import TYPE_CHECKING, Any\n\nfrom annotated_types import BaseMetadata\nfrom pydantic_core import PydanticUndefined\n\nfrom . import _typing_extra\nfrom ._config import ConfigWrapper\nfrom ._repr import Representation\nfrom ._typing_extra import get_cls_type_hints_lenient, get_type_hints, is_classvar, is_finalvar\n\nif TYPE_CHECKING:\n from ..fields import FieldInfo\n from ..main import BaseModel\n from ._dataclasses import StandardDataclass\n\n\ndef get_type_hints_infer_globalns(\n obj: Any,\n localns: dict[str, Any] | None = None,\n include_extras: bool = False,\n) -> dict[str, Any]:\n \"\"\"Gets type hints for an object by inferring the global namespace.\n\n It uses the `typing.get_type_hints`, The only thing that we do here is fetching\n global namespace from `obj.__module__` if it is not `None`.\n\n Args:\n obj: The object to get its type hints.\n localns: The local namespaces.\n include_extras: Whether to recursively include annotation metadata.\n\n Returns:\n The object type hints.\n \"\"\"\n module_name = getattr(obj, '__module__', None)\n globalns: dict[str, Any] | None = None\n if module_name:\n try:\n globalns = sys.modules[module_name].__dict__\n except KeyError:\n # happens occasionally, see https://github.com/pydantic/pydantic/issues/2363\n pass\n return get_type_hints(obj, globalns=globalns, localns=localns, include_extras=include_extras)\n\n\nclass PydanticMetadata(Representation):\n \"\"\"Base class for annotation markers like `Strict`.\"\"\"\n\n __slots__ = ()\n\n\nclass PydanticGeneralMetadata(PydanticMetadata, BaseMetadata):\n \"\"\"Pydantic general metada like `max_digits`.\"\"\"\n\n def __init__(self, **metadata: Any):\n self.__dict__ = metadata\n\n\ndef collect_model_fields( # noqa: C901\n cls: type[BaseModel],\n bases: tuple[type[Any], ...],\n config_wrapper: ConfigWrapper,\n types_namespace: dict[str, Any] | None,\n *,\n typevars_map: dict[Any, Any] | None = None,\n) -> tuple[dict[str, FieldInfo], set[str]]:\n \"\"\"Collect the fields of a nascent pydantic model.\n\n Also collect the names of any ClassVars present in the type hints.\n\n The returned value is a tuple of two items: the fields dict, and the set of ClassVar names.\n\n Args:\n cls: BaseModel or dataclass.\n bases: Parents of the class, generally `cls.__bases__`.\n config_wrapper: The config wrapper instance.\n types_namespace: Optional extra namespace to look for types in.\n typevars_map: A dictionary mapping type variables to their concrete types.\n\n Returns:\n A tuple contains fields and class variables.\n\n Raises:\n NameError:\n - If there is a conflict between a field name and protected namespaces.\n - If there is a field other than `root` in `RootModel`.\n - If a field shadows an attribute in the parent model.\n \"\"\"\n from ..fields import FieldInfo\n\n type_hints = get_cls_type_hints_lenient(cls, types_namespace)\n\n # https://docs.python.org/3/howto/annotations.html#accessing-the-annotations-dict-of-an-object-in-python-3-9-and-older\n # annotations is only used for finding fields in parent classes\n annotations = cls.__dict__.get('__annotations__', {})\n fields: dict[str, FieldInfo] = {}\n\n class_vars: set[str] = set()\n for ann_name, ann_type in type_hints.items():\n if ann_name == 'model_config':\n # We never want to treat `model_config` as a field\n # Note: we may need to change this logic if/when we introduce a `BareModel` class with no\n # protected namespaces (where `model_config` might be allowed as a field name)\n continue\n for protected_namespace in config_wrapper.protected_namespaces:\n if ann_name.startswith(protected_namespace):\n for b in bases:\n if hasattr(b, ann_name):\n from ..main import BaseModel\n\n if not (issubclass(b, BaseModel) and ann_name in b.model_fields):\n raise NameError(\n f'Field \"{ann_name}\" conflicts with member {getattr(b, ann_name)}'\n f' of protected namespace \"{protected_namespace}\".'\n )\n else:\n valid_namespaces = tuple(\n x for x in config_wrapper.protected_namespaces if not ann_name.startswith(x)\n )\n warnings.warn(\n f'Field \"{ann_name}\" has conflict with protected namespace \"{protected_namespace}\".'\n '\\n\\nYou may be able to resolve this warning by setting'\n f\" `model_config['protected_namespaces'] = {valid_namespaces}`.\",\n UserWarning,\n )\n if is_classvar(ann_type):\n class_vars.add(ann_name)\n continue\n if _is_finalvar_with_default_val(ann_type, getattr(cls, ann_name, PydanticUndefined)):\n class_vars.add(ann_name)\n continue\n if not is_valid_field_name(ann_name):\n continue\n if cls.__pydantic_root_model__ and ann_name != 'root':\n raise NameError(\n f\"Unexpected field with name {ann_name!r}; only 'root' is allowed as a field of a `RootModel`\"\n )\n\n # when building a generic model with `MyModel[int]`, the generic_origin check makes sure we don't get\n # \"... shadows an attribute\" errors\n generic_origin = getattr(cls, '__pydantic_generic_metadata__', {}).get('origin')\n for base in bases:\n dataclass_fields = {\n field.name for field in (dataclasses.fields(base) if dataclasses.is_dataclass(base) else ())\n }\n if hasattr(base, ann_name):\n if base is generic_origin:\n # Don't error when \"shadowing\" of attributes in parametrized generics\n continue\n\n if ann_name in dataclass_fields:\n # Don't error when inheriting stdlib dataclasses whose fields are \"shadowed\" by defaults being set\n # on the class instance.\n continue\n warnings.warn(\n f'Field name \"{ann_name}\" shadows an attribute in parent \"{base.__qualname__}\"; ',\n UserWarning,\n )\n\n try:\n default = getattr(cls, ann_name, PydanticUndefined)\n if default is PydanticUndefined:\n raise AttributeError\n except AttributeError:\n if ann_name in annotations:\n field_info = FieldInfo.from_annotation(ann_type)\n else:\n # if field has no default value and is not in __annotations__ this means that it is\n # defined in a base class and we can take it from there\n model_fields_lookup: dict[str, FieldInfo] = {}\n for x in cls.__bases__[::-1]:\n model_fields_lookup.update(getattr(x, 'model_fields', {}))\n if ann_name in model_fields_lookup:\n # The field was present on one of the (possibly multiple) base classes\n # copy the field to make sure typevar substitutions don't cause issues with the base classes\n field_info = copy(model_fields_lookup[ann_name])\n else:\n # The field was not found on any base classes; this seems to be caused by fields not getting\n # generated thanks to models not being fully defined while initializing recursive models.\n # Nothing stops us from just creating a new FieldInfo for this type hint, so we do this.\n field_info = FieldInfo.from_annotation(ann_type)\n else:\n field_info = FieldInfo.from_annotated_attribute(ann_type, default)\n # attributes which are fields are removed from the class namespace:\n # 1. To match the behaviour of annotation-only fields\n # 2. To avoid false positives in the NameError check above\n try:\n delattr(cls, ann_name)\n except AttributeError:\n pass # indicates the attribute was on a parent class\n\n fields[ann_name] = field_info\n\n if typevars_map:\n for field in fields.values():\n field.apply_typevars_map(typevars_map, types_namespace)\n\n return fields, class_vars\n\n\ndef _is_finalvar_with_default_val(type_: type[Any], val: Any) -> bool:\n from ..fields import FieldInfo\n\n if not is_finalvar(type_):\n return False\n elif val is PydanticUndefined:\n return False\n elif isinstance(val, FieldInfo) and (val.default is PydanticUndefined and val.default_factory is None):\n return False\n else:\n return True\n\n\ndef collect_dataclass_fields(\n cls: type[StandardDataclass], types_namespace: dict[str, Any] | None, *, typevars_map: dict[Any, Any] | None = None\n) -> dict[str, FieldInfo]:\n \"\"\"Collect the fields of a dataclass.\n\n Args:\n cls: dataclass.\n types_namespace: Optional extra namespace to look for types in.\n typevars_map: A dictionary mapping type variables to their concrete types.\n\n Returns:\n The dataclass fields.\n \"\"\"\n from ..fields import FieldInfo\n\n fields: dict[str, FieldInfo] = {}\n dataclass_fields: dict[str, dataclasses.Field] = cls.__dataclass_fields__\n cls_localns = dict(vars(cls)) # this matches get_cls_type_hints_lenient, but all tests pass with `= None` instead\n\n for ann_name, dataclass_field in dataclass_fields.items():\n ann_type = _typing_extra.eval_type_lenient(dataclass_field.type, types_namespace, cls_localns)\n if is_classvar(ann_type):\n continue\n\n if not dataclass_field.init and dataclass_field.default_factory == dataclasses.MISSING:\n # TODO: We should probably do something with this so that validate_assignment behaves properly\n # Issue: https://github.com/pydantic/pydantic/issues/5470\n continue\n\n if isinstance(dataclass_field.default, FieldInfo):\n if dataclass_field.default.init_var:\n # TODO: same note as above\n continue\n field_info = FieldInfo.from_annotated_attribute(ann_type, dataclass_field.default)\n else:\n field_info = FieldInfo.from_annotated_attribute(ann_type, dataclass_field)\n fields[ann_name] = field_info\n\n if field_info.default is not PydanticUndefined and isinstance(getattr(cls, ann_name, field_info), FieldInfo):\n # We need this to fix the default when the \"default\" from __dataclass_fields__ is a pydantic.FieldInfo\n setattr(cls, ann_name, field_info.default)\n\n if typevars_map:\n for field in fields.values():\n field.apply_typevars_map(typevars_map, types_namespace)\n\n return fields\n\n\ndef is_valid_field_name(name: str) -> bool:\n return not name.startswith('_')\n\n\ndef is_valid_privateattr_name(name: str) -> bool:\n return name.startswith('_') and not name.startswith('__')\n", "path": "pydantic/_internal/_fields.py"}], "after_files": [{"content": "\"\"\"Private logic related to fields (the `Field()` function and `FieldInfo` class), and arguments to `Annotated`.\"\"\"\nfrom __future__ import annotations as _annotations\n\nimport dataclasses\nimport sys\nimport warnings\nfrom copy import copy\nfrom typing import TYPE_CHECKING, Any\n\nfrom annotated_types import BaseMetadata\nfrom pydantic_core import PydanticUndefined\n\nfrom . import _typing_extra\nfrom ._config import ConfigWrapper\nfrom ._repr import Representation\nfrom ._typing_extra import get_cls_type_hints_lenient, get_type_hints, is_classvar, is_finalvar\n\nif TYPE_CHECKING:\n from ..fields import FieldInfo\n from ..main import BaseModel\n from ._dataclasses import StandardDataclass\n from ._decorators import DecoratorInfos\n\n\ndef get_type_hints_infer_globalns(\n obj: Any,\n localns: dict[str, Any] | None = None,\n include_extras: bool = False,\n) -> dict[str, Any]:\n \"\"\"Gets type hints for an object by inferring the global namespace.\n\n It uses the `typing.get_type_hints`, The only thing that we do here is fetching\n global namespace from `obj.__module__` if it is not `None`.\n\n Args:\n obj: The object to get its type hints.\n localns: The local namespaces.\n include_extras: Whether to recursively include annotation metadata.\n\n Returns:\n The object type hints.\n \"\"\"\n module_name = getattr(obj, '__module__', None)\n globalns: dict[str, Any] | None = None\n if module_name:\n try:\n globalns = sys.modules[module_name].__dict__\n except KeyError:\n # happens occasionally, see https://github.com/pydantic/pydantic/issues/2363\n pass\n return get_type_hints(obj, globalns=globalns, localns=localns, include_extras=include_extras)\n\n\nclass PydanticMetadata(Representation):\n \"\"\"Base class for annotation markers like `Strict`.\"\"\"\n\n __slots__ = ()\n\n\nclass PydanticGeneralMetadata(PydanticMetadata, BaseMetadata):\n \"\"\"Pydantic general metada like `max_digits`.\"\"\"\n\n def __init__(self, **metadata: Any):\n self.__dict__ = metadata\n\n\ndef collect_model_fields( # noqa: C901\n cls: type[BaseModel],\n bases: tuple[type[Any], ...],\n config_wrapper: ConfigWrapper,\n types_namespace: dict[str, Any] | None,\n *,\n typevars_map: dict[Any, Any] | None = None,\n) -> tuple[dict[str, FieldInfo], set[str]]:\n \"\"\"Collect the fields of a nascent pydantic model.\n\n Also collect the names of any ClassVars present in the type hints.\n\n The returned value is a tuple of two items: the fields dict, and the set of ClassVar names.\n\n Args:\n cls: BaseModel or dataclass.\n bases: Parents of the class, generally `cls.__bases__`.\n config_wrapper: The config wrapper instance.\n types_namespace: Optional extra namespace to look for types in.\n typevars_map: A dictionary mapping type variables to their concrete types.\n\n Returns:\n A tuple contains fields and class variables.\n\n Raises:\n NameError:\n - If there is a conflict between a field name and protected namespaces.\n - If there is a field other than `root` in `RootModel`.\n - If a field shadows an attribute in the parent model.\n \"\"\"\n from ..fields import FieldInfo\n\n type_hints = get_cls_type_hints_lenient(cls, types_namespace)\n\n # https://docs.python.org/3/howto/annotations.html#accessing-the-annotations-dict-of-an-object-in-python-3-9-and-older\n # annotations is only used for finding fields in parent classes\n annotations = cls.__dict__.get('__annotations__', {})\n fields: dict[str, FieldInfo] = {}\n\n class_vars: set[str] = set()\n for ann_name, ann_type in type_hints.items():\n if ann_name == 'model_config':\n # We never want to treat `model_config` as a field\n # Note: we may need to change this logic if/when we introduce a `BareModel` class with no\n # protected namespaces (where `model_config` might be allowed as a field name)\n continue\n for protected_namespace in config_wrapper.protected_namespaces:\n if ann_name.startswith(protected_namespace):\n for b in bases:\n if hasattr(b, ann_name):\n from ..main import BaseModel\n\n if not (issubclass(b, BaseModel) and ann_name in b.model_fields):\n raise NameError(\n f'Field \"{ann_name}\" conflicts with member {getattr(b, ann_name)}'\n f' of protected namespace \"{protected_namespace}\".'\n )\n else:\n valid_namespaces = tuple(\n x for x in config_wrapper.protected_namespaces if not ann_name.startswith(x)\n )\n warnings.warn(\n f'Field \"{ann_name}\" has conflict with protected namespace \"{protected_namespace}\".'\n '\\n\\nYou may be able to resolve this warning by setting'\n f\" `model_config['protected_namespaces'] = {valid_namespaces}`.\",\n UserWarning,\n )\n if is_classvar(ann_type):\n class_vars.add(ann_name)\n continue\n if _is_finalvar_with_default_val(ann_type, getattr(cls, ann_name, PydanticUndefined)):\n class_vars.add(ann_name)\n continue\n if not is_valid_field_name(ann_name):\n continue\n if cls.__pydantic_root_model__ and ann_name != 'root':\n raise NameError(\n f\"Unexpected field with name {ann_name!r}; only 'root' is allowed as a field of a `RootModel`\"\n )\n\n # when building a generic model with `MyModel[int]`, the generic_origin check makes sure we don't get\n # \"... shadows an attribute\" errors\n generic_origin = getattr(cls, '__pydantic_generic_metadata__', {}).get('origin')\n for base in bases:\n dataclass_fields = {\n field.name for field in (dataclasses.fields(base) if dataclasses.is_dataclass(base) else ())\n }\n if hasattr(base, ann_name):\n if base is generic_origin:\n # Don't error when \"shadowing\" of attributes in parametrized generics\n continue\n\n if ann_name in dataclass_fields:\n # Don't error when inheriting stdlib dataclasses whose fields are \"shadowed\" by defaults being set\n # on the class instance.\n continue\n warnings.warn(\n f'Field name \"{ann_name}\" shadows an attribute in parent \"{base.__qualname__}\"; ',\n UserWarning,\n )\n\n try:\n default = getattr(cls, ann_name, PydanticUndefined)\n if default is PydanticUndefined:\n raise AttributeError\n except AttributeError:\n if ann_name in annotations:\n field_info = FieldInfo.from_annotation(ann_type)\n else:\n # if field has no default value and is not in __annotations__ this means that it is\n # defined in a base class and we can take it from there\n model_fields_lookup: dict[str, FieldInfo] = {}\n for x in cls.__bases__[::-1]:\n model_fields_lookup.update(getattr(x, 'model_fields', {}))\n if ann_name in model_fields_lookup:\n # The field was present on one of the (possibly multiple) base classes\n # copy the field to make sure typevar substitutions don't cause issues with the base classes\n field_info = copy(model_fields_lookup[ann_name])\n else:\n # The field was not found on any base classes; this seems to be caused by fields not getting\n # generated thanks to models not being fully defined while initializing recursive models.\n # Nothing stops us from just creating a new FieldInfo for this type hint, so we do this.\n field_info = FieldInfo.from_annotation(ann_type)\n else:\n field_info = FieldInfo.from_annotated_attribute(ann_type, default)\n # attributes which are fields are removed from the class namespace:\n # 1. To match the behaviour of annotation-only fields\n # 2. To avoid false positives in the NameError check above\n try:\n delattr(cls, ann_name)\n except AttributeError:\n pass # indicates the attribute was on a parent class\n\n # Use cls.__dict__['__pydantic_decorators__'] instead of cls.__pydantic_decorators__\n # to make sure the decorators have already been built for this exact class\n decorators: DecoratorInfos = cls.__dict__['__pydantic_decorators__']\n if ann_name in decorators.computed_fields:\n raise ValueError(\"you can't override a field with a computed field\")\n fields[ann_name] = field_info\n\n if typevars_map:\n for field in fields.values():\n field.apply_typevars_map(typevars_map, types_namespace)\n\n return fields, class_vars\n\n\ndef _is_finalvar_with_default_val(type_: type[Any], val: Any) -> bool:\n from ..fields import FieldInfo\n\n if not is_finalvar(type_):\n return False\n elif val is PydanticUndefined:\n return False\n elif isinstance(val, FieldInfo) and (val.default is PydanticUndefined and val.default_factory is None):\n return False\n else:\n return True\n\n\ndef collect_dataclass_fields(\n cls: type[StandardDataclass], types_namespace: dict[str, Any] | None, *, typevars_map: dict[Any, Any] | None = None\n) -> dict[str, FieldInfo]:\n \"\"\"Collect the fields of a dataclass.\n\n Args:\n cls: dataclass.\n types_namespace: Optional extra namespace to look for types in.\n typevars_map: A dictionary mapping type variables to their concrete types.\n\n Returns:\n The dataclass fields.\n \"\"\"\n from ..fields import FieldInfo\n\n fields: dict[str, FieldInfo] = {}\n dataclass_fields: dict[str, dataclasses.Field] = cls.__dataclass_fields__\n cls_localns = dict(vars(cls)) # this matches get_cls_type_hints_lenient, but all tests pass with `= None` instead\n\n for ann_name, dataclass_field in dataclass_fields.items():\n ann_type = _typing_extra.eval_type_lenient(dataclass_field.type, types_namespace, cls_localns)\n if is_classvar(ann_type):\n continue\n\n if not dataclass_field.init and dataclass_field.default_factory == dataclasses.MISSING:\n # TODO: We should probably do something with this so that validate_assignment behaves properly\n # Issue: https://github.com/pydantic/pydantic/issues/5470\n continue\n\n if isinstance(dataclass_field.default, FieldInfo):\n if dataclass_field.default.init_var:\n # TODO: same note as above\n continue\n field_info = FieldInfo.from_annotated_attribute(ann_type, dataclass_field.default)\n else:\n field_info = FieldInfo.from_annotated_attribute(ann_type, dataclass_field)\n fields[ann_name] = field_info\n\n if field_info.default is not PydanticUndefined and isinstance(getattr(cls, ann_name, field_info), FieldInfo):\n # We need this to fix the default when the \"default\" from __dataclass_fields__ is a pydantic.FieldInfo\n setattr(cls, ann_name, field_info.default)\n\n if typevars_map:\n for field in fields.values():\n field.apply_typevars_map(typevars_map, types_namespace)\n\n return fields\n\n\ndef is_valid_field_name(name: str) -> bool:\n return not name.startswith('_')\n\n\ndef is_valid_privateattr_name(name: str) -> bool:\n return name.startswith('_') and not name.startswith('__')\n", "path": "pydantic/_internal/_fields.py"}]}
4,066
240
gh_patches_debug_22746
rasdani/github-patches
git_diff
pre-commit__pre-commit-346
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Windows: Terminal width support We detect terminal width in unixlikes by running `tput cols`. This works fine for those platforms but doesn't work well for windows. Maybe find a package which does this logic for us and depend on that. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `pre_commit/output.py` Content: ``` 1 from __future__ import unicode_literals 2 3 import os 4 import subprocess 5 import sys 6 7 from pre_commit import color 8 from pre_commit import five 9 10 11 # TODO: smell: import side-effects 12 try: 13 if not os.environ.get('TERM'): # pragma: no cover (dumb terminal) 14 raise OSError('Cannot determine width without TERM') 15 else: # pragma no cover (windows) 16 COLS = int( 17 subprocess.Popen( 18 ('tput', 'cols'), stdout=subprocess.PIPE, 19 ).communicate()[0] or 20 # Default in the case of no terminal 21 80 22 ) 23 except OSError: # pragma: no cover (windows) 24 COLS = 80 25 26 27 def get_hook_message( 28 start, 29 postfix='', 30 end_msg=None, 31 end_len=0, 32 end_color=None, 33 use_color=None, 34 cols=COLS, 35 ): 36 """Prints a message for running a hook. 37 38 This currently supports three approaches: 39 40 # Print `start` followed by dots, leaving 6 characters at the end 41 >>> print_hook_message('start', end_len=6) 42 start............................................................... 43 44 # Print `start` followed by dots with the end message colored if coloring 45 # is specified and a newline afterwards 46 >>> print_hook_message( 47 'start', 48 end_msg='end', 49 end_color=color.RED, 50 use_color=True, 51 ) 52 start...................................................................end 53 54 # Print `start` followed by dots, followed by the `postfix` message 55 # uncolored, followed by the `end_msg` colored if specified and a newline 56 # afterwards 57 >>> print_hook_message( 58 'start', 59 postfix='postfix ', 60 end_msg='end', 61 end_color=color.RED, 62 use_color=True, 63 ) 64 start...........................................................postfix end 65 """ 66 if bool(end_msg) == bool(end_len): 67 raise ValueError('Expected one of (`end_msg`, `end_len`)') 68 if end_msg is not None and (end_color is None or use_color is None): 69 raise ValueError( 70 '`end_color` and `use_color` are required with `end_msg`' 71 ) 72 73 if end_len: 74 return start + '.' * (cols - len(start) - end_len - 1) 75 else: 76 return '{0}{1}{2}{3}\n'.format( 77 start, 78 '.' * (cols - len(start) - len(postfix) - len(end_msg) - 1), 79 postfix, 80 color.format_color(end_msg, end_color, use_color), 81 ) 82 83 84 stdout_byte_stream = getattr(sys.stdout, 'buffer', sys.stdout) 85 86 87 def sys_stdout_write_wrapper(s, stream=stdout_byte_stream): 88 stream.write(five.to_bytes(s)) 89 ``` Path: `setup.py` Content: ``` 1 from setuptools import find_packages 2 from setuptools import setup 3 4 5 setup( 6 name='pre_commit', 7 description=( 8 'A framework for managing and maintaining multi-language pre-commit ' 9 'hooks.' 10 ), 11 url='https://github.com/pre-commit/pre-commit', 12 version='0.7.6', 13 14 author='Anthony Sottile', 15 author_email='[email protected]', 16 17 platforms='linux', 18 classifiers=[ 19 'License :: OSI Approved :: MIT License', 20 'Programming Language :: Python :: 2', 21 'Programming Language :: Python :: 2.6', 22 'Programming Language :: Python :: 2.7', 23 'Programming Language :: Python :: 3', 24 'Programming Language :: Python :: 3.3', 25 'Programming Language :: Python :: 3.4', 26 'Programming Language :: Python :: 3.5', 27 'Programming Language :: Python :: Implementation :: CPython', 28 'Programming Language :: Python :: Implementation :: PyPy', 29 ], 30 31 packages=find_packages('.', exclude=('tests*', 'testing*')), 32 package_data={ 33 'pre_commit': [ 34 'resources/hook-tmpl', 35 'resources/pre-push-tmpl', 36 'resources/rbenv.tar.gz', 37 'resources/ruby-build.tar.gz', 38 'resources/ruby-download.tar.gz', 39 ] 40 }, 41 install_requires=[ 42 'argparse', 43 'aspy.yaml', 44 'cached-property', 45 'jsonschema', 46 'nodeenv>=0.11.1', 47 'ordereddict', 48 'pyyaml', 49 'virtualenv', 50 ], 51 entry_points={ 52 'console_scripts': [ 53 'pre-commit = pre_commit.main:main', 54 'pre-commit-validate-config = pre_commit.clientlib.validate_config:run', # noqa 55 'pre-commit-validate-manifest = pre_commit.clientlib.validate_manifest:run', # noqa 56 ], 57 }, 58 ) 59 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/pre_commit/output.py b/pre_commit/output.py --- a/pre_commit/output.py +++ b/pre_commit/output.py @@ -1,27 +1,15 @@ from __future__ import unicode_literals -import os -import subprocess import sys +from backports.shutil_get_terminal_size import get_terminal_size + from pre_commit import color from pre_commit import five - # TODO: smell: import side-effects -try: - if not os.environ.get('TERM'): # pragma: no cover (dumb terminal) - raise OSError('Cannot determine width without TERM') - else: # pragma no cover (windows) - COLS = int( - subprocess.Popen( - ('tput', 'cols'), stdout=subprocess.PIPE, - ).communicate()[0] or - # Default in the case of no terminal - 80 - ) -except OSError: # pragma: no cover (windows) - COLS = 80 +# TODO: https://github.com/chrippa/backports.shutil_get_terminal_size/issues/4 +COLS = get_terminal_size().columns or 80 def get_hook_message( diff --git a/setup.py b/setup.py --- a/setup.py +++ b/setup.py @@ -41,6 +41,7 @@ install_requires=[ 'argparse', 'aspy.yaml', + 'backports.shutil_get_terminal_size', 'cached-property', 'jsonschema', 'nodeenv>=0.11.1',
{"golden_diff": "diff --git a/pre_commit/output.py b/pre_commit/output.py\n--- a/pre_commit/output.py\n+++ b/pre_commit/output.py\n@@ -1,27 +1,15 @@\n from __future__ import unicode_literals\n \n-import os\n-import subprocess\n import sys\n \n+from backports.shutil_get_terminal_size import get_terminal_size\n+\n from pre_commit import color\n from pre_commit import five\n \n-\n # TODO: smell: import side-effects\n-try:\n- if not os.environ.get('TERM'): # pragma: no cover (dumb terminal)\n- raise OSError('Cannot determine width without TERM')\n- else: # pragma no cover (windows)\n- COLS = int(\n- subprocess.Popen(\n- ('tput', 'cols'), stdout=subprocess.PIPE,\n- ).communicate()[0] or\n- # Default in the case of no terminal\n- 80\n- )\n-except OSError: # pragma: no cover (windows)\n- COLS = 80\n+# TODO: https://github.com/chrippa/backports.shutil_get_terminal_size/issues/4\n+COLS = get_terminal_size().columns or 80\n \n \n def get_hook_message(\ndiff --git a/setup.py b/setup.py\n--- a/setup.py\n+++ b/setup.py\n@@ -41,6 +41,7 @@\n install_requires=[\n 'argparse',\n 'aspy.yaml',\n+ 'backports.shutil_get_terminal_size',\n 'cached-property',\n 'jsonschema',\n 'nodeenv>=0.11.1',\n", "issue": "Windows: Terminal width support\nWe detect terminal width in unixlikes by running `tput cols`. This works fine for those platforms but doesn't work well for windows. Maybe find a package which does this logic for us and depend on that.\n\n", "before_files": [{"content": "from __future__ import unicode_literals\n\nimport os\nimport subprocess\nimport sys\n\nfrom pre_commit import color\nfrom pre_commit import five\n\n\n# TODO: smell: import side-effects\ntry:\n if not os.environ.get('TERM'): # pragma: no cover (dumb terminal)\n raise OSError('Cannot determine width without TERM')\n else: # pragma no cover (windows)\n COLS = int(\n subprocess.Popen(\n ('tput', 'cols'), stdout=subprocess.PIPE,\n ).communicate()[0] or\n # Default in the case of no terminal\n 80\n )\nexcept OSError: # pragma: no cover (windows)\n COLS = 80\n\n\ndef get_hook_message(\n start,\n postfix='',\n end_msg=None,\n end_len=0,\n end_color=None,\n use_color=None,\n cols=COLS,\n):\n \"\"\"Prints a message for running a hook.\n\n This currently supports three approaches:\n\n # Print `start` followed by dots, leaving 6 characters at the end\n >>> print_hook_message('start', end_len=6)\n start...............................................................\n\n # Print `start` followed by dots with the end message colored if coloring\n # is specified and a newline afterwards\n >>> print_hook_message(\n 'start',\n end_msg='end',\n end_color=color.RED,\n use_color=True,\n )\n start...................................................................end\n\n # Print `start` followed by dots, followed by the `postfix` message\n # uncolored, followed by the `end_msg` colored if specified and a newline\n # afterwards\n >>> print_hook_message(\n 'start',\n postfix='postfix ',\n end_msg='end',\n end_color=color.RED,\n use_color=True,\n )\n start...........................................................postfix end\n \"\"\"\n if bool(end_msg) == bool(end_len):\n raise ValueError('Expected one of (`end_msg`, `end_len`)')\n if end_msg is not None and (end_color is None or use_color is None):\n raise ValueError(\n '`end_color` and `use_color` are required with `end_msg`'\n )\n\n if end_len:\n return start + '.' * (cols - len(start) - end_len - 1)\n else:\n return '{0}{1}{2}{3}\\n'.format(\n start,\n '.' * (cols - len(start) - len(postfix) - len(end_msg) - 1),\n postfix,\n color.format_color(end_msg, end_color, use_color),\n )\n\n\nstdout_byte_stream = getattr(sys.stdout, 'buffer', sys.stdout)\n\n\ndef sys_stdout_write_wrapper(s, stream=stdout_byte_stream):\n stream.write(five.to_bytes(s))\n", "path": "pre_commit/output.py"}, {"content": "from setuptools import find_packages\nfrom setuptools import setup\n\n\nsetup(\n name='pre_commit',\n description=(\n 'A framework for managing and maintaining multi-language pre-commit '\n 'hooks.'\n ),\n url='https://github.com/pre-commit/pre-commit',\n version='0.7.6',\n\n author='Anthony Sottile',\n author_email='[email protected]',\n\n platforms='linux',\n classifiers=[\n 'License :: OSI Approved :: MIT License',\n 'Programming Language :: Python :: 2',\n 'Programming Language :: Python :: 2.6',\n 'Programming Language :: Python :: 2.7',\n 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3.3',\n 'Programming Language :: Python :: 3.4',\n 'Programming Language :: Python :: 3.5',\n 'Programming Language :: Python :: Implementation :: CPython',\n 'Programming Language :: Python :: Implementation :: PyPy',\n ],\n\n packages=find_packages('.', exclude=('tests*', 'testing*')),\n package_data={\n 'pre_commit': [\n 'resources/hook-tmpl',\n 'resources/pre-push-tmpl',\n 'resources/rbenv.tar.gz',\n 'resources/ruby-build.tar.gz',\n 'resources/ruby-download.tar.gz',\n ]\n },\n install_requires=[\n 'argparse',\n 'aspy.yaml',\n 'cached-property',\n 'jsonschema',\n 'nodeenv>=0.11.1',\n 'ordereddict',\n 'pyyaml',\n 'virtualenv',\n ],\n entry_points={\n 'console_scripts': [\n 'pre-commit = pre_commit.main:main',\n 'pre-commit-validate-config = pre_commit.clientlib.validate_config:run', # noqa\n 'pre-commit-validate-manifest = pre_commit.clientlib.validate_manifest:run', # noqa\n ],\n },\n)\n", "path": "setup.py"}], "after_files": [{"content": "from __future__ import unicode_literals\n\nimport sys\n\nfrom backports.shutil_get_terminal_size import get_terminal_size\n\nfrom pre_commit import color\nfrom pre_commit import five\n\n# TODO: smell: import side-effects\n# TODO: https://github.com/chrippa/backports.shutil_get_terminal_size/issues/4\nCOLS = get_terminal_size().columns or 80\n\n\ndef get_hook_message(\n start,\n postfix='',\n end_msg=None,\n end_len=0,\n end_color=None,\n use_color=None,\n cols=COLS,\n):\n \"\"\"Prints a message for running a hook.\n\n This currently supports three approaches:\n\n # Print `start` followed by dots, leaving 6 characters at the end\n >>> print_hook_message('start', end_len=6)\n start...............................................................\n\n # Print `start` followed by dots with the end message colored if coloring\n # is specified and a newline afterwards\n >>> print_hook_message(\n 'start',\n end_msg='end',\n end_color=color.RED,\n use_color=True,\n )\n start...................................................................end\n\n # Print `start` followed by dots, followed by the `postfix` message\n # uncolored, followed by the `end_msg` colored if specified and a newline\n # afterwards\n >>> print_hook_message(\n 'start',\n postfix='postfix ',\n end_msg='end',\n end_color=color.RED,\n use_color=True,\n )\n start...........................................................postfix end\n \"\"\"\n if bool(end_msg) == bool(end_len):\n raise ValueError('Expected one of (`end_msg`, `end_len`)')\n if end_msg is not None and (end_color is None or use_color is None):\n raise ValueError(\n '`end_color` and `use_color` are required with `end_msg`'\n )\n\n if end_len:\n return start + '.' * (cols - len(start) - end_len - 1)\n else:\n return '{0}{1}{2}{3}\\n'.format(\n start,\n '.' * (cols - len(start) - len(postfix) - len(end_msg) - 1),\n postfix,\n color.format_color(end_msg, end_color, use_color),\n )\n\n\nstdout_byte_stream = getattr(sys.stdout, 'buffer', sys.stdout)\n\n\ndef sys_stdout_write_wrapper(s, stream=stdout_byte_stream):\n stream.write(five.to_bytes(s))\n", "path": "pre_commit/output.py"}, {"content": "from setuptools import find_packages\nfrom setuptools import setup\n\n\nsetup(\n name='pre_commit',\n description=(\n 'A framework for managing and maintaining multi-language pre-commit '\n 'hooks.'\n ),\n url='https://github.com/pre-commit/pre-commit',\n version='0.7.6',\n\n author='Anthony Sottile',\n author_email='[email protected]',\n\n platforms='linux',\n classifiers=[\n 'License :: OSI Approved :: MIT License',\n 'Programming Language :: Python :: 2',\n 'Programming Language :: Python :: 2.6',\n 'Programming Language :: Python :: 2.7',\n 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3.3',\n 'Programming Language :: Python :: 3.4',\n 'Programming Language :: Python :: 3.5',\n 'Programming Language :: Python :: Implementation :: CPython',\n 'Programming Language :: Python :: Implementation :: PyPy',\n ],\n\n packages=find_packages('.', exclude=('tests*', 'testing*')),\n package_data={\n 'pre_commit': [\n 'resources/hook-tmpl',\n 'resources/pre-push-tmpl',\n 'resources/rbenv.tar.gz',\n 'resources/ruby-build.tar.gz',\n 'resources/ruby-download.tar.gz',\n ]\n },\n install_requires=[\n 'argparse',\n 'aspy.yaml',\n 'backports.shutil_get_terminal_size',\n 'cached-property',\n 'jsonschema',\n 'nodeenv>=0.11.1',\n 'ordereddict',\n 'pyyaml',\n 'virtualenv',\n ],\n entry_points={\n 'console_scripts': [\n 'pre-commit = pre_commit.main:main',\n 'pre-commit-validate-config = pre_commit.clientlib.validate_config:run', # noqa\n 'pre-commit-validate-manifest = pre_commit.clientlib.validate_manifest:run', # noqa\n ],\n },\n)\n", "path": "setup.py"}]}
1,602
339
gh_patches_debug_60612
rasdani/github-patches
git_diff
cloudtools__troposphere-2037
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Add support for additional Flink runtimes in Kinesis Data Analytics. Kinesis supports additional Flink runtimes (FLINK-1_13, ZEPPELIN-FLINK-1_0, ZEPPELIN-FLINK-2_0), see https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kinesisanalyticsv2-application.html. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `troposphere/validators/kinesisanalyticsv2.py` Content: ``` 1 # Copyright (c) 2012-2022, Mark Peek <[email protected]> 2 # All rights reserved. 3 # 4 # See LICENSE file for full license. 5 6 7 def validate_runtime_environment(runtime_environment): 8 """ 9 Validate RuntimeEnvironment for Application 10 Property: Application.RuntimeEnvironment 11 """ 12 13 VALID_RUNTIME_ENVIRONMENTS = ("SQL-1_0", "FLINK-1_6", "FLINK-1_8", "FLINK-1_11") 14 15 if runtime_environment not in VALID_RUNTIME_ENVIRONMENTS: 16 raise ValueError( 17 "Application RuntimeEnvironment must be one of: %s" 18 % ", ".join(VALID_RUNTIME_ENVIRONMENTS) 19 ) 20 return runtime_environment 21 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/troposphere/validators/kinesisanalyticsv2.py b/troposphere/validators/kinesisanalyticsv2.py --- a/troposphere/validators/kinesisanalyticsv2.py +++ b/troposphere/validators/kinesisanalyticsv2.py @@ -10,7 +10,15 @@ Property: Application.RuntimeEnvironment """ - VALID_RUNTIME_ENVIRONMENTS = ("SQL-1_0", "FLINK-1_6", "FLINK-1_8", "FLINK-1_11") + VALID_RUNTIME_ENVIRONMENTS = ( + "FLINK-1_6", + "FLINK-1_8", + "FLINK-1_11", + "FLINK-1_13", + "SQL-1_0", + "ZEPPELIN-FLINK-1_0", + "ZEPPELIN-FLINK-2_0", + ) if runtime_environment not in VALID_RUNTIME_ENVIRONMENTS: raise ValueError(
{"golden_diff": "diff --git a/troposphere/validators/kinesisanalyticsv2.py b/troposphere/validators/kinesisanalyticsv2.py\n--- a/troposphere/validators/kinesisanalyticsv2.py\n+++ b/troposphere/validators/kinesisanalyticsv2.py\n@@ -10,7 +10,15 @@\n Property: Application.RuntimeEnvironment\n \"\"\"\n \n- VALID_RUNTIME_ENVIRONMENTS = (\"SQL-1_0\", \"FLINK-1_6\", \"FLINK-1_8\", \"FLINK-1_11\")\n+ VALID_RUNTIME_ENVIRONMENTS = (\n+ \"FLINK-1_6\",\n+ \"FLINK-1_8\",\n+ \"FLINK-1_11\",\n+ \"FLINK-1_13\",\n+ \"SQL-1_0\",\n+ \"ZEPPELIN-FLINK-1_0\",\n+ \"ZEPPELIN-FLINK-2_0\",\n+ )\n \n if runtime_environment not in VALID_RUNTIME_ENVIRONMENTS:\n raise ValueError(\n", "issue": "Add support for additional Flink runtimes in Kinesis Data Analytics.\nKinesis supports additional Flink runtimes (FLINK-1_13, ZEPPELIN-FLINK-1_0, ZEPPELIN-FLINK-2_0), see https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-kinesisanalyticsv2-application.html.\n", "before_files": [{"content": "# Copyright (c) 2012-2022, Mark Peek <[email protected]>\n# All rights reserved.\n#\n# See LICENSE file for full license.\n\n\ndef validate_runtime_environment(runtime_environment):\n \"\"\"\n Validate RuntimeEnvironment for Application\n Property: Application.RuntimeEnvironment\n \"\"\"\n\n VALID_RUNTIME_ENVIRONMENTS = (\"SQL-1_0\", \"FLINK-1_6\", \"FLINK-1_8\", \"FLINK-1_11\")\n\n if runtime_environment not in VALID_RUNTIME_ENVIRONMENTS:\n raise ValueError(\n \"Application RuntimeEnvironment must be one of: %s\"\n % \", \".join(VALID_RUNTIME_ENVIRONMENTS)\n )\n return runtime_environment\n", "path": "troposphere/validators/kinesisanalyticsv2.py"}], "after_files": [{"content": "# Copyright (c) 2012-2022, Mark Peek <[email protected]>\n# All rights reserved.\n#\n# See LICENSE file for full license.\n\n\ndef validate_runtime_environment(runtime_environment):\n \"\"\"\n Validate RuntimeEnvironment for Application\n Property: Application.RuntimeEnvironment\n \"\"\"\n\n VALID_RUNTIME_ENVIRONMENTS = (\n \"FLINK-1_6\",\n \"FLINK-1_8\",\n \"FLINK-1_11\",\n \"FLINK-1_13\",\n \"SQL-1_0\",\n \"ZEPPELIN-FLINK-1_0\",\n \"ZEPPELIN-FLINK-2_0\",\n )\n\n if runtime_environment not in VALID_RUNTIME_ENVIRONMENTS:\n raise ValueError(\n \"Application RuntimeEnvironment must be one of: %s\"\n % \", \".join(VALID_RUNTIME_ENVIRONMENTS)\n )\n return runtime_environment\n", "path": "troposphere/validators/kinesisanalyticsv2.py"}]}
534
233
gh_patches_debug_979
rasdani/github-patches
git_diff
acl-org__acl-anthology-3022
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Paper Metadata: 2023.findings-emnlp.1054 ### Confirm that this is a metadata correction - [X] I want to file corrections to make the metadata match the PDF file hosted on the ACL Anthology. ### Anthology ID 2023.findings-emnlp.1054 ### Type of Paper Metadata Correction - [X] Paper Title - [ ] Paper Abstract - [ ] Author Name(s) ### Correction to Paper Title Please change the paper title appeared in Cite (ACL) and Cite (Informal) to "Measuring Pointwise 𝒱-Usable Information In-Context-ly" ### Correction to Paper Abstract _No response_ ### Correction to Author Name(s) _No response_ --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `bin/anthology/texmath.py` Content: ``` 1 # -*- coding: utf-8 -*- 2 # 3 # Copyright 2019 Marcel Bollmann <[email protected]> 4 # 5 # Licensed under the Apache License, Version 2.0 (the "License"); 6 # you may not use this file except in compliance with the License. 7 # You may obtain a copy of the License at 8 # 9 # http://www.apache.org/licenses/LICENSE-2.0 10 # 11 # Unless required by applicable law or agreed to in writing, software 12 # distributed under the License is distributed on an "AS IS" BASIS, 13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 # See the License for the specific language governing permissions and 15 # limitations under the License. 16 17 from lxml import etree 18 import csv 19 import logging as log 20 import os 21 from TexSoup import TexSoup 22 from TexSoup.data import TexCmd, TexText, TexGroup 23 24 FUNCTION_NAMES = ("lim", "log") 25 TEX_TO_HTML = { 26 "mathrm": ("span", {"class": "font-weight-normal"}), 27 "textrm": ("span", {"class": "font-weight-normal"}), 28 "text": ("span", {"class": "font-weight-normal"}), 29 "mathbf": ("strong", {}), 30 "textbf": ("strong", {}), 31 "boldsymbol": ("strong", {}), 32 "mathit": ("em", {}), 33 "textit": ("em", {}), 34 "emph": ("em", {}), 35 "textsc": ("span", {"style": "font-variant: small-caps;"}), 36 "texttt": ("span", {"class": "text-monospace"}), 37 "textsubscript": ("sub", {}), 38 "textsuperscript": ("sup", {}), 39 } 40 REMOVED_COMMANDS = ("bf", "rm", "it", "sc") 41 42 43 def _append_text(text, trg): 44 if not text: 45 return 46 if len(trg): 47 if trg[-1].tail is not None: 48 trg[-1].tail += text 49 else: 50 trg[-1].tail = text 51 else: 52 if trg.text is not None: 53 trg.text += text 54 else: 55 trg.text = text 56 57 58 class TexMath: 59 """Interpreter and converter for TeX inline math expressions. 60 61 This class uses TexSoup (https://github.com/alvinwan/TexSoup) to parse a TeX 62 expression and converts it to valid HTML. The conversion combines a small 63 number of handwritten rules with a mapping of LaTeX math mode commands to 64 Unicode symbols (http://milde.users.sourceforge.net/LUCR/Math/). Parts that 65 cannot be interpreted using this simple method are preserved as raw LaTeX. 66 """ 67 68 def __init__(self, symbolsfile=None): 69 self.cmd_map = {} 70 if symbolsfile is None: 71 symbolsfile = os.path.join( 72 os.path.dirname(os.path.abspath(__file__)), "unimathsymbols.txt" 73 ) 74 self.load_symbols(symbolsfile) 75 76 def load_symbols(self, filename): 77 with open(filename, "r", encoding="utf8") as f: 78 reader = csv.reader(f, delimiter="^") 79 for row in reader: 80 if row[0].startswith("#"): # comment 81 continue 82 assert len(row) == 8, "Expect eight-column format" 83 char, cmd = row[1], row[2] 84 if cmd.startswith("\\"): 85 self.cmd_map[cmd[1:]] = char 86 if row[-1].startswith("= ") and ", " in row[-1]: 87 # last column sometimes contains alternative command 88 cmd = row[-1][2:].split(", ")[0] 89 if cmd.startswith("\\"): 90 self.cmd_map[cmd[1:]] = char 91 92 def _parse(self, everything, trg): 93 """Parses a list of TeX constituents into an lxml.etree._Element. 94 95 Arguments: 96 everything: An iterator over TeX constituents as provided by TexSoup 97 trg: The lxml.etree._Element to parse the expression into 98 99 The approach of iterating over the TeX constituents roughly follows 100 <https://github.com/alvinwan/TexSoup/blob/master/examples/list_everything.py>. 101 """ 102 sxscript = False # Tracks whether we're in a subscript/superscript 103 for code in everything: 104 if isinstance(code, TexCmd): 105 # code is a TeX command 106 self._parse_command(code, trg) 107 elif isinstance(code, TexText) or isinstance(code, str): 108 # code is text 109 sxscript = self._parse_text(code, trg) 110 elif isinstance(code, TexGroup): 111 # If in subscript/superscript, wrap the entire element in respective tag 112 if sxscript: 113 my_trg = etree.Element(sxscript) 114 self._parse(code.contents, my_trg) 115 trg.append(my_trg) 116 sxscript = False 117 # Otherwise, just parse it normally 118 else: 119 self._parse(code.contents, trg) 120 else: 121 log.error(f"TeX-math parser got unhandled element: {type(code)}") 122 123 def _parse_command(self, code, trg): 124 args = list(code.args) 125 name = str(code.name) 126 # Check if the command is in the list of known Unicode mappings 127 if name in self.cmd_map: 128 _append_text(self.cmd_map[name], trg) 129 self._parse(args, trg) 130 # Check if command + arguments is in the list of known Unicode mappings 131 # (this covers commands like "\mathcal{A}", which have their own entries) 132 elif str(code)[1:] in self.cmd_map: 133 _append_text(self.cmd_map[str(code)[1:]], trg) 134 # Check if command is a known function name (e.g. "log") 135 elif name in FUNCTION_NAMES: 136 sx = etree.Element("span") 137 sx.attrib["class"] = "tex-math-function" 138 sx.text = str(name) 139 trg.append(sx) 140 self._parse(args, trg) 141 # Handle fractions 142 elif name == "frac": 143 self._parse_fraction(args, trg) 144 # Handle commands with simple HTML tag substitutions 145 elif name in TEX_TO_HTML: 146 elem_name, elem_attrib = TEX_TO_HTML[name] 147 sx = etree.Element(elem_name, attrib=elem_attrib) 148 self._parse(args, sx) 149 trg.append(sx) 150 # Known, but unsupported formatting tags that will just be removed 151 elif name in REMOVED_COMMANDS and not args: 152 pass 153 # Give up, but preserve element 154 else: 155 log.warn(f"Unknown TeX-math command: {code}") 156 self._append_unparsed(code, trg) 157 158 def _parse_fraction(self, args, trg): 159 if len(args) != 2: 160 log.warn(f"Couldn't parse \\frac: got {len(args)} arguments, expected 2") 161 self._append_unparsed({'name': 'frac', 'args': args}, trg) 162 else: 163 # Represent numerator of fraction as superscript 164 sx = etree.Element("sup") 165 self._parse([args[0]], sx) 166 trg.append(sx) 167 # Unicode symbol for fraction slash 168 _append_text("\u2044", trg) 169 # Represent denominator of fraction as subscript 170 sx = etree.Element("sub") 171 self._parse([args[1]], sx) 172 trg.append(sx) 173 174 def _parse_text(self, code, trg): 175 text = str(code) 176 # TexSoup doesn't parse any non-alpha command as a command. Ex: \$ 177 # However it does seperate them into their own text part. Ex: 'r\\&dd' -> ['r', '\\&', 'dd'] 178 # Therefore try to do command mapping replacement of all text beginning with \ and of length 2 179 if len(text) == 2 and text[0] == '\\': 180 text = self.cmd_map.get(text[1], text) 181 _append_text(text, trg) 182 return 183 # parse ^ and _ (won't get recognized as separate nodes by TexSoup) 184 sxscript = False 185 if "^" in text or "_" in text: 186 buf = "" 187 for char in text: 188 if char == "^" or char == "_": 189 _append_text(buf, trg) 190 buf = "" 191 sxscript = "sup" if char == "^" else "sub" 192 elif sxscript: 193 sx = etree.Element(sxscript) 194 sx.text = char 195 trg.append(sx) 196 sxscript = False 197 else: 198 buf += char 199 text = buf 200 # Append as text 201 _append_text(text, trg) 202 return sxscript 203 204 def _append_unparsed(self, code, trg): 205 pre = etree.Element("span") 206 pre.attrib["class"] = "tex-math-unparsed" 207 pre.text = f"\\{code.name}{code.args}" 208 trg.append(pre) 209 210 def etree_to_html(self, element): 211 result = etree.Element("span") 212 result.attrib["class"] = "tex-math" 213 result.tail = element.tail # Preserve tail 214 self._parse(TexSoup(element.text).expr.all, result) 215 return result 216 217 def to_html(self, element): 218 """Converts a TeX math expression to HTML markup.""" 219 if isinstance(element, etree._Element): 220 return self.etree_to_html(element) 221 elif isinstance(element, str): 222 value = self.etree_to_html(etree.fromstring(f"<span>{element}</span>")) 223 return etree.tostring(value) 224 raise NotImplementedError(f"Cannot convert elements of type {type(element)}") 225 226 def to_unicode(self, element): 227 """Converts a TeX math expression to a Unicode string. 228 229 This will perform the same conversions as `to_html()`, but strip out the 230 HTML tags afterwards. 231 """ 232 element = self.to_html(element) 233 return etree.tostring(element, encoding="unicode", method="text") 234 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/bin/anthology/texmath.py b/bin/anthology/texmath.py --- a/bin/anthology/texmath.py +++ b/bin/anthology/texmath.py @@ -230,4 +230,4 @@ HTML tags afterwards. """ element = self.to_html(element) - return etree.tostring(element, encoding="unicode", method="text") + return etree.tostring(element, encoding="unicode", method="text", with_tail=False)
{"golden_diff": "diff --git a/bin/anthology/texmath.py b/bin/anthology/texmath.py\n--- a/bin/anthology/texmath.py\n+++ b/bin/anthology/texmath.py\n@@ -230,4 +230,4 @@\n HTML tags afterwards.\n \"\"\"\n element = self.to_html(element)\n- return etree.tostring(element, encoding=\"unicode\", method=\"text\")\n+ return etree.tostring(element, encoding=\"unicode\", method=\"text\", with_tail=False)\n", "issue": "Paper Metadata: 2023.findings-emnlp.1054\n### Confirm that this is a metadata correction\n\n- [X] I want to file corrections to make the metadata match the PDF file hosted on the ACL Anthology.\n\n### Anthology ID\n\n2023.findings-emnlp.1054\n\n### Type of Paper Metadata Correction\n\n- [X] Paper Title\n- [ ] Paper Abstract\n- [ ] Author Name(s)\n\n### Correction to Paper Title\n\nPlease change the paper title appeared in Cite (ACL) and Cite (Informal) to \"Measuring Pointwise \ud835\udcb1-Usable Information In-Context-ly\"\n\n### Correction to Paper Abstract\n\n_No response_\n\n### Correction to Author Name(s)\n\n_No response_\n", "before_files": [{"content": "# -*- coding: utf-8 -*-\n#\n# Copyright 2019 Marcel Bollmann <[email protected]>\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nfrom lxml import etree\nimport csv\nimport logging as log\nimport os\nfrom TexSoup import TexSoup\nfrom TexSoup.data import TexCmd, TexText, TexGroup\n\nFUNCTION_NAMES = (\"lim\", \"log\")\nTEX_TO_HTML = {\n \"mathrm\": (\"span\", {\"class\": \"font-weight-normal\"}),\n \"textrm\": (\"span\", {\"class\": \"font-weight-normal\"}),\n \"text\": (\"span\", {\"class\": \"font-weight-normal\"}),\n \"mathbf\": (\"strong\", {}),\n \"textbf\": (\"strong\", {}),\n \"boldsymbol\": (\"strong\", {}),\n \"mathit\": (\"em\", {}),\n \"textit\": (\"em\", {}),\n \"emph\": (\"em\", {}),\n \"textsc\": (\"span\", {\"style\": \"font-variant: small-caps;\"}),\n \"texttt\": (\"span\", {\"class\": \"text-monospace\"}),\n \"textsubscript\": (\"sub\", {}),\n \"textsuperscript\": (\"sup\", {}),\n}\nREMOVED_COMMANDS = (\"bf\", \"rm\", \"it\", \"sc\")\n\n\ndef _append_text(text, trg):\n if not text:\n return\n if len(trg):\n if trg[-1].tail is not None:\n trg[-1].tail += text\n else:\n trg[-1].tail = text\n else:\n if trg.text is not None:\n trg.text += text\n else:\n trg.text = text\n\n\nclass TexMath:\n \"\"\"Interpreter and converter for TeX inline math expressions.\n\n This class uses TexSoup (https://github.com/alvinwan/TexSoup) to parse a TeX\n expression and converts it to valid HTML. The conversion combines a small\n number of handwritten rules with a mapping of LaTeX math mode commands to\n Unicode symbols (http://milde.users.sourceforge.net/LUCR/Math/). Parts that\n cannot be interpreted using this simple method are preserved as raw LaTeX.\n \"\"\"\n\n def __init__(self, symbolsfile=None):\n self.cmd_map = {}\n if symbolsfile is None:\n symbolsfile = os.path.join(\n os.path.dirname(os.path.abspath(__file__)), \"unimathsymbols.txt\"\n )\n self.load_symbols(symbolsfile)\n\n def load_symbols(self, filename):\n with open(filename, \"r\", encoding=\"utf8\") as f:\n reader = csv.reader(f, delimiter=\"^\")\n for row in reader:\n if row[0].startswith(\"#\"): # comment\n continue\n assert len(row) == 8, \"Expect eight-column format\"\n char, cmd = row[1], row[2]\n if cmd.startswith(\"\\\\\"):\n self.cmd_map[cmd[1:]] = char\n if row[-1].startswith(\"= \") and \", \" in row[-1]:\n # last column sometimes contains alternative command\n cmd = row[-1][2:].split(\", \")[0]\n if cmd.startswith(\"\\\\\"):\n self.cmd_map[cmd[1:]] = char\n\n def _parse(self, everything, trg):\n \"\"\"Parses a list of TeX constituents into an lxml.etree._Element.\n\n Arguments:\n everything: An iterator over TeX constituents as provided by TexSoup\n trg: The lxml.etree._Element to parse the expression into\n\n The approach of iterating over the TeX constituents roughly follows\n <https://github.com/alvinwan/TexSoup/blob/master/examples/list_everything.py>.\n \"\"\"\n sxscript = False # Tracks whether we're in a subscript/superscript\n for code in everything:\n if isinstance(code, TexCmd):\n # code is a TeX command\n self._parse_command(code, trg)\n elif isinstance(code, TexText) or isinstance(code, str):\n # code is text\n sxscript = self._parse_text(code, trg)\n elif isinstance(code, TexGroup):\n # If in subscript/superscript, wrap the entire element in respective tag\n if sxscript:\n my_trg = etree.Element(sxscript)\n self._parse(code.contents, my_trg)\n trg.append(my_trg)\n sxscript = False\n # Otherwise, just parse it normally\n else:\n self._parse(code.contents, trg)\n else:\n log.error(f\"TeX-math parser got unhandled element: {type(code)}\")\n\n def _parse_command(self, code, trg):\n args = list(code.args)\n name = str(code.name)\n # Check if the command is in the list of known Unicode mappings\n if name in self.cmd_map:\n _append_text(self.cmd_map[name], trg)\n self._parse(args, trg)\n # Check if command + arguments is in the list of known Unicode mappings\n # (this covers commands like \"\\mathcal{A}\", which have their own entries)\n elif str(code)[1:] in self.cmd_map:\n _append_text(self.cmd_map[str(code)[1:]], trg)\n # Check if command is a known function name (e.g. \"log\")\n elif name in FUNCTION_NAMES:\n sx = etree.Element(\"span\")\n sx.attrib[\"class\"] = \"tex-math-function\"\n sx.text = str(name)\n trg.append(sx)\n self._parse(args, trg)\n # Handle fractions\n elif name == \"frac\":\n self._parse_fraction(args, trg)\n # Handle commands with simple HTML tag substitutions\n elif name in TEX_TO_HTML:\n elem_name, elem_attrib = TEX_TO_HTML[name]\n sx = etree.Element(elem_name, attrib=elem_attrib)\n self._parse(args, sx)\n trg.append(sx)\n # Known, but unsupported formatting tags that will just be removed\n elif name in REMOVED_COMMANDS and not args:\n pass\n # Give up, but preserve element\n else:\n log.warn(f\"Unknown TeX-math command: {code}\")\n self._append_unparsed(code, trg)\n\n def _parse_fraction(self, args, trg):\n if len(args) != 2:\n log.warn(f\"Couldn't parse \\\\frac: got {len(args)} arguments, expected 2\")\n self._append_unparsed({'name': 'frac', 'args': args}, trg)\n else:\n # Represent numerator of fraction as superscript\n sx = etree.Element(\"sup\")\n self._parse([args[0]], sx)\n trg.append(sx)\n # Unicode symbol for fraction slash\n _append_text(\"\\u2044\", trg)\n # Represent denominator of fraction as subscript\n sx = etree.Element(\"sub\")\n self._parse([args[1]], sx)\n trg.append(sx)\n\n def _parse_text(self, code, trg):\n text = str(code)\n # TexSoup doesn't parse any non-alpha command as a command. Ex: \\$\n # However it does seperate them into their own text part. Ex: 'r\\\\&dd' -> ['r', '\\\\&', 'dd']\n # Therefore try to do command mapping replacement of all text beginning with \\ and of length 2\n if len(text) == 2 and text[0] == '\\\\':\n text = self.cmd_map.get(text[1], text)\n _append_text(text, trg)\n return\n # parse ^ and _ (won't get recognized as separate nodes by TexSoup)\n sxscript = False\n if \"^\" in text or \"_\" in text:\n buf = \"\"\n for char in text:\n if char == \"^\" or char == \"_\":\n _append_text(buf, trg)\n buf = \"\"\n sxscript = \"sup\" if char == \"^\" else \"sub\"\n elif sxscript:\n sx = etree.Element(sxscript)\n sx.text = char\n trg.append(sx)\n sxscript = False\n else:\n buf += char\n text = buf\n # Append as text\n _append_text(text, trg)\n return sxscript\n\n def _append_unparsed(self, code, trg):\n pre = etree.Element(\"span\")\n pre.attrib[\"class\"] = \"tex-math-unparsed\"\n pre.text = f\"\\\\{code.name}{code.args}\"\n trg.append(pre)\n\n def etree_to_html(self, element):\n result = etree.Element(\"span\")\n result.attrib[\"class\"] = \"tex-math\"\n result.tail = element.tail # Preserve tail\n self._parse(TexSoup(element.text).expr.all, result)\n return result\n\n def to_html(self, element):\n \"\"\"Converts a TeX math expression to HTML markup.\"\"\"\n if isinstance(element, etree._Element):\n return self.etree_to_html(element)\n elif isinstance(element, str):\n value = self.etree_to_html(etree.fromstring(f\"<span>{element}</span>\"))\n return etree.tostring(value)\n raise NotImplementedError(f\"Cannot convert elements of type {type(element)}\")\n\n def to_unicode(self, element):\n \"\"\"Converts a TeX math expression to a Unicode string.\n\n This will perform the same conversions as `to_html()`, but strip out the\n HTML tags afterwards.\n \"\"\"\n element = self.to_html(element)\n return etree.tostring(element, encoding=\"unicode\", method=\"text\")\n", "path": "bin/anthology/texmath.py"}], "after_files": [{"content": "# -*- coding: utf-8 -*-\n#\n# Copyright 2019 Marcel Bollmann <[email protected]>\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nfrom lxml import etree\nimport csv\nimport logging as log\nimport os\nfrom TexSoup import TexSoup\nfrom TexSoup.data import TexCmd, TexText, TexGroup\n\nFUNCTION_NAMES = (\"lim\", \"log\")\nTEX_TO_HTML = {\n \"mathrm\": (\"span\", {\"class\": \"font-weight-normal\"}),\n \"textrm\": (\"span\", {\"class\": \"font-weight-normal\"}),\n \"text\": (\"span\", {\"class\": \"font-weight-normal\"}),\n \"mathbf\": (\"strong\", {}),\n \"textbf\": (\"strong\", {}),\n \"boldsymbol\": (\"strong\", {}),\n \"mathit\": (\"em\", {}),\n \"textit\": (\"em\", {}),\n \"emph\": (\"em\", {}),\n \"textsc\": (\"span\", {\"style\": \"font-variant: small-caps;\"}),\n \"texttt\": (\"span\", {\"class\": \"text-monospace\"}),\n \"textsubscript\": (\"sub\", {}),\n \"textsuperscript\": (\"sup\", {}),\n}\nREMOVED_COMMANDS = (\"bf\", \"rm\", \"it\", \"sc\")\n\n\ndef _append_text(text, trg):\n if not text:\n return\n if len(trg):\n if trg[-1].tail is not None:\n trg[-1].tail += text\n else:\n trg[-1].tail = text\n else:\n if trg.text is not None:\n trg.text += text\n else:\n trg.text = text\n\n\nclass TexMath:\n \"\"\"Interpreter and converter for TeX inline math expressions.\n\n This class uses TexSoup (https://github.com/alvinwan/TexSoup) to parse a TeX\n expression and converts it to valid HTML. The conversion combines a small\n number of handwritten rules with a mapping of LaTeX math mode commands to\n Unicode symbols (http://milde.users.sourceforge.net/LUCR/Math/). Parts that\n cannot be interpreted using this simple method are preserved as raw LaTeX.\n \"\"\"\n\n def __init__(self, symbolsfile=None):\n self.cmd_map = {}\n if symbolsfile is None:\n symbolsfile = os.path.join(\n os.path.dirname(os.path.abspath(__file__)), \"unimathsymbols.txt\"\n )\n self.load_symbols(symbolsfile)\n\n def load_symbols(self, filename):\n with open(filename, \"r\", encoding=\"utf8\") as f:\n reader = csv.reader(f, delimiter=\"^\")\n for row in reader:\n if row[0].startswith(\"#\"): # comment\n continue\n assert len(row) == 8, \"Expect eight-column format\"\n char, cmd = row[1], row[2]\n if cmd.startswith(\"\\\\\"):\n self.cmd_map[cmd[1:]] = char\n if row[-1].startswith(\"= \") and \", \" in row[-1]:\n # last column sometimes contains alternative command\n cmd = row[-1][2:].split(\", \")[0]\n if cmd.startswith(\"\\\\\"):\n self.cmd_map[cmd[1:]] = char\n\n def _parse(self, everything, trg):\n \"\"\"Parses a list of TeX constituents into an lxml.etree._Element.\n\n Arguments:\n everything: An iterator over TeX constituents as provided by TexSoup\n trg: The lxml.etree._Element to parse the expression into\n\n The approach of iterating over the TeX constituents roughly follows\n <https://github.com/alvinwan/TexSoup/blob/master/examples/list_everything.py>.\n \"\"\"\n sxscript = False # Tracks whether we're in a subscript/superscript\n for code in everything:\n if isinstance(code, TexCmd):\n # code is a TeX command\n self._parse_command(code, trg)\n elif isinstance(code, TexText) or isinstance(code, str):\n # code is text\n sxscript = self._parse_text(code, trg)\n elif isinstance(code, TexGroup):\n # If in subscript/superscript, wrap the entire element in respective tag\n if sxscript:\n my_trg = etree.Element(sxscript)\n self._parse(code.contents, my_trg)\n trg.append(my_trg)\n sxscript = False\n # Otherwise, just parse it normally\n else:\n self._parse(code.contents, trg)\n else:\n log.error(f\"TeX-math parser got unhandled element: {type(code)}\")\n\n def _parse_command(self, code, trg):\n args = list(code.args)\n name = str(code.name)\n # Check if the command is in the list of known Unicode mappings\n if name in self.cmd_map:\n _append_text(self.cmd_map[name], trg)\n self._parse(args, trg)\n # Check if command + arguments is in the list of known Unicode mappings\n # (this covers commands like \"\\mathcal{A}\", which have their own entries)\n elif str(code)[1:] in self.cmd_map:\n _append_text(self.cmd_map[str(code)[1:]], trg)\n # Check if command is a known function name (e.g. \"log\")\n elif name in FUNCTION_NAMES:\n sx = etree.Element(\"span\")\n sx.attrib[\"class\"] = \"tex-math-function\"\n sx.text = str(name)\n trg.append(sx)\n self._parse(args, trg)\n # Handle fractions\n elif name == \"frac\":\n self._parse_fraction(args, trg)\n # Handle commands with simple HTML tag substitutions\n elif name in TEX_TO_HTML:\n elem_name, elem_attrib = TEX_TO_HTML[name]\n sx = etree.Element(elem_name, attrib=elem_attrib)\n self._parse(args, sx)\n trg.append(sx)\n # Known, but unsupported formatting tags that will just be removed\n elif name in REMOVED_COMMANDS and not args:\n pass\n # Give up, but preserve element\n else:\n log.warn(f\"Unknown TeX-math command: {code}\")\n self._append_unparsed(code, trg)\n\n def _parse_fraction(self, args, trg):\n if len(args) != 2:\n log.warn(f\"Couldn't parse \\\\frac: got {len(args)} arguments, expected 2\")\n self._append_unparsed({'name': 'frac', 'args': args}, trg)\n else:\n # Represent numerator of fraction as superscript\n sx = etree.Element(\"sup\")\n self._parse([args[0]], sx)\n trg.append(sx)\n # Unicode symbol for fraction slash\n _append_text(\"\\u2044\", trg)\n # Represent denominator of fraction as subscript\n sx = etree.Element(\"sub\")\n self._parse([args[1]], sx)\n trg.append(sx)\n\n def _parse_text(self, code, trg):\n text = str(code)\n # TexSoup doesn't parse any non-alpha command as a command. Ex: \\$\n # However it does seperate them into their own text part. Ex: 'r\\\\&dd' -> ['r', '\\\\&', 'dd']\n # Therefore try to do command mapping replacement of all text beginning with \\ and of length 2\n if len(text) == 2 and text[0] == '\\\\':\n text = self.cmd_map.get(text[1], text)\n _append_text(text, trg)\n return\n # parse ^ and _ (won't get recognized as separate nodes by TexSoup)\n sxscript = False\n if \"^\" in text or \"_\" in text:\n buf = \"\"\n for char in text:\n if char == \"^\" or char == \"_\":\n _append_text(buf, trg)\n buf = \"\"\n sxscript = \"sup\" if char == \"^\" else \"sub\"\n elif sxscript:\n sx = etree.Element(sxscript)\n sx.text = char\n trg.append(sx)\n sxscript = False\n else:\n buf += char\n text = buf\n # Append as text\n _append_text(text, trg)\n return sxscript\n\n def _append_unparsed(self, code, trg):\n pre = etree.Element(\"span\")\n pre.attrib[\"class\"] = \"tex-math-unparsed\"\n pre.text = f\"\\\\{code.name}{code.args}\"\n trg.append(pre)\n\n def etree_to_html(self, element):\n result = etree.Element(\"span\")\n result.attrib[\"class\"] = \"tex-math\"\n result.tail = element.tail # Preserve tail\n self._parse(TexSoup(element.text).expr.all, result)\n return result\n\n def to_html(self, element):\n \"\"\"Converts a TeX math expression to HTML markup.\"\"\"\n if isinstance(element, etree._Element):\n return self.etree_to_html(element)\n elif isinstance(element, str):\n value = self.etree_to_html(etree.fromstring(f\"<span>{element}</span>\"))\n return etree.tostring(value)\n raise NotImplementedError(f\"Cannot convert elements of type {type(element)}\")\n\n def to_unicode(self, element):\n \"\"\"Converts a TeX math expression to a Unicode string.\n\n This will perform the same conversions as `to_html()`, but strip out the\n HTML tags afterwards.\n \"\"\"\n element = self.to_html(element)\n return etree.tostring(element, encoding=\"unicode\", method=\"text\", with_tail=False)\n", "path": "bin/anthology/texmath.py"}]}
3,158
109
gh_patches_debug_6154
rasdani/github-patches
git_diff
litestar-org__litestar-1659
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- StaticFilesConfig and virtual directories I'm trying to write a ``FileSystemProtocol`` to load files from the package data using [importlib_resources](https://importlib-resources.readthedocs.io/en/latest/using.html#). But because ``directories`` is defined as ``DirectoryPath``, pydantic checks if the given directories exist in the local filesystem. This is not generally true, especially in any kind of virtual filesystem (e.g. a zipped package). I think this condition should be relaxed to support virtual filesystems. https://github.com/starlite-api/starlite/blob/9bb6dcd57c10a591377cf8e3a537e9292566d5b9/starlite/config/static_files.py#L32 --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `litestar/contrib/repository/filters.py` Content: ``` 1 """Collection filter datastructures.""" 2 from __future__ import annotations 3 4 from dataclasses import dataclass 5 from datetime import datetime # noqa: TCH003 6 from typing import TYPE_CHECKING, Generic, Literal, TypeVar 7 8 if TYPE_CHECKING: 9 from collections import abc 10 11 12 T = TypeVar("T") 13 14 __all__ = ["BeforeAfter", "CollectionFilter", "LimitOffset", "OrderBy", "SearchFilter"] 15 16 17 @dataclass 18 class BeforeAfter: 19 """Data required to filter a query on a ``datetime`` column.""" 20 21 field_name: str 22 """Name of the model attribute to filter on.""" 23 before: datetime | None 24 """Filter results where field earlier than this.""" 25 after: datetime | None 26 """Filter results where field later than this.""" 27 28 29 @dataclass 30 class CollectionFilter(Generic[T]): 31 """Data required to construct a ``WHERE ... IN (...)`` clause.""" 32 33 field_name: str 34 """Name of the model attribute to filter on.""" 35 values: abc.Collection[T] 36 """Values for ``IN`` clause.""" 37 38 39 @dataclass 40 class LimitOffset: 41 """Data required to add limit/offset filtering to a query.""" 42 43 limit: int 44 """Value for ``LIMIT`` clause of query.""" 45 offset: int 46 """Value for ``OFFSET`` clause of query.""" 47 48 49 @dataclass 50 class OrderBy: 51 """Data required to construct a ``ORDER BY ...`` clause.""" 52 53 field_name: str 54 """Name of the model attribute to sort on.""" 55 sort_order: Literal["asc", "desc"] = "asc" 56 """Sort ascending or descending""" 57 58 59 @dataclass 60 class SearchFilter: 61 """Data required to construct a ``WHERE field_name LIKE '%' || :value || '%'`` clause.""" 62 63 field_name: str 64 """Name of the model attribute to sort on.""" 65 value: str 66 """Values for ``LIKE`` clause.""" 67 ignore_case: bool | None = False 68 """Should the search be case insensitive.""" 69 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/litestar/contrib/repository/filters.py b/litestar/contrib/repository/filters.py --- a/litestar/contrib/repository/filters.py +++ b/litestar/contrib/repository/filters.py @@ -1,13 +1,10 @@ """Collection filter datastructures.""" from __future__ import annotations +from collections import abc # noqa: TCH003 from dataclasses import dataclass from datetime import datetime # noqa: TCH003 -from typing import TYPE_CHECKING, Generic, Literal, TypeVar - -if TYPE_CHECKING: - from collections import abc - +from typing import Generic, Literal, TypeVar T = TypeVar("T")
{"golden_diff": "diff --git a/litestar/contrib/repository/filters.py b/litestar/contrib/repository/filters.py\n--- a/litestar/contrib/repository/filters.py\n+++ b/litestar/contrib/repository/filters.py\n@@ -1,13 +1,10 @@\n \"\"\"Collection filter datastructures.\"\"\"\n from __future__ import annotations\n \n+from collections import abc # noqa: TCH003\n from dataclasses import dataclass\n from datetime import datetime # noqa: TCH003\n-from typing import TYPE_CHECKING, Generic, Literal, TypeVar\n-\n-if TYPE_CHECKING:\n- from collections import abc\n-\n+from typing import Generic, Literal, TypeVar\n \n T = TypeVar(\"T\")\n", "issue": "StaticFilesConfig and virtual directories\nI'm trying to write a ``FileSystemProtocol`` to load files from the package data using [importlib_resources](https://importlib-resources.readthedocs.io/en/latest/using.html#). But because ``directories`` is defined as ``DirectoryPath``, pydantic checks if the given directories exist in the local filesystem. \r\n\r\nThis is not generally true, especially in any kind of virtual filesystem (e.g. a zipped package). I think this condition should be relaxed to support virtual filesystems.\r\n\r\nhttps://github.com/starlite-api/starlite/blob/9bb6dcd57c10a591377cf8e3a537e9292566d5b9/starlite/config/static_files.py#L32\n", "before_files": [{"content": "\"\"\"Collection filter datastructures.\"\"\"\nfrom __future__ import annotations\n\nfrom dataclasses import dataclass\nfrom datetime import datetime # noqa: TCH003\nfrom typing import TYPE_CHECKING, Generic, Literal, TypeVar\n\nif TYPE_CHECKING:\n from collections import abc\n\n\nT = TypeVar(\"T\")\n\n__all__ = [\"BeforeAfter\", \"CollectionFilter\", \"LimitOffset\", \"OrderBy\", \"SearchFilter\"]\n\n\n@dataclass\nclass BeforeAfter:\n \"\"\"Data required to filter a query on a ``datetime`` column.\"\"\"\n\n field_name: str\n \"\"\"Name of the model attribute to filter on.\"\"\"\n before: datetime | None\n \"\"\"Filter results where field earlier than this.\"\"\"\n after: datetime | None\n \"\"\"Filter results where field later than this.\"\"\"\n\n\n@dataclass\nclass CollectionFilter(Generic[T]):\n \"\"\"Data required to construct a ``WHERE ... IN (...)`` clause.\"\"\"\n\n field_name: str\n \"\"\"Name of the model attribute to filter on.\"\"\"\n values: abc.Collection[T]\n \"\"\"Values for ``IN`` clause.\"\"\"\n\n\n@dataclass\nclass LimitOffset:\n \"\"\"Data required to add limit/offset filtering to a query.\"\"\"\n\n limit: int\n \"\"\"Value for ``LIMIT`` clause of query.\"\"\"\n offset: int\n \"\"\"Value for ``OFFSET`` clause of query.\"\"\"\n\n\n@dataclass\nclass OrderBy:\n \"\"\"Data required to construct a ``ORDER BY ...`` clause.\"\"\"\n\n field_name: str\n \"\"\"Name of the model attribute to sort on.\"\"\"\n sort_order: Literal[\"asc\", \"desc\"] = \"asc\"\n \"\"\"Sort ascending or descending\"\"\"\n\n\n@dataclass\nclass SearchFilter:\n \"\"\"Data required to construct a ``WHERE field_name LIKE '%' || :value || '%'`` clause.\"\"\"\n\n field_name: str\n \"\"\"Name of the model attribute to sort on.\"\"\"\n value: str\n \"\"\"Values for ``LIKE`` clause.\"\"\"\n ignore_case: bool | None = False\n \"\"\"Should the search be case insensitive.\"\"\"\n", "path": "litestar/contrib/repository/filters.py"}], "after_files": [{"content": "\"\"\"Collection filter datastructures.\"\"\"\nfrom __future__ import annotations\n\nfrom collections import abc # noqa: TCH003\nfrom dataclasses import dataclass\nfrom datetime import datetime # noqa: TCH003\nfrom typing import Generic, Literal, TypeVar\n\nT = TypeVar(\"T\")\n\n__all__ = [\"BeforeAfter\", \"CollectionFilter\", \"LimitOffset\", \"OrderBy\", \"SearchFilter\"]\n\n\n@dataclass\nclass BeforeAfter:\n \"\"\"Data required to filter a query on a ``datetime`` column.\"\"\"\n\n field_name: str\n \"\"\"Name of the model attribute to filter on.\"\"\"\n before: datetime | None\n \"\"\"Filter results where field earlier than this.\"\"\"\n after: datetime | None\n \"\"\"Filter results where field later than this.\"\"\"\n\n\n@dataclass\nclass CollectionFilter(Generic[T]):\n \"\"\"Data required to construct a ``WHERE ... IN (...)`` clause.\"\"\"\n\n field_name: str\n \"\"\"Name of the model attribute to filter on.\"\"\"\n values: abc.Collection[T]\n \"\"\"Values for ``IN`` clause.\"\"\"\n\n\n@dataclass\nclass LimitOffset:\n \"\"\"Data required to add limit/offset filtering to a query.\"\"\"\n\n limit: int\n \"\"\"Value for ``LIMIT`` clause of query.\"\"\"\n offset: int\n \"\"\"Value for ``OFFSET`` clause of query.\"\"\"\n\n\n@dataclass\nclass OrderBy:\n \"\"\"Data required to construct a ``ORDER BY ...`` clause.\"\"\"\n\n field_name: str\n \"\"\"Name of the model attribute to sort on.\"\"\"\n sort_order: Literal[\"asc\", \"desc\"] = \"asc\"\n \"\"\"Sort ascending or descending\"\"\"\n\n\n@dataclass\nclass SearchFilter:\n \"\"\"Data required to construct a ``WHERE field_name LIKE '%' || :value || '%'`` clause.\"\"\"\n\n field_name: str\n \"\"\"Name of the model attribute to sort on.\"\"\"\n value: str\n \"\"\"Values for ``LIKE`` clause.\"\"\"\n ignore_case: bool | None = False\n \"\"\"Should the search be case insensitive.\"\"\"\n", "path": "litestar/contrib/repository/filters.py"}]}
994
155
gh_patches_debug_26852
rasdani/github-patches
git_diff
liqd__a4-meinberlin-1999
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- tiles on plans and container: blue corner missing for external projects for external projects the little blue corner is missing mac on chrome and firefox <img width="400" alt="bildschirmfoto 2019-02-11 um 16 45 01" src="https://user-images.githubusercontent.com/35491681/52574395-7d708980-2e1c-11e9-8cfd-b9f8be74ea16.png"> --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `meinberlin/apps/dashboard/__init__.py` Content: ``` 1 from adhocracy4.dashboard import components 2 from adhocracy4.dashboard import ProjectDashboard 3 from meinberlin.apps.projects import get_project_type 4 5 6 default_app_config = 'meinberlin.apps.dashboard.apps.Config' 7 8 9 class TypedProjectDashboard(ProjectDashboard): 10 def __init__(self, project): 11 self.project_type = get_project_type(project) 12 if self.project_type == 'bplan': 13 project = project.externalproject.bplan 14 elif self.project_type == 'external': 15 project = project.externalproject 16 elif self.project_type == 'container': 17 project = project.projectcontainer 18 super().__init__(project) 19 20 def get_project_components(self): 21 if self.project_type == 'bplan': 22 return [components.projects.get('bplan'), 23 components.projects.get('adminlog')] 24 elif self.project_type == 'external': 25 return [components.projects.get('external'), 26 components.projects.get('adminlog')] 27 elif self.project_type == 'container': 28 return [components.projects.get('container-basic'), 29 components.projects.get('container-information'), 30 components.projects.get('topics'), 31 components.projects.get('point'), 32 components.projects.get('container-projects')] 33 34 return [component for component in components.get_project_components() 35 if component.is_effective(self.project)] 36 37 def get_module_components(self): 38 if self.project_type == 'bplan': 39 return [] 40 elif self.project_type == 'external': 41 return [] 42 elif self.project_type == 'container': 43 return [] 44 45 return components.get_module_components() 46 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/meinberlin/apps/dashboard/__init__.py b/meinberlin/apps/dashboard/__init__.py --- a/meinberlin/apps/dashboard/__init__.py +++ b/meinberlin/apps/dashboard/__init__.py @@ -20,15 +20,20 @@ def get_project_components(self): if self.project_type == 'bplan': return [components.projects.get('bplan'), + components.projects.get('plans'), components.projects.get('adminlog')] elif self.project_type == 'external': return [components.projects.get('external'), + components.projects.get('topics'), + components.projects.get('point'), + components.projects.get('plans'), components.projects.get('adminlog')] elif self.project_type == 'container': return [components.projects.get('container-basic'), components.projects.get('container-information'), components.projects.get('topics'), components.projects.get('point'), + components.projects.get('plans'), components.projects.get('container-projects')] return [component for component in components.get_project_components()
{"golden_diff": "diff --git a/meinberlin/apps/dashboard/__init__.py b/meinberlin/apps/dashboard/__init__.py\n--- a/meinberlin/apps/dashboard/__init__.py\n+++ b/meinberlin/apps/dashboard/__init__.py\n@@ -20,15 +20,20 @@\n def get_project_components(self):\n if self.project_type == 'bplan':\n return [components.projects.get('bplan'),\n+ components.projects.get('plans'),\n components.projects.get('adminlog')]\n elif self.project_type == 'external':\n return [components.projects.get('external'),\n+ components.projects.get('topics'),\n+ components.projects.get('point'),\n+ components.projects.get('plans'),\n components.projects.get('adminlog')]\n elif self.project_type == 'container':\n return [components.projects.get('container-basic'),\n components.projects.get('container-information'),\n components.projects.get('topics'),\n components.projects.get('point'),\n+ components.projects.get('plans'),\n components.projects.get('container-projects')]\n \n return [component for component in components.get_project_components()\n", "issue": "tiles on plans and container: blue corner missing for external projects\nfor external projects the little blue corner is missing\r\n\r\nmac on chrome and firefox\r\n\r\n<img width=\"400\" alt=\"bildschirmfoto 2019-02-11 um 16 45 01\" src=\"https://user-images.githubusercontent.com/35491681/52574395-7d708980-2e1c-11e9-8cfd-b9f8be74ea16.png\">\r\n\n", "before_files": [{"content": "from adhocracy4.dashboard import components\nfrom adhocracy4.dashboard import ProjectDashboard\nfrom meinberlin.apps.projects import get_project_type\n\n\ndefault_app_config = 'meinberlin.apps.dashboard.apps.Config'\n\n\nclass TypedProjectDashboard(ProjectDashboard):\n def __init__(self, project):\n self.project_type = get_project_type(project)\n if self.project_type == 'bplan':\n project = project.externalproject.bplan\n elif self.project_type == 'external':\n project = project.externalproject\n elif self.project_type == 'container':\n project = project.projectcontainer\n super().__init__(project)\n\n def get_project_components(self):\n if self.project_type == 'bplan':\n return [components.projects.get('bplan'),\n components.projects.get('adminlog')]\n elif self.project_type == 'external':\n return [components.projects.get('external'),\n components.projects.get('adminlog')]\n elif self.project_type == 'container':\n return [components.projects.get('container-basic'),\n components.projects.get('container-information'),\n components.projects.get('topics'),\n components.projects.get('point'),\n components.projects.get('container-projects')]\n\n return [component for component in components.get_project_components()\n if component.is_effective(self.project)]\n\n def get_module_components(self):\n if self.project_type == 'bplan':\n return []\n elif self.project_type == 'external':\n return []\n elif self.project_type == 'container':\n return []\n\n return components.get_module_components()\n", "path": "meinberlin/apps/dashboard/__init__.py"}], "after_files": [{"content": "from adhocracy4.dashboard import components\nfrom adhocracy4.dashboard import ProjectDashboard\nfrom meinberlin.apps.projects import get_project_type\n\n\ndefault_app_config = 'meinberlin.apps.dashboard.apps.Config'\n\n\nclass TypedProjectDashboard(ProjectDashboard):\n def __init__(self, project):\n self.project_type = get_project_type(project)\n if self.project_type == 'bplan':\n project = project.externalproject.bplan\n elif self.project_type == 'external':\n project = project.externalproject\n elif self.project_type == 'container':\n project = project.projectcontainer\n super().__init__(project)\n\n def get_project_components(self):\n if self.project_type == 'bplan':\n return [components.projects.get('bplan'),\n components.projects.get('plans'),\n components.projects.get('adminlog')]\n elif self.project_type == 'external':\n return [components.projects.get('external'),\n components.projects.get('topics'),\n components.projects.get('point'),\n components.projects.get('plans'),\n components.projects.get('adminlog')]\n elif self.project_type == 'container':\n return [components.projects.get('container-basic'),\n components.projects.get('container-information'),\n components.projects.get('topics'),\n components.projects.get('point'),\n components.projects.get('plans'),\n components.projects.get('container-projects')]\n\n return [component for component in components.get_project_components()\n if component.is_effective(self.project)]\n\n def get_module_components(self):\n if self.project_type == 'bplan':\n return []\n elif self.project_type == 'external':\n return []\n elif self.project_type == 'container':\n return []\n\n return components.get_module_components()\n", "path": "meinberlin/apps/dashboard/__init__.py"}]}
793
230
gh_patches_debug_53786
rasdani/github-patches
git_diff
psychopy__psychopy-667
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Inconsistent method signature (or missing hook?) Windows XP, Psychopy 1.80.06 window.flip calls dispatch_events() for each _eventDispatchers (pyglet winType), but DirectInputDevice (hardware/joystick/pyglet_input/directinput.py) has a different signature for that method: _dispatch_event. Needs to be fixed somewhere. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `psychopy/hardware/joystick/pyglet_input/directinput.py` Content: ``` 1 #!/usr/bin/env python2 2 # $Id:$ 3 4 import ctypes 5 6 import app 7 import base 8 import pyglet 9 from pyglet.window import win32 10 import dinput 11 from pyglet.window.win32 import _kernel32 12 13 # These instance names are not defined anywhere, obtained by experiment. The 14 # GUID names (which seem to be ideally what are needed) are wrong/missing for 15 # most of my devices. 16 17 _abs_instance_names = { 18 0: 'x', 19 1: 'y', 20 2: 'z', 21 3: 'rx', 22 4: 'ry', 23 5: 'rz', 24 } 25 26 _rel_instance_names = { 27 0: 'x', 28 1: 'y', 29 2: 'wheel', 30 } 31 32 _btn_instance_names = {} 33 34 def _create_control(object_instance): 35 raw_name = object_instance.tszName 36 type = object_instance.dwType 37 instance = dinput.DIDFT_GETINSTANCE(type) 38 39 if type & dinput.DIDFT_ABSAXIS: 40 name = _abs_instance_names.get(instance) 41 control = base.AbsoluteAxis(name, 0, 0xffff, raw_name) 42 elif type & dinput.DIDFT_RELAXIS: 43 name = _rel_instance_names.get(instance) 44 control = base.RelativeAxis(name, raw_name) 45 elif type & dinput.DIDFT_BUTTON: 46 name = _btn_instance_names.get(instance) 47 control = base.Button(name, raw_name) 48 elif type & dinput.DIDFT_POV: 49 control = base.AbsoluteAxis(base.AbsoluteAxis.HAT, 50 0, 0xffffffff, raw_name) 51 else: 52 return 53 54 control._type = object_instance.dwType 55 return control 56 57 class DirectInputDevice(base.Device): 58 def __init__(self, display, device, device_instance): 59 name = device_instance.tszInstanceName 60 super(DirectInputDevice, self).__init__(display, name) 61 62 self._type = device_instance.dwDevType & 0xff 63 self._subtype = device_instance.dwDevType & 0xff00 64 65 self._device = device 66 self._init_controls() 67 self._set_format() 68 69 def _init_controls(self): 70 self.controls = [] 71 self._device.EnumObjects( 72 dinput.LPDIENUMDEVICEOBJECTSCALLBACK(self._object_enum), 73 None, dinput.DIDFT_ALL) 74 75 def _object_enum(self, object_instance, arg): 76 control = _create_control(object_instance.contents) 77 if control: 78 self.controls.append(control) 79 return dinput.DIENUM_CONTINUE 80 81 def _set_format(self): 82 if not self.controls: 83 return 84 85 object_formats = (dinput.DIOBJECTDATAFORMAT * len(self.controls))() 86 offset = 0 87 for object_format, control in zip(object_formats, self.controls): 88 object_format.dwOfs = offset 89 object_format.dwType = control._type 90 offset += 4 91 92 format = dinput.DIDATAFORMAT() 93 format.dwSize = ctypes.sizeof(format) 94 format.dwObjSize = ctypes.sizeof(dinput.DIOBJECTDATAFORMAT) 95 format.dwFlags = 0 96 format.dwDataSize = offset 97 format.dwNumObjs = len(object_formats) 98 format.rgodf = ctypes.cast(ctypes.pointer(object_formats), 99 dinput.LPDIOBJECTDATAFORMAT) 100 self._device.SetDataFormat(format) 101 102 prop = dinput.DIPROPDWORD() 103 prop.diph.dwSize = ctypes.sizeof(prop) 104 prop.diph.dwHeaderSize = ctypes.sizeof(prop.diph) 105 prop.diph.dwObj = 0 106 prop.diph.dwHow = dinput.DIPH_DEVICE 107 prop.dwData = 64 * ctypes.sizeof(dinput.DIDATAFORMAT) 108 self._device.SetProperty(dinput.DIPROP_BUFFERSIZE, 109 ctypes.byref(prop.diph)) 110 111 def open(self, window=None, exclusive=False): 112 if not self.controls: 113 return 114 115 if window is None: 116 # Pick any open window, or the shadow window if no windows 117 # have been created yet. 118 window = pyglet.gl._shadow_window 119 for window in app.windows: 120 break 121 122 flags = dinput.DISCL_BACKGROUND 123 if exclusive: 124 flags |= dinput.DISCL_EXCLUSIVE 125 else: 126 flags |= dinput.DISCL_NONEXCLUSIVE 127 128 self._wait_object = _kernel32.CreateEventW(None, False, False, None) 129 self._device.SetEventNotification(self._wait_object) 130 app.platform_event_loop.add_wait_object(self._wait_object, 131 self._dispatch_events) 132 133 self._device.SetCooperativeLevel(window._hwnd, flags) 134 self._device.Acquire() 135 136 def close(self): 137 if not self.controls: 138 return 139 140 app.platform_event_loop.remove_wait_object(self._wait_object) 141 142 self._device.Unacquire() 143 self._device.SetEventNotification(None) 144 145 _kernel32.CloseHandle(self._wait_object) 146 147 def get_controls(self): 148 return self.controls 149 150 def _dispatch_events(self): 151 if not self.controls: 152 return 153 154 events = (dinput.DIDEVICEOBJECTDATA * 64)() 155 n_events = win32.DWORD(len(events)) 156 self._device.GetDeviceData(ctypes.sizeof(dinput.DIDEVICEOBJECTDATA), 157 ctypes.cast(ctypes.pointer(events), 158 dinput.LPDIDEVICEOBJECTDATA), 159 ctypes.byref(n_events), 160 0) 161 for event in events[:n_events.value]: 162 index = event.dwOfs // 4 163 self.controls[index]._set_value(event.dwData) 164 165 _i_dinput = None 166 167 def _init_directinput(): 168 global _i_dinput 169 if _i_dinput: 170 return 171 172 _i_dinput = dinput.IDirectInput8() 173 module = _kernel32.GetModuleHandleW(None) 174 dinput.DirectInput8Create(module, dinput.DIRECTINPUT_VERSION, 175 dinput.IID_IDirectInput8W, 176 ctypes.byref(_i_dinput), None) 177 178 def get_devices(display=None): 179 _init_directinput() 180 _devices = [] 181 182 def _device_enum(device_instance, arg): 183 device = dinput.IDirectInputDevice8() 184 _i_dinput.CreateDevice(device_instance.contents.guidInstance, 185 ctypes.byref(device), 186 None) 187 _devices.append(DirectInputDevice(display, 188 device, device_instance.contents)) 189 190 return dinput.DIENUM_CONTINUE 191 192 _i_dinput.EnumDevices(dinput.DI8DEVCLASS_ALL, 193 dinput.LPDIENUMDEVICESCALLBACK(_device_enum), 194 None, dinput.DIEDFL_ATTACHEDONLY) 195 return _devices 196 197 def _create_joystick(device): 198 if device._type in (dinput.DI8DEVTYPE_JOYSTICK, 199 dinput.DI8DEVTYPE_GAMEPAD): 200 return base.Joystick(device) 201 202 def get_joysticks(display=None): 203 return filter(None, [_create_joystick(d) for d in get_devices(display)]) 204 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/psychopy/hardware/joystick/pyglet_input/directinput.py b/psychopy/hardware/joystick/pyglet_input/directinput.py --- a/psychopy/hardware/joystick/pyglet_input/directinput.py +++ b/psychopy/hardware/joystick/pyglet_input/directinput.py @@ -162,6 +162,10 @@ index = event.dwOfs // 4 self.controls[index]._set_value(event.dwData) + def dispatch_events(self): + # standardize the method signature + self._dispatch_events() + _i_dinput = None def _init_directinput():
{"golden_diff": "diff --git a/psychopy/hardware/joystick/pyglet_input/directinput.py b/psychopy/hardware/joystick/pyglet_input/directinput.py\n--- a/psychopy/hardware/joystick/pyglet_input/directinput.py\n+++ b/psychopy/hardware/joystick/pyglet_input/directinput.py\n@@ -162,6 +162,10 @@\n index = event.dwOfs // 4\n self.controls[index]._set_value(event.dwData)\n \n+ def dispatch_events(self):\n+ # standardize the method signature\n+ self._dispatch_events()\n+\n _i_dinput = None\n \n def _init_directinput():\n", "issue": "Inconsistent method signature (or missing hook?)\nWindows XP, Psychopy 1.80.06\n\nwindow.flip calls dispatch_events() for each _eventDispatchers (pyglet winType), but DirectInputDevice (hardware/joystick/pyglet_input/directinput.py) has a different signature for that method: _dispatch_event. Needs to be fixed somewhere.\n\n", "before_files": [{"content": "#!/usr/bin/env python2\n# $Id:$\n\nimport ctypes\n\nimport app\nimport base\nimport pyglet\nfrom pyglet.window import win32\nimport dinput\nfrom pyglet.window.win32 import _kernel32\n\n# These instance names are not defined anywhere, obtained by experiment. The\n# GUID names (which seem to be ideally what are needed) are wrong/missing for\n# most of my devices.\n\n_abs_instance_names = {\n 0: 'x',\n 1: 'y',\n 2: 'z',\n 3: 'rx',\n 4: 'ry',\n 5: 'rz',\n}\n\n_rel_instance_names = {\n 0: 'x',\n 1: 'y',\n 2: 'wheel',\n}\n\n_btn_instance_names = {}\n\ndef _create_control(object_instance):\n raw_name = object_instance.tszName\n type = object_instance.dwType\n instance = dinput.DIDFT_GETINSTANCE(type)\n\n if type & dinput.DIDFT_ABSAXIS:\n name = _abs_instance_names.get(instance)\n control = base.AbsoluteAxis(name, 0, 0xffff, raw_name)\n elif type & dinput.DIDFT_RELAXIS:\n name = _rel_instance_names.get(instance)\n control = base.RelativeAxis(name, raw_name)\n elif type & dinput.DIDFT_BUTTON:\n name = _btn_instance_names.get(instance)\n control = base.Button(name, raw_name)\n elif type & dinput.DIDFT_POV:\n control = base.AbsoluteAxis(base.AbsoluteAxis.HAT,\n 0, 0xffffffff, raw_name)\n else:\n return\n\n control._type = object_instance.dwType\n return control\n\nclass DirectInputDevice(base.Device):\n def __init__(self, display, device, device_instance):\n name = device_instance.tszInstanceName\n super(DirectInputDevice, self).__init__(display, name)\n\n self._type = device_instance.dwDevType & 0xff\n self._subtype = device_instance.dwDevType & 0xff00\n\n self._device = device\n self._init_controls()\n self._set_format()\n\n def _init_controls(self):\n self.controls = []\n self._device.EnumObjects(\n dinput.LPDIENUMDEVICEOBJECTSCALLBACK(self._object_enum),\n None, dinput.DIDFT_ALL)\n\n def _object_enum(self, object_instance, arg):\n control = _create_control(object_instance.contents)\n if control:\n self.controls.append(control)\n return dinput.DIENUM_CONTINUE\n\n def _set_format(self):\n if not self.controls:\n return\n\n object_formats = (dinput.DIOBJECTDATAFORMAT * len(self.controls))()\n offset = 0\n for object_format, control in zip(object_formats, self.controls):\n object_format.dwOfs = offset\n object_format.dwType = control._type\n offset += 4\n\n format = dinput.DIDATAFORMAT()\n format.dwSize = ctypes.sizeof(format)\n format.dwObjSize = ctypes.sizeof(dinput.DIOBJECTDATAFORMAT)\n format.dwFlags = 0\n format.dwDataSize = offset\n format.dwNumObjs = len(object_formats)\n format.rgodf = ctypes.cast(ctypes.pointer(object_formats),\n dinput.LPDIOBJECTDATAFORMAT)\n self._device.SetDataFormat(format)\n\n prop = dinput.DIPROPDWORD()\n prop.diph.dwSize = ctypes.sizeof(prop)\n prop.diph.dwHeaderSize = ctypes.sizeof(prop.diph)\n prop.diph.dwObj = 0\n prop.diph.dwHow = dinput.DIPH_DEVICE\n prop.dwData = 64 * ctypes.sizeof(dinput.DIDATAFORMAT)\n self._device.SetProperty(dinput.DIPROP_BUFFERSIZE,\n ctypes.byref(prop.diph))\n\n def open(self, window=None, exclusive=False):\n if not self.controls:\n return\n\n if window is None:\n # Pick any open window, or the shadow window if no windows\n # have been created yet.\n window = pyglet.gl._shadow_window\n for window in app.windows:\n break\n\n flags = dinput.DISCL_BACKGROUND\n if exclusive:\n flags |= dinput.DISCL_EXCLUSIVE\n else:\n flags |= dinput.DISCL_NONEXCLUSIVE\n\n self._wait_object = _kernel32.CreateEventW(None, False, False, None)\n self._device.SetEventNotification(self._wait_object)\n app.platform_event_loop.add_wait_object(self._wait_object,\n self._dispatch_events)\n\n self._device.SetCooperativeLevel(window._hwnd, flags)\n self._device.Acquire()\n\n def close(self):\n if not self.controls:\n return\n\n app.platform_event_loop.remove_wait_object(self._wait_object)\n\n self._device.Unacquire()\n self._device.SetEventNotification(None)\n\n _kernel32.CloseHandle(self._wait_object)\n\n def get_controls(self):\n return self.controls\n\n def _dispatch_events(self):\n if not self.controls:\n return\n\n events = (dinput.DIDEVICEOBJECTDATA * 64)()\n n_events = win32.DWORD(len(events))\n self._device.GetDeviceData(ctypes.sizeof(dinput.DIDEVICEOBJECTDATA),\n ctypes.cast(ctypes.pointer(events),\n dinput.LPDIDEVICEOBJECTDATA),\n ctypes.byref(n_events),\n 0)\n for event in events[:n_events.value]:\n index = event.dwOfs // 4\n self.controls[index]._set_value(event.dwData)\n\n_i_dinput = None\n\ndef _init_directinput():\n global _i_dinput\n if _i_dinput:\n return\n\n _i_dinput = dinput.IDirectInput8()\n module = _kernel32.GetModuleHandleW(None)\n dinput.DirectInput8Create(module, dinput.DIRECTINPUT_VERSION,\n dinput.IID_IDirectInput8W,\n ctypes.byref(_i_dinput), None)\n\ndef get_devices(display=None):\n _init_directinput()\n _devices = []\n\n def _device_enum(device_instance, arg):\n device = dinput.IDirectInputDevice8()\n _i_dinput.CreateDevice(device_instance.contents.guidInstance,\n ctypes.byref(device),\n None)\n _devices.append(DirectInputDevice(display,\n device, device_instance.contents))\n\n return dinput.DIENUM_CONTINUE\n\n _i_dinput.EnumDevices(dinput.DI8DEVCLASS_ALL,\n dinput.LPDIENUMDEVICESCALLBACK(_device_enum),\n None, dinput.DIEDFL_ATTACHEDONLY)\n return _devices\n\ndef _create_joystick(device):\n if device._type in (dinput.DI8DEVTYPE_JOYSTICK,\n dinput.DI8DEVTYPE_GAMEPAD):\n return base.Joystick(device)\n\ndef get_joysticks(display=None):\n return filter(None, [_create_joystick(d) for d in get_devices(display)])\n", "path": "psychopy/hardware/joystick/pyglet_input/directinput.py"}], "after_files": [{"content": "#!/usr/bin/env python2\n# $Id:$\n\nimport ctypes\n\nimport app\nimport base\nimport pyglet\nfrom pyglet.window import win32\nimport dinput\nfrom pyglet.window.win32 import _kernel32\n\n# These instance names are not defined anywhere, obtained by experiment. The\n# GUID names (which seem to be ideally what are needed) are wrong/missing for\n# most of my devices.\n\n_abs_instance_names = {\n 0: 'x',\n 1: 'y',\n 2: 'z',\n 3: 'rx',\n 4: 'ry',\n 5: 'rz',\n}\n\n_rel_instance_names = {\n 0: 'x',\n 1: 'y',\n 2: 'wheel',\n}\n\n_btn_instance_names = {}\n\ndef _create_control(object_instance):\n raw_name = object_instance.tszName\n type = object_instance.dwType\n instance = dinput.DIDFT_GETINSTANCE(type)\n\n if type & dinput.DIDFT_ABSAXIS:\n name = _abs_instance_names.get(instance)\n control = base.AbsoluteAxis(name, 0, 0xffff, raw_name)\n elif type & dinput.DIDFT_RELAXIS:\n name = _rel_instance_names.get(instance)\n control = base.RelativeAxis(name, raw_name)\n elif type & dinput.DIDFT_BUTTON:\n name = _btn_instance_names.get(instance)\n control = base.Button(name, raw_name)\n elif type & dinput.DIDFT_POV:\n control = base.AbsoluteAxis(base.AbsoluteAxis.HAT,\n 0, 0xffffffff, raw_name)\n else:\n return\n\n control._type = object_instance.dwType\n return control\n\nclass DirectInputDevice(base.Device):\n def __init__(self, display, device, device_instance):\n name = device_instance.tszInstanceName\n super(DirectInputDevice, self).__init__(display, name)\n\n self._type = device_instance.dwDevType & 0xff\n self._subtype = device_instance.dwDevType & 0xff00\n\n self._device = device\n self._init_controls()\n self._set_format()\n\n def _init_controls(self):\n self.controls = []\n self._device.EnumObjects(\n dinput.LPDIENUMDEVICEOBJECTSCALLBACK(self._object_enum),\n None, dinput.DIDFT_ALL)\n\n def _object_enum(self, object_instance, arg):\n control = _create_control(object_instance.contents)\n if control:\n self.controls.append(control)\n return dinput.DIENUM_CONTINUE\n\n def _set_format(self):\n if not self.controls:\n return\n\n object_formats = (dinput.DIOBJECTDATAFORMAT * len(self.controls))()\n offset = 0\n for object_format, control in zip(object_formats, self.controls):\n object_format.dwOfs = offset\n object_format.dwType = control._type\n offset += 4\n\n format = dinput.DIDATAFORMAT()\n format.dwSize = ctypes.sizeof(format)\n format.dwObjSize = ctypes.sizeof(dinput.DIOBJECTDATAFORMAT)\n format.dwFlags = 0\n format.dwDataSize = offset\n format.dwNumObjs = len(object_formats)\n format.rgodf = ctypes.cast(ctypes.pointer(object_formats),\n dinput.LPDIOBJECTDATAFORMAT)\n self._device.SetDataFormat(format)\n\n prop = dinput.DIPROPDWORD()\n prop.diph.dwSize = ctypes.sizeof(prop)\n prop.diph.dwHeaderSize = ctypes.sizeof(prop.diph)\n prop.diph.dwObj = 0\n prop.diph.dwHow = dinput.DIPH_DEVICE\n prop.dwData = 64 * ctypes.sizeof(dinput.DIDATAFORMAT)\n self._device.SetProperty(dinput.DIPROP_BUFFERSIZE,\n ctypes.byref(prop.diph))\n\n def open(self, window=None, exclusive=False):\n if not self.controls:\n return\n\n if window is None:\n # Pick any open window, or the shadow window if no windows\n # have been created yet.\n window = pyglet.gl._shadow_window\n for window in app.windows:\n break\n\n flags = dinput.DISCL_BACKGROUND\n if exclusive:\n flags |= dinput.DISCL_EXCLUSIVE\n else:\n flags |= dinput.DISCL_NONEXCLUSIVE\n\n self._wait_object = _kernel32.CreateEventW(None, False, False, None)\n self._device.SetEventNotification(self._wait_object)\n app.platform_event_loop.add_wait_object(self._wait_object,\n self._dispatch_events)\n\n self._device.SetCooperativeLevel(window._hwnd, flags)\n self._device.Acquire()\n\n def close(self):\n if not self.controls:\n return\n\n app.platform_event_loop.remove_wait_object(self._wait_object)\n\n self._device.Unacquire()\n self._device.SetEventNotification(None)\n\n _kernel32.CloseHandle(self._wait_object)\n\n def get_controls(self):\n return self.controls\n\n def _dispatch_events(self):\n if not self.controls:\n return\n\n events = (dinput.DIDEVICEOBJECTDATA * 64)()\n n_events = win32.DWORD(len(events))\n self._device.GetDeviceData(ctypes.sizeof(dinput.DIDEVICEOBJECTDATA),\n ctypes.cast(ctypes.pointer(events),\n dinput.LPDIDEVICEOBJECTDATA),\n ctypes.byref(n_events),\n 0)\n for event in events[:n_events.value]:\n index = event.dwOfs // 4\n self.controls[index]._set_value(event.dwData)\n\n def dispatch_events(self):\n # standardize the method signature\n self._dispatch_events()\n\n_i_dinput = None\n\ndef _init_directinput():\n global _i_dinput\n if _i_dinput:\n return\n\n _i_dinput = dinput.IDirectInput8()\n module = _kernel32.GetModuleHandleW(None)\n dinput.DirectInput8Create(module, dinput.DIRECTINPUT_VERSION,\n dinput.IID_IDirectInput8W,\n ctypes.byref(_i_dinput), None)\n\ndef get_devices(display=None):\n _init_directinput()\n _devices = []\n\n def _device_enum(device_instance, arg):\n device = dinput.IDirectInputDevice8()\n _i_dinput.CreateDevice(device_instance.contents.guidInstance,\n ctypes.byref(device),\n None)\n _devices.append(DirectInputDevice(display,\n device, device_instance.contents))\n\n return dinput.DIENUM_CONTINUE\n\n _i_dinput.EnumDevices(dinput.DI8DEVCLASS_ALL,\n dinput.LPDIENUMDEVICESCALLBACK(_device_enum),\n None, dinput.DIEDFL_ATTACHEDONLY)\n return _devices\n\ndef _create_joystick(device):\n if device._type in (dinput.DI8DEVTYPE_JOYSTICK,\n dinput.DI8DEVTYPE_GAMEPAD):\n return base.Joystick(device)\n\ndef get_joysticks(display=None):\n return filter(None, [_create_joystick(d) for d in get_devices(display)])\n", "path": "psychopy/hardware/joystick/pyglet_input/directinput.py"}]}
2,394
147
gh_patches_debug_4607
rasdani/github-patches
git_diff
CTFd__CTFd-1726
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Incorrect update alert in Admin panel <!-- If this is a bug report please fill out the template below. If this is a feature request please describe the behavior that you'd like to see. --> **Environment**: - CTFd Version/Commit: 3.1.1 - Operating System: Ubuntu 20.4 - Web Browser and Version: Chrome 85 **What happened?** The admin panel shows an alert: "A new CTFd version is available!", which links to "https://github.com/CTFd/CTFd/releases/tag/2.4.2". I encountered the issue with version 3.0.2. as well. After complete reinstall and upgrade to version 3.1.1 the problem persisted **What did you expect to happen?** I expected no alert, as my CTFd version is the newest, and certainly newer than 2.4.2. **How to reproduce your issue** Go to the admin pages. **Any associated stack traces or error logs** No --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `CTFd/utils/updates/__init__.py` Content: ``` 1 import sys 2 import time 3 from distutils.version import StrictVersion 4 from platform import python_version 5 6 import requests 7 from flask import current_app as app 8 9 from CTFd.models import Challenges, Teams, Users, db 10 from CTFd.utils import get_app_config, get_config, set_config 11 from CTFd.utils.config import is_setup 12 from CTFd.utils.crypto import sha256 13 14 15 def update_check(force=False): 16 """ 17 Makes a request to ctfd.io to check if there is a new version of CTFd available. The service is provided in return 18 for users opting in to anonymous usage data collection. Users can opt-out of update checks by specifying 19 UPDATE_CHECK = False in config.py 20 21 :param force: 22 :return: 23 """ 24 # If UPDATE_CHECK is disabled don't check for updates at all. 25 if app.config.get("UPDATE_CHECK") is False: 26 return 27 28 # Don't do an update check if not setup 29 if is_setup() is False: 30 return 31 32 # Get when we should check for updates next. 33 next_update_check = get_config("next_update_check") or 0 34 35 # If we have passed our saved time or we are forcing we should check. 36 update = (next_update_check < time.time()) or force 37 38 if update: 39 try: 40 name = str(get_config("ctf_name")) or "" 41 params = { 42 "ctf_id": sha256(name), 43 "current": app.VERSION, 44 "python_version_raw": sys.hexversion, 45 "python_version": python_version(), 46 "db_driver": db.session.bind.dialect.name, 47 "challenge_count": Challenges.query.count(), 48 "user_mode": get_config("user_mode"), 49 "user_count": Users.query.count(), 50 "team_count": Teams.query.count(), 51 "theme": get_config("ctf_theme"), 52 "upload_provider": get_app_config("UPLOAD_PROVIDER"), 53 "channel": app.CHANNEL, 54 } 55 check = requests.get( 56 "https://versioning.ctfd.io/check", params=params, timeout=0.1 57 ).json() 58 except requests.exceptions.RequestException: 59 pass 60 except ValueError: 61 pass 62 else: 63 try: 64 latest = check["resource"]["tag"] 65 html_url = check["resource"]["html_url"] 66 if StrictVersion(latest) > StrictVersion(app.VERSION): 67 set_config("version_latest", html_url) 68 elif StrictVersion(latest) <= StrictVersion(app.VERSION): 69 set_config("version_latest", None) 70 next_update_check_time = check["resource"].get( 71 "next", int(time.time() + 43200) 72 ) 73 set_config("next_update_check", next_update_check_time) 74 except KeyError: 75 set_config("version_latest", None) 76 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/CTFd/utils/updates/__init__.py b/CTFd/utils/updates/__init__.py --- a/CTFd/utils/updates/__init__.py +++ b/CTFd/utils/updates/__init__.py @@ -53,7 +53,7 @@ "channel": app.CHANNEL, } check = requests.get( - "https://versioning.ctfd.io/check", params=params, timeout=0.1 + "https://versioning.ctfd.io/check", params=params, timeout=3 ).json() except requests.exceptions.RequestException: pass
{"golden_diff": "diff --git a/CTFd/utils/updates/__init__.py b/CTFd/utils/updates/__init__.py\n--- a/CTFd/utils/updates/__init__.py\n+++ b/CTFd/utils/updates/__init__.py\n@@ -53,7 +53,7 @@\n \"channel\": app.CHANNEL,\n }\n check = requests.get(\n- \"https://versioning.ctfd.io/check\", params=params, timeout=0.1\n+ \"https://versioning.ctfd.io/check\", params=params, timeout=3\n ).json()\n except requests.exceptions.RequestException:\n pass\n", "issue": "Incorrect update alert in Admin panel\n<!--\r\nIf this is a bug report please fill out the template below.\r\n\r\nIf this is a feature request please describe the behavior that you'd like to see.\r\n-->\r\n\r\n**Environment**:\r\n\r\n- CTFd Version/Commit: 3.1.1\r\n- Operating System: Ubuntu 20.4\r\n- Web Browser and Version: Chrome 85\r\n\r\n**What happened?**\r\nThe admin panel shows an alert: \"A new CTFd version is available!\", which links to \"https://github.com/CTFd/CTFd/releases/tag/2.4.2\". I encountered the issue with version 3.0.2. as well. After complete reinstall and upgrade to version 3.1.1 the problem persisted\r\n\r\n**What did you expect to happen?**\r\nI expected no alert, as my CTFd version is the newest, and certainly newer than 2.4.2.\r\n\r\n**How to reproduce your issue**\r\nGo to the admin pages.\r\n\r\n**Any associated stack traces or error logs**\r\nNo\n", "before_files": [{"content": "import sys\nimport time\nfrom distutils.version import StrictVersion\nfrom platform import python_version\n\nimport requests\nfrom flask import current_app as app\n\nfrom CTFd.models import Challenges, Teams, Users, db\nfrom CTFd.utils import get_app_config, get_config, set_config\nfrom CTFd.utils.config import is_setup\nfrom CTFd.utils.crypto import sha256\n\n\ndef update_check(force=False):\n \"\"\"\n Makes a request to ctfd.io to check if there is a new version of CTFd available. The service is provided in return\n for users opting in to anonymous usage data collection. Users can opt-out of update checks by specifying\n UPDATE_CHECK = False in config.py\n\n :param force:\n :return:\n \"\"\"\n # If UPDATE_CHECK is disabled don't check for updates at all.\n if app.config.get(\"UPDATE_CHECK\") is False:\n return\n\n # Don't do an update check if not setup\n if is_setup() is False:\n return\n\n # Get when we should check for updates next.\n next_update_check = get_config(\"next_update_check\") or 0\n\n # If we have passed our saved time or we are forcing we should check.\n update = (next_update_check < time.time()) or force\n\n if update:\n try:\n name = str(get_config(\"ctf_name\")) or \"\"\n params = {\n \"ctf_id\": sha256(name),\n \"current\": app.VERSION,\n \"python_version_raw\": sys.hexversion,\n \"python_version\": python_version(),\n \"db_driver\": db.session.bind.dialect.name,\n \"challenge_count\": Challenges.query.count(),\n \"user_mode\": get_config(\"user_mode\"),\n \"user_count\": Users.query.count(),\n \"team_count\": Teams.query.count(),\n \"theme\": get_config(\"ctf_theme\"),\n \"upload_provider\": get_app_config(\"UPLOAD_PROVIDER\"),\n \"channel\": app.CHANNEL,\n }\n check = requests.get(\n \"https://versioning.ctfd.io/check\", params=params, timeout=0.1\n ).json()\n except requests.exceptions.RequestException:\n pass\n except ValueError:\n pass\n else:\n try:\n latest = check[\"resource\"][\"tag\"]\n html_url = check[\"resource\"][\"html_url\"]\n if StrictVersion(latest) > StrictVersion(app.VERSION):\n set_config(\"version_latest\", html_url)\n elif StrictVersion(latest) <= StrictVersion(app.VERSION):\n set_config(\"version_latest\", None)\n next_update_check_time = check[\"resource\"].get(\n \"next\", int(time.time() + 43200)\n )\n set_config(\"next_update_check\", next_update_check_time)\n except KeyError:\n set_config(\"version_latest\", None)\n", "path": "CTFd/utils/updates/__init__.py"}], "after_files": [{"content": "import sys\nimport time\nfrom distutils.version import StrictVersion\nfrom platform import python_version\n\nimport requests\nfrom flask import current_app as app\n\nfrom CTFd.models import Challenges, Teams, Users, db\nfrom CTFd.utils import get_app_config, get_config, set_config\nfrom CTFd.utils.config import is_setup\nfrom CTFd.utils.crypto import sha256\n\n\ndef update_check(force=False):\n \"\"\"\n Makes a request to ctfd.io to check if there is a new version of CTFd available. The service is provided in return\n for users opting in to anonymous usage data collection. Users can opt-out of update checks by specifying\n UPDATE_CHECK = False in config.py\n\n :param force:\n :return:\n \"\"\"\n # If UPDATE_CHECK is disabled don't check for updates at all.\n if app.config.get(\"UPDATE_CHECK\") is False:\n return\n\n # Don't do an update check if not setup\n if is_setup() is False:\n return\n\n # Get when we should check for updates next.\n next_update_check = get_config(\"next_update_check\") or 0\n\n # If we have passed our saved time or we are forcing we should check.\n update = (next_update_check < time.time()) or force\n\n if update:\n try:\n name = str(get_config(\"ctf_name\")) or \"\"\n params = {\n \"ctf_id\": sha256(name),\n \"current\": app.VERSION,\n \"python_version_raw\": sys.hexversion,\n \"python_version\": python_version(),\n \"db_driver\": db.session.bind.dialect.name,\n \"challenge_count\": Challenges.query.count(),\n \"user_mode\": get_config(\"user_mode\"),\n \"user_count\": Users.query.count(),\n \"team_count\": Teams.query.count(),\n \"theme\": get_config(\"ctf_theme\"),\n \"upload_provider\": get_app_config(\"UPLOAD_PROVIDER\"),\n \"channel\": app.CHANNEL,\n }\n check = requests.get(\n \"https://versioning.ctfd.io/check\", params=params, timeout=3\n ).json()\n except requests.exceptions.RequestException:\n pass\n except ValueError:\n pass\n else:\n try:\n latest = check[\"resource\"][\"tag\"]\n html_url = check[\"resource\"][\"html_url\"]\n if StrictVersion(latest) > StrictVersion(app.VERSION):\n set_config(\"version_latest\", html_url)\n elif StrictVersion(latest) <= StrictVersion(app.VERSION):\n set_config(\"version_latest\", None)\n next_update_check_time = check[\"resource\"].get(\n \"next\", int(time.time() + 43200)\n )\n set_config(\"next_update_check\", next_update_check_time)\n except KeyError:\n set_config(\"version_latest\", None)\n", "path": "CTFd/utils/updates/__init__.py"}]}
1,224
134
gh_patches_debug_28226
rasdani/github-patches
git_diff
pyca__cryptography-7020
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Invalid ecdsa certificate can trigger "cryptography.exceptions.InternalError: Unknown OpenSSL error." Trying to access the public numbers of an ECDSA key where the public key is "0" (which I believe is the encoding for point at infinity, it's not a valid key, but one can of course encode such a key) causes an InternalError. Based on the error output I believe this is not supposed to happen. Such a key is part of OpenSSL's test suite: https://github.com/openssl/openssl/blob/master/test/recipes/91-test_pkey_check_data/ec_p256_bad_0.pem reproducer: ``` #!/usr/bin/python3 from cryptography.hazmat.primitives.serialization import load_pem_private_key privkey = """-----BEGIN PRIVATE KEY----- MEECAQAwEwYHKoZIzj0CAQYIKoZIzj0DAQcEJzAlAgEBBCD/////AAAAAP////// ////vOb6racXnoTzucrC/GMlUQ== -----END PRIVATE KEY-----""" pk = load_pem_private_key(privkey.encode(), password=None) print(pk.public_key().public_numbers()) ``` Exception message: ``` cryptography.exceptions.InternalError: Unknown OpenSSL error. This error is commonly encountered when another library is not cleaning up the OpenSSL error stack. If you are using cryptography with another library that uses OpenSSL try disabling it before reporting a bug. Otherwise please file an issue at https://github.com/pyca/cryptography/issues with information on how to reproduce this. ([_OpenSSLErrorWithText(code=269635690, lib=16, reason=106, reason_text=b'error:1012506A:elliptic curve routines:EC_POINT_get_affine_coordinates:point at infinity')]) ``` --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `src/cryptography/hazmat/backends/openssl/ec.py` Content: ``` 1 # This file is dual licensed under the terms of the Apache License, Version 2 # 2.0, and the BSD License. See the LICENSE file in the root of this repository 3 # for complete details. 4 5 import typing 6 7 from cryptography.exceptions import ( 8 InvalidSignature, 9 UnsupportedAlgorithm, 10 _Reasons, 11 ) 12 from cryptography.hazmat.backends.openssl.utils import ( 13 _calculate_digest_and_algorithm, 14 _evp_pkey_derive, 15 ) 16 from cryptography.hazmat.primitives import serialization 17 from cryptography.hazmat.primitives.asymmetric import ec 18 19 if typing.TYPE_CHECKING: 20 from cryptography.hazmat.backends.openssl.backend import Backend 21 22 23 def _check_signature_algorithm( 24 signature_algorithm: ec.EllipticCurveSignatureAlgorithm, 25 ) -> None: 26 if not isinstance(signature_algorithm, ec.ECDSA): 27 raise UnsupportedAlgorithm( 28 "Unsupported elliptic curve signature algorithm.", 29 _Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM, 30 ) 31 32 33 def _ec_key_curve_sn(backend: "Backend", ec_key) -> str: 34 group = backend._lib.EC_KEY_get0_group(ec_key) 35 backend.openssl_assert(group != backend._ffi.NULL) 36 37 nid = backend._lib.EC_GROUP_get_curve_name(group) 38 # The following check is to find EC keys with unnamed curves and raise 39 # an error for now. 40 if nid == backend._lib.NID_undef: 41 raise ValueError( 42 "ECDSA keys with explicit parameters are unsupported at this time" 43 ) 44 45 # This is like the above check, but it also catches the case where you 46 # explicitly encoded a curve with the same parameters as a named curve. 47 # Don't do that. 48 if ( 49 not backend._lib.CRYPTOGRAPHY_IS_LIBRESSL 50 and backend._lib.EC_GROUP_get_asn1_flag(group) == 0 51 ): 52 raise ValueError( 53 "ECDSA keys with explicit parameters are unsupported at this time" 54 ) 55 56 curve_name = backend._lib.OBJ_nid2sn(nid) 57 backend.openssl_assert(curve_name != backend._ffi.NULL) 58 59 sn = backend._ffi.string(curve_name).decode("ascii") 60 return sn 61 62 63 def _mark_asn1_named_ec_curve(backend: "Backend", ec_cdata): 64 """ 65 Set the named curve flag on the EC_KEY. This causes OpenSSL to 66 serialize EC keys along with their curve OID which makes 67 deserialization easier. 68 """ 69 70 backend._lib.EC_KEY_set_asn1_flag( 71 ec_cdata, backend._lib.OPENSSL_EC_NAMED_CURVE 72 ) 73 74 75 def _sn_to_elliptic_curve(backend: "Backend", sn: str) -> ec.EllipticCurve: 76 try: 77 return ec._CURVE_TYPES[sn]() 78 except KeyError: 79 raise UnsupportedAlgorithm( 80 "{} is not a supported elliptic curve".format(sn), 81 _Reasons.UNSUPPORTED_ELLIPTIC_CURVE, 82 ) 83 84 85 def _ecdsa_sig_sign( 86 backend: "Backend", private_key: "_EllipticCurvePrivateKey", data: bytes 87 ) -> bytes: 88 max_size = backend._lib.ECDSA_size(private_key._ec_key) 89 backend.openssl_assert(max_size > 0) 90 91 sigbuf = backend._ffi.new("unsigned char[]", max_size) 92 siglen_ptr = backend._ffi.new("unsigned int[]", 1) 93 res = backend._lib.ECDSA_sign( 94 0, data, len(data), sigbuf, siglen_ptr, private_key._ec_key 95 ) 96 backend.openssl_assert(res == 1) 97 return backend._ffi.buffer(sigbuf)[: siglen_ptr[0]] 98 99 100 def _ecdsa_sig_verify( 101 backend: "Backend", 102 public_key: "_EllipticCurvePublicKey", 103 signature: bytes, 104 data: bytes, 105 ) -> None: 106 res = backend._lib.ECDSA_verify( 107 0, data, len(data), signature, len(signature), public_key._ec_key 108 ) 109 if res != 1: 110 backend._consume_errors() 111 raise InvalidSignature 112 113 114 class _EllipticCurvePrivateKey(ec.EllipticCurvePrivateKey): 115 def __init__(self, backend: "Backend", ec_key_cdata, evp_pkey): 116 self._backend = backend 117 self._ec_key = ec_key_cdata 118 self._evp_pkey = evp_pkey 119 120 sn = _ec_key_curve_sn(backend, ec_key_cdata) 121 self._curve = _sn_to_elliptic_curve(backend, sn) 122 _mark_asn1_named_ec_curve(backend, ec_key_cdata) 123 124 @property 125 def curve(self) -> ec.EllipticCurve: 126 return self._curve 127 128 @property 129 def key_size(self) -> int: 130 return self.curve.key_size 131 132 def exchange( 133 self, algorithm: ec.ECDH, peer_public_key: ec.EllipticCurvePublicKey 134 ) -> bytes: 135 if not ( 136 self._backend.elliptic_curve_exchange_algorithm_supported( 137 algorithm, self.curve 138 ) 139 ): 140 raise UnsupportedAlgorithm( 141 "This backend does not support the ECDH algorithm.", 142 _Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM, 143 ) 144 145 if peer_public_key.curve.name != self.curve.name: 146 raise ValueError( 147 "peer_public_key and self are not on the same curve" 148 ) 149 150 return _evp_pkey_derive(self._backend, self._evp_pkey, peer_public_key) 151 152 def public_key(self) -> ec.EllipticCurvePublicKey: 153 group = self._backend._lib.EC_KEY_get0_group(self._ec_key) 154 self._backend.openssl_assert(group != self._backend._ffi.NULL) 155 156 curve_nid = self._backend._lib.EC_GROUP_get_curve_name(group) 157 public_ec_key = self._backend._ec_key_new_by_curve_nid(curve_nid) 158 159 point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key) 160 self._backend.openssl_assert(point != self._backend._ffi.NULL) 161 162 res = self._backend._lib.EC_KEY_set_public_key(public_ec_key, point) 163 self._backend.openssl_assert(res == 1) 164 165 evp_pkey = self._backend._ec_cdata_to_evp_pkey(public_ec_key) 166 167 return _EllipticCurvePublicKey(self._backend, public_ec_key, evp_pkey) 168 169 def private_numbers(self) -> ec.EllipticCurvePrivateNumbers: 170 bn = self._backend._lib.EC_KEY_get0_private_key(self._ec_key) 171 private_value = self._backend._bn_to_int(bn) 172 return ec.EllipticCurvePrivateNumbers( 173 private_value=private_value, 174 public_numbers=self.public_key().public_numbers(), 175 ) 176 177 def private_bytes( 178 self, 179 encoding: serialization.Encoding, 180 format: serialization.PrivateFormat, 181 encryption_algorithm: serialization.KeySerializationEncryption, 182 ) -> bytes: 183 return self._backend._private_key_bytes( 184 encoding, 185 format, 186 encryption_algorithm, 187 self, 188 self._evp_pkey, 189 self._ec_key, 190 ) 191 192 def sign( 193 self, 194 data: bytes, 195 signature_algorithm: ec.EllipticCurveSignatureAlgorithm, 196 ) -> bytes: 197 _check_signature_algorithm(signature_algorithm) 198 data, _ = _calculate_digest_and_algorithm( 199 data, 200 signature_algorithm.algorithm, 201 ) 202 return _ecdsa_sig_sign(self._backend, self, data) 203 204 205 class _EllipticCurvePublicKey(ec.EllipticCurvePublicKey): 206 def __init__(self, backend: "Backend", ec_key_cdata, evp_pkey): 207 self._backend = backend 208 self._ec_key = ec_key_cdata 209 self._evp_pkey = evp_pkey 210 211 sn = _ec_key_curve_sn(backend, ec_key_cdata) 212 self._curve = _sn_to_elliptic_curve(backend, sn) 213 _mark_asn1_named_ec_curve(backend, ec_key_cdata) 214 215 @property 216 def curve(self) -> ec.EllipticCurve: 217 return self._curve 218 219 @property 220 def key_size(self) -> int: 221 return self.curve.key_size 222 223 def public_numbers(self) -> ec.EllipticCurvePublicNumbers: 224 get_func, group = self._backend._ec_key_determine_group_get_func( 225 self._ec_key 226 ) 227 point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key) 228 self._backend.openssl_assert(point != self._backend._ffi.NULL) 229 230 with self._backend._tmp_bn_ctx() as bn_ctx: 231 bn_x = self._backend._lib.BN_CTX_get(bn_ctx) 232 bn_y = self._backend._lib.BN_CTX_get(bn_ctx) 233 234 res = get_func(group, point, bn_x, bn_y, bn_ctx) 235 self._backend.openssl_assert(res == 1) 236 237 x = self._backend._bn_to_int(bn_x) 238 y = self._backend._bn_to_int(bn_y) 239 240 return ec.EllipticCurvePublicNumbers(x=x, y=y, curve=self._curve) 241 242 def _encode_point(self, format: serialization.PublicFormat) -> bytes: 243 if format is serialization.PublicFormat.CompressedPoint: 244 conversion = self._backend._lib.POINT_CONVERSION_COMPRESSED 245 else: 246 assert format is serialization.PublicFormat.UncompressedPoint 247 conversion = self._backend._lib.POINT_CONVERSION_UNCOMPRESSED 248 249 group = self._backend._lib.EC_KEY_get0_group(self._ec_key) 250 self._backend.openssl_assert(group != self._backend._ffi.NULL) 251 point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key) 252 self._backend.openssl_assert(point != self._backend._ffi.NULL) 253 with self._backend._tmp_bn_ctx() as bn_ctx: 254 buflen = self._backend._lib.EC_POINT_point2oct( 255 group, point, conversion, self._backend._ffi.NULL, 0, bn_ctx 256 ) 257 self._backend.openssl_assert(buflen > 0) 258 buf = self._backend._ffi.new("char[]", buflen) 259 res = self._backend._lib.EC_POINT_point2oct( 260 group, point, conversion, buf, buflen, bn_ctx 261 ) 262 self._backend.openssl_assert(buflen == res) 263 264 return self._backend._ffi.buffer(buf)[:] 265 266 def public_bytes( 267 self, 268 encoding: serialization.Encoding, 269 format: serialization.PublicFormat, 270 ) -> bytes: 271 if ( 272 encoding is serialization.Encoding.X962 273 or format is serialization.PublicFormat.CompressedPoint 274 or format is serialization.PublicFormat.UncompressedPoint 275 ): 276 if encoding is not serialization.Encoding.X962 or format not in ( 277 serialization.PublicFormat.CompressedPoint, 278 serialization.PublicFormat.UncompressedPoint, 279 ): 280 raise ValueError( 281 "X962 encoding must be used with CompressedPoint or " 282 "UncompressedPoint format" 283 ) 284 285 return self._encode_point(format) 286 else: 287 return self._backend._public_key_bytes( 288 encoding, format, self, self._evp_pkey, None 289 ) 290 291 def verify( 292 self, 293 signature: bytes, 294 data: bytes, 295 signature_algorithm: ec.EllipticCurveSignatureAlgorithm, 296 ) -> None: 297 _check_signature_algorithm(signature_algorithm) 298 data, _ = _calculate_digest_and_algorithm( 299 data, 300 signature_algorithm.algorithm, 301 ) 302 _ecdsa_sig_verify(self._backend, self, signature, data) 303 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/src/cryptography/hazmat/backends/openssl/ec.py b/src/cryptography/hazmat/backends/openssl/ec.py --- a/src/cryptography/hazmat/backends/openssl/ec.py +++ b/src/cryptography/hazmat/backends/openssl/ec.py @@ -72,6 +72,17 @@ ) +def _check_key_infinity(backend: "Backend", ec_cdata) -> None: + point = backend._lib.EC_KEY_get0_public_key(ec_cdata) + backend.openssl_assert(point != backend._ffi.NULL) + group = backend._lib.EC_KEY_get0_group(ec_cdata) + backend.openssl_assert(group != backend._ffi.NULL) + if backend._lib.EC_POINT_is_at_infinity(group, point): + raise ValueError( + "Cannot load an EC public key where the point is at infinity" + ) + + def _sn_to_elliptic_curve(backend: "Backend", sn: str) -> ec.EllipticCurve: try: return ec._CURVE_TYPES[sn]() @@ -120,6 +131,7 @@ sn = _ec_key_curve_sn(backend, ec_key_cdata) self._curve = _sn_to_elliptic_curve(backend, sn) _mark_asn1_named_ec_curve(backend, ec_key_cdata) + _check_key_infinity(backend, ec_key_cdata) @property def curve(self) -> ec.EllipticCurve: @@ -211,6 +223,7 @@ sn = _ec_key_curve_sn(backend, ec_key_cdata) self._curve = _sn_to_elliptic_curve(backend, sn) _mark_asn1_named_ec_curve(backend, ec_key_cdata) + _check_key_infinity(backend, ec_key_cdata) @property def curve(self) -> ec.EllipticCurve:
{"golden_diff": "diff --git a/src/cryptography/hazmat/backends/openssl/ec.py b/src/cryptography/hazmat/backends/openssl/ec.py\n--- a/src/cryptography/hazmat/backends/openssl/ec.py\n+++ b/src/cryptography/hazmat/backends/openssl/ec.py\n@@ -72,6 +72,17 @@\n )\n \n \n+def _check_key_infinity(backend: \"Backend\", ec_cdata) -> None:\n+ point = backend._lib.EC_KEY_get0_public_key(ec_cdata)\n+ backend.openssl_assert(point != backend._ffi.NULL)\n+ group = backend._lib.EC_KEY_get0_group(ec_cdata)\n+ backend.openssl_assert(group != backend._ffi.NULL)\n+ if backend._lib.EC_POINT_is_at_infinity(group, point):\n+ raise ValueError(\n+ \"Cannot load an EC public key where the point is at infinity\"\n+ )\n+\n+\n def _sn_to_elliptic_curve(backend: \"Backend\", sn: str) -> ec.EllipticCurve:\n try:\n return ec._CURVE_TYPES[sn]()\n@@ -120,6 +131,7 @@\n sn = _ec_key_curve_sn(backend, ec_key_cdata)\n self._curve = _sn_to_elliptic_curve(backend, sn)\n _mark_asn1_named_ec_curve(backend, ec_key_cdata)\n+ _check_key_infinity(backend, ec_key_cdata)\n \n @property\n def curve(self) -> ec.EllipticCurve:\n@@ -211,6 +223,7 @@\n sn = _ec_key_curve_sn(backend, ec_key_cdata)\n self._curve = _sn_to_elliptic_curve(backend, sn)\n _mark_asn1_named_ec_curve(backend, ec_key_cdata)\n+ _check_key_infinity(backend, ec_key_cdata)\n \n @property\n def curve(self) -> ec.EllipticCurve:\n", "issue": "Invalid ecdsa certificate can trigger \"cryptography.exceptions.InternalError: Unknown OpenSSL error.\"\nTrying to access the public numbers of an ECDSA key where the public key is \"0\" (which I believe is the encoding for point at infinity, it's not a valid key, but one can of course encode such a key) causes an InternalError. Based on the error output I believe this is not supposed to happen.\r\n\r\nSuch a key is part of OpenSSL's test suite:\r\nhttps://github.com/openssl/openssl/blob/master/test/recipes/91-test_pkey_check_data/ec_p256_bad_0.pem\r\n\r\nreproducer:\r\n```\r\n#!/usr/bin/python3\r\n\r\nfrom cryptography.hazmat.primitives.serialization import load_pem_private_key\r\n\r\nprivkey = \"\"\"-----BEGIN PRIVATE KEY-----\r\nMEECAQAwEwYHKoZIzj0CAQYIKoZIzj0DAQcEJzAlAgEBBCD/////AAAAAP//////\r\n////vOb6racXnoTzucrC/GMlUQ==\r\n-----END PRIVATE KEY-----\"\"\"\r\n\r\npk = load_pem_private_key(privkey.encode(), password=None)\r\n\r\nprint(pk.public_key().public_numbers())\r\n```\r\n\r\nException message:\r\n```\r\ncryptography.exceptions.InternalError: Unknown OpenSSL error. This error is commonly encountered when another library is not cleaning up the OpenSSL error stack. If you are using cryptography with another library that uses OpenSSL try disabling it before reporting a bug. Otherwise please file an issue at https://github.com/pyca/cryptography/issues with information on how to reproduce this. ([_OpenSSLErrorWithText(code=269635690, lib=16, reason=106, reason_text=b'error:1012506A:elliptic curve routines:EC_POINT_get_affine_coordinates:point at infinity')])\r\n```\n", "before_files": [{"content": "# This file is dual licensed under the terms of the Apache License, Version\n# 2.0, and the BSD License. See the LICENSE file in the root of this repository\n# for complete details.\n\nimport typing\n\nfrom cryptography.exceptions import (\n InvalidSignature,\n UnsupportedAlgorithm,\n _Reasons,\n)\nfrom cryptography.hazmat.backends.openssl.utils import (\n _calculate_digest_and_algorithm,\n _evp_pkey_derive,\n)\nfrom cryptography.hazmat.primitives import serialization\nfrom cryptography.hazmat.primitives.asymmetric import ec\n\nif typing.TYPE_CHECKING:\n from cryptography.hazmat.backends.openssl.backend import Backend\n\n\ndef _check_signature_algorithm(\n signature_algorithm: ec.EllipticCurveSignatureAlgorithm,\n) -> None:\n if not isinstance(signature_algorithm, ec.ECDSA):\n raise UnsupportedAlgorithm(\n \"Unsupported elliptic curve signature algorithm.\",\n _Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,\n )\n\n\ndef _ec_key_curve_sn(backend: \"Backend\", ec_key) -> str:\n group = backend._lib.EC_KEY_get0_group(ec_key)\n backend.openssl_assert(group != backend._ffi.NULL)\n\n nid = backend._lib.EC_GROUP_get_curve_name(group)\n # The following check is to find EC keys with unnamed curves and raise\n # an error for now.\n if nid == backend._lib.NID_undef:\n raise ValueError(\n \"ECDSA keys with explicit parameters are unsupported at this time\"\n )\n\n # This is like the above check, but it also catches the case where you\n # explicitly encoded a curve with the same parameters as a named curve.\n # Don't do that.\n if (\n not backend._lib.CRYPTOGRAPHY_IS_LIBRESSL\n and backend._lib.EC_GROUP_get_asn1_flag(group) == 0\n ):\n raise ValueError(\n \"ECDSA keys with explicit parameters are unsupported at this time\"\n )\n\n curve_name = backend._lib.OBJ_nid2sn(nid)\n backend.openssl_assert(curve_name != backend._ffi.NULL)\n\n sn = backend._ffi.string(curve_name).decode(\"ascii\")\n return sn\n\n\ndef _mark_asn1_named_ec_curve(backend: \"Backend\", ec_cdata):\n \"\"\"\n Set the named curve flag on the EC_KEY. This causes OpenSSL to\n serialize EC keys along with their curve OID which makes\n deserialization easier.\n \"\"\"\n\n backend._lib.EC_KEY_set_asn1_flag(\n ec_cdata, backend._lib.OPENSSL_EC_NAMED_CURVE\n )\n\n\ndef _sn_to_elliptic_curve(backend: \"Backend\", sn: str) -> ec.EllipticCurve:\n try:\n return ec._CURVE_TYPES[sn]()\n except KeyError:\n raise UnsupportedAlgorithm(\n \"{} is not a supported elliptic curve\".format(sn),\n _Reasons.UNSUPPORTED_ELLIPTIC_CURVE,\n )\n\n\ndef _ecdsa_sig_sign(\n backend: \"Backend\", private_key: \"_EllipticCurvePrivateKey\", data: bytes\n) -> bytes:\n max_size = backend._lib.ECDSA_size(private_key._ec_key)\n backend.openssl_assert(max_size > 0)\n\n sigbuf = backend._ffi.new(\"unsigned char[]\", max_size)\n siglen_ptr = backend._ffi.new(\"unsigned int[]\", 1)\n res = backend._lib.ECDSA_sign(\n 0, data, len(data), sigbuf, siglen_ptr, private_key._ec_key\n )\n backend.openssl_assert(res == 1)\n return backend._ffi.buffer(sigbuf)[: siglen_ptr[0]]\n\n\ndef _ecdsa_sig_verify(\n backend: \"Backend\",\n public_key: \"_EllipticCurvePublicKey\",\n signature: bytes,\n data: bytes,\n) -> None:\n res = backend._lib.ECDSA_verify(\n 0, data, len(data), signature, len(signature), public_key._ec_key\n )\n if res != 1:\n backend._consume_errors()\n raise InvalidSignature\n\n\nclass _EllipticCurvePrivateKey(ec.EllipticCurvePrivateKey):\n def __init__(self, backend: \"Backend\", ec_key_cdata, evp_pkey):\n self._backend = backend\n self._ec_key = ec_key_cdata\n self._evp_pkey = evp_pkey\n\n sn = _ec_key_curve_sn(backend, ec_key_cdata)\n self._curve = _sn_to_elliptic_curve(backend, sn)\n _mark_asn1_named_ec_curve(backend, ec_key_cdata)\n\n @property\n def curve(self) -> ec.EllipticCurve:\n return self._curve\n\n @property\n def key_size(self) -> int:\n return self.curve.key_size\n\n def exchange(\n self, algorithm: ec.ECDH, peer_public_key: ec.EllipticCurvePublicKey\n ) -> bytes:\n if not (\n self._backend.elliptic_curve_exchange_algorithm_supported(\n algorithm, self.curve\n )\n ):\n raise UnsupportedAlgorithm(\n \"This backend does not support the ECDH algorithm.\",\n _Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,\n )\n\n if peer_public_key.curve.name != self.curve.name:\n raise ValueError(\n \"peer_public_key and self are not on the same curve\"\n )\n\n return _evp_pkey_derive(self._backend, self._evp_pkey, peer_public_key)\n\n def public_key(self) -> ec.EllipticCurvePublicKey:\n group = self._backend._lib.EC_KEY_get0_group(self._ec_key)\n self._backend.openssl_assert(group != self._backend._ffi.NULL)\n\n curve_nid = self._backend._lib.EC_GROUP_get_curve_name(group)\n public_ec_key = self._backend._ec_key_new_by_curve_nid(curve_nid)\n\n point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)\n self._backend.openssl_assert(point != self._backend._ffi.NULL)\n\n res = self._backend._lib.EC_KEY_set_public_key(public_ec_key, point)\n self._backend.openssl_assert(res == 1)\n\n evp_pkey = self._backend._ec_cdata_to_evp_pkey(public_ec_key)\n\n return _EllipticCurvePublicKey(self._backend, public_ec_key, evp_pkey)\n\n def private_numbers(self) -> ec.EllipticCurvePrivateNumbers:\n bn = self._backend._lib.EC_KEY_get0_private_key(self._ec_key)\n private_value = self._backend._bn_to_int(bn)\n return ec.EllipticCurvePrivateNumbers(\n private_value=private_value,\n public_numbers=self.public_key().public_numbers(),\n )\n\n def private_bytes(\n self,\n encoding: serialization.Encoding,\n format: serialization.PrivateFormat,\n encryption_algorithm: serialization.KeySerializationEncryption,\n ) -> bytes:\n return self._backend._private_key_bytes(\n encoding,\n format,\n encryption_algorithm,\n self,\n self._evp_pkey,\n self._ec_key,\n )\n\n def sign(\n self,\n data: bytes,\n signature_algorithm: ec.EllipticCurveSignatureAlgorithm,\n ) -> bytes:\n _check_signature_algorithm(signature_algorithm)\n data, _ = _calculate_digest_and_algorithm(\n data,\n signature_algorithm.algorithm,\n )\n return _ecdsa_sig_sign(self._backend, self, data)\n\n\nclass _EllipticCurvePublicKey(ec.EllipticCurvePublicKey):\n def __init__(self, backend: \"Backend\", ec_key_cdata, evp_pkey):\n self._backend = backend\n self._ec_key = ec_key_cdata\n self._evp_pkey = evp_pkey\n\n sn = _ec_key_curve_sn(backend, ec_key_cdata)\n self._curve = _sn_to_elliptic_curve(backend, sn)\n _mark_asn1_named_ec_curve(backend, ec_key_cdata)\n\n @property\n def curve(self) -> ec.EllipticCurve:\n return self._curve\n\n @property\n def key_size(self) -> int:\n return self.curve.key_size\n\n def public_numbers(self) -> ec.EllipticCurvePublicNumbers:\n get_func, group = self._backend._ec_key_determine_group_get_func(\n self._ec_key\n )\n point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)\n self._backend.openssl_assert(point != self._backend._ffi.NULL)\n\n with self._backend._tmp_bn_ctx() as bn_ctx:\n bn_x = self._backend._lib.BN_CTX_get(bn_ctx)\n bn_y = self._backend._lib.BN_CTX_get(bn_ctx)\n\n res = get_func(group, point, bn_x, bn_y, bn_ctx)\n self._backend.openssl_assert(res == 1)\n\n x = self._backend._bn_to_int(bn_x)\n y = self._backend._bn_to_int(bn_y)\n\n return ec.EllipticCurvePublicNumbers(x=x, y=y, curve=self._curve)\n\n def _encode_point(self, format: serialization.PublicFormat) -> bytes:\n if format is serialization.PublicFormat.CompressedPoint:\n conversion = self._backend._lib.POINT_CONVERSION_COMPRESSED\n else:\n assert format is serialization.PublicFormat.UncompressedPoint\n conversion = self._backend._lib.POINT_CONVERSION_UNCOMPRESSED\n\n group = self._backend._lib.EC_KEY_get0_group(self._ec_key)\n self._backend.openssl_assert(group != self._backend._ffi.NULL)\n point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)\n self._backend.openssl_assert(point != self._backend._ffi.NULL)\n with self._backend._tmp_bn_ctx() as bn_ctx:\n buflen = self._backend._lib.EC_POINT_point2oct(\n group, point, conversion, self._backend._ffi.NULL, 0, bn_ctx\n )\n self._backend.openssl_assert(buflen > 0)\n buf = self._backend._ffi.new(\"char[]\", buflen)\n res = self._backend._lib.EC_POINT_point2oct(\n group, point, conversion, buf, buflen, bn_ctx\n )\n self._backend.openssl_assert(buflen == res)\n\n return self._backend._ffi.buffer(buf)[:]\n\n def public_bytes(\n self,\n encoding: serialization.Encoding,\n format: serialization.PublicFormat,\n ) -> bytes:\n if (\n encoding is serialization.Encoding.X962\n or format is serialization.PublicFormat.CompressedPoint\n or format is serialization.PublicFormat.UncompressedPoint\n ):\n if encoding is not serialization.Encoding.X962 or format not in (\n serialization.PublicFormat.CompressedPoint,\n serialization.PublicFormat.UncompressedPoint,\n ):\n raise ValueError(\n \"X962 encoding must be used with CompressedPoint or \"\n \"UncompressedPoint format\"\n )\n\n return self._encode_point(format)\n else:\n return self._backend._public_key_bytes(\n encoding, format, self, self._evp_pkey, None\n )\n\n def verify(\n self,\n signature: bytes,\n data: bytes,\n signature_algorithm: ec.EllipticCurveSignatureAlgorithm,\n ) -> None:\n _check_signature_algorithm(signature_algorithm)\n data, _ = _calculate_digest_and_algorithm(\n data,\n signature_algorithm.algorithm,\n )\n _ecdsa_sig_verify(self._backend, self, signature, data)\n", "path": "src/cryptography/hazmat/backends/openssl/ec.py"}], "after_files": [{"content": "# This file is dual licensed under the terms of the Apache License, Version\n# 2.0, and the BSD License. See the LICENSE file in the root of this repository\n# for complete details.\n\nimport typing\n\nfrom cryptography.exceptions import (\n InvalidSignature,\n UnsupportedAlgorithm,\n _Reasons,\n)\nfrom cryptography.hazmat.backends.openssl.utils import (\n _calculate_digest_and_algorithm,\n _evp_pkey_derive,\n)\nfrom cryptography.hazmat.primitives import serialization\nfrom cryptography.hazmat.primitives.asymmetric import ec\n\nif typing.TYPE_CHECKING:\n from cryptography.hazmat.backends.openssl.backend import Backend\n\n\ndef _check_signature_algorithm(\n signature_algorithm: ec.EllipticCurveSignatureAlgorithm,\n) -> None:\n if not isinstance(signature_algorithm, ec.ECDSA):\n raise UnsupportedAlgorithm(\n \"Unsupported elliptic curve signature algorithm.\",\n _Reasons.UNSUPPORTED_PUBLIC_KEY_ALGORITHM,\n )\n\n\ndef _ec_key_curve_sn(backend: \"Backend\", ec_key) -> str:\n group = backend._lib.EC_KEY_get0_group(ec_key)\n backend.openssl_assert(group != backend._ffi.NULL)\n\n nid = backend._lib.EC_GROUP_get_curve_name(group)\n # The following check is to find EC keys with unnamed curves and raise\n # an error for now.\n if nid == backend._lib.NID_undef:\n raise ValueError(\n \"ECDSA keys with explicit parameters are unsupported at this time\"\n )\n\n # This is like the above check, but it also catches the case where you\n # explicitly encoded a curve with the same parameters as a named curve.\n # Don't do that.\n if (\n not backend._lib.CRYPTOGRAPHY_IS_LIBRESSL\n and backend._lib.EC_GROUP_get_asn1_flag(group) == 0\n ):\n raise ValueError(\n \"ECDSA keys with explicit parameters are unsupported at this time\"\n )\n\n curve_name = backend._lib.OBJ_nid2sn(nid)\n backend.openssl_assert(curve_name != backend._ffi.NULL)\n\n sn = backend._ffi.string(curve_name).decode(\"ascii\")\n return sn\n\n\ndef _mark_asn1_named_ec_curve(backend: \"Backend\", ec_cdata):\n \"\"\"\n Set the named curve flag on the EC_KEY. This causes OpenSSL to\n serialize EC keys along with their curve OID which makes\n deserialization easier.\n \"\"\"\n\n backend._lib.EC_KEY_set_asn1_flag(\n ec_cdata, backend._lib.OPENSSL_EC_NAMED_CURVE\n )\n\n\ndef _check_key_infinity(backend: \"Backend\", ec_cdata) -> None:\n point = backend._lib.EC_KEY_get0_public_key(ec_cdata)\n backend.openssl_assert(point != backend._ffi.NULL)\n group = backend._lib.EC_KEY_get0_group(ec_cdata)\n backend.openssl_assert(group != backend._ffi.NULL)\n if backend._lib.EC_POINT_is_at_infinity(group, point):\n raise ValueError(\n \"Cannot load an EC public key where the point is at infinity\"\n )\n\n\ndef _sn_to_elliptic_curve(backend: \"Backend\", sn: str) -> ec.EllipticCurve:\n try:\n return ec._CURVE_TYPES[sn]()\n except KeyError:\n raise UnsupportedAlgorithm(\n \"{} is not a supported elliptic curve\".format(sn),\n _Reasons.UNSUPPORTED_ELLIPTIC_CURVE,\n )\n\n\ndef _ecdsa_sig_sign(\n backend: \"Backend\", private_key: \"_EllipticCurvePrivateKey\", data: bytes\n) -> bytes:\n max_size = backend._lib.ECDSA_size(private_key._ec_key)\n backend.openssl_assert(max_size > 0)\n\n sigbuf = backend._ffi.new(\"unsigned char[]\", max_size)\n siglen_ptr = backend._ffi.new(\"unsigned int[]\", 1)\n res = backend._lib.ECDSA_sign(\n 0, data, len(data), sigbuf, siglen_ptr, private_key._ec_key\n )\n backend.openssl_assert(res == 1)\n return backend._ffi.buffer(sigbuf)[: siglen_ptr[0]]\n\n\ndef _ecdsa_sig_verify(\n backend: \"Backend\",\n public_key: \"_EllipticCurvePublicKey\",\n signature: bytes,\n data: bytes,\n) -> None:\n res = backend._lib.ECDSA_verify(\n 0, data, len(data), signature, len(signature), public_key._ec_key\n )\n if res != 1:\n backend._consume_errors()\n raise InvalidSignature\n\n\nclass _EllipticCurvePrivateKey(ec.EllipticCurvePrivateKey):\n def __init__(self, backend: \"Backend\", ec_key_cdata, evp_pkey):\n self._backend = backend\n self._ec_key = ec_key_cdata\n self._evp_pkey = evp_pkey\n\n sn = _ec_key_curve_sn(backend, ec_key_cdata)\n self._curve = _sn_to_elliptic_curve(backend, sn)\n _mark_asn1_named_ec_curve(backend, ec_key_cdata)\n _check_key_infinity(backend, ec_key_cdata)\n\n @property\n def curve(self) -> ec.EllipticCurve:\n return self._curve\n\n @property\n def key_size(self) -> int:\n return self.curve.key_size\n\n def exchange(\n self, algorithm: ec.ECDH, peer_public_key: ec.EllipticCurvePublicKey\n ) -> bytes:\n if not (\n self._backend.elliptic_curve_exchange_algorithm_supported(\n algorithm, self.curve\n )\n ):\n raise UnsupportedAlgorithm(\n \"This backend does not support the ECDH algorithm.\",\n _Reasons.UNSUPPORTED_EXCHANGE_ALGORITHM,\n )\n\n if peer_public_key.curve.name != self.curve.name:\n raise ValueError(\n \"peer_public_key and self are not on the same curve\"\n )\n\n return _evp_pkey_derive(self._backend, self._evp_pkey, peer_public_key)\n\n def public_key(self) -> ec.EllipticCurvePublicKey:\n group = self._backend._lib.EC_KEY_get0_group(self._ec_key)\n self._backend.openssl_assert(group != self._backend._ffi.NULL)\n\n curve_nid = self._backend._lib.EC_GROUP_get_curve_name(group)\n public_ec_key = self._backend._ec_key_new_by_curve_nid(curve_nid)\n\n point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)\n self._backend.openssl_assert(point != self._backend._ffi.NULL)\n\n res = self._backend._lib.EC_KEY_set_public_key(public_ec_key, point)\n self._backend.openssl_assert(res == 1)\n\n evp_pkey = self._backend._ec_cdata_to_evp_pkey(public_ec_key)\n\n return _EllipticCurvePublicKey(self._backend, public_ec_key, evp_pkey)\n\n def private_numbers(self) -> ec.EllipticCurvePrivateNumbers:\n bn = self._backend._lib.EC_KEY_get0_private_key(self._ec_key)\n private_value = self._backend._bn_to_int(bn)\n return ec.EllipticCurvePrivateNumbers(\n private_value=private_value,\n public_numbers=self.public_key().public_numbers(),\n )\n\n def private_bytes(\n self,\n encoding: serialization.Encoding,\n format: serialization.PrivateFormat,\n encryption_algorithm: serialization.KeySerializationEncryption,\n ) -> bytes:\n return self._backend._private_key_bytes(\n encoding,\n format,\n encryption_algorithm,\n self,\n self._evp_pkey,\n self._ec_key,\n )\n\n def sign(\n self,\n data: bytes,\n signature_algorithm: ec.EllipticCurveSignatureAlgorithm,\n ) -> bytes:\n _check_signature_algorithm(signature_algorithm)\n data, _ = _calculate_digest_and_algorithm(\n data,\n signature_algorithm.algorithm,\n )\n return _ecdsa_sig_sign(self._backend, self, data)\n\n\nclass _EllipticCurvePublicKey(ec.EllipticCurvePublicKey):\n def __init__(self, backend: \"Backend\", ec_key_cdata, evp_pkey):\n self._backend = backend\n self._ec_key = ec_key_cdata\n self._evp_pkey = evp_pkey\n\n sn = _ec_key_curve_sn(backend, ec_key_cdata)\n self._curve = _sn_to_elliptic_curve(backend, sn)\n _mark_asn1_named_ec_curve(backend, ec_key_cdata)\n _check_key_infinity(backend, ec_key_cdata)\n\n @property\n def curve(self) -> ec.EllipticCurve:\n return self._curve\n\n @property\n def key_size(self) -> int:\n return self.curve.key_size\n\n def public_numbers(self) -> ec.EllipticCurvePublicNumbers:\n get_func, group = self._backend._ec_key_determine_group_get_func(\n self._ec_key\n )\n point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)\n self._backend.openssl_assert(point != self._backend._ffi.NULL)\n\n with self._backend._tmp_bn_ctx() as bn_ctx:\n bn_x = self._backend._lib.BN_CTX_get(bn_ctx)\n bn_y = self._backend._lib.BN_CTX_get(bn_ctx)\n\n res = get_func(group, point, bn_x, bn_y, bn_ctx)\n self._backend.openssl_assert(res == 1)\n\n x = self._backend._bn_to_int(bn_x)\n y = self._backend._bn_to_int(bn_y)\n\n return ec.EllipticCurvePublicNumbers(x=x, y=y, curve=self._curve)\n\n def _encode_point(self, format: serialization.PublicFormat) -> bytes:\n if format is serialization.PublicFormat.CompressedPoint:\n conversion = self._backend._lib.POINT_CONVERSION_COMPRESSED\n else:\n assert format is serialization.PublicFormat.UncompressedPoint\n conversion = self._backend._lib.POINT_CONVERSION_UNCOMPRESSED\n\n group = self._backend._lib.EC_KEY_get0_group(self._ec_key)\n self._backend.openssl_assert(group != self._backend._ffi.NULL)\n point = self._backend._lib.EC_KEY_get0_public_key(self._ec_key)\n self._backend.openssl_assert(point != self._backend._ffi.NULL)\n with self._backend._tmp_bn_ctx() as bn_ctx:\n buflen = self._backend._lib.EC_POINT_point2oct(\n group, point, conversion, self._backend._ffi.NULL, 0, bn_ctx\n )\n self._backend.openssl_assert(buflen > 0)\n buf = self._backend._ffi.new(\"char[]\", buflen)\n res = self._backend._lib.EC_POINT_point2oct(\n group, point, conversion, buf, buflen, bn_ctx\n )\n self._backend.openssl_assert(buflen == res)\n\n return self._backend._ffi.buffer(buf)[:]\n\n def public_bytes(\n self,\n encoding: serialization.Encoding,\n format: serialization.PublicFormat,\n ) -> bytes:\n if (\n encoding is serialization.Encoding.X962\n or format is serialization.PublicFormat.CompressedPoint\n or format is serialization.PublicFormat.UncompressedPoint\n ):\n if encoding is not serialization.Encoding.X962 or format not in (\n serialization.PublicFormat.CompressedPoint,\n serialization.PublicFormat.UncompressedPoint,\n ):\n raise ValueError(\n \"X962 encoding must be used with CompressedPoint or \"\n \"UncompressedPoint format\"\n )\n\n return self._encode_point(format)\n else:\n return self._backend._public_key_bytes(\n encoding, format, self, self._evp_pkey, None\n )\n\n def verify(\n self,\n signature: bytes,\n data: bytes,\n signature_algorithm: ec.EllipticCurveSignatureAlgorithm,\n ) -> None:\n _check_signature_algorithm(signature_algorithm)\n data, _ = _calculate_digest_and_algorithm(\n data,\n signature_algorithm.algorithm,\n )\n _ecdsa_sig_verify(self._backend, self, signature, data)\n", "path": "src/cryptography/hazmat/backends/openssl/ec.py"}]}
4,003
436
gh_patches_debug_35103
rasdani/github-patches
git_diff
comic__grand-challenge.org-1001
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- libvips chokes on dzi conversion with sparse inputs Upload a tif file which is sparse, in `tiff.py` line 212: ``` image = pyvips.Image.new_from_file( str(tiff_file.path.absolute()), access="sequential" ) pyvips.Image.dzsave( image, dzi_output, tile_size=settings.DZI_TILE_SIZE ) ``` The `dzsave` will fail with empty tiles, eg: ``` ["Image can't be converted to dzi: unable to call dzsave\n TIFFFillTile: 0: Invalid tile byte count, tile 1\nTIFFFillTile: 0: Invalid tile byte count, tile 3\nTIFFFillTile: 0: Invalid tile byte count, tile 4\nTIFFFillTile: 0: Invalid tile byte count, tile 5\nTIFFFillTile: 0: Invalid tile byte count, tile 6\nTIFFFillTile: 0: Invalid tile byte count, tile 7\nTIFFFillTile: 0: Invalid tile byte count, tile 8\nTIFFFillTile: 0: Invalid tile byte count, tile 9\nTIFFFillTile: 0: Invalid tile byte count, tile 10\nTIFFFillTile: 0: Invalid tile byte count, tile 11\nTIFFFillTile: 0: Invalid tile byte count, tile 12\nTIFFFillTile: 0: Invalid tile byte count, tile 13\nTIFFFillTile: 0: Invalid tile byte count, tile 14\nTIFFFillTile: 0: Invalid tile byte count, tile 15\nTIFFFillTile: 0: Invalid tile byte count, tile 16\nTIFFFillTile: 0: Invalid tile byte count, tile 17\nTIFFFillTile: 0: Invalid tile byte count, tile 18\nTIFFFillTile: 0: Invalid tile byte count, tile 19\nTIFFFillTile: 0: Invalid tile byte count, tile 20\nTIFFFillTile: 0: Invalid tile byte count, tile 23\n"] ``` Test image shared with Miriam on slack. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `app/grandchallenge/cases/image_builders/tiff.py` Content: ``` 1 from pathlib import Path 2 from tempfile import TemporaryFile 3 from typing import NamedTuple 4 from uuid import uuid4 5 6 import pyvips 7 import tifffile 8 from django.conf import settings 9 from django.core.exceptions import ValidationError 10 from django.core.files import File 11 12 from grandchallenge.cases.image_builders import ImageBuilderResult 13 from grandchallenge.cases.models import FolderUpload, Image, ImageFile 14 15 16 class GrandChallengeTiffFileTags(NamedTuple): 17 image_width: int 18 image_height: int 19 resolution_levels: int 20 color_space: str 21 22 23 class GrandChallengeTiffFile(NamedTuple): 24 path: Path 25 tags: GrandChallengeTiffFileTags 26 27 28 def load_tiff_file(*, path: Path) -> GrandChallengeTiffFile: 29 """ 30 Loads and validates a file using tifffile 31 :param path: The path to the potential tiff file 32 :return: A tiff file that can be used in the rest of grand challenge 33 """ 34 try: 35 file = tifffile.TiffFile(str(path.absolute())) 36 except ValueError: 37 raise ValidationError("Image isn't a TIFF file") 38 39 tags = _validate_tifffile(pages=file.pages) 40 41 return GrandChallengeTiffFile(path=path, tags=tags) 42 43 44 def _validate_tifffile( # noqa: C901 45 *, pages: tifffile.tifffile.TiffPages 46 ) -> GrandChallengeTiffFileTags: 47 """ 48 Validates a tiff file loaded with tifffile for use in grand challenge 49 :param pages: The pages and tags from tiffile 50 :return: The extracted tags that are needed by the rest of the framework 51 """ 52 required_tile_tags = ("TileOffsets", "TileByteCounts") 53 54 forbidden_description_tags = ("dicom", "xml") 55 56 tags = pages[0].tags 57 58 # Checks if the image description exists, 59 # if so, ensure there's no DICOM or XML data 60 try: 61 image_description = str(tags["ImageDescription"].value).lower() 62 for forbidden in forbidden_description_tags: 63 if forbidden in image_description: 64 raise ValidationError( 65 "Image contains unauthorized information" 66 ) 67 except KeyError: 68 pass 69 70 # Fails if the image doesn't have all required tile tags 71 if not all(tag in tags for tag in required_tile_tags): 72 raise ValidationError("Image has incomplete tile information") 73 74 # Fails if the image only has a single resolution page 75 resolution_levels = len(pages) 76 if resolution_levels == 1: 77 raise ValidationError("Image only has a single resolution level") 78 79 # Fails if the image doesn't have the chunky format 80 if str(tags["PlanarConfiguration"].value) != "PLANARCONFIG.CONTIG": 81 raise ValidationError( 82 "Image planar configuration isn't configured as 'Chunky' format" 83 ) 84 85 # Fails if the color space isn't supported 86 try: 87 color_space = get_color_space( 88 str(tags["PhotometricInterpretation"].value) 89 ) 90 except KeyError: 91 raise ValidationError("Image lacks color space information") 92 93 # Fails if the amount of bytes per sample doesn't correspond to the 94 # colour space 95 tif_color_channels = tags["SamplesPerPixel"].value 96 if Image.COLOR_SPACE_COMPONENTS[color_space] != tif_color_channels: 97 raise ValidationError("Image contains invalid amount of channels.") 98 99 try: 100 image_width = tags["ImageWidth"].value 101 image_height = tags["ImageLength"].value 102 except KeyError: 103 raise ValidationError("Missing tags in tiff file") 104 105 return GrandChallengeTiffFileTags( 106 image_width=image_width, 107 image_height=image_height, 108 color_space=color_space, 109 resolution_levels=resolution_levels, 110 ) 111 112 113 def get_color_space(color_space_string) -> Image.COLOR_SPACES: 114 color_space_string = color_space_string.split(".")[1].upper() 115 116 if color_space_string == "MINISBLACK": 117 color_space = Image.COLOR_SPACE_GRAY 118 else: 119 try: 120 color_space = dict(Image.COLOR_SPACES)[color_space_string] 121 except KeyError: 122 raise ValidationError("Invalid color space") 123 124 return color_space 125 126 127 def image_builder_tiff(path: Path) -> ImageBuilderResult: 128 new_images = [] 129 new_image_files = [] 130 consumed_files = set() 131 invalid_file_errors = {} 132 new_folder_upload = [] 133 134 for file_path in path.iterdir(): 135 pk = uuid4() 136 137 try: 138 tiff_file = load_tiff_file(path=file_path) 139 dzi_output = create_dzi_images(tiff_file=tiff_file, pk=pk) 140 except ValidationError as e: 141 invalid_file_errors[file_path.name] = str(e) 142 continue 143 144 image = create_tiff_image_entry(tiff_file=tiff_file, pk=pk) 145 146 temp_file = TemporaryFile() 147 with open(tiff_file.path.absolute(), "rb") as open_file: 148 buffer = True 149 while buffer: 150 buffer = open_file.read(1024) 151 temp_file.write(buffer) 152 153 new_image_files.append( 154 ImageFile( 155 image=image, 156 image_type=ImageFile.IMAGE_TYPE_TIFF, 157 file=File(temp_file, name=f"{image.pk}.tif"), 158 ) 159 ) 160 161 temp_dzi_file = TemporaryFile() 162 with open(dzi_output + ".dzi", "rb") as open_file: 163 buffer = True 164 while buffer: 165 buffer = open_file.read(1024) 166 temp_dzi_file.write(buffer) 167 168 new_image_files.append( 169 ImageFile( 170 image=image, 171 image_type=ImageFile.IMAGE_TYPE_DZI, 172 file=File(temp_dzi_file, name=f"{image.pk}.dzi"), 173 ) 174 ) 175 176 dzi_folder_upload = FolderUpload( 177 folder=dzi_output + "_files", image=image 178 ) 179 new_images.append(image) 180 consumed_files.add(tiff_file.path.name) 181 new_folder_upload.append(dzi_folder_upload) 182 183 return ImageBuilderResult( 184 consumed_files=consumed_files, 185 file_errors_map=invalid_file_errors, 186 new_images=new_images, 187 new_image_files=new_image_files, 188 new_folder_upload=new_folder_upload, 189 ) 190 191 192 def create_tiff_image_entry(*, tiff_file: GrandChallengeTiffFile, pk) -> Image: 193 # Builds a new Image model item 194 return Image( 195 pk=pk, 196 name=tiff_file.path.name, 197 width=tiff_file.tags.image_width, 198 height=tiff_file.tags.image_height, 199 depth=1, 200 resolution_levels=tiff_file.tags.resolution_levels, 201 color_space=tiff_file.tags.color_space, 202 eye_choice=Image.EYE_UNKNOWN, 203 stereoscopic_choice=Image.STEREOSCOPIC_UNKNOWN, 204 field_of_view=Image.FOV_UNKNOWN, 205 ) 206 207 208 def create_dzi_images(*, tiff_file: GrandChallengeTiffFile, pk) -> str: 209 # Creates a dzi file(out.dzi) and corresponding tiles in folder {pk}_files 210 dzi_output = str(tiff_file.path.parent / str(pk)) 211 try: 212 image = pyvips.Image.new_from_file( 213 str(tiff_file.path.absolute()), access="sequential" 214 ) 215 216 pyvips.Image.dzsave( 217 image, dzi_output, tile_size=settings.DZI_TILE_SIZE 218 ) 219 except Exception as e: 220 raise ValidationError("Image can't be converted to dzi: " + str(e)) 221 222 return dzi_output 223 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/app/grandchallenge/cases/image_builders/tiff.py b/app/grandchallenge/cases/image_builders/tiff.py --- a/app/grandchallenge/cases/image_builders/tiff.py +++ b/app/grandchallenge/cases/image_builders/tiff.py @@ -133,14 +133,18 @@ for file_path in path.iterdir(): pk = uuid4() - + dzi_output = None try: tiff_file = load_tiff_file(path=file_path) - dzi_output = create_dzi_images(tiff_file=tiff_file, pk=pk) except ValidationError as e: invalid_file_errors[file_path.name] = str(e) continue + try: + dzi_output = create_dzi_images(tiff_file=tiff_file, pk=pk) + except ValidationError as e: + invalid_file_errors[file_path.name] = str(e) + image = create_tiff_image_entry(tiff_file=tiff_file, pk=pk) temp_file = TemporaryFile() @@ -158,27 +162,29 @@ ) ) - temp_dzi_file = TemporaryFile() - with open(dzi_output + ".dzi", "rb") as open_file: - buffer = True - while buffer: - buffer = open_file.read(1024) - temp_dzi_file.write(buffer) + if dzi_output: + temp_dzi_file = TemporaryFile() + with open(dzi_output + ".dzi", "rb") as open_file: + buffer = True + while buffer: + buffer = open_file.read(1024) + temp_dzi_file.write(buffer) + + new_image_files.append( + ImageFile( + image=image, + image_type=ImageFile.IMAGE_TYPE_DZI, + file=File(temp_dzi_file, name=f"{image.pk}.dzi"), + ) + ) - new_image_files.append( - ImageFile( - image=image, - image_type=ImageFile.IMAGE_TYPE_DZI, - file=File(temp_dzi_file, name=f"{image.pk}.dzi"), + dzi_folder_upload = FolderUpload( + folder=dzi_output + "_files", image=image ) - ) + new_folder_upload.append(dzi_folder_upload) - dzi_folder_upload = FolderUpload( - folder=dzi_output + "_files", image=image - ) new_images.append(image) consumed_files.add(tiff_file.path.name) - new_folder_upload.append(dzi_folder_upload) return ImageBuilderResult( consumed_files=consumed_files,
{"golden_diff": "diff --git a/app/grandchallenge/cases/image_builders/tiff.py b/app/grandchallenge/cases/image_builders/tiff.py\n--- a/app/grandchallenge/cases/image_builders/tiff.py\n+++ b/app/grandchallenge/cases/image_builders/tiff.py\n@@ -133,14 +133,18 @@\n \n for file_path in path.iterdir():\n pk = uuid4()\n-\n+ dzi_output = None\n try:\n tiff_file = load_tiff_file(path=file_path)\n- dzi_output = create_dzi_images(tiff_file=tiff_file, pk=pk)\n except ValidationError as e:\n invalid_file_errors[file_path.name] = str(e)\n continue\n \n+ try:\n+ dzi_output = create_dzi_images(tiff_file=tiff_file, pk=pk)\n+ except ValidationError as e:\n+ invalid_file_errors[file_path.name] = str(e)\n+\n image = create_tiff_image_entry(tiff_file=tiff_file, pk=pk)\n \n temp_file = TemporaryFile()\n@@ -158,27 +162,29 @@\n )\n )\n \n- temp_dzi_file = TemporaryFile()\n- with open(dzi_output + \".dzi\", \"rb\") as open_file:\n- buffer = True\n- while buffer:\n- buffer = open_file.read(1024)\n- temp_dzi_file.write(buffer)\n+ if dzi_output:\n+ temp_dzi_file = TemporaryFile()\n+ with open(dzi_output + \".dzi\", \"rb\") as open_file:\n+ buffer = True\n+ while buffer:\n+ buffer = open_file.read(1024)\n+ temp_dzi_file.write(buffer)\n+\n+ new_image_files.append(\n+ ImageFile(\n+ image=image,\n+ image_type=ImageFile.IMAGE_TYPE_DZI,\n+ file=File(temp_dzi_file, name=f\"{image.pk}.dzi\"),\n+ )\n+ )\n \n- new_image_files.append(\n- ImageFile(\n- image=image,\n- image_type=ImageFile.IMAGE_TYPE_DZI,\n- file=File(temp_dzi_file, name=f\"{image.pk}.dzi\"),\n+ dzi_folder_upload = FolderUpload(\n+ folder=dzi_output + \"_files\", image=image\n )\n- )\n+ new_folder_upload.append(dzi_folder_upload)\n \n- dzi_folder_upload = FolderUpload(\n- folder=dzi_output + \"_files\", image=image\n- )\n new_images.append(image)\n consumed_files.add(tiff_file.path.name)\n- new_folder_upload.append(dzi_folder_upload)\n \n return ImageBuilderResult(\n consumed_files=consumed_files,\n", "issue": "libvips chokes on dzi conversion with sparse inputs\nUpload a tif file which is sparse, in `tiff.py` line 212:\r\n\r\n```\r\nimage = pyvips.Image.new_from_file(\r\n str(tiff_file.path.absolute()), access=\"sequential\"\r\n )\r\n\r\n pyvips.Image.dzsave(\r\n image, dzi_output, tile_size=settings.DZI_TILE_SIZE\r\n )\r\n```\r\n\r\nThe `dzsave` will fail with empty tiles, eg:\r\n\r\n```\r\n[\"Image can't be converted to dzi: unable to call dzsave\\n TIFFFillTile: 0: Invalid tile byte count, tile 1\\nTIFFFillTile: 0: Invalid tile byte count, tile 3\\nTIFFFillTile: 0: Invalid tile byte count, tile 4\\nTIFFFillTile: 0: Invalid tile byte count, tile 5\\nTIFFFillTile: 0: Invalid tile byte count, tile 6\\nTIFFFillTile: 0: Invalid tile byte count, tile 7\\nTIFFFillTile: 0: Invalid tile byte count, tile 8\\nTIFFFillTile: 0: Invalid tile byte count, tile 9\\nTIFFFillTile: 0: Invalid tile byte count, tile 10\\nTIFFFillTile: 0: Invalid tile byte count, tile 11\\nTIFFFillTile: 0: Invalid tile byte count, tile 12\\nTIFFFillTile: 0: Invalid tile byte count, tile 13\\nTIFFFillTile: 0: Invalid tile byte count, tile 14\\nTIFFFillTile: 0: Invalid tile byte count, tile 15\\nTIFFFillTile: 0: Invalid tile byte count, tile 16\\nTIFFFillTile: 0: Invalid tile byte count, tile 17\\nTIFFFillTile: 0: Invalid tile byte count, tile 18\\nTIFFFillTile: 0: Invalid tile byte count, tile 19\\nTIFFFillTile: 0: Invalid tile byte count, tile 20\\nTIFFFillTile: 0: Invalid tile byte count, tile 23\\n\"]\r\n```\r\n\r\nTest image shared with Miriam on slack.\n", "before_files": [{"content": "from pathlib import Path\nfrom tempfile import TemporaryFile\nfrom typing import NamedTuple\nfrom uuid import uuid4\n\nimport pyvips\nimport tifffile\nfrom django.conf import settings\nfrom django.core.exceptions import ValidationError\nfrom django.core.files import File\n\nfrom grandchallenge.cases.image_builders import ImageBuilderResult\nfrom grandchallenge.cases.models import FolderUpload, Image, ImageFile\n\n\nclass GrandChallengeTiffFileTags(NamedTuple):\n image_width: int\n image_height: int\n resolution_levels: int\n color_space: str\n\n\nclass GrandChallengeTiffFile(NamedTuple):\n path: Path\n tags: GrandChallengeTiffFileTags\n\n\ndef load_tiff_file(*, path: Path) -> GrandChallengeTiffFile:\n \"\"\"\n Loads and validates a file using tifffile\n :param path: The path to the potential tiff file\n :return: A tiff file that can be used in the rest of grand challenge\n \"\"\"\n try:\n file = tifffile.TiffFile(str(path.absolute()))\n except ValueError:\n raise ValidationError(\"Image isn't a TIFF file\")\n\n tags = _validate_tifffile(pages=file.pages)\n\n return GrandChallengeTiffFile(path=path, tags=tags)\n\n\ndef _validate_tifffile( # noqa: C901\n *, pages: tifffile.tifffile.TiffPages\n) -> GrandChallengeTiffFileTags:\n \"\"\"\n Validates a tiff file loaded with tifffile for use in grand challenge\n :param pages: The pages and tags from tiffile\n :return: The extracted tags that are needed by the rest of the framework\n \"\"\"\n required_tile_tags = (\"TileOffsets\", \"TileByteCounts\")\n\n forbidden_description_tags = (\"dicom\", \"xml\")\n\n tags = pages[0].tags\n\n # Checks if the image description exists,\n # if so, ensure there's no DICOM or XML data\n try:\n image_description = str(tags[\"ImageDescription\"].value).lower()\n for forbidden in forbidden_description_tags:\n if forbidden in image_description:\n raise ValidationError(\n \"Image contains unauthorized information\"\n )\n except KeyError:\n pass\n\n # Fails if the image doesn't have all required tile tags\n if not all(tag in tags for tag in required_tile_tags):\n raise ValidationError(\"Image has incomplete tile information\")\n\n # Fails if the image only has a single resolution page\n resolution_levels = len(pages)\n if resolution_levels == 1:\n raise ValidationError(\"Image only has a single resolution level\")\n\n # Fails if the image doesn't have the chunky format\n if str(tags[\"PlanarConfiguration\"].value) != \"PLANARCONFIG.CONTIG\":\n raise ValidationError(\n \"Image planar configuration isn't configured as 'Chunky' format\"\n )\n\n # Fails if the color space isn't supported\n try:\n color_space = get_color_space(\n str(tags[\"PhotometricInterpretation\"].value)\n )\n except KeyError:\n raise ValidationError(\"Image lacks color space information\")\n\n # Fails if the amount of bytes per sample doesn't correspond to the\n # colour space\n tif_color_channels = tags[\"SamplesPerPixel\"].value\n if Image.COLOR_SPACE_COMPONENTS[color_space] != tif_color_channels:\n raise ValidationError(\"Image contains invalid amount of channels.\")\n\n try:\n image_width = tags[\"ImageWidth\"].value\n image_height = tags[\"ImageLength\"].value\n except KeyError:\n raise ValidationError(\"Missing tags in tiff file\")\n\n return GrandChallengeTiffFileTags(\n image_width=image_width,\n image_height=image_height,\n color_space=color_space,\n resolution_levels=resolution_levels,\n )\n\n\ndef get_color_space(color_space_string) -> Image.COLOR_SPACES:\n color_space_string = color_space_string.split(\".\")[1].upper()\n\n if color_space_string == \"MINISBLACK\":\n color_space = Image.COLOR_SPACE_GRAY\n else:\n try:\n color_space = dict(Image.COLOR_SPACES)[color_space_string]\n except KeyError:\n raise ValidationError(\"Invalid color space\")\n\n return color_space\n\n\ndef image_builder_tiff(path: Path) -> ImageBuilderResult:\n new_images = []\n new_image_files = []\n consumed_files = set()\n invalid_file_errors = {}\n new_folder_upload = []\n\n for file_path in path.iterdir():\n pk = uuid4()\n\n try:\n tiff_file = load_tiff_file(path=file_path)\n dzi_output = create_dzi_images(tiff_file=tiff_file, pk=pk)\n except ValidationError as e:\n invalid_file_errors[file_path.name] = str(e)\n continue\n\n image = create_tiff_image_entry(tiff_file=tiff_file, pk=pk)\n\n temp_file = TemporaryFile()\n with open(tiff_file.path.absolute(), \"rb\") as open_file:\n buffer = True\n while buffer:\n buffer = open_file.read(1024)\n temp_file.write(buffer)\n\n new_image_files.append(\n ImageFile(\n image=image,\n image_type=ImageFile.IMAGE_TYPE_TIFF,\n file=File(temp_file, name=f\"{image.pk}.tif\"),\n )\n )\n\n temp_dzi_file = TemporaryFile()\n with open(dzi_output + \".dzi\", \"rb\") as open_file:\n buffer = True\n while buffer:\n buffer = open_file.read(1024)\n temp_dzi_file.write(buffer)\n\n new_image_files.append(\n ImageFile(\n image=image,\n image_type=ImageFile.IMAGE_TYPE_DZI,\n file=File(temp_dzi_file, name=f\"{image.pk}.dzi\"),\n )\n )\n\n dzi_folder_upload = FolderUpload(\n folder=dzi_output + \"_files\", image=image\n )\n new_images.append(image)\n consumed_files.add(tiff_file.path.name)\n new_folder_upload.append(dzi_folder_upload)\n\n return ImageBuilderResult(\n consumed_files=consumed_files,\n file_errors_map=invalid_file_errors,\n new_images=new_images,\n new_image_files=new_image_files,\n new_folder_upload=new_folder_upload,\n )\n\n\ndef create_tiff_image_entry(*, tiff_file: GrandChallengeTiffFile, pk) -> Image:\n # Builds a new Image model item\n return Image(\n pk=pk,\n name=tiff_file.path.name,\n width=tiff_file.tags.image_width,\n height=tiff_file.tags.image_height,\n depth=1,\n resolution_levels=tiff_file.tags.resolution_levels,\n color_space=tiff_file.tags.color_space,\n eye_choice=Image.EYE_UNKNOWN,\n stereoscopic_choice=Image.STEREOSCOPIC_UNKNOWN,\n field_of_view=Image.FOV_UNKNOWN,\n )\n\n\ndef create_dzi_images(*, tiff_file: GrandChallengeTiffFile, pk) -> str:\n # Creates a dzi file(out.dzi) and corresponding tiles in folder {pk}_files\n dzi_output = str(tiff_file.path.parent / str(pk))\n try:\n image = pyvips.Image.new_from_file(\n str(tiff_file.path.absolute()), access=\"sequential\"\n )\n\n pyvips.Image.dzsave(\n image, dzi_output, tile_size=settings.DZI_TILE_SIZE\n )\n except Exception as e:\n raise ValidationError(\"Image can't be converted to dzi: \" + str(e))\n\n return dzi_output\n", "path": "app/grandchallenge/cases/image_builders/tiff.py"}], "after_files": [{"content": "from pathlib import Path\nfrom tempfile import TemporaryFile\nfrom typing import NamedTuple\nfrom uuid import uuid4\n\nimport pyvips\nimport tifffile\nfrom django.conf import settings\nfrom django.core.exceptions import ValidationError\nfrom django.core.files import File\n\nfrom grandchallenge.cases.image_builders import ImageBuilderResult\nfrom grandchallenge.cases.models import FolderUpload, Image, ImageFile\n\n\nclass GrandChallengeTiffFileTags(NamedTuple):\n image_width: int\n image_height: int\n resolution_levels: int\n color_space: str\n\n\nclass GrandChallengeTiffFile(NamedTuple):\n path: Path\n tags: GrandChallengeTiffFileTags\n\n\ndef load_tiff_file(*, path: Path) -> GrandChallengeTiffFile:\n \"\"\"\n Loads and validates a file using tifffile\n :param path: The path to the potential tiff file\n :return: A tiff file that can be used in the rest of grand challenge\n \"\"\"\n try:\n file = tifffile.TiffFile(str(path.absolute()))\n except ValueError:\n raise ValidationError(\"Image isn't a TIFF file\")\n\n tags = _validate_tifffile(pages=file.pages)\n\n return GrandChallengeTiffFile(path=path, tags=tags)\n\n\ndef _validate_tifffile( # noqa: C901\n *, pages: tifffile.tifffile.TiffPages\n) -> GrandChallengeTiffFileTags:\n \"\"\"\n Validates a tiff file loaded with tifffile for use in grand challenge\n :param pages: The pages and tags from tiffile\n :return: The extracted tags that are needed by the rest of the framework\n \"\"\"\n required_tile_tags = (\"TileOffsets\", \"TileByteCounts\")\n\n forbidden_description_tags = (\"dicom\", \"xml\")\n\n tags = pages[0].tags\n\n # Checks if the image description exists,\n # if so, ensure there's no DICOM or XML data\n try:\n image_description = str(tags[\"ImageDescription\"].value).lower()\n for forbidden in forbidden_description_tags:\n if forbidden in image_description:\n raise ValidationError(\n \"Image contains unauthorized information\"\n )\n except KeyError:\n pass\n\n # Fails if the image doesn't have all required tile tags\n if not all(tag in tags for tag in required_tile_tags):\n raise ValidationError(\"Image has incomplete tile information\")\n\n # Fails if the image only has a single resolution page\n resolution_levels = len(pages)\n if resolution_levels == 1:\n raise ValidationError(\"Image only has a single resolution level\")\n\n # Fails if the image doesn't have the chunky format\n if str(tags[\"PlanarConfiguration\"].value) != \"PLANARCONFIG.CONTIG\":\n raise ValidationError(\n \"Image planar configuration isn't configured as 'Chunky' format\"\n )\n\n # Fails if the color space isn't supported\n try:\n color_space = get_color_space(\n str(tags[\"PhotometricInterpretation\"].value)\n )\n except KeyError:\n raise ValidationError(\"Image lacks color space information\")\n\n # Fails if the amount of bytes per sample doesn't correspond to the\n # colour space\n tif_color_channels = tags[\"SamplesPerPixel\"].value\n if Image.COLOR_SPACE_COMPONENTS[color_space] != tif_color_channels:\n raise ValidationError(\"Image contains invalid amount of channels.\")\n\n try:\n image_width = tags[\"ImageWidth\"].value\n image_height = tags[\"ImageLength\"].value\n except KeyError:\n raise ValidationError(\"Missing tags in tiff file\")\n\n return GrandChallengeTiffFileTags(\n image_width=image_width,\n image_height=image_height,\n color_space=color_space,\n resolution_levels=resolution_levels,\n )\n\n\ndef get_color_space(color_space_string) -> Image.COLOR_SPACES:\n color_space_string = color_space_string.split(\".\")[1].upper()\n\n if color_space_string == \"MINISBLACK\":\n color_space = Image.COLOR_SPACE_GRAY\n else:\n try:\n color_space = dict(Image.COLOR_SPACES)[color_space_string]\n except KeyError:\n raise ValidationError(\"Invalid color space\")\n\n return color_space\n\n\ndef image_builder_tiff(path: Path) -> ImageBuilderResult:\n new_images = []\n new_image_files = []\n consumed_files = set()\n invalid_file_errors = {}\n new_folder_upload = []\n\n for file_path in path.iterdir():\n pk = uuid4()\n dzi_output = None\n try:\n tiff_file = load_tiff_file(path=file_path)\n except ValidationError as e:\n invalid_file_errors[file_path.name] = str(e)\n continue\n\n try:\n dzi_output = create_dzi_images(tiff_file=tiff_file, pk=pk)\n except ValidationError as e:\n invalid_file_errors[file_path.name] = str(e)\n\n image = create_tiff_image_entry(tiff_file=tiff_file, pk=pk)\n\n temp_file = TemporaryFile()\n with open(tiff_file.path.absolute(), \"rb\") as open_file:\n buffer = True\n while buffer:\n buffer = open_file.read(1024)\n temp_file.write(buffer)\n\n new_image_files.append(\n ImageFile(\n image=image,\n image_type=ImageFile.IMAGE_TYPE_TIFF,\n file=File(temp_file, name=f\"{image.pk}.tif\"),\n )\n )\n\n if dzi_output:\n temp_dzi_file = TemporaryFile()\n with open(dzi_output + \".dzi\", \"rb\") as open_file:\n buffer = True\n while buffer:\n buffer = open_file.read(1024)\n temp_dzi_file.write(buffer)\n\n new_image_files.append(\n ImageFile(\n image=image,\n image_type=ImageFile.IMAGE_TYPE_DZI,\n file=File(temp_dzi_file, name=f\"{image.pk}.dzi\"),\n )\n )\n\n dzi_folder_upload = FolderUpload(\n folder=dzi_output + \"_files\", image=image\n )\n new_folder_upload.append(dzi_folder_upload)\n\n new_images.append(image)\n consumed_files.add(tiff_file.path.name)\n\n return ImageBuilderResult(\n consumed_files=consumed_files,\n file_errors_map=invalid_file_errors,\n new_images=new_images,\n new_image_files=new_image_files,\n new_folder_upload=new_folder_upload,\n )\n\n\ndef create_tiff_image_entry(*, tiff_file: GrandChallengeTiffFile, pk) -> Image:\n # Builds a new Image model item\n return Image(\n pk=pk,\n name=tiff_file.path.name,\n width=tiff_file.tags.image_width,\n height=tiff_file.tags.image_height,\n depth=1,\n resolution_levels=tiff_file.tags.resolution_levels,\n color_space=tiff_file.tags.color_space,\n eye_choice=Image.EYE_UNKNOWN,\n stereoscopic_choice=Image.STEREOSCOPIC_UNKNOWN,\n field_of_view=Image.FOV_UNKNOWN,\n )\n\n\ndef create_dzi_images(*, tiff_file: GrandChallengeTiffFile, pk) -> str:\n # Creates a dzi file(out.dzi) and corresponding tiles in folder {pk}_files\n dzi_output = str(tiff_file.path.parent / str(pk))\n try:\n image = pyvips.Image.new_from_file(\n str(tiff_file.path.absolute()), access=\"sequential\"\n )\n\n pyvips.Image.dzsave(\n image, dzi_output, tile_size=settings.DZI_TILE_SIZE\n )\n except Exception as e:\n raise ValidationError(\"Image can't be converted to dzi: \" + str(e))\n\n return dzi_output\n", "path": "app/grandchallenge/cases/image_builders/tiff.py"}]}
2,920
585
gh_patches_debug_8634
rasdani/github-patches
git_diff
nipy__nipype-3216
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Unknown version string with Freesurfer 7 ### Summary After update to freesurfer 7 `import nipype.interfaces.freesurfer` returns `RuntimeError: Unknown version string` error. ### Actual behavior ``` $ python Python 3.8.2 (default, May 7 2020, 20:00:49) [GCC 7.3.0] :: Anaconda, Inc. on linux Type "help", "copyright", "credits" or "license" for more information. >>> from nipype.interfaces.freesurfer import Info 200518-18:18:10,4 nipype.utils WARNING: Could not check for version updates: Connection to server could not be made Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/opt/anaconda3/envs/neuromet_dev/lib/python3.8/site-packages/nipype/interfaces/freesurfer/__init__.py", line 7, in <module> from .preprocess import ( File "/opt/anaconda3/envs/neuromet_dev/lib/python3.8/site-packages/nipype/interfaces/freesurfer/preprocess.py", line 36, in <module> FSVersion = Info.looseversion().vstring File "/opt/anaconda3/envs/neuromet_dev/lib/python3.8/site-packages/nipype/interfaces/freesurfer/base.py", line 80, in looseversion raise RuntimeError("Unknown version string: " + ver) RuntimeError: Unknown version string: freesurfer-linux-centos7_x86_64-7.1.0-20200511-813297b ``` ### How to replicate the behavior 1. Install Freesurfer 7 as described [here](https://surfer.nmr.mgh.harvard.edu/fswiki//FS7_linux) with Freesurfer from [here](https://surfer.nmr.mgh.harvard.edu/fswiki/rel7downloads) (file: `freesurfer-linux-centos7_x86_64-7.1.0.tar.gz`. 2. create a fresh new conda environment with `conda create -n $name python=3.8 nipype` 3. open python and try to import 'nipype.interfaces.freesurfer` ### Platform details: ``` $cat /etc/lsb-release DISTRIB_ID=Ubuntu DISTRIB_RELEASE=16.04 DISTRIB_CODENAME=xenial DISTRIB_DESCRIPTION="Ubuntu 16.04.6 LTS" ``` <!-- Please run the following code from your shell and place the output between the triple ticks, below. python -c "import nipype; from pprint import pprint; pprint(nipype.get_info())" --> ``` $python -c "import nipype; from pprint import pprint; pprint(nipype.get_info())" 200518-18:29:34,82 nipype.utils WARNING: Could not check for version updates: Connection to server could not be made {'commit_hash': '%h', 'commit_source': 'archive substitution', 'networkx_version': '2.4', 'nibabel_version': '3.1.0', 'nipype_version': '1.5.0-rc1', 'numpy_version': '1.18.1', 'pkg_path': '/opt/anaconda3/envs/neuromet_dev/lib/python3.8/site-packages/nipype', 'scipy_version': '1.4.1', 'sys_executable': '/opt/anaconda3/envs/neuromet_dev/bin/python', 'sys_platform': 'linux', 'sys_version': '3.8.2 (default, May 7 2020, 20:00:49) \n[GCC 7.3.0]', 'traits_version': '5.2.0'} ``` ### Execution environment Choose one - My python environment outside container --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `nipype/interfaces/freesurfer/base.py` Content: ``` 1 # -*- coding: utf-8 -*- 2 # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- 3 # vi: set ft=python sts=4 ts=4 sw=4 et: 4 """The freesurfer module provides basic functions for interfacing with 5 freesurfer tools. 6 7 Currently these tools are supported: 8 9 * Dicom2Nifti: using mri_convert 10 * Resample: using mri_convert 11 12 Examples 13 -------- 14 See the docstrings for the individual classes for 'working' examples. 15 16 """ 17 import os 18 19 from ... import LooseVersion 20 from ...utils.filemanip import fname_presuffix 21 from ..base import ( 22 CommandLine, 23 Directory, 24 CommandLineInputSpec, 25 isdefined, 26 traits, 27 TraitedSpec, 28 File, 29 PackageInfo, 30 ) 31 32 __docformat__ = "restructuredtext" 33 34 35 class Info(PackageInfo): 36 """ Freesurfer subject directory and version information. 37 38 Examples 39 -------- 40 41 >>> from nipype.interfaces.freesurfer import Info 42 >>> Info.version() # doctest: +SKIP 43 >>> Info.subjectsdir() # doctest: +SKIP 44 45 """ 46 47 if os.getenv("FREESURFER_HOME"): 48 version_file = os.path.join(os.getenv("FREESURFER_HOME"), "build-stamp.txt") 49 50 @staticmethod 51 def parse_version(raw_info): 52 return raw_info.splitlines()[0] 53 54 @classmethod 55 def looseversion(cls): 56 """ Return a comparable version object 57 58 If no version found, use LooseVersion('0.0.0') 59 """ 60 ver = cls.version() 61 if ver is None: 62 return LooseVersion("0.0.0") 63 64 vinfo = ver.rstrip().split("-") 65 try: 66 int(vinfo[-1], 16) 67 except ValueError: 68 githash = "" 69 else: 70 githash = "." + vinfo[-1] 71 72 # As of FreeSurfer v6.0.0, the final component is a githash 73 if githash: 74 if vinfo[3] == "dev": 75 # This will need updating when v6.0.1 comes out 76 vstr = "6.0.0-dev" + githash 77 elif vinfo[5][0] == "v": 78 vstr = vinfo[5][1:] 79 else: 80 raise RuntimeError("Unknown version string: " + ver) 81 # Retain pre-6.0.0 heuristics 82 elif "dev" in ver: 83 vstr = vinfo[-1] + "-dev" 84 else: 85 vstr = ver.rstrip().split("-v")[-1] 86 87 return LooseVersion(vstr) 88 89 @classmethod 90 def subjectsdir(cls): 91 """Check the global SUBJECTS_DIR 92 93 Parameters 94 ---------- 95 96 subjects_dir : string 97 The system defined subjects directory 98 99 Returns 100 ------- 101 102 subject_dir : string 103 Represents the current environment setting of SUBJECTS_DIR 104 105 """ 106 if cls.version(): 107 return os.environ["SUBJECTS_DIR"] 108 return None 109 110 111 class FSTraitedSpec(CommandLineInputSpec): 112 subjects_dir = Directory(exists=True, desc="subjects directory") 113 114 115 class FSCommand(CommandLine): 116 """General support for FreeSurfer commands. 117 118 Every FS command accepts 'subjects_dir' input. 119 """ 120 121 input_spec = FSTraitedSpec 122 123 _subjects_dir = None 124 125 def __init__(self, **inputs): 126 super(FSCommand, self).__init__(**inputs) 127 self.inputs.on_trait_change(self._subjects_dir_update, "subjects_dir") 128 if not self._subjects_dir: 129 self._subjects_dir = Info.subjectsdir() 130 if not isdefined(self.inputs.subjects_dir) and self._subjects_dir: 131 self.inputs.subjects_dir = self._subjects_dir 132 self._subjects_dir_update() 133 134 def _subjects_dir_update(self): 135 if self.inputs.subjects_dir: 136 self.inputs.environ.update({"SUBJECTS_DIR": self.inputs.subjects_dir}) 137 138 @classmethod 139 def set_default_subjects_dir(cls, subjects_dir): 140 cls._subjects_dir = subjects_dir 141 142 def run(self, **inputs): 143 if "subjects_dir" in inputs: 144 self.inputs.subjects_dir = inputs["subjects_dir"] 145 self._subjects_dir_update() 146 return super(FSCommand, self).run(**inputs) 147 148 def _gen_fname(self, basename, fname=None, cwd=None, suffix="_fs", use_ext=True): 149 """Define a generic mapping for a single outfile 150 151 The filename is potentially autogenerated by suffixing inputs.infile 152 153 Parameters 154 ---------- 155 basename : string (required) 156 filename to base the new filename on 157 fname : string 158 if not None, just use this fname 159 cwd : string 160 prefix paths with cwd, otherwise os.getcwd() 161 suffix : string 162 default suffix 163 """ 164 if basename == "": 165 msg = "Unable to generate filename for command %s. " % self.cmd 166 msg += "basename is not set!" 167 raise ValueError(msg) 168 if cwd is None: 169 cwd = os.getcwd() 170 fname = fname_presuffix(basename, suffix=suffix, use_ext=use_ext, newpath=cwd) 171 return fname 172 173 @property 174 def version(self): 175 ver = Info.looseversion() 176 if ver > LooseVersion("0.0.0"): 177 return ver.vstring 178 179 180 class FSSurfaceCommand(FSCommand): 181 """Support for FreeSurfer surface-related functions. 182 For some functions, if the output file is not specified starting with 'lh.' 183 or 'rh.', FreeSurfer prepends the prefix from the input file to the output 184 filename. Output out_file must be adjusted to accommodate this. By 185 including the full path in the filename, we can also avoid this behavior. 186 """ 187 188 @staticmethod 189 def _associated_file(in_file, out_name): 190 """Based on MRIsBuildFileName in freesurfer/utils/mrisurf.c 191 192 If no path information is provided for out_name, use path and 193 hemisphere (if also unspecified) from in_file to determine the path 194 of the associated file. 195 Use in_file prefix to indicate hemisphere for out_name, rather than 196 inspecting the surface data structure. 197 """ 198 path, base = os.path.split(out_name) 199 if path == "": 200 path, in_file = os.path.split(in_file) 201 hemis = ("lh.", "rh.") 202 if in_file[:3] in hemis and base[:3] not in hemis: 203 base = in_file[:3] + base 204 return os.path.join(path, base) 205 206 207 class FSScriptCommand(FSCommand): 208 """ Support for Freesurfer script commands with log terminal_output 209 """ 210 211 _terminal_output = "file" 212 _always_run = False 213 214 def _list_outputs(self): 215 outputs = self._outputs().get() 216 outputs["log_file"] = os.path.abspath("output.nipype") 217 return outputs 218 219 220 class FSScriptOutputSpec(TraitedSpec): 221 log_file = File( 222 "output.nipype", usedefault=True, exists=True, desc="The output log" 223 ) 224 225 226 class FSTraitedSpecOpenMP(FSTraitedSpec): 227 num_threads = traits.Int(desc="allows for specifying more threads") 228 229 230 class FSCommandOpenMP(FSCommand): 231 """Support for FS commands that utilize OpenMP 232 233 Sets the environment variable 'OMP_NUM_THREADS' to the number 234 of threads specified by the input num_threads. 235 """ 236 237 input_spec = FSTraitedSpecOpenMP 238 239 _num_threads = None 240 241 def __init__(self, **inputs): 242 super(FSCommandOpenMP, self).__init__(**inputs) 243 self.inputs.on_trait_change(self._num_threads_update, "num_threads") 244 if not self._num_threads: 245 self._num_threads = os.environ.get("OMP_NUM_THREADS", None) 246 if not self._num_threads: 247 self._num_threads = os.environ.get("NSLOTS", None) 248 if not isdefined(self.inputs.num_threads) and self._num_threads: 249 self.inputs.num_threads = int(self._num_threads) 250 self._num_threads_update() 251 252 def _num_threads_update(self): 253 if self.inputs.num_threads: 254 self.inputs.environ.update( 255 {"OMP_NUM_THREADS": str(self.inputs.num_threads)} 256 ) 257 258 def run(self, **inputs): 259 if "num_threads" in inputs: 260 self.inputs.num_threads = inputs["num_threads"] 261 self._num_threads_update() 262 return super(FSCommandOpenMP, self).run(**inputs) 263 264 265 def no_freesurfer(): 266 """Checks if FreeSurfer is NOT installed 267 used with skipif to skip tests that will 268 fail if FreeSurfer is not installed""" 269 270 if Info.version() is None: 271 return True 272 else: 273 return False 274 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/nipype/interfaces/freesurfer/base.py b/nipype/interfaces/freesurfer/base.py --- a/nipype/interfaces/freesurfer/base.py +++ b/nipype/interfaces/freesurfer/base.py @@ -76,6 +76,9 @@ vstr = "6.0.0-dev" + githash elif vinfo[5][0] == "v": vstr = vinfo[5][1:] + elif len([1 for val in vinfo[3] if val == '.']) == 2: + "version string: freesurfer-linux-centos7_x86_64-7.1.0-20200511-813297b" + vstr = vinfo[3] else: raise RuntimeError("Unknown version string: " + ver) # Retain pre-6.0.0 heuristics
{"golden_diff": "diff --git a/nipype/interfaces/freesurfer/base.py b/nipype/interfaces/freesurfer/base.py\n--- a/nipype/interfaces/freesurfer/base.py\n+++ b/nipype/interfaces/freesurfer/base.py\n@@ -76,6 +76,9 @@\n vstr = \"6.0.0-dev\" + githash\n elif vinfo[5][0] == \"v\":\n vstr = vinfo[5][1:]\n+ elif len([1 for val in vinfo[3] if val == '.']) == 2:\n+ \"version string: freesurfer-linux-centos7_x86_64-7.1.0-20200511-813297b\"\n+ vstr = vinfo[3]\n else:\n raise RuntimeError(\"Unknown version string: \" + ver)\n # Retain pre-6.0.0 heuristics\n", "issue": "Unknown version string with Freesurfer 7\n### Summary\r\n\r\nAfter update to freesurfer 7 `import nipype.interfaces.freesurfer` returns `RuntimeError: Unknown version string` error.\r\n\r\n### Actual behavior\r\n```\r\n$ python\r\nPython 3.8.2 (default, May 7 2020, 20:00:49) \r\n[GCC 7.3.0] :: Anaconda, Inc. on linux\r\nType \"help\", \"copyright\", \"credits\" or \"license\" for more information.\r\n>>> from nipype.interfaces.freesurfer import Info\r\n200518-18:18:10,4 nipype.utils WARNING:\r\n\t Could not check for version updates: \r\nConnection to server could not be made\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/opt/anaconda3/envs/neuromet_dev/lib/python3.8/site-packages/nipype/interfaces/freesurfer/__init__.py\", line 7, in <module>\r\n from .preprocess import (\r\n File \"/opt/anaconda3/envs/neuromet_dev/lib/python3.8/site-packages/nipype/interfaces/freesurfer/preprocess.py\", line 36, in <module>\r\n FSVersion = Info.looseversion().vstring\r\n File \"/opt/anaconda3/envs/neuromet_dev/lib/python3.8/site-packages/nipype/interfaces/freesurfer/base.py\", line 80, in looseversion\r\n raise RuntimeError(\"Unknown version string: \" + ver)\r\nRuntimeError: Unknown version string: freesurfer-linux-centos7_x86_64-7.1.0-20200511-813297b\r\n```\r\n\r\n### How to replicate the behavior\r\n\r\n1. Install Freesurfer 7 as described [here](https://surfer.nmr.mgh.harvard.edu/fswiki//FS7_linux) with Freesurfer from [here](https://surfer.nmr.mgh.harvard.edu/fswiki/rel7downloads) (file: `freesurfer-linux-centos7_x86_64-7.1.0.tar.gz`.\r\n2. create a fresh new conda environment with \r\n`conda create -n $name python=3.8 nipype`\r\n3. open python and try to import 'nipype.interfaces.freesurfer`\r\n\r\n### Platform details:\r\n```\r\n$cat /etc/lsb-release \r\nDISTRIB_ID=Ubuntu\r\nDISTRIB_RELEASE=16.04\r\nDISTRIB_CODENAME=xenial\r\nDISTRIB_DESCRIPTION=\"Ubuntu 16.04.6 LTS\"\r\n```\r\n\r\n<!-- Please run the following code from your shell and place the output between the triple ticks, below.\r\npython -c \"import nipype; from pprint import pprint; pprint(nipype.get_info())\"\r\n-->\r\n\r\n```\r\n$python -c \"import nipype; from pprint import pprint; pprint(nipype.get_info())\"\r\n200518-18:29:34,82 nipype.utils WARNING:\r\n\t Could not check for version updates: \r\nConnection to server could not be made\r\n{'commit_hash': '%h',\r\n 'commit_source': 'archive substitution',\r\n 'networkx_version': '2.4',\r\n 'nibabel_version': '3.1.0',\r\n 'nipype_version': '1.5.0-rc1',\r\n 'numpy_version': '1.18.1',\r\n 'pkg_path': '/opt/anaconda3/envs/neuromet_dev/lib/python3.8/site-packages/nipype',\r\n 'scipy_version': '1.4.1',\r\n 'sys_executable': '/opt/anaconda3/envs/neuromet_dev/bin/python',\r\n 'sys_platform': 'linux',\r\n 'sys_version': '3.8.2 (default, May 7 2020, 20:00:49) \\n[GCC 7.3.0]',\r\n 'traits_version': '5.2.0'}\r\n```\r\n\r\n### Execution environment\r\n\r\nChoose one\r\n- My python environment outside container\r\n\n", "before_files": [{"content": "# -*- coding: utf-8 -*-\n# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-\n# vi: set ft=python sts=4 ts=4 sw=4 et:\n\"\"\"The freesurfer module provides basic functions for interfacing with\nfreesurfer tools.\n\nCurrently these tools are supported:\n\n * Dicom2Nifti: using mri_convert\n * Resample: using mri_convert\n\nExamples\n--------\nSee the docstrings for the individual classes for 'working' examples.\n\n\"\"\"\nimport os\n\nfrom ... import LooseVersion\nfrom ...utils.filemanip import fname_presuffix\nfrom ..base import (\n CommandLine,\n Directory,\n CommandLineInputSpec,\n isdefined,\n traits,\n TraitedSpec,\n File,\n PackageInfo,\n)\n\n__docformat__ = \"restructuredtext\"\n\n\nclass Info(PackageInfo):\n \"\"\" Freesurfer subject directory and version information.\n\n Examples\n --------\n\n >>> from nipype.interfaces.freesurfer import Info\n >>> Info.version() # doctest: +SKIP\n >>> Info.subjectsdir() # doctest: +SKIP\n\n \"\"\"\n\n if os.getenv(\"FREESURFER_HOME\"):\n version_file = os.path.join(os.getenv(\"FREESURFER_HOME\"), \"build-stamp.txt\")\n\n @staticmethod\n def parse_version(raw_info):\n return raw_info.splitlines()[0]\n\n @classmethod\n def looseversion(cls):\n \"\"\" Return a comparable version object\n\n If no version found, use LooseVersion('0.0.0')\n \"\"\"\n ver = cls.version()\n if ver is None:\n return LooseVersion(\"0.0.0\")\n\n vinfo = ver.rstrip().split(\"-\")\n try:\n int(vinfo[-1], 16)\n except ValueError:\n githash = \"\"\n else:\n githash = \".\" + vinfo[-1]\n\n # As of FreeSurfer v6.0.0, the final component is a githash\n if githash:\n if vinfo[3] == \"dev\":\n # This will need updating when v6.0.1 comes out\n vstr = \"6.0.0-dev\" + githash\n elif vinfo[5][0] == \"v\":\n vstr = vinfo[5][1:]\n else:\n raise RuntimeError(\"Unknown version string: \" + ver)\n # Retain pre-6.0.0 heuristics\n elif \"dev\" in ver:\n vstr = vinfo[-1] + \"-dev\"\n else:\n vstr = ver.rstrip().split(\"-v\")[-1]\n\n return LooseVersion(vstr)\n\n @classmethod\n def subjectsdir(cls):\n \"\"\"Check the global SUBJECTS_DIR\n\n Parameters\n ----------\n\n subjects_dir : string\n The system defined subjects directory\n\n Returns\n -------\n\n subject_dir : string\n Represents the current environment setting of SUBJECTS_DIR\n\n \"\"\"\n if cls.version():\n return os.environ[\"SUBJECTS_DIR\"]\n return None\n\n\nclass FSTraitedSpec(CommandLineInputSpec):\n subjects_dir = Directory(exists=True, desc=\"subjects directory\")\n\n\nclass FSCommand(CommandLine):\n \"\"\"General support for FreeSurfer commands.\n\n Every FS command accepts 'subjects_dir' input.\n \"\"\"\n\n input_spec = FSTraitedSpec\n\n _subjects_dir = None\n\n def __init__(self, **inputs):\n super(FSCommand, self).__init__(**inputs)\n self.inputs.on_trait_change(self._subjects_dir_update, \"subjects_dir\")\n if not self._subjects_dir:\n self._subjects_dir = Info.subjectsdir()\n if not isdefined(self.inputs.subjects_dir) and self._subjects_dir:\n self.inputs.subjects_dir = self._subjects_dir\n self._subjects_dir_update()\n\n def _subjects_dir_update(self):\n if self.inputs.subjects_dir:\n self.inputs.environ.update({\"SUBJECTS_DIR\": self.inputs.subjects_dir})\n\n @classmethod\n def set_default_subjects_dir(cls, subjects_dir):\n cls._subjects_dir = subjects_dir\n\n def run(self, **inputs):\n if \"subjects_dir\" in inputs:\n self.inputs.subjects_dir = inputs[\"subjects_dir\"]\n self._subjects_dir_update()\n return super(FSCommand, self).run(**inputs)\n\n def _gen_fname(self, basename, fname=None, cwd=None, suffix=\"_fs\", use_ext=True):\n \"\"\"Define a generic mapping for a single outfile\n\n The filename is potentially autogenerated by suffixing inputs.infile\n\n Parameters\n ----------\n basename : string (required)\n filename to base the new filename on\n fname : string\n if not None, just use this fname\n cwd : string\n prefix paths with cwd, otherwise os.getcwd()\n suffix : string\n default suffix\n \"\"\"\n if basename == \"\":\n msg = \"Unable to generate filename for command %s. \" % self.cmd\n msg += \"basename is not set!\"\n raise ValueError(msg)\n if cwd is None:\n cwd = os.getcwd()\n fname = fname_presuffix(basename, suffix=suffix, use_ext=use_ext, newpath=cwd)\n return fname\n\n @property\n def version(self):\n ver = Info.looseversion()\n if ver > LooseVersion(\"0.0.0\"):\n return ver.vstring\n\n\nclass FSSurfaceCommand(FSCommand):\n \"\"\"Support for FreeSurfer surface-related functions.\n For some functions, if the output file is not specified starting with 'lh.'\n or 'rh.', FreeSurfer prepends the prefix from the input file to the output\n filename. Output out_file must be adjusted to accommodate this. By\n including the full path in the filename, we can also avoid this behavior.\n \"\"\"\n\n @staticmethod\n def _associated_file(in_file, out_name):\n \"\"\"Based on MRIsBuildFileName in freesurfer/utils/mrisurf.c\n\n If no path information is provided for out_name, use path and\n hemisphere (if also unspecified) from in_file to determine the path\n of the associated file.\n Use in_file prefix to indicate hemisphere for out_name, rather than\n inspecting the surface data structure.\n \"\"\"\n path, base = os.path.split(out_name)\n if path == \"\":\n path, in_file = os.path.split(in_file)\n hemis = (\"lh.\", \"rh.\")\n if in_file[:3] in hemis and base[:3] not in hemis:\n base = in_file[:3] + base\n return os.path.join(path, base)\n\n\nclass FSScriptCommand(FSCommand):\n \"\"\" Support for Freesurfer script commands with log terminal_output\n \"\"\"\n\n _terminal_output = \"file\"\n _always_run = False\n\n def _list_outputs(self):\n outputs = self._outputs().get()\n outputs[\"log_file\"] = os.path.abspath(\"output.nipype\")\n return outputs\n\n\nclass FSScriptOutputSpec(TraitedSpec):\n log_file = File(\n \"output.nipype\", usedefault=True, exists=True, desc=\"The output log\"\n )\n\n\nclass FSTraitedSpecOpenMP(FSTraitedSpec):\n num_threads = traits.Int(desc=\"allows for specifying more threads\")\n\n\nclass FSCommandOpenMP(FSCommand):\n \"\"\"Support for FS commands that utilize OpenMP\n\n Sets the environment variable 'OMP_NUM_THREADS' to the number\n of threads specified by the input num_threads.\n \"\"\"\n\n input_spec = FSTraitedSpecOpenMP\n\n _num_threads = None\n\n def __init__(self, **inputs):\n super(FSCommandOpenMP, self).__init__(**inputs)\n self.inputs.on_trait_change(self._num_threads_update, \"num_threads\")\n if not self._num_threads:\n self._num_threads = os.environ.get(\"OMP_NUM_THREADS\", None)\n if not self._num_threads:\n self._num_threads = os.environ.get(\"NSLOTS\", None)\n if not isdefined(self.inputs.num_threads) and self._num_threads:\n self.inputs.num_threads = int(self._num_threads)\n self._num_threads_update()\n\n def _num_threads_update(self):\n if self.inputs.num_threads:\n self.inputs.environ.update(\n {\"OMP_NUM_THREADS\": str(self.inputs.num_threads)}\n )\n\n def run(self, **inputs):\n if \"num_threads\" in inputs:\n self.inputs.num_threads = inputs[\"num_threads\"]\n self._num_threads_update()\n return super(FSCommandOpenMP, self).run(**inputs)\n\n\ndef no_freesurfer():\n \"\"\"Checks if FreeSurfer is NOT installed\n used with skipif to skip tests that will\n fail if FreeSurfer is not installed\"\"\"\n\n if Info.version() is None:\n return True\n else:\n return False\n", "path": "nipype/interfaces/freesurfer/base.py"}], "after_files": [{"content": "# -*- coding: utf-8 -*-\n# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-\n# vi: set ft=python sts=4 ts=4 sw=4 et:\n\"\"\"The freesurfer module provides basic functions for interfacing with\nfreesurfer tools.\n\nCurrently these tools are supported:\n\n * Dicom2Nifti: using mri_convert\n * Resample: using mri_convert\n\nExamples\n--------\nSee the docstrings for the individual classes for 'working' examples.\n\n\"\"\"\nimport os\n\nfrom ... import LooseVersion\nfrom ...utils.filemanip import fname_presuffix\nfrom ..base import (\n CommandLine,\n Directory,\n CommandLineInputSpec,\n isdefined,\n traits,\n TraitedSpec,\n File,\n PackageInfo,\n)\n\n__docformat__ = \"restructuredtext\"\n\n\nclass Info(PackageInfo):\n \"\"\" Freesurfer subject directory and version information.\n\n Examples\n --------\n\n >>> from nipype.interfaces.freesurfer import Info\n >>> Info.version() # doctest: +SKIP\n >>> Info.subjectsdir() # doctest: +SKIP\n\n \"\"\"\n\n if os.getenv(\"FREESURFER_HOME\"):\n version_file = os.path.join(os.getenv(\"FREESURFER_HOME\"), \"build-stamp.txt\")\n\n @staticmethod\n def parse_version(raw_info):\n return raw_info.splitlines()[0]\n\n @classmethod\n def looseversion(cls):\n \"\"\" Return a comparable version object\n\n If no version found, use LooseVersion('0.0.0')\n \"\"\"\n ver = cls.version()\n if ver is None:\n return LooseVersion(\"0.0.0\")\n\n vinfo = ver.rstrip().split(\"-\")\n try:\n int(vinfo[-1], 16)\n except ValueError:\n githash = \"\"\n else:\n githash = \".\" + vinfo[-1]\n\n # As of FreeSurfer v6.0.0, the final component is a githash\n if githash:\n if vinfo[3] == \"dev\":\n # This will need updating when v6.0.1 comes out\n vstr = \"6.0.0-dev\" + githash\n elif vinfo[5][0] == \"v\":\n vstr = vinfo[5][1:]\n elif len([1 for val in vinfo[3] if val == '.']) == 2:\n \"version string: freesurfer-linux-centos7_x86_64-7.1.0-20200511-813297b\"\n vstr = vinfo[3]\n else:\n raise RuntimeError(\"Unknown version string: \" + ver)\n # Retain pre-6.0.0 heuristics\n elif \"dev\" in ver:\n vstr = vinfo[-1] + \"-dev\"\n else:\n vstr = ver.rstrip().split(\"-v\")[-1]\n\n return LooseVersion(vstr)\n\n @classmethod\n def subjectsdir(cls):\n \"\"\"Check the global SUBJECTS_DIR\n\n Parameters\n ----------\n\n subjects_dir : string\n The system defined subjects directory\n\n Returns\n -------\n\n subject_dir : string\n Represents the current environment setting of SUBJECTS_DIR\n\n \"\"\"\n if cls.version():\n return os.environ[\"SUBJECTS_DIR\"]\n return None\n\n\nclass FSTraitedSpec(CommandLineInputSpec):\n subjects_dir = Directory(exists=True, desc=\"subjects directory\")\n\n\nclass FSCommand(CommandLine):\n \"\"\"General support for FreeSurfer commands.\n\n Every FS command accepts 'subjects_dir' input.\n \"\"\"\n\n input_spec = FSTraitedSpec\n\n _subjects_dir = None\n\n def __init__(self, **inputs):\n super(FSCommand, self).__init__(**inputs)\n self.inputs.on_trait_change(self._subjects_dir_update, \"subjects_dir\")\n if not self._subjects_dir:\n self._subjects_dir = Info.subjectsdir()\n if not isdefined(self.inputs.subjects_dir) and self._subjects_dir:\n self.inputs.subjects_dir = self._subjects_dir\n self._subjects_dir_update()\n\n def _subjects_dir_update(self):\n if self.inputs.subjects_dir:\n self.inputs.environ.update({\"SUBJECTS_DIR\": self.inputs.subjects_dir})\n\n @classmethod\n def set_default_subjects_dir(cls, subjects_dir):\n cls._subjects_dir = subjects_dir\n\n def run(self, **inputs):\n if \"subjects_dir\" in inputs:\n self.inputs.subjects_dir = inputs[\"subjects_dir\"]\n self._subjects_dir_update()\n return super(FSCommand, self).run(**inputs)\n\n def _gen_fname(self, basename, fname=None, cwd=None, suffix=\"_fs\", use_ext=True):\n \"\"\"Define a generic mapping for a single outfile\n\n The filename is potentially autogenerated by suffixing inputs.infile\n\n Parameters\n ----------\n basename : string (required)\n filename to base the new filename on\n fname : string\n if not None, just use this fname\n cwd : string\n prefix paths with cwd, otherwise os.getcwd()\n suffix : string\n default suffix\n \"\"\"\n if basename == \"\":\n msg = \"Unable to generate filename for command %s. \" % self.cmd\n msg += \"basename is not set!\"\n raise ValueError(msg)\n if cwd is None:\n cwd = os.getcwd()\n fname = fname_presuffix(basename, suffix=suffix, use_ext=use_ext, newpath=cwd)\n return fname\n\n @property\n def version(self):\n ver = Info.looseversion()\n if ver > LooseVersion(\"0.0.0\"):\n return ver.vstring\n\n\nclass FSSurfaceCommand(FSCommand):\n \"\"\"Support for FreeSurfer surface-related functions.\n For some functions, if the output file is not specified starting with 'lh.'\n or 'rh.', FreeSurfer prepends the prefix from the input file to the output\n filename. Output out_file must be adjusted to accommodate this. By\n including the full path in the filename, we can also avoid this behavior.\n \"\"\"\n\n @staticmethod\n def _associated_file(in_file, out_name):\n \"\"\"Based on MRIsBuildFileName in freesurfer/utils/mrisurf.c\n\n If no path information is provided for out_name, use path and\n hemisphere (if also unspecified) from in_file to determine the path\n of the associated file.\n Use in_file prefix to indicate hemisphere for out_name, rather than\n inspecting the surface data structure.\n \"\"\"\n path, base = os.path.split(out_name)\n if path == \"\":\n path, in_file = os.path.split(in_file)\n hemis = (\"lh.\", \"rh.\")\n if in_file[:3] in hemis and base[:3] not in hemis:\n base = in_file[:3] + base\n return os.path.join(path, base)\n\n\nclass FSScriptCommand(FSCommand):\n \"\"\" Support for Freesurfer script commands with log terminal_output\n \"\"\"\n\n _terminal_output = \"file\"\n _always_run = False\n\n def _list_outputs(self):\n outputs = self._outputs().get()\n outputs[\"log_file\"] = os.path.abspath(\"output.nipype\")\n return outputs\n\n\nclass FSScriptOutputSpec(TraitedSpec):\n log_file = File(\n \"output.nipype\", usedefault=True, exists=True, desc=\"The output log\"\n )\n\n\nclass FSTraitedSpecOpenMP(FSTraitedSpec):\n num_threads = traits.Int(desc=\"allows for specifying more threads\")\n\n\nclass FSCommandOpenMP(FSCommand):\n \"\"\"Support for FS commands that utilize OpenMP\n\n Sets the environment variable 'OMP_NUM_THREADS' to the number\n of threads specified by the input num_threads.\n \"\"\"\n\n input_spec = FSTraitedSpecOpenMP\n\n _num_threads = None\n\n def __init__(self, **inputs):\n super(FSCommandOpenMP, self).__init__(**inputs)\n self.inputs.on_trait_change(self._num_threads_update, \"num_threads\")\n if not self._num_threads:\n self._num_threads = os.environ.get(\"OMP_NUM_THREADS\", None)\n if not self._num_threads:\n self._num_threads = os.environ.get(\"NSLOTS\", None)\n if not isdefined(self.inputs.num_threads) and self._num_threads:\n self.inputs.num_threads = int(self._num_threads)\n self._num_threads_update()\n\n def _num_threads_update(self):\n if self.inputs.num_threads:\n self.inputs.environ.update(\n {\"OMP_NUM_THREADS\": str(self.inputs.num_threads)}\n )\n\n def run(self, **inputs):\n if \"num_threads\" in inputs:\n self.inputs.num_threads = inputs[\"num_threads\"]\n self._num_threads_update()\n return super(FSCommandOpenMP, self).run(**inputs)\n\n\ndef no_freesurfer():\n \"\"\"Checks if FreeSurfer is NOT installed\n used with skipif to skip tests that will\n fail if FreeSurfer is not installed\"\"\"\n\n if Info.version() is None:\n return True\n else:\n return False\n", "path": "nipype/interfaces/freesurfer/base.py"}]}
3,842
211
gh_patches_debug_32432
rasdani/github-patches
git_diff
optuna__optuna-3087
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Add missing sampler and pruner classes to a tutorial page <!-- Please write a clear and concise description of what content in https://optuna.readthedocs.io/ is an issue. --> [Efficient Optimization Algorithms](https://optuna.readthedocs.io/en/latest/tutorial/10_key_features/003_efficient_optimization_algorithms.html) tutorial provides lists of samplers/pruners implemented in Optuna. However a few classes are not on the list. It would be great to mention them comprehensively from the tutorial pages for Optuna users. More concretely, please add the following entries to the tutorial page. ## Samplers - `optuna.samplers.PartialFixedSampler` - `optuna.samplers.NSGAIISampler` ## Pruners - `optuna.pruners.PatientPruner` - `optuna.pruners.PercentilePruner` --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `tutorial/10_key_features/003_efficient_optimization_algorithms.py` Content: ``` 1 """ 2 .. _pruning: 3 4 Efficient Optimization Algorithms 5 ================================= 6 7 Optuna enables efficient hyperparameter optimization by 8 adopting state-of-the-art algorithms for sampling hyperparameters and 9 pruning efficiently unpromising trials. 10 11 Sampling Algorithms 12 ------------------- 13 14 Samplers basically continually narrow down the search space using the records of suggested parameter values and evaluated objective values, 15 leading to an optimal search space which giving off parameters leading to better objective values. 16 More detailed explanation of how samplers suggest parameters is in :class:`optuna.samplers.BaseSampler`. 17 18 Optuna provides the following sampling algorithms: 19 20 - Tree-structured Parzen Estimator algorithm implemented in :class:`optuna.samplers.TPESampler` 21 22 - CMA-ES based algorithm implemented in :class:`optuna.samplers.CmaEsSampler` 23 24 - Grid Search implemented in :class:`optuna.samplers.GridSampler` 25 26 - Random Search implemented in :class:`optuna.samplers.RandomSampler` 27 28 The default sampler is :class:`optuna.samplers.TPESampler`. 29 30 Switching Samplers 31 ------------------ 32 33 """ 34 35 import optuna 36 37 38 ################################################################################################### 39 # By default, Optuna uses :class:`~optuna.samplers.TPESampler` as follows. 40 41 study = optuna.create_study() 42 print(f"Sampler is {study.sampler.__class__.__name__}") 43 44 ################################################################################################### 45 # If you want to use different samplers for example :class:`~optuna.samplers.RandomSampler` 46 # and :class:`~optuna.samplers.CmaEsSampler`, 47 48 study = optuna.create_study(sampler=optuna.samplers.RandomSampler()) 49 print(f"Sampler is {study.sampler.__class__.__name__}") 50 51 study = optuna.create_study(sampler=optuna.samplers.CmaEsSampler()) 52 print(f"Sampler is {study.sampler.__class__.__name__}") 53 54 55 ################################################################################################### 56 # Pruning Algorithms 57 # ------------------ 58 # 59 # ``Pruners`` automatically stop unpromising trials at the early stages of the training (a.k.a., automated early-stopping). 60 # 61 # Optuna provides the following pruning algorithms: 62 # 63 # - Asynchronous Successive Halving algorithm implemented in :class:`optuna.pruners.SuccessiveHalvingPruner` 64 # 65 # - Hyperband algorithm implemented in :class:`optuna.pruners.HyperbandPruner` 66 # 67 # - Median pruning algorithm implemented in :class:`optuna.pruners.MedianPruner` 68 # 69 # - Threshold pruning algorithm implemented in :class:`optuna.pruners.ThresholdPruner` 70 # 71 # We use :class:`optuna.pruners.MedianPruner` in most examples, 72 # though basically it is outperformed by :class:`optuna.pruners.SuccessiveHalvingPruner` and 73 # :class:`optuna.pruners.HyperbandPruner` as in `this benchmark result <https://github.com/optuna/optuna/wiki/Benchmarks-with-Kurobako>`_. 74 # 75 # 76 # Activating Pruners 77 # ------------------ 78 # To turn on the pruning feature, you need to call :func:`~optuna.trial.Trial.report` and :func:`~optuna.trial.Trial.should_prune` after each step of the iterative training. 79 # :func:`~optuna.trial.Trial.report` periodically monitors the intermediate objective values. 80 # :func:`~optuna.trial.Trial.should_prune` decides termination of the trial that does not meet a predefined condition. 81 # 82 # We would recommend using integration modules for major machine learning frameworks. 83 # Exclusive list is :mod:`optuna.integration` and usecases are available in `optuna/examples <https://github.com/optuna/optuna-examples/>`_. 84 85 86 import logging 87 import sys 88 89 import sklearn.datasets 90 import sklearn.linear_model 91 import sklearn.model_selection 92 93 94 def objective(trial): 95 iris = sklearn.datasets.load_iris() 96 classes = list(set(iris.target)) 97 train_x, valid_x, train_y, valid_y = sklearn.model_selection.train_test_split( 98 iris.data, iris.target, test_size=0.25, random_state=0 99 ) 100 101 alpha = trial.suggest_float("alpha", 1e-5, 1e-1, log=True) 102 clf = sklearn.linear_model.SGDClassifier(alpha=alpha) 103 104 for step in range(100): 105 clf.partial_fit(train_x, train_y, classes=classes) 106 107 # Report intermediate objective value. 108 intermediate_value = 1.0 - clf.score(valid_x, valid_y) 109 trial.report(intermediate_value, step) 110 111 # Handle pruning based on the intermediate value. 112 if trial.should_prune(): 113 raise optuna.TrialPruned() 114 115 return 1.0 - clf.score(valid_x, valid_y) 116 117 118 ################################################################################################### 119 # Set up the median stopping rule as the pruning condition. 120 121 # Add stream handler of stdout to show the messages 122 optuna.logging.get_logger("optuna").addHandler(logging.StreamHandler(sys.stdout)) 123 study = optuna.create_study(pruner=optuna.pruners.MedianPruner()) 124 study.optimize(objective, n_trials=20) 125 126 ################################################################################################### 127 # As you can see, several trials were pruned (stopped) before they finished all of the iterations. 128 # The format of message is ``"Trial <Trial Number> pruned."``. 129 130 ################################################################################################### 131 # Which Sampler and Pruner Should be Used? 132 # ---------------------------------------- 133 # 134 # From the benchmark results which are available at `optuna/optuna - wiki "Benchmarks with Kurobako" <https://github.com/optuna/optuna/wiki/Benchmarks-with-Kurobako>`_, at least for not deep learning tasks, we would say that 135 # 136 # * For :class:`optuna.samplers.RandomSampler`, :class:`optuna.pruners.MedianPruner` is the best. 137 # * For :class:`optuna.samplers.TPESampler`, :class:`optuna.pruners.Hyperband` is the best. 138 # 139 # However, note that the benchmark is not deep learning. 140 # For deep learning tasks, 141 # consult the below table. 142 # This table is from the `Ozaki et al., Hyperparameter Optimization Methods: Overview and Characteristics, in IEICE Trans, Vol.J103-D No.9 pp.615-631, 2020 <https://doi.org/10.14923/transinfj.2019JDR0003>`_ paper, 143 # which is written in Japanese. 144 # 145 # +---------------------------+-----------------------------------------+---------------------------------------------------------------+ 146 # | Parallel Compute Resource | Categorical/Conditional Hyperparameters | Recommended Algorithms | 147 # +===========================+=========================================+===============================================================+ 148 # | Limited | No | TPE. GP-EI if search space is low-dimensional and continuous. | 149 # + +-----------------------------------------+---------------------------------------------------------------+ 150 # | | Yes | TPE. GP-EI if search space is low-dimensional and continuous | 151 # +---------------------------+-----------------------------------------+---------------------------------------------------------------+ 152 # | Sufficient | No | CMA-ES, Random Search | 153 # + +-----------------------------------------+---------------------------------------------------------------+ 154 # | | Yes | Random Search or Genetic Algorithm | 155 # +---------------------------+-----------------------------------------+---------------------------------------------------------------+ 156 # 157 158 ################################################################################################### 159 # Integration Modules for Pruning 160 # ------------------------------- 161 # To implement pruning mechanism in much simpler forms, Optuna provides integration modules for the following libraries. 162 # 163 # For the complete list of Optuna's integration modules, see :mod:`optuna.integration`. 164 # 165 # For example, :class:`~optuna.integration.XGBoostPruningCallback` introduces pruning without directly changing the logic of training iteration. 166 # (See also `example <https://github.com/optuna/optuna-examples/tree/main/xgboost/xgboost_integration.py>`_ for the entire script.) 167 # 168 # .. code-block:: python 169 # 170 # pruning_callback = optuna.integration.XGBoostPruningCallback(trial, 'validation-error') 171 # bst = xgb.train(param, dtrain, evals=[(dvalid, 'validation')], callbacks=[pruning_callback]) 172 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/tutorial/10_key_features/003_efficient_optimization_algorithms.py b/tutorial/10_key_features/003_efficient_optimization_algorithms.py --- a/tutorial/10_key_features/003_efficient_optimization_algorithms.py +++ b/tutorial/10_key_features/003_efficient_optimization_algorithms.py @@ -17,13 +17,17 @@ Optuna provides the following sampling algorithms: +- Grid Search implemented in :class:`optuna.samplers.GridSampler` + +- Random Search implemented in :class:`optuna.samplers.RandomSampler` + - Tree-structured Parzen Estimator algorithm implemented in :class:`optuna.samplers.TPESampler` - CMA-ES based algorithm implemented in :class:`optuna.samplers.CmaEsSampler` -- Grid Search implemented in :class:`optuna.samplers.GridSampler` +- Algorithm to enable partial fixed parameters implemented in :class:`optuna.samplers.PartialFixedSampler` -- Random Search implemented in :class:`optuna.samplers.RandomSampler` +- Nondominated Sorting Genetic Algorithm II implemented in :class:`optuna.samplers.NSGAIISampler` The default sampler is :class:`optuna.samplers.TPESampler`. @@ -60,12 +64,18 @@ # # Optuna provides the following pruning algorithms: # +# - Median pruning algorithm implemented in :class:`optuna.pruners.MedianPruner` +# +# - Non-pruning algorithm implementd in :class:`optuna.pruners.NopPruner` +# +# - Algorithm to operate pruner with tolerance implemented in :class:`optuna.pruners.PatientPruner` +# +# - Algorithm to prune specified percentile of trials implemented in :class:`optuna.pruners.PercentilePruner` +# # - Asynchronous Successive Halving algorithm implemented in :class:`optuna.pruners.SuccessiveHalvingPruner` # # - Hyperband algorithm implemented in :class:`optuna.pruners.HyperbandPruner` # -# - Median pruning algorithm implemented in :class:`optuna.pruners.MedianPruner` -# # - Threshold pruning algorithm implemented in :class:`optuna.pruners.ThresholdPruner` # # We use :class:`optuna.pruners.MedianPruner` in most examples,
{"golden_diff": "diff --git a/tutorial/10_key_features/003_efficient_optimization_algorithms.py b/tutorial/10_key_features/003_efficient_optimization_algorithms.py\n--- a/tutorial/10_key_features/003_efficient_optimization_algorithms.py\n+++ b/tutorial/10_key_features/003_efficient_optimization_algorithms.py\n@@ -17,13 +17,17 @@\n \n Optuna provides the following sampling algorithms:\n \n+- Grid Search implemented in :class:`optuna.samplers.GridSampler`\n+\n+- Random Search implemented in :class:`optuna.samplers.RandomSampler`\n+\n - Tree-structured Parzen Estimator algorithm implemented in :class:`optuna.samplers.TPESampler`\n \n - CMA-ES based algorithm implemented in :class:`optuna.samplers.CmaEsSampler`\n \n-- Grid Search implemented in :class:`optuna.samplers.GridSampler`\n+- Algorithm to enable partial fixed parameters implemented in :class:`optuna.samplers.PartialFixedSampler`\n \n-- Random Search implemented in :class:`optuna.samplers.RandomSampler`\n+- Nondominated Sorting Genetic Algorithm II implemented in :class:`optuna.samplers.NSGAIISampler`\n \n The default sampler is :class:`optuna.samplers.TPESampler`.\n \n@@ -60,12 +64,18 @@\n #\n # Optuna provides the following pruning algorithms:\n #\n+# - Median pruning algorithm implemented in :class:`optuna.pruners.MedianPruner`\n+#\n+# - Non-pruning algorithm implementd in :class:`optuna.pruners.NopPruner`\n+#\n+# - Algorithm to operate pruner with tolerance implemented in :class:`optuna.pruners.PatientPruner`\n+#\n+# - Algorithm to prune specified percentile of trials implemented in :class:`optuna.pruners.PercentilePruner`\n+#\n # - Asynchronous Successive Halving algorithm implemented in :class:`optuna.pruners.SuccessiveHalvingPruner`\n #\n # - Hyperband algorithm implemented in :class:`optuna.pruners.HyperbandPruner`\n #\n-# - Median pruning algorithm implemented in :class:`optuna.pruners.MedianPruner`\n-#\n # - Threshold pruning algorithm implemented in :class:`optuna.pruners.ThresholdPruner`\n #\n # We use :class:`optuna.pruners.MedianPruner` in most examples,\n", "issue": "Add missing sampler and pruner classes to a tutorial page\n<!-- Please write a clear and concise description of what content in https://optuna.readthedocs.io/ is an issue. -->\r\n\r\n[Efficient Optimization Algorithms](https://optuna.readthedocs.io/en/latest/tutorial/10_key_features/003_efficient_optimization_algorithms.html) tutorial provides lists of samplers/pruners implemented in Optuna. However a few classes are not on the list. It would be great to mention them comprehensively from the tutorial pages for Optuna users. \r\n\r\n\r\nMore concretely, please add the following entries to the tutorial page.\r\n\r\n## Samplers\r\n\r\n- `optuna.samplers.PartialFixedSampler`\r\n- `optuna.samplers.NSGAIISampler`\r\n\r\n## Pruners\r\n- `optuna.pruners.PatientPruner`\r\n- `optuna.pruners.PercentilePruner`\r\n\n", "before_files": [{"content": "\"\"\"\n.. _pruning:\n\nEfficient Optimization Algorithms\n=================================\n\nOptuna enables efficient hyperparameter optimization by\nadopting state-of-the-art algorithms for sampling hyperparameters and\npruning efficiently unpromising trials.\n\nSampling Algorithms\n-------------------\n\nSamplers basically continually narrow down the search space using the records of suggested parameter values and evaluated objective values,\nleading to an optimal search space which giving off parameters leading to better objective values.\nMore detailed explanation of how samplers suggest parameters is in :class:`optuna.samplers.BaseSampler`.\n\nOptuna provides the following sampling algorithms:\n\n- Tree-structured Parzen Estimator algorithm implemented in :class:`optuna.samplers.TPESampler`\n\n- CMA-ES based algorithm implemented in :class:`optuna.samplers.CmaEsSampler`\n\n- Grid Search implemented in :class:`optuna.samplers.GridSampler`\n\n- Random Search implemented in :class:`optuna.samplers.RandomSampler`\n\nThe default sampler is :class:`optuna.samplers.TPESampler`.\n\nSwitching Samplers\n------------------\n\n\"\"\"\n\nimport optuna\n\n\n###################################################################################################\n# By default, Optuna uses :class:`~optuna.samplers.TPESampler` as follows.\n\nstudy = optuna.create_study()\nprint(f\"Sampler is {study.sampler.__class__.__name__}\")\n\n###################################################################################################\n# If you want to use different samplers for example :class:`~optuna.samplers.RandomSampler`\n# and :class:`~optuna.samplers.CmaEsSampler`,\n\nstudy = optuna.create_study(sampler=optuna.samplers.RandomSampler())\nprint(f\"Sampler is {study.sampler.__class__.__name__}\")\n\nstudy = optuna.create_study(sampler=optuna.samplers.CmaEsSampler())\nprint(f\"Sampler is {study.sampler.__class__.__name__}\")\n\n\n###################################################################################################\n# Pruning Algorithms\n# ------------------\n#\n# ``Pruners`` automatically stop unpromising trials at the early stages of the training (a.k.a., automated early-stopping).\n#\n# Optuna provides the following pruning algorithms:\n#\n# - Asynchronous Successive Halving algorithm implemented in :class:`optuna.pruners.SuccessiveHalvingPruner`\n#\n# - Hyperband algorithm implemented in :class:`optuna.pruners.HyperbandPruner`\n#\n# - Median pruning algorithm implemented in :class:`optuna.pruners.MedianPruner`\n#\n# - Threshold pruning algorithm implemented in :class:`optuna.pruners.ThresholdPruner`\n#\n# We use :class:`optuna.pruners.MedianPruner` in most examples,\n# though basically it is outperformed by :class:`optuna.pruners.SuccessiveHalvingPruner` and\n# :class:`optuna.pruners.HyperbandPruner` as in `this benchmark result <https://github.com/optuna/optuna/wiki/Benchmarks-with-Kurobako>`_.\n#\n#\n# Activating Pruners\n# ------------------\n# To turn on the pruning feature, you need to call :func:`~optuna.trial.Trial.report` and :func:`~optuna.trial.Trial.should_prune` after each step of the iterative training.\n# :func:`~optuna.trial.Trial.report` periodically monitors the intermediate objective values.\n# :func:`~optuna.trial.Trial.should_prune` decides termination of the trial that does not meet a predefined condition.\n#\n# We would recommend using integration modules for major machine learning frameworks.\n# Exclusive list is :mod:`optuna.integration` and usecases are available in `optuna/examples <https://github.com/optuna/optuna-examples/>`_.\n\n\nimport logging\nimport sys\n\nimport sklearn.datasets\nimport sklearn.linear_model\nimport sklearn.model_selection\n\n\ndef objective(trial):\n iris = sklearn.datasets.load_iris()\n classes = list(set(iris.target))\n train_x, valid_x, train_y, valid_y = sklearn.model_selection.train_test_split(\n iris.data, iris.target, test_size=0.25, random_state=0\n )\n\n alpha = trial.suggest_float(\"alpha\", 1e-5, 1e-1, log=True)\n clf = sklearn.linear_model.SGDClassifier(alpha=alpha)\n\n for step in range(100):\n clf.partial_fit(train_x, train_y, classes=classes)\n\n # Report intermediate objective value.\n intermediate_value = 1.0 - clf.score(valid_x, valid_y)\n trial.report(intermediate_value, step)\n\n # Handle pruning based on the intermediate value.\n if trial.should_prune():\n raise optuna.TrialPruned()\n\n return 1.0 - clf.score(valid_x, valid_y)\n\n\n###################################################################################################\n# Set up the median stopping rule as the pruning condition.\n\n# Add stream handler of stdout to show the messages\noptuna.logging.get_logger(\"optuna\").addHandler(logging.StreamHandler(sys.stdout))\nstudy = optuna.create_study(pruner=optuna.pruners.MedianPruner())\nstudy.optimize(objective, n_trials=20)\n\n###################################################################################################\n# As you can see, several trials were pruned (stopped) before they finished all of the iterations.\n# The format of message is ``\"Trial <Trial Number> pruned.\"``.\n\n###################################################################################################\n# Which Sampler and Pruner Should be Used?\n# ----------------------------------------\n#\n# From the benchmark results which are available at `optuna/optuna - wiki \"Benchmarks with Kurobako\" <https://github.com/optuna/optuna/wiki/Benchmarks-with-Kurobako>`_, at least for not deep learning tasks, we would say that\n#\n# * For :class:`optuna.samplers.RandomSampler`, :class:`optuna.pruners.MedianPruner` is the best.\n# * For :class:`optuna.samplers.TPESampler`, :class:`optuna.pruners.Hyperband` is the best.\n#\n# However, note that the benchmark is not deep learning.\n# For deep learning tasks,\n# consult the below table.\n# This table is from the `Ozaki et al., Hyperparameter Optimization Methods: Overview and Characteristics, in IEICE Trans, Vol.J103-D No.9 pp.615-631, 2020 <https://doi.org/10.14923/transinfj.2019JDR0003>`_ paper,\n# which is written in Japanese.\n#\n# +---------------------------+-----------------------------------------+---------------------------------------------------------------+\n# | Parallel Compute Resource | Categorical/Conditional Hyperparameters | Recommended Algorithms |\n# +===========================+=========================================+===============================================================+\n# | Limited | No | TPE. GP-EI if search space is low-dimensional and continuous. |\n# + +-----------------------------------------+---------------------------------------------------------------+\n# | | Yes | TPE. GP-EI if search space is low-dimensional and continuous |\n# +---------------------------+-----------------------------------------+---------------------------------------------------------------+\n# | Sufficient | No | CMA-ES, Random Search |\n# + +-----------------------------------------+---------------------------------------------------------------+\n# | | Yes | Random Search or Genetic Algorithm |\n# +---------------------------+-----------------------------------------+---------------------------------------------------------------+\n#\n\n###################################################################################################\n# Integration Modules for Pruning\n# -------------------------------\n# To implement pruning mechanism in much simpler forms, Optuna provides integration modules for the following libraries.\n#\n# For the complete list of Optuna's integration modules, see :mod:`optuna.integration`.\n#\n# For example, :class:`~optuna.integration.XGBoostPruningCallback` introduces pruning without directly changing the logic of training iteration.\n# (See also `example <https://github.com/optuna/optuna-examples/tree/main/xgboost/xgboost_integration.py>`_ for the entire script.)\n#\n# .. code-block:: python\n#\n# pruning_callback = optuna.integration.XGBoostPruningCallback(trial, 'validation-error')\n# bst = xgb.train(param, dtrain, evals=[(dvalid, 'validation')], callbacks=[pruning_callback])\n", "path": "tutorial/10_key_features/003_efficient_optimization_algorithms.py"}], "after_files": [{"content": "\"\"\"\n.. _pruning:\n\nEfficient Optimization Algorithms\n=================================\n\nOptuna enables efficient hyperparameter optimization by\nadopting state-of-the-art algorithms for sampling hyperparameters and\npruning efficiently unpromising trials.\n\nSampling Algorithms\n-------------------\n\nSamplers basically continually narrow down the search space using the records of suggested parameter values and evaluated objective values,\nleading to an optimal search space which giving off parameters leading to better objective values.\nMore detailed explanation of how samplers suggest parameters is in :class:`optuna.samplers.BaseSampler`.\n\nOptuna provides the following sampling algorithms:\n\n- Grid Search implemented in :class:`optuna.samplers.GridSampler`\n\n- Random Search implemented in :class:`optuna.samplers.RandomSampler`\n\n- Tree-structured Parzen Estimator algorithm implemented in :class:`optuna.samplers.TPESampler`\n\n- CMA-ES based algorithm implemented in :class:`optuna.samplers.CmaEsSampler`\n\n- Algorithm to enable partial fixed parameters implemented in :class:`optuna.samplers.PartialFixedSampler`\n\n- Nondominated Sorting Genetic Algorithm II implemented in :class:`optuna.samplers.NSGAIISampler`\n\nThe default sampler is :class:`optuna.samplers.TPESampler`.\n\nSwitching Samplers\n------------------\n\n\"\"\"\n\nimport optuna\n\n\n###################################################################################################\n# By default, Optuna uses :class:`~optuna.samplers.TPESampler` as follows.\n\nstudy = optuna.create_study()\nprint(f\"Sampler is {study.sampler.__class__.__name__}\")\n\n###################################################################################################\n# If you want to use different samplers for example :class:`~optuna.samplers.RandomSampler`\n# and :class:`~optuna.samplers.CmaEsSampler`,\n\nstudy = optuna.create_study(sampler=optuna.samplers.RandomSampler())\nprint(f\"Sampler is {study.sampler.__class__.__name__}\")\n\nstudy = optuna.create_study(sampler=optuna.samplers.CmaEsSampler())\nprint(f\"Sampler is {study.sampler.__class__.__name__}\")\n\n\n###################################################################################################\n# Pruning Algorithms\n# ------------------\n#\n# ``Pruners`` automatically stop unpromising trials at the early stages of the training (a.k.a., automated early-stopping).\n#\n# Optuna provides the following pruning algorithms:\n#\n# - Median pruning algorithm implemented in :class:`optuna.pruners.MedianPruner`\n#\n# - Non-pruning algorithm implementd in :class:`optuna.pruners.NopPruner`\n#\n# - Algorithm to operate pruner with tolerance implemented in :class:`optuna.pruners.PatientPruner`\n#\n# - Algorithm to prune specified percentile of trials implemented in :class:`optuna.pruners.PercentilePruner`\n#\n# - Asynchronous Successive Halving algorithm implemented in :class:`optuna.pruners.SuccessiveHalvingPruner`\n#\n# - Hyperband algorithm implemented in :class:`optuna.pruners.HyperbandPruner`\n#\n# - Threshold pruning algorithm implemented in :class:`optuna.pruners.ThresholdPruner`\n#\n# We use :class:`optuna.pruners.MedianPruner` in most examples,\n# though basically it is outperformed by :class:`optuna.pruners.SuccessiveHalvingPruner` and\n# :class:`optuna.pruners.HyperbandPruner` as in `this benchmark result <https://github.com/optuna/optuna/wiki/Benchmarks-with-Kurobako>`_.\n#\n#\n# Activating Pruners\n# ------------------\n# To turn on the pruning feature, you need to call :func:`~optuna.trial.Trial.report` and :func:`~optuna.trial.Trial.should_prune` after each step of the iterative training.\n# :func:`~optuna.trial.Trial.report` periodically monitors the intermediate objective values.\n# :func:`~optuna.trial.Trial.should_prune` decides termination of the trial that does not meet a predefined condition.\n#\n# We would recommend using integration modules for major machine learning frameworks.\n# Exclusive list is :mod:`optuna.integration` and usecases are available in `optuna/examples <https://github.com/optuna/optuna-examples/>`_.\n\n\nimport logging\nimport sys\n\nimport sklearn.datasets\nimport sklearn.linear_model\nimport sklearn.model_selection\n\n\ndef objective(trial):\n iris = sklearn.datasets.load_iris()\n classes = list(set(iris.target))\n train_x, valid_x, train_y, valid_y = sklearn.model_selection.train_test_split(\n iris.data, iris.target, test_size=0.25, random_state=0\n )\n\n alpha = trial.suggest_float(\"alpha\", 1e-5, 1e-1, log=True)\n clf = sklearn.linear_model.SGDClassifier(alpha=alpha)\n\n for step in range(100):\n clf.partial_fit(train_x, train_y, classes=classes)\n\n # Report intermediate objective value.\n intermediate_value = 1.0 - clf.score(valid_x, valid_y)\n trial.report(intermediate_value, step)\n\n # Handle pruning based on the intermediate value.\n if trial.should_prune():\n raise optuna.TrialPruned()\n\n return 1.0 - clf.score(valid_x, valid_y)\n\n\n###################################################################################################\n# Set up the median stopping rule as the pruning condition.\n\n# Add stream handler of stdout to show the messages\noptuna.logging.get_logger(\"optuna\").addHandler(logging.StreamHandler(sys.stdout))\nstudy = optuna.create_study(pruner=optuna.pruners.MedianPruner())\nstudy.optimize(objective, n_trials=20)\n\n###################################################################################################\n# As you can see, several trials were pruned (stopped) before they finished all of the iterations.\n# The format of message is ``\"Trial <Trial Number> pruned.\"``.\n\n###################################################################################################\n# Which Sampler and Pruner Should be Used?\n# ----------------------------------------\n#\n# From the benchmark results which are available at `optuna/optuna - wiki \"Benchmarks with Kurobako\" <https://github.com/optuna/optuna/wiki/Benchmarks-with-Kurobako>`_, at least for not deep learning tasks, we would say that\n#\n# * For :class:`optuna.samplers.RandomSampler`, :class:`optuna.pruners.MedianPruner` is the best.\n# * For :class:`optuna.samplers.TPESampler`, :class:`optuna.pruners.Hyperband` is the best.\n#\n# However, note that the benchmark is not deep learning.\n# For deep learning tasks,\n# consult the below table.\n# This table is from the `Ozaki et al., Hyperparameter Optimization Methods: Overview and Characteristics, in IEICE Trans, Vol.J103-D No.9 pp.615-631, 2020 <https://doi.org/10.14923/transinfj.2019JDR0003>`_ paper,\n# which is written in Japanese.\n#\n# +---------------------------+-----------------------------------------+---------------------------------------------------------------+\n# | Parallel Compute Resource | Categorical/Conditional Hyperparameters | Recommended Algorithms |\n# +===========================+=========================================+===============================================================+\n# | Limited | No | TPE. GP-EI if search space is low-dimensional and continuous. |\n# + +-----------------------------------------+---------------------------------------------------------------+\n# | | Yes | TPE. GP-EI if search space is low-dimensional and continuous |\n# +---------------------------+-----------------------------------------+---------------------------------------------------------------+\n# | Sufficient | No | CMA-ES, Random Search |\n# + +-----------------------------------------+---------------------------------------------------------------+\n# | | Yes | Random Search or Genetic Algorithm |\n# +---------------------------+-----------------------------------------+---------------------------------------------------------------+\n#\n\n###################################################################################################\n# Integration Modules for Pruning\n# -------------------------------\n# To implement pruning mechanism in much simpler forms, Optuna provides integration modules for the following libraries.\n#\n# For the complete list of Optuna's integration modules, see :mod:`optuna.integration`.\n#\n# For example, :class:`~optuna.integration.XGBoostPruningCallback` introduces pruning without directly changing the logic of training iteration.\n# (See also `example <https://github.com/optuna/optuna-examples/tree/main/xgboost/xgboost_integration.py>`_ for the entire script.)\n#\n# .. code-block:: python\n#\n# pruning_callback = optuna.integration.XGBoostPruningCallback(trial, 'validation-error')\n# bst = xgb.train(param, dtrain, evals=[(dvalid, 'validation')], callbacks=[pruning_callback])\n", "path": "tutorial/10_key_features/003_efficient_optimization_algorithms.py"}]}
2,580
510
gh_patches_debug_44031
rasdani/github-patches
git_diff
strawberry-graphql__strawberry-26
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Support forward references See: https://www.python.org/dev/peps/pep-0563/#forward-references Right now the following code would break: ```python from __future__ import annotations import strawberry import typing @strawberry.type class User: name: str friend: typing.Optional[User] ``` This is the error we get: ``` File "/Users/patrickarminio/Documents/personal/temp/stra/app.py", line 7, in <module> from schema import schema File "/Users/patrickarminio/Documents/personal/temp/stra/schema.py", line 10, in <module> @strawberry.type File "/Users/patrickarminio/.virtualenvs/stra-so-aNvo2/lib/python3.7/site-packages/strawberry/type.py", line 60, in type return wrap() File "/Users/patrickarminio/.virtualenvs/stra-so-aNvo2/lib/python3.7/site-packages/strawberry/type.py", line 55, in wrap cls._fields = _get_fields(cls) File "/Users/patrickarminio/.virtualenvs/stra-so-aNvo2/lib/python3.7/site-packages/strawberry/type.py", line 27, in _get_fields cls_annotations = typing.get_type_hints(cls) File "/Users/patrickarminio/.pyenv/versions/3.7.0/lib/python3.7/typing.py", line 973, in get_type_hints value = _eval_type(value, base_globals, localns) File "/Users/patrickarminio/.pyenv/versions/3.7.0/lib/python3.7/typing.py", line 260, in _eval_type return t._evaluate(globalns, localns) File "/Users/patrickarminio/.pyenv/versions/3.7.0/lib/python3.7/typing.py", line 464, in _evaluate eval(self.__forward_code__, globalns, localns), File "<string>", line 1, in <module> NameError: name 'User' is not defined ``` --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `strawberry/type.py` Content: ``` 1 import typing 2 3 from dataclasses import dataclass 4 from graphql import GraphQLField, GraphQLObjectType 5 from graphql.utilities.schema_printer import print_type 6 7 from .constants import IS_STRAWBERRY_FIELD 8 from .type_converter import get_graphql_type_for_annotation 9 10 11 def _get_resolver(cls, field_name): 12 def _resolver(obj, info): 13 # TODO: can we make this nicer? 14 # does it work in all the cases? 15 16 field_resolver = getattr(cls(**(obj.__dict__ if obj else {})), field_name) 17 18 if getattr(field_resolver, IS_STRAWBERRY_FIELD, False): 19 return field_resolver(obj, info) 20 21 return field_resolver 22 23 return _resolver 24 25 26 def _get_fields(cls): 27 cls_annotations = typing.get_type_hints(cls) 28 29 fields = { 30 key: GraphQLField( 31 get_graphql_type_for_annotation(value, field_name=key), 32 resolve=_get_resolver(cls, key), 33 ) 34 for key, value in cls_annotations.items() 35 } 36 37 fields.update( 38 { 39 key: value.field 40 for key, value in cls.__dict__.items() 41 if getattr(value, IS_STRAWBERRY_FIELD, False) 42 } 43 ) 44 45 return fields 46 47 48 def type(cls): 49 def wrap(): 50 def repr_(self): 51 return print_type(self.field) 52 53 setattr(cls, "__repr__", repr_) 54 55 cls._fields = _get_fields(cls) 56 cls.field = GraphQLObjectType(name=cls.__name__, fields=cls._fields) 57 58 return dataclass(cls, repr=False) 59 60 return wrap() 61 ``` Path: `strawberry/type_converter.py` Content: ``` 1 from graphql import ( 2 GraphQLBoolean, 3 GraphQLFloat, 4 GraphQLID, 5 GraphQLInt, 6 GraphQLList, 7 GraphQLNonNull, 8 GraphQLString, 9 GraphQLUnionType, 10 ) 11 12 from .scalars import ID 13 14 15 TYPE_MAP = { 16 str: GraphQLString, 17 int: GraphQLInt, 18 float: GraphQLFloat, 19 bool: GraphQLBoolean, 20 ID: GraphQLID, 21 } 22 23 24 # TODO: make so that we don't pass force optional 25 # we use that when trying to get the type for a 26 # option field (which can either be a scalar or an object type) 27 def get_graphql_type_for_annotation( 28 annotation, field_name: str, force_optional: bool = False 29 ): 30 # TODO: nice error 31 32 is_optional = False 33 34 # TODO: this might lead to issues with types that have a field value 35 if hasattr(annotation, "field"): 36 graphql_type = annotation.field 37 else: 38 annotation_name = getattr(annotation, "_name", None) 39 40 if annotation_name == "List": 41 list_of_type = get_graphql_type_for_annotation( 42 annotation.__args__[0], field_name 43 ) 44 45 return GraphQLList(list_of_type) 46 47 # for some reason _name is None for Optional and Union types, so we check if we 48 # have __args__ populated, there might be some edge cases where __args__ is 49 # populated but the type is not an Union, like in the above case with Lists 50 if hasattr(annotation, "__args__"): 51 types = annotation.__args__ 52 non_none_types = [x for x in types if x != type(None)] # noqa:E721 53 54 # optionals are represented as Union[type, None] 55 if len(non_none_types) == 1: 56 is_optional = True 57 graphql_type = get_graphql_type_for_annotation( 58 non_none_types[0], field_name, force_optional=True 59 ) 60 else: 61 is_optional = type(None) in types 62 63 # TODO: union types don't work with scalar types 64 # so we want to return a nice error 65 # also we want to make sure we have been passed 66 # strawberry types 67 graphql_type = GraphQLUnionType( 68 field_name, [type.field for type in types] 69 ) 70 else: 71 graphql_type = TYPE_MAP.get(annotation) 72 73 if not graphql_type: 74 raise ValueError(f"Unable to get GraphQL type for {annotation}") 75 76 if is_optional or force_optional: 77 return graphql_type 78 79 return GraphQLNonNull(graphql_type) 80 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/strawberry/type.py b/strawberry/type.py --- a/strawberry/type.py +++ b/strawberry/type.py @@ -5,7 +5,7 @@ from graphql.utilities.schema_printer import print_type from .constants import IS_STRAWBERRY_FIELD -from .type_converter import get_graphql_type_for_annotation +from .type_converter import REGISTRY, get_graphql_type_for_annotation def _get_resolver(cls, field_name): @@ -23,37 +23,39 @@ return _resolver -def _get_fields(cls): - cls_annotations = typing.get_type_hints(cls) - - fields = { - key: GraphQLField( - get_graphql_type_for_annotation(value, field_name=key), - resolve=_get_resolver(cls, key), - ) - for key, value in cls_annotations.items() - } - - fields.update( - { - key: value.field - for key, value in cls.__dict__.items() - if getattr(value, IS_STRAWBERRY_FIELD, False) - } - ) - - return fields - - def type(cls): def wrap(): + name = cls.__name__ + REGISTRY[name] = cls + def repr_(self): return print_type(self.field) setattr(cls, "__repr__", repr_) - cls._fields = _get_fields(cls) - cls.field = GraphQLObjectType(name=cls.__name__, fields=cls._fields) + annotations = typing.get_type_hints(cls, None, REGISTRY) + + def _get_fields(): + + fields = { + key: GraphQLField( + get_graphql_type_for_annotation(value, key), + resolve=_get_resolver(cls, key), + ) + for key, value in annotations.items() + } + + fields.update( + { + key: value.field + for key, value in cls.__dict__.items() + if getattr(value, IS_STRAWBERRY_FIELD, False) + } + ) + + return fields + + cls.field = GraphQLObjectType(name, lambda: _get_fields()) return dataclass(cls, repr=False) diff --git a/strawberry/type_converter.py b/strawberry/type_converter.py --- a/strawberry/type_converter.py +++ b/strawberry/type_converter.py @@ -12,7 +12,7 @@ from .scalars import ID -TYPE_MAP = { +REGISTRY = { str: GraphQLString, int: GraphQLInt, float: GraphQLFloat, @@ -27,11 +27,9 @@ def get_graphql_type_for_annotation( annotation, field_name: str, force_optional: bool = False ): - # TODO: nice error - - is_optional = False - # TODO: this might lead to issues with types that have a field value + is_optional = force_optional + if hasattr(annotation, "field"): graphql_type = annotation.field else: @@ -49,7 +47,7 @@ # populated but the type is not an Union, like in the above case with Lists if hasattr(annotation, "__args__"): types = annotation.__args__ - non_none_types = [x for x in types if x != type(None)] # noqa:E721 + non_none_types = [x for x in types if x != None.__class__] # noqa:E721 # optionals are represented as Union[type, None] if len(non_none_types) == 1: @@ -58,7 +56,7 @@ non_none_types[0], field_name, force_optional=True ) else: - is_optional = type(None) in types + is_optional = None.__class__ in types # TODO: union types don't work with scalar types # so we want to return a nice error @@ -68,12 +66,12 @@ field_name, [type.field for type in types] ) else: - graphql_type = TYPE_MAP.get(annotation) + graphql_type = REGISTRY.get(annotation) if not graphql_type: raise ValueError(f"Unable to get GraphQL type for {annotation}") - if is_optional or force_optional: + if is_optional: return graphql_type return GraphQLNonNull(graphql_type)
{"golden_diff": "diff --git a/strawberry/type.py b/strawberry/type.py\n--- a/strawberry/type.py\n+++ b/strawberry/type.py\n@@ -5,7 +5,7 @@\n from graphql.utilities.schema_printer import print_type\n \n from .constants import IS_STRAWBERRY_FIELD\n-from .type_converter import get_graphql_type_for_annotation\n+from .type_converter import REGISTRY, get_graphql_type_for_annotation\n \n \n def _get_resolver(cls, field_name):\n@@ -23,37 +23,39 @@\n return _resolver\n \n \n-def _get_fields(cls):\n- cls_annotations = typing.get_type_hints(cls)\n-\n- fields = {\n- key: GraphQLField(\n- get_graphql_type_for_annotation(value, field_name=key),\n- resolve=_get_resolver(cls, key),\n- )\n- for key, value in cls_annotations.items()\n- }\n-\n- fields.update(\n- {\n- key: value.field\n- for key, value in cls.__dict__.items()\n- if getattr(value, IS_STRAWBERRY_FIELD, False)\n- }\n- )\n-\n- return fields\n-\n-\n def type(cls):\n def wrap():\n+ name = cls.__name__\n+ REGISTRY[name] = cls\n+\n def repr_(self):\n return print_type(self.field)\n \n setattr(cls, \"__repr__\", repr_)\n \n- cls._fields = _get_fields(cls)\n- cls.field = GraphQLObjectType(name=cls.__name__, fields=cls._fields)\n+ annotations = typing.get_type_hints(cls, None, REGISTRY)\n+\n+ def _get_fields():\n+\n+ fields = {\n+ key: GraphQLField(\n+ get_graphql_type_for_annotation(value, key),\n+ resolve=_get_resolver(cls, key),\n+ )\n+ for key, value in annotations.items()\n+ }\n+\n+ fields.update(\n+ {\n+ key: value.field\n+ for key, value in cls.__dict__.items()\n+ if getattr(value, IS_STRAWBERRY_FIELD, False)\n+ }\n+ )\n+\n+ return fields\n+\n+ cls.field = GraphQLObjectType(name, lambda: _get_fields())\n \n return dataclass(cls, repr=False)\n \ndiff --git a/strawberry/type_converter.py b/strawberry/type_converter.py\n--- a/strawberry/type_converter.py\n+++ b/strawberry/type_converter.py\n@@ -12,7 +12,7 @@\n from .scalars import ID\n \n \n-TYPE_MAP = {\n+REGISTRY = {\n str: GraphQLString,\n int: GraphQLInt,\n float: GraphQLFloat,\n@@ -27,11 +27,9 @@\n def get_graphql_type_for_annotation(\n annotation, field_name: str, force_optional: bool = False\n ):\n- # TODO: nice error\n-\n- is_optional = False\n-\n # TODO: this might lead to issues with types that have a field value\n+ is_optional = force_optional\n+\n if hasattr(annotation, \"field\"):\n graphql_type = annotation.field\n else:\n@@ -49,7 +47,7 @@\n # populated but the type is not an Union, like in the above case with Lists\n if hasattr(annotation, \"__args__\"):\n types = annotation.__args__\n- non_none_types = [x for x in types if x != type(None)] # noqa:E721\n+ non_none_types = [x for x in types if x != None.__class__] # noqa:E721\n \n # optionals are represented as Union[type, None]\n if len(non_none_types) == 1:\n@@ -58,7 +56,7 @@\n non_none_types[0], field_name, force_optional=True\n )\n else:\n- is_optional = type(None) in types\n+ is_optional = None.__class__ in types\n \n # TODO: union types don't work with scalar types\n # so we want to return a nice error\n@@ -68,12 +66,12 @@\n field_name, [type.field for type in types]\n )\n else:\n- graphql_type = TYPE_MAP.get(annotation)\n+ graphql_type = REGISTRY.get(annotation)\n \n if not graphql_type:\n raise ValueError(f\"Unable to get GraphQL type for {annotation}\")\n \n- if is_optional or force_optional:\n+ if is_optional:\n return graphql_type\n \n return GraphQLNonNull(graphql_type)\n", "issue": "Support forward references\nSee: https://www.python.org/dev/peps/pep-0563/#forward-references\r\n\r\nRight now the following code would break:\r\n\r\n```python\r\nfrom __future__ import annotations\r\n\r\nimport strawberry\r\nimport typing\r\n\r\[email protected]\r\nclass User:\r\n name: str\r\n friend: typing.Optional[User]\r\n```\r\n\r\nThis is the error we get:\r\n\r\n```\r\n File \"/Users/patrickarminio/Documents/personal/temp/stra/app.py\", line 7, in <module>\r\n from schema import schema\r\n File \"/Users/patrickarminio/Documents/personal/temp/stra/schema.py\", line 10, in <module>\r\n @strawberry.type\r\n File \"/Users/patrickarminio/.virtualenvs/stra-so-aNvo2/lib/python3.7/site-packages/strawberry/type.py\", line 60, in type\r\n return wrap()\r\n File \"/Users/patrickarminio/.virtualenvs/stra-so-aNvo2/lib/python3.7/site-packages/strawberry/type.py\", line 55, in wrap\r\n cls._fields = _get_fields(cls)\r\n File \"/Users/patrickarminio/.virtualenvs/stra-so-aNvo2/lib/python3.7/site-packages/strawberry/type.py\", line 27, in _get_fields\r\n cls_annotations = typing.get_type_hints(cls)\r\n File \"/Users/patrickarminio/.pyenv/versions/3.7.0/lib/python3.7/typing.py\", line 973, in get_type_hints\r\n value = _eval_type(value, base_globals, localns)\r\n File \"/Users/patrickarminio/.pyenv/versions/3.7.0/lib/python3.7/typing.py\", line 260, in _eval_type\r\n return t._evaluate(globalns, localns)\r\n File \"/Users/patrickarminio/.pyenv/versions/3.7.0/lib/python3.7/typing.py\", line 464, in _evaluate\r\n eval(self.__forward_code__, globalns, localns),\r\n File \"<string>\", line 1, in <module>\r\nNameError: name 'User' is not defined\r\n```\n", "before_files": [{"content": "import typing\n\nfrom dataclasses import dataclass\nfrom graphql import GraphQLField, GraphQLObjectType\nfrom graphql.utilities.schema_printer import print_type\n\nfrom .constants import IS_STRAWBERRY_FIELD\nfrom .type_converter import get_graphql_type_for_annotation\n\n\ndef _get_resolver(cls, field_name):\n def _resolver(obj, info):\n # TODO: can we make this nicer?\n # does it work in all the cases?\n\n field_resolver = getattr(cls(**(obj.__dict__ if obj else {})), field_name)\n\n if getattr(field_resolver, IS_STRAWBERRY_FIELD, False):\n return field_resolver(obj, info)\n\n return field_resolver\n\n return _resolver\n\n\ndef _get_fields(cls):\n cls_annotations = typing.get_type_hints(cls)\n\n fields = {\n key: GraphQLField(\n get_graphql_type_for_annotation(value, field_name=key),\n resolve=_get_resolver(cls, key),\n )\n for key, value in cls_annotations.items()\n }\n\n fields.update(\n {\n key: value.field\n for key, value in cls.__dict__.items()\n if getattr(value, IS_STRAWBERRY_FIELD, False)\n }\n )\n\n return fields\n\n\ndef type(cls):\n def wrap():\n def repr_(self):\n return print_type(self.field)\n\n setattr(cls, \"__repr__\", repr_)\n\n cls._fields = _get_fields(cls)\n cls.field = GraphQLObjectType(name=cls.__name__, fields=cls._fields)\n\n return dataclass(cls, repr=False)\n\n return wrap()\n", "path": "strawberry/type.py"}, {"content": "from graphql import (\n GraphQLBoolean,\n GraphQLFloat,\n GraphQLID,\n GraphQLInt,\n GraphQLList,\n GraphQLNonNull,\n GraphQLString,\n GraphQLUnionType,\n)\n\nfrom .scalars import ID\n\n\nTYPE_MAP = {\n str: GraphQLString,\n int: GraphQLInt,\n float: GraphQLFloat,\n bool: GraphQLBoolean,\n ID: GraphQLID,\n}\n\n\n# TODO: make so that we don't pass force optional\n# we use that when trying to get the type for a\n# option field (which can either be a scalar or an object type)\ndef get_graphql_type_for_annotation(\n annotation, field_name: str, force_optional: bool = False\n):\n # TODO: nice error\n\n is_optional = False\n\n # TODO: this might lead to issues with types that have a field value\n if hasattr(annotation, \"field\"):\n graphql_type = annotation.field\n else:\n annotation_name = getattr(annotation, \"_name\", None)\n\n if annotation_name == \"List\":\n list_of_type = get_graphql_type_for_annotation(\n annotation.__args__[0], field_name\n )\n\n return GraphQLList(list_of_type)\n\n # for some reason _name is None for Optional and Union types, so we check if we\n # have __args__ populated, there might be some edge cases where __args__ is\n # populated but the type is not an Union, like in the above case with Lists\n if hasattr(annotation, \"__args__\"):\n types = annotation.__args__\n non_none_types = [x for x in types if x != type(None)] # noqa:E721\n\n # optionals are represented as Union[type, None]\n if len(non_none_types) == 1:\n is_optional = True\n graphql_type = get_graphql_type_for_annotation(\n non_none_types[0], field_name, force_optional=True\n )\n else:\n is_optional = type(None) in types\n\n # TODO: union types don't work with scalar types\n # so we want to return a nice error\n # also we want to make sure we have been passed\n # strawberry types\n graphql_type = GraphQLUnionType(\n field_name, [type.field for type in types]\n )\n else:\n graphql_type = TYPE_MAP.get(annotation)\n\n if not graphql_type:\n raise ValueError(f\"Unable to get GraphQL type for {annotation}\")\n\n if is_optional or force_optional:\n return graphql_type\n\n return GraphQLNonNull(graphql_type)\n", "path": "strawberry/type_converter.py"}], "after_files": [{"content": "import typing\n\nfrom dataclasses import dataclass\nfrom graphql import GraphQLField, GraphQLObjectType\nfrom graphql.utilities.schema_printer import print_type\n\nfrom .constants import IS_STRAWBERRY_FIELD\nfrom .type_converter import REGISTRY, get_graphql_type_for_annotation\n\n\ndef _get_resolver(cls, field_name):\n def _resolver(obj, info):\n # TODO: can we make this nicer?\n # does it work in all the cases?\n\n field_resolver = getattr(cls(**(obj.__dict__ if obj else {})), field_name)\n\n if getattr(field_resolver, IS_STRAWBERRY_FIELD, False):\n return field_resolver(obj, info)\n\n return field_resolver\n\n return _resolver\n\n\ndef type(cls):\n def wrap():\n name = cls.__name__\n REGISTRY[name] = cls\n\n def repr_(self):\n return print_type(self.field)\n\n setattr(cls, \"__repr__\", repr_)\n\n annotations = typing.get_type_hints(cls, None, REGISTRY)\n\n def _get_fields():\n\n fields = {\n key: GraphQLField(\n get_graphql_type_for_annotation(value, key),\n resolve=_get_resolver(cls, key),\n )\n for key, value in annotations.items()\n }\n\n fields.update(\n {\n key: value.field\n for key, value in cls.__dict__.items()\n if getattr(value, IS_STRAWBERRY_FIELD, False)\n }\n )\n\n return fields\n\n cls.field = GraphQLObjectType(name, lambda: _get_fields())\n\n return dataclass(cls, repr=False)\n\n return wrap()\n", "path": "strawberry/type.py"}, {"content": "from graphql import (\n GraphQLBoolean,\n GraphQLFloat,\n GraphQLID,\n GraphQLInt,\n GraphQLList,\n GraphQLNonNull,\n GraphQLString,\n GraphQLUnionType,\n)\n\nfrom .scalars import ID\n\n\nREGISTRY = {\n str: GraphQLString,\n int: GraphQLInt,\n float: GraphQLFloat,\n bool: GraphQLBoolean,\n ID: GraphQLID,\n}\n\n\n# TODO: make so that we don't pass force optional\n# we use that when trying to get the type for a\n# option field (which can either be a scalar or an object type)\ndef get_graphql_type_for_annotation(\n annotation, field_name: str, force_optional: bool = False\n):\n # TODO: this might lead to issues with types that have a field value\n is_optional = force_optional\n\n if hasattr(annotation, \"field\"):\n graphql_type = annotation.field\n else:\n annotation_name = getattr(annotation, \"_name\", None)\n\n if annotation_name == \"List\":\n list_of_type = get_graphql_type_for_annotation(\n annotation.__args__[0], field_name\n )\n\n return GraphQLList(list_of_type)\n\n # for some reason _name is None for Optional and Union types, so we check if we\n # have __args__ populated, there might be some edge cases where __args__ is\n # populated but the type is not an Union, like in the above case with Lists\n if hasattr(annotation, \"__args__\"):\n types = annotation.__args__\n non_none_types = [x for x in types if x != None.__class__] # noqa:E721\n\n # optionals are represented as Union[type, None]\n if len(non_none_types) == 1:\n is_optional = True\n graphql_type = get_graphql_type_for_annotation(\n non_none_types[0], field_name, force_optional=True\n )\n else:\n is_optional = None.__class__ in types\n\n # TODO: union types don't work with scalar types\n # so we want to return a nice error\n # also we want to make sure we have been passed\n # strawberry types\n graphql_type = GraphQLUnionType(\n field_name, [type.field for type in types]\n )\n else:\n graphql_type = REGISTRY.get(annotation)\n\n if not graphql_type:\n raise ValueError(f\"Unable to get GraphQL type for {annotation}\")\n\n if is_optional:\n return graphql_type\n\n return GraphQLNonNull(graphql_type)\n", "path": "strawberry/type_converter.py"}]}
1,924
982
gh_patches_debug_14469
rasdani/github-patches
git_diff
openstates__openstates-scrapers-2343
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- MO failing since at least 2018-05-24 MO has been failing since 2018-05-24 Based on automated runs it appears that MO has not run successfully in 2 days (2018-05-24). ``` 06:09:50 INFO billy: Save committee on Government Oversight, Standing 06:09:50 INFO billy: Save committee on Tax Policy, Statutory 06:09:50 INFO billy: Save committee on Litigation Reform, Standing 06:09:50 INFO billy: Save committee Rules - Legislative Oversight, Standing 06:09:50 INFO billy: Save committee Investigative on Oversight, Standing 06:09:50 INFO billy: Save committee Agriculture Policy, Standing 06:09:50 INFO billy: Save committee Transportation, Infrastructure and Public Safety 06:09:50 INFO billy: Save committee Agriculture, Food Production, and Outdoor Resources 06:09:50 INFO billy: Save committee Professional Registration 06:09:50 INFO billy: Save committee on Employment Security, Standing 06:09:50 INFO billy: Save committee Fiscal Oversight 06:09:50 INFO billy: Save committee Workforce Development, Standing 06:09:50 INFO billy: Save committee General Laws, Standing 06:09:50 INFO billy: Save committee Subcommittee on Appropriations - Public Safety, Corrections, Transportation, and Revenue, Subcommittee 06:09:50 INFO billy: Save committee Subcommittee on Mass Transit Security, Subcommittee 06:09:50 INFO billy: Save committee Subcommittee on Second Amendment Preservation, Subcommittee 06:09:50 INFO billy: Save committee on Homeland Security, Standing 06:09:50 INFO billy: Save committee Ways and Means 06:09:50 INFO billy: Save committee Judiciary, Standing 06:09:50 INFO billy: Save committee Subcommittee on Ports, Subcommittee 06:09:50 INFO billy: Save committee Corrections and Public Institutions, Standing 06:09:50 INFO billy: Save bill lower 2018S1: HR 2 06:09:50 WARNING billy: Value u'2018S1' for field '<obj>.session' is not in the enumeration: ['2012', '2013', '2014', '2015', '2016', '2017', '2017S1', '2017S2', '2018'] 06:09:50 INFO billy: Save bill lower 2018S1: HR 1 06:09:50 WARNING billy: Value u'2018S1' for field '<obj>.session' is not in the enumeration: ['2012', '2013', '2014', '2015', '2016', '2017', '2017S1', '2017S2', '2018'] 06:09:50 INFO billy: Save vote 2018S1 lower: HR 2 'Reported Do Pass (H) - ' 06:09:50 WARNING billy: Value None for field '<obj>.yes_count' is not of type integer 06:09:52 INFO billy: billy-update abbr=mo actions=import,report types=bills,legislators,votes,committees,alldata sessions=2018 terms=2017-2018 06:09:52 INFO billy: Finished importing 194 legislator files. 06:09:53 INFO billy: imported 1 vote files Traceback (most recent call last): File "/opt/openstates/venv-billy//bin/billy-update", line 11, in <module> load_entry_point('billy', 'console_scripts', 'billy-update')() File "/opt/openstates/venv-billy/src/billy/billy/bin/update.py", line 413, in main import_report = _do_imports(abbrev, args) File "/opt/openstates/venv-billy/src/billy/billy/bin/update.py", line 152, in _do_imports report['bills'] = import_bills(abbrev, settings.BILLY_DATA_DIR) File "/opt/openstates/venv-billy/src/billy/billy/importers/bills.py", line 413, in import_bills ret = import_bill(data, votes, categorizer) File "/opt/openstates/venv-billy/src/billy/billy/importers/bills.py", line 231, in import_bill match_sponsor_ids(abbr, data) File "/opt/openstates/venv-billy/src/billy/billy/importers/bills.py", line 37, in match_sponsor_ids sponsor['name']) File "/opt/openstates/venv-billy/src/billy/billy/importers/names.py", line 26, in get_legislator_id raise Exception("bad session: " + session) Exception: bad session: 2018S1 ``` Visit http://bobsled.openstates.org for more info. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `billy_metadata/mo.py` Content: ``` 1 import datetime 2 3 metadata = dict( 4 name='Missouri', 5 abbreviation='mo', 6 legislature_name='Missouri General Assembly', 7 legislature_url='http://www.moga.mo.gov/', 8 capitol_timezone='America/Chicago', 9 chambers={ 10 'upper': { 11 'name': 'Senate', 12 'title': 'Senator' 13 }, 14 'lower': { 15 'name': 'House', 16 'title': 'Representative' 17 }, 18 }, 19 terms=[ 20 { 21 'name': '2011-2012', 22 'sessions': ['2012'], 23 'start_year': 2011, 24 'end_year': 2012, 25 }, 26 { 27 'name': '2013-2014', 28 'sessions': ['2013', '2014'], 29 'start_year': 2013, 30 'end_year': 2014, 31 }, 32 { 33 'name': '2015-2016', 34 'sessions': ['2015', '2016'], 35 'start_year': 2015, 36 'end_year': 2016, 37 }, 38 { 39 'name': '2017-2018', 40 'sessions': ['2017', '2017S1', '2017S2', '2018'], 41 'start_year': 2017, 42 'end_year': 2018, 43 }, 44 ], 45 # General Assembly sessions convene the Wed. following the first Mon. 46 # of January and adjourn May 30. 47 # http://www.house.mo.gov/content.aspx?info=/info/howbill.htm 48 session_details={ 49 '2012': { 50 'type': 'primary', 51 'start_date': datetime.date(2012,1,4), 52 'end_date': datetime.date(2012,5,30), 53 'display_name': '2012 Regular Session', 54 '_scraped_name': '2012 - 96th General Assembly - 2nd Regular Session', 55 }, 56 '2013': { 57 'type': 'primary', 58 'start_date': datetime.date(2013,1,9), 59 'end_date': datetime.date(2013,5,30), 60 'display_name': '2013 Regular Session', 61 '_scraped_name': '2013 - 97th General Assembly - 1st Regular Session', 62 }, 63 '2014': { 64 'type': 'primary', 65 'start_date': datetime.date(2014,1,8), 66 'end_date': datetime.date(2014,5,30), 67 'display_name': '2014 Regular Session', 68 '_scraped_name': '2014 - 97th General Assembly - 2nd Regular Session', 69 }, 70 '2015': { 71 'type': 'primary', 72 'start_date': datetime.date(2015,1,7), 73 'end_date': datetime.date(2015,5,30), 74 'display_name': '2015 Regular Session', 75 '_scraped_name': '2015 - 98th General Assembly - 1st Regular Session', 76 }, 77 '2016': { 78 'type': 'primary', 79 'start_date': datetime.date(2016,1,6), 80 'end_date': datetime.date(2016,5,30), 81 'display_name': '2016 Regular Session', 82 }, 83 '2017': { 84 'type': 'primary', 85 'start_date': datetime.date(2017,1,4), 86 'end_date': datetime.date(2017,5,12), 87 'display_name': '2017 Regular Session', 88 }, 89 '2017S1': { 90 'type': 'special', 91 'display_name': '2017 First Extraordinary Session', 92 }, 93 '2017S2': { 94 'type': 'special', 95 'display_name': '2017 Second Extraordinary Session', 96 }, 97 '2018': { 98 'type': 'primary', 99 'display_name': '2018 Regular Session', 100 }, 101 '2018S1': { 102 'type': 'special', 103 'display_name': '2018 First Extraordinary Session', 104 }, 105 }, 106 feature_flags=['subjects', 'influenceexplorer'], 107 _ignored_scraped_sessions=[ 108 '2014 - 97th General Assembly - 2nd Regular Session', 109 '2013 - 97th General Assembly - 1st Regular Session', 110 '2012 - 96th General Assembly - 2nd Regular Session', 111 '2011 - 96th General Assembly - 1st Regular Session', 112 '2010 - 95th General Assembly - 2nd Regular Session', 113 '2009 - 95th General Assembly - 1st Regular Session', 114 '2008 - 94th General Assembly - 2nd Regular Session', 115 '2007 - 94th General Assembly - 1st Regular Session', 116 '2006 - 93rd General Assembly - 2nd Regular Session', 117 '2005 - 93rd General Assembly - 1st Regular Session', 118 '2004 - 92nd General Assembly - 2nd Regular Session', 119 '2003 - 92nd General Assembly - 1st Regular Session', 120 '2002 - 91st General Assembly - 2nd Regular Session', 121 '2001 - 91st General Assembly - 1st Regular Session', 122 '2000 - 90th General Assembly - 2nd Regular Session', 123 '1999 - 90th General Assembly - 1st Regular Session', 124 '1998 - 89th General Assembly - 2nd Regular Session', 125 '1997 - 89th General Assembly - 1st Regular Session', 126 '1996 - 88th General Assembly - 2nd Regular Session', 127 '1995 - 88th General Assembly - 1st Regular Session' 128 ] 129 ) 130 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/billy_metadata/mo.py b/billy_metadata/mo.py --- a/billy_metadata/mo.py +++ b/billy_metadata/mo.py @@ -37,7 +37,7 @@ }, { 'name': '2017-2018', - 'sessions': ['2017', '2017S1', '2017S2', '2018'], + 'sessions': ['2017', '2017S1', '2017S2', '2018', '2018S1'], 'start_year': 2017, 'end_year': 2018, }, @@ -98,7 +98,7 @@ 'type': 'primary', 'display_name': '2018 Regular Session', }, - '2018S2': { + '2018S1': { 'type': 'special', 'display_name': '2018 First Extraordinary Session', },
{"golden_diff": "diff --git a/billy_metadata/mo.py b/billy_metadata/mo.py\n--- a/billy_metadata/mo.py\n+++ b/billy_metadata/mo.py\n@@ -37,7 +37,7 @@\n },\n {\n 'name': '2017-2018',\n- 'sessions': ['2017', '2017S1', '2017S2', '2018'],\n+ 'sessions': ['2017', '2017S1', '2017S2', '2018', '2018S1'],\n 'start_year': 2017,\n 'end_year': 2018,\n },\n@@ -98,7 +98,7 @@\n 'type': 'primary',\n 'display_name': '2018 Regular Session',\n },\n- '2018S2': {\n+ '2018S1': {\n 'type': 'special',\n 'display_name': '2018 First Extraordinary Session',\n },\n", "issue": "MO failing since at least 2018-05-24\nMO has been failing since 2018-05-24\n\nBased on automated runs it appears that MO has not run successfully in 2 days (2018-05-24).\n\n\n```\n 06:09:50 INFO billy: Save committee on Government Oversight, Standing\n06:09:50 INFO billy: Save committee on Tax Policy, Statutory\n06:09:50 INFO billy: Save committee on Litigation Reform, Standing\n06:09:50 INFO billy: Save committee Rules - Legislative Oversight, Standing\n06:09:50 INFO billy: Save committee Investigative on Oversight, Standing\n06:09:50 INFO billy: Save committee Agriculture Policy, Standing\n06:09:50 INFO billy: Save committee Transportation, Infrastructure and Public Safety\n06:09:50 INFO billy: Save committee Agriculture, Food Production, and Outdoor Resources\n06:09:50 INFO billy: Save committee Professional Registration\n06:09:50 INFO billy: Save committee on Employment Security, Standing\n06:09:50 INFO billy: Save committee Fiscal Oversight\n06:09:50 INFO billy: Save committee Workforce Development, Standing\n06:09:50 INFO billy: Save committee General Laws, Standing\n06:09:50 INFO billy: Save committee Subcommittee on Appropriations - Public Safety, Corrections, Transportation, and Revenue, Subcommittee\n06:09:50 INFO billy: Save committee Subcommittee on Mass Transit Security, Subcommittee\n06:09:50 INFO billy: Save committee Subcommittee on Second Amendment Preservation, Subcommittee\n06:09:50 INFO billy: Save committee on Homeland Security, Standing\n06:09:50 INFO billy: Save committee Ways and Means\n06:09:50 INFO billy: Save committee Judiciary, Standing\n06:09:50 INFO billy: Save committee Subcommittee on Ports, Subcommittee\n06:09:50 INFO billy: Save committee Corrections and Public Institutions, Standing\n06:09:50 INFO billy: Save bill lower 2018S1: HR 2\n06:09:50 WARNING billy: Value u'2018S1' for field '<obj>.session' is not in the enumeration: ['2012', '2013', '2014', '2015', '2016', '2017', '2017S1', '2017S2', '2018']\n06:09:50 INFO billy: Save bill lower 2018S1: HR 1\n06:09:50 WARNING billy: Value u'2018S1' for field '<obj>.session' is not in the enumeration: ['2012', '2013', '2014', '2015', '2016', '2017', '2017S1', '2017S2', '2018']\n06:09:50 INFO billy: Save vote 2018S1 lower: HR 2 'Reported Do Pass (H) - '\n06:09:50 WARNING billy: Value None for field '<obj>.yes_count' is not of type integer\n06:09:52 INFO billy: billy-update abbr=mo\n actions=import,report\n types=bills,legislators,votes,committees,alldata\n sessions=2018\n terms=2017-2018\n06:09:52 INFO billy: Finished importing 194 legislator files.\n06:09:53 INFO billy: imported 1 vote files\nTraceback (most recent call last):\n File \"/opt/openstates/venv-billy//bin/billy-update\", line 11, in <module>\n load_entry_point('billy', 'console_scripts', 'billy-update')()\n File \"/opt/openstates/venv-billy/src/billy/billy/bin/update.py\", line 413, in main\n import_report = _do_imports(abbrev, args)\n File \"/opt/openstates/venv-billy/src/billy/billy/bin/update.py\", line 152, in _do_imports\n report['bills'] = import_bills(abbrev, settings.BILLY_DATA_DIR)\n File \"/opt/openstates/venv-billy/src/billy/billy/importers/bills.py\", line 413, in import_bills\n ret = import_bill(data, votes, categorizer)\n File \"/opt/openstates/venv-billy/src/billy/billy/importers/bills.py\", line 231, in import_bill\n match_sponsor_ids(abbr, data)\n File \"/opt/openstates/venv-billy/src/billy/billy/importers/bills.py\", line 37, in match_sponsor_ids\n sponsor['name'])\n File \"/opt/openstates/venv-billy/src/billy/billy/importers/names.py\", line 26, in get_legislator_id\n raise Exception(\"bad session: \" + session)\nException: bad session: 2018S1\n```\n\nVisit http://bobsled.openstates.org for more info.\n\n", "before_files": [{"content": "import datetime\n\nmetadata = dict(\n name='Missouri',\n abbreviation='mo',\n legislature_name='Missouri General Assembly',\n legislature_url='http://www.moga.mo.gov/',\n capitol_timezone='America/Chicago',\n chambers={\n 'upper': {\n 'name': 'Senate',\n 'title': 'Senator'\n },\n 'lower': {\n 'name': 'House',\n 'title': 'Representative'\n },\n },\n terms=[\n {\n 'name': '2011-2012',\n 'sessions': ['2012'],\n 'start_year': 2011,\n 'end_year': 2012,\n },\n {\n 'name': '2013-2014',\n 'sessions': ['2013', '2014'],\n 'start_year': 2013,\n 'end_year': 2014,\n },\n {\n 'name': '2015-2016',\n 'sessions': ['2015', '2016'],\n 'start_year': 2015,\n 'end_year': 2016,\n },\n {\n 'name': '2017-2018',\n 'sessions': ['2017', '2017S1', '2017S2', '2018'],\n 'start_year': 2017,\n 'end_year': 2018,\n },\n ],\n # General Assembly sessions convene the Wed. following the first Mon.\n # of January and adjourn May 30.\n # http://www.house.mo.gov/content.aspx?info=/info/howbill.htm\n session_details={\n '2012': {\n 'type': 'primary',\n 'start_date': datetime.date(2012,1,4),\n 'end_date': datetime.date(2012,5,30),\n 'display_name': '2012 Regular Session',\n '_scraped_name': '2012 - 96th General Assembly - 2nd Regular Session',\n },\n '2013': {\n 'type': 'primary',\n 'start_date': datetime.date(2013,1,9),\n 'end_date': datetime.date(2013,5,30),\n 'display_name': '2013 Regular Session',\n '_scraped_name': '2013 - 97th General Assembly - 1st Regular Session',\n },\n '2014': {\n 'type': 'primary',\n 'start_date': datetime.date(2014,1,8),\n 'end_date': datetime.date(2014,5,30),\n 'display_name': '2014 Regular Session',\n '_scraped_name': '2014 - 97th General Assembly - 2nd Regular Session',\n },\n '2015': {\n 'type': 'primary',\n 'start_date': datetime.date(2015,1,7),\n 'end_date': datetime.date(2015,5,30),\n 'display_name': '2015 Regular Session',\n '_scraped_name': '2015 - 98th General Assembly - 1st Regular Session',\n },\n '2016': {\n 'type': 'primary',\n 'start_date': datetime.date(2016,1,6),\n 'end_date': datetime.date(2016,5,30),\n 'display_name': '2016 Regular Session',\n },\n '2017': {\n 'type': 'primary',\n 'start_date': datetime.date(2017,1,4),\n 'end_date': datetime.date(2017,5,12),\n 'display_name': '2017 Regular Session',\n },\n '2017S1': {\n 'type': 'special',\n 'display_name': '2017 First Extraordinary Session',\n },\n '2017S2': {\n 'type': 'special',\n 'display_name': '2017 Second Extraordinary Session',\n },\n '2018': {\n 'type': 'primary',\n 'display_name': '2018 Regular Session',\n },\n '2018S1': {\n 'type': 'special',\n 'display_name': '2018 First Extraordinary Session',\n },\n },\n feature_flags=['subjects', 'influenceexplorer'],\n _ignored_scraped_sessions=[\n '2014 - 97th General Assembly - 2nd Regular Session',\n '2013 - 97th General Assembly - 1st Regular Session',\n '2012 - 96th General Assembly - 2nd Regular Session',\n '2011 - 96th General Assembly - 1st Regular Session',\n '2010 - 95th General Assembly - 2nd Regular Session',\n '2009 - 95th General Assembly - 1st Regular Session',\n '2008 - 94th General Assembly - 2nd Regular Session',\n '2007 - 94th General Assembly - 1st Regular Session',\n '2006 - 93rd General Assembly - 2nd Regular Session',\n '2005 - 93rd General Assembly - 1st Regular Session',\n '2004 - 92nd General Assembly - 2nd Regular Session',\n '2003 - 92nd General Assembly - 1st Regular Session',\n '2002 - 91st General Assembly - 2nd Regular Session',\n '2001 - 91st General Assembly - 1st Regular Session',\n '2000 - 90th General Assembly - 2nd Regular Session',\n '1999 - 90th General Assembly - 1st Regular Session',\n '1998 - 89th General Assembly - 2nd Regular Session',\n '1997 - 89th General Assembly - 1st Regular Session',\n '1996 - 88th General Assembly - 2nd Regular Session',\n '1995 - 88th General Assembly - 1st Regular Session'\n ]\n)\n", "path": "billy_metadata/mo.py"}], "after_files": [{"content": "import datetime\n\nmetadata = dict(\n name='Missouri',\n abbreviation='mo',\n legislature_name='Missouri General Assembly',\n legislature_url='http://www.moga.mo.gov/',\n capitol_timezone='America/Chicago',\n chambers={\n 'upper': {\n 'name': 'Senate',\n 'title': 'Senator'\n },\n 'lower': {\n 'name': 'House',\n 'title': 'Representative'\n },\n },\n terms=[\n {\n 'name': '2011-2012',\n 'sessions': ['2012'],\n 'start_year': 2011,\n 'end_year': 2012,\n },\n {\n 'name': '2013-2014',\n 'sessions': ['2013', '2014'],\n 'start_year': 2013,\n 'end_year': 2014,\n },\n {\n 'name': '2015-2016',\n 'sessions': ['2015', '2016'],\n 'start_year': 2015,\n 'end_year': 2016,\n },\n {\n 'name': '2017-2018',\n 'sessions': ['2017', '2017S1', '2017S2', '2018', '2018S1'],\n 'start_year': 2017,\n 'end_year': 2018,\n },\n ],\n # General Assembly sessions convene the Wed. following the first Mon.\n # of January and adjourn May 30.\n # http://www.house.mo.gov/content.aspx?info=/info/howbill.htm\n session_details={\n '2012': {\n 'type': 'primary',\n 'start_date': datetime.date(2012,1,4),\n 'end_date': datetime.date(2012,5,30),\n 'display_name': '2012 Regular Session',\n '_scraped_name': '2012 - 96th General Assembly - 2nd Regular Session',\n },\n '2013': {\n 'type': 'primary',\n 'start_date': datetime.date(2013,1,9),\n 'end_date': datetime.date(2013,5,30),\n 'display_name': '2013 Regular Session',\n '_scraped_name': '2013 - 97th General Assembly - 1st Regular Session',\n },\n '2014': {\n 'type': 'primary',\n 'start_date': datetime.date(2014,1,8),\n 'end_date': datetime.date(2014,5,30),\n 'display_name': '2014 Regular Session',\n '_scraped_name': '2014 - 97th General Assembly - 2nd Regular Session',\n },\n '2015': {\n 'type': 'primary',\n 'start_date': datetime.date(2015,1,7),\n 'end_date': datetime.date(2015,5,30),\n 'display_name': '2015 Regular Session',\n '_scraped_name': '2015 - 98th General Assembly - 1st Regular Session',\n },\n '2016': {\n 'type': 'primary',\n 'start_date': datetime.date(2016,1,6),\n 'end_date': datetime.date(2016,5,30),\n 'display_name': '2016 Regular Session',\n },\n '2017': {\n 'type': 'primary',\n 'start_date': datetime.date(2017,1,4),\n 'end_date': datetime.date(2017,5,12),\n 'display_name': '2017 Regular Session',\n },\n '2017S1': {\n 'type': 'special',\n 'display_name': '2017 First Extraordinary Session',\n },\n '2017S2': {\n 'type': 'special',\n 'display_name': '2017 Second Extraordinary Session',\n },\n '2018': {\n 'type': 'primary',\n 'display_name': '2018 Regular Session',\n },\n '2018S1': {\n 'type': 'special',\n 'display_name': '2018 First Extraordinary Session',\n },\n },\n feature_flags=['subjects', 'influenceexplorer'],\n _ignored_scraped_sessions=[\n '2014 - 97th General Assembly - 2nd Regular Session',\n '2013 - 97th General Assembly - 1st Regular Session',\n '2012 - 96th General Assembly - 2nd Regular Session',\n '2011 - 96th General Assembly - 1st Regular Session',\n '2010 - 95th General Assembly - 2nd Regular Session',\n '2009 - 95th General Assembly - 1st Regular Session',\n '2008 - 94th General Assembly - 2nd Regular Session',\n '2007 - 94th General Assembly - 1st Regular Session',\n '2006 - 93rd General Assembly - 2nd Regular Session',\n '2005 - 93rd General Assembly - 1st Regular Session',\n '2004 - 92nd General Assembly - 2nd Regular Session',\n '2003 - 92nd General Assembly - 1st Regular Session',\n '2002 - 91st General Assembly - 2nd Regular Session',\n '2001 - 91st General Assembly - 1st Regular Session',\n '2000 - 90th General Assembly - 2nd Regular Session',\n '1999 - 90th General Assembly - 1st Regular Session',\n '1998 - 89th General Assembly - 2nd Regular Session',\n '1997 - 89th General Assembly - 1st Regular Session',\n '1996 - 88th General Assembly - 2nd Regular Session',\n '1995 - 88th General Assembly - 1st Regular Session'\n ]\n)\n", "path": "billy_metadata/mo.py"}]}
3,238
245
gh_patches_debug_1657
rasdani/github-patches
git_diff
kubeflow__pipelines-5054
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- TypeErro occurs in gcp/automl/create_dataset_for_tables component ### What steps did you take: [A clear and concise description of what the bug is.] [gcp/automl/create_dataset_for_tables component](https://github.com/kubeflow/pipelines/tree/master/components/gcp/automl/create_dataset_for_tables)'s `create_time` output is declared as a string: https://github.com/kubeflow/pipelines/blob/ecb14f40bb819c0678589b6458892ece5369fa71/components/gcp/automl/create_dataset_for_tables/component.yaml#L15 however, `google.protobuf.timestamp_pb2.Timestamp` is returned in actual fact: https://github.com/kubeflow/pipelines/blob/ecb14f40bb819c0678589b6458892ece5369fa71/components/gcp/automl/create_dataset_for_tables/component.py#L54 FYI: The `dataset` object is an instance of `google.cloud.automl_v1beta1.types.Dataset` class and its [document](https://googleapis.dev/python/automl/0.4.0/gapic/v1beta1/types.html#google.cloud.automl_v1beta1.types.Dataset.create_time) says: > **create_time** > Output only. Timestamp when this dataset was created. ### What happened: `TypeError` occurs ![image](https://user-images.githubusercontent.com/96157/106237273-cf955a00-6241-11eb-91e2-2c53e4e82623.png) ### What did you expect to happen: Work. ### Environment: <!-- Please fill in those that seem relevant. --> How did you deploy Kubeflow Pipelines (KFP)? AI Platform Pipelines <!-- If you are not sure, here's [an introduction of all options](https://www.kubeflow.org/docs/pipelines/installation/overview/). --> KFP version: 1.0.4 <!-- If you are not sure, build commit shows on bottom of KFP UI left sidenav. --> KFP SDK version: 1.3.0 <!-- Please attach the output of this shell command: $pip list | grep kfp --> ### Anything else you would like to add: [Miscellaneous information that will assist in solving the issue.] /kind bug <!-- Please include labels by uncommenting them to help us better triage issues, choose from the following --> <!-- // /area frontend // /area backend // /area sdk // /area testing // /area engprod --> --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `components/gcp/automl/create_dataset_for_tables/component.py` Content: ``` 1 # Copyright 2019 Google LLC 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 15 from typing import NamedTuple 16 17 18 def automl_create_dataset_for_tables( 19 gcp_project_id: str, 20 gcp_region: str, 21 display_name: str, 22 description: str = None, 23 tables_dataset_metadata: dict = {}, 24 retry=None, #=google.api_core.gapic_v1.method.DEFAULT, 25 timeout: float = None, #=google.api_core.gapic_v1.method.DEFAULT, 26 metadata: dict = None, 27 ) -> NamedTuple('Outputs', [('dataset_path', str), ('create_time', str), ('dataset_id', str), ('dataset_url', 'URI')]): 28 '''automl_create_dataset_for_tables creates an empty Dataset for AutoML tables 29 ''' 30 import google 31 from google.cloud import automl 32 client = automl.AutoMlClient() 33 34 location_path = client.location_path(gcp_project_id, gcp_region) 35 dataset_dict = { 36 'display_name': display_name, 37 'description': description, 38 'tables_dataset_metadata': tables_dataset_metadata, 39 } 40 dataset = client.create_dataset( 41 location_path, 42 dataset_dict, 43 retry or google.api_core.gapic_v1.method.DEFAULT, 44 timeout or google.api_core.gapic_v1.method.DEFAULT, 45 metadata, 46 ) 47 print(dataset) 48 dataset_id = dataset.name.rsplit('/', 1)[-1] 49 dataset_url = 'https://console.cloud.google.com/automl-tables/locations/{region}/datasets/{dataset_id}/schemav2?project={project_id}'.format( 50 project_id=gcp_project_id, 51 region=gcp_region, 52 dataset_id=dataset_id, 53 ) 54 return (dataset.name, dataset.create_time, dataset_id, dataset_url) 55 56 57 if __name__ == '__main__': 58 import kfp 59 kfp.components.func_to_container_op( 60 automl_create_dataset_for_tables, 61 output_component_file='component.yaml', 62 base_image='python:3.7', 63 packages_to_install=['google-cloud-automl==0.4.0'] 64 ) 65 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/components/gcp/automl/create_dataset_for_tables/component.py b/components/gcp/automl/create_dataset_for_tables/component.py --- a/components/gcp/automl/create_dataset_for_tables/component.py +++ b/components/gcp/automl/create_dataset_for_tables/component.py @@ -51,7 +51,7 @@ region=gcp_region, dataset_id=dataset_id, ) - return (dataset.name, dataset.create_time, dataset_id, dataset_url) + return (dataset.name, str(dataset.create_time), dataset_id, dataset_url) if __name__ == '__main__':
{"golden_diff": "diff --git a/components/gcp/automl/create_dataset_for_tables/component.py b/components/gcp/automl/create_dataset_for_tables/component.py\n--- a/components/gcp/automl/create_dataset_for_tables/component.py\n+++ b/components/gcp/automl/create_dataset_for_tables/component.py\n@@ -51,7 +51,7 @@\n region=gcp_region,\n dataset_id=dataset_id,\n )\n- return (dataset.name, dataset.create_time, dataset_id, dataset_url)\n+ return (dataset.name, str(dataset.create_time), dataset_id, dataset_url)\n \n \n if __name__ == '__main__':\n", "issue": "TypeErro occurs in gcp/automl/create_dataset_for_tables component\n### What steps did you take:\r\n[A clear and concise description of what the bug is.]\r\n\r\n[gcp/automl/create_dataset_for_tables component](https://github.com/kubeflow/pipelines/tree/master/components/gcp/automl/create_dataset_for_tables)'s `create_time` output is declared as a string:\r\n\r\nhttps://github.com/kubeflow/pipelines/blob/ecb14f40bb819c0678589b6458892ece5369fa71/components/gcp/automl/create_dataset_for_tables/component.yaml#L15\r\n\r\nhowever, `google.protobuf.timestamp_pb2.Timestamp` is returned in actual fact:\r\n\r\nhttps://github.com/kubeflow/pipelines/blob/ecb14f40bb819c0678589b6458892ece5369fa71/components/gcp/automl/create_dataset_for_tables/component.py#L54\r\n\r\nFYI: The `dataset` object is an instance of `google.cloud.automl_v1beta1.types.Dataset` class and its [document](https://googleapis.dev/python/automl/0.4.0/gapic/v1beta1/types.html#google.cloud.automl_v1beta1.types.Dataset.create_time) says:\r\n\r\n> **create_time**\r\n> Output only. Timestamp when this dataset was created.\r\n\r\n### What happened:\r\n\r\n`TypeError` occurs\r\n\r\n![image](https://user-images.githubusercontent.com/96157/106237273-cf955a00-6241-11eb-91e2-2c53e4e82623.png)\r\n\r\n### What did you expect to happen:\r\n\r\nWork.\r\n\r\n### Environment:\r\n<!-- Please fill in those that seem relevant. -->\r\n\r\nHow did you deploy Kubeflow Pipelines (KFP)? AI Platform Pipelines\r\n<!-- If you are not sure, here's [an introduction of all options](https://www.kubeflow.org/docs/pipelines/installation/overview/). -->\r\n\r\nKFP version: 1.0.4 <!-- If you are not sure, build commit shows on bottom of KFP UI left sidenav. -->\r\n\r\nKFP SDK version: 1.3.0 <!-- Please attach the output of this shell command: $pip list | grep kfp -->\r\n\r\n\r\n### Anything else you would like to add:\r\n[Miscellaneous information that will assist in solving the issue.]\r\n\r\n/kind bug\r\n<!-- Please include labels by uncommenting them to help us better triage issues, choose from the following -->\r\n<!--\r\n// /area frontend\r\n// /area backend\r\n// /area sdk\r\n// /area testing\r\n// /area engprod\r\n-->\r\n\n", "before_files": [{"content": "# Copyright 2019 Google LLC\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nfrom typing import NamedTuple\n\n\ndef automl_create_dataset_for_tables(\n gcp_project_id: str,\n gcp_region: str,\n display_name: str,\n description: str = None,\n tables_dataset_metadata: dict = {},\n retry=None, #=google.api_core.gapic_v1.method.DEFAULT,\n timeout: float = None, #=google.api_core.gapic_v1.method.DEFAULT,\n metadata: dict = None,\n) -> NamedTuple('Outputs', [('dataset_path', str), ('create_time', str), ('dataset_id', str), ('dataset_url', 'URI')]):\n '''automl_create_dataset_for_tables creates an empty Dataset for AutoML tables\n '''\n import google\n from google.cloud import automl\n client = automl.AutoMlClient()\n\n location_path = client.location_path(gcp_project_id, gcp_region)\n dataset_dict = {\n 'display_name': display_name,\n 'description': description,\n 'tables_dataset_metadata': tables_dataset_metadata,\n }\n dataset = client.create_dataset(\n location_path,\n dataset_dict,\n retry or google.api_core.gapic_v1.method.DEFAULT,\n timeout or google.api_core.gapic_v1.method.DEFAULT,\n metadata,\n )\n print(dataset)\n dataset_id = dataset.name.rsplit('/', 1)[-1]\n dataset_url = 'https://console.cloud.google.com/automl-tables/locations/{region}/datasets/{dataset_id}/schemav2?project={project_id}'.format(\n project_id=gcp_project_id,\n region=gcp_region,\n dataset_id=dataset_id,\n )\n return (dataset.name, dataset.create_time, dataset_id, dataset_url)\n\n\nif __name__ == '__main__':\n import kfp\n kfp.components.func_to_container_op(\n automl_create_dataset_for_tables,\n output_component_file='component.yaml',\n base_image='python:3.7',\n packages_to_install=['google-cloud-automl==0.4.0']\n )\n", "path": "components/gcp/automl/create_dataset_for_tables/component.py"}], "after_files": [{"content": "# Copyright 2019 Google LLC\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nfrom typing import NamedTuple\n\n\ndef automl_create_dataset_for_tables(\n gcp_project_id: str,\n gcp_region: str,\n display_name: str,\n description: str = None,\n tables_dataset_metadata: dict = {},\n retry=None, #=google.api_core.gapic_v1.method.DEFAULT,\n timeout: float = None, #=google.api_core.gapic_v1.method.DEFAULT,\n metadata: dict = None,\n) -> NamedTuple('Outputs', [('dataset_path', str), ('create_time', str), ('dataset_id', str), ('dataset_url', 'URI')]):\n '''automl_create_dataset_for_tables creates an empty Dataset for AutoML tables\n '''\n import google\n from google.cloud import automl\n client = automl.AutoMlClient()\n\n location_path = client.location_path(gcp_project_id, gcp_region)\n dataset_dict = {\n 'display_name': display_name,\n 'description': description,\n 'tables_dataset_metadata': tables_dataset_metadata,\n }\n dataset = client.create_dataset(\n location_path,\n dataset_dict,\n retry or google.api_core.gapic_v1.method.DEFAULT,\n timeout or google.api_core.gapic_v1.method.DEFAULT,\n metadata,\n )\n print(dataset)\n dataset_id = dataset.name.rsplit('/', 1)[-1]\n dataset_url = 'https://console.cloud.google.com/automl-tables/locations/{region}/datasets/{dataset_id}/schemav2?project={project_id}'.format(\n project_id=gcp_project_id,\n region=gcp_region,\n dataset_id=dataset_id,\n )\n return (dataset.name, str(dataset.create_time), dataset_id, dataset_url)\n\n\nif __name__ == '__main__':\n import kfp\n kfp.components.func_to_container_op(\n automl_create_dataset_for_tables,\n output_component_file='component.yaml',\n base_image='python:3.7',\n packages_to_install=['google-cloud-automl==0.4.0']\n )\n", "path": "components/gcp/automl/create_dataset_for_tables/component.py"}]}
1,543
131
gh_patches_debug_35912
rasdani/github-patches
git_diff
cookiecutter__cookiecutter-531
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- output_dir for python API invocation + parametrize output_dir tests Need this for a cookiecutter project that's tested using [python api](http://cookiecutter.readthedocs.org/en/latest/advanced_usage.html#calling-cookiecutter-functions-from-python). Also parametrize output_dir tests and add testcase for cookiecutter python object. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `cookiecutter/cli.py` Content: ``` 1 #!/usr/bin/env python 2 # -*- coding: utf-8 -*- 3 4 """ 5 cookiecutter.cli 6 ----------------- 7 8 Main `cookiecutter` CLI. 9 """ 10 11 import os 12 import sys 13 import logging 14 15 import click 16 17 from cookiecutter import __version__ 18 from cookiecutter.main import cookiecutter 19 from cookiecutter.exceptions import ( 20 OutputDirExistsException, InvalidModeException 21 ) 22 23 logger = logging.getLogger(__name__) 24 25 26 def version_msg(): 27 python_version = sys.version[:3] 28 location = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) 29 message = u'Cookiecutter %(version)s from {} (Python {})' 30 return message.format(location, python_version) 31 32 33 @click.command() 34 @click.version_option(__version__, u'-V', u'--version', message=version_msg()) 35 @click.argument(u'template') 36 @click.option( 37 u'--no-input', is_flag=True, 38 help=u'Do not prompt for parameters and only use cookiecutter.json ' 39 u'file content', 40 ) 41 @click.option( 42 u'-c', u'--checkout', 43 help=u'branch, tag or commit to checkout after git clone', 44 ) 45 @click.option( 46 '-v', '--verbose', 47 is_flag=True, help='Print debug information', default=False 48 ) 49 @click.option( 50 u'--replay', is_flag=True, 51 help=u'Do not prompt for parameters and only use information entered ' 52 u'previously', 53 ) 54 @click.option( 55 u'-f', u'--overwrite-if-exists', is_flag=True, 56 help=u'Overwrite the contents of the output directory if it already exists' 57 ) 58 def main(template, no_input, checkout, verbose, replay, overwrite_if_exists): 59 """Create a project from a Cookiecutter project template (TEMPLATE).""" 60 if verbose: 61 logging.basicConfig( 62 format=u'%(levelname)s %(filename)s: %(message)s', 63 level=logging.DEBUG 64 ) 65 else: 66 # Log info and above to console 67 logging.basicConfig( 68 format=u'%(levelname)s: %(message)s', 69 level=logging.INFO 70 ) 71 72 try: 73 cookiecutter(template, checkout, no_input, replay=replay, 74 overwrite_if_exists=overwrite_if_exists) 75 except (OutputDirExistsException, InvalidModeException) as e: 76 click.echo(e) 77 sys.exit(1) 78 79 if __name__ == "__main__": 80 main() 81 ``` Path: `cookiecutter/main.py` Content: ``` 1 #!/usr/bin/env python 2 # -*- coding: utf-8 -*- 3 4 """ 5 cookiecutter.main 6 ----------------- 7 8 Main entry point for the `cookiecutter` command. 9 10 The code in this module is also a good example of how to use Cookiecutter as a 11 library rather than a script. 12 """ 13 14 from __future__ import unicode_literals 15 import logging 16 import os 17 import re 18 19 from .config import get_user_config 20 from .exceptions import InvalidModeException 21 from .prompt import prompt_for_config 22 from .generate import generate_context, generate_files 23 from .vcs import clone 24 from .replay import dump, load 25 26 logger = logging.getLogger(__name__) 27 28 builtin_abbreviations = { 29 'gh': 'https://github.com/{0}.git', 30 'bb': 'https://bitbucket.org/{0}', 31 } 32 33 REPO_REGEX = """ 34 ( 35 ((git|ssh|https|http):(//)?) # something like git:// ssh:// etc. 36 | # or 37 (\w+@[\w\.]+) # something like user@... 38 ) 39 .* 40 """ 41 42 43 def is_repo_url(value): 44 """Return True if value is a repository URL.""" 45 return bool(re.match(REPO_REGEX, value, re.VERBOSE)) 46 47 48 def expand_abbreviations(template, config_dict): 49 """ 50 Expand abbreviations in a template name. 51 52 :param template: The project template name. 53 :param config_dict: The user config, which will contain abbreviation 54 definitions. 55 """ 56 57 abbreviations = builtin_abbreviations.copy() 58 abbreviations.update(config_dict.get('abbreviations', {})) 59 60 if template in abbreviations: 61 return abbreviations[template] 62 63 # Split on colon. If there is no colon, rest will be empty 64 # and prefix will be the whole template 65 prefix, sep, rest = template.partition(':') 66 if prefix in abbreviations: 67 return abbreviations[prefix].format(rest) 68 69 return template 70 71 72 def cookiecutter( 73 template, checkout=None, no_input=False, extra_context=None, 74 replay=False, overwrite_if_exists=False): 75 """ 76 API equivalent to using Cookiecutter at the command line. 77 78 :param template: A directory containing a project template directory, 79 or a URL to a git repository. 80 :param checkout: The branch, tag or commit ID to checkout after clone. 81 :param no_input: Prompt the user at command line for manual configuration? 82 :param extra_context: A dictionary of context that overrides default 83 and user configuration. 84 :param: overwrite_if_exists: Overwrite the contents of output directory 85 if it exists 86 """ 87 if replay and ((no_input is not False) or (extra_context is not None)): 88 err_msg = ( 89 "You can not use both replay and no_input or extra_context " 90 "at the same time." 91 ) 92 raise InvalidModeException(err_msg) 93 94 # Get user config from ~/.cookiecutterrc or equivalent 95 # If no config file, sensible defaults from config.DEFAULT_CONFIG are used 96 config_dict = get_user_config() 97 98 template = expand_abbreviations(template, config_dict) 99 100 if is_repo_url(template): 101 repo_dir = clone( 102 repo_url=template, 103 checkout=checkout, 104 clone_to_dir=config_dict['cookiecutters_dir'], 105 no_input=no_input 106 ) 107 else: 108 # If it's a local repo, no need to clone or copy to your 109 # cookiecutters_dir 110 repo_dir = template 111 112 template_name = os.path.basename(template) 113 114 if replay: 115 context = load(template_name) 116 else: 117 context_file = os.path.join(repo_dir, 'cookiecutter.json') 118 logging.debug('context_file is {0}'.format(context_file)) 119 120 context = generate_context( 121 context_file=context_file, 122 default_context=config_dict['default_context'], 123 extra_context=extra_context, 124 ) 125 126 # prompt the user to manually configure at the command line. 127 # except when 'no-input' flag is set 128 context['cookiecutter'] = prompt_for_config(context, no_input) 129 130 dump(template_name, context) 131 132 # Create project from local context and project template. 133 generate_files( 134 repo_dir=repo_dir, 135 context=context, 136 overwrite_if_exists=overwrite_if_exists 137 ) 138 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/cookiecutter/cli.py b/cookiecutter/cli.py --- a/cookiecutter/cli.py +++ b/cookiecutter/cli.py @@ -55,7 +55,12 @@ u'-f', u'--overwrite-if-exists', is_flag=True, help=u'Overwrite the contents of the output directory if it already exists' ) -def main(template, no_input, checkout, verbose, replay, overwrite_if_exists): [email protected]( + u'-o', u'--output-dir', default='.', type=click.Path(), + help=u'Where to output the generated project dir into' +) +def main(template, no_input, checkout, verbose, replay, overwrite_if_exists, + output_dir): """Create a project from a Cookiecutter project template (TEMPLATE).""" if verbose: logging.basicConfig( @@ -70,8 +75,12 @@ ) try: - cookiecutter(template, checkout, no_input, replay=replay, - overwrite_if_exists=overwrite_if_exists) + cookiecutter( + template, checkout, no_input, + replay=replay, + overwrite_if_exists=overwrite_if_exists, + output_dir=output_dir + ) except (OutputDirExistsException, InvalidModeException) as e: click.echo(e) sys.exit(1) diff --git a/cookiecutter/main.py b/cookiecutter/main.py --- a/cookiecutter/main.py +++ b/cookiecutter/main.py @@ -71,7 +71,7 @@ def cookiecutter( template, checkout=None, no_input=False, extra_context=None, - replay=False, overwrite_if_exists=False): + replay=False, overwrite_if_exists=False, output_dir='.'): """ API equivalent to using Cookiecutter at the command line. @@ -83,6 +83,7 @@ and user configuration. :param: overwrite_if_exists: Overwrite the contents of output directory if it exists + :param output_dir: Where to output the generated project dir into. """ if replay and ((no_input is not False) or (extra_context is not None)): err_msg = ( @@ -133,5 +134,6 @@ generate_files( repo_dir=repo_dir, context=context, - overwrite_if_exists=overwrite_if_exists + overwrite_if_exists=overwrite_if_exists, + output_dir=output_dir )
{"golden_diff": "diff --git a/cookiecutter/cli.py b/cookiecutter/cli.py\n--- a/cookiecutter/cli.py\n+++ b/cookiecutter/cli.py\n@@ -55,7 +55,12 @@\n u'-f', u'--overwrite-if-exists', is_flag=True,\n help=u'Overwrite the contents of the output directory if it already exists'\n )\n-def main(template, no_input, checkout, verbose, replay, overwrite_if_exists):\[email protected](\n+ u'-o', u'--output-dir', default='.', type=click.Path(),\n+ help=u'Where to output the generated project dir into'\n+)\n+def main(template, no_input, checkout, verbose, replay, overwrite_if_exists,\n+ output_dir):\n \"\"\"Create a project from a Cookiecutter project template (TEMPLATE).\"\"\"\n if verbose:\n logging.basicConfig(\n@@ -70,8 +75,12 @@\n )\n \n try:\n- cookiecutter(template, checkout, no_input, replay=replay,\n- overwrite_if_exists=overwrite_if_exists)\n+ cookiecutter(\n+ template, checkout, no_input,\n+ replay=replay,\n+ overwrite_if_exists=overwrite_if_exists,\n+ output_dir=output_dir\n+ )\n except (OutputDirExistsException, InvalidModeException) as e:\n click.echo(e)\n sys.exit(1)\ndiff --git a/cookiecutter/main.py b/cookiecutter/main.py\n--- a/cookiecutter/main.py\n+++ b/cookiecutter/main.py\n@@ -71,7 +71,7 @@\n \n def cookiecutter(\n template, checkout=None, no_input=False, extra_context=None,\n- replay=False, overwrite_if_exists=False):\n+ replay=False, overwrite_if_exists=False, output_dir='.'):\n \"\"\"\n API equivalent to using Cookiecutter at the command line.\n \n@@ -83,6 +83,7 @@\n and user configuration.\n :param: overwrite_if_exists: Overwrite the contents of output directory\n if it exists\n+ :param output_dir: Where to output the generated project dir into.\n \"\"\"\n if replay and ((no_input is not False) or (extra_context is not None)):\n err_msg = (\n@@ -133,5 +134,6 @@\n generate_files(\n repo_dir=repo_dir,\n context=context,\n- overwrite_if_exists=overwrite_if_exists\n+ overwrite_if_exists=overwrite_if_exists,\n+ output_dir=output_dir\n )\n", "issue": "output_dir for python API invocation + parametrize output_dir tests\nNeed this for a cookiecutter project that's tested using [python api](http://cookiecutter.readthedocs.org/en/latest/advanced_usage.html#calling-cookiecutter-functions-from-python).\n\nAlso parametrize output_dir tests and add testcase for cookiecutter python object.\n\n", "before_files": [{"content": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n\n\"\"\"\ncookiecutter.cli\n-----------------\n\nMain `cookiecutter` CLI.\n\"\"\"\n\nimport os\nimport sys\nimport logging\n\nimport click\n\nfrom cookiecutter import __version__\nfrom cookiecutter.main import cookiecutter\nfrom cookiecutter.exceptions import (\n OutputDirExistsException, InvalidModeException\n)\n\nlogger = logging.getLogger(__name__)\n\n\ndef version_msg():\n python_version = sys.version[:3]\n location = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\n message = u'Cookiecutter %(version)s from {} (Python {})'\n return message.format(location, python_version)\n\n\[email protected]()\[email protected]_option(__version__, u'-V', u'--version', message=version_msg())\[email protected](u'template')\[email protected](\n u'--no-input', is_flag=True,\n help=u'Do not prompt for parameters and only use cookiecutter.json '\n u'file content',\n)\[email protected](\n u'-c', u'--checkout',\n help=u'branch, tag or commit to checkout after git clone',\n)\[email protected](\n '-v', '--verbose',\n is_flag=True, help='Print debug information', default=False\n)\[email protected](\n u'--replay', is_flag=True,\n help=u'Do not prompt for parameters and only use information entered '\n u'previously',\n)\[email protected](\n u'-f', u'--overwrite-if-exists', is_flag=True,\n help=u'Overwrite the contents of the output directory if it already exists'\n)\ndef main(template, no_input, checkout, verbose, replay, overwrite_if_exists):\n \"\"\"Create a project from a Cookiecutter project template (TEMPLATE).\"\"\"\n if verbose:\n logging.basicConfig(\n format=u'%(levelname)s %(filename)s: %(message)s',\n level=logging.DEBUG\n )\n else:\n # Log info and above to console\n logging.basicConfig(\n format=u'%(levelname)s: %(message)s',\n level=logging.INFO\n )\n\n try:\n cookiecutter(template, checkout, no_input, replay=replay,\n overwrite_if_exists=overwrite_if_exists)\n except (OutputDirExistsException, InvalidModeException) as e:\n click.echo(e)\n sys.exit(1)\n\nif __name__ == \"__main__\":\n main()\n", "path": "cookiecutter/cli.py"}, {"content": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n\n\"\"\"\ncookiecutter.main\n-----------------\n\nMain entry point for the `cookiecutter` command.\n\nThe code in this module is also a good example of how to use Cookiecutter as a\nlibrary rather than a script.\n\"\"\"\n\nfrom __future__ import unicode_literals\nimport logging\nimport os\nimport re\n\nfrom .config import get_user_config\nfrom .exceptions import InvalidModeException\nfrom .prompt import prompt_for_config\nfrom .generate import generate_context, generate_files\nfrom .vcs import clone\nfrom .replay import dump, load\n\nlogger = logging.getLogger(__name__)\n\nbuiltin_abbreviations = {\n 'gh': 'https://github.com/{0}.git',\n 'bb': 'https://bitbucket.org/{0}',\n}\n\nREPO_REGEX = \"\"\"\n(\n((git|ssh|https|http):(//)?) # something like git:// ssh:// etc.\n | # or\n (\\w+@[\\w\\.]+) # something like user@...\n)\n.*\n\"\"\"\n\n\ndef is_repo_url(value):\n \"\"\"Return True if value is a repository URL.\"\"\"\n return bool(re.match(REPO_REGEX, value, re.VERBOSE))\n\n\ndef expand_abbreviations(template, config_dict):\n \"\"\"\n Expand abbreviations in a template name.\n\n :param template: The project template name.\n :param config_dict: The user config, which will contain abbreviation\n definitions.\n \"\"\"\n\n abbreviations = builtin_abbreviations.copy()\n abbreviations.update(config_dict.get('abbreviations', {}))\n\n if template in abbreviations:\n return abbreviations[template]\n\n # Split on colon. If there is no colon, rest will be empty\n # and prefix will be the whole template\n prefix, sep, rest = template.partition(':')\n if prefix in abbreviations:\n return abbreviations[prefix].format(rest)\n\n return template\n\n\ndef cookiecutter(\n template, checkout=None, no_input=False, extra_context=None,\n replay=False, overwrite_if_exists=False):\n \"\"\"\n API equivalent to using Cookiecutter at the command line.\n\n :param template: A directory containing a project template directory,\n or a URL to a git repository.\n :param checkout: The branch, tag or commit ID to checkout after clone.\n :param no_input: Prompt the user at command line for manual configuration?\n :param extra_context: A dictionary of context that overrides default\n and user configuration.\n :param: overwrite_if_exists: Overwrite the contents of output directory\n if it exists\n \"\"\"\n if replay and ((no_input is not False) or (extra_context is not None)):\n err_msg = (\n \"You can not use both replay and no_input or extra_context \"\n \"at the same time.\"\n )\n raise InvalidModeException(err_msg)\n\n # Get user config from ~/.cookiecutterrc or equivalent\n # If no config file, sensible defaults from config.DEFAULT_CONFIG are used\n config_dict = get_user_config()\n\n template = expand_abbreviations(template, config_dict)\n\n if is_repo_url(template):\n repo_dir = clone(\n repo_url=template,\n checkout=checkout,\n clone_to_dir=config_dict['cookiecutters_dir'],\n no_input=no_input\n )\n else:\n # If it's a local repo, no need to clone or copy to your\n # cookiecutters_dir\n repo_dir = template\n\n template_name = os.path.basename(template)\n\n if replay:\n context = load(template_name)\n else:\n context_file = os.path.join(repo_dir, 'cookiecutter.json')\n logging.debug('context_file is {0}'.format(context_file))\n\n context = generate_context(\n context_file=context_file,\n default_context=config_dict['default_context'],\n extra_context=extra_context,\n )\n\n # prompt the user to manually configure at the command line.\n # except when 'no-input' flag is set\n context['cookiecutter'] = prompt_for_config(context, no_input)\n\n dump(template_name, context)\n\n # Create project from local context and project template.\n generate_files(\n repo_dir=repo_dir,\n context=context,\n overwrite_if_exists=overwrite_if_exists\n )\n", "path": "cookiecutter/main.py"}], "after_files": [{"content": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n\n\"\"\"\ncookiecutter.cli\n-----------------\n\nMain `cookiecutter` CLI.\n\"\"\"\n\nimport os\nimport sys\nimport logging\n\nimport click\n\nfrom cookiecutter import __version__\nfrom cookiecutter.main import cookiecutter\nfrom cookiecutter.exceptions import (\n OutputDirExistsException, InvalidModeException\n)\n\nlogger = logging.getLogger(__name__)\n\n\ndef version_msg():\n python_version = sys.version[:3]\n location = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\n message = u'Cookiecutter %(version)s from {} (Python {})'\n return message.format(location, python_version)\n\n\[email protected]()\[email protected]_option(__version__, u'-V', u'--version', message=version_msg())\[email protected](u'template')\[email protected](\n u'--no-input', is_flag=True,\n help=u'Do not prompt for parameters and only use cookiecutter.json '\n u'file content',\n)\[email protected](\n u'-c', u'--checkout',\n help=u'branch, tag or commit to checkout after git clone',\n)\[email protected](\n '-v', '--verbose',\n is_flag=True, help='Print debug information', default=False\n)\[email protected](\n u'--replay', is_flag=True,\n help=u'Do not prompt for parameters and only use information entered '\n u'previously',\n)\[email protected](\n u'-f', u'--overwrite-if-exists', is_flag=True,\n help=u'Overwrite the contents of the output directory if it already exists'\n)\[email protected](\n u'-o', u'--output-dir', default='.', type=click.Path(),\n help=u'Where to output the generated project dir into'\n)\ndef main(template, no_input, checkout, verbose, replay, overwrite_if_exists,\n output_dir):\n \"\"\"Create a project from a Cookiecutter project template (TEMPLATE).\"\"\"\n if verbose:\n logging.basicConfig(\n format=u'%(levelname)s %(filename)s: %(message)s',\n level=logging.DEBUG\n )\n else:\n # Log info and above to console\n logging.basicConfig(\n format=u'%(levelname)s: %(message)s',\n level=logging.INFO\n )\n\n try:\n cookiecutter(\n template, checkout, no_input,\n replay=replay,\n overwrite_if_exists=overwrite_if_exists,\n output_dir=output_dir\n )\n except (OutputDirExistsException, InvalidModeException) as e:\n click.echo(e)\n sys.exit(1)\n\nif __name__ == \"__main__\":\n main()\n", "path": "cookiecutter/cli.py"}, {"content": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n\n\"\"\"\ncookiecutter.main\n-----------------\n\nMain entry point for the `cookiecutter` command.\n\nThe code in this module is also a good example of how to use Cookiecutter as a\nlibrary rather than a script.\n\"\"\"\n\nfrom __future__ import unicode_literals\nimport logging\nimport os\nimport re\n\nfrom .config import get_user_config\nfrom .exceptions import InvalidModeException\nfrom .prompt import prompt_for_config\nfrom .generate import generate_context, generate_files\nfrom .vcs import clone\nfrom .replay import dump, load\n\nlogger = logging.getLogger(__name__)\n\nbuiltin_abbreviations = {\n 'gh': 'https://github.com/{0}.git',\n 'bb': 'https://bitbucket.org/{0}',\n}\n\nREPO_REGEX = \"\"\"\n(\n((git|ssh|https|http):(//)?) # something like git:// ssh:// etc.\n | # or\n (\\w+@[\\w\\.]+) # something like user@...\n)\n.*\n\"\"\"\n\n\ndef is_repo_url(value):\n \"\"\"Return True if value is a repository URL.\"\"\"\n return bool(re.match(REPO_REGEX, value, re.VERBOSE))\n\n\ndef expand_abbreviations(template, config_dict):\n \"\"\"\n Expand abbreviations in a template name.\n\n :param template: The project template name.\n :param config_dict: The user config, which will contain abbreviation\n definitions.\n \"\"\"\n\n abbreviations = builtin_abbreviations.copy()\n abbreviations.update(config_dict.get('abbreviations', {}))\n\n if template in abbreviations:\n return abbreviations[template]\n\n # Split on colon. If there is no colon, rest will be empty\n # and prefix will be the whole template\n prefix, sep, rest = template.partition(':')\n if prefix in abbreviations:\n return abbreviations[prefix].format(rest)\n\n return template\n\n\ndef cookiecutter(\n template, checkout=None, no_input=False, extra_context=None,\n replay=False, overwrite_if_exists=False, output_dir='.'):\n \"\"\"\n API equivalent to using Cookiecutter at the command line.\n\n :param template: A directory containing a project template directory,\n or a URL to a git repository.\n :param checkout: The branch, tag or commit ID to checkout after clone.\n :param no_input: Prompt the user at command line for manual configuration?\n :param extra_context: A dictionary of context that overrides default\n and user configuration.\n :param: overwrite_if_exists: Overwrite the contents of output directory\n if it exists\n :param output_dir: Where to output the generated project dir into.\n \"\"\"\n if replay and ((no_input is not False) or (extra_context is not None)):\n err_msg = (\n \"You can not use both replay and no_input or extra_context \"\n \"at the same time.\"\n )\n raise InvalidModeException(err_msg)\n\n # Get user config from ~/.cookiecutterrc or equivalent\n # If no config file, sensible defaults from config.DEFAULT_CONFIG are used\n config_dict = get_user_config()\n\n template = expand_abbreviations(template, config_dict)\n\n if is_repo_url(template):\n repo_dir = clone(\n repo_url=template,\n checkout=checkout,\n clone_to_dir=config_dict['cookiecutters_dir'],\n no_input=no_input\n )\n else:\n # If it's a local repo, no need to clone or copy to your\n # cookiecutters_dir\n repo_dir = template\n\n template_name = os.path.basename(template)\n\n if replay:\n context = load(template_name)\n else:\n context_file = os.path.join(repo_dir, 'cookiecutter.json')\n logging.debug('context_file is {0}'.format(context_file))\n\n context = generate_context(\n context_file=context_file,\n default_context=config_dict['default_context'],\n extra_context=extra_context,\n )\n\n # prompt the user to manually configure at the command line.\n # except when 'no-input' flag is set\n context['cookiecutter'] = prompt_for_config(context, no_input)\n\n dump(template_name, context)\n\n # Create project from local context and project template.\n generate_files(\n repo_dir=repo_dir,\n context=context,\n overwrite_if_exists=overwrite_if_exists,\n output_dir=output_dir\n )\n", "path": "cookiecutter/main.py"}]}
2,245
547
gh_patches_debug_25391
rasdani/github-patches
git_diff
jdb78__pytorch-forecasting-300
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Default trainer kwargs in temporal_fusion_transformer/tuning.py cannot be overwritten ```python [I 2021-01-27 09:42:03,226] A new study created in memory with name: no-name-8f54548f-a847-4450-9a1c-93acfdc5609e [W 2021-01-27 09:42:03,229] Trial 0 failed because of the following error: TypeError("ABCMeta object got multiple values for keyword argument 'progress_bar_refresh_rate'",) Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/optuna/_optimize.py", line 198, in _run_trial value_or_values = func(trial) File "/usr/local/lib/python3.6/dist-packages/pytorch_forecasting/models/temporal_fusion_transformer/tuning.py", line 145, in objective **trainer_kwargs, TypeError: ABCMeta object got multiple values for keyword argument 'progress_bar_refresh_rate' ``` --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `pytorch_forecasting/models/temporal_fusion_transformer/tuning.py` Content: ``` 1 """ 2 Hyperparameters can be efficiently tuned with `optuna <https://optuna.readthedocs.io/>`_. 3 """ 4 import copy 5 import logging 6 import os 7 from typing import Any, Dict, Tuple, Union 8 9 import numpy as np 10 import optuna 11 from optuna.integration import PyTorchLightningPruningCallback, TensorBoardCallback 12 import optuna.logging 13 import pytorch_lightning as pl 14 from pytorch_lightning import Callback 15 from pytorch_lightning.callbacks import LearningRateMonitor 16 from pytorch_lightning.loggers import TensorBoardLogger 17 import statsmodels.api as sm 18 import torch 19 from torch.utils.data import DataLoader 20 21 from pytorch_forecasting import TemporalFusionTransformer 22 from pytorch_forecasting.data import TimeSeriesDataSet 23 from pytorch_forecasting.metrics import QuantileLoss 24 25 optuna_logger = logging.getLogger("optuna") 26 27 28 class MetricsCallback(Callback): 29 """PyTorch Lightning metric callback.""" 30 31 def __init__(self): 32 super().__init__() 33 self.metrics = [] 34 35 def on_validation_end(self, trainer, pl_module): 36 self.metrics.append(trainer.callback_metrics) 37 38 39 def optimize_hyperparameters( 40 train_dataloader: DataLoader, 41 val_dataloader: DataLoader, 42 model_path: str, 43 max_epochs: int = 20, 44 n_trials: int = 100, 45 timeout: float = 3600 * 8.0, # 8 hours 46 gradient_clip_val_range: Tuple[float, float] = (0.01, 100.0), 47 hidden_size_range: Tuple[int, int] = (16, 265), 48 hidden_continuous_size_range: Tuple[int, int] = (8, 64), 49 attention_head_size_range: Tuple[int, int] = (1, 4), 50 dropout_range: Tuple[float, float] = (0.1, 0.3), 51 learning_rate_range: Tuple[float, float] = (1e-5, 1.0), 52 use_learning_rate_finder: bool = True, 53 trainer_kwargs: Dict[str, Any] = {}, 54 log_dir: str = "lightning_logs", 55 study: optuna.Study = None, 56 verbose: Union[int, bool] = None, 57 **kwargs, 58 ) -> optuna.Study: 59 """ 60 Optimize Temporal Fusion Transformer hyperparameters. 61 62 Run hyperparameter optimization. Learning rate for is determined with 63 the PyTorch Lightning learning rate finder. 64 65 Args: 66 train_dataloader (DataLoader): dataloader for training model 67 val_dataloader (DataLoader): dataloader for validating model 68 model_path (str): folder to which model checkpoints are saved 69 max_epochs (int, optional): Maximum number of epochs to run training. Defaults to 20. 70 n_trials (int, optional): Number of hyperparameter trials to run. Defaults to 100. 71 timeout (float, optional): Time in seconds after which training is stopped regardless of number of epochs 72 or validation metric. Defaults to 3600*8.0. 73 hidden_size_range (Tuple[int, int], optional): Minimum and maximum of ``hidden_size`` hyperparameter. Defaults 74 to (16, 265). 75 hidden_continuous_size_range (Tuple[int, int], optional): Minimum and maximum of ``hidden_continuous_size`` 76 hyperparameter. Defaults to (8, 64). 77 attention_head_size_range (Tuple[int, int], optional): Minimum and maximum of ``attention_head_size`` 78 hyperparameter. Defaults to (1, 4). 79 dropout_range (Tuple[float, float], optional): Minimum and maximum of ``dropout`` hyperparameter. Defaults to 80 (0.1, 0.3). 81 learning_rate_range (Tuple[float, float], optional): Learning rate range. Defaults to (1e-5, 1.0). 82 use_learning_rate_finder (bool): If to use learning rate finder or optimize as part of hyperparameters. 83 Defaults to True. 84 trainer_kwargs (Dict[str, Any], optional): Additional arguments to the 85 `PyTorch Lightning trainer <https://pytorch-lightning.readthedocs.io/en/latest/trainer.html>`_ such 86 as ``limit_train_batches``. Defaults to {}. 87 log_dir (str, optional): Folder into which to log results for tensorboard. Defaults to "lightning_logs". 88 study (optuna.Study, optional): study to resume. Will create new study by default. 89 verbose (Union[int, bool]): level of verbosity. 90 * None: no change in verbosity level (equivalent to verbose=1 by optuna-set default). 91 * 0 or False: log only warnings. 92 * 1 or True: log pruning events. 93 * 2: optuna logging level at debug level. 94 Defaults to None. 95 96 **kwargs: Additional arguments for the :py:class:`~TemporalFusionTransformer`. 97 98 Returns: 99 optuna.Study: optuna study results 100 """ 101 assert isinstance(train_dataloader.dataset, TimeSeriesDataSet) and isinstance( 102 val_dataloader.dataset, TimeSeriesDataSet 103 ), "dataloaders must be built from timeseriesdataset" 104 105 logging_level = { 106 None: optuna.logging.get_verbosity(), 107 0: optuna.logging.WARNING, 108 1: optuna.logging.INFO, 109 2: optuna.logging.DEBUG, 110 } 111 optuna_verbose = logging_level[verbose] 112 optuna.logging.set_verbosity(optuna_verbose) 113 114 loss = kwargs.get( 115 "loss", QuantileLoss() 116 ) # need a deepcopy of loss as it will otherwise propagate from one trial to the next 117 118 # create objective function 119 def objective(trial: optuna.Trial) -> float: 120 # Filenames for each trial must be made unique in order to access each checkpoint. 121 checkpoint_callback = pl.callbacks.ModelCheckpoint( 122 dirpath=os.path.join(model_path, "trial_{}".format(trial.number)), filename="{epoch}", monitor="val_loss" 123 ) 124 125 # The default logger in PyTorch Lightning writes to event files to be consumed by 126 # TensorBoard. We don't use any logger here as it requires us to implement several abstract 127 # methods. Instead we setup a simple callback, that saves metrics from each validation step. 128 metrics_callback = MetricsCallback() 129 learning_rate_callback = LearningRateMonitor() 130 logger = TensorBoardLogger(log_dir, name="optuna", version=trial.number) 131 gradient_clip_val = trial.suggest_loguniform("gradient_clip_val", *gradient_clip_val_range) 132 trainer_kwargs.setdefault("gpus", [0] if torch.cuda.is_available() else None) 133 trainer = pl.Trainer( 134 max_epochs=max_epochs, 135 gradient_clip_val=gradient_clip_val, 136 callbacks=[ 137 metrics_callback, 138 learning_rate_callback, 139 checkpoint_callback, 140 PyTorchLightningPruningCallback(trial, monitor="val_loss"), 141 ], 142 logger=logger, 143 progress_bar_refresh_rate=[0, 1][optuna_verbose < optuna.logging.INFO], 144 weights_summary=[None, "top"][optuna_verbose < optuna.logging.INFO], 145 **trainer_kwargs, 146 ) 147 148 # create model 149 hidden_size = trial.suggest_int("hidden_size", *hidden_size_range, log=True) 150 kwargs["loss"] = copy.deepcopy(loss) 151 model = TemporalFusionTransformer.from_dataset( 152 train_dataloader.dataset, 153 dropout=trial.suggest_uniform("dropout", *dropout_range), 154 hidden_size=hidden_size, 155 hidden_continuous_size=trial.suggest_int( 156 "hidden_continuous_size", 157 hidden_continuous_size_range[0], 158 min(hidden_continuous_size_range[1], hidden_size), 159 log=True, 160 ), 161 attention_head_size=trial.suggest_int("attention_head_size", *attention_head_size_range), 162 log_interval=-1, 163 **kwargs, 164 ) 165 # find good learning rate 166 if use_learning_rate_finder: 167 lr_trainer = pl.Trainer( 168 gradient_clip_val=gradient_clip_val, 169 gpus=[0] if torch.cuda.is_available() else None, 170 logger=False, 171 progress_bar_refresh_rate=0, 172 weights_summary=None, 173 ) 174 res = lr_trainer.tuner.lr_find( 175 model, 176 train_dataloader=train_dataloader, 177 val_dataloaders=val_dataloader, 178 early_stop_threshold=10000, 179 min_lr=learning_rate_range[0], 180 num_training=100, 181 max_lr=learning_rate_range[1], 182 ) 183 184 loss_finite = np.isfinite(res.results["loss"]) 185 if loss_finite.sum() > 3: # at least 3 valid values required for learning rate finder 186 lr_smoothed, loss_smoothed = sm.nonparametric.lowess( 187 np.asarray(res.results["loss"])[loss_finite], 188 np.asarray(res.results["lr"])[loss_finite], 189 frac=1.0 / 10.0, 190 )[min(loss_finite.sum() - 3, 10) : -1].T 191 optimal_idx = np.gradient(loss_smoothed).argmin() 192 optimal_lr = lr_smoothed[optimal_idx] 193 else: 194 optimal_idx = np.asarray(res.results["loss"]).argmin() 195 optimal_lr = res.results["lr"][optimal_idx] 196 optuna_logger.info(f"Using learning rate of {optimal_lr:.3g}") 197 # add learning rate artificially 198 model.hparams.learning_rate = trial.suggest_uniform("learning_rate", optimal_lr, optimal_lr) 199 else: 200 model.hparams.learning_rate = trial.suggest_loguniform("learning_rate", *learning_rate_range) 201 202 # fit 203 trainer.fit(model, train_dataloader=train_dataloader, val_dataloaders=val_dataloader) 204 205 # report result 206 return metrics_callback.metrics[-1]["val_loss"].item() 207 208 # setup optuna and run 209 pruner = optuna.pruners.SuccessiveHalvingPruner() 210 if study is None: 211 study = optuna.create_study(direction="minimize", pruner=pruner) 212 study.optimize(objective, n_trials=n_trials, timeout=timeout) 213 return study 214 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/pytorch_forecasting/models/temporal_fusion_transformer/tuning.py b/pytorch_forecasting/models/temporal_fusion_transformer/tuning.py --- a/pytorch_forecasting/models/temporal_fusion_transformer/tuning.py +++ b/pytorch_forecasting/models/temporal_fusion_transformer/tuning.py @@ -129,8 +129,8 @@ learning_rate_callback = LearningRateMonitor() logger = TensorBoardLogger(log_dir, name="optuna", version=trial.number) gradient_clip_val = trial.suggest_loguniform("gradient_clip_val", *gradient_clip_val_range) - trainer_kwargs.setdefault("gpus", [0] if torch.cuda.is_available() else None) - trainer = pl.Trainer( + default_trainer_kwargs = dict( + gpus=[0] if torch.cuda.is_available() else None, max_epochs=max_epochs, gradient_clip_val=gradient_clip_val, callbacks=[ @@ -142,7 +142,10 @@ logger=logger, progress_bar_refresh_rate=[0, 1][optuna_verbose < optuna.logging.INFO], weights_summary=[None, "top"][optuna_verbose < optuna.logging.INFO], - **trainer_kwargs, + ) + default_trainer_kwargs.update(trainer_kwargs) + trainer = pl.Trainer( + **default_trainer_kwargs, ) # create model
{"golden_diff": "diff --git a/pytorch_forecasting/models/temporal_fusion_transformer/tuning.py b/pytorch_forecasting/models/temporal_fusion_transformer/tuning.py\n--- a/pytorch_forecasting/models/temporal_fusion_transformer/tuning.py\n+++ b/pytorch_forecasting/models/temporal_fusion_transformer/tuning.py\n@@ -129,8 +129,8 @@\n learning_rate_callback = LearningRateMonitor()\n logger = TensorBoardLogger(log_dir, name=\"optuna\", version=trial.number)\n gradient_clip_val = trial.suggest_loguniform(\"gradient_clip_val\", *gradient_clip_val_range)\n- trainer_kwargs.setdefault(\"gpus\", [0] if torch.cuda.is_available() else None)\n- trainer = pl.Trainer(\n+ default_trainer_kwargs = dict(\n+ gpus=[0] if torch.cuda.is_available() else None,\n max_epochs=max_epochs,\n gradient_clip_val=gradient_clip_val,\n callbacks=[\n@@ -142,7 +142,10 @@\n logger=logger,\n progress_bar_refresh_rate=[0, 1][optuna_verbose < optuna.logging.INFO],\n weights_summary=[None, \"top\"][optuna_verbose < optuna.logging.INFO],\n- **trainer_kwargs,\n+ )\n+ default_trainer_kwargs.update(trainer_kwargs)\n+ trainer = pl.Trainer(\n+ **default_trainer_kwargs,\n )\n \n # create model\n", "issue": "Default trainer kwargs in temporal_fusion_transformer/tuning.py cannot be overwritten\n```python\r\n[I 2021-01-27 09:42:03,226] A new study created in memory with name: no-name-8f54548f-a847-4450-9a1c-93acfdc5609e\r\n[W 2021-01-27 09:42:03,229] Trial 0 failed because of the following error: TypeError(\"ABCMeta object got multiple values for keyword argument 'progress_bar_refresh_rate'\",)\r\nTraceback (most recent call last):\r\n File \"/usr/local/lib/python3.6/dist-packages/optuna/_optimize.py\", line 198, in _run_trial\r\n value_or_values = func(trial)\r\n File \"/usr/local/lib/python3.6/dist-packages/pytorch_forecasting/models/temporal_fusion_transformer/tuning.py\", line 145, in objective\r\n **trainer_kwargs,\r\nTypeError: ABCMeta object got multiple values for keyword argument 'progress_bar_refresh_rate'\r\n```\n", "before_files": [{"content": "\"\"\"\nHyperparameters can be efficiently tuned with `optuna <https://optuna.readthedocs.io/>`_.\n\"\"\"\nimport copy\nimport logging\nimport os\nfrom typing import Any, Dict, Tuple, Union\n\nimport numpy as np\nimport optuna\nfrom optuna.integration import PyTorchLightningPruningCallback, TensorBoardCallback\nimport optuna.logging\nimport pytorch_lightning as pl\nfrom pytorch_lightning import Callback\nfrom pytorch_lightning.callbacks import LearningRateMonitor\nfrom pytorch_lightning.loggers import TensorBoardLogger\nimport statsmodels.api as sm\nimport torch\nfrom torch.utils.data import DataLoader\n\nfrom pytorch_forecasting import TemporalFusionTransformer\nfrom pytorch_forecasting.data import TimeSeriesDataSet\nfrom pytorch_forecasting.metrics import QuantileLoss\n\noptuna_logger = logging.getLogger(\"optuna\")\n\n\nclass MetricsCallback(Callback):\n \"\"\"PyTorch Lightning metric callback.\"\"\"\n\n def __init__(self):\n super().__init__()\n self.metrics = []\n\n def on_validation_end(self, trainer, pl_module):\n self.metrics.append(trainer.callback_metrics)\n\n\ndef optimize_hyperparameters(\n train_dataloader: DataLoader,\n val_dataloader: DataLoader,\n model_path: str,\n max_epochs: int = 20,\n n_trials: int = 100,\n timeout: float = 3600 * 8.0, # 8 hours\n gradient_clip_val_range: Tuple[float, float] = (0.01, 100.0),\n hidden_size_range: Tuple[int, int] = (16, 265),\n hidden_continuous_size_range: Tuple[int, int] = (8, 64),\n attention_head_size_range: Tuple[int, int] = (1, 4),\n dropout_range: Tuple[float, float] = (0.1, 0.3),\n learning_rate_range: Tuple[float, float] = (1e-5, 1.0),\n use_learning_rate_finder: bool = True,\n trainer_kwargs: Dict[str, Any] = {},\n log_dir: str = \"lightning_logs\",\n study: optuna.Study = None,\n verbose: Union[int, bool] = None,\n **kwargs,\n) -> optuna.Study:\n \"\"\"\n Optimize Temporal Fusion Transformer hyperparameters.\n\n Run hyperparameter optimization. Learning rate for is determined with\n the PyTorch Lightning learning rate finder.\n\n Args:\n train_dataloader (DataLoader): dataloader for training model\n val_dataloader (DataLoader): dataloader for validating model\n model_path (str): folder to which model checkpoints are saved\n max_epochs (int, optional): Maximum number of epochs to run training. Defaults to 20.\n n_trials (int, optional): Number of hyperparameter trials to run. Defaults to 100.\n timeout (float, optional): Time in seconds after which training is stopped regardless of number of epochs\n or validation metric. Defaults to 3600*8.0.\n hidden_size_range (Tuple[int, int], optional): Minimum and maximum of ``hidden_size`` hyperparameter. Defaults\n to (16, 265).\n hidden_continuous_size_range (Tuple[int, int], optional): Minimum and maximum of ``hidden_continuous_size``\n hyperparameter. Defaults to (8, 64).\n attention_head_size_range (Tuple[int, int], optional): Minimum and maximum of ``attention_head_size``\n hyperparameter. Defaults to (1, 4).\n dropout_range (Tuple[float, float], optional): Minimum and maximum of ``dropout`` hyperparameter. Defaults to\n (0.1, 0.3).\n learning_rate_range (Tuple[float, float], optional): Learning rate range. Defaults to (1e-5, 1.0).\n use_learning_rate_finder (bool): If to use learning rate finder or optimize as part of hyperparameters.\n Defaults to True.\n trainer_kwargs (Dict[str, Any], optional): Additional arguments to the\n `PyTorch Lightning trainer <https://pytorch-lightning.readthedocs.io/en/latest/trainer.html>`_ such\n as ``limit_train_batches``. Defaults to {}.\n log_dir (str, optional): Folder into which to log results for tensorboard. Defaults to \"lightning_logs\".\n study (optuna.Study, optional): study to resume. Will create new study by default.\n verbose (Union[int, bool]): level of verbosity.\n * None: no change in verbosity level (equivalent to verbose=1 by optuna-set default).\n * 0 or False: log only warnings.\n * 1 or True: log pruning events.\n * 2: optuna logging level at debug level.\n Defaults to None.\n\n **kwargs: Additional arguments for the :py:class:`~TemporalFusionTransformer`.\n\n Returns:\n optuna.Study: optuna study results\n \"\"\"\n assert isinstance(train_dataloader.dataset, TimeSeriesDataSet) and isinstance(\n val_dataloader.dataset, TimeSeriesDataSet\n ), \"dataloaders must be built from timeseriesdataset\"\n\n logging_level = {\n None: optuna.logging.get_verbosity(),\n 0: optuna.logging.WARNING,\n 1: optuna.logging.INFO,\n 2: optuna.logging.DEBUG,\n }\n optuna_verbose = logging_level[verbose]\n optuna.logging.set_verbosity(optuna_verbose)\n\n loss = kwargs.get(\n \"loss\", QuantileLoss()\n ) # need a deepcopy of loss as it will otherwise propagate from one trial to the next\n\n # create objective function\n def objective(trial: optuna.Trial) -> float:\n # Filenames for each trial must be made unique in order to access each checkpoint.\n checkpoint_callback = pl.callbacks.ModelCheckpoint(\n dirpath=os.path.join(model_path, \"trial_{}\".format(trial.number)), filename=\"{epoch}\", monitor=\"val_loss\"\n )\n\n # The default logger in PyTorch Lightning writes to event files to be consumed by\n # TensorBoard. We don't use any logger here as it requires us to implement several abstract\n # methods. Instead we setup a simple callback, that saves metrics from each validation step.\n metrics_callback = MetricsCallback()\n learning_rate_callback = LearningRateMonitor()\n logger = TensorBoardLogger(log_dir, name=\"optuna\", version=trial.number)\n gradient_clip_val = trial.suggest_loguniform(\"gradient_clip_val\", *gradient_clip_val_range)\n trainer_kwargs.setdefault(\"gpus\", [0] if torch.cuda.is_available() else None)\n trainer = pl.Trainer(\n max_epochs=max_epochs,\n gradient_clip_val=gradient_clip_val,\n callbacks=[\n metrics_callback,\n learning_rate_callback,\n checkpoint_callback,\n PyTorchLightningPruningCallback(trial, monitor=\"val_loss\"),\n ],\n logger=logger,\n progress_bar_refresh_rate=[0, 1][optuna_verbose < optuna.logging.INFO],\n weights_summary=[None, \"top\"][optuna_verbose < optuna.logging.INFO],\n **trainer_kwargs,\n )\n\n # create model\n hidden_size = trial.suggest_int(\"hidden_size\", *hidden_size_range, log=True)\n kwargs[\"loss\"] = copy.deepcopy(loss)\n model = TemporalFusionTransformer.from_dataset(\n train_dataloader.dataset,\n dropout=trial.suggest_uniform(\"dropout\", *dropout_range),\n hidden_size=hidden_size,\n hidden_continuous_size=trial.suggest_int(\n \"hidden_continuous_size\",\n hidden_continuous_size_range[0],\n min(hidden_continuous_size_range[1], hidden_size),\n log=True,\n ),\n attention_head_size=trial.suggest_int(\"attention_head_size\", *attention_head_size_range),\n log_interval=-1,\n **kwargs,\n )\n # find good learning rate\n if use_learning_rate_finder:\n lr_trainer = pl.Trainer(\n gradient_clip_val=gradient_clip_val,\n gpus=[0] if torch.cuda.is_available() else None,\n logger=False,\n progress_bar_refresh_rate=0,\n weights_summary=None,\n )\n res = lr_trainer.tuner.lr_find(\n model,\n train_dataloader=train_dataloader,\n val_dataloaders=val_dataloader,\n early_stop_threshold=10000,\n min_lr=learning_rate_range[0],\n num_training=100,\n max_lr=learning_rate_range[1],\n )\n\n loss_finite = np.isfinite(res.results[\"loss\"])\n if loss_finite.sum() > 3: # at least 3 valid values required for learning rate finder\n lr_smoothed, loss_smoothed = sm.nonparametric.lowess(\n np.asarray(res.results[\"loss\"])[loss_finite],\n np.asarray(res.results[\"lr\"])[loss_finite],\n frac=1.0 / 10.0,\n )[min(loss_finite.sum() - 3, 10) : -1].T\n optimal_idx = np.gradient(loss_smoothed).argmin()\n optimal_lr = lr_smoothed[optimal_idx]\n else:\n optimal_idx = np.asarray(res.results[\"loss\"]).argmin()\n optimal_lr = res.results[\"lr\"][optimal_idx]\n optuna_logger.info(f\"Using learning rate of {optimal_lr:.3g}\")\n # add learning rate artificially\n model.hparams.learning_rate = trial.suggest_uniform(\"learning_rate\", optimal_lr, optimal_lr)\n else:\n model.hparams.learning_rate = trial.suggest_loguniform(\"learning_rate\", *learning_rate_range)\n\n # fit\n trainer.fit(model, train_dataloader=train_dataloader, val_dataloaders=val_dataloader)\n\n # report result\n return metrics_callback.metrics[-1][\"val_loss\"].item()\n\n # setup optuna and run\n pruner = optuna.pruners.SuccessiveHalvingPruner()\n if study is None:\n study = optuna.create_study(direction=\"minimize\", pruner=pruner)\n study.optimize(objective, n_trials=n_trials, timeout=timeout)\n return study\n", "path": "pytorch_forecasting/models/temporal_fusion_transformer/tuning.py"}], "after_files": [{"content": "\"\"\"\nHyperparameters can be efficiently tuned with `optuna <https://optuna.readthedocs.io/>`_.\n\"\"\"\nimport copy\nimport logging\nimport os\nfrom typing import Any, Dict, Tuple, Union\n\nimport numpy as np\nimport optuna\nfrom optuna.integration import PyTorchLightningPruningCallback, TensorBoardCallback\nimport optuna.logging\nimport pytorch_lightning as pl\nfrom pytorch_lightning import Callback\nfrom pytorch_lightning.callbacks import LearningRateMonitor\nfrom pytorch_lightning.loggers import TensorBoardLogger\nimport statsmodels.api as sm\nimport torch\nfrom torch.utils.data import DataLoader\n\nfrom pytorch_forecasting import TemporalFusionTransformer\nfrom pytorch_forecasting.data import TimeSeriesDataSet\nfrom pytorch_forecasting.metrics import QuantileLoss\n\noptuna_logger = logging.getLogger(\"optuna\")\n\n\nclass MetricsCallback(Callback):\n \"\"\"PyTorch Lightning metric callback.\"\"\"\n\n def __init__(self):\n super().__init__()\n self.metrics = []\n\n def on_validation_end(self, trainer, pl_module):\n self.metrics.append(trainer.callback_metrics)\n\n\ndef optimize_hyperparameters(\n train_dataloader: DataLoader,\n val_dataloader: DataLoader,\n model_path: str,\n max_epochs: int = 20,\n n_trials: int = 100,\n timeout: float = 3600 * 8.0, # 8 hours\n gradient_clip_val_range: Tuple[float, float] = (0.01, 100.0),\n hidden_size_range: Tuple[int, int] = (16, 265),\n hidden_continuous_size_range: Tuple[int, int] = (8, 64),\n attention_head_size_range: Tuple[int, int] = (1, 4),\n dropout_range: Tuple[float, float] = (0.1, 0.3),\n learning_rate_range: Tuple[float, float] = (1e-5, 1.0),\n use_learning_rate_finder: bool = True,\n trainer_kwargs: Dict[str, Any] = {},\n log_dir: str = \"lightning_logs\",\n study: optuna.Study = None,\n verbose: Union[int, bool] = None,\n **kwargs,\n) -> optuna.Study:\n \"\"\"\n Optimize Temporal Fusion Transformer hyperparameters.\n\n Run hyperparameter optimization. Learning rate for is determined with\n the PyTorch Lightning learning rate finder.\n\n Args:\n train_dataloader (DataLoader): dataloader for training model\n val_dataloader (DataLoader): dataloader for validating model\n model_path (str): folder to which model checkpoints are saved\n max_epochs (int, optional): Maximum number of epochs to run training. Defaults to 20.\n n_trials (int, optional): Number of hyperparameter trials to run. Defaults to 100.\n timeout (float, optional): Time in seconds after which training is stopped regardless of number of epochs\n or validation metric. Defaults to 3600*8.0.\n hidden_size_range (Tuple[int, int], optional): Minimum and maximum of ``hidden_size`` hyperparameter. Defaults\n to (16, 265).\n hidden_continuous_size_range (Tuple[int, int], optional): Minimum and maximum of ``hidden_continuous_size``\n hyperparameter. Defaults to (8, 64).\n attention_head_size_range (Tuple[int, int], optional): Minimum and maximum of ``attention_head_size``\n hyperparameter. Defaults to (1, 4).\n dropout_range (Tuple[float, float], optional): Minimum and maximum of ``dropout`` hyperparameter. Defaults to\n (0.1, 0.3).\n learning_rate_range (Tuple[float, float], optional): Learning rate range. Defaults to (1e-5, 1.0).\n use_learning_rate_finder (bool): If to use learning rate finder or optimize as part of hyperparameters.\n Defaults to True.\n trainer_kwargs (Dict[str, Any], optional): Additional arguments to the\n `PyTorch Lightning trainer <https://pytorch-lightning.readthedocs.io/en/latest/trainer.html>`_ such\n as ``limit_train_batches``. Defaults to {}.\n log_dir (str, optional): Folder into which to log results for tensorboard. Defaults to \"lightning_logs\".\n study (optuna.Study, optional): study to resume. Will create new study by default.\n verbose (Union[int, bool]): level of verbosity.\n * None: no change in verbosity level (equivalent to verbose=1 by optuna-set default).\n * 0 or False: log only warnings.\n * 1 or True: log pruning events.\n * 2: optuna logging level at debug level.\n Defaults to None.\n\n **kwargs: Additional arguments for the :py:class:`~TemporalFusionTransformer`.\n\n Returns:\n optuna.Study: optuna study results\n \"\"\"\n assert isinstance(train_dataloader.dataset, TimeSeriesDataSet) and isinstance(\n val_dataloader.dataset, TimeSeriesDataSet\n ), \"dataloaders must be built from timeseriesdataset\"\n\n logging_level = {\n None: optuna.logging.get_verbosity(),\n 0: optuna.logging.WARNING,\n 1: optuna.logging.INFO,\n 2: optuna.logging.DEBUG,\n }\n optuna_verbose = logging_level[verbose]\n optuna.logging.set_verbosity(optuna_verbose)\n\n loss = kwargs.get(\n \"loss\", QuantileLoss()\n ) # need a deepcopy of loss as it will otherwise propagate from one trial to the next\n\n # create objective function\n def objective(trial: optuna.Trial) -> float:\n # Filenames for each trial must be made unique in order to access each checkpoint.\n checkpoint_callback = pl.callbacks.ModelCheckpoint(\n dirpath=os.path.join(model_path, \"trial_{}\".format(trial.number)), filename=\"{epoch}\", monitor=\"val_loss\"\n )\n\n # The default logger in PyTorch Lightning writes to event files to be consumed by\n # TensorBoard. We don't use any logger here as it requires us to implement several abstract\n # methods. Instead we setup a simple callback, that saves metrics from each validation step.\n metrics_callback = MetricsCallback()\n learning_rate_callback = LearningRateMonitor()\n logger = TensorBoardLogger(log_dir, name=\"optuna\", version=trial.number)\n gradient_clip_val = trial.suggest_loguniform(\"gradient_clip_val\", *gradient_clip_val_range)\n default_trainer_kwargs = dict(\n gpus=[0] if torch.cuda.is_available() else None,\n max_epochs=max_epochs,\n gradient_clip_val=gradient_clip_val,\n callbacks=[\n metrics_callback,\n learning_rate_callback,\n checkpoint_callback,\n PyTorchLightningPruningCallback(trial, monitor=\"val_loss\"),\n ],\n logger=logger,\n progress_bar_refresh_rate=[0, 1][optuna_verbose < optuna.logging.INFO],\n weights_summary=[None, \"top\"][optuna_verbose < optuna.logging.INFO],\n )\n default_trainer_kwargs.update(trainer_kwargs)\n trainer = pl.Trainer(\n **default_trainer_kwargs,\n )\n\n # create model\n hidden_size = trial.suggest_int(\"hidden_size\", *hidden_size_range, log=True)\n kwargs[\"loss\"] = copy.deepcopy(loss)\n model = TemporalFusionTransformer.from_dataset(\n train_dataloader.dataset,\n dropout=trial.suggest_uniform(\"dropout\", *dropout_range),\n hidden_size=hidden_size,\n hidden_continuous_size=trial.suggest_int(\n \"hidden_continuous_size\",\n hidden_continuous_size_range[0],\n min(hidden_continuous_size_range[1], hidden_size),\n log=True,\n ),\n attention_head_size=trial.suggest_int(\"attention_head_size\", *attention_head_size_range),\n log_interval=-1,\n **kwargs,\n )\n # find good learning rate\n if use_learning_rate_finder:\n lr_trainer = pl.Trainer(\n gradient_clip_val=gradient_clip_val,\n gpus=[0] if torch.cuda.is_available() else None,\n logger=False,\n progress_bar_refresh_rate=0,\n weights_summary=None,\n )\n res = lr_trainer.tuner.lr_find(\n model,\n train_dataloader=train_dataloader,\n val_dataloaders=val_dataloader,\n early_stop_threshold=10000,\n min_lr=learning_rate_range[0],\n num_training=100,\n max_lr=learning_rate_range[1],\n )\n\n loss_finite = np.isfinite(res.results[\"loss\"])\n if loss_finite.sum() > 3: # at least 3 valid values required for learning rate finder\n lr_smoothed, loss_smoothed = sm.nonparametric.lowess(\n np.asarray(res.results[\"loss\"])[loss_finite],\n np.asarray(res.results[\"lr\"])[loss_finite],\n frac=1.0 / 10.0,\n )[min(loss_finite.sum() - 3, 10) : -1].T\n optimal_idx = np.gradient(loss_smoothed).argmin()\n optimal_lr = lr_smoothed[optimal_idx]\n else:\n optimal_idx = np.asarray(res.results[\"loss\"]).argmin()\n optimal_lr = res.results[\"lr\"][optimal_idx]\n optuna_logger.info(f\"Using learning rate of {optimal_lr:.3g}\")\n # add learning rate artificially\n model.hparams.learning_rate = trial.suggest_uniform(\"learning_rate\", optimal_lr, optimal_lr)\n else:\n model.hparams.learning_rate = trial.suggest_loguniform(\"learning_rate\", *learning_rate_range)\n\n # fit\n trainer.fit(model, train_dataloader=train_dataloader, val_dataloaders=val_dataloader)\n\n # report result\n return metrics_callback.metrics[-1][\"val_loss\"].item()\n\n # setup optuna and run\n pruner = optuna.pruners.SuccessiveHalvingPruner()\n if study is None:\n study = optuna.create_study(direction=\"minimize\", pruner=pruner)\n study.optimize(objective, n_trials=n_trials, timeout=timeout)\n return study\n", "path": "pytorch_forecasting/models/temporal_fusion_transformer/tuning.py"}]}
3,226
305
gh_patches_debug_13674
rasdani/github-patches
git_diff
DataDog__dd-trace-py-2717
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- UnicodeDecodeError for invalid headers in ASGI middleware When the ASGI middleware receives headers with invalid encoding, for example as the result of somebody fuzzing an endpoint as is the case here, it introduces a Unicode decode error into the HTTP pipeline. It shouldn't be doing this. ### Which version of dd-trace-py are you using? 0.46.0 ### Which version of the libraries are you using? What I believe are the potentially relevant libraries are listed below. ``` datadog==0.40.1 ... ddtrace==0.46.0 ... fastapi==0.63.0 ... httpcore==0.12.3 httptools==0.1.1 ... starlette==0.13.6 ... uvicorn==0.13.4 uvloop==0.15.2 ``` ### How can we reproduce your problem? ```python from ddtrace.contrib.asgi.middleware import _extract_headers def test_ddtrace_invalid_header_name_encoding(): assert _extract_headers({"headers": [((bytes.fromhex("c0")), "test")]}) == {} def test_ddtrace_invalid_header_value_encoding(): assert _extract_headers({"headers": [("test", (bytes.fromhex("c0")))]}) == {} ``` ### What is the result that you get? The middleware blows up with a `UnicodeDecodeError: 'utf-8' codec can't decode byte 0xc0 in position 0: invalid start byte` exception. ### What is the result that you expected? This is trace middleware so it should not introduce exceptions into request processing. In the case of a header it can't decode then I'd expect it to either: 1. Omit the invalid header from the result and continue attempting to decode the remainder, or 2. Substitute a sentinel value for the unprocessable header to indicate an error I've suggested (1) in the repro above, as that seems like it'd be the least likely to cause any problems. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `ddtrace/contrib/asgi/middleware.py` Content: ``` 1 import sys 2 3 import ddtrace 4 from ddtrace import config 5 from ddtrace.constants import ANALYTICS_SAMPLE_RATE_KEY 6 from ddtrace.ext import SpanTypes 7 from ddtrace.ext import http 8 9 from .. import trace_utils 10 from ...internal.compat import reraise 11 from ...internal.logger import get_logger 12 from .utils import guarantee_single_callable 13 14 15 log = get_logger(__name__) 16 17 config._add( 18 "asgi", 19 dict(service_name=config._get_service(default="asgi"), request_span_name="asgi.request", distributed_tracing=True), 20 ) 21 22 ASGI_VERSION = "asgi.version" 23 ASGI_SPEC_VERSION = "asgi.spec_version" 24 25 26 def bytes_to_str(str_or_bytes): 27 return str_or_bytes.decode() if isinstance(str_or_bytes, bytes) else str_or_bytes 28 29 30 def _extract_versions_from_scope(scope, integration_config): 31 tags = {} 32 33 http_version = scope.get("http_version") 34 if http_version: 35 tags[http.VERSION] = http_version 36 37 scope_asgi = scope.get("asgi") 38 39 if scope_asgi and "version" in scope_asgi: 40 tags[ASGI_VERSION] = scope_asgi["version"] 41 42 if scope_asgi and "spec_version" in scope_asgi: 43 tags[ASGI_SPEC_VERSION] = scope_asgi["spec_version"] 44 45 return tags 46 47 48 def _extract_headers(scope): 49 headers = scope.get("headers") 50 if headers: 51 # headers: (Iterable[[byte string, byte string]]) 52 return dict((bytes_to_str(k), bytes_to_str(v)) for (k, v) in headers) 53 return {} 54 55 56 def _default_handle_exception_span(exc, span): 57 """Default handler for exception for span""" 58 span.set_tag(http.STATUS_CODE, 500) 59 60 61 class TraceMiddleware: 62 """ 63 ASGI application middleware that traces the requests. 64 65 Args: 66 app: The ASGI application. 67 tracer: Custom tracer. Defaults to the global tracer. 68 """ 69 70 def __init__( 71 self, 72 app, 73 tracer=None, 74 integration_config=config.asgi, 75 handle_exception_span=_default_handle_exception_span, 76 span_modifier=None, 77 ): 78 self.app = guarantee_single_callable(app) 79 self.tracer = tracer or ddtrace.tracer 80 self.integration_config = integration_config 81 self.handle_exception_span = handle_exception_span 82 self.span_modifier = span_modifier 83 84 async def __call__(self, scope, receive, send): 85 if scope["type"] != "http": 86 return await self.app(scope, receive, send) 87 88 headers = _extract_headers(scope) 89 90 trace_utils.activate_distributed_headers( 91 self.tracer, int_config=self.integration_config, request_headers=headers 92 ) 93 94 resource = "{} {}".format(scope["method"], scope["path"]) 95 96 span = self.tracer.trace( 97 name=self.integration_config.get("request_span_name", "asgi.request"), 98 service=trace_utils.int_service(None, self.integration_config), 99 resource=resource, 100 span_type=SpanTypes.WEB, 101 ) 102 103 if self.span_modifier: 104 self.span_modifier(span, scope) 105 106 sample_rate = self.integration_config.get_analytics_sample_rate(use_global_config=True) 107 if sample_rate is not None: 108 span.set_tag(ANALYTICS_SAMPLE_RATE_KEY, sample_rate) 109 110 method = scope.get("method") 111 server = scope.get("server") 112 if server and len(server) == 2: 113 port = server[1] 114 server_host = server[0] + (":" + str(port) if port is not None and port != 80 else "") 115 full_path = scope.get("root_path", "") + scope.get("path", "") 116 url = scope.get("scheme", "http") + "://" + server_host + full_path 117 else: 118 url = None 119 120 if self.integration_config.trace_query_string: 121 query_string = scope.get("query_string") 122 if len(query_string) > 0: 123 query_string = bytes_to_str(query_string) 124 else: 125 query_string = None 126 127 trace_utils.set_http_meta( 128 span, self.integration_config, method=method, url=url, query=query_string, request_headers=headers 129 ) 130 131 tags = _extract_versions_from_scope(scope, self.integration_config) 132 span.set_tags(tags) 133 134 async def wrapped_send(message): 135 if span and message.get("type") == "http.response.start" and "status" in message: 136 status_code = message["status"] 137 else: 138 status_code = None 139 140 if "headers" in message: 141 response_headers = message["headers"] 142 else: 143 response_headers = None 144 145 trace_utils.set_http_meta( 146 span, self.integration_config, status_code=status_code, response_headers=response_headers 147 ) 148 149 return await send(message) 150 151 try: 152 return await self.app(scope, receive, wrapped_send) 153 except Exception as exc: 154 (exc_type, exc_val, exc_tb) = sys.exc_info() 155 span.set_exc_info(exc_type, exc_val, exc_tb) 156 self.handle_exception_span(exc, span) 157 reraise(exc_type, exc_val, exc_tb) 158 finally: 159 span.finish() 160 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/ddtrace/contrib/asgi/middleware.py b/ddtrace/contrib/asgi/middleware.py --- a/ddtrace/contrib/asgi/middleware.py +++ b/ddtrace/contrib/asgi/middleware.py @@ -85,11 +85,15 @@ if scope["type"] != "http": return await self.app(scope, receive, send) - headers = _extract_headers(scope) - - trace_utils.activate_distributed_headers( - self.tracer, int_config=self.integration_config, request_headers=headers - ) + try: + headers = _extract_headers(scope) + except Exception: + log.warning("failed to decode headers for distributed tracing", exc_info=True) + headers = {} + else: + trace_utils.activate_distributed_headers( + self.tracer, int_config=self.integration_config, request_headers=headers + ) resource = "{} {}".format(scope["method"], scope["path"])
{"golden_diff": "diff --git a/ddtrace/contrib/asgi/middleware.py b/ddtrace/contrib/asgi/middleware.py\n--- a/ddtrace/contrib/asgi/middleware.py\n+++ b/ddtrace/contrib/asgi/middleware.py\n@@ -85,11 +85,15 @@\n if scope[\"type\"] != \"http\":\n return await self.app(scope, receive, send)\n \n- headers = _extract_headers(scope)\n-\n- trace_utils.activate_distributed_headers(\n- self.tracer, int_config=self.integration_config, request_headers=headers\n- )\n+ try:\n+ headers = _extract_headers(scope)\n+ except Exception:\n+ log.warning(\"failed to decode headers for distributed tracing\", exc_info=True)\n+ headers = {}\n+ else:\n+ trace_utils.activate_distributed_headers(\n+ self.tracer, int_config=self.integration_config, request_headers=headers\n+ )\n \n resource = \"{} {}\".format(scope[\"method\"], scope[\"path\"])\n", "issue": "UnicodeDecodeError for invalid headers in ASGI middleware\nWhen the ASGI middleware receives headers with invalid encoding, for example as the result of somebody fuzzing an endpoint as is the case here, it introduces a Unicode decode error into the HTTP pipeline. It shouldn't be doing this.\r\n\r\n### Which version of dd-trace-py are you using?\r\n\r\n0.46.0\r\n\r\n### Which version of the libraries are you using?\r\n\r\nWhat I believe are the potentially relevant libraries are listed below.\r\n\r\n```\r\ndatadog==0.40.1\r\n...\r\nddtrace==0.46.0\r\n...\r\nfastapi==0.63.0\r\n...\r\nhttpcore==0.12.3\r\nhttptools==0.1.1\r\n...\r\nstarlette==0.13.6\r\n...\r\nuvicorn==0.13.4\r\nuvloop==0.15.2\r\n```\r\n\r\n### How can we reproduce your problem?\r\n\r\n```python\r\nfrom ddtrace.contrib.asgi.middleware import _extract_headers\r\n\r\n\r\ndef test_ddtrace_invalid_header_name_encoding():\r\n assert _extract_headers({\"headers\": [((bytes.fromhex(\"c0\")), \"test\")]}) == {}\r\n\r\n\r\ndef test_ddtrace_invalid_header_value_encoding():\r\n assert _extract_headers({\"headers\": [(\"test\", (bytes.fromhex(\"c0\")))]}) == {}\r\n```\r\n\r\n### What is the result that you get?\r\n\r\nThe middleware blows up with a `UnicodeDecodeError: 'utf-8' codec can't decode byte 0xc0 in position 0: invalid start byte` exception.\r\n\r\n### What is the result that you expected?\r\n\r\nThis is trace middleware so it should not introduce exceptions into request processing. In the case of a header it can't decode then I'd expect it to either:\r\n\r\n1. Omit the invalid header from the result and continue attempting to decode the remainder, or\r\n2. Substitute a sentinel value for the unprocessable header to indicate an error\r\n\r\nI've suggested (1) in the repro above, as that seems like it'd be the least likely to cause any problems.\n", "before_files": [{"content": "import sys\n\nimport ddtrace\nfrom ddtrace import config\nfrom ddtrace.constants import ANALYTICS_SAMPLE_RATE_KEY\nfrom ddtrace.ext import SpanTypes\nfrom ddtrace.ext import http\n\nfrom .. import trace_utils\nfrom ...internal.compat import reraise\nfrom ...internal.logger import get_logger\nfrom .utils import guarantee_single_callable\n\n\nlog = get_logger(__name__)\n\nconfig._add(\n \"asgi\",\n dict(service_name=config._get_service(default=\"asgi\"), request_span_name=\"asgi.request\", distributed_tracing=True),\n)\n\nASGI_VERSION = \"asgi.version\"\nASGI_SPEC_VERSION = \"asgi.spec_version\"\n\n\ndef bytes_to_str(str_or_bytes):\n return str_or_bytes.decode() if isinstance(str_or_bytes, bytes) else str_or_bytes\n\n\ndef _extract_versions_from_scope(scope, integration_config):\n tags = {}\n\n http_version = scope.get(\"http_version\")\n if http_version:\n tags[http.VERSION] = http_version\n\n scope_asgi = scope.get(\"asgi\")\n\n if scope_asgi and \"version\" in scope_asgi:\n tags[ASGI_VERSION] = scope_asgi[\"version\"]\n\n if scope_asgi and \"spec_version\" in scope_asgi:\n tags[ASGI_SPEC_VERSION] = scope_asgi[\"spec_version\"]\n\n return tags\n\n\ndef _extract_headers(scope):\n headers = scope.get(\"headers\")\n if headers:\n # headers: (Iterable[[byte string, byte string]])\n return dict((bytes_to_str(k), bytes_to_str(v)) for (k, v) in headers)\n return {}\n\n\ndef _default_handle_exception_span(exc, span):\n \"\"\"Default handler for exception for span\"\"\"\n span.set_tag(http.STATUS_CODE, 500)\n\n\nclass TraceMiddleware:\n \"\"\"\n ASGI application middleware that traces the requests.\n\n Args:\n app: The ASGI application.\n tracer: Custom tracer. Defaults to the global tracer.\n \"\"\"\n\n def __init__(\n self,\n app,\n tracer=None,\n integration_config=config.asgi,\n handle_exception_span=_default_handle_exception_span,\n span_modifier=None,\n ):\n self.app = guarantee_single_callable(app)\n self.tracer = tracer or ddtrace.tracer\n self.integration_config = integration_config\n self.handle_exception_span = handle_exception_span\n self.span_modifier = span_modifier\n\n async def __call__(self, scope, receive, send):\n if scope[\"type\"] != \"http\":\n return await self.app(scope, receive, send)\n\n headers = _extract_headers(scope)\n\n trace_utils.activate_distributed_headers(\n self.tracer, int_config=self.integration_config, request_headers=headers\n )\n\n resource = \"{} {}\".format(scope[\"method\"], scope[\"path\"])\n\n span = self.tracer.trace(\n name=self.integration_config.get(\"request_span_name\", \"asgi.request\"),\n service=trace_utils.int_service(None, self.integration_config),\n resource=resource,\n span_type=SpanTypes.WEB,\n )\n\n if self.span_modifier:\n self.span_modifier(span, scope)\n\n sample_rate = self.integration_config.get_analytics_sample_rate(use_global_config=True)\n if sample_rate is not None:\n span.set_tag(ANALYTICS_SAMPLE_RATE_KEY, sample_rate)\n\n method = scope.get(\"method\")\n server = scope.get(\"server\")\n if server and len(server) == 2:\n port = server[1]\n server_host = server[0] + (\":\" + str(port) if port is not None and port != 80 else \"\")\n full_path = scope.get(\"root_path\", \"\") + scope.get(\"path\", \"\")\n url = scope.get(\"scheme\", \"http\") + \"://\" + server_host + full_path\n else:\n url = None\n\n if self.integration_config.trace_query_string:\n query_string = scope.get(\"query_string\")\n if len(query_string) > 0:\n query_string = bytes_to_str(query_string)\n else:\n query_string = None\n\n trace_utils.set_http_meta(\n span, self.integration_config, method=method, url=url, query=query_string, request_headers=headers\n )\n\n tags = _extract_versions_from_scope(scope, self.integration_config)\n span.set_tags(tags)\n\n async def wrapped_send(message):\n if span and message.get(\"type\") == \"http.response.start\" and \"status\" in message:\n status_code = message[\"status\"]\n else:\n status_code = None\n\n if \"headers\" in message:\n response_headers = message[\"headers\"]\n else:\n response_headers = None\n\n trace_utils.set_http_meta(\n span, self.integration_config, status_code=status_code, response_headers=response_headers\n )\n\n return await send(message)\n\n try:\n return await self.app(scope, receive, wrapped_send)\n except Exception as exc:\n (exc_type, exc_val, exc_tb) = sys.exc_info()\n span.set_exc_info(exc_type, exc_val, exc_tb)\n self.handle_exception_span(exc, span)\n reraise(exc_type, exc_val, exc_tb)\n finally:\n span.finish()\n", "path": "ddtrace/contrib/asgi/middleware.py"}], "after_files": [{"content": "import sys\n\nimport ddtrace\nfrom ddtrace import config\nfrom ddtrace.constants import ANALYTICS_SAMPLE_RATE_KEY\nfrom ddtrace.ext import SpanTypes\nfrom ddtrace.ext import http\n\nfrom .. import trace_utils\nfrom ...internal.compat import reraise\nfrom ...internal.logger import get_logger\nfrom .utils import guarantee_single_callable\n\n\nlog = get_logger(__name__)\n\nconfig._add(\n \"asgi\",\n dict(service_name=config._get_service(default=\"asgi\"), request_span_name=\"asgi.request\", distributed_tracing=True),\n)\n\nASGI_VERSION = \"asgi.version\"\nASGI_SPEC_VERSION = \"asgi.spec_version\"\n\n\ndef bytes_to_str(str_or_bytes):\n return str_or_bytes.decode() if isinstance(str_or_bytes, bytes) else str_or_bytes\n\n\ndef _extract_versions_from_scope(scope, integration_config):\n tags = {}\n\n http_version = scope.get(\"http_version\")\n if http_version:\n tags[http.VERSION] = http_version\n\n scope_asgi = scope.get(\"asgi\")\n\n if scope_asgi and \"version\" in scope_asgi:\n tags[ASGI_VERSION] = scope_asgi[\"version\"]\n\n if scope_asgi and \"spec_version\" in scope_asgi:\n tags[ASGI_SPEC_VERSION] = scope_asgi[\"spec_version\"]\n\n return tags\n\n\ndef _extract_headers(scope):\n headers = scope.get(\"headers\")\n if headers:\n # headers: (Iterable[[byte string, byte string]])\n return dict((bytes_to_str(k), bytes_to_str(v)) for (k, v) in headers)\n return {}\n\n\ndef _default_handle_exception_span(exc, span):\n \"\"\"Default handler for exception for span\"\"\"\n span.set_tag(http.STATUS_CODE, 500)\n\n\nclass TraceMiddleware:\n \"\"\"\n ASGI application middleware that traces the requests.\n\n Args:\n app: The ASGI application.\n tracer: Custom tracer. Defaults to the global tracer.\n \"\"\"\n\n def __init__(\n self,\n app,\n tracer=None,\n integration_config=config.asgi,\n handle_exception_span=_default_handle_exception_span,\n span_modifier=None,\n ):\n self.app = guarantee_single_callable(app)\n self.tracer = tracer or ddtrace.tracer\n self.integration_config = integration_config\n self.handle_exception_span = handle_exception_span\n self.span_modifier = span_modifier\n\n async def __call__(self, scope, receive, send):\n if scope[\"type\"] != \"http\":\n return await self.app(scope, receive, send)\n\n try:\n headers = _extract_headers(scope)\n except Exception:\n log.warning(\"failed to decode headers for distributed tracing\", exc_info=True)\n headers = {}\n else:\n trace_utils.activate_distributed_headers(\n self.tracer, int_config=self.integration_config, request_headers=headers\n )\n\n resource = \"{} {}\".format(scope[\"method\"], scope[\"path\"])\n\n span = self.tracer.trace(\n name=self.integration_config.get(\"request_span_name\", \"asgi.request\"),\n service=trace_utils.int_service(None, self.integration_config),\n resource=resource,\n span_type=SpanTypes.WEB,\n )\n\n if self.span_modifier:\n self.span_modifier(span, scope)\n\n sample_rate = self.integration_config.get_analytics_sample_rate(use_global_config=True)\n if sample_rate is not None:\n span.set_tag(ANALYTICS_SAMPLE_RATE_KEY, sample_rate)\n\n method = scope.get(\"method\")\n server = scope.get(\"server\")\n if server and len(server) == 2:\n port = server[1]\n server_host = server[0] + (\":\" + str(port) if port is not None and port != 80 else \"\")\n full_path = scope.get(\"root_path\", \"\") + scope.get(\"path\", \"\")\n url = scope.get(\"scheme\", \"http\") + \"://\" + server_host + full_path\n else:\n url = None\n\n if self.integration_config.trace_query_string:\n query_string = scope.get(\"query_string\")\n if len(query_string) > 0:\n query_string = bytes_to_str(query_string)\n else:\n query_string = None\n\n trace_utils.set_http_meta(\n span, self.integration_config, method=method, url=url, query=query_string, request_headers=headers\n )\n\n tags = _extract_versions_from_scope(scope, self.integration_config)\n span.set_tags(tags)\n\n async def wrapped_send(message):\n if span and message.get(\"type\") == \"http.response.start\" and \"status\" in message:\n status_code = message[\"status\"]\n else:\n status_code = None\n\n if \"headers\" in message:\n response_headers = message[\"headers\"]\n else:\n response_headers = None\n\n trace_utils.set_http_meta(\n span, self.integration_config, status_code=status_code, response_headers=response_headers\n )\n\n return await send(message)\n\n try:\n return await self.app(scope, receive, wrapped_send)\n except Exception as exc:\n (exc_type, exc_val, exc_tb) = sys.exc_info()\n span.set_exc_info(exc_type, exc_val, exc_tb)\n self.handle_exception_span(exc, span)\n reraise(exc_type, exc_val, exc_tb)\n finally:\n span.finish()\n", "path": "ddtrace/contrib/asgi/middleware.py"}]}
2,179
209
gh_patches_debug_7432
rasdani/github-patches
git_diff
pulp__pulpcore-3412
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- 0077_move_remote_url_credentials.py fails on Remotes that have @ in path, not netloc **Version** 3.18.10 **Describe the bug** Migration 0077 fails when you have a remote that has an @ somewhere in the path ``` Applying core.0077_move_remote_url_credentials...Traceback (most recent call last): File "/usr/bin/pulpcore-manager", line 33, in <module> sys.exit(load_entry_point('pulpcore==3.18.10', 'console_scripts', 'pulpcore-manager')()) File "/usr/lib/python3.9/site-packages/pulpcore/app/manage.py", line 11, in manage execute_from_command_line(sys.argv) File "/usr/lib/python3.9/site-packages/django/core/management/__init__.py", line 419, in execute_from_command_line utility.execute() File "/usr/lib/python3.9/site-packages/django/core/management/__init__.py", line 413, in execute self.fetch_command(subcommand).run_from_argv(self.argv) File "/usr/lib/python3.9/site-packages/django/core/management/base.py", line 354, in run_from_argv self.execute(*args, **cmd_options) File "/usr/lib/python3.9/site-packages/django/core/management/base.py", line 398, in execute output = self.handle(*args, **options) File "/usr/lib/python3.9/site-packages/django/core/management/base.py", line 89, in wrapped res = handle_func(*args, **kwargs) File "/usr/lib/python3.9/site-packages/django/core/management/commands/migrate.py", line 244, in handle post_migrate_state = executor.migrate( File "/usr/lib/python3.9/site-packages/django/db/migrations/executor.py", line 117, in migrate state = self._migrate_all_forwards(state, plan, full_plan, fake=fake, fake_initial=fake_initial) File "/usr/lib/python3.9/site-packages/django/db/migrations/executor.py", line 147, in _migrate_all_forwards state = self.apply_migration(state, migration, fake=fake, fake_initial=fake_initial) File "/usr/lib/python3.9/site-packages/django/db/migrations/executor.py", line 227, in apply_migration state = migration.apply(state, schema_editor) File "/usr/lib/python3.9/site-packages/django/db/migrations/migration.py", line 126, in apply operation.database_forwards(self.app_label, schema_editor, old_state, project_state) File "/usr/lib/python3.9/site-packages/django/db/migrations/operations/special.py", line 190, in database_forwards self.code(from_state.apps, schema_editor) File "/usr/lib/python3.9/site-packages/pulpcore/app/migrations/0077_move_remote_url_credentials.py", line 19, in move_remote_url_credentials _, url_split = url.netloc.rsplit("@", maxsplit=1) ValueError: not enough values to unpack (expected 2, got 1) ``` **To Reproduce** Steps to reproduce the behavior: * Have a remote `https://download.copr.fedorainfracloud.org/results/@caddy/caddy/epel-8-x86_64/` * Try to migrate 0077 **Expected behavior** migration aplies **Additional context** https://community.theforeman.org/t/foreman-3-3-katello-4-5-upgrade-failed-pulpcore-manager-migrate-noinput/31088 --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `pulpcore/app/migrations/0077_move_remote_url_credentials.py` Content: ``` 1 # Generated by Django 3.2.6 on 2021-09-29 14:00 2 3 from urllib.parse import urlparse, urlunparse 4 5 from django.db import migrations 6 7 8 def move_remote_url_credentials(apps, schema_editor): 9 Remote = apps.get_model("core", "Remote") 10 11 for remote in Remote.objects.filter(url__contains="@").iterator(): 12 url = urlparse(remote.url) 13 14 if not remote.username: 15 remote.username = url.username 16 if not remote.password: 17 remote.password = url.password 18 19 _, url_split = url.netloc.rsplit("@", maxsplit=1) 20 remote.url = urlunparse(url._replace(netloc=url_split)) 21 remote.save() 22 23 24 class Migration(migrations.Migration): 25 26 dependencies = [ 27 ('core', '0076_remove_reserved_resource'), 28 ] 29 30 operations = [ 31 migrations.RunPython( 32 code=move_remote_url_credentials, 33 reverse_code=migrations.RunPython.noop, 34 elidable=True, 35 ) 36 ] 37 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/pulpcore/app/migrations/0077_move_remote_url_credentials.py b/pulpcore/app/migrations/0077_move_remote_url_credentials.py --- a/pulpcore/app/migrations/0077_move_remote_url_credentials.py +++ b/pulpcore/app/migrations/0077_move_remote_url_credentials.py @@ -11,6 +11,11 @@ for remote in Remote.objects.filter(url__contains="@").iterator(): url = urlparse(remote.url) + if '@' not in url.netloc: + # URLs can have an @ in other places than the netloc, + # but those do not indicate credentials + continue + if not remote.username: remote.username = url.username if not remote.password:
{"golden_diff": "diff --git a/pulpcore/app/migrations/0077_move_remote_url_credentials.py b/pulpcore/app/migrations/0077_move_remote_url_credentials.py\n--- a/pulpcore/app/migrations/0077_move_remote_url_credentials.py\n+++ b/pulpcore/app/migrations/0077_move_remote_url_credentials.py\n@@ -11,6 +11,11 @@\n for remote in Remote.objects.filter(url__contains=\"@\").iterator():\n url = urlparse(remote.url)\n \n+ if '@' not in url.netloc:\n+ # URLs can have an @ in other places than the netloc,\n+ # but those do not indicate credentials\n+ continue\n+\n if not remote.username:\n remote.username = url.username\n if not remote.password:\n", "issue": "0077_move_remote_url_credentials.py fails on Remotes that have @ in path, not netloc\n**Version**\r\n3.18.10\r\n\r\n**Describe the bug**\r\nMigration 0077 fails when you have a remote that has an @ somewhere in the path\r\n\r\n```\r\n Applying core.0077_move_remote_url_credentials...Traceback (most recent call last):\r\n File \"/usr/bin/pulpcore-manager\", line 33, in <module>\r\n sys.exit(load_entry_point('pulpcore==3.18.10', 'console_scripts', 'pulpcore-manager')())\r\n File \"/usr/lib/python3.9/site-packages/pulpcore/app/manage.py\", line 11, in manage\r\n execute_from_command_line(sys.argv)\r\n File \"/usr/lib/python3.9/site-packages/django/core/management/__init__.py\", line 419, in execute_from_command_line\r\n utility.execute()\r\n File \"/usr/lib/python3.9/site-packages/django/core/management/__init__.py\", line 413, in execute\r\n self.fetch_command(subcommand).run_from_argv(self.argv)\r\n File \"/usr/lib/python3.9/site-packages/django/core/management/base.py\", line 354, in run_from_argv\r\n self.execute(*args, **cmd_options)\r\n File \"/usr/lib/python3.9/site-packages/django/core/management/base.py\", line 398, in execute\r\n output = self.handle(*args, **options)\r\n File \"/usr/lib/python3.9/site-packages/django/core/management/base.py\", line 89, in wrapped\r\n res = handle_func(*args, **kwargs)\r\n File \"/usr/lib/python3.9/site-packages/django/core/management/commands/migrate.py\", line 244, in handle\r\n post_migrate_state = executor.migrate(\r\n File \"/usr/lib/python3.9/site-packages/django/db/migrations/executor.py\", line 117, in migrate\r\n state = self._migrate_all_forwards(state, plan, full_plan, fake=fake, fake_initial=fake_initial)\r\n File \"/usr/lib/python3.9/site-packages/django/db/migrations/executor.py\", line 147, in _migrate_all_forwards\r\n state = self.apply_migration(state, migration, fake=fake, fake_initial=fake_initial)\r\n File \"/usr/lib/python3.9/site-packages/django/db/migrations/executor.py\", line 227, in apply_migration\r\n state = migration.apply(state, schema_editor)\r\n File \"/usr/lib/python3.9/site-packages/django/db/migrations/migration.py\", line 126, in apply\r\n operation.database_forwards(self.app_label, schema_editor, old_state, project_state)\r\n File \"/usr/lib/python3.9/site-packages/django/db/migrations/operations/special.py\", line 190, in database_forwards\r\n self.code(from_state.apps, schema_editor)\r\n File \"/usr/lib/python3.9/site-packages/pulpcore/app/migrations/0077_move_remote_url_credentials.py\", line 19, in move_remote_url_credentials\r\n _, url_split = url.netloc.rsplit(\"@\", maxsplit=1)\r\nValueError: not enough values to unpack (expected 2, got 1)\r\n```\r\n\r\n**To Reproduce**\r\nSteps to reproduce the behavior:\r\n* Have a remote `https://download.copr.fedorainfracloud.org/results/@caddy/caddy/epel-8-x86_64/`\r\n* Try to migrate 0077\r\n\r\n**Expected behavior**\r\nmigration aplies\r\n\r\n**Additional context**\r\nhttps://community.theforeman.org/t/foreman-3-3-katello-4-5-upgrade-failed-pulpcore-manager-migrate-noinput/31088\r\n\n", "before_files": [{"content": "# Generated by Django 3.2.6 on 2021-09-29 14:00\n\nfrom urllib.parse import urlparse, urlunparse\n\nfrom django.db import migrations\n\n\ndef move_remote_url_credentials(apps, schema_editor):\n Remote = apps.get_model(\"core\", \"Remote\")\n\n for remote in Remote.objects.filter(url__contains=\"@\").iterator():\n url = urlparse(remote.url)\n\n if not remote.username:\n remote.username = url.username\n if not remote.password:\n remote.password = url.password\n\n _, url_split = url.netloc.rsplit(\"@\", maxsplit=1)\n remote.url = urlunparse(url._replace(netloc=url_split))\n remote.save()\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('core', '0076_remove_reserved_resource'),\n ]\n\n operations = [\n migrations.RunPython(\n code=move_remote_url_credentials,\n reverse_code=migrations.RunPython.noop,\n elidable=True,\n )\n ]\n", "path": "pulpcore/app/migrations/0077_move_remote_url_credentials.py"}], "after_files": [{"content": "# Generated by Django 3.2.6 on 2021-09-29 14:00\n\nfrom urllib.parse import urlparse, urlunparse\n\nfrom django.db import migrations\n\n\ndef move_remote_url_credentials(apps, schema_editor):\n Remote = apps.get_model(\"core\", \"Remote\")\n\n for remote in Remote.objects.filter(url__contains=\"@\").iterator():\n url = urlparse(remote.url)\n\n if '@' not in url.netloc:\n # URLs can have an @ in other places than the netloc,\n # but those do not indicate credentials\n continue\n\n if not remote.username:\n remote.username = url.username\n if not remote.password:\n remote.password = url.password\n\n _, url_split = url.netloc.rsplit(\"@\", maxsplit=1)\n remote.url = urlunparse(url._replace(netloc=url_split))\n remote.save()\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('core', '0076_remove_reserved_resource'),\n ]\n\n operations = [\n migrations.RunPython(\n code=move_remote_url_credentials,\n reverse_code=migrations.RunPython.noop,\n elidable=True,\n )\n ]\n", "path": "pulpcore/app/migrations/0077_move_remote_url_credentials.py"}]}
1,388
172
gh_patches_debug_30344
rasdani/github-patches
git_diff
CTFd__CTFd-760
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- dynamic challenges not work when using user mode **Environment**: - CTFd Version/Commit:`2bd310b5d99f4305f8b61076f9af3b7e3c91ba8f` - Operating System: `ubuntu 16.04` - Web Browser and Version: `Chrome` when using user mode , `solve_count` always get 0 https://github.com/CTFd/CTFd/blob/master/CTFd/plugins/dynamic_challenges/__init__.py#L95 ``` solve_count = Solves.query \ .join(Teams, Solves.team_id == Teams.id) \ .filter(Solves.challenge_id == challenge.id, Teams.banned == False) \ .count() ``` --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `CTFd/plugins/dynamic_challenges/__init__.py` Content: ``` 1 from __future__ import division # Use floating point for math calculations 2 from CTFd.plugins.challenges import BaseChallenge, CHALLENGE_CLASSES 3 from CTFd.plugins import register_plugin_assets_directory 4 from CTFd.plugins.flags import get_flag_class 5 from CTFd.models import db, Solves, Fails, Flags, Challenges, ChallengeFiles, Tags, Teams, Hints 6 from CTFd import utils 7 from CTFd.utils.migrations import upgrade 8 from CTFd.utils.user import get_ip 9 from CTFd.utils.uploads import upload_file, delete_file 10 from flask import Blueprint 11 import math 12 13 14 class DynamicValueChallenge(BaseChallenge): 15 id = "dynamic" # Unique identifier used to register challenges 16 name = "dynamic" # Name of a challenge type 17 templates = { # Handlebars templates used for each aspect of challenge editing & viewing 18 'create': '/plugins/dynamic_challenges/assets/create.html', 19 'update': '/plugins/dynamic_challenges/assets/update.html', 20 'view': '/plugins/dynamic_challenges/assets/view.html', 21 } 22 scripts = { # Scripts that are loaded when a template is loaded 23 'create': '/plugins/dynamic_challenges/assets/create.js', 24 'update': '/plugins/dynamic_challenges/assets/update.js', 25 'view': '/plugins/dynamic_challenges/assets/view.js', 26 } 27 # Route at which files are accessible. This must be registered using register_plugin_assets_directory() 28 route = '/plugins/dynamic_challenges/assets/' 29 # Blueprint used to access the static_folder directory. 30 blueprint = Blueprint('dynamic_challenges', __name__, template_folder='templates', static_folder='assets') 31 32 @staticmethod 33 def create(request): 34 """ 35 This method is used to process the challenge creation request. 36 37 :param request: 38 :return: 39 """ 40 data = request.form or request.get_json() 41 challenge = DynamicChallenge(**data) 42 43 db.session.add(challenge) 44 db.session.commit() 45 46 return challenge 47 48 @staticmethod 49 def read(challenge): 50 """ 51 This method is in used to access the data of a challenge in a format processable by the front end. 52 53 :param challenge: 54 :return: Challenge object, data dictionary to be returned to the user 55 """ 56 challenge = DynamicChallenge.query.filter_by(id=challenge.id).first() 57 data = { 58 'id': challenge.id, 59 'name': challenge.name, 60 'value': challenge.value, 61 'initial': challenge.initial, 62 'decay': challenge.decay, 63 'minimum': challenge.minimum, 64 'description': challenge.description, 65 'category': challenge.category, 66 'state': challenge.state, 67 'max_attempts': challenge.max_attempts, 68 'type': challenge.type, 69 'type_data': { 70 'id': DynamicValueChallenge.id, 71 'name': DynamicValueChallenge.name, 72 'templates': DynamicValueChallenge.templates, 73 'scripts': DynamicValueChallenge.scripts, 74 } 75 } 76 return data 77 78 @staticmethod 79 def update(challenge, request): 80 """ 81 This method is used to update the information associated with a challenge. This should be kept strictly to the 82 Challenges table and any child tables. 83 84 :param challenge: 85 :param request: 86 :return: 87 """ 88 data = request.form or request.get_json() 89 data['initial'] = float(data.get('initial', 0)) 90 data['minimum'] = float(data.get('minimum', 0)) 91 data['decay'] = float(data.get('decay', 0)) 92 for attr, value in data.items(): 93 setattr(challenge, attr, value) 94 95 solve_count = Solves.query \ 96 .join(Teams, Solves.team_id == Teams.id) \ 97 .filter(Solves.challenge_id == challenge.id, Teams.banned == False) \ 98 .count() 99 100 # It is important that this calculation takes into account floats. 101 # Hence this file uses from __future__ import division 102 value = (((challenge.minimum - challenge.initial) / (challenge.decay ** 2)) * (solve_count ** 2)) + challenge.initial 103 104 value = math.ceil(value) 105 106 if value < challenge.minimum: 107 value = challenge.minimum 108 109 challenge.value = value 110 111 db.session.commit() 112 return challenge 113 114 @staticmethod 115 def delete(challenge): 116 """ 117 This method is used to delete the resources used by a challenge. 118 119 :param challenge: 120 :return: 121 """ 122 Fails.query.filter_by(challenge_id=challenge.id).delete() 123 Solves.query.filter_by(challenge_id=challenge.id).delete() 124 Flags.query.filter_by(challenge_id=challenge.id).delete() 125 files = ChallengeFiles.query.filter_by(challenge_id=challenge.id).all() 126 for f in files: 127 delete_file(f.id) 128 ChallengeFiles.query.filter_by(challenge_id=challenge.id).delete() 129 Tags.query.filter_by(challenge_id=challenge.id).delete() 130 Hints.query.filter_by(challenge_id=challenge.id).delete() 131 DynamicChallenge.query.filter_by(id=challenge.id).delete() 132 Challenges.query.filter_by(id=challenge.id).delete() 133 db.session.commit() 134 135 @staticmethod 136 def attempt(challenge, request): 137 """ 138 This method is used to check whether a given input is right or wrong. It does not make any changes and should 139 return a boolean for correctness and a string to be shown to the user. It is also in charge of parsing the 140 user's input from the request itself. 141 142 :param challenge: The Challenge object from the database 143 :param request: The request the user submitted 144 :return: (boolean, string) 145 """ 146 data = request.form or request.get_json() 147 submission = data['submission'].strip() 148 flags = Flags.query.filter_by(challenge_id=challenge.id).all() 149 for flag in flags: 150 if get_flag_class(flag.type).compare(flag, submission): 151 return True, 'Correct' 152 return False, 'Incorrect' 153 154 @staticmethod 155 def solve(user, team, challenge, request): 156 """ 157 This method is used to insert Solves into the database in order to mark a challenge as solved. 158 159 :param team: The Team object from the database 160 :param chal: The Challenge object from the database 161 :param request: The request the user submitted 162 :return: 163 """ 164 chal = DynamicChallenge.query.filter_by(id=challenge.id).first() 165 data = request.form or request.get_json() 166 submission = data['submission'].strip() 167 168 solve_count = Solves.query\ 169 .join(Teams, Solves.team_id == Teams.id)\ 170 .filter(Solves.challenge_id == chal.id, Teams.banned == False)\ 171 .count() 172 173 # It is important that this calculation takes into account floats. 174 # Hence this file uses from __future__ import division 175 value = ( 176 ( 177 (chal.minimum - chal.initial) / (chal.decay**2) 178 ) * (solve_count**2) 179 ) + chal.initial 180 181 value = math.ceil(value) 182 183 if value < chal.minimum: 184 value = chal.minimum 185 186 chal.value = value 187 188 solve = Solves( 189 user_id=user.id, 190 team_id=team.id if team else None, 191 challenge_id=challenge.id, 192 ip=get_ip(req=request), 193 provided=submission 194 ) 195 db.session.add(solve) 196 db.session.commit() 197 db.session.close() 198 199 @staticmethod 200 def fail(user, team, challenge, request): 201 """ 202 This method is used to insert Fails into the database in order to mark an answer incorrect. 203 204 :param team: The Team object from the database 205 :param challenge: The Challenge object from the database 206 :param request: The request the user submitted 207 :return: 208 """ 209 data = request.form or request.get_json() 210 submission = data['submission'].strip() 211 wrong = Fails( 212 user_id=user.id, 213 team_id=team.id if team else None, 214 challenge_id=challenge.id, 215 ip=get_ip(request), 216 provided=submission 217 ) 218 db.session.add(wrong) 219 db.session.commit() 220 db.session.close() 221 222 223 class DynamicChallenge(Challenges): 224 __mapper_args__ = {'polymorphic_identity': 'dynamic'} 225 id = db.Column(None, db.ForeignKey('challenges.id'), primary_key=True) 226 initial = db.Column(db.Integer) 227 minimum = db.Column(db.Integer) 228 decay = db.Column(db.Integer) 229 230 def __init__(self, *args, **kwargs): 231 super(DynamicChallenge, self).__init__(**kwargs) 232 self.initial = kwargs['value'] 233 234 235 def load(app): 236 # upgrade() 237 app.db.create_all() 238 CHALLENGE_CLASSES['dynamic'] = DynamicValueChallenge 239 register_plugin_assets_directory(app, base_path='/plugins/dynamic_challenges/assets/') 240 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/CTFd/plugins/dynamic_challenges/__init__.py b/CTFd/plugins/dynamic_challenges/__init__.py --- a/CTFd/plugins/dynamic_challenges/__init__.py +++ b/CTFd/plugins/dynamic_challenges/__init__.py @@ -7,6 +7,7 @@ from CTFd.utils.migrations import upgrade from CTFd.utils.user import get_ip from CTFd.utils.uploads import upload_file, delete_file +from CTFd.utils.modes import get_model from flask import Blueprint import math @@ -92,9 +93,11 @@ for attr, value in data.items(): setattr(challenge, attr, value) + Model = get_model() + solve_count = Solves.query \ - .join(Teams, Solves.team_id == Teams.id) \ - .filter(Solves.challenge_id == challenge.id, Teams.banned == False) \ + .join(Model, Solves.account_id == Model.id) \ + .filter(Solves.challenge_id == challenge.id, Model.hidden == False, Model.banned == False) \ .count() # It is important that this calculation takes into account floats. @@ -165,9 +168,11 @@ data = request.form or request.get_json() submission = data['submission'].strip() - solve_count = Solves.query\ - .join(Teams, Solves.team_id == Teams.id)\ - .filter(Solves.challenge_id == chal.id, Teams.banned == False)\ + Model = get_model() + + solve_count = Solves.query \ + .join(Model, Solves.account_id == Model.id) \ + .filter(Solves.challenge_id == challenge.id, Model.hidden == False, Model.banned == False) \ .count() # It is important that this calculation takes into account floats.
{"golden_diff": "diff --git a/CTFd/plugins/dynamic_challenges/__init__.py b/CTFd/plugins/dynamic_challenges/__init__.py\n--- a/CTFd/plugins/dynamic_challenges/__init__.py\n+++ b/CTFd/plugins/dynamic_challenges/__init__.py\n@@ -7,6 +7,7 @@\n from CTFd.utils.migrations import upgrade\n from CTFd.utils.user import get_ip\n from CTFd.utils.uploads import upload_file, delete_file\n+from CTFd.utils.modes import get_model\n from flask import Blueprint\n import math\n \n@@ -92,9 +93,11 @@\n for attr, value in data.items():\n setattr(challenge, attr, value)\n \n+ Model = get_model()\n+\n solve_count = Solves.query \\\n- .join(Teams, Solves.team_id == Teams.id) \\\n- .filter(Solves.challenge_id == challenge.id, Teams.banned == False) \\\n+ .join(Model, Solves.account_id == Model.id) \\\n+ .filter(Solves.challenge_id == challenge.id, Model.hidden == False, Model.banned == False) \\\n .count()\n \n # It is important that this calculation takes into account floats.\n@@ -165,9 +168,11 @@\n data = request.form or request.get_json()\n submission = data['submission'].strip()\n \n- solve_count = Solves.query\\\n- .join(Teams, Solves.team_id == Teams.id)\\\n- .filter(Solves.challenge_id == chal.id, Teams.banned == False)\\\n+ Model = get_model()\n+\n+ solve_count = Solves.query \\\n+ .join(Model, Solves.account_id == Model.id) \\\n+ .filter(Solves.challenge_id == challenge.id, Model.hidden == False, Model.banned == False) \\\n .count()\n \n # It is important that this calculation takes into account floats.\n", "issue": "dynamic challenges not work when using user mode\n\r\n**Environment**:\r\n\r\n - CTFd Version/Commit:`2bd310b5d99f4305f8b61076f9af3b7e3c91ba8f`\r\n - Operating System: `ubuntu 16.04`\r\n - Web Browser and Version: `Chrome`\r\n\r\nwhen using user mode , `solve_count` always get 0 \r\n\r\nhttps://github.com/CTFd/CTFd/blob/master/CTFd/plugins/dynamic_challenges/__init__.py#L95\r\n```\r\n solve_count = Solves.query \\\r\n .join(Teams, Solves.team_id == Teams.id) \\\r\n .filter(Solves.challenge_id == challenge.id, Teams.banned == False) \\\r\n .count()\r\n```\r\n\n", "before_files": [{"content": "from __future__ import division # Use floating point for math calculations\nfrom CTFd.plugins.challenges import BaseChallenge, CHALLENGE_CLASSES\nfrom CTFd.plugins import register_plugin_assets_directory\nfrom CTFd.plugins.flags import get_flag_class\nfrom CTFd.models import db, Solves, Fails, Flags, Challenges, ChallengeFiles, Tags, Teams, Hints\nfrom CTFd import utils\nfrom CTFd.utils.migrations import upgrade\nfrom CTFd.utils.user import get_ip\nfrom CTFd.utils.uploads import upload_file, delete_file\nfrom flask import Blueprint\nimport math\n\n\nclass DynamicValueChallenge(BaseChallenge):\n id = \"dynamic\" # Unique identifier used to register challenges\n name = \"dynamic\" # Name of a challenge type\n templates = { # Handlebars templates used for each aspect of challenge editing & viewing\n 'create': '/plugins/dynamic_challenges/assets/create.html',\n 'update': '/plugins/dynamic_challenges/assets/update.html',\n 'view': '/plugins/dynamic_challenges/assets/view.html',\n }\n scripts = { # Scripts that are loaded when a template is loaded\n 'create': '/plugins/dynamic_challenges/assets/create.js',\n 'update': '/plugins/dynamic_challenges/assets/update.js',\n 'view': '/plugins/dynamic_challenges/assets/view.js',\n }\n # Route at which files are accessible. This must be registered using register_plugin_assets_directory()\n route = '/plugins/dynamic_challenges/assets/'\n # Blueprint used to access the static_folder directory.\n blueprint = Blueprint('dynamic_challenges', __name__, template_folder='templates', static_folder='assets')\n\n @staticmethod\n def create(request):\n \"\"\"\n This method is used to process the challenge creation request.\n\n :param request:\n :return:\n \"\"\"\n data = request.form or request.get_json()\n challenge = DynamicChallenge(**data)\n\n db.session.add(challenge)\n db.session.commit()\n\n return challenge\n\n @staticmethod\n def read(challenge):\n \"\"\"\n This method is in used to access the data of a challenge in a format processable by the front end.\n\n :param challenge:\n :return: Challenge object, data dictionary to be returned to the user\n \"\"\"\n challenge = DynamicChallenge.query.filter_by(id=challenge.id).first()\n data = {\n 'id': challenge.id,\n 'name': challenge.name,\n 'value': challenge.value,\n 'initial': challenge.initial,\n 'decay': challenge.decay,\n 'minimum': challenge.minimum,\n 'description': challenge.description,\n 'category': challenge.category,\n 'state': challenge.state,\n 'max_attempts': challenge.max_attempts,\n 'type': challenge.type,\n 'type_data': {\n 'id': DynamicValueChallenge.id,\n 'name': DynamicValueChallenge.name,\n 'templates': DynamicValueChallenge.templates,\n 'scripts': DynamicValueChallenge.scripts,\n }\n }\n return data\n\n @staticmethod\n def update(challenge, request):\n \"\"\"\n This method is used to update the information associated with a challenge. This should be kept strictly to the\n Challenges table and any child tables.\n\n :param challenge:\n :param request:\n :return:\n \"\"\"\n data = request.form or request.get_json()\n data['initial'] = float(data.get('initial', 0))\n data['minimum'] = float(data.get('minimum', 0))\n data['decay'] = float(data.get('decay', 0))\n for attr, value in data.items():\n setattr(challenge, attr, value)\n\n solve_count = Solves.query \\\n .join(Teams, Solves.team_id == Teams.id) \\\n .filter(Solves.challenge_id == challenge.id, Teams.banned == False) \\\n .count()\n\n # It is important that this calculation takes into account floats.\n # Hence this file uses from __future__ import division\n value = (((challenge.minimum - challenge.initial) / (challenge.decay ** 2)) * (solve_count ** 2)) + challenge.initial\n\n value = math.ceil(value)\n\n if value < challenge.minimum:\n value = challenge.minimum\n\n challenge.value = value\n\n db.session.commit()\n return challenge\n\n @staticmethod\n def delete(challenge):\n \"\"\"\n This method is used to delete the resources used by a challenge.\n\n :param challenge:\n :return:\n \"\"\"\n Fails.query.filter_by(challenge_id=challenge.id).delete()\n Solves.query.filter_by(challenge_id=challenge.id).delete()\n Flags.query.filter_by(challenge_id=challenge.id).delete()\n files = ChallengeFiles.query.filter_by(challenge_id=challenge.id).all()\n for f in files:\n delete_file(f.id)\n ChallengeFiles.query.filter_by(challenge_id=challenge.id).delete()\n Tags.query.filter_by(challenge_id=challenge.id).delete()\n Hints.query.filter_by(challenge_id=challenge.id).delete()\n DynamicChallenge.query.filter_by(id=challenge.id).delete()\n Challenges.query.filter_by(id=challenge.id).delete()\n db.session.commit()\n\n @staticmethod\n def attempt(challenge, request):\n \"\"\"\n This method is used to check whether a given input is right or wrong. It does not make any changes and should\n return a boolean for correctness and a string to be shown to the user. It is also in charge of parsing the\n user's input from the request itself.\n\n :param challenge: The Challenge object from the database\n :param request: The request the user submitted\n :return: (boolean, string)\n \"\"\"\n data = request.form or request.get_json()\n submission = data['submission'].strip()\n flags = Flags.query.filter_by(challenge_id=challenge.id).all()\n for flag in flags:\n if get_flag_class(flag.type).compare(flag, submission):\n return True, 'Correct'\n return False, 'Incorrect'\n\n @staticmethod\n def solve(user, team, challenge, request):\n \"\"\"\n This method is used to insert Solves into the database in order to mark a challenge as solved.\n\n :param team: The Team object from the database\n :param chal: The Challenge object from the database\n :param request: The request the user submitted\n :return:\n \"\"\"\n chal = DynamicChallenge.query.filter_by(id=challenge.id).first()\n data = request.form or request.get_json()\n submission = data['submission'].strip()\n\n solve_count = Solves.query\\\n .join(Teams, Solves.team_id == Teams.id)\\\n .filter(Solves.challenge_id == chal.id, Teams.banned == False)\\\n .count()\n\n # It is important that this calculation takes into account floats.\n # Hence this file uses from __future__ import division\n value = (\n (\n (chal.minimum - chal.initial) / (chal.decay**2)\n ) * (solve_count**2)\n ) + chal.initial\n\n value = math.ceil(value)\n\n if value < chal.minimum:\n value = chal.minimum\n\n chal.value = value\n\n solve = Solves(\n user_id=user.id,\n team_id=team.id if team else None,\n challenge_id=challenge.id,\n ip=get_ip(req=request),\n provided=submission\n )\n db.session.add(solve)\n db.session.commit()\n db.session.close()\n\n @staticmethod\n def fail(user, team, challenge, request):\n \"\"\"\n This method is used to insert Fails into the database in order to mark an answer incorrect.\n\n :param team: The Team object from the database\n :param challenge: The Challenge object from the database\n :param request: The request the user submitted\n :return:\n \"\"\"\n data = request.form or request.get_json()\n submission = data['submission'].strip()\n wrong = Fails(\n user_id=user.id,\n team_id=team.id if team else None,\n challenge_id=challenge.id,\n ip=get_ip(request),\n provided=submission\n )\n db.session.add(wrong)\n db.session.commit()\n db.session.close()\n\n\nclass DynamicChallenge(Challenges):\n __mapper_args__ = {'polymorphic_identity': 'dynamic'}\n id = db.Column(None, db.ForeignKey('challenges.id'), primary_key=True)\n initial = db.Column(db.Integer)\n minimum = db.Column(db.Integer)\n decay = db.Column(db.Integer)\n\n def __init__(self, *args, **kwargs):\n super(DynamicChallenge, self).__init__(**kwargs)\n self.initial = kwargs['value']\n\n\ndef load(app):\n # upgrade()\n app.db.create_all()\n CHALLENGE_CLASSES['dynamic'] = DynamicValueChallenge\n register_plugin_assets_directory(app, base_path='/plugins/dynamic_challenges/assets/')\n", "path": "CTFd/plugins/dynamic_challenges/__init__.py"}], "after_files": [{"content": "from __future__ import division # Use floating point for math calculations\nfrom CTFd.plugins.challenges import BaseChallenge, CHALLENGE_CLASSES\nfrom CTFd.plugins import register_plugin_assets_directory\nfrom CTFd.plugins.flags import get_flag_class\nfrom CTFd.models import db, Solves, Fails, Flags, Challenges, ChallengeFiles, Tags, Teams, Hints\nfrom CTFd import utils\nfrom CTFd.utils.migrations import upgrade\nfrom CTFd.utils.user import get_ip\nfrom CTFd.utils.uploads import upload_file, delete_file\nfrom CTFd.utils.modes import get_model\nfrom flask import Blueprint\nimport math\n\n\nclass DynamicValueChallenge(BaseChallenge):\n id = \"dynamic\" # Unique identifier used to register challenges\n name = \"dynamic\" # Name of a challenge type\n templates = { # Handlebars templates used for each aspect of challenge editing & viewing\n 'create': '/plugins/dynamic_challenges/assets/create.html',\n 'update': '/plugins/dynamic_challenges/assets/update.html',\n 'view': '/plugins/dynamic_challenges/assets/view.html',\n }\n scripts = { # Scripts that are loaded when a template is loaded\n 'create': '/plugins/dynamic_challenges/assets/create.js',\n 'update': '/plugins/dynamic_challenges/assets/update.js',\n 'view': '/plugins/dynamic_challenges/assets/view.js',\n }\n # Route at which files are accessible. This must be registered using register_plugin_assets_directory()\n route = '/plugins/dynamic_challenges/assets/'\n # Blueprint used to access the static_folder directory.\n blueprint = Blueprint('dynamic_challenges', __name__, template_folder='templates', static_folder='assets')\n\n @staticmethod\n def create(request):\n \"\"\"\n This method is used to process the challenge creation request.\n\n :param request:\n :return:\n \"\"\"\n data = request.form or request.get_json()\n challenge = DynamicChallenge(**data)\n\n db.session.add(challenge)\n db.session.commit()\n\n return challenge\n\n @staticmethod\n def read(challenge):\n \"\"\"\n This method is in used to access the data of a challenge in a format processable by the front end.\n\n :param challenge:\n :return: Challenge object, data dictionary to be returned to the user\n \"\"\"\n challenge = DynamicChallenge.query.filter_by(id=challenge.id).first()\n data = {\n 'id': challenge.id,\n 'name': challenge.name,\n 'value': challenge.value,\n 'initial': challenge.initial,\n 'decay': challenge.decay,\n 'minimum': challenge.minimum,\n 'description': challenge.description,\n 'category': challenge.category,\n 'state': challenge.state,\n 'max_attempts': challenge.max_attempts,\n 'type': challenge.type,\n 'type_data': {\n 'id': DynamicValueChallenge.id,\n 'name': DynamicValueChallenge.name,\n 'templates': DynamicValueChallenge.templates,\n 'scripts': DynamicValueChallenge.scripts,\n }\n }\n return data\n\n @staticmethod\n def update(challenge, request):\n \"\"\"\n This method is used to update the information associated with a challenge. This should be kept strictly to the\n Challenges table and any child tables.\n\n :param challenge:\n :param request:\n :return:\n \"\"\"\n data = request.form or request.get_json()\n data['initial'] = float(data.get('initial', 0))\n data['minimum'] = float(data.get('minimum', 0))\n data['decay'] = float(data.get('decay', 0))\n for attr, value in data.items():\n setattr(challenge, attr, value)\n\n Model = get_model()\n\n solve_count = Solves.query \\\n .join(Model, Solves.account_id == Model.id) \\\n .filter(Solves.challenge_id == challenge.id, Model.hidden == False, Model.banned == False) \\\n .count()\n\n # It is important that this calculation takes into account floats.\n # Hence this file uses from __future__ import division\n value = (((challenge.minimum - challenge.initial) / (challenge.decay ** 2)) * (solve_count ** 2)) + challenge.initial\n\n value = math.ceil(value)\n\n if value < challenge.minimum:\n value = challenge.minimum\n\n challenge.value = value\n\n db.session.commit()\n return challenge\n\n @staticmethod\n def delete(challenge):\n \"\"\"\n This method is used to delete the resources used by a challenge.\n\n :param challenge:\n :return:\n \"\"\"\n Fails.query.filter_by(challenge_id=challenge.id).delete()\n Solves.query.filter_by(challenge_id=challenge.id).delete()\n Flags.query.filter_by(challenge_id=challenge.id).delete()\n files = ChallengeFiles.query.filter_by(challenge_id=challenge.id).all()\n for f in files:\n delete_file(f.id)\n ChallengeFiles.query.filter_by(challenge_id=challenge.id).delete()\n Tags.query.filter_by(challenge_id=challenge.id).delete()\n Hints.query.filter_by(challenge_id=challenge.id).delete()\n DynamicChallenge.query.filter_by(id=challenge.id).delete()\n Challenges.query.filter_by(id=challenge.id).delete()\n db.session.commit()\n\n @staticmethod\n def attempt(challenge, request):\n \"\"\"\n This method is used to check whether a given input is right or wrong. It does not make any changes and should\n return a boolean for correctness and a string to be shown to the user. It is also in charge of parsing the\n user's input from the request itself.\n\n :param challenge: The Challenge object from the database\n :param request: The request the user submitted\n :return: (boolean, string)\n \"\"\"\n data = request.form or request.get_json()\n submission = data['submission'].strip()\n flags = Flags.query.filter_by(challenge_id=challenge.id).all()\n for flag in flags:\n if get_flag_class(flag.type).compare(flag, submission):\n return True, 'Correct'\n return False, 'Incorrect'\n\n @staticmethod\n def solve(user, team, challenge, request):\n \"\"\"\n This method is used to insert Solves into the database in order to mark a challenge as solved.\n\n :param team: The Team object from the database\n :param chal: The Challenge object from the database\n :param request: The request the user submitted\n :return:\n \"\"\"\n chal = DynamicChallenge.query.filter_by(id=challenge.id).first()\n data = request.form or request.get_json()\n submission = data['submission'].strip()\n\n Model = get_model()\n\n solve_count = Solves.query \\\n .join(Model, Solves.account_id == Model.id) \\\n .filter(Solves.challenge_id == challenge.id, Model.hidden == False, Model.banned == False) \\\n .count()\n\n # It is important that this calculation takes into account floats.\n # Hence this file uses from __future__ import division\n value = (\n (\n (chal.minimum - chal.initial) / (chal.decay**2)\n ) * (solve_count**2)\n ) + chal.initial\n\n value = math.ceil(value)\n\n if value < chal.minimum:\n value = chal.minimum\n\n chal.value = value\n\n solve = Solves(\n user_id=user.id,\n team_id=team.id if team else None,\n challenge_id=challenge.id,\n ip=get_ip(req=request),\n provided=submission\n )\n db.session.add(solve)\n db.session.commit()\n db.session.close()\n\n @staticmethod\n def fail(user, team, challenge, request):\n \"\"\"\n This method is used to insert Fails into the database in order to mark an answer incorrect.\n\n :param team: The Team object from the database\n :param challenge: The Challenge object from the database\n :param request: The request the user submitted\n :return:\n \"\"\"\n data = request.form or request.get_json()\n submission = data['submission'].strip()\n wrong = Fails(\n user_id=user.id,\n team_id=team.id if team else None,\n challenge_id=challenge.id,\n ip=get_ip(request),\n provided=submission\n )\n db.session.add(wrong)\n db.session.commit()\n db.session.close()\n\n\nclass DynamicChallenge(Challenges):\n __mapper_args__ = {'polymorphic_identity': 'dynamic'}\n id = db.Column(None, db.ForeignKey('challenges.id'), primary_key=True)\n initial = db.Column(db.Integer)\n minimum = db.Column(db.Integer)\n decay = db.Column(db.Integer)\n\n def __init__(self, *args, **kwargs):\n super(DynamicChallenge, self).__init__(**kwargs)\n self.initial = kwargs['value']\n\n\ndef load(app):\n # upgrade()\n app.db.create_all()\n CHALLENGE_CLASSES['dynamic'] = DynamicValueChallenge\n register_plugin_assets_directory(app, base_path='/plugins/dynamic_challenges/assets/')\n", "path": "CTFd/plugins/dynamic_challenges/__init__.py"}]}
2,967
422
gh_patches_debug_112
rasdani/github-patches
git_diff
InstaPy__InstaPy-4046
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Instapy-chromedriver not supporting latest Chrome browser version The Instapy-chrome driver only supports Chrome upto versions 71 and since the update, the whole program quits with the error of ensure chromedriver is installed at .../insta-py/chromedriver_linux64.. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `instapy/__init__.py` Content: ``` 1 # flake8: noqa 2 3 from .instapy import InstaPy 4 from .util import smart_run 5 from .settings import Settings 6 from .file_manager import set_workspace 7 from .file_manager import get_workspace 8 9 10 # __variables__ with double-quoted values will be available in setup.py 11 __version__ = "0.2.1" 12 13 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/instapy/__init__.py b/instapy/__init__.py --- a/instapy/__init__.py +++ b/instapy/__init__.py @@ -8,5 +8,5 @@ # __variables__ with double-quoted values will be available in setup.py -__version__ = "0.2.1" +__version__ = "0.2.2"
{"golden_diff": "diff --git a/instapy/__init__.py b/instapy/__init__.py\n--- a/instapy/__init__.py\n+++ b/instapy/__init__.py\n@@ -8,5 +8,5 @@\n \n \n # __variables__ with double-quoted values will be available in setup.py\n-__version__ = \"0.2.1\"\n+__version__ = \"0.2.2\"\n", "issue": "Instapy-chromedriver not supporting latest Chrome browser version\nThe Instapy-chrome driver only supports Chrome upto versions 71 and since the update, the whole program quits with the error of ensure chromedriver is installed at .../insta-py/chromedriver_linux64..\n", "before_files": [{"content": "# flake8: noqa\n\nfrom .instapy import InstaPy\nfrom .util import smart_run\nfrom .settings import Settings\nfrom .file_manager import set_workspace\nfrom .file_manager import get_workspace\n\n\n# __variables__ with double-quoted values will be available in setup.py\n__version__ = \"0.2.1\"\n\n", "path": "instapy/__init__.py"}], "after_files": [{"content": "# flake8: noqa\n\nfrom .instapy import InstaPy\nfrom .util import smart_run\nfrom .settings import Settings\nfrom .file_manager import set_workspace\nfrom .file_manager import get_workspace\n\n\n# __variables__ with double-quoted values will be available in setup.py\n__version__ = \"0.2.2\"\n\n", "path": "instapy/__init__.py"}]}
412
91
gh_patches_debug_20853
rasdani/github-patches
git_diff
adap__flower-2768
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- If gRPC server is running behing a load balancer, clients may not be able to connect ### Describe the bug Flower is using the `peer()` method from `grpc.ServicerContext` in order to identify unique flower clients. However, in some situations (like when running the gRPC server behind a load balancer or proxy) different clients can have the same peer identifier (i.e. the same `IP:PORT`), as HTTP/2 connections are multiplexed. ### Steps/Code to Reproduce This can be tested with a simple [Traefik](https://doc.traefik.io/traefik/) setup as follows (https://doc.traefik.io/traefik/user-guides/grpc/): `traefik.yaml`: ``` entryPoints: web: address: :80 providers: file: filename: grpc.yaml api: {} ``` `grpc.yaml`: ``` http: routers: to-grpc: entryPoints: - "web" service: "srv-grpc" rule: "HostRegexp(`.*`)" services: srv-grpc: loadBalancer: servers: - url: h2c://127.0.0.1:5000 ``` The Traefik server can be executed as follows: ``` ./traefik --configFile=traefik.yaml ``` Then we can launch then a Flower sever with the following code: ``` import flwr as fl def acc_wavg(metrics): n = sum([i for i, _ in metrics]) acc = sum([i * metric["accuracy"] / n for i, metric in metrics]) return {"accuracy": acc} strategy = fl.server.strategy.FedAvg( min_available_clients=2, evaluate_metrics_aggregation_fn=acc_wavg ) fl.server.start_server( server_address="0.0.0.0:5000", config=fl.server.ServerConfig(num_rounds=3), strategy=strategy, ) ``` ### Expected Results When we connect two clients to the loadbalancer IP, on port 80, the first one connects and keeps waiting: ``` INFO flwr 2023-06-28 10:03:14,848 | grpc.py:50 | Opened insecure gRPC connection (no certificates were passed) DEBUG flwr 2023-06-28 10:03:14,849 | connection.py:39 | ChannelConnectivity.IDLE DEBUG flwr 2023-06-28 10:03:14,849 | connection.py:39 | ChannelConnectivity.CONNECTING DEBUG flwr 2023-06-28 10:03:14,875 | connection.py:39 | ChannelConnectivity.READY ``` However, the second one is not connected: ``` DEBUG flwr 2023-06-28 09:37:32,554 | connection.py:39 | ChannelConnectivity.IDLE DEBUG flwr 2023-06-28 09:37:32,554 | connection.py:39 | ChannelConnectivity.CONNECTING DEBUG flwr 2023-06-28 09:37:32,578 | connection.py:39 | ChannelConnectivity.READY DEBUG flwr 2023-06-28 09:37:32,784 | connection.py:113 | gRPC channel closed Traceback (most recent call last): File "/home/alvaro/w/prj/fl/fl.py", line 68, in <module> fl.client.start_numpy_client( File "/home/alvaro/w/prj/fl/VENV/lib/python3.11/site-packages/flwr/client/app.py", line 252, in start_numpy_client start_client( File "/home/alvaro/w/prj/fl/VENV/lib/python3.11/site-packages/flwr/client/app.py", line 174, in start_client server_message = receive() ^^^^^^^^^ File "/home/alvaro/w/prj/fl/VENV/lib/python3.11/site-packages/flwr/client/grpc_client/connection.py", line 105, in <lambda> receive: Callable[[], ServerMessage] = lambda: next(server_message_iterator) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/alvaro/w/prj/fl/VENV/lib/python3.11/site-packages/grpc/_channel.py", line 475, in __next__ return self._next() ^^^^^^^^^^^^ File "/home/alvaro/w/prj/fl/VENV/lib/python3.11/site-packages/grpc/_channel.py", line 879, in _next raise StopIteration() StopIteration ``` This is because the second client connection is discarded [here]https://github.com/adap/flower/blob/main/src/py/flwr/server/client_manager.py#L149) as it is coming from the same gRPC peer (i.e. the load balancer) due to this code [here](https://github.com/adap/flower/blob/main/src/py/flwr/server/fleet/grpc_bidi/flower_service_servicer.py#L91), as due to the above I assume that the tuple `ip:port` is not unique for gRPC clients, therefore it cannot be used to identify a unique flower client (as a matter of fact, the `ip:port` are those of the load balancer, not those of the actual client). As a test and quick hack we have moved to use uuids to identify the clients [here](https://github.com/AI4EOSC/flower/commit/b215d9f3cce1ad8806e296db4fe105a8b7f5c6c9). To my understanding, it is safe to do that way, as the peer identifier is not used elsewhere, but I do not know if it is planned to do something else with them. ### Actual Results Two and more clients should be able to connect when running behind a load balancer. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `src/py/flwr/server/fleet/grpc_bidi/flower_service_servicer.py` Content: ``` 1 # Copyright 2020 Flower Labs GmbH. All Rights Reserved. 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 # ============================================================================== 15 """Servicer for FlowerService. 16 17 Relevant knowledge for reading this modules code: 18 - https://github.com/grpc/grpc/blob/master/doc/statuscodes.md 19 """ 20 21 22 from typing import Callable, Iterator 23 24 import grpc 25 from iterators import TimeoutIterator 26 27 from flwr.proto import transport_pb2_grpc # pylint: disable=E0611 28 from flwr.proto.transport_pb2 import ( # pylint: disable=E0611 29 ClientMessage, 30 ServerMessage, 31 ) 32 from flwr.server.client_manager import ClientManager 33 from flwr.server.fleet.grpc_bidi.grpc_bridge import GrpcBridge, InsWrapper, ResWrapper 34 from flwr.server.fleet.grpc_bidi.grpc_client_proxy import GrpcClientProxy 35 36 37 def default_bridge_factory() -> GrpcBridge: 38 """Return GrpcBridge instance.""" 39 return GrpcBridge() 40 41 42 def default_grpc_client_proxy_factory(cid: str, bridge: GrpcBridge) -> GrpcClientProxy: 43 """Return GrpcClientProxy instance.""" 44 return GrpcClientProxy(cid=cid, bridge=bridge) 45 46 47 def register_client_proxy( 48 client_manager: ClientManager, 49 client_proxy: GrpcClientProxy, 50 context: grpc.ServicerContext, 51 ) -> bool: 52 """Try registering GrpcClientProxy with ClientManager.""" 53 is_success = client_manager.register(client_proxy) 54 if is_success: 55 56 def rpc_termination_callback() -> None: 57 client_proxy.bridge.close() 58 client_manager.unregister(client_proxy) 59 60 context.add_callback(rpc_termination_callback) 61 return is_success 62 63 64 class FlowerServiceServicer(transport_pb2_grpc.FlowerServiceServicer): 65 """FlowerServiceServicer for bi-directional gRPC message stream.""" 66 67 def __init__( 68 self, 69 client_manager: ClientManager, 70 grpc_bridge_factory: Callable[[], GrpcBridge] = default_bridge_factory, 71 grpc_client_proxy_factory: Callable[ 72 [str, GrpcBridge], GrpcClientProxy 73 ] = default_grpc_client_proxy_factory, 74 ) -> None: 75 self.client_manager: ClientManager = client_manager 76 self.grpc_bridge_factory = grpc_bridge_factory 77 self.client_proxy_factory = grpc_client_proxy_factory 78 79 def Join( # pylint: disable=invalid-name 80 self, 81 request_iterator: Iterator[ClientMessage], 82 context: grpc.ServicerContext, 83 ) -> Iterator[ServerMessage]: 84 """Facilitate bi-directional streaming of messages between server and client. 85 86 Invoked by each gRPC client which participates in the network. 87 88 Protocol: 89 - The first message is sent from the server to the client 90 - Both `ServerMessage` and `ClientMessage` are message "wrappers" 91 wrapping the actual message 92 - The `Join` method is (pretty much) unaware of the protocol 93 """ 94 peer: str = context.peer() 95 bridge = self.grpc_bridge_factory() 96 client_proxy = self.client_proxy_factory(peer, bridge) 97 is_success = register_client_proxy(self.client_manager, client_proxy, context) 98 99 if is_success: 100 # Get iterators 101 client_message_iterator = TimeoutIterator( 102 iterator=request_iterator, reset_on_next=True 103 ) 104 ins_wrapper_iterator = bridge.ins_wrapper_iterator() 105 106 # All messages will be pushed to client bridge directly 107 while True: 108 try: 109 # Get ins_wrapper from bridge and yield server_message 110 ins_wrapper: InsWrapper = next(ins_wrapper_iterator) 111 yield ins_wrapper.server_message 112 113 # Set current timeout, might be None 114 if ins_wrapper.timeout is not None: 115 client_message_iterator.set_timeout(ins_wrapper.timeout) 116 117 # Wait for client message 118 client_message = next(client_message_iterator) 119 120 if client_message is client_message_iterator.get_sentinel(): 121 # Important: calling `context.abort` in gRPC always 122 # raises an exception so that all code after the call to 123 # `context.abort` will not run. If subsequent code should 124 # be executed, the `rpc_termination_callback` can be used 125 # (as shown in the `register_client` function). 126 details = f"Timeout of {ins_wrapper.timeout}sec was exceeded." 127 context.abort( 128 code=grpc.StatusCode.DEADLINE_EXCEEDED, 129 details=details, 130 ) 131 # This return statement is only for the linter so it understands 132 # that client_message in subsequent lines is not None 133 # It does not understand that `context.abort` will terminate 134 # this execution context by raising an exception. 135 return 136 137 bridge.set_res_wrapper( 138 res_wrapper=ResWrapper(client_message=client_message) 139 ) 140 except StopIteration: 141 break 142 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/src/py/flwr/server/fleet/grpc_bidi/flower_service_servicer.py b/src/py/flwr/server/fleet/grpc_bidi/flower_service_servicer.py --- a/src/py/flwr/server/fleet/grpc_bidi/flower_service_servicer.py +++ b/src/py/flwr/server/fleet/grpc_bidi/flower_service_servicer.py @@ -18,7 +18,7 @@ - https://github.com/grpc/grpc/blob/master/doc/statuscodes.md """ - +import uuid from typing import Callable, Iterator import grpc @@ -88,7 +88,11 @@ wrapping the actual message - The `Join` method is (pretty much) unaware of the protocol """ - peer: str = context.peer() + # NOTE(aloga): this is a hack. when running flower behind a proxy, the peer can + # be the same for different clients (i.e. ip:port) so we use a uuid that is + # unique. + # peer: str = context.peer() + peer = uuid.uuid4().hex bridge = self.grpc_bridge_factory() client_proxy = self.client_proxy_factory(peer, bridge) is_success = register_client_proxy(self.client_manager, client_proxy, context)
{"golden_diff": "diff --git a/src/py/flwr/server/fleet/grpc_bidi/flower_service_servicer.py b/src/py/flwr/server/fleet/grpc_bidi/flower_service_servicer.py\n--- a/src/py/flwr/server/fleet/grpc_bidi/flower_service_servicer.py\n+++ b/src/py/flwr/server/fleet/grpc_bidi/flower_service_servicer.py\n@@ -18,7 +18,7 @@\n - https://github.com/grpc/grpc/blob/master/doc/statuscodes.md\n \"\"\"\n \n-\n+import uuid\n from typing import Callable, Iterator\n \n import grpc\n@@ -88,7 +88,11 @@\n wrapping the actual message\n - The `Join` method is (pretty much) unaware of the protocol\n \"\"\"\n- peer: str = context.peer()\n+ # NOTE(aloga): this is a hack. when running flower behind a proxy, the peer can\n+ # be the same for different clients (i.e. ip:port) so we use a uuid that is\n+ # unique.\n+ # peer: str = context.peer()\n+ peer = uuid.uuid4().hex\n bridge = self.grpc_bridge_factory()\n client_proxy = self.client_proxy_factory(peer, bridge)\n is_success = register_client_proxy(self.client_manager, client_proxy, context)\n", "issue": "If gRPC server is running behing a load balancer, clients may not be able to connect\n### Describe the bug\r\n\r\nFlower is using the `peer()` method from `grpc.ServicerContext` in order to identify unique flower clients. However, in some situations (like when running the gRPC server behind a load balancer or proxy) different clients can have the same peer identifier (i.e. the same `IP:PORT`), as HTTP/2 connections are multiplexed.\r\n\r\n### Steps/Code to Reproduce\r\n\r\nThis can be tested with a simple [Traefik](https://doc.traefik.io/traefik/) setup as follows (https://doc.traefik.io/traefik/user-guides/grpc/):\r\n\r\n`traefik.yaml`:\r\n```\r\nentryPoints:\r\n web:\r\n address: :80\r\n\r\nproviders:\r\n file:\r\n filename: grpc.yaml\r\n\r\napi: {}\r\n```\r\n\r\n`grpc.yaml`:\r\n```\r\nhttp:\r\n routers:\r\n to-grpc:\r\n entryPoints: \r\n - \"web\"\r\n service: \"srv-grpc\"\r\n rule: \"HostRegexp(`.*`)\"\r\n\r\n services:\r\n srv-grpc:\r\n loadBalancer:\r\n servers:\r\n - url: h2c://127.0.0.1:5000\r\n```\r\n\r\nThe Traefik server can be executed as follows:\r\n```\r\n ./traefik --configFile=traefik.yaml\r\n```\r\n\r\nThen we can launch then a Flower sever with the following code:\r\n```\r\nimport flwr as fl\r\n\r\ndef acc_wavg(metrics):\r\n n = sum([i for i, _ in metrics])\r\n acc = sum([i * metric[\"accuracy\"] / n for i, metric in metrics])\r\n return {\"accuracy\": acc}\r\n \r\nstrategy = fl.server.strategy.FedAvg(\r\n min_available_clients=2,\r\n evaluate_metrics_aggregation_fn=acc_wavg\r\n)\r\n \r\nfl.server.start_server(\r\n server_address=\"0.0.0.0:5000\",\r\n config=fl.server.ServerConfig(num_rounds=3),\r\n strategy=strategy,\r\n)\r\n```\r\n\r\n### Expected Results\r\n\r\nWhen we connect two clients to the loadbalancer IP, on port 80, the first one connects and keeps waiting:\r\n\r\n```\r\nINFO flwr 2023-06-28 10:03:14,848 | grpc.py:50 | Opened insecure gRPC connection (no certificates were passed)\r\nDEBUG flwr 2023-06-28 10:03:14,849 | connection.py:39 | ChannelConnectivity.IDLE\r\nDEBUG flwr 2023-06-28 10:03:14,849 | connection.py:39 | ChannelConnectivity.CONNECTING\r\nDEBUG flwr 2023-06-28 10:03:14,875 | connection.py:39 | ChannelConnectivity.READY\r\n```\r\n\r\nHowever, the second one is not connected:\r\n```\r\nDEBUG flwr 2023-06-28 09:37:32,554 | connection.py:39 | ChannelConnectivity.IDLE\r\nDEBUG flwr 2023-06-28 09:37:32,554 | connection.py:39 | ChannelConnectivity.CONNECTING\r\nDEBUG flwr 2023-06-28 09:37:32,578 | connection.py:39 | ChannelConnectivity.READY\r\nDEBUG flwr 2023-06-28 09:37:32,784 | connection.py:113 | gRPC channel closed\r\nTraceback (most recent call last):\r\n File \"/home/alvaro/w/prj/fl/fl.py\", line 68, in <module>\r\n fl.client.start_numpy_client(\r\n File \"/home/alvaro/w/prj/fl/VENV/lib/python3.11/site-packages/flwr/client/app.py\", line 252, in start_numpy_client\r\n start_client(\r\n File \"/home/alvaro/w/prj/fl/VENV/lib/python3.11/site-packages/flwr/client/app.py\", line 174, in start_client\r\n server_message = receive()\r\n ^^^^^^^^^\r\n File \"/home/alvaro/w/prj/fl/VENV/lib/python3.11/site-packages/flwr/client/grpc_client/connection.py\", line 105, in <lambda>\r\n receive: Callable[[], ServerMessage] = lambda: next(server_message_iterator)\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"/home/alvaro/w/prj/fl/VENV/lib/python3.11/site-packages/grpc/_channel.py\", line 475, in __next__\r\n return self._next()\r\n ^^^^^^^^^^^^\r\n File \"/home/alvaro/w/prj/fl/VENV/lib/python3.11/site-packages/grpc/_channel.py\", line 879, in _next\r\n raise StopIteration()\r\nStopIteration\r\n```\r\n\r\nThis is because the second client connection is discarded [here]https://github.com/adap/flower/blob/main/src/py/flwr/server/client_manager.py#L149) as it is coming from the same gRPC peer (i.e. the load balancer) due to this code [here](https://github.com/adap/flower/blob/main/src/py/flwr/server/fleet/grpc_bidi/flower_service_servicer.py#L91), as due to the above I assume that the tuple `ip:port` is not unique for gRPC clients, therefore it cannot be used to identify a unique flower client (as a matter of fact, the `ip:port` are those of the load balancer, not those of the actual client).\r\n\r\nAs a test and quick hack we have moved to use uuids to identify the clients [here](https://github.com/AI4EOSC/flower/commit/b215d9f3cce1ad8806e296db4fe105a8b7f5c6c9). To my understanding, it is safe to do that way, as the peer identifier is not used elsewhere, but I do not know if it is planned to do something else with them.\r\n\r\n### Actual Results\r\n\r\nTwo and more clients should be able to connect when running behind a load balancer.\n", "before_files": [{"content": "# Copyright 2020 Flower Labs GmbH. All Rights Reserved.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n# ==============================================================================\n\"\"\"Servicer for FlowerService.\n\nRelevant knowledge for reading this modules code:\n- https://github.com/grpc/grpc/blob/master/doc/statuscodes.md\n\"\"\"\n\n\nfrom typing import Callable, Iterator\n\nimport grpc\nfrom iterators import TimeoutIterator\n\nfrom flwr.proto import transport_pb2_grpc # pylint: disable=E0611\nfrom flwr.proto.transport_pb2 import ( # pylint: disable=E0611\n ClientMessage,\n ServerMessage,\n)\nfrom flwr.server.client_manager import ClientManager\nfrom flwr.server.fleet.grpc_bidi.grpc_bridge import GrpcBridge, InsWrapper, ResWrapper\nfrom flwr.server.fleet.grpc_bidi.grpc_client_proxy import GrpcClientProxy\n\n\ndef default_bridge_factory() -> GrpcBridge:\n \"\"\"Return GrpcBridge instance.\"\"\"\n return GrpcBridge()\n\n\ndef default_grpc_client_proxy_factory(cid: str, bridge: GrpcBridge) -> GrpcClientProxy:\n \"\"\"Return GrpcClientProxy instance.\"\"\"\n return GrpcClientProxy(cid=cid, bridge=bridge)\n\n\ndef register_client_proxy(\n client_manager: ClientManager,\n client_proxy: GrpcClientProxy,\n context: grpc.ServicerContext,\n) -> bool:\n \"\"\"Try registering GrpcClientProxy with ClientManager.\"\"\"\n is_success = client_manager.register(client_proxy)\n if is_success:\n\n def rpc_termination_callback() -> None:\n client_proxy.bridge.close()\n client_manager.unregister(client_proxy)\n\n context.add_callback(rpc_termination_callback)\n return is_success\n\n\nclass FlowerServiceServicer(transport_pb2_grpc.FlowerServiceServicer):\n \"\"\"FlowerServiceServicer for bi-directional gRPC message stream.\"\"\"\n\n def __init__(\n self,\n client_manager: ClientManager,\n grpc_bridge_factory: Callable[[], GrpcBridge] = default_bridge_factory,\n grpc_client_proxy_factory: Callable[\n [str, GrpcBridge], GrpcClientProxy\n ] = default_grpc_client_proxy_factory,\n ) -> None:\n self.client_manager: ClientManager = client_manager\n self.grpc_bridge_factory = grpc_bridge_factory\n self.client_proxy_factory = grpc_client_proxy_factory\n\n def Join( # pylint: disable=invalid-name\n self,\n request_iterator: Iterator[ClientMessage],\n context: grpc.ServicerContext,\n ) -> Iterator[ServerMessage]:\n \"\"\"Facilitate bi-directional streaming of messages between server and client.\n\n Invoked by each gRPC client which participates in the network.\n\n Protocol:\n - The first message is sent from the server to the client\n - Both `ServerMessage` and `ClientMessage` are message \"wrappers\"\n wrapping the actual message\n - The `Join` method is (pretty much) unaware of the protocol\n \"\"\"\n peer: str = context.peer()\n bridge = self.grpc_bridge_factory()\n client_proxy = self.client_proxy_factory(peer, bridge)\n is_success = register_client_proxy(self.client_manager, client_proxy, context)\n\n if is_success:\n # Get iterators\n client_message_iterator = TimeoutIterator(\n iterator=request_iterator, reset_on_next=True\n )\n ins_wrapper_iterator = bridge.ins_wrapper_iterator()\n\n # All messages will be pushed to client bridge directly\n while True:\n try:\n # Get ins_wrapper from bridge and yield server_message\n ins_wrapper: InsWrapper = next(ins_wrapper_iterator)\n yield ins_wrapper.server_message\n\n # Set current timeout, might be None\n if ins_wrapper.timeout is not None:\n client_message_iterator.set_timeout(ins_wrapper.timeout)\n\n # Wait for client message\n client_message = next(client_message_iterator)\n\n if client_message is client_message_iterator.get_sentinel():\n # Important: calling `context.abort` in gRPC always\n # raises an exception so that all code after the call to\n # `context.abort` will not run. If subsequent code should\n # be executed, the `rpc_termination_callback` can be used\n # (as shown in the `register_client` function).\n details = f\"Timeout of {ins_wrapper.timeout}sec was exceeded.\"\n context.abort(\n code=grpc.StatusCode.DEADLINE_EXCEEDED,\n details=details,\n )\n # This return statement is only for the linter so it understands\n # that client_message in subsequent lines is not None\n # It does not understand that `context.abort` will terminate\n # this execution context by raising an exception.\n return\n\n bridge.set_res_wrapper(\n res_wrapper=ResWrapper(client_message=client_message)\n )\n except StopIteration:\n break\n", "path": "src/py/flwr/server/fleet/grpc_bidi/flower_service_servicer.py"}], "after_files": [{"content": "# Copyright 2020 Flower Labs GmbH. All Rights Reserved.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n# ==============================================================================\n\"\"\"Servicer for FlowerService.\n\nRelevant knowledge for reading this modules code:\n- https://github.com/grpc/grpc/blob/master/doc/statuscodes.md\n\"\"\"\n\nimport uuid\nfrom typing import Callable, Iterator\n\nimport grpc\nfrom iterators import TimeoutIterator\n\nfrom flwr.proto import transport_pb2_grpc\nfrom flwr.proto.transport_pb2 import ClientMessage, ServerMessage\nfrom flwr.server.client_manager import ClientManager\nfrom flwr.server.fleet.grpc_bidi.grpc_bridge import GrpcBridge, InsWrapper, ResWrapper\nfrom flwr.server.fleet.grpc_bidi.grpc_client_proxy import GrpcClientProxy\n\n\ndef default_bridge_factory() -> GrpcBridge:\n \"\"\"Return GrpcBridge instance.\"\"\"\n return GrpcBridge()\n\n\ndef default_grpc_client_proxy_factory(cid: str, bridge: GrpcBridge) -> GrpcClientProxy:\n \"\"\"Return GrpcClientProxy instance.\"\"\"\n return GrpcClientProxy(cid=cid, bridge=bridge)\n\n\ndef register_client_proxy(\n client_manager: ClientManager,\n client_proxy: GrpcClientProxy,\n context: grpc.ServicerContext,\n) -> bool:\n \"\"\"Try registering GrpcClientProxy with ClientManager.\"\"\"\n is_success = client_manager.register(client_proxy)\n if is_success:\n\n def rpc_termination_callback() -> None:\n client_proxy.bridge.close()\n client_manager.unregister(client_proxy)\n\n context.add_callback(rpc_termination_callback)\n return is_success\n\n\nclass FlowerServiceServicer(transport_pb2_grpc.FlowerServiceServicer):\n \"\"\"FlowerServiceServicer for bi-directional gRPC message stream.\"\"\"\n\n def __init__(\n self,\n client_manager: ClientManager,\n grpc_bridge_factory: Callable[[], GrpcBridge] = default_bridge_factory,\n grpc_client_proxy_factory: Callable[\n [str, GrpcBridge], GrpcClientProxy\n ] = default_grpc_client_proxy_factory,\n ) -> None:\n self.client_manager: ClientManager = client_manager\n self.grpc_bridge_factory = grpc_bridge_factory\n self.client_proxy_factory = grpc_client_proxy_factory\n\n def Join( # pylint: disable=invalid-name\n self,\n request_iterator: Iterator[ClientMessage],\n context: grpc.ServicerContext,\n ) -> Iterator[ServerMessage]:\n \"\"\"Facilitate bi-directional streaming of messages between server and client.\n\n Invoked by each gRPC client which participates in the network.\n\n Protocol:\n - The first message is sent from the server to the client\n - Both `ServerMessage` and `ClientMessage` are message \"wrappers\"\n wrapping the actual message\n - The `Join` method is (pretty much) unaware of the protocol\n \"\"\"\n # NOTE(aloga): this is a hack. when running flower behind a proxy, the peer can\n # be the same for different clients (i.e. ip:port) so we use a uuid that is\n # unique.\n # peer: str = context.peer()\n peer = uuid.uuid4().hex\n bridge = self.grpc_bridge_factory()\n client_proxy = self.client_proxy_factory(peer, bridge)\n is_success = register_client_proxy(self.client_manager, client_proxy, context)\n\n if is_success:\n # Get iterators\n client_message_iterator = TimeoutIterator(\n iterator=request_iterator, reset_on_next=True\n )\n ins_wrapper_iterator = bridge.ins_wrapper_iterator()\n\n # All messages will be pushed to client bridge directly\n while True:\n try:\n # Get ins_wrapper from bridge and yield server_message\n ins_wrapper: InsWrapper = next(ins_wrapper_iterator)\n yield ins_wrapper.server_message\n\n # Set current timeout, might be None\n if ins_wrapper.timeout is not None:\n client_message_iterator.set_timeout(ins_wrapper.timeout)\n\n # Wait for client message\n client_message = next(client_message_iterator)\n\n if client_message is client_message_iterator.get_sentinel():\n # Important: calling `context.abort` in gRPC always\n # raises an exception so that all code after the call to\n # `context.abort` will not run. If subsequent code should\n # be executed, the `rpc_termination_callback` can be used\n # (as shown in the `register_client` function).\n details = f\"Timeout of {ins_wrapper.timeout}sec was exceeded.\"\n context.abort(\n code=grpc.StatusCode.DEADLINE_EXCEEDED,\n details=details,\n )\n # This return statement is only for the linter so it understands\n # that client_message in subsequent lines is not None\n # It does not understand that `context.abort` will terminate\n # this execution context by raising an exception.\n return\n\n bridge.set_res_wrapper(\n res_wrapper=ResWrapper(client_message=client_message)\n )\n except StopIteration:\n break\n", "path": "src/py/flwr/server/fleet/grpc_bidi/flower_service_servicer.py"}]}
3,107
275
gh_patches_debug_19887
rasdani/github-patches
git_diff
aws__aws-cli-1526
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- aws s3 sync --delete behaves differently if source is <LocalPath> rather than <S3Path> This issue was raised on: https://stackoverflow.com/questions/32304326/amazon-s3-sync-deleting-excluded-files Basically, doing `aws s3 sync . s3://bucket2 --delete` behaves differently to `aws s3 sync s3://bucket1 s3://bucket2 --delete` even if the two source directories are identical. It would appear that the logic for `--delete` behaves differently between Local and S3. An example is well-documented in the stackoverflow issue. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `awscli/customizations/s3/filters.py` Content: ``` 1 # Copyright 2013 Amazon.com, Inc. or its affiliates. All Rights Reserved. 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"). You 4 # may not use this file except in compliance with the License. A copy of 5 # the License is located at 6 # 7 # http://aws.amazon.com/apache2.0/ 8 # 9 # or in the "license" file accompanying this file. This file is 10 # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF 11 # ANY KIND, either express or implied. See the License for the specific 12 # language governing permissions and limitations under the License. 13 import logging 14 import fnmatch 15 import os 16 17 from awscli.customizations.s3.utils import split_s3_bucket_key 18 19 20 LOG = logging.getLogger(__name__) 21 22 23 def create_filter(parameters): 24 """Given the CLI parameters dict, create a Filter object.""" 25 # We need to evaluate all the filters based on the source 26 # directory. 27 if parameters['filters']: 28 cli_filters = parameters['filters'] 29 real_filters = [] 30 for filter_type, filter_pattern in cli_filters: 31 real_filters.append((filter_type.lstrip('-'), 32 filter_pattern)) 33 source_location = parameters['src'] 34 if source_location.startswith('s3://'): 35 # This gives us (bucket, keyname) and we want 36 # the bucket to be the root dir. 37 src_rootdir = _get_s3_root(source_location, 38 parameters['dir_op']) 39 dst_rootdir = _get_local_root(parameters['dest'], 40 parameters['dir_op']) 41 else: 42 src_rootdir = _get_local_root(parameters['src'], parameters['dir_op']) 43 dst_rootdir = _get_s3_root(parameters['dest'], 44 parameters['dir_op']) 45 46 return Filter(real_filters, src_rootdir, dst_rootdir) 47 else: 48 return Filter({}, None, None) 49 50 51 def _get_s3_root(source_location, dir_op): 52 # Obtain the bucket and the key. 53 bucket, key = split_s3_bucket_key(source_location) 54 if not dir_op and not key.endswith('/'): 55 # If we are not performing an operation on a directory and the key 56 # is of the form: ``prefix/key``. We only want ``prefix`` included in 57 # the the s3 root and not ``key``. 58 key = '/'.join(key.split('/')[:-1]) 59 # Rejoin the bucket and key back together. 60 s3_path = '/'.join([bucket, key]) 61 return s3_path 62 63 64 def _get_local_root(source_location, dir_op): 65 if dir_op: 66 rootdir = os.path.abspath(source_location) 67 else: 68 rootdir = os.path.abspath(os.path.dirname(source_location)) 69 return rootdir 70 71 72 class Filter(object): 73 """ 74 This is a universal exclude/include filter. 75 """ 76 def __init__(self, patterns, rootdir, dst_rootdir): 77 """ 78 :var patterns: A list of patterns. A pattern consits of a list 79 whose first member is a string 'exclude' or 'include'. 80 The second member is the actual rule. 81 :var rootdir: The root directory where the patterns are evaluated. 82 This will generally be the directory of the source location. 83 :var dst_rootdir: The destination root directory where the patterns are 84 evaluated. This is only useful when the --delete option is 85 also specified. 86 87 """ 88 self._original_patterns = patterns 89 self.patterns = self._full_path_patterns(patterns, rootdir) 90 self.dst_patterns = self._full_path_patterns(patterns, dst_rootdir) 91 92 def _full_path_patterns(self, original_patterns, rootdir): 93 # We need to transform the patterns into patterns that have 94 # the root dir prefixed, so things like ``--exclude "*"`` 95 # will actually be ['exclude', '/path/to/root/*'] 96 full_patterns = [] 97 for pattern in original_patterns: 98 full_patterns.append( 99 (pattern[0], os.path.join(rootdir, pattern[1]))) 100 return full_patterns 101 102 def call(self, file_infos): 103 """ 104 This function iterates over through the yielded file_info objects. It 105 determines the type of the file and applies pattern matching to 106 determine if the rule applies. While iterating though the patterns the 107 file is assigned a boolean flag to determine if a file should be 108 yielded on past the filer. Anything identified by the exclude filter 109 has its flag set to false. Anything identified by the include filter 110 has its flag set to True. All files begin with the flag set to true. 111 Rules listed at the end will overwrite flags thrown by rules listed 112 before it. 113 """ 114 for file_info in file_infos: 115 file_path = file_info.src 116 file_status = (file_info, True) 117 for pattern, dst_pattern in zip(self.patterns, self.dst_patterns): 118 current_file_status = self._match_pattern(pattern, file_info) 119 if current_file_status is not None: 120 file_status = current_file_status 121 dst_current_file_status = self._match_pattern(dst_pattern, file_info) 122 if dst_current_file_status is not None: 123 file_status = dst_current_file_status 124 LOG.debug("=%s final filtered status, should_include: %s", 125 file_path, file_status[1]) 126 if file_status[1]: 127 yield file_info 128 129 def _match_pattern(self, pattern, file_info): 130 file_status = None 131 file_path = file_info.src 132 pattern_type = pattern[0] 133 if file_info.src_type == 'local': 134 path_pattern = pattern[1].replace('/', os.sep) 135 else: 136 path_pattern = pattern[1].replace(os.sep, '/') 137 is_match = fnmatch.fnmatch(file_path, path_pattern) 138 if is_match and pattern_type == 'include': 139 file_status = (file_info, True) 140 LOG.debug("%s matched include filter: %s", 141 file_path, path_pattern) 142 elif is_match and pattern_type == 'exclude': 143 file_status = (file_info, False) 144 LOG.debug("%s matched exclude filter: %s", 145 file_path, path_pattern) 146 else: 147 LOG.debug("%s did not match %s filter: %s", 148 file_path, pattern_type[2:], path_pattern) 149 return file_status 150 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/awscli/customizations/s3/filters.py b/awscli/customizations/s3/filters.py --- a/awscli/customizations/s3/filters.py +++ b/awscli/customizations/s3/filters.py @@ -36,12 +36,16 @@ # the bucket to be the root dir. src_rootdir = _get_s3_root(source_location, parameters['dir_op']) - dst_rootdir = _get_local_root(parameters['dest'], - parameters['dir_op']) else: src_rootdir = _get_local_root(parameters['src'], parameters['dir_op']) + + destination_location = parameters['dest'] + if destination_location.startswith('s3://'): dst_rootdir = _get_s3_root(parameters['dest'], parameters['dir_op']) + else: + dst_rootdir = _get_local_root(parameters['dest'], + parameters['dir_op']) return Filter(real_filters, src_rootdir, dst_rootdir) else:
{"golden_diff": "diff --git a/awscli/customizations/s3/filters.py b/awscli/customizations/s3/filters.py\n--- a/awscli/customizations/s3/filters.py\n+++ b/awscli/customizations/s3/filters.py\n@@ -36,12 +36,16 @@\n # the bucket to be the root dir.\n src_rootdir = _get_s3_root(source_location,\n parameters['dir_op'])\n- dst_rootdir = _get_local_root(parameters['dest'],\n- parameters['dir_op'])\n else:\n src_rootdir = _get_local_root(parameters['src'], parameters['dir_op'])\n+\n+ destination_location = parameters['dest']\n+ if destination_location.startswith('s3://'):\n dst_rootdir = _get_s3_root(parameters['dest'],\n parameters['dir_op'])\n+ else:\n+ dst_rootdir = _get_local_root(parameters['dest'],\n+ parameters['dir_op'])\n \n return Filter(real_filters, src_rootdir, dst_rootdir)\n else:\n", "issue": "aws s3 sync --delete behaves differently if source is <LocalPath> rather than <S3Path>\nThis issue was raised on: https://stackoverflow.com/questions/32304326/amazon-s3-sync-deleting-excluded-files\n\nBasically, doing `aws s3 sync . s3://bucket2 --delete` behaves differently to `aws s3 sync s3://bucket1 s3://bucket2 --delete` even if the two source directories are identical.\n\nIt would appear that the logic for `--delete` behaves differently between Local and S3. An example is well-documented in the stackoverflow issue.\n\n", "before_files": [{"content": "# Copyright 2013 Amazon.com, Inc. or its affiliates. All Rights Reserved.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\"). You\n# may not use this file except in compliance with the License. A copy of\n# the License is located at\n#\n# http://aws.amazon.com/apache2.0/\n#\n# or in the \"license\" file accompanying this file. This file is\n# distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF\n# ANY KIND, either express or implied. See the License for the specific\n# language governing permissions and limitations under the License.\nimport logging\nimport fnmatch\nimport os\n\nfrom awscli.customizations.s3.utils import split_s3_bucket_key\n\n\nLOG = logging.getLogger(__name__)\n\n\ndef create_filter(parameters):\n \"\"\"Given the CLI parameters dict, create a Filter object.\"\"\"\n # We need to evaluate all the filters based on the source\n # directory.\n if parameters['filters']:\n cli_filters = parameters['filters']\n real_filters = []\n for filter_type, filter_pattern in cli_filters:\n real_filters.append((filter_type.lstrip('-'),\n filter_pattern))\n source_location = parameters['src']\n if source_location.startswith('s3://'):\n # This gives us (bucket, keyname) and we want\n # the bucket to be the root dir.\n src_rootdir = _get_s3_root(source_location,\n parameters['dir_op'])\n dst_rootdir = _get_local_root(parameters['dest'],\n parameters['dir_op'])\n else:\n src_rootdir = _get_local_root(parameters['src'], parameters['dir_op'])\n dst_rootdir = _get_s3_root(parameters['dest'],\n parameters['dir_op'])\n\n return Filter(real_filters, src_rootdir, dst_rootdir)\n else:\n return Filter({}, None, None)\n\n\ndef _get_s3_root(source_location, dir_op):\n # Obtain the bucket and the key.\n bucket, key = split_s3_bucket_key(source_location)\n if not dir_op and not key.endswith('/'):\n # If we are not performing an operation on a directory and the key\n # is of the form: ``prefix/key``. We only want ``prefix`` included in\n # the the s3 root and not ``key``.\n key = '/'.join(key.split('/')[:-1])\n # Rejoin the bucket and key back together.\n s3_path = '/'.join([bucket, key])\n return s3_path\n\n\ndef _get_local_root(source_location, dir_op):\n if dir_op:\n rootdir = os.path.abspath(source_location)\n else:\n rootdir = os.path.abspath(os.path.dirname(source_location))\n return rootdir\n\n\nclass Filter(object):\n \"\"\"\n This is a universal exclude/include filter.\n \"\"\"\n def __init__(self, patterns, rootdir, dst_rootdir):\n \"\"\"\n :var patterns: A list of patterns. A pattern consits of a list\n whose first member is a string 'exclude' or 'include'.\n The second member is the actual rule.\n :var rootdir: The root directory where the patterns are evaluated.\n This will generally be the directory of the source location.\n :var dst_rootdir: The destination root directory where the patterns are\n evaluated. This is only useful when the --delete option is\n also specified.\n\n \"\"\"\n self._original_patterns = patterns\n self.patterns = self._full_path_patterns(patterns, rootdir)\n self.dst_patterns = self._full_path_patterns(patterns, dst_rootdir)\n\n def _full_path_patterns(self, original_patterns, rootdir):\n # We need to transform the patterns into patterns that have\n # the root dir prefixed, so things like ``--exclude \"*\"``\n # will actually be ['exclude', '/path/to/root/*']\n full_patterns = []\n for pattern in original_patterns:\n full_patterns.append(\n (pattern[0], os.path.join(rootdir, pattern[1])))\n return full_patterns\n\n def call(self, file_infos):\n \"\"\"\n This function iterates over through the yielded file_info objects. It\n determines the type of the file and applies pattern matching to\n determine if the rule applies. While iterating though the patterns the\n file is assigned a boolean flag to determine if a file should be\n yielded on past the filer. Anything identified by the exclude filter\n has its flag set to false. Anything identified by the include filter\n has its flag set to True. All files begin with the flag set to true.\n Rules listed at the end will overwrite flags thrown by rules listed\n before it.\n \"\"\"\n for file_info in file_infos:\n file_path = file_info.src\n file_status = (file_info, True)\n for pattern, dst_pattern in zip(self.patterns, self.dst_patterns):\n current_file_status = self._match_pattern(pattern, file_info)\n if current_file_status is not None:\n file_status = current_file_status\n dst_current_file_status = self._match_pattern(dst_pattern, file_info)\n if dst_current_file_status is not None:\n file_status = dst_current_file_status\n LOG.debug(\"=%s final filtered status, should_include: %s\",\n file_path, file_status[1])\n if file_status[1]:\n yield file_info\n\n def _match_pattern(self, pattern, file_info):\n file_status = None\n file_path = file_info.src\n pattern_type = pattern[0]\n if file_info.src_type == 'local':\n path_pattern = pattern[1].replace('/', os.sep)\n else:\n path_pattern = pattern[1].replace(os.sep, '/')\n is_match = fnmatch.fnmatch(file_path, path_pattern)\n if is_match and pattern_type == 'include':\n file_status = (file_info, True)\n LOG.debug(\"%s matched include filter: %s\",\n file_path, path_pattern)\n elif is_match and pattern_type == 'exclude':\n file_status = (file_info, False)\n LOG.debug(\"%s matched exclude filter: %s\",\n file_path, path_pattern)\n else:\n LOG.debug(\"%s did not match %s filter: %s\",\n file_path, pattern_type[2:], path_pattern)\n return file_status\n", "path": "awscli/customizations/s3/filters.py"}], "after_files": [{"content": "# Copyright 2013 Amazon.com, Inc. or its affiliates. All Rights Reserved.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\"). You\n# may not use this file except in compliance with the License. A copy of\n# the License is located at\n#\n# http://aws.amazon.com/apache2.0/\n#\n# or in the \"license\" file accompanying this file. This file is\n# distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF\n# ANY KIND, either express or implied. See the License for the specific\n# language governing permissions and limitations under the License.\nimport logging\nimport fnmatch\nimport os\n\nfrom awscli.customizations.s3.utils import split_s3_bucket_key\n\n\nLOG = logging.getLogger(__name__)\n\n\ndef create_filter(parameters):\n \"\"\"Given the CLI parameters dict, create a Filter object.\"\"\"\n # We need to evaluate all the filters based on the source\n # directory.\n if parameters['filters']:\n cli_filters = parameters['filters']\n real_filters = []\n for filter_type, filter_pattern in cli_filters:\n real_filters.append((filter_type.lstrip('-'),\n filter_pattern))\n source_location = parameters['src']\n if source_location.startswith('s3://'):\n # This gives us (bucket, keyname) and we want\n # the bucket to be the root dir.\n src_rootdir = _get_s3_root(source_location,\n parameters['dir_op'])\n else:\n src_rootdir = _get_local_root(parameters['src'], parameters['dir_op'])\n\n destination_location = parameters['dest']\n if destination_location.startswith('s3://'):\n dst_rootdir = _get_s3_root(parameters['dest'],\n parameters['dir_op'])\n else:\n dst_rootdir = _get_local_root(parameters['dest'],\n parameters['dir_op'])\n\n return Filter(real_filters, src_rootdir, dst_rootdir)\n else:\n return Filter({}, None, None)\n\n\ndef _get_s3_root(source_location, dir_op):\n # Obtain the bucket and the key.\n bucket, key = split_s3_bucket_key(source_location)\n if not dir_op and not key.endswith('/'):\n # If we are not performing an operation on a directory and the key\n # is of the form: ``prefix/key``. We only want ``prefix`` included in\n # the the s3 root and not ``key``.\n key = '/'.join(key.split('/')[:-1])\n # Rejoin the bucket and key back together.\n s3_path = '/'.join([bucket, key])\n return s3_path\n\n\ndef _get_local_root(source_location, dir_op):\n if dir_op:\n rootdir = os.path.abspath(source_location)\n else:\n rootdir = os.path.abspath(os.path.dirname(source_location))\n return rootdir\n\n\nclass Filter(object):\n \"\"\"\n This is a universal exclude/include filter.\n \"\"\"\n def __init__(self, patterns, rootdir, dst_rootdir):\n \"\"\"\n :var patterns: A list of patterns. A pattern consits of a list\n whose first member is a string 'exclude' or 'include'.\n The second member is the actual rule.\n :var rootdir: The root directory where the patterns are evaluated.\n This will generally be the directory of the source location.\n :var dst_rootdir: The destination root directory where the patterns are\n evaluated. This is only useful when the --delete option is\n also specified.\n\n \"\"\"\n self._original_patterns = patterns\n self.patterns = self._full_path_patterns(patterns, rootdir)\n self.dst_patterns = self._full_path_patterns(patterns, dst_rootdir)\n\n def _full_path_patterns(self, original_patterns, rootdir):\n # We need to transform the patterns into patterns that have\n # the root dir prefixed, so things like ``--exclude \"*\"``\n # will actually be ['exclude', '/path/to/root/*']\n full_patterns = []\n for pattern in original_patterns:\n full_patterns.append(\n (pattern[0], os.path.join(rootdir, pattern[1])))\n return full_patterns\n\n def call(self, file_infos):\n \"\"\"\n This function iterates over through the yielded file_info objects. It\n determines the type of the file and applies pattern matching to\n determine if the rule applies. While iterating though the patterns the\n file is assigned a boolean flag to determine if a file should be\n yielded on past the filer. Anything identified by the exclude filter\n has its flag set to false. Anything identified by the include filter\n has its flag set to True. All files begin with the flag set to true.\n Rules listed at the end will overwrite flags thrown by rules listed\n before it.\n \"\"\"\n for file_info in file_infos:\n file_path = file_info.src\n file_status = (file_info, True)\n for pattern, dst_pattern in zip(self.patterns, self.dst_patterns):\n current_file_status = self._match_pattern(pattern, file_info)\n if current_file_status is not None:\n file_status = current_file_status\n dst_current_file_status = self._match_pattern(dst_pattern, file_info)\n if dst_current_file_status is not None:\n file_status = dst_current_file_status\n LOG.debug(\"=%s final filtered status, should_include: %s\",\n file_path, file_status[1])\n if file_status[1]:\n yield file_info\n\n def _match_pattern(self, pattern, file_info):\n file_status = None\n file_path = file_info.src\n pattern_type = pattern[0]\n if file_info.src_type == 'local':\n path_pattern = pattern[1].replace('/', os.sep)\n else:\n path_pattern = pattern[1].replace(os.sep, '/')\n is_match = fnmatch.fnmatch(file_path, path_pattern)\n if is_match and pattern_type == 'include':\n file_status = (file_info, True)\n LOG.debug(\"%s matched include filter: %s\",\n file_path, path_pattern)\n elif is_match and pattern_type == 'exclude':\n file_status = (file_info, False)\n LOG.debug(\"%s matched exclude filter: %s\",\n file_path, path_pattern)\n else:\n LOG.debug(\"%s did not match %s filter: %s\",\n file_path, pattern_type[2:], path_pattern)\n return file_status\n", "path": "awscli/customizations/s3/filters.py"}]}
2,095
217
gh_patches_debug_24791
rasdani/github-patches
git_diff
svthalia__concrexit-1302
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- TypeError: '<' not supported between instances of 'datetime.date' and 'NoneType' Sentry Issue: [CONCREXIT-3T](https://sentry.io/organizations/thalia/issues/1937285207/?referrer=github_integration) ``` TypeError: '<' not supported between instances of 'datetime.date' and 'NoneType' (5 additional frame(s) were not displayed) ... File "django/views/generic/base.py", line 98, in dispatch return handler(request, *args, **kwargs) File "django/views/generic/detail.py", line 107, in get context = self.get_context_data(object=self.object) File "members/views.py", line 181, in get_context_data societies = member_societies(member) File "members/services.py", line 91, in member_societies societies = _member_group_memberships( File "members/services.py", line 45, in _member_group_memberships if data[name]["latest"] < membership.until: ``` --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `website/members/services.py` Content: ``` 1 """Services defined in the members package""" 2 from datetime import date 3 from typing import Callable, List, Dict, Any 4 5 from django.conf import settings 6 from django.db.models import Q, Count 7 from django.utils import timezone 8 from django.utils.translation import gettext 9 10 from members import emails 11 from members.models import Membership, Member 12 from utils.snippets import datetime_to_lectureyear 13 14 15 def _member_group_memberships( 16 member: Member, condition: Callable[[Membership], bool] 17 ) -> Dict[str, Any]: 18 """ 19 Determines the group membership of a user based on a condition 20 :return: Object with group memberships 21 """ 22 memberships = member.membergroupmembership_set.all() 23 data = {} 24 25 for membership in memberships: 26 if not condition(membership): 27 continue 28 period = { 29 "since": membership.since, 30 "until": membership.until, 31 "chair": membership.chair, 32 } 33 34 if hasattr(membership.group, "board"): 35 period["role"] = membership.role 36 37 if membership.until is None and hasattr(membership.group, "board"): 38 period["until"] = membership.group.board.until 39 40 name = membership.group.name 41 if data.get(name): 42 data[name]["periods"].append(period) 43 if data[name]["earliest"] > membership.since: 44 data[name]["earliest"] = membership.since 45 if data[name]["latest"] < membership.until: 46 data[name]["latest"] = membership.until 47 data[name]["periods"].sort(key=lambda x: x["since"]) 48 else: 49 data[name] = { 50 "pk": membership.group.pk, 51 "active": membership.group.active, 52 "name": name, 53 "periods": [period], 54 "url": settings.BASE_URL + membership.group.get_absolute_url(), 55 "earliest": membership.since, 56 "latest": membership.until, 57 } 58 return data 59 60 61 def member_achievements(member) -> List: 62 """ 63 Derives a list of achievements of a member 64 Committee and board memberships + mentorships 65 """ 66 achievements = _member_group_memberships( 67 member, 68 lambda membership: ( 69 hasattr(membership.group, "board") or hasattr(membership.group, "committee") 70 ), 71 ) 72 73 mentor_years = member.mentorship_set.all() 74 for mentor_year in mentor_years: 75 name = "Mentor in {}".format(mentor_year.year) 76 # Ensure mentorships appear last but are sorted 77 earliest = date.today() 78 earliest = earliest.replace(year=earliest.year + mentor_year.year) 79 if not achievements.get(name): 80 achievements[name] = { 81 "name": name, 82 "earliest": earliest, 83 } 84 return sorted(achievements.values(), key=lambda x: x["earliest"]) 85 86 87 def member_societies(member) -> List: 88 """ 89 Derives a list of societies a member was part of 90 """ 91 societies = _member_group_memberships( 92 member, lambda membership: (hasattr(membership.group, "society")) 93 ) 94 return sorted(societies.values(), key=lambda x: x["earliest"]) 95 96 97 def gen_stats_member_type() -> Dict[str, int]: 98 """ 99 Generate a dictionary where every key is a member type with 100 the value being the number of current members of that type 101 """ 102 103 data = {} 104 for key, display in Membership.MEMBERSHIP_TYPES: 105 data[str(display)] = ( 106 Membership.objects.filter(since__lte=date.today()) 107 .filter(Q(until__isnull=True) | Q(until__gt=date.today())) 108 .filter(type=key) 109 .count() 110 ) 111 return data 112 113 114 def gen_stats_year() -> Dict[str, Dict[str, int]]: 115 """ 116 Generate list with 6 entries, where each entry represents the total amount 117 of Thalia members in a year. The sixth element contains all the multi-year 118 students. 119 """ 120 stats_year = {} 121 current_year = datetime_to_lectureyear(date.today()) 122 123 for i in range(5): 124 new = {} 125 for key, _ in Membership.MEMBERSHIP_TYPES: 126 new[key] = ( 127 Membership.objects.filter(user__profile__starting_year=current_year - i) 128 .filter(since__lte=date.today()) 129 .filter(Q(until__isnull=True) | Q(until__gt=date.today())) 130 .filter(type=key) 131 .count() 132 ) 133 stats_year[str(current_year - i)] = new 134 135 # Add multi year members 136 new = {} 137 for key, _ in Membership.MEMBERSHIP_TYPES: 138 new[key] = ( 139 Membership.objects.filter(user__profile__starting_year__lt=current_year - 4) 140 .filter(since__lte=date.today()) 141 .filter(Q(until__isnull=True) | Q(until__gt=date.today())) 142 .filter(type=key) 143 .count() 144 ) 145 stats_year[str(gettext("Older"))] = new 146 147 return stats_year 148 149 150 def verify_email_change(change_request) -> None: 151 """ 152 Mark the email change request as verified 153 154 :param change_request: the email change request 155 """ 156 change_request.verified = True 157 change_request.save() 158 159 process_email_change(change_request) 160 161 162 def confirm_email_change(change_request) -> None: 163 """ 164 Mark the email change request as verified 165 166 :param change_request: the email change request 167 """ 168 change_request.confirmed = True 169 change_request.save() 170 171 process_email_change(change_request) 172 173 174 def process_email_change(change_request) -> None: 175 """ 176 Change the user's email address if the request was completed and 177 send the completion email 178 179 :param change_request: the email change request 180 """ 181 if not change_request.completed: 182 return 183 184 member = change_request.member 185 member.email = change_request.email 186 member.save() 187 188 emails.send_email_change_completion_message(change_request) 189 190 191 def execute_data_minimisation(dry_run=False, members=None) -> List[Member]: 192 """ 193 Clean the profiles of members/users of whom the last membership ended 194 at least 31 days ago 195 196 :param dry_run: does not really remove data if True 197 :param members: queryset of members to process, optional 198 :return: list of processed members 199 """ 200 if not members: 201 members = Member.objects 202 members = ( 203 members.annotate(membership_count=Count("membership")) 204 .exclude( 205 ( 206 Q(membership__until__isnull=True) 207 | Q(membership__until__gt=timezone.now().date()) 208 ) 209 & Q(membership_count__gt=0) 210 ) 211 .distinct() 212 .prefetch_related("membership_set", "profile") 213 ) 214 deletion_period = timezone.now().date() - timezone.timedelta(days=31) 215 processed_members = [] 216 for member in members: 217 if ( 218 member.latest_membership is None 219 or member.latest_membership.until <= deletion_period 220 ): 221 processed_members.append(member) 222 profile = member.profile 223 profile.student_number = None 224 profile.phone_number = None 225 profile.address_street = None 226 profile.address_street2 = None 227 profile.address_postal_code = None 228 profile.address_city = None 229 profile.address_country = None 230 profile.birthday = None 231 profile.emergency_contact_phone_number = None 232 profile.emergency_contact = None 233 member.bank_accounts.all().delete() 234 if not dry_run: 235 profile.save() 236 237 return processed_members 238 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/website/members/services.py b/website/members/services.py --- a/website/members/services.py +++ b/website/members/services.py @@ -40,10 +40,13 @@ name = membership.group.name if data.get(name): data[name]["periods"].append(period) - if data[name]["earliest"] > membership.since: - data[name]["earliest"] = membership.since - if data[name]["latest"] < membership.until: - data[name]["latest"] = membership.until + if data[name]["earliest"] > period["since"]: + data[name]["earliest"] = period["since"] + if period["until"] is None or ( + data[name]["latest"] is not None + and data[name]["latest"] < period["until"] + ): + data[name]["latest"] = period["until"] data[name]["periods"].sort(key=lambda x: x["since"]) else: data[name] = { @@ -52,8 +55,8 @@ "name": name, "periods": [period], "url": settings.BASE_URL + membership.group.get_absolute_url(), - "earliest": membership.since, - "latest": membership.until, + "earliest": period["since"], + "latest": period["until"], } return data
{"golden_diff": "diff --git a/website/members/services.py b/website/members/services.py\n--- a/website/members/services.py\n+++ b/website/members/services.py\n@@ -40,10 +40,13 @@\n name = membership.group.name\n if data.get(name):\n data[name][\"periods\"].append(period)\n- if data[name][\"earliest\"] > membership.since:\n- data[name][\"earliest\"] = membership.since\n- if data[name][\"latest\"] < membership.until:\n- data[name][\"latest\"] = membership.until\n+ if data[name][\"earliest\"] > period[\"since\"]:\n+ data[name][\"earliest\"] = period[\"since\"]\n+ if period[\"until\"] is None or (\n+ data[name][\"latest\"] is not None\n+ and data[name][\"latest\"] < period[\"until\"]\n+ ):\n+ data[name][\"latest\"] = period[\"until\"]\n data[name][\"periods\"].sort(key=lambda x: x[\"since\"])\n else:\n data[name] = {\n@@ -52,8 +55,8 @@\n \"name\": name,\n \"periods\": [period],\n \"url\": settings.BASE_URL + membership.group.get_absolute_url(),\n- \"earliest\": membership.since,\n- \"latest\": membership.until,\n+ \"earliest\": period[\"since\"],\n+ \"latest\": period[\"until\"],\n }\n return data\n", "issue": "TypeError: '<' not supported between instances of 'datetime.date' and 'NoneType'\nSentry Issue: [CONCREXIT-3T](https://sentry.io/organizations/thalia/issues/1937285207/?referrer=github_integration)\n\n```\nTypeError: '<' not supported between instances of 'datetime.date' and 'NoneType'\n(5 additional frame(s) were not displayed)\n...\n File \"django/views/generic/base.py\", line 98, in dispatch\n return handler(request, *args, **kwargs)\n File \"django/views/generic/detail.py\", line 107, in get\n context = self.get_context_data(object=self.object)\n File \"members/views.py\", line 181, in get_context_data\n societies = member_societies(member)\n File \"members/services.py\", line 91, in member_societies\n societies = _member_group_memberships(\n File \"members/services.py\", line 45, in _member_group_memberships\n if data[name][\"latest\"] < membership.until:\n```\n", "before_files": [{"content": "\"\"\"Services defined in the members package\"\"\"\nfrom datetime import date\nfrom typing import Callable, List, Dict, Any\n\nfrom django.conf import settings\nfrom django.db.models import Q, Count\nfrom django.utils import timezone\nfrom django.utils.translation import gettext\n\nfrom members import emails\nfrom members.models import Membership, Member\nfrom utils.snippets import datetime_to_lectureyear\n\n\ndef _member_group_memberships(\n member: Member, condition: Callable[[Membership], bool]\n) -> Dict[str, Any]:\n \"\"\"\n Determines the group membership of a user based on a condition\n :return: Object with group memberships\n \"\"\"\n memberships = member.membergroupmembership_set.all()\n data = {}\n\n for membership in memberships:\n if not condition(membership):\n continue\n period = {\n \"since\": membership.since,\n \"until\": membership.until,\n \"chair\": membership.chair,\n }\n\n if hasattr(membership.group, \"board\"):\n period[\"role\"] = membership.role\n\n if membership.until is None and hasattr(membership.group, \"board\"):\n period[\"until\"] = membership.group.board.until\n\n name = membership.group.name\n if data.get(name):\n data[name][\"periods\"].append(period)\n if data[name][\"earliest\"] > membership.since:\n data[name][\"earliest\"] = membership.since\n if data[name][\"latest\"] < membership.until:\n data[name][\"latest\"] = membership.until\n data[name][\"periods\"].sort(key=lambda x: x[\"since\"])\n else:\n data[name] = {\n \"pk\": membership.group.pk,\n \"active\": membership.group.active,\n \"name\": name,\n \"periods\": [period],\n \"url\": settings.BASE_URL + membership.group.get_absolute_url(),\n \"earliest\": membership.since,\n \"latest\": membership.until,\n }\n return data\n\n\ndef member_achievements(member) -> List:\n \"\"\"\n Derives a list of achievements of a member\n Committee and board memberships + mentorships\n \"\"\"\n achievements = _member_group_memberships(\n member,\n lambda membership: (\n hasattr(membership.group, \"board\") or hasattr(membership.group, \"committee\")\n ),\n )\n\n mentor_years = member.mentorship_set.all()\n for mentor_year in mentor_years:\n name = \"Mentor in {}\".format(mentor_year.year)\n # Ensure mentorships appear last but are sorted\n earliest = date.today()\n earliest = earliest.replace(year=earliest.year + mentor_year.year)\n if not achievements.get(name):\n achievements[name] = {\n \"name\": name,\n \"earliest\": earliest,\n }\n return sorted(achievements.values(), key=lambda x: x[\"earliest\"])\n\n\ndef member_societies(member) -> List:\n \"\"\"\n Derives a list of societies a member was part of\n \"\"\"\n societies = _member_group_memberships(\n member, lambda membership: (hasattr(membership.group, \"society\"))\n )\n return sorted(societies.values(), key=lambda x: x[\"earliest\"])\n\n\ndef gen_stats_member_type() -> Dict[str, int]:\n \"\"\"\n Generate a dictionary where every key is a member type with\n the value being the number of current members of that type\n \"\"\"\n\n data = {}\n for key, display in Membership.MEMBERSHIP_TYPES:\n data[str(display)] = (\n Membership.objects.filter(since__lte=date.today())\n .filter(Q(until__isnull=True) | Q(until__gt=date.today()))\n .filter(type=key)\n .count()\n )\n return data\n\n\ndef gen_stats_year() -> Dict[str, Dict[str, int]]:\n \"\"\"\n Generate list with 6 entries, where each entry represents the total amount\n of Thalia members in a year. The sixth element contains all the multi-year\n students.\n \"\"\"\n stats_year = {}\n current_year = datetime_to_lectureyear(date.today())\n\n for i in range(5):\n new = {}\n for key, _ in Membership.MEMBERSHIP_TYPES:\n new[key] = (\n Membership.objects.filter(user__profile__starting_year=current_year - i)\n .filter(since__lte=date.today())\n .filter(Q(until__isnull=True) | Q(until__gt=date.today()))\n .filter(type=key)\n .count()\n )\n stats_year[str(current_year - i)] = new\n\n # Add multi year members\n new = {}\n for key, _ in Membership.MEMBERSHIP_TYPES:\n new[key] = (\n Membership.objects.filter(user__profile__starting_year__lt=current_year - 4)\n .filter(since__lte=date.today())\n .filter(Q(until__isnull=True) | Q(until__gt=date.today()))\n .filter(type=key)\n .count()\n )\n stats_year[str(gettext(\"Older\"))] = new\n\n return stats_year\n\n\ndef verify_email_change(change_request) -> None:\n \"\"\"\n Mark the email change request as verified\n\n :param change_request: the email change request\n \"\"\"\n change_request.verified = True\n change_request.save()\n\n process_email_change(change_request)\n\n\ndef confirm_email_change(change_request) -> None:\n \"\"\"\n Mark the email change request as verified\n\n :param change_request: the email change request\n \"\"\"\n change_request.confirmed = True\n change_request.save()\n\n process_email_change(change_request)\n\n\ndef process_email_change(change_request) -> None:\n \"\"\"\n Change the user's email address if the request was completed and\n send the completion email\n\n :param change_request: the email change request\n \"\"\"\n if not change_request.completed:\n return\n\n member = change_request.member\n member.email = change_request.email\n member.save()\n\n emails.send_email_change_completion_message(change_request)\n\n\ndef execute_data_minimisation(dry_run=False, members=None) -> List[Member]:\n \"\"\"\n Clean the profiles of members/users of whom the last membership ended\n at least 31 days ago\n\n :param dry_run: does not really remove data if True\n :param members: queryset of members to process, optional\n :return: list of processed members\n \"\"\"\n if not members:\n members = Member.objects\n members = (\n members.annotate(membership_count=Count(\"membership\"))\n .exclude(\n (\n Q(membership__until__isnull=True)\n | Q(membership__until__gt=timezone.now().date())\n )\n & Q(membership_count__gt=0)\n )\n .distinct()\n .prefetch_related(\"membership_set\", \"profile\")\n )\n deletion_period = timezone.now().date() - timezone.timedelta(days=31)\n processed_members = []\n for member in members:\n if (\n member.latest_membership is None\n or member.latest_membership.until <= deletion_period\n ):\n processed_members.append(member)\n profile = member.profile\n profile.student_number = None\n profile.phone_number = None\n profile.address_street = None\n profile.address_street2 = None\n profile.address_postal_code = None\n profile.address_city = None\n profile.address_country = None\n profile.birthday = None\n profile.emergency_contact_phone_number = None\n profile.emergency_contact = None\n member.bank_accounts.all().delete()\n if not dry_run:\n profile.save()\n\n return processed_members\n", "path": "website/members/services.py"}], "after_files": [{"content": "\"\"\"Services defined in the members package\"\"\"\nfrom datetime import date\nfrom typing import Callable, List, Dict, Any\n\nfrom django.conf import settings\nfrom django.db.models import Q, Count\nfrom django.utils import timezone\nfrom django.utils.translation import gettext\n\nfrom members import emails\nfrom members.models import Membership, Member\nfrom utils.snippets import datetime_to_lectureyear\n\n\ndef _member_group_memberships(\n member: Member, condition: Callable[[Membership], bool]\n) -> Dict[str, Any]:\n \"\"\"\n Determines the group membership of a user based on a condition\n :return: Object with group memberships\n \"\"\"\n memberships = member.membergroupmembership_set.all()\n data = {}\n\n for membership in memberships:\n if not condition(membership):\n continue\n period = {\n \"since\": membership.since,\n \"until\": membership.until,\n \"chair\": membership.chair,\n }\n\n if hasattr(membership.group, \"board\"):\n period[\"role\"] = membership.role\n\n if membership.until is None and hasattr(membership.group, \"board\"):\n period[\"until\"] = membership.group.board.until\n\n name = membership.group.name\n if data.get(name):\n data[name][\"periods\"].append(period)\n if data[name][\"earliest\"] > period[\"since\"]:\n data[name][\"earliest\"] = period[\"since\"]\n if period[\"until\"] is None or (\n data[name][\"latest\"] is not None\n and data[name][\"latest\"] < period[\"until\"]\n ):\n data[name][\"latest\"] = period[\"until\"]\n data[name][\"periods\"].sort(key=lambda x: x[\"since\"])\n else:\n data[name] = {\n \"pk\": membership.group.pk,\n \"active\": membership.group.active,\n \"name\": name,\n \"periods\": [period],\n \"url\": settings.BASE_URL + membership.group.get_absolute_url(),\n \"earliest\": period[\"since\"],\n \"latest\": period[\"until\"],\n }\n return data\n\n\ndef member_achievements(member) -> List:\n \"\"\"\n Derives a list of achievements of a member\n Committee and board memberships + mentorships\n \"\"\"\n achievements = _member_group_memberships(\n member,\n lambda membership: (\n hasattr(membership.group, \"board\") or hasattr(membership.group, \"committee\")\n ),\n )\n\n mentor_years = member.mentorship_set.all()\n for mentor_year in mentor_years:\n name = \"Mentor in {}\".format(mentor_year.year)\n # Ensure mentorships appear last but are sorted\n earliest = date.today()\n earliest = earliest.replace(year=earliest.year + mentor_year.year)\n if not achievements.get(name):\n achievements[name] = {\n \"name\": name,\n \"earliest\": earliest,\n }\n return sorted(achievements.values(), key=lambda x: x[\"earliest\"])\n\n\ndef member_societies(member) -> List:\n \"\"\"\n Derives a list of societies a member was part of\n \"\"\"\n societies = _member_group_memberships(\n member, lambda membership: (hasattr(membership.group, \"society\"))\n )\n return sorted(societies.values(), key=lambda x: x[\"earliest\"])\n\n\ndef gen_stats_member_type() -> Dict[str, int]:\n \"\"\"\n Generate a dictionary where every key is a member type with\n the value being the number of current members of that type\n \"\"\"\n\n data = {}\n for key, display in Membership.MEMBERSHIP_TYPES:\n data[str(display)] = (\n Membership.objects.filter(since__lte=date.today())\n .filter(Q(until__isnull=True) | Q(until__gt=date.today()))\n .filter(type=key)\n .count()\n )\n return data\n\n\ndef gen_stats_year() -> Dict[str, Dict[str, int]]:\n \"\"\"\n Generate list with 6 entries, where each entry represents the total amount\n of Thalia members in a year. The sixth element contains all the multi-year\n students.\n \"\"\"\n stats_year = {}\n current_year = datetime_to_lectureyear(date.today())\n\n for i in range(5):\n new = {}\n for key, _ in Membership.MEMBERSHIP_TYPES:\n new[key] = (\n Membership.objects.filter(user__profile__starting_year=current_year - i)\n .filter(since__lte=date.today())\n .filter(Q(until__isnull=True) | Q(until__gt=date.today()))\n .filter(type=key)\n .count()\n )\n stats_year[str(current_year - i)] = new\n\n # Add multi year members\n new = {}\n for key, _ in Membership.MEMBERSHIP_TYPES:\n new[key] = (\n Membership.objects.filter(user__profile__starting_year__lt=current_year - 4)\n .filter(since__lte=date.today())\n .filter(Q(until__isnull=True) | Q(until__gt=date.today()))\n .filter(type=key)\n .count()\n )\n stats_year[str(gettext(\"Older\"))] = new\n\n return stats_year\n\n\ndef verify_email_change(change_request) -> None:\n \"\"\"\n Mark the email change request as verified\n\n :param change_request: the email change request\n \"\"\"\n change_request.verified = True\n change_request.save()\n\n process_email_change(change_request)\n\n\ndef confirm_email_change(change_request) -> None:\n \"\"\"\n Mark the email change request as verified\n\n :param change_request: the email change request\n \"\"\"\n change_request.confirmed = True\n change_request.save()\n\n process_email_change(change_request)\n\n\ndef process_email_change(change_request) -> None:\n \"\"\"\n Change the user's email address if the request was completed and\n send the completion email\n\n :param change_request: the email change request\n \"\"\"\n if not change_request.completed:\n return\n\n member = change_request.member\n member.email = change_request.email\n member.save()\n\n emails.send_email_change_completion_message(change_request)\n\n\ndef execute_data_minimisation(dry_run=False, members=None) -> List[Member]:\n \"\"\"\n Clean the profiles of members/users of whom the last membership ended\n at least 31 days ago\n\n :param dry_run: does not really remove data if True\n :param members: queryset of members to process, optional\n :return: list of processed members\n \"\"\"\n if not members:\n members = Member.objects\n members = (\n members.annotate(membership_count=Count(\"membership\"))\n .exclude(\n (\n Q(membership__until__isnull=True)\n | Q(membership__until__gt=timezone.now().date())\n )\n & Q(membership_count__gt=0)\n )\n .distinct()\n .prefetch_related(\"membership_set\", \"profile\")\n )\n deletion_period = timezone.now().date() - timezone.timedelta(days=31)\n processed_members = []\n for member in members:\n if (\n member.latest_membership is None\n or member.latest_membership.until <= deletion_period\n ):\n processed_members.append(member)\n profile = member.profile\n profile.student_number = None\n profile.phone_number = None\n profile.address_street = None\n profile.address_street2 = None\n profile.address_postal_code = None\n profile.address_city = None\n profile.address_country = None\n profile.birthday = None\n profile.emergency_contact_phone_number = None\n profile.emergency_contact = None\n member.bank_accounts.all().delete()\n if not dry_run:\n profile.save()\n\n return processed_members\n", "path": "website/members/services.py"}]}
2,717
308
gh_patches_debug_10004
rasdani/github-patches
git_diff
apluslms__a-plus-616
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Add max_submissions in the course points API endpoint This API endpoint `/api/v2/courses/COURSEID/points/USERID/` for course points shows the user's points in exercises. It also includes some exercise info that is also provided by the exercise endpoint (`/api/v2/exercises/ID/`). The points API already contains `max_points` and `points_to_pass`, so why not also include `max_submissions` (maximum number of allowed submissions)? Relevant code: https://github.com/apluslms/a-plus/blob/d34f94b7c9a8e4d22cd28d08968b36787bb344c4/exercise/api/views.py#L420 https://github.com/apluslms/a-plus/blob/d34f94b7c9a8e4d22cd28d08968b36787bb344c4/exercise/api/custom_serializers.py#L76 --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `exercise/api/serializers.py` Content: ``` 1 from rest_framework import serializers 2 from rest_framework.reverse import reverse 3 4 from lib.api.fields import NestedHyperlinkedIdentityField 5 from lib.api.serializers import AplusModelSerializer, HtmlViewField 6 from userprofile.api.serializers import UserBriefSerializer 7 from ..models import Submission, SubmittedFile, BaseExercise 8 9 10 __all__ = [ 11 'ExerciseBriefSerializer', 12 'SubmissionBriefSerializer', 13 'SubmittedFileBriefSerializer', 14 'SubmitterStatsBriefSerializer', 15 ] 16 17 18 class ExerciseBriefSerializer(AplusModelSerializer): 19 url = NestedHyperlinkedIdentityField( 20 view_name='api:exercise-detail', 21 lookup_map='exercise.api.views.ExerciseViewSet', 22 ) 23 display_name = serializers.CharField(source='__str__') 24 25 class Meta(AplusModelSerializer.Meta): 26 model = BaseExercise 27 fields = ( 28 'url', 29 'html_url', 30 'display_name', 31 ) 32 33 34 class SubmissionBriefSerializer(AplusModelSerializer): 35 #display_name = serializers.CharField(source='__str__') 36 37 class Meta(AplusModelSerializer.Meta): 38 model = Submission 39 fields = ( 40 'submission_time', 41 ) 42 extra_kwargs = { 43 'url': { 44 'view_name': 'api:submission-detail', 45 'lookup_map': 'exercise.api.views.SubmissionViewSet', 46 } 47 } 48 49 50 class SubmittedFileBriefSerializer(AplusModelSerializer): 51 #url = HtmlViewField() 52 url = NestedHyperlinkedIdentityField( 53 view_name='api:submission-files-detail', 54 lookup_map='exercise.api.views.SubmissionFileViewSet', 55 ) 56 57 class Meta(AplusModelSerializer.Meta): 58 model = SubmittedFile 59 fields = ( 60 'url', 61 'filename', 62 'param_name', 63 ) 64 65 66 class SubmitterStatsBriefSerializer(UserBriefSerializer): 67 stats = serializers.SerializerMethodField() 68 69 def get_stats(self, profile): 70 return reverse( 71 'api:exercise-submitter_stats-detail', 72 kwargs={ 73 'exercise_id': self.context['view'].exercise.id, 74 'user_id': profile.user.id, 75 }, 76 request=self.context['request'] 77 ) 78 79 class Meta(UserBriefSerializer.Meta): 80 fields = UserBriefSerializer.Meta.fields + ( 81 'stats', 82 ) 83 ``` Path: `exercise/api/full_serializers.py` Content: ``` 1 from rest_framework import serializers 2 3 from lib.api.fields import NestedHyperlinkedIdentityField 4 from lib.api.serializers import ( 5 AlwaysListSerializer, 6 CompositeListSerializer, 7 AplusSerializerMeta, 8 AplusModelSerializerBase, 9 ) 10 from course.api.serializers import CourseBriefSerializer 11 from userprofile.api.serializers import UserBriefSerializer, UserListField 12 13 from ..models import Submission 14 from .serializers import ( 15 ExerciseBriefSerializer, 16 SubmissionBriefSerializer, 17 SubmittedFileBriefSerializer, 18 ) 19 20 21 __all__ = [ 22 'ExerciseSerializer', 23 'ExerciseGraderSerializer', 24 'SubmissionSerializer', 25 'SubmissionGraderSerializer', 26 ] 27 28 29 class ExerciseSerializer(ExerciseBriefSerializer): 30 course = CourseBriefSerializer(source='course_instance') 31 post_url = serializers.SerializerMethodField() 32 exercise_info = serializers.JSONField() 33 submissions = NestedHyperlinkedIdentityField( 34 view_name='api:exercise-submissions-list', 35 lookup_map='exercise.api.views.ExerciseViewSet', 36 ) 37 my_submissions = NestedHyperlinkedIdentityField( 38 view_name='api:exercise-submissions-detail', 39 lookup_map={ 40 'exercise_id': 'id', 41 'user_id': lambda o=None: 'me', 42 }, 43 ) 44 my_stats = NestedHyperlinkedIdentityField( 45 view_name='api:exercise-submitter_stats-detail', 46 lookup_map={ 47 'exercise_id': 'id', 48 'user_id': lambda o=None: 'me', 49 }, 50 ) 51 52 def get_post_url(self, obj): 53 # FIXME: obj should implement .get_post_url() and that should be used here 54 if obj.is_submittable: 55 request = self.context['request'] 56 url = obj.get_url("exercise") 57 return request.build_absolute_uri(url) 58 return None 59 60 class Meta(ExerciseBriefSerializer.Meta): 61 fields = ( 62 'name', 63 'course', 64 'is_submittable', 65 'post_url', 66 'max_points', 67 'max_submissions', 68 'exercise_info', 69 'templates', 70 'submissions', 71 'my_submissions', 72 'my_stats', 73 ) 74 75 76 class ExerciseGraderSerializer(AplusModelSerializerBase): 77 url = NestedHyperlinkedIdentityField( 78 view_name='api:exercise-grader', 79 lookup_map='exercise.api.views.ExerciseViewSet', 80 ) 81 exercise = ExerciseBriefSerializer(source='*') 82 83 class Meta(AplusSerializerMeta): 84 model = Submission 85 fields = ( 86 'url', 87 'exercise', 88 ) 89 90 91 class SubmitterLinks(AlwaysListSerializer, UserBriefSerializer): 92 pass 93 94 95 class SubmittedFileLinks(AlwaysListSerializer, SubmittedFileBriefSerializer): 96 pass 97 98 99 class SubmissionSerializer(SubmissionBriefSerializer): 100 exercise = ExerciseBriefSerializer() 101 submitters = SubmitterLinks() 102 submission_data = serializers.JSONField() 103 files = SubmittedFileLinks() 104 grader = UserBriefSerializer() 105 grading_data = serializers.JSONField() 106 107 class Meta(SubmissionBriefSerializer.Meta): 108 fields = ( 109 'html_url', 110 'exercise', 111 'submitters', 112 'submission_data', 113 'files', 114 'status', 115 'grade', 116 'late_penalty_applied', 117 'grading_time', 118 'grader', 119 'feedback', 120 'assistant_feedback', 121 'grading_data', 122 ) 123 124 125 class SubmissionInGraderSerializer(SubmissionBriefSerializer): 126 class Meta(SubmissionBriefSerializer.Meta): 127 fields = ( 128 'html_url', 129 ) 130 131 132 class SubmissionGraderSerializer(AplusModelSerializerBase): 133 url = NestedHyperlinkedIdentityField( 134 view_name='api:submission-grader', 135 lookup_map='exercise.api.views.SubmissionViewSet', 136 ) 137 submission = SubmissionInGraderSerializer(source='*') 138 exercise = ExerciseBriefSerializer() 139 140 class Meta(AplusSerializerMeta): 141 model = Submission 142 fields = ( 143 'url', 144 'submission', 145 'exercise', 146 'grading_data', 147 'is_graded', 148 ) 149 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/exercise/api/full_serializers.py b/exercise/api/full_serializers.py --- a/exercise/api/full_serializers.py +++ b/exercise/api/full_serializers.py @@ -63,8 +63,6 @@ 'course', 'is_submittable', 'post_url', - 'max_points', - 'max_submissions', 'exercise_info', 'templates', 'submissions', diff --git a/exercise/api/serializers.py b/exercise/api/serializers.py --- a/exercise/api/serializers.py +++ b/exercise/api/serializers.py @@ -28,6 +28,8 @@ 'url', 'html_url', 'display_name', + 'max_points', + 'max_submissions', )
{"golden_diff": "diff --git a/exercise/api/full_serializers.py b/exercise/api/full_serializers.py\n--- a/exercise/api/full_serializers.py\n+++ b/exercise/api/full_serializers.py\n@@ -63,8 +63,6 @@\n 'course',\n 'is_submittable',\n 'post_url',\n- 'max_points',\n- 'max_submissions',\n 'exercise_info',\n 'templates',\n 'submissions',\ndiff --git a/exercise/api/serializers.py b/exercise/api/serializers.py\n--- a/exercise/api/serializers.py\n+++ b/exercise/api/serializers.py\n@@ -28,6 +28,8 @@\n 'url',\n 'html_url',\n 'display_name',\n+ 'max_points',\n+ 'max_submissions',\n )\n", "issue": "Add max_submissions in the course points API endpoint\nThis API endpoint `/api/v2/courses/COURSEID/points/USERID/` for course points shows the user's points in exercises. It also includes some exercise info that is also provided by the exercise endpoint (`/api/v2/exercises/ID/`). The points API already contains `max_points` and `points_to_pass`, so why not also include `max_submissions` (maximum number of allowed submissions)?\r\n\r\nRelevant code:\r\nhttps://github.com/apluslms/a-plus/blob/d34f94b7c9a8e4d22cd28d08968b36787bb344c4/exercise/api/views.py#L420\r\nhttps://github.com/apluslms/a-plus/blob/d34f94b7c9a8e4d22cd28d08968b36787bb344c4/exercise/api/custom_serializers.py#L76\n", "before_files": [{"content": "from rest_framework import serializers\nfrom rest_framework.reverse import reverse\n\nfrom lib.api.fields import NestedHyperlinkedIdentityField\nfrom lib.api.serializers import AplusModelSerializer, HtmlViewField\nfrom userprofile.api.serializers import UserBriefSerializer\nfrom ..models import Submission, SubmittedFile, BaseExercise\n\n\n__all__ = [\n 'ExerciseBriefSerializer',\n 'SubmissionBriefSerializer',\n 'SubmittedFileBriefSerializer',\n 'SubmitterStatsBriefSerializer',\n]\n\n\nclass ExerciseBriefSerializer(AplusModelSerializer):\n url = NestedHyperlinkedIdentityField(\n view_name='api:exercise-detail',\n lookup_map='exercise.api.views.ExerciseViewSet',\n )\n display_name = serializers.CharField(source='__str__')\n\n class Meta(AplusModelSerializer.Meta):\n model = BaseExercise\n fields = (\n 'url',\n 'html_url',\n 'display_name',\n )\n\n\nclass SubmissionBriefSerializer(AplusModelSerializer):\n #display_name = serializers.CharField(source='__str__')\n\n class Meta(AplusModelSerializer.Meta):\n model = Submission\n fields = (\n 'submission_time',\n )\n extra_kwargs = {\n 'url': {\n 'view_name': 'api:submission-detail',\n 'lookup_map': 'exercise.api.views.SubmissionViewSet',\n }\n }\n\n\nclass SubmittedFileBriefSerializer(AplusModelSerializer):\n #url = HtmlViewField()\n url = NestedHyperlinkedIdentityField(\n view_name='api:submission-files-detail',\n lookup_map='exercise.api.views.SubmissionFileViewSet',\n )\n\n class Meta(AplusModelSerializer.Meta):\n model = SubmittedFile\n fields = (\n 'url',\n 'filename',\n 'param_name',\n )\n\n\nclass SubmitterStatsBriefSerializer(UserBriefSerializer):\n stats = serializers.SerializerMethodField()\n\n def get_stats(self, profile):\n return reverse(\n 'api:exercise-submitter_stats-detail',\n kwargs={\n 'exercise_id': self.context['view'].exercise.id,\n 'user_id': profile.user.id,\n },\n request=self.context['request']\n )\n\n class Meta(UserBriefSerializer.Meta):\n fields = UserBriefSerializer.Meta.fields + (\n 'stats',\n )\n", "path": "exercise/api/serializers.py"}, {"content": "from rest_framework import serializers\n\nfrom lib.api.fields import NestedHyperlinkedIdentityField\nfrom lib.api.serializers import (\n AlwaysListSerializer,\n CompositeListSerializer,\n AplusSerializerMeta,\n AplusModelSerializerBase,\n)\nfrom course.api.serializers import CourseBriefSerializer\nfrom userprofile.api.serializers import UserBriefSerializer, UserListField\n\nfrom ..models import Submission\nfrom .serializers import (\n ExerciseBriefSerializer,\n SubmissionBriefSerializer,\n SubmittedFileBriefSerializer,\n)\n\n\n__all__ = [\n 'ExerciseSerializer',\n 'ExerciseGraderSerializer',\n 'SubmissionSerializer',\n 'SubmissionGraderSerializer',\n]\n\n\nclass ExerciseSerializer(ExerciseBriefSerializer):\n course = CourseBriefSerializer(source='course_instance')\n post_url = serializers.SerializerMethodField()\n exercise_info = serializers.JSONField()\n submissions = NestedHyperlinkedIdentityField(\n view_name='api:exercise-submissions-list',\n lookup_map='exercise.api.views.ExerciseViewSet',\n )\n my_submissions = NestedHyperlinkedIdentityField(\n view_name='api:exercise-submissions-detail',\n lookup_map={\n 'exercise_id': 'id',\n 'user_id': lambda o=None: 'me',\n },\n )\n my_stats = NestedHyperlinkedIdentityField(\n view_name='api:exercise-submitter_stats-detail',\n lookup_map={\n 'exercise_id': 'id',\n 'user_id': lambda o=None: 'me',\n },\n )\n\n def get_post_url(self, obj):\n # FIXME: obj should implement .get_post_url() and that should be used here\n if obj.is_submittable:\n request = self.context['request']\n url = obj.get_url(\"exercise\")\n return request.build_absolute_uri(url)\n return None\n\n class Meta(ExerciseBriefSerializer.Meta):\n fields = (\n 'name',\n 'course',\n 'is_submittable',\n 'post_url',\n 'max_points',\n 'max_submissions',\n 'exercise_info',\n 'templates',\n 'submissions',\n 'my_submissions',\n 'my_stats',\n )\n\n\nclass ExerciseGraderSerializer(AplusModelSerializerBase):\n url = NestedHyperlinkedIdentityField(\n view_name='api:exercise-grader',\n lookup_map='exercise.api.views.ExerciseViewSet',\n )\n exercise = ExerciseBriefSerializer(source='*')\n\n class Meta(AplusSerializerMeta):\n model = Submission\n fields = (\n 'url',\n 'exercise',\n )\n\n\nclass SubmitterLinks(AlwaysListSerializer, UserBriefSerializer):\n pass\n\n\nclass SubmittedFileLinks(AlwaysListSerializer, SubmittedFileBriefSerializer):\n pass\n\n\nclass SubmissionSerializer(SubmissionBriefSerializer):\n exercise = ExerciseBriefSerializer()\n submitters = SubmitterLinks()\n submission_data = serializers.JSONField()\n files = SubmittedFileLinks()\n grader = UserBriefSerializer()\n grading_data = serializers.JSONField()\n\n class Meta(SubmissionBriefSerializer.Meta):\n fields = (\n 'html_url',\n 'exercise',\n 'submitters',\n 'submission_data',\n 'files',\n 'status',\n 'grade',\n 'late_penalty_applied',\n 'grading_time',\n 'grader',\n 'feedback',\n 'assistant_feedback',\n 'grading_data',\n )\n\n\nclass SubmissionInGraderSerializer(SubmissionBriefSerializer):\n class Meta(SubmissionBriefSerializer.Meta):\n fields = (\n 'html_url',\n )\n\n\nclass SubmissionGraderSerializer(AplusModelSerializerBase):\n url = NestedHyperlinkedIdentityField(\n view_name='api:submission-grader',\n lookup_map='exercise.api.views.SubmissionViewSet',\n )\n submission = SubmissionInGraderSerializer(source='*')\n exercise = ExerciseBriefSerializer()\n\n class Meta(AplusSerializerMeta):\n model = Submission\n fields = (\n 'url',\n 'submission',\n 'exercise',\n 'grading_data',\n 'is_graded',\n )\n", "path": "exercise/api/full_serializers.py"}], "after_files": [{"content": "from rest_framework import serializers\nfrom rest_framework.reverse import reverse\n\nfrom lib.api.fields import NestedHyperlinkedIdentityField\nfrom lib.api.serializers import AplusModelSerializer, HtmlViewField\nfrom userprofile.api.serializers import UserBriefSerializer\nfrom ..models import Submission, SubmittedFile, BaseExercise\n\n\n__all__ = [\n 'ExerciseBriefSerializer',\n 'SubmissionBriefSerializer',\n 'SubmittedFileBriefSerializer',\n 'SubmitterStatsBriefSerializer',\n]\n\n\nclass ExerciseBriefSerializer(AplusModelSerializer):\n url = NestedHyperlinkedIdentityField(\n view_name='api:exercise-detail',\n lookup_map='exercise.api.views.ExerciseViewSet',\n )\n display_name = serializers.CharField(source='__str__')\n\n class Meta(AplusModelSerializer.Meta):\n model = BaseExercise\n fields = (\n 'url',\n 'html_url',\n 'display_name',\n 'max_points',\n 'max_submissions',\n )\n\n\nclass SubmissionBriefSerializer(AplusModelSerializer):\n #display_name = serializers.CharField(source='__str__')\n\n class Meta(AplusModelSerializer.Meta):\n model = Submission\n fields = (\n 'submission_time',\n )\n extra_kwargs = {\n 'url': {\n 'view_name': 'api:submission-detail',\n 'lookup_map': 'exercise.api.views.SubmissionViewSet',\n }\n }\n\n\nclass SubmittedFileBriefSerializer(AplusModelSerializer):\n #url = HtmlViewField()\n url = NestedHyperlinkedIdentityField(\n view_name='api:submission-files-detail',\n lookup_map='exercise.api.views.SubmissionFileViewSet',\n )\n\n class Meta(AplusModelSerializer.Meta):\n model = SubmittedFile\n fields = (\n 'url',\n 'filename',\n 'param_name',\n )\n\n\nclass SubmitterStatsBriefSerializer(UserBriefSerializer):\n stats = serializers.SerializerMethodField()\n\n def get_stats(self, profile):\n return reverse(\n 'api:exercise-submitter_stats-detail',\n kwargs={\n 'exercise_id': self.context['view'].exercise.id,\n 'user_id': profile.user.id,\n },\n request=self.context['request']\n )\n\n class Meta(UserBriefSerializer.Meta):\n fields = UserBriefSerializer.Meta.fields + (\n 'stats',\n )\n", "path": "exercise/api/serializers.py"}, {"content": "from rest_framework import serializers\n\nfrom lib.api.fields import NestedHyperlinkedIdentityField\nfrom lib.api.serializers import (\n AlwaysListSerializer,\n CompositeListSerializer,\n AplusSerializerMeta,\n AplusModelSerializerBase,\n)\nfrom course.api.serializers import CourseBriefSerializer\nfrom userprofile.api.serializers import UserBriefSerializer, UserListField\n\nfrom ..models import Submission\nfrom .serializers import (\n ExerciseBriefSerializer,\n SubmissionBriefSerializer,\n SubmittedFileBriefSerializer,\n)\n\n\n__all__ = [\n 'ExerciseSerializer',\n 'ExerciseGraderSerializer',\n 'SubmissionSerializer',\n 'SubmissionGraderSerializer',\n]\n\n\nclass ExerciseSerializer(ExerciseBriefSerializer):\n course = CourseBriefSerializer(source='course_instance')\n post_url = serializers.SerializerMethodField()\n exercise_info = serializers.JSONField()\n submissions = NestedHyperlinkedIdentityField(\n view_name='api:exercise-submissions-list',\n lookup_map='exercise.api.views.ExerciseViewSet',\n )\n my_submissions = NestedHyperlinkedIdentityField(\n view_name='api:exercise-submissions-detail',\n lookup_map={\n 'exercise_id': 'id',\n 'user_id': lambda o=None: 'me',\n },\n )\n my_stats = NestedHyperlinkedIdentityField(\n view_name='api:exercise-submitter_stats-detail',\n lookup_map={\n 'exercise_id': 'id',\n 'user_id': lambda o=None: 'me',\n },\n )\n\n def get_post_url(self, obj):\n # FIXME: obj should implement .get_post_url() and that should be used here\n if obj.is_submittable:\n request = self.context['request']\n url = obj.get_url(\"exercise\")\n return request.build_absolute_uri(url)\n return None\n\n class Meta(ExerciseBriefSerializer.Meta):\n fields = (\n 'name',\n 'course',\n 'is_submittable',\n 'post_url',\n 'exercise_info',\n 'templates',\n 'submissions',\n 'my_submissions',\n 'my_stats',\n )\n\n\nclass ExerciseGraderSerializer(AplusModelSerializerBase):\n url = NestedHyperlinkedIdentityField(\n view_name='api:exercise-grader',\n lookup_map='exercise.api.views.ExerciseViewSet',\n )\n exercise = ExerciseBriefSerializer(source='*')\n\n class Meta(AplusSerializerMeta):\n model = Submission\n fields = (\n 'url',\n 'exercise',\n )\n\n\nclass SubmitterLinks(AlwaysListSerializer, UserBriefSerializer):\n pass\n\n\nclass SubmittedFileLinks(AlwaysListSerializer, SubmittedFileBriefSerializer):\n pass\n\n\nclass SubmissionSerializer(SubmissionBriefSerializer):\n exercise = ExerciseBriefSerializer()\n submitters = SubmitterLinks()\n submission_data = serializers.JSONField()\n files = SubmittedFileLinks()\n grader = UserBriefSerializer()\n grading_data = serializers.JSONField()\n\n class Meta(SubmissionBriefSerializer.Meta):\n fields = (\n 'html_url',\n 'exercise',\n 'submitters',\n 'submission_data',\n 'files',\n 'status',\n 'grade',\n 'late_penalty_applied',\n 'grading_time',\n 'grader',\n 'feedback',\n 'assistant_feedback',\n 'grading_data',\n )\n\n\nclass SubmissionInGraderSerializer(SubmissionBriefSerializer):\n class Meta(SubmissionBriefSerializer.Meta):\n fields = (\n 'html_url',\n )\n\n\nclass SubmissionGraderSerializer(AplusModelSerializerBase):\n url = NestedHyperlinkedIdentityField(\n view_name='api:submission-grader',\n lookup_map='exercise.api.views.SubmissionViewSet',\n )\n submission = SubmissionInGraderSerializer(source='*')\n exercise = ExerciseBriefSerializer()\n\n class Meta(AplusSerializerMeta):\n model = Submission\n fields = (\n 'url',\n 'submission',\n 'exercise',\n 'grading_data',\n 'is_graded',\n )\n", "path": "exercise/api/full_serializers.py"}]}
2,304
176
gh_patches_debug_25769
rasdani/github-patches
git_diff
encode__starlette-1401
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- templateing: jinja2: pass kwargs for environment I think it would be good to pass something like `env_kwargs` via https://github.com/blueyed/starlette/blob/24c135de71ac56a73f7f797258115941579155bf/starlette/templating.py#L51-L53. While you can change the env afterwards, it would allow Jinja2 to validate e.g. `enable_async`, and call `load_extensions` etc. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `starlette/templating.py` Content: ``` 1 import typing 2 from os import PathLike 3 4 from starlette.background import BackgroundTask 5 from starlette.responses import Response 6 from starlette.types import Receive, Scope, Send 7 8 try: 9 import jinja2 10 11 # @contextfunction renamed to @pass_context in Jinja 3.0, to be removed in 3.1 12 if hasattr(jinja2, "pass_context"): 13 pass_context = jinja2.pass_context 14 else: # pragma: nocover 15 pass_context = jinja2.contextfunction 16 except ImportError: # pragma: nocover 17 jinja2 = None # type: ignore 18 19 20 class _TemplateResponse(Response): 21 media_type = "text/html" 22 23 def __init__( 24 self, 25 template: typing.Any, 26 context: dict, 27 status_code: int = 200, 28 headers: dict = None, 29 media_type: str = None, 30 background: BackgroundTask = None, 31 ): 32 self.template = template 33 self.context = context 34 content = template.render(context) 35 super().__init__(content, status_code, headers, media_type, background) 36 37 async def __call__(self, scope: Scope, receive: Receive, send: Send) -> None: 38 request = self.context.get("request", {}) 39 extensions = request.get("extensions", {}) 40 if "http.response.template" in extensions: 41 await send( 42 { 43 "type": "http.response.template", 44 "template": self.template, 45 "context": self.context, 46 } 47 ) 48 await super().__call__(scope, receive, send) 49 50 51 class Jinja2Templates: 52 """ 53 templates = Jinja2Templates("templates") 54 55 return templates.TemplateResponse("index.html", {"request": request}) 56 """ 57 58 def __init__(self, directory: typing.Union[str, PathLike]) -> None: 59 assert jinja2 is not None, "jinja2 must be installed to use Jinja2Templates" 60 self.env = self._create_env(directory) 61 62 def _create_env( 63 self, directory: typing.Union[str, PathLike] 64 ) -> "jinja2.Environment": 65 @pass_context 66 def url_for(context: dict, name: str, **path_params: typing.Any) -> str: 67 request = context["request"] 68 return request.url_for(name, **path_params) 69 70 loader = jinja2.FileSystemLoader(directory) 71 env = jinja2.Environment(loader=loader, autoescape=True) 72 env.globals["url_for"] = url_for 73 return env 74 75 def get_template(self, name: str) -> "jinja2.Template": 76 return self.env.get_template(name) 77 78 def TemplateResponse( 79 self, 80 name: str, 81 context: dict, 82 status_code: int = 200, 83 headers: dict = None, 84 media_type: str = None, 85 background: BackgroundTask = None, 86 ) -> _TemplateResponse: 87 if "request" not in context: 88 raise ValueError('context must include a "request" key') 89 template = self.get_template(name) 90 return _TemplateResponse( 91 template, 92 context, 93 status_code=status_code, 94 headers=headers, 95 media_type=media_type, 96 background=background, 97 ) 98 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/starlette/templating.py b/starlette/templating.py --- a/starlette/templating.py +++ b/starlette/templating.py @@ -55,12 +55,14 @@ return templates.TemplateResponse("index.html", {"request": request}) """ - def __init__(self, directory: typing.Union[str, PathLike]) -> None: + def __init__( + self, directory: typing.Union[str, PathLike], **env_options: typing.Any + ) -> None: assert jinja2 is not None, "jinja2 must be installed to use Jinja2Templates" - self.env = self._create_env(directory) + self.env = self._create_env(directory, **env_options) def _create_env( - self, directory: typing.Union[str, PathLike] + self, directory: typing.Union[str, PathLike], **env_options: typing.Any ) -> "jinja2.Environment": @pass_context def url_for(context: dict, name: str, **path_params: typing.Any) -> str: @@ -68,7 +70,10 @@ return request.url_for(name, **path_params) loader = jinja2.FileSystemLoader(directory) - env = jinja2.Environment(loader=loader, autoescape=True) + env_options.setdefault("loader", loader) + env_options.setdefault("autoescape", True) + + env = jinja2.Environment(**env_options) env.globals["url_for"] = url_for return env
{"golden_diff": "diff --git a/starlette/templating.py b/starlette/templating.py\n--- a/starlette/templating.py\n+++ b/starlette/templating.py\n@@ -55,12 +55,14 @@\n return templates.TemplateResponse(\"index.html\", {\"request\": request})\n \"\"\"\n \n- def __init__(self, directory: typing.Union[str, PathLike]) -> None:\n+ def __init__(\n+ self, directory: typing.Union[str, PathLike], **env_options: typing.Any\n+ ) -> None:\n assert jinja2 is not None, \"jinja2 must be installed to use Jinja2Templates\"\n- self.env = self._create_env(directory)\n+ self.env = self._create_env(directory, **env_options)\n \n def _create_env(\n- self, directory: typing.Union[str, PathLike]\n+ self, directory: typing.Union[str, PathLike], **env_options: typing.Any\n ) -> \"jinja2.Environment\":\n @pass_context\n def url_for(context: dict, name: str, **path_params: typing.Any) -> str:\n@@ -68,7 +70,10 @@\n return request.url_for(name, **path_params)\n \n loader = jinja2.FileSystemLoader(directory)\n- env = jinja2.Environment(loader=loader, autoescape=True)\n+ env_options.setdefault(\"loader\", loader)\n+ env_options.setdefault(\"autoescape\", True)\n+\n+ env = jinja2.Environment(**env_options)\n env.globals[\"url_for\"] = url_for\n return env\n", "issue": "templateing: jinja2: pass kwargs for environment\nI think it would be good to pass something like `env_kwargs` via https://github.com/blueyed/starlette/blob/24c135de71ac56a73f7f797258115941579155bf/starlette/templating.py#L51-L53.\r\n\r\nWhile you can change the env afterwards, it would allow Jinja2 to validate e.g. `enable_async`, and call `load_extensions` etc.\n", "before_files": [{"content": "import typing\nfrom os import PathLike\n\nfrom starlette.background import BackgroundTask\nfrom starlette.responses import Response\nfrom starlette.types import Receive, Scope, Send\n\ntry:\n import jinja2\n\n # @contextfunction renamed to @pass_context in Jinja 3.0, to be removed in 3.1\n if hasattr(jinja2, \"pass_context\"):\n pass_context = jinja2.pass_context\n else: # pragma: nocover\n pass_context = jinja2.contextfunction\nexcept ImportError: # pragma: nocover\n jinja2 = None # type: ignore\n\n\nclass _TemplateResponse(Response):\n media_type = \"text/html\"\n\n def __init__(\n self,\n template: typing.Any,\n context: dict,\n status_code: int = 200,\n headers: dict = None,\n media_type: str = None,\n background: BackgroundTask = None,\n ):\n self.template = template\n self.context = context\n content = template.render(context)\n super().__init__(content, status_code, headers, media_type, background)\n\n async def __call__(self, scope: Scope, receive: Receive, send: Send) -> None:\n request = self.context.get(\"request\", {})\n extensions = request.get(\"extensions\", {})\n if \"http.response.template\" in extensions:\n await send(\n {\n \"type\": \"http.response.template\",\n \"template\": self.template,\n \"context\": self.context,\n }\n )\n await super().__call__(scope, receive, send)\n\n\nclass Jinja2Templates:\n \"\"\"\n templates = Jinja2Templates(\"templates\")\n\n return templates.TemplateResponse(\"index.html\", {\"request\": request})\n \"\"\"\n\n def __init__(self, directory: typing.Union[str, PathLike]) -> None:\n assert jinja2 is not None, \"jinja2 must be installed to use Jinja2Templates\"\n self.env = self._create_env(directory)\n\n def _create_env(\n self, directory: typing.Union[str, PathLike]\n ) -> \"jinja2.Environment\":\n @pass_context\n def url_for(context: dict, name: str, **path_params: typing.Any) -> str:\n request = context[\"request\"]\n return request.url_for(name, **path_params)\n\n loader = jinja2.FileSystemLoader(directory)\n env = jinja2.Environment(loader=loader, autoescape=True)\n env.globals[\"url_for\"] = url_for\n return env\n\n def get_template(self, name: str) -> \"jinja2.Template\":\n return self.env.get_template(name)\n\n def TemplateResponse(\n self,\n name: str,\n context: dict,\n status_code: int = 200,\n headers: dict = None,\n media_type: str = None,\n background: BackgroundTask = None,\n ) -> _TemplateResponse:\n if \"request\" not in context:\n raise ValueError('context must include a \"request\" key')\n template = self.get_template(name)\n return _TemplateResponse(\n template,\n context,\n status_code=status_code,\n headers=headers,\n media_type=media_type,\n background=background,\n )\n", "path": "starlette/templating.py"}], "after_files": [{"content": "import typing\nfrom os import PathLike\n\nfrom starlette.background import BackgroundTask\nfrom starlette.responses import Response\nfrom starlette.types import Receive, Scope, Send\n\ntry:\n import jinja2\n\n # @contextfunction renamed to @pass_context in Jinja 3.0, to be removed in 3.1\n if hasattr(jinja2, \"pass_context\"):\n pass_context = jinja2.pass_context\n else: # pragma: nocover\n pass_context = jinja2.contextfunction\nexcept ImportError: # pragma: nocover\n jinja2 = None # type: ignore\n\n\nclass _TemplateResponse(Response):\n media_type = \"text/html\"\n\n def __init__(\n self,\n template: typing.Any,\n context: dict,\n status_code: int = 200,\n headers: dict = None,\n media_type: str = None,\n background: BackgroundTask = None,\n ):\n self.template = template\n self.context = context\n content = template.render(context)\n super().__init__(content, status_code, headers, media_type, background)\n\n async def __call__(self, scope: Scope, receive: Receive, send: Send) -> None:\n request = self.context.get(\"request\", {})\n extensions = request.get(\"extensions\", {})\n if \"http.response.template\" in extensions:\n await send(\n {\n \"type\": \"http.response.template\",\n \"template\": self.template,\n \"context\": self.context,\n }\n )\n await super().__call__(scope, receive, send)\n\n\nclass Jinja2Templates:\n \"\"\"\n templates = Jinja2Templates(\"templates\")\n\n return templates.TemplateResponse(\"index.html\", {\"request\": request})\n \"\"\"\n\n def __init__(\n self, directory: typing.Union[str, PathLike], **env_options: typing.Any\n ) -> None:\n assert jinja2 is not None, \"jinja2 must be installed to use Jinja2Templates\"\n self.env = self._create_env(directory, **env_options)\n\n def _create_env(\n self, directory: typing.Union[str, PathLike], **env_options: typing.Any\n ) -> \"jinja2.Environment\":\n @pass_context\n def url_for(context: dict, name: str, **path_params: typing.Any) -> str:\n request = context[\"request\"]\n return request.url_for(name, **path_params)\n\n loader = jinja2.FileSystemLoader(directory)\n env_options.setdefault(\"loader\", loader)\n env_options.setdefault(\"autoescape\", True)\n\n env = jinja2.Environment(**env_options)\n env.globals[\"url_for\"] = url_for\n return env\n\n def get_template(self, name: str) -> \"jinja2.Template\":\n return self.env.get_template(name)\n\n def TemplateResponse(\n self,\n name: str,\n context: dict,\n status_code: int = 200,\n headers: dict = None,\n media_type: str = None,\n background: BackgroundTask = None,\n ) -> _TemplateResponse:\n if \"request\" not in context:\n raise ValueError('context must include a \"request\" key')\n template = self.get_template(name)\n return _TemplateResponse(\n template,\n context,\n status_code=status_code,\n headers=headers,\n media_type=media_type,\n background=background,\n )\n", "path": "starlette/templating.py"}]}
1,268
349
gh_patches_debug_11341
rasdani/github-patches
git_diff
LMFDB__lmfdb-5629
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Dirichlet character server error The page https://www.lmfdb.org/Character/Dirichlet/68800/66667 is throwing a server error --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `lmfdb/characters/TinyConrey.py` Content: ``` 1 from sage.all import (gcd, Mod, Integer, Integers, Rational, pari, 2 DirichletGroup, CyclotomicField, euler_phi, lcm) 3 from sage.misc.cachefunc import cached_method 4 from sage.modular.dirichlet import DirichletCharacter 5 from lmfdb.logger import make_logger 6 logger = make_logger("TinyConrey") 7 8 def symbol_numerator(cond, parity): 9 # Reference: Sect. 9.3, Montgomery, Hugh L; Vaughan, Robert C. (2007). 10 # Multiplicative number theory. I. Classical theory. Cambridge Studies in 11 # Advanced Mathematics 97 12 # 13 # Let F = Q(\sqrt(d)) with d a non zero squarefree integer then a real 14 # Dirichlet character \chi(n) can be represented as a Kronecker symbol 15 # (m / n) where { m = d if # d = 1 mod 4 else m = 4d if d = 2,3 (mod) 4 } 16 # and m is the discriminant of F. The conductor of \chi is |m|. 17 # 18 # symbol_numerator returns the appropriate Kronecker symbol depending on 19 # the conductor of \chi. 20 m = cond 21 if cond % 2 == 1: 22 if cond % 4 == 3: 23 m = -cond 24 elif cond % 8 == 4: 25 # Fixed cond % 16 == 4 and cond % 16 == 12 were switched in the 26 # previous version of the code. 27 # 28 # Let d be a non zero squarefree integer. If d = 2,3 (mod) 4 and if 29 # cond = 4d = 4 ( 4n + 2) or 4 (4n + 3) = 16 n + 8 or 16n + 12 then we 30 # set m = cond. On the other hand if d = 1 (mod) 4 and cond = 4d = 4 31 # (4n +1) = 16n + 4 then we set m = -cond. 32 if cond % 16 == 4: 33 m = -cond 34 elif cond % 16 == 8: 35 if parity == 1: 36 m = -cond 37 else: 38 return None 39 return m 40 41 42 def kronecker_symbol(m): 43 if m: 44 return r'\(\displaystyle\left(\frac{%s}{\bullet}\right)\)' % (m) 45 else: 46 return None 47 48 ############################################################################### 49 # Conrey character with no call to Jonathan's code 50 # in order to handle big moduli 51 52 53 def get_sage_genvalues(modulus, order, genvalues, zeta_order): 54 """ 55 Helper method for computing correct genvalues when constructing 56 the sage character 57 """ 58 phi_mod = euler_phi(modulus) 59 exponent_factor = phi_mod / order 60 genvalues_exponent = (x * exponent_factor for x in genvalues) 61 return [x * zeta_order / phi_mod for x in genvalues_exponent] 62 63 64 class PariConreyGroup(): 65 66 def __init__(self, modulus): 67 self.modulus = int(modulus) 68 self.G = pari(f"znstar({modulus},1)") 69 70 def gens(self): 71 return Integers(self.modulus).unit_gens() 72 73 def invariants(self): 74 return pari(f"{self.G}.cyc") 75 76 @cached_method 77 def first_chars(self, limit=31): 78 if self.modulus == 1: 79 return [1] 80 r = [] 81 for i,c in enumerate(Integers(self.modulus).list_of_elements_of_multiplicative_group()): 82 r.append(c) 83 if i > limit: 84 self.rowtruncate = True 85 break 86 return r 87 88 @cached_method 89 def first_chars_with_orbit(self, limit=31): 90 """ would be nice to compute those directly 91 instead of querying each to db 92 """ 93 pass 94 95 96 class ConreyCharacter(): 97 """ 98 minimal implementation of character from its Conrey index 99 use Pari/GP functions when available 100 """ 101 102 def __init__(self, modulus, number): 103 assert gcd(modulus, number)==1 104 self.modulus = Integer(modulus) 105 self.number = Integer(number) 106 self.conrey = Mod(number,modulus) 107 self.G = pari("znstar({},1)".format(modulus)) 108 self.G_gens = Integers(self.modulus).unit_gens() # use sage generators 109 self.chi_pari = self.G.znconreylog(self.number) 110 self.chi_0 = None 111 self.indlabel = None 112 113 @property 114 def texname(self): 115 from lmfdb.characters.web_character import WebDirichlet 116 return WebDirichlet.char2tex(self.modulus, self.number) 117 118 @cached_method 119 def modfactor(self): 120 return self.modulus.factor() 121 122 @cached_method 123 def conductor(self): 124 B = pari(f"znconreyconductor({self.G},{self.chi_pari},&chi0)") 125 if B.type() == 't_INT': 126 # means chi is primitive 127 self.chi_0 = self.chi_pari 128 self.indlabel = self.number 129 return int(B) 130 else: 131 self.chi_0 = pari("chi0") 132 G_0 = pari(f"znstar({B},1)") 133 self.indlabel = int(G_0.znconreyexp(self.chi_0)) 134 return int(B[0]) 135 136 @cached_method 137 def is_primitive(self): 138 return self.conductor() == self.modulus 139 140 @cached_method 141 def parity(self): 142 return self.G.zncharisodd(self.chi_pari) 143 144 def is_odd(self): 145 return self.parity() == 1 146 147 def is_even(self): 148 return self.parity() == 0 149 150 @property 151 def order(self): 152 return self.conrey.multiplicative_order() 153 154 @property 155 def genvalues(self): 156 # This assumes that the generators are ordered in the way 157 # that Sage returns 158 return [self.conreyangle(k) * self.order for k in self.G_gens] 159 160 @property 161 def values_gens(self): 162 # This may be considered the full version of genvalues; 163 # that is, it returns both the generators as well as the values 164 # at those generators 165 return [[k, self.conreyangle(k) * self.order] for k in self.G_gens] 166 167 @cached_method 168 def kronecker_symbol(self): 169 c = self.conductor() 170 p = self.parity() 171 return kronecker_symbol(symbol_numerator(c, p)) 172 173 def conreyangle(self,x): 174 return Rational(self.G.chareval(self.chi_pari,x)) 175 176 def gauss_sum_numerical(self, a): 177 # There seems to be a bug in pari when a is a multiple of the modulus, 178 # so we deal with that separately 179 if self.modulus.divides(a): 180 if self.conductor() == 1: 181 return euler_phi(self.modulus) 182 else: 183 return Integer(0) 184 else: 185 return self.G.znchargauss(self.chi_pari,a) 186 187 def sage_zeta_order(self, order): 188 return 1 if self.modulus <= 2 else lcm(2,order) 189 190 def sage_character(self, order=None, genvalues=None): 191 192 if order is None: 193 order = self.order 194 195 if genvalues is None: 196 genvalues = self.genvalues 197 198 H = DirichletGroup(self.modulus, base_ring=CyclotomicField(self.sage_zeta_order(order))) 199 M = H._module 200 order_corrected_genvalues = get_sage_genvalues(self.modulus, order, genvalues, self.sage_zeta_order(order)) 201 return DirichletCharacter(H,M(order_corrected_genvalues)) 202 203 @cached_method 204 def galois_orbit(self, limit=31): 205 """ 206 orbit under Galois of the value field, 207 can be used to find first conjugate or list of first conjugates 208 """ 209 logger.debug(f"## galois_orbit({limit})") 210 order = self.order 211 if order == 1: 212 return [1] 213 elif order < limit or order * order < limit * self.modulus: 214 logger.debug(f"compute all conjugate characters and return first {limit}") 215 return self.galois_orbit_all(limit) 216 elif limit == 1 or self.modulus < 30 * order: 217 logger.debug(f"compute {limit} first conjugate characters") 218 return self.galois_orbit_search(limit) 219 else: 220 logger.debug(f"galois orbit of size {order} too expansive, give up") 221 return [] 222 223 def galois_orbit_all(self, limit=31): 224 # construct all Galois orbit, assume not too large 225 order = self.order 226 chik = self.conrey 227 output = [] 228 for k in range(1,order): 229 if gcd(k,order) == 1: 230 output.append(Integer(chik)) 231 chik *= self.conrey 232 output.sort() 233 return output[:limit] 234 235 def galois_orbit_search(self, limit=31): 236 # fishing strategy, assume orbit relatively dense 237 order = self.order 238 num = self.number 239 mod = self.modulus 240 kmin = 1 241 width = kmax = min(mod,limit * 50) 242 while True: 243 cmd = f"a=Mod({num},{mod});my(valid(k)=my(l=znlog(k,a,{order}));l&&gcd(l,{order})==1);[ k | k <- [{kmin}..{kmax}], gcd(k,{mod})==1 && valid(k) ]" 244 ans = [Integer(m) for m in pari(cmd)[:limit]] 245 if ans: 246 return ans 247 kmin += width 248 kmax += width 249 250 @property 251 def min_conrey_conj(self): 252 return self.galois_orbit(1)[0] 253 254 @cached_method 255 def kernel_field_poly(self): 256 pol = self.G.galoissubcyclo(self.G.charker(self.chi_pari)) 257 if self.order <= 12: 258 pol = pol.polredabs() 259 return pol 260 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/lmfdb/characters/TinyConrey.py b/lmfdb/characters/TinyConrey.py --- a/lmfdb/characters/TinyConrey.py +++ b/lmfdb/characters/TinyConrey.py @@ -213,7 +213,7 @@ elif order < limit or order * order < limit * self.modulus: logger.debug(f"compute all conjugate characters and return first {limit}") return self.galois_orbit_all(limit) - elif limit == 1 or self.modulus < 30 * order: + elif limit == 1 or self.modulus <= 1000000: logger.debug(f"compute {limit} first conjugate characters") return self.galois_orbit_search(limit) else:
{"golden_diff": "diff --git a/lmfdb/characters/TinyConrey.py b/lmfdb/characters/TinyConrey.py\n--- a/lmfdb/characters/TinyConrey.py\n+++ b/lmfdb/characters/TinyConrey.py\n@@ -213,7 +213,7 @@\n elif order < limit or order * order < limit * self.modulus:\n logger.debug(f\"compute all conjugate characters and return first {limit}\")\n return self.galois_orbit_all(limit)\n- elif limit == 1 or self.modulus < 30 * order:\n+ elif limit == 1 or self.modulus <= 1000000:\n logger.debug(f\"compute {limit} first conjugate characters\")\n return self.galois_orbit_search(limit)\n else:\n", "issue": "Dirichlet character server error\nThe page https://www.lmfdb.org/Character/Dirichlet/68800/66667 is throwing a server error\n", "before_files": [{"content": "from sage.all import (gcd, Mod, Integer, Integers, Rational, pari,\n DirichletGroup, CyclotomicField, euler_phi, lcm)\nfrom sage.misc.cachefunc import cached_method\nfrom sage.modular.dirichlet import DirichletCharacter\nfrom lmfdb.logger import make_logger\nlogger = make_logger(\"TinyConrey\")\n\ndef symbol_numerator(cond, parity):\n # Reference: Sect. 9.3, Montgomery, Hugh L; Vaughan, Robert C. (2007).\n # Multiplicative number theory. I. Classical theory. Cambridge Studies in\n # Advanced Mathematics 97\n #\n # Let F = Q(\\sqrt(d)) with d a non zero squarefree integer then a real\n # Dirichlet character \\chi(n) can be represented as a Kronecker symbol\n # (m / n) where { m = d if # d = 1 mod 4 else m = 4d if d = 2,3 (mod) 4 }\n # and m is the discriminant of F. The conductor of \\chi is |m|.\n #\n # symbol_numerator returns the appropriate Kronecker symbol depending on\n # the conductor of \\chi.\n m = cond\n if cond % 2 == 1:\n if cond % 4 == 3:\n m = -cond\n elif cond % 8 == 4:\n # Fixed cond % 16 == 4 and cond % 16 == 12 were switched in the\n # previous version of the code.\n #\n # Let d be a non zero squarefree integer. If d = 2,3 (mod) 4 and if\n # cond = 4d = 4 ( 4n + 2) or 4 (4n + 3) = 16 n + 8 or 16n + 12 then we\n # set m = cond. On the other hand if d = 1 (mod) 4 and cond = 4d = 4\n # (4n +1) = 16n + 4 then we set m = -cond.\n if cond % 16 == 4:\n m = -cond\n elif cond % 16 == 8:\n if parity == 1:\n m = -cond\n else:\n return None\n return m\n\n\ndef kronecker_symbol(m):\n if m:\n return r'\\(\\displaystyle\\left(\\frac{%s}{\\bullet}\\right)\\)' % (m)\n else:\n return None\n\n###############################################################################\n# Conrey character with no call to Jonathan's code\n# in order to handle big moduli\n\n\ndef get_sage_genvalues(modulus, order, genvalues, zeta_order):\n \"\"\"\n Helper method for computing correct genvalues when constructing\n the sage character\n \"\"\"\n phi_mod = euler_phi(modulus)\n exponent_factor = phi_mod / order\n genvalues_exponent = (x * exponent_factor for x in genvalues)\n return [x * zeta_order / phi_mod for x in genvalues_exponent]\n\n\nclass PariConreyGroup():\n\n def __init__(self, modulus):\n self.modulus = int(modulus)\n self.G = pari(f\"znstar({modulus},1)\")\n\n def gens(self):\n return Integers(self.modulus).unit_gens()\n\n def invariants(self):\n return pari(f\"{self.G}.cyc\")\n\n @cached_method\n def first_chars(self, limit=31):\n if self.modulus == 1:\n return [1]\n r = []\n for i,c in enumerate(Integers(self.modulus).list_of_elements_of_multiplicative_group()):\n r.append(c)\n if i > limit:\n self.rowtruncate = True\n break\n return r\n\n @cached_method\n def first_chars_with_orbit(self, limit=31):\n \"\"\" would be nice to compute those directly\n instead of querying each to db\n \"\"\"\n pass\n\n\nclass ConreyCharacter():\n \"\"\"\n minimal implementation of character from its Conrey index\n use Pari/GP functions when available\n \"\"\"\n\n def __init__(self, modulus, number):\n assert gcd(modulus, number)==1\n self.modulus = Integer(modulus)\n self.number = Integer(number)\n self.conrey = Mod(number,modulus)\n self.G = pari(\"znstar({},1)\".format(modulus))\n self.G_gens = Integers(self.modulus).unit_gens() # use sage generators\n self.chi_pari = self.G.znconreylog(self.number)\n self.chi_0 = None\n self.indlabel = None\n\n @property\n def texname(self):\n from lmfdb.characters.web_character import WebDirichlet\n return WebDirichlet.char2tex(self.modulus, self.number)\n\n @cached_method\n def modfactor(self):\n return self.modulus.factor()\n\n @cached_method\n def conductor(self):\n B = pari(f\"znconreyconductor({self.G},{self.chi_pari},&chi0)\")\n if B.type() == 't_INT':\n # means chi is primitive\n self.chi_0 = self.chi_pari\n self.indlabel = self.number\n return int(B)\n else:\n self.chi_0 = pari(\"chi0\")\n G_0 = pari(f\"znstar({B},1)\")\n self.indlabel = int(G_0.znconreyexp(self.chi_0))\n return int(B[0])\n\n @cached_method\n def is_primitive(self):\n return self.conductor() == self.modulus\n\n @cached_method\n def parity(self):\n return self.G.zncharisodd(self.chi_pari)\n\n def is_odd(self):\n return self.parity() == 1\n\n def is_even(self):\n return self.parity() == 0\n\n @property\n def order(self):\n return self.conrey.multiplicative_order()\n\n @property\n def genvalues(self):\n # This assumes that the generators are ordered in the way\n # that Sage returns\n return [self.conreyangle(k) * self.order for k in self.G_gens]\n\n @property\n def values_gens(self):\n # This may be considered the full version of genvalues;\n # that is, it returns both the generators as well as the values\n # at those generators\n return [[k, self.conreyangle(k) * self.order] for k in self.G_gens]\n\n @cached_method\n def kronecker_symbol(self):\n c = self.conductor()\n p = self.parity()\n return kronecker_symbol(symbol_numerator(c, p))\n\n def conreyangle(self,x):\n return Rational(self.G.chareval(self.chi_pari,x))\n\n def gauss_sum_numerical(self, a):\n # There seems to be a bug in pari when a is a multiple of the modulus,\n # so we deal with that separately\n if self.modulus.divides(a):\n if self.conductor() == 1:\n return euler_phi(self.modulus)\n else:\n return Integer(0)\n else:\n return self.G.znchargauss(self.chi_pari,a)\n\n def sage_zeta_order(self, order):\n return 1 if self.modulus <= 2 else lcm(2,order)\n\n def sage_character(self, order=None, genvalues=None):\n\n if order is None:\n order = self.order\n\n if genvalues is None:\n genvalues = self.genvalues\n\n H = DirichletGroup(self.modulus, base_ring=CyclotomicField(self.sage_zeta_order(order)))\n M = H._module\n order_corrected_genvalues = get_sage_genvalues(self.modulus, order, genvalues, self.sage_zeta_order(order))\n return DirichletCharacter(H,M(order_corrected_genvalues))\n\n @cached_method\n def galois_orbit(self, limit=31):\n \"\"\"\n orbit under Galois of the value field,\n can be used to find first conjugate or list of first conjugates\n \"\"\"\n logger.debug(f\"## galois_orbit({limit})\")\n order = self.order\n if order == 1:\n return [1]\n elif order < limit or order * order < limit * self.modulus:\n logger.debug(f\"compute all conjugate characters and return first {limit}\")\n return self.galois_orbit_all(limit)\n elif limit == 1 or self.modulus < 30 * order:\n logger.debug(f\"compute {limit} first conjugate characters\")\n return self.galois_orbit_search(limit)\n else:\n logger.debug(f\"galois orbit of size {order} too expansive, give up\")\n return []\n\n def galois_orbit_all(self, limit=31):\n # construct all Galois orbit, assume not too large\n order = self.order\n chik = self.conrey\n output = []\n for k in range(1,order):\n if gcd(k,order) == 1:\n output.append(Integer(chik))\n chik *= self.conrey\n output.sort()\n return output[:limit]\n\n def galois_orbit_search(self, limit=31):\n # fishing strategy, assume orbit relatively dense\n order = self.order\n num = self.number\n mod = self.modulus\n kmin = 1\n width = kmax = min(mod,limit * 50)\n while True:\n cmd = f\"a=Mod({num},{mod});my(valid(k)=my(l=znlog(k,a,{order}));l&&gcd(l,{order})==1);[ k | k <- [{kmin}..{kmax}], gcd(k,{mod})==1 && valid(k) ]\"\n ans = [Integer(m) for m in pari(cmd)[:limit]]\n if ans:\n return ans\n kmin += width\n kmax += width\n\n @property\n def min_conrey_conj(self):\n return self.galois_orbit(1)[0]\n\n @cached_method\n def kernel_field_poly(self):\n pol = self.G.galoissubcyclo(self.G.charker(self.chi_pari))\n if self.order <= 12:\n pol = pol.polredabs()\n return pol\n", "path": "lmfdb/characters/TinyConrey.py"}], "after_files": [{"content": "from sage.all import (gcd, Mod, Integer, Integers, Rational, pari,\n DirichletGroup, CyclotomicField, euler_phi, lcm)\nfrom sage.misc.cachefunc import cached_method\nfrom sage.modular.dirichlet import DirichletCharacter\nfrom lmfdb.logger import make_logger\nlogger = make_logger(\"TinyConrey\")\n\ndef symbol_numerator(cond, parity):\n # Reference: Sect. 9.3, Montgomery, Hugh L; Vaughan, Robert C. (2007).\n # Multiplicative number theory. I. Classical theory. Cambridge Studies in\n # Advanced Mathematics 97\n #\n # Let F = Q(\\sqrt(d)) with d a non zero squarefree integer then a real\n # Dirichlet character \\chi(n) can be represented as a Kronecker symbol\n # (m / n) where { m = d if # d = 1 mod 4 else m = 4d if d = 2,3 (mod) 4 }\n # and m is the discriminant of F. The conductor of \\chi is |m|.\n #\n # symbol_numerator returns the appropriate Kronecker symbol depending on\n # the conductor of \\chi.\n m = cond\n if cond % 2 == 1:\n if cond % 4 == 3:\n m = -cond\n elif cond % 8 == 4:\n # Fixed cond % 16 == 4 and cond % 16 == 12 were switched in the\n # previous version of the code.\n #\n # Let d be a non zero squarefree integer. If d = 2,3 (mod) 4 and if\n # cond = 4d = 4 ( 4n + 2) or 4 (4n + 3) = 16 n + 8 or 16n + 12 then we\n # set m = cond. On the other hand if d = 1 (mod) 4 and cond = 4d = 4\n # (4n +1) = 16n + 4 then we set m = -cond.\n if cond % 16 == 4:\n m = -cond\n elif cond % 16 == 8:\n if parity == 1:\n m = -cond\n else:\n return None\n return m\n\n\ndef kronecker_symbol(m):\n if m:\n return r'\\(\\displaystyle\\left(\\frac{%s}{\\bullet}\\right)\\)' % (m)\n else:\n return None\n\n###############################################################################\n# Conrey character with no call to Jonathan's code\n# in order to handle big moduli\n\n\ndef get_sage_genvalues(modulus, order, genvalues, zeta_order):\n \"\"\"\n Helper method for computing correct genvalues when constructing\n the sage character\n \"\"\"\n phi_mod = euler_phi(modulus)\n exponent_factor = phi_mod / order\n genvalues_exponent = (x * exponent_factor for x in genvalues)\n return [x * zeta_order / phi_mod for x in genvalues_exponent]\n\n\nclass PariConreyGroup():\n\n def __init__(self, modulus):\n self.modulus = int(modulus)\n self.G = pari(f\"znstar({modulus},1)\")\n\n def gens(self):\n return Integers(self.modulus).unit_gens()\n\n def invariants(self):\n return pari(f\"{self.G}.cyc\")\n\n @cached_method\n def first_chars(self, limit=31):\n if self.modulus == 1:\n return [1]\n r = []\n for i,c in enumerate(Integers(self.modulus).list_of_elements_of_multiplicative_group()):\n r.append(c)\n if i > limit:\n self.rowtruncate = True\n break\n return r\n\n @cached_method\n def first_chars_with_orbit(self, limit=31):\n \"\"\" would be nice to compute those directly\n instead of querying each to db\n \"\"\"\n pass\n\n\nclass ConreyCharacter():\n \"\"\"\n minimal implementation of character from its Conrey index\n use Pari/GP functions when available\n \"\"\"\n\n def __init__(self, modulus, number):\n assert gcd(modulus, number)==1\n self.modulus = Integer(modulus)\n self.number = Integer(number)\n self.conrey = Mod(number,modulus)\n self.G = pari(\"znstar({},1)\".format(modulus))\n self.G_gens = Integers(self.modulus).unit_gens() # use sage generators\n self.chi_pari = self.G.znconreylog(self.number)\n self.chi_0 = None\n self.indlabel = None\n\n @property\n def texname(self):\n from lmfdb.characters.web_character import WebDirichlet\n return WebDirichlet.char2tex(self.modulus, self.number)\n\n @cached_method\n def modfactor(self):\n return self.modulus.factor()\n\n @cached_method\n def conductor(self):\n B = pari(f\"znconreyconductor({self.G},{self.chi_pari},&chi0)\")\n if B.type() == 't_INT':\n # means chi is primitive\n self.chi_0 = self.chi_pari\n self.indlabel = self.number\n return int(B)\n else:\n self.chi_0 = pari(\"chi0\")\n G_0 = pari(f\"znstar({B},1)\")\n self.indlabel = int(G_0.znconreyexp(self.chi_0))\n return int(B[0])\n\n @cached_method\n def is_primitive(self):\n return self.conductor() == self.modulus\n\n @cached_method\n def parity(self):\n return self.G.zncharisodd(self.chi_pari)\n\n def is_odd(self):\n return self.parity() == 1\n\n def is_even(self):\n return self.parity() == 0\n\n @property\n def order(self):\n return self.conrey.multiplicative_order()\n\n @property\n def genvalues(self):\n # This assumes that the generators are ordered in the way\n # that Sage returns\n return [self.conreyangle(k) * self.order for k in self.G_gens]\n\n @property\n def values_gens(self):\n # This may be considered the full version of genvalues;\n # that is, it returns both the generators as well as the values\n # at those generators\n return [[k, self.conreyangle(k) * self.order] for k in self.G_gens]\n\n @cached_method\n def kronecker_symbol(self):\n c = self.conductor()\n p = self.parity()\n return kronecker_symbol(symbol_numerator(c, p))\n\n def conreyangle(self,x):\n return Rational(self.G.chareval(self.chi_pari,x))\n\n def gauss_sum_numerical(self, a):\n # There seems to be a bug in pari when a is a multiple of the modulus,\n # so we deal with that separately\n if self.modulus.divides(a):\n if self.conductor() == 1:\n return euler_phi(self.modulus)\n else:\n return Integer(0)\n else:\n return self.G.znchargauss(self.chi_pari,a)\n\n def sage_zeta_order(self, order):\n return 1 if self.modulus <= 2 else lcm(2,order)\n\n def sage_character(self, order=None, genvalues=None):\n\n if order is None:\n order = self.order\n\n if genvalues is None:\n genvalues = self.genvalues\n\n H = DirichletGroup(self.modulus, base_ring=CyclotomicField(self.sage_zeta_order(order)))\n M = H._module\n order_corrected_genvalues = get_sage_genvalues(self.modulus, order, genvalues, self.sage_zeta_order(order))\n return DirichletCharacter(H,M(order_corrected_genvalues))\n\n @cached_method\n def galois_orbit(self, limit=31):\n \"\"\"\n orbit under Galois of the value field,\n can be used to find first conjugate or list of first conjugates\n \"\"\"\n logger.debug(f\"## galois_orbit({limit})\")\n order = self.order\n if order == 1:\n return [1]\n elif order < limit or order * order < limit * self.modulus:\n logger.debug(f\"compute all conjugate characters and return first {limit}\")\n return self.galois_orbit_all(limit)\n elif limit == 1 or self.modulus <= 1000000:\n logger.debug(f\"compute {limit} first conjugate characters\")\n return self.galois_orbit_search(limit)\n else:\n logger.debug(f\"galois orbit of size {order} too expansive, give up\")\n return []\n\n def galois_orbit_all(self, limit=31):\n # construct all Galois orbit, assume not too large\n order = self.order\n chik = self.conrey\n output = []\n for k in range(1,order):\n if gcd(k,order) == 1:\n output.append(Integer(chik))\n chik *= self.conrey\n output.sort()\n return output[:limit]\n\n def galois_orbit_search(self, limit=31):\n # fishing strategy, assume orbit relatively dense\n order = self.order\n num = self.number\n mod = self.modulus\n kmin = 1\n width = kmax = min(mod,limit * 50)\n while True:\n cmd = f\"a=Mod({num},{mod});my(valid(k)=my(l=znlog(k,a,{order}));l&&gcd(l,{order})==1);[ k | k <- [{kmin}..{kmax}], gcd(k,{mod})==1 && valid(k) ]\"\n ans = [Integer(m) for m in pari(cmd)[:limit]]\n if ans:\n return ans\n kmin += width\n kmax += width\n\n @property\n def min_conrey_conj(self):\n return self.galois_orbit(1)[0]\n\n @cached_method\n def kernel_field_poly(self):\n pol = self.G.galoissubcyclo(self.G.charker(self.chi_pari))\n if self.order <= 12:\n pol = pol.polredabs()\n return pol\n", "path": "lmfdb/characters/TinyConrey.py"}]}
3,281
176
gh_patches_debug_32314
rasdani/github-patches
git_diff
rucio__rucio-4959
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Error message 'NoSuchBucket' not matched via stringification The following test uses `str(e)` to find out whether the string contains 'NoSuchBucket', however (at least in boto 2.49.0) that message is contained in `e.message` and the default error stringification (inherited form BotoServerError): https://github.com/boto/boto/blob/91ba037e54ef521c379263b0ac769c66182527d7/boto/exception.py#L154-L156 does not include that instance attribute. https://github.com/rucio/rucio/blob/59af37a14e343f938131863969d130f5336e4a28/lib/rucio/rse/protocols/s3boto.py#L247 --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `lib/rucio/rse/protocols/s3boto.py` Content: ``` 1 # Copyright European Organization for Nuclear Research (CERN) 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # You may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # http://www.apache.org/licenses/LICENSE-2.0 7 # 8 # Authors: 9 # - Wen Guan, <[email protected]>, 2014-2017 10 # - Vincent Garonne, <[email protected]>, 2016-2017 11 # - Nicolo Magini, <[email protected]>, 2018 12 # - Hannes Hansen, <[email protected]>, 2019 13 # 14 # PY3K COMPATIBLE 15 16 import os 17 try: 18 # PY2 19 import urlparse 20 except ImportError: 21 # PY3 22 import urllib.parse as urlparse 23 import logging 24 25 import boto 26 from boto import connect_s3 27 from boto.s3.connection import OrdinaryCallingFormat 28 from boto.s3.key import Key 29 30 from rucio.common import exception 31 from rucio.common.config import get_rse_credentials 32 33 from rucio.rse.protocols import protocol 34 35 logging.getLogger('boto').setLevel(logging.INFO) 36 37 38 class Default(protocol.RSEProtocol): 39 """ Implementing access to RSEs using the S3 protocol.""" 40 41 def __init__(self, protocol_attr, rse_settings, logger=None): 42 super(Default, self).__init__(protocol_attr, rse_settings, logger=logger) 43 if 'determinism_type' in self.attributes: 44 self.attributes['determinism_type'] = 's3' 45 self.__conn = None 46 self.renaming = False 47 self.overwrite = True 48 self.http_proxy = os.environ.get("http_proxy") 49 self.https_proxy = os.environ.get("https_proxy") 50 51 def _disable_http_proxy(self): 52 """ 53 Disable http and https proxy if exists. 54 """ 55 if self.http_proxy: 56 del os.environ['http_proxy'] 57 if self.https_proxy: 58 del os.environ['https_proxy'] 59 60 def _reset_http_proxy(self): 61 """ 62 Reset http and https proxy if exists. 63 """ 64 if self.http_proxy: 65 os.environ['http_proxy'] = self.http_proxy 66 if self.https_proxy: 67 os.environ['https_proxy'] = self.https_proxy 68 69 def get_bucket_key_name(self, pfn): 70 """ 71 Gets boto key for a pfn 72 73 :param pfn: Physical file name 74 75 :returns: bucket name and key name as string 76 """ 77 try: 78 parsed = urlparse.urlparse(pfn) 79 hash_path = parsed.path.strip("/") 80 81 pos = hash_path.index("/") 82 bucket_name = hash_path[:pos] 83 key_name = hash_path[pos + 1:] 84 85 return bucket_name, key_name 86 except Exception as e: 87 raise exception.RucioException(str(e)) 88 89 def get_bucket_key(self, pfn, create=False, validate=True): 90 """ 91 Gets boto key for a pfn 92 93 :param pfn: Physical file name 94 :param create: True if needs to create the key, False if not 95 96 :returns: boto bucket and key object 97 """ 98 try: 99 bucket_name, key_name = self.get_bucket_key_name(pfn) 100 101 if create: 102 try: 103 bucket = self.__conn.get_bucket(bucket_name, validate=True) 104 except boto.exception.S3ResponseError as e: 105 if e.status == 404: # bucket not found 106 bucket = self.__conn.create_bucket(bucket_name) 107 else: 108 raise e 109 key = Key(bucket, key_name) 110 else: 111 bucket = self.__conn.get_bucket(bucket_name, validate=False) 112 key = bucket.get_key(key_name, validate=validate) 113 return bucket, key 114 except boto.exception.S3ResponseError as e: 115 if e.status == 404: 116 raise exception.SourceNotFound(str(e)) 117 else: 118 raise exception.ServiceUnavailable(e) 119 120 def exists(self, path): 121 """ 122 Checks if the requested file is known by the referred RSE. 123 124 :param path: Physical file name 125 126 :returns: True if the file exists, False if it doesn't 127 128 :raises SourceNotFound: if the source file was not found on the referred storage. 129 """ 130 try: 131 bucket, key = self.get_bucket_key(path) 132 if key: 133 return True 134 else: 135 return False 136 except exception.SourceNotFound: 137 return False 138 except Exception as e: 139 raise exception.ServiceUnavailable(e) 140 141 def connect(self): 142 """ 143 Establishes the actual connection to the referred RSE. 144 145 :param: credentials needed to establish a connection with the stroage. 146 147 :raises RSEAccessDenied: if no connection could be established. 148 """ 149 try: 150 scheme, prefix = self.attributes.get('scheme'), self.attributes.get('prefix') 151 netloc, port = self.attributes['hostname'], self.attributes.get('port', 80) 152 service_url = '%(scheme)s://%(netloc)s:%(port)s' % locals() 153 154 access_key, secret_key, is_secure = None, None, None 155 if 'S3_ACCESS_KEY' in os.environ: 156 access_key = os.environ['S3_ACCESS_KEY'] 157 if 'S3_SECRET_KEY' in os.environ: 158 secret_key = os.environ['S3_SECRET_KEY'] 159 if 'S3_IS_SECURE' in os.environ: 160 if str(os.environ['S3_IS_SECURE']).lower() == 'true': 161 is_secure = True 162 elif str(os.environ['S3_IS_SECURE']).lower() == 'false': 163 is_secure = False 164 165 if is_secure is None or access_key is None or secret_key is None: 166 credentials = get_rse_credentials() 167 self.rse['credentials'] = credentials.get(self.rse['rse']) 168 169 if not access_key: 170 access_key = self.rse['credentials']['access_key'] 171 if not secret_key: 172 secret_key = self.rse['credentials']['secret_key'] 173 if not is_secure: 174 is_secure = self.rse['credentials'].get('is_secure', {}).\ 175 get(service_url, False) 176 177 self._disable_http_proxy() 178 self.__conn = connect_s3(host=self.attributes['hostname'], 179 port=int(port), 180 aws_access_key_id=access_key, 181 aws_secret_access_key=secret_key, 182 is_secure=is_secure, 183 calling_format=OrdinaryCallingFormat()) 184 self._reset_http_proxy() 185 except Exception as e: 186 self._reset_http_proxy() 187 raise exception.RSEAccessDenied(e) 188 189 def close(self): 190 """ Closes the connection to RSE.""" 191 pass 192 193 def get(self, pfn, dest, transfer_timeout=None): 194 """ 195 Provides access to files stored inside connected the RSE. 196 197 :param path: Physical file name of requested file 198 :param dest: Name and path of the files when stored at the client 199 :param transfer_timeout: Transfer timeout (in seconds) - dummy 200 201 :raises DestinationNotAccessible: if the destination storage was not accessible. 202 :raises ServiceUnavailable: if some generic error occured in the library. 203 :raises SourceNotFound: if the source file was not found on the referred storage. 204 """ 205 try: 206 bucket, key = self.get_bucket_key(pfn, validate=False) 207 if key is None: 208 raise exception.SourceNotFound('Cannot get the source key from S3') 209 key.get_contents_to_filename(dest) 210 except IOError as e: 211 if e.errno == 2: 212 raise exception.DestinationNotAccessible(e) 213 else: 214 raise exception.ServiceUnavailable(e) 215 except boto.exception.S3ResponseError as e: 216 if e.status == 404: 217 raise exception.SourceNotFound(str(e)) 218 else: 219 raise exception.ServiceUnavailable(e) 220 except exception.SourceNotFound as e: 221 raise exception.SourceNotFound(e) 222 except Exception as e: 223 if os.path.exists(dest): 224 os.remove(dest) 225 raise exception.ServiceUnavailable(e) 226 227 def put(self, source, target, source_dir=None, transfer_timeout=None): 228 """ 229 Allows to store files inside the referred RSE. 230 231 :param source: path to the source file on the client file system 232 :param target: path to the destination file on the storage 233 :param source_dir: Path where the to be transferred files are stored in the local file system 234 :param transfer_timeout: Transfer timeout (in seconds) - dummy 235 236 :raises DestinationNotAccessible: if the destination storage was not accessible. 237 :raises ServiceUnavailable: if some generic error occured in the library. 238 :raises SourceNotFound: if the source file was not found on the referred storage. 239 """ 240 full_name = source_dir + '/' + source if source_dir else source 241 try: 242 bucket, key = self.get_bucket_key(target, validate=False) 243 if key is None: 244 raise exception.DestinationNotAccessible('Cannot get the destionation key from S3') 245 key.set_contents_from_filename(full_name) 246 except boto.exception.S3ResponseError as e: 247 if e.status == 404 and 'NoSuchBucket' in str(e): 248 try: 249 bucket, key = self.get_bucket_key(target, create=True) 250 key.set_contents_from_filename(full_name) 251 except Exception as e: 252 raise exception.ServiceUnavailable(e) 253 else: 254 raise exception.ServiceUnavailable(e) 255 except exception.SourceNotFound as e: 256 raise exception.SourceNotFound(e) 257 except Exception as e: 258 if 'No such file' in str(e): 259 raise exception.SourceNotFound(e) 260 else: 261 raise exception.ServiceUnavailable(e) 262 263 def delete(self, pfn): 264 """ 265 Deletes a file from the connected RSE. 266 267 :param path: path to the to be deleted file 268 269 :raises ServiceUnavailable: if some generic error occured in the library. 270 :raises SourceNotFound: if the source file was not found on the referred storage. 271 """ 272 try: 273 bucket, key = self.get_bucket_key(pfn) 274 if key is None: 275 raise exception.SourceNotFound('Cannot get the key from S3') 276 key.delete() 277 except exception.SourceNotFound as e: 278 raise exception.SourceNotFound(e) 279 except Exception as e: 280 raise exception.ServiceUnavailable(e) 281 282 def rename(self, pfn, new_pfn): 283 """ Allows to rename a file stored inside the connected RSE. 284 285 :param path: path to the current file on the storage 286 :param new_path: path to the new file on the storage 287 288 :raises DestinationNotAccessible: if the destination storage was not accessible. 289 :raises ServiceUnavailable: if some generic error occured in the library. 290 :raises SourceNotFound: if the source file was not found on the referred storage. 291 """ 292 try: 293 bucket, key = self.get_bucket_key(pfn) 294 if key is None: 295 raise exception.SourceNotFound('Cannot get the source key from S3') 296 bucket_name, key_name = self.get_bucket_key_name(new_pfn) 297 key.copy(bucket_name, key_name) 298 key.delete() 299 except exception.SourceNotFound as e: 300 raise exception.SourceNotFound(e) 301 except boto.exception.S3ResponseError as e: 302 if e.status in [404, 403]: 303 raise exception.DestinationNotAccessible(e) 304 else: 305 raise exception.ServiceUnavailable(e) 306 except Exception as e: 307 raise exception.ServiceUnavailable(e) 308 309 def stat(self, pfn): 310 """ Determines the file size in bytes of the provided file. 311 312 :param pfn: The PFN the file. 313 314 :returns: a dict containing the key filesize. 315 """ 316 try: 317 bucket, key = self.get_bucket_key(pfn) 318 if key is None: 319 raise exception.SourceNotFound('Cannot get the key from S3') 320 return {'filesize': int(key.size)} 321 except exception.SourceNotFound as e: 322 raise exception.SourceNotFound(e) 323 except Exception as e: 324 raise exception.ServiceUnavailable(e) 325 326 def list(self): 327 try: 328 prefix = self.attributes.get('prefix') 329 prefix = prefix.replace('/', '') 330 bucket = self.__conn.get_bucket(prefix, validate=True) 331 except boto.exception.S3ResponseError as e: 332 raise e 333 return bucket.list() 334 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/lib/rucio/rse/protocols/s3boto.py b/lib/rucio/rse/protocols/s3boto.py --- a/lib/rucio/rse/protocols/s3boto.py +++ b/lib/rucio/rse/protocols/s3boto.py @@ -1,17 +1,26 @@ -# Copyright European Organization for Nuclear Research (CERN) +# -*- coding: utf-8 -*- +# Copyright 2014-2021 CERN # # Licensed under the Apache License, Version 2.0 (the "License"); -# You may not use this file except in compliance with the License. +# you may not use this file except in compliance with the License. # You may obtain a copy of the License at -# http://www.apache.org/licenses/LICENSE-2.0 # -# Authors: -# - Wen Guan, <[email protected]>, 2014-2017 -# - Vincent Garonne, <[email protected]>, 2016-2017 -# - Nicolo Magini, <[email protected]>, 2018 -# - Hannes Hansen, <[email protected]>, 2019 +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. # -# PY3K COMPATIBLE +# Authors: +# - Wen Guan <[email protected]>, 2014-2017 +# - Vincent Garonne <[email protected]>, 2016-2017 +# - Martin Barisits <[email protected]>, 2016-2017 +# - Nicolo Magini <[email protected]>, 2018 +# - Hannes Hansen <[email protected]>, 2019 +# - Tomas Javurek <[email protected]>, 2020 +# - Mario Lassnig <[email protected]>, 2021 import os try: @@ -244,7 +253,7 @@ raise exception.DestinationNotAccessible('Cannot get the destionation key from S3') key.set_contents_from_filename(full_name) except boto.exception.S3ResponseError as e: - if e.status == 404 and 'NoSuchBucket' in str(e): + if e.status == 404 and 'NoSuchBucket' in e.error_code: try: bucket, key = self.get_bucket_key(target, create=True) key.set_contents_from_filename(full_name)
{"golden_diff": "diff --git a/lib/rucio/rse/protocols/s3boto.py b/lib/rucio/rse/protocols/s3boto.py\n--- a/lib/rucio/rse/protocols/s3boto.py\n+++ b/lib/rucio/rse/protocols/s3boto.py\n@@ -1,17 +1,26 @@\n-# Copyright European Organization for Nuclear Research (CERN)\n+# -*- coding: utf-8 -*-\n+# Copyright 2014-2021 CERN\n #\n # Licensed under the Apache License, Version 2.0 (the \"License\");\n-# You may not use this file except in compliance with the License.\n+# you may not use this file except in compliance with the License.\n # You may obtain a copy of the License at\n-# http://www.apache.org/licenses/LICENSE-2.0\n #\n-# Authors:\n-# - Wen Guan, <[email protected]>, 2014-2017\n-# - Vincent Garonne, <[email protected]>, 2016-2017\n-# - Nicolo Magini, <[email protected]>, 2018\n-# - Hannes Hansen, <[email protected]>, 2019\n+# http://www.apache.org/licenses/LICENSE-2.0\n+#\n+# Unless required by applicable law or agreed to in writing, software\n+# distributed under the License is distributed on an \"AS IS\" BASIS,\n+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n+# See the License for the specific language governing permissions and\n+# limitations under the License.\n #\n-# PY3K COMPATIBLE\n+# Authors:\n+# - Wen Guan <[email protected]>, 2014-2017\n+# - Vincent Garonne <[email protected]>, 2016-2017\n+# - Martin Barisits <[email protected]>, 2016-2017\n+# - Nicolo Magini <[email protected]>, 2018\n+# - Hannes Hansen <[email protected]>, 2019\n+# - Tomas Javurek <[email protected]>, 2020\n+# - Mario Lassnig <[email protected]>, 2021\n \n import os\n try:\n@@ -244,7 +253,7 @@\n raise exception.DestinationNotAccessible('Cannot get the destionation key from S3')\n key.set_contents_from_filename(full_name)\n except boto.exception.S3ResponseError as e:\n- if e.status == 404 and 'NoSuchBucket' in str(e):\n+ if e.status == 404 and 'NoSuchBucket' in e.error_code:\n try:\n bucket, key = self.get_bucket_key(target, create=True)\n key.set_contents_from_filename(full_name)\n", "issue": "Error message 'NoSuchBucket' not matched via stringification\nThe following test uses `str(e)` to find out whether the string contains 'NoSuchBucket', however (at least in boto 2.49.0) that message is contained in `e.message` and the default error stringification (inherited form BotoServerError):\r\nhttps://github.com/boto/boto/blob/91ba037e54ef521c379263b0ac769c66182527d7/boto/exception.py#L154-L156\r\ndoes not include that instance attribute. \r\n\r\nhttps://github.com/rucio/rucio/blob/59af37a14e343f938131863969d130f5336e4a28/lib/rucio/rse/protocols/s3boto.py#L247\n", "before_files": [{"content": "# Copyright European Organization for Nuclear Research (CERN)\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# You may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Authors:\n# - Wen Guan, <[email protected]>, 2014-2017\n# - Vincent Garonne, <[email protected]>, 2016-2017\n# - Nicolo Magini, <[email protected]>, 2018\n# - Hannes Hansen, <[email protected]>, 2019\n#\n# PY3K COMPATIBLE\n\nimport os\ntry:\n # PY2\n import urlparse\nexcept ImportError:\n # PY3\n import urllib.parse as urlparse\nimport logging\n\nimport boto\nfrom boto import connect_s3\nfrom boto.s3.connection import OrdinaryCallingFormat\nfrom boto.s3.key import Key\n\nfrom rucio.common import exception\nfrom rucio.common.config import get_rse_credentials\n\nfrom rucio.rse.protocols import protocol\n\nlogging.getLogger('boto').setLevel(logging.INFO)\n\n\nclass Default(protocol.RSEProtocol):\n \"\"\" Implementing access to RSEs using the S3 protocol.\"\"\"\n\n def __init__(self, protocol_attr, rse_settings, logger=None):\n super(Default, self).__init__(protocol_attr, rse_settings, logger=logger)\n if 'determinism_type' in self.attributes:\n self.attributes['determinism_type'] = 's3'\n self.__conn = None\n self.renaming = False\n self.overwrite = True\n self.http_proxy = os.environ.get(\"http_proxy\")\n self.https_proxy = os.environ.get(\"https_proxy\")\n\n def _disable_http_proxy(self):\n \"\"\"\n Disable http and https proxy if exists.\n \"\"\"\n if self.http_proxy:\n del os.environ['http_proxy']\n if self.https_proxy:\n del os.environ['https_proxy']\n\n def _reset_http_proxy(self):\n \"\"\"\n Reset http and https proxy if exists.\n \"\"\"\n if self.http_proxy:\n os.environ['http_proxy'] = self.http_proxy\n if self.https_proxy:\n os.environ['https_proxy'] = self.https_proxy\n\n def get_bucket_key_name(self, pfn):\n \"\"\"\n Gets boto key for a pfn\n\n :param pfn: Physical file name\n\n :returns: bucket name and key name as string\n \"\"\"\n try:\n parsed = urlparse.urlparse(pfn)\n hash_path = parsed.path.strip(\"/\")\n\n pos = hash_path.index(\"/\")\n bucket_name = hash_path[:pos]\n key_name = hash_path[pos + 1:]\n\n return bucket_name, key_name\n except Exception as e:\n raise exception.RucioException(str(e))\n\n def get_bucket_key(self, pfn, create=False, validate=True):\n \"\"\"\n Gets boto key for a pfn\n\n :param pfn: Physical file name\n :param create: True if needs to create the key, False if not\n\n :returns: boto bucket and key object\n \"\"\"\n try:\n bucket_name, key_name = self.get_bucket_key_name(pfn)\n\n if create:\n try:\n bucket = self.__conn.get_bucket(bucket_name, validate=True)\n except boto.exception.S3ResponseError as e:\n if e.status == 404: # bucket not found\n bucket = self.__conn.create_bucket(bucket_name)\n else:\n raise e\n key = Key(bucket, key_name)\n else:\n bucket = self.__conn.get_bucket(bucket_name, validate=False)\n key = bucket.get_key(key_name, validate=validate)\n return bucket, key\n except boto.exception.S3ResponseError as e:\n if e.status == 404:\n raise exception.SourceNotFound(str(e))\n else:\n raise exception.ServiceUnavailable(e)\n\n def exists(self, path):\n \"\"\"\n Checks if the requested file is known by the referred RSE.\n\n :param path: Physical file name\n\n :returns: True if the file exists, False if it doesn't\n\n :raises SourceNotFound: if the source file was not found on the referred storage.\n \"\"\"\n try:\n bucket, key = self.get_bucket_key(path)\n if key:\n return True\n else:\n return False\n except exception.SourceNotFound:\n return False\n except Exception as e:\n raise exception.ServiceUnavailable(e)\n\n def connect(self):\n \"\"\"\n Establishes the actual connection to the referred RSE.\n\n :param: credentials needed to establish a connection with the stroage.\n\n :raises RSEAccessDenied: if no connection could be established.\n \"\"\"\n try:\n scheme, prefix = self.attributes.get('scheme'), self.attributes.get('prefix')\n netloc, port = self.attributes['hostname'], self.attributes.get('port', 80)\n service_url = '%(scheme)s://%(netloc)s:%(port)s' % locals()\n\n access_key, secret_key, is_secure = None, None, None\n if 'S3_ACCESS_KEY' in os.environ:\n access_key = os.environ['S3_ACCESS_KEY']\n if 'S3_SECRET_KEY' in os.environ:\n secret_key = os.environ['S3_SECRET_KEY']\n if 'S3_IS_SECURE' in os.environ:\n if str(os.environ['S3_IS_SECURE']).lower() == 'true':\n is_secure = True\n elif str(os.environ['S3_IS_SECURE']).lower() == 'false':\n is_secure = False\n\n if is_secure is None or access_key is None or secret_key is None:\n credentials = get_rse_credentials()\n self.rse['credentials'] = credentials.get(self.rse['rse'])\n\n if not access_key:\n access_key = self.rse['credentials']['access_key']\n if not secret_key:\n secret_key = self.rse['credentials']['secret_key']\n if not is_secure:\n is_secure = self.rse['credentials'].get('is_secure', {}).\\\n get(service_url, False)\n\n self._disable_http_proxy()\n self.__conn = connect_s3(host=self.attributes['hostname'],\n port=int(port),\n aws_access_key_id=access_key,\n aws_secret_access_key=secret_key,\n is_secure=is_secure,\n calling_format=OrdinaryCallingFormat())\n self._reset_http_proxy()\n except Exception as e:\n self._reset_http_proxy()\n raise exception.RSEAccessDenied(e)\n\n def close(self):\n \"\"\" Closes the connection to RSE.\"\"\"\n pass\n\n def get(self, pfn, dest, transfer_timeout=None):\n \"\"\"\n Provides access to files stored inside connected the RSE.\n\n :param path: Physical file name of requested file\n :param dest: Name and path of the files when stored at the client\n :param transfer_timeout: Transfer timeout (in seconds) - dummy\n\n :raises DestinationNotAccessible: if the destination storage was not accessible.\n :raises ServiceUnavailable: if some generic error occured in the library.\n :raises SourceNotFound: if the source file was not found on the referred storage.\n \"\"\"\n try:\n bucket, key = self.get_bucket_key(pfn, validate=False)\n if key is None:\n raise exception.SourceNotFound('Cannot get the source key from S3')\n key.get_contents_to_filename(dest)\n except IOError as e:\n if e.errno == 2:\n raise exception.DestinationNotAccessible(e)\n else:\n raise exception.ServiceUnavailable(e)\n except boto.exception.S3ResponseError as e:\n if e.status == 404:\n raise exception.SourceNotFound(str(e))\n else:\n raise exception.ServiceUnavailable(e)\n except exception.SourceNotFound as e:\n raise exception.SourceNotFound(e)\n except Exception as e:\n if os.path.exists(dest):\n os.remove(dest)\n raise exception.ServiceUnavailable(e)\n\n def put(self, source, target, source_dir=None, transfer_timeout=None):\n \"\"\"\n Allows to store files inside the referred RSE.\n\n :param source: path to the source file on the client file system\n :param target: path to the destination file on the storage\n :param source_dir: Path where the to be transferred files are stored in the local file system\n :param transfer_timeout: Transfer timeout (in seconds) - dummy\n\n :raises DestinationNotAccessible: if the destination storage was not accessible.\n :raises ServiceUnavailable: if some generic error occured in the library.\n :raises SourceNotFound: if the source file was not found on the referred storage.\n \"\"\"\n full_name = source_dir + '/' + source if source_dir else source\n try:\n bucket, key = self.get_bucket_key(target, validate=False)\n if key is None:\n raise exception.DestinationNotAccessible('Cannot get the destionation key from S3')\n key.set_contents_from_filename(full_name)\n except boto.exception.S3ResponseError as e:\n if e.status == 404 and 'NoSuchBucket' in str(e):\n try:\n bucket, key = self.get_bucket_key(target, create=True)\n key.set_contents_from_filename(full_name)\n except Exception as e:\n raise exception.ServiceUnavailable(e)\n else:\n raise exception.ServiceUnavailable(e)\n except exception.SourceNotFound as e:\n raise exception.SourceNotFound(e)\n except Exception as e:\n if 'No such file' in str(e):\n raise exception.SourceNotFound(e)\n else:\n raise exception.ServiceUnavailable(e)\n\n def delete(self, pfn):\n \"\"\"\n Deletes a file from the connected RSE.\n\n :param path: path to the to be deleted file\n\n :raises ServiceUnavailable: if some generic error occured in the library.\n :raises SourceNotFound: if the source file was not found on the referred storage.\n \"\"\"\n try:\n bucket, key = self.get_bucket_key(pfn)\n if key is None:\n raise exception.SourceNotFound('Cannot get the key from S3')\n key.delete()\n except exception.SourceNotFound as e:\n raise exception.SourceNotFound(e)\n except Exception as e:\n raise exception.ServiceUnavailable(e)\n\n def rename(self, pfn, new_pfn):\n \"\"\" Allows to rename a file stored inside the connected RSE.\n\n :param path: path to the current file on the storage\n :param new_path: path to the new file on the storage\n\n :raises DestinationNotAccessible: if the destination storage was not accessible.\n :raises ServiceUnavailable: if some generic error occured in the library.\n :raises SourceNotFound: if the source file was not found on the referred storage.\n \"\"\"\n try:\n bucket, key = self.get_bucket_key(pfn)\n if key is None:\n raise exception.SourceNotFound('Cannot get the source key from S3')\n bucket_name, key_name = self.get_bucket_key_name(new_pfn)\n key.copy(bucket_name, key_name)\n key.delete()\n except exception.SourceNotFound as e:\n raise exception.SourceNotFound(e)\n except boto.exception.S3ResponseError as e:\n if e.status in [404, 403]:\n raise exception.DestinationNotAccessible(e)\n else:\n raise exception.ServiceUnavailable(e)\n except Exception as e:\n raise exception.ServiceUnavailable(e)\n\n def stat(self, pfn):\n \"\"\" Determines the file size in bytes of the provided file.\n\n :param pfn: The PFN the file.\n\n :returns: a dict containing the key filesize.\n \"\"\"\n try:\n bucket, key = self.get_bucket_key(pfn)\n if key is None:\n raise exception.SourceNotFound('Cannot get the key from S3')\n return {'filesize': int(key.size)}\n except exception.SourceNotFound as e:\n raise exception.SourceNotFound(e)\n except Exception as e:\n raise exception.ServiceUnavailable(e)\n\n def list(self):\n try:\n prefix = self.attributes.get('prefix')\n prefix = prefix.replace('/', '')\n bucket = self.__conn.get_bucket(prefix, validate=True)\n except boto.exception.S3ResponseError as e:\n raise e\n return bucket.list()\n", "path": "lib/rucio/rse/protocols/s3boto.py"}], "after_files": [{"content": "# -*- coding: utf-8 -*-\n# Copyright 2014-2021 CERN\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n#\n# Authors:\n# - Wen Guan <[email protected]>, 2014-2017\n# - Vincent Garonne <[email protected]>, 2016-2017\n# - Martin Barisits <[email protected]>, 2016-2017\n# - Nicolo Magini <[email protected]>, 2018\n# - Hannes Hansen <[email protected]>, 2019\n# - Tomas Javurek <[email protected]>, 2020\n# - Mario Lassnig <[email protected]>, 2021\n\nimport os\ntry:\n # PY2\n import urlparse\nexcept ImportError:\n # PY3\n import urllib.parse as urlparse\nimport logging\n\nimport boto\nfrom boto import connect_s3\nfrom boto.s3.connection import OrdinaryCallingFormat\nfrom boto.s3.key import Key\n\nfrom rucio.common import exception\nfrom rucio.common.config import get_rse_credentials\n\nfrom rucio.rse.protocols import protocol\n\nlogging.getLogger('boto').setLevel(logging.INFO)\n\n\nclass Default(protocol.RSEProtocol):\n \"\"\" Implementing access to RSEs using the S3 protocol.\"\"\"\n\n def __init__(self, protocol_attr, rse_settings, logger=None):\n super(Default, self).__init__(protocol_attr, rse_settings, logger=logger)\n if 'determinism_type' in self.attributes:\n self.attributes['determinism_type'] = 's3'\n self.__conn = None\n self.renaming = False\n self.overwrite = True\n self.http_proxy = os.environ.get(\"http_proxy\")\n self.https_proxy = os.environ.get(\"https_proxy\")\n\n def _disable_http_proxy(self):\n \"\"\"\n Disable http and https proxy if exists.\n \"\"\"\n if self.http_proxy:\n del os.environ['http_proxy']\n if self.https_proxy:\n del os.environ['https_proxy']\n\n def _reset_http_proxy(self):\n \"\"\"\n Reset http and https proxy if exists.\n \"\"\"\n if self.http_proxy:\n os.environ['http_proxy'] = self.http_proxy\n if self.https_proxy:\n os.environ['https_proxy'] = self.https_proxy\n\n def get_bucket_key_name(self, pfn):\n \"\"\"\n Gets boto key for a pfn\n\n :param pfn: Physical file name\n\n :returns: bucket name and key name as string\n \"\"\"\n try:\n parsed = urlparse.urlparse(pfn)\n hash_path = parsed.path.strip(\"/\")\n\n pos = hash_path.index(\"/\")\n bucket_name = hash_path[:pos]\n key_name = hash_path[pos + 1:]\n\n return bucket_name, key_name\n except Exception as e:\n raise exception.RucioException(str(e))\n\n def get_bucket_key(self, pfn, create=False, validate=True):\n \"\"\"\n Gets boto key for a pfn\n\n :param pfn: Physical file name\n :param create: True if needs to create the key, False if not\n\n :returns: boto bucket and key object\n \"\"\"\n try:\n bucket_name, key_name = self.get_bucket_key_name(pfn)\n\n if create:\n try:\n bucket = self.__conn.get_bucket(bucket_name, validate=True)\n except boto.exception.S3ResponseError as e:\n if e.status == 404: # bucket not found\n bucket = self.__conn.create_bucket(bucket_name)\n else:\n raise e\n key = Key(bucket, key_name)\n else:\n bucket = self.__conn.get_bucket(bucket_name, validate=False)\n key = bucket.get_key(key_name, validate=validate)\n return bucket, key\n except boto.exception.S3ResponseError as e:\n if e.status == 404:\n raise exception.SourceNotFound(str(e))\n else:\n raise exception.ServiceUnavailable(e)\n\n def exists(self, path):\n \"\"\"\n Checks if the requested file is known by the referred RSE.\n\n :param path: Physical file name\n\n :returns: True if the file exists, False if it doesn't\n\n :raises SourceNotFound: if the source file was not found on the referred storage.\n \"\"\"\n try:\n bucket, key = self.get_bucket_key(path)\n if key:\n return True\n else:\n return False\n except exception.SourceNotFound:\n return False\n except Exception as e:\n raise exception.ServiceUnavailable(e)\n\n def connect(self):\n \"\"\"\n Establishes the actual connection to the referred RSE.\n\n :param: credentials needed to establish a connection with the stroage.\n\n :raises RSEAccessDenied: if no connection could be established.\n \"\"\"\n try:\n scheme, prefix = self.attributes.get('scheme'), self.attributes.get('prefix')\n netloc, port = self.attributes['hostname'], self.attributes.get('port', 80)\n service_url = '%(scheme)s://%(netloc)s:%(port)s' % locals()\n\n access_key, secret_key, is_secure = None, None, None\n if 'S3_ACCESS_KEY' in os.environ:\n access_key = os.environ['S3_ACCESS_KEY']\n if 'S3_SECRET_KEY' in os.environ:\n secret_key = os.environ['S3_SECRET_KEY']\n if 'S3_IS_SECURE' in os.environ:\n if str(os.environ['S3_IS_SECURE']).lower() == 'true':\n is_secure = True\n elif str(os.environ['S3_IS_SECURE']).lower() == 'false':\n is_secure = False\n\n if is_secure is None or access_key is None or secret_key is None:\n credentials = get_rse_credentials()\n self.rse['credentials'] = credentials.get(self.rse['rse'])\n\n if not access_key:\n access_key = self.rse['credentials']['access_key']\n if not secret_key:\n secret_key = self.rse['credentials']['secret_key']\n if not is_secure:\n is_secure = self.rse['credentials'].get('is_secure', {}).\\\n get(service_url, False)\n\n self._disable_http_proxy()\n self.__conn = connect_s3(host=self.attributes['hostname'],\n port=int(port),\n aws_access_key_id=access_key,\n aws_secret_access_key=secret_key,\n is_secure=is_secure,\n calling_format=OrdinaryCallingFormat())\n self._reset_http_proxy()\n except Exception as e:\n self._reset_http_proxy()\n raise exception.RSEAccessDenied(e)\n\n def close(self):\n \"\"\" Closes the connection to RSE.\"\"\"\n pass\n\n def get(self, pfn, dest, transfer_timeout=None):\n \"\"\"\n Provides access to files stored inside connected the RSE.\n\n :param path: Physical file name of requested file\n :param dest: Name and path of the files when stored at the client\n :param transfer_timeout: Transfer timeout (in seconds) - dummy\n\n :raises DestinationNotAccessible: if the destination storage was not accessible.\n :raises ServiceUnavailable: if some generic error occured in the library.\n :raises SourceNotFound: if the source file was not found on the referred storage.\n \"\"\"\n try:\n bucket, key = self.get_bucket_key(pfn, validate=False)\n if key is None:\n raise exception.SourceNotFound('Cannot get the source key from S3')\n key.get_contents_to_filename(dest)\n except IOError as e:\n if e.errno == 2:\n raise exception.DestinationNotAccessible(e)\n else:\n raise exception.ServiceUnavailable(e)\n except boto.exception.S3ResponseError as e:\n if e.status == 404:\n raise exception.SourceNotFound(str(e))\n else:\n raise exception.ServiceUnavailable(e)\n except exception.SourceNotFound as e:\n raise exception.SourceNotFound(e)\n except Exception as e:\n if os.path.exists(dest):\n os.remove(dest)\n raise exception.ServiceUnavailable(e)\n\n def put(self, source, target, source_dir=None, transfer_timeout=None):\n \"\"\"\n Allows to store files inside the referred RSE.\n\n :param source: path to the source file on the client file system\n :param target: path to the destination file on the storage\n :param source_dir: Path where the to be transferred files are stored in the local file system\n :param transfer_timeout: Transfer timeout (in seconds) - dummy\n\n :raises DestinationNotAccessible: if the destination storage was not accessible.\n :raises ServiceUnavailable: if some generic error occured in the library.\n :raises SourceNotFound: if the source file was not found on the referred storage.\n \"\"\"\n full_name = source_dir + '/' + source if source_dir else source\n try:\n bucket, key = self.get_bucket_key(target, validate=False)\n if key is None:\n raise exception.DestinationNotAccessible('Cannot get the destionation key from S3')\n key.set_contents_from_filename(full_name)\n except boto.exception.S3ResponseError as e:\n if e.status == 404 and 'NoSuchBucket' in e.error_code:\n try:\n bucket, key = self.get_bucket_key(target, create=True)\n key.set_contents_from_filename(full_name)\n except Exception as e:\n raise exception.ServiceUnavailable(e)\n else:\n raise exception.ServiceUnavailable(e)\n except exception.SourceNotFound as e:\n raise exception.SourceNotFound(e)\n except Exception as e:\n if 'No such file' in str(e):\n raise exception.SourceNotFound(e)\n else:\n raise exception.ServiceUnavailable(e)\n\n def delete(self, pfn):\n \"\"\"\n Deletes a file from the connected RSE.\n\n :param path: path to the to be deleted file\n\n :raises ServiceUnavailable: if some generic error occured in the library.\n :raises SourceNotFound: if the source file was not found on the referred storage.\n \"\"\"\n try:\n bucket, key = self.get_bucket_key(pfn)\n if key is None:\n raise exception.SourceNotFound('Cannot get the key from S3')\n key.delete()\n except exception.SourceNotFound as e:\n raise exception.SourceNotFound(e)\n except Exception as e:\n raise exception.ServiceUnavailable(e)\n\n def rename(self, pfn, new_pfn):\n \"\"\" Allows to rename a file stored inside the connected RSE.\n\n :param path: path to the current file on the storage\n :param new_path: path to the new file on the storage\n\n :raises DestinationNotAccessible: if the destination storage was not accessible.\n :raises ServiceUnavailable: if some generic error occured in the library.\n :raises SourceNotFound: if the source file was not found on the referred storage.\n \"\"\"\n try:\n bucket, key = self.get_bucket_key(pfn)\n if key is None:\n raise exception.SourceNotFound('Cannot get the source key from S3')\n bucket_name, key_name = self.get_bucket_key_name(new_pfn)\n key.copy(bucket_name, key_name)\n key.delete()\n except exception.SourceNotFound as e:\n raise exception.SourceNotFound(e)\n except boto.exception.S3ResponseError as e:\n if e.status in [404, 403]:\n raise exception.DestinationNotAccessible(e)\n else:\n raise exception.ServiceUnavailable(e)\n except Exception as e:\n raise exception.ServiceUnavailable(e)\n\n def stat(self, pfn):\n \"\"\" Determines the file size in bytes of the provided file.\n\n :param pfn: The PFN the file.\n\n :returns: a dict containing the key filesize.\n \"\"\"\n try:\n bucket, key = self.get_bucket_key(pfn)\n if key is None:\n raise exception.SourceNotFound('Cannot get the key from S3')\n return {'filesize': int(key.size)}\n except exception.SourceNotFound as e:\n raise exception.SourceNotFound(e)\n except Exception as e:\n raise exception.ServiceUnavailable(e)\n\n def list(self):\n try:\n prefix = self.attributes.get('prefix')\n prefix = prefix.replace('/', '')\n bucket = self.__conn.get_bucket(prefix, validate=True)\n except boto.exception.S3ResponseError as e:\n raise e\n return bucket.list()\n", "path": "lib/rucio/rse/protocols/s3boto.py"}]}
4,034
671
gh_patches_debug_7791
rasdani/github-patches
git_diff
RedHatInsights__insights-core-2477
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Imprprovement for bond parser Currently, the bond parser is not supporting to check if the primary slave is configured with "primary_reselect=failure". Parser PR: https://github.com/RedHatInsights/insights-core/pull/2477 --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `insights/parsers/bond.py` Content: ``` 1 """ 2 Bond - file ``/proc/net/bonding`` 3 ================================= 4 5 Provides plugins access to the network bonding information gathered from 6 all the files starteing with "bond." located in the 7 ``/proc/net/bonding`` directory. 8 9 Typical content of ``bond.*`` file is:: 10 11 Ethernet Channel Bonding Driver: v3.2.4 (January 28, 2008) 12 13 Bonding Mode: IEEE 802.3ad Dynamic link aggregation 14 Transmit Hash Policy: layer2 (0) 15 MII Status: up 16 MII Polling Interval (ms): 500 17 Up Delay (ms): 0 18 Down Delay (ms): 0 19 20 802.3ad info 21 LACP rate: slow 22 Active Aggregator Info: 23 Aggregator ID: 3 24 Number of ports: 1 25 Actor Key: 17 26 Partner Key: 1 27 Partner Mac Address: 00:00:00:00:00:00 28 29 Slave Interface: eth1 30 MII Status: up 31 Link Failure Count: 0 32 Permanent HW addr: 00:16:35:5e:42:fc 33 Aggregator ID: 3 34 35 Slave Interface: eth2 36 MII Status: up 37 Link Failure Count: 0 38 Permanent HW addr: 00:16:35:5e:02:7e 39 Aggregator ID: 2 40 41 Data is modeled as an array of ``Bond`` objects (``bond`` being a 42 pattern file specification gathering data from files located in 43 ``/proc/net/bonding``. 44 45 Examples: 46 >>> type(bond_info) 47 <class 'insights.parsers.bond.Bond'> 48 >>> bond_info.bond_mode 49 '4' 50 >>> bond_info.partner_mac_address 51 '00:00:00:00:00:00' 52 >>> bond_info.slave_interface 53 ['eth1', 'eth2'] 54 >>> bond_info.aggregator_id 55 ['3', '3', '2'] 56 >>> bond_info.xmit_hash_policy 57 'layer2' 58 >>> bond_info.active_slave 59 >>> bond_info.slave_duplex 60 ['full', 'full'] 61 >>> bond_info.slave_speed 62 ['1000 Mbps', '1000 Mbps'] 63 """ 64 65 from insights import Parser, parser, get_active_lines 66 from insights.specs import Specs 67 from insights.parsers import ParseException 68 69 70 """dict: bonding mode parameter string linked to bond type index.""" 71 BOND_PREFIX_MAP = { 72 'load balancing (round-robin)': '0', 73 'fault-tolerance (active-backup)': '1', 74 'fault-tolerance (active-backup) (fail_over_mac active)': '1', 75 'load balancing (xor)': '2', 76 'fault-tolerance (broadcast)': '3', 77 'IEEE 802.3ad Dynamic link aggregation': '4', 78 'transmit load balancing': '5', 79 'adaptive load balancing': '6' 80 } 81 82 83 @parser(Specs.bond) 84 class Bond(Parser): 85 """ 86 Models the ``/proc/net/bonding`` file. 87 88 Currently used information from ``/proc/net/bonding`` includes 89 the "bond mode" and "partner mac address". 90 """ 91 92 def parse_content(self, content): 93 self._bond_mode = None 94 self._partner_mac_address = None 95 self._active_slave = None 96 self.xmit_hash_policy = None 97 self._arp_polling_interval = None 98 self._arp_ip_target = None 99 self._slave_interface = [] 100 self._aggregator_id = [] 101 self._mii_status = [] 102 self._slave_link_failure_count = [] 103 self._slave_speed = [] 104 self._slave_duplex = [] 105 self._primary_slave = None 106 107 for line in get_active_lines(content): 108 if line.startswith("Bonding Mode: "): 109 raw_mode = line.split(":", 1)[1].strip() 110 self._bond_mode = raw_mode 111 if raw_mode in BOND_PREFIX_MAP: 112 self._bond_mode = BOND_PREFIX_MAP[raw_mode] 113 else: 114 raise ParseException("Unrecognised bonding mode '{b}'".format(b=raw_mode)) 115 elif line.startswith("Partner Mac Address: "): 116 self._partner_mac_address = line.split(":", 1)[1].strip() 117 elif line.startswith("Slave Interface: "): 118 self._slave_interface.append(line.split(":", 1)[1].strip()) 119 elif line.strip().startswith("Aggregator ID: "): 120 self._aggregator_id.append(line.strip().split(':', 1)[1].strip()) 121 elif line.strip().startswith("Transmit Hash Policy"): 122 # No need of values in bracket: 123 # Integer notification (0), (1), (2) of layer2, layer3+4, layer2+3 resp 124 self.xmit_hash_policy = line.split(":", 1)[1].split()[0] 125 elif line.strip().startswith("Currently Active Slave"): 126 self._active_slave = line.split(":", 1)[1].split()[0] 127 elif line.strip().startswith("MII Status: "): 128 self._mii_status.append(line.strip().split(':', 1)[1].strip()) 129 elif line.strip().startswith("Link Failure Count: "): 130 self._slave_link_failure_count.append(line.strip().split(':', 1)[1].strip()) 131 elif line.strip().startswith("Speed: "): 132 self._slave_speed.append(line.strip().split(':', 1)[1].strip()) 133 elif line.strip().startswith("Duplex: "): 134 self._slave_duplex.append(line.strip().split(':', 1)[1].strip()) 135 elif line.strip().startswith("ARP Polling Interval (ms):"): 136 self._arp_polling_interval = line.strip().split(':', 1)[1].strip() 137 elif line.strip().startswith("ARP IP target/s (n.n.n.n form):"): 138 self._arp_ip_target = line.strip().split(':', 1)[1].strip() 139 elif line.strip().startswith("Primary Slave"): 140 self._primary_slave = line.split(":", 1)[1].split()[0] 141 142 @property 143 def bond_mode(self): 144 """Returns the bond mode number as a string, or if there is no 145 known mapping to a number, the raw "Bonding Mode" value. 146 ``None`` is returned if no "Bonding Mode" key is found. 147 """ 148 return self._bond_mode 149 150 @property 151 def partner_mac_address(self): 152 """Returns the value of the "Partner Mac Address" in the bond 153 file if the key/value exists. If the key is not in the bond 154 file, ``None`` is returned. 155 """ 156 return self._partner_mac_address 157 158 @property 159 def slave_interface(self): 160 """Returns all the slave interfaces of in the bond file wrapped 161 a list if the key/value exists. If the key is not in the 162 bond file, ``[]`` is returned. 163 """ 164 return self._slave_interface 165 166 @property 167 def aggregator_id(self): 168 """Returns all the aggregator id of in the bond file wrapped 169 a list if the key/value exists. If the key is not in the 170 bond file, ``[]`` is returned. 171 """ 172 return self._aggregator_id 173 174 @property 175 def active_slave(self): 176 """Returns the active slave of the "Currently Active Slave" in the bond 177 file if key/value exists. If the key is not in the bond file, ``None`` 178 is returned. 179 """ 180 return self._active_slave 181 182 @property 183 def mii_status(self): 184 """Returns the master and all the slaves "MII Status" value in the bond file wrapped 185 a list if the key/value exists. If the key is not in the 186 bond file, ``[]`` is returned. 187 """ 188 return self._mii_status 189 190 @property 191 def slave_link_failure_count(self): 192 """Returns all the slaves "Link Failure Count" value in the bond file wrapped 193 a list if the key/value exists. If the key is not in the 194 bond file, ``[]`` is returned. 195 """ 196 return self._slave_link_failure_count 197 198 @property 199 def slave_speed(self): 200 """Returns all the slaves "Speed" value in the bond file wrapped 201 a list if the key/value exists. If the key is not in the 202 bond file, ``[]`` is returned. 203 """ 204 return self._slave_speed 205 206 @property 207 def slave_duplex(self): 208 """Returns all the slave "Duplex" value in the bond file wrapped 209 a list if the key/value exists. If the key is not in the 210 bond file, ``[]`` is returned. 211 """ 212 return self._slave_duplex 213 214 @property 215 def arp_polling_interval(self): 216 """Returns the arp polling interval as a string. ``None`` is returned 217 if no "ARP Polling Interval (ms)" key is found. 218 """ 219 return self._arp_polling_interval 220 221 @property 222 def arp_ip_target(self): 223 """Returns the arp ip target as a string. ``None`` is returned 224 if no "ARP IP target/s (n.n.n.n form)" key is found. 225 """ 226 return self._arp_ip_target 227 228 @property 229 def primary_slave(self): 230 """Returns the "Primary Slave" in the bond file if key/value exists. 231 If the key is not in the bond file, ``None`` is returned. 232 """ 233 return self._primary_slave 234 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/insights/parsers/bond.py b/insights/parsers/bond.py --- a/insights/parsers/bond.py +++ b/insights/parsers/bond.py @@ -137,7 +137,7 @@ elif line.strip().startswith("ARP IP target/s (n.n.n.n form):"): self._arp_ip_target = line.strip().split(':', 1)[1].strip() elif line.strip().startswith("Primary Slave"): - self._primary_slave = line.split(":", 1)[1].split()[0] + self._primary_slave = line.split(":", 1)[1].strip() @property def bond_mode(self):
{"golden_diff": "diff --git a/insights/parsers/bond.py b/insights/parsers/bond.py\n--- a/insights/parsers/bond.py\n+++ b/insights/parsers/bond.py\n@@ -137,7 +137,7 @@\n elif line.strip().startswith(\"ARP IP target/s (n.n.n.n form):\"):\n self._arp_ip_target = line.strip().split(':', 1)[1].strip()\n elif line.strip().startswith(\"Primary Slave\"):\n- self._primary_slave = line.split(\":\", 1)[1].split()[0]\n+ self._primary_slave = line.split(\":\", 1)[1].strip()\n \n @property\n def bond_mode(self):\n", "issue": "Imprprovement for bond parser\nCurrently, the bond parser is not supporting to check if the primary slave is configured with \"primary_reselect=failure\".\r\n\r\nParser PR: https://github.com/RedHatInsights/insights-core/pull/2477\r\n\n", "before_files": [{"content": "\"\"\"\nBond - file ``/proc/net/bonding``\n=================================\n\nProvides plugins access to the network bonding information gathered from\nall the files starteing with \"bond.\" located in the\n``/proc/net/bonding`` directory.\n\nTypical content of ``bond.*`` file is::\n\n Ethernet Channel Bonding Driver: v3.2.4 (January 28, 2008)\n\n Bonding Mode: IEEE 802.3ad Dynamic link aggregation\n Transmit Hash Policy: layer2 (0)\n MII Status: up\n MII Polling Interval (ms): 500\n Up Delay (ms): 0\n Down Delay (ms): 0\n\n 802.3ad info\n LACP rate: slow\n Active Aggregator Info:\n Aggregator ID: 3\n Number of ports: 1\n Actor Key: 17\n Partner Key: 1\n Partner Mac Address: 00:00:00:00:00:00\n\n Slave Interface: eth1\n MII Status: up\n Link Failure Count: 0\n Permanent HW addr: 00:16:35:5e:42:fc\n Aggregator ID: 3\n\n Slave Interface: eth2\n MII Status: up\n Link Failure Count: 0\n Permanent HW addr: 00:16:35:5e:02:7e\n Aggregator ID: 2\n\nData is modeled as an array of ``Bond`` objects (``bond`` being a\npattern file specification gathering data from files located in\n``/proc/net/bonding``.\n\nExamples:\n >>> type(bond_info)\n <class 'insights.parsers.bond.Bond'>\n >>> bond_info.bond_mode\n '4'\n >>> bond_info.partner_mac_address\n '00:00:00:00:00:00'\n >>> bond_info.slave_interface\n ['eth1', 'eth2']\n >>> bond_info.aggregator_id\n ['3', '3', '2']\n >>> bond_info.xmit_hash_policy\n 'layer2'\n >>> bond_info.active_slave\n >>> bond_info.slave_duplex\n ['full', 'full']\n >>> bond_info.slave_speed\n ['1000 Mbps', '1000 Mbps']\n\"\"\"\n\nfrom insights import Parser, parser, get_active_lines\nfrom insights.specs import Specs\nfrom insights.parsers import ParseException\n\n\n\"\"\"dict: bonding mode parameter string linked to bond type index.\"\"\"\nBOND_PREFIX_MAP = {\n 'load balancing (round-robin)': '0',\n 'fault-tolerance (active-backup)': '1',\n 'fault-tolerance (active-backup) (fail_over_mac active)': '1',\n 'load balancing (xor)': '2',\n 'fault-tolerance (broadcast)': '3',\n 'IEEE 802.3ad Dynamic link aggregation': '4',\n 'transmit load balancing': '5',\n 'adaptive load balancing': '6'\n}\n\n\n@parser(Specs.bond)\nclass Bond(Parser):\n \"\"\"\n Models the ``/proc/net/bonding`` file.\n\n Currently used information from ``/proc/net/bonding`` includes\n the \"bond mode\" and \"partner mac address\".\n \"\"\"\n\n def parse_content(self, content):\n self._bond_mode = None\n self._partner_mac_address = None\n self._active_slave = None\n self.xmit_hash_policy = None\n self._arp_polling_interval = None\n self._arp_ip_target = None\n self._slave_interface = []\n self._aggregator_id = []\n self._mii_status = []\n self._slave_link_failure_count = []\n self._slave_speed = []\n self._slave_duplex = []\n self._primary_slave = None\n\n for line in get_active_lines(content):\n if line.startswith(\"Bonding Mode: \"):\n raw_mode = line.split(\":\", 1)[1].strip()\n self._bond_mode = raw_mode\n if raw_mode in BOND_PREFIX_MAP:\n self._bond_mode = BOND_PREFIX_MAP[raw_mode]\n else:\n raise ParseException(\"Unrecognised bonding mode '{b}'\".format(b=raw_mode))\n elif line.startswith(\"Partner Mac Address: \"):\n self._partner_mac_address = line.split(\":\", 1)[1].strip()\n elif line.startswith(\"Slave Interface: \"):\n self._slave_interface.append(line.split(\":\", 1)[1].strip())\n elif line.strip().startswith(\"Aggregator ID: \"):\n self._aggregator_id.append(line.strip().split(':', 1)[1].strip())\n elif line.strip().startswith(\"Transmit Hash Policy\"):\n # No need of values in bracket:\n # Integer notification (0), (1), (2) of layer2, layer3+4, layer2+3 resp\n self.xmit_hash_policy = line.split(\":\", 1)[1].split()[0]\n elif line.strip().startswith(\"Currently Active Slave\"):\n self._active_slave = line.split(\":\", 1)[1].split()[0]\n elif line.strip().startswith(\"MII Status: \"):\n self._mii_status.append(line.strip().split(':', 1)[1].strip())\n elif line.strip().startswith(\"Link Failure Count: \"):\n self._slave_link_failure_count.append(line.strip().split(':', 1)[1].strip())\n elif line.strip().startswith(\"Speed: \"):\n self._slave_speed.append(line.strip().split(':', 1)[1].strip())\n elif line.strip().startswith(\"Duplex: \"):\n self._slave_duplex.append(line.strip().split(':', 1)[1].strip())\n elif line.strip().startswith(\"ARP Polling Interval (ms):\"):\n self._arp_polling_interval = line.strip().split(':', 1)[1].strip()\n elif line.strip().startswith(\"ARP IP target/s (n.n.n.n form):\"):\n self._arp_ip_target = line.strip().split(':', 1)[1].strip()\n elif line.strip().startswith(\"Primary Slave\"):\n self._primary_slave = line.split(\":\", 1)[1].split()[0]\n\n @property\n def bond_mode(self):\n \"\"\"Returns the bond mode number as a string, or if there is no\n known mapping to a number, the raw \"Bonding Mode\" value.\n ``None`` is returned if no \"Bonding Mode\" key is found.\n \"\"\"\n return self._bond_mode\n\n @property\n def partner_mac_address(self):\n \"\"\"Returns the value of the \"Partner Mac Address\" in the bond\n file if the key/value exists. If the key is not in the bond\n file, ``None`` is returned.\n \"\"\"\n return self._partner_mac_address\n\n @property\n def slave_interface(self):\n \"\"\"Returns all the slave interfaces of in the bond file wrapped\n a list if the key/value exists. If the key is not in the\n bond file, ``[]`` is returned.\n \"\"\"\n return self._slave_interface\n\n @property\n def aggregator_id(self):\n \"\"\"Returns all the aggregator id of in the bond file wrapped\n a list if the key/value exists. If the key is not in the\n bond file, ``[]`` is returned.\n \"\"\"\n return self._aggregator_id\n\n @property\n def active_slave(self):\n \"\"\"Returns the active slave of the \"Currently Active Slave\" in the bond\n file if key/value exists. If the key is not in the bond file, ``None``\n is returned.\n \"\"\"\n return self._active_slave\n\n @property\n def mii_status(self):\n \"\"\"Returns the master and all the slaves \"MII Status\" value in the bond file wrapped\n a list if the key/value exists. If the key is not in the\n bond file, ``[]`` is returned.\n \"\"\"\n return self._mii_status\n\n @property\n def slave_link_failure_count(self):\n \"\"\"Returns all the slaves \"Link Failure Count\" value in the bond file wrapped\n a list if the key/value exists. If the key is not in the\n bond file, ``[]`` is returned.\n \"\"\"\n return self._slave_link_failure_count\n\n @property\n def slave_speed(self):\n \"\"\"Returns all the slaves \"Speed\" value in the bond file wrapped\n a list if the key/value exists. If the key is not in the\n bond file, ``[]`` is returned.\n \"\"\"\n return self._slave_speed\n\n @property\n def slave_duplex(self):\n \"\"\"Returns all the slave \"Duplex\" value in the bond file wrapped\n a list if the key/value exists. If the key is not in the\n bond file, ``[]`` is returned.\n \"\"\"\n return self._slave_duplex\n\n @property\n def arp_polling_interval(self):\n \"\"\"Returns the arp polling interval as a string. ``None`` is returned\n if no \"ARP Polling Interval (ms)\" key is found.\n \"\"\"\n return self._arp_polling_interval\n\n @property\n def arp_ip_target(self):\n \"\"\"Returns the arp ip target as a string. ``None`` is returned\n if no \"ARP IP target/s (n.n.n.n form)\" key is found.\n \"\"\"\n return self._arp_ip_target\n\n @property\n def primary_slave(self):\n \"\"\"Returns the \"Primary Slave\" in the bond file if key/value exists.\n If the key is not in the bond file, ``None`` is returned.\n \"\"\"\n return self._primary_slave\n", "path": "insights/parsers/bond.py"}], "after_files": [{"content": "\"\"\"\nBond - file ``/proc/net/bonding``\n=================================\n\nProvides plugins access to the network bonding information gathered from\nall the files starteing with \"bond.\" located in the\n``/proc/net/bonding`` directory.\n\nTypical content of ``bond.*`` file is::\n\n Ethernet Channel Bonding Driver: v3.2.4 (January 28, 2008)\n\n Bonding Mode: IEEE 802.3ad Dynamic link aggregation\n Transmit Hash Policy: layer2 (0)\n MII Status: up\n MII Polling Interval (ms): 500\n Up Delay (ms): 0\n Down Delay (ms): 0\n\n 802.3ad info\n LACP rate: slow\n Active Aggregator Info:\n Aggregator ID: 3\n Number of ports: 1\n Actor Key: 17\n Partner Key: 1\n Partner Mac Address: 00:00:00:00:00:00\n\n Slave Interface: eth1\n MII Status: up\n Link Failure Count: 0\n Permanent HW addr: 00:16:35:5e:42:fc\n Aggregator ID: 3\n\n Slave Interface: eth2\n MII Status: up\n Link Failure Count: 0\n Permanent HW addr: 00:16:35:5e:02:7e\n Aggregator ID: 2\n\nData is modeled as an array of ``Bond`` objects (``bond`` being a\npattern file specification gathering data from files located in\n``/proc/net/bonding``.\n\nExamples:\n >>> type(bond_info)\n <class 'insights.parsers.bond.Bond'>\n >>> bond_info.bond_mode\n '4'\n >>> bond_info.partner_mac_address\n '00:00:00:00:00:00'\n >>> bond_info.slave_interface\n ['eth1', 'eth2']\n >>> bond_info.aggregator_id\n ['3', '3', '2']\n >>> bond_info.xmit_hash_policy\n 'layer2'\n >>> bond_info.active_slave\n >>> bond_info.slave_duplex\n ['full', 'full']\n >>> bond_info.slave_speed\n ['1000 Mbps', '1000 Mbps']\n\"\"\"\n\nfrom insights import Parser, parser, get_active_lines\nfrom insights.specs import Specs\nfrom insights.parsers import ParseException\n\n\n\"\"\"dict: bonding mode parameter string linked to bond type index.\"\"\"\nBOND_PREFIX_MAP = {\n 'load balancing (round-robin)': '0',\n 'fault-tolerance (active-backup)': '1',\n 'fault-tolerance (active-backup) (fail_over_mac active)': '1',\n 'load balancing (xor)': '2',\n 'fault-tolerance (broadcast)': '3',\n 'IEEE 802.3ad Dynamic link aggregation': '4',\n 'transmit load balancing': '5',\n 'adaptive load balancing': '6'\n}\n\n\n@parser(Specs.bond)\nclass Bond(Parser):\n \"\"\"\n Models the ``/proc/net/bonding`` file.\n\n Currently used information from ``/proc/net/bonding`` includes\n the \"bond mode\" and \"partner mac address\".\n \"\"\"\n\n def parse_content(self, content):\n self._bond_mode = None\n self._partner_mac_address = None\n self._active_slave = None\n self.xmit_hash_policy = None\n self._arp_polling_interval = None\n self._arp_ip_target = None\n self._slave_interface = []\n self._aggregator_id = []\n self._mii_status = []\n self._slave_link_failure_count = []\n self._slave_speed = []\n self._slave_duplex = []\n self._primary_slave = None\n\n for line in get_active_lines(content):\n if line.startswith(\"Bonding Mode: \"):\n raw_mode = line.split(\":\", 1)[1].strip()\n self._bond_mode = raw_mode\n if raw_mode in BOND_PREFIX_MAP:\n self._bond_mode = BOND_PREFIX_MAP[raw_mode]\n else:\n raise ParseException(\"Unrecognised bonding mode '{b}'\".format(b=raw_mode))\n elif line.startswith(\"Partner Mac Address: \"):\n self._partner_mac_address = line.split(\":\", 1)[1].strip()\n elif line.startswith(\"Slave Interface: \"):\n self._slave_interface.append(line.split(\":\", 1)[1].strip())\n elif line.strip().startswith(\"Aggregator ID: \"):\n self._aggregator_id.append(line.strip().split(':', 1)[1].strip())\n elif line.strip().startswith(\"Transmit Hash Policy\"):\n # No need of values in bracket:\n # Integer notification (0), (1), (2) of layer2, layer3+4, layer2+3 resp\n self.xmit_hash_policy = line.split(\":\", 1)[1].split()[0]\n elif line.strip().startswith(\"Currently Active Slave\"):\n self._active_slave = line.split(\":\", 1)[1].split()[0]\n elif line.strip().startswith(\"MII Status: \"):\n self._mii_status.append(line.strip().split(':', 1)[1].strip())\n elif line.strip().startswith(\"Link Failure Count: \"):\n self._slave_link_failure_count.append(line.strip().split(':', 1)[1].strip())\n elif line.strip().startswith(\"Speed: \"):\n self._slave_speed.append(line.strip().split(':', 1)[1].strip())\n elif line.strip().startswith(\"Duplex: \"):\n self._slave_duplex.append(line.strip().split(':', 1)[1].strip())\n elif line.strip().startswith(\"ARP Polling Interval (ms):\"):\n self._arp_polling_interval = line.strip().split(':', 1)[1].strip()\n elif line.strip().startswith(\"ARP IP target/s (n.n.n.n form):\"):\n self._arp_ip_target = line.strip().split(':', 1)[1].strip()\n elif line.strip().startswith(\"Primary Slave\"):\n self._primary_slave = line.split(\":\", 1)[1].strip()\n\n @property\n def bond_mode(self):\n \"\"\"Returns the bond mode number as a string, or if there is no\n known mapping to a number, the raw \"Bonding Mode\" value.\n ``None`` is returned if no \"Bonding Mode\" key is found.\n \"\"\"\n return self._bond_mode\n\n @property\n def partner_mac_address(self):\n \"\"\"Returns the value of the \"Partner Mac Address\" in the bond\n file if the key/value exists. If the key is not in the bond\n file, ``None`` is returned.\n \"\"\"\n return self._partner_mac_address\n\n @property\n def slave_interface(self):\n \"\"\"Returns all the slave interfaces of in the bond file wrapped\n a list if the key/value exists. If the key is not in the\n bond file, ``[]`` is returned.\n \"\"\"\n return self._slave_interface\n\n @property\n def aggregator_id(self):\n \"\"\"Returns all the aggregator id of in the bond file wrapped\n a list if the key/value exists. If the key is not in the\n bond file, ``[]`` is returned.\n \"\"\"\n return self._aggregator_id\n\n @property\n def active_slave(self):\n \"\"\"Returns the active slave of the \"Currently Active Slave\" in the bond\n file if key/value exists. If the key is not in the bond file, ``None``\n is returned.\n \"\"\"\n return self._active_slave\n\n @property\n def mii_status(self):\n \"\"\"Returns the master and all the slaves \"MII Status\" value in the bond file wrapped\n a list if the key/value exists. If the key is not in the\n bond file, ``[]`` is returned.\n \"\"\"\n return self._mii_status\n\n @property\n def slave_link_failure_count(self):\n \"\"\"Returns all the slaves \"Link Failure Count\" value in the bond file wrapped\n a list if the key/value exists. If the key is not in the\n bond file, ``[]`` is returned.\n \"\"\"\n return self._slave_link_failure_count\n\n @property\n def slave_speed(self):\n \"\"\"Returns all the slaves \"Speed\" value in the bond file wrapped\n a list if the key/value exists. If the key is not in the\n bond file, ``[]`` is returned.\n \"\"\"\n return self._slave_speed\n\n @property\n def slave_duplex(self):\n \"\"\"Returns all the slave \"Duplex\" value in the bond file wrapped\n a list if the key/value exists. If the key is not in the\n bond file, ``[]`` is returned.\n \"\"\"\n return self._slave_duplex\n\n @property\n def arp_polling_interval(self):\n \"\"\"Returns the arp polling interval as a string. ``None`` is returned\n if no \"ARP Polling Interval (ms)\" key is found.\n \"\"\"\n return self._arp_polling_interval\n\n @property\n def arp_ip_target(self):\n \"\"\"Returns the arp ip target as a string. ``None`` is returned\n if no \"ARP IP target/s (n.n.n.n form)\" key is found.\n \"\"\"\n return self._arp_ip_target\n\n @property\n def primary_slave(self):\n \"\"\"Returns the \"Primary Slave\" in the bond file if key/value exists.\n If the key is not in the bond file, ``None`` is returned.\n \"\"\"\n return self._primary_slave\n", "path": "insights/parsers/bond.py"}]}
3,040
155
gh_patches_debug_34396
rasdani/github-patches
git_diff
Project-MONAI__MONAI-1341
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- CheckpointSaver: incorrect labelling of final model **Describe the bug** When using a `CheckpointSaver` among the validation handlers, the argument `save_final=True` results in every epoch being stored under `net_final_iteration=1.pt` when `final_filename=None`. I interpret the docs (`default to checkpoint_final_iteration=N.pt`) that the file will be renamed after each completed epoch. **To Reproduce** add `save_final=True` to the `CheckpointHandler` in the Lung Segmentation Tutorial **Expected behavior** `net_final_iteration=1.pt` -> `net_final_iteration=2.pt` -> ... -> `net_final_iteration=MAX_EPOCHS.pt` **Screenshots** The logging function also prints incorrect iteration numbers: ``` INFO:ignite.engine.engine.SupervisedEvaluator:Train completed, saved final checkpoint: net_final_iteration=1.pt ... INFO:ignite.engine.engine.SupervisedEvaluator:Train completed, saved final checkpoint: net_final_iteration=1.pt ... INFO:ignite.engine.engine.SupervisedEvaluator:Train completed, saved final checkpoint: net_final_iteration=1.pt ``` **Environment** Ensuring you use the relevant python executable, please paste the output of: ``` MONAI version: 0.3.0+95.g535561e Python version: 3.8.6 | packaged by conda-forge | (default, Oct 7 2020, 18:42:56) [Clang 10.0.1 ] OS version: Darwin (19.6.0) Numpy version: 1.19.2 Pytorch version: 1.7.0 MONAI flags: HAS_EXT = False, USE_COMPILED = False Optional dependencies: Pytorch Ignite version: 0.4.2 Nibabel version: 3.2.0 scikit-image version: NOT INSTALLED or UNKNOWN VERSION. Pillow version: 8.0.1 Tensorboard version: 2.4.0 gdown version: NOT INSTALLED or UNKNOWN VERSION. TorchVision version: 0.8.1 ITK version: NOT INSTALLED or UNKNOWN VERSION. tqdm version: 4.53.0 lmdb version: NOT INSTALLED or UNKNOWN VERSION. For details about installing the optional dependencies, please visit: https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies ``` **Additional context** Using `SupervisedEvaluator` and `SupervisedTrainer`. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `monai/handlers/checkpoint_saver.py` Content: ``` 1 # Copyright 2020 MONAI Consortium 2 # Licensed under the Apache License, Version 2.0 (the "License"); 3 # you may not use this file except in compliance with the License. 4 # You may obtain a copy of the License at 5 # http://www.apache.org/licenses/LICENSE-2.0 6 # Unless required by applicable law or agreed to in writing, software 7 # distributed under the License is distributed on an "AS IS" BASIS, 8 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 9 # See the License for the specific language governing permissions and 10 # limitations under the License. 11 12 import logging 13 from typing import TYPE_CHECKING, Dict, Optional 14 15 from monai.utils import exact_version, optional_import 16 17 Events, _ = optional_import("ignite.engine", "0.4.2", exact_version, "Events") 18 Checkpoint, _ = optional_import("ignite.handlers", "0.4.2", exact_version, "Checkpoint") 19 BaseSaveHandler, _ = optional_import("ignite.handlers.checkpoint", "0.4.2", exact_version, "BaseSaveHandler") 20 21 if TYPE_CHECKING: 22 from ignite.engine import Engine 23 from ignite.handlers import DiskSaver 24 else: 25 Engine, _ = optional_import("ignite.engine", "0.4.2", exact_version, "Engine") 26 DiskSaver, _ = optional_import("ignite.handlers", "0.4.2", exact_version, "DiskSaver") 27 28 29 class CheckpointSaver: 30 """ 31 CheckpointSaver acts as an Ignite handler to save checkpoint data into files. 32 It supports to save according to metrics result, epoch number, iteration number 33 and last model or exception. 34 35 Args: 36 save_dir: the target directory to save the checkpoints. 37 save_dict: source objects that save to the checkpoint. examples:: 38 39 {'network': net, 'optimizer': optimizer, 'lr_scheduler': lr_scheduler} 40 41 name: identifier of logging.logger to use, if None, defaulting to ``engine.logger``. 42 file_prefix: prefix for the filenames to which objects will be saved. 43 save_final: whether to save checkpoint or session at final iteration or exception. 44 If checkpoints are to be saved when an exception is raised, put this handler before 45 `StatsHandler` in the handler list, because the logic with Ignite can only trigger 46 the first attached handler for `EXCEPTION_RAISED` event. 47 final_filename: set a fixed filename to save the final model if `save_final=True`. 48 If None, default to `checkpoint_final_iteration=N.pt`. 49 save_key_metric: whether to save checkpoint or session when the value of key_metric is 50 higher than all the previous values during training.keep 4 decimal places of metric, 51 checkpoint name is: {file_prefix}_key_metric=0.XXXX.pth. 52 key_metric_name: the name of key_metric in ignite metrics dictionary. 53 If None, use `engine.state.key_metric` instead. 54 key_metric_n_saved: save top N checkpoints or sessions, sorted by the value of key 55 metric in descending order. 56 key_metric_filename: set a fixed filename to set the best metric model, if not None, 57 `key_metric_n_saved` should be 1 and only keep the best metric model. 58 epoch_level: save checkpoint during training for every N epochs or every N iterations. 59 `True` is epoch level, `False` is iteration level. 60 save_interval: save checkpoint every N epochs, default is 0 to save no checkpoint. 61 n_saved: save latest N checkpoints of epoch level or iteration level, 'None' is to save all. 62 63 Note: 64 CheckpointHandler can be used during training, validation or evaluation. 65 example of saved files: 66 67 - checkpoint_iteration=400.pt 68 - checkpoint_iteration=800.pt 69 - checkpoint_epoch=1.pt 70 - checkpoint_final_iteration=1000.pt 71 - checkpoint_key_metric=0.9387.pt 72 73 """ 74 75 def __init__( 76 self, 77 save_dir: str, 78 save_dict: Dict, 79 name: Optional[str] = None, 80 file_prefix: str = "", 81 save_final: bool = False, 82 final_filename: Optional[str] = None, 83 save_key_metric: bool = False, 84 key_metric_name: Optional[str] = None, 85 key_metric_n_saved: int = 1, 86 key_metric_filename: Optional[str] = None, 87 epoch_level: bool = True, 88 save_interval: int = 0, 89 n_saved: Optional[int] = None, 90 ) -> None: 91 assert save_dir is not None, "must provide directory to save the checkpoints." 92 self.save_dir = save_dir 93 assert save_dict is not None and len(save_dict) > 0, "must provide source objects to save." 94 self.save_dict = save_dict 95 self.logger = logging.getLogger(name) 96 self.epoch_level = epoch_level 97 self.save_interval = save_interval 98 self._final_checkpoint = self._key_metric_checkpoint = self._interval_checkpoint = None 99 self._name = name 100 101 class _DiskSaver(DiskSaver): 102 """ 103 Enhance the DiskSaver to support fixed filename. 104 105 """ 106 107 def __init__(self, dirname: str, filename: Optional[str] = None): 108 super().__init__(dirname=dirname, require_empty=False) 109 self.filename = filename 110 111 def __call__(self, checkpoint: Dict, filename: str, metadata: Optional[Dict] = None) -> None: 112 if self.filename is not None: 113 filename = self.filename 114 super().__call__(checkpoint=checkpoint, filename=filename, metadata=metadata) 115 116 def remove(self, filename: str) -> None: 117 if self.filename is not None: 118 filename = self.filename 119 super().remove(filename=filename) 120 121 if save_final: 122 123 def _final_func(engine: Engine): 124 return engine.state.iteration 125 126 self._final_checkpoint = Checkpoint( 127 to_save=self.save_dict, 128 save_handler=_DiskSaver(dirname=self.save_dir, filename=final_filename), 129 filename_prefix=file_prefix, 130 score_function=_final_func, 131 score_name="final_iteration", 132 ) 133 134 if save_key_metric: 135 136 def _score_func(engine: Engine): 137 if isinstance(key_metric_name, str): 138 metric_name = key_metric_name 139 elif hasattr(engine.state, "key_metric_name") and isinstance(engine.state.key_metric_name, str): 140 metric_name = engine.state.key_metric_name 141 else: 142 raise ValueError( 143 f"Incompatible values: save_key_metric=True and key_metric_name={key_metric_name}." 144 ) 145 return round(engine.state.metrics[metric_name], 4) 146 147 if key_metric_filename is not None and key_metric_n_saved > 1: 148 raise ValueError("if using fixed filename to save the best metric model, we should only save 1 model.") 149 150 self._key_metric_checkpoint = Checkpoint( 151 to_save=self.save_dict, 152 save_handler=_DiskSaver(dirname=self.save_dir, filename=key_metric_filename), 153 filename_prefix=file_prefix, 154 score_function=_score_func, 155 score_name="key_metric", 156 n_saved=key_metric_n_saved, 157 ) 158 159 if save_interval > 0: 160 161 def _interval_func(engine: Engine): 162 return engine.state.epoch if self.epoch_level else engine.state.iteration 163 164 self._interval_checkpoint = Checkpoint( 165 to_save=self.save_dict, 166 save_handler=_DiskSaver(dirname=self.save_dir), 167 filename_prefix=file_prefix, 168 score_function=_interval_func, 169 score_name="epoch" if self.epoch_level else "iteration", 170 n_saved=n_saved, 171 ) 172 173 def attach(self, engine: Engine) -> None: 174 """ 175 Args: 176 engine: Ignite Engine, it can be a trainer, validator or evaluator. 177 """ 178 if self._name is None: 179 self.logger = engine.logger 180 if self._final_checkpoint is not None: 181 engine.add_event_handler(Events.COMPLETED, self.completed) 182 engine.add_event_handler(Events.EXCEPTION_RAISED, self.exception_raised) 183 if self._key_metric_checkpoint is not None: 184 engine.add_event_handler(Events.EPOCH_COMPLETED, self.metrics_completed) 185 if self._interval_checkpoint is not None: 186 if self.epoch_level: 187 engine.add_event_handler(Events.EPOCH_COMPLETED(every=self.save_interval), self.interval_completed) 188 else: 189 engine.add_event_handler(Events.ITERATION_COMPLETED(every=self.save_interval), self.interval_completed) 190 191 def completed(self, engine: Engine) -> None: 192 """Callback for train or validation/evaluation completed Event. 193 Save final checkpoint if configure save_final is True. 194 195 Args: 196 engine: Ignite Engine, it can be a trainer, validator or evaluator. 197 """ 198 assert callable(self._final_checkpoint), "Error: _final_checkpoint function not specified." 199 self._final_checkpoint(engine) 200 assert self.logger is not None 201 assert hasattr(self.logger, "info"), "Error, provided logger has not info attribute." 202 self.logger.info(f"Train completed, saved final checkpoint: {self._final_checkpoint.last_checkpoint}") 203 204 def exception_raised(self, engine: Engine, e: Exception) -> None: 205 """Callback for train or validation/evaluation exception raised Event. 206 Save current data as final checkpoint if configure save_final is True. This callback may be skipped 207 because the logic with Ignite can only trigger the first attached handler for `EXCEPTION_RAISED` event. 208 209 Args: 210 engine: Ignite Engine, it can be a trainer, validator or evaluator. 211 e: the exception caught in Ignite during engine.run(). 212 """ 213 assert callable(self._final_checkpoint), "Error: _final_checkpoint function not specified." 214 self._final_checkpoint(engine) 215 assert self.logger is not None 216 assert hasattr(self.logger, "info"), "Error, provided logger has not info attribute." 217 self.logger.info(f"Exception_raised, saved exception checkpoint: {self._final_checkpoint.last_checkpoint}") 218 raise e 219 220 def metrics_completed(self, engine: Engine) -> None: 221 """Callback to compare metrics and save models in train or validation when epoch completed. 222 223 Args: 224 engine: Ignite Engine, it can be a trainer, validator or evaluator. 225 """ 226 assert callable(self._key_metric_checkpoint), "Error: _key_metric_checkpoint function not specified." 227 self._key_metric_checkpoint(engine) 228 229 def interval_completed(self, engine: Engine) -> None: 230 """Callback for train epoch/iteration completed Event. 231 Save checkpoint if configure save_interval = N 232 233 Args: 234 engine: Ignite Engine, it can be a trainer, validator or evaluator. 235 """ 236 assert callable(self._interval_checkpoint), "Error: _interval_checkpoint function not specified." 237 self._interval_checkpoint(engine) 238 assert self.logger is not None 239 assert hasattr(self.logger, "info"), "Error, provided logger has not info attribute." 240 if self.epoch_level: 241 self.logger.info(f"Saved checkpoint at epoch: {engine.state.epoch}") 242 else: 243 self.logger.info(f"Saved checkpoint at iteration: {engine.state.iteration}") 244 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/monai/handlers/checkpoint_saver.py b/monai/handlers/checkpoint_saver.py --- a/monai/handlers/checkpoint_saver.py +++ b/monai/handlers/checkpoint_saver.py @@ -188,6 +188,13 @@ else: engine.add_event_handler(Events.ITERATION_COMPLETED(every=self.save_interval), self.interval_completed) + def _delete_previous_final_ckpt(self): + saved = self._final_checkpoint._saved + if len(saved) > 0: + item = saved.pop(0) + self._final_checkpoint.save_handler.remove(item.filename) + self.logger.info(f"Deleted previous saved final checkpoint: {item.filename}") + def completed(self, engine: Engine) -> None: """Callback for train or validation/evaluation completed Event. Save final checkpoint if configure save_final is True. @@ -196,6 +203,8 @@ engine: Ignite Engine, it can be a trainer, validator or evaluator. """ assert callable(self._final_checkpoint), "Error: _final_checkpoint function not specified." + # delete previous saved final checkpoint if existing + self._delete_previous_final_ckpt() self._final_checkpoint(engine) assert self.logger is not None assert hasattr(self.logger, "info"), "Error, provided logger has not info attribute." @@ -211,6 +220,8 @@ e: the exception caught in Ignite during engine.run(). """ assert callable(self._final_checkpoint), "Error: _final_checkpoint function not specified." + # delete previous saved final checkpoint if existing + self._delete_previous_final_ckpt() self._final_checkpoint(engine) assert self.logger is not None assert hasattr(self.logger, "info"), "Error, provided logger has not info attribute."
{"golden_diff": "diff --git a/monai/handlers/checkpoint_saver.py b/monai/handlers/checkpoint_saver.py\n--- a/monai/handlers/checkpoint_saver.py\n+++ b/monai/handlers/checkpoint_saver.py\n@@ -188,6 +188,13 @@\n else:\n engine.add_event_handler(Events.ITERATION_COMPLETED(every=self.save_interval), self.interval_completed)\n \n+ def _delete_previous_final_ckpt(self):\n+ saved = self._final_checkpoint._saved\n+ if len(saved) > 0:\n+ item = saved.pop(0)\n+ self._final_checkpoint.save_handler.remove(item.filename)\n+ self.logger.info(f\"Deleted previous saved final checkpoint: {item.filename}\")\n+\n def completed(self, engine: Engine) -> None:\n \"\"\"Callback for train or validation/evaluation completed Event.\n Save final checkpoint if configure save_final is True.\n@@ -196,6 +203,8 @@\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n assert callable(self._final_checkpoint), \"Error: _final_checkpoint function not specified.\"\n+ # delete previous saved final checkpoint if existing\n+ self._delete_previous_final_ckpt()\n self._final_checkpoint(engine)\n assert self.logger is not None\n assert hasattr(self.logger, \"info\"), \"Error, provided logger has not info attribute.\"\n@@ -211,6 +220,8 @@\n e: the exception caught in Ignite during engine.run().\n \"\"\"\n assert callable(self._final_checkpoint), \"Error: _final_checkpoint function not specified.\"\n+ # delete previous saved final checkpoint if existing\n+ self._delete_previous_final_ckpt()\n self._final_checkpoint(engine)\n assert self.logger is not None\n assert hasattr(self.logger, \"info\"), \"Error, provided logger has not info attribute.\"\n", "issue": "CheckpointSaver: incorrect labelling of final model\n**Describe the bug**\r\nWhen using a `CheckpointSaver` among the validation handlers, the argument `save_final=True` results in every epoch being stored under `net_final_iteration=1.pt` when `final_filename=None`. I interpret the docs (`default to checkpoint_final_iteration=N.pt`) that the file will be renamed after each completed epoch.\r\n\r\n**To Reproduce**\r\nadd `save_final=True` to the `CheckpointHandler` in the Lung Segmentation Tutorial\r\n\r\n**Expected behavior**\r\n`net_final_iteration=1.pt` -> `net_final_iteration=2.pt` -> ... -> `net_final_iteration=MAX_EPOCHS.pt`\r\n\r\n**Screenshots**\r\nThe logging function also prints incorrect iteration numbers:\r\n\r\n```\r\nINFO:ignite.engine.engine.SupervisedEvaluator:Train completed, saved final checkpoint: net_final_iteration=1.pt\r\n...\r\nINFO:ignite.engine.engine.SupervisedEvaluator:Train completed, saved final checkpoint: net_final_iteration=1.pt\r\n...\r\nINFO:ignite.engine.engine.SupervisedEvaluator:Train completed, saved final checkpoint: net_final_iteration=1.pt\r\n```\r\n\r\n**Environment**\r\n\r\nEnsuring you use the relevant python executable, please paste the output of:\r\n\r\n```\r\nMONAI version: 0.3.0+95.g535561e\r\nPython version: 3.8.6 | packaged by conda-forge | (default, Oct 7 2020, 18:42:56) [Clang 10.0.1 ]\r\nOS version: Darwin (19.6.0)\r\nNumpy version: 1.19.2\r\nPytorch version: 1.7.0\r\nMONAI flags: HAS_EXT = False, USE_COMPILED = False\r\n\r\nOptional dependencies:\r\nPytorch Ignite version: 0.4.2\r\nNibabel version: 3.2.0\r\nscikit-image version: NOT INSTALLED or UNKNOWN VERSION.\r\nPillow version: 8.0.1\r\nTensorboard version: 2.4.0\r\ngdown version: NOT INSTALLED or UNKNOWN VERSION.\r\nTorchVision version: 0.8.1\r\nITK version: NOT INSTALLED or UNKNOWN VERSION.\r\ntqdm version: 4.53.0\r\nlmdb version: NOT INSTALLED or UNKNOWN VERSION.\r\n\r\nFor details about installing the optional dependencies, please visit:\r\n https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies\r\n```\r\n\r\n**Additional context**\r\nUsing `SupervisedEvaluator` and `SupervisedTrainer`.\n", "before_files": [{"content": "# Copyright 2020 MONAI Consortium\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n# http://www.apache.org/licenses/LICENSE-2.0\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nimport logging\nfrom typing import TYPE_CHECKING, Dict, Optional\n\nfrom monai.utils import exact_version, optional_import\n\nEvents, _ = optional_import(\"ignite.engine\", \"0.4.2\", exact_version, \"Events\")\nCheckpoint, _ = optional_import(\"ignite.handlers\", \"0.4.2\", exact_version, \"Checkpoint\")\nBaseSaveHandler, _ = optional_import(\"ignite.handlers.checkpoint\", \"0.4.2\", exact_version, \"BaseSaveHandler\")\n\nif TYPE_CHECKING:\n from ignite.engine import Engine\n from ignite.handlers import DiskSaver\nelse:\n Engine, _ = optional_import(\"ignite.engine\", \"0.4.2\", exact_version, \"Engine\")\n DiskSaver, _ = optional_import(\"ignite.handlers\", \"0.4.2\", exact_version, \"DiskSaver\")\n\n\nclass CheckpointSaver:\n \"\"\"\n CheckpointSaver acts as an Ignite handler to save checkpoint data into files.\n It supports to save according to metrics result, epoch number, iteration number\n and last model or exception.\n\n Args:\n save_dir: the target directory to save the checkpoints.\n save_dict: source objects that save to the checkpoint. examples::\n\n {'network': net, 'optimizer': optimizer, 'lr_scheduler': lr_scheduler}\n\n name: identifier of logging.logger to use, if None, defaulting to ``engine.logger``.\n file_prefix: prefix for the filenames to which objects will be saved.\n save_final: whether to save checkpoint or session at final iteration or exception.\n If checkpoints are to be saved when an exception is raised, put this handler before\n `StatsHandler` in the handler list, because the logic with Ignite can only trigger\n the first attached handler for `EXCEPTION_RAISED` event.\n final_filename: set a fixed filename to save the final model if `save_final=True`.\n If None, default to `checkpoint_final_iteration=N.pt`.\n save_key_metric: whether to save checkpoint or session when the value of key_metric is\n higher than all the previous values during training.keep 4 decimal places of metric,\n checkpoint name is: {file_prefix}_key_metric=0.XXXX.pth.\n key_metric_name: the name of key_metric in ignite metrics dictionary.\n If None, use `engine.state.key_metric` instead.\n key_metric_n_saved: save top N checkpoints or sessions, sorted by the value of key\n metric in descending order.\n key_metric_filename: set a fixed filename to set the best metric model, if not None,\n `key_metric_n_saved` should be 1 and only keep the best metric model.\n epoch_level: save checkpoint during training for every N epochs or every N iterations.\n `True` is epoch level, `False` is iteration level.\n save_interval: save checkpoint every N epochs, default is 0 to save no checkpoint.\n n_saved: save latest N checkpoints of epoch level or iteration level, 'None' is to save all.\n\n Note:\n CheckpointHandler can be used during training, validation or evaluation.\n example of saved files:\n\n - checkpoint_iteration=400.pt\n - checkpoint_iteration=800.pt\n - checkpoint_epoch=1.pt\n - checkpoint_final_iteration=1000.pt\n - checkpoint_key_metric=0.9387.pt\n\n \"\"\"\n\n def __init__(\n self,\n save_dir: str,\n save_dict: Dict,\n name: Optional[str] = None,\n file_prefix: str = \"\",\n save_final: bool = False,\n final_filename: Optional[str] = None,\n save_key_metric: bool = False,\n key_metric_name: Optional[str] = None,\n key_metric_n_saved: int = 1,\n key_metric_filename: Optional[str] = None,\n epoch_level: bool = True,\n save_interval: int = 0,\n n_saved: Optional[int] = None,\n ) -> None:\n assert save_dir is not None, \"must provide directory to save the checkpoints.\"\n self.save_dir = save_dir\n assert save_dict is not None and len(save_dict) > 0, \"must provide source objects to save.\"\n self.save_dict = save_dict\n self.logger = logging.getLogger(name)\n self.epoch_level = epoch_level\n self.save_interval = save_interval\n self._final_checkpoint = self._key_metric_checkpoint = self._interval_checkpoint = None\n self._name = name\n\n class _DiskSaver(DiskSaver):\n \"\"\"\n Enhance the DiskSaver to support fixed filename.\n\n \"\"\"\n\n def __init__(self, dirname: str, filename: Optional[str] = None):\n super().__init__(dirname=dirname, require_empty=False)\n self.filename = filename\n\n def __call__(self, checkpoint: Dict, filename: str, metadata: Optional[Dict] = None) -> None:\n if self.filename is not None:\n filename = self.filename\n super().__call__(checkpoint=checkpoint, filename=filename, metadata=metadata)\n\n def remove(self, filename: str) -> None:\n if self.filename is not None:\n filename = self.filename\n super().remove(filename=filename)\n\n if save_final:\n\n def _final_func(engine: Engine):\n return engine.state.iteration\n\n self._final_checkpoint = Checkpoint(\n to_save=self.save_dict,\n save_handler=_DiskSaver(dirname=self.save_dir, filename=final_filename),\n filename_prefix=file_prefix,\n score_function=_final_func,\n score_name=\"final_iteration\",\n )\n\n if save_key_metric:\n\n def _score_func(engine: Engine):\n if isinstance(key_metric_name, str):\n metric_name = key_metric_name\n elif hasattr(engine.state, \"key_metric_name\") and isinstance(engine.state.key_metric_name, str):\n metric_name = engine.state.key_metric_name\n else:\n raise ValueError(\n f\"Incompatible values: save_key_metric=True and key_metric_name={key_metric_name}.\"\n )\n return round(engine.state.metrics[metric_name], 4)\n\n if key_metric_filename is not None and key_metric_n_saved > 1:\n raise ValueError(\"if using fixed filename to save the best metric model, we should only save 1 model.\")\n\n self._key_metric_checkpoint = Checkpoint(\n to_save=self.save_dict,\n save_handler=_DiskSaver(dirname=self.save_dir, filename=key_metric_filename),\n filename_prefix=file_prefix,\n score_function=_score_func,\n score_name=\"key_metric\",\n n_saved=key_metric_n_saved,\n )\n\n if save_interval > 0:\n\n def _interval_func(engine: Engine):\n return engine.state.epoch if self.epoch_level else engine.state.iteration\n\n self._interval_checkpoint = Checkpoint(\n to_save=self.save_dict,\n save_handler=_DiskSaver(dirname=self.save_dir),\n filename_prefix=file_prefix,\n score_function=_interval_func,\n score_name=\"epoch\" if self.epoch_level else \"iteration\",\n n_saved=n_saved,\n )\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if self._name is None:\n self.logger = engine.logger\n if self._final_checkpoint is not None:\n engine.add_event_handler(Events.COMPLETED, self.completed)\n engine.add_event_handler(Events.EXCEPTION_RAISED, self.exception_raised)\n if self._key_metric_checkpoint is not None:\n engine.add_event_handler(Events.EPOCH_COMPLETED, self.metrics_completed)\n if self._interval_checkpoint is not None:\n if self.epoch_level:\n engine.add_event_handler(Events.EPOCH_COMPLETED(every=self.save_interval), self.interval_completed)\n else:\n engine.add_event_handler(Events.ITERATION_COMPLETED(every=self.save_interval), self.interval_completed)\n\n def completed(self, engine: Engine) -> None:\n \"\"\"Callback for train or validation/evaluation completed Event.\n Save final checkpoint if configure save_final is True.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n assert callable(self._final_checkpoint), \"Error: _final_checkpoint function not specified.\"\n self._final_checkpoint(engine)\n assert self.logger is not None\n assert hasattr(self.logger, \"info\"), \"Error, provided logger has not info attribute.\"\n self.logger.info(f\"Train completed, saved final checkpoint: {self._final_checkpoint.last_checkpoint}\")\n\n def exception_raised(self, engine: Engine, e: Exception) -> None:\n \"\"\"Callback for train or validation/evaluation exception raised Event.\n Save current data as final checkpoint if configure save_final is True. This callback may be skipped\n because the logic with Ignite can only trigger the first attached handler for `EXCEPTION_RAISED` event.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n e: the exception caught in Ignite during engine.run().\n \"\"\"\n assert callable(self._final_checkpoint), \"Error: _final_checkpoint function not specified.\"\n self._final_checkpoint(engine)\n assert self.logger is not None\n assert hasattr(self.logger, \"info\"), \"Error, provided logger has not info attribute.\"\n self.logger.info(f\"Exception_raised, saved exception checkpoint: {self._final_checkpoint.last_checkpoint}\")\n raise e\n\n def metrics_completed(self, engine: Engine) -> None:\n \"\"\"Callback to compare metrics and save models in train or validation when epoch completed.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n assert callable(self._key_metric_checkpoint), \"Error: _key_metric_checkpoint function not specified.\"\n self._key_metric_checkpoint(engine)\n\n def interval_completed(self, engine: Engine) -> None:\n \"\"\"Callback for train epoch/iteration completed Event.\n Save checkpoint if configure save_interval = N\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n assert callable(self._interval_checkpoint), \"Error: _interval_checkpoint function not specified.\"\n self._interval_checkpoint(engine)\n assert self.logger is not None\n assert hasattr(self.logger, \"info\"), \"Error, provided logger has not info attribute.\"\n if self.epoch_level:\n self.logger.info(f\"Saved checkpoint at epoch: {engine.state.epoch}\")\n else:\n self.logger.info(f\"Saved checkpoint at iteration: {engine.state.iteration}\")\n", "path": "monai/handlers/checkpoint_saver.py"}], "after_files": [{"content": "# Copyright 2020 MONAI Consortium\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n# http://www.apache.org/licenses/LICENSE-2.0\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nimport logging\nfrom typing import TYPE_CHECKING, Dict, Optional\n\nfrom monai.utils import exact_version, optional_import\n\nEvents, _ = optional_import(\"ignite.engine\", \"0.4.2\", exact_version, \"Events\")\nCheckpoint, _ = optional_import(\"ignite.handlers\", \"0.4.2\", exact_version, \"Checkpoint\")\nBaseSaveHandler, _ = optional_import(\"ignite.handlers.checkpoint\", \"0.4.2\", exact_version, \"BaseSaveHandler\")\n\nif TYPE_CHECKING:\n from ignite.engine import Engine\n from ignite.handlers import DiskSaver\nelse:\n Engine, _ = optional_import(\"ignite.engine\", \"0.4.2\", exact_version, \"Engine\")\n DiskSaver, _ = optional_import(\"ignite.handlers\", \"0.4.2\", exact_version, \"DiskSaver\")\n\n\nclass CheckpointSaver:\n \"\"\"\n CheckpointSaver acts as an Ignite handler to save checkpoint data into files.\n It supports to save according to metrics result, epoch number, iteration number\n and last model or exception.\n\n Args:\n save_dir: the target directory to save the checkpoints.\n save_dict: source objects that save to the checkpoint. examples::\n\n {'network': net, 'optimizer': optimizer, 'lr_scheduler': lr_scheduler}\n\n name: identifier of logging.logger to use, if None, defaulting to ``engine.logger``.\n file_prefix: prefix for the filenames to which objects will be saved.\n save_final: whether to save checkpoint or session at final iteration or exception.\n If checkpoints are to be saved when an exception is raised, put this handler before\n `StatsHandler` in the handler list, because the logic with Ignite can only trigger\n the first attached handler for `EXCEPTION_RAISED` event.\n final_filename: set a fixed filename to save the final model if `save_final=True`.\n If None, default to `checkpoint_final_iteration=N.pt`.\n save_key_metric: whether to save checkpoint or session when the value of key_metric is\n higher than all the previous values during training.keep 4 decimal places of metric,\n checkpoint name is: {file_prefix}_key_metric=0.XXXX.pth.\n key_metric_name: the name of key_metric in ignite metrics dictionary.\n If None, use `engine.state.key_metric` instead.\n key_metric_n_saved: save top N checkpoints or sessions, sorted by the value of key\n metric in descending order.\n key_metric_filename: set a fixed filename to set the best metric model, if not None,\n `key_metric_n_saved` should be 1 and only keep the best metric model.\n epoch_level: save checkpoint during training for every N epochs or every N iterations.\n `True` is epoch level, `False` is iteration level.\n save_interval: save checkpoint every N epochs, default is 0 to save no checkpoint.\n n_saved: save latest N checkpoints of epoch level or iteration level, 'None' is to save all.\n\n Note:\n CheckpointHandler can be used during training, validation or evaluation.\n example of saved files:\n\n - checkpoint_iteration=400.pt\n - checkpoint_iteration=800.pt\n - checkpoint_epoch=1.pt\n - checkpoint_final_iteration=1000.pt\n - checkpoint_key_metric=0.9387.pt\n\n \"\"\"\n\n def __init__(\n self,\n save_dir: str,\n save_dict: Dict,\n name: Optional[str] = None,\n file_prefix: str = \"\",\n save_final: bool = False,\n final_filename: Optional[str] = None,\n save_key_metric: bool = False,\n key_metric_name: Optional[str] = None,\n key_metric_n_saved: int = 1,\n key_metric_filename: Optional[str] = None,\n epoch_level: bool = True,\n save_interval: int = 0,\n n_saved: Optional[int] = None,\n ) -> None:\n assert save_dir is not None, \"must provide directory to save the checkpoints.\"\n self.save_dir = save_dir\n assert save_dict is not None and len(save_dict) > 0, \"must provide source objects to save.\"\n self.save_dict = save_dict\n self.logger = logging.getLogger(name)\n self.epoch_level = epoch_level\n self.save_interval = save_interval\n self._final_checkpoint = self._key_metric_checkpoint = self._interval_checkpoint = None\n self._name = name\n\n class _DiskSaver(DiskSaver):\n \"\"\"\n Enhance the DiskSaver to support fixed filename.\n\n \"\"\"\n\n def __init__(self, dirname: str, filename: Optional[str] = None):\n super().__init__(dirname=dirname, require_empty=False)\n self.filename = filename\n\n def __call__(self, checkpoint: Dict, filename: str, metadata: Optional[Dict] = None) -> None:\n if self.filename is not None:\n filename = self.filename\n super().__call__(checkpoint=checkpoint, filename=filename, metadata=metadata)\n\n def remove(self, filename: str) -> None:\n if self.filename is not None:\n filename = self.filename\n super().remove(filename=filename)\n\n if save_final:\n\n def _final_func(engine: Engine):\n return engine.state.iteration\n\n self._final_checkpoint = Checkpoint(\n to_save=self.save_dict,\n save_handler=_DiskSaver(dirname=self.save_dir, filename=final_filename),\n filename_prefix=file_prefix,\n score_function=_final_func,\n score_name=\"final_iteration\",\n )\n\n if save_key_metric:\n\n def _score_func(engine: Engine):\n if isinstance(key_metric_name, str):\n metric_name = key_metric_name\n elif hasattr(engine.state, \"key_metric_name\") and isinstance(engine.state.key_metric_name, str):\n metric_name = engine.state.key_metric_name\n else:\n raise ValueError(\n f\"Incompatible values: save_key_metric=True and key_metric_name={key_metric_name}.\"\n )\n return round(engine.state.metrics[metric_name], 4)\n\n if key_metric_filename is not None and key_metric_n_saved > 1:\n raise ValueError(\"if using fixed filename to save the best metric model, we should only save 1 model.\")\n\n self._key_metric_checkpoint = Checkpoint(\n to_save=self.save_dict,\n save_handler=_DiskSaver(dirname=self.save_dir, filename=key_metric_filename),\n filename_prefix=file_prefix,\n score_function=_score_func,\n score_name=\"key_metric\",\n n_saved=key_metric_n_saved,\n )\n\n if save_interval > 0:\n\n def _interval_func(engine: Engine):\n return engine.state.epoch if self.epoch_level else engine.state.iteration\n\n self._interval_checkpoint = Checkpoint(\n to_save=self.save_dict,\n save_handler=_DiskSaver(dirname=self.save_dir),\n filename_prefix=file_prefix,\n score_function=_interval_func,\n score_name=\"epoch\" if self.epoch_level else \"iteration\",\n n_saved=n_saved,\n )\n\n def attach(self, engine: Engine) -> None:\n \"\"\"\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n if self._name is None:\n self.logger = engine.logger\n if self._final_checkpoint is not None:\n engine.add_event_handler(Events.COMPLETED, self.completed)\n engine.add_event_handler(Events.EXCEPTION_RAISED, self.exception_raised)\n if self._key_metric_checkpoint is not None:\n engine.add_event_handler(Events.EPOCH_COMPLETED, self.metrics_completed)\n if self._interval_checkpoint is not None:\n if self.epoch_level:\n engine.add_event_handler(Events.EPOCH_COMPLETED(every=self.save_interval), self.interval_completed)\n else:\n engine.add_event_handler(Events.ITERATION_COMPLETED(every=self.save_interval), self.interval_completed)\n\n def _delete_previous_final_ckpt(self):\n saved = self._final_checkpoint._saved\n if len(saved) > 0:\n item = saved.pop(0)\n self._final_checkpoint.save_handler.remove(item.filename)\n self.logger.info(f\"Deleted previous saved final checkpoint: {item.filename}\")\n\n def completed(self, engine: Engine) -> None:\n \"\"\"Callback for train or validation/evaluation completed Event.\n Save final checkpoint if configure save_final is True.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n assert callable(self._final_checkpoint), \"Error: _final_checkpoint function not specified.\"\n # delete previous saved final checkpoint if existing\n self._delete_previous_final_ckpt()\n self._final_checkpoint(engine)\n assert self.logger is not None\n assert hasattr(self.logger, \"info\"), \"Error, provided logger has not info attribute.\"\n self.logger.info(f\"Train completed, saved final checkpoint: {self._final_checkpoint.last_checkpoint}\")\n\n def exception_raised(self, engine: Engine, e: Exception) -> None:\n \"\"\"Callback for train or validation/evaluation exception raised Event.\n Save current data as final checkpoint if configure save_final is True. This callback may be skipped\n because the logic with Ignite can only trigger the first attached handler for `EXCEPTION_RAISED` event.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n e: the exception caught in Ignite during engine.run().\n \"\"\"\n assert callable(self._final_checkpoint), \"Error: _final_checkpoint function not specified.\"\n # delete previous saved final checkpoint if existing\n self._delete_previous_final_ckpt()\n self._final_checkpoint(engine)\n assert self.logger is not None\n assert hasattr(self.logger, \"info\"), \"Error, provided logger has not info attribute.\"\n self.logger.info(f\"Exception_raised, saved exception checkpoint: {self._final_checkpoint.last_checkpoint}\")\n raise e\n\n def metrics_completed(self, engine: Engine) -> None:\n \"\"\"Callback to compare metrics and save models in train or validation when epoch completed.\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n assert callable(self._key_metric_checkpoint), \"Error: _key_metric_checkpoint function not specified.\"\n self._key_metric_checkpoint(engine)\n\n def interval_completed(self, engine: Engine) -> None:\n \"\"\"Callback for train epoch/iteration completed Event.\n Save checkpoint if configure save_interval = N\n\n Args:\n engine: Ignite Engine, it can be a trainer, validator or evaluator.\n \"\"\"\n assert callable(self._interval_checkpoint), \"Error: _interval_checkpoint function not specified.\"\n self._interval_checkpoint(engine)\n assert self.logger is not None\n assert hasattr(self.logger, \"info\"), \"Error, provided logger has not info attribute.\"\n if self.epoch_level:\n self.logger.info(f\"Saved checkpoint at epoch: {engine.state.epoch}\")\n else:\n self.logger.info(f\"Saved checkpoint at iteration: {engine.state.iteration}\")\n", "path": "monai/handlers/checkpoint_saver.py"}]}
3,803
410
gh_patches_debug_19299
rasdani/github-patches
git_diff
bentoml__BentoML-4685
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- bug: module 'socket' has no attribute 'AF_UNIX' ### Describe the bug Hello, I'm trying to use Bentoml by playing with the quick start examples. When running the Iris classification example on a windows machine, I have this error message: ``` File "C:\Users\Path\lib\site-packages\uvicorn\server.py", line 140, in startup sock = socket.fromfd(config.fd, socket.AF_UNIX, socket.SOCK_STREAM) AttributeError: module 'socket' has no attribute 'AF_UNIX' ``` I tried to change the socket attribute to AF_INET, the error messages disappear but the client cannot connect to the bentoml server. Thanks, ### To reproduce _No response_ ### Expected behavior _No response_ ### Environment bentoml:1.2.12 python:3.9.18 uvicorn:0.29.0 Windows: 11 Pro 22H2 --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `src/_bentoml_impl/worker/service.py` Content: ``` 1 from __future__ import annotations 2 3 import json 4 import os 5 import typing as t 6 7 import click 8 9 10 @click.command() 11 @click.argument("bento_identifier", type=click.STRING, required=False, default=".") 12 @click.option("--service-name", type=click.STRING, required=False, default="") 13 @click.option( 14 "--fd", 15 type=click.INT, 16 required=True, 17 help="File descriptor of the socket to listen on", 18 ) 19 @click.option( 20 "--runner-map", 21 type=click.STRING, 22 envvar="BENTOML_RUNNER_MAP", 23 help="JSON string of runners map, default sets to envars `BENTOML_RUNNER_MAP`", 24 ) 25 @click.option( 26 "--backlog", type=click.INT, default=2048, help="Backlog size for the socket" 27 ) 28 @click.option( 29 "--prometheus-dir", 30 type=click.Path(exists=True), 31 help="Required by prometheus to pass the metrics in multi-process mode", 32 ) 33 @click.option( 34 "--worker-env", type=click.STRING, default=None, help="Environment variables" 35 ) 36 @click.option( 37 "--worker-id", 38 required=False, 39 type=click.INT, 40 default=None, 41 help="If set, start the server as a bare worker with the given worker ID. Otherwise start a standalone server with a supervisor process.", 42 ) 43 @click.option( 44 "--ssl-certfile", 45 type=str, 46 default=None, 47 help="SSL certificate file", 48 ) 49 @click.option( 50 "--ssl-keyfile", 51 type=str, 52 default=None, 53 help="SSL key file", 54 ) 55 @click.option( 56 "--ssl-keyfile-password", 57 type=str, 58 default=None, 59 help="SSL keyfile password", 60 ) 61 @click.option( 62 "--ssl-version", 63 type=int, 64 default=None, 65 help="SSL version to use (see stdlib 'ssl' module)", 66 ) 67 @click.option( 68 "--ssl-cert-reqs", 69 type=int, 70 default=None, 71 help="Whether client certificate is required (see stdlib 'ssl' module)", 72 ) 73 @click.option( 74 "--ssl-ca-certs", 75 type=str, 76 default=None, 77 help="CA certificates file", 78 ) 79 @click.option( 80 "--ssl-ciphers", 81 type=str, 82 default=None, 83 help="Ciphers to use (see stdlib 'ssl' module)", 84 ) 85 @click.option( 86 "--development-mode", 87 type=click.BOOL, 88 help="Run the API server in development mode", 89 is_flag=True, 90 default=False, 91 show_default=True, 92 ) 93 @click.option( 94 "--timeout", 95 type=click.INT, 96 help="Specify the timeout for API server", 97 ) 98 def main( 99 bento_identifier: str, 100 service_name: str, 101 fd: int, 102 runner_map: str | None, 103 backlog: int, 104 worker_env: str | None, 105 worker_id: int | None, 106 prometheus_dir: str | None, 107 ssl_certfile: str | None, 108 ssl_keyfile: str | None, 109 ssl_keyfile_password: str | None, 110 ssl_version: int | None, 111 ssl_cert_reqs: int | None, 112 ssl_ca_certs: str | None, 113 ssl_ciphers: str | None, 114 development_mode: bool, 115 timeout: int, 116 ): 117 """ 118 Start a HTTP server worker for given service. 119 """ 120 import psutil 121 import uvicorn 122 123 if worker_env: 124 env_list: list[dict[str, t.Any]] = json.loads(worker_env) 125 if worker_id is not None: 126 # worker id from circus starts from 1 127 worker_key = worker_id - 1 128 if worker_key >= len(env_list): 129 raise IndexError( 130 f"Worker ID {worker_id} is out of range, " 131 f"the maximum worker ID is {len(env_list)}" 132 ) 133 os.environ.update(env_list[worker_key]) 134 135 from _bentoml_impl.loader import import_service 136 from bentoml._internal.container import BentoMLContainer 137 from bentoml._internal.context import server_context 138 from bentoml._internal.log import configure_server_logging 139 140 if runner_map: 141 BentoMLContainer.remote_runner_mapping.set( 142 t.cast(t.Dict[str, str], json.loads(runner_map)) 143 ) 144 145 service = import_service(bento_identifier) 146 147 if service_name and service_name != service.name: 148 service = service.find_dependent(service_name) 149 server_context.service_type = "service" 150 else: 151 server_context.service_type = "entry_service" 152 153 if worker_id is not None: 154 server_context.worker_index = worker_id 155 156 configure_server_logging() 157 BentoMLContainer.development_mode.set(development_mode) 158 159 if prometheus_dir is not None: 160 BentoMLContainer.prometheus_multiproc_dir.set(prometheus_dir) 161 server_context.service_name = service.name 162 163 asgi_app = service.to_asgi( 164 is_main=server_context.service_type == "entry_service", init=False 165 ) 166 167 uvicorn_extra_options: dict[str, t.Any] = {} 168 if ssl_version is not None: 169 uvicorn_extra_options["ssl_version"] = ssl_version 170 if ssl_cert_reqs is not None: 171 uvicorn_extra_options["ssl_cert_reqs"] = ssl_cert_reqs 172 if ssl_ciphers is not None: 173 uvicorn_extra_options["ssl_ciphers"] = ssl_ciphers 174 175 if psutil.WINDOWS: 176 # 1. uvloop is not supported on Windows 177 # 2. the default policy for Python > 3.8 on Windows is ProactorEventLoop, which doesn't 178 # support listen on a existing socket file descriptors 179 # See https://docs.python.org/3.8/library/asyncio-platforms.html#windows 180 uvicorn_extra_options["loop"] = "asyncio" 181 import asyncio 182 183 asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy()) # type: ignore 184 185 uvicorn.run( 186 app=asgi_app, 187 fd=fd, 188 backlog=backlog, 189 log_config=None, 190 workers=1, 191 ssl_certfile=ssl_certfile, 192 ssl_keyfile=ssl_keyfile, 193 ssl_keyfile_password=ssl_keyfile_password, 194 ssl_ca_certs=ssl_ca_certs, 195 server_header=False, 196 **uvicorn_extra_options, 197 ) 198 199 200 if __name__ == "__main__": 201 main() # pylint: disable=no-value-for-parameter 202 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/src/_bentoml_impl/worker/service.py b/src/_bentoml_impl/worker/service.py --- a/src/_bentoml_impl/worker/service.py +++ b/src/_bentoml_impl/worker/service.py @@ -117,6 +117,8 @@ """ Start a HTTP server worker for given service. """ + import socket + import psutil import uvicorn @@ -182,9 +184,8 @@ asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy()) # type: ignore - uvicorn.run( + config = uvicorn.Config( app=asgi_app, - fd=fd, backlog=backlog, log_config=None, workers=1, @@ -195,6 +196,8 @@ server_header=False, **uvicorn_extra_options, ) + socket = socket.socket(fileno=fd) + uvicorn.Server(config).run(sockets=[socket]) if __name__ == "__main__":
{"golden_diff": "diff --git a/src/_bentoml_impl/worker/service.py b/src/_bentoml_impl/worker/service.py\n--- a/src/_bentoml_impl/worker/service.py\n+++ b/src/_bentoml_impl/worker/service.py\n@@ -117,6 +117,8 @@\n \"\"\"\n Start a HTTP server worker for given service.\n \"\"\"\n+ import socket\n+\n import psutil\n import uvicorn\n \n@@ -182,9 +184,8 @@\n \n asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy()) # type: ignore\n \n- uvicorn.run(\n+ config = uvicorn.Config(\n app=asgi_app,\n- fd=fd,\n backlog=backlog,\n log_config=None,\n workers=1,\n@@ -195,6 +196,8 @@\n server_header=False,\n **uvicorn_extra_options,\n )\n+ socket = socket.socket(fileno=fd)\n+ uvicorn.Server(config).run(sockets=[socket])\n \n \n if __name__ == \"__main__\":\n", "issue": "bug: module 'socket' has no attribute 'AF_UNIX'\n### Describe the bug\r\n\r\nHello,\r\nI'm trying to use Bentoml by playing with the quick start examples. When running the Iris classification example on a windows machine, I have this error message:\r\n```\r\nFile \"C:\\Users\\Path\\lib\\site-packages\\uvicorn\\server.py\", line 140, in startup\r\n sock = socket.fromfd(config.fd, socket.AF_UNIX, socket.SOCK_STREAM)\r\nAttributeError: module 'socket' has no attribute 'AF_UNIX'\r\n```\r\n\r\nI tried to change the socket attribute to AF_INET, the error messages disappear but the client cannot connect to the bentoml server.\r\n\r\nThanks,\r\n\r\n\r\n### To reproduce\r\n\r\n_No response_\r\n\r\n### Expected behavior\r\n\r\n_No response_\r\n\r\n### Environment\r\n\r\nbentoml:1.2.12\r\npython:3.9.18\r\nuvicorn:0.29.0\r\nWindows: 11 Pro 22H2\n", "before_files": [{"content": "from __future__ import annotations\n\nimport json\nimport os\nimport typing as t\n\nimport click\n\n\[email protected]()\[email protected](\"bento_identifier\", type=click.STRING, required=False, default=\".\")\[email protected](\"--service-name\", type=click.STRING, required=False, default=\"\")\[email protected](\n \"--fd\",\n type=click.INT,\n required=True,\n help=\"File descriptor of the socket to listen on\",\n)\[email protected](\n \"--runner-map\",\n type=click.STRING,\n envvar=\"BENTOML_RUNNER_MAP\",\n help=\"JSON string of runners map, default sets to envars `BENTOML_RUNNER_MAP`\",\n)\[email protected](\n \"--backlog\", type=click.INT, default=2048, help=\"Backlog size for the socket\"\n)\[email protected](\n \"--prometheus-dir\",\n type=click.Path(exists=True),\n help=\"Required by prometheus to pass the metrics in multi-process mode\",\n)\[email protected](\n \"--worker-env\", type=click.STRING, default=None, help=\"Environment variables\"\n)\[email protected](\n \"--worker-id\",\n required=False,\n type=click.INT,\n default=None,\n help=\"If set, start the server as a bare worker with the given worker ID. Otherwise start a standalone server with a supervisor process.\",\n)\[email protected](\n \"--ssl-certfile\",\n type=str,\n default=None,\n help=\"SSL certificate file\",\n)\[email protected](\n \"--ssl-keyfile\",\n type=str,\n default=None,\n help=\"SSL key file\",\n)\[email protected](\n \"--ssl-keyfile-password\",\n type=str,\n default=None,\n help=\"SSL keyfile password\",\n)\[email protected](\n \"--ssl-version\",\n type=int,\n default=None,\n help=\"SSL version to use (see stdlib 'ssl' module)\",\n)\[email protected](\n \"--ssl-cert-reqs\",\n type=int,\n default=None,\n help=\"Whether client certificate is required (see stdlib 'ssl' module)\",\n)\[email protected](\n \"--ssl-ca-certs\",\n type=str,\n default=None,\n help=\"CA certificates file\",\n)\[email protected](\n \"--ssl-ciphers\",\n type=str,\n default=None,\n help=\"Ciphers to use (see stdlib 'ssl' module)\",\n)\[email protected](\n \"--development-mode\",\n type=click.BOOL,\n help=\"Run the API server in development mode\",\n is_flag=True,\n default=False,\n show_default=True,\n)\[email protected](\n \"--timeout\",\n type=click.INT,\n help=\"Specify the timeout for API server\",\n)\ndef main(\n bento_identifier: str,\n service_name: str,\n fd: int,\n runner_map: str | None,\n backlog: int,\n worker_env: str | None,\n worker_id: int | None,\n prometheus_dir: str | None,\n ssl_certfile: str | None,\n ssl_keyfile: str | None,\n ssl_keyfile_password: str | None,\n ssl_version: int | None,\n ssl_cert_reqs: int | None,\n ssl_ca_certs: str | None,\n ssl_ciphers: str | None,\n development_mode: bool,\n timeout: int,\n):\n \"\"\"\n Start a HTTP server worker for given service.\n \"\"\"\n import psutil\n import uvicorn\n\n if worker_env:\n env_list: list[dict[str, t.Any]] = json.loads(worker_env)\n if worker_id is not None:\n # worker id from circus starts from 1\n worker_key = worker_id - 1\n if worker_key >= len(env_list):\n raise IndexError(\n f\"Worker ID {worker_id} is out of range, \"\n f\"the maximum worker ID is {len(env_list)}\"\n )\n os.environ.update(env_list[worker_key])\n\n from _bentoml_impl.loader import import_service\n from bentoml._internal.container import BentoMLContainer\n from bentoml._internal.context import server_context\n from bentoml._internal.log import configure_server_logging\n\n if runner_map:\n BentoMLContainer.remote_runner_mapping.set(\n t.cast(t.Dict[str, str], json.loads(runner_map))\n )\n\n service = import_service(bento_identifier)\n\n if service_name and service_name != service.name:\n service = service.find_dependent(service_name)\n server_context.service_type = \"service\"\n else:\n server_context.service_type = \"entry_service\"\n\n if worker_id is not None:\n server_context.worker_index = worker_id\n\n configure_server_logging()\n BentoMLContainer.development_mode.set(development_mode)\n\n if prometheus_dir is not None:\n BentoMLContainer.prometheus_multiproc_dir.set(prometheus_dir)\n server_context.service_name = service.name\n\n asgi_app = service.to_asgi(\n is_main=server_context.service_type == \"entry_service\", init=False\n )\n\n uvicorn_extra_options: dict[str, t.Any] = {}\n if ssl_version is not None:\n uvicorn_extra_options[\"ssl_version\"] = ssl_version\n if ssl_cert_reqs is not None:\n uvicorn_extra_options[\"ssl_cert_reqs\"] = ssl_cert_reqs\n if ssl_ciphers is not None:\n uvicorn_extra_options[\"ssl_ciphers\"] = ssl_ciphers\n\n if psutil.WINDOWS:\n # 1. uvloop is not supported on Windows\n # 2. the default policy for Python > 3.8 on Windows is ProactorEventLoop, which doesn't\n # support listen on a existing socket file descriptors\n # See https://docs.python.org/3.8/library/asyncio-platforms.html#windows\n uvicorn_extra_options[\"loop\"] = \"asyncio\"\n import asyncio\n\n asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy()) # type: ignore\n\n uvicorn.run(\n app=asgi_app,\n fd=fd,\n backlog=backlog,\n log_config=None,\n workers=1,\n ssl_certfile=ssl_certfile,\n ssl_keyfile=ssl_keyfile,\n ssl_keyfile_password=ssl_keyfile_password,\n ssl_ca_certs=ssl_ca_certs,\n server_header=False,\n **uvicorn_extra_options,\n )\n\n\nif __name__ == \"__main__\":\n main() # pylint: disable=no-value-for-parameter\n", "path": "src/_bentoml_impl/worker/service.py"}], "after_files": [{"content": "from __future__ import annotations\n\nimport json\nimport os\nimport typing as t\n\nimport click\n\n\[email protected]()\[email protected](\"bento_identifier\", type=click.STRING, required=False, default=\".\")\[email protected](\"--service-name\", type=click.STRING, required=False, default=\"\")\[email protected](\n \"--fd\",\n type=click.INT,\n required=True,\n help=\"File descriptor of the socket to listen on\",\n)\[email protected](\n \"--runner-map\",\n type=click.STRING,\n envvar=\"BENTOML_RUNNER_MAP\",\n help=\"JSON string of runners map, default sets to envars `BENTOML_RUNNER_MAP`\",\n)\[email protected](\n \"--backlog\", type=click.INT, default=2048, help=\"Backlog size for the socket\"\n)\[email protected](\n \"--prometheus-dir\",\n type=click.Path(exists=True),\n help=\"Required by prometheus to pass the metrics in multi-process mode\",\n)\[email protected](\n \"--worker-env\", type=click.STRING, default=None, help=\"Environment variables\"\n)\[email protected](\n \"--worker-id\",\n required=False,\n type=click.INT,\n default=None,\n help=\"If set, start the server as a bare worker with the given worker ID. Otherwise start a standalone server with a supervisor process.\",\n)\[email protected](\n \"--ssl-certfile\",\n type=str,\n default=None,\n help=\"SSL certificate file\",\n)\[email protected](\n \"--ssl-keyfile\",\n type=str,\n default=None,\n help=\"SSL key file\",\n)\[email protected](\n \"--ssl-keyfile-password\",\n type=str,\n default=None,\n help=\"SSL keyfile password\",\n)\[email protected](\n \"--ssl-version\",\n type=int,\n default=None,\n help=\"SSL version to use (see stdlib 'ssl' module)\",\n)\[email protected](\n \"--ssl-cert-reqs\",\n type=int,\n default=None,\n help=\"Whether client certificate is required (see stdlib 'ssl' module)\",\n)\[email protected](\n \"--ssl-ca-certs\",\n type=str,\n default=None,\n help=\"CA certificates file\",\n)\[email protected](\n \"--ssl-ciphers\",\n type=str,\n default=None,\n help=\"Ciphers to use (see stdlib 'ssl' module)\",\n)\[email protected](\n \"--development-mode\",\n type=click.BOOL,\n help=\"Run the API server in development mode\",\n is_flag=True,\n default=False,\n show_default=True,\n)\[email protected](\n \"--timeout\",\n type=click.INT,\n help=\"Specify the timeout for API server\",\n)\ndef main(\n bento_identifier: str,\n service_name: str,\n fd: int,\n runner_map: str | None,\n backlog: int,\n worker_env: str | None,\n worker_id: int | None,\n prometheus_dir: str | None,\n ssl_certfile: str | None,\n ssl_keyfile: str | None,\n ssl_keyfile_password: str | None,\n ssl_version: int | None,\n ssl_cert_reqs: int | None,\n ssl_ca_certs: str | None,\n ssl_ciphers: str | None,\n development_mode: bool,\n timeout: int,\n):\n \"\"\"\n Start a HTTP server worker for given service.\n \"\"\"\n import socket\n\n import psutil\n import uvicorn\n\n if worker_env:\n env_list: list[dict[str, t.Any]] = json.loads(worker_env)\n if worker_id is not None:\n # worker id from circus starts from 1\n worker_key = worker_id - 1\n if worker_key >= len(env_list):\n raise IndexError(\n f\"Worker ID {worker_id} is out of range, \"\n f\"the maximum worker ID is {len(env_list)}\"\n )\n os.environ.update(env_list[worker_key])\n\n from _bentoml_impl.loader import import_service\n from bentoml._internal.container import BentoMLContainer\n from bentoml._internal.context import server_context\n from bentoml._internal.log import configure_server_logging\n\n if runner_map:\n BentoMLContainer.remote_runner_mapping.set(\n t.cast(t.Dict[str, str], json.loads(runner_map))\n )\n\n service = import_service(bento_identifier)\n\n if service_name and service_name != service.name:\n service = service.find_dependent(service_name)\n server_context.service_type = \"service\"\n else:\n server_context.service_type = \"entry_service\"\n\n if worker_id is not None:\n server_context.worker_index = worker_id\n\n configure_server_logging()\n BentoMLContainer.development_mode.set(development_mode)\n\n if prometheus_dir is not None:\n BentoMLContainer.prometheus_multiproc_dir.set(prometheus_dir)\n server_context.service_name = service.name\n\n asgi_app = service.to_asgi(\n is_main=server_context.service_type == \"entry_service\", init=False\n )\n\n uvicorn_extra_options: dict[str, t.Any] = {}\n if ssl_version is not None:\n uvicorn_extra_options[\"ssl_version\"] = ssl_version\n if ssl_cert_reqs is not None:\n uvicorn_extra_options[\"ssl_cert_reqs\"] = ssl_cert_reqs\n if ssl_ciphers is not None:\n uvicorn_extra_options[\"ssl_ciphers\"] = ssl_ciphers\n\n if psutil.WINDOWS:\n # 1. uvloop is not supported on Windows\n # 2. the default policy for Python > 3.8 on Windows is ProactorEventLoop, which doesn't\n # support listen on a existing socket file descriptors\n # See https://docs.python.org/3.8/library/asyncio-platforms.html#windows\n uvicorn_extra_options[\"loop\"] = \"asyncio\"\n import asyncio\n\n asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy()) # type: ignore\n\n config = uvicorn.Config(\n app=asgi_app,\n backlog=backlog,\n log_config=None,\n workers=1,\n ssl_certfile=ssl_certfile,\n ssl_keyfile=ssl_keyfile,\n ssl_keyfile_password=ssl_keyfile_password,\n ssl_ca_certs=ssl_ca_certs,\n server_header=False,\n **uvicorn_extra_options,\n )\n socket = socket.socket(fileno=fd)\n uvicorn.Server(config).run(sockets=[socket])\n\n\nif __name__ == \"__main__\":\n main() # pylint: disable=no-value-for-parameter\n", "path": "src/_bentoml_impl/worker/service.py"}]}
2,365
238
gh_patches_debug_18185
rasdani/github-patches
git_diff
mozilla__bugbug-214
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Use the bug snapshot transform in the "uplift" model Depends on #5. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `bugbug/models/uplift.py` Content: ``` 1 # -*- coding: utf-8 -*- 2 # This Source Code Form is subject to the terms of the Mozilla Public 3 # License, v. 2.0. If a copy of the MPL was not distributed with this file, 4 # You can obtain one at http://mozilla.org/MPL/2.0/. 5 6 import xgboost 7 from imblearn.under_sampling import RandomUnderSampler 8 from sklearn.compose import ColumnTransformer 9 from sklearn.feature_extraction import DictVectorizer 10 from sklearn.pipeline import Pipeline 11 12 from bugbug import bug_features 13 from bugbug import bugzilla 14 from bugbug.model import Model 15 16 17 class UpliftModel(Model): 18 def __init__(self, lemmatization=False): 19 Model.__init__(self, lemmatization) 20 21 self.sampler = RandomUnderSampler(random_state=0) 22 23 feature_extractors = [ 24 bug_features.has_str(), 25 bug_features.has_regression_range(), 26 bug_features.severity(), 27 bug_features.keywords(), 28 bug_features.is_coverity_issue(), 29 bug_features.has_crash_signature(), 30 bug_features.has_url(), 31 bug_features.has_w3c_url(), 32 bug_features.has_github_url(), 33 bug_features.whiteboard(), 34 bug_features.patches(), 35 bug_features.landings(), 36 bug_features.title(), 37 ] 38 39 cleanup_functions = [ 40 bug_features.cleanup_fileref, 41 bug_features.cleanup_url, 42 bug_features.cleanup_synonyms, 43 ] 44 45 self.extraction_pipeline = Pipeline([ 46 ('bug_extractor', bug_features.BugExtractor(feature_extractors, cleanup_functions)), 47 ('union', ColumnTransformer([ 48 ('data', DictVectorizer(), 'data'), 49 50 ('title', self.text_vectorizer(), 'title'), 51 52 ('comments', self.text_vectorizer(), 'comments'), 53 ])), 54 ]) 55 56 self.clf = xgboost.XGBClassifier(n_jobs=16) 57 self.clf.set_params(predictor='cpu_predictor') 58 59 def get_labels(self): 60 classes = {} 61 62 for bug_data in bugzilla.get_bugs(): 63 bug_id = int(bug_data['id']) 64 65 for attachment in bug_data['attachments']: 66 for flag in attachment['flags']: 67 if not flag['name'].startswith('approval-mozilla-') or flag['status'] not in ['+', '-']: 68 continue 69 70 if flag['status'] == '+': 71 classes[bug_id] = 1 72 elif flag['status'] == '-': 73 classes[bug_id] = 0 74 75 return classes 76 77 def get_feature_names(self): 78 return self.extraction_pipeline.named_steps['union'].get_feature_names() 79 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/bugbug/models/uplift.py b/bugbug/models/uplift.py --- a/bugbug/models/uplift.py +++ b/bugbug/models/uplift.py @@ -43,7 +43,7 @@ ] self.extraction_pipeline = Pipeline([ - ('bug_extractor', bug_features.BugExtractor(feature_extractors, cleanup_functions)), + ('bug_extractor', bug_features.BugExtractor(feature_extractors, cleanup_functions, rollback=True, rollback_when=self.rollback)), ('union', ColumnTransformer([ ('data', DictVectorizer(), 'data'), @@ -56,6 +56,9 @@ self.clf = xgboost.XGBClassifier(n_jobs=16) self.clf.set_params(predictor='cpu_predictor') + def rollback(self, change): + return (change['field_name'] == 'flagtypes.name' and change['added'].startswith('approval-mozilla-') and (change['added'].endswith('+') or change['added'].endswith('-'))) + def get_labels(self): classes = {}
{"golden_diff": "diff --git a/bugbug/models/uplift.py b/bugbug/models/uplift.py\n--- a/bugbug/models/uplift.py\n+++ b/bugbug/models/uplift.py\n@@ -43,7 +43,7 @@\n ]\n \n self.extraction_pipeline = Pipeline([\n- ('bug_extractor', bug_features.BugExtractor(feature_extractors, cleanup_functions)),\n+ ('bug_extractor', bug_features.BugExtractor(feature_extractors, cleanup_functions, rollback=True, rollback_when=self.rollback)),\n ('union', ColumnTransformer([\n ('data', DictVectorizer(), 'data'),\n \n@@ -56,6 +56,9 @@\n self.clf = xgboost.XGBClassifier(n_jobs=16)\n self.clf.set_params(predictor='cpu_predictor')\n \n+ def rollback(self, change):\n+ return (change['field_name'] == 'flagtypes.name' and change['added'].startswith('approval-mozilla-') and (change['added'].endswith('+') or change['added'].endswith('-')))\n+\n def get_labels(self):\n classes = {}\n", "issue": "Use the bug snapshot transform in the \"uplift\" model\nDepends on #5.\n", "before_files": [{"content": "# -*- coding: utf-8 -*-\n# This Source Code Form is subject to the terms of the Mozilla Public\n# License, v. 2.0. If a copy of the MPL was not distributed with this file,\n# You can obtain one at http://mozilla.org/MPL/2.0/.\n\nimport xgboost\nfrom imblearn.under_sampling import RandomUnderSampler\nfrom sklearn.compose import ColumnTransformer\nfrom sklearn.feature_extraction import DictVectorizer\nfrom sklearn.pipeline import Pipeline\n\nfrom bugbug import bug_features\nfrom bugbug import bugzilla\nfrom bugbug.model import Model\n\n\nclass UpliftModel(Model):\n def __init__(self, lemmatization=False):\n Model.__init__(self, lemmatization)\n\n self.sampler = RandomUnderSampler(random_state=0)\n\n feature_extractors = [\n bug_features.has_str(),\n bug_features.has_regression_range(),\n bug_features.severity(),\n bug_features.keywords(),\n bug_features.is_coverity_issue(),\n bug_features.has_crash_signature(),\n bug_features.has_url(),\n bug_features.has_w3c_url(),\n bug_features.has_github_url(),\n bug_features.whiteboard(),\n bug_features.patches(),\n bug_features.landings(),\n bug_features.title(),\n ]\n\n cleanup_functions = [\n bug_features.cleanup_fileref,\n bug_features.cleanup_url,\n bug_features.cleanup_synonyms,\n ]\n\n self.extraction_pipeline = Pipeline([\n ('bug_extractor', bug_features.BugExtractor(feature_extractors, cleanup_functions)),\n ('union', ColumnTransformer([\n ('data', DictVectorizer(), 'data'),\n\n ('title', self.text_vectorizer(), 'title'),\n\n ('comments', self.text_vectorizer(), 'comments'),\n ])),\n ])\n\n self.clf = xgboost.XGBClassifier(n_jobs=16)\n self.clf.set_params(predictor='cpu_predictor')\n\n def get_labels(self):\n classes = {}\n\n for bug_data in bugzilla.get_bugs():\n bug_id = int(bug_data['id'])\n\n for attachment in bug_data['attachments']:\n for flag in attachment['flags']:\n if not flag['name'].startswith('approval-mozilla-') or flag['status'] not in ['+', '-']:\n continue\n\n if flag['status'] == '+':\n classes[bug_id] = 1\n elif flag['status'] == '-':\n classes[bug_id] = 0\n\n return classes\n\n def get_feature_names(self):\n return self.extraction_pipeline.named_steps['union'].get_feature_names()\n", "path": "bugbug/models/uplift.py"}], "after_files": [{"content": "# -*- coding: utf-8 -*-\n# This Source Code Form is subject to the terms of the Mozilla Public\n# License, v. 2.0. If a copy of the MPL was not distributed with this file,\n# You can obtain one at http://mozilla.org/MPL/2.0/.\n\nimport xgboost\nfrom imblearn.under_sampling import RandomUnderSampler\nfrom sklearn.compose import ColumnTransformer\nfrom sklearn.feature_extraction import DictVectorizer\nfrom sklearn.pipeline import Pipeline\n\nfrom bugbug import bug_features\nfrom bugbug import bugzilla\nfrom bugbug.model import Model\n\n\nclass UpliftModel(Model):\n def __init__(self, lemmatization=False):\n Model.__init__(self, lemmatization)\n\n self.sampler = RandomUnderSampler(random_state=0)\n\n feature_extractors = [\n bug_features.has_str(),\n bug_features.has_regression_range(),\n bug_features.severity(),\n bug_features.keywords(),\n bug_features.is_coverity_issue(),\n bug_features.has_crash_signature(),\n bug_features.has_url(),\n bug_features.has_w3c_url(),\n bug_features.has_github_url(),\n bug_features.whiteboard(),\n bug_features.patches(),\n bug_features.landings(),\n bug_features.title(),\n ]\n\n cleanup_functions = [\n bug_features.cleanup_fileref,\n bug_features.cleanup_url,\n bug_features.cleanup_synonyms,\n ]\n\n self.extraction_pipeline = Pipeline([\n ('bug_extractor', bug_features.BugExtractor(feature_extractors, cleanup_functions, rollback=True, rollback_when=self.rollback)),\n ('union', ColumnTransformer([\n ('data', DictVectorizer(), 'data'),\n\n ('title', self.text_vectorizer(), 'title'),\n\n ('comments', self.text_vectorizer(), 'comments'),\n ])),\n ])\n\n self.clf = xgboost.XGBClassifier(n_jobs=16)\n self.clf.set_params(predictor='cpu_predictor')\n\n def rollback(self, change):\n return (change['field_name'] == 'flagtypes.name' and change['added'].startswith('approval-mozilla-') and (change['added'].endswith('+') or change['added'].endswith('-')))\n\n def get_labels(self):\n classes = {}\n\n for bug_data in bugzilla.get_bugs():\n bug_id = int(bug_data['id'])\n\n for attachment in bug_data['attachments']:\n for flag in attachment['flags']:\n if not flag['name'].startswith('approval-mozilla-') or flag['status'] not in ['+', '-']:\n continue\n\n if flag['status'] == '+':\n classes[bug_id] = 1\n elif flag['status'] == '-':\n classes[bug_id] = 0\n\n return classes\n\n def get_feature_names(self):\n return self.extraction_pipeline.named_steps['union'].get_feature_names()\n", "path": "bugbug/models/uplift.py"}]}
972
231
gh_patches_debug_35982
rasdani/github-patches
git_diff
open-telemetry__opentelemetry-python-contrib-260
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- gRPC server instrumentation creates multiple traces on streaming requests **Environment** Current `master` code, basically the sample code in the documentation, testing with a unary request vs. a streaming request. **Steps to reproduce** Create a simple gRPC servicer with two RPCs, one which returns a single message (the unary response), and one which yields items in a list for a streaming response. The key here is to make an instrumented request within the primary request handler (I'm using a simple HTTP get with the Requests instrumentation), so you get an _additional_ span which should be attached to the same trace. **What is the expected behavior?** A single trace with the main span, and a second child span for the HTTP request. **What is the actual behavior?** Two separate traces, each containing a single span. **Additional context** The problem _only_ occurs on streaming requests - I'm sure the reworking I did as part of https://github.com/open-telemetry/opentelemetry-python/pull/1171 is where the problem started, I didn't take into account the streaming case specifically with multiple spans, and naturally, there are no tests for anything streaming, only unary responses. So as part of this, we'll need some useful tests as well. I'll see if I can write up my test case as an actual test case. And again, I've got a vested interest in this working, so I'll have a PR up soon. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `instrumentation/opentelemetry-instrumentation-grpc/src/opentelemetry/instrumentation/grpc/_server.py` Content: ``` 1 # Copyright The OpenTelemetry Authors 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 15 # pylint:disable=relative-beyond-top-level 16 # pylint:disable=arguments-differ 17 # pylint:disable=no-member 18 # pylint:disable=signature-differs 19 20 """ 21 Implementation of the service-side open-telemetry interceptor. 22 """ 23 24 import logging 25 from contextlib import contextmanager 26 27 import grpc 28 29 from opentelemetry import propagators, trace 30 from opentelemetry.context import attach, detach 31 from opentelemetry.trace.propagation.textmap import DictGetter 32 from opentelemetry.trace.status import Status, StatusCode 33 34 logger = logging.getLogger(__name__) 35 36 37 # wrap an RPC call 38 # see https://github.com/grpc/grpc/issues/18191 39 def _wrap_rpc_behavior(handler, continuation): 40 if handler is None: 41 return None 42 43 if handler.request_streaming and handler.response_streaming: 44 behavior_fn = handler.stream_stream 45 handler_factory = grpc.stream_stream_rpc_method_handler 46 elif handler.request_streaming and not handler.response_streaming: 47 behavior_fn = handler.stream_unary 48 handler_factory = grpc.stream_unary_rpc_method_handler 49 elif not handler.request_streaming and handler.response_streaming: 50 behavior_fn = handler.unary_stream 51 handler_factory = grpc.unary_stream_rpc_method_handler 52 else: 53 behavior_fn = handler.unary_unary 54 handler_factory = grpc.unary_unary_rpc_method_handler 55 56 return handler_factory( 57 continuation( 58 behavior_fn, handler.request_streaming, handler.response_streaming 59 ), 60 request_deserializer=handler.request_deserializer, 61 response_serializer=handler.response_serializer, 62 ) 63 64 65 # pylint:disable=abstract-method 66 class _OpenTelemetryServicerContext(grpc.ServicerContext): 67 def __init__(self, servicer_context, active_span): 68 self._servicer_context = servicer_context 69 self._active_span = active_span 70 self.code = grpc.StatusCode.OK 71 self.details = None 72 super().__init__() 73 74 def is_active(self, *args, **kwargs): 75 return self._servicer_context.is_active(*args, **kwargs) 76 77 def time_remaining(self, *args, **kwargs): 78 return self._servicer_context.time_remaining(*args, **kwargs) 79 80 def cancel(self, *args, **kwargs): 81 return self._servicer_context.cancel(*args, **kwargs) 82 83 def add_callback(self, *args, **kwargs): 84 return self._servicer_context.add_callback(*args, **kwargs) 85 86 def disable_next_message_compression(self): 87 return self._service_context.disable_next_message_compression() 88 89 def invocation_metadata(self, *args, **kwargs): 90 return self._servicer_context.invocation_metadata(*args, **kwargs) 91 92 def peer(self): 93 return self._servicer_context.peer() 94 95 def peer_identities(self): 96 return self._servicer_context.peer_identities() 97 98 def peer_identity_key(self): 99 return self._servicer_context.peer_identity_key() 100 101 def auth_context(self): 102 return self._servicer_context.auth_context() 103 104 def set_compression(self, compression): 105 return self._servicer_context.set_compression(compression) 106 107 def send_initial_metadata(self, *args, **kwargs): 108 return self._servicer_context.send_initial_metadata(*args, **kwargs) 109 110 def set_trailing_metadata(self, *args, **kwargs): 111 return self._servicer_context.set_trailing_metadata(*args, **kwargs) 112 113 def abort(self, code, details): 114 self.code = code 115 self.details = details 116 self._active_span.set_attribute("rpc.grpc.status_code", code.value[0]) 117 self._active_span.set_status( 118 Status( 119 status_code=StatusCode.ERROR, 120 description="{}:{}".format(code, details), 121 ) 122 ) 123 return self._servicer_context.abort(code, details) 124 125 def abort_with_status(self, status): 126 return self._servicer_context.abort_with_status(status) 127 128 def set_code(self, code): 129 self.code = code 130 # use details if we already have it, otherwise the status description 131 details = self.details or code.value[1] 132 self._active_span.set_attribute("rpc.grpc.status_code", code.value[0]) 133 if code != grpc.StatusCode.OK: 134 self._active_span.set_status( 135 Status( 136 status_code=StatusCode.ERROR, 137 description="{}:{}".format(code, details), 138 ) 139 ) 140 return self._servicer_context.set_code(code) 141 142 def set_details(self, details): 143 self.details = details 144 if self.code != grpc.StatusCode.OK: 145 self._active_span.set_status( 146 Status( 147 status_code=StatusCode.ERROR, 148 description="{}:{}".format(self.code, details), 149 ) 150 ) 151 return self._servicer_context.set_details(details) 152 153 154 # pylint:disable=abstract-method 155 # pylint:disable=no-self-use 156 # pylint:disable=unused-argument 157 class OpenTelemetryServerInterceptor(grpc.ServerInterceptor): 158 """ 159 A gRPC server interceptor, to add OpenTelemetry. 160 161 Usage:: 162 163 tracer = some OpenTelemetry tracer 164 165 interceptors = [ 166 OpenTelemetryServerInterceptor(tracer), 167 ] 168 169 server = grpc.server( 170 futures.ThreadPoolExecutor(max_workers=concurrency), 171 interceptors = interceptors) 172 173 """ 174 175 def __init__(self, tracer): 176 self._tracer = tracer 177 self._carrier_getter = DictGetter() 178 179 @contextmanager 180 def _set_remote_context(self, servicer_context): 181 metadata = servicer_context.invocation_metadata() 182 if metadata: 183 md_dict = {md.key: md.value for md in metadata} 184 ctx = propagators.extract(self._carrier_getter, md_dict) 185 token = attach(ctx) 186 try: 187 yield 188 finally: 189 detach(token) 190 else: 191 yield 192 193 def _start_span(self, handler_call_details, context): 194 195 # standard attributes 196 attributes = { 197 "rpc.system": "grpc", 198 "rpc.grpc.status_code": grpc.StatusCode.OK.value[0], 199 } 200 201 # if we have details about the call, split into service and method 202 if handler_call_details.method: 203 service, method = handler_call_details.method.lstrip("/").split( 204 "/", 1 205 ) 206 attributes.update({"rpc.method": method, "rpc.service": service}) 207 208 # add some attributes from the metadata 209 metadata = dict(context.invocation_metadata()) 210 if "user-agent" in metadata: 211 attributes["rpc.user_agent"] = metadata["user-agent"] 212 213 # Split up the peer to keep with how other telemetry sources 214 # do it. This looks like: 215 # * ipv6:[::1]:57284 216 # * ipv4:127.0.0.1:57284 217 # * ipv4:10.2.1.1:57284,127.0.0.1:57284 218 # 219 try: 220 ip, port = ( 221 context.peer().split(",")[0].split(":", 1)[1].rsplit(":", 1) 222 ) 223 attributes.update({"net.peer.ip": ip, "net.peer.port": port}) 224 225 # other telemetry sources add this, so we will too 226 if ip in ("[::1]", "127.0.0.1"): 227 attributes["net.peer.name"] = "localhost" 228 229 except IndexError: 230 logger.warning("Failed to parse peer address '%s'", context.peer()) 231 232 return self._tracer.start_as_current_span( 233 name=handler_call_details.method, 234 kind=trace.SpanKind.SERVER, 235 attributes=attributes, 236 ) 237 238 def intercept_service(self, continuation, handler_call_details): 239 def telemetry_wrapper(behavior, request_streaming, response_streaming): 240 def telemetry_interceptor(request_or_iterator, context): 241 242 with self._set_remote_context(context): 243 with self._start_span( 244 handler_call_details, context 245 ) as span: 246 # wrap the context 247 context = _OpenTelemetryServicerContext(context, span) 248 249 # And now we run the actual RPC. 250 try: 251 return behavior(request_or_iterator, context) 252 except Exception as error: 253 # Bare exceptions are likely to be gRPC aborts, which 254 # we handle in our context wrapper. 255 # Here, we're interested in uncaught exceptions. 256 # pylint:disable=unidiomatic-typecheck 257 if type(error) != Exception: 258 span.record_exception(error) 259 raise error 260 261 return telemetry_interceptor 262 263 return _wrap_rpc_behavior( 264 continuation(handler_call_details), telemetry_wrapper 265 ) 266 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/instrumentation/opentelemetry-instrumentation-grpc/src/opentelemetry/instrumentation/grpc/_server.py b/instrumentation/opentelemetry-instrumentation-grpc/src/opentelemetry/instrumentation/grpc/_server.py --- a/instrumentation/opentelemetry-instrumentation-grpc/src/opentelemetry/instrumentation/grpc/_server.py +++ b/instrumentation/opentelemetry-instrumentation-grpc/src/opentelemetry/instrumentation/grpc/_server.py @@ -239,6 +239,15 @@ def telemetry_wrapper(behavior, request_streaming, response_streaming): def telemetry_interceptor(request_or_iterator, context): + # handle streaming responses specially + if response_streaming: + return self._intercept_server_stream( + behavior, + handler_call_details, + request_or_iterator, + context, + ) + with self._set_remote_context(context): with self._start_span( handler_call_details, context @@ -249,6 +258,7 @@ # And now we run the actual RPC. try: return behavior(request_or_iterator, context) + except Exception as error: # Bare exceptions are likely to be gRPC aborts, which # we handle in our context wrapper. @@ -263,3 +273,23 @@ return _wrap_rpc_behavior( continuation(handler_call_details), telemetry_wrapper ) + + # Handle streaming responses separately - we have to do this + # to return a *new* generator or various upstream things + # get confused, or we'll lose the consistent trace + def _intercept_server_stream( + self, behavior, handler_call_details, request_or_iterator, context + ): + + with self._set_remote_context(context): + with self._start_span(handler_call_details, context) as span: + context = _OpenTelemetryServicerContext(context, span) + + try: + yield from behavior(request_or_iterator, context) + + except Exception as error: + # pylint:disable=unidiomatic-typecheck + if type(error) != Exception: + span.record_exception(error) + raise error
{"golden_diff": "diff --git a/instrumentation/opentelemetry-instrumentation-grpc/src/opentelemetry/instrumentation/grpc/_server.py b/instrumentation/opentelemetry-instrumentation-grpc/src/opentelemetry/instrumentation/grpc/_server.py\n--- a/instrumentation/opentelemetry-instrumentation-grpc/src/opentelemetry/instrumentation/grpc/_server.py\n+++ b/instrumentation/opentelemetry-instrumentation-grpc/src/opentelemetry/instrumentation/grpc/_server.py\n@@ -239,6 +239,15 @@\n def telemetry_wrapper(behavior, request_streaming, response_streaming):\n def telemetry_interceptor(request_or_iterator, context):\n \n+ # handle streaming responses specially\n+ if response_streaming:\n+ return self._intercept_server_stream(\n+ behavior,\n+ handler_call_details,\n+ request_or_iterator,\n+ context,\n+ )\n+\n with self._set_remote_context(context):\n with self._start_span(\n handler_call_details, context\n@@ -249,6 +258,7 @@\n # And now we run the actual RPC.\n try:\n return behavior(request_or_iterator, context)\n+\n except Exception as error:\n # Bare exceptions are likely to be gRPC aborts, which\n # we handle in our context wrapper.\n@@ -263,3 +273,23 @@\n return _wrap_rpc_behavior(\n continuation(handler_call_details), telemetry_wrapper\n )\n+\n+ # Handle streaming responses separately - we have to do this\n+ # to return a *new* generator or various upstream things\n+ # get confused, or we'll lose the consistent trace\n+ def _intercept_server_stream(\n+ self, behavior, handler_call_details, request_or_iterator, context\n+ ):\n+\n+ with self._set_remote_context(context):\n+ with self._start_span(handler_call_details, context) as span:\n+ context = _OpenTelemetryServicerContext(context, span)\n+\n+ try:\n+ yield from behavior(request_or_iterator, context)\n+\n+ except Exception as error:\n+ # pylint:disable=unidiomatic-typecheck\n+ if type(error) != Exception:\n+ span.record_exception(error)\n+ raise error\n", "issue": "gRPC server instrumentation creates multiple traces on streaming requests\n**Environment**\r\nCurrent `master` code, basically the sample code in the documentation, testing with a unary request vs. a streaming request.\r\n\r\n**Steps to reproduce**\r\nCreate a simple gRPC servicer with two RPCs, one which returns a single message (the unary response), and one which yields items in a list for a streaming response.\r\n\r\nThe key here is to make an instrumented request within the primary request handler (I'm using a simple HTTP get with the Requests instrumentation), so you get an _additional_ span which should be attached to the same trace.\r\n\r\n**What is the expected behavior?**\r\nA single trace with the main span, and a second child span for the HTTP request.\r\n\r\n**What is the actual behavior?**\r\nTwo separate traces, each containing a single span.\r\n\r\n**Additional context**\r\nThe problem _only_ occurs on streaming requests - I'm sure the reworking I did as part of https://github.com/open-telemetry/opentelemetry-python/pull/1171 is where the problem started, I didn't take into account the streaming case specifically with multiple spans, and naturally, there are no tests for anything streaming, only unary responses.\r\n\r\nSo as part of this, we'll need some useful tests as well. I'll see if I can write up my test case as an actual test case.\r\n\r\nAnd again, I've got a vested interest in this working, so I'll have a PR up soon.\n", "before_files": [{"content": "# Copyright The OpenTelemetry Authors\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\n# pylint:disable=relative-beyond-top-level\n# pylint:disable=arguments-differ\n# pylint:disable=no-member\n# pylint:disable=signature-differs\n\n\"\"\"\nImplementation of the service-side open-telemetry interceptor.\n\"\"\"\n\nimport logging\nfrom contextlib import contextmanager\n\nimport grpc\n\nfrom opentelemetry import propagators, trace\nfrom opentelemetry.context import attach, detach\nfrom opentelemetry.trace.propagation.textmap import DictGetter\nfrom opentelemetry.trace.status import Status, StatusCode\n\nlogger = logging.getLogger(__name__)\n\n\n# wrap an RPC call\n# see https://github.com/grpc/grpc/issues/18191\ndef _wrap_rpc_behavior(handler, continuation):\n if handler is None:\n return None\n\n if handler.request_streaming and handler.response_streaming:\n behavior_fn = handler.stream_stream\n handler_factory = grpc.stream_stream_rpc_method_handler\n elif handler.request_streaming and not handler.response_streaming:\n behavior_fn = handler.stream_unary\n handler_factory = grpc.stream_unary_rpc_method_handler\n elif not handler.request_streaming and handler.response_streaming:\n behavior_fn = handler.unary_stream\n handler_factory = grpc.unary_stream_rpc_method_handler\n else:\n behavior_fn = handler.unary_unary\n handler_factory = grpc.unary_unary_rpc_method_handler\n\n return handler_factory(\n continuation(\n behavior_fn, handler.request_streaming, handler.response_streaming\n ),\n request_deserializer=handler.request_deserializer,\n response_serializer=handler.response_serializer,\n )\n\n\n# pylint:disable=abstract-method\nclass _OpenTelemetryServicerContext(grpc.ServicerContext):\n def __init__(self, servicer_context, active_span):\n self._servicer_context = servicer_context\n self._active_span = active_span\n self.code = grpc.StatusCode.OK\n self.details = None\n super().__init__()\n\n def is_active(self, *args, **kwargs):\n return self._servicer_context.is_active(*args, **kwargs)\n\n def time_remaining(self, *args, **kwargs):\n return self._servicer_context.time_remaining(*args, **kwargs)\n\n def cancel(self, *args, **kwargs):\n return self._servicer_context.cancel(*args, **kwargs)\n\n def add_callback(self, *args, **kwargs):\n return self._servicer_context.add_callback(*args, **kwargs)\n\n def disable_next_message_compression(self):\n return self._service_context.disable_next_message_compression()\n\n def invocation_metadata(self, *args, **kwargs):\n return self._servicer_context.invocation_metadata(*args, **kwargs)\n\n def peer(self):\n return self._servicer_context.peer()\n\n def peer_identities(self):\n return self._servicer_context.peer_identities()\n\n def peer_identity_key(self):\n return self._servicer_context.peer_identity_key()\n\n def auth_context(self):\n return self._servicer_context.auth_context()\n\n def set_compression(self, compression):\n return self._servicer_context.set_compression(compression)\n\n def send_initial_metadata(self, *args, **kwargs):\n return self._servicer_context.send_initial_metadata(*args, **kwargs)\n\n def set_trailing_metadata(self, *args, **kwargs):\n return self._servicer_context.set_trailing_metadata(*args, **kwargs)\n\n def abort(self, code, details):\n self.code = code\n self.details = details\n self._active_span.set_attribute(\"rpc.grpc.status_code\", code.value[0])\n self._active_span.set_status(\n Status(\n status_code=StatusCode.ERROR,\n description=\"{}:{}\".format(code, details),\n )\n )\n return self._servicer_context.abort(code, details)\n\n def abort_with_status(self, status):\n return self._servicer_context.abort_with_status(status)\n\n def set_code(self, code):\n self.code = code\n # use details if we already have it, otherwise the status description\n details = self.details or code.value[1]\n self._active_span.set_attribute(\"rpc.grpc.status_code\", code.value[0])\n if code != grpc.StatusCode.OK:\n self._active_span.set_status(\n Status(\n status_code=StatusCode.ERROR,\n description=\"{}:{}\".format(code, details),\n )\n )\n return self._servicer_context.set_code(code)\n\n def set_details(self, details):\n self.details = details\n if self.code != grpc.StatusCode.OK:\n self._active_span.set_status(\n Status(\n status_code=StatusCode.ERROR,\n description=\"{}:{}\".format(self.code, details),\n )\n )\n return self._servicer_context.set_details(details)\n\n\n# pylint:disable=abstract-method\n# pylint:disable=no-self-use\n# pylint:disable=unused-argument\nclass OpenTelemetryServerInterceptor(grpc.ServerInterceptor):\n \"\"\"\n A gRPC server interceptor, to add OpenTelemetry.\n\n Usage::\n\n tracer = some OpenTelemetry tracer\n\n interceptors = [\n OpenTelemetryServerInterceptor(tracer),\n ]\n\n server = grpc.server(\n futures.ThreadPoolExecutor(max_workers=concurrency),\n interceptors = interceptors)\n\n \"\"\"\n\n def __init__(self, tracer):\n self._tracer = tracer\n self._carrier_getter = DictGetter()\n\n @contextmanager\n def _set_remote_context(self, servicer_context):\n metadata = servicer_context.invocation_metadata()\n if metadata:\n md_dict = {md.key: md.value for md in metadata}\n ctx = propagators.extract(self._carrier_getter, md_dict)\n token = attach(ctx)\n try:\n yield\n finally:\n detach(token)\n else:\n yield\n\n def _start_span(self, handler_call_details, context):\n\n # standard attributes\n attributes = {\n \"rpc.system\": \"grpc\",\n \"rpc.grpc.status_code\": grpc.StatusCode.OK.value[0],\n }\n\n # if we have details about the call, split into service and method\n if handler_call_details.method:\n service, method = handler_call_details.method.lstrip(\"/\").split(\n \"/\", 1\n )\n attributes.update({\"rpc.method\": method, \"rpc.service\": service})\n\n # add some attributes from the metadata\n metadata = dict(context.invocation_metadata())\n if \"user-agent\" in metadata:\n attributes[\"rpc.user_agent\"] = metadata[\"user-agent\"]\n\n # Split up the peer to keep with how other telemetry sources\n # do it. This looks like:\n # * ipv6:[::1]:57284\n # * ipv4:127.0.0.1:57284\n # * ipv4:10.2.1.1:57284,127.0.0.1:57284\n #\n try:\n ip, port = (\n context.peer().split(\",\")[0].split(\":\", 1)[1].rsplit(\":\", 1)\n )\n attributes.update({\"net.peer.ip\": ip, \"net.peer.port\": port})\n\n # other telemetry sources add this, so we will too\n if ip in (\"[::1]\", \"127.0.0.1\"):\n attributes[\"net.peer.name\"] = \"localhost\"\n\n except IndexError:\n logger.warning(\"Failed to parse peer address '%s'\", context.peer())\n\n return self._tracer.start_as_current_span(\n name=handler_call_details.method,\n kind=trace.SpanKind.SERVER,\n attributes=attributes,\n )\n\n def intercept_service(self, continuation, handler_call_details):\n def telemetry_wrapper(behavior, request_streaming, response_streaming):\n def telemetry_interceptor(request_or_iterator, context):\n\n with self._set_remote_context(context):\n with self._start_span(\n handler_call_details, context\n ) as span:\n # wrap the context\n context = _OpenTelemetryServicerContext(context, span)\n\n # And now we run the actual RPC.\n try:\n return behavior(request_or_iterator, context)\n except Exception as error:\n # Bare exceptions are likely to be gRPC aborts, which\n # we handle in our context wrapper.\n # Here, we're interested in uncaught exceptions.\n # pylint:disable=unidiomatic-typecheck\n if type(error) != Exception:\n span.record_exception(error)\n raise error\n\n return telemetry_interceptor\n\n return _wrap_rpc_behavior(\n continuation(handler_call_details), telemetry_wrapper\n )\n", "path": "instrumentation/opentelemetry-instrumentation-grpc/src/opentelemetry/instrumentation/grpc/_server.py"}], "after_files": [{"content": "# Copyright The OpenTelemetry Authors\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\n# pylint:disable=relative-beyond-top-level\n# pylint:disable=arguments-differ\n# pylint:disable=no-member\n# pylint:disable=signature-differs\n\n\"\"\"\nImplementation of the service-side open-telemetry interceptor.\n\"\"\"\n\nimport logging\nfrom contextlib import contextmanager\n\nimport grpc\n\nfrom opentelemetry import propagators, trace\nfrom opentelemetry.context import attach, detach\nfrom opentelemetry.trace.propagation.textmap import DictGetter\nfrom opentelemetry.trace.status import Status, StatusCode\n\nlogger = logging.getLogger(__name__)\n\n\n# wrap an RPC call\n# see https://github.com/grpc/grpc/issues/18191\ndef _wrap_rpc_behavior(handler, continuation):\n if handler is None:\n return None\n\n if handler.request_streaming and handler.response_streaming:\n behavior_fn = handler.stream_stream\n handler_factory = grpc.stream_stream_rpc_method_handler\n elif handler.request_streaming and not handler.response_streaming:\n behavior_fn = handler.stream_unary\n handler_factory = grpc.stream_unary_rpc_method_handler\n elif not handler.request_streaming and handler.response_streaming:\n behavior_fn = handler.unary_stream\n handler_factory = grpc.unary_stream_rpc_method_handler\n else:\n behavior_fn = handler.unary_unary\n handler_factory = grpc.unary_unary_rpc_method_handler\n\n return handler_factory(\n continuation(\n behavior_fn, handler.request_streaming, handler.response_streaming\n ),\n request_deserializer=handler.request_deserializer,\n response_serializer=handler.response_serializer,\n )\n\n\n# pylint:disable=abstract-method\nclass _OpenTelemetryServicerContext(grpc.ServicerContext):\n def __init__(self, servicer_context, active_span):\n self._servicer_context = servicer_context\n self._active_span = active_span\n self.code = grpc.StatusCode.OK\n self.details = None\n super().__init__()\n\n def is_active(self, *args, **kwargs):\n return self._servicer_context.is_active(*args, **kwargs)\n\n def time_remaining(self, *args, **kwargs):\n return self._servicer_context.time_remaining(*args, **kwargs)\n\n def cancel(self, *args, **kwargs):\n return self._servicer_context.cancel(*args, **kwargs)\n\n def add_callback(self, *args, **kwargs):\n return self._servicer_context.add_callback(*args, **kwargs)\n\n def disable_next_message_compression(self):\n return self._service_context.disable_next_message_compression()\n\n def invocation_metadata(self, *args, **kwargs):\n return self._servicer_context.invocation_metadata(*args, **kwargs)\n\n def peer(self):\n return self._servicer_context.peer()\n\n def peer_identities(self):\n return self._servicer_context.peer_identities()\n\n def peer_identity_key(self):\n return self._servicer_context.peer_identity_key()\n\n def auth_context(self):\n return self._servicer_context.auth_context()\n\n def set_compression(self, compression):\n return self._servicer_context.set_compression(compression)\n\n def send_initial_metadata(self, *args, **kwargs):\n return self._servicer_context.send_initial_metadata(*args, **kwargs)\n\n def set_trailing_metadata(self, *args, **kwargs):\n return self._servicer_context.set_trailing_metadata(*args, **kwargs)\n\n def abort(self, code, details):\n self.code = code\n self.details = details\n self._active_span.set_attribute(\"rpc.grpc.status_code\", code.value[0])\n self._active_span.set_status(\n Status(\n status_code=StatusCode.ERROR,\n description=\"{}:{}\".format(code, details),\n )\n )\n return self._servicer_context.abort(code, details)\n\n def abort_with_status(self, status):\n return self._servicer_context.abort_with_status(status)\n\n def set_code(self, code):\n self.code = code\n # use details if we already have it, otherwise the status description\n details = self.details or code.value[1]\n self._active_span.set_attribute(\"rpc.grpc.status_code\", code.value[0])\n if code != grpc.StatusCode.OK:\n self._active_span.set_status(\n Status(\n status_code=StatusCode.ERROR,\n description=\"{}:{}\".format(code, details),\n )\n )\n return self._servicer_context.set_code(code)\n\n def set_details(self, details):\n self.details = details\n if self.code != grpc.StatusCode.OK:\n self._active_span.set_status(\n Status(\n status_code=StatusCode.ERROR,\n description=\"{}:{}\".format(self.code, details),\n )\n )\n return self._servicer_context.set_details(details)\n\n\n# pylint:disable=abstract-method\n# pylint:disable=no-self-use\n# pylint:disable=unused-argument\nclass OpenTelemetryServerInterceptor(grpc.ServerInterceptor):\n \"\"\"\n A gRPC server interceptor, to add OpenTelemetry.\n\n Usage::\n\n tracer = some OpenTelemetry tracer\n\n interceptors = [\n OpenTelemetryServerInterceptor(tracer),\n ]\n\n server = grpc.server(\n futures.ThreadPoolExecutor(max_workers=concurrency),\n interceptors = interceptors)\n\n \"\"\"\n\n def __init__(self, tracer):\n self._tracer = tracer\n self._carrier_getter = DictGetter()\n\n @contextmanager\n def _set_remote_context(self, servicer_context):\n metadata = servicer_context.invocation_metadata()\n if metadata:\n md_dict = {md.key: md.value for md in metadata}\n ctx = propagators.extract(self._carrier_getter, md_dict)\n token = attach(ctx)\n try:\n yield\n finally:\n detach(token)\n else:\n yield\n\n def _start_span(self, handler_call_details, context):\n\n # standard attributes\n attributes = {\n \"rpc.system\": \"grpc\",\n \"rpc.grpc.status_code\": grpc.StatusCode.OK.value[0],\n }\n\n # if we have details about the call, split into service and method\n if handler_call_details.method:\n service, method = handler_call_details.method.lstrip(\"/\").split(\n \"/\", 1\n )\n attributes.update({\"rpc.method\": method, \"rpc.service\": service})\n\n # add some attributes from the metadata\n metadata = dict(context.invocation_metadata())\n if \"user-agent\" in metadata:\n attributes[\"rpc.user_agent\"] = metadata[\"user-agent\"]\n\n # Split up the peer to keep with how other telemetry sources\n # do it. This looks like:\n # * ipv6:[::1]:57284\n # * ipv4:127.0.0.1:57284\n # * ipv4:10.2.1.1:57284,127.0.0.1:57284\n #\n try:\n ip, port = (\n context.peer().split(\",\")[0].split(\":\", 1)[1].rsplit(\":\", 1)\n )\n attributes.update({\"net.peer.ip\": ip, \"net.peer.port\": port})\n\n # other telemetry sources add this, so we will too\n if ip in (\"[::1]\", \"127.0.0.1\"):\n attributes[\"net.peer.name\"] = \"localhost\"\n\n except IndexError:\n logger.warning(\"Failed to parse peer address '%s'\", context.peer())\n\n return self._tracer.start_as_current_span(\n name=handler_call_details.method,\n kind=trace.SpanKind.SERVER,\n attributes=attributes,\n )\n\n def intercept_service(self, continuation, handler_call_details):\n def telemetry_wrapper(behavior, request_streaming, response_streaming):\n def telemetry_interceptor(request_or_iterator, context):\n\n # handle streaming responses specially\n if response_streaming:\n return self._intercept_server_stream(\n behavior,\n handler_call_details,\n request_or_iterator,\n context,\n )\n\n with self._set_remote_context(context):\n with self._start_span(\n handler_call_details, context\n ) as span:\n # wrap the context\n context = _OpenTelemetryServicerContext(context, span)\n\n # And now we run the actual RPC.\n try:\n return behavior(request_or_iterator, context)\n\n except Exception as error:\n # Bare exceptions are likely to be gRPC aborts, which\n # we handle in our context wrapper.\n # Here, we're interested in uncaught exceptions.\n # pylint:disable=unidiomatic-typecheck\n if type(error) != Exception:\n span.record_exception(error)\n raise error\n\n return telemetry_interceptor\n\n return _wrap_rpc_behavior(\n continuation(handler_call_details), telemetry_wrapper\n )\n\n # Handle streaming responses separately - we have to do this\n # to return a *new* generator or various upstream things\n # get confused, or we'll lose the consistent trace\n def _intercept_server_stream(\n self, behavior, handler_call_details, request_or_iterator, context\n ):\n\n with self._set_remote_context(context):\n with self._start_span(handler_call_details, context) as span:\n context = _OpenTelemetryServicerContext(context, span)\n\n try:\n yield from behavior(request_or_iterator, context)\n\n except Exception as error:\n # pylint:disable=unidiomatic-typecheck\n if type(error) != Exception:\n span.record_exception(error)\n raise error\n", "path": "instrumentation/opentelemetry-instrumentation-grpc/src/opentelemetry/instrumentation/grpc/_server.py"}]}
3,237
485
gh_patches_debug_349
rasdani/github-patches
git_diff
google__turbinia-1070
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Missing sys module import in logger.py Logger module is missing an import statement for 'sys' --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `turbinia/config/logger.py` Content: ``` 1 # -*- coding: utf-8 -*- 2 # Copyright 2017 Google Inc. 3 # 4 # Licensed under the Apache License, Version 2.0 (the "License"); 5 # you may not use this file except in compliance with the License. 6 # You may obtain a copy of the License at 7 # 8 # http://www.apache.org/licenses/LICENSE-2.0 9 # 10 # Unless required by applicable law or agreed to in writing, software 11 # distributed under the License is distributed on an "AS IS" BASIS, 12 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 # See the License for the specific language governing permissions and 14 # limitations under the License. 15 """Sets up logging.""" 16 17 from __future__ import unicode_literals 18 import logging 19 20 import warnings 21 import logging.handlers 22 import os 23 24 from turbinia import config 25 from turbinia import TurbiniaException 26 27 # Environment variable to look for node name in 28 ENVNODENAME = 'NODE_NAME' 29 30 31 def setup(need_file_handler=True, need_stream_handler=True, log_file_path=None): 32 """Set up logging parameters. 33 34 This will also set the root logger, which is the default logger when a named 35 logger is not specified. We currently use 'turbinia' as the named logger, 36 however some external modules that are called by Turbinia can use the root 37 logger, so we want to be able to optionally configure that as well. 38 """ 39 # Remove known warning about credentials 40 warnings.filterwarnings( 41 'ignore', 'Your application has authenticated using end user credentials') 42 43 logger = logging.getLogger('turbinia') 44 # Eliminate double logging from root logger 45 logger.propagate = False 46 47 # We only need a handler if one of that type doesn't exist already 48 if logger.handlers: 49 for handler in logger.handlers: 50 # Want to do strict type-checking here because is instance will include 51 # subclasses and so won't distinguish between StreamHandlers and 52 # FileHandlers. 53 # pylint: disable=unidiomatic-typecheck 54 if type(handler) == logging.FileHandler: 55 need_file_handler = False 56 57 # pylint: disable=unidiomatic-typecheck 58 if type(handler) == logging.StreamHandler: 59 need_stream_handler = False 60 61 if need_file_handler: 62 try: 63 config.LoadConfig() 64 except TurbiniaException as exception: 65 print( 66 'Could not load config file ({0!s}).\n{1:s}'.format( 67 exception, config.CONFIG_MSG)) 68 sys.exit(1) 69 70 # Check if a user specified log path was provided else create default path 71 if not log_file_path: 72 log_name = os.uname().nodename 73 # Check if NODE_NAME available for GKE setups 74 if ENVNODENAME in os.environ: 75 log_name = log_name + '.{0!s}'.format(os.environ[ENVNODENAME]) 76 log_file_path = os.path.join(config.LOG_DIR, log_name) + '.log' 77 78 file_handler = logging.FileHandler(log_file_path) 79 formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(message)s') 80 file_handler.setFormatter(formatter) 81 file_handler.setLevel(logging.DEBUG) 82 logger.addHandler(file_handler) 83 84 console_handler = logging.StreamHandler() 85 formatter = logging.Formatter( 86 '%(asctime)s [%(levelname)s] %(message)s', "%Y-%m-%d %H:%M:%S") 87 console_handler.setFormatter(formatter) 88 if need_stream_handler: 89 logger.addHandler(console_handler) 90 91 # Configure the root logger to use exactly our handlers because other modules 92 # like PSQ use this, and we want to see log messages from it when executing 93 # from CLI. 94 root_log = logging.getLogger() 95 for handler in root_log.handlers: 96 root_log.removeHandler(handler) 97 root_log.addHandler(console_handler) 98 if need_file_handler: 99 root_log.addHandler(file_handler) 100 101 # Set filelock logging to ERROR due to log spam 102 logging.getLogger("filelock").setLevel(logging.ERROR) 103 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/turbinia/config/logger.py b/turbinia/config/logger.py --- a/turbinia/config/logger.py +++ b/turbinia/config/logger.py @@ -20,6 +20,7 @@ import warnings import logging.handlers import os +import sys from turbinia import config from turbinia import TurbiniaException
{"golden_diff": "diff --git a/turbinia/config/logger.py b/turbinia/config/logger.py\n--- a/turbinia/config/logger.py\n+++ b/turbinia/config/logger.py\n@@ -20,6 +20,7 @@\n import warnings\n import logging.handlers\n import os\n+import sys\n \n from turbinia import config\n from turbinia import TurbiniaException\n", "issue": "Missing sys module import in logger.py\nLogger module is missing an import statement for 'sys'\n", "before_files": [{"content": "# -*- coding: utf-8 -*-\n# Copyright 2017 Google Inc.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\"\"\"Sets up logging.\"\"\"\n\nfrom __future__ import unicode_literals\nimport logging\n\nimport warnings\nimport logging.handlers\nimport os\n\nfrom turbinia import config\nfrom turbinia import TurbiniaException\n\n# Environment variable to look for node name in\nENVNODENAME = 'NODE_NAME'\n\n\ndef setup(need_file_handler=True, need_stream_handler=True, log_file_path=None):\n \"\"\"Set up logging parameters.\n\n This will also set the root logger, which is the default logger when a named\n logger is not specified. We currently use 'turbinia' as the named logger,\n however some external modules that are called by Turbinia can use the root\n logger, so we want to be able to optionally configure that as well.\n \"\"\"\n # Remove known warning about credentials\n warnings.filterwarnings(\n 'ignore', 'Your application has authenticated using end user credentials')\n\n logger = logging.getLogger('turbinia')\n # Eliminate double logging from root logger\n logger.propagate = False\n\n # We only need a handler if one of that type doesn't exist already\n if logger.handlers:\n for handler in logger.handlers:\n # Want to do strict type-checking here because is instance will include\n # subclasses and so won't distinguish between StreamHandlers and\n # FileHandlers.\n # pylint: disable=unidiomatic-typecheck\n if type(handler) == logging.FileHandler:\n need_file_handler = False\n\n # pylint: disable=unidiomatic-typecheck\n if type(handler) == logging.StreamHandler:\n need_stream_handler = False\n\n if need_file_handler:\n try:\n config.LoadConfig()\n except TurbiniaException as exception:\n print(\n 'Could not load config file ({0!s}).\\n{1:s}'.format(\n exception, config.CONFIG_MSG))\n sys.exit(1)\n\n # Check if a user specified log path was provided else create default path\n if not log_file_path:\n log_name = os.uname().nodename\n # Check if NODE_NAME available for GKE setups\n if ENVNODENAME in os.environ:\n log_name = log_name + '.{0!s}'.format(os.environ[ENVNODENAME])\n log_file_path = os.path.join(config.LOG_DIR, log_name) + '.log'\n\n file_handler = logging.FileHandler(log_file_path)\n formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(message)s')\n file_handler.setFormatter(formatter)\n file_handler.setLevel(logging.DEBUG)\n logger.addHandler(file_handler)\n\n console_handler = logging.StreamHandler()\n formatter = logging.Formatter(\n '%(asctime)s [%(levelname)s] %(message)s', \"%Y-%m-%d %H:%M:%S\")\n console_handler.setFormatter(formatter)\n if need_stream_handler:\n logger.addHandler(console_handler)\n\n # Configure the root logger to use exactly our handlers because other modules\n # like PSQ use this, and we want to see log messages from it when executing\n # from CLI.\n root_log = logging.getLogger()\n for handler in root_log.handlers:\n root_log.removeHandler(handler)\n root_log.addHandler(console_handler)\n if need_file_handler:\n root_log.addHandler(file_handler)\n\n # Set filelock logging to ERROR due to log spam\n logging.getLogger(\"filelock\").setLevel(logging.ERROR)\n", "path": "turbinia/config/logger.py"}], "after_files": [{"content": "# -*- coding: utf-8 -*-\n# Copyright 2017 Google Inc.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\"\"\"Sets up logging.\"\"\"\n\nfrom __future__ import unicode_literals\nimport logging\n\nimport warnings\nimport logging.handlers\nimport os\nimport sys\n\nfrom turbinia import config\nfrom turbinia import TurbiniaException\n\n# Environment variable to look for node name in\nENVNODENAME = 'NODE_NAME'\n\n\ndef setup(need_file_handler=True, need_stream_handler=True, log_file_path=None):\n \"\"\"Set up logging parameters.\n\n This will also set the root logger, which is the default logger when a named\n logger is not specified. We currently use 'turbinia' as the named logger,\n however some external modules that are called by Turbinia can use the root\n logger, so we want to be able to optionally configure that as well.\n \"\"\"\n # Remove known warning about credentials\n warnings.filterwarnings(\n 'ignore', 'Your application has authenticated using end user credentials')\n\n logger = logging.getLogger('turbinia')\n # Eliminate double logging from root logger\n logger.propagate = False\n\n # We only need a handler if one of that type doesn't exist already\n if logger.handlers:\n for handler in logger.handlers:\n # Want to do strict type-checking here because is instance will include\n # subclasses and so won't distinguish between StreamHandlers and\n # FileHandlers.\n # pylint: disable=unidiomatic-typecheck\n if type(handler) == logging.FileHandler:\n need_file_handler = False\n\n # pylint: disable=unidiomatic-typecheck\n if type(handler) == logging.StreamHandler:\n need_stream_handler = False\n\n if need_file_handler:\n try:\n config.LoadConfig()\n except TurbiniaException as exception:\n print(\n 'Could not load config file ({0!s}).\\n{1:s}'.format(\n exception, config.CONFIG_MSG))\n sys.exit(1)\n\n # Check if a user specified log path was provided else create default path\n if not log_file_path:\n log_name = os.uname().nodename\n # Check if NODE_NAME available for GKE setups\n if ENVNODENAME in os.environ:\n log_name = log_name + '.{0!s}'.format(os.environ[ENVNODENAME])\n log_file_path = os.path.join(config.LOG_DIR, log_name) + '.log'\n\n file_handler = logging.FileHandler(log_file_path)\n formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(message)s')\n file_handler.setFormatter(formatter)\n file_handler.setLevel(logging.DEBUG)\n logger.addHandler(file_handler)\n\n console_handler = logging.StreamHandler()\n formatter = logging.Formatter(\n '%(asctime)s [%(levelname)s] %(message)s', \"%Y-%m-%d %H:%M:%S\")\n console_handler.setFormatter(formatter)\n if need_stream_handler:\n logger.addHandler(console_handler)\n\n # Configure the root logger to use exactly our handlers because other modules\n # like PSQ use this, and we want to see log messages from it when executing\n # from CLI.\n root_log = logging.getLogger()\n for handler in root_log.handlers:\n root_log.removeHandler(handler)\n root_log.addHandler(console_handler)\n if need_file_handler:\n root_log.addHandler(file_handler)\n\n # Set filelock logging to ERROR due to log spam\n logging.getLogger(\"filelock\").setLevel(logging.ERROR)\n", "path": "turbinia/config/logger.py"}]}
1,341
83
gh_patches_debug_26789
rasdani/github-patches
git_diff
cloud-custodian__cloud-custodian-5796
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- aws.elasticsearch Error Scanning More Than 5 domains **Describe the bug** When running any elasticsearch policy on an account region with more than 5 elasticsearch domains the policy now bombs out with the error - ```error:An error occurred (ValidationException) when calling the DescribeElasticsearchDomains operation: Please provide a maximum of 5 Elasticsearch domain names to describe.``` **To Reproduce** Create 6 es domains and run an elasticsearch c7n policy, error will occur **Expected behavior** It should chunk the calls into domains of 5 or less **Background (please complete the following information):** - OS: Ubuntu v20 - Python Version: 3.8 - Custodian Version: 0.9.2.0 - Tool Version: [if applicable] - Cloud Provider: aws - Policy: any policy which queries ES - Traceback: ``` [ERROR] 2020-05-22T14:51:25.978Z 9ef7929b-b494-434e-9f9f-dfdfdfdfdfdfd Error while executing policy Traceback (most recent call last): File "/var/task/c7n/policy.py", line 291, in run resources = self.policy.resource_manager.resources() File "/var/task/c7n/query.py", line 466, in resources resources = self.augment(resources) File "/var/task/c7n/query.py", line 521, in augment return self.source.augment(resources) File "/var/task/c7n/resources/elasticsearch.py", line 48, in augment return _augment(domains) File "/var/task/c7n/resources/elasticsearch.py", line 39, in _augment resources = self.manager.retry( File "/var/task/c7n/utils.py", line 373, in _retry return func(*args, **kw) File "/var/task/botocore/client.py", line 316, in _api_call return self._make_api_call(operation_name, kwargs) File "/var/task/botocore/client.py", line 635, in _make_api_call raise error_class(parsed_response, operation_name) botocore.errorfactory.ValidationException: An error occurred (ValidationException) when calling the DescribeElasticsearchDomains operation: Please provide a maximum of 5 Elasticsearch domain names to describe. ``` - `custodian version --debug` output **Additional context** Seems to be introduced with 0.9.2.0 --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `c7n/resources/elasticsearch.py` Content: ``` 1 # Copyright 2016-2017 Capital One Services, LLC 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 import jmespath 15 16 from c7n.actions import Action, ModifyVpcSecurityGroupsAction 17 from c7n.filters import MetricsFilter 18 from c7n.filters.vpc import SecurityGroupFilter, SubnetFilter, VpcFilter 19 from c7n.manager import resources 20 from c7n.query import ConfigSource, DescribeSource, QueryResourceManager, TypeInfo 21 from c7n.utils import local_session, type_schema 22 from c7n.tags import Tag, RemoveTag, TagActionFilter, TagDelayedAction 23 24 from .securityhub import PostFinding 25 26 27 class DescribeDomain(DescribeSource): 28 29 def get_resources(self, resource_ids): 30 client = local_session(self.manager.session_factory).client('es') 31 return client.describe_elasticsearch_domains( 32 DomainNames=resource_ids)['DomainStatusList'] 33 34 def augment(self, domains): 35 client = local_session(self.manager.session_factory).client('es') 36 model = self.manager.get_model() 37 38 def _augment(resource_set): 39 resources = self.manager.retry( 40 client.describe_elasticsearch_domains, 41 DomainNames=resource_set)['DomainStatusList'] 42 for r in resources: 43 rarn = self.manager.generate_arn(r[model.id]) 44 r['Tags'] = self.manager.retry( 45 client.list_tags, ARN=rarn).get('TagList', []) 46 return resources 47 48 return _augment(domains) 49 50 51 @resources.register('elasticsearch') 52 class ElasticSearchDomain(QueryResourceManager): 53 54 class resource_type(TypeInfo): 55 service = 'es' 56 arn = 'ARN' 57 arn_type = 'domain' 58 enum_spec = ( 59 'list_domain_names', 'DomainNames[].DomainName', None) 60 id = 'DomainName' 61 name = 'Name' 62 dimension = "DomainName" 63 cfn_type = config_type = 'AWS::Elasticsearch::Domain' 64 65 source_mapping = { 66 'describe': DescribeDomain, 67 'config': ConfigSource 68 } 69 70 71 ElasticSearchDomain.filter_registry.register('marked-for-op', TagActionFilter) 72 73 74 @ElasticSearchDomain.filter_registry.register('subnet') 75 class Subnet(SubnetFilter): 76 77 RelatedIdsExpression = "VPCOptions.SubnetIds[]" 78 79 80 @ElasticSearchDomain.filter_registry.register('security-group') 81 class SecurityGroup(SecurityGroupFilter): 82 83 RelatedIdsExpression = "VPCOptions.SecurityGroupIds[]" 84 85 86 @ElasticSearchDomain.filter_registry.register('vpc') 87 class Vpc(VpcFilter): 88 89 RelatedIdsExpression = "VPCOptions.VPCId" 90 91 92 @ElasticSearchDomain.filter_registry.register('metrics') 93 class Metrics(MetricsFilter): 94 95 def get_dimensions(self, resource): 96 return [{'Name': 'ClientId', 97 'Value': self.manager.account_id}, 98 {'Name': 'DomainName', 99 'Value': resource['DomainName']}] 100 101 102 @ElasticSearchDomain.action_registry.register('post-finding') 103 class ElasticSearchPostFinding(PostFinding): 104 105 resource_type = 'AwsElasticsearchDomain' 106 107 def format_resource(self, r): 108 envelope, payload = self.format_envelope(r) 109 payload.update(self.filter_empty({ 110 'AccessPolicies': r.get('AccessPolicies'), 111 'DomainId': r['DomainId'], 112 'DomainName': r['DomainName'], 113 'Endpoint': r.get('Endpoint'), 114 'Endpoints': r.get('Endpoints'), 115 'DomainEndpointOptions': self.filter_empty({ 116 'EnforceHTTPS': jmespath.search( 117 'DomainEndpointOptions.EnforceHTTPS', r), 118 'TLSSecurityPolicy': jmespath.search( 119 'DomainEndpointOptions.TLSSecurityPolicy', r) 120 }), 121 'ElasticsearchVersion': r['ElasticsearchVersion'], 122 'EncryptionAtRestOptions': self.filter_empty({ 123 'Enabled': jmespath.search( 124 'EncryptionAtRestOptions.Enabled', r), 125 'KmsKeyId': jmespath.search( 126 'EncryptionAtRestOptions.KmsKeyId', r) 127 }), 128 'NodeToNodeEncryptionOptions': self.filter_empty({ 129 'Enabled': jmespath.search( 130 'NodeToNodeEncryptionOptions.Enabled', r) 131 }), 132 'VPCOptions': self.filter_empty({ 133 'AvailabilityZones': jmespath.search( 134 'VPCOptions.AvailabilityZones', r), 135 'SecurityGroupIds': jmespath.search( 136 'VPCOptions.SecurityGroupIds', r), 137 'SubnetIds': jmespath.search('VPCOptions.SubnetIds', r), 138 'VPCId': jmespath.search('VPCOptions.VPCId', r) 139 }) 140 })) 141 return envelope 142 143 144 @ElasticSearchDomain.action_registry.register('modify-security-groups') 145 class ElasticSearchModifySG(ModifyVpcSecurityGroupsAction): 146 """Modify security groups on an Elasticsearch domain""" 147 148 permissions = ('es:UpdateElasticsearchDomainConfig',) 149 150 def process(self, domains): 151 groups = super(ElasticSearchModifySG, self).get_groups(domains) 152 client = local_session(self.manager.session_factory).client('es') 153 154 for dx, d in enumerate(domains): 155 client.update_elasticsearch_domain_config( 156 DomainName=d['DomainName'], 157 VPCOptions={ 158 'SecurityGroupIds': groups[dx]}) 159 160 161 @ElasticSearchDomain.action_registry.register('delete') 162 class Delete(Action): 163 164 schema = type_schema('delete') 165 permissions = ('es:DeleteElasticsearchDomain',) 166 167 def process(self, resources): 168 client = local_session(self.manager.session_factory).client('es') 169 for r in resources: 170 client.delete_elasticsearch_domain(DomainName=r['DomainName']) 171 172 173 @ElasticSearchDomain.action_registry.register('tag') 174 class ElasticSearchAddTag(Tag): 175 """Action to create tag(s) on an existing elasticsearch domain 176 177 :example: 178 179 .. code-block:: yaml 180 181 policies: 182 - name: es-add-tag 183 resource: elasticsearch 184 filters: 185 - "tag:DesiredTag": absent 186 actions: 187 - type: tag 188 key: DesiredTag 189 value: DesiredValue 190 """ 191 permissions = ('es:AddTags',) 192 193 def process_resource_set(self, client, domains, tags): 194 for d in domains: 195 try: 196 client.add_tags(ARN=d['ARN'], TagList=tags) 197 except client.exceptions.ResourceNotFoundExecption: 198 continue 199 200 201 @ElasticSearchDomain.action_registry.register('remove-tag') 202 class ElasticSearchRemoveTag(RemoveTag): 203 """Removes tag(s) on an existing elasticsearch domain 204 205 :example: 206 207 .. code-block:: yaml 208 209 policies: 210 - name: es-remove-tag 211 resource: elasticsearch 212 filters: 213 - "tag:ExpiredTag": present 214 actions: 215 - type: remove-tag 216 tags: ['ExpiredTag'] 217 """ 218 permissions = ('es:RemoveTags',) 219 220 def process_resource_set(self, client, domains, tags): 221 for d in domains: 222 try: 223 client.remove_tags(ARN=d['ARN'], TagKeys=tags) 224 except client.exceptions.ResourceNotFoundExecption: 225 continue 226 227 228 @ElasticSearchDomain.action_registry.register('mark-for-op') 229 class ElasticSearchMarkForOp(TagDelayedAction): 230 """Tag an elasticsearch domain for action later 231 232 :example: 233 234 .. code-block:: yaml 235 236 policies: 237 - name: es-delete-missing 238 resource: elasticsearch 239 filters: 240 - "tag:DesiredTag": absent 241 actions: 242 - type: mark-for-op 243 days: 7 244 op: delete 245 tag: c7n_es_delete 246 """ 247 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/c7n/resources/elasticsearch.py b/c7n/resources/elasticsearch.py --- a/c7n/resources/elasticsearch.py +++ b/c7n/resources/elasticsearch.py @@ -18,7 +18,7 @@ from c7n.filters.vpc import SecurityGroupFilter, SubnetFilter, VpcFilter from c7n.manager import resources from c7n.query import ConfigSource, DescribeSource, QueryResourceManager, TypeInfo -from c7n.utils import local_session, type_schema +from c7n.utils import chunks, local_session, type_schema from c7n.tags import Tag, RemoveTag, TagActionFilter, TagDelayedAction from .securityhub import PostFinding @@ -34,6 +34,7 @@ def augment(self, domains): client = local_session(self.manager.session_factory).client('es') model = self.manager.get_model() + results = [] def _augment(resource_set): resources = self.manager.retry( @@ -45,7 +46,10 @@ client.list_tags, ARN=rarn).get('TagList', []) return resources - return _augment(domains) + for resource_set in chunks(domains, 5): + results.extend(_augment(resource_set)) + + return results @resources.register('elasticsearch')
{"golden_diff": "diff --git a/c7n/resources/elasticsearch.py b/c7n/resources/elasticsearch.py\n--- a/c7n/resources/elasticsearch.py\n+++ b/c7n/resources/elasticsearch.py\n@@ -18,7 +18,7 @@\n from c7n.filters.vpc import SecurityGroupFilter, SubnetFilter, VpcFilter\n from c7n.manager import resources\n from c7n.query import ConfigSource, DescribeSource, QueryResourceManager, TypeInfo\n-from c7n.utils import local_session, type_schema\n+from c7n.utils import chunks, local_session, type_schema\n from c7n.tags import Tag, RemoveTag, TagActionFilter, TagDelayedAction\n \n from .securityhub import PostFinding\n@@ -34,6 +34,7 @@\n def augment(self, domains):\n client = local_session(self.manager.session_factory).client('es')\n model = self.manager.get_model()\n+ results = []\n \n def _augment(resource_set):\n resources = self.manager.retry(\n@@ -45,7 +46,10 @@\n client.list_tags, ARN=rarn).get('TagList', [])\n return resources\n \n- return _augment(domains)\n+ for resource_set in chunks(domains, 5):\n+ results.extend(_augment(resource_set))\n+\n+ return results\n \n \n @resources.register('elasticsearch')\n", "issue": "aws.elasticsearch Error Scanning More Than 5 domains\n**Describe the bug**\r\nWhen running any elasticsearch policy on an account region with more than 5 elasticsearch domains the policy now bombs out with the error - ```error:An error occurred (ValidationException) when calling the DescribeElasticsearchDomains operation: Please provide a maximum of 5 Elasticsearch domain names to describe.```\r\n\r\n**To Reproduce**\r\nCreate 6 es domains and run an elasticsearch c7n policy, error will occur\r\n\r\n**Expected behavior**\r\nIt should chunk the calls into domains of 5 or less\r\n\r\n\r\n**Background (please complete the following information):**\r\n - OS: Ubuntu v20\r\n - Python Version: 3.8\r\n - Custodian Version: 0.9.2.0\r\n - Tool Version: [if applicable]\r\n - Cloud Provider: aws\r\n - Policy: any policy which queries ES\r\n - Traceback: \r\n```\r\n[ERROR]\t2020-05-22T14:51:25.978Z\t9ef7929b-b494-434e-9f9f-dfdfdfdfdfdfd Error while executing policy\r\nTraceback (most recent call last):\r\n File \"/var/task/c7n/policy.py\", line 291, in run\r\n resources = self.policy.resource_manager.resources()\r\n File \"/var/task/c7n/query.py\", line 466, in resources\r\n resources = self.augment(resources)\r\n File \"/var/task/c7n/query.py\", line 521, in augment\r\n return self.source.augment(resources)\r\n File \"/var/task/c7n/resources/elasticsearch.py\", line 48, in augment\r\n return _augment(domains)\r\n File \"/var/task/c7n/resources/elasticsearch.py\", line 39, in _augment\r\n resources = self.manager.retry(\r\n File \"/var/task/c7n/utils.py\", line 373, in _retry\r\n return func(*args, **kw)\r\n File \"/var/task/botocore/client.py\", line 316, in _api_call\r\n return self._make_api_call(operation_name, kwargs)\r\n File \"/var/task/botocore/client.py\", line 635, in _make_api_call\r\n raise error_class(parsed_response, operation_name)\r\nbotocore.errorfactory.ValidationException: An error occurred (ValidationException) when calling the DescribeElasticsearchDomains operation: Please provide a maximum of 5 Elasticsearch domain names to describe.\r\n```\r\n - `custodian version --debug` output\r\n\r\n**Additional context**\r\nSeems to be introduced with 0.9.2.0\r\n\n", "before_files": [{"content": "# Copyright 2016-2017 Capital One Services, LLC\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\nimport jmespath\n\nfrom c7n.actions import Action, ModifyVpcSecurityGroupsAction\nfrom c7n.filters import MetricsFilter\nfrom c7n.filters.vpc import SecurityGroupFilter, SubnetFilter, VpcFilter\nfrom c7n.manager import resources\nfrom c7n.query import ConfigSource, DescribeSource, QueryResourceManager, TypeInfo\nfrom c7n.utils import local_session, type_schema\nfrom c7n.tags import Tag, RemoveTag, TagActionFilter, TagDelayedAction\n\nfrom .securityhub import PostFinding\n\n\nclass DescribeDomain(DescribeSource):\n\n def get_resources(self, resource_ids):\n client = local_session(self.manager.session_factory).client('es')\n return client.describe_elasticsearch_domains(\n DomainNames=resource_ids)['DomainStatusList']\n\n def augment(self, domains):\n client = local_session(self.manager.session_factory).client('es')\n model = self.manager.get_model()\n\n def _augment(resource_set):\n resources = self.manager.retry(\n client.describe_elasticsearch_domains,\n DomainNames=resource_set)['DomainStatusList']\n for r in resources:\n rarn = self.manager.generate_arn(r[model.id])\n r['Tags'] = self.manager.retry(\n client.list_tags, ARN=rarn).get('TagList', [])\n return resources\n\n return _augment(domains)\n\n\[email protected]('elasticsearch')\nclass ElasticSearchDomain(QueryResourceManager):\n\n class resource_type(TypeInfo):\n service = 'es'\n arn = 'ARN'\n arn_type = 'domain'\n enum_spec = (\n 'list_domain_names', 'DomainNames[].DomainName', None)\n id = 'DomainName'\n name = 'Name'\n dimension = \"DomainName\"\n cfn_type = config_type = 'AWS::Elasticsearch::Domain'\n\n source_mapping = {\n 'describe': DescribeDomain,\n 'config': ConfigSource\n }\n\n\nElasticSearchDomain.filter_registry.register('marked-for-op', TagActionFilter)\n\n\[email protected]_registry.register('subnet')\nclass Subnet(SubnetFilter):\n\n RelatedIdsExpression = \"VPCOptions.SubnetIds[]\"\n\n\[email protected]_registry.register('security-group')\nclass SecurityGroup(SecurityGroupFilter):\n\n RelatedIdsExpression = \"VPCOptions.SecurityGroupIds[]\"\n\n\[email protected]_registry.register('vpc')\nclass Vpc(VpcFilter):\n\n RelatedIdsExpression = \"VPCOptions.VPCId\"\n\n\[email protected]_registry.register('metrics')\nclass Metrics(MetricsFilter):\n\n def get_dimensions(self, resource):\n return [{'Name': 'ClientId',\n 'Value': self.manager.account_id},\n {'Name': 'DomainName',\n 'Value': resource['DomainName']}]\n\n\[email protected]_registry.register('post-finding')\nclass ElasticSearchPostFinding(PostFinding):\n\n resource_type = 'AwsElasticsearchDomain'\n\n def format_resource(self, r):\n envelope, payload = self.format_envelope(r)\n payload.update(self.filter_empty({\n 'AccessPolicies': r.get('AccessPolicies'),\n 'DomainId': r['DomainId'],\n 'DomainName': r['DomainName'],\n 'Endpoint': r.get('Endpoint'),\n 'Endpoints': r.get('Endpoints'),\n 'DomainEndpointOptions': self.filter_empty({\n 'EnforceHTTPS': jmespath.search(\n 'DomainEndpointOptions.EnforceHTTPS', r),\n 'TLSSecurityPolicy': jmespath.search(\n 'DomainEndpointOptions.TLSSecurityPolicy', r)\n }),\n 'ElasticsearchVersion': r['ElasticsearchVersion'],\n 'EncryptionAtRestOptions': self.filter_empty({\n 'Enabled': jmespath.search(\n 'EncryptionAtRestOptions.Enabled', r),\n 'KmsKeyId': jmespath.search(\n 'EncryptionAtRestOptions.KmsKeyId', r)\n }),\n 'NodeToNodeEncryptionOptions': self.filter_empty({\n 'Enabled': jmespath.search(\n 'NodeToNodeEncryptionOptions.Enabled', r)\n }),\n 'VPCOptions': self.filter_empty({\n 'AvailabilityZones': jmespath.search(\n 'VPCOptions.AvailabilityZones', r),\n 'SecurityGroupIds': jmespath.search(\n 'VPCOptions.SecurityGroupIds', r),\n 'SubnetIds': jmespath.search('VPCOptions.SubnetIds', r),\n 'VPCId': jmespath.search('VPCOptions.VPCId', r)\n })\n }))\n return envelope\n\n\[email protected]_registry.register('modify-security-groups')\nclass ElasticSearchModifySG(ModifyVpcSecurityGroupsAction):\n \"\"\"Modify security groups on an Elasticsearch domain\"\"\"\n\n permissions = ('es:UpdateElasticsearchDomainConfig',)\n\n def process(self, domains):\n groups = super(ElasticSearchModifySG, self).get_groups(domains)\n client = local_session(self.manager.session_factory).client('es')\n\n for dx, d in enumerate(domains):\n client.update_elasticsearch_domain_config(\n DomainName=d['DomainName'],\n VPCOptions={\n 'SecurityGroupIds': groups[dx]})\n\n\[email protected]_registry.register('delete')\nclass Delete(Action):\n\n schema = type_schema('delete')\n permissions = ('es:DeleteElasticsearchDomain',)\n\n def process(self, resources):\n client = local_session(self.manager.session_factory).client('es')\n for r in resources:\n client.delete_elasticsearch_domain(DomainName=r['DomainName'])\n\n\[email protected]_registry.register('tag')\nclass ElasticSearchAddTag(Tag):\n \"\"\"Action to create tag(s) on an existing elasticsearch domain\n\n :example:\n\n .. code-block:: yaml\n\n policies:\n - name: es-add-tag\n resource: elasticsearch\n filters:\n - \"tag:DesiredTag\": absent\n actions:\n - type: tag\n key: DesiredTag\n value: DesiredValue\n \"\"\"\n permissions = ('es:AddTags',)\n\n def process_resource_set(self, client, domains, tags):\n for d in domains:\n try:\n client.add_tags(ARN=d['ARN'], TagList=tags)\n except client.exceptions.ResourceNotFoundExecption:\n continue\n\n\[email protected]_registry.register('remove-tag')\nclass ElasticSearchRemoveTag(RemoveTag):\n \"\"\"Removes tag(s) on an existing elasticsearch domain\n\n :example:\n\n .. code-block:: yaml\n\n policies:\n - name: es-remove-tag\n resource: elasticsearch\n filters:\n - \"tag:ExpiredTag\": present\n actions:\n - type: remove-tag\n tags: ['ExpiredTag']\n \"\"\"\n permissions = ('es:RemoveTags',)\n\n def process_resource_set(self, client, domains, tags):\n for d in domains:\n try:\n client.remove_tags(ARN=d['ARN'], TagKeys=tags)\n except client.exceptions.ResourceNotFoundExecption:\n continue\n\n\[email protected]_registry.register('mark-for-op')\nclass ElasticSearchMarkForOp(TagDelayedAction):\n \"\"\"Tag an elasticsearch domain for action later\n\n :example:\n\n .. code-block:: yaml\n\n policies:\n - name: es-delete-missing\n resource: elasticsearch\n filters:\n - \"tag:DesiredTag\": absent\n actions:\n - type: mark-for-op\n days: 7\n op: delete\n tag: c7n_es_delete\n \"\"\"\n", "path": "c7n/resources/elasticsearch.py"}], "after_files": [{"content": "# Copyright 2016-2017 Capital One Services, LLC\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\nimport jmespath\n\nfrom c7n.actions import Action, ModifyVpcSecurityGroupsAction\nfrom c7n.filters import MetricsFilter\nfrom c7n.filters.vpc import SecurityGroupFilter, SubnetFilter, VpcFilter\nfrom c7n.manager import resources\nfrom c7n.query import ConfigSource, DescribeSource, QueryResourceManager, TypeInfo\nfrom c7n.utils import chunks, local_session, type_schema\nfrom c7n.tags import Tag, RemoveTag, TagActionFilter, TagDelayedAction\n\nfrom .securityhub import PostFinding\n\n\nclass DescribeDomain(DescribeSource):\n\n def get_resources(self, resource_ids):\n client = local_session(self.manager.session_factory).client('es')\n return client.describe_elasticsearch_domains(\n DomainNames=resource_ids)['DomainStatusList']\n\n def augment(self, domains):\n client = local_session(self.manager.session_factory).client('es')\n model = self.manager.get_model()\n results = []\n\n def _augment(resource_set):\n resources = self.manager.retry(\n client.describe_elasticsearch_domains,\n DomainNames=resource_set)['DomainStatusList']\n for r in resources:\n rarn = self.manager.generate_arn(r[model.id])\n r['Tags'] = self.manager.retry(\n client.list_tags, ARN=rarn).get('TagList', [])\n return resources\n\n for resource_set in chunks(domains, 5):\n results.extend(_augment(resource_set))\n\n return results\n\n\[email protected]('elasticsearch')\nclass ElasticSearchDomain(QueryResourceManager):\n\n class resource_type(TypeInfo):\n service = 'es'\n arn = 'ARN'\n arn_type = 'domain'\n enum_spec = (\n 'list_domain_names', 'DomainNames[].DomainName', None)\n id = 'DomainName'\n name = 'Name'\n dimension = \"DomainName\"\n cfn_type = config_type = 'AWS::Elasticsearch::Domain'\n\n source_mapping = {\n 'describe': DescribeDomain,\n 'config': ConfigSource\n }\n\n\nElasticSearchDomain.filter_registry.register('marked-for-op', TagActionFilter)\n\n\[email protected]_registry.register('subnet')\nclass Subnet(SubnetFilter):\n\n RelatedIdsExpression = \"VPCOptions.SubnetIds[]\"\n\n\[email protected]_registry.register('security-group')\nclass SecurityGroup(SecurityGroupFilter):\n\n RelatedIdsExpression = \"VPCOptions.SecurityGroupIds[]\"\n\n\[email protected]_registry.register('vpc')\nclass Vpc(VpcFilter):\n\n RelatedIdsExpression = \"VPCOptions.VPCId\"\n\n\[email protected]_registry.register('metrics')\nclass Metrics(MetricsFilter):\n\n def get_dimensions(self, resource):\n return [{'Name': 'ClientId',\n 'Value': self.manager.account_id},\n {'Name': 'DomainName',\n 'Value': resource['DomainName']}]\n\n\[email protected]_registry.register('post-finding')\nclass ElasticSearchPostFinding(PostFinding):\n\n resource_type = 'AwsElasticsearchDomain'\n\n def format_resource(self, r):\n envelope, payload = self.format_envelope(r)\n payload.update(self.filter_empty({\n 'AccessPolicies': r.get('AccessPolicies'),\n 'DomainId': r['DomainId'],\n 'DomainName': r['DomainName'],\n 'Endpoint': r.get('Endpoint'),\n 'Endpoints': r.get('Endpoints'),\n 'DomainEndpointOptions': self.filter_empty({\n 'EnforceHTTPS': jmespath.search(\n 'DomainEndpointOptions.EnforceHTTPS', r),\n 'TLSSecurityPolicy': jmespath.search(\n 'DomainEndpointOptions.TLSSecurityPolicy', r)\n }),\n 'ElasticsearchVersion': r['ElasticsearchVersion'],\n 'EncryptionAtRestOptions': self.filter_empty({\n 'Enabled': jmespath.search(\n 'EncryptionAtRestOptions.Enabled', r),\n 'KmsKeyId': jmespath.search(\n 'EncryptionAtRestOptions.KmsKeyId', r)\n }),\n 'NodeToNodeEncryptionOptions': self.filter_empty({\n 'Enabled': jmespath.search(\n 'NodeToNodeEncryptionOptions.Enabled', r)\n }),\n 'VPCOptions': self.filter_empty({\n 'AvailabilityZones': jmespath.search(\n 'VPCOptions.AvailabilityZones', r),\n 'SecurityGroupIds': jmespath.search(\n 'VPCOptions.SecurityGroupIds', r),\n 'SubnetIds': jmespath.search('VPCOptions.SubnetIds', r),\n 'VPCId': jmespath.search('VPCOptions.VPCId', r)\n })\n }))\n return envelope\n\n\[email protected]_registry.register('modify-security-groups')\nclass ElasticSearchModifySG(ModifyVpcSecurityGroupsAction):\n \"\"\"Modify security groups on an Elasticsearch domain\"\"\"\n\n permissions = ('es:UpdateElasticsearchDomainConfig',)\n\n def process(self, domains):\n groups = super(ElasticSearchModifySG, self).get_groups(domains)\n client = local_session(self.manager.session_factory).client('es')\n\n for dx, d in enumerate(domains):\n client.update_elasticsearch_domain_config(\n DomainName=d['DomainName'],\n VPCOptions={\n 'SecurityGroupIds': groups[dx]})\n\n\[email protected]_registry.register('delete')\nclass Delete(Action):\n\n schema = type_schema('delete')\n permissions = ('es:DeleteElasticsearchDomain',)\n\n def process(self, resources):\n client = local_session(self.manager.session_factory).client('es')\n for r in resources:\n client.delete_elasticsearch_domain(DomainName=r['DomainName'])\n\n\[email protected]_registry.register('tag')\nclass ElasticSearchAddTag(Tag):\n \"\"\"Action to create tag(s) on an existing elasticsearch domain\n\n :example:\n\n .. code-block:: yaml\n\n policies:\n - name: es-add-tag\n resource: elasticsearch\n filters:\n - \"tag:DesiredTag\": absent\n actions:\n - type: tag\n key: DesiredTag\n value: DesiredValue\n \"\"\"\n permissions = ('es:AddTags',)\n\n def process_resource_set(self, client, domains, tags):\n for d in domains:\n try:\n client.add_tags(ARN=d['ARN'], TagList=tags)\n except client.exceptions.ResourceNotFoundExecption:\n continue\n\n\[email protected]_registry.register('remove-tag')\nclass ElasticSearchRemoveTag(RemoveTag):\n \"\"\"Removes tag(s) on an existing elasticsearch domain\n\n :example:\n\n .. code-block:: yaml\n\n policies:\n - name: es-remove-tag\n resource: elasticsearch\n filters:\n - \"tag:ExpiredTag\": present\n actions:\n - type: remove-tag\n tags: ['ExpiredTag']\n \"\"\"\n permissions = ('es:RemoveTags',)\n\n def process_resource_set(self, client, domains, tags):\n for d in domains:\n try:\n client.remove_tags(ARN=d['ARN'], TagKeys=tags)\n except client.exceptions.ResourceNotFoundExecption:\n continue\n\n\[email protected]_registry.register('mark-for-op')\nclass ElasticSearchMarkForOp(TagDelayedAction):\n \"\"\"Tag an elasticsearch domain for action later\n\n :example:\n\n .. code-block:: yaml\n\n policies:\n - name: es-delete-missing\n resource: elasticsearch\n filters:\n - \"tag:DesiredTag\": absent\n actions:\n - type: mark-for-op\n days: 7\n op: delete\n tag: c7n_es_delete\n \"\"\"\n", "path": "c7n/resources/elasticsearch.py"}]}
3,234
292
gh_patches_debug_29382
rasdani/github-patches
git_diff
uclapi__uclapi-568
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Remove opbeat Opbeat is no longer a thing, so we should remove it and replace it with something else? Maybe double down on Sentry and integrate that more tightly https://github.com/uclapi/uclapi/blob/81b90305f9316b020664b32c2436e27ab957e8a7/backend/uclapi/requirements.txt#L33 --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `backend/uclapi/uclapi/celery.py` Content: ``` 1 from __future__ import absolute_import, unicode_literals 2 3 import celery 4 import os 5 import raven 6 7 from django.conf import settings 8 from raven.contrib.celery import register_signal as raven_register_signal, \ 9 register_logger_signal as raven_register_logger_signal 10 11 from common.helpers import read_dotenv 12 13 read_dotenv(os.path.join(os.path.dirname(os.path.dirname(__file__)), '.env')) 14 15 os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'uclapi.settings') 16 17 18 class Celery(celery.Celery): 19 def on_configure(self): 20 if os.environ.get("SENTRY_DSN") is not None: 21 client = raven.Client(os.environ.get("SENTRY_DSN")) 22 raven_register_logger_signal(client) 23 raven_register_signal(client) 24 25 26 app = Celery('uclapi') 27 28 app.config_from_object('django.conf.settings', namespace='CELERY') 29 30 31 from opbeat.contrib.django.models import \ 32 register_handlers as opbeat_register_handlers, \ 33 logger as opbeat_logger # noqa: E402# 34 35 from opbeat.contrib.celery import \ 36 register_signal as opbeat_register_signal # noqa: E402 37 38 39 try: 40 opbeat_register_signal(app) 41 except Exception as e: 42 opbeat_logger.exception('Failed installing celery hook: %s' % e) 43 44 if 'opbeat.contrib.django' in settings.INSTALLED_APPS: 45 opbeat_register_handlers() 46 47 app.autodiscover_tasks() 48 49 50 @app.task(bind=True) 51 def task(self): 52 print('Request: {0!r}'.format(self.request)) 53 ``` Path: `backend/uclapi/uclapi/settings.py` Content: ``` 1 """ 2 Django settings for uclapi project. 3 4 Generated by 'django-admin startproject' using Django 1.10.4. 5 6 For more information on this file, see 7 https://docs.djangoproject.com/en/1.10/topics/settings/ 8 9 For the full list of settings and their values, see 10 https://docs.djangoproject.com/en/1.10/ref/settings/ 11 """ 12 13 import os 14 import requests 15 from distutils.util import strtobool 16 17 # Build paths inside the project like this: os.path.join(BASE_DIR, ...) 18 BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) 19 20 21 # Quick-start development settings - unsuitable for production 22 # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ 23 24 # SECURITY WARNING: keep the secret key used in production secret! 25 SECRET_KEY = os.environ.get("SECRET_KEY") 26 27 # SECURITY WARNING: don't run with debug turned on in production! 28 # This value should be set by the UCLAPI_PRODUCTION environment 29 # variable anyway. If in production, debug should be false. 30 DEBUG = not strtobool(os.environ.get("UCLAPI_PRODUCTION")) 31 32 ALLOWED_HOSTS = ["localhost"] 33 34 # If a domain is specified then make this an allowed host 35 if os.environ.get("UCLAPI_DOMAIN"): 36 ALLOWED_HOSTS.append(os.environ.get("UCLAPI_DOMAIN")) 37 38 # If we are running under the AWS Elastic Load Balancer then enable internal 39 # requests so that the ELB and Health Checks work 40 if strtobool(os.environ.get("UCLAPI_RUNNING_ON_AWS_ELB")): 41 EC2_PRIVATE_IP = None 42 try: 43 EC2_PRIVATE_IP = requests.get( 44 "http://169.254.169.254/latest/meta-data/local-ipv4", 45 timeout=0.01 46 ).text 47 except requests.exceptions.RequestException: 48 pass 49 50 if EC2_PRIVATE_IP: 51 ALLOWED_HOSTS.append(EC2_PRIVATE_IP) 52 53 # Application definition 54 55 INSTALLED_APPS = [ 56 'django.contrib.admin', 57 'django.contrib.auth', 58 'django.contrib.contenttypes', 59 'django.contrib.sessions', 60 'django.contrib.messages', 61 'django.contrib.staticfiles', 62 'rest_framework', 63 'dashboard', 64 'marketplace', 65 'roombookings', 66 'oauth', 67 'timetable', 68 'common', 69 'opbeat.contrib.django', 70 'raven.contrib.django.raven_compat', 71 'corsheaders', 72 'workspaces' 73 ] 74 75 MIDDLEWARE = [ 76 'opbeat.contrib.django.middleware.OpbeatAPMMiddleware', 77 'django.middleware.security.SecurityMiddleware', 78 'django.contrib.sessions.middleware.SessionMiddleware', 79 'corsheaders.middleware.CorsMiddleware', 80 'django.middleware.common.CommonMiddleware', 81 'django.middleware.csrf.CsrfViewMiddleware', 82 'django.contrib.auth.middleware.AuthenticationMiddleware', 83 'django.contrib.messages.middleware.MessageMiddleware', 84 'django.middleware.clickjacking.XFrameOptionsMiddleware', 85 ] 86 87 if DEBUG: 88 MIDDLEWARE.append( 89 'dashboard.middleware.fake_shibboleth_middleware' 90 '.FakeShibbolethMiddleWare' 91 ) 92 93 ROOT_URLCONF = 'uclapi.urls' 94 95 TEMPLATES = [ 96 { 97 'BACKEND': 'django.template.backends.django.DjangoTemplates', 98 'DIRS': [], 99 'APP_DIRS': True, 100 'OPTIONS': { 101 'context_processors': [ 102 'django.template.context_processors.debug', 103 'django.template.context_processors.request', 104 'django.contrib.auth.context_processors.auth', 105 'django.contrib.messages.context_processors.messages', 106 ], 107 }, 108 }, 109 ] 110 111 WSGI_APPLICATION = 'uclapi.wsgi.application' 112 113 114 # Database 115 # https://docs.djangoproject.com/en/1.10/ref/settings/#databases 116 117 DATABASES = { 118 'default': { 119 'ENGINE': 'django.db.backends.postgresql', 120 'NAME': os.environ.get("DB_UCLAPI_NAME"), 121 'USER': os.environ.get("DB_UCLAPI_USERNAME"), 122 'PASSWORD': os.environ.get("DB_UCLAPI_PASSWORD"), 123 'HOST': os.environ.get("DB_UCLAPI_HOST"), 124 'PORT': os.environ.get("DB_UCLAPI_PORT") 125 }, 126 'roombookings': { 127 'ENGINE': 'django.db.backends.oracle', 128 'NAME': os.environ.get("DB_ROOMS_NAME"), 129 'USER': os.environ.get("DB_ROOMS_USERNAME"), 130 'PASSWORD': os.environ.get("DB_ROOMS_PASSWORD"), 131 'HOST': '', 132 'PORT': '' 133 }, 134 'gencache': { 135 'ENGINE': 'django.db.backends.postgresql', 136 'NAME': os.environ.get("DB_CACHE_NAME"), 137 'USER': os.environ.get("DB_CACHE_USERNAME"), 138 'PASSWORD': os.environ.get("DB_CACHE_PASSWORD"), 139 'HOST': os.environ.get("DB_CACHE_HOST"), 140 'PORT': os.environ.get("DB_CACHE_PORT") 141 } 142 } 143 144 DATABASE_ROUTERS = ['uclapi.dbrouters.ModelRouter'] 145 146 # analytics 147 OPBEAT = { 148 'ORGANIZATION_ID': os.environ.get("OPBEAT_ORG_ID"), 149 'APP_ID': os.environ.get("OPBEAT_APP_ID"), 150 'SECRET_TOKEN': os.environ.get("OPBEAT_SECRET_TOKEN") 151 } 152 153 RAVEN_CONFIG = { 154 'dsn': os.environ.get("SENTRY_DSN"), 155 } 156 157 158 # Password validation 159 # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators 160 161 AUTH_PASSWORD_VALIDATORS = [ 162 { 163 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', # noqa 164 }, 165 { 166 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', # noqa 167 }, 168 { 169 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', # noqa 170 }, 171 { 172 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', # noqa 173 }, 174 ] 175 176 177 # Internationalization 178 # https://docs.djangoproject.com/en/1.10/topics/i18n/ 179 180 LANGUAGE_CODE = 'en-us' 181 182 TIME_ZONE = 'UTC' 183 184 USE_I18N = True 185 186 USE_L10N = True 187 188 USE_TZ = False 189 190 # Static files (CSS, JavaScript, Images) 191 # https://docs.djangoproject.com/en/1.10/howto/static-files/ 192 193 STATIC_URL = '/static/' 194 STATIC_ROOT = os.path.join(BASE_DIR, 'static') 195 196 # Cross Origin settings 197 CORS_ORIGIN_ALLOW_ALL = True 198 CORS_URLS_REGEX = r'^/roombookings/.*$' 199 200 # Fair use policy 201 fair_use_policy_path = os.path.join( 202 BASE_DIR, 203 'uclapi/UCLAPIAcceptableUsePolicy.txt' 204 ) 205 with open(fair_use_policy_path, 'r', encoding='utf-8') as fp: 206 FAIR_USE_POLICY = list(fp) 207 208 REDIS_UCLAPI_HOST = os.environ["REDIS_UCLAPI_HOST"] 209 210 # Celery Settings 211 CELERY_BROKER_URL = 'redis://' + REDIS_UCLAPI_HOST 212 CELERY_ACCEPT_CONTENT = ['json'] 213 CELERY_TASK_SERIALIZER = 'json' 214 CELERY_RESULT_SERIALIZER = 'json' 215 216 217 ROOMBOOKINGS_SETID = 'LIVE-17-18' 218 219 # S3 file storage settings 220 # There are three scenarios to consider: 221 # 1) Local development 222 # In local dev, AWS_S3_STATICS = False 223 # AWS_S3_STATICS_CREDENTIALS_ENABLED = False 224 # These allow you to use local statics using /static/ in the 225 # same way as you would normally. 226 # 2) Production 227 # In prod, AWS_S3_STATICS = True 228 # AWS_S3_STATICS_CREDENTIALS_ENABLED = False 229 # This means that S3 statics will be used, but no creds are 230 # needed on the boxes because web servers should never do 231 # uploads to the remote S3 bucket. 232 # 3) Deployment 233 # In deployment, AWS_S3_STATICS = True 234 # AWS_S3_STATICS_CREDENTIALS_ENABLED = True 235 # This will be done either from CI/CD or from the computer 236 # of a person who has permission to upload new statics to 237 # S3. 238 239 if strtobool(os.environ.get("AWS_S3_STATICS", "False")): 240 DEFAULT_FILE_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage' 241 STATICFILES_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage' 242 AWS_STORAGE_BUCKET_NAME = os.environ["AWS_S3_BUCKET_NAME"] 243 AWS_LOCATION = os.environ["AWS_S3_BUCKET_PATH"] 244 AWS_S3_REGION_NAME = os.environ["AWS_S3_REGION"] 245 246 # This is a hack to not require AWS Access Credentials 247 # when the system is running in the Cloud. This avoids us from 248 # needing to store AWS credentials. 249 # https://github.com/jschneier/django-storages/issues/254#issuecomment-329813295 # noqa 250 AWS_S3_CUSTOM_DOMAIN = "{}.s3.amazonaws.com".format( 251 AWS_STORAGE_BUCKET_NAME 252 ) 253 254 # If credentials are enabled, collectstatic can do uploads 255 if strtobool(os.environ["AWS_S3_STATICS_CREDENTIALS_ENABLED"]): 256 AWS_ACCESS_KEY_ID = os.environ["AWS_ACCESS_KEY_ID"] 257 AWS_SECRET_ACCESS_KEY = os.environ["AWS_ACCESS_SECRET"] 258 AWS_S3_OBJECT_PARAMETERS = { 259 'CacheControl': 'max-age=86400', 260 } 261 AWS_S3_ENCRYPTION = False 262 else: 263 AWS_QUERYSTRING_AUTH = False 264 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/backend/uclapi/uclapi/celery.py b/backend/uclapi/uclapi/celery.py --- a/backend/uclapi/uclapi/celery.py +++ b/backend/uclapi/uclapi/celery.py @@ -27,23 +27,6 @@ app.config_from_object('django.conf.settings', namespace='CELERY') - -from opbeat.contrib.django.models import \ - register_handlers as opbeat_register_handlers, \ - logger as opbeat_logger # noqa: E402# - -from opbeat.contrib.celery import \ - register_signal as opbeat_register_signal # noqa: E402 - - -try: - opbeat_register_signal(app) -except Exception as e: - opbeat_logger.exception('Failed installing celery hook: %s' % e) - -if 'opbeat.contrib.django' in settings.INSTALLED_APPS: - opbeat_register_handlers() - app.autodiscover_tasks() diff --git a/backend/uclapi/uclapi/settings.py b/backend/uclapi/uclapi/settings.py --- a/backend/uclapi/uclapi/settings.py +++ b/backend/uclapi/uclapi/settings.py @@ -66,14 +66,12 @@ 'oauth', 'timetable', 'common', - 'opbeat.contrib.django', 'raven.contrib.django.raven_compat', 'corsheaders', 'workspaces' ] MIDDLEWARE = [ - 'opbeat.contrib.django.middleware.OpbeatAPMMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'corsheaders.middleware.CorsMiddleware', @@ -143,13 +141,6 @@ DATABASE_ROUTERS = ['uclapi.dbrouters.ModelRouter'] -# analytics -OPBEAT = { - 'ORGANIZATION_ID': os.environ.get("OPBEAT_ORG_ID"), - 'APP_ID': os.environ.get("OPBEAT_APP_ID"), - 'SECRET_TOKEN': os.environ.get("OPBEAT_SECRET_TOKEN") -} - RAVEN_CONFIG = { 'dsn': os.environ.get("SENTRY_DSN"), }
{"golden_diff": "diff --git a/backend/uclapi/uclapi/celery.py b/backend/uclapi/uclapi/celery.py\n--- a/backend/uclapi/uclapi/celery.py\n+++ b/backend/uclapi/uclapi/celery.py\n@@ -27,23 +27,6 @@\n \n app.config_from_object('django.conf.settings', namespace='CELERY')\n \n-\n-from opbeat.contrib.django.models import \\\n- register_handlers as opbeat_register_handlers, \\\n- logger as opbeat_logger # noqa: E402#\n-\n-from opbeat.contrib.celery import \\\n- register_signal as opbeat_register_signal # noqa: E402\n-\n-\n-try:\n- opbeat_register_signal(app)\n-except Exception as e:\n- opbeat_logger.exception('Failed installing celery hook: %s' % e)\n-\n-if 'opbeat.contrib.django' in settings.INSTALLED_APPS:\n- opbeat_register_handlers()\n-\n app.autodiscover_tasks()\n \n \ndiff --git a/backend/uclapi/uclapi/settings.py b/backend/uclapi/uclapi/settings.py\n--- a/backend/uclapi/uclapi/settings.py\n+++ b/backend/uclapi/uclapi/settings.py\n@@ -66,14 +66,12 @@\n 'oauth',\n 'timetable',\n 'common',\n- 'opbeat.contrib.django',\n 'raven.contrib.django.raven_compat',\n 'corsheaders',\n 'workspaces'\n ]\n \n MIDDLEWARE = [\n- 'opbeat.contrib.django.middleware.OpbeatAPMMiddleware',\n 'django.middleware.security.SecurityMiddleware',\n 'django.contrib.sessions.middleware.SessionMiddleware',\n 'corsheaders.middleware.CorsMiddleware',\n@@ -143,13 +141,6 @@\n \n DATABASE_ROUTERS = ['uclapi.dbrouters.ModelRouter']\n \n-# analytics\n-OPBEAT = {\n- 'ORGANIZATION_ID': os.environ.get(\"OPBEAT_ORG_ID\"),\n- 'APP_ID': os.environ.get(\"OPBEAT_APP_ID\"),\n- 'SECRET_TOKEN': os.environ.get(\"OPBEAT_SECRET_TOKEN\")\n-}\n-\n RAVEN_CONFIG = {\n 'dsn': os.environ.get(\"SENTRY_DSN\"),\n }\n", "issue": "Remove opbeat\nOpbeat is no longer a thing, so we should remove it and replace it with something else? Maybe double down on Sentry and integrate that more tightly\r\n\r\nhttps://github.com/uclapi/uclapi/blob/81b90305f9316b020664b32c2436e27ab957e8a7/backend/uclapi/requirements.txt#L33\n", "before_files": [{"content": "from __future__ import absolute_import, unicode_literals\n\nimport celery\nimport os\nimport raven\n\nfrom django.conf import settings\nfrom raven.contrib.celery import register_signal as raven_register_signal, \\\n register_logger_signal as raven_register_logger_signal\n\nfrom common.helpers import read_dotenv\n\nread_dotenv(os.path.join(os.path.dirname(os.path.dirname(__file__)), '.env'))\n\nos.environ.setdefault('DJANGO_SETTINGS_MODULE', 'uclapi.settings')\n\n\nclass Celery(celery.Celery):\n def on_configure(self):\n if os.environ.get(\"SENTRY_DSN\") is not None:\n client = raven.Client(os.environ.get(\"SENTRY_DSN\"))\n raven_register_logger_signal(client)\n raven_register_signal(client)\n\n\napp = Celery('uclapi')\n\napp.config_from_object('django.conf.settings', namespace='CELERY')\n\n\nfrom opbeat.contrib.django.models import \\\n register_handlers as opbeat_register_handlers, \\\n logger as opbeat_logger # noqa: E402#\n\nfrom opbeat.contrib.celery import \\\n register_signal as opbeat_register_signal # noqa: E402\n\n\ntry:\n opbeat_register_signal(app)\nexcept Exception as e:\n opbeat_logger.exception('Failed installing celery hook: %s' % e)\n\nif 'opbeat.contrib.django' in settings.INSTALLED_APPS:\n opbeat_register_handlers()\n\napp.autodiscover_tasks()\n\n\[email protected](bind=True)\ndef task(self):\n print('Request: {0!r}'.format(self.request))\n", "path": "backend/uclapi/uclapi/celery.py"}, {"content": "\"\"\"\nDjango settings for uclapi project.\n\nGenerated by 'django-admin startproject' using Django 1.10.4.\n\nFor more information on this file, see\nhttps://docs.djangoproject.com/en/1.10/topics/settings/\n\nFor the full list of settings and their values, see\nhttps://docs.djangoproject.com/en/1.10/ref/settings/\n\"\"\"\n\nimport os\nimport requests\nfrom distutils.util import strtobool\n\n# Build paths inside the project like this: os.path.join(BASE_DIR, ...)\nBASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\n\n\n# Quick-start development settings - unsuitable for production\n# See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/\n\n# SECURITY WARNING: keep the secret key used in production secret!\nSECRET_KEY = os.environ.get(\"SECRET_KEY\")\n\n# SECURITY WARNING: don't run with debug turned on in production!\n# This value should be set by the UCLAPI_PRODUCTION environment\n# variable anyway. If in production, debug should be false.\nDEBUG = not strtobool(os.environ.get(\"UCLAPI_PRODUCTION\"))\n\nALLOWED_HOSTS = [\"localhost\"]\n\n# If a domain is specified then make this an allowed host\nif os.environ.get(\"UCLAPI_DOMAIN\"):\n ALLOWED_HOSTS.append(os.environ.get(\"UCLAPI_DOMAIN\"))\n\n# If we are running under the AWS Elastic Load Balancer then enable internal\n# requests so that the ELB and Health Checks work\nif strtobool(os.environ.get(\"UCLAPI_RUNNING_ON_AWS_ELB\")):\n EC2_PRIVATE_IP = None\n try:\n EC2_PRIVATE_IP = requests.get(\n \"http://169.254.169.254/latest/meta-data/local-ipv4\",\n timeout=0.01\n ).text\n except requests.exceptions.RequestException:\n pass\n\n if EC2_PRIVATE_IP:\n ALLOWED_HOSTS.append(EC2_PRIVATE_IP)\n\n# Application definition\n\nINSTALLED_APPS = [\n 'django.contrib.admin',\n 'django.contrib.auth',\n 'django.contrib.contenttypes',\n 'django.contrib.sessions',\n 'django.contrib.messages',\n 'django.contrib.staticfiles',\n 'rest_framework',\n 'dashboard',\n 'marketplace',\n 'roombookings',\n 'oauth',\n 'timetable',\n 'common',\n 'opbeat.contrib.django',\n 'raven.contrib.django.raven_compat',\n 'corsheaders',\n 'workspaces'\n]\n\nMIDDLEWARE = [\n 'opbeat.contrib.django.middleware.OpbeatAPMMiddleware',\n 'django.middleware.security.SecurityMiddleware',\n 'django.contrib.sessions.middleware.SessionMiddleware',\n 'corsheaders.middleware.CorsMiddleware',\n 'django.middleware.common.CommonMiddleware',\n 'django.middleware.csrf.CsrfViewMiddleware',\n 'django.contrib.auth.middleware.AuthenticationMiddleware',\n 'django.contrib.messages.middleware.MessageMiddleware',\n 'django.middleware.clickjacking.XFrameOptionsMiddleware',\n]\n\nif DEBUG:\n MIDDLEWARE.append(\n 'dashboard.middleware.fake_shibboleth_middleware'\n '.FakeShibbolethMiddleWare'\n )\n\nROOT_URLCONF = 'uclapi.urls'\n\nTEMPLATES = [\n {\n 'BACKEND': 'django.template.backends.django.DjangoTemplates',\n 'DIRS': [],\n 'APP_DIRS': True,\n 'OPTIONS': {\n 'context_processors': [\n 'django.template.context_processors.debug',\n 'django.template.context_processors.request',\n 'django.contrib.auth.context_processors.auth',\n 'django.contrib.messages.context_processors.messages',\n ],\n },\n },\n]\n\nWSGI_APPLICATION = 'uclapi.wsgi.application'\n\n\n# Database\n# https://docs.djangoproject.com/en/1.10/ref/settings/#databases\n\nDATABASES = {\n 'default': {\n 'ENGINE': 'django.db.backends.postgresql',\n 'NAME': os.environ.get(\"DB_UCLAPI_NAME\"),\n 'USER': os.environ.get(\"DB_UCLAPI_USERNAME\"),\n 'PASSWORD': os.environ.get(\"DB_UCLAPI_PASSWORD\"),\n 'HOST': os.environ.get(\"DB_UCLAPI_HOST\"),\n 'PORT': os.environ.get(\"DB_UCLAPI_PORT\")\n },\n 'roombookings': {\n 'ENGINE': 'django.db.backends.oracle',\n 'NAME': os.environ.get(\"DB_ROOMS_NAME\"),\n 'USER': os.environ.get(\"DB_ROOMS_USERNAME\"),\n 'PASSWORD': os.environ.get(\"DB_ROOMS_PASSWORD\"),\n 'HOST': '',\n 'PORT': ''\n },\n 'gencache': {\n 'ENGINE': 'django.db.backends.postgresql',\n 'NAME': os.environ.get(\"DB_CACHE_NAME\"),\n 'USER': os.environ.get(\"DB_CACHE_USERNAME\"),\n 'PASSWORD': os.environ.get(\"DB_CACHE_PASSWORD\"),\n 'HOST': os.environ.get(\"DB_CACHE_HOST\"),\n 'PORT': os.environ.get(\"DB_CACHE_PORT\")\n }\n}\n\nDATABASE_ROUTERS = ['uclapi.dbrouters.ModelRouter']\n\n# analytics\nOPBEAT = {\n 'ORGANIZATION_ID': os.environ.get(\"OPBEAT_ORG_ID\"),\n 'APP_ID': os.environ.get(\"OPBEAT_APP_ID\"),\n 'SECRET_TOKEN': os.environ.get(\"OPBEAT_SECRET_TOKEN\")\n}\n\nRAVEN_CONFIG = {\n 'dsn': os.environ.get(\"SENTRY_DSN\"),\n}\n\n\n# Password validation\n# https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators\n\nAUTH_PASSWORD_VALIDATORS = [\n {\n 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', # noqa\n },\n {\n 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', # noqa\n },\n {\n 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', # noqa\n },\n {\n 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', # noqa\n },\n]\n\n\n# Internationalization\n# https://docs.djangoproject.com/en/1.10/topics/i18n/\n\nLANGUAGE_CODE = 'en-us'\n\nTIME_ZONE = 'UTC'\n\nUSE_I18N = True\n\nUSE_L10N = True\n\nUSE_TZ = False\n\n# Static files (CSS, JavaScript, Images)\n# https://docs.djangoproject.com/en/1.10/howto/static-files/\n\nSTATIC_URL = '/static/'\nSTATIC_ROOT = os.path.join(BASE_DIR, 'static')\n\n# Cross Origin settings\nCORS_ORIGIN_ALLOW_ALL = True\nCORS_URLS_REGEX = r'^/roombookings/.*$'\n\n# Fair use policy\nfair_use_policy_path = os.path.join(\n BASE_DIR,\n 'uclapi/UCLAPIAcceptableUsePolicy.txt'\n)\nwith open(fair_use_policy_path, 'r', encoding='utf-8') as fp:\n FAIR_USE_POLICY = list(fp)\n\nREDIS_UCLAPI_HOST = os.environ[\"REDIS_UCLAPI_HOST\"]\n\n# Celery Settings\nCELERY_BROKER_URL = 'redis://' + REDIS_UCLAPI_HOST\nCELERY_ACCEPT_CONTENT = ['json']\nCELERY_TASK_SERIALIZER = 'json'\nCELERY_RESULT_SERIALIZER = 'json'\n\n\nROOMBOOKINGS_SETID = 'LIVE-17-18'\n\n# S3 file storage settings\n# There are three scenarios to consider:\n# 1) Local development\n# In local dev, AWS_S3_STATICS = False\n# AWS_S3_STATICS_CREDENTIALS_ENABLED = False\n# These allow you to use local statics using /static/ in the\n# same way as you would normally.\n# 2) Production\n# In prod, AWS_S3_STATICS = True\n# AWS_S3_STATICS_CREDENTIALS_ENABLED = False\n# This means that S3 statics will be used, but no creds are\n# needed on the boxes because web servers should never do\n# uploads to the remote S3 bucket.\n# 3) Deployment\n# In deployment, AWS_S3_STATICS = True\n# AWS_S3_STATICS_CREDENTIALS_ENABLED = True\n# This will be done either from CI/CD or from the computer\n# of a person who has permission to upload new statics to\n# S3.\n\nif strtobool(os.environ.get(\"AWS_S3_STATICS\", \"False\")):\n DEFAULT_FILE_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage'\n STATICFILES_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage'\n AWS_STORAGE_BUCKET_NAME = os.environ[\"AWS_S3_BUCKET_NAME\"]\n AWS_LOCATION = os.environ[\"AWS_S3_BUCKET_PATH\"]\n AWS_S3_REGION_NAME = os.environ[\"AWS_S3_REGION\"]\n\n # This is a hack to not require AWS Access Credentials\n # when the system is running in the Cloud. This avoids us from\n # needing to store AWS credentials.\n # https://github.com/jschneier/django-storages/issues/254#issuecomment-329813295 # noqa\n AWS_S3_CUSTOM_DOMAIN = \"{}.s3.amazonaws.com\".format(\n AWS_STORAGE_BUCKET_NAME\n )\n\n # If credentials are enabled, collectstatic can do uploads\n if strtobool(os.environ[\"AWS_S3_STATICS_CREDENTIALS_ENABLED\"]):\n AWS_ACCESS_KEY_ID = os.environ[\"AWS_ACCESS_KEY_ID\"]\n AWS_SECRET_ACCESS_KEY = os.environ[\"AWS_ACCESS_SECRET\"]\n AWS_S3_OBJECT_PARAMETERS = {\n 'CacheControl': 'max-age=86400',\n }\n AWS_S3_ENCRYPTION = False\n else:\n AWS_QUERYSTRING_AUTH = False\n", "path": "backend/uclapi/uclapi/settings.py"}], "after_files": [{"content": "from __future__ import absolute_import, unicode_literals\n\nimport celery\nimport os\nimport raven\n\nfrom django.conf import settings\nfrom raven.contrib.celery import register_signal as raven_register_signal, \\\n register_logger_signal as raven_register_logger_signal\n\nfrom common.helpers import read_dotenv\n\nread_dotenv(os.path.join(os.path.dirname(os.path.dirname(__file__)), '.env'))\n\nos.environ.setdefault('DJANGO_SETTINGS_MODULE', 'uclapi.settings')\n\n\nclass Celery(celery.Celery):\n def on_configure(self):\n if os.environ.get(\"SENTRY_DSN\") is not None:\n client = raven.Client(os.environ.get(\"SENTRY_DSN\"))\n raven_register_logger_signal(client)\n raven_register_signal(client)\n\n\napp = Celery('uclapi')\n\napp.config_from_object('django.conf.settings', namespace='CELERY')\n\napp.autodiscover_tasks()\n\n\[email protected](bind=True)\ndef task(self):\n print('Request: {0!r}'.format(self.request))\n", "path": "backend/uclapi/uclapi/celery.py"}, {"content": "\"\"\"\nDjango settings for uclapi project.\n\nGenerated by 'django-admin startproject' using Django 1.10.4.\n\nFor more information on this file, see\nhttps://docs.djangoproject.com/en/1.10/topics/settings/\n\nFor the full list of settings and their values, see\nhttps://docs.djangoproject.com/en/1.10/ref/settings/\n\"\"\"\n\nimport os\nimport requests\nfrom distutils.util import strtobool\n\n# Build paths inside the project like this: os.path.join(BASE_DIR, ...)\nBASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\n\n\n# Quick-start development settings - unsuitable for production\n# See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/\n\n# SECURITY WARNING: keep the secret key used in production secret!\nSECRET_KEY = os.environ.get(\"SECRET_KEY\")\n\n# SECURITY WARNING: don't run with debug turned on in production!\n# This value should be set by the UCLAPI_PRODUCTION environment\n# variable anyway. If in production, debug should be false.\nDEBUG = not strtobool(os.environ.get(\"UCLAPI_PRODUCTION\"))\n\nALLOWED_HOSTS = [\"localhost\"]\n\n# If a domain is specified then make this an allowed host\nif os.environ.get(\"UCLAPI_DOMAIN\"):\n ALLOWED_HOSTS.append(os.environ.get(\"UCLAPI_DOMAIN\"))\n\n# If we are running under the AWS Elastic Load Balancer then enable internal\n# requests so that the ELB and Health Checks work\nif strtobool(os.environ.get(\"UCLAPI_RUNNING_ON_AWS_ELB\")):\n EC2_PRIVATE_IP = None\n try:\n EC2_PRIVATE_IP = requests.get(\n \"http://169.254.169.254/latest/meta-data/local-ipv4\",\n timeout=0.01\n ).text\n except requests.exceptions.RequestException:\n pass\n\n if EC2_PRIVATE_IP:\n ALLOWED_HOSTS.append(EC2_PRIVATE_IP)\n\n# Application definition\n\nINSTALLED_APPS = [\n 'django.contrib.admin',\n 'django.contrib.auth',\n 'django.contrib.contenttypes',\n 'django.contrib.sessions',\n 'django.contrib.messages',\n 'django.contrib.staticfiles',\n 'rest_framework',\n 'dashboard',\n 'marketplace',\n 'roombookings',\n 'oauth',\n 'timetable',\n 'common',\n 'raven.contrib.django.raven_compat',\n 'corsheaders',\n 'workspaces'\n]\n\nMIDDLEWARE = [\n 'django.middleware.security.SecurityMiddleware',\n 'django.contrib.sessions.middleware.SessionMiddleware',\n 'corsheaders.middleware.CorsMiddleware',\n 'django.middleware.common.CommonMiddleware',\n 'django.middleware.csrf.CsrfViewMiddleware',\n 'django.contrib.auth.middleware.AuthenticationMiddleware',\n 'django.contrib.messages.middleware.MessageMiddleware',\n 'django.middleware.clickjacking.XFrameOptionsMiddleware',\n]\n\nif DEBUG:\n MIDDLEWARE.append(\n 'dashboard.middleware.fake_shibboleth_middleware'\n '.FakeShibbolethMiddleWare'\n )\n\nROOT_URLCONF = 'uclapi.urls'\n\nTEMPLATES = [\n {\n 'BACKEND': 'django.template.backends.django.DjangoTemplates',\n 'DIRS': [],\n 'APP_DIRS': True,\n 'OPTIONS': {\n 'context_processors': [\n 'django.template.context_processors.debug',\n 'django.template.context_processors.request',\n 'django.contrib.auth.context_processors.auth',\n 'django.contrib.messages.context_processors.messages',\n ],\n },\n },\n]\n\nWSGI_APPLICATION = 'uclapi.wsgi.application'\n\n\n# Database\n# https://docs.djangoproject.com/en/1.10/ref/settings/#databases\n\nDATABASES = {\n 'default': {\n 'ENGINE': 'django.db.backends.postgresql',\n 'NAME': os.environ.get(\"DB_UCLAPI_NAME\"),\n 'USER': os.environ.get(\"DB_UCLAPI_USERNAME\"),\n 'PASSWORD': os.environ.get(\"DB_UCLAPI_PASSWORD\"),\n 'HOST': os.environ.get(\"DB_UCLAPI_HOST\"),\n 'PORT': os.environ.get(\"DB_UCLAPI_PORT\")\n },\n 'roombookings': {\n 'ENGINE': 'django.db.backends.oracle',\n 'NAME': os.environ.get(\"DB_ROOMS_NAME\"),\n 'USER': os.environ.get(\"DB_ROOMS_USERNAME\"),\n 'PASSWORD': os.environ.get(\"DB_ROOMS_PASSWORD\"),\n 'HOST': '',\n 'PORT': ''\n },\n 'gencache': {\n 'ENGINE': 'django.db.backends.postgresql',\n 'NAME': os.environ.get(\"DB_CACHE_NAME\"),\n 'USER': os.environ.get(\"DB_CACHE_USERNAME\"),\n 'PASSWORD': os.environ.get(\"DB_CACHE_PASSWORD\"),\n 'HOST': os.environ.get(\"DB_CACHE_HOST\"),\n 'PORT': os.environ.get(\"DB_CACHE_PORT\")\n }\n}\n\nDATABASE_ROUTERS = ['uclapi.dbrouters.ModelRouter']\n\nRAVEN_CONFIG = {\n 'dsn': os.environ.get(\"SENTRY_DSN\"),\n}\n\n\n# Password validation\n# https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators\n\nAUTH_PASSWORD_VALIDATORS = [\n {\n 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', # noqa\n },\n {\n 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', # noqa\n },\n {\n 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', # noqa\n },\n {\n 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', # noqa\n },\n]\n\n\n# Internationalization\n# https://docs.djangoproject.com/en/1.10/topics/i18n/\n\nLANGUAGE_CODE = 'en-us'\n\nTIME_ZONE = 'UTC'\n\nUSE_I18N = True\n\nUSE_L10N = True\n\nUSE_TZ = False\n\n# Static files (CSS, JavaScript, Images)\n# https://docs.djangoproject.com/en/1.10/howto/static-files/\n\nSTATIC_URL = '/static/'\nSTATIC_ROOT = os.path.join(BASE_DIR, 'static')\n\n# Cross Origin settings\nCORS_ORIGIN_ALLOW_ALL = True\nCORS_URLS_REGEX = r'^/roombookings/.*$'\n\n# Fair use policy\nfair_use_policy_path = os.path.join(\n BASE_DIR,\n 'uclapi/UCLAPIAcceptableUsePolicy.txt'\n)\nwith open(fair_use_policy_path, 'r', encoding='utf-8') as fp:\n FAIR_USE_POLICY = list(fp)\n\nREDIS_UCLAPI_HOST = os.environ[\"REDIS_UCLAPI_HOST\"]\n\n# Celery Settings\nCELERY_BROKER_URL = 'redis://' + REDIS_UCLAPI_HOST\nCELERY_ACCEPT_CONTENT = ['json']\nCELERY_TASK_SERIALIZER = 'json'\nCELERY_RESULT_SERIALIZER = 'json'\n\n\nROOMBOOKINGS_SETID = 'LIVE-17-18'\n\n# S3 file storage settings\n# There are three scenarios to consider:\n# 1) Local development\n# In local dev, AWS_S3_STATICS = False\n# AWS_S3_STATICS_CREDENTIALS_ENABLED = False\n# These allow you to use local statics using /static/ in the\n# same way as you would normally.\n# 2) Production\n# In prod, AWS_S3_STATICS = True\n# AWS_S3_STATICS_CREDENTIALS_ENABLED = False\n# This means that S3 statics will be used, but no creds are\n# needed on the boxes because web servers should never do\n# uploads to the remote S3 bucket.\n# 3) Deployment\n# In deployment, AWS_S3_STATICS = True\n# AWS_S3_STATICS_CREDENTIALS_ENABLED = True\n# This will be done either from CI/CD or from the computer\n# of a person who has permission to upload new statics to\n# S3.\n\nif strtobool(os.environ.get(\"AWS_S3_STATICS\", \"False\")):\n DEFAULT_FILE_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage'\n STATICFILES_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage'\n AWS_STORAGE_BUCKET_NAME = os.environ[\"AWS_S3_BUCKET_NAME\"]\n AWS_LOCATION = os.environ[\"AWS_S3_BUCKET_PATH\"]\n AWS_S3_REGION_NAME = os.environ[\"AWS_S3_REGION\"]\n\n # This is a hack to not require AWS Access Credentials\n # when the system is running in the Cloud. This avoids us from\n # needing to store AWS credentials.\n # https://github.com/jschneier/django-storages/issues/254#issuecomment-329813295 # noqa\n AWS_S3_CUSTOM_DOMAIN = \"{}.s3.amazonaws.com\".format(\n AWS_STORAGE_BUCKET_NAME\n )\n\n # If credentials are enabled, collectstatic can do uploads\n if strtobool(os.environ[\"AWS_S3_STATICS_CREDENTIALS_ENABLED\"]):\n AWS_ACCESS_KEY_ID = os.environ[\"AWS_ACCESS_KEY_ID\"]\n AWS_SECRET_ACCESS_KEY = os.environ[\"AWS_ACCESS_SECRET\"]\n AWS_S3_OBJECT_PARAMETERS = {\n 'CacheControl': 'max-age=86400',\n }\n AWS_S3_ENCRYPTION = False\n else:\n AWS_QUERYSTRING_AUTH = False\n", "path": "backend/uclapi/uclapi/settings.py"}]}
3,595
487
gh_patches_debug_38644
rasdani/github-patches
git_diff
python-pillow__Pillow-730
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Add 16bit encode/decode to JPEG2K (WIP) Add the ability to write 16bit JPEG2k Images (for DICOM medical images). I'd trying to add a decoder too but I couldn't quite figure it out. Here's my dumb test case: ``` python import numpy as np from PIL import Image arr = np.zeros((64, 96), dtype=np.uint16) arr[16:64, 0:32] = 300 img = Image.fromarray(arr, 'I;16') img.save('grr.j2k') # Works img2 = Image.open('grr.j2k') arr2 = np.array(img2) np.testing.assert_almost_equal(arr, arr2) # Fails ``` Thoughts? --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `PIL/Jpeg2KImagePlugin.py` Content: ``` 1 # 2 # The Python Imaging Library 3 # $Id$ 4 # 5 # JPEG2000 file handling 6 # 7 # History: 8 # 2014-03-12 ajh Created 9 # 10 # Copyright (c) 2014 Coriolis Systems Limited 11 # Copyright (c) 2014 Alastair Houghton 12 # 13 # See the README file for information on usage and redistribution. 14 # 15 16 __version__ = "0.1" 17 18 from PIL import Image, ImageFile 19 import struct 20 import os 21 import io 22 23 24 def _parse_codestream(fp): 25 """Parse the JPEG 2000 codestream to extract the size and component 26 count from the SIZ marker segment, returning a PIL (size, mode) tuple.""" 27 28 hdr = fp.read(2) 29 lsiz = struct.unpack('>H', hdr)[0] 30 siz = hdr + fp.read(lsiz - 2) 31 lsiz, rsiz, xsiz, ysiz, xosiz, yosiz, xtsiz, ytsiz, \ 32 xtosiz, ytosiz, csiz \ 33 = struct.unpack('>HHIIIIIIIIH', siz[:38]) 34 ssiz = [None]*csiz 35 xrsiz = [None]*csiz 36 yrsiz = [None]*csiz 37 for i in range(csiz): 38 ssiz[i], xrsiz[i], yrsiz[i] \ 39 = struct.unpack('>BBB', siz[36 + 3 * i:39 + 3 * i]) 40 41 size = (xsiz - xosiz, ysiz - yosiz) 42 if csiz == 1: 43 mode = 'L' 44 elif csiz == 2: 45 mode = 'LA' 46 elif csiz == 3: 47 mode = 'RGB' 48 elif csiz == 4: 49 mode = 'RGBA' 50 else: 51 mode = None 52 53 return (size, mode) 54 55 56 def _parse_jp2_header(fp): 57 """Parse the JP2 header box to extract size, component count and 58 color space information, returning a PIL (size, mode) tuple.""" 59 60 # Find the JP2 header box 61 header = None 62 while True: 63 lbox, tbox = struct.unpack('>I4s', fp.read(8)) 64 if lbox == 1: 65 lbox = struct.unpack('>Q', fp.read(8))[0] 66 hlen = 16 67 else: 68 hlen = 8 69 70 if tbox == b'jp2h': 71 header = fp.read(lbox - hlen) 72 break 73 else: 74 fp.seek(lbox - hlen, os.SEEK_CUR) 75 76 if header is None: 77 raise SyntaxError('could not find JP2 header') 78 79 size = None 80 mode = None 81 82 hio = io.BytesIO(header) 83 while True: 84 lbox, tbox = struct.unpack('>I4s', hio.read(8)) 85 if lbox == 1: 86 lbox = struct.unpack('>Q', hio.read(8))[0] 87 hlen = 16 88 else: 89 hlen = 8 90 91 content = hio.read(lbox - hlen) 92 93 if tbox == b'ihdr': 94 height, width, nc, bpc, c, unkc, ipr \ 95 = struct.unpack('>IIHBBBB', content) 96 size = (width, height) 97 if unkc: 98 if nc == 1: 99 mode = 'L' 100 elif nc == 2: 101 mode = 'LA' 102 elif nc == 3: 103 mode = 'RGB' 104 elif nc == 4: 105 mode = 'RGBA' 106 break 107 elif tbox == b'colr': 108 meth, prec, approx = struct.unpack('>BBB', content[:3]) 109 if meth == 1: 110 cs = struct.unpack('>I', content[3:7])[0] 111 if cs == 16: # sRGB 112 if nc == 3: 113 mode = 'RGB' 114 elif nc == 4: 115 mode = 'RGBA' 116 break 117 elif cs == 17: # grayscale 118 if nc == 1: 119 mode = 'L' 120 elif nc == 2: 121 mode = 'LA' 122 break 123 elif cs == 18: # sYCC 124 if nc == 3: 125 mode = 'RGB' 126 elif nc == 4: 127 mode = 'RGBA' 128 break 129 130 return (size, mode) 131 132 133 ## 134 # Image plugin for JPEG2000 images. 135 136 class Jpeg2KImageFile(ImageFile.ImageFile): 137 format = "JPEG2000" 138 format_description = "JPEG 2000 (ISO 15444)" 139 140 def _open(self): 141 sig = self.fp.read(4) 142 if sig == b'\xff\x4f\xff\x51': 143 self.codec = "j2k" 144 self.size, self.mode = _parse_codestream(self.fp) 145 else: 146 sig = sig + self.fp.read(8) 147 148 if sig == b'\x00\x00\x00\x0cjP \x0d\x0a\x87\x0a': 149 self.codec = "jp2" 150 self.size, self.mode = _parse_jp2_header(self.fp) 151 else: 152 raise SyntaxError('not a JPEG 2000 file') 153 154 if self.size is None or self.mode is None: 155 raise SyntaxError('unable to determine size/mode') 156 157 self.reduce = 0 158 self.layers = 0 159 160 fd = -1 161 length = -1 162 163 if hasattr(self.fp, "fileno"): 164 try: 165 fd = self.fp.fileno() 166 length = os.fstat(fd).st_size 167 except: 168 fd = -1 169 elif hasattr(self.fp, "seek"): 170 try: 171 pos = f.tell() 172 f.seek(0, 2) 173 length = f.tell() 174 f.seek(pos, 0) 175 except: 176 length = -1 177 178 self.tile = [('jpeg2k', (0, 0) + self.size, 0, 179 (self.codec, self.reduce, self.layers, fd, length))] 180 181 def load(self): 182 if self.reduce: 183 power = 1 << self.reduce 184 adjust = power >> 1 185 self.size = (int((self.size[0] + adjust) / power), 186 int((self.size[1] + adjust) / power)) 187 188 if self.tile: 189 # Update the reduce and layers settings 190 t = self.tile[0] 191 t3 = (t[3][0], self.reduce, self.layers, t[3][3], t[3][4]) 192 self.tile = [(t[0], (0, 0) + self.size, t[2], t3)] 193 194 ImageFile.ImageFile.load(self) 195 196 197 def _accept(prefix): 198 return (prefix[:4] == b'\xff\x4f\xff\x51' 199 or prefix[:12] == b'\x00\x00\x00\x0cjP \x0d\x0a\x87\x0a') 200 201 202 # ------------------------------------------------------------ 203 # Save support 204 205 def _save(im, fp, filename): 206 if filename.endswith('.j2k'): 207 kind = 'j2k' 208 else: 209 kind = 'jp2' 210 211 # Get the keyword arguments 212 info = im.encoderinfo 213 214 offset = info.get('offset', None) 215 tile_offset = info.get('tile_offset', None) 216 tile_size = info.get('tile_size', None) 217 quality_mode = info.get('quality_mode', 'rates') 218 quality_layers = info.get('quality_layers', None) 219 num_resolutions = info.get('num_resolutions', 0) 220 cblk_size = info.get('codeblock_size', None) 221 precinct_size = info.get('precinct_size', None) 222 irreversible = info.get('irreversible', False) 223 progression = info.get('progression', 'LRCP') 224 cinema_mode = info.get('cinema_mode', 'no') 225 fd = -1 226 227 if hasattr(fp, "fileno"): 228 try: 229 fd = fp.fileno() 230 except: 231 fd = -1 232 233 im.encoderconfig = ( 234 offset, 235 tile_offset, 236 tile_size, 237 quality_mode, 238 quality_layers, 239 num_resolutions, 240 cblk_size, 241 precinct_size, 242 irreversible, 243 progression, 244 cinema_mode, 245 fd 246 ) 247 248 ImageFile._save(im, fp, [('jpeg2k', (0, 0)+im.size, 0, kind)]) 249 250 # ------------------------------------------------------------ 251 # Registry stuff 252 253 Image.register_open('JPEG2000', Jpeg2KImageFile, _accept) 254 Image.register_save('JPEG2000', _save) 255 256 Image.register_extension('JPEG2000', '.jp2') 257 Image.register_extension('JPEG2000', '.j2k') 258 Image.register_extension('JPEG2000', '.jpc') 259 Image.register_extension('JPEG2000', '.jpf') 260 Image.register_extension('JPEG2000', '.jpx') 261 Image.register_extension('JPEG2000', '.j2c') 262 263 Image.register_mime('JPEG2000', 'image/jp2') 264 Image.register_mime('JPEG2000', 'image/jpx') 265 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/PIL/Jpeg2KImagePlugin.py b/PIL/Jpeg2KImagePlugin.py --- a/PIL/Jpeg2KImagePlugin.py +++ b/PIL/Jpeg2KImagePlugin.py @@ -40,7 +40,10 @@ size = (xsiz - xosiz, ysiz - yosiz) if csiz == 1: - mode = 'L' + if (yrsiz[0] & 0x7f) > 8: + mode = 'I;16' + else: + mode = 'L' elif csiz == 2: mode = 'LA' elif csiz == 3: @@ -78,6 +81,7 @@ size = None mode = None + bpc = None hio = io.BytesIO(header) while True: @@ -95,7 +99,9 @@ = struct.unpack('>IIHBBBB', content) size = (width, height) if unkc: - if nc == 1: + if nc == 1 and (bpc & 0x7f) > 8: + mode = 'I;16' + elif nc == 1: mode = 'L' elif nc == 2: mode = 'LA' @@ -109,13 +115,19 @@ if meth == 1: cs = struct.unpack('>I', content[3:7])[0] if cs == 16: # sRGB - if nc == 3: + if nc == 1 and (bpc & 0x7f) > 8: + mode = 'I;16' + elif nc == 1: + mode = 'L' + elif nc == 3: mode = 'RGB' elif nc == 4: mode = 'RGBA' break elif cs == 17: # grayscale - if nc == 1: + if nc == 1 and (bpc & 0x7f) > 8: + mode = 'I;16' + elif nc == 1: mode = 'L' elif nc == 2: mode = 'LA' @@ -129,10 +141,10 @@ return (size, mode) - ## # Image plugin for JPEG2000 images. + class Jpeg2KImageFile(ImageFile.ImageFile): format = "JPEG2000" format_description = "JPEG 2000 (ISO 15444)" @@ -174,7 +186,7 @@ f.seek(pos, 0) except: length = -1 - + self.tile = [('jpeg2k', (0, 0) + self.size, 0, (self.codec, self.reduce, self.layers, fd, length))]
{"golden_diff": "diff --git a/PIL/Jpeg2KImagePlugin.py b/PIL/Jpeg2KImagePlugin.py\n--- a/PIL/Jpeg2KImagePlugin.py\n+++ b/PIL/Jpeg2KImagePlugin.py\n@@ -40,7 +40,10 @@\n \n size = (xsiz - xosiz, ysiz - yosiz)\n if csiz == 1:\n- mode = 'L'\n+ if (yrsiz[0] & 0x7f) > 8:\n+ mode = 'I;16'\n+ else:\n+ mode = 'L'\n elif csiz == 2:\n mode = 'LA'\n elif csiz == 3:\n@@ -78,6 +81,7 @@\n \n size = None\n mode = None\n+ bpc = None\n \n hio = io.BytesIO(header)\n while True:\n@@ -95,7 +99,9 @@\n = struct.unpack('>IIHBBBB', content)\n size = (width, height)\n if unkc:\n- if nc == 1:\n+ if nc == 1 and (bpc & 0x7f) > 8:\n+ mode = 'I;16'\n+ elif nc == 1:\n mode = 'L'\n elif nc == 2:\n mode = 'LA'\n@@ -109,13 +115,19 @@\n if meth == 1:\n cs = struct.unpack('>I', content[3:7])[0]\n if cs == 16: # sRGB\n- if nc == 3:\n+ if nc == 1 and (bpc & 0x7f) > 8:\n+ mode = 'I;16'\n+ elif nc == 1:\n+ mode = 'L'\n+ elif nc == 3:\n mode = 'RGB'\n elif nc == 4:\n mode = 'RGBA'\n break\n elif cs == 17: # grayscale\n- if nc == 1:\n+ if nc == 1 and (bpc & 0x7f) > 8:\n+ mode = 'I;16'\n+ elif nc == 1:\n mode = 'L'\n elif nc == 2:\n mode = 'LA'\n@@ -129,10 +141,10 @@\n \n return (size, mode)\n \n-\n ##\n # Image plugin for JPEG2000 images.\n \n+\n class Jpeg2KImageFile(ImageFile.ImageFile):\n format = \"JPEG2000\"\n format_description = \"JPEG 2000 (ISO 15444)\"\n@@ -174,7 +186,7 @@\n f.seek(pos, 0)\n except:\n length = -1\n- \n+\n self.tile = [('jpeg2k', (0, 0) + self.size, 0,\n (self.codec, self.reduce, self.layers, fd, length))]\n", "issue": "Add 16bit encode/decode to JPEG2K (WIP)\nAdd the ability to write 16bit JPEG2k Images (for DICOM medical images).\n\nI'd trying to add a decoder too but I couldn't quite figure it out. Here's my dumb test case:\n\n``` python\nimport numpy as np\nfrom PIL import Image\n\narr = np.zeros((64, 96), dtype=np.uint16)\narr[16:64, 0:32] = 300\n\nimg = Image.fromarray(arr, 'I;16')\nimg.save('grr.j2k') # Works\n\nimg2 = Image.open('grr.j2k')\narr2 = np.array(img2)\n\nnp.testing.assert_almost_equal(arr, arr2) # Fails\n```\n\nThoughts?\n\n", "before_files": [{"content": "#\n# The Python Imaging Library\n# $Id$\n#\n# JPEG2000 file handling\n#\n# History:\n# 2014-03-12 ajh Created\n#\n# Copyright (c) 2014 Coriolis Systems Limited\n# Copyright (c) 2014 Alastair Houghton\n#\n# See the README file for information on usage and redistribution.\n#\n\n__version__ = \"0.1\"\n\nfrom PIL import Image, ImageFile\nimport struct\nimport os\nimport io\n\n\ndef _parse_codestream(fp):\n \"\"\"Parse the JPEG 2000 codestream to extract the size and component\n count from the SIZ marker segment, returning a PIL (size, mode) tuple.\"\"\"\n\n hdr = fp.read(2)\n lsiz = struct.unpack('>H', hdr)[0]\n siz = hdr + fp.read(lsiz - 2)\n lsiz, rsiz, xsiz, ysiz, xosiz, yosiz, xtsiz, ytsiz, \\\n xtosiz, ytosiz, csiz \\\n = struct.unpack('>HHIIIIIIIIH', siz[:38])\n ssiz = [None]*csiz\n xrsiz = [None]*csiz\n yrsiz = [None]*csiz\n for i in range(csiz):\n ssiz[i], xrsiz[i], yrsiz[i] \\\n = struct.unpack('>BBB', siz[36 + 3 * i:39 + 3 * i])\n\n size = (xsiz - xosiz, ysiz - yosiz)\n if csiz == 1:\n mode = 'L'\n elif csiz == 2:\n mode = 'LA'\n elif csiz == 3:\n mode = 'RGB'\n elif csiz == 4:\n mode = 'RGBA'\n else:\n mode = None\n\n return (size, mode)\n\n\ndef _parse_jp2_header(fp):\n \"\"\"Parse the JP2 header box to extract size, component count and\n color space information, returning a PIL (size, mode) tuple.\"\"\"\n\n # Find the JP2 header box\n header = None\n while True:\n lbox, tbox = struct.unpack('>I4s', fp.read(8))\n if lbox == 1:\n lbox = struct.unpack('>Q', fp.read(8))[0]\n hlen = 16\n else:\n hlen = 8\n\n if tbox == b'jp2h':\n header = fp.read(lbox - hlen)\n break\n else:\n fp.seek(lbox - hlen, os.SEEK_CUR)\n\n if header is None:\n raise SyntaxError('could not find JP2 header')\n\n size = None\n mode = None\n\n hio = io.BytesIO(header)\n while True:\n lbox, tbox = struct.unpack('>I4s', hio.read(8))\n if lbox == 1:\n lbox = struct.unpack('>Q', hio.read(8))[0]\n hlen = 16\n else:\n hlen = 8\n\n content = hio.read(lbox - hlen)\n\n if tbox == b'ihdr':\n height, width, nc, bpc, c, unkc, ipr \\\n = struct.unpack('>IIHBBBB', content)\n size = (width, height)\n if unkc:\n if nc == 1:\n mode = 'L'\n elif nc == 2:\n mode = 'LA'\n elif nc == 3:\n mode = 'RGB'\n elif nc == 4:\n mode = 'RGBA'\n break\n elif tbox == b'colr':\n meth, prec, approx = struct.unpack('>BBB', content[:3])\n if meth == 1:\n cs = struct.unpack('>I', content[3:7])[0]\n if cs == 16: # sRGB\n if nc == 3:\n mode = 'RGB'\n elif nc == 4:\n mode = 'RGBA'\n break\n elif cs == 17: # grayscale\n if nc == 1:\n mode = 'L'\n elif nc == 2:\n mode = 'LA'\n break\n elif cs == 18: # sYCC\n if nc == 3:\n mode = 'RGB'\n elif nc == 4:\n mode = 'RGBA'\n break\n\n return (size, mode)\n\n\n##\n# Image plugin for JPEG2000 images.\n\nclass Jpeg2KImageFile(ImageFile.ImageFile):\n format = \"JPEG2000\"\n format_description = \"JPEG 2000 (ISO 15444)\"\n\n def _open(self):\n sig = self.fp.read(4)\n if sig == b'\\xff\\x4f\\xff\\x51':\n self.codec = \"j2k\"\n self.size, self.mode = _parse_codestream(self.fp)\n else:\n sig = sig + self.fp.read(8)\n\n if sig == b'\\x00\\x00\\x00\\x0cjP \\x0d\\x0a\\x87\\x0a':\n self.codec = \"jp2\"\n self.size, self.mode = _parse_jp2_header(self.fp)\n else:\n raise SyntaxError('not a JPEG 2000 file')\n\n if self.size is None or self.mode is None:\n raise SyntaxError('unable to determine size/mode')\n\n self.reduce = 0\n self.layers = 0\n\n fd = -1\n length = -1\n\n if hasattr(self.fp, \"fileno\"):\n try:\n fd = self.fp.fileno()\n length = os.fstat(fd).st_size\n except:\n fd = -1\n elif hasattr(self.fp, \"seek\"):\n try:\n pos = f.tell()\n f.seek(0, 2)\n length = f.tell()\n f.seek(pos, 0)\n except:\n length = -1\n \n self.tile = [('jpeg2k', (0, 0) + self.size, 0,\n (self.codec, self.reduce, self.layers, fd, length))]\n\n def load(self):\n if self.reduce:\n power = 1 << self.reduce\n adjust = power >> 1\n self.size = (int((self.size[0] + adjust) / power),\n int((self.size[1] + adjust) / power))\n\n if self.tile:\n # Update the reduce and layers settings\n t = self.tile[0]\n t3 = (t[3][0], self.reduce, self.layers, t[3][3], t[3][4])\n self.tile = [(t[0], (0, 0) + self.size, t[2], t3)]\n\n ImageFile.ImageFile.load(self)\n\n\ndef _accept(prefix):\n return (prefix[:4] == b'\\xff\\x4f\\xff\\x51'\n or prefix[:12] == b'\\x00\\x00\\x00\\x0cjP \\x0d\\x0a\\x87\\x0a')\n\n\n# ------------------------------------------------------------\n# Save support\n\ndef _save(im, fp, filename):\n if filename.endswith('.j2k'):\n kind = 'j2k'\n else:\n kind = 'jp2'\n\n # Get the keyword arguments\n info = im.encoderinfo\n\n offset = info.get('offset', None)\n tile_offset = info.get('tile_offset', None)\n tile_size = info.get('tile_size', None)\n quality_mode = info.get('quality_mode', 'rates')\n quality_layers = info.get('quality_layers', None)\n num_resolutions = info.get('num_resolutions', 0)\n cblk_size = info.get('codeblock_size', None)\n precinct_size = info.get('precinct_size', None)\n irreversible = info.get('irreversible', False)\n progression = info.get('progression', 'LRCP')\n cinema_mode = info.get('cinema_mode', 'no')\n fd = -1\n\n if hasattr(fp, \"fileno\"):\n try:\n fd = fp.fileno()\n except:\n fd = -1\n\n im.encoderconfig = (\n offset,\n tile_offset,\n tile_size,\n quality_mode,\n quality_layers,\n num_resolutions,\n cblk_size,\n precinct_size,\n irreversible,\n progression,\n cinema_mode,\n fd\n )\n\n ImageFile._save(im, fp, [('jpeg2k', (0, 0)+im.size, 0, kind)])\n\n# ------------------------------------------------------------\n# Registry stuff\n\nImage.register_open('JPEG2000', Jpeg2KImageFile, _accept)\nImage.register_save('JPEG2000', _save)\n\nImage.register_extension('JPEG2000', '.jp2')\nImage.register_extension('JPEG2000', '.j2k')\nImage.register_extension('JPEG2000', '.jpc')\nImage.register_extension('JPEG2000', '.jpf')\nImage.register_extension('JPEG2000', '.jpx')\nImage.register_extension('JPEG2000', '.j2c')\n\nImage.register_mime('JPEG2000', 'image/jp2')\nImage.register_mime('JPEG2000', 'image/jpx')\n", "path": "PIL/Jpeg2KImagePlugin.py"}], "after_files": [{"content": "#\n# The Python Imaging Library\n# $Id$\n#\n# JPEG2000 file handling\n#\n# History:\n# 2014-03-12 ajh Created\n#\n# Copyright (c) 2014 Coriolis Systems Limited\n# Copyright (c) 2014 Alastair Houghton\n#\n# See the README file for information on usage and redistribution.\n#\n\n__version__ = \"0.1\"\n\nfrom PIL import Image, ImageFile\nimport struct\nimport os\nimport io\n\n\ndef _parse_codestream(fp):\n \"\"\"Parse the JPEG 2000 codestream to extract the size and component\n count from the SIZ marker segment, returning a PIL (size, mode) tuple.\"\"\"\n\n hdr = fp.read(2)\n lsiz = struct.unpack('>H', hdr)[0]\n siz = hdr + fp.read(lsiz - 2)\n lsiz, rsiz, xsiz, ysiz, xosiz, yosiz, xtsiz, ytsiz, \\\n xtosiz, ytosiz, csiz \\\n = struct.unpack('>HHIIIIIIIIH', siz[:38])\n ssiz = [None]*csiz\n xrsiz = [None]*csiz\n yrsiz = [None]*csiz\n for i in range(csiz):\n ssiz[i], xrsiz[i], yrsiz[i] \\\n = struct.unpack('>BBB', siz[36 + 3 * i:39 + 3 * i])\n\n size = (xsiz - xosiz, ysiz - yosiz)\n if csiz == 1:\n if (yrsiz[0] & 0x7f) > 8:\n mode = 'I;16'\n else:\n mode = 'L'\n elif csiz == 2:\n mode = 'LA'\n elif csiz == 3:\n mode = 'RGB'\n elif csiz == 4:\n mode = 'RGBA'\n else:\n mode = None\n\n return (size, mode)\n\n\ndef _parse_jp2_header(fp):\n \"\"\"Parse the JP2 header box to extract size, component count and\n color space information, returning a PIL (size, mode) tuple.\"\"\"\n\n # Find the JP2 header box\n header = None\n while True:\n lbox, tbox = struct.unpack('>I4s', fp.read(8))\n if lbox == 1:\n lbox = struct.unpack('>Q', fp.read(8))[0]\n hlen = 16\n else:\n hlen = 8\n\n if tbox == b'jp2h':\n header = fp.read(lbox - hlen)\n break\n else:\n fp.seek(lbox - hlen, os.SEEK_CUR)\n\n if header is None:\n raise SyntaxError('could not find JP2 header')\n\n size = None\n mode = None\n bpc = None\n\n hio = io.BytesIO(header)\n while True:\n lbox, tbox = struct.unpack('>I4s', hio.read(8))\n if lbox == 1:\n lbox = struct.unpack('>Q', hio.read(8))[0]\n hlen = 16\n else:\n hlen = 8\n\n content = hio.read(lbox - hlen)\n\n if tbox == b'ihdr':\n height, width, nc, bpc, c, unkc, ipr \\\n = struct.unpack('>IIHBBBB', content)\n size = (width, height)\n if unkc:\n if nc == 1 and (bpc & 0x7f) > 8:\n mode = 'I;16'\n elif nc == 1:\n mode = 'L'\n elif nc == 2:\n mode = 'LA'\n elif nc == 3:\n mode = 'RGB'\n elif nc == 4:\n mode = 'RGBA'\n break\n elif tbox == b'colr':\n meth, prec, approx = struct.unpack('>BBB', content[:3])\n if meth == 1:\n cs = struct.unpack('>I', content[3:7])[0]\n if cs == 16: # sRGB\n if nc == 1 and (bpc & 0x7f) > 8:\n mode = 'I;16'\n elif nc == 1:\n mode = 'L'\n elif nc == 3:\n mode = 'RGB'\n elif nc == 4:\n mode = 'RGBA'\n break\n elif cs == 17: # grayscale\n if nc == 1 and (bpc & 0x7f) > 8:\n mode = 'I;16'\n elif nc == 1:\n mode = 'L'\n elif nc == 2:\n mode = 'LA'\n break\n elif cs == 18: # sYCC\n if nc == 3:\n mode = 'RGB'\n elif nc == 4:\n mode = 'RGBA'\n break\n\n return (size, mode)\n\n##\n# Image plugin for JPEG2000 images.\n\n\nclass Jpeg2KImageFile(ImageFile.ImageFile):\n format = \"JPEG2000\"\n format_description = \"JPEG 2000 (ISO 15444)\"\n\n def _open(self):\n sig = self.fp.read(4)\n if sig == b'\\xff\\x4f\\xff\\x51':\n self.codec = \"j2k\"\n self.size, self.mode = _parse_codestream(self.fp)\n else:\n sig = sig + self.fp.read(8)\n\n if sig == b'\\x00\\x00\\x00\\x0cjP \\x0d\\x0a\\x87\\x0a':\n self.codec = \"jp2\"\n self.size, self.mode = _parse_jp2_header(self.fp)\n else:\n raise SyntaxError('not a JPEG 2000 file')\n\n if self.size is None or self.mode is None:\n raise SyntaxError('unable to determine size/mode')\n\n self.reduce = 0\n self.layers = 0\n\n fd = -1\n length = -1\n\n if hasattr(self.fp, \"fileno\"):\n try:\n fd = self.fp.fileno()\n length = os.fstat(fd).st_size\n except:\n fd = -1\n elif hasattr(self.fp, \"seek\"):\n try:\n pos = f.tell()\n f.seek(0, 2)\n length = f.tell()\n f.seek(pos, 0)\n except:\n length = -1\n\n self.tile = [('jpeg2k', (0, 0) + self.size, 0,\n (self.codec, self.reduce, self.layers, fd, length))]\n\n def load(self):\n if self.reduce:\n power = 1 << self.reduce\n adjust = power >> 1\n self.size = (int((self.size[0] + adjust) / power),\n int((self.size[1] + adjust) / power))\n\n if self.tile:\n # Update the reduce and layers settings\n t = self.tile[0]\n t3 = (t[3][0], self.reduce, self.layers, t[3][3], t[3][4])\n self.tile = [(t[0], (0, 0) + self.size, t[2], t3)]\n\n ImageFile.ImageFile.load(self)\n\n\ndef _accept(prefix):\n return (prefix[:4] == b'\\xff\\x4f\\xff\\x51'\n or prefix[:12] == b'\\x00\\x00\\x00\\x0cjP \\x0d\\x0a\\x87\\x0a')\n\n\n# ------------------------------------------------------------\n# Save support\n\ndef _save(im, fp, filename):\n if filename.endswith('.j2k'):\n kind = 'j2k'\n else:\n kind = 'jp2'\n\n # Get the keyword arguments\n info = im.encoderinfo\n\n offset = info.get('offset', None)\n tile_offset = info.get('tile_offset', None)\n tile_size = info.get('tile_size', None)\n quality_mode = info.get('quality_mode', 'rates')\n quality_layers = info.get('quality_layers', None)\n num_resolutions = info.get('num_resolutions', 0)\n cblk_size = info.get('codeblock_size', None)\n precinct_size = info.get('precinct_size', None)\n irreversible = info.get('irreversible', False)\n progression = info.get('progression', 'LRCP')\n cinema_mode = info.get('cinema_mode', 'no')\n fd = -1\n\n if hasattr(fp, \"fileno\"):\n try:\n fd = fp.fileno()\n except:\n fd = -1\n\n im.encoderconfig = (\n offset,\n tile_offset,\n tile_size,\n quality_mode,\n quality_layers,\n num_resolutions,\n cblk_size,\n precinct_size,\n irreversible,\n progression,\n cinema_mode,\n fd\n )\n\n ImageFile._save(im, fp, [('jpeg2k', (0, 0)+im.size, 0, kind)])\n\n# ------------------------------------------------------------\n# Registry stuff\n\nImage.register_open('JPEG2000', Jpeg2KImageFile, _accept)\nImage.register_save('JPEG2000', _save)\n\nImage.register_extension('JPEG2000', '.jp2')\nImage.register_extension('JPEG2000', '.j2k')\nImage.register_extension('JPEG2000', '.jpc')\nImage.register_extension('JPEG2000', '.jpf')\nImage.register_extension('JPEG2000', '.jpx')\nImage.register_extension('JPEG2000', '.j2c')\n\nImage.register_mime('JPEG2000', 'image/jp2')\nImage.register_mime('JPEG2000', 'image/jpx')\n", "path": "PIL/Jpeg2KImagePlugin.py"}]}
3,216
674
gh_patches_debug_23568
rasdani/github-patches
git_diff
mitmproxy__mitmproxy-2921
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Clean up dependencies Spring cleaning! We currently declare some dependencies which are either unused or can easily be substituted: - h11 - not used at all? - requests - tests + examples only. We should IMHO also eventually consider removing the following dependencies, although that involves a bit of work and shouldn't be in scope for this issue: - pyasn1 - replace with asn1crypto, which is used by cryptography/pyOpenSSL - ldap3 - only used for ldap proxy auth, which should probably live outside of the core once we have a healthy addon system. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `setup.py` Content: ``` 1 import os 2 from codecs import open 3 4 import re 5 from setuptools import setup, find_packages 6 7 # Based on https://github.com/pypa/sampleproject/blob/master/setup.py 8 # and https://python-packaging-user-guide.readthedocs.org/ 9 10 here = os.path.abspath(os.path.dirname(__file__)) 11 12 with open(os.path.join(here, 'README.rst'), encoding='utf-8') as f: 13 long_description = f.read() 14 15 with open(os.path.join(here, "mitmproxy", "version.py")) as f: 16 VERSION = re.search(r'VERSION = "(.+?)(?:-0x|")', f.read()).group(1) 17 18 setup( 19 name="mitmproxy", 20 version=VERSION, 21 description="An interactive, SSL-capable, man-in-the-middle HTTP proxy for penetration testers and software developers.", 22 long_description=long_description, 23 url="http://mitmproxy.org", 24 author="Aldo Cortesi", 25 author_email="[email protected]", 26 license="MIT", 27 classifiers=[ 28 "License :: OSI Approved :: MIT License", 29 "Development Status :: 5 - Production/Stable", 30 "Environment :: Console", 31 "Environment :: Console :: Curses", 32 "Operating System :: MacOS :: MacOS X", 33 "Operating System :: POSIX", 34 "Operating System :: Microsoft :: Windows", 35 "Programming Language :: Python", 36 "Programming Language :: Python :: 3", 37 "Programming Language :: Python :: 3 :: Only", 38 "Programming Language :: Python :: 3.5", 39 "Programming Language :: Python :: 3.6", 40 "Programming Language :: Python :: Implementation :: CPython", 41 "Topic :: Security", 42 "Topic :: Internet", 43 "Topic :: Internet :: WWW/HTTP", 44 "Topic :: Internet :: Proxy Servers", 45 "Topic :: Software Development :: Testing" 46 ], 47 packages=find_packages(include=[ 48 "mitmproxy", "mitmproxy.*", 49 "pathod", "pathod.*", 50 ]), 51 include_package_data=True, 52 entry_points={ 53 'console_scripts': [ 54 "mitmproxy = mitmproxy.tools.main:mitmproxy", 55 "mitmdump = mitmproxy.tools.main:mitmdump", 56 "mitmweb = mitmproxy.tools.main:mitmweb", 57 "pathod = pathod.pathod_cmdline:go_pathod", 58 "pathoc = pathod.pathoc_cmdline:go_pathoc" 59 ] 60 }, 61 # https://packaging.python.org/en/latest/requirements/#install-requires 62 # It is not considered best practice to use install_requires to pin dependencies to specific versions. 63 install_requires=[ 64 "blinker>=1.4, <1.5", 65 "brotlipy>=0.7.0,<0.8", 66 "certifi>=2015.11.20.1", # no semver here - this should always be on the last release! 67 "click>=6.2, <7", 68 "cryptography>=2.1.4,<2.2", 69 'h11>=0.7.0,<0.8', 70 "h2>=3.0.1,<4", 71 "hyperframe>=5.1.0,<6", 72 "kaitaistruct>=0.7,<0.9", 73 "ldap3>=2.4,<2.5", 74 "passlib>=1.6.5, <1.8", 75 "pyasn1>=0.3.1,<0.5", 76 "pyOpenSSL>=17.5,<17.6", 77 "pyparsing>=2.1.3, <2.3", 78 "pyperclip>=1.6.0, <1.7", 79 "requests>=2.9.1, <3", 80 "ruamel.yaml>=0.13.2, <0.16", 81 "sortedcontainers>=1.5.4, <1.6", 82 "tornado>=4.3, <4.6", 83 "urwid>=2.0.1,<2.1", 84 "wsproto>=0.11.0,<0.12.0", 85 ], 86 extras_require={ 87 ':sys_platform == "win32"': [ 88 "pydivert>=2.0.3,<2.2", 89 ], 90 'dev': [ 91 "flake8>=3.5, <3.6", 92 "Flask>=0.10.1, <0.13", 93 "mypy>=0.560,<0.561", 94 "pytest-cov>=2.5.1,<3", 95 "pytest-faulthandler>=1.3.1,<2", 96 "pytest-timeout>=1.2.1,<2", 97 "pytest-xdist>=1.22,<2", 98 "pytest>=3.3,<4", 99 "tox>=2.3, <3", 100 "rstcheck>=2.2, <4.0", 101 ], 102 'examples': [ 103 "beautifulsoup4>=4.4.1, <4.7", 104 "Pillow>=4.3,<5.1", 105 ] 106 } 107 ) 108 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/setup.py b/setup.py --- a/setup.py +++ b/setup.py @@ -66,7 +66,6 @@ "certifi>=2015.11.20.1", # no semver here - this should always be on the last release! "click>=6.2, <7", "cryptography>=2.1.4,<2.2", - 'h11>=0.7.0,<0.8', "h2>=3.0.1,<4", "hyperframe>=5.1.0,<6", "kaitaistruct>=0.7,<0.9", @@ -76,7 +75,6 @@ "pyOpenSSL>=17.5,<17.6", "pyparsing>=2.1.3, <2.3", "pyperclip>=1.6.0, <1.7", - "requests>=2.9.1, <3", "ruamel.yaml>=0.13.2, <0.16", "sortedcontainers>=1.5.4, <1.6", "tornado>=4.3, <4.6", @@ -96,6 +94,7 @@ "pytest-timeout>=1.2.1,<2", "pytest-xdist>=1.22,<2", "pytest>=3.3,<4", + "requests>=2.9.1, <3", "tox>=2.3, <3", "rstcheck>=2.2, <4.0", ],
{"golden_diff": "diff --git a/setup.py b/setup.py\n--- a/setup.py\n+++ b/setup.py\n@@ -66,7 +66,6 @@\n \"certifi>=2015.11.20.1\", # no semver here - this should always be on the last release!\n \"click>=6.2, <7\",\n \"cryptography>=2.1.4,<2.2\",\n- 'h11>=0.7.0,<0.8',\n \"h2>=3.0.1,<4\",\n \"hyperframe>=5.1.0,<6\",\n \"kaitaistruct>=0.7,<0.9\",\n@@ -76,7 +75,6 @@\n \"pyOpenSSL>=17.5,<17.6\",\n \"pyparsing>=2.1.3, <2.3\",\n \"pyperclip>=1.6.0, <1.7\",\n- \"requests>=2.9.1, <3\",\n \"ruamel.yaml>=0.13.2, <0.16\",\n \"sortedcontainers>=1.5.4, <1.6\",\n \"tornado>=4.3, <4.6\",\n@@ -96,6 +94,7 @@\n \"pytest-timeout>=1.2.1,<2\",\n \"pytest-xdist>=1.22,<2\",\n \"pytest>=3.3,<4\",\n+ \"requests>=2.9.1, <3\",\n \"tox>=2.3, <3\",\n \"rstcheck>=2.2, <4.0\",\n ],\n", "issue": "Clean up dependencies\nSpring cleaning! We currently declare some dependencies which are either unused or can easily be substituted:\r\n\r\n - h11 - not used at all?\r\n - requests - tests + examples only.\r\n\r\nWe should IMHO also eventually consider removing the following dependencies, although that involves a bit of work and shouldn't be in scope for this issue:\r\n\r\n - pyasn1 - replace with asn1crypto, which is used by cryptography/pyOpenSSL\r\n - ldap3 - only used for ldap proxy auth, which should probably live outside of the core once we have a healthy addon system.\n", "before_files": [{"content": "import os\nfrom codecs import open\n\nimport re\nfrom setuptools import setup, find_packages\n\n# Based on https://github.com/pypa/sampleproject/blob/master/setup.py\n# and https://python-packaging-user-guide.readthedocs.org/\n\nhere = os.path.abspath(os.path.dirname(__file__))\n\nwith open(os.path.join(here, 'README.rst'), encoding='utf-8') as f:\n long_description = f.read()\n\nwith open(os.path.join(here, \"mitmproxy\", \"version.py\")) as f:\n VERSION = re.search(r'VERSION = \"(.+?)(?:-0x|\")', f.read()).group(1)\n\nsetup(\n name=\"mitmproxy\",\n version=VERSION,\n description=\"An interactive, SSL-capable, man-in-the-middle HTTP proxy for penetration testers and software developers.\",\n long_description=long_description,\n url=\"http://mitmproxy.org\",\n author=\"Aldo Cortesi\",\n author_email=\"[email protected]\",\n license=\"MIT\",\n classifiers=[\n \"License :: OSI Approved :: MIT License\",\n \"Development Status :: 5 - Production/Stable\",\n \"Environment :: Console\",\n \"Environment :: Console :: Curses\",\n \"Operating System :: MacOS :: MacOS X\",\n \"Operating System :: POSIX\",\n \"Operating System :: Microsoft :: Windows\",\n \"Programming Language :: Python\",\n \"Programming Language :: Python :: 3\",\n \"Programming Language :: Python :: 3 :: Only\",\n \"Programming Language :: Python :: 3.5\",\n \"Programming Language :: Python :: 3.6\",\n \"Programming Language :: Python :: Implementation :: CPython\",\n \"Topic :: Security\",\n \"Topic :: Internet\",\n \"Topic :: Internet :: WWW/HTTP\",\n \"Topic :: Internet :: Proxy Servers\",\n \"Topic :: Software Development :: Testing\"\n ],\n packages=find_packages(include=[\n \"mitmproxy\", \"mitmproxy.*\",\n \"pathod\", \"pathod.*\",\n ]),\n include_package_data=True,\n entry_points={\n 'console_scripts': [\n \"mitmproxy = mitmproxy.tools.main:mitmproxy\",\n \"mitmdump = mitmproxy.tools.main:mitmdump\",\n \"mitmweb = mitmproxy.tools.main:mitmweb\",\n \"pathod = pathod.pathod_cmdline:go_pathod\",\n \"pathoc = pathod.pathoc_cmdline:go_pathoc\"\n ]\n },\n # https://packaging.python.org/en/latest/requirements/#install-requires\n # It is not considered best practice to use install_requires to pin dependencies to specific versions.\n install_requires=[\n \"blinker>=1.4, <1.5\",\n \"brotlipy>=0.7.0,<0.8\",\n \"certifi>=2015.11.20.1\", # no semver here - this should always be on the last release!\n \"click>=6.2, <7\",\n \"cryptography>=2.1.4,<2.2\",\n 'h11>=0.7.0,<0.8',\n \"h2>=3.0.1,<4\",\n \"hyperframe>=5.1.0,<6\",\n \"kaitaistruct>=0.7,<0.9\",\n \"ldap3>=2.4,<2.5\",\n \"passlib>=1.6.5, <1.8\",\n \"pyasn1>=0.3.1,<0.5\",\n \"pyOpenSSL>=17.5,<17.6\",\n \"pyparsing>=2.1.3, <2.3\",\n \"pyperclip>=1.6.0, <1.7\",\n \"requests>=2.9.1, <3\",\n \"ruamel.yaml>=0.13.2, <0.16\",\n \"sortedcontainers>=1.5.4, <1.6\",\n \"tornado>=4.3, <4.6\",\n \"urwid>=2.0.1,<2.1\",\n \"wsproto>=0.11.0,<0.12.0\",\n ],\n extras_require={\n ':sys_platform == \"win32\"': [\n \"pydivert>=2.0.3,<2.2\",\n ],\n 'dev': [\n \"flake8>=3.5, <3.6\",\n \"Flask>=0.10.1, <0.13\",\n \"mypy>=0.560,<0.561\",\n \"pytest-cov>=2.5.1,<3\",\n \"pytest-faulthandler>=1.3.1,<2\",\n \"pytest-timeout>=1.2.1,<2\",\n \"pytest-xdist>=1.22,<2\",\n \"pytest>=3.3,<4\",\n \"tox>=2.3, <3\",\n \"rstcheck>=2.2, <4.0\",\n ],\n 'examples': [\n \"beautifulsoup4>=4.4.1, <4.7\",\n \"Pillow>=4.3,<5.1\",\n ]\n }\n)\n", "path": "setup.py"}], "after_files": [{"content": "import os\nfrom codecs import open\n\nimport re\nfrom setuptools import setup, find_packages\n\n# Based on https://github.com/pypa/sampleproject/blob/master/setup.py\n# and https://python-packaging-user-guide.readthedocs.org/\n\nhere = os.path.abspath(os.path.dirname(__file__))\n\nwith open(os.path.join(here, 'README.rst'), encoding='utf-8') as f:\n long_description = f.read()\n\nwith open(os.path.join(here, \"mitmproxy\", \"version.py\")) as f:\n VERSION = re.search(r'VERSION = \"(.+?)(?:-0x|\")', f.read()).group(1)\n\nsetup(\n name=\"mitmproxy\",\n version=VERSION,\n description=\"An interactive, SSL-capable, man-in-the-middle HTTP proxy for penetration testers and software developers.\",\n long_description=long_description,\n url=\"http://mitmproxy.org\",\n author=\"Aldo Cortesi\",\n author_email=\"[email protected]\",\n license=\"MIT\",\n classifiers=[\n \"License :: OSI Approved :: MIT License\",\n \"Development Status :: 5 - Production/Stable\",\n \"Environment :: Console\",\n \"Environment :: Console :: Curses\",\n \"Operating System :: MacOS :: MacOS X\",\n \"Operating System :: POSIX\",\n \"Operating System :: Microsoft :: Windows\",\n \"Programming Language :: Python\",\n \"Programming Language :: Python :: 3\",\n \"Programming Language :: Python :: 3 :: Only\",\n \"Programming Language :: Python :: 3.5\",\n \"Programming Language :: Python :: 3.6\",\n \"Programming Language :: Python :: Implementation :: CPython\",\n \"Topic :: Security\",\n \"Topic :: Internet\",\n \"Topic :: Internet :: WWW/HTTP\",\n \"Topic :: Internet :: Proxy Servers\",\n \"Topic :: Software Development :: Testing\"\n ],\n packages=find_packages(include=[\n \"mitmproxy\", \"mitmproxy.*\",\n \"pathod\", \"pathod.*\",\n ]),\n include_package_data=True,\n entry_points={\n 'console_scripts': [\n \"mitmproxy = mitmproxy.tools.main:mitmproxy\",\n \"mitmdump = mitmproxy.tools.main:mitmdump\",\n \"mitmweb = mitmproxy.tools.main:mitmweb\",\n \"pathod = pathod.pathod_cmdline:go_pathod\",\n \"pathoc = pathod.pathoc_cmdline:go_pathoc\"\n ]\n },\n # https://packaging.python.org/en/latest/requirements/#install-requires\n # It is not considered best practice to use install_requires to pin dependencies to specific versions.\n install_requires=[\n \"blinker>=1.4, <1.5\",\n \"brotlipy>=0.7.0,<0.8\",\n \"certifi>=2015.11.20.1\", # no semver here - this should always be on the last release!\n \"click>=6.2, <7\",\n \"cryptography>=2.1.4,<2.2\",\n \"h2>=3.0.1,<4\",\n \"hyperframe>=5.1.0,<6\",\n \"kaitaistruct>=0.7,<0.9\",\n \"ldap3>=2.4,<2.5\",\n \"passlib>=1.6.5, <1.8\",\n \"pyasn1>=0.3.1,<0.5\",\n \"pyOpenSSL>=17.5,<17.6\",\n \"pyparsing>=2.1.3, <2.3\",\n \"pyperclip>=1.6.0, <1.7\",\n \"ruamel.yaml>=0.13.2, <0.16\",\n \"sortedcontainers>=1.5.4, <1.6\",\n \"tornado>=4.3, <4.6\",\n \"urwid>=2.0.1,<2.1\",\n \"wsproto>=0.11.0,<0.12.0\",\n ],\n extras_require={\n ':sys_platform == \"win32\"': [\n \"pydivert>=2.0.3,<2.2\",\n ],\n 'dev': [\n \"flake8>=3.5, <3.6\",\n \"Flask>=0.10.1, <0.13\",\n \"mypy>=0.560,<0.561\",\n \"pytest-cov>=2.5.1,<3\",\n \"pytest-faulthandler>=1.3.1,<2\",\n \"pytest-timeout>=1.2.1,<2\",\n \"pytest-xdist>=1.22,<2\",\n \"pytest>=3.3,<4\",\n \"requests>=2.9.1, <3\",\n \"tox>=2.3, <3\",\n \"rstcheck>=2.2, <4.0\",\n ],\n 'examples': [\n \"beautifulsoup4>=4.4.1, <4.7\",\n \"Pillow>=4.3,<5.1\",\n ]\n }\n)\n", "path": "setup.py"}]}
1,718
367
gh_patches_debug_33273
rasdani/github-patches
git_diff
GeotrekCE__Geotrek-admin-1377
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Should not disable edit button if having bypass structure permission Workaround: write url by hand (eg. "/trek/edit/1/"). --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `geotrek/authent/models.py` Content: ``` 1 # -*- coding: utf-8 -*- 2 3 """ 4 Models to manage users and profiles 5 """ 6 from django.db import models 7 from django.contrib.auth.models import User 8 from django.conf import settings 9 from django.utils.translation import ugettext_lazy as _ 10 from django.dispatch import receiver 11 from django.contrib.auth.signals import user_logged_in 12 13 from geotrek.common.utils import reify 14 15 16 class Structure(models.Model): 17 """ 18 Represents an organisational structure, to which users are related. 19 """ 20 name = models.CharField(max_length=256, verbose_name=_(u"Nom")) 21 22 def __unicode__(self): 23 return self.name 24 25 class Meta: 26 verbose_name = _(u"Structure") 27 verbose_name_plural = _(u"Structures") 28 ordering = ['name'] 29 permissions = (("can_bypass_structure", _("Can by structure")),) 30 31 32 def default_structure(): 33 """ Create default structure if necessary """ 34 return Structure.objects.get_or_create(name=settings.DEFAULT_STRUCTURE_NAME)[0] 35 36 37 class StructureRelatedQuerySet(models.query.QuerySet): 38 def for_user(self, user): 39 return StructureRelatedQuerySet.queryset_for_user(self, user) 40 41 @staticmethod 42 def queryset_for_user(queryset, user): 43 return queryset.filter(structure=user.profile.structure) 44 45 46 class StructureRelatedManager(models.Manager): 47 """ A simple manager to manage structure related objects""" 48 def get_queryset(self): 49 return StructureRelatedQuerySet(self.model, using=self._db) 50 51 def for_user(self, user): 52 """ Filter by user's structure """ 53 return self.get_queryset().for_user(user) 54 55 56 class StructureRelated(models.Model): 57 """ 58 A mixin used for any entities that belong to a structure 59 """ 60 structure = models.ForeignKey(Structure, default=default_structure, 61 verbose_name=_(u"Related structure"), db_column='structure') 62 63 objects = models.Manager() 64 in_structure = StructureRelatedManager() 65 66 @classmethod 67 def for_user(cls, user): 68 """ Shortcut to manager's filter by user """ 69 return cls.in_structure.for_user(user) 70 71 def same_structure(self, user): 72 """ Returns True if the user is in the same structure, False otherwise. """ 73 return user.profile.structure == self.structure 74 75 class Meta: 76 abstract = True 77 verbose_name = _(u"Related structures") 78 verbose_name_plural = _(u"Related structure") 79 80 81 class UserProfile(StructureRelated): 82 """ 83 A custom user profile 84 """ 85 user = models.OneToOneField(User, unique=True) 86 87 language = models.CharField(_(u"Language"), max_length=10, 88 choices=settings.LANGUAGES, 89 default=settings.LANGUAGE_CODE) 90 91 class Meta: 92 verbose_name = _(u"User's profile") 93 verbose_name_plural = _(u"User's profiles") 94 95 def __unicode__(self): 96 return _("Profile for %s") % self.user 97 98 User.profile = reify(lambda u: UserProfile.objects.get_or_create(user=u)[0]) 99 100 101 @receiver(user_logged_in) 102 def lang(sender, **kwargs): 103 """ Set user's language in session when he logs in. """ 104 lang_code = kwargs['user'].profile.language 105 kwargs['request'].session['django_language'] = lang_code 106 ``` Path: `geotrek/authent/decorators.py` Content: ``` 1 from functools import wraps 2 3 from django.shortcuts import redirect 4 from django.contrib import messages 5 from django.http import HttpResponseRedirect 6 from django.utils.translation import ugettext_lazy as _ 7 from django.utils.decorators import available_attrs 8 9 10 def same_structure_required(redirect_to): 11 """ 12 A decorator for class-based views. It relies on ``self.get_object()`` 13 method object, and assumes decorated views to handle ``StructureRelated`` 14 objects. 15 """ 16 def decorator(view_func): 17 @wraps(view_func, assigned=available_attrs(view_func)) 18 def _wrapped_view(self, request, *args, **kwargs): 19 result = view_func(self, request, *args, **kwargs) 20 21 # Superuser is always allowed 22 if request.user.is_superuser: 23 return result 24 25 if isinstance(result, HttpResponseRedirect): 26 return result 27 28 can_bypass_structure = request.user.has_perm('can_bypass_structure') 29 obj = hasattr(self, 'get_object') and self.get_object() or getattr(self, 'object', None) 30 if can_bypass_structure or (obj and obj.same_structure(request.user)): 31 return result 32 messages.warning(request, _(u'Access to the requested resource is restricted by structure. You have been redirected.')) 33 34 return redirect(redirect_to, *args, **kwargs) 35 return _wrapped_view 36 return decorator 37 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/geotrek/authent/decorators.py b/geotrek/authent/decorators.py --- a/geotrek/authent/decorators.py +++ b/geotrek/authent/decorators.py @@ -18,16 +18,11 @@ def _wrapped_view(self, request, *args, **kwargs): result = view_func(self, request, *args, **kwargs) - # Superuser is always allowed - if request.user.is_superuser: - return result - if isinstance(result, HttpResponseRedirect): return result - can_bypass_structure = request.user.has_perm('can_bypass_structure') obj = hasattr(self, 'get_object') and self.get_object() or getattr(self, 'object', None) - if can_bypass_structure or (obj and obj.same_structure(request.user)): + if obj.same_structure(request.user): return result messages.warning(request, _(u'Access to the requested resource is restricted by structure. You have been redirected.')) diff --git a/geotrek/authent/models.py b/geotrek/authent/models.py --- a/geotrek/authent/models.py +++ b/geotrek/authent/models.py @@ -26,7 +26,7 @@ verbose_name = _(u"Structure") verbose_name_plural = _(u"Structures") ordering = ['name'] - permissions = (("can_bypass_structure", _("Can by structure")),) + permissions = (("can_bypass_structure", _("Can bypass structure")),) def default_structure(): @@ -69,8 +69,11 @@ return cls.in_structure.for_user(user) def same_structure(self, user): - """ Returns True if the user is in the same structure, False otherwise. """ - return user.profile.structure == self.structure + """ Returns True if the user is in the same structure or has + bypass_structure permission, False otherwise. """ + return (user.profile.structure == self.structure or + user.is_superuser or + user.has_perm('authent.can_bypass_structure')) class Meta: abstract = True
{"golden_diff": "diff --git a/geotrek/authent/decorators.py b/geotrek/authent/decorators.py\n--- a/geotrek/authent/decorators.py\n+++ b/geotrek/authent/decorators.py\n@@ -18,16 +18,11 @@\n def _wrapped_view(self, request, *args, **kwargs):\n result = view_func(self, request, *args, **kwargs)\n \n- # Superuser is always allowed\n- if request.user.is_superuser:\n- return result\n-\n if isinstance(result, HttpResponseRedirect):\n return result\n \n- can_bypass_structure = request.user.has_perm('can_bypass_structure')\n obj = hasattr(self, 'get_object') and self.get_object() or getattr(self, 'object', None)\n- if can_bypass_structure or (obj and obj.same_structure(request.user)):\n+ if obj.same_structure(request.user):\n return result\n messages.warning(request, _(u'Access to the requested resource is restricted by structure. You have been redirected.'))\n \ndiff --git a/geotrek/authent/models.py b/geotrek/authent/models.py\n--- a/geotrek/authent/models.py\n+++ b/geotrek/authent/models.py\n@@ -26,7 +26,7 @@\n verbose_name = _(u\"Structure\")\n verbose_name_plural = _(u\"Structures\")\n ordering = ['name']\n- permissions = ((\"can_bypass_structure\", _(\"Can by structure\")),)\n+ permissions = ((\"can_bypass_structure\", _(\"Can bypass structure\")),)\n \n \n def default_structure():\n@@ -69,8 +69,11 @@\n return cls.in_structure.for_user(user)\n \n def same_structure(self, user):\n- \"\"\" Returns True if the user is in the same structure, False otherwise. \"\"\"\n- return user.profile.structure == self.structure\n+ \"\"\" Returns True if the user is in the same structure or has\n+ bypass_structure permission, False otherwise. \"\"\"\n+ return (user.profile.structure == self.structure or\n+ user.is_superuser or\n+ user.has_perm('authent.can_bypass_structure'))\n \n class Meta:\n abstract = True\n", "issue": "Should not disable edit button if having bypass structure permission\nWorkaround: write url by hand (eg. \"/trek/edit/1/\").\n\n", "before_files": [{"content": "# -*- coding: utf-8 -*-\n\n\"\"\"\n Models to manage users and profiles\n\"\"\"\nfrom django.db import models\nfrom django.contrib.auth.models import User\nfrom django.conf import settings\nfrom django.utils.translation import ugettext_lazy as _\nfrom django.dispatch import receiver\nfrom django.contrib.auth.signals import user_logged_in\n\nfrom geotrek.common.utils import reify\n\n\nclass Structure(models.Model):\n \"\"\"\n Represents an organisational structure, to which users are related.\n \"\"\"\n name = models.CharField(max_length=256, verbose_name=_(u\"Nom\"))\n\n def __unicode__(self):\n return self.name\n\n class Meta:\n verbose_name = _(u\"Structure\")\n verbose_name_plural = _(u\"Structures\")\n ordering = ['name']\n permissions = ((\"can_bypass_structure\", _(\"Can by structure\")),)\n\n\ndef default_structure():\n \"\"\" Create default structure if necessary \"\"\"\n return Structure.objects.get_or_create(name=settings.DEFAULT_STRUCTURE_NAME)[0]\n\n\nclass StructureRelatedQuerySet(models.query.QuerySet):\n def for_user(self, user):\n return StructureRelatedQuerySet.queryset_for_user(self, user)\n\n @staticmethod\n def queryset_for_user(queryset, user):\n return queryset.filter(structure=user.profile.structure)\n\n\nclass StructureRelatedManager(models.Manager):\n \"\"\" A simple manager to manage structure related objects\"\"\"\n def get_queryset(self):\n return StructureRelatedQuerySet(self.model, using=self._db)\n\n def for_user(self, user):\n \"\"\" Filter by user's structure \"\"\"\n return self.get_queryset().for_user(user)\n\n\nclass StructureRelated(models.Model):\n \"\"\"\n A mixin used for any entities that belong to a structure\n \"\"\"\n structure = models.ForeignKey(Structure, default=default_structure,\n verbose_name=_(u\"Related structure\"), db_column='structure')\n\n objects = models.Manager()\n in_structure = StructureRelatedManager()\n\n @classmethod\n def for_user(cls, user):\n \"\"\" Shortcut to manager's filter by user \"\"\"\n return cls.in_structure.for_user(user)\n\n def same_structure(self, user):\n \"\"\" Returns True if the user is in the same structure, False otherwise. \"\"\"\n return user.profile.structure == self.structure\n\n class Meta:\n abstract = True\n verbose_name = _(u\"Related structures\")\n verbose_name_plural = _(u\"Related structure\")\n\n\nclass UserProfile(StructureRelated):\n \"\"\"\n A custom user profile\n \"\"\"\n user = models.OneToOneField(User, unique=True)\n\n language = models.CharField(_(u\"Language\"), max_length=10,\n choices=settings.LANGUAGES,\n default=settings.LANGUAGE_CODE)\n\n class Meta:\n verbose_name = _(u\"User's profile\")\n verbose_name_plural = _(u\"User's profiles\")\n\n def __unicode__(self):\n return _(\"Profile for %s\") % self.user\n\nUser.profile = reify(lambda u: UserProfile.objects.get_or_create(user=u)[0])\n\n\n@receiver(user_logged_in)\ndef lang(sender, **kwargs):\n \"\"\" Set user's language in session when he logs in. \"\"\"\n lang_code = kwargs['user'].profile.language\n kwargs['request'].session['django_language'] = lang_code\n", "path": "geotrek/authent/models.py"}, {"content": "from functools import wraps\n\nfrom django.shortcuts import redirect\nfrom django.contrib import messages\nfrom django.http import HttpResponseRedirect\nfrom django.utils.translation import ugettext_lazy as _\nfrom django.utils.decorators import available_attrs\n\n\ndef same_structure_required(redirect_to):\n \"\"\"\n A decorator for class-based views. It relies on ``self.get_object()``\n method object, and assumes decorated views to handle ``StructureRelated``\n objects.\n \"\"\"\n def decorator(view_func):\n @wraps(view_func, assigned=available_attrs(view_func))\n def _wrapped_view(self, request, *args, **kwargs):\n result = view_func(self, request, *args, **kwargs)\n\n # Superuser is always allowed\n if request.user.is_superuser:\n return result\n\n if isinstance(result, HttpResponseRedirect):\n return result\n\n can_bypass_structure = request.user.has_perm('can_bypass_structure')\n obj = hasattr(self, 'get_object') and self.get_object() or getattr(self, 'object', None)\n if can_bypass_structure or (obj and obj.same_structure(request.user)):\n return result\n messages.warning(request, _(u'Access to the requested resource is restricted by structure. You have been redirected.'))\n\n return redirect(redirect_to, *args, **kwargs)\n return _wrapped_view\n return decorator\n", "path": "geotrek/authent/decorators.py"}], "after_files": [{"content": "# -*- coding: utf-8 -*-\n\n\"\"\"\n Models to manage users and profiles\n\"\"\"\nfrom django.db import models\nfrom django.contrib.auth.models import User\nfrom django.conf import settings\nfrom django.utils.translation import ugettext_lazy as _\nfrom django.dispatch import receiver\nfrom django.contrib.auth.signals import user_logged_in\n\nfrom geotrek.common.utils import reify\n\n\nclass Structure(models.Model):\n \"\"\"\n Represents an organisational structure, to which users are related.\n \"\"\"\n name = models.CharField(max_length=256, verbose_name=_(u\"Nom\"))\n\n def __unicode__(self):\n return self.name\n\n class Meta:\n verbose_name = _(u\"Structure\")\n verbose_name_plural = _(u\"Structures\")\n ordering = ['name']\n permissions = ((\"can_bypass_structure\", _(\"Can bypass structure\")),)\n\n\ndef default_structure():\n \"\"\" Create default structure if necessary \"\"\"\n return Structure.objects.get_or_create(name=settings.DEFAULT_STRUCTURE_NAME)[0]\n\n\nclass StructureRelatedQuerySet(models.query.QuerySet):\n def for_user(self, user):\n return StructureRelatedQuerySet.queryset_for_user(self, user)\n\n @staticmethod\n def queryset_for_user(queryset, user):\n return queryset.filter(structure=user.profile.structure)\n\n\nclass StructureRelatedManager(models.Manager):\n \"\"\" A simple manager to manage structure related objects\"\"\"\n def get_queryset(self):\n return StructureRelatedQuerySet(self.model, using=self._db)\n\n def for_user(self, user):\n \"\"\" Filter by user's structure \"\"\"\n return self.get_queryset().for_user(user)\n\n\nclass StructureRelated(models.Model):\n \"\"\"\n A mixin used for any entities that belong to a structure\n \"\"\"\n structure = models.ForeignKey(Structure, default=default_structure,\n verbose_name=_(u\"Related structure\"), db_column='structure')\n\n objects = models.Manager()\n in_structure = StructureRelatedManager()\n\n @classmethod\n def for_user(cls, user):\n \"\"\" Shortcut to manager's filter by user \"\"\"\n return cls.in_structure.for_user(user)\n\n def same_structure(self, user):\n \"\"\" Returns True if the user is in the same structure or has\n bypass_structure permission, False otherwise. \"\"\"\n return (user.profile.structure == self.structure or\n user.is_superuser or\n user.has_perm('authent.can_bypass_structure'))\n\n class Meta:\n abstract = True\n verbose_name = _(u\"Related structures\")\n verbose_name_plural = _(u\"Related structure\")\n\n\nclass UserProfile(StructureRelated):\n \"\"\"\n A custom user profile\n \"\"\"\n user = models.OneToOneField(User, unique=True)\n\n language = models.CharField(_(u\"Language\"), max_length=10,\n choices=settings.LANGUAGES,\n default=settings.LANGUAGE_CODE)\n\n class Meta:\n verbose_name = _(u\"User's profile\")\n verbose_name_plural = _(u\"User's profiles\")\n\n def __unicode__(self):\n return _(\"Profile for %s\") % self.user\n\nUser.profile = reify(lambda u: UserProfile.objects.get_or_create(user=u)[0])\n\n\n@receiver(user_logged_in)\ndef lang(sender, **kwargs):\n \"\"\" Set user's language in session when he logs in. \"\"\"\n lang_code = kwargs['user'].profile.language\n kwargs['request'].session['django_language'] = lang_code\n", "path": "geotrek/authent/models.py"}, {"content": "from functools import wraps\n\nfrom django.shortcuts import redirect\nfrom django.contrib import messages\nfrom django.http import HttpResponseRedirect\nfrom django.utils.translation import ugettext_lazy as _\nfrom django.utils.decorators import available_attrs\n\n\ndef same_structure_required(redirect_to):\n \"\"\"\n A decorator for class-based views. It relies on ``self.get_object()``\n method object, and assumes decorated views to handle ``StructureRelated``\n objects.\n \"\"\"\n def decorator(view_func):\n @wraps(view_func, assigned=available_attrs(view_func))\n def _wrapped_view(self, request, *args, **kwargs):\n result = view_func(self, request, *args, **kwargs)\n\n if isinstance(result, HttpResponseRedirect):\n return result\n\n obj = hasattr(self, 'get_object') and self.get_object() or getattr(self, 'object', None)\n if obj.same_structure(request.user):\n return result\n messages.warning(request, _(u'Access to the requested resource is restricted by structure. You have been redirected.'))\n\n return redirect(redirect_to, *args, **kwargs)\n return _wrapped_view\n return decorator\n", "path": "geotrek/authent/decorators.py"}]}
1,548
465
gh_patches_debug_19323
rasdani/github-patches
git_diff
PokemonGoF__PokemonGo-Bot-5036
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Crash on Level Up I'm gonna guess an issue with: https://github.com/PokemonGoF/PokemonGo-Bot/pull/5016 which is also the version im on ``` Traceback (most recent call last): File "pokecli.py", line 781, in <module> main() File "pokecli.py", line 139, in main bot.tick() File "C:\Users\Steve\Downloads\PokemonGo-Bot\pokemongo_bot\__init__.py", line 658, in tick if worker.work() == WorkerResult.RUNNING: File "C:\Users\Steve\Downloads\PokemonGo-Bot\pokemongo_bot\cell_workers\collect_level_up_reward.py", line 37, in work self._collect_level_reward() File "C:\Users\Steve\Downloads\PokemonGo-Bot\pokemongo_bot\cell_workers\collect_level_up_reward.py", line 70, in _collect_level_reward 'items': ', '.join(["{}x {}".format(data[x], x) for x in data]) TypeError: list indices must be integers, not dict ``` --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `pokemongo_bot/cell_workers/collect_level_up_reward.py` Content: ``` 1 import sys 2 3 from pokemongo_bot.base_task import BaseTask 4 from pokemongo_bot import inventory 5 6 7 class CollectLevelUpReward(BaseTask): 8 SUPPORTED_TASK_API_VERSION = 1 9 10 current_level = 0 11 previous_level = 0 12 13 def initialize(self): 14 self._process_config() 15 self.current_level = inventory.player().level 16 self.previous_level = 0 17 18 def work(self): 19 if self._should_run(): 20 self.current_level = inventory.player().level 21 22 if self.collect_reward: 23 # let's check level reward on bot initialization 24 # to be able get rewards for old bots 25 if self.previous_level == 0: 26 self._collect_level_reward() 27 # level up situation 28 elif self.current_level > self.previous_level: 29 self.emit_event( 30 'level_up', 31 formatted='Level up from {previous_level} to {current_level}', 32 data={ 33 'previous_level': self.previous_level, 34 'current_level': self.current_level 35 } 36 ) 37 self._collect_level_reward() 38 39 if self.level_limit != -1 and self.current_level >= self.level_limit: 40 sys.exit("You have reached your target level! Exiting now.") 41 42 self.previous_level = self.current_level 43 44 def _process_config(self): 45 self.level_limit = self.config.get('level_limit', -1) 46 self.collect_reward = self.config.get('collect_reward', True) 47 48 def _should_run(self): 49 return self.level_limit != -1 or self.collect_reward 50 51 def _collect_level_reward(self): 52 response_dict = self.bot.api.level_up_rewards(level=self.current_level) 53 if 'status_code' in response_dict and response_dict['status_code'] == 1: 54 data = (response_dict 55 .get('responses', {}) 56 .get('LEVEL_UP_REWARDS', {}) 57 .get('items_awarded', [])) 58 59 for item in data: 60 if 'item_id' in item and str(item['item_id']) in self.bot.item_list: 61 got_item = self.bot.item_list[str(item['item_id'])] 62 item['name'] = got_item 63 count = 'item_count' in item and item['item_count'] or 0 64 inventory.items().get(item['item_id']).add(count) 65 try: 66 self.emit_event( 67 'level_up_reward', 68 formatted='Received level up reward: {items}', 69 data={ 70 'items': ', '.join(["{}x {}".format(data[x], x) for x in data]) 71 } 72 ) 73 except TypeError: 74 pass 75 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/pokemongo_bot/cell_workers/collect_level_up_reward.py b/pokemongo_bot/cell_workers/collect_level_up_reward.py --- a/pokemongo_bot/cell_workers/collect_level_up_reward.py +++ b/pokemongo_bot/cell_workers/collect_level_up_reward.py @@ -62,13 +62,11 @@ item['name'] = got_item count = 'item_count' in item and item['item_count'] or 0 inventory.items().get(item['item_id']).add(count) - try: - self.emit_event( - 'level_up_reward', - formatted='Received level up reward: {items}', - data={ - 'items': ', '.join(["{}x {}".format(data[x], x) for x in data]) - } - ) - except TypeError: - pass + self.emit_event( + 'level_up_reward', + formatted='Received level up reward: {items}', + data={ + # [{'item_id': 3, 'name': u'Ultraball', 'item_count': 10}, {'item_id': 103, 'name': u'Hyper Potion', 'item_count': 10}] + 'items': ', '.join(["{}x {}".format(x['item_count'], x['name']) for x in data]) + } + )
{"golden_diff": "diff --git a/pokemongo_bot/cell_workers/collect_level_up_reward.py b/pokemongo_bot/cell_workers/collect_level_up_reward.py\n--- a/pokemongo_bot/cell_workers/collect_level_up_reward.py\n+++ b/pokemongo_bot/cell_workers/collect_level_up_reward.py\n@@ -62,13 +62,11 @@\n item['name'] = got_item\n count = 'item_count' in item and item['item_count'] or 0\n inventory.items().get(item['item_id']).add(count)\n- try:\n- self.emit_event(\n- 'level_up_reward',\n- formatted='Received level up reward: {items}',\n- data={\n- 'items': ', '.join([\"{}x {}\".format(data[x], x) for x in data])\n- }\n- )\n- except TypeError:\n- pass\n+ self.emit_event(\n+ 'level_up_reward',\n+ formatted='Received level up reward: {items}',\n+ data={\n+ # [{'item_id': 3, 'name': u'Ultraball', 'item_count': 10}, {'item_id': 103, 'name': u'Hyper Potion', 'item_count': 10}]\n+ 'items': ', '.join([\"{}x {}\".format(x['item_count'], x['name']) for x in data])\n+ }\n+ )\n", "issue": "Crash on Level Up\nI'm gonna guess an issue with:\nhttps://github.com/PokemonGoF/PokemonGo-Bot/pull/5016\n\nwhich is also the version im on\n\n```\nTraceback (most recent call last):\n File \"pokecli.py\", line 781, in <module>\n main()\n File \"pokecli.py\", line 139, in main\n bot.tick()\n File \"C:\\Users\\Steve\\Downloads\\PokemonGo-Bot\\pokemongo_bot\\__init__.py\", line 658, in tick\n if worker.work() == WorkerResult.RUNNING:\n File \"C:\\Users\\Steve\\Downloads\\PokemonGo-Bot\\pokemongo_bot\\cell_workers\\collect_level_up_reward.py\", line 37, in work\n self._collect_level_reward()\n File \"C:\\Users\\Steve\\Downloads\\PokemonGo-Bot\\pokemongo_bot\\cell_workers\\collect_level_up_reward.py\", line 70, in _collect_level_reward\n 'items': ', '.join([\"{}x {}\".format(data[x], x) for x in data])\nTypeError: list indices must be integers, not dict\n```\n\n", "before_files": [{"content": "import sys\n\nfrom pokemongo_bot.base_task import BaseTask\nfrom pokemongo_bot import inventory\n\n\nclass CollectLevelUpReward(BaseTask):\n SUPPORTED_TASK_API_VERSION = 1\n\n current_level = 0\n previous_level = 0\n\n def initialize(self):\n self._process_config()\n self.current_level = inventory.player().level\n self.previous_level = 0\n\n def work(self):\n if self._should_run():\n self.current_level = inventory.player().level\n\n if self.collect_reward:\n # let's check level reward on bot initialization\n # to be able get rewards for old bots\n if self.previous_level == 0:\n self._collect_level_reward()\n # level up situation\n elif self.current_level > self.previous_level:\n self.emit_event(\n 'level_up',\n formatted='Level up from {previous_level} to {current_level}',\n data={\n 'previous_level': self.previous_level,\n 'current_level': self.current_level\n }\n )\n self._collect_level_reward()\n\n if self.level_limit != -1 and self.current_level >= self.level_limit:\n sys.exit(\"You have reached your target level! Exiting now.\")\n\n self.previous_level = self.current_level\n\n def _process_config(self):\n self.level_limit = self.config.get('level_limit', -1)\n self.collect_reward = self.config.get('collect_reward', True)\n\n def _should_run(self):\n return self.level_limit != -1 or self.collect_reward\n\n def _collect_level_reward(self):\n response_dict = self.bot.api.level_up_rewards(level=self.current_level)\n if 'status_code' in response_dict and response_dict['status_code'] == 1:\n data = (response_dict\n .get('responses', {})\n .get('LEVEL_UP_REWARDS', {})\n .get('items_awarded', []))\n\n for item in data:\n if 'item_id' in item and str(item['item_id']) in self.bot.item_list:\n got_item = self.bot.item_list[str(item['item_id'])]\n item['name'] = got_item\n count = 'item_count' in item and item['item_count'] or 0\n inventory.items().get(item['item_id']).add(count)\n try:\n self.emit_event(\n 'level_up_reward',\n formatted='Received level up reward: {items}',\n data={\n 'items': ', '.join([\"{}x {}\".format(data[x], x) for x in data])\n }\n )\n except TypeError:\n pass\n", "path": "pokemongo_bot/cell_workers/collect_level_up_reward.py"}], "after_files": [{"content": "import sys\n\nfrom pokemongo_bot.base_task import BaseTask\nfrom pokemongo_bot import inventory\n\n\nclass CollectLevelUpReward(BaseTask):\n SUPPORTED_TASK_API_VERSION = 1\n\n current_level = 0\n previous_level = 0\n\n def initialize(self):\n self._process_config()\n self.current_level = inventory.player().level\n self.previous_level = 0\n\n def work(self):\n if self._should_run():\n self.current_level = inventory.player().level\n\n if self.collect_reward:\n # let's check level reward on bot initialization\n # to be able get rewards for old bots\n if self.previous_level == 0:\n self._collect_level_reward()\n # level up situation\n elif self.current_level > self.previous_level:\n self.emit_event(\n 'level_up',\n formatted='Level up from {previous_level} to {current_level}',\n data={\n 'previous_level': self.previous_level,\n 'current_level': self.current_level\n }\n )\n self._collect_level_reward()\n\n if self.level_limit != -1 and self.current_level >= self.level_limit:\n sys.exit(\"You have reached your target level! Exiting now.\")\n\n self.previous_level = self.current_level\n\n def _process_config(self):\n self.level_limit = self.config.get('level_limit', -1)\n self.collect_reward = self.config.get('collect_reward', True)\n\n def _should_run(self):\n return self.level_limit != -1 or self.collect_reward\n\n def _collect_level_reward(self):\n response_dict = self.bot.api.level_up_rewards(level=self.current_level)\n if 'status_code' in response_dict and response_dict['status_code'] == 1:\n data = (response_dict\n .get('responses', {})\n .get('LEVEL_UP_REWARDS', {})\n .get('items_awarded', []))\n\n for item in data:\n if 'item_id' in item and str(item['item_id']) in self.bot.item_list:\n got_item = self.bot.item_list[str(item['item_id'])]\n item['name'] = got_item\n count = 'item_count' in item and item['item_count'] or 0\n inventory.items().get(item['item_id']).add(count)\n self.emit_event(\n 'level_up_reward',\n formatted='Received level up reward: {items}',\n data={\n # [{'item_id': 3, 'name': u'Ultraball', 'item_count': 10}, {'item_id': 103, 'name': u'Hyper Potion', 'item_count': 10}]\n 'items': ', '.join([\"{}x {}\".format(x['item_count'], x['name']) for x in data])\n }\n )\n", "path": "pokemongo_bot/cell_workers/collect_level_up_reward.py"}]}
1,224
309
gh_patches_debug_10136
rasdani/github-patches
git_diff
pytorch__vision-3591
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- This may be has extra "as" https://github.com/pytorch/vision/blob/631ff9123edeedf044c4355ef99dc42a396feb5b/torchvision/models/detection/transform.py#L87 --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `torchvision/models/detection/transform.py` Content: ``` 1 import math 2 import torch 3 from torch import nn, Tensor 4 from torch.nn import functional as F 5 import torchvision 6 from typing import List, Tuple, Dict, Optional 7 8 from .image_list import ImageList 9 from .roi_heads import paste_masks_in_image 10 11 12 @torch.jit.unused 13 def _resize_image_and_masks_onnx(image, self_min_size, self_max_size, target): 14 # type: (Tensor, float, float, Optional[Dict[str, Tensor]]) -> Tuple[Tensor, Optional[Dict[str, Tensor]]] 15 from torch.onnx import operators 16 im_shape = operators.shape_as_tensor(image)[-2:] 17 min_size = torch.min(im_shape).to(dtype=torch.float32) 18 max_size = torch.max(im_shape).to(dtype=torch.float32) 19 scale_factor = torch.min(self_min_size / min_size, self_max_size / max_size) 20 21 image = torch.nn.functional.interpolate( 22 image[None], scale_factor=scale_factor, mode='bilinear', recompute_scale_factor=True, 23 align_corners=False)[0] 24 25 if target is None: 26 return image, target 27 28 if "masks" in target: 29 mask = target["masks"] 30 mask = F.interpolate(mask[:, None].float(), scale_factor=scale_factor, recompute_scale_factor=True)[:, 0].byte() 31 target["masks"] = mask 32 return image, target 33 34 35 def _resize_image_and_masks(image, self_min_size, self_max_size, target): 36 # type: (Tensor, float, float, Optional[Dict[str, Tensor]]) -> Tuple[Tensor, Optional[Dict[str, Tensor]]] 37 im_shape = torch.tensor(image.shape[-2:]) 38 min_size = float(torch.min(im_shape)) 39 max_size = float(torch.max(im_shape)) 40 scale_factor = self_min_size / min_size 41 if max_size * scale_factor > self_max_size: 42 scale_factor = self_max_size / max_size 43 image = torch.nn.functional.interpolate( 44 image[None], scale_factor=scale_factor, mode='bilinear', recompute_scale_factor=True, 45 align_corners=False)[0] 46 47 if target is None: 48 return image, target 49 50 if "masks" in target: 51 mask = target["masks"] 52 mask = F.interpolate(mask[:, None].float(), scale_factor=scale_factor, recompute_scale_factor=True)[:, 0].byte() 53 target["masks"] = mask 54 return image, target 55 56 57 class GeneralizedRCNNTransform(nn.Module): 58 """ 59 Performs input / target transformation before feeding the data to a GeneralizedRCNN 60 model. 61 62 The transformations it perform are: 63 - input normalization (mean subtraction and std division) 64 - input / target resizing to match min_size / max_size 65 66 It returns a ImageList for the inputs, and a List[Dict[Tensor]] for the targets 67 """ 68 69 def __init__(self, min_size, max_size, image_mean, image_std): 70 super(GeneralizedRCNNTransform, self).__init__() 71 if not isinstance(min_size, (list, tuple)): 72 min_size = (min_size,) 73 self.min_size = min_size 74 self.max_size = max_size 75 self.image_mean = image_mean 76 self.image_std = image_std 77 78 def forward(self, 79 images, # type: List[Tensor] 80 targets=None # type: Optional[List[Dict[str, Tensor]]] 81 ): 82 # type: (...) -> Tuple[ImageList, Optional[List[Dict[str, Tensor]]]] 83 images = [img for img in images] 84 if targets is not None: 85 # make a copy of targets to avoid modifying it in-place 86 # once torchscript supports dict comprehension 87 # this can be simplified as as follows 88 # targets = [{k: v for k,v in t.items()} for t in targets] 89 targets_copy: List[Dict[str, Tensor]] = [] 90 for t in targets: 91 data: Dict[str, Tensor] = {} 92 for k, v in t.items(): 93 data[k] = v 94 targets_copy.append(data) 95 targets = targets_copy 96 for i in range(len(images)): 97 image = images[i] 98 target_index = targets[i] if targets is not None else None 99 100 if image.dim() != 3: 101 raise ValueError("images is expected to be a list of 3d tensors " 102 "of shape [C, H, W], got {}".format(image.shape)) 103 image = self.normalize(image) 104 image, target_index = self.resize(image, target_index) 105 images[i] = image 106 if targets is not None and target_index is not None: 107 targets[i] = target_index 108 109 image_sizes = [img.shape[-2:] for img in images] 110 images = self.batch_images(images) 111 image_sizes_list: List[Tuple[int, int]] = [] 112 for image_size in image_sizes: 113 assert len(image_size) == 2 114 image_sizes_list.append((image_size[0], image_size[1])) 115 116 image_list = ImageList(images, image_sizes_list) 117 return image_list, targets 118 119 def normalize(self, image): 120 if not image.is_floating_point(): 121 raise TypeError( 122 f"Expected input images to be of floating type (in range [0, 1]), " 123 f"but found type {image.dtype} instead" 124 ) 125 dtype, device = image.dtype, image.device 126 mean = torch.as_tensor(self.image_mean, dtype=dtype, device=device) 127 std = torch.as_tensor(self.image_std, dtype=dtype, device=device) 128 return (image - mean[:, None, None]) / std[:, None, None] 129 130 def torch_choice(self, k): 131 # type: (List[int]) -> int 132 """ 133 Implements `random.choice` via torch ops so it can be compiled with 134 TorchScript. Remove if https://github.com/pytorch/pytorch/issues/25803 135 is fixed. 136 """ 137 index = int(torch.empty(1).uniform_(0., float(len(k))).item()) 138 return k[index] 139 140 def resize(self, image, target): 141 # type: (Tensor, Optional[Dict[str, Tensor]]) -> Tuple[Tensor, Optional[Dict[str, Tensor]]] 142 h, w = image.shape[-2:] 143 if self.training: 144 size = float(self.torch_choice(self.min_size)) 145 else: 146 # FIXME assume for now that testing uses the largest scale 147 size = float(self.min_size[-1]) 148 if torchvision._is_tracing(): 149 image, target = _resize_image_and_masks_onnx(image, size, float(self.max_size), target) 150 else: 151 image, target = _resize_image_and_masks(image, size, float(self.max_size), target) 152 153 if target is None: 154 return image, target 155 156 bbox = target["boxes"] 157 bbox = resize_boxes(bbox, (h, w), image.shape[-2:]) 158 target["boxes"] = bbox 159 160 if "keypoints" in target: 161 keypoints = target["keypoints"] 162 keypoints = resize_keypoints(keypoints, (h, w), image.shape[-2:]) 163 target["keypoints"] = keypoints 164 return image, target 165 166 # _onnx_batch_images() is an implementation of 167 # batch_images() that is supported by ONNX tracing. 168 @torch.jit.unused 169 def _onnx_batch_images(self, images, size_divisible=32): 170 # type: (List[Tensor], int) -> Tensor 171 max_size = [] 172 for i in range(images[0].dim()): 173 max_size_i = torch.max(torch.stack([img.shape[i] for img in images]).to(torch.float32)).to(torch.int64) 174 max_size.append(max_size_i) 175 stride = size_divisible 176 max_size[1] = (torch.ceil((max_size[1].to(torch.float32)) / stride) * stride).to(torch.int64) 177 max_size[2] = (torch.ceil((max_size[2].to(torch.float32)) / stride) * stride).to(torch.int64) 178 max_size = tuple(max_size) 179 180 # work around for 181 # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) 182 # which is not yet supported in onnx 183 padded_imgs = [] 184 for img in images: 185 padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] 186 padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) 187 padded_imgs.append(padded_img) 188 189 return torch.stack(padded_imgs) 190 191 def max_by_axis(self, the_list): 192 # type: (List[List[int]]) -> List[int] 193 maxes = the_list[0] 194 for sublist in the_list[1:]: 195 for index, item in enumerate(sublist): 196 maxes[index] = max(maxes[index], item) 197 return maxes 198 199 def batch_images(self, images, size_divisible=32): 200 # type: (List[Tensor], int) -> Tensor 201 if torchvision._is_tracing(): 202 # batch_images() does not export well to ONNX 203 # call _onnx_batch_images() instead 204 return self._onnx_batch_images(images, size_divisible) 205 206 max_size = self.max_by_axis([list(img.shape) for img in images]) 207 stride = float(size_divisible) 208 max_size = list(max_size) 209 max_size[1] = int(math.ceil(float(max_size[1]) / stride) * stride) 210 max_size[2] = int(math.ceil(float(max_size[2]) / stride) * stride) 211 212 batch_shape = [len(images)] + max_size 213 batched_imgs = images[0].new_full(batch_shape, 0) 214 for img, pad_img in zip(images, batched_imgs): 215 pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) 216 217 return batched_imgs 218 219 def postprocess(self, 220 result, # type: List[Dict[str, Tensor]] 221 image_shapes, # type: List[Tuple[int, int]] 222 original_image_sizes # type: List[Tuple[int, int]] 223 ): 224 # type: (...) -> List[Dict[str, Tensor]] 225 if self.training: 226 return result 227 for i, (pred, im_s, o_im_s) in enumerate(zip(result, image_shapes, original_image_sizes)): 228 boxes = pred["boxes"] 229 boxes = resize_boxes(boxes, im_s, o_im_s) 230 result[i]["boxes"] = boxes 231 if "masks" in pred: 232 masks = pred["masks"] 233 masks = paste_masks_in_image(masks, boxes, o_im_s) 234 result[i]["masks"] = masks 235 if "keypoints" in pred: 236 keypoints = pred["keypoints"] 237 keypoints = resize_keypoints(keypoints, im_s, o_im_s) 238 result[i]["keypoints"] = keypoints 239 return result 240 241 def __repr__(self): 242 format_string = self.__class__.__name__ + '(' 243 _indent = '\n ' 244 format_string += "{0}Normalize(mean={1}, std={2})".format(_indent, self.image_mean, self.image_std) 245 format_string += "{0}Resize(min_size={1}, max_size={2}, mode='bilinear')".format(_indent, self.min_size, 246 self.max_size) 247 format_string += '\n)' 248 return format_string 249 250 251 def resize_keypoints(keypoints, original_size, new_size): 252 # type: (Tensor, List[int], List[int]) -> Tensor 253 ratios = [ 254 torch.tensor(s, dtype=torch.float32, device=keypoints.device) / 255 torch.tensor(s_orig, dtype=torch.float32, device=keypoints.device) 256 for s, s_orig in zip(new_size, original_size) 257 ] 258 ratio_h, ratio_w = ratios 259 resized_data = keypoints.clone() 260 if torch._C._get_tracing_state(): 261 resized_data_0 = resized_data[:, :, 0] * ratio_w 262 resized_data_1 = resized_data[:, :, 1] * ratio_h 263 resized_data = torch.stack((resized_data_0, resized_data_1, resized_data[:, :, 2]), dim=2) 264 else: 265 resized_data[..., 0] *= ratio_w 266 resized_data[..., 1] *= ratio_h 267 return resized_data 268 269 270 def resize_boxes(boxes, original_size, new_size): 271 # type: (Tensor, List[int], List[int]) -> Tensor 272 ratios = [ 273 torch.tensor(s, dtype=torch.float32, device=boxes.device) / 274 torch.tensor(s_orig, dtype=torch.float32, device=boxes.device) 275 for s, s_orig in zip(new_size, original_size) 276 ] 277 ratio_height, ratio_width = ratios 278 xmin, ymin, xmax, ymax = boxes.unbind(1) 279 280 xmin = xmin * ratio_width 281 xmax = xmax * ratio_width 282 ymin = ymin * ratio_height 283 ymax = ymax * ratio_height 284 return torch.stack((xmin, ymin, xmax, ymax), dim=1) 285 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/torchvision/models/detection/transform.py b/torchvision/models/detection/transform.py --- a/torchvision/models/detection/transform.py +++ b/torchvision/models/detection/transform.py @@ -84,7 +84,7 @@ if targets is not None: # make a copy of targets to avoid modifying it in-place # once torchscript supports dict comprehension - # this can be simplified as as follows + # this can be simplified as follows # targets = [{k: v for k,v in t.items()} for t in targets] targets_copy: List[Dict[str, Tensor]] = [] for t in targets:
{"golden_diff": "diff --git a/torchvision/models/detection/transform.py b/torchvision/models/detection/transform.py\n--- a/torchvision/models/detection/transform.py\n+++ b/torchvision/models/detection/transform.py\n@@ -84,7 +84,7 @@\n if targets is not None:\n # make a copy of targets to avoid modifying it in-place\n # once torchscript supports dict comprehension\n- # this can be simplified as as follows\n+ # this can be simplified as follows\n # targets = [{k: v for k,v in t.items()} for t in targets]\n targets_copy: List[Dict[str, Tensor]] = []\n for t in targets:\n", "issue": "This may be has extra \"as\"\nhttps://github.com/pytorch/vision/blob/631ff9123edeedf044c4355ef99dc42a396feb5b/torchvision/models/detection/transform.py#L87\n", "before_files": [{"content": "import math\nimport torch\nfrom torch import nn, Tensor\nfrom torch.nn import functional as F\nimport torchvision\nfrom typing import List, Tuple, Dict, Optional\n\nfrom .image_list import ImageList\nfrom .roi_heads import paste_masks_in_image\n\n\[email protected]\ndef _resize_image_and_masks_onnx(image, self_min_size, self_max_size, target):\n # type: (Tensor, float, float, Optional[Dict[str, Tensor]]) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]\n from torch.onnx import operators\n im_shape = operators.shape_as_tensor(image)[-2:]\n min_size = torch.min(im_shape).to(dtype=torch.float32)\n max_size = torch.max(im_shape).to(dtype=torch.float32)\n scale_factor = torch.min(self_min_size / min_size, self_max_size / max_size)\n\n image = torch.nn.functional.interpolate(\n image[None], scale_factor=scale_factor, mode='bilinear', recompute_scale_factor=True,\n align_corners=False)[0]\n\n if target is None:\n return image, target\n\n if \"masks\" in target:\n mask = target[\"masks\"]\n mask = F.interpolate(mask[:, None].float(), scale_factor=scale_factor, recompute_scale_factor=True)[:, 0].byte()\n target[\"masks\"] = mask\n return image, target\n\n\ndef _resize_image_and_masks(image, self_min_size, self_max_size, target):\n # type: (Tensor, float, float, Optional[Dict[str, Tensor]]) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]\n im_shape = torch.tensor(image.shape[-2:])\n min_size = float(torch.min(im_shape))\n max_size = float(torch.max(im_shape))\n scale_factor = self_min_size / min_size\n if max_size * scale_factor > self_max_size:\n scale_factor = self_max_size / max_size\n image = torch.nn.functional.interpolate(\n image[None], scale_factor=scale_factor, mode='bilinear', recompute_scale_factor=True,\n align_corners=False)[0]\n\n if target is None:\n return image, target\n\n if \"masks\" in target:\n mask = target[\"masks\"]\n mask = F.interpolate(mask[:, None].float(), scale_factor=scale_factor, recompute_scale_factor=True)[:, 0].byte()\n target[\"masks\"] = mask\n return image, target\n\n\nclass GeneralizedRCNNTransform(nn.Module):\n \"\"\"\n Performs input / target transformation before feeding the data to a GeneralizedRCNN\n model.\n\n The transformations it perform are:\n - input normalization (mean subtraction and std division)\n - input / target resizing to match min_size / max_size\n\n It returns a ImageList for the inputs, and a List[Dict[Tensor]] for the targets\n \"\"\"\n\n def __init__(self, min_size, max_size, image_mean, image_std):\n super(GeneralizedRCNNTransform, self).__init__()\n if not isinstance(min_size, (list, tuple)):\n min_size = (min_size,)\n self.min_size = min_size\n self.max_size = max_size\n self.image_mean = image_mean\n self.image_std = image_std\n\n def forward(self,\n images, # type: List[Tensor]\n targets=None # type: Optional[List[Dict[str, Tensor]]]\n ):\n # type: (...) -> Tuple[ImageList, Optional[List[Dict[str, Tensor]]]]\n images = [img for img in images]\n if targets is not None:\n # make a copy of targets to avoid modifying it in-place\n # once torchscript supports dict comprehension\n # this can be simplified as as follows\n # targets = [{k: v for k,v in t.items()} for t in targets]\n targets_copy: List[Dict[str, Tensor]] = []\n for t in targets:\n data: Dict[str, Tensor] = {}\n for k, v in t.items():\n data[k] = v\n targets_copy.append(data)\n targets = targets_copy\n for i in range(len(images)):\n image = images[i]\n target_index = targets[i] if targets is not None else None\n\n if image.dim() != 3:\n raise ValueError(\"images is expected to be a list of 3d tensors \"\n \"of shape [C, H, W], got {}\".format(image.shape))\n image = self.normalize(image)\n image, target_index = self.resize(image, target_index)\n images[i] = image\n if targets is not None and target_index is not None:\n targets[i] = target_index\n\n image_sizes = [img.shape[-2:] for img in images]\n images = self.batch_images(images)\n image_sizes_list: List[Tuple[int, int]] = []\n for image_size in image_sizes:\n assert len(image_size) == 2\n image_sizes_list.append((image_size[0], image_size[1]))\n\n image_list = ImageList(images, image_sizes_list)\n return image_list, targets\n\n def normalize(self, image):\n if not image.is_floating_point():\n raise TypeError(\n f\"Expected input images to be of floating type (in range [0, 1]), \"\n f\"but found type {image.dtype} instead\"\n )\n dtype, device = image.dtype, image.device\n mean = torch.as_tensor(self.image_mean, dtype=dtype, device=device)\n std = torch.as_tensor(self.image_std, dtype=dtype, device=device)\n return (image - mean[:, None, None]) / std[:, None, None]\n\n def torch_choice(self, k):\n # type: (List[int]) -> int\n \"\"\"\n Implements `random.choice` via torch ops so it can be compiled with\n TorchScript. Remove if https://github.com/pytorch/pytorch/issues/25803\n is fixed.\n \"\"\"\n index = int(torch.empty(1).uniform_(0., float(len(k))).item())\n return k[index]\n\n def resize(self, image, target):\n # type: (Tensor, Optional[Dict[str, Tensor]]) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]\n h, w = image.shape[-2:]\n if self.training:\n size = float(self.torch_choice(self.min_size))\n else:\n # FIXME assume for now that testing uses the largest scale\n size = float(self.min_size[-1])\n if torchvision._is_tracing():\n image, target = _resize_image_and_masks_onnx(image, size, float(self.max_size), target)\n else:\n image, target = _resize_image_and_masks(image, size, float(self.max_size), target)\n\n if target is None:\n return image, target\n\n bbox = target[\"boxes\"]\n bbox = resize_boxes(bbox, (h, w), image.shape[-2:])\n target[\"boxes\"] = bbox\n\n if \"keypoints\" in target:\n keypoints = target[\"keypoints\"]\n keypoints = resize_keypoints(keypoints, (h, w), image.shape[-2:])\n target[\"keypoints\"] = keypoints\n return image, target\n\n # _onnx_batch_images() is an implementation of\n # batch_images() that is supported by ONNX tracing.\n @torch.jit.unused\n def _onnx_batch_images(self, images, size_divisible=32):\n # type: (List[Tensor], int) -> Tensor\n max_size = []\n for i in range(images[0].dim()):\n max_size_i = torch.max(torch.stack([img.shape[i] for img in images]).to(torch.float32)).to(torch.int64)\n max_size.append(max_size_i)\n stride = size_divisible\n max_size[1] = (torch.ceil((max_size[1].to(torch.float32)) / stride) * stride).to(torch.int64)\n max_size[2] = (torch.ceil((max_size[2].to(torch.float32)) / stride) * stride).to(torch.int64)\n max_size = tuple(max_size)\n\n # work around for\n # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)\n # which is not yet supported in onnx\n padded_imgs = []\n for img in images:\n padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]\n padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))\n padded_imgs.append(padded_img)\n\n return torch.stack(padded_imgs)\n\n def max_by_axis(self, the_list):\n # type: (List[List[int]]) -> List[int]\n maxes = the_list[0]\n for sublist in the_list[1:]:\n for index, item in enumerate(sublist):\n maxes[index] = max(maxes[index], item)\n return maxes\n\n def batch_images(self, images, size_divisible=32):\n # type: (List[Tensor], int) -> Tensor\n if torchvision._is_tracing():\n # batch_images() does not export well to ONNX\n # call _onnx_batch_images() instead\n return self._onnx_batch_images(images, size_divisible)\n\n max_size = self.max_by_axis([list(img.shape) for img in images])\n stride = float(size_divisible)\n max_size = list(max_size)\n max_size[1] = int(math.ceil(float(max_size[1]) / stride) * stride)\n max_size[2] = int(math.ceil(float(max_size[2]) / stride) * stride)\n\n batch_shape = [len(images)] + max_size\n batched_imgs = images[0].new_full(batch_shape, 0)\n for img, pad_img in zip(images, batched_imgs):\n pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)\n\n return batched_imgs\n\n def postprocess(self,\n result, # type: List[Dict[str, Tensor]]\n image_shapes, # type: List[Tuple[int, int]]\n original_image_sizes # type: List[Tuple[int, int]]\n ):\n # type: (...) -> List[Dict[str, Tensor]]\n if self.training:\n return result\n for i, (pred, im_s, o_im_s) in enumerate(zip(result, image_shapes, original_image_sizes)):\n boxes = pred[\"boxes\"]\n boxes = resize_boxes(boxes, im_s, o_im_s)\n result[i][\"boxes\"] = boxes\n if \"masks\" in pred:\n masks = pred[\"masks\"]\n masks = paste_masks_in_image(masks, boxes, o_im_s)\n result[i][\"masks\"] = masks\n if \"keypoints\" in pred:\n keypoints = pred[\"keypoints\"]\n keypoints = resize_keypoints(keypoints, im_s, o_im_s)\n result[i][\"keypoints\"] = keypoints\n return result\n\n def __repr__(self):\n format_string = self.__class__.__name__ + '('\n _indent = '\\n '\n format_string += \"{0}Normalize(mean={1}, std={2})\".format(_indent, self.image_mean, self.image_std)\n format_string += \"{0}Resize(min_size={1}, max_size={2}, mode='bilinear')\".format(_indent, self.min_size,\n self.max_size)\n format_string += '\\n)'\n return format_string\n\n\ndef resize_keypoints(keypoints, original_size, new_size):\n # type: (Tensor, List[int], List[int]) -> Tensor\n ratios = [\n torch.tensor(s, dtype=torch.float32, device=keypoints.device) /\n torch.tensor(s_orig, dtype=torch.float32, device=keypoints.device)\n for s, s_orig in zip(new_size, original_size)\n ]\n ratio_h, ratio_w = ratios\n resized_data = keypoints.clone()\n if torch._C._get_tracing_state():\n resized_data_0 = resized_data[:, :, 0] * ratio_w\n resized_data_1 = resized_data[:, :, 1] * ratio_h\n resized_data = torch.stack((resized_data_0, resized_data_1, resized_data[:, :, 2]), dim=2)\n else:\n resized_data[..., 0] *= ratio_w\n resized_data[..., 1] *= ratio_h\n return resized_data\n\n\ndef resize_boxes(boxes, original_size, new_size):\n # type: (Tensor, List[int], List[int]) -> Tensor\n ratios = [\n torch.tensor(s, dtype=torch.float32, device=boxes.device) /\n torch.tensor(s_orig, dtype=torch.float32, device=boxes.device)\n for s, s_orig in zip(new_size, original_size)\n ]\n ratio_height, ratio_width = ratios\n xmin, ymin, xmax, ymax = boxes.unbind(1)\n\n xmin = xmin * ratio_width\n xmax = xmax * ratio_width\n ymin = ymin * ratio_height\n ymax = ymax * ratio_height\n return torch.stack((xmin, ymin, xmax, ymax), dim=1)\n", "path": "torchvision/models/detection/transform.py"}], "after_files": [{"content": "import math\nimport torch\nfrom torch import nn, Tensor\nfrom torch.nn import functional as F\nimport torchvision\nfrom typing import List, Tuple, Dict, Optional\n\nfrom .image_list import ImageList\nfrom .roi_heads import paste_masks_in_image\n\n\[email protected]\ndef _resize_image_and_masks_onnx(image, self_min_size, self_max_size, target):\n # type: (Tensor, float, float, Optional[Dict[str, Tensor]]) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]\n from torch.onnx import operators\n im_shape = operators.shape_as_tensor(image)[-2:]\n min_size = torch.min(im_shape).to(dtype=torch.float32)\n max_size = torch.max(im_shape).to(dtype=torch.float32)\n scale_factor = torch.min(self_min_size / min_size, self_max_size / max_size)\n\n image = torch.nn.functional.interpolate(\n image[None], scale_factor=scale_factor, mode='bilinear', recompute_scale_factor=True,\n align_corners=False)[0]\n\n if target is None:\n return image, target\n\n if \"masks\" in target:\n mask = target[\"masks\"]\n mask = F.interpolate(mask[:, None].float(), scale_factor=scale_factor, recompute_scale_factor=True)[:, 0].byte()\n target[\"masks\"] = mask\n return image, target\n\n\ndef _resize_image_and_masks(image, self_min_size, self_max_size, target):\n # type: (Tensor, float, float, Optional[Dict[str, Tensor]]) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]\n im_shape = torch.tensor(image.shape[-2:])\n min_size = float(torch.min(im_shape))\n max_size = float(torch.max(im_shape))\n scale_factor = self_min_size / min_size\n if max_size * scale_factor > self_max_size:\n scale_factor = self_max_size / max_size\n image = torch.nn.functional.interpolate(\n image[None], scale_factor=scale_factor, mode='bilinear', recompute_scale_factor=True,\n align_corners=False)[0]\n\n if target is None:\n return image, target\n\n if \"masks\" in target:\n mask = target[\"masks\"]\n mask = F.interpolate(mask[:, None].float(), scale_factor=scale_factor, recompute_scale_factor=True)[:, 0].byte()\n target[\"masks\"] = mask\n return image, target\n\n\nclass GeneralizedRCNNTransform(nn.Module):\n \"\"\"\n Performs input / target transformation before feeding the data to a GeneralizedRCNN\n model.\n\n The transformations it perform are:\n - input normalization (mean subtraction and std division)\n - input / target resizing to match min_size / max_size\n\n It returns a ImageList for the inputs, and a List[Dict[Tensor]] for the targets\n \"\"\"\n\n def __init__(self, min_size, max_size, image_mean, image_std):\n super(GeneralizedRCNNTransform, self).__init__()\n if not isinstance(min_size, (list, tuple)):\n min_size = (min_size,)\n self.min_size = min_size\n self.max_size = max_size\n self.image_mean = image_mean\n self.image_std = image_std\n\n def forward(self,\n images, # type: List[Tensor]\n targets=None # type: Optional[List[Dict[str, Tensor]]]\n ):\n # type: (...) -> Tuple[ImageList, Optional[List[Dict[str, Tensor]]]]\n images = [img for img in images]\n if targets is not None:\n # make a copy of targets to avoid modifying it in-place\n # once torchscript supports dict comprehension\n # this can be simplified as follows\n # targets = [{k: v for k,v in t.items()} for t in targets]\n targets_copy: List[Dict[str, Tensor]] = []\n for t in targets:\n data: Dict[str, Tensor] = {}\n for k, v in t.items():\n data[k] = v\n targets_copy.append(data)\n targets = targets_copy\n for i in range(len(images)):\n image = images[i]\n target_index = targets[i] if targets is not None else None\n\n if image.dim() != 3:\n raise ValueError(\"images is expected to be a list of 3d tensors \"\n \"of shape [C, H, W], got {}\".format(image.shape))\n image = self.normalize(image)\n image, target_index = self.resize(image, target_index)\n images[i] = image\n if targets is not None and target_index is not None:\n targets[i] = target_index\n\n image_sizes = [img.shape[-2:] for img in images]\n images = self.batch_images(images)\n image_sizes_list: List[Tuple[int, int]] = []\n for image_size in image_sizes:\n assert len(image_size) == 2\n image_sizes_list.append((image_size[0], image_size[1]))\n\n image_list = ImageList(images, image_sizes_list)\n return image_list, targets\n\n def normalize(self, image):\n if not image.is_floating_point():\n raise TypeError(\n f\"Expected input images to be of floating type (in range [0, 1]), \"\n f\"but found type {image.dtype} instead\"\n )\n dtype, device = image.dtype, image.device\n mean = torch.as_tensor(self.image_mean, dtype=dtype, device=device)\n std = torch.as_tensor(self.image_std, dtype=dtype, device=device)\n return (image - mean[:, None, None]) / std[:, None, None]\n\n def torch_choice(self, k):\n # type: (List[int]) -> int\n \"\"\"\n Implements `random.choice` via torch ops so it can be compiled with\n TorchScript. Remove if https://github.com/pytorch/pytorch/issues/25803\n is fixed.\n \"\"\"\n index = int(torch.empty(1).uniform_(0., float(len(k))).item())\n return k[index]\n\n def resize(self, image, target):\n # type: (Tensor, Optional[Dict[str, Tensor]]) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]\n h, w = image.shape[-2:]\n if self.training:\n size = float(self.torch_choice(self.min_size))\n else:\n # FIXME assume for now that testing uses the largest scale\n size = float(self.min_size[-1])\n if torchvision._is_tracing():\n image, target = _resize_image_and_masks_onnx(image, size, float(self.max_size), target)\n else:\n image, target = _resize_image_and_masks(image, size, float(self.max_size), target)\n\n if target is None:\n return image, target\n\n bbox = target[\"boxes\"]\n bbox = resize_boxes(bbox, (h, w), image.shape[-2:])\n target[\"boxes\"] = bbox\n\n if \"keypoints\" in target:\n keypoints = target[\"keypoints\"]\n keypoints = resize_keypoints(keypoints, (h, w), image.shape[-2:])\n target[\"keypoints\"] = keypoints\n return image, target\n\n # _onnx_batch_images() is an implementation of\n # batch_images() that is supported by ONNX tracing.\n @torch.jit.unused\n def _onnx_batch_images(self, images, size_divisible=32):\n # type: (List[Tensor], int) -> Tensor\n max_size = []\n for i in range(images[0].dim()):\n max_size_i = torch.max(torch.stack([img.shape[i] for img in images]).to(torch.float32)).to(torch.int64)\n max_size.append(max_size_i)\n stride = size_divisible\n max_size[1] = (torch.ceil((max_size[1].to(torch.float32)) / stride) * stride).to(torch.int64)\n max_size[2] = (torch.ceil((max_size[2].to(torch.float32)) / stride) * stride).to(torch.int64)\n max_size = tuple(max_size)\n\n # work around for\n # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)\n # which is not yet supported in onnx\n padded_imgs = []\n for img in images:\n padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]\n padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))\n padded_imgs.append(padded_img)\n\n return torch.stack(padded_imgs)\n\n def max_by_axis(self, the_list):\n # type: (List[List[int]]) -> List[int]\n maxes = the_list[0]\n for sublist in the_list[1:]:\n for index, item in enumerate(sublist):\n maxes[index] = max(maxes[index], item)\n return maxes\n\n def batch_images(self, images, size_divisible=32):\n # type: (List[Tensor], int) -> Tensor\n if torchvision._is_tracing():\n # batch_images() does not export well to ONNX\n # call _onnx_batch_images() instead\n return self._onnx_batch_images(images, size_divisible)\n\n max_size = self.max_by_axis([list(img.shape) for img in images])\n stride = float(size_divisible)\n max_size = list(max_size)\n max_size[1] = int(math.ceil(float(max_size[1]) / stride) * stride)\n max_size[2] = int(math.ceil(float(max_size[2]) / stride) * stride)\n\n batch_shape = [len(images)] + max_size\n batched_imgs = images[0].new_full(batch_shape, 0)\n for img, pad_img in zip(images, batched_imgs):\n pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)\n\n return batched_imgs\n\n def postprocess(self,\n result, # type: List[Dict[str, Tensor]]\n image_shapes, # type: List[Tuple[int, int]]\n original_image_sizes # type: List[Tuple[int, int]]\n ):\n # type: (...) -> List[Dict[str, Tensor]]\n if self.training:\n return result\n for i, (pred, im_s, o_im_s) in enumerate(zip(result, image_shapes, original_image_sizes)):\n boxes = pred[\"boxes\"]\n boxes = resize_boxes(boxes, im_s, o_im_s)\n result[i][\"boxes\"] = boxes\n if \"masks\" in pred:\n masks = pred[\"masks\"]\n masks = paste_masks_in_image(masks, boxes, o_im_s)\n result[i][\"masks\"] = masks\n if \"keypoints\" in pred:\n keypoints = pred[\"keypoints\"]\n keypoints = resize_keypoints(keypoints, im_s, o_im_s)\n result[i][\"keypoints\"] = keypoints\n return result\n\n def __repr__(self):\n format_string = self.__class__.__name__ + '('\n _indent = '\\n '\n format_string += \"{0}Normalize(mean={1}, std={2})\".format(_indent, self.image_mean, self.image_std)\n format_string += \"{0}Resize(min_size={1}, max_size={2}, mode='bilinear')\".format(_indent, self.min_size,\n self.max_size)\n format_string += '\\n)'\n return format_string\n\n\ndef resize_keypoints(keypoints, original_size, new_size):\n # type: (Tensor, List[int], List[int]) -> Tensor\n ratios = [\n torch.tensor(s, dtype=torch.float32, device=keypoints.device) /\n torch.tensor(s_orig, dtype=torch.float32, device=keypoints.device)\n for s, s_orig in zip(new_size, original_size)\n ]\n ratio_h, ratio_w = ratios\n resized_data = keypoints.clone()\n if torch._C._get_tracing_state():\n resized_data_0 = resized_data[:, :, 0] * ratio_w\n resized_data_1 = resized_data[:, :, 1] * ratio_h\n resized_data = torch.stack((resized_data_0, resized_data_1, resized_data[:, :, 2]), dim=2)\n else:\n resized_data[..., 0] *= ratio_w\n resized_data[..., 1] *= ratio_h\n return resized_data\n\n\ndef resize_boxes(boxes, original_size, new_size):\n # type: (Tensor, List[int], List[int]) -> Tensor\n ratios = [\n torch.tensor(s, dtype=torch.float32, device=boxes.device) /\n torch.tensor(s_orig, dtype=torch.float32, device=boxes.device)\n for s, s_orig in zip(new_size, original_size)\n ]\n ratio_height, ratio_width = ratios\n xmin, ymin, xmax, ymax = boxes.unbind(1)\n\n xmin = xmin * ratio_width\n xmax = xmax * ratio_width\n ymin = ymin * ratio_height\n ymax = ymax * ratio_height\n return torch.stack((xmin, ymin, xmax, ymax), dim=1)\n", "path": "torchvision/models/detection/transform.py"}]}
3,950
150
gh_patches_debug_43038
rasdani/github-patches
git_diff
pantsbuild__pants-16977
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Support `parametrize(...)` assignments in the `__defaults__` macro **Is your feature request related to a problem? Please describe.** The `__defaults__` BUILD file construct helps eliminate the need for boilerplate target field assignments across an entire directory tree. However, it does not support assigning the result of the `parametrize` macro to a field. ``` # BUILD __defaults__({ python_sources: dict(resolve=parametrize(my_resolves())), # InvalidFieldTypeException: expects string, not Parametrize }) ``` **Describe the solution you'd like** Support `parametrize` in this context in the natural way, i.e. interpret applicable targets as having the field assigned to `parametrize(...)`. **Describe alternatives you've considered** Modifying `tailor` to populate this field on a per-directory basis might work. **Additional context** This is very useful when a single Python subproject is intended to run under several lockfiles. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `src/python/pants/engine/internals/defaults.py` Content: ``` 1 # Copyright 2022 Pants project contributors (see CONTRIBUTORS.md). 2 # Licensed under the Apache License, Version 2.0 (see LICENSE). 3 """The `BuildFileDefaultsParserState.set_defaults` is used by the pants.engine.internals.Parser, 4 exposed as the `__defaults__` BUILD file symbol. 5 6 When parsing a BUILD (from the rule `pants.engine.internals.build_files.parse_address_family`) the 7 defaults from the closest parent BUILD file is passed as input to the parser, and the new defaults 8 resulting after the BUILD file have been parsed is returned in the `AddressFamily`. 9 10 These defaults are then applied when creating the `TargetAdaptor` targets by the `Registrar` in the 11 parser. 12 """ 13 from __future__ import annotations 14 15 from dataclasses import dataclass 16 from typing import Any, Iterable, Mapping, Tuple, Union 17 18 from pants.engine.addresses import Address 19 from pants.engine.target import ( 20 Field, 21 ImmutableValue, 22 InvalidFieldException, 23 RegisteredTargetTypes, 24 Target, 25 TargetGenerator, 26 ) 27 from pants.engine.unions import UnionMembership 28 from pants.util.frozendict import FrozenDict 29 30 SetDefaultsValueT = Mapping[str, Any] 31 SetDefaultsKeyT = Union[str, Tuple[str, ...]] 32 SetDefaultsT = Mapping[SetDefaultsKeyT, SetDefaultsValueT] 33 34 35 class BuildFileDefaults(FrozenDict[str, FrozenDict[str, ImmutableValue]]): 36 """Map target types to default field values.""" 37 38 39 @dataclass 40 class BuildFileDefaultsParserState: 41 address: Address 42 defaults: dict[str, Mapping[str, Any]] 43 registered_target_types: RegisteredTargetTypes 44 union_membership: UnionMembership 45 46 @classmethod 47 def create( 48 cls, 49 path: str, 50 defaults: BuildFileDefaults, 51 registered_target_types: RegisteredTargetTypes, 52 union_membership: UnionMembership, 53 ) -> BuildFileDefaultsParserState: 54 return cls( 55 address=Address(path, generated_name="__defaults__"), 56 defaults=dict(defaults), 57 registered_target_types=registered_target_types, 58 union_membership=union_membership, 59 ) 60 61 def get_frozen_defaults(self) -> BuildFileDefaults: 62 types = self.registered_target_types.aliases_to_types 63 return BuildFileDefaults( 64 { 65 target_alias: FrozenDict( 66 { 67 field_type.alias: field_type.compute_value( 68 raw_value=default, address=self.address 69 ) 70 for field_alias, default in fields.items() 71 for field_type in self._target_type_field_types(types[target_alias]) 72 if field_alias in (field_type.alias, field_type.deprecated_alias) 73 } 74 ) 75 for target_alias, fields in self.defaults.items() 76 } 77 ) 78 79 def get(self, target_alias: str) -> Mapping[str, Any]: 80 # Used by `pants.engine.internals.parser.Parser._generate_symbols.Registrar.__call__` 81 return self.defaults.get(target_alias, {}) 82 83 def set_defaults( 84 self, 85 *args: SetDefaultsT, 86 all: SetDefaultsValueT | None = None, 87 extend: bool = False, 88 **kwargs, 89 ) -> None: 90 defaults: dict[str, dict[str, Any]] = ( 91 {} if not extend else {k: dict(v) for k, v in self.defaults.items()} 92 ) 93 94 if all is not None: 95 self._process_defaults( 96 defaults, 97 {tuple(self.registered_target_types.aliases): all}, 98 ignore_unknown_fields=True, 99 ) 100 101 for arg in args: 102 self._process_defaults(defaults, arg) 103 104 # Update with new defaults, dropping targets without any default values. 105 for tgt, default in defaults.items(): 106 if not default: 107 self.defaults.pop(tgt, None) 108 else: 109 self.defaults[tgt] = default 110 111 def _target_type_field_types(self, target_type: type[Target]) -> tuple[type[Field], ...]: 112 return ( 113 *target_type.class_field_types(self.union_membership), 114 *(target_type.moved_fields if issubclass(target_type, TargetGenerator) else ()), 115 ) 116 117 def _process_defaults( 118 self, 119 defaults: dict[str, dict[str, Any]], 120 targets_defaults: SetDefaultsT, 121 ignore_unknown_fields: bool = False, 122 ): 123 if not isinstance(targets_defaults, dict): 124 raise ValueError( 125 f"Expected dictionary mapping targets to default field values for {self.address} " 126 f"but got: {type(targets_defaults).__name__}." 127 ) 128 129 types = self.registered_target_types.aliases_to_types 130 for target, default in targets_defaults.items(): 131 if not isinstance(default, dict): 132 raise ValueError( 133 f"Invalid default field values in {self.address} for target type {target}, " 134 f"must be an `dict` but was {default!r} with type `{type(default).__name__}`." 135 ) 136 137 targets: Iterable[str] 138 targets = target if isinstance(target, tuple) else (target,) 139 for target_alias in map(str, targets): 140 if target_alias in types: 141 target_type = types[target_alias] 142 else: 143 raise ValueError(f"Unrecognized target type {target_alias} in {self.address}.") 144 145 # Copy default dict if we may mutate it. 146 raw_values = dict(default) if ignore_unknown_fields else default 147 148 # Validate that field exists on target 149 valid_field_aliases = set( 150 target_type._get_field_aliases_to_field_types( 151 self._target_type_field_types(target_type) 152 ).keys() 153 ) 154 155 for field_alias in default.keys(): 156 if field_alias not in valid_field_aliases: 157 if ignore_unknown_fields: 158 del raw_values[field_alias] 159 else: 160 raise InvalidFieldException( 161 f"Unrecognized field `{field_alias}` for target {target_type.alias}. " 162 f"Valid fields are: {', '.join(sorted(valid_field_aliases))}.", 163 ) 164 165 # TODO: support parametrization ? --needs special care due to Parametrize object not 166 # being hashable, and thus not acceptable in a FrozenDict instance. 167 168 # Merge all provided defaults for this call. 169 defaults.setdefault(target_type.alias, {}).update(raw_values) 170 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/src/python/pants/engine/internals/defaults.py b/src/python/pants/engine/internals/defaults.py --- a/src/python/pants/engine/internals/defaults.py +++ b/src/python/pants/engine/internals/defaults.py @@ -13,9 +13,10 @@ from __future__ import annotations from dataclasses import dataclass -from typing import Any, Iterable, Mapping, Tuple, Union +from typing import Any, Callable, Iterable, Mapping, Tuple, Union from pants.engine.addresses import Address +from pants.engine.internals.parametrize import Parametrize from pants.engine.target import ( Field, ImmutableValue, @@ -26,6 +27,7 @@ ) from pants.engine.unions import UnionMembership from pants.util.frozendict import FrozenDict +from pants.util.meta import frozen_after_init SetDefaultsValueT = Mapping[str, Any] SetDefaultsKeyT = Union[str, Tuple[str, ...]] @@ -36,6 +38,36 @@ """Map target types to default field values.""" +@frozen_after_init +@dataclass(unsafe_hash=True) +class ParametrizeDefault(Parametrize): + """A frozen version of `Parametrize` for defaults. + + This is needed since all defaults must be hashable, which the `Parametrize` class is not nor can + it be as it may get unhashable data as input and is unaware of the field type it is being + applied to. + """ + + args: tuple[str, ...] + kwargs: FrozenDict[str, ImmutableValue] # type: ignore[assignment] + + def __init__(self, *args: str, **kwargs: ImmutableValue) -> None: + self.args = args + self.kwargs = FrozenDict(kwargs) + + @classmethod + def create( + cls, freeze: Callable[[Any], ImmutableValue], parametrize: Parametrize + ) -> ParametrizeDefault: + return cls( + *map(freeze, parametrize.args), + **{kw: freeze(arg) for kw, arg in parametrize.kwargs.items()}, + ) + + def __repr__(self) -> str: + return super().__repr__() + + @dataclass class BuildFileDefaultsParserState: address: Address @@ -58,15 +90,25 @@ union_membership=union_membership, ) + def _freeze_field_value(self, field_type: type[Field], value: Any) -> ImmutableValue: + if isinstance(value, ParametrizeDefault): + return value + elif isinstance(value, Parametrize): + + def freeze(v: Any) -> ImmutableValue: + return self._freeze_field_value(field_type, v) + + return ParametrizeDefault.create(freeze, value) + else: + return field_type.compute_value(raw_value=value, address=self.address) + def get_frozen_defaults(self) -> BuildFileDefaults: types = self.registered_target_types.aliases_to_types return BuildFileDefaults( { target_alias: FrozenDict( { - field_type.alias: field_type.compute_value( - raw_value=default, address=self.address - ) + field_type.alias: self._freeze_field_value(field_type, default) for field_alias, default in fields.items() for field_type in self._target_type_field_types(types[target_alias]) if field_alias in (field_type.alias, field_type.deprecated_alias) @@ -162,8 +204,5 @@ f"Valid fields are: {', '.join(sorted(valid_field_aliases))}.", ) - # TODO: support parametrization ? --needs special care due to Parametrize object not - # being hashable, and thus not acceptable in a FrozenDict instance. - # Merge all provided defaults for this call. defaults.setdefault(target_type.alias, {}).update(raw_values)
{"golden_diff": "diff --git a/src/python/pants/engine/internals/defaults.py b/src/python/pants/engine/internals/defaults.py\n--- a/src/python/pants/engine/internals/defaults.py\n+++ b/src/python/pants/engine/internals/defaults.py\n@@ -13,9 +13,10 @@\n from __future__ import annotations\n \n from dataclasses import dataclass\n-from typing import Any, Iterable, Mapping, Tuple, Union\n+from typing import Any, Callable, Iterable, Mapping, Tuple, Union\n \n from pants.engine.addresses import Address\n+from pants.engine.internals.parametrize import Parametrize\n from pants.engine.target import (\n Field,\n ImmutableValue,\n@@ -26,6 +27,7 @@\n )\n from pants.engine.unions import UnionMembership\n from pants.util.frozendict import FrozenDict\n+from pants.util.meta import frozen_after_init\n \n SetDefaultsValueT = Mapping[str, Any]\n SetDefaultsKeyT = Union[str, Tuple[str, ...]]\n@@ -36,6 +38,36 @@\n \"\"\"Map target types to default field values.\"\"\"\n \n \n+@frozen_after_init\n+@dataclass(unsafe_hash=True)\n+class ParametrizeDefault(Parametrize):\n+ \"\"\"A frozen version of `Parametrize` for defaults.\n+\n+ This is needed since all defaults must be hashable, which the `Parametrize` class is not nor can\n+ it be as it may get unhashable data as input and is unaware of the field type it is being\n+ applied to.\n+ \"\"\"\n+\n+ args: tuple[str, ...]\n+ kwargs: FrozenDict[str, ImmutableValue] # type: ignore[assignment]\n+\n+ def __init__(self, *args: str, **kwargs: ImmutableValue) -> None:\n+ self.args = args\n+ self.kwargs = FrozenDict(kwargs)\n+\n+ @classmethod\n+ def create(\n+ cls, freeze: Callable[[Any], ImmutableValue], parametrize: Parametrize\n+ ) -> ParametrizeDefault:\n+ return cls(\n+ *map(freeze, parametrize.args),\n+ **{kw: freeze(arg) for kw, arg in parametrize.kwargs.items()},\n+ )\n+\n+ def __repr__(self) -> str:\n+ return super().__repr__()\n+\n+\n @dataclass\n class BuildFileDefaultsParserState:\n address: Address\n@@ -58,15 +90,25 @@\n union_membership=union_membership,\n )\n \n+ def _freeze_field_value(self, field_type: type[Field], value: Any) -> ImmutableValue:\n+ if isinstance(value, ParametrizeDefault):\n+ return value\n+ elif isinstance(value, Parametrize):\n+\n+ def freeze(v: Any) -> ImmutableValue:\n+ return self._freeze_field_value(field_type, v)\n+\n+ return ParametrizeDefault.create(freeze, value)\n+ else:\n+ return field_type.compute_value(raw_value=value, address=self.address)\n+\n def get_frozen_defaults(self) -> BuildFileDefaults:\n types = self.registered_target_types.aliases_to_types\n return BuildFileDefaults(\n {\n target_alias: FrozenDict(\n {\n- field_type.alias: field_type.compute_value(\n- raw_value=default, address=self.address\n- )\n+ field_type.alias: self._freeze_field_value(field_type, default)\n for field_alias, default in fields.items()\n for field_type in self._target_type_field_types(types[target_alias])\n if field_alias in (field_type.alias, field_type.deprecated_alias)\n@@ -162,8 +204,5 @@\n f\"Valid fields are: {', '.join(sorted(valid_field_aliases))}.\",\n )\n \n- # TODO: support parametrization ? --needs special care due to Parametrize object not\n- # being hashable, and thus not acceptable in a FrozenDict instance.\n-\n # Merge all provided defaults for this call.\n defaults.setdefault(target_type.alias, {}).update(raw_values)\n", "issue": "Support `parametrize(...)` assignments in the `__defaults__` macro\n**Is your feature request related to a problem? Please describe.**\r\n\r\nThe `__defaults__` BUILD file construct helps eliminate the need for boilerplate target field assignments across an entire\r\ndirectory tree. However, it does not support assigning the result of the `parametrize` macro to a field.\r\n\r\n```\r\n# BUILD\r\n\r\n__defaults__({\r\n python_sources: dict(resolve=parametrize(my_resolves())), # InvalidFieldTypeException: expects string, not Parametrize\r\n})\r\n```\r\n\r\n**Describe the solution you'd like**\r\n\r\nSupport `parametrize` in this context in the natural way, i.e. interpret applicable targets as having the field assigned to\r\n`parametrize(...)`.\r\n\r\n**Describe alternatives you've considered**\r\n\r\nModifying `tailor` to populate this field on a per-directory basis might work.\r\n\r\n**Additional context**\r\n\r\nThis is very useful when a single Python subproject is intended to run under several lockfiles.\n", "before_files": [{"content": "# Copyright 2022 Pants project contributors (see CONTRIBUTORS.md).\n# Licensed under the Apache License, Version 2.0 (see LICENSE).\n\"\"\"The `BuildFileDefaultsParserState.set_defaults` is used by the pants.engine.internals.Parser,\nexposed as the `__defaults__` BUILD file symbol.\n\nWhen parsing a BUILD (from the rule `pants.engine.internals.build_files.parse_address_family`) the\ndefaults from the closest parent BUILD file is passed as input to the parser, and the new defaults\nresulting after the BUILD file have been parsed is returned in the `AddressFamily`.\n\nThese defaults are then applied when creating the `TargetAdaptor` targets by the `Registrar` in the\nparser.\n\"\"\"\nfrom __future__ import annotations\n\nfrom dataclasses import dataclass\nfrom typing import Any, Iterable, Mapping, Tuple, Union\n\nfrom pants.engine.addresses import Address\nfrom pants.engine.target import (\n Field,\n ImmutableValue,\n InvalidFieldException,\n RegisteredTargetTypes,\n Target,\n TargetGenerator,\n)\nfrom pants.engine.unions import UnionMembership\nfrom pants.util.frozendict import FrozenDict\n\nSetDefaultsValueT = Mapping[str, Any]\nSetDefaultsKeyT = Union[str, Tuple[str, ...]]\nSetDefaultsT = Mapping[SetDefaultsKeyT, SetDefaultsValueT]\n\n\nclass BuildFileDefaults(FrozenDict[str, FrozenDict[str, ImmutableValue]]):\n \"\"\"Map target types to default field values.\"\"\"\n\n\n@dataclass\nclass BuildFileDefaultsParserState:\n address: Address\n defaults: dict[str, Mapping[str, Any]]\n registered_target_types: RegisteredTargetTypes\n union_membership: UnionMembership\n\n @classmethod\n def create(\n cls,\n path: str,\n defaults: BuildFileDefaults,\n registered_target_types: RegisteredTargetTypes,\n union_membership: UnionMembership,\n ) -> BuildFileDefaultsParserState:\n return cls(\n address=Address(path, generated_name=\"__defaults__\"),\n defaults=dict(defaults),\n registered_target_types=registered_target_types,\n union_membership=union_membership,\n )\n\n def get_frozen_defaults(self) -> BuildFileDefaults:\n types = self.registered_target_types.aliases_to_types\n return BuildFileDefaults(\n {\n target_alias: FrozenDict(\n {\n field_type.alias: field_type.compute_value(\n raw_value=default, address=self.address\n )\n for field_alias, default in fields.items()\n for field_type in self._target_type_field_types(types[target_alias])\n if field_alias in (field_type.alias, field_type.deprecated_alias)\n }\n )\n for target_alias, fields in self.defaults.items()\n }\n )\n\n def get(self, target_alias: str) -> Mapping[str, Any]:\n # Used by `pants.engine.internals.parser.Parser._generate_symbols.Registrar.__call__`\n return self.defaults.get(target_alias, {})\n\n def set_defaults(\n self,\n *args: SetDefaultsT,\n all: SetDefaultsValueT | None = None,\n extend: bool = False,\n **kwargs,\n ) -> None:\n defaults: dict[str, dict[str, Any]] = (\n {} if not extend else {k: dict(v) for k, v in self.defaults.items()}\n )\n\n if all is not None:\n self._process_defaults(\n defaults,\n {tuple(self.registered_target_types.aliases): all},\n ignore_unknown_fields=True,\n )\n\n for arg in args:\n self._process_defaults(defaults, arg)\n\n # Update with new defaults, dropping targets without any default values.\n for tgt, default in defaults.items():\n if not default:\n self.defaults.pop(tgt, None)\n else:\n self.defaults[tgt] = default\n\n def _target_type_field_types(self, target_type: type[Target]) -> tuple[type[Field], ...]:\n return (\n *target_type.class_field_types(self.union_membership),\n *(target_type.moved_fields if issubclass(target_type, TargetGenerator) else ()),\n )\n\n def _process_defaults(\n self,\n defaults: dict[str, dict[str, Any]],\n targets_defaults: SetDefaultsT,\n ignore_unknown_fields: bool = False,\n ):\n if not isinstance(targets_defaults, dict):\n raise ValueError(\n f\"Expected dictionary mapping targets to default field values for {self.address} \"\n f\"but got: {type(targets_defaults).__name__}.\"\n )\n\n types = self.registered_target_types.aliases_to_types\n for target, default in targets_defaults.items():\n if not isinstance(default, dict):\n raise ValueError(\n f\"Invalid default field values in {self.address} for target type {target}, \"\n f\"must be an `dict` but was {default!r} with type `{type(default).__name__}`.\"\n )\n\n targets: Iterable[str]\n targets = target if isinstance(target, tuple) else (target,)\n for target_alias in map(str, targets):\n if target_alias in types:\n target_type = types[target_alias]\n else:\n raise ValueError(f\"Unrecognized target type {target_alias} in {self.address}.\")\n\n # Copy default dict if we may mutate it.\n raw_values = dict(default) if ignore_unknown_fields else default\n\n # Validate that field exists on target\n valid_field_aliases = set(\n target_type._get_field_aliases_to_field_types(\n self._target_type_field_types(target_type)\n ).keys()\n )\n\n for field_alias in default.keys():\n if field_alias not in valid_field_aliases:\n if ignore_unknown_fields:\n del raw_values[field_alias]\n else:\n raise InvalidFieldException(\n f\"Unrecognized field `{field_alias}` for target {target_type.alias}. \"\n f\"Valid fields are: {', '.join(sorted(valid_field_aliases))}.\",\n )\n\n # TODO: support parametrization ? --needs special care due to Parametrize object not\n # being hashable, and thus not acceptable in a FrozenDict instance.\n\n # Merge all provided defaults for this call.\n defaults.setdefault(target_type.alias, {}).update(raw_values)\n", "path": "src/python/pants/engine/internals/defaults.py"}], "after_files": [{"content": "# Copyright 2022 Pants project contributors (see CONTRIBUTORS.md).\n# Licensed under the Apache License, Version 2.0 (see LICENSE).\n\"\"\"The `BuildFileDefaultsParserState.set_defaults` is used by the pants.engine.internals.Parser,\nexposed as the `__defaults__` BUILD file symbol.\n\nWhen parsing a BUILD (from the rule `pants.engine.internals.build_files.parse_address_family`) the\ndefaults from the closest parent BUILD file is passed as input to the parser, and the new defaults\nresulting after the BUILD file have been parsed is returned in the `AddressFamily`.\n\nThese defaults are then applied when creating the `TargetAdaptor` targets by the `Registrar` in the\nparser.\n\"\"\"\nfrom __future__ import annotations\n\nfrom dataclasses import dataclass\nfrom typing import Any, Callable, Iterable, Mapping, Tuple, Union\n\nfrom pants.engine.addresses import Address\nfrom pants.engine.internals.parametrize import Parametrize\nfrom pants.engine.target import (\n Field,\n ImmutableValue,\n InvalidFieldException,\n RegisteredTargetTypes,\n Target,\n TargetGenerator,\n)\nfrom pants.engine.unions import UnionMembership\nfrom pants.util.frozendict import FrozenDict\nfrom pants.util.meta import frozen_after_init\n\nSetDefaultsValueT = Mapping[str, Any]\nSetDefaultsKeyT = Union[str, Tuple[str, ...]]\nSetDefaultsT = Mapping[SetDefaultsKeyT, SetDefaultsValueT]\n\n\nclass BuildFileDefaults(FrozenDict[str, FrozenDict[str, ImmutableValue]]):\n \"\"\"Map target types to default field values.\"\"\"\n\n\n@frozen_after_init\n@dataclass(unsafe_hash=True)\nclass ParametrizeDefault(Parametrize):\n \"\"\"A frozen version of `Parametrize` for defaults.\n\n This is needed since all defaults must be hashable, which the `Parametrize` class is not nor can\n it be as it may get unhashable data as input and is unaware of the field type it is being\n applied to.\n \"\"\"\n\n args: tuple[str, ...]\n kwargs: FrozenDict[str, ImmutableValue] # type: ignore[assignment]\n\n def __init__(self, *args: str, **kwargs: ImmutableValue) -> None:\n self.args = args\n self.kwargs = FrozenDict(kwargs)\n\n @classmethod\n def create(\n cls, freeze: Callable[[Any], ImmutableValue], parametrize: Parametrize\n ) -> ParametrizeDefault:\n return cls(\n *map(freeze, parametrize.args),\n **{kw: freeze(arg) for kw, arg in parametrize.kwargs.items()},\n )\n\n def __repr__(self) -> str:\n return super().__repr__()\n\n\n@dataclass\nclass BuildFileDefaultsParserState:\n address: Address\n defaults: dict[str, Mapping[str, Any]]\n registered_target_types: RegisteredTargetTypes\n union_membership: UnionMembership\n\n @classmethod\n def create(\n cls,\n path: str,\n defaults: BuildFileDefaults,\n registered_target_types: RegisteredTargetTypes,\n union_membership: UnionMembership,\n ) -> BuildFileDefaultsParserState:\n return cls(\n address=Address(path, generated_name=\"__defaults__\"),\n defaults=dict(defaults),\n registered_target_types=registered_target_types,\n union_membership=union_membership,\n )\n\n def _freeze_field_value(self, field_type: type[Field], value: Any) -> ImmutableValue:\n if isinstance(value, ParametrizeDefault):\n return value\n elif isinstance(value, Parametrize):\n\n def freeze(v: Any) -> ImmutableValue:\n return self._freeze_field_value(field_type, v)\n\n return ParametrizeDefault.create(freeze, value)\n else:\n return field_type.compute_value(raw_value=value, address=self.address)\n\n def get_frozen_defaults(self) -> BuildFileDefaults:\n types = self.registered_target_types.aliases_to_types\n return BuildFileDefaults(\n {\n target_alias: FrozenDict(\n {\n field_type.alias: self._freeze_field_value(field_type, default)\n for field_alias, default in fields.items()\n for field_type in self._target_type_field_types(types[target_alias])\n if field_alias in (field_type.alias, field_type.deprecated_alias)\n }\n )\n for target_alias, fields in self.defaults.items()\n }\n )\n\n def get(self, target_alias: str) -> Mapping[str, Any]:\n # Used by `pants.engine.internals.parser.Parser._generate_symbols.Registrar.__call__`\n return self.defaults.get(target_alias, {})\n\n def set_defaults(\n self,\n *args: SetDefaultsT,\n all: SetDefaultsValueT | None = None,\n extend: bool = False,\n **kwargs,\n ) -> None:\n defaults: dict[str, dict[str, Any]] = (\n {} if not extend else {k: dict(v) for k, v in self.defaults.items()}\n )\n\n if all is not None:\n self._process_defaults(\n defaults,\n {tuple(self.registered_target_types.aliases): all},\n ignore_unknown_fields=True,\n )\n\n for arg in args:\n self._process_defaults(defaults, arg)\n\n # Update with new defaults, dropping targets without any default values.\n for tgt, default in defaults.items():\n if not default:\n self.defaults.pop(tgt, None)\n else:\n self.defaults[tgt] = default\n\n def _target_type_field_types(self, target_type: type[Target]) -> tuple[type[Field], ...]:\n return (\n *target_type.class_field_types(self.union_membership),\n *(target_type.moved_fields if issubclass(target_type, TargetGenerator) else ()),\n )\n\n def _process_defaults(\n self,\n defaults: dict[str, dict[str, Any]],\n targets_defaults: SetDefaultsT,\n ignore_unknown_fields: bool = False,\n ):\n if not isinstance(targets_defaults, dict):\n raise ValueError(\n f\"Expected dictionary mapping targets to default field values for {self.address} \"\n f\"but got: {type(targets_defaults).__name__}.\"\n )\n\n types = self.registered_target_types.aliases_to_types\n for target, default in targets_defaults.items():\n if not isinstance(default, dict):\n raise ValueError(\n f\"Invalid default field values in {self.address} for target type {target}, \"\n f\"must be an `dict` but was {default!r} with type `{type(default).__name__}`.\"\n )\n\n targets: Iterable[str]\n targets = target if isinstance(target, tuple) else (target,)\n for target_alias in map(str, targets):\n if target_alias in types:\n target_type = types[target_alias]\n else:\n raise ValueError(f\"Unrecognized target type {target_alias} in {self.address}.\")\n\n # Copy default dict if we may mutate it.\n raw_values = dict(default) if ignore_unknown_fields else default\n\n # Validate that field exists on target\n valid_field_aliases = set(\n target_type._get_field_aliases_to_field_types(\n self._target_type_field_types(target_type)\n ).keys()\n )\n\n for field_alias in default.keys():\n if field_alias not in valid_field_aliases:\n if ignore_unknown_fields:\n del raw_values[field_alias]\n else:\n raise InvalidFieldException(\n f\"Unrecognized field `{field_alias}` for target {target_type.alias}. \"\n f\"Valid fields are: {', '.join(sorted(valid_field_aliases))}.\",\n )\n\n # Merge all provided defaults for this call.\n defaults.setdefault(target_type.alias, {}).update(raw_values)\n", "path": "src/python/pants/engine/internals/defaults.py"}]}
2,174
860
gh_patches_debug_40980
rasdani/github-patches
git_diff
openfun__marsha-2169
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Create a classroom invite link for an instructor ## Feature Request **Is your feature request related to a problem or unsupported use case? Please describe.** We already have for a classroom an invite link. This invite link is dedicated to people without access to the standalone site nor the LTI application. When they use it they are like a student and can only join the meeting when running. We would like the same feature but for an instructor. When they use a dedicated invite link for them they can use the classroom dashboard. **Describe the solution you'd like** When an invite link for instructor is used, the user can use the classroom dashboard. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `src/backend/marsha/bbb/serializers.py` Content: ``` 1 """Structure of BBB related models API responses with Django Rest Framework serializers.""" 2 from datetime import datetime 3 import mimetypes 4 from os.path import splitext 5 from urllib.parse import quote_plus 6 7 from django.conf import settings 8 from django.core.exceptions import ValidationError 9 from django.db import transaction 10 from django.urls import reverse 11 from django.utils import timezone 12 13 from rest_framework import serializers 14 15 from marsha.bbb.models import Classroom, ClassroomDocument, ClassroomRecording 16 from marsha.bbb.utils.bbb_utils import ( 17 ApiMeetingException, 18 get_meeting_infos, 19 get_url as get_document_url, 20 ) 21 from marsha.bbb.utils.tokens import create_classroom_stable_invite_jwt 22 from marsha.core.serializers import ( 23 BaseInitiateUploadSerializer, 24 UploadableFileWithExtensionSerializerMixin, 25 ) 26 from marsha.core.serializers.base import ReadOnlyModelSerializer 27 from marsha.core.serializers.playlist import PlaylistLiteSerializer 28 29 30 class ClassroomRecordingSerializer(ReadOnlyModelSerializer): 31 """A serializer to display a ClassroomRecording resource.""" 32 33 class Meta: # noqa 34 model = ClassroomRecording 35 fields = ( 36 "id", 37 "classroom", 38 "record_id", 39 "started_at", 40 "video_file_url", 41 ) 42 read_only_fields = ( 43 "id", 44 "classroom", 45 "record_id", 46 "started_at", 47 "video_file_url", 48 ) 49 50 # Make sure classroom UUID is converted to a string during serialization 51 classroom = serializers.PrimaryKeyRelatedField( 52 read_only=True, pk_field=serializers.CharField() 53 ) 54 55 56 class ClassroomSerializer(serializers.ModelSerializer): 57 """A serializer to display a Classroom resource.""" 58 59 class Meta: # noqa 60 model = Classroom 61 fields = ( 62 "id", 63 "lti_id", 64 "title", 65 "description", 66 "playlist", 67 "meeting_id", 68 "welcome_text", 69 "started", 70 "ended", 71 "starting_at", 72 "estimated_duration", 73 "recordings", 74 # specific generated fields 75 "infos", 76 "invite_token", 77 ) 78 read_only_fields = ( 79 "id", 80 "lti_id", 81 "playlist", 82 "meeting_id", 83 "started", 84 "ended", 85 "recordings", 86 "infos", 87 ) 88 89 playlist = PlaylistLiteSerializer(read_only=True) 90 recordings = ClassroomRecordingSerializer(many=True, read_only=True) 91 infos = serializers.SerializerMethodField() 92 invite_token = serializers.SerializerMethodField() 93 recordings = serializers.SerializerMethodField() 94 95 def get_infos(self, obj): 96 """Meeting infos from BBB server.""" 97 try: 98 return get_meeting_infos(classroom=obj) 99 except ApiMeetingException: 100 return None 101 102 def get_invite_token(self, obj): 103 """Get the invite token for the classroom.""" 104 if self.context.get("is_admin", False): 105 return str(create_classroom_stable_invite_jwt(obj)) 106 return None 107 108 def get_recordings(self, obj): 109 """Get the recordings for the classroom. 110 111 Only available for admins. 112 """ 113 if self.context.get("is_admin", True): 114 return ClassroomRecordingSerializer( 115 obj.recordings.all(), many=True, context=self.context 116 ).data 117 return [] 118 119 def update(self, instance, validated_data): 120 if any( 121 attribute in validated_data 122 for attribute in ["starting_at", "estimated_duration"] 123 ): 124 validated_data["ended"] = False 125 return super().update(instance, validated_data) 126 127 def validate_starting_at(self, value): 128 """Add extra controls for starting_at field.""" 129 # Field starting_at has a new value 130 if value != self.instance.starting_at: 131 # New value is past, it can't be updated 132 if value is not None and value < timezone.now(): 133 sent_date_with_timezone = datetime.fromisoformat( 134 self.context.get("request").data.get("starting_at") 135 ) 136 raise serializers.ValidationError( 137 f"{sent_date_with_timezone} is not a valid date, date should be planned after!" 138 ) 139 140 return value 141 142 143 class ClassroomLiteSerializer(ReadOnlyModelSerializer): 144 """Classroom lite serializer without playlist and infos fetch from the BBB api.""" 145 146 class Meta: # noqa 147 model = Classroom 148 fields = ( 149 "id", 150 "lti_id", 151 "title", 152 "description", 153 "meeting_id", 154 "welcome_text", 155 "started", 156 "ended", 157 "starting_at", 158 "estimated_duration", 159 ) 160 161 162 class ClassroomSelectLTISerializer(ClassroomSerializer): 163 """A serializer to display a Classroom resource for LTI select content request.""" 164 165 class Meta: # noqa 166 model = Classroom 167 fields = ( 168 "id", 169 "lti_id", 170 "lti_url", 171 "title", 172 "description", 173 "playlist", 174 "meeting_id", 175 ) 176 177 lti_url = serializers.SerializerMethodField() 178 179 def get_lti_url(self, obj): 180 """LTI Url of the Classroom. 181 182 Parameters 183 ---------- 184 obj : Type[models.Document] 185 The document that we want to serialize 186 187 Returns 188 ------- 189 String 190 the LTI url to be used by LTI consumers 191 192 """ 193 return self.context["request"].build_absolute_uri( 194 reverse("classroom:classroom_lti_view", args=[obj.id]), 195 ) 196 197 198 class ClassroomDocumentSerializer( 199 UploadableFileWithExtensionSerializerMixin, serializers.ModelSerializer 200 ): 201 """A serializer to display a ClassroomDocument resource.""" 202 203 class Meta: # noqa 204 model = ClassroomDocument 205 fields = ( 206 "classroom", 207 "filename", 208 "id", 209 "is_default", 210 "upload_state", 211 "uploaded_on", 212 "url", 213 ) 214 read_only_fields = ( 215 "classroom", 216 "id", 217 "upload_state", 218 "uploaded_on", 219 "url", 220 ) 221 222 url = serializers.SerializerMethodField() 223 # Make sure classroom UUID is converted to a string during serialization 224 classroom = serializers.PrimaryKeyRelatedField( 225 read_only=True, pk_field=serializers.CharField() 226 ) 227 228 def to_internal_value(self, data): 229 """Validate if the size is coherent with django settings.""" 230 max_file_size = settings.CLASSROOM_DOCUMENT_SOURCE_MAX_SIZE 231 if "filename" in data and "size" not in data: 232 raise ValidationError({"size": ["File size is required"]}) 233 if "size" in data and data.pop("size") > max_file_size: 234 raise ValidationError( 235 {"size": [f"File too large, max size allowed is {max_file_size} Bytes"]} 236 ) 237 return super().to_internal_value(data) 238 239 def create(self, validated_data): 240 """Force the classroom field to the classroom of the JWT Token if any. 241 242 Parameters 243 ---------- 244 validated_data : dictionary 245 Dictionary of the deserialized values of each field after validation. 246 247 Returns 248 ------- 249 dictionary 250 The "validated_data" dictionary is returned after modification. 251 252 """ 253 resource = self.context["request"].resource 254 classroom_id = self.context["request"].data.get("classroom") 255 if not validated_data.get("classroom_id"): 256 if resource: 257 validated_data["classroom_id"] = resource.id 258 elif classroom_id: 259 validated_data["classroom_id"] = classroom_id 260 261 if not ClassroomDocument.objects.filter( 262 classroom_id=validated_data["classroom_id"] 263 ).exists(): 264 validated_data["is_default"] = True 265 266 return super().create(validated_data) 267 268 def update(self, instance, validated_data): 269 """Set the default attribute of the others classroom documents to false if 270 set to true for this one. 271 272 Parameters 273 ---------- 274 instance : Type[models.ClassroomDocument] 275 The document that we want to update 276 277 validated_data : dictionary 278 Dictionary of the deserialized values of each field after validation. 279 280 Returns 281 ------- 282 Type[models.ClassroomDocument] 283 The updated document 284 285 """ 286 with transaction.atomic(): 287 instance = super().update(instance, validated_data) 288 if validated_data.get("is_default"): 289 ClassroomDocument.objects.exclude(id=instance.id).filter( 290 classroom=instance.classroom, is_default=True 291 ).update(is_default=False) 292 return instance 293 294 def get_url(self, obj): 295 """Url of the ClassroomDocument. 296 297 Parameters 298 ---------- 299 obj : Type[models.DepositedFile] 300 The classroom document that we want to serialize 301 302 Returns 303 ------- 304 String or None 305 the url to fetch the classroom document on CloudFront 306 None if the classroom document is still not uploaded to S3 with success 307 308 """ 309 if url := get_document_url(obj): 310 return ( 311 f"{url}?response-content-disposition=" 312 f"{quote_plus('attachment; filename=' + obj.filename)}" 313 ) 314 return None 315 316 317 class ClassroomDocumentInitiateUploadSerializer(BaseInitiateUploadSerializer): 318 """An initiate-upload serializer dedicated to classroom document.""" 319 320 @property 321 def max_upload_file_size(self): 322 """return the class room document max file size define in the settings. 323 324 The @property decorator is used to ease the use of @override_settings 325 in tests. Otherwise the setting is not changed and we can't easily test 326 an upload with a size higher than the one defined in the settings 327 """ 328 return settings.CLASSROOM_DOCUMENT_SOURCE_MAX_SIZE 329 330 def validate(self, attrs): 331 """Validate if the mimetype is allowed or not.""" 332 # mimetype is provided, we directly check it 333 if attrs["mimetype"] != "": 334 if attrs["mimetype"] not in settings.ALLOWED_CLASSROOM_DOCUMENT_MIME_TYPES: 335 raise serializers.ValidationError( 336 {"mimetype": f"{attrs['mimetype']} is not a supported mimetype"} 337 ) 338 attrs["extension"] = mimetypes.guess_extension(attrs["mimetype"]) 339 340 # mimetype is not provided, we have to guess it from the extension 341 else: 342 mimetypes.init() 343 extension = splitext(attrs["filename"])[1] 344 mimetype = mimetypes.types_map.get(extension) 345 if mimetype not in settings.ALLOWED_CLASSROOM_DOCUMENT_MIME_TYPES: 346 raise serializers.ValidationError( 347 {"mimetype": "mimetype not guessable"} 348 ) 349 # extension is added to the data in order to be used later 350 attrs["extension"] = extension 351 attrs["mimetype"] = mimetype 352 353 return attrs 354 ``` Path: `src/backend/marsha/bbb/utils/tokens.py` Content: ``` 1 """Specific classroom related simple JWT helpers.""" 2 from datetime import timedelta 3 4 from django.conf import settings 5 from django.utils import timezone 6 7 from marsha.core.simple_jwt.tokens import ResourceAccessToken 8 9 10 def create_classroom_stable_invite_jwt(classroom): 11 """Create a resource JWT to be used in classroom invite links. 12 13 Parameters 14 ---------- 15 classroom : Type[models.Classroom] 16 The classroom for which we want to create a JWT. 17 18 Returns 19 ------- 20 ResourceAccessToken 21 The JWT. 22 23 """ 24 resource_jwt = ResourceAccessToken.for_resource_id( 25 resource_id=str(classroom.id), 26 session_id=f"{classroom.id}-invite", 27 ) 28 29 # Set a fixed JWT ID 30 resource_jwt.set_jti( 31 f"classroom-invite-{classroom.id}-{classroom.created_on.strftime('%Y-%m-%d')}" 32 ) 33 34 # Set a fixed validity beginning: the classroom creation date 35 resource_jwt.set_iat(at_time=classroom.created_on) 36 37 # Determine the validity end: 38 # - if the classroom has a starting date, the JWT is valid 39 # until the starting date plus two days 40 # - if the classroom has no starting date, the JWT is valid 41 # for a month **starting now** (not on classroom creation) 42 if classroom.starting_at: 43 validity_end = classroom.starting_at + timedelta(days=2) 44 else: 45 validity_end = timezone.now().replace( 46 hour=0, minute=0, second=0, microsecond=0 47 ) + timedelta(days=settings.BBB_INVITE_JWT_DEFAULT_DAYS_DURATION) 48 49 resource_jwt.set_exp( 50 from_time=classroom.created_on, 51 lifetime=validity_end - classroom.created_on, 52 ) 53 54 return resource_jwt 55 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/src/backend/marsha/bbb/serializers.py b/src/backend/marsha/bbb/serializers.py --- a/src/backend/marsha/bbb/serializers.py +++ b/src/backend/marsha/bbb/serializers.py @@ -19,6 +19,7 @@ get_url as get_document_url, ) from marsha.bbb.utils.tokens import create_classroom_stable_invite_jwt +from marsha.core.models import INSTRUCTOR from marsha.core.serializers import ( BaseInitiateUploadSerializer, UploadableFileWithExtensionSerializerMixin, @@ -74,6 +75,7 @@ # specific generated fields "infos", "invite_token", + "instructor_token", ) read_only_fields = ( "id", @@ -90,6 +92,7 @@ recordings = ClassroomRecordingSerializer(many=True, read_only=True) infos = serializers.SerializerMethodField() invite_token = serializers.SerializerMethodField() + instructor_token = serializers.SerializerMethodField() recordings = serializers.SerializerMethodField() def get_infos(self, obj): @@ -105,6 +108,18 @@ return str(create_classroom_stable_invite_jwt(obj)) return None + def get_instructor_token(self, obj): + """Get the instructor token for the classroom.""" + if self.context.get("is_admin", False): + return str( + create_classroom_stable_invite_jwt( + obj, + role=INSTRUCTOR, + permissions={"can_update": True, "can_access_dashboard": True}, + ) + ) + return None + def get_recordings(self, obj): """Get the recordings for the classroom. diff --git a/src/backend/marsha/bbb/utils/tokens.py b/src/backend/marsha/bbb/utils/tokens.py --- a/src/backend/marsha/bbb/utils/tokens.py +++ b/src/backend/marsha/bbb/utils/tokens.py @@ -4,10 +4,11 @@ from django.conf import settings from django.utils import timezone +from marsha.core.models import NONE from marsha.core.simple_jwt.tokens import ResourceAccessToken -def create_classroom_stable_invite_jwt(classroom): +def create_classroom_stable_invite_jwt(classroom, role=NONE, permissions=None): """Create a resource JWT to be used in classroom invite links. Parameters @@ -15,6 +16,12 @@ classroom : Type[models.Classroom] The classroom for which we want to create a JWT. + role : str + The role to use in the JWT. If not set, the no role is used. + + permissions : dict + The permissions to use in the JWT. If not set, no permissions are used. + Returns ------- ResourceAccessToken @@ -24,6 +31,8 @@ resource_jwt = ResourceAccessToken.for_resource_id( resource_id=str(classroom.id), session_id=f"{classroom.id}-invite", + roles=[role], + permissions=permissions or {}, ) # Set a fixed JWT ID
{"golden_diff": "diff --git a/src/backend/marsha/bbb/serializers.py b/src/backend/marsha/bbb/serializers.py\n--- a/src/backend/marsha/bbb/serializers.py\n+++ b/src/backend/marsha/bbb/serializers.py\n@@ -19,6 +19,7 @@\n get_url as get_document_url,\n )\n from marsha.bbb.utils.tokens import create_classroom_stable_invite_jwt\n+from marsha.core.models import INSTRUCTOR\n from marsha.core.serializers import (\n BaseInitiateUploadSerializer,\n UploadableFileWithExtensionSerializerMixin,\n@@ -74,6 +75,7 @@\n # specific generated fields\n \"infos\",\n \"invite_token\",\n+ \"instructor_token\",\n )\n read_only_fields = (\n \"id\",\n@@ -90,6 +92,7 @@\n recordings = ClassroomRecordingSerializer(many=True, read_only=True)\n infos = serializers.SerializerMethodField()\n invite_token = serializers.SerializerMethodField()\n+ instructor_token = serializers.SerializerMethodField()\n recordings = serializers.SerializerMethodField()\n \n def get_infos(self, obj):\n@@ -105,6 +108,18 @@\n return str(create_classroom_stable_invite_jwt(obj))\n return None\n \n+ def get_instructor_token(self, obj):\n+ \"\"\"Get the instructor token for the classroom.\"\"\"\n+ if self.context.get(\"is_admin\", False):\n+ return str(\n+ create_classroom_stable_invite_jwt(\n+ obj,\n+ role=INSTRUCTOR,\n+ permissions={\"can_update\": True, \"can_access_dashboard\": True},\n+ )\n+ )\n+ return None\n+\n def get_recordings(self, obj):\n \"\"\"Get the recordings for the classroom.\n \ndiff --git a/src/backend/marsha/bbb/utils/tokens.py b/src/backend/marsha/bbb/utils/tokens.py\n--- a/src/backend/marsha/bbb/utils/tokens.py\n+++ b/src/backend/marsha/bbb/utils/tokens.py\n@@ -4,10 +4,11 @@\n from django.conf import settings\n from django.utils import timezone\n \n+from marsha.core.models import NONE\n from marsha.core.simple_jwt.tokens import ResourceAccessToken\n \n \n-def create_classroom_stable_invite_jwt(classroom):\n+def create_classroom_stable_invite_jwt(classroom, role=NONE, permissions=None):\n \"\"\"Create a resource JWT to be used in classroom invite links.\n \n Parameters\n@@ -15,6 +16,12 @@\n classroom : Type[models.Classroom]\n The classroom for which we want to create a JWT.\n \n+ role : str\n+ The role to use in the JWT. If not set, the no role is used.\n+\n+ permissions : dict\n+ The permissions to use in the JWT. If not set, no permissions are used.\n+\n Returns\n -------\n ResourceAccessToken\n@@ -24,6 +31,8 @@\n resource_jwt = ResourceAccessToken.for_resource_id(\n resource_id=str(classroom.id),\n session_id=f\"{classroom.id}-invite\",\n+ roles=[role],\n+ permissions=permissions or {},\n )\n \n # Set a fixed JWT ID\n", "issue": "Create a classroom invite link for an instructor\n## Feature Request\r\n\r\n**Is your feature request related to a problem or unsupported use case? Please describe.**\r\n\r\nWe already have for a classroom an invite link. This invite link is dedicated to people without access to the standalone site nor the LTI application. When they use it they are like a student and can only join the meeting when running.\r\nWe would like the same feature but for an instructor. When they use a dedicated invite link for them they can use the classroom dashboard.\r\n\r\n**Describe the solution you'd like**\r\n\r\nWhen an invite link for instructor is used, the user can use the classroom dashboard.\r\n\n", "before_files": [{"content": "\"\"\"Structure of BBB related models API responses with Django Rest Framework serializers.\"\"\"\nfrom datetime import datetime\nimport mimetypes\nfrom os.path import splitext\nfrom urllib.parse import quote_plus\n\nfrom django.conf import settings\nfrom django.core.exceptions import ValidationError\nfrom django.db import transaction\nfrom django.urls import reverse\nfrom django.utils import timezone\n\nfrom rest_framework import serializers\n\nfrom marsha.bbb.models import Classroom, ClassroomDocument, ClassroomRecording\nfrom marsha.bbb.utils.bbb_utils import (\n ApiMeetingException,\n get_meeting_infos,\n get_url as get_document_url,\n)\nfrom marsha.bbb.utils.tokens import create_classroom_stable_invite_jwt\nfrom marsha.core.serializers import (\n BaseInitiateUploadSerializer,\n UploadableFileWithExtensionSerializerMixin,\n)\nfrom marsha.core.serializers.base import ReadOnlyModelSerializer\nfrom marsha.core.serializers.playlist import PlaylistLiteSerializer\n\n\nclass ClassroomRecordingSerializer(ReadOnlyModelSerializer):\n \"\"\"A serializer to display a ClassroomRecording resource.\"\"\"\n\n class Meta: # noqa\n model = ClassroomRecording\n fields = (\n \"id\",\n \"classroom\",\n \"record_id\",\n \"started_at\",\n \"video_file_url\",\n )\n read_only_fields = (\n \"id\",\n \"classroom\",\n \"record_id\",\n \"started_at\",\n \"video_file_url\",\n )\n\n # Make sure classroom UUID is converted to a string during serialization\n classroom = serializers.PrimaryKeyRelatedField(\n read_only=True, pk_field=serializers.CharField()\n )\n\n\nclass ClassroomSerializer(serializers.ModelSerializer):\n \"\"\"A serializer to display a Classroom resource.\"\"\"\n\n class Meta: # noqa\n model = Classroom\n fields = (\n \"id\",\n \"lti_id\",\n \"title\",\n \"description\",\n \"playlist\",\n \"meeting_id\",\n \"welcome_text\",\n \"started\",\n \"ended\",\n \"starting_at\",\n \"estimated_duration\",\n \"recordings\",\n # specific generated fields\n \"infos\",\n \"invite_token\",\n )\n read_only_fields = (\n \"id\",\n \"lti_id\",\n \"playlist\",\n \"meeting_id\",\n \"started\",\n \"ended\",\n \"recordings\",\n \"infos\",\n )\n\n playlist = PlaylistLiteSerializer(read_only=True)\n recordings = ClassroomRecordingSerializer(many=True, read_only=True)\n infos = serializers.SerializerMethodField()\n invite_token = serializers.SerializerMethodField()\n recordings = serializers.SerializerMethodField()\n\n def get_infos(self, obj):\n \"\"\"Meeting infos from BBB server.\"\"\"\n try:\n return get_meeting_infos(classroom=obj)\n except ApiMeetingException:\n return None\n\n def get_invite_token(self, obj):\n \"\"\"Get the invite token for the classroom.\"\"\"\n if self.context.get(\"is_admin\", False):\n return str(create_classroom_stable_invite_jwt(obj))\n return None\n\n def get_recordings(self, obj):\n \"\"\"Get the recordings for the classroom.\n\n Only available for admins.\n \"\"\"\n if self.context.get(\"is_admin\", True):\n return ClassroomRecordingSerializer(\n obj.recordings.all(), many=True, context=self.context\n ).data\n return []\n\n def update(self, instance, validated_data):\n if any(\n attribute in validated_data\n for attribute in [\"starting_at\", \"estimated_duration\"]\n ):\n validated_data[\"ended\"] = False\n return super().update(instance, validated_data)\n\n def validate_starting_at(self, value):\n \"\"\"Add extra controls for starting_at field.\"\"\"\n # Field starting_at has a new value\n if value != self.instance.starting_at:\n # New value is past, it can't be updated\n if value is not None and value < timezone.now():\n sent_date_with_timezone = datetime.fromisoformat(\n self.context.get(\"request\").data.get(\"starting_at\")\n )\n raise serializers.ValidationError(\n f\"{sent_date_with_timezone} is not a valid date, date should be planned after!\"\n )\n\n return value\n\n\nclass ClassroomLiteSerializer(ReadOnlyModelSerializer):\n \"\"\"Classroom lite serializer without playlist and infos fetch from the BBB api.\"\"\"\n\n class Meta: # noqa\n model = Classroom\n fields = (\n \"id\",\n \"lti_id\",\n \"title\",\n \"description\",\n \"meeting_id\",\n \"welcome_text\",\n \"started\",\n \"ended\",\n \"starting_at\",\n \"estimated_duration\",\n )\n\n\nclass ClassroomSelectLTISerializer(ClassroomSerializer):\n \"\"\"A serializer to display a Classroom resource for LTI select content request.\"\"\"\n\n class Meta: # noqa\n model = Classroom\n fields = (\n \"id\",\n \"lti_id\",\n \"lti_url\",\n \"title\",\n \"description\",\n \"playlist\",\n \"meeting_id\",\n )\n\n lti_url = serializers.SerializerMethodField()\n\n def get_lti_url(self, obj):\n \"\"\"LTI Url of the Classroom.\n\n Parameters\n ----------\n obj : Type[models.Document]\n The document that we want to serialize\n\n Returns\n -------\n String\n the LTI url to be used by LTI consumers\n\n \"\"\"\n return self.context[\"request\"].build_absolute_uri(\n reverse(\"classroom:classroom_lti_view\", args=[obj.id]),\n )\n\n\nclass ClassroomDocumentSerializer(\n UploadableFileWithExtensionSerializerMixin, serializers.ModelSerializer\n):\n \"\"\"A serializer to display a ClassroomDocument resource.\"\"\"\n\n class Meta: # noqa\n model = ClassroomDocument\n fields = (\n \"classroom\",\n \"filename\",\n \"id\",\n \"is_default\",\n \"upload_state\",\n \"uploaded_on\",\n \"url\",\n )\n read_only_fields = (\n \"classroom\",\n \"id\",\n \"upload_state\",\n \"uploaded_on\",\n \"url\",\n )\n\n url = serializers.SerializerMethodField()\n # Make sure classroom UUID is converted to a string during serialization\n classroom = serializers.PrimaryKeyRelatedField(\n read_only=True, pk_field=serializers.CharField()\n )\n\n def to_internal_value(self, data):\n \"\"\"Validate if the size is coherent with django settings.\"\"\"\n max_file_size = settings.CLASSROOM_DOCUMENT_SOURCE_MAX_SIZE\n if \"filename\" in data and \"size\" not in data:\n raise ValidationError({\"size\": [\"File size is required\"]})\n if \"size\" in data and data.pop(\"size\") > max_file_size:\n raise ValidationError(\n {\"size\": [f\"File too large, max size allowed is {max_file_size} Bytes\"]}\n )\n return super().to_internal_value(data)\n\n def create(self, validated_data):\n \"\"\"Force the classroom field to the classroom of the JWT Token if any.\n\n Parameters\n ----------\n validated_data : dictionary\n Dictionary of the deserialized values of each field after validation.\n\n Returns\n -------\n dictionary\n The \"validated_data\" dictionary is returned after modification.\n\n \"\"\"\n resource = self.context[\"request\"].resource\n classroom_id = self.context[\"request\"].data.get(\"classroom\")\n if not validated_data.get(\"classroom_id\"):\n if resource:\n validated_data[\"classroom_id\"] = resource.id\n elif classroom_id:\n validated_data[\"classroom_id\"] = classroom_id\n\n if not ClassroomDocument.objects.filter(\n classroom_id=validated_data[\"classroom_id\"]\n ).exists():\n validated_data[\"is_default\"] = True\n\n return super().create(validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Set the default attribute of the others classroom documents to false if\n set to true for this one.\n\n Parameters\n ----------\n instance : Type[models.ClassroomDocument]\n The document that we want to update\n\n validated_data : dictionary\n Dictionary of the deserialized values of each field after validation.\n\n Returns\n -------\n Type[models.ClassroomDocument]\n The updated document\n\n \"\"\"\n with transaction.atomic():\n instance = super().update(instance, validated_data)\n if validated_data.get(\"is_default\"):\n ClassroomDocument.objects.exclude(id=instance.id).filter(\n classroom=instance.classroom, is_default=True\n ).update(is_default=False)\n return instance\n\n def get_url(self, obj):\n \"\"\"Url of the ClassroomDocument.\n\n Parameters\n ----------\n obj : Type[models.DepositedFile]\n The classroom document that we want to serialize\n\n Returns\n -------\n String or None\n the url to fetch the classroom document on CloudFront\n None if the classroom document is still not uploaded to S3 with success\n\n \"\"\"\n if url := get_document_url(obj):\n return (\n f\"{url}?response-content-disposition=\"\n f\"{quote_plus('attachment; filename=' + obj.filename)}\"\n )\n return None\n\n\nclass ClassroomDocumentInitiateUploadSerializer(BaseInitiateUploadSerializer):\n \"\"\"An initiate-upload serializer dedicated to classroom document.\"\"\"\n\n @property\n def max_upload_file_size(self):\n \"\"\"return the class room document max file size define in the settings.\n\n The @property decorator is used to ease the use of @override_settings\n in tests. Otherwise the setting is not changed and we can't easily test\n an upload with a size higher than the one defined in the settings\n \"\"\"\n return settings.CLASSROOM_DOCUMENT_SOURCE_MAX_SIZE\n\n def validate(self, attrs):\n \"\"\"Validate if the mimetype is allowed or not.\"\"\"\n # mimetype is provided, we directly check it\n if attrs[\"mimetype\"] != \"\":\n if attrs[\"mimetype\"] not in settings.ALLOWED_CLASSROOM_DOCUMENT_MIME_TYPES:\n raise serializers.ValidationError(\n {\"mimetype\": f\"{attrs['mimetype']} is not a supported mimetype\"}\n )\n attrs[\"extension\"] = mimetypes.guess_extension(attrs[\"mimetype\"])\n\n # mimetype is not provided, we have to guess it from the extension\n else:\n mimetypes.init()\n extension = splitext(attrs[\"filename\"])[1]\n mimetype = mimetypes.types_map.get(extension)\n if mimetype not in settings.ALLOWED_CLASSROOM_DOCUMENT_MIME_TYPES:\n raise serializers.ValidationError(\n {\"mimetype\": \"mimetype not guessable\"}\n )\n # extension is added to the data in order to be used later\n attrs[\"extension\"] = extension\n attrs[\"mimetype\"] = mimetype\n\n return attrs\n", "path": "src/backend/marsha/bbb/serializers.py"}, {"content": "\"\"\"Specific classroom related simple JWT helpers.\"\"\"\nfrom datetime import timedelta\n\nfrom django.conf import settings\nfrom django.utils import timezone\n\nfrom marsha.core.simple_jwt.tokens import ResourceAccessToken\n\n\ndef create_classroom_stable_invite_jwt(classroom):\n \"\"\"Create a resource JWT to be used in classroom invite links.\n\n Parameters\n ----------\n classroom : Type[models.Classroom]\n The classroom for which we want to create a JWT.\n\n Returns\n -------\n ResourceAccessToken\n The JWT.\n\n \"\"\"\n resource_jwt = ResourceAccessToken.for_resource_id(\n resource_id=str(classroom.id),\n session_id=f\"{classroom.id}-invite\",\n )\n\n # Set a fixed JWT ID\n resource_jwt.set_jti(\n f\"classroom-invite-{classroom.id}-{classroom.created_on.strftime('%Y-%m-%d')}\"\n )\n\n # Set a fixed validity beginning: the classroom creation date\n resource_jwt.set_iat(at_time=classroom.created_on)\n\n # Determine the validity end:\n # - if the classroom has a starting date, the JWT is valid\n # until the starting date plus two days\n # - if the classroom has no starting date, the JWT is valid\n # for a month **starting now** (not on classroom creation)\n if classroom.starting_at:\n validity_end = classroom.starting_at + timedelta(days=2)\n else:\n validity_end = timezone.now().replace(\n hour=0, minute=0, second=0, microsecond=0\n ) + timedelta(days=settings.BBB_INVITE_JWT_DEFAULT_DAYS_DURATION)\n\n resource_jwt.set_exp(\n from_time=classroom.created_on,\n lifetime=validity_end - classroom.created_on,\n )\n\n return resource_jwt\n", "path": "src/backend/marsha/bbb/utils/tokens.py"}], "after_files": [{"content": "\"\"\"Structure of BBB related models API responses with Django Rest Framework serializers.\"\"\"\nfrom datetime import datetime\nimport mimetypes\nfrom os.path import splitext\nfrom urllib.parse import quote_plus\n\nfrom django.conf import settings\nfrom django.core.exceptions import ValidationError\nfrom django.db import transaction\nfrom django.urls import reverse\nfrom django.utils import timezone\n\nfrom rest_framework import serializers\n\nfrom marsha.bbb.models import Classroom, ClassroomDocument, ClassroomRecording\nfrom marsha.bbb.utils.bbb_utils import (\n ApiMeetingException,\n get_meeting_infos,\n get_url as get_document_url,\n)\nfrom marsha.bbb.utils.tokens import create_classroom_stable_invite_jwt\nfrom marsha.core.models import INSTRUCTOR\nfrom marsha.core.serializers import (\n BaseInitiateUploadSerializer,\n UploadableFileWithExtensionSerializerMixin,\n)\nfrom marsha.core.serializers.base import ReadOnlyModelSerializer\nfrom marsha.core.serializers.playlist import PlaylistLiteSerializer\n\n\nclass ClassroomRecordingSerializer(ReadOnlyModelSerializer):\n \"\"\"A serializer to display a ClassroomRecording resource.\"\"\"\n\n class Meta: # noqa\n model = ClassroomRecording\n fields = (\n \"id\",\n \"classroom\",\n \"record_id\",\n \"started_at\",\n \"video_file_url\",\n )\n read_only_fields = (\n \"id\",\n \"classroom\",\n \"record_id\",\n \"started_at\",\n \"video_file_url\",\n )\n\n # Make sure classroom UUID is converted to a string during serialization\n classroom = serializers.PrimaryKeyRelatedField(\n read_only=True, pk_field=serializers.CharField()\n )\n\n\nclass ClassroomSerializer(serializers.ModelSerializer):\n \"\"\"A serializer to display a Classroom resource.\"\"\"\n\n class Meta: # noqa\n model = Classroom\n fields = (\n \"id\",\n \"lti_id\",\n \"title\",\n \"description\",\n \"playlist\",\n \"meeting_id\",\n \"welcome_text\",\n \"started\",\n \"ended\",\n \"starting_at\",\n \"estimated_duration\",\n \"recordings\",\n # specific generated fields\n \"infos\",\n \"invite_token\",\n \"instructor_token\",\n )\n read_only_fields = (\n \"id\",\n \"lti_id\",\n \"playlist\",\n \"meeting_id\",\n \"started\",\n \"ended\",\n \"recordings\",\n \"infos\",\n )\n\n playlist = PlaylistLiteSerializer(read_only=True)\n recordings = ClassroomRecordingSerializer(many=True, read_only=True)\n infos = serializers.SerializerMethodField()\n invite_token = serializers.SerializerMethodField()\n instructor_token = serializers.SerializerMethodField()\n recordings = serializers.SerializerMethodField()\n\n def get_infos(self, obj):\n \"\"\"Meeting infos from BBB server.\"\"\"\n try:\n return get_meeting_infos(classroom=obj)\n except ApiMeetingException:\n return None\n\n def get_invite_token(self, obj):\n \"\"\"Get the invite token for the classroom.\"\"\"\n if self.context.get(\"is_admin\", False):\n return str(create_classroom_stable_invite_jwt(obj))\n return None\n\n def get_instructor_token(self, obj):\n \"\"\"Get the instructor token for the classroom.\"\"\"\n if self.context.get(\"is_admin\", False):\n return str(\n create_classroom_stable_invite_jwt(\n obj,\n role=INSTRUCTOR,\n permissions={\"can_update\": True, \"can_access_dashboard\": True},\n )\n )\n return None\n\n def get_recordings(self, obj):\n \"\"\"Get the recordings for the classroom.\n\n Only available for admins.\n \"\"\"\n if self.context.get(\"is_admin\", True):\n return ClassroomRecordingSerializer(\n obj.recordings.all(), many=True, context=self.context\n ).data\n return []\n\n def update(self, instance, validated_data):\n if any(\n attribute in validated_data\n for attribute in [\"starting_at\", \"estimated_duration\"]\n ):\n validated_data[\"ended\"] = False\n return super().update(instance, validated_data)\n\n def validate_starting_at(self, value):\n \"\"\"Add extra controls for starting_at field.\"\"\"\n # Field starting_at has a new value\n if value != self.instance.starting_at:\n # New value is past, it can't be updated\n if value is not None and value < timezone.now():\n sent_date_with_timezone = datetime.fromisoformat(\n self.context.get(\"request\").data.get(\"starting_at\")\n )\n raise serializers.ValidationError(\n f\"{sent_date_with_timezone} is not a valid date, date should be planned after!\"\n )\n\n return value\n\n\nclass ClassroomLiteSerializer(ReadOnlyModelSerializer):\n \"\"\"Classroom lite serializer without playlist and infos fetch from the BBB api.\"\"\"\n\n class Meta: # noqa\n model = Classroom\n fields = (\n \"id\",\n \"lti_id\",\n \"title\",\n \"description\",\n \"meeting_id\",\n \"welcome_text\",\n \"started\",\n \"ended\",\n \"starting_at\",\n \"estimated_duration\",\n )\n\n\nclass ClassroomSelectLTISerializer(ClassroomSerializer):\n \"\"\"A serializer to display a Classroom resource for LTI select content request.\"\"\"\n\n class Meta: # noqa\n model = Classroom\n fields = (\n \"id\",\n \"lti_id\",\n \"lti_url\",\n \"title\",\n \"description\",\n \"playlist\",\n \"meeting_id\",\n )\n\n lti_url = serializers.SerializerMethodField()\n\n def get_lti_url(self, obj):\n \"\"\"LTI Url of the Classroom.\n\n Parameters\n ----------\n obj : Type[models.Document]\n The document that we want to serialize\n\n Returns\n -------\n String\n the LTI url to be used by LTI consumers\n\n \"\"\"\n return self.context[\"request\"].build_absolute_uri(\n reverse(\"classroom:classroom_lti_view\", args=[obj.id]),\n )\n\n\nclass ClassroomDocumentSerializer(\n UploadableFileWithExtensionSerializerMixin, serializers.ModelSerializer\n):\n \"\"\"A serializer to display a ClassroomDocument resource.\"\"\"\n\n class Meta: # noqa\n model = ClassroomDocument\n fields = (\n \"classroom\",\n \"filename\",\n \"id\",\n \"is_default\",\n \"upload_state\",\n \"uploaded_on\",\n \"url\",\n )\n read_only_fields = (\n \"classroom\",\n \"id\",\n \"upload_state\",\n \"uploaded_on\",\n \"url\",\n )\n\n url = serializers.SerializerMethodField()\n # Make sure classroom UUID is converted to a string during serialization\n classroom = serializers.PrimaryKeyRelatedField(\n read_only=True, pk_field=serializers.CharField()\n )\n\n def to_internal_value(self, data):\n \"\"\"Validate if the size is coherent with django settings.\"\"\"\n max_file_size = settings.CLASSROOM_DOCUMENT_SOURCE_MAX_SIZE\n if \"filename\" in data and \"size\" not in data:\n raise ValidationError({\"size\": [\"File size is required\"]})\n if \"size\" in data and data.pop(\"size\") > max_file_size:\n raise ValidationError(\n {\"size\": [f\"File too large, max size allowed is {max_file_size} Bytes\"]}\n )\n return super().to_internal_value(data)\n\n def create(self, validated_data):\n \"\"\"Force the classroom field to the classroom of the JWT Token if any.\n\n Parameters\n ----------\n validated_data : dictionary\n Dictionary of the deserialized values of each field after validation.\n\n Returns\n -------\n dictionary\n The \"validated_data\" dictionary is returned after modification.\n\n \"\"\"\n resource = self.context[\"request\"].resource\n classroom_id = self.context[\"request\"].data.get(\"classroom\")\n if not validated_data.get(\"classroom_id\"):\n if resource:\n validated_data[\"classroom_id\"] = resource.id\n elif classroom_id:\n validated_data[\"classroom_id\"] = classroom_id\n\n if not ClassroomDocument.objects.filter(\n classroom_id=validated_data[\"classroom_id\"]\n ).exists():\n validated_data[\"is_default\"] = True\n\n return super().create(validated_data)\n\n def update(self, instance, validated_data):\n \"\"\"Set the default attribute of the others classroom documents to false if\n set to true for this one.\n\n Parameters\n ----------\n instance : Type[models.ClassroomDocument]\n The document that we want to update\n\n validated_data : dictionary\n Dictionary of the deserialized values of each field after validation.\n\n Returns\n -------\n Type[models.ClassroomDocument]\n The updated document\n\n \"\"\"\n with transaction.atomic():\n instance = super().update(instance, validated_data)\n if validated_data.get(\"is_default\"):\n ClassroomDocument.objects.exclude(id=instance.id).filter(\n classroom=instance.classroom, is_default=True\n ).update(is_default=False)\n return instance\n\n def get_url(self, obj):\n \"\"\"Url of the ClassroomDocument.\n\n Parameters\n ----------\n obj : Type[models.DepositedFile]\n The classroom document that we want to serialize\n\n Returns\n -------\n String or None\n the url to fetch the classroom document on CloudFront\n None if the classroom document is still not uploaded to S3 with success\n\n \"\"\"\n if url := get_document_url(obj):\n return (\n f\"{url}?response-content-disposition=\"\n f\"{quote_plus('attachment; filename=' + obj.filename)}\"\n )\n return None\n\n\nclass ClassroomDocumentInitiateUploadSerializer(BaseInitiateUploadSerializer):\n \"\"\"An initiate-upload serializer dedicated to classroom document.\"\"\"\n\n @property\n def max_upload_file_size(self):\n \"\"\"return the class room document max file size define in the settings.\n\n The @property decorator is used to ease the use of @override_settings\n in tests. Otherwise the setting is not changed and we can't easily test\n an upload with a size higher than the one defined in the settings\n \"\"\"\n return settings.CLASSROOM_DOCUMENT_SOURCE_MAX_SIZE\n\n def validate(self, attrs):\n \"\"\"Validate if the mimetype is allowed or not.\"\"\"\n # mimetype is provided, we directly check it\n if attrs[\"mimetype\"] != \"\":\n if attrs[\"mimetype\"] not in settings.ALLOWED_CLASSROOM_DOCUMENT_MIME_TYPES:\n raise serializers.ValidationError(\n {\"mimetype\": f\"{attrs['mimetype']} is not a supported mimetype\"}\n )\n attrs[\"extension\"] = mimetypes.guess_extension(attrs[\"mimetype\"])\n\n # mimetype is not provided, we have to guess it from the extension\n else:\n mimetypes.init()\n extension = splitext(attrs[\"filename\"])[1]\n mimetype = mimetypes.types_map.get(extension)\n if mimetype not in settings.ALLOWED_CLASSROOM_DOCUMENT_MIME_TYPES:\n raise serializers.ValidationError(\n {\"mimetype\": \"mimetype not guessable\"}\n )\n # extension is added to the data in order to be used later\n attrs[\"extension\"] = extension\n attrs[\"mimetype\"] = mimetype\n\n return attrs\n", "path": "src/backend/marsha/bbb/serializers.py"}, {"content": "\"\"\"Specific classroom related simple JWT helpers.\"\"\"\nfrom datetime import timedelta\n\nfrom django.conf import settings\nfrom django.utils import timezone\n\nfrom marsha.core.models import NONE\nfrom marsha.core.simple_jwt.tokens import ResourceAccessToken\n\n\ndef create_classroom_stable_invite_jwt(classroom, role=NONE, permissions=None):\n \"\"\"Create a resource JWT to be used in classroom invite links.\n\n Parameters\n ----------\n classroom : Type[models.Classroom]\n The classroom for which we want to create a JWT.\n\n role : str\n The role to use in the JWT. If not set, the no role is used.\n\n permissions : dict\n The permissions to use in the JWT. If not set, no permissions are used.\n\n Returns\n -------\n ResourceAccessToken\n The JWT.\n\n \"\"\"\n resource_jwt = ResourceAccessToken.for_resource_id(\n resource_id=str(classroom.id),\n session_id=f\"{classroom.id}-invite\",\n roles=[role],\n permissions=permissions or {},\n )\n\n # Set a fixed JWT ID\n resource_jwt.set_jti(\n f\"classroom-invite-{classroom.id}-{classroom.created_on.strftime('%Y-%m-%d')}\"\n )\n\n # Set a fixed validity beginning: the classroom creation date\n resource_jwt.set_iat(at_time=classroom.created_on)\n\n # Determine the validity end:\n # - if the classroom has a starting date, the JWT is valid\n # until the starting date plus two days\n # - if the classroom has no starting date, the JWT is valid\n # for a month **starting now** (not on classroom creation)\n if classroom.starting_at:\n validity_end = classroom.starting_at + timedelta(days=2)\n else:\n validity_end = timezone.now().replace(\n hour=0, minute=0, second=0, microsecond=0\n ) + timedelta(days=settings.BBB_INVITE_JWT_DEFAULT_DAYS_DURATION)\n\n resource_jwt.set_exp(\n from_time=classroom.created_on,\n lifetime=validity_end - classroom.created_on,\n )\n\n return resource_jwt\n", "path": "src/backend/marsha/bbb/utils/tokens.py"}]}
4,082
692
gh_patches_debug_664
rasdani/github-patches
git_diff
fedora-infra__bodhi-507
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- setup.py test doesn't include extra_requires from fedmsg deps ``` ====================================================================== ERROR: Failure: ImportError (No module named psutil) ---------------------------------------------------------------------- Traceback (most recent call last): File "/home/decause/.virtualenvs/bodhi-python2.7/lib/python2.7/site-packages/nose/loader.py", line 418, in loadTestsFromName addr.filename, addr.module) File "/home/decause/.virtualenvs/bodhi-python2.7/lib/python2.7/site-packages/nose/importer.py", line 47, in importFromPath return self.importFromDir(dir_path, fqname) File "/home/decause/.virtualenvs/bodhi-python2.7/lib/python2.7/site-packages/nose/importer.py", line 94, in importFromDir mod = load_module(part_fqname, fh, filename, desc) File "/home/decause/code/bodhi/bodhi/tests/test_masher.py", line 27, in <module> from bodhi.consumers.masher import Masher, MasherThread File "/home/decause/code/bodhi/bodhi/consumers/masher.py", line 30, in <module> import fedmsg.consumers File "/home/decause/code/bodhi/.eggs/fedmsg-0.16.0-py2.7.egg/fedmsg/consumers/__init__.py", line 25, in <module> import psutil ImportError: No module named psutil ---------------------------------------------------------------------- Ran 335 tests in 138.787s FAILED (errors=1) ``` --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `setup.py` Content: ``` 1 import __main__ 2 __requires__ = __main__.__requires__ = 'WebOb>=1.4.1' 3 import pkg_resources 4 5 # The following two imports are required to shut up an 6 # atexit error when running tests with python 2.7 7 import logging 8 import multiprocessing 9 10 import os 11 import sys 12 13 from setuptools import setup, find_packages 14 15 here = os.path.abspath(os.path.dirname(__file__)) 16 README = open(os.path.join(here, 'README.rst')).read() 17 CHANGES = open(os.path.join(here, 'CHANGES.txt')).read() 18 19 requires = [ 20 'pyramid', 21 'pyramid_mako', 22 'pyramid_debugtoolbar', 23 'pyramid_tm', 24 'waitress', 25 'colander', 26 'cornice', 27 28 'python-openid', 29 'pyramid_fas_openid', 30 'packagedb-cli', 31 32 'sqlalchemy', 33 'zope.sqlalchemy', 34 35 'webhelpers', 36 'progressbar', 37 38 'bunch', 39 40 # for captchas 41 'cryptography', 42 'Pillow', 43 44 # Useful tools 45 'kitchen', 46 'python-fedora', 47 'pylibravatar', 48 'pyDNS', 49 'dogpile.cache', 50 'arrow', 51 'markdown', 52 53 # i18n, that we're not actually doing yet. 54 #'Babel', 55 #'lingua', 56 57 # External resources 58 'python-bugzilla', 59 'simplemediawiki', 60 'fedmsg', 61 62 'Sphinx', 63 64 # For the bodhi-client 65 'click', 66 67 'WebOb>=1.4.1', 68 ] 69 70 if sys.version_info[:3] < (2,7,0): 71 requires.append('importlib') 72 73 if sys.version_info[:3] < (2,5,0): 74 requires.append('pysqlite') 75 76 setup(name='bodhi', 77 version='2.0', 78 description='bodhi', 79 long_description=README + '\n\n' + CHANGES, 80 classifiers=[ 81 "Programming Language :: Python", 82 "Framework :: Pyramid", 83 "Topic :: Internet :: WWW/HTTP", 84 "Topic :: Internet :: WWW/HTTP :: WSGI :: Application", 85 ], 86 author='', 87 author_email='', 88 url='', 89 keywords='web fedora pyramid', 90 packages=find_packages(), 91 include_package_data=True, 92 zip_safe=False, 93 install_requires = requires, 94 tests_require = [ 95 'nose', 96 'nose-cov', 97 'webtest', 98 'mock' 99 ], 100 test_suite="nose.collector", 101 message_extractors = { '.': [ 102 #('**.py', 'lingua_python', None), 103 #('**.mak', 'lingua_xml', None), 104 ]}, 105 entry_points = """\ 106 [paste.app_factory] 107 main = bodhi:main 108 [console_scripts] 109 initialize_bodhi_db = bodhi.scripts.initializedb:main 110 bodhi = bodhi.cli:cli 111 bodhi-push = bodhi.push:push 112 bodhi-expire-overrides = bodhi.scripts.expire_overrides:main 113 [moksha.consumer] 114 masher = bodhi.consumers.masher:Masher 115 updates = bodhi.consumers.updates:UpdatesHandler 116 """, 117 paster_plugins=['pyramid'], 118 ) 119 120 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/setup.py b/setup.py --- a/setup.py +++ b/setup.py @@ -57,7 +57,9 @@ # External resources 'python-bugzilla', 'simplemediawiki', - 'fedmsg', + + # "python setup.py test" needs one of fedmsg's setup.py extra_requires + 'fedmsg[consumers]', 'Sphinx',
{"golden_diff": "diff --git a/setup.py b/setup.py\n--- a/setup.py\n+++ b/setup.py\n@@ -57,7 +57,9 @@\n # External resources\n 'python-bugzilla',\n 'simplemediawiki',\n- 'fedmsg',\n+\n+ # \"python setup.py test\" needs one of fedmsg's setup.py extra_requires\n+ 'fedmsg[consumers]',\n \n 'Sphinx',\n", "issue": "setup.py test doesn't include extra_requires from fedmsg deps\n```\n======================================================================\nERROR: Failure: ImportError (No module named psutil)\n----------------------------------------------------------------------\nTraceback (most recent call last):\n File \"/home/decause/.virtualenvs/bodhi-python2.7/lib/python2.7/site-packages/nose/loader.py\", line 418, in loadTestsFromName\n addr.filename, addr.module)\n File \"/home/decause/.virtualenvs/bodhi-python2.7/lib/python2.7/site-packages/nose/importer.py\", line 47, in importFromPath\n return self.importFromDir(dir_path, fqname)\n File \"/home/decause/.virtualenvs/bodhi-python2.7/lib/python2.7/site-packages/nose/importer.py\", line 94, in importFromDir\n mod = load_module(part_fqname, fh, filename, desc)\n File \"/home/decause/code/bodhi/bodhi/tests/test_masher.py\", line 27, in <module>\n from bodhi.consumers.masher import Masher, MasherThread\n File \"/home/decause/code/bodhi/bodhi/consumers/masher.py\", line 30, in <module>\n import fedmsg.consumers\n File \"/home/decause/code/bodhi/.eggs/fedmsg-0.16.0-py2.7.egg/fedmsg/consumers/__init__.py\", line 25, in <module>\n import psutil\nImportError: No module named psutil\n\n----------------------------------------------------------------------\nRan 335 tests in 138.787s\n\nFAILED (errors=1)\n```\n\n", "before_files": [{"content": "import __main__\n__requires__ = __main__.__requires__ = 'WebOb>=1.4.1'\nimport pkg_resources\n\n# The following two imports are required to shut up an\n# atexit error when running tests with python 2.7\nimport logging\nimport multiprocessing\n\nimport os\nimport sys\n\nfrom setuptools import setup, find_packages\n\nhere = os.path.abspath(os.path.dirname(__file__))\nREADME = open(os.path.join(here, 'README.rst')).read()\nCHANGES = open(os.path.join(here, 'CHANGES.txt')).read()\n\nrequires = [\n 'pyramid',\n 'pyramid_mako',\n 'pyramid_debugtoolbar',\n 'pyramid_tm',\n 'waitress',\n 'colander',\n 'cornice',\n\n 'python-openid',\n 'pyramid_fas_openid',\n 'packagedb-cli',\n\n 'sqlalchemy',\n 'zope.sqlalchemy',\n\n 'webhelpers',\n 'progressbar',\n\n 'bunch',\n\n # for captchas\n 'cryptography',\n 'Pillow',\n\n # Useful tools\n 'kitchen',\n 'python-fedora',\n 'pylibravatar',\n 'pyDNS',\n 'dogpile.cache',\n 'arrow',\n 'markdown',\n\n # i18n, that we're not actually doing yet.\n #'Babel',\n #'lingua',\n\n # External resources\n 'python-bugzilla',\n 'simplemediawiki',\n 'fedmsg',\n\n 'Sphinx',\n\n # For the bodhi-client\n 'click',\n\n 'WebOb>=1.4.1',\n ]\n\nif sys.version_info[:3] < (2,7,0):\n requires.append('importlib')\n\nif sys.version_info[:3] < (2,5,0):\n requires.append('pysqlite')\n\nsetup(name='bodhi',\n version='2.0',\n description='bodhi',\n long_description=README + '\\n\\n' + CHANGES,\n classifiers=[\n \"Programming Language :: Python\",\n \"Framework :: Pyramid\",\n \"Topic :: Internet :: WWW/HTTP\",\n \"Topic :: Internet :: WWW/HTTP :: WSGI :: Application\",\n ],\n author='',\n author_email='',\n url='',\n keywords='web fedora pyramid',\n packages=find_packages(),\n include_package_data=True,\n zip_safe=False,\n install_requires = requires,\n tests_require = [\n 'nose',\n 'nose-cov',\n 'webtest',\n 'mock'\n ],\n test_suite=\"nose.collector\",\n message_extractors = { '.': [\n #('**.py', 'lingua_python', None),\n #('**.mak', 'lingua_xml', None),\n ]},\n entry_points = \"\"\"\\\n [paste.app_factory]\n main = bodhi:main\n [console_scripts]\n initialize_bodhi_db = bodhi.scripts.initializedb:main\n bodhi = bodhi.cli:cli\n bodhi-push = bodhi.push:push\n bodhi-expire-overrides = bodhi.scripts.expire_overrides:main\n [moksha.consumer]\n masher = bodhi.consumers.masher:Masher\n updates = bodhi.consumers.updates:UpdatesHandler\n \"\"\",\n paster_plugins=['pyramid'],\n )\n\n", "path": "setup.py"}], "after_files": [{"content": "import __main__\n__requires__ = __main__.__requires__ = 'WebOb>=1.4.1'\nimport pkg_resources\n\n# The following two imports are required to shut up an\n# atexit error when running tests with python 2.7\nimport logging\nimport multiprocessing\n\nimport os\nimport sys\n\nfrom setuptools import setup, find_packages\n\nhere = os.path.abspath(os.path.dirname(__file__))\nREADME = open(os.path.join(here, 'README.rst')).read()\nCHANGES = open(os.path.join(here, 'CHANGES.txt')).read()\n\nrequires = [\n 'pyramid',\n 'pyramid_mako',\n 'pyramid_debugtoolbar',\n 'pyramid_tm',\n 'waitress',\n 'colander',\n 'cornice',\n\n 'python-openid',\n 'pyramid_fas_openid',\n 'packagedb-cli',\n\n 'sqlalchemy',\n 'zope.sqlalchemy',\n\n 'webhelpers',\n 'progressbar',\n\n 'bunch',\n\n # for captchas\n 'cryptography',\n 'Pillow',\n\n # Useful tools\n 'kitchen',\n 'python-fedora',\n 'pylibravatar',\n 'pyDNS',\n 'dogpile.cache',\n 'arrow',\n 'markdown',\n\n # i18n, that we're not actually doing yet.\n #'Babel',\n #'lingua',\n\n # External resources\n 'python-bugzilla',\n 'simplemediawiki',\n\n # \"python setup.py test\" needs one of fedmsg's setup.py extra_requires\n 'fedmsg[consumers]',\n\n 'Sphinx',\n\n # For the bodhi-client\n 'click',\n\n 'WebOb>=1.4.1',\n ]\n\nif sys.version_info[:3] < (2,7,0):\n requires.append('importlib')\n\nif sys.version_info[:3] < (2,5,0):\n requires.append('pysqlite')\n\nsetup(name='bodhi',\n version='2.0',\n description='bodhi',\n long_description=README + '\\n\\n' + CHANGES,\n classifiers=[\n \"Programming Language :: Python\",\n \"Framework :: Pyramid\",\n \"Topic :: Internet :: WWW/HTTP\",\n \"Topic :: Internet :: WWW/HTTP :: WSGI :: Application\",\n ],\n author='',\n author_email='',\n url='',\n keywords='web fedora pyramid',\n packages=find_packages(),\n include_package_data=True,\n zip_safe=False,\n install_requires = requires,\n tests_require = [\n 'nose',\n 'nose-cov',\n 'webtest',\n 'mock'\n ],\n test_suite=\"nose.collector\",\n message_extractors = { '.': [\n #('**.py', 'lingua_python', None),\n #('**.mak', 'lingua_xml', None),\n ]},\n entry_points = \"\"\"\\\n [paste.app_factory]\n main = bodhi:main\n [console_scripts]\n initialize_bodhi_db = bodhi.scripts.initializedb:main\n bodhi = bodhi.cli:cli\n bodhi-push = bodhi.push:push\n bodhi-expire-overrides = bodhi.scripts.expire_overrides:main\n [moksha.consumer]\n masher = bodhi.consumers.masher:Masher\n updates = bodhi.consumers.updates:UpdatesHandler\n \"\"\",\n paster_plugins=['pyramid'],\n )\n\n", "path": "setup.py"}]}
1,613
93
gh_patches_debug_25493
rasdani/github-patches
git_diff
liqd__adhocracy4-211
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Subject with new line crashes email sending Subject with new line crashes email sending --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `adhocracy4/emails/mixins.py` Content: ``` 1 from email.mime.image import MIMEImage 2 3 from django.contrib.staticfiles import finders 4 from .base import EmailBase 5 6 7 class PlatformEmailMixin: 8 """ 9 Attaches the static file images/logo.png so it can be used in an html 10 email. 11 """ 12 def get_attachments(self): 13 attachments = super().get_attachments() 14 filename = ( 15 finders.find('images/email_logo.png') 16 or finders.find('images/email_logo.svg') 17 ) 18 if filename: 19 if filename.endswith('.png'): 20 imagetype = 'png' 21 else: 22 imagetype = 'svg+xml' 23 24 with open(filename, 'rb') as f: 25 logo = MIMEImage(f.read(), imagetype) 26 27 logo.add_header('Content-ID', '<{}>'.format('logo')) 28 return attachments + [logo] 29 return attachments 30 31 32 class SyncEmailMixin(EmailBase): 33 """Send Emails synchronously.""" 34 35 @classmethod 36 def send(cls, object, *args, **kwargs): 37 """Call dispatch immediately""" 38 return cls().dispatch(object, *args, **kwargs) 39 ``` Path: `adhocracy4/emails/base.py` Content: ``` 1 from django.conf import settings 2 from django.contrib.contenttypes.models import ContentType 3 from django.contrib.sites import models as site_models 4 from django.core.mail.message import EmailMultiAlternatives 5 from django.template.loader import select_template 6 from django.utils import translation 7 8 from . import tasks 9 10 11 class EmailBase: 12 site_id = 1 13 object = None 14 template_name = None 15 fallback_language = 'en' 16 for_moderator = False 17 18 def get_site(self): 19 return site_models.Site.objects.get(pk=self.site_id) 20 21 def get_host(self): 22 site = self.get_site() 23 ssl_enabled = True 24 if site.domain.startswith('localhost:'): 25 ssl_enabled = False 26 27 url = 'http{ssl_flag}://{domain}'.format( 28 ssl_flag='s' if ssl_enabled else '', 29 domain=site.domain, 30 ) 31 return url 32 33 def get_context(self): 34 object_context_key = self.object.__class__.__name__.lower() 35 return { 36 'email': self, 37 'site': self.get_site(), 38 object_context_key: self.object 39 } 40 41 def get_receivers(self): 42 return [] 43 44 def get_attachments(self): 45 return [] 46 47 def get_languages(self, receiver): 48 return [translation.get_language(), self.fallback_language] 49 50 def get_reply_to(self): 51 return None 52 53 @classmethod 54 def send(cls, object, *args, **kwargs): 55 """Send email asynchronously. 56 57 NOTE: args and kwargs must be JSON serializable. 58 """ 59 ct = ContentType.objects.get_for_model(object) 60 tasks.send_async( 61 cls.__module__, cls.__name__, 62 ct.app_label, ct.model, object.pk, 63 args, kwargs) 64 return [] 65 66 def render(self, template_name, context): 67 languages = self.get_languages(context['receiver']) 68 template = select_template([ 69 '{}.{}.email'.format(template_name, lang) 70 for lang in languages 71 ]) 72 73 # Get the actually chosen language from the template name 74 language = template.template.name.split('.', 2)[-2] 75 76 with translation.override(language): 77 parts = [] 78 for part_type in ('subject', 'txt', 'html'): 79 context['part_type'] = part_type 80 parts.append(template.render(context)) 81 context.pop('part_type') 82 83 return tuple(parts) 84 85 def dispatch(self, object, *args, **kwargs): 86 self.object = object 87 self.kwargs = kwargs 88 receivers = self.get_receivers() 89 context = self.get_context() 90 context.update(kwargs) 91 attachments = self.get_attachments() 92 template = self.template_name 93 94 mails = [] 95 for receiver in receivers: 96 context['receiver'] = receiver 97 (subject, text, html) = self.render(template, context) 98 context.pop('receiver') 99 100 if hasattr(receiver, 'email'): 101 to_address = receiver.email 102 else: 103 to_address = receiver 104 105 mail = EmailMultiAlternatives( 106 subject=subject.strip(), 107 body=text, 108 from_email=settings.DEFAULT_FROM_EMAIL, 109 to=[to_address], 110 reply_to=self.get_reply_to(), 111 ) 112 113 if len(attachments) > 0: 114 mail.mixed_subtype = 'related' 115 116 for attachment in attachments: 117 mail.attach(attachment) 118 119 mail.attach_alternative(html, 'text/html') 120 mail.send() 121 mails.append(mail) 122 return mails 123 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/adhocracy4/emails/base.py b/adhocracy4/emails/base.py --- a/adhocracy4/emails/base.py +++ b/adhocracy4/emails/base.py @@ -1,3 +1,5 @@ +import re + from django.conf import settings from django.contrib.contenttypes.models import ContentType from django.contrib.sites import models as site_models @@ -102,8 +104,10 @@ else: to_address = receiver + subject_clean = re.sub(r'[\r\n]', '', subject).strip() + mail = EmailMultiAlternatives( - subject=subject.strip(), + subject=subject_clean, body=text, from_email=settings.DEFAULT_FROM_EMAIL, to=[to_address], diff --git a/adhocracy4/emails/mixins.py b/adhocracy4/emails/mixins.py --- a/adhocracy4/emails/mixins.py +++ b/adhocracy4/emails/mixins.py @@ -1,7 +1,6 @@ from email.mime.image import MIMEImage from django.contrib.staticfiles import finders -from .base import EmailBase class PlatformEmailMixin: @@ -29,7 +28,7 @@ return attachments -class SyncEmailMixin(EmailBase): +class SyncEmailMixin: """Send Emails synchronously.""" @classmethod
{"golden_diff": "diff --git a/adhocracy4/emails/base.py b/adhocracy4/emails/base.py\n--- a/adhocracy4/emails/base.py\n+++ b/adhocracy4/emails/base.py\n@@ -1,3 +1,5 @@\n+import re\n+\n from django.conf import settings\n from django.contrib.contenttypes.models import ContentType\n from django.contrib.sites import models as site_models\n@@ -102,8 +104,10 @@\n else:\n to_address = receiver\n \n+ subject_clean = re.sub(r'[\\r\\n]', '', subject).strip()\n+\n mail = EmailMultiAlternatives(\n- subject=subject.strip(),\n+ subject=subject_clean,\n body=text,\n from_email=settings.DEFAULT_FROM_EMAIL,\n to=[to_address],\ndiff --git a/adhocracy4/emails/mixins.py b/adhocracy4/emails/mixins.py\n--- a/adhocracy4/emails/mixins.py\n+++ b/adhocracy4/emails/mixins.py\n@@ -1,7 +1,6 @@\n from email.mime.image import MIMEImage\n \n from django.contrib.staticfiles import finders\n-from .base import EmailBase\n \n \n class PlatformEmailMixin:\n@@ -29,7 +28,7 @@\n return attachments\n \n \n-class SyncEmailMixin(EmailBase):\n+class SyncEmailMixin:\n \"\"\"Send Emails synchronously.\"\"\"\n \n @classmethod\n", "issue": "Subject with new line crashes email sending\n\nSubject with new line crashes email sending\n\n", "before_files": [{"content": "from email.mime.image import MIMEImage\n\nfrom django.contrib.staticfiles import finders\nfrom .base import EmailBase\n\n\nclass PlatformEmailMixin:\n \"\"\"\n Attaches the static file images/logo.png so it can be used in an html\n email.\n \"\"\"\n def get_attachments(self):\n attachments = super().get_attachments()\n filename = (\n finders.find('images/email_logo.png')\n or finders.find('images/email_logo.svg')\n )\n if filename:\n if filename.endswith('.png'):\n imagetype = 'png'\n else:\n imagetype = 'svg+xml'\n\n with open(filename, 'rb') as f:\n logo = MIMEImage(f.read(), imagetype)\n\n logo.add_header('Content-ID', '<{}>'.format('logo'))\n return attachments + [logo]\n return attachments\n\n\nclass SyncEmailMixin(EmailBase):\n \"\"\"Send Emails synchronously.\"\"\"\n\n @classmethod\n def send(cls, object, *args, **kwargs):\n \"\"\"Call dispatch immediately\"\"\"\n return cls().dispatch(object, *args, **kwargs)\n", "path": "adhocracy4/emails/mixins.py"}, {"content": "from django.conf import settings\nfrom django.contrib.contenttypes.models import ContentType\nfrom django.contrib.sites import models as site_models\nfrom django.core.mail.message import EmailMultiAlternatives\nfrom django.template.loader import select_template\nfrom django.utils import translation\n\nfrom . import tasks\n\n\nclass EmailBase:\n site_id = 1\n object = None\n template_name = None\n fallback_language = 'en'\n for_moderator = False\n\n def get_site(self):\n return site_models.Site.objects.get(pk=self.site_id)\n\n def get_host(self):\n site = self.get_site()\n ssl_enabled = True\n if site.domain.startswith('localhost:'):\n ssl_enabled = False\n\n url = 'http{ssl_flag}://{domain}'.format(\n ssl_flag='s' if ssl_enabled else '',\n domain=site.domain,\n )\n return url\n\n def get_context(self):\n object_context_key = self.object.__class__.__name__.lower()\n return {\n 'email': self,\n 'site': self.get_site(),\n object_context_key: self.object\n }\n\n def get_receivers(self):\n return []\n\n def get_attachments(self):\n return []\n\n def get_languages(self, receiver):\n return [translation.get_language(), self.fallback_language]\n\n def get_reply_to(self):\n return None\n\n @classmethod\n def send(cls, object, *args, **kwargs):\n \"\"\"Send email asynchronously.\n\n NOTE: args and kwargs must be JSON serializable.\n \"\"\"\n ct = ContentType.objects.get_for_model(object)\n tasks.send_async(\n cls.__module__, cls.__name__,\n ct.app_label, ct.model, object.pk,\n args, kwargs)\n return []\n\n def render(self, template_name, context):\n languages = self.get_languages(context['receiver'])\n template = select_template([\n '{}.{}.email'.format(template_name, lang)\n for lang in languages\n ])\n\n # Get the actually chosen language from the template name\n language = template.template.name.split('.', 2)[-2]\n\n with translation.override(language):\n parts = []\n for part_type in ('subject', 'txt', 'html'):\n context['part_type'] = part_type\n parts.append(template.render(context))\n context.pop('part_type')\n\n return tuple(parts)\n\n def dispatch(self, object, *args, **kwargs):\n self.object = object\n self.kwargs = kwargs\n receivers = self.get_receivers()\n context = self.get_context()\n context.update(kwargs)\n attachments = self.get_attachments()\n template = self.template_name\n\n mails = []\n for receiver in receivers:\n context['receiver'] = receiver\n (subject, text, html) = self.render(template, context)\n context.pop('receiver')\n\n if hasattr(receiver, 'email'):\n to_address = receiver.email\n else:\n to_address = receiver\n\n mail = EmailMultiAlternatives(\n subject=subject.strip(),\n body=text,\n from_email=settings.DEFAULT_FROM_EMAIL,\n to=[to_address],\n reply_to=self.get_reply_to(),\n )\n\n if len(attachments) > 0:\n mail.mixed_subtype = 'related'\n\n for attachment in attachments:\n mail.attach(attachment)\n\n mail.attach_alternative(html, 'text/html')\n mail.send()\n mails.append(mail)\n return mails\n", "path": "adhocracy4/emails/base.py"}], "after_files": [{"content": "from email.mime.image import MIMEImage\n\nfrom django.contrib.staticfiles import finders\n\n\nclass PlatformEmailMixin:\n \"\"\"\n Attaches the static file images/logo.png so it can be used in an html\n email.\n \"\"\"\n def get_attachments(self):\n attachments = super().get_attachments()\n filename = (\n finders.find('images/email_logo.png')\n or finders.find('images/email_logo.svg')\n )\n if filename:\n if filename.endswith('.png'):\n imagetype = 'png'\n else:\n imagetype = 'svg+xml'\n\n with open(filename, 'rb') as f:\n logo = MIMEImage(f.read(), imagetype)\n\n logo.add_header('Content-ID', '<{}>'.format('logo'))\n return attachments + [logo]\n return attachments\n\n\nclass SyncEmailMixin:\n \"\"\"Send Emails synchronously.\"\"\"\n\n @classmethod\n def send(cls, object, *args, **kwargs):\n \"\"\"Call dispatch immediately\"\"\"\n return cls().dispatch(object, *args, **kwargs)\n", "path": "adhocracy4/emails/mixins.py"}, {"content": "import re\n\nfrom django.conf import settings\nfrom django.contrib.contenttypes.models import ContentType\nfrom django.contrib.sites import models as site_models\nfrom django.core.mail.message import EmailMultiAlternatives\nfrom django.template.loader import select_template\nfrom django.utils import translation\n\nfrom . import tasks\n\n\nclass EmailBase:\n site_id = 1\n object = None\n template_name = None\n fallback_language = 'en'\n for_moderator = False\n\n def get_site(self):\n return site_models.Site.objects.get(pk=self.site_id)\n\n def get_host(self):\n site = self.get_site()\n ssl_enabled = True\n if site.domain.startswith('localhost:'):\n ssl_enabled = False\n\n url = 'http{ssl_flag}://{domain}'.format(\n ssl_flag='s' if ssl_enabled else '',\n domain=site.domain,\n )\n return url\n\n def get_context(self):\n object_context_key = self.object.__class__.__name__.lower()\n return {\n 'email': self,\n 'site': self.get_site(),\n object_context_key: self.object\n }\n\n def get_receivers(self):\n return []\n\n def get_attachments(self):\n return []\n\n def get_languages(self, receiver):\n return [translation.get_language(), self.fallback_language]\n\n def get_reply_to(self):\n return None\n\n @classmethod\n def send(cls, object, *args, **kwargs):\n \"\"\"Send email asynchronously.\n\n NOTE: args and kwargs must be JSON serializable.\n \"\"\"\n ct = ContentType.objects.get_for_model(object)\n tasks.send_async(\n cls.__module__, cls.__name__,\n ct.app_label, ct.model, object.pk,\n args, kwargs)\n return []\n\n def render(self, template_name, context):\n languages = self.get_languages(context['receiver'])\n template = select_template([\n '{}.{}.email'.format(template_name, lang)\n for lang in languages\n ])\n\n # Get the actually chosen language from the template name\n language = template.template.name.split('.', 2)[-2]\n\n with translation.override(language):\n parts = []\n for part_type in ('subject', 'txt', 'html'):\n context['part_type'] = part_type\n parts.append(template.render(context))\n context.pop('part_type')\n\n return tuple(parts)\n\n def dispatch(self, object, *args, **kwargs):\n self.object = object\n self.kwargs = kwargs\n receivers = self.get_receivers()\n context = self.get_context()\n context.update(kwargs)\n attachments = self.get_attachments()\n template = self.template_name\n\n mails = []\n for receiver in receivers:\n context['receiver'] = receiver\n (subject, text, html) = self.render(template, context)\n context.pop('receiver')\n\n if hasattr(receiver, 'email'):\n to_address = receiver.email\n else:\n to_address = receiver\n\n subject_clean = re.sub(r'[\\r\\n]', '', subject).strip()\n\n mail = EmailMultiAlternatives(\n subject=subject_clean,\n body=text,\n from_email=settings.DEFAULT_FROM_EMAIL,\n to=[to_address],\n reply_to=self.get_reply_to(),\n )\n\n if len(attachments) > 0:\n mail.mixed_subtype = 'related'\n\n for attachment in attachments:\n mail.attach(attachment)\n\n mail.attach_alternative(html, 'text/html')\n mail.send()\n mails.append(mail)\n return mails\n", "path": "adhocracy4/emails/base.py"}]}
1,586
303
gh_patches_debug_28410
rasdani/github-patches
git_diff
mne-tools__mne-python-9092
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- split code block in examples/preprocessing/plot_virtual_evoked right now, because all plots come from a single code block, they are plotted at the top of the example in a group of 4 (and consequently the plots are really small). By splitting the 4 plotting calls into different code blocks, they will plot larger / be easier to see & compare, without increasing run time of the example. Code blocks can be split with a line of 79 `#` marks (adding a bit of explanatory text too is usually a good idea) --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `examples/preprocessing/plot_virtual_evoked.py` Content: ``` 1 """ 2 ======================= 3 Remap MEG channel types 4 ======================= 5 6 In this example, MEG data are remapped from one channel type to another. 7 This is useful to: 8 9 - visualize combined magnetometers and gradiometers as magnetometers 10 or gradiometers. 11 - run statistics from both magnetometers and gradiometers while 12 working with a single type of channels. 13 """ 14 15 # Author: Mainak Jas <[email protected]> 16 17 # License: BSD (3-clause) 18 19 import mne 20 from mne.datasets import sample 21 22 print(__doc__) 23 24 # read the evoked 25 data_path = sample.data_path() 26 fname = data_path + '/MEG/sample/sample_audvis-ave.fif' 27 evoked = mne.read_evokeds(fname, condition='Left Auditory', baseline=(None, 0)) 28 29 # go from grad + mag to mag 30 virt_evoked = evoked.as_type('mag') 31 evoked.plot_topomap(ch_type='mag', title='mag (original)', time_unit='s') 32 virt_evoked.plot_topomap(ch_type='mag', time_unit='s', 33 title='mag (interpolated from mag + grad)') 34 35 # go from grad + mag to grad 36 virt_evoked = evoked.as_type('grad') 37 evoked.plot_topomap(ch_type='grad', title='grad (original)', time_unit='s') 38 virt_evoked.plot_topomap(ch_type='grad', time_unit='s', 39 title='grad (interpolated from mag + grad)') 40 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/examples/preprocessing/plot_virtual_evoked.py b/examples/preprocessing/plot_virtual_evoked.py --- a/examples/preprocessing/plot_virtual_evoked.py +++ b/examples/preprocessing/plot_virtual_evoked.py @@ -26,14 +26,30 @@ fname = data_path + '/MEG/sample/sample_audvis-ave.fif' evoked = mne.read_evokeds(fname, condition='Left Auditory', baseline=(None, 0)) -# go from grad + mag to mag +############################################################################### +# First, let's call remap gradiometers to magnometers, and plot +# the original and remapped topomaps of the magnetometers. + +# go from grad + mag to mag and plot original mag virt_evoked = evoked.as_type('mag') evoked.plot_topomap(ch_type='mag', title='mag (original)', time_unit='s') + +############################################################################### + +# plot interpolated grad + mag virt_evoked.plot_topomap(ch_type='mag', time_unit='s', title='mag (interpolated from mag + grad)') -# go from grad + mag to grad +############################################################################### +# Now, we remap magnometers to gradiometers, and plot +# the original and remapped topomaps of the gradiometers + +# go from grad + mag to grad and plot original grad virt_evoked = evoked.as_type('grad') evoked.plot_topomap(ch_type='grad', title='grad (original)', time_unit='s') + +############################################################################### + +# plot interpolated grad + mag virt_evoked.plot_topomap(ch_type='grad', time_unit='s', title='grad (interpolated from mag + grad)')
{"golden_diff": "diff --git a/examples/preprocessing/plot_virtual_evoked.py b/examples/preprocessing/plot_virtual_evoked.py\n--- a/examples/preprocessing/plot_virtual_evoked.py\n+++ b/examples/preprocessing/plot_virtual_evoked.py\n@@ -26,14 +26,30 @@\n fname = data_path + '/MEG/sample/sample_audvis-ave.fif'\n evoked = mne.read_evokeds(fname, condition='Left Auditory', baseline=(None, 0))\n \n-# go from grad + mag to mag\n+###############################################################################\n+# First, let's call remap gradiometers to magnometers, and plot\n+# the original and remapped topomaps of the magnetometers.\n+\n+# go from grad + mag to mag and plot original mag\n virt_evoked = evoked.as_type('mag')\n evoked.plot_topomap(ch_type='mag', title='mag (original)', time_unit='s')\n+\n+###############################################################################\n+\n+# plot interpolated grad + mag\n virt_evoked.plot_topomap(ch_type='mag', time_unit='s',\n title='mag (interpolated from mag + grad)')\n \n-# go from grad + mag to grad\n+###############################################################################\n+# Now, we remap magnometers to gradiometers, and plot\n+# the original and remapped topomaps of the gradiometers\n+\n+# go from grad + mag to grad and plot original grad\n virt_evoked = evoked.as_type('grad')\n evoked.plot_topomap(ch_type='grad', title='grad (original)', time_unit='s')\n+\n+###############################################################################\n+\n+# plot interpolated grad + mag\n virt_evoked.plot_topomap(ch_type='grad', time_unit='s',\n title='grad (interpolated from mag + grad)')\n", "issue": "split code block in examples/preprocessing/plot_virtual_evoked\nright now, because all plots come from a single code block, they are plotted at the top of the example in a group of 4 (and consequently the plots are really small). By splitting the 4 plotting calls into different code blocks, they will plot larger / be easier to see & compare, without increasing run time of the example. Code blocks can be split with a line of 79 `#` marks (adding a bit of explanatory text too is usually a good idea)\n", "before_files": [{"content": "\"\"\"\n=======================\nRemap MEG channel types\n=======================\n\nIn this example, MEG data are remapped from one channel type to another.\nThis is useful to:\n\n - visualize combined magnetometers and gradiometers as magnetometers\n or gradiometers.\n - run statistics from both magnetometers and gradiometers while\n working with a single type of channels.\n\"\"\"\n\n# Author: Mainak Jas <[email protected]>\n\n# License: BSD (3-clause)\n\nimport mne\nfrom mne.datasets import sample\n\nprint(__doc__)\n\n# read the evoked\ndata_path = sample.data_path()\nfname = data_path + '/MEG/sample/sample_audvis-ave.fif'\nevoked = mne.read_evokeds(fname, condition='Left Auditory', baseline=(None, 0))\n\n# go from grad + mag to mag\nvirt_evoked = evoked.as_type('mag')\nevoked.plot_topomap(ch_type='mag', title='mag (original)', time_unit='s')\nvirt_evoked.plot_topomap(ch_type='mag', time_unit='s',\n title='mag (interpolated from mag + grad)')\n\n# go from grad + mag to grad\nvirt_evoked = evoked.as_type('grad')\nevoked.plot_topomap(ch_type='grad', title='grad (original)', time_unit='s')\nvirt_evoked.plot_topomap(ch_type='grad', time_unit='s',\n title='grad (interpolated from mag + grad)')\n", "path": "examples/preprocessing/plot_virtual_evoked.py"}], "after_files": [{"content": "\"\"\"\n=======================\nRemap MEG channel types\n=======================\n\nIn this example, MEG data are remapped from one channel type to another.\nThis is useful to:\n\n - visualize combined magnetometers and gradiometers as magnetometers\n or gradiometers.\n - run statistics from both magnetometers and gradiometers while\n working with a single type of channels.\n\"\"\"\n\n# Author: Mainak Jas <[email protected]>\n\n# License: BSD (3-clause)\n\nimport mne\nfrom mne.datasets import sample\n\nprint(__doc__)\n\n# read the evoked\ndata_path = sample.data_path()\nfname = data_path + '/MEG/sample/sample_audvis-ave.fif'\nevoked = mne.read_evokeds(fname, condition='Left Auditory', baseline=(None, 0))\n\n###############################################################################\n# First, let's call remap gradiometers to magnometers, and plot\n# the original and remapped topomaps of the magnetometers.\n\n# go from grad + mag to mag and plot original mag\nvirt_evoked = evoked.as_type('mag')\nevoked.plot_topomap(ch_type='mag', title='mag (original)', time_unit='s')\n\n###############################################################################\n\n# plot interpolated grad + mag\nvirt_evoked.plot_topomap(ch_type='mag', time_unit='s',\n title='mag (interpolated from mag + grad)')\n\n###############################################################################\n# Now, we remap magnometers to gradiometers, and plot\n# the original and remapped topomaps of the gradiometers\n\n# go from grad + mag to grad and plot original grad\nvirt_evoked = evoked.as_type('grad')\nevoked.plot_topomap(ch_type='grad', title='grad (original)', time_unit='s')\n\n###############################################################################\n\n# plot interpolated grad + mag\nvirt_evoked.plot_topomap(ch_type='grad', time_unit='s',\n title='grad (interpolated from mag + grad)')\n", "path": "examples/preprocessing/plot_virtual_evoked.py"}]}
773
365
gh_patches_debug_57312
rasdani/github-patches
git_diff
vllm-project__vllm-402
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Input and output orders are different I was trying to do batch inference by feeding a list of texts into `llm.generate()`. But I found that the outputs have different orders from examples in the input list. For example, the result for the first example in the input list may be the second in the output list. Anything suggestions that I may have done something wrong? Thanks! --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `vllm/entrypoints/llm.py` Content: ``` 1 from typing import List, Optional, Union 2 3 from tqdm import tqdm 4 from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast 5 6 from vllm.engine.arg_utils import EngineArgs 7 from vllm.engine.llm_engine import LLMEngine 8 from vllm.outputs import RequestOutput 9 from vllm.sampling_params import SamplingParams 10 from vllm.utils import Counter 11 12 13 class LLM: 14 """An LLM for generating texts from given prompts and sampling parameters. 15 16 This class includes a tokenizer, a language model (possibly distributed 17 across multiple GPUs), and GPU memory space allocated for intermediate 18 states (aka KV cache). Given a batch of prompts and sampling parameters, 19 this class generates texts from the model, using an intelligent batching 20 mechanism and efficient memory management. 21 22 NOTE: This class is intended to be used for offline inference. For online 23 serving, use the `AsyncLLMEngine` class instead. 24 NOTE: For the comprehensive list of arguments, see `EngineArgs`. 25 26 Args: 27 model: The name or path of a HuggingFace Transformers model. 28 tokenizer: The name or path of a HuggingFace Transformers tokenizer. 29 tokenizer_mode: The tokenizer mode. "auto" will use the fast tokenizer 30 if available, and "slow" will always use the slow tokenizer. 31 trust_remote_code: Trust remote code (e.g., from HuggingFace) when 32 downloading the model and tokenizer. 33 tensor_parallel_size: The number of GPUs to use for distributed 34 execution with tensor parallelism. 35 dtype: The data type for the model weights and activations. Currently, 36 we support `float32`, `float16`, and `bfloat16`. If `auto`, we use 37 the `torch_dtype` attribute specified in the model config file. 38 However, if the `torch_dtype` in the config is `float32`, we will 39 use `float16` instead. 40 seed: The seed to initialize the random number generator for sampling. 41 """ 42 43 def __init__( 44 self, 45 model: str, 46 tokenizer: Optional[str] = None, 47 tokenizer_mode: str = "auto", 48 trust_remote_code: bool = False, 49 tensor_parallel_size: int = 1, 50 dtype: str = "auto", 51 seed: int = 0, 52 **kwargs, 53 ) -> None: 54 if "disable_log_stats" not in kwargs: 55 kwargs["disable_log_stats"] = True 56 engine_args = EngineArgs( 57 model=model, 58 tokenizer=tokenizer, 59 tokenizer_mode=tokenizer_mode, 60 trust_remote_code=trust_remote_code, 61 tensor_parallel_size=tensor_parallel_size, 62 dtype=dtype, 63 seed=seed, 64 **kwargs, 65 ) 66 self.llm_engine = LLMEngine.from_engine_args(engine_args) 67 self.request_counter = Counter() 68 69 def get_tokenizer( 70 self) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]: 71 return self.llm_engine.tokenizer 72 73 def set_tokenizer( 74 self, 75 tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast], 76 ) -> None: 77 self.llm_engine.tokenizer = tokenizer 78 79 def generate( 80 self, 81 prompts: Optional[Union[str, List[str]]] = None, 82 sampling_params: Optional[SamplingParams] = None, 83 prompt_token_ids: Optional[List[List[int]]] = None, 84 use_tqdm: bool = True, 85 ) -> List[RequestOutput]: 86 """Generates the completions for the input prompts. 87 88 NOTE: This class automatically batches the given prompts, considering 89 the memory constraint. For the best performance, put all of your prompts 90 into a single list and pass it to this method. 91 92 Args: 93 prompts: A list of prompts to generate completions for. 94 sampling_params: The sampling parameters for text generation. If 95 None, we use the default sampling parameters. 96 prompt_token_ids: A list of token IDs for the prompts. If None, we 97 use the tokenizer to convert the prompts to token IDs. 98 use_tqdm: Whether to use tqdm to display the progress bar. 99 100 Returns: 101 A list of `RequestOutput` objects containing the generated 102 completions in the same order as the input prompts. 103 """ 104 if prompts is None and prompt_token_ids is None: 105 raise ValueError("Either prompts or prompt_token_ids must be " 106 "provided.") 107 if isinstance(prompts, str): 108 # Convert a single prompt to a list. 109 prompts = [prompts] 110 if prompts is not None and prompt_token_ids is not None: 111 if len(prompts) != len(prompt_token_ids): 112 raise ValueError("The lengths of prompts and prompt_token_ids " 113 "must be the same.") 114 if sampling_params is None: 115 # Use default sampling params. 116 sampling_params = SamplingParams() 117 118 # Add requests to the engine. 119 if prompts is not None: 120 num_requests = len(prompts) 121 else: 122 num_requests = len(prompt_token_ids) 123 for i in range(num_requests): 124 prompt = prompts[i] if prompts is not None else None 125 if prompt_token_ids is None: 126 token_ids = None 127 else: 128 token_ids = prompt_token_ids[i] 129 self._add_request(prompt, sampling_params, token_ids) 130 return self._run_engine(use_tqdm) 131 132 def _add_request( 133 self, 134 prompt: Optional[str], 135 sampling_params: SamplingParams, 136 prompt_token_ids: Optional[List[int]], 137 ) -> None: 138 request_id = str(next(self.request_counter)) 139 self.llm_engine.add_request(request_id, prompt, sampling_params, 140 prompt_token_ids) 141 142 def _run_engine(self, use_tqdm: bool) -> List[RequestOutput]: 143 # Initialize tqdm. 144 if use_tqdm: 145 num_requests = self.llm_engine.get_num_unfinished_requests() 146 pbar = tqdm(total=num_requests, desc="Processed prompts") 147 # Run the engine. 148 outputs: List[RequestOutput] = [] 149 while self.llm_engine.has_unfinished_requests(): 150 step_outputs = self.llm_engine.step() 151 for output in step_outputs: 152 if output.finished: 153 outputs.append(output) 154 if use_tqdm: 155 pbar.update(1) 156 if use_tqdm: 157 pbar.close() 158 return outputs 159 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/vllm/entrypoints/llm.py b/vllm/entrypoints/llm.py --- a/vllm/entrypoints/llm.py +++ b/vllm/entrypoints/llm.py @@ -155,4 +155,8 @@ pbar.update(1) if use_tqdm: pbar.close() + # Sort the outputs by request ID. + # This is necessary because some requests may be finished earlier than + # its previous requests. + outputs = sorted(outputs, key=lambda x: int(x.request_id)) return outputs
{"golden_diff": "diff --git a/vllm/entrypoints/llm.py b/vllm/entrypoints/llm.py\n--- a/vllm/entrypoints/llm.py\n+++ b/vllm/entrypoints/llm.py\n@@ -155,4 +155,8 @@\n pbar.update(1)\n if use_tqdm:\n pbar.close()\n+ # Sort the outputs by request ID.\n+ # This is necessary because some requests may be finished earlier than\n+ # its previous requests.\n+ outputs = sorted(outputs, key=lambda x: int(x.request_id))\n return outputs\n", "issue": "Input and output orders are different\nI was trying to do batch inference by feeding a list of texts into `llm.generate()`. But I found that the outputs have different orders from examples in the input list. For example, the result for the first example in the input list may be the second in the output list. Anything suggestions that I may have done something wrong? Thanks!\n", "before_files": [{"content": "from typing import List, Optional, Union\n\nfrom tqdm import tqdm\nfrom transformers import PreTrainedTokenizer, PreTrainedTokenizerFast\n\nfrom vllm.engine.arg_utils import EngineArgs\nfrom vllm.engine.llm_engine import LLMEngine\nfrom vllm.outputs import RequestOutput\nfrom vllm.sampling_params import SamplingParams\nfrom vllm.utils import Counter\n\n\nclass LLM:\n \"\"\"An LLM for generating texts from given prompts and sampling parameters.\n\n This class includes a tokenizer, a language model (possibly distributed\n across multiple GPUs), and GPU memory space allocated for intermediate\n states (aka KV cache). Given a batch of prompts and sampling parameters,\n this class generates texts from the model, using an intelligent batching\n mechanism and efficient memory management.\n\n NOTE: This class is intended to be used for offline inference. For online\n serving, use the `AsyncLLMEngine` class instead.\n NOTE: For the comprehensive list of arguments, see `EngineArgs`.\n\n Args:\n model: The name or path of a HuggingFace Transformers model.\n tokenizer: The name or path of a HuggingFace Transformers tokenizer.\n tokenizer_mode: The tokenizer mode. \"auto\" will use the fast tokenizer\n if available, and \"slow\" will always use the slow tokenizer.\n trust_remote_code: Trust remote code (e.g., from HuggingFace) when\n downloading the model and tokenizer.\n tensor_parallel_size: The number of GPUs to use for distributed\n execution with tensor parallelism.\n dtype: The data type for the model weights and activations. Currently,\n we support `float32`, `float16`, and `bfloat16`. If `auto`, we use\n the `torch_dtype` attribute specified in the model config file.\n However, if the `torch_dtype` in the config is `float32`, we will\n use `float16` instead.\n seed: The seed to initialize the random number generator for sampling.\n \"\"\"\n\n def __init__(\n self,\n model: str,\n tokenizer: Optional[str] = None,\n tokenizer_mode: str = \"auto\",\n trust_remote_code: bool = False,\n tensor_parallel_size: int = 1,\n dtype: str = \"auto\",\n seed: int = 0,\n **kwargs,\n ) -> None:\n if \"disable_log_stats\" not in kwargs:\n kwargs[\"disable_log_stats\"] = True\n engine_args = EngineArgs(\n model=model,\n tokenizer=tokenizer,\n tokenizer_mode=tokenizer_mode,\n trust_remote_code=trust_remote_code,\n tensor_parallel_size=tensor_parallel_size,\n dtype=dtype,\n seed=seed,\n **kwargs,\n )\n self.llm_engine = LLMEngine.from_engine_args(engine_args)\n self.request_counter = Counter()\n\n def get_tokenizer(\n self) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:\n return self.llm_engine.tokenizer\n\n def set_tokenizer(\n self,\n tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],\n ) -> None:\n self.llm_engine.tokenizer = tokenizer\n\n def generate(\n self,\n prompts: Optional[Union[str, List[str]]] = None,\n sampling_params: Optional[SamplingParams] = None,\n prompt_token_ids: Optional[List[List[int]]] = None,\n use_tqdm: bool = True,\n ) -> List[RequestOutput]:\n \"\"\"Generates the completions for the input prompts.\n\n NOTE: This class automatically batches the given prompts, considering\n the memory constraint. For the best performance, put all of your prompts\n into a single list and pass it to this method.\n\n Args:\n prompts: A list of prompts to generate completions for.\n sampling_params: The sampling parameters for text generation. If\n None, we use the default sampling parameters.\n prompt_token_ids: A list of token IDs for the prompts. If None, we\n use the tokenizer to convert the prompts to token IDs.\n use_tqdm: Whether to use tqdm to display the progress bar.\n\n Returns:\n A list of `RequestOutput` objects containing the generated\n completions in the same order as the input prompts.\n \"\"\"\n if prompts is None and prompt_token_ids is None:\n raise ValueError(\"Either prompts or prompt_token_ids must be \"\n \"provided.\")\n if isinstance(prompts, str):\n # Convert a single prompt to a list.\n prompts = [prompts]\n if prompts is not None and prompt_token_ids is not None:\n if len(prompts) != len(prompt_token_ids):\n raise ValueError(\"The lengths of prompts and prompt_token_ids \"\n \"must be the same.\")\n if sampling_params is None:\n # Use default sampling params.\n sampling_params = SamplingParams()\n\n # Add requests to the engine.\n if prompts is not None:\n num_requests = len(prompts)\n else:\n num_requests = len(prompt_token_ids)\n for i in range(num_requests):\n prompt = prompts[i] if prompts is not None else None\n if prompt_token_ids is None:\n token_ids = None\n else:\n token_ids = prompt_token_ids[i]\n self._add_request(prompt, sampling_params, token_ids)\n return self._run_engine(use_tqdm)\n\n def _add_request(\n self,\n prompt: Optional[str],\n sampling_params: SamplingParams,\n prompt_token_ids: Optional[List[int]],\n ) -> None:\n request_id = str(next(self.request_counter))\n self.llm_engine.add_request(request_id, prompt, sampling_params,\n prompt_token_ids)\n\n def _run_engine(self, use_tqdm: bool) -> List[RequestOutput]:\n # Initialize tqdm.\n if use_tqdm:\n num_requests = self.llm_engine.get_num_unfinished_requests()\n pbar = tqdm(total=num_requests, desc=\"Processed prompts\")\n # Run the engine.\n outputs: List[RequestOutput] = []\n while self.llm_engine.has_unfinished_requests():\n step_outputs = self.llm_engine.step()\n for output in step_outputs:\n if output.finished:\n outputs.append(output)\n if use_tqdm:\n pbar.update(1)\n if use_tqdm:\n pbar.close()\n return outputs\n", "path": "vllm/entrypoints/llm.py"}], "after_files": [{"content": "from typing import List, Optional, Union\n\nfrom tqdm import tqdm\nfrom transformers import PreTrainedTokenizer, PreTrainedTokenizerFast\n\nfrom vllm.engine.arg_utils import EngineArgs\nfrom vllm.engine.llm_engine import LLMEngine\nfrom vllm.outputs import RequestOutput\nfrom vllm.sampling_params import SamplingParams\nfrom vllm.utils import Counter\n\n\nclass LLM:\n \"\"\"An LLM for generating texts from given prompts and sampling parameters.\n\n This class includes a tokenizer, a language model (possibly distributed\n across multiple GPUs), and GPU memory space allocated for intermediate\n states (aka KV cache). Given a batch of prompts and sampling parameters,\n this class generates texts from the model, using an intelligent batching\n mechanism and efficient memory management.\n\n NOTE: This class is intended to be used for offline inference. For online\n serving, use the `AsyncLLMEngine` class instead.\n NOTE: For the comprehensive list of arguments, see `EngineArgs`.\n\n Args:\n model: The name or path of a HuggingFace Transformers model.\n tokenizer: The name or path of a HuggingFace Transformers tokenizer.\n tokenizer_mode: The tokenizer mode. \"auto\" will use the fast tokenizer\n if available, and \"slow\" will always use the slow tokenizer.\n trust_remote_code: Trust remote code (e.g., from HuggingFace) when\n downloading the model and tokenizer.\n tensor_parallel_size: The number of GPUs to use for distributed\n execution with tensor parallelism.\n dtype: The data type for the model weights and activations. Currently,\n we support `float32`, `float16`, and `bfloat16`. If `auto`, we use\n the `torch_dtype` attribute specified in the model config file.\n However, if the `torch_dtype` in the config is `float32`, we will\n use `float16` instead.\n seed: The seed to initialize the random number generator for sampling.\n \"\"\"\n\n def __init__(\n self,\n model: str,\n tokenizer: Optional[str] = None,\n tokenizer_mode: str = \"auto\",\n trust_remote_code: bool = False,\n tensor_parallel_size: int = 1,\n dtype: str = \"auto\",\n seed: int = 0,\n **kwargs,\n ) -> None:\n if \"disable_log_stats\" not in kwargs:\n kwargs[\"disable_log_stats\"] = True\n engine_args = EngineArgs(\n model=model,\n tokenizer=tokenizer,\n tokenizer_mode=tokenizer_mode,\n trust_remote_code=trust_remote_code,\n tensor_parallel_size=tensor_parallel_size,\n dtype=dtype,\n seed=seed,\n **kwargs,\n )\n self.llm_engine = LLMEngine.from_engine_args(engine_args)\n self.request_counter = Counter()\n\n def get_tokenizer(\n self) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:\n return self.llm_engine.tokenizer\n\n def set_tokenizer(\n self,\n tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],\n ) -> None:\n self.llm_engine.tokenizer = tokenizer\n\n def generate(\n self,\n prompts: Optional[Union[str, List[str]]] = None,\n sampling_params: Optional[SamplingParams] = None,\n prompt_token_ids: Optional[List[List[int]]] = None,\n use_tqdm: bool = True,\n ) -> List[RequestOutput]:\n \"\"\"Generates the completions for the input prompts.\n\n NOTE: This class automatically batches the given prompts, considering\n the memory constraint. For the best performance, put all of your prompts\n into a single list and pass it to this method.\n\n Args:\n prompts: A list of prompts to generate completions for.\n sampling_params: The sampling parameters for text generation. If\n None, we use the default sampling parameters.\n prompt_token_ids: A list of token IDs for the prompts. If None, we\n use the tokenizer to convert the prompts to token IDs.\n use_tqdm: Whether to use tqdm to display the progress bar.\n\n Returns:\n A list of `RequestOutput` objects containing the generated\n completions in the same order as the input prompts.\n \"\"\"\n if prompts is None and prompt_token_ids is None:\n raise ValueError(\"Either prompts or prompt_token_ids must be \"\n \"provided.\")\n if isinstance(prompts, str):\n # Convert a single prompt to a list.\n prompts = [prompts]\n if prompts is not None and prompt_token_ids is not None:\n if len(prompts) != len(prompt_token_ids):\n raise ValueError(\"The lengths of prompts and prompt_token_ids \"\n \"must be the same.\")\n if sampling_params is None:\n # Use default sampling params.\n sampling_params = SamplingParams()\n\n # Add requests to the engine.\n if prompts is not None:\n num_requests = len(prompts)\n else:\n num_requests = len(prompt_token_ids)\n for i in range(num_requests):\n prompt = prompts[i] if prompts is not None else None\n if prompt_token_ids is None:\n token_ids = None\n else:\n token_ids = prompt_token_ids[i]\n self._add_request(prompt, sampling_params, token_ids)\n return self._run_engine(use_tqdm)\n\n def _add_request(\n self,\n prompt: Optional[str],\n sampling_params: SamplingParams,\n prompt_token_ids: Optional[List[int]],\n ) -> None:\n request_id = str(next(self.request_counter))\n self.llm_engine.add_request(request_id, prompt, sampling_params,\n prompt_token_ids)\n\n def _run_engine(self, use_tqdm: bool) -> List[RequestOutput]:\n # Initialize tqdm.\n if use_tqdm:\n num_requests = self.llm_engine.get_num_unfinished_requests()\n pbar = tqdm(total=num_requests, desc=\"Processed prompts\")\n # Run the engine.\n outputs: List[RequestOutput] = []\n while self.llm_engine.has_unfinished_requests():\n step_outputs = self.llm_engine.step()\n for output in step_outputs:\n if output.finished:\n outputs.append(output)\n if use_tqdm:\n pbar.update(1)\n if use_tqdm:\n pbar.close()\n # Sort the outputs by request ID.\n # This is necessary because some requests may be finished earlier than\n # its previous requests.\n outputs = sorted(outputs, key=lambda x: int(x.request_id))\n return outputs\n", "path": "vllm/entrypoints/llm.py"}]}
2,070
137
gh_patches_debug_157
rasdani/github-patches
git_diff
doccano__doccano-1907
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Cannot access Django admin panel in a Heroku deployment How to reproduce the behaviour --------- The FAQ describes how to [create a user via the Django admin panel](https://github.com/doccano/doccano/blob/master/docs/faq.md#how-to-create-a-user) for a locally hosted Doccano. When run locally, I have no problem to reach the admin panel on `http://localhost:8000/admin/`, in Heroku however it is not working. I have tried to reach it on - `https://mydeployment.herokuapp.com/admin/` - `https://mydeployment.herokuapp.com/admin/login` - `https://mydeployment.herokuapp.com/admin/login/` - `http://mydeployment.herokuapp.com/admin/` Those urls all result in a `500 Internal Server Error`. Am I missing something here, or is this perhaps a bug? Your Environment --------- <!-- Include details of your environment. --> * Operating System: - * Python Version Used: - * When did you install doccano: A few days ago * How did you install doccano (Heroku button etc): Heroku button --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `backend/config/settings/heroku.py` Content: ``` 1 import django_heroku 2 3 from .base import * # noqa: F401,F403 4 5 django_heroku.settings(locals(), test_runner=False) 6 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/backend/config/settings/heroku.py b/backend/config/settings/heroku.py --- a/backend/config/settings/heroku.py +++ b/backend/config/settings/heroku.py @@ -2,4 +2,4 @@ from .base import * # noqa: F401,F403 -django_heroku.settings(locals(), test_runner=False) +django_heroku.settings(locals(), test_runner=False, staticfiles=False)
{"golden_diff": "diff --git a/backend/config/settings/heroku.py b/backend/config/settings/heroku.py\n--- a/backend/config/settings/heroku.py\n+++ b/backend/config/settings/heroku.py\n@@ -2,4 +2,4 @@\n \n from .base import * # noqa: F401,F403\n \n-django_heroku.settings(locals(), test_runner=False)\n+django_heroku.settings(locals(), test_runner=False, staticfiles=False)\n", "issue": "Cannot access Django admin panel in a Heroku deployment\nHow to reproduce the behaviour\r\n---------\r\nThe FAQ describes how to [create a user via the Django admin panel](https://github.com/doccano/doccano/blob/master/docs/faq.md#how-to-create-a-user) for a locally hosted Doccano. When run locally, I have no problem to reach the admin panel on `http://localhost:8000/admin/`, in Heroku however it is not working.\r\n\r\nI have tried to reach it on\r\n- `https://mydeployment.herokuapp.com/admin/`\r\n- `https://mydeployment.herokuapp.com/admin/login`\r\n- `https://mydeployment.herokuapp.com/admin/login/`\r\n- `http://mydeployment.herokuapp.com/admin/`\r\n\r\nThose urls all result in a `500 Internal Server Error`.\r\nAm I missing something here, or is this perhaps a bug?\r\n\r\nYour Environment\r\n---------\r\n<!-- Include details of your environment. -->\r\n\r\n* Operating System: -\r\n* Python Version Used: -\r\n* When did you install doccano: A few days ago\r\n* How did you install doccano (Heroku button etc): Heroku button\r\n\n", "before_files": [{"content": "import django_heroku\n\nfrom .base import * # noqa: F401,F403\n\ndjango_heroku.settings(locals(), test_runner=False)\n", "path": "backend/config/settings/heroku.py"}], "after_files": [{"content": "import django_heroku\n\nfrom .base import * # noqa: F401,F403\n\ndjango_heroku.settings(locals(), test_runner=False, staticfiles=False)\n", "path": "backend/config/settings/heroku.py"}]}
545
95
gh_patches_debug_4139
rasdani/github-patches
git_diff
ephios-dev__ephios-364
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Add caching As of #278 some settings reside in the database, so we should defintely cache database requests. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `ephios/settings.py` Content: ``` 1 import copy 2 import os 3 from email.utils import getaddresses 4 from importlib import metadata 5 6 import environ 7 from django.contrib.messages import constants 8 9 BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) 10 11 env = environ.Env() 12 # for syntax see https://django-environ.readthedocs.io/en/latest/ 13 environ.Env.read_env(env_file=os.path.join(BASE_DIR, ".env")) 14 15 DATA_DIR = env.str("DATA_DIR", default=os.path.join(BASE_DIR, "data")) 16 if not os.path.exists(DATA_DIR): 17 os.mkdir(DATA_DIR) 18 19 SECRET_KEY = env.str("SECRET_KEY") 20 DEBUG = env.bool("DEBUG") 21 ALLOWED_HOSTS = env.list("ALLOWED_HOSTS") 22 SITE_URL = env.str("SITE_URL") 23 if SITE_URL.endswith("/"): 24 SITE_URL = SITE_URL[:-1] 25 26 if not DEBUG: 27 SESSION_COOKIE_SECURE = True 28 CSRF_COOKIE_SECURE = True 29 X_FRAME_OPTIONS = "DENY" 30 SECURE_CONTENT_TYPE_NOSNIFF = True 31 SECURE_BROWSER_XSS_FILTER = True 32 SECURE_SSL_REDIRECT = True 33 SECURE_HSTS_SECONDS = 3600 34 SECURE_HSTS_INCLUDE_SUBDOMAINS = True 35 SECURE_REFERRER_POLICY = "same-origin" 36 37 # Application definition 38 39 INSTALLED_APPS = [ 40 "django.contrib.admin", 41 "django.contrib.auth", 42 "polymorphic", 43 "django.contrib.contenttypes", 44 "django.contrib.sessions", 45 "django.contrib.messages", 46 "django.contrib.staticfiles", 47 "guardian", 48 "django_select2", 49 "djangoformsetjs", 50 "compressor", 51 "recurrence", 52 "statici18n", 53 "dynamic_preferences.users.apps.UserPreferencesConfig", 54 "crispy_forms", 55 ] 56 57 EPHIOS_CORE_MODULES = [ 58 "ephios.core", 59 "ephios.extra", 60 ] 61 INSTALLED_APPS += EPHIOS_CORE_MODULES 62 63 CORE_PLUGINS = [ 64 "ephios.plugins.basesignup", 65 "ephios.plugins.pages", 66 "ephios.plugins.guests", 67 ] 68 PLUGINS = copy.copy(CORE_PLUGINS) 69 for ep in metadata.entry_points().get("ephios.plugins", []): 70 PLUGINS.append(ep.module) 71 72 INSTALLED_APPS += PLUGINS 73 74 INSTALLED_APPS += ["dynamic_preferences"] # must come after our apps to collect preferences 75 76 MIDDLEWARE = [ 77 "django.middleware.security.SecurityMiddleware", 78 "django.contrib.sessions.middleware.SessionMiddleware", 79 "django.middleware.common.CommonMiddleware", 80 "django.middleware.csrf.CsrfViewMiddleware", 81 "django.contrib.auth.middleware.AuthenticationMiddleware", 82 "django.contrib.messages.middleware.MessageMiddleware", 83 "django.middleware.clickjacking.XFrameOptionsMiddleware", 84 "csp.middleware.CSPMiddleware", 85 ] 86 87 ROOT_URLCONF = "ephios.urls" 88 89 TEMPLATES = [ 90 { 91 "BACKEND": "django.template.backends.django.DjangoTemplates", 92 "DIRS": [os.path.join(BASE_DIR, "ephios/templates")], 93 "APP_DIRS": True, 94 "OPTIONS": { 95 "context_processors": [ 96 "django.template.context_processors.debug", 97 "django.template.context_processors.request", 98 "django.contrib.auth.context_processors.auth", 99 "django.contrib.messages.context_processors.messages", 100 "django.template.context_processors.i18n", 101 "dynamic_preferences.processors.global_preferences", 102 "ephios.core.context.ephios_base_context", 103 ], 104 }, 105 }, 106 ] 107 108 LOCALE_PATHS = (os.path.join(BASE_DIR, "ephios/locale"),) 109 110 WSGI_APPLICATION = "ephios.wsgi.application" 111 112 # Database 113 # https://docs.djangoproject.com/en/3.0/ref/settings/#databases 114 115 DATABASES = {"default": env.db_url()} 116 117 # Password validation 118 # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators 119 120 AUTH_PASSWORD_VALIDATORS = [ 121 { 122 "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", 123 }, 124 { 125 "NAME": "ephios.core.utils.CustomMinimumLengthValidator", 126 }, 127 { 128 "NAME": "django.contrib.auth.password_validation.CommonPasswordValidator", 129 }, 130 { 131 "NAME": "django.contrib.auth.password_validation.NumericPasswordValidator", 132 }, 133 ] 134 135 AUTHENTICATION_BACKENDS = ( 136 "django.contrib.auth.backends.ModelBackend", 137 "guardian.backends.ObjectPermissionBackend", 138 ) 139 140 AUTH_USER_MODEL = "core.UserProfile" 141 LOGIN_REDIRECT_URL = "/" 142 PASSWORD_RESET_TIMEOUT = 28 * 24 * 60 * 60 # seconds 143 144 # Internationalization 145 # https://docs.djangoproject.com/en/3.0/topics/i18n/ 146 147 LANGUAGE_CODE = "de" 148 149 TIME_ZONE = "Europe/Berlin" 150 151 USE_I18N = True 152 153 USE_L10N = True 154 155 USE_TZ = True 156 157 # Static files (CSS, JavaScript, Images) 158 # https://docs.djangoproject.com/en/3.0/howto/static-files/ 159 160 STATIC_URL = env.str("STATIC_URL") 161 STATIC_ROOT = env.str("STATIC_ROOT") 162 STATICFILES_DIRS = (os.path.join(BASE_DIR, "ephios/static"),) 163 STATICFILES_FINDERS = ( 164 "django.contrib.staticfiles.finders.FileSystemFinder", 165 "django.contrib.staticfiles.finders.AppDirectoriesFinder", 166 "compressor.finders.CompressorFinder", 167 ) 168 COMPRESS_ENABLED = not DEBUG 169 170 # mail configuration 171 EMAIL_CONFIG = env.email_url("EMAIL_URL") 172 vars().update(EMAIL_CONFIG) 173 DEFAULT_FROM_EMAIL = env.str("DEFAULT_FROM_EMAIL") 174 SERVER_EMAIL = env.str("SERVER_EMAIL") 175 ADMINS = getaddresses([env("ADMINS")]) 176 177 # Guardian configuration 178 ANONYMOUS_USER_NAME = None 179 GUARDIAN_MONKEY_PATCH = False 180 181 # django-select2 182 # Prevent django-select from loading the select2 resources as we want to serve them locally 183 SELECT2_JS = "" 184 SELECT2_CSS = "" 185 SELECT2_I18N_PATH = "" 186 187 # django-debug-toolbar 188 if DEBUG: 189 INSTALLED_APPS.append("django_extensions") 190 INSTALLED_APPS.append("debug_toolbar") 191 MIDDLEWARE.insert(0, "debug_toolbar.middleware.DebugToolbarMiddleware") 192 INTERNAL_IPS = env.str("INTERNAL_IPS") 193 194 # django-csp 195 # Bootstrap requires embedded SVG files loaded via a data URI. This is not ideal, but will only be fixed in 196 # bootstrap v5 or v6. See https://github.com/twbs/bootstrap/issues/25394 for details on the problem and 197 # https://security.stackexchange.com/a/167244 on why allowing data: is considered okay 198 CSP_IMG_SRC = ("'self'", "data:") 199 200 # django-crispy-forms 201 CRISPY_TEMPLATE_PACK = "bootstrap4" 202 203 # django.contrib.messages 204 MESSAGE_TAGS = { 205 constants.DEBUG: "alert-info", 206 constants.INFO: "alert-info", 207 constants.SUCCESS: "alert-success", 208 constants.WARNING: "alert-warning", 209 constants.ERROR: "alert-danger", 210 } 211 212 # PWA 213 PWA_APP_ICONS = [ 214 {"src": "/static/ephios/img/ephios-192x.png", "sizes": "192x192", "purpose": "any maskable"}, 215 {"src": "/static/ephios/img/ephios-512x.png", "sizes": "512x512", "purpose": "any maskable"}, 216 {"src": "/static/ephios/img/ephios-1024x.png", "sizes": "1024x1024", "purpose": "any maskable"}, 217 ] 218 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/ephios/settings.py b/ephios/settings.py --- a/ephios/settings.py +++ b/ephios/settings.py @@ -114,6 +114,12 @@ DATABASES = {"default": env.db_url()} +# Caches +CACHES = {"default": env.cache_url(default="locmemcache://")} +SESSION_ENGINE = "django.contrib.sessions.backends.cached_db" +DJANGO_REDIS_IGNORE_EXCEPTIONS = True +DJANGO_REDIS_LOG_IGNORED_EXCEPTIONS = True + # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators
{"golden_diff": "diff --git a/ephios/settings.py b/ephios/settings.py\n--- a/ephios/settings.py\n+++ b/ephios/settings.py\n@@ -114,6 +114,12 @@\n \n DATABASES = {\"default\": env.db_url()}\n \n+# Caches\n+CACHES = {\"default\": env.cache_url(default=\"locmemcache://\")}\n+SESSION_ENGINE = \"django.contrib.sessions.backends.cached_db\"\n+DJANGO_REDIS_IGNORE_EXCEPTIONS = True\n+DJANGO_REDIS_LOG_IGNORED_EXCEPTIONS = True\n+\n # Password validation\n # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators\n", "issue": "Add caching\nAs of #278 some settings reside in the database, so we should defintely cache database requests.\n", "before_files": [{"content": "import copy\nimport os\nfrom email.utils import getaddresses\nfrom importlib import metadata\n\nimport environ\nfrom django.contrib.messages import constants\n\nBASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\n\nenv = environ.Env()\n# for syntax see https://django-environ.readthedocs.io/en/latest/\nenviron.Env.read_env(env_file=os.path.join(BASE_DIR, \".env\"))\n\nDATA_DIR = env.str(\"DATA_DIR\", default=os.path.join(BASE_DIR, \"data\"))\nif not os.path.exists(DATA_DIR):\n os.mkdir(DATA_DIR)\n\nSECRET_KEY = env.str(\"SECRET_KEY\")\nDEBUG = env.bool(\"DEBUG\")\nALLOWED_HOSTS = env.list(\"ALLOWED_HOSTS\")\nSITE_URL = env.str(\"SITE_URL\")\nif SITE_URL.endswith(\"/\"):\n SITE_URL = SITE_URL[:-1]\n\nif not DEBUG:\n SESSION_COOKIE_SECURE = True\n CSRF_COOKIE_SECURE = True\n X_FRAME_OPTIONS = \"DENY\"\n SECURE_CONTENT_TYPE_NOSNIFF = True\n SECURE_BROWSER_XSS_FILTER = True\n SECURE_SSL_REDIRECT = True\n SECURE_HSTS_SECONDS = 3600\n SECURE_HSTS_INCLUDE_SUBDOMAINS = True\n SECURE_REFERRER_POLICY = \"same-origin\"\n\n# Application definition\n\nINSTALLED_APPS = [\n \"django.contrib.admin\",\n \"django.contrib.auth\",\n \"polymorphic\",\n \"django.contrib.contenttypes\",\n \"django.contrib.sessions\",\n \"django.contrib.messages\",\n \"django.contrib.staticfiles\",\n \"guardian\",\n \"django_select2\",\n \"djangoformsetjs\",\n \"compressor\",\n \"recurrence\",\n \"statici18n\",\n \"dynamic_preferences.users.apps.UserPreferencesConfig\",\n \"crispy_forms\",\n]\n\nEPHIOS_CORE_MODULES = [\n \"ephios.core\",\n \"ephios.extra\",\n]\nINSTALLED_APPS += EPHIOS_CORE_MODULES\n\nCORE_PLUGINS = [\n \"ephios.plugins.basesignup\",\n \"ephios.plugins.pages\",\n \"ephios.plugins.guests\",\n]\nPLUGINS = copy.copy(CORE_PLUGINS)\nfor ep in metadata.entry_points().get(\"ephios.plugins\", []):\n PLUGINS.append(ep.module)\n\nINSTALLED_APPS += PLUGINS\n\nINSTALLED_APPS += [\"dynamic_preferences\"] # must come after our apps to collect preferences\n\nMIDDLEWARE = [\n \"django.middleware.security.SecurityMiddleware\",\n \"django.contrib.sessions.middleware.SessionMiddleware\",\n \"django.middleware.common.CommonMiddleware\",\n \"django.middleware.csrf.CsrfViewMiddleware\",\n \"django.contrib.auth.middleware.AuthenticationMiddleware\",\n \"django.contrib.messages.middleware.MessageMiddleware\",\n \"django.middleware.clickjacking.XFrameOptionsMiddleware\",\n \"csp.middleware.CSPMiddleware\",\n]\n\nROOT_URLCONF = \"ephios.urls\"\n\nTEMPLATES = [\n {\n \"BACKEND\": \"django.template.backends.django.DjangoTemplates\",\n \"DIRS\": [os.path.join(BASE_DIR, \"ephios/templates\")],\n \"APP_DIRS\": True,\n \"OPTIONS\": {\n \"context_processors\": [\n \"django.template.context_processors.debug\",\n \"django.template.context_processors.request\",\n \"django.contrib.auth.context_processors.auth\",\n \"django.contrib.messages.context_processors.messages\",\n \"django.template.context_processors.i18n\",\n \"dynamic_preferences.processors.global_preferences\",\n \"ephios.core.context.ephios_base_context\",\n ],\n },\n },\n]\n\nLOCALE_PATHS = (os.path.join(BASE_DIR, \"ephios/locale\"),)\n\nWSGI_APPLICATION = \"ephios.wsgi.application\"\n\n# Database\n# https://docs.djangoproject.com/en/3.0/ref/settings/#databases\n\nDATABASES = {\"default\": env.db_url()}\n\n# Password validation\n# https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators\n\nAUTH_PASSWORD_VALIDATORS = [\n {\n \"NAME\": \"django.contrib.auth.password_validation.UserAttributeSimilarityValidator\",\n },\n {\n \"NAME\": \"ephios.core.utils.CustomMinimumLengthValidator\",\n },\n {\n \"NAME\": \"django.contrib.auth.password_validation.CommonPasswordValidator\",\n },\n {\n \"NAME\": \"django.contrib.auth.password_validation.NumericPasswordValidator\",\n },\n]\n\nAUTHENTICATION_BACKENDS = (\n \"django.contrib.auth.backends.ModelBackend\",\n \"guardian.backends.ObjectPermissionBackend\",\n)\n\nAUTH_USER_MODEL = \"core.UserProfile\"\nLOGIN_REDIRECT_URL = \"/\"\nPASSWORD_RESET_TIMEOUT = 28 * 24 * 60 * 60 # seconds\n\n# Internationalization\n# https://docs.djangoproject.com/en/3.0/topics/i18n/\n\nLANGUAGE_CODE = \"de\"\n\nTIME_ZONE = \"Europe/Berlin\"\n\nUSE_I18N = True\n\nUSE_L10N = True\n\nUSE_TZ = True\n\n# Static files (CSS, JavaScript, Images)\n# https://docs.djangoproject.com/en/3.0/howto/static-files/\n\nSTATIC_URL = env.str(\"STATIC_URL\")\nSTATIC_ROOT = env.str(\"STATIC_ROOT\")\nSTATICFILES_DIRS = (os.path.join(BASE_DIR, \"ephios/static\"),)\nSTATICFILES_FINDERS = (\n \"django.contrib.staticfiles.finders.FileSystemFinder\",\n \"django.contrib.staticfiles.finders.AppDirectoriesFinder\",\n \"compressor.finders.CompressorFinder\",\n)\nCOMPRESS_ENABLED = not DEBUG\n\n# mail configuration\nEMAIL_CONFIG = env.email_url(\"EMAIL_URL\")\nvars().update(EMAIL_CONFIG)\nDEFAULT_FROM_EMAIL = env.str(\"DEFAULT_FROM_EMAIL\")\nSERVER_EMAIL = env.str(\"SERVER_EMAIL\")\nADMINS = getaddresses([env(\"ADMINS\")])\n\n# Guardian configuration\nANONYMOUS_USER_NAME = None\nGUARDIAN_MONKEY_PATCH = False\n\n# django-select2\n# Prevent django-select from loading the select2 resources as we want to serve them locally\nSELECT2_JS = \"\"\nSELECT2_CSS = \"\"\nSELECT2_I18N_PATH = \"\"\n\n# django-debug-toolbar\nif DEBUG:\n INSTALLED_APPS.append(\"django_extensions\")\n INSTALLED_APPS.append(\"debug_toolbar\")\n MIDDLEWARE.insert(0, \"debug_toolbar.middleware.DebugToolbarMiddleware\")\n INTERNAL_IPS = env.str(\"INTERNAL_IPS\")\n\n# django-csp\n# Bootstrap requires embedded SVG files loaded via a data URI. This is not ideal, but will only be fixed in\n# bootstrap v5 or v6. See https://github.com/twbs/bootstrap/issues/25394 for details on the problem and\n# https://security.stackexchange.com/a/167244 on why allowing data: is considered okay\nCSP_IMG_SRC = (\"'self'\", \"data:\")\n\n# django-crispy-forms\nCRISPY_TEMPLATE_PACK = \"bootstrap4\"\n\n# django.contrib.messages\nMESSAGE_TAGS = {\n constants.DEBUG: \"alert-info\",\n constants.INFO: \"alert-info\",\n constants.SUCCESS: \"alert-success\",\n constants.WARNING: \"alert-warning\",\n constants.ERROR: \"alert-danger\",\n}\n\n# PWA\nPWA_APP_ICONS = [\n {\"src\": \"/static/ephios/img/ephios-192x.png\", \"sizes\": \"192x192\", \"purpose\": \"any maskable\"},\n {\"src\": \"/static/ephios/img/ephios-512x.png\", \"sizes\": \"512x512\", \"purpose\": \"any maskable\"},\n {\"src\": \"/static/ephios/img/ephios-1024x.png\", \"sizes\": \"1024x1024\", \"purpose\": \"any maskable\"},\n]\n", "path": "ephios/settings.py"}], "after_files": [{"content": "import copy\nimport os\nfrom email.utils import getaddresses\nfrom importlib import metadata\n\nimport environ\nfrom django.contrib.messages import constants\n\nBASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\n\nenv = environ.Env()\n# for syntax see https://django-environ.readthedocs.io/en/latest/\nenviron.Env.read_env(env_file=os.path.join(BASE_DIR, \".env\"))\n\nDATA_DIR = env.str(\"DATA_DIR\", default=os.path.join(BASE_DIR, \"data\"))\nif not os.path.exists(DATA_DIR):\n os.mkdir(DATA_DIR)\n\nSECRET_KEY = env.str(\"SECRET_KEY\")\nDEBUG = env.bool(\"DEBUG\")\nALLOWED_HOSTS = env.list(\"ALLOWED_HOSTS\")\nSITE_URL = env.str(\"SITE_URL\")\nif SITE_URL.endswith(\"/\"):\n SITE_URL = SITE_URL[:-1]\n\nif not DEBUG:\n SESSION_COOKIE_SECURE = True\n CSRF_COOKIE_SECURE = True\n X_FRAME_OPTIONS = \"DENY\"\n SECURE_CONTENT_TYPE_NOSNIFF = True\n SECURE_BROWSER_XSS_FILTER = True\n SECURE_SSL_REDIRECT = True\n SECURE_HSTS_SECONDS = 3600\n SECURE_HSTS_INCLUDE_SUBDOMAINS = True\n SECURE_REFERRER_POLICY = \"same-origin\"\n\n# Application definition\n\nINSTALLED_APPS = [\n \"django.contrib.admin\",\n \"django.contrib.auth\",\n \"polymorphic\",\n \"django.contrib.contenttypes\",\n \"django.contrib.sessions\",\n \"django.contrib.messages\",\n \"django.contrib.staticfiles\",\n \"guardian\",\n \"django_select2\",\n \"djangoformsetjs\",\n \"compressor\",\n \"recurrence\",\n \"statici18n\",\n \"dynamic_preferences.users.apps.UserPreferencesConfig\",\n \"crispy_forms\",\n]\n\nEPHIOS_CORE_MODULES = [\n \"ephios.core\",\n \"ephios.extra\",\n]\nINSTALLED_APPS += EPHIOS_CORE_MODULES\n\nCORE_PLUGINS = [\n \"ephios.plugins.basesignup\",\n \"ephios.plugins.pages\",\n \"ephios.plugins.guests\",\n]\nPLUGINS = copy.copy(CORE_PLUGINS)\nfor ep in metadata.entry_points().get(\"ephios.plugins\", []):\n PLUGINS.append(ep.module)\n\nINSTALLED_APPS += PLUGINS\n\nINSTALLED_APPS += [\"dynamic_preferences\"] # must come after our apps to collect preferences\n\nMIDDLEWARE = [\n \"django.middleware.security.SecurityMiddleware\",\n \"django.contrib.sessions.middleware.SessionMiddleware\",\n \"django.middleware.common.CommonMiddleware\",\n \"django.middleware.csrf.CsrfViewMiddleware\",\n \"django.contrib.auth.middleware.AuthenticationMiddleware\",\n \"django.contrib.messages.middleware.MessageMiddleware\",\n \"django.middleware.clickjacking.XFrameOptionsMiddleware\",\n \"csp.middleware.CSPMiddleware\",\n]\n\nROOT_URLCONF = \"ephios.urls\"\n\nTEMPLATES = [\n {\n \"BACKEND\": \"django.template.backends.django.DjangoTemplates\",\n \"DIRS\": [os.path.join(BASE_DIR, \"ephios/templates\")],\n \"APP_DIRS\": True,\n \"OPTIONS\": {\n \"context_processors\": [\n \"django.template.context_processors.debug\",\n \"django.template.context_processors.request\",\n \"django.contrib.auth.context_processors.auth\",\n \"django.contrib.messages.context_processors.messages\",\n \"django.template.context_processors.i18n\",\n \"dynamic_preferences.processors.global_preferences\",\n \"ephios.core.context.ephios_base_context\",\n ],\n },\n },\n]\n\nLOCALE_PATHS = (os.path.join(BASE_DIR, \"ephios/locale\"),)\n\nWSGI_APPLICATION = \"ephios.wsgi.application\"\n\n# Database\n# https://docs.djangoproject.com/en/3.0/ref/settings/#databases\n\nDATABASES = {\"default\": env.db_url()}\n\n# Caches\nCACHES = {\"default\": env.cache_url(default=\"locmemcache://\")}\nSESSION_ENGINE = \"django.contrib.sessions.backends.cached_db\"\nDJANGO_REDIS_IGNORE_EXCEPTIONS = True\nDJANGO_REDIS_LOG_IGNORED_EXCEPTIONS = True\n\n# Password validation\n# https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators\n\nAUTH_PASSWORD_VALIDATORS = [\n {\n \"NAME\": \"django.contrib.auth.password_validation.UserAttributeSimilarityValidator\",\n },\n {\n \"NAME\": \"ephios.core.utils.CustomMinimumLengthValidator\",\n },\n {\n \"NAME\": \"django.contrib.auth.password_validation.CommonPasswordValidator\",\n },\n {\n \"NAME\": \"django.contrib.auth.password_validation.NumericPasswordValidator\",\n },\n]\n\nAUTHENTICATION_BACKENDS = (\n \"django.contrib.auth.backends.ModelBackend\",\n \"guardian.backends.ObjectPermissionBackend\",\n)\n\nAUTH_USER_MODEL = \"core.UserProfile\"\nLOGIN_REDIRECT_URL = \"/\"\nPASSWORD_RESET_TIMEOUT = 28 * 24 * 60 * 60 # seconds\n\n# Internationalization\n# https://docs.djangoproject.com/en/3.0/topics/i18n/\n\nLANGUAGE_CODE = \"de\"\n\nTIME_ZONE = \"Europe/Berlin\"\n\nUSE_I18N = True\n\nUSE_L10N = True\n\nUSE_TZ = True\n\n# Static files (CSS, JavaScript, Images)\n# https://docs.djangoproject.com/en/3.0/howto/static-files/\n\nSTATIC_URL = env.str(\"STATIC_URL\")\nSTATIC_ROOT = env.str(\"STATIC_ROOT\")\nSTATICFILES_DIRS = (os.path.join(BASE_DIR, \"ephios/static\"),)\nSTATICFILES_FINDERS = (\n \"django.contrib.staticfiles.finders.FileSystemFinder\",\n \"django.contrib.staticfiles.finders.AppDirectoriesFinder\",\n \"compressor.finders.CompressorFinder\",\n)\nCOMPRESS_ENABLED = not DEBUG\n\n# mail configuration\nEMAIL_CONFIG = env.email_url(\"EMAIL_URL\")\nvars().update(EMAIL_CONFIG)\nDEFAULT_FROM_EMAIL = env.str(\"DEFAULT_FROM_EMAIL\")\nSERVER_EMAIL = env.str(\"SERVER_EMAIL\")\nADMINS = getaddresses([env(\"ADMINS\")])\n\n# Guardian configuration\nANONYMOUS_USER_NAME = None\nGUARDIAN_MONKEY_PATCH = False\n\n# django-select2\n# Prevent django-select from loading the select2 resources as we want to serve them locally\nSELECT2_JS = \"\"\nSELECT2_CSS = \"\"\nSELECT2_I18N_PATH = \"\"\n\n# django-debug-toolbar\nif DEBUG:\n INSTALLED_APPS.append(\"django_extensions\")\n INSTALLED_APPS.append(\"debug_toolbar\")\n MIDDLEWARE.insert(0, \"debug_toolbar.middleware.DebugToolbarMiddleware\")\n INTERNAL_IPS = env.str(\"INTERNAL_IPS\")\n\n# django-csp\n# Bootstrap requires embedded SVG files loaded via a data URI. This is not ideal, but will only be fixed in\n# bootstrap v5 or v6. See https://github.com/twbs/bootstrap/issues/25394 for details on the problem and\n# https://security.stackexchange.com/a/167244 on why allowing data: is considered okay\nCSP_IMG_SRC = (\"'self'\", \"data:\")\n\n# django-crispy-forms\nCRISPY_TEMPLATE_PACK = \"bootstrap4\"\n\n# django.contrib.messages\nMESSAGE_TAGS = {\n constants.DEBUG: \"alert-info\",\n constants.INFO: \"alert-info\",\n constants.SUCCESS: \"alert-success\",\n constants.WARNING: \"alert-warning\",\n constants.ERROR: \"alert-danger\",\n}\n\n# PWA\nPWA_APP_ICONS = [\n {\"src\": \"/static/ephios/img/ephios-192x.png\", \"sizes\": \"192x192\", \"purpose\": \"any maskable\"},\n {\"src\": \"/static/ephios/img/ephios-512x.png\", \"sizes\": \"512x512\", \"purpose\": \"any maskable\"},\n {\"src\": \"/static/ephios/img/ephios-1024x.png\", \"sizes\": \"1024x1024\", \"purpose\": \"any maskable\"},\n]\n", "path": "ephios/settings.py"}]}
2,440
141
gh_patches_debug_32353
rasdani/github-patches
git_diff
pypi__warehouse-6342
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Change username & API token prefix, to make Travis auth easier Just wanted to share a potential pain point for folks using the new PyPI API tokens for authentication via a travis.yaml. The @token username needs to be wrapped in quotes and the `:` after `pypi` needs to be escaped to work, otherwise you hit a 403 error (thanks for the help tracking this down @ewdurbin). If you're using the environment variables through Travis' UI, the following works: ``` deploy: provider: pypi user: "@token" # quotes required for travis # server: https://test.pypi.org/legacy/ # uncomment to do a test deploy password: secure: $PASSWORD # stored in travis env var, with `:` after `pypi` escaped (pypi\:) on: branch: master skip_existing: true ``` If you're encrypting the token via the command line, you can just wrap your token in quotes: ```travis encrypt "<your-pypi_token>" --add deploy.password [--com]``` --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `warehouse/macaroons/services.py` Content: ``` 1 # Licensed under the Apache License, Version 2.0 (the "License"); 2 # you may not use this file except in compliance with the License. 3 # You may obtain a copy of the License at 4 # 5 # http://www.apache.org/licenses/LICENSE-2.0 6 # 7 # Unless required by applicable law or agreed to in writing, software 8 # distributed under the License is distributed on an "AS IS" BASIS, 9 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 10 # See the License for the specific language governing permissions and 11 # limitations under the License. 12 13 import datetime 14 import json 15 import uuid 16 17 import pymacaroons 18 19 from sqlalchemy.orm import joinedload 20 from sqlalchemy.orm.exc import NoResultFound 21 from zope.interface import implementer 22 23 from warehouse.accounts.models import User 24 from warehouse.macaroons.caveats import InvalidMacaroon, Verifier 25 from warehouse.macaroons.interfaces import IMacaroonService 26 from warehouse.macaroons.models import Macaroon 27 28 29 @implementer(IMacaroonService) 30 class DatabaseMacaroonService: 31 def __init__(self, db_session): 32 self.db = db_session 33 34 def _extract_raw_macaroon(self, raw_macaroon): 35 """ 36 Returns the base64-encoded macaroon component of a PyPI macaroon, 37 dropping the prefix. 38 39 Returns None if the macaroon is None, has no prefix, or has the 40 wrong prefix. 41 """ 42 if raw_macaroon is None: 43 return None 44 45 try: 46 prefix, raw_macaroon = raw_macaroon.split(":", 1) 47 except ValueError: 48 return None 49 50 if prefix != "pypi": 51 return None 52 53 return raw_macaroon 54 55 def find_macaroon(self, macaroon_id): 56 """ 57 Returns a macaroon model from the DB by its identifier. 58 Returns None if no macaroon has the given ID. 59 """ 60 try: 61 dm = ( 62 self.db.query(Macaroon) 63 .options(joinedload("user")) 64 .filter(Macaroon.id == uuid.UUID(macaroon_id)) 65 .one() 66 ) 67 except NoResultFound: 68 return None 69 70 return dm 71 72 def find_userid(self, raw_macaroon): 73 """ 74 Returns the id of the user associated with the given raw (serialized) 75 macaroon. 76 """ 77 raw_macaroon = self._extract_raw_macaroon(raw_macaroon) 78 if raw_macaroon is None: 79 return None 80 81 m = pymacaroons.Macaroon.deserialize(raw_macaroon) 82 dm = self.find_macaroon(m.identifier.decode()) 83 84 if dm is None: 85 return None 86 87 return dm.user.id 88 89 def verify(self, raw_macaroon, context, principals, permission): 90 """ 91 Returns True if the given raw (serialized) macaroon is 92 valid for the context, principals, and requested permission. 93 94 Raises InvalidMacaroon if the macaroon is not valid. 95 """ 96 raw_macaroon = self._extract_raw_macaroon(raw_macaroon) 97 if raw_macaroon is None: 98 raise InvalidMacaroon("malformed or nonexistent macaroon") 99 100 m = pymacaroons.Macaroon.deserialize(raw_macaroon) 101 dm = self.find_macaroon(m.identifier.decode()) 102 103 if dm is None: 104 raise InvalidMacaroon("deleted or nonexistent macaroon") 105 106 verifier = Verifier(m, context, principals, permission) 107 if verifier.verify(dm.key): 108 dm.last_used = datetime.datetime.now() 109 return True 110 111 raise InvalidMacaroon("invalid macaroon") 112 113 def create_macaroon(self, location, user_id, description, caveats): 114 """ 115 Returns a tuple of a new raw (serialized) macaroon and its DB model. 116 The description provided is not embedded into the macaroon, only stored 117 in the DB model. 118 """ 119 user = self.db.query(User).filter(User.id == user_id).one() 120 121 dm = Macaroon(user=user, description=description, caveats=caveats) 122 self.db.add(dm) 123 self.db.flush() 124 125 m = pymacaroons.Macaroon( 126 location=location, 127 identifier=str(dm.id), 128 key=dm.key, 129 version=pymacaroons.MACAROON_V2, 130 ) 131 m.add_first_party_caveat(json.dumps(caveats)) 132 serialized_macaroon = f"pypi:{m.serialize()}" 133 return serialized_macaroon, dm 134 135 def delete_macaroon(self, macaroon_id): 136 """ 137 Deletes a macaroon from the DB by its identifier. 138 """ 139 dm = self.find_macaroon(macaroon_id) 140 self.db.delete(dm) 141 self.db.flush() 142 143 def get_macaroon_by_description(self, user_id, description): 144 """ 145 Returns a macaroon model from the DB with the given description, 146 if one exists for the given user. 147 148 Returns None if the user doesn't have a macaroon with this description. 149 """ 150 try: 151 dm = ( 152 self.db.query(Macaroon) 153 .options(joinedload("user")) 154 .filter(Macaroon.description == description) 155 .filter(Macaroon.user_id == user_id) 156 .one() 157 ) 158 except NoResultFound: 159 return None 160 161 return dm 162 163 164 def database_macaroon_factory(context, request): 165 return DatabaseMacaroonService(request.db) 166 ``` Path: `warehouse/macaroons/auth_policy.py` Content: ``` 1 # Licensed under the Apache License, Version 2.0 (the "License"); 2 # you may not use this file except in compliance with the License. 3 # You may obtain a copy of the License at 4 # 5 # http://www.apache.org/licenses/LICENSE-2.0 6 # 7 # Unless required by applicable law or agreed to in writing, software 8 # distributed under the License is distributed on an "AS IS" BASIS, 9 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 10 # See the License for the specific language governing permissions and 11 # limitations under the License. 12 13 import base64 14 15 from pyramid.authentication import CallbackAuthenticationPolicy 16 from pyramid.interfaces import IAuthenticationPolicy, IAuthorizationPolicy 17 from pyramid.security import Denied 18 from pyramid.threadlocal import get_current_request 19 from zope.interface import implementer 20 21 from warehouse.cache.http import add_vary_callback 22 from warehouse.macaroons.interfaces import IMacaroonService 23 from warehouse.macaroons.services import InvalidMacaroon 24 25 26 def _extract_basic_macaroon(auth): 27 """ 28 A helper function for extracting a macaroon from a 29 HTTP Basic Authentication-style header. 30 31 Returns None if the header doesn't contain a structurally 32 valid macaroon, or the candidate (not yet verified) macaroon 33 in a serialized form. 34 """ 35 try: 36 authorization = base64.b64decode(auth).decode() 37 auth_method, _, auth = authorization.partition(":") 38 except ValueError: 39 return None 40 41 if auth_method != "@token": 42 return None 43 44 return auth 45 46 47 def _extract_http_macaroon(request): 48 """ 49 A helper function for the extraction of HTTP Macaroon from a given request. 50 Returns either a None if no macaroon could be found, or the string 51 that represents our serialized macaroon. 52 """ 53 authorization = request.headers.get("Authorization") 54 if not authorization: 55 return None 56 57 try: 58 auth_method, auth = authorization.split(" ", 1) 59 except ValueError: 60 return None 61 62 if auth_method.lower() == "basic": 63 return _extract_basic_macaroon(auth) 64 elif auth_method.lower() == "token": 65 return auth 66 67 return None 68 69 70 @implementer(IAuthenticationPolicy) 71 class MacaroonAuthenticationPolicy(CallbackAuthenticationPolicy): 72 def __init__(self, callback=None): 73 self.callback = callback 74 75 def unauthenticated_userid(self, request): 76 # If we're calling into this API on a request, then we want to register 77 # a callback which will ensure that the response varies based on the 78 # Authorization header. 79 request.add_response_callback(add_vary_callback("Authorization")) 80 81 # We need to extract our Macaroon from the request. 82 macaroon = _extract_http_macaroon(request) 83 if macaroon is None: 84 return None 85 86 # Check to see if our Macaroon exists in the database, and if so 87 # fetch the user that is associated with it. 88 macaroon_service = request.find_service(IMacaroonService, context=None) 89 userid = macaroon_service.find_userid(macaroon) 90 if userid is not None: 91 return str(userid) 92 93 def remember(self, request, userid, **kw): 94 # This is a NO-OP because our Macaroon header policy doesn't allow 95 # the ability for authentication to "remember" the user id. This 96 # assumes it has been configured in clients somewhere out of band. 97 return [] 98 99 def forget(self, request): 100 # This is a NO-OP because our Macaroon header policy doesn't allow 101 # the ability for authentication to "forget" the user id. This 102 # assumes it has been configured in clients somewhere out of band. 103 return [] 104 105 106 @implementer(IAuthorizationPolicy) 107 class MacaroonAuthorizationPolicy: 108 def __init__(self, policy): 109 self.policy = policy 110 111 def permits(self, context, principals, permission): 112 # The Pyramid API doesn't let us access the request here, so we have to pull it 113 # out of the thread local instead. 114 # TODO: Work with Pyramid devs to figure out if there is a better way to support 115 # the worklow we are using here or not. 116 request = get_current_request() 117 118 # Our request could possibly be a None, if there isn't an active request, in 119 # that case we're going to always deny, because without a request, we can't 120 # determine if this request is authorized or not. 121 if request is None: 122 return Denied("There was no active request.") 123 124 # Re-extract our Macaroon from the request, it sucks to have to do this work 125 # twice, but I believe it is inevitable unless we pass the Macaroon back as 126 # a principal-- which doesn't seem to be the right fit for it. 127 macaroon = _extract_http_macaroon(request) 128 129 # This logic will only happen on requests that are being authenticated with 130 # Macaroons. Any other request will just fall back to the standard Authorization 131 # policy. 132 if macaroon is not None: 133 macaroon_service = request.find_service(IMacaroonService, context=None) 134 135 try: 136 macaroon_service.verify(macaroon, context, principals, permission) 137 except InvalidMacaroon as exc: 138 return Denied(f"The supplied token was invalid: {str(exc)!r}") 139 140 # If our Macaroon is verified, then we'll pass this request to our underlying 141 # Authorization policy, so it can handle its own authorization logic on 142 # the prinicpal. 143 return self.policy.permits(context, principals, permission) 144 145 def principals_allowed_by_permission(self, context, permission): 146 # We just dispatch this, because Macaroons don't restrict what principals are 147 # allowed by a particular permission, they just restrict specific requests 148 # to not have that permission. 149 return self.policy.principals_allowed_by_permission(context, permission) 150 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/warehouse/macaroons/auth_policy.py b/warehouse/macaroons/auth_policy.py --- a/warehouse/macaroons/auth_policy.py +++ b/warehouse/macaroons/auth_policy.py @@ -38,7 +38,8 @@ except ValueError: return None - if auth_method != "@token": + # TODO: Remove @token as an acceptable token username (GH-6345) + if auth_method != "@token" and auth_method != "__token__": return None return auth diff --git a/warehouse/macaroons/services.py b/warehouse/macaroons/services.py --- a/warehouse/macaroons/services.py +++ b/warehouse/macaroons/services.py @@ -31,7 +31,7 @@ def __init__(self, db_session): self.db = db_session - def _extract_raw_macaroon(self, raw_macaroon): + def _extract_raw_macaroon(self, prefixed_macaroon): """ Returns the base64-encoded macaroon component of a PyPI macaroon, dropping the prefix. @@ -39,13 +39,13 @@ Returns None if the macaroon is None, has no prefix, or has the wrong prefix. """ - if raw_macaroon is None: + if prefixed_macaroon is None: return None - try: - prefix, raw_macaroon = raw_macaroon.split(":", 1) - except ValueError: - return None + prefix, split, raw_macaroon = prefixed_macaroon.partition("-") + # TODO: Remove ':' as an acceptable delimiter for tokens (GH-6345) + if prefix != "pypi" or not split: + prefix, _, raw_macaroon = prefixed_macaroon.partition(":") if prefix != "pypi": return None @@ -129,7 +129,7 @@ version=pymacaroons.MACAROON_V2, ) m.add_first_party_caveat(json.dumps(caveats)) - serialized_macaroon = f"pypi:{m.serialize()}" + serialized_macaroon = f"pypi-{m.serialize()}" return serialized_macaroon, dm def delete_macaroon(self, macaroon_id):
{"golden_diff": "diff --git a/warehouse/macaroons/auth_policy.py b/warehouse/macaroons/auth_policy.py\n--- a/warehouse/macaroons/auth_policy.py\n+++ b/warehouse/macaroons/auth_policy.py\n@@ -38,7 +38,8 @@\n except ValueError:\n return None\n \n- if auth_method != \"@token\":\n+ # TODO: Remove @token as an acceptable token username (GH-6345)\n+ if auth_method != \"@token\" and auth_method != \"__token__\":\n return None\n \n return auth\ndiff --git a/warehouse/macaroons/services.py b/warehouse/macaroons/services.py\n--- a/warehouse/macaroons/services.py\n+++ b/warehouse/macaroons/services.py\n@@ -31,7 +31,7 @@\n def __init__(self, db_session):\n self.db = db_session\n \n- def _extract_raw_macaroon(self, raw_macaroon):\n+ def _extract_raw_macaroon(self, prefixed_macaroon):\n \"\"\"\n Returns the base64-encoded macaroon component of a PyPI macaroon,\n dropping the prefix.\n@@ -39,13 +39,13 @@\n Returns None if the macaroon is None, has no prefix, or has the\n wrong prefix.\n \"\"\"\n- if raw_macaroon is None:\n+ if prefixed_macaroon is None:\n return None\n \n- try:\n- prefix, raw_macaroon = raw_macaroon.split(\":\", 1)\n- except ValueError:\n- return None\n+ prefix, split, raw_macaroon = prefixed_macaroon.partition(\"-\")\n+ # TODO: Remove ':' as an acceptable delimiter for tokens (GH-6345)\n+ if prefix != \"pypi\" or not split:\n+ prefix, _, raw_macaroon = prefixed_macaroon.partition(\":\")\n \n if prefix != \"pypi\":\n return None\n@@ -129,7 +129,7 @@\n version=pymacaroons.MACAROON_V2,\n )\n m.add_first_party_caveat(json.dumps(caveats))\n- serialized_macaroon = f\"pypi:{m.serialize()}\"\n+ serialized_macaroon = f\"pypi-{m.serialize()}\"\n return serialized_macaroon, dm\n \n def delete_macaroon(self, macaroon_id):\n", "issue": "Change username & API token prefix, to make Travis auth easier\nJust wanted to share a potential pain point for folks using the new PyPI API tokens for authentication via a travis.yaml. The @token username needs to be wrapped in quotes and the `:` after `pypi` needs to be escaped to work, otherwise you hit a 403 error (thanks for the help tracking this down @ewdurbin).\r\n\r\nIf you're using the environment variables through Travis' UI, the following works:\r\n```\r\ndeploy:\r\n provider: pypi\r\n user: \"@token\" # quotes required for travis\r\n # server: https://test.pypi.org/legacy/ # uncomment to do a test deploy\r\n password:\r\n secure: $PASSWORD # stored in travis env var, with `:` after `pypi` escaped (pypi\\:)\r\n on:\r\n branch: master\r\n skip_existing: true\r\n```\r\n\r\nIf you're encrypting the token via the command line, you can just wrap your token in quotes:\r\n```travis encrypt \"<your-pypi_token>\" --add deploy.password [--com]```\n", "before_files": [{"content": "# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nimport datetime\nimport json\nimport uuid\n\nimport pymacaroons\n\nfrom sqlalchemy.orm import joinedload\nfrom sqlalchemy.orm.exc import NoResultFound\nfrom zope.interface import implementer\n\nfrom warehouse.accounts.models import User\nfrom warehouse.macaroons.caveats import InvalidMacaroon, Verifier\nfrom warehouse.macaroons.interfaces import IMacaroonService\nfrom warehouse.macaroons.models import Macaroon\n\n\n@implementer(IMacaroonService)\nclass DatabaseMacaroonService:\n def __init__(self, db_session):\n self.db = db_session\n\n def _extract_raw_macaroon(self, raw_macaroon):\n \"\"\"\n Returns the base64-encoded macaroon component of a PyPI macaroon,\n dropping the prefix.\n\n Returns None if the macaroon is None, has no prefix, or has the\n wrong prefix.\n \"\"\"\n if raw_macaroon is None:\n return None\n\n try:\n prefix, raw_macaroon = raw_macaroon.split(\":\", 1)\n except ValueError:\n return None\n\n if prefix != \"pypi\":\n return None\n\n return raw_macaroon\n\n def find_macaroon(self, macaroon_id):\n \"\"\"\n Returns a macaroon model from the DB by its identifier.\n Returns None if no macaroon has the given ID.\n \"\"\"\n try:\n dm = (\n self.db.query(Macaroon)\n .options(joinedload(\"user\"))\n .filter(Macaroon.id == uuid.UUID(macaroon_id))\n .one()\n )\n except NoResultFound:\n return None\n\n return dm\n\n def find_userid(self, raw_macaroon):\n \"\"\"\n Returns the id of the user associated with the given raw (serialized)\n macaroon.\n \"\"\"\n raw_macaroon = self._extract_raw_macaroon(raw_macaroon)\n if raw_macaroon is None:\n return None\n\n m = pymacaroons.Macaroon.deserialize(raw_macaroon)\n dm = self.find_macaroon(m.identifier.decode())\n\n if dm is None:\n return None\n\n return dm.user.id\n\n def verify(self, raw_macaroon, context, principals, permission):\n \"\"\"\n Returns True if the given raw (serialized) macaroon is\n valid for the context, principals, and requested permission.\n\n Raises InvalidMacaroon if the macaroon is not valid.\n \"\"\"\n raw_macaroon = self._extract_raw_macaroon(raw_macaroon)\n if raw_macaroon is None:\n raise InvalidMacaroon(\"malformed or nonexistent macaroon\")\n\n m = pymacaroons.Macaroon.deserialize(raw_macaroon)\n dm = self.find_macaroon(m.identifier.decode())\n\n if dm is None:\n raise InvalidMacaroon(\"deleted or nonexistent macaroon\")\n\n verifier = Verifier(m, context, principals, permission)\n if verifier.verify(dm.key):\n dm.last_used = datetime.datetime.now()\n return True\n\n raise InvalidMacaroon(\"invalid macaroon\")\n\n def create_macaroon(self, location, user_id, description, caveats):\n \"\"\"\n Returns a tuple of a new raw (serialized) macaroon and its DB model.\n The description provided is not embedded into the macaroon, only stored\n in the DB model.\n \"\"\"\n user = self.db.query(User).filter(User.id == user_id).one()\n\n dm = Macaroon(user=user, description=description, caveats=caveats)\n self.db.add(dm)\n self.db.flush()\n\n m = pymacaroons.Macaroon(\n location=location,\n identifier=str(dm.id),\n key=dm.key,\n version=pymacaroons.MACAROON_V2,\n )\n m.add_first_party_caveat(json.dumps(caveats))\n serialized_macaroon = f\"pypi:{m.serialize()}\"\n return serialized_macaroon, dm\n\n def delete_macaroon(self, macaroon_id):\n \"\"\"\n Deletes a macaroon from the DB by its identifier.\n \"\"\"\n dm = self.find_macaroon(macaroon_id)\n self.db.delete(dm)\n self.db.flush()\n\n def get_macaroon_by_description(self, user_id, description):\n \"\"\"\n Returns a macaroon model from the DB with the given description,\n if one exists for the given user.\n\n Returns None if the user doesn't have a macaroon with this description.\n \"\"\"\n try:\n dm = (\n self.db.query(Macaroon)\n .options(joinedload(\"user\"))\n .filter(Macaroon.description == description)\n .filter(Macaroon.user_id == user_id)\n .one()\n )\n except NoResultFound:\n return None\n\n return dm\n\n\ndef database_macaroon_factory(context, request):\n return DatabaseMacaroonService(request.db)\n", "path": "warehouse/macaroons/services.py"}, {"content": "# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nimport base64\n\nfrom pyramid.authentication import CallbackAuthenticationPolicy\nfrom pyramid.interfaces import IAuthenticationPolicy, IAuthorizationPolicy\nfrom pyramid.security import Denied\nfrom pyramid.threadlocal import get_current_request\nfrom zope.interface import implementer\n\nfrom warehouse.cache.http import add_vary_callback\nfrom warehouse.macaroons.interfaces import IMacaroonService\nfrom warehouse.macaroons.services import InvalidMacaroon\n\n\ndef _extract_basic_macaroon(auth):\n \"\"\"\n A helper function for extracting a macaroon from a\n HTTP Basic Authentication-style header.\n\n Returns None if the header doesn't contain a structurally\n valid macaroon, or the candidate (not yet verified) macaroon\n in a serialized form.\n \"\"\"\n try:\n authorization = base64.b64decode(auth).decode()\n auth_method, _, auth = authorization.partition(\":\")\n except ValueError:\n return None\n\n if auth_method != \"@token\":\n return None\n\n return auth\n\n\ndef _extract_http_macaroon(request):\n \"\"\"\n A helper function for the extraction of HTTP Macaroon from a given request.\n Returns either a None if no macaroon could be found, or the string\n that represents our serialized macaroon.\n \"\"\"\n authorization = request.headers.get(\"Authorization\")\n if not authorization:\n return None\n\n try:\n auth_method, auth = authorization.split(\" \", 1)\n except ValueError:\n return None\n\n if auth_method.lower() == \"basic\":\n return _extract_basic_macaroon(auth)\n elif auth_method.lower() == \"token\":\n return auth\n\n return None\n\n\n@implementer(IAuthenticationPolicy)\nclass MacaroonAuthenticationPolicy(CallbackAuthenticationPolicy):\n def __init__(self, callback=None):\n self.callback = callback\n\n def unauthenticated_userid(self, request):\n # If we're calling into this API on a request, then we want to register\n # a callback which will ensure that the response varies based on the\n # Authorization header.\n request.add_response_callback(add_vary_callback(\"Authorization\"))\n\n # We need to extract our Macaroon from the request.\n macaroon = _extract_http_macaroon(request)\n if macaroon is None:\n return None\n\n # Check to see if our Macaroon exists in the database, and if so\n # fetch the user that is associated with it.\n macaroon_service = request.find_service(IMacaroonService, context=None)\n userid = macaroon_service.find_userid(macaroon)\n if userid is not None:\n return str(userid)\n\n def remember(self, request, userid, **kw):\n # This is a NO-OP because our Macaroon header policy doesn't allow\n # the ability for authentication to \"remember\" the user id. This\n # assumes it has been configured in clients somewhere out of band.\n return []\n\n def forget(self, request):\n # This is a NO-OP because our Macaroon header policy doesn't allow\n # the ability for authentication to \"forget\" the user id. This\n # assumes it has been configured in clients somewhere out of band.\n return []\n\n\n@implementer(IAuthorizationPolicy)\nclass MacaroonAuthorizationPolicy:\n def __init__(self, policy):\n self.policy = policy\n\n def permits(self, context, principals, permission):\n # The Pyramid API doesn't let us access the request here, so we have to pull it\n # out of the thread local instead.\n # TODO: Work with Pyramid devs to figure out if there is a better way to support\n # the worklow we are using here or not.\n request = get_current_request()\n\n # Our request could possibly be a None, if there isn't an active request, in\n # that case we're going to always deny, because without a request, we can't\n # determine if this request is authorized or not.\n if request is None:\n return Denied(\"There was no active request.\")\n\n # Re-extract our Macaroon from the request, it sucks to have to do this work\n # twice, but I believe it is inevitable unless we pass the Macaroon back as\n # a principal-- which doesn't seem to be the right fit for it.\n macaroon = _extract_http_macaroon(request)\n\n # This logic will only happen on requests that are being authenticated with\n # Macaroons. Any other request will just fall back to the standard Authorization\n # policy.\n if macaroon is not None:\n macaroon_service = request.find_service(IMacaroonService, context=None)\n\n try:\n macaroon_service.verify(macaroon, context, principals, permission)\n except InvalidMacaroon as exc:\n return Denied(f\"The supplied token was invalid: {str(exc)!r}\")\n\n # If our Macaroon is verified, then we'll pass this request to our underlying\n # Authorization policy, so it can handle its own authorization logic on\n # the prinicpal.\n return self.policy.permits(context, principals, permission)\n\n def principals_allowed_by_permission(self, context, permission):\n # We just dispatch this, because Macaroons don't restrict what principals are\n # allowed by a particular permission, they just restrict specific requests\n # to not have that permission.\n return self.policy.principals_allowed_by_permission(context, permission)\n", "path": "warehouse/macaroons/auth_policy.py"}], "after_files": [{"content": "# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nimport datetime\nimport json\nimport uuid\n\nimport pymacaroons\n\nfrom sqlalchemy.orm import joinedload\nfrom sqlalchemy.orm.exc import NoResultFound\nfrom zope.interface import implementer\n\nfrom warehouse.accounts.models import User\nfrom warehouse.macaroons.caveats import InvalidMacaroon, Verifier\nfrom warehouse.macaroons.interfaces import IMacaroonService\nfrom warehouse.macaroons.models import Macaroon\n\n\n@implementer(IMacaroonService)\nclass DatabaseMacaroonService:\n def __init__(self, db_session):\n self.db = db_session\n\n def _extract_raw_macaroon(self, prefixed_macaroon):\n \"\"\"\n Returns the base64-encoded macaroon component of a PyPI macaroon,\n dropping the prefix.\n\n Returns None if the macaroon is None, has no prefix, or has the\n wrong prefix.\n \"\"\"\n if prefixed_macaroon is None:\n return None\n\n prefix, split, raw_macaroon = prefixed_macaroon.partition(\"-\")\n # TODO: Remove ':' as an acceptable delimiter for tokens (GH-6345)\n if prefix != \"pypi\" or not split:\n prefix, _, raw_macaroon = prefixed_macaroon.partition(\":\")\n\n if prefix != \"pypi\":\n return None\n\n return raw_macaroon\n\n def find_macaroon(self, macaroon_id):\n \"\"\"\n Returns a macaroon model from the DB by its identifier.\n Returns None if no macaroon has the given ID.\n \"\"\"\n try:\n dm = (\n self.db.query(Macaroon)\n .options(joinedload(\"user\"))\n .filter(Macaroon.id == uuid.UUID(macaroon_id))\n .one()\n )\n except NoResultFound:\n return None\n\n return dm\n\n def find_userid(self, raw_macaroon):\n \"\"\"\n Returns the id of the user associated with the given raw (serialized)\n macaroon.\n \"\"\"\n raw_macaroon = self._extract_raw_macaroon(raw_macaroon)\n if raw_macaroon is None:\n return None\n\n m = pymacaroons.Macaroon.deserialize(raw_macaroon)\n dm = self.find_macaroon(m.identifier.decode())\n\n if dm is None:\n return None\n\n return dm.user.id\n\n def verify(self, raw_macaroon, context, principals, permission):\n \"\"\"\n Returns True if the given raw (serialized) macaroon is\n valid for the context, principals, and requested permission.\n\n Raises InvalidMacaroon if the macaroon is not valid.\n \"\"\"\n raw_macaroon = self._extract_raw_macaroon(raw_macaroon)\n if raw_macaroon is None:\n raise InvalidMacaroon(\"malformed or nonexistent macaroon\")\n\n m = pymacaroons.Macaroon.deserialize(raw_macaroon)\n dm = self.find_macaroon(m.identifier.decode())\n\n if dm is None:\n raise InvalidMacaroon(\"deleted or nonexistent macaroon\")\n\n verifier = Verifier(m, context, principals, permission)\n if verifier.verify(dm.key):\n dm.last_used = datetime.datetime.now()\n return True\n\n raise InvalidMacaroon(\"invalid macaroon\")\n\n def create_macaroon(self, location, user_id, description, caveats):\n \"\"\"\n Returns a tuple of a new raw (serialized) macaroon and its DB model.\n The description provided is not embedded into the macaroon, only stored\n in the DB model.\n \"\"\"\n user = self.db.query(User).filter(User.id == user_id).one()\n\n dm = Macaroon(user=user, description=description, caveats=caveats)\n self.db.add(dm)\n self.db.flush()\n\n m = pymacaroons.Macaroon(\n location=location,\n identifier=str(dm.id),\n key=dm.key,\n version=pymacaroons.MACAROON_V2,\n )\n m.add_first_party_caveat(json.dumps(caveats))\n serialized_macaroon = f\"pypi-{m.serialize()}\"\n return serialized_macaroon, dm\n\n def delete_macaroon(self, macaroon_id):\n \"\"\"\n Deletes a macaroon from the DB by its identifier.\n \"\"\"\n dm = self.find_macaroon(macaroon_id)\n self.db.delete(dm)\n self.db.flush()\n\n def get_macaroon_by_description(self, user_id, description):\n \"\"\"\n Returns a macaroon model from the DB with the given description,\n if one exists for the given user.\n\n Returns None if the user doesn't have a macaroon with this description.\n \"\"\"\n try:\n dm = (\n self.db.query(Macaroon)\n .options(joinedload(\"user\"))\n .filter(Macaroon.description == description)\n .filter(Macaroon.user_id == user_id)\n .one()\n )\n except NoResultFound:\n return None\n\n return dm\n\n\ndef database_macaroon_factory(context, request):\n return DatabaseMacaroonService(request.db)\n", "path": "warehouse/macaroons/services.py"}, {"content": "# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nimport base64\n\nfrom pyramid.authentication import CallbackAuthenticationPolicy\nfrom pyramid.interfaces import IAuthenticationPolicy, IAuthorizationPolicy\nfrom pyramid.security import Denied\nfrom pyramid.threadlocal import get_current_request\nfrom zope.interface import implementer\n\nfrom warehouse.cache.http import add_vary_callback\nfrom warehouse.macaroons.interfaces import IMacaroonService\nfrom warehouse.macaroons.services import InvalidMacaroon\n\n\ndef _extract_basic_macaroon(auth):\n \"\"\"\n A helper function for extracting a macaroon from a\n HTTP Basic Authentication-style header.\n\n Returns None if the header doesn't contain a structurally\n valid macaroon, or the candidate (not yet verified) macaroon\n in a serialized form.\n \"\"\"\n try:\n authorization = base64.b64decode(auth).decode()\n auth_method, _, auth = authorization.partition(\":\")\n except ValueError:\n return None\n\n # TODO: Remove @token as an acceptable token username (GH-6345)\n if auth_method != \"@token\" and auth_method != \"__token__\":\n return None\n\n return auth\n\n\ndef _extract_http_macaroon(request):\n \"\"\"\n A helper function for the extraction of HTTP Macaroon from a given request.\n Returns either a None if no macaroon could be found, or the string\n that represents our serialized macaroon.\n \"\"\"\n authorization = request.headers.get(\"Authorization\")\n if not authorization:\n return None\n\n try:\n auth_method, auth = authorization.split(\" \", 1)\n except ValueError:\n return None\n\n if auth_method.lower() == \"basic\":\n return _extract_basic_macaroon(auth)\n elif auth_method.lower() == \"token\":\n return auth\n\n return None\n\n\n@implementer(IAuthenticationPolicy)\nclass MacaroonAuthenticationPolicy(CallbackAuthenticationPolicy):\n def __init__(self, callback=None):\n self.callback = callback\n\n def unauthenticated_userid(self, request):\n # If we're calling into this API on a request, then we want to register\n # a callback which will ensure that the response varies based on the\n # Authorization header.\n request.add_response_callback(add_vary_callback(\"Authorization\"))\n\n # We need to extract our Macaroon from the request.\n macaroon = _extract_http_macaroon(request)\n if macaroon is None:\n return None\n\n # Check to see if our Macaroon exists in the database, and if so\n # fetch the user that is associated with it.\n macaroon_service = request.find_service(IMacaroonService, context=None)\n userid = macaroon_service.find_userid(macaroon)\n if userid is not None:\n return str(userid)\n\n def remember(self, request, userid, **kw):\n # This is a NO-OP because our Macaroon header policy doesn't allow\n # the ability for authentication to \"remember\" the user id. This\n # assumes it has been configured in clients somewhere out of band.\n return []\n\n def forget(self, request):\n # This is a NO-OP because our Macaroon header policy doesn't allow\n # the ability for authentication to \"forget\" the user id. This\n # assumes it has been configured in clients somewhere out of band.\n return []\n\n\n@implementer(IAuthorizationPolicy)\nclass MacaroonAuthorizationPolicy:\n def __init__(self, policy):\n self.policy = policy\n\n def permits(self, context, principals, permission):\n # The Pyramid API doesn't let us access the request here, so we have to pull it\n # out of the thread local instead.\n # TODO: Work with Pyramid devs to figure out if there is a better way to support\n # the worklow we are using here or not.\n request = get_current_request()\n\n # Our request could possibly be a None, if there isn't an active request, in\n # that case we're going to always deny, because without a request, we can't\n # determine if this request is authorized or not.\n if request is None:\n return Denied(\"There was no active request.\")\n\n # Re-extract our Macaroon from the request, it sucks to have to do this work\n # twice, but I believe it is inevitable unless we pass the Macaroon back as\n # a principal-- which doesn't seem to be the right fit for it.\n macaroon = _extract_http_macaroon(request)\n\n # This logic will only happen on requests that are being authenticated with\n # Macaroons. Any other request will just fall back to the standard Authorization\n # policy.\n if macaroon is not None:\n macaroon_service = request.find_service(IMacaroonService, context=None)\n\n try:\n macaroon_service.verify(macaroon, context, principals, permission)\n except InvalidMacaroon as exc:\n return Denied(f\"The supplied token was invalid: {str(exc)!r}\")\n\n # If our Macaroon is verified, then we'll pass this request to our underlying\n # Authorization policy, so it can handle its own authorization logic on\n # the prinicpal.\n return self.policy.permits(context, principals, permission)\n\n def principals_allowed_by_permission(self, context, permission):\n # We just dispatch this, because Macaroons don't restrict what principals are\n # allowed by a particular permission, they just restrict specific requests\n # to not have that permission.\n return self.policy.principals_allowed_by_permission(context, permission)\n", "path": "warehouse/macaroons/auth_policy.py"}]}
3,751
522
gh_patches_debug_30592
rasdani/github-patches
git_diff
mne-tools__mne-python-4380
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Remove deprecated imp module Currently, `mne/commands/utils.py` still uses the deprecated `imp` module, which has long been replaced with `importlib`. According to [this answer on SO](https://stackoverflow.com/a/67692/1112283), the current solution works only on Python 3.5/3.6, and there is a (deprecated) alternative for Python 3.3/3.4. All versions < 3.3 need to use `imp`. How should this be handled in MNE? --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `mne/commands/utils.py` Content: ``` 1 """Some utility functions for commands (e.g. for cmdline handling).""" 2 3 # Authors: Yaroslav Halchenko <[email protected]> 4 # 5 # License: BSD (3-clause) 6 7 import imp 8 import os 9 import re 10 from optparse import OptionParser 11 12 import mne 13 14 15 def get_optparser(cmdpath, usage=None): 16 """Create OptionParser with cmd specific settings (e.g. prog value).""" 17 command = os.path.basename(cmdpath) 18 if re.match('mne_(.*).py', command): 19 command = command[4:-3] 20 elif re.match('mne_(.*).pyc', command): 21 command = command[4:-4] 22 23 # Fetch description 24 if cmdpath.endswith('.pyc'): 25 mod = imp.load_compiled('__temp', cmdpath) 26 else: 27 mod = imp.load_source('__temp', cmdpath) 28 if mod.__doc__: 29 doc, description, epilog = mod.__doc__, None, None 30 31 doc_lines = doc.split('\n') 32 description = doc_lines[0] 33 if len(doc_lines) > 1: 34 epilog = '\n'.join(doc_lines[1:]) 35 36 # monkey patch OptionParser to not wrap epilog 37 OptionParser.format_epilog = lambda self, formatter: self.epilog 38 parser = OptionParser(prog="mne %s" % command, 39 version=mne.__version__, 40 description=description, 41 epilog=epilog, usage=usage) 42 43 return parser 44 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/mne/commands/utils.py b/mne/commands/utils.py --- a/mne/commands/utils.py +++ b/mne/commands/utils.py @@ -4,7 +4,7 @@ # # License: BSD (3-clause) -import imp +import sys import os import re from optparse import OptionParser @@ -12,6 +12,42 @@ import mne +def load_module(name, path): + """Load module from .py/.pyc file. + + Parameters + ---------- + name : str + Name of the module. + path : str + Path to .py/.pyc file. + + Returns + ------- + mod : module + Imported module. + """ + if sys.version_info < (3, 3): + import imp + if path.endswith('.pyc'): + return imp.load_compiled(name, path) + else: + return imp.load_source(name, path) + elif sys.version_info < (3, 5): + if path.endswith('.pyc'): + from importlib.machinery import SourcelessFileLoader + return SourcelessFileLoader(name, path).load_module() + else: + from importlib.machinery import SourceFileLoader + return SourceFileLoader(name, path).load_module() + else: # Python 3.5 or greater + from importlib.util import spec_from_file_location, module_from_spec + spec = spec_from_file_location(name, path) + mod = module_from_spec(spec) + spec.loader.exec_module(mod) + return mod + + def get_optparser(cmdpath, usage=None): """Create OptionParser with cmd specific settings (e.g. prog value).""" command = os.path.basename(cmdpath) @@ -21,10 +57,7 @@ command = command[4:-4] # Fetch description - if cmdpath.endswith('.pyc'): - mod = imp.load_compiled('__temp', cmdpath) - else: - mod = imp.load_source('__temp', cmdpath) + mod = load_module('__temp', cmdpath) if mod.__doc__: doc, description, epilog = mod.__doc__, None, None
{"golden_diff": "diff --git a/mne/commands/utils.py b/mne/commands/utils.py\n--- a/mne/commands/utils.py\n+++ b/mne/commands/utils.py\n@@ -4,7 +4,7 @@\n #\n # License: BSD (3-clause)\n \n-import imp\n+import sys\n import os\n import re\n from optparse import OptionParser\n@@ -12,6 +12,42 @@\n import mne\n \n \n+def load_module(name, path):\n+ \"\"\"Load module from .py/.pyc file.\n+\n+ Parameters\n+ ----------\n+ name : str\n+ Name of the module.\n+ path : str\n+ Path to .py/.pyc file.\n+\n+ Returns\n+ -------\n+ mod : module\n+ Imported module.\n+ \"\"\"\n+ if sys.version_info < (3, 3):\n+ import imp\n+ if path.endswith('.pyc'):\n+ return imp.load_compiled(name, path)\n+ else:\n+ return imp.load_source(name, path)\n+ elif sys.version_info < (3, 5):\n+ if path.endswith('.pyc'):\n+ from importlib.machinery import SourcelessFileLoader\n+ return SourcelessFileLoader(name, path).load_module()\n+ else:\n+ from importlib.machinery import SourceFileLoader\n+ return SourceFileLoader(name, path).load_module()\n+ else: # Python 3.5 or greater\n+ from importlib.util import spec_from_file_location, module_from_spec\n+ spec = spec_from_file_location(name, path)\n+ mod = module_from_spec(spec)\n+ spec.loader.exec_module(mod)\n+ return mod\n+\n+\n def get_optparser(cmdpath, usage=None):\n \"\"\"Create OptionParser with cmd specific settings (e.g. prog value).\"\"\"\n command = os.path.basename(cmdpath)\n@@ -21,10 +57,7 @@\n command = command[4:-4]\n \n # Fetch description\n- if cmdpath.endswith('.pyc'):\n- mod = imp.load_compiled('__temp', cmdpath)\n- else:\n- mod = imp.load_source('__temp', cmdpath)\n+ mod = load_module('__temp', cmdpath)\n if mod.__doc__:\n doc, description, epilog = mod.__doc__, None, None\n", "issue": "Remove deprecated imp module\nCurrently, `mne/commands/utils.py` still uses the deprecated `imp` module, which has long been replaced with `importlib`. According to [this answer on SO](https://stackoverflow.com/a/67692/1112283), the current solution works only on Python 3.5/3.6, and there is a (deprecated) alternative for Python 3.3/3.4. All versions < 3.3 need to use `imp`.\r\n\r\nHow should this be handled in MNE?\n", "before_files": [{"content": "\"\"\"Some utility functions for commands (e.g. for cmdline handling).\"\"\"\n\n# Authors: Yaroslav Halchenko <[email protected]>\n#\n# License: BSD (3-clause)\n\nimport imp\nimport os\nimport re\nfrom optparse import OptionParser\n\nimport mne\n\n\ndef get_optparser(cmdpath, usage=None):\n \"\"\"Create OptionParser with cmd specific settings (e.g. prog value).\"\"\"\n command = os.path.basename(cmdpath)\n if re.match('mne_(.*).py', command):\n command = command[4:-3]\n elif re.match('mne_(.*).pyc', command):\n command = command[4:-4]\n\n # Fetch description\n if cmdpath.endswith('.pyc'):\n mod = imp.load_compiled('__temp', cmdpath)\n else:\n mod = imp.load_source('__temp', cmdpath)\n if mod.__doc__:\n doc, description, epilog = mod.__doc__, None, None\n\n doc_lines = doc.split('\\n')\n description = doc_lines[0]\n if len(doc_lines) > 1:\n epilog = '\\n'.join(doc_lines[1:])\n\n # monkey patch OptionParser to not wrap epilog\n OptionParser.format_epilog = lambda self, formatter: self.epilog\n parser = OptionParser(prog=\"mne %s\" % command,\n version=mne.__version__,\n description=description,\n epilog=epilog, usage=usage)\n\n return parser\n", "path": "mne/commands/utils.py"}], "after_files": [{"content": "\"\"\"Some utility functions for commands (e.g. for cmdline handling).\"\"\"\n\n# Authors: Yaroslav Halchenko <[email protected]>\n#\n# License: BSD (3-clause)\n\nimport sys\nimport os\nimport re\nfrom optparse import OptionParser\n\nimport mne\n\n\ndef load_module(name, path):\n \"\"\"Load module from .py/.pyc file.\n\n Parameters\n ----------\n name : str\n Name of the module.\n path : str\n Path to .py/.pyc file.\n\n Returns\n -------\n mod : module\n Imported module.\n \"\"\"\n if sys.version_info < (3, 3):\n import imp\n if path.endswith('.pyc'):\n return imp.load_compiled(name, path)\n else:\n return imp.load_source(name, path)\n elif sys.version_info < (3, 5):\n if path.endswith('.pyc'):\n from importlib.machinery import SourcelessFileLoader\n return SourcelessFileLoader(name, path).load_module()\n else:\n from importlib.machinery import SourceFileLoader\n return SourceFileLoader(name, path).load_module()\n else: # Python 3.5 or greater\n from importlib.util import spec_from_file_location, module_from_spec\n spec = spec_from_file_location(name, path)\n mod = module_from_spec(spec)\n spec.loader.exec_module(mod)\n return mod\n\n\ndef get_optparser(cmdpath, usage=None):\n \"\"\"Create OptionParser with cmd specific settings (e.g. prog value).\"\"\"\n command = os.path.basename(cmdpath)\n if re.match('mne_(.*).py', command):\n command = command[4:-3]\n elif re.match('mne_(.*).pyc', command):\n command = command[4:-4]\n\n # Fetch description\n mod = load_module('__temp', cmdpath)\n if mod.__doc__:\n doc, description, epilog = mod.__doc__, None, None\n\n doc_lines = doc.split('\\n')\n description = doc_lines[0]\n if len(doc_lines) > 1:\n epilog = '\\n'.join(doc_lines[1:])\n\n # monkey patch OptionParser to not wrap epilog\n OptionParser.format_epilog = lambda self, formatter: self.epilog\n parser = OptionParser(prog=\"mne %s\" % command,\n version=mne.__version__,\n description=description,\n epilog=epilog, usage=usage)\n\n return parser\n", "path": "mne/commands/utils.py"}]}
788
512
gh_patches_debug_18694
rasdani/github-patches
git_diff
sublimelsp__LSP-1371
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Diagnostic not highlighted in view when range is empty **Describe the bug** A diagnostic that has an empty range is not visible in the view (only in the gutter and in diagnostics panel). **To Reproduce** Receive a diagnostic like: ```js { "diagnostics": [ { "code": { "target": "https://eslint.org/docs/rules/curly", "value": "curly" }, "message": "Expected { after 'if' condition.", "range": { "end": { "character": 9, "line": 607 }, "start": { "character": 9, "line": 607 } }, "severity": 1, "source": "eslint" }, ``` **Expected behavior** See where on the line the problem is. Otherwise, it's difficult to know where code action can be triggered. **Screenshots** ![Screenshot 2020-09-25 at 22 58 01](https://user-images.githubusercontent.com/153197/94315521-f6394080-ff82-11ea-9dc6-7adffb643465.png) **Environment (please complete the following information):** - OS: macOS - Sublime Text version: 4087 - LSP version: 49ea7330301078035ad56b94218a9c6edb604498 - Language servers used: eslint --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `plugin/session_view.py` Content: ``` 1 from .core.protocol import Diagnostic 2 from .core.protocol import Request 3 from .core.sessions import Session 4 from .core.settings import userprefs 5 from .core.types import view2scope 6 from .core.typing import Any, Iterable, List, Tuple, Optional, Dict 7 from .core.views import DIAGNOSTIC_SEVERITY 8 from .core.windows import AbstractViewListener 9 from .session_buffer import SessionBuffer 10 from weakref import ref 11 from weakref import WeakValueDictionary 12 import sublime 13 14 15 class SessionView: 16 """ 17 Holds state per session per view. 18 """ 19 20 LANGUAGE_ID_KEY = "lsp_language" 21 SHOW_DEFINITIONS_KEY = "show_definitions" 22 HOVER_PROVIDER_KEY = "hoverProvider" 23 HOVER_PROVIDER_COUNT_KEY = "lsp_hover_provider_count" 24 25 _session_buffers = WeakValueDictionary() # type: WeakValueDictionary[Tuple[str, int], SessionBuffer] 26 27 def __init__(self, listener: AbstractViewListener, session: Session) -> None: 28 self.view = listener.view 29 self.session = session 30 self.active_requests = {} # type: Dict[int, Request] 31 settings = self.view.settings() 32 # TODO: Language ID must be UNIQUE! 33 languages = settings.get(self.LANGUAGE_ID_KEY) 34 self._language_id = '' 35 if not isinstance(languages, dict): 36 languages = {} 37 for language in session.config.languages: 38 if language.match_scope(view2scope(self.view)): 39 languages[session.config.name] = language.id 40 self._language_id = language.id 41 break 42 settings.set(self.LANGUAGE_ID_KEY, languages) 43 buffer_id = self.view.buffer_id() 44 key = (session.config.name, buffer_id) 45 session_buffer = self._session_buffers.get(key) 46 if session_buffer is None: 47 session_buffer = SessionBuffer(self, buffer_id, self._language_id) 48 self._session_buffers[key] = session_buffer 49 else: 50 session_buffer.add_session_view(self) 51 self.session_buffer = session_buffer 52 self.listener = ref(listener) 53 session.register_session_view_async(self) 54 session.config.set_view_status(self.view, "") 55 if self.session.has_capability(self.HOVER_PROVIDER_KEY): 56 self._increment_hover_count() 57 58 def __del__(self) -> None: 59 if self.session.has_capability(self.HOVER_PROVIDER_KEY): 60 self._decrement_hover_count() 61 # If the session is exiting then there's no point in sending textDocument/didClose and there's also no point 62 # in unregistering ourselves from the session. 63 if not self.session.exiting: 64 self.session.unregister_session_view_async(self) 65 self.session.config.erase_view_status(self.view) 66 settings = self.view.settings() # type: sublime.Settings 67 # TODO: Language ID must be UNIQUE! 68 languages = settings.get(self.LANGUAGE_ID_KEY) 69 if isinstance(languages, dict): 70 languages.pop(self.session.config.name, None) 71 if languages: 72 settings.set(self.LANGUAGE_ID_KEY, languages) 73 else: 74 settings.erase(self.LANGUAGE_ID_KEY) 75 for severity in range(1, len(DIAGNOSTIC_SEVERITY) + 1): 76 self.view.erase_regions(self.diagnostics_key(severity)) 77 78 def _increment_hover_count(self) -> None: 79 settings = self.view.settings() 80 count = settings.get(self.HOVER_PROVIDER_COUNT_KEY, 0) 81 if isinstance(count, int): 82 count += 1 83 settings.set(self.HOVER_PROVIDER_COUNT_KEY, count) 84 settings.set(self.SHOW_DEFINITIONS_KEY, False) 85 86 def _decrement_hover_count(self) -> None: 87 settings = self.view.settings() 88 count = settings.get(self.HOVER_PROVIDER_COUNT_KEY) 89 if isinstance(count, int): 90 count -= 1 91 if count == 0: 92 settings.erase(self.HOVER_PROVIDER_COUNT_KEY) 93 settings.set(self.SHOW_DEFINITIONS_KEY, True) 94 95 def get_capability(self, capability_path: str) -> Optional[Any]: 96 return self.session_buffer.get_capability(capability_path) 97 98 def has_capability(self, capability_path: str) -> bool: 99 value = self.session_buffer.get_capability(capability_path) 100 return isinstance(value, dict) or bool(value) 101 102 def on_capability_added_async(self, capability_path: str, options: Dict[str, Any]) -> None: 103 if capability_path == self.HOVER_PROVIDER_KEY: 104 self._increment_hover_count() 105 106 def on_capability_removed_async(self, discarded: Dict[str, Any]) -> None: 107 if self.HOVER_PROVIDER_KEY in discarded: 108 self._decrement_hover_count() 109 110 def has_capability_async(self, capability_path: str) -> bool: 111 return self.session_buffer.has_capability(capability_path) 112 113 def shutdown_async(self) -> None: 114 listener = self.listener() 115 if listener: 116 listener.on_session_shutdown_async(self.session) 117 118 def diagnostics_key(self, severity: int) -> str: 119 return "lsp{}d{}".format(self.session.config.name, severity) 120 121 def present_diagnostics_async(self, flags: int) -> None: 122 data_per_severity = self.session_buffer.data_per_severity 123 for severity in reversed(range(1, len(DIAGNOSTIC_SEVERITY) + 1)): 124 key = self.diagnostics_key(severity) 125 data = data_per_severity.get(severity) 126 if data is None: 127 self.view.erase_regions(key) 128 elif ((severity <= userprefs().show_diagnostics_severity_level) and 129 (data.icon or flags != (sublime.DRAW_NO_FILL | sublime.DRAW_NO_OUTLINE))): 130 self.view.add_regions(key, data.regions, data.scope, data.icon, flags) 131 else: 132 self.view.erase_regions(key) 133 listener = self.listener() 134 if listener: 135 listener.on_diagnostics_updated_async() 136 137 def get_diagnostics_async(self) -> List[Diagnostic]: 138 return self.session_buffer.diagnostics 139 140 def on_request_started_async(self, request_id: int, request: Request) -> None: 141 self.active_requests[request_id] = request 142 143 def on_request_finished_async(self, request_id: int) -> None: 144 self.active_requests.pop(request_id, None) 145 146 def on_text_changed_async(self, changes: Iterable[sublime.TextChange]) -> None: 147 self.session_buffer.on_text_changed_async(self.view, changes) 148 149 def on_revert_async(self) -> None: 150 self.session_buffer.on_revert_async(self.view) 151 152 def on_reload_async(self) -> None: 153 self.session_buffer.on_reload_async(self.view) 154 155 def purge_changes_async(self) -> None: 156 self.session_buffer.purge_changes_async(self.view) 157 158 def on_pre_save_async(self, old_file_name: str) -> None: 159 self.session_buffer.on_pre_save_async(self.view, old_file_name) 160 161 def on_post_save_async(self) -> None: 162 self.session_buffer.on_post_save_async(self.view) 163 164 def __str__(self) -> str: 165 return '{}:{}'.format(self.session.config.name, self.view.id()) 166 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/plugin/session_view.py b/plugin/session_view.py --- a/plugin/session_view.py +++ b/plugin/session_view.py @@ -127,7 +127,15 @@ self.view.erase_regions(key) elif ((severity <= userprefs().show_diagnostics_severity_level) and (data.icon or flags != (sublime.DRAW_NO_FILL | sublime.DRAW_NO_OUTLINE))): - self.view.add_regions(key, data.regions, data.scope, data.icon, flags) + + def handle_same_regions(region: sublime.Region) -> sublime.Region: + # this allows showing diagnostics with same begin and end in the view + if region.a == region.b: + return sublime.Region(region.a, region.a + 1) + return region + + underline_regions = list(map(handle_same_regions, data.regions)) + self.view.add_regions(key, underline_regions, data.scope, data.icon, flags) else: self.view.erase_regions(key) listener = self.listener()
{"golden_diff": "diff --git a/plugin/session_view.py b/plugin/session_view.py\n--- a/plugin/session_view.py\n+++ b/plugin/session_view.py\n@@ -127,7 +127,15 @@\n self.view.erase_regions(key)\n elif ((severity <= userprefs().show_diagnostics_severity_level) and\n (data.icon or flags != (sublime.DRAW_NO_FILL | sublime.DRAW_NO_OUTLINE))):\n- self.view.add_regions(key, data.regions, data.scope, data.icon, flags)\n+\n+ def handle_same_regions(region: sublime.Region) -> sublime.Region:\n+ # this allows showing diagnostics with same begin and end in the view\n+ if region.a == region.b:\n+ return sublime.Region(region.a, region.a + 1)\n+ return region\n+\n+ underline_regions = list(map(handle_same_regions, data.regions))\n+ self.view.add_regions(key, underline_regions, data.scope, data.icon, flags)\n else:\n self.view.erase_regions(key)\n listener = self.listener()\n", "issue": "Diagnostic not highlighted in view when range is empty\n**Describe the bug**\r\nA diagnostic that has an empty range is not visible in the view (only in the gutter and in diagnostics panel).\r\n\r\n**To Reproduce**\r\nReceive a diagnostic like:\r\n```js\r\n{\r\n \"diagnostics\": [\r\n {\r\n \"code\": {\r\n \"target\": \"https://eslint.org/docs/rules/curly\",\r\n \"value\": \"curly\"\r\n },\r\n \"message\": \"Expected { after 'if' condition.\",\r\n \"range\": {\r\n \"end\": {\r\n \"character\": 9,\r\n \"line\": 607\r\n },\r\n \"start\": {\r\n \"character\": 9,\r\n \"line\": 607\r\n }\r\n },\r\n \"severity\": 1,\r\n \"source\": \"eslint\"\r\n },\r\n```\r\n\r\n**Expected behavior**\r\nSee where on the line the problem is. Otherwise, it's difficult to know where code action can be triggered.\r\n\r\n**Screenshots**\r\n![Screenshot 2020-09-25 at 22 58 01](https://user-images.githubusercontent.com/153197/94315521-f6394080-ff82-11ea-9dc6-7adffb643465.png)\r\n\r\n\r\n**Environment (please complete the following information):**\r\n- OS: macOS\r\n- Sublime Text version: 4087\r\n- LSP version: 49ea7330301078035ad56b94218a9c6edb604498\r\n- Language servers used: eslint\n", "before_files": [{"content": "from .core.protocol import Diagnostic\nfrom .core.protocol import Request\nfrom .core.sessions import Session\nfrom .core.settings import userprefs\nfrom .core.types import view2scope\nfrom .core.typing import Any, Iterable, List, Tuple, Optional, Dict\nfrom .core.views import DIAGNOSTIC_SEVERITY\nfrom .core.windows import AbstractViewListener\nfrom .session_buffer import SessionBuffer\nfrom weakref import ref\nfrom weakref import WeakValueDictionary\nimport sublime\n\n\nclass SessionView:\n \"\"\"\n Holds state per session per view.\n \"\"\"\n\n LANGUAGE_ID_KEY = \"lsp_language\"\n SHOW_DEFINITIONS_KEY = \"show_definitions\"\n HOVER_PROVIDER_KEY = \"hoverProvider\"\n HOVER_PROVIDER_COUNT_KEY = \"lsp_hover_provider_count\"\n\n _session_buffers = WeakValueDictionary() # type: WeakValueDictionary[Tuple[str, int], SessionBuffer]\n\n def __init__(self, listener: AbstractViewListener, session: Session) -> None:\n self.view = listener.view\n self.session = session\n self.active_requests = {} # type: Dict[int, Request]\n settings = self.view.settings()\n # TODO: Language ID must be UNIQUE!\n languages = settings.get(self.LANGUAGE_ID_KEY)\n self._language_id = ''\n if not isinstance(languages, dict):\n languages = {}\n for language in session.config.languages:\n if language.match_scope(view2scope(self.view)):\n languages[session.config.name] = language.id\n self._language_id = language.id\n break\n settings.set(self.LANGUAGE_ID_KEY, languages)\n buffer_id = self.view.buffer_id()\n key = (session.config.name, buffer_id)\n session_buffer = self._session_buffers.get(key)\n if session_buffer is None:\n session_buffer = SessionBuffer(self, buffer_id, self._language_id)\n self._session_buffers[key] = session_buffer\n else:\n session_buffer.add_session_view(self)\n self.session_buffer = session_buffer\n self.listener = ref(listener)\n session.register_session_view_async(self)\n session.config.set_view_status(self.view, \"\")\n if self.session.has_capability(self.HOVER_PROVIDER_KEY):\n self._increment_hover_count()\n\n def __del__(self) -> None:\n if self.session.has_capability(self.HOVER_PROVIDER_KEY):\n self._decrement_hover_count()\n # If the session is exiting then there's no point in sending textDocument/didClose and there's also no point\n # in unregistering ourselves from the session.\n if not self.session.exiting:\n self.session.unregister_session_view_async(self)\n self.session.config.erase_view_status(self.view)\n settings = self.view.settings() # type: sublime.Settings\n # TODO: Language ID must be UNIQUE!\n languages = settings.get(self.LANGUAGE_ID_KEY)\n if isinstance(languages, dict):\n languages.pop(self.session.config.name, None)\n if languages:\n settings.set(self.LANGUAGE_ID_KEY, languages)\n else:\n settings.erase(self.LANGUAGE_ID_KEY)\n for severity in range(1, len(DIAGNOSTIC_SEVERITY) + 1):\n self.view.erase_regions(self.diagnostics_key(severity))\n\n def _increment_hover_count(self) -> None:\n settings = self.view.settings()\n count = settings.get(self.HOVER_PROVIDER_COUNT_KEY, 0)\n if isinstance(count, int):\n count += 1\n settings.set(self.HOVER_PROVIDER_COUNT_KEY, count)\n settings.set(self.SHOW_DEFINITIONS_KEY, False)\n\n def _decrement_hover_count(self) -> None:\n settings = self.view.settings()\n count = settings.get(self.HOVER_PROVIDER_COUNT_KEY)\n if isinstance(count, int):\n count -= 1\n if count == 0:\n settings.erase(self.HOVER_PROVIDER_COUNT_KEY)\n settings.set(self.SHOW_DEFINITIONS_KEY, True)\n\n def get_capability(self, capability_path: str) -> Optional[Any]:\n return self.session_buffer.get_capability(capability_path)\n\n def has_capability(self, capability_path: str) -> bool:\n value = self.session_buffer.get_capability(capability_path)\n return isinstance(value, dict) or bool(value)\n\n def on_capability_added_async(self, capability_path: str, options: Dict[str, Any]) -> None:\n if capability_path == self.HOVER_PROVIDER_KEY:\n self._increment_hover_count()\n\n def on_capability_removed_async(self, discarded: Dict[str, Any]) -> None:\n if self.HOVER_PROVIDER_KEY in discarded:\n self._decrement_hover_count()\n\n def has_capability_async(self, capability_path: str) -> bool:\n return self.session_buffer.has_capability(capability_path)\n\n def shutdown_async(self) -> None:\n listener = self.listener()\n if listener:\n listener.on_session_shutdown_async(self.session)\n\n def diagnostics_key(self, severity: int) -> str:\n return \"lsp{}d{}\".format(self.session.config.name, severity)\n\n def present_diagnostics_async(self, flags: int) -> None:\n data_per_severity = self.session_buffer.data_per_severity\n for severity in reversed(range(1, len(DIAGNOSTIC_SEVERITY) + 1)):\n key = self.diagnostics_key(severity)\n data = data_per_severity.get(severity)\n if data is None:\n self.view.erase_regions(key)\n elif ((severity <= userprefs().show_diagnostics_severity_level) and\n (data.icon or flags != (sublime.DRAW_NO_FILL | sublime.DRAW_NO_OUTLINE))):\n self.view.add_regions(key, data.regions, data.scope, data.icon, flags)\n else:\n self.view.erase_regions(key)\n listener = self.listener()\n if listener:\n listener.on_diagnostics_updated_async()\n\n def get_diagnostics_async(self) -> List[Diagnostic]:\n return self.session_buffer.diagnostics\n\n def on_request_started_async(self, request_id: int, request: Request) -> None:\n self.active_requests[request_id] = request\n\n def on_request_finished_async(self, request_id: int) -> None:\n self.active_requests.pop(request_id, None)\n\n def on_text_changed_async(self, changes: Iterable[sublime.TextChange]) -> None:\n self.session_buffer.on_text_changed_async(self.view, changes)\n\n def on_revert_async(self) -> None:\n self.session_buffer.on_revert_async(self.view)\n\n def on_reload_async(self) -> None:\n self.session_buffer.on_reload_async(self.view)\n\n def purge_changes_async(self) -> None:\n self.session_buffer.purge_changes_async(self.view)\n\n def on_pre_save_async(self, old_file_name: str) -> None:\n self.session_buffer.on_pre_save_async(self.view, old_file_name)\n\n def on_post_save_async(self) -> None:\n self.session_buffer.on_post_save_async(self.view)\n\n def __str__(self) -> str:\n return '{}:{}'.format(self.session.config.name, self.view.id())\n", "path": "plugin/session_view.py"}], "after_files": [{"content": "from .core.protocol import Diagnostic\nfrom .core.protocol import Request\nfrom .core.sessions import Session\nfrom .core.settings import userprefs\nfrom .core.types import view2scope\nfrom .core.typing import Any, Iterable, List, Tuple, Optional, Dict\nfrom .core.views import DIAGNOSTIC_SEVERITY\nfrom .core.windows import AbstractViewListener\nfrom .session_buffer import SessionBuffer\nfrom weakref import ref\nfrom weakref import WeakValueDictionary\nimport sublime\n\n\nclass SessionView:\n \"\"\"\n Holds state per session per view.\n \"\"\"\n\n LANGUAGE_ID_KEY = \"lsp_language\"\n SHOW_DEFINITIONS_KEY = \"show_definitions\"\n HOVER_PROVIDER_KEY = \"hoverProvider\"\n HOVER_PROVIDER_COUNT_KEY = \"lsp_hover_provider_count\"\n\n _session_buffers = WeakValueDictionary() # type: WeakValueDictionary[Tuple[str, int], SessionBuffer]\n\n def __init__(self, listener: AbstractViewListener, session: Session) -> None:\n self.view = listener.view\n self.session = session\n self.active_requests = {} # type: Dict[int, Request]\n settings = self.view.settings()\n # TODO: Language ID must be UNIQUE!\n languages = settings.get(self.LANGUAGE_ID_KEY)\n self._language_id = ''\n if not isinstance(languages, dict):\n languages = {}\n for language in session.config.languages:\n if language.match_scope(view2scope(self.view)):\n languages[session.config.name] = language.id\n self._language_id = language.id\n break\n settings.set(self.LANGUAGE_ID_KEY, languages)\n buffer_id = self.view.buffer_id()\n key = (session.config.name, buffer_id)\n session_buffer = self._session_buffers.get(key)\n if session_buffer is None:\n session_buffer = SessionBuffer(self, buffer_id, self._language_id)\n self._session_buffers[key] = session_buffer\n else:\n session_buffer.add_session_view(self)\n self.session_buffer = session_buffer\n self.listener = ref(listener)\n session.register_session_view_async(self)\n session.config.set_view_status(self.view, \"\")\n if self.session.has_capability(self.HOVER_PROVIDER_KEY):\n self._increment_hover_count()\n\n def __del__(self) -> None:\n if self.session.has_capability(self.HOVER_PROVIDER_KEY):\n self._decrement_hover_count()\n # If the session is exiting then there's no point in sending textDocument/didClose and there's also no point\n # in unregistering ourselves from the session.\n if not self.session.exiting:\n self.session.unregister_session_view_async(self)\n self.session.config.erase_view_status(self.view)\n settings = self.view.settings() # type: sublime.Settings\n # TODO: Language ID must be UNIQUE!\n languages = settings.get(self.LANGUAGE_ID_KEY)\n if isinstance(languages, dict):\n languages.pop(self.session.config.name, None)\n if languages:\n settings.set(self.LANGUAGE_ID_KEY, languages)\n else:\n settings.erase(self.LANGUAGE_ID_KEY)\n for severity in range(1, len(DIAGNOSTIC_SEVERITY) + 1):\n self.view.erase_regions(self.diagnostics_key(severity))\n\n def _increment_hover_count(self) -> None:\n settings = self.view.settings()\n count = settings.get(self.HOVER_PROVIDER_COUNT_KEY, 0)\n if isinstance(count, int):\n count += 1\n settings.set(self.HOVER_PROVIDER_COUNT_KEY, count)\n settings.set(self.SHOW_DEFINITIONS_KEY, False)\n\n def _decrement_hover_count(self) -> None:\n settings = self.view.settings()\n count = settings.get(self.HOVER_PROVIDER_COUNT_KEY)\n if isinstance(count, int):\n count -= 1\n if count == 0:\n settings.erase(self.HOVER_PROVIDER_COUNT_KEY)\n settings.set(self.SHOW_DEFINITIONS_KEY, True)\n\n def get_capability(self, capability_path: str) -> Optional[Any]:\n return self.session_buffer.get_capability(capability_path)\n\n def has_capability(self, capability_path: str) -> bool:\n value = self.session_buffer.get_capability(capability_path)\n return isinstance(value, dict) or bool(value)\n\n def on_capability_added_async(self, capability_path: str, options: Dict[str, Any]) -> None:\n if capability_path == self.HOVER_PROVIDER_KEY:\n self._increment_hover_count()\n\n def on_capability_removed_async(self, discarded: Dict[str, Any]) -> None:\n if self.HOVER_PROVIDER_KEY in discarded:\n self._decrement_hover_count()\n\n def has_capability_async(self, capability_path: str) -> bool:\n return self.session_buffer.has_capability(capability_path)\n\n def shutdown_async(self) -> None:\n listener = self.listener()\n if listener:\n listener.on_session_shutdown_async(self.session)\n\n def diagnostics_key(self, severity: int) -> str:\n return \"lsp{}d{}\".format(self.session.config.name, severity)\n\n def present_diagnostics_async(self, flags: int) -> None:\n data_per_severity = self.session_buffer.data_per_severity\n for severity in reversed(range(1, len(DIAGNOSTIC_SEVERITY) + 1)):\n key = self.diagnostics_key(severity)\n data = data_per_severity.get(severity)\n if data is None:\n self.view.erase_regions(key)\n elif ((severity <= userprefs().show_diagnostics_severity_level) and\n (data.icon or flags != (sublime.DRAW_NO_FILL | sublime.DRAW_NO_OUTLINE))):\n\n def handle_same_regions(region: sublime.Region) -> sublime.Region:\n # this allows showing diagnostics with same begin and end in the view\n if region.a == region.b:\n return sublime.Region(region.a, region.a + 1)\n return region\n\n underline_regions = list(map(handle_same_regions, data.regions))\n self.view.add_regions(key, underline_regions, data.scope, data.icon, flags)\n else:\n self.view.erase_regions(key)\n listener = self.listener()\n if listener:\n listener.on_diagnostics_updated_async()\n\n def get_diagnostics_async(self) -> List[Diagnostic]:\n return self.session_buffer.diagnostics\n\n def on_request_started_async(self, request_id: int, request: Request) -> None:\n self.active_requests[request_id] = request\n\n def on_request_finished_async(self, request_id: int) -> None:\n self.active_requests.pop(request_id, None)\n\n def on_text_changed_async(self, changes: Iterable[sublime.TextChange]) -> None:\n self.session_buffer.on_text_changed_async(self.view, changes)\n\n def on_revert_async(self) -> None:\n self.session_buffer.on_revert_async(self.view)\n\n def on_reload_async(self) -> None:\n self.session_buffer.on_reload_async(self.view)\n\n def purge_changes_async(self) -> None:\n self.session_buffer.purge_changes_async(self.view)\n\n def on_pre_save_async(self, old_file_name: str) -> None:\n self.session_buffer.on_pre_save_async(self.view, old_file_name)\n\n def on_post_save_async(self) -> None:\n self.session_buffer.on_post_save_async(self.view)\n\n def __str__(self) -> str:\n return '{}:{}'.format(self.session.config.name, self.view.id())\n", "path": "plugin/session_view.py"}]}
2,499
220
gh_patches_debug_34857
rasdani/github-patches
git_diff
nltk__nltk-346
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- decisiontree classify demonstration is broken $ python ./classify/decisiontree.py Training classifier... Traceback (most recent call last): File "./decisiontree.py", line 285, in <module> demo() File "./decisiontree.py", line 280, in demo binary_names_demo_features) File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/nltk-2.0.3-py2.6.egg/nltk/classify/util.py", line 182, in names_demo classifier = trainer( [(features(n), g) for (n,g) in train] ) File "./decisiontree.py", line 275, in f return DecisionTreeClassifier.train(x, binary=True, verbose=True) File "./decisiontree.py", line 155, in train feature_names, labeled_featuresets, feature_values, verbose) File "./decisiontree.py", line 255, in best_binary_stump fname, fval, labeled_featuresets) File "./decisiontree.py", line 244, in binary_stump default = DecisionTreeClassifier(neg_fdist.max()) File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/nltk-2.0.3-py2.6.egg/nltk/probability.py", line 270, in max raise ValueError('A FreqDist must have at least one sample before max is defined.') ValueError: A FreqDist must have at least one sample before max is defined. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `nltk/classify/decisiontree.py` Content: ``` 1 # Natural Language Toolkit: Decision Tree Classifiers 2 # 3 # Copyright (C) 2001-2013 NLTK Project 4 # Author: Edward Loper <[email protected]> 5 # URL: <http://www.nltk.org/> 6 # For license information, see LICENSE.TXT 7 8 """ 9 A classifier model that decides which label to assign to a token on 10 the basis of a tree structure, where branches correspond to conditions 11 on feature values, and leaves correspond to label assignments. 12 """ 13 from __future__ import print_function, unicode_literals 14 15 from collections import defaultdict 16 17 from nltk.probability import FreqDist, MLEProbDist, entropy 18 from nltk.classify.api import ClassifierI 19 from nltk.compat import python_2_unicode_compatible 20 21 @python_2_unicode_compatible 22 class DecisionTreeClassifier(ClassifierI): 23 def __init__(self, label, feature_name=None, decisions=None, default=None): 24 """ 25 :param label: The most likely label for tokens that reach 26 this node in the decision tree. If this decision tree 27 has no children, then this label will be assigned to 28 any token that reaches this decision tree. 29 :param feature_name: The name of the feature that this 30 decision tree selects for. 31 :param decisions: A dictionary mapping from feature values 32 for the feature identified by ``feature_name`` to 33 child decision trees. 34 :param default: The child that will be used if the value of 35 feature ``feature_name`` does not match any of the keys in 36 ``decisions``. This is used when constructing binary 37 decision trees. 38 """ 39 self._label = label 40 self._fname = feature_name 41 self._decisions = decisions 42 self._default = default 43 44 def labels(self): 45 labels = [self._label] 46 if self._decisions is not None: 47 for dt in self._decisions.values(): 48 labels.extend(dt.labels()) 49 if self._default is not None: 50 labels.extend(self._default.labels()) 51 return list(set(labels)) 52 53 def classify(self, featureset): 54 # Decision leaf: 55 if self._fname is None: 56 return self._label 57 58 # Decision tree: 59 fval = featureset.get(self._fname) 60 if fval in self._decisions: 61 return self._decisions[fval].classify(featureset) 62 elif self._default is not None: 63 return self._default.classify(featureset) 64 else: 65 return self._label 66 67 def error(self, labeled_featuresets): 68 errors = 0 69 for featureset, label in labeled_featuresets: 70 if self.classify(featureset) != label: 71 errors += 1 72 return float(errors)/len(labeled_featuresets) 73 74 def pp(self, width=70, prefix='', depth=4): 75 """ 76 Return a string containing a pretty-printed version of this 77 decision tree. Each line in this string corresponds to a 78 single decision tree node or leaf, and indentation is used to 79 display the structure of the decision tree. 80 """ 81 # [xx] display default!! 82 if self._fname is None: 83 n = width-len(prefix)-15 84 return '%s%s %s\n' % (prefix, '.'*n, self._label) 85 s = '' 86 for i, (fval, result) in enumerate(sorted(self._decisions.items())): 87 hdr = '%s%s=%s? ' % (prefix, self._fname, fval) 88 n = width-15-len(hdr) 89 s += '%s%s %s\n' % (hdr, '.'*(n), result._label) 90 if result._fname is not None and depth>1: 91 s += result.pp(width, prefix+' ', depth-1) 92 if self._default is not None: 93 n = width-len(prefix)-21 94 s += '%selse: %s %s\n' % (prefix, '.'*n, self._default._label) 95 if self._default._fname is not None and depth>1: 96 s += self._default.pp(width, prefix+' ', depth-1) 97 return s 98 99 def pseudocode(self, prefix='', depth=4): 100 """ 101 Return a string representation of this decision tree that 102 expresses the decisions it makes as a nested set of pseudocode 103 if statements. 104 """ 105 if self._fname is None: 106 return "%sreturn %r\n" % (prefix, self._label) 107 s = '' 108 for (fval, result) in sorted(self._decisions.items()): 109 s += '%sif %s == %r: ' % (prefix, self._fname, fval) 110 if result._fname is not None and depth>1: 111 s += '\n'+result.pseudocode(prefix+' ', depth-1) 112 else: 113 s += 'return %r\n' % result._label 114 if self._default is not None: 115 if len(self._decisions) == 1: 116 s += '%sif %s != %r: '% (prefix, self._fname, 117 self._decisions.keys()[0]) 118 else: 119 s += '%selse: ' % (prefix,) 120 if self._default._fname is not None and depth>1: 121 s += '\n'+self._default.pseudocode(prefix+' ', depth-1) 122 else: 123 s += 'return %r\n' % self._default._label 124 return s 125 126 def __str__(self): 127 return self.pp() 128 129 @staticmethod 130 def train(labeled_featuresets, entropy_cutoff=0.05, depth_cutoff=100, 131 support_cutoff=10, binary=False, feature_values=None, 132 verbose=False): 133 """ 134 :param binary: If true, then treat all feature/value pairs a 135 individual binary features, rather than using a single n-way 136 branch for each feature. 137 """ 138 # Collect a list of all feature names. 139 feature_names = set() 140 for featureset, label in labeled_featuresets: 141 for fname in featureset: 142 feature_names.add(fname) 143 144 # Collect a list of the values each feature can take. 145 if feature_values is None and binary: 146 feature_values = defaultdict(set) 147 for featureset, label in labeled_featuresets: 148 for fname, fval in featureset.items(): 149 feature_values[fname].add(fval) 150 151 # Start with a stump. 152 if not binary: 153 tree = DecisionTreeClassifier.best_stump( 154 feature_names, labeled_featuresets, verbose) 155 else: 156 tree = DecisionTreeClassifier.best_binary_stump( 157 feature_names, labeled_featuresets, feature_values, verbose) 158 159 # Refine the stump. 160 tree.refine(labeled_featuresets, entropy_cutoff, depth_cutoff-1, 161 support_cutoff, binary, feature_values, verbose) 162 163 # Return it 164 return tree 165 166 @staticmethod 167 def leaf(labeled_featuresets): 168 label = FreqDist(label for (featureset,label) 169 in labeled_featuresets).max() 170 return DecisionTreeClassifier(label) 171 172 @staticmethod 173 def stump(feature_name, labeled_featuresets): 174 label = FreqDist(label for (featureset,label) 175 in labeled_featuresets).max() 176 177 # Find the best label for each value. 178 freqs = defaultdict(FreqDist) # freq(label|value) 179 for featureset, label in labeled_featuresets: 180 feature_value = featureset.get(feature_name) 181 freqs[feature_value].inc(label) 182 183 decisions = dict((val, DecisionTreeClassifier(freqs[val].max())) 184 for val in freqs) 185 return DecisionTreeClassifier(label, feature_name, decisions) 186 187 def refine(self, labeled_featuresets, entropy_cutoff, depth_cutoff, 188 support_cutoff, binary=False, feature_values=None, 189 verbose=False): 190 if len(labeled_featuresets) <= support_cutoff: return 191 if self._fname is None: return 192 if depth_cutoff <= 0: return 193 for fval in self._decisions: 194 fval_featuresets = [(featureset,label) for (featureset,label) 195 in labeled_featuresets 196 if featureset.get(self._fname) == fval] 197 198 label_freqs = FreqDist(label for (featureset,label) 199 in fval_featuresets) 200 if entropy(MLEProbDist(label_freqs)) > entropy_cutoff: 201 self._decisions[fval] = DecisionTreeClassifier.train( 202 fval_featuresets, entropy_cutoff, depth_cutoff, 203 support_cutoff, binary, feature_values, verbose) 204 if self._default is not None: 205 default_featuresets = [(featureset, label) for (featureset, label) 206 in labeled_featuresets 207 if featureset.get(self._fname) not in 208 self._decisions] 209 label_freqs = FreqDist(label for (featureset,label) 210 in default_featuresets) 211 if entropy(MLEProbDist(label_freqs)) > entropy_cutoff: 212 self._default = DecisionTreeClassifier.train( 213 default_featuresets, entropy_cutoff, depth_cutoff, 214 support_cutoff, binary, feature_values, verbose) 215 216 @staticmethod 217 def best_stump(feature_names, labeled_featuresets, verbose=False): 218 best_stump = DecisionTreeClassifier.leaf(labeled_featuresets) 219 best_error = best_stump.error(labeled_featuresets) 220 for fname in feature_names: 221 stump = DecisionTreeClassifier.stump(fname, labeled_featuresets) 222 stump_error = stump.error(labeled_featuresets) 223 if stump_error < best_error: 224 best_error = stump_error 225 best_stump = stump 226 if verbose: 227 print(('best stump for %6d toks uses %-20s err=%6.4f' % 228 (len(labeled_featuresets), best_stump._fname, best_error))) 229 return best_stump 230 231 @staticmethod 232 def binary_stump(feature_name, feature_value, labeled_featuresets): 233 label = FreqDist(label for (featureset, label) 234 in labeled_featuresets).max() 235 236 # Find the best label for each value. 237 pos_fdist = FreqDist() 238 neg_fdist = FreqDist() 239 for featureset, label in labeled_featuresets: 240 if featureset.get(feature_name) == feature_value: 241 pos_fdist.inc(label) 242 else: 243 neg_fdist.inc(label) 244 245 decisions = {feature_value: DecisionTreeClassifier(pos_fdist.max())} 246 default = DecisionTreeClassifier(neg_fdist.max()) 247 return DecisionTreeClassifier(label, feature_name, decisions, default) 248 249 @staticmethod 250 def best_binary_stump(feature_names, labeled_featuresets, feature_values, 251 verbose=False): 252 best_stump = DecisionTreeClassifier.leaf(labeled_featuresets) 253 best_error = best_stump.error(labeled_featuresets) 254 for fname in feature_names: 255 for fval in feature_values[fname]: 256 stump = DecisionTreeClassifier.binary_stump( 257 fname, fval, labeled_featuresets) 258 stump_error = stump.error(labeled_featuresets) 259 if stump_error < best_error: 260 best_error = stump_error 261 best_stump = stump 262 if best_stump._decisions: 263 descr = '%s=%s' % (best_stump._fname, 264 best_stump._decisions.keys()[0]) 265 else: 266 descr = '(default)' 267 if verbose: 268 print(('best stump for %6d toks uses %-20s err=%6.4f' % 269 (len(labeled_featuresets), descr, best_error))) 270 return best_stump 271 272 ##////////////////////////////////////////////////////// 273 ## Demo 274 ##////////////////////////////////////////////////////// 275 276 def f(x): 277 return DecisionTreeClassifier.train(x, binary=True, verbose=True) 278 279 def demo(): 280 from nltk.classify.util import names_demo, binary_names_demo_features 281 classifier = names_demo(f, #DecisionTreeClassifier.train, 282 binary_names_demo_features) 283 print(classifier.pp(depth=7)) 284 print(classifier.pseudocode(depth=7)) 285 286 if __name__ == '__main__': 287 demo() 288 289 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/nltk/classify/decisiontree.py b/nltk/classify/decisiontree.py --- a/nltk/classify/decisiontree.py +++ b/nltk/classify/decisiontree.py @@ -114,7 +114,7 @@ if self._default is not None: if len(self._decisions) == 1: s += '%sif %s != %r: '% (prefix, self._fname, - self._decisions.keys()[0]) + list(self._decisions.keys())[0]) else: s += '%selse: ' % (prefix,) if self._default._fname is not None and depth>1: @@ -131,7 +131,7 @@ support_cutoff=10, binary=False, feature_values=None, verbose=False): """ - :param binary: If true, then treat all feature/value pairs a + :param binary: If true, then treat all feature/value pairs as individual binary features, rather than using a single n-way branch for each feature. """ @@ -242,8 +242,15 @@ else: neg_fdist.inc(label) - decisions = {feature_value: DecisionTreeClassifier(pos_fdist.max())} - default = DecisionTreeClassifier(neg_fdist.max()) + + decisions = {} + default = label + # But hopefully we have observations! + if pos_fdist.N() > 0: + decisions = {feature_value: DecisionTreeClassifier(pos_fdist.max())} + if neg_fdist.N() > 0: + default = DecisionTreeClassifier(neg_fdist.max()) + return DecisionTreeClassifier(label, feature_name, decisions, default) @staticmethod @@ -261,7 +268,7 @@ best_stump = stump if best_stump._decisions: descr = '%s=%s' % (best_stump._fname, - best_stump._decisions.keys()[0]) + list(best_stump._decisions.keys())[0]) else: descr = '(default)' if verbose:
{"golden_diff": "diff --git a/nltk/classify/decisiontree.py b/nltk/classify/decisiontree.py\n--- a/nltk/classify/decisiontree.py\n+++ b/nltk/classify/decisiontree.py\n@@ -114,7 +114,7 @@\n if self._default is not None:\n if len(self._decisions) == 1:\n s += '%sif %s != %r: '% (prefix, self._fname,\n- self._decisions.keys()[0])\n+ list(self._decisions.keys())[0])\n else:\n s += '%selse: ' % (prefix,)\n if self._default._fname is not None and depth>1:\n@@ -131,7 +131,7 @@\n support_cutoff=10, binary=False, feature_values=None,\n verbose=False):\n \"\"\"\n- :param binary: If true, then treat all feature/value pairs a\n+ :param binary: If true, then treat all feature/value pairs as\n individual binary features, rather than using a single n-way\n branch for each feature.\n \"\"\"\n@@ -242,8 +242,15 @@\n else:\n neg_fdist.inc(label)\n \n- decisions = {feature_value: DecisionTreeClassifier(pos_fdist.max())}\n- default = DecisionTreeClassifier(neg_fdist.max())\n+\n+ decisions = {}\n+ default = label\n+ # But hopefully we have observations!\n+ if pos_fdist.N() > 0:\n+ decisions = {feature_value: DecisionTreeClassifier(pos_fdist.max())}\n+ if neg_fdist.N() > 0:\n+ default = DecisionTreeClassifier(neg_fdist.max())\n+\n return DecisionTreeClassifier(label, feature_name, decisions, default)\n \n @staticmethod\n@@ -261,7 +268,7 @@\n best_stump = stump\n if best_stump._decisions:\n descr = '%s=%s' % (best_stump._fname,\n- best_stump._decisions.keys()[0])\n+ list(best_stump._decisions.keys())[0])\n else:\n descr = '(default)'\n if verbose:\n", "issue": "decisiontree classify demonstration is broken\n$ python ./classify/decisiontree.py\nTraining classifier...\nTraceback (most recent call last):\n File \"./decisiontree.py\", line 285, in <module>\n demo()\n File \"./decisiontree.py\", line 280, in demo\n binary_names_demo_features)\n File \"/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/nltk-2.0.3-py2.6.egg/nltk/classify/util.py\", line 182, in names_demo\n classifier = trainer( [(features(n), g) for (n,g) in train] )\n File \"./decisiontree.py\", line 275, in f\n return DecisionTreeClassifier.train(x, binary=True, verbose=True)\n File \"./decisiontree.py\", line 155, in train\n feature_names, labeled_featuresets, feature_values, verbose)\n File \"./decisiontree.py\", line 255, in best_binary_stump\n fname, fval, labeled_featuresets)\n File \"./decisiontree.py\", line 244, in binary_stump\n default = DecisionTreeClassifier(neg_fdist.max())\n File \"/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/nltk-2.0.3-py2.6.egg/nltk/probability.py\", line 270, in max\n raise ValueError('A FreqDist must have at least one sample before max is defined.')\nValueError: A FreqDist must have at least one sample before max is defined.\n\n", "before_files": [{"content": "# Natural Language Toolkit: Decision Tree Classifiers\n#\n# Copyright (C) 2001-2013 NLTK Project\n# Author: Edward Loper <[email protected]>\n# URL: <http://www.nltk.org/>\n# For license information, see LICENSE.TXT\n\n\"\"\"\nA classifier model that decides which label to assign to a token on\nthe basis of a tree structure, where branches correspond to conditions\non feature values, and leaves correspond to label assignments.\n\"\"\"\nfrom __future__ import print_function, unicode_literals\n\nfrom collections import defaultdict\n\nfrom nltk.probability import FreqDist, MLEProbDist, entropy\nfrom nltk.classify.api import ClassifierI\nfrom nltk.compat import python_2_unicode_compatible\n\n@python_2_unicode_compatible\nclass DecisionTreeClassifier(ClassifierI):\n def __init__(self, label, feature_name=None, decisions=None, default=None):\n \"\"\"\n :param label: The most likely label for tokens that reach\n this node in the decision tree. If this decision tree\n has no children, then this label will be assigned to\n any token that reaches this decision tree.\n :param feature_name: The name of the feature that this\n decision tree selects for.\n :param decisions: A dictionary mapping from feature values\n for the feature identified by ``feature_name`` to\n child decision trees.\n :param default: The child that will be used if the value of\n feature ``feature_name`` does not match any of the keys in\n ``decisions``. This is used when constructing binary\n decision trees.\n \"\"\"\n self._label = label\n self._fname = feature_name\n self._decisions = decisions\n self._default = default\n\n def labels(self):\n labels = [self._label]\n if self._decisions is not None:\n for dt in self._decisions.values():\n labels.extend(dt.labels())\n if self._default is not None:\n labels.extend(self._default.labels())\n return list(set(labels))\n\n def classify(self, featureset):\n # Decision leaf:\n if self._fname is None:\n return self._label\n\n # Decision tree:\n fval = featureset.get(self._fname)\n if fval in self._decisions:\n return self._decisions[fval].classify(featureset)\n elif self._default is not None:\n return self._default.classify(featureset)\n else:\n return self._label\n\n def error(self, labeled_featuresets):\n errors = 0\n for featureset, label in labeled_featuresets:\n if self.classify(featureset) != label:\n errors += 1\n return float(errors)/len(labeled_featuresets)\n\n def pp(self, width=70, prefix='', depth=4):\n \"\"\"\n Return a string containing a pretty-printed version of this\n decision tree. Each line in this string corresponds to a\n single decision tree node or leaf, and indentation is used to\n display the structure of the decision tree.\n \"\"\"\n # [xx] display default!!\n if self._fname is None:\n n = width-len(prefix)-15\n return '%s%s %s\\n' % (prefix, '.'*n, self._label)\n s = ''\n for i, (fval, result) in enumerate(sorted(self._decisions.items())):\n hdr = '%s%s=%s? ' % (prefix, self._fname, fval)\n n = width-15-len(hdr)\n s += '%s%s %s\\n' % (hdr, '.'*(n), result._label)\n if result._fname is not None and depth>1:\n s += result.pp(width, prefix+' ', depth-1)\n if self._default is not None:\n n = width-len(prefix)-21\n s += '%selse: %s %s\\n' % (prefix, '.'*n, self._default._label)\n if self._default._fname is not None and depth>1:\n s += self._default.pp(width, prefix+' ', depth-1)\n return s\n\n def pseudocode(self, prefix='', depth=4):\n \"\"\"\n Return a string representation of this decision tree that\n expresses the decisions it makes as a nested set of pseudocode\n if statements.\n \"\"\"\n if self._fname is None:\n return \"%sreturn %r\\n\" % (prefix, self._label)\n s = ''\n for (fval, result) in sorted(self._decisions.items()):\n s += '%sif %s == %r: ' % (prefix, self._fname, fval)\n if result._fname is not None and depth>1:\n s += '\\n'+result.pseudocode(prefix+' ', depth-1)\n else:\n s += 'return %r\\n' % result._label\n if self._default is not None:\n if len(self._decisions) == 1:\n s += '%sif %s != %r: '% (prefix, self._fname,\n self._decisions.keys()[0])\n else:\n s += '%selse: ' % (prefix,)\n if self._default._fname is not None and depth>1:\n s += '\\n'+self._default.pseudocode(prefix+' ', depth-1)\n else:\n s += 'return %r\\n' % self._default._label\n return s\n\n def __str__(self):\n return self.pp()\n\n @staticmethod\n def train(labeled_featuresets, entropy_cutoff=0.05, depth_cutoff=100,\n support_cutoff=10, binary=False, feature_values=None,\n verbose=False):\n \"\"\"\n :param binary: If true, then treat all feature/value pairs a\n individual binary features, rather than using a single n-way\n branch for each feature.\n \"\"\"\n # Collect a list of all feature names.\n feature_names = set()\n for featureset, label in labeled_featuresets:\n for fname in featureset:\n feature_names.add(fname)\n\n # Collect a list of the values each feature can take.\n if feature_values is None and binary:\n feature_values = defaultdict(set)\n for featureset, label in labeled_featuresets:\n for fname, fval in featureset.items():\n feature_values[fname].add(fval)\n\n # Start with a stump.\n if not binary:\n tree = DecisionTreeClassifier.best_stump(\n feature_names, labeled_featuresets, verbose)\n else:\n tree = DecisionTreeClassifier.best_binary_stump(\n feature_names, labeled_featuresets, feature_values, verbose)\n\n # Refine the stump.\n tree.refine(labeled_featuresets, entropy_cutoff, depth_cutoff-1,\n support_cutoff, binary, feature_values, verbose)\n\n # Return it\n return tree\n\n @staticmethod\n def leaf(labeled_featuresets):\n label = FreqDist(label for (featureset,label)\n in labeled_featuresets).max()\n return DecisionTreeClassifier(label)\n\n @staticmethod\n def stump(feature_name, labeled_featuresets):\n label = FreqDist(label for (featureset,label)\n in labeled_featuresets).max()\n\n # Find the best label for each value.\n freqs = defaultdict(FreqDist) # freq(label|value)\n for featureset, label in labeled_featuresets:\n feature_value = featureset.get(feature_name)\n freqs[feature_value].inc(label)\n\n decisions = dict((val, DecisionTreeClassifier(freqs[val].max()))\n for val in freqs)\n return DecisionTreeClassifier(label, feature_name, decisions)\n\n def refine(self, labeled_featuresets, entropy_cutoff, depth_cutoff,\n support_cutoff, binary=False, feature_values=None,\n verbose=False):\n if len(labeled_featuresets) <= support_cutoff: return\n if self._fname is None: return\n if depth_cutoff <= 0: return\n for fval in self._decisions:\n fval_featuresets = [(featureset,label) for (featureset,label)\n in labeled_featuresets\n if featureset.get(self._fname) == fval]\n\n label_freqs = FreqDist(label for (featureset,label)\n in fval_featuresets)\n if entropy(MLEProbDist(label_freqs)) > entropy_cutoff:\n self._decisions[fval] = DecisionTreeClassifier.train(\n fval_featuresets, entropy_cutoff, depth_cutoff,\n support_cutoff, binary, feature_values, verbose)\n if self._default is not None:\n default_featuresets = [(featureset, label) for (featureset, label)\n in labeled_featuresets\n if featureset.get(self._fname) not in\n self._decisions]\n label_freqs = FreqDist(label for (featureset,label)\n in default_featuresets)\n if entropy(MLEProbDist(label_freqs)) > entropy_cutoff:\n self._default = DecisionTreeClassifier.train(\n default_featuresets, entropy_cutoff, depth_cutoff,\n support_cutoff, binary, feature_values, verbose)\n\n @staticmethod\n def best_stump(feature_names, labeled_featuresets, verbose=False):\n best_stump = DecisionTreeClassifier.leaf(labeled_featuresets)\n best_error = best_stump.error(labeled_featuresets)\n for fname in feature_names:\n stump = DecisionTreeClassifier.stump(fname, labeled_featuresets)\n stump_error = stump.error(labeled_featuresets)\n if stump_error < best_error:\n best_error = stump_error\n best_stump = stump\n if verbose:\n print(('best stump for %6d toks uses %-20s err=%6.4f' %\n (len(labeled_featuresets), best_stump._fname, best_error)))\n return best_stump\n\n @staticmethod\n def binary_stump(feature_name, feature_value, labeled_featuresets):\n label = FreqDist(label for (featureset, label)\n in labeled_featuresets).max()\n\n # Find the best label for each value.\n pos_fdist = FreqDist()\n neg_fdist = FreqDist()\n for featureset, label in labeled_featuresets:\n if featureset.get(feature_name) == feature_value:\n pos_fdist.inc(label)\n else:\n neg_fdist.inc(label)\n\n decisions = {feature_value: DecisionTreeClassifier(pos_fdist.max())}\n default = DecisionTreeClassifier(neg_fdist.max())\n return DecisionTreeClassifier(label, feature_name, decisions, default)\n\n @staticmethod\n def best_binary_stump(feature_names, labeled_featuresets, feature_values,\n verbose=False):\n best_stump = DecisionTreeClassifier.leaf(labeled_featuresets)\n best_error = best_stump.error(labeled_featuresets)\n for fname in feature_names:\n for fval in feature_values[fname]:\n stump = DecisionTreeClassifier.binary_stump(\n fname, fval, labeled_featuresets)\n stump_error = stump.error(labeled_featuresets)\n if stump_error < best_error:\n best_error = stump_error\n best_stump = stump\n if best_stump._decisions:\n descr = '%s=%s' % (best_stump._fname,\n best_stump._decisions.keys()[0])\n else:\n descr = '(default)'\n if verbose:\n print(('best stump for %6d toks uses %-20s err=%6.4f' %\n (len(labeled_featuresets), descr, best_error)))\n return best_stump\n\n##//////////////////////////////////////////////////////\n## Demo\n##//////////////////////////////////////////////////////\n\ndef f(x):\n return DecisionTreeClassifier.train(x, binary=True, verbose=True)\n\ndef demo():\n from nltk.classify.util import names_demo, binary_names_demo_features\n classifier = names_demo(f, #DecisionTreeClassifier.train,\n binary_names_demo_features)\n print(classifier.pp(depth=7))\n print(classifier.pseudocode(depth=7))\n\nif __name__ == '__main__':\n demo()\n\n", "path": "nltk/classify/decisiontree.py"}], "after_files": [{"content": "# Natural Language Toolkit: Decision Tree Classifiers\n#\n# Copyright (C) 2001-2013 NLTK Project\n# Author: Edward Loper <[email protected]>\n# URL: <http://www.nltk.org/>\n# For license information, see LICENSE.TXT\n\n\"\"\"\nA classifier model that decides which label to assign to a token on\nthe basis of a tree structure, where branches correspond to conditions\non feature values, and leaves correspond to label assignments.\n\"\"\"\nfrom __future__ import print_function, unicode_literals\n\nfrom collections import defaultdict\n\nfrom nltk.probability import FreqDist, MLEProbDist, entropy\nfrom nltk.classify.api import ClassifierI\nfrom nltk.compat import python_2_unicode_compatible\n\n@python_2_unicode_compatible\nclass DecisionTreeClassifier(ClassifierI):\n def __init__(self, label, feature_name=None, decisions=None, default=None):\n \"\"\"\n :param label: The most likely label for tokens that reach\n this node in the decision tree. If this decision tree\n has no children, then this label will be assigned to\n any token that reaches this decision tree.\n :param feature_name: The name of the feature that this\n decision tree selects for.\n :param decisions: A dictionary mapping from feature values\n for the feature identified by ``feature_name`` to\n child decision trees.\n :param default: The child that will be used if the value of\n feature ``feature_name`` does not match any of the keys in\n ``decisions``. This is used when constructing binary\n decision trees.\n \"\"\"\n self._label = label\n self._fname = feature_name\n self._decisions = decisions\n self._default = default\n\n def labels(self):\n labels = [self._label]\n if self._decisions is not None:\n for dt in self._decisions.values():\n labels.extend(dt.labels())\n if self._default is not None:\n labels.extend(self._default.labels())\n return list(set(labels))\n\n def classify(self, featureset):\n # Decision leaf:\n if self._fname is None:\n return self._label\n\n # Decision tree:\n fval = featureset.get(self._fname)\n if fval in self._decisions:\n return self._decisions[fval].classify(featureset)\n elif self._default is not None:\n return self._default.classify(featureset)\n else:\n return self._label\n\n def error(self, labeled_featuresets):\n errors = 0\n for featureset, label in labeled_featuresets:\n if self.classify(featureset) != label:\n errors += 1\n return float(errors)/len(labeled_featuresets)\n\n def pp(self, width=70, prefix='', depth=4):\n \"\"\"\n Return a string containing a pretty-printed version of this\n decision tree. Each line in this string corresponds to a\n single decision tree node or leaf, and indentation is used to\n display the structure of the decision tree.\n \"\"\"\n # [xx] display default!!\n if self._fname is None:\n n = width-len(prefix)-15\n return '%s%s %s\\n' % (prefix, '.'*n, self._label)\n s = ''\n for i, (fval, result) in enumerate(sorted(self._decisions.items())):\n hdr = '%s%s=%s? ' % (prefix, self._fname, fval)\n n = width-15-len(hdr)\n s += '%s%s %s\\n' % (hdr, '.'*(n), result._label)\n if result._fname is not None and depth>1:\n s += result.pp(width, prefix+' ', depth-1)\n if self._default is not None:\n n = width-len(prefix)-21\n s += '%selse: %s %s\\n' % (prefix, '.'*n, self._default._label)\n if self._default._fname is not None and depth>1:\n s += self._default.pp(width, prefix+' ', depth-1)\n return s\n\n def pseudocode(self, prefix='', depth=4):\n \"\"\"\n Return a string representation of this decision tree that\n expresses the decisions it makes as a nested set of pseudocode\n if statements.\n \"\"\"\n if self._fname is None:\n return \"%sreturn %r\\n\" % (prefix, self._label)\n s = ''\n for (fval, result) in sorted(self._decisions.items()):\n s += '%sif %s == %r: ' % (prefix, self._fname, fval)\n if result._fname is not None and depth>1:\n s += '\\n'+result.pseudocode(prefix+' ', depth-1)\n else:\n s += 'return %r\\n' % result._label\n if self._default is not None:\n if len(self._decisions) == 1:\n s += '%sif %s != %r: '% (prefix, self._fname,\n list(self._decisions.keys())[0])\n else:\n s += '%selse: ' % (prefix,)\n if self._default._fname is not None and depth>1:\n s += '\\n'+self._default.pseudocode(prefix+' ', depth-1)\n else:\n s += 'return %r\\n' % self._default._label\n return s\n\n def __str__(self):\n return self.pp()\n\n @staticmethod\n def train(labeled_featuresets, entropy_cutoff=0.05, depth_cutoff=100,\n support_cutoff=10, binary=False, feature_values=None,\n verbose=False):\n \"\"\"\n :param binary: If true, then treat all feature/value pairs as\n individual binary features, rather than using a single n-way\n branch for each feature.\n \"\"\"\n # Collect a list of all feature names.\n feature_names = set()\n for featureset, label in labeled_featuresets:\n for fname in featureset:\n feature_names.add(fname)\n\n # Collect a list of the values each feature can take.\n if feature_values is None and binary:\n feature_values = defaultdict(set)\n for featureset, label in labeled_featuresets:\n for fname, fval in featureset.items():\n feature_values[fname].add(fval)\n\n # Start with a stump.\n if not binary:\n tree = DecisionTreeClassifier.best_stump(\n feature_names, labeled_featuresets, verbose)\n else:\n tree = DecisionTreeClassifier.best_binary_stump(\n feature_names, labeled_featuresets, feature_values, verbose)\n\n # Refine the stump.\n tree.refine(labeled_featuresets, entropy_cutoff, depth_cutoff-1,\n support_cutoff, binary, feature_values, verbose)\n\n # Return it\n return tree\n\n @staticmethod\n def leaf(labeled_featuresets):\n label = FreqDist(label for (featureset,label)\n in labeled_featuresets).max()\n return DecisionTreeClassifier(label)\n\n @staticmethod\n def stump(feature_name, labeled_featuresets):\n label = FreqDist(label for (featureset,label)\n in labeled_featuresets).max()\n\n # Find the best label for each value.\n freqs = defaultdict(FreqDist) # freq(label|value)\n for featureset, label in labeled_featuresets:\n feature_value = featureset.get(feature_name)\n freqs[feature_value].inc(label)\n\n decisions = dict((val, DecisionTreeClassifier(freqs[val].max()))\n for val in freqs)\n return DecisionTreeClassifier(label, feature_name, decisions)\n\n def refine(self, labeled_featuresets, entropy_cutoff, depth_cutoff,\n support_cutoff, binary=False, feature_values=None,\n verbose=False):\n if len(labeled_featuresets) <= support_cutoff: return\n if self._fname is None: return\n if depth_cutoff <= 0: return\n for fval in self._decisions:\n fval_featuresets = [(featureset,label) for (featureset,label)\n in labeled_featuresets\n if featureset.get(self._fname) == fval]\n\n label_freqs = FreqDist(label for (featureset,label)\n in fval_featuresets)\n if entropy(MLEProbDist(label_freqs)) > entropy_cutoff:\n self._decisions[fval] = DecisionTreeClassifier.train(\n fval_featuresets, entropy_cutoff, depth_cutoff,\n support_cutoff, binary, feature_values, verbose)\n if self._default is not None:\n default_featuresets = [(featureset, label) for (featureset, label)\n in labeled_featuresets\n if featureset.get(self._fname) not in\n self._decisions]\n label_freqs = FreqDist(label for (featureset,label)\n in default_featuresets)\n if entropy(MLEProbDist(label_freqs)) > entropy_cutoff:\n self._default = DecisionTreeClassifier.train(\n default_featuresets, entropy_cutoff, depth_cutoff,\n support_cutoff, binary, feature_values, verbose)\n\n @staticmethod\n def best_stump(feature_names, labeled_featuresets, verbose=False):\n best_stump = DecisionTreeClassifier.leaf(labeled_featuresets)\n best_error = best_stump.error(labeled_featuresets)\n for fname in feature_names:\n stump = DecisionTreeClassifier.stump(fname, labeled_featuresets)\n stump_error = stump.error(labeled_featuresets)\n if stump_error < best_error:\n best_error = stump_error\n best_stump = stump\n if verbose:\n print(('best stump for %6d toks uses %-20s err=%6.4f' %\n (len(labeled_featuresets), best_stump._fname, best_error)))\n return best_stump\n\n @staticmethod\n def binary_stump(feature_name, feature_value, labeled_featuresets):\n label = FreqDist(label for (featureset, label)\n in labeled_featuresets).max()\n\n # Find the best label for each value.\n pos_fdist = FreqDist()\n neg_fdist = FreqDist()\n for featureset, label in labeled_featuresets:\n if featureset.get(feature_name) == feature_value:\n pos_fdist.inc(label)\n else:\n neg_fdist.inc(label)\n\n\n decisions = {}\n default = label\n # But hopefully we have observations!\n if pos_fdist.N() > 0:\n decisions = {feature_value: DecisionTreeClassifier(pos_fdist.max())}\n if neg_fdist.N() > 0:\n default = DecisionTreeClassifier(neg_fdist.max())\n\n return DecisionTreeClassifier(label, feature_name, decisions, default)\n\n @staticmethod\n def best_binary_stump(feature_names, labeled_featuresets, feature_values,\n verbose=False):\n best_stump = DecisionTreeClassifier.leaf(labeled_featuresets)\n best_error = best_stump.error(labeled_featuresets)\n for fname in feature_names:\n for fval in feature_values[fname]:\n stump = DecisionTreeClassifier.binary_stump(\n fname, fval, labeled_featuresets)\n stump_error = stump.error(labeled_featuresets)\n if stump_error < best_error:\n best_error = stump_error\n best_stump = stump\n if best_stump._decisions:\n descr = '%s=%s' % (best_stump._fname,\n list(best_stump._decisions.keys())[0])\n else:\n descr = '(default)'\n if verbose:\n print(('best stump for %6d toks uses %-20s err=%6.4f' %\n (len(labeled_featuresets), descr, best_error)))\n return best_stump\n\n##//////////////////////////////////////////////////////\n## Demo\n##//////////////////////////////////////////////////////\n\ndef f(x):\n return DecisionTreeClassifier.train(x, binary=True, verbose=True)\n\ndef demo():\n from nltk.classify.util import names_demo, binary_names_demo_features\n classifier = names_demo(f, #DecisionTreeClassifier.train,\n binary_names_demo_features)\n print(classifier.pp(depth=7))\n print(classifier.pseudocode(depth=7))\n\nif __name__ == '__main__':\n demo()\n\n", "path": "nltk/classify/decisiontree.py"}]}
3,966
474
gh_patches_debug_18667
rasdani/github-patches
git_diff
Bitmessage__PyBitmessage-1413
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Duplicate connections to some onion peers The description is based on messages from `[chan] bitmessage` but I've seen it myself a couple of weeks ago (I thought it's related to my #1394 - wrongly). ![image](https://user-images.githubusercontent.com/4012700/49939372-56add980-fee5-11e8-8f6c-de2f83123ebd.png) Changes proposed today: ```patch diff --git a/src/network/connectionpool.py b/src/network/connectionpool.py index e599cdf..c5ba701 100644 --- a/src/network/connectionpool.py +++ b/src/network/connectionpool.py @@ -93,7 +93,7 @@ class BMConnectionPool(object): del self.inboundConnections[connection.destination.host] except KeyError: pass - connection.close() + connection.handle_close() def getListeningIP(self): if BMConfigParser().safeGet("bitmessagesettings", "onionhostname").endswith(".onion"): ``` --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `src/network/connectionpool.py` Content: ``` 1 from ConfigParser import NoOptionError, NoSectionError 2 import errno 3 import socket 4 import time 5 import random 6 import re 7 8 from bmconfigparser import BMConfigParser 9 from debug import logger 10 import helper_bootstrap 11 import knownnodes 12 from network.proxy import Proxy 13 from network.tcp import TCPServer, Socks5BMConnection, Socks4aBMConnection, TCPConnection 14 from network.udp import UDPSocket 15 from network.connectionchooser import chooseConnection 16 import network.asyncore_pollchoose as asyncore 17 import protocol 18 from singleton import Singleton 19 import state 20 import helper_random 21 22 23 @Singleton 24 class BMConnectionPool(object): 25 def __init__(self): 26 asyncore.set_rates( 27 BMConfigParser().safeGetInt("bitmessagesettings", "maxdownloadrate"), 28 BMConfigParser().safeGetInt("bitmessagesettings", "maxuploadrate")) 29 self.outboundConnections = {} 30 self.inboundConnections = {} 31 self.listeningSockets = {} 32 self.udpSockets = {} 33 self.streams = [] 34 self.lastSpawned = 0 35 self.spawnWait = 2 36 self.bootstrapped = False 37 38 def connectToStream(self, streamNumber): 39 self.streams.append(streamNumber) 40 41 def getConnectionByAddr(self, addr): 42 if addr in self.inboundConnections: 43 return self.inboundConnections[addr] 44 try: 45 if addr.host in self.inboundConnections: 46 return self.inboundConnections[addr.host] 47 except AttributeError: 48 pass 49 if addr in self.outboundConnections: 50 return self.outboundConnections[addr] 51 try: 52 if addr.host in self.udpSockets: 53 return self.udpSockets[addr.host] 54 except AttributeError: 55 pass 56 raise KeyError 57 58 def isAlreadyConnected(self, nodeid): 59 for i in self.inboundConnections.values() + self.outboundConnections.values(): 60 try: 61 if nodeid == i.nodeid: 62 return True 63 except AttributeError: 64 pass 65 return False 66 67 def addConnection(self, connection): 68 if isinstance(connection, UDPSocket): 69 return 70 if connection.isOutbound: 71 self.outboundConnections[connection.destination] = connection 72 else: 73 if connection.destination.host in self.inboundConnections: 74 self.inboundConnections[connection.destination] = connection 75 else: 76 self.inboundConnections[connection.destination.host] = connection 77 78 def removeConnection(self, connection): 79 if isinstance(connection, UDPSocket): 80 del self.udpSockets[connection.listening.host] 81 elif isinstance(connection, TCPServer): 82 del self.listeningSockets[state.Peer(connection.destination.host, connection.destination.port)] 83 elif connection.isOutbound: 84 try: 85 del self.outboundConnections[connection.destination] 86 except KeyError: 87 pass 88 else: 89 try: 90 del self.inboundConnections[connection.destination] 91 except KeyError: 92 try: 93 del self.inboundConnections[connection.destination.host] 94 except KeyError: 95 pass 96 connection.close() 97 98 def getListeningIP(self): 99 if BMConfigParser().safeGet("bitmessagesettings", "onionhostname").endswith(".onion"): 100 host = BMConfigParser().safeGet("bitmessagesettings", "onionbindip") 101 else: 102 host = '127.0.0.1' 103 if BMConfigParser().safeGetBoolean("bitmessagesettings", "sockslisten") or \ 104 BMConfigParser().get("bitmessagesettings", "socksproxytype") == "none": 105 # python doesn't like bind + INADDR_ANY? 106 #host = socket.INADDR_ANY 107 host = BMConfigParser().get("network", "bind") 108 return host 109 110 def startListening(self, bind=None): 111 if bind is None: 112 bind = self.getListeningIP() 113 port = BMConfigParser().safeGetInt("bitmessagesettings", "port") 114 # correct port even if it changed 115 ls = TCPServer(host=bind, port=port) 116 self.listeningSockets[ls.destination] = ls 117 118 def startUDPSocket(self, bind=None): 119 if bind is None: 120 host = self.getListeningIP() 121 udpSocket = UDPSocket(host=host, announcing=True) 122 else: 123 if bind is False: 124 udpSocket = UDPSocket(announcing=False) 125 else: 126 udpSocket = UDPSocket(host=bind, announcing=True) 127 self.udpSockets[udpSocket.listening.host] = udpSocket 128 129 def loop(self): 130 # defaults to empty loop if outbound connections are maxed 131 spawnConnections = False 132 acceptConnections = True 133 if BMConfigParser().safeGetBoolean('bitmessagesettings', 'dontconnect'): 134 acceptConnections = False 135 elif BMConfigParser().safeGetBoolean('bitmessagesettings', 'sendoutgoingconnections'): 136 spawnConnections = True 137 if BMConfigParser().get('bitmessagesettings', 'socksproxytype')[0:5] == 'SOCKS' and \ 138 (not BMConfigParser().getboolean('bitmessagesettings', 'sockslisten') and \ 139 ".onion" not in BMConfigParser().get('bitmessagesettings', 'onionhostname')): 140 acceptConnections = False 141 142 if spawnConnections: 143 if not knownnodes.knownNodesActual: 144 helper_bootstrap.dns() 145 if not self.bootstrapped: 146 self.bootstrapped = True 147 Proxy.proxy = (BMConfigParser().safeGet("bitmessagesettings", "sockshostname"), 148 BMConfigParser().safeGetInt("bitmessagesettings", "socksport")) 149 # TODO AUTH 150 # TODO reset based on GUI settings changes 151 try: 152 if not BMConfigParser().get("network", "onionsocksproxytype").startswith("SOCKS"): 153 raise NoOptionError 154 Proxy.onionproxy = (BMConfigParser().get("network", "onionsockshostname"), 155 BMConfigParser().getint("network", "onionsocksport")) 156 except (NoOptionError, NoSectionError): 157 Proxy.onionproxy = None 158 established = sum(1 for c in self.outboundConnections.values() if (c.connected and c.fullyEstablished)) 159 pending = len(self.outboundConnections) - established 160 if established < BMConfigParser().safeGetInt("bitmessagesettings", "maxoutboundconnections"): 161 for i in range(state.maximumNumberOfHalfOpenConnections - pending): 162 try: 163 chosen = chooseConnection(helper_random.randomchoice(self.streams)) 164 except ValueError: 165 continue 166 if chosen in self.outboundConnections: 167 continue 168 if chosen.host in self.inboundConnections: 169 continue 170 # don't connect to self 171 if chosen in state.ownAddresses: 172 continue 173 174 #for c in self.outboundConnections: 175 # if chosen == c.destination: 176 # continue 177 #for c in self.inboundConnections: 178 # if chosen.host == c.destination.host: 179 # continue 180 try: 181 if chosen.host.endswith(".onion") and Proxy.onionproxy is not None: 182 if BMConfigParser().get("network", "onionsocksproxytype") == "SOCKS5": 183 self.addConnection(Socks5BMConnection(chosen)) 184 elif BMConfigParser().get("network", "onionsocksproxytype") == "SOCKS4a": 185 self.addConnection(Socks4aBMConnection(chosen)) 186 elif BMConfigParser().safeGet("bitmessagesettings", "socksproxytype") == "SOCKS5": 187 self.addConnection(Socks5BMConnection(chosen)) 188 elif BMConfigParser().safeGet("bitmessagesettings", "socksproxytype") == "SOCKS4a": 189 self.addConnection(Socks4aBMConnection(chosen)) 190 else: 191 self.addConnection(TCPConnection(chosen)) 192 except socket.error as e: 193 if e.errno == errno.ENETUNREACH: 194 continue 195 except (NoSectionError, NoOptionError): 196 # shouldn't happen 197 pass 198 199 self.lastSpawned = time.time() 200 else: 201 for i in ( 202 self.inboundConnections.values() + 203 self.outboundConnections.values() 204 ): 205 i.set_state("close") 206 # FIXME: rating will be increased after next connection 207 i.handle_close() 208 209 if acceptConnections: 210 if not self.listeningSockets: 211 if BMConfigParser().safeGet("network", "bind") == '': 212 self.startListening() 213 else: 214 for bind in re.sub("[^\w.]+", " ", BMConfigParser().safeGet("network", "bind")).split(): 215 self.startListening(bind) 216 logger.info('Listening for incoming connections.') 217 if not self.udpSockets: 218 if BMConfigParser().safeGet("network", "bind") == '': 219 self.startUDPSocket() 220 else: 221 for bind in re.sub("[^\w.]+", " ", BMConfigParser().safeGet("network", "bind")).split(): 222 self.startUDPSocket(bind) 223 self.startUDPSocket(False) 224 logger.info('Starting UDP socket(s).') 225 else: 226 if self.listeningSockets: 227 for i in self.listeningSockets.values(): 228 i.close_reason = "Stopping listening" 229 i.accepting = i.connecting = i.connected = False 230 logger.info('Stopped listening for incoming connections.') 231 if self.udpSockets: 232 for i in self.udpSockets.values(): 233 i.close_reason = "Stopping UDP socket" 234 i.accepting = i.connecting = i.connected = False 235 logger.info('Stopped udp sockets.') 236 237 loopTime = float(self.spawnWait) 238 if self.lastSpawned < time.time() - self.spawnWait: 239 loopTime = 2.0 240 asyncore.loop(timeout=loopTime, count=1000) 241 242 reaper = [] 243 for i in self.inboundConnections.values() + self.outboundConnections.values(): 244 minTx = time.time() - 20 245 if i.fullyEstablished: 246 minTx -= 300 - 20 247 if i.lastTx < minTx: 248 if i.fullyEstablished: 249 i.append_write_buf(protocol.CreatePacket('ping')) 250 else: 251 i.close_reason = "Timeout (%is)" % (time.time() - i.lastTx) 252 i.set_state("close") 253 for i in self.inboundConnections.values() + self.outboundConnections.values() + self.listeningSockets.values() + self.udpSockets.values(): 254 if not (i.accepting or i.connecting or i.connected): 255 reaper.append(i) 256 else: 257 try: 258 if i.state == "close": 259 reaper.append(i) 260 except AttributeError: 261 pass 262 for i in reaper: 263 self.removeConnection(i) 264 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/src/network/connectionpool.py b/src/network/connectionpool.py --- a/src/network/connectionpool.py +++ b/src/network/connectionpool.py @@ -93,7 +93,7 @@ del self.inboundConnections[connection.destination.host] except KeyError: pass - connection.close() + connection.handle_close() def getListeningIP(self): if BMConfigParser().safeGet("bitmessagesettings", "onionhostname").endswith(".onion"): @@ -202,7 +202,6 @@ self.inboundConnections.values() + self.outboundConnections.values() ): - i.set_state("close") # FIXME: rating will be increased after next connection i.handle_close()
{"golden_diff": "diff --git a/src/network/connectionpool.py b/src/network/connectionpool.py\n--- a/src/network/connectionpool.py\n+++ b/src/network/connectionpool.py\n@@ -93,7 +93,7 @@\n del self.inboundConnections[connection.destination.host]\n except KeyError:\n pass\n- connection.close()\n+ connection.handle_close()\n \n def getListeningIP(self):\n if BMConfigParser().safeGet(\"bitmessagesettings\", \"onionhostname\").endswith(\".onion\"):\n@@ -202,7 +202,6 @@\n self.inboundConnections.values() +\n self.outboundConnections.values()\n ):\n- i.set_state(\"close\")\n # FIXME: rating will be increased after next connection\n i.handle_close()\n", "issue": "Duplicate connections to some onion peers\nThe description is based on messages from `[chan] bitmessage` but I've seen it myself a couple of weeks ago (I thought it's related to my #1394 - wrongly).\r\n\r\n![image](https://user-images.githubusercontent.com/4012700/49939372-56add980-fee5-11e8-8f6c-de2f83123ebd.png)\r\n\r\nChanges proposed today:\r\n```patch\r\ndiff --git a/src/network/connectionpool.py b/src/network/connectionpool.py\r\nindex e599cdf..c5ba701 100644\r\n--- a/src/network/connectionpool.py\r\n+++ b/src/network/connectionpool.py\r\n@@ -93,7 +93,7 @@ class BMConnectionPool(object):\r\n del self.inboundConnections[connection.destination.host]\r\n except KeyError:\r\n pass\r\n- connection.close()\r\n+ connection.handle_close()\r\n \r\n def getListeningIP(self):\r\n if BMConfigParser().safeGet(\"bitmessagesettings\", \"onionhostname\").endswith(\".onion\"):\r\n\r\n```\n", "before_files": [{"content": "from ConfigParser import NoOptionError, NoSectionError\nimport errno\nimport socket\nimport time\nimport random\nimport re\n\nfrom bmconfigparser import BMConfigParser\nfrom debug import logger\nimport helper_bootstrap\nimport knownnodes\nfrom network.proxy import Proxy\nfrom network.tcp import TCPServer, Socks5BMConnection, Socks4aBMConnection, TCPConnection\nfrom network.udp import UDPSocket\nfrom network.connectionchooser import chooseConnection\nimport network.asyncore_pollchoose as asyncore\nimport protocol\nfrom singleton import Singleton\nimport state\nimport helper_random\n\n\n@Singleton\nclass BMConnectionPool(object):\n def __init__(self):\n asyncore.set_rates(\n BMConfigParser().safeGetInt(\"bitmessagesettings\", \"maxdownloadrate\"),\n BMConfigParser().safeGetInt(\"bitmessagesettings\", \"maxuploadrate\"))\n self.outboundConnections = {}\n self.inboundConnections = {}\n self.listeningSockets = {}\n self.udpSockets = {}\n self.streams = []\n self.lastSpawned = 0\n self.spawnWait = 2 \n self.bootstrapped = False\n\n def connectToStream(self, streamNumber):\n self.streams.append(streamNumber)\n\n def getConnectionByAddr(self, addr):\n if addr in self.inboundConnections:\n return self.inboundConnections[addr]\n try:\n if addr.host in self.inboundConnections:\n return self.inboundConnections[addr.host]\n except AttributeError:\n pass\n if addr in self.outboundConnections:\n return self.outboundConnections[addr]\n try:\n if addr.host in self.udpSockets:\n return self.udpSockets[addr.host]\n except AttributeError:\n pass\n raise KeyError\n\n def isAlreadyConnected(self, nodeid):\n for i in self.inboundConnections.values() + self.outboundConnections.values():\n try:\n if nodeid == i.nodeid:\n return True\n except AttributeError:\n pass\n return False\n\n def addConnection(self, connection):\n if isinstance(connection, UDPSocket):\n return\n if connection.isOutbound:\n self.outboundConnections[connection.destination] = connection\n else:\n if connection.destination.host in self.inboundConnections:\n self.inboundConnections[connection.destination] = connection\n else:\n self.inboundConnections[connection.destination.host] = connection\n\n def removeConnection(self, connection):\n if isinstance(connection, UDPSocket):\n del self.udpSockets[connection.listening.host]\n elif isinstance(connection, TCPServer):\n del self.listeningSockets[state.Peer(connection.destination.host, connection.destination.port)]\n elif connection.isOutbound:\n try:\n del self.outboundConnections[connection.destination]\n except KeyError:\n pass\n else:\n try:\n del self.inboundConnections[connection.destination]\n except KeyError:\n try:\n del self.inboundConnections[connection.destination.host]\n except KeyError:\n pass\n connection.close()\n\n def getListeningIP(self):\n if BMConfigParser().safeGet(\"bitmessagesettings\", \"onionhostname\").endswith(\".onion\"):\n host = BMConfigParser().safeGet(\"bitmessagesettings\", \"onionbindip\")\n else:\n host = '127.0.0.1'\n if BMConfigParser().safeGetBoolean(\"bitmessagesettings\", \"sockslisten\") or \\\n BMConfigParser().get(\"bitmessagesettings\", \"socksproxytype\") == \"none\":\n # python doesn't like bind + INADDR_ANY?\n #host = socket.INADDR_ANY\n host = BMConfigParser().get(\"network\", \"bind\")\n return host\n\n def startListening(self, bind=None):\n if bind is None:\n bind = self.getListeningIP()\n port = BMConfigParser().safeGetInt(\"bitmessagesettings\", \"port\")\n # correct port even if it changed\n ls = TCPServer(host=bind, port=port)\n self.listeningSockets[ls.destination] = ls\n\n def startUDPSocket(self, bind=None):\n if bind is None:\n host = self.getListeningIP()\n udpSocket = UDPSocket(host=host, announcing=True)\n else:\n if bind is False:\n udpSocket = UDPSocket(announcing=False)\n else:\n udpSocket = UDPSocket(host=bind, announcing=True)\n self.udpSockets[udpSocket.listening.host] = udpSocket\n\n def loop(self):\n # defaults to empty loop if outbound connections are maxed\n spawnConnections = False\n acceptConnections = True\n if BMConfigParser().safeGetBoolean('bitmessagesettings', 'dontconnect'):\n acceptConnections = False\n elif BMConfigParser().safeGetBoolean('bitmessagesettings', 'sendoutgoingconnections'):\n spawnConnections = True\n if BMConfigParser().get('bitmessagesettings', 'socksproxytype')[0:5] == 'SOCKS' and \\\n (not BMConfigParser().getboolean('bitmessagesettings', 'sockslisten') and \\\n \".onion\" not in BMConfigParser().get('bitmessagesettings', 'onionhostname')):\n acceptConnections = False\n\n if spawnConnections:\n if not knownnodes.knownNodesActual:\n helper_bootstrap.dns()\n if not self.bootstrapped:\n self.bootstrapped = True\n Proxy.proxy = (BMConfigParser().safeGet(\"bitmessagesettings\", \"sockshostname\"),\n BMConfigParser().safeGetInt(\"bitmessagesettings\", \"socksport\"))\n # TODO AUTH\n # TODO reset based on GUI settings changes\n try:\n if not BMConfigParser().get(\"network\", \"onionsocksproxytype\").startswith(\"SOCKS\"):\n raise NoOptionError\n Proxy.onionproxy = (BMConfigParser().get(\"network\", \"onionsockshostname\"),\n BMConfigParser().getint(\"network\", \"onionsocksport\"))\n except (NoOptionError, NoSectionError):\n Proxy.onionproxy = None\n established = sum(1 for c in self.outboundConnections.values() if (c.connected and c.fullyEstablished))\n pending = len(self.outboundConnections) - established\n if established < BMConfigParser().safeGetInt(\"bitmessagesettings\", \"maxoutboundconnections\"):\n for i in range(state.maximumNumberOfHalfOpenConnections - pending):\n try:\n chosen = chooseConnection(helper_random.randomchoice(self.streams))\n except ValueError:\n continue\n if chosen in self.outboundConnections:\n continue\n if chosen.host in self.inboundConnections:\n continue\n # don't connect to self\n if chosen in state.ownAddresses:\n continue\n \n #for c in self.outboundConnections:\n # if chosen == c.destination:\n # continue\n #for c in self.inboundConnections:\n # if chosen.host == c.destination.host:\n # continue\n try:\n if chosen.host.endswith(\".onion\") and Proxy.onionproxy is not None:\n if BMConfigParser().get(\"network\", \"onionsocksproxytype\") == \"SOCKS5\":\n self.addConnection(Socks5BMConnection(chosen))\n elif BMConfigParser().get(\"network\", \"onionsocksproxytype\") == \"SOCKS4a\":\n self.addConnection(Socks4aBMConnection(chosen))\n elif BMConfigParser().safeGet(\"bitmessagesettings\", \"socksproxytype\") == \"SOCKS5\":\n self.addConnection(Socks5BMConnection(chosen))\n elif BMConfigParser().safeGet(\"bitmessagesettings\", \"socksproxytype\") == \"SOCKS4a\":\n self.addConnection(Socks4aBMConnection(chosen))\n else:\n self.addConnection(TCPConnection(chosen))\n except socket.error as e:\n if e.errno == errno.ENETUNREACH:\n continue\n except (NoSectionError, NoOptionError):\n # shouldn't happen\n pass\n\n self.lastSpawned = time.time()\n else:\n for i in (\n self.inboundConnections.values() +\n self.outboundConnections.values()\n ):\n i.set_state(\"close\")\n # FIXME: rating will be increased after next connection\n i.handle_close()\n\n if acceptConnections:\n if not self.listeningSockets:\n if BMConfigParser().safeGet(\"network\", \"bind\") == '':\n self.startListening()\n else:\n for bind in re.sub(\"[^\\w.]+\", \" \", BMConfigParser().safeGet(\"network\", \"bind\")).split():\n self.startListening(bind)\n logger.info('Listening for incoming connections.')\n if not self.udpSockets:\n if BMConfigParser().safeGet(\"network\", \"bind\") == '':\n self.startUDPSocket()\n else:\n for bind in re.sub(\"[^\\w.]+\", \" \", BMConfigParser().safeGet(\"network\", \"bind\")).split():\n self.startUDPSocket(bind)\n self.startUDPSocket(False)\n logger.info('Starting UDP socket(s).')\n else:\n if self.listeningSockets:\n for i in self.listeningSockets.values():\n i.close_reason = \"Stopping listening\"\n i.accepting = i.connecting = i.connected = False\n logger.info('Stopped listening for incoming connections.')\n if self.udpSockets:\n for i in self.udpSockets.values():\n i.close_reason = \"Stopping UDP socket\"\n i.accepting = i.connecting = i.connected = False\n logger.info('Stopped udp sockets.')\n\n loopTime = float(self.spawnWait)\n if self.lastSpawned < time.time() - self.spawnWait:\n loopTime = 2.0\n asyncore.loop(timeout=loopTime, count=1000)\n\n reaper = []\n for i in self.inboundConnections.values() + self.outboundConnections.values():\n minTx = time.time() - 20\n if i.fullyEstablished:\n minTx -= 300 - 20\n if i.lastTx < minTx:\n if i.fullyEstablished:\n i.append_write_buf(protocol.CreatePacket('ping'))\n else:\n i.close_reason = \"Timeout (%is)\" % (time.time() - i.lastTx) \n i.set_state(\"close\")\n for i in self.inboundConnections.values() + self.outboundConnections.values() + self.listeningSockets.values() + self.udpSockets.values():\n if not (i.accepting or i.connecting or i.connected):\n reaper.append(i)\n else:\n try:\n if i.state == \"close\":\n reaper.append(i)\n except AttributeError:\n pass\n for i in reaper:\n self.removeConnection(i)\n", "path": "src/network/connectionpool.py"}], "after_files": [{"content": "from ConfigParser import NoOptionError, NoSectionError\nimport errno\nimport socket\nimport time\nimport random\nimport re\n\nfrom bmconfigparser import BMConfigParser\nfrom debug import logger\nimport helper_bootstrap\nimport knownnodes\nfrom network.proxy import Proxy\nfrom network.tcp import TCPServer, Socks5BMConnection, Socks4aBMConnection, TCPConnection\nfrom network.udp import UDPSocket\nfrom network.connectionchooser import chooseConnection\nimport network.asyncore_pollchoose as asyncore\nimport protocol\nfrom singleton import Singleton\nimport state\nimport helper_random\n\n\n@Singleton\nclass BMConnectionPool(object):\n def __init__(self):\n asyncore.set_rates(\n BMConfigParser().safeGetInt(\"bitmessagesettings\", \"maxdownloadrate\"),\n BMConfigParser().safeGetInt(\"bitmessagesettings\", \"maxuploadrate\"))\n self.outboundConnections = {}\n self.inboundConnections = {}\n self.listeningSockets = {}\n self.udpSockets = {}\n self.streams = []\n self.lastSpawned = 0\n self.spawnWait = 2 \n self.bootstrapped = False\n\n def connectToStream(self, streamNumber):\n self.streams.append(streamNumber)\n\n def getConnectionByAddr(self, addr):\n if addr in self.inboundConnections:\n return self.inboundConnections[addr]\n try:\n if addr.host in self.inboundConnections:\n return self.inboundConnections[addr.host]\n except AttributeError:\n pass\n if addr in self.outboundConnections:\n return self.outboundConnections[addr]\n try:\n if addr.host in self.udpSockets:\n return self.udpSockets[addr.host]\n except AttributeError:\n pass\n raise KeyError\n\n def isAlreadyConnected(self, nodeid):\n for i in self.inboundConnections.values() + self.outboundConnections.values():\n try:\n if nodeid == i.nodeid:\n return True\n except AttributeError:\n pass\n return False\n\n def addConnection(self, connection):\n if isinstance(connection, UDPSocket):\n return\n if connection.isOutbound:\n self.outboundConnections[connection.destination] = connection\n else:\n if connection.destination.host in self.inboundConnections:\n self.inboundConnections[connection.destination] = connection\n else:\n self.inboundConnections[connection.destination.host] = connection\n\n def removeConnection(self, connection):\n if isinstance(connection, UDPSocket):\n del self.udpSockets[connection.listening.host]\n elif isinstance(connection, TCPServer):\n del self.listeningSockets[state.Peer(connection.destination.host, connection.destination.port)]\n elif connection.isOutbound:\n try:\n del self.outboundConnections[connection.destination]\n except KeyError:\n pass\n else:\n try:\n del self.inboundConnections[connection.destination]\n except KeyError:\n try:\n del self.inboundConnections[connection.destination.host]\n except KeyError:\n pass\n connection.handle_close()\n\n def getListeningIP(self):\n if BMConfigParser().safeGet(\"bitmessagesettings\", \"onionhostname\").endswith(\".onion\"):\n host = BMConfigParser().safeGet(\"bitmessagesettings\", \"onionbindip\")\n else:\n host = '127.0.0.1'\n if BMConfigParser().safeGetBoolean(\"bitmessagesettings\", \"sockslisten\") or \\\n BMConfigParser().get(\"bitmessagesettings\", \"socksproxytype\") == \"none\":\n # python doesn't like bind + INADDR_ANY?\n #host = socket.INADDR_ANY\n host = BMConfigParser().get(\"network\", \"bind\")\n return host\n\n def startListening(self, bind=None):\n if bind is None:\n bind = self.getListeningIP()\n port = BMConfigParser().safeGetInt(\"bitmessagesettings\", \"port\")\n # correct port even if it changed\n ls = TCPServer(host=bind, port=port)\n self.listeningSockets[ls.destination] = ls\n\n def startUDPSocket(self, bind=None):\n if bind is None:\n host = self.getListeningIP()\n udpSocket = UDPSocket(host=host, announcing=True)\n else:\n if bind is False:\n udpSocket = UDPSocket(announcing=False)\n else:\n udpSocket = UDPSocket(host=bind, announcing=True)\n self.udpSockets[udpSocket.listening.host] = udpSocket\n\n def loop(self):\n # defaults to empty loop if outbound connections are maxed\n spawnConnections = False\n acceptConnections = True\n if BMConfigParser().safeGetBoolean('bitmessagesettings', 'dontconnect'):\n acceptConnections = False\n elif BMConfigParser().safeGetBoolean('bitmessagesettings', 'sendoutgoingconnections'):\n spawnConnections = True\n if BMConfigParser().get('bitmessagesettings', 'socksproxytype')[0:5] == 'SOCKS' and \\\n (not BMConfigParser().getboolean('bitmessagesettings', 'sockslisten') and \\\n \".onion\" not in BMConfigParser().get('bitmessagesettings', 'onionhostname')):\n acceptConnections = False\n\n if spawnConnections:\n if not knownnodes.knownNodesActual:\n helper_bootstrap.dns()\n if not self.bootstrapped:\n self.bootstrapped = True\n Proxy.proxy = (BMConfigParser().safeGet(\"bitmessagesettings\", \"sockshostname\"),\n BMConfigParser().safeGetInt(\"bitmessagesettings\", \"socksport\"))\n # TODO AUTH\n # TODO reset based on GUI settings changes\n try:\n if not BMConfigParser().get(\"network\", \"onionsocksproxytype\").startswith(\"SOCKS\"):\n raise NoOptionError\n Proxy.onionproxy = (BMConfigParser().get(\"network\", \"onionsockshostname\"),\n BMConfigParser().getint(\"network\", \"onionsocksport\"))\n except (NoOptionError, NoSectionError):\n Proxy.onionproxy = None\n established = sum(1 for c in self.outboundConnections.values() if (c.connected and c.fullyEstablished))\n pending = len(self.outboundConnections) - established\n if established < BMConfigParser().safeGetInt(\"bitmessagesettings\", \"maxoutboundconnections\"):\n for i in range(state.maximumNumberOfHalfOpenConnections - pending):\n try:\n chosen = chooseConnection(helper_random.randomchoice(self.streams))\n except ValueError:\n continue\n if chosen in self.outboundConnections:\n continue\n if chosen.host in self.inboundConnections:\n continue\n # don't connect to self\n if chosen in state.ownAddresses:\n continue\n \n #for c in self.outboundConnections:\n # if chosen == c.destination:\n # continue\n #for c in self.inboundConnections:\n # if chosen.host == c.destination.host:\n # continue\n try:\n if chosen.host.endswith(\".onion\") and Proxy.onionproxy is not None:\n if BMConfigParser().get(\"network\", \"onionsocksproxytype\") == \"SOCKS5\":\n self.addConnection(Socks5BMConnection(chosen))\n elif BMConfigParser().get(\"network\", \"onionsocksproxytype\") == \"SOCKS4a\":\n self.addConnection(Socks4aBMConnection(chosen))\n elif BMConfigParser().safeGet(\"bitmessagesettings\", \"socksproxytype\") == \"SOCKS5\":\n self.addConnection(Socks5BMConnection(chosen))\n elif BMConfigParser().safeGet(\"bitmessagesettings\", \"socksproxytype\") == \"SOCKS4a\":\n self.addConnection(Socks4aBMConnection(chosen))\n else:\n self.addConnection(TCPConnection(chosen))\n except socket.error as e:\n if e.errno == errno.ENETUNREACH:\n continue\n except (NoSectionError, NoOptionError):\n # shouldn't happen\n pass\n\n self.lastSpawned = time.time()\n else:\n for i in (\n self.inboundConnections.values() +\n self.outboundConnections.values()\n ):\n # FIXME: rating will be increased after next connection\n i.handle_close()\n\n if acceptConnections:\n if not self.listeningSockets:\n if BMConfigParser().safeGet(\"network\", \"bind\") == '':\n self.startListening()\n else:\n for bind in re.sub(\"[^\\w.]+\", \" \", BMConfigParser().safeGet(\"network\", \"bind\")).split():\n self.startListening(bind)\n logger.info('Listening for incoming connections.')\n if not self.udpSockets:\n if BMConfigParser().safeGet(\"network\", \"bind\") == '':\n self.startUDPSocket()\n else:\n for bind in re.sub(\"[^\\w.]+\", \" \", BMConfigParser().safeGet(\"network\", \"bind\")).split():\n self.startUDPSocket(bind)\n self.startUDPSocket(False)\n logger.info('Starting UDP socket(s).')\n else:\n if self.listeningSockets:\n for i in self.listeningSockets.values():\n i.close_reason = \"Stopping listening\"\n i.accepting = i.connecting = i.connected = False\n logger.info('Stopped listening for incoming connections.')\n if self.udpSockets:\n for i in self.udpSockets.values():\n i.close_reason = \"Stopping UDP socket\"\n i.accepting = i.connecting = i.connected = False\n logger.info('Stopped udp sockets.')\n\n loopTime = float(self.spawnWait)\n if self.lastSpawned < time.time() - self.spawnWait:\n loopTime = 2.0\n asyncore.loop(timeout=loopTime, count=1000)\n\n reaper = []\n for i in self.inboundConnections.values() + self.outboundConnections.values():\n minTx = time.time() - 20\n if i.fullyEstablished:\n minTx -= 300 - 20\n if i.lastTx < minTx:\n if i.fullyEstablished:\n i.append_write_buf(protocol.CreatePacket('ping'))\n else:\n i.close_reason = \"Timeout (%is)\" % (time.time() - i.lastTx) \n i.set_state(\"close\")\n for i in self.inboundConnections.values() + self.outboundConnections.values() + self.listeningSockets.values() + self.udpSockets.values():\n if not (i.accepting or i.connecting or i.connected):\n reaper.append(i)\n else:\n try:\n if i.state == \"close\":\n reaper.append(i)\n except AttributeError:\n pass\n for i in reaper:\n self.removeConnection(i)\n", "path": "src/network/connectionpool.py"}]}
3,513
161
gh_patches_debug_48679
rasdani/github-patches
git_diff
ethereum__web3.py-2659
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- protobuf dependency compatibility * Python: 3.5 * OS: osx * `import web3` output ``` ContextualVersionConflict ``` ### What was wrong? [protobuf](https://github.com/ethereum/web3.py/pull/1493) compatibility needs updating. Needed to downgrade protobuf to get it working. Version currently needs to be >4 but protobuf's latest version is 4.21.6 ### How can it be fixed? The newest version of protobuf should be compatible https://pypi.org/project/protobuf/ --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `setup.py` Content: ``` 1 #!/usr/bin/env python 2 from setuptools import ( 3 find_packages, 4 setup, 5 ) 6 7 extras_require = { 8 "tester": [ 9 "eth-tester[py-evm]==v0.6.0-beta.6", 10 "py-geth>=3.9.1,<4", 11 ], 12 "linter": [ 13 "flake8==3.8.3", 14 "isort>=4.2.15,<4.3.5", 15 "mypy==0.910", 16 "types-setuptools>=57.4.4,<58", 17 "types-requests>=2.26.1,<3", 18 "types-protobuf==3.19.13", 19 ], 20 "docs": [ 21 "mock", 22 "sphinx-better-theme>=0.1.4", 23 "click>=5.1", 24 "configparser==3.5.0", 25 "contextlib2>=0.5.4", 26 "py-geth>=3.9.1,<4", 27 "py-solc>=0.4.0", 28 "pytest>=4.4.0,<5.0.0", 29 "sphinx>=3.0,<4", 30 "sphinx_rtd_theme>=0.1.9", 31 "toposort>=1.4", 32 "towncrier==18.5.0", 33 "urllib3", 34 "wheel", 35 "Jinja2<=3.0.3", # Jinja v3.1.0 dropped support for python 3.6 36 ], 37 "dev": [ 38 "bumpversion", 39 "flaky>=3.7.0,<4", 40 "hypothesis>=3.31.2,<6", 41 "pytest>=4.4.0,<5.0.0", 42 "pytest-asyncio>=0.10.0,<0.11", 43 "pytest-mock>=1.10,<2", 44 "pytest-pythonpath>=0.3", 45 "pytest-watch>=4.2,<5", 46 "pytest-xdist>=1.29,<2", 47 "setuptools>=38.6.0", 48 "tox>=1.8.0", 49 "tqdm>4.32,<5", 50 "twine>=1.13,<2", 51 "pluggy==0.13.1", 52 "when-changed>=0.3.0,<0.4", 53 ], 54 } 55 56 extras_require["dev"] = ( 57 extras_require["tester"] 58 + extras_require["linter"] 59 + extras_require["docs"] 60 + extras_require["dev"] 61 ) 62 63 with open("./README.md") as readme: 64 long_description = readme.read() 65 66 setup( 67 name="web3", 68 # *IMPORTANT*: Don't manually change the version here. Use the 'bumpversion' utility. 69 version="5.31.0", 70 description="""Web3.py""", 71 long_description_content_type="text/markdown", 72 long_description=long_description, 73 author="Piper Merriam", 74 author_email="[email protected]", 75 url="https://github.com/ethereum/web3.py", 76 include_package_data=True, 77 install_requires=[ 78 "aiohttp>=3.7.4.post0,<4", 79 "eth-abi>=2.0.0b6,<3.0.0", 80 "eth-account>=0.5.9,<0.6.0", 81 "eth-hash[pycryptodome]>=0.2.0,<1.0.0", 82 # eth-account allows too broad of an eth-rlp dependency. 83 # This eth-rlp pin can be removed once it gets tightened up in eth-account 84 "eth-rlp<0.3", 85 "eth-typing>=2.0.0,<3.0.0", 86 "eth-utils>=1.9.5,<2.0.0", 87 "hexbytes>=0.1.0,<1.0.0", 88 "ipfshttpclient==0.8.0a2", 89 "jsonschema>=3.2.0,<5", 90 "lru-dict>=1.1.6,<2.0.0", 91 "protobuf>=3.10.0,<4", 92 "pywin32>=223;platform_system=='Windows'", 93 "requests>=2.16.0,<3.0.0", 94 # remove typing_extensions after python_requires>=3.8, see web3._utils.compat 95 "typing-extensions>=3.7.4.1,<5;python_version<'3.8'", 96 "websockets>=9.1,<10", 97 ], 98 python_requires=">=3.6,<4", 99 extras_require=extras_require, 100 py_modules=["web3", "ens", "ethpm"], 101 entry_points={"pytest11": ["pytest_ethereum = web3.tools.pytest_ethereum.plugins"]}, 102 license="MIT", 103 zip_safe=False, 104 keywords="ethereum", 105 packages=find_packages(exclude=["tests", "tests.*"]), 106 package_data={"web3": ["py.typed"]}, 107 classifiers=[ 108 "Development Status :: 5 - Production/Stable", 109 "Intended Audience :: Developers", 110 "License :: OSI Approved :: MIT License", 111 "Natural Language :: English", 112 "Programming Language :: Python :: 3", 113 "Programming Language :: Python :: 3.6", 114 "Programming Language :: Python :: 3.7", 115 "Programming Language :: Python :: 3.8", 116 "Programming Language :: Python :: 3.9", 117 ], 118 ) 119 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/setup.py b/setup.py --- a/setup.py +++ b/setup.py @@ -88,7 +88,7 @@ "ipfshttpclient==0.8.0a2", "jsonschema>=3.2.0,<5", "lru-dict>=1.1.6,<2.0.0", - "protobuf>=3.10.0,<4", + "protobuf==3.19.4", "pywin32>=223;platform_system=='Windows'", "requests>=2.16.0,<3.0.0", # remove typing_extensions after python_requires>=3.8, see web3._utils.compat
{"golden_diff": "diff --git a/setup.py b/setup.py\n--- a/setup.py\n+++ b/setup.py\n@@ -88,7 +88,7 @@\n \"ipfshttpclient==0.8.0a2\",\n \"jsonschema>=3.2.0,<5\",\n \"lru-dict>=1.1.6,<2.0.0\",\n- \"protobuf>=3.10.0,<4\",\n+ \"protobuf==3.19.4\",\n \"pywin32>=223;platform_system=='Windows'\",\n \"requests>=2.16.0,<3.0.0\",\n # remove typing_extensions after python_requires>=3.8, see web3._utils.compat\n", "issue": "protobuf dependency compatibility\n* Python: 3.5\r\n* OS: osx\r\n* `import web3` output\r\n\r\n```\r\nContextualVersionConflict\r\n```\r\n\r\n### What was wrong?\r\n\r\n[protobuf](https://github.com/ethereum/web3.py/pull/1493) compatibility needs updating. Needed to downgrade protobuf to get it working. Version currently needs to be >4 but protobuf's latest version is 4.21.6\r\n\r\n### How can it be fixed?\r\n\r\nThe newest version of protobuf should be compatible https://pypi.org/project/protobuf/\r\n\n", "before_files": [{"content": "#!/usr/bin/env python\nfrom setuptools import (\n find_packages,\n setup,\n)\n\nextras_require = {\n \"tester\": [\n \"eth-tester[py-evm]==v0.6.0-beta.6\",\n \"py-geth>=3.9.1,<4\",\n ],\n \"linter\": [\n \"flake8==3.8.3\",\n \"isort>=4.2.15,<4.3.5\",\n \"mypy==0.910\",\n \"types-setuptools>=57.4.4,<58\",\n \"types-requests>=2.26.1,<3\",\n \"types-protobuf==3.19.13\",\n ],\n \"docs\": [\n \"mock\",\n \"sphinx-better-theme>=0.1.4\",\n \"click>=5.1\",\n \"configparser==3.5.0\",\n \"contextlib2>=0.5.4\",\n \"py-geth>=3.9.1,<4\",\n \"py-solc>=0.4.0\",\n \"pytest>=4.4.0,<5.0.0\",\n \"sphinx>=3.0,<4\",\n \"sphinx_rtd_theme>=0.1.9\",\n \"toposort>=1.4\",\n \"towncrier==18.5.0\",\n \"urllib3\",\n \"wheel\",\n \"Jinja2<=3.0.3\", # Jinja v3.1.0 dropped support for python 3.6\n ],\n \"dev\": [\n \"bumpversion\",\n \"flaky>=3.7.0,<4\",\n \"hypothesis>=3.31.2,<6\",\n \"pytest>=4.4.0,<5.0.0\",\n \"pytest-asyncio>=0.10.0,<0.11\",\n \"pytest-mock>=1.10,<2\",\n \"pytest-pythonpath>=0.3\",\n \"pytest-watch>=4.2,<5\",\n \"pytest-xdist>=1.29,<2\",\n \"setuptools>=38.6.0\",\n \"tox>=1.8.0\",\n \"tqdm>4.32,<5\",\n \"twine>=1.13,<2\",\n \"pluggy==0.13.1\",\n \"when-changed>=0.3.0,<0.4\",\n ],\n}\n\nextras_require[\"dev\"] = (\n extras_require[\"tester\"]\n + extras_require[\"linter\"]\n + extras_require[\"docs\"]\n + extras_require[\"dev\"]\n)\n\nwith open(\"./README.md\") as readme:\n long_description = readme.read()\n\nsetup(\n name=\"web3\",\n # *IMPORTANT*: Don't manually change the version here. Use the 'bumpversion' utility.\n version=\"5.31.0\",\n description=\"\"\"Web3.py\"\"\",\n long_description_content_type=\"text/markdown\",\n long_description=long_description,\n author=\"Piper Merriam\",\n author_email=\"[email protected]\",\n url=\"https://github.com/ethereum/web3.py\",\n include_package_data=True,\n install_requires=[\n \"aiohttp>=3.7.4.post0,<4\",\n \"eth-abi>=2.0.0b6,<3.0.0\",\n \"eth-account>=0.5.9,<0.6.0\",\n \"eth-hash[pycryptodome]>=0.2.0,<1.0.0\",\n # eth-account allows too broad of an eth-rlp dependency.\n # This eth-rlp pin can be removed once it gets tightened up in eth-account\n \"eth-rlp<0.3\",\n \"eth-typing>=2.0.0,<3.0.0\",\n \"eth-utils>=1.9.5,<2.0.0\",\n \"hexbytes>=0.1.0,<1.0.0\",\n \"ipfshttpclient==0.8.0a2\",\n \"jsonschema>=3.2.0,<5\",\n \"lru-dict>=1.1.6,<2.0.0\",\n \"protobuf>=3.10.0,<4\",\n \"pywin32>=223;platform_system=='Windows'\",\n \"requests>=2.16.0,<3.0.0\",\n # remove typing_extensions after python_requires>=3.8, see web3._utils.compat\n \"typing-extensions>=3.7.4.1,<5;python_version<'3.8'\",\n \"websockets>=9.1,<10\",\n ],\n python_requires=\">=3.6,<4\",\n extras_require=extras_require,\n py_modules=[\"web3\", \"ens\", \"ethpm\"],\n entry_points={\"pytest11\": [\"pytest_ethereum = web3.tools.pytest_ethereum.plugins\"]},\n license=\"MIT\",\n zip_safe=False,\n keywords=\"ethereum\",\n packages=find_packages(exclude=[\"tests\", \"tests.*\"]),\n package_data={\"web3\": [\"py.typed\"]},\n classifiers=[\n \"Development Status :: 5 - Production/Stable\",\n \"Intended Audience :: Developers\",\n \"License :: OSI Approved :: MIT License\",\n \"Natural Language :: English\",\n \"Programming Language :: Python :: 3\",\n \"Programming Language :: Python :: 3.6\",\n \"Programming Language :: Python :: 3.7\",\n \"Programming Language :: Python :: 3.8\",\n \"Programming Language :: Python :: 3.9\",\n ],\n)\n", "path": "setup.py"}], "after_files": [{"content": "#!/usr/bin/env python\nfrom setuptools import (\n find_packages,\n setup,\n)\n\nextras_require = {\n \"tester\": [\n \"eth-tester[py-evm]==v0.6.0-beta.6\",\n \"py-geth>=3.9.1,<4\",\n ],\n \"linter\": [\n \"flake8==3.8.3\",\n \"isort>=4.2.15,<4.3.5\",\n \"mypy==0.910\",\n \"types-setuptools>=57.4.4,<58\",\n \"types-requests>=2.26.1,<3\",\n \"types-protobuf==3.19.13\",\n ],\n \"docs\": [\n \"mock\",\n \"sphinx-better-theme>=0.1.4\",\n \"click>=5.1\",\n \"configparser==3.5.0\",\n \"contextlib2>=0.5.4\",\n \"py-geth>=3.9.1,<4\",\n \"py-solc>=0.4.0\",\n \"pytest>=4.4.0,<5.0.0\",\n \"sphinx>=3.0,<4\",\n \"sphinx_rtd_theme>=0.1.9\",\n \"toposort>=1.4\",\n \"towncrier==18.5.0\",\n \"urllib3\",\n \"wheel\",\n \"Jinja2<=3.0.3\", # Jinja v3.1.0 dropped support for python 3.6\n ],\n \"dev\": [\n \"bumpversion\",\n \"flaky>=3.7.0,<4\",\n \"hypothesis>=3.31.2,<6\",\n \"pytest>=4.4.0,<5.0.0\",\n \"pytest-asyncio>=0.10.0,<0.11\",\n \"pytest-mock>=1.10,<2\",\n \"pytest-pythonpath>=0.3\",\n \"pytest-watch>=4.2,<5\",\n \"pytest-xdist>=1.29,<2\",\n \"setuptools>=38.6.0\",\n \"tox>=1.8.0\",\n \"tqdm>4.32,<5\",\n \"twine>=1.13,<2\",\n \"pluggy==0.13.1\",\n \"when-changed>=0.3.0,<0.4\",\n ],\n}\n\nextras_require[\"dev\"] = (\n extras_require[\"tester\"]\n + extras_require[\"linter\"]\n + extras_require[\"docs\"]\n + extras_require[\"dev\"]\n)\n\nwith open(\"./README.md\") as readme:\n long_description = readme.read()\n\nsetup(\n name=\"web3\",\n # *IMPORTANT*: Don't manually change the version here. Use the 'bumpversion' utility.\n version=\"5.31.0\",\n description=\"\"\"Web3.py\"\"\",\n long_description_content_type=\"text/markdown\",\n long_description=long_description,\n author=\"Piper Merriam\",\n author_email=\"[email protected]\",\n url=\"https://github.com/ethereum/web3.py\",\n include_package_data=True,\n install_requires=[\n \"aiohttp>=3.7.4.post0,<4\",\n \"eth-abi>=2.0.0b6,<3.0.0\",\n \"eth-account>=0.5.9,<0.6.0\",\n \"eth-hash[pycryptodome]>=0.2.0,<1.0.0\",\n # eth-account allows too broad of an eth-rlp dependency.\n # This eth-rlp pin can be removed once it gets tightened up in eth-account\n \"eth-rlp<0.3\",\n \"eth-typing>=2.0.0,<3.0.0\",\n \"eth-utils>=1.9.5,<2.0.0\",\n \"hexbytes>=0.1.0,<1.0.0\",\n \"ipfshttpclient==0.8.0a2\",\n \"jsonschema>=3.2.0,<5\",\n \"lru-dict>=1.1.6,<2.0.0\",\n \"protobuf==3.19.4\",\n \"pywin32>=223;platform_system=='Windows'\",\n \"requests>=2.16.0,<3.0.0\",\n # remove typing_extensions after python_requires>=3.8, see web3._utils.compat\n \"typing-extensions>=3.7.4.1,<5;python_version<'3.8'\",\n \"websockets>=9.1,<10\",\n ],\n python_requires=\">=3.6,<4\",\n extras_require=extras_require,\n py_modules=[\"web3\", \"ens\", \"ethpm\"],\n entry_points={\"pytest11\": [\"pytest_ethereum = web3.tools.pytest_ethereum.plugins\"]},\n license=\"MIT\",\n zip_safe=False,\n keywords=\"ethereum\",\n packages=find_packages(exclude=[\"tests\", \"tests.*\"]),\n package_data={\"web3\": [\"py.typed\"]},\n classifiers=[\n \"Development Status :: 5 - Production/Stable\",\n \"Intended Audience :: Developers\",\n \"License :: OSI Approved :: MIT License\",\n \"Natural Language :: English\",\n \"Programming Language :: Python :: 3\",\n \"Programming Language :: Python :: 3.6\",\n \"Programming Language :: Python :: 3.7\",\n \"Programming Language :: Python :: 3.8\",\n \"Programming Language :: Python :: 3.9\",\n ],\n)\n", "path": "setup.py"}]}
1,857
158
gh_patches_debug_37097
rasdani/github-patches
git_diff
AUTOMATIC1111__stable-diffusion-webui-12975
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- [Feature Request]: Where is the save style button? ### Is there an existing issue for this? - [X] I have searched the existing issues and checked the recent builds/commits ### What would your feature do ? Is it possible to make the old implementation of save style as well? Not being able to save the currently typed prompt is very troublesome. Why do we have to open the edit screen and copy/paste the prompt? ### Proposed workflow Restore old implementation of save styles button ### Additional information _No response_ --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `modules/ui_prompt_styles.py` Content: ``` 1 import gradio as gr 2 3 from modules import shared, ui_common, ui_components, styles 4 5 styles_edit_symbol = '\U0001f58c\uFE0F' # 🖌️ 6 styles_materialize_symbol = '\U0001f4cb' # 📋 7 8 9 def select_style(name): 10 style = shared.prompt_styles.styles.get(name) 11 existing = style is not None 12 empty = not name 13 14 prompt = style.prompt if style else gr.update() 15 negative_prompt = style.negative_prompt if style else gr.update() 16 17 return prompt, negative_prompt, gr.update(visible=existing), gr.update(visible=not empty) 18 19 20 def save_style(name, prompt, negative_prompt): 21 if not name: 22 return gr.update(visible=False) 23 24 style = styles.PromptStyle(name, prompt, negative_prompt) 25 shared.prompt_styles.styles[style.name] = style 26 shared.prompt_styles.save_styles(shared.styles_filename) 27 28 return gr.update(visible=True) 29 30 31 def delete_style(name): 32 if name == "": 33 return 34 35 shared.prompt_styles.styles.pop(name, None) 36 shared.prompt_styles.save_styles(shared.styles_filename) 37 38 return '', '', '' 39 40 41 def materialize_styles(prompt, negative_prompt, styles): 42 prompt = shared.prompt_styles.apply_styles_to_prompt(prompt, styles) 43 negative_prompt = shared.prompt_styles.apply_negative_styles_to_prompt(negative_prompt, styles) 44 45 return [gr.Textbox.update(value=prompt), gr.Textbox.update(value=negative_prompt), gr.Dropdown.update(value=[])] 46 47 48 def refresh_styles(): 49 return gr.update(choices=list(shared.prompt_styles.styles)), gr.update(choices=list(shared.prompt_styles.styles)) 50 51 52 class UiPromptStyles: 53 def __init__(self, tabname, main_ui_prompt, main_ui_negative_prompt): 54 self.tabname = tabname 55 56 with gr.Row(elem_id=f"{tabname}_styles_row"): 57 self.dropdown = gr.Dropdown(label="Styles", show_label=False, elem_id=f"{tabname}_styles", choices=list(shared.prompt_styles.styles), value=[], multiselect=True, tooltip="Styles") 58 edit_button = ui_components.ToolButton(value=styles_edit_symbol, elem_id=f"{tabname}_styles_edit_button", tooltip="Edit styles") 59 60 with gr.Box(elem_id=f"{tabname}_styles_dialog", elem_classes="popup-dialog") as styles_dialog: 61 with gr.Row(): 62 self.selection = gr.Dropdown(label="Styles", elem_id=f"{tabname}_styles_edit_select", choices=list(shared.prompt_styles.styles), value=[], allow_custom_value=True, info="Styles allow you to add custom text to prompt. Use the {prompt} token in style text, and it will be replaced with user's prompt when applying style. Otherwise, style's text will be added to the end of the prompt.") 63 ui_common.create_refresh_button([self.dropdown, self.selection], shared.prompt_styles.reload, lambda: {"choices": list(shared.prompt_styles.styles)}, f"refresh_{tabname}_styles") 64 self.materialize = ui_components.ToolButton(value=styles_materialize_symbol, elem_id=f"{tabname}_style_apply", tooltip="Apply all selected styles from the style selction dropdown in main UI to the prompt.") 65 66 with gr.Row(): 67 self.prompt = gr.Textbox(label="Prompt", show_label=True, elem_id=f"{tabname}_edit_style_prompt", lines=3) 68 69 with gr.Row(): 70 self.neg_prompt = gr.Textbox(label="Negative prompt", show_label=True, elem_id=f"{tabname}_edit_style_neg_prompt", lines=3) 71 72 with gr.Row(): 73 self.save = gr.Button('Save', variant='primary', elem_id=f'{tabname}_edit_style_save', visible=False) 74 self.delete = gr.Button('Delete', variant='primary', elem_id=f'{tabname}_edit_style_delete', visible=False) 75 self.close = gr.Button('Close', variant='secondary', elem_id=f'{tabname}_edit_style_close') 76 77 self.selection.change( 78 fn=select_style, 79 inputs=[self.selection], 80 outputs=[self.prompt, self.neg_prompt, self.delete, self.save], 81 show_progress=False, 82 ) 83 84 self.save.click( 85 fn=save_style, 86 inputs=[self.selection, self.prompt, self.neg_prompt], 87 outputs=[self.delete], 88 show_progress=False, 89 ).then(refresh_styles, outputs=[self.dropdown, self.selection], show_progress=False) 90 91 self.delete.click( 92 fn=delete_style, 93 _js='function(name){ if(name == "") return ""; return confirm("Delete style " + name + "?") ? name : ""; }', 94 inputs=[self.selection], 95 outputs=[self.selection, self.prompt, self.neg_prompt], 96 show_progress=False, 97 ).then(refresh_styles, outputs=[self.dropdown, self.selection], show_progress=False) 98 99 self.materialize.click( 100 fn=materialize_styles, 101 inputs=[main_ui_prompt, main_ui_negative_prompt, self.dropdown], 102 outputs=[main_ui_prompt, main_ui_negative_prompt, self.dropdown], 103 show_progress=False, 104 ).then(fn=None, _js="function(){update_"+tabname+"_tokens(); closePopup();}", show_progress=False) 105 106 ui_common.setup_dialog(button_show=edit_button, dialog=styles_dialog, button_close=self.close) 107 108 109 110 111 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/modules/ui_prompt_styles.py b/modules/ui_prompt_styles.py --- a/modules/ui_prompt_styles.py +++ b/modules/ui_prompt_styles.py @@ -4,6 +4,7 @@ styles_edit_symbol = '\U0001f58c\uFE0F' # 🖌️ styles_materialize_symbol = '\U0001f4cb' # 📋 +styles_copy_symbol = '\U0001f4dd' # 📝 def select_style(name): @@ -62,6 +63,7 @@ self.selection = gr.Dropdown(label="Styles", elem_id=f"{tabname}_styles_edit_select", choices=list(shared.prompt_styles.styles), value=[], allow_custom_value=True, info="Styles allow you to add custom text to prompt. Use the {prompt} token in style text, and it will be replaced with user's prompt when applying style. Otherwise, style's text will be added to the end of the prompt.") ui_common.create_refresh_button([self.dropdown, self.selection], shared.prompt_styles.reload, lambda: {"choices": list(shared.prompt_styles.styles)}, f"refresh_{tabname}_styles") self.materialize = ui_components.ToolButton(value=styles_materialize_symbol, elem_id=f"{tabname}_style_apply", tooltip="Apply all selected styles from the style selction dropdown in main UI to the prompt.") + self.copy = ui_components.ToolButton(value=styles_copy_symbol, elem_id=f"{tabname}_style_copy", tooltip="Copy main UI prompt to style.") with gr.Row(): self.prompt = gr.Textbox(label="Prompt", show_label=True, elem_id=f"{tabname}_edit_style_prompt", lines=3) @@ -103,6 +105,13 @@ show_progress=False, ).then(fn=None, _js="function(){update_"+tabname+"_tokens(); closePopup();}", show_progress=False) + self.copy.click( + fn=lambda p, n: (p, n), + inputs=[main_ui_prompt, main_ui_negative_prompt], + outputs=[self.prompt, self.neg_prompt], + show_progress=False, + ) + ui_common.setup_dialog(button_show=edit_button, dialog=styles_dialog, button_close=self.close)
{"golden_diff": "diff --git a/modules/ui_prompt_styles.py b/modules/ui_prompt_styles.py\n--- a/modules/ui_prompt_styles.py\n+++ b/modules/ui_prompt_styles.py\n@@ -4,6 +4,7 @@\n \r\n styles_edit_symbol = '\\U0001f58c\\uFE0F' # \ud83d\udd8c\ufe0f\r\n styles_materialize_symbol = '\\U0001f4cb' # \ud83d\udccb\r\n+styles_copy_symbol = '\\U0001f4dd' # \ud83d\udcdd\r\n \r\n \r\n def select_style(name):\r\n@@ -62,6 +63,7 @@\n self.selection = gr.Dropdown(label=\"Styles\", elem_id=f\"{tabname}_styles_edit_select\", choices=list(shared.prompt_styles.styles), value=[], allow_custom_value=True, info=\"Styles allow you to add custom text to prompt. Use the {prompt} token in style text, and it will be replaced with user's prompt when applying style. Otherwise, style's text will be added to the end of the prompt.\")\r\n ui_common.create_refresh_button([self.dropdown, self.selection], shared.prompt_styles.reload, lambda: {\"choices\": list(shared.prompt_styles.styles)}, f\"refresh_{tabname}_styles\")\r\n self.materialize = ui_components.ToolButton(value=styles_materialize_symbol, elem_id=f\"{tabname}_style_apply\", tooltip=\"Apply all selected styles from the style selction dropdown in main UI to the prompt.\")\r\n+ self.copy = ui_components.ToolButton(value=styles_copy_symbol, elem_id=f\"{tabname}_style_copy\", tooltip=\"Copy main UI prompt to style.\")\r\n \r\n with gr.Row():\r\n self.prompt = gr.Textbox(label=\"Prompt\", show_label=True, elem_id=f\"{tabname}_edit_style_prompt\", lines=3)\r\n@@ -103,6 +105,13 @@\n show_progress=False,\r\n ).then(fn=None, _js=\"function(){update_\"+tabname+\"_tokens(); closePopup();}\", show_progress=False)\r\n \r\n+ self.copy.click(\r\n+ fn=lambda p, n: (p, n),\r\n+ inputs=[main_ui_prompt, main_ui_negative_prompt],\r\n+ outputs=[self.prompt, self.neg_prompt],\r\n+ show_progress=False,\r\n+ )\r\n+\r\n ui_common.setup_dialog(button_show=edit_button, dialog=styles_dialog, button_close=self.close)\n", "issue": "[Feature Request]: Where is the save style button?\n### Is there an existing issue for this?\n\n- [X] I have searched the existing issues and checked the recent builds/commits\n\n### What would your feature do ?\n\nIs it possible to make the old implementation of save style as well?\r\nNot being able to save the currently typed prompt is very troublesome.\r\nWhy do we have to open the edit screen and copy/paste the prompt?\n\n### Proposed workflow\n\nRestore old implementation of save styles button\n\n### Additional information\n\n_No response_\n", "before_files": [{"content": "import gradio as gr\r\n\r\nfrom modules import shared, ui_common, ui_components, styles\r\n\r\nstyles_edit_symbol = '\\U0001f58c\\uFE0F' # \ud83d\udd8c\ufe0f\r\nstyles_materialize_symbol = '\\U0001f4cb' # \ud83d\udccb\r\n\r\n\r\ndef select_style(name):\r\n style = shared.prompt_styles.styles.get(name)\r\n existing = style is not None\r\n empty = not name\r\n\r\n prompt = style.prompt if style else gr.update()\r\n negative_prompt = style.negative_prompt if style else gr.update()\r\n\r\n return prompt, negative_prompt, gr.update(visible=existing), gr.update(visible=not empty)\r\n\r\n\r\ndef save_style(name, prompt, negative_prompt):\r\n if not name:\r\n return gr.update(visible=False)\r\n\r\n style = styles.PromptStyle(name, prompt, negative_prompt)\r\n shared.prompt_styles.styles[style.name] = style\r\n shared.prompt_styles.save_styles(shared.styles_filename)\r\n\r\n return gr.update(visible=True)\r\n\r\n\r\ndef delete_style(name):\r\n if name == \"\":\r\n return\r\n\r\n shared.prompt_styles.styles.pop(name, None)\r\n shared.prompt_styles.save_styles(shared.styles_filename)\r\n\r\n return '', '', ''\r\n\r\n\r\ndef materialize_styles(prompt, negative_prompt, styles):\r\n prompt = shared.prompt_styles.apply_styles_to_prompt(prompt, styles)\r\n negative_prompt = shared.prompt_styles.apply_negative_styles_to_prompt(negative_prompt, styles)\r\n\r\n return [gr.Textbox.update(value=prompt), gr.Textbox.update(value=negative_prompt), gr.Dropdown.update(value=[])]\r\n\r\n\r\ndef refresh_styles():\r\n return gr.update(choices=list(shared.prompt_styles.styles)), gr.update(choices=list(shared.prompt_styles.styles))\r\n\r\n\r\nclass UiPromptStyles:\r\n def __init__(self, tabname, main_ui_prompt, main_ui_negative_prompt):\r\n self.tabname = tabname\r\n\r\n with gr.Row(elem_id=f\"{tabname}_styles_row\"):\r\n self.dropdown = gr.Dropdown(label=\"Styles\", show_label=False, elem_id=f\"{tabname}_styles\", choices=list(shared.prompt_styles.styles), value=[], multiselect=True, tooltip=\"Styles\")\r\n edit_button = ui_components.ToolButton(value=styles_edit_symbol, elem_id=f\"{tabname}_styles_edit_button\", tooltip=\"Edit styles\")\r\n\r\n with gr.Box(elem_id=f\"{tabname}_styles_dialog\", elem_classes=\"popup-dialog\") as styles_dialog:\r\n with gr.Row():\r\n self.selection = gr.Dropdown(label=\"Styles\", elem_id=f\"{tabname}_styles_edit_select\", choices=list(shared.prompt_styles.styles), value=[], allow_custom_value=True, info=\"Styles allow you to add custom text to prompt. Use the {prompt} token in style text, and it will be replaced with user's prompt when applying style. Otherwise, style's text will be added to the end of the prompt.\")\r\n ui_common.create_refresh_button([self.dropdown, self.selection], shared.prompt_styles.reload, lambda: {\"choices\": list(shared.prompt_styles.styles)}, f\"refresh_{tabname}_styles\")\r\n self.materialize = ui_components.ToolButton(value=styles_materialize_symbol, elem_id=f\"{tabname}_style_apply\", tooltip=\"Apply all selected styles from the style selction dropdown in main UI to the prompt.\")\r\n\r\n with gr.Row():\r\n self.prompt = gr.Textbox(label=\"Prompt\", show_label=True, elem_id=f\"{tabname}_edit_style_prompt\", lines=3)\r\n\r\n with gr.Row():\r\n self.neg_prompt = gr.Textbox(label=\"Negative prompt\", show_label=True, elem_id=f\"{tabname}_edit_style_neg_prompt\", lines=3)\r\n\r\n with gr.Row():\r\n self.save = gr.Button('Save', variant='primary', elem_id=f'{tabname}_edit_style_save', visible=False)\r\n self.delete = gr.Button('Delete', variant='primary', elem_id=f'{tabname}_edit_style_delete', visible=False)\r\n self.close = gr.Button('Close', variant='secondary', elem_id=f'{tabname}_edit_style_close')\r\n\r\n self.selection.change(\r\n fn=select_style,\r\n inputs=[self.selection],\r\n outputs=[self.prompt, self.neg_prompt, self.delete, self.save],\r\n show_progress=False,\r\n )\r\n\r\n self.save.click(\r\n fn=save_style,\r\n inputs=[self.selection, self.prompt, self.neg_prompt],\r\n outputs=[self.delete],\r\n show_progress=False,\r\n ).then(refresh_styles, outputs=[self.dropdown, self.selection], show_progress=False)\r\n\r\n self.delete.click(\r\n fn=delete_style,\r\n _js='function(name){ if(name == \"\") return \"\"; return confirm(\"Delete style \" + name + \"?\") ? name : \"\"; }',\r\n inputs=[self.selection],\r\n outputs=[self.selection, self.prompt, self.neg_prompt],\r\n show_progress=False,\r\n ).then(refresh_styles, outputs=[self.dropdown, self.selection], show_progress=False)\r\n\r\n self.materialize.click(\r\n fn=materialize_styles,\r\n inputs=[main_ui_prompt, main_ui_negative_prompt, self.dropdown],\r\n outputs=[main_ui_prompt, main_ui_negative_prompt, self.dropdown],\r\n show_progress=False,\r\n ).then(fn=None, _js=\"function(){update_\"+tabname+\"_tokens(); closePopup();}\", show_progress=False)\r\n\r\n ui_common.setup_dialog(button_show=edit_button, dialog=styles_dialog, button_close=self.close)\r\n\r\n\r\n\r\n\r\n", "path": "modules/ui_prompt_styles.py"}], "after_files": [{"content": "import gradio as gr\r\n\r\nfrom modules import shared, ui_common, ui_components, styles\r\n\r\nstyles_edit_symbol = '\\U0001f58c\\uFE0F' # \ud83d\udd8c\ufe0f\r\nstyles_materialize_symbol = '\\U0001f4cb' # \ud83d\udccb\r\nstyles_copy_symbol = '\\U0001f4dd' # \ud83d\udcdd\r\n\r\n\r\ndef select_style(name):\r\n style = shared.prompt_styles.styles.get(name)\r\n existing = style is not None\r\n empty = not name\r\n\r\n prompt = style.prompt if style else gr.update()\r\n negative_prompt = style.negative_prompt if style else gr.update()\r\n\r\n return prompt, negative_prompt, gr.update(visible=existing), gr.update(visible=not empty)\r\n\r\n\r\ndef save_style(name, prompt, negative_prompt):\r\n if not name:\r\n return gr.update(visible=False)\r\n\r\n style = styles.PromptStyle(name, prompt, negative_prompt)\r\n shared.prompt_styles.styles[style.name] = style\r\n shared.prompt_styles.save_styles(shared.styles_filename)\r\n\r\n return gr.update(visible=True)\r\n\r\n\r\ndef delete_style(name):\r\n if name == \"\":\r\n return\r\n\r\n shared.prompt_styles.styles.pop(name, None)\r\n shared.prompt_styles.save_styles(shared.styles_filename)\r\n\r\n return '', '', ''\r\n\r\n\r\ndef materialize_styles(prompt, negative_prompt, styles):\r\n prompt = shared.prompt_styles.apply_styles_to_prompt(prompt, styles)\r\n negative_prompt = shared.prompt_styles.apply_negative_styles_to_prompt(negative_prompt, styles)\r\n\r\n return [gr.Textbox.update(value=prompt), gr.Textbox.update(value=negative_prompt), gr.Dropdown.update(value=[])]\r\n\r\n\r\ndef refresh_styles():\r\n return gr.update(choices=list(shared.prompt_styles.styles)), gr.update(choices=list(shared.prompt_styles.styles))\r\n\r\n\r\nclass UiPromptStyles:\r\n def __init__(self, tabname, main_ui_prompt, main_ui_negative_prompt):\r\n self.tabname = tabname\r\n\r\n with gr.Row(elem_id=f\"{tabname}_styles_row\"):\r\n self.dropdown = gr.Dropdown(label=\"Styles\", show_label=False, elem_id=f\"{tabname}_styles\", choices=list(shared.prompt_styles.styles), value=[], multiselect=True, tooltip=\"Styles\")\r\n edit_button = ui_components.ToolButton(value=styles_edit_symbol, elem_id=f\"{tabname}_styles_edit_button\", tooltip=\"Edit styles\")\r\n\r\n with gr.Box(elem_id=f\"{tabname}_styles_dialog\", elem_classes=\"popup-dialog\") as styles_dialog:\r\n with gr.Row():\r\n self.selection = gr.Dropdown(label=\"Styles\", elem_id=f\"{tabname}_styles_edit_select\", choices=list(shared.prompt_styles.styles), value=[], allow_custom_value=True, info=\"Styles allow you to add custom text to prompt. Use the {prompt} token in style text, and it will be replaced with user's prompt when applying style. Otherwise, style's text will be added to the end of the prompt.\")\r\n ui_common.create_refresh_button([self.dropdown, self.selection], shared.prompt_styles.reload, lambda: {\"choices\": list(shared.prompt_styles.styles)}, f\"refresh_{tabname}_styles\")\r\n self.materialize = ui_components.ToolButton(value=styles_materialize_symbol, elem_id=f\"{tabname}_style_apply\", tooltip=\"Apply all selected styles from the style selction dropdown in main UI to the prompt.\")\r\n self.copy = ui_components.ToolButton(value=styles_copy_symbol, elem_id=f\"{tabname}_style_copy\", tooltip=\"Copy main UI prompt to style.\")\r\n\r\n with gr.Row():\r\n self.prompt = gr.Textbox(label=\"Prompt\", show_label=True, elem_id=f\"{tabname}_edit_style_prompt\", lines=3)\r\n\r\n with gr.Row():\r\n self.neg_prompt = gr.Textbox(label=\"Negative prompt\", show_label=True, elem_id=f\"{tabname}_edit_style_neg_prompt\", lines=3)\r\n\r\n with gr.Row():\r\n self.save = gr.Button('Save', variant='primary', elem_id=f'{tabname}_edit_style_save', visible=False)\r\n self.delete = gr.Button('Delete', variant='primary', elem_id=f'{tabname}_edit_style_delete', visible=False)\r\n self.close = gr.Button('Close', variant='secondary', elem_id=f'{tabname}_edit_style_close')\r\n\r\n self.selection.change(\r\n fn=select_style,\r\n inputs=[self.selection],\r\n outputs=[self.prompt, self.neg_prompt, self.delete, self.save],\r\n show_progress=False,\r\n )\r\n\r\n self.save.click(\r\n fn=save_style,\r\n inputs=[self.selection, self.prompt, self.neg_prompt],\r\n outputs=[self.delete],\r\n show_progress=False,\r\n ).then(refresh_styles, outputs=[self.dropdown, self.selection], show_progress=False)\r\n\r\n self.delete.click(\r\n fn=delete_style,\r\n _js='function(name){ if(name == \"\") return \"\"; return confirm(\"Delete style \" + name + \"?\") ? name : \"\"; }',\r\n inputs=[self.selection],\r\n outputs=[self.selection, self.prompt, self.neg_prompt],\r\n show_progress=False,\r\n ).then(refresh_styles, outputs=[self.dropdown, self.selection], show_progress=False)\r\n\r\n self.materialize.click(\r\n fn=materialize_styles,\r\n inputs=[main_ui_prompt, main_ui_negative_prompt, self.dropdown],\r\n outputs=[main_ui_prompt, main_ui_negative_prompt, self.dropdown],\r\n show_progress=False,\r\n ).then(fn=None, _js=\"function(){update_\"+tabname+\"_tokens(); closePopup();}\", show_progress=False)\r\n\r\n self.copy.click(\r\n fn=lambda p, n: (p, n),\r\n inputs=[main_ui_prompt, main_ui_negative_prompt],\r\n outputs=[self.prompt, self.neg_prompt],\r\n show_progress=False,\r\n )\r\n\r\n ui_common.setup_dialog(button_show=edit_button, dialog=styles_dialog, button_close=self.close)\r\n\r\n\r\n\r\n\r\n", "path": "modules/ui_prompt_styles.py"}]}
1,710
490
gh_patches_debug_11197
rasdani/github-patches
git_diff
ESMCI__cime-2860
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- floating point mpiprocs when running ./case.setup with python3 I noticed that when running with python3, mpiprocs is set to be a float, i.e., $ python3 ./case.setup # will create the following in .case.run: #PBS -l select=5:ncpus=36:mpiprocs=36.0:ompthreads=1 $ python2 ./case.setup # will create the following .case.run: #PBS -l select=5:ncpus=36:mpiprocs=36:ompthreads=1 NOTE: You'll need to rm .case.run, in between ./case.setup executions to see the difference. I haven't looked this into depth, but I bet it has to do with "true division" that comes with python3. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `scripts/lib/CIME/XML/env_mach_pes.py` Content: ``` 1 """ 2 Interface to the env_mach_pes.xml file. This class inherits from EntryID 3 """ 4 from CIME.XML.standard_module_setup import * 5 from CIME.XML.env_base import EnvBase 6 import math 7 8 logger = logging.getLogger(__name__) 9 10 class EnvMachPes(EnvBase): 11 12 def __init__(self, case_root=None, infile="env_mach_pes.xml", components=None): 13 """ 14 initialize an object interface to file env_mach_pes.xml in the case directory 15 """ 16 self._components = components 17 schema = os.path.join(get_cime_root(), "config", "xml_schemas", "env_mach_pes.xsd") 18 EnvBase.__init__(self, case_root, infile, schema=schema) 19 20 def add_comment(self, comment): 21 if comment is not None: 22 node = self.make_child("comment", text=comment) 23 # make_child adds to the end of the file but we want it to follow the header 24 # so we need to remove it and add it in the correct position 25 self.remove_child(node) 26 self.add_child(node, position=1) 27 28 def get_value(self, vid, attribute=None, resolved=True, subgroup=None, max_mpitasks_per_node=None): # pylint: disable=arguments-differ 29 # Special variable NINST_MAX is used to determine the number of 30 # drivers in multi-driver mode. 31 if vid == "NINST_MAX": 32 value = 1 33 for comp in self._components: 34 if comp != "CPL": 35 value = max(value, self.get_value("NINST_{}".format(comp))) 36 return value 37 38 value = EnvBase.get_value(self, vid, attribute, resolved, subgroup) 39 40 if "NTASKS" in vid or "ROOTPE" in vid: 41 if max_mpitasks_per_node is None: 42 max_mpitasks_per_node = self.get_value("MAX_MPITASKS_PER_NODE") 43 if value is not None and value < 0: 44 value = -1*value*max_mpitasks_per_node 45 46 return value 47 48 def set_value(self, vid, value, subgroup=None, ignore_type=False): 49 """ 50 Set the value of an entry-id field to value 51 Returns the value or None if not found 52 subgroup is ignored in the general routine and applied in specific methods 53 """ 54 if vid == "MULTI_DRIVER" and value: 55 ninst_max = self.get_value("NINST_MAX") 56 for comp in self._components: 57 if comp == "CPL": 58 continue 59 ninst = self.get_value("NINST_{}".format(comp)) 60 expect(ninst == ninst_max, 61 "All components must have the same NINST value in multi_driver mode. NINST_{}={} shoud be {}".format(comp,ninst,ninst_max)) 62 if "NTASKS" in vid or "NTHRDS" in vid: 63 expect(value != 0, "Cannot set NTASKS or NTHRDS to 0") 64 65 66 return EnvBase.set_value(self, vid, value, subgroup=subgroup, ignore_type=ignore_type) 67 68 69 def get_max_thread_count(self, comp_classes): 70 ''' Find the maximum number of openmp threads for any component in the case ''' 71 max_threads = 1 72 for comp in comp_classes: 73 threads = self.get_value("NTHRDS",attribute={"compclass":comp}) 74 expect(threads is not None, "Error no thread count found for component class {}".format(comp)) 75 if threads > max_threads: 76 max_threads = threads 77 return max_threads 78 79 def get_total_tasks(self, comp_classes): 80 total_tasks = 0 81 maxinst = 1 82 for comp in comp_classes: 83 ntasks = self.get_value("NTASKS", attribute={"compclass":comp}) 84 rootpe = self.get_value("ROOTPE", attribute={"compclass":comp}) 85 pstrid = self.get_value("PSTRID", attribute={"compclass":comp}) 86 if comp != "CPL": 87 ninst = self.get_value("NINST", attribute={"compclass":comp}) 88 maxinst = max(maxinst, ninst) 89 tt = rootpe + (ntasks - 1) * pstrid + 1 90 total_tasks = max(tt, total_tasks) 91 if self.get_value("MULTI_DRIVER"): 92 total_tasks *= maxinst 93 return total_tasks 94 95 def get_tasks_per_node(self, total_tasks, max_thread_count): 96 expect(total_tasks > 0,"totaltasks > 0 expected, totaltasks = {}".format(total_tasks)) 97 tasks_per_node = min(self.get_value("MAX_TASKS_PER_NODE")/ max_thread_count, 98 self.get_value("MAX_MPITASKS_PER_NODE"), total_tasks) 99 return tasks_per_node if tasks_per_node > 0 else 1 100 101 def get_total_nodes(self, total_tasks, max_thread_count): 102 """ 103 Return (num_active_nodes, num_spare_nodes) 104 """ 105 tasks_per_node = self.get_tasks_per_node(total_tasks, max_thread_count) 106 num_nodes = int(math.ceil(float(total_tasks) / tasks_per_node)) 107 return num_nodes, self.get_spare_nodes(num_nodes) 108 109 def get_spare_nodes(self, num_nodes): 110 force_spare_nodes = self.get_value("FORCE_SPARE_NODES") 111 if force_spare_nodes != -999: 112 return force_spare_nodes 113 114 if self.get_value("ALLOCATE_SPARE_NODES"): 115 ten_pct = int(math.ceil(float(num_nodes) * 0.1)) 116 if ten_pct < 1: 117 return 1 # Always provide at lease one spare node 118 elif ten_pct > 10: 119 return 10 # Never provide more than 10 spare nodes 120 else: 121 return ten_pct 122 else: 123 return 0 124 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/scripts/lib/CIME/XML/env_mach_pes.py b/scripts/lib/CIME/XML/env_mach_pes.py --- a/scripts/lib/CIME/XML/env_mach_pes.py +++ b/scripts/lib/CIME/XML/env_mach_pes.py @@ -94,7 +94,7 @@ def get_tasks_per_node(self, total_tasks, max_thread_count): expect(total_tasks > 0,"totaltasks > 0 expected, totaltasks = {}".format(total_tasks)) - tasks_per_node = min(self.get_value("MAX_TASKS_PER_NODE")/ max_thread_count, + tasks_per_node = min(self.get_value("MAX_TASKS_PER_NODE")// max_thread_count, self.get_value("MAX_MPITASKS_PER_NODE"), total_tasks) return tasks_per_node if tasks_per_node > 0 else 1
{"golden_diff": "diff --git a/scripts/lib/CIME/XML/env_mach_pes.py b/scripts/lib/CIME/XML/env_mach_pes.py\n--- a/scripts/lib/CIME/XML/env_mach_pes.py\n+++ b/scripts/lib/CIME/XML/env_mach_pes.py\n@@ -94,7 +94,7 @@\n \n def get_tasks_per_node(self, total_tasks, max_thread_count):\n expect(total_tasks > 0,\"totaltasks > 0 expected, totaltasks = {}\".format(total_tasks))\n- tasks_per_node = min(self.get_value(\"MAX_TASKS_PER_NODE\")/ max_thread_count,\n+ tasks_per_node = min(self.get_value(\"MAX_TASKS_PER_NODE\")// max_thread_count,\n self.get_value(\"MAX_MPITASKS_PER_NODE\"), total_tasks)\n return tasks_per_node if tasks_per_node > 0 else 1\n", "issue": "floating point mpiprocs when running ./case.setup with python3\nI noticed that when running with python3, mpiprocs is set to be a float, i.e.,\r\n\r\n$ python3 ./case.setup # will create the following in .case.run:\r\n#PBS -l select=5:ncpus=36:mpiprocs=36.0:ompthreads=1\r\n\r\n$ python2 ./case.setup # will create the following .case.run:\r\n#PBS -l select=5:ncpus=36:mpiprocs=36:ompthreads=1\r\n\r\nNOTE: You'll need to rm .case.run, in between ./case.setup executions to see the difference.\r\n\r\nI haven't looked this into depth, but I bet it has to do with \"true division\" that comes with python3.\n", "before_files": [{"content": "\"\"\"\nInterface to the env_mach_pes.xml file. This class inherits from EntryID\n\"\"\"\nfrom CIME.XML.standard_module_setup import *\nfrom CIME.XML.env_base import EnvBase\nimport math\n\nlogger = logging.getLogger(__name__)\n\nclass EnvMachPes(EnvBase):\n\n def __init__(self, case_root=None, infile=\"env_mach_pes.xml\", components=None):\n \"\"\"\n initialize an object interface to file env_mach_pes.xml in the case directory\n \"\"\"\n self._components = components\n schema = os.path.join(get_cime_root(), \"config\", \"xml_schemas\", \"env_mach_pes.xsd\")\n EnvBase.__init__(self, case_root, infile, schema=schema)\n\n def add_comment(self, comment):\n if comment is not None:\n node = self.make_child(\"comment\", text=comment)\n # make_child adds to the end of the file but we want it to follow the header\n # so we need to remove it and add it in the correct position\n self.remove_child(node)\n self.add_child(node, position=1)\n\n def get_value(self, vid, attribute=None, resolved=True, subgroup=None, max_mpitasks_per_node=None): # pylint: disable=arguments-differ\n # Special variable NINST_MAX is used to determine the number of\n # drivers in multi-driver mode.\n if vid == \"NINST_MAX\":\n value = 1\n for comp in self._components:\n if comp != \"CPL\":\n value = max(value, self.get_value(\"NINST_{}\".format(comp)))\n return value\n\n value = EnvBase.get_value(self, vid, attribute, resolved, subgroup)\n\n if \"NTASKS\" in vid or \"ROOTPE\" in vid:\n if max_mpitasks_per_node is None:\n max_mpitasks_per_node = self.get_value(\"MAX_MPITASKS_PER_NODE\")\n if value is not None and value < 0:\n value = -1*value*max_mpitasks_per_node\n\n return value\n\n def set_value(self, vid, value, subgroup=None, ignore_type=False):\n \"\"\"\n Set the value of an entry-id field to value\n Returns the value or None if not found\n subgroup is ignored in the general routine and applied in specific methods\n \"\"\"\n if vid == \"MULTI_DRIVER\" and value:\n ninst_max = self.get_value(\"NINST_MAX\")\n for comp in self._components:\n if comp == \"CPL\":\n continue\n ninst = self.get_value(\"NINST_{}\".format(comp))\n expect(ninst == ninst_max,\n \"All components must have the same NINST value in multi_driver mode. NINST_{}={} shoud be {}\".format(comp,ninst,ninst_max))\n if \"NTASKS\" in vid or \"NTHRDS\" in vid:\n expect(value != 0, \"Cannot set NTASKS or NTHRDS to 0\")\n\n\n return EnvBase.set_value(self, vid, value, subgroup=subgroup, ignore_type=ignore_type)\n\n\n def get_max_thread_count(self, comp_classes):\n ''' Find the maximum number of openmp threads for any component in the case '''\n max_threads = 1\n for comp in comp_classes:\n threads = self.get_value(\"NTHRDS\",attribute={\"compclass\":comp})\n expect(threads is not None, \"Error no thread count found for component class {}\".format(comp))\n if threads > max_threads:\n max_threads = threads\n return max_threads\n\n def get_total_tasks(self, comp_classes):\n total_tasks = 0\n maxinst = 1\n for comp in comp_classes:\n ntasks = self.get_value(\"NTASKS\", attribute={\"compclass\":comp})\n rootpe = self.get_value(\"ROOTPE\", attribute={\"compclass\":comp})\n pstrid = self.get_value(\"PSTRID\", attribute={\"compclass\":comp})\n if comp != \"CPL\":\n ninst = self.get_value(\"NINST\", attribute={\"compclass\":comp})\n maxinst = max(maxinst, ninst)\n tt = rootpe + (ntasks - 1) * pstrid + 1\n total_tasks = max(tt, total_tasks)\n if self.get_value(\"MULTI_DRIVER\"):\n total_tasks *= maxinst\n return total_tasks\n\n def get_tasks_per_node(self, total_tasks, max_thread_count):\n expect(total_tasks > 0,\"totaltasks > 0 expected, totaltasks = {}\".format(total_tasks))\n tasks_per_node = min(self.get_value(\"MAX_TASKS_PER_NODE\")/ max_thread_count,\n self.get_value(\"MAX_MPITASKS_PER_NODE\"), total_tasks)\n return tasks_per_node if tasks_per_node > 0 else 1\n\n def get_total_nodes(self, total_tasks, max_thread_count):\n \"\"\"\n Return (num_active_nodes, num_spare_nodes)\n \"\"\"\n tasks_per_node = self.get_tasks_per_node(total_tasks, max_thread_count)\n num_nodes = int(math.ceil(float(total_tasks) / tasks_per_node))\n return num_nodes, self.get_spare_nodes(num_nodes)\n\n def get_spare_nodes(self, num_nodes):\n force_spare_nodes = self.get_value(\"FORCE_SPARE_NODES\")\n if force_spare_nodes != -999:\n return force_spare_nodes\n\n if self.get_value(\"ALLOCATE_SPARE_NODES\"):\n ten_pct = int(math.ceil(float(num_nodes) * 0.1))\n if ten_pct < 1:\n return 1 # Always provide at lease one spare node\n elif ten_pct > 10:\n return 10 # Never provide more than 10 spare nodes\n else:\n return ten_pct\n else:\n return 0\n", "path": "scripts/lib/CIME/XML/env_mach_pes.py"}], "after_files": [{"content": "\"\"\"\nInterface to the env_mach_pes.xml file. This class inherits from EntryID\n\"\"\"\nfrom CIME.XML.standard_module_setup import *\nfrom CIME.XML.env_base import EnvBase\nimport math\n\nlogger = logging.getLogger(__name__)\n\nclass EnvMachPes(EnvBase):\n\n def __init__(self, case_root=None, infile=\"env_mach_pes.xml\", components=None):\n \"\"\"\n initialize an object interface to file env_mach_pes.xml in the case directory\n \"\"\"\n self._components = components\n schema = os.path.join(get_cime_root(), \"config\", \"xml_schemas\", \"env_mach_pes.xsd\")\n EnvBase.__init__(self, case_root, infile, schema=schema)\n\n def add_comment(self, comment):\n if comment is not None:\n node = self.make_child(\"comment\", text=comment)\n # make_child adds to the end of the file but we want it to follow the header\n # so we need to remove it and add it in the correct position\n self.remove_child(node)\n self.add_child(node, position=1)\n\n def get_value(self, vid, attribute=None, resolved=True, subgroup=None, max_mpitasks_per_node=None): # pylint: disable=arguments-differ\n # Special variable NINST_MAX is used to determine the number of\n # drivers in multi-driver mode.\n if vid == \"NINST_MAX\":\n value = 1\n for comp in self._components:\n if comp != \"CPL\":\n value = max(value, self.get_value(\"NINST_{}\".format(comp)))\n return value\n\n value = EnvBase.get_value(self, vid, attribute, resolved, subgroup)\n\n if \"NTASKS\" in vid or \"ROOTPE\" in vid:\n if max_mpitasks_per_node is None:\n max_mpitasks_per_node = self.get_value(\"MAX_MPITASKS_PER_NODE\")\n if value is not None and value < 0:\n value = -1*value*max_mpitasks_per_node\n\n return value\n\n def set_value(self, vid, value, subgroup=None, ignore_type=False):\n \"\"\"\n Set the value of an entry-id field to value\n Returns the value or None if not found\n subgroup is ignored in the general routine and applied in specific methods\n \"\"\"\n if vid == \"MULTI_DRIVER\" and value:\n ninst_max = self.get_value(\"NINST_MAX\")\n for comp in self._components:\n if comp == \"CPL\":\n continue\n ninst = self.get_value(\"NINST_{}\".format(comp))\n expect(ninst == ninst_max,\n \"All components must have the same NINST value in multi_driver mode. NINST_{}={} shoud be {}\".format(comp,ninst,ninst_max))\n if \"NTASKS\" in vid or \"NTHRDS\" in vid:\n expect(value != 0, \"Cannot set NTASKS or NTHRDS to 0\")\n\n\n return EnvBase.set_value(self, vid, value, subgroup=subgroup, ignore_type=ignore_type)\n\n\n def get_max_thread_count(self, comp_classes):\n ''' Find the maximum number of openmp threads for any component in the case '''\n max_threads = 1\n for comp in comp_classes:\n threads = self.get_value(\"NTHRDS\",attribute={\"compclass\":comp})\n expect(threads is not None, \"Error no thread count found for component class {}\".format(comp))\n if threads > max_threads:\n max_threads = threads\n return max_threads\n\n def get_total_tasks(self, comp_classes):\n total_tasks = 0\n maxinst = 1\n for comp in comp_classes:\n ntasks = self.get_value(\"NTASKS\", attribute={\"compclass\":comp})\n rootpe = self.get_value(\"ROOTPE\", attribute={\"compclass\":comp})\n pstrid = self.get_value(\"PSTRID\", attribute={\"compclass\":comp})\n if comp != \"CPL\":\n ninst = self.get_value(\"NINST\", attribute={\"compclass\":comp})\n maxinst = max(maxinst, ninst)\n tt = rootpe + (ntasks - 1) * pstrid + 1\n total_tasks = max(tt, total_tasks)\n if self.get_value(\"MULTI_DRIVER\"):\n total_tasks *= maxinst\n return total_tasks\n\n def get_tasks_per_node(self, total_tasks, max_thread_count):\n expect(total_tasks > 0,\"totaltasks > 0 expected, totaltasks = {}\".format(total_tasks))\n tasks_per_node = min(self.get_value(\"MAX_TASKS_PER_NODE\")// max_thread_count,\n self.get_value(\"MAX_MPITASKS_PER_NODE\"), total_tasks)\n return tasks_per_node if tasks_per_node > 0 else 1\n\n def get_total_nodes(self, total_tasks, max_thread_count):\n \"\"\"\n Return (num_active_nodes, num_spare_nodes)\n \"\"\"\n tasks_per_node = self.get_tasks_per_node(total_tasks, max_thread_count)\n num_nodes = int(math.ceil(float(total_tasks) / tasks_per_node))\n return num_nodes, self.get_spare_nodes(num_nodes)\n\n def get_spare_nodes(self, num_nodes):\n force_spare_nodes = self.get_value(\"FORCE_SPARE_NODES\")\n if force_spare_nodes != -999:\n return force_spare_nodes\n\n if self.get_value(\"ALLOCATE_SPARE_NODES\"):\n ten_pct = int(math.ceil(float(num_nodes) * 0.1))\n if ten_pct < 1:\n return 1 # Always provide at lease one spare node\n elif ten_pct > 10:\n return 10 # Never provide more than 10 spare nodes\n else:\n return ten_pct\n else:\n return 0\n", "path": "scripts/lib/CIME/XML/env_mach_pes.py"}]}
1,955
179
gh_patches_debug_4066
rasdani/github-patches
git_diff
sublimelsp__LSP-1243
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Server is being shutdown on server sending empty stderr line When server triggers stderr output that is an empty string (or becomes an empty string after `rstrip` then LSP closes the transports and thus the server. Issue found when analyzing https://github.com/sublimelsp/LSP-angular/issues/1 --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `plugin/core/transports.py` Content: ``` 1 from .logging import exception_log, debug 2 from .types import ClientConfig 3 from .typing import Dict, Any, Optional, IO, Protocol 4 from abc import ABCMeta, abstractmethod 5 from contextlib import closing 6 from queue import Queue 7 import json 8 import os 9 import shutil 10 import socket 11 import sublime 12 import subprocess 13 import threading 14 import time 15 import weakref 16 17 18 TCP_CONNECT_TIMEOUT = 5 19 20 21 class Transport(metaclass=ABCMeta): 22 23 @abstractmethod 24 def send(self, payload: Dict[str, Any]) -> None: 25 pass 26 27 @abstractmethod 28 def close(self) -> None: 29 pass 30 31 32 class TransportCallbacks(Protocol): 33 34 def on_transport_close(self, exit_code: int, exception: Optional[Exception]) -> None: 35 ... 36 37 def on_payload(self, payload: Dict[str, Any]) -> None: 38 ... 39 40 def on_stderr_message(self, message: str) -> None: 41 ... 42 43 44 class JsonRpcTransport(Transport): 45 46 def __init__(self, name: str, process: subprocess.Popen, socket: Optional[socket.socket], reader: IO[bytes], 47 writer: IO[bytes], stderr: Optional[IO[bytes]], callback_object: TransportCallbacks) -> None: 48 self._closed = False 49 self._process = process 50 self._socket = socket 51 self._reader = reader 52 self._writer = writer 53 self._stderr = stderr 54 self._reader_thread = threading.Thread(target=self._read_loop, name='{}-reader'.format(name)) 55 self._writer_thread = threading.Thread(target=self._write_loop, name='{}-writer'.format(name)) 56 self._stderr_thread = threading.Thread(target=self._stderr_loop, name='{}-stderr'.format(name)) 57 self._callback_object = weakref.ref(callback_object) 58 self._send_queue = Queue(0) # type: Queue[Optional[Dict[str, Any]]] 59 self._reader_thread.start() 60 self._writer_thread.start() 61 self._stderr_thread.start() 62 63 def send(self, payload: Dict[str, Any]) -> None: 64 self._send_queue.put_nowait(payload) 65 66 def close(self) -> None: 67 if not self._closed: 68 self._send_queue.put_nowait(None) 69 if self._socket: 70 self._socket.close() 71 self._closed = True 72 73 def _join_thread(self, t: threading.Thread) -> None: 74 if t.ident == threading.current_thread().ident: 75 return 76 try: 77 t.join(2) 78 except TimeoutError as ex: 79 exception_log("failed to join {} thread".format(t.name), ex) 80 81 def __del__(self) -> None: 82 self.close() 83 self._join_thread(self._writer_thread) 84 self._join_thread(self._reader_thread) 85 self._join_thread(self._stderr_thread) 86 87 def _read_loop(self) -> None: 88 try: 89 while self._reader: 90 line = self._reader.readline() 91 if not line: 92 break 93 try: 94 num_bytes = _content_length(line) 95 except ValueError: 96 continue 97 if num_bytes is None: 98 continue 99 while line and line.strip(): 100 line = self._reader.readline() 101 if not line: 102 continue 103 body = self._reader.read(num_bytes) 104 callback_object = self._callback_object() 105 if callback_object: 106 try: 107 callback_object.on_payload(_decode(body)) 108 except Exception as ex: 109 exception_log("Error handling payload", ex) 110 else: 111 break 112 except (AttributeError, BrokenPipeError): 113 pass 114 except Exception as ex: 115 exception_log("Unexpected exception", ex) 116 self._send_queue.put_nowait(None) 117 118 def _end(self, exception: Optional[Exception]) -> None: 119 exit_code = 0 120 if not exception: 121 try: 122 # Allow the process to stop itself. 123 exit_code = self._process.wait(1) 124 except (AttributeError, ProcessLookupError, subprocess.TimeoutExpired): 125 pass 126 if self._process: 127 try: 128 # The process didn't stop itself. Terminate! 129 self._process.kill() 130 # still wait for the process to die, or zombie processes might be the result 131 # Ignore the exit code in this case, it's going to be something non-zero because we sent SIGKILL. 132 self._process.wait() 133 except (AttributeError, ProcessLookupError): 134 pass 135 except Exception as ex: 136 exception = ex # TODO: Old captured exception is overwritten 137 callback_object = self._callback_object() 138 if callback_object: 139 callback_object.on_transport_close(exit_code, exception) 140 141 def _write_loop(self) -> None: 142 exception = None # type: Optional[Exception] 143 try: 144 while self._writer: 145 d = self._send_queue.get() 146 if d is None: 147 break 148 body = _encode(d) 149 self._writer.writelines(("Content-Length: {}\r\n\r\n".format(len(body)).encode('ascii'), body)) 150 self._writer.flush() 151 except (BrokenPipeError, AttributeError): 152 pass 153 except Exception as ex: 154 exception = ex 155 self._end(exception) 156 157 def _stderr_loop(self) -> None: 158 try: 159 while self._stderr: 160 if self._closed: 161 break 162 message = self._stderr.readline().decode('utf-8', 'replace').rstrip() 163 callback_object = self._callback_object() 164 if callback_object: 165 callback_object.on_stderr_message(message) 166 else: 167 break 168 except (BrokenPipeError, AttributeError): 169 pass 170 except Exception as ex: 171 exception_log('unexpected exception type in stderr loop', ex) 172 self._send_queue.put_nowait(None) 173 174 175 def create_transport(config: ClientConfig, cwd: Optional[str], window: sublime.Window, 176 callback_object: TransportCallbacks, variables: Dict[str, str]) -> JsonRpcTransport: 177 tcp_port = None # type: Optional[int] 178 if config.tcp_port is not None: 179 tcp_port = _find_free_port() if config.tcp_port == 0 else config.tcp_port 180 if tcp_port is not None: 181 variables["port"] = str(tcp_port) 182 args = sublime.expand_variables(config.binary_args, variables) 183 args = [os.path.expanduser(arg) for arg in args] 184 if tcp_port is not None: 185 # DEPRECATED -- replace {port} with $port or ${port} in your client config 186 args = [a.replace('{port}', str(tcp_port)) for a in args] 187 env = os.environ.copy() 188 for var, value in config.env.items(): 189 env[var] = sublime.expand_variables(value, variables) 190 if tcp_port is not None: 191 stdout = subprocess.DEVNULL 192 stdin = subprocess.DEVNULL 193 else: 194 stdout = subprocess.PIPE 195 stdin = subprocess.PIPE 196 if sublime.platform() == "windows": 197 startupinfo = subprocess.STARTUPINFO() # type: ignore 198 startupinfo.dwFlags |= subprocess.SW_HIDE | subprocess.STARTF_USESHOWWINDOW # type: ignore 199 executable_arg = args[0] 200 fname, ext = os.path.splitext(executable_arg) 201 if len(ext) < 1: 202 path_to_executable = shutil.which(executable_arg) 203 # what extensions should we append so CreateProcess can find it? 204 # node has .cmd 205 # dart has .bat 206 # python has .exe wrappers - not needed 207 for extension in ['.cmd', '.bat']: 208 if path_to_executable and path_to_executable.lower().endswith(extension): 209 args[0] = executable_arg + extension 210 break 211 else: 212 startupinfo = None 213 debug("starting {} in {}".format(args, cwd if cwd else os.getcwd())) 214 process = subprocess.Popen( 215 args=args, 216 stdin=stdin, 217 stdout=stdout, 218 stderr=subprocess.PIPE, 219 startupinfo=startupinfo, 220 env=env, 221 cwd=cwd) 222 _subprocesses.add(process) 223 sock = None # type: Optional[socket.socket] 224 if tcp_port: 225 sock = _connect_tcp(tcp_port) 226 if sock is None: 227 raise RuntimeError("Failed to connect on port {}".format(config.tcp_port)) 228 reader = sock.makefile('rwb') # type: IO[bytes] 229 writer = reader 230 else: 231 reader = process.stdout # type: ignore 232 writer = process.stdin # type: ignore 233 return JsonRpcTransport(config.name, process, sock, reader, writer, process.stderr, callback_object) 234 235 236 _subprocesses = weakref.WeakSet() # type: weakref.WeakSet[subprocess.Popen] 237 238 239 def kill_all_subprocesses() -> None: 240 global _subprocesses 241 subprocesses = list(_subprocesses) 242 for p in subprocesses: 243 try: 244 p.kill() 245 except Exception: 246 pass 247 for p in subprocesses: 248 try: 249 p.wait() 250 except Exception: 251 pass 252 253 254 def _connect_tcp(port: int) -> Optional[socket.socket]: 255 start_time = time.time() 256 while time.time() - start_time < TCP_CONNECT_TIMEOUT: 257 try: 258 return socket.create_connection(('localhost', port)) 259 except ConnectionRefusedError: 260 pass 261 return None 262 263 264 def _find_free_port() -> int: 265 with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s: 266 s.bind(('', 0)) 267 s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) 268 return s.getsockname()[1] 269 270 271 def _encode(d: Dict[str, Any]) -> bytes: 272 return json.dumps(d, sort_keys=False, check_circular=False, separators=(',', ':')).encode('utf-8') 273 274 275 def _decode(message: bytes) -> Dict[str, Any]: 276 return json.loads(message.decode('utf-8')) 277 278 279 def _content_length(line: bytes) -> Optional[int]: 280 if line.startswith(b'Content-Length: '): 281 _, value = line.split(b'Content-Length: ') 282 value = value.strip() 283 try: 284 return int(value) 285 except ValueError as ex: 286 raise ValueError("Invalid Content-Length header: {}".format(value.decode('ascii'))) from ex 287 return None 288 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/plugin/core/transports.py b/plugin/core/transports.py --- a/plugin/core/transports.py +++ b/plugin/core/transports.py @@ -137,6 +137,7 @@ callback_object = self._callback_object() if callback_object: callback_object.on_transport_close(exit_code, exception) + self.close() def _write_loop(self) -> None: exception = None # type: Optional[Exception]
{"golden_diff": "diff --git a/plugin/core/transports.py b/plugin/core/transports.py\n--- a/plugin/core/transports.py\n+++ b/plugin/core/transports.py\n@@ -137,6 +137,7 @@\n callback_object = self._callback_object()\n if callback_object:\n callback_object.on_transport_close(exit_code, exception)\n+ self.close()\n \n def _write_loop(self) -> None:\n exception = None # type: Optional[Exception]\n", "issue": "Server is being shutdown on server sending empty stderr line\nWhen server triggers stderr output that is an empty string (or becomes an empty string after `rstrip` then LSP closes the transports and thus the server.\r\n\r\nIssue found when analyzing https://github.com/sublimelsp/LSP-angular/issues/1\n", "before_files": [{"content": "from .logging import exception_log, debug\nfrom .types import ClientConfig\nfrom .typing import Dict, Any, Optional, IO, Protocol\nfrom abc import ABCMeta, abstractmethod\nfrom contextlib import closing\nfrom queue import Queue\nimport json\nimport os\nimport shutil\nimport socket\nimport sublime\nimport subprocess\nimport threading\nimport time\nimport weakref\n\n\nTCP_CONNECT_TIMEOUT = 5\n\n\nclass Transport(metaclass=ABCMeta):\n\n @abstractmethod\n def send(self, payload: Dict[str, Any]) -> None:\n pass\n\n @abstractmethod\n def close(self) -> None:\n pass\n\n\nclass TransportCallbacks(Protocol):\n\n def on_transport_close(self, exit_code: int, exception: Optional[Exception]) -> None:\n ...\n\n def on_payload(self, payload: Dict[str, Any]) -> None:\n ...\n\n def on_stderr_message(self, message: str) -> None:\n ...\n\n\nclass JsonRpcTransport(Transport):\n\n def __init__(self, name: str, process: subprocess.Popen, socket: Optional[socket.socket], reader: IO[bytes],\n writer: IO[bytes], stderr: Optional[IO[bytes]], callback_object: TransportCallbacks) -> None:\n self._closed = False\n self._process = process\n self._socket = socket\n self._reader = reader\n self._writer = writer\n self._stderr = stderr\n self._reader_thread = threading.Thread(target=self._read_loop, name='{}-reader'.format(name))\n self._writer_thread = threading.Thread(target=self._write_loop, name='{}-writer'.format(name))\n self._stderr_thread = threading.Thread(target=self._stderr_loop, name='{}-stderr'.format(name))\n self._callback_object = weakref.ref(callback_object)\n self._send_queue = Queue(0) # type: Queue[Optional[Dict[str, Any]]]\n self._reader_thread.start()\n self._writer_thread.start()\n self._stderr_thread.start()\n\n def send(self, payload: Dict[str, Any]) -> None:\n self._send_queue.put_nowait(payload)\n\n def close(self) -> None:\n if not self._closed:\n self._send_queue.put_nowait(None)\n if self._socket:\n self._socket.close()\n self._closed = True\n\n def _join_thread(self, t: threading.Thread) -> None:\n if t.ident == threading.current_thread().ident:\n return\n try:\n t.join(2)\n except TimeoutError as ex:\n exception_log(\"failed to join {} thread\".format(t.name), ex)\n\n def __del__(self) -> None:\n self.close()\n self._join_thread(self._writer_thread)\n self._join_thread(self._reader_thread)\n self._join_thread(self._stderr_thread)\n\n def _read_loop(self) -> None:\n try:\n while self._reader:\n line = self._reader.readline()\n if not line:\n break\n try:\n num_bytes = _content_length(line)\n except ValueError:\n continue\n if num_bytes is None:\n continue\n while line and line.strip():\n line = self._reader.readline()\n if not line:\n continue\n body = self._reader.read(num_bytes)\n callback_object = self._callback_object()\n if callback_object:\n try:\n callback_object.on_payload(_decode(body))\n except Exception as ex:\n exception_log(\"Error handling payload\", ex)\n else:\n break\n except (AttributeError, BrokenPipeError):\n pass\n except Exception as ex:\n exception_log(\"Unexpected exception\", ex)\n self._send_queue.put_nowait(None)\n\n def _end(self, exception: Optional[Exception]) -> None:\n exit_code = 0\n if not exception:\n try:\n # Allow the process to stop itself.\n exit_code = self._process.wait(1)\n except (AttributeError, ProcessLookupError, subprocess.TimeoutExpired):\n pass\n if self._process:\n try:\n # The process didn't stop itself. Terminate!\n self._process.kill()\n # still wait for the process to die, or zombie processes might be the result\n # Ignore the exit code in this case, it's going to be something non-zero because we sent SIGKILL.\n self._process.wait()\n except (AttributeError, ProcessLookupError):\n pass\n except Exception as ex:\n exception = ex # TODO: Old captured exception is overwritten\n callback_object = self._callback_object()\n if callback_object:\n callback_object.on_transport_close(exit_code, exception)\n\n def _write_loop(self) -> None:\n exception = None # type: Optional[Exception]\n try:\n while self._writer:\n d = self._send_queue.get()\n if d is None:\n break\n body = _encode(d)\n self._writer.writelines((\"Content-Length: {}\\r\\n\\r\\n\".format(len(body)).encode('ascii'), body))\n self._writer.flush()\n except (BrokenPipeError, AttributeError):\n pass\n except Exception as ex:\n exception = ex\n self._end(exception)\n\n def _stderr_loop(self) -> None:\n try:\n while self._stderr:\n if self._closed:\n break\n message = self._stderr.readline().decode('utf-8', 'replace').rstrip()\n callback_object = self._callback_object()\n if callback_object:\n callback_object.on_stderr_message(message)\n else:\n break\n except (BrokenPipeError, AttributeError):\n pass\n except Exception as ex:\n exception_log('unexpected exception type in stderr loop', ex)\n self._send_queue.put_nowait(None)\n\n\ndef create_transport(config: ClientConfig, cwd: Optional[str], window: sublime.Window,\n callback_object: TransportCallbacks, variables: Dict[str, str]) -> JsonRpcTransport:\n tcp_port = None # type: Optional[int]\n if config.tcp_port is not None:\n tcp_port = _find_free_port() if config.tcp_port == 0 else config.tcp_port\n if tcp_port is not None:\n variables[\"port\"] = str(tcp_port)\n args = sublime.expand_variables(config.binary_args, variables)\n args = [os.path.expanduser(arg) for arg in args]\n if tcp_port is not None:\n # DEPRECATED -- replace {port} with $port or ${port} in your client config\n args = [a.replace('{port}', str(tcp_port)) for a in args]\n env = os.environ.copy()\n for var, value in config.env.items():\n env[var] = sublime.expand_variables(value, variables)\n if tcp_port is not None:\n stdout = subprocess.DEVNULL\n stdin = subprocess.DEVNULL\n else:\n stdout = subprocess.PIPE\n stdin = subprocess.PIPE\n if sublime.platform() == \"windows\":\n startupinfo = subprocess.STARTUPINFO() # type: ignore\n startupinfo.dwFlags |= subprocess.SW_HIDE | subprocess.STARTF_USESHOWWINDOW # type: ignore\n executable_arg = args[0]\n fname, ext = os.path.splitext(executable_arg)\n if len(ext) < 1:\n path_to_executable = shutil.which(executable_arg)\n # what extensions should we append so CreateProcess can find it?\n # node has .cmd\n # dart has .bat\n # python has .exe wrappers - not needed\n for extension in ['.cmd', '.bat']:\n if path_to_executable and path_to_executable.lower().endswith(extension):\n args[0] = executable_arg + extension\n break\n else:\n startupinfo = None\n debug(\"starting {} in {}\".format(args, cwd if cwd else os.getcwd()))\n process = subprocess.Popen(\n args=args,\n stdin=stdin,\n stdout=stdout,\n stderr=subprocess.PIPE,\n startupinfo=startupinfo,\n env=env,\n cwd=cwd)\n _subprocesses.add(process)\n sock = None # type: Optional[socket.socket]\n if tcp_port:\n sock = _connect_tcp(tcp_port)\n if sock is None:\n raise RuntimeError(\"Failed to connect on port {}\".format(config.tcp_port))\n reader = sock.makefile('rwb') # type: IO[bytes]\n writer = reader\n else:\n reader = process.stdout # type: ignore\n writer = process.stdin # type: ignore\n return JsonRpcTransport(config.name, process, sock, reader, writer, process.stderr, callback_object)\n\n\n_subprocesses = weakref.WeakSet() # type: weakref.WeakSet[subprocess.Popen]\n\n\ndef kill_all_subprocesses() -> None:\n global _subprocesses\n subprocesses = list(_subprocesses)\n for p in subprocesses:\n try:\n p.kill()\n except Exception:\n pass\n for p in subprocesses:\n try:\n p.wait()\n except Exception:\n pass\n\n\ndef _connect_tcp(port: int) -> Optional[socket.socket]:\n start_time = time.time()\n while time.time() - start_time < TCP_CONNECT_TIMEOUT:\n try:\n return socket.create_connection(('localhost', port))\n except ConnectionRefusedError:\n pass\n return None\n\n\ndef _find_free_port() -> int:\n with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:\n s.bind(('', 0))\n s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)\n return s.getsockname()[1]\n\n\ndef _encode(d: Dict[str, Any]) -> bytes:\n return json.dumps(d, sort_keys=False, check_circular=False, separators=(',', ':')).encode('utf-8')\n\n\ndef _decode(message: bytes) -> Dict[str, Any]:\n return json.loads(message.decode('utf-8'))\n\n\ndef _content_length(line: bytes) -> Optional[int]:\n if line.startswith(b'Content-Length: '):\n _, value = line.split(b'Content-Length: ')\n value = value.strip()\n try:\n return int(value)\n except ValueError as ex:\n raise ValueError(\"Invalid Content-Length header: {}\".format(value.decode('ascii'))) from ex\n return None\n", "path": "plugin/core/transports.py"}], "after_files": [{"content": "from .logging import exception_log, debug\nfrom .types import ClientConfig\nfrom .typing import Dict, Any, Optional, IO, Protocol\nfrom abc import ABCMeta, abstractmethod\nfrom contextlib import closing\nfrom queue import Queue\nimport json\nimport os\nimport shutil\nimport socket\nimport sublime\nimport subprocess\nimport threading\nimport time\nimport weakref\n\n\nTCP_CONNECT_TIMEOUT = 5\n\n\nclass Transport(metaclass=ABCMeta):\n\n @abstractmethod\n def send(self, payload: Dict[str, Any]) -> None:\n pass\n\n @abstractmethod\n def close(self) -> None:\n pass\n\n\nclass TransportCallbacks(Protocol):\n\n def on_transport_close(self, exit_code: int, exception: Optional[Exception]) -> None:\n ...\n\n def on_payload(self, payload: Dict[str, Any]) -> None:\n ...\n\n def on_stderr_message(self, message: str) -> None:\n ...\n\n\nclass JsonRpcTransport(Transport):\n\n def __init__(self, name: str, process: subprocess.Popen, socket: Optional[socket.socket], reader: IO[bytes],\n writer: IO[bytes], stderr: Optional[IO[bytes]], callback_object: TransportCallbacks) -> None:\n self._closed = False\n self._process = process\n self._socket = socket\n self._reader = reader\n self._writer = writer\n self._stderr = stderr\n self._reader_thread = threading.Thread(target=self._read_loop, name='{}-reader'.format(name))\n self._writer_thread = threading.Thread(target=self._write_loop, name='{}-writer'.format(name))\n self._stderr_thread = threading.Thread(target=self._stderr_loop, name='{}-stderr'.format(name))\n self._callback_object = weakref.ref(callback_object)\n self._send_queue = Queue(0) # type: Queue[Optional[Dict[str, Any]]]\n self._reader_thread.start()\n self._writer_thread.start()\n self._stderr_thread.start()\n\n def send(self, payload: Dict[str, Any]) -> None:\n self._send_queue.put_nowait(payload)\n\n def close(self) -> None:\n if not self._closed:\n self._send_queue.put_nowait(None)\n if self._socket:\n self._socket.close()\n self._closed = True\n\n def _join_thread(self, t: threading.Thread) -> None:\n if t.ident == threading.current_thread().ident:\n return\n try:\n t.join(2)\n except TimeoutError as ex:\n exception_log(\"failed to join {} thread\".format(t.name), ex)\n\n def __del__(self) -> None:\n self.close()\n self._join_thread(self._writer_thread)\n self._join_thread(self._reader_thread)\n self._join_thread(self._stderr_thread)\n\n def _read_loop(self) -> None:\n try:\n while self._reader:\n line = self._reader.readline()\n if not line:\n break\n try:\n num_bytes = _content_length(line)\n except ValueError:\n continue\n if num_bytes is None:\n continue\n while line and line.strip():\n line = self._reader.readline()\n if not line:\n continue\n body = self._reader.read(num_bytes)\n callback_object = self._callback_object()\n if callback_object:\n try:\n callback_object.on_payload(_decode(body))\n except Exception as ex:\n exception_log(\"Error handling payload\", ex)\n else:\n break\n except (AttributeError, BrokenPipeError):\n pass\n except Exception as ex:\n exception_log(\"Unexpected exception\", ex)\n self._send_queue.put_nowait(None)\n\n def _end(self, exception: Optional[Exception]) -> None:\n exit_code = 0\n if not exception:\n try:\n # Allow the process to stop itself.\n exit_code = self._process.wait(1)\n except (AttributeError, ProcessLookupError, subprocess.TimeoutExpired):\n pass\n if self._process:\n try:\n # The process didn't stop itself. Terminate!\n self._process.kill()\n # still wait for the process to die, or zombie processes might be the result\n # Ignore the exit code in this case, it's going to be something non-zero because we sent SIGKILL.\n self._process.wait()\n except (AttributeError, ProcessLookupError):\n pass\n except Exception as ex:\n exception = ex # TODO: Old captured exception is overwritten\n callback_object = self._callback_object()\n if callback_object:\n callback_object.on_transport_close(exit_code, exception)\n self.close()\n\n def _write_loop(self) -> None:\n exception = None # type: Optional[Exception]\n try:\n while self._writer:\n d = self._send_queue.get()\n if d is None:\n break\n body = _encode(d)\n self._writer.writelines((\"Content-Length: {}\\r\\n\\r\\n\".format(len(body)).encode('ascii'), body))\n self._writer.flush()\n except (BrokenPipeError, AttributeError):\n pass\n except Exception as ex:\n exception = ex\n self._end(exception)\n\n def _stderr_loop(self) -> None:\n try:\n while self._stderr:\n if self._closed:\n break\n message = self._stderr.readline().decode('utf-8', 'replace').rstrip()\n callback_object = self._callback_object()\n if callback_object:\n callback_object.on_stderr_message(message)\n else:\n break\n except (BrokenPipeError, AttributeError):\n pass\n except Exception as ex:\n exception_log('unexpected exception type in stderr loop', ex)\n self._send_queue.put_nowait(None)\n\n\ndef create_transport(config: ClientConfig, cwd: Optional[str], window: sublime.Window,\n callback_object: TransportCallbacks, variables: Dict[str, str]) -> JsonRpcTransport:\n tcp_port = None # type: Optional[int]\n if config.tcp_port is not None:\n tcp_port = _find_free_port() if config.tcp_port == 0 else config.tcp_port\n if tcp_port is not None:\n variables[\"port\"] = str(tcp_port)\n args = sublime.expand_variables(config.binary_args, variables)\n args = [os.path.expanduser(arg) for arg in args]\n if tcp_port is not None:\n # DEPRECATED -- replace {port} with $port or ${port} in your client config\n args = [a.replace('{port}', str(tcp_port)) for a in args]\n env = os.environ.copy()\n for var, value in config.env.items():\n env[var] = sublime.expand_variables(value, variables)\n if tcp_port is not None:\n stdout = subprocess.DEVNULL\n stdin = subprocess.DEVNULL\n else:\n stdout = subprocess.PIPE\n stdin = subprocess.PIPE\n if sublime.platform() == \"windows\":\n startupinfo = subprocess.STARTUPINFO() # type: ignore\n startupinfo.dwFlags |= subprocess.SW_HIDE | subprocess.STARTF_USESHOWWINDOW # type: ignore\n executable_arg = args[0]\n fname, ext = os.path.splitext(executable_arg)\n if len(ext) < 1:\n path_to_executable = shutil.which(executable_arg)\n # what extensions should we append so CreateProcess can find it?\n # node has .cmd\n # dart has .bat\n # python has .exe wrappers - not needed\n for extension in ['.cmd', '.bat']:\n if path_to_executable and path_to_executable.lower().endswith(extension):\n args[0] = executable_arg + extension\n break\n else:\n startupinfo = None\n debug(\"starting {} in {}\".format(args, cwd if cwd else os.getcwd()))\n process = subprocess.Popen(\n args=args,\n stdin=stdin,\n stdout=stdout,\n stderr=subprocess.PIPE,\n startupinfo=startupinfo,\n env=env,\n cwd=cwd)\n _subprocesses.add(process)\n sock = None # type: Optional[socket.socket]\n if tcp_port:\n sock = _connect_tcp(tcp_port)\n if sock is None:\n raise RuntimeError(\"Failed to connect on port {}\".format(config.tcp_port))\n reader = sock.makefile('rwb') # type: IO[bytes]\n writer = reader\n else:\n reader = process.stdout # type: ignore\n writer = process.stdin # type: ignore\n return JsonRpcTransport(config.name, process, sock, reader, writer, process.stderr, callback_object)\n\n\n_subprocesses = weakref.WeakSet() # type: weakref.WeakSet[subprocess.Popen]\n\n\ndef kill_all_subprocesses() -> None:\n global _subprocesses\n subprocesses = list(_subprocesses)\n for p in subprocesses:\n try:\n p.kill()\n except Exception:\n pass\n for p in subprocesses:\n try:\n p.wait()\n except Exception:\n pass\n\n\ndef _connect_tcp(port: int) -> Optional[socket.socket]:\n start_time = time.time()\n while time.time() - start_time < TCP_CONNECT_TIMEOUT:\n try:\n return socket.create_connection(('localhost', port))\n except ConnectionRefusedError:\n pass\n return None\n\n\ndef _find_free_port() -> int:\n with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:\n s.bind(('', 0))\n s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)\n return s.getsockname()[1]\n\n\ndef _encode(d: Dict[str, Any]) -> bytes:\n return json.dumps(d, sort_keys=False, check_circular=False, separators=(',', ':')).encode('utf-8')\n\n\ndef _decode(message: bytes) -> Dict[str, Any]:\n return json.loads(message.decode('utf-8'))\n\n\ndef _content_length(line: bytes) -> Optional[int]:\n if line.startswith(b'Content-Length: '):\n _, value = line.split(b'Content-Length: ')\n value = value.strip()\n try:\n return int(value)\n except ValueError as ex:\n raise ValueError(\"Invalid Content-Length header: {}\".format(value.decode('ascii'))) from ex\n return None\n", "path": "plugin/core/transports.py"}]}
3,283
99
gh_patches_debug_379
rasdani/github-patches
git_diff
open-telemetry__opentelemetry-python-3650
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Non-executable files with shebangs in the repository **Describe your environment** (Nothing relevant to describe) **Steps to reproduce** ``` $ rg -l '^#!' | xargs ls -l -rwxr-xr-x. 1 ben ben 1420 Jul 5 2023 docs/examples/django/manage.py -rw-r--r--. 1 ben ben 1300 Jul 5 2023 docs/examples/opencensus-exporter-tracer/collector.py -rwxr-xr-x. 1 ben ben 1485 Jul 5 2023 docs/examples/opentracing/main.py -rwxr-xr-x. 1 ben ben 853 Jul 13 2023 scripts/build.sh -rwxr-xr-x. 1 ben ben 1163 Jan 22 10:06 scripts/coverage.sh -rwxr-xr-x. 1 ben ben 20741 Jul 13 2023 scripts/eachdist.py -rwxr-xr-x. 1 ben ben 215 Jul 5 2023 scripts/generate_website_docs.sh -rwxr-xr-x. 1 ben ben 2377 Jan 22 10:06 scripts/proto_codegen.sh -rwxr-xr-x. 1 ben ben 1928 Jan 22 10:06 scripts/semconv/generate.sh -rwxr-xr-x. 1 ben ben 945 Jul 5 2023 scripts/tracecontext-integration-test.sh -rw-r--r--. 1 ben ben 2519 Jan 22 11:43 tests/w3c_tracecontext_validation_server.py ``` Note that two files have shebang lines (`#!`) but do not have the executable bit set, which makes the shebang lines useless. **What is the expected behavior?** Files should either be non-executable and have no shebang line, or be executable and have a shebang line. **What is the actual behavior?** The following files are not executable and have useless shebang lines: - `docs/examples/opencensus-exporter-tracer/collector.py` - `tests/w3c_tracecontext_validation_server.py` **Additional context** This is a trivial thing, but I would like to fix it in a PR – either by setting the executable bit on these two files, or by removing the useless shebang lines. Both files are “script-like,” i.e. they have `if __name__ == "__main__"` or have useful side effects. Which approach would you prefer? --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `docs/examples/opencensus-exporter-tracer/collector.py` Content: ``` 1 #!/usr/bin/env python3 2 # 3 # Copyright The OpenTelemetry Authors 4 # 5 # Licensed under the Apache License, Version 2.0 (the "License"); 6 # you may not use this file except in compliance with the License. 7 # You may obtain a copy of the License at 8 # 9 # http://www.apache.org/licenses/LICENSE-2.0 10 # 11 # Unless required by applicable law or agreed to in writing, software 12 # distributed under the License is distributed on an "AS IS" BASIS, 13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 # See the License for the specific language governing permissions and 15 # limitations under the License. 16 17 from opentelemetry import trace 18 from opentelemetry.exporter.opencensus.trace_exporter import ( 19 OpenCensusSpanExporter, 20 ) 21 from opentelemetry.sdk.trace import TracerProvider 22 from opentelemetry.sdk.trace.export import BatchSpanProcessor 23 24 exporter = OpenCensusSpanExporter(endpoint="localhost:55678") 25 26 trace.set_tracer_provider(TracerProvider()) 27 tracer = trace.get_tracer(__name__) 28 span_processor = BatchSpanProcessor(exporter) 29 30 trace.get_tracer_provider().add_span_processor(span_processor) 31 with tracer.start_as_current_span("foo"): 32 with tracer.start_as_current_span("bar"): 33 with tracer.start_as_current_span("baz"): 34 print("Hello world from OpenTelemetry Python!") 35 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/docs/examples/opencensus-exporter-tracer/collector.py b/docs/examples/opencensus-exporter-tracer/collector.py --- a/docs/examples/opencensus-exporter-tracer/collector.py +++ b/docs/examples/opencensus-exporter-tracer/collector.py @@ -1,5 +1,3 @@ -#!/usr/bin/env python3 -# # Copyright The OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License");
{"golden_diff": "diff --git a/docs/examples/opencensus-exporter-tracer/collector.py b/docs/examples/opencensus-exporter-tracer/collector.py\n--- a/docs/examples/opencensus-exporter-tracer/collector.py\n+++ b/docs/examples/opencensus-exporter-tracer/collector.py\n@@ -1,5 +1,3 @@\n-#!/usr/bin/env python3\n-#\n # Copyright The OpenTelemetry Authors\n #\n # Licensed under the Apache License, Version 2.0 (the \"License\");\n", "issue": "Non-executable files with shebangs in the repository\n**Describe your environment**\r\n\r\n(Nothing relevant to describe)\r\n\r\n**Steps to reproduce**\r\n\r\n```\r\n$ rg -l '^#!' | xargs ls -l\r\n-rwxr-xr-x. 1 ben ben 1420 Jul 5 2023 docs/examples/django/manage.py\r\n-rw-r--r--. 1 ben ben 1300 Jul 5 2023 docs/examples/opencensus-exporter-tracer/collector.py\r\n-rwxr-xr-x. 1 ben ben 1485 Jul 5 2023 docs/examples/opentracing/main.py\r\n-rwxr-xr-x. 1 ben ben 853 Jul 13 2023 scripts/build.sh\r\n-rwxr-xr-x. 1 ben ben 1163 Jan 22 10:06 scripts/coverage.sh\r\n-rwxr-xr-x. 1 ben ben 20741 Jul 13 2023 scripts/eachdist.py\r\n-rwxr-xr-x. 1 ben ben 215 Jul 5 2023 scripts/generate_website_docs.sh\r\n-rwxr-xr-x. 1 ben ben 2377 Jan 22 10:06 scripts/proto_codegen.sh\r\n-rwxr-xr-x. 1 ben ben 1928 Jan 22 10:06 scripts/semconv/generate.sh\r\n-rwxr-xr-x. 1 ben ben 945 Jul 5 2023 scripts/tracecontext-integration-test.sh\r\n-rw-r--r--. 1 ben ben 2519 Jan 22 11:43 tests/w3c_tracecontext_validation_server.py\r\n```\r\n\r\nNote that two files have shebang lines (`#!`) but do not have the executable bit set, which makes the shebang lines useless.\r\n\r\n**What is the expected behavior?**\r\n\r\nFiles should either be non-executable and have no shebang line, or be executable and have a shebang line.\r\n\r\n**What is the actual behavior?**\r\n\r\nThe following files are not executable and have useless shebang lines:\r\n\r\n- `docs/examples/opencensus-exporter-tracer/collector.py`\r\n- `tests/w3c_tracecontext_validation_server.py`\r\n\r\n**Additional context**\r\n\r\nThis is a trivial thing, but I would like to fix it in a PR \u2013 either by setting the executable bit on these two files, or by removing the useless shebang lines. Both files are \u201cscript-like,\u201d i.e. they have `if __name__ == \"__main__\"` or have useful side effects. Which approach would you prefer?\n", "before_files": [{"content": "#!/usr/bin/env python3\n#\n# Copyright The OpenTelemetry Authors\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nfrom opentelemetry import trace\nfrom opentelemetry.exporter.opencensus.trace_exporter import (\n OpenCensusSpanExporter,\n)\nfrom opentelemetry.sdk.trace import TracerProvider\nfrom opentelemetry.sdk.trace.export import BatchSpanProcessor\n\nexporter = OpenCensusSpanExporter(endpoint=\"localhost:55678\")\n\ntrace.set_tracer_provider(TracerProvider())\ntracer = trace.get_tracer(__name__)\nspan_processor = BatchSpanProcessor(exporter)\n\ntrace.get_tracer_provider().add_span_processor(span_processor)\nwith tracer.start_as_current_span(\"foo\"):\n with tracer.start_as_current_span(\"bar\"):\n with tracer.start_as_current_span(\"baz\"):\n print(\"Hello world from OpenTelemetry Python!\")\n", "path": "docs/examples/opencensus-exporter-tracer/collector.py"}], "after_files": [{"content": "# Copyright The OpenTelemetry Authors\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nfrom opentelemetry import trace\nfrom opentelemetry.exporter.opencensus.trace_exporter import (\n OpenCensusSpanExporter,\n)\nfrom opentelemetry.sdk.trace import TracerProvider\nfrom opentelemetry.sdk.trace.export import BatchSpanProcessor\n\nexporter = OpenCensusSpanExporter(endpoint=\"localhost:55678\")\n\ntrace.set_tracer_provider(TracerProvider())\ntracer = trace.get_tracer(__name__)\nspan_processor = BatchSpanProcessor(exporter)\n\ntrace.get_tracer_provider().add_span_processor(span_processor)\nwith tracer.start_as_current_span(\"foo\"):\n with tracer.start_as_current_span(\"bar\"):\n with tracer.start_as_current_span(\"baz\"):\n print(\"Hello world from OpenTelemetry Python!\")\n", "path": "docs/examples/opencensus-exporter-tracer/collector.py"}]}
1,229
106
gh_patches_debug_33894
rasdani/github-patches
git_diff
google__TensorNetwork-377
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Enable contractor contraction on disconnected graphs When we are using tensor network to represent a tensor in the quantum physics, there is no rule that the network must be connected. for example, we can represent an exterior product from two non-connected nodes. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `tensornetwork/contractors/opt_einsum_paths/path_contractors.py` Content: ``` 1 # pylint: disable=cyclic-import 2 # Copyright 2019 The TensorNetwork Authors 3 # 4 # Licensed under the Apache License, Version 2.0 (the "License"); 5 # you may not use this file except in compliance with the License. 6 # You may obtain a copy of the License at 7 # 8 # http://www.apache.org/licenses/LICENSE-2.0 9 # 10 # Unless required by applicable law or agreed to in writing, software 11 # distributed under the License is distributed on an "AS IS" BASIS, 12 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 # See the License for the specific language governing permissions and 14 # limitations under the License. 15 """Contractors based on `opt_einsum`'s path algorithms.""" 16 17 import functools 18 import opt_einsum 19 # pylint: disable=line-too-long 20 from tensornetwork.network_operations import check_connected, get_all_edges, get_subgraph_dangling 21 # pylint: disable=line-too-long 22 from tensornetwork.network_components import get_all_nondangling, contract_parallel 23 from tensornetwork.network_components import Edge, BaseNode 24 from tensornetwork.contractors.opt_einsum_paths import utils 25 from typing import Any, Optional, Sequence, Iterable 26 27 #TODO (martin): add return types of functions back once TensorNetwork is gone 28 # remove _base_network 29 # _base_nodes -> base 30 31 32 def base(nodes: Iterable[BaseNode], 33 algorithm: utils.Algorithm, 34 output_edge_order: Optional[Sequence[Edge]] = None, 35 ignore_edge_order: bool = False) -> BaseNode: 36 """Base method for all `opt_einsum` contractors. 37 38 Args: 39 nodes: A collection of connected nodes. 40 algorithm: `opt_einsum` contraction method to use. 41 output_edge_order: An optional list of edges. Edges of the 42 final node in `nodes_set` 43 are reordered into `output_edge_order`; 44 if final node has more than one edge, 45 `output_edge_order` must be pronvided. 46 ignore_edge_order: An option to ignore the output edge 47 order. 48 49 Returns: 50 Final node after full contraction. 51 """ 52 nodes_set = set(nodes) 53 check_connected(nodes_set) 54 edges = get_all_edges(nodes_set) 55 #output edge order has to be determinded before any contraction 56 #(edges are refreshed after contractions) 57 58 if not ignore_edge_order: 59 if output_edge_order is None: 60 output_edge_order = list(get_subgraph_dangling(nodes)) 61 if len(output_edge_order) > 1: 62 raise ValueError("The final node after contraction has more than " 63 "one remaining edge. In this case `output_edge_order` " 64 "has to be provided.") 65 66 if set(output_edge_order) != get_subgraph_dangling(nodes): 67 raise ValueError( 68 "output edges are not equal to the remaining " 69 "non-contracted edges of the final node." 70 ) 71 72 for edge in edges: 73 if not edge.is_disabled: #if its disabled we already contracted it 74 if edge.is_trace(): 75 nodes_set.remove(edge.node1) 76 nodes_set.add(contract_parallel(edge)) 77 78 if len(nodes_set) == 1: 79 # There's nothing to contract. 80 if ignore_edge_order: 81 return list(nodes_set)[0] 82 return list(nodes_set)[0].reorder_edges(output_edge_order) 83 84 # Then apply `opt_einsum`'s algorithm 85 path, nodes = utils.get_path(nodes_set, algorithm) 86 for a, b in path: 87 new_node = nodes[a] @ nodes[b] 88 nodes.append(new_node) 89 nodes = utils.multi_remove(nodes, [a, b]) 90 91 # if the final node has more than one edge, 92 # output_edge_order has to be specified 93 final_node = nodes[0] # nodes were connected, we checked this 94 if not ignore_edge_order: 95 final_node.reorder_edges(output_edge_order) 96 return final_node 97 98 99 def optimal( 100 nodes: Iterable[BaseNode], 101 output_edge_order: Optional[Sequence[Edge]] = None, 102 memory_limit: Optional[int] = None, 103 ignore_edge_order: bool = False) -> BaseNode: 104 """Optimal contraction order via `opt_einsum`. 105 106 This method will find the truly optimal contraction order via 107 `opt_einsum`'s depth first search algorithm. Since this search is 108 exhaustive, if your network is large (n>10), then the search may 109 take longer than just contracting in a suboptimal way. 110 111 Args: 112 nodes: an iterable of Nodes 113 output_edge_order: An optional list of edges. 114 Edges of the final node in `nodes_set` 115 are reordered into `output_edge_order`; 116 if final node has more than one edge, 117 `output_edge_order` must be provided. 118 memory_limit: Maximum number of elements in an array during contractions. 119 ignore_edge_order: An option to ignore the output edge order. 120 121 Returns: 122 The final node after full contraction. 123 """ 124 alg = functools.partial(opt_einsum.paths.optimal, memory_limit=memory_limit) 125 return base(nodes, alg, output_edge_order, ignore_edge_order) 126 127 128 def branch(nodes: Iterable[BaseNode], 129 output_edge_order: Optional[Sequence[Edge]] = None, 130 memory_limit: Optional[int] = None, 131 nbranch: Optional[int] = None, 132 ignore_edge_order: bool = False) -> BaseNode: 133 """Branch contraction path via `opt_einsum`. 134 135 This method uses the DFS approach of `optimal` while sorting potential 136 contractions based on a heuristic cost, in order to reduce time spent 137 in exploring paths which are unlikely to be optimal. 138 For more details: 139 https://optimized-einsum.readthedocs.io/en/latest/branching_path.html 140 141 Args: 142 nodes: an iterable of Nodes 143 output_edge_order: An optional list of edges. 144 Edges of the final node in `nodes_set` 145 are reordered into `output_edge_order`; 146 if final node has more than one edge, 147 `output_edge_order` must be provided. 148 memory_limit: Maximum number of elements in an array during contractions. 149 nbranch: Number of best contractions to explore. 150 If None it explores all inner products starting with those that 151 have the best cost heuristic. 152 ignore_edge_order: An option to ignore the output edge order. 153 154 Returns: 155 The final node after full contraction. 156 """ 157 alg = functools.partial( 158 opt_einsum.paths.branch, memory_limit=memory_limit, nbranch=nbranch) 159 return base(nodes, alg, output_edge_order, ignore_edge_order) 160 161 162 def greedy( 163 nodes: Iterable[BaseNode], 164 output_edge_order: Optional[Sequence[Edge]] = None, 165 memory_limit: Optional[int] = None, 166 ignore_edge_order: bool = False) -> BaseNode: 167 """Greedy contraction path via `opt_einsum`. 168 169 This provides a more efficient strategy than `optimal` for finding 170 contraction paths in large networks. First contracts pairs of tensors 171 by finding the pair with the lowest cost at each step. Then it performs 172 the outer products. 173 For more details: 174 https://optimized-einsum.readthedocs.io/en/latest/greedy_path.html 175 176 Args: 177 nodes: an iterable of Nodes 178 output_edge_order: An optional list of edges. 179 Edges of the final node in `nodes_set` 180 are reordered into `output_edge_order`; 181 if final node has more than one edge, 182 `output_edge_order` must be provided. 183 memory_limit: Maximum number of elements in an array during contractions. 184 ignore_edge_order: An option to ignore the output edge order. 185 186 Returns: 187 The final node after full contraction. 188 """ 189 alg = functools.partial(opt_einsum.paths.greedy, memory_limit=memory_limit) 190 return base(nodes, alg, output_edge_order, ignore_edge_order) 191 192 193 # pylint: disable=too-many-return-statements 194 def auto( 195 nodes: BaseNode, 196 output_edge_order: Optional[Sequence[Edge]] = None, 197 memory_limit: Optional[int] = None, 198 ignore_edge_order: bool = False) -> BaseNode: 199 """Chooses one of the above algorithms according to network size. 200 201 Default behavior is based on `opt_einsum`'s `auto` contractor. 202 203 Args: 204 nodes: A collection of connected nodes. 205 output_edge_order: An optional list of edges. 206 Edges of the final node in `nodes_set` 207 are reordered into `output_edge_order`; 208 if final node has more than one edge, 209 `output_edge_order` must be provided. 210 memory_limit: Maximum number of elements in an array during contractions. 211 ignore_edge_order: An option to ignore the output edge order. 212 213 Returns: 214 Final node after full contraction. 215 """ 216 217 n = len(list(nodes)) #pytype thing 218 _nodes = nodes 219 if n <= 0: 220 raise ValueError("Cannot contract empty tensor network.") 221 if n == 1: 222 if not ignore_edge_order: 223 if output_edge_order is None: 224 output_edge_order = list( 225 (get_all_edges(_nodes) - get_all_nondangling(_nodes))) 226 if len(output_edge_order) > 1: 227 raise ValueError("The final node after contraction has more than " 228 "one dangling edge. In this case `output_edge_order` " 229 "has to be provided.") 230 231 edges = get_all_nondangling(_nodes) 232 if edges: 233 final_node = contract_parallel(edges.pop()) 234 else: 235 final_node = list(_nodes)[0] 236 final_node.reorder_edges(output_edge_order) 237 if not ignore_edge_order: 238 final_node.reorder_edges(output_edge_order) 239 return final_node 240 241 if n < 5: 242 return optimal(nodes, output_edge_order, memory_limit, ignore_edge_order) 243 if n < 7: 244 return branch(nodes, output_edge_order, memory_limit, ignore_edge_order) 245 if n < 9: 246 return branch(nodes, output_edge_order, memory_limit, nbranch=2, ignore_edge_order=ignore_edge_order) 247 if n < 15: 248 return branch(nodes, output_edge_order, nbranch=1, ignore_edge_order=ignore_edge_order) 249 return greedy(nodes, output_edge_order, memory_limit, ignore_edge_order) 250 251 252 def custom( 253 nodes: Iterable[BaseNode], 254 optimizer: Any, 255 output_edge_order: Sequence[Edge] = None, 256 memory_limit: Optional[int] = None, 257 ignore_edge_order: bool = False) -> BaseNode: 258 """Uses a custom path optimizer created by the user to calculate paths. 259 260 The custom path optimizer should inherit `opt_einsum`'s `PathOptimizer`. 261 For more details: 262 https://optimized-einsum.readthedocs.io/en/latest/custom_paths.html 263 264 Args: 265 nodes: an iterable of Nodes 266 output_edge_order: An optional list of edges. 267 Edges of the final node in `nodes_set` 268 are reordered into `output_edge_order`; 269 if final node has more than one edge, 270 output_edge_order` must be provided. 271 optimizer: A custom `opt_einsum.PathOptimizer` object. 272 memory_limit: Maximum number of elements in an array during contractions. 273 ignore_edge_order: An option to ignore the output edge order. 274 275 Returns: 276 Final node after full contraction. 277 """ 278 alg = functools.partial(optimizer, memory_limit=memory_limit) 279 return base(nodes, alg, output_edge_order, ignore_edge_order) 280 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/tensornetwork/contractors/opt_einsum_paths/path_contractors.py b/tensornetwork/contractors/opt_einsum_paths/path_contractors.py --- a/tensornetwork/contractors/opt_einsum_paths/path_contractors.py +++ b/tensornetwork/contractors/opt_einsum_paths/path_contractors.py @@ -19,7 +19,7 @@ # pylint: disable=line-too-long from tensornetwork.network_operations import check_connected, get_all_edges, get_subgraph_dangling # pylint: disable=line-too-long -from tensornetwork.network_components import get_all_nondangling, contract_parallel +from tensornetwork.network_components import get_all_nondangling, contract_parallel, contract_between from tensornetwork.network_components import Edge, BaseNode from tensornetwork.contractors.opt_einsum_paths import utils from typing import Any, Optional, Sequence, Iterable @@ -50,7 +50,6 @@ Final node after full contraction. """ nodes_set = set(nodes) - check_connected(nodes_set) edges = get_all_edges(nodes_set) #output edge order has to be determinded before any contraction #(edges are refreshed after contractions) @@ -84,7 +83,7 @@ # Then apply `opt_einsum`'s algorithm path, nodes = utils.get_path(nodes_set, algorithm) for a, b in path: - new_node = nodes[a] @ nodes[b] + new_node = contract_between(nodes[a], nodes[b], allow_outer_product=True) nodes.append(new_node) nodes = utils.multi_remove(nodes, [a, b]) @@ -192,7 +191,7 @@ # pylint: disable=too-many-return-statements def auto( - nodes: BaseNode, + nodes: Iterable[BaseNode], output_edge_order: Optional[Sequence[Edge]] = None, memory_limit: Optional[int] = None, ignore_edge_order: bool = False) -> BaseNode:
{"golden_diff": "diff --git a/tensornetwork/contractors/opt_einsum_paths/path_contractors.py b/tensornetwork/contractors/opt_einsum_paths/path_contractors.py\n--- a/tensornetwork/contractors/opt_einsum_paths/path_contractors.py\n+++ b/tensornetwork/contractors/opt_einsum_paths/path_contractors.py\n@@ -19,7 +19,7 @@\n # pylint: disable=line-too-long\n from tensornetwork.network_operations import check_connected, get_all_edges, get_subgraph_dangling\n # pylint: disable=line-too-long\n-from tensornetwork.network_components import get_all_nondangling, contract_parallel\n+from tensornetwork.network_components import get_all_nondangling, contract_parallel, contract_between\n from tensornetwork.network_components import Edge, BaseNode\n from tensornetwork.contractors.opt_einsum_paths import utils\n from typing import Any, Optional, Sequence, Iterable\n@@ -50,7 +50,6 @@\n Final node after full contraction.\n \"\"\"\n nodes_set = set(nodes)\n- check_connected(nodes_set)\n edges = get_all_edges(nodes_set)\n #output edge order has to be determinded before any contraction\n #(edges are refreshed after contractions)\n@@ -84,7 +83,7 @@\n # Then apply `opt_einsum`'s algorithm\n path, nodes = utils.get_path(nodes_set, algorithm)\n for a, b in path:\n- new_node = nodes[a] @ nodes[b]\n+ new_node = contract_between(nodes[a], nodes[b], allow_outer_product=True)\n nodes.append(new_node)\n nodes = utils.multi_remove(nodes, [a, b])\n \n@@ -192,7 +191,7 @@\n \n # pylint: disable=too-many-return-statements\n def auto(\n- nodes: BaseNode,\n+ nodes: Iterable[BaseNode],\n output_edge_order: Optional[Sequence[Edge]] = None,\n memory_limit: Optional[int] = None,\n ignore_edge_order: bool = False) -> BaseNode:\n", "issue": "Enable contractor contraction on disconnected graphs\nWhen we are using tensor network to represent a tensor in the quantum physics, there is no rule that the network must be connected. for example, we can represent an exterior product from two non-connected nodes.\n", "before_files": [{"content": "# pylint: disable=cyclic-import\n# Copyright 2019 The TensorNetwork Authors\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\"\"\"Contractors based on `opt_einsum`'s path algorithms.\"\"\"\n\nimport functools\nimport opt_einsum\n# pylint: disable=line-too-long\nfrom tensornetwork.network_operations import check_connected, get_all_edges, get_subgraph_dangling\n# pylint: disable=line-too-long\nfrom tensornetwork.network_components import get_all_nondangling, contract_parallel\nfrom tensornetwork.network_components import Edge, BaseNode\nfrom tensornetwork.contractors.opt_einsum_paths import utils\nfrom typing import Any, Optional, Sequence, Iterable\n\n#TODO (martin): add return types of functions back once TensorNetwork is gone\n# remove _base_network\n# _base_nodes -> base\n\n\ndef base(nodes: Iterable[BaseNode],\n algorithm: utils.Algorithm,\n output_edge_order: Optional[Sequence[Edge]] = None,\n ignore_edge_order: bool = False) -> BaseNode:\n \"\"\"Base method for all `opt_einsum` contractors.\n\n Args:\n nodes: A collection of connected nodes.\n algorithm: `opt_einsum` contraction method to use.\n output_edge_order: An optional list of edges. Edges of the\n final node in `nodes_set`\n are reordered into `output_edge_order`;\n if final node has more than one edge,\n `output_edge_order` must be pronvided.\n ignore_edge_order: An option to ignore the output edge\n order.\n\n Returns:\n Final node after full contraction.\n \"\"\"\n nodes_set = set(nodes)\n check_connected(nodes_set)\n edges = get_all_edges(nodes_set)\n #output edge order has to be determinded before any contraction\n #(edges are refreshed after contractions)\n\n if not ignore_edge_order:\n if output_edge_order is None:\n output_edge_order = list(get_subgraph_dangling(nodes))\n if len(output_edge_order) > 1:\n raise ValueError(\"The final node after contraction has more than \"\n \"one remaining edge. In this case `output_edge_order` \"\n \"has to be provided.\")\n\n if set(output_edge_order) != get_subgraph_dangling(nodes):\n raise ValueError(\n \"output edges are not equal to the remaining \"\n \"non-contracted edges of the final node.\"\n )\n\n for edge in edges:\n if not edge.is_disabled: #if its disabled we already contracted it\n if edge.is_trace():\n nodes_set.remove(edge.node1)\n nodes_set.add(contract_parallel(edge))\n\n if len(nodes_set) == 1:\n # There's nothing to contract.\n if ignore_edge_order:\n return list(nodes_set)[0]\n return list(nodes_set)[0].reorder_edges(output_edge_order)\n\n # Then apply `opt_einsum`'s algorithm\n path, nodes = utils.get_path(nodes_set, algorithm)\n for a, b in path:\n new_node = nodes[a] @ nodes[b]\n nodes.append(new_node)\n nodes = utils.multi_remove(nodes, [a, b])\n\n # if the final node has more than one edge,\n # output_edge_order has to be specified\n final_node = nodes[0] # nodes were connected, we checked this\n if not ignore_edge_order:\n final_node.reorder_edges(output_edge_order)\n return final_node\n\n\ndef optimal(\n nodes: Iterable[BaseNode],\n output_edge_order: Optional[Sequence[Edge]] = None,\n memory_limit: Optional[int] = None,\n ignore_edge_order: bool = False) -> BaseNode:\n \"\"\"Optimal contraction order via `opt_einsum`.\n\n This method will find the truly optimal contraction order via\n `opt_einsum`'s depth first search algorithm. Since this search is\n exhaustive, if your network is large (n>10), then the search may\n take longer than just contracting in a suboptimal way.\n\n Args:\n nodes: an iterable of Nodes\n output_edge_order: An optional list of edges.\n Edges of the final node in `nodes_set`\n are reordered into `output_edge_order`;\n if final node has more than one edge,\n `output_edge_order` must be provided.\n memory_limit: Maximum number of elements in an array during contractions.\n ignore_edge_order: An option to ignore the output edge order.\n\n Returns:\n The final node after full contraction.\n \"\"\"\n alg = functools.partial(opt_einsum.paths.optimal, memory_limit=memory_limit)\n return base(nodes, alg, output_edge_order, ignore_edge_order)\n\n\ndef branch(nodes: Iterable[BaseNode],\n output_edge_order: Optional[Sequence[Edge]] = None,\n memory_limit: Optional[int] = None,\n nbranch: Optional[int] = None,\n ignore_edge_order: bool = False) -> BaseNode:\n \"\"\"Branch contraction path via `opt_einsum`.\n\n This method uses the DFS approach of `optimal` while sorting potential\n contractions based on a heuristic cost, in order to reduce time spent\n in exploring paths which are unlikely to be optimal.\n For more details:\n https://optimized-einsum.readthedocs.io/en/latest/branching_path.html\n\n Args:\n nodes: an iterable of Nodes\n output_edge_order: An optional list of edges.\n Edges of the final node in `nodes_set`\n are reordered into `output_edge_order`;\n if final node has more than one edge,\n `output_edge_order` must be provided.\n memory_limit: Maximum number of elements in an array during contractions.\n nbranch: Number of best contractions to explore.\n If None it explores all inner products starting with those that\n have the best cost heuristic.\n ignore_edge_order: An option to ignore the output edge order.\n\n Returns:\n The final node after full contraction.\n \"\"\"\n alg = functools.partial(\n opt_einsum.paths.branch, memory_limit=memory_limit, nbranch=nbranch)\n return base(nodes, alg, output_edge_order, ignore_edge_order)\n\n\ndef greedy(\n nodes: Iterable[BaseNode],\n output_edge_order: Optional[Sequence[Edge]] = None,\n memory_limit: Optional[int] = None,\n ignore_edge_order: bool = False) -> BaseNode:\n \"\"\"Greedy contraction path via `opt_einsum`.\n\n This provides a more efficient strategy than `optimal` for finding\n contraction paths in large networks. First contracts pairs of tensors\n by finding the pair with the lowest cost at each step. Then it performs\n the outer products.\n For more details:\n https://optimized-einsum.readthedocs.io/en/latest/greedy_path.html\n\n Args:\n nodes: an iterable of Nodes\n output_edge_order: An optional list of edges.\n Edges of the final node in `nodes_set`\n are reordered into `output_edge_order`;\n if final node has more than one edge,\n `output_edge_order` must be provided.\n memory_limit: Maximum number of elements in an array during contractions.\n ignore_edge_order: An option to ignore the output edge order.\n\n Returns:\n The final node after full contraction.\n \"\"\"\n alg = functools.partial(opt_einsum.paths.greedy, memory_limit=memory_limit)\n return base(nodes, alg, output_edge_order, ignore_edge_order)\n\n\n# pylint: disable=too-many-return-statements\ndef auto(\n nodes: BaseNode,\n output_edge_order: Optional[Sequence[Edge]] = None,\n memory_limit: Optional[int] = None,\n ignore_edge_order: bool = False) -> BaseNode:\n \"\"\"Chooses one of the above algorithms according to network size.\n\n Default behavior is based on `opt_einsum`'s `auto` contractor.\n\n Args:\n nodes: A collection of connected nodes.\n output_edge_order: An optional list of edges.\n Edges of the final node in `nodes_set`\n are reordered into `output_edge_order`;\n if final node has more than one edge,\n `output_edge_order` must be provided.\n memory_limit: Maximum number of elements in an array during contractions.\n ignore_edge_order: An option to ignore the output edge order.\n\n Returns:\n Final node after full contraction.\n \"\"\"\n\n n = len(list(nodes)) #pytype thing\n _nodes = nodes\n if n <= 0:\n raise ValueError(\"Cannot contract empty tensor network.\")\n if n == 1:\n if not ignore_edge_order:\n if output_edge_order is None:\n output_edge_order = list(\n (get_all_edges(_nodes) - get_all_nondangling(_nodes)))\n if len(output_edge_order) > 1:\n raise ValueError(\"The final node after contraction has more than \"\n \"one dangling edge. In this case `output_edge_order` \"\n \"has to be provided.\")\n\n edges = get_all_nondangling(_nodes)\n if edges:\n final_node = contract_parallel(edges.pop())\n else:\n final_node = list(_nodes)[0]\n final_node.reorder_edges(output_edge_order)\n if not ignore_edge_order:\n final_node.reorder_edges(output_edge_order)\n return final_node\n\n if n < 5:\n return optimal(nodes, output_edge_order, memory_limit, ignore_edge_order)\n if n < 7:\n return branch(nodes, output_edge_order, memory_limit, ignore_edge_order)\n if n < 9:\n return branch(nodes, output_edge_order, memory_limit, nbranch=2, ignore_edge_order=ignore_edge_order)\n if n < 15:\n return branch(nodes, output_edge_order, nbranch=1, ignore_edge_order=ignore_edge_order)\n return greedy(nodes, output_edge_order, memory_limit, ignore_edge_order)\n\n\ndef custom(\n nodes: Iterable[BaseNode],\n optimizer: Any,\n output_edge_order: Sequence[Edge] = None,\n memory_limit: Optional[int] = None,\n ignore_edge_order: bool = False) -> BaseNode:\n \"\"\"Uses a custom path optimizer created by the user to calculate paths.\n\n The custom path optimizer should inherit `opt_einsum`'s `PathOptimizer`.\n For more details:\n https://optimized-einsum.readthedocs.io/en/latest/custom_paths.html\n\n Args:\n nodes: an iterable of Nodes\n output_edge_order: An optional list of edges.\n Edges of the final node in `nodes_set`\n are reordered into `output_edge_order`;\n if final node has more than one edge,\n output_edge_order` must be provided.\n optimizer: A custom `opt_einsum.PathOptimizer` object.\n memory_limit: Maximum number of elements in an array during contractions.\n ignore_edge_order: An option to ignore the output edge order.\n\n Returns:\n Final node after full contraction.\n \"\"\"\n alg = functools.partial(optimizer, memory_limit=memory_limit)\n return base(nodes, alg, output_edge_order, ignore_edge_order)\n", "path": "tensornetwork/contractors/opt_einsum_paths/path_contractors.py"}], "after_files": [{"content": "# pylint: disable=cyclic-import\n# Copyright 2019 The TensorNetwork Authors\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\"\"\"Contractors based on `opt_einsum`'s path algorithms.\"\"\"\n\nimport functools\nimport opt_einsum\n# pylint: disable=line-too-long\nfrom tensornetwork.network_operations import check_connected, get_all_edges, get_subgraph_dangling\n# pylint: disable=line-too-long\nfrom tensornetwork.network_components import get_all_nondangling, contract_parallel, contract_between\nfrom tensornetwork.network_components import Edge, BaseNode\nfrom tensornetwork.contractors.opt_einsum_paths import utils\nfrom typing import Any, Optional, Sequence, Iterable\n\n#TODO (martin): add return types of functions back once TensorNetwork is gone\n# remove _base_network\n# _base_nodes -> base\n\n\ndef base(nodes: Iterable[BaseNode],\n algorithm: utils.Algorithm,\n output_edge_order: Optional[Sequence[Edge]] = None,\n ignore_edge_order: bool = False) -> BaseNode:\n \"\"\"Base method for all `opt_einsum` contractors.\n\n Args:\n nodes: A collection of connected nodes.\n algorithm: `opt_einsum` contraction method to use.\n output_edge_order: An optional list of edges. Edges of the\n final node in `nodes_set`\n are reordered into `output_edge_order`;\n if final node has more than one edge,\n `output_edge_order` must be pronvided.\n ignore_edge_order: An option to ignore the output edge\n order.\n\n Returns:\n Final node after full contraction.\n \"\"\"\n nodes_set = set(nodes)\n edges = get_all_edges(nodes_set)\n #output edge order has to be determinded before any contraction\n #(edges are refreshed after contractions)\n\n if not ignore_edge_order:\n if output_edge_order is None:\n output_edge_order = list(get_subgraph_dangling(nodes))\n if len(output_edge_order) > 1:\n raise ValueError(\"The final node after contraction has more than \"\n \"one remaining edge. In this case `output_edge_order` \"\n \"has to be provided.\")\n\n if set(output_edge_order) != get_subgraph_dangling(nodes):\n raise ValueError(\n \"output edges are not equal to the remaining \"\n \"non-contracted edges of the final node.\"\n )\n\n for edge in edges:\n if not edge.is_disabled: #if its disabled we already contracted it\n if edge.is_trace():\n nodes_set.remove(edge.node1)\n nodes_set.add(contract_parallel(edge))\n\n if len(nodes_set) == 1:\n # There's nothing to contract.\n if ignore_edge_order:\n return list(nodes_set)[0]\n return list(nodes_set)[0].reorder_edges(output_edge_order)\n\n # Then apply `opt_einsum`'s algorithm\n path, nodes = utils.get_path(nodes_set, algorithm)\n for a, b in path:\n new_node = contract_between(nodes[a], nodes[b], allow_outer_product=True)\n nodes.append(new_node)\n nodes = utils.multi_remove(nodes, [a, b])\n\n # if the final node has more than one edge,\n # output_edge_order has to be specified\n final_node = nodes[0] # nodes were connected, we checked this\n if not ignore_edge_order:\n final_node.reorder_edges(output_edge_order)\n return final_node\n\n\ndef optimal(\n nodes: Iterable[BaseNode],\n output_edge_order: Optional[Sequence[Edge]] = None,\n memory_limit: Optional[int] = None,\n ignore_edge_order: bool = False) -> BaseNode:\n \"\"\"Optimal contraction order via `opt_einsum`.\n\n This method will find the truly optimal contraction order via\n `opt_einsum`'s depth first search algorithm. Since this search is\n exhaustive, if your network is large (n>10), then the search may\n take longer than just contracting in a suboptimal way.\n\n Args:\n nodes: an iterable of Nodes\n output_edge_order: An optional list of edges.\n Edges of the final node in `nodes_set`\n are reordered into `output_edge_order`;\n if final node has more than one edge,\n `output_edge_order` must be provided.\n memory_limit: Maximum number of elements in an array during contractions.\n ignore_edge_order: An option to ignore the output edge order.\n\n Returns:\n The final node after full contraction.\n \"\"\"\n alg = functools.partial(opt_einsum.paths.optimal, memory_limit=memory_limit)\n return base(nodes, alg, output_edge_order, ignore_edge_order)\n\n\ndef branch(nodes: Iterable[BaseNode],\n output_edge_order: Optional[Sequence[Edge]] = None,\n memory_limit: Optional[int] = None,\n nbranch: Optional[int] = None,\n ignore_edge_order: bool = False) -> BaseNode:\n \"\"\"Branch contraction path via `opt_einsum`.\n\n This method uses the DFS approach of `optimal` while sorting potential\n contractions based on a heuristic cost, in order to reduce time spent\n in exploring paths which are unlikely to be optimal.\n For more details:\n https://optimized-einsum.readthedocs.io/en/latest/branching_path.html\n\n Args:\n nodes: an iterable of Nodes\n output_edge_order: An optional list of edges.\n Edges of the final node in `nodes_set`\n are reordered into `output_edge_order`;\n if final node has more than one edge,\n `output_edge_order` must be provided.\n memory_limit: Maximum number of elements in an array during contractions.\n nbranch: Number of best contractions to explore.\n If None it explores all inner products starting with those that\n have the best cost heuristic.\n ignore_edge_order: An option to ignore the output edge order.\n\n Returns:\n The final node after full contraction.\n \"\"\"\n alg = functools.partial(\n opt_einsum.paths.branch, memory_limit=memory_limit, nbranch=nbranch)\n return base(nodes, alg, output_edge_order, ignore_edge_order)\n\n\ndef greedy(\n nodes: Iterable[BaseNode],\n output_edge_order: Optional[Sequence[Edge]] = None,\n memory_limit: Optional[int] = None,\n ignore_edge_order: bool = False) -> BaseNode:\n \"\"\"Greedy contraction path via `opt_einsum`.\n\n This provides a more efficient strategy than `optimal` for finding\n contraction paths in large networks. First contracts pairs of tensors\n by finding the pair with the lowest cost at each step. Then it performs\n the outer products.\n For more details:\n https://optimized-einsum.readthedocs.io/en/latest/greedy_path.html\n\n Args:\n nodes: an iterable of Nodes\n output_edge_order: An optional list of edges.\n Edges of the final node in `nodes_set`\n are reordered into `output_edge_order`;\n if final node has more than one edge,\n `output_edge_order` must be provided.\n memory_limit: Maximum number of elements in an array during contractions.\n ignore_edge_order: An option to ignore the output edge order.\n\n Returns:\n The final node after full contraction.\n \"\"\"\n alg = functools.partial(opt_einsum.paths.greedy, memory_limit=memory_limit)\n return base(nodes, alg, output_edge_order, ignore_edge_order)\n\n\n# pylint: disable=too-many-return-statements\ndef auto(\n nodes: Iterable[BaseNode],\n output_edge_order: Optional[Sequence[Edge]] = None,\n memory_limit: Optional[int] = None,\n ignore_edge_order: bool = False) -> BaseNode:\n \"\"\"Chooses one of the above algorithms according to network size.\n\n Default behavior is based on `opt_einsum`'s `auto` contractor.\n\n Args:\n nodes: A collection of connected nodes.\n output_edge_order: An optional list of edges.\n Edges of the final node in `nodes_set`\n are reordered into `output_edge_order`;\n if final node has more than one edge,\n `output_edge_order` must be provided.\n memory_limit: Maximum number of elements in an array during contractions.\n ignore_edge_order: An option to ignore the output edge order.\n\n Returns:\n Final node after full contraction.\n \"\"\"\n\n n = len(list(nodes)) #pytype thing\n _nodes = nodes\n if n <= 0:\n raise ValueError(\"Cannot contract empty tensor network.\")\n if n == 1:\n if not ignore_edge_order:\n if output_edge_order is None:\n output_edge_order = list(\n (get_all_edges(_nodes) - get_all_nondangling(_nodes)))\n if len(output_edge_order) > 1:\n raise ValueError(\"The final node after contraction has more than \"\n \"one dangling edge. In this case `output_edge_order` \"\n \"has to be provided.\")\n\n edges = get_all_nondangling(_nodes)\n if edges:\n final_node = contract_parallel(edges.pop())\n else:\n final_node = list(_nodes)[0]\n final_node.reorder_edges(output_edge_order)\n if not ignore_edge_order:\n final_node.reorder_edges(output_edge_order)\n return final_node\n\n if n < 5:\n return optimal(nodes, output_edge_order, memory_limit, ignore_edge_order)\n if n < 7:\n return branch(nodes, output_edge_order, memory_limit, ignore_edge_order)\n if n < 9:\n return branch(nodes, output_edge_order, memory_limit, nbranch=2, ignore_edge_order=ignore_edge_order)\n if n < 15:\n return branch(nodes, output_edge_order, nbranch=1, ignore_edge_order=ignore_edge_order)\n return greedy(nodes, output_edge_order, memory_limit, ignore_edge_order)\n\n\ndef custom(\n nodes: Iterable[BaseNode],\n optimizer: Any,\n output_edge_order: Sequence[Edge] = None,\n memory_limit: Optional[int] = None,\n ignore_edge_order: bool = False) -> BaseNode:\n \"\"\"Uses a custom path optimizer created by the user to calculate paths.\n\n The custom path optimizer should inherit `opt_einsum`'s `PathOptimizer`.\n For more details:\n https://optimized-einsum.readthedocs.io/en/latest/custom_paths.html\n\n Args:\n nodes: an iterable of Nodes\n output_edge_order: An optional list of edges.\n Edges of the final node in `nodes_set`\n are reordered into `output_edge_order`;\n if final node has more than one edge,\n output_edge_order` must be provided.\n optimizer: A custom `opt_einsum.PathOptimizer` object.\n memory_limit: Maximum number of elements in an array during contractions.\n ignore_edge_order: An option to ignore the output edge order.\n\n Returns:\n Final node after full contraction.\n \"\"\"\n alg = functools.partial(optimizer, memory_limit=memory_limit)\n return base(nodes, alg, output_edge_order, ignore_edge_order)\n", "path": "tensornetwork/contractors/opt_einsum_paths/path_contractors.py"}]}
3,543
444
gh_patches_debug_12207
rasdani/github-patches
git_diff
ESMCI__cime-249
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Misleading error message in case_setup.py I suggest changing "%s NINST value %d greater than %s NTASKS %d" (e.g ERROR: ATM NINST value 1 greater than ATM NTASKS 0) to "NINST_%s value %d greater than NTASKS_%s %d (e.g. ERROR: NINST_ATM value 1 greater than NTASKS_ATM 0) to reflect the real variable name which can be queried or changed with xmlquery/xmlchange --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `utils/python/CIME/case_setup.py` Content: ``` 1 """ 2 Library for case.setup. 3 """ 4 5 from CIME.XML.standard_module_setup import * 6 7 from CIME.check_lockedfiles import check_lockedfiles 8 from CIME.preview_namelists import preview_namelists 9 from CIME.XML.env_mach_pes import EnvMachPes 10 from CIME.XML.component import Component 11 from CIME.XML.compilers import Compilers 12 from CIME.utils import expect, run_cmd, append_status 13 14 import shutil, time, glob 15 16 logger = logging.getLogger(__name__) 17 18 ############################################################################### 19 def _check_pelayouts_require_rebuild(case, models): 20 ############################################################################### 21 """ 22 Create if we require a rebuild, expects cwd is caseroot 23 """ 24 locked_pes = "LockedFiles/env_mach_pes.xml" 25 if os.path.exists(locked_pes): 26 # Look to see if $comp_PE_CHANGE_REQUIRES_REBUILD is defined 27 # for any component 28 env_mach_pes_locked = EnvMachPes(infile=locked_pes) 29 for comp in models: 30 if case.get_value("%s_PE_CHANGE_REQUIRES_REBUILD" % comp): 31 # Changing these values in env_mach_pes.xml will force 32 # you to clean the corresponding component 33 old_tasks = env_mach_pes_locked.get_value("NTASKS_%s" % comp) 34 old_threads = env_mach_pes_locked.get_value("NTHRDS_%s" % comp) 35 old_inst = env_mach_pes_locked.get_value("NINST_%s" % comp) 36 37 new_tasks = case.get_value("NTASKS_%s" % comp) 38 new_threads = case.get_value("NTHRDS_%s" % comp) 39 new_inst = case.get_value("NINST_%s" % comp) 40 41 if old_tasks != new_tasks or old_threads != new_threads or old_inst != new_inst: 42 logger.warn("%s pe change requires clean build" % comp) 43 cleanflag = comp.lower() 44 run_cmd("./case.build --clean %s" % cleanflag) 45 46 os.remove(locked_pes) 47 48 ############################################################################### 49 def _build_usernl_files(case, model, comp): 50 ############################################################################### 51 """ 52 Create user_nl_xxx files, expects cwd is caseroot 53 """ 54 model = model.upper() 55 model_file = case.get_value("CONFIG_%s_FILE" % model) 56 model_dir = os.path.dirname(model_file) 57 58 expect(os.path.isdir(model_dir), 59 "cannot find cime_config directory %s for component %s" % (model_dir, comp)) 60 61 if comp == "cpl": 62 if not os.path.exists("user_nl_cpl"): 63 shutil.copy(os.path.join(model_dir, "user_nl_cpl"), ".") 64 else: 65 ninst = case.get_value("NINST_%s" % model) 66 nlfile = "user_nl_%s" % comp 67 model_nl = os.path.join(model_dir, nlfile) 68 if os.path.exists(model_nl): 69 if ninst > 1: 70 for inst_counter in xrange(1, ninst+1): 71 case_nlfile = "%s_%04d" % (nlfile, inst_counter) 72 if not os.path.exists(case_nlfile): 73 shutil.copy(model_nl, case_nlfile) 74 else: 75 if not os.path.exists(nlfile): 76 shutil.copy(model_nl, nlfile) 77 78 ############################################################################### 79 def case_setup(case, clean=False, test_mode=False, reset=False): 80 ############################################################################### 81 caseroot = case.get_value("CASEROOT") 82 os.chdir(caseroot) 83 msg = "case.setup starting" 84 append_status(msg, caseroot=caseroot, sfile="CaseStatus") 85 86 cimeroot = os.environ["CIMEROOT"] 87 88 # Check that $DIN_LOC_ROOT exists - and abort if not a namelist compare tests 89 din_loc_root = case.get_value("DIN_LOC_ROOT") 90 testcase = case.get_value("TESTCASE") 91 expect(not (not os.path.isdir(din_loc_root) and testcase != "SBN"), 92 "inputdata root is not a directory: \"$din_loc_root\" ") 93 94 # Check that userdefine settings are specified before expanding variable 95 for vid, value in case: 96 expect(not (type(value) is str and "USERDEFINED_required_build" in value), 97 "Parameter '%s' must be defined" % vid) 98 99 # Create batch script 100 if reset or clean: 101 # Clean batch script 102 103 backup_dir = "PESetupHist/b.%s" % time.strftime("%y%m%d-%H%M%S") 104 if not os.path.isdir(backup_dir): 105 os.makedirs(backup_dir) 106 107 # back up relevant files 108 for fileglob in ["case.run", "env_build.xml", "env_mach_pes.xml", "Macros*"]: 109 for filename in glob.glob(fileglob): 110 shutil.copy(filename, backup_dir) 111 if os.path.exists("case.run"): 112 os.remove("case.run") 113 114 # only do the following if are NOT in testmode 115 if not test_mode: 116 # rebuild the models (even on restart) 117 case.set_value("BUILD_COMPLETE", False) 118 119 # backup and then clean test script 120 if os.path.exists("case.test"): 121 shutil.copy("case.test", backup_dir) 122 os.remove("case.test") 123 logger.info("Successfully cleaned test script case.test") 124 125 if os.path.exists("case.testdriver"): 126 shutil.copy("case.testdriver", backup_dir) 127 os.remove("case.testdriver") 128 logger.info("Successfully cleaned test script case.testdriver") 129 130 logger.info("Successfully cleaned batch script case.run") 131 132 logger.info("Successfully cleaned batch script case.run") 133 logger.info("Some files have been saved to %s" % backup_dir) 134 135 msg = "case.setup clean complete" 136 append_status(msg, caseroot=caseroot, sfile="CaseStatus") 137 138 if not clean: 139 drv_comp = Component() 140 models = drv_comp.get_valid_model_components() 141 models.remove("DRV") 142 143 mach = case.get_value("MACH") 144 expect(mach is not None, "xml variable MACH is not set") 145 146 # Create Macros file only if it does not exist 147 if not os.path.exists("Macros"): 148 logger.debug("Creating Macros file for %s" % mach) 149 compilers = Compilers(compiler=case.get_value("COMPILER"), machine=mach, os_=case.get_value("OS"), mpilib=case.get_value("MPILIB")) 150 compilers.write_macros_file() 151 else: 152 logger.debug("Macros script already created ...skipping") 153 154 # Set tasks to 1 if mpi-serial library 155 if case.get_value("MPILIB") == "mpi-serial": 156 for vid, value in case: 157 if vid.startswith("NTASKS_") and value != 1: 158 case.set_value(vid, 1) 159 160 # Check ninst. 161 # In CIME there can be multiple instances of each component model (an ensemble) NINST is the instance of that component. 162 for comp in models: 163 ninst = case.get_value("NINST_%s" % comp) 164 ntasks = case.get_value("NTASKS_%s" % comp) 165 if ninst > ntasks: 166 if ntasks == 1: 167 case.set_value("NTASKS_%s" % comp, ninst) 168 else: 169 expect(False, "%s NINST value %d greater than %s NTASKS %d" % (comp, ninst, comp, ntasks)) 170 171 expect(not (case.get_value("BUILD_THREADED") and case.get_value("COMPILER") == "nag"), 172 "it is not possible to run with OpenMP if using the NAG Fortran compiler") 173 174 if os.path.exists("case.run"): 175 logger.info("Machine/Decomp/Pes configuration has already been done ...skipping") 176 else: 177 _check_pelayouts_require_rebuild(case, models) 178 179 if os.path.exists("LockedFiles/env_build.xml"): 180 os.remove("LockedFiles/env_build.xml") 181 182 case.flush() 183 check_lockedfiles() 184 185 pestot = int(run_cmd("Tools/taskmaker.pl -sumonly")) 186 case.set_value("TOTALPES", pestot) 187 188 # Compute cost based on PE count 189 pval = 1 190 pcnt = 0 191 while pval < pestot: 192 pval *= 2 193 pcnt += 6 # (scaling like sqrt(6/10)) 194 pcost = 3 - pcnt / 10 # (3 is 64 with 6) 195 196 # Compute cost based on DEBUG 197 dcost = 3 if case.get_value("DEBUG") else 0 198 199 # Compute cost based on run length 200 # For simplicity, we use a heuristic just based on STOP_OPTION (not considering 201 # STOP_N), and only deal with options longer than ndays 202 lcost = 0 203 if "nmonth" in case.get_value("STOP_OPTION"): 204 # N months costs 30x as much as N days; since cost is based on log-base-2, add 5 205 lcost = 5 206 elif "nyear" in case.get_value("STOP_OPTION"): 207 # N years costs 365x as much as N days; since cost is based on log-base-2, add 9 208 lcost = 9 209 210 estcost = pcost + dcost + lcost 211 for cost in ["CCSM_CCOST", "CCSM_GCOST", "CCSM_TCOST", "CCSM_CCOST"]: 212 estcost += case.get_value(cost) 213 214 case.set_value("CCSM_PCOST", pcost) 215 case.set_value("CCSM_ESTCOST", estcost) 216 217 # create batch file 218 logger.info("Creating batch script case.run") 219 220 # Use BatchFactory to get the appropriate instance of a BatchMaker, 221 # use it to create our batch scripts 222 env_batch = case._get_env("batch") 223 for job in env_batch.get_jobs(): 224 input_batch_script = os.path.join(case.get_value("MACHDIR"), env_batch.get_value('template', subgroup=job)) 225 if job == "case.test" and testcase is not None and not test_mode: 226 logger.info("Writing %s script" % job) 227 testscript = os.path.join(cimeroot, "scripts", "Testing", "Testcases", "%s_script" % testcase) 228 # Short term fix to be removed when csh tests are removed 229 if not os.path.exists(testscript): 230 env_batch.make_batch_script(input_batch_script, job, case) 231 elif job != "case.test": 232 logger.info("Writing %s script" % job) 233 env_batch.make_batch_script(input_batch_script, job, case) 234 235 # Make a copy of env_mach_pes.xml in order to be able 236 # to check that it does not change once case.setup is invoked 237 logger.info("Locking file env_mach_pes.xml") 238 case.flush() 239 shutil.copy("env_mach_pes.xml", "LockedFiles") 240 241 # Create user_nl files for the required number of instances 242 if not os.path.exists("user_nl_cpl"): 243 logger.info("Creating user_nl_xxx files for components and cpl") 244 # loop over models 245 for model in models: 246 comp = case.get_value("COMP_%s" % model) 247 logger.info("Building %s usernl files"%model) 248 _build_usernl_files(case, model, comp) 249 if comp == "cism": 250 run_cmd("%s/../components/cism/cime_config/cism.template %s" % (cimeroot, caseroot)) 251 252 _build_usernl_files(case, "drv", "cpl") 253 254 # Run preview namelists for scripts 255 logger.info("preview_namelists") 256 preview_namelists(case) 257 258 logger.info("See ./CaseDoc for component namelists") 259 logger.info("If an old case build already exists, might want to run \'case.build --clean-all\' before building") 260 261 # Create test script if appropriate 262 # Short term fix to be removed when csh tests are removed 263 if os.path.exists("env_test.xml"): 264 if not os.path.exists("case.test"): 265 logger.info("Starting testcase.setup") 266 run_cmd("./testcase.setup -caseroot %s" % caseroot) 267 logger.info("Finished testcase.setup") 268 269 msg = "case.setup complete" 270 append_status(msg, caseroot=caseroot, sfile="CaseStatus") 271 272 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/utils/python/CIME/case_setup.py b/utils/python/CIME/case_setup.py --- a/utils/python/CIME/case_setup.py +++ b/utils/python/CIME/case_setup.py @@ -166,7 +166,7 @@ if ntasks == 1: case.set_value("NTASKS_%s" % comp, ninst) else: - expect(False, "%s NINST value %d greater than %s NTASKS %d" % (comp, ninst, comp, ntasks)) + expect(False, "NINST_%s value %d greater than NTASKS_%s %d" % (comp, ninst, comp, ntasks)) expect(not (case.get_value("BUILD_THREADED") and case.get_value("COMPILER") == "nag"), "it is not possible to run with OpenMP if using the NAG Fortran compiler")
{"golden_diff": "diff --git a/utils/python/CIME/case_setup.py b/utils/python/CIME/case_setup.py\n--- a/utils/python/CIME/case_setup.py\n+++ b/utils/python/CIME/case_setup.py\n@@ -166,7 +166,7 @@\n if ntasks == 1:\n case.set_value(\"NTASKS_%s\" % comp, ninst)\n else:\n- expect(False, \"%s NINST value %d greater than %s NTASKS %d\" % (comp, ninst, comp, ntasks))\n+ expect(False, \"NINST_%s value %d greater than NTASKS_%s %d\" % (comp, ninst, comp, ntasks))\n \n expect(not (case.get_value(\"BUILD_THREADED\") and case.get_value(\"COMPILER\") == \"nag\"),\n \"it is not possible to run with OpenMP if using the NAG Fortran compiler\")\n", "issue": "Misleading error message in case_setup.py \nI suggest changing \"%s NINST value %d greater than %s NTASKS %d\" \n(e.g ERROR: ATM NINST value 1 greater than ATM NTASKS 0)\n\nto \n\n\"NINST_%s value %d greater than NTASKS_%s %d\n(e.g. ERROR: NINST_ATM value 1 greater than NTASKS_ATM 0)\n\nto reflect the real variable name which can be queried or changed with xmlquery/xmlchange\n\n", "before_files": [{"content": "\"\"\"\nLibrary for case.setup.\n\"\"\"\n\nfrom CIME.XML.standard_module_setup import *\n\nfrom CIME.check_lockedfiles import check_lockedfiles\nfrom CIME.preview_namelists import preview_namelists\nfrom CIME.XML.env_mach_pes import EnvMachPes\nfrom CIME.XML.component import Component\nfrom CIME.XML.compilers import Compilers\nfrom CIME.utils import expect, run_cmd, append_status\n\nimport shutil, time, glob\n\nlogger = logging.getLogger(__name__)\n\n###############################################################################\ndef _check_pelayouts_require_rebuild(case, models):\n###############################################################################\n \"\"\"\n Create if we require a rebuild, expects cwd is caseroot\n \"\"\"\n locked_pes = \"LockedFiles/env_mach_pes.xml\"\n if os.path.exists(locked_pes):\n # Look to see if $comp_PE_CHANGE_REQUIRES_REBUILD is defined\n # for any component\n env_mach_pes_locked = EnvMachPes(infile=locked_pes)\n for comp in models:\n if case.get_value(\"%s_PE_CHANGE_REQUIRES_REBUILD\" % comp):\n # Changing these values in env_mach_pes.xml will force\n # you to clean the corresponding component\n old_tasks = env_mach_pes_locked.get_value(\"NTASKS_%s\" % comp)\n old_threads = env_mach_pes_locked.get_value(\"NTHRDS_%s\" % comp)\n old_inst = env_mach_pes_locked.get_value(\"NINST_%s\" % comp)\n\n new_tasks = case.get_value(\"NTASKS_%s\" % comp)\n new_threads = case.get_value(\"NTHRDS_%s\" % comp)\n new_inst = case.get_value(\"NINST_%s\" % comp)\n\n if old_tasks != new_tasks or old_threads != new_threads or old_inst != new_inst:\n logger.warn(\"%s pe change requires clean build\" % comp)\n cleanflag = comp.lower()\n run_cmd(\"./case.build --clean %s\" % cleanflag)\n\n os.remove(locked_pes)\n\n###############################################################################\ndef _build_usernl_files(case, model, comp):\n###############################################################################\n \"\"\"\n Create user_nl_xxx files, expects cwd is caseroot\n \"\"\"\n model = model.upper()\n model_file = case.get_value(\"CONFIG_%s_FILE\" % model)\n model_dir = os.path.dirname(model_file)\n\n expect(os.path.isdir(model_dir),\n \"cannot find cime_config directory %s for component %s\" % (model_dir, comp))\n\n if comp == \"cpl\":\n if not os.path.exists(\"user_nl_cpl\"):\n shutil.copy(os.path.join(model_dir, \"user_nl_cpl\"), \".\")\n else:\n ninst = case.get_value(\"NINST_%s\" % model)\n nlfile = \"user_nl_%s\" % comp\n model_nl = os.path.join(model_dir, nlfile)\n if os.path.exists(model_nl):\n if ninst > 1:\n for inst_counter in xrange(1, ninst+1):\n case_nlfile = \"%s_%04d\" % (nlfile, inst_counter)\n if not os.path.exists(case_nlfile):\n shutil.copy(model_nl, case_nlfile)\n else:\n if not os.path.exists(nlfile):\n shutil.copy(model_nl, nlfile)\n\n###############################################################################\ndef case_setup(case, clean=False, test_mode=False, reset=False):\n###############################################################################\n caseroot = case.get_value(\"CASEROOT\")\n os.chdir(caseroot)\n msg = \"case.setup starting\"\n append_status(msg, caseroot=caseroot, sfile=\"CaseStatus\")\n\n cimeroot = os.environ[\"CIMEROOT\"]\n\n # Check that $DIN_LOC_ROOT exists - and abort if not a namelist compare tests\n din_loc_root = case.get_value(\"DIN_LOC_ROOT\")\n testcase = case.get_value(\"TESTCASE\")\n expect(not (not os.path.isdir(din_loc_root) and testcase != \"SBN\"),\n \"inputdata root is not a directory: \\\"$din_loc_root\\\" \")\n\n # Check that userdefine settings are specified before expanding variable\n for vid, value in case:\n expect(not (type(value) is str and \"USERDEFINED_required_build\" in value),\n \"Parameter '%s' must be defined\" % vid)\n\n # Create batch script\n if reset or clean:\n # Clean batch script\n\n backup_dir = \"PESetupHist/b.%s\" % time.strftime(\"%y%m%d-%H%M%S\")\n if not os.path.isdir(backup_dir):\n os.makedirs(backup_dir)\n\n # back up relevant files\n for fileglob in [\"case.run\", \"env_build.xml\", \"env_mach_pes.xml\", \"Macros*\"]:\n for filename in glob.glob(fileglob):\n shutil.copy(filename, backup_dir)\n if os.path.exists(\"case.run\"):\n os.remove(\"case.run\")\n\n # only do the following if are NOT in testmode\n if not test_mode:\n # rebuild the models (even on restart)\n case.set_value(\"BUILD_COMPLETE\", False)\n\n # backup and then clean test script\n if os.path.exists(\"case.test\"):\n shutil.copy(\"case.test\", backup_dir)\n os.remove(\"case.test\")\n logger.info(\"Successfully cleaned test script case.test\")\n\n if os.path.exists(\"case.testdriver\"):\n shutil.copy(\"case.testdriver\", backup_dir)\n os.remove(\"case.testdriver\")\n logger.info(\"Successfully cleaned test script case.testdriver\")\n\n logger.info(\"Successfully cleaned batch script case.run\")\n\n logger.info(\"Successfully cleaned batch script case.run\")\n logger.info(\"Some files have been saved to %s\" % backup_dir)\n\n msg = \"case.setup clean complete\"\n append_status(msg, caseroot=caseroot, sfile=\"CaseStatus\")\n\n if not clean:\n drv_comp = Component()\n models = drv_comp.get_valid_model_components()\n models.remove(\"DRV\")\n\n mach = case.get_value(\"MACH\")\n expect(mach is not None, \"xml variable MACH is not set\")\n\n # Create Macros file only if it does not exist\n if not os.path.exists(\"Macros\"):\n logger.debug(\"Creating Macros file for %s\" % mach)\n compilers = Compilers(compiler=case.get_value(\"COMPILER\"), machine=mach, os_=case.get_value(\"OS\"), mpilib=case.get_value(\"MPILIB\"))\n compilers.write_macros_file()\n else:\n logger.debug(\"Macros script already created ...skipping\")\n\n # Set tasks to 1 if mpi-serial library\n if case.get_value(\"MPILIB\") == \"mpi-serial\":\n for vid, value in case:\n if vid.startswith(\"NTASKS_\") and value != 1:\n case.set_value(vid, 1)\n\n # Check ninst.\n # In CIME there can be multiple instances of each component model (an ensemble) NINST is the instance of that component.\n for comp in models:\n ninst = case.get_value(\"NINST_%s\" % comp)\n ntasks = case.get_value(\"NTASKS_%s\" % comp)\n if ninst > ntasks:\n if ntasks == 1:\n case.set_value(\"NTASKS_%s\" % comp, ninst)\n else:\n expect(False, \"%s NINST value %d greater than %s NTASKS %d\" % (comp, ninst, comp, ntasks))\n\n expect(not (case.get_value(\"BUILD_THREADED\") and case.get_value(\"COMPILER\") == \"nag\"),\n \"it is not possible to run with OpenMP if using the NAG Fortran compiler\")\n\n if os.path.exists(\"case.run\"):\n logger.info(\"Machine/Decomp/Pes configuration has already been done ...skipping\")\n else:\n _check_pelayouts_require_rebuild(case, models)\n\n if os.path.exists(\"LockedFiles/env_build.xml\"):\n os.remove(\"LockedFiles/env_build.xml\")\n\n case.flush()\n check_lockedfiles()\n\n pestot = int(run_cmd(\"Tools/taskmaker.pl -sumonly\"))\n case.set_value(\"TOTALPES\", pestot)\n\n # Compute cost based on PE count\n pval = 1\n pcnt = 0\n while pval < pestot:\n pval *= 2\n pcnt += 6 # (scaling like sqrt(6/10))\n pcost = 3 - pcnt / 10 # (3 is 64 with 6)\n\n # Compute cost based on DEBUG\n dcost = 3 if case.get_value(\"DEBUG\") else 0\n\n # Compute cost based on run length\n # For simplicity, we use a heuristic just based on STOP_OPTION (not considering\n # STOP_N), and only deal with options longer than ndays\n lcost = 0\n if \"nmonth\" in case.get_value(\"STOP_OPTION\"):\n # N months costs 30x as much as N days; since cost is based on log-base-2, add 5\n lcost = 5\n elif \"nyear\" in case.get_value(\"STOP_OPTION\"):\n # N years costs 365x as much as N days; since cost is based on log-base-2, add 9\n lcost = 9\n\n estcost = pcost + dcost + lcost\n for cost in [\"CCSM_CCOST\", \"CCSM_GCOST\", \"CCSM_TCOST\", \"CCSM_CCOST\"]:\n estcost += case.get_value(cost)\n\n case.set_value(\"CCSM_PCOST\", pcost)\n case.set_value(\"CCSM_ESTCOST\", estcost)\n\n # create batch file\n logger.info(\"Creating batch script case.run\")\n\n # Use BatchFactory to get the appropriate instance of a BatchMaker,\n # use it to create our batch scripts\n env_batch = case._get_env(\"batch\")\n for job in env_batch.get_jobs():\n input_batch_script = os.path.join(case.get_value(\"MACHDIR\"), env_batch.get_value('template', subgroup=job))\n if job == \"case.test\" and testcase is not None and not test_mode:\n logger.info(\"Writing %s script\" % job)\n testscript = os.path.join(cimeroot, \"scripts\", \"Testing\", \"Testcases\", \"%s_script\" % testcase)\n # Short term fix to be removed when csh tests are removed\n if not os.path.exists(testscript):\n env_batch.make_batch_script(input_batch_script, job, case)\n elif job != \"case.test\":\n logger.info(\"Writing %s script\" % job)\n env_batch.make_batch_script(input_batch_script, job, case)\n\n # Make a copy of env_mach_pes.xml in order to be able\n # to check that it does not change once case.setup is invoked\n logger.info(\"Locking file env_mach_pes.xml\")\n case.flush()\n shutil.copy(\"env_mach_pes.xml\", \"LockedFiles\")\n\n # Create user_nl files for the required number of instances\n if not os.path.exists(\"user_nl_cpl\"):\n logger.info(\"Creating user_nl_xxx files for components and cpl\")\n # loop over models\n for model in models:\n comp = case.get_value(\"COMP_%s\" % model)\n logger.info(\"Building %s usernl files\"%model)\n _build_usernl_files(case, model, comp)\n if comp == \"cism\":\n run_cmd(\"%s/../components/cism/cime_config/cism.template %s\" % (cimeroot, caseroot))\n\n _build_usernl_files(case, \"drv\", \"cpl\")\n\n # Run preview namelists for scripts\n logger.info(\"preview_namelists\")\n preview_namelists(case)\n\n logger.info(\"See ./CaseDoc for component namelists\")\n logger.info(\"If an old case build already exists, might want to run \\'case.build --clean-all\\' before building\")\n\n # Create test script if appropriate\n # Short term fix to be removed when csh tests are removed\n if os.path.exists(\"env_test.xml\"):\n if not os.path.exists(\"case.test\"):\n logger.info(\"Starting testcase.setup\")\n run_cmd(\"./testcase.setup -caseroot %s\" % caseroot)\n logger.info(\"Finished testcase.setup\")\n\n msg = \"case.setup complete\"\n append_status(msg, caseroot=caseroot, sfile=\"CaseStatus\")\n\n", "path": "utils/python/CIME/case_setup.py"}], "after_files": [{"content": "\"\"\"\nLibrary for case.setup.\n\"\"\"\n\nfrom CIME.XML.standard_module_setup import *\n\nfrom CIME.check_lockedfiles import check_lockedfiles\nfrom CIME.preview_namelists import preview_namelists\nfrom CIME.XML.env_mach_pes import EnvMachPes\nfrom CIME.XML.component import Component\nfrom CIME.XML.compilers import Compilers\nfrom CIME.utils import expect, run_cmd, append_status\n\nimport shutil, time, glob\n\nlogger = logging.getLogger(__name__)\n\n###############################################################################\ndef _check_pelayouts_require_rebuild(case, models):\n###############################################################################\n \"\"\"\n Create if we require a rebuild, expects cwd is caseroot\n \"\"\"\n locked_pes = \"LockedFiles/env_mach_pes.xml\"\n if os.path.exists(locked_pes):\n # Look to see if $comp_PE_CHANGE_REQUIRES_REBUILD is defined\n # for any component\n env_mach_pes_locked = EnvMachPes(infile=locked_pes)\n for comp in models:\n if case.get_value(\"%s_PE_CHANGE_REQUIRES_REBUILD\" % comp):\n # Changing these values in env_mach_pes.xml will force\n # you to clean the corresponding component\n old_tasks = env_mach_pes_locked.get_value(\"NTASKS_%s\" % comp)\n old_threads = env_mach_pes_locked.get_value(\"NTHRDS_%s\" % comp)\n old_inst = env_mach_pes_locked.get_value(\"NINST_%s\" % comp)\n\n new_tasks = case.get_value(\"NTASKS_%s\" % comp)\n new_threads = case.get_value(\"NTHRDS_%s\" % comp)\n new_inst = case.get_value(\"NINST_%s\" % comp)\n\n if old_tasks != new_tasks or old_threads != new_threads or old_inst != new_inst:\n logger.warn(\"%s pe change requires clean build\" % comp)\n cleanflag = comp.lower()\n run_cmd(\"./case.build --clean %s\" % cleanflag)\n\n os.remove(locked_pes)\n\n###############################################################################\ndef _build_usernl_files(case, model, comp):\n###############################################################################\n \"\"\"\n Create user_nl_xxx files, expects cwd is caseroot\n \"\"\"\n model = model.upper()\n model_file = case.get_value(\"CONFIG_%s_FILE\" % model)\n model_dir = os.path.dirname(model_file)\n\n expect(os.path.isdir(model_dir),\n \"cannot find cime_config directory %s for component %s\" % (model_dir, comp))\n\n if comp == \"cpl\":\n if not os.path.exists(\"user_nl_cpl\"):\n shutil.copy(os.path.join(model_dir, \"user_nl_cpl\"), \".\")\n else:\n ninst = case.get_value(\"NINST_%s\" % model)\n nlfile = \"user_nl_%s\" % comp\n model_nl = os.path.join(model_dir, nlfile)\n if os.path.exists(model_nl):\n if ninst > 1:\n for inst_counter in xrange(1, ninst+1):\n case_nlfile = \"%s_%04d\" % (nlfile, inst_counter)\n if not os.path.exists(case_nlfile):\n shutil.copy(model_nl, case_nlfile)\n else:\n if not os.path.exists(nlfile):\n shutil.copy(model_nl, nlfile)\n\n###############################################################################\ndef case_setup(case, clean=False, test_mode=False, reset=False):\n###############################################################################\n caseroot = case.get_value(\"CASEROOT\")\n os.chdir(caseroot)\n msg = \"case.setup starting\"\n append_status(msg, caseroot=caseroot, sfile=\"CaseStatus\")\n\n cimeroot = os.environ[\"CIMEROOT\"]\n\n # Check that $DIN_LOC_ROOT exists - and abort if not a namelist compare tests\n din_loc_root = case.get_value(\"DIN_LOC_ROOT\")\n testcase = case.get_value(\"TESTCASE\")\n expect(not (not os.path.isdir(din_loc_root) and testcase != \"SBN\"),\n \"inputdata root is not a directory: \\\"$din_loc_root\\\" \")\n\n # Check that userdefine settings are specified before expanding variable\n for vid, value in case:\n expect(not (type(value) is str and \"USERDEFINED_required_build\" in value),\n \"Parameter '%s' must be defined\" % vid)\n\n # Create batch script\n if reset or clean:\n # Clean batch script\n\n backup_dir = \"PESetupHist/b.%s\" % time.strftime(\"%y%m%d-%H%M%S\")\n if not os.path.isdir(backup_dir):\n os.makedirs(backup_dir)\n\n # back up relevant files\n for fileglob in [\"case.run\", \"env_build.xml\", \"env_mach_pes.xml\", \"Macros*\"]:\n for filename in glob.glob(fileglob):\n shutil.copy(filename, backup_dir)\n if os.path.exists(\"case.run\"):\n os.remove(\"case.run\")\n\n # only do the following if are NOT in testmode\n if not test_mode:\n # rebuild the models (even on restart)\n case.set_value(\"BUILD_COMPLETE\", False)\n\n # backup and then clean test script\n if os.path.exists(\"case.test\"):\n shutil.copy(\"case.test\", backup_dir)\n os.remove(\"case.test\")\n logger.info(\"Successfully cleaned test script case.test\")\n\n if os.path.exists(\"case.testdriver\"):\n shutil.copy(\"case.testdriver\", backup_dir)\n os.remove(\"case.testdriver\")\n logger.info(\"Successfully cleaned test script case.testdriver\")\n\n logger.info(\"Successfully cleaned batch script case.run\")\n\n logger.info(\"Successfully cleaned batch script case.run\")\n logger.info(\"Some files have been saved to %s\" % backup_dir)\n\n msg = \"case.setup clean complete\"\n append_status(msg, caseroot=caseroot, sfile=\"CaseStatus\")\n\n if not clean:\n drv_comp = Component()\n models = drv_comp.get_valid_model_components()\n models.remove(\"DRV\")\n\n mach = case.get_value(\"MACH\")\n expect(mach is not None, \"xml variable MACH is not set\")\n\n # Create Macros file only if it does not exist\n if not os.path.exists(\"Macros\"):\n logger.debug(\"Creating Macros file for %s\" % mach)\n compilers = Compilers(compiler=case.get_value(\"COMPILER\"), machine=mach, os_=case.get_value(\"OS\"), mpilib=case.get_value(\"MPILIB\"))\n compilers.write_macros_file()\n else:\n logger.debug(\"Macros script already created ...skipping\")\n\n # Set tasks to 1 if mpi-serial library\n if case.get_value(\"MPILIB\") == \"mpi-serial\":\n for vid, value in case:\n if vid.startswith(\"NTASKS_\") and value != 1:\n case.set_value(vid, 1)\n\n # Check ninst.\n # In CIME there can be multiple instances of each component model (an ensemble) NINST is the instance of that component.\n for comp in models:\n ninst = case.get_value(\"NINST_%s\" % comp)\n ntasks = case.get_value(\"NTASKS_%s\" % comp)\n if ninst > ntasks:\n if ntasks == 1:\n case.set_value(\"NTASKS_%s\" % comp, ninst)\n else:\n expect(False, \"NINST_%s value %d greater than NTASKS_%s %d\" % (comp, ninst, comp, ntasks))\n\n expect(not (case.get_value(\"BUILD_THREADED\") and case.get_value(\"COMPILER\") == \"nag\"),\n \"it is not possible to run with OpenMP if using the NAG Fortran compiler\")\n\n if os.path.exists(\"case.run\"):\n logger.info(\"Machine/Decomp/Pes configuration has already been done ...skipping\")\n else:\n _check_pelayouts_require_rebuild(case, models)\n\n if os.path.exists(\"LockedFiles/env_build.xml\"):\n os.remove(\"LockedFiles/env_build.xml\")\n\n case.flush()\n check_lockedfiles()\n\n pestot = int(run_cmd(\"Tools/taskmaker.pl -sumonly\"))\n case.set_value(\"TOTALPES\", pestot)\n\n # Compute cost based on PE count\n pval = 1\n pcnt = 0\n while pval < pestot:\n pval *= 2\n pcnt += 6 # (scaling like sqrt(6/10))\n pcost = 3 - pcnt / 10 # (3 is 64 with 6)\n\n # Compute cost based on DEBUG\n dcost = 3 if case.get_value(\"DEBUG\") else 0\n\n # Compute cost based on run length\n # For simplicity, we use a heuristic just based on STOP_OPTION (not considering\n # STOP_N), and only deal with options longer than ndays\n lcost = 0\n if \"nmonth\" in case.get_value(\"STOP_OPTION\"):\n # N months costs 30x as much as N days; since cost is based on log-base-2, add 5\n lcost = 5\n elif \"nyear\" in case.get_value(\"STOP_OPTION\"):\n # N years costs 365x as much as N days; since cost is based on log-base-2, add 9\n lcost = 9\n\n estcost = pcost + dcost + lcost\n for cost in [\"CCSM_CCOST\", \"CCSM_GCOST\", \"CCSM_TCOST\", \"CCSM_CCOST\"]:\n estcost += case.get_value(cost)\n\n case.set_value(\"CCSM_PCOST\", pcost)\n case.set_value(\"CCSM_ESTCOST\", estcost)\n\n # create batch file\n logger.info(\"Creating batch script case.run\")\n\n # Use BatchFactory to get the appropriate instance of a BatchMaker,\n # use it to create our batch scripts\n env_batch = case._get_env(\"batch\")\n for job in env_batch.get_jobs():\n input_batch_script = os.path.join(case.get_value(\"MACHDIR\"), env_batch.get_value('template', subgroup=job))\n if job == \"case.test\" and testcase is not None and not test_mode:\n logger.info(\"Writing %s script\" % job)\n testscript = os.path.join(cimeroot, \"scripts\", \"Testing\", \"Testcases\", \"%s_script\" % testcase)\n # Short term fix to be removed when csh tests are removed\n if not os.path.exists(testscript):\n env_batch.make_batch_script(input_batch_script, job, case)\n elif job != \"case.test\":\n logger.info(\"Writing %s script\" % job)\n env_batch.make_batch_script(input_batch_script, job, case)\n\n # Make a copy of env_mach_pes.xml in order to be able\n # to check that it does not change once case.setup is invoked\n logger.info(\"Locking file env_mach_pes.xml\")\n case.flush()\n shutil.copy(\"env_mach_pes.xml\", \"LockedFiles\")\n\n # Create user_nl files for the required number of instances\n if not os.path.exists(\"user_nl_cpl\"):\n logger.info(\"Creating user_nl_xxx files for components and cpl\")\n # loop over models\n for model in models:\n comp = case.get_value(\"COMP_%s\" % model)\n logger.info(\"Building %s usernl files\"%model)\n _build_usernl_files(case, model, comp)\n if comp == \"cism\":\n run_cmd(\"%s/../components/cism/cime_config/cism.template %s\" % (cimeroot, caseroot))\n\n _build_usernl_files(case, \"drv\", \"cpl\")\n\n # Run preview namelists for scripts\n logger.info(\"preview_namelists\")\n preview_namelists(case)\n\n logger.info(\"See ./CaseDoc for component namelists\")\n logger.info(\"If an old case build already exists, might want to run \\'case.build --clean-all\\' before building\")\n\n # Create test script if appropriate\n # Short term fix to be removed when csh tests are removed\n if os.path.exists(\"env_test.xml\"):\n if not os.path.exists(\"case.test\"):\n logger.info(\"Starting testcase.setup\")\n run_cmd(\"./testcase.setup -caseroot %s\" % caseroot)\n logger.info(\"Finished testcase.setup\")\n\n msg = \"case.setup complete\"\n append_status(msg, caseroot=caseroot, sfile=\"CaseStatus\")\n\n", "path": "utils/python/CIME/case_setup.py"}]}
3,785
202
gh_patches_debug_40365
rasdani/github-patches
git_diff
freqtrade__freqtrade-6560
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- inheritance strategy can not load parameter file shared from base class <!-- ## Describe your environment * Operating system: ubuntu * Python Version: 3.8.10` * CCXT version: _1.74.63 * Freqtrade Version: fraqtrade develop ## Describe the problem: if StragegyA derived from StragegyB written in same .py file, then both of them share the same json file generated by Hyperopt. They would could conflict with each other when using Hyperopt to optimize one of them after the other Strategy was optimized. ### Steps to reproduce: 1. StragegyB derived from StragegyA and they are in one .py file 2. optimize StragegyA using Hyperopt ( get file A.json) 3. optimize StragegyB using Hyperopt 4. switching step3 and step2 is the same result ### Observed Results: load file A.json as StragegyB parameter file, then ERROR ### Relevant code exceptions or logs 2022-03-20 00:59:44,224 - freqtrade.optimize.hyperopt_tools - INFO - Dumping parameters to /home/bourne/freqtrade-develop/user_data/strategies/AStrategy.json ... 2022-03-20 01:01:06,082 - freqtrade.resolvers.iresolver - INFO - Using resolved strategy BStrategy from '/home/bourne/freqtrade-develop/user_data/strategies/AStrategy.py'... 2022-03-20 01:01:06,082 - freqtrade.strategy.hyper - INFO - Loading parameters from file /home/bourne/freqtrade-develop/user_data/strategies/AStrategy.json 2022-03-20 01:01:06,082 - freqtrade - ERROR - Invalid parameter file provided. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `freqtrade/resolvers/iresolver.py` Content: ``` 1 # pragma pylint: disable=attribute-defined-outside-init 2 3 """ 4 This module load custom objects 5 """ 6 import importlib.util 7 import inspect 8 import logging 9 from pathlib import Path 10 from typing import Any, Dict, Iterator, List, Optional, Tuple, Type, Union 11 12 from freqtrade.exceptions import OperationalException 13 14 15 logger = logging.getLogger(__name__) 16 17 18 class IResolver: 19 """ 20 This class contains all the logic to load custom classes 21 """ 22 # Childclasses need to override this 23 object_type: Type[Any] 24 object_type_str: str 25 user_subdir: Optional[str] = None 26 initial_search_path: Optional[Path] 27 28 @classmethod 29 def build_search_paths(cls, config: Dict[str, Any], user_subdir: Optional[str] = None, 30 extra_dir: Optional[str] = None) -> List[Path]: 31 32 abs_paths: List[Path] = [] 33 if cls.initial_search_path: 34 abs_paths.append(cls.initial_search_path) 35 36 if user_subdir: 37 abs_paths.insert(0, config['user_data_dir'].joinpath(user_subdir)) 38 39 if extra_dir: 40 # Add extra directory to the top of the search paths 41 abs_paths.insert(0, Path(extra_dir).resolve()) 42 43 return abs_paths 44 45 @classmethod 46 def _get_valid_object(cls, module_path: Path, object_name: Optional[str], 47 enum_failed: bool = False) -> Iterator[Any]: 48 """ 49 Generator returning objects with matching object_type and object_name in the path given. 50 :param module_path: absolute path to the module 51 :param object_name: Class name of the object 52 :param enum_failed: If True, will return None for modules which fail. 53 Otherwise, failing modules are skipped. 54 :return: generator containing tuple of matching objects 55 Tuple format: [Object, source] 56 """ 57 58 # Generate spec based on absolute path 59 # Pass object_name as first argument to have logging print a reasonable name. 60 spec = importlib.util.spec_from_file_location(object_name or "", str(module_path)) 61 if not spec: 62 return iter([None]) 63 64 module = importlib.util.module_from_spec(spec) 65 try: 66 spec.loader.exec_module(module) # type: ignore # importlib does not use typehints 67 except (ModuleNotFoundError, SyntaxError, ImportError, NameError) as err: 68 # Catch errors in case a specific module is not installed 69 logger.warning(f"Could not import {module_path} due to '{err}'") 70 if enum_failed: 71 return iter([None]) 72 73 valid_objects_gen = ( 74 (obj, inspect.getsource(module)) for 75 name, obj in inspect.getmembers( 76 module, inspect.isclass) if ((object_name is None or object_name == name) 77 and issubclass(obj, cls.object_type) 78 and obj is not cls.object_type) 79 ) 80 return valid_objects_gen 81 82 @classmethod 83 def _search_object(cls, directory: Path, *, object_name: str, add_source: bool = False 84 ) -> Union[Tuple[Any, Path], Tuple[None, None]]: 85 """ 86 Search for the objectname in the given directory 87 :param directory: relative or absolute directory path 88 :param object_name: ClassName of the object to load 89 :return: object class 90 """ 91 logger.debug(f"Searching for {cls.object_type.__name__} {object_name} in '{directory}'") 92 for entry in directory.iterdir(): 93 # Only consider python files 94 if entry.suffix != '.py': 95 logger.debug('Ignoring %s', entry) 96 continue 97 if entry.is_symlink() and not entry.is_file(): 98 logger.debug('Ignoring broken symlink %s', entry) 99 continue 100 module_path = entry.resolve() 101 102 obj = next(cls._get_valid_object(module_path, object_name), None) 103 104 if obj: 105 obj[0].__file__ = str(entry) 106 if add_source: 107 obj[0].__source__ = obj[1] 108 return (obj[0], module_path) 109 return (None, None) 110 111 @classmethod 112 def _load_object(cls, paths: List[Path], *, object_name: str, add_source: bool = False, 113 kwargs: dict = {}) -> Optional[Any]: 114 """ 115 Try to load object from path list. 116 """ 117 118 for _path in paths: 119 try: 120 (module, module_path) = cls._search_object(directory=_path, 121 object_name=object_name, 122 add_source=add_source) 123 if module: 124 logger.info( 125 f"Using resolved {cls.object_type.__name__.lower()[1:]} {object_name} " 126 f"from '{module_path}'...") 127 return module(**kwargs) 128 except FileNotFoundError: 129 logger.warning('Path "%s" does not exist.', _path.resolve()) 130 131 return None 132 133 @classmethod 134 def load_object(cls, object_name: str, config: dict, *, kwargs: dict, 135 extra_dir: Optional[str] = None) -> Any: 136 """ 137 Search and loads the specified object as configured in hte child class. 138 :param object_name: name of the module to import 139 :param config: configuration dictionary 140 :param extra_dir: additional directory to search for the given pairlist 141 :raises: OperationalException if the class is invalid or does not exist. 142 :return: Object instance or None 143 """ 144 145 abs_paths = cls.build_search_paths(config, 146 user_subdir=cls.user_subdir, 147 extra_dir=extra_dir) 148 149 found_object = cls._load_object(paths=abs_paths, object_name=object_name, 150 kwargs=kwargs) 151 if found_object: 152 return found_object 153 raise OperationalException( 154 f"Impossible to load {cls.object_type_str} '{object_name}'. This class does not exist " 155 "or contains Python code errors." 156 ) 157 158 @classmethod 159 def search_all_objects(cls, directory: Path, 160 enum_failed: bool) -> List[Dict[str, Any]]: 161 """ 162 Searches a directory for valid objects 163 :param directory: Path to search 164 :param enum_failed: If True, will return None for modules which fail. 165 Otherwise, failing modules are skipped. 166 :return: List of dicts containing 'name', 'class' and 'location' entries 167 """ 168 logger.debug(f"Searching for {cls.object_type.__name__} '{directory}'") 169 objects = [] 170 for entry in directory.iterdir(): 171 # Only consider python files 172 if entry.suffix != '.py': 173 logger.debug('Ignoring %s', entry) 174 continue 175 module_path = entry.resolve() 176 logger.debug(f"Path {module_path}") 177 for obj in cls._get_valid_object(module_path, object_name=None, 178 enum_failed=enum_failed): 179 objects.append( 180 {'name': obj[0].__name__ if obj is not None else '', 181 'class': obj[0] if obj is not None else None, 182 'location': entry, 183 }) 184 return objects 185 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/freqtrade/resolvers/iresolver.py b/freqtrade/resolvers/iresolver.py --- a/freqtrade/resolvers/iresolver.py +++ b/freqtrade/resolvers/iresolver.py @@ -6,6 +6,7 @@ import importlib.util import inspect import logging +import sys from pathlib import Path from typing import Any, Dict, Iterator, List, Optional, Tuple, Type, Union @@ -15,6 +16,22 @@ logger = logging.getLogger(__name__) +class PathModifier: + def __init__(self, path: Path): + self.path = path + + def __enter__(self): + """Inject path to allow importing with relative imports.""" + sys.path.insert(0, str(self.path)) + return self + + def __exit__(self, exc_type, exc_val, exc_tb): + """Undo insertion of local path.""" + str_path = str(self.path) + if str_path in sys.path: + sys.path.remove(str_path) + + class IResolver: """ This class contains all the logic to load custom classes @@ -57,27 +74,32 @@ # Generate spec based on absolute path # Pass object_name as first argument to have logging print a reasonable name. - spec = importlib.util.spec_from_file_location(object_name or "", str(module_path)) - if not spec: - return iter([None]) - - module = importlib.util.module_from_spec(spec) - try: - spec.loader.exec_module(module) # type: ignore # importlib does not use typehints - except (ModuleNotFoundError, SyntaxError, ImportError, NameError) as err: - # Catch errors in case a specific module is not installed - logger.warning(f"Could not import {module_path} due to '{err}'") - if enum_failed: + with PathModifier(module_path.parent): + module_name = module_path.stem or "" + spec = importlib.util.spec_from_file_location(module_name, str(module_path)) + if not spec: return iter([None]) - valid_objects_gen = ( - (obj, inspect.getsource(module)) for - name, obj in inspect.getmembers( - module, inspect.isclass) if ((object_name is None or object_name == name) - and issubclass(obj, cls.object_type) - and obj is not cls.object_type) - ) - return valid_objects_gen + module = importlib.util.module_from_spec(spec) + try: + spec.loader.exec_module(module) # type: ignore # importlib does not use typehints + except (ModuleNotFoundError, SyntaxError, ImportError, NameError) as err: + # Catch errors in case a specific module is not installed + logger.warning(f"Could not import {module_path} due to '{err}'") + if enum_failed: + return iter([None]) + + valid_objects_gen = ( + (obj, inspect.getsource(module)) for + name, obj in inspect.getmembers( + module, inspect.isclass) if ((object_name is None or object_name == name) + and issubclass(obj, cls.object_type) + and obj is not cls.object_type + and obj.__module__ == module_name + ) + ) + # The __module__ check ensures we only use strategies that are defined in this folder. + return valid_objects_gen @classmethod def _search_object(cls, directory: Path, *, object_name: str, add_source: bool = False
{"golden_diff": "diff --git a/freqtrade/resolvers/iresolver.py b/freqtrade/resolvers/iresolver.py\n--- a/freqtrade/resolvers/iresolver.py\n+++ b/freqtrade/resolvers/iresolver.py\n@@ -6,6 +6,7 @@\n import importlib.util\n import inspect\n import logging\n+import sys\n from pathlib import Path\n from typing import Any, Dict, Iterator, List, Optional, Tuple, Type, Union\n \n@@ -15,6 +16,22 @@\n logger = logging.getLogger(__name__)\n \n \n+class PathModifier:\n+ def __init__(self, path: Path):\n+ self.path = path\n+\n+ def __enter__(self):\n+ \"\"\"Inject path to allow importing with relative imports.\"\"\"\n+ sys.path.insert(0, str(self.path))\n+ return self\n+\n+ def __exit__(self, exc_type, exc_val, exc_tb):\n+ \"\"\"Undo insertion of local path.\"\"\"\n+ str_path = str(self.path)\n+ if str_path in sys.path:\n+ sys.path.remove(str_path)\n+\n+\n class IResolver:\n \"\"\"\n This class contains all the logic to load custom classes\n@@ -57,27 +74,32 @@\n \n # Generate spec based on absolute path\n # Pass object_name as first argument to have logging print a reasonable name.\n- spec = importlib.util.spec_from_file_location(object_name or \"\", str(module_path))\n- if not spec:\n- return iter([None])\n-\n- module = importlib.util.module_from_spec(spec)\n- try:\n- spec.loader.exec_module(module) # type: ignore # importlib does not use typehints\n- except (ModuleNotFoundError, SyntaxError, ImportError, NameError) as err:\n- # Catch errors in case a specific module is not installed\n- logger.warning(f\"Could not import {module_path} due to '{err}'\")\n- if enum_failed:\n+ with PathModifier(module_path.parent):\n+ module_name = module_path.stem or \"\"\n+ spec = importlib.util.spec_from_file_location(module_name, str(module_path))\n+ if not spec:\n return iter([None])\n \n- valid_objects_gen = (\n- (obj, inspect.getsource(module)) for\n- name, obj in inspect.getmembers(\n- module, inspect.isclass) if ((object_name is None or object_name == name)\n- and issubclass(obj, cls.object_type)\n- and obj is not cls.object_type)\n- )\n- return valid_objects_gen\n+ module = importlib.util.module_from_spec(spec)\n+ try:\n+ spec.loader.exec_module(module) # type: ignore # importlib does not use typehints\n+ except (ModuleNotFoundError, SyntaxError, ImportError, NameError) as err:\n+ # Catch errors in case a specific module is not installed\n+ logger.warning(f\"Could not import {module_path} due to '{err}'\")\n+ if enum_failed:\n+ return iter([None])\n+\n+ valid_objects_gen = (\n+ (obj, inspect.getsource(module)) for\n+ name, obj in inspect.getmembers(\n+ module, inspect.isclass) if ((object_name is None or object_name == name)\n+ and issubclass(obj, cls.object_type)\n+ and obj is not cls.object_type\n+ and obj.__module__ == module_name\n+ )\n+ )\n+ # The __module__ check ensures we only use strategies that are defined in this folder.\n+ return valid_objects_gen\n \n @classmethod\n def _search_object(cls, directory: Path, *, object_name: str, add_source: bool = False\n", "issue": "inheritance strategy can not load parameter file shared from base class\n<!-- \r\n\r\n\r\n## Describe your environment\r\n\r\n * Operating system: ubuntu\r\n * Python Version: 3.8.10`\r\n * CCXT version: _1.74.63\r\n * Freqtrade Version: fraqtrade develop\r\n \r\n\r\n## Describe the problem:\r\n\r\nif StragegyA derived from StragegyB written in same .py file, \r\nthen both of them share the same json file generated by Hyperopt.\r\n\r\nThey would could conflict with each other when using Hyperopt to optimize one of them after the other Strategy was optimized.\r\n\r\n\r\n### Steps to reproduce:\r\n\r\n 1. StragegyB derived from StragegyA and they are in one .py file\r\n 2. optimize StragegyA using Hyperopt ( get file A.json)\r\n 3. optimize StragegyB using Hyperopt \r\n 4. switching step3 and step2 is the same result\r\n \r\n### Observed Results:\r\nload file A.json as StragegyB parameter file, then ERROR\r\n\r\n### Relevant code exceptions or logs\r\n\r\n2022-03-20 00:59:44,224 - freqtrade.optimize.hyperopt_tools - INFO - Dumping parameters to /home/bourne/freqtrade-develop/user_data/strategies/AStrategy.json\r\n\r\n...\r\n\r\n2022-03-20 01:01:06,082 - freqtrade.resolvers.iresolver - INFO - Using resolved strategy BStrategy from '/home/bourne/freqtrade-develop/user_data/strategies/AStrategy.py'...\r\n2022-03-20 01:01:06,082 - freqtrade.strategy.hyper - INFO - Loading parameters from file /home/bourne/freqtrade-develop/user_data/strategies/AStrategy.json\r\n2022-03-20 01:01:06,082 - freqtrade - ERROR - Invalid parameter file provided.\r\n\r\n\r\n\r\n\n", "before_files": [{"content": "# pragma pylint: disable=attribute-defined-outside-init\n\n\"\"\"\nThis module load custom objects\n\"\"\"\nimport importlib.util\nimport inspect\nimport logging\nfrom pathlib import Path\nfrom typing import Any, Dict, Iterator, List, Optional, Tuple, Type, Union\n\nfrom freqtrade.exceptions import OperationalException\n\n\nlogger = logging.getLogger(__name__)\n\n\nclass IResolver:\n \"\"\"\n This class contains all the logic to load custom classes\n \"\"\"\n # Childclasses need to override this\n object_type: Type[Any]\n object_type_str: str\n user_subdir: Optional[str] = None\n initial_search_path: Optional[Path]\n\n @classmethod\n def build_search_paths(cls, config: Dict[str, Any], user_subdir: Optional[str] = None,\n extra_dir: Optional[str] = None) -> List[Path]:\n\n abs_paths: List[Path] = []\n if cls.initial_search_path:\n abs_paths.append(cls.initial_search_path)\n\n if user_subdir:\n abs_paths.insert(0, config['user_data_dir'].joinpath(user_subdir))\n\n if extra_dir:\n # Add extra directory to the top of the search paths\n abs_paths.insert(0, Path(extra_dir).resolve())\n\n return abs_paths\n\n @classmethod\n def _get_valid_object(cls, module_path: Path, object_name: Optional[str],\n enum_failed: bool = False) -> Iterator[Any]:\n \"\"\"\n Generator returning objects with matching object_type and object_name in the path given.\n :param module_path: absolute path to the module\n :param object_name: Class name of the object\n :param enum_failed: If True, will return None for modules which fail.\n Otherwise, failing modules are skipped.\n :return: generator containing tuple of matching objects\n Tuple format: [Object, source]\n \"\"\"\n\n # Generate spec based on absolute path\n # Pass object_name as first argument to have logging print a reasonable name.\n spec = importlib.util.spec_from_file_location(object_name or \"\", str(module_path))\n if not spec:\n return iter([None])\n\n module = importlib.util.module_from_spec(spec)\n try:\n spec.loader.exec_module(module) # type: ignore # importlib does not use typehints\n except (ModuleNotFoundError, SyntaxError, ImportError, NameError) as err:\n # Catch errors in case a specific module is not installed\n logger.warning(f\"Could not import {module_path} due to '{err}'\")\n if enum_failed:\n return iter([None])\n\n valid_objects_gen = (\n (obj, inspect.getsource(module)) for\n name, obj in inspect.getmembers(\n module, inspect.isclass) if ((object_name is None or object_name == name)\n and issubclass(obj, cls.object_type)\n and obj is not cls.object_type)\n )\n return valid_objects_gen\n\n @classmethod\n def _search_object(cls, directory: Path, *, object_name: str, add_source: bool = False\n ) -> Union[Tuple[Any, Path], Tuple[None, None]]:\n \"\"\"\n Search for the objectname in the given directory\n :param directory: relative or absolute directory path\n :param object_name: ClassName of the object to load\n :return: object class\n \"\"\"\n logger.debug(f\"Searching for {cls.object_type.__name__} {object_name} in '{directory}'\")\n for entry in directory.iterdir():\n # Only consider python files\n if entry.suffix != '.py':\n logger.debug('Ignoring %s', entry)\n continue\n if entry.is_symlink() and not entry.is_file():\n logger.debug('Ignoring broken symlink %s', entry)\n continue\n module_path = entry.resolve()\n\n obj = next(cls._get_valid_object(module_path, object_name), None)\n\n if obj:\n obj[0].__file__ = str(entry)\n if add_source:\n obj[0].__source__ = obj[1]\n return (obj[0], module_path)\n return (None, None)\n\n @classmethod\n def _load_object(cls, paths: List[Path], *, object_name: str, add_source: bool = False,\n kwargs: dict = {}) -> Optional[Any]:\n \"\"\"\n Try to load object from path list.\n \"\"\"\n\n for _path in paths:\n try:\n (module, module_path) = cls._search_object(directory=_path,\n object_name=object_name,\n add_source=add_source)\n if module:\n logger.info(\n f\"Using resolved {cls.object_type.__name__.lower()[1:]} {object_name} \"\n f\"from '{module_path}'...\")\n return module(**kwargs)\n except FileNotFoundError:\n logger.warning('Path \"%s\" does not exist.', _path.resolve())\n\n return None\n\n @classmethod\n def load_object(cls, object_name: str, config: dict, *, kwargs: dict,\n extra_dir: Optional[str] = None) -> Any:\n \"\"\"\n Search and loads the specified object as configured in hte child class.\n :param object_name: name of the module to import\n :param config: configuration dictionary\n :param extra_dir: additional directory to search for the given pairlist\n :raises: OperationalException if the class is invalid or does not exist.\n :return: Object instance or None\n \"\"\"\n\n abs_paths = cls.build_search_paths(config,\n user_subdir=cls.user_subdir,\n extra_dir=extra_dir)\n\n found_object = cls._load_object(paths=abs_paths, object_name=object_name,\n kwargs=kwargs)\n if found_object:\n return found_object\n raise OperationalException(\n f\"Impossible to load {cls.object_type_str} '{object_name}'. This class does not exist \"\n \"or contains Python code errors.\"\n )\n\n @classmethod\n def search_all_objects(cls, directory: Path,\n enum_failed: bool) -> List[Dict[str, Any]]:\n \"\"\"\n Searches a directory for valid objects\n :param directory: Path to search\n :param enum_failed: If True, will return None for modules which fail.\n Otherwise, failing modules are skipped.\n :return: List of dicts containing 'name', 'class' and 'location' entries\n \"\"\"\n logger.debug(f\"Searching for {cls.object_type.__name__} '{directory}'\")\n objects = []\n for entry in directory.iterdir():\n # Only consider python files\n if entry.suffix != '.py':\n logger.debug('Ignoring %s', entry)\n continue\n module_path = entry.resolve()\n logger.debug(f\"Path {module_path}\")\n for obj in cls._get_valid_object(module_path, object_name=None,\n enum_failed=enum_failed):\n objects.append(\n {'name': obj[0].__name__ if obj is not None else '',\n 'class': obj[0] if obj is not None else None,\n 'location': entry,\n })\n return objects\n", "path": "freqtrade/resolvers/iresolver.py"}], "after_files": [{"content": "# pragma pylint: disable=attribute-defined-outside-init\n\n\"\"\"\nThis module load custom objects\n\"\"\"\nimport importlib.util\nimport inspect\nimport logging\nimport sys\nfrom pathlib import Path\nfrom typing import Any, Dict, Iterator, List, Optional, Tuple, Type, Union\n\nfrom freqtrade.exceptions import OperationalException\n\n\nlogger = logging.getLogger(__name__)\n\n\nclass PathModifier:\n def __init__(self, path: Path):\n self.path = path\n\n def __enter__(self):\n \"\"\"Inject path to allow importing with relative imports.\"\"\"\n sys.path.insert(0, str(self.path))\n return self\n\n def __exit__(self, exc_type, exc_val, exc_tb):\n \"\"\"Undo insertion of local path.\"\"\"\n str_path = str(self.path)\n if str_path in sys.path:\n sys.path.remove(str_path)\n\n\nclass IResolver:\n \"\"\"\n This class contains all the logic to load custom classes\n \"\"\"\n # Childclasses need to override this\n object_type: Type[Any]\n object_type_str: str\n user_subdir: Optional[str] = None\n initial_search_path: Optional[Path]\n\n @classmethod\n def build_search_paths(cls, config: Dict[str, Any], user_subdir: Optional[str] = None,\n extra_dir: Optional[str] = None) -> List[Path]:\n\n abs_paths: List[Path] = []\n if cls.initial_search_path:\n abs_paths.append(cls.initial_search_path)\n\n if user_subdir:\n abs_paths.insert(0, config['user_data_dir'].joinpath(user_subdir))\n\n if extra_dir:\n # Add extra directory to the top of the search paths\n abs_paths.insert(0, Path(extra_dir).resolve())\n\n return abs_paths\n\n @classmethod\n def _get_valid_object(cls, module_path: Path, object_name: Optional[str],\n enum_failed: bool = False) -> Iterator[Any]:\n \"\"\"\n Generator returning objects with matching object_type and object_name in the path given.\n :param module_path: absolute path to the module\n :param object_name: Class name of the object\n :param enum_failed: If True, will return None for modules which fail.\n Otherwise, failing modules are skipped.\n :return: generator containing tuple of matching objects\n Tuple format: [Object, source]\n \"\"\"\n\n # Generate spec based on absolute path\n # Pass object_name as first argument to have logging print a reasonable name.\n with PathModifier(module_path.parent):\n module_name = module_path.stem or \"\"\n spec = importlib.util.spec_from_file_location(module_name, str(module_path))\n if not spec:\n return iter([None])\n\n module = importlib.util.module_from_spec(spec)\n try:\n spec.loader.exec_module(module) # type: ignore # importlib does not use typehints\n except (ModuleNotFoundError, SyntaxError, ImportError, NameError) as err:\n # Catch errors in case a specific module is not installed\n logger.warning(f\"Could not import {module_path} due to '{err}'\")\n if enum_failed:\n return iter([None])\n\n valid_objects_gen = (\n (obj, inspect.getsource(module)) for\n name, obj in inspect.getmembers(\n module, inspect.isclass) if ((object_name is None or object_name == name)\n and issubclass(obj, cls.object_type)\n and obj is not cls.object_type\n and obj.__module__ == module_name\n )\n )\n # The __module__ check ensures we only use strategies that are defined in this folder.\n return valid_objects_gen\n\n @classmethod\n def _search_object(cls, directory: Path, *, object_name: str, add_source: bool = False\n ) -> Union[Tuple[Any, Path], Tuple[None, None]]:\n \"\"\"\n Search for the objectname in the given directory\n :param directory: relative or absolute directory path\n :param object_name: ClassName of the object to load\n :return: object class\n \"\"\"\n logger.debug(f\"Searching for {cls.object_type.__name__} {object_name} in '{directory}'\")\n for entry in directory.iterdir():\n # Only consider python files\n if entry.suffix != '.py':\n logger.debug('Ignoring %s', entry)\n continue\n if entry.is_symlink() and not entry.is_file():\n logger.debug('Ignoring broken symlink %s', entry)\n continue\n module_path = entry.resolve()\n\n obj = next(cls._get_valid_object(module_path, object_name), None)\n\n if obj:\n obj[0].__file__ = str(entry)\n if add_source:\n obj[0].__source__ = obj[1]\n return (obj[0], module_path)\n return (None, None)\n\n @classmethod\n def _load_object(cls, paths: List[Path], *, object_name: str, add_source: bool = False,\n kwargs: dict = {}) -> Optional[Any]:\n \"\"\"\n Try to load object from path list.\n \"\"\"\n\n for _path in paths:\n try:\n (module, module_path) = cls._search_object(directory=_path,\n object_name=object_name,\n add_source=add_source)\n if module:\n logger.info(\n f\"Using resolved {cls.object_type.__name__.lower()[1:]} {object_name} \"\n f\"from '{module_path}'...\")\n return module(**kwargs)\n except FileNotFoundError:\n logger.warning('Path \"%s\" does not exist.', _path.resolve())\n\n return None\n\n @classmethod\n def load_object(cls, object_name: str, config: dict, *, kwargs: dict,\n extra_dir: Optional[str] = None) -> Any:\n \"\"\"\n Search and loads the specified object as configured in hte child class.\n :param object_name: name of the module to import\n :param config: configuration dictionary\n :param extra_dir: additional directory to search for the given pairlist\n :raises: OperationalException if the class is invalid or does not exist.\n :return: Object instance or None\n \"\"\"\n\n abs_paths = cls.build_search_paths(config,\n user_subdir=cls.user_subdir,\n extra_dir=extra_dir)\n\n found_object = cls._load_object(paths=abs_paths, object_name=object_name,\n kwargs=kwargs)\n if found_object:\n return found_object\n raise OperationalException(\n f\"Impossible to load {cls.object_type_str} '{object_name}'. This class does not exist \"\n \"or contains Python code errors.\"\n )\n\n @classmethod\n def search_all_objects(cls, directory: Path,\n enum_failed: bool) -> List[Dict[str, Any]]:\n \"\"\"\n Searches a directory for valid objects\n :param directory: Path to search\n :param enum_failed: If True, will return None for modules which fail.\n Otherwise, failing modules are skipped.\n :return: List of dicts containing 'name', 'class' and 'location' entries\n \"\"\"\n logger.debug(f\"Searching for {cls.object_type.__name__} '{directory}'\")\n objects = []\n for entry in directory.iterdir():\n # Only consider python files\n if entry.suffix != '.py':\n logger.debug('Ignoring %s', entry)\n continue\n module_path = entry.resolve()\n logger.debug(f\"Path {module_path}\")\n for obj in cls._get_valid_object(module_path, object_name=None,\n enum_failed=enum_failed):\n objects.append(\n {'name': obj[0].__name__ if obj is not None else '',\n 'class': obj[0] if obj is not None else None,\n 'location': entry,\n })\n return objects\n", "path": "freqtrade/resolvers/iresolver.py"}]}
2,667
796
gh_patches_debug_9537
rasdani/github-patches
git_diff
Lightning-AI__torchmetrics-1452
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- SMAPE formula typo ## 📚 Documentation There's a typo in the [SMAPE formula](https://torchmetrics.readthedocs.io/en/stable/regression/symmetric_mean_absolute_percentage_error.html). It should be `{SMAPE} = \frac{2}{n}\sum_1^n\frac{| y_i - \hat{y_i} |}{\max(| y_i | + | \hat{y_i} |, \epsilon)}` instead of `{SMAPE} = \frac{2}{n}\sum_1^n max(\frac{| y_i - \hat{y_i} |}{| y_i | + | \hat{y_i} |, \epsilon})`. The attached screenshot shows the typo and its correction. ![smape](https://user-images.githubusercontent.com/44662992/213825207-21c308b1-a407-4830-813f-a3dbe87ddb41.png) --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `src/torchmetrics/regression/symmetric_mape.py` Content: ``` 1 # Copyright The PyTorch Lightning team. 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 from typing import Any 15 16 from torch import Tensor, tensor 17 18 from torchmetrics.functional.regression.symmetric_mape import ( 19 _symmetric_mean_absolute_percentage_error_compute, 20 _symmetric_mean_absolute_percentage_error_update, 21 ) 22 from torchmetrics.metric import Metric 23 24 25 class SymmetricMeanAbsolutePercentageError(Metric): 26 r"""Computes symmetric mean absolute percentage error (`SMAPE`_). 27 28 .. math:: \text{SMAPE} = \frac{2}{n}\sum_1^n max(\frac{| y_i - \hat{y_i} |}{| y_i | + | \hat{y_i} |, \epsilon}) 29 30 Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions. 31 32 As input to ``forward`` and ``update`` the metric accepts the following input: 33 34 - ``preds`` (:class:`~torch.Tensor`): Predictions from model 35 - ``target`` (:class:`~torch.Tensor`): Ground truth values 36 37 As output of ``forward`` and ``compute`` the metric returns the following output: 38 39 - ``smape`` (:class:`~torch.Tensor`): A tensor with non-negative floating point smape value between 0 and 1 40 41 Args: 42 kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. 43 44 Example: 45 >>> from torchmetrics import SymmetricMeanAbsolutePercentageError 46 >>> target = tensor([1, 10, 1e6]) 47 >>> preds = tensor([0.9, 15, 1.2e6]) 48 >>> smape = SymmetricMeanAbsolutePercentageError() 49 >>> smape(preds, target) 50 tensor(0.2290) 51 """ 52 is_differentiable: bool = True 53 higher_is_better: bool = False 54 full_state_update: bool = False 55 sum_abs_per_error: Tensor 56 total: Tensor 57 58 def __init__( 59 self, 60 **kwargs: Any, 61 ) -> None: 62 super().__init__(**kwargs) 63 64 self.add_state("sum_abs_per_error", default=tensor(0.0), dist_reduce_fx="sum") 65 self.add_state("total", default=tensor(0.0), dist_reduce_fx="sum") 66 67 def update(self, preds: Tensor, target: Tensor) -> None: # type: ignore 68 """Update state with predictions and targets.""" 69 sum_abs_per_error, num_obs = _symmetric_mean_absolute_percentage_error_update(preds, target) 70 71 self.sum_abs_per_error += sum_abs_per_error 72 self.total += num_obs 73 74 def compute(self) -> Tensor: 75 """Computes mean absolute percentage error over state.""" 76 return _symmetric_mean_absolute_percentage_error_compute(self.sum_abs_per_error, self.total) 77 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/src/torchmetrics/regression/symmetric_mape.py b/src/torchmetrics/regression/symmetric_mape.py --- a/src/torchmetrics/regression/symmetric_mape.py +++ b/src/torchmetrics/regression/symmetric_mape.py @@ -25,7 +25,7 @@ class SymmetricMeanAbsolutePercentageError(Metric): r"""Computes symmetric mean absolute percentage error (`SMAPE`_). - .. math:: \text{SMAPE} = \frac{2}{n}\sum_1^n max(\frac{| y_i - \hat{y_i} |}{| y_i | + | \hat{y_i} |, \epsilon}) + .. math:: \text{SMAPE} = \frac{2}{n}\sum_1^n\frac{| y_i - \hat{y_i} |}{\max(| y_i | + | \hat{y_i} |, \epsilon)} Where :math:`y` is a tensor of target values, and :math:`\hat{y}` is a tensor of predictions.
{"golden_diff": "diff --git a/src/torchmetrics/regression/symmetric_mape.py b/src/torchmetrics/regression/symmetric_mape.py\n--- a/src/torchmetrics/regression/symmetric_mape.py\n+++ b/src/torchmetrics/regression/symmetric_mape.py\n@@ -25,7 +25,7 @@\n class SymmetricMeanAbsolutePercentageError(Metric):\n r\"\"\"Computes symmetric mean absolute percentage error (`SMAPE`_).\n \n- .. math:: \\text{SMAPE} = \\frac{2}{n}\\sum_1^n max(\\frac{| y_i - \\hat{y_i} |}{| y_i | + | \\hat{y_i} |, \\epsilon})\n+ .. math:: \\text{SMAPE} = \\frac{2}{n}\\sum_1^n\\frac{| y_i - \\hat{y_i} |}{\\max(| y_i | + | \\hat{y_i} |, \\epsilon)}\n \n Where :math:`y` is a tensor of target values, and :math:`\\hat{y}` is a tensor of predictions.\n", "issue": "SMAPE formula typo\n## \ud83d\udcda Documentation\r\n\r\n\r\nThere's a typo in the [SMAPE formula](https://torchmetrics.readthedocs.io/en/stable/regression/symmetric_mean_absolute_percentage_error.html). It should be `{SMAPE} = \\frac{2}{n}\\sum_1^n\\frac{| y_i - \\hat{y_i} |}{\\max(| y_i | + | \\hat{y_i} |, \\epsilon)}` instead of `{SMAPE} = \\frac{2}{n}\\sum_1^n max(\\frac{| y_i - \\hat{y_i} |}{| y_i | + | \\hat{y_i} |, \\epsilon})`. The attached screenshot shows the typo and its correction.\r\n![smape](https://user-images.githubusercontent.com/44662992/213825207-21c308b1-a407-4830-813f-a3dbe87ddb41.png)\r\n\n", "before_files": [{"content": "# Copyright The PyTorch Lightning team.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\nfrom typing import Any\n\nfrom torch import Tensor, tensor\n\nfrom torchmetrics.functional.regression.symmetric_mape import (\n _symmetric_mean_absolute_percentage_error_compute,\n _symmetric_mean_absolute_percentage_error_update,\n)\nfrom torchmetrics.metric import Metric\n\n\nclass SymmetricMeanAbsolutePercentageError(Metric):\n r\"\"\"Computes symmetric mean absolute percentage error (`SMAPE`_).\n\n .. math:: \\text{SMAPE} = \\frac{2}{n}\\sum_1^n max(\\frac{| y_i - \\hat{y_i} |}{| y_i | + | \\hat{y_i} |, \\epsilon})\n\n Where :math:`y` is a tensor of target values, and :math:`\\hat{y}` is a tensor of predictions.\n\n As input to ``forward`` and ``update`` the metric accepts the following input:\n\n - ``preds`` (:class:`~torch.Tensor`): Predictions from model\n - ``target`` (:class:`~torch.Tensor`): Ground truth values\n\n As output of ``forward`` and ``compute`` the metric returns the following output:\n\n - ``smape`` (:class:`~torch.Tensor`): A tensor with non-negative floating point smape value between 0 and 1\n\n Args:\n kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.\n\n Example:\n >>> from torchmetrics import SymmetricMeanAbsolutePercentageError\n >>> target = tensor([1, 10, 1e6])\n >>> preds = tensor([0.9, 15, 1.2e6])\n >>> smape = SymmetricMeanAbsolutePercentageError()\n >>> smape(preds, target)\n tensor(0.2290)\n \"\"\"\n is_differentiable: bool = True\n higher_is_better: bool = False\n full_state_update: bool = False\n sum_abs_per_error: Tensor\n total: Tensor\n\n def __init__(\n self,\n **kwargs: Any,\n ) -> None:\n super().__init__(**kwargs)\n\n self.add_state(\"sum_abs_per_error\", default=tensor(0.0), dist_reduce_fx=\"sum\")\n self.add_state(\"total\", default=tensor(0.0), dist_reduce_fx=\"sum\")\n\n def update(self, preds: Tensor, target: Tensor) -> None: # type: ignore\n \"\"\"Update state with predictions and targets.\"\"\"\n sum_abs_per_error, num_obs = _symmetric_mean_absolute_percentage_error_update(preds, target)\n\n self.sum_abs_per_error += sum_abs_per_error\n self.total += num_obs\n\n def compute(self) -> Tensor:\n \"\"\"Computes mean absolute percentage error over state.\"\"\"\n return _symmetric_mean_absolute_percentage_error_compute(self.sum_abs_per_error, self.total)\n", "path": "src/torchmetrics/regression/symmetric_mape.py"}], "after_files": [{"content": "# Copyright The PyTorch Lightning team.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\nfrom typing import Any\n\nfrom torch import Tensor, tensor\n\nfrom torchmetrics.functional.regression.symmetric_mape import (\n _symmetric_mean_absolute_percentage_error_compute,\n _symmetric_mean_absolute_percentage_error_update,\n)\nfrom torchmetrics.metric import Metric\n\n\nclass SymmetricMeanAbsolutePercentageError(Metric):\n r\"\"\"Computes symmetric mean absolute percentage error (`SMAPE`_).\n\n .. math:: \\text{SMAPE} = \\frac{2}{n}\\sum_1^n\\frac{| y_i - \\hat{y_i} |}{\\max(| y_i | + | \\hat{y_i} |, \\epsilon)}\n\n Where :math:`y` is a tensor of target values, and :math:`\\hat{y}` is a tensor of predictions.\n\n As input to ``forward`` and ``update`` the metric accepts the following input:\n\n - ``preds`` (:class:`~torch.Tensor`): Predictions from model\n - ``target`` (:class:`~torch.Tensor`): Ground truth values\n\n As output of ``forward`` and ``compute`` the metric returns the following output:\n\n - ``smape`` (:class:`~torch.Tensor`): A tensor with non-negative floating point smape value between 0 and 1\n\n Args:\n kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.\n\n Example:\n >>> from torchmetrics import SymmetricMeanAbsolutePercentageError\n >>> target = tensor([1, 10, 1e6])\n >>> preds = tensor([0.9, 15, 1.2e6])\n >>> smape = SymmetricMeanAbsolutePercentageError()\n >>> smape(preds, target)\n tensor(0.2290)\n \"\"\"\n is_differentiable: bool = True\n higher_is_better: bool = False\n full_state_update: bool = False\n sum_abs_per_error: Tensor\n total: Tensor\n\n def __init__(\n self,\n **kwargs: Any,\n ) -> None:\n super().__init__(**kwargs)\n\n self.add_state(\"sum_abs_per_error\", default=tensor(0.0), dist_reduce_fx=\"sum\")\n self.add_state(\"total\", default=tensor(0.0), dist_reduce_fx=\"sum\")\n\n def update(self, preds: Tensor, target: Tensor) -> None: # type: ignore\n \"\"\"Update state with predictions and targets.\"\"\"\n sum_abs_per_error, num_obs = _symmetric_mean_absolute_percentage_error_update(preds, target)\n\n self.sum_abs_per_error += sum_abs_per_error\n self.total += num_obs\n\n def compute(self) -> Tensor:\n \"\"\"Computes mean absolute percentage error over state.\"\"\"\n return _symmetric_mean_absolute_percentage_error_compute(self.sum_abs_per_error, self.total)\n", "path": "src/torchmetrics/regression/symmetric_mape.py"}]}
1,379
241
gh_patches_debug_11153
rasdani/github-patches
git_diff
open-mmlab__mmsegmentation-19
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- FileNotFoundError: [Errno 2] No such file or directory: 'VOCdevkit/VOCaug/dataset/trainval.txt' https://github.com/open-mmlab/mmsegmentation/blob/1c3f54765981ba352d4cf6582edb1c8915e51d71/tools/convert_datasets/voc_aug.py#L53 Directory `VOCdevkit/VOCaug/dataset` does not exist `trainval.txt`, `trainval.txt` is the merger of `train.txt` and `val.txt`? --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `tools/convert_datasets/voc_aug.py` Content: ``` 1 import argparse 2 import os.path as osp 3 from functools import partial 4 5 import mmcv 6 import numpy as np 7 from PIL import Image 8 from scipy.io import loadmat 9 10 AUG_LEN = 10582 11 12 13 def convert_mat(mat_file, in_dir, out_dir): 14 data = loadmat(osp.join(in_dir, mat_file)) 15 mask = data['GTcls'][0]['Segmentation'][0].astype(np.uint8) 16 seg_filename = osp.join(out_dir, mat_file.replace('.mat', '.png')) 17 Image.fromarray(mask).save(seg_filename, 'PNG') 18 19 20 def generate_aug_list(merged_list, excluded_list): 21 return list(set(merged_list) - set(excluded_list)) 22 23 24 def parse_args(): 25 parser = argparse.ArgumentParser( 26 description='Convert PASCAL VOC annotations to mmsegmentation format') 27 parser.add_argument('devkit_path', help='pascal voc devkit path') 28 parser.add_argument('aug_path', help='pascal voc aug path') 29 parser.add_argument('-o', '--out_dir', help='output path') 30 parser.add_argument( 31 '--nproc', default=1, type=int, help='number of process') 32 args = parser.parse_args() 33 return args 34 35 36 def main(): 37 args = parse_args() 38 devkit_path = args.devkit_path 39 aug_path = args.aug_path 40 nproc = args.nproc 41 if args.out_dir is None: 42 out_dir = osp.join(devkit_path, 'VOC2012', 'SegmentationClassAug') 43 else: 44 out_dir = args.out_dir 45 mmcv.mkdir_or_exist(out_dir) 46 in_dir = osp.join(aug_path, 'dataset', 'cls') 47 48 mmcv.track_parallel_progress( 49 partial(convert_mat, in_dir=in_dir, out_dir=out_dir), 50 list(mmcv.scandir(in_dir, suffix='.mat')), 51 nproc=nproc) 52 53 with open(osp.join(aug_path, 'dataset', 'trainval.txt')) as f: 54 full_aug_list = [line.strip() for line in f] 55 with open( 56 osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation', 57 'train.txt')) as f: 58 ori_train_list = [line.strip() for line in f] 59 with open( 60 osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation', 61 'val.txt')) as f: 62 val_list = [line.strip() for line in f] 63 64 aug_train_list = generate_aug_list(ori_train_list + full_aug_list, 65 val_list) 66 assert len(aug_train_list) == AUG_LEN, 'len(aug_train_list) != {}'.format( 67 AUG_LEN) 68 69 with open( 70 osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation', 71 'trainaug.txt'), 'w') as f: 72 f.writelines(line + '\n' for line in aug_train_list) 73 74 aug_list = generate_aug_list(full_aug_list, ori_train_list + val_list) 75 assert len(aug_list) == AUG_LEN - len( 76 ori_train_list), 'len(aug_list) != {}'.format(AUG_LEN - 77 len(ori_train_list)) 78 with open( 79 osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation', 'aug.txt'), 80 'w') as f: 81 f.writelines(line + '\n' for line in aug_list) 82 83 print('Done!') 84 85 86 if __name__ == '__main__': 87 main() 88 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/tools/convert_datasets/voc_aug.py b/tools/convert_datasets/voc_aug.py --- a/tools/convert_datasets/voc_aug.py +++ b/tools/convert_datasets/voc_aug.py @@ -50,8 +50,12 @@ list(mmcv.scandir(in_dir, suffix='.mat')), nproc=nproc) - with open(osp.join(aug_path, 'dataset', 'trainval.txt')) as f: - full_aug_list = [line.strip() for line in f] + full_aug_list = [] + with open(osp.join(aug_path, 'dataset', 'train.txt')) as f: + full_aug_list += [line.strip() for line in f] + with open(osp.join(aug_path, 'dataset', 'val.txt')) as f: + full_aug_list += [line.strip() for line in f] + with open( osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation', 'train.txt')) as f:
{"golden_diff": "diff --git a/tools/convert_datasets/voc_aug.py b/tools/convert_datasets/voc_aug.py\n--- a/tools/convert_datasets/voc_aug.py\n+++ b/tools/convert_datasets/voc_aug.py\n@@ -50,8 +50,12 @@\n list(mmcv.scandir(in_dir, suffix='.mat')),\n nproc=nproc)\n \n- with open(osp.join(aug_path, 'dataset', 'trainval.txt')) as f:\n- full_aug_list = [line.strip() for line in f]\n+ full_aug_list = []\n+ with open(osp.join(aug_path, 'dataset', 'train.txt')) as f:\n+ full_aug_list += [line.strip() for line in f]\n+ with open(osp.join(aug_path, 'dataset', 'val.txt')) as f:\n+ full_aug_list += [line.strip() for line in f]\n+\n with open(\n osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation',\n 'train.txt')) as f:\n", "issue": "FileNotFoundError: [Errno 2] No such file or directory: 'VOCdevkit/VOCaug/dataset/trainval.txt'\nhttps://github.com/open-mmlab/mmsegmentation/blob/1c3f54765981ba352d4cf6582edb1c8915e51d71/tools/convert_datasets/voc_aug.py#L53\r\n\r\nDirectory `VOCdevkit/VOCaug/dataset` does not exist `trainval.txt`, `trainval.txt` is the merger of `train.txt` and `val.txt`?\n", "before_files": [{"content": "import argparse\nimport os.path as osp\nfrom functools import partial\n\nimport mmcv\nimport numpy as np\nfrom PIL import Image\nfrom scipy.io import loadmat\n\nAUG_LEN = 10582\n\n\ndef convert_mat(mat_file, in_dir, out_dir):\n data = loadmat(osp.join(in_dir, mat_file))\n mask = data['GTcls'][0]['Segmentation'][0].astype(np.uint8)\n seg_filename = osp.join(out_dir, mat_file.replace('.mat', '.png'))\n Image.fromarray(mask).save(seg_filename, 'PNG')\n\n\ndef generate_aug_list(merged_list, excluded_list):\n return list(set(merged_list) - set(excluded_list))\n\n\ndef parse_args():\n parser = argparse.ArgumentParser(\n description='Convert PASCAL VOC annotations to mmsegmentation format')\n parser.add_argument('devkit_path', help='pascal voc devkit path')\n parser.add_argument('aug_path', help='pascal voc aug path')\n parser.add_argument('-o', '--out_dir', help='output path')\n parser.add_argument(\n '--nproc', default=1, type=int, help='number of process')\n args = parser.parse_args()\n return args\n\n\ndef main():\n args = parse_args()\n devkit_path = args.devkit_path\n aug_path = args.aug_path\n nproc = args.nproc\n if args.out_dir is None:\n out_dir = osp.join(devkit_path, 'VOC2012', 'SegmentationClassAug')\n else:\n out_dir = args.out_dir\n mmcv.mkdir_or_exist(out_dir)\n in_dir = osp.join(aug_path, 'dataset', 'cls')\n\n mmcv.track_parallel_progress(\n partial(convert_mat, in_dir=in_dir, out_dir=out_dir),\n list(mmcv.scandir(in_dir, suffix='.mat')),\n nproc=nproc)\n\n with open(osp.join(aug_path, 'dataset', 'trainval.txt')) as f:\n full_aug_list = [line.strip() for line in f]\n with open(\n osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation',\n 'train.txt')) as f:\n ori_train_list = [line.strip() for line in f]\n with open(\n osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation',\n 'val.txt')) as f:\n val_list = [line.strip() for line in f]\n\n aug_train_list = generate_aug_list(ori_train_list + full_aug_list,\n val_list)\n assert len(aug_train_list) == AUG_LEN, 'len(aug_train_list) != {}'.format(\n AUG_LEN)\n\n with open(\n osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation',\n 'trainaug.txt'), 'w') as f:\n f.writelines(line + '\\n' for line in aug_train_list)\n\n aug_list = generate_aug_list(full_aug_list, ori_train_list + val_list)\n assert len(aug_list) == AUG_LEN - len(\n ori_train_list), 'len(aug_list) != {}'.format(AUG_LEN -\n len(ori_train_list))\n with open(\n osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation', 'aug.txt'),\n 'w') as f:\n f.writelines(line + '\\n' for line in aug_list)\n\n print('Done!')\n\n\nif __name__ == '__main__':\n main()\n", "path": "tools/convert_datasets/voc_aug.py"}], "after_files": [{"content": "import argparse\nimport os.path as osp\nfrom functools import partial\n\nimport mmcv\nimport numpy as np\nfrom PIL import Image\nfrom scipy.io import loadmat\n\nAUG_LEN = 10582\n\n\ndef convert_mat(mat_file, in_dir, out_dir):\n data = loadmat(osp.join(in_dir, mat_file))\n mask = data['GTcls'][0]['Segmentation'][0].astype(np.uint8)\n seg_filename = osp.join(out_dir, mat_file.replace('.mat', '.png'))\n Image.fromarray(mask).save(seg_filename, 'PNG')\n\n\ndef generate_aug_list(merged_list, excluded_list):\n return list(set(merged_list) - set(excluded_list))\n\n\ndef parse_args():\n parser = argparse.ArgumentParser(\n description='Convert PASCAL VOC annotations to mmsegmentation format')\n parser.add_argument('devkit_path', help='pascal voc devkit path')\n parser.add_argument('aug_path', help='pascal voc aug path')\n parser.add_argument('-o', '--out_dir', help='output path')\n parser.add_argument(\n '--nproc', default=1, type=int, help='number of process')\n args = parser.parse_args()\n return args\n\n\ndef main():\n args = parse_args()\n devkit_path = args.devkit_path\n aug_path = args.aug_path\n nproc = args.nproc\n if args.out_dir is None:\n out_dir = osp.join(devkit_path, 'VOC2012', 'SegmentationClassAug')\n else:\n out_dir = args.out_dir\n mmcv.mkdir_or_exist(out_dir)\n in_dir = osp.join(aug_path, 'dataset', 'cls')\n\n mmcv.track_parallel_progress(\n partial(convert_mat, in_dir=in_dir, out_dir=out_dir),\n list(mmcv.scandir(in_dir, suffix='.mat')),\n nproc=nproc)\n\n full_aug_list = []\n with open(osp.join(aug_path, 'dataset', 'train.txt')) as f:\n full_aug_list += [line.strip() for line in f]\n with open(osp.join(aug_path, 'dataset', 'val.txt')) as f:\n full_aug_list += [line.strip() for line in f]\n\n with open(\n osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation',\n 'train.txt')) as f:\n ori_train_list = [line.strip() for line in f]\n with open(\n osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation',\n 'val.txt')) as f:\n val_list = [line.strip() for line in f]\n\n aug_train_list = generate_aug_list(ori_train_list + full_aug_list,\n val_list)\n assert len(aug_train_list) == AUG_LEN, 'len(aug_train_list) != {}'.format(\n AUG_LEN)\n\n with open(\n osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation',\n 'trainaug.txt'), 'w') as f:\n f.writelines(line + '\\n' for line in aug_train_list)\n\n aug_list = generate_aug_list(full_aug_list, ori_train_list + val_list)\n assert len(aug_list) == AUG_LEN - len(\n ori_train_list), 'len(aug_list) != {}'.format(AUG_LEN -\n len(ori_train_list))\n with open(\n osp.join(devkit_path, 'VOC2012/ImageSets/Segmentation', 'aug.txt'),\n 'w') as f:\n f.writelines(line + '\\n' for line in aug_list)\n\n print('Done!')\n\n\nif __name__ == '__main__':\n main()\n", "path": "tools/convert_datasets/voc_aug.py"}]}
1,328
228
gh_patches_debug_27576
rasdani/github-patches
git_diff
pytorch__text-192
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- len of iterator incorrect for dynamic batching The `__len__` method of `Iterator` (defined [here](https://github.com/pytorch/text/blob/master/torchtext/data/iterator.py#L157)) returns a wrong result for dynamic batching (i.e. if [batch_size_fn](https://github.com/pytorch/text/blob/master/torchtext/data/iterator.py#L50) is not None). For example if we set `batch_size_fn` to ``` lambda x, n, b: b + len(x.text) ``` there might be more or fewer batches in the dataset than the `__len__` outputs. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `torchtext/data/iterator.py` Content: ``` 1 from __future__ import division 2 3 import math 4 import random 5 from contextlib import contextmanager 6 from copy import deepcopy 7 8 from .batch import Batch 9 from .dataset import Dataset 10 11 12 class RandomShuffler(object): 13 """Use random functions while keeping track of the random state to make it 14 reproducible and deterministic.""" 15 16 def __init__(self, random_state=None): 17 self._random_state = random_state 18 if self._random_state is None: 19 self._random_state = random.getstate() 20 21 @contextmanager 22 def use_internal_state(self): 23 """Use a specific RNG state.""" 24 old_state = random.getstate() 25 random.setstate(self._random_state) 26 yield 27 self._random_state = random.getstate() 28 random.setstate(old_state) 29 30 @property 31 def random_state(self): 32 return deepcopy(self._random_state) 33 34 @random_state.setter 35 def random_state(self, s): 36 self._random_state = s 37 38 def __call__(self, data): 39 """Shuffle and return a new list.""" 40 with self.use_internal_state(): 41 return random.sample(data, len(data)) 42 43 44 class Iterator(object): 45 """Defines an iterator that loads batches of data from a Dataset. 46 47 Attributes: 48 dataset: The Dataset object to load Examples from. 49 batch_size: Batch size. 50 batch_size_fn: Function of three arguments (new example to add, current 51 count of examples in the batch, and current effective batch size) 52 that returns the new effective batch size resulting from adding 53 that example to a batch. This is useful for dynamic batching, where 54 this function would add to the current effective batch size the 55 number of tokens in the new example. 56 sort_key: A key to use for sorting examples in order to batch together 57 examples with similar lengths and minimize padding. The sort_key 58 provided to the Iterator constructor overrides the sort_key 59 attribute of the Dataset, or defers to it if None. 60 train: Whether the iterator represents a train set. 61 repeat: Whether to repeat the iterator for multiple epochs. 62 shuffle: Whether to shuffle examples between epochs. 63 sort: Whether to sort examples according to self.sort_key. 64 Note that repeat, shuffle, and sort default to train, train, and 65 (not train). 66 sort_within_batch: Whether to sort (in descending order according to 67 self.sort_key) within each batch. If None, defaults to self.sort. 68 If self.sort is True and this is False, the batch is left in the 69 original (ascending) sorted order. 70 device: Device to create batches on. Use -1 for CPU and None for the 71 currently active GPU device. 72 """ 73 74 def __init__(self, dataset, batch_size, sort_key=None, device=None, 75 batch_size_fn=lambda new, count, sofar: count, train=True, 76 repeat=None, shuffle=None, sort=None, 77 sort_within_batch=None): 78 self.batch_size, self.train, self.dataset = batch_size, train, dataset 79 self.batch_size_fn = batch_size_fn 80 self.iterations = 0 81 self.repeat = train if repeat is None else repeat 82 self.shuffle = train if shuffle is None else shuffle 83 self.sort = not train if sort is None else sort 84 if sort_within_batch is None: 85 self.sort_within_batch = self.sort 86 else: 87 self.sort_within_batch = sort_within_batch 88 if sort_key is None: 89 self.sort_key = dataset.sort_key 90 else: 91 self.sort_key = sort_key 92 self.device = device 93 94 self.random_shuffler = RandomShuffler() 95 96 # For state loading/saving only 97 self._iterations_this_epoch = 0 98 self._random_state_this_epoch = None 99 self._restored_from_state = False 100 101 @classmethod 102 def splits(cls, datasets, batch_sizes=None, **kwargs): 103 """Create Iterator objects for multiple splits of a dataset. 104 105 Arguments: 106 datasets: Tuple of Dataset objects corresponding to the splits. The 107 first such object should be the train set. 108 batch_sizes: Tuple of batch sizes to use for the different splits, 109 or None to use the same batch_size for all splits. 110 Remaining keyword arguments: Passed to the constructor of the 111 iterator class being used. 112 """ 113 if batch_sizes is None: 114 batch_sizes = [kwargs.pop('batch_size')] * len(datasets) 115 ret = [] 116 for i in range(len(datasets)): 117 train = i == 0 118 ret.append(cls( 119 datasets[i], batch_size=batch_sizes[i], train=train, **kwargs)) 120 return tuple(ret) 121 122 def data(self): 123 """Return the examples in the dataset in order, sorted, or shuffled.""" 124 if self.sort: 125 xs = sorted(self.dataset, key=self.sort_key) 126 elif self.shuffle: 127 xs = [self.dataset[i] for i in self.random_shuffler(range(len(self.dataset)))] 128 else: 129 xs = self.dataset 130 return xs 131 132 def init_epoch(self): 133 """Set up the batch generator for a new epoch.""" 134 135 if self._restored_from_state: 136 self.random_shuffler.random_state = self._random_state_this_epoch 137 else: 138 self._random_state_this_epoch = self.random_shuffler.random_state 139 140 self.create_batches() 141 142 if self._restored_from_state: 143 self._restored_from_state = False 144 else: 145 self._iterations_this_epoch = 0 146 147 if not self.repeat: 148 self.iterations = 0 149 150 def create_batches(self): 151 self.batches = batch(self.data(), self.batch_size, self.batch_size_fn) 152 153 @property 154 def epoch(self): 155 return self.iterations / len(self) 156 157 def __len__(self): 158 return math.ceil(len(self.dataset) / self.batch_size) 159 160 def __iter__(self): 161 while True: 162 self.init_epoch() 163 for idx, minibatch in enumerate(self.batches): 164 # fast-forward if loaded from state 165 if self._iterations_this_epoch > idx: 166 continue 167 self.iterations += 1 168 self._iterations_this_epoch += 1 169 if self.sort_within_batch: 170 # NOTE: `rnn.pack_padded_sequence` requires that a minibatch 171 # be sorted by decreasing order, which requires reversing 172 # relative to typical sort keys 173 if self.sort: 174 minibatch.reverse() 175 else: 176 minibatch.sort(key=self.sort_key, reverse=True) 177 yield Batch(minibatch, self.dataset, self.device, 178 self.train) 179 if not self.repeat: 180 raise StopIteration 181 182 def state_dict(self): 183 return { 184 "iterations": self.iterations, 185 "iterations_this_epoch": self._iterations_this_epoch, 186 "random_state_this_epoch": self._random_state_this_epoch} 187 188 def load_state_dict(self, state_dict): 189 self.iterations = state_dict["iterations"] 190 self._iterations_this_epoch = state_dict["iterations_this_epoch"] 191 self._random_state_this_epoch = state_dict["random_state_this_epoch"] 192 self._restored_from_state = True 193 194 195 class BPTTIterator(Iterator): 196 """Defines an iterator for language modeling tasks that use BPTT. 197 198 Provides contiguous streams of examples together with targets that are 199 one timestep further forward, for language modeling training with 200 backpropagation through time (BPTT). Expects a Dataset with a single 201 example and a single field called 'text' and produces Batches with text and 202 target attributes. 203 204 Attributes: 205 dataset: The Dataset object to load Examples from. 206 batch_size: Batch size. 207 bptt_len: Length of sequences for backpropagation through time. 208 sort_key: A key to use for sorting examples in order to batch together 209 examples with similar lengths and minimize padding. The sort_key 210 provided to the Iterator constructor overrides the sort_key 211 attribute of the Dataset, or defers to it if None. 212 train: Whether the iterator represents a train set. 213 repeat: Whether to repeat the iterator for multiple epochs. 214 shuffle: Whether to shuffle examples between epochs. 215 sort: Whether to sort examples according to self.sort_key. 216 Note that repeat, shuffle, and sort default to train, train, and 217 (not train). 218 device: Device to create batches on. Use -1 for CPU and None for the 219 currently active GPU device. 220 """ 221 222 def __init__(self, dataset, batch_size, bptt_len, **kwargs): 223 self.bptt_len = bptt_len 224 super(BPTTIterator, self).__init__(dataset, batch_size, **kwargs) 225 226 def __len__(self): 227 return math.ceil((len(self.dataset[0].text) / self.batch_size - 1) / 228 self.bptt_len) 229 230 def __iter__(self): 231 text = self.dataset[0].text 232 TEXT = self.dataset.fields['text'] 233 TEXT.eos_token = None 234 text = text + ([TEXT.pad_token] * int(math.ceil(len(text) / self.batch_size) * 235 self.batch_size - len(text))) 236 data = TEXT.numericalize( 237 [text], device=self.device, train=self.train) 238 data = data.view(self.batch_size, -1).t().contiguous() 239 dataset = Dataset(examples=self.dataset.examples, fields=[ 240 ('text', TEXT), ('target', TEXT)]) 241 while True: 242 for i in range(0, len(self) * self.bptt_len, self.bptt_len): 243 seq_len = min(self.bptt_len, len(data) - i - 1) 244 yield Batch.fromvars( 245 dataset, self.batch_size, train=self.train, 246 text=data[i:i + seq_len], 247 target=data[i + 1:i + 1 + seq_len]) 248 if not self.repeat: 249 raise StopIteration 250 251 252 class BucketIterator(Iterator): 253 """Defines an iterator that batches examples of similar lengths together. 254 255 Minimizes amount of padding needed while producing freshly shuffled 256 batches for each new epoch. See pool for the bucketing procedure used. 257 """ 258 259 def create_batches(self): 260 if self.sort: 261 self.batches = batch(self.data(), self.batch_size, 262 self.batch_size_fn) 263 else: 264 self.batches = pool(self.data(), self.batch_size, 265 self.sort_key, self.batch_size_fn, 266 random_shuffler=self.random_shuffler) 267 268 269 def batch(data, batch_size, batch_size_fn=lambda new, count, sofar: count): 270 """Yield elements from data in chunks of batch_size.""" 271 minibatch, size_so_far = [], 0 272 for ex in data: 273 minibatch.append(ex) 274 size_so_far = batch_size_fn(ex, len(minibatch), size_so_far) 275 if size_so_far == batch_size: 276 yield minibatch 277 minibatch, size_so_far = [], 0 278 elif size_so_far > batch_size: 279 yield minibatch[:-1] 280 minibatch, size_so_far = minibatch[-1:], batch_size_fn(ex, 1, 0) 281 if minibatch: 282 yield minibatch 283 284 285 def pool(data, batch_size, key, batch_size_fn=lambda new, count, sofar: count, 286 random_shuffler=None): 287 """Sort within buckets, then batch, then shuffle batches. 288 289 Partitions data into chunks of size 100*batch_size, sorts examples within 290 each chunk using sort_key, then batch these examples and shuffle the 291 batches. 292 """ 293 if random_shuffler is None: 294 random_shuffler = random.shuffle 295 for p in batch(data, batch_size * 100, batch_size_fn): 296 p_batch = batch(sorted(p, key=key), batch_size, batch_size_fn) 297 for b in random_shuffler(list(p_batch)): 298 yield b 299 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/torchtext/data/iterator.py b/torchtext/data/iterator.py --- a/torchtext/data/iterator.py +++ b/torchtext/data/iterator.py @@ -72,7 +72,7 @@ """ def __init__(self, dataset, batch_size, sort_key=None, device=None, - batch_size_fn=lambda new, count, sofar: count, train=True, + batch_size_fn=None, train=True, repeat=None, shuffle=None, sort=None, sort_within_batch=None): self.batch_size, self.train, self.dataset = batch_size, train, dataset @@ -155,6 +155,8 @@ return self.iterations / len(self) def __len__(self): + if self.batch_size_fn is not None: + raise NotImplementedError return math.ceil(len(self.dataset) / self.batch_size) def __iter__(self): @@ -266,8 +268,11 @@ random_shuffler=self.random_shuffler) -def batch(data, batch_size, batch_size_fn=lambda new, count, sofar: count): +def batch(data, batch_size, batch_size_fn=None): """Yield elements from data in chunks of batch_size.""" + if batch_size_fn is None: + def batch_size_fn(new, count, sofar): + return count minibatch, size_so_far = [], 0 for ex in data: minibatch.append(ex)
{"golden_diff": "diff --git a/torchtext/data/iterator.py b/torchtext/data/iterator.py\n--- a/torchtext/data/iterator.py\n+++ b/torchtext/data/iterator.py\n@@ -72,7 +72,7 @@\n \"\"\"\n \n def __init__(self, dataset, batch_size, sort_key=None, device=None,\n- batch_size_fn=lambda new, count, sofar: count, train=True,\n+ batch_size_fn=None, train=True,\n repeat=None, shuffle=None, sort=None,\n sort_within_batch=None):\n self.batch_size, self.train, self.dataset = batch_size, train, dataset\n@@ -155,6 +155,8 @@\n return self.iterations / len(self)\n \n def __len__(self):\n+ if self.batch_size_fn is not None:\n+ raise NotImplementedError\n return math.ceil(len(self.dataset) / self.batch_size)\n \n def __iter__(self):\n@@ -266,8 +268,11 @@\n random_shuffler=self.random_shuffler)\n \n \n-def batch(data, batch_size, batch_size_fn=lambda new, count, sofar: count):\n+def batch(data, batch_size, batch_size_fn=None):\n \"\"\"Yield elements from data in chunks of batch_size.\"\"\"\n+ if batch_size_fn is None:\n+ def batch_size_fn(new, count, sofar):\n+ return count\n minibatch, size_so_far = [], 0\n for ex in data:\n minibatch.append(ex)\n", "issue": "len of iterator incorrect for dynamic batching\nThe `__len__` method of `Iterator` (defined [here](https://github.com/pytorch/text/blob/master/torchtext/data/iterator.py#L157)) returns a wrong result for dynamic batching (i.e. if [batch_size_fn](https://github.com/pytorch/text/blob/master/torchtext/data/iterator.py#L50) is not None).\r\n\r\nFor example if we set `batch_size_fn` to\r\n```\r\nlambda x, n, b: b + len(x.text)\r\n```\r\nthere might be more or fewer batches in the dataset than the `__len__` outputs. \n", "before_files": [{"content": "from __future__ import division\n\nimport math\nimport random\nfrom contextlib import contextmanager\nfrom copy import deepcopy\n\nfrom .batch import Batch\nfrom .dataset import Dataset\n\n\nclass RandomShuffler(object):\n \"\"\"Use random functions while keeping track of the random state to make it\n reproducible and deterministic.\"\"\"\n\n def __init__(self, random_state=None):\n self._random_state = random_state\n if self._random_state is None:\n self._random_state = random.getstate()\n\n @contextmanager\n def use_internal_state(self):\n \"\"\"Use a specific RNG state.\"\"\"\n old_state = random.getstate()\n random.setstate(self._random_state)\n yield\n self._random_state = random.getstate()\n random.setstate(old_state)\n\n @property\n def random_state(self):\n return deepcopy(self._random_state)\n\n @random_state.setter\n def random_state(self, s):\n self._random_state = s\n\n def __call__(self, data):\n \"\"\"Shuffle and return a new list.\"\"\"\n with self.use_internal_state():\n return random.sample(data, len(data))\n\n\nclass Iterator(object):\n \"\"\"Defines an iterator that loads batches of data from a Dataset.\n\n Attributes:\n dataset: The Dataset object to load Examples from.\n batch_size: Batch size.\n batch_size_fn: Function of three arguments (new example to add, current\n count of examples in the batch, and current effective batch size)\n that returns the new effective batch size resulting from adding\n that example to a batch. This is useful for dynamic batching, where\n this function would add to the current effective batch size the\n number of tokens in the new example.\n sort_key: A key to use for sorting examples in order to batch together\n examples with similar lengths and minimize padding. The sort_key\n provided to the Iterator constructor overrides the sort_key\n attribute of the Dataset, or defers to it if None.\n train: Whether the iterator represents a train set.\n repeat: Whether to repeat the iterator for multiple epochs.\n shuffle: Whether to shuffle examples between epochs.\n sort: Whether to sort examples according to self.sort_key.\n Note that repeat, shuffle, and sort default to train, train, and\n (not train).\n sort_within_batch: Whether to sort (in descending order according to\n self.sort_key) within each batch. If None, defaults to self.sort.\n If self.sort is True and this is False, the batch is left in the\n original (ascending) sorted order.\n device: Device to create batches on. Use -1 for CPU and None for the\n currently active GPU device.\n \"\"\"\n\n def __init__(self, dataset, batch_size, sort_key=None, device=None,\n batch_size_fn=lambda new, count, sofar: count, train=True,\n repeat=None, shuffle=None, sort=None,\n sort_within_batch=None):\n self.batch_size, self.train, self.dataset = batch_size, train, dataset\n self.batch_size_fn = batch_size_fn\n self.iterations = 0\n self.repeat = train if repeat is None else repeat\n self.shuffle = train if shuffle is None else shuffle\n self.sort = not train if sort is None else sort\n if sort_within_batch is None:\n self.sort_within_batch = self.sort\n else:\n self.sort_within_batch = sort_within_batch\n if sort_key is None:\n self.sort_key = dataset.sort_key\n else:\n self.sort_key = sort_key\n self.device = device\n\n self.random_shuffler = RandomShuffler()\n\n # For state loading/saving only\n self._iterations_this_epoch = 0\n self._random_state_this_epoch = None\n self._restored_from_state = False\n\n @classmethod\n def splits(cls, datasets, batch_sizes=None, **kwargs):\n \"\"\"Create Iterator objects for multiple splits of a dataset.\n\n Arguments:\n datasets: Tuple of Dataset objects corresponding to the splits. The\n first such object should be the train set.\n batch_sizes: Tuple of batch sizes to use for the different splits,\n or None to use the same batch_size for all splits.\n Remaining keyword arguments: Passed to the constructor of the\n iterator class being used.\n \"\"\"\n if batch_sizes is None:\n batch_sizes = [kwargs.pop('batch_size')] * len(datasets)\n ret = []\n for i in range(len(datasets)):\n train = i == 0\n ret.append(cls(\n datasets[i], batch_size=batch_sizes[i], train=train, **kwargs))\n return tuple(ret)\n\n def data(self):\n \"\"\"Return the examples in the dataset in order, sorted, or shuffled.\"\"\"\n if self.sort:\n xs = sorted(self.dataset, key=self.sort_key)\n elif self.shuffle:\n xs = [self.dataset[i] for i in self.random_shuffler(range(len(self.dataset)))]\n else:\n xs = self.dataset\n return xs\n\n def init_epoch(self):\n \"\"\"Set up the batch generator for a new epoch.\"\"\"\n\n if self._restored_from_state:\n self.random_shuffler.random_state = self._random_state_this_epoch\n else:\n self._random_state_this_epoch = self.random_shuffler.random_state\n\n self.create_batches()\n\n if self._restored_from_state:\n self._restored_from_state = False\n else:\n self._iterations_this_epoch = 0\n\n if not self.repeat:\n self.iterations = 0\n\n def create_batches(self):\n self.batches = batch(self.data(), self.batch_size, self.batch_size_fn)\n\n @property\n def epoch(self):\n return self.iterations / len(self)\n\n def __len__(self):\n return math.ceil(len(self.dataset) / self.batch_size)\n\n def __iter__(self):\n while True:\n self.init_epoch()\n for idx, minibatch in enumerate(self.batches):\n # fast-forward if loaded from state\n if self._iterations_this_epoch > idx:\n continue\n self.iterations += 1\n self._iterations_this_epoch += 1\n if self.sort_within_batch:\n # NOTE: `rnn.pack_padded_sequence` requires that a minibatch\n # be sorted by decreasing order, which requires reversing\n # relative to typical sort keys\n if self.sort:\n minibatch.reverse()\n else:\n minibatch.sort(key=self.sort_key, reverse=True)\n yield Batch(minibatch, self.dataset, self.device,\n self.train)\n if not self.repeat:\n raise StopIteration\n\n def state_dict(self):\n return {\n \"iterations\": self.iterations,\n \"iterations_this_epoch\": self._iterations_this_epoch,\n \"random_state_this_epoch\": self._random_state_this_epoch}\n\n def load_state_dict(self, state_dict):\n self.iterations = state_dict[\"iterations\"]\n self._iterations_this_epoch = state_dict[\"iterations_this_epoch\"]\n self._random_state_this_epoch = state_dict[\"random_state_this_epoch\"]\n self._restored_from_state = True\n\n\nclass BPTTIterator(Iterator):\n \"\"\"Defines an iterator for language modeling tasks that use BPTT.\n\n Provides contiguous streams of examples together with targets that are\n one timestep further forward, for language modeling training with\n backpropagation through time (BPTT). Expects a Dataset with a single\n example and a single field called 'text' and produces Batches with text and\n target attributes.\n\n Attributes:\n dataset: The Dataset object to load Examples from.\n batch_size: Batch size.\n bptt_len: Length of sequences for backpropagation through time.\n sort_key: A key to use for sorting examples in order to batch together\n examples with similar lengths and minimize padding. The sort_key\n provided to the Iterator constructor overrides the sort_key\n attribute of the Dataset, or defers to it if None.\n train: Whether the iterator represents a train set.\n repeat: Whether to repeat the iterator for multiple epochs.\n shuffle: Whether to shuffle examples between epochs.\n sort: Whether to sort examples according to self.sort_key.\n Note that repeat, shuffle, and sort default to train, train, and\n (not train).\n device: Device to create batches on. Use -1 for CPU and None for the\n currently active GPU device.\n \"\"\"\n\n def __init__(self, dataset, batch_size, bptt_len, **kwargs):\n self.bptt_len = bptt_len\n super(BPTTIterator, self).__init__(dataset, batch_size, **kwargs)\n\n def __len__(self):\n return math.ceil((len(self.dataset[0].text) / self.batch_size - 1) /\n self.bptt_len)\n\n def __iter__(self):\n text = self.dataset[0].text\n TEXT = self.dataset.fields['text']\n TEXT.eos_token = None\n text = text + ([TEXT.pad_token] * int(math.ceil(len(text) / self.batch_size) *\n self.batch_size - len(text)))\n data = TEXT.numericalize(\n [text], device=self.device, train=self.train)\n data = data.view(self.batch_size, -1).t().contiguous()\n dataset = Dataset(examples=self.dataset.examples, fields=[\n ('text', TEXT), ('target', TEXT)])\n while True:\n for i in range(0, len(self) * self.bptt_len, self.bptt_len):\n seq_len = min(self.bptt_len, len(data) - i - 1)\n yield Batch.fromvars(\n dataset, self.batch_size, train=self.train,\n text=data[i:i + seq_len],\n target=data[i + 1:i + 1 + seq_len])\n if not self.repeat:\n raise StopIteration\n\n\nclass BucketIterator(Iterator):\n \"\"\"Defines an iterator that batches examples of similar lengths together.\n\n Minimizes amount of padding needed while producing freshly shuffled\n batches for each new epoch. See pool for the bucketing procedure used.\n \"\"\"\n\n def create_batches(self):\n if self.sort:\n self.batches = batch(self.data(), self.batch_size,\n self.batch_size_fn)\n else:\n self.batches = pool(self.data(), self.batch_size,\n self.sort_key, self.batch_size_fn,\n random_shuffler=self.random_shuffler)\n\n\ndef batch(data, batch_size, batch_size_fn=lambda new, count, sofar: count):\n \"\"\"Yield elements from data in chunks of batch_size.\"\"\"\n minibatch, size_so_far = [], 0\n for ex in data:\n minibatch.append(ex)\n size_so_far = batch_size_fn(ex, len(minibatch), size_so_far)\n if size_so_far == batch_size:\n yield minibatch\n minibatch, size_so_far = [], 0\n elif size_so_far > batch_size:\n yield minibatch[:-1]\n minibatch, size_so_far = minibatch[-1:], batch_size_fn(ex, 1, 0)\n if minibatch:\n yield minibatch\n\n\ndef pool(data, batch_size, key, batch_size_fn=lambda new, count, sofar: count,\n random_shuffler=None):\n \"\"\"Sort within buckets, then batch, then shuffle batches.\n\n Partitions data into chunks of size 100*batch_size, sorts examples within\n each chunk using sort_key, then batch these examples and shuffle the\n batches.\n \"\"\"\n if random_shuffler is None:\n random_shuffler = random.shuffle\n for p in batch(data, batch_size * 100, batch_size_fn):\n p_batch = batch(sorted(p, key=key), batch_size, batch_size_fn)\n for b in random_shuffler(list(p_batch)):\n yield b\n", "path": "torchtext/data/iterator.py"}], "after_files": [{"content": "from __future__ import division\n\nimport math\nimport random\nfrom contextlib import contextmanager\nfrom copy import deepcopy\n\nfrom .batch import Batch\nfrom .dataset import Dataset\n\n\nclass RandomShuffler(object):\n \"\"\"Use random functions while keeping track of the random state to make it\n reproducible and deterministic.\"\"\"\n\n def __init__(self, random_state=None):\n self._random_state = random_state\n if self._random_state is None:\n self._random_state = random.getstate()\n\n @contextmanager\n def use_internal_state(self):\n \"\"\"Use a specific RNG state.\"\"\"\n old_state = random.getstate()\n random.setstate(self._random_state)\n yield\n self._random_state = random.getstate()\n random.setstate(old_state)\n\n @property\n def random_state(self):\n return deepcopy(self._random_state)\n\n @random_state.setter\n def random_state(self, s):\n self._random_state = s\n\n def __call__(self, data):\n \"\"\"Shuffle and return a new list.\"\"\"\n with self.use_internal_state():\n return random.sample(data, len(data))\n\n\nclass Iterator(object):\n \"\"\"Defines an iterator that loads batches of data from a Dataset.\n\n Attributes:\n dataset: The Dataset object to load Examples from.\n batch_size: Batch size.\n batch_size_fn: Function of three arguments (new example to add, current\n count of examples in the batch, and current effective batch size)\n that returns the new effective batch size resulting from adding\n that example to a batch. This is useful for dynamic batching, where\n this function would add to the current effective batch size the\n number of tokens in the new example.\n sort_key: A key to use for sorting examples in order to batch together\n examples with similar lengths and minimize padding. The sort_key\n provided to the Iterator constructor overrides the sort_key\n attribute of the Dataset, or defers to it if None.\n train: Whether the iterator represents a train set.\n repeat: Whether to repeat the iterator for multiple epochs.\n shuffle: Whether to shuffle examples between epochs.\n sort: Whether to sort examples according to self.sort_key.\n Note that repeat, shuffle, and sort default to train, train, and\n (not train).\n sort_within_batch: Whether to sort (in descending order according to\n self.sort_key) within each batch. If None, defaults to self.sort.\n If self.sort is True and this is False, the batch is left in the\n original (ascending) sorted order.\n device: Device to create batches on. Use -1 for CPU and None for the\n currently active GPU device.\n \"\"\"\n\n def __init__(self, dataset, batch_size, sort_key=None, device=None,\n batch_size_fn=None, train=True,\n repeat=None, shuffle=None, sort=None,\n sort_within_batch=None):\n self.batch_size, self.train, self.dataset = batch_size, train, dataset\n self.batch_size_fn = batch_size_fn\n self.iterations = 0\n self.repeat = train if repeat is None else repeat\n self.shuffle = train if shuffle is None else shuffle\n self.sort = not train if sort is None else sort\n if sort_within_batch is None:\n self.sort_within_batch = self.sort\n else:\n self.sort_within_batch = sort_within_batch\n if sort_key is None:\n self.sort_key = dataset.sort_key\n else:\n self.sort_key = sort_key\n self.device = device\n\n self.random_shuffler = RandomShuffler()\n\n # For state loading/saving only\n self._iterations_this_epoch = 0\n self._random_state_this_epoch = None\n self._restored_from_state = False\n\n @classmethod\n def splits(cls, datasets, batch_sizes=None, **kwargs):\n \"\"\"Create Iterator objects for multiple splits of a dataset.\n\n Arguments:\n datasets: Tuple of Dataset objects corresponding to the splits. The\n first such object should be the train set.\n batch_sizes: Tuple of batch sizes to use for the different splits,\n or None to use the same batch_size for all splits.\n Remaining keyword arguments: Passed to the constructor of the\n iterator class being used.\n \"\"\"\n if batch_sizes is None:\n batch_sizes = [kwargs.pop('batch_size')] * len(datasets)\n ret = []\n for i in range(len(datasets)):\n train = i == 0\n ret.append(cls(\n datasets[i], batch_size=batch_sizes[i], train=train, **kwargs))\n return tuple(ret)\n\n def data(self):\n \"\"\"Return the examples in the dataset in order, sorted, or shuffled.\"\"\"\n if self.sort:\n xs = sorted(self.dataset, key=self.sort_key)\n elif self.shuffle:\n xs = [self.dataset[i] for i in self.random_shuffler(range(len(self.dataset)))]\n else:\n xs = self.dataset\n return xs\n\n def init_epoch(self):\n \"\"\"Set up the batch generator for a new epoch.\"\"\"\n\n if self._restored_from_state:\n self.random_shuffler.random_state = self._random_state_this_epoch\n else:\n self._random_state_this_epoch = self.random_shuffler.random_state\n\n self.create_batches()\n\n if self._restored_from_state:\n self._restored_from_state = False\n else:\n self._iterations_this_epoch = 0\n\n if not self.repeat:\n self.iterations = 0\n\n def create_batches(self):\n self.batches = batch(self.data(), self.batch_size, self.batch_size_fn)\n\n @property\n def epoch(self):\n return self.iterations / len(self)\n\n def __len__(self):\n if self.batch_size_fn is not None:\n raise NotImplementedError\n return math.ceil(len(self.dataset) / self.batch_size)\n\n def __iter__(self):\n while True:\n self.init_epoch()\n for idx, minibatch in enumerate(self.batches):\n # fast-forward if loaded from state\n if self._iterations_this_epoch > idx:\n continue\n self.iterations += 1\n self._iterations_this_epoch += 1\n if self.sort_within_batch:\n # NOTE: `rnn.pack_padded_sequence` requires that a minibatch\n # be sorted by decreasing order, which requires reversing\n # relative to typical sort keys\n if self.sort:\n minibatch.reverse()\n else:\n minibatch.sort(key=self.sort_key, reverse=True)\n yield Batch(minibatch, self.dataset, self.device,\n self.train)\n if not self.repeat:\n raise StopIteration\n\n def state_dict(self):\n return {\n \"iterations\": self.iterations,\n \"iterations_this_epoch\": self._iterations_this_epoch,\n \"random_state_this_epoch\": self._random_state_this_epoch}\n\n def load_state_dict(self, state_dict):\n self.iterations = state_dict[\"iterations\"]\n self._iterations_this_epoch = state_dict[\"iterations_this_epoch\"]\n self._random_state_this_epoch = state_dict[\"random_state_this_epoch\"]\n self._restored_from_state = True\n\n\nclass BPTTIterator(Iterator):\n \"\"\"Defines an iterator for language modeling tasks that use BPTT.\n\n Provides contiguous streams of examples together with targets that are\n one timestep further forward, for language modeling training with\n backpropagation through time (BPTT). Expects a Dataset with a single\n example and a single field called 'text' and produces Batches with text and\n target attributes.\n\n Attributes:\n dataset: The Dataset object to load Examples from.\n batch_size: Batch size.\n bptt_len: Length of sequences for backpropagation through time.\n sort_key: A key to use for sorting examples in order to batch together\n examples with similar lengths and minimize padding. The sort_key\n provided to the Iterator constructor overrides the sort_key\n attribute of the Dataset, or defers to it if None.\n train: Whether the iterator represents a train set.\n repeat: Whether to repeat the iterator for multiple epochs.\n shuffle: Whether to shuffle examples between epochs.\n sort: Whether to sort examples according to self.sort_key.\n Note that repeat, shuffle, and sort default to train, train, and\n (not train).\n device: Device to create batches on. Use -1 for CPU and None for the\n currently active GPU device.\n \"\"\"\n\n def __init__(self, dataset, batch_size, bptt_len, **kwargs):\n self.bptt_len = bptt_len\n super(BPTTIterator, self).__init__(dataset, batch_size, **kwargs)\n\n def __len__(self):\n return math.ceil((len(self.dataset[0].text) / self.batch_size - 1) /\n self.bptt_len)\n\n def __iter__(self):\n text = self.dataset[0].text\n TEXT = self.dataset.fields['text']\n TEXT.eos_token = None\n text = text + ([TEXT.pad_token] * int(math.ceil(len(text) / self.batch_size) *\n self.batch_size - len(text)))\n data = TEXT.numericalize(\n [text], device=self.device, train=self.train)\n data = data.view(self.batch_size, -1).t().contiguous()\n dataset = Dataset(examples=self.dataset.examples, fields=[\n ('text', TEXT), ('target', TEXT)])\n while True:\n for i in range(0, len(self) * self.bptt_len, self.bptt_len):\n seq_len = min(self.bptt_len, len(data) - i - 1)\n yield Batch.fromvars(\n dataset, self.batch_size, train=self.train,\n text=data[i:i + seq_len],\n target=data[i + 1:i + 1 + seq_len])\n if not self.repeat:\n raise StopIteration\n\n\nclass BucketIterator(Iterator):\n \"\"\"Defines an iterator that batches examples of similar lengths together.\n\n Minimizes amount of padding needed while producing freshly shuffled\n batches for each new epoch. See pool for the bucketing procedure used.\n \"\"\"\n\n def create_batches(self):\n if self.sort:\n self.batches = batch(self.data(), self.batch_size,\n self.batch_size_fn)\n else:\n self.batches = pool(self.data(), self.batch_size,\n self.sort_key, self.batch_size_fn,\n random_shuffler=self.random_shuffler)\n\n\ndef batch(data, batch_size, batch_size_fn=None):\n \"\"\"Yield elements from data in chunks of batch_size.\"\"\"\n if batch_size_fn is None:\n def batch_size_fn(new, count, sofar):\n return count\n minibatch, size_so_far = [], 0\n for ex in data:\n minibatch.append(ex)\n size_so_far = batch_size_fn(ex, len(minibatch), size_so_far)\n if size_so_far == batch_size:\n yield minibatch\n minibatch, size_so_far = [], 0\n elif size_so_far > batch_size:\n yield minibatch[:-1]\n minibatch, size_so_far = minibatch[-1:], batch_size_fn(ex, 1, 0)\n if minibatch:\n yield minibatch\n\n\ndef pool(data, batch_size, key, batch_size_fn=lambda new, count, sofar: count,\n random_shuffler=None):\n \"\"\"Sort within buckets, then batch, then shuffle batches.\n\n Partitions data into chunks of size 100*batch_size, sorts examples within\n each chunk using sort_key, then batch these examples and shuffle the\n batches.\n \"\"\"\n if random_shuffler is None:\n random_shuffler = random.shuffle\n for p in batch(data, batch_size * 100, batch_size_fn):\n p_batch = batch(sorted(p, key=key), batch_size, batch_size_fn)\n for b in random_shuffler(list(p_batch)):\n yield b\n", "path": "torchtext/data/iterator.py"}]}
3,743
328
gh_patches_debug_2582
rasdani/github-patches
git_diff
azavea__raster-vision-1586
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Same explanation for SlidingWindowGeoDataset and RandomWindowGeoDataset ## 📚 Documentation <!-- A clear and concise description of what content in https://docs.rastervision.io/ is an issue.--> > The SlidingWindowGeoDataset allows reading the scene by sampling random window sizes and locations. This description is same to explained both SlidingWindowGeoDataset and RandomWindowGeoDataset. This can be found here: https://docs.rastervision.io/en/latest/tutorials/sampling_training_data.html --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `rastervision_core/rastervision/core/data/class_config.py` Content: ``` 1 from typing import List, Optional, Tuple, Union 2 3 from rastervision.pipeline.config import (Config, register_config, ConfigError, 4 Field, validator) 5 from rastervision.core.data.utils import color_to_triple, normalize_color 6 7 DEFAULT_NULL_CLASS_NAME = 'null' 8 DEFAULT_NULL_CLASS_COLOR = 'black' 9 10 11 @register_config('class_config') 12 class ClassConfig(Config): 13 """Configures the class names that are being predicted.""" 14 names: List[str] = Field( 15 ..., 16 description='Names of classes. The i-th class in this list will have ' 17 'class ID = i.') 18 colors: Optional[List[Union[str, Tuple]]] = Field( 19 None, 20 description= 21 ('Colors used to visualize classes. Can be color strings accepted by ' 22 'matplotlib or RGB tuples. If None, a random color will be auto-generated ' 23 'for each class.')) 24 null_class: Optional[str] = Field( 25 None, 26 description='Optional name of class in `names` to use as the null ' 27 'class. This is used in semantic segmentation to represent the label ' 28 'for imagery pixels that are NODATA or that are missing a label. ' 29 f'If None and the class names include "{DEFAULT_NULL_CLASS_NAME}", ' 30 'it will automatically be used as the null class. If None, and this ' 31 'Config is part of a SemanticSegmentationConfig, a null class will be ' 32 'added automatically.') 33 34 @validator('colors', always=True) 35 def validate_colors(cls, v: Optional[List[Union[str, Tuple]]], 36 values: dict) -> Optional[List[Union[str, Tuple]]]: 37 """Compare length w/ names. Also auto-generate if not specified.""" 38 class_names = values['names'] 39 class_colors = v 40 if class_colors is None: 41 class_colors = [color_to_triple() for _ in class_names] 42 elif len(class_names) != len(class_colors): 43 raise ConfigError(f'len(class_names) ({len(class_names)}) != ' 44 f'len(class_colors) ({len(class_colors)})\n' 45 f'class_names: {class_names}\n' 46 f'class_colors: {class_colors}') 47 return class_colors 48 49 @validator('null_class', always=True) 50 def validate_null_class(cls, v: Optional[str], 51 values: dict) -> Optional[str]: 52 """Check if in names. If 'null' in names, use it as null class.""" 53 names = values['names'] 54 if v is None: 55 if DEFAULT_NULL_CLASS_NAME in names: 56 v = DEFAULT_NULL_CLASS_NAME 57 else: 58 if v not in names: 59 raise ConfigError( 60 f'The null_class, "{v}", must be in list of class names.') 61 62 # edge case 63 default_null_class_in_names = (DEFAULT_NULL_CLASS_NAME in names) 64 null_class_neq_default = (v != DEFAULT_NULL_CLASS_NAME) 65 if default_null_class_in_names and null_class_neq_default: 66 raise ConfigError( 67 f'"{DEFAULT_NULL_CLASS_NAME}" is in names but the ' 68 f'specified null_class is something else ("{v}").') 69 return v 70 71 def get_class_id(self, name: str) -> int: 72 return self.names.index(name) 73 74 def get_name(self, id: int) -> str: 75 return self.names[id] 76 77 @property 78 def null_class_id(self) -> int: 79 if self.null_class is None: 80 raise ValueError('null_class is not set') 81 return self.get_class_id(self.null_class) 82 83 def get_color_to_class_id(self) -> dict: 84 return dict([(self.colors[i], i) for i in range(len(self.colors))]) 85 86 def ensure_null_class(self) -> None: 87 """Add a null class if one isn't set. This method is idempotent.""" 88 if self.null_class is not None: 89 return 90 91 null_class_name = DEFAULT_NULL_CLASS_NAME 92 null_class_color = DEFAULT_NULL_CLASS_COLOR 93 94 # This might seeem redundant given the null class validator above, but 95 # is actually important. Sometimes there can be multiple ClassConfig 96 # instances that reference the same list objects for names and colors 97 # (not clear why this happens). This means that 98 # each ensure_null_class() call will add to names and colors in each 99 # copy of ClassConfig but only set its own null_class, which makes this 100 # method() non-idempotent. 101 if null_class_name in self.names: 102 self.null_class = null_class_name 103 return 104 105 # use random color if default color is already taken 106 null_class_color_triple = color_to_triple(null_class_color) 107 all_color_triples = [ 108 color_to_triple(c) if isinstance(c, str) else c 109 for c in self.colors 110 ] 111 if null_class_color_triple in all_color_triples: 112 null_class_color = color_to_triple() 113 114 self.names.append(null_class_name) 115 self.colors.append(null_class_color) 116 self.null_class = null_class_name 117 118 def __len__(self) -> int: 119 return len(self.names) 120 121 @property 122 def color_triples(self) -> List[Tuple[float, float, float]]: 123 color_triples = [normalize_color(c) for c in self.colors] 124 return color_triples 125 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/rastervision_core/rastervision/core/data/class_config.py b/rastervision_core/rastervision/core/data/class_config.py --- a/rastervision_core/rastervision/core/data/class_config.py +++ b/rastervision_core/rastervision/core/data/class_config.py @@ -120,5 +120,6 @@ @property def color_triples(self) -> List[Tuple[float, float, float]]: + """Class colors in a normalized form.""" color_triples = [normalize_color(c) for c in self.colors] return color_triples
{"golden_diff": "diff --git a/rastervision_core/rastervision/core/data/class_config.py b/rastervision_core/rastervision/core/data/class_config.py\n--- a/rastervision_core/rastervision/core/data/class_config.py\n+++ b/rastervision_core/rastervision/core/data/class_config.py\n@@ -120,5 +120,6 @@\n \n @property\n def color_triples(self) -> List[Tuple[float, float, float]]:\n+ \"\"\"Class colors in a normalized form.\"\"\"\n color_triples = [normalize_color(c) for c in self.colors]\n return color_triples\n", "issue": "Same explanation for SlidingWindowGeoDataset and RandomWindowGeoDataset\n## \ud83d\udcda Documentation\r\n\r\n<!-- A clear and concise description of what content in https://docs.rastervision.io/ is an issue.-->\r\n\r\n> The SlidingWindowGeoDataset allows reading the scene by sampling random window sizes and locations.\r\n\r\nThis description is same to explained both SlidingWindowGeoDataset and RandomWindowGeoDataset. This can be found here: https://docs.rastervision.io/en/latest/tutorials/sampling_training_data.html\n", "before_files": [{"content": "from typing import List, Optional, Tuple, Union\n\nfrom rastervision.pipeline.config import (Config, register_config, ConfigError,\n Field, validator)\nfrom rastervision.core.data.utils import color_to_triple, normalize_color\n\nDEFAULT_NULL_CLASS_NAME = 'null'\nDEFAULT_NULL_CLASS_COLOR = 'black'\n\n\n@register_config('class_config')\nclass ClassConfig(Config):\n \"\"\"Configures the class names that are being predicted.\"\"\"\n names: List[str] = Field(\n ...,\n description='Names of classes. The i-th class in this list will have '\n 'class ID = i.')\n colors: Optional[List[Union[str, Tuple]]] = Field(\n None,\n description=\n ('Colors used to visualize classes. Can be color strings accepted by '\n 'matplotlib or RGB tuples. If None, a random color will be auto-generated '\n 'for each class.'))\n null_class: Optional[str] = Field(\n None,\n description='Optional name of class in `names` to use as the null '\n 'class. This is used in semantic segmentation to represent the label '\n 'for imagery pixels that are NODATA or that are missing a label. '\n f'If None and the class names include \"{DEFAULT_NULL_CLASS_NAME}\", '\n 'it will automatically be used as the null class. If None, and this '\n 'Config is part of a SemanticSegmentationConfig, a null class will be '\n 'added automatically.')\n\n @validator('colors', always=True)\n def validate_colors(cls, v: Optional[List[Union[str, Tuple]]],\n values: dict) -> Optional[List[Union[str, Tuple]]]:\n \"\"\"Compare length w/ names. Also auto-generate if not specified.\"\"\"\n class_names = values['names']\n class_colors = v\n if class_colors is None:\n class_colors = [color_to_triple() for _ in class_names]\n elif len(class_names) != len(class_colors):\n raise ConfigError(f'len(class_names) ({len(class_names)}) != '\n f'len(class_colors) ({len(class_colors)})\\n'\n f'class_names: {class_names}\\n'\n f'class_colors: {class_colors}')\n return class_colors\n\n @validator('null_class', always=True)\n def validate_null_class(cls, v: Optional[str],\n values: dict) -> Optional[str]:\n \"\"\"Check if in names. If 'null' in names, use it as null class.\"\"\"\n names = values['names']\n if v is None:\n if DEFAULT_NULL_CLASS_NAME in names:\n v = DEFAULT_NULL_CLASS_NAME\n else:\n if v not in names:\n raise ConfigError(\n f'The null_class, \"{v}\", must be in list of class names.')\n\n # edge case\n default_null_class_in_names = (DEFAULT_NULL_CLASS_NAME in names)\n null_class_neq_default = (v != DEFAULT_NULL_CLASS_NAME)\n if default_null_class_in_names and null_class_neq_default:\n raise ConfigError(\n f'\"{DEFAULT_NULL_CLASS_NAME}\" is in names but the '\n f'specified null_class is something else (\"{v}\").')\n return v\n\n def get_class_id(self, name: str) -> int:\n return self.names.index(name)\n\n def get_name(self, id: int) -> str:\n return self.names[id]\n\n @property\n def null_class_id(self) -> int:\n if self.null_class is None:\n raise ValueError('null_class is not set')\n return self.get_class_id(self.null_class)\n\n def get_color_to_class_id(self) -> dict:\n return dict([(self.colors[i], i) for i in range(len(self.colors))])\n\n def ensure_null_class(self) -> None:\n \"\"\"Add a null class if one isn't set. This method is idempotent.\"\"\"\n if self.null_class is not None:\n return\n\n null_class_name = DEFAULT_NULL_CLASS_NAME\n null_class_color = DEFAULT_NULL_CLASS_COLOR\n\n # This might seeem redundant given the null class validator above, but\n # is actually important. Sometimes there can be multiple ClassConfig\n # instances that reference the same list objects for names and colors\n # (not clear why this happens). This means that\n # each ensure_null_class() call will add to names and colors in each\n # copy of ClassConfig but only set its own null_class, which makes this\n # method() non-idempotent.\n if null_class_name in self.names:\n self.null_class = null_class_name\n return\n\n # use random color if default color is already taken\n null_class_color_triple = color_to_triple(null_class_color)\n all_color_triples = [\n color_to_triple(c) if isinstance(c, str) else c\n for c in self.colors\n ]\n if null_class_color_triple in all_color_triples:\n null_class_color = color_to_triple()\n\n self.names.append(null_class_name)\n self.colors.append(null_class_color)\n self.null_class = null_class_name\n\n def __len__(self) -> int:\n return len(self.names)\n\n @property\n def color_triples(self) -> List[Tuple[float, float, float]]:\n color_triples = [normalize_color(c) for c in self.colors]\n return color_triples\n", "path": "rastervision_core/rastervision/core/data/class_config.py"}], "after_files": [{"content": "from typing import List, Optional, Tuple, Union\n\nfrom rastervision.pipeline.config import (Config, register_config, ConfigError,\n Field, validator)\nfrom rastervision.core.data.utils import color_to_triple, normalize_color\n\nDEFAULT_NULL_CLASS_NAME = 'null'\nDEFAULT_NULL_CLASS_COLOR = 'black'\n\n\n@register_config('class_config')\nclass ClassConfig(Config):\n \"\"\"Configures the class names that are being predicted.\"\"\"\n names: List[str] = Field(\n ...,\n description='Names of classes. The i-th class in this list will have '\n 'class ID = i.')\n colors: Optional[List[Union[str, Tuple]]] = Field(\n None,\n description=\n ('Colors used to visualize classes. Can be color strings accepted by '\n 'matplotlib or RGB tuples. If None, a random color will be auto-generated '\n 'for each class.'))\n null_class: Optional[str] = Field(\n None,\n description='Optional name of class in `names` to use as the null '\n 'class. This is used in semantic segmentation to represent the label '\n 'for imagery pixels that are NODATA or that are missing a label. '\n f'If None and the class names include \"{DEFAULT_NULL_CLASS_NAME}\", '\n 'it will automatically be used as the null class. If None, and this '\n 'Config is part of a SemanticSegmentationConfig, a null class will be '\n 'added automatically.')\n\n @validator('colors', always=True)\n def validate_colors(cls, v: Optional[List[Union[str, Tuple]]],\n values: dict) -> Optional[List[Union[str, Tuple]]]:\n \"\"\"Compare length w/ names. Also auto-generate if not specified.\"\"\"\n class_names = values['names']\n class_colors = v\n if class_colors is None:\n class_colors = [color_to_triple() for _ in class_names]\n elif len(class_names) != len(class_colors):\n raise ConfigError(f'len(class_names) ({len(class_names)}) != '\n f'len(class_colors) ({len(class_colors)})\\n'\n f'class_names: {class_names}\\n'\n f'class_colors: {class_colors}')\n return class_colors\n\n @validator('null_class', always=True)\n def validate_null_class(cls, v: Optional[str],\n values: dict) -> Optional[str]:\n \"\"\"Check if in names. If 'null' in names, use it as null class.\"\"\"\n names = values['names']\n if v is None:\n if DEFAULT_NULL_CLASS_NAME in names:\n v = DEFAULT_NULL_CLASS_NAME\n else:\n if v not in names:\n raise ConfigError(\n f'The null_class, \"{v}\", must be in list of class names.')\n\n # edge case\n default_null_class_in_names = (DEFAULT_NULL_CLASS_NAME in names)\n null_class_neq_default = (v != DEFAULT_NULL_CLASS_NAME)\n if default_null_class_in_names and null_class_neq_default:\n raise ConfigError(\n f'\"{DEFAULT_NULL_CLASS_NAME}\" is in names but the '\n f'specified null_class is something else (\"{v}\").')\n return v\n\n def get_class_id(self, name: str) -> int:\n return self.names.index(name)\n\n def get_name(self, id: int) -> str:\n return self.names[id]\n\n @property\n def null_class_id(self) -> int:\n if self.null_class is None:\n raise ValueError('null_class is not set')\n return self.get_class_id(self.null_class)\n\n def get_color_to_class_id(self) -> dict:\n return dict([(self.colors[i], i) for i in range(len(self.colors))])\n\n def ensure_null_class(self) -> None:\n \"\"\"Add a null class if one isn't set. This method is idempotent.\"\"\"\n if self.null_class is not None:\n return\n\n null_class_name = DEFAULT_NULL_CLASS_NAME\n null_class_color = DEFAULT_NULL_CLASS_COLOR\n\n # This might seeem redundant given the null class validator above, but\n # is actually important. Sometimes there can be multiple ClassConfig\n # instances that reference the same list objects for names and colors\n # (not clear why this happens). This means that\n # each ensure_null_class() call will add to names and colors in each\n # copy of ClassConfig but only set its own null_class, which makes this\n # method() non-idempotent.\n if null_class_name in self.names:\n self.null_class = null_class_name\n return\n\n # use random color if default color is already taken\n null_class_color_triple = color_to_triple(null_class_color)\n all_color_triples = [\n color_to_triple(c) if isinstance(c, str) else c\n for c in self.colors\n ]\n if null_class_color_triple in all_color_triples:\n null_class_color = color_to_triple()\n\n self.names.append(null_class_name)\n self.colors.append(null_class_color)\n self.null_class = null_class_name\n\n def __len__(self) -> int:\n return len(self.names)\n\n @property\n def color_triples(self) -> List[Tuple[float, float, float]]:\n \"\"\"Class colors in a normalized form.\"\"\"\n color_triples = [normalize_color(c) for c in self.colors]\n return color_triples\n", "path": "rastervision_core/rastervision/core/data/class_config.py"}]}
1,792
136
gh_patches_debug_67232
rasdani/github-patches
git_diff
pypi__warehouse-8550
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- /pypi/{package}/{version}/json: yanking an older release updates latest release's yanked_reason field **Describe the bug** Yanking an older version of a package leads to unexpected side-effect for latest version's package info provided via the JSON endpoint. In particular, the `yanked_reason` field gets updated. **Expected behavior** When yanking a version of a package, no other verision's `yanked_reason` field should be updated. **To Reproduce** 1. Create new package on test.pypi.org 2. Release version `0.2.0`. 3. Release version `0.3.0`. 4. Yank version `0.2.0`. 5. Check json endpoint of package version `0.3.0`. ```console $ curl -sL https://test.pypi.org/pypi/abn-test-rss-yank/0.3.0/json | jq '.info.yanked' false $ curl -sL https://test.pypi.org/pypi/abn-test-rss-yank/0.3.0/json | jq '.info.yanked_reason' "Testing Yank" ``` **My Platform** N/A **Additional context** * Test package: https://test.pypi.org/project/abn-test-rss-yank/ --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `warehouse/legacy/api/json.py` Content: ``` 1 # Licensed under the Apache License, Version 2.0 (the "License"); 2 # you may not use this file except in compliance with the License. 3 # You may obtain a copy of the License at 4 # 5 # http://www.apache.org/licenses/LICENSE-2.0 6 # 7 # Unless required by applicable law or agreed to in writing, software 8 # distributed under the License is distributed on an "AS IS" BASIS, 9 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 10 # See the License for the specific language governing permissions and 11 # limitations under the License. 12 13 from collections import OrderedDict 14 15 from pyramid.httpexceptions import HTTPMovedPermanently, HTTPNotFound 16 from pyramid.view import view_config 17 from sqlalchemy.orm import Load 18 from sqlalchemy.orm.exc import NoResultFound 19 20 from warehouse.cache.http import cache_control 21 from warehouse.cache.origin import origin_cache 22 from warehouse.packaging.models import File, Project, Release 23 24 # Generate appropriate CORS headers for the JSON endpoint. 25 # We want to allow Cross-Origin requests here so that users can interact 26 # with these endpoints via XHR/Fetch APIs in the browser. 27 _CORS_HEADERS = { 28 "Access-Control-Allow-Origin": "*", 29 "Access-Control-Allow-Headers": ", ".join( 30 [ 31 "Content-Type", 32 "If-Match", 33 "If-Modified-Since", 34 "If-None-Match", 35 "If-Unmodified-Since", 36 ] 37 ), 38 "Access-Control-Allow-Methods": "GET", 39 "Access-Control-Max-Age": "86400", # 1 day. 40 "Access-Control-Expose-Headers": ", ".join(["X-PyPI-Last-Serial"]), 41 } 42 43 _CACHE_DECORATOR = [ 44 cache_control(15 * 60), # 15 minutes 45 origin_cache( 46 1 * 24 * 60 * 60, # 1 day 47 stale_while_revalidate=5 * 60, # 5 minutes 48 stale_if_error=1 * 24 * 60 * 60, # 1 day 49 ), 50 ] 51 52 53 @view_config( 54 route_name="legacy.api.json.project", 55 context=Project, 56 renderer="json", 57 decorator=_CACHE_DECORATOR, 58 ) 59 def json_project(project, request): 60 if project.name != request.matchdict.get("name", project.name): 61 return HTTPMovedPermanently( 62 request.current_route_path(name=project.name), headers=_CORS_HEADERS 63 ) 64 65 try: 66 release = ( 67 request.db.query(Release) 68 .filter(Release.project == project, Release.yanked.is_(False)) 69 .order_by(Release.is_prerelease.nullslast(), Release._pypi_ordering.desc()) 70 .limit(1) 71 .one() 72 ) 73 except NoResultFound: 74 return HTTPNotFound(headers=_CORS_HEADERS) 75 76 return json_release(release, request) 77 78 79 @view_config( 80 route_name="legacy.api.json.project_slash", 81 context=Project, 82 decorator=_CACHE_DECORATOR, 83 ) 84 def json_project_slash(project, request): 85 return HTTPMovedPermanently( 86 # Respond with redirect to url without trailing slash 87 request.route_path("legacy.api.json.project", name=project.name), 88 headers=_CORS_HEADERS, 89 ) 90 91 92 @view_config( 93 route_name="legacy.api.json.release", 94 context=Release, 95 renderer="json", 96 decorator=_CACHE_DECORATOR, 97 ) 98 def json_release(release, request): 99 project = release.project 100 101 if project.name != request.matchdict.get("name", project.name): 102 return HTTPMovedPermanently( 103 request.current_route_path(name=project.name), headers=_CORS_HEADERS 104 ) 105 106 # Apply CORS headers. 107 request.response.headers.update(_CORS_HEADERS) 108 109 # Get the latest serial number for this project. 110 request.response.headers["X-PyPI-Last-Serial"] = str(project.last_serial) 111 112 # Get all of the releases and files for this project. 113 release_files = ( 114 request.db.query(Release, File) 115 .options( 116 Load(Release).load_only( 117 "version", "requires_python", "yanked", "yanked_reason" 118 ) 119 ) 120 .outerjoin(File) 121 .filter(Release.project == project) 122 .order_by(Release._pypi_ordering.desc(), File.filename) 123 .all() 124 ) 125 126 # Map our releases + files into a dictionary that maps each release to a 127 # list of all its files. 128 releases = {} 129 for r, file_ in release_files: 130 files = releases.setdefault(r, []) 131 if file_ is not None: 132 files.append(file_) 133 134 # Serialize our database objects to match the way that PyPI legacy 135 # presented this data. 136 releases = { 137 r.version: [ 138 { 139 "filename": f.filename, 140 "packagetype": f.packagetype, 141 "python_version": f.python_version, 142 "has_sig": f.has_signature, 143 "comment_text": f.comment_text, 144 "md5_digest": f.md5_digest, 145 "digests": {"md5": f.md5_digest, "sha256": f.sha256_digest}, 146 "size": f.size, 147 # TODO: Remove this once we've had a long enough time with it 148 # here to consider it no longer in use. 149 "downloads": -1, 150 "upload_time": f.upload_time.strftime("%Y-%m-%dT%H:%M:%S"), 151 "upload_time_iso_8601": f.upload_time.isoformat() + "Z", 152 "url": request.route_url("packaging.file", path=f.path), 153 "requires_python": r.requires_python if r.requires_python else None, 154 "yanked": r.yanked, 155 "yanked_reason": r.yanked_reason or None, 156 } 157 for f in fs 158 ] 159 for r, fs in releases.items() 160 } 161 162 return { 163 "info": { 164 "name": project.name, 165 "version": release.version, 166 "summary": release.summary, 167 "description_content_type": release.description.content_type, 168 "description": release.description.raw, 169 "keywords": release.keywords, 170 "license": release.license, 171 "classifiers": list(release.classifiers), 172 "author": release.author, 173 "author_email": release.author_email, 174 "maintainer": release.maintainer, 175 "maintainer_email": release.maintainer_email, 176 "requires_python": release.requires_python, 177 "platform": release.platform, 178 "downloads": {"last_day": -1, "last_week": -1, "last_month": -1}, 179 "package_url": request.route_url("packaging.project", name=project.name), 180 "project_url": request.route_url("packaging.project", name=project.name), 181 "project_urls": OrderedDict(release.urls) if release.urls else None, 182 "release_url": request.route_url( 183 "packaging.release", name=project.name, version=release.version 184 ), 185 "requires_dist": ( 186 list(release.requires_dist) if release.requires_dist else None 187 ), 188 "docs_url": project.documentation_url, 189 "bugtrack_url": None, 190 "home_page": release.home_page, 191 "download_url": release.download_url, 192 "yanked": release.yanked, 193 "yanked_reason": r.yanked_reason or None, 194 }, 195 "urls": releases[release.version], 196 "releases": releases, 197 "last_serial": project.last_serial, 198 } 199 200 201 @view_config( 202 route_name="legacy.api.json.release_slash", 203 context=Release, 204 decorator=_CACHE_DECORATOR, 205 ) 206 def json_release_slash(release, request): 207 return HTTPMovedPermanently( 208 # Respond with redirect to url without trailing slash 209 request.route_path( 210 "legacy.api.json.release", 211 name=release.project.name, 212 version=release.version, 213 ), 214 headers=_CORS_HEADERS, 215 ) 216 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/warehouse/legacy/api/json.py b/warehouse/legacy/api/json.py --- a/warehouse/legacy/api/json.py +++ b/warehouse/legacy/api/json.py @@ -190,7 +190,7 @@ "home_page": release.home_page, "download_url": release.download_url, "yanked": release.yanked, - "yanked_reason": r.yanked_reason or None, + "yanked_reason": release.yanked_reason or None, }, "urls": releases[release.version], "releases": releases,
{"golden_diff": "diff --git a/warehouse/legacy/api/json.py b/warehouse/legacy/api/json.py\n--- a/warehouse/legacy/api/json.py\n+++ b/warehouse/legacy/api/json.py\n@@ -190,7 +190,7 @@\n \"home_page\": release.home_page,\n \"download_url\": release.download_url,\n \"yanked\": release.yanked,\n- \"yanked_reason\": r.yanked_reason or None,\n+ \"yanked_reason\": release.yanked_reason or None,\n },\n \"urls\": releases[release.version],\n \"releases\": releases,\n", "issue": "/pypi/{package}/{version}/json: yanking an older release updates latest release's yanked_reason field\n**Describe the bug**\r\nYanking an older version of a package leads to unexpected side-effect for latest version's package info provided via the JSON endpoint. In particular, the `yanked_reason` field gets updated.\r\n\r\n**Expected behavior**\r\nWhen yanking a version of a package, no other verision's `yanked_reason` field should be updated.\r\n\r\n**To Reproduce**\r\n1. Create new package on test.pypi.org\r\n2. Release version `0.2.0`.\r\n3. Release version `0.3.0`.\r\n4. Yank version `0.2.0`.\r\n5. Check json endpoint of package version `0.3.0`.\r\n\r\n```console\r\n$ curl -sL https://test.pypi.org/pypi/abn-test-rss-yank/0.3.0/json | jq '.info.yanked'\r\nfalse\r\n$ curl -sL https://test.pypi.org/pypi/abn-test-rss-yank/0.3.0/json | jq '.info.yanked_reason'\r\n\"Testing Yank\"\r\n```\r\n\r\n**My Platform**\r\nN/A\r\n\r\n**Additional context**\r\n* Test package: https://test.pypi.org/project/abn-test-rss-yank/\r\n\n", "before_files": [{"content": "# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nfrom collections import OrderedDict\n\nfrom pyramid.httpexceptions import HTTPMovedPermanently, HTTPNotFound\nfrom pyramid.view import view_config\nfrom sqlalchemy.orm import Load\nfrom sqlalchemy.orm.exc import NoResultFound\n\nfrom warehouse.cache.http import cache_control\nfrom warehouse.cache.origin import origin_cache\nfrom warehouse.packaging.models import File, Project, Release\n\n# Generate appropriate CORS headers for the JSON endpoint.\n# We want to allow Cross-Origin requests here so that users can interact\n# with these endpoints via XHR/Fetch APIs in the browser.\n_CORS_HEADERS = {\n \"Access-Control-Allow-Origin\": \"*\",\n \"Access-Control-Allow-Headers\": \", \".join(\n [\n \"Content-Type\",\n \"If-Match\",\n \"If-Modified-Since\",\n \"If-None-Match\",\n \"If-Unmodified-Since\",\n ]\n ),\n \"Access-Control-Allow-Methods\": \"GET\",\n \"Access-Control-Max-Age\": \"86400\", # 1 day.\n \"Access-Control-Expose-Headers\": \", \".join([\"X-PyPI-Last-Serial\"]),\n}\n\n_CACHE_DECORATOR = [\n cache_control(15 * 60), # 15 minutes\n origin_cache(\n 1 * 24 * 60 * 60, # 1 day\n stale_while_revalidate=5 * 60, # 5 minutes\n stale_if_error=1 * 24 * 60 * 60, # 1 day\n ),\n]\n\n\n@view_config(\n route_name=\"legacy.api.json.project\",\n context=Project,\n renderer=\"json\",\n decorator=_CACHE_DECORATOR,\n)\ndef json_project(project, request):\n if project.name != request.matchdict.get(\"name\", project.name):\n return HTTPMovedPermanently(\n request.current_route_path(name=project.name), headers=_CORS_HEADERS\n )\n\n try:\n release = (\n request.db.query(Release)\n .filter(Release.project == project, Release.yanked.is_(False))\n .order_by(Release.is_prerelease.nullslast(), Release._pypi_ordering.desc())\n .limit(1)\n .one()\n )\n except NoResultFound:\n return HTTPNotFound(headers=_CORS_HEADERS)\n\n return json_release(release, request)\n\n\n@view_config(\n route_name=\"legacy.api.json.project_slash\",\n context=Project,\n decorator=_CACHE_DECORATOR,\n)\ndef json_project_slash(project, request):\n return HTTPMovedPermanently(\n # Respond with redirect to url without trailing slash\n request.route_path(\"legacy.api.json.project\", name=project.name),\n headers=_CORS_HEADERS,\n )\n\n\n@view_config(\n route_name=\"legacy.api.json.release\",\n context=Release,\n renderer=\"json\",\n decorator=_CACHE_DECORATOR,\n)\ndef json_release(release, request):\n project = release.project\n\n if project.name != request.matchdict.get(\"name\", project.name):\n return HTTPMovedPermanently(\n request.current_route_path(name=project.name), headers=_CORS_HEADERS\n )\n\n # Apply CORS headers.\n request.response.headers.update(_CORS_HEADERS)\n\n # Get the latest serial number for this project.\n request.response.headers[\"X-PyPI-Last-Serial\"] = str(project.last_serial)\n\n # Get all of the releases and files for this project.\n release_files = (\n request.db.query(Release, File)\n .options(\n Load(Release).load_only(\n \"version\", \"requires_python\", \"yanked\", \"yanked_reason\"\n )\n )\n .outerjoin(File)\n .filter(Release.project == project)\n .order_by(Release._pypi_ordering.desc(), File.filename)\n .all()\n )\n\n # Map our releases + files into a dictionary that maps each release to a\n # list of all its files.\n releases = {}\n for r, file_ in release_files:\n files = releases.setdefault(r, [])\n if file_ is not None:\n files.append(file_)\n\n # Serialize our database objects to match the way that PyPI legacy\n # presented this data.\n releases = {\n r.version: [\n {\n \"filename\": f.filename,\n \"packagetype\": f.packagetype,\n \"python_version\": f.python_version,\n \"has_sig\": f.has_signature,\n \"comment_text\": f.comment_text,\n \"md5_digest\": f.md5_digest,\n \"digests\": {\"md5\": f.md5_digest, \"sha256\": f.sha256_digest},\n \"size\": f.size,\n # TODO: Remove this once we've had a long enough time with it\n # here to consider it no longer in use.\n \"downloads\": -1,\n \"upload_time\": f.upload_time.strftime(\"%Y-%m-%dT%H:%M:%S\"),\n \"upload_time_iso_8601\": f.upload_time.isoformat() + \"Z\",\n \"url\": request.route_url(\"packaging.file\", path=f.path),\n \"requires_python\": r.requires_python if r.requires_python else None,\n \"yanked\": r.yanked,\n \"yanked_reason\": r.yanked_reason or None,\n }\n for f in fs\n ]\n for r, fs in releases.items()\n }\n\n return {\n \"info\": {\n \"name\": project.name,\n \"version\": release.version,\n \"summary\": release.summary,\n \"description_content_type\": release.description.content_type,\n \"description\": release.description.raw,\n \"keywords\": release.keywords,\n \"license\": release.license,\n \"classifiers\": list(release.classifiers),\n \"author\": release.author,\n \"author_email\": release.author_email,\n \"maintainer\": release.maintainer,\n \"maintainer_email\": release.maintainer_email,\n \"requires_python\": release.requires_python,\n \"platform\": release.platform,\n \"downloads\": {\"last_day\": -1, \"last_week\": -1, \"last_month\": -1},\n \"package_url\": request.route_url(\"packaging.project\", name=project.name),\n \"project_url\": request.route_url(\"packaging.project\", name=project.name),\n \"project_urls\": OrderedDict(release.urls) if release.urls else None,\n \"release_url\": request.route_url(\n \"packaging.release\", name=project.name, version=release.version\n ),\n \"requires_dist\": (\n list(release.requires_dist) if release.requires_dist else None\n ),\n \"docs_url\": project.documentation_url,\n \"bugtrack_url\": None,\n \"home_page\": release.home_page,\n \"download_url\": release.download_url,\n \"yanked\": release.yanked,\n \"yanked_reason\": r.yanked_reason or None,\n },\n \"urls\": releases[release.version],\n \"releases\": releases,\n \"last_serial\": project.last_serial,\n }\n\n\n@view_config(\n route_name=\"legacy.api.json.release_slash\",\n context=Release,\n decorator=_CACHE_DECORATOR,\n)\ndef json_release_slash(release, request):\n return HTTPMovedPermanently(\n # Respond with redirect to url without trailing slash\n request.route_path(\n \"legacy.api.json.release\",\n name=release.project.name,\n version=release.version,\n ),\n headers=_CORS_HEADERS,\n )\n", "path": "warehouse/legacy/api/json.py"}], "after_files": [{"content": "# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nfrom collections import OrderedDict\n\nfrom pyramid.httpexceptions import HTTPMovedPermanently, HTTPNotFound\nfrom pyramid.view import view_config\nfrom sqlalchemy.orm import Load\nfrom sqlalchemy.orm.exc import NoResultFound\n\nfrom warehouse.cache.http import cache_control\nfrom warehouse.cache.origin import origin_cache\nfrom warehouse.packaging.models import File, Project, Release\n\n# Generate appropriate CORS headers for the JSON endpoint.\n# We want to allow Cross-Origin requests here so that users can interact\n# with these endpoints via XHR/Fetch APIs in the browser.\n_CORS_HEADERS = {\n \"Access-Control-Allow-Origin\": \"*\",\n \"Access-Control-Allow-Headers\": \", \".join(\n [\n \"Content-Type\",\n \"If-Match\",\n \"If-Modified-Since\",\n \"If-None-Match\",\n \"If-Unmodified-Since\",\n ]\n ),\n \"Access-Control-Allow-Methods\": \"GET\",\n \"Access-Control-Max-Age\": \"86400\", # 1 day.\n \"Access-Control-Expose-Headers\": \", \".join([\"X-PyPI-Last-Serial\"]),\n}\n\n_CACHE_DECORATOR = [\n cache_control(15 * 60), # 15 minutes\n origin_cache(\n 1 * 24 * 60 * 60, # 1 day\n stale_while_revalidate=5 * 60, # 5 minutes\n stale_if_error=1 * 24 * 60 * 60, # 1 day\n ),\n]\n\n\n@view_config(\n route_name=\"legacy.api.json.project\",\n context=Project,\n renderer=\"json\",\n decorator=_CACHE_DECORATOR,\n)\ndef json_project(project, request):\n if project.name != request.matchdict.get(\"name\", project.name):\n return HTTPMovedPermanently(\n request.current_route_path(name=project.name), headers=_CORS_HEADERS\n )\n\n try:\n release = (\n request.db.query(Release)\n .filter(Release.project == project, Release.yanked.is_(False))\n .order_by(Release.is_prerelease.nullslast(), Release._pypi_ordering.desc())\n .limit(1)\n .one()\n )\n except NoResultFound:\n return HTTPNotFound(headers=_CORS_HEADERS)\n\n return json_release(release, request)\n\n\n@view_config(\n route_name=\"legacy.api.json.project_slash\",\n context=Project,\n decorator=_CACHE_DECORATOR,\n)\ndef json_project_slash(project, request):\n return HTTPMovedPermanently(\n # Respond with redirect to url without trailing slash\n request.route_path(\"legacy.api.json.project\", name=project.name),\n headers=_CORS_HEADERS,\n )\n\n\n@view_config(\n route_name=\"legacy.api.json.release\",\n context=Release,\n renderer=\"json\",\n decorator=_CACHE_DECORATOR,\n)\ndef json_release(release, request):\n project = release.project\n\n if project.name != request.matchdict.get(\"name\", project.name):\n return HTTPMovedPermanently(\n request.current_route_path(name=project.name), headers=_CORS_HEADERS\n )\n\n # Apply CORS headers.\n request.response.headers.update(_CORS_HEADERS)\n\n # Get the latest serial number for this project.\n request.response.headers[\"X-PyPI-Last-Serial\"] = str(project.last_serial)\n\n # Get all of the releases and files for this project.\n release_files = (\n request.db.query(Release, File)\n .options(\n Load(Release).load_only(\n \"version\", \"requires_python\", \"yanked\", \"yanked_reason\"\n )\n )\n .outerjoin(File)\n .filter(Release.project == project)\n .order_by(Release._pypi_ordering.desc(), File.filename)\n .all()\n )\n\n # Map our releases + files into a dictionary that maps each release to a\n # list of all its files.\n releases = {}\n for r, file_ in release_files:\n files = releases.setdefault(r, [])\n if file_ is not None:\n files.append(file_)\n\n # Serialize our database objects to match the way that PyPI legacy\n # presented this data.\n releases = {\n r.version: [\n {\n \"filename\": f.filename,\n \"packagetype\": f.packagetype,\n \"python_version\": f.python_version,\n \"has_sig\": f.has_signature,\n \"comment_text\": f.comment_text,\n \"md5_digest\": f.md5_digest,\n \"digests\": {\"md5\": f.md5_digest, \"sha256\": f.sha256_digest},\n \"size\": f.size,\n # TODO: Remove this once we've had a long enough time with it\n # here to consider it no longer in use.\n \"downloads\": -1,\n \"upload_time\": f.upload_time.strftime(\"%Y-%m-%dT%H:%M:%S\"),\n \"upload_time_iso_8601\": f.upload_time.isoformat() + \"Z\",\n \"url\": request.route_url(\"packaging.file\", path=f.path),\n \"requires_python\": r.requires_python if r.requires_python else None,\n \"yanked\": r.yanked,\n \"yanked_reason\": r.yanked_reason or None,\n }\n for f in fs\n ]\n for r, fs in releases.items()\n }\n\n return {\n \"info\": {\n \"name\": project.name,\n \"version\": release.version,\n \"summary\": release.summary,\n \"description_content_type\": release.description.content_type,\n \"description\": release.description.raw,\n \"keywords\": release.keywords,\n \"license\": release.license,\n \"classifiers\": list(release.classifiers),\n \"author\": release.author,\n \"author_email\": release.author_email,\n \"maintainer\": release.maintainer,\n \"maintainer_email\": release.maintainer_email,\n \"requires_python\": release.requires_python,\n \"platform\": release.platform,\n \"downloads\": {\"last_day\": -1, \"last_week\": -1, \"last_month\": -1},\n \"package_url\": request.route_url(\"packaging.project\", name=project.name),\n \"project_url\": request.route_url(\"packaging.project\", name=project.name),\n \"project_urls\": OrderedDict(release.urls) if release.urls else None,\n \"release_url\": request.route_url(\n \"packaging.release\", name=project.name, version=release.version\n ),\n \"requires_dist\": (\n list(release.requires_dist) if release.requires_dist else None\n ),\n \"docs_url\": project.documentation_url,\n \"bugtrack_url\": None,\n \"home_page\": release.home_page,\n \"download_url\": release.download_url,\n \"yanked\": release.yanked,\n \"yanked_reason\": release.yanked_reason or None,\n },\n \"urls\": releases[release.version],\n \"releases\": releases,\n \"last_serial\": project.last_serial,\n }\n\n\n@view_config(\n route_name=\"legacy.api.json.release_slash\",\n context=Release,\n decorator=_CACHE_DECORATOR,\n)\ndef json_release_slash(release, request):\n return HTTPMovedPermanently(\n # Respond with redirect to url without trailing slash\n request.route_path(\n \"legacy.api.json.release\",\n name=release.project.name,\n version=release.version,\n ),\n headers=_CORS_HEADERS,\n )\n", "path": "warehouse/legacy/api/json.py"}]}
2,794
127
gh_patches_debug_10054
rasdani/github-patches
git_diff
acl-org__acl-anthology-990
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Recaser bug: adding fixed-case inside tex-math markup `<tex-math><fixed-case>O</fixed-case>(<fixed-case>M</fixed-case>(n^2))</tex-math>` caused the build to fail in #892 --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `bin/fixedcase/protect.py` Content: ``` 1 #!/usr/bin/env python3 2 3 # protect.py <infile> <outfile> 4 # looks for file "truelist" in current dir 5 6 # cd data/xml 7 # for i in *xml ; do (cd ../../tools/fixedcase/ ; python3 ./protect.py ../../data/xml/$i /tmp/$i ; echo $i ); done > log 8 9 10 import lxml.etree as ET 11 import os 12 import sys 13 import copy 14 import itertools 15 import inspect 16 17 from collections import defaultdict 18 19 if __name__ == "__main__": 20 from common import * 21 else: 22 from .common import * 23 24 # recursive helper called by protect 25 # protect text of "node", including children, and tails of children 26 def protect_recurse(node, recased): 27 if node.tag == "fixed-case": # already protected 28 newnode = copy.deepcopy(node) # don't need to modify descendents 29 newnode.tail = None # tail will be protected by caller 30 return newnode 31 newnode = ET.Element(node.tag, node.attrib) 32 33 def process(text, rc): 34 i = 0 35 for upper, chars in itertools.groupby(rc[: len(text)], lambda c: c.isupper()): 36 charstr = "".join(chars) 37 if upper: 38 p = ET.Element("fixed-case") 39 p.text = charstr 40 newnode.append(p) 41 else: 42 append_text(newnode, text[i : i + len(charstr)]) 43 44 assert text[i : i + len(charstr)].lower() == charstr.lower(), ( 45 i, 46 text, 47 charstr, 48 ) 49 i += len(charstr) 50 51 if node.text: 52 process(node.text, recased) 53 recased = recased[len(node.text) :] 54 for child in node: 55 protected_child = protect_recurse(child, recased) 56 recased = recased[len(get_text(protected_child)) :] 57 newnode.append(protected_child) 58 if child.tail: 59 process(child.tail, recased) 60 recased = recased[len(child.tail) :] 61 62 return newnode 63 64 65 def protect(node): 66 rawtext = get_text(node).strip() 67 recased = None 68 if rawtext.lower() in special_titles: 69 recased = special_titles[rawtext.lower()] 70 else: 71 text = tokenize(rawtext) 72 fixed = fixedcase_title( 73 text, 74 truelist=truelist, 75 phrase_truelist=phrase_truelist, 76 amodifiers=amodifiers, 77 ndescriptors=ndescriptors, 78 ) 79 if any(fixed): 80 # Generate the recased string so we know where to look in the XML 81 # to apply fixed-case 82 recasedtoks = [(w if b else w.lower()) for w, b in zip(text, fixed)] 83 recased = TreebankWordDetokenizer().detokenize(recasedtoks) 84 # PTB (de)tokenizer doesn't think of hyphens as separate tokens, 85 # so we need to manually detokenize them. 86 # Assuming the only edits that need to be made are adding/deleting 87 # spaces, the following will work: 88 i = 0 89 while i < len(rawtext): 90 # scan rawtext from left to right and adjust recased by adding/removing 91 # spaces until it matches 92 t = rawtext[i] 93 assert i < len(recased), ((i, t), rawtext, recased) 94 c = recased[i] 95 if t.isspace() and not c.isspace(): # may be ' ' or '\n' 96 # add space to recased 97 recased = recased[:i] + t + recased[i:] 98 i += 1 99 elif c.isspace() and not t.isspace(): 100 # remove space from recased 101 recased = recased[:i] + recased[i + 1 :] 102 # don't increment i 103 elif t != c and t.isspace() and c.isspace(): 104 recased = recased[:i] + t + recased[i + 1 :] 105 i += 1 106 else: 107 assert t == c or t.lower() == c.lower(), ( 108 (i, t, c), 109 rawtext, 110 recased, 111 text, 112 ) 113 i += 1 114 if len(recased) > len(rawtext): 115 recased = recased[: len(rawtext)] 116 assert rawtext.lower() == recased.lower(), (rawtext, recased) 117 118 if recased: 119 newnode = protect_recurse(node, recased) 120 newnode.tail = node.tail # tail of top level is not protected 121 replace_node(node, newnode) 122 123 124 # Read in the truelist (list of words that should always be protected) 125 truelist, phrase_truelist, special_titles, amodifiers, ndescriptors = load_lists() 126 127 if __name__ == "__main__": 128 infile, outfile = sys.argv[1:] 129 130 tree = ET.parse(infile) 131 if not tree.getroot().tail: 132 tree.getroot().tail = "\n" 133 for paper in tree.getroot().findall(".//paper"): 134 for title in paper.xpath("./title|./booktitle"): 135 protect(title) 136 tree.write(outfile, encoding="UTF-8", xml_declaration=True) 137 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/bin/fixedcase/protect.py b/bin/fixedcase/protect.py --- a/bin/fixedcase/protect.py +++ b/bin/fixedcase/protect.py @@ -24,7 +24,7 @@ # recursive helper called by protect # protect text of "node", including children, and tails of children def protect_recurse(node, recased): - if node.tag == "fixed-case": # already protected + if node.tag in ("fixed-case", "tex-math"): # already protected text, or math newnode = copy.deepcopy(node) # don't need to modify descendents newnode.tail = None # tail will be protected by caller return newnode
{"golden_diff": "diff --git a/bin/fixedcase/protect.py b/bin/fixedcase/protect.py\n--- a/bin/fixedcase/protect.py\n+++ b/bin/fixedcase/protect.py\n@@ -24,7 +24,7 @@\n # recursive helper called by protect\n # protect text of \"node\", including children, and tails of children\n def protect_recurse(node, recased):\n- if node.tag == \"fixed-case\": # already protected\n+ if node.tag in (\"fixed-case\", \"tex-math\"): # already protected text, or math\n newnode = copy.deepcopy(node) # don't need to modify descendents\n newnode.tail = None # tail will be protected by caller\n return newnode\n", "issue": "Recaser bug: adding fixed-case inside tex-math markup\n`<tex-math><fixed-case>O</fixed-case>(<fixed-case>M</fixed-case>(n^2))</tex-math>` caused the build to fail in #892\n", "before_files": [{"content": "#!/usr/bin/env python3\n\n# protect.py <infile> <outfile>\n# looks for file \"truelist\" in current dir\n\n# cd data/xml\n# for i in *xml ; do (cd ../../tools/fixedcase/ ; python3 ./protect.py ../../data/xml/$i /tmp/$i ; echo $i ); done > log\n\n\nimport lxml.etree as ET\nimport os\nimport sys\nimport copy\nimport itertools\nimport inspect\n\nfrom collections import defaultdict\n\nif __name__ == \"__main__\":\n from common import *\nelse:\n from .common import *\n\n# recursive helper called by protect\n# protect text of \"node\", including children, and tails of children\ndef protect_recurse(node, recased):\n if node.tag == \"fixed-case\": # already protected\n newnode = copy.deepcopy(node) # don't need to modify descendents\n newnode.tail = None # tail will be protected by caller\n return newnode\n newnode = ET.Element(node.tag, node.attrib)\n\n def process(text, rc):\n i = 0\n for upper, chars in itertools.groupby(rc[: len(text)], lambda c: c.isupper()):\n charstr = \"\".join(chars)\n if upper:\n p = ET.Element(\"fixed-case\")\n p.text = charstr\n newnode.append(p)\n else:\n append_text(newnode, text[i : i + len(charstr)])\n\n assert text[i : i + len(charstr)].lower() == charstr.lower(), (\n i,\n text,\n charstr,\n )\n i += len(charstr)\n\n if node.text:\n process(node.text, recased)\n recased = recased[len(node.text) :]\n for child in node:\n protected_child = protect_recurse(child, recased)\n recased = recased[len(get_text(protected_child)) :]\n newnode.append(protected_child)\n if child.tail:\n process(child.tail, recased)\n recased = recased[len(child.tail) :]\n\n return newnode\n\n\ndef protect(node):\n rawtext = get_text(node).strip()\n recased = None\n if rawtext.lower() in special_titles:\n recased = special_titles[rawtext.lower()]\n else:\n text = tokenize(rawtext)\n fixed = fixedcase_title(\n text,\n truelist=truelist,\n phrase_truelist=phrase_truelist,\n amodifiers=amodifiers,\n ndescriptors=ndescriptors,\n )\n if any(fixed):\n # Generate the recased string so we know where to look in the XML\n # to apply fixed-case\n recasedtoks = [(w if b else w.lower()) for w, b in zip(text, fixed)]\n recased = TreebankWordDetokenizer().detokenize(recasedtoks)\n # PTB (de)tokenizer doesn't think of hyphens as separate tokens,\n # so we need to manually detokenize them.\n # Assuming the only edits that need to be made are adding/deleting\n # spaces, the following will work:\n i = 0\n while i < len(rawtext):\n # scan rawtext from left to right and adjust recased by adding/removing\n # spaces until it matches\n t = rawtext[i]\n assert i < len(recased), ((i, t), rawtext, recased)\n c = recased[i]\n if t.isspace() and not c.isspace(): # may be ' ' or '\\n'\n # add space to recased\n recased = recased[:i] + t + recased[i:]\n i += 1\n elif c.isspace() and not t.isspace():\n # remove space from recased\n recased = recased[:i] + recased[i + 1 :]\n # don't increment i\n elif t != c and t.isspace() and c.isspace():\n recased = recased[:i] + t + recased[i + 1 :]\n i += 1\n else:\n assert t == c or t.lower() == c.lower(), (\n (i, t, c),\n rawtext,\n recased,\n text,\n )\n i += 1\n if len(recased) > len(rawtext):\n recased = recased[: len(rawtext)]\n assert rawtext.lower() == recased.lower(), (rawtext, recased)\n\n if recased:\n newnode = protect_recurse(node, recased)\n newnode.tail = node.tail # tail of top level is not protected\n replace_node(node, newnode)\n\n\n# Read in the truelist (list of words that should always be protected)\ntruelist, phrase_truelist, special_titles, amodifiers, ndescriptors = load_lists()\n\nif __name__ == \"__main__\":\n infile, outfile = sys.argv[1:]\n\n tree = ET.parse(infile)\n if not tree.getroot().tail:\n tree.getroot().tail = \"\\n\"\n for paper in tree.getroot().findall(\".//paper\"):\n for title in paper.xpath(\"./title|./booktitle\"):\n protect(title)\n tree.write(outfile, encoding=\"UTF-8\", xml_declaration=True)\n", "path": "bin/fixedcase/protect.py"}], "after_files": [{"content": "#!/usr/bin/env python3\n\n# protect.py <infile> <outfile>\n# looks for file \"truelist\" in current dir\n\n# cd data/xml\n# for i in *xml ; do (cd ../../tools/fixedcase/ ; python3 ./protect.py ../../data/xml/$i /tmp/$i ; echo $i ); done > log\n\n\nimport lxml.etree as ET\nimport os\nimport sys\nimport copy\nimport itertools\nimport inspect\n\nfrom collections import defaultdict\n\nif __name__ == \"__main__\":\n from common import *\nelse:\n from .common import *\n\n# recursive helper called by protect\n# protect text of \"node\", including children, and tails of children\ndef protect_recurse(node, recased):\n if node.tag in (\"fixed-case\", \"tex-math\"): # already protected text, or math\n newnode = copy.deepcopy(node) # don't need to modify descendents\n newnode.tail = None # tail will be protected by caller\n return newnode\n newnode = ET.Element(node.tag, node.attrib)\n\n def process(text, rc):\n i = 0\n for upper, chars in itertools.groupby(rc[: len(text)], lambda c: c.isupper()):\n charstr = \"\".join(chars)\n if upper:\n p = ET.Element(\"fixed-case\")\n p.text = charstr\n newnode.append(p)\n else:\n append_text(newnode, text[i : i + len(charstr)])\n\n assert text[i : i + len(charstr)].lower() == charstr.lower(), (\n i,\n text,\n charstr,\n )\n i += len(charstr)\n\n if node.text:\n process(node.text, recased)\n recased = recased[len(node.text) :]\n for child in node:\n protected_child = protect_recurse(child, recased)\n recased = recased[len(get_text(protected_child)) :]\n newnode.append(protected_child)\n if child.tail:\n process(child.tail, recased)\n recased = recased[len(child.tail) :]\n\n return newnode\n\n\ndef protect(node):\n rawtext = get_text(node).strip()\n recased = None\n if rawtext.lower() in special_titles:\n recased = special_titles[rawtext.lower()]\n else:\n text = tokenize(rawtext)\n fixed = fixedcase_title(\n text,\n truelist=truelist,\n phrase_truelist=phrase_truelist,\n amodifiers=amodifiers,\n ndescriptors=ndescriptors,\n )\n if any(fixed):\n # Generate the recased string so we know where to look in the XML\n # to apply fixed-case\n recasedtoks = [(w if b else w.lower()) for w, b in zip(text, fixed)]\n recased = TreebankWordDetokenizer().detokenize(recasedtoks)\n # PTB (de)tokenizer doesn't think of hyphens as separate tokens,\n # so we need to manually detokenize them.\n # Assuming the only edits that need to be made are adding/deleting\n # spaces, the following will work:\n i = 0\n while i < len(rawtext):\n # scan rawtext from left to right and adjust recased by adding/removing\n # spaces until it matches\n t = rawtext[i]\n assert i < len(recased), ((i, t), rawtext, recased)\n c = recased[i]\n if t.isspace() and not c.isspace(): # may be ' ' or '\\n'\n # add space to recased\n recased = recased[:i] + t + recased[i:]\n i += 1\n elif c.isspace() and not t.isspace():\n # remove space from recased\n recased = recased[:i] + recased[i + 1 :]\n # don't increment i\n elif t != c and t.isspace() and c.isspace():\n recased = recased[:i] + t + recased[i + 1 :]\n i += 1\n else:\n assert t == c or t.lower() == c.lower(), (\n (i, t, c),\n rawtext,\n recased,\n text,\n )\n i += 1\n if len(recased) > len(rawtext):\n recased = recased[: len(rawtext)]\n assert rawtext.lower() == recased.lower(), (rawtext, recased)\n\n if recased:\n newnode = protect_recurse(node, recased)\n newnode.tail = node.tail # tail of top level is not protected\n replace_node(node, newnode)\n\n\n# Read in the truelist (list of words that should always be protected)\ntruelist, phrase_truelist, special_titles, amodifiers, ndescriptors = load_lists()\n\nif __name__ == \"__main__\":\n infile, outfile = sys.argv[1:]\n\n tree = ET.parse(infile)\n if not tree.getroot().tail:\n tree.getroot().tail = \"\\n\"\n for paper in tree.getroot().findall(\".//paper\"):\n for title in paper.xpath(\"./title|./booktitle\"):\n protect(title)\n tree.write(outfile, encoding=\"UTF-8\", xml_declaration=True)\n", "path": "bin/fixedcase/protect.py"}]}
1,767
161
gh_patches_debug_47339
rasdani/github-patches
git_diff
enthought__chaco-904
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Wx BitmapFromBufferRGBA deprecated in favor of Bitmap.FromBufferRGBA ``` c:\users\rporuri\work\github\ets\chaco\chaco\tools\toolbars\toolbar_buttons.py:190: wxPyDeprecationWarning: Call to deprecated item BitmapFromBufferRGBA. Use :meth:`wx.Bitmap.FromBufferRGBA` instead. width + 1, height + 1, gc.bmp_array.flatten() ``` Discovered when running `examples/demo/depth.py` --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `chaco/tools/toolbars/toolbar_buttons.py` Content: ``` 1 # (C) Copyright 2005-2021 Enthought, Inc., Austin, TX 2 # All rights reserved. 3 # 4 # This software is provided without warranty under the terms of the BSD 5 # license included in LICENSE.txt and may be redistributed only under 6 # the conditions described in the aforementioned license. The license 7 # is also available online at http://www.enthought.com/licenses/BSD.txt 8 # 9 # Thanks for using Enthought open source! 10 11 import numpy 12 13 from traits.etsconfig.api import ETSConfig 14 from enable.tools.toolbars.toolbar_buttons import Button 15 from chaco.tools.zoom_tool import ZoomTool 16 from chaco.plot_graphics_context import PlotGraphicsContext 17 from kiva.image import Image 18 from pyface.image_resource import ImageResource 19 from pyface.api import FileDialog, OK, error 20 from traits.api import ( 21 Instance, 22 Str, 23 Property, 24 cached_property, 25 List, 26 Int, 27 Enum, 28 ) 29 30 31 class ToolbarButton(Button): 32 image = Str() 33 _image = Instance(Image) 34 35 color = "black" 36 37 width = Property(Int, observe="label, image") 38 height = Property(Int, observe="label, image") 39 40 # bounds are used for hit testing 41 bounds = Property(List, observe="label, image") 42 43 def __init__(self, *args, **kw): 44 super().__init__(*args, **kw) 45 46 image_resource = ImageResource(self.image) 47 self._image = Image(image_resource.absolute_path) 48 49 @cached_property 50 def _get_width(self): 51 gc = PlotGraphicsContext((100, 100), dpi=72) 52 gc.set_font(self.label_font) 53 (w, h, descent, leading) = gc.get_full_text_extent(self.label) 54 return max(self._image.width(), w) 55 56 @cached_property 57 def _get_height(self): 58 gc = PlotGraphicsContext((100, 100), dpi=72) 59 gc.set_font(self.label_font) 60 (w, h, descent, leading) = gc.get_full_text_extent(self.label) 61 return self._image.height() + h 62 63 @cached_property 64 def _get_bounds(self): 65 return [self.width, self.height] 66 67 def _draw_actual_button(self, gc): 68 x_offset = self.x + (self.width - self._image.width()) / 2 69 gc.draw_image( 70 self._image, 71 (x_offset, self.y + 2, self._image.width(), self._image.height()), 72 ) 73 74 if self.label is not None and len(self.label) > 0: 75 gc.set_font(self.label_font) 76 77 (w, h, descent, leading) = gc.get_full_text_extent(self.label) 78 if w < self.width: 79 x_offset = self.x + (self.width - w) / 2 80 else: 81 x_offset = self.x 82 83 gc.set_text_position(x_offset, self.y - 8) 84 gc.show_text(self.label) 85 86 87 class IndexAxisLogButton(ToolbarButton): 88 label = "X Log Scale" 89 tooltip = "Change index axis scale" 90 image = "zoom-fit-width" 91 92 def perform(self, event): 93 if self.container.component.index_scale == "linear": 94 self.container.component.index_scale = "log" 95 else: 96 self.container.component.index_scale = "linear" 97 self.container.request_redraw() 98 99 100 class ValueAxisLogButton(ToolbarButton): 101 label = "Y Log Scale" 102 tooltip = "Change value axis scale" 103 image = "zoom-fit-height" 104 105 def perform(self, event): 106 if self.container.component.value_scale == "linear": 107 self.container.component.value_scale = "log" 108 else: 109 self.container.component.value_scale = "linear" 110 self.container.request_redraw() 111 112 113 class ZoomResetButton(ToolbarButton): 114 label = "Zoom Reset" 115 tooltip = "Zoom Reset" 116 image = "zoom-original" 117 118 def perform(self, event): 119 plot_component = self.container.component 120 121 for overlay in plot_component.overlays: 122 if isinstance(overlay, ZoomTool): 123 overlay._reset_state_pressed() 124 125 self.container.request_redraw() 126 127 128 class SaveAsButton(ToolbarButton): 129 label = "Save As" 130 tooltip = "Save As" 131 image = "document-save" 132 133 def perform(self, event): 134 135 plot_component = self.container.component 136 137 filter = "PNG file (*.png)|*.png|\nTIFF file (*.tiff)|*.tiff|" 138 dialog = FileDialog(action="save as", wildcard=filter) 139 140 if dialog.open() != OK: 141 return 142 143 # Remove the toolbar before saving the plot, so the output doesn't 144 # include the toolbar. 145 plot_component.remove_toolbar() 146 147 filename = dialog.path 148 149 width, height = plot_component.outer_bounds 150 151 gc = PlotGraphicsContext((width, height), dpi=72) 152 gc.render_component(plot_component) 153 try: 154 gc.save(filename) 155 except KeyError as e: 156 errmsg = ( 157 "The filename must have an extension that matches " 158 "a graphics format, such as '.png' or '.tiff'." 159 ) 160 if str(e.message) != "": 161 errmsg = ( 162 "Unknown filename extension: '%s'\n" % str(e.message) 163 ) + errmsg 164 165 error(None, errmsg, title="Invalid Filename Extension") 166 167 # Restore the toolbar. 168 plot_component.add_toolbar() 169 170 171 class CopyToClipboardButton(ToolbarButton): 172 label = "Copy Image" 173 tooltip = "Copy to the clipboard" 174 image = "edit-copy" 175 176 def perform(self, event): 177 plot_component = self.container.component 178 179 # Remove the toolbar before saving the plot, so the output doesn't 180 # include the toolbar. 181 plot_component.remove_toolbar() 182 183 width, height = plot_component.outer_bounds 184 185 gc = PlotGraphicsContext((width, height), dpi=72) 186 gc.render_component(plot_component) 187 188 if ETSConfig.toolkit == "wx": 189 self._perform_wx(width, height, gc) 190 else: 191 pass 192 193 # Restore the toolbar. 194 plot_component.add_toolbar() 195 196 def _perform_wx(self, width, height, gc): 197 import wx 198 199 bitmap = wx.BitmapFromBufferRGBA( 200 width + 1, height + 1, gc.bmp_array.flatten() 201 ) 202 data = wx.BitmapDataObject() 203 data.SetBitmap(bitmap) 204 if wx.TheClipboard.Open(): 205 wx.TheClipboard.SetData(data) 206 wx.TheClipboard.Close() 207 else: 208 wx.MessageBox("Unable to open the clipboard.", "Error") 209 210 211 class ExportDataToClipboardButton(ToolbarButton): 212 label = "Copy Data" 213 tooltip = "Copy data to the clipboard" 214 image = "application-vnd-ms-excel" 215 216 orientation = Enum("v", "h") 217 218 def perform(self, event): 219 if ETSConfig.toolkit == "wx": 220 self._perform_wx() 221 elif ETSConfig.toolkit == "qt4": 222 self._perform_qt() 223 else: 224 pass 225 226 def _get_data_from_plots(self): 227 values = [] 228 indices = [] 229 for renderers in self.container.component.plots.values(): 230 for renderer in renderers: 231 indices.append(renderer.index.get_data()) 232 values.append(renderer.value.get_data()) 233 return indices, values 234 235 def _serialize_data(self, indices, values): 236 237 # if all of rows are the same length, use faster algorithms, 238 # otherwise go element by element adding the necessary empty strings 239 if len(set([len(l) for l in values])) == 1: 240 data = [indices[0]] + values 241 if self.orientation == "v": 242 data = numpy.array(data).T.tolist() 243 244 data_str = "" 245 for row in data: 246 data_str += ",".join(["%f" % v for v in row]) + "\n" 247 return data_str 248 249 else: 250 # There might not be a single solution which fits all cases, 251 # so this is left to specific implementations to override 252 raise NotImplementedError() 253 254 def _perform_wx(self): 255 import wx 256 257 indices, values = self._get_data_from_plots() 258 data_str = self._serialize_data(indices, values) 259 data_obj = wx.TextDataObject(data_str) 260 261 if wx.TheClipboard.Open(): 262 wx.TheClipboard.SetData(data_obj) 263 wx.TheClipboard.Close() 264 else: 265 wx.MessageBox("Unable to open the clipboard.", "Error") 266 267 def _perform_qt(self): 268 from pyface.qt import QtGui 269 270 indices, values = self._get_data_from_plots() 271 data_str = self._serialize_data(indices, values) 272 273 QtGui.QApplication.clipboard().setText(data_str) 274 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/chaco/tools/toolbars/toolbar_buttons.py b/chaco/tools/toolbars/toolbar_buttons.py --- a/chaco/tools/toolbars/toolbar_buttons.py +++ b/chaco/tools/toolbars/toolbar_buttons.py @@ -196,7 +196,7 @@ def _perform_wx(self, width, height, gc): import wx - bitmap = wx.BitmapFromBufferRGBA( + bitmap = wx.Bitmap.FromBufferRGBA( width + 1, height + 1, gc.bmp_array.flatten() ) data = wx.BitmapDataObject()
{"golden_diff": "diff --git a/chaco/tools/toolbars/toolbar_buttons.py b/chaco/tools/toolbars/toolbar_buttons.py\n--- a/chaco/tools/toolbars/toolbar_buttons.py\n+++ b/chaco/tools/toolbars/toolbar_buttons.py\n@@ -196,7 +196,7 @@\n def _perform_wx(self, width, height, gc):\n import wx\n \n- bitmap = wx.BitmapFromBufferRGBA(\n+ bitmap = wx.Bitmap.FromBufferRGBA(\n width + 1, height + 1, gc.bmp_array.flatten()\n )\n data = wx.BitmapDataObject()\n", "issue": "Wx BitmapFromBufferRGBA deprecated in favor of Bitmap.FromBufferRGBA\n```\r\nc:\\users\\rporuri\\work\\github\\ets\\chaco\\chaco\\tools\\toolbars\\toolbar_buttons.py:190: wxPyDeprecationWarning: Call to deprecated item BitmapFromBufferRGBA. Use :meth:`wx.Bitmap.FromBufferRGBA` instead.\r\n width + 1, height + 1, gc.bmp_array.flatten()\r\n```\r\n\r\nDiscovered when running `examples/demo/depth.py`\n", "before_files": [{"content": "# (C) Copyright 2005-2021 Enthought, Inc., Austin, TX\n# All rights reserved.\n#\n# This software is provided without warranty under the terms of the BSD\n# license included in LICENSE.txt and may be redistributed only under\n# the conditions described in the aforementioned license. The license\n# is also available online at http://www.enthought.com/licenses/BSD.txt\n#\n# Thanks for using Enthought open source!\n\nimport numpy\n\nfrom traits.etsconfig.api import ETSConfig\nfrom enable.tools.toolbars.toolbar_buttons import Button\nfrom chaco.tools.zoom_tool import ZoomTool\nfrom chaco.plot_graphics_context import PlotGraphicsContext\nfrom kiva.image import Image\nfrom pyface.image_resource import ImageResource\nfrom pyface.api import FileDialog, OK, error\nfrom traits.api import (\n Instance,\n Str,\n Property,\n cached_property,\n List,\n Int,\n Enum,\n)\n\n\nclass ToolbarButton(Button):\n image = Str()\n _image = Instance(Image)\n\n color = \"black\"\n\n width = Property(Int, observe=\"label, image\")\n height = Property(Int, observe=\"label, image\")\n\n # bounds are used for hit testing\n bounds = Property(List, observe=\"label, image\")\n\n def __init__(self, *args, **kw):\n super().__init__(*args, **kw)\n\n image_resource = ImageResource(self.image)\n self._image = Image(image_resource.absolute_path)\n\n @cached_property\n def _get_width(self):\n gc = PlotGraphicsContext((100, 100), dpi=72)\n gc.set_font(self.label_font)\n (w, h, descent, leading) = gc.get_full_text_extent(self.label)\n return max(self._image.width(), w)\n\n @cached_property\n def _get_height(self):\n gc = PlotGraphicsContext((100, 100), dpi=72)\n gc.set_font(self.label_font)\n (w, h, descent, leading) = gc.get_full_text_extent(self.label)\n return self._image.height() + h\n\n @cached_property\n def _get_bounds(self):\n return [self.width, self.height]\n\n def _draw_actual_button(self, gc):\n x_offset = self.x + (self.width - self._image.width()) / 2\n gc.draw_image(\n self._image,\n (x_offset, self.y + 2, self._image.width(), self._image.height()),\n )\n\n if self.label is not None and len(self.label) > 0:\n gc.set_font(self.label_font)\n\n (w, h, descent, leading) = gc.get_full_text_extent(self.label)\n if w < self.width:\n x_offset = self.x + (self.width - w) / 2\n else:\n x_offset = self.x\n\n gc.set_text_position(x_offset, self.y - 8)\n gc.show_text(self.label)\n\n\nclass IndexAxisLogButton(ToolbarButton):\n label = \"X Log Scale\"\n tooltip = \"Change index axis scale\"\n image = \"zoom-fit-width\"\n\n def perform(self, event):\n if self.container.component.index_scale == \"linear\":\n self.container.component.index_scale = \"log\"\n else:\n self.container.component.index_scale = \"linear\"\n self.container.request_redraw()\n\n\nclass ValueAxisLogButton(ToolbarButton):\n label = \"Y Log Scale\"\n tooltip = \"Change value axis scale\"\n image = \"zoom-fit-height\"\n\n def perform(self, event):\n if self.container.component.value_scale == \"linear\":\n self.container.component.value_scale = \"log\"\n else:\n self.container.component.value_scale = \"linear\"\n self.container.request_redraw()\n\n\nclass ZoomResetButton(ToolbarButton):\n label = \"Zoom Reset\"\n tooltip = \"Zoom Reset\"\n image = \"zoom-original\"\n\n def perform(self, event):\n plot_component = self.container.component\n\n for overlay in plot_component.overlays:\n if isinstance(overlay, ZoomTool):\n overlay._reset_state_pressed()\n\n self.container.request_redraw()\n\n\nclass SaveAsButton(ToolbarButton):\n label = \"Save As\"\n tooltip = \"Save As\"\n image = \"document-save\"\n\n def perform(self, event):\n\n plot_component = self.container.component\n\n filter = \"PNG file (*.png)|*.png|\\nTIFF file (*.tiff)|*.tiff|\"\n dialog = FileDialog(action=\"save as\", wildcard=filter)\n\n if dialog.open() != OK:\n return\n\n # Remove the toolbar before saving the plot, so the output doesn't\n # include the toolbar.\n plot_component.remove_toolbar()\n\n filename = dialog.path\n\n width, height = plot_component.outer_bounds\n\n gc = PlotGraphicsContext((width, height), dpi=72)\n gc.render_component(plot_component)\n try:\n gc.save(filename)\n except KeyError as e:\n errmsg = (\n \"The filename must have an extension that matches \"\n \"a graphics format, such as '.png' or '.tiff'.\"\n )\n if str(e.message) != \"\":\n errmsg = (\n \"Unknown filename extension: '%s'\\n\" % str(e.message)\n ) + errmsg\n\n error(None, errmsg, title=\"Invalid Filename Extension\")\n\n # Restore the toolbar.\n plot_component.add_toolbar()\n\n\nclass CopyToClipboardButton(ToolbarButton):\n label = \"Copy Image\"\n tooltip = \"Copy to the clipboard\"\n image = \"edit-copy\"\n\n def perform(self, event):\n plot_component = self.container.component\n\n # Remove the toolbar before saving the plot, so the output doesn't\n # include the toolbar.\n plot_component.remove_toolbar()\n\n width, height = plot_component.outer_bounds\n\n gc = PlotGraphicsContext((width, height), dpi=72)\n gc.render_component(plot_component)\n\n if ETSConfig.toolkit == \"wx\":\n self._perform_wx(width, height, gc)\n else:\n pass\n\n # Restore the toolbar.\n plot_component.add_toolbar()\n\n def _perform_wx(self, width, height, gc):\n import wx\n\n bitmap = wx.BitmapFromBufferRGBA(\n width + 1, height + 1, gc.bmp_array.flatten()\n )\n data = wx.BitmapDataObject()\n data.SetBitmap(bitmap)\n if wx.TheClipboard.Open():\n wx.TheClipboard.SetData(data)\n wx.TheClipboard.Close()\n else:\n wx.MessageBox(\"Unable to open the clipboard.\", \"Error\")\n\n\nclass ExportDataToClipboardButton(ToolbarButton):\n label = \"Copy Data\"\n tooltip = \"Copy data to the clipboard\"\n image = \"application-vnd-ms-excel\"\n\n orientation = Enum(\"v\", \"h\")\n\n def perform(self, event):\n if ETSConfig.toolkit == \"wx\":\n self._perform_wx()\n elif ETSConfig.toolkit == \"qt4\":\n self._perform_qt()\n else:\n pass\n\n def _get_data_from_plots(self):\n values = []\n indices = []\n for renderers in self.container.component.plots.values():\n for renderer in renderers:\n indices.append(renderer.index.get_data())\n values.append(renderer.value.get_data())\n return indices, values\n\n def _serialize_data(self, indices, values):\n\n # if all of rows are the same length, use faster algorithms,\n # otherwise go element by element adding the necessary empty strings\n if len(set([len(l) for l in values])) == 1:\n data = [indices[0]] + values\n if self.orientation == \"v\":\n data = numpy.array(data).T.tolist()\n\n data_str = \"\"\n for row in data:\n data_str += \",\".join([\"%f\" % v for v in row]) + \"\\n\"\n return data_str\n\n else:\n # There might not be a single solution which fits all cases,\n # so this is left to specific implementations to override\n raise NotImplementedError()\n\n def _perform_wx(self):\n import wx\n\n indices, values = self._get_data_from_plots()\n data_str = self._serialize_data(indices, values)\n data_obj = wx.TextDataObject(data_str)\n\n if wx.TheClipboard.Open():\n wx.TheClipboard.SetData(data_obj)\n wx.TheClipboard.Close()\n else:\n wx.MessageBox(\"Unable to open the clipboard.\", \"Error\")\n\n def _perform_qt(self):\n from pyface.qt import QtGui\n\n indices, values = self._get_data_from_plots()\n data_str = self._serialize_data(indices, values)\n\n QtGui.QApplication.clipboard().setText(data_str)\n", "path": "chaco/tools/toolbars/toolbar_buttons.py"}], "after_files": [{"content": "# (C) Copyright 2005-2021 Enthought, Inc., Austin, TX\n# All rights reserved.\n#\n# This software is provided without warranty under the terms of the BSD\n# license included in LICENSE.txt and may be redistributed only under\n# the conditions described in the aforementioned license. The license\n# is also available online at http://www.enthought.com/licenses/BSD.txt\n#\n# Thanks for using Enthought open source!\n\nimport numpy\n\nfrom traits.etsconfig.api import ETSConfig\nfrom enable.tools.toolbars.toolbar_buttons import Button\nfrom chaco.tools.zoom_tool import ZoomTool\nfrom chaco.plot_graphics_context import PlotGraphicsContext\nfrom kiva.image import Image\nfrom pyface.image_resource import ImageResource\nfrom pyface.api import FileDialog, OK, error\nfrom traits.api import (\n Instance,\n Str,\n Property,\n cached_property,\n List,\n Int,\n Enum,\n)\n\n\nclass ToolbarButton(Button):\n image = Str()\n _image = Instance(Image)\n\n color = \"black\"\n\n width = Property(Int, observe=\"label, image\")\n height = Property(Int, observe=\"label, image\")\n\n # bounds are used for hit testing\n bounds = Property(List, observe=\"label, image\")\n\n def __init__(self, *args, **kw):\n super().__init__(*args, **kw)\n\n image_resource = ImageResource(self.image)\n self._image = Image(image_resource.absolute_path)\n\n @cached_property\n def _get_width(self):\n gc = PlotGraphicsContext((100, 100), dpi=72)\n gc.set_font(self.label_font)\n (w, h, descent, leading) = gc.get_full_text_extent(self.label)\n return max(self._image.width(), w)\n\n @cached_property\n def _get_height(self):\n gc = PlotGraphicsContext((100, 100), dpi=72)\n gc.set_font(self.label_font)\n (w, h, descent, leading) = gc.get_full_text_extent(self.label)\n return self._image.height() + h\n\n @cached_property\n def _get_bounds(self):\n return [self.width, self.height]\n\n def _draw_actual_button(self, gc):\n x_offset = self.x + (self.width - self._image.width()) / 2\n gc.draw_image(\n self._image,\n (x_offset, self.y + 2, self._image.width(), self._image.height()),\n )\n\n if self.label is not None and len(self.label) > 0:\n gc.set_font(self.label_font)\n\n (w, h, descent, leading) = gc.get_full_text_extent(self.label)\n if w < self.width:\n x_offset = self.x + (self.width - w) / 2\n else:\n x_offset = self.x\n\n gc.set_text_position(x_offset, self.y - 8)\n gc.show_text(self.label)\n\n\nclass IndexAxisLogButton(ToolbarButton):\n label = \"X Log Scale\"\n tooltip = \"Change index axis scale\"\n image = \"zoom-fit-width\"\n\n def perform(self, event):\n if self.container.component.index_scale == \"linear\":\n self.container.component.index_scale = \"log\"\n else:\n self.container.component.index_scale = \"linear\"\n self.container.request_redraw()\n\n\nclass ValueAxisLogButton(ToolbarButton):\n label = \"Y Log Scale\"\n tooltip = \"Change value axis scale\"\n image = \"zoom-fit-height\"\n\n def perform(self, event):\n if self.container.component.value_scale == \"linear\":\n self.container.component.value_scale = \"log\"\n else:\n self.container.component.value_scale = \"linear\"\n self.container.request_redraw()\n\n\nclass ZoomResetButton(ToolbarButton):\n label = \"Zoom Reset\"\n tooltip = \"Zoom Reset\"\n image = \"zoom-original\"\n\n def perform(self, event):\n plot_component = self.container.component\n\n for overlay in plot_component.overlays:\n if isinstance(overlay, ZoomTool):\n overlay._reset_state_pressed()\n\n self.container.request_redraw()\n\n\nclass SaveAsButton(ToolbarButton):\n label = \"Save As\"\n tooltip = \"Save As\"\n image = \"document-save\"\n\n def perform(self, event):\n\n plot_component = self.container.component\n\n filter = \"PNG file (*.png)|*.png|\\nTIFF file (*.tiff)|*.tiff|\"\n dialog = FileDialog(action=\"save as\", wildcard=filter)\n\n if dialog.open() != OK:\n return\n\n # Remove the toolbar before saving the plot, so the output doesn't\n # include the toolbar.\n plot_component.remove_toolbar()\n\n filename = dialog.path\n\n width, height = plot_component.outer_bounds\n\n gc = PlotGraphicsContext((width, height), dpi=72)\n gc.render_component(plot_component)\n try:\n gc.save(filename)\n except KeyError as e:\n errmsg = (\n \"The filename must have an extension that matches \"\n \"a graphics format, such as '.png' or '.tiff'.\"\n )\n if str(e.message) != \"\":\n errmsg = (\n \"Unknown filename extension: '%s'\\n\" % str(e.message)\n ) + errmsg\n\n error(None, errmsg, title=\"Invalid Filename Extension\")\n\n # Restore the toolbar.\n plot_component.add_toolbar()\n\n\nclass CopyToClipboardButton(ToolbarButton):\n label = \"Copy Image\"\n tooltip = \"Copy to the clipboard\"\n image = \"edit-copy\"\n\n def perform(self, event):\n plot_component = self.container.component\n\n # Remove the toolbar before saving the plot, so the output doesn't\n # include the toolbar.\n plot_component.remove_toolbar()\n\n width, height = plot_component.outer_bounds\n\n gc = PlotGraphicsContext((width, height), dpi=72)\n gc.render_component(plot_component)\n\n if ETSConfig.toolkit == \"wx\":\n self._perform_wx(width, height, gc)\n else:\n pass\n\n # Restore the toolbar.\n plot_component.add_toolbar()\n\n def _perform_wx(self, width, height, gc):\n import wx\n\n bitmap = wx.Bitmap.FromBufferRGBA(\n width + 1, height + 1, gc.bmp_array.flatten()\n )\n data = wx.BitmapDataObject()\n data.SetBitmap(bitmap)\n if wx.TheClipboard.Open():\n wx.TheClipboard.SetData(data)\n wx.TheClipboard.Close()\n else:\n wx.MessageBox(\"Unable to open the clipboard.\", \"Error\")\n\n\nclass ExportDataToClipboardButton(ToolbarButton):\n label = \"Copy Data\"\n tooltip = \"Copy data to the clipboard\"\n image = \"application-vnd-ms-excel\"\n\n orientation = Enum(\"v\", \"h\")\n\n def perform(self, event):\n if ETSConfig.toolkit == \"wx\":\n self._perform_wx()\n elif ETSConfig.toolkit == \"qt4\":\n self._perform_qt()\n else:\n pass\n\n def _get_data_from_plots(self):\n values = []\n indices = []\n for renderers in self.container.component.plots.values():\n for renderer in renderers:\n indices.append(renderer.index.get_data())\n values.append(renderer.value.get_data())\n return indices, values\n\n def _serialize_data(self, indices, values):\n\n # if all of rows are the same length, use faster algorithms,\n # otherwise go element by element adding the necessary empty strings\n if len(set([len(l) for l in values])) == 1:\n data = [indices[0]] + values\n if self.orientation == \"v\":\n data = numpy.array(data).T.tolist()\n\n data_str = \"\"\n for row in data:\n data_str += \",\".join([\"%f\" % v for v in row]) + \"\\n\"\n return data_str\n\n else:\n # There might not be a single solution which fits all cases,\n # so this is left to specific implementations to override\n raise NotImplementedError()\n\n def _perform_wx(self):\n import wx\n\n indices, values = self._get_data_from_plots()\n data_str = self._serialize_data(indices, values)\n data_obj = wx.TextDataObject(data_str)\n\n if wx.TheClipboard.Open():\n wx.TheClipboard.SetData(data_obj)\n wx.TheClipboard.Close()\n else:\n wx.MessageBox(\"Unable to open the clipboard.\", \"Error\")\n\n def _perform_qt(self):\n from pyface.qt import QtGui\n\n indices, values = self._get_data_from_plots()\n data_str = self._serialize_data(indices, values)\n\n QtGui.QApplication.clipboard().setText(data_str)\n", "path": "chaco/tools/toolbars/toolbar_buttons.py"}]}
2,977
126
gh_patches_debug_5316
rasdani/github-patches
git_diff
Theano__Theano-6225
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- `.../c_code/dimshuffle.c` missing from setup.py? A Lasagne user just reported that ```bash pip install --upgrade --no-deps https://github.com/Theano/Theano/archive/master.zip ``` lead to the following error (I assume after installation, when trying to import it): ``` FileNotFoundError: [Errno 2] No such file or directory: '/Users/XXXX/anaconda/lib/python3.5/site-packages/theano/tensor/c_code/dimshuffle.c ``` The file was added in #6174 and is included in the `master.zip` snapshot, but maybe it's missing in `setup.py` and thus not copied over? You wouldn't notice when doing a development/editable install. The user solved it by downloading `tensor/c_code/dimshuffle.c` and `gpuarray/c_code/dimshuffle.c` manually from github. Disclaimer: I haven't verified this behavior myself. Add "c_code" folders to Theano installations To do that, I converted current `c_code` folders to python modules (I don't find other solution, currently). This should fix #6222 . I had forgotten that @abergeron warned about it in #6047. @nouiz @lamblin --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `setup.py` Content: ``` 1 #!/usr/bin/env python 2 # 3 # TODO: 4 # * Figure out how to compile and install documentation automatically 5 # * Add download_url 6 7 from __future__ import absolute_import, print_function, division 8 import os 9 import subprocess 10 import codecs 11 from fnmatch import fnmatchcase 12 from distutils.util import convert_path 13 try: 14 from setuptools import setup 15 except ImportError: 16 from distutils.core import setup 17 18 19 CLASSIFIERS = """\ 20 Development Status :: 4 - Beta 21 Intended Audience :: Education 22 Intended Audience :: Science/Research 23 Intended Audience :: Developers 24 License :: OSI Approved :: BSD License 25 Programming Language :: Python 26 Topic :: Software Development :: Code Generators 27 Topic :: Software Development :: Compilers 28 Topic :: Scientific/Engineering :: Mathematics 29 Operating System :: Microsoft :: Windows 30 Operating System :: POSIX 31 Operating System :: Unix 32 Operating System :: MacOS 33 Programming Language :: Python :: 2 34 Programming Language :: Python :: 2.7 35 Programming Language :: Python :: 3 36 Programming Language :: Python :: 3.4 37 Programming Language :: Python :: 3.5 38 """ 39 NAME = 'Theano' 40 MAINTAINER = "LISA laboratory, University of Montreal" 41 MAINTAINER_EMAIL = "[email protected]" 42 DESCRIPTION = ('Optimizing compiler for evaluating mathematical ' + 43 'expressions on CPUs and GPUs.') 44 LONG_DESCRIPTION = (codecs.open("DESCRIPTION.txt", encoding='utf-8').read() + 45 "\n\n" + codecs.open("NEWS.txt", encoding='utf-8').read()) 46 URL = "http://deeplearning.net/software/theano/" 47 DOWNLOAD_URL = "" 48 LICENSE = 'BSD' 49 CLASSIFIERS = [_f for _f in CLASSIFIERS.split('\n') if _f] 50 AUTHOR = "LISA laboratory, University of Montreal" 51 AUTHOR_EMAIL = "[email protected]" 52 PLATFORMS = ["Windows", "Linux", "Solaris", "Mac OS-X", "Unix"] 53 MAJOR = 0 54 MINOR = 10 55 MICRO = 0 56 SUFFIX = "dev1" # Should be blank except for rc's, betas, etc. 57 ISRELEASED = False 58 59 VERSION = '%d.%d.%d%s' % (MAJOR, MINOR, MICRO, SUFFIX) 60 61 62 def find_packages(where='.', exclude=()): 63 out = [] 64 stack = [(convert_path(where), '')] 65 while stack: 66 where, prefix = stack.pop(0) 67 for name in os.listdir(where): 68 fn = os.path.join(where, name) 69 if ('.' not in name and os.path.isdir(fn) and 70 os.path.isfile(os.path.join(fn, '__init__.py')) 71 ): 72 out.append(prefix+name) 73 stack.append((fn, prefix+name+'.')) 74 for pat in list(exclude) + ['ez_setup', 'distribute_setup']: 75 out = [item for item in out if not fnmatchcase(item, pat)] 76 return out 77 78 79 def git_version(): 80 """ 81 Return the sha1 of local git HEAD as a string. 82 """ 83 # josharian: I doubt that the minimal environment stuff here is 84 # still needed; it is inherited. This was originally 85 # an hg_version function borrowed from NumPy's setup.py. 86 # I'm leaving it in for now because I don't have enough other 87 # environments to test in to be confident that it is safe to remove. 88 def _minimal_ext_cmd(cmd): 89 # construct minimal environment 90 env = {} 91 for k in ['SYSTEMROOT', 'PATH', 'PYTHONPATH']: 92 v = os.environ.get(k) 93 if v is not None: 94 env[k] = v 95 # LANGUAGE is used on win32 96 env['LANGUAGE'] = 'C' 97 env['LANG'] = 'C' 98 env['LC_ALL'] = 'C' 99 out = subprocess.Popen( 100 cmd, 101 stdout=subprocess.PIPE, 102 env=env 103 ).communicate()[0] 104 return out 105 try: 106 out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD']) 107 git_revision = out.strip().decode('ascii') 108 except OSError: 109 git_revision = "unknown-git" 110 return git_revision 111 112 113 def write_text(filename, text): 114 try: 115 with open(filename, 'w') as a: 116 a.write(text) 117 except Exception as e: 118 print(e) 119 120 121 def write_version_py(filename=os.path.join('theano', 'generated_version.py')): 122 cnt = """ 123 # THIS FILE IS GENERATED FROM THEANO SETUP.PY 124 short_version = '%(version)s' 125 version = '%(version)s' 126 git_revision = '%(git_revision)s' 127 full_version = '%(version)s.dev-%%(git_revision)s' %% { 128 'git_revision': git_revision} 129 release = %(isrelease)s 130 131 if not release: 132 version = full_version 133 """ 134 FULL_VERSION = VERSION 135 if os.path.isdir('.git'): 136 GIT_REVISION = git_version() 137 elif os.path.exists(filename): 138 # must be a source distribution, use existing version file 139 GIT_REVISION = "RELEASE" 140 else: 141 GIT_REVISION = "unknown-git" 142 143 FULL_VERSION += '.dev-' + GIT_REVISION 144 text = cnt % {'version': VERSION, 145 'full_version': FULL_VERSION, 146 'git_revision': GIT_REVISION, 147 'isrelease': str(ISRELEASED)} 148 write_text(filename, text) 149 150 151 def do_setup(): 152 write_version_py() 153 setup(name=NAME, 154 version=VERSION, 155 description=DESCRIPTION, 156 long_description=LONG_DESCRIPTION, 157 classifiers=CLASSIFIERS, 158 author=AUTHOR, 159 author_email=AUTHOR_EMAIL, 160 url=URL, 161 license=LICENSE, 162 platforms=PLATFORMS, 163 packages=find_packages(), 164 install_requires=['numpy>=1.9.1', 'scipy>=0.14', 'six>=1.9.0'], 165 # pygments is a dependency for Sphinx code highlight 166 extras_require={ 167 'test': ['nose>=1.3.0', 'parameterized', 'flake8<3'], 168 'doc': ['Sphinx>=0.5.1', 'pygments'] 169 }, 170 package_data={ 171 '': ['*.txt', '*.rst', '*.cu', '*.cuh', '*.c', '*.sh', '*.pkl', 172 '*.h', '*.cpp', 'ChangeLog'], 173 'theano.misc': ['*.sh'], 174 'theano.d3viz' : ['html/*','css/*','js/*'] 175 }, 176 entry_points={ 177 'console_scripts': ['theano-cache = bin.theano_cache:main', 178 'theano-nose = bin.theano_nose:main'] 179 }, 180 keywords=' '.join([ 181 'theano', 'math', 'numerical', 'symbolic', 'blas', 182 'numpy', 'gpu', 'autodiff', 'differentiation' 183 ]), 184 ) 185 if __name__ == "__main__": 186 do_setup() 187 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/setup.py b/setup.py --- a/setup.py +++ b/setup.py @@ -169,7 +169,7 @@ }, package_data={ '': ['*.txt', '*.rst', '*.cu', '*.cuh', '*.c', '*.sh', '*.pkl', - '*.h', '*.cpp', 'ChangeLog'], + '*.h', '*.cpp', 'ChangeLog', 'c_code/*'], 'theano.misc': ['*.sh'], 'theano.d3viz' : ['html/*','css/*','js/*'] },
{"golden_diff": "diff --git a/setup.py b/setup.py\n--- a/setup.py\n+++ b/setup.py\n@@ -169,7 +169,7 @@\n },\n package_data={\n '': ['*.txt', '*.rst', '*.cu', '*.cuh', '*.c', '*.sh', '*.pkl',\n- '*.h', '*.cpp', 'ChangeLog'],\n+ '*.h', '*.cpp', 'ChangeLog', 'c_code/*'],\n 'theano.misc': ['*.sh'],\n 'theano.d3viz' : ['html/*','css/*','js/*']\n },\n", "issue": "`.../c_code/dimshuffle.c` missing from setup.py?\nA Lasagne user just reported that\r\n```bash\r\npip install --upgrade --no-deps https://github.com/Theano/Theano/archive/master.zip\r\n```\r\nlead to the following error (I assume after installation, when trying to import it):\r\n```\r\nFileNotFoundError: [Errno 2] No such file or directory: '/Users/XXXX/anaconda/lib/python3.5/site-packages/theano/tensor/c_code/dimshuffle.c\r\n```\r\nThe file was added in #6174 and is included in the `master.zip` snapshot, but maybe it's missing in `setup.py` and thus not copied over? You wouldn't notice when doing a development/editable install. The user solved it by downloading `tensor/c_code/dimshuffle.c` and `gpuarray/c_code/dimshuffle.c` manually from github.\r\n\r\nDisclaimer: I haven't verified this behavior myself.\nAdd \"c_code\" folders to Theano installations\nTo do that, I converted current `c_code` folders to python modules (I don't find other solution, currently). This should fix #6222 . I had forgotten that @abergeron warned about it in #6047.\r\n\r\n@nouiz @lamblin \n", "before_files": [{"content": "#!/usr/bin/env python\n#\n# TODO:\n# * Figure out how to compile and install documentation automatically\n# * Add download_url\n\nfrom __future__ import absolute_import, print_function, division\nimport os\nimport subprocess\nimport codecs\nfrom fnmatch import fnmatchcase\nfrom distutils.util import convert_path\ntry:\n from setuptools import setup\nexcept ImportError:\n from distutils.core import setup\n\n\nCLASSIFIERS = \"\"\"\\\nDevelopment Status :: 4 - Beta\nIntended Audience :: Education\nIntended Audience :: Science/Research\nIntended Audience :: Developers\nLicense :: OSI Approved :: BSD License\nProgramming Language :: Python\nTopic :: Software Development :: Code Generators\nTopic :: Software Development :: Compilers\nTopic :: Scientific/Engineering :: Mathematics\nOperating System :: Microsoft :: Windows\nOperating System :: POSIX\nOperating System :: Unix\nOperating System :: MacOS\nProgramming Language :: Python :: 2\nProgramming Language :: Python :: 2.7\nProgramming Language :: Python :: 3\nProgramming Language :: Python :: 3.4\nProgramming Language :: Python :: 3.5\n\"\"\"\nNAME = 'Theano'\nMAINTAINER = \"LISA laboratory, University of Montreal\"\nMAINTAINER_EMAIL = \"[email protected]\"\nDESCRIPTION = ('Optimizing compiler for evaluating mathematical ' +\n 'expressions on CPUs and GPUs.')\nLONG_DESCRIPTION = (codecs.open(\"DESCRIPTION.txt\", encoding='utf-8').read() +\n \"\\n\\n\" + codecs.open(\"NEWS.txt\", encoding='utf-8').read())\nURL = \"http://deeplearning.net/software/theano/\"\nDOWNLOAD_URL = \"\"\nLICENSE = 'BSD'\nCLASSIFIERS = [_f for _f in CLASSIFIERS.split('\\n') if _f]\nAUTHOR = \"LISA laboratory, University of Montreal\"\nAUTHOR_EMAIL = \"[email protected]\"\nPLATFORMS = [\"Windows\", \"Linux\", \"Solaris\", \"Mac OS-X\", \"Unix\"]\nMAJOR = 0\nMINOR = 10\nMICRO = 0\nSUFFIX = \"dev1\" # Should be blank except for rc's, betas, etc.\nISRELEASED = False\n\nVERSION = '%d.%d.%d%s' % (MAJOR, MINOR, MICRO, SUFFIX)\n\n\ndef find_packages(where='.', exclude=()):\n out = []\n stack = [(convert_path(where), '')]\n while stack:\n where, prefix = stack.pop(0)\n for name in os.listdir(where):\n fn = os.path.join(where, name)\n if ('.' not in name and os.path.isdir(fn) and\n os.path.isfile(os.path.join(fn, '__init__.py'))\n ):\n out.append(prefix+name)\n stack.append((fn, prefix+name+'.'))\n for pat in list(exclude) + ['ez_setup', 'distribute_setup']:\n out = [item for item in out if not fnmatchcase(item, pat)]\n return out\n\n\ndef git_version():\n \"\"\"\n Return the sha1 of local git HEAD as a string.\n \"\"\"\n # josharian: I doubt that the minimal environment stuff here is\n # still needed; it is inherited. This was originally\n # an hg_version function borrowed from NumPy's setup.py.\n # I'm leaving it in for now because I don't have enough other\n # environments to test in to be confident that it is safe to remove.\n def _minimal_ext_cmd(cmd):\n # construct minimal environment\n env = {}\n for k in ['SYSTEMROOT', 'PATH', 'PYTHONPATH']:\n v = os.environ.get(k)\n if v is not None:\n env[k] = v\n # LANGUAGE is used on win32\n env['LANGUAGE'] = 'C'\n env['LANG'] = 'C'\n env['LC_ALL'] = 'C'\n out = subprocess.Popen(\n cmd,\n stdout=subprocess.PIPE,\n env=env\n ).communicate()[0]\n return out\n try:\n out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD'])\n git_revision = out.strip().decode('ascii')\n except OSError:\n git_revision = \"unknown-git\"\n return git_revision\n\n\ndef write_text(filename, text):\n try:\n with open(filename, 'w') as a:\n a.write(text)\n except Exception as e:\n print(e)\n\n\ndef write_version_py(filename=os.path.join('theano', 'generated_version.py')):\n cnt = \"\"\"\n# THIS FILE IS GENERATED FROM THEANO SETUP.PY\nshort_version = '%(version)s'\nversion = '%(version)s'\ngit_revision = '%(git_revision)s'\nfull_version = '%(version)s.dev-%%(git_revision)s' %% {\n 'git_revision': git_revision}\nrelease = %(isrelease)s\n\nif not release:\n version = full_version\n\"\"\"\n FULL_VERSION = VERSION\n if os.path.isdir('.git'):\n GIT_REVISION = git_version()\n elif os.path.exists(filename):\n # must be a source distribution, use existing version file\n GIT_REVISION = \"RELEASE\"\n else:\n GIT_REVISION = \"unknown-git\"\n\n FULL_VERSION += '.dev-' + GIT_REVISION\n text = cnt % {'version': VERSION,\n 'full_version': FULL_VERSION,\n 'git_revision': GIT_REVISION,\n 'isrelease': str(ISRELEASED)}\n write_text(filename, text)\n\n\ndef do_setup():\n write_version_py()\n setup(name=NAME,\n version=VERSION,\n description=DESCRIPTION,\n long_description=LONG_DESCRIPTION,\n classifiers=CLASSIFIERS,\n author=AUTHOR,\n author_email=AUTHOR_EMAIL,\n url=URL,\n license=LICENSE,\n platforms=PLATFORMS,\n packages=find_packages(),\n install_requires=['numpy>=1.9.1', 'scipy>=0.14', 'six>=1.9.0'],\n # pygments is a dependency for Sphinx code highlight\n extras_require={\n 'test': ['nose>=1.3.0', 'parameterized', 'flake8<3'],\n 'doc': ['Sphinx>=0.5.1', 'pygments']\n },\n package_data={\n '': ['*.txt', '*.rst', '*.cu', '*.cuh', '*.c', '*.sh', '*.pkl',\n '*.h', '*.cpp', 'ChangeLog'],\n 'theano.misc': ['*.sh'],\n 'theano.d3viz' : ['html/*','css/*','js/*']\n },\n entry_points={\n 'console_scripts': ['theano-cache = bin.theano_cache:main',\n 'theano-nose = bin.theano_nose:main']\n },\n keywords=' '.join([\n 'theano', 'math', 'numerical', 'symbolic', 'blas',\n 'numpy', 'gpu', 'autodiff', 'differentiation'\n ]),\n )\nif __name__ == \"__main__\":\n do_setup()\n", "path": "setup.py"}], "after_files": [{"content": "#!/usr/bin/env python\n#\n# TODO:\n# * Figure out how to compile and install documentation automatically\n# * Add download_url\n\nfrom __future__ import absolute_import, print_function, division\nimport os\nimport subprocess\nimport codecs\nfrom fnmatch import fnmatchcase\nfrom distutils.util import convert_path\ntry:\n from setuptools import setup\nexcept ImportError:\n from distutils.core import setup\n\n\nCLASSIFIERS = \"\"\"\\\nDevelopment Status :: 4 - Beta\nIntended Audience :: Education\nIntended Audience :: Science/Research\nIntended Audience :: Developers\nLicense :: OSI Approved :: BSD License\nProgramming Language :: Python\nTopic :: Software Development :: Code Generators\nTopic :: Software Development :: Compilers\nTopic :: Scientific/Engineering :: Mathematics\nOperating System :: Microsoft :: Windows\nOperating System :: POSIX\nOperating System :: Unix\nOperating System :: MacOS\nProgramming Language :: Python :: 2\nProgramming Language :: Python :: 2.7\nProgramming Language :: Python :: 3\nProgramming Language :: Python :: 3.4\nProgramming Language :: Python :: 3.5\n\"\"\"\nNAME = 'Theano'\nMAINTAINER = \"LISA laboratory, University of Montreal\"\nMAINTAINER_EMAIL = \"[email protected]\"\nDESCRIPTION = ('Optimizing compiler for evaluating mathematical ' +\n 'expressions on CPUs and GPUs.')\nLONG_DESCRIPTION = (codecs.open(\"DESCRIPTION.txt\", encoding='utf-8').read() +\n \"\\n\\n\" + codecs.open(\"NEWS.txt\", encoding='utf-8').read())\nURL = \"http://deeplearning.net/software/theano/\"\nDOWNLOAD_URL = \"\"\nLICENSE = 'BSD'\nCLASSIFIERS = [_f for _f in CLASSIFIERS.split('\\n') if _f]\nAUTHOR = \"LISA laboratory, University of Montreal\"\nAUTHOR_EMAIL = \"[email protected]\"\nPLATFORMS = [\"Windows\", \"Linux\", \"Solaris\", \"Mac OS-X\", \"Unix\"]\nMAJOR = 0\nMINOR = 10\nMICRO = 0\nSUFFIX = \"dev1\" # Should be blank except for rc's, betas, etc.\nISRELEASED = False\n\nVERSION = '%d.%d.%d%s' % (MAJOR, MINOR, MICRO, SUFFIX)\n\n\ndef find_packages(where='.', exclude=()):\n out = []\n stack = [(convert_path(where), '')]\n while stack:\n where, prefix = stack.pop(0)\n for name in os.listdir(where):\n fn = os.path.join(where, name)\n if ('.' not in name and os.path.isdir(fn) and\n os.path.isfile(os.path.join(fn, '__init__.py'))\n ):\n out.append(prefix+name)\n stack.append((fn, prefix+name+'.'))\n for pat in list(exclude) + ['ez_setup', 'distribute_setup']:\n out = [item for item in out if not fnmatchcase(item, pat)]\n return out\n\n\ndef git_version():\n \"\"\"\n Return the sha1 of local git HEAD as a string.\n \"\"\"\n # josharian: I doubt that the minimal environment stuff here is\n # still needed; it is inherited. This was originally\n # an hg_version function borrowed from NumPy's setup.py.\n # I'm leaving it in for now because I don't have enough other\n # environments to test in to be confident that it is safe to remove.\n def _minimal_ext_cmd(cmd):\n # construct minimal environment\n env = {}\n for k in ['SYSTEMROOT', 'PATH', 'PYTHONPATH']:\n v = os.environ.get(k)\n if v is not None:\n env[k] = v\n # LANGUAGE is used on win32\n env['LANGUAGE'] = 'C'\n env['LANG'] = 'C'\n env['LC_ALL'] = 'C'\n out = subprocess.Popen(\n cmd,\n stdout=subprocess.PIPE,\n env=env\n ).communicate()[0]\n return out\n try:\n out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD'])\n git_revision = out.strip().decode('ascii')\n except OSError:\n git_revision = \"unknown-git\"\n return git_revision\n\n\ndef write_text(filename, text):\n try:\n with open(filename, 'w') as a:\n a.write(text)\n except Exception as e:\n print(e)\n\n\ndef write_version_py(filename=os.path.join('theano', 'generated_version.py')):\n cnt = \"\"\"\n# THIS FILE IS GENERATED FROM THEANO SETUP.PY\nshort_version = '%(version)s'\nversion = '%(version)s'\ngit_revision = '%(git_revision)s'\nfull_version = '%(version)s.dev-%%(git_revision)s' %% {\n 'git_revision': git_revision}\nrelease = %(isrelease)s\n\nif not release:\n version = full_version\n\"\"\"\n FULL_VERSION = VERSION\n if os.path.isdir('.git'):\n GIT_REVISION = git_version()\n elif os.path.exists(filename):\n # must be a source distribution, use existing version file\n GIT_REVISION = \"RELEASE\"\n else:\n GIT_REVISION = \"unknown-git\"\n\n FULL_VERSION += '.dev-' + GIT_REVISION\n text = cnt % {'version': VERSION,\n 'full_version': FULL_VERSION,\n 'git_revision': GIT_REVISION,\n 'isrelease': str(ISRELEASED)}\n write_text(filename, text)\n\n\ndef do_setup():\n write_version_py()\n setup(name=NAME,\n version=VERSION,\n description=DESCRIPTION,\n long_description=LONG_DESCRIPTION,\n classifiers=CLASSIFIERS,\n author=AUTHOR,\n author_email=AUTHOR_EMAIL,\n url=URL,\n license=LICENSE,\n platforms=PLATFORMS,\n packages=find_packages(),\n install_requires=['numpy>=1.9.1', 'scipy>=0.14', 'six>=1.9.0'],\n # pygments is a dependency for Sphinx code highlight\n extras_require={\n 'test': ['nose>=1.3.0', 'parameterized', 'flake8<3'],\n 'doc': ['Sphinx>=0.5.1', 'pygments']\n },\n package_data={\n '': ['*.txt', '*.rst', '*.cu', '*.cuh', '*.c', '*.sh', '*.pkl',\n '*.h', '*.cpp', 'ChangeLog', 'c_code/*'],\n 'theano.misc': ['*.sh'],\n 'theano.d3viz' : ['html/*','css/*','js/*']\n },\n entry_points={\n 'console_scripts': ['theano-cache = bin.theano_cache:main',\n 'theano-nose = bin.theano_nose:main']\n },\n keywords=' '.join([\n 'theano', 'math', 'numerical', 'symbolic', 'blas',\n 'numpy', 'gpu', 'autodiff', 'differentiation'\n ]),\n )\nif __name__ == \"__main__\":\n do_setup()\n", "path": "setup.py"}]}
2,493
127
gh_patches_debug_3653
rasdani/github-patches
git_diff
pypa__pip-9569
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Set encoding for tar file and use unicode path for unpacking When tarfile.TarFile decodes filenames in Python 2.7 by default it uses sys.getfilesystemencoding. On Windows this returns "mbcs", which is lossy when converting from proper utf-8 to bytes (results in '?' for out of range characters). We now pass an encoding to tarfile.open which will be used instead. Since the encoding argument is only ever used for the PAX format, and since the PAX format guarantees utf-8 encoded information, this should work in all circumstances. For filesystem APIs in Python 2, the type of the path object passed dictates the underlying Windows API that is called. For `str` it is the `*A` (for ANSI) APIs. For `unicode` it is the `*W` (for Wide character) APIs. To use the second set of APIs, which properly handles unicode filenames, we convert the byte path to utf-8. Fixes #7667. Filename encoding error in some environments with PAX sdist **Environment** * pip version: any * Python version: 2.7 * OS: Windows, non-Windows in C locale (pip Windows CI hits this) **Description** The PAX format wheel 0.34.1 sdists fail to install on Python 2.7 on Windows with a UnicodeEncodeError, or on non-Windows systems in a non-utf-8 locale: https://github.com/pypa/wheel/issues/331 **Expected behavior** Unicode filename from the PAX tarball is correctly encoded for the local filesystem. **How to Reproduce** Attempt to install a PAX formatted tarball containing a file name that cannot be encoded to the default code page (Windows) or the default locale encoding (non-Windows). In GNU tar, the affected paths are pre-mangled to something ASCII compatible, but PAX tar preserves them correctly, so the installer needs to handle them itself. **Output** See https://dev.azure.com/pypa/pip/_build/results?buildId=18040&view=logs&j=404e6841-f5ba-57d9-f2c8-8c5322057572&t=0219f6bf-240d-5b08-c877-377b12af5079&l=309 for a Windows example in the pip test suite. The wheel issue linked above has some Linux examples. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `src/pip/_internal/utils/unpacking.py` Content: ``` 1 """Utilities related archives. 2 """ 3 4 import logging 5 import os 6 import shutil 7 import stat 8 import tarfile 9 import zipfile 10 from typing import Iterable, List, Optional 11 from zipfile import ZipInfo 12 13 from pip._internal.exceptions import InstallationError 14 from pip._internal.utils.filetypes import ( 15 BZ2_EXTENSIONS, 16 TAR_EXTENSIONS, 17 XZ_EXTENSIONS, 18 ZIP_EXTENSIONS, 19 ) 20 from pip._internal.utils.misc import ensure_dir 21 22 logger = logging.getLogger(__name__) 23 24 25 SUPPORTED_EXTENSIONS = ZIP_EXTENSIONS + TAR_EXTENSIONS 26 27 try: 28 import bz2 # noqa 29 30 SUPPORTED_EXTENSIONS += BZ2_EXTENSIONS 31 except ImportError: 32 logger.debug("bz2 module is not available") 33 34 try: 35 # Only for Python 3.3+ 36 import lzma # noqa 37 38 SUPPORTED_EXTENSIONS += XZ_EXTENSIONS 39 except ImportError: 40 logger.debug("lzma module is not available") 41 42 43 def current_umask(): 44 # type: () -> int 45 """Get the current umask which involves having to set it temporarily.""" 46 mask = os.umask(0) 47 os.umask(mask) 48 return mask 49 50 51 def split_leading_dir(path): 52 # type: (str) -> List[str] 53 path = path.lstrip("/").lstrip("\\") 54 if "/" in path and ( 55 ("\\" in path and path.find("/") < path.find("\\")) or "\\" not in path 56 ): 57 return path.split("/", 1) 58 elif "\\" in path: 59 return path.split("\\", 1) 60 else: 61 return [path, ""] 62 63 64 def has_leading_dir(paths): 65 # type: (Iterable[str]) -> bool 66 """Returns true if all the paths have the same leading path name 67 (i.e., everything is in one subdirectory in an archive)""" 68 common_prefix = None 69 for path in paths: 70 prefix, rest = split_leading_dir(path) 71 if not prefix: 72 return False 73 elif common_prefix is None: 74 common_prefix = prefix 75 elif prefix != common_prefix: 76 return False 77 return True 78 79 80 def is_within_directory(directory, target): 81 # type: (str, str) -> bool 82 """ 83 Return true if the absolute path of target is within the directory 84 """ 85 abs_directory = os.path.abspath(directory) 86 abs_target = os.path.abspath(target) 87 88 prefix = os.path.commonprefix([abs_directory, abs_target]) 89 return prefix == abs_directory 90 91 92 def set_extracted_file_to_default_mode_plus_executable(path): 93 # type: (str) -> None 94 """ 95 Make file present at path have execute for user/group/world 96 (chmod +x) is no-op on windows per python docs 97 """ 98 os.chmod(path, (0o777 & ~current_umask() | 0o111)) 99 100 101 def zip_item_is_executable(info): 102 # type: (ZipInfo) -> bool 103 mode = info.external_attr >> 16 104 # if mode and regular file and any execute permissions for 105 # user/group/world? 106 return bool(mode and stat.S_ISREG(mode) and mode & 0o111) 107 108 109 def unzip_file(filename, location, flatten=True): 110 # type: (str, str, bool) -> None 111 """ 112 Unzip the file (with path `filename`) to the destination `location`. All 113 files are written based on system defaults and umask (i.e. permissions are 114 not preserved), except that regular file members with any execute 115 permissions (user, group, or world) have "chmod +x" applied after being 116 written. Note that for windows, any execute changes using os.chmod are 117 no-ops per the python docs. 118 """ 119 ensure_dir(location) 120 zipfp = open(filename, "rb") 121 try: 122 zip = zipfile.ZipFile(zipfp, allowZip64=True) 123 leading = has_leading_dir(zip.namelist()) and flatten 124 for info in zip.infolist(): 125 name = info.filename 126 fn = name 127 if leading: 128 fn = split_leading_dir(name)[1] 129 fn = os.path.join(location, fn) 130 dir = os.path.dirname(fn) 131 if not is_within_directory(location, fn): 132 message = ( 133 "The zip file ({}) has a file ({}) trying to install " 134 "outside target directory ({})" 135 ) 136 raise InstallationError(message.format(filename, fn, location)) 137 if fn.endswith("/") or fn.endswith("\\"): 138 # A directory 139 ensure_dir(fn) 140 else: 141 ensure_dir(dir) 142 # Don't use read() to avoid allocating an arbitrarily large 143 # chunk of memory for the file's content 144 fp = zip.open(name) 145 try: 146 with open(fn, "wb") as destfp: 147 shutil.copyfileobj(fp, destfp) 148 finally: 149 fp.close() 150 if zip_item_is_executable(info): 151 set_extracted_file_to_default_mode_plus_executable(fn) 152 finally: 153 zipfp.close() 154 155 156 def untar_file(filename, location): 157 # type: (str, str) -> None 158 """ 159 Untar the file (with path `filename`) to the destination `location`. 160 All files are written based on system defaults and umask (i.e. permissions 161 are not preserved), except that regular file members with any execute 162 permissions (user, group, or world) have "chmod +x" applied after being 163 written. Note that for windows, any execute changes using os.chmod are 164 no-ops per the python docs. 165 """ 166 ensure_dir(location) 167 if filename.lower().endswith(".gz") or filename.lower().endswith(".tgz"): 168 mode = "r:gz" 169 elif filename.lower().endswith(BZ2_EXTENSIONS): 170 mode = "r:bz2" 171 elif filename.lower().endswith(XZ_EXTENSIONS): 172 mode = "r:xz" 173 elif filename.lower().endswith(".tar"): 174 mode = "r" 175 else: 176 logger.warning( 177 "Cannot determine compression type for file %s", 178 filename, 179 ) 180 mode = "r:*" 181 tar = tarfile.open(filename, mode) 182 try: 183 leading = has_leading_dir([member.name for member in tar.getmembers()]) 184 for member in tar.getmembers(): 185 fn = member.name 186 if leading: 187 fn = split_leading_dir(fn)[1] 188 path = os.path.join(location, fn) 189 if not is_within_directory(location, path): 190 message = ( 191 "The tar file ({}) has a file ({}) trying to install " 192 "outside target directory ({})" 193 ) 194 raise InstallationError(message.format(filename, path, location)) 195 if member.isdir(): 196 ensure_dir(path) 197 elif member.issym(): 198 try: 199 # https://github.com/python/typeshed/issues/2673 200 tar._extract_member(member, path) # type: ignore 201 except Exception as exc: 202 # Some corrupt tar files seem to produce this 203 # (specifically bad symlinks) 204 logger.warning( 205 "In the tar file %s the member %s is invalid: %s", 206 filename, 207 member.name, 208 exc, 209 ) 210 continue 211 else: 212 try: 213 fp = tar.extractfile(member) 214 except (KeyError, AttributeError) as exc: 215 # Some corrupt tar files seem to produce this 216 # (specifically bad symlinks) 217 logger.warning( 218 "In the tar file %s the member %s is invalid: %s", 219 filename, 220 member.name, 221 exc, 222 ) 223 continue 224 ensure_dir(os.path.dirname(path)) 225 assert fp is not None 226 with open(path, "wb") as destfp: 227 shutil.copyfileobj(fp, destfp) 228 fp.close() 229 # Update the timestamp (useful for cython compiled files) 230 tar.utime(member, path) 231 # member have any execute permissions for user/group/world? 232 if member.mode & 0o111: 233 set_extracted_file_to_default_mode_plus_executable(path) 234 finally: 235 tar.close() 236 237 238 def unpack_file( 239 filename, # type: str 240 location, # type: str 241 content_type=None, # type: Optional[str] 242 ): 243 # type: (...) -> None 244 filename = os.path.realpath(filename) 245 if ( 246 content_type == "application/zip" 247 or filename.lower().endswith(ZIP_EXTENSIONS) 248 or zipfile.is_zipfile(filename) 249 ): 250 unzip_file(filename, location, flatten=not filename.endswith(".whl")) 251 elif ( 252 content_type == "application/x-gzip" 253 or tarfile.is_tarfile(filename) 254 or filename.lower().endswith(TAR_EXTENSIONS + BZ2_EXTENSIONS + XZ_EXTENSIONS) 255 ): 256 untar_file(filename, location) 257 else: 258 # FIXME: handle? 259 # FIXME: magic signatures? 260 logger.critical( 261 "Cannot unpack file %s (downloaded from %s, content-type: %s); " 262 "cannot detect archive format", 263 filename, 264 location, 265 content_type, 266 ) 267 raise InstallationError(f"Cannot determine archive format of {location}") 268 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/src/pip/_internal/utils/unpacking.py b/src/pip/_internal/utils/unpacking.py --- a/src/pip/_internal/utils/unpacking.py +++ b/src/pip/_internal/utils/unpacking.py @@ -178,7 +178,7 @@ filename, ) mode = "r:*" - tar = tarfile.open(filename, mode) + tar = tarfile.open(filename, mode, encoding="utf-8") try: leading = has_leading_dir([member.name for member in tar.getmembers()]) for member in tar.getmembers():
{"golden_diff": "diff --git a/src/pip/_internal/utils/unpacking.py b/src/pip/_internal/utils/unpacking.py\n--- a/src/pip/_internal/utils/unpacking.py\n+++ b/src/pip/_internal/utils/unpacking.py\n@@ -178,7 +178,7 @@\n filename,\n )\n mode = \"r:*\"\n- tar = tarfile.open(filename, mode)\n+ tar = tarfile.open(filename, mode, encoding=\"utf-8\")\n try:\n leading = has_leading_dir([member.name for member in tar.getmembers()])\n for member in tar.getmembers():\n", "issue": "Set encoding for tar file and use unicode path for unpacking\nWhen tarfile.TarFile decodes filenames in Python 2.7 by default it uses\r\nsys.getfilesystemencoding. On Windows this returns \"mbcs\", which is\r\nlossy when converting from proper utf-8 to bytes (results in '?' for out\r\nof range characters).\r\n\r\nWe now pass an encoding to tarfile.open which will be used instead.\r\nSince the encoding argument is only ever used for the PAX format, and\r\nsince the PAX format guarantees utf-8 encoded information, this should\r\nwork in all circumstances.\r\n\r\nFor filesystem APIs in Python 2, the type of the path object passed\r\ndictates the underlying Windows API that is called. For `str` it is the\r\n`*A` (for ANSI) APIs. For `unicode` it is the `*W` (for Wide character)\r\nAPIs. To use the second set of APIs, which properly handles unicode\r\nfilenames, we convert the byte path to utf-8.\r\n\r\nFixes #7667.\nFilename encoding error in some environments with PAX sdist\n**Environment**\r\n\r\n* pip version: any\r\n* Python version: 2.7\r\n* OS: Windows, non-Windows in C locale\r\n\r\n(pip Windows CI hits this)\r\n\r\n**Description**\r\nThe PAX format wheel 0.34.1 sdists fail to install on Python 2.7 on Windows with a UnicodeEncodeError, or on non-Windows systems in a non-utf-8 locale: https://github.com/pypa/wheel/issues/331\r\n\r\n**Expected behavior**\r\nUnicode filename from the PAX tarball is correctly encoded for the local filesystem.\r\n\r\n**How to Reproduce**\r\nAttempt to install a PAX formatted tarball containing a file name that cannot be encoded to the default code page (Windows) or the default locale encoding (non-Windows).\r\n\r\nIn GNU tar, the affected paths are pre-mangled to something ASCII compatible, but PAX tar preserves them correctly, so the installer needs to handle them itself.\r\n\r\n**Output**\r\n\r\nSee \r\nhttps://dev.azure.com/pypa/pip/_build/results?buildId=18040&view=logs&j=404e6841-f5ba-57d9-f2c8-8c5322057572&t=0219f6bf-240d-5b08-c877-377b12af5079&l=309 for a Windows example in the pip test suite.\r\n\r\nThe wheel issue linked above has some Linux examples.\n", "before_files": [{"content": "\"\"\"Utilities related archives.\n\"\"\"\n\nimport logging\nimport os\nimport shutil\nimport stat\nimport tarfile\nimport zipfile\nfrom typing import Iterable, List, Optional\nfrom zipfile import ZipInfo\n\nfrom pip._internal.exceptions import InstallationError\nfrom pip._internal.utils.filetypes import (\n BZ2_EXTENSIONS,\n TAR_EXTENSIONS,\n XZ_EXTENSIONS,\n ZIP_EXTENSIONS,\n)\nfrom pip._internal.utils.misc import ensure_dir\n\nlogger = logging.getLogger(__name__)\n\n\nSUPPORTED_EXTENSIONS = ZIP_EXTENSIONS + TAR_EXTENSIONS\n\ntry:\n import bz2 # noqa\n\n SUPPORTED_EXTENSIONS += BZ2_EXTENSIONS\nexcept ImportError:\n logger.debug(\"bz2 module is not available\")\n\ntry:\n # Only for Python 3.3+\n import lzma # noqa\n\n SUPPORTED_EXTENSIONS += XZ_EXTENSIONS\nexcept ImportError:\n logger.debug(\"lzma module is not available\")\n\n\ndef current_umask():\n # type: () -> int\n \"\"\"Get the current umask which involves having to set it temporarily.\"\"\"\n mask = os.umask(0)\n os.umask(mask)\n return mask\n\n\ndef split_leading_dir(path):\n # type: (str) -> List[str]\n path = path.lstrip(\"/\").lstrip(\"\\\\\")\n if \"/\" in path and (\n (\"\\\\\" in path and path.find(\"/\") < path.find(\"\\\\\")) or \"\\\\\" not in path\n ):\n return path.split(\"/\", 1)\n elif \"\\\\\" in path:\n return path.split(\"\\\\\", 1)\n else:\n return [path, \"\"]\n\n\ndef has_leading_dir(paths):\n # type: (Iterable[str]) -> bool\n \"\"\"Returns true if all the paths have the same leading path name\n (i.e., everything is in one subdirectory in an archive)\"\"\"\n common_prefix = None\n for path in paths:\n prefix, rest = split_leading_dir(path)\n if not prefix:\n return False\n elif common_prefix is None:\n common_prefix = prefix\n elif prefix != common_prefix:\n return False\n return True\n\n\ndef is_within_directory(directory, target):\n # type: (str, str) -> bool\n \"\"\"\n Return true if the absolute path of target is within the directory\n \"\"\"\n abs_directory = os.path.abspath(directory)\n abs_target = os.path.abspath(target)\n\n prefix = os.path.commonprefix([abs_directory, abs_target])\n return prefix == abs_directory\n\n\ndef set_extracted_file_to_default_mode_plus_executable(path):\n # type: (str) -> None\n \"\"\"\n Make file present at path have execute for user/group/world\n (chmod +x) is no-op on windows per python docs\n \"\"\"\n os.chmod(path, (0o777 & ~current_umask() | 0o111))\n\n\ndef zip_item_is_executable(info):\n # type: (ZipInfo) -> bool\n mode = info.external_attr >> 16\n # if mode and regular file and any execute permissions for\n # user/group/world?\n return bool(mode and stat.S_ISREG(mode) and mode & 0o111)\n\n\ndef unzip_file(filename, location, flatten=True):\n # type: (str, str, bool) -> None\n \"\"\"\n Unzip the file (with path `filename`) to the destination `location`. All\n files are written based on system defaults and umask (i.e. permissions are\n not preserved), except that regular file members with any execute\n permissions (user, group, or world) have \"chmod +x\" applied after being\n written. Note that for windows, any execute changes using os.chmod are\n no-ops per the python docs.\n \"\"\"\n ensure_dir(location)\n zipfp = open(filename, \"rb\")\n try:\n zip = zipfile.ZipFile(zipfp, allowZip64=True)\n leading = has_leading_dir(zip.namelist()) and flatten\n for info in zip.infolist():\n name = info.filename\n fn = name\n if leading:\n fn = split_leading_dir(name)[1]\n fn = os.path.join(location, fn)\n dir = os.path.dirname(fn)\n if not is_within_directory(location, fn):\n message = (\n \"The zip file ({}) has a file ({}) trying to install \"\n \"outside target directory ({})\"\n )\n raise InstallationError(message.format(filename, fn, location))\n if fn.endswith(\"/\") or fn.endswith(\"\\\\\"):\n # A directory\n ensure_dir(fn)\n else:\n ensure_dir(dir)\n # Don't use read() to avoid allocating an arbitrarily large\n # chunk of memory for the file's content\n fp = zip.open(name)\n try:\n with open(fn, \"wb\") as destfp:\n shutil.copyfileobj(fp, destfp)\n finally:\n fp.close()\n if zip_item_is_executable(info):\n set_extracted_file_to_default_mode_plus_executable(fn)\n finally:\n zipfp.close()\n\n\ndef untar_file(filename, location):\n # type: (str, str) -> None\n \"\"\"\n Untar the file (with path `filename`) to the destination `location`.\n All files are written based on system defaults and umask (i.e. permissions\n are not preserved), except that regular file members with any execute\n permissions (user, group, or world) have \"chmod +x\" applied after being\n written. Note that for windows, any execute changes using os.chmod are\n no-ops per the python docs.\n \"\"\"\n ensure_dir(location)\n if filename.lower().endswith(\".gz\") or filename.lower().endswith(\".tgz\"):\n mode = \"r:gz\"\n elif filename.lower().endswith(BZ2_EXTENSIONS):\n mode = \"r:bz2\"\n elif filename.lower().endswith(XZ_EXTENSIONS):\n mode = \"r:xz\"\n elif filename.lower().endswith(\".tar\"):\n mode = \"r\"\n else:\n logger.warning(\n \"Cannot determine compression type for file %s\",\n filename,\n )\n mode = \"r:*\"\n tar = tarfile.open(filename, mode)\n try:\n leading = has_leading_dir([member.name for member in tar.getmembers()])\n for member in tar.getmembers():\n fn = member.name\n if leading:\n fn = split_leading_dir(fn)[1]\n path = os.path.join(location, fn)\n if not is_within_directory(location, path):\n message = (\n \"The tar file ({}) has a file ({}) trying to install \"\n \"outside target directory ({})\"\n )\n raise InstallationError(message.format(filename, path, location))\n if member.isdir():\n ensure_dir(path)\n elif member.issym():\n try:\n # https://github.com/python/typeshed/issues/2673\n tar._extract_member(member, path) # type: ignore\n except Exception as exc:\n # Some corrupt tar files seem to produce this\n # (specifically bad symlinks)\n logger.warning(\n \"In the tar file %s the member %s is invalid: %s\",\n filename,\n member.name,\n exc,\n )\n continue\n else:\n try:\n fp = tar.extractfile(member)\n except (KeyError, AttributeError) as exc:\n # Some corrupt tar files seem to produce this\n # (specifically bad symlinks)\n logger.warning(\n \"In the tar file %s the member %s is invalid: %s\",\n filename,\n member.name,\n exc,\n )\n continue\n ensure_dir(os.path.dirname(path))\n assert fp is not None\n with open(path, \"wb\") as destfp:\n shutil.copyfileobj(fp, destfp)\n fp.close()\n # Update the timestamp (useful for cython compiled files)\n tar.utime(member, path)\n # member have any execute permissions for user/group/world?\n if member.mode & 0o111:\n set_extracted_file_to_default_mode_plus_executable(path)\n finally:\n tar.close()\n\n\ndef unpack_file(\n filename, # type: str\n location, # type: str\n content_type=None, # type: Optional[str]\n):\n # type: (...) -> None\n filename = os.path.realpath(filename)\n if (\n content_type == \"application/zip\"\n or filename.lower().endswith(ZIP_EXTENSIONS)\n or zipfile.is_zipfile(filename)\n ):\n unzip_file(filename, location, flatten=not filename.endswith(\".whl\"))\n elif (\n content_type == \"application/x-gzip\"\n or tarfile.is_tarfile(filename)\n or filename.lower().endswith(TAR_EXTENSIONS + BZ2_EXTENSIONS + XZ_EXTENSIONS)\n ):\n untar_file(filename, location)\n else:\n # FIXME: handle?\n # FIXME: magic signatures?\n logger.critical(\n \"Cannot unpack file %s (downloaded from %s, content-type: %s); \"\n \"cannot detect archive format\",\n filename,\n location,\n content_type,\n )\n raise InstallationError(f\"Cannot determine archive format of {location}\")\n", "path": "src/pip/_internal/utils/unpacking.py"}], "after_files": [{"content": "\"\"\"Utilities related archives.\n\"\"\"\n\nimport logging\nimport os\nimport shutil\nimport stat\nimport tarfile\nimport zipfile\nfrom typing import Iterable, List, Optional\nfrom zipfile import ZipInfo\n\nfrom pip._internal.exceptions import InstallationError\nfrom pip._internal.utils.filetypes import (\n BZ2_EXTENSIONS,\n TAR_EXTENSIONS,\n XZ_EXTENSIONS,\n ZIP_EXTENSIONS,\n)\nfrom pip._internal.utils.misc import ensure_dir\n\nlogger = logging.getLogger(__name__)\n\n\nSUPPORTED_EXTENSIONS = ZIP_EXTENSIONS + TAR_EXTENSIONS\n\ntry:\n import bz2 # noqa\n\n SUPPORTED_EXTENSIONS += BZ2_EXTENSIONS\nexcept ImportError:\n logger.debug(\"bz2 module is not available\")\n\ntry:\n # Only for Python 3.3+\n import lzma # noqa\n\n SUPPORTED_EXTENSIONS += XZ_EXTENSIONS\nexcept ImportError:\n logger.debug(\"lzma module is not available\")\n\n\ndef current_umask():\n # type: () -> int\n \"\"\"Get the current umask which involves having to set it temporarily.\"\"\"\n mask = os.umask(0)\n os.umask(mask)\n return mask\n\n\ndef split_leading_dir(path):\n # type: (str) -> List[str]\n path = path.lstrip(\"/\").lstrip(\"\\\\\")\n if \"/\" in path and (\n (\"\\\\\" in path and path.find(\"/\") < path.find(\"\\\\\")) or \"\\\\\" not in path\n ):\n return path.split(\"/\", 1)\n elif \"\\\\\" in path:\n return path.split(\"\\\\\", 1)\n else:\n return [path, \"\"]\n\n\ndef has_leading_dir(paths):\n # type: (Iterable[str]) -> bool\n \"\"\"Returns true if all the paths have the same leading path name\n (i.e., everything is in one subdirectory in an archive)\"\"\"\n common_prefix = None\n for path in paths:\n prefix, rest = split_leading_dir(path)\n if not prefix:\n return False\n elif common_prefix is None:\n common_prefix = prefix\n elif prefix != common_prefix:\n return False\n return True\n\n\ndef is_within_directory(directory, target):\n # type: (str, str) -> bool\n \"\"\"\n Return true if the absolute path of target is within the directory\n \"\"\"\n abs_directory = os.path.abspath(directory)\n abs_target = os.path.abspath(target)\n\n prefix = os.path.commonprefix([abs_directory, abs_target])\n return prefix == abs_directory\n\n\ndef set_extracted_file_to_default_mode_plus_executable(path):\n # type: (str) -> None\n \"\"\"\n Make file present at path have execute for user/group/world\n (chmod +x) is no-op on windows per python docs\n \"\"\"\n os.chmod(path, (0o777 & ~current_umask() | 0o111))\n\n\ndef zip_item_is_executable(info):\n # type: (ZipInfo) -> bool\n mode = info.external_attr >> 16\n # if mode and regular file and any execute permissions for\n # user/group/world?\n return bool(mode and stat.S_ISREG(mode) and mode & 0o111)\n\n\ndef unzip_file(filename, location, flatten=True):\n # type: (str, str, bool) -> None\n \"\"\"\n Unzip the file (with path `filename`) to the destination `location`. All\n files are written based on system defaults and umask (i.e. permissions are\n not preserved), except that regular file members with any execute\n permissions (user, group, or world) have \"chmod +x\" applied after being\n written. Note that for windows, any execute changes using os.chmod are\n no-ops per the python docs.\n \"\"\"\n ensure_dir(location)\n zipfp = open(filename, \"rb\")\n try:\n zip = zipfile.ZipFile(zipfp, allowZip64=True)\n leading = has_leading_dir(zip.namelist()) and flatten\n for info in zip.infolist():\n name = info.filename\n fn = name\n if leading:\n fn = split_leading_dir(name)[1]\n fn = os.path.join(location, fn)\n dir = os.path.dirname(fn)\n if not is_within_directory(location, fn):\n message = (\n \"The zip file ({}) has a file ({}) trying to install \"\n \"outside target directory ({})\"\n )\n raise InstallationError(message.format(filename, fn, location))\n if fn.endswith(\"/\") or fn.endswith(\"\\\\\"):\n # A directory\n ensure_dir(fn)\n else:\n ensure_dir(dir)\n # Don't use read() to avoid allocating an arbitrarily large\n # chunk of memory for the file's content\n fp = zip.open(name)\n try:\n with open(fn, \"wb\") as destfp:\n shutil.copyfileobj(fp, destfp)\n finally:\n fp.close()\n if zip_item_is_executable(info):\n set_extracted_file_to_default_mode_plus_executable(fn)\n finally:\n zipfp.close()\n\n\ndef untar_file(filename, location):\n # type: (str, str) -> None\n \"\"\"\n Untar the file (with path `filename`) to the destination `location`.\n All files are written based on system defaults and umask (i.e. permissions\n are not preserved), except that regular file members with any execute\n permissions (user, group, or world) have \"chmod +x\" applied after being\n written. Note that for windows, any execute changes using os.chmod are\n no-ops per the python docs.\n \"\"\"\n ensure_dir(location)\n if filename.lower().endswith(\".gz\") or filename.lower().endswith(\".tgz\"):\n mode = \"r:gz\"\n elif filename.lower().endswith(BZ2_EXTENSIONS):\n mode = \"r:bz2\"\n elif filename.lower().endswith(XZ_EXTENSIONS):\n mode = \"r:xz\"\n elif filename.lower().endswith(\".tar\"):\n mode = \"r\"\n else:\n logger.warning(\n \"Cannot determine compression type for file %s\",\n filename,\n )\n mode = \"r:*\"\n tar = tarfile.open(filename, mode, encoding=\"utf-8\")\n try:\n leading = has_leading_dir([member.name for member in tar.getmembers()])\n for member in tar.getmembers():\n fn = member.name\n if leading:\n fn = split_leading_dir(fn)[1]\n path = os.path.join(location, fn)\n if not is_within_directory(location, path):\n message = (\n \"The tar file ({}) has a file ({}) trying to install \"\n \"outside target directory ({})\"\n )\n raise InstallationError(message.format(filename, path, location))\n if member.isdir():\n ensure_dir(path)\n elif member.issym():\n try:\n # https://github.com/python/typeshed/issues/2673\n tar._extract_member(member, path) # type: ignore\n except Exception as exc:\n # Some corrupt tar files seem to produce this\n # (specifically bad symlinks)\n logger.warning(\n \"In the tar file %s the member %s is invalid: %s\",\n filename,\n member.name,\n exc,\n )\n continue\n else:\n try:\n fp = tar.extractfile(member)\n except (KeyError, AttributeError) as exc:\n # Some corrupt tar files seem to produce this\n # (specifically bad symlinks)\n logger.warning(\n \"In the tar file %s the member %s is invalid: %s\",\n filename,\n member.name,\n exc,\n )\n continue\n ensure_dir(os.path.dirname(path))\n assert fp is not None\n with open(path, \"wb\") as destfp:\n shutil.copyfileobj(fp, destfp)\n fp.close()\n # Update the timestamp (useful for cython compiled files)\n tar.utime(member, path)\n # member have any execute permissions for user/group/world?\n if member.mode & 0o111:\n set_extracted_file_to_default_mode_plus_executable(path)\n finally:\n tar.close()\n\n\ndef unpack_file(\n filename, # type: str\n location, # type: str\n content_type=None, # type: Optional[str]\n):\n # type: (...) -> None\n filename = os.path.realpath(filename)\n if (\n content_type == \"application/zip\"\n or filename.lower().endswith(ZIP_EXTENSIONS)\n or zipfile.is_zipfile(filename)\n ):\n unzip_file(filename, location, flatten=not filename.endswith(\".whl\"))\n elif (\n content_type == \"application/x-gzip\"\n or tarfile.is_tarfile(filename)\n or filename.lower().endswith(TAR_EXTENSIONS + BZ2_EXTENSIONS + XZ_EXTENSIONS)\n ):\n untar_file(filename, location)\n else:\n # FIXME: handle?\n # FIXME: magic signatures?\n logger.critical(\n \"Cannot unpack file %s (downloaded from %s, content-type: %s); \"\n \"cannot detect archive format\",\n filename,\n location,\n content_type,\n )\n raise InstallationError(f\"Cannot determine archive format of {location}\")\n", "path": "src/pip/_internal/utils/unpacking.py"}]}
3,493
130
gh_patches_debug_13
rasdani/github-patches
git_diff
OCHA-DAP__hdx-ckan-1779
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Ebola Page>Map: disable scroll wheel zoom CJ - The specific property is here: https://github.com/OCHA-DAP/hdx-design/blob/gh-pages/js/country.js line 111: map.scrollWheelZoom.disable(); --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `ckanext-hdx_theme/ckanext/hdx_theme/version.py` Content: ``` 1 hdx_version = 'v0.5.1' 2 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/ckanext-hdx_theme/ckanext/hdx_theme/version.py b/ckanext-hdx_theme/ckanext/hdx_theme/version.py --- a/ckanext-hdx_theme/ckanext/hdx_theme/version.py +++ b/ckanext-hdx_theme/ckanext/hdx_theme/version.py @@ -1 +1 @@ -hdx_version = 'v0.5.1' +hdx_version = 'v0.5.2'
{"golden_diff": "diff --git a/ckanext-hdx_theme/ckanext/hdx_theme/version.py b/ckanext-hdx_theme/ckanext/hdx_theme/version.py\n--- a/ckanext-hdx_theme/ckanext/hdx_theme/version.py\n+++ b/ckanext-hdx_theme/ckanext/hdx_theme/version.py\n@@ -1 +1 @@\n-hdx_version = 'v0.5.1'\n+hdx_version = 'v0.5.2'\n", "issue": "Ebola Page>Map: disable scroll wheel zoom\nCJ - The specific property is here: https://github.com/OCHA-DAP/hdx-design/blob/gh-pages/js/country.js\n\nline 111: map.scrollWheelZoom.disable();\n\n", "before_files": [{"content": "hdx_version = 'v0.5.1'\n", "path": "ckanext-hdx_theme/ckanext/hdx_theme/version.py"}], "after_files": [{"content": "hdx_version = 'v0.5.2'\n", "path": "ckanext-hdx_theme/ckanext/hdx_theme/version.py"}]}
335
106
gh_patches_debug_32295
rasdani/github-patches
git_diff
deepset-ai__haystack-6301
We are currently solving the following issue within our repository. Here is the issue text: --- BEGIN ISSUE --- Load additional fields from SQUAD-format file to meta field for labels **Is your feature request related to a problem? Please describe.** Currently `eval_data_from_json` loads additional fields for Documents as meta field but it doesn't do it for Labels. **Describe the solution you'd like** `eval_data_from_json` loads additional fields to `Label.meta` dict analogically to how it's done for Documents. **Describe alternatives you've considered** Currently I'd would have to rewrite whole loading data from json code to achieve this. --- END ISSUE --- Below are some code segments, each from a relevant file. One or more of these files may contain bugs. --- BEGIN FILES --- Path: `haystack/document_stores/utils.py` Content: ``` 1 import typing 2 from typing import Dict, List, Optional, Tuple, Union, Generator 3 4 import json 5 import logging 6 from datetime import datetime 7 8 from haystack.schema import Document, Label, Answer, Span 9 from haystack.nodes.preprocessor import PreProcessor 10 11 if typing.TYPE_CHECKING: 12 # This results in a circular import if we don't use typing.TYPE_CHECKING 13 from haystack.document_stores.base import BaseDocumentStore 14 15 16 logger = logging.getLogger(__name__) 17 18 19 def eval_data_from_json( 20 filename: str, 21 max_docs: Optional[Union[int, bool]] = None, 22 preprocessor: Optional[PreProcessor] = None, 23 open_domain: bool = False, 24 ) -> Tuple[List[Document], List[Label]]: 25 """ 26 Read Documents + Labels from a SQuAD-style file. 27 Document and Labels can then be indexed to the DocumentStore and be used for evaluation. 28 29 :param filename: Path to file in SQuAD format 30 :param max_docs: This sets the number of documents that will be loaded. By default, this is set to None, thus reading in all available eval documents. 31 :param open_domain: Set this to True if your file is an open domain dataset where two different answers to the same question might be found in different contexts. 32 """ 33 docs: List[Document] = [] 34 labels = [] 35 problematic_ids = [] 36 37 with open(filename, "r", encoding="utf-8") as file: 38 data = json.load(file) 39 if "title" not in data["data"][0]: 40 logger.warning("No title information found for documents in QA file: %s", filename) 41 42 for squad_document in data["data"]: 43 if max_docs and len(docs) > max_docs: 44 break 45 # Extracting paragraphs and their labels from a SQuAD document dict 46 cur_docs, cur_labels, cur_problematic_ids = _extract_docs_and_labels_from_dict( 47 squad_document, preprocessor, open_domain 48 ) 49 docs.extend(cur_docs) 50 labels.extend(cur_labels) 51 problematic_ids.extend(cur_problematic_ids) 52 if len(problematic_ids) > 0: 53 logger.warning( 54 "Could not convert an answer for %s questions.\nThere were conversion errors for question ids: %s", 55 len(problematic_ids), 56 problematic_ids, 57 ) 58 return docs, labels 59 60 61 def eval_data_from_jsonl( 62 filename: str, 63 batch_size: Optional[int] = None, 64 max_docs: Optional[Union[int, bool]] = None, 65 preprocessor: Optional[PreProcessor] = None, 66 open_domain: bool = False, 67 ) -> Generator[Tuple[List[Document], List[Label]], None, None]: 68 """ 69 Read Documents + Labels from a SQuAD-style file in jsonl format, i.e. one document per line. 70 Document and Labels can then be indexed to the DocumentStore and be used for evaluation. 71 72 This is a generator which will yield one tuple per iteration containing a list 73 of batch_size documents and a list with the documents' labels. 74 If batch_size is set to None, this method will yield all documents and labels. 75 76 :param filename: Path to file in SQuAD format 77 :param max_docs: This sets the number of documents that will be loaded. By default, this is set to None, thus reading in all available eval documents. 78 :param open_domain: Set this to True if your file is an open domain dataset where two different answers to the same question might be found in different contexts. 79 """ 80 docs: List[Document] = [] 81 labels = [] 82 problematic_ids = [] 83 84 with open(filename, "r", encoding="utf-8") as file: 85 for document in file: 86 if max_docs and len(docs) > max_docs: 87 break 88 # Extracting paragraphs and their labels from a SQuAD document dict 89 squad_document = json.loads(document) 90 cur_docs, cur_labels, cur_problematic_ids = _extract_docs_and_labels_from_dict( 91 squad_document, preprocessor, open_domain 92 ) 93 docs.extend(cur_docs) 94 labels.extend(cur_labels) 95 problematic_ids.extend(cur_problematic_ids) 96 97 if batch_size is not None and len(docs) >= batch_size: 98 if len(problematic_ids) > 0: 99 logger.warning( 100 "Could not convert an answer for %s questions.\n" 101 "There were conversion errors for question ids: %s", 102 len(problematic_ids), 103 problematic_ids, 104 ) 105 yield docs, labels 106 docs = [] 107 labels = [] 108 problematic_ids = [] 109 110 yield docs, labels 111 112 113 def squad_json_to_jsonl(squad_file: str, output_file: str): 114 """ 115 Converts a SQuAD-json-file into jsonl format with one document per line. 116 117 :param squad_file: SQuAD-file in json format. 118 :param output_file: Name of output file (SQuAD in jsonl format) 119 """ 120 with open(squad_file, encoding="utf-8") as json_file, open(output_file, "w", encoding="utf-8") as jsonl_file: 121 squad_json = json.load(json_file) 122 123 for doc in squad_json["data"]: 124 json.dump(doc, jsonl_file) 125 jsonl_file.write("\n") 126 127 128 def _extract_docs_and_labels_from_dict( 129 document_dict: Dict, preprocessor: Optional[PreProcessor] = None, open_domain: bool = False 130 ): 131 """ 132 Set open_domain to True if you are trying to load open_domain labels (i.e. labels without doc id or start idx) 133 """ 134 docs = [] 135 labels = [] 136 problematic_ids = [] 137 138 # get all extra fields from document level (e.g. title) 139 meta_doc = {k: v for k, v in document_dict.items() if k not in ("paragraphs", "title")} 140 for paragraph in document_dict["paragraphs"]: 141 ## Create Metadata 142 cur_meta = {"name": document_dict.get("title", None)} 143 # all other fields from paragraph level 144 meta_paragraph = {k: v for k, v in paragraph.items() if k not in ("qas", "context")} 145 cur_meta.update(meta_paragraph) 146 # meta from parent document 147 cur_meta.update(meta_doc) 148 149 ## Create Document 150 cur_full_doc = Document(content=paragraph["context"], meta=cur_meta) 151 if preprocessor is not None: 152 splits_docs = preprocessor.process(documents=[cur_full_doc]) 153 # we need to pull in _split_id into the document id for unique reference in labels 154 splits: List[Document] = [] 155 offset = 0 156 for d in splits_docs: 157 id = f"{d.id}-{d.meta['_split_id']}" 158 d.meta["_split_offset"] = offset 159 offset += len(d.content) 160 # offset correction based on splitting method 161 if preprocessor.split_by == "word": 162 offset += 1 163 elif preprocessor.split_by == "passage": 164 offset += 2 165 else: 166 raise NotImplementedError 167 mydoc = Document(content=d.content, id=id, meta=d.meta) 168 splits.append(mydoc) 169 else: 170 splits = [cur_full_doc] 171 docs.extend(splits) 172 173 ## Assign Labels to corresponding documents 174 for qa in paragraph["qas"]: 175 if not qa.get("is_impossible", False): 176 for answer in qa["answers"]: 177 ans = answer["text"] 178 # TODO The following block of code means that answer_start is never calculated 179 # and cur_id is always None for open_domain 180 # This can be rewritten so that this function could try to calculate offsets 181 # and populate id in open_domain mode 182 if open_domain: 183 # TODO check with Branden why we want to treat open_domain here differently. 184 # Shouldn't this be something configured at eval time only? 185 cur_ans_start = answer.get("answer_start", 0) 186 # cur_id = '0' 187 label = Label( 188 query=qa["question"], 189 answer=Answer(answer=ans, type="extractive", score=0.0), 190 document=None, # type: ignore 191 is_correct_answer=True, 192 is_correct_document=True, 193 origin="gold-label", 194 ) 195 labels.append(label) 196 else: 197 ans_position = cur_full_doc.content[ 198 answer["answer_start"] : answer["answer_start"] + len(str(ans)) 199 ] 200 if ans != ans_position: 201 # do not use answer 202 problematic_ids.append(qa.get("id", "missing")) 203 break 204 # find corresponding document or split 205 if len(splits) == 1: 206 # cur_id = splits[0].id 207 cur_ans_start = answer["answer_start"] 208 cur_doc = splits[0] 209 else: 210 for s in splits: 211 # If answer start offset is contained in passage we assign the label to that passage 212 if (answer["answer_start"] >= s.meta["_split_offset"]) and ( 213 answer["answer_start"] < (s.meta["_split_offset"] + len(s.content)) 214 ): 215 cur_doc = s 216 cur_ans_start = answer["answer_start"] - s.meta["_split_offset"] 217 # If a document is splitting an answer we add the whole answer text to the document 218 if s.content[cur_ans_start : cur_ans_start + len(ans)] != ans: 219 s.content = s.content[:cur_ans_start] + ans 220 break 221 cur_answer = Answer( 222 answer=ans, 223 type="extractive", 224 score=0.0, 225 context=cur_doc.content, 226 offsets_in_document=[Span(start=cur_ans_start, end=cur_ans_start + len(ans))], 227 offsets_in_context=[Span(start=cur_ans_start, end=cur_ans_start + len(ans))], 228 document_ids=[cur_doc.id], 229 ) 230 label = Label( 231 query=qa["question"], 232 answer=cur_answer, 233 document=cur_doc, 234 is_correct_answer=True, 235 is_correct_document=True, 236 origin="gold-label", 237 ) 238 labels.append(label) 239 else: 240 # for no_answer we need to assign each split as not fitting to the question 241 for s in splits: 242 label = Label( 243 query=qa["question"], 244 answer=Answer( 245 answer="", 246 type="extractive", 247 score=0.0, 248 offsets_in_document=[Span(start=0, end=0)], 249 offsets_in_context=[Span(start=0, end=0)], 250 ), 251 document=s, 252 is_correct_answer=True, 253 is_correct_document=True, 254 origin="gold-label", 255 ) 256 257 labels.append(label) 258 259 return docs, labels, problematic_ids 260 261 262 def convert_date_to_rfc3339(date: str) -> str: 263 """ 264 Converts a date to RFC3339 format, as Weaviate requires dates to be in RFC3339 format including the time and 265 timezone. 266 267 If the provided date string does not contain a time and/or timezone, we use 00:00 as default time 268 and UTC as default time zone. 269 270 This method cannot be part of WeaviateDocumentStore, as this would result in a circular import between weaviate.py 271 and filter_utils.py. 272 """ 273 parsed_datetime = datetime.fromisoformat(date) 274 if parsed_datetime.utcoffset() is None: 275 converted_date = parsed_datetime.isoformat() + "Z" 276 else: 277 converted_date = parsed_datetime.isoformat() 278 279 return converted_date 280 ``` --- END FILES --- Please first localize the bug based on the issue statement, and then generate a patch according to the `git diff` format fenced by three backticks. Here is an example: ```diff diff --git a/examples/server_async.py b/examples/server_async.py --- a/examples/server_async.py +++ b/examples/server_async.py @@ -313,4 +313,4 @@ if __name__ == "__main__": - asyncio.run(run_async_server("."), debug=True) + asyncio.run(run_async_server(), debug=True) diff --git a/examples/server_sync.py b/examples/server_sync.py --- a/examples/server_sync.py +++ b/examples/server_sync.py @@ -313,5 +313,5 @@ if __name__ == "__main__": - server = run_sync_server(".") + server = run_sync_server() server.shutdown() ```
diff --git a/haystack/document_stores/utils.py b/haystack/document_stores/utils.py --- a/haystack/document_stores/utils.py +++ b/haystack/document_stores/utils.py @@ -172,6 +172,9 @@ ## Assign Labels to corresponding documents for qa in paragraph["qas"]: + meta_qa = { + k: v for k, v in qa.items() if k not in ("is_impossible", "answers", "question", "id", "missing") + } if not qa.get("is_impossible", False): for answer in qa["answers"]: ans = answer["text"] @@ -191,6 +194,7 @@ is_correct_answer=True, is_correct_document=True, origin="gold-label", + meta=meta_qa, ) labels.append(label) else: @@ -234,6 +238,7 @@ is_correct_answer=True, is_correct_document=True, origin="gold-label", + meta=meta_qa, ) labels.append(label) else: @@ -252,6 +257,7 @@ is_correct_answer=True, is_correct_document=True, origin="gold-label", + meta=meta_qa, ) labels.append(label)
{"golden_diff": "diff --git a/haystack/document_stores/utils.py b/haystack/document_stores/utils.py\n--- a/haystack/document_stores/utils.py\n+++ b/haystack/document_stores/utils.py\n@@ -172,6 +172,9 @@\n \n ## Assign Labels to corresponding documents\n for qa in paragraph[\"qas\"]:\n+ meta_qa = {\n+ k: v for k, v in qa.items() if k not in (\"is_impossible\", \"answers\", \"question\", \"id\", \"missing\")\n+ }\n if not qa.get(\"is_impossible\", False):\n for answer in qa[\"answers\"]:\n ans = answer[\"text\"]\n@@ -191,6 +194,7 @@\n is_correct_answer=True,\n is_correct_document=True,\n origin=\"gold-label\",\n+ meta=meta_qa,\n )\n labels.append(label)\n else:\n@@ -234,6 +238,7 @@\n is_correct_answer=True,\n is_correct_document=True,\n origin=\"gold-label\",\n+ meta=meta_qa,\n )\n labels.append(label)\n else:\n@@ -252,6 +257,7 @@\n is_correct_answer=True,\n is_correct_document=True,\n origin=\"gold-label\",\n+ meta=meta_qa,\n )\n \n labels.append(label)\n", "issue": "Load additional fields from SQUAD-format file to meta field for labels\n**Is your feature request related to a problem? Please describe.**\r\nCurrently `eval_data_from_json` loads additional fields for Documents as meta field but it doesn't do it for Labels.\r\n\r\n**Describe the solution you'd like**\r\n`eval_data_from_json` loads additional fields to `Label.meta` dict analogically to how it's done for Documents.\r\n\r\n**Describe alternatives you've considered**\r\nCurrently I'd would have to rewrite whole loading data from json code to achieve this.\r\n\n", "before_files": [{"content": "import typing\nfrom typing import Dict, List, Optional, Tuple, Union, Generator\n\nimport json\nimport logging\nfrom datetime import datetime\n\nfrom haystack.schema import Document, Label, Answer, Span\nfrom haystack.nodes.preprocessor import PreProcessor\n\nif typing.TYPE_CHECKING:\n # This results in a circular import if we don't use typing.TYPE_CHECKING\n from haystack.document_stores.base import BaseDocumentStore\n\n\nlogger = logging.getLogger(__name__)\n\n\ndef eval_data_from_json(\n filename: str,\n max_docs: Optional[Union[int, bool]] = None,\n preprocessor: Optional[PreProcessor] = None,\n open_domain: bool = False,\n) -> Tuple[List[Document], List[Label]]:\n \"\"\"\n Read Documents + Labels from a SQuAD-style file.\n Document and Labels can then be indexed to the DocumentStore and be used for evaluation.\n\n :param filename: Path to file in SQuAD format\n :param max_docs: This sets the number of documents that will be loaded. By default, this is set to None, thus reading in all available eval documents.\n :param open_domain: Set this to True if your file is an open domain dataset where two different answers to the same question might be found in different contexts.\n \"\"\"\n docs: List[Document] = []\n labels = []\n problematic_ids = []\n\n with open(filename, \"r\", encoding=\"utf-8\") as file:\n data = json.load(file)\n if \"title\" not in data[\"data\"][0]:\n logger.warning(\"No title information found for documents in QA file: %s\", filename)\n\n for squad_document in data[\"data\"]:\n if max_docs and len(docs) > max_docs:\n break\n # Extracting paragraphs and their labels from a SQuAD document dict\n cur_docs, cur_labels, cur_problematic_ids = _extract_docs_and_labels_from_dict(\n squad_document, preprocessor, open_domain\n )\n docs.extend(cur_docs)\n labels.extend(cur_labels)\n problematic_ids.extend(cur_problematic_ids)\n if len(problematic_ids) > 0:\n logger.warning(\n \"Could not convert an answer for %s questions.\\nThere were conversion errors for question ids: %s\",\n len(problematic_ids),\n problematic_ids,\n )\n return docs, labels\n\n\ndef eval_data_from_jsonl(\n filename: str,\n batch_size: Optional[int] = None,\n max_docs: Optional[Union[int, bool]] = None,\n preprocessor: Optional[PreProcessor] = None,\n open_domain: bool = False,\n) -> Generator[Tuple[List[Document], List[Label]], None, None]:\n \"\"\"\n Read Documents + Labels from a SQuAD-style file in jsonl format, i.e. one document per line.\n Document and Labels can then be indexed to the DocumentStore and be used for evaluation.\n\n This is a generator which will yield one tuple per iteration containing a list\n of batch_size documents and a list with the documents' labels.\n If batch_size is set to None, this method will yield all documents and labels.\n\n :param filename: Path to file in SQuAD format\n :param max_docs: This sets the number of documents that will be loaded. By default, this is set to None, thus reading in all available eval documents.\n :param open_domain: Set this to True if your file is an open domain dataset where two different answers to the same question might be found in different contexts.\n \"\"\"\n docs: List[Document] = []\n labels = []\n problematic_ids = []\n\n with open(filename, \"r\", encoding=\"utf-8\") as file:\n for document in file:\n if max_docs and len(docs) > max_docs:\n break\n # Extracting paragraphs and their labels from a SQuAD document dict\n squad_document = json.loads(document)\n cur_docs, cur_labels, cur_problematic_ids = _extract_docs_and_labels_from_dict(\n squad_document, preprocessor, open_domain\n )\n docs.extend(cur_docs)\n labels.extend(cur_labels)\n problematic_ids.extend(cur_problematic_ids)\n\n if batch_size is not None and len(docs) >= batch_size:\n if len(problematic_ids) > 0:\n logger.warning(\n \"Could not convert an answer for %s questions.\\n\"\n \"There were conversion errors for question ids: %s\",\n len(problematic_ids),\n problematic_ids,\n )\n yield docs, labels\n docs = []\n labels = []\n problematic_ids = []\n\n yield docs, labels\n\n\ndef squad_json_to_jsonl(squad_file: str, output_file: str):\n \"\"\"\n Converts a SQuAD-json-file into jsonl format with one document per line.\n\n :param squad_file: SQuAD-file in json format.\n :param output_file: Name of output file (SQuAD in jsonl format)\n \"\"\"\n with open(squad_file, encoding=\"utf-8\") as json_file, open(output_file, \"w\", encoding=\"utf-8\") as jsonl_file:\n squad_json = json.load(json_file)\n\n for doc in squad_json[\"data\"]:\n json.dump(doc, jsonl_file)\n jsonl_file.write(\"\\n\")\n\n\ndef _extract_docs_and_labels_from_dict(\n document_dict: Dict, preprocessor: Optional[PreProcessor] = None, open_domain: bool = False\n):\n \"\"\"\n Set open_domain to True if you are trying to load open_domain labels (i.e. labels without doc id or start idx)\n \"\"\"\n docs = []\n labels = []\n problematic_ids = []\n\n # get all extra fields from document level (e.g. title)\n meta_doc = {k: v for k, v in document_dict.items() if k not in (\"paragraphs\", \"title\")}\n for paragraph in document_dict[\"paragraphs\"]:\n ## Create Metadata\n cur_meta = {\"name\": document_dict.get(\"title\", None)}\n # all other fields from paragraph level\n meta_paragraph = {k: v for k, v in paragraph.items() if k not in (\"qas\", \"context\")}\n cur_meta.update(meta_paragraph)\n # meta from parent document\n cur_meta.update(meta_doc)\n\n ## Create Document\n cur_full_doc = Document(content=paragraph[\"context\"], meta=cur_meta)\n if preprocessor is not None:\n splits_docs = preprocessor.process(documents=[cur_full_doc])\n # we need to pull in _split_id into the document id for unique reference in labels\n splits: List[Document] = []\n offset = 0\n for d in splits_docs:\n id = f\"{d.id}-{d.meta['_split_id']}\"\n d.meta[\"_split_offset\"] = offset\n offset += len(d.content)\n # offset correction based on splitting method\n if preprocessor.split_by == \"word\":\n offset += 1\n elif preprocessor.split_by == \"passage\":\n offset += 2\n else:\n raise NotImplementedError\n mydoc = Document(content=d.content, id=id, meta=d.meta)\n splits.append(mydoc)\n else:\n splits = [cur_full_doc]\n docs.extend(splits)\n\n ## Assign Labels to corresponding documents\n for qa in paragraph[\"qas\"]:\n if not qa.get(\"is_impossible\", False):\n for answer in qa[\"answers\"]:\n ans = answer[\"text\"]\n # TODO The following block of code means that answer_start is never calculated\n # and cur_id is always None for open_domain\n # This can be rewritten so that this function could try to calculate offsets\n # and populate id in open_domain mode\n if open_domain:\n # TODO check with Branden why we want to treat open_domain here differently.\n # Shouldn't this be something configured at eval time only?\n cur_ans_start = answer.get(\"answer_start\", 0)\n # cur_id = '0'\n label = Label(\n query=qa[\"question\"],\n answer=Answer(answer=ans, type=\"extractive\", score=0.0),\n document=None, # type: ignore\n is_correct_answer=True,\n is_correct_document=True,\n origin=\"gold-label\",\n )\n labels.append(label)\n else:\n ans_position = cur_full_doc.content[\n answer[\"answer_start\"] : answer[\"answer_start\"] + len(str(ans))\n ]\n if ans != ans_position:\n # do not use answer\n problematic_ids.append(qa.get(\"id\", \"missing\"))\n break\n # find corresponding document or split\n if len(splits) == 1:\n # cur_id = splits[0].id\n cur_ans_start = answer[\"answer_start\"]\n cur_doc = splits[0]\n else:\n for s in splits:\n # If answer start offset is contained in passage we assign the label to that passage\n if (answer[\"answer_start\"] >= s.meta[\"_split_offset\"]) and (\n answer[\"answer_start\"] < (s.meta[\"_split_offset\"] + len(s.content))\n ):\n cur_doc = s\n cur_ans_start = answer[\"answer_start\"] - s.meta[\"_split_offset\"]\n # If a document is splitting an answer we add the whole answer text to the document\n if s.content[cur_ans_start : cur_ans_start + len(ans)] != ans:\n s.content = s.content[:cur_ans_start] + ans\n break\n cur_answer = Answer(\n answer=ans,\n type=\"extractive\",\n score=0.0,\n context=cur_doc.content,\n offsets_in_document=[Span(start=cur_ans_start, end=cur_ans_start + len(ans))],\n offsets_in_context=[Span(start=cur_ans_start, end=cur_ans_start + len(ans))],\n document_ids=[cur_doc.id],\n )\n label = Label(\n query=qa[\"question\"],\n answer=cur_answer,\n document=cur_doc,\n is_correct_answer=True,\n is_correct_document=True,\n origin=\"gold-label\",\n )\n labels.append(label)\n else:\n # for no_answer we need to assign each split as not fitting to the question\n for s in splits:\n label = Label(\n query=qa[\"question\"],\n answer=Answer(\n answer=\"\",\n type=\"extractive\",\n score=0.0,\n offsets_in_document=[Span(start=0, end=0)],\n offsets_in_context=[Span(start=0, end=0)],\n ),\n document=s,\n is_correct_answer=True,\n is_correct_document=True,\n origin=\"gold-label\",\n )\n\n labels.append(label)\n\n return docs, labels, problematic_ids\n\n\ndef convert_date_to_rfc3339(date: str) -> str:\n \"\"\"\n Converts a date to RFC3339 format, as Weaviate requires dates to be in RFC3339 format including the time and\n timezone.\n\n If the provided date string does not contain a time and/or timezone, we use 00:00 as default time\n and UTC as default time zone.\n\n This method cannot be part of WeaviateDocumentStore, as this would result in a circular import between weaviate.py\n and filter_utils.py.\n \"\"\"\n parsed_datetime = datetime.fromisoformat(date)\n if parsed_datetime.utcoffset() is None:\n converted_date = parsed_datetime.isoformat() + \"Z\"\n else:\n converted_date = parsed_datetime.isoformat()\n\n return converted_date\n", "path": "haystack/document_stores/utils.py"}], "after_files": [{"content": "import typing\nfrom typing import Dict, List, Optional, Tuple, Union, Generator\n\nimport json\nimport logging\nfrom datetime import datetime\n\nfrom haystack.schema import Document, Label, Answer, Span\nfrom haystack.nodes.preprocessor import PreProcessor\n\nif typing.TYPE_CHECKING:\n # This results in a circular import if we don't use typing.TYPE_CHECKING\n from haystack.document_stores.base import BaseDocumentStore\n\n\nlogger = logging.getLogger(__name__)\n\n\ndef eval_data_from_json(\n filename: str,\n max_docs: Optional[Union[int, bool]] = None,\n preprocessor: Optional[PreProcessor] = None,\n open_domain: bool = False,\n) -> Tuple[List[Document], List[Label]]:\n \"\"\"\n Read Documents + Labels from a SQuAD-style file.\n Document and Labels can then be indexed to the DocumentStore and be used for evaluation.\n\n :param filename: Path to file in SQuAD format\n :param max_docs: This sets the number of documents that will be loaded. By default, this is set to None, thus reading in all available eval documents.\n :param open_domain: Set this to True if your file is an open domain dataset where two different answers to the same question might be found in different contexts.\n \"\"\"\n docs: List[Document] = []\n labels = []\n problematic_ids = []\n\n with open(filename, \"r\", encoding=\"utf-8\") as file:\n data = json.load(file)\n if \"title\" not in data[\"data\"][0]:\n logger.warning(\"No title information found for documents in QA file: %s\", filename)\n\n for squad_document in data[\"data\"]:\n if max_docs and len(docs) > max_docs:\n break\n # Extracting paragraphs and their labels from a SQuAD document dict\n cur_docs, cur_labels, cur_problematic_ids = _extract_docs_and_labels_from_dict(\n squad_document, preprocessor, open_domain\n )\n docs.extend(cur_docs)\n labels.extend(cur_labels)\n problematic_ids.extend(cur_problematic_ids)\n if len(problematic_ids) > 0:\n logger.warning(\n \"Could not convert an answer for %s questions.\\nThere were conversion errors for question ids: %s\",\n len(problematic_ids),\n problematic_ids,\n )\n return docs, labels\n\n\ndef eval_data_from_jsonl(\n filename: str,\n batch_size: Optional[int] = None,\n max_docs: Optional[Union[int, bool]] = None,\n preprocessor: Optional[PreProcessor] = None,\n open_domain: bool = False,\n) -> Generator[Tuple[List[Document], List[Label]], None, None]:\n \"\"\"\n Read Documents + Labels from a SQuAD-style file in jsonl format, i.e. one document per line.\n Document and Labels can then be indexed to the DocumentStore and be used for evaluation.\n\n This is a generator which will yield one tuple per iteration containing a list\n of batch_size documents and a list with the documents' labels.\n If batch_size is set to None, this method will yield all documents and labels.\n\n :param filename: Path to file in SQuAD format\n :param max_docs: This sets the number of documents that will be loaded. By default, this is set to None, thus reading in all available eval documents.\n :param open_domain: Set this to True if your file is an open domain dataset where two different answers to the same question might be found in different contexts.\n \"\"\"\n docs: List[Document] = []\n labels = []\n problematic_ids = []\n\n with open(filename, \"r\", encoding=\"utf-8\") as file:\n for document in file:\n if max_docs and len(docs) > max_docs:\n break\n # Extracting paragraphs and their labels from a SQuAD document dict\n squad_document = json.loads(document)\n cur_docs, cur_labels, cur_problematic_ids = _extract_docs_and_labels_from_dict(\n squad_document, preprocessor, open_domain\n )\n docs.extend(cur_docs)\n labels.extend(cur_labels)\n problematic_ids.extend(cur_problematic_ids)\n\n if batch_size is not None and len(docs) >= batch_size:\n if len(problematic_ids) > 0:\n logger.warning(\n \"Could not convert an answer for %s questions.\\n\"\n \"There were conversion errors for question ids: %s\",\n len(problematic_ids),\n problematic_ids,\n )\n yield docs, labels\n docs = []\n labels = []\n problematic_ids = []\n\n yield docs, labels\n\n\ndef squad_json_to_jsonl(squad_file: str, output_file: str):\n \"\"\"\n Converts a SQuAD-json-file into jsonl format with one document per line.\n\n :param squad_file: SQuAD-file in json format.\n :param output_file: Name of output file (SQuAD in jsonl format)\n \"\"\"\n with open(squad_file, encoding=\"utf-8\") as json_file, open(output_file, \"w\", encoding=\"utf-8\") as jsonl_file:\n squad_json = json.load(json_file)\n\n for doc in squad_json[\"data\"]:\n json.dump(doc, jsonl_file)\n jsonl_file.write(\"\\n\")\n\n\ndef _extract_docs_and_labels_from_dict(\n document_dict: Dict, preprocessor: Optional[PreProcessor] = None, open_domain: bool = False\n):\n \"\"\"\n Set open_domain to True if you are trying to load open_domain labels (i.e. labels without doc id or start idx)\n \"\"\"\n docs = []\n labels = []\n problematic_ids = []\n\n # get all extra fields from document level (e.g. title)\n meta_doc = {k: v for k, v in document_dict.items() if k not in (\"paragraphs\", \"title\")}\n for paragraph in document_dict[\"paragraphs\"]:\n ## Create Metadata\n cur_meta = {\"name\": document_dict.get(\"title\", None)}\n # all other fields from paragraph level\n meta_paragraph = {k: v for k, v in paragraph.items() if k not in (\"qas\", \"context\")}\n cur_meta.update(meta_paragraph)\n # meta from parent document\n cur_meta.update(meta_doc)\n\n ## Create Document\n cur_full_doc = Document(content=paragraph[\"context\"], meta=cur_meta)\n if preprocessor is not None:\n splits_docs = preprocessor.process(documents=[cur_full_doc])\n # we need to pull in _split_id into the document id for unique reference in labels\n splits: List[Document] = []\n offset = 0\n for d in splits_docs:\n id = f\"{d.id}-{d.meta['_split_id']}\"\n d.meta[\"_split_offset\"] = offset\n offset += len(d.content)\n # offset correction based on splitting method\n if preprocessor.split_by == \"word\":\n offset += 1\n elif preprocessor.split_by == \"passage\":\n offset += 2\n else:\n raise NotImplementedError\n mydoc = Document(content=d.content, id=id, meta=d.meta)\n splits.append(mydoc)\n else:\n splits = [cur_full_doc]\n docs.extend(splits)\n\n ## Assign Labels to corresponding documents\n for qa in paragraph[\"qas\"]:\n meta_qa = {\n k: v for k, v in qa.items() if k not in (\"is_impossible\", \"answers\", \"question\", \"id\", \"missing\")\n }\n if not qa.get(\"is_impossible\", False):\n for answer in qa[\"answers\"]:\n ans = answer[\"text\"]\n # TODO The following block of code means that answer_start is never calculated\n # and cur_id is always None for open_domain\n # This can be rewritten so that this function could try to calculate offsets\n # and populate id in open_domain mode\n if open_domain:\n # TODO check with Branden why we want to treat open_domain here differently.\n # Shouldn't this be something configured at eval time only?\n cur_ans_start = answer.get(\"answer_start\", 0)\n # cur_id = '0'\n label = Label(\n query=qa[\"question\"],\n answer=Answer(answer=ans, type=\"extractive\", score=0.0),\n document=None, # type: ignore\n is_correct_answer=True,\n is_correct_document=True,\n origin=\"gold-label\",\n meta=meta_qa,\n )\n labels.append(label)\n else:\n ans_position = cur_full_doc.content[\n answer[\"answer_start\"] : answer[\"answer_start\"] + len(str(ans))\n ]\n if ans != ans_position:\n # do not use answer\n problematic_ids.append(qa.get(\"id\", \"missing\"))\n break\n # find corresponding document or split\n if len(splits) == 1:\n # cur_id = splits[0].id\n cur_ans_start = answer[\"answer_start\"]\n cur_doc = splits[0]\n else:\n for s in splits:\n # If answer start offset is contained in passage we assign the label to that passage\n if (answer[\"answer_start\"] >= s.meta[\"_split_offset\"]) and (\n answer[\"answer_start\"] < (s.meta[\"_split_offset\"] + len(s.content))\n ):\n cur_doc = s\n cur_ans_start = answer[\"answer_start\"] - s.meta[\"_split_offset\"]\n # If a document is splitting an answer we add the whole answer text to the document\n if s.content[cur_ans_start : cur_ans_start + len(ans)] != ans:\n s.content = s.content[:cur_ans_start] + ans\n break\n cur_answer = Answer(\n answer=ans,\n type=\"extractive\",\n score=0.0,\n context=cur_doc.content,\n offsets_in_document=[Span(start=cur_ans_start, end=cur_ans_start + len(ans))],\n offsets_in_context=[Span(start=cur_ans_start, end=cur_ans_start + len(ans))],\n document_ids=[cur_doc.id],\n )\n label = Label(\n query=qa[\"question\"],\n answer=cur_answer,\n document=cur_doc,\n is_correct_answer=True,\n is_correct_document=True,\n origin=\"gold-label\",\n meta=meta_qa,\n )\n labels.append(label)\n else:\n # for no_answer we need to assign each split as not fitting to the question\n for s in splits:\n label = Label(\n query=qa[\"question\"],\n answer=Answer(\n answer=\"\",\n type=\"extractive\",\n score=0.0,\n offsets_in_document=[Span(start=0, end=0)],\n offsets_in_context=[Span(start=0, end=0)],\n ),\n document=s,\n is_correct_answer=True,\n is_correct_document=True,\n origin=\"gold-label\",\n meta=meta_qa,\n )\n\n labels.append(label)\n\n return docs, labels, problematic_ids\n\n\ndef convert_date_to_rfc3339(date: str) -> str:\n \"\"\"\n Converts a date to RFC3339 format, as Weaviate requires dates to be in RFC3339 format including the time and\n timezone.\n\n If the provided date string does not contain a time and/or timezone, we use 00:00 as default time\n and UTC as default time zone.\n\n This method cannot be part of WeaviateDocumentStore, as this would result in a circular import between weaviate.py\n and filter_utils.py.\n \"\"\"\n parsed_datetime = datetime.fromisoformat(date)\n if parsed_datetime.utcoffset() is None:\n converted_date = parsed_datetime.isoformat() + \"Z\"\n else:\n converted_date = parsed_datetime.isoformat()\n\n return converted_date\n", "path": "haystack/document_stores/utils.py"}]}
3,572
295