plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github | aghagol/caffe-ssd-master | classification_demo.m | .m | caffe-ssd-master/matlab/demo/classification_demo.m | 5,412 | utf_8 | 8f46deabe6cde287c4759f3bc8b7f819 | function [scores, maxlabel] = classification_demo(im, use_gpu)
% [scores, maxlabel] = classification_demo(im, use_gpu)
%
% Image classification demo using BVLC CaffeNet.
%
% IMPORTANT: before you run this demo, you should download BVLC CaffeNet
% from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html)
%
% ****************************************************************************
% For detailed documentation and usage on Caffe's Matlab interface, please
% refer to Caffe Interface Tutorial at
% http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab
% ****************************************************************************
%
% input
% im color image as uint8 HxWx3
% use_gpu 1 to use the GPU, 0 to use the CPU
%
% output
% scores 1000-dimensional ILSVRC score vector
% maxlabel the label of the highest score
%
% You may need to do the following before you start matlab:
% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64
% $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
% Or the equivalent based on where things are installed on your system
%
% Usage:
% im = imread('../../examples/images/cat.jpg');
% scores = classification_demo(im, 1);
% [score, class] = max(scores);
% Five things to be aware of:
% caffe uses row-major order
% matlab uses column-major order
% caffe uses BGR color channel order
% matlab uses RGB color channel order
% images need to have the data mean subtracted
% Data coming in from matlab needs to be in the order
% [width, height, channels, images]
% where width is the fastest dimension.
% Here is the rough matlab for putting image data into the correct
% format in W x H x C with BGR channels:
% % permute channels from RGB to BGR
% im_data = im(:, :, [3, 2, 1]);
% % flip width and height to make width the fastest dimension
% im_data = permute(im_data, [2, 1, 3]);
% % convert from uint8 to single
% im_data = single(im_data);
% % reshape to a fixed size (e.g., 227x227).
% im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear');
% % subtract mean_data (already in W x H x C with BGR channels)
% im_data = im_data - mean_data;
% If you have multiple images, cat them with cat(4, ...)
% Add caffe/matlab to you Matlab search PATH to use matcaffe
if exist('../+caffe', 'dir')
addpath('..');
else
error('Please run this demo from caffe/matlab/demo');
end
% Set caffe mode
if exist('use_gpu', 'var') && use_gpu
caffe.set_mode_gpu();
gpu_id = 0; % we will use the first gpu in this demo
caffe.set_device(gpu_id);
else
caffe.set_mode_cpu();
end
% Initialize the network using BVLC CaffeNet for image classification
% Weights (parameter) file needs to be downloaded from Model Zoo.
model_dir = '../../models/bvlc_reference_caffenet/';
net_model = [model_dir 'deploy.prototxt'];
net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel'];
phase = 'test'; % run with phase test (so that dropout isn't applied)
if ~exist(net_weights, 'file')
error('Please download CaffeNet from Model Zoo before you run this demo');
end
% Initialize a network
net = caffe.Net(net_model, net_weights, phase);
if nargin < 1
% For demo purposes we will use the cat image
fprintf('using caffe/examples/images/cat.jpg as input image\n');
im = imread('../../examples/images/cat.jpg');
end
% prepare oversampled input
% input_data is Height x Width x Channel x Num
tic;
input_data = {prepare_image(im)};
toc;
% do forward pass to get scores
% scores are now Channels x Num, where Channels == 1000
tic;
% The net forward function. It takes in a cell array of N-D arrays
% (where N == 4 here) containing data of input blob(s) and outputs a cell
% array containing data from output blob(s)
scores = net.forward(input_data);
toc;
scores = scores{1};
scores = mean(scores, 2); % take average scores over 10 crops
[~, maxlabel] = max(scores);
% call caffe.reset_all() to reset caffe
caffe.reset_all();
% ------------------------------------------------------------------------
function crops_data = prepare_image(im)
% ------------------------------------------------------------------------
% caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that
% is already in W x H x C with BGR channels
d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat');
mean_data = d.mean_data;
IMAGE_DIM = 256;
CROPPED_DIM = 227;
% Convert an image returned by Matlab's imread to im_data in caffe's data
% format: W x H x C with BGR channels
im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR
im_data = permute(im_data, [2, 1, 3]); % flip width and height
im_data = single(im_data); % convert from uint8 to single
im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data
im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR)
% oversample (4 corners, center, and their x-axis flips)
crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single');
indices = [0 IMAGE_DIM-CROPPED_DIM] + 1;
n = 1;
for i = indices
for j = indices
crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :);
crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n);
n = n + 1;
end
end
center = floor(indices(2) / 2) + 1;
crops_data(:,:,:,5) = ...
im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:);
crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
|
github | GWLee0524/AMTL-master | learn_B_regression.m | .m | AMTL-master/learn_B_regression.m | 2,479 | utf_8 | b9961fadab09f242b82561681345cd57 | function B = learn_B_regression(W,delta,param)
maxiter = 500;
eval_interval = maxiter / 20;
T = size(W,2);
if (isfield(param,'B'))
B = param.B;
else
B = ones(T)/T;
end
G = ones(T);
normG = Inf;
iter = 0;
alpha = 0.000001; %0.000001
maxlsiter = 100;
tau = 0.5;
b = 0.01;
linesearch = 1;
for t=1:T
B(t,t) = 0;
nont{t} = 1:T;
nont{t}(t) = [];
weight(:,t) = delta(nont{t});
c_t(:,t) = param.c_t(nont{t});
y(:,t) = W(:,t);
end
EPS = 0.001;
while (iter <= maxiter && normG > EPS)
iter = iter + 1;
prevG = G;
for t=1:T
beta = B(nont{t},t);
X = W(:,nont{t});
%g(:,t) = X'*(X*beta-y(:,t)) + param.lambda*weight(:,t).*beta.*weight(:,t);
%g(:,t) = X'*(X*beta-y(:,t)) + param.lambda*weight(:,t).*(beta>0);
%g(:,t) = param.lambda*X'*(X*beta-y(:,t)) + weight(:,t).*(beta>0);
g(:,t) = param.lambda*X'*(X*beta-y(:,t)) + c_t(:,t).*weight(:,t).*beta.*weight(:,t);
G(nont{t},t) = g(:,t);
end
grad = G(:);
beta = B(:);
gradnew = zeros(size(beta));
[maxval, mu] = max(beta);
gradnew(find(grad-grad(mu) > 0 | beta==0)) = 0;
idxusual = setdiff(find(beta>0),mu);
gradnew(idxusual) = grad(idxusual)-grad(mu);
nonzero = find(grad > 0);
[minval, idx] = min(beta(nonzero)./grad(nonzero));
% what if there is no nonzero entry?
v = nonzero(idx);
gradnew(mu) = grad(mu)-grad(v);
grad = gradnew;
G = reshape(grad,size(G));
% search for step size using line search
stepsize = alpha;
finit = loss(W, B, weight, param.lambda,c_t);
fnew = loss(W, B-stepsize*G, weight, param.lambda,c_t);
lsiter = 0;
if (linesearch)
while (fnew > finit && lsiter < maxlsiter)
lsiter = lsiter + 1;
stepsize = tau*stepsize;
fnew = loss(W, B-stepsize*G, weight, param.lambda,c_t);
end
end
beta = beta - stepsize*grad;
beta(v) = 0;
%beta = max(0,beta);
beta = param.lambda2*(beta./sum(beta));
%beta = beta./sum(beta);
beta(find(beta<0)) = 0;
B = reshape(beta,size(B));
%beta = max(0,beta);
%beta = sign(beta).*(max(0,abs(beta) - param.lambda2));
normG = norm(G-prevG,'fro');
%beta = beta/sum(abs(beta));
if (mod(iter, eval_interval) == 1)
f = fnew;
fprintf('%d) %2.4f, ||G||=%2.4f, stepsize =%2.10f\n', iter, f, normG, stepsize);
end
end
function f = loss(W, B, weight, lambda,c_t)
T = size(W,2);
f = 0;
for t=1:T
nont = 1:T;
nont(t) = [];
y = W(:,t);
X = W(:,nont);
beta = B(nont,t);
f = f + lambda*norm(X*beta-y,2)^2 + norm(c_t(:,t).*weight(:,t).*beta,1);
end
f = f + sum(weight(:,1)) + weight(1,2);
|
github | GWLee0524/AMTL-master | learnB.m | .m | AMTL-master/learnB.m | 2,347 | utf_8 | 258ec55cf192db59b416fed1d8309702 | function B = learnB(W, delta, param);
maxiter = 1000;
eval_interval = maxiter / 20;
T = size(W,2);
if (isfield(param,'B'))
B = param.B;
else
B = ones(T)/T;
end
G = ones(T);
normG = Inf;
iter = 0;
alpha = 0.0001;
maxlsiter = 100;
tau = 0.5;
b = 0.01;
linesearch = 1;
for t=1:T
B(t,t) = 0;
nont{t} = 1:T;
nont{t}(t) = [];
weight(:,t) = delta(nont{t});
c_t(:,t) = param.c_t(nont{t});
y(:,t) = W(:,t);
end
EPS = 0;
while (iter <= maxiter)
iter = iter + 1;
prevG = G;
for t=1:T
beta = B(nont{t},t);
X = W(:,nont{t});
g(:,t) = param.lambda*X'*(X*beta-y(:,t)) +c_t(:,t).*weight(:,t).*beta.*weight(:,t);
%g(:,t) = X'*(X*beta-y(:,t)) + param.lambda*weight(:,t).*(beta>0);
G(nont{t},t) = g(:,t);
end
grad = G(:);
beta = B(:);
gradnew = zeros(size(beta));
[maxval, mu] = max(beta);
gradnew(find(grad-grad(mu) > 0 | beta==0)) = 0;
idxusual = setdiff(find(beta>0),mu);
gradnew(idxusual) = grad(idxusual)-grad(mu);
nonzero = find(grad > 0);
[minval, idx] = min(beta(nonzero)./grad(nonzero));
% what if there is no nonzero entry?
v = nonzero(idx);
% if isempty(v)
% grad'
% v
% mu
% gradnew(mu) = grad(mu);
% else
gradnew(mu) = grad(mu)-grad(v); % error part
% end
grad = gradnew;
G = reshape(grad,size(G));
% search for step size using line search
stepsize = alpha;
finit = loss(W, B, weight, param,c_t);
fnew = loss(W, B-stepsize*G, weight, param,c_t);
lsiter = 0;
if (linesearch)
while (fnew > finit && lsiter < maxlsiter)
lsiter = lsiter + 1;
stepsize = tau*stepsize;
fnew = loss(W, B-stepsize*G, weight, param,c_t);
end
end
beta = beta - stepsize*grad;
beta(v) = 0;
%sum(beta)
beta = max(0,beta);
beta = param.lambda2*beta./sum(beta);
%beta = beta./sum(beta);
B = reshape(beta,size(B));
%beta = max(0,beta);
%beta = sign(beta).*(max(0,abs(beta) - param.lambda2));
normG = norm(G-prevG,'fro');
%beta = beta/sum(abs(beta));
if (mod(iter, eval_interval) == 1)
f = fnew;
fprintf('%d) %2.4f, ||G||=%2.4f\n', iter, f, normG);
end
end
function f = loss(W, B, weight, param,c_t)
T = size(W,2);
f = 0;
lambda = param.lambda;
for t=1:T
nont = 1:T;
nont(t) = [];
y = W(:,t);
X = W(:,nont);
beta = B(nont,t);
f = f + lambda*norm(X*beta-y,2)^2 + norm(c_t(t).*weight(:,t).*beta,1);
end
f = f + sum(weight(:,1)) + weight(1,2);
|
github | umdrobotics/Rendezvous-master | calibrate_bundle.m | .m | Rendezvous-master/apriltags2_ros/scripts/calibrate_bundle.m | 11,818 | utf_8 | 791607e0f8b94445d20b83ee32cd2d9a | % Copyright (c) 2017, California Institute of Technology.
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
%
% The views and conclusions contained in the software and documentation are
% those of the authors and should not be interpreted as representing official
% policies, either expressed or implied, of the California Institute of
% Technology.
%
%%% calibrate_bundle.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Script to determine AprilTag bundle relative poses to a "master" tag.
%
% Instructions:
% Record a bagfile of the /tag_detections topic where you steadily
% point the camera at the AprilTag bundle such that all the bundle's
% individual tags are visible at least once at some point (the more the
% better). Run the script, then copy the printed output into the tag.yaml
% configuration file of apriltags2_ros.
%
% $Revision: 1.0 $
% $Date: 2017/12/17 13:37:34 $
% $Author: dmalyuta $
%
% Originator: Danylo Malyuta, JPL
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% User inputs
% Relative directory of calibration bagfile
calibration_file = 'data/calibration.bag';
% Bundle name
bundle_name = 'my_bundle';
% Master tag's ID
master_id = 0;
%% Make sure matlab_rosbag is installed
if ~exist('matlab_rosbag-0.5.0-linux64','file')
websave('matlab_rosbag', ...
['https://github.com/bcharrow/matlab_rosbag/releases/' ...
'download/v0.5/matlab_rosbag-0.5.0-linux64.zip']);
unzip('matlab_rosbag');
delete matlab_rosbag.zip
end
addpath('matlab_rosbag-0.5.0-linux64');
%% Load the tag detections bagfile
bag = ros.Bag.load(calibration_file);
tag_msg = bag.readAll('/tag_detections');
clear tag_data;
N = numel(tag_msg);
t0 = getBagTime(tag_msg{1});
for i = 1:N
tag_data.t(i) = getBagTime(tag_msg{i})-t0;
for j = 1:numel(tag_msg{i}.detections)
detection = tag_msg{i}.detections(j);
if numel(detection.id)>1
% Can only use standalone tag detections for calibration!
% The math allows for bundles too (e.g. bundle composed of
% bundles) but the code does not, and it's not that useful
% anyway
warning_str = 'Skipping tag bundle detection with IDs';
for k = 1:numel(detection.id)
warning_str = sprintf('%s %d',warning_str,detection.id(k));
end
warning(warning_str);
continue;
end
tag_data.detection(i).id(j) = detection.id;
tag_data.detection(i).size(j) = detection.size;
% Tag position with respect to camera frame
tag_data.detection(i).p(:,j) = detection.pose.pose.pose.position;
% Tag orientation with respect to camera frame
% [w;x;y;z] format
tag_data.detection(i).q(:,j) = ...
detection.pose.pose.pose.orientation([4,1,2,3]);
end
end
%% Compute the measured poses of each tag relative to the master tag
master_size = []; % Size of the master tag
% IDs, sizes, relative positions and orientations of detected tags other
% than master
other_ids = [];
other_sizes = [];
rel_p = {};
rel_q = {};
createT = @(p,q) [quat2rotmat(q) p; zeros(1,3) 1];
invertT = @(T) [T(1:3,1:3)' -T(1:3,1:3)'*T(1:3,4); zeros(1,3) 1];
N = numel(tag_data.detection);
for i = 1:N
this = tag_data.detection(i);
mi = find(this.id == master_id);
if isempty(mi)
% Master not detected in this detection, so this particular
% detection is useless
continue;
end
% Get the master tag's rigid body transform to the camera frame
T_cm = createT(this.p(:,mi), this.q(:,mi));
% Get the rigid body transform of every other tag to the camera frame
for j = 1:numel(this.id)
% Skip the master, but get its size first
if isempty(master_size)
master_size = this.size(j);
end
% We already have the rigid body transform from the master tag to
% the camera frame (T_cm)
if j == mi
continue;
end
% Add ID to detected IDs, if not already there
id = this.id(j);
if ~ismember(id, other_ids)
other_ids(end+1) = id;
other_sizes(end+1) = this.size(j);
rel_p{end+1} = [];
rel_q{end+1} = [];
end
% Find the index in other_ids corresponding to this tag
k = find(other_ids == id);
assert(numel(k) == 1, ...
'Tag ID must appear exactly once in the other_ids array');
% Get this tag's rigid body transform to the camera frame
T_cj = createT(this.p(:,j), this.q(:,j));
% Deduce this tag's rigid body transform to the master tag's frame
T_mj = invertT(T_cm)*T_cj;
% Save the relative position and orientation of this tag to the
% master tag
rel_p{k}(:,end+1) = T_mj(1:3,4);
rel_q{k}(:,end+1) = rotmat2quat(T_mj);
end
end
assert(~isempty(master_size), ...
sprintf('Master tag with ID %d not found in detections', master_id));
%% Compute (geometric) median position of each tag in master tag frame
geometricMedianCost = @(x,y) sum(sqrt(sum((x-y).^2)));
options = optimset('MaxIter',1000,'MaxFunEvals',1000, ...
'Algorithm','interior-point', ...
'TolFun', 1e-6, 'TolX', 1e-6);
M = numel(rel_p);
rel_p_median = nan(3, numel(other_ids));
for i = 1:M
% Compute the mean position as the initial value for the minimization
% problem
p_0 = mean(rel_p{i},2);
% Compute the geometric median
[rel_p_median(:,i),~,exitflag] = ...
fminsearch(@(x) geometricMedianCost(rel_p{i}, x), p_0, options);
assert(exitflag == 1, ...
sprintf(['Geometric median minimization did ' ...
'not converge (exitflag %d)'], exitflag));
end
%% Compute the average orientation of each tag with respect to the master tag
rel_q_mean = nan(4, numel(other_ids));
for i = 1:M
% Use the method in Landis et al. "Averaging Quaternions", JGCD 2007
% Check the sufficient uniqueness condition
% TODO this is a computational bottleness - without this check, script
% returns much faster. Any way to speed up this double-for-loop?
error_angle{i} = [];
for j = 1:size(rel_q{i},2)
q_1 = rel_q{i}(:,j);
for k = 1:size(rel_q{i},2)
if j==k
continue;
end
q_2 = rel_q{i}(:,k);
q_error = quatmult(quatinv(q_1),q_2);
% Saturate to valid acos range, which prevents imaginary output
% from acos due to q_error_w being infinitesimaly (to numerical
% precision) outside of valid [-1,1] range
q_error_w = min(1,max(q_error(1),-1));
error_angle{i}(end+1) = 2*acos(q_error_w);
if 2*acos(q_error_w) >= pi/2
warning(['Quaternion pair q_%u and q_%u for tag ID %u ' ...
'are more than 90 degrees apart!'], ...
j,k,other_ids(i));
end
end
end
% Average quaternion method
Q = rel_q{i};
[V, D] = eig(Q*Q.');
[~,imax] = max(diag(D)); % Get the largest eigenvalue
rel_q_mean(:,i) = V(:,imax); % Corresponding eigenvector
if rel_q_mean(1,i) < 0
rel_q_mean(:,i) = -rel_q_mean(:,i); % Ensure w positive
end
end
%% Print output to paste in tags.yaml
% Head + master tag
fprintf([ ...
'tag_bundles:\n' ...
' [\n' ...
' {\n' ...
' name: ''%s'',\n' ...
' layout:\n' ...
' [\n'], bundle_name);
% All other tags detected at least once together with master tag
for i = 0:numel(other_ids)
newline = ',';
if i == numel(other_ids)
newline = '';
end
if i == 0
fprintf(' {id: %d, size: %.2f, x: %.4f, y: %.4f, z: %.4f, qw: %.4f, qx: %.4f, qy: %.4f, qz: %.4f}%s\n', ...
master_id, master_size, 0, 0, 0, 1, 0, 0, 0, newline);
else
fprintf(' {id: %d, size: %.2f, x: %.4f, y: %.4f, z: %.4f, qw: %.4f, qx: %.4f, qy: %.4f, qz: %.4f}%s\n', ...
other_ids(i), other_sizes(i), rel_p_median(1,i), ...
rel_p_median(2,i), rel_p_median(3,i), rel_q_mean(1,i), ...
rel_q_mean(2,i), rel_q_mean(3,i), rel_q_mean(4,i), newline);
end
end
% Tail
fprintf([ ...
' ]\n'...
' }\n'...
' ]\n']);
%% Local functions
function t = getBagTime(bagfile)
t = double(bagfile.header.stamp.sec)+ ...
double(bagfile.header.stamp.nsec)/1e9;
end
function R = quat2rotmat(q)
% Creates an ACTIVE rotation matrix from a quaternion
w = q(1);
x = q(2);
y = q(3);
z = q(4);
R = [1-2*(y^2+z^2) 2*(x*y-w*z) 2*(x*z+w*y)
2*(x*y+w*z) 1-2*(x^2+z^2) 2*(y*z-w*x)
2*(x*z-w*y) 2*(y*z+w*x) 1-2*(x^2+y^2)];
end
function q = rotmat2quat(R)
% Adapted for MATLAB from
% http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/
tr = R(1,1) + R(2,2) + R(3,3);
if tr > 0
S = sqrt(tr+1.0) * 2; % S=4*qw
qw = 0.25 * S;
qx = (R(3,2) - R(2,3)) / S;
qy = (R(1,3) - R(3,1)) / S;
qz = (R(2,1) - R(1,2)) / S;
elseif (R(1,1) > R(2,2)) && (R(1,1) > R(3,3))
S = sqrt(1.0 + R(1,1) - R(2,2) - R(3,3)) * 2; % S=4*qx
qw = (R(3,2) - R(2,3)) / S;
qx = 0.25 * S;
qy = (R(1,2) + R(2,1)) / S;
qz = (R(1,3) + R(3,1)) / S;
elseif (R(2,2) > R(3,3))
S = sqrt(1.0 + R(2,2) - R(1,1) - R(3,3)) * 2; % S=4*qy
qw = (R(1,3) - R(3,1)) / S;
qx = (R(1,2) + R(2,1)) / S;
qy = 0.25 * S;
qz = (R(2,3) + R(3,2)) / S;
else
S = sqrt(1.0 + R(3,3) - R(1,1) - R(2,2)) * 2; % S=4*qz
qw = (R(2,1) - R(1,2)) / S;
qx = (R(1,3) + R(3,1)) / S;
qy = (R(2,3) + R(3,2)) / S;
qz = 0.25 * S;
end
q = [qw qx qy qz]';
end
function c = quatmult(a,b)
% More humanly understandable version:
% Omegaa = [a((1)) -a((2):(4)).'
% a((2):(4)) a((1))*eye((3))-[0 -a((4)) a((3)); a((4)) 0 -a((2));-a((3)) a((2)) 0]];
% c = Omegaa*b;
% More optimized version:
c_w = a(1)*b(1) - a(2)*b(2) - a(3)*b(3) - a(4)*b(4);
c_x = a(1)*b(2) + a(2)*b(1) - a(3)*b(4) + a(4)*b(3);
c_y = a(1)*b(3) + a(3)*b(1) + a(2)*b(4) - a(4)*b(2);
c_z = a(1)*b(4) - a(2)*b(3) + a(3)*b(2) + a(4)*b(1);
c = [c_w; c_x; c_y; c_z];
end
function qinv = quatinv(q)
qinv = [q(1); -q(2:4)];
end
|
github | aydindemircioglu/LIBLINEAR.gpu-master | make.m | .m | LIBLINEAR.gpu-master/matlab/make.m | 1,417 | utf_8 | 8eb6837e5929416359702df135e7403d | % This make.m is for MATLAB and OCTAVE under Windows, Mac, and Unix
function make()
try
% This part is for OCTAVE
if(exist('OCTAVE_VERSION', 'builtin'))
mex libsvmread.c
mex libsvmwrite.c
setenv('CFLAGS', strcat(getenv('CFLAGS'), ' -fopenmp'))
setenv('CXXFLAGS', strcat(getenv('CXXFLAGS'), ' -fopenmp'))
mex -I.. -lgomp train.c linear_model_matlab.c ../linear.cpp ../tron.cpp ../blas/daxpy.c ../blas/ddot.c ../blas/dnrm2.c ../blas/dscal.c
mex -I.. -lgomp predict.c linear_model_matlab.c ../linear.cpp ../tron.cpp ../blas/daxpy.c ../blas/ddot.c ../blas/dnrm2.c ../blas/dscal.c
% This part is for MATLAB
% Add -largeArrayDims on 64-bit machines of MATLAB
else
mex CFLAGS="\$CFLAGS -std=c99" -largeArrayDims libsvmread.c
mex CFLAGS="\$CFLAGS -std=c99" -largeArrayDims libsvmwrite.c
mex CFLAGS="\$CFLAGS -std=c99 -fopenmp" CXXFLAGS="\$CXXFLAGS -fopenmp" -I.. -largeArrayDims -lgomp train.c linear_model_matlab.c ../linear.cpp ../tron.cpp ../blas/daxpy.c ../blas/ddot.c ../blas/dnrm2.c ../blas/dscal.c
mex CFLAGS="\$CFLAGS -std=c99" CXXFLAGS="\$CXXFLAGS -fopenmp" -I.. -largeArrayDims -lgomp predict.c linear_model_matlab.c ../linear.cpp ../tron.cpp ../blas/daxpy.c ../blas/ddot.c ../blas/dnrm2.c ../blas/dscal.c
end
catch err
fprintf('Error: %s failed (line %d)\n', err.stack(1).file, err.stack(1).line);
disp(err.message);
fprintf('=> Please check README for detailed instructions.\n');
end
|
github | keileg/fvbiot-master | mpsaTest.m | .m | fvbiot-master/tests/mpsaTest.m | 5,805 | utf_8 | 3b8a062c99e96d2f30eb833962b4d608 | function tests = mpsaTest
% Unit tests for MPSA
%
%{
Copyright 2015-2016, University of Bergen.
This file is part of FVBiot.
FVBiot is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
FVBiot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this file. If not, see <http://www.gnu.org/licenses/>.
%}
tests = functiontests(localfunctions);
end
function setupOnce(testCase)
grids = {};
% 2D Cartesian, no perturbations
Nx = [2 2]; Nd = numel(Nx);
g = cartGrid(Nx); Nn = g.nodes.num;
grids{1} = computeGeometry(g);
% Perturbations
g.nodes.coords = g.nodes.coords + 0.5 * rand(Nn,Nd);
grids{2} = computeGeometry(g);
% 3D Cartesian, no perturbations
Nx = [3 3 3]; Nd = numel(Nx);
g = cartGrid(Nx); Nn = g.nodes.num;
grids{3} = computeGeometry(g);
% Perturbations
g.nodes.coords = g.nodes.coords + 0.5 * rand(Nn,Nd);
grids{4} = computeGeometry(g);
% Triangular grid
Nx = [5 5]; Nd = numel(Nx);
[X,Y] = meshgrid(linspace(0,Nx(1),Nx(1)+1), linspace(0,Nx(2),Nx(2)+1));
p = [X(:), Y(:)];
t = delaunayn(p);
g = triangleGrid(p, t); Nn = g.nodes.num;
grids{5} = computeGeometry(g);
% Perturbed triangles
g.nodes.coords = g.nodes.coords + 0.5 * rand(Nn,Nd);
grids{6} = computeGeometry(g);
% Tetrahedral grid
Nx = [2 2 2]; Nd = numel(Nx);
[X,Y,Z] = meshgrid(linspace(0,Nx(1),Nx(1)+1), linspace(0,Nx(2),Nx(2)+1),linspace(0,Nx(3),Nx(3)+1));
p = [X(:), Y(:), Z(:)];
t = delaunayn(p);
g = tetrahedralGrid(p, t); Nn = g.nodes.num;
grids{7} = computeGeometry(g);
% Perturbed triangles
g.nodes.coords = g.nodes.coords + 0.5 * rand(Nn,Nd);
grids{8} = computeGeometry(g);
testCase.TestData.grids = grids;
end
function translationTest(testCase)
mu = 100;
lambda = 100;
phi = 0;
grids = testCase.TestData.grids;
for iter1 = 1 : numel(grids);
% Not the most beautiful of setups, we could probably have used setup somehow
G = grids{iter1};
Nc = G.cells.num;
Nf = G.faces.num;
Nd = G.griddim;
xf = G.faces.centroids;
xc = G.cells.centroids;
% Pressure boundary conditions;
bc = addBC([],find(any(G.faces.neighbors == 0,2)),'pressure',0);
constit = shear_normal_stress(Nc, Nd, mu*ones(Nc,1), lambda*ones(Nc,1), phi*ones(Nc,1));
md = mpsa(G,constit,[],'bc',bc);
% Translation
r = rand(1,Nd);
db = ones(Nf,1) * r;
xan = ones(Nc,1) * r;
boundVal = -md.div * md.boundStress * reshape(db',[],1);
x = reshape((md.A \ boundVal)',Nd,[])';
assert(max(max(abs(x - xan)))<sqrt(eps),'MPSA failed on translation');
stress = md.stress * reshape(x',[],1) + md.boundStress * reshape(db',[],1);
assert(norm(stress) < sqrt(eps),'MPSA gave stress for translation')
end
end
function rotationTest(testCase)
mu = 100;
lambda = 100;
phi = 0;
grids = testCase.TestData.grids;
for iter1 = 1 : numel(grids);
% Not the most beautiful of setups, we could probably have used setup somehow
G = grids{iter1};
Nc = G.cells.num;
Nf = G.faces.num;
Nd = G.griddim;
xf = G.faces.centroids;
xc = G.cells.centroids;
% Pressure boundary conditions;
bc = addBC([],find(any(G.faces.neighbors == 0,2)),'pressure',0);
xn = G.nodes.coords;
if Nd == 2
ang = 180*rand(1);
rot = @(x) [x(:,1) * cosd(ang) - x(:,2) * sind(ang), x(:,1) * sind(ang) + x(:,2) * cosd(ang)];
else
ang = 180 * rand(3,1);
rotx = @(x) [x(:,1) , x(:,2) * cosd(ang(1)) - x(:,3) * sind(ang(1)), x(:,2) * sind(ang(1)) + x(:,3) * cosd(ang(1))];
roty = @(x) [x(:,1) * cosd(ang(2)) - x(:,3) * sind(ang(2)), x(:,2) , x(:,1) * sind(ang(2)) + x(:,3) * cosd(ang(2))];
rotz = @(x) [x(:,1) * cosd(ang(3)) - x(:,2) * sind(ang(3)), x(:,1) * sind(ang(3)) + x(:,3) * cosd(ang(3)), x(:,3)];
rot = @(x) rotz(roty(rotx(x)));
end
db = rot(xf) - xf;
xan = rot(xc) - xc;
constit = shear_normal_stress(Nc, Nd, mu*ones(Nc,1), lambda*ones(Nc,1), phi*ones(Nc,1));
md = mpsa(G,constit,[],'bc',bc,'eta',0);
x = reshape(-(md.A) \ md.div * md.boundStress * reshape(db',[],1),Nd,[])';
assert(max(max(abs(x - xan)))<sqrt(eps),'MPSA failed on rotation');
end
end
function uniformStrainTest(testCase)
mu = 100;
lambda = 100;
phi = 0;
grids = testCase.TestData.grids;
for iter1 = 1 : numel(grids);
% Not the most beautiful of setups, we could probably have used setup somehow
G = grids{iter1};
Nc = G.cells.num;
Nf = G.faces.num;
Nd = G.griddim;
xf = G.faces.centroids;
xc = G.cells.centroids;
% Pressure boundary conditions;
bc = addBC([],find(any(G.faces.neighbors == 0,2)),'pressure',0);
xn = G.nodes.coords;
% Uniform stress
r = rand(Nd,1);
db = bsxfun(@times,xf,r');
xan = bsxfun(@times,xc,r');
constit = shear_normal_stress(Nc, Nd, mu*ones(Nc,1), lambda*ones(Nc,1), phi*ones(Nc,1));
md = mpsa(G,constit,[], 'bc',bc);
x = reshape(-full(md.A) \ md.div * md.boundStress * reshape(db',[],1),Nd,[])';
assert(max(max(abs(x - xan)))<sqrt(eps),'MPSA failed on uniform stress');
stress = md.stress * reshape(x',[],1) + md.boundStress * reshape(db',[],1);
san = 2 * mu * r' + lambda * sum(r);
san = (ones(Nf,1) * san).*G.faces.normals;
s = reshape(stress',Nd,[])';
assert(max(max(abs(s - san))) < sqrt(eps),'MPSA failed on stress for uniform stretching')
end
end |
github | keileg/fvbiot-master | mpfaTest.m | .m | fvbiot-master/tests/mpfaTest.m | 4,091 | utf_8 | bc2e22591f3116236be0a635118d6421 | function tests = mpfaTest
% Unit tests for MPFA.
%
%{
Copyright 2015-2016, University of Bergen.
This file is part of FVBiot.
FVBiot is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
FVBiot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this file. If not, see <http://www.gnu.org/licenses/>.
%}
tests = functiontests(localfunctions);
end
function setupOnce(testCase)
grids = {};
% 2D Cartesian, no perturbations
Nx = [4 3]; Nd = numel(Nx);
g = cartGrid(Nx); Nn = g.nodes.num;
grids{1} = computeGeometry(g);
% Perturbations
g.nodes.coords = g.nodes.coords + 0.5 * rand(Nn,Nd);
grids{2} = computeGeometry(g);
% 3D Cartesian, no perturbations
Nx = [3 3 3]; Nd = numel(Nx);
g = cartGrid(Nx); Nn = g.nodes.num;
grids{3} = computeGeometry(g);
% Perturbations
g.nodes.coords = g.nodes.coords + 0.5 * rand(Nn,Nd);
grids{4} = computeGeometry(g);
% Triangular grid
Nx = [5 5]; Nd = numel(Nx);
[X,Y] = meshgrid(linspace(0,Nx(1),Nx(1)+1), linspace(0,Nx(2),Nx(2)+1));
p = [X(:), Y(:)];
t = delaunayn(p);
g = triangleGrid(p, t); Nn = g.nodes.num;
grids{5} = computeGeometry(g);
% Perturbed triangles
g.nodes.coords = g.nodes.coords + 0.5 * rand(Nn,Nd);
grids{6} = computeGeometry(g);
% Tetrahedral grid
Nx = [2 2 2]; Nd = numel(Nx);
[X,Y,Z] = meshgrid(linspace(0,Nx(1),Nx(1)+1), linspace(0,Nx(2),Nx(2)+1),linspace(0,Nx(3),Nx(3)+1));
p = [X(:), Y(:), Z(:)];
t = delaunayn(p);
g = tetrahedralGrid(p, t); Nn = g.nodes.num;
grids{7} = computeGeometry(g);
% Perturbed triangles
g.nodes.coords = g.nodes.coords + 0.5 * rand(Nn,Nd);
grids{8} = computeGeometry(g);
testCase.TestData.grids = grids;
end
function dirichletBoundaryTest(testCase)
grids = testCase.TestData.grids;
for iter1 = 1 : numel(grids);
% Not the most beautiful of setups, we could probably have used setup somehow
G = grids{iter1};
Nc = G.cells.num;
Nf = G.faces.num;
Nd = G.griddim;
xf = G.faces.centroids;
xc = G.cells.centroids;
% Pressure boundary conditions;
bc = addBC([],find(any(G.faces.neighbors == 0,2)),'pressure',0);
fd = mpfa(G,struct('perm',ones(Nc,1)),[],'bc',bc,'invertBlocks','matlab');
% First test no flow
ub = ones(Nf,1);
xan = ones(Nc,1);
x = -fd.A \ (fd.div * fd.boundFlux * ub);
assert(norm(x - xan) < sqrt(eps),'MPFA on no flow failed')
% Then test uniform flow in x-direction
ub = xf(:,1);
xan = xc(:,1);
x = -fd.A\fd.div * fd.boundFlux * ub;
assert(norm(x - xan) < sqrt(eps),'MPFA on no flow in x-direction failed')
% Flow in x+y direction
r = rand(Nd,1);
ub = xf * r;
xan = xc * r;
x = -fd.A\fd.div * fd.boundFlux * ub;
assert(norm(x - xan) < sqrt(eps),'MPFA on no flow in x + y-direction failed')
flux = fd.F * x + fd.boundFlux * ub;
fan = sum(bsxfun(@times,G.faces.normals,-r'),2);
assert(norm(flux - fan) < sqrt(eps),'MPFA flux error on random field')
end
end
function mixedBoundaryTest(testCase)
grids = testCase.TestData.grids;
for iter1 = 7 : numel(grids);
% Not the most beautiful of setups, we could probably have used setup somehow
G = grids{iter1};
Nc = G.cells.num;
Nf = G.faces.num;
xf = G.faces.centroids;
xc = G.cells.centroids;
if any(strcmpi(G.type,'tensorGrid'))
bc = fluxside([],G,'xmin',1);
bc = pside(bc,G,'xmax',1);
bc = pside(bc,G,'ymin',1);
bc = pside(bc,G,'ymax',1);
fd = mpfa(G,struct('perm',ones(Nc,1)),[],'bc',bc);
fb = ones(Nf,1);
x = -fd.A \ (fd.div * fd.boundFlux * fb);
a=[];
end
end
end
|
github | neurolabusc/Clinical-master | clinical_h2c.m | .m | Clinical-master/clinical_h2c.m | 2,016 | utf_8 | 57731e8ebdc0c241c7f7b7065846fcd5 | function clinical_h2c (fnms)
% This script converts a CT scan from Hounsfield Units to Cormack
% fnms: image name(s) [optional]
% Example
% clinical_h2c('C:\ct.nii');
fprintf('CT Hounsfield to Cormack version 4/4/2016\n');
if ~exist('fnms','var')
fnms = spm_select(inf,'image','Select CT[s] to normalize');
end;
for i=1:size(fnms,1)
h2cSub( deblank(fnms(i,:)) );
end
%end clinical_h2c - local functions follow
function fnm = h2cSub (fnm)
%converts a CT scan from Hounsfield Units to Cormack
% fnm: image name [optional]
%Example
% h2c('C:\ct\script\ct.nii');
if ~exist('fnm','var')
fnm = spm_select(1,'image','Select CT to convert');
end;
hdr = spm_vol(deblank(fnm));
img = spm_read_vols(hdr);
mx = max(img(:));
mn = min(img(:));
range = mx-mn;
if (range < 1999) || (mn > -500)
fprintf('Warning: image intensity range (%f) does not appear to be in Hounsfield units.\n',range);
return;
end %CR 5/5/2014: only scale if values are sensible!
if (mn < -1024) %some GE scanners place artificial rim around air
img(img < -1024) = -1024;
mn = min(img(:));
range = mx-mn;
end;
fprintf('%s intensity range: %d\n',fnm,round(range));
fprintf(' Ignore QFORM0 warning if reported next\n');
%constants for conversion
[kUninterestingDarkUnits, kInterestingMidUnits] = clinical_cormack();
kScaleRatio = 10;% increase dynamic range of interesting voxels by 3
%convert image
img = img - mn; %transloate so min value is 0
extra1 = img - kUninterestingDarkUnits;
extra1(extra1 <= 0) = 0; %clip dark to zero
extra9=extra1;
extra9(extra9 > kInterestingMidUnits) = kInterestingMidUnits; %clip bright
extra9 = extra9 * (kScaleRatio-1); %boost mid range
%transform image
img = img+extra1+extra9; %dark+bright+boostedMidRange
%save output
[pth,nam,ext] = spm_fileparts(hdr.fname);
hdr.fname = fullfile(pth, ['c' nam ext]);
hdr.private.dat.scl_slope = 1;
hdr.private.dat.scl_inter = 0;
spm_write_vol(hdr,img);
fnm = hdr.fname; %return new filename
%end h2cSub() |
github | neurolabusc/Clinical-master | tbx_cfg_clinical.m | .m | Clinical-master/tbx_cfg_clinical.m | 15,296 | utf_8 | 9ea71f1b53116e5b5440e8ea4be4f1c6 | function clinical = tbx_cfg_clinical
% Configuration file for toolbox 'Clinical'
% Chris Rorden
% $Id: tbx_cfg_clinical.m
if ~isdeployed,
addpath(fullfile(spm('Dir'),'toolbox','Clinical'));
end
% ---------------------------------------------------------------------
% bb Bounding box
% ---------------------------------------------------------------------
bb = cfg_entry;
bb.tag = 'bb';
bb.name = 'Bounding box';
bb.help = {'The bounding box (in mm) of the volume which is to be written (relative to the anterior commissure). Popular choices are [-78 -112 -50; 78 76 85] and [ -90 -126 -72; 90 90 108]'};
bb.strtype = 'e';
bb.val = {[-78 -112 -50; 78 76 85]};
%to match ch2 images bb.val = { [ -90 -126 -72; 90 90 108]};
bb.num = [2 3];
%bb.def = @(val)spm_get_defaults('normalise.write.bb', val{:});
% ---------------------------------------------------------------------
% vox Voxel sizes
% ---------------------------------------------------------------------
vox = cfg_entry;
vox.tag = 'vox';
vox.name = 'Voxel sizes';
vox.help = {'The voxel sizes (x, y & z, in mm) of the written normalised images. [1 1 1] and [2 2 2] are standard and more than sufficient for statistical analysis, but [0.735 0.735 0.735] provides nice volume rendering visualization.'};
vox.strtype = 'e';
vox.num = [1 3];
vox.val = {[1 1 1]};
%to match ch2 images vox.val = {[1 1 1]};
% [0.735 0.735 0.735] with the default bounding box yields a 213x256x184 voxel image that works well for rendering (some inexpensive GPUs limited to volumes with 256 voxels)
%vox.def = @(val)spm_get_defaults('normalise.write.vox', val{:});
% ---------------------------------------------------------------------
% Anat Volumes
% ---------------------------------------------------------------------
anat = cfg_files;
anat.tag = 'anat';
anat.name = 'Anatomicals';
anat.help = {'Select anatomical scans (typically T1-weighted). These will be used to compute normalization parameters.'};
anat.filter = 'image';
anat.ufilter = '.*';
anat.num = [1 Inf];
% ---------------------------------------------------------------------
% Lesion map Volumes
% ---------------------------------------------------------------------
les = cfg_files;
les.tag = 'les';
les.name = 'Lesion maps';
les.help = {'Select lesions. Same order as anatomicals. If specified, lesions will be used to mask normalization, and will be resliced to standard space. Optional: e.g. not required for neurologically healthy controls'};
les.filter = 'image';
les.ufilter = '.*';
les.num = [1 Inf];
les.val = {''};
% ---------------------------------------------------------------------
% T2 Volumes
% ---------------------------------------------------------------------
t2 = cfg_files;
t2.tag = 't2';
t2.name = 'Pathological scans';
t2.help = {'Select pathological scans used to draw lesions (e.g. T2, FLAIR). Same order as anatomicals. Optional: only used if lesion maps are used, and only used if lesion maps are not drawn on anatomical images. Often the full extent of brain injury is better visualized on a T2 scan, but the T1 provides better resolution and tissue contrast. In this case, you can draw the lesion on the T2, coregister the T2 to T1, reslice lesion to T1 space and then normalize the T1.'};
t2.filter = 'image';
t2.ufilter = '.*';
t2.num = [0 Inf];
t2.val = {''};
% ---------------------------------------------------------------------
% Template
% ---------------------------------------------------------------------
clinicalTemplate = cfg_menu;
clinicalTemplate.tag = 'clinicaltemplate';
clinicalTemplate.name = 'Template';
clinicalTemplate.help = {
'Choose the template for your analyses. You can use the elderly template (which is based on older adults, and thus has large ventricles), or the young adult template (using the MNI152 template of young adults).'
}';
clinicalTemplate.labels = {
'T1 younger'
'T1 older'
}';
clinicalTemplate.values = {
0
1
}';
clinicalTemplate.val = {1};
% ---------------------------------------------------------------------
% Cleanup
% ---------------------------------------------------------------------
clean = cfg_menu;
clean.tag = 'clean';
clean.name = 'Cleanup level';
clean.help = {
'Choose tissue cleanup level: this attempts to remove islands of gray or white matter that are distant from gray matter.'
}';
clean.labels = {
'none'
'light'
'thorough'
}';
clean.values = {
0
1
2
}';
clean.val = {2};
% ---------------------------------------------------------------------
%Enantiomorphic
% ---------------------------------------------------------------------
AutoSetOrigin = cfg_menu;
AutoSetOrigin.tag = 'AutoSetOrigin';
AutoSetOrigin.name = 'Automatically Set Origin';
AutoSetOrigin.help = {'Normalization can fail if the origin is not near the anterior commissure. This option attempts to automatically adjust the origin. Try normalizing with this set to TRUE: if normalization fails next set the origin manually and re-run normalization with this feature switched to FALSE.'};
AutoSetOrigin.labels = {
'False'
'True'
}';
AutoSetOrigin.values = {
0
1
}';
AutoSetOrigin.val = {1};
% ---------------------------------------------------------------------
%Enantiomorphic
% ---------------------------------------------------------------------
Enantiomorphic = cfg_menu;
Enantiomorphic.tag = 'Enantiomorphic';
Enantiomorphic.name = 'Enantiomorphic normalization';
Enantiomorphic.help = {'Enantiomorphic normalization can outperform lesion masking, especially for large lesions. Newer 6-tissue is probably better but disables ignores some options (tissue cleanup) and requires SPM12. See Nachev et al., 2008: http://www.ncbi.nlm.nih.gov/pubmed/18023365'};
Enantiomorphic.labels = {
'False'
'True(3-tissue old segment)'
'True(6-tissue new segment)'
}';
Enantiomorphic.values = {
0
1
2
}';
Enantiomorphic.val = {2};
% ---------------------------------------------------------------------
% Delete Intermediate
% ---------------------------------------------------------------------
DelIntermediate = cfg_menu;
DelIntermediate.tag = 'DelIntermediate';
DelIntermediate.name = 'Intermediate images';
DelIntermediate.help = {'Many images are created during normalization that are often not required for final analyses. Do you wish to keep these intermediate images?'};
DelIntermediate.labels = {
'Keep'
'Delete'
}';
DelIntermediate.values = {
0
1
}';
DelIntermediate.val = {0};
% ---------------------------------------------------------------------
% T2 Input Images
% ---------------------------------------------------------------------
T2 = cfg_files;
T2.tag = 'T2';
T2.name = 'Images';
T2.help = {'Select the scans you would like to normalize (each scan from a different participant).'};
T2.filter = 'image';
T2.ufilter = '.*';
T2.num = [1 Inf];
% ---------------------------------------------------------------------
% modality
% ---------------------------------------------------------------------
modality = cfg_menu;
modality.tag = 'modality';
modality.name = 'Modality';
modality.help = {'The template will be selected to match the tissue intensities of your images. Choose T1 if your scan is T1-weighted, T2 for T2-weighted, FLAIR for fluid-attenuated T2, else select Other [e.g. DWI]. This function always uses the default SPM templates that are based on young adults, except the FLAIR option that uses a symmetrical template from 181 people, Mean age: 39.9y, std dev: 9.3y, range: 26-76y, 102 females (see http://www.glahngroup.org/Members/anderson/flair-templates)'
}';
modality.labels = {
'T1'
'T2'
'FLAIR'
'Other'
}';
modality.values = {
1
2
3
4
}';
modality.val = {4};
% ---------------------------------------------------------------------
% images Input Images
% ---------------------------------------------------------------------
images = cfg_files;
images.tag = 'images';
images.name = 'Input Images';
images.help = {'Select the CT scans you would like to normalize.'};
images.filter = 'image';
images.ufilter = '.*';
images.num = [1 Inf];
% ---------------------------------------------------------------------
% Lesions Input Images
% ---------------------------------------------------------------------
ctles = cfg_files;
ctles.tag = 'ctles';
ctles.name = 'Input lesions';
ctles.help = {'Optional lesion maps. Must have same dimensions as CT scans. If multiple scans, order must be identical.'};
ctles.filter = 'image';
ctles.ufilter = '.*';
ctles.num = [1 Inf];
ctles.val = {''};
% ---------------------------------------------------------------------
% brainmask - default switched on for CT scans, as skull has strong signal
% ---------------------------------------------------------------------
brainmaskct = cfg_menu;
brainmaskct.tag = 'brainmaskct';
brainmaskct.name = 'Template mask';
brainmaskct.help = {'Apply a brain mask to the template? Initial coarse normalization is applied to the entire scan. However, it is often useful to apply a brain mask to the template for the subsequent fine normalization. This helps reduce the influence of skull and scalp features, improving the accuracy of the final normalization.'
}';
brainmaskct.labels = {
'no template mask'
'apply template mask'
}';
brainmaskct.values = {
0
1
}';
brainmaskct.val = {1};
% ---------------------------------------------------------------------
% brainmask - default switched off for MRI, as low res scans often have poor coarse alignment
% ---------------------------------------------------------------------
brainmask = cfg_menu;
brainmask.tag = 'brainmask';
brainmask.name = 'Template mask';
brainmask.help = {'Apply a brain mask to the template? Initial coarse normalization is applied to the entire scan. However, it is often useful to apply a brain mask to the template for the subsequent fine normalization. This helps reduce the influence of skull and scalp features, improving the accuracy of the final normalization.'
}';
brainmask.labels = {
'no template mask'
'apply template mask'
}';
brainmask.values = {
0
1
}';
brainmask.val = {0};
% ---------------------------------------------------------------------
% Threshold for scalp strip
% ---------------------------------------------------------------------
ssthresh = cfg_entry;
ssthresh.tag = 'ssthresh';
ssthresh.name = 'Scalp strip threshold';
ssthresh.help = {
'Enter threshold for scalp stripping. E.G. if set to 0.5 than only voxels deemed to have a combined gray+white matter probability of at least 50% will be included in the stripped image.'
}';
ssthresh.strtype = 'e';
ssthresh.num = [1 1];
ssthresh.val = {0.005};
% ---------------------------------------------------------------------
% MRsegnorm
% ---------------------------------------------------------------------
MRnormseg = cfg_exbranch;
MRnormseg.tag = 'MRnormseg';
MRnormseg.name = 'MR segment-normalize';
MRnormseg.val = {anat les t2 clinicalTemplate clean bb vox ssthresh DelIntermediate, Enantiomorphic AutoSetOrigin};
MRnormseg.help = {'This procedure is designed for normalizing T1-weighted MRI scans from older people, including those with brain injury. This uses a unified segmentation-normalization algorithm. It can coregister a T2/FLAIR image to a T1 image and then normalize the T1 image. Vers 2/2/2012'};
MRnormseg.prog = @clinical_local_mrnormseg;
%MRnormseg.vout = @vout_sextract;
% ---------------------------------------------------------------------
% CTnorm
% ---------------------------------------------------------------------
CTnorm = cfg_exbranch;
CTnorm.tag = 'CTnorm';
CTnorm.name = 'CT normalize';
CTnorm.val = {images ctles brainmaskct bb vox DelIntermediate AutoSetOrigin};
CTnorm.help = {'This procedure is designed for normalizing CT scans from older people, including those with brain injury. Vers 2/2/2012'};
CTnorm.prog = @clinical_local_ctnorm;
% ---------------------------------------------------------------------
% MRnorm
% ---------------------------------------------------------------------
MRnorm = cfg_exbranch;
MRnorm.tag = 'MRnorm';
MRnorm.name = 'MR normalize';
MRnorm.val = {anat les t2 modality brainmask bb vox DelIntermediate AutoSetOrigin};
MRnorm.help = {'This procedure is designed for normalizing MRI scans - it is useful when you only have low-resolution or low-quality scans. If you have a high-quality scans, use MR segment-normalize instead. Vers 2/2/2012'};
MRnorm.prog = @clinical_local_mrnorm;
% ---------------------------------------------------------------------
% clinical
% ---------------------------------------------------------------------
clinical = cfg_choice;
clinical.tag = 'MRI';
clinical.name = 'Clinical';
clinical.help = {'Toolbox that aids in normalization of brain images of older individuals.'};
clinical.values = {MRnormseg CTnorm MRnorm};
%======================================================================
function clinical_local_mrnormseg(job)
%if ~isdeployed, addpath(fullfile(spm('dir'),'toolbox','Clinical')); end
set_pth('clinical_mrnormseg_job.m');
clinical_mrnormseg_job(job);
%======================================================================
function clinical_local_ctnorm(job)
%if ~isdeployed, addpath(fullfile(spm('dir'),'toolbox','Clinical')); end
set_pth('clinical_ctnorm_job.m');
clinical_ctnorm_job(job);
%======================================================================
function clinical_local_mrnorm(job)
%if ~isdeployed, addpath(fullfile(spm('dir'),'toolbox','Clinical')); end
set_pth('clinical_mrnorm_job.m');
clinical_mrnorm_job(job);
function set_pth(mname)
pth = fileparts(mfilename('fullpath'));
[p,d] = fileparts(pth);
if strcmpi(d,'Clinical-master')
warning('Please rename folder "Clinical-master" to be "Clinical": %s\n', pth);
end
if exist(mname, 'file')
return;
end
addpath(pth);
%end set_pth()
|
github | neurolabusc/Clinical-master | clinical_h2c_old.m | .m | Clinical-master/clinical_h2c_old.m | 2,761 | utf_8 | c5b4cfee74118c8f17ebeb3f05875425 | function clinical_h2c (V);
% This script converts a CT scan from Hounsfield Units to Cormack
% V: image name(s) [optional]
% Example
% clinical_h2c('C:\ct.nii');
fprintf('CT normalization version 4/4/2016\n');
if nargin <1 %no files
V = spm_select(inf,'image','Select CT[s] to normalize');
end;
for i=1:size(V,1)
ref = deblank(V(i,:));
[pth,nam,ext] = spm_fileparts(ref);
ref= fullfile(pth,[nam ext]);
if (exist(ref) ~= 2)
fprintf('Error: unable to find source image %s.\n',ref);
return;
end;
Vi = spm_vol(strvcat(V(i,:)));
% determine range...
clear img; %reassign for each image, in case dimensions differ
mx = -Inf;
mn = Inf;
for p=1:Vi.dim(3),
img = spm_slice_vol(Vi,spm_matrix([0 0 p]),Vi.dim(1:2),1);
msk = find(isfinite(img));
mx = max([max(img(msk)) mx]);
mn = min([min(img(msk)) mn]);
end;
range = mx-mn;
%Hounsfield units, in theory
% min = air = ~-1000
% max = bone = ~1000
% in practice, teeth fillings are often >3000
% Therefore, raise warning if range < 2000
% or Range > 6000 then generate warning: does not appear to be in Hounsfield units
if (range < 1999) | (range > 8000)
fprintf('Error: image intensity range (%f) does not appear to be in Hounsfield units.\n',range);
%return
end;
fprintf('%s intensity range: %d\n',ref,round(range));
fprintf(' Ignore QFORM0 warning if reported next\n');
% next scale from Hounsfield to Cormack
VO = Vi;
[pth,nam,ext] = spm_fileparts(ref);
VO.fname = fullfile(pth,['c' nam '.nii']);
%spm_type(Vi.dt(1),'maxval')
VO.pinfo(1) = 1; %2014 - change slope in pinfo as well as private
VO.pinfo(2) = 0; %2014 - change intercept in pinfo as well as private
VO.private.dat.scl_slope = 1;
VO.private.dat.scl_inter = 0;
if h2csub(mx,mn) > spm_type(Vi.dt(1),'maxval')
fprintf('clinical_h2c: image data-type increased to 32-bit float %s\n',VO.fname);
VO.dt(1) = 16; %2014
end;
VO = spm_create_vol(VO);
clipped = 0;
for i=1:Vi.dim(3),
img = spm_slice_vol(Vi,spm_matrix([0 0 i]),Vi.dim(1:2),0);
for px=1:length(img(:)),
img(px) = h2csub(img(px),mn);
end; %for each pixel
VO = spm_write_plane(VO,img,i);
end; %for each slice
end; %for each volume
function out = h2csub(in,min);
%======================
%Convert Hounsfiled to Cormack
[kUninterestingDarkUnits, kInterestingMidUnits] = clinical_cormack();
kScaleRatio = 10;% increase dynamic range of interesting voxels by 3
v16 = in-min;
lExtra = v16-kUninterestingDarkUnits;
if lExtra > kInterestingMidUnits
lExtra = kInterestingMidUnits;
end;
if lExtra > 0
lExtra = lExtra*kScaleRatio;
else
lExtra = 0;
end;
out = v16+lExtra; |
github | neurolabusc/Clinical-master | clinical_c2h_old.m | .m | Clinical-master/clinical_c2h_old.m | 2,019 | utf_8 | e19a920700331df68699e7bc74cf4d3d | function clinical_c2h (V);
% This script converts a CT scan from Cormack to Hounsfield Units
% V: image name(s) [optional]
% Example
% clinical_c2h('C:\ct\script\Pat1nolesion.nii');
fprintf('CT Cormack to Hounsfield version 2/2/2012\n');
if nargin <1 %no files
V = spm_select(inf,'image','Select CT[s] to normalize');
end;
for i=1:size(V,1)
ref = deblank(V(i,:));
[pth,nam,ext] = spm_fileparts(ref);
ref = fullfile(pth,[ nam ext]);
if (exist(ref) ~= 2)
fprintf('clinical_c2h error: unable to find source image %s.\n',ref);
return;
end;
Vi = spm_vol(strvcat(V(i,:)));
% next scale from Hounsfield to Cormack
clear img; %reassign for each image, in case dimensions differ
VO = Vi;
[pth,nam,ext] = spm_fileparts(ref);
VO.fname = fullfile(pth,['h' nam '.nii']);
VO.private.dat.scl_slope = 1;
VO.private.dat.scl_inter = -1024;
VO.pinfo(1) = VO.private.dat.scl_slope;
VO.pinfo(2) = VO.private.dat.scl_inter;
VO = spm_create_vol(VO);
for i=1:Vi.dim(3),
img = spm_slice_vol(Vi,spm_matrix([0 0 i]),Vi.dim(1:2),0);
for px=1:length(img(:)),
img(px) = c2hsub(img(px));
end; %for each pixel
VO = spm_write_plane(VO,img,i);
end; %for each slice
fprintf('Please check that the header sets the intercept to -1024\n');
end; %for each volume
%end clinical_c2h()
function x = c2hsub(x);
%Convert Cormack to Hounsfield
[kUninterestingDarkUnits, kInterestingMidUnits] = clinical_cormack();
kScaleRatio = 10;% increase dynamic range of interesting voxels by 3
kMax = kInterestingMidUnits * (kScaleRatio+1);
if x > kUninterestingDarkUnits
lExtra = x- kUninterestingDarkUnits;
if (lExtra > kMax)
lExtra = kInterestingMidUnits + (lExtra-kMax);
else
lExtra = round(lExtra/(kScaleRatio+1));
end;
x = kUninterestingDarkUnits + lExtra;
else
x = x; %
end; %if conditions
x = x-1024; %air is darkest at ~-1000: most 12-bit CT systems encode as -1024 |
github | neurolabusc/Clinical-master | clinical_mrnormseg.m | .m | Clinical-master/clinical_mrnormseg.m | 19,373 | utf_8 | fda504e687941af84a26b6637bff7e02 | function clinical_mrnormseg (T1,lesion,T2, UseSCTemplates, vox, bb, DeleteIntermediateImages, ssthresh, cleanup, isEnantiomorphic, AutoSetOrigin)
% This script normalizes MR scans using normalization-segmetnation
%Inputs
% T1 = Filename[s] for T1 scans
% lesion = OPTIONAL Filename[s] for lesion maps [drawn on T2 if is T2 is specified, otherwise drawn on T1]
% T2 = OPTIONAL Filename[s] for T2 weighted images
% UseSCTemplates = OPTIONAL 0=normalize to young individuals, else normalize to template based on older adults
% vox = OPTIONAL Voxel size in mm, multiple rows for multiple resolutions (e.g. [3 3 3; 1 1 1])
% bb = OPTIONAL Bounding box
% DeleteIntermediateImages= OPTIONAL Should files used inbetween stages be saved?
% ssthresh = OPTIONAL Thresold for brain extraction, e.g. 0.1 will have tissue that has combine GM+WM probability >10%
% cleanup = Tissue cleanup level
% isEnantiomorphic = if true then Enantiomorphic rather than lesion-masked normalization
% Example: Normalize T1 scan from elderly person
% clinical_mrnormseg('c:\dir\t1.nii');
% Example: Normalize T1 scan from elderly person to 1mm isotropic
% clinical_mrnormseg('c:\dir\t1.nii','','',1,[1 1 1]);
% Example: Normalize T1 scan and lesion from person with stroke, with lesion drawn on T1
% clinical_mrnormseg('c:\dir\t1.nii','c:\dir\t1lesion.nii' );
% Example: Normalize T1 scan and lesion from person with stroke, with lesion drawn on T2
% clinical_mrnormseg('c:\dir\t1.nii','c:\dir\t2lesion.nii','c:\dir\t2.nii' );
% Note: could be T2, FLAIR, etc. but second image (lesion) is aligned to third image ("T2")
% clinical_mrnormseg('C:\t1','C:\lesion.nii','C:\flair.nii');
% UseSCTemplates = If 1, uses 'stroke control' template (good for elderly), if 0 then uses SPM's default tissue templates
% Set to 0.0 if you do not want a brain extracted T1
fprintf('MR normalization-segmentation version 7/7/2016 - for use with high-resolution images that allow accurate segmentation\n');
lesionname = '';
if nargin <1 %no files
T1 = spm_select(inf,'image','Select T1 images');
end;
if nargin < 1 %no files
lesion = spm_select(inf,'image','Optional: select lesion maps (same order as T1)');
else
if nargin <2 %T1 specified, no lesion map specified
lesion = '';
end;
end;
if (nargin < 1 & length(lesion) > 1) %no files passed, but user has specified both T1 and lesion images...
T2 = spm_select(inf,'image','Select T2 images (only if lesions are not drawn on T1, same order as T1)');
else %T1 specified, no T2 specified
if nargin <3 %no files
T2 = '';
end;
end;
if nargin < 4 %no template specified
UseSCTemplates= 1; %assume old individual
end;
if nargin < 5 %no voxel size
vox = [2 2 2];
end;
if nargin < 6 %no bounding box
bb = [-78 -112 -50; 78 76 85];
end; % std tight (removes some cerebellum) -> [-78 -112 -50; 78 76 85] ch2 -> [ -90 -126 -72; 90 90 108]
if nargin < 7 %delete images
DeleteIntermediateImages = 1;
end;
if nargin < 8 %brain extraction threshold
ssthresh = 0.005; %0.1;
end;
if nargin < 9 %cleanup not specified
cleanup = 2; %2= thorough cleanup; 1=light cleanup, 0= nocleanup
end;
if ~exist('isEnantiomorphic','var')
isEnantiomorphic = true;
end
if isempty(lesion)
isEnantiomorphic = false;
end
if exist('AutoSetOrigin', 'var') && (AutoSetOrigin)
for i=1:size(T1,1)
v = deblank(T1(i,:));
if ~isempty(lesion)
v = strvcat(v, deblank(lesion(i,:)) );
end
if ~isempty(T2)
v = strvcat(v, deblank(T2(i,:)) );
end
clinical_setorigin(v,1); %coregister to T1
end;
end;
smoothlesion = true;
tic
if (length(lesion) < 1) && (~isempty(T2))
fprintf('You can not process T2 images without T1 scans\n');
return;
end;
for i=1:size(T1,1), %repeat for each image the user selected
[pth,nam,ext] = spm_fileparts(deblank(T1(i,:)));
T1name = fullfile(pth,[ nam ext]); %the T1 image has no prefix
if (clinical_filedir_exists(T1name ) == 0) %report if files do not exist
disp(sprintf(' No T1 image found named: %s', T1name ))
return
end;
if length(lesion) > 0
[pthL,namL,extL] = spm_fileparts(deblank(lesion(i,:)));
lesionname = fullfile(pthL,[namL extL]);
if (clinical_filedir_exists(lesionname ) == 0) %report if files do not exist
disp(sprintf(' No lesion image found named: %s', lesionname ))
return
end;
end;
if length(T2) > 0 %if 3rd image (T2) exists - use it to coreg 2nd (lesion) to 1st (T1)
[pth2,nam2,ext2] = spm_fileparts(deblank(T2(i,:)));
T2name = fullfile(pth2,[nam2 ext2]); %the T2 pathological image has the prefix 'p'
if (clinical_filedir_exists(T2name ) == 0) %report if files do not exist
disp(sprintf(' No T2/FLAIR/DWI image found named: %s', T2name ))
return
end;
if ~lesionMatchT2Sub (T2name,lesionname)
return;
end
%next coreg
coregbatch{1}.spm.spatial.coreg.estwrite.ref = {[T1name ,',1']};
coregbatch{1}.spm.spatial.coreg.estwrite.source = {[T2name ,',1']};
coregbatch{1}.spm.spatial.coreg.estwrite.other = {[lesionname ,',1']};
coregbatch{1}.spm.spatial.coreg.estwrite.eoptions.cost_fun = 'nmi';
coregbatch{1}.spm.spatial.coreg.estwrite.eoptions.sep = [4 2];
coregbatch{1}.spm.spatial.coreg.estwrite.eoptions.tol = [0.02 0.02 0.02 0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001];
coregbatch{1}.spm.spatial.coreg.estwrite.eoptions.fwhm = [7 7];
coregbatch{1}.spm.spatial.coreg.estwrite.roptions.interp = 1;
coregbatch{1}.spm.spatial.coreg.estwrite.roptions.wrap = [0 0 0];
coregbatch{1}.spm.spatial.coreg.estwrite.roptions.mask = 0;
coregbatch{1}.spm.spatial.coreg.estwrite.roptions.prefix = 'r';
spm_jobman('run',coregbatch);
namL = ['r' namL]; %resliced data now has prefix 'r'
lesionname = fullfile(pthL,[namL extL]); %the lesion image has the prefix 'l'
if (DeleteIntermediateImages == 1) clinical_delete(fullfile(pth2,['r' nam2 ext2])); end;
elseif length(lesionname) > 0 %if no T2, but lesion, make sure lesion matches T1
if ~lesionMatchT2Sub (T1name,lesionname)
return;
end
end;%if lesion present
%next - generate mask
if length(lesion) > 0
if isEnantiomorphic
maskname = fullfile(pthL,[ namL extL]);
else
clinical_smoothmask(lesionname);
maskname = fullfile(pthL,['x' namL extL]);
end;
if smoothlesion == true
slesionname = clinical_smooth(lesionname, 3); %lesions often drawn in plane, with edges between planes - apply 3mm smoothing
else
slesionname = lesionname;
end; %if smooth lesion
end; %if lesion available
%next normalize...
if UseSCTemplates == 1 %
disp(sprintf('Using stroke control tissue probability maps'));
gtemplate = fullfile(fileparts(which(mfilename)),'scgrey.nii');
wtemplate= fullfile(fileparts(which(mfilename)),'scwhite.nii');
ctemplate = fullfile(fileparts(which(mfilename)),'sccsf.nii');
else
disp(sprintf('Using default SPM tissue probability maps'));
gtemplate = fullfile(spm('Dir'),'tpm','grey.nii');
wtemplate = fullfile(spm('Dir'),'tpm','white.nii');
ctemplate = fullfile(spm('Dir'),'tpm','csf.nii');
if ~exist(gtemplate,'file')
gtemplate = fullfile(spm('Dir'),'toolbox','OldSeg','grey.nii');
end;
if ~exist(wtemplate,'file')
wtemplate = fullfile(spm('Dir'),'toolbox','OldSeg','white.nii');
end;
if ~exist(ctemplate,'file')
ctemplate = fullfile(spm('Dir'),'toolbox','OldSeg','csf.nii');
end;
end;
%report if templates are not found
if (clinical_filedir_exists(gtemplate) == 0) || (clinical_filedir_exists(wtemplate) == 0) || (clinical_filedir_exists(ctemplate) == 0) %report if files do not exist
disp(sprintf('Unable to find templates'));
return
end;
if isEnantiomorphic
eT1name = entiamorphicSub(T1name, maskname);
normbatch{1}.spm.spatial.preproc.data = {[eT1name ,',1']}; %6/2014 added []
else
normbatch{1}.spm.spatial.preproc.data = {[T1name ,',1']}; %6/2014 added []
end
if ssthresh > 0
normbatch{1}.spm.spatial.preproc.output.GM = [0 0 1];
normbatch{1}.spm.spatial.preproc.output.WM = [0 0 1];
normbatch{1}.spm.spatial.preproc.output.CSF = [0 0 1]; %CR 2013
else
normbatch{1}.spm.spatial.preproc.output.GM = [0 0 0];
normbatch{1}.spm.spatial.preproc.output.WM = [0 0 0];
normbatch{1}.spm.spatial.preproc.output.CSF = [0 0 0];
end;
normbatch{1}.spm.spatial.preproc.output.biascor = 1;
normbatch{1}.spm.spatial.preproc.output.cleanup = cleanup;
normbatch{1}.spm.spatial.preproc.opts.tpm = {
gtemplate
wtemplate
ctemplate
};
normbatch{1}.spm.spatial.preproc.opts.ngaus = [2; 2; 2; 4];
normbatch{1}.spm.spatial.preproc.opts.regtype = 'mni';
normbatch{1}.spm.spatial.preproc.opts.warpreg = 1;
normbatch{1}.spm.spatial.preproc.opts.warpco = 25;
normbatch{1}.spm.spatial.preproc.opts.biasreg = 0.0001;
normbatch{1}.spm.spatial.preproc.opts.biasfwhm = 60;
normbatch{1}.spm.spatial.preproc.opts.samp = 3;
if ~isempty(lesion) && ~isEnantiomorphic
normbatch{1}.spm.spatial.preproc.opts.msk = {[maskname ,',1']};
else
normbatch{1}.spm.spatial.preproc.opts.msk = {''};
end;
fprintf('Unified segmentation of %s with cleanup level %d threshold %f, job %d/%d\n', T1name, cleanup, ssthresh, i, size(T1,1));
fprintf(' If segmentation fails: use SPM''s DISPLAY tool to set the origin as the anterior commissure\n');
spm_jobman('run',normbatch);
%next reslice...
if isEnantiomorphic
reslicebatch{1}.spm.spatial.normalise.write.subj.matname = {fullfile(pth,['e' nam '_seg_sn.mat'])};
biasPrefix = '';
tissuePrefix = 'e';
else
reslicebatch{1}.spm.spatial.normalise.write.subj.matname = {fullfile(pth,[ nam '_seg_sn.mat'])};
biasPrefix = 'm';
tissuePrefix = '';
end
reslicebatch{1}.spm.spatial.normalise.write.roptions.preserve = 0;
reslicebatch{1}.spm.spatial.normalise.write.roptions.bb = bb;
reslicebatch{1}.spm.spatial.normalise.write.roptions.interp = 1;
reslicebatch{1}.spm.spatial.normalise.write.roptions.wrap = [0 0 0];
for res = 1:size(vox,1)
if res > 1
pref = ['w' num2str(res-1)];
else
pref = 'w';
end
%next lines modified 7/7/2016 for SPM12 compatibility
if length(T2) > 0
reslicebatch{1}.spm.spatial.normalise.write.subj.resample = {[fullfile(pth,[biasPrefix nam ext]) ,',1']; [slesionname ,',1']; [fullfile(pth2,[ nam2 ext2]),',1']};
%reslicebatch{1}.spm.spatial.normalise.write.subj.resample = {fullfile(pth,[biasPrefix nam ext]) ,',1; ',slesionname ,',1; ', fullfile(pth2,[ nam2 ext2]),',1'};
elseif length(lesion) > 0
reslicebatch{1}.spm.spatial.normalise.write.subj.resample = {[fullfile(pth,[biasPrefix nam ext]) ,',1']; [slesionname ,',1']}
%reslicebatch{1}.spm.spatial.normalise.write.subj.resample = {fullfile(pth,[biasPrefix nam ext]) ,',1; ',slesionname ,',1;'};
else
reslicebatch{1}.spm.spatial.normalise.write.subj.resample = {[fullfile(pth,[biasPrefix nam ext]) ,',1']}; %m is bias corrected
end;
reslicebatch{1}.spm.spatial.normalise.write.roptions.prefix = pref;
reslicebatch{1}.spm.spatial.normalise.write.roptions.vox = vox(res,:) ;
spm_jobman('run',reslicebatch);
%next: reslice tissue maps
if ssthresh > 0
c1 = fullfile(pth,['c1' tissuePrefix nam ext]);
c2 = fullfile(pth,['c2' tissuePrefix nam ext]);
c3 = fullfile(pth,['c3' tissuePrefix nam ext]);
reslicebatch{1}.spm.spatial.normalise.write.subj.resample = {[c1 ,',1']; [c2,',1']; [c3,',1']};
%reslicebatch{1}.spm.spatial.normalise.write.subj.resample = {c1 ,',1; ',c2,',1;' ,c3,',1'};
spm_jobman('run',reslicebatch);
if (res == length(vox)) && (DeleteIntermediateImages == 1)
clinical_delete(c1);
clinical_delete(c2);
clinical_delete(c3);
end;
if length(lesion) > 0 %we have a lesion
[pthLs,namLs,extLs] = spm_fileparts(slesionname);
clinical_binarize(fullfile(pthLs,[pref namLs extLs])); %lesion maps are considered binary (a voxel is either injured or not)
les = fullfile(pthLs,['b' pref namLs extLs]);
else
les = '';
end;
c1 = fullfile(pth,[pref 'c1' tissuePrefix nam ext]);
c2 = fullfile(pth,[pref 'c2' tissuePrefix nam ext]);
extractsub(ssthresh, fullfile(pth,[pref biasPrefix nam ext]), c1, c2, '', les);
if (DeleteIntermediateImages == 1)
clinical_delete(c1);
clinical_delete(c2);
%clinical_delete(c3);
end;
end; %thresh > 0
end; %for each resolution
%we now have our normalized images with the 'w' prefix.
%The optional next lines delete the intermediate images
if (DeleteIntermediateImages == 1)
if isEnantiomorphic
clinical_delete(fullfile(pth,['e' nam ext]));
end
clinical_delete(fullfile(pth,['m' nam ext]));
end; %mT1 is the bias corrected T1
if length(lesion) > 0 %we have a lesion
if (DeleteIntermediateImages == 1) clinical_delete(maskname ); end; %lesion mask
[pthLs,namLs,extLs] = spm_fileparts(slesionname);
%clinical_binarize(fullfile(pthLs,['w' namLs extLs])); %lesion maps are considered binary (a voxel is either injured or not)
if (DeleteIntermediateImages == 1) clinical_delete(fullfile(pthLs,['w' namLs extLs])); end; %we can delete the continuous lesion map
clinical_nii2voi(fullfile(pthLs,['bw' namLs extLs]));
end;
if length(T2) > 0 %We have a T2, and resliced T2->T1->MNI, delete intermediate image in T1 space
if (DeleteIntermediateImages == 1) clinical_delete(lesionname ); end; %intermediate lesion in T1 space
if smoothlesion
if (DeleteIntermediateImages == 1) clinical_delete(slesionname); end;
end;
end;
end; %for each image in T1name
toc
function extractsub(thresh, t1, c1, c2, c3, PreserveMask)
%subroutine to extract brain from surrounding scalp
% t1: anatomical scan to be extracted
% c1: gray matter map
% c2: white matter map
% c3: [optional] spinal fluid map
% PreserveMask: [optional] any voxels with values >0 in this image will be spared
[pth,nam,ext] = spm_fileparts(t1);
%load headers
mi = spm_vol([t1 ,',1']);%bias corrected T1
gi = spm_vol(c1);%Gray Matter map
wi = spm_vol(c2);%White Matter map
%load images
m = spm_read_vols(mi);
g = spm_read_vols(gi);
w = spm_read_vols(wi);
if length(c3) > 0
ci = spm_vol(c3);%CSF map
c = spm_read_vols(ci);
w = c+w;
end;
w = g+w;
if (length(PreserveMask) >0)
mski = spm_vol(PreserveMask);%bias corrected T1
msk = spm_read_vols(mski);
w(msk > 0) = 1;
end;
if thresh <= 0
m=m.*w;
else
mask= zeros(size(m));
for px=1:length(w(:)),
if w(px) >= thresh
mask(px) = 255;
end;
end;
spm_smooth(mask,mask,1); %feather the edges
mask = mask / 255;
m=m.*mask;
end;
mi.fname = fullfile(pth,['render', nam, ext]);
mi.dt(1) = 4; %16-bit precision more than sufficient uint8=2; int16=4; int32=8; float32=16; float64=64
spm_write_vol(mi,m);
%end for extractsub
function dimsMatch = lesionMatchT2Sub (T2,lesion)
dimsMatch = true;
if (length(T2) < 1) || (length(lesion) < 1), return; end
lhdr = spm_vol(lesion); %lesion header
t2hdr = spm_vol(T2); %pathological scan header
if ~isequal(lhdr.dim,t2hdr.dim);
dimsMatch = false;
fprintf('%s ERROR: Dimension mismatch %s %s: %dx%dx%d %dx%dx%d\n',mfilename, T2,lesion, t2hdr.dim(1),t2hdr.dim(2),t2hdr.dim(3), lhdr.dim(1),lhdr.dim(2),lhdr.dim(3));
end
%end dimsMatch()
function intactImg = entiamorphicSub (anatImg, lesionImg)
%Generates image suitable for Enantiomorphic normalization, see www.pubmed.com/18023365
% anatImg : filename of anatomical scan
% lesionImg : filename of lesion map in register with anatomical
%returns name of new image with two 'intact' hemispheres
if ~exist('anatImg','var') %no files specified
anatImg = spm_select(1,'image','Select anatomical image');
end
if ~exist('lesionImg','var') %no files specified
lesionImg = spm_select(1,'image','Select anatomical image');
end
if (exist(anatImg,'file') == 0) || (exist(lesionImg,'file') == 0)
error('%s unable to find files %s or %s',mfilename, anatImg, lesionImg);
end
%create flipped image
hdr = spm_vol([anatImg ,',1']);
img = spm_read_vols(hdr);
[pth, nam, ext] = spm_fileparts(anatImg);
fname_flip = fullfile(pth, ['LR', nam, ext]);
hdr_flip = hdr;
hdr_flip.fname = fname_flip;
hdr_flip.mat = [-1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] * hdr_flip.mat;
spm_write_vol(hdr_flip,img);
%coregister data
hdr_flip = spm_vol(fname_flip);
x = spm_coreg(hdr_flip,hdr);
%apply half of transform to find midline
x = (x/2);
M = spm_matrix(x);
MM = spm_get_space(fname_flip);
spm_get_space(fname_flip, M*MM); %reorient flip
M = inv(spm_matrix(x));
MM = spm_get_space(hdr.fname);
spm_get_space(hdr.fname, M*MM); %#ok<MINV> %reorient original so midline is X=0
%reorient the lesion as well
MM = spm_get_space(lesionImg);
spm_get_space(lesionImg, M*MM); %#ok<MINV> %reorient lesion so midline is X=0
%reslice to create a mirror image aligned in native space
P = char([hdr.fname,',1'],[hdr_flip.fname,',1']);
flags.mask = 0;
flags.mean = 0;
flags.interp = 1;
flags.which = 1;
flags.wrap = [0 0 0];
flags.prefix = 'r';
spm_reslice(P,flags);
delete(fname_flip); %remove flipped file
fname_flip = fullfile(pth,['rLR' nam ext]);%resliced flip file
%load lesion, blur
hdrLesion = spm_vol(lesionImg);
imgLesion = spm_read_vols(hdrLesion);
rdata = +(imgLesion > 0); %binarize raw lesion data, + converts logical to double
spm_smooth(rdata,imgLesion,4); %blur data
rdata = +(imgLesion > 0.1); %dilate: more than 20%
spm_smooth(rdata,imgLesion,8); %blur data
%now use lesion map to blend flipped and original image
hdr = spm_vol([anatImg ,',1']);
img = spm_read_vols(hdr);
hdr_flip = spm_vol(fname_flip);
imgFlip = spm_read_vols(hdr_flip);
rdata = (img(:) .* (1.0-imgLesion(:)))+ (imgFlip(:) .* imgLesion(:));
rdata = reshape(rdata, size(img));
delete(fname_flip); %remove resliced flipped file
hdr_flip.fname = fullfile(pth,['e' nam ext]);%image with lesion filled with intact hemisphere
spm_write_vol(hdr_flip,rdata);
intactImg = hdr_flip.fname;
%end entiamorphicSub() |
github | neurolabusc/Clinical-master | clinical_ctnorm.m | .m | Clinical-master/clinical_ctnorm.m | 9,015 | utf_8 | 3cb7f1aae5ec3278cf558bf8b21f905b | function clinical_ctnorm(V, lesion, vox, bb, DeleteIntermediateImages, UseTemplateMask, UseStrippedTemplate, AutoSetOrigin)
% This script attempts to normalize a CT scan
% V = filename[s] of CT scan[s] to normalize
% lesion = filename[s] of lesion maps. Optional: binary images drawn in same dimensions as CT. For multiple CTs, order of V and lesion must be the same
% vox = voxel size of normalized image[s]
% bb = bounding box of normalized image[s]
% DeleteIntermediateImages = if 1, then temporary images used between steps are deleted
% UseStrippedTemplate = Normalize to scalp-stripped template (only if your data is already scalp stripped)
% Prior to running this script, use SPM's DISPLAY
% Use this to set "0 0 0"mm to point to the Anterior Commissure
% Version notes
% 07072016 : improved support for SPM12 (finding brainmask.nii)
% Example
% clinical_ctnorm ('C:\dir\img.nii');
% clinical_ctnorm('ct.nii', '', [1 1 1], [-78 -112 -50; 78 76 85], true, true);
fprintf('CT normalization version 7/7/2016\n');
if exist('UseStrippedTemplate','var') && (UseStrippedTemplate == true)
cttemplate = fullfile(fileparts(which(mfilename)),'scct_stripped.nii');
else
cttemplate = fullfile(fileparts(which(mfilename)),'scct.nii');
end
%use custom 'stroke control' CT templates
%cttemplate = fullfile(spm('Dir'),'templates','Transm.nii');%SPM8 default template
%report if templates are not found
if (clinical_filedir_exists(cttemplate) == 0) %report if files do not exist
fprintf('Please put the CT template in the SPM template folder\n');
return
end;
if nargin <1 %no files
V = spm_select(inf,'image','Select CT[s] to normalize');
end;
if nargin < 1 %no files
lesion = spm_select(inf,'image','Optional: select lesion maps (same order as CTs)');
else
if nargin <2 %T1 specified, no lesion map specified
lesion = '';
end;
end;
if nargin < 3 %no voxel size
vox = [2 2 2];
end;
if nargin < 4 %no bounding box
bb = [-78 -112 -50; 78 76 85];%[ -90 -126 -72; 90 90 108];
end;
if nargin < 5 %delete images
DeleteIntermediateImages = 1;
end;
if nargin < 6 %UseTemplateMask
UseTemplateMask= 0;
end;
if UseTemplateMask== 1
TemplateMask = fullfile(spm('Dir'),'apriori','brainmask.nii');
if ~exist(TemplateMask, 'file')
TemplateMask = fullfile(spm('Dir'),'toolbox','FieldMap','brainmask.nii');
end
if ~exist(TemplateMask, 'file')
error('Unable to find %s', TemplateMask);
end
if (clinical_filedir_exists(TemplateMask ) == 0) %report if files do not exist
fprintf('%s error: Mask not found %s\n',mfilename, TemplateMask );
return
end;
end;
if (size(lesion) > 1)
if (size(lesion) ~= size(V))
fprintf('You must specify the same number of lesions as CT scans\n');
return;
end;
end;
for i=1:size(V,1) %fix GE images prior to attempting to set origins
clinical_fix_ge_ct (deblank(V(i,:)));
end
if exist('AutoSetOrigin', 'var') && (AutoSetOrigin)
for i=1:size(V,1)
r = deblank(V(i,:));
if ~isempty(lesion)
r = strvcat(r, deblank(lesion(i,:)) );
end
clinical_setorigin(r,3); %coregister to CT
end;
end;
smoothlesion = true;
%spm_jobman('initcfg'); %<- resets batch editor
for i=1:size(V,1)
r = deblank(V(i,:));
[pth,nam,ext, ~] = spm_fileparts(r);
ref = fullfile(pth,[nam ext]);
if (exist(ref,'file' ) ~= 2)
fprintf('Error: unable to find source image %s.\n',ref);
return;
end;
cref = h2cSub (ref);
%next - prepare lesion mask
if ~isempty(lesion)
[pthL,namL,extL] = spm_fileparts(deblank(lesion(1,:)));
lesionname = fullfile(pthL,[namL extL]);
if (clinical_filedir_exists(lesionname ) == 0) %report if files do not exist
fprintf(' No lesion image found named: %s\n', lesionname );
return
end;
clinical_smoothmask(lesionname);
maskname = fullfile(pthL,['x' namL extL]);
if smoothlesion == true
slesionname = clinical_smooth(lesionname, 3); %lesions often drawn in plane, with edges between planes - apply 3mm smoothing
else
slesionname = lesionname;
end; %if smooth lesion
matlabbatch{1}.spm.spatial.normalise.estwrite.subj.wtsrc = {[maskname ,',1']};
%to turn off lesion masking replacing previous line with next line:
%matlabbatch{1}.spm.spatial.normalise.estwrite.subj.wtsrc = '';
matlabbatch{1}.spm.spatial.normalise.estwrite.subj.resample = {[slesionname ,',1'];[ref,',1']};
fprintf('masking %s with %s using template %s.\n',ref, slesionname, cttemplate);
else % if no lesion
matlabbatch{1}.spm.spatial.normalise.estwrite.subj.wtsrc = '';
matlabbatch{1}.spm.spatial.normalise.estwrite.subj.resample = {[ref,',1']};
fprintf('normalizing %s without a mask using template %s.\n',ref, cttemplate);
end;
%next normalize
matlabbatch{1}.spm.spatial.normalise.estwrite.subj.source = {[cref,',1']};
matlabbatch{1}.spm.spatial.normalise.estwrite.eoptions.template = {[cttemplate ,',1']};
%matlabbatch{1}.spm.spatial.normalise.estwrite.eoptions.weight = '';
if UseTemplateMask == 1
matlabbatch{1}.spm.spatial.normalise.estwrite.eoptions.weight = {[TemplateMask ,',1']};
else
matlabbatch{1}.spm.spatial.normalise.estwrite.eoptions.weight = '';
end;
matlabbatch{1}.spm.spatial.normalise.estwrite.eoptions.smosrc = 8;
matlabbatch{1}.spm.spatial.normalise.estwrite.eoptions.smoref = 0;
matlabbatch{1}.spm.spatial.normalise.estwrite.eoptions.regtype = 'mni';
matlabbatch{1}.spm.spatial.normalise.estwrite.eoptions.cutoff = 25;
matlabbatch{1}.spm.spatial.normalise.estwrite.eoptions.nits = 16;
matlabbatch{1}.spm.spatial.normalise.estwrite.eoptions.reg = 1;
matlabbatch{1}.spm.spatial.normalise.estwrite.roptions.preserve = 0;
matlabbatch{1}.spm.spatial.normalise.estwrite.roptions.bb = bb;
matlabbatch{1}.spm.spatial.normalise.estwrite.roptions.vox = vox; %2x2x2mm isotropic
%matlabbatch{1}.spm.spatial.normalise.write.roptions.bb = [ -90 -126 -72; 90 90 108];
%matlabbatch{1}.spm.spatial.normalise.write.roptions.vox = [2 2 2]; %2x2x2mm isotropic
%matlabbatch{1}.spm.spatial.normalise.estwrite.roptions.vox = [1 1 1];
matlabbatch{1}.spm.spatial.normalise.estwrite.roptions.interp = 1;
matlabbatch{1}.spm.spatial.normalise.estwrite.roptions.wrap = [0 0 0];
matlabbatch{1}.spm.spatial.normalise.estwrite.roptions.prefix = 'w';
spm_jobman('run',matlabbatch);
if (DeleteIntermediateImages == 1)
clinical_delete(cref); %delete cormack image
if ~isempty(lesion)
clinical_delete(maskname);
if smoothlesion == true
clinical_delete(slesionname);
end; %if smoothed lesions
end; %if lesions
end;% if delete
%make lesion binary, create voi
if ~isempty(lesion) %we have a lesion
clinical_binarize(fullfile(pthL,['ws' namL extL])); %lesion maps are considered binary (a voxel is either injured or not)
if (DeleteIntermediateImages == 1)
clinical_delete(fullfile(pthL,['ws' namL extL]));
end; %we can delete the continuous lesion map
clinical_nii2voi(fullfile(pthL,['bws' namL extL]));
end;
end; %for each volume
%clinical_ctnorm
function fnm = h2cSub (fnm)
%converts a CT scan from Hounsfield Units to Cormack
% fnm: image name [optional]
%Example
% h2c('C:\ct\script\ct.nii');
if ~exist('fnm','var')
fnm = spm_select(1,'image','Select CT to convert');
end;
hdr = spm_vol(deblank(fnm));
img = spm_read_vols(hdr);
mx = max(img(:));
mn = min(img(:));
range = mx-mn;
if (range < 1999) || (mn > -500)
fprintf('Warning: image intensity range (%f) does not appear to be in Hounsfield units.\n',range);
return;
end %CR 5/5/2014: only scale if values are sensible!
if (mn < -1024) %some GE scanners place artificial rim around air
img(img < -1024) = -1024;
mn = min(img(:));
range = mx-mn;
end;
fprintf('%s intensity range: %d\n',fnm,round(range));
fprintf(' Ignore QFORM0 warning if reported next\n');
%constants for conversion
[kUninterestingDarkUnits, kInterestingMidUnits] = clinical_cormack();
kScaleRatio = 10;% increase dynamic range of interesting voxels by 3
%convert image
img = img - mn; %transloate so min value is 0
extra1 = img - kUninterestingDarkUnits;
extra1(extra1 <= 0) = 0; %clip dark to zero
extra9=extra1;
extra9(extra9 > kInterestingMidUnits) = kInterestingMidUnits; %clip bright
extra9 = extra9 * (kScaleRatio-1); %boost mid range
%transform image
img = img+extra1+extra9; %dark+bright+boostedMidRange
%save output
[pth,nam,ext] = spm_fileparts(hdr.fname);
hdr.fname = fullfile(pth, ['c' nam ext]);
hdr.private.dat.scl_slope = 1;
hdr.private.dat.scl_inter = 0;
spm_write_vol(hdr,img);
fnm = hdr.fname; %return new filename
%end h2cSub() |
github | neurolabusc/Clinical-master | clinical_c2h.m | .m | Clinical-master/clinical_c2h.m | 2,519 | utf_8 | 29509e31a5236c2335080a5db93557dc | function clinical_c2h (V)
% This script converts a CT scan from Cormack to Hounsfield Units
% V: image name(s) [optional]
% Example
% clinical_c2h('C:\ct\script\Pat1nolesion.nii');
fprintf('CT Cormack to Hounsfield version 4/4/2016\n');
if nargin <1 %no files
V = spm_select(inf,'image','Select CT[s] to normalize');
end;
for i=1:size(V,1)
ref = deblank(V(i,:));
[pth,nam,ext] = spm_fileparts(ref);
ref= fullfile(pth,[nam ext]);
if (exist(ref,'file') ~= 2)
fprintf('Error: unable to find source image %s.\n',ref);
return;
end;
hdr = spm_vol(deblank(V(i,:)));
% determine range...
img = spm_read_vols(hdr);
img(~isfinite(img)) = 0;
fprintf('%s input intensity range %.0f %.0f\n',ref,round(min(img(:))),round(max(img(:))));
fprintf(' Ignore QFORM0 warning if reported next\n');
% next scale from Hounsfield to Cormack
[pth,nam,ext] = spm_fileparts(hdr.fname);
hdr.fname = fullfile(pth,['h' nam ext]);
img = c2hsub(img(:));
img = reshape(img,hdr.dim);
if spm_type(hdr.dt(1),'minval') >= 0
slope = 1;
hdr.dt(1) = 16; %2014
fprintf('Saving %s as 32-bit floating point\n',hdr.fname);
elseif spm_type(hdr.dt(1),'intt')
%Hounsfield values -1024...max(img)
mx = max(max(img(:)), abs(min(img(:))) );
slope = mx/ spm_type(hdr.dt(1),'maxval') ;
else
slope = 1;
end
hdr.pinfo(1) = slope; %2014 - change slope in pinfo as well as private
hdr.pinfo(2) = 0; %2014 - change intercept in pinfo as well as private
spm_write_vol(hdr,img);
end; %for each volume
%end clinical_c2h()
function out = c2hsub(img)
%Convert Cormack to Hounsfield
[kUninterestingDarkUnits, kInterestingMidUnits] = clinical_cormack();
kScaleRatio = 10;% increase dynamic range of interesting voxels by 3
kMax = kInterestingMidUnits * (kScaleRatio+1);
if (min(img(:)) < 0)
error('c2h error: negative brightnesses impossible in the Cormack scale');
end
img = img-kUninterestingDarkUnits; %out now correct for 0..UninterestingUnits
out = img; %out now correct for 0..UninterestingUnits
v = img/(kScaleRatio+1);
idx = intersect (find(img > 0),find(img <= kMax));
%end c2hsub()
out(idx) = v(idx); %out now correct for 0..UninterestingUnits+kInterestingMidUnits
v = img - kMax + (kMax/(kScaleRatio+1)); %compute voxels brighter than interesting
idx = find(img > kMax);
out(idx) = v(idx); %out now correct for all intensities
out = out+(kUninterestingDarkUnits-1024); %air is darkest at ~-1000: most 12-bit CT systems encode as -1024
%end c2hsub() |
github | neurolabusc/Clinical-master | clinical_mrnormseg12.m | .m | Clinical-master/clinical_mrnormseg12.m | 20,699 | utf_8 | cfe8526928e343dc16153dbf4e355c3d | function clinical_mrnormseg12(T1,lesion,T2, UseXTemplate, vox, bb, DeleteIntermediateImages, ssthresh, autoOrigin)
%Known as either clinical_mrnormseg12 or nii_enat_norm depending on if it
%is part of the clinical toolbox
% see Nachev et al. (2008) http://www.ncbi.nlm.nih.gov/pubmed/18023365
% T1: filename of T1 image
% Lesion: filename of lesion map
% T2: (optional) filename of image used to draw lesion, if '' then lesion drawn on T1
% UseXTemplate: if false (default) standard SPM template is used, else special template
%Examples
% clinical_mrnormseg12('T1_LM1054.nii','LS_LM1054.nii','') %lesion drawn on T1 scan
% clinical_mrnormseg12('T1_LM1054.nii','LS_LM1054.nii',''T2_LM1054.nii') %lesion drawn on T2 scan
% clinical_mrnormseg12('MB_T1.nii','',''); %no lesion - control participant
% clinical_mrnormseg12 %use graphical interface
%STEP 0: check inputs
isSPM12orNewerSub;
if isempty(spm_figure('FindWin','Graphics')), spm fmri; end; %launch SPM if it is not running
T1param = exist('T1','var'); %did the user provide a T1 scan
if ~T1param, T1 = spm_select(1,'image','Select T1 images'); end;
if isempty(T1), return; end;
if ~exist('lesion','var') && ~T1param, lesion = spm_select(1,'image','Optional: select lesion map'); end;
if ~exist('lesion','var'), lesion = ''; end;
if ~isempty(lesion) && ~exist('T2','var'), T2 = spm_select(1,'image','Optional: Select image used to draw lesion (if not T1)'); end;
if ~exist('T2','var'), T2 = ''; end;
if ~exist('UseXTemplate','var'),UseXTemplate = 0; end;
if ~exist('vox','var'), vox = [1 1 1]; end;
if ~exist('bb','var'), bb = [-78 -112 -70; 78 76 85]; end;
if ~exist('DeleteIntermediateImages','var'), DeleteIntermediateImages = true; end;
if ~exist('ssthresh','var'), ssthresh = 0.005; end; %with SPM12, better GM, so threshold of 1%
if ~exist('autoOrigin','var')
%ButtonName = questdlg('Automatic origin detection?','Preferences', 'Yes', 'No', 'No');
%autoOrigin = strcmpi(ButtonName,'Yes');
autoOrigin = false;
end
T1 = stripVolSub(T1); lesion = stripVolSub(lesion); T2 = stripVolSub(T2);
if isDoneSub(T1), fprintf('Already done: skipping normalization of %s\n',T1); return; end;
if ~isempty(lesion), [T1,lesion,T2] = checkDimsSub(T1, lesion, T2); end; %check alignment
%0: rough estimate for origin and alignment
if autoOrigin
setOriginSub({T1, T2, lesion}, 1);
end
if isempty(lesion) %if no lesion - standard normalization
newSegSub(T1,'', UseXTemplate);
%2: create 'b' (brain extracted) image without scalp signal
bT1 = extractSub(ssthresh, T1, prefixSub('c2', T1), prefixSub('c1', T1));
rT1 = newSegWriteSub(T1, bT1, vox, bb); %#ok<NASGU>
%wT1 = newSegWriteSub(T1, T1, vox, bb); %#ok<NASGU>
return;
end
%1: align lesion/t2 to match T1
[rT2, rlesion] = coregEstWriteSub(T1,T2,lesion); %#ok<ASGLU>
rlesion = smoothSub(rlesion, 3);
%2: make image without lesion
eT1 = entiamorphicSub (T1, rlesion);
%[eT1, erT2] = entiamorphicSub (T1, rlesion, rT2); %for multichannel
%3: new-segment image
newSegSub(eT1,'', UseXTemplate);
%newSegSub(eT1, erT2, UseXTemplate); %for multichannel
%4: create 'b' (brain extracted) image without scalp signal
bT1 = extractSub(ssthresh, T1, prefixSub('c2', eT1), prefixSub('c1', eT1));
%5: warp render image to standard space
rT1 = newSegWriteSub(eT1, bT1, vox, bb); %#ok<NASGU>
%6: warp lesion to standard space
wrlesion = newSegWriteSub(eT1, rlesion, vox, bb, true); %#ok<NASGU>
wT1 = newSegWriteSub(eT1, T1, vox, bb); %#ok<NASGU>
if DeleteIntermediateImages, deleteSub(T1); end;
%end nii_enat_norm()
%--- local functions follow
%function img = smoothSub(img, FWHM)
%[pth,nam,ext] = spm_fileparts(img);
%smth = fullfile(pth, ['s' nam ext]);
%spm_smooth(img, smth, FWHM, 0);
%img = smth;
%end smoothSub()
function isDone = isDoneSub(T1)
isDone = false;
[pth,nam,ext] = fileparts(T1);
b = fullfile(pth,['b', nam, ext]); %brain extracted image
if ~exist(b,'file'), return; end;
defname = fullfile(pth,['y_' nam ext]); %control normalization
edefname = fullfile(pth,['y_e' nam ext]); %patient normalization
if exist(defname,'file') || exist(edefname,'file'), isDone = true; end;
%end isDoneSub()
function img = smoothSub(img, FWHM)
if isempty(img), return; end;
hdr = spm_vol(img);
im = spm_read_vols(hdr);
if (spm_type(hdr.dt,'intt')) %integer data
mn = min(im(:));
range = max(im(:)) - mn;
if range < 10 && range > 0
im = (im - mn) * 255/range;
end
hdr.pinfo(1) = 1; %slope
hdr.pinfo(2) = 0; %intercept
end
smoothFWHMmm = [FWHM FWHM FWHM];
VOX = sqrt(sum(hdr.mat(1:3,1:3).^2));
smoothFWHMvox = smoothFWHMmm/VOX; %for 3D arrays the FWHM is specified in voxels
presmooth = im+0; %+0 forces new matrix
spm_smooth(presmooth,im,smoothFWHMvox,0);
[pth,nam,ext] = spm_fileparts(img);
img = fullfile(pth, ['s' nam ext]);
hdr.fname = img;
spm_write_vol (hdr, squeeze (im ));
function img = stripVolSub(img)
%strip volume from lesion name, 'img.nii,1' -> 'img.nii'
if isempty(img), return; end;
[n,m,x] = spm_fileparts(img); %we ignore the volume
img = fullfile(n, [m, x]);
%end stripVolSub()
function [T1,lesion,T2] = checkDimsSub(T1, lesion, T2)
if ~exist(T1,'file'), error('T1 image required %s', T1); end;
if ~exist('lesion','var'), return; end;
if isempty(lesion), return; end;
if ~exist(lesion,'file'), error('Lesion image not found %s', lesion); end;
hdrT1 = spm_vol(T1);
hdrLS = spm_vol(lesion);
mmLS = (hdrLS.mat * [0 0 0 1]'); %vox2mm, [0 0 0 1; 0 0 1 1]'
mmT1 = (hdrT1.mat * [0 0 0 1]');
dxT1 = sqrt(sum((mmT1(1:3)-mmLS(1:3)).^2)); %error between T1 and lesion
if exist('T2','var') && ~isempty(T2)
if ~exist(T2,'file'), error('T2 image not found %s', T2); end;
hdrT2 = spm_vol(T2);
%we compute distance differently for T2/Lesion as these will be resliced...
[mnT2, mxT2] = bbSub(hdrT2); %range of T2 bounding box
[mnLS, mxLS] = bbSub(hdrLS); %range of Lesion bounding box
dxMn = sqrt(sum((mnT2(1:3)-mnLS(1:3)).^2)); %error between T2 and lesion
dxMx = sqrt(sum((mxT2(1:3)-mxLS(1:3)).^2)); %error between T2 and lesion
if (dxMn > 1) || (dxMx > 1)
if (dxT1 < 0.25)
T2 = '';
fprintf('WARNING: T2 dimensions do not match lesion - ASSUME lesion drawn on T1');
else
fprintf('WARNING: Neither T2 nor T1 aligned to lesion.');
end
end
return;
end %if T2 is present
if ~all(hdrT1.dim == hdrLS.dim)
error('WARNING: T1 dimensions do not match lesion %s %s',T1, lesion);
end
if (dxT1 > 0.25)
fprintf('WARNING: T1 poorly aligned to lesion.');
end
%end checkDimsSub()
function [mn, mx] = bbSub(hdr) %return range for image bounding box
d = hdr.dim(1:3);
c = [ 1 1 1 1
1 1 d(3) 1
1 d(2) 1 1
1 d(2) d(3) 1
d(1) 1 1 1
d(1) 1 d(3) 1
d(1) d(2) 1 1
d(1) d(2) d(3) 1 ]';
tc = hdr.mat(1:3,1:4)*c;
% bounding box (world) min and max
mn = min(tc,[],2)';
mx = max(tc,[],2)';
%end bbSub()
function deleteSub(T1)
deletePrefixSub ('LR', T1)
deletePrefixSub ('rLR', T1)
%deleteSub
function deletePrefixSub (pre, nam)
nam = prefixSub (pre, nam);
if exist(nam, 'file'), delete(nam); end;
%end deletePrefixSub()
function isSPM12orNewerSub
%check that SPM is installed and is at least release 6225
if exist('spm','file') ~= 2, error('Please install SPM12 or later'); end;
[v,r] = spm('Ver','',1); r = str2double(r); %#ok<ASGLU>
if r < 6225, error('Please update your copy of SPM'); end;
%end isSPM12orNewer()
function t1Bet = extractSub(thresh, t1, c1, c2, c3)
%subroutine to extract brain from surrounding scalp
% t1: anatomical scan to be extracted
% c1: gray matter map
% c2: white matter map
% c3: [optional] spinal fluid map
fprintf('Brain extraction of %s\n', t1);
[pth,nam,ext] = spm_fileparts(t1);
%load headers
mi = spm_vol(t1);%bias corrected T1
gi = spm_vol(c1);%Gray Matter map
wi = spm_vol(c2);%White Matter map
%load images
m = spm_read_vols(mi);
g = spm_read_vols(gi);
w = spm_read_vols(wi);
if nargin > 4 && ~isempty(c3)
ci = spm_vol(c3);%CSF map
c = spm_read_vols(ci);
w = c+w;
end;
w = g+w;
if thresh <= 0
m=m.*w;
else
mask= zeros(size(m));
mask(w >= thresh) = 255;
spm_smooth(mask,mask,1); %feather the edges
mask = mask / 255;
m=m.*mask;
end;
mi.fname = fullfile(pth,['b', nam, ext]);
mi.dt(1) = 4; %16-bit precision more than sufficient uint8=2; int16=4; int32=8; float32=16; float64=64
spm_write_vol(mi,m);
t1Bet = mi.fname;
%end extractSub()
function targetname = newSegWriteSub(t1name, targetname, vox, bb, binarize)
%reslice img using pre-existing new-segmentation deformation field
if isempty(targetname) || isempty(t1name), return; end;
if ~exist('bb','var'), bb = [-78 -112 -50; 78 76 85]; end;
warning('yy');bb
if ~exist('vox','var'), vox =[2 2 2]; end;
[pth,nam,ext, vol] = spm_fileparts(t1name); %#ok<NASGU>
defname = fullfile(pth,['y_' nam ext]);
if ~exist(defname,'file')
error('Unable to find new-segment deformation image %s',defname);
end
fprintf('Warping %s based on NewSegment of %s\n', targetname, t1name);
matlabbatch{1}.spm.spatial.normalise.write.subj.def = {defname};
matlabbatch{1}.spm.spatial.normalise.write.subj.resample = {targetname};
matlabbatch{1}.spm.spatial.normalise.write.woptions.bb = bb;
matlabbatch{1}.spm.spatial.normalise.write.woptions.vox = vox;
matlabbatch{1}.spm.spatial.normalise.write.woptions.interp = 1; %4; //trilinear avoids ringing
spm_jobman('run',matlabbatch);
targetname = prefixSub('w', targetname);
if ~exist('binarize','var') || ~binarize, return; end;
hdr = spm_vol(targetname);
img = spm_read_vols(hdr);
mn = min(img(:));
mx = max(img(:));
thresh = ((mx-mn)*0.5) + mn;
spm_write_vol(hdr,+(img > thresh));
%end newSegWriteSub()
function newSegSub(t1, t2, UseXTemplate)
%apply new segment - return name of warping matrix
template = fullfile(spm('Dir'),'tpm','TPM.nii');
if nargin > 2 && UseXTemplate
xtemplate = fullfile(spm('Dir'),'toolbox','Clinical','TPM4mm.nii');
if exist(xtemplate,'file')
template = xtemplate;
else
fprintf('WARNING: unable to find template named %s\n', xtemplate);
end
end
if ~exist(template,'file')
error('Unable to find template named %s',template);
end
fprintf('NewSegment of %s\n', t1);
matlabbatch{1}.spm.spatial.preproc.channel(1).vols = {t1};
matlabbatch{1}.spm.spatial.preproc.channel(1).biasreg = 0.001;
matlabbatch{1}.spm.spatial.preproc.channel(1).biasfwhm = 60;
matlabbatch{1}.spm.spatial.preproc.channel(1).write = [0 0];
if nargin > 1 && ~isempty(t2)
matlabbatch{1}.spm.spatial.preproc.channel(2).vols = {t2};
matlabbatch{1}.spm.spatial.preproc.channel(2).biasreg = 0.0001;
matlabbatch{1}.spm.spatial.preproc.channel(2).biasfwhm = 60;
matlabbatch{1}.spm.spatial.preproc.channel(2).write = [0 0];
end;
matlabbatch{1}.spm.spatial.preproc.tissue(1).tpm = {[template ',1']};
matlabbatch{1}.spm.spatial.preproc.tissue(1).ngaus = 1;
matlabbatch{1}.spm.spatial.preproc.tissue(1).native = [1 1];
matlabbatch{1}.spm.spatial.preproc.tissue(1).warped = [0 0];
matlabbatch{1}.spm.spatial.preproc.tissue(2).tpm = {[template ',2']};
matlabbatch{1}.spm.spatial.preproc.tissue(2).ngaus = 1;
matlabbatch{1}.spm.spatial.preproc.tissue(2).native = [1 1];
matlabbatch{1}.spm.spatial.preproc.tissue(2).warped = [0 0];
matlabbatch{1}.spm.spatial.preproc.tissue(3).tpm = {[template ',3']};
matlabbatch{1}.spm.spatial.preproc.tissue(3).ngaus = 2;
matlabbatch{1}.spm.spatial.preproc.tissue(3).native = [1 0];
matlabbatch{1}.spm.spatial.preproc.tissue(3).warped = [0 0];
matlabbatch{1}.spm.spatial.preproc.tissue(4).tpm = {[template ',4']};
matlabbatch{1}.spm.spatial.preproc.tissue(4).ngaus = 3;
matlabbatch{1}.spm.spatial.preproc.tissue(4).native = [1 0];
matlabbatch{1}.spm.spatial.preproc.tissue(4).warped = [0 0];
matlabbatch{1}.spm.spatial.preproc.tissue(5).tpm = {[template ',5']};
matlabbatch{1}.spm.spatial.preproc.tissue(5).ngaus = 4;
matlabbatch{1}.spm.spatial.preproc.tissue(5).native = [1 0];
matlabbatch{1}.spm.spatial.preproc.tissue(5).warped = [0 0];
matlabbatch{1}.spm.spatial.preproc.tissue(6).tpm = {[template ',6']};
matlabbatch{1}.spm.spatial.preproc.tissue(6).ngaus = 2;
matlabbatch{1}.spm.spatial.preproc.tissue(6).native = [0 0];
matlabbatch{1}.spm.spatial.preproc.tissue(6).warped = [0 0];
matlabbatch{1}.spm.spatial.preproc.warp.mrf = 1;
matlabbatch{1}.spm.spatial.preproc.warp.cleanup = 1;
matlabbatch{1}.spm.spatial.preproc.warp.reg = [0 0.001 0.5 0.05 0.2];
matlabbatch{1}.spm.spatial.preproc.warp.affreg = 'mni';
matlabbatch{1}.spm.spatial.preproc.warp.fwhm = 0;
matlabbatch{1}.spm.spatial.preproc.warp.samp = 3;
matlabbatch{1}.spm.spatial.preproc.warp.write = [1 1];
spm_jobman('run',matlabbatch);
%end newSegSub()
function [intactT1, intactT2] = entiamorphicSub (T1, lesionNam, T2)
%Generates image suitable for Enantiomorphic normalization, see www.pubmed.com/18023365
% anatNam : filename of anatomical scan
% lesionNam : filename of lesion map in register with anatomical
%returns name of new image with two 'intact' hemispheres
if ~exist('T1','var') %no files specified
T1 = spm_select(1,'image','Select anatomical image');
end
if ~exist('lesionNam','var') %no files specified
lesionNam = spm_select(1,'image','Select lesion image');
end
if isempty(lesionNam)
intactT1 = T1;
fprintf('entiamorphicSub skipped: no lesion\n');
return;
end
if (exist(T1,'file') == 0) || (exist(lesionNam,'file') == 0)
error('%s unable to find files %s or %s',mfilename, T1, lesionNam);
end
if nargin < 3, T2 = ''; end;
fprintf('Using lesion %s to substitute %s\n', lesionNam, T1);
%create flipped image
T1lr = flipSub(T1);
T2lr = flipSub(T2);
[T1lr, T2lr] = coregEstWriteSub(T1, T1lr, T2lr); %reslice mirror
intactT2 = insertSub(T2, T2lr, lesionNam);
intactT1 = insertSub(T1, T1lr, lesionNam);
%end entiamorphicSub()
function namFilled = insertSub(nam, namLR, lesion)
%namLR donates voxels masked by lesion to image nam
if isempty(nam), namFilled =''; return; end;
hdrLesion = spm_vol(lesion);
imgLesion = spm_read_vols(hdrLesion);
rdata = +(imgLesion > (max(imgLesion(:))/2)); %binarize raw lesion data, + converts logical to double
spm_smooth(rdata,imgLesion,4); %blur data
rdata = +(imgLesion > 0.05); %dilate: more than 5%
spm_smooth(rdata,imgLesion,8); %blur data
%now use lesion map to blend flipped and original image
hdr = spm_vol(nam);
img = spm_read_vols(hdr);
hdr_flip = spm_vol(namLR);
imgFlip = spm_read_vols(hdr_flip);
if ~isequal(size(img), size(imgLesion)), error('Dimensions do not match %s %s', lesion, nam); end;
rdata = (img(:) .* (1.0-imgLesion(:)))+ (imgFlip(:) .* imgLesion(:));
rdata = reshape(rdata, size(img));
[pth, nam, ext] = spm_fileparts(hdr.fname);
hdr_flip.fname = fullfile(pth,['e' nam ext]);%image with lesion filled with intact hemisphere
spm_write_vol(hdr_flip,rdata);
namFilled = hdr_flip.fname;
%insertSub()
function namLR = flipSub (nam)
if isempty(nam), namLR = ''; return; end;
hdr = spm_vol(nam);
img = spm_read_vols(hdr);
[pth, nam, ext] = spm_fileparts(hdr.fname);
namLR = fullfile(pth, ['LR', nam, ext]);
hdr_flip = hdr;
hdr_flip.fname = namLR;
hdr_flip.mat = [-1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] * hdr_flip.mat;
spm_write_vol(hdr_flip,img);
%end flipSub()
function [T2, lesion] = coregEstWriteSub(T1, T2, lesion)
%coregister T2 to match T1 image, apply to lesion
if isempty(T1) || isempty(T2), return; end;
fprintf('Coregistering %s to match %s\n',T2,T1);
matlabbatch{1}.spm.spatial.coreg.estwrite.ref = {T1};
matlabbatch{1}.spm.spatial.coreg.estwrite.source = {T2};
matlabbatch{1}.spm.spatial.coreg.estwrite.other = {lesion};
matlabbatch{1}.spm.spatial.coreg.estwrite.eoptions.cost_fun = 'nmi';
matlabbatch{1}.spm.spatial.coreg.estwrite.eoptions.sep = [4 2];
matlabbatch{1}.spm.spatial.coreg.estwrite.eoptions.tol = [0.02 0.02 0.02 0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001];
matlabbatch{1}.spm.spatial.coreg.estwrite.eoptions.fwhm = [7 7];
matlabbatch{1}.spm.spatial.coreg.estwrite.roptions.interp = 1;
matlabbatch{1}.spm.spatial.coreg.estwrite.roptions.wrap = [0 0 0];
matlabbatch{1}.spm.spatial.coreg.estwrite.roptions.mask = 0;
matlabbatch{1}.spm.spatial.coreg.estwrite.roptions.prefix = 'r';
spm_jobman('run',matlabbatch);
T2 = prefixSub('r',T2);
if ~isempty(lesion), lesion = prefixSub('r',lesion); end;
%end coregEstSub()
function nam = prefixSub (pre, nam)
[p, n, x] = spm_fileparts(nam);
nam = fullfile(p, [pre, n, x]);
%end prefixSub()
function coivox = setOriginSub(vols, modality)
%Align images so that origin and alignment roughly match MNI space
% vols : cell string of image name(s) - first image used for estimate, others yoked
% modality : modality of first image 1=T1, 2=T2, 3=EPI
%Example
% setOrigin('T1.nii',1); %align T1 scan
% setOrigin({'T1s005.nii', 'fmriblocks009.nii'},1); %use T1 to align T1 and fMRI data
% setOrigin %use graphical interface
%Chris Rorden 12/2014 (now supports SPM12)
if ~exist('vols','var') %no files specified
vols = spm_select(inf,'image','Reset origin for selected image(s) (estimated from 1st)');
end
if ischar(vols)
vols = cellstr(vols);
end
if ~exist('modality','var') %no files specified
modality = 1;
fprintf('%s Modality not specified, assuming T1\n', mfilename);
end
coivox = ones(4,1);
%extract filename
[pth,nam,ext, ~] = spm_fileparts(deblank(vols{1}));
fname = fullfile(pth,[nam ext]); %strip volume label
%report if filename does not exist...
if (exist(fname, 'file') ~= 2)
fprintf('%s error: unable to find image %s.\n',mfilename,fname);
return;
end;
hdr = spm_vol([fname,',1']); %load header
img = spm_read_vols(hdr); %load image data
img = img - min(img(:));
img(isnan(img)) = 0;
%find center of mass in each dimension (total mass divided by weighted location of mass
% img = [1 2 1; 3 4 3];
sumTotal = sum(img(:));
coivox(1) = sum(sum(sum(img,3),2)'.*(1:size(img,1)))/sumTotal; %dimension 1
coivox(2) = sum(sum(sum(img,3),1).*(1:size(img,2)))/sumTotal; %dimension 2
coivox(3) = sum(squeeze(sum(sum(img,2),1))'.*(1:size(img,3)))/sumTotal; %dimension 3
XYZ_mm = hdr.mat * coivox; %convert from voxels to millimeters
fprintf('%s center of brightness differs from current origin by %.0fx%.0fx%.0fmm in X Y Z dimensions\n',fname,XYZ_mm(1),XYZ_mm(2),XYZ_mm(3));
for v = 1: numel(vols)
fname = deblank(vols{v});
if ~isempty(fname)
[pth,nam,ext, ~] = spm_fileparts(fname);
fname = fullfile(pth,[nam ext]);
hdr = spm_vol([fname ',1']); %load header of first volume
fname = fullfile(pth,[nam '.mat']);
if exist(fname,'file')
destname = fullfile(pth,[nam '_old.mat']);
copyfile(fname,destname);
fprintf('%s is renaming %s to %s\n',mfilename,fname,destname);
end
hdr.mat(1,4) = hdr.mat(1,4) - XYZ_mm(1);
hdr.mat(2,4) = hdr.mat(2,4) - XYZ_mm(2);
hdr.mat(3,4) = hdr.mat(3,4) - XYZ_mm(3);
spm_create_vol(hdr);
if exist(fname,'file')
delete(fname);
end
end
end%for each volume
coregEstTemplateSub(vols, modality);
for v = 1: numel(vols)
[pth, nam, ~, ~] = spm_fileparts(deblank(vols{v}));
fname = fullfile(pth,[nam '.mat']);
if exist(fname,'file')
delete(fname);
end
end %for each volume
%end setOriginSub()
function coregEstTemplateSub(vols, modality)
if modality == 2
template = fullfile(spm('Dir'),'canonical','avg152T2.nii');
elseif modality == 3
template = fullfile(spm('Dir'),'toolbox','OldNorm','EPI.nii');
else
template = fullfile(spm('Dir'),'canonical','avg152T1.nii');
end
if ~exist(template,'file')
error('Unable to find template named %s\n', template);
end
if ischar(vols)
vols = cellstr(vols);
end
vols(strcmp('',vols)) = []; %remove empty strings
%matlabbatch{1}.spm.spatial.coreg.estimate.ref = {'/Users/Shared/spm12/canonical/avg152PD.nii,1'};
matlabbatch{1}.spm.spatial.coreg.estimate.ref = {template};
%matlabbatch{1}.spm.spatial.coreg.estimate.source = {'/Users/rorden/Desktop/pre/bvisiblehuman.nii,1'};
matlabbatch{1}.spm.spatial.coreg.estimate.source = {[deblank(vols{1}),',1']};%{'/Users/rorden/Desktop/3D.nii,1'};
if numel(vols) > 1
matlabbatch{1}.spm.spatial.coreg.estimate.other = vols(2:end);
else
matlabbatch{1}.spm.spatial.coreg.estimate.other = {''};
end
if size(matlabbatch{1}.spm.spatial.coreg.estimate.other,2) > 1, %must be column
matlabbatch{1}.spm.spatial.coreg.estimate.other = matlabbatch{1}.spm.spatial.coreg.estimate.other';
end
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.cost_fun = 'nmi';
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.sep = [4 2];
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.tol = [0.02 0.02 0.02 0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001];
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.fwhm = [7 7];
spm_jobman('run',matlabbatch);
%end coregEstTemplateSub()
|
github | neurolabusc/Clinical-master | clinical_setorigin.m | .m | Clinical-master/clinical_setorigin.m | 5,123 | utf_8 | 8af9a012335cf5865248e789ddd4e729 | function coivox = clinical_setorigin(vols, modality)
%Sets position and orientation of input image(s) to match SPM's templates
% vols: filenames for all images from a session.
% -if multiple images, the first image is used to determine transforms
% -if any images are 4D, only supply the file name
%Examples
% clinical_setorigin('T1.nii',1);
% clinical_setorigin(strvcat('T1.nii','fMRI.nii'),1); %estimate from T1, apply to both T1 and all fMRI volumes
%spm_jobman('initcfg');
if ~exist('vols','var') %no files specified
vols = spm_select(inf,'image','Select images (first image is high resolution)');
end;
if ~exist('modality','var') %modality not specified
prompt = {'Enter modality (1=T1,2=T2,CT=3,fMRI(T2*)=4'};
dlg_title = 'Specify contrast of 1st image';
num_lines = 1;
def = {'1'};
answer = inputdlg(prompt,dlg_title,num_lines,def);
modality = str2double(answer{1});
end
coivox = ones(4,1); %center of intensity
if ~exist('vols','var') %no files specified
vols = spm_select(inf,'image','Reset origin for selected image(s) (estimated from 1st)');
end
vols = vol1OnlySub(vols); %only process first volume of 4D datasets...
[pth,nam,ext, ~] = spm_fileparts(deblank(vols(1,:))); %extract filename
fname = fullfile(pth,[nam ext]); %strip volume label
%report if filename does not exist...
if (exist(fname, 'file') ~= 2)
fprintf('%s error: unable to find image %s.\n',mfilename,fname);
return;
end;
hdr = spm_vol([fname,',1']); %load header
img = spm_read_vols(hdr); %load image data
img = img - min(img(:));
img(isnan(img)) = 0;
%find center of mass in each dimension (total mass divided by weighted location of mass
% img = [1 2 1; 3 4 3];
sumTotal = sum(img(:));
coivox(1) = sum(sum(sum(img,3),2)'.*(1:size(img,1)))/sumTotal; %dimension 1
coivox(2) = sum(sum(sum(img,3),1).*(1:size(img,2)))/sumTotal; %dimension 2
coivox(3) = sum(squeeze(sum(sum(img,2),1))'.*(1:size(img,3)))/sumTotal; %dimension 3
XYZ_mm = hdr.mat * coivox; %convert from voxels to millimeters
fprintf('%s center of brightness differs from current origin by %.0fx%.0fx%.0fmm in X Y Z dimensions\n',fname,XYZ_mm(1),XYZ_mm(2),XYZ_mm(3));
for v = 1: size(vols,1)
fname = deblank(vols(v,:));
if ~isempty(fname)
[pth,nam,ext, ~] = spm_fileparts(fname);
fname = fullfile(pth,[nam ext]);
hdr = spm_vol([fname ',1']); %load header of first volume
fname = fullfile(pth,[nam '.mat']);
if exist(fname,'file')
destname = fullfile(pth,[nam '_old.mat']);
copyfile(fname,destname);
fprintf('%s is renaming %s to %s\n',mfilename,fname,destname);
end
hdr.mat(1,4) = hdr.mat(1,4) - XYZ_mm(1);
hdr.mat(2,4) = hdr.mat(2,4) - XYZ_mm(2);
hdr.mat(3,4) = hdr.mat(3,4) - XYZ_mm(3);
spm_create_vol(hdr);
if exist(fname,'file')
delete(fname);
end
end
end%for each volume
coregSub(vols, modality);
for v = 1: size(vols,1)
[pth, nam, ~, ~] = spm_fileparts(deblank(vols(v,:)));
fname = fullfile(pth,[nam '.mat']);
if exist(fname,'file')
delete(fname);
end
end%for each volume
%end nii_setOrigin()
function coregSub(vols, modality)
%subroutine coregisters vols to template of specified modality
if modality == 2
template = fullfile(spm('Dir'),'templates','T2.nii');
if ~exist(template, 'file')
template = fullfile(spm('Dir'),'toolbox','OldNorm','T2.nii');
end
elseif modality == 3
tbx = 'Clinical-master';
if ~exist(fullfile(spm('Dir'),'toolbox',tbx), 'dir')
tbx = 'Clinical';
end
template = fullfile(spm('Dir'),'toolbox',tbx,'scct.nii');
elseif modality == 4
template = fullfile(spm('Dir'),'templates','EPI.nii');
if ~exist(template, 'file')
template = fullfile(spm('Dir'),'toolbox','OldNorm','EPI.nii');
end
else
template = fullfile(spm('Dir'),'templates','T1.nii');
if ~exist(template, 'file')
template = fullfile(spm('Dir'),'toolbox','OldNorm','T1.nii');
end
end
if ~exist(template,'file')
error('%s Unable to find template named %s\n', mfilename, template);
end
matlabbatch{1}.spm.spatial.coreg.estimate.ref = {template};
matlabbatch{1}.spm.spatial.coreg.estimate.source = {[deblank(vols(1,:)),',1']};%{'/Users/rorden/Desktop/3D.nii,1'};
matlabbatch{1}.spm.spatial.coreg.estimate.other = cellstr(vols(2:end,:));% {''};
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.cost_fun = 'nmi';
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.sep = [4 2];
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.tol = [0.02 0.02 0.02 0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001];
matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.fwhm = [7 7];
spm_jobman('run',matlabbatch);
%end coregSub()
function vols = vol1OnlySub(vols)
%only select first volume of multivolume images '/dir/img.nii' -> '/dir/img.nii,1', '/dir/img.nii,33' -> '/dir/img.nii,1'
oldvols = vols;
vols = [];
for v = 1: size(oldvols,1)
[pth,nam,ext, ~] = spm_fileparts(deblank(oldvols(v,:)));
vols = strvcat(vols, fullfile(pth, [ nam ext ',1']) ); %#ok<REMFF1>
end
%end vol1OnlySub() |
github | neurolabusc/Clinical-master | clinical_fix_ge_ct.m | .m | Clinical-master/clinical_fix_ge_ct.m | 991 | utf_8 | 934ded9b73952366587245d3d3aefa0d | function clinical_fix_ge_ct (fnms)
% Fixes GE CT images with intensities of -3024 for regions outside imaging radius
% These artificial rims disrupt normalization and coregistration
% fnms: image name(s) [optional]
% Example
% ge_fix_ct('C:\ct.nii');
if ~exist('fnms','var')
fnms = spm_select(inf,'image','Select CT[s] to normalize');
end;
for i=1:size(fnms,1)
geFixSub( deblank(fnms(i,:)) );
end
%end clinical_h2c - local functions follow
function geFixSub (fnm)
hdr = spm_vol(deblank(fnm));
img = spm_read_vols(hdr);
mn = min(img(:));
if (mn >= -1024)
fprintf('%s skipped: This image does not have unusual image intensities: %s.\n',mfilename, fnm);
return;
end
fprintf('%s version 8/8/2014: clipping artificially dark values in %s\n',mfilename, fnm);
[pth,nam,ext] = spm_fileparts(hdr.fname);
movefile(hdr.fname, fullfile(pth, [ nam '_pre_fix_ge_ct' ext]) );
img(img < -1024) = -1024;
%hdr.fname = fullfile(pth, ['f' nam ext]);
spm_write_vol(hdr,img);
%end geFixSub() |
github | urbste/MLPnP_matlab_toolbox-master | MLPnP.m | .m | MLPnP_matlab_toolbox-master/MLPnP/MLPnP.m | 7,826 | utf_8 | 15b113f908d73d9cc201205d217d0c6d | % Steffen Urban email: [email protected]
% Copyright (C) 2016 Steffen Urban
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License along
% with this program; if not, write to the Free Software Foundation, Inc.,
% 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
% 28.06.2016 by Steffen Urban
% if you use this file it would be neat to cite our paper:
% @INPROCEEDINGS {mlpnp2016,
% author = "Urban, S.; Leitloff, J.; Hinz, S.",
% title = "MLPNP - A REAL-TIME MAXIMUM LIKELIHOOD SOLUTION TO THE PERSPECTIVE-N-POINT PROBLEM.",
% booktitle = "ISPRS Annals of Photogrammetry, Remote Sensing \& Spatial Information Sciences",
% year = "2016",
% volume = "3",
% pages = "131-138"}
%% MLPnP - Maximum Likelihood Perspective-N-Point
% input: 1. points3D - a 3xN matrix of N 3D points in the object coordinate system
% 2. v - a 3xN matrix of N bearing vectors (camera rays)
% ||v|| = 1
% 3. cov - if covariance information of bearing vectors if
% available then cov is a 9xN matrix.
% e.g. it can be computed from image plane variances
% sigma_x and sigma_y (in case of perspective cameras):
% cov = K\diag([sigma_x sigma_y 0])/K'
% cov = reshape(cov,9,1)
% here K\ and /K' are the Jacobians of the image to
% bearing vector transformation (inverse calibration
% matrix K. Details in the paper.
% output: 1. T - 4x4 transformation matrix [R T;0 0 0 1]
% 2. statistics - contains statistics after GN refinement, see
% optim_GN.m for details
function [T, statistics] = MLPnP(points3D, v, cov)
use_cov = 1;
% if cov is not given don't use it
if nargin < 3
use_cov = 0;
end
nrPts = size(points3D,2);
% matrix of null space vectors r and s
r = zeros(3,nrPts);
s = zeros(3,nrPts);
cov_reduced = zeros(2,2,nrPts);
% test planarity, only works well if the scene is really planar
% quasi-planar won't work very well
S = points3D*points3D';
[eigRot,~] = eig(S);
planar = 0;
% create full design matrix
A = zeros(nrPts,12);
if (rank(S) == 2)
planar = 1;
points3D1 = eigRot'*(points3D);
points3Dn = [points3D1;ones(1,nrPts)];
% create reduced design matrix
A = zeros(nrPts,9);
else
points3Dn = [points3D;ones(1,nrPts)];
end
% compute null spaces of bearing vector v: null(v')
for i=1:nrPts
null_2d = null(v(1:3,i)');
r(:,i) = null_2d(:,1);
s(:,i) = null_2d(:,2);
if use_cov
tmp = reshape(cov(:,i),3,3);
cov_reduced(:,:,i) = (null_2d'*tmp*null_2d)^-1;
end
end
% stochastic model
Kll = eye(2*nrPts,2*nrPts);
% if (normalize)
% points3Dn = normc(points3Dn);
% end
if planar % build reduces system
for i=1:nrPts
if (use_cov)
Kll(2*i-1:2*i,2*i-1:2*i) = cov_reduced(:,:,i);
end
% r12
A (2*i-1,1) = r(1,i)*points3Dn(2,i);
A (2*i,1) = s(1,i)*points3Dn(2,i);
% r13
A (2*i-1,2) = r(1,i)*points3Dn(3,i);
A (2*i,2) = s(1,i)*points3Dn(3,i);
% r22
A (2*i-1,3) = r(2,i)*points3Dn(2,i);
A (2*i,3) = s(2,i)*points3Dn(2,i);
% r23
A (2*i-1,4) = r(2,i)*points3Dn(3,i);
A (2*i,4) = s(2,i)*points3Dn(3,i);
% r31
A (2*i-1,5) = r(3,i)*points3Dn(2,i);
A (2*i,5) = s(3,i)*points3Dn(2,i);
% r32
A (2*i-1,6) = r(3,i)*points3Dn(3,i);
A (2*i,6) = s(3,i)*points3Dn(3,i);
% t1
A (2*i-1,7) = r(1,i);
A (2*i,7) = s(1,i);
% t2
A (2*i-1,8) = r(2,i);
A (2*i,8) = s(2,i);
% t3
A (2*i-1,9) = r(3,i);
A (2*i,9) = s(3,i);
end
else % build full system
for i=1:nrPts
if (use_cov)
Kll(2*i-1:2*i,2*i-1:2*i) = cov_reduced(:,:,i);
end
% r11
A (2*i-1,1) = r(1,i)*points3Dn(1,i);
A (2*i,1) = s(1,i)*points3Dn(1,i);
% r12
A (2*i-1,2) = r(1,i)*points3Dn(2,i);
A (2*i,2) = s(1,i)*points3Dn(2,i);
% r13
A (2*i-1,3) = r(1,i)*points3Dn(3,i);
A (2*i,3) = s(1,i)*points3Dn(3,i);
% r21
A (2*i-1,4) = r(2,i)*points3Dn(1,i);
A (2*i,4) = s(2,i)*points3Dn(1,i);
% r22
A (2*i-1,5) = r(2,i)*points3Dn(2,i);
A (2*i,5) = s(2,i)*points3Dn(2,i);
% r23
A (2*i-1,6) = r(2,i)*points3Dn(3,i);
A (2*i,6) = s(2,i)*points3Dn(3,i);
% r31
A (2*i-1,7) = r(3,i)*points3Dn(1,i);
A (2*i,7) = s(3,i)*points3Dn(1,i);
% r32
A (2*i-1,8) = r(3,i)*points3Dn(2,i);
A (2*i,8) = s(3,i)*points3Dn(2,i);
% r33
A (2*i-1,9) = r(3,i)*points3Dn(3,i);
A (2*i,9) = s(3,i)*points3Dn(3,i);
% t1
A (2*i-1,10) = r(1,i);
A (2*i,10) = s(1,i);
% t2
A (2*i-1,11) = r(2,i);
A (2*i,11) = s(2,i);
% t3
A (2*i-1,12) = r(3,i);
A (2*i,12) = s(3,i);
end
end
% do least squares AtPAx=0
b = A'*A;
[~,~,v1] = svd(b);
if planar
tout1 = v1(7:9,end);
P = zeros(3,3);
P(:,2:3) = reshape(v1(1:6,end),2,3)';
scalefact = sqrt(abs(norm(P(:,2))*norm(P(:,3))));
P(:,1) = cross(P(:,2),P(:,3));
P = P';
%SVD to find the best rotation matrix in the Frobenius sense
[U2,~,V2] = svd(P(1:3,1:3));
R = U2*V2';
if det(R) < 0
R = -1*R;
end
% rotate solution back (see paper)
R = eigRot*R;
% recover translation
tout = (tout1./scalefact);
R = -R';
R1 = [R(:,1) R(:,2) R(:,3)];
R2 = [-R(:,1) -R(:,2) R(:,3)];
Ts = zeros(4,4,4);
Ts(:,:,1) = [R1 tout;0 0 0 1];
Ts(:,:,2) = [R1 -tout;0 0 0 1];
Ts(:,:,3) = [R2 tout;0 0 0 1];
Ts(:,:,4) = [R2 -tout;0 0 0 1];
% find the best solution with 6 correspondences
diff1 = zeros(4,1);
for te = 1:6
for ba = 1:4
testres1 = Ts(:,:,ba)*[points3D(:,te);1];
testres11 = normc(testres1(1:3));
diff1(ba) = diff1(ba) + (1-dot(testres11,v(:,te)));
end
end
[~,idx] = min(diff1);
T = Ts(:,:,idx);
else
tout1 = v1(10:12,end);
P = reshape(v1(1:9,end),3,3);
scalefact = (abs(norm(P(:,1))*norm(P(:,2))*norm(P(:,3))))^(1/3);
%SVD to find the best rotation matrix in the Frobenius sense
[U2,~,V2] = svd(P(1:3,1:3));
R = U2*V2';
if det(R) < 0
R = -1*R;
end
% recover translation
tout = R*(tout1./scalefact);
T1 = [R tout;0 0 0 1]^-1;
T2 = [R -tout;0 0 0 1]^-1;
diff1 = 0;
diff2 = 0;
% find the best solution with 6 correspondences
for te = 1:6
testres1 = T1*[points3D(:,te);1];
testres2 = T2*[points3D(:,te);1];
testres1 = normc(testres1(1:3));
testres2 = normc(testres2(1:3));
diff1 = diff1+(1-dot(testres1,v(:,te)));
diff2 = diff2+(1-dot(testres2,v(:,te)));
end
if diff1 < diff2
T = T1(1:3,1:4);
else
T = T2(1:3,1:4);
end
end
optimFlags.epsP = 1e-6;
optimFlags.epsF = 1e-6;
optimFlags.maxit = 5;
optimFlags.tau = 1e-4;
[T, statistics] = optim_MLPnP_GN(T, points3D, r, s, Kll, optimFlags);
end
|
github | urbste/MLPnP_matlab_toolbox-master | optim_MLPnP_GN.m | .m | MLPnP_matlab_toolbox-master/MLPnP/optim_MLPnP_GN.m | 2,228 | utf_8 | af445840b833a0de35d6d61ca9922e25 | % Steffen Urban email: [email protected]
% Copyright (C) 2016 Steffen Urban
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License along
% with this program; if not, write to the Free Software Foundation, Inc.,
% 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
% 28.06.2016 Steffen Urban
function [Tout, statistic] = optim_MLPnP_GN(Tinit, points3D, ...
rnull, snull, P, optimFlags)
% homogeneous to minimal
x = [Rodrigues2(Tinit(1:3,1:3))', Tinit(1:3,4)']';
nrL = size(rnull,2);
% redundancy
redundanz = 2*nrL - length(x);
% optim params
epsParam = optimFlags.epsP;
epsFunc = optimFlags.epsF;
% iteration params
cnt = 0;
stop = false;
invKll = P;
while cnt < optimFlags.maxit && stop == 0
[r, J] = residualsAndJacobian(x, rnull, snull, points3D);
% design matrix
N = J.'*invKll*J;
% System matrix
g = J.'*invKll*r;
dx = pinv(N)*g;
if (max(abs(dx)) > 20 || min(abs(dx)) > 1)
break;
end
dl = J*dx(1:end);
if max(abs(dl)) < epsFunc || max(abs(dx(1:end))) < epsParam
x = x-dx;
break;
else
% update parameter vector
x = x-dx;
end
cnt = cnt+1;
end % while loop
% minimal to homogeneous
Tout = [Rodrigues2(x(1:3)) x(4:6)];
% empirical variance factor
resV = r.'*invKll*r;
if redundanz > 0
if redundanz < nrL
s0 = 1;
else
s0 = resV / redundanz;
end
else
s0 = NaN;
end
% variance-covariance matrix
Qxx = pinv(N);
% cofactor matrix of "adjusted observations"
Qldld = J*Qxx*J';
statistic = {resV, r, J, Qxx, s0, Qldld, sqrt(s0.*diag(Qxx))};
end
|
github | urbste/MLPnP_matlab_toolbox-master | jacobians_Rodrigues.m | .m | MLPnP_matlab_toolbox-master/MLPnP/jacobians_Rodrigues.m | 13,690 | utf_8 | 4493413b9b6e5b3fa9e0813528b5875d | % Steffen Urban email: [email protected]
% Copyright (C) 2016 Steffen Urban
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License along
% with this program; if not, write to the Free Software Foundation, Inc.,
% 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
% 28.06.2016 Steffen Urban
% file was created with the Matlab symbolic toolbox
% todo: jacobians would probably a lot easier if I'd use expmap and
% optimize near the identity...
% would need to change the update step from x+dx to exp(dx)*exp(x) or sth
function jacs = jacobians_Rodrigues(X1,Y1,Z1,r1,r2,r3,s1,s2,s3,t1,t2,t3,w1,w2,w3)
t5 = w1.^2;
t6 = w2.^2;
t7 = w3.^2;
t8 = t5+t6+t7;
t9 = sqrt(t8);
t10 = sin(t9);
t11 = 1.0./sqrt(t8);
t12 = cos(t9);
t13 = t12-1.0;
t14 = 1.0./t8;
t16 = t10.*t11.*w3;
t17 = t13.*t14.*w1.*w2;
t19 = t10.*t11.*w2;
t20 = t13.*t14.*w1.*w3;
t24 = t6+t7;
t27 = t16+t17;
t28 = Y1.*t27;
t29 = t19-t20;
t30 = Z1.*t29;
t31 = t13.*t14.*t24;
t32 = t31+1.0;
t33 = X1.*t32;
t15 = t1-t28+t30+t33;
t21 = t10.*t11.*w1;
t22 = t13.*t14.*w2.*w3;
t45 = t5+t7;
t53 = t16-t17;
t54 = X1.*t53;
t55 = t21+t22;
t56 = Z1.*t55;
t57 = t13.*t14.*t45;
t58 = t57+1.0;
t59 = Y1.*t58;
t18 = t2+t54-t56+t59;
t34 = t5+t6;
t38 = t19+t20;
t39 = X1.*t38;
t40 = t21-t22;
t41 = Y1.*t40;
t42 = t13.*t14.*t34;
t43 = t42+1.0;
t44 = Z1.*t43;
t23 = t3-t39+t41+t44;
t25 = 1.0./t8.^(3.0./2.0);
t26 = 1.0./t8.^2;
t35 = t12.*t14.*w1.*w2;
t36 = t5.*t10.*t25.*w3;
t37 = t5.*t13.*t26.*w3.*2.0;
t46 = t10.*t25.*w1.*w3;
t47 = t5.*t10.*t25.*w2;
t48 = t5.*t13.*t26.*w2.*2.0;
t49 = t10.*t11;
t50 = t5.*t12.*t14;
t51 = t13.*t26.*w1.*w2.*w3.*2.0;
t52 = t10.*t25.*w1.*w2.*w3;
t60 = t15.^2;
t61 = t18.^2;
t62 = t23.^2;
t63 = t60+t61+t62;
t64 = t5.*t10.*t25;
t65 = 1.0./sqrt(t63);
t66 = Y1.*r2.*t6;
t67 = Z1.*r3.*t7;
t68 = r1.*t1.*t5;
t69 = r1.*t1.*t6;
t70 = r1.*t1.*t7;
t71 = r2.*t2.*t5;
t72 = r2.*t2.*t6;
t73 = r2.*t2.*t7;
t74 = r3.*t3.*t5;
t75 = r3.*t3.*t6;
t76 = r3.*t3.*t7;
t77 = X1.*r1.*t5;
t78 = X1.*r2.*w1.*w2;
t79 = X1.*r3.*w1.*w3;
t80 = Y1.*r1.*w1.*w2;
t81 = Y1.*r3.*w2.*w3;
t82 = Z1.*r1.*w1.*w3;
t83 = Z1.*r2.*w2.*w3;
t84 = X1.*r1.*t6.*t12;
t85 = X1.*r1.*t7.*t12;
t86 = Y1.*r2.*t5.*t12;
t87 = Y1.*r2.*t7.*t12;
t88 = Z1.*r3.*t5.*t12;
t89 = Z1.*r3.*t6.*t12;
t90 = X1.*r2.*t9.*t10.*w3;
t91 = Y1.*r3.*t9.*t10.*w1;
t92 = Z1.*r1.*t9.*t10.*w2;
t102 = X1.*r3.*t9.*t10.*w2;
t103 = Y1.*r1.*t9.*t10.*w3;
t104 = Z1.*r2.*t9.*t10.*w1;
t105 = X1.*r2.*t12.*w1.*w2;
t106 = X1.*r3.*t12.*w1.*w3;
t107 = Y1.*r1.*t12.*w1.*w2;
t108 = Y1.*r3.*t12.*w2.*w3;
t109 = Z1.*r1.*t12.*w1.*w3;
t110 = Z1.*r2.*t12.*w2.*w3;
t93 = t66+t67+t68+t69+t70+t71+t72+t73+t74+t75+t76+t77+t78+t79+t80+t81+t82+...
t83+t84+t85+t86+t87+t88+t89+t90+t91+t92-t102-t103-t104-t105-t106-t107-t108-t109-t110;
t94 = t10.*t25.*w1.*w2;
t95 = t6.*t10.*t25.*w3;
t96 = t6.*t13.*t26.*w3.*2.0;
t97 = t12.*t14.*w2.*w3;
t98 = t6.*t10.*t25.*w1;
t99 = t6.*t13.*t26.*w1.*2.0;
t100 = t6.*t10.*t25;
t101 = 1.0./t63.^(3.0./2.0);
t111 = t6.*t12.*t14;
t112 = t10.*t25.*w2.*w3;
t113 = t12.*t14.*w1.*w3;
t114 = t7.*t10.*t25.*w2;
t115 = t7.*t13.*t26.*w2.*2.0;
t116 = t7.*t10.*t25.*w1;
t117 = t7.*t13.*t26.*w1.*2.0;
t118 = t7.*t12.*t14;
t119 = t13.*t24.*t26.*w1.*2.0;
t120 = t10.*t24.*t25.*w1;
t121 = t119+t120;
t122 = t13.*t26.*t34.*w1.*2.0;
t123 = t10.*t25.*t34.*w1;
t131 = t13.*t14.*w1.*2.0;
t124 = t122+t123-t131;
t139 = t13.*t14.*w3;
t125 = -t35+t36+t37+t94-t139;
t126 = X1.*t125;
t127 = t49+t50+t51+t52-t64;
t128 = Y1.*t127;
t129 = t126+t128-Z1.*t124;
t130 = t23.*t129.*2.0;
t132 = t13.*t26.*t45.*w1.*2.0;
t133 = t10.*t25.*t45.*w1;
t138 = t13.*t14.*w2;
t134 = -t46+t47+t48+t113-t138;
t135 = X1.*t134;
t136 = -t49-t50+t51+t52+t64;
t137 = Z1.*t136;
t140 = X1.*s1.*t5;
t141 = Y1.*s2.*t6;
t142 = Z1.*s3.*t7;
t143 = s1.*t1.*t5;
t144 = s1.*t1.*t6;
t145 = s1.*t1.*t7;
t146 = s2.*t2.*t5;
t147 = s2.*t2.*t6;
t148 = s2.*t2.*t7;
t149 = s3.*t3.*t5;
t150 = s3.*t3.*t6;
t151 = s3.*t3.*t7;
t152 = X1.*s2.*w1.*w2;
t153 = X1.*s3.*w1.*w3;
t154 = Y1.*s1.*w1.*w2;
t155 = Y1.*s3.*w2.*w3;
t156 = Z1.*s1.*w1.*w3;
t157 = Z1.*s2.*w2.*w3;
t158 = X1.*s1.*t6.*t12;
t159 = X1.*s1.*t7.*t12;
t160 = Y1.*s2.*t5.*t12;
t161 = Y1.*s2.*t7.*t12;
t162 = Z1.*s3.*t5.*t12;
t163 = Z1.*s3.*t6.*t12;
t164 = X1.*s2.*t9.*t10.*w3;
t165 = Y1.*s3.*t9.*t10.*w1;
t166 = Z1.*s1.*t9.*t10.*w2;
t183 = X1.*s3.*t9.*t10.*w2;
t184 = Y1.*s1.*t9.*t10.*w3;
t185 = Z1.*s2.*t9.*t10.*w1;
t186 = X1.*s2.*t12.*w1.*w2;
t187 = X1.*s3.*t12.*w1.*w3;
t188 = Y1.*s1.*t12.*w1.*w2;
t189 = Y1.*s3.*t12.*w2.*w3;
t190 = Z1.*s1.*t12.*w1.*w3;
t191 = Z1.*s2.*t12.*w2.*w3;
t167 = t140+t141+t142+t143+t144+t145+t146+t147+t148+t149+t150+t151+t152+...
t153+t154+t155+t156+t157+t158+t159+t160+t161+t162+t163+t164+t165+t166-...
t183-t184-t185-t186-t187-t188-t189-t190-t191;
t168 = t13.*t26.*t45.*w2.*2.0;
t169 = t10.*t25.*t45.*w2;
t170 = t168+t169;
t171 = t13.*t26.*t34.*w2.*2.0;
t172 = t10.*t25.*t34.*w2;
t176 = t13.*t14.*w2.*2.0;
t173 = t171+t172-t176;
t174 = -t49+t51+t52+t100-t111;
t175 = X1.*t174;
t177 = t13.*t24.*t26.*w2.*2.0;
t178 = t10.*t24.*t25.*w2;
t192 = t13.*t14.*w1;
t179 = -t97+t98+t99+t112-t192;
t180 = Y1.*t179;
t181 = t49+t51+t52-t100+t111;
t182 = Z1.*t181;
t193 = t13.*t26.*t34.*w3.*2.0;
t194 = t10.*t25.*t34.*w3;
t195 = t193+t194;
t196 = t13.*t26.*t45.*w3.*2.0;
t197 = t10.*t25.*t45.*w3;
t200 = t13.*t14.*w3.*2.0;
t198 = t196+t197-t200;
t199 = t7.*t10.*t25;
t201 = t13.*t24.*t26.*w3.*2.0;
t202 = t10.*t24.*t25.*w3;
t203 = -t49+t51+t52-t118+t199;
t204 = Y1.*t203;
t205 = t1.*2.0;
t206 = Z1.*t29.*2.0;
t207 = X1.*t32.*2.0;
t208 = t205+t206+t207-Y1.*t27.*2.0;
t209 = t2.*2.0;
t210 = X1.*t53.*2.0;
t211 = Y1.*t58.*2.0;
t212 = t209+t210+t211-Z1.*t55.*2.0;
t213 = t3.*2.0;
t214 = Y1.*t40.*2.0;
t215 = Z1.*t43.*2.0;
t216 = t213+t214+t215-X1.*t38.*2.0;
jacs = reshape([t14.*t65.*(X1.*r1.*w1.*2.0+X1.*r2.*w2+X1.*r3.*w3+Y1.*r1.*w2+...
Z1.*r1.*w3+r1.*t1.*w1.*2.0+r2.*t2.*w1.*2.0+r3.*t3.*w1.*2.0+Y1.*r3.*t5.*t12+...
Y1.*r3.*t9.*t10-Z1.*r2.*t5.*t12-Z1.*r2.*t9.*t10-X1.*r2.*t12.*w2-X1.*r3.*t12.*w3-...
Y1.*r1.*t12.*w2+Y1.*r2.*t12.*w1.*2.0-Z1.*r1.*t12.*w3+Z1.*r3.*t12.*w1.*2.0+...
Y1.*r3.*t5.*t10.*t11-Z1.*r2.*t5.*t10.*t11+X1.*r2.*t12.*w1.*w3-...
X1.*r3.*t12.*w1.*w2-Y1.*r1.*t12.*w1.*w3+Z1.*r1.*t12.*w1.*w2-...
Y1.*r1.*t10.*t11.*w1.*w3+Z1.*r1.*t10.*t11.*w1.*w2-...
X1.*r1.*t6.*t10.*t11.*w1-X1.*r1.*t7.*t10.*t11.*w1+X1.*r2.*t5.*t10.*t11.*w2+...
X1.*r3.*t5.*t10.*t11.*w3+Y1.*r1.*t5.*t10.*t11.*w2-Y1.*r2.*t5.*t10.*t11.*w1-...
Y1.*r2.*t7.*t10.*t11.*w1+Z1.*r1.*t5.*t10.*t11.*w3-Z1.*r3.*t5.*t10.*t11.*w1-...
Z1.*r3.*t6.*t10.*t11.*w1+X1.*r2.*t10.*t11.*w1.*w3-X1.*r3.*t10.*t11.*w1.*w2+...
Y1.*r3.*t10.*t11.*w1.*w2.*w3+Z1.*r2.*t10.*t11.*w1.*w2.*w3)-t26.*t65.*t93.*w1.*2.0-...
t14.*t93.*t101.*(t130+t15.*(-X1.*t121+Y1.*(t46+t47+t48-t13.*t14.*w2-t12.*t14.*w1.*w3)+...
Z1.*(t35+t36+t37-t13.*t14.*w3-t10.*t25.*w1.*w2)).*2.0+...
t18.*(t135+t137-Y1.*(t132+t133-t13.*t14.*w1.*2.0)).*2.0).*(1.0./2.0),t14.*t65.*(X1.*s1.*w1.*2.0+X1.*s2.*w2+...
X1.*s3.*w3+Y1.*s1.*w2+Z1.*s1.*w3+s1.*t1.*w1.*2.0+s2.*t2.*w1.*2.0+...
s3.*t3.*w1.*2.0+Y1.*s3.*t5.*t12+Y1.*s3.*t9.*t10-Z1.*s2.*t5.*t12-Z1.*s2.*t9.*t10-X1.*s2.*t12.*w2-...
X1.*s3.*t12.*w3-Y1.*s1.*t12.*w2+Y1.*s2.*t12.*w1.*2.0-Z1.*s1.*t12.*w3+...
Z1.*s3.*t12.*w1.*2.0+Y1.*s3.*t5.*t10.*t11-Z1.*s2.*t5.*t10.*t11+...
X1.*s2.*t12.*w1.*w3-X1.*s3.*t12.*w1.*w2-Y1.*s1.*t12.*w1.*w3+...
Z1.*s1.*t12.*w1.*w2+X1.*s2.*t10.*t11.*w1.*w3-X1.*s3.*t10.*t11.*w1.*w2-...
Y1.*s1.*t10.*t11.*w1.*w3+Z1.*s1.*t10.*t11.*w1.*w2-X1.*s1.*t6.*t10.*t11.*w1-...
X1.*s1.*t7.*t10.*t11.*w1+X1.*s2.*t5.*t10.*t11.*w2+X1.*s3.*t5.*t10.*t11.*w3+...
Y1.*s1.*t5.*t10.*t11.*w2-Y1.*s2.*t5.*t10.*t11.*w1-Y1.*s2.*t7.*t10.*t11.*w1+...
Z1.*s1.*t5.*t10.*t11.*w3-Z1.*s3.*t5.*t10.*t11.*w1-Z1.*s3.*t6.*t10.*t11.*w1+...
Y1.*s3.*t10.*t11.*w1.*w2.*w3+Z1.*s2.*t10.*t11.*w1.*w2.*w3)-...
t14.*t101.*t167.*(t130+t15.*(Y1.*(t46+t47+t48-t113-t138)+...
Z1.*(t35+t36+t37-t94-t139)-X1.*t121).*2.0+t18.*(t135+t137-...
Y1.*(-t131+t132+t133)).*2.0).*(1.0./2.0)-t26.*t65.*t167.*w1.*2.0,t14.*t65.*(X1.*r2.*w1+...
Y1.*r1.*w1+Y1.*r2.*w2.*2.0+Y1.*r3.*w3+Z1.*r2.*w3+r1.*t1.*w2.*2.0+...
r2.*t2.*w2.*2.0+r3.*t3.*w2.*2.0-X1.*r3.*t6.*t12-X1.*r3.*t9.*t10+...
Z1.*r1.*t6.*t12+Z1.*r1.*t9.*t10+X1.*r1.*t12.*w2.*2.0-X1.*r2.*t12.*w1-...
Y1.*r1.*t12.*w1-Y1.*r3.*t12.*w3-Z1.*r2.*t12.*w3+Z1.*r3.*t12.*w2.*2.0-...
X1.*r3.*t6.*t10.*t11+Z1.*r1.*t6.*t10.*t11+X1.*r2.*t12.*w2.*w3-Y1.*r1.*t12.*w2.*w3+...
Y1.*r3.*t12.*w1.*w2-Z1.*r2.*t12.*w1.*w2-Y1.*r1.*t10.*t11.*w2.*w3+...
Y1.*r3.*t10.*t11.*w1.*w2-Z1.*r2.*t10.*t11.*w1.*w2-X1.*r1.*t6.*t10.*t11.*w2+...
X1.*r2.*t6.*t10.*t11.*w1-X1.*r1.*t7.*t10.*t11.*w2+Y1.*r1.*t6.*t10.*t11.*w1-...
Y1.*r2.*t5.*t10.*t11.*w2-Y1.*r2.*t7.*t10.*t11.*w2+Y1.*r3.*t6.*t10.*t11.*w3-...
Z1.*r3.*t5.*t10.*t11.*w2+Z1.*r2.*t6.*t10.*t11.*w3-Z1.*r3.*t6.*t10.*t11.*w2+...
X1.*r2.*t10.*t11.*w2.*w3+X1.*r3.*t10.*t11.*w1.*w2.*w3+Z1.*r1.*t10.*t11.*w1.*w2.*w3)-...
t26.*t65.*t93.*w2.*2.0-t14.*t93.*t101.*(t18.*(Z1.*(-t35+t94+t95+t96-t13.*t14.*w3)-...
Y1.*t170+X1.*(t97+t98+t99-t13.*t14.*w1-t10.*t25.*w2.*w3)).*2.0+...
t15.*(t180+t182-X1.*(t177+t178-t13.*t14.*w2.*2.0)).*2.0+t23.*(t175+...
Y1.*(t35-t94+t95+t96-t13.*t14.*w3)-Z1.*t173).*2.0).*(1.0./2.0),t14.*t65.*(X1.*s2.*w1+...
Y1.*s1.*w1+Y1.*s2.*w2.*2.0+Y1.*s3.*w3+Z1.*s2.*w3+s1.*t1.*w2.*2.0+s2.*t2.*w2.*2.0+...
s3.*t3.*w2.*2.0-X1.*s3.*t6.*t12-X1.*s3.*t9.*t10+Z1.*s1.*t6.*t12+Z1.*s1.*t9.*t10+...
X1.*s1.*t12.*w2.*2.0-X1.*s2.*t12.*w1-Y1.*s1.*t12.*w1-Y1.*s3.*t12.*w3-Z1.*s2.*t12.*w3+...
Z1.*s3.*t12.*w2.*2.0-X1.*s3.*t6.*t10.*t11+Z1.*s1.*t6.*t10.*t11+X1.*s2.*t12.*w2.*w3-...
Y1.*s1.*t12.*w2.*w3+Y1.*s3.*t12.*w1.*w2-Z1.*s2.*t12.*w1.*w2+X1.*s2.*t10.*t11.*w2.*w3-...
Y1.*s1.*t10.*t11.*w2.*w3+Y1.*s3.*t10.*t11.*w1.*w2-Z1.*s2.*t10.*t11.*w1.*w2-...
X1.*s1.*t6.*t10.*t11.*w2+X1.*s2.*t6.*t10.*t11.*w1-X1.*s1.*t7.*t10.*t11.*w2+...
Y1.*s1.*t6.*t10.*t11.*w1-Y1.*s2.*t5.*t10.*t11.*w2-Y1.*s2.*t7.*t10.*t11.*w2+...
Y1.*s3.*t6.*t10.*t11.*w3-Z1.*s3.*t5.*t10.*t11.*w2+Z1.*s2.*t6.*t10.*t11.*w3-...
Z1.*s3.*t6.*t10.*t11.*w2+X1.*s3.*t10.*t11.*w1.*w2.*w3+Z1.*s1.*t10.*t11.*w1.*w2.*w3)-...
t26.*t65.*t167.*w2.*2.0-t14.*t101.*t167.*(t18.*(X1.*(t97+t98+t99-t112-t192)+...
Z1.*(-t35+t94+t95+t96-t139)-Y1.*t170).*2.0+t15.*(t180+t182-X1.*(-t176+t177+t178)).*2.0+...
t23.*(t175+Y1.*(t35-t94+t95+t96-t139)-Z1.*t173).*2.0).*(1.0./2.0),t14.*t65.*(X1.*r3.*w1+...
Y1.*r3.*w2+Z1.*r1.*w1+Z1.*r2.*w2+Z1.*r3.*w3.*2.0+r1.*t1.*w3.*2.0+r2.*t2.*w3.*2.0+...
r3.*t3.*w3.*2.0+X1.*r2.*t7.*t12+X1.*r2.*t9.*t10-Y1.*r1.*t7.*t12-Y1.*r1.*t9.*t10+...
X1.*r1.*t12.*w3.*2.0-X1.*r3.*t12.*w1+Y1.*r2.*t12.*w3.*2.0-Y1.*r3.*t12.*w2-...
Z1.*r1.*t12.*w1-Z1.*r2.*t12.*w2+X1.*r2.*t7.*t10.*t11-Y1.*r1.*t7.*t10.*t11-...
X1.*r3.*t12.*w2.*w3+Y1.*r3.*t12.*w1.*w3+Z1.*r1.*t12.*w2.*w3-Z1.*r2.*t12.*w1.*w3+...
Y1.*r3.*t10.*t11.*w1.*w3+Z1.*r1.*t10.*t11.*w2.*w3-Z1.*r2.*t10.*t11.*w1.*w3-...
X1.*r1.*t6.*t10.*t11.*w3-X1.*r1.*t7.*t10.*t11.*w3+X1.*r3.*t7.*t10.*t11.*w1-...
Y1.*r2.*t5.*t10.*t11.*w3-Y1.*r2.*t7.*t10.*t11.*w3+Y1.*r3.*t7.*t10.*t11.*w2+...
Z1.*r1.*t7.*t10.*t11.*w1+Z1.*r2.*t7.*t10.*t11.*w2-Z1.*r3.*t5.*t10.*t11.*w3-...
Z1.*r3.*t6.*t10.*t11.*w3-X1.*r3.*t10.*t11.*w2.*w3+X1.*r2.*t10.*t11.*w1.*w2.*w3+...
Y1.*r1.*t10.*t11.*w1.*w2.*w3)-t26.*t65.*t93.*w3.*2.0-t14.*t93.*t101.*(t18.*(Z1.*(t46-...
t113+t114+t115-t13.*t14.*w2)-Y1.*t198+X1.*(t49+t51+t52+t118-t7.*t10.*t25)).*2.0+...
t23.*(X1.*(-t97+t112+t116+t117-t13.*t14.*w1)+Y1.*(-t46+t113+t114+t115-t13.*t14.*w2)-...
Z1.*t195).*2.0+t15.*(t204+Z1.*(t97-t112+t116+t117-t13.*t14.*w1)-...
X1.*(t201+t202-t13.*t14.*w3.*2.0)).*2.0).*(1.0./2.0),t14.*t65.*(X1.*s3.*w1+...
Y1.*s3.*w2+Z1.*s1.*w1+Z1.*s2.*w2+Z1.*s3.*w3.*2.0+s1.*t1.*w3.*2.0+s2.*t2.*w3.*2.0+...
s3.*t3.*w3.*2.0+X1.*s2.*t7.*t12+X1.*s2.*t9.*t10-Y1.*s1.*t7.*t12-Y1.*s1.*t9.*t10+...
X1.*s1.*t12.*w3.*2.0-X1.*s3.*t12.*w1+Y1.*s2.*t12.*w3.*2.0-...
Y1.*s3.*t12.*w2-Z1.*s1.*t12.*w1-Z1.*s2.*t12.*w2+X1.*s2.*t7.*t10.*t11-...
Y1.*s1.*t7.*t10.*t11-X1.*s3.*t12.*w2.*w3+Y1.*s3.*t12.*w1.*w3+Z1.*s1.*t12.*w2.*w3-...
Z1.*s2.*t12.*w1.*w3-X1.*s3.*t10.*t11.*w2.*w3+Y1.*s3.*t10.*t11.*w1.*w3+...
Z1.*s1.*t10.*t11.*w2.*w3-Z1.*s2.*t10.*t11.*w1.*w3-X1.*s1.*t6.*t10.*t11.*w3-...
X1.*s1.*t7.*t10.*t11.*w3+X1.*s3.*t7.*t10.*t11.*w1-Y1.*s2.*t5.*t10.*t11.*w3-...
Y1.*s2.*t7.*t10.*t11.*w3+Y1.*s3.*t7.*t10.*t11.*w2+Z1.*s1.*t7.*t10.*t11.*w1+...
Z1.*s2.*t7.*t10.*t11.*w2-Z1.*s3.*t5.*t10.*t11.*w3-Z1.*s3.*t6.*t10.*t11.*w3+...
X1.*s2.*t10.*t11.*w1.*w2.*w3+Y1.*s1.*t10.*t11.*w1.*w2.*w3)-t26.*t65.*t167.*w3.*2.0-...
t14.*t101.*t167.*(t18.*(Z1.*(t46-t113+t114+t115-t138)-Y1.*t198+...
X1.*(t49+t51+t52+t118-t199)).*2.0+t23.*(X1.*(-t97+t112+t116+t117-...
t192)+Y1.*(-t46+t113+t114+t115-t138)-Z1.*t195).*2.0+t15.*(t204+Z1.*(t97-t112+...
t116+t117-t192)-X1.*(-t200+t201+t202)).*2.0).*(1.0./2.0),r1.*t65-...
t14.*t93.*t101.*t208.*(1.0./2.0),s1.*t65-t14.*t101.*t167.*t208.*(1.0./2.0),r2.*t65-...
t14.*t93.*t101.*t212.*(1.0./2.0),s2.*t65-t14.*t101.*t167.*t212.*(1.0./2.0),r3.*t65-...
t14.*t93.*t101.*t216.*(1.0./2.0),s3.*t65-t14.*t101.*t167.*t216.*(1.0./2.0)],[2,6]);
|
github | urbste/MLPnP_matlab_toolbox-master | residualsAndJacobian.m | .m | MLPnP_matlab_toolbox-master/MLPnP/residualsAndJacobian.m | 1,387 | utf_8 | 89d0256a7c3f30ed205d43dd9c2208c6 | % Steffen Urban email: [email protected]
% Copyright (C) 2016 Steffen Urban
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License along
% with this program; if not, write to the Free Software Foundation, Inc.,
% 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
% 28.06.2016 Steffen Urban
function [err,J] = residualsAndJacobian(x, r, s, points3D)
nrPts = size(points3D,2);
err = zeros(2*nrPts,1);
J = zeros(2*nrPts,6);
R = Rodrigues2(x(1:3));
t = x(4:6);
res1 = R*points3D+repmat(t,1,nrPts);
normres = normc(res1(1:3,:));
for i=1:size(r,2)
err(2*i-1,1) = r(:,i)'*normres(:,i);
err(2*i,1) = s(:,i)'*normres(:,i);
J(2*i-1:2*i,1:6) = jacobians_Rodrigues(points3D(1,i),points3D(2,i),points3D(3,i),...
r(1,i),r(2,i),r(3,i),s(1,i),s(2,i),s(3,i),x(4),x(5),x(6),x(1),x(2),x(3));
end
end
|
github | urbste/MLPnP_matlab_toolbox-master | Rodrigues2.m | .m | MLPnP_matlab_toolbox-master/MLPnP/Rodrigues2.m | 1,658 | utf_8 | 392768dcf4fc591828ec95d9e0cb3814 | % Steffen Urban email: [email protected]
% Copyright (C) 2016 Steffen Urban
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License along
% with this program; if not, write to the Free Software Foundation, Inc.,
% 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
% 28.06.2016 Steffen Urban
function R2 = Rodrigues2(R1)
[r,c] = size(R1);
%% Rodrigues Rotation Vector to Rotation Matrix
if ((r == 3) && (c == 1)) || ((r == 1) && (c == 3))
wx = [ 0 -R1(3) R1(2);
R1(3) 0 -R1(1);
-R1(2) R1(1) 0 ];
omega_norm = sqrt(R1(1)^2 + R1(2)^2 + R1(3)^2);
if (omega_norm < eps)
R2 = eye(3);
else
R2 = eye(3) + ...
sin(omega_norm)/omega_norm*wx + ...
(1-cos(omega_norm))/omega_norm^2*wx^2;
end
%% Rotation Matrix to Rodrigues Rotation Vector
elseif (r == 3) && (c == 3)
w_norm = acos((trace(R1)-1)/2);
if (w_norm < eps)
R2 = [0 0 0]';
else
R2 = 1/(2*sin(w_norm)) * ...
[R1(3,2)-R1(2,3);R1(1,3)-R1(3,1);R1(2,1)-R1(1,2)]*w_norm;
end
end
|
github | urbste/MLPnP_matlab_toolbox-master | efficient_pnp_gauss.m | .m | MLPnP_matlab_toolbox-master/rpnp/code3/epnp/efficient_pnp_gauss.m | 7,985 | utf_8 | 361396729ae9c9291df547c60c062e74 | function [R,T,Xc,best_solution,opt]=efficient_pnp_gauss(x3d_h,x2d_h,A)
% EFFICIENT_PNP_GAUSS Main Function to solve the PnP problem
% as described in:
%
% Francesc Moreno-Noguer, Vincent Lepetit, Pascal Fua.
% Accurate Non-Iterative O(n) Solution to the PnP Problem.
% In Proceedings of ICCV, 2007.
%
% Note: In this version of the software we perform a final
% optimization using Gauss-Newton,which is not described in the
% paper.
%
% x3d_h: homogeneous coordinates of the points in world reference
% x2d_h: homogeneous position of the points in the image plane
% A: intrincic camera parameters
% R: Rotation of the camera system wrt world reference
% T: Translation of the camera system wrt world reference
% Xc: Position of the points in the camera reference
% best solution: dimension of the kernel for the best solution
% (before applying Gauss Newton).
% opt: some parameters of the optimization process
%
% Copyright (C) <2007> <Francesc Moreno-Noguer, Vincent Lepetit, Pascal Fua>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the version 3 of the GNU General Public License
% as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Francesc Moreno-Noguer, CVLab-EPFL, October 2007.
% [email protected], http://cvlab.epfl.ch/~fmoreno/
Xw=x3d_h(:,1:3);
U=x2d_h(:,1:2);
THRESHOLD_REPROJECTION_ERROR=20;%error in degrees of the basis formed by the control points.
%If we have a larger error, we will compute the solution using a larger
%number of vectors in the kernel
%define control points in a world coordinate system (centered on the 3d
%points centroid)
Cw=define_control_points();
%compute alphas (linear combination of the control points to represent the 3d
%points)
Alph=compute_alphas(Xw,Cw);
%Compute M
M=compute_M_ver2(U,Alph,A);
%Compute kernel M
Km=kernel_noise(M,4); %in matlab we have directly the funcion km=null(M);
%1.-Solve assuming dim(ker(M))=1. X=[Km_end];------------------------------
dim_kerM=1;
X1=Km(:,end);
[Cc,Xc,sc]=compute_norm_sign_scaling_factor(X1,Cw,Alph,Xw);
[R,T]=getrotT(Xw,Xc); %solve exterior orientation
err(1)=reprojection_error_usingRT(Xw,U,R,T,A);
sol(1).Xc=Xc;
sol(1).Cc=Cc;
sol(1).R=R;
sol(1).T=T;
sol(1).error=err(1);
sol(1).betas=[1];
sol(1).sc=sc;
sol(1).Kernel=X1;
%2.-Solve assuming dim(ker(M))=2------------------------------------------
Km1=Km(:,end-1);
Km2=Km(:,end);
%control points distance constraint
D=compute_constraint_distance_2param_6eq_3unk(Km1,Km2);
dsq=define_distances_btw_control_points();
betas_=inv(D'*D)*D'*dsq;
beta1=sqrt(abs(betas_(1)));
beta2=sqrt(abs(betas_(3)))*sign(betas_(2))*sign(betas_(1));
X2=beta1*Km1+beta2*Km2;
[Cc,Xc,sc]=compute_norm_sign_scaling_factor(X2,Cw,Alph,Xw);
[R,T]=getrotT(Xw,Xc); %solve exterior orientation
err(2)=reprojection_error_usingRT(Xw,U,R,T,A);
sol(2).Xc=Xc;
sol(2).Cc=Cc;
sol(2).R=R;
sol(2).T=T;
sol(2).error=err(2);
sol(2).betas=[beta1,beta2];
sol(2).sc=sc;
sol(2).Kernel=[Km1,Km2];
%3.-Solve assuming dim(ker(M))=3------------------------------------------
if min(err)>THRESHOLD_REPROJECTION_ERROR %just compute if we do not have good solution in the previus cases
Km1=Km(:,end-2);
Km2=Km(:,end-1);
Km3=Km(:,end);
%control points distance constraint
D=compute_constraint_distance_3param_6eq_6unk(Km1,Km2,Km3);
dsq=define_distances_btw_control_points();
betas_=inv(D)*dsq;
beta1=sqrt(abs(betas_(1)));
beta2=sqrt(abs(betas_(4)))*sign(betas_(2))*sign(betas_(1));
beta3=sqrt(abs(betas_(6)))*sign(betas_(3))*sign(betas_(1));
X3=beta1*Km1+beta2*Km2+beta3*Km3;
[Cc,Xc,sc]=compute_norm_sign_scaling_factor(X3,Cw,Alph,Xw);
[R,T]=getrotT(Xw,Xc); %solve exterior orientation
err(3)=reprojection_error_usingRT(Xw,U,R,T,A);
sol(3).Xc=Xc;
sol(3).Cc=Cc;
sol(3).R=R;
sol(3).T=T;
sol(3).error=err(3);
sol(3).betas=[beta1,beta2,beta3];
sol(3).sc=sc;
sol(3).Kernel=[Km1,Km2,Km3];
end
%4.-Solve assuming dim(ker(M))=4------------------------------------------
if min(err)>THRESHOLD_REPROJECTION_ERROR %just compute if we do not have good solution in the previus cases
Km1=Km(:,end-3);
Km2=Km(:,end-2);
Km3=Km(:,end-1);
Km4=Km(:,end);
D=compute_constraint_distance_orthog_4param_9eq_10unk(Km1,Km2,Km3,Km4);
dsq=define_distances_btw_control_points();
lastcolumn=[-dsq',0,0,0]';
D_=[D,lastcolumn];
Kd=null(D_);
P=compute_permutation_constraint4(Kd);
lambdas_=kernel_noise(P,1);
lambda(1)=sqrt(abs(lambdas_(1)));
lambda(2)=sqrt(abs(lambdas_(6)))*sign(lambdas_(2))*sign(lambdas_(1));
lambda(3)=sqrt(abs(lambdas_(10)))*sign(lambdas_(3))*sign(lambdas_(1));
lambda(4)=sqrt(abs(lambdas_(13)))*sign(lambdas_(4))*sign(lambdas_(1));
lambda(5)=sqrt(abs(lambdas_(15)))*sign(lambdas_(5))*sign(lambdas_(1));
betass_=lambda(1)*Kd(:,1)+lambda(2)*Kd(:,2)+lambda(3)*Kd(:,3)+lambda(4)*Kd(:,4)+lambda(5)*Kd(:,5);
beta1=sqrt(abs(betass_(1)));
beta2=sqrt(abs(betass_(5)))*sign(betass_(2));
beta3=sqrt(abs(betass_(8)))*sign(betass_(3));
beta4=sqrt(abs(betass_(10)))*sign(betass_(4));
X4=beta1*Km1+beta2*Km2+beta3*Km3+beta4*Km4;
[Cc,Xc,sc]=compute_norm_sign_scaling_factor(X4,Cw,Alph,Xw);
[R,T]=getrotT(Xw,Xc); %solve exterior orientation
err(4)=reprojection_error_usingRT(Xw,U,R,T,A);
sol(4).Xc=Xc;
sol(4).Cc=Cc;
sol(4).R=R;
sol(4).T=T;
sol(4).error=err(4);
sol(4).betas=[beta1,beta2,beta3,beta4];
sol(4).sc=sc;
sol(4).Kernel=[Km1,Km2,Km3,Km4];
end
%5.-Gauss Newton Optimization------------------------------------------------------
[min_err,best_solution]=min(err);
Xc=sol(best_solution).Xc;
R=sol(best_solution).R;
T=sol(best_solution).T;
Betas=sol(best_solution).betas;
sc=sol(best_solution).sc;
Kernel=sol(best_solution).Kernel;
if best_solution==1
Betas=[0,0,0,Betas];
elseif best_solution==2
Betas=[0,0,Betas];
elseif best_solution==3
Betas=[0,Betas];
end
Km1=Km(:,end-3);
Km2=Km(:,end-2);
Km3=Km(:,end-1);
Km4=Km(:,end);
Kernel=[Km1,Km2,Km3,Km4];
%refine the solution iterating over the betas
Beta0=Betas/sc;
[Xc_opt,R_opt,T_opt,err_opt,iter]=optimize_betas_gauss_newton(Kernel,Cw,Beta0,Alph,Xw,U,A);
%Just update R,T,Xc if Gauss Newton improves results (which is almost
%always)
if err_opt<min_err
R=R_opt;
T=T_opt;
Xc=Xc_opt;
end
opt.Beta0=Beta0;
opt.Kernel=Kernel;
opt.iter=iter;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R, T]=getrotT(wpts,cpts)
% This routine solves the exterior orientation problem for a point cloud
% given in both camera and world coordinates.
% wpts = 3D points in arbitrary reference frame
% cpts = 3D points in camera reference frame
n=size(wpts,1);
M=zeros(3);
ccent=mean(cpts);
wcent=mean(wpts);
for i=1:3
cpts(:,i)=cpts(:,i)-ccent(i)*ones(n,1);
wpts(:,i)=wpts(:,i)-wcent(i)*ones(n,1);
end
for i=1:n
M=M+cpts(i,:)'*wpts(i,:);
end
[U S V]=svd(M);
R=U*V';
if det(R)<0
R=-R;
end
T=ccent'-R*wcent';
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [err,Urep]=reprojection_error_usingRT(Xw,U,R,T,A)
%clear all; close all; load reprojection_error_usingRT;
n=size(Xw,1);
P=A*[R,T];
Xw_h=[Xw,ones(n,1)];
Urep_=(P*Xw_h')';
%project reference points into the image plane
Urep=zeros(n,2);
Urep(:,1)=Urep_(:,1)./Urep_(:,3);
Urep(:,2)=Urep_(:,2)./Urep_(:,3);
%reprojection error
err_=sqrt((U(:,1)-Urep(:,1)).^2+(U(:,2)-Urep(:,2)).^2);
err=sum(err_)/n; |
github | urbste/MLPnP_matlab_toolbox-master | efficient_pnp.m | .m | MLPnP_matlab_toolbox-master/rpnp/code3/epnp/efficient_pnp.m | 6,550 | utf_8 | b1b02989deb052da7480f60d06be7010 | function [R,T,Xc,best_solution]=efficient_pnp(x3d_h,x2d_h,A)
% EFFICIENT_PNP Main Function to solve the PnP problem
% as described in:
%
% Francesc Moreno-Noguer, Vincent Lepetit, Pascal Fua.
% Accurate Non-Iterative O(n) Solution to the PnP Problem.
% In Proceedings of ICCV, 2007.
%
% x3d_h: homogeneous coordinates of the points in world reference
% x2d_h: homogeneous position of the points in the image plane
% A: intrincic camera parameters
% R: Rotation of the camera system wrt world reference
% T: Translation of the camera system wrt world reference
% Xc: Position of the points in the camera reference
%
% Copyright (C) <2007> <Francesc Moreno-Noguer, Vincent Lepetit, Pascal Fua>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the version 3 of the GNU General Public License
% as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Francesc Moreno-Noguer, CVLab-EPFL, September 2007.
% [email protected], http://cvlab.epfl.ch/~fmoreno/
Xw=x3d_h(:,1:3);
U=x2d_h(:,1:2);
THRESHOLD_REPROJECTION_ERROR=20;%error in degrees of the basis formed by the control points.
%If we have a larger error, we will compute the solution using a larger
%number of vectors in the kernel
%define control points in a world coordinate system (centered on the 3d
%points centroid)
Cw=define_control_points();
%compute alphas (linear combination of the control points to represent the 3d
%points)
Alph=compute_alphas(Xw,Cw);
%Compute M
M=compute_M_ver2(U,Alph,A);
%Compute kernel M
Km=kernel_noise(M,4); %in matlab we have directly the funcion km=null(M);
%1.-Solve assuming dim(ker(M))=1. X=[Km_end];------------------------------
dim_kerM=1;
X1=Km(:,end);
[Cc,Xc]=compute_norm_sign_scaling_factor(X1,Cw,Alph,Xw);
[R,T]=getrotT(Xw,Xc); %solve exterior orientation
err(1)=reprojection_error_usingRT(Xw,U,R,T,A);
sol(1).Xc=Xc;
sol(1).Cc=Cc;
sol(1).R=R;
sol(1).T=T;
sol(1).error=err(1);
%2.-Solve assuming dim(ker(M))=2------------------------------------------
Km1=Km(:,end-1);
Km2=Km(:,end);
%control points distance constraint
D=compute_constraint_distance_2param_6eq_3unk(Km1,Km2);
dsq=define_distances_btw_control_points();
betas_=inv(D'*D)*D'*dsq;
beta1=sqrt(abs(betas_(1)));
beta2=sqrt(abs(betas_(3)))*sign(betas_(2))*sign(betas_(1));
X2=beta1*Km1+beta2*Km2;
[Cc,Xc]=compute_norm_sign_scaling_factor(X2,Cw,Alph,Xw);
[R,T]=getrotT(Xw,Xc); %solve exterior orientation
err(2)=reprojection_error_usingRT(Xw,U,R,T,A);
sol(2).Xc=Xc;
sol(2).Cc=Cc;
sol(2).R=R;
sol(2).T=T;
sol(2).error=err(2);
%3.-Solve assuming dim(ker(M))=3------------------------------------------
if min(err)>THRESHOLD_REPROJECTION_ERROR %just compute if we do not have good solution in the previus cases
Km1=Km(:,end-2);
Km2=Km(:,end-1);
Km3=Km(:,end);
%control points distance constraint
D=compute_constraint_distance_3param_6eq_6unk(Km1,Km2,Km3);
dsq=define_distances_btw_control_points();
betas_=inv(D)*dsq;
beta1=sqrt(abs(betas_(1)));
beta2=sqrt(abs(betas_(4)))*sign(betas_(2))*sign(betas_(1));
beta3=sqrt(abs(betas_(6)))*sign(betas_(3))*sign(betas_(1));
X3=beta1*Km1+beta2*Km2+beta3*Km3;
[Cc,Xc]=compute_norm_sign_scaling_factor(X3,Cw,Alph,Xw);
[R,T]=getrotT(Xw,Xc); %solve exterior orientation
err(3)=reprojection_error_usingRT(Xw,U,R,T,A);
sol(3).Xc=Xc;
sol(3).Cc=Cc;
sol(3).R=R;
sol(3).T=T;
sol(3).error=err(3);
end
%4.-Solve assuming dim(ker(M))=4------------------------------------------
if min(err)>THRESHOLD_REPROJECTION_ERROR %just compute if we do not have good solution in the previus cases
Km1=Km(:,end-3);
Km2=Km(:,end-2);
Km3=Km(:,end-1);
Km4=Km(:,end);
D=compute_constraint_distance_orthog_4param_9eq_10unk(Km1,Km2,Km3,Km4);
dsq=define_distances_btw_control_points();
lastcolumn=[-dsq',0,0,0]';
D_=[D,lastcolumn];
Kd=null(D_);
P=compute_permutation_constraint4(Kd);
lambdas_=kernel_noise(P,1);
lambda(1)=sqrt(abs(lambdas_(1)));
lambda(2)=sqrt(abs(lambdas_(6)))*sign(lambdas_(2))*sign(lambdas_(1));
lambda(3)=sqrt(abs(lambdas_(10)))*sign(lambdas_(3))*sign(lambdas_(1));
lambda(4)=sqrt(abs(lambdas_(13)))*sign(lambdas_(4))*sign(lambdas_(1));
lambda(5)=sqrt(abs(lambdas_(15)))*sign(lambdas_(5))*sign(lambdas_(1));
betass_=lambda(1)*Kd(:,1)+lambda(2)*Kd(:,2)+lambda(3)*Kd(:,3)+lambda(4)*Kd(:,4)+lambda(5)*Kd(:,5);
beta1=sqrt(abs(betass_(1)));
beta2=sqrt(abs(betass_(5)))*sign(betass_(2));
beta3=sqrt(abs(betass_(8)))*sign(betass_(3));
beta4=sqrt(abs(betass_(10)))*sign(betass_(4));
X4=beta1*Km1+beta2*Km2+beta3*Km3+beta4*Km4;
[Cc,Xc]=compute_norm_sign_scaling_factor(X4,Cw,Alph,Xw);
[R,T]=getrotT(Xw,Xc); %solve exterior orientation
err(4)=reprojection_error_usingRT(Xw,U,R,T,A);
sol(4).Xc=Xc;
sol(4).Cc=Cc;
sol(4).R=R;
sol(4).T=T;
sol(4).error=err(4);
end
[min_err,best_solution]=min(err);
Xc=sol(best_solution).Xc;
R=sol(best_solution).R;
T=sol(best_solution).T;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R, T]=getrotT(wpts,cpts)
% This routine solves the exterior orientation problem for a point cloud
% given in both camera and world coordinates.
% wpts = 3D points in arbitrary reference frame
% cpts = 3D points in camera reference frame
n=size(wpts,1);
M=zeros(3);
ccent=mean(cpts);
wcent=mean(wpts);
for i=1:3
cpts(:,i)=cpts(:,i)-ccent(i)*ones(n,1);
wpts(:,i)=wpts(:,i)-wcent(i)*ones(n,1);
end
for i=1:n
M=M+cpts(i,:)'*wpts(i,:);
end
[U S V]=svd(M);
R=U*V';
if det(R)<0
R=-R;
end
T=ccent'-R*wcent';
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [err,Urep]=reprojection_error_usingRT(Xw,U,R,T,A)
%clear all; close all; load reprojection_error_usingRT;
n=size(Xw,1);
P=A*[R,T];
Xw_h=[Xw,ones(n,1)];
Urep_=(P*Xw_h')';
%project reference points into the image plane
Urep=zeros(n,2);
Urep(:,1)=Urep_(:,1)./Urep_(:,3);
Urep(:,2)=Urep_(:,2)./Urep_(:,3);
%reprojection error
err_=sqrt((U(:,1)-Urep(:,1)).^2+(U(:,2)-Urep(:,2)).^2);
err=sum(err_)/n; |
github | urbste/MLPnP_matlab_toolbox-master | efficient_pnp_planar.m | .m | MLPnP_matlab_toolbox-master/rpnp/code3/epnp/efficient_pnp_planar.m | 16,335 | utf_8 | be35d59e4da0eadf5e108ffbc469f801 | function [R,t,Xc,best_solution]=efficient_pnp_planar(x3d_h,x2d_h,A)
% EFFICIENT_PNP Main Function to solve the PnP problem
% as described in:
%
% Francesc Moreno-Noguer, Vincent Lepetit, Pascal Fua.
% Accurate Non-Iterative O(n) Solution to the PnP Problem.
% In Proceedings of ICCV, 2007.
%
% x3d_h: homogeneous coordinates of the points in world reference
% x2d_h: homogeneous position of the points in the image plane
% A: intrincic camera parameters
% R: Rotation of the camera system wrt world reference
% T: Translation of the camera system wrt world reference
% Xc: Position of the points in the camera reference
%
% Copyright (C) <2007> <Francesc Moreno-Noguer, Vincent Lepetit, Pascal Fua>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the version 3 of the GNU General Public License
% as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Francesc Moreno-Noguer, CVLab-EPFL, September 2007.
% [email protected], http://cvlab.epfl.ch/~fmoreno/
%=============================================================
% Modified by
% Xu Chi, Huazhong University of Science and Technology, China
%=============================================================
Xw=x3d_h(:,1:3);
U=x2d_h(:,1:2);
R= [];
t= [];
THRESHOLD_REPROJECTION_ERROR=5/800;%error in degrees of the basis formed by the control points.
%If we have a larger error, we will compute the solution using a larger
%number of vectors in the kernel
%define control points in a world coordinate system (centered on the 3d
%points centroid)
Cw=[1 0 0;
0 1 0;
0 0 0];
%compute alphas (linear combination of the control points to represent the 3d
%points)
n=size(Xw,1); %number of 3d points
C=[Cw(:,1:2)';ones(1,3)];
X=[Xw(:,1:2)';ones(1,n)];
Alph_=inv(C)*X;
Alph=Alph_';
%Compute M
M=compute_M2(U,Alph,A);
%Compute kernel M
MtM=M'*M;
[V,S]=eig(MtM);
Km=V(:,4:-1:1); %in matlab we have directly the funcion km=null(M);
%1.-Solve assuming dim(ker(M))=1. X=[Km_end];------------------------------
dim_kerM=1;
X1=Km(:,end);
[Cc,Xc]=compute_norm_sign_scaling_factor2(X1,Cw,Alph,Xw);
[R,T]=getrotT(Xw,Xc); %solve exterior orientation
err(1)=reprojection_error_usingRT(Xw,U,R,T,A);
sol(1).Xc=Xc;
sol(1).Cc=Cc;
sol(1).R=R;
sol(1).T=T;
sol(1).error=err(1);
%2.-Solve assuming dim(ker(M))=2------------------------------------------
Km1=Km(:,end-1);
Km2=Km(:,end);
%control points distance constraint
D=compute_constraint_distance_2param(Km1,Km2);
dsq=define_distances_btw_control_points2();
betas_=inv(D'*D)*D'*dsq;
beta1=sqrt(abs(betas_(1)));
beta2=sqrt(abs(betas_(3)))*sign(betas_(2))*sign(betas_(1));
X2=beta1*Km1+beta2*Km2;
[Cc,Xc]=compute_norm_sign_scaling_factor2(X2,Cw,Alph,Xw);
[R,T]=getrotT(Xw,Xc); %solve exterior orientation
err(2)=reprojection_error_usingRT(Xw,U,R,T,A);
sol(2).Xc=Xc;
sol(2).Cc=Cc;
sol(2).R=R;
sol(2).T=T;
sol(2).error=err(2);
%3.-Solve assuming dim(ker(M))=3------------------------------------------
if min(err)>THRESHOLD_REPROJECTION_ERROR %just compute if we do not have good solution in the previus cases
Km1=Km(:,end-2);
Km2=Km(:,end-1);
Km3=Km(:,end);
%control points distance constraint
D=compute_constraint_distance_3param(Km1,Km2,Km3);
dsq=define_distances_btw_control_points2();
D_=[D,-dsq];
Kd=null(D_);
for i= 1:4
Kd(:,i)= Kd(:,i)/Kd(7,i);
end
Kd= Kd(1:6,:);
P=compute_permutation_constraint3(Kd);
lambdas_=kernel_noise(P,1);
lambda(1)=sqrt(abs(lambdas_(1)));
lambda(2)=sqrt(abs(lambdas_(5)))*sign(lambdas_(2));
lambda(3)=sqrt(abs(lambdas_(8)))*sign(lambdas_(3));
lambda(4)=sqrt(abs(lambdas_(10)))*sign(lambdas_(4));
betas_=lambda(1)*Kd(:,1)+lambda(2)*Kd(:,2)+lambda(3)*Kd(:,3)+lambda(4)*Kd(:,4);
beta1=sqrt(abs(betas_(1)));
beta2=sqrt(abs(betas_(4)))*sign(betas_(2))*sign(betas_(1));
beta3=sqrt(abs(betas_(6)))*sign(betas_(3))*sign(betas_(1));
X3=beta1*Km1+beta2*Km2+beta3*Km3;
[Cc,Xc]=compute_norm_sign_scaling_factor2(X3,Cw,Alph,Xw);
[R,T]=getrotT(Xw,Xc); %solve exterior orientation
err(3)=reprojection_error_usingRT(Xw,U,R,T,A);
sol(3).Xc=Xc;
sol(3).Cc=Cc;
sol(3).R=R;
sol(3).T=T;
sol(3).error=err(3);
end
[min_err,best_solution]=min(err);
Xc=sol(best_solution).Xc;
R=sol(best_solution).R;
t=sol(best_solution).T;
return
%4.-Solve assuming dim(ker(M))=4------------------------------------------
if min(err)>THRESHOLD_REPROJECTION_ERROR %just compute if we do not have good solution in the previus cases
Km1=Km(:,end-3);
Km2=Km(:,end-2);
Km3=Km(:,end-1);
Km4=Km(:,end);
D=compute_constraint_distance_orthog_4param_9eq_10unk(Km1,Km2,Km3,Km4);
dsq=define_distances_btw_control_points();
lastcolumn=[-dsq',0,0,0]';
D_=[D,lastcolumn];
Kd=null(D_);
P=compute_permutation_constraint4(Kd);
lambdas_=kernel_noise(P,1);
lambda(1)=sqrt(abs(lambdas_(1)));
lambda(2)=sqrt(abs(lambdas_(6)))*sign(lambdas_(2))*sign(lambdas_(1));
lambda(3)=sqrt(abs(lambdas_(10)))*sign(lambdas_(3))*sign(lambdas_(1));
lambda(4)=sqrt(abs(lambdas_(13)))*sign(lambdas_(4))*sign(lambdas_(1));
lambda(5)=sqrt(abs(lambdas_(15)))*sign(lambdas_(5))*sign(lambdas_(1));
betass_=lambda(1)*Kd(:,1)+lambda(2)*Kd(:,2)+lambda(3)*Kd(:,3)+lambda(4)*Kd(:,4)+lambda(5)*Kd(:,5);
beta1=sqrt(abs(betass_(1)));
beta2=sqrt(abs(betass_(5)))*sign(betass_(2));
beta3=sqrt(abs(betass_(8)))*sign(betass_(3));
beta4=sqrt(abs(betass_(10)))*sign(betass_(4));
X4=beta1*Km1+beta2*Km2+beta3*Km3+beta4*Km4;
[Cc,Xc]=compute_norm_sign_scaling_factor(X4,Cw,Alph,Xw);
[R,T]=getrotT(Xw,Xc); %solve exterior orientation
err(4)=reprojection_error_usingRT(Xw,U,R,T,A);
sol(4).Xc=Xc;
sol(4).Cc=Cc;
sol(4).R=R;
sol(4).T=T;
sol(4).error=err(4);
end
[min_err,best_solution]=min(err);
Xc=sol(best_solution).Xc;
R=sol(best_solution).R;
t=sol(best_solution).T;
return
function [err,Urep]=reprojection_error_usingRT(Xw,U,R,T,A)
%clear all; close all; load reprojection_error_usingRT;
n=size(Xw,1);
P=A*[R,T];
Xw_h=[Xw,ones(n,1)];
Urep_=(P*Xw_h')';
%project reference points into the image plane
Urep=zeros(n,2);
Urep(:,1)=Urep_(:,1)./Urep_(:,3);
Urep(:,2)=Urep_(:,2)./Urep_(:,3);
%reprojection error
err_=sqrt((U(:,1)-Urep(:,1)).^2+(U(:,2)-Urep(:,2)).^2);
err=sum(err_)/n;
return
function M=compute_M2(U,Alph,A)
n=size(Alph,1); %number of 3d points
fu=A(1,1);
fv=A(2,2);
u0=A(1,3);
v0=A(2,3);
nrows_M=2*n;
ncols_M=9;
M=zeros(nrows_M,ncols_M);
for i=1:n
a1=Alph(i,1);
a2=Alph(i,2);
a3=Alph(i,3);
ui=U(i,1);
vi=U(i,2);
%generate submatrix M
M_=[a1*fu, 0, a1*(u0-ui), a2*fu, 0, a2*(u0-ui), a3*fu, 0, a3*(u0-ui);
0, a1*fv, a1*(v0-vi), 0, a2*fv, a2*(v0-vi), 0, a3*fv, a3*(v0-vi)];
%put M_ in the whole matrix
row_ini=i*2-1;
row_end=i*2;
M(row_ini:row_end,:)=M_;
end
return
function [Cc,Xc,sc]=compute_norm_sign_scaling_factor2(X1,Cw,Alph,Xw)
n=size(Xw,1); %number of data points
%Km will be a scaled solution. In order to find the scale parameter we
%impose distance constraints between the reference points
%scaled position of the control points in camera coordinates
Cc_=zeros(3,3);
for i=1:3
Cc_(i,:)=X1(3*i-2:3*i);
end
%position of reference points in camera coordinates
Xc_=Alph*Cc_;
%compute distances in world coordinates w.r.t. the centroid
centr_w=mean(Xw);
centroid_w=repmat(centr_w,[n,1]);
tmp1=Xw-centroid_w;
dist_w=sqrt(sum(tmp1.^2,2));
%compute distances in camera coordinates w.r.t. the centroid
centr_c=mean(Xc_);
centroid_c=repmat(centr_c,[n,1]);
tmp2=Xc_-centroid_c;
dist_c=sqrt(sum(tmp2.^2,2));
%least squares solution for the scale factor
sc=1/(inv(dist_c'*dist_c)*dist_c'*dist_w);
%scale position of the control points
Cc=Cc_/sc;
%rescaled position of the reference points
Xc=Alph*Cc;
%change the sign if necessary. z negative is no possible in camera
%coordinates
neg_z=find(Xc(:,3)<0);
if size(neg_z,1)>=1
sc=-sc;
Xc=Xc*(-1);
end
return
function P=compute_constraint_distance_2param(m1,m2)
%redefine variables name, for compatibility with maple
m1_1=m1(1);
m1_2=m1(2);
m1_3=m1(3);
m1_4=m1(4);
m1_5=m1(5);
m1_6=m1(6);
m1_7=m1(7);
m1_8=m1(8);
m1_9=m1(9);
m2_1=m2(1);
m2_2=m2(2);
m2_3=m2(3);
m2_4=m2(4);
m2_5=m2(5);
m2_6=m2(6);
m2_7=m2(7);
m2_8=m2(8);
m2_9=m2(9);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
t7 = (m1_6 ^ 2);
t8 = (m1_4 ^ 2);
t9 = (m1_1 ^ 2);
t10 = (m1_5 ^ 2);
t11 = (m1_2 ^ 2);
t12 = (m1_3 ^ 2);
t17 = m1_4 * m2_4;
t18 = m1_1 * m2_1;
t19 = m1_5 * m2_5;
t22 = m1_2 * m2_2;
t23 = m1_6 * m2_6;
t25 = m1_3 * m2_3;
t26 = (-m2_6 * m1_3 - m1_4 * m2_1 - m2_4 * m1_1 + t17 + t18 + t19 - m1_5 * m2_2 - m2_5 * m1_2 + t22 + t23 - m1_6 * m2_3 + t25);
t29 = (m2_3 ^ 2);
t34 = (m2_4 ^ 2);
t35 = (m2_1 ^ 2);
t36 = (m2_5 ^ 2);
t37 = (m2_2 ^ 2);
t38 = (m2_6 ^ 2);
t44 = (m1_7 ^ 2);
t45 = (m1_8 ^ 2);
t46 = (m1_9 ^ 2);
t55 = m1_8 * m2_8;
t56 = m1_9 * m2_9;
t58 = m1_7 * m2_7;
t59 = (-m1_9 * m2_3 - m2_8 * m1_2 - m2_9 * m1_3 - m1_7 * m2_1 - m2_7 * m1_1 + t55 + t22 + t56 + t18 - m1_8 * m2_2 + t25 + t58);
t64 = (m2_8 ^ 2);
t65 = (m2_9 ^ 2);
t68 = (m2_7 ^ 2);
t113 = (-m1_9 * m2_6 - m2_9 * m1_6 + t55 + t23 + t17 + t56 + t58 - m1_7 * m2_4 - m2_7 * m1_4 - m1_8 * m2_5 - m2_8 * m1_5 + t19);
P(1,1) = -2 * m1_4 * m1_1 - 2 * m1_5 * m1_2 - 2 * m1_6 * m1_3 + t7 + t8 + t9 + t10 + t11 + t12;
P(1,2) = 2 * t26;
P(1,3) = -2 * m2_6 * m2_3 + t29 - 2 * m2_4 * m2_1 - 2 * m2_5 * m2_2 + t34 + t35 + t36 + t37 + t38;
P(2,1) = -2 * m1_7 * m1_1 + t12 - 2 * m1_9 * m1_3 + t44 + t45 + t46 - 2 * m1_8 * m1_2 + t9 + t11;
P(2,2) = 2 * t59;
P(2,3) = -2 * m2_8 * m2_2 - 2 * m2_9 * m2_3 + t64 + t65 - 2 * m2_7 * m2_1 + t29 + t68 + t37 + t35;
P(3,1) = -2 * m1_9 * m1_6 + t8 + t10 + t7 - 2 * m1_7 * m1_4 + t44 + t45 + t46 - 2 * m1_8 * m1_5;
P(3,2) = 2 * t113;
P(3,3) = -2 * m2_9 * m2_6 + t68 + t64 - 2 * m2_7 * m2_4 - 2 * m2_8 * m2_5 + t34 + t36 + t38 + t65;
return
function P=compute_constraint_distance_3param(m1,m2,m3)
%redefine variables name, for compatibility with maple
m1_1=m1(1);
m1_2=m1(2);
m1_3=m1(3);
m1_4=m1(4);
m1_5=m1(5);
m1_6=m1(6);
m1_10=m1(7);
m1_11=m1(8);
m1_12=m1(9);
m2_1=m2(1);
m2_2=m2(2);
m2_3=m2(3);
m2_4=m2(4);
m2_5=m2(5);
m2_6=m2(6);
m2_10=m2(7);
m2_11=m2(8);
m2_12=m2(9);
m3_1=m3(1);
m3_2=m3(2);
m3_3=m3(3);
m3_4=m3(4);
m3_5=m3(5);
m3_6=m3(6);
m3_10=m3(7);
m3_11=m3(8);
m3_12=m3(9);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
t1 = (m1_2 ^ 2);
t4 = (m1_6 ^ 2);
t5 = (m1_3 ^ 2);
t6 = (m1_5 ^ 2);
t11 = (m1_4 ^ 2);
t12 = (m1_1 ^ 2);
t20 = m1_4 * m2_4;
t21 = m1_3 * m2_3;
t22 = m1_5 * m2_5;
t23 = m1_2 * m2_2;
t24 = m1_6 * m2_6;
t25 = m1_1 * m2_1;
t26 = (-m2_4 * m1_1 - m2_5 * m1_2 - m2_6 * m1_3 - m1_6 * m2_3 - m1_4 * m2_1 - m1_5 * m2_2 + t20 + t21 + t22 + t23 + t24 + t25);
t27 = m1_6 * m3_6;
t29 = m1_5 * m3_5;
t30 = m1_4 * m3_4;
t33 = m1_3 * m3_3;
t35 = m1_1 * m3_1;
t38 = m1_2 * m3_2;
t39 = (t27 - m1_6 * m3_3 + t29 + t30 - m1_4 * m3_1 - m3_6 * m1_3 + t33 - m3_5 * m1_2 + t35 - m3_4 * m1_1 - m1_5 * m3_2 + t38);
t40 = (m2_4 ^ 2);
t41 = (m2_2 ^ 2);
t42 = (m2_5 ^ 2);
t43 = (m2_1 ^ 2);
t44 = (m2_6 ^ 2);
t45 = (m2_3 ^ 2);
t53 = m2_4 * m3_4;
t56 = m2_5 * m3_5;
t57 = m2_2 * m3_2;
t60 = m2_1 * m3_1;
t62 = m2_6 * m3_6;
t63 = m2_3 * m3_3;
t65 = (t53 - m2_4 * m3_1 - m3_4 * m2_1 + t56 + t57 - m2_5 * m3_2 - m2_6 * m3_3 + t60 - m3_6 * m2_3 + t62 + t63 - m3_5 * m2_2);
t66 = (m3_5 ^ 2);
t69 = (m3_4 ^ 2);
t70 = (m3_3 ^ 2);
t71 = (m3_2 ^ 2);
t72 = (m3_6 ^ 2);
t75 = (m3_1 ^ 2);
t141 = (m1_10 ^ 2);
t142 = (m1_11 ^ 2);
t143 = (m1_12 ^ 2);
t151 = m1_10 * m2_10;
t152 = m1_12 * m2_12;
t154 = m1_11 * m2_11;
t158 = (-m2_10 * m1_1 - m2_12 * m1_3 + t151 + t23 + t25 + t152 + t21 - m1_10 * m2_1 + t154 - m1_11 * m2_2 - m2_11 * m1_2 - m1_12 * m2_3);
t160 = m1_12 * m3_12;
t164 = m1_10 * m3_10;
t165 = m1_11 * m3_11;
t168 = (-m3_10 * m1_1 + t160 - m3_11 * m1_2 + t38 + t33 - m1_12 * m3_3 - m3_12 * m1_3 + t164 + t35 + t165 - m1_11 * m3_2 - m1_10 * m3_1);
t169 = (m2_12 ^ 2);
t170 = (m2_10 ^ 2);
t171 = (m2_11 ^ 2);
t179 = m2_10 * m3_10;
t181 = m2_12 * m3_12;
t185 = m2_11 * m3_11;
t188 = (t57 + t60 + t179 - m2_10 * m3_1 + t181 - m2_12 * m3_3 - m3_12 * m2_3 - m3_10 * m2_1 + t63 + t185 - m2_11 * m3_2 - m3_11 * m2_2);
t191 = (m3_12 ^ 2);
t192 = (m3_10 ^ 2);
t193 = (m3_11 ^ 2);
t254 = (-m2_11 * m1_5 + t154 + t151 - m1_12 * m2_6 + t20 - m1_10 * m2_4 - m2_12 * m1_6 - m2_10 * m1_4 - m1_11 * m2_5 + t152 + t24 + t22);
t261 = (t30 - m3_12 * m1_6 - m1_10 * m3_4 - m1_11 * m3_5 + t160 + t27 + t164 + t165 - m3_11 * m1_5 - m3_10 * m1_4 - m1_12 * m3_6 + t29);
t275 = (-m3_10 * m2_4 + t56 - m2_10 * m3_4 + t62 - m3_12 * m2_6 - m2_11 * m3_5 + t53 - m3_11 * m2_5 - m2_12 * m3_6 + t179 + t181 + t185);
% 12
P(1,1) = t1 - 2 * m1_4 * m1_1 + t4 + t5 + t6 - 2 * m1_5 * m1_2 - 2 * m1_6 * m1_3 + t11 + t12;
P(1,2) = 2 * t26;
P(1,3) = 2 * t39;
P(1,4) = t40 + t41 + t42 + t43 + t44 + t45 - 2 * m2_5 * m2_2 - 2 * m2_6 * m2_3 - 2 * m2_4 * m2_1;
P(1,5) = 2 * t65;
P(1,6) = t66 - 2 * m3_4 * m3_1 + t69 + t70 + t71 + t72 - 2 * m3_6 * m3_3 + t75 - 2 * m3_5 * m3_2;
% 14
P(2,1) = -2 * m1_11 * m1_2 + t141 + t142 + t12 + t1 + t5 + t143 - 2 * m1_10 * m1_1 - 2 * m1_12 * m1_3;
P(2,2) = 2 * t158;
P(2,3) = 2 * t168;
P(2,4) = t169 + t41 + t43 + t45 + t170 + t171 - 2 * m2_12 * m2_3 - 2 * m2_10 * m2_1 - 2 * m2_11 * m2_2;
P(2,5) = 2 * t188;
P(2,6) = t71 - 2 * m3_12 * m3_3 + t75 + t191 + t70 + t192 + t193 - 2 * m3_10 * m3_1 - 2 * m3_11 * m3_2;
% 24
P(3,1) = t4 + t143 + t11 - 2 * m1_12 * m1_6 - 2 * m1_11 * m1_5 - 2 * m1_10 * m1_4 + t6 + t141 + t142;
P(3,2) = 2 * t254;
P(3,3) = 2 * t261;
P(3,4) = t170 + t171 + t169 - 2 * m2_10 * m2_4 - 2 * m2_11 * m2_5 - 2 * m2_12 * m2_6 + t40 + t42 + t44;
P(3,5) = 2 * t275;
P(3,6) = t69 + t66 + t72 - 2 * m3_12 * m3_6 - 2 * m3_10 * m3_4 + t193 - 2 * m3_11 * m3_5 + t192 + t191;
return
function dsq=define_distances_btw_control_points2()
%relative coordinates of the control points
c1=[1,0,0];
c2=[0,1,0];
c3=[0,0,0];
d12=(c1(1)-c2(1))^2 + (c1(2)-c2(2))^2 + (c1(3)-c2(3))^2;
d13=(c1(1)-c3(1))^2 + (c1(2)-c3(2))^2 + (c1(3)-c3(3))^2;
d23=(c2(1)-c3(1))^2 + (c2(2)-c3(2))^2 + (c2(3)-c3(3))^2;
dsq=[d12,d13,d23]';
return
function K=compute_permutation_constraint3(V)
%[B11,B12,...,B33]=lambda1*v1+lambda2*v2+lambda3*v3
N=size(V,2); %dimension of the kernel
n=3; %dimension of Bij
idx=[1 2 3; 2 4 5; 3 5 6];
%1.-Generation of the first set of equations Bii.Bjj=Bij.Bii (n(n-1)/2 eqs).
nrowsK=n*(n-1)/2+n*(n-1)*n/2;
ncolsK=N*(N+1)/2;
K=zeros(nrowsK,ncolsK);
t=1;
for i=1:n
for j=i+1:n
offset=1;
for a=1:N
for b=a:N
if a==b
K(t,offset)=V(idx(i,i),a)*V(idx(j,j),a)-V(idx(i,j),a)*V(idx(i,j),a);
else
K(t,offset)=V(idx(i,i),a)*V(idx(j,j),b)-V(idx(i,j),a)*V(idx(i,j),b)+...
V(idx(i,i),b)*V(idx(j,j),a)-V(idx(i,j),b)*V(idx(i,j),a);
end
offset=offset+1;
end
end
t=t+1;
%fprintf('t:%d\t offset:%d\n',t,offset);
end
end
for k=1:n
for j=k:n
for i=1:n
if (i~=j & i~=k)
offset=1;
for a=1:N
for b=a:N
if a==b
K(t,offset)=V(idx(i,j),a)*V(idx(i,k),a)-V(idx(i,i),a)*V(idx(j,k),a);
else
K(t,offset)=V(idx(i,j),a)*V(idx(i,k),b)-V(idx(i,i),a)*V(idx(j,k),b)+...
V(idx(i,j),b)*V(idx(i,k),a)-V(idx(i,i),b)*V(idx(j,k),a);
end
offset=offset+1;
end
end
t=t+1;
%fprintf('t:%d\t offset:%d\n',t,offset);
end
end
end
end
return
|
github | urbste/MLPnP_matlab_toolbox-master | DLT.m | .m | MLPnP_matlab_toolbox-master/rpnp/code3/func/DLT.m | 869 | utf_8 | e7e82eec467a5e8a90e71822b1b2b150 | function [R,t]= DLT(XXw,xx)
n= size(xx,2);
D= zeros(n*2,12);
for i= 1:n
xi= XXw(1,i); yi= XXw(2,i); zi= XXw(3,i);
ui= xx(1,i); vi= xx(2,i);
D_= [xi yi zi 0 0 0 -ui*xi -ui*yi -ui*zi 1 0 -ui;
0 0 0 xi yi zi -vi*xi -vi*yi -vi*zi 0 1 -vi];
D(i*2-1:i*2,:)= D_;
end
DD= D.'*D;
[V,D]= eig(DD);
v= V(:,1); v= v/norm(v(7:9));
v= v*sign(v(12));
R= reshape(v(1:9),3,3).';
t= v(10:12);
XXc= R*XXw+repmat(t,1,size(XXw,2));
[R,t]= calcampose(XXc,XXw);
return
function [R2,t2] = calcampose(XXc,XXw)
n= length(XXc);
X= XXw;
Y= XXc;
K= eye(n)-ones(n,n)/n;
ux= mean(X,2);
uy= mean(Y,2);
sigmx2= mean(sum((X*K).^2));
SXY= Y*K*(X')/n;
[U, D, V]= svd(SXY);
S= eye(3);
if det(SXY) < 0
S(3,3)= -1;
end
R2= U*S*(V');
c2= trace(D*S)/sigmx2;
t2= uy-c2*R2*ux;
X= R2(:,1);
Y= R2(:,2);
Z= R2(:,3);
if norm(cross(X,Y)-Z) > 2e-2
R2(:,3)= -Z;
end
return
|
github | urbste/MLPnP_matlab_toolbox-master | cal_pose_err.m | .m | MLPnP_matlab_toolbox-master/rpnp/code3/func/cal_pose_err.m | 1,343 | utf_8 | f555995b9635b9706e34c45d50f70da2 | function [y y1]= cal_pose_err(T1, T2)
R1= T1(1:3,1:3);
R2= T2(1:3,1:3);
X1= R1(:,1); X2= R2(:,1);
Y1= R1(:,2); Y2= R2(:,2);
Z1= R1(:,3); Z2= R2(:,3);
exyz= [X1'*X2 Y1'*Y2 Z1'*Z2];
exyz(exyz>1)= 1;
exyz(exyz<-1)= -1;
y(1)= max(abs(acos(exyz)))*180/pi;
q1 = Matrix2Quaternion(R1);
q2 = Matrix2Quaternion(R2);
y1(1) = norm(q1-q2)/norm(q2)*100;
if isnan(y(1))
txt;
end
y(2)= norm(T1(1:3,4)-T2(1:3,4))/norm(T2(1:3,4))*100;
y1(2) = y(2);
y= abs(y);
end
function Q = Matrix2Quaternion(R)
% Solve (R-I)v = 0;
[v,d] = eig(R-eye(3));
% The following code assumes the eigenvalues returned are not necessarily
% sorted by size. This may be overcautious on my part.
d = diag(abs(d)); % Extract eigenvalues
[s, ind] = sort(d); % Find index of smallest one
if d(ind(1)) > 0.001 % Hopefully it is close to 0
warning('Rotation matrix is dubious');
end
axis = v(:,ind(1)); % Extract appropriate eigenvector
if abs(norm(axis) - 1) > .0001 % Debug
warning('non unit rotation axis');
end
% Now determine the rotation angle
twocostheta = trace(R)-1;
twosinthetav = [R(3,2)-R(2,3), R(1,3)-R(3,1), R(2,1)-R(1,2)]';
twosintheta = axis'*twosinthetav;
theta = atan2(twosintheta, twocostheta);
Q = [cos(theta/2); axis*sin(theta/2)];
end
|
github | urbste/MLPnP_matlab_toolbox-master | RPnP.m | .m | MLPnP_matlab_toolbox-master/rpnp/code3/func/RPnP.m | 6,404 | utf_8 | 261f910a5e9c5c9c5f727ff7c32a41d8 | function [R t]= RPnP(XX,xx)
R= []; t= [];
n= length(xx);
XXw= XX;
xxv= [xx; ones(1,n)];
for i=1:n
xxv(:,i)= xxv(:,i)/norm(xxv(:,i));
end
% selecting an edge $P_{i1}P_{i2}$ by n random sampling
i1= 1;
i2= 2;
lmin= xxv(1,i1)*xxv(1,i2)+xxv(2,i1)*xxv(2,i2)+xxv(3,i1)*xxv(3,i2);
rij= ceil(rand(n,2)*n);
for ii= 1:n
i= rij(ii,1);
j= rij(ii,2);
if i == j
continue;
end
l= xxv(1,i)*xxv(1,j)+xxv(2,i)*xxv(2,j)+xxv(3,i)*xxv(3,j);
if l < lmin
i1= i;
i2= j;
lmin= l;
end
end
% calculating the rotation matrix of $O_aX_aY_aZ_a$.
p1= XX(:,i1);
p2= XX(:,i2);
p0= (p1+p2)/2;
x= p2-p0; x= x/norm(x);
if abs([0 1 0]*x) < abs([0 0 1]*x)
z= xcross(x,[0; 1; 0]); z= z/norm(z);
y= xcross(z, x); y= y/norm(y);
else
y= xcross([0; 0; 1], x); y= y/norm(y);
z= xcross(x,y); z= z/norm(z);
end
Ro= [x y z];
% transforming the reference points form orignial object space
% to the new coordinate frame $O_aX_aY_aZ_a$.
XX= Ro.'*(XX-repmat(p0,1,n));
% Dividing the n-point set into (n-2) 3-point subsets
% and setting up the P3P equations
v1= xxv(:,i1);
v2= xxv(:,i2);
cg1= v1.'*v2;
sg1= sqrt(1-cg1^2);
D1= norm(XX(:,i1)-XX(:,i2));
D4= zeros(n-2,5);
if 0 % determining F', the deviation of the cost function.
j= 0;
for i= 1:n
if i == i1 || i == i2
continue;
end
j= j+1;
vi= xxv(:,i);
cg2= v1.'*vi;
cg3= v2.'*vi;
sg2= sqrt(1-cg2^2);
D2= norm(XX(:,i1)-XX(:,i));
D3= norm(XX(:,i)-XX(:,i2));
% get the coefficients of the P3P equation from each subset.
D4(j,:)= getp3p(cg1,cg2,cg3,sg1,sg2,D1,D2,D3);
end
% get the 7th order polynomial, the deviation of the cost function.
D7= zeros(1,8);
for i= 1:n-2
D7= D7+ getpoly7(D4(i,:));
end
else % =======================================================================
% following code is the same as the code above (between "if 0" and "else")
% but the following code is a little more efficient than the former
% in matlab when the number of points is large,
% because the dot multiply operation is used.
idx= true(1,n);
idx([i1 i2])= false;
vi= xxv(:,idx);
cg2= vi.'*v1;
cg3= vi.'*v2;
sg2= sqrt(1-cg2.^2);
D2= cg2;
D3= cg2;
didx= find(idx);
for i= 1:n-2
D2(i)= norm(XX(:,i1)-XX(:,didx(i)));
D3(i)= norm(XX(:,didx(i))-XX(:,i2));
end
A1= (D2./D1).^2;
A2= A1*sg1^2-sg2.^2;
A3= cg2.*cg3-cg1;
A4= cg1*cg3-cg2;
A6= (D3.^2-D1^2-D2.^2)./(2*D1^2);
A7= 1-cg1^2-cg2.^2+cg1*cg2.*cg3+A6.*sg1^2;
D4= [A6.^2-A1.*cg3.^2, 2*(A3.*A6-A1.*A4.*cg3),...
A3.^2+2*A6.*A7-A1.*A4.^2-A2.*cg3.^2,...
2*(A3.*A7-A2.*A4.*cg3), A7.^2-A2.*A4.^2];
F7= [4*D4(:,1).^2,...
7*D4(:,2).*D4(:,1),...
6*D4(:,3).*D4(:,1)+3*D4(:,2).^2,...
5*D4(:,4).*D4(:,1)+5*D4(:,3).*D4(:,2),...
4*D4(:,5).*D4(:,1)+4*D4(:,4).*D4(:,2)+2*D4(:,3).^2,...
3*D4(:,5).*D4(:,2)+3*D4(:,4).*D4(:,3),...
2*D4(:,5).*D4(:,3)+D4(:,4).^2,...
D4(:,5).*D4(:,4)];
D7= sum(F7);
end
% retriving the local minima of the cost function.
try % try catch added by Luis Ferraz
t2s= roots(D7);
maxreal= max(abs(real(t2s)));
t2s(abs(imag(t2s))/maxreal > 0.001)= [];
t2s= real(t2s);
D6= (7:-1:1).*D7(1:7);
F6= polyval(D6,t2s);
t2s(F6 <= 0)= [];
if isempty(t2s)
%fprintf('no solution!\n');
return
end
catch
%fprintf('no solution!\n');
return
end
% calculating the camera pose from each local minimum.
m= length(t2s);
for i= 1:m
t2= t2s(i);
% calculating the rotation matrix
d2= cg1+t2;
x= v2*d2- v1; x= x/norm(x);
if abs([0 1 0]*x) < abs([0 0 1]*x)
z= xcross(x,[0; 1; 0]); z= z/norm(z);
y= xcross(z, x); y= y/norm(y);
else
y= xcross([0; 0; 1], x); y= y/norm(y);
z= xcross(x,y); z= z/norm(z);
end
Rx= [x y z];
% calculating c, s, tx, ty, tz
D= zeros(2*n,6);
r= Rx.';
for j= 1:n
ui= xx(1,j); vi= xx(2,j);
xi= XX(1,j); yi= XX(2,j); zi= XX(3,j);
D(2*j-1,:)= [-r(2)*yi+ui*(r(8)*yi+r(9)*zi)-r(3)*zi, ...
-r(3)*yi+ui*(r(9)*yi-r(8)*zi)+r(2)*zi, ...
-1, 0, ui, ui*r(7)*xi-r(1)*xi];
D(2*j, :)= [-r(5)*yi+vi*(r(8)*yi+r(9)*zi)-r(6)*zi, ...
-r(6)*yi+vi*(r(9)*yi-r(8)*zi)+r(5)*zi, ...
0, -1, vi, vi*r(7)*xi-r(4)*xi];
end
DTD= D.'*D;
[V D]= eig(DTD);
V1= V(:,1); V1= V1/V1(end);
c= V1(1); s= V1(2); t= V1(3:5);
% calculating the camera pose by 3d alignment
xi= XX(1,:); yi= XX(2,:); zi= XX(3,:);
XXcs= [r(1)*xi+(r(2)*c+r(3)*s)*yi+(-r(2)*s+r(3)*c)*zi+t(1);
r(4)*xi+(r(5)*c+r(6)*s)*yi+(-r(5)*s+r(6)*c)*zi+t(2);
r(7)*xi+(r(8)*c+r(9)*s)*yi+(-r(8)*s+r(9)*c)*zi+t(3)];
XXc= zeros(size(XXcs));
for j= 1:n
XXc(:,j)= xxv(:,j)*norm(XXcs(:,j));
end
[R t]= calcampose(XXc,XXw);
% calculating the reprojection error
XXc= R*XXw+t*ones(1,n);
xxc= [XXc(1,:)./XXc(3,:); XXc(2,:)./XXc(3,:)];
%r= mean(sqrt(sum((xxc-xx).^2)));
r = norm(xxc-xx,'fro')/n;
res{i}.R= R;
res{i}.t= t;
res{i}.r= r;
end
% determing the camera pose with the smallest reprojection error.
minr= inf;
for i= 1:m
if res{i}.r < minr
minr= res{i}.r;
R= res{i}.R;
t= res{i}.t;
end
end
return
function B = getp3p(l1,l2,A5,C1,C2,D1,D2,D3)
A1= (D2/D1)^2;
A2= A1*C1^2-C2^2;
A3= l2*A5-l1;
A4= l1*A5-l2;
A6= (D3^2-D1^2-D2^2)/(2*D1^2);
A7= 1-l1^2-l2^2+l1*l2*A5+A6*C1^2;
B= [A6^2-A1*A5^2, 2*(A3*A6-A1*A4*A5), A3^2+2*A6*A7-A1*A4^2-A2*A5^2,...
2*(A3*A7-A2*A4*A5), A7^2-A2*A4^2];
return
function F7= getpoly7(F)
F7= [4*F(1)^2;
7*F(2)*F(1);
6*F(3)*F(1)+3*F(2)^2;
5*F(4)*F(1)+5*F(3)*F(2);
4*F(5)*F(1)+4*F(4)*F(2)+2*F(3)^2;
3*F(5)*F(2)+3*F(4)*F(3);
2*F(5)*F(3)+F(4)^2;
F(5)*F(4)].';
return
function [R2,t2] = calcampose(XXc,XXw)
n= length(XXc);
X= XXw;
Y= XXc;
K= eye(n)-ones(n,n)/n;
ux= mean(X,2);
uy= mean(Y,2);
sigmx2= mean(sum((X*K).^2));
SXY= Y*K*(X')/n;
[U, D, V]= svd(SXY);
S= eye(3);
if det(SXY) < 0
S(3,3)= -1;
end
R2= U*S*(V');
c2= trace(D*S)/sigmx2;
t2= uy-c2*R2*ux;
X= R2(:,1);
Y= R2(:,2);
Z= R2(:,3);
if norm(xcross(X,Y)-Z) > 2e-2
R2(:,3)= -Z;
end
return
function c = xcross(a,b)
c = [a(2)*b(3)-a(3)*b(2);
a(3)*b(1)-a(1)*b(3);
a(1)*b(2)-a(2)*b(1)];
return
|
github | urbste/MLPnP_matlab_toolbox-master | RPnP2.m | .m | MLPnP_matlab_toolbox-master/rpnp/code3/func/RPnP2.m | 6,250 | utf_8 | aea150b9d6f873d63b1824dcddcc73a6 | function [R t]= RPnP2(XX,xx)
R= []; t= [];
n= length(xx);
XXw= XX;
xxv= [xx; ones(1,n)];
for i=1:n
xxv(:,i)= xxv(:,i)/norm(xxv(:,i));
end
% selecting an edge $P_{i1}P_{i2}$ whose projection length
% is the longest in image plane.
lmin= inf;
i1= 0; i2= 0;
for i= 1:n-1
for j= i+1:n
l= xxv(1,i)*xxv(1,j)+xxv(2,i)*xxv(2,j)+xxv(3,i)*xxv(3,j);
if l < lmin
i1= i;
i2= j;
lmin= l;
end
end
end
% calculating the rotation matrix of $O_aX_aY_aZ_a$.
p1= XX(:,i1);
p2= XX(:,i2);
p0= (p1+p2)/2;
x= p2-p0; x= x/norm(x);
if abs([0 1 0]*x) < abs([0 0 1]*x)
z= xcross(x,[0; 1; 0]); z= z/norm(z);
y= xcross(z, x); y= y/norm(y);
else
y= xcross([0; 0; 1], x); y= y/norm(y);
z= xcross(x,y); z= z/norm(z);
end
Ro= [x y z];
% transforming the reference points form orignial object space
% to the new coordinate frame $O_aX_aY_aZ_a$.
XX= Ro.'*(XX-repmat(p0,1,n));
% Dividing the n-point set into (n-2) 3-point subsets
% and setting up the P3P equations
v1= xxv(:,i1);
v2= xxv(:,i2);
cg1= v1.'*v2;
sg1= sqrt(1-cg1^2);
D1= norm(XX(:,i1)-XX(:,i2));
D4= zeros(n-2,5);
if 0 % determining F', the deviation of the cost function.
j= 0;
for i= 1:n
if i == i1 || i == i2
continue;
end
j= j+1;
vi= xxv(:,i);
cg2= v1.'*vi;
cg3= v2.'*vi;
sg2= sqrt(1-cg2^2);
D2= norm(XX(:,i1)-XX(:,i));
D3= norm(XX(:,i)-XX(:,i2));
% get the coefficients of the P3P equation from each subset.
D4(j,:)= getp3p(cg1,cg2,cg3,sg1,sg2,D1,D2,D3);
end
% get the 7th order polynomial, the deviation of the cost function.
D7= zeros(1,8);
for i= 1:n-2
D7= D7+ getpoly7(D4(i,:));
end
else % =======================================================================
% following code is the same as the code above (between "if 0" and "else")
% but the following code is a little more efficient than the former
% in matlab when the number of points is large,
% because the dot multiply operation is used.
idx= true(1,n);
idx([i1 i2])= false;
vi= xxv(:,idx);
cg2= vi.'*v1;
cg3= vi.'*v2;
sg2= sqrt(1-cg2.^2);
D2= cg2;
D3= cg2;
didx= find(idx);
for i= 1:n-2
D2(i)= norm(XX(:,i1)-XX(:,didx(i)));
D3(i)= norm(XX(:,didx(i))-XX(:,i2));
end
A1= (D2./D1).^2;
A2= A1*sg1^2-sg2.^2;
A3= cg2.*cg3-cg1;
A4= cg1*cg3-cg2;
A6= (D3.^2-D1^2-D2.^2)./(2*D1^2);
A7= 1-cg1^2-cg2.^2+cg1*cg2.*cg3+A6.*sg1^2;
D4= [A6.^2-A1.*cg3.^2, 2*(A3.*A6-A1.*A4.*cg3),...
A3.^2+2*A6.*A7-A1.*A4.^2-A2.*cg3.^2,...
2*(A3.*A7-A2.*A4.*cg3), A7.^2-A2.*A4.^2];
F7= [4*D4(:,1).^2,...
7*D4(:,2).*D4(:,1),...
6*D4(:,3).*D4(:,1)+3*D4(:,2).^2,...
5*D4(:,4).*D4(:,1)+5*D4(:,3).*D4(:,2),...
4*D4(:,5).*D4(:,1)+4*D4(:,4).*D4(:,2)+2*D4(:,3).^2,...
3*D4(:,5).*D4(:,2)+3*D4(:,4).*D4(:,3),...
2*D4(:,5).*D4(:,3)+D4(:,4).^2,...
D4(:,5).*D4(:,4)];
D7= sum(F7);
end
% retriving the local minima of the cost function.
t2s= roots(D7);
maxreal= max(abs(real(t2s)));
t2s(abs(imag(t2s))/maxreal > 0.001)= [];
t2s= real(t2s);
D6= (7:-1:1).*D7(1:7);
F6= polyval(D6,t2s);
t2s(F6 <= 0)= [];
if isempty(t2s)
fprintf('no solution!\n');
return
end
% calculating the camera pose from each local minimum.
m= length(t2s);
for i= 1:m
t2= t2s(i);
% calculating the rotation matrix
d2= cg1+t2;
x= v2*d2- v1; x= x/norm(x);
if abs([0 1 0]*x) < abs([0 0 1]*x)
z= xcross(x,[0; 1; 0]); z= z/norm(z);
y= xcross(z, x); y= y/norm(y);
else
y= xcross([0; 0; 1], x); y= y/norm(y);
z= xcross(x,y); z= z/norm(z);
end
Rx= [x y z];
% calculating c, s, tx, ty, tz
D= zeros(2*n,6);
r= Rx.';
for j= 1:n
ui= xx(1,j); vi= xx(2,j);
xi= XX(1,j); yi= XX(2,j); zi= XX(3,j);
D(2*j-1,:)= [-r(2)*yi+ui*(r(8)*yi+r(9)*zi)-r(3)*zi, ...
-r(3)*yi+ui*(r(9)*yi-r(8)*zi)+r(2)*zi, ...
-1, 0, ui, ui*r(7)*xi-r(1)*xi];
D(2*j, :)= [-r(5)*yi+vi*(r(8)*yi+r(9)*zi)-r(6)*zi, ...
-r(6)*yi+vi*(r(9)*yi-r(8)*zi)+r(5)*zi, ...
0, -1, vi, vi*r(7)*xi-r(4)*xi];
end
DTD= D.'*D;
[V D]= eig(DTD);
V1= V(:,1); V1= V1/V1(end);
c= V1(1); s= V1(2); t= V1(3:5);
% calculating the camera pose by 3d alignment
xi= XX(1,:); yi= XX(2,:); zi= XX(3,:);
XXcs= [r(1)*xi+(r(2)*c+r(3)*s)*yi+(-r(2)*s+r(3)*c)*zi+t(1);
r(4)*xi+(r(5)*c+r(6)*s)*yi+(-r(5)*s+r(6)*c)*zi+t(2);
r(7)*xi+(r(8)*c+r(9)*s)*yi+(-r(8)*s+r(9)*c)*zi+t(3)];
XXc= zeros(size(XXcs));
for j= 1:n
XXc(:,j)= xxv(:,j)*norm(XXcs(:,j));
end
[R t]= calcampose(XXc,XXw);
% calculating the reprojection error
XXc= R*XXw+t*ones(1,n);
xxc= [XXc(1,:)./XXc(3,:); XXc(2,:)./XXc(3,:)];
r= mean(sqrt(sum((xxc-xx).^2)));
res{i}.R= R;
res{i}.t= t;
res{i}.r= r;
end
% determing the camera pose with the smallest reprojection error.
minr= inf;
for i= 1:m
if res{i}.r < minr
minr= res{i}.r;
R= res{i}.R;
t= res{i}.t;
end
end
return
function B = getp3p(l1,l2,A5,C1,C2,D1,D2,D3)
A1= (D2/D1)^2;
A2= A1*C1^2-C2^2;
A3= l2*A5-l1;
A4= l1*A5-l2;
A6= (D3^2-D1^2-D2^2)/(2*D1^2);
A7= 1-l1^2-l2^2+l1*l2*A5+A6*C1^2;
B= [A6^2-A1*A5^2, 2*(A3*A6-A1*A4*A5), A3^2+2*A6*A7-A1*A4^2-A2*A5^2,...
2*(A3*A7-A2*A4*A5), A7^2-A2*A4^2];
return
function F7= getpoly7(F)
F7= [4*F(1)^2;
7*F(2)*F(1);
6*F(3)*F(1)+3*F(2)^2;
5*F(4)*F(1)+5*F(3)*F(2);
4*F(5)*F(1)+4*F(4)*F(2)+2*F(3)^2;
3*F(5)*F(2)+3*F(4)*F(3);
2*F(5)*F(3)+F(4)^2;
F(5)*F(4)].';
return
function [R2,t2] = calcampose(XXc,XXw)
n= length(XXc);
X= XXw;
Y= XXc;
K= eye(n)-ones(n,n)/n;
ux= mean(X,2);
uy= mean(Y,2);
sigmx2= mean(sum((X*K).^2));
SXY= Y*K*(X')/n;
[U, D, V]= svd(SXY);
S= eye(3);
if det(SXY) < 0
S(3,3)= -1;
end
R2= U*S*(V');
c2= trace(D*S)/sigmx2;
t2= uy-c2*R2*ux;
X= R2(:,1);
Y= R2(:,2);
Z= R2(:,3);
if norm(xcross(X,Y)-Z) > 2e-2
R2(:,3)= -Z;
end
return
function c = xcross(a,b)
c = [a(2)*b(3)-a(3)*b(2);
a(3)*b(1)-a(1)*b(3);
a(1)*b(2)-a(2)*b(1)];
return
|
github | urbste/MLPnP_matlab_toolbox-master | RPnP1.m | .m | MLPnP_matlab_toolbox-master/rpnp/code3/func/RPnP1.m | 6,202 | utf_8 | 188e6135a0b28b2e5758ad1ff4495607 | function [R t]= RPnP1(XX,xx)
R= []; t= [];
n= length(xx);
XXw= XX;
xxv= [xx; ones(1,n)];
for i=1:n
xxv(:,i)= xxv(:,i)/norm(xxv(:,i));
end
% selecting an edge $P_{i1}P_{i2}$ randomly
i1= 1;
i2= 2;
lmin= xxv(1,i1)*xxv(1,i2)+xxv(2,i1)*xxv(2,i2)+xxv(3,i1)*xxv(3,i2);
i= ceil(rand*n);
j= ceil(rand*n);
if i ~= j
l= xxv(1,i)*xxv(1,j)+xxv(2,i)*xxv(2,j)+xxv(3,i)*xxv(3,j);
if l < lmin
i1= i;
i2= j;
end
end
% calculating the rotation matrix of $O_aX_aY_aZ_a$.
p1= XX(:,i1);
p2= XX(:,i2);
p0= (p1+p2)/2;
x= p2-p0; x= x/norm(x);
if abs([0 1 0]*x) < abs([0 0 1]*x)
z= xcross(x,[0; 1; 0]); z= z/norm(z);
y= xcross(z, x); y= y/norm(y);
else
y= xcross([0; 0; 1], x); y= y/norm(y);
z= xcross(x,y); z= z/norm(z);
end
Ro= [x y z];
% transforming the reference points form orignial object space
% to the new coordinate frame $O_aX_aY_aZ_a$.
XX= Ro.'*(XX-repmat(p0,1,n));
% Dividing the n-point set into (n-2) 3-point subsets
% and setting up the P3P equations
v1= xxv(:,i1);
v2= xxv(:,i2);
cg1= v1.'*v2;
sg1= sqrt(1-cg1^2);
D1= norm(XX(:,i1)-XX(:,i2));
D4= zeros(n-2,5);
if 0 % determining F', the deviation of the cost function.
j= 0;
for i= 1:n
if i == i1 || i == i2
continue;
end
j= j+1;
vi= xxv(:,i);
cg2= v1.'*vi;
cg3= v2.'*vi;
sg2= sqrt(1-cg2^2);
D2= norm(XX(:,i1)-XX(:,i));
D3= norm(XX(:,i)-XX(:,i2));
% get the coefficients of the P3P equation from each subset.
D4(j,:)= getp3p(cg1,cg2,cg3,sg1,sg2,D1,D2,D3);
end
% get the 7th order polynomial, the deviation of the cost function.
D7= zeros(1,8);
for i= 1:n-2
D7= D7+ getpoly7(D4(i,:));
end
else % =======================================================================
% following code is the same as the code above (between "if 0" and "else")
% but the following code is a little more efficient than the former
% in matlab when the number of points is large,
% because the dot multiply operation is used.
idx= true(1,n);
idx([i1 i2])= false;
vi= xxv(:,idx);
cg2= vi.'*v1;
cg3= vi.'*v2;
sg2= sqrt(1-cg2.^2);
D2= cg2;
D3= cg2;
didx= find(idx);
for i= 1:n-2
D2(i)= norm(XX(:,i1)-XX(:,didx(i)));
D3(i)= norm(XX(:,didx(i))-XX(:,i2));
end
A1= (D2./D1).^2;
A2= A1*sg1^2-sg2.^2;
A3= cg2.*cg3-cg1;
A4= cg1*cg3-cg2;
A6= (D3.^2-D1^2-D2.^2)./(2*D1^2);
A7= 1-cg1^2-cg2.^2+cg1*cg2.*cg3+A6.*sg1^2;
D4= [A6.^2-A1.*cg3.^2, 2*(A3.*A6-A1.*A4.*cg3),...
A3.^2+2*A6.*A7-A1.*A4.^2-A2.*cg3.^2,...
2*(A3.*A7-A2.*A4.*cg3), A7.^2-A2.*A4.^2];
F7= [4*D4(:,1).^2,...
7*D4(:,2).*D4(:,1),...
6*D4(:,3).*D4(:,1)+3*D4(:,2).^2,...
5*D4(:,4).*D4(:,1)+5*D4(:,3).*D4(:,2),...
4*D4(:,5).*D4(:,1)+4*D4(:,4).*D4(:,2)+2*D4(:,3).^2,...
3*D4(:,5).*D4(:,2)+3*D4(:,4).*D4(:,3),...
2*D4(:,5).*D4(:,3)+D4(:,4).^2,...
D4(:,5).*D4(:,4)];
D7= sum(F7);
end
% retriving the local minima of the cost function.
t2s= roots(D7);
maxreal= max(abs(real(t2s)));
t2s(abs(imag(t2s))/maxreal > 0.001)= [];
t2s= real(t2s);
D6= (7:-1:1).*D7(1:7);
F6= polyval(D6,t2s);
t2s(F6 <= 0)= [];
if isempty(t2s)
fprintf('no solution!\n');
return
end
% calculating the camera pose from each local minimum.
m= length(t2s);
for i= 1:m
t2= t2s(i);
% calculating the rotation matrix
d2= cg1+t2;
x= v2*d2- v1; x= x/norm(x);
if abs([0 1 0]*x) < abs([0 0 1]*x)
z= xcross(x,[0; 1; 0]); z= z/norm(z);
y= xcross(z, x); y= y/norm(y);
else
y= xcross([0; 0; 1], x); y= y/norm(y);
z= xcross(x,y); z= z/norm(z);
end
Rx= [x y z];
% calculating c, s, tx, ty, tz
D= zeros(2*n,6);
r= Rx.';
for j= 1:n
ui= xx(1,j); vi= xx(2,j);
xi= XX(1,j); yi= XX(2,j); zi= XX(3,j);
D(2*j-1,:)= [-r(2)*yi+ui*(r(8)*yi+r(9)*zi)-r(3)*zi, ...
-r(3)*yi+ui*(r(9)*yi-r(8)*zi)+r(2)*zi, ...
-1, 0, ui, ui*r(7)*xi-r(1)*xi];
D(2*j, :)= [-r(5)*yi+vi*(r(8)*yi+r(9)*zi)-r(6)*zi, ...
-r(6)*yi+vi*(r(9)*yi-r(8)*zi)+r(5)*zi, ...
0, -1, vi, vi*r(7)*xi-r(4)*xi];
end
DTD= D.'*D;
[V D]= eig(DTD);
V1= V(:,1); V1= V1/V1(end);
c= V1(1); s= V1(2); t= V1(3:5);
% calculating the camera pose by 3d alignment
xi= XX(1,:); yi= XX(2,:); zi= XX(3,:);
XXcs= [r(1)*xi+(r(2)*c+r(3)*s)*yi+(-r(2)*s+r(3)*c)*zi+t(1);
r(4)*xi+(r(5)*c+r(6)*s)*yi+(-r(5)*s+r(6)*c)*zi+t(2);
r(7)*xi+(r(8)*c+r(9)*s)*yi+(-r(8)*s+r(9)*c)*zi+t(3)];
XXc= zeros(size(XXcs));
for j= 1:n
XXc(:,j)= xxv(:,j)*norm(XXcs(:,j));
end
[R t]= calcampose(XXc,XXw);
% calculating the reprojection error
XXc= R*XXw+t*ones(1,n);
xxc= [XXc(1,:)./XXc(3,:); XXc(2,:)./XXc(3,:)];
r= mean(sqrt(sum((xxc-xx).^2)));
res{i}.R= R;
res{i}.t= t;
res{i}.r= r;
end
% determing the camera pose with the smallest reprojection error.
minr= inf;
for i= 1:m
if res{i}.r < minr
minr= res{i}.r;
R= res{i}.R;
t= res{i}.t;
end
end
return
function B = getp3p(l1,l2,A5,C1,C2,D1,D2,D3)
A1= (D2/D1)^2;
A2= A1*C1^2-C2^2;
A3= l2*A5-l1;
A4= l1*A5-l2;
A6= (D3^2-D1^2-D2^2)/(2*D1^2);
A7= 1-l1^2-l2^2+l1*l2*A5+A6*C1^2;
B= [A6^2-A1*A5^2, 2*(A3*A6-A1*A4*A5), A3^2+2*A6*A7-A1*A4^2-A2*A5^2,...
2*(A3*A7-A2*A4*A5), A7^2-A2*A4^2];
return
function F7= getpoly7(F)
F7= [4*F(1)^2;
7*F(2)*F(1);
6*F(3)*F(1)+3*F(2)^2;
5*F(4)*F(1)+5*F(3)*F(2);
4*F(5)*F(1)+4*F(4)*F(2)+2*F(3)^2;
3*F(5)*F(2)+3*F(4)*F(3);
2*F(5)*F(3)+F(4)^2;
F(5)*F(4)].';
return
function [R2,t2] = calcampose(XXc,XXw)
n= length(XXc);
X= XXw;
Y= XXc;
K= eye(n)-ones(n,n)/n;
ux= mean(X,2);
uy= mean(Y,2);
sigmx2= mean(sum((X*K).^2));
SXY= Y*K*(X')/n;
[U, D, V]= svd(SXY);
S= eye(3);
if det(SXY) < 0
S(3,3)= -1;
end
R2= U*S*(V');
c2= trace(D*S)/sigmx2;
t2= uy-c2*R2*ux;
X= R2(:,1);
Y= R2(:,2);
Z= R2(:,3);
if norm(xcross(X,Y)-Z) > 2e-2
R2(:,3)= -Z;
end
return
function c = xcross(a,b)
c = [a(2)*b(3)-a(3)*b(2);
a(3)*b(1)-a(1)*b(3);
a(1)*b(2)-a(2)*b(1)];
return |
github | urbste/MLPnP_matlab_toolbox-master | objpose.m | .m | MLPnP_matlab_toolbox-master/rpnp/code3/lhm/objpose.m | 6,619 | utf_8 | b9c153a88d0dfe0fc1eb586122344ed3 | function [R, t, it, obj_err, img_err] = objpose(P, Qp, options)
% OBJPOSE - Object pose estimation
% OBJPOSE(P, Qp) compute the pose (exterior orientation)
% between the 3D point set P represented in object space
% and its projection Qp represented in normalized image
% plane. It implements the algorithm described in "Fast
% and Globally Convergent Pose Estimation from Video
% Images" by Chien-Ping Lu et. al. to appear in IEEE
% Transaction on Pattern Analysis and Machine intelligence
%
% function [R, t, it, obj_err, img_err] = objpose(P, Qp, options)
%
% INPUTS:
% P - 3D point set arranged in a 3xn matrix
% Qp - 2D point set arranged in a 2xn matrix
% options - a structure specifies certain parameters in the algorithm.
%
% Field name Parameter Default
%
% OPTIONS.initR initial guess of rotation none
% OPTIONS.tol Convergence tolerance: 1e-5
% abs(new_value-old_value)/old_value<tol
% OPTIONS.epsilon lower bound of the objective function 1e-8
% OPTIONS.method 'SVD' use SVD for solving rotation 'QTN'
% 'QTN' use quaternion for solving
% rotation
% OUTPUTS:
% R - estimated rotation matrix
% t - estimated translation vector
% it - number of the iterations taken
% obj_err - object-space error associated with the estimate
% img_err - image-space error associated with the estimate
%
TOL = 1E-5;
EPSILON = 1E-8;
METHOD = 'QTN';
if nargin >= 3
if isfield(options, 'tol')
TOL = options.tol;
end
if isfield(options, 'epsilon')
EPSILON = options.epsilon;
end
if isfield(options, 'method')
METHOD = options.method;
end
end
n = size(P,2);
% move the origin to the center of P
pbar = sum(P,2)/n;
for i = 1:n
P(:,i) = P(:,i)-pbar;
end
Q(1:3,n) = 0;
for i = 1 : n
Q(:,i) = [Qp(:,i);1];
end
% compute projection matrices
F(1:3,1:3,1:n) = 0;
V(1:3) = 0;
for i = 1:n
V = Q(:,i)/Q(3,i);
F(:,:,i) = (V*V.')/(V.'*V);
end
% compute the matrix factor required to compute t
tFactor = inv(eye(3)-sum(F,3)/n)/n;
it = 0;
if isfield(options, 'initR') % initial guess of rotation is given
Ri = options.initR;
sum_(1:3,1) = 0;
for i = 1:n
sum_ = sum_ + (F(:,:,i)-eye(3))*Ri*P(:,i);
end
ti = tFactor*sum_;
% calculate error
Qi = xform(P, Ri, ti);
old_err = 0;
vec(1:3,1) = 0;
for i = 1 : n
vec = (eye(3)-F(:,:,i))*Qi(:,i);
old_err = old_err + dot(vec,vec);
end
else % no initial guess; use weak-perspective approximation
% compute initial pose estimate
if 0
Qx= [Q(1,:)./norm(Q); Q(2,:)./norm(Q); ones(1,length(Q))];
Q= Qx;
end
[Ri, ti, Qi, old_err] = abskernel(P, Q, F, tFactor, METHOD);
it = 1;
end
% compute next pose estimate
[Ri, ti, Qi, new_err] = abskernel(P, Qi, F, tFactor, METHOD);
it = it + 1;
while (abs((old_err-new_err)/old_err) > TOL) & (new_err > EPSILON)
old_err = new_err;
% compute the optimal estimate of R
[Ri, ti, Qi, new_err] = abskernel(P, Qi, F, tFactor, METHOD);
it = it + 1;
if it > 20
break
end
end
R = Ri;
t = ti;
obj_err = sqrt(new_err/n);
if (nargout >= 5) % calculate image-space error
Qproj = xformproj(P, Ri, ti);
img_err = 0;
vec(1:3,1) = 0;
for i = 1:n
vec = Qproj(i)-Qp(i);
img_err = img_err + dot(vec,vec);
end
img_err = sqrt(img_err/n);
end
%% correct possible reflection w.r.t the projection center
%if t(3) < 0 %% This is a wrong assumption HERE XXX
% R = -R; %% Need to be checked in each iteration !!
% t = -t;
%end
% get back to original refernce frame
t = t - Ri*pbar;
% end of OBJPOSE
function t = estimate_t( R,G,F,P,n )
sum_(1:3,1) = 0;
for i = 1:n
sum_ = sum_ + F(:,:,i)*R*P(:,i);
end
t = G*sum_;
function [R, t, Qout, err2] = abskernel(P, Q, F, G, method)
% ABSKERNEL - Absolute orientation kernel
% ABSKERNEL is the function for solving the
% intermediate absolute orientation problems
% in the inner loop of the OI pose estimation
% algorithm
%
% INPUTS:
% P - the reference point set arranged as a 3xn matrix
% Q - the point set obtained by transforming P with
% some pose estimate (typically the last estimate)
% F - the array of projection matrices arranged as
% a 3x3xn array
% G - a matrix precomputed for calculating t
% method - 'SVD' -> use SVD solution for rotation
% 'QTN' -> use quaterion solution for rotation
%
%
% OUTPUTS:
% R - estimated rotation matrix
% t - estimated translation vector
% Qout - the point set obtained by transforming P with
% newest pose estimate
% err2 - sum of squared object-space error associated
% with the estimate
n = size(P,2);
for i = 1:n
Q(:,i) = F(:,:,i)*Q(:,i);
end
% compute P' and Q'
pbar = sum(P,2)/n;
qbar = sum(Q,2)/n;
for i = 1:n
P(:,i) = P(:,i)-pbar;
Q(:,i) = Q(:,i)-qbar;
end
if method == 'SVD' % use SVD solution
% compute M matrix
M(1:3,1:3) = 0;
for i = 1:n
M = M+P(:,i)*Q(:,i).';
end
% calculate SVD of M
[U,S,V] = svd(M);
% compute rotation matrix R
R = V*(U.');
% disp(['det(R)= ' num2str(det(R)) ]);
if sign(det(R)) == 1,
t = estimate_t( R,G,F,P,n );
if t(3) < 0 ,
% disp(['t_3 = ' num2str(t(3)) ]);
%% we need to invert the t
R=-[V(:,1:2) -V(:,3)]*U.';
t = estimate_t( R,G,F,P,n );
% S V U R t
end
else
R=[V(:,1:2) -V(:,3)]*U.';
t = estimate_t( R,G,F,P,n );
if t(3) < 0 ,
% disp(['t_3 = ' num2str(t(3)) ]);
%% we need to invert the t
R =- V*(U.');
t = estimate_t( R,G,F,P,n );
end
end
if det(R) < 0 ,
% R
% kl
end
if t(3) < 0,
% t
% kl
end
elseif method == 'QTN' % use quaternion solution
% compute M matrix
A(1:4,1:4) = 0;
for i = 1:n
A = A + qmatQ([1;Q(:,i)]).'*qmatW([1;P(:,i)]);
end
% Find the largest eigenvalue of A
eigs_options.disp = 0;
[V,D] = eigs(A, eye(size(A)), 1, 'LM', eigs_options);
% compute rotation matrix R from the quaternion that
% corresponds to the largest egienvalue of A
%% -> this is wrong -> we need to take the largest -> which is no always the first one
% kl
R = quat2mat(V);
sum_(1:3,1) = 0;
for i = 1:n
sum_ = sum_ + F(:,:,i)*R*P(:,i);
end
t = G*sum_;
end
Qout = xform(P, R, t);
% calculate error
err2 = 0;
vec(1:3,1) = 0;
for i = 1 : n
vec = (eye(3)-F(:,:,i))*Qout(:,i);
err2 = err2 + dot(vec,vec);
end
% end of ABSKERNEL
|
github | urbste/MLPnP_matlab_toolbox-master | get2ndPose_Exact.m | .m | MLPnP_matlab_toolbox-master/rpnp/code3/sp/get2ndPose_Exact.m | 1,662 | utf_8 | 279c3611d83fb0b5ae3064d2b6479259 | function sol=get2ndPose_Exact(v,P,R,t,DB)
%function bet=get2ndPose_Exact(v,P,R,t)
%
%returns the second pose if a first pose was calulated.
%
% Author: Gerald Schweighofer [email protected]
% Disclaimer: This code comes with no guarantee at all and its author
% is not liable for any damage that its utilization may cause.
cent=normRv(mean(normRv(v)')');
Rim=GetRotationbyVector([0;0;1],cent);
%cent
%Rim
v_ = Rim*v;
cent=normRv(mean(normRv(v_)')');
R_=Rim*R;
t_=Rim*t;
%R_
%t_
sol=getRfor2ndPose_V_Exact(v_,P,R_,t_,DB);
%% de Normalise the Pose
for i=1:length(sol),
sol(i).R = Rim'*sol(i).R;
sol(i).t = Rim'*sol(i).t;
end
function sol=getRfor2ndPose_V_Exact(v,P,R,t,DB)
% gets the exact R with variations in t
%
%hgenv(R*P+repmat(t,1,size(P,2)))
%hgenv(v)
RzN=decomposeR(R);
R_= R*RzN;
%% change model by Rz
%hgenv(R*P+repmat(t,1,size(P,2)))
%hgenv(v)
P_=RzN'*P;
%hgenv(R_*P_+repmat(t,1,size(P_,2)))
%hgenv(v)
%% project into Image with only Ry
ang_zyx = rpyAng_X(R_);
Ry =rpyMat([0;ang_zyx(2);0]);
Rz =rpyMat([0;0;ang_zyx(3)]);
%hgenv(Rz*Ry*P_+repmat(t,1,size(P_,2)))
%hgenv(v)
%v
%P_
%t
%Rz
[bl,Tnew,at]=getRotationY_wrtT(v ,P_,t,DB,Rz);
bl = bl ./180*pi;
%% we got 2 solutions. YEAH
V=[];
for i=1:size(v,2),
V(i).V= (v(:,i)*v(:,i)')./(v(:,i)'*v(:,i));
end
sol=[];
for j=1:length(bl),
sol(j).bl = bl(j);
sol(j).at = at(j);
Ry = rpyMat([0;bl(j);0]);
sol(j).R = Rz*Ry*RzN';
sol(j).t = Tnew(:,j);
%test the Error
E=0;
for i=1:size(v,2),
E=E+sum(((eye(3)-V(i).V)*(sol(j).R*P(:,i)+sol(j).t)).^2);
end
sol(j).E=E;
end
|
github | urbste/MLPnP_matlab_toolbox-master | rpyMat.m | .m | MLPnP_matlab_toolbox-master/rpnp/code3/sp/rpyMat.m | 685 | utf_8 | b3324a80385c9ddc0b997a5631ca134d |
% Author: Rodrigo Carceroni
% Disclaimer: This code comes with no guarantee at all and its author
% is not liable for any damage that its utilization may cause.
function R = rpyMat (angs)
% Return the 3x3 rotation matrix described by a set of Roll, Pitch and Yaw
% angles.
cosA = cos (angs(3));
sinA = sin (angs(3));
cosB = cos (angs(2));
sinB = sin (angs(2));
cosC = cos (angs(1));
sinC = sin (angs(1));
cosAsinB = cosA .* sinB;
sinAsinB = sinA .* sinB;
R = [ cosA.*cosB cosAsinB.*sinC-sinA.*cosC cosAsinB.*cosC+sinA.*sinC ;
sinA.*cosB sinAsinB.*sinC+cosA.*cosC sinAsinB.*cosC-cosA.*sinC ;
-sinB cosB.*sinC cosB.*cosC ];
|
github | urbste/MLPnP_matlab_toolbox-master | rpp.m | .m | MLPnP_matlab_toolbox-master/rpnp/code3/sp/rpp.m | 2,232 | utf_8 | fc5efdb13e8c0ba4978d8a537f6f2113 |
function [pose,po2]=rpp(model,iprts,opt)
%Pose=rpp(model,points)
%
% Robust Pose from Planar Tragets
% Estimates a Pose for a given Planar Target / image Points combination
% based on this 1st Solution a second solution is found.
% From both Solutions the "better one" (based on the error) is choosen
% as the correct one !
%
% (For image-sequenzes a more sophisticated approach should be used)
%
% Author: Gerald Schweighofer [email protected]
% Disclaimer: This code comes with no guarantee at all and its author
% is not liable for any damage that its utilization may cause.
%% test
if nargin == 0,
model = [ 0.0685 0.6383 0.4558 0.7411 -0.7219 0.7081 0.7061 0.2887 -0.9521 -0.2553 ;
0.4636 0.0159 -0.1010 0.2817 0.6638 0.1582 0.3925 -0.7954 0.6965 -0.7795;
0 0 0 0 0 0 0 0 0 0];
iprts =[ -0.0168 0.0377 0.0277 0.0373 -0.0824 0.0386 0.0317 0.0360 -0.1015 -0.0080;
0.0866 0.1179 0.1233 0.1035 0.0667 0.1102 0.0969 0.1660 0.0622 0.1608;
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000];
end
%model 3xn Model Points: planar 3rd row = 0
%ipts 3xn Image Points: 2d (homogen) 3rd row = 1
if nargin <= 2,
%% no opt -> use random values.
opt.initR=rpyMat(2*pi*(rand(3,1)));
end
opt.method='SVD';
%% get a first guess of the pose.
[Rlu_, tlu_, it1_, obj_err1_, img_err1_] = objpose(model, iprts(1:2,:) , opt);
%% get 2nd Pose
sol=get2ndPose_Exact(iprts,model,Rlu_,tlu_,0);
%% refine with lu
for i=1:length(sol),
opt.initR = sol(i).R;
[Rlu_, tlu_, it1_, obj_err1_, img_err1_] = objpose(model, iprts(1:2,:) , opt);
% Rlu_
sol(i).PoseLu.R = Rlu_;
sol(i).PoseLu.t = tlu_;
sol(i).obj_err = obj_err1_;
end
% disp(['There are ' num2str(length(sol)) ' Solutions with Error: ' num2str(cat(2,sol.obj_err)) ]);
e = [cat(1, sol.obj_err ) [1:length(sol)]' ];
e = sortrows(e,1);
pose = sol(e(1,2)).PoseLu;
pose.err = sol(e(1,2)).obj_err;
if nargout == 2,
if size(e,1) > 1,
po2 = sol(e(2,2)).PoseLu;
po2.err = sol(e(2,2)).obj_err;
else
po2 = pose;
end
end
|
github | urbste/MLPnP_matlab_toolbox-master | rpyAng.m | .m | MLPnP_matlab_toolbox-master/rpnp/code3/sp/rpyAng.m | 1,184 | utf_8 | 1ae147340c1474c625e3a56cb5ef871c |
% Author: Rodrigo Carceroni
% Disclaimer: This code comes with no guarantee at all and its author
% is not liable for any damage that its utilization may cause.
function angs = rpyAng (R)
% Returns a set of Roll, Pitch and Yaw angles that describe a certain 3x3
% transformation matrix. The magnitude of the Pitch angle is constrained
% to be not bigger than pi/2.
sinB = -R(3,1);
cosB = sqrt (R(1,1) .* R(1,1) + R(2,1) .* R(2,1));
if abs (cosB) > 1e-15
sinA = R(2,1) ./ cosB;
cosA = R(1,1) ./ cosB;
sinC = R(3,2) ./ cosB;
cosC = R(3,3) ./ cosB;
angs = [atan2(sinC,cosC); atan2(sinB,cosB); atan2(sinA,cosA)];
else
sinC = (R(1,2) - R(2,3)) ./ 2;
cosC = (R(2,2) + R(1,3)) ./ 2;
angs = [atan2(sinC,cosC); pi./2; 0];
if sinB < 0
angs = -angs;
end;
end;
if norm(R-rpyMat(angs)) > 1e-10,
disp('rpyMat: Error not correct Solution ');
pause
end
%if norm(R-rpyMat([angs(1);0;0])*rpyMat([0;angs(2);0])*rpyMat([0;0;angs(3)]),'fro') > 1e-10,
% disp('rpyMat: Error not correct Solution ');
% pause
%end
%if norm(R-rpyMat([0;0;angs(3)])*rpyMat([0;angs(2);0])*rpyMat([angs(1);0;0]),'fro') > 1e-10,
% disp('rpyMat: Error not correct Solution ');
% pause
%end
|
github | urbste/MLPnP_matlab_toolbox-master | solver_pfold.m | .m | MLPnP_matlab_toolbox-master/OPnP/solver_pfold.m | 8,452 | utf_8 | 7d7065489a779da0b7f8153a045b4a11 | function [sols,stats] = solver_pfold(C0,settings)
if isfield(settings,'debug') == 0;
settings.debug = 0; % compute statistics conditioning etc. much slower
end
if isfield(settings,'nrun') == 0
settings.nrun = 0; % # of run to find best sub-determinants in p-fold integer solver
end
if isfield(settings,'old_zplineq') == 0
settings.old_zplineq = 0; % use old zp linear equation solver, ~slower
end
if isfield(settings,'cutoff_threshold') == 0;
settings.cutoff_threshold = 1e12;
end
if isfield(settings,'full_QR1') == 0;
settings.full_QR1 = 0; % 0 : sparse QR on the first part of QR - faster and higher accuracy
end
if isfield(settings,'real') == 0;
settings.real = 0; % only output real solutions
end
if isfield(settings,'inverter_threshold') == 0
settings.inverter_threshold = 1; % set this to be smaller seem to gain accuracy, but might give large error for cases with large scale differences
end
debug = settings.debug;
C0 = C0(:,settings.reorder);
C0 = bsxfun(@rdivide,C0,sqrt(sum(C0.^2,2)));
I = settings.I;
J = settings.J;
mon = settings.mon;
% keyboard
neq = size(C0,1);
nmon = size(mon,2);
T = settings.T;
T0 = settings.Tid;
C1 = C0';
vv = (C1(T));
C=(sparse(settings.II,settings.JJ,vv));
% T = settings.T;
% C = zeros(max(I{end}),nmon);
% T0 = settings.Tid;
% C1 = C0';
% C(T0) = (C1(T));
% C = sparse(C);
P = settings.P; % permissible
R = settings.R; % reducible
E = settings.E; % excessive
p = neq; %# of unknonws : assume # of unknown = # of eqs
n = nmon; %# of monomials in the template
r = settings.dim; %dim of p-fold solutions
ind = settings.ind; % monomial indices action_variable * permissibles
stats.neq = size(C,1);
stats.nmon = size(C,2);
%
% construct modulo matrix
%
% reorder
ne = length(E);
nr = length(R);
np = length(P);
if debug
modstats.n_to_reduce = nr;
modstats.n_excessive = ne;
end
V = [E R P];
C = C(:, [E, R, P]);
% eliminate excessive monomials (done by lu in the qr paper.
% this is more general)
% the row_echelon method was used before, but the qr version is almost
% always much faster.
if(~isempty(E))
[qq rr ee] = qr(C(:, 1 : length(E)));
% CC = sparse(C(:, length(E) + 1 : end));
C2 = [rr qq'*C(:, length(E) + 1 : end)];
kk = abs(rr(1))./abs(diag(rr)) < settings.cutoff_threshold;
k = find(diff(kk) == -1);
if(isempty(k))
k = length(kk);
end
else
C2 = C;
k = 0;
end
% partition C into R- and P-parts
CR = C2(k + 1 : end, ne + 1 : ne + nr);
CP = C2(k + 1 : end, end - np + 1 : end);
mm = size(CR, 1);
nn = size(CR, 2) + size(CP, 2);
if(nn - mm > r)
error('not enough equations for that solution dimension');
end
% eliminate R-monomials (this step is included in the lu factorization
% in the paper. qr is slightly slower but more stable).
[q2 UR2_0] = qr(full(CR));
CP = q2'*CP;
% [LL,UU,PP] = lu(C(:,1:(ne+nr)));
% select basis (qr + column pivoting)
CP2 = CP(1 : nr, :);
CP3 = CP(nr + 1 : end, :);
[q3 r3 e] = qr(CP3, 0);
CP4 = CP2(:, e(1 : end - r));
CB1 = CP2(:, e(end - r + 1 : end));
UP3 = r3(1 : np - r, 1 : np - r);
CB2 = r3(1 : np - r, end - r + 1 : end);
if(isempty(CP4)), CP4 = []; end;
if(isempty(UP3)), UP3 = []; end;
ee = [1 : ne + nr e + ne + nr];
if debug
stats.basis = P(e(end-r+1:end));
end
V = V(ee);
% mon = mon(ee);
%
% elimination step
%
Celim = [UR2_0(1 : nr + np - r, :) [CP4; UP3]];
T = - Celim \ [CB1; CB2];
if debug
modstats.rankdiff = size(Celim, 2) - rank(Celim);
modstats.condition = cond(Celim);
end
% modulo matrix
modM = zeros(r, n);
modM(:, end - r + 1 : end) = eye(r);
modM(:, ne + 1 : end - r) = T';
e = V;
%
% save some statistics
%
if debug
stats.n_monomials = nmon;
stats.n_eqs = size(C, 1);
stats.rank = rank(full(C));
stats.rankdiff = size(C, 2) - stats.rank;
stats.inner_rankdiff = modstats.rankdiff;
stats.condition = modstats.condition;
stats.n_permissible = length(P);
% stats.n_to_reduce = modstats.n_to_reduce;
% stats.n_excessive = modstats.n_excessive;
% stats.reducible_range = [stats.n_excessive + 1, stats.n_monomials];
% stats.reducibles = stats.reducible_range(1) : stats.reducible_range(2);
stats.basis = mon(end - r + 1 : end);
end
%
% construct action matrix
%
% m = construct_actionmatrix(mon, modM, settings.dim, P, x);
ind2 = zeros(np,1);
ind2(P) = ind;
% [nouse,ind2] = ismember(ind2(e(n-r+1:n)),e);
ind2 = find_id(e,ind2(e(n-r+1:n)));
% ind2 = find_id(e,[ind2(e(n-r+1:n));settings.ids_a1;settings.ids_a3;settings.ids_abc]');
%
% ids_vv = ind2(end-12+1:end);
% ind2 = ind2(1:end-12);
M = zeros(n, r);
M(ind2, :) = eye(r);
m = modM * M;
[vv, dk] = eig(m');
d=diag(dk);
%% Extract possible solutions
%setup matrix
okmon = find(sum(modM,1)~=0);
% mon = mon(:,e);
% MM = mon(:,okmon)';
%setup vv
vv = modM(:,okmon)'*vv;
% PRid = e(end-nr-np+1:end);
% PRid = PRid(okmon-ne);
% ids_abc = find_id(e,settings.ids_abc)'- ne;
if strcmp(settings.p_inverter,'all') == 0 && strcmp(settings.p_inverter,'best') == 0
sid = settings.p_inverter;
sid_r = 1:p;
sid_r(sid)=[];
% [nouse,ids_a13] = ismember([settings.ids_a1(sid),settings.ids_a3(sid)],PRid);
ids_a13 = find_id(e,[settings.ids_a1(sid),settings.ids_a3(sid)]) - ne;
ids = [ids_a13,ids_abc([sid,sid_r])'];
vv1 = sqrt(vv(ids(2),:)./vv(ids(1),:));
constant = vv(ids(1),:)./vv1;
if settings.real
realid = imag(vv1) == 0;
vv1 = vv1(:,realid);
constant = constant(realid);
else
realid = 1:settings.dim;
end
vv1_ = -vv1;
mmid = settings.p_inverter;
else
% ids_ac2_list = find_id(e,settings.ids_ac2) - ne;
ids_a13_list = find_id(e,[settings.ids_a1;settings.ids_a3]) - ne;
% ids_a2c_list = find_id(e,[settings.ids_a2c]) - ne;
ids_a1 = ids_a13_list(1:4);
sols = [];
for ii = 1:p
ids_a13 = ids_a13_list([ii,p+ii]);
sid = ii;
sid_rl{ii} = 1:p;
sid_rl{ii}(sid)=[];
%
ids = [ids_a13];
idsl{ii} = ids;
% a3/a1
vv1l{ii} = sqrt(vv(ids(2),:)./vv(ids(1),:));
realid = imag(vv1l{ii}) == 0;
vv1rl{ii} = vv1l{ii}(:,realid);
constant{ii} = vv(ids(1),:)./vv1l{ii};
fail_flag = isempty(vv1rl{ii});
if ~fail_flag && min(abs(real((vv1l{ii})))) > 1e-7
mm(ii) = min(norm(vv1l{ii}));
mx(ii) = max(abs(vv1rl{ii}));
else
mm(ii) = inf;
mx(ii) = 1;
end
if strcmp(settings.p_inverter,'all') == 1;
% % ids_a2c = ids_a2c_list(3*(ii-1)+(1:3));
vv2l{ii} =(vv(ids_a1(sid_rl{ii}),realid)./(ones(3,1)*(constant{ii}(:,realid))));
solsl = [ [vv1rl{ii} -vv1rl{ii}]; [vv2l{ii} -vv2l{ii}] ] ;
solsl([sid,sid_rl{ii}],:) = solsl;
sols = [sols solsl];
end
end
if strcmp(settings.p_inverter,'best') == 1
[mme,mmid] = min(mm);
[mxe,mxid] = max(mx);
% mm
if mme < settings.inverter_threshold;
[mme,mmid] = max(mm);
else
% [nouse,mmid] = max(mx);
mmid = 1;
end
% [min(mm) mmid mm]
vv1 = vv1l{mmid};
cc = constant{mmid};
if settings.real
realid = imag(vv1) == 0;
vv1 = vv1(realid);
cc = cc(realid);
else
realid = 1:length(vv1);
end
vv1_ = -vv1;
sid = mmid;
sid_r = sid_rl{mmid};
ids = idsl{mmid};
constant = constant{mmid}(realid);
end
end
if ~strcmp(settings.p_inverter,'all');
if 1
vv2 =(vv(ids_a1(sid_rl{mmid}),realid)./(ones(3,1)*(constant)));
end
vv2_ = -vv2;
sols = [ [vv1 vv1_]; [vv2 vv2_]];
sols([sid,sid_r],:) = sols;
end
if settings.real
realid = (sum(imag(sols)<1e-4)==4);
sols = sols(:,realid);
end
end % function end
function ids_reorder = find_id (list,ids)
% slightly faster than ismember
ccc = zeros(1,length(list));
ccc(ids) = 1:length(ids);
ccc = ccc(list);
[nouse,ids_reorder,ff] = find(ccc);
ids_reorder(ff) = ids_reorder;
end
|
github | urbste/MLPnP_matlab_toolbox-master | Resultant_Solver_DLS.m | .m | MLPnP_matlab_toolbox-master/OPnP/Resultant_Solver_DLS.m | 36,582 | utf_8 | 31825a36e21ef1797fb94d2c9968c250 | function [y z t] = Resultant_Solver_DLS(f1coeff,f2coeff,f3coeff)
u = round(randn(4,1) * 100);
M2 = cayley_LS_M(f1coeff, f2coeff, f3coeff,u);
% construct the multiplication matrix via schur compliment of the Macaulay
% matrix
Mtilde = M2(1:27,1:27) - M2(1:27,28:120)/M2(28:120,28:120)*M2(28:120,1:27);
[V,~] = eig(Mtilde);
% extract the optimal solutions from the eigen decomposition of the
% Multiplication matrix
sol = V([10 4 2],:)./(ones(3, 1)*V(1,:));
if (find(isnan(sol(:))) > 0)
x = [];
y = [];
z = [];
else
I = find(not(imag( sol(1,:) )));
y = sol(1,I);
z = sol(2,I);
t = sol(3,I);
end
end
function M = cayley_LS_M(a,b,c,u) %,u1,u2,u3)
% Construct the Macaulay resultant matrix
M = [u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) 0; u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) a(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(10) 0; 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) a(14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 b(10) 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(14) 0 0 0 0 0 c(1) 0 0 0 0 0 0 0 0 0 c(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(14) 0; u(3) 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 0 b(11) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) c(1); 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) a(5) 0 0 0 0 0 0 0 a(1) 0 0 0 0 0 a(10) 0 0 0 0 b(11) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 b(10) 0 0 0 0 0 0 b(5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) c(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(5) c(10); 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(5) a(12) 0 0 0 0 0 a(1) 0 a(10) 0 0 0 0 0 a(14) 0 a(11) 0 0 b(5) 0 0 0 0 0 0 0 b(1) 0 0 b(11) 0 0 0 0 0 b(10) 0 0 0 0 b(14) 0 0 0 0 0 0 b(12) 0 0 0 0 0 c(11) 0 0 0 0 0 0 0 0 0 c(5) c(10) 0 0 0 0 0 0 0 0 0 0 c(1) 0 0 0 0 0 0 c(12) c(14); 0 0 0 u(3) 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 0 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) b(11) 0 0 0 0 0 0 b(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) 0 0 0 0 0 0 0 0 0 0 c(15) c(11); 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) 0 0 0 a(15) a(6) 0 0 0 0 0 0 0 a(11) 0 a(1) 0 0 0 a(5) 0 0 0 0 b(15) 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 0 0 b(11) 0 0 0 b(10) b(5) 0 0 0 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(15) c(11) 0 0 0 0 0 0 c(10) 0 0 0 0 c(1) 0 0 0 0 0 c(6) c(5); 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) 0 0 0 a(6) 0 0 0 0 0 0 a(11) 0 a(5) 0 a(10) a(1) 0 0 a(12) 0 a(15) 0 0 b(6) 0 0 0 0 0 0 0 b(11) b(10) 0 b(15) b(1) 0 0 0 0 b(5) 0 0 0 b(14) b(12) 0 0 0 0 0 0 0 0 0 0 0 0 c(15) 0 0 0 0 0 0 0 0 0 c(6) c(5) 0 c(1) 0 0 0 0 c(14) 0 0 0 c(11) c(10) 0 0 0 0 0 0 c(12); u(2) 0 0 0 0 0 0 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(9) a(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) b(1) 0 0 0 c(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(9) 0; 0 u(2) 0 0 0 0 0 0 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) a(9) a(4) a(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) 0 0 0 0 b(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(4) b(10) 0 0 0 c(10) 0 0 0 0 0 0 0 0 0 0 c(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) c(4) 0; 0 0 u(2) 0 0 0 0 0 0 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 0 0 a(10) a(4) a(8) a(14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(9) 0 0 b(4) 0 0 b(1) 0 b(10) 0 0 0 0 0 b(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(8) b(14) 0 0 0 c(14) c(9) 0 0 0 0 0 0 0 0 0 c(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) 0 0 c(10) c(8) 0; 0 0 0 u(2) 0 0 0 0 0 u(3) 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(3) a(11) 0 0 a(1) 0 0 0 0 0 0 0 0 0 a(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) 0 0 b(1) 0 0 0 b(3) b(11) 0 0 0 c(11) 0 0 0 0 0 0 0 c(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(3) c(9); 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) a(3) a(17) a(5) 0 0 a(10) 0 0 0 a(9) 0 0 0 a(1) 0 a(4) 0 0 0 0 b(3) 0 0 0 0 b(11) b(1) 0 0 0 0 0 0 0 0 0 0 b(9) 0 0 0 0 b(4) 0 0 b(10) 0 0 0 b(17) b(5) 0 0 0 c(5) 0 c(1) 0 0 0 0 0 c(10) 0 0 c(3) c(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) c(17) c(4); 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) 0 0 0 0 a(5) a(17) 0 a(12) 0 0 a(14) 0 a(9) a(1) a(4) 0 0 0 a(10) 0 a(8) 0 a(3) 0 0 b(17) 0 b(1) b(11) 0 b(5) b(10) 0 b(9) 0 0 b(3) 0 0 0 0 0 b(4) 0 0 0 0 b(8) 0 0 b(14) 0 0 0 0 b(12) 0 0 0 c(12) c(3) c(10) 0 0 0 0 0 c(14) 0 0 c(17) c(4) 0 0 0 0 0 c(1) 0 0 0 0 c(9) 0 0 c(11) 0 0 c(5) 0 c(8); 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) a(9) 0 0 0 0 a(18) a(15) 0 0 a(11) 0 0 0 0 0 0 0 0 0 a(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) b(9) b(3) 0 0 b(11) 0 0 0 b(18) b(15) 0 0 0 c(15) 0 0 0 0 0 c(1) 0 c(11) 0 0 0 0 0 0 0 0 0 0 c(9) 0 0 0 0 0 0 0 0 0 0 c(18) c(3); 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 a(10) a(4) 0 0 a(15) a(18) 0 a(6) 0 0 a(5) 0 0 0 a(3) a(1) a(9) 0 a(11) 0 a(17) 0 0 0 0 b(18) 0 0 0 0 b(15) b(11) 0 0 b(9) 0 0 0 0 b(1) 0 0 b(3) 0 0 b(10) b(4) b(17) 0 0 b(5) 0 0 0 0 b(6) 0 0 0 c(6) 0 c(11) 0 0 0 c(10) 0 c(5) c(1) 0 c(18) c(3) 0 0 0 0 0 0 c(4) 0 0 0 0 c(9) 0 0 0 0 c(15) 0 c(17); 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 a(15) a(14) a(8) 0 0 a(6) 0 0 0 0 0 a(12) 0 a(3) a(11) a(17) a(10) a(4) a(9) a(5) 0 0 0 a(18) 0 0 0 0 b(11) b(15) 0 b(6) b(5) 0 b(3) b(4) 0 b(18) b(9) 0 b(10) 0 0 b(17) 0 0 b(14) b(8) 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 c(18) c(5) 0 0 0 c(14) 0 c(12) c(10) 0 0 c(17) 0 c(9) 0 0 0 c(11) c(8) 0 0 0 c(3) c(4) 0 c(15) 0 0 c(6) 0 0; 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) a(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) b(13) b(9) 0 0 c(1) c(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(13) 0; 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 a(1) a(9) a(13) a(19) a(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) b(13) 0 0 0 0 b(9) 0 b(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(10) b(19) b(4) 0 0 c(10) c(4) 0 0 0 0 0 0 0 0 0 0 c(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) c(9) c(19) 0; 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 u(4) u(1) 0 0 0 0 0 0 a(1) a(9) 0 0 0 a(10) a(4) a(19) 0 a(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) 0 a(14) b(19) b(1) 0 b(9) 0 b(4) 0 b(10) 0 0 0 b(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(14) 0 b(8) 0 0 c(14) c(8) c(13) 0 0 0 0 0 0 0 0 0 c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) c(9) 0 c(10) c(4) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) a(3) 0 a(1) a(9) 0 0 0 0 0 0 0 0 0 a(13) 0 0 0 a(11) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(13) 0 b(1) b(9) 0 0 b(11) b(2) b(3) 0 0 c(11) c(3) 0 0 0 c(1) 0 0 0 c(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(2) c(13); 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 a(11) a(3) a(2) 0 a(17) 0 a(10) a(4) a(1) 0 0 a(13) 0 0 0 a(9) 0 a(19) 0 0 0 a(5) b(2) 0 0 0 0 b(3) b(9) b(11) 0 0 0 0 0 0 0 0 0 b(13) b(1) 0 0 0 b(19) 0 b(10) b(4) 0 0 b(5) 0 b(17) 0 0 c(5) c(17) 0 c(9) 0 c(10) 0 0 c(1) c(4) 0 0 c(2) c(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) c(3) 0 c(19); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 a(11) a(3) 0 0 0 a(5) a(17) 0 0 0 0 a(14) a(8) a(10) a(13) a(9) a(19) 0 0 0 a(4) 0 0 0 a(2) 0 a(12) 0 b(11) b(9) b(3) 0 b(17) b(4) b(5) b(13) 0 0 b(2) 0 0 0 0 0 b(19) b(10) 0 0 0 0 0 b(14) b(8) 0 0 b(12) 0 0 0 0 c(12) 0 c(2) c(4) 0 c(14) 0 0 c(10) c(8) 0 0 0 c(19) 0 0 0 0 0 c(9) 0 0 0 0 c(13) 0 c(11) c(3) 0 c(5) c(17) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 0 u(1) 0 0 0 0 a(9) a(13) 0 0 0 0 0 a(18) 0 a(11) a(3) 0 0 0 0 0 0 0 0 0 a(2) 0 0 a(1) a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) b(9) b(13) b(2) 0 b(11) b(3) 0 0 b(15) 0 b(18) 0 0 c(15) c(18) 0 0 0 c(11) c(1) c(9) 0 c(3) 0 0 0 0 0 0 0 0 0 0 c(13) 0 0 0 0 0 0 0 0 0 0 0 c(2); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 a(4) a(19) 0 a(15) a(18) 0 0 0 0 a(5) a(17) a(11) 0 0 a(2) a(9) a(13) 0 a(3) 0 0 0 0 a(10) a(6) 0 0 0 0 0 b(18) b(3) b(15) 0 b(13) 0 0 0 0 b(9) 0 0 b(2) b(11) b(10) b(4) b(19) 0 0 b(5) b(17) 0 0 b(6) 0 0 0 0 c(6) 0 0 c(3) 0 c(5) c(10) c(4) c(11) c(17) c(9) 0 0 c(2) 0 0 0 0 0 0 c(19) 0 0 0 0 c(13) 0 0 0 c(15) c(18) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) a(15) a(18) a(8) 0 0 a(6) 0 0 0 0 0 a(12) 0 a(5) a(2) a(3) 0 a(4) a(19) a(13) a(17) 0 0 0 0 a(14) 0 0 b(15) b(3) b(18) 0 0 b(17) b(6) b(2) b(19) 0 0 b(13) 0 b(4) 0 0 0 b(5) b(14) b(8) 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 c(17) 0 c(12) c(14) c(8) c(5) 0 c(4) 0 0 0 0 c(13) 0 0 0 c(3) 0 0 0 0 c(2) c(19) c(15) c(18) 0 c(6) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) a(3) 0 0 0 0 0 a(7) 0 0 a(15) 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) b(1) 0 0 0 b(11) b(3) b(18) 0 0 b(15) 0 0 0 0 b(7) 0 0 0 c(7) 0 0 c(1) 0 0 c(11) 0 c(15) 0 0 0 0 0 0 0 0 0 0 c(3) 0 0 c(9) 0 0 0 0 0 0 0 0 c(18); 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 b(11) b(15) 0 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) 0 0 c(1) 0 0 0 0 0 0 0 c(7) c(15); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) 0 0 0 0 a(3) a(2) 0 0 0 0 0 0 0 a(15) a(18) 0 0 0 0 0 0 0 0 0 0 0 0 a(11) a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(13) b(9) 0 0 b(11) b(3) b(2) 0 0 b(15) b(18) 0 0 b(7) 0 0 0 0 c(7) 0 0 0 c(9) c(15) c(11) c(3) 0 c(18) 0 0 0 0 0 0 0 0 0 0 c(2) 0 0 c(13) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 a(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 b(2) 0 0 0 b(18) 0 0 0 b(7) 0 0 0 c(7) 0 0 0 0 0 c(20) 0 c(2) 0 0 0 0 c(18) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) 0 0 0 0 0 0 0 a(15) a(18) 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 a(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) b(13) 0 0 b(3) b(2) 0 0 b(15) b(18) 0 b(7) 0 0 0 0 0 c(7) 0 0 0 0 c(13) c(18) c(3) c(2) 0 0 0 c(15) 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(9) 0 a(13) 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(13) b(9) b(20) 0 0 c(9) c(13) c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(15) a(18) 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) 0 0 0 0 b(3) b(11) 0 0 0 b(15) b(18) 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 c(11) 0 0 c(15) 0 c(7) 0 0 0 0 0 0 c(9) 0 0 0 c(18) 0 0 c(3) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 b(13) 0 0 0 0 b(2) b(3) 0 0 b(15) b(18) 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 c(3) c(7) c(15) c(18) 0 0 0 0 0 0 0 0 c(13) 0 0 0 0 0 0 c(2) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 0 0 b(2) 0 0 b(18) 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(2) 0 c(18) 0 0 0 0 c(7) 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 a(10) 0 a(14) 0 0 0 0 0 a(16) 0 a(5) 0 0 b(12) 0 0 0 0 0 0 0 b(10) 0 0 b(5) 0 0 0 0 0 b(14) 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 c(5) 0 0 0 0 0 0 0 0 0 c(12) c(14) c(1) 0 0 0 0 0 0 0 c(11) 0 c(10) 0 0 0 0 0 0 0 c(16); 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) 0 0 b(14) 0 0 0 0 0 0 0 0 0 0 b(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 c(10) 0 0 0 0 0 0 0 0 0 c(14) 0 0 0 0 0 0 0 0 0 c(1) 0 0 0 0 0 0 0 0 c(16) 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 b(11) 0 0 0 0 0 b(15) b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) 0 0 0 c(15) 0 0 c(11) 0 0 0 0 0 0 0 0 c(7); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(8) 0 0 0 0 0 b(14) 0 b(16) 0 0 0 0 0 b(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(9) 0 0 c(10) c(4) 0 0 0 0 c(14) 0 0 c(16) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) a(8) 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(14) 0 b(8) 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(13) 0 0 c(4) c(19) 0 0 0 c(14) c(8) 0 c(16) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(11) 0 0 0 0 b(15) 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) 0 0 0 c(7) 0 0 c(15) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(8) 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(8) 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 c(19) 0 0 0 0 c(8) 0 c(16) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(3) 0 0 0 0 b(18) b(15) 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(15) 0 0 c(7) 0 0 0 0 0 0 0 0 c(3) 0 0 0 0 0 0 c(18) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(4) 0 0 c(14) c(8) 0 0 0 0 c(16) 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(19) 0 0 c(8) 0 0 0 0 c(16) 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 b(2) 0 0 0 0 0 b(18) 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(18) 0 c(7) 0 0 0 0 0 0 0 0 0 c(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 a(18) 0 0 0 0 0 0 0 a(6) 0 0 0 0 0 0 0 0 0 0 0 b(19) 0 0 b(2) b(18) 0 b(17) 0 b(7) b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(17) 0 c(6) 0 c(7) 0 c(18) 0 0 0 0 0 c(19) c(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(15) b(10) 0 0 b(11) 0 b(5) 0 b(7) 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) 0 0 c(10) c(11) 0 0 c(6) 0 0 c(5) 0 c(15) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 a(16) a(14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(12) b(16) 0 0 b(14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(5) c(14) 0 0 c(15) 0 0 0 c(6) 0 c(12) c(16) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(14) 0 0 0 c(5) 0 0 0 c(12) 0 c(16) 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(18) 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) 0 0 0 0 0 0 0 0 0 0 0 c(18) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 0 0 a(12) a(5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(6) b(12) 0 0 b(5) b(14) 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(15) c(5) 0 c(14) 0 0 0 0 c(7) c(16) c(6) c(12) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(15) 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(15) 0 0 0 0 0 0 c(7) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(14) 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(17) 0 0 b(18) b(7) 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(6) 0 0 0 0 0 c(7) 0 0 0 0 0 c(17) c(18) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(6) 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(6) c(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(12) 0 b(7) b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) c(12) c(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 a(5) 0 a(12) 0 a(14) a(10) 0 0 0 0 a(6) 0 0 0 0 0 0 0 0 0 0 b(5) b(14) 0 b(6) b(10) 0 0 0 0 b(12) 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(6) 0 0 0 0 0 0 0 0 0 0 c(12) c(11) c(10) 0 0 0 0 c(16) 0 c(15) 0 c(5) c(14) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 0 0 0 0 a(15) 0 a(6) 0 a(5) a(11) 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 b(15) b(5) 0 b(7) b(11) b(10) 0 b(14) 0 b(6) 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) 0 0 0 0 0 0 0 0 0 0 c(6) 0 c(11) 0 c(10) 0 0 c(12) 0 0 c(14) c(15) c(5) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 0 0 c(17) c(16) 0 c(12) 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(12) b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(6) c(12) 0 c(16) c(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 b(6) b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) c(6) c(16) c(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(12) c(16) 0 0 c(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 c(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) 0 a(16) 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 0 0 0 0 b(14) 0 0 b(12) 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(12) 0 0 0 0 0 0 0 0 0 0 c(16) c(10) 0 0 0 c(11) 0 0 0 c(5) 0 c(14) 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) 0 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 b(2) 0 0 0 b(18) 0 0 0 c(18) 0 0 0 0 0 0 0 c(20) 0 0 0 0 c(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 a(9) a(13) 0 0 a(10) a(4) a(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) a(20) 0 a(8) 0 b(9) 0 b(13) b(10) b(19) 0 b(4) 0 0 0 b(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(14) 0 b(8) 0 0 0 c(14) c(8) 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(9) c(13) c(10) c(4) c(19) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(7) b(5) 0 0 b(15) 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(5) c(15) 0 0 0 0 0 c(6) 0 c(7) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 a(6) a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(7) b(6) b(14) 0 b(15) b(5) 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(15) c(14) c(5) 0 0 0 0 0 c(12) c(7) c(6) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) b(13) 0 0 0 c(13) c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) 0 0 0 a(17) 0 0 a(7) 0 0 0 0 0 a(6) 0 a(15) 0 0 0 a(3) a(2) 0 a(18) 0 0 0 0 a(5) 0 0 0 0 0 0 0 b(18) b(7) 0 b(2) 0 0 0 b(13) b(3) b(19) b(4) 0 b(15) b(5) b(17) 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 c(18) c(4) c(6) c(5) c(17) c(15) 0 c(3) 0 0 0 0 0 0 c(13) 0 0 0 0 0 c(19) 0 c(2) 0 0 0 c(7) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) a(1) a(9) a(13) 0 0 0 0 0 0 0 0 0 a(20) a(11) 0 0 a(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) b(1) b(9) b(13) b(11) 0 b(3) 0 b(2) 0 c(11) c(3) c(2) 0 0 0 c(9) 0 0 0 c(13) 0 c(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 b(14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(14) 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 c(1) 0 0 0 c(10) 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(17) 0 0 0 a(12) 0 0 0 0 0 a(16) 0 0 a(8) 0 a(19) 0 0 0 0 0 0 0 0 0 0 0 0 b(17) b(19) 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 b(8) 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 0 c(16) 0 0 c(20) 0 0 0 0 c(19) 0 c(2) 0 0 0 0 c(17) 0 c(12) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 a(16) 0 a(8) 0 0 0 0 0 0 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 b(8) 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 c(17) c(8) 0 0 c(18) c(12) 0 c(6) 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(5) 0 0 0 0 a(12) 0 0 0 0 0 a(16) 0 a(4) a(10) a(8) 0 0 0 a(14) 0 0 0 a(17) 0 0 0 0 b(10) b(5) 0 b(12) b(14) 0 b(4) 0 0 b(17) 0 0 0 0 0 b(8) 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 c(17) c(14) 0 0 0 0 0 c(16) 0 0 0 c(8) c(9) 0 0 0 0 c(10) 0 c(11) c(3) 0 c(4) 0 0 c(5) 0 0 c(12) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(3) a(2) 0 0 0 0 a(4) a(19) 0 a(13) 0 0 0 0 0 0 a(20) a(5) 0 a(17) 0 0 0 0 0 0 0 b(3) 0 b(20) b(2) 0 0 0 0 0 0 0 0 0 0 b(13) 0 0 0 0 b(4) b(19) 0 b(17) b(5) 0 0 0 c(5) c(17) 0 0 0 c(20) 0 c(19) 0 0 c(13) 0 0 c(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(3) c(2) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(15) a(18) 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 b(7) 0 0 b(18) b(4) 0 0 b(3) b(15) b(17) b(5) 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) c(5) 0 0 c(6) 0 0 c(15) 0 0 0 0 0 c(4) c(3) 0 0 0 0 0 c(17) 0 c(18) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) a(18) 0 0 0 a(6) 0 0 0 0 0 a(12) 0 0 a(17) 0 a(2) 0 a(19) 0 a(20) 0 0 0 0 0 a(8) 0 0 b(18) b(2) 0 b(6) 0 0 0 0 0 0 0 b(20) 0 b(19) 0 0 0 b(17) b(8) 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 c(17) 0 c(19) c(12) 0 0 0 c(20) 0 0 0 c(2) 0 0 0 0 0 0 c(18) 0 c(6) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 0 0 a(5) a(17) 0 0 a(7) 0 0 0 0 0 a(6) 0 0 0 a(18) a(11) a(3) 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 b(7) b(15) 0 0 b(3) 0 0 0 b(9) b(11) b(4) b(10) b(18) 0 0 b(5) b(17) 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 c(15) c(10) 0 0 c(5) 0 c(6) c(11) 0 0 c(18) 0 0 0 c(9) 0 0 c(17) 0 0 c(4) 0 c(3) 0 0 0 0 c(7) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 a(19) 0 a(15) a(18) 0 0 0 0 a(5) a(17) 0 a(3) 0 0 0 a(13) a(20) 0 a(2) 0 0 a(6) 0 a(4) 0 0 0 0 0 b(15) 0 b(2) b(18) 0 b(20) 0 0 0 0 b(13) 0 0 0 b(3) b(4) b(19) 0 0 b(5) b(17) 0 b(6) 0 0 0 0 0 c(6) 0 0 0 c(2) 0 c(17) c(4) c(19) c(3) 0 c(13) c(5) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 c(15) c(18) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 0 0 a(17) 0 0 a(2) 0 0 0 a(20) 0 0 0 a(6) 0 0 0 a(19) 0 0 0 0 0 b(18) 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 b(2) b(19) 0 0 0 b(17) 0 0 0 b(6) 0 0 0 c(6) 0 0 0 0 0 0 0 c(19) 0 c(2) 0 c(20) c(17) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(18) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 0 a(11) a(3) a(2) 0 0 0 a(10) a(4) a(19) a(9) 0 0 a(20) 0 0 0 a(13) 0 0 a(5) 0 0 a(17) 0 0 0 0 b(11) b(2) b(13) b(3) 0 0 0 0 0 0 0 0 0 b(20) b(9) 0 0 0 0 b(10) b(4) b(19) b(5) 0 b(17) 0 0 0 c(5) c(17) 0 0 c(13) 0 c(4) 0 0 c(9) c(19) 0 c(10) 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) c(3) c(2) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) 0 0 0 a(17) 0 0 0 0 0 a(8) 0 0 a(19) 0 a(20) 0 0 0 0 0 a(12) 0 0 0 0 0 0 b(2) b(20) 0 b(17) 0 0 0 0 0 0 0 0 0 0 0 0 0 b(19) 0 0 0 0 b(8) 0 0 0 b(12) 0 0 0 c(12) 0 0 0 0 0 0 0 0 0 c(19) 0 0 c(8) 0 0 0 0 0 0 0 c(20) 0 0 0 0 0 0 c(2) 0 c(17) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 a(6) 0 0 a(18) 0 0 0 a(2) 0 0 0 0 0 0 0 a(17) 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 b(20) b(2) 0 b(19) 0 b(18) b(17) 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(19) 0 c(17) 0 c(18) 0 c(2) c(6) 0 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 c(7) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 a(8) 0 0 0 0 0 0 0 0 0 0 0 0 b(12) b(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 c(19) 0 0 0 c(2) c(8) 0 c(17) 0 0 0 0 c(12) 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 a(3) a(2) 0 0 a(5) a(17) 0 0 0 0 a(14) a(8) 0 a(4) a(20) a(13) 0 0 0 0 a(19) 0 0 a(12) 0 0 0 0 b(3) b(13) b(2) b(5) 0 b(19) b(17) b(20) 0 0 0 0 0 0 0 0 0 b(4) 0 0 0 0 b(14) b(8) 0 b(12) 0 0 0 0 0 c(12) 0 0 0 c(19) 0 c(8) 0 0 c(4) 0 0 c(14) 0 0 0 0 0 0 0 c(13) 0 0 0 0 c(20) 0 c(3) c(2) c(5) c(17) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 a(6) a(16) 0 0 0 0 0 0 0 0 0 0 0 a(17) a(5) 0 a(14) a(8) a(4) a(12) 0 0 0 0 0 0 0 0 b(5) b(6) 0 0 b(12) 0 b(17) b(8) 0 0 b(4) 0 b(14) 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(12) 0 0 0 c(16) 0 0 c(14) 0 0 0 c(3) c(4) 0 0 0 c(5) 0 c(15) c(18) 0 c(17) c(8) 0 c(6) 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 a(7) a(12) 0 0 0 0 0 0 0 0 0 0 0 a(18) a(15) 0 a(5) a(17) a(3) a(6) 0 0 0 0 0 0 0 0 b(15) b(7) 0 0 b(6) 0 b(18) b(17) 0 0 b(3) b(4) b(5) b(8) b(14) 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(6) c(14) 0 0 c(12) 0 0 c(5) 0 0 0 0 c(3) 0 c(4) 0 c(15) 0 0 0 c(8) c(18) c(17) 0 c(7) 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) 0 0 0 0 0 a(19) 0 0 a(20) 0 0 0 0 0 0 0 a(17) 0 0 0 0 0 0 0 0 0 b(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 0 b(19) 0 0 0 b(17) 0 0 0 c(17) 0 0 0 0 0 0 0 0 0 c(20) 0 0 c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(2) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(4) a(6) 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 a(17) 0 a(8) 0 a(19) 0 0 0 0 0 a(16) 0 0 b(6) b(17) 0 0 0 0 0 0 0 0 0 b(19) 0 b(8) 0 0 0 b(12) b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 c(12) 0 c(8) 0 0 0 c(2) c(19) 0 0 0 c(17) 0 c(18) 0 0 0 0 c(6) 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(4) 0 0 0 a(5) a(17) 0 0 0 a(12) 0 0 0 0 0 a(16) 0 a(14) a(19) a(4) 0 0 0 0 a(8) 0 0 0 0 0 0 0 b(5) b(4) b(17) 0 0 b(8) b(12) b(19) 0 0 0 0 0 0 0 0 0 b(14) 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 c(16) 0 0 c(14) 0 0 0 0 0 c(13) 0 0 0 0 c(4) 0 c(3) c(2) 0 c(19) 0 c(5) c(17) 0 c(12) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 a(12) 0 a(17) 0 0 0 0 0 0 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 b(17) b(8) b(12) 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 c(12) 0 0 0 c(18) c(17) 0 c(8) 0 c(6) 0 c(7) 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 0 0 0 0 0 0 a(8) a(14) 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 b(14) b(12) 0 0 b(16) 0 b(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 c(4) 0 0 0 c(3) c(14) 0 c(5) c(17) 0 c(8) 0 0 c(12) 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 a(6) 0 a(18) 0 0 0 0 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 b(8) 0 b(18) b(17) b(6) 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(12) 0 0 0 0 0 c(6) 0 0 0 0 c(18) c(8) c(17) 0 c(7) 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(10) 0 0 0 c(14) 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(9) a(13) a(20) 0 0 0 0 0 0 0 0 a(11) 0 a(3) 0 0 a(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) b(13) b(20) b(3) b(11) b(2) 0 0 c(11) c(3) c(2) 0 0 0 0 c(13) 0 0 0 c(20) 0 c(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) a(20) 0 0 0 0 0 0 0 0 0 a(3) 0 a(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(13) b(20) 0 b(2) b(3) 0 0 0 c(3) c(2) 0 0 0 0 0 c(20) 0 0 0 0 0 c(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 a(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 b(2) 0 0 0 c(2) 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) 0 0 0 0 a(14) a(8) 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(4) 0 0 b(8) 0 0 b(10) 0 b(14) 0 0 0 0 0 b(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 c(16) c(4) 0 0 0 0 0 0 0 0 0 c(8) 0 0 0 0 0 0 0 0 c(1) c(9) 0 0 0 0 c(10) 0 0 c(14) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(4) 0 0 0 0 0 0 a(10) a(4) 0 0 0 a(14) a(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(19) 0 a(16) 0 b(10) 0 b(4) 0 b(8) 0 b(14) 0 0 0 b(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 c(16) 0 c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(9) c(13) 0 0 0 c(10) c(4) 0 c(14) c(8) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(4) a(19) 0 0 a(14) a(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 b(4) 0 b(19) b(14) 0 0 b(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(13) c(20) 0 0 0 c(4) c(19) c(14) c(8) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(19) 0 0 0 a(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 b(19) 0 0 b(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 0 0 c(19) 0 c(8) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 a(9) 0 0 a(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) b(1) b(13) 0 b(20) c(1) c(9) c(13) c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) a(7) 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 a(18) 0 a(17) 0 a(2) 0 0 0 0 0 a(12) 0 0 b(7) b(18) 0 0 0 0 0 0 0 0 0 b(2) b(19) b(17) 0 b(8) 0 b(6) b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 c(12) 0 c(6) 0 c(17) 0 0 0 0 c(2) 0 c(19) 0 c(18) 0 0 0 0 0 0 c(7) 0 0 0 0 0 0; 0 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(5) 0 0 0 a(7) 0 0 0 0 0 0 0 0 a(15) 0 a(11) 0 0 0 a(6) 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 b(11) 0 0 0 b(1) 0 b(10) 0 b(15) 0 0 0 b(5) b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) c(15) 0 0 0 c(1) 0 0 c(5) 0 0 c(10) 0 c(11) 0 0 0 0 0 0 c(6); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) a(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 a(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 b(9) b(20) b(13) 0 c(1) c(9) c(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 0 0 0 0 a(1) a(9) a(13) a(20) 0 a(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) 0 0 a(4) b(20) 0 0 0 b(1) b(13) 0 b(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(10) 0 b(4) 0 b(19) 0 c(10) c(4) c(19) 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) c(9) c(13) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(9) a(13) a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) 0 a(4) 0 0 a(19) 0 0 0 0 b(9) b(20) 0 b(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(4) b(10) b(19) 0 0 c(10) c(4) c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(9) c(13) c(20) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(4) 0 a(19) 0 0 0 0 0 0 0 b(13) 0 0 b(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(19) b(4) 0 0 0 c(4) c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(13) c(20) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(19) 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(19) 0 0 0 c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 a(13) a(20) 0 0 0 0 0 0 a(11) a(3) a(2) 0 0 0 0 0 0 0 0 0 0 a(15) 0 a(9) a(18) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) b(13) b(20) 0 b(11) b(3) b(2) b(15) 0 b(18) 0 0 0 c(15) c(18) 0 0 0 0 c(3) c(9) c(13) 0 c(2) 0 c(11) 0 0 0 0 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 0 0 0 0 a(3) a(2) 0 0 0 0 0 0 0 0 0 a(15) 0 a(18) 0 a(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(13) b(20) 0 0 b(3) b(2) 0 b(18) b(15) 0 0 0 c(15) c(18) 0 0 0 0 0 c(2) c(13) c(20) 0 0 0 c(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) a(20) 0 0 a(4) a(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) 0 a(8) 0 0 0 0 b(13) 0 b(20) b(4) 0 0 b(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(8) b(14) 0 0 0 c(14) c(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(13) c(20) c(4) c(19) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 a(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(8) 0 0 0 0 0 0 b(20) 0 0 b(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(8) 0 0 0 c(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 c(19) 0 0 0 0]';
end |
github | urbste/MLPnP_matlab_toolbox-master | PnP_Reproj_NLS_Matlab.m | .m | MLPnP_matlab_toolbox-master/OPnP/PnP_Reproj_NLS_Matlab.m | 1,767 | utf_8 | 10261b578cc0cc01f64c72439bf7f95f | function [Rr tr] = PnP_Reproj_NLS_Matlab(U,u,R0,t0)
%to refine the column-triplet by using nonlinear least square
%it's much better than the fminunc used by CVPR12.
%there are three fractional formulations, anyone is equivalently good.
%there are two constrained formulations, yet neither is good.
%the reason is that: eliminating the unkown scale. ---> similar to
%reprojection error and homogeneous error
%transform matrix to unit quaternion
q = matrix2quaternion(R0);
%nonlinear least square parameter setting
options = optimset('Algorithm','trust-region-reflective','Jacobian','on','DerivativeCheck','off','Display','off');
%call matlab lsqnonlin
[var,resnorm] = lsqnonlin(@(var)valuegradient(var,U,u),[q(:);t0(:)],[],[],options);
%denormalize data
qr = var(1:4); tr = var(5:end);
normqr = norm(qr);
tr = tr/(normqr)^2;
qr = qr/normqr;
%trasform back into matrix form
Rr = quaternion2matrix(qr);
end
%formulation 1
function [fval grad] = valuegradient(var,U,u)
npt = size(U,2);
fval = zeros(2*npt,1);
grad = zeros(2*npt,7);
a = var(1); b = var(2); c = var(3); d = var(4);
R = [a^2+b^2-c^2-d^2 2*b*c-2*a*d 2*b*d+2*a*c
2*b*c+2*a*d a^2-b^2+c^2-d^2 2*c*d-2*a*b
2*b*d-2*a*c 2*c*d+2*a*b a^2-b^2-c^2+d^2];
t1 = var(5); t2 = var(6); t3 = var(7);
for i = 1:npt
vec = R*U(:,i) + [t1;t2;t3];
fval(2*(i-1)+1) = u(1,i) - vec(1)/vec(3);
fval(2*i) = u(2,i) - vec(2)/vec(3);
temp1 = [2*[a -d c;b c d; -c b a; -d -a b]*U(:,i); 1; 0; 0].';
temp2 = [2*[d a -b;c -b -a;b c d; a -d c]*U(:,i); 0; 1; 0].';
temp3 = [2*[-c b a;d a -b;-a d -c; b c d]*U(:,i); 0; 0; 1].';
grad(2*(i-1)+1,:) = (-temp1*vec(3) + temp3*vec(1))/(vec(3)^2);
grad(2*i,:) = (-temp2*vec(3) + temp3*vec(2))/(vec(3)^2);
end
end
|
github | urbste/MLPnP_matlab_toolbox-master | Generate_Random_Data_Full.m | .m | MLPnP_matlab_toolbox-master/OPnP/Generate_Random_Data_Full.m | 21,006 | utf_8 | 073e56c803c19a87ea47860f35a982fe | function [var e1 e2 e3 e4 c1 c2 c3 Q q] = Generate_Random_Data_Full(rotation_type,point_config)
%Output:
%var = [a b c d]; ground_truth
%e1,e2,e3,e4: the coefficients of polynomials of our formulation
%c1,c2,c3: the coefficients of polynomials of DLS
%Q,q: the objective function used in polishing
%generate ground_truth rotations
if strcmp(rotation_type,'Fully_Random')
temp = randn(1,4);
elseif strcmp(rotation_type,'Near_Cayley_Degenerate')
temp = randn(1,4);
temp(1) = 1e-4; %a small value,near degenerate to Cayley
elseif strcmp(rotation_type,'Cayley_Degenerate')
temp = randn(1,4);
temp(1) = 0; % degenerate to Cayley
end
%Ground-truth quaternions
temp = temp/norm(temp);
a = temp(1); b = temp(2); c = temp(3); d = temp(4);
var = [a b c d];
%Ground-truth rotation matrix
R = [a^2+b^2-c^2-d^2 2*b*c-2*a*d 2*b*d+2*a*c
2*b*c+2*a*d a^2-b^2+c^2-d^2 2*c*d-2*a*b
2*b*d-2*a*c 2*c*d+2*a*b a^2-b^2-c^2+d^2];
%number of points
npt = 50;
% camera's parameters
width= 640;
height= 480;
f= 800;
if strcmp(point_config,'Ordinary_3D')
% generate 3d coordinates in camera space
Xc= [xrand(1,npt,[-2 2]); xrand(1,npt,[-2 2]); xrand(1,npt,[4 8])];
t= mean(Xc,2);
U = inv(R)*(Xc-repmat(t,1,npt));
% projection
xx= [Xc(1,:)./Xc(3,:); Xc(2,:)./Xc(3,:)]*f;
xxn= xx+randn(2,npt)*0; %noise-free
u = xxn/f;
elseif strcmp(point_config,'Quasi_Singular')
% generate 3d coordinates in camera space
Xc= [xrand(1,npt,[1 2]); xrand(1,npt,[1 2]); xrand(1,npt,[4 8])];
t= mean(Xc,2);
U= inv(R)*(Xc-repmat(t,1,npt));
% projection
xx= [Xc(1,:)./Xc(3,:); Xc(2,:)./Xc(3,:)]*f;
xxn= xx+randn(2,npt)*0; %noise-free
u = xxn/f;
else
% generate 3d coordinates in camera space
XXw= [xrand(2,npt,[-2 2]); zeros(1,npt)];
t= [rand-0.5;rand-0.5;rand*8+4];
Xc= R*XXw+repmat(t,1,npt);
U = XXw;
% projection
xx= [Xc(1,:)./Xc(3,:); Xc(2,:)./Xc(3,:)]*f;
xxn= xx+randn(2,npt)*0;
u = xxn/f;
end
%using the fractional formulation
n = npt;
%homogeneous coordinate
if size(u,1) > 2
u = u(1:2,:);
end
%3D points after translation to centroid
Ucent = mean(U,2);
Um = U - repmat(Ucent,1,n);
xm = Um(1,:)'; ym = Um(2,:)'; zm = Um(3,:)';
x = U(1,:)'; y = U(2,:)'; z = U(3,:)';
u1 = u(1,:)'; v1 = u(2,:)';
%construct matrix N: 2n*11
N = zeros(2*n,11);
N(1:2:end,:) = [ u1, u1.*zm - x, 2*u1.*ym, - 2*z - 2*u1.*xm, 2*y, - x - u1.*zm, -2*y, 2*u1.*xm - 2*z, x - u1.*zm, 2*u1.*ym, x + u1.*zm];
N(2:2:end,:) = [ v1, v1.*zm - y, 2*z + 2*v1.*ym, -2*v1.*xm, -2*x, y - v1.*zm, -2*x, 2*v1.*xm, - y - v1.*zm, 2*v1.*ym - 2*z, y + v1.*zm];
MTN = [sum(N(1:2:end,:)); sum(N(2:2:end,:))];
%construct matrix Q: 11*11
Q = N'*N - 1/n*(MTN')*MTN;
q = Q(1,2:end);
Q = Q(2:end,2:end);
Q11 = Q(1,1); Q12 = Q(1,2); Q13 = Q(1,3); Q14 = Q(1,4); Q15 = Q(1,5); Q16 = Q(1,6); Q17 = Q(1,7); Q18 = Q(1,8); Q19 = Q(1,9); Q110 = Q(1,10);
Q22 = Q(2,2); Q23 = Q(2,3); Q24 = Q(2,4); Q25 = Q(2,5); Q26 = Q(2,6); Q27 = Q(2,7); Q28 = Q(2,8); Q29 = Q(2,9); Q210 = Q(2,10);
Q33 = Q(3,3); Q34 = Q(3,4); Q35 = Q(3,5); Q36 = Q(3,6); Q37 = Q(3,7); Q38 = Q(3,8); Q39 = Q(3,9); Q310 = Q(3,10);
Q44 = Q(4,4); Q45 = Q(4,5); Q46 = Q(4,6); Q47 = Q(4,7); Q48 = Q(4,8); Q49 = Q(4,9); Q410 = Q(4,10);
Q55 = Q(5,5); Q56 = Q(5,6); Q57 = Q(5,7); Q58 = Q(5,8); Q59 = Q(5,9); Q510 = Q(5,10);
Q66 = Q(6,6); Q67 = Q(6,7); Q68 = Q(6,8); Q69 = Q(6,9); Q610 = Q(6,10);
Q77 = Q(7,7); Q78 = Q(7,8); Q79 = Q(7,9); Q710 = Q(7,10);
Q88 = Q(8,8); Q89 = Q(8,9); Q810 = Q(8,10);
Q99 = Q(9,9); Q910 = Q(9,10);
Q1010 = Q(10,10);
q1 = q(1); q2 = q(2); q3 = q(3); q4 = q(4); q5 = q(5); q6 = q(6); q7 = q(7); q8 = q(8); q9 = q(9); q10 = q(10);
%variable sequence
%[ a^3, a^2*b, a^2*c, a^2*d, a*b^2, a*b*c, a*b*d, a*c^2, a*c*d, a*d^2, a, b^3, b^2*c, b^2*d, b*c^2, b*c*d, b*d^2, b, c^3, c^2*d, c*d^2, c, d^3, d]
e1 = [ 4*Q11, 6*Q12, 6*Q13, 6*Q14, 4*Q15 + 2*Q22, 4*Q16 + 4*Q23, 4*Q17 + 4*Q24, 4*Q18 + 2*Q33, 4*Q19 + 4*Q34, 4*Q110 + 2*Q44, 4*q1, 2*Q25, 2*Q26 + 2*Q35, 2*Q27 + 2*Q45, 2*Q28 + 2*Q36, 2*Q29 + 2*Q37 + 2*Q46, 2*Q210 + 2*Q47, 2*q2, 2*Q38, 2*Q39 + 2*Q48, 2*Q310 + 2*Q49, 2*q3, 2*Q410, 2*q4];
e2 = [ 2*Q12, 4*Q15 + 2*Q22, 2*Q16 + 2*Q23, 2*Q17 + 2*Q24, 6*Q25, 4*Q26 + 4*Q35, 4*Q27 + 4*Q45, 2*Q28 + 2*Q36, 2*Q29 + 2*Q37 + 2*Q46, 2*Q210 + 2*Q47, 2*q2, 4*Q55, 6*Q56, 6*Q57, 4*Q58 + 2*Q66, 4*Q59 + 4*Q67, 4*Q510 + 2*Q77, 4*q5, 2*Q68, 2*Q69 + 2*Q78, 2*Q610 + 2*Q79, 2*q6, 2*Q710, 2*q7];
e3 = [ 2*Q13, 2*Q16 + 2*Q23, 4*Q18 + 2*Q33, 2*Q19 + 2*Q34, 2*Q26 + 2*Q35, 4*Q28 + 4*Q36, 2*Q29 + 2*Q37 + 2*Q46, 6*Q38, 4*Q39 + 4*Q48, 2*Q310 + 2*Q49, 2*q3, 2*Q56, 4*Q58 + 2*Q66, 2*Q59 + 2*Q67, 6*Q68, 4*Q69 + 4*Q78, 2*Q610 + 2*Q79, 2*q6, 4*Q88, 6*Q89, 4*Q810 + 2*Q99, 4*q8, 2*Q910, 2*q9];
e4 = [ 2*Q14, 2*Q17 + 2*Q24, 2*Q19 + 2*Q34, 4*Q110 + 2*Q44, 2*Q27 + 2*Q45, 2*Q29 + 2*Q37 + 2*Q46, 4*Q210 + 4*Q47, 2*Q39 + 2*Q48, 4*Q310 + 4*Q49, 6*Q410, 2*q4, 2*Q57, 2*Q59 + 2*Q67, 4*Q510 + 2*Q77, 2*Q69 + 2*Q78, 4*Q610 + 4*Q79, 6*Q710, 2*q7, 2*Q89, 4*Q810 + 2*Q99, 6*Q910, 2*q9, 4*Q1010, 4*q10];
%call the solver
%[x y z t] = GB_Solver_3Order_4Variable_Division(e1, e2, e3, e4);
%using the unit-norm formulation
% M = zeros(2*n,3);
% M(1:2:end,1) = -1;
% M(2:2:end,2) = -1;
% M(:,3) = u(:);
%
% N = zeros(2*n,10);
% for i=1:n
% N(2*(i-1)+1,:) = U(:,i)'*[1 0 2*u(1,i) 0 1 0 -2*u(1,i) -1 0 -1
% 0 -2*u(1,i) 0 -2 0 2 0 0 -2*u(1,i) 0
% -u(1,i) 0 2 0 u(1,i) 0 2 u(1,i) 0 -u(1,i)];
%
% N(2*(i-1)+2,:) = U(:,i)'*[0 0 2*u(2,i) 2 0 2 -2*u(2,i) 0 0 0
% 1 -2*u(2,i) 0 0 -1 0 0 1 -2*u(2,i) -1
% -u(2,i) -2 0 0 u(2,i) 0 0 u(2,i) 2 -u(2,i)];
% end
% pinvM = pinv(M);
% Q = -N'*(M*pinvM-eye(2*n))*N;
%
% Q11 = Q(1,1); Q12 = Q(1,2); Q13 = Q(1,3); Q14 = Q(1,4); Q15 = Q(1,5); Q16 = Q(1,6); Q17 = Q(1,7); Q18 = Q(1,8); Q19 = Q(1,9); Q110 = Q(1,10);
% Q22 = Q(2,2); Q23 = Q(2,3); Q24 = Q(2,4); Q25 = Q(2,5); Q26 = Q(2,6); Q27 = Q(2,7); Q28 = Q(2,8); Q29 = Q(2,9); Q210 = Q(2,10);
% Q33 = Q(3,3); Q34 = Q(3,4); Q35 = Q(3,5); Q36 = Q(3,6); Q37 = Q(3,7); Q38 = Q(3,8); Q39 = Q(3,9); Q310 = Q(3,10);
% Q44 = Q(4,4); Q45 = Q(4,5); Q46 = Q(4,6); Q47 = Q(4,7); Q48 = Q(4,8); Q49 = Q(4,9); Q410 = Q(4,10);
% Q55 = Q(5,5); Q56 = Q(5,6); Q57 = Q(5,7); Q58 = Q(5,8); Q59 = Q(5,9); Q510 = Q(5,10);
% Q66 = Q(6,6); Q67 = Q(6,7); Q68 = Q(6,8); Q69 = Q(6,9); Q610 = Q(6,10);
% Q77 = Q(7,7); Q78 = Q(7,8); Q79 = Q(7,9); Q710 = Q(7,10);
% Q88 = Q(8,8); Q89 = Q(8,9); Q810 = Q(8,10);
% Q99 = Q(9,9); Q910 = Q(9,10);
% Q1010 = Q(10,10);
%
% c1 = [ 4*Q11, 6*Q12, 6*Q13, 6*Q14, 4*Q15 + 2*Q22, 4*Q16 + 4*Q23, 4*Q17 + 4*Q24, 4*Q18 + 2*Q33, 4*Q19 + 4*Q34, 4*Q110 + 2*Q44, 2*Q25, 2*Q26 + 2*Q35, 2*Q27 + 2*Q45, 2*Q28 + 2*Q36, 2*Q29 + 2*Q37 + 2*Q46, 2*Q210 + 2*Q47, 2*Q38, 2*Q39 + 2*Q48, 2*Q310 + 2*Q49, 2*Q410];
% c2 = [ 2*Q12, 4*Q15 + 2*Q22, 2*Q16 + 2*Q23, 2*Q17 + 2*Q24, 6*Q25, 4*Q26 + 4*Q35, 4*Q27 + 4*Q45, 2*Q28 + 2*Q36, 2*Q29 + 2*Q37 + 2*Q46, 2*Q210 + 2*Q47, 4*Q55, 6*Q56, 6*Q57, 4*Q58 + 2*Q66, 4*Q59 + 4*Q67, 4*Q510 + 2*Q77, 2*Q68, 2*Q69 + 2*Q78, 2*Q610 + 2*Q79, 2*Q710];
% c3 = [ 2*Q13, 2*Q16 + 2*Q23, 4*Q18 + 2*Q33, 2*Q19 + 2*Q34, 2*Q26 + 2*Q35, 4*Q28 + 4*Q36, 2*Q29 + 2*Q37 + 2*Q46, 6*Q38, 4*Q39 + 4*Q48, 2*Q310 + 2*Q49, 2*Q56, 4*Q58 + 2*Q66, 2*Q59 + 2*Q67, 6*Q68, 4*Q69 + 4*Q78, 2*Q610 + 2*Q79, 4*Q88, 6*Q89, 4*Q810 + 2*Q99, 2*Q910];
% c4 = [ 2*Q14, 2*Q17 + 2*Q24, 2*Q19 + 2*Q34, 4*Q110 + 2*Q44, 2*Q27 + 2*Q45, 2*Q29 + 2*Q37 + 2*Q46, 4*Q210 + 4*Q47, 2*Q39 + 2*Q48, 4*Q310 + 4*Q49, 6*Q410, 2*Q57, 2*Q59 + 2*Q67, 4*Q510 + 2*Q77, 2*Q69 + 2*Q78, 4*Q610 + 4*Q79, 6*Q710, 2*Q89, 4*Q810 + 2*Q99, 6*Q910, 4*Q1010];
%call the solver
%[x y z t] = GB_Solver_3Order_4Variable_UnitNorm_Division(c1, c2, c3, c4);
%using the Cayley form in DLS
p = U; z = u;
z_old = z;
% make z into unit vectors from normalized pixel coords
z = [z; ones(1,size(z,2))];
z = z./ repmat(sqrt(sum(z.*z,1)),3,1);
% some preliminaries
flag = 0;
N = size(z,2);
% build coeff matrix
% An intermediate matrix, the inverse of what is called "H" in the paper
% (see eq. 25)
H = zeros(3);
for i = 1:N
H = H + eye(3) - z(:,i)*z(:,i)';
end
A = zeros(3,9);
for i = 1:N
A = A + (z(:,i)*z(:,i)' - eye(3)) * LeftMultVec(p(:,i));
end
A = H\A;
D = zeros(9);
for i = 1:N
D = D + (LeftMultVec(p(:,i)) + A)' * (eye(3) - z(:,i)*z(:,i)') * (LeftMultVec(p(:,i)) + A);
end
c1 = [2*D(1,6) - 2*D(1,8) + 2*D(5,6) - 2*D(5,8) + 2*D(6,1) + 2*D(6,5) + 2*D(6,9) - 2*D(8,1) - 2*D(8,5) - 2*D(8,9) + 2*D(9,6) - 2*D(9,8); % constant term
(6*D(1,2) + 6*D(1,4) + 6*D(2,1) - 6*D(2,5) - 6*D(2,9) + 6*D(4,1) - 6*D(4,5) - 6*D(4,9) - 6*D(5,2) - 6*D(5,4) - 6*D(9,2) - 6*D(9,4)); % s1^2 * s2
(4*D(1,7) - 4*D(1,3) + 8*D(2,6) - 8*D(2,8) - 4*D(3,1) + 4*D(3,5) + 4*D(3,9) + 8*D(4,6) - 8*D(4,8) + 4*D(5,3) - 4*D(5,7) + 8*D(6,2) + 8*D(6,4) + 4*D(7,1) - 4*D(7,5) - 4*D(7,9) - 8*D(8,2) - 8*D(8,4) + 4*D(9,3) - 4*D(9,7)); % s1 * s2
(4*D(1,2) - 4*D(1,4) + 4*D(2,1) - 4*D(2,5) - 4*D(2,9) + 8*D(3,6) - 8*D(3,8) - 4*D(4,1) + 4*D(4,5) + 4*D(4,9) - 4*D(5,2) + 4*D(5,4) + 8*D(6,3) + 8*D(6,7) + 8*D(7,6) - 8*D(7,8) - 8*D(8,3) - 8*D(8,7) - 4*D(9,2) + 4*D(9,4)); % s1 * s3
(8*D(2,2) - 8*D(3,3) - 8*D(4,4) + 8*D(6,6) + 8*D(7,7) - 8*D(8,8)); % s2 * s3
(4*D(2,6) - 2*D(1,7) - 2*D(1,3) + 4*D(2,8) - 2*D(3,1) + 2*D(3,5) - 2*D(3,9) + 4*D(4,6) + 4*D(4,8) + 2*D(5,3) + 2*D(5,7) + 4*D(6,2) + 4*D(6,4) - 2*D(7,1) + 2*D(7,5) - 2*D(7,9) + 4*D(8,2) + 4*D(8,4) - 2*D(9,3) - 2*D(9,7)); % s2^2 * s3
(2*D(2,5) - 2*D(1,4) - 2*D(2,1) - 2*D(1,2) - 2*D(2,9) - 2*D(4,1) + 2*D(4,5) - 2*D(4,9) + 2*D(5,2) + 2*D(5,4) - 2*D(9,2) - 2*D(9,4)); % s2^3
(4*D(1,9) - 4*D(1,1) + 8*D(3,3) + 8*D(3,7) + 4*D(5,5) + 8*D(7,3) + 8*D(7,7) + 4*D(9,1) - 4*D(9,9)); % s1 * s3^2
(4*D(1,1) - 4*D(5,5) - 4*D(5,9) + 8*D(6,6) - 8*D(6,8) - 8*D(8,6) + 8*D(8,8) - 4*D(9,5) - 4*D(9,9)); % s1
(2*D(1,3) + 2*D(1,7) + 4*D(2,6) - 4*D(2,8) + 2*D(3,1) + 2*D(3,5) + 2*D(3,9) - 4*D(4,6) + 4*D(4,8) + 2*D(5,3) + 2*D(5,7) + 4*D(6,2) - 4*D(6,4) + 2*D(7,1) + 2*D(7,5) + 2*D(7,9) - 4*D(8,2) + 4*D(8,4) + 2*D(9,3) + 2*D(9,7)); % s3
(2*D(1,2) + 2*D(1,4) + 2*D(2,1) + 2*D(2,5) + 2*D(2,9) - 4*D(3,6) + 4*D(3,8) + 2*D(4,1) + 2*D(4,5) + 2*D(4,9) + 2*D(5,2) + 2*D(5,4) - 4*D(6,3) + 4*D(6,7) + 4*D(7,6) - 4*D(7,8) + 4*D(8,3) - 4*D(8,7) + 2*D(9,2) + 2*D(9,4)); % s2
(2*D(2,9) - 2*D(1,4) - 2*D(2,1) - 2*D(2,5) - 2*D(1,2) + 4*D(3,6) + 4*D(3,8) - 2*D(4,1) - 2*D(4,5) + 2*D(4,9) - 2*D(5,2) - 2*D(5,4) + 4*D(6,3) + 4*D(6,7) + 4*D(7,6) + 4*D(7,8) + 4*D(8,3) + 4*D(8,7) + 2*D(9,2) + 2*D(9,4)); % s2 * s3^2
(6*D(1,6) - 6*D(1,8) - 6*D(5,6) + 6*D(5,8) + 6*D(6,1) - 6*D(6,5) - 6*D(6,9) - 6*D(8,1) + 6*D(8,5) + 6*D(8,9) - 6*D(9,6) + 6*D(9,8)); % s1^2
(2*D(1,8) - 2*D(1,6) + 4*D(2,3) + 4*D(2,7) + 4*D(3,2) - 4*D(3,4) - 4*D(4,3) - 4*D(4,7) - 2*D(5,6) + 2*D(5,8) - 2*D(6,1) - 2*D(6,5) + 2*D(6,9) + 4*D(7,2) - 4*D(7,4) + 2*D(8,1) + 2*D(8,5) - 2*D(8,9) + 2*D(9,6) - 2*D(9,8)); % s3^2
(2*D(1,8) - 2*D(1,6) - 4*D(2,3) + 4*D(2,7) - 4*D(3,2) - 4*D(3,4) - 4*D(4,3) + 4*D(4,7) + 2*D(5,6) - 2*D(5,8) - 2*D(6,1) + 2*D(6,5) - 2*D(6,9) + 4*D(7,2) + 4*D(7,4) + 2*D(8,1) - 2*D(8,5) + 2*D(8,9) - 2*D(9,6) + 2*D(9,8)); % s2^2
(2*D(3,9) - 2*D(1,7) - 2*D(3,1) - 2*D(3,5) - 2*D(1,3) - 2*D(5,3) - 2*D(5,7) - 2*D(7,1) - 2*D(7,5) + 2*D(7,9) + 2*D(9,3) + 2*D(9,7)); % s3^3
(4*D(1,6) + 4*D(1,8) + 8*D(2,3) + 8*D(2,7) + 8*D(3,2) + 8*D(3,4) + 8*D(4,3) + 8*D(4,7) - 4*D(5,6) - 4*D(5,8) + 4*D(6,1) - 4*D(6,5) - 4*D(6,9) + 8*D(7,2) + 8*D(7,4) + 4*D(8,1) - 4*D(8,5) - 4*D(8,9) - 4*D(9,6) - 4*D(9,8)); % s1 * s2 * s3
(4*D(1,5) - 4*D(1,1) + 8*D(2,2) + 8*D(2,4) + 8*D(4,2) + 8*D(4,4) + 4*D(5,1) - 4*D(5,5) + 4*D(9,9)); % s1 * s2^2
(6*D(1,3) + 6*D(1,7) + 6*D(3,1) - 6*D(3,5) - 6*D(3,9) - 6*D(5,3) - 6*D(5,7) + 6*D(7,1) - 6*D(7,5) - 6*D(7,9) - 6*D(9,3) - 6*D(9,7)); % s1^2 * s3
(4*D(1,1) - 4*D(1,5) - 4*D(1,9) - 4*D(5,1) + 4*D(5,5) + 4*D(5,9) - 4*D(9,1) + 4*D(9,5) + 4*D(9,9))].'; % s1^3
c2 = [- 2*D(1,3) + 2*D(1,7) - 2*D(3,1) - 2*D(3,5) - 2*D(3,9) - 2*D(5,3) + 2*D(5,7) + 2*D(7,1) + 2*D(7,5) + 2*D(7,9) - 2*D(9,3) + 2*D(9,7); % constant term
(4*D(1,5) - 4*D(1,1) + 8*D(2,2) + 8*D(2,4) + 8*D(4,2) + 8*D(4,4) + 4*D(5,1) - 4*D(5,5) + 4*D(9,9)); % s1^2 * s2
(4*D(1,8) - 4*D(1,6) - 8*D(2,3) + 8*D(2,7) - 8*D(3,2) - 8*D(3,4) - 8*D(4,3) + 8*D(4,7) + 4*D(5,6) - 4*D(5,8) - 4*D(6,1) + 4*D(6,5) - 4*D(6,9) + 8*D(7,2) + 8*D(7,4) + 4*D(8,1) - 4*D(8,5) + 4*D(8,9) - 4*D(9,6) + 4*D(9,8)); % s1 * s2
(8*D(2,2) - 8*D(3,3) - 8*D(4,4) + 8*D(6,6) + 8*D(7,7) - 8*D(8,8)); % s1 * s3
(4*D(1,4) - 4*D(1,2) - 4*D(2,1) + 4*D(2,5) - 4*D(2,9) - 8*D(3,6) - 8*D(3,8) + 4*D(4,1) - 4*D(4,5) + 4*D(4,9) + 4*D(5,2) - 4*D(5,4) - 8*D(6,3) + 8*D(6,7) + 8*D(7,6) + 8*D(7,8) - 8*D(8,3) + 8*D(8,7) - 4*D(9,2) + 4*D(9,4)); % s2 * s3
(6*D(5,6) - 6*D(1,8) - 6*D(1,6) + 6*D(5,8) - 6*D(6,1) + 6*D(6,5) - 6*D(6,9) - 6*D(8,1) + 6*D(8,5) - 6*D(8,9) - 6*D(9,6) - 6*D(9,8)); % s2^2 * s3
(4*D(1,1) - 4*D(1,5) + 4*D(1,9) - 4*D(5,1) + 4*D(5,5) - 4*D(5,9) + 4*D(9,1) - 4*D(9,5) + 4*D(9,9)); % s2^3
(2*D(2,9) - 2*D(1,4) - 2*D(2,1) - 2*D(2,5) - 2*D(1,2) + 4*D(3,6) + 4*D(3,8) - 2*D(4,1) - 2*D(4,5) + 2*D(4,9) - 2*D(5,2) - 2*D(5,4) + 4*D(6,3) + 4*D(6,7) + 4*D(7,6) + 4*D(7,8) + 4*D(8,3) + 4*D(8,7) + 2*D(9,2) + 2*D(9,4)); % s1 * s3^2
(2*D(1,2) + 2*D(1,4) + 2*D(2,1) + 2*D(2,5) + 2*D(2,9) - 4*D(3,6) + 4*D(3,8) + 2*D(4,1) + 2*D(4,5) + 2*D(4,9) + 2*D(5,2) + 2*D(5,4) - 4*D(6,3) + 4*D(6,7) + 4*D(7,6) - 4*D(7,8) + 4*D(8,3) - 4*D(8,7) + 2*D(9,2) + 2*D(9,4)); % s1
(2*D(1,6) + 2*D(1,8) - 4*D(2,3) + 4*D(2,7) - 4*D(3,2) + 4*D(3,4) + 4*D(4,3) - 4*D(4,7) + 2*D(5,6) + 2*D(5,8) + 2*D(6,1) + 2*D(6,5) + 2*D(6,9) + 4*D(7,2) - 4*D(7,4) + 2*D(8,1) + 2*D(8,5) + 2*D(8,9) + 2*D(9,6) + 2*D(9,8)); % s3
(8*D(3,3) - 4*D(1,9) - 4*D(1,1) - 8*D(3,7) + 4*D(5,5) - 8*D(7,3) + 8*D(7,7) - 4*D(9,1) - 4*D(9,9)); % s2
(4*D(1,1) - 4*D(5,5) + 4*D(5,9) + 8*D(6,6) + 8*D(6,8) + 8*D(8,6) + 8*D(8,8) + 4*D(9,5) - 4*D(9,9)); % s2 * s3^2
(2*D(1,7) - 2*D(1,3) + 4*D(2,6) - 4*D(2,8) - 2*D(3,1) + 2*D(3,5) + 2*D(3,9) + 4*D(4,6) - 4*D(4,8) + 2*D(5,3) - 2*D(5,7) + 4*D(6,2) + 4*D(6,4) + 2*D(7,1) - 2*D(7,5) - 2*D(7,9) - 4*D(8,2) - 4*D(8,4) + 2*D(9,3) - 2*D(9,7)); % s1^2
(2*D(1,3) - 2*D(1,7) + 4*D(2,6) + 4*D(2,8) + 2*D(3,1) + 2*D(3,5) - 2*D(3,9) - 4*D(4,6) - 4*D(4,8) + 2*D(5,3) - 2*D(5,7) + 4*D(6,2) - 4*D(6,4) - 2*D(7,1) - 2*D(7,5) + 2*D(7,9) + 4*D(8,2) - 4*D(8,4) - 2*D(9,3) + 2*D(9,7)); % s3^2
(6*D(1,3) - 6*D(1,7) + 6*D(3,1) - 6*D(3,5) + 6*D(3,9) - 6*D(5,3) + 6*D(5,7) - 6*D(7,1) + 6*D(7,5) - 6*D(7,9) + 6*D(9,3) - 6*D(9,7)); % s2^2
(2*D(6,9) - 2*D(1,8) - 2*D(5,6) - 2*D(5,8) - 2*D(6,1) - 2*D(6,5) - 2*D(1,6) - 2*D(8,1) - 2*D(8,5) + 2*D(8,9) + 2*D(9,6) + 2*D(9,8)); % s3^3
(8*D(2,6) - 4*D(1,7) - 4*D(1,3) + 8*D(2,8) - 4*D(3,1) + 4*D(3,5) - 4*D(3,9) + 8*D(4,6) + 8*D(4,8) + 4*D(5,3) + 4*D(5,7) + 8*D(6,2) + 8*D(6,4) - 4*D(7,1) + 4*D(7,5) - 4*D(7,9) + 8*D(8,2) + 8*D(8,4) - 4*D(9,3) - 4*D(9,7)); % s1 * s2 * s3
(6*D(2,5) - 6*D(1,4) - 6*D(2,1) - 6*D(1,2) - 6*D(2,9) - 6*D(4,1) + 6*D(4,5) - 6*D(4,9) + 6*D(5,2) + 6*D(5,4) - 6*D(9,2) - 6*D(9,4)); % s1 * s2^2
(2*D(1,6) + 2*D(1,8) + 4*D(2,3) + 4*D(2,7) + 4*D(3,2) + 4*D(3,4) + 4*D(4,3) + 4*D(4,7) - 2*D(5,6) - 2*D(5,8) + 2*D(6,1) - 2*D(6,5) - 2*D(6,9) + 4*D(7,2) + 4*D(7,4) + 2*D(8,1) - 2*D(8,5) - 2*D(8,9) - 2*D(9,6) - 2*D(9,8)); % s1^2 * s3
(2*D(1,2) + 2*D(1,4) + 2*D(2,1) - 2*D(2,5) - 2*D(2,9) + 2*D(4,1) - 2*D(4,5) - 2*D(4,9) - 2*D(5,2) - 2*D(5,4) - 2*D(9,2) - 2*D(9,4))].'; % s1^3
c3 = [2*D(1,2) - 2*D(1,4) + 2*D(2,1) + 2*D(2,5) + 2*D(2,9) - 2*D(4,1) - 2*D(4,5) - 2*D(4,9) + 2*D(5,2) - 2*D(5,4) + 2*D(9,2) - 2*D(9,4); % constant term
(2*D(1,6) + 2*D(1,8) + 4*D(2,3) + 4*D(2,7) + 4*D(3,2) + 4*D(3,4) + 4*D(4,3) + 4*D(4,7) - 2*D(5,6) - 2*D(5,8) + 2*D(6,1) - 2*D(6,5) - 2*D(6,9) + 4*D(7,2) + 4*D(7,4) + 2*D(8,1) - 2*D(8,5) - 2*D(8,9) - 2*D(9,6) - 2*D(9,8)); % s1^2 * s2
(8*D(2,2) - 8*D(3,3) - 8*D(4,4) + 8*D(6,6) + 8*D(7,7) - 8*D(8,8)); % s1 * s2
(4*D(1,8) - 4*D(1,6) + 8*D(2,3) + 8*D(2,7) + 8*D(3,2) - 8*D(3,4) - 8*D(4,3) - 8*D(4,7) - 4*D(5,6) + 4*D(5,8) - 4*D(6,1) - 4*D(6,5) + 4*D(6,9) + 8*D(7,2) - 8*D(7,4) + 4*D(8,1) + 4*D(8,5) - 4*D(8,9) + 4*D(9,6) - 4*D(9,8)); % s1 * s3
(4*D(1,3) - 4*D(1,7) + 8*D(2,6) + 8*D(2,8) + 4*D(3,1) + 4*D(3,5) - 4*D(3,9) - 8*D(4,6) - 8*D(4,8) + 4*D(5,3) - 4*D(5,7) + 8*D(6,2) - 8*D(6,4) - 4*D(7,1) - 4*D(7,5) + 4*D(7,9) + 8*D(8,2) - 8*D(8,4) - 4*D(9,3) + 4*D(9,7)); % s2 * s3
(4*D(1,1) - 4*D(5,5) + 4*D(5,9) + 8*D(6,6) + 8*D(6,8) + 8*D(8,6) + 8*D(8,8) + 4*D(9,5) - 4*D(9,9)); % s2^2 * s3
(2*D(5,6) - 2*D(1,8) - 2*D(1,6) + 2*D(5,8) - 2*D(6,1) + 2*D(6,5) - 2*D(6,9) - 2*D(8,1) + 2*D(8,5) - 2*D(8,9) - 2*D(9,6) - 2*D(9,8)); % s2^3
(6*D(3,9) - 6*D(1,7) - 6*D(3,1) - 6*D(3,5) - 6*D(1,3) - 6*D(5,3) - 6*D(5,7) - 6*D(7,1) - 6*D(7,5) + 6*D(7,9) + 6*D(9,3) + 6*D(9,7)); % s1 * s3^2
(2*D(1,3) + 2*D(1,7) + 4*D(2,6) - 4*D(2,8) + 2*D(3,1) + 2*D(3,5) + 2*D(3,9) - 4*D(4,6) + 4*D(4,8) + 2*D(5,3) + 2*D(5,7) + 4*D(6,2) - 4*D(6,4) + 2*D(7,1) + 2*D(7,5) + 2*D(7,9) - 4*D(8,2) + 4*D(8,4) + 2*D(9,3) + 2*D(9,7)); % s1
(8*D(2,2) - 4*D(1,5) - 4*D(1,1) - 8*D(2,4) - 8*D(4,2) + 8*D(4,4) - 4*D(5,1) - 4*D(5,5) + 4*D(9,9)); % s3
(2*D(1,6) + 2*D(1,8) - 4*D(2,3) + 4*D(2,7) - 4*D(3,2) + 4*D(3,4) + 4*D(4,3) - 4*D(4,7) + 2*D(5,6) + 2*D(5,8) + 2*D(6,1) + 2*D(6,5) + 2*D(6,9) + 4*D(7,2) - 4*D(7,4) + 2*D(8,1) + 2*D(8,5) + 2*D(8,9) + 2*D(9,6) + 2*D(9,8)); % s2
(6*D(6,9) - 6*D(1,8) - 6*D(5,6) - 6*D(5,8) - 6*D(6,1) - 6*D(6,5) - 6*D(1,6) - 6*D(8,1) - 6*D(8,5) + 6*D(8,9) + 6*D(9,6) + 6*D(9,8)); % s2 * s3^2
(2*D(1,2) - 2*D(1,4) + 2*D(2,1) - 2*D(2,5) - 2*D(2,9) + 4*D(3,6) - 4*D(3,8) - 2*D(4,1) + 2*D(4,5) + 2*D(4,9) - 2*D(5,2) + 2*D(5,4) + 4*D(6,3) + 4*D(6,7) + 4*D(7,6) - 4*D(7,8) - 4*D(8,3) - 4*D(8,7) - 2*D(9,2) + 2*D(9,4)); % s1^2
(6*D(1,4) - 6*D(1,2) - 6*D(2,1) - 6*D(2,5) + 6*D(2,9) + 6*D(4,1) + 6*D(4,5) - 6*D(4,9) - 6*D(5,2) + 6*D(5,4) + 6*D(9,2) - 6*D(9,4)); % s3^2
(2*D(1,4) - 2*D(1,2) - 2*D(2,1) + 2*D(2,5) - 2*D(2,9) - 4*D(3,6) - 4*D(3,8) + 2*D(4,1) - 2*D(4,5) + 2*D(4,9) + 2*D(5,2) - 2*D(5,4) - 4*D(6,3) + 4*D(6,7) + 4*D(7,6) + 4*D(7,8) - 4*D(8,3) + 4*D(8,7) - 2*D(9,2) + 2*D(9,4)); % s2^2
(4*D(1,1) + 4*D(1,5) - 4*D(1,9) + 4*D(5,1) + 4*D(5,5) - 4*D(5,9) - 4*D(9,1) - 4*D(9,5) + 4*D(9,9)); % s3^3
(4*D(2,9) - 4*D(1,4) - 4*D(2,1) - 4*D(2,5) - 4*D(1,2) + 8*D(3,6) + 8*D(3,8) - 4*D(4,1) - 4*D(4,5) + 4*D(4,9) - 4*D(5,2) - 4*D(5,4) + 8*D(6,3) + 8*D(6,7) + 8*D(7,6) + 8*D(7,8) + 8*D(8,3) + 8*D(8,7) + 4*D(9,2) + 4*D(9,4)); % s1 * s2 * s3
(4*D(2,6) - 2*D(1,7) - 2*D(1,3) + 4*D(2,8) - 2*D(3,1) + 2*D(3,5) - 2*D(3,9) + 4*D(4,6) + 4*D(4,8) + 2*D(5,3) + 2*D(5,7) + 4*D(6,2) + 4*D(6,4) - 2*D(7,1) + 2*D(7,5) - 2*D(7,9) + 4*D(8,2) + 4*D(8,4) - 2*D(9,3) - 2*D(9,7)); % s1 * s2^2
(4*D(1,9) - 4*D(1,1) + 8*D(3,3) + 8*D(3,7) + 4*D(5,5) + 8*D(7,3) + 8*D(7,7) + 4*D(9,1) - 4*D(9,9)); % s1^2 * s3
(2*D(1,3) + 2*D(1,7) + 2*D(3,1) - 2*D(3,5) - 2*D(3,9) - 2*D(5,3) - 2*D(5,7) + 2*D(7,1) - 2*D(7,5) - 2*D(7,9) - 2*D(9,3) - 2*D(9,7))].'; % s1^3
end
function M = LeftMultVec(v)
% R * p = LeftMultVec(p) * vec(R)
M = [v' zeros(1,6);
zeros(1,3) v' zeros(1,3);
zeros(1,6) v'];
end |
github | urbste/MLPnP_matlab_toolbox-master | matrix2quaternion.m | .m | MLPnP_matlab_toolbox-master/OPnP/matrix2quaternion.m | 2,010 | utf_8 | ad7a1983aceaa9953be167eddabb22ae | % MATRIX2QUATERNION - Homogeneous matrix to quaternion
%
% Converts 4x4 homogeneous rotation matrix to quaternion
%
% Usage: Q = matrix2quaternion(T)
%
% Argument: T - 4x4 Homogeneous transformation matrix
% Returns: Q - a quaternion in the form [w, xi, yj, zk]
%
% See Also QUATERNION2MATRIX
% Copyright (c) 2008 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
function Q = matrix2quaternion(T)
% This code follows the implementation suggested by Hartley and Zisserman
R = T(1:3, 1:3); % Extract rotation part of T
% Find rotation axis as the eigenvector having unit eigenvalue
% Solve (R-I)v = 0;
[v,d] = eig(R-eye(3));
% The following code assumes the eigenvalues returned are not necessarily
% sorted by size. This may be overcautious on my part.
d = diag(abs(d)); % Extract eigenvalues
[s, ind] = sort(d); % Find index of smallest one
if d(ind(1)) > 0.001 % Hopefully it is close to 0
warning('Rotation matrix is dubious');
end
axis = v(:,ind(1)); % Extract appropriate eigenvector
if abs(norm(axis) - 1) > .0001 % Debug
warning('non unit rotation axis');
end
% Now determine the rotation angle
twocostheta = trace(R)-1;
twosinthetav = [R(3,2)-R(2,3), R(1,3)-R(3,1), R(2,1)-R(1,2)]';
twosintheta = axis'*twosinthetav;
theta = atan2(twosintheta, twocostheta);
Q = [cos(theta/2); axis*sin(theta/2)];
|
github | urbste/MLPnP_matlab_toolbox-master | GB_Solver_3Order_4Variable_Symmetry.m | .m | MLPnP_matlab_toolbox-master/OPnP/GB_Solver_3Order_4Variable_Symmetry.m | 884 | utf_8 | 81ed9a17a4479db7de5169dccf46c62f | % Generated using GBSolver generator Copyright Martin Bujnak,
% Zuzana Kukelova, Tomas Pajdla CTU Prague 2008.
%
% Please refer to the following paper, when using this code :
% Kukelova Z., Bujnak M., Pajdla T., Automatic Generator of Minimal Problem Solvers,
% ECCV 2008, Marseille, France, October 12-18, 2008
function [x y z t] = GB_Solver_3Order_4Variable_Symmetry(a1, b1, c1, d1)
%loading template
template_name = 'template_pnp';
load(template_name);
%solver parameter
settings.debug = 0; % debug mode : very slow
settings.full_QR1 = 0; % turn on sparse QR
settings.p_inverter = 'all'; % use 'all' to use the 'best' inverter
settings.real = 1; % 1: only output real solutions
%call solver
[sols,stats] = solver_pfold([a1;b1;c1;d1],settings);
%selecting solutions
x = sols(1,:);
y = sols(2,:);
z = sols(3,:);
t = sols(4,:);
end
|
github | urbste/MLPnP_matlab_toolbox-master | GB_Solver_3Order_4Variable_b_Division.m | .m | MLPnP_matlab_toolbox-master/OPnP/GB_Solver_3Order_4Variable_b_Division.m | 118,829 | utf_8 | b99f7fa1930baa2a68e6e2c2904ac5bd | % Generated using GBSolver generator Copyright Martin Bujnak,
% Zuzana Kukelova, Tomas Pajdla CTU Prague 2008.
%
% Please refer to the following paper, when using this code :
% Kukelova Z., Bujnak M., Pajdla T., Automatic Generator of Minimal Problem Solvers,
% ECCV 2008, Marseille, France, October 12-18, 2008
function [a b c d] = GB_Solver_3Order_4Variable_b_Division(e11, e21, e31, e41)
% precalculate polynomial equations coefficients
c(1) = e11(12);
c(2) = e11(5);
c(3) = e11(2);
c(4) = e11(1);
c(5) = e11(13);
c(6) = e11(6);
c(7) = e11(3);
c(8) = e11(15);
c(9) = e11(8);
c(10) = e11(19);
c(11) = e11(14);
c(12) = e11(7);
c(13) = e11(4);
c(14) = e11(16);
c(15) = e11(9);
c(16) = e11(20);
c(17) = e11(17);
c(18) = e11(10);
c(19) = e11(21);
c(20) = e11(23);
c(21) = e11(18);
c(22) = e11(11);
c(23) = e11(22);
c(24) = e11(24);
c(25) = 0;
c(26) = e21(12);
c(27) = e21(5);
c(28) = e21(2);
c(29) = e21(1);
c(30) = e21(13);
c(31) = e21(6);
c(32) = e21(3);
c(33) = e21(15);
c(34) = e21(8);
c(35) = e21(19);
c(36) = e21(14);
c(37) = e21(7);
c(38) = e21(4);
c(39) = e21(16);
c(40) = e21(9);
c(41) = e21(20);
c(42) = e21(17);
c(43) = e21(10);
c(44) = e21(21);
c(45) = e21(23);
c(46) = e21(18);
c(47) = e21(11);
c(48) = e21(22);
c(49) = e21(24);
c(50) = 0;
c(51) = e31(12);
c(52) = e31(5);
c(53) = e31(2);
c(54) = e31(1);
c(55) = e31(13);
c(56) = e31(6);
c(57) = e31(3);
c(58) = e31(15);
c(59) = e31(8);
c(60) = e31(19);
c(61) = e31(14);
c(62) = e31(7);
c(63) = e31(4);
c(64) = e31(16);
c(65) = e31(9);
c(66) = e31(20);
c(67) = e31(17);
c(68) = e31(10);
c(69) = e31(21);
c(70) = e31(23);
c(71) = e31(18);
c(72) = e31(11);
c(73) = e31(22);
c(74) = e31(24);
c(75) = 0;
c(76) = e41(12);
c(77) = e41(5);
c(78) = e41(2);
c(79) = e41(1);
c(80) = e41(13);
c(81) = e41(6);
c(82) = e41(3);
c(83) = e41(15);
c(84) = e41(8);
c(85) = e41(19);
c(86) = e41(14);
c(87) = e41(7);
c(88) = e41(4);
c(89) = e41(16);
c(90) = e41(9);
c(91) = e41(20);
c(92) = e41(17);
c(93) = e41(10);
c(94) = e41(21);
c(95) = e41(23);
c(96) = e41(18);
c(97) = e41(11);
c(98) = e41(22);
c(99) = e41(24);
c(100) = 0;
M = zeros(575, 656);
ci = [448, 1022, 1596, 3895, 4469, 5043, 7342, 7916, 8490, 10789, 11363, 13662, 19411, 19985, 20559, 22858, 23432, 24006, 26305, 26879, 27453, 29752, 30326, 32625, 38374, 38948, 39522, 41821, 42395, 42969, 45268, 45842, 46416, 48715, 49289, 51588, 57337, 57911, 58485, 60784, 61358, 61932, 64231, 64805, 67104, 72853, 73427, 74001, 76300, 76874, 79173, 84922, 85496, 87795, 93544, 104938, 105512, 106086, 108385, 108959, 109533, 111832, 112406, 112980, 115279, 115853, 118152, 123901, 124475, 125049, 127348, 127922, 128496, 130795, 131369, 131943, 134242, 134816, 137115, 142864, 143438, 144012, 146311, 146885, 147459, 149758, 150332, 152631, 158380, 158954, 159528, 161827, 162401, 164700, 170449, 171023, 173322, 179071, 190489, 191063, 191637, 193936, 194510, 195084, 197383, 197957, 198531, 200830, 201404, 203703, 209452, 210026, 210600, 212899, 213473, 214047, 216346, 216920, 219219, 224968, 225542, 226116, 228415, 228989, 231288, 237037, 237611, 239910, 245659, 257104, 257678, 258252, 260551, 261125, 261699, 263998, 264572, 266871, 272620, 273194, 273768, 276067, 276641, 278940, 284689, 285263, 287562, 293311, 304780, 305354, 305928, 308227, 308801, 311100, 316849, 317423, 319722, 325471, 336958, 337532, 339831, 345580, 357076];
M(ci) = c(1);
ci = [1023, 1597, 2171, 4470, 5044, 5618, 7917, 8491, 9065, 11364, 11938, 14237, 19986, 20560, 21134, 23433, 24007, 24581, 26880, 27454, 28028, 30327, 30901, 33200, 38949, 39523, 40097, 42396, 42970, 43544, 45843, 46417, 46991, 49290, 49864, 52163, 57912, 58486, 59060, 61359, 61933, 62507, 64806, 65380, 67679, 73428, 74002, 74576, 76875, 77449, 79748, 85497, 86071, 88370, 94119, 105513, 106087, 106661, 108960, 109534, 110108, 112407, 112981, 113555, 115854, 116428, 118727, 124476, 125050, 125624, 127923, 128497, 129071, 131370, 131944, 132518, 134817, 135391, 137690, 143439, 144013, 144587, 146886, 147460, 148034, 150333, 150907, 153206, 158955, 159529, 160103, 162402, 162976, 165275, 171024, 171598, 173897, 179646, 191064, 191638, 192212, 194511, 195085, 195659, 197958, 198532, 199106, 201405, 201979, 204278, 210027, 210601, 211175, 213474, 214048, 214622, 216921, 217495, 219794, 225543, 226117, 226691, 228990, 229564, 231863, 237612, 238186, 240485, 246234, 257679, 258253, 258827, 261126, 261700, 262274, 264573, 265147, 267446, 273195, 273769, 274343, 276642, 277216, 279515, 285264, 285838, 288137, 293886, 305355, 305929, 306503, 308802, 309376, 311675, 317424, 317998, 320297, 326046, 337533, 338107, 340406, 346155, 357651];
M(ci) = c(2);
ci = [1598, 2172, 2746, 5045, 5619, 6193, 8492, 9066, 9640, 11939, 12513, 14812, 20561, 21135, 21709, 24008, 24582, 25156, 27455, 28029, 28603, 30902, 31476, 33775, 39524, 40098, 40672, 42971, 43545, 44119, 46418, 46992, 47566, 49865, 50439, 52738, 58487, 59061, 59635, 61934, 62508, 63082, 65381, 65955, 68254, 74003, 74577, 75151, 77450, 78024, 80323, 86072, 86646, 88945, 94694, 106088, 106662, 107236, 109535, 110109, 110683, 112982, 113556, 114130, 116429, 117003, 119302, 125051, 125625, 126199, 128498, 129072, 129646, 131945, 132519, 133093, 135392, 135966, 138265, 144014, 144588, 145162, 147461, 148035, 148609, 150908, 151482, 153781, 159530, 160104, 160678, 162977, 163551, 165850, 171599, 172173, 174472, 180221, 191639, 192213, 192787, 195086, 195660, 196234, 198533, 199107, 199681, 201980, 202554, 204853, 210602, 211176, 211750, 214049, 214623, 215197, 217496, 218070, 220369, 226118, 226692, 227266, 229565, 230139, 232438, 238187, 238761, 241060, 246809, 258254, 258828, 259402, 261701, 262275, 262849, 265148, 265722, 268021, 273770, 274344, 274918, 277217, 277791, 280090, 285839, 286413, 288712, 294461, 305930, 306504, 307078, 309377, 309951, 312250, 317999, 318573, 320872, 326621, 338108, 338682, 340981, 346730, 358226];
M(ci) = c(3);
ci = [2173, 2747, 3321, 5620, 6194, 6768, 9067, 9641, 10215, 12514, 13088, 15387, 21136, 21710, 22284, 24583, 25157, 25731, 28030, 28604, 29178, 31477, 32051, 34350, 40099, 40673, 41247, 43546, 44120, 44694, 46993, 47567, 48141, 50440, 51014, 53313, 59062, 59636, 60210, 62509, 63083, 63657, 65956, 66530, 68829, 74578, 75152, 75726, 78025, 78599, 80898, 86647, 87221, 89520, 95269, 106663, 107237, 107811, 110110, 110684, 111258, 113557, 114131, 114705, 117004, 117578, 119877, 125626, 126200, 126774, 129073, 129647, 130221, 132520, 133094, 133668, 135967, 136541, 138840, 144589, 145163, 145737, 148036, 148610, 149184, 151483, 152057, 154356, 160105, 160679, 161253, 163552, 164126, 166425, 172174, 172748, 175047, 180796, 192214, 192788, 193362, 195661, 196235, 196809, 199108, 199682, 200256, 202555, 203129, 205428, 211177, 211751, 212325, 214624, 215198, 215772, 218071, 218645, 220944, 226693, 227267, 227841, 230140, 230714, 233013, 238762, 239336, 241635, 247384, 258829, 259403, 259977, 262276, 262850, 263424, 265723, 266297, 268596, 274345, 274919, 275493, 277792, 278366, 280665, 286414, 286988, 289287, 295036, 306505, 307079, 307653, 309952, 310526, 312825, 318574, 319148, 321447, 327196, 338683, 339257, 341556, 347305, 358801];
M(ci) = c(4);
ci = [4473, 5047, 5621, 7920, 8494, 9068, 10792, 11366, 11940, 13664, 14238, 15962, 23436, 24010, 24584, 26883, 27457, 28031, 29755, 30329, 30903, 32627, 33201, 34925, 42399, 42973, 43547, 45846, 46420, 46994, 48718, 49292, 49866, 51590, 52164, 53888, 61362, 61936, 62510, 64234, 64808, 65382, 67106, 67680, 69404, 76303, 76877, 77451, 79175, 79749, 81473, 87797, 88371, 90095, 95844, 108963, 109537, 110111, 112410, 112984, 113558, 115282, 115856, 116430, 118154, 118728, 120452, 127926, 128500, 129074, 131373, 131947, 132521, 134245, 134819, 135393, 137117, 137691, 139415, 146889, 147463, 148037, 149761, 150335, 150909, 152633, 153207, 154931, 161830, 162404, 162978, 164702, 165276, 167000, 173324, 173898, 175622, 181371, 194514, 195088, 195662, 197961, 198535, 199109, 200833, 201407, 201981, 203705, 204279, 206003, 213477, 214051, 214625, 216349, 216923, 217497, 219221, 219795, 221519, 228418, 228992, 229566, 231290, 231864, 233588, 239912, 240486, 242210, 247959, 261129, 261703, 262277, 264001, 264575, 265149, 266873, 267447, 269171, 276070, 276644, 277218, 278942, 279516, 281240, 287564, 288138, 289862, 295611, 308230, 308804, 309378, 311102, 311676, 313400, 319724, 320298, 322022, 327771, 339833, 340407, 342131, 347880, 359376];
M(ci) = c(5);
ci = [5048, 5622, 6196, 8495, 9069, 9643, 11367, 11941, 12515, 14239, 14813, 16537, 24011, 24585, 25159, 27458, 28032, 28606, 30330, 30904, 31478, 33202, 33776, 35500, 42974, 43548, 44122, 46421, 46995, 47569, 49293, 49867, 50441, 52165, 52739, 54463, 61937, 62511, 63085, 64809, 65383, 65957, 67681, 68255, 69979, 76878, 77452, 78026, 79750, 80324, 82048, 88372, 88946, 90670, 96419, 109538, 110112, 110686, 112985, 113559, 114133, 115857, 116431, 117005, 118729, 119303, 121027, 128501, 129075, 129649, 131948, 132522, 133096, 134820, 135394, 135968, 137692, 138266, 139990, 147464, 148038, 148612, 150336, 150910, 151484, 153208, 153782, 155506, 162405, 162979, 163553, 165277, 165851, 167575, 173899, 174473, 176197, 181946, 195089, 195663, 196237, 198536, 199110, 199684, 201408, 201982, 202556, 204280, 204854, 206578, 214052, 214626, 215200, 216924, 217498, 218072, 219796, 220370, 222094, 228993, 229567, 230141, 231865, 232439, 234163, 240487, 241061, 242785, 248534, 261704, 262278, 262852, 264576, 265150, 265724, 267448, 268022, 269746, 276645, 277219, 277793, 279517, 280091, 281815, 288139, 288713, 290437, 296186, 308805, 309379, 309953, 311677, 312251, 313975, 320299, 320873, 322597, 328346, 340408, 340982, 342706, 348455, 359951];
M(ci) = c(6);
ci = [5623, 6197, 6771, 9070, 9644, 10218, 11942, 12516, 13090, 14814, 15388, 17112, 24586, 25160, 25734, 28033, 28607, 29181, 30905, 31479, 32053, 33777, 34351, 36075, 43549, 44123, 44697, 46996, 47570, 48144, 49868, 50442, 51016, 52740, 53314, 55038, 62512, 63086, 63660, 65384, 65958, 66532, 68256, 68830, 70554, 77453, 78027, 78601, 80325, 80899, 82623, 88947, 89521, 91245, 96994, 110113, 110687, 111261, 113560, 114134, 114708, 116432, 117006, 117580, 119304, 119878, 121602, 129076, 129650, 130224, 132523, 133097, 133671, 135395, 135969, 136543, 138267, 138841, 140565, 148039, 148613, 149187, 150911, 151485, 152059, 153783, 154357, 156081, 162980, 163554, 164128, 165852, 166426, 168150, 174474, 175048, 176772, 182521, 195664, 196238, 196812, 199111, 199685, 200259, 201983, 202557, 203131, 204855, 205429, 207153, 214627, 215201, 215775, 217499, 218073, 218647, 220371, 220945, 222669, 229568, 230142, 230716, 232440, 233014, 234738, 241062, 241636, 243360, 249109, 262279, 262853, 263427, 265151, 265725, 266299, 268023, 268597, 270321, 277220, 277794, 278368, 280092, 280666, 282390, 288714, 289288, 291012, 296761, 309380, 309954, 310528, 312252, 312826, 314550, 320874, 321448, 323172, 328921, 340983, 341557, 343281, 349030, 360526];
M(ci) = c(7);
ci = [8498, 9072, 9646, 11370, 11944, 12518, 13667, 14241, 14815, 15964, 16538, 17687, 27461, 28035, 28609, 30333, 30907, 31481, 32630, 33204, 33778, 34927, 35501, 36650, 46424, 46998, 47572, 49296, 49870, 50444, 51593, 52167, 52741, 53890, 54464, 55613, 64812, 65386, 65960, 67109, 67683, 68257, 69406, 69980, 71129, 79178, 79752, 80326, 81475, 82049, 83198, 90097, 90671, 91820, 97569, 112988, 113562, 114136, 115860, 116434, 117008, 118157, 118731, 119305, 120454, 121028, 122177, 131951, 132525, 133099, 134823, 135397, 135971, 137120, 137694, 138268, 139417, 139991, 141140, 150339, 150913, 151487, 152636, 153210, 153784, 154933, 155507, 156656, 164705, 165279, 165853, 167002, 167576, 168725, 175624, 176198, 177347, 183096, 198539, 199113, 199687, 201411, 201985, 202559, 203708, 204282, 204856, 206005, 206579, 207728, 216927, 217501, 218075, 219224, 219798, 220372, 221521, 222095, 223244, 231293, 231867, 232441, 233590, 234164, 235313, 242212, 242786, 243935, 249684, 264579, 265153, 265727, 266876, 267450, 268024, 269173, 269747, 270896, 278945, 279519, 280093, 281242, 281816, 282965, 289864, 290438, 291587, 297336, 311105, 311679, 312253, 313402, 313976, 315125, 322024, 322598, 323747, 329496, 342133, 342707, 343856, 349605, 361101];
M(ci) = c(8);
ci = [9073, 9647, 10221, 11945, 12519, 13093, 14242, 14816, 15390, 16539, 17113, 18262, 28036, 28610, 29184, 30908, 31482, 32056, 33205, 33779, 34353, 35502, 36076, 37225, 46999, 47573, 48147, 49871, 50445, 51019, 52168, 52742, 53316, 54465, 55039, 56188, 65387, 65961, 66535, 67684, 68258, 68832, 69981, 70555, 71704, 79753, 80327, 80901, 82050, 82624, 83773, 90672, 91246, 92395, 98144, 113563, 114137, 114711, 116435, 117009, 117583, 118732, 119306, 119880, 121029, 121603, 122752, 132526, 133100, 133674, 135398, 135972, 136546, 137695, 138269, 138843, 139992, 140566, 141715, 150914, 151488, 152062, 153211, 153785, 154359, 155508, 156082, 157231, 165280, 165854, 166428, 167577, 168151, 169300, 176199, 176773, 177922, 183671, 199114, 199688, 200262, 201986, 202560, 203134, 204283, 204857, 205431, 206580, 207154, 208303, 217502, 218076, 218650, 219799, 220373, 220947, 222096, 222670, 223819, 231868, 232442, 233016, 234165, 234739, 235888, 242787, 243361, 244510, 250259, 265154, 265728, 266302, 267451, 268025, 268599, 269748, 270322, 271471, 279520, 280094, 280668, 281817, 282391, 283540, 290439, 291013, 292162, 297911, 311680, 312254, 312828, 313977, 314551, 315700, 322599, 323173, 324322, 330071, 342708, 343282, 344431, 350180, 361676];
M(ci) = c(9);
ci = [11948, 12522, 13096, 14245, 14819, 15393, 15967, 16541, 17115, 17689, 18263, 18837, 30911, 31485, 32059, 33208, 33782, 34356, 34930, 35504, 36078, 36652, 37226, 37800, 49874, 50448, 51022, 52171, 52745, 53319, 53893, 54467, 55041, 55615, 56189, 56763, 67687, 68261, 68835, 69409, 69983, 70557, 71131, 71705, 72279, 81478, 82052, 82626, 83200, 83774, 84348, 91822, 92396, 92970, 98719, 116438, 117012, 117586, 118735, 119309, 119883, 120457, 121031, 121605, 122179, 122753, 123327, 135401, 135975, 136549, 137698, 138272, 138846, 139420, 139994, 140568, 141142, 141716, 142290, 153214, 153788, 154362, 154936, 155510, 156084, 156658, 157232, 157806, 167005, 167579, 168153, 168727, 169301, 169875, 177349, 177923, 178497, 184246, 201989, 202563, 203137, 204286, 204860, 205434, 206008, 206582, 207156, 207730, 208304, 208878, 219802, 220376, 220950, 221524, 222098, 222672, 223246, 223820, 224394, 233593, 234167, 234741, 235315, 235889, 236463, 243937, 244511, 245085, 250834, 267454, 268028, 268602, 269176, 269750, 270324, 270898, 271472, 272046, 281245, 281819, 282393, 282967, 283541, 284115, 291589, 292163, 292737, 298486, 313405, 313979, 314553, 315127, 315701, 316275, 323749, 324323, 324897, 330646, 343858, 344432, 345006, 350755, 362251];
M(ci) = c(10);
ci = [23448, 24022, 24596, 26895, 27469, 28043, 29767, 30341, 30915, 32639, 33213, 34937, 42411, 42985, 43559, 45858, 46432, 47006, 48730, 49304, 49878, 51602, 52176, 53900, 57924, 58498, 59072, 61371, 61945, 62519, 64243, 64817, 65391, 67115, 67689, 69413, 73437, 74011, 74585, 76309, 76883, 77457, 79181, 79755, 81479, 84928, 85502, 86076, 87800, 88374, 90098, 93547, 94121, 95845, 99294, 127938, 128512, 129086, 131385, 131959, 132533, 134257, 134831, 135405, 137129, 137703, 139427, 143451, 144025, 144599, 146898, 147472, 148046, 149770, 150344, 150918, 152642, 153216, 154940, 158964, 159538, 160112, 161836, 162410, 162984, 164708, 165282, 167006, 170455, 171029, 171603, 173327, 173901, 175625, 179074, 179648, 181372, 184821, 210039, 210613, 211187, 213486, 214060, 214634, 216358, 216932, 217506, 219230, 219804, 221528, 225552, 226126, 226700, 228424, 228998, 229572, 231296, 231870, 233594, 237043, 237617, 238191, 239915, 240489, 242213, 245662, 246236, 247960, 251409, 273204, 273778, 274352, 276076, 276650, 277224, 278948, 279522, 281246, 284695, 285269, 285843, 287567, 288141, 289865, 293314, 293888, 295612, 299061, 316855, 317429, 318003, 319727, 320301, 322025, 325474, 326048, 327772, 331221, 345583, 346157, 347881, 351330, 362826];
M(ci) = c(11);
ci = [24023, 24597, 25171, 27470, 28044, 28618, 30342, 30916, 31490, 33214, 33788, 35512, 42986, 43560, 44134, 46433, 47007, 47581, 49305, 49879, 50453, 52177, 52751, 54475, 58499, 59073, 59647, 61946, 62520, 63094, 64818, 65392, 65966, 67690, 68264, 69988, 74012, 74586, 75160, 76884, 77458, 78032, 79756, 80330, 82054, 85503, 86077, 86651, 88375, 88949, 90673, 94122, 94696, 96420, 99869, 128513, 129087, 129661, 131960, 132534, 133108, 134832, 135406, 135980, 137704, 138278, 140002, 144026, 144600, 145174, 147473, 148047, 148621, 150345, 150919, 151493, 153217, 153791, 155515, 159539, 160113, 160687, 162411, 162985, 163559, 165283, 165857, 167581, 171030, 171604, 172178, 173902, 174476, 176200, 179649, 180223, 181947, 185396, 210614, 211188, 211762, 214061, 214635, 215209, 216933, 217507, 218081, 219805, 220379, 222103, 226127, 226701, 227275, 228999, 229573, 230147, 231871, 232445, 234169, 237618, 238192, 238766, 240490, 241064, 242788, 246237, 246811, 248535, 251984, 273779, 274353, 274927, 276651, 277225, 277799, 279523, 280097, 281821, 285270, 285844, 286418, 288142, 288716, 290440, 293889, 294463, 296187, 299636, 317430, 318004, 318578, 320302, 320876, 322600, 326049, 326623, 328347, 331796, 346158, 346732, 348456, 351905, 363401];
M(ci) = c(12);
ci = [24598, 25172, 25746, 28045, 28619, 29193, 30917, 31491, 32065, 33789, 34363, 36087, 43561, 44135, 44709, 47008, 47582, 48156, 49880, 50454, 51028, 52752, 53326, 55050, 59074, 59648, 60222, 62521, 63095, 63669, 65393, 65967, 66541, 68265, 68839, 70563, 74587, 75161, 75735, 77459, 78033, 78607, 80331, 80905, 82629, 86078, 86652, 87226, 88950, 89524, 91248, 94697, 95271, 96995, 100444, 129088, 129662, 130236, 132535, 133109, 133683, 135407, 135981, 136555, 138279, 138853, 140577, 144601, 145175, 145749, 148048, 148622, 149196, 150920, 151494, 152068, 153792, 154366, 156090, 160114, 160688, 161262, 162986, 163560, 164134, 165858, 166432, 168156, 171605, 172179, 172753, 174477, 175051, 176775, 180224, 180798, 182522, 185971, 211189, 211763, 212337, 214636, 215210, 215784, 217508, 218082, 218656, 220380, 220954, 222678, 226702, 227276, 227850, 229574, 230148, 230722, 232446, 233020, 234744, 238193, 238767, 239341, 241065, 241639, 243363, 246812, 247386, 249110, 252559, 274354, 274928, 275502, 277226, 277800, 278374, 280098, 280672, 282396, 285845, 286419, 286993, 288717, 289291, 291015, 294464, 295038, 296762, 300211, 318005, 318579, 319153, 320877, 321451, 323175, 326624, 327198, 328922, 332371, 346733, 347307, 349031, 352480, 363976];
M(ci) = c(13);
ci = [27473, 28047, 28621, 30345, 30919, 31493, 32642, 33216, 33790, 34939, 35513, 36662, 46436, 47010, 47584, 49308, 49882, 50456, 51605, 52179, 52753, 53902, 54476, 55625, 61949, 62523, 63097, 64821, 65395, 65969, 67118, 67692, 68266, 69415, 69989, 71138, 76887, 77461, 78035, 79184, 79758, 80332, 81481, 82055, 83204, 87803, 88377, 88951, 90100, 90674, 91823, 95847, 96421, 97570, 101019, 131963, 132537, 133111, 134835, 135409, 135983, 137132, 137706, 138280, 139429, 140003, 141152, 147476, 148050, 148624, 150348, 150922, 151496, 152645, 153219, 153793, 154942, 155516, 156665, 162414, 162988, 163562, 164711, 165285, 165859, 167008, 167582, 168731, 173330, 173904, 174478, 175627, 176201, 177350, 181374, 181948, 183097, 186546, 214064, 214638, 215212, 216936, 217510, 218084, 219233, 219807, 220381, 221530, 222104, 223253, 229002, 229576, 230150, 231299, 231873, 232447, 233596, 234170, 235319, 239918, 240492, 241066, 242215, 242789, 243938, 247962, 248536, 249685, 253134, 276654, 277228, 277802, 278951, 279525, 280099, 281248, 281822, 282971, 287570, 288144, 288718, 289867, 290441, 291590, 295614, 296188, 297337, 300786, 319730, 320304, 320878, 322027, 322601, 323750, 327774, 328348, 329497, 332946, 347883, 348457, 349606, 353055, 364551];
M(ci) = c(14);
ci = [28048, 28622, 29196, 30920, 31494, 32068, 33217, 33791, 34365, 35514, 36088, 37237, 47011, 47585, 48159, 49883, 50457, 51031, 52180, 52754, 53328, 54477, 55051, 56200, 62524, 63098, 63672, 65396, 65970, 66544, 67693, 68267, 68841, 69990, 70564, 71713, 77462, 78036, 78610, 79759, 80333, 80907, 82056, 82630, 83779, 88378, 88952, 89526, 90675, 91249, 92398, 96422, 96996, 98145, 101594, 132538, 133112, 133686, 135410, 135984, 136558, 137707, 138281, 138855, 140004, 140578, 141727, 148051, 148625, 149199, 150923, 151497, 152071, 153220, 153794, 154368, 155517, 156091, 157240, 162989, 163563, 164137, 165286, 165860, 166434, 167583, 168157, 169306, 173905, 174479, 175053, 176202, 176776, 177925, 181949, 182523, 183672, 187121, 214639, 215213, 215787, 217511, 218085, 218659, 219808, 220382, 220956, 222105, 222679, 223828, 229577, 230151, 230725, 231874, 232448, 233022, 234171, 234745, 235894, 240493, 241067, 241641, 242790, 243364, 244513, 248537, 249111, 250260, 253709, 277229, 277803, 278377, 279526, 280100, 280674, 281823, 282397, 283546, 288145, 288719, 289293, 290442, 291016, 292165, 296189, 296763, 297912, 301361, 320305, 320879, 321453, 322602, 323176, 324325, 328349, 328923, 330072, 333521, 348458, 349032, 350181, 353630, 365126];
M(ci) = c(15);
ci = [30923, 31497, 32071, 33220, 33794, 34368, 34942, 35516, 36090, 36664, 37238, 37812, 49886, 50460, 51034, 52183, 52757, 53331, 53905, 54479, 55053, 55627, 56201, 56775, 65399, 65973, 66547, 67696, 68270, 68844, 69418, 69992, 70566, 71140, 71714, 72288, 79762, 80336, 80910, 81484, 82058, 82632, 83206, 83780, 84354, 90103, 90677, 91251, 91825, 92399, 92973, 97572, 98146, 98720, 102169, 135413, 135987, 136561, 137710, 138284, 138858, 139432, 140006, 140580, 141154, 141728, 142302, 150926, 151500, 152074, 153223, 153797, 154371, 154945, 155519, 156093, 156667, 157241, 157815, 165289, 165863, 166437, 167011, 167585, 168159, 168733, 169307, 169881, 175630, 176204, 176778, 177352, 177926, 178500, 183099, 183673, 184247, 187696, 217514, 218088, 218662, 219811, 220385, 220959, 221533, 222107, 222681, 223255, 223829, 224403, 231877, 232451, 233025, 233599, 234173, 234747, 235321, 235895, 236469, 242218, 242792, 243366, 243940, 244514, 245088, 249687, 250261, 250835, 254284, 279529, 280103, 280677, 281251, 281825, 282399, 282973, 283547, 284121, 289870, 290444, 291018, 291592, 292166, 292740, 297339, 297913, 298487, 301936, 322030, 322604, 323178, 323752, 324326, 324900, 329499, 330073, 330647, 334096, 349608, 350182, 350756, 354205, 365701];
M(ci) = c(16);
ci = [46448, 47022, 47596, 49320, 49894, 50468, 51617, 52191, 52765, 53914, 54488, 55637, 61961, 62535, 63109, 64833, 65407, 65981, 67130, 67704, 68278, 69427, 70001, 71150, 74024, 74598, 75172, 76896, 77470, 78044, 79193, 79767, 80341, 81490, 82064, 83213, 85512, 86086, 86660, 87809, 88383, 88957, 90106, 90680, 91829, 93553, 94127, 94701, 95850, 96424, 97573, 99297, 99871, 101020, 102744, 147488, 148062, 148636, 150360, 150934, 151508, 152657, 153231, 153805, 154954, 155528, 156677, 159551, 160125, 160699, 162423, 162997, 163571, 164720, 165294, 165868, 167017, 167591, 168740, 171039, 171613, 172187, 173336, 173910, 174484, 175633, 176207, 177356, 179080, 179654, 180228, 181377, 181951, 183100, 184824, 185398, 186547, 188271, 226139, 226713, 227287, 229011, 229585, 230159, 231308, 231882, 232456, 233605, 234179, 235328, 237627, 238201, 238775, 239924, 240498, 241072, 242221, 242795, 243944, 245668, 246242, 246816, 247965, 248539, 249688, 251412, 251986, 253135, 254859, 285279, 285853, 286427, 287576, 288150, 288724, 289873, 290447, 291596, 293320, 293894, 294468, 295617, 296191, 297340, 299064, 299638, 300787, 302511, 325480, 326054, 326628, 327777, 328351, 329500, 331224, 331798, 332947, 334671, 351333, 351907, 353056, 354780, 366276];
M(ci) = c(17);
ci = [47023, 47597, 48171, 49895, 50469, 51043, 52192, 52766, 53340, 54489, 55063, 56212, 62536, 63110, 63684, 65408, 65982, 66556, 67705, 68279, 68853, 70002, 70576, 71725, 74599, 75173, 75747, 77471, 78045, 78619, 79768, 80342, 80916, 82065, 82639, 83788, 86087, 86661, 87235, 88384, 88958, 89532, 90681, 91255, 92404, 94128, 94702, 95276, 96425, 96999, 98148, 99872, 100446, 101595, 103319, 148063, 148637, 149211, 150935, 151509, 152083, 153232, 153806, 154380, 155529, 156103, 157252, 160126, 160700, 161274, 162998, 163572, 164146, 165295, 165869, 166443, 167592, 168166, 169315, 171614, 172188, 172762, 173911, 174485, 175059, 176208, 176782, 177931, 179655, 180229, 180803, 181952, 182526, 183675, 185399, 185973, 187122, 188846, 226714, 227288, 227862, 229586, 230160, 230734, 231883, 232457, 233031, 234180, 234754, 235903, 238202, 238776, 239350, 240499, 241073, 241647, 242796, 243370, 244519, 246243, 246817, 247391, 248540, 249114, 250263, 251987, 252561, 253710, 255434, 285854, 286428, 287002, 288151, 288725, 289299, 290448, 291022, 292171, 293895, 294469, 295043, 296192, 296766, 297915, 299639, 300213, 301362, 303086, 326055, 326629, 327203, 328352, 328926, 330075, 331799, 332373, 333522, 335246, 351908, 352482, 353631, 355355, 366851];
M(ci) = c(18);
ci = [49898, 50472, 51046, 52195, 52769, 53343, 53917, 54491, 55065, 55639, 56213, 56787, 65411, 65985, 66559, 67708, 68282, 68856, 69430, 70004, 70578, 71152, 71726, 72300, 77474, 78048, 78622, 79771, 80345, 80919, 81493, 82067, 82641, 83215, 83789, 84363, 88387, 88961, 89535, 90109, 90683, 91257, 91831, 92405, 92979, 95853, 96427, 97001, 97575, 98149, 98723, 101022, 101596, 102170, 103894, 150938, 151512, 152086, 153235, 153809, 154383, 154957, 155531, 156105, 156679, 157253, 157827, 163001, 163575, 164149, 165298, 165872, 166446, 167020, 167594, 168168, 168742, 169316, 169890, 173914, 174488, 175062, 175636, 176210, 176784, 177358, 177932, 178506, 181380, 181954, 182528, 183102, 183676, 184250, 186549, 187123, 187697, 189421, 229589, 230163, 230737, 231886, 232460, 233034, 233608, 234182, 234756, 235330, 235904, 236478, 240502, 241076, 241650, 242224, 242798, 243372, 243946, 244520, 245094, 247968, 248542, 249116, 249690, 250264, 250838, 253137, 253711, 254285, 256009, 288154, 288728, 289302, 289876, 290450, 291024, 291598, 292172, 292746, 295620, 296194, 296768, 297342, 297916, 298490, 300789, 301363, 301937, 303661, 327780, 328354, 328928, 329502, 330076, 330650, 332949, 333523, 334097, 335821, 353058, 353632, 354206, 355930, 367426];
M(ci) = c(19);
ci = [65423, 65997, 66571, 67720, 68294, 68868, 69442, 70016, 70590, 71164, 71738, 72312, 77486, 78060, 78634, 79783, 80357, 80931, 81505, 82079, 82653, 83227, 83801, 84375, 86099, 86673, 87247, 88396, 88970, 89544, 90118, 90692, 91266, 91840, 92414, 92988, 94137, 94711, 95285, 95859, 96433, 97007, 97581, 98155, 98729, 99303, 99877, 100451, 101025, 101599, 102173, 102747, 103321, 103895, 104469, 163013, 163587, 164161, 165310, 165884, 166458, 167032, 167606, 168180, 168754, 169328, 169902, 171626, 172200, 172774, 173923, 174497, 175071, 175645, 176219, 176793, 177367, 177941, 178515, 179664, 180238, 180812, 181386, 181960, 182534, 183108, 183682, 184256, 184830, 185404, 185978, 186552, 187126, 187700, 188274, 188848, 189422, 189996, 238214, 238788, 239362, 240511, 241085, 241659, 242233, 242807, 243381, 243955, 244529, 245103, 246252, 246826, 247400, 247974, 248548, 249122, 249696, 250270, 250844, 251418, 251992, 252566, 253140, 253714, 254288, 254862, 255436, 256010, 256584, 293904, 294478, 295052, 295626, 296200, 296774, 297348, 297922, 298496, 299070, 299644, 300218, 300792, 301366, 301940, 302514, 303088, 303662, 304236, 331230, 331804, 332378, 332952, 333526, 334100, 334674, 335248, 335822, 336396, 354783, 355357, 355931, 356505, 368001];
M(ci) = c(20);
ci = [198823, 199397, 199971, 201695, 202269, 202843, 203992, 204566, 205140, 206289, 206863, 208012, 214336, 214910, 215484, 217208, 217782, 218356, 219505, 220079, 220653, 221802, 222376, 223525, 226399, 226973, 227547, 229271, 229845, 230419, 231568, 232142, 232716, 233865, 234439, 235588, 237887, 238461, 239035, 240184, 240758, 241332, 242481, 243055, 244204, 245928, 246502, 247076, 248225, 248799, 249948, 251672, 252246, 253395, 255119, 261913, 262487, 263061, 264785, 265359, 265933, 267082, 267656, 268230, 269379, 269953, 271102, 273976, 274550, 275124, 276848, 277422, 277996, 279145, 279719, 280293, 281442, 282016, 283165, 285464, 286038, 286612, 287761, 288335, 288909, 290058, 290632, 291781, 293505, 294079, 294653, 295802, 296376, 297525, 299249, 299823, 300972, 302696, 306064, 306638, 307212, 308936, 309510, 310084, 311233, 311807, 312381, 313530, 314104, 315253, 317552, 318126, 318700, 319849, 320423, 320997, 322146, 322720, 323869, 325593, 326167, 326741, 327890, 328464, 329613, 331337, 331911, 333060, 334784, 337604, 338178, 338752, 339901, 340475, 341049, 342198, 342772, 343921, 345645, 346219, 346793, 347942, 348516, 349665, 351389, 351963, 353112, 354836, 357105, 357679, 358253, 359402, 359976, 361125, 362849, 363423, 364572, 366296, 368583, 369157, 370306, 372030, 374326];
M(ci) = c(21);
ci = [199398, 199972, 200546, 202270, 202844, 203418, 204567, 205141, 205715, 206864, 207438, 208587, 214911, 215485, 216059, 217783, 218357, 218931, 220080, 220654, 221228, 222377, 222951, 224100, 226974, 227548, 228122, 229846, 230420, 230994, 232143, 232717, 233291, 234440, 235014, 236163, 238462, 239036, 239610, 240759, 241333, 241907, 243056, 243630, 244779, 246503, 247077, 247651, 248800, 249374, 250523, 252247, 252821, 253970, 255694, 262488, 263062, 263636, 265360, 265934, 266508, 267657, 268231, 268805, 269954, 270528, 271677, 274551, 275125, 275699, 277423, 277997, 278571, 279720, 280294, 280868, 282017, 282591, 283740, 286039, 286613, 287187, 288336, 288910, 289484, 290633, 291207, 292356, 294080, 294654, 295228, 296377, 296951, 298100, 299824, 300398, 301547, 303271, 306639, 307213, 307787, 309511, 310085, 310659, 311808, 312382, 312956, 314105, 314679, 315828, 318127, 318701, 319275, 320424, 320998, 321572, 322721, 323295, 324444, 326168, 326742, 327316, 328465, 329039, 330188, 331912, 332486, 333635, 335359, 338179, 338753, 339327, 340476, 341050, 341624, 342773, 343347, 344496, 346220, 346794, 347368, 348517, 349091, 350240, 351964, 352538, 353687, 355411, 357680, 358254, 358828, 359977, 360551, 361700, 363424, 363998, 365147, 366871, 369158, 369732, 370881, 372605, 374901];
M(ci) = c(22);
ci = [202273, 202847, 203421, 204570, 205144, 205718, 206292, 206866, 207440, 208014, 208588, 209162, 217786, 218360, 218934, 220083, 220657, 221231, 221805, 222379, 222953, 223527, 224101, 224675, 229849, 230423, 230997, 232146, 232720, 233294, 233868, 234442, 235016, 235590, 236164, 236738, 240762, 241336, 241910, 242484, 243058, 243632, 244206, 244780, 245354, 248228, 248802, 249376, 249950, 250524, 251098, 253397, 253971, 254545, 256269, 265363, 265937, 266511, 267660, 268234, 268808, 269382, 269956, 270530, 271104, 271678, 272252, 277426, 278000, 278574, 279723, 280297, 280871, 281445, 282019, 282593, 283167, 283741, 284315, 288339, 288913, 289487, 290061, 290635, 291209, 291783, 292357, 292931, 295805, 296379, 296953, 297527, 298101, 298675, 300974, 301548, 302122, 303846, 309514, 310088, 310662, 311811, 312385, 312959, 313533, 314107, 314681, 315255, 315829, 316403, 320427, 321001, 321575, 322149, 322723, 323297, 323871, 324445, 325019, 327893, 328467, 329041, 329615, 330189, 330763, 333062, 333636, 334210, 335934, 340479, 341053, 341627, 342201, 342775, 343349, 343923, 344497, 345071, 347945, 348519, 349093, 349667, 350241, 350815, 353114, 353688, 354262, 355986, 359405, 359979, 360553, 361127, 361701, 362275, 364574, 365148, 365722, 367446, 370308, 370882, 371456, 373180, 375476];
M(ci) = c(23);
ci = [217798, 218372, 218946, 220095, 220669, 221243, 221817, 222391, 222965, 223539, 224113, 224687, 229861, 230435, 231009, 232158, 232732, 233306, 233880, 234454, 235028, 235602, 236176, 236750, 238474, 239048, 239622, 240771, 241345, 241919, 242493, 243067, 243641, 244215, 244789, 245363, 246512, 247086, 247660, 248234, 248808, 249382, 249956, 250530, 251104, 251678, 252252, 252826, 253400, 253974, 254548, 255122, 255696, 256270, 256844, 277438, 278012, 278586, 279735, 280309, 280883, 281457, 282031, 282605, 283179, 283753, 284327, 286051, 286625, 287199, 288348, 288922, 289496, 290070, 290644, 291218, 291792, 292366, 292940, 294089, 294663, 295237, 295811, 296385, 296959, 297533, 298107, 298681, 299255, 299829, 300403, 300977, 301551, 302125, 302699, 303273, 303847, 304421, 318139, 318713, 319287, 320436, 321010, 321584, 322158, 322732, 323306, 323880, 324454, 325028, 326177, 326751, 327325, 327899, 328473, 329047, 329621, 330195, 330769, 331343, 331917, 332491, 333065, 333639, 334213, 334787, 335361, 335935, 336509, 346229, 346803, 347377, 347951, 348525, 349099, 349673, 350247, 350821, 351395, 351969, 352543, 353117, 353691, 354265, 354839, 355413, 355987, 356561, 362855, 363429, 364003, 364577, 365151, 365725, 366299, 366873, 367447, 368021, 372033, 372607, 373181, 373755, 376051];
M(ci) = c(24);
ci = [265523, 266097, 266671, 267820, 268394, 268968, 269542, 270116, 270690, 271264, 271838, 272412, 277586, 278160, 278734, 279883, 280457, 281031, 281605, 282179, 282753, 283327, 283901, 284475, 286199, 286773, 287347, 288496, 289070, 289644, 290218, 290792, 291366, 291940, 292514, 293088, 294237, 294811, 295385, 295959, 296533, 297107, 297681, 298255, 298829, 299403, 299977, 300551, 301125, 301699, 302273, 302847, 303421, 303995, 304569, 309638, 310212, 310786, 311935, 312509, 313083, 313657, 314231, 314805, 315379, 315953, 316527, 318251, 318825, 319399, 320548, 321122, 321696, 322270, 322844, 323418, 323992, 324566, 325140, 326289, 326863, 327437, 328011, 328585, 329159, 329733, 330307, 330881, 331455, 332029, 332603, 333177, 333751, 334325, 334899, 335473, 336047, 336621, 338264, 338838, 339412, 340561, 341135, 341709, 342283, 342857, 343431, 344005, 344579, 345153, 346302, 346876, 347450, 348024, 348598, 349172, 349746, 350320, 350894, 351468, 352042, 352616, 353190, 353764, 354338, 354912, 355486, 356060, 356634, 357729, 358303, 358877, 359451, 360025, 360599, 361173, 361747, 362321, 362895, 363469, 364043, 364617, 365191, 365765, 366339, 366913, 367487, 368061, 368605, 369179, 369753, 370327, 370901, 371475, 372049, 372623, 373197, 373771, 374333, 374907, 375481, 376055, 376626];
M(ci) = c(25);
ci = [503, 1077, 1651, 3950, 4524, 5098, 7397, 7971, 8545, 10844, 11418, 13717, 19466, 20040, 20614, 22913, 23487, 24061, 26360, 26934, 27508, 29807, 30381, 32680, 38429, 39003, 39577, 41876, 42450, 43024, 45323, 45897, 46471, 48770, 49344, 51643, 57392, 57966, 58540, 60839, 61413, 61987, 64286, 64860, 67159, 72908, 73482, 74056, 76355, 76929, 79228, 84977, 85551, 87850, 93599, 104981, 105555, 106129, 108428, 109002, 109576, 111875, 112449, 113023, 115322, 115896, 118195, 123944, 124518, 125092, 127391, 127965, 128539, 130838, 131412, 131986, 134285, 134859, 137158, 142907, 143481, 144055, 146354, 146928, 147502, 149801, 150375, 152674, 158423, 158997, 159571, 161870, 162444, 164743, 170492, 171066, 173365, 179114, 190520, 191094, 191668, 193967, 194541, 195115, 197414, 197988, 198562, 200861, 201435, 203734, 209483, 210057, 210631, 212930, 213504, 214078, 216377, 216951, 219250, 224999, 225573, 226147, 228446, 229020, 231319, 237068, 237642, 239941, 245690, 257123, 257697, 258271, 260570, 261144, 261718, 264017, 264591, 266890, 272639, 273213, 273787, 276086, 276660, 278959, 284708, 285282, 287581, 293330, 304790, 305364, 305938, 308237, 308811, 311110, 316859, 317433, 319732, 325481, 336962, 337536, 339835, 345584, 357077];
M(ci) = c(26);
ci = [1078, 1652, 2226, 4525, 5099, 5673, 7972, 8546, 9120, 11419, 11993, 14292, 20041, 20615, 21189, 23488, 24062, 24636, 26935, 27509, 28083, 30382, 30956, 33255, 39004, 39578, 40152, 42451, 43025, 43599, 45898, 46472, 47046, 49345, 49919, 52218, 57967, 58541, 59115, 61414, 61988, 62562, 64861, 65435, 67734, 73483, 74057, 74631, 76930, 77504, 79803, 85552, 86126, 88425, 94174, 105556, 106130, 106704, 109003, 109577, 110151, 112450, 113024, 113598, 115897, 116471, 118770, 124519, 125093, 125667, 127966, 128540, 129114, 131413, 131987, 132561, 134860, 135434, 137733, 143482, 144056, 144630, 146929, 147503, 148077, 150376, 150950, 153249, 158998, 159572, 160146, 162445, 163019, 165318, 171067, 171641, 173940, 179689, 191095, 191669, 192243, 194542, 195116, 195690, 197989, 198563, 199137, 201436, 202010, 204309, 210058, 210632, 211206, 213505, 214079, 214653, 216952, 217526, 219825, 225574, 226148, 226722, 229021, 229595, 231894, 237643, 238217, 240516, 246265, 257698, 258272, 258846, 261145, 261719, 262293, 264592, 265166, 267465, 273214, 273788, 274362, 276661, 277235, 279534, 285283, 285857, 288156, 293905, 305365, 305939, 306513, 308812, 309386, 311685, 317434, 318008, 320307, 326056, 337537, 338111, 340410, 346159, 357652];
M(ci) = c(27);
ci = [1653, 2227, 2801, 5100, 5674, 6248, 8547, 9121, 9695, 11994, 12568, 14867, 20616, 21190, 21764, 24063, 24637, 25211, 27510, 28084, 28658, 30957, 31531, 33830, 39579, 40153, 40727, 43026, 43600, 44174, 46473, 47047, 47621, 49920, 50494, 52793, 58542, 59116, 59690, 61989, 62563, 63137, 65436, 66010, 68309, 74058, 74632, 75206, 77505, 78079, 80378, 86127, 86701, 89000, 94749, 106131, 106705, 107279, 109578, 110152, 110726, 113025, 113599, 114173, 116472, 117046, 119345, 125094, 125668, 126242, 128541, 129115, 129689, 131988, 132562, 133136, 135435, 136009, 138308, 144057, 144631, 145205, 147504, 148078, 148652, 150951, 151525, 153824, 159573, 160147, 160721, 163020, 163594, 165893, 171642, 172216, 174515, 180264, 191670, 192244, 192818, 195117, 195691, 196265, 198564, 199138, 199712, 202011, 202585, 204884, 210633, 211207, 211781, 214080, 214654, 215228, 217527, 218101, 220400, 226149, 226723, 227297, 229596, 230170, 232469, 238218, 238792, 241091, 246840, 258273, 258847, 259421, 261720, 262294, 262868, 265167, 265741, 268040, 273789, 274363, 274937, 277236, 277810, 280109, 285858, 286432, 288731, 294480, 305940, 306514, 307088, 309387, 309961, 312260, 318009, 318583, 320882, 326631, 338112, 338686, 340985, 346734, 358227];
M(ci) = c(28);
ci = [2228, 2802, 3376, 5675, 6249, 6823, 9122, 9696, 10270, 12569, 13143, 15442, 21191, 21765, 22339, 24638, 25212, 25786, 28085, 28659, 29233, 31532, 32106, 34405, 40154, 40728, 41302, 43601, 44175, 44749, 47048, 47622, 48196, 50495, 51069, 53368, 59117, 59691, 60265, 62564, 63138, 63712, 66011, 66585, 68884, 74633, 75207, 75781, 78080, 78654, 80953, 86702, 87276, 89575, 95324, 106706, 107280, 107854, 110153, 110727, 111301, 113600, 114174, 114748, 117047, 117621, 119920, 125669, 126243, 126817, 129116, 129690, 130264, 132563, 133137, 133711, 136010, 136584, 138883, 144632, 145206, 145780, 148079, 148653, 149227, 151526, 152100, 154399, 160148, 160722, 161296, 163595, 164169, 166468, 172217, 172791, 175090, 180839, 192245, 192819, 193393, 195692, 196266, 196840, 199139, 199713, 200287, 202586, 203160, 205459, 211208, 211782, 212356, 214655, 215229, 215803, 218102, 218676, 220975, 226724, 227298, 227872, 230171, 230745, 233044, 238793, 239367, 241666, 247415, 258848, 259422, 259996, 262295, 262869, 263443, 265742, 266316, 268615, 274364, 274938, 275512, 277811, 278385, 280684, 286433, 287007, 289306, 295055, 306515, 307089, 307663, 309962, 310536, 312835, 318584, 319158, 321457, 327206, 338687, 339261, 341560, 347309, 358802];
M(ci) = c(29);
ci = [4528, 5102, 5676, 7975, 8549, 9123, 10847, 11421, 11995, 13719, 14293, 16017, 23491, 24065, 24639, 26938, 27512, 28086, 29810, 30384, 30958, 32682, 33256, 34980, 42454, 43028, 43602, 45901, 46475, 47049, 48773, 49347, 49921, 51645, 52219, 53943, 61417, 61991, 62565, 64289, 64863, 65437, 67161, 67735, 69459, 76358, 76932, 77506, 79230, 79804, 81528, 87852, 88426, 90150, 95899, 109006, 109580, 110154, 112453, 113027, 113601, 115325, 115899, 116473, 118197, 118771, 120495, 127969, 128543, 129117, 131416, 131990, 132564, 134288, 134862, 135436, 137160, 137734, 139458, 146932, 147506, 148080, 149804, 150378, 150952, 152676, 153250, 154974, 161873, 162447, 163021, 164745, 165319, 167043, 173367, 173941, 175665, 181414, 194545, 195119, 195693, 197992, 198566, 199140, 200864, 201438, 202012, 203736, 204310, 206034, 213508, 214082, 214656, 216380, 216954, 217528, 219252, 219826, 221550, 228449, 229023, 229597, 231321, 231895, 233619, 239943, 240517, 242241, 247990, 261148, 261722, 262296, 264020, 264594, 265168, 266892, 267466, 269190, 276089, 276663, 277237, 278961, 279535, 281259, 287583, 288157, 289881, 295630, 308240, 308814, 309388, 311112, 311686, 313410, 319734, 320308, 322032, 327781, 339837, 340411, 342135, 347884, 359377];
M(ci) = c(30);
ci = [5103, 5677, 6251, 8550, 9124, 9698, 11422, 11996, 12570, 14294, 14868, 16592, 24066, 24640, 25214, 27513, 28087, 28661, 30385, 30959, 31533, 33257, 33831, 35555, 43029, 43603, 44177, 46476, 47050, 47624, 49348, 49922, 50496, 52220, 52794, 54518, 61992, 62566, 63140, 64864, 65438, 66012, 67736, 68310, 70034, 76933, 77507, 78081, 79805, 80379, 82103, 88427, 89001, 90725, 96474, 109581, 110155, 110729, 113028, 113602, 114176, 115900, 116474, 117048, 118772, 119346, 121070, 128544, 129118, 129692, 131991, 132565, 133139, 134863, 135437, 136011, 137735, 138309, 140033, 147507, 148081, 148655, 150379, 150953, 151527, 153251, 153825, 155549, 162448, 163022, 163596, 165320, 165894, 167618, 173942, 174516, 176240, 181989, 195120, 195694, 196268, 198567, 199141, 199715, 201439, 202013, 202587, 204311, 204885, 206609, 214083, 214657, 215231, 216955, 217529, 218103, 219827, 220401, 222125, 229024, 229598, 230172, 231896, 232470, 234194, 240518, 241092, 242816, 248565, 261723, 262297, 262871, 264595, 265169, 265743, 267467, 268041, 269765, 276664, 277238, 277812, 279536, 280110, 281834, 288158, 288732, 290456, 296205, 308815, 309389, 309963, 311687, 312261, 313985, 320309, 320883, 322607, 328356, 340412, 340986, 342710, 348459, 359952];
M(ci) = c(31);
ci = [5678, 6252, 6826, 9125, 9699, 10273, 11997, 12571, 13145, 14869, 15443, 17167, 24641, 25215, 25789, 28088, 28662, 29236, 30960, 31534, 32108, 33832, 34406, 36130, 43604, 44178, 44752, 47051, 47625, 48199, 49923, 50497, 51071, 52795, 53369, 55093, 62567, 63141, 63715, 65439, 66013, 66587, 68311, 68885, 70609, 77508, 78082, 78656, 80380, 80954, 82678, 89002, 89576, 91300, 97049, 110156, 110730, 111304, 113603, 114177, 114751, 116475, 117049, 117623, 119347, 119921, 121645, 129119, 129693, 130267, 132566, 133140, 133714, 135438, 136012, 136586, 138310, 138884, 140608, 148082, 148656, 149230, 150954, 151528, 152102, 153826, 154400, 156124, 163023, 163597, 164171, 165895, 166469, 168193, 174517, 175091, 176815, 182564, 195695, 196269, 196843, 199142, 199716, 200290, 202014, 202588, 203162, 204886, 205460, 207184, 214658, 215232, 215806, 217530, 218104, 218678, 220402, 220976, 222700, 229599, 230173, 230747, 232471, 233045, 234769, 241093, 241667, 243391, 249140, 262298, 262872, 263446, 265170, 265744, 266318, 268042, 268616, 270340, 277239, 277813, 278387, 280111, 280685, 282409, 288733, 289307, 291031, 296780, 309390, 309964, 310538, 312262, 312836, 314560, 320884, 321458, 323182, 328931, 340987, 341561, 343285, 349034, 360527];
M(ci) = c(32);
ci = [8553, 9127, 9701, 11425, 11999, 12573, 13722, 14296, 14870, 16019, 16593, 17742, 27516, 28090, 28664, 30388, 30962, 31536, 32685, 33259, 33833, 34982, 35556, 36705, 46479, 47053, 47627, 49351, 49925, 50499, 51648, 52222, 52796, 53945, 54519, 55668, 64867, 65441, 66015, 67164, 67738, 68312, 69461, 70035, 71184, 79233, 79807, 80381, 81530, 82104, 83253, 90152, 90726, 91875, 97624, 113031, 113605, 114179, 115903, 116477, 117051, 118200, 118774, 119348, 120497, 121071, 122220, 131994, 132568, 133142, 134866, 135440, 136014, 137163, 137737, 138311, 139460, 140034, 141183, 150382, 150956, 151530, 152679, 153253, 153827, 154976, 155550, 156699, 164748, 165322, 165896, 167045, 167619, 168768, 175667, 176241, 177390, 183139, 198570, 199144, 199718, 201442, 202016, 202590, 203739, 204313, 204887, 206036, 206610, 207759, 216958, 217532, 218106, 219255, 219829, 220403, 221552, 222126, 223275, 231324, 231898, 232472, 233621, 234195, 235344, 242243, 242817, 243966, 249715, 264598, 265172, 265746, 266895, 267469, 268043, 269192, 269766, 270915, 278964, 279538, 280112, 281261, 281835, 282984, 289883, 290457, 291606, 297355, 311115, 311689, 312263, 313412, 313986, 315135, 322034, 322608, 323757, 329506, 342137, 342711, 343860, 349609, 361102];
M(ci) = c(33);
ci = [9128, 9702, 10276, 12000, 12574, 13148, 14297, 14871, 15445, 16594, 17168, 18317, 28091, 28665, 29239, 30963, 31537, 32111, 33260, 33834, 34408, 35557, 36131, 37280, 47054, 47628, 48202, 49926, 50500, 51074, 52223, 52797, 53371, 54520, 55094, 56243, 65442, 66016, 66590, 67739, 68313, 68887, 70036, 70610, 71759, 79808, 80382, 80956, 82105, 82679, 83828, 90727, 91301, 92450, 98199, 113606, 114180, 114754, 116478, 117052, 117626, 118775, 119349, 119923, 121072, 121646, 122795, 132569, 133143, 133717, 135441, 136015, 136589, 137738, 138312, 138886, 140035, 140609, 141758, 150957, 151531, 152105, 153254, 153828, 154402, 155551, 156125, 157274, 165323, 165897, 166471, 167620, 168194, 169343, 176242, 176816, 177965, 183714, 199145, 199719, 200293, 202017, 202591, 203165, 204314, 204888, 205462, 206611, 207185, 208334, 217533, 218107, 218681, 219830, 220404, 220978, 222127, 222701, 223850, 231899, 232473, 233047, 234196, 234770, 235919, 242818, 243392, 244541, 250290, 265173, 265747, 266321, 267470, 268044, 268618, 269767, 270341, 271490, 279539, 280113, 280687, 281836, 282410, 283559, 290458, 291032, 292181, 297930, 311690, 312264, 312838, 313987, 314561, 315710, 322609, 323183, 324332, 330081, 342712, 343286, 344435, 350184, 361677];
M(ci) = c(34);
ci = [12003, 12577, 13151, 14300, 14874, 15448, 16022, 16596, 17170, 17744, 18318, 18892, 30966, 31540, 32114, 33263, 33837, 34411, 34985, 35559, 36133, 36707, 37281, 37855, 49929, 50503, 51077, 52226, 52800, 53374, 53948, 54522, 55096, 55670, 56244, 56818, 67742, 68316, 68890, 69464, 70038, 70612, 71186, 71760, 72334, 81533, 82107, 82681, 83255, 83829, 84403, 91877, 92451, 93025, 98774, 116481, 117055, 117629, 118778, 119352, 119926, 120500, 121074, 121648, 122222, 122796, 123370, 135444, 136018, 136592, 137741, 138315, 138889, 139463, 140037, 140611, 141185, 141759, 142333, 153257, 153831, 154405, 154979, 155553, 156127, 156701, 157275, 157849, 167048, 167622, 168196, 168770, 169344, 169918, 177392, 177966, 178540, 184289, 202020, 202594, 203168, 204317, 204891, 205465, 206039, 206613, 207187, 207761, 208335, 208909, 219833, 220407, 220981, 221555, 222129, 222703, 223277, 223851, 224425, 233624, 234198, 234772, 235346, 235920, 236494, 243968, 244542, 245116, 250865, 267473, 268047, 268621, 269195, 269769, 270343, 270917, 271491, 272065, 281264, 281838, 282412, 282986, 283560, 284134, 291608, 292182, 292756, 298505, 313415, 313989, 314563, 315137, 315711, 316285, 323759, 324333, 324907, 330656, 343862, 344436, 345010, 350759, 362252];
M(ci) = c(35);
ci = [23503, 24077, 24651, 26950, 27524, 28098, 29822, 30396, 30970, 32694, 33268, 34992, 42466, 43040, 43614, 45913, 46487, 47061, 48785, 49359, 49933, 51657, 52231, 53955, 57979, 58553, 59127, 61426, 62000, 62574, 64298, 64872, 65446, 67170, 67744, 69468, 73492, 74066, 74640, 76364, 76938, 77512, 79236, 79810, 81534, 84983, 85557, 86131, 87855, 88429, 90153, 93602, 94176, 95900, 99349, 127981, 128555, 129129, 131428, 132002, 132576, 134300, 134874, 135448, 137172, 137746, 139470, 143494, 144068, 144642, 146941, 147515, 148089, 149813, 150387, 150961, 152685, 153259, 154983, 159007, 159581, 160155, 161879, 162453, 163027, 164751, 165325, 167049, 170498, 171072, 171646, 173370, 173944, 175668, 179117, 179691, 181415, 184864, 210070, 210644, 211218, 213517, 214091, 214665, 216389, 216963, 217537, 219261, 219835, 221559, 225583, 226157, 226731, 228455, 229029, 229603, 231327, 231901, 233625, 237074, 237648, 238222, 239946, 240520, 242244, 245693, 246267, 247991, 251440, 273223, 273797, 274371, 276095, 276669, 277243, 278967, 279541, 281265, 284714, 285288, 285862, 287586, 288160, 289884, 293333, 293907, 295631, 299080, 316865, 317439, 318013, 319737, 320311, 322035, 325484, 326058, 327782, 331231, 345587, 346161, 347885, 351334, 362827];
M(ci) = c(36);
ci = [24078, 24652, 25226, 27525, 28099, 28673, 30397, 30971, 31545, 33269, 33843, 35567, 43041, 43615, 44189, 46488, 47062, 47636, 49360, 49934, 50508, 52232, 52806, 54530, 58554, 59128, 59702, 62001, 62575, 63149, 64873, 65447, 66021, 67745, 68319, 70043, 74067, 74641, 75215, 76939, 77513, 78087, 79811, 80385, 82109, 85558, 86132, 86706, 88430, 89004, 90728, 94177, 94751, 96475, 99924, 128556, 129130, 129704, 132003, 132577, 133151, 134875, 135449, 136023, 137747, 138321, 140045, 144069, 144643, 145217, 147516, 148090, 148664, 150388, 150962, 151536, 153260, 153834, 155558, 159582, 160156, 160730, 162454, 163028, 163602, 165326, 165900, 167624, 171073, 171647, 172221, 173945, 174519, 176243, 179692, 180266, 181990, 185439, 210645, 211219, 211793, 214092, 214666, 215240, 216964, 217538, 218112, 219836, 220410, 222134, 226158, 226732, 227306, 229030, 229604, 230178, 231902, 232476, 234200, 237649, 238223, 238797, 240521, 241095, 242819, 246268, 246842, 248566, 252015, 273798, 274372, 274946, 276670, 277244, 277818, 279542, 280116, 281840, 285289, 285863, 286437, 288161, 288735, 290459, 293908, 294482, 296206, 299655, 317440, 318014, 318588, 320312, 320886, 322610, 326059, 326633, 328357, 331806, 346162, 346736, 348460, 351909, 363402];
M(ci) = c(37);
ci = [24653, 25227, 25801, 28100, 28674, 29248, 30972, 31546, 32120, 33844, 34418, 36142, 43616, 44190, 44764, 47063, 47637, 48211, 49935, 50509, 51083, 52807, 53381, 55105, 59129, 59703, 60277, 62576, 63150, 63724, 65448, 66022, 66596, 68320, 68894, 70618, 74642, 75216, 75790, 77514, 78088, 78662, 80386, 80960, 82684, 86133, 86707, 87281, 89005, 89579, 91303, 94752, 95326, 97050, 100499, 129131, 129705, 130279, 132578, 133152, 133726, 135450, 136024, 136598, 138322, 138896, 140620, 144644, 145218, 145792, 148091, 148665, 149239, 150963, 151537, 152111, 153835, 154409, 156133, 160157, 160731, 161305, 163029, 163603, 164177, 165901, 166475, 168199, 171648, 172222, 172796, 174520, 175094, 176818, 180267, 180841, 182565, 186014, 211220, 211794, 212368, 214667, 215241, 215815, 217539, 218113, 218687, 220411, 220985, 222709, 226733, 227307, 227881, 229605, 230179, 230753, 232477, 233051, 234775, 238224, 238798, 239372, 241096, 241670, 243394, 246843, 247417, 249141, 252590, 274373, 274947, 275521, 277245, 277819, 278393, 280117, 280691, 282415, 285864, 286438, 287012, 288736, 289310, 291034, 294483, 295057, 296781, 300230, 318015, 318589, 319163, 320887, 321461, 323185, 326634, 327208, 328932, 332381, 346737, 347311, 349035, 352484, 363977];
M(ci) = c(38);
ci = [27528, 28102, 28676, 30400, 30974, 31548, 32697, 33271, 33845, 34994, 35568, 36717, 46491, 47065, 47639, 49363, 49937, 50511, 51660, 52234, 52808, 53957, 54531, 55680, 62004, 62578, 63152, 64876, 65450, 66024, 67173, 67747, 68321, 69470, 70044, 71193, 76942, 77516, 78090, 79239, 79813, 80387, 81536, 82110, 83259, 87858, 88432, 89006, 90155, 90729, 91878, 95902, 96476, 97625, 101074, 132006, 132580, 133154, 134878, 135452, 136026, 137175, 137749, 138323, 139472, 140046, 141195, 147519, 148093, 148667, 150391, 150965, 151539, 152688, 153262, 153836, 154985, 155559, 156708, 162457, 163031, 163605, 164754, 165328, 165902, 167051, 167625, 168774, 173373, 173947, 174521, 175670, 176244, 177393, 181417, 181991, 183140, 186589, 214095, 214669, 215243, 216967, 217541, 218115, 219264, 219838, 220412, 221561, 222135, 223284, 229033, 229607, 230181, 231330, 231904, 232478, 233627, 234201, 235350, 239949, 240523, 241097, 242246, 242820, 243969, 247993, 248567, 249716, 253165, 276673, 277247, 277821, 278970, 279544, 280118, 281267, 281841, 282990, 287589, 288163, 288737, 289886, 290460, 291609, 295633, 296207, 297356, 300805, 319740, 320314, 320888, 322037, 322611, 323760, 327784, 328358, 329507, 332956, 347887, 348461, 349610, 353059, 364552];
M(ci) = c(39);
ci = [28103, 28677, 29251, 30975, 31549, 32123, 33272, 33846, 34420, 35569, 36143, 37292, 47066, 47640, 48214, 49938, 50512, 51086, 52235, 52809, 53383, 54532, 55106, 56255, 62579, 63153, 63727, 65451, 66025, 66599, 67748, 68322, 68896, 70045, 70619, 71768, 77517, 78091, 78665, 79814, 80388, 80962, 82111, 82685, 83834, 88433, 89007, 89581, 90730, 91304, 92453, 96477, 97051, 98200, 101649, 132581, 133155, 133729, 135453, 136027, 136601, 137750, 138324, 138898, 140047, 140621, 141770, 148094, 148668, 149242, 150966, 151540, 152114, 153263, 153837, 154411, 155560, 156134, 157283, 163032, 163606, 164180, 165329, 165903, 166477, 167626, 168200, 169349, 173948, 174522, 175096, 176245, 176819, 177968, 181992, 182566, 183715, 187164, 214670, 215244, 215818, 217542, 218116, 218690, 219839, 220413, 220987, 222136, 222710, 223859, 229608, 230182, 230756, 231905, 232479, 233053, 234202, 234776, 235925, 240524, 241098, 241672, 242821, 243395, 244544, 248568, 249142, 250291, 253740, 277248, 277822, 278396, 279545, 280119, 280693, 281842, 282416, 283565, 288164, 288738, 289312, 290461, 291035, 292184, 296208, 296782, 297931, 301380, 320315, 320889, 321463, 322612, 323186, 324335, 328359, 328933, 330082, 333531, 348462, 349036, 350185, 353634, 365127];
M(ci) = c(40);
ci = [30978, 31552, 32126, 33275, 33849, 34423, 34997, 35571, 36145, 36719, 37293, 37867, 49941, 50515, 51089, 52238, 52812, 53386, 53960, 54534, 55108, 55682, 56256, 56830, 65454, 66028, 66602, 67751, 68325, 68899, 69473, 70047, 70621, 71195, 71769, 72343, 79817, 80391, 80965, 81539, 82113, 82687, 83261, 83835, 84409, 90158, 90732, 91306, 91880, 92454, 93028, 97627, 98201, 98775, 102224, 135456, 136030, 136604, 137753, 138327, 138901, 139475, 140049, 140623, 141197, 141771, 142345, 150969, 151543, 152117, 153266, 153840, 154414, 154988, 155562, 156136, 156710, 157284, 157858, 165332, 165906, 166480, 167054, 167628, 168202, 168776, 169350, 169924, 175673, 176247, 176821, 177395, 177969, 178543, 183142, 183716, 184290, 187739, 217545, 218119, 218693, 219842, 220416, 220990, 221564, 222138, 222712, 223286, 223860, 224434, 231908, 232482, 233056, 233630, 234204, 234778, 235352, 235926, 236500, 242249, 242823, 243397, 243971, 244545, 245119, 249718, 250292, 250866, 254315, 279548, 280122, 280696, 281270, 281844, 282418, 282992, 283566, 284140, 289889, 290463, 291037, 291611, 292185, 292759, 297358, 297932, 298506, 301955, 322040, 322614, 323188, 323762, 324336, 324910, 329509, 330083, 330657, 334106, 349612, 350186, 350760, 354209, 365702];
M(ci) = c(41);
ci = [46503, 47077, 47651, 49375, 49949, 50523, 51672, 52246, 52820, 53969, 54543, 55692, 62016, 62590, 63164, 64888, 65462, 66036, 67185, 67759, 68333, 69482, 70056, 71205, 74079, 74653, 75227, 76951, 77525, 78099, 79248, 79822, 80396, 81545, 82119, 83268, 85567, 86141, 86715, 87864, 88438, 89012, 90161, 90735, 91884, 93608, 94182, 94756, 95905, 96479, 97628, 99352, 99926, 101075, 102799, 147531, 148105, 148679, 150403, 150977, 151551, 152700, 153274, 153848, 154997, 155571, 156720, 159594, 160168, 160742, 162466, 163040, 163614, 164763, 165337, 165911, 167060, 167634, 168783, 171082, 171656, 172230, 173379, 173953, 174527, 175676, 176250, 177399, 179123, 179697, 180271, 181420, 181994, 183143, 184867, 185441, 186590, 188314, 226170, 226744, 227318, 229042, 229616, 230190, 231339, 231913, 232487, 233636, 234210, 235359, 237658, 238232, 238806, 239955, 240529, 241103, 242252, 242826, 243975, 245699, 246273, 246847, 247996, 248570, 249719, 251443, 252017, 253166, 254890, 285298, 285872, 286446, 287595, 288169, 288743, 289892, 290466, 291615, 293339, 293913, 294487, 295636, 296210, 297359, 299083, 299657, 300806, 302530, 325490, 326064, 326638, 327787, 328361, 329510, 331234, 331808, 332957, 334681, 351337, 351911, 353060, 354784, 366277];
M(ci) = c(42);
ci = [47078, 47652, 48226, 49950, 50524, 51098, 52247, 52821, 53395, 54544, 55118, 56267, 62591, 63165, 63739, 65463, 66037, 66611, 67760, 68334, 68908, 70057, 70631, 71780, 74654, 75228, 75802, 77526, 78100, 78674, 79823, 80397, 80971, 82120, 82694, 83843, 86142, 86716, 87290, 88439, 89013, 89587, 90736, 91310, 92459, 94183, 94757, 95331, 96480, 97054, 98203, 99927, 100501, 101650, 103374, 148106, 148680, 149254, 150978, 151552, 152126, 153275, 153849, 154423, 155572, 156146, 157295, 160169, 160743, 161317, 163041, 163615, 164189, 165338, 165912, 166486, 167635, 168209, 169358, 171657, 172231, 172805, 173954, 174528, 175102, 176251, 176825, 177974, 179698, 180272, 180846, 181995, 182569, 183718, 185442, 186016, 187165, 188889, 226745, 227319, 227893, 229617, 230191, 230765, 231914, 232488, 233062, 234211, 234785, 235934, 238233, 238807, 239381, 240530, 241104, 241678, 242827, 243401, 244550, 246274, 246848, 247422, 248571, 249145, 250294, 252018, 252592, 253741, 255465, 285873, 286447, 287021, 288170, 288744, 289318, 290467, 291041, 292190, 293914, 294488, 295062, 296211, 296785, 297934, 299658, 300232, 301381, 303105, 326065, 326639, 327213, 328362, 328936, 330085, 331809, 332383, 333532, 335256, 351912, 352486, 353635, 355359, 366852];
M(ci) = c(43);
ci = [49953, 50527, 51101, 52250, 52824, 53398, 53972, 54546, 55120, 55694, 56268, 56842, 65466, 66040, 66614, 67763, 68337, 68911, 69485, 70059, 70633, 71207, 71781, 72355, 77529, 78103, 78677, 79826, 80400, 80974, 81548, 82122, 82696, 83270, 83844, 84418, 88442, 89016, 89590, 90164, 90738, 91312, 91886, 92460, 93034, 95908, 96482, 97056, 97630, 98204, 98778, 101077, 101651, 102225, 103949, 150981, 151555, 152129, 153278, 153852, 154426, 155000, 155574, 156148, 156722, 157296, 157870, 163044, 163618, 164192, 165341, 165915, 166489, 167063, 167637, 168211, 168785, 169359, 169933, 173957, 174531, 175105, 175679, 176253, 176827, 177401, 177975, 178549, 181423, 181997, 182571, 183145, 183719, 184293, 186592, 187166, 187740, 189464, 229620, 230194, 230768, 231917, 232491, 233065, 233639, 234213, 234787, 235361, 235935, 236509, 240533, 241107, 241681, 242255, 242829, 243403, 243977, 244551, 245125, 247999, 248573, 249147, 249721, 250295, 250869, 253168, 253742, 254316, 256040, 288173, 288747, 289321, 289895, 290469, 291043, 291617, 292191, 292765, 295639, 296213, 296787, 297361, 297935, 298509, 300808, 301382, 301956, 303680, 327790, 328364, 328938, 329512, 330086, 330660, 332959, 333533, 334107, 335831, 353062, 353636, 354210, 355934, 367427];
M(ci) = c(44);
ci = [65478, 66052, 66626, 67775, 68349, 68923, 69497, 70071, 70645, 71219, 71793, 72367, 77541, 78115, 78689, 79838, 80412, 80986, 81560, 82134, 82708, 83282, 83856, 84430, 86154, 86728, 87302, 88451, 89025, 89599, 90173, 90747, 91321, 91895, 92469, 93043, 94192, 94766, 95340, 95914, 96488, 97062, 97636, 98210, 98784, 99358, 99932, 100506, 101080, 101654, 102228, 102802, 103376, 103950, 104524, 163056, 163630, 164204, 165353, 165927, 166501, 167075, 167649, 168223, 168797, 169371, 169945, 171669, 172243, 172817, 173966, 174540, 175114, 175688, 176262, 176836, 177410, 177984, 178558, 179707, 180281, 180855, 181429, 182003, 182577, 183151, 183725, 184299, 184873, 185447, 186021, 186595, 187169, 187743, 188317, 188891, 189465, 190039, 238245, 238819, 239393, 240542, 241116, 241690, 242264, 242838, 243412, 243986, 244560, 245134, 246283, 246857, 247431, 248005, 248579, 249153, 249727, 250301, 250875, 251449, 252023, 252597, 253171, 253745, 254319, 254893, 255467, 256041, 256615, 293923, 294497, 295071, 295645, 296219, 296793, 297367, 297941, 298515, 299089, 299663, 300237, 300811, 301385, 301959, 302533, 303107, 303681, 304255, 331240, 331814, 332388, 332962, 333536, 334110, 334684, 335258, 335832, 336406, 354787, 355361, 355935, 356509, 368002];
M(ci) = c(45);
ci = [198878, 199452, 200026, 201750, 202324, 202898, 204047, 204621, 205195, 206344, 206918, 208067, 214391, 214965, 215539, 217263, 217837, 218411, 219560, 220134, 220708, 221857, 222431, 223580, 226454, 227028, 227602, 229326, 229900, 230474, 231623, 232197, 232771, 233920, 234494, 235643, 237942, 238516, 239090, 240239, 240813, 241387, 242536, 243110, 244259, 245983, 246557, 247131, 248280, 248854, 250003, 251727, 252301, 253450, 255174, 261956, 262530, 263104, 264828, 265402, 265976, 267125, 267699, 268273, 269422, 269996, 271145, 274019, 274593, 275167, 276891, 277465, 278039, 279188, 279762, 280336, 281485, 282059, 283208, 285507, 286081, 286655, 287804, 288378, 288952, 290101, 290675, 291824, 293548, 294122, 294696, 295845, 296419, 297568, 299292, 299866, 301015, 302739, 306095, 306669, 307243, 308967, 309541, 310115, 311264, 311838, 312412, 313561, 314135, 315284, 317583, 318157, 318731, 319880, 320454, 321028, 322177, 322751, 323900, 325624, 326198, 326772, 327921, 328495, 329644, 331368, 331942, 333091, 334815, 337623, 338197, 338771, 339920, 340494, 341068, 342217, 342791, 343940, 345664, 346238, 346812, 347961, 348535, 349684, 351408, 351982, 353131, 354855, 357115, 357689, 358263, 359412, 359986, 361135, 362859, 363433, 364582, 366306, 368587, 369161, 370310, 372034, 374327];
M(ci) = c(46);
ci = [199453, 200027, 200601, 202325, 202899, 203473, 204622, 205196, 205770, 206919, 207493, 208642, 214966, 215540, 216114, 217838, 218412, 218986, 220135, 220709, 221283, 222432, 223006, 224155, 227029, 227603, 228177, 229901, 230475, 231049, 232198, 232772, 233346, 234495, 235069, 236218, 238517, 239091, 239665, 240814, 241388, 241962, 243111, 243685, 244834, 246558, 247132, 247706, 248855, 249429, 250578, 252302, 252876, 254025, 255749, 262531, 263105, 263679, 265403, 265977, 266551, 267700, 268274, 268848, 269997, 270571, 271720, 274594, 275168, 275742, 277466, 278040, 278614, 279763, 280337, 280911, 282060, 282634, 283783, 286082, 286656, 287230, 288379, 288953, 289527, 290676, 291250, 292399, 294123, 294697, 295271, 296420, 296994, 298143, 299867, 300441, 301590, 303314, 306670, 307244, 307818, 309542, 310116, 310690, 311839, 312413, 312987, 314136, 314710, 315859, 318158, 318732, 319306, 320455, 321029, 321603, 322752, 323326, 324475, 326199, 326773, 327347, 328496, 329070, 330219, 331943, 332517, 333666, 335390, 338198, 338772, 339346, 340495, 341069, 341643, 342792, 343366, 344515, 346239, 346813, 347387, 348536, 349110, 350259, 351983, 352557, 353706, 355430, 357690, 358264, 358838, 359987, 360561, 361710, 363434, 364008, 365157, 366881, 369162, 369736, 370885, 372609, 374902];
M(ci) = c(47);
ci = [202328, 202902, 203476, 204625, 205199, 205773, 206347, 206921, 207495, 208069, 208643, 209217, 217841, 218415, 218989, 220138, 220712, 221286, 221860, 222434, 223008, 223582, 224156, 224730, 229904, 230478, 231052, 232201, 232775, 233349, 233923, 234497, 235071, 235645, 236219, 236793, 240817, 241391, 241965, 242539, 243113, 243687, 244261, 244835, 245409, 248283, 248857, 249431, 250005, 250579, 251153, 253452, 254026, 254600, 256324, 265406, 265980, 266554, 267703, 268277, 268851, 269425, 269999, 270573, 271147, 271721, 272295, 277469, 278043, 278617, 279766, 280340, 280914, 281488, 282062, 282636, 283210, 283784, 284358, 288382, 288956, 289530, 290104, 290678, 291252, 291826, 292400, 292974, 295848, 296422, 296996, 297570, 298144, 298718, 301017, 301591, 302165, 303889, 309545, 310119, 310693, 311842, 312416, 312990, 313564, 314138, 314712, 315286, 315860, 316434, 320458, 321032, 321606, 322180, 322754, 323328, 323902, 324476, 325050, 327924, 328498, 329072, 329646, 330220, 330794, 333093, 333667, 334241, 335965, 340498, 341072, 341646, 342220, 342794, 343368, 343942, 344516, 345090, 347964, 348538, 349112, 349686, 350260, 350834, 353133, 353707, 354281, 356005, 359415, 359989, 360563, 361137, 361711, 362285, 364584, 365158, 365732, 367456, 370312, 370886, 371460, 373184, 375477];
M(ci) = c(48);
ci = [217853, 218427, 219001, 220150, 220724, 221298, 221872, 222446, 223020, 223594, 224168, 224742, 229916, 230490, 231064, 232213, 232787, 233361, 233935, 234509, 235083, 235657, 236231, 236805, 238529, 239103, 239677, 240826, 241400, 241974, 242548, 243122, 243696, 244270, 244844, 245418, 246567, 247141, 247715, 248289, 248863, 249437, 250011, 250585, 251159, 251733, 252307, 252881, 253455, 254029, 254603, 255177, 255751, 256325, 256899, 277481, 278055, 278629, 279778, 280352, 280926, 281500, 282074, 282648, 283222, 283796, 284370, 286094, 286668, 287242, 288391, 288965, 289539, 290113, 290687, 291261, 291835, 292409, 292983, 294132, 294706, 295280, 295854, 296428, 297002, 297576, 298150, 298724, 299298, 299872, 300446, 301020, 301594, 302168, 302742, 303316, 303890, 304464, 318170, 318744, 319318, 320467, 321041, 321615, 322189, 322763, 323337, 323911, 324485, 325059, 326208, 326782, 327356, 327930, 328504, 329078, 329652, 330226, 330800, 331374, 331948, 332522, 333096, 333670, 334244, 334818, 335392, 335966, 336540, 346248, 346822, 347396, 347970, 348544, 349118, 349692, 350266, 350840, 351414, 351988, 352562, 353136, 353710, 354284, 354858, 355432, 356006, 356580, 362865, 363439, 364013, 364587, 365161, 365735, 366309, 366883, 367457, 368031, 372037, 372611, 373185, 373759, 376052];
M(ci) = c(49);
ci = [265578, 266152, 266726, 267875, 268449, 269023, 269597, 270171, 270745, 271319, 271893, 272467, 277641, 278215, 278789, 279938, 280512, 281086, 281660, 282234, 282808, 283382, 283956, 284530, 286254, 286828, 287402, 288551, 289125, 289699, 290273, 290847, 291421, 291995, 292569, 293143, 294292, 294866, 295440, 296014, 296588, 297162, 297736, 298310, 298884, 299458, 300032, 300606, 301180, 301754, 302328, 302902, 303476, 304050, 304624, 309681, 310255, 310829, 311978, 312552, 313126, 313700, 314274, 314848, 315422, 315996, 316570, 318294, 318868, 319442, 320591, 321165, 321739, 322313, 322887, 323461, 324035, 324609, 325183, 326332, 326906, 327480, 328054, 328628, 329202, 329776, 330350, 330924, 331498, 332072, 332646, 333220, 333794, 334368, 334942, 335516, 336090, 336664, 338295, 338869, 339443, 340592, 341166, 341740, 342314, 342888, 343462, 344036, 344610, 345184, 346333, 346907, 347481, 348055, 348629, 349203, 349777, 350351, 350925, 351499, 352073, 352647, 353221, 353795, 354369, 354943, 355517, 356091, 356665, 357748, 358322, 358896, 359470, 360044, 360618, 361192, 361766, 362340, 362914, 363488, 364062, 364636, 365210, 365784, 366358, 366932, 367506, 368080, 368615, 369189, 369763, 370337, 370911, 371485, 372059, 372633, 373207, 373781, 374337, 374911, 375485, 376059, 376627];
M(ci) = c(50);
ci = [1698, 4572, 5146, 7445, 8019, 8593, 10892, 11466, 13765, 20664, 23538, 24112, 26411, 26985, 27559, 29858, 30432, 32731, 39630, 42504, 43078, 45377, 45951, 46525, 48824, 49398, 51697, 58021, 58595, 60894, 61468, 62042, 64341, 64915, 67214, 72963, 73537, 74111, 76410, 76984, 79283, 85032, 85606, 87905, 93654, 106167, 109041, 109615, 111914, 112488, 113062, 115361, 115935, 118234, 125133, 128007, 128581, 130880, 131454, 132028, 134327, 134901, 137200, 143524, 144098, 146397, 146971, 147545, 149844, 150418, 152717, 158466, 159040, 159614, 161913, 162487, 164786, 170535, 171109, 173408, 179157, 191697, 194571, 195145, 197444, 198018, 198592, 200891, 201465, 203764, 210088, 210662, 212961, 213535, 214109, 216408, 216982, 219281, 225030, 225604, 226178, 228477, 229051, 231350, 237099, 237673, 239972, 245721, 257716, 258290, 260589, 261163, 261737, 264036, 264610, 266909, 272658, 273232, 273806, 276105, 276679, 278978, 284727, 285301, 287600, 293349, 304800, 305374, 305948, 308247, 308821, 311120, 316869, 317443, 319742, 325491, 336966, 337540, 339839, 345588, 357078];
M(ci) = c(51);
ci = [2273, 5147, 5721, 8020, 8594, 9168, 11467, 12041, 14340, 21239, 24113, 24687, 26986, 27560, 28134, 30433, 31007, 33306, 40205, 43079, 43653, 45952, 46526, 47100, 49399, 49973, 52272, 58596, 59170, 61469, 62043, 62617, 64916, 65490, 67789, 73538, 74112, 74686, 76985, 77559, 79858, 85607, 86181, 88480, 94229, 106742, 109616, 110190, 112489, 113063, 113637, 115936, 116510, 118809, 125708, 128582, 129156, 131455, 132029, 132603, 134902, 135476, 137775, 144099, 144673, 146972, 147546, 148120, 150419, 150993, 153292, 159041, 159615, 160189, 162488, 163062, 165361, 171110, 171684, 173983, 179732, 192272, 195146, 195720, 198019, 198593, 199167, 201466, 202040, 204339, 210663, 211237, 213536, 214110, 214684, 216983, 217557, 219856, 225605, 226179, 226753, 229052, 229626, 231925, 237674, 238248, 240547, 246296, 258291, 258865, 261164, 261738, 262312, 264611, 265185, 267484, 273233, 273807, 274381, 276680, 277254, 279553, 285302, 285876, 288175, 293924, 305375, 305949, 306523, 308822, 309396, 311695, 317444, 318018, 320317, 326066, 337541, 338115, 340414, 346163, 357653];
M(ci) = c(52);
ci = [2848, 5722, 6296, 8595, 9169, 9743, 12042, 12616, 14915, 21814, 24688, 25262, 27561, 28135, 28709, 31008, 31582, 33881, 40780, 43654, 44228, 46527, 47101, 47675, 49974, 50548, 52847, 59171, 59745, 62044, 62618, 63192, 65491, 66065, 68364, 74113, 74687, 75261, 77560, 78134, 80433, 86182, 86756, 89055, 94804, 107317, 110191, 110765, 113064, 113638, 114212, 116511, 117085, 119384, 126283, 129157, 129731, 132030, 132604, 133178, 135477, 136051, 138350, 144674, 145248, 147547, 148121, 148695, 150994, 151568, 153867, 159616, 160190, 160764, 163063, 163637, 165936, 171685, 172259, 174558, 180307, 192847, 195721, 196295, 198594, 199168, 199742, 202041, 202615, 204914, 211238, 211812, 214111, 214685, 215259, 217558, 218132, 220431, 226180, 226754, 227328, 229627, 230201, 232500, 238249, 238823, 241122, 246871, 258866, 259440, 261739, 262313, 262887, 265186, 265760, 268059, 273808, 274382, 274956, 277255, 277829, 280128, 285877, 286451, 288750, 294499, 305950, 306524, 307098, 309397, 309971, 312270, 318019, 318593, 320892, 326641, 338116, 338690, 340989, 346738, 358228];
M(ci) = c(53);
ci = [3423, 6297, 6871, 9170, 9744, 10318, 12617, 13191, 15490, 22389, 25263, 25837, 28136, 28710, 29284, 31583, 32157, 34456, 41355, 44229, 44803, 47102, 47676, 48250, 50549, 51123, 53422, 59746, 60320, 62619, 63193, 63767, 66066, 66640, 68939, 74688, 75262, 75836, 78135, 78709, 81008, 86757, 87331, 89630, 95379, 107892, 110766, 111340, 113639, 114213, 114787, 117086, 117660, 119959, 126858, 129732, 130306, 132605, 133179, 133753, 136052, 136626, 138925, 145249, 145823, 148122, 148696, 149270, 151569, 152143, 154442, 160191, 160765, 161339, 163638, 164212, 166511, 172260, 172834, 175133, 180882, 193422, 196296, 196870, 199169, 199743, 200317, 202616, 203190, 205489, 211813, 212387, 214686, 215260, 215834, 218133, 218707, 221006, 226755, 227329, 227903, 230202, 230776, 233075, 238824, 239398, 241697, 247446, 259441, 260015, 262314, 262888, 263462, 265761, 266335, 268634, 274383, 274957, 275531, 277830, 278404, 280703, 286452, 287026, 289325, 295074, 306525, 307099, 307673, 309972, 310546, 312845, 318594, 319168, 321467, 327216, 338691, 339265, 341564, 347313, 358803];
M(ci) = c(54);
ci = [5723, 8597, 9171, 10895, 11469, 12043, 13767, 14341, 16065, 24689, 27563, 28137, 29861, 30435, 31009, 32733, 33307, 35031, 43655, 46529, 47103, 48827, 49401, 49975, 51699, 52273, 53997, 62046, 62620, 64344, 64918, 65492, 67216, 67790, 69514, 76413, 76987, 77561, 79285, 79859, 81583, 87907, 88481, 90205, 95954, 110192, 113066, 113640, 115364, 115938, 116512, 118236, 118810, 120534, 129158, 132032, 132606, 134330, 134904, 135478, 137202, 137776, 139500, 147549, 148123, 149847, 150421, 150995, 152719, 153293, 155017, 161916, 162490, 163064, 164788, 165362, 167086, 173410, 173984, 175708, 181457, 195722, 198596, 199170, 200894, 201468, 202042, 203766, 204340, 206064, 214113, 214687, 216411, 216985, 217559, 219283, 219857, 221581, 228480, 229054, 229628, 231352, 231926, 233650, 239974, 240548, 242272, 248021, 261741, 262315, 264039, 264613, 265187, 266911, 267485, 269209, 276108, 276682, 277256, 278980, 279554, 281278, 287602, 288176, 289900, 295649, 308250, 308824, 309398, 311122, 311696, 313420, 319744, 320318, 322042, 327791, 339841, 340415, 342139, 347888, 359378];
M(ci) = c(55);
ci = [6298, 9172, 9746, 11470, 12044, 12618, 14342, 14916, 16640, 25264, 28138, 28712, 30436, 31010, 31584, 33308, 33882, 35606, 44230, 47104, 47678, 49402, 49976, 50550, 52274, 52848, 54572, 62621, 63195, 64919, 65493, 66067, 67791, 68365, 70089, 76988, 77562, 78136, 79860, 80434, 82158, 88482, 89056, 90780, 96529, 110767, 113641, 114215, 115939, 116513, 117087, 118811, 119385, 121109, 129733, 132607, 133181, 134905, 135479, 136053, 137777, 138351, 140075, 148124, 148698, 150422, 150996, 151570, 153294, 153868, 155592, 162491, 163065, 163639, 165363, 165937, 167661, 173985, 174559, 176283, 182032, 196297, 199171, 199745, 201469, 202043, 202617, 204341, 204915, 206639, 214688, 215262, 216986, 217560, 218134, 219858, 220432, 222156, 229055, 229629, 230203, 231927, 232501, 234225, 240549, 241123, 242847, 248596, 262316, 262890, 264614, 265188, 265762, 267486, 268060, 269784, 276683, 277257, 277831, 279555, 280129, 281853, 288177, 288751, 290475, 296224, 308825, 309399, 309973, 311697, 312271, 313995, 320319, 320893, 322617, 328366, 340416, 340990, 342714, 348463, 359953];
M(ci) = c(56);
ci = [6873, 9747, 10321, 12045, 12619, 13193, 14917, 15491, 17215, 25839, 28713, 29287, 31011, 31585, 32159, 33883, 34457, 36181, 44805, 47679, 48253, 49977, 50551, 51125, 52849, 53423, 55147, 63196, 63770, 65494, 66068, 66642, 68366, 68940, 70664, 77563, 78137, 78711, 80435, 81009, 82733, 89057, 89631, 91355, 97104, 111342, 114216, 114790, 116514, 117088, 117662, 119386, 119960, 121684, 130308, 133182, 133756, 135480, 136054, 136628, 138352, 138926, 140650, 148699, 149273, 150997, 151571, 152145, 153869, 154443, 156167, 163066, 163640, 164214, 165938, 166512, 168236, 174560, 175134, 176858, 182607, 196872, 199746, 200320, 202044, 202618, 203192, 204916, 205490, 207214, 215263, 215837, 217561, 218135, 218709, 220433, 221007, 222731, 229630, 230204, 230778, 232502, 233076, 234800, 241124, 241698, 243422, 249171, 262891, 263465, 265189, 265763, 266337, 268061, 268635, 270359, 277258, 277832, 278406, 280130, 280704, 282428, 288752, 289326, 291050, 296799, 309400, 309974, 310548, 312272, 312846, 314570, 320894, 321468, 323192, 328941, 340991, 341565, 343289, 349038, 360528];
M(ci) = c(57);
ci = [9748, 12047, 12621, 13770, 14344, 14918, 16067, 16641, 17790, 28714, 31013, 31587, 32736, 33310, 33884, 35033, 35607, 36756, 47680, 49979, 50553, 51702, 52276, 52850, 53999, 54573, 55722, 65496, 66070, 67219, 67793, 68367, 69516, 70090, 71239, 79288, 79862, 80436, 81585, 82159, 83308, 90207, 90781, 91930, 97679, 114217, 116516, 117090, 118239, 118813, 119387, 120536, 121110, 122259, 133183, 135482, 136056, 137205, 137779, 138353, 139502, 140076, 141225, 150999, 151573, 152722, 153296, 153870, 155019, 155593, 156742, 164791, 165365, 165939, 167088, 167662, 168811, 175710, 176284, 177433, 183182, 199747, 202046, 202620, 203769, 204343, 204917, 206066, 206640, 207789, 217563, 218137, 219286, 219860, 220434, 221583, 222157, 223306, 231355, 231929, 232503, 233652, 234226, 235375, 242274, 242848, 243997, 249746, 265191, 265765, 266914, 267488, 268062, 269211, 269785, 270934, 278983, 279557, 280131, 281280, 281854, 283003, 289902, 290476, 291625, 297374, 311125, 311699, 312273, 313422, 313996, 315145, 322044, 322618, 323767, 329516, 342141, 342715, 343864, 349613, 361103];
M(ci) = c(58);
ci = [10323, 12622, 13196, 14345, 14919, 15493, 16642, 17216, 18365, 29289, 31588, 32162, 33311, 33885, 34459, 35608, 36182, 37331, 48255, 50554, 51128, 52277, 52851, 53425, 54574, 55148, 56297, 66071, 66645, 67794, 68368, 68942, 70091, 70665, 71814, 79863, 80437, 81011, 82160, 82734, 83883, 90782, 91356, 92505, 98254, 114792, 117091, 117665, 118814, 119388, 119962, 121111, 121685, 122834, 133758, 136057, 136631, 137780, 138354, 138928, 140077, 140651, 141800, 151574, 152148, 153297, 153871, 154445, 155594, 156168, 157317, 165366, 165940, 166514, 167663, 168237, 169386, 176285, 176859, 178008, 183757, 200322, 202621, 203195, 204344, 204918, 205492, 206641, 207215, 208364, 218138, 218712, 219861, 220435, 221009, 222158, 222732, 223881, 231930, 232504, 233078, 234227, 234801, 235950, 242849, 243423, 244572, 250321, 265766, 266340, 267489, 268063, 268637, 269786, 270360, 271509, 279558, 280132, 280706, 281855, 282429, 283578, 290477, 291051, 292200, 297949, 311700, 312274, 312848, 313997, 314571, 315720, 322619, 323193, 324342, 330091, 342716, 343290, 344439, 350188, 361678];
M(ci) = c(59);
ci = [13198, 14922, 15496, 16070, 16644, 17218, 17792, 18366, 18940, 32164, 33888, 34462, 35036, 35610, 36184, 36758, 37332, 37906, 51130, 52854, 53428, 54002, 54576, 55150, 55724, 56298, 56872, 68371, 68945, 69519, 70093, 70667, 71241, 71815, 72389, 81588, 82162, 82736, 83310, 83884, 84458, 91932, 92506, 93080, 98829, 117667, 119391, 119965, 120539, 121113, 121687, 122261, 122835, 123409, 136633, 138357, 138931, 139505, 140079, 140653, 141227, 141801, 142375, 153874, 154448, 155022, 155596, 156170, 156744, 157318, 157892, 167091, 167665, 168239, 168813, 169387, 169961, 177435, 178009, 178583, 184332, 203197, 204921, 205495, 206069, 206643, 207217, 207791, 208365, 208939, 220438, 221012, 221586, 222160, 222734, 223308, 223882, 224456, 233655, 234229, 234803, 235377, 235951, 236525, 243999, 244573, 245147, 250896, 268066, 268640, 269214, 269788, 270362, 270936, 271510, 272084, 281283, 281857, 282431, 283005, 283579, 284153, 291627, 292201, 292775, 298524, 313425, 313999, 314573, 315147, 315721, 316295, 323769, 324343, 324917, 330666, 343866, 344440, 345014, 350763, 362253];
M(ci) = c(60);
ci = [24698, 27572, 28146, 29870, 30444, 31018, 32742, 33316, 35040, 43664, 46538, 47112, 48836, 49410, 49984, 51708, 52282, 54006, 59180, 62054, 62628, 64352, 64926, 65500, 67224, 67798, 69522, 74121, 74695, 76419, 76993, 77567, 79291, 79865, 81589, 85038, 85612, 86186, 87910, 88484, 90208, 93657, 94231, 95955, 99404, 129167, 132041, 132615, 134339, 134913, 135487, 137211, 137785, 139509, 144683, 147557, 148131, 149855, 150429, 151003, 152727, 153301, 155025, 159624, 160198, 161922, 162496, 163070, 164794, 165368, 167092, 170541, 171115, 171689, 173413, 173987, 175711, 179160, 179734, 181458, 184907, 211247, 214121, 214695, 216419, 216993, 217567, 219291, 219865, 221589, 226188, 226762, 228486, 229060, 229634, 231358, 231932, 233656, 237105, 237679, 238253, 239977, 240551, 242275, 245724, 246298, 248022, 251471, 273816, 274390, 276114, 276688, 277262, 278986, 279560, 281284, 284733, 285307, 285881, 287605, 288179, 289903, 293352, 293926, 295650, 299099, 316875, 317449, 318023, 319747, 320321, 322045, 325494, 326068, 327792, 331241, 345591, 346165, 347889, 351338, 362828];
M(ci) = c(61);
ci = [25273, 28147, 28721, 30445, 31019, 31593, 33317, 33891, 35615, 44239, 47113, 47687, 49411, 49985, 50559, 52283, 52857, 54581, 59755, 62629, 63203, 64927, 65501, 66075, 67799, 68373, 70097, 74696, 75270, 76994, 77568, 78142, 79866, 80440, 82164, 85613, 86187, 86761, 88485, 89059, 90783, 94232, 94806, 96530, 99979, 129742, 132616, 133190, 134914, 135488, 136062, 137786, 138360, 140084, 145258, 148132, 148706, 150430, 151004, 151578, 153302, 153876, 155600, 160199, 160773, 162497, 163071, 163645, 165369, 165943, 167667, 171116, 171690, 172264, 173988, 174562, 176286, 179735, 180309, 182033, 185482, 211822, 214696, 215270, 216994, 217568, 218142, 219866, 220440, 222164, 226763, 227337, 229061, 229635, 230209, 231933, 232507, 234231, 237680, 238254, 238828, 240552, 241126, 242850, 246299, 246873, 248597, 252046, 274391, 274965, 276689, 277263, 277837, 279561, 280135, 281859, 285308, 285882, 286456, 288180, 288754, 290478, 293927, 294501, 296225, 299674, 317450, 318024, 318598, 320322, 320896, 322620, 326069, 326643, 328367, 331816, 346166, 346740, 348464, 351913, 363403];
M(ci) = c(62);
ci = [25848, 28722, 29296, 31020, 31594, 32168, 33892, 34466, 36190, 44814, 47688, 48262, 49986, 50560, 51134, 52858, 53432, 55156, 60330, 63204, 63778, 65502, 66076, 66650, 68374, 68948, 70672, 75271, 75845, 77569, 78143, 78717, 80441, 81015, 82739, 86188, 86762, 87336, 89060, 89634, 91358, 94807, 95381, 97105, 100554, 130317, 133191, 133765, 135489, 136063, 136637, 138361, 138935, 140659, 145833, 148707, 149281, 151005, 151579, 152153, 153877, 154451, 156175, 160774, 161348, 163072, 163646, 164220, 165944, 166518, 168242, 171691, 172265, 172839, 174563, 175137, 176861, 180310, 180884, 182608, 186057, 212397, 215271, 215845, 217569, 218143, 218717, 220441, 221015, 222739, 227338, 227912, 229636, 230210, 230784, 232508, 233082, 234806, 238255, 238829, 239403, 241127, 241701, 243425, 246874, 247448, 249172, 252621, 274966, 275540, 277264, 277838, 278412, 280136, 280710, 282434, 285883, 286457, 287031, 288755, 289329, 291053, 294502, 295076, 296800, 300249, 318025, 318599, 319173, 320897, 321471, 323195, 326644, 327218, 328942, 332391, 346741, 347315, 349039, 352488, 363978];
M(ci) = c(63);
ci = [28723, 31022, 31596, 32745, 33319, 33893, 35042, 35616, 36765, 47689, 49988, 50562, 51711, 52285, 52859, 54008, 54582, 55731, 63205, 65504, 66078, 67227, 67801, 68375, 69524, 70098, 71247, 77571, 78145, 79294, 79868, 80442, 81591, 82165, 83314, 87913, 88487, 89061, 90210, 90784, 91933, 95957, 96531, 97680, 101129, 133192, 135491, 136065, 137214, 137788, 138362, 139511, 140085, 141234, 148708, 151007, 151581, 152730, 153304, 153878, 155027, 155601, 156750, 163074, 163648, 164797, 165371, 165945, 167094, 167668, 168817, 173416, 173990, 174564, 175713, 176287, 177436, 181460, 182034, 183183, 186632, 215272, 217571, 218145, 219294, 219868, 220442, 221591, 222165, 223314, 229638, 230212, 231361, 231935, 232509, 233658, 234232, 235381, 239980, 240554, 241128, 242277, 242851, 244000, 248024, 248598, 249747, 253196, 277266, 277840, 278989, 279563, 280137, 281286, 281860, 283009, 287608, 288182, 288756, 289905, 290479, 291628, 295652, 296226, 297375, 300824, 319750, 320324, 320898, 322047, 322621, 323770, 327794, 328368, 329517, 332966, 347891, 348465, 349614, 353063, 364553];
M(ci) = c(64);
ci = [29298, 31597, 32171, 33320, 33894, 34468, 35617, 36191, 37340, 48264, 50563, 51137, 52286, 52860, 53434, 54583, 55157, 56306, 63780, 66079, 66653, 67802, 68376, 68950, 70099, 70673, 71822, 78146, 78720, 79869, 80443, 81017, 82166, 82740, 83889, 88488, 89062, 89636, 90785, 91359, 92508, 96532, 97106, 98255, 101704, 133767, 136066, 136640, 137789, 138363, 138937, 140086, 140660, 141809, 149283, 151582, 152156, 153305, 153879, 154453, 155602, 156176, 157325, 163649, 164223, 165372, 165946, 166520, 167669, 168243, 169392, 173991, 174565, 175139, 176288, 176862, 178011, 182035, 182609, 183758, 187207, 215847, 218146, 218720, 219869, 220443, 221017, 222166, 222740, 223889, 230213, 230787, 231936, 232510, 233084, 234233, 234807, 235956, 240555, 241129, 241703, 242852, 243426, 244575, 248599, 249173, 250322, 253771, 277841, 278415, 279564, 280138, 280712, 281861, 282435, 283584, 288183, 288757, 289331, 290480, 291054, 292203, 296227, 296801, 297950, 301399, 320325, 320899, 321473, 322622, 323196, 324345, 328369, 328943, 330092, 333541, 348466, 349040, 350189, 353638, 365128];
M(ci) = c(65);
ci = [32173, 33897, 34471, 35045, 35619, 36193, 36767, 37341, 37915, 51139, 52863, 53437, 54011, 54585, 55159, 55733, 56307, 56881, 66655, 68379, 68953, 69527, 70101, 70675, 71249, 71823, 72397, 80446, 81020, 81594, 82168, 82742, 83316, 83890, 84464, 90213, 90787, 91361, 91935, 92509, 93083, 97682, 98256, 98830, 102279, 136642, 138366, 138940, 139514, 140088, 140662, 141236, 141810, 142384, 152158, 153882, 154456, 155030, 155604, 156178, 156752, 157326, 157900, 165949, 166523, 167097, 167671, 168245, 168819, 169393, 169967, 175716, 176290, 176864, 177438, 178012, 178586, 183185, 183759, 184333, 187782, 218722, 220446, 221020, 221594, 222168, 222742, 223316, 223890, 224464, 232513, 233087, 233661, 234235, 234809, 235383, 235957, 236531, 242280, 242854, 243428, 244002, 244576, 245150, 249749, 250323, 250897, 254346, 280141, 280715, 281289, 281863, 282437, 283011, 283585, 284159, 289908, 290482, 291056, 291630, 292204, 292778, 297377, 297951, 298525, 301974, 322050, 322624, 323198, 323772, 324346, 324920, 329519, 330093, 330667, 334116, 349616, 350190, 350764, 354213, 365703];
M(ci) = c(66);
ci = [47698, 49997, 50571, 51720, 52294, 52868, 54017, 54591, 55740, 63214, 65513, 66087, 67236, 67810, 68384, 69533, 70107, 71256, 75280, 77579, 78153, 79302, 79876, 80450, 81599, 82173, 83322, 86196, 86770, 87919, 88493, 89067, 90216, 90790, 91939, 93663, 94237, 94811, 95960, 96534, 97683, 99407, 99981, 101130, 102854, 148717, 151016, 151590, 152739, 153313, 153887, 155036, 155610, 156759, 160783, 163082, 163656, 164805, 165379, 165953, 167102, 167676, 168825, 171699, 172273, 173422, 173996, 174570, 175719, 176293, 177442, 179166, 179740, 180314, 181463, 182037, 183186, 184910, 185484, 186633, 188357, 227347, 229646, 230220, 231369, 231943, 232517, 233666, 234240, 235389, 238263, 238837, 239986, 240560, 241134, 242283, 242857, 244006, 245730, 246304, 246878, 248027, 248601, 249750, 251474, 252048, 253197, 254921, 285891, 286465, 287614, 288188, 288762, 289911, 290485, 291634, 293358, 293932, 294506, 295655, 296229, 297378, 299102, 299676, 300825, 302549, 325500, 326074, 326648, 327797, 328371, 329520, 331244, 331818, 332967, 334691, 351341, 351915, 353064, 354788, 366278];
M(ci) = c(67);
ci = [48273, 50572, 51146, 52295, 52869, 53443, 54592, 55166, 56315, 63789, 66088, 66662, 67811, 68385, 68959, 70108, 70682, 71831, 75855, 78154, 78728, 79877, 80451, 81025, 82174, 82748, 83897, 86771, 87345, 88494, 89068, 89642, 90791, 91365, 92514, 94238, 94812, 95386, 96535, 97109, 98258, 99982, 100556, 101705, 103429, 149292, 151591, 152165, 153314, 153888, 154462, 155611, 156185, 157334, 161358, 163657, 164231, 165380, 165954, 166528, 167677, 168251, 169400, 172274, 172848, 173997, 174571, 175145, 176294, 176868, 178017, 179741, 180315, 180889, 182038, 182612, 183761, 185485, 186059, 187208, 188932, 227922, 230221, 230795, 231944, 232518, 233092, 234241, 234815, 235964, 238838, 239412, 240561, 241135, 241709, 242858, 243432, 244581, 246305, 246879, 247453, 248602, 249176, 250325, 252049, 252623, 253772, 255496, 286466, 287040, 288189, 288763, 289337, 290486, 291060, 292209, 293933, 294507, 295081, 296230, 296804, 297953, 299677, 300251, 301400, 303124, 326075, 326649, 327223, 328372, 328946, 330095, 331819, 332393, 333542, 335266, 351916, 352490, 353639, 355363, 366853];
M(ci) = c(68);
ci = [51148, 52872, 53446, 54020, 54594, 55168, 55742, 56316, 56890, 66664, 68388, 68962, 69536, 70110, 70684, 71258, 71832, 72406, 78730, 80454, 81028, 81602, 82176, 82750, 83324, 83898, 84472, 89071, 89645, 90219, 90793, 91367, 91941, 92515, 93089, 95963, 96537, 97111, 97685, 98259, 98833, 101132, 101706, 102280, 104004, 152167, 153891, 154465, 155039, 155613, 156187, 156761, 157335, 157909, 164233, 165957, 166531, 167105, 167679, 168253, 168827, 169401, 169975, 174574, 175148, 175722, 176296, 176870, 177444, 178018, 178592, 181466, 182040, 182614, 183188, 183762, 184336, 186635, 187209, 187783, 189507, 230797, 232521, 233095, 233669, 234243, 234817, 235391, 235965, 236539, 241138, 241712, 242286, 242860, 243434, 244008, 244582, 245156, 248030, 248604, 249178, 249752, 250326, 250900, 253199, 253773, 254347, 256071, 288766, 289340, 289914, 290488, 291062, 291636, 292210, 292784, 295658, 296232, 296806, 297380, 297954, 298528, 300827, 301401, 301975, 303699, 327800, 328374, 328948, 329522, 330096, 330670, 332969, 333543, 334117, 335841, 353066, 353640, 354214, 355938, 367428];
M(ci) = c(69);
ci = [66673, 68397, 68971, 69545, 70119, 70693, 71267, 71841, 72415, 78739, 80463, 81037, 81611, 82185, 82759, 83333, 83907, 84481, 87355, 89079, 89653, 90227, 90801, 91375, 91949, 92523, 93097, 94821, 95395, 95969, 96543, 97117, 97691, 98265, 98839, 99413, 99987, 100561, 101135, 101709, 102283, 102857, 103431, 104005, 104579, 164242, 165966, 166540, 167114, 167688, 168262, 168836, 169410, 169984, 172858, 174582, 175156, 175730, 176304, 176878, 177452, 178026, 178600, 180324, 180898, 181472, 182046, 182620, 183194, 183768, 184342, 184916, 185490, 186064, 186638, 187212, 187786, 188360, 188934, 189508, 190082, 239422, 241146, 241720, 242294, 242868, 243442, 244016, 244590, 245164, 246888, 247462, 248036, 248610, 249184, 249758, 250332, 250906, 251480, 252054, 252628, 253202, 253776, 254350, 254924, 255498, 256072, 256646, 294516, 295090, 295664, 296238, 296812, 297386, 297960, 298534, 299108, 299682, 300256, 300830, 301404, 301978, 302552, 303126, 303700, 304274, 331250, 331824, 332398, 332972, 333546, 334120, 334694, 335268, 335842, 336416, 354791, 355365, 355939, 356513, 368003];
M(ci) = c(70);
ci = [200073, 202372, 202946, 204095, 204669, 205243, 206392, 206966, 208115, 215589, 217888, 218462, 219611, 220185, 220759, 221908, 222482, 223631, 227655, 229954, 230528, 231677, 232251, 232825, 233974, 234548, 235697, 238571, 239145, 240294, 240868, 241442, 242591, 243165, 244314, 246038, 246612, 247186, 248335, 248909, 250058, 251782, 252356, 253505, 255229, 263142, 265441, 266015, 267164, 267738, 268312, 269461, 270035, 271184, 275208, 277507, 278081, 279230, 279804, 280378, 281527, 282101, 283250, 286124, 286698, 287847, 288421, 288995, 290144, 290718, 291867, 293591, 294165, 294739, 295888, 296462, 297611, 299335, 299909, 301058, 302782, 307272, 309571, 310145, 311294, 311868, 312442, 313591, 314165, 315314, 318188, 318762, 319911, 320485, 321059, 322208, 322782, 323931, 325655, 326229, 326803, 327952, 328526, 329675, 331399, 331973, 333122, 334846, 338216, 338790, 339939, 340513, 341087, 342236, 342810, 343959, 345683, 346257, 346831, 347980, 348554, 349703, 351427, 352001, 353150, 354874, 357125, 357699, 358273, 359422, 359996, 361145, 362869, 363443, 364592, 366316, 368591, 369165, 370314, 372038, 374328];
M(ci) = c(71);
ci = [200648, 202947, 203521, 204670, 205244, 205818, 206967, 207541, 208690, 216164, 218463, 219037, 220186, 220760, 221334, 222483, 223057, 224206, 228230, 230529, 231103, 232252, 232826, 233400, 234549, 235123, 236272, 239146, 239720, 240869, 241443, 242017, 243166, 243740, 244889, 246613, 247187, 247761, 248910, 249484, 250633, 252357, 252931, 254080, 255804, 263717, 266016, 266590, 267739, 268313, 268887, 270036, 270610, 271759, 275783, 278082, 278656, 279805, 280379, 280953, 282102, 282676, 283825, 286699, 287273, 288422, 288996, 289570, 290719, 291293, 292442, 294166, 294740, 295314, 296463, 297037, 298186, 299910, 300484, 301633, 303357, 307847, 310146, 310720, 311869, 312443, 313017, 314166, 314740, 315889, 318763, 319337, 320486, 321060, 321634, 322783, 323357, 324506, 326230, 326804, 327378, 328527, 329101, 330250, 331974, 332548, 333697, 335421, 338791, 339365, 340514, 341088, 341662, 342811, 343385, 344534, 346258, 346832, 347406, 348555, 349129, 350278, 352002, 352576, 353725, 355449, 357700, 358274, 358848, 359997, 360571, 361720, 363444, 364018, 365167, 366891, 369166, 369740, 370889, 372613, 374903];
M(ci) = c(72);
ci = [203523, 205247, 205821, 206395, 206969, 207543, 208117, 208691, 209265, 219039, 220763, 221337, 221911, 222485, 223059, 223633, 224207, 224781, 231105, 232829, 233403, 233977, 234551, 235125, 235699, 236273, 236847, 241446, 242020, 242594, 243168, 243742, 244316, 244890, 245464, 248338, 248912, 249486, 250060, 250634, 251208, 253507, 254081, 254655, 256379, 266592, 268316, 268890, 269464, 270038, 270612, 271186, 271760, 272334, 278658, 280382, 280956, 281530, 282104, 282678, 283252, 283826, 284400, 288999, 289573, 290147, 290721, 291295, 291869, 292443, 293017, 295891, 296465, 297039, 297613, 298187, 298761, 301060, 301634, 302208, 303932, 310722, 312446, 313020, 313594, 314168, 314742, 315316, 315890, 316464, 321063, 321637, 322211, 322785, 323359, 323933, 324507, 325081, 327955, 328529, 329103, 329677, 330251, 330825, 333124, 333698, 334272, 335996, 341091, 341665, 342239, 342813, 343387, 343961, 344535, 345109, 347983, 348557, 349131, 349705, 350279, 350853, 353152, 353726, 354300, 356024, 359425, 359999, 360573, 361147, 361721, 362295, 364594, 365168, 365742, 367466, 370316, 370890, 371464, 373188, 375478];
M(ci) = c(73);
ci = [219048, 220772, 221346, 221920, 222494, 223068, 223642, 224216, 224790, 231114, 232838, 233412, 233986, 234560, 235134, 235708, 236282, 236856, 239730, 241454, 242028, 242602, 243176, 243750, 244324, 244898, 245472, 247196, 247770, 248344, 248918, 249492, 250066, 250640, 251214, 251788, 252362, 252936, 253510, 254084, 254658, 255232, 255806, 256380, 256954, 278667, 280391, 280965, 281539, 282113, 282687, 283261, 283835, 284409, 287283, 289007, 289581, 290155, 290729, 291303, 291877, 292451, 293025, 294749, 295323, 295897, 296471, 297045, 297619, 298193, 298767, 299341, 299915, 300489, 301063, 301637, 302211, 302785, 303359, 303933, 304507, 319347, 321071, 321645, 322219, 322793, 323367, 323941, 324515, 325089, 326813, 327387, 327961, 328535, 329109, 329683, 330257, 330831, 331405, 331979, 332553, 333127, 333701, 334275, 334849, 335423, 335997, 336571, 346841, 347415, 347989, 348563, 349137, 349711, 350285, 350859, 351433, 352007, 352581, 353155, 353729, 354303, 354877, 355451, 356025, 356599, 362875, 363449, 364023, 364597, 365171, 365745, 366319, 366893, 367467, 368041, 372041, 372615, 373189, 373763, 376053];
M(ci) = c(74);
ci = [266773, 268497, 269071, 269645, 270219, 270793, 271367, 271941, 272515, 278839, 280563, 281137, 281711, 282285, 282859, 283433, 284007, 284581, 287455, 289179, 289753, 290327, 290901, 291475, 292049, 292623, 293197, 294921, 295495, 296069, 296643, 297217, 297791, 298365, 298939, 299513, 300087, 300661, 301235, 301809, 302383, 302957, 303531, 304105, 304679, 310867, 312591, 313165, 313739, 314313, 314887, 315461, 316035, 316609, 319483, 321207, 321781, 322355, 322929, 323503, 324077, 324651, 325225, 326949, 327523, 328097, 328671, 329245, 329819, 330393, 330967, 331541, 332115, 332689, 333263, 333837, 334411, 334985, 335559, 336133, 336707, 339472, 341196, 341770, 342344, 342918, 343492, 344066, 344640, 345214, 346938, 347512, 348086, 348660, 349234, 349808, 350382, 350956, 351530, 352104, 352678, 353252, 353826, 354400, 354974, 355548, 356122, 356696, 358341, 358915, 359489, 360063, 360637, 361211, 361785, 362359, 362933, 363507, 364081, 364655, 365229, 365803, 366377, 366951, 367525, 368099, 368625, 369199, 369773, 370347, 370921, 371495, 372069, 372643, 373217, 373791, 374341, 374915, 375489, 376063, 376628];
M(ci) = c(75);
ci = [13800, 29899, 30473, 32772, 45421, 45995, 46569, 48868, 49442, 51741, 58640, 60939, 61513, 62087, 64386, 64960, 67259, 73008, 73582, 74156, 76455, 77029, 79328, 85077, 85651, 87950, 93699, 115393, 115967, 118266, 130915, 131489, 132063, 134362, 134936, 137235, 144134, 146433, 147007, 147581, 149880, 150454, 152753, 158502, 159076, 159650, 161949, 162523, 164822, 170571, 171145, 173444, 179193, 197470, 198044, 198618, 200917, 201491, 203790, 210689, 212988, 213562, 214136, 216435, 217009, 219308, 225057, 225631, 226205, 228504, 229078, 231377, 237126, 237700, 239999, 245748, 258308, 260607, 261181, 261755, 264054, 264628, 266927, 272676, 273250, 273824, 276123, 276697, 278996, 284745, 285319, 287618, 293367, 304810, 305384, 305958, 308257, 308831, 311130, 316879, 317453, 319752, 325501, 336970, 337544, 339843, 345592, 357079];
M(ci) = c(76);
ci = [14375, 30474, 31048, 33347, 45996, 46570, 47144, 49443, 50017, 52316, 59215, 61514, 62088, 62662, 64961, 65535, 67834, 73583, 74157, 74731, 77030, 77604, 79903, 85652, 86226, 88525, 94274, 115968, 116542, 118841, 131490, 132064, 132638, 134937, 135511, 137810, 144709, 147008, 147582, 148156, 150455, 151029, 153328, 159077, 159651, 160225, 162524, 163098, 165397, 171146, 171720, 174019, 179768, 198045, 198619, 199193, 201492, 202066, 204365, 211264, 213563, 214137, 214711, 217010, 217584, 219883, 225632, 226206, 226780, 229079, 229653, 231952, 237701, 238275, 240574, 246323, 258883, 261182, 261756, 262330, 264629, 265203, 267502, 273251, 273825, 274399, 276698, 277272, 279571, 285320, 285894, 288193, 293942, 305385, 305959, 306533, 308832, 309406, 311705, 317454, 318028, 320327, 326076, 337545, 338119, 340418, 346167, 357654];
M(ci) = c(77);
ci = [14950, 31049, 31623, 33922, 46571, 47145, 47719, 50018, 50592, 52891, 59790, 62089, 62663, 63237, 65536, 66110, 68409, 74158, 74732, 75306, 77605, 78179, 80478, 86227, 86801, 89100, 94849, 116543, 117117, 119416, 132065, 132639, 133213, 135512, 136086, 138385, 145284, 147583, 148157, 148731, 151030, 151604, 153903, 159652, 160226, 160800, 163099, 163673, 165972, 171721, 172295, 174594, 180343, 198620, 199194, 199768, 202067, 202641, 204940, 211839, 214138, 214712, 215286, 217585, 218159, 220458, 226207, 226781, 227355, 229654, 230228, 232527, 238276, 238850, 241149, 246898, 259458, 261757, 262331, 262905, 265204, 265778, 268077, 273826, 274400, 274974, 277273, 277847, 280146, 285895, 286469, 288768, 294517, 305960, 306534, 307108, 309407, 309981, 312280, 318029, 318603, 320902, 326651, 338120, 338694, 340993, 346742, 358229];
M(ci) = c(78);
ci = [15525, 31624, 32198, 34497, 47146, 47720, 48294, 50593, 51167, 53466, 60365, 62664, 63238, 63812, 66111, 66685, 68984, 74733, 75307, 75881, 78180, 78754, 81053, 86802, 87376, 89675, 95424, 117118, 117692, 119991, 132640, 133214, 133788, 136087, 136661, 138960, 145859, 148158, 148732, 149306, 151605, 152179, 154478, 160227, 160801, 161375, 163674, 164248, 166547, 172296, 172870, 175169, 180918, 199195, 199769, 200343, 202642, 203216, 205515, 212414, 214713, 215287, 215861, 218160, 218734, 221033, 226782, 227356, 227930, 230229, 230803, 233102, 238851, 239425, 241724, 247473, 260033, 262332, 262906, 263480, 265779, 266353, 268652, 274401, 274975, 275549, 277848, 278422, 280721, 286470, 287044, 289343, 295092, 306535, 307109, 307683, 309982, 310556, 312855, 318604, 319178, 321477, 327226, 338695, 339269, 341568, 347317, 358804];
M(ci) = c(79);
ci = [16100, 32774, 33348, 35072, 48871, 49445, 50019, 51743, 52317, 54041, 62665, 64389, 64963, 65537, 67261, 67835, 69559, 76458, 77032, 77606, 79330, 79904, 81628, 87952, 88526, 90250, 95999, 118268, 118842, 120566, 134365, 134939, 135513, 137237, 137811, 139535, 148159, 149883, 150457, 151031, 152755, 153329, 155053, 161952, 162526, 163100, 164824, 165398, 167122, 173446, 174020, 175744, 181493, 200920, 201494, 202068, 203792, 204366, 206090, 214714, 216438, 217012, 217586, 219310, 219884, 221608, 228507, 229081, 229655, 231379, 231953, 233677, 240001, 240575, 242299, 248048, 262333, 264057, 264631, 265205, 266929, 267503, 269227, 276126, 276700, 277274, 278998, 279572, 281296, 287620, 288194, 289918, 295667, 308260, 308834, 309408, 311132, 311706, 313430, 319754, 320328, 322052, 327801, 339845, 340419, 342143, 347892, 359379];
M(ci) = c(80);
ci = [16675, 33349, 33923, 35647, 49446, 50020, 50594, 52318, 52892, 54616, 63240, 64964, 65538, 66112, 67836, 68410, 70134, 77033, 77607, 78181, 79905, 80479, 82203, 88527, 89101, 90825, 96574, 118843, 119417, 121141, 134940, 135514, 136088, 137812, 138386, 140110, 148734, 150458, 151032, 151606, 153330, 153904, 155628, 162527, 163101, 163675, 165399, 165973, 167697, 174021, 174595, 176319, 182068, 201495, 202069, 202643, 204367, 204941, 206665, 215289, 217013, 217587, 218161, 219885, 220459, 222183, 229082, 229656, 230230, 231954, 232528, 234252, 240576, 241150, 242874, 248623, 262908, 264632, 265206, 265780, 267504, 268078, 269802, 276701, 277275, 277849, 279573, 280147, 281871, 288195, 288769, 290493, 296242, 308835, 309409, 309983, 311707, 312281, 314005, 320329, 320903, 322627, 328376, 340420, 340994, 342718, 348467, 359954];
M(ci) = c(81);
ci = [17250, 33924, 34498, 36222, 50021, 50595, 51169, 52893, 53467, 55191, 63815, 65539, 66113, 66687, 68411, 68985, 70709, 77608, 78182, 78756, 80480, 81054, 82778, 89102, 89676, 91400, 97149, 119418, 119992, 121716, 135515, 136089, 136663, 138387, 138961, 140685, 149309, 151033, 151607, 152181, 153905, 154479, 156203, 163102, 163676, 164250, 165974, 166548, 168272, 174596, 175170, 176894, 182643, 202070, 202644, 203218, 204942, 205516, 207240, 215864, 217588, 218162, 218736, 220460, 221034, 222758, 229657, 230231, 230805, 232529, 233103, 234827, 241151, 241725, 243449, 249198, 263483, 265207, 265781, 266355, 268079, 268653, 270377, 277276, 277850, 278424, 280148, 280722, 282446, 288770, 289344, 291068, 296817, 309410, 309984, 310558, 312282, 312856, 314580, 320904, 321478, 323202, 328951, 340995, 341569, 343293, 349042, 360529];
M(ci) = c(82);
ci = [17825, 35074, 35648, 36797, 51746, 52320, 52894, 54043, 54617, 55766, 66115, 67264, 67838, 68412, 69561, 70135, 71284, 79333, 79907, 80481, 81630, 82204, 83353, 90252, 90826, 91975, 97724, 120568, 121142, 122291, 137240, 137814, 138388, 139537, 140111, 141260, 151609, 152758, 153332, 153906, 155055, 155629, 156778, 164827, 165401, 165975, 167124, 167698, 168847, 175746, 176320, 177469, 183218, 203795, 204369, 204943, 206092, 206666, 207815, 218164, 219313, 219887, 220461, 221610, 222184, 223333, 231382, 231956, 232530, 233679, 234253, 235402, 242301, 242875, 244024, 249773, 265783, 266932, 267506, 268080, 269229, 269803, 270952, 279001, 279575, 280149, 281298, 281872, 283021, 289920, 290494, 291643, 297392, 311135, 311709, 312283, 313432, 314006, 315155, 322054, 322628, 323777, 329526, 342145, 342719, 343868, 349617, 361104];
M(ci) = c(83);
ci = [18400, 35649, 36223, 37372, 52321, 52895, 53469, 54618, 55192, 56341, 66690, 67839, 68413, 68987, 70136, 70710, 71859, 79908, 80482, 81056, 82205, 82779, 83928, 90827, 91401, 92550, 98299, 121143, 121717, 122866, 137815, 138389, 138963, 140112, 140686, 141835, 152184, 153333, 153907, 154481, 155630, 156204, 157353, 165402, 165976, 166550, 167699, 168273, 169422, 176321, 176895, 178044, 183793, 204370, 204944, 205518, 206667, 207241, 208390, 218739, 219888, 220462, 221036, 222185, 222759, 223908, 231957, 232531, 233105, 234254, 234828, 235977, 242876, 243450, 244599, 250348, 266358, 267507, 268081, 268655, 269804, 270378, 271527, 279576, 280150, 280724, 281873, 282447, 283596, 290495, 291069, 292218, 297967, 311710, 312284, 312858, 314007, 314581, 315730, 322629, 323203, 324352, 330101, 342720, 343294, 344443, 350192, 361679];
M(ci) = c(84);
ci = [18975, 36799, 37373, 37947, 54046, 54620, 55194, 55768, 56342, 56916, 68990, 69564, 70138, 70712, 71286, 71860, 72434, 81633, 82207, 82781, 83355, 83929, 84503, 91977, 92551, 93125, 98874, 122293, 122867, 123441, 139540, 140114, 140688, 141262, 141836, 142410, 154484, 155058, 155632, 156206, 156780, 157354, 157928, 167127, 167701, 168275, 168849, 169423, 169997, 177471, 178045, 178619, 184368, 206095, 206669, 207243, 207817, 208391, 208965, 221039, 221613, 222187, 222761, 223335, 223909, 224483, 233682, 234256, 234830, 235404, 235978, 236552, 244026, 244600, 245174, 250923, 268658, 269232, 269806, 270380, 270954, 271528, 272102, 281301, 281875, 282449, 283023, 283597, 284171, 291645, 292219, 292793, 298542, 313435, 314009, 314583, 315157, 315731, 316305, 323779, 324353, 324927, 330676, 343870, 344444, 345018, 350767, 362254];
M(ci) = c(85);
ci = [35075, 51749, 52323, 54047, 64396, 64970, 65544, 67268, 67842, 69566, 74740, 76464, 77038, 77612, 79336, 79910, 81634, 85083, 85657, 86231, 87955, 88529, 90253, 93702, 94276, 96000, 99449, 137243, 137817, 139541, 149890, 150464, 151038, 152762, 153336, 155060, 160234, 161958, 162532, 163106, 164830, 165404, 167128, 170577, 171151, 171725, 173449, 174023, 175747, 179196, 179770, 181494, 184943, 216445, 217019, 217593, 219317, 219891, 221615, 226789, 228513, 229087, 229661, 231385, 231959, 233683, 237132, 237706, 238280, 240004, 240578, 242302, 245751, 246325, 248049, 251498, 274408, 276132, 276706, 277280, 279004, 279578, 281302, 284751, 285325, 285899, 287623, 288197, 289921, 293370, 293944, 295668, 299117, 316885, 317459, 318033, 319757, 320331, 322055, 325504, 326078, 327802, 331251, 345595, 346169, 347893, 351342, 362829];
M(ci) = c(86);
ci = [35650, 52324, 52898, 54622, 64971, 65545, 66119, 67843, 68417, 70141, 75315, 77039, 77613, 78187, 79911, 80485, 82209, 85658, 86232, 86806, 88530, 89104, 90828, 94277, 94851, 96575, 100024, 137818, 138392, 140116, 150465, 151039, 151613, 153337, 153911, 155635, 160809, 162533, 163107, 163681, 165405, 165979, 167703, 171152, 171726, 172300, 174024, 174598, 176322, 179771, 180345, 182069, 185518, 217020, 217594, 218168, 219892, 220466, 222190, 227364, 229088, 229662, 230236, 231960, 232534, 234258, 237707, 238281, 238855, 240579, 241153, 242877, 246326, 246900, 248624, 252073, 274983, 276707, 277281, 277855, 279579, 280153, 281877, 285326, 285900, 286474, 288198, 288772, 290496, 293945, 294519, 296243, 299692, 317460, 318034, 318608, 320332, 320906, 322630, 326079, 326653, 328377, 331826, 346170, 346744, 348468, 351917, 363404];
M(ci) = c(87);
ci = [36225, 52899, 53473, 55197, 65546, 66120, 66694, 68418, 68992, 70716, 75890, 77614, 78188, 78762, 80486, 81060, 82784, 86233, 86807, 87381, 89105, 89679, 91403, 94852, 95426, 97150, 100599, 138393, 138967, 140691, 151040, 151614, 152188, 153912, 154486, 156210, 161384, 163108, 163682, 164256, 165980, 166554, 168278, 171727, 172301, 172875, 174599, 175173, 176897, 180346, 180920, 182644, 186093, 217595, 218169, 218743, 220467, 221041, 222765, 227939, 229663, 230237, 230811, 232535, 233109, 234833, 238282, 238856, 239430, 241154, 241728, 243452, 246901, 247475, 249199, 252648, 275558, 277282, 277856, 278430, 280154, 280728, 282452, 285901, 286475, 287049, 288773, 289347, 291071, 294520, 295094, 296818, 300267, 318035, 318609, 319183, 320907, 321481, 323205, 326654, 327228, 328952, 332401, 346745, 347319, 349043, 352492, 363979];
M(ci) = c(88);
ci = [36800, 54049, 54623, 55772, 67271, 67845, 68419, 69568, 70142, 71291, 78190, 79339, 79913, 80487, 81636, 82210, 83359, 87958, 88532, 89106, 90255, 90829, 91978, 96002, 96576, 97725, 101174, 139543, 140117, 141266, 152765, 153339, 153913, 155062, 155636, 156785, 163684, 164833, 165407, 165981, 167130, 167704, 168853, 173452, 174026, 174600, 175749, 176323, 177472, 181496, 182070, 183219, 186668, 219320, 219894, 220468, 221617, 222191, 223340, 230239, 231388, 231962, 232536, 233685, 234259, 235408, 240007, 240581, 241155, 242304, 242878, 244027, 248051, 248625, 249774, 253223, 277858, 279007, 279581, 280155, 281304, 281878, 283027, 287626, 288200, 288774, 289923, 290497, 291646, 295670, 296244, 297393, 300842, 319760, 320334, 320908, 322057, 322631, 323780, 327804, 328378, 329527, 332976, 347895, 348469, 349618, 353067, 364554];
M(ci) = c(89);
ci = [37375, 54624, 55198, 56347, 67846, 68420, 68994, 70143, 70717, 71866, 78765, 79914, 80488, 81062, 82211, 82785, 83934, 88533, 89107, 89681, 90830, 91404, 92553, 96577, 97151, 98300, 101749, 140118, 140692, 141841, 153340, 153914, 154488, 155637, 156211, 157360, 164259, 165408, 165982, 166556, 167705, 168279, 169428, 174027, 174601, 175175, 176324, 176898, 178047, 182071, 182645, 183794, 187243, 219895, 220469, 221043, 222192, 222766, 223915, 230814, 231963, 232537, 233111, 234260, 234834, 235983, 240582, 241156, 241730, 242879, 243453, 244602, 248626, 249200, 250349, 253798, 278433, 279582, 280156, 280730, 281879, 282453, 283602, 288201, 288775, 289349, 290498, 291072, 292221, 296245, 296819, 297968, 301417, 320335, 320909, 321483, 322632, 323206, 324355, 328379, 328953, 330102, 333551, 348470, 349044, 350193, 353642, 365129];
M(ci) = c(90);
ci = [37950, 55774, 56348, 56922, 69571, 70145, 70719, 71293, 71867, 72441, 81065, 81639, 82213, 82787, 83361, 83935, 84509, 90258, 90832, 91406, 91980, 92554, 93128, 97727, 98301, 98875, 102324, 141268, 141842, 142416, 155065, 155639, 156213, 156787, 157361, 157935, 166559, 167133, 167707, 168281, 168855, 169429, 170003, 175752, 176326, 176900, 177474, 178048, 178622, 183221, 183795, 184369, 187818, 221620, 222194, 222768, 223342, 223916, 224490, 233114, 233688, 234262, 234836, 235410, 235984, 236558, 242307, 242881, 243455, 244029, 244603, 245177, 249776, 250350, 250924, 254373, 280733, 281307, 281881, 282455, 283029, 283603, 284177, 289926, 290500, 291074, 291648, 292222, 292796, 297395, 297969, 298543, 301992, 322060, 322634, 323208, 323782, 324356, 324930, 329529, 330103, 330677, 334126, 349620, 350194, 350768, 354217, 365704];
M(ci) = c(91);
ci = [55775, 69574, 70148, 71297, 79346, 79920, 80494, 81643, 82217, 83366, 86815, 87964, 88538, 89112, 90261, 90835, 91984, 93708, 94282, 94856, 96005, 96579, 97728, 99452, 100026, 101175, 102899, 155068, 155642, 156791, 164840, 165414, 165988, 167137, 167711, 168860, 172309, 173458, 174032, 174606, 175755, 176329, 177478, 179202, 179776, 180350, 181499, 182073, 183222, 184946, 185520, 186669, 188393, 231395, 231969, 232543, 233692, 234266, 235415, 238864, 240013, 240587, 241161, 242310, 242884, 244033, 245757, 246331, 246905, 248054, 248628, 249777, 251501, 252075, 253224, 254948, 286483, 287632, 288206, 288780, 289929, 290503, 291652, 293376, 293950, 294524, 295673, 296247, 297396, 299120, 299694, 300843, 302567, 325510, 326084, 326658, 327807, 328381, 329530, 331254, 331828, 332977, 334701, 351345, 351919, 353068, 354792, 366279];
M(ci) = c(92);
ci = [56350, 70149, 70723, 71872, 79921, 80495, 81069, 82218, 82792, 83941, 87390, 88539, 89113, 89687, 90836, 91410, 92559, 94283, 94857, 95431, 96580, 97154, 98303, 100027, 100601, 101750, 103474, 155643, 156217, 157366, 165415, 165989, 166563, 167712, 168286, 169435, 172884, 174033, 174607, 175181, 176330, 176904, 178053, 179777, 180351, 180925, 182074, 182648, 183797, 185521, 186095, 187244, 188968, 231970, 232544, 233118, 234267, 234841, 235990, 239439, 240588, 241162, 241736, 242885, 243459, 244608, 246332, 246906, 247480, 248629, 249203, 250352, 252076, 252650, 253799, 255523, 287058, 288207, 288781, 289355, 290504, 291078, 292227, 293951, 294525, 295099, 296248, 296822, 297971, 299695, 300269, 301418, 303142, 326085, 326659, 327233, 328382, 328956, 330105, 331829, 332403, 333552, 335276, 351920, 352494, 353643, 355367, 366854];
M(ci) = c(93);
ci = [56925, 71299, 71873, 72447, 81646, 82220, 82794, 83368, 83942, 84516, 89690, 90264, 90838, 91412, 91986, 92560, 93134, 96008, 96582, 97156, 97730, 98304, 98878, 101177, 101751, 102325, 104049, 156793, 157367, 157941, 167140, 167714, 168288, 168862, 169436, 170010, 175184, 175758, 176332, 176906, 177480, 178054, 178628, 181502, 182076, 182650, 183224, 183798, 184372, 186671, 187245, 187819, 189543, 233695, 234269, 234843, 235417, 235991, 236565, 241739, 242313, 242887, 243461, 244035, 244609, 245183, 248057, 248631, 249205, 249779, 250353, 250927, 253226, 253800, 254374, 256098, 289358, 289932, 290506, 291080, 291654, 292228, 292802, 295676, 296250, 296824, 297398, 297972, 298546, 300845, 301419, 301993, 303717, 327810, 328384, 328958, 329532, 330106, 330680, 332979, 333553, 334127, 335851, 353070, 353644, 354218, 355942, 367429];
M(ci) = c(94);
ci = [72450, 83374, 83948, 84522, 90271, 90845, 91419, 91993, 92567, 93141, 95440, 96014, 96588, 97162, 97736, 98310, 98884, 99458, 100032, 100606, 101180, 101754, 102328, 102902, 103476, 104050, 104624, 168868, 169442, 170016, 175765, 176339, 176913, 177487, 178061, 178635, 180934, 181508, 182082, 182656, 183230, 183804, 184378, 184952, 185526, 186100, 186674, 187248, 187822, 188396, 188970, 189544, 190118, 242320, 242894, 243468, 244042, 244616, 245190, 247489, 248063, 248637, 249211, 249785, 250359, 250933, 251507, 252081, 252655, 253229, 253803, 254377, 254951, 255525, 256099, 256673, 295108, 295682, 296256, 296830, 297404, 297978, 298552, 299126, 299700, 300274, 300848, 301422, 301996, 302570, 303144, 303718, 304292, 331260, 331834, 332408, 332982, 333556, 334130, 334704, 335278, 335852, 336426, 354795, 355369, 355943, 356517, 368004];
M(ci) = c(95);
ci = [208150, 221949, 222523, 223672, 231721, 232295, 232869, 234018, 234592, 235741, 239190, 240339, 240913, 241487, 242636, 243210, 244359, 246083, 246657, 247231, 248380, 248954, 250103, 251827, 252401, 253550, 255274, 269493, 270067, 271216, 279265, 279839, 280413, 281562, 282136, 283285, 286734, 287883, 288457, 289031, 290180, 290754, 291903, 293627, 294201, 294775, 295924, 296498, 297647, 299371, 299945, 301094, 302818, 311320, 311894, 312468, 313617, 314191, 315340, 318789, 319938, 320512, 321086, 322235, 322809, 323958, 325682, 326256, 326830, 327979, 328553, 329702, 331426, 332000, 333149, 334873, 338808, 339957, 340531, 341105, 342254, 342828, 343977, 345701, 346275, 346849, 347998, 348572, 349721, 351445, 352019, 353168, 354892, 357135, 357709, 358283, 359432, 360006, 361155, 362879, 363453, 364602, 366326, 368595, 369169, 370318, 372042, 374329];
M(ci) = c(96);
ci = [208725, 222524, 223098, 224247, 232296, 232870, 233444, 234593, 235167, 236316, 239765, 240914, 241488, 242062, 243211, 243785, 244934, 246658, 247232, 247806, 248955, 249529, 250678, 252402, 252976, 254125, 255849, 270068, 270642, 271791, 279840, 280414, 280988, 282137, 282711, 283860, 287309, 288458, 289032, 289606, 290755, 291329, 292478, 294202, 294776, 295350, 296499, 297073, 298222, 299946, 300520, 301669, 303393, 311895, 312469, 313043, 314192, 314766, 315915, 319364, 320513, 321087, 321661, 322810, 323384, 324533, 326257, 326831, 327405, 328554, 329128, 330277, 332001, 332575, 333724, 335448, 339383, 340532, 341106, 341680, 342829, 343403, 344552, 346276, 346850, 347424, 348573, 349147, 350296, 352020, 352594, 353743, 355467, 357710, 358284, 358858, 360007, 360581, 361730, 363454, 364028, 365177, 366901, 369170, 369744, 370893, 372617, 374904];
M(ci) = c(97);
ci = [209300, 223674, 224248, 224822, 234021, 234595, 235169, 235743, 236317, 236891, 242065, 242639, 243213, 243787, 244361, 244935, 245509, 248383, 248957, 249531, 250105, 250679, 251253, 253552, 254126, 254700, 256424, 271218, 271792, 272366, 281565, 282139, 282713, 283287, 283861, 284435, 289609, 290183, 290757, 291331, 291905, 292479, 293053, 295927, 296501, 297075, 297649, 298223, 298797, 301096, 301670, 302244, 303968, 313620, 314194, 314768, 315342, 315916, 316490, 321664, 322238, 322812, 323386, 323960, 324534, 325108, 327982, 328556, 329130, 329704, 330278, 330852, 333151, 333725, 334299, 336023, 341683, 342257, 342831, 343405, 343979, 344553, 345127, 348001, 348575, 349149, 349723, 350297, 350871, 353170, 353744, 354318, 356042, 359435, 360009, 360583, 361157, 361731, 362305, 364604, 365178, 365752, 367476, 370320, 370894, 371468, 373192, 375479];
M(ci) = c(98);
ci = [224825, 235749, 236323, 236897, 242646, 243220, 243794, 244368, 244942, 245516, 247815, 248389, 248963, 249537, 250111, 250685, 251259, 251833, 252407, 252981, 253555, 254129, 254703, 255277, 255851, 256425, 256999, 283293, 283867, 284441, 290190, 290764, 291338, 291912, 292486, 293060, 295359, 295933, 296507, 297081, 297655, 298229, 298803, 299377, 299951, 300525, 301099, 301673, 302247, 302821, 303395, 303969, 304543, 322245, 322819, 323393, 323967, 324541, 325115, 327414, 327988, 328562, 329136, 329710, 330284, 330858, 331432, 332006, 332580, 333154, 333728, 334302, 334876, 335450, 336024, 336598, 347433, 348007, 348581, 349155, 349729, 350303, 350877, 351451, 352025, 352599, 353173, 353747, 354321, 354895, 355469, 356043, 356617, 362885, 363459, 364033, 364607, 365181, 365755, 366329, 366903, 367477, 368051, 372045, 372619, 373193, 373767, 376054];
M(ci) = c(99);
ci = [272550, 283474, 284048, 284622, 290371, 290945, 291519, 292093, 292667, 293241, 295540, 296114, 296688, 297262, 297836, 298410, 298984, 299558, 300132, 300706, 301280, 301854, 302428, 303002, 303576, 304150, 304724, 315493, 316067, 316641, 322390, 322964, 323538, 324112, 324686, 325260, 327559, 328133, 328707, 329281, 329855, 330429, 331003, 331577, 332151, 332725, 333299, 333873, 334447, 335021, 335595, 336169, 336743, 342370, 342944, 343518, 344092, 344666, 345240, 347539, 348113, 348687, 349261, 349835, 350409, 350983, 351557, 352131, 352705, 353279, 353853, 354427, 355001, 355575, 356149, 356723, 358933, 359507, 360081, 360655, 361229, 361803, 362377, 362951, 363525, 364099, 364673, 365247, 365821, 366395, 366969, 367543, 368117, 368635, 369209, 369783, 370357, 370931, 371505, 372079, 372653, 373227, 373801, 374345, 374919, 375493, 376067, 376629];
M(ci) = c(100);
%Mr = rref(M); % replace me with a MEX
index1 = [1:330, 332:443, 448:520, 531:570, 587:598, 602:605, 622:625];
index2 = [656 655 654 653 652 651 650 649 648 647 646 645 644 643 642 641 640 639 638 637 636 635 634 633 632 631 630 629 628 627 626 621 620 619 618 617 616 615 614 613 612 611 610 609 608 607 606 601 600 599 586 585 584 583 582 581 580 579 578 577 576 575 574 573 572 571 530 529 528 527 526 525 524 523 522 521 447 446 445 444 331];
Mr = M(:,index1)\M(:,index2);
A = zeros(81);
%amcols = [656 655 654 653 652 651 650 649 648 647 646 645 644 643 642 641 640 639 638 637 636 635 634 633 632 631 630 629 628 627 626 621 620 619 618 617 616 615 614 613 612 611 610 609 608 607 606 601 600 599 586 585 584 583 582 581 580 579 578 577 576 575 574 573 572 571 530 529 528 527 526 525 524 523 522 521 447 446 445 444 331];
A(1, 5) = 1;
A(2, 9) = 1;
A(3, 12) = 1;
A(4, 14) = 1;
A(5, 15) = 1;
A(6, 19) = 1;
A(7, 22) = 1;
A(8, 24) = 1;
A(9, 25) = 1;
A(10, 28) = 1;
A(11, 30) = 1;
A(12, 31) = 1;
A(13, :) = -Mr(574, :);
A(14, :) = -Mr(573, :);
A(15, :) = -Mr(572, :);
A(16, 35) = 1;
A(17, 38) = 1;
A(18, 40) = 1;
A(19, 41) = 1;
A(20, 44) = 1;
A(21, 46) = 1;
A(22, 47) = 1;
A(23, :) = -Mr(570, :);
A(24, :) = -Mr(569, :);
A(25, :) = -Mr(568, :);
A(26, 50) = 1;
A(27, :) = -Mr(566, :);
A(28, :) = -Mr(565, :);
A(29, :) = -Mr(563, :);
A(30, :) = -Mr(562, :);
A(31, :) = -Mr(561, :);
A(32, 54) = 1;
A(33, 57) = 1;
A(34, 59) = 1;
A(35, 60) = 1;
A(36, 63) = 1;
A(37, 65) = 1;
A(38, 66) = 1;
A(39, :) = -Mr(554, :);
A(40, :) = -Mr(553, :);
A(41, :) = -Mr(552, :);
A(42, :) = -Mr(549, :);
A(43, :) = -Mr(547, :);
A(44, :) = -Mr(546, :);
A(45, :) = -Mr(544, :);
A(46, :) = -Mr(543, :);
A(47, :) = -Mr(542, :);
A(48, :) = -Mr(534, :);
A(49, :) = -Mr(532, :);
A(50, :) = -Mr(531, :);
A(51, 70) = 1;
A(52, 73) = 1;
A(53, 75) = 1;
A(54, 76) = 1;
A(55, :) = -Mr(513, :);
A(56, :) = -Mr(511, :);
A(57, :) = -Mr(510, :);
A(58, :) = -Mr(508, :);
A(59, :) = -Mr(507, :);
A(60, :) = -Mr(506, :);
A(61, :) = -Mr(503, :);
A(62, :) = -Mr(501, :);
A(63, :) = -Mr(500, :);
A(64, :) = -Mr(498, :);
A(65, :) = -Mr(497, :);
A(66, :) = -Mr(496, :);
A(67, 80) = 1;
A(68, :) = -Mr(440, :);
A(69, :) = -Mr(438, :);
A(70, :) = -Mr(437, :);
A(71, :) = -Mr(434, :);
A(72, :) = -Mr(432, :);
A(73, :) = -Mr(431, :);
A(74, :) = -Mr(429, :);
A(75, :) = -Mr(428, :);
A(76, :) = -Mr(427, :);
A(77, :) = -Mr(328, :);
A(78, :) = -Mr(325, :);
A(79, :) = -Mr(323, :);
A(80, :) = -Mr(322, :);
A(81, :) = -Mr(179, :);
[V D] = eig(A);
sol = V([5, 4, 3, 2],:)./(ones(4, 1)*V(1,:));
if (find(isnan(sol(:))) > 0)
b = [];
a = [];
c = [];
d = [];
else
I = find(not(imag( sol(1,:) )));
b = sol(1,I);
a = sol(2,I);
c = sol(3,I);
d = sol(4,I);
end
end
|
github | urbste/MLPnP_matlab_toolbox-master | quaternion2matrix.m | .m | MLPnP_matlab_toolbox-master/OPnP/quaternion2matrix.m | 1,431 | utf_8 | 49448898df2a32720040da4eb82aced9 | % QUATERNION2MATRIX - Quaternion to a 4x4 homogeneous transformation matrix
%
% Usage: T = quaternion2matrix(Q)
%
% Argument: Q - a quaternion in the form [w xi yj zk]
% Returns: T - 4x4 Homogeneous rotation matrix
%
% See also MATRIX2QUATERNION, NEWQUATERNION, QUATERNIONROTATE
% Copyright (c) 2008 Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% The Software is provided "as is", without warranty of any kind.
function T = quaternion2matrix(Q)
Q = Q/norm(Q); % Ensure Q has unit norm
% Set up convenience variables
w = Q(1); x = Q(2); y = Q(3); z = Q(4);
w2 = w^2; x2 = x^2; y2 = y^2; z2 = z^2;
xy = x*y; xz = x*z; yz = y*z;
wx = w*x; wy = w*y; wz = w*z;
T = [w2+x2-y2-z2 , 2*(xy - wz) , 2*(wy + xz) , 0
2*(wz + xy) , w2-x2+y2-z2 , 2*(yz - wx) , 0
2*(xz - wy) , 2*(wx + yz) , w2-x2-y2+z2 , 0
0 , 0 , 0 , 1];
T = T(1:3,1:3);
end |
github | urbste/MLPnP_matlab_toolbox-master | CEPPnP.m | .m | MLPnP_matlab_toolbox-master/CEPPnP/CEPPnP.m | 1,516 | utf_8 | 862e2e8d00285510a4f31b17bc47c70c | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This toolbox illustrates how to use the CEPPnP
% algorithms described in:
%
% Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer.
% Leveraging Feature Uncertainty in the PnP Problem.
% In Proceedings of BMVC, 2014.
%
% Copyright (C) <2014> <Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the version 3 of the GNU General Public License
% as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Luis Ferraz, CMTech-UPF, September 2014.
% [email protected],http://cmtech.upf.edu/user/62
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R,T, err] = CEPPnP(Pts,impts,Cu)
sol_iter = 1; %indicates if the initial solution must be optimized
dims = 4; %kernel dimensions
%Compute M
[M, dM, Cw, Alph] = PrepareData2(Pts,impts);
[~,~,Km] = svd(M'*M);
[~,tKm,~] = FNSani(M,dM,Cu,Km(:,end));
Km = tKm(:,[end-dims+1:end]);
[R, T, err] = KernelPnP(Cw, Km, dims, sol_iter);
end
|
github | urbste/MLPnP_matlab_toolbox-master | CEPPnP_planar.m | .m | MLPnP_matlab_toolbox-master/CEPPnP/CEPPnP_planar.m | 2,096 | utf_8 | e3a6a69fbe1af233d45a921e01811d70 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This toolbox illustrates how to use the CEPPnP
% algorithms described in:
%
% Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer.
% Leveraging Feature Uncertainty in the PnP Problem.
% In Proceedings of BMVC, 2014.
%
% Copyright (C) <2014> <Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the version 3 of the GNU General Public License
% as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Luis Ferraz, CMTech-UPF, September 2014.
% [email protected],http://cmtech.upf.edu/user/62
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R,T, err] = CEPPnP(Pts,impts,Cu)
sol_iter = 1; %indicates if the initial solution must be optimized
dims = 3; %kernel dimensions
% meanPts = mean(Pts,2);
% mPts = Pts-repmat(meanPts,1,size(Pts,2));
%Compute M
[M, dM, Cw, ~] = PrepareData2(Pts,impts);
idx = find(sum((reshape(sum(M.^2),[3,4])))<0.001);
if(~isempty(idx))
if (idx == 1)
M = M(:,[4:12]);
dM = dM(:,[4:12]);
Cw = Cw(:,[2,3,4]);
elseif (idx ==2)
M = M(:,[1:3,7:12]);
dM = dM(:,[1:3,7:12]);
Cw = Cw(:,[1,3,4]);
else
M = M(:,[1:6,10:12]);
dM = dM(:,[1:6,10:12]);
Cw = Cw(:,[1,2,4]);
end
end
[~,~,Km] = svd(M'*M);
[~,tKm,~] = FNSani(M,dM,Cu,Km(:,end));
Km = tKm(:,[end-dims+1:end]);
[R, T, err] = KernelPnP(Cw, Km, dims, sol_iter);
% T = T - R * meanPts;
end
|
github | urbste/MLPnP_matlab_toolbox-master | PrepareData2.m | .m | MLPnP_matlab_toolbox-master/CEPPnP/PrepareData2.m | 1,772 | utf_8 | 2d6d732658041c8b2179aa3803dda9c7 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This toolbox illustrates how to use the CEPPnP
% algorithms described in:
%
% Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer.
% Leveraging Feature Uncertainty in the PnP Problem.
% In Proceedings of BMVC, 2014.
%
% Copyright (C) <2014> <Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the version 3 of the GNU General Public License
% as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Luis Ferraz, CMTech-UPF, September 2014.
% [email protected],http://cmtech.upf.edu/user/62
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [M, dM, Cw, Alph] = PrepareData(Pts,impts,Cw)
if ~exist('Cw','var')
Cw=define_control_points()';
end
Xw=Pts';
U=impts;
%compute alphas (linear combination of the control points to represent the 3d points)
Alph=compute_alphas(Xw,Cw');
%Compute M
M =ComputeM(U(:),Alph);
%Compute gradient of M
dM =ComputedM(Alph);
end
function M = ComputeM(U,Alph)
%ATTENTION U must be multiplied by K previously
M = kron(Alph,[1 0 -1; 0 1 -1]);
M(:,[[3,6,9,12]]) = M(:,[3,6,9,12]) .* (U * ones(1,4));
end
function dM = ComputedM(Alph)
dM = kron(Alph,[0 0 -1; 0 0 -1]);
end |
github | urbste/MLPnP_matlab_toolbox-master | FNSani.m | .m | MLPnP_matlab_toolbox-master/CEPPnP/FNSani.m | 3,016 | utf_8 | 80213643eb98be64bbcdd0f7c5415f7e | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This toolbox illustrates how to use the CEPPnP
% algorithms described in:
%
% Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer.
% Leveraging Feature Uncertainty in the PnP Problem.
% In Proceedings of BMVC, 2014.
%
% Copyright (C) <2014> <Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the version 3 of the GNU General Public License
% as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Luis Ferraz, CMTech-UPF, September 2014.
% [email protected],http://cmtech.upf.edu/user/62
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ resTheta, vecTheta, valTheta] = FNS(M,dM,Cu,Vn)
%% Fundamental Numerical Scheme
nU = size(M,1)/2;
nV = size(M,2);
W = ones(1,nU);
CMu2 = zeros(nV,nV*nU);
M22 = zeros(nV,nV*nU);
tones = ones(nV,nV);
Mt = M';
dMt = dM';
ssCu = sqrt(squeeze([sum(sum(Cu(:,:,:)))])'); %sum(sum(Cu(:,:,j)))
ssCu = [ssCu; ssCu];
ssCu = repmat(ssCu(:)',nV,1);
dMt = dMt .* ssCu;
tdMt = dMt(:,1:2:2*nU);
idx = 1:nV*nU;
idx = reshape(idx,nV,nU);
mMt = reshape(Mt,nV,2,nU);
for id = 1:nU
dMit = tdMt(:,id);
CMu2(:,idx(:,id)) = dMit * dMit';
Mti = mMt(:,:,id);
M22(:,idx(:,id)) = Mti * Mti';
end
%indices for kronecker product
ma = 1;
na = nU;
mb = nV;
nb = nV;
[ia,ib] = meshgrid(1:ma,1:mb);
[ja,jb] = meshgrid(1:na,1:nb);
for it = 1:100
% 2.- Compute
Vnt = Vn';
W = Vnt * reshape(Vnt * CMu2,nV,nU);
W = 1./W;
W = W./norm(W);
W2 = W.^2;
%hessian
%"for" unfolding
tW = W(ia,ja).*tones(ib,jb);
tW2 = W2(ia,ja).*tones(ib,jb);
tN = M22.*tW;
N = sum(reshape(tN,nV,nV,nU),3);
tCMuW2 = CMu2 .* tW2;
VntM2Vn = Vnt * reshape(Vnt * M22,nV,nU);
tVntM2Vn = VntM2Vn(ia,ja).*tones(ib,jb); %kron(VntM2Vn,tones);
tL = tVntM2Vn .* tCMuW2;
L = sum(reshape(full(tL),nV,nV,nU),3);
[~,s,v] = svd(N-L);
rv = real(v(:,end));
% 4.- If Theta = Theta0 up to sign => stop
if sum(abs(sign(Vn) - sign(rv(:,1)))) < eps
break;
else
Vn = rv(:,1);
end
end
resTheta = Vn;
vecTheta = v;
valTheta = s;
end |
github | urbste/MLPnP_matlab_toolbox-master | robust_dls_pnp.m | .m | MLPnP_matlab_toolbox-master/dls_pnp_matlab/robust_dls_pnp.m | 1,864 | utf_8 | 4a3e052a96136d67b99b5dcbb76cf155 | function [C_est, t_est, cost, flag] = robust_dls_pnp(p, z)
C_temp1 = zeros(3,3,0); t_temp1 = zeros(3,0);
C_temp2 = zeros(3,3,0); t_temp2 = zeros(3,0);
R = cat(3, rotx(pi/2), roty(pi/2), rotz(pi/2));
t = mean(p,2);
cost = inf;
for i = 1:3
% Make a random rotation
pp = R(:,:,i) * (p - repmat(t, 1, size(p,2)));
[C_est_i, t_est_i, cost_i, flag_i] = dls_pnp(pp, z);
for j = 1:length(cost_i)
t_est_i(:,j) = t_est_i(:,j) - C_est_i(:,:,j) * R(:,:,i) * t;
C_est_i(:,:,j) = C_est_i(:,:,j) * R(:,:,i);
end
% if min(cost_i) < min(cost)
% C_est = C_est_i;
% t_est = t_est_i;
% cost = cost_i;
% flag = flag_i;
% end
min_cost_i = min(cost_i);
index = find(cost_i < min_cost_i*2);
C_temp1 = cat(3,C_temp1, C_est_i(:,:,index));
t_temp1 = [t_temp1 t_est_i(:,index)];
C_temp2 = cat(3,C_temp2, C_est_i);
t_temp2 = [t_temp2 t_est_i];
end
if size(p,2) <= 6
C_est = C_temp1;
t_est = t_temp1;
else
%since there are three different objectives in DLS+++,
%we should use a single objective to select the final solution.
%here, we use the reprojection error.
for i = 1:size(C_temp2,3)
proj = C_temp2(:,:,i)*p + t_temp2(:,i)*ones(1,size(p,2));
proj = proj(1:2,:)./repmat(proj(3,:),2,1);
cost_i = norm(z-proj,'fro');
if cost_i < cost
C_est = C_temp2(:,:,i);
t_est = t_temp2(:,i);
cost = cost_i;
end
end
end
end
function r = rotx(t)
ct = cos(t);
st = sin(t);
r = [1 0 0;
0 ct -st;
0 st ct];
end
function r = roty(t)
% roty: rotation about y-axi-
ct = cos(t);
st = sin(t);
r = [ct 0 st;
0 1 0;
-st 0 ct];
end
function r = rotz(t)
% rotz: rotation about z-axis
ct = cos(t);
st = sin(t);
r = [ct -st 0
st ct 0
0 0 1];
end
|
github | urbste/MLPnP_matlab_toolbox-master | rws.m | .m | MLPnP_matlab_toolbox-master/dls_pnp_matlab/rws.m | 1,946 | utf_8 | 24dabc05143cbf2c126ab352eb83b32f | function [C, t, p, z] = rws(N, sigma)
% this function generates a random camera pose, along with N random points,
% and also the perspective projections of those points.
% Generate a random global-to-camera rotation. This is the orientation of
% the global frame expressed in the camera frame of refence.
angle = 15;
C = rotx(angle * randn * pi/180 ) * roty( angle * randn * pi/180 );
% Generate a random global-to-camera translation. This is the origin of the
% global frame expressed in the camera frame.
t = randn(3,1);
% Create random 3D points within a 45 deg FOV (vertical and horizontal) of
% the camera. The points are between 0.5 and 5.5 meters from the camera.
Psens = zeros(3,N);
theta = (rand(N,1)*45 - 22.5) * pi/180;
phi = (rand(N,1)*45 - 22.5) * pi/180;
for i = 1:N
psens_unit = rotx(theta(i)) * roty(phi(i)) * [0;0;1];
alpha = rand * 5 + 0.5;
Psens(:,i) = alpha * psens_unit;
end
% Express the points in the global frame of reference
p = C' *(Psens - repmat(t,1,N));
% Construct the vector of perspective projections (i.e., image
% measurements) of the points,
z = zeros(2,N);
for i = 1:N
% create an instance of 2x1 pixel noise
noise = sigma * randn(2,1);
% You can uncomment the following lines in order to limit the noise to +/-
% 3 sigma
%
%
% if abs(noise(1)) > 3 * sigma
% noise(1) = sign(noise(1)) * 3 * sigma;
% end
% if abs(noise(2)) > 3 * sigma
% noise(2) = sign(noise(2)) * 3 * sigma;
% end
% Create the image measurement using the standard pinhole camera model
z(:,i) = [ Psens(1,i) / Psens(3,i) ; Psens(2,i) / Psens(3,i)] + noise;
end
end
function r = rotx(t)
%rotx: rotation around the x-axis
ct = cos(t);
st = sin(t);
r = [1 0 0;
0 ct -st;
0 st ct];
end
function r = roty(t)
% roty: rotation about y-axis
ct = cos(t);
st = sin(t);
r = [ct 0 st;
0 1 0;
-st 0 ct];
end
|
github | urbste/MLPnP_matlab_toolbox-master | dls_pnp_all.m | .m | MLPnP_matlab_toolbox-master/dls_pnp_matlab/dls_pnp_all.m | 52,349 | utf_8 | cfb64972d23830236aafa3ca0ea6ca31 | function [C_est, t_est, cost, flag] = dls_pnp(p, z)
% DLS-PnP:
%
% This function performs the DLS-PnP method introduced at ICCV 2011
% Joel A. Hesch and Stergios I. Roumeliotis. "A direct least-squares (dls)
% solution for PnP". In Proc. of the Int. Conf. on Computer Vision,
% Barcelona, Spain, November 6-13, 2011.
%
% inputs:
% p: 3xN vector of 3D known point features
% z: 2xN vector of correpsonding image measurements (calibrated)
% Check the inputs
if size(z,1) > size(z,2) || size(p,1) > size(p,2)
fprintf('Usage: dls_pnp(p,z) \n p: 3xN matrix of 3D points \n z: 2xN matrix of corresponding 2D image measurements (normalized pixel coordinates)')
end
% make z into unit vectors from normalized pixel coords
z = [z; ones(1,size(z,2))];
z = z./ repmat(sqrt(sum(z.*z,1)),3,1);
% some preliminaries
flag = 0;
N = size(z,2);
% build coeff matrix
% An intermediate matrix, the inverse of what is called "H" in the paper
% (see eq. 25)
H = zeros(3);
for i = 1:N
H = H + eye(3) - z(:,i)*z(:,i)';
end
A = zeros(3,9);
for i = 1:N
A = A + (z(:,i)*z(:,i)' - eye(3)) * LeftMultVec(p(:,i));
end
A = H\A;
D = zeros(9);
for i = 1:N
D = D + (LeftMultVec(p(:,i)) + A)' * (eye(3) - z(:,i)*z(:,i)') * (LeftMultVec(p(:,i)) + A);
end
f1coeff = [2*D(1,6) - 2*D(1,8) + 2*D(5,6) - 2*D(5,8) + 2*D(6,1) + 2*D(6,5) + 2*D(6,9) - 2*D(8,1) - 2*D(8,5) - 2*D(8,9) + 2*D(9,6) - 2*D(9,8); % constant term
(6*D(1,2) + 6*D(1,4) + 6*D(2,1) - 6*D(2,5) - 6*D(2,9) + 6*D(4,1) - 6*D(4,5) - 6*D(4,9) - 6*D(5,2) - 6*D(5,4) - 6*D(9,2) - 6*D(9,4)); % s1^2 * s2
(4*D(1,7) - 4*D(1,3) + 8*D(2,6) - 8*D(2,8) - 4*D(3,1) + 4*D(3,5) + 4*D(3,9) + 8*D(4,6) - 8*D(4,8) + 4*D(5,3) - 4*D(5,7) + 8*D(6,2) + 8*D(6,4) + 4*D(7,1) - 4*D(7,5) - 4*D(7,9) - 8*D(8,2) - 8*D(8,4) + 4*D(9,3) - 4*D(9,7)); % s1 * s2
(4*D(1,2) - 4*D(1,4) + 4*D(2,1) - 4*D(2,5) - 4*D(2,9) + 8*D(3,6) - 8*D(3,8) - 4*D(4,1) + 4*D(4,5) + 4*D(4,9) - 4*D(5,2) + 4*D(5,4) + 8*D(6,3) + 8*D(6,7) + 8*D(7,6) - 8*D(7,8) - 8*D(8,3) - 8*D(8,7) - 4*D(9,2) + 4*D(9,4)); % s1 * s3
(8*D(2,2) - 8*D(3,3) - 8*D(4,4) + 8*D(6,6) + 8*D(7,7) - 8*D(8,8)); % s2 * s3
(4*D(2,6) - 2*D(1,7) - 2*D(1,3) + 4*D(2,8) - 2*D(3,1) + 2*D(3,5) - 2*D(3,9) + 4*D(4,6) + 4*D(4,8) + 2*D(5,3) + 2*D(5,7) + 4*D(6,2) + 4*D(6,4) - 2*D(7,1) + 2*D(7,5) - 2*D(7,9) + 4*D(8,2) + 4*D(8,4) - 2*D(9,3) - 2*D(9,7)); % s2^2 * s3
(2*D(2,5) - 2*D(1,4) - 2*D(2,1) - 2*D(1,2) - 2*D(2,9) - 2*D(4,1) + 2*D(4,5) - 2*D(4,9) + 2*D(5,2) + 2*D(5,4) - 2*D(9,2) - 2*D(9,4)); % s2^3
(4*D(1,9) - 4*D(1,1) + 8*D(3,3) + 8*D(3,7) + 4*D(5,5) + 8*D(7,3) + 8*D(7,7) + 4*D(9,1) - 4*D(9,9)); % s1 * s3^2
(4*D(1,1) - 4*D(5,5) - 4*D(5,9) + 8*D(6,6) - 8*D(6,8) - 8*D(8,6) + 8*D(8,8) - 4*D(9,5) - 4*D(9,9)); % s1
(2*D(1,3) + 2*D(1,7) + 4*D(2,6) - 4*D(2,8) + 2*D(3,1) + 2*D(3,5) + 2*D(3,9) - 4*D(4,6) + 4*D(4,8) + 2*D(5,3) + 2*D(5,7) + 4*D(6,2) - 4*D(6,4) + 2*D(7,1) + 2*D(7,5) + 2*D(7,9) - 4*D(8,2) + 4*D(8,4) + 2*D(9,3) + 2*D(9,7)); % s3
(2*D(1,2) + 2*D(1,4) + 2*D(2,1) + 2*D(2,5) + 2*D(2,9) - 4*D(3,6) + 4*D(3,8) + 2*D(4,1) + 2*D(4,5) + 2*D(4,9) + 2*D(5,2) + 2*D(5,4) - 4*D(6,3) + 4*D(6,7) + 4*D(7,6) - 4*D(7,8) + 4*D(8,3) - 4*D(8,7) + 2*D(9,2) + 2*D(9,4)); % s2
(2*D(2,9) - 2*D(1,4) - 2*D(2,1) - 2*D(2,5) - 2*D(1,2) + 4*D(3,6) + 4*D(3,8) - 2*D(4,1) - 2*D(4,5) + 2*D(4,9) - 2*D(5,2) - 2*D(5,4) + 4*D(6,3) + 4*D(6,7) + 4*D(7,6) + 4*D(7,8) + 4*D(8,3) + 4*D(8,7) + 2*D(9,2) + 2*D(9,4)); % s2 * s3^2
(6*D(1,6) - 6*D(1,8) - 6*D(5,6) + 6*D(5,8) + 6*D(6,1) - 6*D(6,5) - 6*D(6,9) - 6*D(8,1) + 6*D(8,5) + 6*D(8,9) - 6*D(9,6) + 6*D(9,8)); % s1^2
(2*D(1,8) - 2*D(1,6) + 4*D(2,3) + 4*D(2,7) + 4*D(3,2) - 4*D(3,4) - 4*D(4,3) - 4*D(4,7) - 2*D(5,6) + 2*D(5,8) - 2*D(6,1) - 2*D(6,5) + 2*D(6,9) + 4*D(7,2) - 4*D(7,4) + 2*D(8,1) + 2*D(8,5) - 2*D(8,9) + 2*D(9,6) - 2*D(9,8)); % s3^2
(2*D(1,8) - 2*D(1,6) - 4*D(2,3) + 4*D(2,7) - 4*D(3,2) - 4*D(3,4) - 4*D(4,3) + 4*D(4,7) + 2*D(5,6) - 2*D(5,8) - 2*D(6,1) + 2*D(6,5) - 2*D(6,9) + 4*D(7,2) + 4*D(7,4) + 2*D(8,1) - 2*D(8,5) + 2*D(8,9) - 2*D(9,6) + 2*D(9,8)); % s2^2
(2*D(3,9) - 2*D(1,7) - 2*D(3,1) - 2*D(3,5) - 2*D(1,3) - 2*D(5,3) - 2*D(5,7) - 2*D(7,1) - 2*D(7,5) + 2*D(7,9) + 2*D(9,3) + 2*D(9,7)); % s3^3
(4*D(1,6) + 4*D(1,8) + 8*D(2,3) + 8*D(2,7) + 8*D(3,2) + 8*D(3,4) + 8*D(4,3) + 8*D(4,7) - 4*D(5,6) - 4*D(5,8) + 4*D(6,1) - 4*D(6,5) - 4*D(6,9) + 8*D(7,2) + 8*D(7,4) + 4*D(8,1) - 4*D(8,5) - 4*D(8,9) - 4*D(9,6) - 4*D(9,8)); % s1 * s2 * s3
(4*D(1,5) - 4*D(1,1) + 8*D(2,2) + 8*D(2,4) + 8*D(4,2) + 8*D(4,4) + 4*D(5,1) - 4*D(5,5) + 4*D(9,9)); % s1 * s2^2
(6*D(1,3) + 6*D(1,7) + 6*D(3,1) - 6*D(3,5) - 6*D(3,9) - 6*D(5,3) - 6*D(5,7) + 6*D(7,1) - 6*D(7,5) - 6*D(7,9) - 6*D(9,3) - 6*D(9,7)); % s1^2 * s3
(4*D(1,1) - 4*D(1,5) - 4*D(1,9) - 4*D(5,1) + 4*D(5,5) + 4*D(5,9) - 4*D(9,1) + 4*D(9,5) + 4*D(9,9))]; % s1^3
f2coeff = [- 2*D(1,3) + 2*D(1,7) - 2*D(3,1) - 2*D(3,5) - 2*D(3,9) - 2*D(5,3) + 2*D(5,7) + 2*D(7,1) + 2*D(7,5) + 2*D(7,9) - 2*D(9,3) + 2*D(9,7); % constant term
(4*D(1,5) - 4*D(1,1) + 8*D(2,2) + 8*D(2,4) + 8*D(4,2) + 8*D(4,4) + 4*D(5,1) - 4*D(5,5) + 4*D(9,9)); % s1^2 * s2
(4*D(1,8) - 4*D(1,6) - 8*D(2,3) + 8*D(2,7) - 8*D(3,2) - 8*D(3,4) - 8*D(4,3) + 8*D(4,7) + 4*D(5,6) - 4*D(5,8) - 4*D(6,1) + 4*D(6,5) - 4*D(6,9) + 8*D(7,2) + 8*D(7,4) + 4*D(8,1) - 4*D(8,5) + 4*D(8,9) - 4*D(9,6) + 4*D(9,8)); % s1 * s2
(8*D(2,2) - 8*D(3,3) - 8*D(4,4) + 8*D(6,6) + 8*D(7,7) - 8*D(8,8)); % s1 * s3
(4*D(1,4) - 4*D(1,2) - 4*D(2,1) + 4*D(2,5) - 4*D(2,9) - 8*D(3,6) - 8*D(3,8) + 4*D(4,1) - 4*D(4,5) + 4*D(4,9) + 4*D(5,2) - 4*D(5,4) - 8*D(6,3) + 8*D(6,7) + 8*D(7,6) + 8*D(7,8) - 8*D(8,3) + 8*D(8,7) - 4*D(9,2) + 4*D(9,4)); % s2 * s3
(6*D(5,6) - 6*D(1,8) - 6*D(1,6) + 6*D(5,8) - 6*D(6,1) + 6*D(6,5) - 6*D(6,9) - 6*D(8,1) + 6*D(8,5) - 6*D(8,9) - 6*D(9,6) - 6*D(9,8)); % s2^2 * s3
(4*D(1,1) - 4*D(1,5) + 4*D(1,9) - 4*D(5,1) + 4*D(5,5) - 4*D(5,9) + 4*D(9,1) - 4*D(9,5) + 4*D(9,9)); % s2^3
(2*D(2,9) - 2*D(1,4) - 2*D(2,1) - 2*D(2,5) - 2*D(1,2) + 4*D(3,6) + 4*D(3,8) - 2*D(4,1) - 2*D(4,5) + 2*D(4,9) - 2*D(5,2) - 2*D(5,4) + 4*D(6,3) + 4*D(6,7) + 4*D(7,6) + 4*D(7,8) + 4*D(8,3) + 4*D(8,7) + 2*D(9,2) + 2*D(9,4)); % s1 * s3^2
(2*D(1,2) + 2*D(1,4) + 2*D(2,1) + 2*D(2,5) + 2*D(2,9) - 4*D(3,6) + 4*D(3,8) + 2*D(4,1) + 2*D(4,5) + 2*D(4,9) + 2*D(5,2) + 2*D(5,4) - 4*D(6,3) + 4*D(6,7) + 4*D(7,6) - 4*D(7,8) + 4*D(8,3) - 4*D(8,7) + 2*D(9,2) + 2*D(9,4)); % s1
(2*D(1,6) + 2*D(1,8) - 4*D(2,3) + 4*D(2,7) - 4*D(3,2) + 4*D(3,4) + 4*D(4,3) - 4*D(4,7) + 2*D(5,6) + 2*D(5,8) + 2*D(6,1) + 2*D(6,5) + 2*D(6,9) + 4*D(7,2) - 4*D(7,4) + 2*D(8,1) + 2*D(8,5) + 2*D(8,9) + 2*D(9,6) + 2*D(9,8)); % s3
(8*D(3,3) - 4*D(1,9) - 4*D(1,1) - 8*D(3,7) + 4*D(5,5) - 8*D(7,3) + 8*D(7,7) - 4*D(9,1) - 4*D(9,9)); % s2
(4*D(1,1) - 4*D(5,5) + 4*D(5,9) + 8*D(6,6) + 8*D(6,8) + 8*D(8,6) + 8*D(8,8) + 4*D(9,5) - 4*D(9,9)); % s2 * s3^2
(2*D(1,7) - 2*D(1,3) + 4*D(2,6) - 4*D(2,8) - 2*D(3,1) + 2*D(3,5) + 2*D(3,9) + 4*D(4,6) - 4*D(4,8) + 2*D(5,3) - 2*D(5,7) + 4*D(6,2) + 4*D(6,4) + 2*D(7,1) - 2*D(7,5) - 2*D(7,9) - 4*D(8,2) - 4*D(8,4) + 2*D(9,3) - 2*D(9,7)); % s1^2
(2*D(1,3) - 2*D(1,7) + 4*D(2,6) + 4*D(2,8) + 2*D(3,1) + 2*D(3,5) - 2*D(3,9) - 4*D(4,6) - 4*D(4,8) + 2*D(5,3) - 2*D(5,7) + 4*D(6,2) - 4*D(6,4) - 2*D(7,1) - 2*D(7,5) + 2*D(7,9) + 4*D(8,2) - 4*D(8,4) - 2*D(9,3) + 2*D(9,7)); % s3^2
(6*D(1,3) - 6*D(1,7) + 6*D(3,1) - 6*D(3,5) + 6*D(3,9) - 6*D(5,3) + 6*D(5,7) - 6*D(7,1) + 6*D(7,5) - 6*D(7,9) + 6*D(9,3) - 6*D(9,7)); % s2^2
(2*D(6,9) - 2*D(1,8) - 2*D(5,6) - 2*D(5,8) - 2*D(6,1) - 2*D(6,5) - 2*D(1,6) - 2*D(8,1) - 2*D(8,5) + 2*D(8,9) + 2*D(9,6) + 2*D(9,8)); % s3^3
(8*D(2,6) - 4*D(1,7) - 4*D(1,3) + 8*D(2,8) - 4*D(3,1) + 4*D(3,5) - 4*D(3,9) + 8*D(4,6) + 8*D(4,8) + 4*D(5,3) + 4*D(5,7) + 8*D(6,2) + 8*D(6,4) - 4*D(7,1) + 4*D(7,5) - 4*D(7,9) + 8*D(8,2) + 8*D(8,4) - 4*D(9,3) - 4*D(9,7)); % s1 * s2 * s3
(6*D(2,5) - 6*D(1,4) - 6*D(2,1) - 6*D(1,2) - 6*D(2,9) - 6*D(4,1) + 6*D(4,5) - 6*D(4,9) + 6*D(5,2) + 6*D(5,4) - 6*D(9,2) - 6*D(9,4)); % s1 * s2^2
(2*D(1,6) + 2*D(1,8) + 4*D(2,3) + 4*D(2,7) + 4*D(3,2) + 4*D(3,4) + 4*D(4,3) + 4*D(4,7) - 2*D(5,6) - 2*D(5,8) + 2*D(6,1) - 2*D(6,5) - 2*D(6,9) + 4*D(7,2) + 4*D(7,4) + 2*D(8,1) - 2*D(8,5) - 2*D(8,9) - 2*D(9,6) - 2*D(9,8)); % s1^2 * s3
(2*D(1,2) + 2*D(1,4) + 2*D(2,1) - 2*D(2,5) - 2*D(2,9) + 2*D(4,1) - 2*D(4,5) - 2*D(4,9) - 2*D(5,2) - 2*D(5,4) - 2*D(9,2) - 2*D(9,4))]; % s1^3
f3coeff = [2*D(1,2) - 2*D(1,4) + 2*D(2,1) + 2*D(2,5) + 2*D(2,9) - 2*D(4,1) - 2*D(4,5) - 2*D(4,9) + 2*D(5,2) - 2*D(5,4) + 2*D(9,2) - 2*D(9,4); % constant term
(2*D(1,6) + 2*D(1,8) + 4*D(2,3) + 4*D(2,7) + 4*D(3,2) + 4*D(3,4) + 4*D(4,3) + 4*D(4,7) - 2*D(5,6) - 2*D(5,8) + 2*D(6,1) - 2*D(6,5) - 2*D(6,9) + 4*D(7,2) + 4*D(7,4) + 2*D(8,1) - 2*D(8,5) - 2*D(8,9) - 2*D(9,6) - 2*D(9,8)); % s1^2 * s2
(8*D(2,2) - 8*D(3,3) - 8*D(4,4) + 8*D(6,6) + 8*D(7,7) - 8*D(8,8)); % s1 * s2
(4*D(1,8) - 4*D(1,6) + 8*D(2,3) + 8*D(2,7) + 8*D(3,2) - 8*D(3,4) - 8*D(4,3) - 8*D(4,7) - 4*D(5,6) + 4*D(5,8) - 4*D(6,1) - 4*D(6,5) + 4*D(6,9) + 8*D(7,2) - 8*D(7,4) + 4*D(8,1) + 4*D(8,5) - 4*D(8,9) + 4*D(9,6) - 4*D(9,8)); % s1 * s3
(4*D(1,3) - 4*D(1,7) + 8*D(2,6) + 8*D(2,8) + 4*D(3,1) + 4*D(3,5) - 4*D(3,9) - 8*D(4,6) - 8*D(4,8) + 4*D(5,3) - 4*D(5,7) + 8*D(6,2) - 8*D(6,4) - 4*D(7,1) - 4*D(7,5) + 4*D(7,9) + 8*D(8,2) - 8*D(8,4) - 4*D(9,3) + 4*D(9,7)); % s2 * s3
(4*D(1,1) - 4*D(5,5) + 4*D(5,9) + 8*D(6,6) + 8*D(6,8) + 8*D(8,6) + 8*D(8,8) + 4*D(9,5) - 4*D(9,9)); % s2^2 * s3
(2*D(5,6) - 2*D(1,8) - 2*D(1,6) + 2*D(5,8) - 2*D(6,1) + 2*D(6,5) - 2*D(6,9) - 2*D(8,1) + 2*D(8,5) - 2*D(8,9) - 2*D(9,6) - 2*D(9,8)); % s2^3
(6*D(3,9) - 6*D(1,7) - 6*D(3,1) - 6*D(3,5) - 6*D(1,3) - 6*D(5,3) - 6*D(5,7) - 6*D(7,1) - 6*D(7,5) + 6*D(7,9) + 6*D(9,3) + 6*D(9,7)); % s1 * s3^2
(2*D(1,3) + 2*D(1,7) + 4*D(2,6) - 4*D(2,8) + 2*D(3,1) + 2*D(3,5) + 2*D(3,9) - 4*D(4,6) + 4*D(4,8) + 2*D(5,3) + 2*D(5,7) + 4*D(6,2) - 4*D(6,4) + 2*D(7,1) + 2*D(7,5) + 2*D(7,9) - 4*D(8,2) + 4*D(8,4) + 2*D(9,3) + 2*D(9,7)); % s1
(8*D(2,2) - 4*D(1,5) - 4*D(1,1) - 8*D(2,4) - 8*D(4,2) + 8*D(4,4) - 4*D(5,1) - 4*D(5,5) + 4*D(9,9)); % s3
(2*D(1,6) + 2*D(1,8) - 4*D(2,3) + 4*D(2,7) - 4*D(3,2) + 4*D(3,4) + 4*D(4,3) - 4*D(4,7) + 2*D(5,6) + 2*D(5,8) + 2*D(6,1) + 2*D(6,5) + 2*D(6,9) + 4*D(7,2) - 4*D(7,4) + 2*D(8,1) + 2*D(8,5) + 2*D(8,9) + 2*D(9,6) + 2*D(9,8)); % s2
(6*D(6,9) - 6*D(1,8) - 6*D(5,6) - 6*D(5,8) - 6*D(6,1) - 6*D(6,5) - 6*D(1,6) - 6*D(8,1) - 6*D(8,5) + 6*D(8,9) + 6*D(9,6) + 6*D(9,8)); % s2 * s3^2
(2*D(1,2) - 2*D(1,4) + 2*D(2,1) - 2*D(2,5) - 2*D(2,9) + 4*D(3,6) - 4*D(3,8) - 2*D(4,1) + 2*D(4,5) + 2*D(4,9) - 2*D(5,2) + 2*D(5,4) + 4*D(6,3) + 4*D(6,7) + 4*D(7,6) - 4*D(7,8) - 4*D(8,3) - 4*D(8,7) - 2*D(9,2) + 2*D(9,4)); % s1^2
(6*D(1,4) - 6*D(1,2) - 6*D(2,1) - 6*D(2,5) + 6*D(2,9) + 6*D(4,1) + 6*D(4,5) - 6*D(4,9) - 6*D(5,2) + 6*D(5,4) + 6*D(9,2) - 6*D(9,4)); % s3^2
(2*D(1,4) - 2*D(1,2) - 2*D(2,1) + 2*D(2,5) - 2*D(2,9) - 4*D(3,6) - 4*D(3,8) + 2*D(4,1) - 2*D(4,5) + 2*D(4,9) + 2*D(5,2) - 2*D(5,4) - 4*D(6,3) + 4*D(6,7) + 4*D(7,6) + 4*D(7,8) - 4*D(8,3) + 4*D(8,7) - 2*D(9,2) + 2*D(9,4)); % s2^2
(4*D(1,1) + 4*D(1,5) - 4*D(1,9) + 4*D(5,1) + 4*D(5,5) - 4*D(5,9) - 4*D(9,1) - 4*D(9,5) + 4*D(9,9)); % s3^3
(4*D(2,9) - 4*D(1,4) - 4*D(2,1) - 4*D(2,5) - 4*D(1,2) + 8*D(3,6) + 8*D(3,8) - 4*D(4,1) - 4*D(4,5) + 4*D(4,9) - 4*D(5,2) - 4*D(5,4) + 8*D(6,3) + 8*D(6,7) + 8*D(7,6) + 8*D(7,8) + 8*D(8,3) + 8*D(8,7) + 4*D(9,2) + 4*D(9,4)); % s1 * s2 * s3
(4*D(2,6) - 2*D(1,7) - 2*D(1,3) + 4*D(2,8) - 2*D(3,1) + 2*D(3,5) - 2*D(3,9) + 4*D(4,6) + 4*D(4,8) + 2*D(5,3) + 2*D(5,7) + 4*D(6,2) + 4*D(6,4) - 2*D(7,1) + 2*D(7,5) - 2*D(7,9) + 4*D(8,2) + 4*D(8,4) - 2*D(9,3) - 2*D(9,7)); % s1 * s2^2
(4*D(1,9) - 4*D(1,1) + 8*D(3,3) + 8*D(3,7) + 4*D(5,5) + 8*D(7,3) + 8*D(7,7) + 4*D(9,1) - 4*D(9,9)); % s1^2 * s3
(2*D(1,3) + 2*D(1,7) + 2*D(3,1) - 2*D(3,5) - 2*D(3,9) - 2*D(5,3) - 2*D(5,7) + 2*D(7,1) - 2*D(7,5) - 2*D(7,9) - 2*D(9,3) - 2*D(9,7))]; % s1^3
% Construct the Macaulay matrix
% u0 = round(randn(1)*100);
% u1 = round(randn(1)*100);
% u2 = round(randn(1)*100);
% u3 = round(randn(1)*100);
%M2 = cayley_LS_M(f1coeff, f2coeff, f3coeff,u0,u1,u2,u3);
u = round(randn(4,1) * 100);
M2 = cayley_LS_M(f1coeff, f2coeff, f3coeff,u);
% construct the multiplication matrix via schur compliment of the Macaulay
% matrix
Mtilde = M2(1:27,1:27) - M2(1:27,28:120)/M2(28:120,28:120)*M2(28:120,1:27);
[V,~] = eig(Mtilde);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Now check the solutions %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% extract the optimal solutions from the eigen decomposition of the
% Multiplication matrix
sols = zeros(3,27);
cost = zeros(27,1);
i = 1;
for k = 1:27
V(:,k) = V(:,k)/V(1,k);
if (imag(V(2,k)) == 0)
stmp = V([10 4 2],k);
H = Hessian(f1coeff, f2coeff, f3coeff, stmp);
if eig(H) > 0
sols(:,i) = stmp;
Cbar = cayley2rotbar(stmp);
CbarVec = Cbar';
CbarVec = CbarVec(:);
cost(i) = CbarVec' * D * CbarVec;
i = i+1;
end
end
end
sols = sols(:,1:i-1);
cost = cost(1:i-1);
C_est = zeros(3,3,size(sols,2));
t_est = zeros(3, size(sols,2));
for j = 1:size(sols,2)
% recover the optimal orientation
C_est(:,:,j) = 1/(1 + sols(:,j)' * sols(:,j)) * cayley2rotbar(sols(:,j));
A2 = zeros(3);
for i = 1:N
A2 = A2 + eye(3) - z(:,i)*z(:,i)';
end
b2 = zeros(3,1);
for i = 1:N
b2 = b2 + (z(:,i)*z(:,i)' - eye(3)) * C_est(:,:,j) * p(:,i);
end
% recover the optimal translation
t_est(:,j) = A2\b2;
end
%in case of Cayley-degenerate rotations, DLS might not return any solution.
%To make the comparison possible, we simply return all solutions.
sols_valid = 1:size(sols,2);
% check that the points are infront of the center of perspectivity
% sols_valid = [];
% for k = 1:size(sols,2)
% cam_points = C_est(:,:,k) * p + repmat(t_est(:,k),1, length(p));
%
% if isempty(find(cam_points(3,:) < 0))
% sols_valid = [sols_valid; k];
% end
%
% end
t_est = t_est(:,sols_valid);
C_est = C_est(:,:,sols_valid);
cost = cost(sols_valid);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Some helper functions %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function C = cayley2rotbar(s)
C = ( (1-s'*s) * eye(3) + 2 * skewsymm(s) + 2 * (s * s'))';
end
function C = skewsymm(X1)
% generates skew symmetric matrix
C = [0 , -X1(3) , X1(2)
X1(3) , 0 , -X1(1)
-X1(2) , X1(1) , 0];
end
function M = LeftMultVec(v)
% R * p = LeftMultVec(p) * vec(R)
M = [v' zeros(1,6);
zeros(1,3) v' zeros(1,3);
zeros(1,6) v'];
end
function M = cayley_LS_M(a,b,c,u) %,u1,u2,u3)
% Construct the Macaulay resultant matrix
M = [u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) 0; u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) a(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(10) 0; 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) a(14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 b(10) 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(14) 0 0 0 0 0 c(1) 0 0 0 0 0 0 0 0 0 c(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(14) 0; u(3) 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 0 b(11) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) c(1); 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) a(5) 0 0 0 0 0 0 0 a(1) 0 0 0 0 0 a(10) 0 0 0 0 b(11) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 b(10) 0 0 0 0 0 0 b(5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) c(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(5) c(10); 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(5) a(12) 0 0 0 0 0 a(1) 0 a(10) 0 0 0 0 0 a(14) 0 a(11) 0 0 b(5) 0 0 0 0 0 0 0 b(1) 0 0 b(11) 0 0 0 0 0 b(10) 0 0 0 0 b(14) 0 0 0 0 0 0 b(12) 0 0 0 0 0 c(11) 0 0 0 0 0 0 0 0 0 c(5) c(10) 0 0 0 0 0 0 0 0 0 0 c(1) 0 0 0 0 0 0 c(12) c(14); 0 0 0 u(3) 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 0 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) b(11) 0 0 0 0 0 0 b(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) 0 0 0 0 0 0 0 0 0 0 c(15) c(11); 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) 0 0 0 a(15) a(6) 0 0 0 0 0 0 0 a(11) 0 a(1) 0 0 0 a(5) 0 0 0 0 b(15) 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 0 0 b(11) 0 0 0 b(10) b(5) 0 0 0 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(15) c(11) 0 0 0 0 0 0 c(10) 0 0 0 0 c(1) 0 0 0 0 0 c(6) c(5); 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) 0 0 0 a(6) 0 0 0 0 0 0 a(11) 0 a(5) 0 a(10) a(1) 0 0 a(12) 0 a(15) 0 0 b(6) 0 0 0 0 0 0 0 b(11) b(10) 0 b(15) b(1) 0 0 0 0 b(5) 0 0 0 b(14) b(12) 0 0 0 0 0 0 0 0 0 0 0 0 c(15) 0 0 0 0 0 0 0 0 0 c(6) c(5) 0 c(1) 0 0 0 0 c(14) 0 0 0 c(11) c(10) 0 0 0 0 0 0 c(12); u(2) 0 0 0 0 0 0 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(9) a(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) b(1) 0 0 0 c(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(9) 0; 0 u(2) 0 0 0 0 0 0 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) a(9) a(4) a(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) 0 0 0 0 b(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(4) b(10) 0 0 0 c(10) 0 0 0 0 0 0 0 0 0 0 c(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) c(4) 0; 0 0 u(2) 0 0 0 0 0 0 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 0 0 a(10) a(4) a(8) a(14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(9) 0 0 b(4) 0 0 b(1) 0 b(10) 0 0 0 0 0 b(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(8) b(14) 0 0 0 c(14) c(9) 0 0 0 0 0 0 0 0 0 c(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) 0 0 c(10) c(8) 0; 0 0 0 u(2) 0 0 0 0 0 u(3) 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(3) a(11) 0 0 a(1) 0 0 0 0 0 0 0 0 0 a(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) 0 0 b(1) 0 0 0 b(3) b(11) 0 0 0 c(11) 0 0 0 0 0 0 0 c(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(3) c(9); 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) a(3) a(17) a(5) 0 0 a(10) 0 0 0 a(9) 0 0 0 a(1) 0 a(4) 0 0 0 0 b(3) 0 0 0 0 b(11) b(1) 0 0 0 0 0 0 0 0 0 0 b(9) 0 0 0 0 b(4) 0 0 b(10) 0 0 0 b(17) b(5) 0 0 0 c(5) 0 c(1) 0 0 0 0 0 c(10) 0 0 c(3) c(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) c(17) c(4); 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) 0 0 0 0 a(5) a(17) 0 a(12) 0 0 a(14) 0 a(9) a(1) a(4) 0 0 0 a(10) 0 a(8) 0 a(3) 0 0 b(17) 0 b(1) b(11) 0 b(5) b(10) 0 b(9) 0 0 b(3) 0 0 0 0 0 b(4) 0 0 0 0 b(8) 0 0 b(14) 0 0 0 0 b(12) 0 0 0 c(12) c(3) c(10) 0 0 0 0 0 c(14) 0 0 c(17) c(4) 0 0 0 0 0 c(1) 0 0 0 0 c(9) 0 0 c(11) 0 0 c(5) 0 c(8); 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) a(9) 0 0 0 0 a(18) a(15) 0 0 a(11) 0 0 0 0 0 0 0 0 0 a(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) b(9) b(3) 0 0 b(11) 0 0 0 b(18) b(15) 0 0 0 c(15) 0 0 0 0 0 c(1) 0 c(11) 0 0 0 0 0 0 0 0 0 0 c(9) 0 0 0 0 0 0 0 0 0 0 c(18) c(3); 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 a(10) a(4) 0 0 a(15) a(18) 0 a(6) 0 0 a(5) 0 0 0 a(3) a(1) a(9) 0 a(11) 0 a(17) 0 0 0 0 b(18) 0 0 0 0 b(15) b(11) 0 0 b(9) 0 0 0 0 b(1) 0 0 b(3) 0 0 b(10) b(4) b(17) 0 0 b(5) 0 0 0 0 b(6) 0 0 0 c(6) 0 c(11) 0 0 0 c(10) 0 c(5) c(1) 0 c(18) c(3) 0 0 0 0 0 0 c(4) 0 0 0 0 c(9) 0 0 0 0 c(15) 0 c(17); 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 a(15) a(14) a(8) 0 0 a(6) 0 0 0 0 0 a(12) 0 a(3) a(11) a(17) a(10) a(4) a(9) a(5) 0 0 0 a(18) 0 0 0 0 b(11) b(15) 0 b(6) b(5) 0 b(3) b(4) 0 b(18) b(9) 0 b(10) 0 0 b(17) 0 0 b(14) b(8) 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 c(18) c(5) 0 0 0 c(14) 0 c(12) c(10) 0 0 c(17) 0 c(9) 0 0 0 c(11) c(8) 0 0 0 c(3) c(4) 0 c(15) 0 0 c(6) 0 0; 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) a(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) b(13) b(9) 0 0 c(1) c(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(13) 0; 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 a(1) a(9) a(13) a(19) a(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) b(13) 0 0 0 0 b(9) 0 b(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(10) b(19) b(4) 0 0 c(10) c(4) 0 0 0 0 0 0 0 0 0 0 c(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) c(9) c(19) 0; 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 u(4) u(1) 0 0 0 0 0 0 a(1) a(9) 0 0 0 a(10) a(4) a(19) 0 a(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) 0 a(14) b(19) b(1) 0 b(9) 0 b(4) 0 b(10) 0 0 0 b(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(14) 0 b(8) 0 0 c(14) c(8) c(13) 0 0 0 0 0 0 0 0 0 c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) c(9) 0 c(10) c(4) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) a(3) 0 a(1) a(9) 0 0 0 0 0 0 0 0 0 a(13) 0 0 0 a(11) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(13) 0 b(1) b(9) 0 0 b(11) b(2) b(3) 0 0 c(11) c(3) 0 0 0 c(1) 0 0 0 c(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(2) c(13); 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 a(11) a(3) a(2) 0 a(17) 0 a(10) a(4) a(1) 0 0 a(13) 0 0 0 a(9) 0 a(19) 0 0 0 a(5) b(2) 0 0 0 0 b(3) b(9) b(11) 0 0 0 0 0 0 0 0 0 b(13) b(1) 0 0 0 b(19) 0 b(10) b(4) 0 0 b(5) 0 b(17) 0 0 c(5) c(17) 0 c(9) 0 c(10) 0 0 c(1) c(4) 0 0 c(2) c(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) c(3) 0 c(19); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 a(11) a(3) 0 0 0 a(5) a(17) 0 0 0 0 a(14) a(8) a(10) a(13) a(9) a(19) 0 0 0 a(4) 0 0 0 a(2) 0 a(12) 0 b(11) b(9) b(3) 0 b(17) b(4) b(5) b(13) 0 0 b(2) 0 0 0 0 0 b(19) b(10) 0 0 0 0 0 b(14) b(8) 0 0 b(12) 0 0 0 0 c(12) 0 c(2) c(4) 0 c(14) 0 0 c(10) c(8) 0 0 0 c(19) 0 0 0 0 0 c(9) 0 0 0 0 c(13) 0 c(11) c(3) 0 c(5) c(17) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 0 u(1) 0 0 0 0 a(9) a(13) 0 0 0 0 0 a(18) 0 a(11) a(3) 0 0 0 0 0 0 0 0 0 a(2) 0 0 a(1) a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) b(9) b(13) b(2) 0 b(11) b(3) 0 0 b(15) 0 b(18) 0 0 c(15) c(18) 0 0 0 c(11) c(1) c(9) 0 c(3) 0 0 0 0 0 0 0 0 0 0 c(13) 0 0 0 0 0 0 0 0 0 0 0 c(2); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 a(4) a(19) 0 a(15) a(18) 0 0 0 0 a(5) a(17) a(11) 0 0 a(2) a(9) a(13) 0 a(3) 0 0 0 0 a(10) a(6) 0 0 0 0 0 b(18) b(3) b(15) 0 b(13) 0 0 0 0 b(9) 0 0 b(2) b(11) b(10) b(4) b(19) 0 0 b(5) b(17) 0 0 b(6) 0 0 0 0 c(6) 0 0 c(3) 0 c(5) c(10) c(4) c(11) c(17) c(9) 0 0 c(2) 0 0 0 0 0 0 c(19) 0 0 0 0 c(13) 0 0 0 c(15) c(18) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) a(15) a(18) a(8) 0 0 a(6) 0 0 0 0 0 a(12) 0 a(5) a(2) a(3) 0 a(4) a(19) a(13) a(17) 0 0 0 0 a(14) 0 0 b(15) b(3) b(18) 0 0 b(17) b(6) b(2) b(19) 0 0 b(13) 0 b(4) 0 0 0 b(5) b(14) b(8) 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 c(17) 0 c(12) c(14) c(8) c(5) 0 c(4) 0 0 0 0 c(13) 0 0 0 c(3) 0 0 0 0 c(2) c(19) c(15) c(18) 0 c(6) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) a(3) 0 0 0 0 0 a(7) 0 0 a(15) 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) b(1) 0 0 0 b(11) b(3) b(18) 0 0 b(15) 0 0 0 0 b(7) 0 0 0 c(7) 0 0 c(1) 0 0 c(11) 0 c(15) 0 0 0 0 0 0 0 0 0 0 c(3) 0 0 c(9) 0 0 0 0 0 0 0 0 c(18); 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 b(11) b(15) 0 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) 0 0 c(1) 0 0 0 0 0 0 0 c(7) c(15); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) 0 0 0 0 a(3) a(2) 0 0 0 0 0 0 0 a(15) a(18) 0 0 0 0 0 0 0 0 0 0 0 0 a(11) a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(13) b(9) 0 0 b(11) b(3) b(2) 0 0 b(15) b(18) 0 0 b(7) 0 0 0 0 c(7) 0 0 0 c(9) c(15) c(11) c(3) 0 c(18) 0 0 0 0 0 0 0 0 0 0 c(2) 0 0 c(13) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 a(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 b(2) 0 0 0 b(18) 0 0 0 b(7) 0 0 0 c(7) 0 0 0 0 0 c(20) 0 c(2) 0 0 0 0 c(18) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) 0 0 0 0 0 0 0 a(15) a(18) 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 a(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) b(13) 0 0 b(3) b(2) 0 0 b(15) b(18) 0 b(7) 0 0 0 0 0 c(7) 0 0 0 0 c(13) c(18) c(3) c(2) 0 0 0 c(15) 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(9) 0 a(13) 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(13) b(9) b(20) 0 0 c(9) c(13) c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(15) a(18) 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) 0 0 0 0 b(3) b(11) 0 0 0 b(15) b(18) 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 c(11) 0 0 c(15) 0 c(7) 0 0 0 0 0 0 c(9) 0 0 0 c(18) 0 0 c(3) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 b(13) 0 0 0 0 b(2) b(3) 0 0 b(15) b(18) 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 c(3) c(7) c(15) c(18) 0 0 0 0 0 0 0 0 c(13) 0 0 0 0 0 0 c(2) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 0 0 b(2) 0 0 b(18) 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(2) 0 c(18) 0 0 0 0 c(7) 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 a(10) 0 a(14) 0 0 0 0 0 a(16) 0 a(5) 0 0 b(12) 0 0 0 0 0 0 0 b(10) 0 0 b(5) 0 0 0 0 0 b(14) 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 c(5) 0 0 0 0 0 0 0 0 0 c(12) c(14) c(1) 0 0 0 0 0 0 0 c(11) 0 c(10) 0 0 0 0 0 0 0 c(16); 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) 0 0 b(14) 0 0 0 0 0 0 0 0 0 0 b(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 c(10) 0 0 0 0 0 0 0 0 0 c(14) 0 0 0 0 0 0 0 0 0 c(1) 0 0 0 0 0 0 0 0 c(16) 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 b(11) 0 0 0 0 0 b(15) b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) 0 0 0 c(15) 0 0 c(11) 0 0 0 0 0 0 0 0 c(7); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(8) 0 0 0 0 0 b(14) 0 b(16) 0 0 0 0 0 b(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(9) 0 0 c(10) c(4) 0 0 0 0 c(14) 0 0 c(16) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) a(8) 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(14) 0 b(8) 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(13) 0 0 c(4) c(19) 0 0 0 c(14) c(8) 0 c(16) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(11) 0 0 0 0 b(15) 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) 0 0 0 c(7) 0 0 c(15) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(8) 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(8) 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 c(19) 0 0 0 0 c(8) 0 c(16) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(3) 0 0 0 0 b(18) b(15) 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(15) 0 0 c(7) 0 0 0 0 0 0 0 0 c(3) 0 0 0 0 0 0 c(18) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(4) 0 0 c(14) c(8) 0 0 0 0 c(16) 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(19) 0 0 c(8) 0 0 0 0 c(16) 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 b(2) 0 0 0 0 0 b(18) 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(18) 0 c(7) 0 0 0 0 0 0 0 0 0 c(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 a(18) 0 0 0 0 0 0 0 a(6) 0 0 0 0 0 0 0 0 0 0 0 b(19) 0 0 b(2) b(18) 0 b(17) 0 b(7) b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(17) 0 c(6) 0 c(7) 0 c(18) 0 0 0 0 0 c(19) c(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(15) b(10) 0 0 b(11) 0 b(5) 0 b(7) 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) 0 0 c(10) c(11) 0 0 c(6) 0 0 c(5) 0 c(15) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 a(16) a(14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(12) b(16) 0 0 b(14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(5) c(14) 0 0 c(15) 0 0 0 c(6) 0 c(12) c(16) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(14) 0 0 0 c(5) 0 0 0 c(12) 0 c(16) 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(18) 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) 0 0 0 0 0 0 0 0 0 0 0 c(18) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 0 0 a(12) a(5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(6) b(12) 0 0 b(5) b(14) 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(15) c(5) 0 c(14) 0 0 0 0 c(7) c(16) c(6) c(12) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(15) 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(15) 0 0 0 0 0 0 c(7) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(14) 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(17) 0 0 b(18) b(7) 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(6) 0 0 0 0 0 c(7) 0 0 0 0 0 c(17) c(18) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(6) 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(6) c(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(12) 0 b(7) b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) c(12) c(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 a(5) 0 a(12) 0 a(14) a(10) 0 0 0 0 a(6) 0 0 0 0 0 0 0 0 0 0 b(5) b(14) 0 b(6) b(10) 0 0 0 0 b(12) 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(6) 0 0 0 0 0 0 0 0 0 0 c(12) c(11) c(10) 0 0 0 0 c(16) 0 c(15) 0 c(5) c(14) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 0 0 0 0 a(15) 0 a(6) 0 a(5) a(11) 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 b(15) b(5) 0 b(7) b(11) b(10) 0 b(14) 0 b(6) 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) 0 0 0 0 0 0 0 0 0 0 c(6) 0 c(11) 0 c(10) 0 0 c(12) 0 0 c(14) c(15) c(5) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 0 0 c(17) c(16) 0 c(12) 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(12) b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(6) c(12) 0 c(16) c(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 b(6) b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) c(6) c(16) c(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(12) c(16) 0 0 c(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 c(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) 0 a(16) 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 0 0 0 0 b(14) 0 0 b(12) 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(12) 0 0 0 0 0 0 0 0 0 0 c(16) c(10) 0 0 0 c(11) 0 0 0 c(5) 0 c(14) 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) 0 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 b(2) 0 0 0 b(18) 0 0 0 c(18) 0 0 0 0 0 0 0 c(20) 0 0 0 0 c(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 a(9) a(13) 0 0 a(10) a(4) a(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) a(20) 0 a(8) 0 b(9) 0 b(13) b(10) b(19) 0 b(4) 0 0 0 b(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(14) 0 b(8) 0 0 0 c(14) c(8) 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(9) c(13) c(10) c(4) c(19) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(7) b(5) 0 0 b(15) 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(5) c(15) 0 0 0 0 0 c(6) 0 c(7) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 a(6) a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(7) b(6) b(14) 0 b(15) b(5) 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(15) c(14) c(5) 0 0 0 0 0 c(12) c(7) c(6) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) b(13) 0 0 0 c(13) c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) 0 0 0 a(17) 0 0 a(7) 0 0 0 0 0 a(6) 0 a(15) 0 0 0 a(3) a(2) 0 a(18) 0 0 0 0 a(5) 0 0 0 0 0 0 0 b(18) b(7) 0 b(2) 0 0 0 b(13) b(3) b(19) b(4) 0 b(15) b(5) b(17) 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 c(18) c(4) c(6) c(5) c(17) c(15) 0 c(3) 0 0 0 0 0 0 c(13) 0 0 0 0 0 c(19) 0 c(2) 0 0 0 c(7) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) a(1) a(9) a(13) 0 0 0 0 0 0 0 0 0 a(20) a(11) 0 0 a(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) b(1) b(9) b(13) b(11) 0 b(3) 0 b(2) 0 c(11) c(3) c(2) 0 0 0 c(9) 0 0 0 c(13) 0 c(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 b(14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(14) 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 c(1) 0 0 0 c(10) 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(17) 0 0 0 a(12) 0 0 0 0 0 a(16) 0 0 a(8) 0 a(19) 0 0 0 0 0 0 0 0 0 0 0 0 b(17) b(19) 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 b(8) 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 0 c(16) 0 0 c(20) 0 0 0 0 c(19) 0 c(2) 0 0 0 0 c(17) 0 c(12) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 a(16) 0 a(8) 0 0 0 0 0 0 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 b(8) 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 c(17) c(8) 0 0 c(18) c(12) 0 c(6) 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(5) 0 0 0 0 a(12) 0 0 0 0 0 a(16) 0 a(4) a(10) a(8) 0 0 0 a(14) 0 0 0 a(17) 0 0 0 0 b(10) b(5) 0 b(12) b(14) 0 b(4) 0 0 b(17) 0 0 0 0 0 b(8) 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 c(17) c(14) 0 0 0 0 0 c(16) 0 0 0 c(8) c(9) 0 0 0 0 c(10) 0 c(11) c(3) 0 c(4) 0 0 c(5) 0 0 c(12) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(3) a(2) 0 0 0 0 a(4) a(19) 0 a(13) 0 0 0 0 0 0 a(20) a(5) 0 a(17) 0 0 0 0 0 0 0 b(3) 0 b(20) b(2) 0 0 0 0 0 0 0 0 0 0 b(13) 0 0 0 0 b(4) b(19) 0 b(17) b(5) 0 0 0 c(5) c(17) 0 0 0 c(20) 0 c(19) 0 0 c(13) 0 0 c(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(3) c(2) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(15) a(18) 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 b(7) 0 0 b(18) b(4) 0 0 b(3) b(15) b(17) b(5) 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) c(5) 0 0 c(6) 0 0 c(15) 0 0 0 0 0 c(4) c(3) 0 0 0 0 0 c(17) 0 c(18) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) a(18) 0 0 0 a(6) 0 0 0 0 0 a(12) 0 0 a(17) 0 a(2) 0 a(19) 0 a(20) 0 0 0 0 0 a(8) 0 0 b(18) b(2) 0 b(6) 0 0 0 0 0 0 0 b(20) 0 b(19) 0 0 0 b(17) b(8) 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 c(17) 0 c(19) c(12) 0 0 0 c(20) 0 0 0 c(2) 0 0 0 0 0 0 c(18) 0 c(6) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 0 0 a(5) a(17) 0 0 a(7) 0 0 0 0 0 a(6) 0 0 0 a(18) a(11) a(3) 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 b(7) b(15) 0 0 b(3) 0 0 0 b(9) b(11) b(4) b(10) b(18) 0 0 b(5) b(17) 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 c(15) c(10) 0 0 c(5) 0 c(6) c(11) 0 0 c(18) 0 0 0 c(9) 0 0 c(17) 0 0 c(4) 0 c(3) 0 0 0 0 c(7) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 a(19) 0 a(15) a(18) 0 0 0 0 a(5) a(17) 0 a(3) 0 0 0 a(13) a(20) 0 a(2) 0 0 a(6) 0 a(4) 0 0 0 0 0 b(15) 0 b(2) b(18) 0 b(20) 0 0 0 0 b(13) 0 0 0 b(3) b(4) b(19) 0 0 b(5) b(17) 0 b(6) 0 0 0 0 0 c(6) 0 0 0 c(2) 0 c(17) c(4) c(19) c(3) 0 c(13) c(5) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 c(15) c(18) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 0 0 a(17) 0 0 a(2) 0 0 0 a(20) 0 0 0 a(6) 0 0 0 a(19) 0 0 0 0 0 b(18) 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 b(2) b(19) 0 0 0 b(17) 0 0 0 b(6) 0 0 0 c(6) 0 0 0 0 0 0 0 c(19) 0 c(2) 0 c(20) c(17) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(18) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 0 a(11) a(3) a(2) 0 0 0 a(10) a(4) a(19) a(9) 0 0 a(20) 0 0 0 a(13) 0 0 a(5) 0 0 a(17) 0 0 0 0 b(11) b(2) b(13) b(3) 0 0 0 0 0 0 0 0 0 b(20) b(9) 0 0 0 0 b(10) b(4) b(19) b(5) 0 b(17) 0 0 0 c(5) c(17) 0 0 c(13) 0 c(4) 0 0 c(9) c(19) 0 c(10) 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) c(3) c(2) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) 0 0 0 a(17) 0 0 0 0 0 a(8) 0 0 a(19) 0 a(20) 0 0 0 0 0 a(12) 0 0 0 0 0 0 b(2) b(20) 0 b(17) 0 0 0 0 0 0 0 0 0 0 0 0 0 b(19) 0 0 0 0 b(8) 0 0 0 b(12) 0 0 0 c(12) 0 0 0 0 0 0 0 0 0 c(19) 0 0 c(8) 0 0 0 0 0 0 0 c(20) 0 0 0 0 0 0 c(2) 0 c(17) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 a(6) 0 0 a(18) 0 0 0 a(2) 0 0 0 0 0 0 0 a(17) 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 b(20) b(2) 0 b(19) 0 b(18) b(17) 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(19) 0 c(17) 0 c(18) 0 c(2) c(6) 0 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 c(7) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 a(8) 0 0 0 0 0 0 0 0 0 0 0 0 b(12) b(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 c(19) 0 0 0 c(2) c(8) 0 c(17) 0 0 0 0 c(12) 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 a(3) a(2) 0 0 a(5) a(17) 0 0 0 0 a(14) a(8) 0 a(4) a(20) a(13) 0 0 0 0 a(19) 0 0 a(12) 0 0 0 0 b(3) b(13) b(2) b(5) 0 b(19) b(17) b(20) 0 0 0 0 0 0 0 0 0 b(4) 0 0 0 0 b(14) b(8) 0 b(12) 0 0 0 0 0 c(12) 0 0 0 c(19) 0 c(8) 0 0 c(4) 0 0 c(14) 0 0 0 0 0 0 0 c(13) 0 0 0 0 c(20) 0 c(3) c(2) c(5) c(17) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 a(6) a(16) 0 0 0 0 0 0 0 0 0 0 0 a(17) a(5) 0 a(14) a(8) a(4) a(12) 0 0 0 0 0 0 0 0 b(5) b(6) 0 0 b(12) 0 b(17) b(8) 0 0 b(4) 0 b(14) 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(12) 0 0 0 c(16) 0 0 c(14) 0 0 0 c(3) c(4) 0 0 0 c(5) 0 c(15) c(18) 0 c(17) c(8) 0 c(6) 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 a(7) a(12) 0 0 0 0 0 0 0 0 0 0 0 a(18) a(15) 0 a(5) a(17) a(3) a(6) 0 0 0 0 0 0 0 0 b(15) b(7) 0 0 b(6) 0 b(18) b(17) 0 0 b(3) b(4) b(5) b(8) b(14) 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(6) c(14) 0 0 c(12) 0 0 c(5) 0 0 0 0 c(3) 0 c(4) 0 c(15) 0 0 0 c(8) c(18) c(17) 0 c(7) 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) 0 0 0 0 0 a(19) 0 0 a(20) 0 0 0 0 0 0 0 a(17) 0 0 0 0 0 0 0 0 0 b(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 0 b(19) 0 0 0 b(17) 0 0 0 c(17) 0 0 0 0 0 0 0 0 0 c(20) 0 0 c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(2) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(4) a(6) 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 a(17) 0 a(8) 0 a(19) 0 0 0 0 0 a(16) 0 0 b(6) b(17) 0 0 0 0 0 0 0 0 0 b(19) 0 b(8) 0 0 0 b(12) b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 c(12) 0 c(8) 0 0 0 c(2) c(19) 0 0 0 c(17) 0 c(18) 0 0 0 0 c(6) 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(4) 0 0 0 a(5) a(17) 0 0 0 a(12) 0 0 0 0 0 a(16) 0 a(14) a(19) a(4) 0 0 0 0 a(8) 0 0 0 0 0 0 0 b(5) b(4) b(17) 0 0 b(8) b(12) b(19) 0 0 0 0 0 0 0 0 0 b(14) 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 c(16) 0 0 c(14) 0 0 0 0 0 c(13) 0 0 0 0 c(4) 0 c(3) c(2) 0 c(19) 0 c(5) c(17) 0 c(12) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 a(12) 0 a(17) 0 0 0 0 0 0 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 b(17) b(8) b(12) 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 c(12) 0 0 0 c(18) c(17) 0 c(8) 0 c(6) 0 c(7) 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 0 0 0 0 0 0 a(8) a(14) 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 b(14) b(12) 0 0 b(16) 0 b(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 c(4) 0 0 0 c(3) c(14) 0 c(5) c(17) 0 c(8) 0 0 c(12) 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 a(6) 0 a(18) 0 0 0 0 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 b(8) 0 b(18) b(17) b(6) 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(12) 0 0 0 0 0 c(6) 0 0 0 0 c(18) c(8) c(17) 0 c(7) 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(10) 0 0 0 c(14) 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(9) a(13) a(20) 0 0 0 0 0 0 0 0 a(11) 0 a(3) 0 0 a(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) b(13) b(20) b(3) b(11) b(2) 0 0 c(11) c(3) c(2) 0 0 0 0 c(13) 0 0 0 c(20) 0 c(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) a(20) 0 0 0 0 0 0 0 0 0 a(3) 0 a(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(13) b(20) 0 b(2) b(3) 0 0 0 c(3) c(2) 0 0 0 0 0 c(20) 0 0 0 0 0 c(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 a(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 b(2) 0 0 0 c(2) 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) 0 0 0 0 a(14) a(8) 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(4) 0 0 b(8) 0 0 b(10) 0 b(14) 0 0 0 0 0 b(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 c(16) c(4) 0 0 0 0 0 0 0 0 0 c(8) 0 0 0 0 0 0 0 0 c(1) c(9) 0 0 0 0 c(10) 0 0 c(14) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(4) 0 0 0 0 0 0 a(10) a(4) 0 0 0 a(14) a(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(19) 0 a(16) 0 b(10) 0 b(4) 0 b(8) 0 b(14) 0 0 0 b(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 c(16) 0 c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(9) c(13) 0 0 0 c(10) c(4) 0 c(14) c(8) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(4) a(19) 0 0 a(14) a(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 b(4) 0 b(19) b(14) 0 0 b(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(13) c(20) 0 0 0 c(4) c(19) c(14) c(8) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(19) 0 0 0 a(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 b(19) 0 0 b(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 0 0 c(19) 0 c(8) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 a(9) 0 0 a(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) b(1) b(13) 0 b(20) c(1) c(9) c(13) c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) a(7) 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 a(18) 0 a(17) 0 a(2) 0 0 0 0 0 a(12) 0 0 b(7) b(18) 0 0 0 0 0 0 0 0 0 b(2) b(19) b(17) 0 b(8) 0 b(6) b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 c(12) 0 c(6) 0 c(17) 0 0 0 0 c(2) 0 c(19) 0 c(18) 0 0 0 0 0 0 c(7) 0 0 0 0 0 0; 0 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(5) 0 0 0 a(7) 0 0 0 0 0 0 0 0 a(15) 0 a(11) 0 0 0 a(6) 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 b(11) 0 0 0 b(1) 0 b(10) 0 b(15) 0 0 0 b(5) b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) c(15) 0 0 0 c(1) 0 0 c(5) 0 0 c(10) 0 c(11) 0 0 0 0 0 0 c(6); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) a(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 a(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 b(9) b(20) b(13) 0 c(1) c(9) c(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 0 0 0 0 a(1) a(9) a(13) a(20) 0 a(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) 0 0 a(4) b(20) 0 0 0 b(1) b(13) 0 b(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(10) 0 b(4) 0 b(19) 0 c(10) c(4) c(19) 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) c(9) c(13) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(9) a(13) a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) 0 a(4) 0 0 a(19) 0 0 0 0 b(9) b(20) 0 b(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(4) b(10) b(19) 0 0 c(10) c(4) c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(9) c(13) c(20) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(4) 0 a(19) 0 0 0 0 0 0 0 b(13) 0 0 b(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(19) b(4) 0 0 0 c(4) c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(13) c(20) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(19) 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(19) 0 0 0 c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 a(13) a(20) 0 0 0 0 0 0 a(11) a(3) a(2) 0 0 0 0 0 0 0 0 0 0 a(15) 0 a(9) a(18) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) b(13) b(20) 0 b(11) b(3) b(2) b(15) 0 b(18) 0 0 0 c(15) c(18) 0 0 0 0 c(3) c(9) c(13) 0 c(2) 0 c(11) 0 0 0 0 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 0 0 0 0 a(3) a(2) 0 0 0 0 0 0 0 0 0 a(15) 0 a(18) 0 a(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(13) b(20) 0 0 b(3) b(2) 0 b(18) b(15) 0 0 0 c(15) c(18) 0 0 0 0 0 c(2) c(13) c(20) 0 0 0 c(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) a(20) 0 0 a(4) a(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) 0 a(8) 0 0 0 0 b(13) 0 b(20) b(4) 0 0 b(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(8) b(14) 0 0 0 c(14) c(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(13) c(20) c(4) c(19) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 a(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(8) 0 0 0 0 0 0 b(20) 0 0 b(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(8) 0 0 0 c(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 c(19) 0 0 0 0]';
end
function [H] = Hessian(f1coeff, f2coeff, f3coeff, s)
% the vector of monomials is
% m = [ const ; s1^2 * s2 ; s1 * s2 ; s1 * s3 ; s2 * s3 ; s2^2 * s3 ; s2^3 ; ...
% s1 * s3^2 ; s1 ; s3 ; s2 ; s2 * s3^2 ; s1^2 ; s3^2 ; s2^2 ; s3^3 ; ...
% s1 * s2 * s3 ; s1 * s2^2 ; s1^2 * s3 ; s1^3]
%
% deriv of m w.r.t. s1
Hs1 = [0 ; 2 * s(1) * s(2) ; s(2) ; s(3) ; 0 ; 0 ; 0 ; ...
s(3)^2 ; 1 ; 0 ; 0 ; 0 ; 2 * s(1) ; 0 ; 0 ; 0 ; ...
s(2) * s(3) ; s(2)^2 ; 2*s(1)*s(3); 3 * s(1)^2];
% deriv of m w.r.t. s2
Hs2 = [0 ; s(1)^2 ; s(1) ; 0 ; s(3) ; 2 * s(2) * s(3) ; 3 * s(2)^2 ; ...
0 ; 0 ; 0 ; 1 ; s(3)^2 ; 0 ; 0 ; 2 * s(2) ; 0 ; ...
s(1) * s(3) ; s(1) * 2 * s(2) ; 0 ; 0];
% deriv of m w.r.t. s3
Hs3 = [0 ; 0 ; 0 ; s(1) ; s(2) ; s(2)^2 ; 0 ; ...
s(1) * 2 * s(3) ; 0 ; 1 ; 0 ; s(2) * 2 * s(3) ; 0 ; 2 * s(3) ; 0 ; 3 * s(3)^2 ; ...
s(1) * s(2) ; 0 ; s(1)^2 ; 0];
H = [ f1coeff' * Hs1 , f1coeff' * Hs2 , f1coeff' * Hs3;
f2coeff' * Hs1 , f2coeff' * Hs2 , f2coeff' * Hs3;
f3coeff' * Hs1 , f3coeff' * Hs2 , f3coeff' * Hs3];
end
%function [C] = cayley2rot(s)
% C = ( (1-s'*s) * eye(3) + 2 * skewsymm(s) + 2 * s * s')' / ( 1 + s' * s);
%end |
github | urbste/MLPnP_matlab_toolbox-master | dls_pnp.m | .m | MLPnP_matlab_toolbox-master/dls_pnp_matlab/dls_pnp.m | 52,158 | utf_8 | d6e96e3b74cc29c6f5ddd01bbdb2e1eb | function [C_est, t_est, cost, flag] = dls_pnp(p, z)
% DLS-PnP:
%
% This function performs the DLS-PnP method introduced at ICCV 2011
% Joel A. Hesch and Stergios I. Roumeliotis. "A direct least-squares (dls)
% solution for PnP". In Proc. of the Int. Conf. on Computer Vision,
% Barcelona, Spain, November 6-13, 2011.
%
% inputs:
% p: 3xN vector of 3D known point features
% z: 2xN vector of correpsonding image measurements (calibrated)
% Check the inputs
if size(z,1) > size(z,2) || size(p,1) > size(p,2)
fprintf('Usage: dls_pnp(p,z) \n p: 3xN matrix of 3D points \n z: 2xN matrix of corresponding 2D image measurements (normalized pixel coordinates)')
end
% make z into unit vectors from normalized pixel coords
z = [z; ones(1,size(z,2))];
z = z./ repmat(sqrt(sum(z.*z,1)),3,1);
% some preliminaries
flag = 0;
N = size(z,2);
% build coeff matrix
% An intermediate matrix, the inverse of what is called "H" in the paper
% (see eq. 25)
H = zeros(3);
for i = 1:N
H = H + eye(3) - z(:,i)*z(:,i)';
end
A = zeros(3,9);
for i = 1:N
A = A + (z(:,i)*z(:,i)' - eye(3)) * LeftMultVec(p(:,i));
end
A = H\A;
D = zeros(9);
for i = 1:N
D = D + (LeftMultVec(p(:,i)) + A)' * (eye(3) - z(:,i)*z(:,i)') * (LeftMultVec(p(:,i)) + A);
end
f1coeff = [2*D(1,6) - 2*D(1,8) + 2*D(5,6) - 2*D(5,8) + 2*D(6,1) + 2*D(6,5) + 2*D(6,9) - 2*D(8,1) - 2*D(8,5) - 2*D(8,9) + 2*D(9,6) - 2*D(9,8); % constant term
(6*D(1,2) + 6*D(1,4) + 6*D(2,1) - 6*D(2,5) - 6*D(2,9) + 6*D(4,1) - 6*D(4,5) - 6*D(4,9) - 6*D(5,2) - 6*D(5,4) - 6*D(9,2) - 6*D(9,4)); % s1^2 * s2
(4*D(1,7) - 4*D(1,3) + 8*D(2,6) - 8*D(2,8) - 4*D(3,1) + 4*D(3,5) + 4*D(3,9) + 8*D(4,6) - 8*D(4,8) + 4*D(5,3) - 4*D(5,7) + 8*D(6,2) + 8*D(6,4) + 4*D(7,1) - 4*D(7,5) - 4*D(7,9) - 8*D(8,2) - 8*D(8,4) + 4*D(9,3) - 4*D(9,7)); % s1 * s2
(4*D(1,2) - 4*D(1,4) + 4*D(2,1) - 4*D(2,5) - 4*D(2,9) + 8*D(3,6) - 8*D(3,8) - 4*D(4,1) + 4*D(4,5) + 4*D(4,9) - 4*D(5,2) + 4*D(5,4) + 8*D(6,3) + 8*D(6,7) + 8*D(7,6) - 8*D(7,8) - 8*D(8,3) - 8*D(8,7) - 4*D(9,2) + 4*D(9,4)); % s1 * s3
(8*D(2,2) - 8*D(3,3) - 8*D(4,4) + 8*D(6,6) + 8*D(7,7) - 8*D(8,8)); % s2 * s3
(4*D(2,6) - 2*D(1,7) - 2*D(1,3) + 4*D(2,8) - 2*D(3,1) + 2*D(3,5) - 2*D(3,9) + 4*D(4,6) + 4*D(4,8) + 2*D(5,3) + 2*D(5,7) + 4*D(6,2) + 4*D(6,4) - 2*D(7,1) + 2*D(7,5) - 2*D(7,9) + 4*D(8,2) + 4*D(8,4) - 2*D(9,3) - 2*D(9,7)); % s2^2 * s3
(2*D(2,5) - 2*D(1,4) - 2*D(2,1) - 2*D(1,2) - 2*D(2,9) - 2*D(4,1) + 2*D(4,5) - 2*D(4,9) + 2*D(5,2) + 2*D(5,4) - 2*D(9,2) - 2*D(9,4)); % s2^3
(4*D(1,9) - 4*D(1,1) + 8*D(3,3) + 8*D(3,7) + 4*D(5,5) + 8*D(7,3) + 8*D(7,7) + 4*D(9,1) - 4*D(9,9)); % s1 * s3^2
(4*D(1,1) - 4*D(5,5) - 4*D(5,9) + 8*D(6,6) - 8*D(6,8) - 8*D(8,6) + 8*D(8,8) - 4*D(9,5) - 4*D(9,9)); % s1
(2*D(1,3) + 2*D(1,7) + 4*D(2,6) - 4*D(2,8) + 2*D(3,1) + 2*D(3,5) + 2*D(3,9) - 4*D(4,6) + 4*D(4,8) + 2*D(5,3) + 2*D(5,7) + 4*D(6,2) - 4*D(6,4) + 2*D(7,1) + 2*D(7,5) + 2*D(7,9) - 4*D(8,2) + 4*D(8,4) + 2*D(9,3) + 2*D(9,7)); % s3
(2*D(1,2) + 2*D(1,4) + 2*D(2,1) + 2*D(2,5) + 2*D(2,9) - 4*D(3,6) + 4*D(3,8) + 2*D(4,1) + 2*D(4,5) + 2*D(4,9) + 2*D(5,2) + 2*D(5,4) - 4*D(6,3) + 4*D(6,7) + 4*D(7,6) - 4*D(7,8) + 4*D(8,3) - 4*D(8,7) + 2*D(9,2) + 2*D(9,4)); % s2
(2*D(2,9) - 2*D(1,4) - 2*D(2,1) - 2*D(2,5) - 2*D(1,2) + 4*D(3,6) + 4*D(3,8) - 2*D(4,1) - 2*D(4,5) + 2*D(4,9) - 2*D(5,2) - 2*D(5,4) + 4*D(6,3) + 4*D(6,7) + 4*D(7,6) + 4*D(7,8) + 4*D(8,3) + 4*D(8,7) + 2*D(9,2) + 2*D(9,4)); % s2 * s3^2
(6*D(1,6) - 6*D(1,8) - 6*D(5,6) + 6*D(5,8) + 6*D(6,1) - 6*D(6,5) - 6*D(6,9) - 6*D(8,1) + 6*D(8,5) + 6*D(8,9) - 6*D(9,6) + 6*D(9,8)); % s1^2
(2*D(1,8) - 2*D(1,6) + 4*D(2,3) + 4*D(2,7) + 4*D(3,2) - 4*D(3,4) - 4*D(4,3) - 4*D(4,7) - 2*D(5,6) + 2*D(5,8) - 2*D(6,1) - 2*D(6,5) + 2*D(6,9) + 4*D(7,2) - 4*D(7,4) + 2*D(8,1) + 2*D(8,5) - 2*D(8,9) + 2*D(9,6) - 2*D(9,8)); % s3^2
(2*D(1,8) - 2*D(1,6) - 4*D(2,3) + 4*D(2,7) - 4*D(3,2) - 4*D(3,4) - 4*D(4,3) + 4*D(4,7) + 2*D(5,6) - 2*D(5,8) - 2*D(6,1) + 2*D(6,5) - 2*D(6,9) + 4*D(7,2) + 4*D(7,4) + 2*D(8,1) - 2*D(8,5) + 2*D(8,9) - 2*D(9,6) + 2*D(9,8)); % s2^2
(2*D(3,9) - 2*D(1,7) - 2*D(3,1) - 2*D(3,5) - 2*D(1,3) - 2*D(5,3) - 2*D(5,7) - 2*D(7,1) - 2*D(7,5) + 2*D(7,9) + 2*D(9,3) + 2*D(9,7)); % s3^3
(4*D(1,6) + 4*D(1,8) + 8*D(2,3) + 8*D(2,7) + 8*D(3,2) + 8*D(3,4) + 8*D(4,3) + 8*D(4,7) - 4*D(5,6) - 4*D(5,8) + 4*D(6,1) - 4*D(6,5) - 4*D(6,9) + 8*D(7,2) + 8*D(7,4) + 4*D(8,1) - 4*D(8,5) - 4*D(8,9) - 4*D(9,6) - 4*D(9,8)); % s1 * s2 * s3
(4*D(1,5) - 4*D(1,1) + 8*D(2,2) + 8*D(2,4) + 8*D(4,2) + 8*D(4,4) + 4*D(5,1) - 4*D(5,5) + 4*D(9,9)); % s1 * s2^2
(6*D(1,3) + 6*D(1,7) + 6*D(3,1) - 6*D(3,5) - 6*D(3,9) - 6*D(5,3) - 6*D(5,7) + 6*D(7,1) - 6*D(7,5) - 6*D(7,9) - 6*D(9,3) - 6*D(9,7)); % s1^2 * s3
(4*D(1,1) - 4*D(1,5) - 4*D(1,9) - 4*D(5,1) + 4*D(5,5) + 4*D(5,9) - 4*D(9,1) + 4*D(9,5) + 4*D(9,9))]; % s1^3
f2coeff = [- 2*D(1,3) + 2*D(1,7) - 2*D(3,1) - 2*D(3,5) - 2*D(3,9) - 2*D(5,3) + 2*D(5,7) + 2*D(7,1) + 2*D(7,5) + 2*D(7,9) - 2*D(9,3) + 2*D(9,7); % constant term
(4*D(1,5) - 4*D(1,1) + 8*D(2,2) + 8*D(2,4) + 8*D(4,2) + 8*D(4,4) + 4*D(5,1) - 4*D(5,5) + 4*D(9,9)); % s1^2 * s2
(4*D(1,8) - 4*D(1,6) - 8*D(2,3) + 8*D(2,7) - 8*D(3,2) - 8*D(3,4) - 8*D(4,3) + 8*D(4,7) + 4*D(5,6) - 4*D(5,8) - 4*D(6,1) + 4*D(6,5) - 4*D(6,9) + 8*D(7,2) + 8*D(7,4) + 4*D(8,1) - 4*D(8,5) + 4*D(8,9) - 4*D(9,6) + 4*D(9,8)); % s1 * s2
(8*D(2,2) - 8*D(3,3) - 8*D(4,4) + 8*D(6,6) + 8*D(7,7) - 8*D(8,8)); % s1 * s3
(4*D(1,4) - 4*D(1,2) - 4*D(2,1) + 4*D(2,5) - 4*D(2,9) - 8*D(3,6) - 8*D(3,8) + 4*D(4,1) - 4*D(4,5) + 4*D(4,9) + 4*D(5,2) - 4*D(5,4) - 8*D(6,3) + 8*D(6,7) + 8*D(7,6) + 8*D(7,8) - 8*D(8,3) + 8*D(8,7) - 4*D(9,2) + 4*D(9,4)); % s2 * s3
(6*D(5,6) - 6*D(1,8) - 6*D(1,6) + 6*D(5,8) - 6*D(6,1) + 6*D(6,5) - 6*D(6,9) - 6*D(8,1) + 6*D(8,5) - 6*D(8,9) - 6*D(9,6) - 6*D(9,8)); % s2^2 * s3
(4*D(1,1) - 4*D(1,5) + 4*D(1,9) - 4*D(5,1) + 4*D(5,5) - 4*D(5,9) + 4*D(9,1) - 4*D(9,5) + 4*D(9,9)); % s2^3
(2*D(2,9) - 2*D(1,4) - 2*D(2,1) - 2*D(2,5) - 2*D(1,2) + 4*D(3,6) + 4*D(3,8) - 2*D(4,1) - 2*D(4,5) + 2*D(4,9) - 2*D(5,2) - 2*D(5,4) + 4*D(6,3) + 4*D(6,7) + 4*D(7,6) + 4*D(7,8) + 4*D(8,3) + 4*D(8,7) + 2*D(9,2) + 2*D(9,4)); % s1 * s3^2
(2*D(1,2) + 2*D(1,4) + 2*D(2,1) + 2*D(2,5) + 2*D(2,9) - 4*D(3,6) + 4*D(3,8) + 2*D(4,1) + 2*D(4,5) + 2*D(4,9) + 2*D(5,2) + 2*D(5,4) - 4*D(6,3) + 4*D(6,7) + 4*D(7,6) - 4*D(7,8) + 4*D(8,3) - 4*D(8,7) + 2*D(9,2) + 2*D(9,4)); % s1
(2*D(1,6) + 2*D(1,8) - 4*D(2,3) + 4*D(2,7) - 4*D(3,2) + 4*D(3,4) + 4*D(4,3) - 4*D(4,7) + 2*D(5,6) + 2*D(5,8) + 2*D(6,1) + 2*D(6,5) + 2*D(6,9) + 4*D(7,2) - 4*D(7,4) + 2*D(8,1) + 2*D(8,5) + 2*D(8,9) + 2*D(9,6) + 2*D(9,8)); % s3
(8*D(3,3) - 4*D(1,9) - 4*D(1,1) - 8*D(3,7) + 4*D(5,5) - 8*D(7,3) + 8*D(7,7) - 4*D(9,1) - 4*D(9,9)); % s2
(4*D(1,1) - 4*D(5,5) + 4*D(5,9) + 8*D(6,6) + 8*D(6,8) + 8*D(8,6) + 8*D(8,8) + 4*D(9,5) - 4*D(9,9)); % s2 * s3^2
(2*D(1,7) - 2*D(1,3) + 4*D(2,6) - 4*D(2,8) - 2*D(3,1) + 2*D(3,5) + 2*D(3,9) + 4*D(4,6) - 4*D(4,8) + 2*D(5,3) - 2*D(5,7) + 4*D(6,2) + 4*D(6,4) + 2*D(7,1) - 2*D(7,5) - 2*D(7,9) - 4*D(8,2) - 4*D(8,4) + 2*D(9,3) - 2*D(9,7)); % s1^2
(2*D(1,3) - 2*D(1,7) + 4*D(2,6) + 4*D(2,8) + 2*D(3,1) + 2*D(3,5) - 2*D(3,9) - 4*D(4,6) - 4*D(4,8) + 2*D(5,3) - 2*D(5,7) + 4*D(6,2) - 4*D(6,4) - 2*D(7,1) - 2*D(7,5) + 2*D(7,9) + 4*D(8,2) - 4*D(8,4) - 2*D(9,3) + 2*D(9,7)); % s3^2
(6*D(1,3) - 6*D(1,7) + 6*D(3,1) - 6*D(3,5) + 6*D(3,9) - 6*D(5,3) + 6*D(5,7) - 6*D(7,1) + 6*D(7,5) - 6*D(7,9) + 6*D(9,3) - 6*D(9,7)); % s2^2
(2*D(6,9) - 2*D(1,8) - 2*D(5,6) - 2*D(5,8) - 2*D(6,1) - 2*D(6,5) - 2*D(1,6) - 2*D(8,1) - 2*D(8,5) + 2*D(8,9) + 2*D(9,6) + 2*D(9,8)); % s3^3
(8*D(2,6) - 4*D(1,7) - 4*D(1,3) + 8*D(2,8) - 4*D(3,1) + 4*D(3,5) - 4*D(3,9) + 8*D(4,6) + 8*D(4,8) + 4*D(5,3) + 4*D(5,7) + 8*D(6,2) + 8*D(6,4) - 4*D(7,1) + 4*D(7,5) - 4*D(7,9) + 8*D(8,2) + 8*D(8,4) - 4*D(9,3) - 4*D(9,7)); % s1 * s2 * s3
(6*D(2,5) - 6*D(1,4) - 6*D(2,1) - 6*D(1,2) - 6*D(2,9) - 6*D(4,1) + 6*D(4,5) - 6*D(4,9) + 6*D(5,2) + 6*D(5,4) - 6*D(9,2) - 6*D(9,4)); % s1 * s2^2
(2*D(1,6) + 2*D(1,8) + 4*D(2,3) + 4*D(2,7) + 4*D(3,2) + 4*D(3,4) + 4*D(4,3) + 4*D(4,7) - 2*D(5,6) - 2*D(5,8) + 2*D(6,1) - 2*D(6,5) - 2*D(6,9) + 4*D(7,2) + 4*D(7,4) + 2*D(8,1) - 2*D(8,5) - 2*D(8,9) - 2*D(9,6) - 2*D(9,8)); % s1^2 * s3
(2*D(1,2) + 2*D(1,4) + 2*D(2,1) - 2*D(2,5) - 2*D(2,9) + 2*D(4,1) - 2*D(4,5) - 2*D(4,9) - 2*D(5,2) - 2*D(5,4) - 2*D(9,2) - 2*D(9,4))]; % s1^3
f3coeff = [2*D(1,2) - 2*D(1,4) + 2*D(2,1) + 2*D(2,5) + 2*D(2,9) - 2*D(4,1) - 2*D(4,5) - 2*D(4,9) + 2*D(5,2) - 2*D(5,4) + 2*D(9,2) - 2*D(9,4); % constant term
(2*D(1,6) + 2*D(1,8) + 4*D(2,3) + 4*D(2,7) + 4*D(3,2) + 4*D(3,4) + 4*D(4,3) + 4*D(4,7) - 2*D(5,6) - 2*D(5,8) + 2*D(6,1) - 2*D(6,5) - 2*D(6,9) + 4*D(7,2) + 4*D(7,4) + 2*D(8,1) - 2*D(8,5) - 2*D(8,9) - 2*D(9,6) - 2*D(9,8)); % s1^2 * s2
(8*D(2,2) - 8*D(3,3) - 8*D(4,4) + 8*D(6,6) + 8*D(7,7) - 8*D(8,8)); % s1 * s2
(4*D(1,8) - 4*D(1,6) + 8*D(2,3) + 8*D(2,7) + 8*D(3,2) - 8*D(3,4) - 8*D(4,3) - 8*D(4,7) - 4*D(5,6) + 4*D(5,8) - 4*D(6,1) - 4*D(6,5) + 4*D(6,9) + 8*D(7,2) - 8*D(7,4) + 4*D(8,1) + 4*D(8,5) - 4*D(8,9) + 4*D(9,6) - 4*D(9,8)); % s1 * s3
(4*D(1,3) - 4*D(1,7) + 8*D(2,6) + 8*D(2,8) + 4*D(3,1) + 4*D(3,5) - 4*D(3,9) - 8*D(4,6) - 8*D(4,8) + 4*D(5,3) - 4*D(5,7) + 8*D(6,2) - 8*D(6,4) - 4*D(7,1) - 4*D(7,5) + 4*D(7,9) + 8*D(8,2) - 8*D(8,4) - 4*D(9,3) + 4*D(9,7)); % s2 * s3
(4*D(1,1) - 4*D(5,5) + 4*D(5,9) + 8*D(6,6) + 8*D(6,8) + 8*D(8,6) + 8*D(8,8) + 4*D(9,5) - 4*D(9,9)); % s2^2 * s3
(2*D(5,6) - 2*D(1,8) - 2*D(1,6) + 2*D(5,8) - 2*D(6,1) + 2*D(6,5) - 2*D(6,9) - 2*D(8,1) + 2*D(8,5) - 2*D(8,9) - 2*D(9,6) - 2*D(9,8)); % s2^3
(6*D(3,9) - 6*D(1,7) - 6*D(3,1) - 6*D(3,5) - 6*D(1,3) - 6*D(5,3) - 6*D(5,7) - 6*D(7,1) - 6*D(7,5) + 6*D(7,9) + 6*D(9,3) + 6*D(9,7)); % s1 * s3^2
(2*D(1,3) + 2*D(1,7) + 4*D(2,6) - 4*D(2,8) + 2*D(3,1) + 2*D(3,5) + 2*D(3,9) - 4*D(4,6) + 4*D(4,8) + 2*D(5,3) + 2*D(5,7) + 4*D(6,2) - 4*D(6,4) + 2*D(7,1) + 2*D(7,5) + 2*D(7,9) - 4*D(8,2) + 4*D(8,4) + 2*D(9,3) + 2*D(9,7)); % s1
(8*D(2,2) - 4*D(1,5) - 4*D(1,1) - 8*D(2,4) - 8*D(4,2) + 8*D(4,4) - 4*D(5,1) - 4*D(5,5) + 4*D(9,9)); % s3
(2*D(1,6) + 2*D(1,8) - 4*D(2,3) + 4*D(2,7) - 4*D(3,2) + 4*D(3,4) + 4*D(4,3) - 4*D(4,7) + 2*D(5,6) + 2*D(5,8) + 2*D(6,1) + 2*D(6,5) + 2*D(6,9) + 4*D(7,2) - 4*D(7,4) + 2*D(8,1) + 2*D(8,5) + 2*D(8,9) + 2*D(9,6) + 2*D(9,8)); % s2
(6*D(6,9) - 6*D(1,8) - 6*D(5,6) - 6*D(5,8) - 6*D(6,1) - 6*D(6,5) - 6*D(1,6) - 6*D(8,1) - 6*D(8,5) + 6*D(8,9) + 6*D(9,6) + 6*D(9,8)); % s2 * s3^2
(2*D(1,2) - 2*D(1,4) + 2*D(2,1) - 2*D(2,5) - 2*D(2,9) + 4*D(3,6) - 4*D(3,8) - 2*D(4,1) + 2*D(4,5) + 2*D(4,9) - 2*D(5,2) + 2*D(5,4) + 4*D(6,3) + 4*D(6,7) + 4*D(7,6) - 4*D(7,8) - 4*D(8,3) - 4*D(8,7) - 2*D(9,2) + 2*D(9,4)); % s1^2
(6*D(1,4) - 6*D(1,2) - 6*D(2,1) - 6*D(2,5) + 6*D(2,9) + 6*D(4,1) + 6*D(4,5) - 6*D(4,9) - 6*D(5,2) + 6*D(5,4) + 6*D(9,2) - 6*D(9,4)); % s3^2
(2*D(1,4) - 2*D(1,2) - 2*D(2,1) + 2*D(2,5) - 2*D(2,9) - 4*D(3,6) - 4*D(3,8) + 2*D(4,1) - 2*D(4,5) + 2*D(4,9) + 2*D(5,2) - 2*D(5,4) - 4*D(6,3) + 4*D(6,7) + 4*D(7,6) + 4*D(7,8) - 4*D(8,3) + 4*D(8,7) - 2*D(9,2) + 2*D(9,4)); % s2^2
(4*D(1,1) + 4*D(1,5) - 4*D(1,9) + 4*D(5,1) + 4*D(5,5) - 4*D(5,9) - 4*D(9,1) - 4*D(9,5) + 4*D(9,9)); % s3^3
(4*D(2,9) - 4*D(1,4) - 4*D(2,1) - 4*D(2,5) - 4*D(1,2) + 8*D(3,6) + 8*D(3,8) - 4*D(4,1) - 4*D(4,5) + 4*D(4,9) - 4*D(5,2) - 4*D(5,4) + 8*D(6,3) + 8*D(6,7) + 8*D(7,6) + 8*D(7,8) + 8*D(8,3) + 8*D(8,7) + 4*D(9,2) + 4*D(9,4)); % s1 * s2 * s3
(4*D(2,6) - 2*D(1,7) - 2*D(1,3) + 4*D(2,8) - 2*D(3,1) + 2*D(3,5) - 2*D(3,9) + 4*D(4,6) + 4*D(4,8) + 2*D(5,3) + 2*D(5,7) + 4*D(6,2) + 4*D(6,4) - 2*D(7,1) + 2*D(7,5) - 2*D(7,9) + 4*D(8,2) + 4*D(8,4) - 2*D(9,3) - 2*D(9,7)); % s1 * s2^2
(4*D(1,9) - 4*D(1,1) + 8*D(3,3) + 8*D(3,7) + 4*D(5,5) + 8*D(7,3) + 8*D(7,7) + 4*D(9,1) - 4*D(9,9)); % s1^2 * s3
(2*D(1,3) + 2*D(1,7) + 2*D(3,1) - 2*D(3,5) - 2*D(3,9) - 2*D(5,3) - 2*D(5,7) + 2*D(7,1) - 2*D(7,5) - 2*D(7,9) - 2*D(9,3) - 2*D(9,7))]; % s1^3
% Construct the Macaulay matrix
% u0 = round(randn(1)*100);
% u1 = round(randn(1)*100);
% u2 = round(randn(1)*100);
% u3 = round(randn(1)*100);
%M2 = cayley_LS_M(f1coeff, f2coeff, f3coeff,u0,u1,u2,u3);
u = round(randn(4,1) * 100);
M2 = cayley_LS_M(f1coeff, f2coeff, f3coeff,u);
% construct the multiplication matrix via schur compliment of the Macaulay
% matrix
Mtilde = M2(1:27,1:27) - M2(1:27,28:120)/M2(28:120,28:120)*M2(28:120,1:27);
[V,~] = eig(Mtilde);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Now check the solutions %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% extract the optimal solutions from the eigen decomposition of the
% Multiplication matrix
sols = zeros(3,27);
cost = zeros(27,1);
i = 1;
for k = 1:27
V(:,k) = V(:,k)/V(1,k);
if (imag(V(2,k)) == 0)
stmp = V([10 4 2],k);
H = Hessian(f1coeff, f2coeff, f3coeff, stmp);
if eig(H) > 0
sols(:,i) = stmp;
Cbar = cayley2rotbar(stmp);
CbarVec = Cbar';
CbarVec = CbarVec(:);
cost(i) = CbarVec' * D * CbarVec;
i = i+1;
end
end
end
sols = sols(:,1:i-1);
cost = cost(1:i-1);
C_est = zeros(3,3,size(sols,2));
t_est = zeros(3, size(sols,2));
for j = 1:size(sols,2)
% recover the optimal orientation
C_est(:,:,j) = 1/(1 + sols(:,j)' * sols(:,j)) * cayley2rotbar(sols(:,j));
A2 = zeros(3);
for i = 1:N
A2 = A2 + eye(3) - z(:,i)*z(:,i)';
end
b2 = zeros(3,1);
for i = 1:N
b2 = b2 + (z(:,i)*z(:,i)' - eye(3)) * C_est(:,:,j) * p(:,i);
end
% recover the optimal translation
t_est(:,j) = A2\b2;
end
% check that the points are infront of the center of perspectivity
sols_valid = [];
for k = 1:size(sols,2)
cam_points = C_est(:,:,k) * p + repmat(t_est(:,k),1, length(p));
if isempty(find(cam_points(3,:) < 0))
sols_valid = [sols_valid; k];
end
end
t_est = t_est(:,sols_valid);
C_est = C_est(:,:,sols_valid);
cost = cost(sols_valid);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Some helper functions %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function C = cayley2rotbar(s)
C = ( (1-s'*s) * eye(3) + 2 * skewsymm(s) + 2 * (s * s'))';
end
function C = skewsymm(X1)
% generates skew symmetric matrix
C = [0 , -X1(3) , X1(2)
X1(3) , 0 , -X1(1)
-X1(2) , X1(1) , 0];
end
function M = LeftMultVec(v)
% R * p = LeftMultVec(p) * vec(R)
M = [v' zeros(1,6);
zeros(1,3) v' zeros(1,3);
zeros(1,6) v'];
end
function M = cayley_LS_M(a,b,c,u) %,u1,u2,u3)
% Construct the Macaulay resultant matrix
M = [u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) 0; u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) a(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(10) 0; 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) a(14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 b(10) 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(14) 0 0 0 0 0 c(1) 0 0 0 0 0 0 0 0 0 c(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(14) 0; u(3) 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 0 b(11) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) c(1); 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) a(5) 0 0 0 0 0 0 0 a(1) 0 0 0 0 0 a(10) 0 0 0 0 b(11) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 b(10) 0 0 0 0 0 0 b(5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) c(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(5) c(10); 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(5) a(12) 0 0 0 0 0 a(1) 0 a(10) 0 0 0 0 0 a(14) 0 a(11) 0 0 b(5) 0 0 0 0 0 0 0 b(1) 0 0 b(11) 0 0 0 0 0 b(10) 0 0 0 0 b(14) 0 0 0 0 0 0 b(12) 0 0 0 0 0 c(11) 0 0 0 0 0 0 0 0 0 c(5) c(10) 0 0 0 0 0 0 0 0 0 0 c(1) 0 0 0 0 0 0 c(12) c(14); 0 0 0 u(3) 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 0 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) b(11) 0 0 0 0 0 0 b(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) 0 0 0 0 0 0 0 0 0 0 c(15) c(11); 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) 0 0 0 a(15) a(6) 0 0 0 0 0 0 0 a(11) 0 a(1) 0 0 0 a(5) 0 0 0 0 b(15) 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 0 0 b(11) 0 0 0 b(10) b(5) 0 0 0 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(15) c(11) 0 0 0 0 0 0 c(10) 0 0 0 0 c(1) 0 0 0 0 0 c(6) c(5); 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) 0 0 0 a(6) 0 0 0 0 0 0 a(11) 0 a(5) 0 a(10) a(1) 0 0 a(12) 0 a(15) 0 0 b(6) 0 0 0 0 0 0 0 b(11) b(10) 0 b(15) b(1) 0 0 0 0 b(5) 0 0 0 b(14) b(12) 0 0 0 0 0 0 0 0 0 0 0 0 c(15) 0 0 0 0 0 0 0 0 0 c(6) c(5) 0 c(1) 0 0 0 0 c(14) 0 0 0 c(11) c(10) 0 0 0 0 0 0 c(12); u(2) 0 0 0 0 0 0 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(9) a(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) b(1) 0 0 0 c(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(9) 0; 0 u(2) 0 0 0 0 0 0 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) a(9) a(4) a(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) 0 0 0 0 b(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(4) b(10) 0 0 0 c(10) 0 0 0 0 0 0 0 0 0 0 c(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) c(4) 0; 0 0 u(2) 0 0 0 0 0 0 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 0 0 a(10) a(4) a(8) a(14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(9) 0 0 b(4) 0 0 b(1) 0 b(10) 0 0 0 0 0 b(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(8) b(14) 0 0 0 c(14) c(9) 0 0 0 0 0 0 0 0 0 c(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) 0 0 c(10) c(8) 0; 0 0 0 u(2) 0 0 0 0 0 u(3) 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(3) a(11) 0 0 a(1) 0 0 0 0 0 0 0 0 0 a(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) 0 0 b(1) 0 0 0 b(3) b(11) 0 0 0 c(11) 0 0 0 0 0 0 0 c(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(3) c(9); 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) a(3) a(17) a(5) 0 0 a(10) 0 0 0 a(9) 0 0 0 a(1) 0 a(4) 0 0 0 0 b(3) 0 0 0 0 b(11) b(1) 0 0 0 0 0 0 0 0 0 0 b(9) 0 0 0 0 b(4) 0 0 b(10) 0 0 0 b(17) b(5) 0 0 0 c(5) 0 c(1) 0 0 0 0 0 c(10) 0 0 c(3) c(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) c(17) c(4); 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) 0 0 0 0 a(5) a(17) 0 a(12) 0 0 a(14) 0 a(9) a(1) a(4) 0 0 0 a(10) 0 a(8) 0 a(3) 0 0 b(17) 0 b(1) b(11) 0 b(5) b(10) 0 b(9) 0 0 b(3) 0 0 0 0 0 b(4) 0 0 0 0 b(8) 0 0 b(14) 0 0 0 0 b(12) 0 0 0 c(12) c(3) c(10) 0 0 0 0 0 c(14) 0 0 c(17) c(4) 0 0 0 0 0 c(1) 0 0 0 0 c(9) 0 0 c(11) 0 0 c(5) 0 c(8); 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) a(9) 0 0 0 0 a(18) a(15) 0 0 a(11) 0 0 0 0 0 0 0 0 0 a(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) b(9) b(3) 0 0 b(11) 0 0 0 b(18) b(15) 0 0 0 c(15) 0 0 0 0 0 c(1) 0 c(11) 0 0 0 0 0 0 0 0 0 0 c(9) 0 0 0 0 0 0 0 0 0 0 c(18) c(3); 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 a(10) a(4) 0 0 a(15) a(18) 0 a(6) 0 0 a(5) 0 0 0 a(3) a(1) a(9) 0 a(11) 0 a(17) 0 0 0 0 b(18) 0 0 0 0 b(15) b(11) 0 0 b(9) 0 0 0 0 b(1) 0 0 b(3) 0 0 b(10) b(4) b(17) 0 0 b(5) 0 0 0 0 b(6) 0 0 0 c(6) 0 c(11) 0 0 0 c(10) 0 c(5) c(1) 0 c(18) c(3) 0 0 0 0 0 0 c(4) 0 0 0 0 c(9) 0 0 0 0 c(15) 0 c(17); 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 a(15) a(14) a(8) 0 0 a(6) 0 0 0 0 0 a(12) 0 a(3) a(11) a(17) a(10) a(4) a(9) a(5) 0 0 0 a(18) 0 0 0 0 b(11) b(15) 0 b(6) b(5) 0 b(3) b(4) 0 b(18) b(9) 0 b(10) 0 0 b(17) 0 0 b(14) b(8) 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 c(18) c(5) 0 0 0 c(14) 0 c(12) c(10) 0 0 c(17) 0 c(9) 0 0 0 c(11) c(8) 0 0 0 c(3) c(4) 0 c(15) 0 0 c(6) 0 0; 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) a(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) b(13) b(9) 0 0 c(1) c(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(13) 0; 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 0 0 0 a(1) a(9) a(13) a(19) a(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) b(13) 0 0 0 0 b(9) 0 b(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(10) b(19) b(4) 0 0 c(10) c(4) 0 0 0 0 0 0 0 0 0 0 c(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) c(9) c(19) 0; 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 u(4) u(1) 0 0 0 0 0 0 a(1) a(9) 0 0 0 a(10) a(4) a(19) 0 a(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) 0 a(14) b(19) b(1) 0 b(9) 0 b(4) 0 b(10) 0 0 0 b(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(14) 0 b(8) 0 0 c(14) c(8) c(13) 0 0 0 0 0 0 0 0 0 c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) c(9) 0 c(10) c(4) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 0 u(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) a(3) 0 a(1) a(9) 0 0 0 0 0 0 0 0 0 a(13) 0 0 0 a(11) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(13) 0 b(1) b(9) 0 0 b(11) b(2) b(3) 0 0 c(11) c(3) 0 0 0 c(1) 0 0 0 c(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(2) c(13); 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 0 0 0 0 0 0 a(11) a(3) a(2) 0 a(17) 0 a(10) a(4) a(1) 0 0 a(13) 0 0 0 a(9) 0 a(19) 0 0 0 a(5) b(2) 0 0 0 0 b(3) b(9) b(11) 0 0 0 0 0 0 0 0 0 b(13) b(1) 0 0 0 b(19) 0 b(10) b(4) 0 0 b(5) 0 b(17) 0 0 c(5) c(17) 0 c(9) 0 c(10) 0 0 c(1) c(4) 0 0 c(2) c(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) c(3) 0 c(19); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 a(11) a(3) 0 0 0 a(5) a(17) 0 0 0 0 a(14) a(8) a(10) a(13) a(9) a(19) 0 0 0 a(4) 0 0 0 a(2) 0 a(12) 0 b(11) b(9) b(3) 0 b(17) b(4) b(5) b(13) 0 0 b(2) 0 0 0 0 0 b(19) b(10) 0 0 0 0 0 b(14) b(8) 0 0 b(12) 0 0 0 0 c(12) 0 c(2) c(4) 0 c(14) 0 0 c(10) c(8) 0 0 0 c(19) 0 0 0 0 0 c(9) 0 0 0 0 c(13) 0 c(11) c(3) 0 c(5) c(17) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 0 u(1) 0 0 0 0 a(9) a(13) 0 0 0 0 0 a(18) 0 a(11) a(3) 0 0 0 0 0 0 0 0 0 a(2) 0 0 a(1) a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) b(9) b(13) b(2) 0 b(11) b(3) 0 0 b(15) 0 b(18) 0 0 c(15) c(18) 0 0 0 c(11) c(1) c(9) 0 c(3) 0 0 0 0 0 0 0 0 0 0 c(13) 0 0 0 0 0 0 0 0 0 0 0 c(2); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) 0 0 0 a(4) a(19) 0 a(15) a(18) 0 0 0 0 a(5) a(17) a(11) 0 0 a(2) a(9) a(13) 0 a(3) 0 0 0 0 a(10) a(6) 0 0 0 0 0 b(18) b(3) b(15) 0 b(13) 0 0 0 0 b(9) 0 0 b(2) b(11) b(10) b(4) b(19) 0 0 b(5) b(17) 0 0 b(6) 0 0 0 0 c(6) 0 0 c(3) 0 c(5) c(10) c(4) c(11) c(17) c(9) 0 0 c(2) 0 0 0 0 0 0 c(19) 0 0 0 0 c(13) 0 0 0 c(15) c(18) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 u(3) 0 u(4) u(1) a(15) a(18) a(8) 0 0 a(6) 0 0 0 0 0 a(12) 0 a(5) a(2) a(3) 0 a(4) a(19) a(13) a(17) 0 0 0 0 a(14) 0 0 b(15) b(3) b(18) 0 0 b(17) b(6) b(2) b(19) 0 0 b(13) 0 b(4) 0 0 0 b(5) b(14) b(8) 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 c(17) 0 c(12) c(14) c(8) c(5) 0 c(4) 0 0 0 0 c(13) 0 0 0 c(3) 0 0 0 0 c(2) c(19) c(15) c(18) 0 c(6) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) a(3) 0 0 0 0 0 a(7) 0 0 a(15) 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) b(1) 0 0 0 b(11) b(3) b(18) 0 0 b(15) 0 0 0 0 b(7) 0 0 0 c(7) 0 0 c(1) 0 0 c(11) 0 c(15) 0 0 0 0 0 0 0 0 0 0 c(3) 0 0 c(9) 0 0 0 0 0 0 0 0 c(18); 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(11) 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 0 b(11) b(15) 0 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) 0 0 c(1) 0 0 0 0 0 0 0 c(7) c(15); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) 0 0 0 0 a(3) a(2) 0 0 0 0 0 0 0 a(15) a(18) 0 0 0 0 0 0 0 0 0 0 0 0 a(11) a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(13) b(9) 0 0 b(11) b(3) b(2) 0 0 b(15) b(18) 0 0 b(7) 0 0 0 0 c(7) 0 0 0 c(9) c(15) c(11) c(3) 0 c(18) 0 0 0 0 0 0 0 0 0 0 c(2) 0 0 c(13) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 a(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 b(2) 0 0 0 b(18) 0 0 0 b(7) 0 0 0 c(7) 0 0 0 0 0 c(20) 0 c(2) 0 0 0 0 c(18) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) 0 0 0 0 0 0 0 a(15) a(18) 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 a(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) b(13) 0 0 b(3) b(2) 0 0 b(15) b(18) 0 b(7) 0 0 0 0 0 c(7) 0 0 0 0 c(13) c(18) c(3) c(2) 0 0 0 c(15) 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(9) 0 a(13) 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(13) b(9) b(20) 0 0 c(9) c(13) c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(15) a(18) 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) 0 0 0 0 b(3) b(11) 0 0 0 b(15) b(18) 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 c(11) 0 0 c(15) 0 c(7) 0 0 0 0 0 0 c(9) 0 0 0 c(18) 0 0 c(3) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 b(13) 0 0 0 0 b(2) b(3) 0 0 b(15) b(18) 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 c(3) c(7) c(15) c(18) 0 0 0 0 0 0 0 0 c(13) 0 0 0 0 0 0 c(2) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 0 0 b(2) 0 0 b(18) 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(2) 0 c(18) 0 0 0 0 c(7) 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 a(10) 0 a(14) 0 0 0 0 0 a(16) 0 a(5) 0 0 b(12) 0 0 0 0 0 0 0 b(10) 0 0 b(5) 0 0 0 0 0 b(14) 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 c(5) 0 0 0 0 0 0 0 0 0 c(12) c(14) c(1) 0 0 0 0 0 0 0 c(11) 0 c(10) 0 0 0 0 0 0 0 c(16); 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) 0 0 b(14) 0 0 0 0 0 0 0 0 0 0 b(10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 c(10) 0 0 0 0 0 0 0 0 0 c(14) 0 0 0 0 0 0 0 0 0 c(1) 0 0 0 0 0 0 0 0 c(16) 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 0 0 0 b(11) 0 0 0 0 0 b(15) b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) 0 0 0 c(15) 0 0 c(11) 0 0 0 0 0 0 0 0 c(7); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(8) 0 0 0 0 0 b(14) 0 b(16) 0 0 0 0 0 b(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(9) 0 0 c(10) c(4) 0 0 0 0 c(14) 0 0 c(16) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) a(8) 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(14) 0 b(8) 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(13) 0 0 c(4) c(19) 0 0 0 c(14) c(8) 0 c(16) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(11) 0 0 0 0 b(15) 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) 0 0 0 c(7) 0 0 c(15) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(8) 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(8) 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 c(19) 0 0 0 0 c(8) 0 c(16) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(3) 0 0 0 0 b(18) b(15) 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(15) 0 0 c(7) 0 0 0 0 0 0 0 0 c(3) 0 0 0 0 0 0 c(18) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(4) 0 0 c(14) c(8) 0 0 0 0 c(16) 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(19) 0 0 c(8) 0 0 0 0 c(16) 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 b(2) 0 0 0 0 0 b(18) 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(18) 0 c(7) 0 0 0 0 0 0 0 0 0 c(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 a(18) 0 0 0 0 0 0 0 a(6) 0 0 0 0 0 0 0 0 0 0 0 b(19) 0 0 b(2) b(18) 0 b(17) 0 b(7) b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(17) 0 c(6) 0 c(7) 0 c(18) 0 0 0 0 0 c(19) c(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(15) b(10) 0 0 b(11) 0 b(5) 0 b(7) 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) 0 0 c(10) c(11) 0 0 c(6) 0 0 c(5) 0 c(15) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 a(16) a(14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(12) b(16) 0 0 b(14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(5) c(14) 0 0 c(15) 0 0 0 c(6) 0 c(12) c(16) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(14) 0 0 0 c(5) 0 0 0 c(12) 0 c(16) 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(18) 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) 0 0 0 0 0 0 0 0 0 0 0 c(18) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 0 0 a(12) a(5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(6) b(12) 0 0 b(5) b(14) 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(15) c(5) 0 c(14) 0 0 0 0 c(7) c(16) c(6) c(12) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(15) 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(15) 0 0 0 0 0 0 c(7) 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(14) 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(17) 0 0 b(18) b(7) 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(6) 0 0 0 0 0 c(7) 0 0 0 0 0 c(17) c(18) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(6) 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(6) c(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(12) 0 b(7) b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) c(12) c(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 a(5) 0 a(12) 0 a(14) a(10) 0 0 0 0 a(6) 0 0 0 0 0 0 0 0 0 0 b(5) b(14) 0 b(6) b(10) 0 0 0 0 b(12) 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(6) 0 0 0 0 0 0 0 0 0 0 c(12) c(11) c(10) 0 0 0 0 c(16) 0 c(15) 0 c(5) c(14) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 0 0 0 0 a(15) 0 a(6) 0 a(5) a(11) 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 b(15) b(5) 0 b(7) b(11) b(10) 0 b(14) 0 b(6) 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) 0 0 0 0 0 0 0 0 0 0 c(6) 0 c(11) 0 c(10) 0 0 c(12) 0 0 c(14) c(15) c(5) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 0 0 c(17) c(16) 0 c(12) 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(12) b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(6) c(12) 0 c(16) c(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 b(6) b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) c(6) c(16) c(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(12) c(16) 0 0 c(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 c(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) 0 a(16) 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 0 0 0 0 b(14) 0 0 b(12) 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(12) 0 0 0 0 0 0 0 0 0 0 c(16) c(10) 0 0 0 c(11) 0 0 0 c(5) 0 c(14) 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) 0 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 b(2) 0 0 0 b(18) 0 0 0 c(18) 0 0 0 0 0 0 0 c(20) 0 0 0 0 c(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 a(9) a(13) 0 0 a(10) a(4) a(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) a(20) 0 a(8) 0 b(9) 0 b(13) b(10) b(19) 0 b(4) 0 0 0 b(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(14) 0 b(8) 0 0 0 c(14) c(8) 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(9) c(13) c(10) c(4) c(19) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(7) b(5) 0 0 b(15) 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(5) c(15) 0 0 0 0 0 c(6) 0 c(7) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 a(6) a(15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(7) b(6) b(14) 0 b(15) b(5) 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(15) c(14) c(5) 0 0 0 0 0 c(12) c(7) c(6) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) b(13) 0 0 0 c(13) c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) 0 0 0 a(17) 0 0 a(7) 0 0 0 0 0 a(6) 0 a(15) 0 0 0 a(3) a(2) 0 a(18) 0 0 0 0 a(5) 0 0 0 0 0 0 0 b(18) b(7) 0 b(2) 0 0 0 b(13) b(3) b(19) b(4) 0 b(15) b(5) b(17) 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 c(18) c(4) c(6) c(5) c(17) c(15) 0 c(3) 0 0 0 0 0 0 c(13) 0 0 0 0 0 c(19) 0 c(2) 0 0 0 c(7) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) a(1) a(9) a(13) 0 0 0 0 0 0 0 0 0 a(20) a(11) 0 0 a(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) b(1) b(9) b(13) b(11) 0 b(3) 0 b(2) 0 c(11) c(3) c(2) 0 0 0 c(9) 0 0 0 c(13) 0 c(1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 b(14) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(14) 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 c(1) 0 0 0 c(10) 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(17) 0 0 0 a(12) 0 0 0 0 0 a(16) 0 0 a(8) 0 a(19) 0 0 0 0 0 0 0 0 0 0 0 0 b(17) b(19) 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 b(8) 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 0 c(16) 0 0 c(20) 0 0 0 0 c(19) 0 c(2) 0 0 0 0 c(17) 0 c(12) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 a(16) 0 a(8) 0 0 0 0 0 0 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 b(8) 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 c(17) c(8) 0 0 c(18) c(12) 0 c(6) 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(5) 0 0 0 0 a(12) 0 0 0 0 0 a(16) 0 a(4) a(10) a(8) 0 0 0 a(14) 0 0 0 a(17) 0 0 0 0 b(10) b(5) 0 b(12) b(14) 0 b(4) 0 0 b(17) 0 0 0 0 0 b(8) 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 c(17) c(14) 0 0 0 0 0 c(16) 0 0 0 c(8) c(9) 0 0 0 0 c(10) 0 c(11) c(3) 0 c(4) 0 0 c(5) 0 0 c(12) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(3) a(2) 0 0 0 0 a(4) a(19) 0 a(13) 0 0 0 0 0 0 a(20) a(5) 0 a(17) 0 0 0 0 0 0 0 b(3) 0 b(20) b(2) 0 0 0 0 0 0 0 0 0 0 b(13) 0 0 0 0 b(4) b(19) 0 b(17) b(5) 0 0 0 c(5) c(17) 0 0 0 c(20) 0 c(19) 0 0 c(13) 0 0 c(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(3) c(2) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(15) a(18) 0 a(7) 0 0 0 0 0 0 0 0 0 0 0 0 b(7) 0 0 b(18) b(4) 0 0 b(3) b(15) b(17) b(5) 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) c(5) 0 0 c(6) 0 0 c(15) 0 0 0 0 0 c(4) c(3) 0 0 0 0 0 c(17) 0 c(18) 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) a(18) 0 0 0 a(6) 0 0 0 0 0 a(12) 0 0 a(17) 0 a(2) 0 a(19) 0 a(20) 0 0 0 0 0 a(8) 0 0 b(18) b(2) 0 b(6) 0 0 0 0 0 0 0 b(20) 0 b(19) 0 0 0 b(17) b(8) 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 c(17) 0 c(19) c(12) 0 0 0 c(20) 0 0 0 c(2) 0 0 0 0 0 0 c(18) 0 c(6) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 0 0 a(5) a(17) 0 0 a(7) 0 0 0 0 0 a(6) 0 0 0 a(18) a(11) a(3) 0 a(15) 0 0 0 0 0 0 0 0 0 0 0 b(7) b(15) 0 0 b(3) 0 0 0 b(9) b(11) b(4) b(10) b(18) 0 0 b(5) b(17) 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 c(15) c(10) 0 0 c(5) 0 c(6) c(11) 0 0 c(18) 0 0 0 c(9) 0 0 c(17) 0 0 c(4) 0 c(3) 0 0 0 0 c(7) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 a(19) 0 a(15) a(18) 0 0 0 0 a(5) a(17) 0 a(3) 0 0 0 a(13) a(20) 0 a(2) 0 0 a(6) 0 a(4) 0 0 0 0 0 b(15) 0 b(2) b(18) 0 b(20) 0 0 0 0 b(13) 0 0 0 b(3) b(4) b(19) 0 0 b(5) b(17) 0 b(6) 0 0 0 0 0 c(6) 0 0 0 c(2) 0 c(17) c(4) c(19) c(3) 0 c(13) c(5) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 c(15) c(18) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(18) 0 0 0 0 0 a(17) 0 0 a(2) 0 0 0 a(20) 0 0 0 a(6) 0 0 0 a(19) 0 0 0 0 0 b(18) 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 b(2) b(19) 0 0 0 b(17) 0 0 0 b(6) 0 0 0 c(6) 0 0 0 0 0 0 0 c(19) 0 c(2) 0 c(20) c(17) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(18) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 0 a(11) a(3) a(2) 0 0 0 a(10) a(4) a(19) a(9) 0 0 a(20) 0 0 0 a(13) 0 0 a(5) 0 0 a(17) 0 0 0 0 b(11) b(2) b(13) b(3) 0 0 0 0 0 0 0 0 0 b(20) b(9) 0 0 0 0 b(10) b(4) b(19) b(5) 0 b(17) 0 0 0 c(5) c(17) 0 0 c(13) 0 c(4) 0 0 c(9) c(19) 0 c(10) 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(11) c(3) c(2) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) 0 0 0 a(17) 0 0 0 0 0 a(8) 0 0 a(19) 0 a(20) 0 0 0 0 0 a(12) 0 0 0 0 0 0 b(2) b(20) 0 b(17) 0 0 0 0 0 0 0 0 0 0 0 0 0 b(19) 0 0 0 0 b(8) 0 0 0 b(12) 0 0 0 c(12) 0 0 0 0 0 0 0 0 0 c(19) 0 0 c(8) 0 0 0 0 0 0 0 c(20) 0 0 0 0 0 0 c(2) 0 c(17) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 0 0 0 0 a(6) 0 0 a(18) 0 0 0 a(2) 0 0 0 0 0 0 0 a(17) 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 b(20) b(2) 0 b(19) 0 b(18) b(17) 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 c(19) 0 c(17) 0 c(18) 0 c(2) c(6) 0 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 c(7) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 a(8) 0 0 0 0 0 0 0 0 0 0 0 0 b(12) b(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 c(19) 0 0 0 c(2) c(8) 0 c(17) 0 0 0 0 c(12) 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 a(3) a(2) 0 0 a(5) a(17) 0 0 0 0 a(14) a(8) 0 a(4) a(20) a(13) 0 0 0 0 a(19) 0 0 a(12) 0 0 0 0 b(3) b(13) b(2) b(5) 0 b(19) b(17) b(20) 0 0 0 0 0 0 0 0 0 b(4) 0 0 0 0 b(14) b(8) 0 b(12) 0 0 0 0 0 c(12) 0 0 0 c(19) 0 c(8) 0 0 c(4) 0 0 c(14) 0 0 0 0 0 0 0 c(13) 0 0 0 0 c(20) 0 c(3) c(2) c(5) c(17) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 a(6) a(16) 0 0 0 0 0 0 0 0 0 0 0 a(17) a(5) 0 a(14) a(8) a(4) a(12) 0 0 0 0 0 0 0 0 b(5) b(6) 0 0 b(12) 0 b(17) b(8) 0 0 b(4) 0 b(14) 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(12) 0 0 0 c(16) 0 0 c(14) 0 0 0 c(3) c(4) 0 0 0 c(5) 0 c(15) c(18) 0 c(17) c(8) 0 c(6) 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 a(7) a(12) 0 0 0 0 0 0 0 0 0 0 0 a(18) a(15) 0 a(5) a(17) a(3) a(6) 0 0 0 0 0 0 0 0 b(15) b(7) 0 0 b(6) 0 b(18) b(17) 0 0 b(3) b(4) b(5) b(8) b(14) 0 0 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(6) c(14) 0 0 c(12) 0 0 c(5) 0 0 0 0 c(3) 0 c(4) 0 c(15) 0 0 0 c(8) c(18) c(17) 0 c(7) 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(2) 0 0 0 0 0 a(19) 0 0 a(20) 0 0 0 0 0 0 0 a(17) 0 0 0 0 0 0 0 0 0 b(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 0 b(19) 0 0 0 b(17) 0 0 0 c(17) 0 0 0 0 0 0 0 0 0 c(20) 0 0 c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(2) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(4) a(6) 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 a(17) 0 a(8) 0 a(19) 0 0 0 0 0 a(16) 0 0 b(6) b(17) 0 0 0 0 0 0 0 0 0 b(19) 0 b(8) 0 0 0 b(12) b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 c(12) 0 c(8) 0 0 0 c(2) c(19) 0 0 0 c(17) 0 c(18) 0 0 0 0 c(6) 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(4) 0 0 0 a(5) a(17) 0 0 0 a(12) 0 0 0 0 0 a(16) 0 a(14) a(19) a(4) 0 0 0 0 a(8) 0 0 0 0 0 0 0 b(5) b(4) b(17) 0 0 b(8) b(12) b(19) 0 0 0 0 0 0 0 0 0 b(14) 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 c(16) 0 0 c(14) 0 0 0 0 0 c(13) 0 0 0 0 c(4) 0 c(3) c(2) 0 c(19) 0 c(5) c(17) 0 c(12) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 a(12) 0 a(17) 0 0 0 0 0 0 0 0 0 b(6) 0 0 0 0 0 0 0 0 0 b(17) b(8) b(12) 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 c(12) 0 0 0 c(18) c(17) 0 c(8) 0 c(6) 0 c(7) 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(12) 0 0 0 0 0 0 0 0 0 0 0 0 a(8) a(14) 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 b(14) b(12) 0 0 b(16) 0 b(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 c(4) 0 0 0 c(3) c(14) 0 c(5) c(17) 0 c(8) 0 0 c(12) 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(7) 0 a(6) 0 a(18) 0 0 0 0 0 0 0 0 0 b(7) 0 0 0 0 0 0 0 b(8) 0 b(18) b(17) b(6) 0 b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(12) 0 0 0 0 0 c(6) 0 0 0 0 c(18) c(8) c(17) 0 c(7) 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(10) 0 0 0 c(14) 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(9) a(13) a(20) 0 0 0 0 0 0 0 0 a(11) 0 a(3) 0 0 a(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) b(13) b(20) b(3) b(11) b(2) 0 0 c(11) c(3) c(2) 0 0 0 0 c(13) 0 0 0 c(20) 0 c(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) a(20) 0 0 0 0 0 0 0 0 0 a(3) 0 a(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(13) b(20) 0 b(2) b(3) 0 0 0 c(3) c(2) 0 0 0 0 0 c(20) 0 0 0 0 0 c(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 a(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 b(2) 0 0 0 c(2) 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 u(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) 0 0 0 0 a(14) a(8) 0 a(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(4) 0 0 b(8) 0 0 b(10) 0 b(14) 0 0 0 0 0 b(4) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 c(16) c(4) 0 0 0 0 0 0 0 0 0 c(8) 0 0 0 0 0 0 0 0 c(1) c(9) 0 0 0 0 c(10) 0 0 c(14) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(4) 0 0 0 0 0 0 a(10) a(4) 0 0 0 a(14) a(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(19) 0 a(16) 0 b(10) 0 b(4) 0 b(8) 0 b(14) 0 0 0 b(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 c(16) 0 c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(9) c(13) 0 0 0 c(10) c(4) 0 c(14) c(8) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(4) a(19) 0 0 a(14) a(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 b(4) 0 b(19) b(14) 0 0 b(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(13) c(20) 0 0 0 c(4) c(19) c(14) c(8) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(19) 0 0 0 a(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(16) 0 0 0 0 0 0 b(19) 0 0 b(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(16) 0 0 0 c(16) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 0 0 c(19) 0 c(8) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 a(9) 0 0 a(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) b(1) b(13) 0 b(20) c(1) c(9) c(13) c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(3) a(7) 0 0 0 0 0 0 0 0 0 0 0 0 a(6) 0 a(18) 0 a(17) 0 a(2) 0 0 0 0 0 a(12) 0 0 b(7) b(18) 0 0 0 0 0 0 0 0 0 b(2) b(19) b(17) 0 b(8) 0 b(6) b(12) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(8) 0 c(12) 0 c(6) 0 c(17) 0 0 0 0 c(2) 0 c(19) 0 c(18) 0 0 0 0 0 0 c(7) 0 0 0 0 0 0; 0 0 0 0 0 0 0 u(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(5) 0 0 0 a(7) 0 0 0 0 0 0 0 0 a(15) 0 a(11) 0 0 0 a(6) 0 0 0 0 b(7) 0 0 0 0 0 0 0 0 b(11) 0 0 0 b(1) 0 b(10) 0 b(15) 0 0 0 b(5) b(6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(7) c(15) 0 0 0 c(1) 0 0 c(5) 0 0 c(10) 0 c(11) 0 0 0 0 0 0 c(6); 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) a(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(1) 0 0 a(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(1) 0 b(9) b(20) b(13) 0 c(1) c(9) c(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 0 0 0 0 0 0 0 a(1) a(9) a(13) a(20) 0 a(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) 0 0 a(4) b(20) 0 0 0 b(1) b(13) 0 b(9) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(10) 0 b(4) 0 b(19) 0 c(10) c(4) c(19) 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(1) c(9) c(13) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(9) a(13) a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(10) 0 a(4) 0 0 a(19) 0 0 0 0 b(9) b(20) 0 b(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(4) b(10) b(19) 0 0 c(10) c(4) c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(9) c(13) c(20) 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(4) 0 a(19) 0 0 0 0 0 0 0 b(13) 0 0 b(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(19) b(4) 0 0 0 c(4) c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(13) c(20) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(19) 0 0 0 0 0 0 0 0 0 b(20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(19) 0 0 0 c(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u(2) 0 0 0 0 a(13) a(20) 0 0 0 0 0 0 a(11) a(3) a(2) 0 0 0 0 0 0 0 0 0 0 a(15) 0 a(9) a(18) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(9) b(13) b(20) 0 b(11) b(3) b(2) b(15) 0 b(18) 0 0 0 c(15) c(18) 0 0 0 0 c(3) c(9) c(13) 0 c(2) 0 c(11) 0 0 0 0 0 0 0 0 c(20) 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 0 0 0 0 a(3) a(2) 0 0 0 0 0 0 0 0 0 a(15) 0 a(18) 0 a(13) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(13) b(20) 0 0 b(3) b(2) 0 b(18) b(15) 0 0 0 c(15) c(18) 0 0 0 0 0 c(2) c(13) c(20) 0 0 0 c(3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(13) a(20) 0 0 a(4) a(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(14) 0 a(8) 0 0 0 0 b(13) 0 b(20) b(4) 0 0 b(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(8) b(14) 0 0 0 c(14) c(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(13) c(20) c(4) c(19) 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(20) 0 0 0 a(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a(8) 0 0 0 0 0 0 b(20) 0 0 b(19) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b(8) 0 0 0 c(8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c(20) 0 c(19) 0 0 0 0]';
end
function [H] = Hessian(f1coeff, f2coeff, f3coeff, s)
% the vector of monomials is
% m = [ const ; s1^2 * s2 ; s1 * s2 ; s1 * s3 ; s2 * s3 ; s2^2 * s3 ; s2^3 ; ...
% s1 * s3^2 ; s1 ; s3 ; s2 ; s2 * s3^2 ; s1^2 ; s3^2 ; s2^2 ; s3^3 ; ...
% s1 * s2 * s3 ; s1 * s2^2 ; s1^2 * s3 ; s1^3]
%
% deriv of m w.r.t. s1
Hs1 = [0 ; 2 * s(1) * s(2) ; s(2) ; s(3) ; 0 ; 0 ; 0 ; ...
s(3)^2 ; 1 ; 0 ; 0 ; 0 ; 2 * s(1) ; 0 ; 0 ; 0 ; ...
s(2) * s(3) ; s(2)^2 ; 2*s(1)*s(3); 3 * s(1)^2];
% deriv of m w.r.t. s2
Hs2 = [0 ; s(1)^2 ; s(1) ; 0 ; s(3) ; 2 * s(2) * s(3) ; 3 * s(2)^2 ; ...
0 ; 0 ; 0 ; 1 ; s(3)^2 ; 0 ; 0 ; 2 * s(2) ; 0 ; ...
s(1) * s(3) ; s(1) * 2 * s(2) ; 0 ; 0];
% deriv of m w.r.t. s3
Hs3 = [0 ; 0 ; 0 ; s(1) ; s(2) ; s(2)^2 ; 0 ; ...
s(1) * 2 * s(3) ; 0 ; 1 ; 0 ; s(2) * 2 * s(3) ; 0 ; 2 * s(3) ; 0 ; 3 * s(3)^2 ; ...
s(1) * s(2) ; 0 ; s(1)^2 ; 0];
H = [ f1coeff' * Hs1 , f1coeff' * Hs2 , f1coeff' * Hs3;
f2coeff' * Hs1 , f2coeff' * Hs2 , f2coeff' * Hs3;
f3coeff' * Hs1 , f3coeff' * Hs2 , f3coeff' * Hs3];
end
%function [C] = cayley2rot(s)
% C = ( (1-s'*s) * eye(3) + 2 * skewsymm(s) + 2 * s * s')' / ( 1 + s' * s);
%end |
github | urbste/MLPnP_matlab_toolbox-master | compute_error.m | .m | MLPnP_matlab_toolbox-master/dls_pnp_matlab/compute_error.m | 1,320 | utf_8 | 9661477a57e8c1cd36f99c33566fb9ba | function [da, dt] = compute_error(C, t, Cm, tm)
% compute the error quaternion btw. the true and the estimated solutions
% (using JPL definition of quaternions)
q_del = rot2quat(C' * Cm);
% compute the tilt angle error
da = norm(q_del(1:3) * 2);
% compute the position error
dt = norm(t - tm);
end
function q = rot2quat(R)
% converts a rotational matrix to a unit quaternion, according to JPL
% procedure (Breckenridge Memo)
T = trace(R);
[dummy maxpivot] = max([R(1,1) R(2,2) R(3,3) T]); %#ok<ASGLU>
switch maxpivot
case 1
q(1) = sqrt((1+2*R(1,1)-T)/4);
q(2:4) = 1/(4*q(1)) * [R(1,2)+R(2,1);
R(1,3)+R(3,1);
R(2,3)-R(3,2) ];
case 2
q(2) = sqrt((1+2*R(2,2)-T)/4);
q([1 3 4]) = 1/(4*q(2)) * [R(1,2)+R(2,1);
R(2,3)+R(3,2);
R(3,1)-R(1,3) ];
case 3
q(3) = sqrt((1+2*R(3,3)-T)/4);
q([1 2 4]) = 1/(4*q(3)) * [R(1,3)+R(3,1);
R(2,3)+R(3,2);
R(1,2)-R(2,1) ];
case 4
q(4) = sqrt((1+T)/4);
q(1:3) = 1/(4*q(4)) * [R(2,3)-R(3,2);
R(3,1)-R(1,3);
R(1,2)-R(2,1) ];
end % switch
% make column vector
q = q(:);
% 4th element is always positive
if q(4)<0
q = -q;
end
% quaternion normalization
q = q/sqrt(q'*q);
end |
github | urbste/MLPnP_matlab_toolbox-master | PrepareData.m | .m | MLPnP_matlab_toolbox-master/REPPnP/PrepareData.m | 1,668 | utf_8 | 53e2d1b61c8fcd957bee7f6a86b0d173 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This toolbox illustrates how to use the REPPnP and EPPnP
% algorithms described in:
%
% Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer.
% Very Fast Solution to the PnP Problem with Algebraic Outlier Rejection.
% In Proceedings of CVPR, 2014.
%
% Copyright (C) <2014> <Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the version 3 of the GNU General Public License
% as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Luis Ferraz, CMTech-UPF, June 2014.
% [email protected],http://cmtech.upf.edu/user/62
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [M,Cw, Alph] = PrepareData(Pts,impts,Cw)
if ~exist('Cw','var')
Cw=define_control_points()';
end
Xw=Pts';
U=impts;
%compute alphas (linear combination of the control points to represent the 3d points)
Alph=compute_alphas(Xw,Cw');
%Compute M
M=ComputeM(U(:),Alph);
end
function M = ComputeM(U,Alph)
%ATTENTION U must be multiplied by K previously
M = kron(Alph,[1 0 -1; 0 1 -1]);
M(:,[[3,6,9,12]]) = M(:,[3,6,9,12]) .* (U * ones(1,4));
end |
github | urbste/MLPnP_matlab_toolbox-master | my_robust_kernel_noise.m | .m | MLPnP_matlab_toolbox-master/REPPnP/my_robust_kernel_noise.m | 2,512 | utf_8 | cb9cfcebdbcdf7e6a3cb516c61611e6c | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This toolbox illustrates how to use the REPPnP and EPPnP
% algorithms described in:
%
% Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer.
% Very Fast Solution to the PnP Problem with Algebraic Outlier Rejection.
% In Proceedings of CVPR, 2014.
%
% Copyright (C) <2014> <Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the version 3 of the GNU General Public License
% as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Luis Ferraz, CMTech-UPF, June 2014.
% [email protected],http://cmtech.upf.edu/user/62
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [K, idinliers, i]=my_robust_kernel_noise(M,dimker, minerror)
m = size(M,1);
id =round(m/8);
idx = 1:m;
prev_sv = Inf;
pairs = 1; %each correspondence is a couple of equations
for i=1:10
N = M(idx,:);
[~,~,v] = svd(N'*N);
if (pairs)
error21 = M(1:2:end,:) * v(:,end);
error22 = M(2:2:end,:) * v(:,end);
error2 = sqrt(error21.^2 + error22.^2);
[sv, tidx] = sort(error2);
med = sv(floor(m/8));
else
error2 = M * v(:,end);
[sv, tidx] = sort(error2.^2);
med = sv(floor(m/2));
end
ninliers = sum(sv<max(med,minerror));
if (med >= prev_sv)
break;
else
prev_sv = med;
resv = v;
if(pairs)
residx = tidx(1:ninliers);
else
%always pairs = 1!! :P
end
end
if(pairs)
tidx2 = tidx'*2;
ttidx = [tidx2-1; tidx2];
tidx2 = ttidx(:);
idx = tidx2(1:2*ninliers);
else
idx = tidx(1:ninliers);
end
end
K = resv(:,end-dimker+1:end);
idinliers = residx;
end |
github | urbste/MLPnP_matlab_toolbox-master | KernelPnP.m | .m | MLPnP_matlab_toolbox-master/REPPnP/KernelPnP.m | 2,495 | utf_8 | c1f05f3483cc93ccf3a9cac0ad06a5a2 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This toolbox illustrates how to use the REPPnP and EPPnP
% algorithms described in:
%
% Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer.
% Very Fast Solution to the PnP Problem with Algebraic Outlier Rejection.
% In Proceedings of CVPR, 2014.
%
% Copyright (C) <2014> <Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the version 3 of the GNU General Public License
% as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Luis Ferraz, CMTech-UPF, June 2014.
% [email protected],http://cmtech.upf.edu/user/62
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R,T, err] = KernelPnP(Cw, Km, dims, sol_iter)
vK = reshape(Km(:,end),3,dims);
%precomputations
X.P = Cw;
X.mP = mean(X.P,2);
X.cP = X.P - X.mP * ones(1,dims);
X.norm = norm(X.cP(:));
X.nP = X.cP/X.norm;
%procrustes solution for the first kernel vector
if (mean(vK(3,:)<0))
vK = -vK;
end
[R,b,mc] = myProcrustes(X,vK);
solV = b * vK;
solR = R;
solmc = mc;
% procrustes solution using 4 kernel eigenvectors
if sol_iter
err = Inf;
n_iterations=10;
for iter=1:n_iterations
% projection of previous solution into the null space
A = R * (- mc +X.P);
abcd = Km \ A(:);
newV = reshape(Km * abcd,3,dims);
%eucliedean error
newerr = norm(R' * newV + mc - X.P);
if ((newerr > err) && (iter>2))
break;
else
%procrustes solution
[R,b,mc] = myProcrustes(X,newV);
solV = b * newV;
solmc = mc;
solR = R;
err = newerr;
end
end
end
R = solR;
mV = mean(solV,2);
T = mV - R * X.mP;
end
|
github | urbste/MLPnP_matlab_toolbox-master | REPPnP_planar.m | .m | MLPnP_matlab_toolbox-master/REPPnP/REPPnP_planar.m | 2,128 | utf_8 | 897ad9af142a38fc79938ee73e1c9f2e | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This toolbox illustrates how to use the REPPnP and EPPnP
% algorithms described in:
%
% Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer.
% Very Fast Solution to the PnP Problem with Algebraic Outlier Rejection.
% In Proceedings of CVPR, 2014.
%
% Copyright (C) <2014> <Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the version 3 of the GNU General Public License
% as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Luis Ferraz, CMTech-UPF, June 2014.
% [email protected],http://cmtech.upf.edu/user/62
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R,T,mask_inliers, robustiters, err] = REPPnP(Pts,impts,varargin)
if (nargin < 3)
minerror = 0.02; %for the synthetic experiments (f = 800)
else
nVarargs = length(varargin);
for k = 1:nVarargs
minerror = varargin{k};
end
end
sol_iter = 1; %indicates if the initial solution must be optimized
dims = 3; %kernel dimensions
%Compute M
[M, Cw, Alph] = PrepareData(Pts,impts);
idx = find(sum((reshape(sum(M.^2),[3,4])))==0);
if(~isempty(idx))
M = M(:,setdiff([1:12],[3*(idx-1)+1 3*(idx-1)+2 3*(idx-1)+3]));
Cw = Cw(:,setdiff([1:4],idx));
Alph = Alph(:,setdiff([1:4],idx));
end
%roubst kernel estimation
[Km, idinliers, robustiters] = my_robust_kernel_noise(M,dims,minerror);
mask_inliers = zeros(1,size(impts,2));
mask_inliers(idinliers) = 1;
[R, T, err] = KernelPnP(Cw, Km, dims, sol_iter);
end
|
github | urbste/MLPnP_matlab_toolbox-master | EPPnP_planar.m | .m | MLPnP_matlab_toolbox-master/REPPnP/EPPnP_planar.m | 1,804 | utf_8 | 64e3b8d097cf9d62908123a4290bfa04 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This toolbox illustrates how to use the REPPnP and EPPnP
% algorithms described in:
%
% Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer.
% Very Fast Solution to the PnP Problem with Algebraic Outlier Rejection.
% In Proceedings of CVPR, 2014.
%
% Copyright (C) <2014> <Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the version 3 of the GNU General Public License
% as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Luis Ferraz, CMTech-UPF, June 2014.
% [email protected],http://cmtech.upf.edu/user/62
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R,T,err] = EPPnP(Pts,impts)
sol_iter = 1; %indicates if the initial solution must be optimized
dims = 3; %kernel dimensions
% mPts = mean(Pts,2);
% Pts = Pts - (mPts * ones(1,size(Pts,2)));
[M, Cw, Alph] = PrepareData(Pts,impts);
idx = find(sum((reshape(sum(M.^2),[3,4])))==0);
if(~isempty(idx))
M = M(:,setdiff([1:12],[3*(idx-1)+1 3*(idx-1)+2 3*(idx-1)+3]));
Cw = Cw(:,setdiff([1:4],idx));
Alph = Alph(:,setdiff([1:4],idx));
end
Km=kernel_noise(M,dims); %Compute kernel M
[R, T, err] = KernelPnP(Cw, Km, dims, sol_iter);
% T = T - R * mPts;
end
|
github | urbste/MLPnP_matlab_toolbox-master | EPPnP.m | .m | MLPnP_matlab_toolbox-master/REPPnP/EPPnP.m | 1,558 | utf_8 | 699aba608ee9de3e3b6c3f69f12a9d54 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This toolbox illustrates how to use the REPPnP and EPPnP
% algorithms described in:
%
% Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer.
% Very Fast Solution to the PnP Problem with Algebraic Outlier Rejection.
% In Proceedings of CVPR, 2014.
%
% Copyright (C) <2014> <Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the version 3 of the GNU General Public License
% as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Luis Ferraz, CMTech-UPF, June 2014.
% [email protected],http://cmtech.upf.edu/user/62
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R,T,err] = EPPnP(Pts,impts)
sol_iter = 1; %indicates if the initial solution must be optimized
dims = 4; %kernel dimensions
% mPts = mean(Pts,2);
% Pts = Pts - (mPts * ones(1,size(Pts,2)));
[M, Cw, Alph] = PrepareData(Pts,impts);
Km=kernel_noise(M,dims); %Compute kernel M
[R, T, err] = KernelPnP(Cw, Km, dims, sol_iter);
% T = T - R * mPts;
end
|
github | urbste/MLPnP_matlab_toolbox-master | myProcrustes.m | .m | MLPnP_matlab_toolbox-master/REPPnP/myProcrustes.m | 1,668 | utf_8 | 1dc7421009a6a4d8985f27b648124d5a | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This toolbox illustrates how to use the REPPnP and EPPnP
% algorithms described in:
%
% Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer.
% Very Fast Solution to the PnP Problem with Algebraic Outlier Rejection.
% In Proceedings of CVPR, 2014.
%
% Copyright (C) <2014> <Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the version 3 of the GNU General Public License
% as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Luis Ferraz, CMTech-UPF, June 2014.
% [email protected],http://cmtech.upf.edu/user/62
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R, b, mc] = myProcrustes(X,Y)
%X is an structure containing points, points centered in the origin, points
%normalized
%Y are 3D points
dims = size(Y,2);
mY = mean(Y,2);
cY = Y - mY * ones(1,dims);
ncY = norm(cY(:));
tcY = cY/ncY;
A = X.nP * tcY';
[L, D, M] = svd(A);
% R = M * L';
%
% if(mY(3)>0 && det(R)<0)
R = M * diag([1,1,sign(det(M*L'))])* L';
% end
b = sum(diag(D)) * X.norm/ncY;
c = X.mP - b*R'*mY;
mc = c * ones(1,dims);
end |
github | urbste/MLPnP_matlab_toolbox-master | REPPnP.m | .m | MLPnP_matlab_toolbox-master/REPPnP/REPPnP.m | 1,876 | utf_8 | c1d6bf7f795e4bb3c975e11c43253a3d | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This toolbox illustrates how to use the REPPnP and EPPnP
% algorithms described in:
%
% Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer.
% Very Fast Solution to the PnP Problem with Algebraic Outlier Rejection.
% In Proceedings of CVPR, 2014.
%
% Copyright (C) <2014> <Luis Ferraz, Xavier Binefa, Francesc Moreno-Noguer>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the version 3 of the GNU General Public License
% as published by the Free Software Foundation.
%
% This program is distributed in the hope that it will be useful, but
% WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
% General Public License for more details.
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Luis Ferraz, CMTech-UPF, June 2014.
% [email protected],http://cmtech.upf.edu/user/62
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R,T,mask_inliers, robustiters, err] = REPPnP(Pts,impts,varargin)
if (nargin < 3)
minerror = 0.02; %for the synthetic experiments (f = 800)
else
nVarargs = length(varargin);
for k = 1:nVarargs
minerror = varargin{k};
end
end
sol_iter = 1; %indicates if the initial solution must be optimized
dims = 4; %kernel dimensions
%Compute M
[M, Cw, Alph] = PrepareData(Pts,impts);
%roubst kernel estimation
[Km, idinliers, robustiters] = my_robust_kernel_noise(M,dims,minerror);
mask_inliers = zeros(1,size(impts,2));
mask_inliers(idinliers) = 1;
[R, T, err] = KernelPnP(Cw, Km, dims, sol_iter);
end
|
github | urbste/MLPnP_matlab_toolbox-master | gOp.m | .m | MLPnP_matlab_toolbox-master/gOp/gOp.m | 31,248 | utf_8 | 675abc190efa65ccb36a5cb208a999c5 | function [R,t,E,info] = gOp(v,X_,opt)
%
% [R,t] = gOp(v,X)
%
% returns the global optimum pose
% such that
% sum_i norm( Q*(R*X+t+c) ) is minimal
%
% Q = eye(3)-v*v'/norm(v)^2
%
%
% opt.methode ='3D' -> we are 100 % sure that is is a 3d model
% opt.methode ='choose best' -> we are not sure, but take the best result
% opt.methode ='choose +t' -> we take the best solution with t(3) > 0
%
% opt.acc = 1e-9 -> accuracy of the sedumi solver
%
% Author: Gerald Schweighofer
%% what happens with that equation
%% (R*X+t+c)'*Q*(R*X+t+c)
%%
% get the Model
if size(v,1) == 6, %% this is for general camera model
c = v(4:6,:);
v = v(1:3,:);
else
c = zeros(size(v));
end
if ~isfield(opt,'acc'),
opt.acc = 1e-9;
end
if strcmp( opt.methode , '3D' ),
% we call the 3d Estimator
t_ = tic;
[M,Mc,Mcc]=genrMr_gcm(X_,v,c);
%% Mcc is a constant and therefor not used in the optimization
[R,t,ok,info] = solve_sdp(@error_to_sedumi,M,Mc,Mcc,opt.acc,X_,v,c);
info.time_global_pose = (double(tic) - double(t_))/1e6;
if ~ok,
disp('Error -> try the other options for planar cases ');
return;
end
else
t_ = tic;
%% if we have a planar like structure -> bring it into [x,x,const] form !!
pl = fitplane(X_);
n = normRv(pl(1:3));
if abs(n(3)) == 1,
R_ = eye(3);
else
R_ = rpyMat([pi/2 0 0])*getRotation([0;1;0]',n');
end
%R_*X
X = R_*X_;
[M,Mc,Mcc]=genrMr_gcm(X,v,c);
%% if we are unsure if there is a planar target
%% we call both
[R1,t1,ok1,info1] = solve_sdp(@error_to_sedumi_planar,M,Mc,Mcc,opt.acc,X,v,c);
%% check the absolute value of the rotation -> if it is close to zero we get a problem !
if ok1,
if abs(R1(1,1)) < 0.2,
%% simple approach -> change the rotation
R_ = rpyMat([0 0 pi/2])*R_;
X = R_*X_;
[M,Mc,Mcc]=genrMr_gcm(X,v,c);
[R1,t1,ok1,info1] = solve_sdp(@error_to_sedumi_planar,M,Mc,Mcc,opt.acc,X,v,c);
end
end
[R2,t2,ok2,info2] = solve_sdp(@error_to_sedumi_planar_inv,M,Mc,Mcc,opt.acc,X,v,c);
%% remove the rotation of the beginning
%% X = R_*X;
%% Ri*X+t -> Ri*R_*X + t
%%
info1.time_global_pose = (double(tic) - double(t_))/1e6;
info2.time_global_pose = info1.time_global_pose;
%% sum up the timings !
time_sedum_call = info1.time_sedum_call + info2.time_sedum_call;
info1.time_sedum_call = time_sedum_call;
info2.time_sedum_call = time_sedum_call;
e=[];
if ok1,
R1 = R1*R_;
e(end+1).e = get_Error(R1,t1,X_,v,c);
e(end).R = R1;
e(end).t = t1;
e(end).info = info1;
end
if ok2,
R2 = R2*R_;
e(end+1).e = get_Error(R2,t2,X_,v,c);
e(end).R = R2;
e(end).t = t2;
e(end).info = info2;
end
%% take the best
if strcmp( opt.methode , 'choose best' ),
ee = cat(1,e.e);
fi = find( ee == min(ee) );
else
if strcmp( opt.methode , 'choose +t' )
ee = cat(2,e.t);
fi = find( ee(3,:) > 0 );
if length(fi) > 1,
disp('There are two solutions with t(3) > 0 :-) ');
%% take the best one
e = e(fi);
ee = cat(1,e.e);
fi = find( ee == min(ee) );
end
else
disp('something went wrong -> bad option ');
kl
end
end
if length(fi) < 1,
disp('No Solution found');
kl
%% we schould use the constrainained t_opt(3) > 0 -> in that case !!
%% and not the R(1,1) > 0
%% That's not implemented yet -> but should be no problem :-)
%% An error happens if R(1,1) is close to zereo so that R(1,1) = 0 is a good solution
%% then we get that as a result
end
fi=fi(1);
R = e(fi).R;
t = e(fi).t;
info = e(fi).info;
end
%% estimate the true value of that function
r = R'; r=r(:);
info.ErrorM = r' * M * r + Mc.'*r + Mcc;
if nargout >= 3
E=get_Error(R,t,X_,v,c);
end
return;
%% ------------------- helper functions --------------------------
function [R,t,ok,info] = solve_sdp(fun,M,Mc,Mcc,acc,X,v,c)
% [At_,b_,c_,K_,pars_] = error_to_sedumi(M,Mc,Mcc);
[At_,b_,c_,K_,pars_] = feval(fun,M,Mc,Mcc);
pars_.eps = acc;
pars_.fid = 0;
% Here we tried other solvers :-( without any luck
%At = At_; b=b_;c=c_;K=K_;
%save /var/tmp/sedumi.mat At b c K - V4;
% addpath /var/tmp/SDPT3-4.0-beta/
% addpath /var/tmp/SDPT3-4.0-beta/Solver/
% addpath /var/tmp/SDPT3-4.0-beta/Solver/Mexfun
% [blk,At,C,b] = read_sedumi(At_,b_,c_,K_);
% [obj,X,y,Z] = sqlp(blk,At,C,b);
% %solve csdp -> no free variables supported !
% [x,y,z,info]=csdp(At_,b_,c_,K_,pars_)
% solve sedumi
t = tic;
[x,y,info] = sedumi(At_,b_,c_,K_,pars_);
info.time_sedum_call = (double(tic) - double(t))/1e6;
% extract the solution
opt = -y([ 36 16 6 2]);
gam = x(16);
info.gamma = gam + Mcc; %% thats the lower bound of the system
% get the translation
R = quat2mat( opt )';
if norm( det(R)-1 ) > 1e-3,
disp('Sedumi Failed -> are you sure you don t have a planar target');
ok = 0; t=[];
else
t=get_opt_t(R,X,v,c);
ok = 1;
end
function e=get_Error(R,t,X,v,c)
clear V
for pi_=1:size(v,2),
V(pi_).V= (v(:,pi_)*v(:,pi_)')./(v(:,pi_)'*v(:,pi_));
end
e = 0;
for pi_=1:size(v,2),
ei = (V(pi_).V-eye(3)) * (R*X(:,pi_)+t+c(:,pi_));
e = e + ei'*ei;
end
function t=get_opt_t(R,X,v,c)
clear V
for pi_=1:size(v,2),
V(pi_).V= (v(:,pi_)*v(:,pi_)')./(v(:,pi_)'*v(:,pi_));
end
G=zeros(3);
for pi_=1:size(v,2),
G=G+ V(pi_).V;
end
G=inv(eye(3)-G/size(v,2))/size(v,2);
t_opt = zeros(3,1) ;
for pi_=1:size(v,2),
t_opt = t_opt + (V(pi_).V-eye(3))*(R*X(:,pi_)+c(:,pi_));
end
t = G*t_opt;
function [At,b,c,K,pars] = error_to_sedumi_planar_inv(M,Mc,Mcc)
%
% transfers the function r'*M*r+r'*Mc+Mcc with planar case
% -> M([3,6,9],:) approx zero
% -> M(:,[3,6,9]) approx zero
%
% constrains: r1 > 0 , ||r1..4|| = 1
% constrains: R(1,1) < 0 -> to fix the scale of the Rotation
% but we use the data in it -> to get a better solution !
%
m11 = M(1,1);
m12 = M(1,2);
m13 = M(1,3);
m14 = M(1,4);
m15 = M(1,5);
m16 = M(1,6);
m17 = M(1,7);
m18 = M(1,8);
m19 = M(1,9);
mc1 = Mc(1);
m22 = M(2,2);
m23 = M(2,3);
m24 = M(2,4);
m25 = M(2,5);
m26 = M(2,6);
m27 = M(2,7);
m28 = M(2,8);
m29 = M(2,9);
mc2 = Mc(2);
m33 = M(3,3);
m34 = M(3,4);
m35 = M(3,5);
m36 = M(3,6);
m37 = M(3,7);
m38 = M(3,8);
m39 = M(3,9);
mc3 = Mc(3);
m44 = M(4,4);
m45 = M(4,5);
m46 = M(4,6);
m47 = M(4,7);
m48 = M(4,8);
m49 = M(4,9);
mc4 = Mc(4);
m55 = M(5,5);
m56 = M(5,6);
m57 = M(5,7);
m58 = M(5,8);
m59 = M(5,9);
mc5 = Mc(5);
m66 = M(6,6);
m67 = M(6,7);
m68 = M(6,8);
m69 = M(6,9);
mc6 = Mc(6);
m77 = M(7,7);
m78 = M(7,8);
m79 = M(7,9);
mc7 = Mc(7);
m88 = M(8,8);
m89 = M(8,9);
mc8 = Mc(8);
m99 = M(9,9);
mc9 = Mc(9);
pars.eps = 1e-12;
pars.alg = 2;
K.s=[5 5 1 15];
K.f=[16];
At=sparse(zeros([292 70]));
At(1,1)=-1;
At(1,3)=1;
At(1,10)=1;
At(1,26)=1;
At(1,56)=1;
At(2,36)=-1;
At(2,38)=1;
At(2,43)=1;
At(2,52)=1;
At(2,66)=1;
At(3,16)=-1;
At(3,18)=1;
At(3,23)=1;
At(3,32)=1;
At(3,62)=1;
At(4,6)=-1;
At(4,8)=1;
At(4,13)=1;
At(4,29)=1;
At(4,59)=1;
At(5,2)=-1;
At(5,4)=1;
At(5,11)=1;
At(5,27)=1;
At(5,57)=1;
At(6,56)=-1;
At(6,58)=1;
At(6,61)=1;
At(6,65)=1;
At(6,70)=1;
At(7,46)=-1;
At(7,48)=1;
At(7,51)=1;
At(7,55)=1;
At(7,69)=1;
At(8,26)=-1;
At(8,28)=1;
At(8,31)=1;
At(8,35)=1;
At(8,65)=1;
At(9,40)=-1;
At(9,42)=1;
At(9,45)=1;
At(9,54)=1;
At(9,68)=1;
At(10,20)=-1;
At(10,22)=1;
At(10,25)=1;
At(10,34)=1;
At(10,64)=1;
At(11,10)=-1;
At(11,12)=1;
At(11,15)=1;
At(11,31)=1;
At(11,61)=1;
At(12,37)=-1;
At(12,39)=1;
At(12,44)=1;
At(12,53)=1;
At(12,67)=1;
At(13,17)=-1;
At(13,19)=1;
At(13,24)=1;
At(13,33)=1;
At(13,63)=1;
At(14,7)=-1;
At(14,9)=1;
At(14,14)=1;
At(14,30)=1;
At(14,60)=1;
At(15,3)=-1;
At(15,5)=1;
At(15,12)=1;
At(15,28)=1;
At(15,58)=1;
At(16,1)=1;
At(17,3)=1;
At(17,10)=1;
At(17,26)=-1;
At(17,56)=-1;
At(18,38)=1;
At(18,43)=1;
At(18,52)=-1;
At(18,66)=-1;
At(19,18)=1;
At(19,23)=1;
At(19,32)=-1;
At(19,62)=-1;
At(20,8)=1;
At(20,13)=1;
At(20,29)=-1;
At(20,59)=-1;
At(21,4)=1;
At(21,11)=1;
At(21,27)=-1;
At(21,57)=-1;
At(22,38)=1;
At(22,43)=1;
At(22,52)=-1;
At(22,66)=-1;
At(23,58)=1;
At(23,61)=1;
At(23,65)=-1;
At(23,70)=-1;
At(24,48)=1;
At(24,51)=1;
At(24,55)=-1;
At(24,69)=-1;
At(25,42)=1;
At(25,45)=1;
At(25,54)=-1;
At(25,68)=-1;
At(26,39)=1;
At(26,44)=1;
At(26,53)=-1;
At(26,67)=-1;
At(27,18)=1;
At(27,23)=1;
At(27,32)=-1;
At(27,62)=-1;
At(28,48)=1;
At(28,51)=1;
At(28,55)=-1;
At(28,69)=-1;
At(29,28)=1;
At(29,31)=1;
At(29,35)=-1;
At(29,65)=-1;
At(30,22)=1;
At(30,25)=1;
At(30,34)=-1;
At(30,64)=-1;
At(31,19)=1;
At(31,24)=1;
At(31,33)=-1;
At(31,63)=-1;
At(32,8)=1;
At(32,13)=1;
At(32,29)=-1;
At(32,59)=-1;
At(33,42)=1;
At(33,45)=1;
At(33,54)=-1;
At(33,68)=-1;
At(34,22)=1;
At(34,25)=1;
At(34,34)=-1;
At(34,64)=-1;
At(35,12)=1;
At(35,15)=1;
At(35,31)=-1;
At(35,61)=-1;
At(36,9)=1;
At(36,14)=1;
At(36,30)=-1;
At(36,60)=-1;
At(37,4)=1;
At(37,11)=1;
At(37,27)=-1;
At(37,57)=-1;
At(38,39)=1;
At(38,44)=1;
At(38,53)=-1;
At(38,67)=-1;
At(39,19)=1;
At(39,24)=1;
At(39,33)=-1;
At(39,63)=-1;
At(40,9)=1;
At(40,14)=1;
At(40,30)=-1;
At(40,60)=-1;
At(41,5)=1;
At(41,12)=1;
At(41,28)=-1;
At(41,58)=-1;
At(42,36)=1;
At(43,56)=1;
At(44,46)=1;
At(45,40)=1;
At(46,37)=1;
At(47,56)=1;
At(48,66)=1;
At(49,62)=1;
At(50,59)=1;
At(51,57)=1;
At(52,46)=1;
At(53,62)=1;
At(54,52)=1;
At(55,49)=1;
At(56,47)=1;
At(57,40)=1;
At(58,59)=1;
At(59,49)=1;
At(60,43)=1;
At(61,41)=1;
At(62,37)=1;
At(63,57)=1;
At(64,47)=1;
At(65,41)=1;
At(66,38)=1;
At(67,38)=1;
At(67,43)=1;
At(67,52)=-1;
At(67,66)=-1;
At(68,1)=1;
At(69,36)=1;
At(70,16)=1;
At(71,6)=1;
At(72,2)=1;
At(73,56)=1;
At(74,46)=1;
At(75,26)=1;
At(76,40)=1;
At(77,20)=1;
At(78,10)=1;
At(79,37)=1;
At(80,17)=1;
At(81,7)=1;
At(82,3)=1;
At(83,36)=1;
At(84,56)=1;
At(85,46)=1;
At(86,40)=1;
At(87,37)=1;
At(88,66)=1;
At(89,62)=1;
At(90,52)=1;
At(91,59)=1;
At(92,49)=1;
At(93,43)=1;
At(94,57)=1;
At(95,47)=1;
At(96,41)=1;
At(97,38)=1;
At(98,16)=1;
At(99,46)=1;
At(100,26)=1;
At(101,20)=1;
At(102,17)=1;
At(103,62)=1;
At(104,52)=1;
At(105,32)=1;
At(106,49)=1;
At(107,29)=1;
At(108,23)=1;
At(109,47)=1;
At(110,27)=1;
At(111,21)=1;
At(112,18)=1;
At(113,6)=1;
At(114,40)=1;
At(115,20)=1;
At(116,10)=1;
At(117,7)=1;
At(118,59)=1;
At(119,49)=1;
At(120,29)=1;
At(121,43)=1;
At(122,23)=1;
At(123,13)=1;
At(124,41)=1;
At(125,21)=1;
At(126,11)=1;
At(127,8)=1;
At(128,2)=1;
At(129,37)=1;
At(130,17)=1;
At(131,7)=1;
At(132,3)=1;
At(133,57)=1;
At(134,47)=1;
At(135,27)=1;
At(136,41)=1;
At(137,21)=1;
At(138,11)=1;
At(139,38)=1;
At(140,18)=1;
At(141,8)=1;
At(142,4)=1;
At(143,56)=1;
At(144,66)=1;
At(145,62)=1;
At(146,59)=1;
At(147,57)=1;
At(148,70)=1;
At(149,69)=1;
At(150,65)=1;
At(151,68)=1;
At(152,64)=1;
At(153,61)=1;
At(154,67)=1;
At(155,63)=1;
At(156,60)=1;
At(157,58)=1;
At(158,46)=1;
At(159,62)=1;
At(160,52)=1;
At(161,49)=1;
At(162,47)=1;
At(163,69)=1;
At(164,65)=1;
At(165,55)=1;
At(166,64)=1;
At(167,54)=1;
At(168,51)=1;
At(169,63)=1;
At(170,53)=1;
At(171,50)=1;
At(172,48)=1;
At(173,26)=1;
At(174,52)=1;
At(175,32)=1;
At(176,29)=1;
At(177,27)=1;
At(178,65)=1;
At(179,55)=1;
At(180,35)=1;
At(181,54)=1;
At(182,34)=1;
At(183,31)=1;
At(184,53)=1;
At(185,33)=1;
At(186,30)=1;
At(187,28)=1;
At(188,40)=1;
At(189,59)=1;
At(190,49)=1;
At(191,43)=1;
At(192,41)=1;
At(193,68)=1;
At(194,64)=1;
At(195,54)=1;
At(196,61)=1;
At(197,51)=1;
At(198,45)=1;
At(199,60)=1;
At(200,50)=1;
At(201,44)=1;
At(202,42)=1;
At(203,20)=1;
At(204,49)=1;
At(205,29)=1;
At(206,23)=1;
At(207,21)=1;
At(208,64)=1;
At(209,54)=1;
At(210,34)=1;
At(211,51)=1;
At(212,31)=1;
At(213,25)=1;
At(214,50)=1;
At(215,30)=1;
At(216,24)=1;
At(217,22)=1;
At(218,10)=1;
At(219,43)=1;
At(220,23)=1;
At(221,13)=1;
At(222,11)=1;
At(223,61)=1;
At(224,51)=1;
At(225,31)=1;
At(226,45)=1;
At(227,25)=1;
At(228,15)=1;
At(229,44)=1;
At(230,24)=1;
At(231,14)=1;
At(232,12)=1;
At(233,37)=1;
At(234,57)=1;
At(235,47)=1;
At(236,41)=1;
At(237,38)=1;
At(238,67)=1;
At(239,63)=1;
At(240,53)=1;
At(241,60)=1;
At(242,50)=1;
At(243,44)=1;
At(244,58)=1;
At(245,48)=1;
At(246,42)=1;
At(247,39)=1;
At(248,17)=1;
At(249,47)=1;
At(250,27)=1;
At(251,21)=1;
At(252,18)=1;
At(253,63)=1;
At(254,53)=1;
At(255,33)=1;
At(256,50)=1;
At(257,30)=1;
At(258,24)=1;
At(259,48)=1;
At(260,28)=1;
At(261,22)=1;
At(262,19)=1;
At(263,7)=1;
At(264,41)=1;
At(265,21)=1;
At(266,11)=1;
At(267,8)=1;
At(268,60)=1;
At(269,50)=1;
At(270,30)=1;
At(271,44)=1;
At(272,24)=1;
At(273,14)=1;
At(274,42)=1;
At(275,22)=1;
At(276,12)=1;
At(277,9)=1;
At(278,3)=1;
At(279,38)=1;
At(280,18)=1;
At(281,8)=1;
At(282,4)=1;
At(283,58)=1;
At(284,48)=1;
At(285,28)=1;
At(286,42)=1;
At(287,22)=1;
At(288,12)=1;
At(289,39)=1;
At(290,19)=1;
At(291,9)=1;
At(292,5)=1;
b=sparse(zeros([70 1]));
b(3)=mc9-mc5-mc1;
b(5)=m55-2*m59+m11-2*m19+2*m15+m99;
b(7)=2*mc8+2*mc6;
b(9)=-4*m18+4*m69-4*m58+4*m89-4*m56-4*m16;
b(10)=mc5-mc9-mc1;
b(12)=2*m11+4*m88+8*m68-2*m55+4*m59-2*m99+4*m66;
b(14)=-4*m18-4*m16-4*m89-4*m69+4*m56+4*m58;
b(15)=m11+m55+m99+2*m19-2*m59-2*m15;
b(17)=2*mc7+2*mc3;
b(19)=4*m79-4*m35-4*m13+4*m39-4*m57-4*m17;
b(20)=2*mc2+2*mc4;
b(22)=4*m49+8*m36+8*m67-4*m14+4*m29-4*m45+8*m78-4*m12+8*m38-4*m25;
b(24)=-4*m79+8*m48-4*m13-4*m17+4*m57+8*m46+8*m26+4*m35-4*m39+8*m28;
b(25)=4*m45-4*m14+4*m25-4*m12-4*m29-4*m49;
b(26)=mc1-mc5-mc9;
b(28)=2*m55+4*m19-2*m11+4*m77+8*m37-2*m99+4*m33;
b(30)=4*m16+8*m23+8*m34+4*m18-4*m56+8*m27+8*m47-4*m69-4*m58-4*m89;
b(31)=-2*m11-2*m55+4*m44+2*m99+8*m24+4*m15+4*m22;
b(33)=4*m17+4*m13-4*m39-4*m35-4*m79-4*m57;
b(34)=4*m14-4*m45-4*m25-4*m29+4*m12-4*m49;
b(35)=2*m59-2*m19+m99+m11-2*m15+m55;
b(37)=2*mc2-2*mc4;
b(39)=4*m29-4*m25+4*m14-4*m49-4*m12+4*m45;
b(40)=2*mc7-2*mc3;
b(42)=4*m35-4*m57-8*m46+8*m28+4*m13+4*m79-4*m39-4*m17+8*m26-8*m48;
b(44)=-8*m36-4*m12-4*m29-8*m38+4*m14+4*m49+8*m67+4*m25+8*m78-4*m45;
b(45)=-4*m17+4*m13-4*m35+4*m57+4*m39-4*m79;
b(46)=-2*mc8+2*mc6;
b(48)=8*m23+4*m69-8*m47+4*m58-4*m89-8*m34+4*m18+8*m27-4*m16-4*m56;
b(50)=-8*m44+8*m66+8*m22-8*m33-8*m88+8*m77;
b(51)=-4*m16-8*m34-8*m23+8*m47+8*m27+4*m18+4*m56+4*m89-4*m69-4*m58;
b(53)=4*m12+8*m36-4*m29-4*m14+8*m67+4*m45-8*m38+4*m49-8*m78-4*m25;
b(54)=8*m46+8*m26-4*m13+4*m35-4*m57-4*m79-8*m28-8*m48+4*m17+4*m39;
b(55)=-4*m56+4*m89-4*m18+4*m16+4*m58-4*m69;
b(56)=mc1+mc9+mc5;
b(58)=-4*m15-2*m55+4*m44+2*m99-2*m11-8*m24+4*m22;
b(60)=4*m69+4*m16+8*m27+8*m34-8*m47+4*m58+4*m18+4*m56-8*m23+4*m89;
b(61)=2*m55-2*m11-2*m99-8*m37+4*m33-4*m19+4*m77;
b(63)=8*m48+4*m35+4*m39+4*m13+4*m79+4*m17+8*m26+4*m57-8*m46-8*m28;
b(64)=-8*m36+8*m67+4*m12+8*m38+4*m14+4*m49+4*m25-8*m78+4*m45+4*m29;
b(65)=-4*m59-2*m99-8*m68-2*m55+4*m88+2*m11+4*m66;
b(67)=4*m29-4*m49+4*m25+4*m12-4*m45-4*m14;
b(68)=4*m17+4*m79-4*m39-4*m13+4*m57-4*m35;
b(69)=4*m69-4*m58-4*m89-4*m18+4*m16+4*m56;
b(70)=m99+m55+m11+2*m15+2*m19+2*m59;
c=sparse(zeros([292 1]));
c(16)=-1;
function [At,b,c,K,pars] = error_to_sedumi_planar(M,Mc,Mcc)
%
% transfers the function r'*M*r+r'*Mc+Mcc with planar case
% -> M([3,6,9],:) approx zero
% -> M(:,[3,6,9]) approx zero
%
% constrains: r1 > 0 , ||r1..4|| = 1
% constrains: R(1,1) > 0 -> to fix the scale of the Rotation
% but we use the data in it -> to get a better solution !
%
m11 = M(1,1);
m12 = M(1,2);
m13 = M(1,3);
m14 = M(1,4);
m15 = M(1,5);
m16 = M(1,6);
m17 = M(1,7);
m18 = M(1,8);
m19 = M(1,9);
mc1 = Mc(1);
m22 = M(2,2);
m23 = M(2,3);
m24 = M(2,4);
m25 = M(2,5);
m26 = M(2,6);
m27 = M(2,7);
m28 = M(2,8);
m29 = M(2,9);
mc2 = Mc(2);
m33 = M(3,3);
m34 = M(3,4);
m35 = M(3,5);
m36 = M(3,6);
m37 = M(3,7);
m38 = M(3,8);
m39 = M(3,9);
mc3 = Mc(3);
m44 = M(4,4);
m45 = M(4,5);
m46 = M(4,6);
m47 = M(4,7);
m48 = M(4,8);
m49 = M(4,9);
mc4 = Mc(4);
m55 = M(5,5);
m56 = M(5,6);
m57 = M(5,7);
m58 = M(5,8);
m59 = M(5,9);
mc5 = Mc(5);
m66 = M(6,6);
m67 = M(6,7);
m68 = M(6,8);
m69 = M(6,9);
mc6 = Mc(6);
m77 = M(7,7);
m78 = M(7,8);
m79 = M(7,9);
mc7 = Mc(7);
m88 = M(8,8);
m89 = M(8,9);
mc8 = Mc(8);
m99 = M(9,9);
mc9 = Mc(9);
pars.eps = 1e-12;
pars.alg = 2;
K.s=[5 5 1 15];
K.f=[16];
At=sparse(zeros([292 70]));
At(1,1)=-1;
At(1,3)=1;
At(1,10)=1;
At(1,26)=1;
At(1,56)=1;
At(2,36)=-1;
At(2,38)=1;
At(2,43)=1;
At(2,52)=1;
At(2,66)=1;
At(3,16)=-1;
At(3,18)=1;
At(3,23)=1;
At(3,32)=1;
At(3,62)=1;
At(4,6)=-1;
At(4,8)=1;
At(4,13)=1;
At(4,29)=1;
At(4,59)=1;
At(5,2)=-1;
At(5,4)=1;
At(5,11)=1;
At(5,27)=1;
At(5,57)=1;
At(6,56)=-1;
At(6,58)=1;
At(6,61)=1;
At(6,65)=1;
At(6,70)=1;
At(7,46)=-1;
At(7,48)=1;
At(7,51)=1;
At(7,55)=1;
At(7,69)=1;
At(8,26)=-1;
At(8,28)=1;
At(8,31)=1;
At(8,35)=1;
At(8,65)=1;
At(9,40)=-1;
At(9,42)=1;
At(9,45)=1;
At(9,54)=1;
At(9,68)=1;
At(10,20)=-1;
At(10,22)=1;
At(10,25)=1;
At(10,34)=1;
At(10,64)=1;
At(11,10)=-1;
At(11,12)=1;
At(11,15)=1;
At(11,31)=1;
At(11,61)=1;
At(12,37)=-1;
At(12,39)=1;
At(12,44)=1;
At(12,53)=1;
At(12,67)=1;
At(13,17)=-1;
At(13,19)=1;
At(13,24)=1;
At(13,33)=1;
At(13,63)=1;
At(14,7)=-1;
At(14,9)=1;
At(14,14)=1;
At(14,30)=1;
At(14,60)=1;
At(15,3)=-1;
At(15,5)=1;
At(15,12)=1;
At(15,28)=1;
At(15,58)=1;
At(16,1)=1;
At(17,3)=-1;
At(17,10)=-1;
At(17,26)=1;
At(17,56)=1;
At(18,38)=-1;
At(18,43)=-1;
At(18,52)=1;
At(18,66)=1;
At(19,18)=-1;
At(19,23)=-1;
At(19,32)=1;
At(19,62)=1;
At(20,8)=-1;
At(20,13)=-1;
At(20,29)=1;
At(20,59)=1;
At(21,4)=-1;
At(21,11)=-1;
At(21,27)=1;
At(21,57)=1;
At(22,38)=-1;
At(22,43)=-1;
At(22,52)=1;
At(22,66)=1;
At(23,58)=-1;
At(23,61)=-1;
At(23,65)=1;
At(23,70)=1;
At(24,48)=-1;
At(24,51)=-1;
At(24,55)=1;
At(24,69)=1;
At(25,42)=-1;
At(25,45)=-1;
At(25,54)=1;
At(25,68)=1;
At(26,39)=-1;
At(26,44)=-1;
At(26,53)=1;
At(26,67)=1;
At(27,18)=-1;
At(27,23)=-1;
At(27,32)=1;
At(27,62)=1;
At(28,48)=-1;
At(28,51)=-1;
At(28,55)=1;
At(28,69)=1;
At(29,28)=-1;
At(29,31)=-1;
At(29,35)=1;
At(29,65)=1;
At(30,22)=-1;
At(30,25)=-1;
At(30,34)=1;
At(30,64)=1;
At(31,19)=-1;
At(31,24)=-1;
At(31,33)=1;
At(31,63)=1;
At(32,8)=-1;
At(32,13)=-1;
At(32,29)=1;
At(32,59)=1;
At(33,42)=-1;
At(33,45)=-1;
At(33,54)=1;
At(33,68)=1;
At(34,22)=-1;
At(34,25)=-1;
At(34,34)=1;
At(34,64)=1;
At(35,12)=-1;
At(35,15)=-1;
At(35,31)=1;
At(35,61)=1;
At(36,9)=-1;
At(36,14)=-1;
At(36,30)=1;
At(36,60)=1;
At(37,4)=-1;
At(37,11)=-1;
At(37,27)=1;
At(37,57)=1;
At(38,39)=-1;
At(38,44)=-1;
At(38,53)=1;
At(38,67)=1;
At(39,19)=-1;
At(39,24)=-1;
At(39,33)=1;
At(39,63)=1;
At(40,9)=-1;
At(40,14)=-1;
At(40,30)=1;
At(40,60)=1;
At(41,5)=-1;
At(41,12)=-1;
At(41,28)=1;
At(41,58)=1;
At(42,36)=1;
At(43,56)=1;
At(44,46)=1;
At(45,40)=1;
At(46,37)=1;
At(47,56)=1;
At(48,66)=1;
At(49,62)=1;
At(50,59)=1;
At(51,57)=1;
At(52,46)=1;
At(53,62)=1;
At(54,52)=1;
At(55,49)=1;
At(56,47)=1;
At(57,40)=1;
At(58,59)=1;
At(59,49)=1;
At(60,43)=1;
At(61,41)=1;
At(62,37)=1;
At(63,57)=1;
At(64,47)=1;
At(65,41)=1;
At(66,38)=1;
At(67,38)=-1;
At(67,43)=-1;
At(67,52)=1;
At(67,66)=1;
At(68,1)=1;
At(69,36)=1;
At(70,16)=1;
At(71,6)=1;
At(72,2)=1;
At(73,56)=1;
At(74,46)=1;
At(75,26)=1;
At(76,40)=1;
At(77,20)=1;
At(78,10)=1;
At(79,37)=1;
At(80,17)=1;
At(81,7)=1;
At(82,3)=1;
At(83,36)=1;
At(84,56)=1;
At(85,46)=1;
At(86,40)=1;
At(87,37)=1;
At(88,66)=1;
At(89,62)=1;
At(90,52)=1;
At(91,59)=1;
At(92,49)=1;
At(93,43)=1;
At(94,57)=1;
At(95,47)=1;
At(96,41)=1;
At(97,38)=1;
At(98,16)=1;
At(99,46)=1;
At(100,26)=1;
At(101,20)=1;
At(102,17)=1;
At(103,62)=1;
At(104,52)=1;
At(105,32)=1;
At(106,49)=1;
At(107,29)=1;
At(108,23)=1;
At(109,47)=1;
At(110,27)=1;
At(111,21)=1;
At(112,18)=1;
At(113,6)=1;
At(114,40)=1;
At(115,20)=1;
At(116,10)=1;
At(117,7)=1;
At(118,59)=1;
At(119,49)=1;
At(120,29)=1;
At(121,43)=1;
At(122,23)=1;
At(123,13)=1;
At(124,41)=1;
At(125,21)=1;
At(126,11)=1;
At(127,8)=1;
At(128,2)=1;
At(129,37)=1;
At(130,17)=1;
At(131,7)=1;
At(132,3)=1;
At(133,57)=1;
At(134,47)=1;
At(135,27)=1;
At(136,41)=1;
At(137,21)=1;
At(138,11)=1;
At(139,38)=1;
At(140,18)=1;
At(141,8)=1;
At(142,4)=1;
At(143,56)=1;
At(144,66)=1;
At(145,62)=1;
At(146,59)=1;
At(147,57)=1;
At(148,70)=1;
At(149,69)=1;
At(150,65)=1;
At(151,68)=1;
At(152,64)=1;
At(153,61)=1;
At(154,67)=1;
At(155,63)=1;
At(156,60)=1;
At(157,58)=1;
At(158,46)=1;
At(159,62)=1;
At(160,52)=1;
At(161,49)=1;
At(162,47)=1;
At(163,69)=1;
At(164,65)=1;
At(165,55)=1;
At(166,64)=1;
At(167,54)=1;
At(168,51)=1;
At(169,63)=1;
At(170,53)=1;
At(171,50)=1;
At(172,48)=1;
At(173,26)=1;
At(174,52)=1;
At(175,32)=1;
At(176,29)=1;
At(177,27)=1;
At(178,65)=1;
At(179,55)=1;
At(180,35)=1;
At(181,54)=1;
At(182,34)=1;
At(183,31)=1;
At(184,53)=1;
At(185,33)=1;
At(186,30)=1;
At(187,28)=1;
At(188,40)=1;
At(189,59)=1;
At(190,49)=1;
At(191,43)=1;
At(192,41)=1;
At(193,68)=1;
At(194,64)=1;
At(195,54)=1;
At(196,61)=1;
At(197,51)=1;
At(198,45)=1;
At(199,60)=1;
At(200,50)=1;
At(201,44)=1;
At(202,42)=1;
At(203,20)=1;
At(204,49)=1;
At(205,29)=1;
At(206,23)=1;
At(207,21)=1;
At(208,64)=1;
At(209,54)=1;
At(210,34)=1;
At(211,51)=1;
At(212,31)=1;
At(213,25)=1;
At(214,50)=1;
At(215,30)=1;
At(216,24)=1;
At(217,22)=1;
At(218,10)=1;
At(219,43)=1;
At(220,23)=1;
At(221,13)=1;
At(222,11)=1;
At(223,61)=1;
At(224,51)=1;
At(225,31)=1;
At(226,45)=1;
At(227,25)=1;
At(228,15)=1;
At(229,44)=1;
At(230,24)=1;
At(231,14)=1;
At(232,12)=1;
At(233,37)=1;
At(234,57)=1;
At(235,47)=1;
At(236,41)=1;
At(237,38)=1;
At(238,67)=1;
At(239,63)=1;
At(240,53)=1;
At(241,60)=1;
At(242,50)=1;
At(243,44)=1;
At(244,58)=1;
At(245,48)=1;
At(246,42)=1;
At(247,39)=1;
At(248,17)=1;
At(249,47)=1;
At(250,27)=1;
At(251,21)=1;
At(252,18)=1;
At(253,63)=1;
At(254,53)=1;
At(255,33)=1;
At(256,50)=1;
At(257,30)=1;
At(258,24)=1;
At(259,48)=1;
At(260,28)=1;
At(261,22)=1;
At(262,19)=1;
At(263,7)=1;
At(264,41)=1;
At(265,21)=1;
At(266,11)=1;
At(267,8)=1;
At(268,60)=1;
At(269,50)=1;
At(270,30)=1;
At(271,44)=1;
At(272,24)=1;
At(273,14)=1;
At(274,42)=1;
At(275,22)=1;
At(276,12)=1;
At(277,9)=1;
At(278,3)=1;
At(279,38)=1;
At(280,18)=1;
At(281,8)=1;
At(282,4)=1;
At(283,58)=1;
At(284,48)=1;
At(285,28)=1;
At(286,42)=1;
At(287,22)=1;
At(288,12)=1;
At(289,39)=1;
At(290,19)=1;
At(291,9)=1;
At(292,5)=1;
b=sparse(zeros([70 1]));
b(3)=-mc5-mc1+mc9;
b(5)=2*m15-2*m59+m55-2*m19+m99+m11;
b(7)=2*mc6+2*mc8;
b(9)=-4*m58+4*m89-4*m18-4*m56+4*m69-4*m16;
b(10)=-mc1+mc5-mc9;
b(12)=-2*m99+4*m88+4*m59+2*m11-2*m55+8*m68+4*m66;
b(14)=4*m58+4*m56-4*m16-4*m18-4*m89-4*m69;
b(15)=m99+2*m19+m11-2*m59-2*m15+m55;
b(17)=2*mc7+2*mc3;
b(19)=-4*m13-4*m57+4*m39+4*m79-4*m35-4*m17;
b(20)=2*mc4+2*mc2;
b(22)=8*m67-4*m45+8*m36-4*m12+4*m29+4*m49+8*m38-4*m25-4*m14+8*m78;
b(24)=4*m57-4*m17+8*m48+8*m46-4*m13+8*m28-4*m39+8*m26+4*m35-4*m79;
b(25)=4*m45-4*m12-4*m29+4*m25-4*m49-4*m14;
b(26)=-mc9+mc1-mc5;
b(28)=4*m33-2*m99-2*m11+8*m37+4*m77+4*m19+2*m55;
b(30)=-4*m56+8*m23+4*m16+8*m27+4*m18+8*m47+8*m34-4*m89-4*m58-4*m69;
b(31)=2*m99+8*m24+4*m22+4*m15+4*m44-2*m55-2*m11;
b(33)=4*m13-4*m57-4*m79+4*m17-4*m39-4*m35;
b(34)=4*m14-4*m45-4*m29-4*m49-4*m25+4*m12;
b(35)=m11-2*m15+2*m59+m55-2*m19+m99;
b(37)=2*mc2-2*mc4;
b(39)=4*m45+4*m29-4*m12-4*m49+4*m14-4*m25;
b(40)=2*mc7-2*mc3;
b(42)=4*m79-8*m46-8*m48+8*m26+8*m28-4*m57+4*m13+4*m35-4*m17-4*m39;
b(44)=4*m14-8*m38+8*m78-4*m29-4*m45+4*m25-8*m36-4*m12+4*m49+8*m67;
b(45)=4*m57-4*m35-4*m79+4*m13-4*m17+4*m39;
b(46)=2*mc6-2*mc8;
b(48)=-4*m56+4*m18-4*m16+8*m23+4*m69-8*m34+4*m58+8*m27-4*m89-8*m47;
b(50)=-8*m88+8*m66+8*m22-8*m33-8*m44+8*m77;
b(51)=4*m56-4*m16+8*m27+8*m47-8*m23-4*m58+4*m18+4*m89-8*m34-4*m69;
b(53)=8*m36+4*m45-4*m29+8*m67-8*m78-4*m25-8*m38+4*m12+4*m49-4*m14;
b(54)=8*m46-8*m28-4*m13-8*m48+4*m35+8*m26-4*m79+4*m39+4*m17-4*m57;
b(55)=-4*m18+4*m16+4*m89-4*m56+4*m58-4*m69;
b(56)=mc5+mc9+mc1;
b(58)=-8*m24-2*m55-2*m11-4*m15+2*m99+4*m44+4*m22;
b(60)=4*m16+4*m18+8*m34+4*m69+4*m89+8*m27-8*m47+4*m56-8*m23+4*m58;
b(61)=2*m55+4*m33-2*m99-8*m37+4*m77-2*m11-4*m19;
b(63)=8*m48+4*m57-8*m28+4*m79+8*m26+4*m39+4*m17+4*m35+4*m13-8*m46;
b(64)=-8*m78+4*m25+8*m67-8*m36+4*m12+4*m29+4*m49+8*m38+4*m45+4*m14;
b(65)=-2*m99-2*m55+4*m88+2*m11-8*m68+4*m66-4*m59;
b(67)=-4*m45+4*m29-4*m14+4*m25+4*m12-4*m49;
b(68)=4*m57+4*m17-4*m13+4*m79-4*m35-4*m39;
b(69)=-4*m58-4*m89+4*m16+4*m56+4*m69-4*m18;
b(70)=2*m15+2*m19+2*m59+m99+m55+m11;
c=sparse(zeros([292 1]));
c(16)=-1;
function [At,b,c,K,pars] = error_to_sedumi(M,Mc,Mcc)
%
% transfers the function r'*M*r+r'*Mc+Mcc
%
% into a SDP problem -> which could be solved by sedumi
%
% constrains: r1 > 0 , ||r1..4|| = 1
pars.eps = 1e-12;
pars.alg = 2;
K.s = [5 15];
K.f = 16;
At=sparse(zeros([266 70]));
At(1,1)=-1;
At(1,3)=1;
At(1,10)=1;
At(1,26)=1;
At(1,56)=1;
At(2,36)=-1;
At(2,38)=1;
At(2,43)=1;
At(2,52)=1;
At(2,66)=1;
At(3,16)=-1;
At(3,18)=1;
At(3,23)=1;
At(3,32)=1;
At(3,62)=1;
At(4,6)=-1;
At(4,8)=1;
At(4,13)=1;
At(4,29)=1;
At(4,59)=1;
At(5,2)=-1;
At(5,4)=1;
At(5,11)=1;
At(5,27)=1;
At(5,57)=1;
At(6,56)=-1;
At(6,58)=1;
At(6,61)=1;
At(6,65)=1;
At(6,70)=1;
At(7,46)=-1;
At(7,48)=1;
At(7,51)=1;
At(7,55)=1;
At(7,69)=1;
At(8,26)=-1;
At(8,28)=1;
At(8,31)=1;
At(8,35)=1;
At(8,65)=1;
At(9,40)=-1;
At(9,42)=1;
At(9,45)=1;
At(9,54)=1;
At(9,68)=1;
At(10,20)=-1;
At(10,22)=1;
At(10,25)=1;
At(10,34)=1;
At(10,64)=1;
At(11,10)=-1;
At(11,12)=1;
At(11,15)=1;
At(11,31)=1;
At(11,61)=1;
At(12,37)=-1;
At(12,39)=1;
At(12,44)=1;
At(12,53)=1;
At(12,67)=1;
At(13,17)=-1;
At(13,19)=1;
At(13,24)=1;
At(13,33)=1;
At(13,63)=1;
At(14,7)=-1;
At(14,9)=1;
At(14,14)=1;
At(14,30)=1;
At(14,60)=1;
At(15,3)=-1;
At(15,5)=1;
At(15,12)=1;
At(15,28)=1;
At(15,58)=1;
At(16,1)=1;
At(17,36)=1;
At(18,56)=1;
At(19,46)=1;
At(20,40)=1;
At(21,37)=1;
At(22,56)=1;
At(23,66)=1;
At(24,62)=1;
At(25,59)=1;
At(26,57)=1;
At(27,46)=1;
At(28,62)=1;
At(29,52)=1;
At(30,49)=1;
At(31,47)=1;
At(32,40)=1;
At(33,59)=1;
At(34,49)=1;
At(35,43)=1;
At(36,41)=1;
At(37,37)=1;
At(38,57)=1;
At(39,47)=1;
At(40,41)=1;
At(41,38)=1;
At(42,1)=1;
At(43,36)=1;
At(44,16)=1;
At(45,6)=1;
At(46,2)=1;
At(47,56)=1;
At(48,46)=1;
At(49,26)=1;
At(50,40)=1;
At(51,20)=1;
At(52,10)=1;
At(53,37)=1;
At(54,17)=1;
At(55,7)=1;
At(56,3)=1;
At(57,36)=1;
At(58,56)=1;
At(59,46)=1;
At(60,40)=1;
At(61,37)=1;
At(62,66)=1;
At(63,62)=1;
At(64,52)=1;
At(65,59)=1;
At(66,49)=1;
At(67,43)=1;
At(68,57)=1;
At(69,47)=1;
At(70,41)=1;
At(71,38)=1;
At(72,16)=1;
At(73,46)=1;
At(74,26)=1;
At(75,20)=1;
At(76,17)=1;
At(77,62)=1;
At(78,52)=1;
At(79,32)=1;
At(80,49)=1;
At(81,29)=1;
At(82,23)=1;
At(83,47)=1;
At(84,27)=1;
At(85,21)=1;
At(86,18)=1;
At(87,6)=1;
At(88,40)=1;
At(89,20)=1;
At(90,10)=1;
At(91,7)=1;
At(92,59)=1;
At(93,49)=1;
At(94,29)=1;
At(95,43)=1;
At(96,23)=1;
At(97,13)=1;
At(98,41)=1;
At(99,21)=1;
At(100,11)=1;
At(101,8)=1;
At(102,2)=1;
At(103,37)=1;
At(104,17)=1;
At(105,7)=1;
At(106,3)=1;
At(107,57)=1;
At(108,47)=1;
At(109,27)=1;
At(110,41)=1;
At(111,21)=1;
At(112,11)=1;
At(113,38)=1;
At(114,18)=1;
At(115,8)=1;
At(116,4)=1;
At(117,56)=1;
At(118,66)=1;
At(119,62)=1;
At(120,59)=1;
At(121,57)=1;
At(122,70)=1;
At(123,69)=1;
At(124,65)=1;
At(125,68)=1;
At(126,64)=1;
At(127,61)=1;
At(128,67)=1;
At(129,63)=1;
At(130,60)=1;
At(131,58)=1;
At(132,46)=1;
At(133,62)=1;
At(134,52)=1;
At(135,49)=1;
At(136,47)=1;
At(137,69)=1;
At(138,65)=1;
At(139,55)=1;
At(140,64)=1;
At(141,54)=1;
At(142,51)=1;
At(143,63)=1;
At(144,53)=1;
At(145,50)=1;
At(146,48)=1;
At(147,26)=1;
At(148,52)=1;
At(149,32)=1;
At(150,29)=1;
At(151,27)=1;
At(152,65)=1;
At(153,55)=1;
At(154,35)=1;
At(155,54)=1;
At(156,34)=1;
At(157,31)=1;
At(158,53)=1;
At(159,33)=1;
At(160,30)=1;
At(161,28)=1;
At(162,40)=1;
At(163,59)=1;
At(164,49)=1;
At(165,43)=1;
At(166,41)=1;
At(167,68)=1;
At(168,64)=1;
At(169,54)=1;
At(170,61)=1;
At(171,51)=1;
At(172,45)=1;
At(173,60)=1;
At(174,50)=1;
At(175,44)=1;
At(176,42)=1;
At(177,20)=1;
At(178,49)=1;
At(179,29)=1;
At(180,23)=1;
At(181,21)=1;
At(182,64)=1;
At(183,54)=1;
At(184,34)=1;
At(185,51)=1;
At(186,31)=1;
At(187,25)=1;
At(188,50)=1;
At(189,30)=1;
At(190,24)=1;
At(191,22)=1;
At(192,10)=1;
At(193,43)=1;
At(194,23)=1;
At(195,13)=1;
At(196,11)=1;
At(197,61)=1;
At(198,51)=1;
At(199,31)=1;
At(200,45)=1;
At(201,25)=1;
At(202,15)=1;
At(203,44)=1;
At(204,24)=1;
At(205,14)=1;
At(206,12)=1;
At(207,37)=1;
At(208,57)=1;
At(209,47)=1;
At(210,41)=1;
At(211,38)=1;
At(212,67)=1;
At(213,63)=1;
At(214,53)=1;
At(215,60)=1;
At(216,50)=1;
At(217,44)=1;
At(218,58)=1;
At(219,48)=1;
At(220,42)=1;
At(221,39)=1;
At(222,17)=1;
At(223,47)=1;
At(224,27)=1;
At(225,21)=1;
At(226,18)=1;
At(227,63)=1;
At(228,53)=1;
At(229,33)=1;
At(230,50)=1;
At(231,30)=1;
At(232,24)=1;
At(233,48)=1;
At(234,28)=1;
At(235,22)=1;
At(236,19)=1;
At(237,7)=1;
At(238,41)=1;
At(239,21)=1;
At(240,11)=1;
At(241,8)=1;
At(242,60)=1;
At(243,50)=1;
At(244,30)=1;
At(245,44)=1;
At(246,24)=1;
At(247,14)=1;
At(248,42)=1;
At(249,22)=1;
At(250,12)=1;
At(251,9)=1;
At(252,3)=1;
At(253,38)=1;
At(254,18)=1;
At(255,8)=1;
At(256,4)=1;
At(257,58)=1;
At(258,48)=1;
At(259,28)=1;
At(260,42)=1;
At(261,22)=1;
At(262,12)=1;
At(263,39)=1;
At(264,19)=1;
At(265,9)=1;
At(266,5)=1;
b=sparse(zeros([70 1]));
m11 = M(1,1);
m12 = M(1,2);
m13 = M(1,3);
m14 = M(1,4);
m15 = M(1,5);
m16 = M(1,6);
m17 = M(1,7);
m18 = M(1,8);
m19 = M(1,9);
mc1 = Mc(1);
m22 = M(2,2);
m23 = M(2,3);
m24 = M(2,4);
m25 = M(2,5);
m26 = M(2,6);
m27 = M(2,7);
m28 = M(2,8);
m29 = M(2,9);
mc2 = Mc(2);
m33 = M(3,3);
m34 = M(3,4);
m35 = M(3,5);
m36 = M(3,6);
m37 = M(3,7);
m38 = M(3,8);
m39 = M(3,9);
mc3 = Mc(3);
m44 = M(4,4);
m45 = M(4,5);
m46 = M(4,6);
m47 = M(4,7);
m48 = M(4,8);
m49 = M(4,9);
mc4 = Mc(4);
m55 = M(5,5);
m56 = M(5,6);
m57 = M(5,7);
m58 = M(5,8);
m59 = M(5,9);
mc5 = Mc(5);
m66 = M(6,6);
m67 = M(6,7);
m68 = M(6,8);
m69 = M(6,9);
mc6 = Mc(6);
m77 = M(7,7);
m78 = M(7,8);
m79 = M(7,9);
mc7 = Mc(7);
m88 = M(8,8);
m89 = M(8,9);
mc8 = Mc(8);
m99 = M(9,9);
mc9 = Mc(9);
b(3)=mc9-mc5-mc1;
b(5)=-2*m59+m55+m99-2*m19+2*m15+m11;
b(7)=2*mc6+2*mc8;
b(9)=-4*m18+4*m69-4*m58-4*m56-4*m16+4*m89;
b(10)=-mc9+mc5-mc1;
b(12)=-2*m55+4*m88+4*m66-2*m99+2*m11+4*m59+8*m68;
b(14)=-4*m16+4*m58-4*m69-4*m18+4*m56-4*m89;
b(15)=m99+m55-2*m15+2*m19-2*m59+m11;
b(17)=2*mc3+2*mc7;
b(19)=-4*m35-4*m17-4*m13+4*m79-4*m57+4*m39;
b(20)=2*mc4+2*mc2;
b(22)=-4*m45+8*m67+8*m78+4*m29+8*m36-4*m25+4*m49-4*m14+8*m38-4*m12;
b(24)=-4*m17+8*m26+8*m46-4*m13-4*m79+8*m48-4*m39+8*m28+4*m35+4*m57;
b(25)=-4*m49+4*m25+4*m45-4*m14-4*m29-4*m12;
b(26)=-mc5+mc1-mc9;
b(28)=2*m55+8*m37+4*m77-2*m99+4*m19+4*m33-2*m11;
b(30)=4*m16-4*m58+8*m27-4*m56+4*m18+8*m47+8*m23-4*m89+8*m34-4*m69;
b(31)=8*m24+4*m15-2*m55+4*m44+2*m99+4*m22-2*m11;
b(33)=-4*m35-4*m39+4*m17-4*m79-4*m57+4*m13;
b(34)=-4*m49-4*m45+4*m12-4*m29-4*m25+4*m14;
b(35)=m99-2*m15+m55-2*m19+2*m59+m11;
b(37)=-2*mc4+2*mc2;
b(39)=-4*m25+4*m45-4*m49+4*m29-4*m12+4*m14;
b(40)=2*mc7-2*mc3;
b(42)=8*m26-8*m48-8*m46-4*m17+4*m79-4*m57-4*m39+4*m35+4*m13+8*m28;
b(44)=-8*m36-4*m29+8*m67+4*m49+4*m25-4*m12-4*m45+4*m14+8*m78-8*m38;
b(45)=4*m13-4*m79+4*m57+4*m39-4*m17-4*m35;
b(46)=-2*mc8+2*mc6;
b(48)=4*m58-4*m89-8*m34-4*m56+4*m69-8*m47+8*m23-4*m16+4*m18+8*m27;
b(50)=8*m77+8*m66+8*m22-8*m44-8*m88-8*m33;
b(51)=4*m56+4*m89-4*m58-4*m69+8*m47+4*m18-8*m34-4*m16+8*m27-8*m23;
b(53)=4*m49-4*m29-4*m25-8*m38+4*m45+8*m67-4*m14+4*m12+8*m36-8*m78;
b(54)=4*m39+4*m17-4*m79+8*m46-8*m28-8*m48-4*m13+8*m26+4*m35-4*m57;
b(55)=4*m89+4*m16+4*m58-4*m18-4*m56-4*m69;
b(56)=mc9+mc1+mc5;
b(58)=4*m22-4*m15-2*m11+4*m44-2*m55-8*m24+2*m99;
b(60)=4*m58-8*m47+8*m27+4*m69+4*m16+8*m34+4*m89+4*m56+4*m18-8*m23;
b(61)=2*m55-8*m37+4*m77-2*m99+4*m33-4*m19-2*m11;
b(63)=-8*m46+4*m79+4*m35+4*m17+8*m26+8*m48+4*m13-8*m28+4*m39+4*m57;
b(64)=-8*m78+8*m67+4*m14+4*m49-8*m36+4*m29+8*m38+4*m12+4*m25+4*m45;
b(65)=4*m88-8*m68+4*m66-4*m59-2*m99-2*m55+2*m11;
b(67)=4*m25-4*m14+4*m12+4*m29-4*m45-4*m49;
b(68)=4*m79+4*m17-4*m35+4*m57-4*m39-4*m13;
b(69)=-4*m58-4*m18+4*m69+4*m56+4*m16-4*m89;
b(70)=m99+2*m19+m55+m11+2*m59+2*m15;
c=sparse(zeros([266 1]));
c(16)=-1;
|
github | urbste/MLPnP_matlab_toolbox-master | genrMr_gcm.m | .m | MLPnP_matlab_toolbox-master/gOp/genrMr_gcm.m | 3,793 | utf_8 | b933dbb38c43ba2a895c609c2a97d72f | function [M,Mc,Mcc] = genrMr_gcm(X,v,c,R)
%
%
% returns the parametrisation of the problem
% as: r'*M*r + Mc*r + Mcc
%
if nargin == 2,
c=[];
end
if prod(size(c)) == 0,
c = zeros(3,size(v,2));
end
if sum(size(v) ~= size(c) | size(X) ~= size(v)),
disp('Sizes must be equal!');
X
v
c
return;
end
if nargin == 4,
t=get_opt_t(R,X,v,c)
end
clear W
clear V
for pi_=1:size(v,2),
V(pi_).V= (v(:,pi_)*v(:,pi_)')./(v(:,pi_)'*v(:,pi_));
W(pi_).W = (V(pi_).V-eye(3)).'*(V(pi_).V-eye(3));
end
G_=zeros(3);
for pi_=1:size(X,2),
Wi = W(pi_).W ;
G_=G_+ Wi+Wi';
end
G_=inv(G_/size(X,2))/size(X,2);
t_opt_ = zeros(3,9);
t_opt_c = zeros(3,1);
for pi_=1:size(X,2),
Wi = W(pi_).W' + W(pi_).W ;
%% t_opt = t_opt + (Wi)*(R*X(:,pi_)) + Wic(:,pi_);
%W(pi_).
WP = [Wi(:,1) * X(:,pi_).' Wi(:,2) * X(:,pi_).' Wi(:,3) * X(:,pi_).' ];
% t_opt_ = t_opt_ + W(pi_).WP ; % [Wi(:,1) * X(:,pi_).' Wi(:,2) * X(:,pi_).' Wi(:,3) * X(:,pi_).' ];
t_opt_ = t_opt_ + WP ;
t_opt_c = t_opt_c + Wi * c(:,pi_);
end
t_opt_ = -G_*t_opt_;
t_opt_c = -G_*t_opt_c;
if nargin == 4,
%% check if t_opt is equal to t_opt
r = R'; r=r(:);
t_opt_*r + t_opt_c
%% seems to be correct !
end
%% assume we have a t_opt = T*[r1..r9] + t , T=3x9 Matrix t=3x1
%%
%e= (R*P)'*Wi*(R*P) + (R*P)'*Wi*(t_opt) + (t_opt)'*Wi*(R*P) + (t_opt)'*Wi*(t_opt)
%e= (R*P+T*rc+t+ci)'*Wi*(R*P+T*rc+t+ci)
%e= (R*P)'*Wi*(R*P) + (R*P)'*Wi*(T*rc+t+ci) + (T*rc+t+ci)'*Wi*(R*P) + (T*rc+t+ci)'*Wi*(T*rc+t+ci)
%e= (R*P)'*Wi*(R*P) + (R*P)'*Wi*(T*rc) + (R*P)'*Wi*(t+ci) + rc'*T'*Wi*(R*P) + (t+ci)'*Wi*(R*P) + (T*rc)'*Wi*(T*rc) + ((t+ci))'*Wi*(T*rc) + (T*rc)'*Wi*((t+ci)) + ((t+ci))'*Wi*((t+ci))
%e1= (R*P)'*Wi*(R*P) + (R*P)'*Wi*(T*rc) + rc'*T'*Wi*(R*P) + (T*rc)'*Wi*(T*rc)
%e1= (v2V(P)*rc)'*Wi*(v2V(P)*rc) + (v2V(P)*rc)'*Wi*(T*rc) + rc'*T'*Wi*(v2V(P)*rc) + rc'*T'*Wi*T*rc
%e2= (R*P)'*Wi*t + t'*Wi*(R*P) + t'*Wi*T*rc + (T*rc)'*Wi*(t)
%e2= (v2V(P)*rc)'*Wi*(t+ci) + (t+ci)'*Wi*(v2V(P)*rc) + (t+ci)'*Wi*T*rc + (T*rc)'*Wi*(t+ci)
%e3= (t+ci)'*Wi*(t+ci)
%e= (v2V(P)*rc)'*W*(v2V(P)*rc) + (v2V(P)*rc)'*W*(T*rc) + rc'*T'*W*(v2V(P)*rc) + rc'*T'*W*T*rc
%e= rc*v2V(P)'*W*v2V(P)*rc + rc'*v2V(P)'*W*T*rc + rc'*T'*W*v2V(P)*rc + rc'*T'*W*T*rc
%e= rc* ( v2V(P)'*W*v2V(P) + v2V(P)'*W*T + T'*W*v2V(P) + T'*W*T ) *rc
M=zeros(9,9); Mc=zeros(9,1); Mcc=0;
T = t_opt_; t = t_opt_c;
for pi_=1:size(v,2),
Wi = W(pi_).W ;
P = X(:,pi_);
ci = c(:,pi_);
v2Vp = v2V(P);
PWi = v2Vp.'*Wi;
tci = t+ci;
v2VpT = v2Vp + T;
Witci = Wi*tci;
M =M+ PWi*v2VpT + T.'*(PWi.' + Wi*T) ; % e1
Mc =Mc+ v2VpT.'*Witci; %e2
Mcc=Mcc+ tci.'*Witci; % e3
end
Mc = 2*Mc;
if nargin == 4,
r = R'; r=r(:);
% M
% Mc
% Mcc
e = r'*M*r + r'*Mc + Mcc;
disp(['Error using known R:' num2str(e) ]);
%% check the error with the known R
end
return;
%% is MC always zero ??
if 0,
%% check if the functions are correct
if nargin ~= 4,
R= rpyMat(rand(3,1)*2*pi);
end
%% get the opt t
t=get_opt_t(R,X,v,c)
e=0;
for pi_=1:size(v,2),
V= (v(:,pi_)*v(:,pi_)')./(v(:,pi_)'*v(:,pi_));
ei= (V-eye(3))*(R*X(:,pi_)+t+c(:,pi_));
e = e + ei.'*ei;
end
r = R';r=r(:);
r.'*M*r + r.'*Mc + Mcc
end
function t=get_opt_t(R,X,v,c)
%% ei = (I-V)*(R*X+t+c)
%% opt_t =
G=zeros(3,3);
for pi_=1:size(v,2),
V= (v(:,pi_)*v(:,pi_)')./(v(:,pi_)'*v(:,pi_));
G=G+ V;
end
G=inv(eye(3)-G/size(v,2))/size(v,2);
t_opt = zeros(3,1) ;
for pi_=1:size(v,2),
V= (v(:,pi_)*v(:,pi_)')./(v(:,pi_)'*v(:,pi_));
t_opt = t_opt + (V-eye(3))*(R*X(:,pi_)+c(:,pi_));
end
t = G*t_opt; |
github | urbste/MLPnP_matlab_toolbox-master | rotate.m | .m | MLPnP_matlab_toolbox-master/gOp/util/rotate.m | 269 | utf_8 | a646a7d125703ff9d5d26e5aa6fb449a |
function R=rotate(a,b,c)
%
%function R=rotate(a,b,z)
%
%returns rotationsmatrix
%
Rb = [ cos(b) 0 -sin(b); 0 1 0 ; sin(b) 0 cos(b) ];
Rc = [ cos(c) -sin(c) 0 ; sin(c) cos(c) 0; 0 0 1 ];
Ra = [ 1 0 0; 0 cos(a) -sin(a);0 sin(a) cos(a)];
R = Ra*Rb*Rc;
|
github | urbste/MLPnP_matlab_toolbox-master | rpyMat.m | .m | MLPnP_matlab_toolbox-master/gOp/util/rpyMat.m | 1,447 | utf_8 | 70bd943cf357e2649aabcf288cb906e7 |
% Author: Rodrigo Carceroni
% Disclaimer: This code comes with no guarantee at all and its author
% is not liable for any damage that its utilization may cause.
function [R,dR] = rpyMat (angs)
% Return the 3x3 rotation matrix described by a set of Roll, Pitch and Yaw
% angles.
cosA = cos (angs(3));
sinA = sin (angs(3));
cosB = cos (angs(2));
sinB = sin (angs(2));
cosC = cos (angs(1));
sinC = sin (angs(1));
cosAsinB = cosA * sinB;
sinAsinB = sinA * sinB;
R = [ cosA*cosB cosAsinB*sinC-sinA*cosC cosAsinB*cosC+sinA*sinC ;
sinA*cosB sinAsinB*sinC+cosA*cosC sinAsinB*cosC-cosA*sinC ;
-sinB cosB*sinC cosB*cosC ];
if nargout > 1,
%% also give the derivative function of R
dR_C = [ 0 cosAsinB*cosC+sinA*sinC -cosAsinB*sinC+sinA*cosC ;
0 sinAsinB*cosC-cosA*sinC -sinAsinB*sinC-cosA*cosC ;
0 cosB*cosC -cosB*sinC ];
cosAsinB = cosA * cosB;
sinAsinB = sinA * cosB;
dR_B = [ -cosA*sinB cosAsinB*sinC cosAsinB*cosC ;
-sinA*sinB sinAsinB*sinC sinAsinB*cosC ;
-cosB -sinB*sinC -sinB*cosC ];
cosAsinB = -sinA * sinB;
sinAsinB = cosA * sinB;
dR_A = [ -sinA*cosB cosAsinB*sinC-cosA*cosC cosAsinB*cosC+cosA*sinC ;
cosA*cosB sinAsinB*sinC-sinA*cosC sinAsinB*cosC+sinA*sinC ;
0 0 0 ];
dR = [dR_C;dR_B;dR_A];
end |
github | urbste/MLPnP_matlab_toolbox-master | plot_stat.m | .m | MLPnP_matlab_toolbox-master/gOp/util/plot_stat.m | 2,513 | utf_8 | bb032648b0de31f298c556a5f95098ed | function plot_stat(y,data,opt)
%
%
% plots statistical stuff !
%
% opt.mean : draws the mean
% opt.std : draws mean+std , mean-std
% opt.median : draws the median
% opt.quart : draws 1/4 and 3/4 quartile
% opt.minmax : draws min & max
%
% opt.mean_,opt.median_,opt.number_ :
% : conect the types with a line !
%
% all of them have fields .c : color style
% .s : size
%
% opt.log : draws logaritmic scales
hold on;
%erg=[];
if iscell(y),
%% we have a cell array
DR = y;
y=[];
for i=1:length(DR),
d = DR{i};
k = plot_mean_and_std1(d(2:end),d(1),opt);
if length(k) > 0,
erg(i,:) = k;
end
y(i) = d(1);
end
else
for i=1:size(data,1),
k = plot_mean_and_std1(data(i,:),y(i),opt);
if length(k) > 0,
erg(i,:) = k;
end
end
end
if exist('erg'),
for i=1:size(erg,2),
d = cat(1,erg(:,i).d);
plot(y,d,erg(1,i).s.c,'LineWidth',2);
end
end
% plot(y,mean(E,2),c);
function [erg] = plot_mean_and_std1(data,y,opt)
erg=[];
m=mean(data);
s=std(data);
md=median(data);
mm = [max(data) min(data)];
if isfield(opt,'mean'),
[c,dx1,dx2] = get_look(y,opt,opt.mean);
plot([dx1 dx2],[m m],c,'LineWidth',2);
end
if isfield(opt,'std'),
[c,dx1,dx2] = get_look(y,opt,opt.std);
plot([y y],[m m+s],c,'LineWidth',2);
plot([y y],[m m-s],c,'LineWidth',2);
plot([dx1 dx2],[m+s m+s],c,'LineWidth',2);
plot([dx1 dx2],[m-s m-s],c,'LineWidth',2);
end
if isfield(opt,'median'),
[c,dx1,dx2] = get_look(y,opt,opt.median);
plot([dx1 dx2],[md md],c,'LineWidth',2);
end
if isfield(opt,'quart'),
d=sort(data);
mi = ceil(length(d)/2);
s = length(d);
qu = d(round(s*0.25));
qo = d(round(s*0.75));
[c,dx1,dx2] = get_look(y,opt,opt.quart);
plot([dx1 dx2 dx2 dx1 dx1],[qu qu qo qo qu],c,'LineWidth',2);
end
if isfield(opt,'minmax'),
qu = min(data);
qo = max(data);
[c,dx1,dx2] = get_look(y,opt,opt.minmax);
plot([dx1 dx2 dx2 dx1 dx1],[qu qu qo qo qu],c,'LineWidth',2);
end
if isfield(opt,'mean_'),
erg(end+1).d = m;
erg(end).s = opt.mean_;
end
if isfield(opt,'median_'),
erg(end+1).d = md;
erg(end).s = opt.median_;
end
if isfield(opt,'number_'),
erg(end+1).d = length(data);
erg(end).s = opt.number_;
end
function [c,dx1,dx2] = get_look(y,opt,opti)
%
%
%
c = opti.c;
if isfield(opt,'log'),
dx1 = y*opti.s; dx2 = y/opti.s;
else
dx1 = y-opti.s; dx2 = y+opti.s;
end |
github | urbste/MLPnP_matlab_toolbox-master | getRotation.m | .m | MLPnP_matlab_toolbox-master/gOp/util/getRotation.m | 1,525 | utf_8 | fcc521bd9aacdedcc9bbbc71ee96a72e | function R=getRotation(u,v)
%function R=getRotation(u,v)
%
% Returns the rotation Matrix M
%
% so that u = M*v;
%
%Author: Gerald Schweighofer
u = u/norm(u);
v = v/norm(v);
[ Rv,p_v,th_v ] = getR(v);
[ Ru,p_u,th_u ] = getR(u);
R = inv(Ru)*Rv;
if sum(abs(R*v' - u')) > 1e-6,
disp('Error in getRotation ');
end
%-------------------------
function [R,phi,theta]=getR(v) % funktionsweise aus BARTSCH Seite :219
if sqrt(v(1)^2+v(2)^2) > 1e-8,
phi = acos(v(1)/sqrt(v(1)^2+v(2)^2));
R1a = rotate(0,0,-phi);
R1b = rotate(0,0,+phi);
v1a = R1a*v';
v1b = R1b*v';
if abs(v1a(2)) < abs(v1b(2)),
R1 = R1a;
phi = -phi;
else
R1 = R1b;
end
else
R1 = diag([ 1 1 1 ]);
end
v2 = R1*v';
r = sqrt(sum(v.^2));
theta = acos(v2(3)/r);
R2a=rotate(0,-theta,0);
R2b=rotate(0,+theta,0);
v3a = R2a*v2;
v3b = R2b*v2;
if v3a(3) > v3b(3),
R2 = R2a;
theta = -theta;
else
R2 = R2b;
end
R = R2*R1;
function [R,phi,theta]=getRyx(v) % funktionsweise aus BARTSCH Seite :219
if sqrt(v(2)^2+v(3)^2) > 1e-8,
phi = acos(v(3)/sqrt(v(2)^2+v(3)^2));
R1a = rotate(-phi,0,0);
R1b = rotate(+phi,0,0);
v1a = R1a*v';
v1b = R1b*v';
if abs(v1a(2)) < abs(v1b(2)),
R1 = R1a;
phi = -phi;
else
R1 = R1b;
end
else
R1 = diag([ 1 1 1 ]);
end
v2 = R1*v';
r = sqrt(sum(v.^2));
theta = atan(v2(3)/v2(1));
R2a=rotate(0,-theta,0);
R2b=rotate(0,+theta,0);
v3a = R2a*v2;
v3b = R2b*v2;
if v3a(1) > v3b(1),
R2 = R2a;
theta = -theta;
else
R2 = R2b;
end
R = R2*R1;
|
github | urbste/MLPnP_matlab_toolbox-master | fitplane.m | .m | MLPnP_matlab_toolbox-master/gOp/util/fitplane.m | 1,259 | utf_8 | 505fe35ceea6b30a97d8ca6fda5797d7 | % FITPLANE - solves coefficients of plane fitted to 3 or more points
%
% Usage: B = fitplane(XYZ)
%
% Where: XYZ - 3xNpts array of xyz coordinates to fit plane to.
% If Npts is greater than 3 a least squares solution
% is generated.
%
% Returns: B - 4x1 array of plane coefficients in the form
% b(1)*X + b(2)*Y +b(3)*Z + b(4) = 0
% The magnitude of B is 1.
%
% See also: RANSACFITPLANE
% Peter Kovesi
% School of Computer Science & Software Engineering
% The University of Western Australia
% pk at csse uwa edu au
% http://www.csse.uwa.edu.au/~pk
%
% June 2003
function B = fitplane(XYZ)
[rows,npts] = size(XYZ);
if rows ~=3
error('data is not 3D');
end
if npts < 3
error('too few points to fit plane');
end
% Set up constraint equations of the form AB = 0,
% where B is a column vector of the plane coefficients
% in the form b(1)*X + b(2)*Y +b(3)*Z + b(4) = 0.
A = [XYZ' ones(npts,1)]; % Build constraint matrix
if npts == 3 % Pad A with zeros
A = [A; zeros(1,4)];
end
[u d v] = svd(A); % Singular value decomposition.
B = v(:,4); % Solution is last column of v.
|
github | urbste/MLPnP_matlab_toolbox-master | addError.m | .m | MLPnP_matlab_toolbox-master/gOp/util/addError.m | 443 | utf_8 | 0a0c27e672aa1e82706f2b59a85c5095 |
function Inew=addError(Iorig,error)
%
% error -> sigma von Guass-Verteilung
% Pixel Error
%
E=normrnd(0,error,length(Iorig(:,1)),1);
%K=[];
for i=1:length(Iorig(:,1)),
point = Iorig(i,1:2);
winkel = rand*180;
wrad = winkel*pi/180;
dx = sin(wrad)*E(i);
dy = cos(wrad)*E(i);
% K = [K ; [dx dy]];
de(i,:)=[dx dy];
Inew(i,:) = [ Iorig(i,1)+dx Iorig(i,2)+dy Iorig(i,3:size(Iorig,2)) ];
end
%plot(K(:,1),K(:,2),'x'); |
github | urbste/MLPnP_matlab_toolbox-master | rotlorentz.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/rotlorentz.m | 1,689 | utf_8 | a62c3fb740f53474f5ddec5c0b427e4a | % c = rotlorentz(c,K)
% Rotates vectors from Qcone to Rcone or from Rcone into Qcone.
%
% ********** INTERNAL FUNCTION OF SEDUMI **********
%
% See also sedumi
function c = rotlorentz(c,K)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
firstk = K.l + sum(K.q) + 1;
M = [1 1; 1 -1];
for k = 1:length(K.r)
c(firstk:firstk+1,:) = M*c(firstk:firstk+1,:)/ sqrt(2);
firstk = firstk + K.r(k);
end |
github | urbste/MLPnP_matlab_toolbox-master | PopK.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/PopK.m | 2,004 | utf_8 | d538cca0b063c319f06b081fb630b693 | % [y, ddotx, Dx, xTy] = PopK(d,x,K,lpq)
% POPK Implements the quadratic operator for symmetric cones K.
%
% ********** INTERNAL FUNCTION OF SEDUMI **********
%
% See also sedumi
function [y, ddotx, Dx, xTy] = PopK(d,x,K,lpq)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
if nargin < 4
lpq = 0;
end
% LP / Lorentz
i1 = K.mainblks(1);
i2 = K.mainblks(2);
y = [d.l .* x(1:i1-1); -d.det .* x(i1:i2-1); qblkmul(d.det,x,K.qblkstart)];
ddotx = (d.q1).*x(i1:i2-1) + ddot(d.q2,x,K.qblkstart);
% PSD:
Dx = psdscale(d,x,K);
if lpq == 0
y = [y; psdscale(d,Dx,K,1)]; % Include PSD-part
end
% xTy:
if nargout >= 4
xTy = x(1:K.lq)'*y(1:K.lq) + sum(ddotx.^2) + sum(Dx.^2);
end |
github | urbste/MLPnP_matlab_toolbox-master | updtransfo.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/updtransfo.m | 4,623 | utf_8 | 84c1ed1fe1ae2fc009c6c9eacdff15b3 | % [d,vfrm] = updtransfo(x,z,w, dIN,K)
% UPDTRANSFO Updated the Nesterov-Todd transformation using a
% numerically stable method.
%
% ********** INTERNAL FUNCTION OF SEDUMI **********
%
% See also sedumi
function [d,vfrm] = updtransfo(x,z,w, dIN,K)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
% ------------------------------------------------------------
% PSD:
% Given w = D(Xscl)Zscl, compute spec-factor Q*WLAB*Q' = W
% ------------------------------------------------------------
if ~isempty(K.s)
[wlab,q] = psdeig(w.s,K);
w.lab(K.l+2*length(K.q) + 1:end) = wlab;
else
q=[];
end
% ------------------------------------------------------------
% lambda(v) = sqrt(lambda(w))
% ------------------------------------------------------------
vfrm.lab = sqrt(w.lab);
% ------------------------------------------------------------
% LP : d.l = dIN.l .* (x ./ z)
% ------------------------------------------------------------
d.l = dIN.l .* (x(1:K.l) ./ z(1:K.l));
% ------------------------------------------------------------
% Lorentz:
% Auxiliary: s := sqrt(det(x)./det(z))
% chi = (x[k] + s(k)*Jz[k]) / (lab1(v)+lab2(v))
% psi = (x[k] - s(k)*Jz[k]) / (lab2(v)-lab1(v))
% Scale: detd = detdIN .* s and d = D(dIN)*chi
% ------------------------------------------------------------
if isempty(K.q)
d.det = zeros(0,1); d.q1 = zeros(0,1); d.q2 = zeros(0,1);
d.auxdet = zeros(0,1); d.auxtr = zeros(0,1);
vfrm.q = zeros(0,1);
else
i1 = K.mainblks(1); i2 = K.mainblks(2); nq = i2 - i1; j3 = i2+nq-1;
s = sqrt(w.tdetx ./ w.tdetz);
d.det = dIN.det .* s;
psi1 = s.*z(i1:i2-1); psi2 = qblkmul(s,z,K.qblkstart); %s * z
tmp = vfrm.lab(i1:i2-1) + vfrm.lab(i2:j3);
chi1 = (x(i1:i2-1)+psi1)./tmp;
chi2 = qblkmul(1./tmp, x(i2:K.lq)-psi2,K.qblkstart);
psi1 = x(i1:i2-1)-psi1;
psi2 = x(i2:K.lq)+psi2;
dq = asmDxq(dIN,[chi1;chi2],K); % d = D(dIN)*chi
d.q1 = dq(1:nq);
d.q2 = dq(nq+1:end);
d.auxdet = sqrt(2*d.det);
d.auxtr = sqrt(2)*(d.q1 + d.auxdet);
alpha = (dIN.q1 .* psi1 + ddot(dIN.q2,psi2,K.qblkstart)) ./ d.auxtr;
tmp = 2*sqrt(s);
psi1 = (psi1 - alpha .* chi1)./tmp;
psi2 = psi2 - qblkmul(alpha,chi2,K.qblkstart);
psi2 = qblkmul(1./tmp, psi2,K.qblkstart);
gamma = (sqrt(2)*psi1+alpha) ./ dIN.auxtr;
tmp = vfrm.lab(i2:j3) - vfrm.lab(i1:i2-1);
tmp(tmp == 0) = 1; %avoid division by zero
psi2 = psi2 + qblkmul(gamma,dIN.q2,K.qblkstart);
vfrm.q = qblkmul(1./tmp, psi2, K.qblkstart);
end
% ------------------------------------------------------------
% D= QUD'*QUD, where QUD(:,udIN.perm) = diag(1./sqrt(vlab))*Q'*ux*ud.
% Let vinv = diag(1./sqrt(vlab))*Q'.
% ------------------------------------------------------------'
d.u = triumtriu(w.ux, dIN.u, K); % ux * ud
[d.u,d.perm,gjc,g] = urotorder(d.u,K, 1.1, dIN.perm); % stable reordering
q = givensrot(gjc,g,q,K); % ROTATE Q accordingly: (G*Q)'*(G*ux*ud).'
vinv = sqrtinv(q,vfrm.lab,K);
% ------------------------------------------------------------
% QR-FACTORIZE: Qv * VINV = R
% Then the new ud is simply R*ux*ud, which is upper triangular.
% ------------------------------------------------------------
[vfrm.s, r] = qrK(vinv,K);
d.u = triumtriu(r, d.u, K); |
github | urbste/MLPnP_matlab_toolbox-master | symbcholden.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/symbcholden.m | 2,500 | utf_8 | cc5a9a455c0e83c00738b400bc5da871 | % Lden = symbcholden(L,dense,DAt)
% SYMBCHOLDEN Creates Lden.{LAD, perm,dz, sign, first}
%
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
%
% See also sedumi, dpr1fact
function Lden = symbcholden(L,dense,DAt)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
% ------------------------------------------------------------
% Symbolic forward Cholesky of dense columns, in order
% [LP, Q-blk, Q-norm, Q-tr]
% ------------------------------------------------------------
i1 = dense.l + 1;
i2 = i1 + length(dense.q);
LAD = [symbfwblk(L,dense.A(:,1:i1-1)), symbfwblk(L,DAt.denq),...
symbfwblk(L,dense.A(:,i2:end)),symbfwblk(L,dense.A(:,i1:i2-1))];
% ------------------------------------------------------------
% Incremental ordering heuristic, excluding the Lorentz-trace cols
% ------------------------------------------------------------
[perm, dz] = incorder(LAD(:,1:length(dense.cols)));
% ------------------------------------------------------------
% Insert the trace cols with a "-1"-factor just after corresponding
% Lorentz-block columns
% ------------------------------------------------------------
Lden = finsymbden(LAD,perm,dz,i1); |
github | urbste/MLPnP_matlab_toolbox-master | psdinvscale.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/psdinvscale.m | 2,358 | utf_8 | f5c2690e44cb5af9d89862992d41f6fe | % y = psdinvscale(ud,x,K ,transp)
% PSDINVSCALE Computes length lenud (=sum(K.s.^2)) vector y.
% Computes y = D(d^{-1}) x with d in K.
% Y = Ud' \ X / Ud
% ********** INTERNAL FUNCTION OF SEDUMI **********
%
% See also scaleK, factorK.
function y = psdinvscale(ud,x,K)
% This file is part of SeDuMi 1.3 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
Ks=K.s;
if ~isempty(Ks)
N=sum(Ks.^2);
y(N,1)=0;
startindices=K.sblkstart-K.mainblks(end)+1;
%Sometimes x containts only the PSD part, sometimes the whole thing
xstartindices=startindices+(length(x)-N);
for i=1:K.rsdpN
Ksi=Ks(i);
Ksi2=Ksi^2;
temp=triu(reshape(ud(startindices(i):startindices(i+1)-1),Ksi,Ksi));
if nnz(temp)<0.05*Ksi2;
temp=sparse(temp);
end
X=reshape(x(xstartindices(i):xstartindices(i+1)-1),Ksi,Ksi);
if nnz(X)<0.05*Ksi2;
X=sparse(X);
end
y(startindices(i):startindices(i+1)-1)=...
temp'...
\(X...
/temp);
end
else
y=[];
end |
github | urbste/MLPnP_matlab_toolbox-master | eyeK.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/eyeK.m | 1,792 | utf_8 | dcbd5215709d972b04aaf25ed58bd8b0 | % eyeK Identity w.r.t. symmetric cone.
% x = eyeK(K) produces the identity solution w.r.t. the symmetric cone,
% that is described by the structure K. This is the vector for which
% eigK(x) is the all-1 vector.
%
% See also eigK.
function x = eyeK(K)
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
disp('The SeDuMi binaries are not installed.')
disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.')
disp('For more information see the file Install.txt.')
error(' ') |
github | urbste/MLPnP_matlab_toolbox-master | sparfwslv.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/sparfwslv.m | 2,219 | utf_8 | 06e89169ef2854a6853160556843a207 | % SPARFWSLV Solves block sparse upper-triangular system.
% y = sparfwslv(L,b) yields the same result as
% y = L.L\b(L.perm,:)
% However, SPARFWSLV is faster than the built-in operator "\",
% because it uses dense linear algebra and loop-unrolling on
% supernodes.
%
% For sparse b, one should use
% y = sparfwslv(L,b,symbfwblk(L.L,L.xsuper, b));
%
% Typical use, with X sparse m x m positive definite and b is m x n:
% L = sparchol(symbchol(X),X);
% L.d(L.dep) = inf;
% y = sparbwslv(L,sparfwslv(L,b) ./ L.d);
% Then y solves X*y=b.
%
% See also symbchol, sparchol, sparbwslv, mrdivide, mldivide.
function y = sparfwslv(L,b, ysymb)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
% ----------------------------------------
% Solve L.L * y = b
% ----------------------------------------
if nargin > 2
y = fwblkslv(L,b,ysymb);
else
y = fwblkslv(L,b);
end |
github | urbste/MLPnP_matlab_toolbox-master | fwdpr1.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/fwdpr1.m | 1,836 | utf_8 | 3d80b72e6bb438da84de6717e27bf024 | % y = fwdpr1(Lden, b)
% FWDPR1 Solves "PROD_k L(pk,betak) * y = b", where
% where L(p,beta) = eye(n) + tril(p*beta',-1).
%
% ********** INTERNAL FUNCTION OF SEDUMI **********
%
% See also sedumi, dpr1fact, bwdpr1
function y = fwdpr1(Lden, b)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
disp('The SeDuMi binaries are not installed.')
disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.')
disp('For more information see the file Install.txt.')
error(' ') |
github | urbste/MLPnP_matlab_toolbox-master | sortnnz.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/sortnnz.m | 1,958 | utf_8 | 5480524af510b77a03081bd71bf14627 | % perm = sortnnz(At,Ajc1,Ajc2)
% SORTNNZ Sorts columns in At
% in increasing order of nnzs; only the nnzs between Ajc1 and Ajc2
% are considered for each column. If Ajc1 or Ajc2 is empty, we use
% the start or end of the columns in At.
%
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
%
% See also partitA.
function perm = sortnnz(At,Ajc1,Ajc2)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
disp('The SeDuMi binaries are not installed.')
disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.')
disp('For more information see the file Install.txt.')
error(' ') |
github | urbste/MLPnP_matlab_toolbox-master | loopPcg.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/loopPcg.m | 6,098 | utf_8 | 9ace09d37bb5be74ffa5c03914a6ff6d | % [y,k, DAy] = loopPcg(L,Lden,At,dense,d, DAt,K, b,p,ssqrNew,cgpars, restol)
%
% LOOPPCG Solve y from AP(d)A' * y = b
% using PCG-method and Cholesky L as conditioner.
% If L is sufficiently accurate, then only 1 CG-step is needed.
% It assumes that the previous step was p, with
% ssqrNew = bOld'*inv(L*THETA*L')*bOld, and bOld the residual before
% the step p was taken. If p = [], then the PCG is started from scratch.
%
% k = #(CG-iterations).
% DAy = D*A'*y with D'*D = P(d).
%
% Warning: if the scaling operation P(d) gets ill-conditioned, the
% precision in y may be insufficient to compute DAy satisfactory.
% In this case, one should allow refinement, see wrapPcg.
%
% ********** INTERNAL FUNCTION OF SEDUMI **********
%
% See also sedumi, wrapPcg
function [y,k, DAy] = loopPcg(L,Lden,At,dense,d, DAt,K, b,p,ssqrNew,...
cgpars, restol)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
% --------------------------------------------------
% INITIALIZE:
% y=0 with r = b.
% --------------------------------------------------
k = 0;
STOP = 0;
r = b;
finew = 0;
y = []; % means all-0
normrmin = norm(r,inf);
ymin = [];
% --------------------------------------------------
% Conjugate Gradient until convergence
% --------------------------------------------------
while STOP == 0
% --------------------------------------------------
% P r e - C o n d i t i o n i n g:
% Solve L*Lr = r, L*THETA*tmp = r.
% p=[] ==> initialize p to solve L*THETA*L'*p = r.
% --------------------------------------------------
Lr = fwdpr1(Lden,sparfwslv(L, r));
tmp = Lr ./ L.d;
if isempty(p)
ssqrNew = Lr'*tmp;
p = sparbwslv(L, bwdpr1(Lden,tmp));
else
% --------------------------------------------------
% General iterate: make p conjugate to previous iterate(s):
% --------------------------------------------------
ssqrOld = ssqrNew;
ssqrNew = Lr'*tmp;
p = (ssqrNew/ssqrOld) * p;
p = p + sparbwslv(L, bwdpr1(Lden,tmp));
end
% --------------------------------------------------
% SCALING OPERATION AND MATRIX*VECTOR.
% Let DDAp = P(d)*A'*p and ssqrDAp = ||P(d)^{1/2}*A'*p||^2.
% Set alpha = ssqrNew / ssqrDAp
% --------------------------------------------------
Ap = vecsym(Amul(At,dense,p,1), K);
[DDAp, DApq, DAps, ssqrDAp] = PopK(d,Ap,K);
if ssqrDAp > 0.0
k = k + 1;
% --------------------------------------------------
% Take step: y := y + alpha*p
%--------------------------------------------------
alpha = ssqrNew / ssqrDAp;
if ~isempty(y)
if isstruct(y)
[y.hi,y.lo] = quadadd(y.hi,y.lo,alpha*p);
else
y = y + alpha * p;
end
elseif cgpars.qprec > 0
y.hi = alpha * p; y.lo = zeros(length(p),1);
else
y = alpha * p;
end
% --------------------------------------------------
% Update residual r := r - alpha * A*[P(d)*Ap]. MATRIX*VECTOR.
% --------------------------------------------------
tmp = Amul(At,dense,DDAp)+ DAt.q'*DApq(:,1) +...
DAt.denq*DApq(dense.q,1);
r = r - alpha * tmp;
% --------------------------------------------------
% Convergence check (HEURISTIC)
% --------------------------------------------------
fiprev = finew;
if isstruct(y)
finew = (b+r)'*y.hi + (b+r)'*y.lo;
else
finew = (b+r)'*y;
end
normr = norm(r,inf);
if normr < normrmin
ymin = y;
normrmin = normr;
end
if normr < restol
STOP = 1;
elseif (finew-fiprev < cgpars.stagtol * fiprev)
STOP = 2;
elseif k >= cgpars.maxiter
STOP = 2;
end
else
% my_fprintf('Warning: DAp = 0 in PCG\n');
STOP = 1; % If DAp == 0 then can't go on.
end
end
% --------------------------------------------------
% OUTPUT: return projection D * At*y on request.
% --------------------------------------------------
if STOP == 2
y = ymin; % Take best so far
end
if isempty(y)
DAy = [];
return
end
if nargout >= 3
if k == 1
DAy = alpha*[sqrt(d.l).*Ap(1:K.l); asmDxq(d,Ap,K,DApq); DAps];
else
if isstruct(y)
Ap = vecsym(Amul(At,dense,y.hi,1), K);
else
Ap = vecsym(Amul(At,dense,y,1), K);
end
DAy = [sqrt(d.l).*Ap(1:K.l); asmDxq(d,Ap,K); psdscale(d,Ap,K)];
if isstruct(y)
Ap = vecsym(Amul(At,dense,y.lo,1), K);
DAy = DAy + [sqrt(d.l).*Ap(1:K.l); asmDxq(d,Ap,K); psdscale(d,Ap,K)];
end
end
end
if isstruct(y)
y = y.hi;
end |
github | urbste/MLPnP_matlab_toolbox-master | finsymbden.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/finsymbden.m | 2,087 | utf_8 | 657a8e2087629e311adebd57a5f08b71 | % Lden = finsymbden(LAD,perm,dz,firstq)
% FINSYMBDEN Updates perm and dz by inserting the
% last Lorentz trace columns (last columns of LAD). It creates the fields
% Lden.sign - +1 for "normal" columns, -1 for Lorentz trace columns
% Lden.first - First pivot column that will affect this one
% NOTE: sign and first correspond to columns in LAD (without perm-reordering).
%
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
%
% See also incorder
function Lden = finsymbden(LAD,perm,dz,firstq)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
disp('The SeDuMi binaries are not installed.')
disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.')
disp('For more information see the file Install.txt.')
error(' ') |
github | urbste/MLPnP_matlab_toolbox-master | minpsdeig.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/minpsdeig.m | 2,336 | utf_8 | 29f75bd3729b72e27c480ad96a8dfecb | % mineig = minpsdeig(x,K)
% MINPSDEIG Computes the smallest spectral coefficients of x w.r.t. K
% Uses an iterative method if the matrix is large, takes the minimum of all
% the eigenvalues if the matrix is small.
%
% ********** INTERNAL FUNCTION OF SEDUMI **********
%
% See also sedumi
function mineig = minpsdeig(x,K)
%
% This file is part of SeDuMi 1.3 by Imre Polik
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
% disp('The SeDuMi binaries are not installed.')
% disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.')
% disp('For more information see the file Install.txt.')
% error(' ')
% [labold,qold]=psdeig(x,K);
Ks=K.s;
if isempty(Ks)
mineig=[];
return
end
startindices=K.sblkstart-K.mainblks(end)+1;
ncones=length(Ks);
OPTS.disp=0;
mineigvector=zeros(ncones,1);
for k = 1:ncones
Xk = reshape(x(startindices(k):startindices(k+1)-1),Ks(k),Ks(k));
if Ks(k)>500
mineigvector(k) = eigs(Xk + Xk',1,'SA',OPTS);
else
mineigvector(k) = min(eig(Xk + Xk'));
end
end
mineig = min(mineigvector) / 2;
|
github | urbste/MLPnP_matlab_toolbox-master | getDAtm.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/getDAtm.m | 1,959 | utf_8 | f378e638faeb4f3d673dca3c0cc6faa4 | % DAt = getDAtm(A,Ablkjc,dense,DAtdenq,d,K)
% GETDATM Computes d[k]'*Aj[k] for each lorentz block k and constraint j.
%
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
%
% See also sedumi, getada2.
function DAt = getDAtm(A,Ablkjc,dense,DAtdenq,d,K)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
nq = length(K.q);
DAt.q = extractA(A,Ablkjc,1,2,K.mainblks(1),K.mainblks(2));
if nq > 0
DAt.q = spdiags(d.q1,0,nq,nq) * DAt.q;
DAt.q = DAt.q + ddot(d.q2, A, K.qblkstart, Ablkjc);
end
DAt.denq = adendotd(dense,d,DAt.q(dense.q,:)',DAtdenq,K.qblkstart);
if ~isempty(dense.q)
DAt.q(dense.q,:) = 0.0;
end |
github | urbste/MLPnP_matlab_toolbox-master | findblks.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/findblks.m | 1,995 | utf_8 | 28b6d82caaac8cc4f537aba20c2cdcb0 | % Ablk = findblks(At,Ablkjc,blk0,blk1,blkstart)
% FINDBLKS Find nonzero blocks
% in A, with subscripts per column bounded bij Ablkjc([blk0,blk1]),
% block partitioned by blkstart.
% If blk0 < 1 (blk1 > size(Ablkjc,2)) then start (stop) searching at column
% start (end) of A.
%
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
%
% See also partitA.
function Ablk = findblks(At,Ablkjc,blk0,blk1,blkstart)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
disp('The SeDuMi binaries are not installed.')
disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.')
disp('For more information see the file Install.txt.')
error(' ') |
github | urbste/MLPnP_matlab_toolbox-master | invcholfac.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/invcholfac.m | 1,817 | utf_8 | d632d6aaf456d5f49b5d98c2d3f643e7 | % y = invcholfac(u,K, perm)
% INVCHOLFAC Computes y(perm,perm) = u' * u, with u upper triangular.
%
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
%
% See also sedumi, getada3
function y = invcholfac(u,K, perm)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
disp('The SeDuMi binaries are not installed.')
disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.')
disp('For more information see the file Install.txt.')
error(' ') |
github | urbste/MLPnP_matlab_toolbox-master | qframeit.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/qframeit.m | 1,731 | utf_8 | 5fa5e8c33ccbf6235d2065a5da6e9cb1 | % x = qframeit(lab,frmq,K)
%
% *********************** INTERNAL FUNCTION OF SEDUMI *******************
%
% See also sedumi
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
function x = qframeit(lab,frmq,K)
lorN = length(K.q);
if length(lab) > 2*lorN
lab = lab(K.l+1:K.l+2*lorN); % Take out Lorentz spectral values
end
x = [(lab(1:lorN) + lab(lorN+1:end))/sqrt(2);...
qblkmul(lab(lorN+1:end) - lab(1:lorN),frmq,K.qblkstart)]; |
github | urbste/MLPnP_matlab_toolbox-master | incorder.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/incorder.m | 2,143 | utf_8 | 2b2774a13bee87f13835654c0d328cf3 | % [perm, dz] = incorder(At [,Ajc1,ifirst])
% INCORDER
% perm sorts the columns of At greedily, by iteratively picking
% the 1st unprocessed column with the least number of nonzero
% subscripts THAT ARE NOT YET COVERED (hence incremental) by
% the previously processed columns.
% dz has the corresponding incremental sparsity structure, i.e.
% each column lists only the ADDITIONAL subscripts w.r.t. the
% previous ones.
%
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
%
% See also getada3, dpr1fact
function [perm, dz] = incorder(At,Ajc1,ifirst)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
disp('The SeDuMi binaries are not installed.')
disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.')
disp('For more information see the file Install.txt.')
error(' ') |
github | urbste/MLPnP_matlab_toolbox-master | qreshape.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/qreshape.m | 1,959 | utf_8 | c2c6b1ac9973c681f73cab640d9822aa | % y = qreshape(x,flag, K)
% QRESHAPE Reshuffles entries associated with Lorentz blocks.
% If flag = 0 then y = [x1 for each block; x2 for each block]
% If flag = 1 then y = [x block 1; x block 2; etc], etc
% Thus, x = qreshape(qreshape(x,0,K),1,K).
%
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
%
% See also sedumi
function y = qreshape(x,flag, K)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
disp('The SeDuMi binaries are not installed.')
disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.')
disp('For more information see the file Install.txt.')
error(' ') |
github | urbste/MLPnP_matlab_toolbox-master | dpr1fact.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/dpr1fact.m | 2,082 | utf_8 | 629891569a29d67b959f97061acd5cea | % [Lden,L.d] = dpr1fact(x, d, Lsym, smult, maxu)
% DPR1FACT Factor d[iag] p[lus] r[ank] 1:
% [Lden,L.d] = dpr1fact(x, d, Lsym, smult, maxu)
% Computes fi and d such that
% diag(d_IN) + x*diag(smult)*x' =
%(PI_{i=1}^n L(p_OUT^i,beta_i)) * diag(d_OUT) * (PI_{i=1}^n L(p_OUT^i,beta_i))'
% where L(p,beta) = eye(n) + tril(p*beta',-1).
%
% Lden.dopiv(k) = 1 if p(:,k) has been reordered, with permutation in
% Lden.pivperm.
% We reorder if otherwise |p(i,k)*beta(j,k)| > maxu.
%
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
%
% See also fwdpr1,bwdpr1,sedumi
function [Lden,Ld] = dpr1fact(x, d, Lsym, smult, maxu)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
error('At OS prompt, type "make" to create cholTool mex-files.') |
github | urbste/MLPnP_matlab_toolbox-master | iswnbr.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/iswnbr.m | 4,332 | utf_8 | 29ebd64b43e94bc8f880edf8af6dcb90 | % [delta,h,alpha] = iswnbr(vSQR,thetaSQR)
% ISWNBR Checks feasibility w.r.t. wide region/neighborhood of Sturm-Zhang.
% vTAR:= (1-alpha)*max(h,v) projection v onto theta-central region
% delta = (sqrt(n)/theta) * norm(vTAR - v) / norm(v)
%
% ********** INTERNAL FUNCTION OF SEDUMI **********
%
% See also sedumi
function [delta,h,alpha] = iswnbr(w,thetaSQR)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
disp('The SeDuMi binaries are not installed.')
disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.')
disp('For more information see the file Install.txt.')
error(' ')
% ----------------------------------------
% r = n/thetaSQR
% hSQR = sumwNT/(r-|T|), hubSQR = sumwNT/(r-|T| - |Q|)
% sumdifv = h*|T| - sumvT (sumvT = sum(v_T), growing )
% sumdifw = hSQR*|T| - sumwT
% alpha = sumdifv / (r*h)
% deltaSQR = r * ( 2*alpha-alpha^2 - (1-alpha)^2 * sumdifw/gap )
% WE UPDATE sumdifv AND sumdifw IN A STABLE WAY
% ----------------------------------------
n = length(w); gap = sum(w);
sumwNT = gap;
r = n / thetaSQR;
cardT = 0; wQ = []; sumdifv = 0; sumdifw = 0;
cardQ = n;
hSQR = sumwNT / (r - cardT); hubSQR = sumwNT / (r-(n-1));
for j = 1:n
wj = w(j);
if wj >= hubSQR % wj >= hubSQR ==> not in T
cardQ = cardQ - 1;
hubSQR = sumwNT / (r-cardT-cardQ);
elseif wj < hSQR % wj < hSQR ==> in T
cardT = cardT + 1;
cardQ = cardQ - 1;
hubSQR = (1-wj/sumwNT) * hubSQR;
sumwNT = sumwNT - wj;
oldhSQR = hSQR;
hSQR = sumwNT / (r - cardT);
sumdifw = sumdifw + (oldhSQR-wj) + cardT * (hSQR-oldhSQR);
sumdifv = sumdifv + (sqrt(oldhSQR)-sqrt(wj)) + ...
cardT * (sqrt(hSQR)-sqrt(oldhSQR));
else % Inconclusive: j in Q
wQ = [wQ;wj];
end % if
end % for
% ----------------------------------------
% The same treatment for the Q set, but we
% sort the (presumably short) wQ first.
% ----------------------------------------
if ~isempty(wQ)
sort(wQ);
STOP = 0; j = 1;
while ~STOP
wj = wQ(j);
if wj >= hSQR
STOP = 1;
else
cardT = cardT + 1;
sumwNT = sumwNT - wj;
oldhSQR = hSQR;
hSQR = sumwNT / (r - cardT);
sumdifw = sumdifw + (oldhSQR-wj) + cardT * (hSQR-oldhSQR);
sumdifv = sumdifv + (sqrt(oldhSQR)-sqrt(wj)) + ...
cardT * (sqrt(hSQR)-sqrt(oldhSQR));
j = j+1;
if j > length(wQ)
STOP = 1;
end
end
end
end % treatment Q
% ----------------------------------------
% alpha = sumdifv/(r*h)
% deltaSQR = r * ( 2*alpha-alpha^2 - (1-alpha)^2 * sumdifw/gap )
% (THE ABOVE DIFFERENCE SHOULD NOT BE NUMERICALLY DANGEROUS,
% SINCE alpha IS *SIGNIF* BIGGER THAN sumdifw/gap )
% ----------------------------------------
h = sqrt(hSQR);
alpha = sumdifv/ (r*h);
deltaSQR = alpha*(2-alpha) - (1-alpha)^2 * sumdifw/gap;
delta = sqrt(r*deltaSQR); |
github | urbste/MLPnP_matlab_toolbox-master | fwblkslv.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/fwblkslv.m | 1,959 | utf_8 | afaeb9493d21b9aba30ef5c9ca9b42e7 | % FWBLKSLV Solves block sparse upper-triangular system.
% y = fwblkslv(L,b) yields the same result as
% y = L.L\b(L.perm,:)
% However, FWBLKSLV is faster than the built-in operator "\",
% because it uses dense linear algebra and loop-unrolling on
% supernodes.
%
% Typical use, with X sparse m x m positive definite and b is m x n:
% L = sparchol(symbchol(X),X);
% y = bwblkslv(L,fwblkslv(L,b));
% Then y solves X*y=b.
%
% See also symbchol, sparchol, bwblkslv, mldivide, mrdivide
function y = fwblkslv(L,b)
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
error('At OS prompt, type "make" to create cholTool mex-files.') |
github | urbste/MLPnP_matlab_toolbox-master | trydif.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/trydif.m | 2,489 | utf_8 | 11997f7d1de309ae4f154ae656362f9d | % [t,wr,w] = trydif(t,wrIN,wIN, x,z, pars,K)
% TRYDIF Tries feasibility of differentiated step length w.r.t.
% wide region and its neighborhood.
%
% ********** INTERNAL FUNCTION OF SEDUMI **********
%
% See also sedumi, stepdif
function [t,wr,w] = trydif(t,wrIN,wIN, x,z, pars,K)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
thetaSQR = pars.theta^2;
ix = K.mainblks;
% --------------------------------------------------
% Let w = D(xM)*zM, compute lambda(w).
% --------------------------------------------------
% LORENTZ
w.tdetx = tdet(x,K);
w.tdetz = tdet(z,K);
detxz = w.tdetx .* w.tdetz / 4;
if isempty(K.q)
lab2q = zeros(0,1);
else
halfxz = (x(ix(1):ix(2)-1).*z(ix(1):ix(2)-1)...
+ ddot(x(ix(2):ix(3)-1),z,K.qblkstart)) / 2;
tmp = halfxz.^2 - detxz;
if tmp > 0
lab2q = halfxz + sqrt(tmp);
else
lab2q = halfxz;
end
end
% PSD
w.ux = psdfactor(x,K);
w.s = psdscale(w.ux,z,K);
% ALL:
w.lab = [x(1:K.l).*z(1:K.l); detxz ./ lab2q; lab2q; psdeig(w.s,K)];
[wr.delta,wr.h,wr.alpha] = iswnbr(w.lab, thetaSQR);
wr.desc = wrIN.desc; % always descent direction.
if wr.delta > pars.beta
t = 0;
w = wIN;
wr = wrIN;
end |
github | urbste/MLPnP_matlab_toolbox-master | asmDxq.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/asmDxq.m | 2,735 | utf_8 | 4021e5a1dc8a445ad7e30c2170dbf01a | % y = asmDxq(d, x, K [, ddotx])
% ASMDXQ Assemble y = D(d)x for x in Lorentz part of K.
% [y,t] = AasmDxq(d, x, K [, ddotx]) then y[k]+t(k)*d[k] = D(dk)xk.
%
% ********** INTERNAL FUNCTION OF SEDUMI **********
%
% See also sedumi
function [y,t] = asmDxq(d, x, K, ddotx)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
if isempty(K.q)
y = zeros(0,1);
t = zeros(0,1);
else
% ------------------------------------------------------------
% Let i1, i2 such that x(i1:i2-1) = "x1", i.e. Lorentz trace part.
% ------------------------------------------------------------
if length(x) >= K.lq
i1 = K.mainblks(1); i2 = K.mainblks(2);
else
i1 = 1; i2 = length(K.q)+1;
end
t = x(i1:i2-1);
if nargin < 4
ddotx = d.q1.*t + ddot(d.q2,x,K.qblkstart);
end
% --------------------------------------------------
% Since d^{1/2} = (d+sqrt(det d)*iota) / trace(d^{1/2}),
% and d.auxtr = trace(d^{1/2})^2, d.auxdet = sqrt(2*det d),
% We have P(d)^{1/2}x = t*d + t*auxdet*e_1 - sqrt(det d)*Jx,
% where t = (d'*x + x(1)*auxdet)/auxtr.
% --------------------------------------------------
t = (ddotx + t.* d.auxdet) ./ d.auxtr; % old t = x1
sdet = sqrt(d.det);
y = [t.*(d.auxdet) - sdet .* x(i1:i2-1); qblkmul(sdet,x,K.qblkstart)];
if nargout < 2
y = y + [t.*d.q1; qblkmul(t,d.q2,K.qblkstart)];
end
end |
github | urbste/MLPnP_matlab_toolbox-master | symfctmex.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/symfctmex.m | 1,990 | utf_8 | 13ca2c91fee7af502a14c702297c724b | % [L,perm,xsuper,split,tmpsiz] = symfctmex(X, perm, cachsz)
% Computes sparse symbolic factor L, updated permutation PERM,
% super-node partition XSUPER, and a splitting of supernodes
% (SPLIT) to optimize use of the computer cache (assuming
% CACHSZ*1024 byte available). TMPSIZ is the amount of floating
% point working storage that has to be allocated within blkfctmex.
%
% Invokes ORNL block Cholesky library (Fortran).
%
% ********** INTERNAL FUNCTION OF CHOLTOOL **********
%
% See also sedumi
function [L,perm,xsuper,split,tmpsiz] = symfctmex(adjncy, perm, cachsz)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
error('At OS prompt, type "make" to create cholTool mex-files.') |
github | urbste/MLPnP_matlab_toolbox-master | symbchol.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/symbchol.m | 3,197 | utf_8 | 40b95638fa00d31c904c92f5108cef30 | % L = symbchol(X)
% SYMBCHOL Symbolic block sparse Cholesky factorization.
% L = symbchol(X) returns a structure L that can be used
% by the efficient block sparse Cholesky solver SPARCHOL.
% The fields in L have the following meaning:
%
% L.perm - Multiple minimum degree ordering.
%
% L.L - Sparse lower triangular matrix, has sparsity structure
% of Cholesky factor of X(L.perm,L.perm).
%
% L.xsuper - Supernode partition. Supernode jsup consists of
% the nodes L.xsuper(jsup) : L.xsuper(jsup)-1.
%
% L.split - Splitting of supernodes. Recommends to split supernode
% in blocks of sizes L.split(xsuper(jsup):L.xsuper(jsup)-1).
%
% L.tmpsiz - Quantity used by SPARCHOL, to allocated enough working
% storage.
%
% L = symbchol(X,cachsz) optimizes L.split for a computer cache
% of size CACHSZ * 1024 byte. Default cachsz = 512.
%
% See also sparchol, sparfwslv, sparbwslv, symbfact, symmmd, chol.
function L = symbchol()
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
% ----------------------------------------
% Enter here the cache-size in KB, for shaping
% optimal dense blocks of floats.
% ----------------------------------------
global ADA
if ~issparse(ADA)
error('X should be a sparse symmetric matrix')
end
cachsz = 512;
% ----------------------------------------
% Compute multiple minimum degree ordering.
% If the matrix is actually dense we don't bother.
% ----------------------------------------
if spars(ADA)<1
perm = ordmmdmex(ADA);
L = symfctmex(ADA,perm);
else
L.perm=(1:size(ADA,1))';
L.L=sparse(tril(ones(size(ADA))));
L.xsuper=[1;size(ADA,1)+1];
end
% ----------------------------------------
% Symbolic Cholesky factorization structures, stored in L.
% ----------------------------------------
L.tmpsiz = choltmpsiz(L);
L.split = cholsplit(L,cachsz); |
github | urbste/MLPnP_matlab_toolbox-master | getsymbada.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/getsymbada.m | 2,291 | utf_8 | 4f114f34a066f4164a180e45d55e1346 | % SYMBADA = getsymbada(At,Ajc,DAt,psdblkstart)
% GETSYMBADA
% Ajc points to start of PSD-nonzeros per column
% DAt.q has the nz-structure of ddotA.
%
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
%
% See also sedumi, partitA, getada1, getada2.
function SYMBADA = getsymbada(At,Ablkjc,DAt,psdblkstart)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
Alpq = spones(extractA(At,Ablkjc,0,3,1,psdblkstart(1)));
Ablks = findblks(At,Ablkjc,3,[],psdblkstart);
if spars(Ablks)==1 | spars(Alpq)==1 | (~isempty(DAt.q) & spars(DAt.q)==1)
SYMBADA=sparse(ones(size(At,2),size(At,2)));
else
SYMBADA=DAt.q'*DAt.q;
if spars(SYMBADA)>0.9
SYMBADA=sparse(ones(size(At,2),size(At,2)));
return
else
SYMBADA = SYMBADA + Alpq' * Alpq;
if spars(SYMBADA)>0.9
SYMBADA=sparse(ones(size(At,2),size(At,2)));
return
else
SYMBADA = SYMBADA + Ablks'*Ablks;
end
end
end
|
github | urbste/MLPnP_matlab_toolbox-master | statsK.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/statsK.m | 1,781 | utf_8 | 12ff626206549b4741bb0281466db66f | % K = statsK(K)
% STATSK Collects statistics (max and sum of dimensions) of cone K
%
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
%
% See also sedumi
function K = statsK(K)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
disp('The SeDuMi binaries are not installed.')
disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.')
disp('For more information see the file Install.txt.')
error(' ') |
github | urbste/MLPnP_matlab_toolbox-master | qinvjmul.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/qinvjmul.m | 2,412 | utf_8 | dec5fb2062e903290a8620345bfea739 | % y = qinvjmul(labx,frmx,b,K)
% QINVJMUL Inverse of Jordan multiply for Lorentz blocks
%
% ********** INTERNAL FUNCTION OF SEDUMI **********
%
% See also sedumi
function y = qinvjmul(labx,frmx,b,K)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
lorN = length(K.q);
if lorN == 0
y = zeros(0,1);
return
end
if length(labx) > 2*lorN
labx = labx(K.l+1:K.l+2*lorN);
end
detx = labx(1:lorN) .* labx(lorN+1:end);
x = qframeit(labx,frmx,K);
ix = K.mainblks;
if length(b) == ix(3)-ix(1); % lorentz only ?
ix = (1-ix(1)) + ix;
end
% ------------------------------------------------------------
% Let y1(k) = xk'Jbk/(sqrt2*detxk)
% ------------------------------------------------------------
y1 = x(1:lorN).*b(ix(1):ix(2)-1) - ddot(x(lorN+1:end),b,K.qblkstart);
y1 = y1./(sqrt(2)*detx);
% ------------------------------------------------------------
% Let y2[k] = (sqrt2/x1)*b2[k] - (y1/x1) * x2[k]
% ------------------------------------------------------------
y = [y1; qblkmul(sqrt(2)./x(1:lorN),b,K.qblkstart)...
- qblkmul(y1./x(1:lorN),x(lorN+1:end),K.qblkstart)]; |
github | urbste/MLPnP_matlab_toolbox-master | whichcpx.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/whichcpx.m | 1,768 | utf_8 | 5f028bd9c4ab83a5b133fd819123428b | % cpx = whichcpx(K)
% WHICHCPX yields structure cpx.{f,q,r,x}
%
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
%
% See also sedumi
function cpx = whichcpx(K)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
disp('The SeDuMi binaries are not installed.')
disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.')
disp('For more information see the file Install.txt.')
error(' ') |
github | urbste/MLPnP_matlab_toolbox-master | triumtriu.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/triumtriu.m | 1,970 | utf_8 | 00fc269408152bf90c80ab0ec660247e | % y = triumtriu(r,u,K)
% TRIUMTRIU Computes y = r * u
% Both r and u should be upper triangular.
%
% ********** INTERNAL FUNCTION OF SEDUMI **********
%
% See also sedumi
function y = triumtriu(r,u,K)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
Ks=K.s;
startindices=K.sblkstart-K.mainblks(end)+1;
y=zeros(K.blkstart(end)-K.mainblks(end),1);
for k = 1:length(Ks)
%This works, but I don't like the lot of 0 matrices.
temp=triu(reshape(r(startindices(k):startindices(k+1)-1),Ks(k),Ks(k)),0)*triu(reshape(u(startindices(k):startindices(k+1)-1),Ks(k),Ks(k)),0);
y(startindices(k):startindices(k+1)-1)=temp+triu(temp,1)';
end |
github | urbste/MLPnP_matlab_toolbox-master | getada2.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/getada2.m | 1,909 | utf_8 | a8fc0f8faec3032542bec1ff776fc6a3 | % ADA = getada2(ADA, DAt,Aord, K)
% GETADA2 Compute ADA += DAt.q'*DAt.q
% IMPORTANT: Updated ADA only on triu(ADA(Aord.qperm,Aord.qperm)).
% Remaining entries are not affected.
%
% ******************** INTERNAL FUNCTION OF SEDUMI ********************
%
% See also sedumi, getada1, getada3
function ADA = getada2(ADA, DAt,Aord, K)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
disp('The SeDuMi binaries are not installed.')
disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.')
disp('For more information see the file Install.txt.')
error(' ') |
github | urbste/MLPnP_matlab_toolbox-master | urotorder.m | .m | MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/urotorder.m | 1,801 | utf_8 | 4be6f57ee235f79abb8a2db74d4b9948 | % [u,perm,gjc,g] = urotorder(u,K, maxu,permIN)
% UROTORDER Stable reORDERing of triu U-factor by Givens ROTations.
%
% ********** INTERNAL FUNCTION OF SEDUMI **********
%
% See also sedumi
function [u,perm,gjc,g] = urotorder(u,K, maxu,permIN)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
%
disp('The SeDuMi binaries are not installed.')
disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.')
disp('For more information see the file Install.txt.')
error(' ') |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.