plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
jiangyc92/LPPLModel-master
Train.m
.m
LPPLModel-master/@LPPL/Train.m
1,478
utf_8
2dd7765bf753ce5cac8fb67fe9324762
function Train(obj, Times, Prices, t0) % Train function solve the optimization problem and get the optimal % paramater % obj: class instantce % Times: time sequence ( suggested to be 1:N) % Prices: prices list % t0: the start point for the optimization ObjFunc = @(t) Func2(t, Times, log(Prices)); OptimProblem = createOptimProblem('fmincon','objective',ObjFunc,'lb',max(Times), ... 'x0',t0,'options',optimset('Display', 'iter')); [tmin, Fmin] = fmincon(OptimProblem); obj.tc = tmin; [~, Para] = Func2(obj.tc, Times, log(Prices)); obj.m = Para.m; obj.omega = Para.omega; [~, Para] = Func1(tmin, obj.m, obj.omega, Times, log(Prices)); obj.A = Para.A; obj.B = Para.B; obj.C1 = Para.C1; obj.C2 = Para.C2; obj.TrainRes = Fmin; end function [Value, Para] = Func2(t, Times, LogPrices) ObjSubFunc = @(x)Func1(t, x(1), x(2), Times, LogPrices); OptimSubProblem = createOptimProblem('fmincon','objective',ObjSubFunc,... 'lb',[0,0],'ub',[1,Inf],... 'x0',[0.5,2],'options',optimset('Display','off')); [Xmin,Fmin] = fmincon(OptimSubProblem); Para.m = Xmin(1); Para.omega = Xmin(2); Value = Fmin; end function [Value, Para] = Func1(t, m, omega, Times, LogPrices) dt = t - Times; N = length(dt); X = zeros(N,4); X(:,1) = 1.0; X(:,2) = dt.^m; X(:,3) = (dt.^m) .* cos(omega*log(dt)); X(:,4) = (dt.^m) .* sin(omega*log(dt)); Coef = regress(LogPrices, X); Para.A = Coef(1); Para.B = Coef(2); Para.C1 = Coef(3); Para.C2 = Coef(4); Value = sum((LogPrices - X*Coef).^2); end
github
arvind96/Quantum-Mechanics-Simulations-master
ParticleInBoxWave.m
.m
Quantum-Mechanics-Simulations-master/ParticleInBoxWave.m
365
utf_8
172edcaf04f357dfbd97d910285f59be
function [z] = ParticleInBoxWave(L, c1, c2, c3, x, t) z = c1 * (2/L)^0.5 *sin(1*pi*x / L) * exp(-1i*CalculateEnergy(1, L)*t / 1) + c2 * (2/L)^0.5 *sin(2*pi*x / L) * exp(-1i*CalculateEnergy(2, L)*t / 1) + c3 * (2/L)^0.5 *sin(3*pi*x / L) * exp(-1i*CalculateEnergy(3, L)*t / 1); end function e = CalculateEnergy(n, L) e = (n^2 * pi^2 * 1) / (2 * 1 * L^2); end
github
arvind96/Quantum-Mechanics-Simulations-master
StartHydrogenAtomProbabilityDensity.m
.m
Quantum-Mechanics-Simulations-master/StartHydrogenAtomProbabilityDensity.m
13,878
utf_8
c8e23f45fdd7a45863bd79212f7c1dfe
function StartHydrogenAtomProbabilityDensity() global HydrogenOrbitalGenerationRunning; if(HydrogenOrbitalGenerationRunning == 1) return; end HydrogenOrbitalGenerationRunning = 1; global MainHandle; %stores the handle for MainGUI set(MainHandle.uipanelTopControls, 'Title', 'HYDROGEN ATOM'); set(MainHandle.uipanelOther1, 'Visible', 'On'); set(MainHandle.uipanelOther2, 'Visible', 'On'); set(MainHandle.uipanelOther3, 'Visible', 'On'); set(MainHandle.sliderOther1, 'Min', 2.00, 'Max', 4.00); if(GetOtherSliderValue1() > 4) SetOtherSliderValue1(2.00); elseif(GetOtherSliderValue1() < 2) SetOtherSliderValue1(2.00); end % define constants and orbital shape % quantum numbers n = round(GetOtherSliderValue1()); % principal quantum number (shell #) l = round(GetOtherSliderValue2()); % orbital quantum number (subshell type: s, p, d, f, etc.) m = round(GetOtherSliderValue3()); % magnetic quantum number (orientation of subshell) % constants: shape and cutoffs of 3D plots (needs fiddling to get a good plot) cons.cutoff = 0.75 * 10^(24); % electron density cutoff (where to put isosurface) cons.resolution = 200; %75; % number of calculations per XYZ dimension cons.spatialLen = 7; % length of physical space to view over (angstroms) switch n case 2 switch l case 0 cons.spatialLen = 10; case 1 cons.spatialLen = 7; end case 3 switch l case 0 cons.spatialLen = 20; case 1 cons.spatialLen = 12; case 2 cons.spatialLen = 7; end case 4 switch l case 0 cons.spatialLen = 30; case 1 cons.spatialLen = 18; case 2 cons.spatialLen = 12; case 3 cons.spatialLen = 5; end otherwise cons.spatialLen = 50; end % constants: scale size of plot (don't play with) cons.scale = 10^(-9.5); % scaling length of calculation (meters) cons.meters2ang = 10^(-10); % convert meters to angstroms cons.a0 = 5.2820 * 10^(-11); % Bohr radius (meters) % constants: orbital name and color (doesn't affect calculation) %[ColorIs] = makeColors; % load color values cons.orbitName = orbitNameIs(n,l,m);% name that appears in figure titles cons.outerColor = [0.7 0.5 0.5];%ColorIs.red; % color of isosurface cons.sliceStyle2 = false; % alternate clip plane for PlotCrossSectionIsosurface %-------------------------------------------------------------------------- % generate XYZ space, convert to spherical radius, theta, and phi [xSpace, ySpace, zSpace] = make3Dspace(cons); [theta, phi, r] = convert2polar(xSpace, ySpace, zSpace); %-------------------------------------------------------------------------- % calculate wave function (3D vector of probability) WaveFn = psiCalculation(n,l,m,r,theta,phi,cons); set(MainHandle.uipanelAxes1, 'Title', 'ORBITAL'); set(MainHandle.uipanelAxes2, 'Title', 'ORBITAL CROSS SECTION'); set(MainHandle.figureMain, 'currentaxes', MainHandle.axes1); PlotSolidIsosurface(xSpace, ySpace, zSpace, WaveFn, cons); set(MainHandle.figureMain, 'currentaxes', MainHandle.axes2); PlotCrossSectionIsosurface(xSpace, ySpace, zSpace, WaveFn, cons); str = 'Click on the Reset button to generate the probability density surface.'; text(0.0 , 0.75, str, 'FontSize', 12, 'Parent', MainHandle.axesEquations); str = ['Current orbital: ' cons.orbitName]; text(0.0 , 0.25, str, 'FontSize', 12, 'Parent', MainHandle.axesEquations); HydrogenOrbitalGenerationRunning = 0; end %% Mix and make your own hybrid orbitals! % % PlotHydrogenMolecularOrbital is a function designed to plot a hydrogen % orbital. The orbital is defined by the quantum numbers, which in tern % determine the number of nodes and harmonic frequencies observed in the % wavefunction. This program is intended both to display the functions and % to allow the user to mix and match wave functions (such as for hybrid % orbitals). % % Radial nodes are determined by Laguerre polynomials, and angular nodes by % Legendre polynomials. Details of the calculation are in the radial wave % function and angular wave function sections. % % ------------------------------------------------------------------------- % Some notes on the calculation % % Remember that all spatial lengths (angstroms, meters, etc.) are real! % you may need to play with the settings to get the plot that you want. % % As the orbital increases in size, increase cons.spatialLen to see it all % If orbital is missing parts, maybe decrease cons.cutoff by a magnitude % Increase cons.resolution to make the plot prettier % remember this makes an N^3 increase in computional time % The wave function is a cubic 3D vector. Keep that in mind when making % hybrid orbitals % Some XYZ axis rotations were needed to align the calculations to Matlab's % polar 3D space. % % ------------------------------------------------------------------------- % notes on the plots % % a small function "makeColors" is included to give some preloaded color % values. This is useful for coloring the skin of the orbitals % the functions PlotSolidIsosurface, PlotCrossSectionIsosurface, and % PlotWaveFnSignIsosurface are a good start to visualizing the data % PlotCrossSectionIsosurface has a color bar. These are multiples of the % cutoff value labeled in cons.cutoff % The cons.sliceStyle2 option is a boolean that switches the clipping plane % from YZ to XZ in the PlotCrossSectionIsosurface plot. This is useful % for visualizing the inside of certain orbitals % %========================================================================== %% calculate wave function %========================================================================== % the wave function is a 3D vector of size [resolution, resolution, resolution] % calculate it by multiplying each element of the radial and angular components function [WaveFn] = psiCalculation(n,l,m,r,theta,phi,cons) WaveFn = radialCalculation(n,l,r,cons) .* angularCalculation(l,m,theta,phi); % correction 1: remove NaN at atomic nucleus center = ceil(cons.resolution/2); WaveFn(center, center, center) = 0; % correction 2: flip wave function properly when m < 0 if (m < 0 ) WaveFn = permute(WaveFn, [2 1 3]); end end %% radial wave function % the radial component is composed of two parts: an exponential term and a % polynomial term. The exponential term adds attraction to the nucleus of % the atom. The polynomial term adds electron shell harmonics to create % nodal spheres function [RadialFn] = radialCalculation(n,l,r,cons) % import contants a0 = cons.a0; % scaling factors scalFac1 = sqrt((2/(a0*n))^3 * factorial(n-l-1)/(2*n*factorial(n+l))); scalFac2 = 1/factorial(n - l + 2*l); % Part 1: exponential component (attraction to nucleus) nuclearComponent = (2*r/(a0*n)) .* exp(-r/(a0*n)); % Part 2: polynomial component (generates radial nodes) radialNodeComponent = LaguerrePolynomial(n-l-1, 2*l+1, 2*r/(a0*n)); % combine components to calculate radial wave function RadialFn = scalFac1 * scalFac2 * nuclearComponent .* radialNodeComponent; end % use Laguerre polynomials to introduce nodal spheres into radial function function [NodalFn] = LaguerrePolynomial(n,m,r) % initiate polynomial function NodalFn = zeros(size(r)); % add n coefficient terms to the polynomial for i = 0:n polynomialCoeff = factorial(m+n) * nchoosek(m+n,n-i) / factorial(i); NodalFn = NodalFn + polynomialCoeff * (-r).^i; end end %% angular wave function % the angular component is a cosine function with Legendre polynomials used % to add nodal planes. function [AngularFn] = angularCalculation(l,m,theta,phi) if (abs(m) == 2) m = -m; end if (m == -2) phi = phi + pi/4; end % normalization and scaling factors normFac = abs(sign(m)*(2^0.5) + (sign(abs(m)) - 1)*2); scalFac = sqrt((2*l+1) / (4*pi) * factorial(l-abs(m)) / factorial(l+abs(m))); % add nodes to spherical harmonics functions SphFn1 = scalFac * LegendrePolynomial(l,m,cos(theta)) .* exp(1i*m*phi); SphFn2 = scalFac * LegendrePolynomial(l,-m,cos(theta)) .* exp(1i*-m*phi); AngularFn = (SphFn1 + SphFn2) / normFac; end % use Legendre polynomials to introduce nodal planes into angular function function [NodalFn] = LegendrePolynomial(l,m,x) % initiate polynomial function NodalFn = zeros(size(x)); numCoeffs = floor(1/2*l - 1/2*abs(m)); % add n coefficient terms to the polynomial for n = 0:numCoeffs polynomialCoeff = (-1)^n * nchoosek(l-2*n,abs(m)) * nchoosek(l,n) * nchoosek(2*l-2*n,l); exponent = l - 2*n - abs(m); NodalFn = NodalFn + polynomialCoeff * x.^exponent; end NodalFn = (-1)^m * (1-x.^2).^(abs(m)/2) .* (factorial(abs(m))/2^l*NodalFn); end %========================================================================== %% generate 3D space (X Y Z theta phi r) %========================================================================== % generate 3D cartesian space based on inputs function [xSpace, ySpace, zSpace] = make3Dspace(cons) % import dimensions and scaling factors resolution = cons.resolution; spatialLen = cons.spatialLen; scale = cons.scale; % generate XYZ space using meshgrid xRange = linspace(-spatialLen, spatialLen, resolution) * scale; yRange = linspace(-spatialLen, spatialLen, resolution) * scale; zRange = linspace(-spatialLen, spatialLen, resolution) * scale; [xSpace, ySpace, zSpace] = meshgrid(xRange, yRange, zRange); end % most of this function is equivalent to the "cart2sph" function. % Matlab interprets angles a little differently than a classic calculus % textbook, as in the engineering-style of polar coordinatles. % phi and theta are swapped, and the zero-angle is at a -pi/2 angle. % Consequently we manually convert the points here. function [theta, phi, r] = convert2polar(x, y, z) r = sqrt(x.^2+y.^2+z.^2); theta = acos(z./r); % this is "phi" in the "cart2sph" function phi = atan2(y,x); % this is "theta" in the "cart2sph" function end %========================================================================== %% plot wave functions %========================================================================== % load up some useful color values function [ColorIs] = makeColors ColorIs.red = [1 0 0]; ColorIs.green = [0 1 0]; ColorIs.blue = [0 0 1]; ColorIs.purple = [1 0 1]; ColorIs.cyan = [0 1 1]; ColorIs.yellow = [1 1 0]; ColorIs.black = [0 0 0]; ColorIs.grey = [0.3 0.3 0.3]; end % convert n l m into a useful name function [orbitName] = orbitNameIs(n,l,m) subShells = {'s', 'p', 'd', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm'}; thisM = [num2str(m) num2str(m)]; thisMtmp = num2str(m); for j = 1:length(thisMtmp) thisM(2 * j - 1) = '_'; thisM(2 * j) = thisMtmp(j); end orbitName = [num2str(n) subShells{l+1} thisM]; end % plot a solid isosurface of the orbital function PlotSolidIsosurface(xSpace, ySpace, zSpace, WaveFn, cons) % import dimensions and scaling factors spatialLen = cons.spatialLen; meters2ang = cons.meters2ang; cutoff = cons.cutoff; orbitName = cons.orbitName; isoColor = cons.outerColor; % square the wavefunction to make an electron density map WaveFn2 = WaveFn .* conj(WaveFn); % convert inputs to convenient numbers and values x = xSpace / meters2ang; y = ySpace / meters2ang; z = zSpace / meters2ang; v = WaveFn2 / cutoff; % patch and interpret isosurface for better coloration p = patch(isosurface(x,y,z,v,1)); isonormals(x,y,z,v,p); set(p,'FaceColor',isoColor,'EdgeColor','none'); % lighting, aspect ratio, plot options daspect([1 1 1]); view(3); axis vis3d; camlight; lighting phong; xlabel('x','FontSize',10); ylabel('y','FontSize',10); zlabel('z','FontSize',10); %title([orbitName ' orbital'],'FontSize',10); rotate3d on; % dimensions of plot plotScale = spatialLen * 1.4; global MainHandle; %stores the handle for MainGUI xlim(MainHandle.axes1, [-plotScale plotScale]); ylim(MainHandle.axes1, [-plotScale plotScale]); zlim(MainHandle.axes1, [-plotScale plotScale]); end % plot a cross section of a solid isosurface of the orbital function PlotCrossSectionIsosurface(xSpace, ySpace, zSpace, WaveFn, cons) % import dimensions and scaling factors spatialLen = cons.spatialLen; meters2ang = cons.meters2ang; cutoff = cons.cutoff; orbitName = cons.orbitName; isoColor = cons.outerColor; sliceStyle2 = cons.sliceStyle2; % use alternate clipping plane? halfLength = 0; clipRange = [nan,nan,halfLength,nan,nan,nan]; if (sliceStyle2 == true) clipRange = [halfLength,nan,nan,nan,nan,nan]; end % square the wavefunction to make an electron density map WaveFn2 = WaveFn .* conj(WaveFn); % convert inputs to convenient numbers and values x = xSpace / meters2ang; y = ySpace / meters2ang; z = zSpace / meters2ang; v = WaveFn2 / cutoff; % slice off half the isosurface, change XYZ accordingly [x,y,z,v] = subvolume(x,y,z,v,clipRange); % patch and interpret isosurface for better coloration p1 = patch(isosurface(x,y,z,v,1),'FaceColor',isoColor,'EdgeColor','none'); isonormals(x,y,z,v,p1); patch(isocaps(x,y,z,v,1),'FaceColor','interp','EdgeColor','none'); % lighting, aspect ratio, plot options daspect([1 1 1]); view(3); axis vis3d; camlight; lighting phong; xlabel('x','FontSize',10); ylabel('y','FontSize',10); zlabel('z','FontSize',10); %title([orbitName ' orbital cross section'],'FontSize',10); rotate3d on; % dimensions of plot plotScale = spatialLen * 1.4; global MainHandle; %stores the handle for MainGUI xlim(MainHandle.axes2, [-plotScale plotScale]); ylim(MainHandle.axes2, [-plotScale plotScale]); zlim(MainHandle.axes2, [-plotScale plotScale]); end
github
arvind96/Quantum-Mechanics-Simulations-master
MainGUI.m
.m
Quantum-Mechanics-Simulations-master/MainGUI.m
23,097
utf_8
b9465e2244f464f5377c58a8ad119079
function varargout = MainGUI(varargin) % MAINGUI MATLAB code for MainGUI.fig % MAINGUI, by itself, creates a new MAINGUI or raises the existing % singleton*. % % H = MAINGUI returns the handle to a new MAINGUI or the handle to % the existing singleton*. % % MAINGUI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in MAINGUI.M with the given input arguments. % % MAINGUI('Property','Value',...) creates a new MAINGUI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before MainGUI_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to MainGUI_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help MainGUI % Last Modified by GUIDE v2.5 01-Nov-2016 18:30:46 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @MainGUI_OpeningFcn, ... 'gui_OutputFcn', @MainGUI_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before MainGUI is made visible. function MainGUI_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to MainGUI (see VARARGIN) % Choose default command line output for MainGUI handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes MainGUI wait for user response (see UIRESUME) % uiwait(handles.figureMain); global MainHandle; MainHandle = handles; Start(); % --- Outputs from this function are returned to the command line. function varargout = MainGUI_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes when figureMain is resized. function figureMain_SizeChangedFcn(hObject, eventdata, handles) % hObject handle to figureMain (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global SizeChangeCalled; if(SizeChangeCalled == 0) SizeChangeCalled = 1; pause(0.1); SizeChangeCalled = 0; OnMainFigureSizeChanged(); end % --- Executes when user attempts to close figureMain. function figureMain_CloseRequestFcn(hObject, eventdata, handles) % hObject handle to figureMain (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) Quit(); % -------------------------------------------------------------------- function menu_Help_Callback(hObject, eventdata, handles) % hObject handle to menu_Help (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menu_About_Callback(hObject, eventdata, handles) % hObject handle to menu_About (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global AboutHandle; if(isempty(AboutHandle) || ~ishandle(AboutHandle)) AboutHandle = openfig('AboutGUI.fig', 'visible'); end figure(AboutHandle); movegui(AboutHandle,'center'); % -------------------------------------------------------------------- function menu_Exit_Callback(hObject, eventdata, handles) % hObject handle to menu_Exit (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) Quit(); % -------------------------------------------------------------------- function menu_ParticleInBox_Callback(hObject, eventdata, handles) % hObject handle to menu_ParticleInBox (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menu_ParticleInBox_1D_Callback(hObject, eventdata, handles) % hObject handle to menu_ParticleInBox_1D (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) SetCurrentSimulation(11); Reset(); % -------------------------------------------------------------------- function menu_ParticleInBox_2D_Callback(hObject, eventdata, handles) % hObject handle to menu_ParticleInBox_2D (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) SetCurrentSimulation(12); Reset(); % -------------------------------------------------------------------- function menu_HarmonicsOscillator_Callback(hObject, eventdata, handles) % hObject handle to menu_HarmonicsOscillator (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbuttonPlayPause. function pushbuttonPlayPause_Callback(hObject, eventdata, handles) % hObject handle to pushbuttonPlayPause (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) Simulate(); % --- Executes on button press in pushbuttonStepNext. function pushbuttonStepNext_Callback(hObject, eventdata, handles) % hObject handle to pushbuttonStepNext (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbuttonStepBack. function pushbuttonStepBack_Callback(hObject, eventdata, handles) % hObject handle to pushbuttonStepBack (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbuttonReset. function pushbuttonReset_Callback(hObject, eventdata, handles) % hObject handle to pushbuttonReset (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) Reset(); % --- Executes on slider movement. function sliderTimeScale_Callback(hObject, eventdata, handles) % hObject handle to sliderTimeScale (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider SetTimeScale(get(hObject, 'Value')); % --- Executes during object creation, after setting all properties. function sliderTimeScale_CreateFcn(hObject, eventdata, handles) % hObject handle to sliderTimeScale (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % -------------------------------------------------------------------- function context_TimeScale_200x_Callback(hObject, eventdata, handles) % hObject handle to context_TimeScale_200x (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) SetTimeScale(2.00); % -------------------------------------------------------------------- function context_TimeScale_150x_Callback(hObject, eventdata, handles) % hObject handle to context_TimeScale_150x (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) SetTimeScale(1.50); % -------------------------------------------------------------------- function context_TimeScale_100x_Callback(hObject, eventdata, handles) % hObject handle to context_TimeScale_100x (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) SetTimeScale(1.00); % -------------------------------------------------------------------- function context_TimeScale_75x_Callback(hObject, eventdata, handles) % hObject handle to context_TimeScale_75x (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) SetTimeScale(0.75); % -------------------------------------------------------------------- function context_TimeScale_50x_Callback(hObject, eventdata, handles) % hObject handle to context_TimeScale_50x (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) SetTimeScale(0.50); % -------------------------------------------------------------------- function context_TimeScale_25x_Callback(hObject, eventdata, handles) % hObject handle to context_TimeScale_25x (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) SetTimeScale(0.25); % -------------------------------------------------------------------- function context_TimeScale_0x_Callback(hObject, eventdata, handles) % hObject handle to context_TimeScale_0x (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) SetTimeScale(0.00); % -------------------------------------------------------------------- function MyContextMenu_Callback(hObject, eventdata, handles) % hObject handle to MyContextMenu (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function context_TimeScale_Callback(hObject, eventdata, handles) % hObject handle to context_TimeScale (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on slider movement. function sliderC1_Callback(hObject, eventdata, handles) % hObject handle to sliderC1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider SetWaveInC1(get(hObject, 'Value')); if(GetWaveInC1Priority() ~= 3) SetWaveInC1Priority(3); SetWaveInC2Priority(GetWaveInC2Priority() - 1); SetWaveInC3Priority(GetWaveInC3Priority() - 1); end NormalizeC(); % --- Executes during object creation, after setting all properties. function sliderC1_CreateFcn(hObject, eventdata, handles) % hObject handle to sliderC1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on slider movement. function sliderC2_Callback(hObject, eventdata, handles) % hObject handle to sliderC2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider SetWaveInC2(get(hObject, 'Value')); if(GetWaveInC2Priority() ~= 3) SetWaveInC1Priority(GetWaveInC1Priority() - 1); SetWaveInC2Priority(3); SetWaveInC3Priority(GetWaveInC3Priority() - 1); end NormalizeC(); % --- Executes during object creation, after setting all properties. function sliderC2_CreateFcn(hObject, eventdata, handles) % hObject handle to sliderC2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on slider movement. function sliderC3_Callback(hObject, eventdata, handles) % hObject handle to sliderC3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider SetWaveInC3(get(hObject, 'Value')); if(GetWaveInC3Priority() ~= 3) SetWaveInC1Priority(GetWaveInC1Priority() - 1); SetWaveInC2Priority(GetWaveInC2Priority() - 1); SetWaveInC3Priority(3); end NormalizeC(); % --- Executes during object creation, after setting all properties. function sliderC3_CreateFcn(hObject, eventdata, handles) % hObject handle to sliderC3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % -------------------------------------------------------------------- function menuOpen_Callback(hObject, eventdata, handles) % hObject handle to menuOpen (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menu_HarmonicsOscillator_1D_Callback(hObject, eventdata, handles) % hObject handle to menu_HarmonicsOscillator_1D (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) SetCurrentSimulation(21); Reset(); % -------------------------------------------------------------------- function menu_HarmonicsOscillator_2D_Callback(hObject, eventdata, handles) % hObject handle to menu_HarmonicsOscillator_2D (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) SetCurrentSimulation(22); Reset(); % -------------------------------------------------------------------- function menu_FreeParticle_Callback(hObject, eventdata, handles) % hObject handle to menu_FreeParticle (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menu_FiniteSquareWell_Callback(hObject, eventdata, handles) % hObject handle to menu_FiniteSquareWell (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menu_FiniteSquareWell_1D_Callback(hObject, eventdata, handles) % hObject handle to menu_FiniteSquareWell_1D (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) SetCurrentSimulation(31); Reset(); % -------------------------------------------------------------------- function menu_HydrogenAtom_Callback(hObject, eventdata, handles) % hObject handle to menu_HydrogenAtom (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menu_HydrogenAtom_ProbabilityDensity_Callback(hObject, eventdata, handles) % hObject handle to menu_HydrogenAtom_ProbabilityDensity (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) SetCurrentSimulation(51); Reset(); % -------------------------------------------------------------------- function menu_FiniteSquareWell_2D_Callback(hObject, eventdata, handles) % hObject handle to menu_FiniteSquareWell_2D (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menu_FreeParticle_1D_Callback(hObject, eventdata, handles) % hObject handle to menu_FreeParticle_1D (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menu_FreeParticle_2D_Callback(hObject, eventdata, handles) % hObject handle to menu_FreeParticle_2D (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on slider movement. function sliderOther3_Callback(hObject, eventdata, handles) % hObject handle to sliderOther3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider SetOtherSliderValue3(get(hObject, 'Value')); % --- Executes during object creation, after setting all properties. function sliderOther3_CreateFcn(hObject, eventdata, handles) % hObject handle to sliderOther3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on slider movement. function sliderOther2_Callback(hObject, eventdata, handles) % hObject handle to sliderOther2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider SetOtherSliderValue2(get(hObject, 'Value')); % --- Executes during object creation, after setting all properties. function sliderOther2_CreateFcn(hObject, eventdata, handles) % hObject handle to sliderOther2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on slider movement. function sliderOther1_Callback(hObject, eventdata, handles) % hObject handle to sliderOther1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider SetOtherSliderValue1(get(hObject, 'Value')); % --- Executes during object creation, after setting all properties. function sliderOther1_CreateFcn(hObject, eventdata, handles) % hObject handle to sliderOther1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % -------------------------------------------------------------------- function menu_Tools_Callback(hObject, eventdata, handles) % hObject handle to menu_Tools (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menu_View_Callback(hObject, eventdata, handles) % hObject handle to menu_View (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menu_Tools_Zoom_Callback(hObject, eventdata, handles) % hObject handle to menu_Tools_Zoom (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) zoom; % -------------------------------------------------------------------- function menu_Tools_Pan_Callback(hObject, eventdata, handles) % hObject handle to menu_Tools_Pan (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) pan; % -------------------------------------------------------------------- function menu_Tools_Rotate3D_Callback(hObject, eventdata, handles) % hObject handle to menu_Tools_Rotate3D (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) rotate3d;
github
arvind96/Quantum-Mechanics-Simulations-master
AboutGUI.m
.m
Quantum-Mechanics-Simulations-master/AboutGUI.m
2,805
utf_8
ff0e33b2df131ffeef7d28442adfc2f3
function varargout = AboutGUI(varargin) % ABOUTGUI MATLAB code for AboutGUI.fig % ABOUTGUI, by itself, creates a new ABOUTGUI or raises the existing % singleton*. % % H = ABOUTGUI returns the handle to a new ABOUTGUI or the handle to % the existing singleton*. % % ABOUTGUI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in ABOUTGUI.M with the given input arguments. % % ABOUTGUI('Property','Value',...) creates a new ABOUTGUI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before AboutGUI_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to AboutGUI_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help AboutGUI % Last Modified by GUIDE v2.5 24-Aug-2016 01:32:14 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @AboutGUI_OpeningFcn, ... 'gui_OutputFcn', @AboutGUI_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before AboutGUI is made visible. function AboutGUI_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to AboutGUI (see VARARGIN) % Choose default command line output for AboutGUI handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes AboutGUI wait for user response (see UIRESUME) % uiwait(handles.figureAbout); % --- Outputs from this function are returned to the command line. function varargout = AboutGUI_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output;
github
arvind96/Quantum-Mechanics-Simulations-master
ParticleInBoxDiffWave.m
.m
Quantum-Mechanics-Simulations-master/ParticleInBoxDiffWave.m
410
utf_8
704d76e4545c7557b2ea35e4d41b1f78
function [z] = ParticleInBoxDiffWave(L, c1, c2, c3, x, t) z = c1 * (2/L)^0.5 * (1*pi / L) *cos(1*pi*x / L) * exp(-1i*CalculateEnergy(1, L)*t / 1) + + c2 * (2/L)^0.5 * (2*pi / L) *cos(2*pi*x / L) * exp(-1i*CalculateEnergy(2, L)*t / 1) + c3 * (2/L)^0.5 * (3*pi / L) *cos(3*pi*x / L) * exp(-1i*CalculateEnergy(3, L)*t / 1); end function e = CalculateEnergy(n, L) e = (n^2 * pi^2 * 1) / (2 * 1 * L^2); end
github
arvind96/Quantum-Mechanics-Simulations-master
ParticleInFiniteBoxWave.m
.m
Quantum-Mechanics-Simulations-master/ParticleInFiniteBoxWave.m
1,768
utf_8
966c7dfe606ca2090b66ddd56ee0bfcc
function [z] = ParticleInFiniteBoxWave(c1, c2, c3, x, t) %returns the wavefunction with center of box as origin and length L %v1 = 1.28 %v2 = 2.54 %v3 = 3.73 L = 10; if(x < -L/2) %-Inf to -L/2 z = c1 * 27.5606 * exp((2 * (0.632 - CalculateEnergy(1.28, L)))^0.5 * x) * exp(-1i * CalculateEnergy(1.28, L) * t / 1); elseif(x < L/2) %-L/2 to L/2 z = c1 * 0.4033 * 1 * cos((2 * CalculateEnergy(1.28, L)) ^ 0.5 * x) * exp(-1i * CalculateEnergy(1.28, L) * t / 1); else %L/2 to Inf z = c1 * 27.5606 * exp(-(2 * (0.632 - CalculateEnergy(1.28, L)))^0.5 * x) * exp(-1i * CalculateEnergy(1.28, L) * t / 1); end if(x < -L/2) %-Inf to -L/2 z = z + c2 * (-1) * (8.4501) * exp((2 * (0.632 - CalculateEnergy(2.54, L)))^0.5 * x) * exp(-1i * CalculateEnergy(2.54, L) * t / 1); elseif(x < L/2) %-L/2 to L/2 z = z + c2 * 0.0985 * 1 * sin((2 * CalculateEnergy(2.54, L)) ^ 0.5 * x) * exp(-1i * CalculateEnergy(2.54, L) * t / 1); else %L/2 to Inf z = z + c2 * (8.4501) * exp(-(2 * (0.632 - CalculateEnergy(2.54, L)))^0.5 * x) * exp(-1i * CalculateEnergy(2.54, L) * t / 1); end if(x < -L/2) %-Inf to -L/2 z = z + c3 * (-21.9790) * exp((2 * (0.632 - CalculateEnergy(3.73, L)))^0.5 * x) * exp(-1i * CalculateEnergy(3.73, L) * t / 1); elseif(x < L/2) %-L/2 to L/2 z = z + c3 * (0.3940) * 1 * cos((2 * CalculateEnergy(3.73, L)) ^ 0.5 * x) * exp(-1i * CalculateEnergy(3.73, L) * t / 1); else %L/2 to Inf z = z + c3 * (-21.9790) * exp(-(2 * (0.632 - CalculateEnergy(3.73, L)))^0.5 * x) * exp(-1i * CalculateEnergy(3.73, L) * t / 1); end end function e = CalculateEnergy(Vn, L) e = (2 * 1 * Vn^2)/(1 * L^2); end
github
jehoons/sbie_weinberg-master
savejson.m
.m
sbie_weinberg-master/module/ifa/matlab/libs/jsonlab-1.2/jsonlab/savejson.m
18,983
utf_8
2f510ad749556cadd303786e2549f30a
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id$ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array, % class instance). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.SingletArray [0|1]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.SingletCell [1|0]: if 1, always enclose a cell with "[]" % even it has only one element; if 0, brackets % are ignored when a cell has only 1 element. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD License, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('filename',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); if(isfield(opt,'norowbracket')) warning('Option ''NoRowBracket'' is depreciated, please use ''SingletArray'' and set its value to not(NoRowBracket)'); if(~isfield(opt,'singletarray')) opt.singletarray=not(opt.norowbracket); end end rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || ... iscell(obj) || isobject(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin filename=jsonopt('FileName','',opt); if(~isempty(filename)) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(filename, 'wb'); fwrite(fid,json); else fid = fopen(filename, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); elseif(isobject(item)) txt=matlabobject2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt={}; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; bracketlevel=~jsonopt('singletcell',1,varargin{:}); if(len>bracketlevel) if(~isempty(name)) txt={padding0, '"', checkname(name,varargin{:}),'": [', nl}; name=''; else txt={padding0, '[', nl}; end elseif(len==0) if(~isempty(name)) txt={padding0, '"' checkname(name,varargin{:}) '": []'}; name=''; else txt={padding0, '[]'}; end end for i=1:dim(1) if(dim(1)>1) txt(end+1:end+3)={padding2,'[',nl}; end for j=1:dim(2) txt{end+1}=obj2json(name,item{i,j},level+(dim(1)>1)+(len>bracketlevel),varargin{:}); if(j<dim(2)) txt(end+1:end+2)={',' nl}; end end if(dim(1)>1) txt(end+1:end+3)={nl,padding2,']'}; end if(i<dim(1)) txt(end+1:end+2)={',' nl}; end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>bracketlevel) txt(end+1:end+3)={nl,padding0,']'}; end txt = sprintf('%s',txt{:}); %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt={}; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); forcearray= (len>1 || (jsonopt('SingletArray',0,varargin{:})==1 && level>0)); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+forcearray); nl=ws.newline; if(isempty(item)) if(~isempty(name)) txt={padding0, '"', checkname(name,varargin{:}),'": []'}; else txt={padding0, '[]'}; end return; end if(~isempty(name)) if(forcearray) txt={padding0, '"', checkname(name,varargin{:}),'": [', nl}; end else if(forcearray) txt={padding0, '[', nl}; end end for j=1:dim(2) if(dim(1)>1) txt(end+1:end+3)={padding2,'[',nl}; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1 && ~forcearray) txt(end+1:end+5)={padding1, '"', checkname(name,varargin{:}),'": {', nl}; else txt(end+1:end+3)={padding1, '{', nl}; end if(~isempty(names)) for e=1:length(names) txt{end+1}=obj2json(names{e},item(i,j).(names{e}),... level+(dim(1)>1)+1+forcearray,varargin{:}); if(e<length(names)) txt{end+1}=','; end txt{end+1}=nl; end end txt(end+1:end+2)={padding1,'}'}; if(i<dim(1)) txt(end+1:end+2)={',' nl}; end end if(dim(1)>1) txt(end+1:end+3)={nl,padding2,']'}; end if(j<dim(2)) txt(end+1:end+2)={',' nl}; end end if(forcearray) txt(end+1:end+3)={nl,padding0,']'}; end txt = sprintf('%s',txt{:}); %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt={}; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt={padding1, '"', checkname(name,varargin{:}),'": [', nl}; end else if(len>1) txt={padding1, '[', nl}; end end for e=1:len val=escapejsonstring(item(e,:)); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt(end+1:end+2)={padding1, obj}; else txt(end+1:end+4)={padding0,'"',val,'"'}; end if(e==len) sep=''; end txt{end+1}=sep; end if(len>1) txt(end+1:end+3)={nl,padding1,']'}; end txt = sprintf('%s',txt{:}); %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... (isempty(item) && any(size(item))) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('SingletArray',0,varargin{:})==0 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('SingletArray',0,varargin{:})==0) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matlabobject2json(name,item,level,varargin) if numel(item) == 0 %empty object st = struct(); else % "st = struct(item);" would produce an inmutable warning, because it % make the protected and private properties visible. Instead we get the % visible properties propertynames = properties(item); for p = 1:numel(propertynames) for o = numel(item):-1:1 % aray of objects st(o).(propertynames{p}) = item(o).(propertynames{p}); end end end txt=struct2json(name,st,level,varargin{:}); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\\','\"','\/','\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end newstr=regexprep(newstr,'\\\\(u[0-9a-fA-F]{4}[^0-9a-fA-F]*)','\$1'); else escapechars={'\\','\"','\/','\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end newstr=regexprep(newstr,'\\\\(u[0-9a-fA-F]{4}[^0-9a-fA-F]*)','\\$1'); end
github
jehoons/sbie_weinberg-master
loadjson.m
.m
sbie_weinberg-master/module/ifa/matlab/libs/jsonlab-1.2/jsonlab/loadjson.m
16,145
ibm852
7582071c5bd7f5e5f74806ce191a9078
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id$ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD License, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'^\s*(?:\[.+\])|(?:\{.+\})\s*$','once')) string=fname; elseif(exist(fname,'file')) try string = fileread(fname); catch try string = urlread(['file://',fname]); catch string = urlread(['file://',fullfile(pwd,fname)]); end end else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); object.(valid_field(str))=val; if next_char == '}' break; end parse_char(','); end end parse_char('}'); if(isstruct(object)) object=struct2jdata(object); end %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=-1; if(isfield(varargin{1},'progressbar_')) pbar=varargin{1}.progressbar_; end if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ismatrix(object)) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len pos=skip_whitespace(pos,inStr,len); if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; pos=skip_whitespace(pos,inStr,len); end %%------------------------------------------------------------------------- function c = next_char global pos inStr len pos=skip_whitespace(pos,inStr,len); if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function newpos=skip_whitespace(pos,inStr,len) newpos=pos; while newpos <= len && isspace(inStr(newpos)) newpos = newpos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos); keyboard; pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr isoct currstr=inStr(pos:min(pos+30,end)); if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len if(isfield(varargin{1},'progressbar_')) waitbar(pos/len,varargin{1}.progressbar_,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jehoons/sbie_weinberg-master
loadubjson.m
.m
sbie_weinberg-master/module/ifa/matlab/libs/jsonlab-1.2/jsonlab/loadubjson.m
13,300
utf_8
b15e959f758c5c2efa2711aa79c443fc
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id$ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % opt.NameIsString [0|1]: for UBJSON Specification Draft 8 or % earlier versions (JSONLab 1.0 final or earlier), % the "name" tag is treated as a string. To load % these UBJSON data, you need to manually set this % flag to 1. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD License, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 if(jsonopt('NameIsString',0,varargin{:})) str = parseStr(varargin{:}); else str = parse_name(varargin{:}); end if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; object.(valid_field(str))=val; if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end if(isstruct(object)) object=struct2jdata(object); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data, adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object, adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object, adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ismatrix(object)) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parse_name(varargin) global pos inStr bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of name'); end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jehoons/sbie_weinberg-master
saveubjson.m
.m
sbie_weinberg-master/module/ifa/matlab/libs/jsonlab-1.2/jsonlab/saveubjson.m
17,723
utf_8
3414421172c05225dfbd4a9c8c76e6b3
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id$ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array, % class instance) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.SingletArray [0|1]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.SingletCell [1|0]: if 1, always enclose a cell with "[]" % even it has only one element; if 0, brackets % are ignored when a cell has only 1 element. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD License, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('filename',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); if(isfield(opt,'norowbracket')) warning('Option ''NoRowBracket'' is depreciated, please use ''SingletArray'' and set its value to not(NoRowBracket)'); if(~isfield(opt,'singletarray')) opt.singletarray=not(opt.norowbracket); end end rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || ... iscell(obj) || isobject(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin filename=jsonopt('FileName','',opt); if(~isempty(filename)) fid = fopen(filename, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); elseif(isobject(item)) txt=matlabobject2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end bracketlevel=~jsonopt('singletcell',1,varargin{:}); len=numel(item); % let's handle 1D cell first if(len>bracketlevel) if(~isempty(name)) txt=[N_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[N_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>bracketlevel),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>bracketlevel) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); forcearray= (len>1 || (jsonopt('SingletArray',0,varargin{:})==1 && level>0)); if(~isempty(name)) if(forcearray) txt=[N_(checkname(name,varargin{:})) '[']; end else if(forcearray) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1 && ~forcearray) txt=[txt N_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},item(i,j).(names{e}),... level+(dim(1)>1)+1+forcearray,varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(forcearray) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[N_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for e=1:len val=item(e,:); if(len==1) obj=[N_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... (isempty(item) && any(size(item))) ||jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' N_('_ArrayType_'),S_(class(item)),N_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[N_(checkname(name,varargin{:})),'Z']; return; else txt=[N_(checkname(name,varargin{:})),'{',N_('_ArrayType_'),S_(class(item)),N_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('SingletArray',0,varargin{:})==0) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[N_(checkname(name,varargin{:})) numtxt]; else txt=[N_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,N_('_ArrayIsComplex_'),'T']; end txt=[txt,N_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,N_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,N_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,N_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,N_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,N_('_ArrayIsComplex_'),'T']; txt=[txt,N_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matlabobject2ubjson(name,item,level,varargin) if numel(item) == 0 %empty object st = struct(); else % "st = struct(item);" would produce an inmutable warning, because it % make the protected and private properties visible. Instead we get the % visible properties propertynames = properties(item); for p = 1:numel(propertynames) for o = numel(item):-1:1 % aray of objects st(o).(propertynames{p}) = item(o).(propertynames{p}); end end end txt=struct2ubjson(name,st,level,varargin{:}); %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(id~=0)) error('high-precision data is not yet supported'); end key='iIlL'; type=key(id~=0); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=N_(str) val=[I_(int32(length(str))) str]; %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
jehoons/sbie_weinberg-master
savejson.m
.m
sbie_weinberg-master/module/attractor/fumia/matlab/libs/jsonlab-1.2/jsonlab/savejson.m
18,983
utf_8
2f510ad749556cadd303786e2549f30a
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id$ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array, % class instance). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.SingletArray [0|1]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.SingletCell [1|0]: if 1, always enclose a cell with "[]" % even it has only one element; if 0, brackets % are ignored when a cell has only 1 element. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD License, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('filename',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); if(isfield(opt,'norowbracket')) warning('Option ''NoRowBracket'' is depreciated, please use ''SingletArray'' and set its value to not(NoRowBracket)'); if(~isfield(opt,'singletarray')) opt.singletarray=not(opt.norowbracket); end end rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || ... iscell(obj) || isobject(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin filename=jsonopt('FileName','',opt); if(~isempty(filename)) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(filename, 'wb'); fwrite(fid,json); else fid = fopen(filename, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); elseif(isobject(item)) txt=matlabobject2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt={}; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; bracketlevel=~jsonopt('singletcell',1,varargin{:}); if(len>bracketlevel) if(~isempty(name)) txt={padding0, '"', checkname(name,varargin{:}),'": [', nl}; name=''; else txt={padding0, '[', nl}; end elseif(len==0) if(~isempty(name)) txt={padding0, '"' checkname(name,varargin{:}) '": []'}; name=''; else txt={padding0, '[]'}; end end for i=1:dim(1) if(dim(1)>1) txt(end+1:end+3)={padding2,'[',nl}; end for j=1:dim(2) txt{end+1}=obj2json(name,item{i,j},level+(dim(1)>1)+(len>bracketlevel),varargin{:}); if(j<dim(2)) txt(end+1:end+2)={',' nl}; end end if(dim(1)>1) txt(end+1:end+3)={nl,padding2,']'}; end if(i<dim(1)) txt(end+1:end+2)={',' nl}; end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>bracketlevel) txt(end+1:end+3)={nl,padding0,']'}; end txt = sprintf('%s',txt{:}); %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt={}; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); forcearray= (len>1 || (jsonopt('SingletArray',0,varargin{:})==1 && level>0)); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+forcearray); nl=ws.newline; if(isempty(item)) if(~isempty(name)) txt={padding0, '"', checkname(name,varargin{:}),'": []'}; else txt={padding0, '[]'}; end return; end if(~isempty(name)) if(forcearray) txt={padding0, '"', checkname(name,varargin{:}),'": [', nl}; end else if(forcearray) txt={padding0, '[', nl}; end end for j=1:dim(2) if(dim(1)>1) txt(end+1:end+3)={padding2,'[',nl}; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1 && ~forcearray) txt(end+1:end+5)={padding1, '"', checkname(name,varargin{:}),'": {', nl}; else txt(end+1:end+3)={padding1, '{', nl}; end if(~isempty(names)) for e=1:length(names) txt{end+1}=obj2json(names{e},item(i,j).(names{e}),... level+(dim(1)>1)+1+forcearray,varargin{:}); if(e<length(names)) txt{end+1}=','; end txt{end+1}=nl; end end txt(end+1:end+2)={padding1,'}'}; if(i<dim(1)) txt(end+1:end+2)={',' nl}; end end if(dim(1)>1) txt(end+1:end+3)={nl,padding2,']'}; end if(j<dim(2)) txt(end+1:end+2)={',' nl}; end end if(forcearray) txt(end+1:end+3)={nl,padding0,']'}; end txt = sprintf('%s',txt{:}); %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt={}; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt={padding1, '"', checkname(name,varargin{:}),'": [', nl}; end else if(len>1) txt={padding1, '[', nl}; end end for e=1:len val=escapejsonstring(item(e,:)); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt(end+1:end+2)={padding1, obj}; else txt(end+1:end+4)={padding0,'"',val,'"'}; end if(e==len) sep=''; end txt{end+1}=sep; end if(len>1) txt(end+1:end+3)={nl,padding1,']'}; end txt = sprintf('%s',txt{:}); %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... (isempty(item) && any(size(item))) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('SingletArray',0,varargin{:})==0 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('SingletArray',0,varargin{:})==0) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matlabobject2json(name,item,level,varargin) if numel(item) == 0 %empty object st = struct(); else % "st = struct(item);" would produce an inmutable warning, because it % make the protected and private properties visible. Instead we get the % visible properties propertynames = properties(item); for p = 1:numel(propertynames) for o = numel(item):-1:1 % aray of objects st(o).(propertynames{p}) = item(o).(propertynames{p}); end end end txt=struct2json(name,st,level,varargin{:}); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\\','\"','\/','\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end newstr=regexprep(newstr,'\\\\(u[0-9a-fA-F]{4}[^0-9a-fA-F]*)','\$1'); else escapechars={'\\','\"','\/','\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end newstr=regexprep(newstr,'\\\\(u[0-9a-fA-F]{4}[^0-9a-fA-F]*)','\\$1'); end
github
jehoons/sbie_weinberg-master
loadjson.m
.m
sbie_weinberg-master/module/attractor/fumia/matlab/libs/jsonlab-1.2/jsonlab/loadjson.m
16,145
ibm852
7582071c5bd7f5e5f74806ce191a9078
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id$ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD License, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'^\s*(?:\[.+\])|(?:\{.+\})\s*$','once')) string=fname; elseif(exist(fname,'file')) try string = fileread(fname); catch try string = urlread(['file://',fname]); catch string = urlread(['file://',fullfile(pwd,fname)]); end end else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); object.(valid_field(str))=val; if next_char == '}' break; end parse_char(','); end end parse_char('}'); if(isstruct(object)) object=struct2jdata(object); end %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=-1; if(isfield(varargin{1},'progressbar_')) pbar=varargin{1}.progressbar_; end if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ismatrix(object)) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len pos=skip_whitespace(pos,inStr,len); if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; pos=skip_whitespace(pos,inStr,len); end %%------------------------------------------------------------------------- function c = next_char global pos inStr len pos=skip_whitespace(pos,inStr,len); if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function newpos=skip_whitespace(pos,inStr,len) newpos=pos; while newpos <= len && isspace(inStr(newpos)) newpos = newpos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos); keyboard; pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr isoct currstr=inStr(pos:min(pos+30,end)); if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len if(isfield(varargin{1},'progressbar_')) waitbar(pos/len,varargin{1}.progressbar_,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jehoons/sbie_weinberg-master
loadubjson.m
.m
sbie_weinberg-master/module/attractor/fumia/matlab/libs/jsonlab-1.2/jsonlab/loadubjson.m
13,300
utf_8
b15e959f758c5c2efa2711aa79c443fc
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id$ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % opt.NameIsString [0|1]: for UBJSON Specification Draft 8 or % earlier versions (JSONLab 1.0 final or earlier), % the "name" tag is treated as a string. To load % these UBJSON data, you need to manually set this % flag to 1. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD License, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 if(jsonopt('NameIsString',0,varargin{:})) str = parseStr(varargin{:}); else str = parse_name(varargin{:}); end if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; object.(valid_field(str))=val; if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end if(isstruct(object)) object=struct2jdata(object); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data, adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object, adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object, adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ismatrix(object)) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parse_name(varargin) global pos inStr bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of name'); end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jehoons/sbie_weinberg-master
saveubjson.m
.m
sbie_weinberg-master/module/attractor/fumia/matlab/libs/jsonlab-1.2/jsonlab/saveubjson.m
17,723
utf_8
3414421172c05225dfbd4a9c8c76e6b3
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id$ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array, % class instance) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.SingletArray [0|1]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.SingletCell [1|0]: if 1, always enclose a cell with "[]" % even it has only one element; if 0, brackets % are ignored when a cell has only 1 element. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD License, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('filename',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); if(isfield(opt,'norowbracket')) warning('Option ''NoRowBracket'' is depreciated, please use ''SingletArray'' and set its value to not(NoRowBracket)'); if(~isfield(opt,'singletarray')) opt.singletarray=not(opt.norowbracket); end end rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || ... iscell(obj) || isobject(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin filename=jsonopt('FileName','',opt); if(~isempty(filename)) fid = fopen(filename, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); elseif(isobject(item)) txt=matlabobject2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end bracketlevel=~jsonopt('singletcell',1,varargin{:}); len=numel(item); % let's handle 1D cell first if(len>bracketlevel) if(~isempty(name)) txt=[N_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[N_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>bracketlevel),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>bracketlevel) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); forcearray= (len>1 || (jsonopt('SingletArray',0,varargin{:})==1 && level>0)); if(~isempty(name)) if(forcearray) txt=[N_(checkname(name,varargin{:})) '[']; end else if(forcearray) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1 && ~forcearray) txt=[txt N_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},item(i,j).(names{e}),... level+(dim(1)>1)+1+forcearray,varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(forcearray) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[N_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for e=1:len val=item(e,:); if(len==1) obj=[N_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... (isempty(item) && any(size(item))) ||jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' N_('_ArrayType_'),S_(class(item)),N_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[N_(checkname(name,varargin{:})),'Z']; return; else txt=[N_(checkname(name,varargin{:})),'{',N_('_ArrayType_'),S_(class(item)),N_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('SingletArray',0,varargin{:})==0) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[N_(checkname(name,varargin{:})) numtxt]; else txt=[N_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,N_('_ArrayIsComplex_'),'T']; end txt=[txt,N_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,N_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,N_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,N_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,N_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,N_('_ArrayIsComplex_'),'T']; txt=[txt,N_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matlabobject2ubjson(name,item,level,varargin) if numel(item) == 0 %empty object st = struct(); else % "st = struct(item);" would produce an inmutable warning, because it % make the protected and private properties visible. Instead we get the % visible properties propertynames = properties(item); for p = 1:numel(propertynames) for o = numel(item):-1:1 % aray of objects st(o).(propertynames{p}) = item(o).(propertynames{p}); end end end txt=struct2ubjson(name,st,level,varargin{:}); %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(id~=0)) error('high-precision data is not yet supported'); end key='iIlL'; type=key(id~=0); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=N_(str) val=[I_(int32(length(str))) str]; %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
LucaDeSiena/MuRAT-master
Murat_test.m
.m
MuRAT-master/bin/Murat_test.m
4,852
utf_8
52d650fdb0af7a90357016b5a240ec71
function [image, SAChdr] = Murat_test(nameWaveform,... centralFrequencies,smoothingC,figOutput,verboseOutput) % TEST seismogram envelopes for changes in broadening % CREATES a figure with seismograms and envelopes for different frequencies % % Input Parameters: % nameWaveform: name of the SAC file % centralFrequencies: vector of frequencies (Hz),if [] no filter % smoothingCoefficient: coefficient to smooth envelopes % figOutput: decide if you want to show figures (set 1) % verboseOutput: decide if you want to show messages (set 1) % % Output: % image: image with envelope at specified frequency % SAChdr: header of the SAC file % % Imports SAC files [times,sisma,SAChdr] = fget_sac(nameWaveform); image = []; %% Figure if figOutput == 1 srate_i = 1/SAChdr.times.delta; sisma = detrend(sisma,1); lsis = length(sisma); tu = tukeywin(lsis,0.05); tsisma = tu.*sisma; image = figure('Name',['Test Seismograms: '... nameWaveform],'NumberTitle','off','Position',[20,400,1200,1000],... 'visible','off'); lengthFrequencies = length(centralFrequencies); plotFrequencies = 1:2:2*lengthFrequencies; if isequal(centralFrequencies,[]) plot(times,sisma,'k-','LineWidth',2); xlim([SAChdr.times.a - 5 SAChdr.times.a + 20]) SetFDefaults else for i = 1:lengthFrequencies % Filter creation - in loop for each frequency cf = centralFrequencies(i); Wn = ([cf-cf/3 cf+cf/3]/srate_i*2); [z,p,k] = butter(4,Wn,'bandpass'); [sos,g] = zp2sos(z,p,k); fsisma = filtfilt(sos,g,tsisma); hsp_i = hilbert(fsisma); sp_i = smooth(abs(hsp_i),smoothingC/cf*srate_i); subplot(lengthFrequencies,2,plotFrequencies(i)); plot(times,fsisma,'k-','LineWidth',2); xlabel('Time (s)') ylabel('Amplitude') SetFDefaults subplot(lengthFrequencies,2,plotFrequencies(i)+1); plot(times,sp_i,'k-','LineWidth',2); xlabel('Time (s)') ylabel('Energy') SetFDefaults end end end %% % Checking all metadata if verboseOutput == 1 fprintf('<strong> Checking temporal metadata.</strong>\n'); if isequal(SAChdr.times.o,-12345) disp('Origin (o) is not set.') else disp(['Origin (o) at ' num2str(SAChdr.times.o) ' s.']) end if isequal(SAChdr.times.a,-12345) disp('P wave picking (a) is not set.') else disp(['P wave picking (a) at ' num2str(SAChdr.times.a) ' s.']) end if isequal(SAChdr.times.t0,-12345) disp('S wave picking (t0) is not set.') else disp(['S wave picking (t0) at ' num2str(SAChdr.times.t0) ' s.']) end fprintf('<strong> Checking event location metadata.</strong>\n'); if isequal(SAChdr.event.evla,-12345) disp('Event latitude (evla) is not set.') else disp(['Event latitude (evla) at ' num2str(SAChdr.event.evla)... ' degrees.']) end if isequal(SAChdr.event.evlo,-12345) disp('Event longitude (evlo) is not set.') else disp(['Event longitude (evlo) at ' num2str(SAChdr.event.evlo)... ' degrees.']) end if isequal(SAChdr.event.evdp,-12345) disp('Event depth (evdp) is not set.') else disp(['Event depth (evdp) at ' num2str(SAChdr.event.evdp) ' km.']) end fprintf('<strong> Checking station location metadata.</strong>\n'); if isequal(SAChdr.station.stla,-12345) disp('Station latitude (stla) is not set.') else disp(['Station latitude (stla) at ' num2str(SAChdr.station.stla)... ' degrees.']) end if isequal(SAChdr.station.stlo,-12345) disp('Station longitude (stlo) is not set.') else disp(['Station longitude (stlo) at ' num2str(SAChdr.station.stlo)... ' degrees.']) end if isequal(SAChdr.station.stel,-12345) disp('Station elevation (stel) is not set.') else disp(['Station elevation (stel) at ' num2str(SAChdr.station.stel)... ' m.']) end end function SetFDefaults() % DEFAULT settings for MuRAt figures ax = gca; ax.GridColor = [0 0 0]; ax.GridLineStyle = '--'; ax.GridAlpha = 0.3; ax.LineWidth = 1.5; ax.FontSize = 12; grid on
github
LucaDeSiena/MuRAT-master
Murat_Qc.m
.m
MuRAT-master/bin/Murat_Qc.m
4,811
utf_8
c1f465e321541a0c536c806a1c2ed599
function [inverseQc_i, uncertaintyQc_i] = Murat_Qc(cf,sped,sp_i,... cursorCodaStart_i,cursorCodaEnd_i,tCoda_i,srate_i,QcMeasurement) % function [inverseQc_i, uncertaintyQc_i] = Murat_Qc(cf,sped,sp_i,... % cursorCodaStart_i,cursorCodaEnd_i,tCoda_i,srate_i,QcMeasurement) % % MEASURES Qc and its uncertainty. % % Input parameters: % cf: central frequency % sped: spectral decay % sp_i: envelopes % cursorCodaStart_i: start of the coda on trace % cursorEndStart_i: end of the coda on trace % tCoda_i: start of the coda in seconds % srate_i: sampling rate % QcMeasurement: decides if Linearized or NonLinear solutions % Output parameters: % inverseQc_i: inverse coda attenuation factor % uncertaintyQc_i: uncertainty on inverse coda attenuation factor lcf = length(cf); inverseQc_i = zeros(lcf,1); uncertaintyQc_i = zeros(lcf,1); for i = 1:lcf envelopeC =... sp_i(cursorCodaStart_i:cursorCodaEnd_i,i); lEnvelopeC = length(envelopeC); cf_i = cf(i); if isempty(envelopeC) inverseQc_i(i) = 0; uncertaintyQc_i(i) = 0; else if isequal(QcMeasurement,'Linearized') lapseT =... (tCoda_i+1/srate_i:1/srate_i:tCoda_i+lEnvelopeC/srate_i)'; [linearFit, uncertaintyFit] =... estimatesLinear(lapseT,envelopeC,lEnvelopeC,sped,cf_i); if linearFit(1)<0 inverseQc_i(i) = -linearFit(1); uncertaintyQc_i(i) = abs(uncertaintyFit(1,2)); else inverseQc_i(i) = 0; uncertaintyQc_i(i) = 0; end elseif isequal(QcMeasurement,'NonLinear') QValues = 0:10^-5:10^-1; lWindow =... round((cursorCodaEnd_i-cursorCodaStart_i)/srate_i); lapseT =... (tCoda_i+0.5:tCoda_i+lWindow-0.5)'; [nonLinearFit, uncertaintyFit] = estimatesNonLinear(lapseT,... envelopeC,QValues,sped,lWindow,cf_i,srate_i); inverseQc_i(i) = nonLinearFit; uncertaintyQc_i(i) = uncertaintyFit; else error('Unknown strategy to calculate Qc'); end end end uncertaintyQc_i(inverseQc_i==0) = 0; end %% % Calculations in the linarized case. function [linearFit, uncertaintyFit] =... estimatesLinear(lapseT,envelopeC,lEnvelopeC,sped,cf_i) %Only evaluate central time series edgeC = floor(0.05*lEnvelopeC); lapseTime = lapseT(edgeC:end-edgeC); spcm1 = envelopeC(edgeC:end-edgeC); weigthEnergy = spcm1.*lapseTime.^sped; logWEnergy = log(weigthEnergy)/2/pi/cf_i; linearFit =... polyfit(lapseTime,logWEnergy,1); uncertaintyFit =... corrcoef([lapseTime,logWEnergy]); end %% %% % Calculations in the non-linar (grid-search) case. function [nonLinearFit, uncertaintyFit] =... estimatesNonLinear(lapseT,envelopeC,QValues,sped,lWindow,cf_i,srate_i) lQValues = length(QValues); dObs = zeros(lWindow,1); for k = 1:lWindow ntm = (k-1)*srate_i + 1:k*srate_i; dObs(k,1) = mean(envelopeC(floor(ntm))); end dObserved = dObs(1:end-1)/dObs(end); E = zeros(lQValues,1); for n = 1:lQValues dPre =... lapseT.^(-sped).*exp(-2*pi*cf_i.*lapseT*QValues(n)); dPredicted = dPre(1:end-1)/dPre(end); E(n,1) =... sum(abs(dObserved-dPredicted)); end [Emin, indexEmin] = min(E); nonLinearFit = QValues(indexEmin); uncertaintyFit = 1/Emin; end
github
LucaDeSiena/MuRAT-master
Murat_velocity.m
.m
MuRAT-master/bin/Murat_velocity.m
1,488
utf_8
1de5fbc525bde1a813520c7f5bac4afc
% FUNCTION Murat_velocity: It finds the velocity at the point (xx,yy,zz) by % linear interpolation. function v = Murat_velocity(xx,yy,zz,gridD,pvel) % % CALCULATES the velocity at xx, yy, and zz by linear interpolation % % Input parameters: % xx: x point % yy: y point % zz: z point % gridD: grid of ray tracing % pvel: velocity model for ray tracing % % Output parameters: % v: velocity xGrid = gridD.x; yGrid = gridD.y; zGrid = gridD.z; [ip,jp,kp,flag] = Murat_cornering(xx,yy,zz,gridD); if flag>0 v = pvel(jp,ip,kp); return end ip1 = ip+1; jp1 = jp+1; kp1 = kp+1; xd = xGrid(ip1) - xGrid(ip); yd = yGrid(jp1) - yGrid(jp); zd = zGrid(kp1) - zGrid(kp); xf = (xx - xGrid(ip))/xd; yf = (yy - yGrid(jp))/yd; zf = (zz - zGrid(kp))/zd; v1 = pvel(jp,ip,kp) + (pvel(jp1,ip,kp) -pvel(jp,ip,kp))*xf; v2 = pvel(jp,ip1,kp)+(pvel(jp1,ip1,kp) -pvel(jp,ip1,kp))*xf; v3 = v1 + (v2 - v1)*yf; v4 = pvel(jp,ip,kp1)+(pvel(jp1,ip,kp1) -pvel(jp,ip,kp1))*xf; v5 = pvel(jp,ip1,kp1)+... (pvel(jp1,ip1,kp1) - pvel(jp,ip1,kp1))*xf; v6 = v4 + (v5 - v4)*yf; v = v3 + (v6 - v3)*zf; end
github
LucaDeSiena/MuRAT-master
Murat_dataParallelized.m
.m
MuRAT-master/bin/Murat_dataParallelized.m
9,743
utf_8
556beb9aa8bf6ba90035092e662c94d3
function Murat = Murat_dataParallelized(Murat) % MEASURES Qc, peak-delay and Q for each seismic trace located in a folder. % This code is a collection of functions that do all the necessary. % Inputs listSac = Murat.input.listSac; lengthData = length(listSac); compon = Murat.input.components; modv = Murat.input.modv; lengthParameterModel = length(modv(:,1)); gridStep = [Murat.input.gridStepX/2 ... Murat.input.gridStepY/2 (modv(2,3) - modv(1,3))/2]; modvQc = [modv(:,1) + gridStep(1)... modv(:,2)+gridStep(2) modv(:,3)+gridStep(3)]; gridD = Murat.input.gridPropagation; pvel = Murat.input.pvel; cf = Murat.input.centralFrequency; lcf = length(cf); origin = Murat.input.origin; originTime = Murat.input.originTime; PTime = Murat.input.PTime; STime = Murat.input.STime; PorS = Murat.input.POrS; tCm = Murat.input.startLapseTime; vP = Murat.input.averageVelocityP; vS = Murat.input.averageVelocityS; maxtpde = Murat.input.maximumPeakDelay; tWm = Murat.input.codaWindow; sped = Murat.input.spectralDecay; kT = Murat.input.kernelTreshold; B0 = Murat.input.albedo; Le1 = Murat.input.extinctionLength; bodyWindow = Murat.input.bodyWindow; startNoise = Murat.input.startNoise; QcM = Murat.input.QcMeasurement; lapseTimeMethod = Murat.input.lapseTimeMethod; maxtravel = Murat.input.maxtravel; % Set up variables to save locationDeg = zeros(lengthData,6); locationM = zeros(lengthData,6); theoreticalTime = zeros(lengthData,1); totalLengthRay = zeros(lengthData,1); peakDelay = zeros(lengthData,lcf); inverseQc = zeros(lengthData,lcf); uncertaintyQc = zeros(lengthData,lcf); energyRatioBodyCoda = zeros(lengthData,lcf); energyRatioCodaNoise = zeros(lengthData,lcf); raysPlot = zeros(100,5,lengthData); tCoda = zeros(lengthData,lcf); inversionMatrixPeakDelay =... zeros(lengthData,lengthParameterModel); inversionMatrixQ =... zeros(lengthData,lengthParameterModel); inversionMatrixQc =... zeros(lengthData,lengthParameterModel); rayCrossing =... zeros(lengthData,lengthParameterModel); %========================================================================= % Count waveforms that must be eliminated because of peak-delay contraints % on peak delays and coda attenuation. count_trash = 0; parfor i = 1:lengthData if isequal(mod(i,100),0) disp(['Waveform number is ', num2str(i)]) end listSac_i = listSac{i}; % Calculates envelopes [tempis,sp_i,SAChdr_i,srate_i] = Murat_envelope(cf,listSac_i); % Set earthquake and stations locations in degrees or meters [locationDeg_i, locationM_i] =... Murat_location(origin,SAChdr_i); locationDeg(i,:) = locationDeg_i; % Checks direct-wave picking on the trace and outputs it [cursorPick_i, pktime_i, v_i] = Murat_picking(tempis,... PTime,STime,PorS,vP,vS,srate_i,listSac_i,SAChdr_i); % Conditions in case the zero time is missing in the header [theoreticalTime_i, originTime_i] =... Murat_originTime(pktime_i,originTime,v_i,locationM_i,SAChdr_i,i); % Calculates the window where to search for peak delay cursorPeakDelay_i =... Murat_peakDelayCheck(tempis,cursorPick_i,maxtpde,srate_i); % Calculates peak delay time peakDelay_i =... Murat_peakDelay(sp_i,cursorPick_i,srate_i,cursorPeakDelay_i); % Calculates rays for the right component calculateRays = recognizeComponents(i,compon); if calculateRays % All the ray-dependent parameters [Apd_i, AQ_i, totalLengthRay_i, raysPlot_i, rayCrossing_i]... =... Murat_rays(modv,gridD,pvel,locationM_i); inversionMatrixPeakDelay(i,:) = Apd_i; inversionMatrixQ(i,:) = AQ_i; totalLengthRay(i,1) = totalLengthRay_i; raysPlot(:,:,i) = raysPlot_i; rayCrossing(i,:) = rayCrossing_i; end % Sets the lapse time [tCoda_i, cursorCodaStart_i,... cursorCodaEnd_i] =... Murat_codaCheck(originTime_i,pktime_i,srate_i,tCm,tWm,tempis,... peakDelay_i,lapseTimeMethod); if (cursorCodaEnd_i - cursorCodaStart_i) < (tWm*srate_i)-2 || ... (pktime_i-originTime_i)>maxtravel locationM(i,:) = locationM_i; theoreticalTime(i,1) = theoreticalTime_i; peakDelay(i,:) = NaN; inverseQc(i,:) = NaN; uncertaintyQc(i,:) = NaN; energyRatioBodyCoda(i,:) = NaN; energyRatioCodaNoise(i,:) = NaN; tCoda(i,:) = tCoda_i; count_trash = count_trash +1; continue end % Measures Qc and its uncertainty [inverseQc_i, uncertaintyQc_i] = Murat_Qc(cf,sped,... sp_i,cursorCodaStart_i,cursorCodaEnd_i,tCoda_i,srate_i,QcM); % Decide if you calculate kernels calculateKernels = recognizeComponents(i,compon); if calculateKernels % Calculates kernels [K_grid, r_grid] =... Murat_kernels(tCoda_i+tWm/2,locationM_i(1:3),... locationM_i(4:6),modvQc,vS,kT,B0,Le1,lapseTimeMethod); % Calculates matrix AQc_i =... Murat_codaMatrix(modvQc,K_grid,r_grid,0,[],[]); inversionMatrixQc(i,:) = AQc_i; end % Measures Q [energyRatioBodyCoda_i,energyRatioCodaNoise_i]=... Murat_body(bodyWindow,startNoise,srate_i,sp_i,cursorPick_i,... cursorCodaStart_i,cursorCodaEnd_i); % Saving locationM(i,:) = locationM_i; theoreticalTime(i,1) = theoreticalTime_i; peakDelay(i,:) = peakDelay_i; inverseQc(i,:) = inverseQc_i; uncertaintyQc(i,:) = uncertaintyQc_i; energyRatioBodyCoda(i,:) = energyRatioBodyCoda_i; energyRatioCodaNoise(i,:) = energyRatioCodaNoise_i; tCoda(i,:) = tCoda_i; end % Setting up the final data vectors and matrices with checks on values Murat.data.locationsDeg = locationDeg; Murat.data.locationsM = locationM; Murat.data.theoreticalTime = theoreticalTime; Murat.data.peakDelay = peakDelay; Murat.data.inversionMatrixPeakDelay = inversionMatrixPeakDelay; Murat.data.inversionMatrixQ = inversionMatrixQ; Murat.data.totalLengthRay = totalLengthRay; Murat.data.raysPlot = raysPlot; Murat.data.rayCrossing = sum(rayCrossing); Murat.data.inverseQc = inverseQc; Murat.data.uncertaintyQc = uncertaintyQc; Murat.data.inversionMatrixQc = inversionMatrixQc; Murat.data.energyRatioBodyCoda = energyRatioBodyCoda; Murat.data.energyRatioCodaNoise = energyRatioCodaNoise; Murat.data.tCoda = tCoda; Murat = Murat_selection(Murat); ratio = count_trash/lengthData*(100); disp(['Ratio of removed recordings: ', num2str(ratio)]) if ~isempty(Murat.input.declustering) Murat =... Murat_declustering(Murat,Murat.input.declustering); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function calculateValue =... recognizeComponents(index,components) % LOGICAL to decide if forward model is necessary depending in waveform % number (index) and number of components. calculateValue = isequal(components,1) ||... (isequal(components,2) || isequal(components,3)) &&... isequal(mod(index,components),1);
github
LucaDeSiena/MuRAT-master
Murat_paasschensFunction.m
.m
MuRAT-master/bin/Murat_paasschensFunction.m
2,567
utf_8
99c9b500b261025953898c086ccb52b9
function [t0,A0,N,coda,t] = Murat_paasschensFunction(r,v,B0,Le_1,dt,T) % function [t0,A0,N,coda,t] = Murat_paasschensFunction(r,v,B0,Le_1,dt,T) % % CREATES the Paasschens function for a fixed r, with constants v,B0,Le_1, % for points in the vector t until t_max given by T. % % Structure: % The Paasschens function is composed of a delta plus a coda: % The delta is in t0 = r/v; % The coda starts in t0 = r/v; % The amplitude of the delta is A0; % The coda is computed from t0 to T; % The coda is reported at samples starting at t0; % Only the N points for which coda is computed are provided. % % Sample at t=t0 tends to infinity. As it is integrable, the % corresponding value is provided: % % integral_0^T [E(r,t0+dt)dt] = E(r,t0+T) T 4/3; % % the size of the interval is half, so E(r,t0+dt)*2/3 is stored at t=t0. % This improves accuracy for small dt that are not too small by including % the sample at t=t0. % % Input parameters: % r: distance to source % v: velocity % B0: albedo % Le_1: extinction length % dt: time resolution % T: final time of interest % % Output parameters: % t0: time of the delta and beginning of coda: t0=r/v % A0: Amplitude of the delta % N: number of points from t0 to T (or from 0 to T-t0) of coda % coda: the samples of the coda % t: time vector % % Authors: De La Torre & Del Pezzo, used first in Del Pezzo et al. 2018, % Geosciences. t0 = r/v; t = (t0:dt:(T+2*dt))'; N = length(t); A0 = exp(-Le_1*v*t0)./(4*pi*r.^2*v); f1 = (1-t0.*t0./(t.*t)).^(1/8); f2 = (3*B0*Le_1./(4*pi*v*t)).^(3/2); f3 = exp(-Le_1*v*t); x = v*t*B0*Le_1.*(1-t0.*t0./(t.*t)).^(3/4); f4 = F_function(x); coda = f1.*f2.*f3.*f4; coda(1) = coda(2)*2/3; return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function F = F_function(x) cond = x>1e-30; F = zeros(size(x)); y = x(cond); F(cond) = exp(y).*sqrt(1+2.026./(y+1e-30)); return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
LucaDeSiena/MuRAT-master
Murat_inversion.m
.m
MuRAT-master/bin/Murat_inversion.m
12,333
utf_8
3cddd5208ee1f1700c76c454229961d6
%% Peak-delay, Qc and Q TOMOGRAPHIC INVERSIONS function Murat = Murat_inversion(Murat) %% % Importing all the necessary inputs and data for plotting FLabel = Murat.input.label; outputLCurve = Murat.input.lCurve; tWm = Murat.input.codaWindow; cf = Murat.input.centralFrequency; sped = Murat.input.spectralDecay; nxc = Murat.input.gridLong; nyc = Murat.input.gridLat; nzc = Murat.input.gridZ; sizea = Murat.input.sizeCheck; latt = Murat.input.lowCheck; hatt = Murat.input.highCheck; modv = Murat.input.modv; spike_o = Murat.input.spikeLocationOrigin; spike_e = Murat.input.spikeLocationEnd; spike_v = Murat.input.spikeValue; x = Murat.input.x; y = Murat.input.y; z = Murat.input.z; QcM = Murat.input.QcMeasurement; inversionMethod = Murat.input.inversionMethod; lCurveQc = Murat.input.lCurveQc; lCurveQ = Murat.input.lCurveQ; origin = Murat.input.origin; muratHeader = Murat.input.header; Apd_i =... Murat.data.inversionMatrixPeakDelay; Ac_i = Murat.data.inversionMatrixQc; A_i = Murat.data.inversionMatrixQ; luntot = Murat.data.totalLengthRay; time0 = Murat.data.travelTime; Qm = Murat.data.inverseQc; RZZ = Murat.data.uncertaintyQc; lpdelta = Murat.data.variationPeakDelay; rapsp = Murat.data.energyRatioBodyCoda; retain_pd = Murat.data.retainPeakDelay; retain_Qc = Murat.data.retainQc; retain_Q = Murat.data.retainQ; ray_crosses_pd = Murat.data.raysPeakDelay; ray_crosses_Qc = Murat.data.raysQc; ray_crosses_Q = Murat.data.raysQ; tCoda = Murat.data.tCoda; FPath = './'; lMF = size(ray_crosses_pd); modv_pd = zeros(lMF(1),5,lMF(2)); modv_Qc = zeros(lMF(1),10,lMF(2)); modv_Q = zeros(lMF(1),10,lMF(2)); const_Qc = zeros(size(rapsp)); residualQ = zeros(1,lMF(2)); residualQc = zeros(1,lMF(2)); %% % Creating folders to store results if exist(FLabel,'dir')==7 rmdir(FLabel,'s') end mkdir(FLabel) mkdir([FLabel,'/RaysKernels']) mkdir([FLabel,'/Tests']) mkdir([FLabel,'/Results']) mkdir([FLabel,'/Results/PeakDelay']) mkdir([FLabel,'/Results/Qc']) mkdir([FLabel,'/Results/Q']) mkdir([FLabel,'/Results/Parameter']) mkdir([FLabel,'/Checkerboard']) mkdir([FLabel,'/Checkerboard/Qc']) mkdir([FLabel,'/Checkerboard/Q']) mkdir([FLabel,'/Spike']) mkdir([FLabel,'/Spike/Qc']) mkdir([FLabel,'/Spike/Q']) mkdir([FLabel,'/VTK']) mkdir([FLabel,'/TXT']) %% % Loops over all frequencies and parameter models for k = 1:lMF(2) modv_pd(:,1:3,k) = modv(:,1:3); modv_Qc(:,1:3,k) = modv(:,1:3); modv_Q(:,1:3,k) = modv(:,1:3); cf_k = cf(k); fcName = num2str(cf_k); if find(fcName == '.') fcName(fcName == '.') = '_'; end %% % Peak delay standard regionalization (for now) rcpd_k = ray_crosses_pd(:,k); rtpd_k = retain_pd(:,k); Apd_k = Apd_i(rtpd_k,rcpd_k); lpdelta_k = lpdelta(rtpd_k,k); A_boxes = Apd_k>0; cts_box = sum(A_boxes,1); mpd =... sum(A_boxes.*lpdelta_k,1)'./sum(A_boxes,1)'; mpd(isnan(mpd)) = mean(mpd,'omitnan'); modv_pd(rcpd_k,4,k) = mpd; modv_pd(rcpd_k,5,k) = cts_box; %% % Qc inversion rcQc_k = ray_crosses_Qc(:,k); rtQc_k = retain_Qc(:,k); Ac_k = Ac_i(rtQc_k,rcQc_k); Qm_k = Qm(rtQc_k,k); RZZ_k = RZZ(rtQc_k,k); Wc = Murat_weighting(RZZ_k,QcM); Gc = Wc*Ac_k; FName = ['L-curve_Qc_' fcName '_Hz']; bQm = Wc*Qm_k; lCurveQc_k = lCurveQc(k); if isequal(inversionMethod,'Tikhonov') [mtik0C,residualQc_k,LcQc,tik0_regC]... =... Murat_tikhonovQc(outputLCurve,Gc,bQm,lCurveQc_k); residualQc(1,k) = residualQc_k; modv_Qc(rcQc_k,4,k) = mtik0C; elseif isequal(inversionMethod,'Iterative') disp(['Qc L-curve and cost functions at ', num2str(cf_k), ' Hz.']) [LcQc, minimizeVectorQm,infoVectorQm,tik0_regC]... =... Murat_minimiseCGLS(outputLCurve,Gc,bQm,lCurveQc_k,FName); residualQc(1,k) = min(infoVectorQm.Rnrm); modv_Qc(rcQc_k,4,k) = minimizeVectorQm; elseif isequal(inversionMethod,'Hybrid') disp(['Qc cost function at ', num2str(cf_k), ' Hz.']) [LcQc, minimizeVectorQm,infoVectorQm,tik0_regC]... =... Murat_minimiseHybrid(outputLCurve,Gc,bQm,lCurveQc_k,FName); residualQc(1,k) = min(infoVectorQm.Rnrm); modv_Qc(rcQc_k,4,k) = minimizeVectorQm; else error('Unknown inversion method.') end saveas(LcQc,fullfile(FPath, FLabel,'Tests',FName)); saveas(LcQc,fullfile(FPath, FLabel,'Tests',FName),'tif'); close(LcQc) %% % Q inversion rcQ_k = ray_crosses_Q(:,k); rtQ_k = retain_Q(:,k); A_k = A_i(rtQ_k,rcQ_k); Q_k = Qm(rtQ_k,k); luntot_k = luntot(rtQ_k); time0_k = time0(rtQ_k); rapsp_k = rapsp(rtQ_k,k); tCm = tCoda(rtQ_k,k); [d1, const_Qc_k, ~, ~] = Murat_lsqlinQmean(tCm,tWm,Q_k,... cf_k,sped,luntot_k,time0_k,rapsp_k); const_Qc(rtQ_k,k) = const_Qc_k; lCurveQ_k = lCurveQ(k); FName = ['L-curve_Q_' fcName '_Hz']; if isequal(inversionMethod,'Tikhonov') [mtik0,residualQ_k,LcCN,tik0_reg]... =... Murat_tikhonovQ(outputLCurve,A_k,d1,lCurveQ_k,1); residualQ(:,k) = residualQ_k; modv_Q(rcQ_k,4,k) = mtik0; elseif isequal(inversionMethod,'Iterative') disp(['Q L-curve and cost functions at ', num2str(cf_k), ' Hz.']) [LcCN, minimizeVectorQ,infoVectorQ,tik0_reg]... =... Murat_minimiseCGLS(outputLCurve,A_k,d1,lCurveQ_k,FName); residualQ(1,k) = min(infoVectorQ.Rnrm); modv_Q(rcQ_k,4,k) = minimizeVectorQ; elseif isequal(inversionMethod,'Hybrid') disp(['Qc cost function at ', num2str(cf_k), ' Hz.']) [LcCN, minimizeVectorQ,infoVectorQ,tik0_reg]... =... Murat_minimiseHybrid(outputLCurve,A_k,d1,lCurveQ_k,FName); residualQ(1,k) = min(infoVectorQ.Rnrm); modv_Q(rcQ_k,4,k) = minimizeVectorQ; end saveas(LcCN,fullfile(FPath, FLabel,'Tests',FName)); saveas(LcCN,fullfile(FPath, FLabel,'Tests',FName),'tif'); close(LcCN) %% Checkerboards and spike inputs and checkerboard inversion % Qc siz = [nxc nyc nzc]; I = checkerBoard3D(siz,sizea); [checkInput,spikeInput] =... Murat_inputTesting(I,spike_o,spike_e,x,y,z); modv_Qc(checkInput==1,6,k) = latt; modv_Qc(checkInput==0,6,k) = hatt; modv_Qc(:,8,k) = mean(Qm_k); modv_Qc(spikeInput,8,k) = spike_v; Qc_ch = modv_Qc(rcQc_k,6,k); re_checkQc = Gc*Qc_ch; modv_Qc(rcQc_k,7,k) =... Murat_outputTesting(Gc,re_checkQc,tik0_regC,inversionMethod); %% % Q modv_Q(:,6:8,k) = modv_Qc(:,6:8,k); Q_ch = modv_Q(rcQ_k,6,k); re_Q = A_k*Q_ch; modv_Q(rcQ_k,7,k) =... Murat_outputTesting(A_k,re_Q,tik0_reg,inversionMethod); %% % Inverting spike for Qc and Q at user discretion if ~isempty(spike_o) Qc_sp = modv_Qc(rcQc_k,8,k); re_spikeQc = Gc*Qc_sp; modv_Qc(rcQc_k,9,k) =... Murat_outputTesting(Gc,re_spikeQc,tik0_regC,inversionMethod); Q_sp = modv_Q(rcQ_k,8,k); re_spikeQ = A_k*Q_sp; modv_Q(rcQ_k,9,k) =... Murat_outputTesting(A_k,re_spikeQ,tik0_reg,inversionMethod); end %% % Save peak-delay, Qc, Q [WE,SN,~] = deg2utm(origin(1),origin(2)); modLLD = Murat_unfoldXYZ(x,y,z/1000); modUTM = [modLLD(:,1)+WE modLLD(:,2)+SN... modLLD(:,3)]; modv_pd_k = modv_pd(:,:,k); modv_pd_k(:,1:3) = modUTM; FName =... ['peakdelay_' fcName '_UTM_Hz.txt']; writematrix(modv_pd_k,fullfile(FPath, FLabel, 'TXT', FName)); modv_pd_k(:,1:3) = modLLD; FName =... ['peakdelay_' fcName '_Degrees_Hz.txt']; writematrix(modv_pd_k,fullfile(FPath, FLabel, 'TXT', FName)); modv_Qc_k = modv_Qc(:,:,k); modv_Qc_k(:,1:3) = modUTM; FName = ['Qc_' fcName '_UTM_Hz.txt']; writematrix(modv_Qc_k,fullfile(FPath, FLabel, 'TXT', FName)); modv_Qc_k(:,1:3) = modLLD; FName = ['Qc_' fcName '_Degrees_Hz.txt']; writematrix(modv_Qc_k,fullfile(FPath, FLabel, 'TXT', FName)); modv_Q_k = modv_Q(:,:,k); modv_Q_k(:,1:3) = modUTM; FName = ['Q_' fcName '_UTM_Hz.txt']; writematrix(modv_Q_k,fullfile(FPath, FLabel, 'TXT', FName)); modv_Q_k(:,1:3) = modLLD; FName = ['Q_' fcName '_Degrees_Hz.txt']; writematrix(modv_Q_k,fullfile(FPath, FLabel, 'TXT', FName)); end %% % Save in Murat Murat.data.residualQc = residualQc; Murat.data.const_Qc = const_Qc; Murat.data.residualQ = residualQ; Murat.data.modvPeakDelay = modv_pd; Murat.data.modvQc = modv_Qc; Murat.data.modvQ = modv_Q; writetable(muratHeader,fullfile(FPath, FLabel, 'TXT', 'DataHeaders.xls'));
github
LucaDeSiena/MuRAT-master
Murat_selection.m
.m
MuRAT-master/bin/Murat_selection.m
6,663
utf_8
3670e8259ff2851b2f20fcb2bfbc3719
%% Seismic attributesare selected and components are considered function Murat = Murat_selection(Murat) % SELECTS inputs and data components = Murat.input.components; tresholdnoise = Murat.input.tresholdNoise; modv = Murat.input.modv; PorS = Murat.input.POrS; listaSac = Murat.input.listSac; maPD = Murat.input.maximumPeakDelay; miPD = Murat.input.minimumPeakDelay; fT = Murat.input.fitTresholdLinear; QcM = Murat.input.QcMeasurement; Apd_i =... Murat.data.inversionMatrixPeakDelay; A_i = Murat.data.inversionMatrixQ; Ac_i = Murat.data.inversionMatrixQc; peakd = Murat.data.peakDelay; luntot = Murat.data.totalLengthRay; tPS = Murat.data.theoreticalTime; evestaz = Murat.data.locationsDeg; Qm = Murat.data.inverseQc; RZZ = Murat.data.uncertaintyQc; rapsp = Murat.data.energyRatioBodyCoda; rapspcn = Murat.data.energyRatioCodaNoise; raysplot = Murat.data.raysPlot; tCoda = Murat.data.tCoda; dataL = size(peakd,1); dataFreq = size(peakd,2); modvL = size(modv,1); fitrobust = zeros(2,dataFreq); ray_crosses_pd = false(modvL,dataFreq); ray_crosses_Qc = false(modvL,dataFreq); ray_crosses_Q = false(modvL,dataFreq); %% % Warns about problematic data and saves their names and locations [problemPD,problemQc,problemRZZ,problemQ,~,compMissing,flagWarning]... =... Murat_dataWarning(listaSac,tresholdnoise,... maPD,miPD,fT,peakd,Qm,RZZ,rapspcn,components,0,QcM); %% % Selects data in case of multiple components luntot = luntot(1:components:dataL); time0 = tPS(1:components:dataL); tCoda = tCoda(1:components:dataL,:); evestaz = evestaz(1:components:dataL,:); raysplot = raysplot(:,:,1:components:dataL); Ac_i = Ac_i(1:components:dataL,:); Apd_i = Apd_i(1:components:dataL,:); A_i = A_i(1:components:dataL,:); if components > 1 [peakd,Qm,RZZ,rapsp,rapspcn] =... Murat_components(components,peakd,Qm,RZZ,... rapsp,rapspcn,compMissing); end [~,~,~,~,yesPD,~,~] =... Murat_dataWarning(listaSac,tresholdnoise,... maPD,miPD,fT,peakd,Qm,RZZ,rapspcn,components,flagWarning,QcM); %% % Operations to decide weight of each data for the solution % Using Vp/Vs to map max of S waves in the case of P picking vpvs = sqrt(3); l10pd = log10(peakd); if PorS == 2 time0 = time0*vpvs; t_phase = log10(time0); elseif PorS == 3 t_phase = log10(time0); end %% % Remove outliers and inversion parameters with little/no sensitivity and % store the remaining indexes for later dataLMoreComp = size(peakd,1); lpdelta = zeros(dataLMoreComp,dataFreq); retain_pd = false(dataLMoreComp,dataFreq); retain_Qm = false(dataLMoreComp,dataFreq); retain_Q = false(dataLMoreComp,dataFreq); for i = 1:dataFreq % Peak Delays yesPD_i = yesPD(:,i); l10pd_i = l10pd(:,i); [pab,lpdelta_i,retain_pd_i,ray_crosses_pd_i]... =... Murat_retainPeakDelay(t_phase,l10pd_i,yesPD_i,Apd_i); % Qc Qm_i = Qm(:,i); RZZ_i = RZZ(:,i); [retain_Qm_i,ray_crosses_Qc_i] =... Murat_retainQc(fT,Qm_i,RZZ_i,Ac_i,QcM); % Coda-normalization retain_Q_t = rapspcn(:,i)>=tresholdnoise; retain_Q_nn = ~isnan(Qm_i); retain_Q_i = retain_Q_nn & retain_Q_t; A_retain_Q_i = A_i(retain_Q_i,:); ray_crosses_Q_i = sum(A_retain_Q_i)~=0; fitrobust(:,i) = pab; lpdelta(:,i) = lpdelta_i; retain_pd(:,i) = retain_pd_i; ray_crosses_pd(:,i) = ray_crosses_pd_i; retain_Qm(:,i) = retain_Qm_i; ray_crosses_Qc(:,i) = ray_crosses_Qc_i; retain_Q(:,i) = retain_Q_i; ray_crosses_Q(:,i) = ray_crosses_Q_i; end Murat.data.peakDelay = peakd; Murat.data.totalLengthRay = luntot; Murat.data.tCoda = tCoda; Murat.data.locationsDeg = evestaz; Murat.data.inverseQc = Qm; Murat.data.uncertaintyQc = RZZ; Murat.data.problemPD = problemPD; Murat.data.problemQc = problemQc; Murat.data.problemRZZ = problemRZZ; Murat.data.problemQ = problemQ; Murat.data.energyRatioBodyCoda = rapsp; Murat.data.energyRatioCodaNoise = rapspcn; Murat.data.raysPlot = raysplot; Murat.data.variationPeakDelay = lpdelta; Murat.data.travelTime = time0; Murat.data.fitrobust = fitrobust; Murat.data.retainPeakDelay = retain_pd; Murat.data.retainQc = retain_Qm; Murat.data.retainQ = retain_Q; Murat.data.raysPeakDelay = ray_crosses_pd; Murat.data.raysQc = ray_crosses_Qc; Murat.data.raysQ = ray_crosses_Q; Murat.data.inversionMatrixPeakDelay = Apd_i; Murat.data.inversionMatrixQc = Ac_i; Murat.data.inversionMatrixQ = A_i; end
github
LucaDeSiena/MuRAT-master
Murat_data.m
.m
MuRAT-master/bin/Murat_data.m
9,728
utf_8
cc1f113fb803fb0a712364bf20d24da9
function Murat = Murat_data(Murat) % MEASURES Qc, peak-delay and Q for each seismic trace located in a folder. % This code is a collection of functions that do all the necessary. % Inputs listSac = Murat.input.listSac; lengthData = length(listSac); compon = Murat.input.components; modv = Murat.input.modv; lengthParameterModel = length(modv(:,1)); gridStep = [Murat.input.gridStepX/2 ... Murat.input.gridStepY/2 (modv(2,3) - modv(1,3))/2]; modvQc = [modv(:,1) + gridStep(1)... modv(:,2)+gridStep(2) modv(:,3)+gridStep(3)]; gridD = Murat.input.gridPropagation; pvel = Murat.input.pvel; cf = Murat.input.centralFrequency; lcf = length(cf); origin = Murat.input.origin; originTime = Murat.input.originTime; PTime = Murat.input.PTime; STime = Murat.input.STime; PorS = Murat.input.POrS; tCm = Murat.input.startLapseTime; vP = Murat.input.averageVelocityP; vS = Murat.input.averageVelocityS; maxtpde = Murat.input.maximumPeakDelay; tWm = Murat.input.codaWindow; sped = Murat.input.spectralDecay; kT = Murat.input.kernelTreshold; B0 = Murat.input.albedo; Le1 = Murat.input.extinctionLength; bodyWindow = Murat.input.bodyWindow; startNoise = Murat.input.startNoise; QcM = Murat.input.QcMeasurement; lapseTimeMethod = Murat.input.lapseTimeMethod; maxtravel = Murat.input.maxtravel; % Set up variables to save locationDeg = zeros(lengthData,6); locationM = zeros(lengthData,6); theoreticalTime = zeros(lengthData,1); totalLengthRay = zeros(lengthData,1); peakDelay = zeros(lengthData,lcf); inverseQc = zeros(lengthData,lcf); uncertaintyQc = zeros(lengthData,lcf); energyRatioBodyCoda = zeros(lengthData,lcf); energyRatioCodaNoise = zeros(lengthData,lcf); raysPlot = zeros(100,5,lengthData); tCoda = zeros(lengthData,lcf); inversionMatrixPeakDelay =... zeros(lengthData,lengthParameterModel); inversionMatrixQ =... zeros(lengthData,lengthParameterModel); inversionMatrixQc =... zeros(lengthData,lengthParameterModel); rayCrossing =... zeros(lengthData,lengthParameterModel); %========================================================================= % Count waveforms that must be eliminated because of peak-delay contraints % on peak delays and coda attenuation. count_trash = 0; for i = 1:lengthData if isequal(mod(i,100),0) disp(['Waveform number is ', num2str(i)]) end listSac_i = listSac{i}; % Calculates envelopes [tempis,sp_i,SAChdr_i,srate_i] = Murat_envelope(cf,listSac_i); % Set earthquake and stations locations in degrees or meters [locationDeg_i, locationM_i] =... Murat_location(origin,SAChdr_i); locationDeg(i,:) = locationDeg_i; % Checks direct-wave picking on the trace and outputs it [cursorPick_i, pktime_i, v_i] = Murat_picking(tempis,... PTime,STime,PorS,vP,vS,srate_i,listSac_i,SAChdr_i); % Conditions in case the zero time is missing in the header [theoreticalTime_i, originTime_i] =... Murat_originTime(pktime_i,originTime,v_i,locationM_i,SAChdr_i,i); % Calculates the window where to search for peak delay cursorPeakDelay_i =... Murat_peakDelayCheck(tempis,cursorPick_i,maxtpde,srate_i); % Calculates peak delay time peakDelay_i =... Murat_peakDelay(sp_i,cursorPick_i,srate_i,cursorPeakDelay_i); % Calculates rays for the right component calculateRays = recognizeComponents(i,compon); if calculateRays % All the ray-dependent parameters [Apd_i, AQ_i, totalLengthRay_i, raysPlot_i, rayCrossing_i]... =... Murat_rays(modv,gridD,pvel,locationM_i); inversionMatrixPeakDelay(i,:) = Apd_i; inversionMatrixQ(i,:) = AQ_i; totalLengthRay(i,1) = totalLengthRay_i; raysPlot(:,:,i) = raysPlot_i; rayCrossing(i,:) = rayCrossing_i; end % Sets the lapse time [tCoda_i, cursorCodaStart_i,... cursorCodaEnd_i] =... Murat_codaCheck(originTime_i,pktime_i,srate_i,tCm,tWm,tempis,... peakDelay_i,lapseTimeMethod); if (cursorCodaEnd_i - cursorCodaStart_i) < (tWm*srate_i)-2 || ... (pktime_i-originTime_i)>maxtravel locationM(i,:) = locationM_i; theoreticalTime(i,1) = theoreticalTime_i; peakDelay(i,:) = NaN; inverseQc(i,:) = NaN; uncertaintyQc(i,:) = NaN; energyRatioBodyCoda(i,:) = NaN; energyRatioCodaNoise(i,:) = NaN; tCoda(i,:) = tCoda_i; count_trash = count_trash +1; continue end % Measures Qc and its uncertainty [inverseQc_i, uncertaintyQc_i] = Murat_Qc(cf,sped,... sp_i,cursorCodaStart_i,cursorCodaEnd_i,tCoda_i,srate_i,QcM); % Decide if you calculate kernels calculateKernels = recognizeComponents(i,compon); if calculateKernels % Calculates kernels [K_grid, r_grid] =... Murat_kernels(tCoda_i+tWm/2,locationM_i(1:3),... locationM_i(4:6),modvQc,vS,kT,B0,Le1,lapseTimeMethod); % Calculates matrix AQc_i =... Murat_codaMatrix(modvQc,K_grid,r_grid,0,[],[]); inversionMatrixQc(i,:) = AQc_i; end % Measures Q [energyRatioBodyCoda_i,energyRatioCodaNoise_i]=... Murat_body(bodyWindow,startNoise,srate_i,sp_i,cursorPick_i,... cursorCodaStart_i,cursorCodaEnd_i); % Saving locationM(i,:) = locationM_i; theoreticalTime(i,1) = theoreticalTime_i; peakDelay(i,:) = peakDelay_i; inverseQc(i,:) = inverseQc_i; uncertaintyQc(i,:) = uncertaintyQc_i; energyRatioBodyCoda(i,:) = energyRatioBodyCoda_i; energyRatioCodaNoise(i,:) = energyRatioCodaNoise_i; tCoda(i,:) = tCoda_i; end % Setting up the final data vectors and matrices with checks on values Murat.data.locationsDeg = locationDeg; Murat.data.locationsM = locationM; Murat.data.theoreticalTime = theoreticalTime; Murat.data.peakDelay = peakDelay; Murat.data.inversionMatrixPeakDelay = inversionMatrixPeakDelay; Murat.data.inversionMatrixQ = inversionMatrixQ; Murat.data.totalLengthRay = totalLengthRay; Murat.data.raysPlot = raysPlot; Murat.data.rayCrossing = sum(rayCrossing); Murat.data.inverseQc = inverseQc; Murat.data.uncertaintyQc = uncertaintyQc; Murat.data.inversionMatrixQc = inversionMatrixQc; Murat.data.energyRatioBodyCoda = energyRatioBodyCoda; Murat.data.energyRatioCodaNoise = energyRatioCodaNoise; Murat.data.tCoda = tCoda; Murat = Murat_selection(Murat); ratio = count_trash/lengthData*(100); disp(['Ratio of removed recordings: ', num2str(ratio)]) if ~isempty(Murat.input.declustering) Murat =... Murat_declustering(Murat,Murat.input.declustering); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function calculateValue =... recognizeComponents(index,components) % LOGICAL to decide if forward model is necessary depending in waveform % number (index) and number of components. calculateValue = isequal(components,1) ||... (isequal(components,2) || isequal(components,3)) &&... isequal(mod(index,components),1);
github
LucaDeSiena/MuRAT-master
Murat_testData.m
.m
MuRAT-master/bin/Murat_testData.m
3,958
utf_8
0754655d61be06cd08094cda36762c52
function [muratHeader,flag] =... Murat_testData(folderPath,originTime,PTime,STime) % TEST all seismograms in a folder for the input parameters and % CREATES a file storing the parameters and flagging those missing % % Input Parameters: % folderPath: folder containing the SAC data % originTime: origin time variable selected by the user % PTime: P time variable selected by the user % STime: S time variable selected by the user % % Output: % muratHeader: Murat table showing the necessary parameter % flag: flags missing optional variables % [Names,~] = createsList(folderPath); lengthData = length(Names); Origin = cell(lengthData,1); P = cell(lengthData,1); S = cell(lengthData,1); EvLat = cell(lengthData,1); EvLon = cell(lengthData,1); EvDepth = cell(lengthData,1); StLat = cell(lengthData,1); StLon = cell(lengthData,1); StElev = cell(lengthData,1); flag = []; for i=1:lengthData listSac_i = Names{i}; [~,SAChdr] = Murat_test(listSac_i,[],8,0,0); if isequal(eval(originTime),-12345) Origin{i} = []; flag = 1; else Origin{i} = eval(originTime); end if isequal(eval(PTime),-12345) P{i} = []; warning(['There is a missing P-value, check ' listSac_i '!']); else P{i} = eval(PTime); end if isequal(eval(STime),-12345) S{i} = []; flag = 2; else S{i} = eval(STime); end if isequal(SAChdr.event.evla,-12345) EvLat{i} = []; warning(['There is a missing event coordinate, check '... listSac_i '!']); else EvLat{i} = SAChdr.event.evla; end if isequal(SAChdr.event.evlo,-12345) EvLon{i} = []; warning(['There is a missing event coordinate, check '... listSac_i '!']); else EvLon{i} = SAChdr.event.evlo; end if isequal(SAChdr.event.evdp,-12345) EvDepth{i} = []; warning(['There is a missing event coordinate, check '... listSac_i '!']); else EvDepth{i} = SAChdr.event.evdp; end if isequal(SAChdr.station.stla,-12345) StLat{i} = []; warning(['There is a missing station coordinate, check '... listSac_i '!']); else StLat{i} = SAChdr.station.stla; end if isequal(SAChdr.station.stlo,-12345) StLon{i} = []; warning(['There is a missing station coordinate, check '... listSac_i '!']); else StLon{i} = SAChdr.station.stlo; end if isequal(SAChdr.station.stel,-12345) StElev{i} = []; warning(['There is a missing station coordinate, check '... listSac_i '!']); else StElev{i} = SAChdr.station.stel; end end muratHeader = table(Names,Origin,P,S,EvLat,EvLon,... EvDepth,StLat,StLon,StElev); end %% function [listWithFolder,listNoFolder]... = createsList(directory) % CREATES a list of visible files in a folder, outputs both with and % without folder list = dir(directory); list = list(~startsWith({list.name}, '.')); listWithFolder = fullfile({list.folder},{list.name})'; listNoFolder = {list.name}'; end
github
LucaDeSiena/MuRAT-master
Murat_plot.m
.m
MuRAT-master/bin/Murat_plot.m
23,641
utf_8
2f3db3d30d35e77bfd856cec3e0ebb1f
%% MURAT_PLOT Creates files for visualization in Matlab and Paraview function Murat = Murat_plot(Murat) %% % Importing all the necessary inputs and data for plotting FLabel = Murat.input.label; origin = Murat.input.origin; ending = Murat.input.end; x = Murat.input.x; y = Murat.input.y; z = Murat.input.z; sections = Murat.input.sections; plotV = Murat.input.modvPlot; cf = Murat.input.centralFrequency; vS = Murat.input.averageVelocityS; tWm = Murat.input.codaWindow; kT = Murat.input.tresholdNoise; B0 = Murat.input.albedo; Le1 = Murat.input.extinctionLength; QcM = Murat.input.QcMeasurement; sped = Murat.input.spectralDecay; lapseTimeMethod = Murat.input.lapseTimeMethod; modvQc = Murat.input.modv; stepgX = (modvQc(2,1) - modvQc(1,1))/2; stepgY = (modvQc(2,2) - modvQc(1,2))/2; stepgZ = (modvQc(2,3) - modvQc(1,3))/2; modvQc(:,1) = modvQc(:,1) + stepgX; modvQc(:,2) = modvQc(:,2) + stepgY; modvQc(:,3) = modvQc(:,3) + stepgZ; Qm = Murat.data.inverseQc; time0 = Murat.data.travelTime; retainPeakDelay = Murat.data.retainPeakDelay; retainQc = Murat.data.retainQc; retainQ = Murat.data.retainQ; ray_crosses_pd = Murat.data.raysPeakDelay; ray_crosses_Qc = Murat.data.raysQc; ray_crosses_Q = Murat.data.raysQ; fitrobust = Murat.data.fitrobust; peakData = Murat.data.peakDelay; luntot = Murat.data.totalLengthRay; rma = Murat.data.raysPlot; modv_pd = Murat.data.modvPeakDelay; modv_Qc = Murat.data.modvQc; modv_Q = Murat.data.modvQ; evestazDegrees = Murat.data.locationsDeg; energyRatio = Murat.data.energyRatioBodyCoda; codaNoiseRatio = Murat.data.energyRatioCodaNoise; Ac_i = Murat.data.inversionMatrixQc; RZZ = Murat.data.uncertaintyQc; A_i = Murat.data.inversionMatrixQ; residualQc = Murat.data.residualQc; residualQ = Murat.data.residualQ; locationM = Murat.data.locationsM; tCoda = Murat.data.tCoda; rapsp = Murat.data.energyRatioBodyCoda; FPath = './'; sizeTitle = 18; lMF = size(ray_crosses_pd); sections(3) = sections(3)/1000; %% PLOTS - coverage and sensitivity % Declustering is done before any frequency analysis, here we show the 2D % rays before and after if Murat.input.declustering > 0 locDegOriginal = Murat.data.locDegOriginal; FName_Cluster = 'Clustering'; clustering = Murat_imageDeclustering(... locDegOriginal,evestazDegrees,origin,ending,FName_Cluster); storeFolder = 'RaysKernels'; pathFolder =... fullfile(FPath,FLabel,storeFolder,FName_Cluster); saveas(clustering,pathFolder,'tif'); close(clustering) end evestaz =... [evestazDegrees(:,1:2) -evestazDegrees(:,3)/1000 ... evestazDegrees(:,4:5) evestazDegrees(:,6)/1000]; averageQcFrequency = zeros(2,lMF(2)); for k = 1:lMF(2) % Murat_plot starts plotting the ray distribution if asked by the user. % It stores the files in the corresponding folder. storeFolder = 'RaysKernels'; cf_k = cf(k); fcName = num2str(cf_k); if find(fcName == '.') fcName(fcName == '.') = '_'; end rtpdk = retainPeakDelay(:,k); rtQk = retainQ(:,k); rcQk = ray_crosses_Q(:,k); rtQck = retainQc(:,k); rcQck = ray_crosses_Qc(:,k); %% % The rays are visualized for different techniques, starting with the peak delay FName_peakDelay = ['Rays_PeakDelay_' fcName '_Hz']; rma_pd = rma(:,2:4,rtpdk)/1000; evestaz_pd = evestaz(rtpdk,:); rays_peakDelay = Murat_imageRays(rma_pd,origin,... ending,evestaz_pd,x,y,z,FName_peakDelay); pathFolder =... fullfile(FPath,FLabel,storeFolder,FName_peakDelay); saveas(rays_peakDelay,pathFolder,'tif'); close(rays_peakDelay) %% % The next figure shows the rays for the total attenuation (Q) FName_Q = ['Rays_Q_' fcName '_Hz']; rma_Q = rma(:,2:4,rtQk)/1000; evestaz_Q = evestaz(rtQk,:); rays_Q =... Murat_imageRays(rma_Q,origin,ending,evestaz_Q,x,y,z,FName_Q); pathFolder =... fullfile(FPath, FLabel, storeFolder, FName_Q); saveas(rays_Q,pathFolder,'tif'); close(rays_Q) %% % The next figure checks the sensitivity of coda attenuation % measurements. The code creates figures that show sections in the % sensitivity kernels. The left panel shows the sensitivity kernel in % the full space while the rigth panel shows the normalized % kernel in the inversion grid. FName_Qc = ['Kernel_Qc' fcName '_Hz']; kernels = figure('Name',FName_Qc,... 'NumberTitle','off','Position',[20,400,1200,1000],'visible','off'); % Calculates kernels [K_grid, r_grid] =... Murat_kernels(tCoda(1)+tWm/2,locationM(1,1:3),locationM(1,4:6),... modvQc,vS,kT,B0,Le1,lapseTimeMethod); Murat_codaMatrix(modvQc,K_grid,r_grid,1,origin,sections); pathFolder =... fullfile(FPath, FLabel, storeFolder, FName_Qc); Murat_saveFigures_2panels(kernels,pathFolder); %% Plot - Tests % In this section Murat_plot makes checks on the three parameters. % These plots are always visualised. They check that: % (1) Qc is constant with ray length - also computes weighted average; % (2) peak delays increase with travel time; % (3) amplitude ratios decay with hypocentral distance. % These plots are used to select measurements and understand how well % they follow the assumptions. storeFolder = 'Tests'; Qm_k = Qm(rtQck,k); RZZ_k = RZZ(rtQck,k); residualQc_k = residualQc(k); luntot_Qc = luntot(rtQck)/1000; Ac = Ac_i(rtQck,rcQck); averageQcFrequency(1,k) = sum(RZZ_k.*Qm_k)/sum(RZZ_k); averageQcFrequency(2,k) = std(Qm_k); Qc_title = ['Qc check ' fcName ' Hz']; Qc_analysis = Murat_imageCheckQc(Qm_k,RZZ_k,... residualQc_k,luntot_Qc,Ac,sizeTitle,Qc_title,QcM); saveas(Qc_analysis, fullfile(FPath,FLabel,storeFolder,... ['Qc_analysis_' fcName '_Hz']),'tif'); saveas(Qc_analysis, fullfile(FPath,FLabel,storeFolder,... ['Qc_analysis_' fcName '_Hz'])); close(Qc_analysis) %% % Then it shows the peak delay relative to the travel time. peakData_k = peakData(rtpdk,k); fitrobust_k = fitrobust(:,k); time0PD = time0(rtpdk); pd_title = ['Peak Delay check ' fcName ' Hz']; pd_analysis = Murat_imageCheckPeakDelay(... time0PD,fitrobust_k,peakData_k,sizeTitle,pd_title); saveas(pd_analysis, fullfile(FPath,FLabel,storeFolder,... ['PD_analysis_' fcName '_Hz']),'tif'); saveas(pd_analysis, fullfile(FPath,FLabel,storeFolder,... ['PD_analysis_' fcName '_Hz'])); close(pd_analysis) %% % Then it plots first the logarithm of the energy ratio versus travel % time. energyRatio_k = energyRatio(rtQk,k); residualQ_k = residualQ(k); Edirect_k =... energyRatio_k./codaNoiseRatio(rtQk,k); A_k = A_i(rtQk,rcQk); luntot_k = luntot(rtQk); time0_k = time0(rtQk); rapsp_k = rapsp(rtQk,k); tCm = tCoda(rtQk,k); Q_k = Qm(rtQk,k); CN_title =... ['Coda Normalization check ' fcName ' Hz']; [d1, ~,spreadAverageQ, equationQ]... =... Murat_lsqlinQmean(tCm,tWm,Q_k,cf_k,sped,luntot_k,time0_k,rapsp_k); CN_analysis =... Murat_imageCheckCN(equationQ,residualQ_k,d1,spreadAverageQ,... luntot_k,time0_k,energyRatio_k,A_k,Edirect_k,CN_title); saveas(CN_analysis, fullfile(FPath,FLabel,storeFolder,... ['CN_analysis_' fcName '_Hz']),'tif'); saveas(CN_analysis, fullfile(FPath,FLabel,storeFolder,... ['CN_analysis_' fcName '_Hz'])); close(CN_analysis) %% PLOT - RESULTS % Set up matrices. The points are set to the upper SW vertices to % work with the function "slice". All stored in the sub-folder. modv_pd_k = modv_pd(:,:,k); modv_Qc_k = modv_Qc(:,:,k); modv_Q_k = modv_Q(:,:,k); [X,Y,Z1,mPD] = Murat_fold(x,y,z,modv_pd_k(:,4)); [~,~,~,PD_cts] = Murat_fold(x,y,z,modv_pd_k(:,5)); [~,~,~,mQc] = Murat_fold(x,y,z,modv_Qc_k(:,4)); [~,~,~,mQ] = Murat_fold(x,y,z,modv_Q_k(:,4)); Z = Z1/1000; evestaz_Qc = evestaz(rtQck,:); %% % Peak delays results, using interpolation defined by 'divi'. divi = 5; storeFolder = 'Results/PeakDelay'; FName_PDMap = ['Peak-Delay-3D_' fcName '_Hz']; peakDelaymap = Murat_image3D(X,Y,Z,mPD,... redblue,sections,evestaz_pd,x,y,z,divi,FName_PDMap); title('Log. peak-delay variations',... 'FontSize',sizeTitle,'FontWeight','bold','Color','k'); pathFolder =... fullfile(FPath, FLabel, storeFolder, FName_PDMap); Murat_saveFigures(peakDelaymap,pathFolder); %% % Plots peak delays only keeping cells with more than 'factor'% of data factor = 5; keep_bins =... PD_cts > ((max(PD_cts(:))/100)*factor); mPD_red = mPD.*keep_bins; FName_PDMap =... ['Peak-Delay-3D_' fcName '_Hz_',num2str(factor),'_perc']; [peakDelaymap_red,pd_inter,~,~,~,Xi,Yi,Zi]... = Murat_image3D(X,Y,Z,mPD_red,... redblue,sections,evestaz_pd,x,y,z,divi,FName_PDMap); title('Peak-delay variations','FontSize',sizeTitle,... 'FontWeight','bold','Color','k'); pathFolder =... fullfile(FPath, FLabel, storeFolder, FName_PDMap); Murat_saveFigures(peakDelaymap_red,pathFolder); % interpolated for the parameter map interp_modv_pd_k = Murat_unfold(Xi,Yi,Zi,pd_inter); %% % Qc results storeFolder = 'Results/Qc'; FName_QcMap = ['Qc-3D_' fcName '_Hz']; [Qcmap,qc_inter,xi,yi,zi,Xi,Yi,Zi]... = Murat_image3D(X,Y,Z,mQc,... turbo,sections,evestaz_Qc,x,y,z,divi,FName_QcMap); title('Coda attenuation',... 'FontSize',sizeTitle,'FontWeight','bold','Color','k'); pathFolder =... fullfile(FPath,FLabel,storeFolder,FName_QcMap); Murat_saveFigures(Qcmap,pathFolder); % interpolated for the parameter map interp_modv_qc_k = Murat_unfold(Xi,Yi,Zi,qc_inter); %% % Q results storeFolder = 'Results/Q'; FName_QMap = ['Q-3D_' fcName '_Hz']; Qmap = Murat_image3D(X,Y,Z,mQ,... hot,sections,evestaz_Q,x,y,z,divi,FName_QMap); title('Total attenuation variations','FontSize',sizeTitle,... 'FontWeight','bold','Color','k'); pathFolder =... fullfile(FPath,FLabel,storeFolder,FName_QMap); Murat_saveFigures(Qmap,pathFolder); %% PLOT - CHECKERBOARDS % In this section Murat_plot shows the checkerboard tests % for Q and Qc. [~,~,~,check_inputQc] = Murat_fold(x,y,z,modv_Qc_k(:,6)); [~,~,~,check_outputQc] = Murat_fold(x,y,z,modv_Qc_k(:,7)); [~,~,~,check_inputQ] = Murat_fold(x,y,z,modv_Qc_k(:,6)); [~,~,~,check_outputQ] = Murat_fold(x,y,z,modv_Q_k(:,7)); %% % Checkerboard Qc: Input and Output storeFolder = 'Checkerboard/Qc'; FName_QcCheck = ['Qc-Checkerboard_' fcName '_Hz']; Qc_check = figure('Name',FName_QcCheck,... 'NumberTitle','off','Position',[20,400,2000,1000],'visible','off'); subplot(1,2,1) Murat_image3D_2panels(X,Y,Z,check_inputQc,... 'bone',sections,evestaz_Qc,x,y,z); title('Input checkerboard Qc','FontSize',sizeTitle,... 'FontWeight','bold','Color','k'); subplot(1,2,2) Murat_image3D_2panels(X,Y,Z,check_outputQc,... 'bone',sections,evestaz_Qc,x,y,z); title('Output checkerboard Qc','FontSize',sizeTitle,... 'FontWeight','bold','Color','k'); pathFolder =... fullfile(FPath,FLabel,storeFolder,FName_QcCheck); Murat_saveFigures_2panels(Qc_check,pathFolder); %% %Checkerboard Q: Input and Output storeFolder = 'Checkerboard/Q'; FName_QCheck = ['Q-Checkerboard_' fcName '_Hz']; Q_check = figure('Name',FName_QCheck,... 'NumberTitle','off','Position',[20,400,2000,1000],'visible','off'); subplot(1,2,1) Murat_image3D_2panels(X,Y,Z,check_inputQ,... 'bone',sections,evestaz_Q,x,y,z); title('Input checkerboard Q','FontSize',sizeTitle,... 'FontWeight','bold','Color','k'); subplot(1,2,2) Murat_image3D_2panels(X,Y,Z,check_outputQ,... 'bone',sections,evestaz_Q,x,y,z); title('Output checkerboard Q',... 'FontSize',sizeTitle,'FontWeight','bold','Color','k'); pathFolder =... fullfile(FPath,FLabel,storeFolder,FName_QCheck); Murat_saveFigures_2panels(Q_check,pathFolder); %% PLOT - SPIKES % In this section Murat_plot shows input and output of the spike tests % for Q and Qc. [~,~,~,spike_inputQc] = Murat_fold(x,y,z,modv_Qc_k(:,8)); [~,~,~,spike_outputQc] = Murat_fold(x,y,z,modv_Qc_k(:,9)); [~,~,~,spike_inputQ] = Murat_fold(x,y,z,modv_Qc_k(:,8)); [~,~,~,spike_outputQ] = Murat_fold(x,y,z,modv_Q_k(:,9)); %% % Spike Qc: Input and Output storeFolder = 'Spike/Qc'; FName_QcSpike = ['Qc-Spike_' fcName '_Hz']; Qc_spike = figure('Name',FName_QcSpike,... 'NumberTitle','off','Position',[20,400,2000,1000],'visible','off'); subplot(1,2,1) Murat_image3D_2panels(X,Y,Z,spike_inputQc,... winter,sections,evestaz_Qc,x,y,z); title('Input spike Qc','FontSize',sizeTitle,... 'FontWeight','bold','Color','k'); subplot(1,2,2) Murat_image3D_2panels(X,Y,Z,spike_outputQc,... winter,sections,evestaz_Qc,x,y,z); title('Output spike Qc','FontSize',sizeTitle,... 'FontWeight','bold','Color','k'); pathFolder =... fullfile(FPath,FLabel,storeFolder,FName_QcSpike); Murat_saveFigures_2panels(Qc_spike,pathFolder); %% % Spike Q: Input and Output storeFolder = 'Spike/Q'; FName_QSpike = ['Q-Spike_' fcName '_Hz']; Q_spike = figure('Name',FName_QSpike,... 'NumberTitle','off','Position',[20,400,2000,1000],'visible','off'); subplot(1,2,1) Murat_image3D_2panels(X,Y,Z,spike_inputQ,hot,sections,evestaz_Q,x,y,z); title('Input spike Q','FontSize',sizeTitle,... 'FontWeight','bold','Color','k'); subplot(1,2,2) Murat_image3D_2panels(X,Y,Z,spike_outputQ,... hot,sections,evestaz_Q,x,y,z); title('Output spike Q','FontSize',sizeTitle,... 'FontWeight','bold','Color','k'); pathFolder =... fullfile(FPath,FLabel,storeFolder,FName_QSpike); Murat_saveFigures_2panels(Q_spike,pathFolder); %% PARAMETER PLOT % The final figure is the parameter plot separation. % First Qc and Peak delay are separated in 4 quadrants. % The second part produces the spatial plot, setting each node to the % corresponding color. The four options are: (1) high for both (red); % (2) low for both (green); (3) high for peak delays only (cyan); % (4) high for inverse Qc only (orange). storeFolder = 'Results/Parameter'; %% % Define all the parameters for imaging FName_Parameters =... ['Parameter_space_variations_' fcName '_Hz']; [param_plot,~,~] =... Murat_imageParameters(x,y,z,modv_pd_k,modv_Qc_k,sizeTitle); saveas(param_plot,fullfile(FPath,FLabel,storeFolder,FName_Parameters)); close(param_plot) % use interpolated peakdelay and Qc zi = (zi*1000)'; [~,par_inter,para_map_inter] = Murat_imageParameters(xi',yi',... zi,interp_modv_pd_k,interp_modv_qc_k,sizeTitle); %% % Imaging the parameters in 3D FName_PMap = ['Parameter-Map_' fcName '_Hz']; [ParaMap,para_map] =... Murat_imageParametersMaps(par_inter,para_map_inter,xi',yi',zi,... Xi,Yi,Zi,evestaz_Qc,sections,sizeTitle,FName_PMap); [WE,SN,~] = deg2utm(origin(1),origin(2)); modLLD = Murat_unfoldXYZ(xi,yi,zi/1000); modUTM = [modLLD(:,1)+WE modLLD(:,2)+SN... modLLD(:,3)]; pathFolder =... fullfile(FPath,FLabel,storeFolder,FName_PMap); Murat_saveFigures(ParaMap,pathFolder); FName =... ['parameterMap_' fcName '_UTM_Hz.txt']; writematrix(para_map,fullfile(FPath, FLabel, 'TXT', FName)); para_map(:,1:3) = modUTM; FName =... ['parameterMap_' fcName '_Degrees_Hz.txt']; writematrix(para_map,fullfile(FPath, FLabel, 'TXT', FName)); %% SAVE all results as VTK for visualization in PARAVIEW % Converting Lon/Lat to km for paraview visualization with ndgrid storeFolder = 'VTK'; [WE_origin, SN_origin] = deg2utm(origin(2),origin(1)); x_origin = x - origin(2); y_origin = y - origin(1); UTM_WE = WE_origin + deg2km(x_origin)*1000; UTM_SN = SN_origin + deg2km(y_origin)*1000; [X_UTM,Y_UTM,~] = meshgrid(UTM_WE,UTM_SN,z); %% % Writes the four models to vtk vtkwrite(fullfile(FPath, FLabel,storeFolder,[FName_PDMap '.vtk']),... 'structured_grid',X_UTM,Y_UTM,Z1,'scalars','Peak_delay',mPD) vtkwrite(fullfile(FPath, FLabel,storeFolder,[FName_QcMap '.vtk']),... 'structured_grid',X_UTM,Y_UTM,Z1,'scalars','Qc',mQc) vtkwrite(fullfile(FPath, FLabel,storeFolder,[FName_QMap '.vtk']),... 'structured_grid',X_UTM,Y_UTM,Z1,'scalars','Q',mQ) %% % Write the input-output checkerboard vtkwrite(fullfile(FPath, FLabel,storeFolder,[FName_QcCheck '.vtk']),... 'structured_grid',X_UTM,Y_UTM,Z1,'scalars','Check_Qc',... check_outputQc) vtkwrite(fullfile(FPath, FLabel,storeFolder,[FName_QCheck '.vtk']),... 'structured_grid',X_UTM,Y_UTM,Z1,'scalars','Check_Q',... check_outputQ) %% % Writes the input-output spikes vtkwrite(fullfile(FPath, FLabel,storeFolder,[FName_QSpike '.vtk']),... 'structured_grid',X_UTM,Y_UTM,Z1,'scalars','Spike_Qc',... spike_outputQc) vtkwrite(fullfile(FPath, FLabel,storeFolder,[FName_QSpike '.vtk']),... 'structured_grid',X_UTM,Y_UTM,Z1,'scalars','Spike_Q',... spike_outputQ) end %% % Also showing the velocity model in case it is available, only once vtkwrite(fullfile(FPath, FLabel,storeFolder,'Velocity_model.vtk'),... 'structured_grid',X_UTM,Y_UTM,Z1,'scalars','V',plotV) vtkwrite(fullfile(FPath, FLabel,storeFolder,'Input_checkerboards.vtk'),... 'structured_grid',X_UTM,Y_UTM,Z1,'scalars','Input_check',... check_inputQc) vtkwrite(fullfile(FPath, FLabel,storeFolder,'Input_spikes.vtk'),... 'structured_grid',X_UTM,Y_UTM,Z1,'scalars','Input_spikes',... spike_inputQc) %% % Final figures are the velocity model and Qc/frequency relation storeFolder = 'Tests'; if Murat.input.availableVelocity == 1 FName_Vimage = 'Velocity_model'; Vimage = Murat_image3D(X,Y,Z,plotV,... inferno,sections,evestaz_Q,x,y,z,divi,FName_Vimage); title('Velocity Model',... 'FontSize',sizeTitle,'FontWeight','bold','Color','k'); pathFolder =... fullfile(FPath,FLabel,storeFolder,FName_Vimage); saveas(Vimage,pathFolder); close(Vimage) end Murat.data.averageQcFrequency = averageQcFrequency; Qcf_title = 'Qc vs Frequency'; QcFrequency = Murat_imageQcFrequency(cf,... averageQcFrequency,sizeTitle,Qcf_title); FName = 'Qc_vs_frequency'; saveas(QcFrequency, fullfile(FPath,FLabel,storeFolder,FName),'tif'); close all
github
LucaDeSiena/MuRAT-master
Murat_checks.m
.m
MuRAT-master/bin/Murat_checks.m
4,102
utf_8
68fdc004d6d957ab6590dbec71161ed5
% ADDITIONAL input variables that are not set by the user. function Murat = Murat_checks(Murat) % INPUTS dataDirectory = ['./' Murat.input.dataDirectory]; PTime = ['SAChdr.times.' Murat.input.PTime]; PorS = Murat.input.POrS; origin = Murat.input.origin; ending = Murat.input.end; nLat = Murat.input.gridLat; nLong = Murat.input.gridLong; nzc = Murat.input.gridZ; availableVelocity = Murat.input.availableVelocity; velocityModel = ['velocity_models/',Murat.input.namev]; if isempty(Murat.input.originTime) originTime = 'SAChdr.times.o'; else originTime =... ['SAChdr.times.' Murat.input.originTime]; end if isempty(Murat.input.STime) STime = 'SAChdr.times.t0'; else STime =... ['SAChdr.times.' Murat.input.STime]; end Murat.input.originTime = originTime; Murat.input.PTime = PTime; Murat.input.STime = STime; if exist('./temp','dir')==7 delete('./temp/*') else mkdir('./temp') end % Checking data [Murat.input.listSac,~] = createsList([dataDirectory '/*.sac']); [Murat.input.header,flag] =... Murat_testData(dataDirectory,originTime,PTime,STime); if isequal(flag,1) warning('Missing origin times.') end if isequal(flag,2) warning('Missing S-wave times.') end %% VELOCITY MODELS: ORIGINAL, INVERSION, and PROPAGATION % Save x,y,z in degrees switching as longitude comes second % Find distance and azimuth to change in meters - requires longitude first dist_x = deg2km(ending(2)-origin(2))*1000; dist_y = deg2km(ending(1)-origin(1))*1000; % Coordinates of inversion points in meters xM = linspace(0,dist_x,nLong)'; yM = linspace(0,dist_y,nLat)'; zM = linspace(origin(3),ending(3),nzc)'; modvXYZ = Murat_unfoldXYZ(xM,yM,zM); Murat.input.x = linspace(origin(2),ending(2),nLong)'; Murat.input.y = linspace(origin(1),ending(1),nLat)'; Murat.input.z = linspace(origin(3),ending(3),nzc)'; Murat.input.gridStepX = xM(2)-xM(1); Murat.input.gridStepY = yM(2)-yM(1); modvOriginal = load(velocityModel); if availableVelocity == 0 gridPropagation.x = xM'; gridPropagation.y = yM'; gridPropagation.z = zM'; [modv,pvel] =... Murat_modv1D(modvXYZ,modvOriginal,PorS); Murat.input.modv = modv; Murat.input.modvp = modv; Murat.input.modvPlot = []; elseif availableVelocity == 1 [modvP,modvI,modvIP,pvel] =... Murat_modv3D(modvXYZ,modvOriginal,origin,0); gridPropagation.x = unique(modvP(:,1)); gridPropagation.y = unique(modvP(:,2)); gridPropagation.z = sort(unique(modvP(:,3)),'descend'); Murat.input.modv = modvI; Murat.input.modvp = modvP(:,1:4); Murat.input.modvPlot = modvIP; end Murat.input.gridPropagation = gridPropagation; Murat.input.pvel = pvel; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [listWithFolder,listNoFolder]... = createsList(directory) % CREATES a list of visible files in a folder, outputs both with and % without folder list = dir(directory); list = list(~startsWith({list.name}, '.')); listWithFolder = fullfile({list.folder},{list.name})'; listNoFolder = {list.name}';
github
LucaDeSiena/MuRAT-master
checkerBoard3D.m
.m
MuRAT-master/Utilities_Matlab/GIBBON/checkerBoard3D.m
1,470
utf_8
635da4564067b7f09920be527a385cc1
function M=checkerBoard3D(varargin) % function M=checkerBoard3D(siz) % ------------------------------------------------------------------------ % This function creates a checkboard image of the size siz whereby elements % are either black (0) or white (1). The first element is white. % example: siz=[12 12 6]; blockSize=2; %Block size in pixel units % Kevin Mattheus Moerman % [email protected] % 2008/08/15 % 2018/12/10 Added checkboard block size input % ------------------------------------------------------------------------ %% Parse input switch nargin case 1 siz=varargin{1}; blockSize=1; case 2 siz=varargin{1}; blockSize=varargin{2}; end % if ~isrounded(blockSize) || blockSize<1 % error('Block size should be positive integer'); % end %Coping with 1D or 2D input if numel(siz)==2 siz(3)=1; elseif numel(siz)==1 siz(2:3)=[1 1]; end %% if blockSize==1 [I,J,K]=ndgrid(1:1:siz(1),1:1:siz(2),1:1:siz(3)); else [I,J,K]=ndgrid(indexRange(blockSize,siz(1)),indexRange(blockSize,siz(2)),indexRange(blockSize,siz(3))); end logic_ij=((iseven(I)| iseven(J)) & ((iseven(I)~=iseven(J)))); M=false(siz); M(iseven(K))=logic_ij(iseven(K)); M(~iseven(K))=~logic_ij(~iseven(K)); end %% function i=indexRange(blockSize,s) i=repmat(1:blockSize:s,blockSize,1); i=i(:); if numel(i)<s ii=i; i=siz(1)*ones(1,s); i(1:num_i)=ii; else i=i(1:s); end [~,~,i]=unique(i); end
github
LucaDeSiena/MuRAT-master
inpaintn.m
.m
MuRAT-master/Utilities_Matlab/GIBBON/inpaintn.m
11,643
utf_8
e056d112de8a3d4da94ffedf055d72b2
function y = inpaintn(x,n,y0,m) % INPAINTN Inpaint over missing data in N-D array % Y = INPAINTN(X) replaces the missing data in X by extra/interpolating % the non-missing elements. The non finite values (NaN or Inf) in X are % considered as missing data. X can be any N-D array. % % INPAINTN (no input/output argument) runs the following 3-D example. % % Important note: % -------------- % INPAINTN uses an iterative process baased on DCT and IDCT. % Y = INPAINTN(X,N) uses N iterations. By default, N = 100. If you % estimate that INPAINTN did not totally converge, increase N: % Y = INPAINTN(X,1000) % % Y = INPAINTN(X,N,Y0) uses Y0 as initial guess. This could be useful if % you want to run the process a second time or if you have a GOOD guess % of the final result. By default, INPAINTN makes a nearest neighbor % interpolation (by using BWDIST) to obtain a rough guess. % % References (please refer to the two following references) % ---------- % 1) Garcia D, Robust smoothing of gridded data in one and higher % dimensions with missing values. Computational Statistics & Data % Analysis, 2010;54:1167-1178. % <a % href="matlab:web('http://www.biomecardio.com/publis/csda10.pdf')">download PDF</a> % 2) Wang G, Garcia D et al. A three-dimensional gap filling method for % large geophysical datasets: Application to global satellite soil % moisture observations. Environ Modell Softw, 2012;30:139-142. % <a % href="matlab:web('http://www.biomecardio.com/publis/envirmodellsoftw12.pdf')">download PDF</a> % % Examples % -------- % % %% ---- RGB image ---- %% % onion = imread('onion.png'); % I = randperm(numel(onion)); % onionNaN = double(onion); onionNaN(I(1:round(numel(I)*0.5))) = NaN; % subplot(211), imshow(uint8(onionNaN)), title('Corrupted image - 50%') % for k=1:3, onion(:,:,k) = inpaintn(onionNaN(:,:,k)); end % subplot(212), imshow(uint8(onion)), title('Inpainted image') % % %% ---- 2-D data ---- %% % n = 256; % y0 = peaks(n); % y = y0; % I = randperm(n^2); % y(I(1:n^2*0.5)) = NaN; % lose 1/2 of data % y(40:90,140:190) = NaN; % create a hole % z = inpaintn(y,200); % inpaint data % subplot(2,2,1:2), imagesc(y), axis equal off % title('Corrupted data') % subplot(223), imagesc(z), axis equal off % title('Recovered data ...') % subplot(224), imagesc(y0), axis equal off % title('... compared with original data') % % %% ---- 3-D data ---- %% % load wind % xmin = min(x(:)); xmax = max(x(:)); % zmin = min(z(:)); ymax = max(y(:)); % %-- wind velocity % vel0 = interp3(sqrt(u.^2+v.^2+w.^2),1,'cubic'); % x = interp3(x,1); y = interp3(y,1); z = interp3(z,1); % %-- remove randomly 90% of the data % I = randperm(numel(vel0)); % velNaN = vel0; % velNaN(I(1:round(numel(I)*.9))) = NaN; % %-- inpaint using INPAINTN % vel = inpaintn(velNaN); % %-- display the results % subplot(221), imagesc(velNaN(:,:,15)), axis equal off % title('Corrupted plane, z = 15') % subplot(222), imagesc(vel(:,:,15)), axis equal off % title('Reconstructed plane, z = 15') % subplot(223) % hsurfaces = slice(x,y,z,vel0,[xmin,100,xmax],ymax,zmin); % set(hsurfaces,'FaceColor','interp','EdgeColor','none') % hcont = contourslice(x,y,z,vel0,[xmin,100,xmax],ymax,zmin); % set(hcont,'EdgeColor',[.7,.7,.7],'LineWidth',.5) % view(3), daspect([2,2,1]), axis tight % title('Original data compared with...') % subplot(224) % hsurfaces = slice(x,y,z,vel,[xmin,100,xmax],ymax,zmin); % set(hsurfaces,'FaceColor','interp','EdgeColor','none') % hcont = contourslice(x,y,z,vel,[xmin,100,xmax],ymax,zmin); % set(hcont,'EdgeColor',[.7,.7,.7],'LineWidth',.5) % view(3), daspect([2,2,1]), axis tight % title('... reconstructed data') % % %% --- 4-D data --- %% % [x1,x2,x3,x4] = ndgrid(-2:0.2:2); % z0 = x2.*exp(-x1.^2-x2.^2-x3.^2-x4.^2); % I = randperm(numel(z0)); % % remove 50% of the data % zNaN = z0; zNaN(I(1:round(numel(I)*.5))) = NaN; % % reconstruct the data using INPAINTN % z = inpaintn(zNaN); % % display the results (for x4 = 0) % subplot(211) % zNaN(isnan(zNaN)) = 0.5; % slice(x2(:,:,:,1),x1(:,:,:,1),x3(:,:,:,1),zNaN(:,:,:,11),... % [-1.2 0.8 2],2,[-2 0.2]) % title('Corrupt data, x4 = 0') % subplot(212) % slice(x2(:,:,:,1),x1(:,:,:,1),x3(:,:,:,1),z(:,:,:,11),... % [-1.2 0.8 2],2,[-2 0.2]) % title('Reconstructed data') % % See also SMOOTHN, GRIDDATAN % % -- Damien Garcia -- 2010/06, last update 2017/08 % website: <a % href="matlab:web('http://www.biomecardio.com/en')">www.BiomeCardio.com</a> if nargin==0&&nargout==0, RunTheExample, return, end class0 = class(x); x = double(x); if nargin==1 || isempty(n), n = 100; end sizx = size(x); d = ndims(x); Lambda = zeros(sizx); for i = 1:d siz0 = ones(1,d); siz0(i) = sizx(i); Lambda = bsxfun(@plus,Lambda,... cos(pi*(reshape(1:sizx(i),siz0)-1)/sizx(i))); end Lambda = 2*(d-Lambda); % Initial condition W = isfinite(x); if nargin==3 && ~isempty(y0) y = y0; s0 = 3; % note: s = 10^s0 else if any(~W(:)) [y,s0] = InitialGuess(x,isfinite(x)); else y = x; return end end x(~W) = 0; if isempty(n) || n<=0, n = 100; end % Smoothness parameters: from high to negligible values s = logspace(s0,-6,n); RF = 2; % relaxation factor if nargin<4 || isempty(m), m = 2; end Lambda = Lambda.^m; h = waitbar(0,'Inpainting...'); for i = 1:n Gamma = 1./(1+s(i)*Lambda); y = RF*idctn(Gamma.*dctn(W.*(x-y)+y)) + (1-RF)*y; waitbar(i/n,h) end close(h) y(W) = x(W); y = cast(y,class0); end %% Initial Guess function [z,s0] = InitialGuess(y,I) if license('test','image_toolbox') %-- nearest neighbor interpolation [~,L] = bwdist(I); z = y; z(~I) = y(L(~I)); s0 = 3; % note: s = 10^s0 else warning('MATLAB:inpaintn:InitialGuess',... ['BWDIST (Image Processing Toolbox) does not exist. ',... 'The initial guess may not be optimal; additional',... ' iterations can thus be required to ensure complete',... ' convergence. Increase N value if necessary.']) z = y; z(~I) = mean(y(I)); s0 = 6; % note: s = 10^s0 end end %% Example (3-D) function RunTheExample load wind %#ok xmin = min(x(:)); xmax = max(x(:)); %#ok zmin = min(z(:)); ymax = max(y(:)); %#ok %-- wind velocity vel0 = interp3(sqrt(u.^2+v.^2+w.^2),1,'cubic'); x = interp3(x,1); y = interp3(y,1); z = interp3(z,1); %-- remove randomly 90% of the data I = randperm(numel(vel0)); velNaN = vel0; velNaN(I(1:round(numel(I)*.9))) = NaN; %-- inpaint using INPAINTN vel = inpaintn(velNaN); %-- display the results subplot(221), imagesc(velNaN(:,:,15)), axis equal off title('Corrupt plane, z = 15') subplot(222), imagesc(vel(:,:,15)), axis equal off title('Reconstructed plane, z = 15') subplot(223) hsurfaces = slice(x,y,z,vel0,[xmin,100,xmax],ymax,zmin); set(hsurfaces,'FaceColor','interp','EdgeColor','none') hcont = contourslice(x,y,z,vel0,[xmin,100,xmax],ymax,zmin); set(hcont,'EdgeColor',[.7,.7,.7],'LineWidth',.5) view(3), daspect([2,2,1]), axis tight title('Actual data compared with...') subplot(224) hsurfaces = slice(x,y,z,vel,[xmin,100,xmax],ymax,zmin); set(hsurfaces,'FaceColor','interp','EdgeColor','none') hcont = contourslice(x,y,z,vel,[xmin,100,xmax],ymax,zmin); set(hcont,'EdgeColor',[.7,.7,.7],'LineWidth',.5) view(3), daspect([2,2,1]), axis tight title('... reconstructed data') end %% DCTN function y = dctn(y) %DCTN N-D discrete cosine transform. % Y = DCTN(X) returns the discrete cosine transform of X. The array Y is % the same size as X and contains the discrete cosine transform % coefficients. This transform can be inverted using IDCTN. % % Reference % --------- % Narasimha M. et al, On the computation of the discrete cosine % transform, IEEE Trans Comm, 26, 6, 1978, pp 934-936. % % Example % ------- % RGB = imread('autumn.tif'); % I = rgb2gray(RGB); % J = dctn(I); % imshow(log(abs(J)),[]), colormap(jet), colorbar % % The commands below set values less than magnitude 10 in the DCT matrix % to zero, then reconstruct the image using the inverse DCT. % % J(abs(J)<10) = 0; % K = idctn(J); % figure, imshow(I) % figure, imshow(K,[0 255]) % % -- Damien Garcia -- 2008/06, revised 2011/11 % -- www.BiomeCardio.com -- y = double(y); sizy = size(y); y = squeeze(y); dimy = ndims(y); % Some modifications are required if Y is a vector if isvector(y) dimy = 1; if size(y,1)==1, y = y.'; end end % Weighting vectors w = cell(1,dimy); for dim = 1:dimy n = (dimy==1)*numel(y) + (dimy>1)*sizy(dim); w{dim} = exp(1i*(0:n-1)'*pi/2/n); end % --- DCT algorithm --- if ~isreal(y) y = complex(dctn(real(y)),dctn(imag(y))); else for dim = 1:dimy siz = size(y); n = siz(1); y = y([1:2:n 2*floor(n/2):-2:2],:); y = reshape(y,n,[]); y = y*sqrt(2*n); y = ifft(y,[],1); y = bsxfun(@times,y,w{dim}); y = real(y); y(1,:) = y(1,:)/sqrt(2); y = reshape(y,siz); y = shiftdim(y,1); end end y = reshape(y,sizy); end %% IDCTN function y = idctn(y) %IDCTN N-D inverse discrete cosine transform. % X = IDCTN(Y) inverts the N-D DCT transform, returning the original % array if Y was obtained using Y = DCTN(X). % % Reference % --------- % Narasimha M. et al, On the computation of the discrete cosine % transform, IEEE Trans Comm, 26, 6, 1978, pp 934-936. % % Example % ------- % RGB = imread('autumn.tif'); % I = rgb2gray(RGB); % J = dctn(I); % imshow(log(abs(J)),[]), colormap(jet), colorbar % % The commands below set values less than magnitude 10 in the DCT matrix % to zero, then reconstruct the image using the inverse DCT. % % J(abs(J)<10) = 0; % K = idctn(J); % figure, imshow(I) % figure, imshow(K,[0 255]) % % See also DCTN, IDSTN, IDCT, IDCT2, IDCT3. % % -- Damien Garcia -- 2009/04, revised 2011/11 % -- www.BiomeCardio.com -- y = double(y); sizy = size(y); y = squeeze(y); dimy = ndims(y); % Some modifications are required if Y is a vector if isvector(y) dimy = 1; if size(y,1)==1 y = y.'; end end % Weighing vectors w = cell(1,dimy); for dim = 1:dimy n = (dimy==1)*numel(y) + (dimy>1)*sizy(dim); w{dim} = exp(1i*(0:n-1)'*pi/2/n); end % --- IDCT algorithm --- if ~isreal(y) y = complex(idctn(real(y)),idctn(imag(y))); else for dim = 1:dimy siz = size(y); n = siz(1); y = reshape(y,n,[]); y = bsxfun(@times,y,w{dim}); y(1,:) = y(1,:)/sqrt(2); y = ifft(y,[],1); y = real(y*sqrt(2*n)); I = (1:n)*0.5+0.5; I(2:2:end) = n-I(1:2:end-1)+1; y = y(I,:); y = reshape(y,siz); y = shiftdim(y,1); end end y = reshape(y,sizy); end
github
LucaDeSiena/MuRAT-master
vtkwrite.m
.m
MuRAT-master/Utilities_Matlab/VTKWRITE/vtkwrite.m
11,698
utf_8
b2d2311772bb3c962cf4c421b43f3ea2
function vtkwrite( filename,dataType,varargin ) % VTKWRITE Writes 3D Matlab array into VTK file format. % vtkwrite(filename,'structured_grid',x,y,z,'vectors',title,u,v,w) writes % a structured 3D vector data into VTK file, with name specified by the string % filename. (u,v,w) are the vector components at the points (x,y,z). x,y,z % should be 3-D matrices like those generated by meshgrid, where % point(ijk) is specified by x(i,j,k), y(i,j,k) and z(i,j,k). % The matrices x,y,z,u,v,w must all be the same size and contain % corrresponding position and vector component. The string title specifies % the name of the vector field to be saved. % % vtkwrite(filename,'structured_grid',x,y,z,'scalars',title,r) writes a 3D % scalar data into VTK file whose name is specified by the string % filename. r is the scalar value at the points (x,y,z). The matrices % x,y,z,r must all be the same size and contain the corresponding position % and scalar values. % % vtkwrite(filename,'structured_grid',x,y,z,'vectors',title,u,v,w,'scalars', % title2,r) writes a 3D structured grid that contains both vector and scalar values. % x,y,z,u,v,w,r must all be the same size and contain the corresponding % positon, vector and scalar values. % % vtkwrite(filename, 'structured_points', title, m) saves matrix m (could % be 1D, 2D or 3D array) into vtk as structured points. % % vtkwrite(filename, 'structured_points', title, m, 'spacing', sx, sy, sz) % allows user to specify spacing. (default: 1, 1, 1). This is the aspect % ratio of a single voxel. % % vtkwrite(filename, 'structured_points', title, m, 'origin', ox, oy, oz) % allows user to speicify origin of dataset. (default: 0, 0, 0). % % vtkwrite(filename,'unstructured_grid',x,y,z,'vectors',title,u,v,w,'scalars', % title2,r) writes a 3D unstructured grid that contains both vector and scalar values. % x,y,z,u,v,w,r must all be the same size and contain the corresponding % positon, vector and scalar values. % % vtkwrite(filename, 'polydata', 'lines', x, y, z) exports a 3D line where % x,y,z are coordinates of the points that make the line. x, y, z are % vectors containing the coordinates of points of the line, where point(n) % is specified by x(n), y(n) and z(n). % % vtkwrite(filename,'polydata','lines',x,y,z,'Precision',n) allows you to % specify precision of the exported number up to n digits after decimal % point. Default precision is 3 digits. % % vtkwrite(filename,'polydata','triangle',x,y,z,tri) exports a list of % triangles where x,y,z are the coordinates of the points and tri is an % m*3 matrix whose rows denote the points of the individual triangles. % % vtkwrite(filename,'polydata','tetrahedron',x,y,z,tetra) exports a list % of tetrahedrons where x,y,z are the coordinates of the points % and tetra is an m*4 matrix whose rows denote the points of individual % tetrahedrons. % % vtkwrite('execute','polydata','lines',x,y,z) will save data with default % filename ''matlab_export.vtk' and automatically loads data into % ParaView. % % Version 2.3 % Copyright, Chaoyuan Yeh, 2016 % Codes are modified from William Thielicke and David Gingras's submission. if strcmpi(filename,'execute'), filename = 'matlab_export.vtk'; end fid = fopen(filename, 'w'); % VTK files contain five major parts % 1. VTK DataFile Version fprintf(fid, '# vtk DataFile Version 2.0\n'); % 2. Title fprintf(fid, 'VTK from Matlab\n'); binaryflag = any(strcmpi(varargin, 'BINARY')); if any(strcmpi(varargin, 'PRECISION')) precision = num2str(varargin{find(strcmpi(vin, 'PRECISION'))+1}); else precision = '2'; end switch upper(dataType) case 'STRUCTURED_POINTS' title = varargin{1}; m = varargin{2}; if any(strcmpi(varargin, 'spacing')) sx = varargin{find(strcmpi(varargin, 'spacing'))+1}; sy = varargin{find(strcmpi(varargin, 'spacing'))+2}; sz = varargin{find(strcmpi(varargin, 'spacing'))+3}; else sx = 1; sy = 1; sz = 1; end if any(strcmpi(varargin, 'origin')) ox = varargin{find(strcmpi(varargin, 'origin'))+1}; oy = varargin{find(strcmpi(varargin, 'origin'))+2}; oz = varargin{find(strcmpi(varargin, 'origin'))+3}; else ox = 0; oy = 0; oz = 0; end [nx, ny, nz] = size(m); setdataformat(fid, binaryflag); fprintf(fid, 'DATASET STRUCTURED_POINTS\n'); fprintf(fid, 'DIMENSIONS %d %d %d\n', nx, ny, nz); fprintf(fid, ['SPACING ', num2str(sx), ' ', num2str(sy), ' ',... num2str(sz), '\n']); fprintf(fid, ['ORIGIN ', num2str(ox), ' ', num2str(oy), ' ',... num2str(oz), '\n']); fprintf(fid, 'POINT_DATA %d\n', nx*ny*nz); fprintf(fid, ['SCALARS ', title, ' float 1\n']); fprintf(fid,'LOOKUP_TABLE default\n'); if ~binaryflag spec = ['%0.', precision, 'f ']; fprintf(fid, spec, m(:)'); else fwrite(fid, m(:)', 'float', 'b'); end case {'STRUCTURED_GRID','UNSTRUCTURED_GRID'} % 3. The format data proper is saved in (ASCII or Binary). Use % fprintf to write data in the case of ASCII and fwrite for binary. if numel(varargin)<6, error('Not enough input arguments'); end setdataformat(fid, binaryflag); % fprintf(fid, 'BINARY\n'); x = varargin{1}; y = varargin{2}; z = varargin{3}; if sum(size(x)==size(y) & size(y)==size(z))~=length(size(x)) error('Input dimesions do not match') end n_elements = numel(x); % 4. Type of Dataset ( can be STRUCTURED_POINTS, STRUCTURED_GRID, % UNSTRUCTURED_GRID, POLYDATA, RECTILINEAR_GRID or FIELD ) % This part, dataset structure, begins with a line containing the % keyword 'DATASET' followed by a keyword describing the type of dataset. % Then the geomettry part describes geometry and topology of the dataset. if strcmpi(dataType,'STRUCTURED_GRID') fprintf(fid, 'DATASET STRUCTURED_GRID\n'); fprintf(fid, 'DIMENSIONS %d %d %d\n', size(x,1), size(x,2), size(x,3)); else fprintf(fid, 'DATASET UNSTRUCTURED_GRID\n'); end fprintf(fid, ['POINTS ' num2str(n_elements) ' float\n']); output = [x(:)'; y(:)'; z(:)']; if ~binaryflag spec = ['%0.', precision, 'f ']; fprintf(fid, spec, output); else fwrite(fid, output, 'float', 'b'); end % 5.This final part describe the dataset attributes and begins with the % keywords 'POINT_DATA' or 'CELL_DATA', followed by an integer number % specifying the number of points of cells. Other keyword/data combination % then define the actual dataset attribute values. fprintf(fid, ['\nPOINT_DATA ' num2str(n_elements)]); % Parse remaining argument. vidx = find(strcmpi(varargin,'VECTORS')); sidx = find(strcmpi(varargin,'SCALARS')); if vidx~=0 for ii = 1:length(vidx) title = varargin{vidx(ii)+1}; % Data enteries begin with a keyword specifying data type % and numeric format. fprintf(fid, ['\nVECTORS ', title,' float\n']); output = [varargin{ vidx(ii) + 2 }(:)';... varargin{ vidx(ii) + 3 }(:)';... varargin{ vidx(ii) + 4 }(:)']; if ~binaryflag spec = ['%0.', precision, 'f ']; fprintf(fid, spec, output); else fwrite(fid, output, 'float', 'b'); end % fwrite(fid, [reshape(varargin{vidx(ii)+2},1,n_elements);... % reshape(varargin{vidx(ii)+3},1,n_elements);... % reshape(varargin{vidx(ii)+4},1,n_elements)],'float','b'); end end if sidx~=0 for ii = 1:length(sidx) title = varargin{sidx(ii)+1}; fprintf(fid, ['\nSCALARS ', title,' float\n']); fprintf(fid, 'LOOKUP_TABLE default\n'); if ~binaryflag spec = ['%0.', precision, 'f ']; fprintf(fid, spec, varargin{ sidx(ii) + 2}); else fwrite(fid, varargin{ sidx(ii) + 2}, 'float', 'b'); end % fwrite(fid, reshape(varargin{sidx(ii)+2},1,n_elements),'float','b'); end end case 'POLYDATA' fprintf(fid, 'ASCII\n'); if numel(varargin)<4, error('Not enough input arguments'); end x = varargin{2}(:); y = varargin{3}(:); z = varargin{4}(:); if numel(varargin)<4, error('Not enough input arguments'); end if sum(size(x)==size(y) & size(y)==size(z))~= length(size(x)) error('Input dimesions do not match') end n_elements = numel(x); fprintf(fid, 'DATASET POLYDATA\n'); if mod(n_elements,3)==1 x(n_elements+1:n_elements+2,1)=[0;0]; y(n_elements+1:n_elements+2,1)=[0;0]; z(n_elements+1:n_elements+2,1)=[0;0]; elseif mod(n_elements,3)==2 x(n_elements+1,1)=0; y(n_elements+1,1)=0; z(n_elements+1,1)=0; end nbpoint = numel(x); fprintf(fid, ['POINTS ' num2str(nbpoint) ' float\n']); spec = [repmat(['%0.', precision, 'f '], 1, 9), '\n']; output = [x(1:3:end-2), y(1:3:end-2), z(1:3:end-2),... x(2:3:end-1), y(2:3:end-1), z(2:3:end-1),... x(3:3:end), y(3:3:end), z(3:3:end)]'; fprintf(fid, spec, output); switch upper(varargin{1}) case 'LINES' if mod(n_elements,2)==0 nbLine = 2*n_elements-2; else nbLine = 2*(n_elements-1); end conn1 = zeros(nbLine,1); conn2 = zeros(nbLine,1); conn2(1:nbLine/2) = 1:nbLine/2; conn1(1:nbLine/2) = conn2(1:nbLine/2)-1; conn1(nbLine/2+1:end) = 1:nbLine/2; conn2(nbLine/2+1:end) = conn1(nbLine/2+1:end)-1; fprintf(fid,'\nLINES %d %d\n',nbLine,3*nbLine); fprintf(fid,'2 %d %d\n',[conn1';conn2']); case 'TRIANGLE' ntri = length(varargin{5}); fprintf(fid,'\nPOLYGONS %d %d\n',ntri,4*ntri); fprintf(fid,'3 %d %d %d\n',(varargin{5}-1)'); case 'TETRAHEDRON' ntetra = length(varargin{5}); fprintf(fid,'\nPOLYGONS %d %d\n',ntetra,5*ntetra); fprintf(fid,'4 %d %d %d %d\n',(varargin{5}-1)'); end end fclose(fid); if strcmpi(filename,'matlab_export.vtk') switch computer case {'PCWIN','PCWIN64'} !paraview.exe --data='matlab_export.vtk' & % Exclamation point character is a shell escape, the rest of the % input line will be sent to operating system. It can not take % variables, though. The & at the end of line will return control to % Matlab even when the outside process is still running. case {'GLNXA64','MACI64'} !paraview --data='matlab_export.vtk' & end end end function setdataformat(fid, binaryflag) if ~binaryflag fprintf(fid, 'ASCII\n'); else fprintf(fid, 'BINARY\n'); end end
github
LucaDeSiena/MuRAT-master
colMapGen.m
.m
MuRAT-master/Utilities_Matlab/COLORMAP/colMapGen.m
3,113
utf_8
a2cb6d462c88f7316457c16e3547033b
function [colMap] = colMapGen(topCol,botCol,numCol,varargin) % Creates a colormap using two boundary colors and one middle % color. Both boundary colors blend into the middle color. % By default, the middle color is white. This can be changed using % the 'midCol' name-value pair argument. Input colors must be in RGB % triplet format (e.g. [0 0 0] for black). The user defines the number % of colors (segments) to make up the colormap (i.e from the first % boundary color to the second boundary color). %%%% Example usage %%%% % colMap = colMapGen([1 1 0],[0 0 0],20); % creates a colormap going from yellow to black, with a white % center. Colormap consists of 20 segments going from yellow to % black. % colMap = colMapGen([0 1 1],[0 0 1],100,'midCol',[0 0 0]); % creates a colormap going from red to blue in 100 segments. The % middle color is set to black. % Once a colormap is generated, upload to current figure using: % colormap(gca,colMap) % parse inputs - all inputs required except midCol, which is a % name-value argument p = inputParser; addRequired(p,'topCol',@isnumeric); % required function input addRequired(p,'botCol',@isnumeric); % required function input addRequired(p,'numCol',@isnumeric); % required function input addParameter(p,'midCol',[1 1 1],@isnumeric); % varargin input parse(p,topCol,botCol,numCol,varargin{:}); % parse inputs topCol = p.Results.topCol; % define function variable from inputs botCol = p.Results.botCol; % define function variable from inputs numCol = p.Results.numCol; % define function variable from inputs midCol = p.Results.midCol; % define function variable from inputs %%%% creates the upper portion of the colormap col1_topCol = linspace(topCol(1),midCol(1),round(numCol/2,0)); % 1st RGB triplet of topCol, from topCol(1) to midCol(1) col2_topCol = linspace(topCol(2),midCol(2),round(numCol/2,0)); % 2nd RGB triplet of topCol, from topCol(2) to midCol(2) col3_topCol = linspace(topCol(3),midCol(3),round(numCol/2,0)); % 3rd RGB triplet of topCol, from topCol(3) to midCol(3) RGB1 = [col1_topCol',col2_topCol',col3_topCol']; % matrix of RGB triplets (in rows), going from topCol to midCol %%%% creates the lower portion of the colormap col1_botCol = linspace(botCol(1),midCol(1),round(numCol/2,0)); % 1st RGB triplet of botCol, from botCol(1) to midCol(1) col2_botCol = linspace(botCol(2),midCol(2),round(numCol/2,0)); % 2nd RGB triplet of botCol, from botCol(2) to midCol(2) col3_botCol = linspace(botCol(3),midCol(3),round(numCol/2,0)); % 3rd RGB triplet of botCol, from botCol(3) to midCol(3) RGB2 = [col1_botCol',col2_botCol',col3_botCol']; % matrix of RGB triplets (in rows), going from botCol to midCol %%%% Final colormap colMap = [RGB2;flipud(RGB1)]; % creates the final colMap by concatenating the bottom colormap with the flipped top colormap end
github
LucaDeSiena/MuRAT-master
fwrite_sac.m
.m
MuRAT-master/Utilities_Matlab/F_SAC/fwrite_sac.m
14,136
utf_8
a0783d7ee600d31d1d6413745197c71f
function sac_mat = fwrite_sac(sac_mat, varargin) % FWRITE_SAC Write a SAC struct variable into a binary file. %######################################### %# # %# [Function] # %# Write SAC-formatted files # %# # %# # %# by Whyjay, Jan 2015 # %######################################### % % >> sac_mat = FWRITE_SAC(sac_mat) % >> sac_mat = FWRITE_SAC(sac_mat, filename) % >> sac_mat = FWRITE_SAC(sac_mat, filename, machine_fmt) % %----Input Variables---------------------------------------------------------- % sac_mat -> SAC data-pack struct, specified in 3 fields. % sac_mat.t -> 1-D time array, i.e. t % If omitted, SAC_MAT.HDR.E or SAC_MAT.HDR.DELTA is needed. % sac_mat.data -> 1-D data array, i.e. f(t) % If omitted, no any data but only header is written to output. % sac_mat.hdr -> 1-by-1 struct. the field names and types are the same with % SAC header version 6. please see Reference for more details. % If the time information (i.e. HDR.B, HDR.E, HDR.DELTA) % is omitted, SAC_MAT.T is needed. % e.g. to access header KSTNM, it's % >> sac_mat.hdr.kstnm (all the fieldnames are lower case.) % to access T0 to T9, it's % >> sac_mat.hdr.t (it's a 1-by-10 array, saving T0 - T9.) % filename -> File name. 1-D String array. % machine_fmt -> String that specifies the character encoding scheme % associated with the file. It can be 'b' or 'ieee-be' for % big-endian; 'l' or 'ieee-le' for little-endian. If omitted, % the program uses the local encoding scheme. % %----Reference---------------------------------------------------------------- % [1] Header fieldnames reference: http://www.iris.edu/files/sac-manual/ % [2] function FREAD_SAC could help create SAC_MAT struct format from a SAC file. % %----Output Variables--------------------------------------------------------- % sac_mat -> Verified SAC data-pack struct. The program may change some % headers of the original SAC_MAT.HDR if the time information % is not consistent. The program also auto fills the omitted % field in SAC_MAT.HDR with its default value. % %----Usage-------------------------------------------------------------------- % SAC_MAT = FWRITE_SAC(SAC_MAT) verifies and completes header data in SAC_MAT.HDR % % FWRITE_SAC(SAC_MAT, FILENAME) writes SAC_MAT into FILENAME. % % FWRITE_SAC(SAC_MAT, FILENAME, MACHINE_FMT) specifies the character encoding scheme. % %----Example----------------------------------------------------------------- % % [TASK 1] save a time sequence into .sac file % >> hum.t = linspace(0,1,201); % >> hum.data = humps(hum.t); % >> fwrite_sac(hum, 'humps.sac'); % % [TASK 2] auto-complete all the header information % >> sacmat.data = sin(0:pi/180:2*pi); % >> sacmat.hdr.delta = pi/180; % >> sacmat.hdr.b = 0; % >> sacmat.hdr.kstnm = 'TEST'; % >> sacmat = fwrite_sac(sacmat); % %----Lisensing--------------------------------------------------------------- % % FWRITE_SAC % AUTHOR: Whyjay Zheng % E-MAIL: [email protected] % CREATED: 2015.01.14 % Copyright (c) 2015, Whyjay Zheng % All rights reserved. % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. %====Check input: nargin==== if nargin >= 4 error('Too many input arguments.') elseif nargin == 3 machine_fmt_list = {'b', 'l', 'ieee-be', 'ieee-le'}; if sum(strcmp(varargin{2},machine_fmt_list)) machine_fmt = varargin{2}; else error('Wrong Machine Format. only ''b'', ''l'', ''ieee-be'', ''ieee-le'' can be accepted.') end elseif nargin == 2 machine_fmt = 'n'; end %====Check input: sac_mat==== if ~isstruct(sac_mat) error('Input is not a struct variable.') elseif ~isfield(sac_mat, 'hdr') sac_mat.hdr = struct('b', 0); elseif ~isstruct(sac_mat.hdr) error('Header is not a struct variable.') elseif length(sac_mat.hdr) == 0 sac_mat.hdr(1).b = 0; end %====Verify Header==== hdr_verified = check_hdr(sac_mat.hdr); hdr_verified = check_data(sac_mat, hdr_verified); sac_mat.hdr = hdr_verified; %====Start Writing File, if needed==== if nargin == 2 | nargin == 3 w_action(varargin{1}, sac_mat, machine_fmt); end %##################################################### %## function 'check_hdr' code ## %##################################################### function hdr = check_hdr(hdr) % Check hdr struct availability, and fill the missing headers with -12345. % %----Input Variables---------------------------------------------------------- % hdr -> SAC header struct. % %----Output Variables--------------------------------------------------------- % hdr_verified -> just like input, but all the essential field are filled % with undefined value: -12345. % %====Settings...==== hdr_list = {'delta', 'depmin', 'depmax', 'scale', 'odelta',... 'b', 'e', 'o', 'a', 't', 'f', 'resp',... 'stla', 'stlo', 'stel', 'stdp', 'evla', 'evlo', 'evel', 'evdp',... 'mag', 'user', 'dist', 'az', 'baz', 'gcarc', 'depmen',... 'cmpaz', 'cmpinc', 'xminimum', 'xmaximum', 'yminimum', 'ymaximum'... 'nzyear', 'nzjday', 'nzhour', 'nzmin', 'nzsec', 'nzmsec',... 'nvhdr', 'norid', 'nevid', 'npts', 'nwfid', 'nxsize', 'nysize',... 'iftype', 'idep', 'iztype', 'iinst', 'istreg', 'ievreg', 'ievtyp',... 'iqual', 'isynth', 'imagtyp', 'imagsrc',... 'leven', 'lpspol', 'lovrok', 'lcalda',... 'kstnm', 'kevnm', 'khole', 'ko', 'ka', 'kt', 'kf',... 'kuser', 'kcmpnm', 'knetwk', 'kdatrd', 'kinst'}; existence = isfield(hdr, hdr_list); lack_hdr = hdr_list(find(~existence)); %====Start to fill the lacking headers==== for key = lack_hdr switch key{:}(1) case 'k' % All the headers which begins with 'k' has a default of '-12345' if strcmp(key{:},'kt') % except KT and KUSER, since they are 10-by-8 and 3-by-8 text arrays. hdr.(key{:}) = repmat('-12345 ', 10, 1); elseif strcmp(key{:},'kuser') hdr.(key{:}) = repmat('-12345 ', 3, 1); else hdr.(key{:}) = '-12345'; end case 'l' % All the headers which begins with 'l' have a default of 0, except LEVEN if strcmp(key{:},'leven') % default vaule of LEVEN is 1 (evenly spaced). hdr.(key{:}) = 1; elseif strcmp(key{:},'lovrok') % default vaule of LOVROK is 1 (enable overwrite). hdr.(key{:}) = 1; else hdr.(key{:}) = 0; end case {'t', 'r', 'u'} % All the headers which begins with 't', 'r' and 'u' hdr.(key{:}) = -12345 * ones(10,1); % have a default of -12345 * ones(10,1) otherwise if strcmp(key{:},'nvhdr') % default vaule of NVHDR is 6 (header version). hdr.(key{:}) = 6; elseif strcmp(key{:},'b') % default vaule of B is 0 (begin time). hdr.(key{:}) = 0; elseif strcmp(key{:},'iftype') % default vaule of IFTYPE is 1 (time series data). hdr.(key{:}) = 1; else hdr.(key{:}) = -12345; % The other headers have a a default of -12345. end end end %##################################################### %## function 'check_data' code ## %##################################################### function hdr_verified = check_data(sac_mat, hdr_verified) % Check data availability, and overwrite some header related to time. % %----Input Variables---------------------------------------------------------- % sac_mat -> SAC data struct. must has fieldname 'hdr'. % hdr_verified -> header struct after function CHECK_HDR. % %----Output Variables--------------------------------------------------------- % hdr_verified -> just like input, but some headers possibly have changed. % headers that may be changed: B, E, DELTA, NPTS. % %====If no sac_mat.data ... Only write headers==== if ~isfield(sac_mat, 'data') hdr_verified.e = hdr_verified.b; hdr_verified.npts = 0; hdr_verified.delta = 0; %====If there's no any time tag ... ERROR==== elseif hdr_verified.e - (-12345) < eps & hdr_verified.delta - (-12345) < eps & ~isfield(sac_mat, 't') error('Time is not properly specified or not given. Please edit header or time array.') %====Time tag priority when conflicted: sac_mat.t > sac_mat.hdr.delta > sac_mat.hdr.e==== elseif isfield(sac_mat, 't') if length(sac_mat.t) ~= length(sac_mat.data) error('Number of Time and Data points are inconsistent.') end hdr_verified.b = sac_mat.t(1); hdr_verified.e = sac_mat.t(end); hdr_verified.npts = length(sac_mat.data); if length(sac_mat.data) <= 1 hdr_verified.delta = 0; else hdr_verified.delta = sac_mat.t(2) - sac_mat.t(1); end elseif isfield(sac_mat.hdr, 'delta') hdr_verified.npts = length(sac_mat.data); if hdr_verified.b - (-12345) > eps hdr_verified.e = hdr_verified.b + hdr_verified.delta * (length(sac_mat.data) - 1); elseif hdr_verified.e - (-12345) > eps hdr_verified.b = hdr_verified.e - hdr_verified.delta * (length(sac_mat.data) - 1); else error('Time is not properly specified. (No Begin and End.)') end else %if isfield(sac_mat.hdr, 'e') if hdr_verified.b - (-12345) > eps error('Time is not properly specified. (No Begin or Delta.)') end hdr_verified.npts = length(sac_mat.data); hdr_verified.delta = (hdr_verified.e - hdr_verified.b) / (length(sac_mat.data) - 1); end %##################################################### %## function 'w_action' code ## %##################################################### function w_action(filename, sac_mat, machine_fmt) % Write SAC struct into file. % %----Input Variables---------------------------------------------------------- % filename -> Writing File name. 1-D text array. % sac_mat -> SAC data struct. must has fieldname 'hdr'. % machine_fmt -> FOPEN-supported format. e.g. 'b', 'l', 'ieee-be', 'ieee-le' % hdr = sac_mat.hdr; f = fopen(filename, 'w', machine_fmt); fmt = 'float32'; fwrite(f, hdr.delta, fmt); fwrite(f, hdr.depmin, fmt); fwrite(f, hdr.depmax, fmt); fwrite(f, hdr.scale, fmt); fwrite(f, hdr.odelta, fmt); fwrite(f, hdr.b, fmt); fwrite(f, hdr.e, fmt); fwrite(f, hdr.o, fmt); fwrite(f, hdr.a, fmt); fwrite(f, -12345, fmt); fwrite(f, hdr.t, fmt); fwrite(f, hdr.f, fmt); fwrite(f, hdr.resp, fmt); fwrite(f, hdr.stla, fmt); fwrite(f, hdr.stlo, fmt); fwrite(f, hdr.stel, fmt); fwrite(f, hdr.stdp, fmt); fwrite(f, hdr.evla, fmt); fwrite(f, hdr.evlo, fmt); fwrite(f, hdr.evel, fmt); fwrite(f, hdr.evdp, fmt); fwrite(f, hdr.mag, fmt); fwrite(f, hdr.user, fmt); fwrite(f, hdr.dist, fmt); fwrite(f, hdr.az, fmt); fwrite(f, hdr.baz, fmt); fwrite(f, hdr.gcarc, fmt); fwrite(f, -12345, fmt); fwrite(f, -12345, fmt); fwrite(f, hdr.depmen, fmt); fwrite(f, hdr.cmpaz, fmt); fwrite(f, hdr.cmpinc, fmt); fwrite(f, hdr.xminimum, fmt); fwrite(f, hdr.xmaximum, fmt); fwrite(f, hdr.yminimum, fmt); fwrite(f, hdr.ymaximum, fmt); fwrite(f, -12345 * ones(7,1), fmt); fmt = 'int32'; fwrite(f, hdr.nzyear, fmt); fwrite(f, hdr.nzjday, fmt); fwrite(f, hdr.nzhour, fmt); fwrite(f, hdr.nzmin, fmt); fwrite(f, hdr.nzsec, fmt); fwrite(f, hdr.nzmsec, fmt); fwrite(f, hdr.nvhdr, fmt); fwrite(f, hdr.norid, fmt); fwrite(f, hdr.nevid, fmt); fwrite(f, hdr.npts, fmt); fwrite(f, -12345, fmt); fwrite(f, hdr.nwfid, fmt); fwrite(f, hdr.nxsize, fmt); fwrite(f, hdr.nysize, fmt); fwrite(f, -12345, fmt); fwrite(f, hdr.iftype, fmt); fwrite(f, hdr.idep, fmt); fwrite(f, hdr.iztype, fmt); fwrite(f, -12345, fmt); fwrite(f, hdr.iinst, fmt); fwrite(f, hdr.istreg, fmt); fwrite(f, hdr.ievreg, fmt); fwrite(f, hdr.ievtyp, fmt); fwrite(f, hdr.iqual, fmt); fwrite(f, hdr.isynth, fmt); fwrite(f, hdr.imagtyp, fmt); fwrite(f, hdr.imagsrc, fmt); fwrite(f, -12345 * ones(8,1), fmt); fwrite(f, hdr.leven, fmt); fwrite(f, hdr.lpspol, fmt); fwrite(f, hdr.lovrok, fmt); fwrite(f, hdr.lcalda, fmt); fwrite(f, -12345, fmt); fmt = 'char'; fwrite(f, sprintf('%-8s', hdr.kstnm), fmt); fwrite(f, sprintf('%-16s', hdr.kevnm), fmt); fwrite(f, sprintf('%-8s', hdr.khole), fmt); fwrite(f, sprintf('%-8s', hdr.ko), fmt); fwrite(f, sprintf('%-8s', hdr.ka), fmt); fwrite(f, hdr.kt', fmt); fwrite(f, sprintf('%-8s', hdr.kf), fmt); fwrite(f, hdr.kuser', fmt); fwrite(f, sprintf('%-8s', hdr.kcmpnm), fmt); fwrite(f, sprintf('%-8s', hdr.knetwk), fmt); fwrite(f, sprintf('%-8s', hdr.kdatrd), fmt); fwrite(f, sprintf('%-8s', hdr.kinst), fmt); if isfield(sac_mat,'data') fwrite(f, sac_mat.data, 'float32'); end fclose(f);
github
LucaDeSiena/MuRAT-master
fread_sac.m
.m
MuRAT-master/Utilities_Matlab/F_SAC/fread_sac.m
12,145
utf_8
c6aa24aba27e817a7b2e978bb200ae22
function varargout = fread_sac(varargin) % FREAD_SAC Read SAC-formatted files and save as struct variables. %######################################### %# # %# [Function] # %# Read SAC-formatted files # %# # %# # %# by Whyjay, Jan 2015 # %######################################### % % >> FREAD_SAC(filename) % >> [t, data, hdr] = FREAD_SAC(filename) % >> sac_mat = FREAD_SAC(filename) % >> [sac_mat1, sac_mat2, ...] = FREAD_SAC(filename1, filename2, ...) % >> [...] = FREAD_SAC(..., machine_fmt) % %----Input Variables---------------------------------------------------------- % filename -> File name. String array or Cell array. See Usage below. % machine_fmt -> String that specifies the character encoding scheme % associated with the file. It can be 'b' or 'ieee-be' for % big-endian; 'l' or 'ieee-le' for little-endian. If omitted, % the program uses the local encoding scheme. % %----Reference---------------------------------------------------------------- % [1] Header fieldnames reference: http://www.iris.edu/files/sac-manual/ % %----Output Variables--------------------------------------------------------- % t -> 1-D time records in a SAC file (from header B to header E). % data -> 1-D data records in a SAC file. % hdr -> Header structure. its fieldnames are the same with SAC % header version 6. Please see Reference for more details. % e.g. to access header KSTNM, it's % >> hdr.kstnm (all the fieldnames are lower case.) % to access T0 to T9, it's % >> hdr.t (it's a 1-by-10 array, saving T0 - T9.) % ##: header T, RESP, USER are all 1-by-10 arrays. % header KT, KUSER are 8-by-10 and 3-by-10 arrays, % each row represents one value (i.e. KT1, KT2,...) % sac_mat -> SAC data-pack struct. it packs T, DATA, HDR as a single % varible, and naming SAC_MAT.T, SAC_MAT.DATA, SAC_MAT.HDR. % e.g. to access SAC data, it's % >> sac_mat.data % to access header STLO, it's % >> sac_mat.hdr.stlo % %----Usage-------------------------------------------------------------------- % FREAD_SAC(FILENAME) reads single file, and illustrate it by time-series plot. % % [T, DATA, HDR] = FREAD_SAC(FILENAME) reads single file, and saves as T, DATA, % HDR separately. % % SAC_MAT = FREAD_SAC(FILENAME) reads one or multiple files, and saves as SAC_MAT. % If FILENAME contains N files in 2-D text array or 1-D cell array, % SAC_MAT would be a 1-by-N cell array with N SAC data-pack struct. % % [SAC_MAT1, SAC_MAT2, ...] = FREAD_SAC(FILENAME1, FILENAME2, ...) reads multiple % files, and saves to different variables. % % [...] = FREAD_SAC(..., MACHINE_FMT) specifies the character encoding scheme. % %----Example----------------------------------------------------------------- % % >> loca = fread_sac('LOCA.sac') % ---> read 'LOCA.sac' into loca struct. % >> [loca_e, loca_n, loca_z] = fread_sac('LOCA_E.sac', 'LOCA_N.sac', 'LOCA_Z.sac') % ---> multiple reading % >> loca = fread_sac({'LOCA_E.sac', 'LOCA_N.sac', 'LOCA_Z.sac'}, 'l') % ---> read multile files into loca cell array, % in little-endian encoding. % loca{1} => E, loca{2} => N, loca{3} => Z % %----Lisensing--------------------------------------------------------------- % % FREAD_SAC % AUTHOR: Whyjay Zheng % E-MAIL: [email protected] % CREATED: 2015.01.14 % Copyright (c) 2015, Whyjay Zheng % All rights reserved. % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. %====Set Machine Format (native, little-endian or big-endian)==== machine_fmt_list = {'b', 'l', 'ieee-be', 'ieee-le'}; fmt = 'n'; num_argin = nargin; if ischar(varargin{end}) if sum(strcmp(varargin{end}(1,:),machine_fmt_list)) fmt = varargin{end}; varargin(end) = []; num_argin = num_argin -1; end end %====Check Input Type==== if nargin == 0 error('No Inputs.') else for every_arg = varargin if ~or(ischar(every_arg{:}), iscell(every_arg{:})) error('Input must be text strings or a cell array.') end end end %====Start Reading File==== %====Type 1: [a, b, c,...] = fread_sac('A', 'B', 'C',...)==== if num_argin ~= 1 if nargout == num_argin for i=1:length(varargin) [t, data, hdr] = single_read(varargin{i},fmt); varargout{i} = struct('hdr',hdr,'t',t,'data',data); end else error('Number of arguments error.') end %====Type 2: a = fread_sac('A')==== elseif nargout == 1 if ischar(varargin{1}) & size(varargin{1},1) == 1 [t, data, hdr] = single_read(varargin{1},fmt); varargout{1} = struct('hdr',hdr,'t',t,'data',data); %====Type 3: set = fread_sac(['A';'B';...]) or set = fread_sac({'A','B',...})==== else if iscell(varargin{1}), fileset = varargin{1}; end if ischar(varargin{1}), fileset = (varargin{1})'; end varargout{1} = {}; for fname = fileset if iscell(fname), fname = fname{1}; end [t, data, hdr] = single_read(reshape(fname,1,[]),fmt); varargout{1}{end+1} = struct('hdr',hdr,'t',t,'data',data); end end %====Type 4: [t, data, hdr] = fread_sac('A')==== elseif ischar(varargin{1}) & size(varargin{1},1) == 1 if nargout == 3 [varargout{1:3}] = single_read(varargin{1},fmt); %====Type 5: fread_sac('A') (no output argument)==== elseif nargout == 0 [t, data, hdr] = single_read(varargin{1},fmt); plot(t, data) title(varargin{1}) tex = sprintf('%d %d, %d:%d''%d"%d %s-%s',... hdr.nzyear, hdr.nzjday, hdr.nzhour, hdr.nzmin,... hdr.nzsec, hdr.nzmsec, hdr.kstnm, hdr.kcmpnm); legend(tex) else error('Number of arguments error.') end else error('Number of arguments error.') end %##################################################### %## function 'single_read' code ## %##################################################### function [t, data, hdr] = single_read(filename, machine_fmt) % Read single SAC file, and Save it into 3 parts. % %----Input Variables---------------------------------------------------------- % filename -> Filename you want to read % machine_fmt -> FOPEN-supported format. e.g. 'b', 'l', 'ieee-be', 'ieee-le' % %----Output Variables--------------------------------------------------------- % t -> SAC data time sequence: t 1-D array. % data -> SAC data time sequence: f(t) 1-D array. % hdr -> SAC header (Version 6). It's a struct variable. % field names are the same with header names (in lower case). % f=fopen(filename, 'r', machine_fmt); if f==-1 errtext = sprintf('File "%s" doesn''t exist. Please check input.',filename); error(errtext); end hdr_pt1 = fread(f, 70, 'float32'); hdr_pt2 = fread(f, 40, 'int32'); hdr_pt3 = (fread(f, 192, 'char'))'; hdr = hdr_construct(hdr_pt1, hdr_pt2, hdr_pt3); %====If SAC header version ~= 6... ==== if hdr.nvhdr ~= 6 fprintf('Your file %s may not contain a SAC version-6 header.\n', filename) fprintf('Please check your file format and encoding scheme.\n') continued = input('Do you want to continue reading? y/[n] :', 's'); if ~strcmp(lower(continued), 'y') fclose(f); error('Not a SAC version-6 header.') end end data = fread(f, hdr.npts, 'float32'); t = (hdr.b : hdr.delta : (hdr.npts-1)*hdr.delta+hdr.b)'; fclose(f); %##################################################### %## function 'hdr_construct' code ## %##################################################### function hdr = hdr_construct(hdr_pt1, hdr_pt2, hdr_pt3) % Construct the SAC header struct. % %----Input Variables---------------------------------------------------------- % hdr_ptX -> header information, passed by SINGLE_READ. % %----Output Variables--------------------------------------------------------- % ndr -> header struct. % % Header fieldnames reference: http://www.iris.edu/files/sac-manual/ % Example: hdr.kstnm for header KSTNM hdr.delta = hdr_pt1(1); hdr.depmin = hdr_pt1(2); hdr.depmax = hdr_pt1(3); hdr.scale = hdr_pt1(4); hdr.odelta = hdr_pt1(5); hdr.b = hdr_pt1(6); hdr.e = hdr_pt1(7); hdr.o = hdr_pt1(8); hdr.a = hdr_pt1(9); hdr.t = hdr_pt1(11:20); % T0 - T9 hdr.f = hdr_pt1(21); hdr.resp = hdr_pt1(22:31); % RESP0 - RESP9 hdr.stla = hdr_pt1(32); hdr.stlo = hdr_pt1(33); hdr.stel = hdr_pt1(34); hdr.stdp = hdr_pt1(35); hdr.evla = hdr_pt1(36); hdr.evlo = hdr_pt1(37); hdr.evel = hdr_pt1(38); hdr.evdp = hdr_pt1(39); hdr.mag = hdr_pt1(40); hdr.user = hdr_pt1(41:50); % USER0 - USER9 hdr.dist = hdr_pt1(51); hdr.az = hdr_pt1(52); hdr.baz = hdr_pt1(53); hdr.gcarc = hdr_pt1(54); hdr.depmen = hdr_pt1(57); hdr.cmpaz = hdr_pt1(58); hdr.cmpinc = hdr_pt1(59); hdr.xminimum = hdr_pt1(60); hdr.xmaximum = hdr_pt1(61); hdr.yminimum = hdr_pt1(62); hdr.ymaximum = hdr_pt1(63); hdr.nzyear = hdr_pt2(1); hdr.nzjday = hdr_pt2(2); hdr.nzhour = hdr_pt2(3); hdr.nzmin = hdr_pt2(4); hdr.nzsec = hdr_pt2(5); hdr.nzmsec = hdr_pt2(6); hdr.nvhdr = hdr_pt2(7); hdr.norid = hdr_pt2(8); hdr.nevid = hdr_pt2(9); hdr.npts = hdr_pt2(10); hdr.nwfid = hdr_pt2(12); hdr.nxsize = hdr_pt2(13); hdr.nysize = hdr_pt2(14); hdr.iftype = hdr_pt2(16); hdr.idep = hdr_pt2(17); hdr.iztype = hdr_pt2(18); hdr.iinst = hdr_pt2(20); hdr.istreg = hdr_pt2(21); hdr.ievreg = hdr_pt2(22); hdr.ievtyp = hdr_pt2(23); hdr.iqual = hdr_pt2(24); hdr.isynth = hdr_pt2(25); hdr.imagtyp = hdr_pt2(26); hdr.imagsrc = hdr_pt2(27); hdr.leven = hdr_pt2(36); hdr.lpspol = hdr_pt2(37); hdr.lovrok = hdr_pt2(38); hdr.lcalda = hdr_pt2(39); hdr.kstnm = deblank(char(hdr_pt3(1:8))); hdr.kevnm = deblank(char(hdr_pt3(9:24))); hdr.khole = deblank(char(hdr_pt3(25:32))); hdr.ko = deblank(char(hdr_pt3(33:40))); hdr.ka = deblank(char(hdr_pt3(41:48))); hdr.kt = (reshape(char(hdr_pt3(49:128)),8,10))'; % KT0 - KT9 hdr.kf = deblank(char(hdr_pt3(129:136))); hdr.kuser = (reshape(char(hdr_pt3(137:160)),8,3))'; % KUSER0 - KUSER2 hdr.kcmpnm = deblank(char(hdr_pt3(161:168))); hdr.knetwk = deblank(char(hdr_pt3(169:176))); hdr.kdatrd = deblank(char(hdr_pt3(177:184))); hdr.kinst = deblank(char(hdr_pt3(185:192)));
github
LucaDeSiena/MuRAT-master
Murat_test.m
.m
MuRAT-master/Utilities_Matlab/MyUtilities/Murat_test.m
4,824
utf_8
33a4360f329c71f7e4cf2e0acd3156ef
function [image, SAChdr] = Murat_test(nameWaveform,... centralFrequencies,smoothingC,figOutput,verboseOutput) % TEST seismogram envelopes for changes in broadening % CREATES a figure with seismograms and envelopes for different frequencies % % Input Parameters: % nameWaveform: name of the SAC file % centralFrequencies: vector of frequencies (Hz),if [] no filter % smoothingCoefficient: coefficient to smooth envelopes % figOutput: decide if you want to show figures (set 1) % verboseOutput: decide if you want to show messages (set 1) % % Output: % image: image with envelope at specified frequency % SAChdr: header of the SAC file % % Imports SAC files [times,sisma,SAChdr] = fget_sac(nameWaveform); image = []; %% Figure if figOutput == 1 srate_i = 1/SAChdr.times.delta; sisma = detrend(sisma,1); lsis = length(sisma); tu = tukeywin(lsis,0.05); tsisma = tu.*sisma; image = figure('Name',['Test Seismograms: '... nameWaveform],'NumberTitle','off','Position',[20,400,1200,1000]); lengthFrequencies = length(centralFrequencies); plotFrequencies = 1:2:2*lengthFrequencies; if isequal(centralFrequencies,[]) plot(times,sisma,'k-','LineWidth',2); xlim([SAChdr.times.a - 5 SAChdr.times.a + 20]) SetFDefaults else for i = 1:lengthFrequencies % Filter creation - in loop for each frequency cf = centralFrequencies(i); Wn = ([cf-cf/3 cf+cf/3]/srate_i*2); [z,p,k] = butter(4,Wn,'bandpass'); [sos,g] = zp2sos(z,p,k); fsisma = filtfilt(sos,g,tsisma); hsp_i = hilbert(fsisma); sp_i = smooth(abs(hsp_i),smoothingC/cf*srate_i); subplot(lengthFrequencies,2,plotFrequencies(i)); plot(times,fsisma,'k-','LineWidth',2); xlabel('Time (s)') ylabel('Amplitude') SetFDefaults subplot(lengthFrequencies,2,plotFrequencies(i)+1); plot(times,sp_i,'k-','LineWidth',2); xlabel('Time (s)') ylabel('Energy') SetFDefaults end end end %% % Checking all metadata if verboseOutput == 1 fprintf('<strong> Checking temporal metadata.</strong>\n'); if isequal(SAChdr.times.o,-12345) disp('Origin (o) is not set.') else disp(['Origin (o) at ' num2str(SAChdr.times.o) ' s.']) end if isequal(SAChdr.times.a,-12345) disp('P wave picking (a) is not set.') else disp(['P wave picking (a) at ' num2str(SAChdr.times.a) ' s.']) end if isequal(SAChdr.times.t0,-12345) disp('S wave picking (t0) is not set.') else disp(['S wave picking (t0) at ' num2str(SAChdr.times.t0) ' s.']) end fprintf('<strong> Checking event location metadata.</strong>\n'); if isequal(SAChdr.event.evla,-12345) disp('Event latitude (evla) is not set.') else disp(['Event latitude (evla) at ' num2str(SAChdr.event.evla)... ' degrees.']) end if isequal(SAChdr.event.evlo,-12345) disp('Event longitude (evlo) is not set.') else disp(['Event longitude (evlo) at ' num2str(SAChdr.event.evlo)... ' degrees.']) end if isequal(SAChdr.event.evdp,-12345) disp('Event depth (evdp) is not set.') else disp(['Event depth (evdp) at ' num2str(SAChdr.event.evdp) ' km.']) end fprintf('<strong> Checking station location metadata.</strong>\n'); if isequal(SAChdr.station.stla,-12345) disp('Station latitude (stla) is not set.') else disp(['Station latitude (stla) at ' num2str(SAChdr.station.stla)... ' degrees.']) end if isequal(SAChdr.station.stlo,-12345) disp('Station longitude (stlo) is not set.') else disp(['Station longitude (stlo) at ' num2str(SAChdr.station.stlo)... ' degrees.']) end if isequal(SAChdr.station.stel,-12345) disp('Station elevation (stel) is not set.') else disp(['Station elevation (stel) at ' num2str(SAChdr.station.stel)... ' m.']) end end function SetFDefaults() % DEFAULT settings for MuRAt figures ax = gca; ax.GridColor = [0 0 0]; ax.GridLineStyle = '--'; ax.GridAlpha = 0.3; ax.LineWidth = 1.5; ax.FontSize = 12; grid on
github
LucaDeSiena/MuRAT-master
Murat_changeHdr.m
.m
MuRAT-master/Utilities_Matlab/MyUtilities/Murat_changeHdr.m
1,907
utf_8
6bc33f6d31d6da6139f47c74360de77d
%% CHANGES the header of sac files to include the pickings for MSH function seism = Murat_changeHdr(newFolder) % function seism = Murat_changeHdr(newfolder) % CHANGES header of a file % % Input Parameters: % newFolder: folder where you save the changed file % % Output: % seism: new seismogram % [file,path] = uigetfile('*.*'); if isequal(file,0) error('User selected Cancel!'); else disp(['User selected ', fullfile(path,file)]); end seism = fread_sac(fullfile(path,file)); hs = seism.hdr; Field =... ["Event Latitude";"Event Longitude";"Event depth (km)";... "Station Latitude";"Station Longitude"; "Station elevation (m)";... "Origin time"; "P time"; "S time"]; Value =... [hs.evla;hs.evlo;hs.evdp;... hs.stla;hs.stlo;hs.stel;... hs.o;hs.a;hs.t(1)]; requiredFields = table(Field,Value); disp(requiredFields); changeAsk =... input('What do you want to change?\n Nothing?\n Event (1)?\n Station (2)?\n Time (3)?'); switch changeAsk case 1 hs.evla = input('Event latitude?'); hs.evlo = input('Event longitude?'); hs.evdp = input('Event depth?'); case 2 hs.stla = input('Station latitude?'); hs.stlo = input('Station longitude?'); hs.stel = input('Station elevation?'); case 3 hs.o = input('Origin time?'); hs.a = input('P time?'); hs.t(1) = input('S time?'); end seism.hdr = hs; fwrite_sac(seism,fullfile(newFolder,file));
github
LucaDeSiena/MuRAT-master
Murat_testAll.m
.m
MuRAT-master/Utilities_Matlab/MyUtilities/Murat_testAll.m
3,301
utf_8
f45f33ba1ab04e214045c9260845080a
function [muratHeader,flag] = Murat_testAll(folderPath) % TEST all seismograms in a folder for the input parameters and % CREATES a file storing the parameters and flagging those missing % % Input Parameters: % folderPath: folder vontaining the SAC data % % Output: % muratHeader: Murat table showing the necessary parameter % [Names,~] = createsList(folderPath); lengthData = length(Names); Origin = cell(lengthData,1); P = cell(lengthData,1); S = cell(lengthData,1); EvLat = cell(lengthData,1); EvLon = cell(lengthData,1); EvDepth = cell(lengthData,1); StLat = cell(lengthData,1); StLon = cell(lengthData,1); StElev = cell(lengthData,1); for i=1:lengthData listSac_i = Names{i}; [~,SAChdr] = Murat_test(listSac_i,[],8,0,0); if isequal(SAChdr.times.o,-12345) Origin{i} = []; flag = 1; else Origin{i} = SAChdr.times.o; end if isequal(SAChdr.times.a,-12345) P{i} = []; flag = 1; else P{i} = SAChdr.times.a; end if isequal(SAChdr.times.t0,-12345) S{i} = []; flag = 1; else S{i} = SAChdr.times.t0; end if isequal(SAChdr.event.evla,-12345) EvLat{i} = []; flag = 1; else EvLat{i} = SAChdr.event.evla; end if isequal(SAChdr.event.evlo,-12345) EvLon{i} = []; flag = 1; else EvLon{i} = SAChdr.event.evlo; end if isequal(SAChdr.event.evdp,-12345) EvDepth{i} = []; flag = 1; else EvDepth{i} = SAChdr.event.evdp; end if isequal(SAChdr.station.stla,-12345) StLat{i} = []; flag = 1; else StLat{i} = SAChdr.station.stla; end if isequal(SAChdr.station.stlo,-12345) StLon{i} = []; flag = 1; else StLon{i} = SAChdr.station.stlo; end if isequal(SAChdr.station.stel,-12345) StElev{i} = []; flag = 1; else StElev{i} = SAChdr.station.stel; end end muratHeader = table(Names,Origin,P,S,EvLat,EvLon,... EvDepth,StLat,StLon,StElev); writetable(muratHeader,'DataHeaders.xls'); end %% function [listWithFolder,listNoFolder]... = createsList(directory) % CREATES a list of visible files in a folder, outputs both with and % without folder list = dir(directory); list = list(~startsWith({list.name}, '.')); listWithFolder = fullfile({list.folder},{list.name})'; listNoFolder = {list.name}'; end
github
LucaDeSiena/MuRAT-master
corner.m
.m
MuRAT-master/Utilities_Matlab/regtu/corner.m
8,828
utf_8
0c1b046514caab7971fcc127355e042a
function [k_corner,info] = corner(rho,eta,fig) %CORNER Find corner of discrete L-curve via adaptive pruning algorithm. % % [k_corner,info] = corner(rho,eta,fig) % % Returns the integer k_corner such that the corner of the log-log % L-curve is located at ( log(rho(k_corner)) , log(eta(k_corner)) ). % % The vectors rho and eta must contain corresponding values of the % residual norm || A x - b || and the solution's (semi)norm || x || % or || L x || for a sequence of regularized solutions, ordered such % that rho and eta are monotonic and such that the amount of % regularization decreases as k increases. % % The second output argument describes possible warnings. % Any combination of zeros and ones is possible. % info = 000 : No warnings - rho and eta describe a discrete % L-curve with a corner. % info = 001 : Bad data - some elements of rho and/or eta are % Inf, NaN, or zero. % info = 010 : Lack of monotonicity - rho and/or eta are not % strictly monotonic. % info = 100 : Lack of convexity - the L-curve described by rho % and eta is concave and has no corner. % % The warnings described above will also result in text warnings on the % command line. Type 'warning off Corner:warnings' to disable all % command line warnings from this function. % % If a third input argument is present, then a figure will show the discrete % L-curve in log-log scale and also indicate the found corner. % Reference: P. C. Hansen, T. K. Jensen and G. Rodriguez, "An adaptive % pruning algorithm for the discrete L-curve criterion," J. Comp. Appl. % Math., 198 (2007), 483-492. % Per Christian Hansen and Toke Koldborg Jensen, DTU Compute, DTU; % Giuseppe Rodriguez, University of Cagliari, Italy; Sept. 2, 2011. % Initialization of data if length(rho)~=length(eta) error('Vectors rho and eta must have the same length') end if length(rho)<3 error('Vectors rho and eta must have at least 3 elements') end rho = rho(:); % Make rho and eta column vectors. eta = eta(:); if (nargin < 3) | isempty(fig) fig = 0; % Default is no figure. elseif fig < 0, fig = 0; end info = 0; fin = isfinite(rho+eta); % NaN or Inf will cause trouble. nzr = rho.*eta~=0; % A zero will cause trouble. kept = find(fin & nzr); if isempty(kept) error('Too many Inf/NaN/zeros found in data') end if length(kept) < length(rho) info = info + 1; warning('Corner:warnings', ... ['Bad data - Inf, NaN or zeros found in data\n' ... ' Continuing with the remaining data']) end rho = rho(kept); % rho and eta with bad data removed. eta = eta(kept); if any(rho(1:end-1)<rho(2:end)) | any(eta(1:end-1)>eta(2:end)) info = info + 10; warning('Corner:warnings', 'Lack of monotonicity') end % Prepare for adaptive algorithm. nP = length(rho); % Number of points. P = log10([rho eta]); % Coordinates of the loglog L-curve. V = P(2:nP,:)-P(1:nP-1,:); % The vectors defined by these coordinates. v = sqrt(sum(V.^2,2)); % The length of the vectors. W = V./repmat(v,1,2); % Normalized vectors. clist = []; % List of candidates. p = min(5, nP-1); % Number of vectors in pruned L-curve. convex = 0; % Are the pruned L-curves convex? % Sort the vectors according to the length, the longest first. [Y,I] = sort(v); I = flipud(I); % Main loop -- use a series of pruned L-curves. The two functions % 'Angles' and 'Global_Behavior' are used to locate corners of the % pruned L-curves. Put all the corner candidates in the clist vector. while p < (nP-1)*2 elmts = sort(I(1:min(p, nP-1))); % First corner location algorithm candidate = Angles( W(elmts,:), elmts); if candidate>0, convex = 1; end if candidate & ~any(clist==candidate) clist = [clist;candidate]; end % Second corner location algorithm candidate = Global_Behavior(P, W(elmts,:), elmts); if ~any(clist==candidate) clist = [clist; candidate]; end p = p*2; end % Issue a warning and return if none of the pruned L-curves are convex. if convex==0 k_corner = []; info = info + 100; warning('Corner:warnings', 'Lack of convexity') return end % Put rightmost L-curve point in clist if not already there; this is % used below to select the corner among the corner candidates. if sum(clist==1) == 0 clist = [1;clist]; end % Sort the corner candidates in increasing order. clist = sort(clist); % Select the best corner among the corner candidates in clist. % The philosophy is: select the corner as the rightmost corner candidate % in the sorted list for which going to the next corner candidate yields % a larger increase in solution (semi)norm than decrease in residual norm, % provided that the L-curve is convex in the given point. If this is never % the case, then select the leftmost corner candidate in clist. vz = find(diff(P(clist,2)) ... % Points where the increase in solution >= abs(diff(P(clist,1)))); % (semi)norm is larger than or equal % to the decrease in residual norm. if length(vz)>1 if(vz(1) == 1), vz = vz(2:end); end elseif length(vz)==1 if(vz(1) == 1), vz = []; end end if isempty(vz) % No large increase in solution (semi)norm is found and the % leftmost corner candidate in clist is selected. index = clist(end); else % The corner is selected as described above. vects = [P(clist(2:end),1)-P(clist(1:end-1),1) ... P(clist(2:end),2)-P(clist(1:end-1),2)]; vects = sparse(diag(1./sqrt(sum(vects.^2,2)))) * vects; delta = vects(1:end-1,1).*vects(2:end,2) ... - vects(2:end,1).*vects(1:end-1,2); vv = find(delta(vz-1)<=0); if isempty(vv) index = clist(vz(end)); else index = clist(vz(vv(1))); end end % Corner according to original vectors without Inf, NaN, and zeros removed. k_corner = kept(index); if fig % Show log-log L-curve and indicate the found corner. figure(fig); clf diffrho2 = (max(P(:,1))-min(P(:,1)))/2; diffeta2 = (max(P(:,2))-min(P(:,2)))/2; loglog(rho, eta, 'k--o'); hold on; axis square; % Mark the corner. loglog([min(rho)/100,rho(index)],[eta(index),eta(index)],':r',... [rho(index),rho(index)],[min(eta)/100,eta(index)],':r') % Scale axes to same number of decades. if abs(diffrho2)>abs(diffeta2), ax(1) = min(P(:,1)); ax(2) = max(P(:,1)); mid = min(P(:,2)) + (max(P(:,2))-min(P(:,2)))/2; ax(3) = mid-diffrho2; ax(4) = mid+diffrho2; else ax(3) = min(P(:,2)); ax(4) = max(P(:,2)); mid = min(P(:,1)) + (max(P(:,1))-min(P(:,1)))/2; ax(1) = mid-diffeta2; ax(2) = mid+diffeta2; end ax = 10.^ax; ax(1) = ax(1)/2; axis(ax); xlabel('residual norm || A x - b ||_2') ylabel('solution (semi)norm || L x ||_2'); title(sprintf('Discrete L-curve, corner at %d', k_corner)); end % ========================================================================= % First corner finding routine -- based on angles function index = Angles( W, kv) % Wedge products delta = W(1:end-1,1).*W(2:end,2) - W(2:end,1).*W(1:end-1,2); [mm kk] = min(delta); if mm < 0 % Is it really a corner? index = kv(kk) + 1; else % If there is no corner, return 0. index = 0; end % ========================================================================= % Second corner finding routine -- based on global behavior of the L-curve function index = Global_Behavior(P, vects, elmts) hwedge = abs(vects(:,2)); % Abs of wedge products between % normalized vectors and horizontal, % i.e., angle of vectors with horizontal. [An, In] = sort(hwedge); % Sort angles in increasing order. % Locate vectors for describing horizontal and vertical part of L-curve. count = 1; ln = length(In); mn = In(1); mx = In(ln); while(mn>=mx) mx = max([mx In(ln-count)]); count = count + 1; mn = min([mn In(count)]); end if count > 1 I = 0; J = 0; for i=1:count for j=ln:-1:ln-count+1 if(In(i) < In(j)) I = In(i); J = In(j); break end end if I>0, break; end end else I = In(1); J = In(ln); end % Find intersection that describes the "origin". x3 = P(elmts(J)+1,1)+(P(elmts(I),2)-P(elmts(J)+1,2))/(P(elmts(J)+1,2) ... -P(elmts(J),2))*(P(elmts(J)+1,1)-P(elmts(J),1)); origin = [x3 P(elmts(I),2)]; % Find distances from the original L-curve to the "origin". The corner % is the point with the smallest Euclidian distance to the "origin". dists = (origin(1)-P(:,1)).^2+(origin(2)-P(:,2)).^2; [Y,index] = min(dists);
github
LucaDeSiena/MuRAT-master
l_curve_tikh_svd.m
.m
MuRAT-master/Utilities_Matlab/regtu/l_curve_tikh_svd.m
2,242
utf_8
e1bdddd1a72a141b0d242e3b03af8edb
% Parameter Estimation and Inverse Problems, 2nd edition, 2011 % by R. Aster, B. Borchers, C. Thurber % % return l curve parematers for Tikhonov Regularization % % Routine originally inspired by Per Hansen's l-curve % program (http://www2.imm.dtu.dk/~pch/Regutools/) % % % [rho,eta,reg_param] = l_curve_tikh(U,s,d,npoints,[alpha_min, alpha_max]) ) % % INPUT % U - matrix of data space basis vectors from the svd % s - vector of singular values % d - the data vector % npoints - the number of logarithmically spaced regularization parameters % [alpha_min, alpha_max] if specified, constrain the logrithmically spaced % regularization parameter range, otherwise an attempt is made to estimate % them from the range of singular values % % OUTPUT % eta - the solution norm ||m|| or seminorm ||Lm|| % rho - the residual norm ||G m - d|| % reg_param - corresponding regularization parameters % function [rho,eta,reg_param] = l_curve_tikh_svd(U,s,d,npoints,varargin) % Initialization. [m,n] = size(U); [p] = length(s); % compute the projection, and residual error introduced by the projection d_proj = U'*d; dr = norm(d)^2 - norm(d_proj)^2; %data projections d_proj = d_proj(1:p); %scale series terms by singular values d_proj_scale = d_proj./s; % initialize storage space eta = zeros(npoints,1); rho = eta; reg_param = eta; s2 = s.^2; if size(varargin,2)==0 % set the smallest regularization parameter that will be used smin_ratio = 16*eps; reg_param(npoints) = max([s(p),s(1)*smin_ratio]); % ratio so that reg_param(1) will be s(1) ratio = (s(1)/reg_param(npoints))^(1/(npoints-1)); end if size(varargin,2)==2 alpharange=cell2mat(varargin); reg_param(npoints)=alpharange(2); ratio=(alpharange(1)/alpharange(2))^(1/(npoints-1)); end % calculate all the regularization parameters for i=npoints-1:-1:1 reg_param(i) = ratio*reg_param(i+1); end % determine the fit for each parameter for i=1:npoints %GSVD filter factors f = s2./(s2 + reg_param(i)^2); eta(i) = norm(f.*d_proj_scale); rho(i) = norm((1-f).*d_proj); end % if we couldn't match the data exactly add the projection induced misfit if (m > n && dr > 0) rho = sqrt(rho.^2 + dr); end
github
ostwaldd/Variational-Bayes-GLM-master
beh_model_experiment.m
.m
Variational-Bayes-GLM-master/beh_model_experiment.m
50,096
utf_8
b884acb91730dbe9897bb719a7ee8fc5
function beh_model_experiment(sj_id, run_id) % This function presents the gridworld search paradigm. % % Inputs % sj_id : participant ID, string % run_id : run ID, scalar % % Outputs % None, saves results file to disc % % Copyright (C) Lilla Horvath, Dirk Ostwald % ------------------------------------------------------------------------- % ------------------------------------------------------------------------- % ---------------------------- Initialization ----------------------------- % ------------------------------------------------------------------------- clc close all % reset the state of the random nubmer generator based on computer clock rng('shuffle'); % New comment % ------------------------------------------------------------------------- % ------------------------ Paradigm Parameters ---------------------------- % ------------------------------------------------------------------------- % experimental parameters dim = 5 ; % grid dimension n_tgt = 2 ; % number of targets stim_dir = [pwd '\Stimuli'] ; % stimulus directory res_dir = [pwd '\Results\' sj_id] ; % participant specific result directory min_p = 50 ; % b_max = 3 ; % maximal number of blocks per task p_lim = [ 0.1 0.2 0.4 0.2 0.1] ; % +- two steps with probabilities given by p poss_lim = [-2 -1 0 1 2] ; % steps with probabilities given by p % short vs long stimuli presentation dependent parameters of the experiment % between subject condition bsc = 0 ; % between subject condition, 0 corresponds to the long and 1 to the short condition if bsc == 0 % experimental parameter n_task = 4 ; % number of tasks per run % timing parameters l_s = 3 ; % lower endpoint for the short duration (state and obs pres) u_s = 5 ; % upper endpoint for the short duration (state and obs pres) l_l = 6 ; % lower endpoint for the long duration (fixation point) u_l = 8 ; % upper endpoint for the long duration (fixation point) elseif bsc == 1 n_task = 8 ; % number of tasks per run % timing parameters l_s = 1.5 ; % lower endpoint for the short duration (state and obs pres) u_s = 2.5 ; % upper endpoint for the short duration (state and obs pres) l_l = 3 ; % lower endpoint for the long duration (fixation point) u_l = 4 ; % upper endpoint for the long duration (fixation point) end % cue display coordinates (up, down, left, right) cue_coords = [[0 177];[0 -177]; [-177 0];[177 0]]; % cogent display configuration parameters cog_ws = 1 ; % window size cog_rs = 3 ; % display resolution (mapped with laptop screen) cog_bc = [0 0 0] ; % background color cog_fc = [1 1 1] ; % foreground color cog_fn = 'Helvetia' ; % fontname cog_fs = 45 ; % fontsize cog_bu = 11 ; % number of offscreen-buffers cog_bd = 0 ; % bits per pixel % cogent keyboard configuration parameters cog_ql = 100 ; % quelength cog_kr = 5 ; % keyboard resolution cog_km = 'nonexclusive' ; % keyboard mode % scanner or behavioural testing flag isscan = 1 ; % 0: behavioural lab, 1: MR lab % response keys differentiation if isscan % button box "left" keys % --------------------------------------------------------------------- % blue , yellow, green , red % e = 5, w = 23 , n = 14, d = 4 % use cursor keys k_left = 5; k_up = 23; k_down = 14; k_right = 4; else % use cursor keys k_left = 97; k_up = 95; k_down = 100; k_right = 98; end % ------------------------------------------------------------------------- % -------------------------- Stimulus Loading ----------------------------- % ------------------------------------------------------------------------- % grid background stimulus filenames grid_fname = { 'upper_corner_left_s.jpg' , ... 'upper_corner_right_s.jpg' , ... 'lower_corner_left_s.jpg' , ... 'lower_corner_right_s.jpg' , ... 'side_upper_s.jpg' , ... 'side_left_s.jpg' , ... 'side_right_s.jpg' , ... 'side_lower_s.jpg' , ... 'middle_s.jpg' }; % cue stimulus filenames cue_fname = { 'dark_hor_s.jpg' ,... 'light_hor_s.jpg' ,... 'dark_ver_s.jpg' ,... 'light_ver_s.jpg' }; % decision prompt filenames arrow_fname = { 'up_s.jpg' ,... 'down_s.jpg' ,... 'left_s.jpg' ,... 'right_s.jpg' }; % load grid stimuli into workspace and normalize to cogent image format grid_pict = cell(1,numel(grid_fname)); for i = 1:numel(grid_fname) grid_pict{i} = double(imread(fullfile(stim_dir,grid_fname{i})))./255; end % load cue stimuli into workspace and normalize to cogent image format cue_pict = cell(1,numel(cue_fname)); for i = 1:numel(cue_fname) cue_pict{i} = double(imread(fullfile(stim_dir,cue_fname{i})))./255; end % load arrow stimuli into workspace and normalize to cogent image format arrow_pict = cell(1,numel(cue_fname)); for i = 1:numel(cue_fname) arrow_pict{i} = double(imread(fullfile(stim_dir,arrow_fname{i})))./255; end % load target stimulus into workspace and normalize to cogent image format target = double(imread(fullfile(stim_dir,'treasure2_s.jpg')))./255; % ------------------------------------------------------------------------- % ----------------------- Paradigm Presentation --------------------------- % ------------------------------------------------------------------------- % initialize cogent config_display(cog_ws, cog_rs, cog_bc, cog_fc, cog_fn, cog_fs, cog_bu, cog_bd); config_keyboard(cog_ql, cog_kr, cog_km); start_cogent; % display starting screen clearpict(1); preparestring('Ready',1) drawpict(1); % differentiate presentation start conditions % ------------------------------------------------------------------------- if isscan % wait for and read scanner trigger outportb(890,32) startState = inportb(888); oldValue = startState; triggerNum = 0; while triggerNum < 4 val = inportb(888); if val ~= oldValue triggerNum = triggerNum + 1; triggertime(triggerNum) = time; end oldValue = val; end else wait(2000); end % ------------------------------------------------------------------------- % ------------------------ Initial Fixation Block ------------------------- % ------------------------------------------------------------------------- % clear buffer 2 to default background color clearpict(2); % write fixation cross into buffer 2 preparestring('+',2); % present buffer 2, t_expstart is the time of the experiment start, i.e. % the scanner trigger synchronized zero time point. t_expstart = drawpict(2); % sample fixation duration and wait dur_fp_i = unifrnd(l_l,u_l)*1000; wait(dur_fp_i); % ------------------------------------------------------------------------- % --------------------------- Cycle Over Tasks ---------------------------- % ------------------------------------------------------------------------- % initialize global block counter over tasks blockcount = 1; % cycle over tasks for task = 1:n_task % sample target position from independent uniform discrete distribution % --------------------------------------------------------------------- % initialize target coordinate array tgt = ones(n_tgt,2); while tgt(1,:) == 1 || tgt(2,:) == 1 for j = 1 : n_tgt tgt(j,:) = unidrnd(5,1,2); end while isequal(tgt(1,:),tgt(2,:)) for i = n_tgt tgt(i,:) = unidrnd(5,1,2); end end end % Observation probability definition % --------------------------------------------------------------------- % initialize distance and probability arrays l1_map_t = NaN(dim, dim, n_tgt); p_map_t = NaN(dim,dim,n_tgt); max_l1 = NaN(1,n_tgt); lin_acc_g = NaN(1,n_tgt); % cycle over targets for t = 1:n_tgt % cycle over matrix rows for i = 1:dim % cyle over matrix columns for j = 1:dim % evaluate l1 distance to the target for each grid cell and each target l1_map_t(i,j,t) = pdist([i,j;tgt(t,1),tgt(t,2)], 'cityblock'); % parametrize 1 and 2 later! end end % maximum l1 distance for each target max_l1(t) = max(max(l1_map_t(:,:,t))); % linear increase in cue accuracy lin_acc_g(t) = min_p/(max_l1(t) - 1); % cue accuracy probability (right direction) p_map_t(:,:,t) = (100-((l1_map_t(:,:,t) - 1)*lin_acc_g(t)))/100; end % join probability maps p_12 = NaN(dim,dim); for i = 1:dim for j = 1:dim p_12(i,j) = join_p(p_map_t(i,j,1),p_map_t(i,j,2)); end end % Optimal number of steps for the current problem % --------------------------------------------------------------------- % evaluate the optimal path according to Dijkstra's algorithm % CAVE: OPTIMAL FORAY USES TGT IN TRANSPOSED FORM - HARMONIZE!!! optglobalpath = optimal_foray(dim,tgt'); % evaluate the number optimally visited nodes, including the start node n_opt = size(optglobalpath,2); % evaluate the number of optimal performed steps s_opt = n_opt - 1; % --------------------------------------------------------------------- % ------------------------ Cycle over Task Blocks --------------------- % --------------------------------------------------------------------- for block = 1:b_max % reset agent position to row 1, column 1 of grid matrix pos = [1 1]; step_lim = zeros(1,1); % initialize step_lim array while step_lim < 1 % sample from poss_lim until the step_limit (poss_lim + s_opt) is at least 1 % evaluate the step number limit step_lim = s_opt + poss_lim(find(logical(mnrnd(1,p_lim)))); end % initialize block log for current block blocklog = NaN(step_lim+1,34); % initialize target found flag % ----------------------------------------------------------------- % [0 0] : no target found % [1 0] : target at tgt_coord(1,:) found % [0 1] : target at tgt_coord(2,:) found % [1 1] : target at tgt_coord(1,:) and tgt_coord(2,:) found % ----------------------------------------------------------------- found_t = zeros(1,n_tgt); f_within_tl = zeros(1,1); % ----------------------------------------------------------------- % ------------------ Cycle over Block Trials ---------------------- % ----------------------------------------------------------------- for trial = 1:step_lim % record agent position prior to move pos_trial = pos; % Grid Cell State Preparation % ------------------------------------------------------------- % clear buffer 3 to default background color clearpict(3); % write the respective background grid image into buffer 3 preparepict(grid_pict{get_pictidx(pos, dim)},3); % additionally write the target to buffer 3, if appropriate, for t = 1:n_tgt % show image only if the target has not been found previously if isequal(pos,tgt(t,:)) && found_t(t) == 0 % write targt into buffer 3 preparepict(target,3,-70,-70); % set target found flag to 1 found_t(t) = 1; end end % additionally write fixation cross into buffer 3 preparestring('+',3); % additionally write string of current grid index into buffer 3 preparestring(['(',num2str(pos(1)),' , ', num2str(pos(2)),')'],3,70,-70); % additionally evaluate and write string of number of trials % left and targets found into buffer 3 preparestring([num2str(step_lim - trial + 1), ' (' num2str(sum(found_t)),')'],3,-190,190); % Grid Cell State Presentation % ------------------------------------------------------------- % present the grid cell state t_s = drawpict(3); % evaluate state presentation time wrt experiment start t_s = t_s - t_expstart; % evaluate state presentation duration dur_s = unifrnd(l_s,u_s)*1000; % present for dur_s wait(dur_s) % Observation Preparation % ------------------------------------------------------------- % clear buffer 4 to default background color clearpict(4); % differentiate l1 distance and probability maps if ~ismember(1, found_t) % no target found so far p_map = p_12; l1_map = l1_map_t; elseif found_t(1) == 1 && found_t(2) == 0 % target 1 found, target 2 not found p_map = p_map_t(:,:,2); l1_map = l1_map_t(:,:,2); elseif found_t(1) == 0 && found_t(2) == 1 % target 1 not found, target 2 found p_map = p_map_t(:,:,1); l1_map = l1_map_t(:,:,1); elseif found_t(1) == 1 && found_t(2) == 1 % both targets found % end the loop over trials, go to final state presentation f_within_tl = 1; % block-log array for trial loop - variables of trial where % goal reached before steps limit reached % (state presentation only) % --------------------------------------------------------- blocklog(trial,1:2) = tgt(1,:) ; % (1:2) target 1 position blocklog(trial,3:4) = tgt(2,:) ; % (3:4) target 2 position blocklog(trial,5:6) = found_t ; % (5:6) targets found flag blocklog(trial,7:8) = pos_trial ; % (7:8) current trial matrix row position blocklog(trial,9) = block ; % (9) block number (= attempt on this task) blocklog(trial,10) = f_within_tl ; % (10) both targets found within trial loop flag blocklog(trial,11) = t_s ; % (11) onset time of trial start/state presentation break end % get cue picture information [cueidx,d_cue,s_cue,o_cue] = get_cue(pos, l1_map, p_map); % write cue pictures into buffer 4 (up, down, left, right) for c = 1:length(cueidx) % if cueidx is zero, do write image into array if ~(cueidx(c) == 0) preparepict(cue_pict{cueidx(c)},4, cue_coords(c,1),cue_coords(c,2)); end end % additionally write fixation cross into buffer 4 preparestring('+',4); % additionally evaluate and write string of number of trials and targets found into buffer 4 preparestring([num2str(step_lim - trial + 1), ' (' num2str(sum(found_t)),')'],4,-190,190); % Observation Presentation % ------------------------------------------------------------- % present the observation t_o = drawpict(4); % evaluate observation presentation time wrt experiment start t_o = t_o - t_expstart; % evaluate observation presentation duration dur_o = unifrnd(l_s,u_s)*1000; % present for dur_o wait(dur_o); % Decision Prompt Preparation % ------------------------------------------------------------- % clear buffer 5 to default background color clearpict(5); % WRITE GET_ARROWIDX SUBFUNCTION FOR CONSITENCY if pos(1) ~= 1 % not uppermost row preparepict(arrow_pict{1},5,0,90); % arrow up end if pos(1) ~= dim % not lowermost row preparepict(arrow_pict{2},5,0,-90); % arrow down end if pos(2) ~= 1 % not leftmost column preparepict(arrow_pict{3},5,-90,0); % arrow left end if pos(2) ~= dim % not rightmost column preparepict(arrow_pict{4},5,90,0); % arrow right end % additionally write fixation cross into buffer 5 preparestring('+',5); % additionally evaluate and write string of number of trials and targets found into buffer 5 preparestring([num2str(step_lim - trial + 1), ' (' num2str(sum(found_t)),')'],5,-190,190); % Decision Prompt Presentation % ------------------------------------------------------------- % present decision prompt t_c = drawpict(5); % evaluate decision prompt presentation time t_c = t_c - t_expstart; % evaluate maximal decision prompt presentation time dur_r = unifrnd(l_s,u_s)*1000; % Read participant responses % ------------------------------------------------------------- % clears all prior keyboard events clearkeys; % read all key events since the last readkeyes readkeys; % evaluate keyboard responses [key_d,t_d] = waitkeydown(dur_r, [k_up,k_left,k_right,k_down]); % record keyboard response time t_d = t_d - t_expstart; % case that the participants responds faster than dur_r if t_d - t_c < dur_r % Post-Decision Fixation Preparation % --------------------------------------------------------- % clear buffer 6 to default background color clearpict(6); % additionally evaluate and write string of number of trials and targets found into buffer 6 preparestring([num2str(step_lim - trial), ' (' num2str(sum(found_t)),')'],6,-190,190); % write fixation cross to buffer 6 preparestring('+',6); % present fixation t_pd_f = drawpict(6); % present fixation for the remaining time of the response interval wait(dur_r - (t_d - t_c)); end % Decision Consequence - Agent movement % ------------------------------------------------------------- % evaluate decision, if there is one if ~isempty(key_d) % evaluate new position based on key press if key_d == k_up pos(1) = pos(1) - 1; elseif key_d == k_down pos(1) = pos(1) + 1; elseif key_d == k_left pos(2) = pos(2) - 1; elseif key_d == k_right pos(2) = pos(2) + 1; end % make inappropriate steps impossible for i = 1:length(pos) if pos(i) < 1 pos(i) = 1 ; elseif pos(i) > dim pos(i) = dim; end end % if there is no response the agent remains at its location else key_d = NaN; t_d = NaN; end % fill in block-log array % ------------------------------------------------------------- blocklog(trial,1:2) = tgt(1,:) ; % (1:2) target 1 position blocklog(trial,3:4) = tgt(2,:) ; % (3:4) target 2 position blocklog(trial,5:6) = found_t ; % (5:6) targets found flag blocklog(trial,7:8) = pos_trial ; % (7:8) current trial matrix row position blocklog(trial,9) = block ; % (9) block number (= attempt on this task) blocklog(trial,10) = f_within_tl ; % (10) both targets found within trial loop flag blocklog(trial,11) = t_s ; % (11) onset time of trial start/state presentation blocklog(trial,12) = t_o ; % (12) onset time of observation presentation blocklog(trial,13) = t_c ; % (13) onset time of decision cue (arrows) presentation blocklog(trial,14) = t_d ; % (14) onset time of participant's button press blocklog(trial,15) = key_d ; % (15) participant/agent decision (NaN = no key pres) blocklog(trial,16) = t_d - t_c ; % (16) reaction time (button press onset - decision cue onset, NaN: no key press - no reaction time) blocklog(trial,17:20) = d_cue ; % (17:20) display cue flags blocklog(trial,21:24) = s_cue ; % (21:24) sample cue flags blocklog(trial,25:28) = o_cue ; % (25:28) cue sampling outcomes blocklog(trial,29:32) = cueidx ; % (29:32) cue sampling outcomes end % trial loop % ----------------------------------------------------------------- % ------------- Final State Presentation Preparation -------------- % ----------------------------------------------------------------- % clear buffer 7 to default background color clearpict(7); % Evaluate target presence % ----------------------------------------------------------------- if f_within_tl == 0 % write the respective background grid image into buffer 7 preparepict(grid_pict{get_pictidx(pos, dim)},7); % additionally write the target to buffer 7, if appropriate, for t = 1:n_tgt % show image only if the target has not been found previously if isequal(pos,tgt(t,:)) && found_t(t) == 0 % write targt into buffer 3 preparepict(target,7,-70,-70); % set target found flag to 1 found_t(t) = 1; end end % additionally write fixation cross to buffer 7 preparestring('+',7); % additionally write string of current grid index into buffer 7 preparestring(['(',num2str(pos(1)),' , ', num2str(pos(2)),')'],7,70,-70); % additionally evaluate and write string of number of trials and targets found into buffer 7 preparestring([num2str(step_lim - trial), ' (' num2str(sum(found_t)),')'],7,-190,190); % Final State Presentation Preparation % ----------------------------------------------------------------- % present the final state t_fin_s = drawpict(7); % evaluate final state presentation time t_fin_s = t_fin_s - t_expstart; % evaluate duration of the final state presentation dur_fin_s = unifrnd(l_s,u_s)*1000; % present for dur_fin_s wait(dur_fin_s); % fill in block-log array for final state % --------------------------------------------------------- blocklog(trial+1,1:2) = tgt(1,:) ; % (1:2) target 1 position blocklog(trial+1,3:4) = tgt(2,:) ; % (3:4) target 2 position blocklog(trial+1,5:6) = found_t ; % (5:6) targets found flag blocklog(trial+1,7:8) = pos ; % (7:8) current trial matrix row position blocklog(trial+1,9) = block ; % (9) block number (= attempt on this task) blocklog(trial+1,10) = f_within_tl ; % (10) both targets found within trial loop flag (if 0: endstate pres) blocklog(trial+1,11) = t_fin_s ; % (11) onset time of trial start/state presentation end % End of block - case distinction and information presentation %------------------------------------------------------------------ % Reset Information Preparation % ----------------------------------------------------------------- clearpict(8); if sum(found_t) == 2 preparestring('Both targets found',8); info_block = 1; else preparestring('Step Limit Reached',8); if block < b_max preparestring('Resetting Position',8, 0,-40); info_block = 2; else preparestring('Attempt Limit Reached',8,0,-40); info_block = 3; end end t_info = drawpict(8); % evaluate information presentation time wrt experiment start t_info = t_info - t_expstart; % evaluateinformation presentation duration dur_info = unifrnd(l_s,u_s)*1000; % present for dur_info wait(dur_info); clearpict(9); t_fix_b = NaN; dur_fix_b = NaN; if info_block == 2 && rem(blockcount,4) == 0 preparestring('+',9) t_fix_b = drawpict(9); t_fix_b = t_fix_b - t_expstart; dur_fix_b = unifrnd(l_l,u_l)*1000; wait(dur_fix_b); end % fill in block-log array for block information % ----------------------------------------------------------------- blocklog(trial+1,12) = info_block ; % (12) type of info at the end of the block blocklog(trial+1,13) = t_info ; % (13) onset time of information presentation (last state only!) blocklog(trial+1,14) = step_lim ; % (14) block specific step limit blocklog(trial+1,15) = s_opt ; % (15) optimal number of steps for task blocklog(trial+1,16) = t_fix_b ; % (16) onset time of fixation presentation after 4th block % allocate variable values to runlog array runlog{blockcount} = blocklog; % increase blockcounter blockcount = blockcount + 1; if block < b_max && sum(found_t) == 2 break end end % End of task - case distinction and information presentation %------------------------------------------------------------------ % Reset Information Preparation % ----------------------------------------------------------------- clearpict(10); if task < n_task preparestring('Creating New Task', 10); info_task = 1; else preparestring('Task Limit Reached',10); preparestring('Ending Program',10,0,-40); info_task = 2; end t_info_tl = drawpict(10); % evaluate information presentation time wrt experiment start t_info_tl = t_info_tl - t_expstart; % evaluateinformation presentation duration dur_info_tl = unifrnd(l_s,u_s)*1000; % present for dur_info wait(dur_info_tl); clearpict(11); if rem((blockcount-1),4) == 0 preparestring('+',11) t_fix_b = drawpict(11); t_fix_b = t_fix_b - t_expstart; dur_fix_b = unifrnd(l_l,u_l)*1000; wait(dur_fix_b); end % fill in block-log array for end of task % -------------------------------------------------------------------- blocklog(trial+1,17) = info_task ; % (17) type of info after a task blocklog(trial+1,18) = t_info_tl ; % (18) onset time of information presentation - end of task blocklog(trial+1,19) = dur_info_tl ; % (19) duration of info presentation - end of task blocklog(trial+1,20) = t_fix_b ; % (20) onset time of fixation presentation after 4th block blocklog(trial+1,21) = dur_fix_b ; % (21) duration of fixation presentation % % allocate variable values to runlog array runlog{blockcount-1} = blocklog; % task specific l1 map l1_maps_t{task} = l1_map_t; % task specific p map p_maps_t{task} = p_map_t; % task specific joint p map p_12_maps{task} = p_12; % task specific optimal steps s_opt_all{task} = s_opt; end % task loop % save % --------------------------------------------------------- % save to disc save(fullfile(res_dir, [sj_id '_Run_' num2str(run_id), '.mat']), 'runlog', 'l1_maps_t', 'p_maps_t', 'p_12_maps', 's_opt_all', 'bsc') % end cogent stop_cogent; end function [pictidx] = get_pictidx(pos_coord, dim) % This function returns the indices of pictures in the grid_pict array % based on the current coordinates of the agent % % Inputs % pos_coord : 2 x 1 array of agent row and column coordinatee % dim : grid world dimension % % Outpus % pictidx : scalar index for grid_pict array % % Copyright (C) Dirk Ostwald % ------------------------------------------------------------------------- % determine the index % ------------------------------------------------------------------------- % upper left corner if pos_coord(1) == 1 && pos_coord(2) == 1 pictidx = 1; % upper right corner elseif pos_coord(1) == 1 && pos_coord(2) == dim pictidx = 2; % lower left corner elseif pos_coord(1) == dim && pos_coord(2) == 1 pictidx = 3; % lower right corner elseif pos_coord(1) == dim && pos_coord(2) == dim pictidx = 4; % uppermost row elseif pos_coord(1) == 1 && (pos_coord(2) > 1 && pos_coord(2) < dim) pictidx = 5; % leftmost row elseif (pos_coord(1) > 1 && pos_coord(1) < dim) && pos_coord(2) == 1 pictidx = 6; % rightmost row elseif (pos_coord(1) > 1 && pos_coord(1) < dim) && pos_coord(2) == dim pictidx = 7 ; % lowermost row elseif pos_coord(1) == dim && (pos_coord(2) > 1 && pos_coord(2) < dim) pictidx = 8; % interior of the grid else pictidx = 9; end % grid cell image selection end function [cueidx,d_cue,s_cue,o_cue] = get_cue(pos, l1_map, p_map) % This function specifies four variables, each with two possible values ( % filenames of images), where the current value of the variable depends on % the function of Manhattan-distance (l1 norm), and the outcome of % sampling from a Bernoulli distribution % % Input % pos : 1 x 2 array if agent gridworld matrix coordinate % l1_map : dim x dim x n_tgt array of l1 distances to target % p_map : dim x dim array of probabilities (joint probability % or probability map of target1/target2 % % Output % cueidx : 4 x 1 (up, down, left, right) array of cue image array % indices with the semantic % (0) = no bar % (1) = dark vertical % (2) = light vertical % (3) = dark horizontal % (4) = light horizontal % d_cue : 4 x 1 (up, down, left, right) array of display cue flags % s_cue : 4 x 1 (up, down, left, right) array of sample cue flags % o_cue : 4 x 1 (up, down, left, right) array of cue sample outcomes % % Copyright (C) Lilla Horvath, Dirk Ostwald % ------------------------------------------------------------------------- % % Initialization % ------------------------------------------------------------------------- % recover problem cardinalities n_act = 4 ; % largest possible action set n_dim = size(l1_map,1) ; % assuming a square grid world % evaluate possible future locations("act"ion "o"ut"c"omes) act_oc = repmat(pos,n_act,1) ; act_oc(1,1) = act_oc(1,1) - 1 ; % step up act_oc(2,1) = act_oc(2,1) + 1 ; % step down act_oc(3,2) = act_oc(3,2) - 1 ; % step left act_oc(4,2) = act_oc(4,2) + 1 ; % step right % cue display, sample, and sample outcome flag initialization % order of flags => up,down,left,right cues d_cue = NaN(n_act,1) ; % display cue ? (0/1) s_cue = NaN(n_act,1) ; % sample cue ? (0/1) o_cue = NaN(n_act,1) ; % sample outcome ? (0/1/NaN = not sampled) % Evaluation of display, cue, and outcome flags % ------------------------------------------------------------------------- % cycle over possible action outcomes for a = 1:n_act % if action outcome takes the agent of grid, do not display cue and do not sample if any(act_oc(a,:) < 1) || any(act_oc(a,:) > n_dim) d_cue(a) = 0; s_cue(a) = 0; % if action outcome does not take agent of the grid else % display cue d_cue(a) = 1; % set sampling flag to zero as default s_cue(a) = 0; % if, in addition action outcome decreases l1 distance to any % target, set sampling flag to 1 for t = 1:size(l1_map,3) % action outcome decreases distance to target t if l1_map(act_oc(a,1),act_oc(a,2),t) < l1_map(pos(1),pos(2),t) % sample cue s_cue(a) = 1; end end end end % sample the relevant cues from a Bernoulli distribution with parameter % determined from the probability map for a = 1:n_act % determine whether to sample or not if s_cue(a) % sample cue outcome based on Binomial distribution with n = 1 and % p as function of probability map and agent position o_cue(a) = binornd(1,p_map(pos(1), pos(2))); end end % determine cue array index % ------------------------------------------------------------------------- % cue_array order: (1) dark_hor,(2) light_hor,(3) dark_ver,(4) light_ver % initialize cueidx to no cue depiction cueidx = zeros(n_act,1); % cycle over action set for a = 1:n_act % update cueidx, if a cue is to be displayed if d_cue(a) % up/down action outcomes -> horizontal bars if a < 3 % a cue is to be displayed, but it was not sampled -> dark bar if s_cue(a) == 0 cueidx(a) = 1; % a cue is to be displyed and it was sampled else % determine dark or light horizontal bar switch o_cue(a) % 0 was sampled case 0 % dark horizontal bar is displayed cueidx(a) = 1; % 1 was sampled case 1 % light horizontal bar is displayed cueidx(a) = 2; end % switch end % if % left/right action outcomes -> vertical bars else % a cue is to be displayed, but it was not sampled -> dark bar if s_cue(a) == 0 cueidx(a) = 3; % a cue is to be displyed and it was sampled else % determine dark or light vertical bar switch o_cue(a) % 0 was sampled case 0 % dark vertical bar is displayed cueidx(a) = 3; % 1 was sampled case 1 % light vertical bar is displayed cueidx(a) = 4; end % switch end% if end % if end % if end % for end % function function p_12 = join_p(p_1,p_2) % This function evaluates weights w_1, w_2 for two Bernoulli distribution % parameters p_1, p_2 in [0.5,1] such that the weighted sum of p_1 and p_2 % using w_1, w_2, i.e. % % p_12 = w_1*p_2 + w_2*p_2 % % falls into the interval [.5,1]. % % Inputs % p_1,p_2 : Bernoulli distribution parameters in [0.5,1] % % Outputs % w_1,w_2 : Bernoulli distribution parameter weights in [0,1] % % Copyright (C) Dirk Ostwald % ------------------------------------------------------------------------- if p_1 >= p_2 p_12 = p_2 + (p_1 - p_2)*p_1; else p_12 = p_1 + (p_2 - p_1)*p_2; end end function [optglpathmidxs] = optimal_foray(n,tgt_coord) % This function is a training script that uses Dijkstra's algorithm to % determine the optimal foray path to recover size(tgt,2) items in a n x n % grid-world starting in the upper left corner. The implemenation of % Dijkstra's algorithm capitalizes on graph notation. % % Inputs % n : scalar indicating the gridworld dimension % tgt_coords : 2 x number of target array of target coordinates % % Output % optglpathmidxs : 2 x n array of the optimal path in matrix % coordinates, n corresponds to the number of % visited nodes % % Copyright (C) Dirk Ostwald % ------------------------------------------------------------------------- clc close all % convert matrix target coordinates into graph nodes % ------------------------------------------------------------------------- % CAVE: Matlab's linear indices increase row-wise, not column-wise,, % while the optimal foray graph nodes do so vice versa. Hence the % transposition of the input target coordinates tgt = NaN(1,size(tgt_coord,2)); for i = 1:size(tgt_coord,2) tgt(i) = sub2ind([n,n],tgt_coord(2,i),tgt_coord(1,i)); end % tgt will be constructively destroyed below, thus save in additionally tgt_mark = tgt; % graph nodes: a grid world % ------------------------------------------------------------------------- % specify matrix coordinates = graph nodes M = NaN(n^2,2); m_idx = 1; for i = 1:n for j = 1:n M(m_idx,1) = i; M(m_idx,2) = j; m_idx = m_idx + 1; end end % graph edges: a grid world adjacency matrix % ------------------------------------------------------------------------- % initialize as completely unconnected graph A = zeros(size(M,1)); % specify square grid-world edges row wise for i = 1:(n^2-1) % right-most column graph nodes if mod(i,n) == 0 A(i,i+n) = 1; % last-row column graph nodes elseif i >= (n^2 - n) A(i,i+1) = 1; % standard case else A(i,i+1) = 1; A(i,i+n) = 1; end end % specify symmetric connections A = A + A'; % cost matrix for steps between nodes i and j % ------------------------------------------------------------------------- C = A; % Determine optimal path % ------------------------------------------------------------------------- % initialize start node to upper left corner start_node = 1; % initialize the optimal global path covering all targets optglobalpath = 1; % iteratively determine the optimal global path while ~isempty(tgt) % evaluate optimal paths from start_node to remaining target nodes pathcost = NaN(1,length(tgt)); optpath = cell(1,length(tgt)); for i = 1:length(tgt) % determine costs and paths using Dijkstra's algorithm [localcost,localpath] = dijkstras_algorithm(A,C,start_node,tgt(i)); pathcost(i) = localcost; optpath{i} = localpath; end % determine the cheapest path [minpathcost, minidx] = min(pathcost); % concatenate the global path, remove starting node optglobalpath = [optglobalpath optpath{minidx}(2:end)]; % redefine the starting point for the next search start_node = tgt(minidx); % remove the target from the target list tgt(minidx) = []; end % reconvert the optimal global path to matrix indices % ------------------------------------------------------------------------- optglpathmidxs = NaN(2,length(optglobalpath)); for i = 1:length(optglobalpath) [col,row] = ind2sub([n,n],optglobalpath(i)); optglpathmidxs(1,i) = row; optglpathmidxs(2,i) = col; end % convert graph space into matrix coordinates into Cartesian coordinates % ------------------------------------------------------------------------- % convert the matrix graph node coordinates to Cartesian coordinates K = NaN(n^2,2); for m = 1:size(K,1) K(m,:) = mat2cart(M(m,:),n); end % initialize connection array in matrix index space src_node_mat = NaN(sum(sum(A)),2); tgt_node_mat = NaN(sum(sum(A)),2); src_node_crt = NaN(sum(sum(A)),2); tgt_node_crt = NaN(sum(sum(A)),2); % cycle over adjacency matrix rows and colummn minidx = 1; for i = 1:size(A,1) for j = 1:size(A,2) % there exists a connection between M coordinates n and m if A(i,j) == 1 src_node_mat(minidx,:) = M(i,:); tgt_node_mat(minidx,:) = M(j,:); minidx = minidx + 1; end end end % convert to list of Cartesian coordinates for i = 1:size(src_node_mat,1) src_node_crt(i,:) = mat2cart(src_node_mat(i,:),n); tgt_node_crt(i,:) = mat2cart(tgt_node_mat(i,:),n); end % convert the path defined as edge nodes into matrix coordinates % ------------------------------------------------------------------------- % initialize path coordinated arrays in matrix and Cartesian space path_src_node_mat = NaN(length(optglobalpath)-1,2); path_tgt_node_mat = NaN(length(optglobalpath)-1,2); path_src_node_crt = NaN(length(optglobalpath)-1,2); path_tgt_node_crt = NaN(length(optglobalpath)-1,2); minidx = 1; for i = 2:length(optglobalpath) % determine source and target nodes in matrix coordinates path_src_node_mat(minidx,:) = M(optglobalpath(i-1),:); path_tgt_node_mat(minidx,:) = M(optglobalpath(i) ,:); minidx = minidx + 1; end % convert matrix coordinate path into list of Cartesian coordinate path for i = 1:size(path_src_node_mat,1) path_src_node_crt(i,:) = mat2cart(path_src_node_mat(i,:),n); path_tgt_node_crt(i,:) = mat2cart(path_tgt_node_mat(i,:),n); end % visualize the problem and its solution % ------------------------------------------------------------------------- % visualize the grid world do_plot = 0; if do_plot h = figure; set(h, 'Color', [1 1 1]) hold on plot(K(:,1), K(:,2), 'ko', 'MarkerFaceColor', 'k') for i = 1:size(src_node_mat,1) plot([src_node_crt(i,1) tgt_node_crt(i,1)],[src_node_crt(i,2) tgt_node_crt(i,2)]) end % visualize the target nodes for i = 1:length(tgt_mark) plot(K(tgt_mark(i),1), K(tgt_mark(i),2), 'go', 'MarkerFaceColor', 'g') end % visualize the optimal path for i = 1:size(path_src_node_crt,1) plot([path_src_node_crt(i,1) path_tgt_node_crt(i,1)],[path_src_node_crt(i,2) path_tgt_node_crt(i,2)], 'r', 'LineWidth', 3) end xlim([min(K(:,1))-1, max(K(:,1))+1]) ylim([min(K(:,2))-1, max(K(:,2))+1]) axis square axis off end end function [xy] = mat2cart(ij,n) % This function transforms matrix coordinates(i,j)to Cartesian coordinates % (x,y) to allow for straightforward plotting of matrix space properties. % It implements the mapping % % f:N_n^2 -> R^2, (i,j) |-> f(i,j) := (x,y) := (j - (n+1)/2,-i +(n+1)/2 ) % % where (i,j) refer to matrix row and column indices and (x,y) to Cartesian % coordinates for a given square matrix size of size n x n. The Cartesian % coordinates are zero centered at the center of the matrix % % Inputs % % ij : (2 x 1) array of matrix row index i and column index j % n : matrix size % % Outputs % xy : (2 x 1) array of Cartesian x-ordinate x and y-ordinate y % % Copyright (C) Dirk Ostwald % ------------------------------------------------------------------------- % implement the transform % ------------------------------------------------------------------------- xy(1) = ij(2) - ((n + 1)/2); xy(2) = -ij(1) + ((n + 1)/2); end function [costs, paths] = dijkstras_algorithm(A,C,s,f) % This function implements Dijkstra's algorithm, a dynamic programming % routine, to evaluate the optimal (lowest cost) path from a specified % start node to a specified target node on a graph specified by the % adjacency matrix A with an associated cost matrix for each edge given by % C. It is based on Joseph Kirk's Matlab implementation of Dijkstra's % algorithm as available from http://www.mathworks.com/matlabcentral/ % fileexchange/20025-advanced-dijkstras-minimum-path-algorithm % % Inputs % % A : (n^2 x n^2) adjaency matrix specifying the edges of a graph % comprising n nodes % C : (n^2 x n^2) cost matrix specifying the cost associated with % taking a specific edge % s : scalar start node % t : scalar target node % % Outputs % % costs: % paths: % % Copyright (C) Dirk Ostwald % ------------------------------------------------------------------------- % recover adjacency matrix size [n, nc] = size(A); % recover cost matrix size [m, mc] = size(C); % convert adjacency matrix to edge list [I,J] = find(A); E = [I J]; cost = C; L = length(s); M = length(f); costs = zeros(L,M); paths = num2cell(NaN(L,M)); % Find the Minimum Costs and Paths using Dijkstra's Algorithm for k = 1:L % Initializations TBL = sparse(1,n); min_cost = Inf(1,n); settled = zeros(1,n); path = num2cell(nan(1,n)); I = s(k); min_cost(I) = 0; TBL(I) = 0; settled(I) = 1; path(I) = {I}; while any(~settled(f)) % Update the Table TAB = TBL; TBL(I) = 0; nids = find(E(:,1) == I); % Calculate the Costs to the Neighbor Points and Record Paths for kk = 1:length(nids) J = E(nids(kk),2); if ~settled(J) c = cost(I,J); empty = ~TAB(J); if empty || (TAB(J) > (TAB(I) + c)) TBL(J) = TAB(I) + c; path{J} = [path{I} J]; else TBL(J) = TAB(J); end end end K = find(TBL); % Find the Minimum Value in the Table N = find(TBL(K) == min(TBL(K))); if isempty(N) break else % Settle the Minimum Value I = K(N(1)); min_cost(I) = TBL(I); settled(I) = 1; end end % store Costs and Paths costs(k,:) = min_cost(f); paths(k,:) = path(f); end if L == 1 && M == 1 paths = paths{1}; end end
github
yu-jiang/Squirrelbot-master
armUI.m
.m
Squirrelbot-master/armUI.m
6,568
utf_8
11e2a6de0ea54f142ddd1ee62755bc1e
classdef armUI < handle properties fig axis lines ac %arduno controller % Sliders sliderMotor1 sliderMotor2 sliderMotor3 sliderMotor4 simulationOnly = false; positionData buttonConnect buttonReplay buttonAddPoint buttonClear % end methods function this = armUI() this.fig = figure('Name', 'Micro Robotic Arm Visualizer', ... 'Position',[400 200 800 400]); this.ac = arduinoController; this.positionData = mraSimulator(this.ac.angle1, this.ac.angle2, this.ac.angle3); this.sliderMotor1 = uicontrol(this.fig, 'style', 'slider', ... 'Max', pi, 'Min', 0, ... 'Value', this.positionData.theta1, ... 'Position', [420 300 360 30], ... 'callback', {@slider1callback, this}); this.sliderMotor2 = uicontrol(this.fig, 'style', 'slider', ... 'Max', pi, 'Min', 0, ... 'Value', this.positionData.theta2, ... 'Position', [420 250 360 30], ... 'callback', {@slider2callback, this}); this.sliderMotor3 = uicontrol(this.fig, 'style', 'slider', ... 'Max', pi, 'Min', 0, ... 'Value', this.positionData.theta3, ... 'Position', [420 200 360 30], ... 'callback', {@slider3callback, this}); this.sliderMotor4 = uicontrol(this.fig, 'style', 'slider', ... 'Max', pi, 'Min', 0, ... 'Value', 0.5*pi, ... 'Position', [420 150 360 30], ... 'callback', {@slider4callback, this}); this.buttonConnect = uicontrol(this.fig, 'style', 'pushButton', ... 'Position', [420 20 90 50], ..., 'String', 'Connect', ... 'callback', {@connectButtonCallback, this}); this.buttonConnect = uicontrol(this.fig, 'style', 'pushButton', ... 'Position', [510 20 90 50], ..., 'String', 'Replay', ... 'callback', {@replayButtonCallback, this}); % this.buttonAddPoint = uicontrol(this.fig, 'style', 'pushButton', ... % 'Position', [600 20 90 50], ..., % 'String', 'Log Position', ... % 'callback', {@addPointButtonCallback, this}); this.buttonClear = uicontrol(this.fig, 'style', 'pushButton', ... 'Position', [690 20 90 50], ..., 'String', 'Clear', ... 'callback', {@clearButtonCallback, this}); [this.lines.l, this.lines.lbase, this.lines.ltrj] = initializeAxes(this); end function updateVirtualArm(this) % Draw auxillary dashed line set(this.lines.lbase, 'XData', [this.positionData.xyz0(1), this.positionData.xyza(1)]); set(this.lines.lbase, 'YData', [this.positionData.xyz0(2), this.positionData.xyza(2)]); set(this.lines.lbase, 'ZData', [this.positionData.xyz0(3), this.positionData.xyza(3)]); % Draw the arm set(this.lines.l, 'XData',[this.positionData.xyz0(1) this.positionData.xyz1(1) this.positionData.xyz2(1) this.positionData.xyz3(1)]); set(this.lines.l, 'YData',[this.positionData.xyz0(2) this.positionData.xyz1(2) this.positionData.xyz2(2) this.positionData.xyz3(2)]); set(this.lines.l, 'ZData',[this.positionData.xyz0(3) this.positionData.xyz1(3) this.positionData.xyz2(3) this.positionData.xyz3(3)]); % Draw trajectory if ~isempty(this.ac.SavedTrj) set(this.lines.ltrj, 'XData', this.ac.EndPointData(:,1), ... 'YData', this.ac.EndPointData(:,2), ... 'ZData', this.ac.EndPointData(:,3)); end drawnow; end end methods (Access = protected) function update(this) updateVirtualArm(this); update(this.ac); end function updateSliders(this, val) this.sliderMotor1.Value = val(1); this.sliderMotor2.Value = val(2); this.sliderMotor3.Value = val(3); this.sliderMotor3.Value = val(4); end end % % % events % positionChange % end end % Local functions function slider1callback(handle,~,this) this.positionData.theta1 = handle.Value; this.ac.angle1 = handle.Value; update(this); end function slider2callback(handle,~,this) this.positionData.theta2 = handle.Value; this.ac.angle2 = handle.Value; update(this); end function slider3callback(handle,~,this) this.positionData.theta3 = handle.Value; this.ac.angle3 = handle.Value; update(this); end function slider4callback(handle,~,this) this.ac.angle4 = handle.Value; %this.ac.angle5 = pi - handle.Value; update(this); end function connectButtonCallback(handle, ~, this) if this.ac.isconnected disConnectArduino(this.ac); this.ac.isconnected = false; else this.ac.isconnected = connectArduino(this.ac); end if this.ac.isconnected handle.String = 'Disconnect'; end end function clearButtonCallback(handle, ~, this) this.ac.clearSavedTrj; set(this.lines.ltrj, 'XData', NaN, ... 'YData', NaN, ... 'ZData', NaN); update(this); end function replayButtonCallback(handle, ~, this) this.ac.autolog = false; for ct = 1:size(this.ac.SavedTrj, 1); if any(isnan(this.ac.SavedTrj(ct,:))) continue end this.positionData.copyAngle(this.ac.SavedTrj(ct,:)) this.ac.copyAngle(this.positionData); update(this); updateSliders(this, this.ac.SavedTrj(ct,:)); disp(this.ac.SavedTrj(ct,:)); pause(0.01); end this.ac.autolog = true; end function addPointButtonCallback(handle, ~, this) this.ac.addTrjPoint([this.ac.angle1 this.ac.angle2 this.ac.angle3 this.ac.angle4]); update(this); end function [l, lbase, ltrj] = initializeAxes(this) this.fig; this.axis = gca; this.axis.Position = [0.1 0.1 0.4 0.8]; axis equal axis(this.axis, [-5 5 -5 5 0 6]/2); grid on; % Draw auxillary dashed line lbase = line([this.positionData.xyz0(1), this.positionData.xyza(1)], ... [this.positionData.xyz0(2), this.positionData.xyza(2)], ... [this.positionData.xyz0(3), this.positionData.xyza(3)], ... 'LineWidth', 2, ... 'LineStyle', '-.',... 'Color', [1 0 0]); % Draw the arm l = line([this.positionData.xyz0(1) this.positionData.xyz1(1) this.positionData.xyz2(1) this.positionData.xyz3(1)], ... [this.positionData.xyz0(2) this.positionData.xyz1(2) this.positionData.xyz2(2) this.positionData.xyz3(2)], ... [this.positionData.xyz0(3) this.positionData.xyz1(3) this.positionData.xyz2(3) this.positionData.xyz3(3)], ... 'LineWidth', 2); % Initialize the trajectory if ~isempty(this.ac.SavedTrj) this.lines.ltrj = line(this.ac.EndPointData(:,1), ... this.ac.EndPointData(:,2), ... this.ac.EndPointData(:,3), ... 'Marker', 'o', 'Color', [0 1 0]); else ltrj = line(NaN, NaN, 'Marker', 'o', 'Color', [0 1 0]); end end
github
anduresu/NonLinearOptimizationHW-master
step.m
.m
NonLinearOptimizationHW-master/step.m
853
utf_8
da0005ef212fbebf552e873e78184bf0
function tk = step( f , x0 ) tg = 0 ; td = 0 ; t = 1/2 ; tk = 0 ; while tk ~= t [a,b,c] = golstein_rule( f, x0, t) ; if a == 1 tk = t ; end if b == 1 td = t ; end if c == 1 tg = t ; end if b == 1 || c == 1 if td == 0 t = 10*tg ; else t = (tg + td)/2 ; end end end end function [ val , grad0 ] = h( f, x0, t ) d = -eval(subs(jacobian(f),argnames(f),x0)) ; x_delta = x0 + t*d ; val = eval(subs(f,argnames(f),x_delta)) - eval(subs(f,argnames(f),x0)) ; grad0 = eval(subs(gradient(f),argnames(f),x0))*d ; end function [ a , b , c ] = golstein_rule( f, x0, t ) a = 0 ; b = 0 ; c = 0 ; m2 = 0.618033989 ; m1 = 1 - m2 ; [h_valt, grad_h0] = h(f, x0, t) ; if ( h_valt > m1*grad_h0*t ) b = 1 ; end if ( h_valt < m2*grad_h0*t ) c = 1 ; end if b == 0 && c == 0 a = 1 ; end end
github
cszn/DnCNN-master
Cal_PSNRSSIM.m
.m
DnCNN-master/utilities/Cal_PSNRSSIM.m
6,569
utf_8
c726759a14c4754004b2fbbec4ebbf36
function [psnr_cur, ssim_cur] = Cal_PSNRSSIM(A,B,row,col) [n,m,ch]=size(B); A = A(row+1:n-row,col+1:m-col,:); B = B(row+1:n-row,col+1:m-col,:); A=double(A); % Ground-truth B=double(B); % e=A(:)-B(:); mse=mean(e.^2); psnr_cur=10*log10(255^2/mse); if ch==1 [ssim_cur, ~] = ssim_index(A, B); else ssim_cur = (ssim_index(A(:,:,1), B(:,:,1)) + ssim_index(A(:,:,2), B(:,:,2)) + ssim_index(A(:,:,3), B(:,:,3)))/3; end function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L) %======================================================================== %SSIM Index, Version 1.0 %Copyright(c) 2003 Zhou Wang %All Rights Reserved. % %The author is with Howard Hughes Medical Institute, and Laboratory %for Computational Vision at Center for Neural Science and Courant %Institute of Mathematical Sciences, New York University. % %---------------------------------------------------------------------- %Permission to use, copy, or modify this software and its documentation %for educational and research purposes only and without fee is hereby %granted, provided that this copyright notice and the original authors' %names appear on all copies and supporting documentation. This program %shall not be used, rewritten, or adapted as the basis of a commercial %software or hardware product without first obtaining permission of the %authors. The authors make no representations about the suitability of %this software for any purpose. It is provided "as is" without express %or implied warranty. %---------------------------------------------------------------------- % %This is an implementation of the algorithm for calculating the %Structural SIMilarity (SSIM) index between two images. Please refer %to the following paper: % %Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image %quality assessment: From error measurement to structural similarity" %IEEE Transactios on Image Processing, vol. 13, no. 1, Jan. 2004. % %Kindly report any suggestions or corrections to [email protected] % %---------------------------------------------------------------------- % %Input : (1) img1: the first image being compared % (2) img2: the second image being compared % (3) K: constants in the SSIM index formula (see the above % reference). defualt value: K = [0.01 0.03] % (4) window: local window for statistics (see the above % reference). default widnow is Gaussian given by % window = fspecial('gaussian', 11, 1.5); % (5) L: dynamic range of the images. default: L = 255 % %Output: (1) mssim: the mean SSIM index value between 2 images. % If one of the images being compared is regarded as % perfect quality, then mssim can be considered as the % quality measure of the other image. % If img1 = img2, then mssim = 1. % (2) ssim_map: the SSIM index map of the test image. The map % has a smaller size than the input images. The actual size: % size(img1) - size(window) + 1. % %Default Usage: % Given 2 test images img1 and img2, whose dynamic range is 0-255 % % [mssim ssim_map] = ssim_index(img1, img2); % %Advanced Usage: % User defined parameters. For example % % K = [0.05 0.05]; % window = ones(8); % L = 100; % [mssim ssim_map] = ssim_index(img1, img2, K, window, L); % %See the results: % % mssim %Gives the mssim value % imshow(max(0, ssim_map).^4) %Shows the SSIM index map % %======================================================================== if (nargin < 2 || nargin > 5) ssim_index = -Inf; ssim_map = -Inf; return; end if (size(img1) ~= size(img2)) ssim_index = -Inf; ssim_map = -Inf; return; end [M N] = size(img1); if (nargin == 2) if ((M < 11) || (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); % K(1) = 0.01; % default settings K(2) = 0.03; % L = 255; % end if (nargin == 3) if ((M < 11) || (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); L = 255; if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 4) [H W] = size(window); if ((H*W) < 4 || (H > M) || (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end L = 255; if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 5) [H W] = size(window); if ((H*W) < 4 || (H > M) || (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end C1 = (K(1)*L)^2; C2 = (K(2)*L)^2; window = window/sum(sum(window)); img1 = double(img1); img2 = double(img2); mu1 = filter2(window, img1, 'valid'); mu2 = filter2(window, img2, 'valid'); mu1_sq = mu1.*mu1; mu2_sq = mu2.*mu2; mu1_mu2 = mu1.*mu2; sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; if (C1 > 0 & C2 > 0) ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2)); else numerator1 = 2*mu1_mu2 + C1; numerator2 = 2*sigma12 + C2; denominator1 = mu1_sq + mu2_sq + C1; denominator2 = sigma1_sq + sigma2_sq + C2; ssim_map = ones(size(mu1)); index = (denominator1.*denominator2 > 0); ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index)); index = (denominator1 ~= 0) & (denominator2 == 0); ssim_map(index) = numerator1(index)./denominator1(index); end mssim = mean2(ssim_map); return
github
cszn/DnCNN-master
DnCNN_Init.m
.m
DnCNN-master/TrainingCodes/DnCNN_TrainingCodes_DagNN_v1.1/DnCNN_Init.m
5,836
utf_8
094a3b14e2884158ae9137ec571ea0f8
function net = DnCNN_Init() % by Kai Zhang (1/2018) % [email protected] % https://github.com/cszn % Create DAGNN object net = dagnn.DagNN(); % conv + relu blockNum = 1; inVar = 'input'; channel= 1; % grayscale image dims = [3,3,channel,64]; pad = [1,1]; stride = [1,1]; lr = [1,1]; [net, inVar, blockNum] = addConv(net, blockNum, inVar, dims, pad, stride, lr); [net, inVar, blockNum] = addReLU(net, blockNum, inVar); for i = 1:15 % conv + bn + relu dims = [3,3,64,64]; pad = [1,1]; stride = [1,1]; lr = [1,0]; [net, inVar, blockNum] = addConv(net, blockNum, inVar, dims, pad, stride, lr); n_ch = dims(4); [net, inVar, blockNum] = addBnorm(net, blockNum, inVar, n_ch); [net, inVar, blockNum] = addReLU(net, blockNum, inVar); end % conv dims = [3,3,64,channel]; pad = [1,1]; stride = [1,1]; lr = [1,0]; % or [1,1], it does not influence the results [net, inVar, blockNum] = addConv(net, blockNum, inVar, dims, pad, stride, lr); % sum inVar = {inVar,'input'}; [net, inVar, blockNum] = addSum(net, blockNum, inVar); outputName = 'prediction'; net.renameVar(inVar,outputName) % loss net.addLayer('loss', dagnn.Loss('loss','L2'), {'prediction','label'}, {'objective'},{}); net.vars(net.getVarIndex('prediction')).precious = 1; end % Add a Concat layer function [net, inVar, blockNum] = addConcat(net, blockNum, inVar) outVar = sprintf('concat%d', blockNum); layerCur = sprintf('concat%d', blockNum); block = dagnn.Concat('dim',3); net.addLayer(layerCur, block, inVar, {outVar},{}); inVar = outVar; blockNum = blockNum + 1; end % Add a loss layer function [net, inVar, blockNum] = addLoss(net, blockNum, inVar) outVar = 'objective'; layerCur = sprintf('loss%d', blockNum); block = dagnn.Loss('loss','L2'); net.addLayer(layerCur, block, inVar, {outVar},{}); inVar = outVar; blockNum = blockNum + 1; end % Add a sum layer function [net, inVar, blockNum] = addSum(net, blockNum, inVar) outVar = sprintf('sum%d', blockNum); layerCur = sprintf('sum%d', blockNum); block = dagnn.Sum(); net.addLayer(layerCur, block, inVar, {outVar},{}); inVar = outVar; blockNum = blockNum + 1; end % Add a relu layer function [net, inVar, blockNum] = addReLU(net, blockNum, inVar) outVar = sprintf('relu%d', blockNum); layerCur = sprintf('relu%d', blockNum); block = dagnn.ReLU('leak',0); net.addLayer(layerCur, block, {inVar}, {outVar},{}); inVar = outVar; blockNum = blockNum + 1; end % Add a bnorm layer function [net, inVar, blockNum] = addBnorm(net, blockNum, inVar, n_ch) trainMethod = 'adam'; outVar = sprintf('bnorm%d', blockNum); layerCur = sprintf('bnorm%d', blockNum); params={[layerCur '_g'], [layerCur '_b'], [layerCur '_m']}; net.addLayer(layerCur, dagnn.BatchNorm('numChannels', n_ch), {inVar}, {outVar},params) ; pidx = net.getParamIndex({[layerCur '_g'], [layerCur '_b'], [layerCur '_m']}); b_min = 0.025; net.params(pidx(1)).value = clipping(sqrt(2/(9*n_ch))*randn(n_ch,1,'single'),b_min); net.params(pidx(1)).learningRate= 1; net.params(pidx(1)).weightDecay = 0; net.params(pidx(1)).trainMethod = trainMethod; net.params(pidx(2)).value = zeros(n_ch, 1, 'single'); net.params(pidx(2)).learningRate= 1; net.params(pidx(2)).weightDecay = 0; net.params(pidx(2)).trainMethod = trainMethod; net.params(pidx(3)).value = [zeros(n_ch,1,'single'), 0.01*ones(n_ch,1,'single')]; net.params(pidx(3)).learningRate= 1; net.params(pidx(3)).weightDecay = 0; net.params(pidx(3)).trainMethod = 'average'; inVar = outVar; blockNum = blockNum + 1; end % add a ConvTranspose layer function [net, inVar, blockNum] = addConvt(net, blockNum, inVar, dims, crop, upsample, lr) opts.cudnnWorkspaceLimit = 1024*1024*1024*2; % 2GB convOpts = {'CudnnWorkspaceLimit', opts.cudnnWorkspaceLimit} ; trainMethod = 'adam'; outVar = sprintf('convt%d', blockNum); layerCur = sprintf('convt%d', blockNum); convBlock = dagnn.ConvTranspose('size', dims, 'crop', crop,'upsample', upsample, ... 'hasBias', true, 'opts', convOpts); net.addLayer(layerCur, convBlock, {inVar}, {outVar},{[layerCur '_f'], [layerCur '_b']}); f = net.getParamIndex([layerCur '_f']) ; sc = sqrt(2/(dims(1)*dims(2)*dims(4))) ; %improved Xavier net.params(f).value = sc*randn(dims, 'single'); net.params(f).learningRate = lr(1); net.params(f).weightDecay = 1; net.params(f).trainMethod = trainMethod; f = net.getParamIndex([layerCur '_b']) ; net.params(f).value = zeros(dims(3), 1, 'single'); net.params(f).learningRate = lr(2); net.params(f).weightDecay = 1; net.params(f).trainMethod = trainMethod; inVar = outVar; blockNum = blockNum + 1; end % add a Conv layer function [net, inVar, blockNum] = addConv(net, blockNum, inVar, dims, pad, stride, lr) opts.cudnnWorkspaceLimit = 1024*1024*1024*2; % 2GB convOpts = {'CudnnWorkspaceLimit', opts.cudnnWorkspaceLimit} ; trainMethod = 'adam'; outVar = sprintf('conv%d', blockNum); layerCur = sprintf('conv%d', blockNum); convBlock = dagnn.Conv('size', dims, 'pad', pad,'stride', stride, ... 'hasBias', true, 'opts', convOpts); net.addLayer(layerCur, convBlock, {inVar}, {outVar},{[layerCur '_f'], [layerCur '_b']}); f = net.getParamIndex([layerCur '_f']) ; sc = sqrt(2/(dims(1)*dims(2)*max(dims(3), dims(4)))) ; %improved Xavier net.params(f).value = sc*randn(dims, 'single') ; net.params(f).learningRate = lr(1); net.params(f).weightDecay = 1; net.params(f).trainMethod = trainMethod; f = net.getParamIndex([layerCur '_b']) ; net.params(f).value = zeros(dims(4), 1, 'single'); net.params(f).learningRate = lr(2); net.params(f).weightDecay = 1; net.params(f).trainMethod = trainMethod; inVar = outVar; blockNum = blockNum + 1; end function A = clipping(A,b) A(A>=0&A<b) = b; A(A<0&A>-b) = -b; end
github
cszn/DnCNN-master
DnCNN_train_dag.m
.m
DnCNN-master/TrainingCodes/DnCNN_TrainingCodes_DagNN_v1.1/DnCNN_train_dag.m
18,129
utf_8
97d9e7711f5ea677436f0f6476a94755
function [net,stats] = DnCNN_train_dag(net, varargin) %CNN_TRAIN_DAG Demonstrates training a CNN using the DagNN wrapper % CNN_TRAIN_DAG() is similar to CNN_TRAIN(), but works with % the DagNN wrapper instead of the SimpleNN wrapper. % Copyright (C) 2014-16 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). %%%------------------------------------------------------------------------- %%% solvers: SGD(default) and Adam with(default)/without gradientClipping %%%------------------------------------------------------------------------- %%% solver: Adam %%% opts.solver = 'Adam'; opts.beta1 = 0.9; opts.beta2 = 0.999; opts.alpha = 0.01; opts.epsilon = 1e-8; %%% solver: SGD opts.solver = 'SGD'; opts.learningRate = 0.01; opts.weightDecay = 0.0005; opts.momentum = 0.9 ; %%% GradientClipping opts.gradientClipping = false; opts.theta = 0.005; %%%------------------------------------------------------------------------- %%% setting for dag %%%------------------------------------------------------------------------- opts.conserveMemory = true; opts.mode = 'normal'; opts.cudnn = true ; opts.backPropDepth = +inf ; opts.skipForward = false; opts.numSubBatches = 1; %%%------------------------------------------------------------------------- %%% setting for model %%%------------------------------------------------------------------------- opts.batchSize = 128 ; opts.gpus = []; opts.numEpochs = 300 ; opts.modelName = 'model'; opts.expDir = fullfile('data',opts.modelName) ; opts.numberImdb = 1; opts.imdbDir = opts.expDir; opts.derOutputs = {'objective', 1} ; %%%------------------------------------------------------------------------- %%% update settings %%%------------------------------------------------------------------------- opts = vl_argparse(opts, varargin); opts.numEpochs = numel(opts.learningRate); if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end %%% load training data % opts.imdbPath = fullfile(opts.imdbDir, 'imdb.mat'); % imdb = load(opts.imdbPath) ; % if mod(epoch,5)~=1 && isfield(imdb,'set') ~= 0 % % else % clear imdb; % [imdb] = generatepatches; % end % % opts.train = find(imdb.set==1); opts.continue = true; opts.prefetch = true; opts.saveMomentum = false; opts.nesterovUpdate = false ; opts.profile = false ; opts.parameterServer.method = 'mmap' ; opts.parameterServer.prefix = 'mcn' ; opts.extractStatsFn = @extractStats ; opts = vl_argparse(opts, varargin) ; % ------------------------------------------------------------------------- % Initialization % ------------------------------------------------------------------------- opts.train = true; evaluateMode = isempty(opts.train) ; % ------------------------------------------------------------------------- % Train % ------------------------------------------------------------------------- modelPath = @(ep) fullfile(opts.expDir, sprintf([opts.modelName,'-epoch-%d.mat'], ep)); start = findLastCheckpoint(opts.expDir,opts.modelName) ; if start>=1 fprintf('%s: resuming by loading epoch %d\n', mfilename, start) ; [net] = loadState(modelPath(start)) ; end state = [] ; % for iobj = numel(opts.derOutputs) net.vars(net.getVarIndex(opts.derOutputs{1})).precious = 1; % end imdb = []; for epoch=start+1:opts.numEpochs if mod(epoch,10)~=1 && isfield(imdb,'set') ~= 0 else clear imdb; [imdb] = generatepatches; end opts.train = find(imdb.set==1); prepareGPUs(opts, epoch == start+1) ; % Train for one epoch. params = opts; params.epoch = epoch ; params.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))) ; params.thetaCurrent = opts.theta(min(epoch, numel(opts.theta))); params.train = opts.train(randperm(numel(opts.train))) ; % shuffle params.getBatch = getBatch ; if numel(opts.gpus) <= 1 [net,~] = processEpoch(net, state, params, 'train',imdb) ; if ~evaluateMode saveState(modelPath(epoch), net) ; end % lastStats = state.stats ; else spmd [net, ~] = processEpoch(net, state, params, 'train',imdb) ; if labindex == 1 && ~evaluateMode saveState(modelPath(epoch), net) ; end % lastStats = state.stats ; end %lastStats = accumulateStats(lastStats) ; end % stats.train(epoch) = lastStats.train ; % stats.val(epoch) = lastStats.val ; % clear lastStats ; % saveStats(modelPath(epoch), stats) ; end % With multiple GPUs, return one copy if isa(net, 'Composite'), net = net{1} ; end % ------------------------------------------------------------------------- function [net, state] = processEpoch(net, state, params, mode, imdb) % ------------------------------------------------------------------------- % Note that net is not strictly needed as an output argument as net % is a handle class. However, this fixes some aliasing issue in the % spmd caller. % initialize with momentum 0 if isempty(state) || isempty(state.momentum) state.momentum = num2cell(zeros(1, numel(net.params))) ; state.m = num2cell(zeros(1, numel(net.params))) ; state.v = num2cell(zeros(1, numel(net.params))) ; state.t = num2cell(zeros(1, numel(net.params))) ; end % move CNN to GPU as needed numGpus = numel(params.gpus) ; if numGpus >= 1 net.move('gpu') ; state.momentum = cellfun(@gpuArray, state.momentum, 'uniformoutput', false) ; state.m = cellfun(@gpuArray,state.m,'UniformOutput',false) ; state.v = cellfun(@gpuArray,state.v,'UniformOutput',false) ; state.t = cellfun(@gpuArray,state.t,'UniformOutput',false) ; end if numGpus > 1 parserv = ParameterServer(params.parameterServer) ; net.setParameterServer(parserv) ; else parserv = [] ; end % profile if params.profile if numGpus <= 1 profile clear ; profile on ; else mpiprofile reset ; mpiprofile on ; end end num = 0 ; epoch = params.epoch ; subset = params.(mode) ; %adjustTime = 0 ; stats.num = 0 ; % return something even if subset = [] stats.time = 0 ; count = 0; %start = tic ; for t=1:params.batchSize:numel(subset) % fprintf('%s: epoch %02d: %3d/%3d:', mode, epoch, ... % fix((t-1)/params.batchSize)+1, ceil(numel(subset)/params.batchSize)) ; batchSize = min(params.batchSize, numel(subset) - t + 1) ; count = count + 1; for s=1:params.numSubBatches % get this image batch and prefetch the next batchStart = t + (labindex-1) + (s-1) * numlabs ; batchEnd = min(t+params.batchSize-1, numel(subset)) ; batch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; num = num + numel(batch) ; if numel(batch) == 0, continue ; end inputs = params.getBatch(imdb, batch) ; if params.prefetch if s == params.numSubBatches batchStart = t + (labindex-1) + params.batchSize ; batchEnd = min(t+2*params.batchSize-1, numel(subset)) ; else batchStart = batchStart + numlabs ; end nextBatch = subset(batchStart : params.numSubBatches * numlabs : batchEnd) ; params.getBatch(imdb, nextBatch) ; end if strcmp(mode, 'train') net.mode = 'normal' ; net.accumulateParamDers = (s ~= 1) ; net.eval(inputs, params.derOutputs, 'holdOn', s < params.numSubBatches) ; else net.mode = 'test' ; net.eval(inputs) ; end end % Accumulate gradient. if strcmp(mode, 'train') if ~isempty(parserv), parserv.sync() ; end state = accumulateGradients(net, state, params, batchSize, parserv) ; end %%%--------add your code here------------------------ %%%-------------------------------------------------- loss2 = squeeze(gather(net.vars(net.getVarIndex(params.derOutputs{1})).value)); fprintf('%s: epoch %02d : %3d/%3d:', mode, epoch, ... fix((t-1)/params.batchSize)+1, ceil(numel(subset)/params.batchSize)) ; fprintf('error: %f \n', loss2) ; end % Save back to state. state.stats.(mode) = stats ; if params.profile if numGpus <= 1 state.prof.(mode) = profile('info') ; profile off ; else state.prof.(mode) = mpiprofile('info'); mpiprofile off ; end end if ~params.saveMomentum state.momentum = [] ; state.m = [] ; state.v = [] ; state.t = [] ; else state.momentum = cellfun(@gather, state.momentum, 'uniformoutput', false) ; state.m = cellfun(@gather, state.m, 'uniformoutput', false) ; state.v = cellfun(@gather, state.v, 'uniformoutput', false) ; state.t = cellfun(@gather, state.t, 'uniformoutput', false) ; end net.reset() ; net.move('cpu') ; % ------------------------------------------------------------------------- function state = accumulateGradients(net, state, params, batchSize, parserv) % ------------------------------------------------------------------------- % numGpus = numel(params.gpus) ; % otherGpus = setdiff(1:numGpus, labindex) ; for p=1:numel(net.params) if ~isempty(parserv) parDer = parserv.pullWithIndex(p) ; else parDer = net.params(p).der ; end switch params.solver case 'SGD' %%% solver: SGD switch net.params(p).trainMethod case 'average' % mainly for batch normalization thisLR = net.params(p).learningRate; net.params(p).value = vl_taccum(... 1 - thisLR, net.params(p).value, ... (thisLR/batchSize/net.params(p).fanout), parDer) ; otherwise thisDecay = params.weightDecay * net.params(p).weightDecay ; thisLR = params.learningRate * net.params(p).learningRate ; % Normalize gradient and incorporate weight decay. parDer = vl_taccum(1/batchSize, parDer, ... thisDecay, net.params(p).value) ; theta = params.thetaCurrent/lr; parDer = gradientClipping(parDer,theta,params.gradientClipping); % Update momentum. state.momentum{p} = vl_taccum(... params.momentum, state.momentum{p}, ... -1, parDer) ; % Nesterov update (aka one step ahead). if params.nesterovUpdate delta = vl_taccum(... params.momentum, state.momentum{p}, ... -1, parDer) ; else delta = state.momentum{p} ; end % Update parameters. net.params(p).value = vl_taccum(... 1, net.params(p).value, thisLR, delta) ; end case 'Adam' switch net.params(p).trainMethod case 'average' % mainly for batch normalization thisLR = net.params(p).learningRate; net.params(p).value = vl_taccum(... 1 - thisLR, net.params(p).value, ... (thisLR/batchSize/net.params(p).fanout), parDer) ; otherwise thisLR = params.learningRate * net.params(p).learningRate ; state.t{p} = state.t{p} + 1; t = state.t{p}; alpha = thisLR; % opts.alpha; lr = alpha * sqrt(1 - params.beta2^t) / (1 - params.beta1^t); state.m{p} = state.m{p} + (1 - params.beta1) .* (net.params(p).der - state.m{p}); state.v{p} = state.v{p} + (1 - params.beta2) .* (net.params(p).der .* net.params(p).der - state.v{p}); net.params(p).value = net.params(p).value - lr * state.m{p} ./ (sqrt(state.v{p}) + params.epsilon);% - thisLR * 0.0005 * net.params(p).value; end end end %%%------------------------------------------------------------------------- function A = smallClipping(A, theta) %%%------------------------------------------------------------------------- A(A>theta) = A(A>theta) -0.0001; A(A<-theta) = A(A<-theta)+0.0001; %%%------------------------------------------------------------------------- function A = smallClipping2(A, theta1,theta2) %%%------------------------------------------------------------------------- A(A>theta1) = A(A>theta1)-0.02; A(A<theta2) = A(A<theta2)+0.02; function A = smallClipping3(A, theta1,theta2) %%%------------------------------------------------------------------------- A(A>theta1) = A(A>theta1) -0.1; A(A<theta2) = A(A<theta2) +0.1; % % ------------------------------------------------------------------------- % function stats = accumulateStats(stats_) % % ------------------------------------------------------------------------- % % for s = {'train', 'val'} % s = char(s) ; % total = 0 ; % % % initialize stats stucture with same fields and same order as % % stats_{1} % stats__ = stats_{1} ; % names = fieldnames(stats__.(s))' ; % values = zeros(1, numel(names)) ; % fields = cat(1, names, num2cell(values)) ; % stats.(s) = struct(fields{:}) ; % % for g = 1:numel(stats_) % stats__ = stats_{g} ; % num__ = stats__.(s).num ; % total = total + num__ ; % % for f = setdiff(fieldnames(stats__.(s))', 'num') % f = char(f) ; % stats.(s).(f) = stats.(s).(f) + stats__.(s).(f) * num__ ; % % if g == numel(stats_) % stats.(s).(f) = stats.(s).(f) / total ; % end % end % end % stats.(s).num = total ; % end % ------------------------------------------------------------------------- function stats = extractStats(stats, net) % ------------------------------------------------------------------------- sel = find(cellfun(@(x) isa(x,'dagnn.Loss'), {net.layers.block})) ; for i = 1:numel(sel) stats.(net.layers(sel(i)).outputs{1}) = net.layers(sel(i)).block.average ; end % ------------------------------------------------------------------------- function saveState(fileName, net_) % ------------------------------------------------------------------------- net = net_.saveobj() ; save(fileName, 'net') ; % ------------------------------------------------------------------------- function saveStats(fileName, stats) % ------------------------------------------------------------------------- if exist(fileName) save(fileName, 'stats', '-append') ; else save(fileName, 'stats') ; end % ------------------------------------------------------------------------- function [net] = loadState(fileName) % ------------------------------------------------------------------------- load(fileName, 'net') ; net = dagnn.DagNN.loadobj(net) ; % if isempty(whos('stats')) % error('Epoch ''%s'' was only partially saved. Delete this file and try again.', ... % fileName) ; % end %%%------------------------------------------------------------------------- function epoch = findLastCheckpoint(modelDir,modelName) %%%------------------------------------------------------------------------- list = dir(fullfile(modelDir, [modelName,'-epoch-*.mat'])) ; tokens = regexp({list.name}, [modelName,'-epoch-([\d]+).mat'], 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ; % ------------------------------------------------------------------------- function clearMex() % ------------------------------------------------------------------------- clear vl_tmove vl_imreadjpeg ; % ------------------------------------------------------------------------- function prepareGPUs(opts, cold) % ------------------------------------------------------------------------- numGpus = numel(opts.gpus) ; if numGpus > 1 % check parallel pool integrity as it could have timed out pool = gcp('nocreate') ; if ~isempty(pool) && pool.NumWorkers ~= numGpus delete(pool) ; end pool = gcp('nocreate') ; if isempty(pool) parpool('local', numGpus) ; cold = true ; end end if numGpus >= 1 && cold fprintf('%s: resetting GPU\n', mfilename) clearMex() ; if numGpus == 1 gpuDevice(opts.gpus) else spmd clearMex() ; gpuDevice(opts.gpus(labindex)) end end end %%%------------------------------------------------------------------------- function A = gradientClipping(A, theta,gradientClip) %%%------------------------------------------------------------------------- if gradientClip A(A>theta) = theta; A(A<-theta) = -theta; else return; end % ------------------------------------------------------------------------- function fn = getBatch() % ------------------------------------------------------------------------- fn = @(x,y) getDagNNBatch(x,y) ; % ------------------------------------------------------------------------- function [inputs2] = getDagNNBatch(imdb, batch) % ------------------------------------------------------------------------- noiselevel = 25; label = imdb.labels(:,:,:,batch); label = data_augmentation(label,randi(8)); input = label + noiselevel/255*randn(size(label),'single'); % add AWGN with noise level noiselevel input = gpuArray(input); label = gpuArray(label); inputs2 = {'input', input, 'label', label} ;
github
cszn/DnCNN-master
Cal_PSNRSSIM.m
.m
DnCNN-master/TrainingCodes/DnCNN_TrainingCodes_DagNN_v1.1/utilities/Cal_PSNRSSIM.m
6,569
utf_8
c726759a14c4754004b2fbbec4ebbf36
function [psnr_cur, ssim_cur] = Cal_PSNRSSIM(A,B,row,col) [n,m,ch]=size(B); A = A(row+1:n-row,col+1:m-col,:); B = B(row+1:n-row,col+1:m-col,:); A=double(A); % Ground-truth B=double(B); % e=A(:)-B(:); mse=mean(e.^2); psnr_cur=10*log10(255^2/mse); if ch==1 [ssim_cur, ~] = ssim_index(A, B); else ssim_cur = (ssim_index(A(:,:,1), B(:,:,1)) + ssim_index(A(:,:,2), B(:,:,2)) + ssim_index(A(:,:,3), B(:,:,3)))/3; end function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L) %======================================================================== %SSIM Index, Version 1.0 %Copyright(c) 2003 Zhou Wang %All Rights Reserved. % %The author is with Howard Hughes Medical Institute, and Laboratory %for Computational Vision at Center for Neural Science and Courant %Institute of Mathematical Sciences, New York University. % %---------------------------------------------------------------------- %Permission to use, copy, or modify this software and its documentation %for educational and research purposes only and without fee is hereby %granted, provided that this copyright notice and the original authors' %names appear on all copies and supporting documentation. This program %shall not be used, rewritten, or adapted as the basis of a commercial %software or hardware product without first obtaining permission of the %authors. The authors make no representations about the suitability of %this software for any purpose. It is provided "as is" without express %or implied warranty. %---------------------------------------------------------------------- % %This is an implementation of the algorithm for calculating the %Structural SIMilarity (SSIM) index between two images. Please refer %to the following paper: % %Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image %quality assessment: From error measurement to structural similarity" %IEEE Transactios on Image Processing, vol. 13, no. 1, Jan. 2004. % %Kindly report any suggestions or corrections to [email protected] % %---------------------------------------------------------------------- % %Input : (1) img1: the first image being compared % (2) img2: the second image being compared % (3) K: constants in the SSIM index formula (see the above % reference). defualt value: K = [0.01 0.03] % (4) window: local window for statistics (see the above % reference). default widnow is Gaussian given by % window = fspecial('gaussian', 11, 1.5); % (5) L: dynamic range of the images. default: L = 255 % %Output: (1) mssim: the mean SSIM index value between 2 images. % If one of the images being compared is regarded as % perfect quality, then mssim can be considered as the % quality measure of the other image. % If img1 = img2, then mssim = 1. % (2) ssim_map: the SSIM index map of the test image. The map % has a smaller size than the input images. The actual size: % size(img1) - size(window) + 1. % %Default Usage: % Given 2 test images img1 and img2, whose dynamic range is 0-255 % % [mssim ssim_map] = ssim_index(img1, img2); % %Advanced Usage: % User defined parameters. For example % % K = [0.05 0.05]; % window = ones(8); % L = 100; % [mssim ssim_map] = ssim_index(img1, img2, K, window, L); % %See the results: % % mssim %Gives the mssim value % imshow(max(0, ssim_map).^4) %Shows the SSIM index map % %======================================================================== if (nargin < 2 || nargin > 5) ssim_index = -Inf; ssim_map = -Inf; return; end if (size(img1) ~= size(img2)) ssim_index = -Inf; ssim_map = -Inf; return; end [M N] = size(img1); if (nargin == 2) if ((M < 11) || (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); % K(1) = 0.01; % default settings K(2) = 0.03; % L = 255; % end if (nargin == 3) if ((M < 11) || (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); L = 255; if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 4) [H W] = size(window); if ((H*W) < 4 || (H > M) || (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end L = 255; if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 5) [H W] = size(window); if ((H*W) < 4 || (H > M) || (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end C1 = (K(1)*L)^2; C2 = (K(2)*L)^2; window = window/sum(sum(window)); img1 = double(img1); img2 = double(img2); mu1 = filter2(window, img1, 'valid'); mu2 = filter2(window, img2, 'valid'); mu1_sq = mu1.*mu1; mu2_sq = mu2.*mu2; mu1_mu2 = mu1.*mu2; sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; if (C1 > 0 & C2 > 0) ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2)); else numerator1 = 2*mu1_mu2 + C1; numerator2 = 2*sigma12 + C2; denominator1 = mu1_sq + mu2_sq + C1; denominator2 = sigma1_sq + sigma2_sq + C2; ssim_map = ones(size(mu1)); index = (denominator1.*denominator2 > 0); ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index)); index = (denominator1 ~= 0) & (denominator2 == 0); ssim_map(index) = numerator1(index)./denominator1(index); end mssim = mean2(ssim_map); return
github
cszn/DnCNN-master
Demo_DagNN_Merge_Bnorm.m
.m
DnCNN-master/TrainingCodes/DnCNN_TrainingCodes_DagNN_v1.1/utilities/Demo_DagNN_Merge_Bnorm.m
6,930
utf_8
2d9818396cfb748ea1134a8b04e11426
function [] = Demo_DagNN_Merge_Bnorm() % merge bnorm: 'DnCNN-epoch-50.mat' ------> 'DnCNN-epoch-0.mat' inputfileName = 'DnCNN-epoch-50.mat'; targetfileName = 'DnCNN-epoch-0.mat'; % Merge Bnorm to (1) accelerate the testing inference; and (2) fine-tune the model with small learning rate for better PSNR. load(inputfileName); net = dagnn.DagNN.loadobj(net) ; %CNN_IMAGENET_DEPLOY Deploy a CNN isDag = isa(net, 'dagnn.DagNN'); % if isDag % dagRemoveLayersOfType(net, 'dagnn.Loss') ; % dagRemoveLayersOfType(net, 'dagnn.DropOut') ; % else % net = simpleRemoveLayersOfType(net, 'softmaxloss') ; % net = simpleRemoveLayersOfType(net, 'dropout') ; % end if isDag dagMergeBatchNorm(net) ; dagRemoveLayersOfType(net, 'dagnn.BatchNorm') ; else net = simpleMergeBatchNorm(net) ; net = simpleRemoveLayersOfType(net, 'bnorm') ; end net = net.saveobj() ; save(targetfileName, 'net') ; % Switch to use MatConvNet default memory limit for CuDNN (512 MB) % if ~isDag % for l = simpleFindLayersOfType(net, 'conv') % net.layers{l}.opts = removeCuDNNMemoryLimit(net.layers{l}.opts) ; % end % else % for name = dagFindLayersOfType(net, 'dagnn.Conv') % l = net.getLayerIndex(char(name)) ; % net.layers(l).block.opts = removeCuDNNMemoryLimit(net.layers(l).block.opts) ; % end % end % ------------------------------------------------------------------------- function opts = removeCuDNNMemoryLimit(opts) % ------------------------------------------------------------------------- remove = false(1, numel(opts)) ; for i = 1:numel(opts) if isstr(opts{i}) && strcmp(lower(opts{i}), 'CudnnWorkspaceLimit') remove([i i+1]) = true ; end end opts = opts(~remove) ; % ------------------------------------------------------------------------- function net = simpleRemoveMomentum(net) % ------------------------------------------------------------------------- for l = 1:numel(net.layers) if isfield(net.layers{l}, 'momentum') net.layers{l} = rmfield(net.layers{l}, 'momentum') ; end end % ------------------------------------------------------------------------- function layers = simpleFindLayersOfType(net, type) % ------------------------------------------------------------------------- layers = find(cellfun(@(x)strcmp(x.type, type), net.layers)) ; % ------------------------------------------------------------------------- function net = simpleRemoveLayersOfType(net, type) % ------------------------------------------------------------------------- layers = simpleFindLayersOfType(net, type) ; net.layers(layers) = [] ; % ------------------------------------------------------------------------- function layers = dagFindLayersWithOutput(net, outVarName) % ------------------------------------------------------------------------- layers = {} ; for l = 1:numel(net.layers) if any(strcmp(net.layers(l).outputs, outVarName)) layers{1,end+1} = net.layers(l).name ; end end % ------------------------------------------------------------------------- function layers = dagFindLayersOfType(net, type) % ------------------------------------------------------------------------- layers = [] ; for l = 1:numel(net.layers) if isa(net.layers(l).block, type) layers{1,end+1} = net.layers(l).name ; end end % ------------------------------------------------------------------------- function dagRemoveLayersOfType(net, type) % ------------------------------------------------------------------------- names = dagFindLayersOfType(net, type) ; for i = 1:numel(names) layer = net.layers(net.getLayerIndex(names{i})) ; net.removeLayer(names{i}) ; net.renameVar(layer.outputs{1}, layer.inputs{1}, 'quiet', true) ; end % ------------------------------------------------------------------------- function dagMergeBatchNorm(net) % ------------------------------------------------------------------------- names = dagFindLayersOfType(net, 'dagnn.BatchNorm') ; for name = names name = char(name) ; layer = net.layers(net.getLayerIndex(name)) ; % merge into previous conv layer playerName = dagFindLayersWithOutput(net, layer.inputs{1}) ; playerName = playerName{1} ; playerIndex = net.getLayerIndex(playerName) ; player = net.layers(playerIndex) ; if ~isa(player.block, 'dagnn.Conv') error('Batch normalization cannot be merged as it is not preceded by a conv layer.') ; end % if the convolution layer does not have a bias, % recreate it to have one if ~player.block.hasBias block = player.block ; block.hasBias = true ; net.renameLayer(playerName, 'tmp') ; net.addLayer(playerName, ... block, ... player.inputs, ... player.outputs, ... {player.params{1}, sprintf('%s_b',playerName)}) ; net.removeLayer('tmp') ; playerIndex = net.getLayerIndex(playerName) ; player = net.layers(playerIndex) ; biases = net.getParamIndex(player.params{2}) ; net.params(biases).value = zeros(block.size(4), 1, 'single') ; end filters = net.getParamIndex(player.params{1}) ; biases = net.getParamIndex(player.params{2}) ; multipliers = net.getParamIndex(layer.params{1}) ; offsets = net.getParamIndex(layer.params{2}) ; moments = net.getParamIndex(layer.params{3}) ; [filtersValue, biasesValue] = mergeBatchNorm(... net.params(filters).value, ... net.params(biases).value, ... net.params(multipliers).value, ... net.params(offsets).value, ... net.params(moments).value) ; net.params(filters).value = filtersValue ; net.params(biases).value = biasesValue ; net.params(biases).learningRate = 1; end % ------------------------------------------------------------------------- function net = simpleMergeBatchNorm(net) % ------------------------------------------------------------------------- for l = 1:numel(net.layers) if strcmp(net.layers{l}.type, 'bnorm') if ~strcmp(net.layers{l-1}.type, 'conv') error('Batch normalization cannot be merged as it is not preceded by a conv layer.') ; end [filters, biases] = mergeBatchNorm(... net.layers{l-1}.weights{1}, ... net.layers{l-1}.weights{2}, ... net.layers{l}.weights{1}, ... net.layers{l}.weights{2}, ... net.layers{l}.weights{3}) ; net.layers{l-1}.weights = {filters, biases} ; end f = net.getParamIndex(net.layers{l-1}.params) ; net.params(f(2)).learningRate = 1; end % ------------------------------------------------------------------------- function [filters, biases] = mergeBatchNorm(filters, biases, multipliers, offsets, moments) % ------------------------------------------------------------------------- % wk / sqrt(sigmak^2 + eps) % bk - wk muk / sqrt(sigmak^2 + eps) a = multipliers(:) ./ moments(:,2) ; b = offsets(:) - moments(:,1) .* a ; biases(:) = biases(:) + b(:) ; sz = size(filters) ; numFilters = sz(4) ; filters = reshape(bsxfun(@times, reshape(filters, [], numFilters), a'), sz) ;
github
cszn/DnCNN-master
DnCNN_init_model_64_25_Res_Bnorm_Adam.m
.m
DnCNN-master/TrainingCodes/DnCNN_TrainingCodes_v1.1/DnCNN_init_model_64_25_Res_Bnorm_Adam.m
1,705
utf_8
fc6fb32e289c615f4b7d2cbedcba8be6
function net = DnCNN_init_model_64_25_Res_Bnorm_Adam %%% 17 layers b_min = 0.025; lr11 = [1 1]; lr10 = [1 0]; weightDecay = [1 0]; meanvar = [zeros(64,1,'single'), 0.01*ones(64,1,'single')]; % Define network net.layers = {} ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*64))*randn(3,3,1,64,'single'), zeros(64,1,'single')}}, ... 'stride', 1, ... 'pad', 1, ... 'dilate',1, ... 'learningRate',lr11, ... 'weightDecay',weightDecay, ... 'opts',{{}}) ; net.layers{end+1} = struct('type', 'relu','leak',0) ; for i = 1:1:15 net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*64))*randn(3,3,64,64,'single'), zeros(64,1,'single')}}, ... 'stride', 1, ... 'learningRate',lr10, ... 'dilate',1, ... 'weightDecay',weightDecay, ... 'pad', 1, 'opts', {{}}) ; net.layers{end+1} = struct('type', 'bnorm', ... 'weights', {{clipping(sqrt(2/(9*64))*randn(64,1,'single'),b_min), zeros(64,1,'single'),meanvar}}, ... 'learningRate', [1 1 1], ... 'weightDecay', [0 0], ... 'opts', {{}}) ; net.layers{end+1} = struct('type', 'relu','leak',0) ; end net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*64))*randn(3,3,64,1,'single'), zeros(1,1,'single')}}, ... 'stride', 1, ... 'learningRate',lr11, ... 'dilate',1, ... 'weightDecay',weightDecay, ... 'pad', 1, 'opts', {{}}) ; net.layers{end+1} = struct('type', 'loss') ; % make sure the new 'vl_nnloss.m' is in the same folder. % Fill in default values net = vl_simplenn_tidy(net); function A = clipping(A,b) A(A>=0&A<b) = b; A(A<0&A>-b) = -b;
github
cszn/DnCNN-master
DnCNN_train.m
.m
DnCNN-master/TrainingCodes/DnCNN_TrainingCodes_v1.1/DnCNN_train.m
12,685
utf_8
d664f407bd2a6d0711394366d701cebf
function [net, state] = DnCNN_train(net, varargin) % The function automatically restarts after each training epoch by % checkpointing. % % The function supports training on CPU or on one or more GPUs % (specify the list of GPU IDs in the `gpus` option). % Copyright (C) 2014-16 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). %%%------------------------------------------------------------------------- %%% solvers: SGD(default) and Adam with(default)/without gradientClipping %%%------------------------------------------------------------------------- %%% solver: Adam %%% opts.solver = 'Adam'; opts.beta1 = 0.9; opts.beta2 = 0.999; opts.alpha = 0.01; opts.epsilon = 1e-8; %%% solver: SGD opts.solver = 'SGD'; opts.learningRate = 0.01; opts.weightDecay = 0.001; opts.momentum = 0.9 ; %%% GradientClipping opts.gradientClipping = false; opts.theta = 0.005; %%% specific parameter for Bnorm opts.bnormLearningRate = 0; %%%------------------------------------------------------------------------- %%% setting for simplenn %%%------------------------------------------------------------------------- opts.conserveMemory = true; opts.mode = 'normal'; opts.cudnn = true ; opts.backPropDepth = +inf ; opts.skipForward = false; opts.numSubBatches = 1; %%%------------------------------------------------------------------------- %%% setting for model %%%------------------------------------------------------------------------- opts.batchSize = 128 ; opts.gpus = []; opts.numEpochs = 300 ; opts.modelName = 'model'; opts.expDir = fullfile('data',opts.modelName) ; opts.numberImdb = 1; opts.imdbDir = opts.expDir; %%%------------------------------------------------------------------------- %%% update settings %%%------------------------------------------------------------------------- opts = vl_argparse(opts, varargin); opts.numEpochs = numel(opts.learningRate); if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end %%%------------------------------------------------------------------------- %%% Initialization %%%------------------------------------------------------------------------- net = vl_simplenn_tidy(net); %%% fill in some eventually missing values net.layers{end-1}.precious = 1; vl_simplenn_display(net, 'batchSize', opts.batchSize) ; state.getBatch = getBatch ; %%%------------------------------------------------------------------------- %%% Train and Test %%%------------------------------------------------------------------------- modelPath = @(ep) fullfile(opts.expDir, sprintf([opts.modelName,'-epoch-%d.mat'], ep)); start = findLastCheckpoint(opts.expDir,opts.modelName) ; if start >= 1 fprintf('%s: resuming by loading epoch %d', mfilename, start) ; load(modelPath(start), 'net') ; net = vl_simplenn_tidy(net) ; end %%% load training data opts.imdbPath = fullfile(opts.imdbDir); imdb = load(opts.imdbPath) ; opts.train = find(imdb.set==1); for epoch = start+1 : opts.numEpochs %%% Train for one epoch. state.epoch = epoch ; state.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))); opts.thetaCurrent = opts.theta(min(epoch, numel(opts.theta))); if numel(opts.gpus) == 1 net = vl_simplenn_move(net, 'gpu') ; end state.train = opts.train(randperm(numel(opts.train))) ; %%% shuffle [net, state] = process_epoch(net, state, imdb, opts, 'train'); net.layers{end}.class =[]; net = vl_simplenn_move(net, 'cpu'); %%% save current model save(modelPath(epoch), 'net') end %%%------------------------------------------------------------------------- function [net, state] = process_epoch(net, state, imdb, opts, mode) %%%------------------------------------------------------------------------- if strcmp(mode,'train') switch opts.solver case 'SGD' %%% solver: SGD for i = 1:numel(net.layers) if isfield(net.layers{i}, 'weights') for j = 1:numel(net.layers{i}.weights) state.layers{i}.momentum{j} = 0; end end end case 'Adam' %%% solver: Adam for i = 1:numel(net.layers) if isfield(net.layers{i}, 'weights') for j = 1:numel(net.layers{i}.weights) state.layers{i}.t{j} = 0; state.layers{i}.m{j} = 0; state.layers{i}.v{j} = 0; end end end end end subset = state.(mode) ; num = 0 ; res = []; for t=1:opts.batchSize:numel(subset) for s=1:opts.numSubBatches % get this image batch batchStart = t + (s-1); batchEnd = min(t+opts.batchSize-1, numel(subset)) ; batch = subset(batchStart : opts.numSubBatches : batchEnd) ; num = num + numel(batch) ; if numel(batch) == 0, continue ; end [inputs,labels] = state.getBatch(imdb, batch) ; if numel(opts.gpus) == 1 inputs = gpuArray(inputs); labels = gpuArray(labels); end if strcmp(mode, 'train') dzdy = single(1); evalMode = 'normal';%%% forward and backward (Gradients) else dzdy = [] ; evalMode = 'test'; %%% forward only end net.layers{end}.class = labels ; res = vl_simplenn(net, inputs, dzdy, res, ... 'accumulate', s ~= 1, ... 'mode', evalMode, ... 'conserveMemory', opts.conserveMemory, ... 'backPropDepth', opts.backPropDepth, ... 'cudnn', opts.cudnn) ; end if strcmp(mode, 'train') [state, net] = params_updates(state, net, res, opts, opts.batchSize) ; end lossL2 = gather(res(end).x) ; %%%--------add your code here------------------------ %%%-------------------------------------------------- fprintf('%s: epoch %02d dataset %02d: %3d/%3d:', mode, state.epoch, mod(state.epoch,opts.numberImdb), ... fix((t-1)/opts.batchSize)+1, ceil(numel(subset)/opts.batchSize)) ; fprintf('error: %f \n', lossL2) ; end %%%------------------------------------------------------------------------- function [state, net] = params_updates(state, net, res, opts, batchSize) %%%------------------------------------------------------------------------- switch opts.solver case 'SGD' %%% solver: SGD for l=numel(net.layers):-1:1 for j=1:numel(res(l).dzdw) if j == 3 && strcmp(net.layers{l}.type, 'bnorm') %%% special case for learning bnorm moments thisLR = net.layers{l}.learningRate(j) - opts.bnormLearningRate; net.layers{l}.weights{j} = vl_taccum(... 1 - thisLR, ... net.layers{l}.weights{j}, ... thisLR / batchSize, ... res(l).dzdw{j}) ; else thisDecay = opts.weightDecay * net.layers{l}.weightDecay(j); thisLR = state.learningRate * net.layers{l}.learningRate(j); if opts.gradientClipping theta = opts.thetaCurrent/thisLR; state.layers{l}.momentum{j} = opts.momentum * state.layers{l}.momentum{j} ... - thisDecay * net.layers{l}.weights{j} ... - (1 / batchSize) * gradientClipping(res(l).dzdw{j},theta) ; net.layers{l}.weights{j} = net.layers{l}.weights{j} + ... thisLR * state.layers{l}.momentum{j} ; else state.layers{l}.momentum{j} = opts.momentum * state.layers{l}.momentum{j} ... - thisDecay * net.layers{l}.weights{j} ... - (1 / batchSize) * res(l).dzdw{j} ; net.layers{l}.weights{j} = net.layers{l}.weights{j} + ... thisLR * state.layers{l}.momentum{j} ; end end end end case 'Adam' %%% solver: Adam for l=numel(net.layers):-1:1 for j=1:numel(res(l).dzdw) if j == 3 && strcmp(net.layers{l}.type, 'bnorm') %%% special case for learning bnorm moments thisLR = net.layers{l}.learningRate(j) - opts.bnormLearningRate; net.layers{l}.weights{j} = vl_taccum(... 1 - thisLR, ... net.layers{l}.weights{j}, ... thisLR / batchSize, ... res(l).dzdw{j}) ; else thisLR = state.learningRate * net.layers{l}.learningRate(j); state.layers{l}.t{j} = state.layers{l}.t{j} + 1; t = state.layers{l}.t{j}; alpha = thisLR; lr = alpha * sqrt(1 - opts.beta2^t) / (1 - opts.beta1^t); state.layers{l}.m{j} = state.layers{l}.m{j} + (1 - opts.beta1) .* (res(l).dzdw{j} - state.layers{l}.m{j}); state.layers{l}.v{j} = state.layers{l}.v{j} + (1 - opts.beta2) .* (res(l).dzdw{j} .* res(l).dzdw{j} - state.layers{l}.v{j}); if opts.gradientClipping theta = opts.thetaCurrent/lr; net.layers{l}.weights{j} = net.layers{l}.weights{j} - lr * gradientClipping(state.layers{l}.m{j} ./ (sqrt(state.layers{l}.v{j}) + opts.epsilon),theta); else net.layers{l}.weights{j} = net.layers{l}.weights{j} - lr * state.layers{l}.m{j} ./ (sqrt(state.layers{l}.v{j}) + opts.epsilon); end % net.layers{l}.weights{j} = weightClipping(net.layers{l}.weights{j},2); % gradually clip the weights end end end end %%%------------------------------------------------------------------------- function epoch = findLastCheckpoint(modelDir,modelName) %%%------------------------------------------------------------------------- list = dir(fullfile(modelDir, [modelName,'-epoch-*.mat'])) ; tokens = regexp({list.name}, [modelName,'-epoch-([\d]+).mat'], 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ; %%%------------------------------------------------------------------------- function A = gradientClipping(A, theta) %%%------------------------------------------------------------------------- A(A>theta) = theta; A(A<-theta) = -theta; %%%------------------------------------------------------------------------- function A = weightClipping(A, theta) %%%------------------------------------------------------------------------- A(A>theta) = A(A>theta) -0.0005; A(A<-theta) = A(A<-theta)+0.0005; %%%------------------------------------------------------------------------- function fn = getBatch %%%------------------------------------------------------------------------- fn = @(x,y) getSimpleNNBatch(x,y); %%%------------------------------------------------------------------------- function [inputs,labels] = getSimpleNNBatch(imdb, batch) %%%------------------------------------------------------------------------- global sigma; inputs = imdb.inputs(:,:,:,batch); rng('shuffle'); mode = randperm(8); inputs = data_augmentation(inputs, mode(1)); labels = sigma/255*randn(size(inputs),'single'); inputs = inputs + labels; function image = data_augmentation(image, mode) if mode == 1 return; end if mode == 2 % flipped image = flipud(image); return; end if mode == 3 % rotation 90 image = rot90(image,1); return; end if mode == 4 % rotation 90 & flipped image = rot90(image,1); image = flipud(image); return; end if mode == 5 % rotation 180 image = rot90(image,2); return; end if mode == 6 % rotation 180 & flipped image = rot90(image,2); image = flipud(image); return; end if mode == 7 % rotation 270 image = rot90(image,3); return; end if mode == 8 % rotation 270 & flipped image = rot90(image,3); image = flipud(image); return; end
github
cszn/DnCNN-master
Cal_PSNRSSIM.m
.m
DnCNN-master/TrainingCodes/DnCNN_TrainingCodes_v1.1/data/utilities/Cal_PSNRSSIM.m
6,471
utf_8
1689b76bfd626a066df745e53cf59f19
function [psnr_cur, ssim_cur] = Cal_PSNRSSIM(A,B,row,col) [n,m,ch]=size(B); A = A(row+1:n-row,col+1:m-col,:); B = B(row+1:n-row,col+1:m-col,:); A=double(A); % Ground-truth B=double(B); % e=A(:)-B(:); mse=mean(e.^2); psnr_cur=10*log10(255^2/mse); if ch==1 [ssim_cur, ~] = ssim_index(A, B); else ssim_cur = -1; end function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L) %======================================================================== %SSIM Index, Version 1.0 %Copyright(c) 2003 Zhou Wang %All Rights Reserved. % %The author is with Howard Hughes Medical Institute, and Laboratory %for Computational Vision at Center for Neural Science and Courant %Institute of Mathematical Sciences, New York University. % %---------------------------------------------------------------------- %Permission to use, copy, or modify this software and its documentation %for educational and research purposes only and without fee is hereby %granted, provided that this copyright notice and the original authors' %names appear on all copies and supporting documentation. This program %shall not be used, rewritten, or adapted as the basis of a commercial %software or hardware product without first obtaining permission of the %authors. The authors make no representations about the suitability of %this software for any purpose. It is provided "as is" without express %or implied warranty. %---------------------------------------------------------------------- % %This is an implementation of the algorithm for calculating the %Structural SIMilarity (SSIM) index between two images. Please refer %to the following paper: % %Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image %quality assessment: From error measurement to structural similarity" %IEEE Transactios on Image Processing, vol. 13, no. 1, Jan. 2004. % %Kindly report any suggestions or corrections to [email protected] % %---------------------------------------------------------------------- % %Input : (1) img1: the first image being compared % (2) img2: the second image being compared % (3) K: constants in the SSIM index formula (see the above % reference). defualt value: K = [0.01 0.03] % (4) window: local window for statistics (see the above % reference). default widnow is Gaussian given by % window = fspecial('gaussian', 11, 1.5); % (5) L: dynamic range of the images. default: L = 255 % %Output: (1) mssim: the mean SSIM index value between 2 images. % If one of the images being compared is regarded as % perfect quality, then mssim can be considered as the % quality measure of the other image. % If img1 = img2, then mssim = 1. % (2) ssim_map: the SSIM index map of the test image. The map % has a smaller size than the input images. The actual size: % size(img1) - size(window) + 1. % %Default Usage: % Given 2 test images img1 and img2, whose dynamic range is 0-255 % % [mssim ssim_map] = ssim_index(img1, img2); % %Advanced Usage: % User defined parameters. For example % % K = [0.05 0.05]; % window = ones(8); % L = 100; % [mssim ssim_map] = ssim_index(img1, img2, K, window, L); % %See the results: % % mssim %Gives the mssim value % imshow(max(0, ssim_map).^4) %Shows the SSIM index map % %======================================================================== if (nargin < 2 || nargin > 5) ssim_index = -Inf; ssim_map = -Inf; return; end if (size(img1) ~= size(img2)) ssim_index = -Inf; ssim_map = -Inf; return; end [M N] = size(img1); if (nargin == 2) if ((M < 11) || (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); % K(1) = 0.01; % default settings K(2) = 0.03; % L = 255; % end if (nargin == 3) if ((M < 11) || (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); L = 255; if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 4) [H W] = size(window); if ((H*W) < 4 || (H > M) || (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end L = 255; if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 5) [H W] = size(window); if ((H*W) < 4 || (H > M) || (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end C1 = (K(1)*L)^2; C2 = (K(2)*L)^2; window = window/sum(sum(window)); img1 = double(img1); img2 = double(img2); mu1 = filter2(window, img1, 'valid'); mu2 = filter2(window, img2, 'valid'); mu1_sq = mu1.*mu1; mu2_sq = mu2.*mu2; mu1_mu2 = mu1.*mu2; sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; if (C1 > 0 & C2 > 0) ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2)); else numerator1 = 2*mu1_mu2 + C1; numerator2 = 2*sigma12 + C2; denominator1 = mu1_sq + mu2_sq + C1; denominator2 = sigma1_sq + sigma2_sq + C2; ssim_map = ones(size(mu1)); index = (denominator1.*denominator2 > 0); ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index)); index = (denominator1 ~= 0) & (denominator2 == 0); ssim_map(index) = numerator1(index)./denominator1(index); end mssim = mean2(ssim_map); return
github
cszn/DnCNN-master
DnCNN_init_model_64_25_Res_Bnorm_Adam.m
.m
DnCNN-master/TrainingCodes/DnCNN_TrainingCodes_v1.0/DnCNN_init_model_64_25_Res_Bnorm_Adam.m
1,533
utf_8
5cf85b75dfccd48c4d410e7419b73e39
function net = DnCNN_init_model_64_25_Res_Bnorm_Adam %%% 17 layers lr = [1 1]; lr1 = [1 0]; weightDecay = [1 0]; meanvar = [zeros(64,1,'single'), 0.01*ones(64,1,'single')]; % Define network net.layers = {} ; net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*64))*randn(3,3,1,64,'single'), zeros(64,1,'single')}}, ... 'stride', 1, ... 'pad', 1, ... 'learningRate',lr, ... 'weightDecay',weightDecay, ... 'opts',{{}}) ; net.layers{end+1} = struct('type', 'relu','leak',0) ; for i = 1:1:15 net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*64))*randn(3,3,64,64,'single'), zeros(64,1,'single')}}, ... 'stride', 1, ... 'learningRate',lr1, ... 'weightDecay',weightDecay, ... 'pad', 1, 'opts', {{}}) ; net.layers{end+1} = struct('type', 'bnorm', ... 'weights', {{sqrt(2/(9*64))*randn(64,1,'single'), zeros(64,1,'single'),meanvar}}, ... 'learningRate', [1 1 1], ... 'weightDecay', [0 0], ... 'opts', {{}}) ; net.layers{end+1} = struct('type', 'relu','leak',0) ; end net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*64))*randn(3,3,64,1,'single'), zeros(1,1,'single')}}, ... 'stride', 1, ... 'learningRate',lr, ... 'weightDecay',weightDecay, ... 'pad', 1, 'opts', {{}}) ; net.layers{end+1} = struct('type', 'loss') ; % make sure the new 'vl_nnloss.m' is in the same folder. % Fill in default values net = vl_simplenn_tidy(net);
github
cszn/DnCNN-master
DnCNN_train.m
.m
DnCNN-master/TrainingCodes/DnCNN_TrainingCodes_v1.0/DnCNN_train.m
10,969
utf_8
d6a38316cf04f80bd144c2e9eb06b01f
function [net, state] = DnCNN_train(net, imdb, varargin) % The function automatically restarts after each training epoch by % checkpointing. % % The function supports training on CPU or on one or more GPUs % (specify the list of GPU IDs in the `gpus` option). % Copyright (C) 2014-16 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). %%%------------------------------------------------------------------------- %%% solvers: SGD(default) and Adam with(default)/without gradientClipping %%%------------------------------------------------------------------------- %%% solver: Adam %%% opts.solver = 'Adam'; opts.beta1 = 0.9; opts.beta2 = 0.999; opts.alpha = 0.01; opts.epsilon = 1e-8; %%% solver: SGD opts.solver = 'SGD'; opts.learningRate = 0.01; opts.weightDecay = 0.0001; opts.momentum = 0.9 ; %%% GradientClipping opts.gradientClipping = false; opts.theta = 0.005; %%% specific parameter for Bnorm opts.bnormLearningRate = 0; %%%------------------------------------------------------------------------- %%% setting for simplenn %%%------------------------------------------------------------------------- opts.conserveMemory = false ; opts.mode = 'normal'; opts.cudnn = true ; opts.backPropDepth = +inf ; opts.skipForward = false; %%%------------------------------------------------------------------------- %%% setting for model %%%------------------------------------------------------------------------- opts.batchSize = 128 ; opts.gpus = []; opts.numEpochs = 300 ; opts.modelName = 'model'; opts.expDir = fullfile('data',opts.modelName) ; opts.train = find(imdb.set==1); opts.test = find(imdb.set==2); %%%------------------------------------------------------------------------- %%% update settings %%%------------------------------------------------------------------------- opts = vl_argparse(opts, varargin); opts.numEpochs = numel(opts.learningRate); if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end %%%------------------------------------------------------------------------- %%% Initialization %%%------------------------------------------------------------------------- net = vl_simplenn_tidy(net); %%% fill in some eventually missing values net.layers{end-1}.precious = 1; vl_simplenn_display(net, 'batchSize', opts.batchSize) ; state.getBatch = getBatch ; %%%------------------------------------------------------------------------- %%% Train and Test %%%------------------------------------------------------------------------- modelPath = @(ep) fullfile(opts.expDir, sprintf([opts.modelName,'-epoch-%d.mat'], ep)); start = findLastCheckpoint(opts.expDir,opts.modelName) ; if start >= 1 fprintf('%s: resuming by loading epoch %d', mfilename, start) ; load(modelPath(start), 'net') ; % net = vl_simplenn_tidy(net) ; end for epoch = start+1 : opts.numEpochs %%% Train for one epoch. state.epoch = epoch ; state.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))); state.train = opts.train(randperm(numel(opts.train))) ; %%% shuffle state.test = opts.test; %%% no need to shuffle opts.thetaCurrent = opts.theta(min(epoch, numel(opts.theta))); if numel(opts.gpus) == 1 net = vl_simplenn_move(net, 'gpu') ; end [net, state] = process_epoch(net, state, imdb, opts, 'train'); [net, ~ ] = process_epoch(net, state, imdb, opts, 'test' ); net = vl_simplenn_move(net, 'cpu'); %%% save current model save(modelPath(epoch), 'net') end %%%------------------------------------------------------------------------- function [net, state] = process_epoch(net, state, imdb, opts, mode) %%%------------------------------------------------------------------------- if strcmp(mode,'train') switch opts.solver case 'SGD' %%% solver: SGD for i = 1:numel(net.layers) if isfield(net.layers{i}, 'weights') for j = 1:numel(net.layers{i}.weights) state.layers{i}.momentum{j} = 0; end end end case 'Adam' %%% solver: Adam for i = 1:numel(net.layers) if isfield(net.layers{i}, 'weights') for j = 1:numel(net.layers{i}.weights) state.layers{i}.t{j} = 0; state.layers{i}.m{j} = 0; state.layers{i}.v{j} = 0; end end end end end subset = state.(mode) ; num = 0 ; res = []; for t=1:opts.batchSize:numel(subset) %%% get this image batch batchStart = t; batchEnd = min(t+opts.batchSize-1, numel(subset)); batch = subset(batchStart : 1: batchEnd); num = num + numel(batch) ; if numel(batch) == 0, continue ; end [inputs,labels] = state.getBatch(imdb, batch) ; if numel(opts.gpus) == 1 inputs = gpuArray(inputs); labels = gpuArray(labels); end if strcmp(mode, 'train') dzdy = single(1); evalMode = 'normal';%%% forward and backward (Gradients) else dzdy = [] ; evalMode = 'test'; %%% forward only end net.layers{end}.class = labels ; res = vl_simplenn(net, inputs, dzdy, res, ... 'mode', evalMode, ... 'conserveMemory', opts.conserveMemory, ... 'backPropDepth', opts.backPropDepth, ... 'cudnn', opts.cudnn) ; if strcmp(mode, 'train') [state, net] = params_updates(state, net, res, opts, opts.batchSize) ; end lossL2 = gather(res(end).x) ; %%%--------add your code here------------------------ %%%-------------------------------------------------- fprintf('%s: epoch %02d: %3d/%3d:', mode, state.epoch, ... fix((t-1)/opts.batchSize)+1, ceil(numel(subset)/opts.batchSize)) ; fprintf('error: %f \n', lossL2) ; end %%%------------------------------------------------------------------------- function [state, net] = params_updates(state, net, res, opts, batchSize) %%%------------------------------------------------------------------------- switch opts.solver case 'SGD' %%% solver: SGD for l=numel(net.layers):-1:1 for j=1:numel(res(l).dzdw) if j == 3 && strcmp(net.layers{l}.type, 'bnorm') %%% special case for learning bnorm moments thisLR = net.layers{l}.learningRate(j) - opts.bnormLearningRate; net.layers{l}.weights{j} = ... (1 - thisLR) * net.layers{l}.weights{j} + ... (thisLR/batchSize) * res(l).dzdw{j} ; else thisDecay = opts.weightDecay * net.layers{l}.weightDecay(j); thisLR = state.learningRate * net.layers{l}.learningRate(j); if opts.gradientClipping theta = opts.thetaCurrent/thisLR; state.layers{l}.momentum{j} = opts.momentum * state.layers{l}.momentum{j} ... - thisDecay * net.layers{l}.weights{j} ... - (1 / batchSize) * gradientClipping(res(l).dzdw{j},theta) ; net.layers{l}.weights{j} = net.layers{l}.weights{j} + ... thisLR * state.layers{l}.momentum{j} ; else state.layers{l}.momentum{j} = opts.momentum * state.layers{l}.momentum{j} ... - thisDecay * net.layers{l}.weights{j} ... - (1 / batchSize) * res(l).dzdw{j} ; net.layers{l}.weights{j} = net.layers{l}.weights{j} + ... thisLR * state.layers{l}.momentum{j} ; end end end end case 'Adam' %%% solver: Adam for l=numel(net.layers):-1:1 for j=1:numel(res(l).dzdw) if j == 3 && strcmp(net.layers{l}.type, 'bnorm') %%% special case for learning bnorm moments thisLR = net.layers{l}.learningRate(j) - opts.bnormLearningRate; net.layers{l}.weights{j} = ... (1 - thisLR) * net.layers{l}.weights{j} + ... (thisLR/batchSize) * res(l).dzdw{j} ; else thisLR = state.learningRate * net.layers{l}.learningRate(j); state.layers{l}.t{j} = state.layers{l}.t{j} + 1; t = state.layers{l}.t{j}; alpha = thisLR; lr = alpha * sqrt(1 - opts.beta2^t) / (1 - opts.beta1^t); state.layers{l}.m{j} = state.layers{l}.m{j} + (1 - opts.beta1) .* (res(l).dzdw{j} - state.layers{l}.m{j}); state.layers{l}.v{j} = state.layers{l}.v{j} + (1 - opts.beta2) .* (res(l).dzdw{j} .* res(l).dzdw{j} - state.layers{l}.v{j}); if opts.gradientClipping theta = opts.thetaCurrent/lr; net.layers{l}.weights{j} = net.layers{l}.weights{j} - lr * gradientClipping(state.layers{l}.m{j} ./ (sqrt(state.layers{l}.v{j}) + opts.epsilon),theta); else net.layers{l}.weights{j} = net.layers{l}.weights{j} - lr * state.layers{l}.m{j} ./ (sqrt(state.layers{l}.v{j}) + opts.epsilon); end end end end end %%%------------------------------------------------------------------------- function epoch = findLastCheckpoint(modelDir,modelName) %%%------------------------------------------------------------------------- list = dir(fullfile(modelDir, [modelName,'-epoch-*.mat'])) ; tokens = regexp({list.name}, [modelName,'-epoch-([\d]+).mat'], 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ; %%%------------------------------------------------------------------------- function A = gradientClipping(A, theta) %%%------------------------------------------------------------------------- A(A>theta) = theta; A(A<-theta) = -theta; %%%------------------------------------------------------------------------- function fn = getBatch %%%------------------------------------------------------------------------- fn = @(x,y) getSimpleNNBatch(x,y); %%%------------------------------------------------------------------------- function [inputs,labels] = getSimpleNNBatch(imdb, batch) %%%------------------------------------------------------------------------- inputs = imdb.inputs(:,:,:,batch); labels = imdb.labels(:,:,:,batch);
github
cszn/DnCNN-master
Cal_PSNRSSIM.m
.m
DnCNN-master/TrainingCodes/DnCNN_TrainingCodes_v1.0/data/utilities/Cal_PSNRSSIM.m
6,471
utf_8
1689b76bfd626a066df745e53cf59f19
function [psnr_cur, ssim_cur] = Cal_PSNRSSIM(A,B,row,col) [n,m,ch]=size(B); A = A(row+1:n-row,col+1:m-col,:); B = B(row+1:n-row,col+1:m-col,:); A=double(A); % Ground-truth B=double(B); % e=A(:)-B(:); mse=mean(e.^2); psnr_cur=10*log10(255^2/mse); if ch==1 [ssim_cur, ~] = ssim_index(A, B); else ssim_cur = -1; end function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L) %======================================================================== %SSIM Index, Version 1.0 %Copyright(c) 2003 Zhou Wang %All Rights Reserved. % %The author is with Howard Hughes Medical Institute, and Laboratory %for Computational Vision at Center for Neural Science and Courant %Institute of Mathematical Sciences, New York University. % %---------------------------------------------------------------------- %Permission to use, copy, or modify this software and its documentation %for educational and research purposes only and without fee is hereby %granted, provided that this copyright notice and the original authors' %names appear on all copies and supporting documentation. This program %shall not be used, rewritten, or adapted as the basis of a commercial %software or hardware product without first obtaining permission of the %authors. The authors make no representations about the suitability of %this software for any purpose. It is provided "as is" without express %or implied warranty. %---------------------------------------------------------------------- % %This is an implementation of the algorithm for calculating the %Structural SIMilarity (SSIM) index between two images. Please refer %to the following paper: % %Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image %quality assessment: From error measurement to structural similarity" %IEEE Transactios on Image Processing, vol. 13, no. 1, Jan. 2004. % %Kindly report any suggestions or corrections to [email protected] % %---------------------------------------------------------------------- % %Input : (1) img1: the first image being compared % (2) img2: the second image being compared % (3) K: constants in the SSIM index formula (see the above % reference). defualt value: K = [0.01 0.03] % (4) window: local window for statistics (see the above % reference). default widnow is Gaussian given by % window = fspecial('gaussian', 11, 1.5); % (5) L: dynamic range of the images. default: L = 255 % %Output: (1) mssim: the mean SSIM index value between 2 images. % If one of the images being compared is regarded as % perfect quality, then mssim can be considered as the % quality measure of the other image. % If img1 = img2, then mssim = 1. % (2) ssim_map: the SSIM index map of the test image. The map % has a smaller size than the input images. The actual size: % size(img1) - size(window) + 1. % %Default Usage: % Given 2 test images img1 and img2, whose dynamic range is 0-255 % % [mssim ssim_map] = ssim_index(img1, img2); % %Advanced Usage: % User defined parameters. For example % % K = [0.05 0.05]; % window = ones(8); % L = 100; % [mssim ssim_map] = ssim_index(img1, img2, K, window, L); % %See the results: % % mssim %Gives the mssim value % imshow(max(0, ssim_map).^4) %Shows the SSIM index map % %======================================================================== if (nargin < 2 || nargin > 5) ssim_index = -Inf; ssim_map = -Inf; return; end if (size(img1) ~= size(img2)) ssim_index = -Inf; ssim_map = -Inf; return; end [M N] = size(img1); if (nargin == 2) if ((M < 11) || (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); % K(1) = 0.01; % default settings K(2) = 0.03; % L = 255; % end if (nargin == 3) if ((M < 11) || (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); L = 255; if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 4) [H W] = size(window); if ((H*W) < 4 || (H > M) || (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end L = 255; if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 5) [H W] = size(window); if ((H*W) < 4 || (H > M) || (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end C1 = (K(1)*L)^2; C2 = (K(2)*L)^2; window = window/sum(sum(window)); img1 = double(img1); img2 = double(img2); mu1 = filter2(window, img1, 'valid'); mu2 = filter2(window, img2, 'valid'); mu1_sq = mu1.*mu1; mu2_sq = mu2.*mu2; mu1_mu2 = mu1.*mu2; sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; if (C1 > 0 & C2 > 0) ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2)); else numerator1 = 2*mu1_mu2 + C1; numerator2 = 2*sigma12 + C2; denominator1 = mu1_sq + mu2_sq + C1; denominator2 = sigma1_sq + sigma2_sq + C2; ssim_map = ones(size(mu1)); index = (denominator1.*denominator2 > 0); ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index)); index = (denominator1 ~= 0) & (denominator2 == 0); ssim_map(index) = numerator1(index)./denominator1(index); end mssim = mean2(ssim_map); return
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_compile.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/vl_compile.m
5,060
utf_8
978f5189bb9b2a16db3368891f79aaa6
function vl_compile(compiler) % VL_COMPILE Compile VLFeat MEX files % VL_COMPILE() uses MEX() to compile VLFeat MEX files. This command % works only under Windows and is used to re-build problematic % binaries. The preferred method of compiling VLFeat on both UNIX % and Windows is through the provided Makefiles. % % VL_COMPILE() only compiles the MEX files and assumes that the % VLFeat DLL (i.e. the file VLFEATROOT/bin/win{32,64}/vl.dll) has % already been built. This file is built by the Makefiles. % % By default VL_COMPILE() assumes that Visual C++ is the active % MATLAB compiler. VL_COMPILE('lcc') assumes that the active % compiler is LCC instead (see MEX -SETUP). Unfortunately LCC does % not seem to be able to compile the latest versions of VLFeat due % to bugs in the support of 64-bit integers. Therefore it is % recommended to use Visual C++ instead. % % See also: VL_NOPREFIX(), VL_HELP(). % Authors: Andrea Vedadli, Jonghyun Choi % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if nargin < 1, compiler = 'visualc' ; end switch lower(compiler) case 'visualc' fprintf('%s: assuming that Visual C++ is the active compiler\n', mfilename) ; useLcc = false ; case 'lcc' fprintf('%s: assuming that LCC is the active compiler\n', mfilename) ; warning('LCC may fail to compile VLFeat. See help vl_compile.') ; useLcc = true ; otherwise error('Unknown compiler ''%s''.', compiler) end vlDir = vl_root ; toolboxDir = fullfile(vlDir, 'toolbox') ; switch computer case 'PCWIN' fprintf('%s: compiling for PCWIN (32 bit)\n', mfilename); mexwDir = fullfile(toolboxDir, 'mex', 'mexw32') ; binwDir = fullfile(vlDir, 'bin', 'win32') ; case 'PCWIN64' fprintf('%s: compiling for PCWIN64 (64 bit)\n', mfilename); mexwDir = fullfile(toolboxDir, 'mex', 'mexw64') ; binwDir = fullfile(vlDir, 'bin', 'win64') ; otherwise error('The architecture is neither PCWIN nor PCWIN64. See help vl_compile.') ; end impLibPath = fullfile(binwDir, 'vl.lib') ; libDir = fullfile(binwDir, 'vl.dll') ; mkd(mexwDir) ; % find the subdirectories of toolbox that we should process subDirs = dir(toolboxDir) ; subDirs = subDirs([subDirs.isdir]) ; discard = regexp({subDirs.name}, '^(.|..|noprefix|mex.*)$', 'start') ; keep = cellfun('isempty', discard) ; subDirs = subDirs(keep) ; subDirs = {subDirs.name} ; % Copy support files ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if ~exist(fullfile(binwDir, 'vl.dll')) error('The VLFeat DLL (%s) could not be found. See help vl_compile.', ... fullfile(binwDir, 'vl.dll')) ; end tmp = dir(fullfile(binwDir, '*.dll')) ; supportFileNames = {tmp.name} ; for fi = 1:length(supportFileNames) name = supportFileNames{fi} ; cp(fullfile(binwDir, name), ... fullfile(mexwDir, name) ) ; end % Ensure implib for LCC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if useLcc lccImpLibDir = fullfile(mexwDir, 'lcc') ; lccImpLibPath = fullfile(lccImpLibDir, 'VL.lib') ; lccRoot = fullfile(matlabroot, 'sys', 'lcc', 'bin') ; lccImpExePath = fullfile(lccRoot, 'lcc_implib.exe') ; mkd(lccImpLibDir) ; cp(fullfile(binwDir, 'vl.dll'), fullfile(lccImpLibDir, 'vl.dll')) ; cmd = ['"' lccImpExePath '"', ' -u ', '"' fullfile(lccImpLibDir, 'vl.dll') '"'] ; fprintf('Running:\n> %s\n', cmd) ; curPath = pwd ; try cd(lccImpLibDir) ; [d,w] = system(cmd) ; if d, error(w); end cd(curPath) ; catch cd(curPath) ; error(lasterr) ; end end % Compile each mex file ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ for i = 1:length(subDirs) thisDir = fullfile(toolboxDir, subDirs{i}) ; fileNames = ls(fullfile(thisDir, '*.c')); for f = 1:size(fileNames,1) fileName = fileNames(f, :) ; sp = strfind(fileName, ' '); if length(sp) > 0, fileName = fileName(1:sp-1); end filePath = fullfile(thisDir, fileName); fprintf('MEX %s\n', filePath); dot = strfind(fileName, '.'); mexFile = fullfile(mexwDir, [fileName(1:dot) 'dll']); if exist(mexFile) delete(mexFile) end cmd = {['-I' toolboxDir], ... ['-I' vlDir], ... '-O', ... '-outdir', mexwDir, ... filePath } ; if useLcc cmd{end+1} = lccImpLibPath ; else cmd{end+1} = impLibPath ; end mex(cmd{:}) ; end end % -------------------------------------------------------------------- function cp(src,dst) % -------------------------------------------------------------------- if ~exist(dst,'file') fprintf('Copying ''%s'' to ''%s''.\n', src,dst) ; copyfile(src,dst) ; end % -------------------------------------------------------------------- function mkd(dst) % -------------------------------------------------------------------- if ~exist(dst, 'dir') fprintf('Creating directory ''%s''.', dst) ; mkdir(dst) ; end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_noprefix.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/vl_noprefix.m
1,875
utf_8
97d8755f0ba139ac1304bc423d3d86d3
function vl_noprefix % VL_NOPREFIX Create a prefix-less version of VLFeat commands % VL_NOPREFIX() creats prefix-less stubs for VLFeat functions % (e.g. SIFT for VL_SIFT). This function is seldom used as the stubs % are included in the VLFeat binary distribution anyways. Moreover, % on UNIX platforms, the stubs are generally constructed by the % Makefile. % % See also: VL_COMPILE(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). root = fileparts(which(mfilename)) ; list = listMFilesX(root); outDir = fullfile(root, 'noprefix') ; if ~exist(outDir, 'dir') mkdir(outDir) ; end for li = 1:length(list) name = list(li).name(1:end-2) ; % remove .m nname = name(4:end) ; % remove vl_ stubPath = fullfile(outDir, [nname '.m']) ; fout = fopen(stubPath, 'w') ; fprintf('Creating stub %s for %s\n', stubPath, nname) ; fprintf(fout, 'function varargout = %s(varargin)\n', nname) ; fprintf(fout, '%% %s Stub for %s\n', upper(nname), upper(name)) ; fprintf(fout, '[varargout{1:nargout}] = %s(varargin{:})\n', name) ; fclose(fout) ; end end function list = listMFilesX(root) list = struct('name', {}, 'path', {}) ; files = dir(root) ; for fi = 1:length(files) name = files(fi).name ; if files(fi).isdir if any(regexp(name, '^(\.|\.\.|noprefix)$')) continue ; else tmp = listMFilesX(fullfile(root, name)) ; list = [list, tmp] ; end end if any(regexp(name, '^vl_(demo|test).*m$')) continue ; elseif any(regexp(name, '^vl_(demo|setup|compile|help|root|noprefix)\.m$')) continue ; elseif any(regexp(name, '\.m$')) list(end+1) = struct(... 'name', {name}, ... 'path', {fullfile(root, name)}) ; end end end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_pegasos.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/misc/vl_pegasos.m
2,837
utf_8
d5e0915c439ece94eb5597a07090b67d
% VL_PEGASOS [deprecated] % VL_PEGASOS is deprecated. Please use VL_SVMTRAIN() instead. function [w b info] = vl_pegasos(X,Y,LAMBDA, varargin) % Verbose not supported if (sum(strcmpi('Verbose',varargin))) varargin(find(strcmpi('Verbose',varargin),1))=[]; fprintf('Option VERBOSE is no longer supported.\n'); end % DiagnosticCallRef not supported if (sum(strcmpi('DiagnosticCallRef',varargin))) varargin(find(strcmpi('DiagnosticCallRef',varargin),1)+1)=[]; varargin(find(strcmpi('DiagnosticCallRef',varargin),1))=[]; fprintf('Option DIAGNOSTICCALLREF is no longer supported.\n Please follow the VLFeat tutorial on SVMs for more information on diagnostics\n'); end % different default value for MaxIterations if (sum(strcmpi('MaxIterations',varargin)) == 0) varargin{end+1} = 'MaxIterations'; varargin{end+1} = ceil(10/LAMBDA); end % different default value for BiasMultiplier if (sum(strcmpi('BiasMultiplier',varargin)) == 0) varargin{end+1} = 'BiasMultiplier'; varargin{end+1} = 0; end % parameters for vl_maketrainingset setvarargin = {}; if (sum(strcmpi('HOMKERMAP',varargin))) setvarargin{end+1} = 'HOMKERMAP'; setvarargin{end+1} = varargin{find(strcmpi('HOMKERMAP',varargin),1)+1}; varargin(find(strcmpi('HOMKERMAP',varargin),1)+1)=[]; varargin(find(strcmpi('HOMKERMAP',varargin),1))=[]; end if (sum(strcmpi('KChi2',varargin))) setvarargin{end+1} = 'KChi2'; varargin(find(strcmpi('KChi2',varargin),1))=[]; end if (sum(strcmpi('KINTERS',varargin))) setvarargin{end+1} = 'KINTERS'; varargin(find(strcmpi('KINTERS',varargin),1))=[]; end if (sum(strcmpi('KL1',varargin))) setvarargin{end+1} = 'KL1'; varargin(find(strcmpi('KL1',varargin),1))=[]; end if (sum(strcmpi('KJS',varargin))) setvarargin{end+1} = 'KJS'; varargin(find(strcmpi('KJS',varargin),1))=[]; end if (sum(strcmpi('Period',varargin))) setvarargin{end+1} = 'Period'; setvarargin{end+1} = varargin{find(strcmpi('Period',varargin),1)+1}; varargin(find(strcmpi('Period',varargin),1)+1)=[]; varargin(find(strcmpi('Period',varargin),1))=[]; end if (sum(strcmpi('Window',varargin))) setvarargin{end+1} = 'Window'; setvarargin{end+1} = varargin{find(strcmpi('Window',varargin),1)+1}; varargin(find(strcmpi('Window',varargin),1)+1)=[]; varargin(find(strcmpi('Window',varargin),1))=[]; end if (sum(strcmpi('Gamma',varargin))) setvarargin{end+1} = 'Gamma'; setvarargin{end+1} = varargin{find(strcmpi('Gamma',varargin),1)+1}; varargin(find(strcmpi('Gamma',varargin),1)+1)=[]; varargin(find(strcmpi('Gamma',varargin),1))=[]; end setvarargin{:} DATA = vl_maketrainingset(double(X),int8(Y),setvarargin{:}); DATA [w b info] = vl_svmtrain(DATA,LAMBDA,varargin{:}); fprintf('\n vl_pegasos is DEPRECATED. Please use vl_svmtrain instead. \n\n'); end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_svmpegasos.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/misc/vl_svmpegasos.m
1,178
utf_8
009c2a2b87a375d529ed1a4dbe3af59f
% VL_SVMPEGASOS [deprecated] % VL_SVMPEGASOS is deprecated. Please use VL_SVMTRAIN() instead. function [w b info] = vl_svmpegasos(DATA,LAMBDA, varargin) % Verbose not supported if (sum(strcmpi('Verbose',varargin))) varargin(find(strcmpi('Verbose',varargin),1))=[]; fprintf('Option VERBOSE is no longer supported.\n'); end % DiagnosticCallRef not supported if (sum(strcmpi('DiagnosticCallRef',varargin))) varargin(find(strcmpi('DiagnosticCallRef',varargin),1)+1)=[]; varargin(find(strcmpi('DiagnosticCallRef',varargin),1))=[]; fprintf('Option DIAGNOSTICCALLREF is no longer supported.\n Please follow the VLFeat tutorial on SVMs for more information on diagnostics\n'); end % different default value for MaxIterations if (sum(strcmpi('MaxIterations',varargin)) == 0) varargin{end+1} = 'MaxIterations'; varargin{end+1} = ceil(10/LAMBDA); end % different default value for BiasMultiplier if (sum(strcmpi('BiasMultiplier',varargin)) == 0) varargin{end+1} = 'BiasMultiplier'; varargin{end+1} = 0; end [w b info] = vl_svmtrain(DATA,LAMBDA,varargin{:}); fprintf('\n vl_svmpegasos is DEPRECATED. Please use vl_svmtrain instead. \n\n'); end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_override.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/misc/vl_override.m
4,654
utf_8
e233d2ecaeb68f56034a976060c594c5
function config = vl_override(config,update,varargin) % VL_OVERRIDE Override structure subset % CONFIG = VL_OVERRIDE(CONFIG, UPDATE) copies recursively the fileds % of the structure UPDATE to the corresponding fields of the % struture CONFIG. % % Usually CONFIG is interpreted as a list of paramters with their % default values and UPDATE as a list of new paramete values. % % VL_OVERRIDE(..., 'Warn') prints a warning message whenever: (i) % UPDATE has a field not found in CONFIG, or (ii) non-leaf values of % CONFIG are overwritten. % % VL_OVERRIDE(..., 'Skip') skips fields of UPDATE that are not found % in CONFIG instead of copying them. % % VL_OVERRIDE(..., 'CaseI') matches field names in a % case-insensitive manner. % % Remark:: % Fields are copied at the deepest possible level. For instance, % if CONFIG has fields A.B.C1=1 and A.B.C2=2, and if UPDATE is the % structure A.B.C1=3, then VL_OVERRIDE() returns a strucuture with % fields A.B.C1=3, A.B.C2=2. By contrast, if UPDATE is the % structure A.B=4, then the field A.B is copied, and VL_OVERRIDE() % returns the structure A.B=4 (specifying 'Warn' would warn about % the fact that the substructure B.C1, B.C2 is being deleted). % % Remark:: % Two fields are matched if they correspond exactly. Specifically, % two fileds A(IA).(FA) and B(IA).FB of two struct arrays A and B % match if, and only if, (i) A and B have the same dimensions, % (ii) IA == IB, and (iii) FA == FB. % % See also: VL_ARGPARSE(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). warn = false ; skip = false ; err = false ; casei = false ; if length(varargin) == 1 & ~ischar(varargin{1}) % legacy warn = 1 ; end if ~warn & length(varargin) > 0 for i=1:length(varargin) switch lower(varargin{i}) case 'warn' warn = true ; case 'skip' skip = true ; case 'err' err = true ; case 'argparse' argparse = true ; case 'casei' casei = true ; otherwise error(sprintf('Unknown option ''%s''.',varargin{i})) ; end end end % if CONFIG is not a struct array just copy UPDATE verbatim if ~isstruct(config) config = update ; return ; end % if CONFIG is a struct array but UPDATE is not, no match can be % established and we simply copy UPDATE verbatim if ~isstruct(update) config = update ; return ; end % if CONFIG and UPDATE are both struct arrays, but have different % dimensions then nom atch can be established and we simply copy % UPDATE verbatim if numel(update) ~= numel(config) config = update ; return ; end % if CONFIG and UPDATE are both struct arrays of the same % dimension, we override recursively each field for idx=1:numel(update) fields = fieldnames(update) ; for i = 1:length(fields) updateFieldName = fields{i} ; if casei configFieldName = findFieldI(config, updateFieldName) ; else configFieldName = findField(config, updateFieldName) ; end if ~isempty(configFieldName) config(idx).(configFieldName) = ... vl_override(config(idx).(configFieldName), ... update(idx).(updateFieldName)) ; else if warn warning(sprintf('copied field ''%s'' which is in UPDATE but not in CONFIG', ... updateFieldName)) ; end if err error(sprintf('The field ''%s'' is in UPDATE but not in CONFIG', ... updateFieldName)) ; end if skip if warn warning(sprintf('skipping field ''%s'' which is in UPDATE but not in CONFIG', ... updateFieldName)) ; end continue ; end config(idx).(updateFieldName) = update(idx).(updateFieldName) ; end end end % -------------------------------------------------------------------- function field = findFieldI(S, matchField) % -------------------------------------------------------------------- field = '' ; fieldNames = fieldnames(S) ; for fi=1:length(fieldNames) if strcmpi(fieldNames{fi}, matchField) field = fieldNames{fi} ; end end % -------------------------------------------------------------------- function field = findField(S, matchField) % -------------------------------------------------------------------- field = '' ; fieldNames = fieldnames(S) ; for fi=1:length(fieldNames) if strcmp(fieldNames{fi}, matchField) field = fieldNames{fi} ; end end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_quickvis.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/quickshift/vl_quickvis.m
3,696
utf_8
27f199dad4c5b9c192a5dd3abc59f9da
function [Iedge dists map gaps] = vl_quickvis(I, ratio, kernelsize, maxdist, maxcuts) % VL_QUICKVIS Create an edge image from a Quickshift segmentation. % IEDGE = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS) creates an edge % stability image from a Quickshift segmentation. RATIO controls the tradeoff % between color consistency and spatial consistency (See VL_QUICKSEG) and % KERNELSIZE controls the bandwidth of the density estimator (See VL_QUICKSEG, % VL_QUICKSHIFT). MAXDIST is the maximum distance between neighbors which % increase the density. % % VL_QUICKVIS takes at most MAXCUTS thresholds less than MAXDIST, forming at % most MAXCUTS segmentations. The edges between regions in each of these % segmentations are labeled in IEDGE, where the label corresponds to the % largest DIST which preserves the edge. % % [IEDGE,DISTS] = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS) also % returns the DIST thresholds that were chosen. % % IEDGE = VL_QUICKVIS(I, RATIO, KERNELSIZE, DISTS) will use the DISTS % specified % % [IEDGE,DISTS,MAP,GAPS] = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS) % also returns the MAP and GAPS from VL_QUICKSHIFT. % % See Also: VL_QUICKSHIFT(), VL_QUICKSEG(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if nargin == 4 dists = maxdist; maxdist = max(dists); [Iseg labels map gaps E] = vl_quickseg(I, ratio, kernelsize, maxdist); else [Iseg labels map gaps E] = vl_quickseg(I, ratio, kernelsize, maxdist); dists = unique(floor(gaps(:))); dists = dists(2:end-1); % remove the inf thresh and the lowest level thresh if length(dists) > maxcuts ind = round(linspace(1,length(dists), maxcuts)); dists = dists(ind); end end [Iedge dists] = mapvis(map, gaps, dists); function [Iedge dists] = mapvis(map, gaps, maxdist, maxcuts) % MAPVIS Create an edge image from a Quickshift segmentation. % IEDGE = MAPVIS(MAP, GAPS, MAXDIST, MAXCUTS) creates an edge % stability image from a Quickshift segmentation. MAXDIST is the maximum % distance between neighbors which increase the density. % % MAPVIS takes at most MAXCUTS thresholds less than MAXDIST, forming at most % MAXCUTS segmentations. The edges between regions in each of these % segmentations are labeled in IEDGE, where the label corresponds to the % largest DIST which preserves the edge. % % [IEDGE,DISTS] = MAPVIS(MAP, GAPS, MAXDIST, MAXCUTS) also returns the DIST % thresholds that were chosen. % % IEDGE = MAPVIS(MAP, GAPS, DISTS) will use the DISTS specified % % See Also: VL_QUICKVIS, VL_QUICKSHIFT, VL_QUICKSEG if nargin == 3 dists = maxdist; maxdist = max(dists); else dists = unique(floor(gaps(:))); dists = dists(2:end-1); % remove the inf thresh and the lowest level thresh % throw away min region size instead of maxdist? ind = find(dists < maxdist); dists = dists(ind); if length(dists) > maxcuts ind = round(linspace(1,length(dists), maxcuts)); dists = dists(ind); end end Iedge = zeros(size(map)); for i = 1:length(dists) s = find(gaps >= dists(i)); mapdist = map; mapdist(s) = s; [mapped labels] = vl_flatmap(mapdist); fprintf('%d/%d %d regions\n', i, length(dists), length(unique(mapped))) borders = getborders(mapped); Iedge(borders) = dists(i); %Iedge(borders) = Iedge(borders) + 1; %Iedge(borders) = i; end %%%%%%%%% GETBORDERS function borders = getborders(map) dx = conv2(map, [-1 1], 'same'); dy = conv2(map, [-1 1]', 'same'); borders = find(dx ~= 0 | dy ~= 0);
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_demo_aib.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/demo/vl_demo_aib.m
2,928
utf_8
590c6db09451ea608d87bfd094662cac
function vl_demo_aib % VL_DEMO_AIB Test Agglomerative Information Bottleneck (AIB) D = 4 ; K = 20 ; randn('state',0) ; rand('state',0) ; X1 = randn(2,300) ; X1(1,:) = X1(1,:) + 2 ; X2 = randn(2,300) ; X2(1,:) = X2(1,:) - 2 ; X3 = randn(2,300) ; X3(2,:) = X3(2,:) + 2 ; figure(1) ; clf ; hold on ; vl_plotframe(X1,'color','r') ; vl_plotframe(X2,'color','g') ; vl_plotframe(X3,'color','b') ; axis equal ; xlim([-4 4]); ylim([-4 4]); axis off ; rectangle('position',D*[-1 -1 2 2]) vl_demo_print('aib_basic_data', .6) ; C = 1:K*K ; Pcx = zeros(3,K*K) ; f1 = quantize(X1,D,K) ; f2 = quantize(X2,D,K) ; f3 = quantize(X3,D,K) ; Pcx(1,:) = vl_binsum(Pcx(1,:), ones(size(f1)), f1) ; Pcx(2,:) = vl_binsum(Pcx(2,:), ones(size(f2)), f2) ; Pcx(3,:) = vl_binsum(Pcx(3,:), ones(size(f3)), f3) ; Pcx = Pcx / sum(Pcx(:)) ; [parents, cost] = vl_aib(Pcx) ; cutsize = [K*K, 10, 3, 2, 1] ; for i=1:length(cutsize) [cut,map,short] = vl_aibcut(parents, cutsize(i)) ; parents_cut(short > 0) = parents(short(short > 0)) ; C = short(1:K*K+1) ; [drop1,drop2,C] = unique(C) ; figure(i+1) ; clf ; plotquantization(D,K,C) ; hold on ; %plottree(D,K,parents_cut) ; axis equal ; axis off ; title(sprintf('%d clusters', cutsize(i))) ; vl_demo_print(sprintf('aib_basic_clust_%d',i),.6) ; end % -------------------------------------------------------------------- function f = quantize(X,D,K) % -------------------------------------------------------------------- d = 2*D / K ; j = round((X(1,:) + D) / d) ; i = round((X(2,:) + D) / d) ; j = max(min(j,K),1) ; i = max(min(i,K),1) ; f = sub2ind([K K],i,j) ; % -------------------------------------------------------------------- function [i,j] = plotquantization(D,K,C) % -------------------------------------------------------------------- hold on ; cl = [[.3 .3 .3] ; .5*hsv(max(C)-1)+.5] ; d = 2*D / K ; for i=0:K-1 for j=0:K-1 patch(d*(j+[0 1 1 0])-D, ... d*(i+[0 0 1 1])-D, ... cl(C(j*K+i+1),:)) ; end end % -------------------------------------------------------------------- function h = plottree(D,K,parents) % -------------------------------------------------------------------- d = 2*D / K ; C = zeros(2,2*K*K-1)+NaN ; N = zeros(1,2*K*K-1) ; for i=0:K-1 for j=0:K-1 C(:,j*K+i+1) = [d*j-D; d*i-D]+d/2 ; N(:,j*K+i+1) = 1 ; end end for i=1:length(parents) p = parents(i) ; if p==0, continue ; end; if all(isnan(C(:,i))), continue; end if all(isnan(C(:,p))) C(:,p) = C(:,i) / N(i) ; else C(:,p) = C(:,p) + C(:,i) / N(i) ; end N(p) = N(p) + 1 ; end C(1,:) = C(1,:) ./ N ; C(2,:) = C(2,:) ./ N ; xt = zeros(3, 2*length(parents)-1)+NaN ; yt = zeros(3, 2*length(parents)-1)+NaN ; for i=1:length(parents) p = parents(i) ; if p==0, continue ; end; xt(1,i) = C(1,i) ; xt(2,i) = C(1,p) ; yt(1,i) = C(2,i) ; yt(2,i) = C(2,p) ; end h=line(xt(:),yt(:),'linestyle','-','marker','.','linewidth',3) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_demo_alldist.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/demo/vl_demo_alldist.m
5,460
utf_8
6d008a64d93445b9d7199b55d58db7eb
function vl_demo_alldist % numRepetitions = 3 ; numDimensions = 1000 ; numSamplesRange = [300] ; settingsRange = {{'alldist2', 'double', 'l2', }, ... {'alldist', 'double', 'l2', 'nosimd'}, ... {'alldist', 'double', 'l2' }, ... {'alldist2', 'single', 'l2', }, ... {'alldist', 'single', 'l2', 'nosimd'}, ... {'alldist', 'single', 'l2' }, ... {'alldist2', 'double', 'l1', }, ... {'alldist', 'double', 'l1', 'nosimd'}, ... {'alldist', 'double', 'l1' }, ... {'alldist2', 'single', 'l1', }, ... {'alldist', 'single', 'l1', 'nosimd'}, ... {'alldist', 'single', 'l1' }, ... {'alldist2', 'double', 'chi2', }, ... {'alldist', 'double', 'chi2', 'nosimd'}, ... {'alldist', 'double', 'chi2' }, ... {'alldist2', 'single', 'chi2', }, ... {'alldist', 'single', 'chi2', 'nosimd'}, ... {'alldist', 'single', 'chi2' }, ... {'alldist2', 'double', 'hell', }, ... {'alldist', 'double', 'hell', 'nosimd'}, ... {'alldist', 'double', 'hell' }, ... {'alldist2', 'single', 'hell', }, ... {'alldist', 'single', 'hell', 'nosimd'}, ... {'alldist', 'single', 'hell' }, ... {'alldist2', 'double', 'kl2', }, ... {'alldist', 'double', 'kl2', 'nosimd'}, ... {'alldist', 'double', 'kl2' }, ... {'alldist2', 'single', 'kl2', }, ... {'alldist', 'single', 'kl2', 'nosimd'}, ... {'alldist', 'single', 'kl2' }, ... {'alldist2', 'double', 'kl1', }, ... {'alldist', 'double', 'kl1', 'nosimd'}, ... {'alldist', 'double', 'kl1' }, ... {'alldist2', 'single', 'kl1', }, ... {'alldist', 'single', 'kl1', 'nosimd'}, ... {'alldist', 'single', 'kl1' }, ... {'alldist2', 'double', 'kchi2', }, ... {'alldist', 'double', 'kchi2', 'nosimd'}, ... {'alldist', 'double', 'kchi2' }, ... {'alldist2', 'single', 'kchi2', }, ... {'alldist', 'single', 'kchi2', 'nosimd'}, ... {'alldist', 'single', 'kchi2' }, ... {'alldist2', 'double', 'khell', }, ... {'alldist', 'double', 'khell', 'nosimd'}, ... {'alldist', 'double', 'khell' }, ... {'alldist2', 'single', 'khell', }, ... {'alldist', 'single', 'khell', 'nosimd'}, ... {'alldist', 'single', 'khell' }, ... } ; %settingsRange = settingsRange(end-5:end) ; styles = {} ; for marker={'x','+','.','*','o'} for color={'r','g','b','k','y'} styles{end+1} = {'color', char(color), 'marker', char(marker)} ; end end for ni=1:length(numSamplesRange) for ti=1:length(settingsRange) tocs = [] ; for ri=1:numRepetitions rand('state',ri) ; randn('state',ri) ; numSamples = numSamplesRange(ni) ; settings = settingsRange{ti} ; [tocs(end+1), D] = run_experiment(numDimensions, ... numSamples, ... settings) ; end means(ni,ti) = mean(tocs) ; stds(ni,ti) = std(tocs) ; if mod(ti-1,3) == 0 D0 = D ; else err = max(abs(D(:)-D0(:))) ; fprintf('err %f\n', err) ; if err > 1, keyboard ; end end end end if 0 figure(1) ; clf ; hold on ; numStyles = length(styles) ; for ti=1:length(settingsRange) si = mod(ti - 1, numStyles) + 1 ; h(ti) = plot(numSamplesRange, means(:,ti), styles{si}{:}) ; leg{ti} = sprintf('%s ', settingsRange{ti}{:}) ; errorbar(numSamplesRange, means(:,ti), stds(:,ti), 'linestyle', 'none') ; end end for ti=1:length(settingsRange) leg{ti} = sprintf('%s ', settingsRange{ti}{:}) ; end figure(1) ; clf ; barh(means(end,:)) ; set(gca,'ytick', 1:length(leg), 'yticklabel', leg,'ydir','reverse') ; xlabel('Time [s]') ; function [elaps, D] = run_experiment(numDimensions, numSamples, settings) distType = 'l2' ; algType = 'alldist' ; classType = 'double' ; useSimd = true ; for si=1:length(settings) arg = settings{si} ; switch arg case {'l1', 'l2', 'chi2', 'hell', 'kl2', 'kl1', 'kchi2', 'khell'} distType = arg ; case {'alldist', 'alldist2'} algType = arg ; case {'single', 'double'} classType = arg ; case 'simd' useSimd = true ; case 'nosimd' useSimd = false ; otherwise assert(false) ; end end X = rand(numDimensions, numSamples) ; X(X < .3) = 0 ; switch classType case 'double' case 'single' X = single(X) ; end vl_simdctrl(double(useSimd)) ; switch algType case 'alldist' tic ; D = vl_alldist(X, distType) ; elaps = toc ; case 'alldist2' tic ; D = vl_alldist2(X, distType) ; elaps = toc ; end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_demo_ikmeans.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/demo/vl_demo_ikmeans.m
774
utf_8
17ff0bb7259d390fb4f91ea937ba7de0
function vl_demo_ikmeans() % VL_DEMO_IKMEANS numData = 10000 ; dimension = 2 ; data = uint8(255*rand(dimension,numData)) ; numClusters = 3^3 ; [centers, assignments] = vl_ikmeans(data, numClusters); figure(1) ; clf ; axis off ; plotClusters(data, centers, assignments) ; vl_demo_print('ikmeans_2d',0.6); [tree, assignments] = vl_hikmeans(data,3,numClusters) ; figure(2) ; clf ; axis off ; plotClusters(data, [], [4 2 1] * double(assignments)) ; vl_demo_print('hikmeans_2d',0.6); function plotClusters(data, centers, assignments) hold on ; cc=jet(double(max(assignments(:)))); for i=1:max(assignments(:)) plot(data(1,assignments == i),data(2,assignments == i),'.','color',cc(i,:)); end if ~isempty(centers) plot(centers(1,:),centers(2,:),'k.','MarkerSize',20) end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_demo_svm.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/demo/vl_demo_svm.m
1,235
utf_8
7cf6b3504e4fc2cbd10ff3fec6e331a7
% VL_DEMO_SVM Demo: SVM: 2D linear learning function vl_demo_svm y=[];X=[]; % Load training data X and their labels y load('vl_demo_svm_data.mat') Xp = X(:,y==1); Xn = X(:,y==-1); figure plot(Xn(1,:),Xn(2,:),'*r') hold on plot(Xp(1,:),Xp(2,:),'*b') axis equal ; vl_demo_print('svm_training') ; % Parameters lambda = 0.01 ; % Regularization parameter maxIter = 1000 ; % Maximum number of iterations energy = [] ; % Diagnostic function function diagnostics(svm) energy = [energy [svm.objective ; svm.dualObjective ; svm.dualityGap ] ] ; end % Training the SVM energy = [] ; [w b info] = vl_svmtrain(X, y, lambda,... 'MaxNumIterations',maxIter,... 'DiagnosticFunction',@diagnostics,... 'DiagnosticFrequency',1) % Visualisation eq = [num2str(w(1)) '*x+' num2str(w(2)) '*y+' num2str(b)]; line = ezplot(eq, [-0.9 0.9 -0.9 0.9]); set(line, 'Color', [0 0.8 0],'linewidth', 2); vl_demo_print('svm_training_result') ; figure hold on plot(energy(1,:),'--b') ; plot(energy(2,:),'-.g') ; plot(energy(3,:),'r') ; legend('Primal objective','Dual objective','Duality gap') xlabel('Diagnostics iteration') ylabel('Energy') vl_demo_print('svm_energy') ; end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_demo_kdtree_sift.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/demo/vl_demo_kdtree_sift.m
6,832
utf_8
e676f80ac330a351f0110533c6ebba89
function vl_demo_kdtree_sift % VL_DEMO_KDTREE_SIFT % Demonstrates the use of a kd-tree forest to match SIFT % features. If FLANN is present, this function runs a comparison % against it. % AUTORIGHS rand('state',0) ; randn('state',0); do_median = 0 ; do_mean = 1 ; % try to setup flann if ~exist('flann_search', 'file') if exist(fullfile(vl_root, 'opt', 'flann', 'build', 'matlab')) addpath(fullfile(vl_root, 'opt', 'flann', 'build', 'matlab')) ; end end do_flann = exist('nearest_neighbors') == 3 ; if ~do_flann warning('FLANN not found. Comparison disabled.') ; end maxNumComparisonsRange = [1 10 50 100 200 300 400] ; numTreesRange = [1 2 5 10] ; % get data (SIFT features) im1 = imread(fullfile(vl_root, 'data', 'roofs1.jpg')) ; im2 = imread(fullfile(vl_root, 'data', 'roofs2.jpg')) ; im1 = single(rgb2gray(im1)) ; im2 = single(rgb2gray(im2)) ; [f1,d1] = vl_sift(im1,'firstoctave',-1,'floatdescriptors','verbose') ; [f2,d2] = vl_sift(im2,'firstoctave',-1,'floatdescriptors','verbose') ; % add some noise to make matches unique d1 = single(d1) + rand(size(d1)) ; d2 = single(d2) + rand(size(d2)) ; % match exhaustively to get the ground truth elapsedDirect = tic ; D = vl_alldist(d1,d2) ; [drop, best] = min(D, [], 1) ; elapsedDirect = toc(elapsedDirect) ; for ti=1:length(numTreesRange) for vi=1:length(maxNumComparisonsRange) v = maxNumComparisonsRange(vi) ; t = numTreesRange(ti) ; if do_median tic ; kdtree = vl_kdtreebuild(d1, ... 'verbose', ... 'thresholdmethod', 'median', ... 'numtrees', t) ; [i, d] = vl_kdtreequery(kdtree, d1, d2, ... 'verbose', ... 'maxcomparisons',v) ; elapsedKD_median(vi,ti) = toc ; errors_median(vi,ti) = sum(double(i) ~= best) / length(best) ; errorsD_median(vi,ti) = mean(abs(d - drop) ./ drop) ; end if do_mean tic ; kdtree = vl_kdtreebuild(d1, ... 'verbose', ... 'thresholdmethod', 'mean', ... 'numtrees', t) ; %kdtree = readflann(kdtree, '/tmp/flann.txt') ; %checkx(kdtree, d1, 1, 1) ; [i, d] = vl_kdtreequery(kdtree, d1, d2, ... 'verbose', ... 'maxcomparisons', v) ; elapsedKD_mean(vi,ti) = toc ; errors_mean(vi,ti) = sum(double(i) ~= best) / length(best) ; errorsD_mean(vi,ti) = mean(abs(d - drop) ./ drop) ; end if do_flann tic ; [i, d] = flann_search(d1, d2, 1, struct('algorithm','kdtree', ... 'trees', t, ... 'checks', v)); ifla = i ; elapsedKD_flann(vi,ti) = toc; errors_flann(vi,ti) = sum(i ~= best) / length(best) ; errorsD_flann(vi,ti) = mean(abs(d - drop) ./ drop) ; end end end figure(1) ; clf ; leg = {} ; hnd = [] ; sty = {{'color','r'},{'color','g'},... {'color','b'},{'color','c'},... {'color','k'}} ; for ti=1:length(numTreesRange) s = sty{mod(ti,length(sty))+1} ; if do_median h1=loglog(elapsedDirect ./ elapsedKD_median(:,ti),100*errors_median(:,ti),'-*',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat median (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h1 ; end if do_mean h2=loglog(elapsedDirect ./ elapsedKD_mean(:,ti), 100*errors_mean(:,ti), '-o',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h2 ; end if do_flann h3=loglog(elapsedDirect ./ elapsedKD_flann(:,ti), 100*errors_flann(:,ti), '+--',s{:}) ; hold on ; leg{end+1} = sprintf('FLANN (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h3 ; end end set([hnd], 'linewidth', 2) ; xlabel('speedup over linear search (log times)') ; ylabel('percentage of incorrect matches (%)') ; h=legend(hnd, leg{:}, 'location', 'southeast') ; set(h,'fontsize',8) ; grid on ; axis square ; vl_demo_print('kdtree_sift_incorrect',.6) ; figure(2) ; clf ; leg = {} ; hnd = [] ; for ti=1:length(numTreesRange) s = sty{mod(ti,length(sty))+1} ; if do_median h1=loglog(elapsedDirect ./ elapsedKD_median(:,ti),100*errorsD_median(:,ti),'*-',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat median (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h1 ; end if do_mean h2=loglog(elapsedDirect ./ elapsedKD_mean(:,ti), 100*errorsD_mean(:,ti), 'o-',s{:}) ; hold on ; leg{end+1} = sprintf('VLFeat (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h2 ; end if do_flann h3=loglog(elapsedDirect ./ elapsedKD_flann(:,ti), 100*errorsD_flann(:,ti), '+--',s{:}) ; hold on ; leg{end+1} = sprintf('FLANN (%d tr.)', numTreesRange(ti)) ; hnd(end+1) = h3 ; end end set([hnd], 'linewidth', 2) ; xlabel('speedup over linear search (log times)') ; ylabel('relative overestimation of minmium distannce (%)') ; h=legend(hnd, leg{:}, 'location', 'southeast') ; set(h,'fontsize',8) ; grid on ; axis square ; vl_demo_print('kdtree_sift_distortion',.6) ; % -------------------------------------------------------------------- function checkx(kdtree, X, t, n, mib, mab) % -------------------------------------------------------------------- if nargin <= 4 mib = -inf * ones(size(X,1),1) ; mab = +inf * ones(size(X,1),1) ; end lc = kdtree.trees(t).nodes.lowerChild(n) ; uc = kdtree.trees(t).nodes.upperChild(n) ; if lc < 0 for i=-lc:-uc-1 di = kdtree.trees(t).dataIndex(i) ; if any(X(:,di) > mab) error('a') ; end if any(X(:,di) < mib) error('b') ; end end return end i = kdtree.trees(t).nodes.splitDimension(n) ; v = kdtree.trees(t).nodes.splitThreshold(n) ; mab_ = mab ; mab_(i) = min(mab(i), v) ; checkx(kdtree, X, t, lc, mib, mab_) ; mib_ = mib ; mib_(i) = max(mib(i), v) ; checkx(kdtree, X, t, uc, mib_, mab) ; % -------------------------------------------------------------------- function kdtree = readflann(kdtree, path) % -------------------------------------------------------------------- data = textread(path)' ; for i=1:size(data,2) nodeIds = data(1,:) ; ni = find(nodeIds == data(1,i)) ; if ~isnan(data(2,i)) % internal node li = find(nodeIds == data(4,i)) ; ri = find(nodeIds == data(5,i)) ; kdtree.trees(1).nodes.lowerChild(ni) = int32(li) ; kdtree.trees(1).nodes.upperChild(ni) = int32(ri) ; kdtree.trees(1).nodes.splitThreshold(ni) = single(data(2,i)) ; kdtree.trees(1).nodes.splitDimension(ni) = single(data(3,i)+1) ; else di = data(3,i) + 1 ; kdtree.trees(1).nodes.lowerChild(ni) = int32(- di) ; kdtree.trees(1).nodes.upperChild(ni) = int32(- di - 1) ; end kdtree.trees(1).dataIndex = uint32(1:kdtree.numData) ; end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_impattern.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/imop/vl_impattern.m
6,876
utf_8
1716a4d107f0186be3d11c647bc628ce
function im = vl_impattern(varargin) % VL_IMPATTERN Generate an image from a stock pattern % IM=VLPATTERN(NAME) returns an instance of the specified % pattern. These stock patterns are useful for testing algoirthms. % % All generated patterns are returned as an image of class % DOUBLE. Both gray-scale and colour images have range in [0,1]. % % VL_IMPATTERN() without arguments shows a gallery of the stock % patterns. The following patterns are supported: % % Wedge:: % The image of a wedge. % % Cone:: % The image of a cone. % % SmoothChecker:: % A checkerboard with Gaussian filtering on top. Use the % option-value pair 'sigma', SIGMA to specify the standard % deviation of the smoothing and the pair 'step', STEP to specfity % the checker size in pixels. % % ThreeDotsSquare:: % A pattern with three small dots and two squares. % % UniformNoise:: % Random i.i.d. noise. % % Blobs: % Gaussian blobs of various sizes and anisotropies. % % Blobs1: % Gaussian blobs of various orientations and anisotropies. % % Blob: % One Gaussian blob. Use the option-value pairs 'sigma', % 'orientation', and 'anisotropy' to specify the respective % parameters. 'sigma' is the scalar standard deviation of an % isotropic blob (the image domain is the rectangle % [-1,1]^2). 'orientation' is the clockwise rotation (as the Y % axis points downards). 'anisotropy' (>= 1) is the ratio of the % the largest over the smallest axis of the blob (the smallest % axis length is set by 'sigma'). Set 'cut' to TRUE to cut half % half of the blob. % % A stock image:: % Any of 'box', 'roofs1', 'roofs2', 'river1', 'river2', 'spotted'. % % All pattern accept a SIZE parameter [WIDTH,HEIGHT]. For all but % the stock images, the default size is [128,128]. % Author: Andrea Vedaldi % Copyright (C) 2012 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if nargin > 0 pattern=varargin{1} ; varargin=varargin(2:end) ; else pattern = 'gallery' ; end patterns = {'wedge','cone','smoothChecker','threeDotsSquare', ... 'blob', 'blobs', 'blobs1', ... 'box', 'roofs1', 'roofs2', 'river1', 'river2'} ; % spooling switch lower(pattern) case 'wedge', im = wedge(varargin) ; case 'cone', im = cone(varargin) ; case 'smoothchecker', im = smoothChecker(varargin) ; case 'threedotssquare', im = threeDotSquare(varargin) ; case 'uniformnoise', im = uniformNoise(varargin) ; case 'blob', im = blob(varargin) ; case 'blobs', im = blobs(varargin) ; case 'blobs1', im = blobs1(varargin) ; case {'box','roofs1','roofs2','river1','river2','spots'} im = stockImage(pattern, varargin) ; case 'gallery' clf ; num = numel(patterns) ; for p = 1:num vl_tightsubplot(num,p,'box','outer') ; imagesc(vl_impattern(patterns{p}),[0 1]) ; axis image off ; title(patterns{p}) ; end colormap gray ; return ; otherwise error('Unknown patter ''%s''.', pattern) ; end if nargout == 0 clf ; imagesc(im) ; hold on ; colormap gray ; axis image off ; title(pattern) ; clear im ; end function [u,v,opts,args] = commonOpts(args) opts.size = [128 128] ; [opts,args] = vl_argparse(opts, args) ; ur = linspace(-1,1,opts.size(2)) ; vr = linspace(-1,1,opts.size(1)) ; [u,v] = meshgrid(ur,vr); function im = wedge(args) [u,v,opts,args] = commonOpts(args) ; im = abs(u) + abs(v) > (1/4) ; im(v < 0) = 0 ; function im = cone(args) [u,v,opts,args] = commonOpts(args) ; im = sqrt(u.^2+v.^2) ; im = im / max(im(:)) ; function im = smoothChecker(args) opts.size = [128 128] ; opts.step = 16 ; opts.sigma = 2 ; opts = vl_argparse(opts, args) ; [u,v] = meshgrid(0:opts.size(1)-1, 0:opts.size(2)-1) ; im = xor((mod(u,opts.step*2) < opts.step),... (mod(v,opts.step*2) < opts.step)) ; im = double(im) ; im = vl_imsmooth(im, opts.sigma) ; function im = threeDotSquare(args) [u,v,opts,args] = commonOpts(args) ; im = ones(size(u)) ; im(-2/3<u & u<2/3 & -2/3<v & v<2/3) = .75 ; im(-1/3<u & u<1/3 & -1/3<v & v<1/3) = .50 ; [drop,i] = min(abs(v(:,1))) ; [drop,j1] = min(abs(u(1,:)-1/6)) ; [drop,j2] = min(abs(u(1,:))) ; [drop,j3] = min(abs(u(1,:)+1/6)) ; im(i,j1) = 0 ; im(i,j2) = 0 ; im(i,j3) = 0 ; function im = blobs(args) [u,v,opts,args] = commonOpts(args) ; im = zeros(size(u)) ; num = 5 ; square = 2 / num ; sigma = square / 2 / 3 ; scales = logspace(log10(0.5), log10(1), num) ; skews = linspace(1,2,num) ; for i=1:num for j=1:num cy = (i-1) * square + square/2 - 1; cx = (j-1) * square + square/2 - 1; A = sigma * diag([scales(i) scales(i)/skews(j)]) * [1 -1 ; 1 1] / sqrt(2) ; C = inv(A'*A) ; x = u - cx ; y = v - cy ; im = im + exp(-0.5 *(x.*x*C(1,1) + y.*y*C(2,2) + 2*x.*y*C(1,2))) ; end end im = im / max(im(:)) ; function im = blob(args) [u,v,opts,args] = commonOpts(args) ; opts.sigma = 0.15 ; opts.anisotropy = .5 ; opts.orientation = 2/3 * pi ; opts.cut = false ; opts = vl_argparse(opts, args) ; im = zeros(size(u)) ; th = opts.orientation ; R = [cos(th) -sin(th) ; sin(th) cos(th)] ; A = opts.sigma * R * diag([opts.anisotropy 1]) ; T = [0;0] ; [x,y] = vl_waffine(inv(A),-inv(A)*T,u,v) ; im = exp(-0.5 *(x.^2 + y.^2)) ; if opts.cut im = im .* double(x > 0) ; end function im = blobs1(args) [u,v,opts,args] = commonOpts(args) ; opts.number = 5 ; opts.sigma = [] ; opts = vl_argparse(opts, args) ; im = zeros(size(u)) ; square = 2 / opts.number ; num = opts.number ; if isempty(opts.sigma) sigma = 1/6 * square ; else sigma = opts.sigma * square ; end rotations = linspace(0,pi,num+1) ; rotations(end) = [] ; skews = linspace(1,2,num) ; for i=1:num for j=1:num cy = (i-1) * square + square/2 - 1; cx = (j-1) * square + square/2 - 1; th = rotations(i) ; R = [cos(th) -sin(th); sin(th) cos(th)] ; A = sigma * R * diag([1 1/skews(j)]) ; C = inv(A*A') ; x = u - cx ; y = v - cy ; im = im + exp(-0.5 *(x.*x*C(1,1) + y.*y*C(2,2) + 2*x.*y*C(1,2))) ; end end im = im / max(im(:)) ; function im = uniformNoise(args) opts.size = [128 128] ; opts.seed = 1 ; opts = vl_argparse(opts, args) ; state = vl_twister('state') ; vl_twister('state',opts.seed) ; im = vl_twister(opts.size([2 1])) ; vl_twister('state',state) ; function im = stockImage(pattern,args) opts.size = [] ; opts = vl_argparse(opts, args) ; switch pattern case 'river1', path='river1.jpg' ; case 'river2', path='river2.jpg' ; case 'roofs1', path='roofs1.jpg' ; case 'roofs2', path='roofs2.jpg' ; case 'box', path='box.pgm' ; case 'spots', path='spots.jpg' ; end im = imread(fullfile(vl_root,'data',path)) ; im = im2double(im) ; if ~isempty(opts.size) im = imresize(im, opts.size) ; im = max(im,0) ; im = min(im,1) ; end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_tpsu.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/imop/vl_tpsu.m
1,755
utf_8
09f36e1a707c069b375eb2817d0e5f13
function [U,dU,delta]=vl_tpsu(X,Y) % VL_TPSU Compute the U matrix of a thin-plate spline transformation % U=VL_TPSU(X,Y) returns the matrix % % [ U(|X(:,1) - Y(:,1)|) ... U(|X(:,1) - Y(:,N)|) ] % [ ] % [ U(|X(:,M) - Y(:,1)|) ... U(|X(:,M) - Y(:,N)|) ] % % where X is a 2xM matrix and Y a 2xN matrix of points and U(r) is % the opposite -r^2 log(r^2) of the radial basis function of the % thin plate spline specified by X and Y. % % [U,dU]=vl_tpsu(x,y) returns the derivatives of the columns of U with % respect to the parameters Y. The derivatives are arranged in a % Mx2xN array, one layer per column of U. % % See also: VL_TPS(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if exist('tpsumx') U = tpsumx(X,Y) ; else M=size(X,2) ; N=size(Y,2) ; % Faster than repmat, but still fairly slow r2 = ... (X( ones(N,1), :)' - Y( ones(1,M), :)).^2 + ... (X( 1+ones(N,1), :)' - Y(1+ones(1,M), :)).^2 ; U = - rb(r2) ; end if nargout > 1 M=size(X,2) ; N=size(Y,2) ; dx = X( ones(N,1), :)' - Y( ones(1,M), :) ; dy = X(1+ones(N,1), :)' - Y(1+ones(1,M), :) ; r2 = (dx.^2 + dy.^2) ; r = sqrt(r2) ; coeff = drb(r)./(r+eps) ; dU = reshape( [coeff .* dx ; coeff .* dy], M, 2, N) ; end % The radial basis function function y = rb(r2) y = zeros(size(r2)) ; sel = find(r2 ~= 0) ; y(sel) = - r2(sel) .* log(r2(sel)) ; % The derivative of the radial basis function function y = drb(r) y = zeros(size(r)) ; sel = find(r ~= 0) ; y(sel) = - 4 * r(sel) .* log(r(sel)) - 2 * r(sel) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_xyz2lab.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/imop/vl_xyz2lab.m
1,570
utf_8
09f95a6f9ae19c22486ec1157357f0e3
function J=vl_xyz2lab(I,il) % VL_XYZ2LAB Convert XYZ color space to LAB % J = VL_XYZ2LAB(I) converts the image from XYZ format to LAB format. % % VL_XYZ2LAB(I,IL) uses one of the illuminants A, B, C, E, D50, D55, % D65, D75, D93. The default illuminatn is E. % % See also: VL_XYZ2LUV(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). if nargin < 2 il='E' ; end switch lower(il) case 'a' xw = 0.4476 ; yw = 0.4074 ; case 'b' xw = 0.3324 ; yw = 0.3474 ; case 'c' xw = 0.3101 ; yw = 0.3162 ; case 'e' xw = 1/3 ; yw = 1/3 ; case 'd50' xw = 0.3457 ; yw = 0.3585 ; case 'd55' xw = 0.3324 ; yw = 0.3474 ; case 'd65' xw = 0.312713 ; yw = 0.329016 ; case 'd75' xw = 0.299 ; yw = 0.3149 ; case 'd93' xw = 0.2848 ; yw = 0.2932 ; end J=zeros(size(I)) ; % Reference white Yw = 1.0 ; Xw = xw/yw ; Zw = (1-xw-yw)/yw * Yw ; % XYZ components X = I(:,:,1) ; Y = I(:,:,2) ; Z = I(:,:,3) ; x = X/Xw ; y = Y/Yw ; z = Z/Zw ; L = 116 * f(y) - 16 ; a = 500*(f(x) - f(y)) ; b = 200*(f(y) - f(z)) ; J = cat(3,L,a,b) ; % -------------------------------------------------------------------- function b=f(a) % -------------------------------------------------------------------- sp = find(a > 0.00856) ; sm = find(a <= 0.00856) ; k = 903.3 ; b=zeros(size(a)) ; b(sp) = a(sp).^(1/3) ; b(sm) = (k*a(sm) + 16)/116 ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_gmm.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_gmm.m
1,332
utf_8
76782cae6c98781c6c38d4cbf5549d94
function results = vl_test_gmm(varargin) % VL_TEST_GMM % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). vl_test_init ; end function s = setup() randn('state',0) ; s.X = randn(128, 1000) ; end function test_multithreading(s) dataTypes = {'single','double'} ; for dataType = dataTypes conversion = str2func(char(dataType)) ; X = conversion(s.X) ; vl_twister('state',0) ; vl_threads(0) ; [means, covariances, priors, ll, posteriors] = ... vl_gmm(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Initialization', 'rand') ; vl_twister('state',0) ; vl_threads(1) ; [means_, covariances_, priors_, ll_, posteriors_] = ... vl_gmm(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Initialization', 'rand') ; vl_assert_almost_equal(means, means_, 1e-2) ; vl_assert_almost_equal(covariances, covariances_, 1e-2) ; vl_assert_almost_equal(priors, priors_, 1e-2) ; vl_assert_almost_equal(ll, ll_, 1e-2 * abs(ll)) ; vl_assert_almost_equal(posteriors, posteriors_, 1e-2) ; end end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_twister.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_twister.m
1,251
utf_8
2bfb5a30cbd6df6ac80c66b73f8646da
function results = vl_test_twister(varargin) % VL_TEST_TWISTER vl_test_init ; function test_illegal_args() vl_assert_exception(@() vl_twister(-1), 'vl:invalidArgument') ; vl_assert_exception(@() vl_twister(1, -1), 'vl:invalidArgument') ; vl_assert_exception(@() vl_twister([1, -1]), 'vl:invalidArgument') ; function test_seed_by_scalar() rand('twister',1) ; a = rand ; vl_twister('state',1) ; b = vl_twister ; vl_assert_equal(a,b,'seed by scalar + VL_TWISTER()') ; function test_get_set_state() rand('twister',1) ; a = rand('twister') ; vl_twister('state',1) ; b = vl_twister('state') ; vl_assert_equal(a,b,'read state') ; a(1) = a(1) + 1 ; vl_twister('state',a) ; b = vl_twister('state') ; vl_assert_equal(a,b,'set state') ; function test_multi_dimensions() b = rand('twister') ; rand('twister',b) ; vl_twister('state',b) ; a=rand([1 2 3 4 5]) ; b=vl_twister([1 2 3 4 5]) ; vl_assert_equal(a,b,'VL_TWISTER([M N P ...])') ; function test_multi_multi_args() rand('twister',1) ; a=rand(1, 2, 3, 4, 5) ; vl_twister('state',1) ; b=vl_twister(1, 2, 3, 4, 5) ; vl_assert_equal(a,b,'VL_TWISTER(M, N, P, ...)') ; function test_square() rand('twister',1) ; a=rand(10) ; vl_twister('state',1) ; b=vl_twister(10) ; vl_assert_equal(a,b,'VL_TWISTER(N)') ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_kdtree.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_kdtree.m
2,449
utf_8
9d7ad2b435a88c22084b38e5eb5f9eb9
function results = vl_test_kdtree(varargin) % VL_TEST_KDTREE vl_test_init ; function s = setup() randn('state',0) ; s.X = single(randn(10, 1000)) ; s.Q = single(randn(10, 10)) ; function test_nearest(s) for tmethod = {'median', 'mean'} for type = {@single, @double} conv = type{1} ; tmethod = char(tmethod) ; X = conv(s.X) ; Q = conv(s.Q) ; tree = vl_kdtreebuild(X,'ThresholdMethod', tmethod) ; [nn, d2] = vl_kdtreequery(tree, X, Q) ; D2 = vl_alldist2(X, Q, 'l2') ; [d2_, nn_] = min(D2) ; vl_assert_equal(... nn,uint32(nn_),... 'incorrect nns: type=%s th. method=%s', func2str(conv), tmethod) ; vl_assert_almost_equal(... d2,d2_,... 'incorrect distances: type=%s th. method=%s', func2str(conv), tmethod) ; end end function test_nearests(s) numNeighbors = 7 ; tree = vl_kdtreebuild(s.X) ; [nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ... 'numNeighbors', numNeighbors) ; D2 = vl_alldist2(s.X, s.Q, 'l2') ; [d2_, nn_] = sort(D2) ; d2_ = d2_(1:numNeighbors, :) ; nn_ = nn_(1:numNeighbors, :) ; vl_assert_equal(nn,uint32(nn_)) ; vl_assert_almost_equal(d2,d2_) ; function test_ann(s) vl_twister('state', 1) ; numNeighbors = 7 ; maxComparisons = numNeighbors * 50 ; tree = vl_kdtreebuild(s.X) ; [nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ... 'numNeighbors', numNeighbors, ... 'maxComparisons', maxComparisons) ; D2 = vl_alldist2(s.X, s.Q, 'l2') ; [d2_, nn_] = sort(D2) ; d2_ = d2_(1:numNeighbors, :) ; nn_ = nn_(1:numNeighbors, :) ; for i=1:size(s.Q,2) overlap = numel(intersect(nn(:,i), nn_(:,i))) / ... numel(union(nn(:,i), nn_(:,i))) ; assert(overlap > 0.6, 'ANN did not return enough correct nearest neighbors') ; end function test_ann_forest(s) vl_twister('state', 1) ; numNeighbors = 7 ; maxComparisons = numNeighbors * 25 ; numTrees = 5 ; tree = vl_kdtreebuild(s.X, 'numTrees', 5) ; [nn, d2] = vl_kdtreequery(tree, s.X, s.Q, ... 'numNeighbors', numNeighbors, ... 'maxComparisons', maxComparisons) ; D2 = vl_alldist2(s.X, s.Q, 'l2') ; [d2_, nn_] = sort(D2) ; d2_ = d2_(1:numNeighbors, :) ; nn_ = nn_(1:numNeighbors, :) ; for i=1:size(s.Q,2) overlap = numel(intersect(nn(:,i), nn_(:,i))) / ... numel(union(nn(:,i), nn_(:,i))) ; assert(overlap > 0.6, 'ANN did not return enough correct nearest neighbors') ; end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_imwbackward.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_imwbackward.m
514
utf_8
33baa0784c8f6f785a2951d7f1b49199
function results = vl_test_imwbackward(varargin) % VL_TEST_IMWBACKWARD vl_test_init ; function s = setup() s.I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; function test_identity(s) xr = 1:size(s.I,2) ; yr = 1:size(s.I,1) ; [x,y] = meshgrid(xr,yr) ; vl_assert_almost_equal(s.I, vl_imwbackward(xr,yr,s.I,x,y)) ; function test_invalid_args(s) xr = 1:size(s.I,2) ; yr = 1:size(s.I,1) ; [x,y] = meshgrid(xr,yr) ; vl_assert_exception(@() vl_imwbackward(xr,yr,single(s.I),x,y), 'vl:invalidArgument') ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_alphanum.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_alphanum.m
1,624
utf_8
2da2b768c2d0f86d699b8f31614aa424
function results = vl_test_alphanum(varargin) % VL_TEST_ALPHANUM vl_test_init ; function s = setup() s.strings = ... {'1000X Radonius Maximus','10X Radonius','200X Radonius','20X Radonius','20X Radonius Prime','30X Radonius','40X Radonius','Allegia 50 Clasteron','Allegia 500 Clasteron','Allegia 50B Clasteron','Allegia 51 Clasteron','Allegia 6R Clasteron','Alpha 100','Alpha 2','Alpha 200','Alpha 2A','Alpha 2A-8000','Alpha 2A-900','Callisto Morphamax','Callisto Morphamax 500','Callisto Morphamax 5000','Callisto Morphamax 600','Callisto Morphamax 6000 SE','Callisto Morphamax 6000 SE2','Callisto Morphamax 700','Callisto Morphamax 7000','Xiph Xlater 10000','Xiph Xlater 2000','Xiph Xlater 300','Xiph Xlater 40','Xiph Xlater 5','Xiph Xlater 50','Xiph Xlater 500','Xiph Xlater 5000','Xiph Xlater 58'} ; s.sortedStrings = ... {'10X Radonius','20X Radonius','20X Radonius Prime','30X Radonius','40X Radonius','200X Radonius','1000X Radonius Maximus','Allegia 6R Clasteron','Allegia 50 Clasteron','Allegia 50B Clasteron','Allegia 51 Clasteron','Allegia 500 Clasteron','Alpha 2','Alpha 2A','Alpha 2A-900','Alpha 2A-8000','Alpha 100','Alpha 200','Callisto Morphamax','Callisto Morphamax 500','Callisto Morphamax 600','Callisto Morphamax 700','Callisto Morphamax 5000','Callisto Morphamax 6000 SE','Callisto Morphamax 6000 SE2','Callisto Morphamax 7000','Xiph Xlater 5','Xiph Xlater 40','Xiph Xlater 50','Xiph Xlater 58','Xiph Xlater 300','Xiph Xlater 500','Xiph Xlater 2000','Xiph Xlater 5000','Xiph Xlater 10000'} ; function test_basic(s) sorted = vl_alphanum(s.strings) ; assert(isequal(sorted,s.sortedStrings)) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_printsize.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_printsize.m
1,447
utf_8
0f0b6437c648b7a2e1310900262bd765
function results = vl_test_printsize(varargin) % VL_TEST_PRINTSIZE vl_test_init ; function s = setup() s.fig = figure(1) ; s.usletter = [8.5, 11] ; % inches s.a4 = [8.26772, 11.6929] ; clf(s.fig) ; plot(1:10) ; function teardown(s) close(s.fig) ; function test_basic(s) for sigma = [1 0.5 0.2] vl_printsize(s.fig, sigma) ; set(1, 'PaperUnits', 'inches') ; siz = get(1, 'PaperSize') ; pos = get(1, 'PaperPosition') ; vl_assert_almost_equal(siz(1), sigma*s.usletter(1), 1e-4) ; vl_assert_almost_equal(pos(1), 0, 1e-4) ; vl_assert_almost_equal(pos(3), sigma*s.usletter(1), 1e-4) ; end function test_papertype(s) vl_printsize(s.fig, 1, 'papertype', 'a4') ; set(1, 'PaperUnits', 'inches') ; siz = get(1, 'PaperSize') ; pos = get(1, 'PaperPosition') ; vl_assert_almost_equal(siz(1), s.a4(1), 1e-4) ; function test_margin(s) m = 0.5 ; vl_printsize(s.fig, 1, 'margin', m) ; set(1, 'PaperUnits', 'inches') ; siz = get(1, 'PaperSize') ; pos = get(1, 'PaperPosition') ; vl_assert_almost_equal(siz(1), s.usletter(1) * (1 + 2*m), 1e-4) ; vl_assert_almost_equal(pos(1), s.usletter(1) * m, 1e-4) ; function test_reference(s) sigma = 1 ; vl_printsize(s.fig, 1, 'reference', 'vertical') ; set(1, 'PaperUnits', 'inches') ; siz = get(1, 'PaperSize') ; pos = get(1, 'PaperPosition') ; vl_assert_almost_equal(siz(2), sigma*s.usletter(2), 1e-4) ; vl_assert_almost_equal(pos(2), 0, 1e-4) ; vl_assert_almost_equal(pos(4), sigma*s.usletter(2), 1e-4) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_cummax.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_cummax.m
838
utf_8
5e98ee1681d4823f32ecc4feaa218611
function results = vl_test_cummax(varargin) % VL_TEST_CUMMAX vl_test_init ; function test_basic() vl_assert_almost_equal(... vl_cummax(1), 1) ; vl_assert_almost_equal(... vl_cummax([1 2 3 4], 2), [1 2 3 4]) ; function test_multidim() a = [1 2 3 4 3 2 1] ; b = [1 2 3 4 4 4 4] ; for k=1:6 dims = ones(1,6) ; dims(k) = numel(a) ; a = reshape(a, dims) ; b = reshape(b, dims) ; vl_assert_almost_equal(... vl_cummax(a, k), b) ; end function test_storage_classes() types = {@double, @single, ... @int32, @uint32, ... @int16, @uint16, ... @int8, @uint8} ; if vl_matlabversion() > 71000 types = horzcat(types, {@int64, @uint64}) ; end for a = types a = a{1} ; for b = types b = b{1} ; vl_assert_almost_equal(... vl_cummax(a(eye(3))), a(toeplitz([1 1 1], [1 0 0 ]))) ; end end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_imintegral.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_imintegral.m
1,429
utf_8
4750f04ab0ac9fc4f55df2c8583e5498
function results = vl_test_imintegral(varargin) % VL_TEST_IMINTEGRAL vl_test_init ; function state = setup() state.I = ones(5,6) ; state.correct = [ 1 2 3 4 5 6 ; 2 4 6 8 10 12 ; 3 6 9 12 15 18 ; 4 8 12 16 20 24 ; 5 10 15 20 25 30 ; ] ; function test_matlab_equivalent(s) vl_assert_equal(slow_imintegral(s.I), s.correct) ; function test_basic(s) vl_assert_equal(vl_imintegral(s.I), s.correct) ; function test_multi_dimensional(s) vl_assert_equal(vl_imintegral(repmat(s.I, [1 1 3])), ... repmat(s.correct, [1 1 3])) ; function test_random(s) numTests = 50 ; for i = 1:numTests I = rand(5) ; vl_assert_almost_equal(vl_imintegral(s.I), ... slow_imintegral(s.I)) ; end function test_datatypes(s) vl_assert_equal(single(vl_imintegral(s.I)), single(s.correct)) ; vl_assert_equal(double(vl_imintegral(s.I)), double(s.correct)) ; vl_assert_equal(uint32(vl_imintegral(s.I)), uint32(s.correct)) ; vl_assert_equal(int32(vl_imintegral(s.I)), int32(s.correct)) ; vl_assert_equal(int32(vl_imintegral(-s.I)), -int32(s.correct)) ; function integral = slow_imintegral(I) integral = zeros(size(I)); for k = 1:size(I,3) for r = 1:size(I,1) for c = 1:size(I,2) integral(r,c,k) = sum(sum(I(1:r,1:c,k))); end end end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_sift.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_sift.m
1,318
utf_8
806c61f9db9f2ebb1d649c9bfcf3dc0a
function results = vl_test_sift(varargin) % VL_TEST_SIFT vl_test_init ; function s = setup() s.I = im2single(imread(fullfile(vl_root,'data','box.pgm'))) ; [s.ubc.f, s.ubc.d] = ... vl_ubcread(fullfile(vl_root,'data','box.sift')) ; function test_ubc_descriptor(s) err = [] ; [f, d] = vl_sift(s.I,... 'firstoctave', -1, ... 'frames', s.ubc.f) ; D2 = vl_alldist(f, s.ubc.f) ; [drop, perm] = min(D2) ; f = f(:,perm) ; d = d(:,perm) ; error = mean(sqrt(sum((single(s.ubc.d) - single(d)).^2))) ... / mean(sqrt(sum(single(s.ubc.d).^2))) ; assert(error < 0.1, ... 'sift descriptor did not produce desctiptors similar to UBC ones') ; function test_ubc_detector(s) [f, d] = vl_sift(s.I,... 'firstoctave', -1, ... 'peakthresh', .01, ... 'edgethresh', 10) ; s.ubc.f(4,:) = mod(s.ubc.f(4,:), 2*pi) ; f(4,:) = mod(f(4,:), 2*pi) ; % scale the components so that 1 pixel erro in x,y,z is equal to a % 10-th of angle. S = diag([1 1 1 20/pi]); D2 = vl_alldist(S * s.ubc.f, S * f) ; [d2,perm] = sort(min(D2)) ; error = sqrt(d2) ; quant80 = round(.8 * size(f,2)) ; % check for less than one pixel error at 80% quantile assert(error(quant80) < 1, ... 'sift detector did not produce enough keypoints similar to UBC ones') ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_binsum.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_binsum.m
1,377
utf_8
f07f0f29ba6afe0111c967ab0b353a9d
function results = vl_test_binsum(varargin) % VL_TEST_BINSUM vl_test_init ; function test_three_args() vl_assert_almost_equal(... vl_binsum([0 0], 1, 2), [0 1]) ; vl_assert_almost_equal(... vl_binsum([1 7], -1, 1), [0 7]) ; vl_assert_almost_equal(... vl_binsum([1 7], -1, [1 2 2 2 2 2 2 2]), [0 0]) ; function test_four_args() vl_assert_almost_equal(... vl_binsum(eye(3), [1 1 1], [1 2 3], 1), 2*eye(3)) ; vl_assert_almost_equal(... vl_binsum(eye(3), [1 1 1]', [1 2 3]', 2), 2*eye(3)) ; vl_assert_almost_equal(... vl_binsum(eye(3), 1, [1 2 3], 1), 2*eye(3)) ; vl_assert_almost_equal(... vl_binsum(eye(3), 1, [1 2 3]', 2), 2*eye(3)) ; function test_3d_one() Z = zeros(3,3,3) ; B = 3*ones(3,1,3) ; R = Z ; R(:,3,:) = 17 ; vl_assert_almost_equal(... vl_binsum(Z, 17, B, 2), R) ; function test_3d_two() Z = zeros(3,3,3) ; B = 3*ones(3,3,1) ; X = zeros(3,3,1) ; X(:,:,1) = 17 ; R = Z ; R(:,:,3) = 17 ; vl_assert_almost_equal(... vl_binsum(Z, X, B, 3), R) ; function test_storage_classes() types = {@double, @single, ... @int32, @uint32, ... @int16, @uint16, ... @int8, @uint8} ; if vl_matlabversion() > 71000 types = horzcat(types, {@int64, @uint64}) ; end for a = types a = a{1} ; for b = types b = b{1} ; vl_assert_almost_equal(... vl_binsum(a(eye(3)), a([1 1 1]), b([1 2 3]), 1), a(2*eye(3))) ; end end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_lbp.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_lbp.m
892
utf_8
a79c0ce0c85e25c0b1657f3a0b499538
function results = vl_test_lbp(varargin) % VL_TEST_TWISTER vl_test_init ; function test_unfiorm_lbps(s) % enumerate the 56 uniform lbps q = 0 ; for i=0:7 for j=1:7 I = zeros(3) ; p = mod(s.pixels - i + 8, 8) + 1 ; I(p <= j) = 1 ; f = vl_lbp(single(I), 3) ; q = q + 1 ; vl_assert_equal(find(f), q) ; end end % constant lbps I = [1 1 1 ; 1 0 1 ; 1 1 1] ; f = vl_lbp(single(I), 3) ; vl_assert_equal(find(f), 57) ; I = [1 1 1 ; 1 1 1 ; 1 1 1] ; f = vl_lbp(single(I), 3) ; vl_assert_equal(find(f), 57) ; % other lbps I = [1 0 1 ; 0 0 0 ; 1 0 1] ; f = vl_lbp(single(I), 3) ; vl_assert_equal(find(f), 58) ; function test_fliplr(s) randn('state',0) ; I = randn(256,256,1,'single') ; f = vl_lbp(fliplr(I), 8) ; f_ = vl_lbpfliplr(vl_lbp(I, 8)) ; vl_assert_almost_equal(f,f_,1e-3) ; function s = setup() s.pixels = [5 6 7 ; 4 NaN 0 ; 3 2 1] ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_colsubset.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_colsubset.m
828
utf_8
be0c080007445b36333b863326fb0f15
function results = vl_test_colsubset(varargin) % VL_TEST_COLSUBSET vl_test_init ; function s = setup() s.x = [5 2 3 6 4 7 1 9 8 0] ; function test_beginning(s) vl_assert_equal(1:5, vl_colsubset(1:10, 5, 'beginning')) ; vl_assert_equal(1:5, vl_colsubset(1:10, .5, 'beginning')) ; function test_ending(s) vl_assert_equal(6:10, vl_colsubset(1:10, 5, 'ending')) ; vl_assert_equal(6:10, vl_colsubset(1:10, .5, 'ending')) ; function test_largest(s) vl_assert_equal([5 6 7 9 8], vl_colsubset(s.x, 5, 'largest')) ; vl_assert_equal([5 6 7 9 8], vl_colsubset(s.x, .5, 'largest')) ; function test_smallest(s) vl_assert_equal([2 3 4 1 0], vl_colsubset(s.x, 5, 'smallest')) ; vl_assert_equal([2 3 4 1 0], vl_colsubset(s.x, .5, 'smallest')) ; function test_random(s) assert(numel(intersect(s.x, vl_colsubset(s.x, 5, 'random'))) == 5) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_alldist.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_alldist.m
2,373
utf_8
9ea1a36c97fe715dfa2b8693876808ff
function results = vl_test_alldist(varargin) % VL_TEST_ALLDIST vl_test_init ; function s = setup() vl_twister('state', 0) ; s.X = 3.1 * vl_twister(10,10) ; s.Y = 4.7 * vl_twister(10,7) ; function test_null_args(s) vl_assert_equal(... vl_alldist(zeros(15,12), zeros(15,0), 'kl2'), ... zeros(12,0)) ; vl_assert_equal(... vl_alldist(zeros(15,0), zeros(15,0), 'kl2'), ... zeros(0,0)) ; vl_assert_equal(... vl_alldist(zeros(15,0), zeros(15,12), 'kl2'), ... zeros(0,12)) ; vl_assert_equal(... vl_alldist(zeros(0,15), zeros(0,12), 'kl2'), ... zeros(15,12)) ; function test_self(s) vl_assert_almost_equal(... vl_alldist(s.X, 'kl2'), ... makedist(@(x,y) x*y, s.X, s.X), ... 1e-6) ; function test_distances(s) dists = {'chi2', 'l2', 'l1', 'hell', 'js', ... 'kchi2', 'kl2', 'kl1', 'khell', 'kjs'} ; distsEquiv = { ... @(x,y) (x-y)^2 / (x + y), ... @(x,y) (x-y)^2, ... @(x,y) abs(x-y), ... @(x,y) (sqrt(x) - sqrt(y))^2, ... @(x,y) x - x .* log2(1 + y/x) + y - y .* log2(1 + x/y), ... @(x,y) 2 * (x*y) / (x + y), ... @(x,y) x*y, ... @(x,y) min(x,y), ... @(x,y) sqrt(x.*y), ... @(x,y) .5 * (x .* log2(1 + y/x) + y .* log2(1 + x/y))} ; types = {'single', 'double'} ; for simd = [0 1] for d = 1:length(dists) for t = 1:length(types) vl_simdctrl(simd) ; X = feval(str2func(types{t}), s.X) ; Y = feval(str2func(types{t}), s.Y) ; vl_assert_almost_equal(... vl_alldist(X,Y,dists{d}), ... makedist(distsEquiv{d},X,Y), ... 1e-4, ... 'alldist failed for dist=%s type=%s simd=%d', ... dists{d}, ... types{t}, ... simd) ; end end end function test_distance_kernel_pairs(s) dists = {'chi2', 'l2', 'l1', 'hell', 'js'} ; for d = 1:length(dists) dist = char(dists{d}) ; X = s.X ; Y = s.Y ; ker = ['k' dist] ; kxx = vl_alldist(X,X,ker) ; kyy = vl_alldist(Y,Y,ker) ; kxy = vl_alldist(X,Y,ker) ; kxx = repmat(diag(kxx), 1, size(s.Y,2)) ; kyy = repmat(diag(kyy), 1, size(s.X,1))' ; d2 = vl_alldist(X,Y,dist) ; vl_assert_almost_equal(d2, kxx + kyy - 2 * kxy, '1e-6') ; end function D = makedist(cmp,X,Y) [d,m] = size(X) ; [d,n] = size(Y) ; D = zeros(m,n) ; for i = 1:m for j = 1:n acc = 0 ; for k = 1:d acc = acc + cmp(X(k,i),Y(k,j)) ; end D(i,j) = acc ; end end conv = str2func(class(X)) ; D = conv(D) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_ihashsum.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_ihashsum.m
581
utf_8
edc283062469af62056b0782b171f5fc
function results = vl_test_ihashsum(varargin) % VL_TEST_IHASHSUM vl_test_init ; function s = setup() rand('state',0) ; s.data = uint8(round(16*rand(2,100))) ; sel = find(all(s.data==0)) ; s.data(1,sel)=1 ; function test_hash(s) D = size(s.data,1) ; K = 5 ; h = zeros(1,K,'uint32') ; id = zeros(D,K,'uint8'); next = zeros(1,K,'uint32') ; [h,id,next] = vl_ihashsum(h,id,next,K,s.data) ; sel = vl_ihashfind(id,next,K,s.data) ; count = double(h(sel)) ; [drop,i,j] = unique(s.data','rows') ; for k=1:size(s.data,2) count_(k) = sum(j == j(k)) ; end vl_assert_equal(count,count_) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_grad.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_grad.m
434
utf_8
4d03eb33a6a4f68659f868da95930ffb
function results = vl_test_grad(varargin) % VL_TEST_GRAD vl_test_init ; function s = setup() s.I = rand(150,253) ; s.I_small = rand(2,2) ; function test_equiv(s) vl_assert_equal(gradient(s.I), vl_grad(s.I)) ; function test_equiv_small(s) vl_assert_equal(gradient(s.I_small), vl_grad(s.I_small)) ; function test_equiv_forward(s) Ix = diff(s.I,2,1) ; Iy = diff(s.I,2,1) ; vl_assert_equal(gradient(s.I_small), vl_grad(s.I_small)) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_whistc.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_whistc.m
1,384
utf_8
81c446d35c82957659840ab2a579ec2c
function results = vl_test_whistc(varargin) % VL_TEST_WHISTC vl_test_init ; function test_acc() x = ones(1, 10) ; e = 1 ; o = 1:10 ; vl_assert_equal(vl_whistc(x, o, e), 55) ; function test_basic() x = 1:10 ; e = 1:10 ; o = ones(1, 10) ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; x = linspace(-1,11,100) ; o = ones(size(x)) ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; function test_multidim() x = rand(10, 20, 30) ; e = linspace(0,1,10) ; o = ones(size(x)) ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; vl_assert_equal(histc(x, e, 1), vl_whistc(x, o, e, 1)) ; vl_assert_equal(histc(x, e, 2), vl_whistc(x, o, e, 2)) ; vl_assert_equal(histc(x, e, 3), vl_whistc(x, o, e, 3)) ; function test_nan() x = rand(10, 20, 30) ; e = linspace(0,1,10) ; o = ones(size(x)) ; x(1:7:end) = NaN ; vl_assert_equal(histc(x, e), vl_whistc(x, o, e)) ; vl_assert_equal(histc(x, e, 1), vl_whistc(x, o, e, 1)) ; vl_assert_equal(histc(x, e, 2), vl_whistc(x, o, e, 2)) ; vl_assert_equal(histc(x, e, 3), vl_whistc(x, o, e, 3)) ; function test_no_edges() x = rand(10, 20, 30) ; o = ones(size(x)) ; vl_assert_equal(histc(1, []), vl_whistc(1, 1, [])) ; vl_assert_equal(histc(x, []), vl_whistc(x, o, [])) ; vl_assert_equal(histc(x, [], 1), vl_whistc(x, o, [], 1)) ; vl_assert_equal(histc(x, [], 2), vl_whistc(x, o, [], 2)) ; vl_assert_equal(histc(x, [], 3), vl_whistc(x, o, [], 3)) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_roc.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_roc.m
1,019
utf_8
9b2ae71c9dc3eda0fc54c65d55054d0c
function results = vl_test_roc(varargin) % VL_TEST_ROC vl_test_init ; function s = setup() s.scores0 = [5 4 3 2 1] ; s.scores1 = [5 3 4 2 1] ; s.labels = [1 1 -1 -1 -1] ; function test_perfect_tptn(s) [tpr,tnr] = vl_roc(s.labels,s.scores0) ; vl_assert_almost_equal(tpr, [0 1 2 2 2 2] / 2) ; vl_assert_almost_equal(tnr, [3 3 3 2 1 0] / 3) ; function test_perfect_metrics(s) [tpr,tnr,info] = vl_roc(s.labels,s.scores0) ; vl_assert_almost_equal(info.eer, 0) ; vl_assert_almost_equal(info.auc, 1) ; function test_swap1_tptn(s) [tpr,tnr] = vl_roc(s.labels,s.scores1) ; vl_assert_almost_equal(tpr, [0 1 1 2 2 2] / 2) ; vl_assert_almost_equal(tnr, [3 3 2 2 1 0] / 3) ; function test_swap1_tptn_stable(s) [tpr,tnr] = vl_roc(s.labels,s.scores1,'stable',true) ; vl_assert_almost_equal(tpr, [1 2 1 2 2] / 2) ; vl_assert_almost_equal(tnr, [3 2 2 1 0] / 3) ; function test_swap1_metrics(s) [tpr,tnr,info] = vl_roc(s.labels,s.scores1) ; vl_assert_almost_equal(info.eer, 1/3) ; vl_assert_almost_equal(info.auc, 1 - 1/(2*3)) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_dsift.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_dsift.m
2,048
utf_8
fbbfb16d5a21936c1862d9551f657ccc
function results = vl_test_dsift(varargin) % VL_TEST_DSIFT vl_test_init ; function s = setup() I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; s.I = rgb2gray(single(I)) ; function test_fast_slow(s) binSize = 4 ; % bin size in pixels magnif = 3 ; % bin size / keypoint scale scale = binSize / magnif ; windowSize = 5 ; [f, d] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ... 'size', binSize, ... 'step', 10, ... 'bounds', [20,20,210,140], ... 'windowsize', windowSize, ... 'floatdescriptors') ; [f_, d_] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ... 'size', binSize, ... 'step', 10, ... 'bounds', [20,20,210,140], ... 'windowsize', windowSize, ... 'floatdescriptors', ... 'fast') ; error = std(d_(:) - d(:)) / std(d(:)) ; assert(error < 0.1, 'dsift fast approximation not close') ; function test_sift(s) binSize = 4 ; % bin size in pixels magnif = 3 ; % bin size / keypoint scale scale = binSize / magnif ; windowSizeRange = [1 1.2 5] ; for wi = 1:length(windowSizeRange) windowSize = windowSizeRange(wi) ; [f, d] = vl_dsift(vl_imsmooth(s.I, sqrt(scale.^2 - .25)), ... 'size', binSize, ... 'step', 10, ... 'bounds', [20,20,210,140], ... 'windowsize', windowSize, ... 'floatdescriptors') ; numKeys = size(f, 2) ; f_ = [f ; ones(1, numKeys) * scale ; zeros(1, numKeys)] ; [f_, d_] = vl_sift(s.I, ... 'magnif', magnif, ... 'frames', f_, ... 'firstoctave', -1, ... 'levels', 5, ... 'floatdescriptors', ... 'windowsize', windowSize) ; error = std(d_(:) - d(:)) / std(d(:)) ; assert(error < 0.1, 'dsift and sift equivalence') ; end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_alldist2.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_alldist2.m
2,284
utf_8
89a787e3d83516653ae8d99c808b9d67
function results = vl_test_alldist2(varargin) % VL_TEST_ALLDIST vl_test_init ; % TODO: test integer classes function s = setup() vl_twister('state', 0) ; s.X = 3.1 * vl_twister(10,10) ; s.Y = 4.7 * vl_twister(10,7) ; function test_null_args(s) vl_assert_equal(... vl_alldist2(zeros(15,12), zeros(15,0), 'kl2'), ... zeros(12,0)) ; vl_assert_equal(... vl_alldist2(zeros(15,0), zeros(15,0), 'kl2'), ... zeros(0,0)) ; vl_assert_equal(... vl_alldist2(zeros(15,0), zeros(15,12), 'kl2'), ... zeros(0,12)) ; vl_assert_equal(... vl_alldist2(zeros(0,15), zeros(0,12), 'kl2'), ... zeros(15,12)) ; function test_self(s) vl_assert_almost_equal(... vl_alldist2(s.X, 'kl2'), ... makedist(@(x,y) x*y, s.X, s.X), ... 1e-6) ; function test_distances(s) dists = {'chi2', 'l2', 'l1', 'hell', ... 'kchi2', 'kl2', 'kl1', 'khell'} ; distsEquiv = { ... @(x,y) (x-y)^2 / (x + y), ... @(x,y) (x-y)^2, ... @(x,y) abs(x-y), ... @(x,y) (sqrt(x) - sqrt(y))^2, ... @(x,y) 2 * (x*y) / (x + y), ... @(x,y) x*y, ... @(x,y) min(x,y), ... @(x,y) sqrt(x.*y)}; types = {'single', 'double', 'sparse'} ; for simd = [0 1] for d = 1:length(dists) for t = 1:length(types) vl_simdctrl(simd) ; X = feval(str2func(types{t}), s.X) ; Y = feval(str2func(types{t}), s.Y) ; a = vl_alldist2(X,Y,dists{d}) ; b = makedist(distsEquiv{d},X,Y) ; vl_assert_almost_equal(a,b, ... 1e-4, ... 'alldist failed for dist=%s type=%s simd=%d', ... dists{d}, ... types{t}, ... simd) ; end end end function test_distance_kernel_pairs(s) dists = {'chi2', 'l2', 'l1', 'hell'} ; for d = 1:length(dists) dist = char(dists{d}) ; X = s.X ; Y = s.Y ; ker = ['k' dist] ; kxx = vl_alldist2(X,X,ker) ; kyy = vl_alldist2(Y,Y,ker) ; kxy = vl_alldist2(X,Y,ker) ; kxx = repmat(diag(kxx), 1, size(s.Y,2)) ; kyy = repmat(diag(kyy), 1, size(s.X,1))' ; d2 = vl_alldist2(X,Y,dist) ; vl_assert_almost_equal(d2, kxx + kyy - 2 * kxy, '1e-6') ; end function D = makedist(cmp,X,Y) [d,m] = size(X) ; [d,n] = size(Y) ; D = zeros(m,n) ; for i = 1:m for j = 1:n acc = 0 ; for k = 1:d acc = acc + cmp(X(k,i),Y(k,j)) ; end D(i,j) = acc ; end end conv = str2func(class(X)) ; D = conv(D) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_fisher.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_fisher.m
2,097
utf_8
c9afd9ab635bd412cbf8be3c2d235f6b
function results = vl_test_fisher(varargin) % VL_TEST_FISHER vl_test_init ; function s = setup() randn('state',0) ; dimension = 5 ; numData = 21 ; numComponents = 3 ; s.x = randn(dimension,numData) ; s.mu = randn(dimension,numComponents) ; s.sigma2 = ones(dimension,numComponents) ; s.prior = ones(1,numComponents) ; s.prior = s.prior / sum(s.prior) ; function test_basic(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior) ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function test_norm(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ; phi_ = phi_ / norm(phi_) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'normalized') ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function test_sqrt(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ; phi_ = sign(phi_) .* sqrt(abs(phi_)) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'squareroot') ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function test_improved(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior) ; phi_ = sign(phi_) .* sqrt(abs(phi_)) ; phi_ = phi_ / norm(phi_) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'improved') ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function test_fast(s) phi_ = simple_fisher(s.x, s.mu, s.sigma2, s.prior, true) ; phi_ = sign(phi_) .* sqrt(abs(phi_)) ; phi_ = phi_ / norm(phi_) ; phi = vl_fisher(s.x, s.mu, s.sigma2, s.prior, 'improved', 'fast') ; vl_assert_almost_equal(phi, phi_, 1e-10) ; function enc = simple_fisher(x, mu, sigma2, pri, fast) if nargin < 5, fast = false ; end sigma = sqrt(sigma2) ; for k = 1:size(mu,2) delta{k} = bsxfun(@times, bsxfun(@minus, x, mu(:,k)), 1./sigma(:,k)) ; q(k,:) = log(pri(k)) - 0.5 * sum(log(sigma2(:,k))) - 0.5 * sum(delta{k}.^2,1) ; end q = exp(bsxfun(@minus, q, max(q,[],1))) ; q = bsxfun(@times, q, 1 ./ sum(q,1)) ; n = size(x,2) ; if fast [~,i] = max(q) ; q = zeros(size(q)) ; q(sub2ind(size(q),i,1:n)) = 1 ; end for k = 1:size(mu,2) u{k} = delta{k} * q(k,:)' / n / sqrt(pri(k)) ; v{k} = (delta{k}.^2 - 1) * q(k,:)' / n / sqrt(2*pri(k)) ; end enc = cat(1, u{:}, v{:}) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_imsmooth.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_imsmooth.m
1,837
utf_8
718235242cad61c9804ba5e881c22f59
function results = vl_test_imsmooth(varargin) % VL_TEST_IMSMOOTH vl_test_init ; function s = setup() I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; I = max(min(vl_imdown(I),1),0) ; s.I = single(I) ; function test_pad_by_continuity(s) % Convolving a constant signal padded with continuity does not change % the signal. I = ones(3) ; for ker = {'triangular', 'gaussian'} ker = char(ker) ; J = vl_imsmooth(I, 2, ... 'kernel', ker, ... 'padding', 'continuity') ; vl_assert_almost_equal(J, I, 1e-4, ... 'padding by continutiy with kernel = %s', ker) ; end function test_kernels(s) for ker = {'triangular', 'gaussian'} ker = char(ker) ; for type = {@single, @double} for simd = [0 1] for sigma = [1 2 7] for step = [1 2 3] vl_simdctrl(simd) ; conv = type{1} ; g = equivalent_kernel(ker, sigma) ; J = vl_imsmooth(conv(s.I), sigma, ... 'kernel', ker, ... 'padding', 'zero', ... 'subsample', step) ; J_ = conv(convolve(s.I, g, step)) ; vl_assert_almost_equal(J, J_, 1e-4, ... 'kernel=%s sigma=%f step=%d simd=%d', ... ker, sigma, step, simd) ; end end end end end function g = equivalent_kernel(ker, sigma) switch ker case 'gaussian' W = ceil(4*sigma) ; g = exp(-.5*((-W:W)/(sigma+eps)).^2) ; case 'triangular' W = max(round(sigma),1) ; g = W - abs(-W+1:W-1) ; end g = g / sum(g) ; function I = convolve(I, g, step) if strcmp(class(I),'single') g = single(g) ; else g = double(g) ; end for k=1:size(I,3) I(:,:,k) = conv2(g,g,I(:,:,k),'same'); end I = I(1:step:end,1:step:end,:) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_svmtrain.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_svmtrain.m
4,277
utf_8
071b7c66191a22e8236fda16752b27aa
function results = vl_test_svmtrain(varargin) % VL_TEST_SVMTRAIN vl_test_init ; end function s = setup() randn('state',0) ; Np = 10 ; Nn = 10 ; xp = diag([1 3])*randn(2, Np) ; xn = diag([1 3])*randn(2, Nn) ; xp(1,:) = xp(1,:) + 2 + 1 ; xn(1,:) = xn(1,:) - 2 + 1 ; s.x = [xp xn] ; s.y = [ones(1,Np) -ones(1,Nn)] ; s.lambda = 0.01 ; s.biasMultiplier = 10 ; if 0 figure(1) ; clf; vl_plotframe(xp, 'g') ; hold on ; vl_plotframe(xn, 'r') ; axis equal ; grid on ; end % Run LibSVM as an accuate solver to compare results with. Note that % LibSVM optimizes a slightly different cost function due to the way % the bias is handled. % [s.w, s.b] = accurate_solver(s.x, s.y, s.lambda, s.biasMultiplier) ; s.w = [1.180762951236242; 0.098366470721632] ; s.b = -1.540018443946204 ; s.obj = obj(s, s.w, s.b) ; end function test_sgd_basic(s) for conv = {@single, @double} conv = conv{1} ; vl_twister('state',0) ; [w b info] = vl_svmtrain(s.x, s.y, s.lambda, ... 'Solver', 'sgd', ... 'BiasMultiplier', s.biasMultiplier, ... 'BiasLearningRate', 1/s.biasMultiplier, ... 'MaxNumIterations', 1e5, ... 'Epsilon', 1e-3) ; % there are no absolute guarantees on the objective gap, but % the heuristic SGD uses as stopping criterion seems reasonable % within a factor 10 at least. o = obj(s, w, b) ; gap = o - s.obj ; vl_assert_almost_equal(conv([w; b]), conv([s.w; s.b]), 0.1) ; assert(gap <= 1e-2) ; end end function test_sdca_basic(s) for conv = {@single, @double} conv = conv{1} ; vl_twister('state',0) ; [w b info] = vl_svmtrain(s.x, s.y, s.lambda, ... 'Solver', 'sdca', ... 'BiasMultiplier', s.biasMultiplier, ... 'MaxNumIterations', 1e5, ... 'Epsilon', 1e-3) ; % the gap with the accurate solver cannot be % greater than the duality gap. o = obj(s, w, b) ; gap = o - s.obj ; vl_assert_almost_equal(conv([w; b]), conv([s.w; s.b]), 0.1) ; assert(gap <= 1e-3) ; end end function test_weights(s) for algo = {'sgd', 'sdca'} for conv = {@single, @double} conv = conv{1} ; vl_twister('state',0) ; numRepeats = 10 ; pos = find(s.y > 0) ; neg = find(s.y < 0) ; weights = ones(1, numel(s.y)) ; weights(pos) = numRepeats ; % simulate weighting by repeating positives [w b info] = vl_svmtrain(... s.x(:, [repmat(pos,1,numRepeats) neg]), ... s.y(:, [repmat(pos,1,numRepeats) neg]), ... s.lambda / (numel(pos) *numRepeats + numel(neg)) / (numel(pos) + numel(neg)), ... 'Solver', 'sdca', ... 'BiasMultiplier', s.biasMultiplier, ... 'MaxNumIterations', 1e6, ... 'Epsilon', 1e-4) ; % apply weigthing [w_ b_ info_] = vl_svmtrain(... s.x, ... s.y, ... s.lambda, ... 'Solver', char(algo), ... 'BiasMultiplier', s.biasMultiplier, ... 'MaxNumIterations', 1e6, ... 'Epsilon', 1e-4, ... 'Weights', weights) ; vl_assert_almost_equal(conv([w; b]), conv([w_; b_]), 0.05) ; end end end function test_homkermap(s) for solver = {'sgd', 'sdca'} for conv = {@single,@double} conv = conv{1} ; dataset = vl_svmdataset(conv(s.x), 'homkermap', struct('order',1)) ; vl_twister('state',0) ; [w_ b_] = vl_svmtrain(dataset, s.y, s.lambda) ; x_hom = vl_homkermap(conv(s.x), 1) ; vl_twister('state',0) ; [w b] = vl_svmtrain(x_hom, s.y, s.lambda) ; vl_assert_almost_equal([w; b],[w_; b_], 1e-7) ; end end end function [w,b] = accurate_solver(X, y, lambda, biasMultiplier) addpath opt/libsvm/matlab/ N = size(X,2) ; model = svmtrain(y', [(1:N)' X'*X], sprintf(' -c %f -t 4 -e 0.00001 ', 1/(lambda*N))) ; w = X(:,model.SVs) * model.sv_coef ; b = - model.rho ; format long ; disp('model w:') disp(w) disp('bias b:') disp(b) end function o = obj(s, w, b) o = (sum(w.*w) + b*b) * s.lambda / 2 + mean(max(0, 1 - s.y .* (w'*s.x + b))) ; end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_phow.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_phow.m
549
utf_8
f761a3bb218af855986263c67b2da411
function results = vl_test_phow(varargin) % VL_TEST_PHOPW vl_test_init ; function s = setup() s.I = im2double(imread(fullfile(vl_root,'data','spots.jpg'))) ; s.I = single(s.I) ; function test_gray(s) [f,d] = vl_phow(s.I, 'color', 'gray') ; assert(size(d,1) == 128) ; function test_rgb(s) [f,d] = vl_phow(s.I, 'color', 'rgb') ; assert(size(d,1) == 128*3) ; function test_hsv(s) [f,d] = vl_phow(s.I, 'color', 'hsv') ; assert(size(d,1) == 128*3) ; function test_opponent(s) [f,d] = vl_phow(s.I, 'color', 'opponent') ; assert(size(d,1) == 128*3) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_kmeans.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_kmeans.m
3,632
utf_8
0e1d6f4f8101c8982a0e743e0980c65a
function results = vl_test_kmeans(varargin) % VL_TEST_KMEANS % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). vl_test_init ; function s = setup() randn('state',0) ; s.X = randn(128, 100) ; function test_basic(s) [centers, assignments, en] = vl_kmeans(s.X, 10, 'NumRepetitions', 10) ; [centers_, assignments_, en_] = simpleKMeans(s.X, 10) ; assert(en_ <= 1.1 * en, 'vl_kmeans did not optimize enough') ; function test_algorithms(s) distances = {'l1', 'l2'} ; dataTypes = {'single','double'} ; for dataType = dataTypes for distance = distances distance = char(distance) ; conversion = str2func(char(dataType)) ; X = conversion(s.X) ; vl_twister('state',0) ; [centers, assignments, en] = vl_kmeans(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Algorithm', 'Lloyd', ... 'Distance', distance) ; vl_twister('state',0) ; [centers_, assignments_, en_] = vl_kmeans(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Algorithm', 'Elkan', ... 'Distance', distance) ; vl_twister('state',0) ; [centers__, assignments__, en__] = vl_kmeans(X, 10, ... 'NumRepetitions', 1, ... 'MaxNumIterations', 10, ... 'Algorithm', 'ANN', ... 'Distance', distance, ... 'NumTrees', 3, ... 'MaxNumComparisons',0) ; vl_assert_almost_equal(centers, centers_, 1e-5) ; vl_assert_almost_equal(assignments, assignments_, 1e-5) ; vl_assert_almost_equal(en, en_, 1e-4) ; vl_assert_almost_equal(centers, centers__, 1e-5) ; vl_assert_almost_equal(assignments, assignments__, 1e-5) ; vl_assert_almost_equal(en, en__, 1e-4) ; vl_assert_almost_equal(centers_, centers__, 1e-5) ; vl_assert_almost_equal(assignments_, assignments__, 1e-5) ; vl_assert_almost_equal(en_, en__, 1e-4) ; end end function test_patterns(s) distances = {'l1', 'l2'} ; dataTypes = {'single','double'} ; for dataType = dataTypes for distance = distances distance = char(distance) ; conversion = str2func(char(dataType)) ; data = [1 1 0 0 ; 1 0 1 0] ; data = conversion(data) ; [centers, assignments, en] = vl_kmeans(data, 4, ... 'NumRepetitions', 100, ... 'Distance', distance) ; assert(isempty(setdiff(data', centers', 'rows'))) ; end end function [centers, assignments, en] = simpleKMeans(X, numCenters) [dimension, numData] = size(X) ; centers = randn(dimension, numCenters) ; for iter = 1:10 [dists, assignments] = min(vl_alldist(centers, X)) ; en = sum(dists) ; centers = [zeros(dimension, numCenters) ; ones(1, numCenters)] ; centers = vl_binsum(centers, ... [X ; ones(1,numData)], ... repmat(assignments, dimension+1, 1), 2) ; centers = centers(1:end-1, :) ./ repmat(centers(end,:), dimension, 1) ; end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_hikmeans.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_hikmeans.m
463
utf_8
dc3b493646e66316184e86ff4e6138ab
function results = vl_test_hikmeans(varargin) % VL_TEST_IKMEANS vl_test_init ; function s = setup() rand('state',0) ; s.data = uint8(rand(2,1000) * 255) ; function test_basic(s) [tree, assign] = vl_hikmeans(s.data,3,100) ; assign_ = vl_hikmeanspush(tree, s.data) ; vl_assert_equal(assign,assign_) ; function test_elkan(s) [tree, assign] = vl_hikmeans(s.data,3,100,'method','elkan') ; assign_ = vl_hikmeanspush(tree, s.data) ; vl_assert_equal(assign,assign_) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_aib.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_aib.m
1,277
utf_8
78978ae54e7ebe991d136336ba4bf9c6
function results = vl_test_aib(varargin) % VL_TEST_AIB vl_test_init ; function s = setup() s = [] ; function test_basic(s) Pcx = [.3 .3 0 0 0 0 .2 .2] ; % This results in the AIB tree % % 1 - \ % 5 - \ % 2 - / \ % - 7 % 3 - \ / % 6 - / % 4 - / % % coded by the map [5 5 6 6 7 1] (1 denotes the root). [parents,cost] = vl_aib(Pcx) ; vl_assert_equal(parents, [5 5 6 6 7 7 1]) ; vl_assert_almost_equal(mi(Pcx)*[1 1 1], cost(1:3), 1e-3) ; [cut,map,short] = vl_aibcut(parents,2) ; vl_assert_equal(cut, [5 6]) ; vl_assert_equal(map, [1 1 2 2 1 2 0]) ; vl_assert_equal(short, [5 5 6 6 5 6 7]) ; function test_cluster_null(s) Pcx = [.5 .5 0 0 0 0 0 0] ; % This results in the AIB tree % % 1 - \ % 5 % 2 - / % % 3 x % % 4 x % % If ClusterNull is specified, the values 3 and 4 % which have zero probability are merged first % % 1 ----------\ % 7 % 2 ----- \ / % 6-/ % 3 -\ / % 5 -/ % 4 -/ parents1 = vl_aib(Pcx) ; parents2 = vl_aib(Pcx,'ClusterNull') ; vl_assert_equal(parents1, [5 5 0 0 1 0 0]) ; vl_assert_equal(parents2(3), parents2(4)) ; function x = mi(P) % mutual information P1 = sum(P,1) ; P2 = sum(P,2) ; x = sum(sum(P .* log(max(P,1e-10) ./ (P2*P1)))) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_plotbox.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_plotbox.m
414
utf_8
aa06ce4932a213fb933bbede6072b029
function results = vl_test_plotbox(varargin) % VL_TEST_PLOTBOX vl_test_init ; function test_basic(s) figure(1) ; clf ; vl_plotbox([-1 -1 1 1]') ; xlim([-2 2]) ; ylim([-2 2]) ; close(1) ; function test_multiple(s) figure(1) ; clf ; randn('state', 0) ; vl_plotbox(randn(4,10)) ; close(1) ; function test_style(s) figure(1) ; clf ; randn('state', 0) ; vl_plotbox(randn(4,10), 'r-.', 'LineWidth', 3) ; close(1) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_imarray.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_imarray.m
795
utf_8
c5e6a5aa8c2e63e248814f5bd89832a8
function results = vl_test_imarray(varargin) % VL_TEST_IMARRAY vl_test_init ; function test_movie_rgb(s) A = rand(23,15,3,4) ; B = vl_imarray(A,'movie',true) ; function test_movie_indexed(s) cmap = get(0,'DefaultFigureColormap') ; A = uint8(size(cmap,1)*rand(23,15,4)) ; A = min(A,size(cmap,1)-1) ; B = vl_imarray(A,'movie',true) ; function test_movie_gray_indexed(s) A = uint8(255*rand(23,15,4)) ; B = vl_imarray(A,'movie',true,'cmap',gray(256)) ; for k=1:size(A,3) vl_assert_equal(squeeze(A(:,:,k)), ... frame2im(B(k))) ; end function test_basic(s) M = 3 ; N = 4 ; width = 32 ; height = 15 ; for i=1:M for j=1:N A{i,j} = rand(width,height) ; end end A1 = A'; A1 = cat(3,A1{:}) ; A2 = cell2mat(A) ; B = vl_imarray(A1, 'layout', [M N]) ; vl_assert_equal(A2,B) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_homkermap.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_homkermap.m
1,903
utf_8
c157052bf4213793a961bde1f73fb307
function results = vl_test_homkermap(varargin) % VL_TEST_HOMKERMAP vl_test_init ; function check_ker(ker, n, window, period) args = {n, ker, 'window', window} ; if nargin > 3 args = {args{:}, 'period', period} ; end x = [-1 -.5 0 .5 1] ; y = linspace(0,2,100) ; for conv = {@single, @double} x = feval(conv{1}, x) ; y = feval(conv{1}, y) ; sx = sign(x) ; sy = sign(y) ; psix = vl_homkermap(x, args{:}) ; psiy = vl_homkermap(y, args{:}) ; k = vl_alldist(psix,psiy,'kl2') ; k_ = (sx'*sy) .* vl_alldist(sx.*x,sy.*y,ker) ; vl_assert_almost_equal(k, k_, 2e-2) ; end function test_uniform_kchi2(), check_ker('kchi2', 3, 'uniform', 15) ; function test_uniform_kjs(), check_ker('kjs', 3, 'uniform', 15) ; function test_uniform_kl1(), check_ker('kl1', 29, 'uniform', 15) ; function test_rect_kchi2(), check_ker('kchi2', 3, 'rectangular', 15) ; function test_rect_kjs(), check_ker('kjs', 3, 'rectangular', 15) ; function test_rect_kl1(), check_ker('kl1', 29, 'rectangular', 10) ; function test_auto_uniform_kchi2(),check_ker('kchi2', 3, 'uniform') ; function test_auto_uniform_kjs(), check_ker('kjs', 3, 'uniform') ; function test_auto_uniform_kl1(), check_ker('kl1', 25, 'uniform') ; function test_auto_rect_kchi2(), check_ker('kchi2', 3, 'rectangular') ; function test_auto_rect_kjs(), check_ker('kjs', 3, 'rectangular') ; function test_auto_rect_kl1(), check_ker('kl1', 25, 'rectangular') ; function test_gamma() x = linspace(0,1,20) ; for gamma = linspace(.2,2,10) k = vl_alldist(x, 'kchi2') .* (x'*x + 1e-12).^((gamma-1)/2) ; psix = vl_homkermap(x, 3, 'kchi2', 'gamma', gamma) ; assert(norm(k - psix'*psix) < 1e-2) ; end function test_negative() x = linspace(-1,1,20) ; k = vl_alldist(abs(x), 'kchi2') .* (sign(x)'*sign(x)) ; psix = vl_homkermap(x, 3, 'kchi2') ; assert(norm(k - psix'*psix) < 1e-2) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_slic.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_slic.m
200
utf_8
12a6465e3ef5b4bcfd7303cd8a9229d4
function results = vl_test_slic(varargin) % VL_TEST_SLIC vl_test_init ; function s = setup() s.im = im2single(vl_impattern('roofs1')) ; function test_slic(s) segmentation = vl_slic(s.im, 10, 0.1) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_ikmeans.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_ikmeans.m
466
utf_8
1ee2f647ac0035ed0d704a0cd615b040
function results = vl_test_ikmeans(varargin) % VL_TEST_IKMEANS vl_test_init ; function s = setup() rand('state',0) ; s.data = uint8(rand(2,1000) * 255) ; function test_basic(s) [centers, assign] = vl_ikmeans(s.data,100) ; assign_ = vl_ikmeanspush(s.data, centers) ; vl_assert_equal(assign,assign_) ; function test_elkan(s) [centers, assign] = vl_ikmeans(s.data,100,'method','elkan') ; assign_ = vl_ikmeanspush(s.data, centers) ; vl_assert_equal(assign,assign_) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_mser.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_mser.m
242
utf_8
1ad33563b0c86542a2978ee94e0f4a39
function results = vl_test_mser(varargin) % VL_TEST_MSER vl_test_init ; function s = setup() s.im = im2uint8(rgb2gray(vl_impattern('roofs1'))) ; function test_mser(s) [regions,frames] = vl_mser(s.im) ; mask = vl_erfill(s.im, regions(1)) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_inthist.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_inthist.m
811
utf_8
459027d0c54d8f197563a02ab66ef45d
function results = vl_test_inthist(varargin) % VL_TEST_INTHIST vl_test_init ; function s = setup() rand('state',0) ; s.labels = uint32(8*rand(123, 76, 3)) ; function test_basic(s) l = 10 ; hist = vl_inthist(s.labels, 'numlabels', l) ; hist_ = inthist_slow(s.labels, l) ; vl_assert_equal(double(hist),hist_) ; function test_sample(s) rand('state',0) ; boxes = 10 * rand(4,20) + .5 ; boxes(3:4,:) = boxes(3:4,:) + boxes(1:2,:) ; boxes = min(boxes, 10) ; boxes = uint32(boxes) ; inthist = vl_inthist(s.labels) ; hist = vl_sampleinthist(inthist, boxes) ; function hist = inthist_slow(labels, numLabels) m = size(labels,1) ; n = size(labels,2) ; l = numLabels ; b = zeros(m*n,l) ; b = vl_binsum(b, 1, reshape(labels,m*n,[]), 2) ; b = reshape(b,m,n,l) ; for k=1:l hist(:,:,k) = cumsum(cumsum(b(:,:,k)')') ; end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_imdisttf.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_imdisttf.m
1,885
utf_8
ae921197988abeb984cbcdf9eaf80e77
function results = vl_test_imdisttf(varargin) % VL_TEST_DISTTF vl_test_init ; function test_basic() for conv = {@single, @double} conv = conv{1} ; I = conv([0 0 0 ; 0 -2 0 ; 0 0 0]) ; D = vl_imdisttf(I); assert(isequal(D, conv(- [0 1 0 ; 1 2 1 ; 0 1 0]))) ; I(2,2) = -3 ; [D,map] = vl_imdisttf(I) ; assert(isequal(D, conv(-1 - [0 1 0 ; 1 2 1 ; 0 1 0]))) ; assert(isequal(map, 5 * ones(3))) ; end function test_1x1() assert(isequal(1, vl_imdisttf(1))) ; function test_rand() I = rand(13,31) ; for t=1:4 param = [rand randn rand randn] ; [D0,map0] = imdisttf_equiv(I,param) ; [D,map] = vl_imdisttf(I,param) ; vl_assert_almost_equal(D,D0,1e-10) assert(isequal(map,map0)) ; end function test_param() I = zeros(3,4) ; I(1,1) = -1 ; [D,map] = vl_imdisttf(I,[1 0 1 0]); assert(isequal(-[1 0 0 0 ; 0 0 0 0 ; 0 0 0 0 ;], D)) ; D0 = -[1 .9 .6 .1 ; 0 0 0 0 ; 0 0 0 0 ;] ; [D,map] = vl_imdisttf(I,[.1 0 1 0]); vl_assert_almost_equal(D,D0,1e-10); D0 = -[1 .9 .6 .1 ; .9 .8 .5 0 ; .6 .5 .2 0 ;] ; [D,map] = vl_imdisttf(I,[.1 0 .1 0]); vl_assert_almost_equal(D,D0,1e-10); D0 = -[.9 1 .9 .6 ; .8 .9 .8 .5 ; .5 .6 .5 .2 ; ] ; [D,map] = vl_imdisttf(I,[.1 1 .1 0]); vl_assert_almost_equal(D,D0,1e-10); function test_special() I = rand(13,31) -.5 ; D = vl_imdisttf(I, [0 0 1e5 0]) ; vl_assert_almost_equal(D(:,1),min(I,[],2),1e-10); D = vl_imdisttf(I, [1e5 0 0 0]) ; vl_assert_almost_equal(D(1,:),min(I,[],1),1e-10); function [D,map]=imdisttf_equiv(I,param) D = inf + zeros(size(I)) ; map = zeros(size(I)) ; ur = 1:size(D,2) ; vr = 1:size(D,1) ; [u,v] = meshgrid(ur,vr) ; for v_=vr for u_=ur E = I(v_,u_) + ... param(1) * (u - u_ - param(2)).^2 + ... param(3) * (v - v_ - param(4)).^2 ; map(E < D) = sub2ind(size(I),v_,u_) ; D = min(D,E) ; end end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_vlad.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_vlad.m
1,977
utf_8
d3797288d6edb1d445b890db3780c8ce
function results = vl_test_vlad(varargin) % VL_TEST_VLAD vl_test_init ; function s = setup() randn('state',0) ; s.x = randn(128,256) ; s.mu = randn(128,16) ; assignments = rand(16, 256) ; s.assignments = bsxfun(@times, assignments, 1 ./ sum(assignments,1)) ; function test_basic (s) x = [1, 2, 3] ; mu = [0, 0, 0] ; assignments = eye(3) ; phi = vl_vlad(x, mu, assignments, 'unnormalized') ; vl_assert_equal(phi, [1 2 3]') ; mu = [0, 1, 2] ; phi = vl_vlad(x, mu, assignments, 'unnormalized') ; vl_assert_equal(phi, [1 1 1]') ; phi = vl_vlad([x x], mu, [assignments assignments], 'unnormalized') ; vl_assert_equal(phi, [2 2 2]') ; function test_rand (s) phi_ = simple_vlad(s.x, s.mu, s.assignments) ; phi = vl_vlad(s.x, s.mu, s.assignments, 'unnormalized') ; vl_assert_equal(phi, phi_) ; function test_norm (s) phi_ = simple_vlad(s.x, s.mu, s.assignments) ; phi_ = phi_ / norm(phi_) ; phi = vl_vlad(s.x, s.mu, s.assignments) ; vl_assert_almost_equal(phi, phi_, 1e-4) ; function test_sqrt (s) phi_ = simple_vlad(s.x, s.mu, s.assignments) ; phi_ = sign(phi_) .* sqrt(abs(phi_)) ; phi_ = phi_ / norm(phi_) ; phi = vl_vlad(s.x, s.mu, s.assignments, 'squareroot') ; vl_assert_almost_equal(phi, phi_, 1e-4) ; function test_individual (s) phi_ = simple_vlad(s.x, s.mu, s.assignments) ; phi_ = reshape(phi_, size(s.x,1), []) ; phi_ = bsxfun(@times, phi_, 1 ./ sqrt(sum(phi_.^2))) ; phi_ = phi_(:) ; phi = vl_vlad(s.x, s.mu, s.assignments, 'unnormalized', 'normalizecomponents') ; vl_assert_almost_equal(phi, phi_, 1e-4) ; function test_mass (s) phi_ = simple_vlad(s.x, s.mu, s.assignments) ; phi_ = reshape(phi_, size(s.x,1), []) ; phi_ = bsxfun(@times, phi_, 1 ./ sum(s.assignments,2)') ; phi_ = phi_(:) ; phi = vl_vlad(s.x, s.mu, s.assignments, 'unnormalized', 'normalizemass') ; vl_assert_almost_equal(phi, phi_, 1e-4) ; function enc = simple_vlad(x, mu, assign) for i = 1:size(assign,1) enc{i} = x * assign(i,:)' - sum(assign(i,:)) * mu(:,i) ; end enc = cat(1, enc{:}) ;