plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
jellis18/ML-Course-Solutions-master
submit.m
.m
ML-Course-Solutions-master/ex6/ex6_octave/submit.m
1,318
utf_8
bfa0b4ffb8a7854d8e84276e91818107
function submit() addpath('./lib'); conf.assignmentSlug = 'support-vector-machines'; conf.itemName = 'Support Vector Machines'; conf.partArrays = { ... { ... '1', ... { 'gaussianKernel.m' }, ... 'Gaussian Kernel', ... }, ... { ... '2', ... { 'dataset3Params.m' }, ... 'Parameters (C, sigma) for Dataset 3', ... }, ... { ... '3', ... { 'processEmail.m' }, ... 'Email Preprocessing', ... }, ... { ... '4', ... { 'emailFeatures.m' }, ... 'Email Feature Extraction', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases x1 = sin(1:10)'; x2 = cos(1:10)'; ec = 'the quick brown fox jumped over the lazy dog'; wi = 1 + abs(round(x1 * 1863)); wi = [wi ; wi]; if partId == '1' sim = gaussianKernel(x1, x2, 2); out = sprintf('%0.5f ', sim); elseif partId == '2' load('ex6data3.mat'); [C, sigma] = dataset3Params(X, y, Xval, yval); out = sprintf('%0.5f ', C); out = [out sprintf('%0.5f ', sigma)]; elseif partId == '3' word_indices = processEmail(ec); out = sprintf('%d ', word_indices); elseif partId == '4' x = emailFeatures(wi); out = sprintf('%d ', x); end end
github
jellis18/ML-Course-Solutions-master
porterStemmer.m
.m
ML-Course-Solutions-master/ex6/ex6_octave/porterStemmer.m
9,902
utf_8
7ed5acd925808fde342fc72bd62ebc4d
function stem = porterStemmer(inString) % Applies the Porter Stemming algorithm as presented in the following % paper: % Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14, % no. 3, pp 130-137 % Original code modeled after the C version provided at: % http://www.tartarus.org/~martin/PorterStemmer/c.txt % The main part of the stemming algorithm starts here. b is an array of % characters, holding the word to be stemmed. The letters are in b[k0], % b[k0+1] ending at b[k]. In fact k0 = 1 in this demo program (since % matlab begins indexing by 1 instead of 0). k is readjusted downwards as % the stemming progresses. Zero termination is not in fact used in the % algorithm. % To call this function, use the string to be stemmed as the input % argument. This function returns the stemmed word as a string. % Lower-case string inString = lower(inString); global j; b = inString; k = length(b); k0 = 1; j = k; % With this if statement, strings of length 1 or 2 don't go through the % stemming process. Remove this conditional to match the published % algorithm. stem = b; if k > 2 % Output displays per step are commented out. %disp(sprintf('Word to stem: %s', b)); x = step1ab(b, k, k0); %disp(sprintf('Steps 1A and B yield: %s', x{1})); x = step1c(x{1}, x{2}, k0); %disp(sprintf('Step 1C yields: %s', x{1})); x = step2(x{1}, x{2}, k0); %disp(sprintf('Step 2 yields: %s', x{1})); x = step3(x{1}, x{2}, k0); %disp(sprintf('Step 3 yields: %s', x{1})); x = step4(x{1}, x{2}, k0); %disp(sprintf('Step 4 yields: %s', x{1})); x = step5(x{1}, x{2}, k0); %disp(sprintf('Step 5 yields: %s', x{1})); stem = x{1}; end % cons(j) is TRUE <=> b[j] is a consonant. function c = cons(i, b, k0) c = true; switch(b(i)) case {'a', 'e', 'i', 'o', 'u'} c = false; case 'y' if i == k0 c = true; else c = ~cons(i - 1, b, k0); end end % mseq() measures the number of consonant sequences between k0 and j. If % c is a consonant sequence and v a vowel sequence, and <..> indicates % arbitrary presence, % <c><v> gives 0 % <c>vc<v> gives 1 % <c>vcvc<v> gives 2 % <c>vcvcvc<v> gives 3 % .... function n = measure(b, k0) global j; n = 0; i = k0; while true if i > j return end if ~cons(i, b, k0) break; end i = i + 1; end i = i + 1; while true while true if i > j return end if cons(i, b, k0) break; end i = i + 1; end i = i + 1; n = n + 1; while true if i > j return end if ~cons(i, b, k0) break; end i = i + 1; end i = i + 1; end % vowelinstem() is TRUE <=> k0,...j contains a vowel function vis = vowelinstem(b, k0) global j; for i = k0:j, if ~cons(i, b, k0) vis = true; return end end vis = false; %doublec(i) is TRUE <=> i,(i-1) contain a double consonant. function dc = doublec(i, b, k0) if i < k0+1 dc = false; return end if b(i) ~= b(i-1) dc = false; return end dc = cons(i, b, k0); % cvc(j) is TRUE <=> j-2,j-1,j has the form consonant - vowel - consonant % and also if the second c is not w,x or y. this is used when trying to % restore an e at the end of a short word. e.g. % % cav(e), lov(e), hop(e), crim(e), but % snow, box, tray. function c1 = cvc(i, b, k0) if ((i < (k0+2)) || ~cons(i, b, k0) || cons(i-1, b, k0) || ~cons(i-2, b, k0)) c1 = false; else if (b(i) == 'w' || b(i) == 'x' || b(i) == 'y') c1 = false; return end c1 = true; end % ends(s) is TRUE <=> k0,...k ends with the string s. function s = ends(str, b, k) global j; if (str(length(str)) ~= b(k)) s = false; return end % tiny speed-up if (length(str) > k) s = false; return end if strcmp(b(k-length(str)+1:k), str) s = true; j = k - length(str); return else s = false; end % setto(s) sets (j+1),...k to the characters in the string s, readjusting % k accordingly. function so = setto(s, b, k) global j; for i = j+1:(j+length(s)) b(i) = s(i-j); end if k > j+length(s) b((j+length(s)+1):k) = ''; end k = length(b); so = {b, k}; % rs(s) is used further down. % [Note: possible null/value for r if rs is called] function r = rs(str, b, k, k0) r = {b, k}; if measure(b, k0) > 0 r = setto(str, b, k); end % step1ab() gets rid of plurals and -ed or -ing. e.g. % caresses -> caress % ponies -> poni % ties -> ti % caress -> caress % cats -> cat % feed -> feed % agreed -> agree % disabled -> disable % matting -> mat % mating -> mate % meeting -> meet % milling -> mill % messing -> mess % meetings -> meet function s1ab = step1ab(b, k, k0) global j; if b(k) == 's' if ends('sses', b, k) k = k-2; elseif ends('ies', b, k) retVal = setto('i', b, k); b = retVal{1}; k = retVal{2}; elseif (b(k-1) ~= 's') k = k-1; end end if ends('eed', b, k) if measure(b, k0) > 0; k = k-1; end elseif (ends('ed', b, k) || ends('ing', b, k)) && vowelinstem(b, k0) k = j; retVal = {b, k}; if ends('at', b, k) retVal = setto('ate', b(k0:k), k); elseif ends('bl', b, k) retVal = setto('ble', b(k0:k), k); elseif ends('iz', b, k) retVal = setto('ize', b(k0:k), k); elseif doublec(k, b, k0) retVal = {b, k-1}; if b(retVal{2}) == 'l' || b(retVal{2}) == 's' || ... b(retVal{2}) == 'z' retVal = {retVal{1}, retVal{2}+1}; end elseif measure(b, k0) == 1 && cvc(k, b, k0) retVal = setto('e', b(k0:k), k); end k = retVal{2}; b = retVal{1}(k0:k); end j = k; s1ab = {b(k0:k), k}; % step1c() turns terminal y to i when there is another vowel in the stem. function s1c = step1c(b, k, k0) global j; if ends('y', b, k) && vowelinstem(b, k0) b(k) = 'i'; end j = k; s1c = {b, k}; % step2() maps double suffices to single ones. so -ization ( = -ize plus % -ation) maps to -ize etc. note that the string before the suffix must give % m() > 0. function s2 = step2(b, k, k0) global j; s2 = {b, k}; switch b(k-1) case {'a'} if ends('ational', b, k) s2 = rs('ate', b, k, k0); elseif ends('tional', b, k) s2 = rs('tion', b, k, k0); end; case {'c'} if ends('enci', b, k) s2 = rs('ence', b, k, k0); elseif ends('anci', b, k) s2 = rs('ance', b, k, k0); end; case {'e'} if ends('izer', b, k) s2 = rs('ize', b, k, k0); end; case {'l'} if ends('bli', b, k) s2 = rs('ble', b, k, k0); elseif ends('alli', b, k) s2 = rs('al', b, k, k0); elseif ends('entli', b, k) s2 = rs('ent', b, k, k0); elseif ends('eli', b, k) s2 = rs('e', b, k, k0); elseif ends('ousli', b, k) s2 = rs('ous', b, k, k0); end; case {'o'} if ends('ization', b, k) s2 = rs('ize', b, k, k0); elseif ends('ation', b, k) s2 = rs('ate', b, k, k0); elseif ends('ator', b, k) s2 = rs('ate', b, k, k0); end; case {'s'} if ends('alism', b, k) s2 = rs('al', b, k, k0); elseif ends('iveness', b, k) s2 = rs('ive', b, k, k0); elseif ends('fulness', b, k) s2 = rs('ful', b, k, k0); elseif ends('ousness', b, k) s2 = rs('ous', b, k, k0); end; case {'t'} if ends('aliti', b, k) s2 = rs('al', b, k, k0); elseif ends('iviti', b, k) s2 = rs('ive', b, k, k0); elseif ends('biliti', b, k) s2 = rs('ble', b, k, k0); end; case {'g'} if ends('logi', b, k) s2 = rs('log', b, k, k0); end; end j = s2{2}; % step3() deals with -ic-, -full, -ness etc. similar strategy to step2. function s3 = step3(b, k, k0) global j; s3 = {b, k}; switch b(k) case {'e'} if ends('icate', b, k) s3 = rs('ic', b, k, k0); elseif ends('ative', b, k) s3 = rs('', b, k, k0); elseif ends('alize', b, k) s3 = rs('al', b, k, k0); end; case {'i'} if ends('iciti', b, k) s3 = rs('ic', b, k, k0); end; case {'l'} if ends('ical', b, k) s3 = rs('ic', b, k, k0); elseif ends('ful', b, k) s3 = rs('', b, k, k0); end; case {'s'} if ends('ness', b, k) s3 = rs('', b, k, k0); end; end j = s3{2}; % step4() takes off -ant, -ence etc., in context <c>vcvc<v>. function s4 = step4(b, k, k0) global j; switch b(k-1) case {'a'} if ends('al', b, k) end; case {'c'} if ends('ance', b, k) elseif ends('ence', b, k) end; case {'e'} if ends('er', b, k) end; case {'i'} if ends('ic', b, k) end; case {'l'} if ends('able', b, k) elseif ends('ible', b, k) end; case {'n'} if ends('ant', b, k) elseif ends('ement', b, k) elseif ends('ment', b, k) elseif ends('ent', b, k) end; case {'o'} if ends('ion', b, k) if j == 0 elseif ~(strcmp(b(j),'s') || strcmp(b(j),'t')) j = k; end elseif ends('ou', b, k) end; case {'s'} if ends('ism', b, k) end; case {'t'} if ends('ate', b, k) elseif ends('iti', b, k) end; case {'u'} if ends('ous', b, k) end; case {'v'} if ends('ive', b, k) end; case {'z'} if ends('ize', b, k) end; end if measure(b, k0) > 1 s4 = {b(k0:j), j}; else s4 = {b(k0:k), k}; end % step5() removes a final -e if m() > 1, and changes -ll to -l if m() > 1. function s5 = step5(b, k, k0) global j; j = k; if b(k) == 'e' a = measure(b, k0); if (a > 1) || ((a == 1) && ~cvc(k-1, b, k0)) k = k-1; end end if (b(k) == 'l') && doublec(k, b, k0) && (measure(b, k0) > 1) k = k-1; end s5 = {b(k0:k), k};
github
jellis18/ML-Course-Solutions-master
submitWithConfiguration.m
.m
ML-Course-Solutions-master/ex6/ex6_octave/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
jellis18/ML-Course-Solutions-master
savejson.m
.m
ML-Course-Solutions-master/ex6/ex6_octave/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
jellis18/ML-Course-Solutions-master
loadjson.m
.m
ML-Course-Solutions-master/ex6/ex6_octave/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jellis18/ML-Course-Solutions-master
loadubjson.m
.m
ML-Course-Solutions-master/ex6/ex6_octave/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jellis18/ML-Course-Solutions-master
saveubjson.m
.m
ML-Course-Solutions-master/ex6/ex6_octave/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
jellis18/ML-Course-Solutions-master
submit.m
.m
ML-Course-Solutions-master/ex7/ex7_octave/submit.m
1,438
utf_8
665ea5906aad3ccfd94e33a40c58e2ce
function submit() addpath('./lib'); conf.assignmentSlug = 'k-means-clustering-and-pca'; conf.itemName = 'K-Means Clustering and PCA'; conf.partArrays = { ... { ... '1', ... { 'findClosestCentroids.m' }, ... 'Find Closest Centroids (k-Means)', ... }, ... { ... '2', ... { 'computeCentroids.m' }, ... 'Compute Centroid Means (k-Means)', ... }, ... { ... '3', ... { 'pca.m' }, ... 'PCA', ... }, ... { ... '4', ... { 'projectData.m' }, ... 'Project Data (PCA)', ... }, ... { ... '5', ... { 'recoverData.m' }, ... 'Recover Data (PCA)', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = reshape(sin(1:165), 15, 11); Z = reshape(cos(1:121), 11, 11); C = Z(1:5, :); idx = (1 + mod(1:15, 3))'; if partId == '1' idx = findClosestCentroids(X, C); out = sprintf('%0.5f ', idx(:)); elseif partId == '2' centroids = computeCentroids(X, idx, 3); out = sprintf('%0.5f ', centroids(:)); elseif partId == '3' [U, S] = pca(X); out = sprintf('%0.5f ', abs([U(:); S(:)])); elseif partId == '4' X_proj = projectData(X, Z, 5); out = sprintf('%0.5f ', X_proj(:)); elseif partId == '5' X_rec = recoverData(X(:,1:5), Z, 5); out = sprintf('%0.5f ', X_rec(:)); end end
github
jellis18/ML-Course-Solutions-master
submitWithConfiguration.m
.m
ML-Course-Solutions-master/ex7/ex7_octave/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
jellis18/ML-Course-Solutions-master
savejson.m
.m
ML-Course-Solutions-master/ex7/ex7_octave/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
jellis18/ML-Course-Solutions-master
loadjson.m
.m
ML-Course-Solutions-master/ex7/ex7_octave/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jellis18/ML-Course-Solutions-master
loadubjson.m
.m
ML-Course-Solutions-master/ex7/ex7_octave/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jellis18/ML-Course-Solutions-master
saveubjson.m
.m
ML-Course-Solutions-master/ex7/ex7_octave/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
jellis18/ML-Course-Solutions-master
submit.m
.m
ML-Course-Solutions-master/ex2/ex2_octave/submit.m
1,605
utf_8
9b63d386e9bd7bcca66b1a3d2fa37579
function submit() addpath('./lib'); conf.assignmentSlug = 'logistic-regression'; conf.itemName = 'Logistic Regression'; conf.partArrays = { ... { ... '1', ... { 'sigmoid.m' }, ... 'Sigmoid Function', ... }, ... { ... '2', ... { 'costFunction.m' }, ... 'Logistic Regression Cost', ... }, ... { ... '3', ... { 'costFunction.m' }, ... 'Logistic Regression Gradient', ... }, ... { ... '4', ... { 'predict.m' }, ... 'Predict', ... }, ... { ... '5', ... { 'costFunctionReg.m' }, ... 'Regularized Logistic Regression Cost', ... }, ... { ... '6', ... { 'costFunctionReg.m' }, ... 'Regularized Logistic Regression Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; if partId == '1' out = sprintf('%0.5f ', sigmoid(X)); elseif partId == '2' out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y)); elseif partId == '3' [cost, grad] = costFunction([0.25 0.5 -0.5]', X, y); out = sprintf('%0.5f ', grad); elseif partId == '4' out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X)); elseif partId == '5' out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1)); elseif partId == '6' [cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', grad); end end
github
jellis18/ML-Course-Solutions-master
submitWithConfiguration.m
.m
ML-Course-Solutions-master/ex2/ex2_octave/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
jellis18/ML-Course-Solutions-master
savejson.m
.m
ML-Course-Solutions-master/ex2/ex2_octave/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
jellis18/ML-Course-Solutions-master
loadjson.m
.m
ML-Course-Solutions-master/ex2/ex2_octave/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jellis18/ML-Course-Solutions-master
loadubjson.m
.m
ML-Course-Solutions-master/ex2/ex2_octave/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jellis18/ML-Course-Solutions-master
saveubjson.m
.m
ML-Course-Solutions-master/ex2/ex2_octave/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
jellis18/ML-Course-Solutions-master
submit.m
.m
ML-Course-Solutions-master/ex4/ex4_octave/submit.m
1,635
utf_8
ae9c236c78f9b5b09db8fbc2052990fc
function submit() addpath('./lib'); conf.assignmentSlug = 'neural-network-learning'; conf.itemName = 'Neural Networks Learning'; conf.partArrays = { ... { ... '1', ... { 'nnCostFunction.m' }, ... 'Feedforward and Cost Function', ... }, ... { ... '2', ... { 'nnCostFunction.m' }, ... 'Regularized Cost Function', ... }, ... { ... '3', ... { 'sigmoidGradient.m' }, ... 'Sigmoid Gradient', ... }, ... { ... '4', ... { 'nnCostFunction.m' }, ... 'Neural Network Gradient (Backpropagation)', ... }, ... { ... '5', ... { 'nnCostFunction.m' }, ... 'Regularized Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = reshape(3 * sin(1:1:30), 3, 10); Xm = reshape(sin(1:32), 16, 2) / 5; ym = 1 + mod(1:16,4)'; t1 = sin(reshape(1:2:24, 4, 3)); t2 = cos(reshape(1:2:40, 4, 5)); t = [t1(:) ; t2(:)]; if partId == '1' [J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0); out = sprintf('%0.5f ', J); elseif partId == '2' [J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5); out = sprintf('%0.5f ', J); elseif partId == '3' out = sprintf('%0.5f ', sigmoidGradient(X)); elseif partId == '4' [J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; elseif partId == '5' [J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; end end
github
jellis18/ML-Course-Solutions-master
submitWithConfiguration.m
.m
ML-Course-Solutions-master/ex4/ex4_octave/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
jellis18/ML-Course-Solutions-master
savejson.m
.m
ML-Course-Solutions-master/ex4/ex4_octave/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
jellis18/ML-Course-Solutions-master
loadjson.m
.m
ML-Course-Solutions-master/ex4/ex4_octave/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jellis18/ML-Course-Solutions-master
loadubjson.m
.m
ML-Course-Solutions-master/ex4/ex4_octave/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jellis18/ML-Course-Solutions-master
saveubjson.m
.m
ML-Course-Solutions-master/ex4/ex4_octave/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
jellis18/ML-Course-Solutions-master
submit.m
.m
ML-Course-Solutions-master/ex3/ex3_octave/submit.m
1,567
utf_8
1dba733a05282b2db9f2284548483b81
function submit() addpath('./lib'); conf.assignmentSlug = 'multi-class-classification-and-neural-networks'; conf.itemName = 'Multi-class Classification and Neural Networks'; conf.partArrays = { ... { ... '1', ... { 'lrCostFunction.m' }, ... 'Regularized Logistic Regression', ... }, ... { ... '2', ... { 'oneVsAll.m' }, ... 'One-vs-All Classifier Training', ... }, ... { ... '3', ... { 'predictOneVsAll.m' }, ... 'One-vs-All Classifier Prediction', ... }, ... { ... '4', ... { 'predict.m' }, ... 'Neural Network Prediction Function' ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxdata) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ... 1 1 ; 1 2 ; 2 1 ; 2 2 ; ... -1 1 ; -1 2 ; -2 1 ; -2 2 ; ... 1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ]; ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]'; t1 = sin(reshape(1:2:24, 4, 3)); t2 = cos(reshape(1:2:40, 4, 5)); if partId == '1' [J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; elseif partId == '2' out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1)); elseif partId == '3' out = sprintf('%0.5f ', predictOneVsAll(t1, Xm)); elseif partId == '4' out = sprintf('%0.5f ', predict(t1, t2, Xm)); end end
github
jellis18/ML-Course-Solutions-master
submitWithConfiguration.m
.m
ML-Course-Solutions-master/ex3/ex3_octave/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
jellis18/ML-Course-Solutions-master
savejson.m
.m
ML-Course-Solutions-master/ex3/ex3_octave/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
jellis18/ML-Course-Solutions-master
loadjson.m
.m
ML-Course-Solutions-master/ex3/ex3_octave/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jellis18/ML-Course-Solutions-master
loadubjson.m
.m
ML-Course-Solutions-master/ex3/ex3_octave/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jellis18/ML-Course-Solutions-master
saveubjson.m
.m
ML-Course-Solutions-master/ex3/ex3_octave/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
jellis18/ML-Course-Solutions-master
submit.m
.m
ML-Course-Solutions-master/ex1/ex1_octave/submit.m
1,876
utf_8
8d1c467b830a89c187c05b121cb8fbfd
function submit() addpath('./lib'); conf.assignmentSlug = 'linear-regression'; conf.itemName = 'Linear Regression with Multiple Variables'; conf.partArrays = { ... { ... '1', ... { 'warmUpExercise.m' }, ... 'Warm-up Exercise', ... }, ... { ... '2', ... { 'computeCost.m' }, ... 'Computing Cost (for One Variable)', ... }, ... { ... '3', ... { 'gradientDescent.m' }, ... 'Gradient Descent (for One Variable)', ... }, ... { ... '4', ... { 'featureNormalize.m' }, ... 'Feature Normalization', ... }, ... { ... '5', ... { 'computeCostMulti.m' }, ... 'Computing Cost (for Multiple Variables)', ... }, ... { ... '6', ... { 'gradientDescentMulti.m' }, ... 'Gradient Descent (for Multiple Variables)', ... }, ... { ... '7', ... { 'normalEqn.m' }, ... 'Normal Equations', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId) % Random Test Cases X1 = [ones(20,1) (exp(1) + exp(2) * (0.1:0.1:2))']; Y1 = X1(:,2) + sin(X1(:,1)) + cos(X1(:,2)); X2 = [X1 X1(:,2).^0.5 X1(:,2).^0.25]; Y2 = Y1.^0.5 + Y1; if partId == '1' out = sprintf('%0.5f ', warmUpExercise()); elseif partId == '2' out = sprintf('%0.5f ', computeCost(X1, Y1, [0.5 -0.5]')); elseif partId == '3' out = sprintf('%0.5f ', gradientDescent(X1, Y1, [0.5 -0.5]', 0.01, 10)); elseif partId == '4' out = sprintf('%0.5f ', featureNormalize(X2(:,2:4))); elseif partId == '5' out = sprintf('%0.5f ', computeCostMulti(X2, Y2, [0.1 0.2 0.3 0.4]')); elseif partId == '6' out = sprintf('%0.5f ', gradientDescentMulti(X2, Y2, [-0.1 -0.2 -0.3 -0.4]', 0.01, 10)); elseif partId == '7' out = sprintf('%0.5f ', normalEqn(X2, Y2)); end end
github
jellis18/ML-Course-Solutions-master
submitWithConfiguration.m
.m
ML-Course-Solutions-master/ex1/ex1_octave/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
jellis18/ML-Course-Solutions-master
savejson.m
.m
ML-Course-Solutions-master/ex1/ex1_octave/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
jellis18/ML-Course-Solutions-master
loadjson.m
.m
ML-Course-Solutions-master/ex1/ex1_octave/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jellis18/ML-Course-Solutions-master
loadubjson.m
.m
ML-Course-Solutions-master/ex1/ex1_octave/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jellis18/ML-Course-Solutions-master
saveubjson.m
.m
ML-Course-Solutions-master/ex1/ex1_octave/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
jellis18/ML-Course-Solutions-master
submit.m
.m
ML-Course-Solutions-master/ex5/ex5_octave/submit.m
1,765
utf_8
b1804fe5854d9744dca981d250eda251
function submit() addpath('./lib'); conf.assignmentSlug = 'regularized-linear-regression-and-bias-variance'; conf.itemName = 'Regularized Linear Regression and Bias/Variance'; conf.partArrays = { ... { ... '1', ... { 'linearRegCostFunction.m' }, ... 'Regularized Linear Regression Cost Function', ... }, ... { ... '2', ... { 'linearRegCostFunction.m' }, ... 'Regularized Linear Regression Gradient', ... }, ... { ... '3', ... { 'learningCurve.m' }, ... 'Learning Curve', ... }, ... { ... '4', ... { 'polyFeatures.m' }, ... 'Polynomial Feature Mapping', ... }, ... { ... '5', ... { 'validationCurve.m' }, ... 'Validation Curve', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = [ones(10,1) sin(1:1.5:15)' cos(1:1.5:15)']; y = sin(1:3:30)'; Xval = [ones(10,1) sin(0:1.5:14)' cos(0:1.5:14)']; yval = sin(1:10)'; if partId == '1' [J] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', J); elseif partId == '2' [J, grad] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', grad); elseif partId == '3' [error_train, error_val] = ... learningCurve(X, y, Xval, yval, 1); out = sprintf('%0.5f ', [error_train(:); error_val(:)]); elseif partId == '4' [X_poly] = polyFeatures(X(2,:)', 8); out = sprintf('%0.5f ', X_poly); elseif partId == '5' [lambda_vec, error_train, error_val] = ... validationCurve(X, y, Xval, yval); out = sprintf('%0.5f ', ... [lambda_vec(:); error_train(:); error_val(:)]); end end
github
jellis18/ML-Course-Solutions-master
submitWithConfiguration.m
.m
ML-Course-Solutions-master/ex5/ex5_octave/lib/submitWithConfiguration.m
3,734
utf_8
84d9a81848f6d00a7aff4f79bdbb6049
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf( ... '!! Submission failed: unexpected error: %s\n', ... e.message); fprintf('!! Please try again later.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); params = {'jsonBody', body}; responseBody = urlread(submissionUrl, 'post', params); response = loadjson(responseBody); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
jellis18/ML-Course-Solutions-master
savejson.m
.m
ML-Course-Solutions-master/ex5/ex5_octave/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
jellis18/ML-Course-Solutions-master
loadjson.m
.m
ML-Course-Solutions-master/ex5/ex5_octave/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jellis18/ML-Course-Solutions-master
loadubjson.m
.m
ML-Course-Solutions-master/ex5/ex5_octave/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jellis18/ML-Course-Solutions-master
saveubjson.m
.m
ML-Course-Solutions-master/ex5/ex5_octave/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
cheeyi/matlab-viola-jones-master
getCorners.m
.m
matlab-viola-jones-master/trainHaar/getCorners.m
476
utf_8
7f937ea5258eed38ff1175b9a50cbdda
% CSCi 5561 Spring 2015 - Semester Project % Authors: Stephen Peyton, Chee Yi Ong % Team: Who Is This (WIT) % getCorners.m - takes in an integral image and computes the sum of intensities % in the area bounded by the four coordinates function intensity = getCorners(img,startX,startY,endX,endY) a = img(startY,startX); b = img(startY,endX); c = img(endY,startX); d = img(endY,endX); intensity = d-(b+c)+a; % by property of the integral image end
github
cheeyi/matlab-viola-jones-master
adaboost.m
.m
matlab-viola-jones-master/trainHaar/adaboost.m
2,009
utf_8
20c681c7f800a1767191118007cddcf3
% CSCi 5561 Spring 2015 - Semester Project % Authors: Stephen Peyton, Chee Yi Ong % Team: Who Is This (WIT) % adaboost.m - boosts classifiers adaptively by updating their weights % alpha values, and for individual images by updating image weights function [newWeights,alpha] = adaboost(classifier, images, imgWeights) imgsSize = 2429+4547; % total number of images in MIT database faceSize = 2429; % number of face images captures = zeros(imgsSize,1); error = 0; for i = 1:imgsSize img = images{i}; % obtains classifier metadata from fields in the row vector haar = classifier(1); pixelX = classifier(2); pixelY = classifier(3); haarX = classifier(4); haarY = classifier(5); % calculates intensity difference between black-white region of the % Haar feature and checks against the precalculated range haarVal = calcHaarVal(img,haar,pixelX,pixelY,haarX,haarY); if haarVal >= classifier(9) && haarVal <= classifier(10) % if falls between correct value if i <= faceSize % if its a face captures(i) = 1; % correct capture else captures(i) = 0; % error error = error + imgWeights(i); % increase weighted error count end else % if falls outside the expected range if i <= faceSize % if is a face captures(i) = 0; error = error + imgWeights(i); % error else captures(i) = 1; end end end alpha = 0.5*log((1-error)/error); % updates classifier weight (alpha) % modifies images' weights by whether it is a successful capture or not % correct captures result in lower weights; false captures result in higher % weight to put more emphasis on them for i = 1:imgsSize if captures(i) == 0 imgWeights(i) = imgWeights(i).*exp(alpha); else imgWeights(i) = imgWeights(i).*exp(-alpha); end end imgWeights = imgWeights./sum(imgWeights); % normalize image weights newWeights = imgWeights; % pass as function output end
github
cheeyi/matlab-viola-jones-master
integralImg.m
.m
matlab-viola-jones-master/trainHaar/integralImg.m
408
utf_8
b43aef069cc743777107f0d98e0c5049
% CSCi 5561 Spring 2015 - Semester Project % Authors: Stephen Peyton, Chee Yi Ong % Team: Who Is This (WIT) % integralImg.m - computes integral images for face detection using Viola-Jones algorithm function outimg = integralImg (inimg) % cumulative sum for each pixel of all rows and columns to the left and % above the corresponding pixel outimg = cumsum(cumsum(double(inimg),2)); end
github
cheeyi/matlab-viola-jones-master
calcHaarVal.m
.m
matlab-viola-jones-master/trainHaar/calcHaarVal.m
2,211
utf_8
90754d086b3f1a2d9cca31b688737a8a
% CSCi 5561 Spring 2015 - Semester Project % Authors: Stephen Peyton, Chee Yi Ong % Team: Who Is This (WIT) % calcHaarVal.m - computes intensity differences between white/black region of Haar features function val = calcHaarVal(img,haar,pixelX,pixelY,haarX,haarY) % img: integral image of an input image % haar: which Haar feature (1-5) % pixelX/Y: start point in (X,Y) % haarX/Y: Haar feature size in X and Y directions % getCorners() finds the total of the pixel intensity values in a white/black "box" moveX = haarX-1; moveY = haarY-1; if haar == 1 % top/down white-black white = getCorners(img,pixelX,pixelY,pixelX+moveX,pixelY+floor(moveY/2)); black = getCorners(img,pixelX,pixelY+ceil(moveY/2),pixelX+moveX,pixelY+moveY); val = white-black; elseif haar == 2 % left/right white-black white = getCorners(img,pixelX,pixelY,pixelX+floor(moveX/2),pixelY+moveY); black = getCorners(img,pixelX+ceil(moveX/2),pixelY,pixelX+moveX,pixelY+moveY); val = white-black; elseif haar == 3 % top/mid/bottom white-black-white white1 = getCorners(img,pixelX,pixelY,pixelX+moveX,pixelY+floor(moveY/3)); black = getCorners(img,pixelX,pixelY+ceil(moveY/3),pixelX+moveX,pixelY+floor((moveY)*(2/3))); white2 = getCorners(img,pixelX,pixelY+ceil((moveY)*(2/3)),pixelX+moveX,pixelY+moveY); val = white1 + white2 - black; elseif haar == 4 % left/mid/right white-black-white white1 = getCorners(img,pixelX,pixelY,pixelX+floor(moveX/3),pixelY+moveY); black = getCorners(img,pixelX+ceil(moveX/3),pixelY,pixelX+floor((moveX)*(2/3)),pixelY+moveY); white2 = getCorners(img,pixelX+ceil((moveX)*(2/3)),pixelY,pixelX+moveX,pixelY+moveY); val = white1 + white2 - black; elseif haar == 5 % checkerboard-style white-black-white-black white1 = getCorners(img,pixelX,pixelY,pixelX+floor(moveX/2),pixelY+floor(moveY/2)); black1 = getCorners(img,pixelX+ceil(moveX/2),pixelY,pixelX+moveX,pixelY+floor(moveY/2)); black2 = getCorners(img,pixelX,pixelY+ceil(moveY/2),pixelX+floor(moveX/2),pixelY+moveY); white2 = getCorners(img,pixelX+ceil(moveX/2),pixelY+ceil(moveY/2),pixelX+moveX,pixelY+moveY); val = white1+white2-(black1+black2); end
github
cheeyi/matlab-viola-jones-master
detectFaces.m
.m
matlab-viola-jones-master/detectFaces/detectFaces.m
5,100
utf_8
6beba44eabfe8673425995a9d26f7c57
% CSCi 5561 Spring 2015 - Semester Project % Authors: Stephen Peyton, Chee Yi Ong % Team: Who Is This (WIT) % detectFaces.m - detects face using trained classifiers function [faces,faceBound] = detectFaces(img) % preprocessing by Gaussian filtering img2 = img; % keep a copy of the original color 3D image img = imread(img); img = rgb2gray(img); img = conv2(img,fspecial('gaussian',3,3),'same'); % get image parameters [m,n] = size(img); % other variables scanItr = 8; % can be modified depending on how big face is relative to image % scanItr of 8 works well for images with size about 300x400 faces = []; % empty by default % compute integral image intImg = integralImg(img); % load finalClassifiers load '../trainHaar/trainedClassifiers.mat' % 286 classifiers %%%%% Cascaded Detector Structure: 7 levels, 200 classifiers %%%%% class1 = selectedClassifiers(1:2,:); class2 = selectedClassifiers(3:12,:); class3 = selectedClassifiers(13:20,:); class4 = selectedClassifiers(21:40,:); class5 = selectedClassifiers(41:70,:); class6 = selectedClassifiers(71:150,:); class7 = selectedClassifiers(151:200,:); % iterate through each window size/pyramid level for itr = 1:scanItr printout = strcat('Iteration #',int2str(itr),'\n'); fprintf(printout); for i = 1:2:m-19 if i + 19 > m break; % boundary case check end for j = 1:2:n-19 if j + 19 > n break; % boundary case check end window = intImg(i:i+18,j:j+18); % 19x19 window as per training check1 = cascade(class1,window,1); if check1 == 1 check2 = cascade(class2,window,.5); if check2 == 1 check3 = cascade(class3,window,.5); if check3 == 1 check4 = cascade(class4,window,.5); if check4 == 1 check5 = cascade(class5,window,.6); if check5 == 1 check6 = cascade(class6,window,.6); if check6 == 1 fprintf('Passed level 6 cascade.\n'); check7 = cascade(class7,window,.5); if check7 == 1 % save rectangular corner coordinates bounds = [j,i,j+18,i+18,itr]; fprintf('Face detected!\n'); faces = [faces;bounds]; end end end end end end end end end % create next image pyramid level tempImg = imresize(img,.8); img = tempImg; [m,n] = size(img); intImg = integralImg(img); end if size(faces,1) == 0 % no faces detected error('No face detected! Try again with a larger value of scanItr.'); end %%%%% Get Best Bounding Box %%%%% % upscale rectangular bound coordinates back to base level of pyramid faceBound = zeros(size(faces,1),4); maxItr = max(faces(:,5)); % higher iterations have larger bounding boxes for i = 1:size(faces,1) if faces(i,5) ~= maxItr continue; % only interested in large bounding boxes end faceBound(i,:) = floor(faces(i,1:4)*1.25^(faces(i,5)-1)); end % filter out overlapping rectangular bounding boxes startRow = 1; for i = 1:size(faceBound,1) if faceBound(i,1) == 0 startRow = startRow+1; % start with next row end end faceBound = faceBound(startRow:end,:); % trim faceBound to get rid of 0-filled rows % get the union of the areas of overlapping boxes faceBound = [min(faceBound(:,1)),min(faceBound(:,2)),max(faceBound(:,3)),max(faceBound(:,4))]; % Show the detected face(s) with original image figure,imshow(img2), hold on; if(~isempty(faceBound)); for n=1:size(faceBound,1) toleranceX = floor(0.1*(faceBound(n,3)-faceBound(n,1))); toleranceY = floor(0.1*(faceBound(n,4)-faceBound(n,2))); % original bounds x1=faceBound(n,1); y1=faceBound(n,2); x2=faceBound(n,3); y2=faceBound(n,4); % adjusted bounds to get wider face capture x1t=faceBound(n,1)-toleranceX; y1t=faceBound(n,2)-toleranceY; x2t=faceBound(n,3)+toleranceX; y2t=faceBound(n,4)+toleranceY; imSize = size(imread(img2)); % if adjusted bounds will lead to out-of-bounds plotting, use original bounds if x1t < 1 || y1t < 1 || x2t > imSize(2) || y2t > imSize(1) fprintf('Out of bounds adjustments. Plotting original values...\n'); plot([x1 x1 x2 x2 x1],[y1 y2 y2 y1 y1],'LineWidth',2); else plot([x1t x1t x2t x2t x1t],[y1t y2t y2t y1t y1t],'LineWidth',2); end end end title('Detected face in image'); hold off; end
github
cheeyi/matlab-viola-jones-master
getCorners.m
.m
matlab-viola-jones-master/detectFaces/getCorners.m
476
utf_8
7f937ea5258eed38ff1175b9a50cbdda
% CSCi 5561 Spring 2015 - Semester Project % Authors: Stephen Peyton, Chee Yi Ong % Team: Who Is This (WIT) % getCorners.m - takes in an integral image and computes the sum of intensities % in the area bounded by the four coordinates function intensity = getCorners(img,startX,startY,endX,endY) a = img(startY,startX); b = img(startY,endX); c = img(endY,startX); d = img(endY,endX); intensity = d-(b+c)+a; % by property of the integral image end
github
cheeyi/matlab-viola-jones-master
integralImg.m
.m
matlab-viola-jones-master/detectFaces/integralImg.m
408
utf_8
b43aef069cc743777107f0d98e0c5049
% CSCi 5561 Spring 2015 - Semester Project % Authors: Stephen Peyton, Chee Yi Ong % Team: Who Is This (WIT) % integralImg.m - computes integral images for face detection using Viola-Jones algorithm function outimg = integralImg (inimg) % cumulative sum for each pixel of all rows and columns to the left and % above the corresponding pixel outimg = cumsum(cumsum(double(inimg),2)); end
github
cheeyi/matlab-viola-jones-master
cascade.m
.m
matlab-viola-jones-master/detectFaces/cascade.m
1,100
utf_8
980b8eab5cff6a4b3b313c8997ebfc7c
% CSCi 5561 Spring 2015 - Semester Project % Authors: Stephen Peyton, Chee Yi Ong % Team: Who Is This (WIT) % cascade.m - takes in a set of classifiers and an image subwindow and % classifies it as either a face or non-face function output = cascade(classifiers,img,thresh) result = 0; px = size(classifiers,1); weightSum = sum(classifiers(:,12)); % iterate through each classifier for i = 1:px classifier = classifiers(i,:); haar = classifier(1); pixelX = classifier(2); pixelY = classifier(3); haarX = classifier(4); haarY = classifier(5); % calculate the feature value for the subwindow using the current % classifier haarVal = calcHaarVal(img,haar,pixelX,pixelY,haarX,haarY); if haarVal >= classifier(9) && haarVal <= classifier(10) % increase score by the weight of the corresponding classifier score = classifier(12); else score = 0; end result = result + score; end % compare resulting weighted success rate to the threshold value if result >= weightSum*thresh output = 1; % hit else output = 0; % miss end end
github
cheeyi/matlab-viola-jones-master
calcHaarVal.m
.m
matlab-viola-jones-master/detectFaces/calcHaarVal.m
2,211
utf_8
90754d086b3f1a2d9cca31b688737a8a
% CSCi 5561 Spring 2015 - Semester Project % Authors: Stephen Peyton, Chee Yi Ong % Team: Who Is This (WIT) % calcHaarVal.m - computes intensity differences between white/black region of Haar features function val = calcHaarVal(img,haar,pixelX,pixelY,haarX,haarY) % img: integral image of an input image % haar: which Haar feature (1-5) % pixelX/Y: start point in (X,Y) % haarX/Y: Haar feature size in X and Y directions % getCorners() finds the total of the pixel intensity values in a white/black "box" moveX = haarX-1; moveY = haarY-1; if haar == 1 % top/down white-black white = getCorners(img,pixelX,pixelY,pixelX+moveX,pixelY+floor(moveY/2)); black = getCorners(img,pixelX,pixelY+ceil(moveY/2),pixelX+moveX,pixelY+moveY); val = white-black; elseif haar == 2 % left/right white-black white = getCorners(img,pixelX,pixelY,pixelX+floor(moveX/2),pixelY+moveY); black = getCorners(img,pixelX+ceil(moveX/2),pixelY,pixelX+moveX,pixelY+moveY); val = white-black; elseif haar == 3 % top/mid/bottom white-black-white white1 = getCorners(img,pixelX,pixelY,pixelX+moveX,pixelY+floor(moveY/3)); black = getCorners(img,pixelX,pixelY+ceil(moveY/3),pixelX+moveX,pixelY+floor((moveY)*(2/3))); white2 = getCorners(img,pixelX,pixelY+ceil((moveY)*(2/3)),pixelX+moveX,pixelY+moveY); val = white1 + white2 - black; elseif haar == 4 % left/mid/right white-black-white white1 = getCorners(img,pixelX,pixelY,pixelX+floor(moveX/3),pixelY+moveY); black = getCorners(img,pixelX+ceil(moveX/3),pixelY,pixelX+floor((moveX)*(2/3)),pixelY+moveY); white2 = getCorners(img,pixelX+ceil((moveX)*(2/3)),pixelY,pixelX+moveX,pixelY+moveY); val = white1 + white2 - black; elseif haar == 5 % checkerboard-style white-black-white-black white1 = getCorners(img,pixelX,pixelY,pixelX+floor(moveX/2),pixelY+floor(moveY/2)); black1 = getCorners(img,pixelX+ceil(moveX/2),pixelY,pixelX+moveX,pixelY+floor(moveY/2)); black2 = getCorners(img,pixelX,pixelY+ceil(moveY/2),pixelX+floor(moveX/2),pixelY+moveY); white2 = getCorners(img,pixelX+ceil(moveX/2),pixelY+ceil(moveY/2),pixelX+moveX,pixelY+moveY); val = white1+white2-(black1+black2); end
github
ddtm/OpenFace-master
ParseSEMAINEAnnotations.m
.m
OpenFace-master/matlab_version/AU_training/data extraction/ParseSEMAINEAnnotations.m
6,528
utf_8
0795976652454c15fa1dcb350c725f30
% Function ParseSEMAINEAnnotations is intended to demonstrate example usage % of SEMAINE Action Unit annotations made with ELAN annotation toolbox. % This function loads the XML structure from an ELAN annotation file with % ".eaf" extension, parses it and returns a numerical matrix called % "activations" of size NUMBER OF FRAMES X NUMBER OF ACTION UNITS. The % matrix holds binary activation status for each frame / AU combination. % The matrix also has a row header showing which AU corresponds to which % row as well as a column header displaying original frame indexes. % The function takes 1 compulsory and 2 optional arguments: % - "filepath" (compulsory) - complete path to an annotation file to parse. % For example, "/matlab/annotation.eaf" or "C:\matlab\annotation.eaf" on % Windows. % - "startFrame" (optional) - ignore all annotations before "startFrame". % Default is 1. % - "endFrame" (optional) - ignore all annotations after "endFrame". % Default is the last frame of a video. % The function requires XML IO Toolbox % (http://www.mathworks.com/matlabcentral/fileexchange/12907-xml-io-tools) % to run properly (supplied). function activations = ParseSEMAINEAnnotations (filepath, startFrame, endFrame) activations = []; % Framerate value used to convert ELAN millisecond time slots to more % usual frames. 50 is a valid framerate for all SEMAINE videos. framerate = 50; % A fixed set of 6 Action Units selected for the challenge from the % SEMAINE annotations aus = [2 12 17 25 28 45]; % Total number of AUs. naus = length(aus); % Load XML structure from the file, return in case of a problem. [success, XML] = OpenXML(filepath); if ~success return end % Parse annotation time slots tslots = ParseTimeSlots(XML); % Init start and end frames with default values if nargin < 2 startFrame = 1; end if nargin < 3 % Get total number of time slots ntslots = length(tslots); % Get last slot ID lastID = strcat('ts', num2str(ntslots)); % Get last time slot value in ms lastValue = tslots(lastID); % Convert last time slot value in ms to frames endFrame = floor((lastValue / 1000) * framerate); end % Get total number of tiers. There are 65 of them, 1 for speech, 32 for % activations (1 per AU) and 32 for intensities. We are going to ignore % intensity tiers. ntiers = length(XML.TIER); % Compose vector of frame indexes to extract annotations from frames = (startFrame:endFrame); % Preallocate activations matrix activations = zeros(length(frames), naus); indx = 1; % Go through all tiers skipping the first one (speech) as well as every % intensity tier. A single activation tier is processed at every % iteration. for k = 2:2:ntiers tier = XML.TIER(k); % Only extract annotations of selected AUs, skip the rest au = strcat('AU', num2str(aus(indx))); if strcmp(au, tier.ATTRIBUTE.TIER_ID) % Read all activation periods from the current tier activationTier = ParseActivationTier(tier, tslots); % Convert of all activation periods into frame level numerical % representation activations(:, indx) = ParseOccurrences(activationTier, frames, framerate); indx = indx + 1; end if indx > naus break end end activations = [frames' activations]; activations = [[0 aus]; activations]; end function occurrences = ParseOccurrences (activations, frames, framerate) % Preallocate activations vector occurrences = zeros(length(frames), 1); % Go through all activation periods, convert ms into frames and init % corresponding values of activations vector with 1 leaving the rest be 0 for i = 1:length(activations) % Convert ms into frames sframe = floor((activations(i).start / 1000) * framerate); eframe = floor((activations(i).end / 1000) * framerate); % Determine indexes of frames vector corresponding to the above % time frame sindx = find(frames == sframe); eindx = find(frames == eframe); % Mark active set of frames with 1 occurrences(sindx:eindx) = 1; end end function activationTier = ParseActivationTier (tier, tslots) % Get total number of activation periods nactivations = length(tier.ANNOTATION); % Preallocate activation tier structure holding start and end time % stamps of all activation periods for the given AU activationTier = repmat(struct('start', 0, 'end', 0), nactivations, 1); % Go through all activation periods and init activation tier % structure array for i = 1:nactivations % Read start time slot ID of the current activation period t = tier.ANNOTATION(i).ALIGNABLE_ANNOTATION.ATTRIBUTE.TIME_SLOT_REF1; % Read time in ms corresponding to the time slot ID activationTier(i).start = tslots(t); % Read end time slot ID of the current activation period t = tier.ANNOTATION(i).ALIGNABLE_ANNOTATION.ATTRIBUTE.TIME_SLOT_REF2; % Read time in ms corresponding to the time slot ID activationTier(i).end = tslots(t); end end function tslots = ParseTimeSlots (xmlObject) % Get total number of time slots nslots = length(xmlObject.TIME_ORDER.TIME_SLOT); % Preallocate cell arrays of time slot IDs and values tids = cell(nslots, 1); tvalues = zeros(nslots, 1); % Read all time slot IDs and numerical values (in ms) for i = 1:nslots tids{i} = xmlObject.TIME_ORDER.TIME_SLOT(i).ATTRIBUTE.TIME_SLOT_ID; tvalues(i) = xmlObject.TIME_ORDER.TIME_SLOT(i).ATTRIBUTE.TIME_VALUE; end % Map time slot IDs and values together so that values are accessible % by their IDs tslots = containers.Map(tids, tvalues); end function [success, xmlObject] = OpenXML (xmlPath) fprintf(' *** Attempting to load \"%s\" ... ', xmlPath); xmlObject = []; success = false; % Check if the specified file exists and return error otherwise if exist(xmlPath, 'file') % Load XML structure xmlObject = xml_read(xmlPath); % Check if XML object loaded correctly, return error otherwise if isempty(xmlObject) fprintf(' ERROR - unable to read xml tree *** \n'); return else success = true; end else fprintf(' ERROR - specified path does not exist *** \n'); return end fprintf(' Done *** \n'); end
github
ddtm/OpenFace-master
xml_write.m
.m
OpenFace-master/matlab_version/AU_training/data extraction/xml_io_tools_2010_11_05/xml_write.m
18,325
utf_8
24bd3dc683e5a0a0ad4080deaa6a93a5
function DOMnode = xml_write(filename, tree, RootName, Pref) %XML_WRITE Writes Matlab data structures to XML file % % DESCRIPTION % xml_write( filename, tree) Converts Matlab data structure 'tree' containing % cells, structs, numbers and strings to Document Object Model (DOM) node % tree, then saves it to XML file 'filename' using Matlab's xmlwrite % function. Optionally one can also use alternative version of xmlwrite % function which directly calls JAVA functions for XML writing without % MATLAB middleware. This function is provided as a patch to existing % bugs in xmlwrite (in R2006b). % % xml_write(filename, tree, RootName, Pref) allows you to specify % additional preferences about file format % % DOMnode = xml_write([], tree) same as above except that DOM node is % not saved to the file but returned. % % INPUT % filename file name % tree Matlab structure tree to store in xml file. % RootName String with XML tag name used for root (top level) node % Optionally it can be a string cell array storing: Name of % root node, document "Processing Instructions" data and % document "comment" string % Pref Other preferences: % Pref.ItemName - default 'item' - name of a special tag used to % itemize cell or struct arrays % Pref.XmlEngine - let you choose the XML engine. Currently default is % 'Xerces', which is using directly the apache xerces java file. % Other option is 'Matlab' which uses MATLAB's xmlwrite and its % XMLUtils java file. Both options create identical results except in % case of CDATA sections where xmlwrite fails. % Pref.CellItem - default 'true' - allow cell arrays to use 'item' % notation. See below. % Pref.RootOnly - default true - output variable 'tree' corresponds to % xml file root element, otherwise it correspond to the whole file. % Pref.StructItem - default 'true' - allow arrays of structs to use % 'item' notation. For example "Pref.StructItem = true" gives: % <a> % <b> % <item> ... <\item> % <item> ... <\item> % <\b> % <\a> % while "Pref.StructItem = false" gives: % <a> % <b> ... <\b> % <b> ... <\b> % <\a> % % % Several special xml node types can be created if special tags are used % for field names of 'tree' nodes: % - node.CONTENT - stores data section of the node if other fields % (usually ATTRIBUTE are present. Usually data section is stored % directly in 'node'. % - node.ATTRIBUTE.name - stores node's attribute called 'name'. % - node.COMMENT - create comment child node from the string. For global % comments see "RootName" input variable. % - node.PROCESSING_INSTRUCTIONS - create "processing instruction" child % node from the string. For global "processing instructions" see % "RootName" input variable. % - node.CDATA_SECTION - stores node's CDATA section (string). Only works % if Pref.XmlEngine='Xerces'. For more info, see comments of F_xmlwrite. % - other special node types like: document fragment nodes, document type % nodes, entity nodes and notation nodes are not being handled by % 'xml_write' at the moment. % % OUTPUT % DOMnode Document Object Model (DOM) node tree in the format % required as input to xmlwrite. (optional) % % EXAMPLES: % MyTree=[]; % MyTree.MyNumber = 13; % MyTree.MyString = 'Hello World'; % xml_write('test.xml', MyTree); % type('test.xml') % %See also xml_tutorial.m % % See also % xml_read, xmlread, xmlwrite % % Written by Jarek Tuszynski, SAIC, jaroslaw.w.tuszynski_at_saic.com %% Check Matlab Version v = ver('MATLAB'); v = str2double(regexp(v.Version, '\d.\d','match','once')); if (v<7) error('Your MATLAB version is too old. You need version 7.0 or newer.'); end %% default preferences DPref.TableName = {'tr','td'}; % name of a special tags used to itemize 2D cell arrays DPref.ItemName = 'item'; % name of a special tag used to itemize 1D cell arrays DPref.StructItem = true; % allow arrays of structs to use 'item' notation DPref.CellItem = true; % allow cell arrays to use 'item' notation DPref.StructTable= 'Html'; DPref.CellTable = 'Html'; DPref.XmlEngine = 'Matlab'; % use matlab provided XMLUtils %DPref.XmlEngine = 'Xerces'; % use Xerces xml generator directly DPref.PreserveSpace = false; % Preserve or delete spaces at the beggining and the end of stings? RootOnly = true; % Input is root node only GlobalProcInst = []; GlobalComment = []; GlobalDocType = []; %% read user preferences if (nargin>3) if (isfield(Pref, 'TableName' )), DPref.TableName = Pref.TableName; end if (isfield(Pref, 'ItemName' )), DPref.ItemName = Pref.ItemName; end if (isfield(Pref, 'StructItem')), DPref.StructItem = Pref.StructItem; end if (isfield(Pref, 'CellItem' )), DPref.CellItem = Pref.CellItem; end if (isfield(Pref, 'CellTable')), DPref.CellTable = Pref.CellTable; end if (isfield(Pref, 'StructTable')), DPref.StructTable= Pref.StructTable; end if (isfield(Pref, 'XmlEngine' )), DPref.XmlEngine = Pref.XmlEngine; end if (isfield(Pref, 'RootOnly' )), RootOnly = Pref.RootOnly; end if (isfield(Pref, 'PreserveSpace')), DPref.PreserveSpace = Pref.PreserveSpace; end end if (nargin<3 || isempty(RootName)), RootName=inputname(2); end if (isempty(RootName)), RootName='ROOT'; end if (iscell(RootName)) % RootName also stores global text node data rName = RootName; RootName = char(rName{1}); if (length(rName)>1), GlobalProcInst = char(rName{2}); end if (length(rName)>2), GlobalComment = char(rName{3}); end if (length(rName)>3), GlobalDocType = char(rName{4}); end end if(~RootOnly && isstruct(tree)) % if struct than deal with each field separatly fields = fieldnames(tree); for i=1:length(fields) field = fields{i}; x = tree(1).(field); if (strcmp(field, 'COMMENT')) GlobalComment = x; elseif (strcmp(field, 'PROCESSING_INSTRUCTION')) GlobalProcInst = x; elseif (strcmp(field, 'DOCUMENT_TYPE')) GlobalDocType = x; else RootName = field; t = x; end end tree = t; end %% Initialize jave object that will store xml data structure RootName = varName2str(RootName); if (~isempty(GlobalDocType)) % n = strfind(GlobalDocType, ' '); % if (~isempty(n)) % dtype = com.mathworks.xml.XMLUtils.createDocumentType(GlobalDocType); % end % DOMnode = com.mathworks.xml.XMLUtils.createDocument(RootName, dtype); warning('xml_io_tools:write:docType', ... 'DOCUMENT_TYPE node was encountered which is not supported yet. Ignoring.'); end DOMnode = com.mathworks.xml.XMLUtils.createDocument(RootName); %% Use recursive function to convert matlab data structure to XML root = DOMnode.getDocumentElement; struct2DOMnode(DOMnode, root, tree, DPref.ItemName, DPref); %% Remove the only child of the root node root = DOMnode.getDocumentElement; Child = root.getChildNodes; % create array of children nodes nChild = Child.getLength; % number of children if (nChild==1) node = root.removeChild(root.getFirstChild); while(node.hasChildNodes) root.appendChild(node.removeChild(node.getFirstChild)); end while(node.hasAttributes) % copy all attributes root.setAttributeNode(node.removeAttributeNode(node.getAttributes.item(0))); end end %% Save exotic Global nodes if (~isempty(GlobalComment)) DOMnode.insertBefore(DOMnode.createComment(GlobalComment), DOMnode.getFirstChild()); end if (~isempty(GlobalProcInst)) n = strfind(GlobalProcInst, ' '); if (~isempty(n)) proc = DOMnode.createProcessingInstruction(GlobalProcInst(1:(n(1)-1)),... GlobalProcInst((n(1)+1):end)); DOMnode.insertBefore(proc, DOMnode.getFirstChild()); end end % Not supported yet as the code below does not work % if (~isempty(GlobalDocType)) % n = strfind(GlobalDocType, ' '); % if (~isempty(n)) % dtype = DOMnode.createDocumentType(GlobalDocType); % DOMnode.insertBefore(dtype, DOMnode.getFirstChild()); % end % end %% save java DOM tree to XML file if (~isempty(filename)) if (strcmpi(DPref.XmlEngine, 'Xerces')) xmlwrite_xerces(filename, DOMnode); else xmlwrite(filename, DOMnode); end end %% ======================================================================= % === struct2DOMnode Function =========================================== % ======================================================================= function [] = struct2DOMnode(xml, parent, s, TagName, Pref) % struct2DOMnode is a recursive function that converts matlab's structs to % DOM nodes. % INPUTS: % xml - jave object that will store xml data structure % parent - parent DOM Element % s - Matlab data structure to save % TagName - name to be used in xml tags describing 's' % Pref - preferenced % OUTPUT: % parent - modified 'parent' % perform some conversions if (ischar(s) && min(size(s))>1) % if 2D array of characters s=cellstr(s); % than convert to cell array end % if (strcmp(TagName, 'CONTENT')) % while (iscell(s) && length(s)==1), s = s{1}; end % unwrap cell arrays of length 1 % end TagName = varName2str(TagName); %% == node is a 2D cell array == % convert to some other format prior to further processing nDim = nnz(size(s)>1); % is it a scalar, vector, 2D array, 3D cube, etc? if (iscell(s) && nDim==2 && strcmpi(Pref.CellTable, 'Matlab')) s = var2str(s, Pref.PreserveSpace); end if (nDim==2 && (iscell (s) && strcmpi(Pref.CellTable, 'Vector')) || ... (isstruct(s) && strcmpi(Pref.StructTable, 'Vector'))) s = s(:); end if (nDim>2), s = s(:); end % can not handle this case well nItem = numel(s); nDim = nnz(size(s)>1); % is it a scalar, vector, 2D array, 3D cube, etc? %% == node is a cell == if (iscell(s)) % if this is a cell or cell array if ((nDim==2 && strcmpi(Pref.CellTable,'Html')) || (nDim< 2 && Pref.CellItem)) % if 2D array of cells than can use HTML-like notation or if 1D array % than can use item notation if (strcmp(TagName, 'CONTENT')) % CONTENT nodes already have <TagName> ... </TagName> array2DOMnode(xml, parent, s, Pref.ItemName, Pref ); % recursive call else node = xml.createElement(TagName); % <TagName> ... </TagName> array2DOMnode(xml, node, s, Pref.ItemName, Pref ); % recursive call parent.appendChild(node); end else % use <TagName>...<\TagName> <TagName>...<\TagName> notation array2DOMnode(xml, parent, s, TagName, Pref ); % recursive call end %% == node is a struct == elseif (isstruct(s)) % if struct than deal with each field separatly if ((nDim==2 && strcmpi(Pref.StructTable,'Html')) || (nItem>1 && Pref.StructItem)) % if 2D array of structs than can use HTML-like notation or % if 1D array of structs than can use 'items' notation node = xml.createElement(TagName); array2DOMnode(xml, node, s, Pref.ItemName, Pref ); % recursive call parent.appendChild(node); elseif (nItem>1) % use <TagName>...<\TagName> <TagName>...<\TagName> notation array2DOMnode(xml, parent, s, TagName, Pref ); % recursive call else % otherwise save each struct separatelly fields = fieldnames(s); node = xml.createElement(TagName); for i=1:length(fields) % add field by field to the node field = fields{i}; x = s.(field); switch field case {'COMMENT', 'CDATA_SECTION', 'PROCESSING_INSTRUCTION'} if iscellstr(x) % cell array of strings -> add them one by one array2DOMnode(xml, node, x(:), field, Pref ); % recursive call will modify 'node' elseif ischar(x) % single string -> add it struct2DOMnode(xml, node, x, field, Pref ); % recursive call will modify 'node' else % not a string - Ignore warning('xml_io_tools:write:badSpecialNode', ... ['Struct field named ',field,' encountered which was not a string. Ignoring.']); end case 'ATTRIBUTE' % set attributes of the node if (isempty(x)), continue; end if (isstruct(x)) attName = fieldnames(x); % get names of all the attributes for k=1:length(attName) % attach them to the node att = xml.createAttribute(varName2str(attName(k))); att.setValue(var2str(x.(attName{k}),Pref.PreserveSpace)); node.setAttributeNode(att); end else warning('xml_io_tools:write:badAttribute', ... 'Struct field named ATTRIBUTE encountered which was not a struct. Ignoring.'); end otherwise % set children of the node struct2DOMnode(xml, node, x, field, Pref ); % recursive call will modify 'node' end end % end for i=1:nFields parent.appendChild(node); end %% == node is a leaf node == else % if not a struct and not a cell than it is a leaf node switch TagName % different processing depending on desired type of the node case 'COMMENT' % create comment node com = xml.createComment(s); parent.appendChild(com); case 'CDATA_SECTION' % create CDATA Section cdt = xml.createCDATASection(s); parent.appendChild(cdt); case 'PROCESSING_INSTRUCTION' % set attributes of the node OK = false; if (ischar(s)) n = strfind(s, ' '); if (~isempty(n)) proc = xml.createProcessingInstruction(s(1:(n(1)-1)),s((n(1)+1):end)); parent.insertBefore(proc, parent.getFirstChild()); OK = true; end end if (~OK) warning('xml_io_tools:write:badProcInst', ... ['Struct field named PROCESSING_INSTRUCTION need to be',... ' a string, for example: xml-stylesheet type="text/css" ', ... 'href="myStyleSheet.css". Ignoring.']); end case 'CONTENT' % this is text part of already existing node txt = xml.createTextNode(var2str(s, Pref.PreserveSpace)); % convert to text parent.appendChild(txt); otherwise % I guess it is a regular text leaf node txt = xml.createTextNode(var2str(s, Pref.PreserveSpace)); node = xml.createElement(TagName); node.appendChild(txt); parent.appendChild(node); end end % of struct2DOMnode function %% ======================================================================= % === array2DOMnode Function ============================================ % ======================================================================= function [] = array2DOMnode(xml, parent, s, TagName, Pref) % Deal with 1D and 2D arrays of cell or struct. Will modify 'parent'. nDim = nnz(size(s)>1); % is it a scalar, vector, 2D array, 3D cube, etc? switch nDim case 2 % 2D array for r=1:size(s,1) subnode = xml.createElement(Pref.TableName{1}); for c=1:size(s,2) v = s(r,c); if iscell(v), v = v{1}; end struct2DOMnode(xml, subnode, v, Pref.TableName{2}, Pref ); % recursive call end parent.appendChild(subnode); end case 1 %1D array for iItem=1:numel(s) v = s(iItem); if iscell(v), v = v{1}; end struct2DOMnode(xml, parent, v, TagName, Pref ); % recursive call end case 0 % scalar -> this case should never be called if ~isempty(s) if iscell(s), s = s{1}; end struct2DOMnode(xml, parent, s, TagName, Pref ); end end %% ======================================================================= % === var2str Function ================================================== % ======================================================================= function str = var2str(object, PreserveSpace) % convert matlab variables to a string switch (1) case isempty(object) str = ''; case (isnumeric(object) || islogical(object)) if ndims(object)>2, object=object(:); end % can't handle arrays with dimention > 2 str=mat2str(object); % convert matrix to a string % mark logical scalars with [] (logical arrays already have them) so the xml_read % recognizes them as MATLAB objects instead of strings. Same with sparse % matrices if ((islogical(object) && isscalar(object)) || issparse(object)), str = ['[' str ']']; end if (isinteger(object)), str = ['[', class(object), '(', str ')]']; end case iscell(object) if ndims(object)>2, object=object(:); end % can't handle cell arrays with dimention > 2 [nr nc] = size(object); obj2 = object; for i=1:length(object(:)) str = var2str(object{i}, PreserveSpace); if (ischar(object{i})), object{i} = ['''' object{i} '''']; else object{i}=str; end obj2{i} = [object{i} ',']; end for r = 1:nr, obj2{r,nc} = [object{r,nc} ';']; end obj2 = obj2.'; str = ['{' obj2{:} '}']; case isstruct(object) str=''; warning('xml_io_tools:write:var2str', ... 'Struct was encountered where string was expected. Ignoring.'); case isa(object, 'function_handle') str = ['[@' char(object) ']']; case ischar(object) str = object; otherwise str = char(object); end %% string clean-up str=str(:); str=str.'; % make sure this is a row vector of char's if (~isempty(str)) str(str<32|str==127)=' '; % convert no-printable characters to spaces if (~PreserveSpace) str = strtrim(str); % remove spaces from begining and the end str = regexprep(str,'\s+',' '); % remove multiple spaces end end %% ======================================================================= % === var2Namestr Function ============================================== % ======================================================================= function str = varName2str(str) % convert matlab variable names to a sting str = char(str); p = strfind(str,'0x'); if (~isempty(p)) for i=1:length(p) before = str( p(i)+(0:3) ); % string to replace after = char(hex2dec(before(3:4))); % string to replace with str = regexprep(str,before,after, 'once', 'ignorecase'); p=p-3; % since 4 characters were replaced with one - compensate end end str = regexprep(str,'_COLON_',':', 'once', 'ignorecase'); str = regexprep(str,'_DASH_' ,'-', 'once', 'ignorecase');
github
ddtm/OpenFace-master
xml_read.m
.m
OpenFace-master/matlab_version/AU_training/data extraction/xml_io_tools_2010_11_05/xml_read.m
23,858
utf_8
d68b7e27ad197bc94b445c3a833b9f23
function [tree, RootName, DOMnode] = xml_read(xmlfile, Pref) %XML_READ reads xml files and converts them into Matlab's struct tree. % % DESCRIPTION % tree = xml_read(xmlfile) reads 'xmlfile' into data structure 'tree' % % tree = xml_read(xmlfile, Pref) reads 'xmlfile' into data structure 'tree' % according to your preferences % % [tree, RootName, DOMnode] = xml_read(xmlfile) get additional information % about XML file % % INPUT: % xmlfile URL or filename of xml file to read % Pref Preferences: % Pref.ItemName - default 'item' - name of a special tag used to itemize % cell arrays % Pref.ReadAttr - default true - allow reading attributes % Pref.ReadSpec - default true - allow reading special nodes % Pref.Str2Num - default 'smart' - convert strings that look like numbers % to numbers. Options: "always", "never", and "smart" % Pref.KeepNS - default true - keep or strip namespace info % Pref.NoCells - default true - force output to have no cell arrays % Pref.Debug - default false - show mode specific error messages % Pref.NumLevels- default infinity - how many recursive levels are % allowed. Can be used to speed up the function by prunning the tree. % Pref.RootOnly - default true - output variable 'tree' corresponds to % xml file root element, otherwise it correspond to the whole file. % Pref.CellItem - default 'true' - leave 'item' nodes in cell notation. % OUTPUT: % tree tree of structs and/or cell arrays corresponding to xml file % RootName XML tag name used for root (top level) node. % Optionally it can be a string cell array storing: Name of % root node, document "Processing Instructions" data and % document "comment" string % DOMnode output of xmlread % % DETAILS: % Function xml_read first calls MATLAB's xmlread function and than % converts its output ('Document Object Model' tree of Java objects) % to tree of MATLAB struct's. The output is in format of nested structs % and cells. In the output data structure field names are based on % XML tags, except in cases when tags produce illegal variable names. % % Several special xml node types result in special tags for fields of % 'tree' nodes: % - node.CONTENT - stores data section of the node if other fields are % present. Usually data section is stored directly in 'node'. % - node.ATTRIBUTE.name - stores node's attribute called 'name'. % - node.COMMENT - stores node's comment section (string). For global % comments see "RootName" output variable. % - node.CDATA_SECTION - stores node's CDATA section (string). % - node.PROCESSING_INSTRUCTIONS - stores "processing instruction" child % node. For global "processing instructions" see "RootName" output variable. % - other special node types like: document fragment nodes, document type % nodes, entity nodes, notation nodes and processing instruction nodes % will be treated like regular nodes % % EXAMPLES: % MyTree=[]; % MyTree.MyNumber = 13; % MyTree.MyString = 'Hello World'; % xml_write('test.xml', MyTree); % [tree treeName] = xml_read ('test.xml'); % disp(treeName) % gen_object_display() % % See also xml_examples.m % % See also: % xml_write, xmlread, xmlwrite % % Written by Jarek Tuszynski, SAIC, jaroslaw.w.tuszynski_at_saic.com % References: % - Function inspired by Example 3 found in xmlread function. % - Output data structures inspired by xml_toolbox structures. %% default preferences DPref.TableName = {'tr','td'}; % name of a special tags used to itemize 2D cell arrays DPref.ItemName = 'item'; % name of a special tag used to itemize 1D cell arrays DPref.CellItem = false; % leave 'item' nodes in cell notation DPref.ReadAttr = true; % allow reading attributes DPref.ReadSpec = true; % allow reading special nodes: comments, CData, etc. DPref.KeepNS = true; % Keep or strip namespace info DPref.Str2Num = 'smart';% convert strings that look like numbers to numbers DPref.NoCells = true; % force output to have no cell arrays DPref.NumLevels = 1e10; % number of recurence levels DPref.PreserveSpace = false; % Preserve or delete spaces at the beggining and the end of stings? RootOnly = true; % return root node with no top level special nodes Debug = false; % show specific errors (true) or general (false)? tree = []; RootName = []; %% Check Matlab Version v = ver('MATLAB'); version = str2double(regexp(v.Version, '\d.\d','match','once')); if (version<7.1) error('Your MATLAB version is too old. You need version 7.1 or newer.'); end %% read user preferences if (nargin>1) if (isfield(Pref, 'TableName')), DPref.TableName = Pref.TableName; end if (isfield(Pref, 'ItemName' )), DPref.ItemName = Pref.ItemName; end if (isfield(Pref, 'CellItem' )), DPref.CellItem = Pref.CellItem; end if (isfield(Pref, 'Str2Num' )), DPref.Str2Num = Pref.Str2Num ; end if (isfield(Pref, 'NoCells' )), DPref.NoCells = Pref.NoCells ; end if (isfield(Pref, 'NumLevels')), DPref.NumLevels = Pref.NumLevels; end if (isfield(Pref, 'ReadAttr' )), DPref.ReadAttr = Pref.ReadAttr; end if (isfield(Pref, 'ReadSpec' )), DPref.ReadSpec = Pref.ReadSpec; end if (isfield(Pref, 'KeepNS' )), DPref.KeepNS = Pref.KeepNS; end if (isfield(Pref, 'RootOnly' )), RootOnly = Pref.RootOnly; end if (isfield(Pref, 'Debug' )), Debug = Pref.Debug ; end if (isfield(Pref, 'PreserveSpace')), DPref.PreserveSpace = Pref.PreserveSpace; end end if ischar(DPref.Str2Num), % convert from character description to numbers DPref.Str2Num = find(strcmpi(DPref.Str2Num, {'never', 'smart', 'always'}))-1; if isempty(DPref.Str2Num), DPref.Str2Num=1; end % 1-smart by default end %% read xml file using Matlab function if isa(xmlfile, 'org.apache.xerces.dom.DeferredDocumentImpl'); % if xmlfile is a DOMnode than skip the call to xmlread try try DOMnode = xmlfile; catch ME error('Invalid DOM node: \n%s.', getReport(ME)); end catch %#ok<CTCH> catch for mablab versions prior to 7.5 error('Invalid DOM node. \n'); end else % we assume xmlfile is a filename if (Debug) % in debuging mode crashes are allowed DOMnode = xmlread(xmlfile); else % in normal mode crashes are not allowed try try DOMnode = xmlread(xmlfile); catch ME error('Failed to read XML file %s: \n%s',xmlfile, getReport(ME)); end catch %#ok<CTCH> catch for mablab versions prior to 7.5 error('Failed to read XML file %s\n',xmlfile); end end end Node = DOMnode.getFirstChild; %% Find the Root node. Also store data from Global Comment and Processing % Instruction nodes, if any. GlobalTextNodes = cell(1,3); GlobalProcInst = []; GlobalComment = []; GlobalDocType = []; while (~isempty(Node)) if (Node.getNodeType==Node.ELEMENT_NODE) RootNode=Node; elseif (Node.getNodeType==Node.PROCESSING_INSTRUCTION_NODE) data = strtrim(char(Node.getData)); target = strtrim(char(Node.getTarget)); GlobalProcInst = [target, ' ', data]; GlobalTextNodes{2} = GlobalProcInst; elseif (Node.getNodeType==Node.COMMENT_NODE) GlobalComment = strtrim(char(Node.getData)); GlobalTextNodes{3} = GlobalComment; % elseif (Node.getNodeType==Node.DOCUMENT_TYPE_NODE) % GlobalTextNodes{4} = GlobalDocType; end Node = Node.getNextSibling; end %% parse xml file through calls to recursive DOMnode2struct function if (Debug) % in debuging mode crashes are allowed [tree RootName] = DOMnode2struct(RootNode, DPref, 1); else % in normal mode crashes are not allowed try try [tree RootName] = DOMnode2struct(RootNode, DPref, 1); catch ME error('Unable to parse XML file %s: \n %s.',xmlfile, getReport(ME)); end catch %#ok<CTCH> catch for mablab versions prior to 7.5 error('Unable to parse XML file %s.',xmlfile); end end %% If there were any Global Text nodes than return them if (~RootOnly) if (~isempty(GlobalProcInst) && DPref.ReadSpec) t.PROCESSING_INSTRUCTION = GlobalProcInst; end if (~isempty(GlobalComment) && DPref.ReadSpec) t.COMMENT = GlobalComment; end if (~isempty(GlobalDocType) && DPref.ReadSpec) t.DOCUMENT_TYPE = GlobalDocType; end t.(RootName) = tree; tree=t; end if (~isempty(GlobalTextNodes)) GlobalTextNodes{1} = RootName; RootName = GlobalTextNodes; end %% ======================================================================= % === DOMnode2struct Function =========================================== % ======================================================================= function [s TagName LeafNode] = DOMnode2struct(node, Pref, level) %% === Step 1: Get node name and check if it is a leaf node ============== [TagName LeafNode] = NodeName(node, Pref.KeepNS); s = []; % initialize output structure %% === Step 2: Process Leaf Nodes (nodes with no children) =============== if (LeafNode) if (LeafNode>1 && ~Pref.ReadSpec), LeafNode=-1; end % tags only so ignore special nodes if (LeafNode>0) % supported leaf node types try try % use try-catch: errors here are often due to VERY large fields (like images) that overflow java memory s = char(node.getData); if (isempty(s)), s = ' '; end % make it a string % for some reason current xmlread 'creates' a lot of empty text % fields with first chatacter=10 - those will be deleted. if (~Pref.PreserveSpace || s(1)==10) if (isspace(s(1)) || isspace(s(end))), s = strtrim(s); end % trim speces is any end if (LeafNode==1), s=str2var(s, Pref.Str2Num, 0); end % convert to number(s) if needed catch ME % catch for mablab versions 7.5 and higher warning('xml_io_tools:read:LeafRead', ... 'This leaf node could not be read and was ignored. '); getReport(ME) end catch %#ok<CTCH> catch for mablab versions prior to 7.5 warning('xml_io_tools:read:LeafRead', ... 'This leaf node could not be read and was ignored. '); end end if (LeafNode==3) % ProcessingInstructions need special treatment target = strtrim(char(node.getTarget)); s = [target, ' ', s]; end return % We are done the rest of the function deals with nodes with children end if (level>Pref.NumLevels+1), return; end % if Pref.NumLevels is reached than we are done %% === Step 3: Process nodes with children =============================== if (node.hasChildNodes) % children present Child = node.getChildNodes; % create array of children nodes nChild = Child.getLength; % number of children % --- pass 1: how many children with each name ----------------------- f = []; for iChild = 1:nChild % read in each child [cname cLeaf] = NodeName(Child.item(iChild-1), Pref.KeepNS); if (cLeaf<0), continue; end % unsupported leaf node types if (~isfield(f,cname)), f.(cname)=0; % initialize first time I see this name end f.(cname) = f.(cname)+1; % add to the counter end % end for iChild % text_nodes become CONTENT & for some reason current xmlread 'creates' a % lot of empty text fields so f.CONTENT value should not be trusted if (isfield(f,'CONTENT') && f.CONTENT>2), f.CONTENT=2; end % --- pass 2: store all the children as struct of cell arrays ---------- for iChild = 1:nChild % read in each child [c cname cLeaf] = DOMnode2struct(Child.item(iChild-1), Pref, level+1); if (cLeaf && isempty(c)) % if empty leaf node than skip continue; % usually empty text node or one of unhandled node types elseif (nChild==1 && cLeaf==1) s=c; % shortcut for a common case else % if normal node if (level>Pref.NumLevels), continue; end n = f.(cname); % how many of them in the array so far? if (~isfield(s,cname)) % encountered this name for the first time if (n==1) % if there will be only one of them ... s.(cname) = c; % than save it in format it came in else % if there will be many of them ... s.(cname) = cell(1,n); s.(cname){1} = c; % than save as cell array end f.(cname) = 1; % initialize the counter else % already have seen this name s.(cname){n+1} = c; % add to the array f.(cname) = n+1; % add to the array counter end end end % for iChild end % end if (node.hasChildNodes) %% === Step 4: Post-process struct's created for nodes with children ===== if (isstruct(s)) fields = fieldnames(s); nField = length(fields); % Detect structure that looks like Html table and store it in cell Matrix if (nField==1 && strcmpi(fields{1},Pref.TableName{1})) tr = s.(Pref.TableName{1}); fields2 = fieldnames(tr{1}); if (length(fields2)==1 && strcmpi(fields2{1},Pref.TableName{2})) % This seems to be a special structure such that for % Pref.TableName = {'tr','td'} 's' corresponds to % <tr> <td>M11</td> <td>M12</td> </tr> % <tr> <td>M12</td> <td>M22</td> </tr> % Recognize it as encoding for 2D struct nr = length(tr); for r = 1:nr row = tr{r}.(Pref.TableName{2}); Table(r,1:length(row)) = row; %#ok<AGROW> end s = Table; end end % --- Post-processing: convert 'struct of cell-arrays' to 'array of structs' % Example: let say s has 3 fields s.a, s.b & s.c and each field is an % cell-array with more than one cell-element and all 3 have the same length. % Then change it to array of structs, each with single cell. % This way element s.a{1} will be now accessed through s(1).a vec = zeros(size(fields)); for i=1:nField, vec(i) = f.(fields{i}); end if (numel(vec)>1 && vec(1)>1 && var(vec)==0) % convert from struct of s = cell2struct(struct2cell(s), fields, 1); % arrays to array of struct end % if anyone knows better way to do above conversion please let me know. end %% === Step 5: Process nodes with attributes ============================= if (node.hasAttributes && Pref.ReadAttr) if (~isstruct(s)), % make into struct if is not already ss.CONTENT=s; s=ss; end Attr = node.getAttributes; % list of all attributes for iAttr = 1:Attr.getLength % for each attribute name = char(Attr.item(iAttr-1).getName); % attribute name name = str2varName(name, Pref.KeepNS); % fix name if needed value = char(Attr.item(iAttr-1).getValue); % attribute value value = str2var(value, Pref.Str2Num, 1); % convert to number if possible s.ATTRIBUTE.(name) = value; % save again end % end iAttr loop end % done with attributes if (~isstruct(s)), return; end %The rest of the code deals with struct's %% === Post-processing: fields of "s" % convert 'cell-array of structs' to 'arrays of structs' fields = fieldnames(s); % get field names nField = length(fields); for iItem=1:length(s) % for each struct in the array - usually one for iField=1:length(fields) field = fields{iField}; % get field name % if this is an 'item' field and user want to leave those as cells % than skip this one if (strcmpi(field, Pref.ItemName) && Pref.CellItem), continue; end x = s(iItem).(field); if (iscell(x) && all(cellfun(@isstruct,x(:))) && numel(x)>1) % it's cell-array of structs % numel(x)>1 check is to keep 1 cell-arrays created when Pref.CellItem=1 try % this operation fails sometimes % example: change s(1).a{1}.b='jack'; s(1).a{2}.b='john'; to % more convinient s(1).a(1).b='jack'; s(1).a(2).b='john'; s(iItem).(field) = [x{:}]'; %#ok<AGROW> % converted to arrays of structs catch %#ok<CTCH> % above operation will fail if s(1).a{1} and s(1).a{2} have % different fields. If desired, function forceCell2Struct can force % them to the same field structure by adding empty fields. if (Pref.NoCells) s(iItem).(field) = forceCell2Struct(x); %#ok<AGROW> end end % end catch end end end %% === Step 4: Post-process struct's created for nodes with children ===== % --- Post-processing: remove special 'item' tags --------------------- % many xml writes (including xml_write) use a special keyword to mark % arrays of nodes (see xml_write for examples). The code below converts % s.item to s.CONTENT ItemContent = false; if (isfield(s,Pref.ItemName)) s.CONTENT = s.(Pref.ItemName); s = rmfield(s,Pref.ItemName); ItemContent = Pref.CellItem; % if CellItem than keep s.CONTENT as cells end % --- Post-processing: clean up CONTENT tags --------------------- % if s.CONTENT is a cell-array with empty elements at the end than trim % the length of this cell-array. Also if s.CONTENT is the only field than % remove .CONTENT part and store it as s. if (isfield(s,'CONTENT')) if (iscell(s.CONTENT) && isvector(s.CONTENT)) x = s.CONTENT; for i=numel(x):-1:1, if ~isempty(x{i}), break; end; end if (i==1 && ~ItemContent) s.CONTENT = x{1}; % delete cell structure else s.CONTENT = x(1:i); % delete empty cells end end if (nField==1) if (ItemContent) ss = s.CONTENT; % only child: remove a level but ensure output is a cell-array s=[]; s{1}=ss; else s = s.CONTENT; % only child: remove a level end end end %% ======================================================================= % === forceCell2Struct Function ========================================= % ======================================================================= function s = forceCell2Struct(x) % Convert cell-array of structs, where not all of structs have the same % fields, to a single array of structs %% Convert 1D cell array of structs to 2D cell array, where each row % represents item in original array and each column corresponds to a unique % field name. Array "AllFields" store fieldnames for each column AllFields = fieldnames(x{1}); % get field names of the first struct CellMat = cell(length(x), length(AllFields)); for iItem=1:length(x) fields = fieldnames(x{iItem}); % get field names of the next struct for iField=1:length(fields) % inspect all fieldnames and find those field = fields{iField}; % get field name col = find(strcmp(field,AllFields),1); if isempty(col) % no column for such fieldname yet AllFields = [AllFields; field]; %#ok<AGROW> col = length(AllFields); % create a new column for it end CellMat{iItem,col} = x{iItem}.(field); % store rearanged data end end %% Convert 2D cell array to array of structs s = cell2struct(CellMat, AllFields, 2); %% ======================================================================= % === str2var Function ================================================== % ======================================================================= function val=str2var(str, option, attribute) % Can this string 'str' be converted to a number? if so than do it. val = str; len = numel(str); if (len==0 || option==0), return; end % Str2Num="never" of empty string -> do not do enything if (len>10000 && option==1), return; end % Str2Num="smart" and string is very long -> probably base64 encoded binary digits = '(Inf)|(NaN)|(pi)|[\t\n\d\+\-\*\.ei EI\[\]\;\,]'; s = regexprep(str, digits, ''); % remove all the digits and other allowed characters if (~all(~isempty(s))) % if nothing left than this is probably a number if (~isempty(strfind(str, ' '))), option=2; end %if str has white-spaces assume by default that it is not a date string if (~isempty(strfind(str, '['))), option=2; end % same with brackets str(strfind(str, '\n')) = ';';% parse data tables into 2D arrays, if any if (option==1) % the 'smart' option try % try to convert to a date, like 2007-12-05 datenum(str); % if successful than leave it as string catch %#ok<CTCH> % if this is not a date than ... option=2; % ... try converting to a number end end if (option==2) if (attribute) num = str2double(str); % try converting to a single number using sscanf function if isnan(num), return; end % So, it wasn't really a number after all else num = str2num(str); %#ok<ST2NM> % try converting to a single number or array using eval function end if(isnumeric(num) && numel(num)>0), val=num; end % if convertion to a single was succesful than save end elseif ((str(1)=='[' && str(end)==']') || (str(1)=='{' && str(end)=='}')) % this looks like a (cell) array encoded as a string try val = eval(str); catch %#ok<CTCH> val = str; end elseif (~attribute) % see if it is a boolean array with no [] brackets str1 = lower(str); str1 = strrep(str1, 'false', '0'); str1 = strrep(str1, 'true' , '1'); s = regexprep(str1, '[01 \;\,]', ''); % remove all 0/1, spaces, commas and semicolons if (~all(~isempty(s))) % if nothing left than this is probably a boolean array num = str2num(str1); %#ok<ST2NM> if(isnumeric(num) && numel(num)>0), val = (num>0); end % if convertion was succesful than save as logical end end %% ======================================================================= % === str2varName Function ============================================== % ======================================================================= function str = str2varName(str, KeepNS) % convert a sting to a valid matlab variable name if(KeepNS) str = regexprep(str,':','_COLON_', 'once', 'ignorecase'); else k = strfind(str,':'); if (~isempty(k)) str = str(k+1:end); end end str = regexprep(str,'-','_DASH_' ,'once', 'ignorecase'); if (~isvarname(str)) && (~iskeyword(str)) str = genvarname(str); end %% ======================================================================= % === NodeName Function ================================================= % ======================================================================= function [Name LeafNode] = NodeName(node, KeepNS) % get node name and make sure it is a valid variable name in Matlab. % also get node type: % LeafNode=0 - normal element node, % LeafNode=1 - text node % LeafNode=2 - supported non-text leaf node, % LeafNode=3 - supported processing instructions leaf node, % LeafNode=-1 - unsupported non-text leaf node switch (node.getNodeType) case node.ELEMENT_NODE Name = char(node.getNodeName);% capture name of the node Name = str2varName(Name, KeepNS); % if Name is not a good variable name - fix it LeafNode = 0; case node.TEXT_NODE Name = 'CONTENT'; LeafNode = 1; case node.COMMENT_NODE Name = 'COMMENT'; LeafNode = 2; case node.CDATA_SECTION_NODE Name = 'CDATA_SECTION'; LeafNode = 2; case node.DOCUMENT_TYPE_NODE Name = 'DOCUMENT_TYPE'; LeafNode = 2; case node.PROCESSING_INSTRUCTION_NODE Name = 'PROCESSING_INSTRUCTION'; LeafNode = 3; otherwise NodeType = {'ELEMENT','ATTRIBUTE','TEXT','CDATA_SECTION', ... 'ENTITY_REFERENCE', 'ENTITY', 'PROCESSING_INSTRUCTION', 'COMMENT',... 'DOCUMENT', 'DOCUMENT_TYPE', 'DOCUMENT_FRAGMENT', 'NOTATION'}; Name = char(node.getNodeName);% capture name of the node warning('xml_io_tools:read:unkNode', ... 'Unknown node type encountered: %s_NODE (%s)', NodeType{node.getNodeType}, Name); LeafNode = -1; end
github
ddtm/OpenFace-master
writeMatrixBin.m
.m
OpenFace-master/matlab_version/AU_training/experiments/utilities/writeMatrixBin.m
911
utf_8
636b1a9c9f27421bfde056250858f51e
% for easier readibility write them row by row function writeMatrixBin(fileID, M, type) % 4 bytes each for the description fwrite(fileID, size(M,1), 'uint'); fwrite(fileID, size(M,2), 'uint'); fwrite(fileID, type, 'uint'); % Convert the matrix to OpenCV format (row minor as opposed to column % minor) M = M'; % type 0 - uint8, 1 - int8, 2 - uint16, 3 - int16, 4 - int, 5 - % float32, 6 - float64 % Write out the matrix itself switch type case 0 type = 'uint8'; case 1 type = 'int8'; case 2 type = 'uint16'; case 3 type = 'int16'; case 4 type = 'int'; case 5 type = 'float32'; case 6 type = 'float64'; otherwise type = 'float32'; end fwrite(fileID, M, type); end
github
ddtm/OpenFace-master
demo.m
.m
OpenFace-master/matlab_version/face_detection/face_detection_yu/demo.m
2,293
utf_8
a03fbb6302d44b6640ec7a0045c77dea
% Function: % demo % % Usage: % This function demonstrates how to call the functions we provided to % detect facial landmarks and get pose information. In the demo version, % we only choose the largest face ROI detected to further localize its % landmraks. And the current version is only suitable for windows % platform. The matlab version is recommended above R2009a and the C++ % compiler above MS. Visual C++ 9.0. Those versions before are not tested. % % Params: % None % % Return: None % % Author: % Xiang Yu, [email protected] % % Citation: % X. Yu, J. Huang, S. Zhang, W. Yan and D.N. Metaxas, Pose-free Facial % Landmark Fitting via Optimized Part Mixures and Cascaded Deformable % Shape Model. In ICCV, 2013. % % Creation Date: 10/12/2013 % function demo() clear all; close all; clc; addpath('.\model'); S = load('model_param.mat'); Model = S.Model; pc_version = computer(); if(strcmp(pc_version,'PCWIN')) % currently the code just supports windows OS addpath('.\face_detect_32'); addpath('.\mex_32'); elseif(strcmp(pc_version, 'PCWIN64')) addpath('.\face_detect_64'); addpath('.\mex_64'); end Model.frontalL = @(X) Select(X, Model.frontal_landmark); Model.leftL = @(X) Select(X, Model.left_landmark); Model.rightL = @(X) Select(X, Model.right_landmark); % change your image folder and image name here img_fold = '.\test\'; img_name = '4.jpg'; img = imread([img_fold,img_name]); %------------------------------------------------------------------ % 3 types of face alignment input % (1) no initial landmarks % [shape, pglobal, visible] = faceAlign(img, Model, []); % % (2) initial landmarks % l_shape = [xxx...x yyy...yy] input should be set by user % [shape, pglobal, visible] = faceAlign(img, Model, l_shape); load('test.mat'); % img = image; [shape, pglobal, visible] = faceAlign(img, Model, []); figure, % imshow(imread([img_fold,img_name])); imshow(img); hold on; if(~isempty(shape)) % input: shape, visible, line_color, marker color, marker size, line width, style drawLine(reshape(shape,Model.nPts,2), visible, 'b', 'g', 5, 2, '.'); hold off; end function Y = Select(X, rows) % x,y,z,x,y,z,... Y1 = X(3*(rows-1)+1, :); Y2 = X(3*(rows-1)+2, :); Y3 = X(3*(rows-1)+3, :); Y = [Y1; Y2; Y3];
github
ddtm/OpenFace-master
detect.m
.m
OpenFace-master/matlab_version/face_detection/face_detection_yu/face_detect_64/detect.m
5,497
utf_8
8056df5cc27320fd2ab86a86bf4c3868
function boxes = detect(input, model, thresh) % Keep track of detected boxes and features BOXCACHESIZE = 1000; cnt = 0; boxes.s = 0; boxes.c = 0; boxes.xy = 0; boxes.level = 0; boxes(BOXCACHESIZE) = boxes; % Compute the feature pyramid and prepare filters pyra = featpyramid(input,model); [components,filters,resp] = modelcomponents(model,pyra); % matlabpool open 4 % tic; % parfor ss = (model.interval+1):length(pyra.feat) % resp{ss} = fconv(pyra.feat{ss}, filters, 1, length(filters)); % end % toc; % ress_ = fconv2(pyra.feat,filters,model.interval+1, length(pyra.feat), 1, length(filters)); % matlabpool close for c = randperm(length(components)), minlevel = model.interval+1; levels = minlevel:length(pyra.feat); for rlevel = levels(randperm(length(levels))), parts = components{c}; numparts = length(parts); % Local part scores for k = 1:numparts, f = parts(k).filterid; level = rlevel-parts(k).scale*model.interval; if isempty(resp{level}), resp{level} = fconvMT(pyra.feat{level},filters,1,length(filters)); %1,length(filters)); end parts(k).score = resp{level}{f}; % parts(k).score = ress_{rlevel-model.interval,f}; parts(k).level = level; end % Walk from leaves to root of tree, passing message to parent % Given a 2D array of filter scores 'child', shiftdt() does the following: % (1) Apply distance transform % (2) Shift by anchor position (child.startxy) of part wrt parent % (3) Downsample by child.step for k = numparts:-1:2, child = parts(k); par = child.parent; [Ny,Nx,foo] = size(parts(par).score); [msg,parts(k).Ix,parts(k).Iy] = shiftdt(child.score, child.w(1),child.w(2),child.w(3),child.w(4), ... child.startx, child.starty, Nx, Ny, child.step); parts(par).score = parts(par).score + msg; end % Add bias to root score rscore = parts(1).score + parts(1).w; [Y,X] = find(rscore >= thresh); if ~isempty(X) XY = backtrack( X, Y, parts, pyra); end % Walk back down tree following pointers for i = 1:length(X) x = X(i); y = Y(i); if cnt == BOXCACHESIZE b0 = nms_face(boxes,0.3); clear boxes; boxes.s = 0; boxes.c = 0; boxes.xy = 0; boxes.level = 0; boxes(BOXCACHESIZE) = boxes; cnt = length(b0); boxes(1:cnt) = b0; end cnt = cnt + 1; boxes(cnt).c = c; boxes(cnt).s = rscore(y,x); boxes(cnt).level = rlevel; boxes(cnt).xy = XY(:,:,i); end end end boxes = boxes(1:cnt); % Backtrack through dynamic programming messages to estimate part locations % and the associated feature vector function box = backtrack(x,y,parts,pyra) numparts = length(parts); ptr = zeros(numparts,2,length(x)); box = zeros(numparts,4,length(x)); k = 1; p = parts(k); ptr(k,1,:) = x; ptr(k,2,:) = y; % image coordinates of root scale = pyra.scale(p.level); padx = pyra.padx; pady = pyra.pady; box(k,1,:) = (x-1-padx)*scale + 1; box(k,2,:) = (y-1-pady)*scale + 1; box(k,3,:) = box(k,1,:) + p.sizx*scale - 1; box(k,4,:) = box(k,2,:) + p.sizy*scale - 1; for k = 2:numparts, p = parts(k); par = p.parent; x = ptr(par,1,:); y = ptr(par,2,:); inds = sub2ind(size(p.Ix), y, x); ptr(k,1,:) = p.Ix(inds); ptr(k,2,:) = p.Iy(inds); % image coordinates of part k scale = pyra.scale(p.level); box(k,1,:) = (ptr(k,1,:)-1-padx)*scale + 1; box(k,2,:) = (ptr(k,2,:)-1-pady)*scale + 1; box(k,3,:) = box(k,1,:) + p.sizx*scale - 1; box(k,4,:) = box(k,2,:) + p.sizy*scale - 1; end % Cache various statistics from the model data structure for later use function [components,filters,resp] = modelcomponents(model,pyra) components = cell(length(model.components),1); for c = 1:length(model.components), for k = 1:length(model.components{c}), p = model.components{c}(k); x = model.filters(p.filterid); [p.sizy p.sizx foo] = size(x.w); p.filterI = x.i; x = model.defs(p.defid); p.defI = x.i; p.w = x.w; % store the scale of each part relative to the component root par = p.parent; assert(par < k); ax = x.anchor(1); ay = x.anchor(2); ds = x.anchor(3); if par > 0, p.scale = ds + components{c}(par).scale; else assert(k == 1); p.scale = 0; end % amount of (virtual) padding to hallucinate step = 2^ds; virtpady = (step-1)*pyra.pady; virtpadx = (step-1)*pyra.padx; % starting points (simulates additional padding at finer scales) p.starty = ay-virtpady; p.startx = ax-virtpadx; p.step = step; p.level = 0; p.score = 0; p.Ix = 0; p.Iy = 0; components{c}(k) = p; end end resp = cell(length(pyra.feat),1); filters = cell(length(model.filters),1); for i = 1:length(filters), filters{i} = model.filters(i).w; end
github
ddtm/OpenFace-master
detect.m
.m
OpenFace-master/matlab_version/face_detection/face_detection_yu/face_detect_32/detect.m
5,497
utf_8
8056df5cc27320fd2ab86a86bf4c3868
function boxes = detect(input, model, thresh) % Keep track of detected boxes and features BOXCACHESIZE = 1000; cnt = 0; boxes.s = 0; boxes.c = 0; boxes.xy = 0; boxes.level = 0; boxes(BOXCACHESIZE) = boxes; % Compute the feature pyramid and prepare filters pyra = featpyramid(input,model); [components,filters,resp] = modelcomponents(model,pyra); % matlabpool open 4 % tic; % parfor ss = (model.interval+1):length(pyra.feat) % resp{ss} = fconv(pyra.feat{ss}, filters, 1, length(filters)); % end % toc; % ress_ = fconv2(pyra.feat,filters,model.interval+1, length(pyra.feat), 1, length(filters)); % matlabpool close for c = randperm(length(components)), minlevel = model.interval+1; levels = minlevel:length(pyra.feat); for rlevel = levels(randperm(length(levels))), parts = components{c}; numparts = length(parts); % Local part scores for k = 1:numparts, f = parts(k).filterid; level = rlevel-parts(k).scale*model.interval; if isempty(resp{level}), resp{level} = fconvMT(pyra.feat{level},filters,1,length(filters)); %1,length(filters)); end parts(k).score = resp{level}{f}; % parts(k).score = ress_{rlevel-model.interval,f}; parts(k).level = level; end % Walk from leaves to root of tree, passing message to parent % Given a 2D array of filter scores 'child', shiftdt() does the following: % (1) Apply distance transform % (2) Shift by anchor position (child.startxy) of part wrt parent % (3) Downsample by child.step for k = numparts:-1:2, child = parts(k); par = child.parent; [Ny,Nx,foo] = size(parts(par).score); [msg,parts(k).Ix,parts(k).Iy] = shiftdt(child.score, child.w(1),child.w(2),child.w(3),child.w(4), ... child.startx, child.starty, Nx, Ny, child.step); parts(par).score = parts(par).score + msg; end % Add bias to root score rscore = parts(1).score + parts(1).w; [Y,X] = find(rscore >= thresh); if ~isempty(X) XY = backtrack( X, Y, parts, pyra); end % Walk back down tree following pointers for i = 1:length(X) x = X(i); y = Y(i); if cnt == BOXCACHESIZE b0 = nms_face(boxes,0.3); clear boxes; boxes.s = 0; boxes.c = 0; boxes.xy = 0; boxes.level = 0; boxes(BOXCACHESIZE) = boxes; cnt = length(b0); boxes(1:cnt) = b0; end cnt = cnt + 1; boxes(cnt).c = c; boxes(cnt).s = rscore(y,x); boxes(cnt).level = rlevel; boxes(cnt).xy = XY(:,:,i); end end end boxes = boxes(1:cnt); % Backtrack through dynamic programming messages to estimate part locations % and the associated feature vector function box = backtrack(x,y,parts,pyra) numparts = length(parts); ptr = zeros(numparts,2,length(x)); box = zeros(numparts,4,length(x)); k = 1; p = parts(k); ptr(k,1,:) = x; ptr(k,2,:) = y; % image coordinates of root scale = pyra.scale(p.level); padx = pyra.padx; pady = pyra.pady; box(k,1,:) = (x-1-padx)*scale + 1; box(k,2,:) = (y-1-pady)*scale + 1; box(k,3,:) = box(k,1,:) + p.sizx*scale - 1; box(k,4,:) = box(k,2,:) + p.sizy*scale - 1; for k = 2:numparts, p = parts(k); par = p.parent; x = ptr(par,1,:); y = ptr(par,2,:); inds = sub2ind(size(p.Ix), y, x); ptr(k,1,:) = p.Ix(inds); ptr(k,2,:) = p.Iy(inds); % image coordinates of part k scale = pyra.scale(p.level); box(k,1,:) = (ptr(k,1,:)-1-padx)*scale + 1; box(k,2,:) = (ptr(k,2,:)-1-pady)*scale + 1; box(k,3,:) = box(k,1,:) + p.sizx*scale - 1; box(k,4,:) = box(k,2,:) + p.sizy*scale - 1; end % Cache various statistics from the model data structure for later use function [components,filters,resp] = modelcomponents(model,pyra) components = cell(length(model.components),1); for c = 1:length(model.components), for k = 1:length(model.components{c}), p = model.components{c}(k); x = model.filters(p.filterid); [p.sizy p.sizx foo] = size(x.w); p.filterI = x.i; x = model.defs(p.defid); p.defI = x.i; p.w = x.w; % store the scale of each part relative to the component root par = p.parent; assert(par < k); ax = x.anchor(1); ay = x.anchor(2); ds = x.anchor(3); if par > 0, p.scale = ds + components{c}(par).scale; else assert(k == 1); p.scale = 0; end % amount of (virtual) padding to hallucinate step = 2^ds; virtpady = (step-1)*pyra.pady; virtpadx = (step-1)*pyra.padx; % starting points (simulates additional padding at finer scales) p.starty = ay-virtpady; p.startx = ax-virtpadx; p.step = step; p.level = 0; p.score = 0; p.Ix = 0; p.Iy = 0; components{c}(k) = p; end end resp = cell(length(pyra.feat),1); filters = cell(length(model.filters),1); for i = 1:length(filters), filters{i} = model.filters(i).w; end
github
ddtm/OpenFace-master
detect.m
.m
OpenFace-master/matlab_version/face_detection/face_detection_zhu/face-release1.0-basic/detect.m
5,142
utf_8
cd759876abb45da1a5be34a1237acd0a
function boxes = detect(input, model, thresh) % Keep track of detected boxes and features BOXCACHESIZE = 100000; cnt = 0; boxes.s = 0; boxes.c = 0; boxes.xy = 0; boxes.level = 0; boxes(BOXCACHESIZE) = boxes; % Compute the feature pyramid and prepare filters pyra = featpyramid(input,model); [components,filters,resp] = modelcomponents(model,pyra); for c = randperm(length(components)), minlevel = model.interval+1; levels = minlevel:length(pyra.feat); for rlevel = levels(randperm(length(levels))), parts = components{c}; numparts = length(parts); % Local part scores for k = 1:numparts, f = parts(k).filterid; level = rlevel-parts(k).scale*model.interval; if isempty(resp{level}), resp{level} = fconv(pyra.feat{level},filters,1,length(filters)); end parts(k).score = resp{level}{f}; parts(k).level = level; end % Walk from leaves to root of tree, passing message to parent % Given a 2D array of filter scores 'child', shiftdt() does the following: % (1) Apply distance transform % (2) Shift by anchor position (child.startxy) of part wrt parent % (3) Downsample by child.step for k = numparts:-1:2, child = parts(k); par = child.parent; [Ny,Nx,foo] = size(parts(par).score); [msg,parts(k).Ix,parts(k).Iy] = shiftdt(child.score, child.w(1),child.w(2),child.w(3),child.w(4), ... child.startx, child.starty, Nx, Ny, child.step); parts(par).score = parts(par).score + msg; end % Add bias to root score rscore = parts(1).score + parts(1).w; [Y,X] = find(rscore >= thresh); if ~isempty(X) XY = backtrack( X, Y, parts, pyra); end % Walk back down tree following pointers for i = 1:length(X) x = X(i); y = Y(i); if cnt == BOXCACHESIZE b0 = nms_face(boxes,0.3); clear boxes; boxes.s = 0; boxes.c = 0; boxes.xy = 0; boxes.level = 0; boxes(BOXCACHESIZE) = boxes; cnt = length(b0); boxes(1:cnt) = b0; end cnt = cnt + 1; boxes(cnt).c = c; boxes(cnt).s = rscore(y,x); boxes(cnt).level = rlevel; boxes(cnt).xy = XY(:,:,i); end end end boxes = boxes(1:cnt); % Backtrack through dynamic programming messages to estimate part locations % and the associated feature vector function box = backtrack(x,y,parts,pyra) numparts = length(parts); ptr = zeros(numparts,2,length(x)); box = zeros(numparts,4,length(x)); k = 1; p = parts(k); ptr(k,1,:) = x; ptr(k,2,:) = y; % image coordinates of root scale = pyra.scale(p.level); padx = pyra.padx; pady = pyra.pady; box(k,1,:) = (x-1-padx)*scale + 1; box(k,2,:) = (y-1-pady)*scale + 1; box(k,3,:) = box(k,1,:) + p.sizx*scale - 1; box(k,4,:) = box(k,2,:) + p.sizy*scale - 1; for k = 2:numparts, p = parts(k); par = p.parent; x = ptr(par,1,:); y = ptr(par,2,:); inds = sub2ind(size(p.Ix), y, x); ptr(k,1,:) = p.Ix(inds); ptr(k,2,:) = p.Iy(inds); % image coordinates of part k scale = pyra.scale(p.level); box(k,1,:) = (ptr(k,1,:)-1-padx)*scale + 1; box(k,2,:) = (ptr(k,2,:)-1-pady)*scale + 1; box(k,3,:) = box(k,1,:) + p.sizx*scale - 1; box(k,4,:) = box(k,2,:) + p.sizy*scale - 1; end % Cache various statistics from the model data structure for later use function [components,filters,resp] = modelcomponents(model,pyra) components = cell(length(model.components),1); for c = 1:length(model.components), for k = 1:length(model.components{c}), p = model.components{c}(k); x = model.filters(p.filterid); [p.sizy p.sizx foo] = size(x.w); p.filterI = x.i; x = model.defs(p.defid); p.defI = x.i; p.w = x.w; % store the scale of each part relative to the component root par = p.parent; assert(par < k); ax = x.anchor(1); ay = x.anchor(2); ds = x.anchor(3); if par > 0, p.scale = ds + components{c}(par).scale; else assert(k == 1); p.scale = 0; end % amount of (virtual) padding to hallucinate step = 2^ds; virtpady = (step-1)*pyra.pady; virtpadx = (step-1)*pyra.padx; % starting points (simulates additional padding at finer scales) p.starty = ay-virtpady; p.startx = ax-virtpadx; p.step = step; p.level = 0; p.score = 0; p.Ix = 0; p.Iy = 0; components{c}(k) = p; end end resp = cell(length(pyra.feat),1); filters = cell(length(model.filters),1); for i = 1:length(filters), filters{i} = model.filters(i).w; end
github
ddtm/OpenFace-master
visualizemodel.m
.m
OpenFace-master/matlab_version/face_detection/face_detection_zhu/face-release1.0-basic/visualizemodel.m
3,577
utf_8
251d5578a4c745e11ce795c8a8a4e1ed
function visualizemodel(model,compid) if nargin<2 compid = 1:length(model.components); end pad = 2; bs = 20; for i = compid c = model.components{i}; numparts = length(c); Nmix = zeros(1,numparts); for k = 1:numparts Nmix(k) = length(c(k).filterid); end for k = 2:numparts part = c(k); anchor = zeros(Nmix(k),2); for j = 1:Nmix(k) def = model.defs(part.defid(j)); anchor(j,:) = [def.anchor(1) def.anchor(2)]; end end part = c(1); % part filter w = model.filters(part.filterid(1)).w; w = foldHOG(w); scale = max(abs(w(:))); p = HOGpicture(w, bs); p = padarray(p, [pad pad], 0); p = uint8(p*(255/scale)); % border p(:,1:2*pad) = 128; p(:,end-2*pad+1:end) = 128; p(1:2*pad,:) = 128; p(end-2*pad+1:end,:) = 128; im = p; startpoint = zeros(numparts,2); startpoint(1,:) = [0 0]; partsize = zeros(numparts,1); partsize(1) = size(p,1); for k = 2:numparts part = c(k); parent = c(k).parent; % part filter w = model.filters(part.filterid(1)).w; w = foldHOG(w); scale = max(abs(w(:))); p = HOGpicture(w, bs); p = padarray(p, [pad pad], 0); p = uint8(p*(255/scale)); % border p(:,1:2*pad) = 128; p(:,end-2*pad+1:end) = 128; p(1:2*pad,:) = 128; p(end-2*pad+1:end,:) = 128; % paste into root def = model.defs(part.defid(1)); x1 = (def.anchor(1)-1)*bs+1 + startpoint(parent,1); y1 = (def.anchor(2)-1)*bs+1 + startpoint(parent,2); [H W] = size(im); imnew = zeros(H + max(0,1-y1), W + max(0,1-x1)); imnew(1+max(0,1-y1):H+max(0,1-y1),1+max(0,1-x1):W+max(0,1-x1)) = im; im = imnew; startpoint = startpoint + repmat([max(0,1-x1) max(0,1-y1)],[numparts,1]); x1 = max(1,x1); y1 = max(1,y1); x2 = x1 + size(p,2)-1; y2 = y1 + size(p,1)-1; startpoint(k,1) = x1 - 1; startpoint(k,2) = y1 - 1; im(y1:y2, x1:x2) = p; partsize(k) = size(p,1); end % plot parts figure,imagesc(im); colormap gray; axis equal; axis off; drawnow; title(sprintf('Component %d',i)); hold on; % % plot connections for k = 2:numparts parent = c(k).parent; sx = startpoint(k,1)+partsize(k)/2; endx = startpoint(parent,1)+partsize(parent)/2; sy = startpoint(k,2)+partsize(k)/2; endy = startpoint(parent,2)+partsize(parent)/2; plot([sx endx],[sy endy],'r','linewidth',2); end end function f = foldHOG(w) % f = foldHOG(w) % Condense HOG features into one orientation histogram. % Used for displaying a feature. f=max(w(:,:,1:9),0)+max(w(:,:,10:18),0)+max(w(:,:,19:27),0); function im = HOGpicture(w, bs) % HOGpicture(w, bs) % Make picture of positive HOG weights. % construct a "glyph" for each orientaion bim1 = zeros(bs, bs); bim1(:,round(bs/2):round(bs/2)+1) = 1; bim = zeros([size(bim1) 9]); bim(:,:,1) = bim1; for i = 2:9, bim(:,:,i) = imrotate(bim1, -(i-1)*20, 'crop'); end % make pictures of positive weights bs adding up weighted glyphs s = size(w); w(w < 0) = 0; im = zeros(bs*s(1), bs*s(2)); for i = 1:s(1), iis = (i-1)*bs+1:i*bs; for j = 1:s(2), jjs = (j-1)*bs+1:j*bs; for k = 1:9, im(iis,jjs) = im(iis,jjs) + bim(:,:,k) * w(i,j,k); end end end
github
ddtm/OpenFace-master
Fitting_from_bb.m
.m
OpenFace-master/matlab_version/fitting/Fitting_from_bb.m
10,736
utf_8
45746313845759df5516fb5d4b9934b7
function [ shape2D, global_params, local_params, final_lhood, landmark_lhoods, view_used ] = Fitting_from_bb( Image, DepthImage, bounding_box, PDM, patchExperts, clmParams, varargin) %FITTING Summary of this function goes here % Detailed explanation goes here % the bounding box format is [minX, minY, maxX, maxY]; % the mean model shape M = PDM.M; num_points = numel(M) / 3; if(any(strcmp(varargin,'orientation'))) orientation = varargin{find(strcmp(varargin, 'orientation'))+1}; rot = Euler2Rot(orientation); else rot = eye(3); orientation = [0;0;0]; end rot_m = rot * reshape(M, num_points, 3)'; width_model = max(rot_m(1,:)) - min(rot_m(1,:)); height_model = max(rot_m(2,:)) - min(rot_m(2,:)); a = (((bounding_box(3) - bounding_box(1)) / width_model) + ((bounding_box(4) - bounding_box(2))/ height_model)) / 2; tx = (bounding_box(3) + bounding_box(1))/2; ty = (bounding_box(4) + bounding_box(2))/2; % correct it so that the bounding box is just around the minimum % and maximum point in the initialised face tx = tx - a*(min(rot_m(1,:)) + max(rot_m(1,:)))/2; ty = ty - a*(min(rot_m(2,:)) + max(rot_m(2,:)))/2; % visualisation of the initial state %hold off;imshow(Image);hold on;plot(a*rot_m(1,:)+tx, a*rot_m(2,:)+ty,'.r');hold on;rectangle('Position', [bounding_box(1), bounding_box(2), bounding_box(3)-bounding_box(1), bounding_box(4)-bounding_box(2)]); global_params = [a, 0, 0, 0, tx, ty]'; global_params(2:4) = orientation; local_params = zeros(numel(PDM.E), 1); if(any(strcmp(varargin,'gparam'))) global_params = varargin{find(strcmp(varargin, 'gparam'))+1}; end if(any(strcmp(varargin,'lparam'))) local_params = varargin{find(strcmp(varargin, 'lparam'))+1}; end scale = clmParams.startScale; if(size(Image, 3) == 1) GrayImage = Image; else GrayImage = rgb2gray(Image); end [heightImg, widthImg] = size(GrayImage); % Some predefinitions for faster patch extraction [xi, yi] = meshgrid(0:widthImg-1,0:heightImg-1); xi = double(xi); yi = double(yi); GrayImageDb = double(GrayImage); clmParams_old = clmParams; % multi iteration refinement using NU-RLMS in each one for i=1:clmParams.numPatchIters current_patch_scaling = patchExperts(scale).trainingScale; visibilities = patchExperts(scale).visibilities; view = GetView(patchExperts(scale).centers, global_params(2:4)); % The shape fitting is performed in the reference frame of the % patch training scale refGlobal = [current_patch_scaling, 0, 0, 0, 0, 0]'; % the reference shape refShape = GetShapeOrtho(M, PDM.V, local_params, refGlobal); % shape around which the patch experts will be evaluated in the original image [shape2D] = GetShapeOrtho(M, PDM.V, local_params, global_params); shape2D_img = shape2D(:,1:2); % Create transform using a slightly modified version of Kabsch that % takes scaling into account as well, in essence we get a % similarity transform from current estimate to reference shape [A_img2ref, T_img2ref, ~, ~] = AlignShapesWithScale(shape2D_img(:,1:2),refShape(:,1:2)); % Create a transform, from shape in image to reference shape T = maketform('affine', [A_img2ref;T_img2ref]); shape_2D_ref = tformfwd(T, shape2D_img); % transform the current shape to the reference one, so we can % interpolate shape2D_in_ref = (A_img2ref * shape2D_img')'; sideSizeX = (clmParams.window_size(i,1) - 1)/2; sideSizeY = (clmParams.window_size(i,2) - 1)/2; patches = zeros(size(shape2D_in_ref,1), clmParams.window_size(i,1) * clmParams.window_size(i,2)); Ainv = inv(A_img2ref); % extract patches on which patch experts will be evaluted for l=1:size(shape2D_in_ref,1) if(visibilities(view,l)) xs = (shape2D_in_ref(l,1)-sideSizeX):(shape2D_in_ref(l,1)+sideSizeX); ys = (shape2D_in_ref(l,2)-sideSizeY):(shape2D_in_ref(l,2)+sideSizeY); [xs, ys] = meshgrid(xs, ys); pairs = [xs(:), ys(:)]; actualLocs = (Ainv * pairs')'; actualLocs(actualLocs(:,1) < 0,1) = 0; actualLocs(actualLocs(:,2) < 0,2) = 0; actualLocs(actualLocs(:,1) > widthImg - 1,1) = widthImg - 1; actualLocs(actualLocs(:,2) > heightImg - 1,2) = heightImg - 1; [t_patch] = interp2_mine(xi, yi, GrayImageDb, actualLocs(:,1), actualLocs(:,2), 'bilinear'); t_patch = reshape(t_patch, size(xs)); patches(l,:) = t_patch(:); end end % Calculate patch responses, either SVR or CCNF if(strcmp(patchExperts(scale).type, 'SVR')) responses = PatchResponseSVM_multi_modal( patches, patchExperts(scale).patch_experts(view,:), visibilities(view,:), patchExperts(scale).normalisationOptionsCol, clmParams, clmParams.window_size(i,:)); elseif(strcmp(patchExperts(scale).type, 'CCNF')) responses = PatchResponseCCNF( patches, patchExperts(scale).patch_experts(view,:), visibilities(view,:), patchExperts(scale), clmParams.window_size(i,:)); end % If a depth image is provided compute patch experts around it as % well (unless it's the final iteration) if(~isempty(DepthImage) && (i ~= clmParams.numPatchIters)) % Extracting the depth patches here patches_depth = zeros(size(shape2D_in_ref,1), clmParams.window_size(i,1) * clmParams.window_size(i,2)); % extract patches on which patch experts will be evaluted for l=1:size(shape2D_in_ref,1) if(visibilities(view,l)) xs = (shape2D_in_ref(l,1)-sideSizeX):(shape2D_in_ref(l,1)+sideSizeX); ys = (shape2D_in_ref(l,2)-sideSizeY):(shape2D_in_ref(l,2)+sideSizeY); [xs, ys] = meshgrid(xs, ys); pairs = [xs(:), ys(:)]; actualLocs = (Ainv * pairs')'; actualLocs(actualLocs(:,1) < 1,1) = 1; actualLocs(actualLocs(:,2) < 1,2) = 1; actualLocs(actualLocs(:,1) > widthImg,1) = widthImg; actualLocs(actualLocs(:,2) > heightImg,2) = heightImg; % use nearest neighbour interpolation as bilinear would % produce artefacts in depth image (when missing data % is there) [t_patch] = interp2_mine(xi, yi, DepthImage, actualLocs(:,1), actualLocs(:,2), 'nearest'); t_patch = reshape(t_patch, size(xs)); patches_depth(l,:) = t_patch(:); end end old_mm = clmParams.use_multi_modal; clmParams.use_multi_modal = 0; responses_depth = PatchResponseSVM_multi_modal( patches_depth, patchExperts(scale).patch_experts_depth(view,:), visibilities(view,:), patchExperts(scale).normalisationOptionsDepth, clmParams, clmParams.window_size(i,:)); clmParams.use_multi_modal = old_mm; % Combining the patch responses from different channels here for l=1:size(shape2D_in_ref,1) responses{l} = responses{l} + responses_depth{l}; end end % the better the correlation in training the more reliable the feature % the reliabilities are independent for every modality in SVR, so % combine them (also correlation is inverse to variance) if(strcmp(patchExperts(scale).type, 'SVR')) if(clmParams.use_multi_modal) reliabilities = patchExperts(scale).patch_experts{1,1}(end).correlations{1}; else reliabilities = patchExperts(scale).patch_experts{1,1}(1).correlations{1}; end else % for CCNF the modalities work together reliabilities = patchExperts(scale).correlations; end reliabilities = reliabilities(view,:); % deal with the fact that params might be different for different % scales if(numel(clmParams_old.regFactor) > 1) clmParams.regFactor = clmParams_old.regFactor(i); end if(numel(clmParams_old.sigmaMeanShift) > 1) clmParams.sigmaMeanShift = clmParams_old.sigmaMeanShift(i); end if(numel(clmParams_old.tikhonov_factor) > 1) clmParams.tikhonov_factor = clmParams_old.tikhonov_factor(i); end % The actual NU-RLMS step % first the rigid transform [global_params, local_params] = NU_RLMS(global_params, local_params, PDM, responses, visibilities, view, reliabilities, shape2D_img, T, true, clmParams, []); % second the combined transform [global_params, local_params, final_lhood, landmark_lhoods] = ... NU_RLMS(global_params, local_params, PDM, responses, visibilities, view, reliabilities, shape2D_img, T, false, clmParams, []); % Clamp orientation and make sure it doesn't get out of hand orientation = global_params(2:4); orientation(orientation < -pi/2) = -pi/2; orientation(orientation > pi/2) = pi/2; global_params(2:4) = orientation; % move up a scale if possible if(clmParams.useMultiScale && scale ~= numel(patchExperts)) % only go up a scale if we don't need to upsample if(0.9 * patchExperts(scale+1).trainingScale < global_params(1)) scale = scale + 1; else break; end end end % the view in last iteration view_used = view; % See how good the tracking was in the end [shape2D] = GetShapeOrtho(M, PDM.V, local_params, global_params); % Moving to matlab format shape2D = shape2D(:,1:2) + 1; end function [id] = GetView(centers, rotation) [~,id] = min(sum((centers * pi/180 - repmat(rotation', size(centers,1), 1)).^2,2)); end
github
ddtm/OpenFace-master
interp2_mine.m
.m
OpenFace-master/matlab_version/fitting/interp2_mine.m
20,801
utf_8
220aa792ce5b22e812b4bad3b375b329
function zi = interp2_mine(varargin) %INTERP2 2-D interpolation (table lookup). % ZI = INTERP2(X,Y,Z,XI,YI) interpolates to find ZI, the values of the % underlying 2-D function Z at the points in matrices XI and YI. % Matrices X and Y specify the points at which the data Z is given. % % XI can be a row vector, in which case it specifies a matrix with % constant columns. Similarly, YI can be a column vector and it % specifies a matrix with constant rows. % % ZI = INTERP2(Z,XI,YI) assumes X=1:N and Y=1:M where [M,N]=SIZE(Z). % ZI = INTERP2(Z,NTIMES) expands Z by interleaving interpolates between % every element, working recursively for NTIMES. INTERP2(Z) is the % same as INTERP2(Z,1). % % ZI = INTERP2(...,METHOD) specifies alternate methods. The default % is linear interpolation. Available methods are: % % 'nearest' - nearest neighbor interpolation % 'linear' - bilinear interpolation % 'spline' - spline interpolation % 'cubic' - bicubic interpolation as long as the data is % uniformly spaced, otherwise the same as 'spline' % % For faster interpolation when X and Y are equally spaced and monotonic, % use the syntax ZI = INTERP2(...,*METHOD). % % ZI = INTERP2(...,METHOD,EXTRAPVAL) specificies a method and a scalar % value for ZI outside of the domain created by X and Y. Thus, ZI will % equal EXTRAPVAL for any value of YI or XI which is not spanned by Y % or X respectively. A method must be specified for EXTRAPVAL to be used, % the default method is 'linear'. % % All the interpolation methods require that X and Y be monotonic and % plaid (as if they were created using MESHGRID). If you provide two % monotonic vectors, interp2 changes them to a plaid internally. % X and Y can be non-uniformly spaced. % % For example, to generate a coarse approximation of PEAKS and % interpolate over a finer mesh: % [x,y,z] = peaks(10); [xi,yi] = meshgrid(-3:.1:3,-3:.1:3); % zi = interp2(x,y,z,xi,yi); mesh(xi,yi,zi) % % Class support for inputs X, Y, Z, XI, YI: % float: double, single % % See also INTERP1, INTERP3, INTERPN, MESHGRID, TriScatteredInterp. % Copyright 1984-2011 The MathWorks, Inc. % $Revision: 5.33.4.24 $ $Date: 2011/05/17 02:32:27 $ error(nargchk(1,7,nargin,'struct')); % allowing for an ExtrapVal bypass = false; uniform = true; if (nargin > 1) if nargin == 7 && ~isnumeric(varargin{end}) error(message('MATLAB:interp2:extrapvalNotNumeric')); end if ischar(varargin{end}) narg = nargin-1; method = [varargin{end} ' ']; % Protect against short string. if strncmpi(method,'s',1) || strncmpi(method, '*s', 2) ExtrapVal = 'extrap'; % Splines can extrapolate else ExtrapVal = nan; % setting default ExtrapVal as NAN end index = 1; %subtract off the elements not in method elseif ischar(varargin{end-1}) && isnumeric(varargin{end}) narg = nargin-2; method = [ varargin{end-1} ' ']; ExtrapVal = varargin{end}; % user specified ExtrapVal index = 2; % subtract off the elements not in method and ExtrapVal else narg = nargin; method = 'linear'; ExtrapVal = nan; % protecting default index = 0; end if strncmpi(method,'*',1) % Direct call bypass. if (narg ==5 || narg ==3) xitemp = varargin{end-index - 1}; yitemp = varargin{end-index}; if isrow(xitemp) && iscolumn(yitemp) varargin{end-index - 1} = repmat(xitemp, [size(yitemp,1), 1]); varargin{end-index} = repmat(yitemp, [1, size(xitemp,2)]); elseif iscolumn(xitemp) && isrow(yitemp) varargin{end-index - 1} = repmat(xitemp', [size(yitemp, 2), 1]); varargin{end-index} = repmat(yitemp', [1, size(xitemp,1)]); end end if strcmpi(method(2),'l') || strcmpi(method(2:4),'bil') % bilinear interpolation. zi = linear(ExtrapVal, varargin{1:end-index}); return elseif strcmpi(method(2),'c') || strcmpi(method(2:4),'bic') % bicubic interpolation zi = cubic(ExtrapVal, varargin{1:end-index}); return elseif strcmpi(method(2),'n') % Nearest neighbor interpolation zi = nearest(ExtrapVal, varargin{1:end-index}); return elseif strcmpi(method(2),'s') % spline interpolation method = 'spline'; bypass = true; else error(message('MATLAB:interp2:InvalidMethod', deblank( method ))); end elseif strncmpi(method,'s',1), % Spline interpolation method = 'spline'; bypass = true; end else narg = nargin; method = 'linear'; ExtrapVal = nan; % default ExtrapVal is NaN end % if narg==1, % interp2(z), % Expand Z % [nrows,ncols] = size(varargin{1}); % xi = 1:.5:ncols; yi = (1:.5:nrows)'; % x = 1:ncols; y = 1:nrows; % [msg,x,y,z,xi,yi] = xyzchk(x,y,varargin{1},xi,yi); % % elseif narg==2. % interp2(z,n), Expand Z n times % [nrows,ncols] = size(varargin{1}); % ntimes = floor(varargin{2}(1)); % xi = 1:1/(2^ntimes):ncols; yi = (1:1/(2^ntimes):nrows)'; % x = 1:ncols; y = 1:nrows; % [msg,x,y,z,xi,yi] = xyzchk(x,y,varargin{1},xi,yi); % % elseif narg==3, % interp2(z,xi,yi) % [nrows,ncols] = size(varargin{1}); % x = 1:ncols; y = 1:nrows; % [msg,x,y,z,xi,yi] = xyzchk(x,y,varargin{1:3}); % % elseif narg==4, % error(message('MATLAB:interp2:nargin')); % elseif narg==5, % linear(x,y,z,xi,yi) % [msg,x,y,z,xi,yi] = xyzchk(varargin{1:5}); % % end x = varargin{1}; y = varargin{2}; z = varargin{3}; xi = varargin{4}; yi = varargin{5}; % if ~isempty(msg) % error(message(msg.identifier)); % end % % Check for plaid data. % xx = x(1,:); yy = y(:,1); % if (size(x,2)>1 && ~isequal(repmat(xx,size(x,1),1),x)) || ... % (size(y,1)>1 && ~isequal(repmat(yy,1,size(y,2)),y)), % error(message('MATLAB:interp2:meshgrid')); % end % % Check for non-equally spaced data. If so, map (x,y) and % (xi,yi) to matrix (row,col) coordinate system. % if ~bypass, xx = xx.'; % Make sure it's a column. dx = diff(xx); dy = diff(yy); xdiff = max(abs(diff(dx))); if isempty(xdiff), xdiff = 0; end ydiff = max(abs(diff(dy))); if isempty(ydiff), ydiff = 0; end if (xdiff > eps(class(xx))*max(abs(xx))) || (ydiff > eps(class(yy))*max(abs(yy))) if any(dx < 0), % Flip orientation of data so x is increasing. x = fliplr(x); y = fliplr(y); z = fliplr(z); xx = flipud(xx); dx = -flipud(dx); end if any(dy < 0), % Flip orientation of data so y is increasing. x = flipud(x); y = flipud(y); z = flipud(z); yy = flipud(yy); dy = -flipud(dy); end if any(dx<=0) || any(dy<=0), error(message('MATLAB:interp2:XorYNotMonotonic')); end % Bypass mapping code for cubic if ~strncmp(method(1),'c',1) % Determine the nearest location of xi in x [xxi,j] = sort(xi(:)); [~,i] = sort([xx;xxi]); ui(i) = 1:length(i); ui = (ui(length(xx)+1:end)-(1:length(xxi)))'; ui(j) = ui; % Map values in xi to index offset (ui) via linear interpolation ui(ui<1) = 1; ui(ui>length(xx)-1) = length(xx)-1; ui = ui + (xi(:)-xx(ui))./(xx(ui+1)-xx(ui)); % Determine the nearest location of yi in y [yyi,j] = sort(yi(:)); [~,i] = sort([yy;yyi(:)]); vi(i) = 1:length(i); vi = (vi(length(yy)+1:end)-(1:length(yyi)))'; vi(j) = vi; % Map values in yi to index offset (vi) via linear interpolation vi(vi<1) = 1; vi(vi>length(yy)-1) = length(yy)-1; vi = vi + (yi(:)-yy(vi))./(yy(vi+1)-yy(vi)); [x,y] = meshgrid(ones(class(x)):size(x,2),ones(class(y)):size(y,1)); xi(:) = ui; yi(:) = vi; else uniform = false; end end end % Now do the interpolation based on method. if strncmpi(method,'l',1) || strncmpi(method,'bil',3) % bilinear interpolation. zi = linear(ExtrapVal,x,y,z,xi,yi); elseif strncmpi(method,'c',1) || strncmpi(method,'bic',3) % bicubic interpolation if uniform zi = cubic(ExtrapVal,x,y,z,xi,yi); else zi = spline2(x,y,z,xi,yi,ExtrapVal); end elseif strncmpi(method,'n',1) % Nearest neighbor interpolation zi = nearest(ExtrapVal,x,y,z,xi,yi); elseif strncmpi(method,'s',1) % Spline interpolation % A column is removed from z if it contains a NaN. % Orient to preserve as much data as possible. [inan, jnan] = find(isnan(z)); ncolnan = length(unique(jnan)); nrownan = length(unique(inan)); if ncolnan > nrownan zi = spline2(y',x',z',yi,xi,ExtrapVal); else zi = spline2(x,y,z,xi,yi,ExtrapVal); end else error(message('MATLAB:interp2:InvalidMethod', deblank( method ))); end %------------------------------------------------------ function F = linear(ExtrapVal,arg1,arg2,arg3,arg4,arg5) %LINEAR 2-D bilinear data interpolation. % ZI = LINEAR(EXTRAPVAL,X,Y,Z,XI,YI) uses bilinear interpolation to % find ZI, the values of the underlying 2-D function in Z at the points % in matrices XI and YI. Matrices X and Y specify the points at which % the data Z is given. X and Y can also be vectors specifying the % abscissae for the matrix Z as for MESHGRID. In both cases, X % and Y must be equally spaced and monotonic. % % Values of EXTRAPVAL are returned in ZI for values of XI and YI that are % outside of the range of X and Y. % % If XI and YI are vectors, LINEAR returns vector ZI containing % the interpolated values at the corresponding points (XI,YI). % % ZI = LINEAR(EXTRAPVAL,Z,XI,YI) assumes X = 1:N and Y = 1:M, where % [M,N] = SIZE(Z). % % ZI = LINEAR(EXTRAPVAL,Z,NTIMES) returns the matrix Z expanded by % interleaving bilinear interpolates between every element, working % recursively for NTIMES. LINEAR(EXTRAPVAL,Z) is the same as % LINEAR(EXTRAPVAL,Z,1). % % See also INTERP2, CUBIC. if nargin==2 % linear(extrapval,z), Expand Z [nrows,ncols] = size(arg1); s = 1:.5:ncols; lengths = length(s); t = (1:.5:nrows)'; lengtht = length(t); s = repmat(s,lengtht,1); t = repmat(t,1,lengths); elseif nargin==3 % linear(extrapval,z,n), Expand Z n times [nrows,ncols] = size(arg1); ntimes = floor(arg2); s = 1:1/(2^ntimes):ncols; lengths = length(s); t = (1:1/(2^ntimes):nrows)'; lengtht = length(t); s = repmat(s,lengtht,1); t = repmat(t,1,lengths); elseif nargin==4 % linear(extrapval,z,s,t), No X or Y specified. [nrows,ncols] = size(arg1); s = arg2; t = arg3; elseif nargin==5 error(message('MATLAB:interp2:linear:nargin')); elseif nargin==6 % linear(extrapval,x,y,z,s,t), X and Y specified. [nrows,ncols] = size(arg3); mx = numel(arg1); my = numel(arg2); if (mx ~= ncols || my ~= nrows) && ~isequal(size(arg1),size(arg2),size(arg3)) error(message('MATLAB:interp2:linear:XYZLengthMismatch')); end if nrows < 2 || ncols < 2 error(message('MATLAB:interp2:linear:sizeZ')); end s = 1 + (arg4-arg1(1))/(arg1(end)-arg1(1))*(ncols-1); t = 1 + (arg5-arg2(1))/(arg2(end)-arg2(1))*(nrows-1); end if nrows < 2 || ncols < 2 error(message('MATLAB:interp2:linear:sizeZsq')); end if ~isequal(size(s),size(t)) error(message('MATLAB:interp2:linear:XIandYISizeMismatch')); end % Check for out of range values of s and set to 1 sout = find((s<1)|(s>ncols)); if ~isempty(sout), s(sout) = 1; end % Check for out of range values of t and set to 1 tout = find((t<1)|(t>nrows)); if ~isempty(tout), t(tout) = 1; end % Matrix element indexing ndx = floor(t)+floor(s-1)*nrows; % Compute intepolation parameters, check for boundary value. if isempty(s), d = s; else d = find(s==ncols); end s(:) = (s - floor(s)); if ~isempty(d), s(d) = s(d)+1; ndx(d) = ndx(d)-nrows; end % Compute intepolation parameters, check for boundary value. if isempty(t), d = t; else d = find(t==nrows); end t(:) = (t - floor(t)); if ~isempty(d), t(d) = t(d)+1; ndx(d) = ndx(d)-1; end % Now interpolate. onemt = 1-t; if nargin==6, F = ( arg3(ndx).*(onemt) + arg3(ndx+1).*t ).*(1-s) + ... ( arg3(ndx+nrows).*(onemt) + arg3(ndx+(nrows+1)).*t ).*s; else F = ( arg1(ndx).*(onemt) + arg1(ndx+1).*t ).*(1-s) + ... ( arg1(ndx+nrows).*(onemt) + arg1(ndx+(nrows+1)).*t ).*s; end % Now set out of range values to ExtrapVal. if ~isempty(sout), F(sout) = ExtrapVal; end if ~isempty(tout), F(tout) = ExtrapVal; end %------------------------------------------------------ function F = cubic(ExtrapVal,arg1,arg2,arg3,arg4,arg5) %CUBIC 2-D bicubic data interpolation. % CUBIC(...) is the same as LINEAR(....) except that it uses % bicubic interpolation. % % This function needs about 7-8 times SIZE(XI) memory to be available. % % See also LINEAR. % Based on "Cubic Convolution Interpolation for Digital Image % Processing", Robert G. Keys, IEEE Trans. on Acoustics, Speech, and % Signal Processing, Vol. 29, No. 6, Dec. 1981, pp. 1153-1160. if nargin==2, % cubic(extrapval,z), Expand Z [nrows,ncols] = size(arg1); s = 1:.5:ncols; lengths = length(s); t = (1:.5:nrows)'; lengtht = length(t); s = repmat(s,lengtht,1); t = repmat(t,1,lengths); elseif nargin==3, % cubic(extrapval,z,n), Expand Z n times [nrows,ncols] = size(arg1); ntimes = floor(arg2); s = 1:1/(2^ntimes):ncols; lengths = length(s); t = (1:1/(2^ntimes):nrows)'; lengtht = length(t); s = repmat(s,lengtht,1); t = repmat(t,1,lengths); elseif nargin==4, % cubic(extrapval,z,s,t), No X or Y specified. [nrows,ncols] = size(arg1); s = arg2; t = arg3; elseif nargin==5, error(message('MATLAB:interp2:cubic:nargin')); elseif nargin==6, % cubic(extrapval,x,y,z,s,t), X and Y specified. [nrows,ncols] = size(arg3); mx = numel(arg1); my = numel(arg2); if (mx ~= ncols || my ~= nrows) && ~isequal(size(arg1),size(arg2),size(arg3)) error(message('MATLAB:interp2:cubic:XYZLengthMismatch')); end if nrows < 3 || ncols < 3 error(message('MATLAB:interp2:cubic:sizeZ')); end s = 1 + (arg4-arg1(1))/(arg1(end)-arg1(1))*(ncols-1); t = 1 + (arg5-arg2(1))/(arg2(end)-arg2(1))*(nrows-1); end if nrows < 3 || ncols < 3 error(message('MATLAB:interp2:cubic:sizeZsq')); end if ~isequal(size(s),size(t)), error(message('MATLAB:interp2:cubic:XIandYISizeMismatch')); end % Check for out of range values of s and set to 1 sout = find((s<1)|(s>ncols)); if ~isempty(sout), s(sout) = 1; end % Check for out of range values of t and set to 1 tout = find((t<1)|(t>nrows)); if ~isempty(tout), t(tout) = 1; end % Matrix element indexing ndx = floor(t)+floor(s-1)*(nrows+2); % Compute intepolation parameters, check for boundary value. if isempty(s), d = s; else d = find(s==ncols); end s(:) = (s - floor(s)); if ~isempty(d), s(d) = s(d)+1; ndx(d) = ndx(d)-nrows-2; end % Compute intepolation parameters, check for boundary value. if isempty(t), d = t; else d = find(t==nrows); end t(:) = (t - floor(t)); if ~isempty(d), t(d) = t(d)+1; ndx(d) = ndx(d)-1; end if nargin==6, % Expand z so interpolation is valid at the boundaries. zz = zeros(size(arg3)+2); zz(1,2:ncols+1) = 3*arg3(1,:)-3*arg3(2,:)+arg3(3,:); zz(2:nrows+1,2:ncols+1) = arg3; zz(nrows+2,2:ncols+1) = 3*arg3(nrows,:)-3*arg3(nrows-1,:)+arg3(nrows-2,:); zz(:,1) = 3*zz(:,2)-3*zz(:,3)+zz(:,4); zz(:,ncols+2) = 3*zz(:,ncols+1)-3*zz(:,ncols)+zz(:,ncols-1); nrows = nrows+2; %also ncols = ncols+2; else % Expand z so interpolation is valid at the boundaries. zz = zeros(size(arg1)+2); zz(1,2:ncols+1) = 3*arg1(1,:)-3*arg1(2,:)+arg1(3,:); zz(2:nrows+1,2:ncols+1) = arg1; zz(nrows+2,2:ncols+1) = 3*arg1(nrows,:)-3*arg1(nrows-1,:)+arg1(nrows-2,:); zz(:,1) = 3*zz(:,2)-3*zz(:,3)+zz(:,4); zz(:,ncols+2) = 3*zz(:,ncols+1)-3*zz(:,ncols)+zz(:,ncols-1); nrows = nrows+2; %also ncols = ncols+2; end % Now interpolate using computationally efficient algorithm. t0 = ((2-t).*t-1).*t; t1 = (3*t-5).*t.*t+2; t2 = ((4-3*t).*t+1).*t; t(:) = (t-1).*t.*t; F = ( zz(ndx).*t0 + zz(ndx+1).*t1 + zz(ndx+2).*t2 + zz(ndx+3).*t ) ... .* (((2-s).*s-1).*s); ndx(:) = ndx + nrows; F(:) = F + ( zz(ndx).*t0 + zz(ndx+1).*t1 + zz(ndx+2).*t2 + zz(ndx+3).*t ) ... .* ((3*s-5).*s.*s+2); ndx(:) = ndx + nrows; F(:) = F + ( zz(ndx).*t0 + zz(ndx+1).*t1 + zz(ndx+2).*t2 + zz(ndx+3).*t ) ... .* (((4-3*s).*s+1).*s); ndx(:) = ndx + nrows; F(:) = F + ( zz(ndx).*t0 + zz(ndx+1).*t1 + zz(ndx+2).*t2 + zz(ndx+3).*t ) ... .* ((s-1).*s.*s); F(:) = F/4; % Now set out of range values to ExtrapVal. if ~isempty(sout), F(sout) = ExtrapVal; end if ~isempty(tout), F(tout) = ExtrapVal; end %------------------------------------------------------ function F = nearest(ExtrapVal,arg1,arg2,arg3,arg4,arg5) %NEAREST 2-D Nearest neighbor interpolation. % ZI = NEAREST(EXTRAPVAL,X,Y,Z,XI,YI) uses nearest neighbor interpolation % to find ZI, the values of the underlying 2-D function in Z at the points % in matrices XI and YI. Matrices X and Y specify the points at which % the data Z is given. X and Y can also be vectors specifying the % abscissae for the matrix Z as for MESHGRID. In both cases, X % and Y must be equally spaced and monotonic. % % Values of EXTRAPVAL are returned in ZI for values of XI and YI that are % outside of the range of X and Y. % % If XI and YI are vectors, NEAREST returns vector ZI containing % the interpolated values at the corresponding points (XI,YI). % % ZI = NEAREST(EXTRAPVAL,Z,XI,YI) assumes X = 1:N and Y = 1:M, where % [M,N] = SIZE(Z). % % F = NEAREST(EXTRAPVAL,Z,NTIMES) returns the matrix Z expanded by % interleaving interpolates between every element. NEAREST(EXTRAPVAL,Z) % is the same as NEAREST(EXTRAPVAL,Z,1). % % See also INTERP2, LINEAR, CUBIC. if nargin==2, % nearest(z), Expand Z [nrows,ncols] = size(arg1); u = 1:.5:ncols; lengthu = length(u); v = (1:.5:nrows)'; lengthv = length(v); u = repmat(u,lengthv,1); v = repmat(v,1,lengthu); elseif nargin==3, % nearest(z,n), Expand Z n times [nrows,ncols] = size(arg1); ntimes = floor(arg2); u = 1:1/(2^ntimes):ncols; lengthu = length(u); v = (1:1/(2^ntimes):nrows)'; lengthv = length(v); u = repmat(u,lengthv,1); v = repmat(v,1,lengthu); elseif nargin==4, % nearest(z,u,v) [nrows,ncols] = size(arg1); u = arg2; v = arg3; elseif nargin==5, error(message('MATLAB:interp2:nearest:nargin')); elseif nargin==6, % nearest(x,y,z,u,v), X and Y specified. [nrows,ncols] = size(arg3); mx = numel(arg1); my = numel(arg2); if (mx ~= ncols || my ~= nrows) && ... ~isequal(size(arg1),size(arg2),size(arg3)) error(message('MATLAB:interp2:nearest:XYZLengthMismatch')); end if nrows > 1 && ncols > 1 u = 1 + (arg4-arg1(1))/(arg1(mx)-arg1(1))*(ncols-1); v = 1 + (arg5-arg2(1))/(arg2(my)-arg2(1))*(nrows-1); else u = 1 + (arg4-arg1(1)); v = 1 + (arg5-arg2(1)); end end if ~isequal(size(u),size(v)) error(message('MATLAB:interp2:nearest:XIandYISizeMismatch')); end % Check for out of range values of u and set to 1 uout = (u<.5)|(u>=ncols+.5); anyuout = any(uout(:)); if anyuout, u(uout) = 1; end % Check for out of range values of v and set to 1 vout = (v<.5)|(v>=nrows+.5); anyvout = any(vout(:)); if anyvout, v(vout) = 1; end % Interpolation parameters u = round(u); v = round(v); % Now interpolate ndx = v+(u-1)*nrows; if nargin==6, F = arg3(ndx); else F = arg1(ndx); end % Now set out of range values to ExtrapVal. if anyuout, F(uout) = ExtrapVal; end if anyvout, F(vout) = ExtrapVal; end %---------------------------------------------------------- function F = spline2(varargin) %2-D spline interpolation % Determine abscissa vectors varargin{1} = varargin{1}(1,:); varargin{2} = varargin{2}(:,1).'; % % Check for plaid data. % xi = varargin{4}; yi = varargin{5}; xxi = xi(1,:); yyi = yi(:,1); if ~isequal(repmat(xxi,size(xi,1),1),xi) || ... ~isequal(repmat(yyi,1,size(yi,2)),yi) F = splncore(varargin(2:-1:1),varargin{3},varargin(5:-1:4)); else F = splncore(varargin(2:-1:1),varargin{3},{yyi(:).' xxi},'gridded'); end ExtrapVal = varargin{6}; % Set out-of-range values to ExtrapVal if isnumeric(ExtrapVal) d = xi < min(varargin{1}) | xi > max(varargin{1}) | ... yi < min(varargin{2}) | yi > max(varargin{2}); F(d) = ExtrapVal; end
github
ddtm/OpenFace-master
CalcJacobian.m
.m
OpenFace-master/matlab_version/fitting/CalcJacobian.m
1,333
utf_8
1b62f9a4104c629ff80049c1bfea9567
% This calculates the combined rigid with non-rigid Jacobian (non-rigid can % eiher be expression or identity one) function J = CalcJacobian(M, V, p_local, p_global) n = size(M, 1)/3; non_rigid_modes = size(V,2); J = zeros(n*2, 6 + non_rigid_modes); % now the layour is % ---------- Rigid part -------------------|----Non rigid part--------| % dx_1/ds, dx_1/dr1, ... dx_1/dtx, dx_1/dty dx_1/dp_1 ... dx_1/dp_m % dx_2/ds, dx_2/dr1, ... dx_2/dtx, dx_2/dty dx_2/dp_1 ... dx_2/dp_m % ... % dx_n/ds, dx_n/dr1, ... dx_n/dtx, dx_n/dty dx_n/dp_1 ... dx_n/dp_m % dy_1/ds, dy_1/dr1, ... dy_1/dtx, dy_1/dty dy_1/dp_1 ... dy_1/dp_m % ... % dy_n/ds, dy_n/dr1, ... dy_n/dtx, dy_n/dty dy_n/dp_1 ... dy_n/dp_m % getting the rigid part J(:,1:6) = CalcRigidJacobian(M, V, p_local, p_global); % constructing the non-rigid part R = Euler2Rot(p_global(2:4)); s = p_global(1); % 'rotate' and 'scale' the principal components % First reshape to 3D V_X = V(1:n,:); V_Y = V(n+1:2*n,:); V_Z = V(2*n+1:end,:); J_x_non_rigid = s*(R(1,1)*V_X + R(1,2)*V_Y + R(1,3)*V_Z); J_y_non_rigid = s*(R(2,1)*V_X + R(2,2)*V_Y + R(2,3)*V_Z); J(1:n, 7:end) = J_x_non_rigid; J(n+1:end, 7:end) = J_y_non_rigid; end
github
ddtm/OpenFace-master
PatchResponseCCNF.m
.m
OpenFace-master/matlab_version/fitting/PatchResponseCCNF.m
2,740
utf_8
566d48e8656f756ae9af7d31d8b2ac55
function [ responses ] = PatchResponseCCNF(patches, patch_experts_class, visibilities, patchExperts, window_size) %PATCHRESPONSESVM Summary of this function goes here % Detailed explanation goes here normalisationOptions = patchExperts.normalisationOptionsCol; patchSize = normalisationOptions.patchSize; responses = cell(size(patches, 1), 1); empty = zeros(window_size(1)-patchSize(1)+1, window_size(2)-patchSize(2)+1); for i = 1:numel(patches(:,1)) responses{i} = empty; if visibilities(i) col_norm = normalisationOptions.useNormalisedCrossCorr == 1; b = zeros(numel(empty), 1); num_hl = size(patch_experts_class{i}.thetas,1); smallRegionVec = patches(i,:); smallRegion = reshape(smallRegionVec, window_size(1), window_size(2)); for hls = 1:num_hl w = patch_experts_class{i}.w{hls}; % normalisation needed per each response norm_w = patch_experts_class{i}.norm_w{hls}; response = -norm_w * SVMresponse(smallRegion, w, col_norm, patchSize) - patch_experts_class{i}.thetas(hls, 1); % here we include the bias term as well, as it wasn't added % during the response calculation h1 = 1./(1 + exp(response(:))); b = b + (2 * patch_experts_class{i}.alphas(hls) * h1); end % Sigma will be dependent on the size of the patch find the % needed precomputed Sigma rel_sigma = 1; if(numel(patch_experts_class{i}.Sigma) > 1) for sig=1:numel(patch_experts_class{i}.Sigma) if(size(patch_experts_class{i}.Sigma{sig},2)==numel(b)) rel_sigma = sig; break; end end end response = patch_experts_class{i}.Sigma{rel_sigma} * b; % make sure we have no negative responses response = response - min(response); responses{i}(:) = response; end end end function response = SVMresponse(region, patchExpert, normalise_x_corr,patchSize) if(normalise_x_corr) % the fast mex convolution [response] = normxcorr2_mex(patchExpert, region); response = response(patchSize(1):end-patchSize(1)+1,patchSize(2):end-patchSize(2)+1); else % this assumes that the patch is already normed template = rot90(patchExpert,2); response = conv2(region, template, 'valid'); end end
github
ddtm/OpenFace-master
NU_RLMS.m
.m
OpenFace-master/matlab_version/fitting/NU_RLMS.m
9,547
utf_8
313ae3c571133af4a520db68eb97435f
function [ final_global, final_local, final_lhood, landmark_lhoods ] = NU_RLMS( ... init_global, init_local, PDM, patchResponses, visibilities,... view, reliabilities, baseShape, OrigToRefTransform, rigid, ... clmParams, gauss_resp) %RLMS Summary of this function goes here % Detailed explanation goes here m = numel(PDM.E); E = PDM.E; V = PDM.V; n = size(V, 1)/3; current_local = init_local; current_global = init_global; pxWidth = size(patchResponses{1},1); responseSize = size(patchResponses{1}); [iis,jjs] = meshgrid(1:pxWidth, 1:pxWidth); % Grab all of the patch responses and convert them to single matrix % representation for speed patchResponsesFlat = reshape(cat(3,patchResponses{:}), responseSize(1)*responseSize(2), n)'; iisFlat = repmat(iis(:)', n, 1); jjsFlat = repmat(jjs(:)', n, 1); % An alternative formulation reg_rigid = zeros(6,1); if(rigid) regularisations = reg_rigid; regularisations = diag(regularisations); else regularisations = [reg_rigid; clmParams.regFactor ./ E]; % the above version, however, does not perform as well regularisations = diag(regularisations); end % For generalised Tikhonov if(clmParams.tikhonov_factor == 0) P = eye(n*2); else % the worse the reliability the higher the variance of the % prediction, so inverse variance correlate with reliability P = clmParams.tikhonov_factor * diag(repmat(reliabilities',2,1)); end for iter = 1:clmParams.num_RLMS_iter % get the current estimates of x and y in image currentShape = GetShapeOrtho(PDM.M, PDM.V, current_local, current_global); currentShape = currentShape(:,1:2); if(iter > 1) % if the shape hasn't changed terminate if(norm(currentShape - previousShape) < clmParams.fTol) break; end end previousShape = currentShape; % calculate the appropriate Jacobians in 2D, even though the actual behaviour is in 3D, using small angle approximation and oriented shape if(rigid) J = CalcRigidJacobian(PDM.M, PDM.V, current_local, current_global); else J = CalcJacobian(PDM.M, PDM.V, current_local, current_global); end % as the mean shift is with reference to the point, we don't care about % the translation OrigToRefTransform.tdata.T(3,1:2) = 0; OrigToRefTransform.tdata.Tinv(3,1:2) = 0; % distance from center where the response was calculated around % in reference frame of the patch offsets = (currentShape - baseShape) * OrigToRefTransform.tdata.T(1:2,1:2)'; % perform the parallel version of the mean shift algorithm dxs = offsets(:, 1) + (pxWidth-1)/2 + 1; dys = offsets(:, 2) + (pxWidth-1)/2 + 1; if(numel(gauss_resp) > 0) meanShifts = meanShiftParallel_precalc(patchResponsesFlat, dxs, dys, iisFlat, jjsFlat, responseSize, gauss_resp.kd_precalc, gauss_resp.stepSize); else meanShifts = meanShiftParallel(patchResponsesFlat, clmParams.sigmaMeanShift, dxs, dys, iisFlat, jjsFlat, responseSize); end % invalidate illegal mean shifts illegal_inds = find(~visibilities(view, :)); J(illegal_inds,:) = 0; J(illegal_inds + n,:) = 0; meanShifts(illegal_inds,:) = 0; % Mean shift's here are calculate in the reference image frame, % we want to move them back to actual image frame meanShifts = meanShifts * OrigToRefTransform.tdata.Tinv(1:2,1:2)'; % put it into column format meanShifts = meanShifts(:); rigid_params = current_global - init_global; rigid_params(2:4) = 0; if(rigid) params = rigid_params; else params = [rigid_params; current_local]; end params_delta = (J'*P*J + regularisations) \ (J'*P*meanShifts - regularisations*params); % update the reference [current_local, current_global] = CalcReferenceUpdate(params_delta, current_local, current_global); if(~rigid) % clamp to the local parameters for valid expressions current_local = ClampPDM(current_local, E); end end if(nargout >= 4) % get the current estimates of x and y in image currentShape = GetShapeOrtho(PDM.M, PDM.V, current_local, current_global); currentShape = currentShape(:,1:2); % as the mean shift is with reference to the point, we don't care about % the translation OrigToRefTransform.tdata.T(3,1:2) = 0; OrigToRefTransform.tdata.Tinv(3,1:2) = 0; % distance from center where the response was calculated around % in reference frame of the patch offsets = (currentShape - baseShape) * OrigToRefTransform.tdata.T(1:2,1:2)'; % perform the parallel version of the mean shift algorithm dxs = offsets(:, 1) + (pxWidth-1)/2 + 1; dys = offsets(:, 2) + (pxWidth-1)/2 + 1; landmark_lhoods = zeros(n,1); prob = 0; for i=1:n if(visibilities(view, i)) dx = dxs(i); dy = dys(i); vxs = (-iis+dx).^2; vys = (-jjs+dy).^2; % Calculate the kde per patch vs = patchResponses{i}.*exp(-0.5*(vxs + vys)/clmParams.sigmaMeanShift); kde_est = sum(vs(:)); landmark_lhoods(i) = kde_est; prob = prob + log(kde_est + 1e-8); end end % Do not add the local parameter prior as it overpowers the % log-likelihoods final_lhood = prob / sum(visibilities(view, :)); % - LogPDMprior(current_local, E); end final_global = current_global; final_local = current_local; end % This clamps the non-rigid parameters to stay within +- 3 standard % deviations function [non_rigid_params] = ClampPDM(non_rigid, E) stds = sqrt(E); non_rigid_params = non_rigid; lower = non_rigid_params < -3 * stds; non_rigid_params(lower) = -3*stds(lower); higher = non_rigid_params > 3 * stds; non_rigid_params(higher) = 3*stds(higher); end % This calculate the mean shift based on the kernel density response at dx, % dy in the patch response, this can be used to find the mode function [meanShifts] = meanShiftParallel(patchResponses, sigma, dxs, dys, iis, jjs, patchSize) % Kernel density is % K(x_i-x) = p(x_i)*exp(-0.5 * ||x_i-x||^2/sigma), so probability weighted % distance from the center % Mean shift is then m(x) = sum(K(x_i - dx)*x_i)/sum(K(x_i-dx)) % step_size = 0.1; % gauss_resp_prec = precalc_kernel_densities(patchSize, sigma, step_size); % % %iis are row vectors of the locations of interest, for each patch % nYs = numel(0:step_size:patchSize(2)); % % calculate the indices needed % % dxs2 = dxs - mod(dxs, step_size); % dys2 = dys - mod(dys, step_size); % % xs = round(dxs2 * nYs * 1/step_size + (dys2 /step_size) +1); % % gauss_resp_c = gauss_resp_prec(xs,:); % this part is doing (x_i - dx)^2 vxs = bsxfun(@plus, -iis, dxs); vxs = vxs.^2; % this part is doing (y_i - dy)^2 vys = bsxfun(@plus, -jjs, dys); vys = vys.^2; a = -0.5/(sigma.^2); % this part is calculating K(x_i - x) gauss_resp = exp(a*(vxs + vys)); vs = patchResponses.*gauss_resp; % this part is calculating K(x_i - dx)*x_i mxss = vs.*iis; myss = vs.*jjs; % this part is caluclating sum(K(x_i - dx)*x_i) mxs = sum(mxss,2); mys = sum(myss,2); sumVs = sum(vs,2); sumVs(sumVs == 0) = 1; msx = mxs ./ sumVs - dxs; msy = mys ./ sumVs - dys; meanShifts = [msx, msy]; end % This updates the parameters based on the updates from the RLMS function [non_rigid, rigid] = CalcReferenceUpdate(params_delta, current_non_rigid, current_global) rigid = zeros(6, 1); % Same goes for scaling and translation parameters rigid(1) = current_global(1) + params_delta(1); rigid(5) = current_global(5) + params_delta(5); rigid(6) = current_global(6) + params_delta(6); % for rotation however, we want to make sure that the rotation matrix % approximation we have % R' = [1, -wz, wy % wz, 1, -wx % -wy, wx, 1] % is a legal rotation matrix, and then we combine it with current % rotation (through matrix multiplication) to acquire the new rotation R = Euler2Rot(current_global(2:4)); wx = params_delta(2); wy = params_delta(3); wz = params_delta(4); R_delta = [1, -wz, wy; wz, 1, -wx; -wy, wx, 1]; % Make sure R_delta is orthonormal R_delta = OrthonormaliseRotation(R_delta); % Combine rotations R_final = R * R_delta; % Extract euler angle euler = Rot2Euler(R_final); rigid(2:4) = euler; if(length(params_delta) > 6) % non-rigid parameters can just be added together non_rigid = params_delta(7:end) + current_non_rigid; else non_rigid = current_non_rigid; end end function R_ortho = OrthonormaliseRotation(R) % U * V' is basically what we want, as it's guaranteed to be % orthonormal [U, ~, V] = svd(R); % We also want to make sure no reflection happened % get the orthogonal matrix from the initial rotation matrix X = U*V'; % This makes sure that the handedness is preserved and no reflection happened % by making sure the determinant is 1 and not -1 W = eye(3); W(3,3) = det(X); R_ortho = U*W*V'; end function [prob] = LogPDMprior(params, E) cov = diag(E); prob = 0.5 * params'*inv(cov)*params; end
github
ddtm/OpenFace-master
PatchResponseSVM_multi_modal.m
.m
OpenFace-master/matlab_version/fitting/PatchResponseSVM_multi_modal.m
5,129
utf_8
e736ddb434521d9608edc3f3fc7b188d
function [ responses ] = PatchResponseSVM_multi_modal( patches, patch_experts, visibilities, normalisationOptions, clmParameters, window_size) %PATCHRESPONSESVM Summary of this function goes here % Detailed explanation goes here patchSize = normalisationOptions.patchSize; responses = cell(size(patches, 1), 1); empty = zeros(window_size(1)-patchSize(1)+1, window_size(2)-patchSize(2)+1); % prepare the patches through either turning them to gradients or if(clmParameters.use_multi_modal) patches_to_use = cell(numel(clmParameters.multi_modal_types),1); for t=1:numel(clmParameters.multi_modal_types) if(strcmp(clmParameters.multi_modal_types{t}, 'reg')) patches_reg = patches; if(normalisationOptions.zscore) meanCurr = mean(patches, 2); stdCurr = std(double(patches), 0, 2); stdCurr(stdCurr == 0) = 1; patches_reg = bsxfun(@minus, patches, meanCurr); patches_reg = bsxfun(@rdivide, patches_reg, stdCurr); end patches_to_use{t} = patches_reg; elseif(strcmp(clmParameters.multi_modal_types{t}, 'grad')) v = [1]; h = [-1 0 1]; grad_patches = zeros(size(patches)); for i = 1:numel(patches(:,1)) if visibilities(i) currSample = reshape(patches(i,:), window_size(1), window_size(2)); edgeX = conv2(conv2(currSample, v, 'same'), h, 'same'); edgeY = conv2(conv2(currSample, v', 'same'), h', 'same'); grad = edgeX.^2 + edgeY.^2; grad(1,:) = 0; grad(:,1) = 0; grad(end,:) = 0; grad(:,end) = 0; grad_patches(i,:) = reshape(grad, window_size(1) * window_size(1),1); end end patches_to_use{t} = grad_patches; end end else patches_reg = patches; if(normalisationOptions.zscore) if(normalisationOptions.ignoreInvalidInMeanStd) % invalid data represented with 0, ignore it when computing % mean and standard deviation (useful for depth) for i = 1:size(patches,1) mask = patches(i,:) ~= 0; meanCurr = mean(patches(i,mask)); stdCurr = std(patches(i,mask)); patches(i,mask) = patches(i, mask) - meanCurr; if(stdCurr ~= 0) patches(i, mask) = patches(i, mask) ./ meanCurr; end patches(i, ~mask) = normalisationOptions.setIllegalToPost; end patches_reg = patches; else meanCurr = mean(patches, 2); stdCurr = std(double(patches), 0, 2); stdCurr(stdCurr == 0) = 1; patches_reg = bsxfun(@minus, patches, meanCurr); patches_reg = bsxfun(@rdivide, patches_reg, stdCurr); end end patches_to_use = {patches_reg}; end for i = 1:numel(patches(:,1)) responses{i} = empty; if visibilities(i) % responses{i} = ones(size(empty)); colNorm = normalisationOptions.useNormalisedCrossCorr == 1; for p=1:numel(patches_to_use) smallRegionVec = patches_to_use{p}(i,:); smallRegion = reshape(smallRegionVec, window_size(1), window_size(2)); % get the patch response response = SVMresponse(smallRegion, patch_experts{i}(p).w, colNorm, patchSize); response = (exp(-(patch_experts{i}(p).scaling*response+patch_experts{i}(p).bias))+1).^-1; if(p==1) responses{i} = response; else responses{i} = responses{i} .* response; end end normOp = (sum(responses{i}(:))); if(normOp ~= 0) responses{i} = responses{i} ./ normOp; end end end end function response = SVMresponse(region, patchExpert, normalise_x_corr,patchSize) if(normalise_x_corr) % the much faster mex version [response] = normxcorr2_mex(patchExpert, region); response = response(patchSize(1):end-patchSize(1)+1,patchSize(2):end-patchSize(2)+1); else % this assumes that the patch is already normed template = rot90(patchExpert,2); response = conv2(region, template, 'valid'); end end
github
ddtm/OpenFace-master
Collect_wild_imgs.m
.m
OpenFace-master/matlab_version/experiments_iccv_300w/Collect_wild_imgs.m
5,507
utf_8
5b43676289f81ab146b99199ae89a6df
function [images, detections, labels] = Collect_wild_imgs(root_test_data) use_afw = true; use_lfpw = true; use_helen = true; use_ibug = true; use_68 = true; images = []; labels = []; detections = []; if(use_afw) [img, det, lbl] = Collect_AFW(root_test_data, use_68); images = cat(1, images, img'); detections = cat(1, detections, det); labels = cat(1, labels, lbl); end if(use_lfpw) [img, det, lbl] = Collect_LFPW(root_test_data, use_68); images = cat(1, images, img'); detections = cat(1, detections, det); labels = cat(1, labels, lbl); end if(use_ibug) [img, det, lbl] = Collect_ibug(root_test_data, use_68); images = cat(1, images, img'); detections = cat(1, detections, det); labels = cat(1, labels, lbl); end if(use_helen) [img, det, lbl] = Collect_helen(root_test_data, use_68); images = cat(1, images, img'); detections = cat(1, detections, det); labels = cat(1, labels, lbl); end % convert to format expected by the Fitting method detections(:,3) = detections(:,1) + detections(:,3); detections(:,4) = detections(:,2) + detections(:,4); end function [images, detections, labels] = Collect_AFW(root_test_data, use_68) dataset_loc = [root_test_data, '/AFW/']; landmarkLabels = dir([dataset_loc '\*.pts']); num_imgs = size(landmarkLabels,1); images = struct; if(use_68) labels = zeros(num_imgs, 68, 2); else labels = zeros(num_imgs, 66, 2); end detections = zeros(num_imgs, 4); load([root_test_data, '/Bounding Boxes/bounding_boxes_afw.mat']); num_landmarks = 68; for imgs = 1:num_imgs [~,name,~] = fileparts(landmarkLabels(imgs).name); landmarks = dlmread([dataset_loc, landmarkLabels(imgs).name], ' ', [3,0,num_landmarks+2,1]); if(~use_68) inds_frontal = [1:60,62:64,66:68]; landmarks = landmarks(inds_frontal,:); end images(imgs).img = [dataset_loc, name '.jpg']; labels(imgs,:,:) = landmarks; detections(imgs,:) = bounding_boxes{imgs}.bb_detector; end detections(:,3) = detections(:,3) - detections(:,1); detections(:,4) = detections(:,4) - detections(:,2); end function [images, detections, labels] = Collect_LFPW(root_test_data, use_68) dataset_loc = [root_test_data, '/lfpw/testset/']; landmarkLabels = dir([dataset_loc '\*.pts']); num_imgs = size(landmarkLabels,1); images = struct; if(use_68) labels = zeros(num_imgs, 68, 2); else labels = zeros(num_imgs, 66, 2); end detections = zeros(num_imgs, 4); load([root_test_data, '/Bounding Boxes/bounding_boxes_lfpw_testset.mat']); num_landmarks = 68; for imgs = 1:num_imgs [~,name,~] = fileparts(landmarkLabels(imgs).name); landmarks = dlmread([dataset_loc, landmarkLabels(imgs).name], ' ', [3,0,num_landmarks+2,1]); if(~use_68) inds_frontal = [1:60,62:64,66:68]; landmarks = landmarks(inds_frontal,:); end images(imgs).img = [dataset_loc, name '.png']; labels(imgs,:,:) = landmarks; detections(imgs,:) = bounding_boxes{imgs}.bb_detector; end detections(:,3) = detections(:,3) - detections(:,1); detections(:,4) = detections(:,4) - detections(:,2); end function [images, detections, labels] = Collect_ibug(root_test_data, use_68) dataset_loc = [root_test_data, '/ibug/']; landmarkLabels = dir([dataset_loc '\*.pts']); num_imgs = size(landmarkLabels,1); images = struct; if(use_68) labels = zeros(num_imgs, 68, 2); else labels = zeros(num_imgs, 66, 2); end detections = zeros(num_imgs, 4); load([root_test_data, '/Bounding Boxes/bounding_boxes_ibug.mat']); num_landmarks = 68; for imgs = 1:num_imgs [~,name,~] = fileparts(landmarkLabels(imgs).name); landmarks = dlmread([dataset_loc, landmarkLabels(imgs).name], ' ', [3,0,num_landmarks+2,1]); if(~use_68) inds_frontal = [1:60,62:64,66:68]; landmarks = landmarks(inds_frontal,:); end images(imgs).img = [dataset_loc, name '.jpg']; labels(imgs,:,:) = landmarks; detections(imgs,:) = bounding_boxes{imgs}.bb_detector; end detections(:,3) = detections(:,3) - detections(:,1); detections(:,4) = detections(:,4) - detections(:,2); end function [images, detections, labels] = Collect_helen(root_test_data, use_68) dataset_loc = [root_test_data, '/helen/testset/']; landmarkLabels = dir([dataset_loc '\*.pts']); num_imgs = size(landmarkLabels,1); images = struct; if(use_68) labels = zeros(num_imgs, 68, 2); else labels = zeros(num_imgs, 66, 2); end detections = zeros(num_imgs, 4); load([root_test_data, '/Bounding Boxes/bounding_boxes_helen_testset.mat']); num_landmarks = 68; for imgs = 1:num_imgs [~,name,~] = fileparts(landmarkLabels(imgs).name); landmarks = dlmread([dataset_loc, landmarkLabels(imgs).name], ' ', [3,0,num_landmarks+2,1]); if(~use_68) inds_frontal = [1:60,62:64,66:68]; landmarks = landmarks(inds_frontal,:); end images(imgs).img = [dataset_loc, name '.jpg']; labels(imgs,:,:) = landmarks; detections(imgs,:) = bounding_boxes{imgs}.bb_detector; end detections(:,3) = detections(:,3) - detections(:,1); detections(:,4) = detections(:,4) - detections(:,2); end
github
ddtm/OpenFace-master
writeMatrix.m
.m
OpenFace-master/matlab_version/PDM_helpers/writeMatrix.m
428
utf_8
3a2c87a966a8dc0f296d992d85f7d445
% for easier readibility write them row by row function writeMatrix(fileID, M, type) fprintf(fileID, '%d\r\n', size(M,1)); fprintf(fileID, '%d\r\n', size(M,2)); fprintf(fileID, '%d\r\n', type); for i=1:size(M,1) if(type == 4 || type == 0) fprintf(fileID, '%d ', M(i,:)); else fprintf(fileID, '%.9f ', M(i,:)); end fprintf(fileID, '\r\n'); end end
github
ddtm/OpenFace-master
fit_PDM_ortho_proj_to_2D_no_reg.m
.m
OpenFace-master/matlab_version/PDM_helpers/fit_PDM_ortho_proj_to_2D_no_reg.m
9,726
utf_8
a7d2a08fb6a085786ca26efe54c2241b
function [ a, R, T, T3D, params, error, shapeOrtho ] = fit_PDM_ortho_proj_to_2D_no_reg( M, E, V, shape2D) %FITPDMTO2DSHAPE Summary of this function goes here % Detailed explanation goes here hidden = false; % if some of the points are unavailable modify M, V, and shape2D (can % later infer the actual shape from this) if(sum(shape2D(:)==0) > 0) hidden = true; % which indices to remove inds_to_rem = shape2D(:,1) == 0 | shape2D(:,2) == 0; shape2D = shape2D(~inds_to_rem,:); inds_to_rem = repmat(inds_to_rem, 3, 1); M_old = M; V_old = V; M = M(~inds_to_rem); V = V(~inds_to_rem,:); end num_points = numel(M) / 3; m = reshape(M, num_points, 3)'; width_model = max(m(1,:)) - min(m(1,:)); height_model = max(m(2,:)) - min(m(2,:)); bounding_box = [min(shape2D(:,1)), min(shape2D(:,2)),... max(shape2D(:,1)), max(shape2D(:,2))]; a = (((bounding_box(3) - bounding_box(1)) / width_model) + ((bounding_box(4) - bounding_box(2))/ height_model)) / 2; tx = (bounding_box(3) + bounding_box(1))/2; ty = (bounding_box(4) + bounding_box(2))/2; % correct it so that the bounding box is just around the minimum % and maximum point in the initialised face tx = tx - a*(min(m(1,:)) + max(m(1,:)))/2; ty = ty - a*(min(m(2,:)) + max(m(2,:)))/2; R = eye(3); T = [tx; ty]; params = zeros(size(E)); currShape = getShapeOrtho(M, V, params, R, T, a); currError = getRMSerror(currShape, shape2D); reg_rigid = zeros(6,1); regFactor = 0.25; regularisations = [reg_rigid; regFactor ./ E]; % the above version, however, does not perform as well regularisations = diag(regularisations)*diag(regularisations); red_in_a_row = 0; for i=1:1000 shape3D = M + V * params; shape3D = reshape(shape3D, numel(shape3D) / 3, 3); % Now find the current residual error currShape = a * R(1:2,:)*shape3D' + repmat(T, 1, numel(M)/3); currShape = currShape'; error_res = shape2D - currShape; eul = Rot2Euler(R); p_global = [a; eul'; T]; % get the Jacobians J = CalcJacobian(M, V, params, p_global); % RLMS style update p_delta = (J'*J + regularisations) \ (J'*error_res(:) - regularisations*[p_global;params]); % not to overshoot p_delta = 0.5 * p_delta; [params, p_global] = CalcReferenceUpdate(p_delta, params, p_global); a = p_global(1); R = Euler2Rot(p_global(2:4)); T = p_global(5:6); shape3D = M + V * params; shape3D = reshape(shape3D, numel(shape3D) / 3, 3); currShape = a * R(1:2,:)*shape3D' + repmat(T, 1, numel(M)/3); currShape = currShape'; error = getRMSerror(currShape, shape2D); if(0.999 * currError < error) red_in_a_row = red_in_a_row + 1; if(red_in_a_row == 5) break; end end currError = error; end if(hidden) shapeOrtho = getShapeOrtho(M_old, V_old, params, R, T, a); else shapeOrtho = currShape; end T3D = [0;0;0]; end function [shape2D] = getShapeOrtho(M, V, p, R, T, a) % M - mean shape vector % V - eigenvectors % p - parameters of non-rigid shape % R - rotation matrix % T - translation vector (tx, ty) shape3D = getShape3D(M, V, p); shape2D = a * R(1:2,:)*shape3D' + repmat(T, 1, numel(M)/3); shape2D = shape2D'; end function [shape2D] = getShapeOrthoFull(M, V, p, R, T, a) % M - mean shape vector % V - eigenvectors % p - parameters of non-rigid shape % R - rotation matrix % T - translation vector (tx, ty) T = [T; 0]; shape3D = getShape3D(M, V, p); shape2D = a * R*shape3D' + repmat(T, 1, numel(M)/3); shape2D = shape2D'; end function [shape3D] = getShape3D(M, V, params) shape3D = M + V * params; shape3D = reshape(shape3D, numel(shape3D) / 3, 3); end function [error] = getRMSerror(shape2Dv1, shape2Dv2) error = sqrt(mean(reshape(shape2Dv1 - shape2Dv2, numel(shape2Dv1), 1).^2)); end % This calculates the combined rigid with non-rigid Jacobian function J = CalcJacobian(M, V, p, p_global) n = size(M, 1)/3; non_rigid_modes = size(V,2); J = zeros(n*2, 6 + non_rigid_modes); % now the layour is % ---------- Rigid part -------------------|----Non rigid part--------| % dx_1/ds, dx_1/dr1, ... dx_1/dtx, dx_1/dty dx_1/dp_1 ... dx_1/dp_m % dx_2/ds, dx_2/dr1, ... dx_2/dtx, dx_2/dty dx_2/dp_1 ... dx_2/dp_m % ... % dx_n/ds, dx_n/dr1, ... dx_n/dtx, dx_n/dty dx_n/dp_1 ... dx_n/dp_m % dy_1/ds, dy_1/dr1, ... dy_1/dtx, dy_1/dty dy_1/dp_1 ... dy_1/dp_m % ... % dy_n/ds, dy_n/dr1, ... dy_n/dtx, dy_n/dty dy_n/dp_1 ... dy_n/dp_m % getting the rigid part J(:,1:6) = CalcRigidJacobian(M, V, p, p_global); % constructing the non-rigid part R = Euler2Rot(p_global(2:4)); s = p_global(1); % 'rotate' and 'scale' the principal components % First reshape to 3D V_X = V(1:n,:); V_Y = V(n+1:2*n,:); V_Z = V(2*n+1:end,:); J_x_non_rigid = s*(R(1,1)*V_X + R(1,2)*V_Y + R(1,3)*V_Z); J_y_non_rigid = s*(R(2,1)*V_X + R(2,2)*V_Y + R(2,3)*V_Z); J(1:n, 7:end) = J_x_non_rigid; J(n+1:end, 7:end) = J_y_non_rigid; end function J = CalcRigidJacobian(M, V, p, p_global) n = size(M, 1)/3; % Get the current 3D shape (not affected by global transform, as this % is how the Jacobian was derived (for derivation please see % ../derivations/orthoJacobian shape3D = GetShape3D(M, V, p); % Get the rotation matrix corresponding to current global orientation R = Euler2Rot(p_global(2:4)); s = p_global(1); % Rigid Jacobian is laid out as follows % dx_1/ds, dx_1/dr1, dx_1/dr2, dx_1/dr3, dx_1/dtx, dx_1/dty % dx_2/ds, dx_2/dr1, dx_2/dr2, dx_2/dr3, dx_2/dtx, dx_2/dty % ... % dx_n/ds, dx_n/dr1, dx_n/dr2, dx_n/dr3, dx_n/dtx, dx_n/dty % dy_1/ds, dy_1/dr1, dy_1/dr2, dy_1/dr3, dy_1/dtx, dy_1/dty % ... % dy_n/ds, dy_n/dr1, dy_n/dr2, dy_n/dr3, dy_n/dtx, dy_n/dty J = zeros(n*2, 6); % dx/ds = X * r11 + Y * r12 + Z * r13 % dx/dr1 = s*(r13 * Y - r12 * Z) % dx/dr2 = -s*(r13 * X - r11 * Z) % dx/dr3 = s*(r12 * X - r11 * Y) % dx/dtx = 1 % dx/dty = 0 % dy/ds = X * r21 + Y * r22 + Z * r23 % dy/dr1 = s * (r23 * Y - r22 * Z) % dy/dr2 = -s * (r23 * X - r21 * Z) % dy/dr3 = s * (r22 * X - r21 * Y) % dy/dtx = 0 % dy/dty = 1 % set the Jacobian for x's % with respect to scaling factor J(1:n,1) = shape3D * R(1,:)'; % with respect to angular rotation around x, y, and z axes % Change of x with respect to change in axis angle rotation dxdR = [ 0, R(1,3), -R(1,2); -R(1,3), 0, R(1,1); R(1,2), -R(1,1), 0]; J(1:n,2:4) = s*(dxdR * shape3D')'; % with respect to translation J(1:n,5) = 1; J(1:n,6) = 0; % set the Jacobian for y's % with respect to scaling factor J(n+1:end,1) = shape3D * R(2,:)'; % with respect to angular rotation around x, y, and z axes % Change of y with respect to change in axis angle rotation dydR = [ 0, R(2,3), -R(2,2); -R(2,3), 0, R(2,1); R(2,2), -R(2,1), 0]; J(n+1:end,2:4) = s*(dydR * shape3D')'; % with respect to translation J(n+1:end,5) = 0; J(n+1:end,6) = 1; end % This updates the parameters based on the updates from the RLMS function [non_rigid, rigid] = CalcReferenceUpdate(params_delta, current_non_rigid, current_global) rigid = zeros(6, 1); % Same goes for scaling and translation parameters rigid(1) = current_global(1) + params_delta(1); rigid(5) = current_global(5) + params_delta(5); rigid(6) = current_global(6) + params_delta(6); % for rotation however, we want to make sure that the rotation matrix % approximation we have % R' = [1, -wz, wy % wz, 1, -wx % -wy, wx, 1] % is a legal rotation matrix, and then we combine it with current % rotation (through matrix multiplication) to acquire the new rotation R = Euler2Rot(current_global(2:4)); wx = params_delta(2); wy = params_delta(3); wz = params_delta(4); R_delta = [1, -wz, wy; wz, 1, -wx; -wy, wx, 1]; % Make sure R_delta is orthonormal R_delta = OrthonormaliseRotation(R_delta); % Combine rotations R_final = R * R_delta; % Extract euler angle euler = Rot2Euler(R_final); rigid(2:4) = euler; if(length(params_delta) > 6) % non-rigid parameters can just be added together non_rigid = params_delta(7:end) + current_non_rigid; else non_rigid = current_non_rigid; end end function R_ortho = OrthonormaliseRotation(R) % U * V' is basically what we want, as it's guaranteed to be % orthonormal [U, ~, V] = svd(R); % We also want to make sure no reflection happened % get the orthogonal matrix from the initial rotation matrix X = U*V'; % This makes sure that the handedness is preserved and no reflection happened % by making sure the determinant is 1 and not -1 W = eye(3); W(3,3) = det(X); R_ortho = U*W*V'; end
github
ddtm/OpenFace-master
writeMatrixBin.m
.m
OpenFace-master/matlab_version/PDM_helpers/writeMatrixBin.m
911
utf_8
636b1a9c9f27421bfde056250858f51e
% for easier readibility write them row by row function writeMatrixBin(fileID, M, type) % 4 bytes each for the description fwrite(fileID, size(M,1), 'uint'); fwrite(fileID, size(M,2), 'uint'); fwrite(fileID, type, 'uint'); % Convert the matrix to OpenCV format (row minor as opposed to column % minor) M = M'; % type 0 - uint8, 1 - int8, 2 - uint16, 3 - int16, 4 - int, 5 - % float32, 6 - float64 % Write out the matrix itself switch type case 0 type = 'uint8'; case 1 type = 'int8'; case 2 type = 'uint16'; case 3 type = 'int16'; case 4 type = 'int'; case 5 type = 'float32'; case 6 type = 'float64'; otherwise type = 'float32'; end fwrite(fileID, M, type); end
github
ddtm/OpenFace-master
fit_PDM_ortho_proj_to_2D.m
.m
OpenFace-master/matlab_version/PDM_helpers/fit_PDM_ortho_proj_to_2D.m
9,871
utf_8
7accc2b0fee769eecc059448c7e69b26
function [ a, R, T, T3D, params, error, shapeOrtho ] = fit_PDM_ortho_proj_to_2D( M, E, V, shape2D, f, cx, cy) %FITPDMTO2DSHAPE Summary of this function goes here % Detailed explanation goes here params = zeros(size(E)); hidden = false; % if some of the points are unavailable modify M, V, and shape2D (can % later infer the actual shape from this) if(sum(shape2D(:)==0) > 0) hidden = true; % which indices to remove inds_to_rem = shape2D(:,1) == 0 | shape2D(:,2) == 0; shape2D = shape2D(~inds_to_rem,:); inds_to_rem = repmat(inds_to_rem, 3, 1); M_old = M; V_old = V; M = M(~inds_to_rem); V = V(~inds_to_rem,:); end num_points = numel(M) / 3; m = reshape(M, num_points, 3)'; width_model = max(m(1,:)) - min(m(1,:)); height_model = max(m(2,:)) - min(m(2,:)); bounding_box = [min(shape2D(:,1)), min(shape2D(:,2)),... max(shape2D(:,1)), max(shape2D(:,2))]; a = (((bounding_box(3) - bounding_box(1)) / width_model) + ((bounding_box(4) - bounding_box(2))/ height_model)) / 2; tx = (bounding_box(3) + bounding_box(1))/2; ty = (bounding_box(4) + bounding_box(2))/2; % correct it so that the bounding box is just around the minimum % and maximum point in the initialised face tx = tx - a*(min(m(1,:)) + max(m(1,:)))/2; ty = ty - a*(min(m(2,:)) + max(m(2,:)))/2; R = eye(3); T = [tx; ty]; currShape = getShapeOrtho(M, V, params, R, T, a); currError = getRMSerror(currShape, shape2D); reg_rigid = zeros(6,1); regFactor = 20; regularisations = [reg_rigid; regFactor ./ E]; % the above version, however, does not perform as well regularisations = diag(regularisations)*diag(regularisations); red_in_a_row = 0; for i=1:1000 shape3D = M + V * params; shape3D = reshape(shape3D, numel(shape3D) / 3, 3); % Now find the current residual error currShape = a * R(1:2,:)*shape3D' + repmat(T, 1, numel(M)/3); currShape = currShape'; error_res = shape2D - currShape; eul = Rot2Euler(R); p_global = [a; eul'; T]; % get the Jacobians J = CalcJacobian(M, V, params, p_global); % RLMS style update p_delta = (J'*J + regularisations) \ (J'*error_res(:) - regularisations*[p_global;params]); [params, p_global] = CalcReferenceUpdate(p_delta, params, p_global); a = p_global(1); R = Euler2Rot(p_global(2:4)); T = p_global(5:6); shape3D = M + V * params; shape3D = reshape(shape3D, numel(shape3D) / 3, 3); currShape = a * R(1:2,:)*shape3D' + repmat(T, 1, numel(M)/3); currShape = currShape'; error = getRMSerror(currShape, shape2D); if(0.999 * currError < error) red_in_a_row = red_in_a_row + 1; if(red_in_a_row == 5) break; end end currError = error; end if(hidden) shapeOrtho = getShapeOrtho(M_old, V_old, params, R, T, a); else shapeOrtho = currShape; end if(nargin == 7) Zavg = f / a; Xavg = (T(1) - cx) / a; Yavg = (T(2) - cy) / a; T3D = [Xavg;Yavg;Zavg]; else T3D = [0;0;0]; end end function [shape2D] = getShapeOrtho(M, V, p, R, T, a) % M - mean shape vector % V - eigenvectors % p - parameters of non-rigid shape % R - rotation matrix % T - translation vector (tx, ty) shape3D = getShape3D(M, V, p); shape2D = a * R(1:2,:)*shape3D' + repmat(T, 1, numel(M)/3); shape2D = shape2D'; end function [shape2D] = getShapeOrthoFull(M, V, p, R, T, a) % M - mean shape vector % V - eigenvectors % p - parameters of non-rigid shape % R - rotation matrix % T - translation vector (tx, ty) T = [T; 0]; shape3D = getShape3D(M, V, p); shape2D = a * R*shape3D' + repmat(T, 1, numel(M)/3); shape2D = shape2D'; end function [shape3D] = getShape3D(M, V, params) shape3D = M + V * params; shape3D = reshape(shape3D, numel(shape3D) / 3, 3); end function [error] = getRMSerror(shape2Dv1, shape2Dv2) error = sqrt(mean(reshape(shape2Dv1 - shape2Dv2, numel(shape2Dv1), 1).^2)); end % This calculates the combined rigid with non-rigid Jacobian function J = CalcJacobian(M, V, p, p_global) n = size(M, 1)/3; non_rigid_modes = size(V,2); J = zeros(n*2, 6 + non_rigid_modes); % now the layour is % ---------- Rigid part -------------------|----Non rigid part--------| % dx_1/ds, dx_1/dr1, ... dx_1/dtx, dx_1/dty dx_1/dp_1 ... dx_1/dp_m % dx_2/ds, dx_2/dr1, ... dx_2/dtx, dx_2/dty dx_2/dp_1 ... dx_2/dp_m % ... % dx_n/ds, dx_n/dr1, ... dx_n/dtx, dx_n/dty dx_n/dp_1 ... dx_n/dp_m % dy_1/ds, dy_1/dr1, ... dy_1/dtx, dy_1/dty dy_1/dp_1 ... dy_1/dp_m % ... % dy_n/ds, dy_n/dr1, ... dy_n/dtx, dy_n/dty dy_n/dp_1 ... dy_n/dp_m % getting the rigid part J(:,1:6) = CalcRigidJacobian(M, V, p, p_global); % constructing the non-rigid part R = Euler2Rot(p_global(2:4)); s = p_global(1); % 'rotate' and 'scale' the principal components % First reshape to 3D V_X = V(1:n,:); V_Y = V(n+1:2*n,:); V_Z = V(2*n+1:end,:); J_x_non_rigid = s*(R(1,1)*V_X + R(1,2)*V_Y + R(1,3)*V_Z); J_y_non_rigid = s*(R(2,1)*V_X + R(2,2)*V_Y + R(2,3)*V_Z); J(1:n, 7:end) = J_x_non_rigid; J(n+1:end, 7:end) = J_y_non_rigid; end function J = CalcRigidJacobian(M, V, p, p_global) n = size(M, 1)/3; % Get the current 3D shape (not affected by global transform, as this % is how the Jacobian was derived (for derivation please see % ../derivations/orthoJacobian shape3D = GetShape3D(M, V, p); % Get the rotation matrix corresponding to current global orientation R = Euler2Rot(p_global(2:4)); s = p_global(1); % Rigid Jacobian is laid out as follows % dx_1/ds, dx_1/dr1, dx_1/dr2, dx_1/dr3, dx_1/dtx, dx_1/dty % dx_2/ds, dx_2/dr1, dx_2/dr2, dx_2/dr3, dx_2/dtx, dx_2/dty % ... % dx_n/ds, dx_n/dr1, dx_n/dr2, dx_n/dr3, dx_n/dtx, dx_n/dty % dy_1/ds, dy_1/dr1, dy_1/dr2, dy_1/dr3, dy_1/dtx, dy_1/dty % ... % dy_n/ds, dy_n/dr1, dy_n/dr2, dy_n/dr3, dy_n/dtx, dy_n/dty J = zeros(n*2, 6); % dx/ds = X * r11 + Y * r12 + Z * r13 % dx/dr1 = s*(r13 * Y - r12 * Z) % dx/dr2 = -s*(r13 * X - r11 * Z) % dx/dr3 = s*(r12 * X - r11 * Y) % dx/dtx = 1 % dx/dty = 0 % dy/ds = X * r21 + Y * r22 + Z * r23 % dy/dr1 = s * (r23 * Y - r22 * Z) % dy/dr2 = -s * (r23 * X - r21 * Z) % dy/dr3 = s * (r22 * X - r21 * Y) % dy/dtx = 0 % dy/dty = 1 % set the Jacobian for x's % with respect to scaling factor J(1:n,1) = shape3D * R(1,:)'; % with respect to angular rotation around x, y, and z axes % Change of x with respect to change in axis angle rotation dxdR = [ 0, R(1,3), -R(1,2); -R(1,3), 0, R(1,1); R(1,2), -R(1,1), 0]; J(1:n,2:4) = s*(dxdR * shape3D')'; % with respect to translation J(1:n,5) = 1; J(1:n,6) = 0; % set the Jacobian for y's % with respect to scaling factor J(n+1:end,1) = shape3D * R(2,:)'; % with respect to angular rotation around x, y, and z axes % Change of y with respect to change in axis angle rotation dydR = [ 0, R(2,3), -R(2,2); -R(2,3), 0, R(2,1); R(2,2), -R(2,1), 0]; J(n+1:end,2:4) = s*(dydR * shape3D')'; % with respect to translation J(n+1:end,5) = 0; J(n+1:end,6) = 1; end % This updates the parameters based on the updates from the RLMS function [non_rigid, rigid] = CalcReferenceUpdate(params_delta, current_non_rigid, current_global) rigid = zeros(6, 1); % Same goes for scaling and translation parameters rigid(1) = current_global(1) + params_delta(1); rigid(5) = current_global(5) + params_delta(5); rigid(6) = current_global(6) + params_delta(6); % for rotation however, we want to make sure that the rotation matrix % approximation we have % R' = [1, -wz, wy % wz, 1, -wx % -wy, wx, 1] % is a legal rotation matrix, and then we combine it with current % rotation (through matrix multiplication) to acquire the new rotation R = Euler2Rot(current_global(2:4)); wx = params_delta(2); wy = params_delta(3); wz = params_delta(4); R_delta = [1, -wz, wy; wz, 1, -wx; -wy, wx, 1]; % Make sure R_delta is orthonormal R_delta = OrthonormaliseRotation(R_delta); % Combine rotations R_final = R * R_delta; % Extract euler angle euler = Rot2Euler(R_final); rigid(2:4) = euler; if(length(params_delta) > 6) % non-rigid parameters can just be added together non_rigid = params_delta(7:end) + current_non_rigid; else non_rigid = current_non_rigid; end end function R_ortho = OrthonormaliseRotation(R) % U * V' is basically what we want, as it's guaranteed to be % orthonormal [U, ~, V] = svd(R); % We also want to make sure no reflection happened % get the orthogonal matrix from the initial rotation matrix X = U*V'; % This makes sure that the handedness is preserved and no reflection happened % by making sure the determinant is 1 and not -1 W = eye(3); W(3,3) = det(X); R_ortho = U*W*V'; end
github
ddtm/OpenFace-master
Collect_wild_imgs.m
.m
OpenFace-master/matlab_version/bounding_box_mapping/Collect_wild_imgs.m
5,461
utf_8
69afbb7f409efa978b4ecfdea73220ee
function [images, detections, labels] = Collect_wild_imgs(root_test_data, use_afw, use_lfpw, use_helen, use_ibug) use_68 = true; images = []; labels = []; detections = []; if(use_afw) [img, det, lbl] = Collect_AFW(root_test_data, use_68); images = cat(1, images, img'); detections = cat(1, detections, det); labels = cat(1, labels, lbl); end if(use_lfpw) [img, det, lbl] = Collect_LFPW(root_test_data, use_68); images = cat(1, images, img'); detections = cat(1, detections, det); labels = cat(1, labels, lbl); end if(use_ibug) [img, det, lbl] = Collect_ibug(root_test_data, use_68); images = cat(1, images, img'); detections = cat(1, detections, det); labels = cat(1, labels, lbl); end if(use_helen) [img, det, lbl] = Collect_helen(root_test_data, use_68); images = cat(1, images, img'); detections = cat(1, detections, det); labels = cat(1, labels, lbl); end % convert to format expected by the Fitting method detections(:,3) = detections(:,1) + detections(:,3); detections(:,4) = detections(:,2) + detections(:,4); end function [images, detections, labels] = Collect_AFW(root_test_data, use_68) dataset_loc = [root_test_data, '/AFW/']; landmarkLabels = dir([dataset_loc '\*.pts']); num_imgs = size(landmarkLabels,1); images = struct; if(use_68) labels = zeros(num_imgs, 68, 2); else labels = zeros(num_imgs, 66, 2); end detections = zeros(num_imgs, 4); load([root_test_data, '/Bounding Boxes/bounding_boxes_afw.mat']); num_landmarks = 68; for imgs = 1:num_imgs [~,name,~] = fileparts(landmarkLabels(imgs).name); landmarks = dlmread([dataset_loc, landmarkLabels(imgs).name], ' ', [3,0,num_landmarks+2,1]); if(~use_68) inds_frontal = [1:60,62:64,66:68]; landmarks = landmarks(inds_frontal,:); end images(imgs).img = [dataset_loc, name '.jpg']; labels(imgs,:,:) = landmarks; detections(imgs,:) = bounding_boxes{imgs}.bb_detector; end detections(:,3) = detections(:,3) - detections(:,1); detections(:,4) = detections(:,4) - detections(:,2); end function [images, detections, labels] = Collect_LFPW(root_test_data, use_68) dataset_loc = [root_test_data, '/lfpw/testset/']; landmarkLabels = dir([dataset_loc '\*.pts']); num_imgs = size(landmarkLabels,1); images = struct; if(use_68) labels = zeros(num_imgs, 68, 2); else labels = zeros(num_imgs, 66, 2); end detections = zeros(num_imgs, 4); load([root_test_data, '/Bounding Boxes/bounding_boxes_lfpw_testset.mat']); num_landmarks = 68; for imgs = 1:num_imgs [~,name,~] = fileparts(landmarkLabels(imgs).name); landmarks = dlmread([dataset_loc, landmarkLabels(imgs).name], ' ', [3,0,num_landmarks+2,1]); if(~use_68) inds_frontal = [1:60,62:64,66:68]; landmarks = landmarks(inds_frontal,:); end images(imgs).img = [dataset_loc, name '.png']; labels(imgs,:,:) = landmarks; detections(imgs,:) = bounding_boxes{imgs}.bb_detector; end detections(:,3) = detections(:,3) - detections(:,1); detections(:,4) = detections(:,4) - detections(:,2); end function [images, detections, labels] = Collect_ibug(root_test_data, use_68) dataset_loc = [root_test_data, '/ibug/']; landmarkLabels = dir([dataset_loc '\*.pts']); num_imgs = size(landmarkLabels,1); images = struct; if(use_68) labels = zeros(num_imgs, 68, 2); else labels = zeros(num_imgs, 66, 2); end detections = zeros(num_imgs, 4); load([root_test_data, '/Bounding Boxes/bounding_boxes_ibug.mat']); num_landmarks = 68; for imgs = 1:num_imgs [~,name,~] = fileparts(landmarkLabels(imgs).name); landmarks = dlmread([dataset_loc, landmarkLabels(imgs).name], ' ', [3,0,num_landmarks+2,1]); if(~use_68) inds_frontal = [1:60,62:64,66:68]; landmarks = landmarks(inds_frontal,:); end images(imgs).img = [dataset_loc, name '.jpg']; labels(imgs,:,:) = landmarks; detections(imgs,:) = bounding_boxes{imgs}.bb_detector; end detections(:,3) = detections(:,3) - detections(:,1); detections(:,4) = detections(:,4) - detections(:,2); end function [images, detections, labels] = Collect_helen(root_test_data, use_68) dataset_loc = [root_test_data, '/helen/testset/']; landmarkLabels = dir([dataset_loc '\*.pts']); num_imgs = size(landmarkLabels,1); images = struct; if(use_68) labels = zeros(num_imgs, 68, 2); else labels = zeros(num_imgs, 66, 2); end detections = zeros(num_imgs, 4); load([root_test_data, '/Bounding Boxes/bounding_boxes_helen_testset.mat']); num_landmarks = 68; for imgs = 1:num_imgs [~,name,~] = fileparts(landmarkLabels(imgs).name); landmarks = dlmread([dataset_loc, landmarkLabels(imgs).name], ' ', [3,0,num_landmarks+2,1]); if(~use_68) inds_frontal = [1:60,62:64,66:68]; landmarks = landmarks(inds_frontal,:); end images(imgs).img = [dataset_loc, name '.jpg']; labels(imgs,:,:) = landmarks; detections(imgs,:) = bounding_boxes{imgs}.bb_detector; end detections(:,3) = detections(:,3) - detections(:,1); detections(:,4) = detections(:,4) - detections(:,2); end
github
ddtm/OpenFace-master
Create_data_66.m
.m
OpenFace-master/matlab_version/face_validation/Create_data_66.m
11,874
utf_8
674e8b488296e88975ab8869f8db5d9b
function Create_data_66() load '../models/pdm/pdm_66_multi_pie'; load '../models/tri_66.mat'; % This script uses the same format used for patch expert training, and % expects the data to be there dataset_loc = '../../../CCNF experiments/clnf/patch training/data_preparation/prepared_data/'; addpath('../PDM_helpers/'); scale = '0.5'; prefix= 'combined_'; % Find the available positive training data data_files = dir(sprintf('%s/%s%s*.mat', dataset_loc, prefix, scale)); centres_all = []; for i=1:numel(data_files) % Load the orientation of the training data load([dataset_loc, '/', data_files(i).name], 'centres'); centres_all = cat(1, centres_all, centres); end label_inds = [1:60,62:64,66:68]; % Construct mirror indices (which views need to be flipped to create other % profile training data) mirror_inds = zeros(size(centres_all,1), 1); for i=1:numel(data_files) % mirrored image has inverse yaw mirrored_centre = centres_all(i,:); mirrored_centre(2) = -mirrored_centre(2); % if mirrored version has same orientation, do not need mirroring if(~isequal(mirrored_centre, centres_all(i,:))) centres_all = cat(1, centres_all, mirrored_centre); mirror_inds = cat(1, mirror_inds, i); end end outputLocation = './prep_data/'; num_more_neg = 10; % Make sure same data generated all the time rng(0); neg_image_loc = './neg/'; neg_images = cat(1,dir([neg_image_loc, '/*.jpg']),dir([neg_image_loc, '/*.png'])); max_img_used = 1500; %% do it separately for centers due to memory limitations for r=1:size(centres_all,1) a_mod = 0.3; mirror = false; if(mirror_inds(r) ~= 0 ) mirror = true; label_mirror_inds = [1,17;2,16;3,15;4,14;5,13;6,12;7,11;8,10;18,27;19,26;20,25;21,24;22,23;... 32,36;33,35;37,46;38,45;39,44;40,43;41,48;42,47;49,55;50,54;51,53;60,56;59,57;... 61,63;66,64]; load([dataset_loc, '/', data_files(mirror_inds(r)).name]); else load([dataset_loc, '/', data_files(r).name]); end % Convert to 66 point model landmark_locations = landmark_locations(:,label_inds,:); visiCurrent = logical(visiIndex); % Flip the orientation and indices for mirror data if(mirror) centres = [centres(1), -centres(2), -centres(3)]; tmp1 = visiCurrent(label_mirror_inds(:,1)); tmp2 = visiCurrent(label_mirror_inds(:,2)); visiCurrent(label_mirror_inds(:,2)) = tmp1; visiCurrent(label_mirror_inds(:,1)) = tmp2; end visibleVerts = 1:numel(visiCurrent); visibleVerts = visibleVerts(visiCurrent)-1; % Correct the triangulation to take into account the vertex % visibilities triangulation = []; shape = a_mod * Euler2Rot(centres * pi/180) * reshape(M, numel(M)/3, 3)'; shape = shape'; for i=1:size(T,1) visib = 0; for j=1:numel(visibleVerts) if(T(i,1)==visibleVerts(j)) visib = visib+1; end if(T(i,2)==visibleVerts(j)) visib = visib+1; end if(T(i,3)==visibleVerts(j)) visib = visib+1; end end % Only if all three of the vertices are visible if(visib == 3) % Also want to remove triangles facing the wrong way (self occluded) v1 = [shape(T(i,1)+1,1), shape(T(i,1)+1,2), shape(T(i,1)+1,3)]; v2 = [shape(T(i,2)+1,1), shape(T(i,2)+1,2), shape(T(i,2)+1,3)]; v3 = [shape(T(i,3)+1,1), shape(T(i,3)+1,2), shape(T(i,3)+1,3)]; normal = cross((v2-v1), v3 - v2); normal = normal / norm(normal); direction = normal * [0,0,1]'; % And only if the triangle is facing the camera if(direction > 0) triangulation = cat(1, triangulation, T(i,:)); end end end % Initialise the warp [ alphas, betas, triX, mask, minX, minY, nPix ] = InitialisePieceWiseAffine(triangulation, shape); imgs_to_use = randperm(size(landmark_locations, 1)); if(size(landmark_locations, 1) > max_img_used) imgs_to_use = imgs_to_use(1:max_img_used); end % Extracting relevant filenames examples = zeros(numel(imgs_to_use) * (num_more_neg+1), nPix); errors = zeros(numel(imgs_to_use) * (num_more_neg+1), 1); unused_pos = 0; curr_filled = 0; for j=imgs_to_use labels = squeeze(landmark_locations(j,:,:)); img = squeeze(all_images(j,:,:)); if(mirror) img = fliplr(img); imgSize = size(img); flippedLbls = labels; flippedLbls(:,1) = imgSize(1) - flippedLbls(:,1); tmp1 = flippedLbls(label_mirror_inds(:,1),:); tmp2 = flippedLbls(label_mirror_inds(:,2),:); flippedLbls(label_mirror_inds(:,2),:) = tmp1; flippedLbls(label_mirror_inds(:,1),:) = tmp2; labels = flippedLbls; end % If for some reason some of the labels are not visible in the % current sample skip this label non_existent_labels = labels(:,1)==0 | labels(:,2)==0; non_existent_inds = find(non_existent_labels)-1; if(numel(intersect(triangulation(:), non_existent_inds)) > 0) unused_pos = unused_pos + 1; continue; end curr_filled = curr_filled + 1; [features] = ExtractFaceFeatures(img, labels, triangulation, triX, mask, alphas, betas, nPix, minX, minY); examples(curr_filled,:) = features; % Extract the correct PDM parameters for the model (we will perturb % them for some negative examples) [ a_orig, R_orig, trans_orig, ~, params_orig] = fit_PDM_ortho_proj_to_2D(M, E, V, labels); eul_orig = Rot2Euler(R_orig); % a slightly perturbed example, too tight % from 0.3 to 0.9 a_mod = a_orig * (0.6 + (randi(7) - 4)*0.1); p_global = [a_mod; eul_orig'; trans_orig]; labels_mod = GetShapeOrtho(M, V, params_orig, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; % Compute the badness of fit error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % a slightly perturbed example, too broad % from 1.2 to 0.6 a_mod = a_orig * (1.4 + (randi(5) - 3)*0.1); p_global = [a_mod; eul_orig'; trans_orig]; labels_mod = GetShapeOrtho(M, V, params_orig, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % A somewhat offset example trans_mod = trans_orig + randn(2,1) * 10; p_global = [a_orig; eul_orig'; trans_mod]; labels_mod = GetShapeOrtho(M, V, params_orig, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % A rotated sample eul_mod = eul_orig + randn(1,3)*0.2; p_global = [a_orig; eul_mod'; trans_orig]; labels_mod = GetShapeOrtho(M, V, params_orig, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % A sample with modified shape parameters p_global = [a_orig; eul_orig'; trans_orig]; params_mod = params_orig + randn(size(params_orig)).*sqrt(E); labels_mod = GetShapeOrtho(M, V, params_mod, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % pick a random image from negative inriaperson dataset, use original location if % first, otherwhise resize it to fit for n=6:num_more_neg n_img = randi(numel(neg_images)); neg_image = imread([neg_image_loc, neg_images(n_img).name]); if(size(neg_image,3) == 3) neg_image = rgb2gray(neg_image); end [h_neg, w_neg] = size(neg_image); % if the current labels fit just use them, if not, then resize % to fit max_x = max(labels(:,1)); max_y = max(labels(:,2)); if(max_x > w_neg || max_y > h_neg) neg_image = imresize(neg_image, [max_y, max_x]); end [features] = ExtractFaceFeatures(neg_image, labels, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; % Set high error to 3 errors(curr_filled,:) = 3; end if(mod(curr_filled, 10) == 0) fprintf('%d/%d done\n', curr_filled/(num_more_neg+1), numel(imgs_to_use)); end % add the pos example to the background end examples = examples(1:curr_filled,:); errors = errors(1:curr_filled); % svm training filename = sprintf('%s/face_checker_general_training_66_%d.mat', outputLocation, r); save(filename, 'examples', 'errors', 'alphas', 'betas', 'triangulation', 'minX', 'minY', 'nPix', 'shape', 'triX', 'mask', 'centres'); end end function [features] = ExtractFaceFeatures(img, labels, triangulation, triX, mask, alphas, betas, nPix, minX, minY) % Make sure labels are within range [hRes, wRes] = size(img); labels(labels(:,1) < 1,1) = 1; labels(labels(:,2) < 1,2) = 1; labels(labels(:,1) > wRes-1,1) = wRes-1; labels(labels(:,2) > hRes-1,2) = hRes-1; crop_img = Crop(img, labels, triangulation, triX, mask, alphas, betas, nPix, minX, minY); crop_img(isnan(crop_img)) = 0; % vectorised version features = reshape(crop_img(logical(mask)), 1, nPix); % normalisations features = (features - mean(features)); norms = std(features); if(norms==0) norms = 1; end features = features / norms; end
github
ddtm/OpenFace-master
Create_data_68.m
.m
OpenFace-master/matlab_version/face_validation/Create_data_68.m
11,691
utf_8
9569c6c8664f9edea1584a02a1349028
function Create_data_68() load '../models/pdm/pdm_68_multi_pie'; load '../models/tri_68.mat'; % This script uses the same format used for patch expert training, and % expects the data to be there dataset_loc = '../../../CCNF experiments/clnf/patch_training/data_preparation/prepared_data/'; addpath('../PDM_helpers/'); scale = '0.5'; prefix= 'combined_'; % Find the available positive training data data_files = dir(sprintf('%s/%s%s*.mat', dataset_loc, prefix, scale)); centres_all = []; for i=1:numel(data_files) % Load the orientation of the training data load([dataset_loc, '/', data_files(i).name], 'centres'); centres_all = cat(1, centres_all, centres); end % Construct mirror indices (which views need to be flipped to create other % profile training data) mirror_inds = zeros(size(centres_all,1), 1); for i=1:numel(data_files) % mirrored image has inverse yaw mirrored_centre = centres_all(i,:); mirrored_centre(2) = -mirrored_centre(2); % if mirrored version has same orientation, do not need mirroring if(~isequal(mirrored_centre, centres_all(i,:))) centres_all = cat(1, centres_all, mirrored_centre); mirror_inds = cat(1, mirror_inds, i); end end outputLocation = './prep_data/'; num_more_neg = 10; % Make sure same data generated all the time rng(0); neg_image_loc = './neg/'; neg_images = cat(1,dir([neg_image_loc, '/*.jpg']),dir([neg_image_loc, '/*.png'])); max_img_used = 1500; % do it separately for centers due to memory limitations for r=1:size(centres_all,1) a_mod = 0.3; mirror = false; if(mirror_inds(r) ~= 0 ) mirror = true; label_mirror_inds = [1,17;2,16;3,15;4,14;5,13;6,12;7,11;8,10;18,27;19,26;20,25;21,24;22,23;... 32,36;33,35;37,46;38,45;39,44;40,43;41,48;42,47;49,55;50,54;51,53;60,56;59,57;... 61,65;62,64;68,66]; load([dataset_loc, '/', data_files(mirror_inds(r)).name]); else load([dataset_loc, '/', data_files(r).name]); end visiCurrent = logical(visiIndex); if(mirror) centres = [centres(1), -centres(2), -centres(3)]; tmp1 = visiCurrent(label_mirror_inds(:,1)); tmp2 = visiCurrent(label_mirror_inds(:,2)); visiCurrent(label_mirror_inds(:,2)) = tmp1; visiCurrent(label_mirror_inds(:,1)) = tmp2; end visibleVerts = 1:numel(visiCurrent); visibleVerts = visibleVerts(visiCurrent)-1; % Correct the triangulation to take into account the vertex % visibilities triangulation = []; shape = a_mod * Euler2Rot(centres * pi/180) * reshape(M, numel(M)/3, 3)'; shape = shape'; for i=1:size(T,1) visib = 0; for j=1:numel(visibleVerts) if(T(i,1)==visibleVerts(j)) visib = visib+1; end if(T(i,2)==visibleVerts(j)) visib = visib+1; end if(T(i,3)==visibleVerts(j)) visib = visib+1; end end % Only if all three of the vertices are visible if(visib == 3) % Also want to remove triangles facing the wrong way (self occluded) v1 = [shape(T(i,1)+1,1), shape(T(i,1)+1,2), shape(T(i,1)+1,3)]; v2 = [shape(T(i,2)+1,1), shape(T(i,2)+1,2), shape(T(i,2)+1,3)]; v3 = [shape(T(i,3)+1,1), shape(T(i,3)+1,2), shape(T(i,3)+1,3)]; normal = cross((v2-v1), v3 - v2); normal = normal / norm(normal); direction = normal * [0,0,1]'; % And only if the triangle is facing the camera if(direction > 0) triangulation = cat(1, triangulation, T(i,:)); end end end % Initialise the warp [ alphas, betas, triX, mask, minX, minY, nPix ] = InitialisePieceWiseAffine(triangulation, shape); mask = logical(mask); imgs_to_use = randperm(size(landmark_locations, 1)); if(size(landmark_locations, 1) > max_img_used) imgs_to_use = imgs_to_use(1:max_img_used); end % Extracting relevant filenames examples = zeros(numel(imgs_to_use) * (num_more_neg+1), nPix); errors = zeros(numel(imgs_to_use) * (num_more_neg+1), 1); unused_pos = 0; curr_filled = 0; for j=imgs_to_use labels = squeeze(landmark_locations(j,:,:)); img = squeeze(all_images(j,:,:)); if(mirror) img = fliplr(img); imgSize = size(img); flippedLbls = labels; flippedLbls(:,1) = imgSize(1) - flippedLbls(:,1); tmp1 = flippedLbls(label_mirror_inds(:,1),:); tmp2 = flippedLbls(label_mirror_inds(:,2),:); flippedLbls(label_mirror_inds(:,2),:) = tmp1; flippedLbls(label_mirror_inds(:,1),:) = tmp2; labels = flippedLbls; end % If for some reason some of the labels are not visible in the % current sample skip this label non_existent_labels = labels(:,1)==0 | labels(:,2)==0; non_existent_inds = find(non_existent_labels)-1; if(numel(intersect(triangulation(:), non_existent_inds)) > 0) unused_pos = unused_pos + 1; continue; end curr_filled = curr_filled + 1; [features] = ExtractFaceFeatures(img, labels, triangulation, triX, mask, alphas, betas, nPix, minX, minY); examples(curr_filled,:) = features; % Extract the correct PDM parameters for the model (we will perturb % them for some negative examples) [ a_orig, R_orig, trans_orig, ~, params_orig] = fit_PDM_ortho_proj_to_2D(M, E, V, labels); eul_orig = Rot2Euler(R_orig); % a slightly perturbed example, too tight % from 0.3 to 0.9 a_mod = a_orig * (0.6 + (randi(7) - 4)*0.1); p_global = [a_mod; eul_orig'; trans_orig]; labels_mod = GetShapeOrtho(M, V, params_orig, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; % Compute the badness of fit error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % a slightly perturbed example, too broad % from 1.2 to 0.6 a_mod = a_orig * (1.4 + (randi(5) - 3)*0.1); p_global = [a_mod; eul_orig'; trans_orig]; labels_mod = GetShapeOrtho(M, V, params_orig, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % A somewhat offset example trans_mod = trans_orig + randn(2,1) * 10; p_global = [a_orig; eul_orig'; trans_mod]; labels_mod = GetShapeOrtho(M, V, params_orig, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % A rotated sample eul_mod = eul_orig + randn(1,3)*0.2; p_global = [a_orig; eul_mod'; trans_orig]; labels_mod = GetShapeOrtho(M, V, params_orig, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % A sample with modified shape parameters p_global = [a_orig; eul_orig'; trans_orig]; params_mod = params_orig + randn(size(params_orig)).*sqrt(E); labels_mod = GetShapeOrtho(M, V, params_mod, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % pick a random image from negative inriaperson dataset, use original location if % first, otherwhise resize it to fit for n=6:num_more_neg n_img = randi(numel(neg_images)); neg_image = imread([neg_image_loc, neg_images(n_img).name]); if(size(neg_image,3) == 3) neg_image = rgb2gray(neg_image); end [h_neg, w_neg] = size(neg_image); % if the current labels fit just use them, if not, then resize % to fit max_x = max(labels(:,1)); max_y = max(labels(:,2)); if(max_x > w_neg || max_y > h_neg) neg_image = imresize(neg_image, [max_y, max_x]); end [features] = ExtractFaceFeatures(neg_image, labels, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; % Set high error to 3 errors(curr_filled,:) = 3; end if(mod(curr_filled, 10) == 0) fprintf('%d/%d done\n', curr_filled/(num_more_neg+1), numel(imgs_to_use)); end % add the pos example to the background end examples = examples(1:curr_filled,:); errors = errors(1:curr_filled); % svm training filename = sprintf('%s/face_checker_general_training_68_%d.mat', outputLocation, r); save(filename, 'examples', 'errors', 'alphas', 'betas', 'triangulation', 'minX', 'minY', 'nPix', 'shape', 'triX', 'mask', 'centres'); end end function [features] = ExtractFaceFeatures(img, labels, triangulation, triX, mask, alphas, betas, nPix, minX, minY) % Make sure labels are within range [hRes, wRes] = size(img); labels(labels(:,1) < 1,1) = 1; labels(labels(:,2) < 1,2) = 1; labels(labels(:,1) > wRes-1,1) = wRes-1; labels(labels(:,2) > hRes-1,2) = hRes-1; crop_img = Crop(img, labels, triangulation, triX, mask, alphas, betas, nPix, minX, minY); crop_img(isnan(crop_img)) = 0; % vectorised version features = reshape(crop_img(logical(mask)), 1, nPix); % normalisations features = (features - mean(features)); norms = std(features); if(norms==0) norms = 1; end features = features / norms; end
github
ddtm/OpenFace-master
Create_data_68_large.m
.m
OpenFace-master/matlab_version/face_validation/Create_data_68_large.m
12,397
utf_8
53b5fd86000c1be10aa5f2ad2d32529e
function Create_data_68_large() load '../models/pdm/pdm_68_aligned_wild'; load '../models/tri_68.mat'; % This script uses the same format used for patch expert training, and % expects the data to be there (this can be found in % https://github.com/TadasBaltrusaitis/CCNF) % Replace with your location of training data dataset_loc = 'C:/Users/Tadas/Documents/CCNF/patch_experts/data_preparation/prepared_data/'; addpath('../PDM_helpers/'); scale = '0.5'; prefix= 'combined_'; % Find the available positive training data data_files = dir(sprintf('%s/%s%s*.mat', dataset_loc, prefix, scale)); centres_all = []; for i=1:numel(data_files) % Load the orientation of the training data load([dataset_loc, '/', data_files(i).name], 'centres'); centres_all = cat(1, centres_all, centres); end % Do not use extreme pose centres_all = centres_all(1:3,:); % Construct mirror indices (which views need to be flipped to create other % profile training data) mirror_inds = zeros(size(centres_all,1), 1); for i=1:numel(data_files) % mirrored image has inverse yaw mirrored_centre = centres_all(i,:); mirrored_centre(2) = -mirrored_centre(2); % if mirrored version has same orientation, do not need mirroring if(~isequal(mirrored_centre, centres_all(i,:))) centres_all = cat(1, centres_all, mirrored_centre); mirror_inds = cat(1, mirror_inds, i); end end % Replace with your location of training data outputLocation = 'E:/datasets/detection_validation/prep_data/'; num_more_neg = 10; % Make sure same data generated all the time rng(0); neg_image_loc = 'E:/datasets/detection_validation/neg/'; neg_images = cat(1,dir([neg_image_loc, '/*.jpg']),dir([neg_image_loc, '/*.png'])); max_img_used = 4000; % do it separately for centers due to memory limitations for r=1:size(centres_all,1) a_mod = 0.4; mirror = false; if(mirror_inds(r) ~= 0 ) mirror = true; label_mirror_inds = [1,17;2,16;3,15;4,14;5,13;6,12;7,11;8,10;18,27;19,26;20,25;21,24;22,23;... 32,36;33,35;37,46;38,45;39,44;40,43;41,48;42,47;49,55;50,54;51,53;60,56;59,57;... 61,65;62,64;68,66]; load([dataset_loc, '/', data_files(mirror_inds(r)).name]); else load([dataset_loc, '/', data_files(r).name]); end visiCurrent = logical(visiIndex); if(mirror) centres = [centres(1), -centres(2), -centres(3)]; tmp1 = visiCurrent(label_mirror_inds(:,1)); tmp2 = visiCurrent(label_mirror_inds(:,2)); visiCurrent(label_mirror_inds(:,2)) = tmp1; visiCurrent(label_mirror_inds(:,1)) = tmp2; end visibleVerts = 1:numel(visiCurrent); visibleVerts = visibleVerts(visiCurrent)-1; % Correct the triangulation to take into account the vertex % visibilities triangulation = []; shape = a_mod * Euler2Rot(centres * pi/180) * reshape(M, numel(M)/3, 3)'; shape = shape'; for i=1:size(T,1) visib = 0; for j=1:numel(visibleVerts) if(T(i,1)==visibleVerts(j)) visib = visib+1; end if(T(i,2)==visibleVerts(j)) visib = visib+1; end if(T(i,3)==visibleVerts(j)) visib = visib+1; end end % Only if all three of the vertices are visible if(visib == 3) % Also want to remove triangles facing the wrong way (self occluded) v1 = [shape(T(i,1)+1,1), shape(T(i,1)+1,2), shape(T(i,1)+1,3)]; v2 = [shape(T(i,2)+1,1), shape(T(i,2)+1,2), shape(T(i,2)+1,3)]; v3 = [shape(T(i,3)+1,1), shape(T(i,3)+1,2), shape(T(i,3)+1,3)]; normal = cross((v2-v1), v3 - v2); normal = normal / norm(normal); direction = normal * [0,0,1]'; % And only if the triangle is facing the camera if(direction > 0) triangulation = cat(1, triangulation, T(i,:)); end end end % Initialise the warp [ alphas, betas, triX, mask, minX, minY, nPix ] = InitialisePieceWiseAffine(triangulation, shape); mask = logical(mask); imgs_to_use = randperm(size(landmark_locations, 1)); if(size(landmark_locations, 1) > max_img_used) imgs_to_use = imgs_to_use(1:max_img_used); end % Extracting relevant filenames examples = zeros(numel(imgs_to_use) * (num_more_neg+1), nPix); errors = zeros(numel(imgs_to_use) * (num_more_neg+1), 1); unused_pos = 0; curr_filled = 0; for j=imgs_to_use labels = squeeze(landmark_locations(j,:,:)); img = squeeze(all_images(j,:,:)); if(mirror) img = fliplr(img); imgSize = size(img); flippedLbls = labels; flippedLbls(:,1) = imgSize(1) - flippedLbls(:,1) + 1; tmp1 = flippedLbls(label_mirror_inds(:,1),:); tmp2 = flippedLbls(label_mirror_inds(:,2),:); flippedLbls(label_mirror_inds(:,2),:) = tmp1; flippedLbls(label_mirror_inds(:,1),:) = tmp2; labels = flippedLbls; end % If for some reason some of the labels are not visible in the % current sample skip this label non_existent_labels = labels(:,1)==0 | labels(:,2)==0; non_existent_inds = find(non_existent_labels)-1; if(numel(intersect(triangulation(:), non_existent_inds)) > 0) unused_pos = unused_pos + 1; continue; end % Centering the pixel so that 0,0 is center of the top left pixel labels = labels - 1; curr_filled = curr_filled + 1; [features] = ExtractFaceFeatures(img, labels, triangulation, triX, mask, alphas, betas, nPix, minX, minY); % sample_img = zeros(size(mask));sample_img(mask) = features;imagesc(sample_img) examples(curr_filled,:) = features; errors(curr_filled,:) = 0; % Extract the correct PDM parameters for the model (we will perturb % them for some negative examples) [ a_orig, R_orig, trans_orig, ~, params_orig] = fit_PDM_ortho_proj_to_2D(M, E, V, labels); eul_orig = Rot2Euler(R_orig); % a slightly perturbed example, too tight % from 0.3 to 0.9 a_mod = a_orig * (0.6 + (randi(7) - 4)*0.1); p_global = [a_mod; eul_orig'; trans_orig]; labels_mod = GetShapeOrtho(M, V, params_orig, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); % sample_img = zeros(size(mask));sample_img(mask) = features;imagesc(sample_img) curr_filled = curr_filled + 1; examples(curr_filled,:) = features; % Compute the badness of fit error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % a slightly perturbed example, too broad % from 1.2 to 0.6 a_mod = a_orig * (1.4 + (randi(5) - 3)*0.1); p_global = [a_mod; eul_orig'; trans_orig]; labels_mod = GetShapeOrtho(M, V, params_orig, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); % sample_img = zeros(size(mask));sample_img(mask) = features;imagesc(sample_img) curr_filled = curr_filled + 1; examples(curr_filled,:) = features; error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % A somewhat offset example trans_mod = trans_orig + randn(2,1) * 20; p_global = [a_orig; eul_orig'; trans_mod]; labels_mod = GetShapeOrtho(M, V, params_orig, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % A rotated sample eul_mod = eul_orig + randn(1,3)*0.3; p_global = [a_orig; eul_mod'; trans_orig]; labels_mod = GetShapeOrtho(M, V, params_orig, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % A sample with modified shape parameters p_global = [a_orig; eul_orig'; trans_orig]; params_mod = params_orig + randn(size(params_orig)).*sqrt(E); labels_mod = GetShapeOrtho(M, V, params_mod, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % pick a random image from negative inriaperson dataset, use original location if % first, otherwhise resize it to fit for n=6:num_more_neg n_img = randi(numel(neg_images)); neg_image = imread([neg_image_loc, neg_images(n_img).name]); if(size(neg_image,3) == 3) neg_image = rgb2gray(neg_image); end [h_neg, w_neg] = size(neg_image); % if the current labels fit just use them, if not, then resize % to fit max_x = max(labels(:,1)); max_y = max(labels(:,2)); if(max_x > w_neg || max_y > h_neg) neg_image = imresize(neg_image, [max_y, max_x]); end [features] = ExtractFaceFeatures(neg_image, labels, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; % Set high error to 3 errors(curr_filled,:) = 3; end if(mod(curr_filled, 10) == 0) fprintf('%d/%d done\n', curr_filled/(num_more_neg+1), numel(imgs_to_use)); end % add the pos example to the background end examples = examples(1:curr_filled,:); errors = errors(1:curr_filled); % svm training filename = sprintf('%s/face_checker_general_training_large_68_%d.mat', outputLocation, r); save(filename, 'examples', 'errors', 'alphas', 'betas', 'triangulation', 'minX', 'minY', 'nPix', 'shape', 'triX', 'mask', 'centres'); end end function [features] = ExtractFaceFeatures(img, labels, triangulation, triX, mask, alphas, betas, nPix, minX, minY) % Make sure labels are within range [hRes, wRes] = size(img); labels(labels(:,1) < 0,1) = 0; labels(labels(:,2) < 0,2) = 0; labels(labels(:,1) > wRes-1,1) = wRes-1; labels(labels(:,2) > hRes-1,2) = hRes-1; crop_img = Crop(img, labels, triangulation, triX, mask, alphas, betas, nPix, minX, minY); crop_img(isnan(crop_img)) = 0; % vectorised version features = reshape(crop_img(logical(mask)), 1, nPix); % normalisations features = (features - mean(features)); norms = std(features); if(norms==0) norms = 1; end features = features / norms; end
github
ddtm/OpenFace-master
Collect_wild_imgs.m
.m
OpenFace-master/matlab_version/face_validation/Collect_wild_imgs.m
5,454
utf_8
e0042374523fb6085a4a7afb9ec734cb
function [images, detections, labels] = Collect_wild_imgs(root_test_data) use_afw = true; use_lfpw = true; use_helen = true; use_ibug = true; use_68 = true; images = []; labels = []; detections = []; if(use_afw) [img, det, lbl] = Collect_AFW(root_test_data, use_68); images = cat(1, images, img'); detections = cat(1, detections, det); labels = cat(1, labels, lbl); end if(use_lfpw) [img, det, lbl] = Collect_LFPW(root_test_data, use_68); images = cat(1, images, img'); detections = cat(1, detections, det); labels = cat(1, labels, lbl); end if(use_ibug) [img, det, lbl] = Collect_ibug(root_test_data, use_68); images = cat(1, images, img'); detections = cat(1, detections, det); labels = cat(1, labels, lbl); end if(use_helen) [img, det, lbl] = Collect_helen(root_test_data, use_68); images = cat(1, images, img'); detections = cat(1, detections, det); labels = cat(1, labels, lbl); end % convert to format expected by the Fitting method detections(:,3) = detections(:,1) + detections(:,3); detections(:,4) = detections(:,2) + detections(:,4); end function [images, detections, labels] = Collect_AFW(root_test_data, use_68) dataset_loc = [root_test_data, '/AFW/']; landmarkLabels = dir([dataset_loc '\*.pts']); num_imgs = size(landmarkLabels,1); images = struct; if(use_68) labels = zeros(num_imgs, 68, 2); else labels = zeros(num_imgs, 66, 2); end detections = zeros(num_imgs, 4); load([root_test_data, '/Bounding Boxes/bounding_boxes_afw.mat']); for imgs = 1:num_imgs [~,name,~] = fileparts(landmarkLabels(imgs).name); landmarks = importdata([dataset_loc, landmarkLabels(imgs).name], ' ', 3); landmarks = landmarks.data; if(~use_68) inds_frontal = [1:60,62:64,66:68]; landmarks = landmarks(inds_frontal,:); end images(imgs).img = [dataset_loc, name '.jpg']; labels(imgs,:,:) = landmarks; detections(imgs,:) = bounding_boxes{imgs}.bb_detector; end detections(:,3) = detections(:,3) - detections(:,1); detections(:,4) = detections(:,4) - detections(:,2); end function [images, detections, labels] = Collect_LFPW(root_test_data, use_68) dataset_loc = [root_test_data, '/lfpw/testset/']; landmarkLabels = dir([dataset_loc '\*.pts']); num_imgs = size(landmarkLabels,1); images = struct; if(use_68) labels = zeros(num_imgs, 68, 2); else labels = zeros(num_imgs, 66, 2); end detections = zeros(num_imgs, 4); load([root_test_data, '/Bounding Boxes/bounding_boxes_lfpw_testset.mat']); for imgs = 1:num_imgs [~,name,~] = fileparts(landmarkLabels(imgs).name); landmarks = importdata([dataset_loc, landmarkLabels(imgs).name], ' ', 3); landmarks = landmarks.data; if(~use_68) inds_frontal = [1:60,62:64,66:68]; landmarks = landmarks(inds_frontal,:); end images(imgs).img = [dataset_loc, name '.png']; labels(imgs,:,:) = landmarks; detections(imgs,:) = bounding_boxes{imgs}.bb_detector; end detections(:,3) = detections(:,3) - detections(:,1); detections(:,4) = detections(:,4) - detections(:,2); end function [images, detections, labels] = Collect_ibug(root_test_data, use_68) dataset_loc = [root_test_data, '/ibug/']; landmarkLabels = dir([dataset_loc '\*.pts']); num_imgs = size(landmarkLabels,1); images = struct; if(use_68) labels = zeros(num_imgs, 68, 2); else labels = zeros(num_imgs, 66, 2); end detections = zeros(num_imgs, 4); load([root_test_data, '/Bounding Boxes/bounding_boxes_ibug.mat']); for imgs = 1:num_imgs [~,name,~] = fileparts(landmarkLabels(imgs).name); landmarks = importdata([dataset_loc, landmarkLabels(imgs).name], ' ', 3); landmarks = landmarks.data; if(~use_68) inds_frontal = [1:60,62:64,66:68]; landmarks = landmarks(inds_frontal,:); end images(imgs).img = [dataset_loc, name '.jpg']; labels(imgs,:,:) = landmarks; detections(imgs,:) = bounding_boxes{imgs}.bb_detector; end detections(:,3) = detections(:,3) - detections(:,1); detections(:,4) = detections(:,4) - detections(:,2); end function [images, detections, labels] = Collect_helen(root_test_data, use_68) dataset_loc = [root_test_data, '/helen/testset/']; landmarkLabels = dir([dataset_loc '\*.pts']); num_imgs = size(landmarkLabels,1); images = struct; if(use_68) labels = zeros(num_imgs, 68, 2); else labels = zeros(num_imgs, 66, 2); end detections = zeros(num_imgs, 4); load([root_test_data, '/Bounding Boxes/bounding_boxes_helen_testset.mat']); for imgs = 1:num_imgs [~,name,~] = fileparts(landmarkLabels(imgs).name); landmarks = importdata([dataset_loc, landmarkLabels(imgs).name], ' ', 3); landmarks = landmarks.data; if(~use_68) inds_frontal = [1:60,62:64,66:68]; landmarks = landmarks(inds_frontal,:); end images(imgs).img = [dataset_loc, name '.jpg']; labels(imgs,:,:) = landmarks; detections(imgs,:) = bounding_boxes{imgs}.bb_detector; end detections(:,3) = detections(:,3) - detections(:,1); detections(:,4) = detections(:,4) - detections(:,2); end
github
ddtm/OpenFace-master
InitialisePieceWiseAffine.m
.m
OpenFace-master/matlab_version/face_validation/InitialisePieceWiseAffine.m
2,628
utf_8
b9968dd94a35da481cbae3dec1e73e48
function [ alphas, betas, triX, mask, xmin, ymin, npix ] = InitialisePieceWiseAffine( triangulation, sourcePoints ) %INITIALISEPIECEWICEAFFINE Summary of this function goes here % Detailed explanation goes here triangulation = triangulation + 1; numPoints = size(sourcePoints, 1); numTris = size(triangulation, 1); alphas = zeros(size(triangulation, 1), 3); betas = zeros(size(triangulation, 1), 3); xs = sourcePoints(:,1); ys = sourcePoints(:,2); for i = 1:numTris j = triangulation(i, 1); k = triangulation(i, 2); l = triangulation(i, 3); c1 = ys(l) - ys(j); c2 = xs(l) - xs(j); c4 = ys(k) - ys(j); c3 = xs(k) - xs(j); c5 = c3*c1 - c2*c4; alphas(i, 1) = (ys(j) * c2 - xs(j) * c1) / c5; alphas(i, 2) = c1/c5; alphas(i, 3) = -c2/c5; betas(i, 1) = (xs(j) * c4 - ys(j) * c3)/c5; betas(i, 2) = -c4/c5; betas(i, 3) = c3/c5; end xmin = min(xs); ymin = min(ys); xmax = max(xs); ymax = max(ys); w = int32(xmax - xmin + 1); h = int32(ymax - ymin + 1); mask = zeros(h, w); triX = zeros(h, w); shape = [xs, ys]; for i = 1:h for j = 1:w currTri = findTriangle(double([double(j)-1+xmin, double(i)-1+ymin])', triangulation, shape); if(currTri ~= -1) triX(i, j) = currTri - 1; mask(i, j) = 1; else triX(i, j) = -1; end end end npix = sum(sum(mask)); end function [tri] = findTriangle(point, tris, controlPoints) numTris = size(tris, 1); tri = -1; for i=1:numTris if(PointInTriangle(point, controlPoints(tris(i,1),:)', controlPoints(tris(i,2),:)', controlPoints(tris(i,3),:)')) tri = i; break; end end end function inTriangle = PointInTriangle(point, v1, v2, v3) inTriangle = SameSide(point, v1,v2,v3) && SameSide(point, v2,v1,v3) && SameSide(point, v3,v1,v2); end function sameSide = SameSide(toTest,v1,v2,v3) x0 = toTest(1); y0 = toTest(2); x1 = v1(1); x2 = v2(1); x3 = v3(1); y1 = v1(2); y2 = v2(2); y3 = v3(2); x = (x3-x2)*(y0-y2) - (x0-x2)*(y3-y2); y = (x3-x2)*(y1-y2) - (x1-x2)*(y3-y2); if(x*y >= 0) sameSide = 1; else sameSide = 0; end % cross1 = cross( v3 - v2, toTest - v2); % cross2 = cross( v3 - v2, v1 - v2); % % sameSide = (cross1 * cross2') >= 0; end
github
ddtm/OpenFace-master
Create_data_66_large.m
.m
OpenFace-master/matlab_version/face_validation/Create_data_66_large.m
12,039
utf_8
88cdd3874830743c782ad3eafd52867d
function Create_data_66_large() load '../models/pdm/pdm_66_multi_pie'; load '../models/tri_66.mat'; % This script uses the same format used for patch expert training, and % expects the data to be there (this can be found in % https://github.com/TadasBaltrusaitis/CCNF) % Replace with your location of training data dataset_loc = 'C:/Users/Tadas/Documents/CCNF/patch_experts/data_preparation/prepared_data/'; addpath('../PDM_helpers/'); scale = '0.5'; prefix= 'combined_'; % Find the available positive training data data_files = dir(sprintf('%s/%s%s*.mat', dataset_loc, prefix, scale)); centres_all = []; for i=1:numel(data_files) % Load the orientation of the training data load([dataset_loc, '/', data_files(i).name], 'centres'); centres_all = cat(1, centres_all, centres); end label_inds = [1:60,62:64,66:68]; % Construct mirror indices (which views need to be flipped to create other % profile training data) mirror_inds = zeros(size(centres_all,1), 1); for i=1:numel(data_files) % mirrored image has inverse yaw mirrored_centre = centres_all(i,:); mirrored_centre(2) = -mirrored_centre(2); % if mirrored version has same orientation, do not need mirroring if(~isequal(mirrored_centre, centres_all(i,:))) centres_all = cat(1, centres_all, mirrored_centre); mirror_inds = cat(1, mirror_inds, i); end end outputLocation = 'F:/datasets/detection_validation/prep_data/'; num_more_neg = 10; % Make sure same data generated all the time rng(0); neg_image_loc = 'F:/datasets/detection_validation/neg/'; neg_images = cat(1,dir([neg_image_loc, '/*.jpg']),dir([neg_image_loc, '/*.png'])); max_img_used = 2500; % do it separately for centers due to memory limitations for r=1:size(centres_all,1) a_mod = 0.4; mirror = false; if(mirror_inds(r) ~= 0 ) mirror = true; label_mirror_inds = [1,17;2,16;3,15;4,14;5,13;6,12;7,11;8,10;18,27;19,26;20,25;21,24;22,23;... 32,36;33,35;37,46;38,45;39,44;40,43;41,48;42,47;49,55;50,54;51,53;60,56;59,57;... 61,63;66,64]; load([dataset_loc, '/', data_files(mirror_inds(r)).name]); else load([dataset_loc, '/', data_files(r).name]); end % Convert to 66 point model landmark_locations = landmark_locations(:,label_inds,:); visiCurrent = logical(visiIndex); if(mirror) centres = [centres(1), -centres(2), -centres(3)]; tmp1 = visiCurrent(label_mirror_inds(:,1)); tmp2 = visiCurrent(label_mirror_inds(:,2)); visiCurrent(label_mirror_inds(:,2)) = tmp1; visiCurrent(label_mirror_inds(:,1)) = tmp2; end visibleVerts = 1:numel(visiCurrent); visibleVerts = visibleVerts(visiCurrent)-1; % Correct the triangulation to take into account the vertex % visibilities triangulation = []; shape = a_mod * Euler2Rot(centres * pi/180) * reshape(M, numel(M)/3, 3)'; shape = shape'; for i=1:size(T,1) visib = 0; for j=1:numel(visibleVerts) if(T(i,1)==visibleVerts(j)) visib = visib+1; end if(T(i,2)==visibleVerts(j)) visib = visib+1; end if(T(i,3)==visibleVerts(j)) visib = visib+1; end end % Only if all three of the vertices are visible if(visib == 3) % Also want to remove triangles facing the wrong way (self occluded) v1 = [shape(T(i,1)+1,1), shape(T(i,1)+1,2), shape(T(i,1)+1,3)]; v2 = [shape(T(i,2)+1,1), shape(T(i,2)+1,2), shape(T(i,2)+1,3)]; v3 = [shape(T(i,3)+1,1), shape(T(i,3)+1,2), shape(T(i,3)+1,3)]; normal = cross((v2-v1), v3 - v2); normal = normal / norm(normal); direction = normal * [0,0,1]'; % And only if the triangle is facing the camera if(direction > 0) triangulation = cat(1, triangulation, T(i,:)); end end end % Initialise the warp [ alphas, betas, triX, mask, minX, minY, nPix ] = InitialisePieceWiseAffine(triangulation, shape); mask = logical(mask); imgs_to_use = randperm(size(landmark_locations, 1)); if(size(landmark_locations, 1) > max_img_used) imgs_to_use = imgs_to_use(1:max_img_used); end % Extracting relevant filenames examples = zeros(numel(imgs_to_use) * (num_more_neg+1), nPix); errors = zeros(numel(imgs_to_use) * (num_more_neg+1), 1); unused_pos = 0; curr_filled = 0; for j=imgs_to_use labels = squeeze(landmark_locations(j,:,:)); img = squeeze(all_images(j,:,:)); if(mirror) img = fliplr(img); imgSize = size(img); flippedLbls = labels; flippedLbls(:,1) = imgSize(1) - flippedLbls(:,1); tmp1 = flippedLbls(label_mirror_inds(:,1),:); tmp2 = flippedLbls(label_mirror_inds(:,2),:); flippedLbls(label_mirror_inds(:,2),:) = tmp1; flippedLbls(label_mirror_inds(:,1),:) = tmp2; labels = flippedLbls; end % If for some reason some of the labels are not visible in the % current sample skip this label non_existent_labels = labels(:,1)==0 | labels(:,2)==0; non_existent_inds = find(non_existent_labels)-1; if(numel(intersect(triangulation(:), non_existent_inds)) > 0) unused_pos = unused_pos + 1; continue; end curr_filled = curr_filled + 1; [features] = ExtractFaceFeatures(img, labels, triangulation, triX, mask, alphas, betas, nPix, minX, minY); examples(curr_filled,:) = features; errors(curr_filled,:) = 0; % Extract the correct PDM parameters for the model (we will perturb % them for some negative examples) [ a_orig, R_orig, trans_orig, ~, params_orig] = fit_PDM_ortho_proj_to_2D(M, E, V, labels); eul_orig = Rot2Euler(R_orig); % a slightly perturbed example, too tight % from 0.3 to 0.9 a_mod = a_orig * (0.6 + (randi(7) - 4)*0.1); p_global = [a_mod; eul_orig'; trans_orig]; labels_mod = GetShapeOrtho(M, V, params_orig, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; % Compute the badness of fit error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % a slightly perturbed example, too broad % from 1.2 to 0.6 a_mod = a_orig * (1.4 + (randi(5) - 3)*0.1); p_global = [a_mod; eul_orig'; trans_orig]; labels_mod = GetShapeOrtho(M, V, params_orig, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % A somewhat offset example trans_mod = trans_orig + randn(2,1) * 10; p_global = [a_orig; eul_orig'; trans_mod]; labels_mod = GetShapeOrtho(M, V, params_orig, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % A rotated sample eul_mod = eul_orig + randn(1,3)*0.2; p_global = [a_orig; eul_mod'; trans_orig]; labels_mod = GetShapeOrtho(M, V, params_orig, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % A sample with modified shape parameters p_global = [a_orig; eul_orig'; trans_orig]; params_mod = params_orig + randn(size(params_orig)).*sqrt(E); labels_mod = GetShapeOrtho(M, V, params_mod, p_global); labels_mod = labels_mod(:,1:2); [features] = ExtractFaceFeatures(img, labels_mod, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; error = norm(labels_mod(:) - labels(:)) / (max(labels(:,2))-min(labels(:,2))); errors(curr_filled,:) = error; % pick a random image from negative inriaperson dataset, use original location if % first, otherwhise resize it to fit for n=6:num_more_neg n_img = randi(numel(neg_images)); neg_image = imread([neg_image_loc, neg_images(n_img).name]); if(size(neg_image,3) == 3) neg_image = rgb2gray(neg_image); end [h_neg, w_neg] = size(neg_image); % if the current labels fit just use them, if not, then resize % to fit max_x = max(labels(:,1)); max_y = max(labels(:,2)); if(max_x > w_neg || max_y > h_neg) neg_image = imresize(neg_image, [max_y, max_x]); end [features] = ExtractFaceFeatures(neg_image, labels, triangulation, triX, mask, alphas, betas, nPix, minX, minY); curr_filled = curr_filled + 1; examples(curr_filled,:) = features; % Set high error to 3 errors(curr_filled,:) = 3; end if(mod(curr_filled, 10) == 0) fprintf('%d/%d done\n', curr_filled/(num_more_neg+1), numel(imgs_to_use)); end % add the pos example to the background end examples = examples(1:curr_filled,:); errors = errors(1:curr_filled); % svm training filename = sprintf('%s/face_checker_general_training_large_66_%d.mat', outputLocation, r); save(filename, 'examples', 'errors', 'alphas', 'betas', 'triangulation', 'minX', 'minY', 'nPix', 'shape', 'triX', 'mask', 'centres'); end end function [features] = ExtractFaceFeatures(img, labels, triangulation, triX, mask, alphas, betas, nPix, minX, minY) % Make sure labels are within range [hRes, wRes] = size(img); labels(labels(:,1) < 1,1) = 1; labels(labels(:,2) < 1,2) = 1; labels(labels(:,1) > wRes-1,1) = wRes-1; labels(labels(:,2) > hRes-1,2) = hRes-1; crop_img = Crop(img, labels, triangulation, triX, mask, alphas, betas, nPix, minX, minY); crop_img(isnan(crop_img)) = 0; % vectorised version features = reshape(crop_img(logical(mask)), 1, nPix); % normalisations features = (features - mean(features)); norms = std(features); if(norms==0) norms = 1; end features = features / norms; end
github
ddtm/OpenFace-master
myOctaveVersion.m
.m
OpenFace-master/matlab_version/face_validation/DeepLearnToolbox/util/myOctaveVersion.m
169
utf_8
d4603482a968c496b66a4ed4e7c72471
% return OCTAVE_VERSION or 'undefined' as a string function result = myOctaveVersion() if isOctave() result = OCTAVE_VERSION; else result = 'undefined'; end
github
ddtm/OpenFace-master
isOctave.m
.m
OpenFace-master/matlab_version/face_validation/DeepLearnToolbox/util/isOctave.m
108
utf_8
4695e8d7c4478e1e67733cca9903f9ef
%detects if we're running Octave function result = isOctave() result = exist('OCTAVE_VERSION') ~= 0; end
github
ddtm/OpenFace-master
makeLMfilters.m
.m
OpenFace-master/matlab_version/face_validation/DeepLearnToolbox/util/makeLMfilters.m
1,895
utf_8
21950924882d8a0c49ab03ef0681b618
function F=makeLMfilters % Returns the LML filter bank of size 49x49x48 in F. To convolve an % image I with the filter bank you can either use the matlab function % conv2, i.e. responses(:,:,i)=conv2(I,F(:,:,i),'valid'), or use the % Fourier transform. SUP=49; % Support of the largest filter (must be odd) SCALEX=sqrt(2).^[1:3]; % Sigma_{x} for the oriented filters NORIENT=6; % Number of orientations NROTINV=12; NBAR=length(SCALEX)*NORIENT; NEDGE=length(SCALEX)*NORIENT; NF=NBAR+NEDGE+NROTINV; F=zeros(SUP,SUP,NF); hsup=(SUP-1)/2; [x,y]=meshgrid([-hsup:hsup],[hsup:-1:-hsup]); orgpts=[x(:) y(:)]'; count=1; for scale=1:length(SCALEX), for orient=0:NORIENT-1, angle=pi*orient/NORIENT; % Not 2pi as filters have symmetry c=cos(angle);s=sin(angle); rotpts=[c -s;s c]*orgpts; F(:,:,count)=makefilter(SCALEX(scale),0,1,rotpts,SUP); F(:,:,count+NEDGE)=makefilter(SCALEX(scale),0,2,rotpts,SUP); count=count+1; end; end; count=NBAR+NEDGE+1; SCALES=sqrt(2).^[1:4]; for i=1:length(SCALES), F(:,:,count)=normalise(fspecial('gaussian',SUP,SCALES(i))); F(:,:,count+1)=normalise(fspecial('log',SUP,SCALES(i))); F(:,:,count+2)=normalise(fspecial('log',SUP,3*SCALES(i))); count=count+3; end; return function f=makefilter(scale,phasex,phasey,pts,sup) gx=gauss1d(3*scale,0,pts(1,:),phasex); gy=gauss1d(scale,0,pts(2,:),phasey); f=normalise(reshape(gx.*gy,sup,sup)); return function g=gauss1d(sigma,mean,x,ord) % Function to compute gaussian derivatives of order 0 <= ord < 3 % evaluated at x. x=x-mean;num=x.*x; variance=sigma^2; denom=2*variance; g=exp(-num/denom)/(pi*denom)^0.5; switch ord, case 1, g=-g.*(x/variance); case 2, g=g.*((num-variance)/(variance^2)); end; return function f=normalise(f), f=f-mean(f(:)); f=f/sum(abs(f(:))); return
github
ddtm/OpenFace-master
caenumgradcheck.m
.m
OpenFace-master/matlab_version/face_validation/DeepLearnToolbox/CAE/caenumgradcheck.m
3,618
utf_8
6c481fc15ab7df32e0f476514100141a
function cae = caenumgradcheck(cae, x, y) epsilon = 1e-4; er = 1e-6; disp('performing numerical gradient checking...') for i = 1 : numel(cae.o) p_cae = cae; p_cae.c{i} = p_cae.c{i} + epsilon; m_cae = cae; m_cae.c{i} = m_cae.c{i} - epsilon; [m_cae, p_cae] = caerun(m_cae, p_cae, x, y); d = (p_cae.L - m_cae.L) / (2 * epsilon); e = abs(d - cae.dc{i}); if e > er disp('OUTPUT BIAS numerical gradient checking failed'); disp(e); disp(d / cae.dc{i}); keyboard end end for a = 1 : numel(cae.a) p_cae = cae; p_cae.b{a} = p_cae.b{a} + epsilon; m_cae = cae; m_cae.b{a} = m_cae.b{a} - epsilon; [m_cae, p_cae] = caerun(m_cae, p_cae, x, y); d = (p_cae.L - m_cae.L) / (2 * epsilon); % cae.dok{i}{a}(u) = d; e = abs(d - cae.db{a}); if e > er disp('BIAS numerical gradient checking failed'); disp(e); disp(d / cae.db{a}); keyboard end for i = 1 : numel(cae.o) for u = 1 : numel(cae.ok{i}{a}) p_cae = cae; p_cae.ok{i}{a}(u) = p_cae.ok{i}{a}(u) + epsilon; m_cae = cae; m_cae.ok{i}{a}(u) = m_cae.ok{i}{a}(u) - epsilon; [m_cae, p_cae] = caerun(m_cae, p_cae, x, y); d = (p_cae.L - m_cae.L) / (2 * epsilon); % cae.dok{i}{a}(u) = d; e = abs(d - cae.dok{i}{a}(u)); if e > er disp('OUTPUT KERNEL numerical gradient checking failed'); disp(e); disp(d / cae.dok{i}{a}(u)); % keyboard end end end for i = 1 : numel(cae.i) for u = 1 : numel(cae.ik{i}{a}) p_cae = cae; m_cae = cae; p_cae.ik{i}{a}(u) = p_cae.ik{i}{a}(u) + epsilon; m_cae.ik{i}{a}(u) = m_cae.ik{i}{a}(u) - epsilon; [m_cae, p_cae] = caerun(m_cae, p_cae, x, y); d = (p_cae.L - m_cae.L) / (2 * epsilon); % cae.dik{i}{a}(u) = d; e = abs(d - cae.dik{i}{a}(u)); if e > er disp('INPUT KERNEL numerical gradient checking failed'); disp(e); disp(d / cae.dik{i}{a}(u)); end end end end disp('done') end function [m_cae, p_cae] = caerun(m_cae, p_cae, x, y) m_cae = caeup(m_cae, x); m_cae = caedown(m_cae); m_cae = caebp(m_cae, y); p_cae = caeup(p_cae, x); p_cae = caedown(p_cae); p_cae = caebp(p_cae, y); end %function checknumgrad(cae,what,x,y) % epsilon = 1e-4; % er = 1e-9; % % for i = 1 : numel(eval(what)) % if iscell(eval(['cae.' what])) % checknumgrad(cae,[what '{' num2str(i) '}'], x, y) % else % p_cae = cae; % m_cae = cae; % eval(['p_cae.' what '(' num2str(i) ')']) = eval([what '(' num2str(i) ')']) + epsilon; % eval(['m_cae.' what '(' num2str(i) ')']) = eval([what '(' num2str(i) ')']) - epsilon; % % m_cae = caeff(m_cae, x); m_cae = caedown(m_cae); m_cae = caebp(m_cae, y); % p_cae = caeff(p_cae, x); p_cae = caedown(p_cae); p_cae = caebp(p_cae, y); % % d = (p_cae.L - m_cae.L) / (2 * epsilon); % e = abs(d - eval(['cae.d' what '(' num2str(i) ')'])); % if e > er % error('numerical gradient checking failed'); % end % end % end % % end
github
ddtm/OpenFace-master
Collect_wild_imgs.m
.m
OpenFace-master/matlab_version/experiments_in_the_wild/Collect_wild_imgs.m
5,507
utf_8
5b43676289f81ab146b99199ae89a6df
function [images, detections, labels] = Collect_wild_imgs(root_test_data) use_afw = true; use_lfpw = true; use_helen = true; use_ibug = true; use_68 = true; images = []; labels = []; detections = []; if(use_afw) [img, det, lbl] = Collect_AFW(root_test_data, use_68); images = cat(1, images, img'); detections = cat(1, detections, det); labels = cat(1, labels, lbl); end if(use_lfpw) [img, det, lbl] = Collect_LFPW(root_test_data, use_68); images = cat(1, images, img'); detections = cat(1, detections, det); labels = cat(1, labels, lbl); end if(use_ibug) [img, det, lbl] = Collect_ibug(root_test_data, use_68); images = cat(1, images, img'); detections = cat(1, detections, det); labels = cat(1, labels, lbl); end if(use_helen) [img, det, lbl] = Collect_helen(root_test_data, use_68); images = cat(1, images, img'); detections = cat(1, detections, det); labels = cat(1, labels, lbl); end % convert to format expected by the Fitting method detections(:,3) = detections(:,1) + detections(:,3); detections(:,4) = detections(:,2) + detections(:,4); end function [images, detections, labels] = Collect_AFW(root_test_data, use_68) dataset_loc = [root_test_data, '/AFW/']; landmarkLabels = dir([dataset_loc '\*.pts']); num_imgs = size(landmarkLabels,1); images = struct; if(use_68) labels = zeros(num_imgs, 68, 2); else labels = zeros(num_imgs, 66, 2); end detections = zeros(num_imgs, 4); load([root_test_data, '/Bounding Boxes/bounding_boxes_afw.mat']); num_landmarks = 68; for imgs = 1:num_imgs [~,name,~] = fileparts(landmarkLabels(imgs).name); landmarks = dlmread([dataset_loc, landmarkLabels(imgs).name], ' ', [3,0,num_landmarks+2,1]); if(~use_68) inds_frontal = [1:60,62:64,66:68]; landmarks = landmarks(inds_frontal,:); end images(imgs).img = [dataset_loc, name '.jpg']; labels(imgs,:,:) = landmarks; detections(imgs,:) = bounding_boxes{imgs}.bb_detector; end detections(:,3) = detections(:,3) - detections(:,1); detections(:,4) = detections(:,4) - detections(:,2); end function [images, detections, labels] = Collect_LFPW(root_test_data, use_68) dataset_loc = [root_test_data, '/lfpw/testset/']; landmarkLabels = dir([dataset_loc '\*.pts']); num_imgs = size(landmarkLabels,1); images = struct; if(use_68) labels = zeros(num_imgs, 68, 2); else labels = zeros(num_imgs, 66, 2); end detections = zeros(num_imgs, 4); load([root_test_data, '/Bounding Boxes/bounding_boxes_lfpw_testset.mat']); num_landmarks = 68; for imgs = 1:num_imgs [~,name,~] = fileparts(landmarkLabels(imgs).name); landmarks = dlmread([dataset_loc, landmarkLabels(imgs).name], ' ', [3,0,num_landmarks+2,1]); if(~use_68) inds_frontal = [1:60,62:64,66:68]; landmarks = landmarks(inds_frontal,:); end images(imgs).img = [dataset_loc, name '.png']; labels(imgs,:,:) = landmarks; detections(imgs,:) = bounding_boxes{imgs}.bb_detector; end detections(:,3) = detections(:,3) - detections(:,1); detections(:,4) = detections(:,4) - detections(:,2); end function [images, detections, labels] = Collect_ibug(root_test_data, use_68) dataset_loc = [root_test_data, '/ibug/']; landmarkLabels = dir([dataset_loc '\*.pts']); num_imgs = size(landmarkLabels,1); images = struct; if(use_68) labels = zeros(num_imgs, 68, 2); else labels = zeros(num_imgs, 66, 2); end detections = zeros(num_imgs, 4); load([root_test_data, '/Bounding Boxes/bounding_boxes_ibug.mat']); num_landmarks = 68; for imgs = 1:num_imgs [~,name,~] = fileparts(landmarkLabels(imgs).name); landmarks = dlmread([dataset_loc, landmarkLabels(imgs).name], ' ', [3,0,num_landmarks+2,1]); if(~use_68) inds_frontal = [1:60,62:64,66:68]; landmarks = landmarks(inds_frontal,:); end images(imgs).img = [dataset_loc, name '.jpg']; labels(imgs,:,:) = landmarks; detections(imgs,:) = bounding_boxes{imgs}.bb_detector; end detections(:,3) = detections(:,3) - detections(:,1); detections(:,4) = detections(:,4) - detections(:,2); end function [images, detections, labels] = Collect_helen(root_test_data, use_68) dataset_loc = [root_test_data, '/helen/testset/']; landmarkLabels = dir([dataset_loc '\*.pts']); num_imgs = size(landmarkLabels,1); images = struct; if(use_68) labels = zeros(num_imgs, 68, 2); else labels = zeros(num_imgs, 66, 2); end detections = zeros(num_imgs, 4); load([root_test_data, '/Bounding Boxes/bounding_boxes_helen_testset.mat']); num_landmarks = 68; for imgs = 1:num_imgs [~,name,~] = fileparts(landmarkLabels(imgs).name); landmarks = dlmread([dataset_loc, landmarkLabels(imgs).name], ' ', [3,0,num_landmarks+2,1]); if(~use_68) inds_frontal = [1:60,62:64,66:68]; landmarks = landmarks(inds_frontal,:); end images(imgs).img = [dataset_loc, name '.jpg']; labels(imgs,:,:) = landmarks; detections(imgs,:) = bounding_boxes{imgs}.bb_detector; end detections(:,3) = detections(:,3) - detections(:,1); detections(:,4) = detections(:,4) - detections(:,2); end
github
ddtm/OpenFace-master
plotcov2.m
.m
OpenFace-master/matlab_version/experiments_in_the_wild/hierarch_checks/plotcov2.m
5,217
utf_8
6c070f75d902dd37b4ccc0311074d4c6
% PLOTCOV2 - Plots a covariance ellipse with major and minor axes % for a bivariate Gaussian distribution. % % Usage: % h = plotcov2(mu, Sigma[, OPTIONS]); % % Inputs: % mu - a 2 x 1 vector giving the mean of the distribution. % Sigma - a 2 x 2 symmetric positive semi-definite matrix giving % the covariance of the distribution (or the zero matrix). % % Options: % 'conf' - a scalar between 0 and 1 giving the confidence % interval (i.e., the fraction of probability mass to % be enclosed by the ellipse); default is 0.9. % 'num-pts' - the number of points to be used to plot the % ellipse; default is 100. % % This function also accepts options for PLOT. % % Outputs: % h - a vector of figure handles to the ellipse boundary and % its major and minor axes % % See also: PLOTCOV3 % Copyright (C) 2002 Mark A. Paskin %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = plotcov2(mu, Sigma, varargin) if size(Sigma) ~= [2 2], error('Sigma must be a 2 by 2 matrix'); end if length(mu) ~= 2, error('mu must be a 2 by 1 vector'); end [p, ... n, ... plot_opts] = process_options(varargin, 'conf', 0.9, ... 'num-pts', 100); h = []; holding = ishold; if (Sigma == zeros(2, 2)) z = mu; else % Compute the Mahalanobis radius of the ellipsoid that encloses % the desired probability mass. k = conf2mahal(p, 2); % The major and minor axes of the covariance ellipse are given by % the eigenvectors of the covariance matrix. Their lengths (for % the ellipse with unit Mahalanobis radius) are given by the % square roots of the corresponding eigenvalues. if (issparse(Sigma)) [V, D] = eigs(Sigma); else [V, D] = eig(Sigma); end % Compute the points on the surface of the ellipse. t = linspace(0, 2*pi, n); u = [cos(t); sin(t)]; w = (k * V * sqrt(D)) * u; z = repmat(mu, [1 n]) + w; % Plot the major and minor axes. L = k * sqrt(diag(D)); h = plot([mu(1); mu(1) + L(1) * V(1, 1)], ... [mu(2); mu(2) + L(1) * V(2, 1)], plot_opts{:}); hold on; h = [h; plot([mu(1); mu(1) + L(2) * V(1, 2)], ... [mu(2); mu(2) + L(2) * V(2, 2)], plot_opts{:})]; end h = [h; plot(z(1, :), z(2, :), plot_opts{:})]; if (~holding) hold off; end end function [varargout] = process_options(args, varargin) % Check the number of input arguments n = length(varargin); if (mod(n, 2)) error('Each option must be a string/value pair.'); end % Check the number of supplied output arguments if (nargout < (n / 2)) error('Insufficient number of output arguments given'); elseif (nargout == (n / 2)) warn = 1; nout = n / 2; else warn = 0; nout = n / 2 + 1; end % Set outputs to be defaults varargout = cell(1, nout); for i=2:2:n varargout{i/2} = varargin{i}; end % Now process all arguments nunused = 0; for i=1:2:length(args) found = 0; for j=1:2:n if strcmpi(args{i}, varargin{j}) varargout{(j + 1)/2} = args{i + 1}; found = 1; break; end end if (~found) if (warn) warning(sprintf('Option ''%s'' not used.', args{i})); args{i} else nunused = nunused + 1; unused{2 * nunused - 1} = args{i}; unused{2 * nunused} = args{i + 1}; end end end % Assign the unused arguments if (~warn) if (nunused) varargout{nout} = unused; else varargout{nout} = cell(0); end end end % CONF2MAHAL - Translates a confidence interval to a Mahalanobis % distance. Consider a multivariate Gaussian % distribution of the form % % p(x) = 1/sqrt((2 * pi)^d * det(C)) * exp((-1/2) * MD(x, m, inv(C))) % % where MD(x, m, P) is the Mahalanobis distance from x % to m under P: % % MD(x, m, P) = (x - m) * P * (x - m)' % % A particular Mahalanobis distance k identifies an % ellipsoid centered at the mean of the distribution. % The confidence interval associated with this ellipsoid % is the probability mass enclosed by it. Similarly, % a particular confidence interval uniquely determines % an ellipsoid with a fixed Mahalanobis distance. % % If X is an d dimensional Gaussian-distributed vector, % then the Mahalanobis distance of X is distributed % according to the Chi-squared distribution with d % degrees of freedom. Thus, the Mahalanobis distance is % determined by evaluating the inverse cumulative % distribution function of the chi squared distribution % up to the confidence value. % % Usage: % % m = conf2mahal(c, d); % % Inputs: % % c - the confidence interval % d - the number of dimensions of the Gaussian distribution % % Outputs: % % m - the Mahalanobis radius of the ellipsoid enclosing the % fraction c of the distribution's probability mass % % See also: MAHAL2CONF % Copyright (C) 2002 Mark A. Paskin %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function m = conf2mahal(c, d) m = chi2inv(c, d); % pr = 0.95 ; c = (1 - pr)/2 ; % m = norminv([c 1-c],0,1) ; end
github
ddtm/OpenFace-master
compute_error_point_to_line_right_eye.m
.m
OpenFace-master/matlab_version/experiments_in_the_wild/hierarch_checks/compute_error_point_to_line_right_eye.m
2,807
utf_8
8a3340813a8f382b8cbc66193d881e21
function [ error_per_image ] = compute_error_point_to_line_right_eye( ground_truth_all, detected_points_all, occluded ) %compute_error % compute the average point-to-point Euclidean error normalized by the % inter-ocular distance (measured as the Euclidean distance between the % outer corners of the eyes) % % Inputs: % grounth_truth_all, size: num_of_points x 2 x num_of_images % detected_points_all, size: num_of_points x 2 x num_of_images % Output: % error_per_image, size: num_of_images x 1 right_eye_inds_from_68 = [43,44,45,46,47,48,43]; right_eye_inds_from_28 = [9,11,13,15,17,19]; num_of_images = size(ground_truth_all,3); num_points_gt = size(ground_truth_all,1); num_points_det = size(detected_points_all,1); error_per_image = zeros(num_of_images,1); for i =1:num_of_images if(num_points_det == 6) detected_points = detected_points_all(:,:,i); elseif(num_points_det == 68 || num_points_det == 66) detected_points = detected_points_all(right_eye_inds_from_68,:,i); elseif(num_points_det == 28) detected_points = detected_points_all(right_eye_inds_from_28,:,i); elseif(num_points_det == 49) end ground_truth_points = ground_truth_all(:,:,i); if(num_points_gt == 66 || num_points_gt == 68) interocular_distance = norm(ground_truth_points(37,:)-ground_truth_points(46,:)); ground_truth_points = ground_truth_points(right_eye_inds_from_68,:,:); else interocular_distance = norm(ground_truth_points(37-17,:)-ground_truth_points(46-17,:)); ground_truth_points = ground_truth_points(right_eye_inds_from_68,:,:); end sum=0; for j=1:6 if(j== 1 || j == 6) % eye corners should align perfectly sum = sum + norm(detected_points(j,:)-ground_truth_points(j,:)); else % points between eye corners measured in distance to the two appropriate line % segments sum = sum + point_to_segments(detected_points(j,:), ground_truth_points(j-1:j+1,:)); end end error_per_image(i) = sum/(6*interocular_distance); end error_per_image = error_per_image(~occluded); end function seg_dist = point_to_segments(point, segments) seg_dists = zeros(size(segments, 1)-1,1); for i=1:size(segments, 1)-1 vec1 = point - segments(i,:); vec2 = segments(i+1,:) - segments(i,:); d = (vec1 * vec2') / (norm(vec2)^2); if(d < 0) seg_dists(i) = norm(vec1); elseif(d > 1) seg_dists(i) = norm(point - segments(i+1,:)); else seg_dists(i) = sqrt( norm(vec1)^2 - norm(d * vec2)^2); end end seg_dist = min(seg_dists); end
github
ddtm/OpenFace-master
compute_error_point_to_line_left_eye.m
.m
OpenFace-master/matlab_version/experiments_in_the_wild/hierarch_checks/compute_error_point_to_line_left_eye.m
2,806
utf_8
7ee0c021e10837321563b4801cb8b499
function [ error_per_image ] = compute_error_point_to_line_left_eye( ground_truth_all, detected_points_all, occluded ) %compute_error % compute the average point-to-point Euclidean error normalized by the % inter-ocular distance (measured as the Euclidean distance between the % outer corners of the eyes) % % Inputs: % grounth_truth_all, size: num_of_points x 2 x num_of_images % detected_points_all, size: num_of_points x 2 x num_of_images % Output: % error_per_image, size: num_of_images x 1 right_eye_inds_from_68 = [37,38,39,40,41,42,37]; right_eye_inds_from_28 = [9,11,13,15,17,19]; num_of_images = size(ground_truth_all,3); num_points_gt = size(ground_truth_all,1); num_points_det = size(detected_points_all,1); error_per_image = zeros(num_of_images,1); for i =1:num_of_images if(num_points_det == 6) detected_points = detected_points_all(:,:,i); elseif(num_points_det == 68 || num_points_det == 66) detected_points = detected_points_all(right_eye_inds_from_68,:,i); elseif(num_points_det == 28) detected_points = detected_points_all(right_eye_inds_from_28,:,i); elseif(num_points_det == 49) end ground_truth_points = ground_truth_all(:,:,i); if(num_points_gt == 66 || num_points_gt == 68) interocular_distance = norm(ground_truth_points(37,:)-ground_truth_points(46,:)); ground_truth_points = ground_truth_points(right_eye_inds_from_68,:,:); else interocular_distance = norm(ground_truth_points(37-17,:)-ground_truth_points(46-17,:)); ground_truth_points = ground_truth_points(right_eye_inds_from_68,:,:); end sum=0; for j=1:6 if(j== 1 || j == 6) % eye corners should align perfectly sum = sum + norm(detected_points(j,:)-ground_truth_points(j,:)); else % points between eye corners measured in distance to the two appropriate line % segments sum = sum + point_to_segments(detected_points(j,:), ground_truth_points(j-1:j+1,:)); end end error_per_image(i) = sum/(6*interocular_distance); end error_per_image = error_per_image(~occluded); end function seg_dist = point_to_segments(point, segments) seg_dists = zeros(size(segments, 1)-1,1); for i=1:size(segments, 1)-1 vec1 = point - segments(i,:); vec2 = segments(i+1,:) - segments(i,:); d = (vec1 * vec2') / (norm(vec2)^2); if(d < 0) seg_dists(i) = norm(vec1); elseif(d > 1) seg_dists(i) = norm(point - segments(i+1,:)); else seg_dists(i) = sqrt( norm(vec1)^2 - norm(d * vec2)^2); end end seg_dist = min(seg_dists); end
github
ddtm/OpenFace-master
compute_brow_error_to_line.m
.m
OpenFace-master/matlab_version/experiments_in_the_wild/hierarch_checks/compute_brow_error_to_line.m
2,804
utf_8
7039aa3de0164e4ea5bfa788c174dd85
function [ error_per_image ] = compute_brow_error( ground_truth_all, detected_points_all, occluded ) %compute_error % compute the average point-to-point Euclidean error of right eye normalized by the % inter-ocular distance (measured as the Euclidean distance between the % outer corners of the eyes) % % Inputs: % grounth_truth_all, size: num_of_points x 2 x num_of_images % detected_points_all, size: num_of_points x 2 x num_of_images % Output: % error_per_image, size: num_of_images x 1 brow_inds_from_68 = 18:27; brow_inds_from_49 = 1:10; brow_inds_from_66 = 18:27; num_of_images = size(ground_truth_all,3); num_points_gt = size(ground_truth_all,1); num_points_det = size(detected_points_all,1); error_per_image = zeros(num_of_images,1); for i =1:num_of_images if(num_points_det == 10) detected_points = detected_points_all(:,:,i); elseif(num_points_det == 68) detected_points = detected_points_all(brow_inds_from_68,:,i); elseif(num_points_det == 66) detected_points = detected_points_all(brow_inds_from_66,:,i); elseif(num_points_det == 49) detected_points = detected_points_all(brow_inds_from_49,:,i); end ground_truth_points = ground_truth_all(:,:,i); if(num_points_gt == 66 || num_points_gt == 68) interocular_distance = norm(ground_truth_points(37,:)-ground_truth_points(46,:)); ground_truth_points = ground_truth_points(brow_inds_from_68,:,:); else interocular_distance = norm(ground_truth_points(37-17,:)-ground_truth_points(46-17,:)); ground_truth_points = ground_truth_points(brow_inds_from_68,:,:); end sum=0; for j=1:size(detected_points,1) if(j== 1 || j == 5 || j == 6 || j == 10) % eye corners should align perfectly sum = sum + norm(detected_points(j,:)-ground_truth_points(j,:)); else sum = sum + point_to_segments(detected_points(j,:), ground_truth_points(j-1:j+1,:)); end end error_per_image(i) = sum/(size(detected_points,1)*interocular_distance); end if(nargin > 2) error_per_image = error_per_image(~occluded); end end function seg_dist = point_to_segments(point, segments) seg_dists = zeros(size(segments, 1)-1,1); for i=1:size(segments, 1)-1 vec1 = point - segments(i,:); vec2 = segments(i+1,:) - segments(i,:); d = (vec1 * vec2') / (norm(vec2)^2); if(d < 0) seg_dists(i) = norm(vec1); elseif(d > 1) seg_dists(i) = norm(point - segments(i+1,:)); else seg_dists(i) = sqrt( norm(vec1)^2 - norm(d * vec2)^2); end end seg_dist = min(seg_dists); end
github
ddtm/OpenFace-master
writeMatrix.m
.m
OpenFace-master/matlab_version/pdm_generation/PDM_helpers/writeMatrix.m
428
utf_8
3a2c87a966a8dc0f296d992d85f7d445
% for easier readibility write them row by row function writeMatrix(fileID, M, type) fprintf(fileID, '%d\r\n', size(M,1)); fprintf(fileID, '%d\r\n', size(M,2)); fprintf(fileID, '%d\r\n', type); for i=1:size(M,1) if(type == 4 || type == 0) fprintf(fileID, '%d ', M(i,:)); else fprintf(fileID, '%.9f ', M(i,:)); end fprintf(fileID, '\r\n'); end end
github
ddtm/OpenFace-master
fit_PDM_ortho_proj_to_2D.m
.m
OpenFace-master/matlab_version/pdm_generation/PDM_helpers/fit_PDM_ortho_proj_to_2D.m
9,871
utf_8
7accc2b0fee769eecc059448c7e69b26
function [ a, R, T, T3D, params, error, shapeOrtho ] = fit_PDM_ortho_proj_to_2D( M, E, V, shape2D, f, cx, cy) %FITPDMTO2DSHAPE Summary of this function goes here % Detailed explanation goes here params = zeros(size(E)); hidden = false; % if some of the points are unavailable modify M, V, and shape2D (can % later infer the actual shape from this) if(sum(shape2D(:)==0) > 0) hidden = true; % which indices to remove inds_to_rem = shape2D(:,1) == 0 | shape2D(:,2) == 0; shape2D = shape2D(~inds_to_rem,:); inds_to_rem = repmat(inds_to_rem, 3, 1); M_old = M; V_old = V; M = M(~inds_to_rem); V = V(~inds_to_rem,:); end num_points = numel(M) / 3; m = reshape(M, num_points, 3)'; width_model = max(m(1,:)) - min(m(1,:)); height_model = max(m(2,:)) - min(m(2,:)); bounding_box = [min(shape2D(:,1)), min(shape2D(:,2)),... max(shape2D(:,1)), max(shape2D(:,2))]; a = (((bounding_box(3) - bounding_box(1)) / width_model) + ((bounding_box(4) - bounding_box(2))/ height_model)) / 2; tx = (bounding_box(3) + bounding_box(1))/2; ty = (bounding_box(4) + bounding_box(2))/2; % correct it so that the bounding box is just around the minimum % and maximum point in the initialised face tx = tx - a*(min(m(1,:)) + max(m(1,:)))/2; ty = ty - a*(min(m(2,:)) + max(m(2,:)))/2; R = eye(3); T = [tx; ty]; currShape = getShapeOrtho(M, V, params, R, T, a); currError = getRMSerror(currShape, shape2D); reg_rigid = zeros(6,1); regFactor = 20; regularisations = [reg_rigid; regFactor ./ E]; % the above version, however, does not perform as well regularisations = diag(regularisations)*diag(regularisations); red_in_a_row = 0; for i=1:1000 shape3D = M + V * params; shape3D = reshape(shape3D, numel(shape3D) / 3, 3); % Now find the current residual error currShape = a * R(1:2,:)*shape3D' + repmat(T, 1, numel(M)/3); currShape = currShape'; error_res = shape2D - currShape; eul = Rot2Euler(R); p_global = [a; eul'; T]; % get the Jacobians J = CalcJacobian(M, V, params, p_global); % RLMS style update p_delta = (J'*J + regularisations) \ (J'*error_res(:) - regularisations*[p_global;params]); [params, p_global] = CalcReferenceUpdate(p_delta, params, p_global); a = p_global(1); R = Euler2Rot(p_global(2:4)); T = p_global(5:6); shape3D = M + V * params; shape3D = reshape(shape3D, numel(shape3D) / 3, 3); currShape = a * R(1:2,:)*shape3D' + repmat(T, 1, numel(M)/3); currShape = currShape'; error = getRMSerror(currShape, shape2D); if(0.999 * currError < error) red_in_a_row = red_in_a_row + 1; if(red_in_a_row == 5) break; end end currError = error; end if(hidden) shapeOrtho = getShapeOrtho(M_old, V_old, params, R, T, a); else shapeOrtho = currShape; end if(nargin == 7) Zavg = f / a; Xavg = (T(1) - cx) / a; Yavg = (T(2) - cy) / a; T3D = [Xavg;Yavg;Zavg]; else T3D = [0;0;0]; end end function [shape2D] = getShapeOrtho(M, V, p, R, T, a) % M - mean shape vector % V - eigenvectors % p - parameters of non-rigid shape % R - rotation matrix % T - translation vector (tx, ty) shape3D = getShape3D(M, V, p); shape2D = a * R(1:2,:)*shape3D' + repmat(T, 1, numel(M)/3); shape2D = shape2D'; end function [shape2D] = getShapeOrthoFull(M, V, p, R, T, a) % M - mean shape vector % V - eigenvectors % p - parameters of non-rigid shape % R - rotation matrix % T - translation vector (tx, ty) T = [T; 0]; shape3D = getShape3D(M, V, p); shape2D = a * R*shape3D' + repmat(T, 1, numel(M)/3); shape2D = shape2D'; end function [shape3D] = getShape3D(M, V, params) shape3D = M + V * params; shape3D = reshape(shape3D, numel(shape3D) / 3, 3); end function [error] = getRMSerror(shape2Dv1, shape2Dv2) error = sqrt(mean(reshape(shape2Dv1 - shape2Dv2, numel(shape2Dv1), 1).^2)); end % This calculates the combined rigid with non-rigid Jacobian function J = CalcJacobian(M, V, p, p_global) n = size(M, 1)/3; non_rigid_modes = size(V,2); J = zeros(n*2, 6 + non_rigid_modes); % now the layour is % ---------- Rigid part -------------------|----Non rigid part--------| % dx_1/ds, dx_1/dr1, ... dx_1/dtx, dx_1/dty dx_1/dp_1 ... dx_1/dp_m % dx_2/ds, dx_2/dr1, ... dx_2/dtx, dx_2/dty dx_2/dp_1 ... dx_2/dp_m % ... % dx_n/ds, dx_n/dr1, ... dx_n/dtx, dx_n/dty dx_n/dp_1 ... dx_n/dp_m % dy_1/ds, dy_1/dr1, ... dy_1/dtx, dy_1/dty dy_1/dp_1 ... dy_1/dp_m % ... % dy_n/ds, dy_n/dr1, ... dy_n/dtx, dy_n/dty dy_n/dp_1 ... dy_n/dp_m % getting the rigid part J(:,1:6) = CalcRigidJacobian(M, V, p, p_global); % constructing the non-rigid part R = Euler2Rot(p_global(2:4)); s = p_global(1); % 'rotate' and 'scale' the principal components % First reshape to 3D V_X = V(1:n,:); V_Y = V(n+1:2*n,:); V_Z = V(2*n+1:end,:); J_x_non_rigid = s*(R(1,1)*V_X + R(1,2)*V_Y + R(1,3)*V_Z); J_y_non_rigid = s*(R(2,1)*V_X + R(2,2)*V_Y + R(2,3)*V_Z); J(1:n, 7:end) = J_x_non_rigid; J(n+1:end, 7:end) = J_y_non_rigid; end function J = CalcRigidJacobian(M, V, p, p_global) n = size(M, 1)/3; % Get the current 3D shape (not affected by global transform, as this % is how the Jacobian was derived (for derivation please see % ../derivations/orthoJacobian shape3D = GetShape3D(M, V, p); % Get the rotation matrix corresponding to current global orientation R = Euler2Rot(p_global(2:4)); s = p_global(1); % Rigid Jacobian is laid out as follows % dx_1/ds, dx_1/dr1, dx_1/dr2, dx_1/dr3, dx_1/dtx, dx_1/dty % dx_2/ds, dx_2/dr1, dx_2/dr2, dx_2/dr3, dx_2/dtx, dx_2/dty % ... % dx_n/ds, dx_n/dr1, dx_n/dr2, dx_n/dr3, dx_n/dtx, dx_n/dty % dy_1/ds, dy_1/dr1, dy_1/dr2, dy_1/dr3, dy_1/dtx, dy_1/dty % ... % dy_n/ds, dy_n/dr1, dy_n/dr2, dy_n/dr3, dy_n/dtx, dy_n/dty J = zeros(n*2, 6); % dx/ds = X * r11 + Y * r12 + Z * r13 % dx/dr1 = s*(r13 * Y - r12 * Z) % dx/dr2 = -s*(r13 * X - r11 * Z) % dx/dr3 = s*(r12 * X - r11 * Y) % dx/dtx = 1 % dx/dty = 0 % dy/ds = X * r21 + Y * r22 + Z * r23 % dy/dr1 = s * (r23 * Y - r22 * Z) % dy/dr2 = -s * (r23 * X - r21 * Z) % dy/dr3 = s * (r22 * X - r21 * Y) % dy/dtx = 0 % dy/dty = 1 % set the Jacobian for x's % with respect to scaling factor J(1:n,1) = shape3D * R(1,:)'; % with respect to angular rotation around x, y, and z axes % Change of x with respect to change in axis angle rotation dxdR = [ 0, R(1,3), -R(1,2); -R(1,3), 0, R(1,1); R(1,2), -R(1,1), 0]; J(1:n,2:4) = s*(dxdR * shape3D')'; % with respect to translation J(1:n,5) = 1; J(1:n,6) = 0; % set the Jacobian for y's % with respect to scaling factor J(n+1:end,1) = shape3D * R(2,:)'; % with respect to angular rotation around x, y, and z axes % Change of y with respect to change in axis angle rotation dydR = [ 0, R(2,3), -R(2,2); -R(2,3), 0, R(2,1); R(2,2), -R(2,1), 0]; J(n+1:end,2:4) = s*(dydR * shape3D')'; % with respect to translation J(n+1:end,5) = 0; J(n+1:end,6) = 1; end % This updates the parameters based on the updates from the RLMS function [non_rigid, rigid] = CalcReferenceUpdate(params_delta, current_non_rigid, current_global) rigid = zeros(6, 1); % Same goes for scaling and translation parameters rigid(1) = current_global(1) + params_delta(1); rigid(5) = current_global(5) + params_delta(5); rigid(6) = current_global(6) + params_delta(6); % for rotation however, we want to make sure that the rotation matrix % approximation we have % R' = [1, -wz, wy % wz, 1, -wx % -wy, wx, 1] % is a legal rotation matrix, and then we combine it with current % rotation (through matrix multiplication) to acquire the new rotation R = Euler2Rot(current_global(2:4)); wx = params_delta(2); wy = params_delta(3); wz = params_delta(4); R_delta = [1, -wz, wy; wz, 1, -wx; -wy, wx, 1]; % Make sure R_delta is orthonormal R_delta = OrthonormaliseRotation(R_delta); % Combine rotations R_final = R * R_delta; % Extract euler angle euler = Rot2Euler(R_final); rigid(2:4) = euler; if(length(params_delta) > 6) % non-rigid parameters can just be added together non_rigid = params_delta(7:end) + current_non_rigid; else non_rigid = current_non_rigid; end end function R_ortho = OrthonormaliseRotation(R) % U * V' is basically what we want, as it's guaranteed to be % orthonormal [U, ~, V] = svd(R); % We also want to make sure no reflection happened % get the orthogonal matrix from the initial rotation matrix X = U*V'; % This makes sure that the handedness is preserved and no reflection happened % by making sure the determinant is 1 and not -1 W = eye(3); W(3,3) = det(X); R_ortho = U*W*V'; end
github
ddtm/OpenFace-master
findG.m
.m
OpenFace-master/matlab_version/pdm_generation/nrsfm-em/findG.m
1,188
utf_8
c81e58ce3f1a6f9066f2ecb4cb4dac67
function G = findG(Rhat) [F,D] = size(Rhat); F = F/2; % Build matrix Q such that Q * v = [1,...,1,0,...,0] where v is a six % element vector containg all six distinct elements of the Matrix C %clear Q for f = 1:F, g = f + F; h = g + F; Q(f,:) = zt2(Rhat(f,:), Rhat(f,:)); Q(g,:) = zt2(Rhat(g,:), Rhat(g,:)); Q(h,:) = zt2(Rhat(f,:), Rhat(g,:)); end % Solve for v rhs = [ones(2*F,1); zeros(F,1)]; v = Q \ rhs; % C is a symmetric 3x3 matrix such that C = G * transpose(G) n = 1; for x = 1:D, for y = x:D, C(x,y) = v(n); C(y,x) = v(n); n = n+1; end; end; e = eig(C); %disp(e) if (any(e<= 0)), [uu,dd,vv] = svd(C); G = uu*sqrt(dd); cc = G*G'; err = sum((cc(:)-C(:)).^2); %if err>0.03, if 0 & err>30, G = []; dbstack; keyboard end; else G = sqrtm(C); end %neg = 0; %if e(1) <= 0, neg = 1; end %if e(2) <= 0, neg = 1; end %if e(3) <= 0, neg = 1; end %if neg == 1, G = []; %else G = sqrtm(C); %end %------------------------------------------------- function M = zt2(i,j) D = length(i); M = []; for x = 1:D, for y = x:D, if x==y, M = [M, i(x)*j(y)]; else, M = [M, i(x)*j(y)+i(y)*j(x)]; end; end; end;
github
ddtm/OpenFace-master
prune_observations.m
.m
OpenFace-master/matlab_version/pdm_generation/Wild_data_pdm/prune_observations.m
1,145
utf_8
a9667d8c30c83debfac87a02012109cf
function [ observations ] = prune_observations( observations, percentage_to_keep ) %PRUNE_OBSERVATIONS Summary of this function goes here % Detailed explanation goes here distances = pdist(observations, @euclid_dist); distances = squareform(distances); m = max(distances(:)); distances(logical(eye(size(distances)))) = m; to_rem = false(size(observations,1),1); % need to get rid of the smallest distances for i=size(observations,1):-1:round(percentage_to_keep * size(observations,1)) [~, ind] = min(distances(:)); [row, col] = ind2sub(size(distances),ind); % always remove the row? to_rem(row) = true; distances(row,:) = m; distances(:,row) = m; end observations = observations(~to_rem,:); end function [dist] = euclid_dist(XI, XJ) x_dist = bsxfun(@plus, XJ(:, 1:end/3), -XI(1:end/3)).^2; y_dist = bsxfun(@plus, XJ(:, end/3+1:2*end/3), -XI(end/3+1:2*end/3)).^2; z_dist = bsxfun(@plus, XJ(:, 2*end/3+1:end), - XI(2*end/3+1:end)).^2; dist = mean(sqrt(x_dist + y_dist + z_dist),2); end
github
ddtm/OpenFace-master
writePDM.m
.m
OpenFace-master/matlab_version/pdm_generation/Wild_data_pdm/writePDM.m
1,235
utf_8
b0e7f7dff0c7231a80b75e35435d0828
function writePDM( V, E, M, outputFile, Vmorph, Emorph ) %WRITEPDM Summary of this function goes here % Detailed explanation goes here fId = fopen(outputFile,'w'); % number of elements % Comment fprintf(fId, '# The mean values of the components (in mm)\n'); writeMatrix(fId, M, 6); fprintf(fId, '# The principal components (eigenvectors) of identity or combined identity and expression model\n'); writeMatrix(fId, V, 6); fprintf(fId, '# The variances of the components (eigenvalues) of identity or combined identity and expression model\n'); writeMatrix(fId, E', 6); if(nargin > 4) fprintf(fId, '# The principal components (eigenvectors) of expression\n'); writeMatrix(fId, Vmorph, 6); fprintf(fId, '# The variances of the components (eigenvalues) of expression\n'); writeMatrix(fId, Emorph', 6); end fclose(fId); end % for easier readibility write them row by row function writeMatrix(fileID, M, type) fprintf(fileID, '%d\n', size(M,1)); fprintf(fileID, '%d\n', size(M,2)); fprintf(fileID, '%d\n', type); for i=1:size(M,1) fprintf(fileID, '%f ', M(i,:)); fprintf(fileID, '\n'); end end
github
Lumbrer/Racelogic-VBO-Converter-master
Launcher_VBO.m
.m
Racelogic-VBO-Converter-master/Launcher_VBO.m
3,878
utf_8
d7ca0acb13f92f652d0a22f378b5dbcc
function varargout = Launcher_VBO(varargin) % LAUNCHER_VBO MATLAB code for Launcher_VBO.fig % LAUNCHER_VBO, by itself, creates a new LAUNCHER_VBO or raises the existing % singleton*. % % H = LAUNCHER_VBO returns the handle to a new LAUNCHER_VBO or the handle to % the existing singleton*. % % LAUNCHER_VBO('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in LAUNCHER_VBO.M with the given input arguments. % % LAUNCHER_VBO('Property','Value',...) creates a new LAUNCHER_VBO or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before Launcher_VBO_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to Launcher_VBO_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help Launcher_VBO % Last Modified by GUIDE v2.5 22-Feb-2016 09:30:38 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @Launcher_VBO_OpeningFcn, ... 'gui_OutputFcn', @Launcher_VBO_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before Launcher_VBO is made visible. function Launcher_VBO_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to Launcher_VBO (see VARARGIN) % Choose default command line output for Launcher_VBO handles.output = hObject; handles.p=gobjects(0); % Update handles structure guidata(hObject, handles); % UIWAIT makes Launcher_VBO wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = Launcher_VBO_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in startbutton. function startbutton_Callback(hObject, eventdata, handles) % hObject handle to startbutton (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) clc if ishghandle(handles.p) close(handles.p); end handles.p=figure('name','RaceLogic VBOX File Converter V1.0','units','normalized','NumberTitle','off','outerposition',[0.2 0.1 0.6 0.8],'ToolBar','none','Visible','off'); VBO_GUI_APP(handles.p) if ishghandle(handles.p) set(handles.p,'Visible','on') end guidata(hObject, handles); % --- Executes during object deletion, before destroying properties. function figure1_DeleteFcn(hObject, eventdata, handles) if ishghandle(handles.p) close(handles.p); end % hObject handle to figure1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)
github
mindcont/caffe-master
classification_demo.m
.m
caffe-master/matlab/demo/classification_demo.m
5,466
utf_8
45745fb7cfe37ef723c307dfa06f1b97
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to the Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % and what versions are installed. % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab code for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to your Matlab search PATH in order to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
bpalmintier/mepo-master
PlanDiff.m
.m
mepo-master/models/MATLAB/PlanDiff.m
18,520
utf_8
981012ed2b74865931a225de6e91b337
function [ out, gen, excel_paste ] = PlanDiff(runs) %PLANDIFF compute difference metrics between clustered an separate unit commit outputs % % [ out, gen, excel_paste ] = PlanDiff(runs) % Allows the user to enter run information. RUNS can either be a struct % array with dir and prefix fields for each run, or a cell array with % dir information in the first column and output file name in the % second. Blank entries in RUNS are used to divide comparision groups. % The first run in each group is used as the baseline % % Note: only summary output file is required for comparison % % IMPORTANT: Scenarios within a group are assumed to have identical % generator lists & for these lists to appear in the same order in the % summary file % HISTORY % ver date time who changes made % --- ---------- ----- ------------- --------------------------------------- % 1 2012-08-26 23:30 BryanP Adapted from OpsDiff v10 % 2 2012-08-28 22:40 BryanP Prevent negative adjusted peaker capacity % 3 2012-08-29 01:40 BryanP Clean selected non-numeric data % 4 2012-08-29 23:10 BryanP Exclude non-expandable gens from new gen metrics % 5 2012-09-03 12:15 BryanP Update excel_paste. Fix handling of missing/bad entries % 6 2012-09-03 18:15 BryanP Added support for operations only runs by UnitCommit % 7 2012-09-06 21:45 BryanP Also read in raw ops data % 8 2012-09-17 18:15 BryanP Compute effective planning marg, Expand to Excel paste data % 9 2012-10-06 19:25 BryanP Add par_threads to Excel data % 10 2013-06-10 16:00 BryanP Ignore run codes starting with _ % 11 2013-12-31 14:50 BryanP Add missing summary fields for LP only runs %-- Setup defaults if nargin < 1 || isempty(runs) runs = {'../capplan/out/' 'SCP_' '../capplan/out2/' 'SCP_' }; end % If our run list is provided as a cell matrix, convert it to a structure if iscell(runs) runs = struct('dir', runs(:,1), 'run_code', runs(:,2)); end %-- Read in scenario data n_runs = length(runs); r = 1; baseline=1; gen_data_is_read = false; for r =1:n_runs %Advance to the next valid run (non-blank code) if isempty(runs(r).run_code) if baseline~=r %Compute statistics for last group out(baseline:(r-1)) = PlanDiffHelper(in(baseline:(r-1)), gen); end baseline = r+1; continue end if runs(r).run_code(1) == '_' %Skip run codes beginning with _, typically those with blank real data %but a non-blank modifier such as Y for ops, resulting in _ops baseline = r+1; continue end %Read output files. Note: true indicates summary only raw_in = OpsRead(runs(r).dir, runs(r).run_code, true); %Only store data if we read the input successfully. Skip NaN's to leave %a blank entry if isstruct(raw_in) if isempty(strfind(runs(r).run_code,'_ops')) fprintf(' Ops: ') raw_in.ops = OpsRead(runs(r).dir, [runs(r).run_code '_ops'], true); else raw_in.ops = NaN; end in(r) = raw_in; %Read in generator data on first successful data read if not(gen_data_is_read) gen = GenDataHelper(in(r).summary); gen_data_is_read = true; if not(isequal(sort(in(r).g_names), sort({gen.list.name}'))) %#ok<TRSRT> transpose needed to convert to column vector error('advPwr:PlanDiff:gen_mismatch', ... 'Generator names from datafile don''t match those in summary') end %Reorder gen_data from data file to match that from summary % This is required to handle GAMS reordering of wind [~, gen_summary_order] = sort(in(r).g_names); [~, gen_data_order] = sort({gen.list.name}'); %#ok<TRSRT> transpose needed to convert to column vector gen.list(gen_summary_order) = gen.list(gen_data_order); %-- And identify handy generator masks (using the new order) %Identify renewables gen.renew_mask = strcmpi('wind', horzcat({gen.list.fuel})) ... | strcmpi('solar', horzcat({gen.list.fuel})); gen.therm_mask = not(gen.renew_mask); gen.expand_mask = [gen.list.cap_cur] < [gen.list.cap_max]; gen.n_expand = nnz(gen.expand_mask); gen.g_expand_names = in(r).g_names(gen.expand_mask); gen.renew_expand_mask = gen.renew_mask(gen.expand_mask); gen.therm_expand_mask = gen.therm_mask(gen.expand_mask); if not(gen.expand_mask(gen.peaker.idx)) error('AdvPwr:PlanDiff:PeakerNotExpand','The identified peaker is not elligable for expansion') end gen.peaker.expand_idx = nnz(gen.expand_mask(1:gen.peaker.idx)); end else if exist('in','var') && not(isempty(in)) in(r).run_code = runs(r).run_code; end end end % Avoid cryptic error messages when data not read. In this case "in" will % only have the 'run_code' field, and hence length of 1. if length(fields(in)) == 1 error('Unable to read any results. Check paths (includig trailing /) and try again... quitting') end %Compute difference statistics for final (or only) group out(baseline:r) = PlanDiffHelper(in(baseline:r), gen); %-- Create variable for easy Excel cut and paste if nargout > 2 excel_paste = {}; fprintf('Creating Excel Paste data...') %work backwards to init size with first assignment for r = 1:n_runs if not(isempty(out(r).summary)) %Hack to add in missing fields for LP only solves if not(isfield(out(r).summary, 'run_mip_gap')) out(r).summary.run_mip_gap = 0; end excel_paste(r,:) = ... horzcat(... { out(r).summary.run_model_name out(r).summary.RPS_target_fraction out(r).summary.renew_fraction out(r).summary.in_CO2e_cap_Kt out(r).summary.CO2e_total_Mt out(r).summary.in_CO2e_cost_usd_ton out(r).summary.CO2e_price_usd_t out(r).summary.run_mip_gap out(r).summary.run_modstat out(r).summary.run_solstat out(r).summary.run_solver_time_sec out(r).summary.valflag_par_threads gen.n gen.n_expand out(r).summary.valflag_uc_ignore_unit_min out(r).summary.valflag_uc_int_unit_min out(r).summary.demand_max_GW out(r).summary.flag_maint out(r).summary.valflag_rsrv out(r).summary.flag_ramp out(r).summary.flag_unit_commit out(r).summary.flag_startup out(r).summary.flag_min_up_down out(r).summary.flag_derate out(r).summary.flag_derate_to_maint out(r).summary.valflag_plan_margin out(r).summary.valflag_rel_cheat out(r).summary.valflag_mip_gap out(r).summary.flag_adj_rsrv_for_nse out(r).summary.cost_capital_Musd out(r).summary.cost_ops_Musd out(r).summary.cost_total_Musd out(r).cost_tot_actual out(r).norm_e_mix_rms out(r).ops_norm_e_mix_rms out(r).norm_new_cap_rms }', ... num2cell(out(r).new_cap), ... { out(r).eff_plan_marg }', ... num2cell(out(r).energy), ... { out(r).summary.energy_non_served_GWh out(r).summary.shed_GWh_wind out(r).summary.model_num_eq out(r).summary.model_num_var out(r).summary.model_num_discrete_var out(r).summary.model_num_nonzero out(r).summary.memo }'); %#ok<AGROW> else if size(excel_paste,2)>1 || r==n_runs %Make sure we have a results row for all runs excel_paste{r,1} = 0; %#ok<AGROW> end end end end fprintf('Done\n') end %% =========== Helper functions ========== %---------------- % GenDataHelper %---------------- function gen = GenDataHelper(first_data) %Read in and process required generator data %-- Read in generator parameters %setup structure with filenames gen.data_file = first_data.data_gens; gen.add_data_file = first_data.data_gparams; %Read data from file. true indicates verbose gen = CpDpReadGenData(gen, first_data.data_dir, true); %-- Find peaker % compute per gen fixed costs for g = 1:gen.n %Fixed operating costs and payments on capital (M$/GW-yr) gen.list(g).c_fix = ... gen.list(g).c_fix_om ... + gen.list(g).c_cap ... * CapitalRecoveryFactor(first_data.WACC, gen.list(g).life); end gen.peaker.c_fix = min(vertcat(gen.list.c_fix)); %If there is more than one with same lowest cost, pick last generator %assuming it is the new gen.peaker.idx = find(vertcat(gen.list.c_fix) == gen.peaker.c_fix, 1, 'last'); gen.peaker.name = gen.list(gen.peaker.idx).name; end %---------------- % PlanDiffHelper %---------------- function data = PlanDiffHelper(data, gen) %Compute the differences for one group of runs n_runs = length(data); baseline = 1; if n_runs == 0 return end fprintf(' Computing difference statistics for %d runs...', n_runs) %-- Compute values per scenario for r = 1:n_runs if isempty(data(r).summary) if r == baseline warning('AdvPwr:PlanDiff:BadBaseline','Bad data for baseline, using next run as baseline') baseline=r+1; end continue end % Add any missing fields if not(isfield(data(r).summary,'flag_derate_to_maint')) data(r).summary.flag_derate_to_maint = 0; end if not(isfield(data(r).summary,'flag_adj_rsrv_for_nse')) data(r).summary.flag_adj_rsrv_for_nse = 0; end if not(isfield(data(r).summary,'cost_capital_Musd')) data(r).summary.cost_capital_Musd = ''; end % Extract per generator quantities % New capacity only for those eligiable for expansion for g = gen.n_expand:-1:1 f_name = ['cap_new_GW_',gen.g_expand_names{g}]; if isfield(data(r).summary, f_name) data(r).new_cap(g) = data(r).summary.(f_name); else data(r).new_cap(g) = NaN; end end % Total capacity and energy for all gens for g = gen.n:-1:1 data(r).tot_cap(g) = data(r).summary.(['cap_total_GW_',data(r).g_names{g}]); data(r).energy(g) = data(r).summary.(['energy_TWh_',data(r).g_names{g}]); end data(r).nonserved = data(r).summary.energy_non_served_GWh/1000; %Convert to TWh % % energy fraction % data(r).e_fract = data(r).energy/sum(data(r).energy); % new capacity fraction data(r).new_cap_fract = data(r).new_cap/sum(data(r).new_cap); % % variations on total capacity % data(r).new_therm_cap = data(r).new_cap(not(gen.renew_expand_mask)); % data(r).new_renew_cap = data(r).new_cap(gen.renew_expand_mask); % data(r).sum_new_therm_cap = sum(data(r).new_therm_cap); % data(r).sum_new_renew_cap = sum(data(r).new_renew_cap); data(r).tot_firm_cap = sum(data(r).tot_cap .* [gen.list.cap_credit]); data(r).eff_plan_marg = (data(r).tot_firm_cap - data(r).summary.demand_max_GW)/data(r).summary.demand_max_GW; if isstruct(data(r).ops) && not(isempty(data(r).ops.summary))... && data(r).ops.solved... && isempty(strfind(data(r).ops.summary.run_modstat, 'Infeasible')) data(r).cost_tot_actual = ... data(r).summary.cost_capital_Musd... + data(r).ops.summary.cost_ops_Musd; for g = gen.n:-1:1 data(r).ops.energy(g) = data(r).ops.summary.(['energy_TWh_',data(r).g_names{g}]); end elseif not(isempty(strfind(data(r).run_code,'_full')))... && isempty(strfind(data(r).run_code,'_ops')) % Use full results as their own ops results data(r).cost_tot_actual = ... data(r).summary.cost_total_Musd; else data(r).cost_tot_actual = NaN; end end %-- compute relative metrics for r = 1:n_runs if isempty(data(r).summary) continue end % Scalar quantities from summary f_list = { 'cost_total_Musd' 'CO2e_total_Mt' 'CO2e_price_usd_t' 'energy_non_served_GWh' 'renew_fraction' }; for f = 1:size(f_list) f_name = f_list{f}; % Clean up non-numeric values if not(isnumeric(data(r).summary.(f_name))) data(r).summary.(f_name) = NaN; end %Comparisons with baseline data(r).([f_name, '_diff']) = data(r).summary.(f_name) - data(baseline).summary.(f_name); data(r).([f_name, '_predict_err']) = abs(data(r).([f_name, '_diff']))... / data(r).summary.(f_name); data(r).([f_name, '_pdiff']) = abs(data(r).([f_name, '_diff']))... / data(baseline).summary.(f_name); %Comparisons with our own operations run if isstruct(data(r).ops) && not(isempty(data(r).ops.summary)) data(r).([f_name, '_ops_diff']) = data(r).summary.(f_name) - data(r).ops.summary.(f_name); data(r).([f_name, '_ops_predict_err']) = abs(data(r).([f_name, '_ops_diff']))... / data(r).summary.(f_name); data(r).([f_name, '_ops_pdiff']) = abs(data(r).([f_name, '_ops_diff']))... / data(baseline).summary.(f_name); else data(r).([f_name, '_ops_diff']) = NaN; data(r).([f_name, '_ops_predict_err']) = NaN; data(r).([f_name, '_ops_pdiff']) = NaN; end end %Mean absolute difference metrics % data(r).e_fract_madiff = mean(abs(data(r).e_fract - data(baseline).e_fract)); % data(r).new_cap_fract_madiff = mean(abs(data(r).new_cap_fract - data(baseline).new_cap_fract)); % data(r).new_cap_type_madiff = mean(abs(data(r).new_cap - data(baseline).new_cap)); %% ----- RMS Diff metrics ----- % Policy analyst: Energy vs baseline (first run) operations... if isstruct(data(baseline).ops) ... && not(isempty(data(baseline).ops.summary)) ... && data(baseline).ops.solved data(r).e_mix_rms = rms(data(r).energy - data(baseline).ops.energy); data(r).norm_e_mix_rms = data(r).e_mix_rms/mean(data(baseline).ops.energy); else data(r).e_mix_rms = NaN; data(r).norm_e_mix_rms = NaN; end % data(r).e_fract_rms = rms(data(r).e_fract - data(baseline).e_fract); % data(r).new_cap_fract_rms = rms(data(r).new_cap_fract - data(baseline).new_cap_fract); % Utility: Ops Energy vs plan energy... if isstruct(data(r).ops) ... && not(isempty(data(r).ops.summary)) ... && data(r).ops.solved data(r).ops_e_mix_rms = rms(data(r).energy - data(r).ops.energy); data(r).ops_norm_e_mix_rms = data(r).ops_e_mix_rms/mean(data(r).energy); else data(r).ops_e_mix_rms = NaN; data(r).ops_norm_e_mix_rms = NaN; end % Capacity vs baseline data(r).new_cap_type_rms = rms(data(r).new_cap - data(baseline).new_cap); data(r).norm_new_cap_rms = data(r).new_cap_type_rms/mean(data(baseline).new_cap); %Additional metrics % data(r).norm_new_cap_madiff = data(r).new_cap_type_madiff/sum(data(baseline).new_cap); % data(r).new_therm_cap_pdiff = (data(r).new_therm_cap - data(baseline).new_therm_cap)... % / data(baseline).new_therm_cap; % data(r).new_renew_cap_pdiff = (data(r).new_renew_cap - data(baseline).new_renew_cap)... % / data(baseline).new_renew_cap; %% Planning margin capacity adjustment calculations (affects peaker capacity) % Not used... run GAMS with adjusted planning margin instead! % data(r).firm_diff = data(baseline).tot_firm_cap - data(r).tot_firm_cap; % data(r).peaker_cap_adj = data(r).firm_diff / gen.list(gen.peaker.idx).cap_credit; % % data(r).adj_new_cap = data(r).new_cap; % data(r).adj_new_cap(gen.peaker.expand_idx) = max(0, data(r).adj_new_cap(gen.peaker.expand_idx) ... % + data(r).peaker_cap_adj); % %Adjusted Metrics % data(r).adj_cost_total_Musd_pdiff = data(r).cost_total_Musd_pdiff ... % + data(r).peaker_cap_adj * gen.peaker.c_fix; % data(r).adj_cap_mix_madiff = mean(abs(data(r).adj_new_cap - data(baseline).new_cap)); % data(r).adj_cap_mix_madiff_norm = data(r).adj_cap_mix_madiff / sum(data(baseline).new_cap); % % data(r).adj_cap_mix_rms = sqrt(mean((data(r).adj_new_cap - data(baseline).new_cap).^2)); % data(r).adj_cap_mix_rms_norm = data(r).adj_cap_mix_rms / sum(data(baseline).new_cap); % % data(r).adj_new_therm_cap = data(r).adj_new_cap(gen.therm_expand_mask); % data(r).adj_new_therm_cap_pdiff = (sum(data(r).adj_new_therm_cap) - sum(data(baseline).adj_new_therm_cap))... % / sum(data(baseline).adj_new_therm_cap); % data(r).abs_adj_new_therm_cap_pdiff = abs(data(r).adj_new_therm_cap_pdiff); end fprintf('Done\n\n') end
github
ajinkyakadu/ParametricLevelSet-master
QGNewton.m
.m
ParametricLevelSet-master/MATLAB/QGNewton.m
5,373
utf_8
44bb2a449a7a1de131d4d617a574ccd8
function [x] = QGNewton(fh, x0, options) %QGNewton A simple L-BFGS method with Wolfe linesearch for optimization. % % [xn, info] = QGNewton(fh, x0, options) minimizes an objective function % using the L-BFGS method with a Wolfe linesearch strategy. % % INPUTS: % fh - A function handle to the misfit function. The misfit function must % have the form [f, g] = fh(x) where f is the function value and g % is the gradient, both with the same size as the input vector x. % x0 - The initial guess for the optimization solution. % options - An optional structure containing the following fields: % maxIter - The maximum number of iterations [default 10]. % optTol - The tolerance on the 2-norm of the gradient [default 1e-6]. % M - The history size [default 5]. % fid - The file ID for output [default 1]. % write - A flag indicating whether to save iterates to disk [default 0]. % % OUTPUTS: % xn - The final estimate of the optimization solution. % % Author: Tristan van Leeuwen % Mathematical Institute, Utrecht University, The Netherlands % % Date: February 2012 if nargin < 3 options = []; end % Parse the options structure. M = GetOptions(options, 'M', 5); fid = GetOptions(options, 'fid', 1); itermax = GetOptions(options, 'maxIter', 10); tol = GetOptions(options, 'optTol', 1e-6); write = GetOptions(options, 'write', 0); init_step = GetOptions(options, 'init_step', 1); % Initialize variables. n = length(x0); converged = 0; iter = 0; x = x0; S = zeros(n, 0); Y = zeros(n, 0); % Perform initial evaluation. [f, g] = fh(x); nfeval = 1; fprintf(fid, '# iter, # eval, stepsize, f(x), ||g(x)||_2\n'); fprintf(fid, '%6d, %6d, %1.2e, %1.5e, %1.5e\n', iter, nfeval, 1, f, norm(g)); if write dlmwrite(['x_' num2str(iter) '.dat'], x); end % Main optimization loop. while ~converged % Compute search direction. s = B(-g, S, Y); p = -(s' * g) / (g' * g); if (p < 0) fprintf(fid,'Loss of descent, reset history\n'); S = zeros(n,0); Y = zeros(n,0); s = B(-g,S,Y); end % linesearch [ft,gt,lambda,lsiter] = WolfeLineSearch(fh,x,f,g,s,init_step); nfeval = nfeval + lsiter; % update xt = x + lambda*s; S = [S (xt - x)]; Y = [Y (gt - g)]; if (size(S,2) > M) S = S(:,end-M+1:end); Y = Y(:,end-M+1:end); end f = ft; g = gt; x = xt; iter = iter + 1; fprintf(fid,'%6d, %6d, %1.2e, %1.5e, %1.5e\n',iter,nfeval,lambda,f,norm(g)); if write dlmwrite(['x_' num2str(iter) '.dat'],x); end % check convergence converged = (iter > itermax) || (norm(g) < tol) || (lambda < tol); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function z = B(x, S, Y) % APPLY_LBFGS_INVERSE_HESSIAN_TO_VECTOR % % The following function applies the L-BFGS inverse Hessian to a given % vector. % % INPUTS: % x - Column vector of length n. % S - Matrix of history of steps with size n x M. % Y - Matrix of history of gradient differences with size n x M. % % OUTPUTS: % z - Column vector of length n, obtained as the result of the application % of the L-BFGS inverse Hessian to x. M = size(S, 2); % Initialize variables for calculation. alpha = zeros(M, 1); rho = zeros(M, 1); % Calculate the values of rho. for k = 1:M rho(k) = 1 / (Y(:, k)' * S(:, k)); end q = x; % Perform the first recursion. for k = M:-1:1 alpha(k) = rho(k) * S(:, k)' * q; q = q - alpha(k) * Y(:, k); end % Apply the initial approximation of the Hessian. if M > 0 a = (Y(:, end)' * S(:, end)) / (Y(:, end)' * Y(:, end)); else a = 1 / norm(x, 1); end z = a * q; % Perform the second recursion. for k = 1:M beta = rho(k) * (Y(:, k)' * z); z = z + (alpha(k) - beta) * S(:, k); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [ft,gt,lambda,lsiter] = WolfeLineSearch(FunctionHandle, ... InitialGuess, InitialFunctionValue, InitialGradient, ... SearchDirection, OptionalInitialStep) % Implements the Simple Wolfe Line Search algorithm, % adapted from the source % (http://cs.nyu.edu/overton/mstheses/skajaa/msthesis.pdf, Algorithm 3). lsiter = 0; FirstConstant = 1e-2; SecondConstant = 0.9; TerminationIndicator = false; LowerBound = 0; UpperBound = Inf; InitialLambda = 0.5; if OptionalInitialStep InitialLambda = 0.1 * InitialLambda * norm(InitialGuess) / ... norm(SearchDirection); end while ~TerminationIndicator if UpperBound < Inf CurrentLambda = (UpperBound + LowerBound) / 2; else CurrentLambda = 2 * InitialLambda; end if lsiter < 10 [ft,gt] = FunctionHandle(InitialGuess + ... (CurrentLambda * SearchDirection)); lsiter = lsiter + 1; else CurrentLambda = 0; break; end if (ft > InitialFunctionValue + FirstConstant * CurrentLambda ... * (InitialGradient' * SearchDirection)) UpperBound = CurrentLambda; elseif ((gt' * SearchDirection) < SecondConstant * ... (InitialGradient' * SearchDirection)) LowerBound = CurrentLambda; else TerminationIndicator = true; end end lambda = CurrentLambda; end
github
RadioFreeAsia/RDacity-master
sndfile_save.m
.m
RDacity-master/lib-src/libsndfile/Octave/sndfile_save.m
1,595
utf_8
e111c414a56ad9be6860d082f0de0cca
## Copyright (C) 2002-2011 Erik de Castro Lopo ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this file. If not, write to the Free Software Foundation, ## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {} sndfile_save (@var{filename, data, fs}) ## Save the given @var{data} as audio data to the given at @var{fs}. Set ## the sample rate to @var{fs}. ## @end deftypefn ## Author: Erik de Castro Lopo <[email protected]> ## Description: Save data as a sound file function sndfile_save (filename, data, fs) if nargin != 3, error ("Need three input arguments: filename, data and fs.") ; endif if (! isstr (filename)), error ("First parameter 'filename' is must be a string.") ; endif if (max (size (fs)) > 1), error ("Second parameter 'fs' must be a single value, not an array or matrix.") ; endif [nr nc] = size (data) ; if (nr > nc), data = data' ; endif samplerate = fs ; wavedata = data ; str = sprintf ("save -mat-binary %s samplerate wavedata", filename) ; eval (str) ; endfunction
github
RadioFreeAsia/RDacity-master
sndfile_play.m
.m
RDacity-master/lib-src/libsndfile/Octave/sndfile_play.m
1,558
utf_8
08c37ba08d4a75136216b4c844420b00
## Copyright (C) 2002-2011 Erik de Castro Lopo ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this file. If not, write to the Free Software Foundation, ## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {} sndfile_play (@var{data, fs}) ## Play @var{data} at sample rate @var{fs} using the sndfile-play ## program. ## @end deftypefn ## Author: Erik de Castro Lopo <[email protected]> ## Description: Play the given data as a sound file function sndfile_play (data, fs) if nargin != 2, error ("Need two input arguments: data and fs.") ; endif if (max (size (fs)) > 1), error ("Second parameter fs must be a single value.") ; endif [nr nc] = size (data) ; if (nr > nc), data = data' ; endif samplerate = fs ; wavedata = data ; filename = tmpnam () ; cmd = sprintf ("save -mat-binary %s fs data", filename) ; eval (cmd) ; cmd = sprintf ("sndfile-play %s", filename) ; [output, status] = system (cmd) ; if (status), disp (outout) ; endif endfunction
github
RadioFreeAsia/RDacity-master
sndfile_load.m
.m
RDacity-master/lib-src/libsndfile/Octave/sndfile_load.m
1,483
utf_8
06ed17568a7d51c3e166c6907a5e6ba9
## Copyright (C) 2002-2011 Erik de Castro Lopo ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this file. If not, write to the Free Software Foundation, ## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {} sndfile_load (@var{filename}) ## Load data from the file given by @var{filename}. ## @end deftypefn ## Author: Erik de Castro Lopo <[email protected]> ## Description: Load the sound data from the given file name function [data fs] = sndfile_load (filename) if (nargin != 1), error ("Need an input filename") ; endif samplerate = -1 ; samplingrate = -1 ; wavedata = -1 ; eval (sprintf ('load -f %s', filename)) ; if (samplerate > 0), fs = samplerate ; elseif (samplingrate > 0), fs = samplingrate ; else error ("Not able to find sample rate.") ; endif if (max (size (wavedata)) > 1), data = wavedata ; else error ("Not able to find waveform data.") ; endif endfunction